plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_pr.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_pr.m
3,763
utf_8
4d1da5ccda1a7df2bec35b8f12fdd620
function results = vl_test_pr(varargin) % VL_TEST_PR vl_test_init ; function s = setup() s.scores0 = [5 4 3 2 1] ; s.scores1 = [5 3 4 2 1] ; s.labels = [1 1 -1 -1 -1] ; function test_perfect_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(pr, [1 1/1 2/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 2 2 2 2] / 2) ; function test_perfect_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores0) ; vl_assert_almost_equal(info.auc, 1) ; vl_assert_almost_equal(info.ap, 1) ; vl_assert_almost_equal(info.ap_interp_11, 1) ; function test_swap1_tptn(s) [rc,pr] = vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(pr, [1 1/1 1/2 2/3 2/4 2/5]) ; vl_assert_almost_equal(rc, [0 1 1 2 2 2] / 2) ; function test_swap1_tptn_stable(s) [rc,pr] = vl_pr(s.labels,s.scores1,'stable',true) ; vl_assert_almost_equal(pr, [1/1 2/3 1/2 2/4 2/5]) ; vl_assert_almost_equal(rc, [1 2 1 2 2] / 2) ; function test_swap1_metrics(s) [rc,pr,info] = vl_pr(s.labels,s.scores1) ; clf; vl_pr(s.labels,s.scores1) ; vl_assert_almost_equal(info.auc, [.5 + .5 * (.5 + 2/3)/2]) ; vl_assert_almost_equal(info.ap, [1/1 + 2/3]/2) ; vl_assert_almost_equal(info.ap_interp_11, mean([1 1 1 1 1 1 2/3 2/3 2/3 2/3 2/3])) ; function test_inf(s) scores = [1 -inf -1 -1 -1 -1] ; labels = [1 1 -1 -1 -1 -1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false) ; vl_assert_equal(numel(rc1), numel(rc2) + 1) ; vl_assert_almost_equal(info1.auc, [1 * .5 + (1/5 + 2/6)/2 * .5]) ; vl_assert_almost_equal(info1.ap, [1 * .5 + 2/6 * .5]) ; vl_assert_almost_equal(info1.ap_interp_11, [1 * 6/11 + 2/6 * 5/11]) ; vl_assert_almost_equal(info2.auc, 0.5) ; vl_assert_almost_equal(info2.ap, 0.5) ; vl_assert_almost_equal(info2.ap_interp_11, 1 * 6 / 11) ; function test_inf_stable(s) scores = [-1 -1 -1 -1 -inf +1] ; labels = [-1 -1 -1 -1 +1 +1] ; [rc1,pr1,info1] = vl_pr(labels, scores, 'includeInf', true, 'stable', true) ; [rc2,pr2,info2] = vl_pr(labels, scores, 'includeInf', false, 'stable', true) ; [rc1_,pr1_,info1_] = vl_pr(labels, scores, 'includeInf', true, 'stable', false) ; [rc2_,pr2_,info2_] = vl_pr(labels, scores, 'includeInf', false, 'stable', false) ; % stability does not change scores vl_assert_almost_equal(info1,info1_) ; vl_assert_almost_equal(info2,info2_) ; % unstable with inf (first point (0,1) is conventional) vl_assert_almost_equal(rc1_, [0 .5 .5 .5 .5 .5 1]) vl_assert_almost_equal(pr1_, [1 1 1/2 1/3 1/4 1/5 2/6]) % unstable without inf vl_assert_almost_equal(rc2_, [0 .5 .5 .5 .5 .5]) vl_assert_almost_equal(pr2_, [1 1 1/2 1/3 1/4 1/5]) % stable with inf (no conventional point here) vl_assert_almost_equal(rc1, [.5 .5 .5 .5 1 .5]) ; vl_assert_almost_equal(pr1, [1/2 1/3 1/4 1/5 2/6 1]) ; % stable without inf (no conventional point and -inf are NaN) vl_assert_almost_equal(rc2, [.5 .5 .5 .5 NaN .5]) ; vl_assert_almost_equal(pr2, [1/2 1/3 1/4 1/5 NaN 1]) ; function test_normalised_pr(s) scores = [+1 +2] ; labels = [+1 -1] ; [rc1,pr1,info1] = vl_pr(labels,scores) ; [rc2,pr2,info2] = vl_pr(labels,scores,'normalizePrior',.5) ; vl_assert_almost_equal(pr1, pr2) ; vl_assert_almost_equal(rc1, rc2) ; scores_ = [+1 +2 +2 +2] ; labels_ = [+1 -1 -1 -1] ; [rc3,pr3,info3] = vl_pr(labels_,scores_) ; [rc4,pr4,info4] = vl_pr(labels,scores,'normalizePrior',1/4) ; vl_assert_almost_equal(info3, info4) ; function test_normalised_pr_corner_cases(s) scores = 1:10 ; labels = ones(1,10) ; [rc1,pr1,info1] = vl_pr(labels,scores) ; vl_assert_almost_equal(rc1, (0:10)/10) ; vl_assert_almost_equal(pr1, ones(1,11)) ; scores = 1:10 ; labels = zeros(1,10) ; [rc2,pr2,info2] = vl_pr(labels,scores) ; vl_assert_almost_equal(rc2, zeros(1,11)) ; vl_assert_almost_equal(pr2, ones(1,11)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_hog.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_hog.m
1,555
utf_8
eed7b2a116d142040587dc9c4eb7cd2e
function results = vl_test_hog(varargin) % VL_TEST_HOG vl_test_init ; function s = setup() s.im = im2single(vl_impattern('roofs1')) ; [x,y]= meshgrid(linspace(-1,1,128)) ; s.round = single(x.^2+y.^2); s.imSmall = s.im(1:128,1:128,:) ; s.imSmall = s.im ; s.imSmallFlipped = s.imSmall(:,end:-1:1,:) ; function test_basic_call(s) cellSize = 8 ; hog = vl_hog(s.im, cellSize) ; function test_bilinear_orientations(s) cellSize = 8 ; vl_hog(s.im, cellSize, 'bilinearOrientations') ; function test_variants_and_flipping(s) variants = {'uoctti', 'dalaltriggs'} ; numOrientationsRange = 3:9 ; cellSize = 8 ; for cellSize = [4 8 16] for i=1:numel(variants) for j=1:numel(numOrientationsRange) args = {'bilinearOrientations', ... 'variant', variants{i}, ... 'numOrientations', numOrientationsRange(j)} ; hog = vl_hog(s.imSmall, cellSize, args{:}) ; perm = vl_hog('permutation', args{:}) ; hog1 = vl_hog(s.imSmallFlipped, cellSize, args{:}) ; hog2 = hog(:,end:-1:1,perm) ; %norm(hog1(:)-hog2(:)) vl_assert_almost_equal(hog1,hog2,1e-3) ; end end end function test_polar(s) cellSize = 8 ; im = s.round ; for b = [0 1] if b args = {'bilinearOrientations'} ; else args = {} ; end hog1 = vl_hog(im, cellSize, args{:}) ; [ix,iy] = vl_grad(im) ; m = sqrt(ix.^2 + iy.^2) ; a = atan2(iy,ix) ; m(:,[1 end]) = 0 ; m([1 end],:) = 0 ; hog2 = vl_hog(cat(3,m,a), cellSize, 'DirectedPolarField', args{:}) ; vl_assert_almost_equal(hog1,hog2,norm(hog1(:))/1000) ; end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_argparse.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_argparse.m
795
utf_8
e72185b27206d0ee1dfdc19fe77a5be6
function results = vl_test_argparse(varargin) % VL_TEST_ARGPARSE vl_test_init ; function test_basic() opts.field1 = 1 ; opts.field2 = 2 ; opts.field3 = 3 ; opts_ = opts ; opts_.field1 = 3 ; opts_.field2 = 10 ; opts = vl_argparse(opts, {'field2', 10, 'field1', 3}) ; assert(isequal(opts, opts_)) ; opts_.field1 = 9 ; opts = vl_argparse(opts, {'field1', 4, 'field1', 9}) ; assert(isequal(opts, opts_)) ; function test_error() opts.field1 = 1 ; try opts = vl_argparse(opts, {'field2', 5}) ; catch e return ; end assert(false) ; function test_leftovers() opts1.field1 = 1 ; opts2.field2 = 1 ; opts1_.field1 = 2 ; opts2_.field2 = 2 ; [opts1,args] = vl_argparse(opts1, {'field1', 2, 'field2', 2}) ; opts2 = vl_argparse(opts2, args) ; assert(isequal(opts1,opts1_), isequal(opts2,opts2_)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_liop.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_liop.m
1,023
utf_8
a162be369073bed18e61210f44088cf3
function results = vl_test_liop(varargin) % VL_TEST_SIFT vl_test_init ; function s = setup() randn('state',0) ; s.patch = randn(65,'single') ; xr = -32:32 ; [x,y] = meshgrid(xr) ; s.blob = - single(x.^2+y.^2) ; function test_basic(s) d = vl_liop(s.patch) ; function test_blob(s) % with a blob, all local intensity order pattern are equal. In % particular, if the blob intensity decreases away from the center, % then all local intensities sampled in a neighbourhood of 2 elements % are already sorted (see LIOP details). d = vl_liop(s.blob, ... 'IntensityThreshold', 0, ... 'NumNeighbours', 2, ... 'NumSpatialBins', 1) ; assert(isequal(d, single([1;0]))) ; function test_neighbours(s) for n=2:5 for p=1:3 d = vl_liop(s.patch, 'NumNeighbours', n, 'NumSpatialBins', p) ; assert(numel(d) == p * factorial(n)) ; end end function test_multiple(s) x = randn(31,31,3, 'single') ; d = vl_liop(x) ; for i=1:3 d_(:,i) = vl_liop(squeeze(x(:,:,i))) ; end assert(isequal(d,d_)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_test_binsearch.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/xtest/vl_test_binsearch.m
1,339
utf_8
85dc020adce3f228fe7dfb24cf3acc63
function results = vl_test_binsearch(varargin) % VL_TEST_BINSEARCH vl_test_init ; function test_inf_bins() x = [-inf -1 0 1 +inf] ; vl_assert_equal(vl_binsearch([], x), [0 0 0 0 0]) ; vl_assert_equal(vl_binsearch([-inf 0], x), [1 1 2 2 2]) ; vl_assert_equal(vl_binsearch([-inf], x), [1 1 1 1 1]) ; vl_assert_equal(vl_binsearch([-inf +inf], x), [1 1 1 1 2]) ; function test_empty() vl_assert_equal(vl_binsearch([], []), []) ; function test_bnd() vl_assert_equal(vl_binsearch([], [1]), [0]) ; vl_assert_equal(vl_binsearch([], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([], [+inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [.9]), [0]) ; vl_assert_equal(vl_binsearch([1], [1]), [1]) ; vl_assert_equal(vl_binsearch([1], [-inf]), [0]) ; vl_assert_equal(vl_binsearch([1], [+inf]), [1]) ; function test_basic() vl_assert_equal(vl_binsearch(-10:10, -10:10), 1:21) ; vl_assert_equal(vl_binsearch(-10:10, -11:10), 0:21) ; vl_assert_equal(vl_binsearch(-10:10, [-inf, -11:10, +inf]), [0 0:21 21]) ; function test_frac() vl_assert_equal(vl_binsearch(1:10, 1:.5:10), floor(1:.5:10)) vl_assert_equal(vl_binsearch(1:10, fliplr(1:.5:10)), ... fliplr(floor(1:.5:10))) ; function test_array() a = reshape(1:100,10,10) ; b = reshape(1:.5:100.5, 2, []) ; c = floor(b) ; vl_assert_equal(vl_binsearch(a,b), c) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_roc.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/plotop/vl_roc.m
8,747
utf_8
6b8b4786c9242d5112ca90a616db507a
function [tpr,tnr,info] = vl_roc(labels, scores, varargin) %VL_ROC ROC curve. % [TPR,TNR] = VL_ROC(LABELS, SCORES) computes the Receiver Operating % Characteristic (ROC) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % labels. % % Samples are ranked by decreasing scores, starting from rank 1. % TPR(K) and TNR(K) are the true positive and true negative rates % when samples of rank smaller or equal to K-1 are predicted to be % positive. So for example TPR(3) is the true positive rate when the % two samples with largest score are predicted to be % positive. Similarly, TPR(1) is the true positive rate when no % samples are predicted to be positive, i.e. the constant 0. % % Set the zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the ROC curve % may have maximum TPR and TNR smaller than 1. % % [TPR,TNR,INFO] = VL_ROC(...) returns an additional structure INFO % with the following fields: % % info.auc:: Area under the ROC curve (AUC). % The ROC curve has a `staircase shape' because for each sample % only TP or TN changes, but not both at the same time. Therefore % there is no approximation involved in the computation of the % area. % % info.eer:: Equal error rate (EER). % The equal error rate is the value of FPR (or FNR) when the ROC % curves intersects the line connecting (0,0) to (1,1). % % VL_ROC(...) with no output arguments plots the ROC curve in the % current axis. % % VL_ROC() acccepts the following options: % % Plot:: [] % Setting this option turns on plotting unconditionally. The % following plot variants are supported: % % tntp:: Plot TPR against TNR (standard ROC plot). % tptn:: Plot TNR against TPR (recall on the horizontal axis). % fptp:: Plot TPR against FPR. % fpfn:: Plot FNR against FPR (similar to DET curve). % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems in % which one stores ony a handful of top results for efficiency % reasons. % % About the ROC curve:: % Consider a classifier that predicts as positive all samples whose % score is not smaller than a threshold S. The ROC curve represents % the performance of such classifier as the threshold S is % changed. Formally, define % % P = overall num. of positive samples, % N = overall num. of negative samples, % % and for each threshold S % % TP(S) = num. of samples that are correctly classified as positive, % TN(S) = num. of samples that are correctly classified as negative, % FP(S) = num. of samples that are incorrectly classified as positive, % FN(S) = num. of samples that are incorrectly classified as negative. % % Consider also the rates: % % TPR = TP(S) / P, FNR = FN(S) / P, % TNR = TN(S) / N, FPR = FP(S) / N, % % and notice that by definition % % P = TP(S) + FN(S) , N = TN(S) + FP(S), % 1 = TPR(S) + FNR(S), 1 = TNR(S) + FPR(S). % % The ROC curve is the parametric curve (TPR(S), TNR(S)) obtained % as the classifier threshold S is varied in the reals. The TPR is % also known as recall (see VL_PR()). % % The ROC curve is contained in the square with vertices (0,0) The % (average) ROC curve of a random classifier is a line which % connects (1,0) and (0,1). % % The ROC curve is independent of the prior probability of the % labels (i.e. of P/(P+N) and N/(P+N)). % % REFERENCES: % [1] http://en.wikipedia.org/wiki/Receiver_operating_characteristic % % See also: VL_PR(), VL_DET(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.plot = [] ; opts.stable = false ; opts = vl_argparse(opts,varargin) ; % compute the rates small = 1e-10 ; tpr = tp / max(p, small) ; fpr = fp / max(n, small) ; fnr = 1 - tpr ; tnr = 1 - fpr ; % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % Area under the curve. Since the curve is a staircase (in the % sense that for each sample either tn is decremented by one % or tp is incremented by one but the other remains fixed), % the integral is particularly simple and exact. info.auc = sum(tnr .* diff([0 tpr])) ; % Equal error rate. One must find the index S for which there is a % crossing between TNR(S) and TPR(s). If such a crossing exists, % there are two cases: % % o tnr o % / \ % 1-eer = tnr o-x-o 1-eer = tpr o-x-o % / \ % tpr o o % % Moreover, if the maximum TPR is smaller than 1, then it is % possible that neither of the two cases realizes (then EER=NaN). s = max(find(tnr > tpr)) ; if s == length(tpr) info.eer = NaN ; else if tpr(s) == tpr(s+1) info.eer = 1 - tpr(s) ; else info.eer = 1 - tnr(s) ; end end end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if ~isempty(opts.plot) || nargout == 0 if isempty(opts.plot), opts.plot = 'fptp' ; end cla ; hold on ; switch lower(opts.plot) case {'truenegatives', 'tn', 'tntp'} hroc = plot(tnr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true negative rate') ; ylabel('true positive rate (recall)') ; loc = 'sw' ; case {'falsepositives', 'fp', 'fptp'} hroc = plot(fpr, tpr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [0 1], 'r--', 'linewidth', 2) ; spline([1 0], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive rate') ; ylabel('true positive rate (recall)') ; loc = 'se' ; case {'tptn'} hroc = plot(tpr, tnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(1-info.eer, 1-info.eer, 'k*', 'linewidth', 1) ; xlabel('true positive rate (recall)') ; ylabel('false positive rate') ; loc = 'sw' ; case {'fpfn'} hroc = plot(fpr, fnr, 'b', 'linewidth', 2) ; hrand = spline([0 1], [1 0], 'r--', 'linewidth', 2) ; spline([0 1], [0 1], 'k--', 'linewidth', 1) ; plot(info.eer, info.eer, 'k*', 'linewidth', 1) ; xlabel('false positive (false alarm) rate') ; ylabel('false negative (miss) rate') ; loc = 'ne' ; otherwise error('''%s'' is not a valid PLOT type.', opts.plot); end grid on ; xlim([0 1]) ; ylim([0 1]) ; axis square ; title(sprintf('ROC (AUC: %.2f%%, EER: %.2f%%)', info.auc * 100, info.eer * 100), ... 'interpreter', 'none') ; legend([hroc hrand], 'ROC', 'ROC rand.', 'location', loc) ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable tpr(1) = [] ; tnr(1) = [] ; tpr_ = tpr ; tnr_ = tnr ; tpr = NaN(size(tpr)) ; tnr = NaN(size(tnr)) ; tpr(perm) = tpr_ ; tnr(perm) = tnr_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_click.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/plotop/vl_click.m
2,661
utf_8
6982e869cf80da57fdf68f5ebcd05a86
function P = vl_click(N,varargin) ; % VL_CLICK Click a point % P=VL_CLICK() let the user click a point in the current figure and % returns its coordinates in P. P is a two dimensiona vectors where % P(1) is the point X-coordinate and P(2) the point Y-coordinate. The % user can abort the operation by pressing any key, in which case the % empty matrix is returned. % % P=VL_CLICK(N) lets the user select N points in a row. The user can % stop inserting points by pressing any key, in which case the % partial list is returned. % % VL_CLICK() accepts the following options: % % PlotMarker:: [0] % Plot a marker as points are selected. The markers are deleted on % exiting the function. % % See also: VL_CLICKPOINT(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). plot_marker = 0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'plotmarker' plot_marker = varargin{k+1} ; otherwise error(['Uknown option ''', varargin{k}, '''.']) ; end end if nargin < 1 N=1; end % -------------------------------------------------------------------- % Do job % -------------------------------------------------------------------- fig = gcf ; is_hold = ishold ; hold on ; bhandler = get(fig,'WindowButtonDownFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'WindowButtonDownFcn',@click_handler) ; set(fig,'KeyPressFcn',@key_handler) ; set(fig,'Pointer','crosshair') ; P=[] ; h=[] ; data.exit=0; guidata(fig,data) ; while size(P,2) < N uiwait(fig) ; data = guidata(fig) ; if(data.exit) break ; end P = [P data.P] ; if( plot_marker ) h=[h plot(data.P(1),data.P(2),'rx')] ; end end if ~is_hold hold off ; end if( plot_marker ) pause(.1); delete(h) ; end set(fig,'WindowButtonDownFcn',bhandler) ; set(fig,'KeyPressFcn',khandler) ; set(fig,'Pointer',pointer) ; % ==================================================================== function click_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; data.P = P ; guidata(obj,data) ; uiresume(gcbo) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_pr.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/plotop/vl_pr.m
9,135
utf_8
c5d1b9d67f843d10c0b2c6b48fab3c53
function [recall, precision, info] = vl_pr(labels, scores, varargin) %VL_PR Precision-recall curve. % [RECALL, PRECISION] = VL_PR(LABELS, SCORES) computes the % precision-recall (PR) curve. LABELS are the ground truth labels, % greather than zero for a positive sample and smaller than zero for % a negative one. SCORES are the scores of the samples obtained from % a classifier, where lager scores should correspond to positive % samples. % % Samples are ranked by decreasing scores, starting from rank 1. % PRECISION(K) and RECALL(K) are the precison and recall when % samples of rank smaller or equal to K-1 are predicted to be % positive and the remaining to be negative. So for example % PRECISION(3) is the percentage of positive samples among the two % samples with largest score. PRECISION(1) is the precision when no % samples are predicted to be positive and is conventionally set to % the value 1. % % Set to zero the lables of samples that should be ignored in the % evaluation. Set to -INF the scores of samples which are not % retrieved. If there are samples with -INF score, then the PR curve % may have maximum recall smaller than 1, unless the INCLUDEINF % option is used (see below). The options NUMNEGATIVES and % NUMPOSITIVES can be used to add additional surrogate samples with % -INF score (see below). % % [RECALL, PRECISION, INFO] = VL_PR(...) returns an additional % structure INFO with the following fields: % % info.auc:: % The area under the precision-recall curve. If the INTERPOLATE % option is set to FALSE, then trapezoidal interpolation is used % to integrate the PR curve. If the INTERPOLATE option is set to % TRUE, then the curve is piecewise constant and no other % approximation is introduced in the calculation of the area. In % the latter case, INFO.AUC is the same as INFO.AP. % % info.ap:: % Average precision as defined by TREC. This is the average of the % precision observed each time a new positive sample is % recalled. In this calculation, any sample with -INF score % (unless INCLUDEINF is used) and any additional positive induced % by NUMPOSITIVES has precision equal to zero. If the INTERPOLATE % option is set to true, the AP is computed from the interpolated % precision and the result is the same as INFO.AUC. Note that AP % as defined by TREC normally does not use interpolation [1]. % % info.ap_interp_11:: % 11-points interpolated average precision as defined by TREC. % This is the average of the maximum precision for recall levels % greather than 0.0, 0.1, 0.2, ..., 1.0. This measure was used in % the PASCAL VOC challenge up to the 2008 edition. % % info.auc_pa08:: % Deprecated. It is the same of INFO.AP_INTERP_11. % % VL_PR(...) with no output arguments plots the PR curve in the % current axis. % % VL_PR() accepts the following options: % % Interpolate:: false % If set to true, use interpolated precision. The interpolated % precision is defined as the maximum precision for a given recall % level and onwards. Here it is implemented as the culumative % maximum from low to high scores of the precision. % % NumPositives:: [] % NumNegatives:: [] % If set to a number, pretend that LABELS contains this may % positive/negative labels. NUMPOSITIVES/NUMNEGATIVES cannot be % smaller than the actual number of positive/negative entrires in % LABELS. The additional positive/negative labels are appended to % the end of the sequence, as if they had -INF scores (not % retrieved). This is useful to evaluate large retrieval systems % for which one stores ony a handful of top results for efficiency % reasons. % % IncludeInf:: false % If set to true, data with -INF score SCORES is included in the % evaluation and the maximum recall is 1 even if -INF scores are % present. This option does not include any additional positive or % negative data introduced by specifying NUMPOSITIVES and % NUMNEGATIVES. % % Stable:: false % If set to true, RECALL and PRECISION are returned the same order % of LABELS and SCORES rather than being sorted by decreasing % score (increasing recall). Samples with -INF scores are assigned % RECALL and PRECISION equal to NaN. % % NormalizePrior:: [] % If set to a scalar, reweights positive and negative labels so % that the fraction of positive ones is equal to the specified % value. This computes the normalised PR curves of [2] % % About the PR curve:: % This section uses the same symbols used in the documentation of % the VL_ROC() function. In addition to those quantities, define: % % PRECISION(S) = TP(S) / (TP(S) + FP(S)) % RECALL(S) = TPR(S) = TP(S) / P % % The precision is the fraction of positivie predictions which are % correct, and the recall is the fraction of positive labels that % have been correctly classified (recalled). Notice that the recall % is also equal to the true positive rate for the ROC curve (see % VL_ROC()). % % REFERENCES: % [1] C. D. Manning, P. Raghavan, and H. Schutze. An Introduction to % Information Retrieval. Cambridge University Press, 2008. % [2] D. Hoiem, Y. Chodpathumwan, and Q. Dai. Diagnosing error in % object detectors. In Proc. ECCV, 2012. % % See also VL_ROC(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % TP and FP are the vectors of true positie and false positve label % counts for decreasing scores, P and N are the total number of % positive and negative labels. Note that if certain options are used % some labels may actually not be stored explicitly by LABELS, so P+N % can be larger than the number of element of LABELS. [tp, fp, p, n, perm, varargin] = vl_tpfp(labels, scores, varargin{:}) ; opts.stable = false ; opts.interpolate = false ; opts.normalizePrior = [] ; opts = vl_argparse(opts,varargin) ; % compute precision and recall small = 1e-10 ; recall = tp / max(p, small) ; if isempty(opts.normalizePrior) precision = max(tp, small) ./ max(tp + fp, small) ; else a = opts.normalizePrior ; precision = max(tp * a/max(p,small), small) ./ ... max(tp * a/max(p,small) + fp * (1-a)/max(n,small), small) ; end % interpolate precision if needed if opts.interpolate precision = fliplr(vl_cummax(fliplr(precision))) ; end % -------------------------------------------------------------------- % Additional info % -------------------------------------------------------------------- if nargout > 2 || nargout == 0 % area under the curve using trapezoid interpolation if ~opts.interpolate info.auc = 0.5 * sum((precision(1:end-1) + precision(2:end)) .* diff(recall)) ; end % average precision (for each recalled positive sample) sel = find(diff(recall)) + 1 ; info.ap = sum(precision(sel)) / p ; if opts.interpolate info.auc = info.ap ; end % TREC 11 points average interpolated precision info.ap_interp_11 = 0.0 ; for rc = linspace(0,1,11) pr = max([0, precision(recall >= rc)]) ; info.ap_interp_11 = info.ap_interp_11 + pr / 11 ; end % legacy definition info.auc_pa08 = info.ap_interp_11 ; end % -------------------------------------------------------------------- % Plot % -------------------------------------------------------------------- if nargout == 0 cla ; hold on ; plot(recall,precision,'linewidth',2) ; if isempty(opts.normalizePrior) randomPrecision = p / (p + n) ; else randomPrecision = opts.normalizePrior ; end spline([0 1], [1 1] * randomPrecision, 'r--', 'linewidth', 2) ; axis square ; grid on ; xlim([0 1]) ; xlabel('recall') ; ylim([0 1]) ; ylabel('precision') ; title(sprintf('PR (AUC: %.2f%%, AP: %.2f%%, AP11: %.2f%%)', ... info.auc * 100, ... info.ap * 100, ... info.ap_interp_11 * 100)) ; if opts.interpolate legend('PR interp.', 'PR rand.', 'Location', 'SouthEast') ; else legend('PR', 'PR rand.', 'Location', 'SouthEast') ; end clear recall precision info ; end % -------------------------------------------------------------------- % Stable output % -------------------------------------------------------------------- if opts.stable precision(1) = [] ; recall(1) = [] ; precision_ = precision ; recall_ = recall ; precision = NaN(size(precision)) ; recall = NaN(size(recall)) ; precision(perm) = precision_ ; recall(perm) = recall_ ; end % -------------------------------------------------------------------- function h = spline(x,y,spec,varargin) % -------------------------------------------------------------------- prop = vl_linespec2prop(spec) ; h = line(x,y,prop{:},varargin{:}) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_ubcread.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/sift/vl_ubcread.m
3,015
utf_8
e8ddd3ecd87e76b6c738ba153fef050f
function [f,d] = vl_ubcread(file, varargin) % SIFTREAD Read Lowe's SIFT implementation data files % [F,D] = VL_UBCREAD(FILE) reads the frames F and the descriptors D % from FILE in UBC (Lowe's original implementation of SIFT) format % and returns F and D as defined by VL_SIFT(). % % VL_UBCREAD(FILE, 'FORMAT', 'OXFORD') assumes the format used by % Oxford VGG implementations . % % See also: VL_SIFT(), VL_HELP(). % Authors: Andrea Vedaldi % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.verbosity = 0 ; opts.format = 'ubc' ; opts = vl_argparse(opts, varargin) ; g = fopen(file, 'r'); if g == -1 error(['Could not open file ''', file, '''.']) ; end [header, count] = fscanf(g, '%d', [1 2]) ; if count ~= 2 error('Invalid keypoint file header.'); end switch opts.format case 'ubc' numKeypoints = header(1) ; descrLen = header(2) ; case 'oxford' numKeypoints = header(2) ; descrLen = header(1) ; otherwise error('Unknown format ''%s''.', opts.format) ; end if(opts.verbosity > 0) fprintf('%d keypoints, %d descriptor length.\n', numKeypoints, descrLen) ; end %creates two output matrices switch opts.format case 'ubc' P = zeros(4,numKeypoints) ; case 'oxford' P = zeros(5,numKeypoints) ; end L = zeros(descrLen, numKeypoints) ; %parse tmp.key for k = 1:numKeypoints switch opts.format case 'ubc' % Record format: i,j,s,th [record, count] = fscanf(g, '%f', [1 4]) ; if count ~= 4 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; case 'oxford' % Record format: x, y, a, b, c such that x' [a b ; b c] x = 1 [record, count] = fscanf(g, '%f', [1 5]) ; if count ~= 5 error(... sprintf('Invalid keypoint file (parsing keypoint %d, frame part)',k) ); end P(:,k) = record(:) ; end % Record format: descriptor [record, count] = fscanf(g, '%d', [1 descrLen]) ; if count ~= descrLen error(... sprintf('Invalid keypoint file (parsing keypoint %d, descriptor part)',k) ); end L(:,k) = record(:) ; end fclose(g) ; switch opts.format case 'ubc' P(1:2,:) = flipud(P(1:2,:)) + 1 ; % i,j -> x,y f=[ P(1:2,:) ; P(3,:) ; -P(4,:) ] ; d=uint8(L) ; p=[1 2 3 4 5 6 7 8] ; q=[1 8 7 6 5 4 3 2] ; for j=0:3 for i=0:3 d(8*(i+4*j)+p,:) = d(8*(i+4*j)+q,:) ; end end case 'oxford' P(1:2,:) = P(1:2,:) + 1 ; % matlab origin f = P ; f(3:5,:) = inv2x2(f(3:5,:)) ; d = uint8(L) ; end % -------------------------------------------------------------------- function S = inv2x2(C) % -------------------------------------------------------------------- den = C(1,:) .* C(3,:) - C(2,:) .* C(2,:) ; S = [C(3,:) ; -C(2,:) ; C(1,:)] ./ den([1 1 1], :) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_frame2oell.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/sift/vl_frame2oell.m
2,806
utf_8
c93792632f630743485fa4c2cf12d647
function eframes = vl_frame2oell(frames) % VL_FRAMES2OELL Convert a geometric frame to an oriented ellipse % EFRAME = VL_FRAME2OELL(FRAME) converts the generic FRAME to an % oriented ellipses EFRAME. FRAME and EFRAME can be matrices, with % one frame per column. % % A frame is either a point, a disc, an oriented disc, an ellipse, % or an oriented ellipse. These are represented respectively by 2, % 3, 4, 5 and 6 parameters each, as described in VL_PLOTFRAME(). An % oriented ellipse is the most general geometric frame; hence, there % is no loss of information in this conversion. % % If FRAME is an oriented disc or ellipse, then the conversion is % immediate. If, however, FRAME is not oriented (it is either a % point or an unoriented disc or ellipse), then an orientation must % be assigned. The orientation is chosen in such a way that the % affine transformation that maps the standard oriented frame into % the output EFRAME does not rotate the Y axis. If frames represent % detected visual features, this convention corresponds to assume % that features are upright. % % If FRAME is a point, then the output is an ellipse with null area. % % See: <a href="matlab:vl_help('tut.frame')">feature frames</a>, % VL_PLOTFRAME(), VL_HELP(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). [D,K] = size(frames) ; eframes = zeros(6,K) ; switch D case 2 eframes(1:2,:) = frames(1:2,:) ; case 3 eframes(1:2,:) = frames(1:2,:) ; eframes(3,:) = frames(3,:) ; eframes(6,:) = frames(3,:) ; case 4 r = frames(3,:) ; c = r.*cos(frames(4,:)) ; s = r.*sin(frames(4,:)) ; eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = [c ; s ; -s ; c] ; case 5 eframes(1:2,:) = frames(1:2,:) ; eframes(3:6,:) = mapFromS(frames(3:5,:)) ; case 6 eframes = frames ; otherwise error('FRAMES format is unknown.') ; end % -------------------------------------------------------------------- function A = mapFromS(S) % -------------------------------------------------------------------- % Returns the (stacking of the) 2x2 matrix A that maps the unit circle % into the ellipses satisfying the equation x' inv(S) x = 1. Here S % is a stacked covariance matrix, with elements S11, S12 and S22. % % The goal is to find A such that AA' = S. In order to let the Y % direction unaffected (upright feature), the assumption is taht % A = [a b ; 0 c]. Hence % % AA' = [a^2, ab ; ab, b^2+c^2] = S. A = zeros(4,size(S,2)) ; a = sqrt(S(1,:)); b = S(2,:) ./ max(a, 1e-18) ; A(1,:) = a ; A(2,:) = b ; A(4,:) = sqrt(max(S(3,:) - b.*b, 0)) ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
vl_plotsiftdescriptor.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/toolbox/sift/vl_plotsiftdescriptor.m
5,114
utf_8
a4e125a8916653f00143b61cceda2f23
function h=vl_plotsiftdescriptor(d,f,varargin) % VL_PLOTSIFTDESCRIPTOR Plot SIFT descriptor % VL_PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptor D. If D is a % matrix, it plots one descriptor per column. D has the same format % used by VL_SIFT(). % % VL_PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to % the SIFT frames F, specified as columns of the matrix F. F has the % same format used by VL_SIFT(). % % H=VL_PLOTSIFTDESCRIPTOR(...) returns the handle H to the line % drawing representing the descriptors. % % The function assumes that the SIFT descriptors use the standard % configuration of 4x4 spatial bins and 8 orientations bins. The % following parameters can be used to change this: % % NumSpatialBins:: 4 % Number of spatial bins in both spatial directions X and Y. % % NumOrientationBins:: 8 % Number of orientation bis. % % MagnificationFactor:: 3 % Magnification factor. The width of one bin is equal to the scale % of the keypoint F multiplied by this factor. % % See also: VL_SIFT(), VL_PLOTFRAME(), VL_HELP(). % Copyright (C) 2007-12 Andrea Vedaldi and Brian Fulkerson. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.magnificationFactor = 3.0 ; opts.numSpatialBins = 4 ; opts.numOrientationBins = 8 ; opts.maxValue = 0 ; if nargin > 1 if ~ isnumeric(f) error('F must be a numeric type (use [] to leave it unspecified)') ; end end opts = vl_argparse(opts, varargin) ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= opts.numSpatialBins^2 * opts.numOrientationBins) error('The number of rows of D does not match the geometry of the descriptor') ; end if nargin > 1 if (~isempty(f) & (size(f,1) < 2 | size(f,1) > 6)) error('F must be either empty of have from 2 to six rows.'); end if size(f,1) == 2 % translation only f(3:6,:) = deal([10 0 0 10]') ; %f = [f; 10 * ones(1, size(f,2)) ; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 3 % translation and scale f(3:6,:) = [1 0 0 1]' * f(3,:) ; %f = [f; 0 * zeros(1, size(f,2))] ; end if size(f,1) == 4 c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if size(f,1) == 5 assert(false) ; c = cos(f(4,:)) ; s = sin(f(4,:)) ; f(3:6,:) = bsxfun(@times, f(3,:), [c ; s ; -s ; c]) ; end if(~isempty(f) & size(f,2) ~= size(d,2)) error('D and F have incompatible dimension') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 | isempty(f) f = repmat([0;0;1;0;0;1],1,K) ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K [x,y] = render_descr(d(:,k), opts.numSpatialBins, opts.numOrientationBins, opts.maxValue) ; xall = [xall opts.magnificationFactor*f(3,k)*x + opts.magnificationFactor*f(5,k)*y + f(1,k)] ; yall = [yall opts.magnificationFactor*f(4,k)*x + opts.magnificationFactor*f(6,k)*y + f(2,k)] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- function [x,y] = render_descr(d, numSpatialBins, numOrientationBins, maxValue) % -------------------------------------------------------------------- % Get the coordinates of the lines of the SIFT grid; each bin has side 1 [x,y] = meshgrid(-numSpatialBins/2:numSpatialBins/2,-numSpatialBins/2:numSpatialBins/2) ; % Get the corresponding bin centers xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % Rescale the descriptor range so that the biggest peak fits inside the bin diagram if maxValue d = 0.4 * d / maxValue ; else d = 0.4 * d / max(d(:)+eps) ; end % We scramble the the centers to have them in row major order % (descriptor convention). xc = xc' ; yc = yc' ; % Each spatial bin contains a star with numOrientationBins tips xc = repmat(xc(:)',numOrientationBins,1) ; yc = repmat(yc(:)',numOrientationBins,1) ; % Do the stars th=linspace(0,2*pi,numOrientationBins+1) ; th=th(1:end-1) ; xd = repmat(cos(th), 1, numSpatialBins*numSpatialBins) ; yd = repmat(sin(th), 1, numSpatialBins*numSpatialBins) ; xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,numSpatialBins^2*numOrientationBins) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,numSpatialBins+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
phow_caltech101.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/apps/phow_caltech101.m
11,594
utf_8
7f4890a2e6844ca56debbfe23cca64f3
function phow_caltech101() % PHOW_CALTECH101 Image classification in the Caltech-101 dataset % This program demonstrates how to use VLFeat to construct an image % classifier on the Caltech-101 data. The classifier uses PHOW % features (dense SIFT), spatial histograms of visual words, and a % Chi2 SVM. To speedup computation it uses VLFeat fast dense SIFT, % kd-trees, and homogeneous kernel map. The program also % demonstrates VLFeat PEGASOS SVM solver, although for this small % dataset other solvers such as LIBLINEAR can be more efficient. % % By default 15 training images are used, which should result in % about 64% performance (a good performance considering that only a % single feature type is being used). % % Call PHOW_CALTECH101 to train and test a classifier on a small % subset of the Caltech-101 data. Note that the program % automatically downloads a copy of the Caltech-101 data from the % Internet if it cannot find a local copy. % % Edit the PHOW_CALTECH101 file to change the program configuration. % % To run on the entire dataset change CONF.TINYPROBLEM to FALSE. % % The Caltech-101 data is saved into CONF.CALDIR, which defaults to % 'data/caltech-101'. Change this path to the desired location, for % instance to point to an existing copy of the Caltech-101 data. % % The program can also be used to train a model on custom data by % pointing CONF.CALDIR to it. Just create a subdirectory for each % class and put the training images there. Make sure to adjust % CONF.NUMTRAIN accordingly. % % Intermediate files are stored in the directory CONF.DATADIR. All % such files begin with the prefix CONF.PREFIX, which can be changed % to test different parameter settings without overriding previous % results. % % The program saves the trained model in % <CONF.DATADIR>/<CONF.PREFIX>-model.mat. This model can be used to % test novel images independently of the Caltech data. % % load('data/baseline-model.mat') ; # change to the model path % label = model.classify(model, im) ; % % Author: Andrea Vedaldi % Copyright (C) 2011-2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). conf.calDir = 'data/caltech-101' ; conf.dataDir = 'data/' ; conf.autoDownloadData = true ; conf.numTrain = 15 ; conf.numTest = 15 ; conf.numClasses = 102 ; conf.numWords = 600 ; conf.numSpatialX = [2 4] ; conf.numSpatialY = [2 4] ; conf.quantizer = 'kdtree' ; conf.svm.C = 10 ; conf.svm.solver = 'sdca' ; %conf.svm.solver = 'sgd' ; %conf.svm.solver = 'liblinear' ; conf.svm.biasMultiplier = 1 ; conf.phowOpts = {'Step', 3} ; conf.clobber = false ; conf.tinyProblem = true ; conf.prefix = 'baseline' ; conf.randSeed = 1 ; if conf.tinyProblem conf.prefix = 'tiny' ; conf.numClasses = 5 ; conf.numSpatialX = 2 ; conf.numSpatialY = 2 ; conf.numWords = 300 ; conf.phowOpts = {'Verbose', 2, 'Sizes', 7, 'Step', 5} ; end conf.vocabPath = fullfile(conf.dataDir, [conf.prefix '-vocab.mat']) ; conf.histPath = fullfile(conf.dataDir, [conf.prefix '-hists.mat']) ; conf.modelPath = fullfile(conf.dataDir, [conf.prefix '-model.mat']) ; conf.resultPath = fullfile(conf.dataDir, [conf.prefix '-result']) ; randn('state',conf.randSeed) ; rand('state',conf.randSeed) ; vl_twister('state',conf.randSeed) ; % -------------------------------------------------------------------- % Download Caltech-101 data % -------------------------------------------------------------------- if ~exist(conf.calDir, 'dir') || ... (~exist(fullfile(conf.calDir, 'airplanes'),'dir') && ... ~exist(fullfile(conf.calDir, '101_ObjectCategories', 'airplanes'))) if ~conf.autoDownloadData error(... ['Caltech-101 data not found. ' ... 'Set conf.autoDownloadData=true to download the required data.']) ; end vl_xmkdir(conf.calDir) ; calUrl = ['http://www.vision.caltech.edu/Image_Datasets/' ... 'Caltech101/101_ObjectCategories.tar.gz'] ; fprintf('Downloading Caltech-101 data to ''%s''. This will take a while.', conf.calDir) ; untar(calUrl, conf.calDir) ; end if ~exist(fullfile(conf.calDir, 'airplanes'),'dir') conf.calDir = fullfile(conf.calDir, '101_ObjectCategories') ; end % -------------------------------------------------------------------- % Setup data % -------------------------------------------------------------------- classes = dir(conf.calDir) ; classes = classes([classes.isdir]) ; classes = {classes(3:conf.numClasses+2).name} ; images = {} ; imageClass = {} ; for ci = 1:length(classes) ims = dir(fullfile(conf.calDir, classes{ci}, '*.jpg'))' ; ims = vl_colsubset(ims, conf.numTrain + conf.numTest) ; ims = cellfun(@(x)fullfile(classes{ci},x),{ims.name},'UniformOutput',false) ; images = {images{:}, ims{:}} ; imageClass{end+1} = ci * ones(1,length(ims)) ; end selTrain = find(mod(0:length(images)-1, conf.numTrain+conf.numTest) < conf.numTrain) ; selTest = setdiff(1:length(images), selTrain) ; imageClass = cat(2, imageClass{:}) ; model.classes = classes ; model.phowOpts = conf.phowOpts ; model.numSpatialX = conf.numSpatialX ; model.numSpatialY = conf.numSpatialY ; model.quantizer = conf.quantizer ; model.vocab = [] ; model.w = [] ; model.b = [] ; model.classify = @classify ; % -------------------------------------------------------------------- % Train vocabulary % -------------------------------------------------------------------- if ~exist(conf.vocabPath) || conf.clobber % Get some PHOW descriptors to train the dictionary selTrainFeats = vl_colsubset(selTrain, 30) ; descrs = {} ; %for ii = 1:length(selTrainFeats) parfor ii = 1:length(selTrainFeats) im = imread(fullfile(conf.calDir, images{selTrainFeats(ii)})) ; im = standarizeImage(im) ; [drop, descrs{ii}] = vl_phow(im, model.phowOpts{:}) ; end descrs = vl_colsubset(cat(2, descrs{:}), 10e4) ; descrs = single(descrs) ; % Quantize the descriptors to get the visual words vocab = vl_kmeans(descrs, conf.numWords, 'verbose', 'algorithm', 'elkan', 'MaxNumIterations', 50) ; save(conf.vocabPath, 'vocab') ; else load(conf.vocabPath) ; end model.vocab = vocab ; if strcmp(model.quantizer, 'kdtree') model.kdtree = vl_kdtreebuild(vocab) ; end % -------------------------------------------------------------------- % Compute spatial histograms % -------------------------------------------------------------------- if ~exist(conf.histPath) || conf.clobber hists = {} ; parfor ii = 1:length(images) % for ii = 1:length(images) fprintf('Processing %s (%.2f %%)\n', images{ii}, 100 * ii / length(images)) ; im = imread(fullfile(conf.calDir, images{ii})) ; hists{ii} = getImageDescriptor(model, im); end hists = cat(2, hists{:}) ; save(conf.histPath, 'hists') ; else load(conf.histPath) ; end % -------------------------------------------------------------------- % Compute feature map % -------------------------------------------------------------------- psix = vl_homkermap(hists, 1, 'kchi2', 'gamma', .5) ; % -------------------------------------------------------------------- % Train SVM % -------------------------------------------------------------------- if ~exist(conf.modelPath) || conf.clobber switch conf.svm.solver case {'sgd', 'sdca'} lambda = 1 / (conf.svm.C * length(selTrain)) ; w = [] ; parfor ci = 1:length(classes) perm = randperm(length(selTrain)) ; fprintf('Training model for class %s\n', classes{ci}) ; y = 2 * (imageClass(selTrain) == ci) - 1 ; [w(:,ci) b(ci) info] = vl_svmtrain(psix(:, selTrain(perm)), y(perm), lambda, ... 'Solver', conf.svm.solver, ... 'MaxNumIterations', 50/lambda, ... 'BiasMultiplier', conf.svm.biasMultiplier, ... 'Epsilon', 1e-3); end case 'liblinear' svm = train(imageClass(selTrain)', ... sparse(double(psix(:,selTrain))), ... sprintf(' -s 3 -B %f -c %f', ... conf.svm.biasMultiplier, conf.svm.C), ... 'col') ; w = svm.w(:,1:end-1)' ; b = svm.w(:,end)' ; end model.b = conf.svm.biasMultiplier * b ; model.w = w ; save(conf.modelPath, 'model') ; else load(conf.modelPath) ; end % -------------------------------------------------------------------- % Test SVM and evaluate % -------------------------------------------------------------------- % Estimate the class of the test images scores = model.w' * psix + model.b' * ones(1,size(psix,2)) ; [drop, imageEstClass] = max(scores, [], 1) ; % Compute the confusion matrix idx = sub2ind([length(classes), length(classes)], ... imageClass(selTest), imageEstClass(selTest)) ; confus = zeros(length(classes)) ; confus = vl_binsum(confus, ones(size(idx)), idx) ; % Plots figure(1) ; clf; subplot(1,2,1) ; imagesc(scores(:,[selTrain selTest])) ; title('Scores') ; set(gca, 'ytick', 1:length(classes), 'yticklabel', classes) ; subplot(1,2,2) ; imagesc(confus) ; title(sprintf('Confusion matrix (%.2f %% accuracy)', ... 100 * mean(diag(confus)/conf.numTest) )) ; print('-depsc2', [conf.resultPath '.ps']) ; save([conf.resultPath '.mat'], 'confus', 'conf') ; % ------------------------------------------------------------------------- function im = standarizeImage(im) % ------------------------------------------------------------------------- im = im2single(im) ; if size(im,1) > 480, im = imresize(im, [480 NaN]) ; end % ------------------------------------------------------------------------- function hist = getImageDescriptor(model, im) % ------------------------------------------------------------------------- im = standarizeImage(im) ; width = size(im,2) ; height = size(im,1) ; numWords = size(model.vocab, 2) ; % get PHOW features [frames, descrs] = vl_phow(im, model.phowOpts{:}) ; % quantize local descriptors into visual words switch model.quantizer case 'vq' [drop, binsa] = min(vl_alldist(model.vocab, single(descrs)), [], 1) ; case 'kdtree' binsa = double(vl_kdtreequery(model.kdtree, model.vocab, ... single(descrs), ... 'MaxComparisons', 50)) ; end for i = 1:length(model.numSpatialX) binsx = vl_binsearch(linspace(1,width,model.numSpatialX(i)+1), frames(1,:)) ; binsy = vl_binsearch(linspace(1,height,model.numSpatialY(i)+1), frames(2,:)) ; % combined quantization bins = sub2ind([model.numSpatialY(i), model.numSpatialX(i), numWords], ... binsy,binsx,binsa) ; hist = zeros(model.numSpatialY(i) * model.numSpatialX(i) * numWords, 1) ; hist = vl_binsum(hist, ones(size(bins)), bins) ; hists{i} = single(hist / sum(hist)) ; end hist = cat(1,hists{:}) ; hist = hist / sum(hist) ; % ------------------------------------------------------------------------- function [className, score] = classify(model, im) % ------------------------------------------------------------------------- hist = getImageDescriptor(model, im) ; psix = vl_homkermap(hist, 1, 'kchi2', 'gamma', .5) ; scores = model.w' * psix + model.b' ; [score, best] = max(scores) ; className = model.classes{best} ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
sift_mosaic.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/apps/sift_mosaic.m
4,621
utf_8
8fa3ad91b401b8f2400fb65944c79712
function mosaic = sift_mosaic(im1, im2) % SIFT_MOSAIC Demonstrates matching two images using SIFT and RANSAC % % SIFT_MOSAIC demonstrates matching two images based on SIFT % features and RANSAC and computing their mosaic. % % SIFT_MOSAIC by itself runs the algorithm on two standard test % images. Use SIFT_MOSAIC(IM1,IM2) to compute the mosaic of two % custom images IM1 and IM2. % AUTORIGHTS if nargin == 0 im1 = imread(fullfile(vl_root, 'data', 'river1.jpg')) ; im2 = imread(fullfile(vl_root, 'data', 'river2.jpg')) ; end % make single im1 = im2single(im1) ; im2 = im2single(im2) ; % make grayscale if size(im1,3) > 1, im1g = rgb2gray(im1) ; else im1g = im1 ; end if size(im2,3) > 1, im2g = rgb2gray(im2) ; else im2g = im2 ; end % -------------------------------------------------------------------- % SIFT matches % -------------------------------------------------------------------- [f1,d1] = vl_sift(im1g) ; [f2,d2] = vl_sift(im2g) ; [matches, scores] = vl_ubcmatch(d1,d2) ; numMatches = size(matches,2) ; X1 = f1(1:2,matches(1,:)) ; X1(3,:) = 1 ; X2 = f2(1:2,matches(2,:)) ; X2(3,:) = 1 ; % -------------------------------------------------------------------- % RANSAC with homography model % -------------------------------------------------------------------- clear H score ok ; for t = 1:100 % estimate homograpyh subset = vl_colsubset(1:numMatches, 4) ; A = [] ; for i = subset A = cat(1, A, kron(X1(:,i)', vl_hat(X2(:,i)))) ; end [U,S,V] = svd(A) ; H{t} = reshape(V(:,9),3,3) ; % score homography X2_ = H{t} * X1 ; du = X2_(1,:)./X2_(3,:) - X2(1,:)./X2(3,:) ; dv = X2_(2,:)./X2_(3,:) - X2(2,:)./X2(3,:) ; ok{t} = (du.*du + dv.*dv) < 6*6 ; score(t) = sum(ok{t}) ; end [score, best] = max(score) ; H = H{best} ; ok = ok{best} ; % -------------------------------------------------------------------- % Optional refinement % -------------------------------------------------------------------- function err = residual(H) u = H(1) * X1(1,ok) + H(4) * X1(2,ok) + H(7) ; v = H(2) * X1(1,ok) + H(5) * X1(2,ok) + H(8) ; d = H(3) * X1(1,ok) + H(6) * X1(2,ok) + 1 ; du = X2(1,ok) - u ./ d ; dv = X2(2,ok) - v ./ d ; err = sum(du.*du + dv.*dv) ; end if exist('fminsearch') == 2 H = H / H(3,3) ; opts = optimset('Display', 'none', 'TolFun', 1e-8, 'TolX', 1e-8) ; H(1:8) = fminsearch(@residual, H(1:8)', opts) ; else warning('Refinement disabled as fminsearch was not found.') ; end % -------------------------------------------------------------------- % Show matches % -------------------------------------------------------------------- dh1 = max(size(im2,1)-size(im1,1),0) ; dh2 = max(size(im1,1)-size(im2,1),0) ; figure(1) ; clf ; subplot(2,1,1) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,:));f2(1,matches(2,:))+o], ... [f1(2,matches(1,:));f2(2,matches(2,:))]) ; title(sprintf('%d tentative matches', numMatches)) ; axis image off ; subplot(2,1,2) ; imagesc([padarray(im1,dh1,'post') padarray(im2,dh2,'post')]) ; o = size(im1,2) ; line([f1(1,matches(1,ok));f2(1,matches(2,ok))+o], ... [f1(2,matches(1,ok));f2(2,matches(2,ok))]) ; title(sprintf('%d (%.2f%%) inliner matches out of %d', ... sum(ok), ... 100*sum(ok)/numMatches, ... numMatches)) ; axis image off ; drawnow ; % -------------------------------------------------------------------- % Mosaic % -------------------------------------------------------------------- box2 = [1 size(im2,2) size(im2,2) 1 ; 1 1 size(im2,1) size(im2,1) ; 1 1 1 1 ] ; box2_ = inv(H) * box2 ; box2_(1,:) = box2_(1,:) ./ box2_(3,:) ; box2_(2,:) = box2_(2,:) ./ box2_(3,:) ; ur = min([1 box2_(1,:)]):max([size(im1,2) box2_(1,:)]) ; vr = min([1 box2_(2,:)]):max([size(im1,1) box2_(2,:)]) ; [u,v] = meshgrid(ur,vr) ; im1_ = vl_imwbackward(im2double(im1),u,v) ; z_ = H(3,1) * u + H(3,2) * v + H(3,3) ; u_ = (H(1,1) * u + H(1,2) * v + H(1,3)) ./ z_ ; v_ = (H(2,1) * u + H(2,2) * v + H(2,3)) ./ z_ ; im2_ = vl_imwbackward(im2double(im2),u_,v_) ; mass = ~isnan(im1_) + ~isnan(im2_) ; im1_(isnan(im1_)) = 0 ; im2_(isnan(im2_)) = 0 ; mosaic = (im1_ + im2_) ./ mass ; figure(2) ; clf ; imagesc(mosaic) ; axis image off ; title('Mosaic') ; if nargout == 0, clear mosaic ; end end
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
encodeImage.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/apps/recognition/encodeImage.m
5,278
utf_8
5d9dc6161995b8e10366b5649bf4fda4
function descrs = encodeImage(encoder, im, varargin) % ENCODEIMAGE Apply an encoder to an image % DESCRS = ENCODEIMAGE(ENCODER, IM) applies the ENCODER % to image IM, returning a corresponding code vector PSI. % % IM can be an image, the path to an image, or a cell array of % the same, to operate on multiple images. % % ENCODEIMAGE(ENCODER, IM, CACHE) utilizes the specified CACHE % directory to store encodings for the given images. The cache % is used only if the images are specified as file names. % % See also: TRAINENCODER(). % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.cacheDir = [] ; opts.cacheChunkSize = 512 ; opts = vl_argparse(opts,varargin) ; if ~iscell(im), im = {im} ; end % break the computation into cached chunks startTime = tic ; descrs = cell(1, numel(im)) ; numChunks = ceil(numel(im) / opts.cacheChunkSize) ; for c = 1:numChunks n = min(opts.cacheChunkSize, numel(im) - (c-1)*opts.cacheChunkSize) ; chunkPath = fullfile(opts.cacheDir, sprintf('chunk-%03d.mat',c)) ; if ~isempty(opts.cacheDir) && exist(chunkPath) fprintf('%s: loading descriptors from %s\n', mfilename, chunkPath) ; load(chunkPath, 'data') ; else range = (c-1)*opts.cacheChunkSize + (1:n) ; fprintf('%s: processing a chunk of %d images (%3d of %3d, %5.1fs to go)\n', ... mfilename, numel(range), ... c, numChunks, toc(startTime) / (c - 1) * (numChunks - c + 1)) ; data = processChunk(encoder, im(range)) ; if ~isempty(opts.cacheDir) save(chunkPath, 'data') ; end end descrs{c} = data ; clear data ; end descrs = cat(2,descrs{:}) ; % -------------------------------------------------------------------- function psi = processChunk(encoder, im) % -------------------------------------------------------------------- psi = cell(1,numel(im)) ; if numel(im) > 1 & matlabpool('size') > 1 parfor i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end else % avoiding parfor makes debugging easier for i = 1:numel(im) psi{i} = encodeOne(encoder, im{i}) ; end end psi = cat(2, psi{:}) ; % -------------------------------------------------------------------- function psi = encodeOne(encoder, im) % -------------------------------------------------------------------- im = encoder.readImageFn(im) ; features = encoder.extractorFn(im) ; imageSize = size(im) ; psi = {} ; for i = 1:size(encoder.subdivisions,2) minx = encoder.subdivisions(1,i) * imageSize(2) ; miny = encoder.subdivisions(2,i) * imageSize(1) ; maxx = encoder.subdivisions(3,i) * imageSize(2) ; maxy = encoder.subdivisions(4,i) * imageSize(1) ; ok = ... minx <= features.frame(1,:) & features.frame(1,:) < maxx & ... miny <= features.frame(2,:) & features.frame(2,:) < maxy ; descrs = encoder.projection * bsxfun(@minus, ... features.descr(:,ok), ... encoder.projectionCenter) ; if encoder.renormalize descrs = bsxfun(@times, descrs, 1./max(1e-12, sqrt(sum(descrs.^2)))) ; end w = size(im,2) ; h = size(im,1) ; frames = features.frame(1:2,:) ; frames = bsxfun(@times, bsxfun(@minus, frames, [w;h]/2), 1./[w;h]) ; descrs = extendDescriptorsWithGeometry(encoder.geometricExtension, frames, descrs) ; switch encoder.type case 'bovw' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 100) ; z = vl_binsum(zeros(encoder.numWords,1), 1, double(words)) ; z = sqrt(z) ; case 'fv' z = vl_fisher(descrs, ... encoder.means, ... encoder.covariances, ... encoder.priors, ... 'Improved') ; case 'vlad' [words,distances] = vl_kdtreequery(encoder.kdtree, encoder.words, ... descrs, ... 'MaxComparisons', 15) ; assign = zeros(encoder.numWords, numel(words), 'single') ; assign(sub2ind(size(assign), double(words), 1:numel(words))) = 1 ; z = vl_vlad(descrs, ... encoder.words, ... assign, ... 'SquareRoot', ... 'NormalizeComponents') ; end z = z / max(sqrt(sum(z.^2)), 1e-12) ; psi{i} = z(:) ; end psi = cat(1, psi{:}) ; % -------------------------------------------------------------------- function psi = getFromCache(name, cache) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; if exist(cachePath, 'file') data = load(cachePath) ; psi = data.psi ; else psi = [] ; end % -------------------------------------------------------------------- function storeToCache(name, cache, psi) % -------------------------------------------------------------------- [drop, name] = fileparts(name) ; cachePath = fullfile(cache, [name '.mat']) ; vl_xmkdir(cache) ; data.psi = psi ; save(cachePath, '-STRUCT', 'data') ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
experiments.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/apps/recognition/experiments.m
6,905
utf_8
1e4a4911eed4a451b9488b9e6cc9b39c
function experiments() % EXPERIMENTS Run image classification experiments % The experimens download a number of benchmark datasets in the % 'data/' subfolder. Make sure that there are several GBs of % space available. % % By default, experiments run with a lite option turned on. This % quickly runs all of them on tiny subsets of the actual data. % This is used only for testing; to run the actual experiments, % set the lite variable to false. % % Running all the experiments is a slow process. Using parallel % MATLAB and several cores/machiens is suggested. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). lite = true ; clear ex ; ex(1).prefix = 'fv-aug' ; ex(1).trainOpts = {'C', 10} ; ex(1).datasets = {'fmd', 'scene67'} ; ex(1).seed = 1 ; ex(1).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(2) = ex(1) ; ex(2).datasets = {'caltech101'} ; ex(2).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(3) = ex(1) ; ex(3).datasets = {'voc07'} ; ex(3).C = 1 ; ex(4) = ex(1) ; ex(4).prefix = 'vlad-aug' ; ex(4).opts = {... 'type', 'vlad', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(5) = ex(4) ; ex(5).datasets = {'caltech101'} ; ex(5).opts{end} = ex(2).opts{end} ; ex(6) = ex(4) ; ex(6).datasets = {'voc07'} ; ex(6).C = 1 ; ex(7) = ex(1) ; ex(7).prefix = 'bovw-aug' ; ex(7).opts = {... 'type', 'bovw', ... 'numWords', 4096, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'xy', ... 'numPcaDimensions', 100, ... 'whitening', true, ... 'whiteningRegul', 0.01, ... 'renormalize', true, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(8) = ex(7) ; ex(8).datasets = {'caltech101'} ; ex(8).opts{end} = ex(2).opts{end} ; ex(9) = ex(7) ; ex(9).datasets = {'voc07'} ; ex(9).C = 1 ; ex(10).prefix = 'fv' ; ex(10).trainOpts = {'C', 10} ; ex(10).datasets = {'fmd', 'scene67'} ; ex(10).seed = 1 ; ex(10).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(11) = ex(10) ; ex(11).datasets = {'caltech101'} ; ex(11).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(12) = ex(10) ; ex(12).datasets = {'voc07'} ; ex(12).C = 1 ; ex(13).prefix = 'fv-sp' ; ex(13).trainOpts = {'C', 10} ; ex(13).datasets = {'fmd', 'scene67'} ; ex(13).seed = 1 ; ex(13).opts = {... 'type', 'fv', ... 'numWords', 256, ... 'layouts', {'1x1', '3x1'}, ... 'geometricExtension', 'none', ... 'numPcaDimensions', 80, ... 'extractorFn', @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(1:-.5:-3))}; ex(14) = ex(13) ; ex(14).datasets = {'caltech101'} ; ex(14).opts{6} = {'1x1', '2x2'} ; ex(14).opts{end} = @(x) getDenseSIFT(x, ... 'step', 4, ... 'scales', 2.^(0:-.5:-3)) ; ex(15) = ex(13) ; ex(15).datasets = {'voc07'} ; ex(15).C = 1 ; if lite, tag = 'lite' ; else, tag = 'ex' ; end for i=1:numel(ex) for j=1:numel(ex(i).datasets) dataset = ex(i).datasets{j} ; if ~isfield(ex(i), 'trainOpts') || ~iscell(ex(i).trainOpts) ex(i).trainOpts = {} ; end traintest(... 'prefix', [tag '-' dataset '-' ex(i).prefix], ... 'seed', ex(i).seed, ... 'dataset', char(dataset), ... 'datasetDir', fullfile('data', dataset), ... 'lite', lite, ... ex(i).trainOpts{:}, ... 'encoderParams', ex(i).opts) ; end end % print HTML table pf('<table>\n') ; ph('method', 'VOC07', 'Caltech 101', 'Scene 67', 'FMD') ; pr('FV', ... ge([tag '-voc07-fv'],'ap11'), ... ge([tag '-caltech101-fv']), ... ge([tag '-scene67-fv']), ... ge([tag '-fmd-fv'])) ; pr('FV + aug.', ... ge([tag '-voc07-fv-aug'],'ap11'), ... ge([tag '-caltech101-fv-aug']), ... ge([tag '-scene67-fv-aug']), ... ge([tag '-fmd-fv-aug'])) ; pr('FV + s.p.', ... ge([tag '-voc07-fv-sp'],'ap11'), ... ge([tag '-caltech101-fv-sp']), ... ge([tag '-scene67-fv-sp']), ... ge([tag '-fmd-fv-sp'])) ; %pr('VLAD', ... % ge([tag '-voc07-vlad'],'ap11'), ... % ge([tag '-caltech101-vlad']), ... % ge([tag '-scene67-vlad']), ... % ge([tag '-fmd-vlad'])) ; pr('VLAD + aug.', ... ge([tag '-voc07-vlad-aug'],'ap11'), ... ge([tag '-caltech101-vlad-aug']), ... ge([tag '-scene67-vlad-aug']), ... ge([tag '-fmd-vlad-aug'])) ; %pr('VLAD+sp', ... % ge([tag '-voc07-vlad-sp'],'ap11'), ... % ge([tag '-caltech101-vlad-sp']), ... % ge([tag '-scene67-vlad-sp']), ... % ge([tag '-fmd-vlad-sp'])) ; %pr('BOVW', ... % ge([tag '-voc07-bovw'],'ap11'), ... % ge([tag '-caltech101-bovw']), ... % ge([tag '-scene67-bovw']), ... % ge([tag '-fmd-bovw'])) ; pr('BOVW + aug.', ... ge([tag '-voc07-bovw-aug'],'ap11'), ... ge([tag '-caltech101-bovw-aug']), ... ge([tag '-scene67-bovw-aug']), ... ge([tag '-fmd-bovw-aug'])) ; %pr('BOVW+sp', ... % ge([tag '-voc07-bovw-sp'],'ap11'), ... % ge([tag '-caltech101-bovw-sp']), ... % ge([tag '-scene67-bovw-sp']), ... % ge([tag '-fmd-bovw-sp'])) ; pf('</table>\n'); function pf(str) fprintf(str) ; function str = ge(name, format) if nargin == 1, format = 'acc'; end data = load(fullfile('data', name, 'result.mat')) ; switch format case 'acc' str = sprintf('%.2f%% <span style="font-size:8px;">Acc</span>', mean(diag(data.confusion)) * 100) ; case 'ap11' str = sprintf('%.2f%% <span style="font-size:8px;">mAP</span>', mean(data.ap11) * 100) ; end function pr(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<td>%s</td>',varargin{i}) ; end fprintf('</tr>\n') ; function ph(varargin) fprintf('<tr>') ; for i=1:numel(varargin), fprintf('<th>%s</th>',varargin{i}) ; end fprintf('</tr>\n') ;
github
shenjianbing/Generalized-pooling-for-robust-object-tracking-master
getDenseSIFT.m
.m
Generalized-pooling-for-robust-object-tracking-master/dependency/vlfeat-0.9.18-bin/vlfeat-0.9.18/apps/recognition/getDenseSIFT.m
1,679
utf_8
2059c0a2a4e762226d89121408c6e51c
function features = getDenseSIFT(im, varargin) % GETDENSESIFT Extract dense SIFT features % FEATURES = GETDENSESIFT(IM) extract dense SIFT features from % image IM. % Author: Andrea Vedaldi % Copyright (C) 2013 Andrea Vedaldi % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). opts.scales = logspace(log10(1), log10(.25), 5) ; opts.contrastthreshold = 0 ; opts.step = 3 ; opts.rootSift = false ; opts.normalizeSift = true ; opts.binSize = 8 ; opts.geometry = [4 4 8] ; opts.sigma = 0 ; opts = vl_argparse(opts, varargin) ; dsiftOpts = {'norm', 'fast', 'floatdescriptors', ... 'step', opts.step, ... 'size', opts.binSize, ... 'geometry', opts.geometry} ; if size(im,3)>1, im = rgb2gray(im) ; end im = im2single(im) ; im = vl_imsmooth(im, opts.sigma) ; for si = 1:numel(opts.scales) im_ = imresize(im, opts.scales(si)) ; [frames{si}, descrs{si}] = vl_dsift(im_, dsiftOpts{:}) ; % root SIFT if opts.rootSift descrs{si} = sqrt(descrs{si}) ; end if opts.normalizeSift descrs{si} = snorm(descrs{si}) ; end % zero low contrast descriptors info.contrast{si} = frames{si}(3,:) ; kill = info.contrast{si} < opts.contrastthreshold ; descrs{si}(:,kill) = 0 ; % store frames frames{si}(1:2,:) = (frames{si}(1:2,:)-1) / opts.scales(si) + 1 ; frames{si}(3,:) = opts.binSize / opts.scales(si) / 3 ; end features.frame = cat(2, frames{:}) ; features.descr = cat(2, descrs{:}) ; features.contrast = cat(2, info.contrast{:}) ; function x = snorm(x) x = bsxfun(@times, x, 1./max(1e-5,sqrt(sum(x.^2,1)))) ;
github
joe-of-all-trades/vtkwrite-master
vtkwrite.m
.m
vtkwrite-master/vtkwrite.m
11,698
utf_8
b2d2311772bb3c962cf4c421b43f3ea2
function vtkwrite( filename,dataType,varargin ) % VTKWRITE Writes 3D Matlab array into VTK file format. % vtkwrite(filename,'structured_grid',x,y,z,'vectors',title,u,v,w) writes % a structured 3D vector data into VTK file, with name specified by the string % filename. (u,v,w) are the vector components at the points (x,y,z). x,y,z % should be 3-D matrices like those generated by meshgrid, where % point(ijk) is specified by x(i,j,k), y(i,j,k) and z(i,j,k). % The matrices x,y,z,u,v,w must all be the same size and contain % corrresponding position and vector component. The string title specifies % the name of the vector field to be saved. % % vtkwrite(filename,'structured_grid',x,y,z,'scalars',title,r) writes a 3D % scalar data into VTK file whose name is specified by the string % filename. r is the scalar value at the points (x,y,z). The matrices % x,y,z,r must all be the same size and contain the corresponding position % and scalar values. % % vtkwrite(filename,'structured_grid',x,y,z,'vectors',title,u,v,w,'scalars', % title2,r) writes a 3D structured grid that contains both vector and scalar values. % x,y,z,u,v,w,r must all be the same size and contain the corresponding % positon, vector and scalar values. % % vtkwrite(filename, 'structured_points', title, m) saves matrix m (could % be 1D, 2D or 3D array) into vtk as structured points. % % vtkwrite(filename, 'structured_points', title, m, 'spacing', sx, sy, sz) % allows user to specify spacing. (default: 1, 1, 1). This is the aspect % ratio of a single voxel. % % vtkwrite(filename, 'structured_points', title, m, 'origin', ox, oy, oz) % allows user to speicify origin of dataset. (default: 0, 0, 0). % % vtkwrite(filename,'unstructured_grid',x,y,z,'vectors',title,u,v,w,'scalars', % title2,r) writes a 3D unstructured grid that contains both vector and scalar values. % x,y,z,u,v,w,r must all be the same size and contain the corresponding % positon, vector and scalar values. % % vtkwrite(filename, 'polydata', 'lines', x, y, z) exports a 3D line where % x,y,z are coordinates of the points that make the line. x, y, z are % vectors containing the coordinates of points of the line, where point(n) % is specified by x(n), y(n) and z(n). % % vtkwrite(filename,'polydata','lines',x,y,z,'Precision',n) allows you to % specify precision of the exported number up to n digits after decimal % point. Default precision is 3 digits. % % vtkwrite(filename,'polydata','triangle',x,y,z,tri) exports a list of % triangles where x,y,z are the coordinates of the points and tri is an % m*3 matrix whose rows denote the points of the individual triangles. % % vtkwrite(filename,'polydata','tetrahedron',x,y,z,tetra) exports a list % of tetrahedrons where x,y,z are the coordinates of the points % and tetra is an m*4 matrix whose rows denote the points of individual % tetrahedrons. % % vtkwrite('execute','polydata','lines',x,y,z) will save data with default % filename ''matlab_export.vtk' and automatically loads data into % ParaView. % % Version 2.3 % Copyright, Chaoyuan Yeh, 2016 % Codes are modified from William Thielicke and David Gingras's submission. if strcmpi(filename,'execute'), filename = 'matlab_export.vtk'; end fid = fopen(filename, 'w'); % VTK files contain five major parts % 1. VTK DataFile Version fprintf(fid, '# vtk DataFile Version 2.0\n'); % 2. Title fprintf(fid, 'VTK from Matlab\n'); binaryflag = any(strcmpi(varargin, 'BINARY')); if any(strcmpi(varargin, 'PRECISION')) precision = num2str(varargin{find(strcmpi(vin, 'PRECISION'))+1}); else precision = '2'; end switch upper(dataType) case 'STRUCTURED_POINTS' title = varargin{1}; m = varargin{2}; if any(strcmpi(varargin, 'spacing')) sx = varargin{find(strcmpi(varargin, 'spacing'))+1}; sy = varargin{find(strcmpi(varargin, 'spacing'))+2}; sz = varargin{find(strcmpi(varargin, 'spacing'))+3}; else sx = 1; sy = 1; sz = 1; end if any(strcmpi(varargin, 'origin')) ox = varargin{find(strcmpi(varargin, 'origin'))+1}; oy = varargin{find(strcmpi(varargin, 'origin'))+2}; oz = varargin{find(strcmpi(varargin, 'origin'))+3}; else ox = 0; oy = 0; oz = 0; end [nx, ny, nz] = size(m); setdataformat(fid, binaryflag); fprintf(fid, 'DATASET STRUCTURED_POINTS\n'); fprintf(fid, 'DIMENSIONS %d %d %d\n', nx, ny, nz); fprintf(fid, ['SPACING ', num2str(sx), ' ', num2str(sy), ' ',... num2str(sz), '\n']); fprintf(fid, ['ORIGIN ', num2str(ox), ' ', num2str(oy), ' ',... num2str(oz), '\n']); fprintf(fid, 'POINT_DATA %d\n', nx*ny*nz); fprintf(fid, ['SCALARS ', title, ' float 1\n']); fprintf(fid,'LOOKUP_TABLE default\n'); if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, m(:)'); else fwrite(fid, m(:)', 'float', 'b'); end case {'STRUCTURED_GRID','UNSTRUCTURED_GRID'} % 3. The format data proper is saved in (ASCII or Binary). Use % fprintf to write data in the case of ASCII and fwrite for binary. if numel(varargin)<6, error('Not enough input arguments'); end setdataformat(fid, binaryflag); % fprintf(fid, 'BINARY\n'); x = varargin{1}; y = varargin{2}; z = varargin{3}; if sum(size(x)==size(y) & size(y)==size(z))~=length(size(x)) error('Input dimesions do not match') end n_elements = numel(x); % 4. Type of Dataset ( can be STRUCTURED_POINTS, STRUCTURED_GRID, % UNSTRUCTURED_GRID, POLYDATA, RECTILINEAR_GRID or FIELD ) % This part, dataset structure, begins with a line containing the % keyword 'DATASET' followed by a keyword describing the type of dataset. % Then the geomettry part describes geometry and topology of the dataset. if strcmpi(dataType,'STRUCTURED_GRID') fprintf(fid, 'DATASET STRUCTURED_GRID\n'); fprintf(fid, 'DIMENSIONS %d %d %d\n', size(x,1), size(x,2), size(x,3)); else fprintf(fid, 'DATASET UNSTRUCTURED_GRID\n'); end fprintf(fid, ['POINTS ' num2str(n_elements) ' float\n']); output = [x(:)'; y(:)'; z(:)']; if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, output); else fwrite(fid, output, 'float', 'b'); end % 5.This final part describe the dataset attributes and begins with the % keywords 'POINT_DATA' or 'CELL_DATA', followed by an integer number % specifying the number of points of cells. Other keyword/data combination % then define the actual dataset attribute values. fprintf(fid, ['\nPOINT_DATA ' num2str(n_elements)]); % Parse remaining argument. vidx = find(strcmpi(varargin,'VECTORS')); sidx = find(strcmpi(varargin,'SCALARS')); if vidx~=0 for ii = 1:length(vidx) title = varargin{vidx(ii)+1}; % Data enteries begin with a keyword specifying data type % and numeric format. fprintf(fid, ['\nVECTORS ', title,' float\n']); output = [varargin{ vidx(ii) + 2 }(:)';... varargin{ vidx(ii) + 3 }(:)';... varargin{ vidx(ii) + 4 }(:)']; if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, output); else fwrite(fid, output, 'float', 'b'); end % fwrite(fid, [reshape(varargin{vidx(ii)+2},1,n_elements);... % reshape(varargin{vidx(ii)+3},1,n_elements);... % reshape(varargin{vidx(ii)+4},1,n_elements)],'float','b'); end end if sidx~=0 for ii = 1:length(sidx) title = varargin{sidx(ii)+1}; fprintf(fid, ['\nSCALARS ', title,' float\n']); fprintf(fid, 'LOOKUP_TABLE default\n'); if ~binaryflag spec = ['%0.', precision, 'f ']; fprintf(fid, spec, varargin{ sidx(ii) + 2}); else fwrite(fid, varargin{ sidx(ii) + 2}, 'float', 'b'); end % fwrite(fid, reshape(varargin{sidx(ii)+2},1,n_elements),'float','b'); end end case 'POLYDATA' fprintf(fid, 'ASCII\n'); if numel(varargin)<4, error('Not enough input arguments'); end x = varargin{2}(:); y = varargin{3}(:); z = varargin{4}(:); if numel(varargin)<4, error('Not enough input arguments'); end if sum(size(x)==size(y) & size(y)==size(z))~= length(size(x)) error('Input dimesions do not match') end n_elements = numel(x); fprintf(fid, 'DATASET POLYDATA\n'); if mod(n_elements,3)==1 x(n_elements+1:n_elements+2,1)=[0;0]; y(n_elements+1:n_elements+2,1)=[0;0]; z(n_elements+1:n_elements+2,1)=[0;0]; elseif mod(n_elements,3)==2 x(n_elements+1,1)=0; y(n_elements+1,1)=0; z(n_elements+1,1)=0; end nbpoint = numel(x); fprintf(fid, ['POINTS ' num2str(nbpoint) ' float\n']); spec = [repmat(['%0.', precision, 'f '], 1, 9), '\n']; output = [x(1:3:end-2), y(1:3:end-2), z(1:3:end-2),... x(2:3:end-1), y(2:3:end-1), z(2:3:end-1),... x(3:3:end), y(3:3:end), z(3:3:end)]'; fprintf(fid, spec, output); switch upper(varargin{1}) case 'LINES' if mod(n_elements,2)==0 nbLine = 2*n_elements-2; else nbLine = 2*(n_elements-1); end conn1 = zeros(nbLine,1); conn2 = zeros(nbLine,1); conn2(1:nbLine/2) = 1:nbLine/2; conn1(1:nbLine/2) = conn2(1:nbLine/2)-1; conn1(nbLine/2+1:end) = 1:nbLine/2; conn2(nbLine/2+1:end) = conn1(nbLine/2+1:end)-1; fprintf(fid,'\nLINES %d %d\n',nbLine,3*nbLine); fprintf(fid,'2 %d %d\n',[conn1';conn2']); case 'TRIANGLE' ntri = length(varargin{5}); fprintf(fid,'\nPOLYGONS %d %d\n',ntri,4*ntri); fprintf(fid,'3 %d %d %d\n',(varargin{5}-1)'); case 'TETRAHEDRON' ntetra = length(varargin{5}); fprintf(fid,'\nPOLYGONS %d %d\n',ntetra,5*ntetra); fprintf(fid,'4 %d %d %d %d\n',(varargin{5}-1)'); end end fclose(fid); if strcmpi(filename,'matlab_export.vtk') switch computer case {'PCWIN','PCWIN64'} !paraview.exe --data='matlab_export.vtk' & % Exclamation point character is a shell escape, the rest of the % input line will be sent to operating system. It can not take % variables, though. The & at the end of line will return control to % Matlab even when the outside process is still running. case {'GLNXA64','MACI64'} !paraview --data='matlab_export.vtk' & end end end function setdataformat(fid, binaryflag) if ~binaryflag fprintf(fid, 'ASCII\n'); else fprintf(fid, 'BINARY\n'); end end
github
krrish94/caffe-keypoint-master
classification_demo.m
.m
caffe-keypoint-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex8/submit.m
17,515
utf_8
2949fbde41e47f99c42171e2e0a39efc
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '8'; end function [partNames] = validParts() partNames = { 'Estimate Gaussian Parameters', ... 'Select Threshold' ... 'Collaborative Filtering Cost', ... 'Collaborative Filtering Gradient', ... 'Regularized Cost', ... 'Regularized Gradient' ... }; end function srcs = sources() % Separated by part srcs = { { 'estimateGaussian.m' }, ... { 'selectThreshold.m' }, ... { 'cofiCostFunc.m' }, ... { 'cofiCostFunc.m' }, ... { 'cofiCostFunc.m' }, ... { 'cofiCostFunc.m' }, ... }; end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == 1 [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == 2 [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == 3 [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == 4 [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == 5 [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == 6 [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex8/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex6/submit.m
16,836
utf_8
d4c87e5dbf32a81bdaf04fd017fe4cb3
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '6'; end function [partNames] = validParts() partNames = { 'Gaussian Kernel', ... 'Parameters (C, sigma) for Dataset 3', ... 'Email Preprocessing' ... 'Email Feature Extraction' ... }; end function srcs = sources() % Separated by part srcs = { { 'gaussianKernel.m' }, ... { 'dataset3Params.m' }, ... { 'processEmail.m' }, ... { 'emailFeatures.m' } }; end function out = output(partId, auxstring) % Random Test Cases x1 = sin(1:10)'; x2 = cos(1:10)'; ec = 'the quick brown fox jumped over the lazy dog'; wi = 1 + abs(round(x1 * 1863)); wi = [wi ; wi]; if partId == 1 sim = gaussianKernel(x1, x2, 2); out = sprintf('%0.5f ', sim); elseif partId == 2 load('ex6data3.mat'); [C, sigma] = dataset3Params(X, y, Xval, yval); out = sprintf('%0.5f ', C); out = [out sprintf('%0.5f ', sigma)]; elseif partId == 3 word_indices = processEmail(ec); out = sprintf('%d ', word_indices); elseif partId == 4 x = emailFeatures(wi); out = sprintf('%d ', x); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
porterStemmer.m
.m
coursera-machine-learning-1-master/mlclass-ex6/porterStemmer.m
9,902
utf_8
7ed5acd925808fde342fc72bd62ebc4d
function stem = porterStemmer(inString) % Applies the Porter Stemming algorithm as presented in the following % paper: % Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14, % no. 3, pp 130-137 % Original code modeled after the C version provided at: % http://www.tartarus.org/~martin/PorterStemmer/c.txt % The main part of the stemming algorithm starts here. b is an array of % characters, holding the word to be stemmed. The letters are in b[k0], % b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since % matlab begins indexing by 1 instead of 0). k is readjusted downwards as % the stemming progresses. Zero termination is not in fact used in the % algorithm. % To call this function, use the string to be stemmed as the input % argument. This function returns the stemmed word as a string. % Lower-case string inString = lower(inString); global j; b = inString; k = length(b); k0 = 1; j = k; % With this if statement, strings of length 1 or 2 don't go through the % stemming process. Remove this conditional to match the published % algorithm. stem = b; if k > 2 % Output displays per step are commented out. %disp(sprintf('Word to stem: %s', b)); x = step1ab(b, k, k0); %disp(sprintf('Steps 1A and B yield: %s', x{1})); x = step1c(x{1}, x{2}, k0); %disp(sprintf('Step 1C yields: %s', x{1})); x = step2(x{1}, x{2}, k0); %disp(sprintf('Step 2 yields: %s', x{1})); x = step3(x{1}, x{2}, k0); %disp(sprintf('Step 3 yields: %s', x{1})); x = step4(x{1}, x{2}, k0); %disp(sprintf('Step 4 yields: %s', x{1})); x = step5(x{1}, x{2}, k0); %disp(sprintf('Step 5 yields: %s', x{1})); stem = x{1}; end % cons(j) is TRUE <=> b[j] is a consonant. function c = cons(i, b, k0) c = true; switch(b(i)) case {'a', 'e', 'i', 'o', 'u'} c = false; case 'y' if i == k0 c = true; else c = ~cons(i - 1, b, k0); end end % mseq() measures the number of consonant sequences between k0 and j. If % c is a consonant sequence and v a vowel sequence, and <..> indicates % arbitrary presence, % <c><v> gives 0 % <c>vc<v> gives 1 % <c>vcvc<v> gives 2 % <c>vcvcvc<v> gives 3 % .... function n = measure(b, k0) global j; n = 0; i = k0; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; while true while true if i > j return end if cons(i, b, k0) break; end i = i + 1; end i = i + 1; n = n + 1; while true if i > j return end if ~cons(i, b, k0) break; end i = i + 1; end i = i + 1; end % vowelinstem() is TRUE <=> k0,...j contains a vowel function vis = vowelinstem(b, k0) global j; for i = k0:j, if ~cons(i, b, k0) vis = true; return end end vis = false; %doublec(i) is TRUE <=> i,(i-1) contain a double consonant. function dc = doublec(i, b, k0) if i < k0+1 dc = false; return end if b(i) ~= b(i-1) dc = false; return end dc = cons(i, b, k0); % cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant % and also if the second c is not w,x or y. this is used when trying to % restore an e at the end of a short word. e.g. % % cav(e), lov(e), hop(e), crim(e), but % snow, box, tray. function c1 = cvc(i, b, k0) if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0)) c1 = false; else if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y') c1 = false; return end c1 = true; end % ends(s) is TRUE <=> k0,...k ends with the string s. function s = ends(str, b, k) global j; if (str(length(str)) ~= b(k)) s = false; return end % tiny speed-up if (length(str) > k) s = false; return end if strcmp(b(k-length(str)+1:k), str) s = true; j = k - length(str); return else s = false; end % setto(s) sets (j+1),...k to the characters in the string s, readjusting % k accordingly. function so = setto(s, b, k) global j; for i = j+1:(j+length(s)) b(i) = s(i-j); end if k > j+length(s) b((j+length(s)+1):k) = ''; end k = length(b); so = {b, k}; % rs(s) is used further down. % [Note: possible null/value for r if rs is called] function r = rs(str, b, k, k0) r = {b, k}; if measure(b, k0) > 0 r = setto(str, b, k); end % step1ab() gets rid of plurals and -ed or -ing. e.g. % caresses -> caress % ponies -> poni % ties -> ti % caress -> caress % cats -> cat % feed -> feed % agreed -> agree % disabled -> disable % matting -> mat % mating -> mate % meeting -> meet % milling -> mill % messing -> mess % meetings -> meet function s1ab = step1ab(b, k, k0) global j; if b(k) == 's' if ends('sses', b, k) k = k-2; elseif ends('ies', b, k) retVal = setto('i', b, k); b = retVal{1}; k = retVal{2}; elseif (b(k-1) ~= 's') k = k-1; end end if ends('eed', b, k) if measure(b, k0) > 0; k = k-1; end elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0) k = j; retVal = {b, k}; if ends('at', b, k) retVal = setto('ate', b(k0:k), k); elseif ends('bl', b, k) retVal = setto('ble', b(k0:k), k); elseif ends('iz', b, k) retVal = setto('ize', b(k0:k), k); elseif doublec(k, b, k0) retVal = {b, k-1}; if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ... b(retVal{2}) == 'z' retVal = {retVal{1}, retVal{2}+1}; end elseif measure(b, k0) == 1 && cvc(k, b, k0) retVal = setto('e', b(k0:k), k); end k = retVal{2}; b = retVal{1}(k0:k); end j = k; s1ab = {b(k0:k), k}; % step1c() turns terminal y to i when there is another vowel in the stem. function s1c = step1c(b, k, k0) global j; if ends('y', b, k) && vowelinstem(b, k0) b(k) = 'i'; end j = k; s1c = {b, k}; % step2() maps double suffices to single ones. so -ization ( = -ize plus % -ation) maps to -ize etc. note that the string before the suffix must give % m() > 0. function s2 = step2(b, k, k0) global j; s2 = {b, k}; switch b(k-1) case {'a'} if ends('ational', b, k) s2 = rs('ate', b, k, k0); elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end; case {'c'} if ends('enci', b, k) s2 = rs('ence', b, k, k0); elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end; case {'e'} if ends('izer', b, k) s2 = rs('ize', b, k, k0); end; case {'l'} if ends('bli', b, k) s2 = rs('ble', b, k, k0); elseif ends('alli', b, k) s2 = rs('al', b, k, k0); elseif ends('entli', b, k) s2 = rs('ent', b, k, k0); elseif ends('eli', b, k) s2 = rs('e', b, k, k0); elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end; case {'o'} if ends('ization', b, k) s2 = rs('ize', b, k, k0); elseif ends('ation', b, k) s2 = rs('ate', b, k, k0); elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end; case {'s'} if ends('alism', b, k) s2 = rs('al', b, k, k0); elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0); elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0); elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end; case {'t'} if ends('aliti', b, k) s2 = rs('al', b, k, k0); elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0); elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end; case {'g'} if ends('logi', b, k) s2 = rs('log', b, k, k0); end; end j = s2{2}; % step3() deals with -ic-, -full, -ness etc. similar strategy to step2. function s3 = step3(b, k, k0) global j; s3 = {b, k}; switch b(k) case {'e'} if ends('icate', b, k) s3 = rs('ic', b, k, k0); elseif ends('ative', b, k) s3 = rs('', b, k, k0); elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end; case {'i'} if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end; case {'l'} if ends('ical', b, k) s3 = rs('ic', b, k, k0); elseif ends('ful', b, k) s3 = rs('', b, k, k0); end; case {'s'} if ends('ness', b, k) s3 = rs('', b, k, k0); end; end j = s3{2}; % step4() takes off -ant, -ence etc., in context <c>vcvc<v>. function s4 = step4(b, k, k0) global j; switch b(k-1) case {'a'} if ends('al', b, k) end; case {'c'} if ends('ance', b, k) elseif ends('ence', b, k) end; case {'e'} if ends('er', b, k) end; case {'i'} if ends('ic', b, k) end; case {'l'} if ends('able', b, k) elseif ends('ible', b, k) end; case {'n'} if ends('ant', b, k) elseif ends('ement', b, k) elseif ends('ment', b, k) elseif ends('ent', b, k) end; case {'o'} if ends('ion', b, k) if j == 0 elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t')) j = k; end elseif ends('ou', b, k) end; case {'s'} if ends('ism', b, k) end; case {'t'} if ends('ate', b, k) elseif ends('iti', b, k) end; case {'u'} if ends('ous', b, k) end; case {'v'} if ends('ive', b, k) end; case {'z'} if ends('ize', b, k) end; end if measure(b, k0) > 1 s4 = {b(k0:j), j}; else s4 = {b(k0:k), k}; end % step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1. function s5 = step5(b, k, k0) global j; j = k; if b(k) == 'e' a = measure(b, k0); if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0)) k = k-1; end end if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1) k = k-1; end s5 = {b(k0:k), k};
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex6/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex4/submit.m
17,129
utf_8
917c487f37cf14037c77e3c57ad78ce1
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '4'; end function [partNames] = validParts() partNames = { 'Feedforward and Cost Function', ... 'Regularized Cost Function', ... 'Sigmoid Gradient', ... 'Neural Network Gradient (Backpropagation)' ... 'Regularized Gradient' ... }; end function srcs = sources() % Separated by part srcs = { { 'nnCostFunction.m' }, ... { 'nnCostFunction.m' }, ... { 'sigmoidGradient.m' }, ... { 'nnCostFunction.m' }, ... { 'nnCostFunction.m' } }; end function out = output(partId, auxstring) % Random Test Cases X = reshape(3 * sin(1:1:30), 3, 10); Xm = reshape(sin(1:32), 16, 2) / 5; ym = 1 + mod(1:16,4)'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); t = [t1(:) ; t2(:)]; if partId == 1 [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); elseif partId == 2 [J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); elseif partId == 3 out = sprintf('%0.5f ', sigmoidGradient(X)); elseif partId == 4 [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == 5 [J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex4/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex1/submit.m
17,317
utf_8
14dfeccc6eb749406cb5d77fabb6bf47
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '1'; end function [partNames] = validParts() partNames = { 'Warm up exercise ', ... 'Computing Cost (for one variable)', ... 'Gradient Descent (for one variable)', ... 'Feature Normalization', ... 'Computing Cost (for multiple variables)', ... 'Gradient Descent (for multiple variables)', ... 'Normal Equations'}; end function srcs = sources() % Separated by part srcs = { { 'warmUpExercise.m' }, ... { 'computeCost.m' }, ... { 'gradientDescent.m' }, ... { 'featureNormalize.m' }, ... { 'computeCostMulti.m' }, ... { 'gradientDescentMulti.m' }, ... { 'normalEqn.m' }, ... }; end function out = output(partId, auxstring) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == 1 out = sprintf('%0.5f ', warmUpExercise()); elseif partId == 2 out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == 3 out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == 4 out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == 5 out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == 6 out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == 7 out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex1/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex2/submit.m
17,086
utf_8
7b02ce6b9daa919a9a66ef0adb401b07
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '2'; end function [partNames] = validParts() partNames = { 'Sigmoid Function ', ... 'Logistic Regression Cost', ... 'Logistic Regression Gradient', ... 'Predict', ... 'Regularized Logistic Regression Cost' ... 'Regularized Logistic Regression Gradient' ... }; end function srcs = sources() % Separated by part srcs = { { 'sigmoid.m' }, ... { 'costFunction.m' }, ... { 'costFunction.m' }, ... { 'predict.m' }, ... { 'costFunctionReg.m' }, ... { 'costFunctionReg.m' } }; end function out = output(partId, auxstring) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; if partId == 1 out = sprintf('%0.5f ', sigmoid(X)); elseif partId == 2 out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y)); elseif partId == 3 [cost, grad] = costFunction([0.25 0.5 -0.5]', X, y); out = sprintf('%0.5f ', grad); elseif partId == 4 out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X)); elseif partId == 5 out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1)); elseif partId == 6 [cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', grad); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex2/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex3/submit.m
17,041
utf_8
07a62d95df0814b4ffbc6c2f4b433e22
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '3'; end function [partNames] = validParts() partNames = { 'Vectorized Logistic Regression ', ... 'One-vs-all classifier training', ... 'One-vs-all classifier prediction', ... 'Neural network prediction function' ... }; end function srcs = sources() % Separated by part srcs = { { 'lrCostFunction.m' }, ... { 'oneVsAll.m' }, ... { 'predictOneVsAll.m' }, ... { 'predict.m' } }; end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == 1 [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == 2 out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == 3 out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == 4 out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex3/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex5/submit.m
17,211
utf_8
057662350ffa8db95583373185a26a6b
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '5'; end function [partNames] = validParts() partNames = { 'Regularized Linear Regression Cost Function', ... 'Regularized Linear Regression Gradient', ... 'Learning Curve', ... 'Polynomial Feature Mapping' ... 'Validation Curve' ... }; end function srcs = sources() % Separated by part srcs = { { 'linearRegCostFunction.m' }, ... { 'linearRegCostFunction.m' }, ... { 'learningCurve.m' }, ... { 'polyFeatures.m' }, ... { 'validationCurve.m' } }; end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == 1 [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == 2 [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == 3 [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == 4 [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == 5 [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex5/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
ijameslive/coursera-machine-learning-1-master
submit.m
.m
coursera-machine-learning-1-master/mlclass-ex7/submit.m
16,958
utf_8
cd11307f72915c0d3b58176b66081197
function submit(partId, webSubmit) %SUBMIT Submit your code and output to the ml-class servers % SUBMIT() will connect to the ml-class server and submit your solution fprintf('==\n== [ml-class] Submitting Solutions | Programming Exercise %s\n==\n', ... homework_id()); if ~exist('partId', 'var') || isempty(partId) partId = promptPart(); end if ~exist('webSubmit', 'var') || isempty(webSubmit) webSubmit = 0; % submit directly by default end % Check valid partId partNames = validParts(); if ~isValidPartId(partId) fprintf('!! Invalid homework part selected.\n'); fprintf('!! Expected an integer from 1 to %d.\n', numel(partNames) + 1); fprintf('!! Submission Cancelled\n'); return end if ~exist('ml_login_data.mat','file') [login password] = loginPrompt(); save('ml_login_data.mat','login','password'); else load('ml_login_data.mat'); [login password] = quickLogin(login, password); save('ml_login_data.mat','login','password'); end if isempty(login) fprintf('!! Submission Cancelled\n'); return end fprintf('\n== Connecting to ml-class ... '); if exist('OCTAVE_VERSION') fflush(stdout); end % Setup submit list if partId == numel(partNames) + 1 submitParts = 1:numel(partNames); else submitParts = [partId]; end for s = 1:numel(submitParts) thisPartId = submitParts(s); if (~webSubmit) % submit directly to server [login, ch, signature, auxstring] = getChallenge(login, thisPartId); if isempty(login) || isempty(ch) || isempty(signature) % Some error occured, error string in first return element. fprintf('\n!! Error: %s\n\n', login); return end % Attempt Submission with Challenge ch_resp = challengeResponse(login, password, ch); [result, str] = submitSolution(login, ch_resp, thisPartId, ... output(thisPartId, auxstring), source(thisPartId), signature); partName = partNames{thisPartId}; fprintf('\n== [ml-class] Submitted Assignment %s - Part %d - %s\n', ... homework_id(), thisPartId, partName); fprintf('== %s\n', strtrim(str)); if exist('OCTAVE_VERSION') fflush(stdout); end else [result] = submitSolutionWeb(login, thisPartId, output(thisPartId), ... source(thisPartId)); result = base64encode(result); fprintf('\nSave as submission file [submit_ex%s_part%d.txt (enter to accept default)]:', ... homework_id(), thisPartId); saveAsFile = input('', 's'); if (isempty(saveAsFile)) saveAsFile = sprintf('submit_ex%s_part%d.txt', homework_id(), thisPartId); end fid = fopen(saveAsFile, 'w'); if (fid) fwrite(fid, result); fclose(fid); fprintf('\nSaved your solutions to %s.\n\n', saveAsFile); fprintf(['You can now submit your solutions through the web \n' ... 'form in the programming exercises. Select the corresponding \n' ... 'programming exercise to access the form.\n']); else fprintf('Unable to save to %s\n\n', saveAsFile); fprintf(['You can create a submission file by saving the \n' ... 'following text in a file: (press enter to continue)\n\n']); pause; fprintf(result); end end end end % ================== CONFIGURABLES FOR EACH HOMEWORK ================== function id = homework_id() id = '7'; end function [partNames] = validParts() partNames = { 'Find Closest Centroids (k-Means)', ... 'Compute Centroid Means (k-Means)' ... 'PCA', ... 'Project Data (PCA)', ... 'Recover Data (PCA)' ... }; end function srcs = sources() % Separated by part srcs = { { 'findClosestCentroids.m' }, ... { 'computeCentroids.m' }, ... { 'pca.m' }, ... { 'projectData.m' }, ... { 'recoverData.m' } ... }; end function out = output(partId, auxstring) % Random Test Cases X = reshape(sin(1:165), 15, 11); Z = reshape(cos(1:121), 11, 11); C = Z(1:5, :); idx = (1 + mod(1:15, 3))'; if partId == 1 idx = findClosestCentroids(X, C); out = sprintf('%0.5f ', idx(:)); elseif partId == 2 centroids = computeCentroids(X, idx, 3); out = sprintf('%0.5f ', centroids(:)); elseif partId == 3 [U, S] = pca(X); out = sprintf('%0.5f ', abs([U(:); S(:)])); elseif partId == 4 X_proj = projectData(X, Z, 5); out = sprintf('%0.5f ', X_proj(:)); elseif partId == 5 X_rec = recoverData(X(:,1:5), Z, 5); out = sprintf('%0.5f ', X_rec(:)); end end % ====================== SERVER CONFIGURATION =========================== % ***************** REMOVE -staging WHEN YOU DEPLOY ********************* function url = site_url() url = 'http://class.coursera.org/ml-008'; end function url = challenge_url() url = [site_url() '/assignment/challenge']; end function url = submit_url() url = [site_url() '/assignment/submit']; end % ========================= CHALLENGE HELPERS ========================= function src = source(partId) src = ''; src_files = sources(); if partId <= numel(src_files) flist = src_files{partId}; for i = 1:numel(flist) fid = fopen(flist{i}); if (fid == -1) error('Error opening %s (is it missing?)', flist{i}); end line = fgets(fid); while ischar(line) src = [src line]; line = fgets(fid); end fclose(fid); src = [src '||||||||']; end end end function ret = isValidPartId(partId) partNames = validParts(); ret = (~isempty(partId)) && (partId >= 1) && (partId <= numel(partNames) + 1); end function partId = promptPart() fprintf('== Select which part(s) to submit:\n'); partNames = validParts(); srcFiles = sources(); for i = 1:numel(partNames) fprintf('== %d) %s [', i, partNames{i}); fprintf(' %s ', srcFiles{i}{:}); fprintf(']\n'); end fprintf('== %d) All of the above \n==\nEnter your choice [1-%d]: ', ... numel(partNames) + 1, numel(partNames) + 1); selPart = input('', 's'); partId = str2num(selPart); if ~isValidPartId(partId) partId = -1; end end function [email,ch,signature,auxstring] = getChallenge(email, part) str = urlread(challenge_url(), 'post', {'email_address', email, 'assignment_part_sid', [homework_id() '-' num2str(part)], 'response_encoding', 'delim'}); str = strtrim(str); r = struct; while(numel(str) > 0) [f, str] = strtok (str, '|'); [v, str] = strtok (str, '|'); r = setfield(r, f, v); end email = getfield(r, 'email_address'); ch = getfield(r, 'challenge_key'); signature = getfield(r, 'state'); auxstring = getfield(r, 'challenge_aux_data'); end function [result, str] = submitSolutionWeb(email, part, output, source) result = ['{"assignment_part_sid":"' base64encode([homework_id() '-' num2str(part)], '') '",' ... '"email_address":"' base64encode(email, '') '",' ... '"submission":"' base64encode(output, '') '",' ... '"submission_aux":"' base64encode(source, '') '"' ... '}']; str = 'Web-submission'; end function [result, str] = submitSolution(email, ch_resp, part, output, ... source, signature) params = {'assignment_part_sid', [homework_id() '-' num2str(part)], ... 'email_address', email, ... 'submission', base64encode(output, ''), ... 'submission_aux', base64encode(source, ''), ... 'challenge_response', ch_resp, ... 'state', signature}; str = urlread(submit_url(), 'post', params); % Parse str to read for success / failure result = 0; end % =========================== LOGIN HELPERS =========================== function [login password] = loginPrompt() % Prompt for password [login password] = basicPrompt(); if isempty(login) || isempty(password) login = []; password = []; end end function [login password] = basicPrompt() login = input('Login (Email address): ', 's'); password = input('Password: ', 's'); end function [login password] = quickLogin(login,password) disp(['You are currently logged in as ' login '.']); cont_token = input('Is this you? (y/n - type n to reenter password)','s'); if(isempty(cont_token) || cont_token(1)=='Y'||cont_token(1)=='y') return; else [login password] = loginPrompt(); end end function [str] = challengeResponse(email, passwd, challenge) str = sha1([challenge passwd]); end % =============================== SHA-1 ================================ function hash = sha1(str) % Initialize variables h0 = uint32(1732584193); h1 = uint32(4023233417); h2 = uint32(2562383102); h3 = uint32(271733878); h4 = uint32(3285377520); % Convert to word array strlen = numel(str); % Break string into chars and append the bit 1 to the message mC = [double(str) 128]; mC = [mC zeros(1, 4-mod(numel(mC), 4), 'uint8')]; numB = strlen * 8; if exist('idivide') numC = idivide(uint32(numB + 65), 512, 'ceil'); else numC = ceil(double(numB + 65)/512); end numW = numC * 16; mW = zeros(numW, 1, 'uint32'); idx = 1; for i = 1:4:strlen + 1 mW(idx) = bitor(bitor(bitor( ... bitshift(uint32(mC(i)), 24), ... bitshift(uint32(mC(i+1)), 16)), ... bitshift(uint32(mC(i+2)), 8)), ... uint32(mC(i+3))); idx = idx + 1; end % Append length of message mW(numW - 1) = uint32(bitshift(uint64(numB), -32)); mW(numW) = uint32(bitshift(bitshift(uint64(numB), 32), -32)); % Process the message in successive 512-bit chs for cId = 1 : double(numC) cSt = (cId - 1) * 16 + 1; cEnd = cId * 16; ch = mW(cSt : cEnd); % Extend the sixteen 32-bit words into eighty 32-bit words for j = 17 : 80 ch(j) = ch(j - 3); ch(j) = bitxor(ch(j), ch(j - 8)); ch(j) = bitxor(ch(j), ch(j - 14)); ch(j) = bitxor(ch(j), ch(j - 16)); ch(j) = bitrotate(ch(j), 1); end % Initialize hash value for this ch a = h0; b = h1; c = h2; d = h3; e = h4; % Main loop for i = 1 : 80 if(i >= 1 && i <= 20) f = bitor(bitand(b, c), bitand(bitcmp(b), d)); k = uint32(1518500249); elseif(i >= 21 && i <= 40) f = bitxor(bitxor(b, c), d); k = uint32(1859775393); elseif(i >= 41 && i <= 60) f = bitor(bitor(bitand(b, c), bitand(b, d)), bitand(c, d)); k = uint32(2400959708); elseif(i >= 61 && i <= 80) f = bitxor(bitxor(b, c), d); k = uint32(3395469782); end t = bitrotate(a, 5); t = bitadd(t, f); t = bitadd(t, e); t = bitadd(t, k); t = bitadd(t, ch(i)); e = d; d = c; c = bitrotate(b, 30); b = a; a = t; end h0 = bitadd(h0, a); h1 = bitadd(h1, b); h2 = bitadd(h2, c); h3 = bitadd(h3, d); h4 = bitadd(h4, e); end hash = reshape(dec2hex(double([h0 h1 h2 h3 h4]), 8)', [1 40]); hash = lower(hash); end function ret = bitadd(iA, iB) ret = double(iA) + double(iB); ret = bitset(ret, 33, 0); ret = uint32(ret); end function ret = bitrotate(iA, places) t = bitshift(iA, places - 32); ret = bitshift(iA, places); ret = bitor(ret, t); end % =========================== Base64 Encoder ============================ % Thanks to Peter John Acklam % function y = base64encode(x, eol) %BASE64ENCODE Perform base64 encoding on a string. % % BASE64ENCODE(STR, EOL) encode the given string STR. EOL is the line ending % sequence to use; it is optional and defaults to '\n' (ASCII decimal 10). % The returned encoded string is broken into lines of no more than 76 % characters each, and each line will end with EOL unless it is empty. Let % EOL be empty if you do not want the encoded string broken into lines. % % STR and EOL don't have to be strings (i.e., char arrays). The only % requirement is that they are vectors containing values in the range 0-255. % % This function may be used to encode strings into the Base64 encoding % specified in RFC 2045 - MIME (Multipurpose Internet Mail Extensions). The % Base64 encoding is designed to represent arbitrary sequences of octets in a % form that need not be humanly readable. A 65-character subset % ([A-Za-z0-9+/=]) of US-ASCII is used, enabling 6 bits to be represented per % printable character. % % Examples % -------- % % If you want to encode a large file, you should encode it in chunks that are % a multiple of 57 bytes. This ensures that the base64 lines line up and % that you do not end up with padding in the middle. 57 bytes of data fills % one complete base64 line (76 == 57*4/3): % % If ifid and ofid are two file identifiers opened for reading and writing, % respectively, then you can base64 encode the data with % % while ~feof(ifid) % fwrite(ofid, base64encode(fread(ifid, 60*57))); % end % % or, if you have enough memory, % % fwrite(ofid, base64encode(fread(ifid))); % % See also BASE64DECODE. % Author: Peter John Acklam % Time-stamp: 2004-02-03 21:36:56 +0100 % E-mail: [email protected] % URL: http://home.online.no/~pjacklam if isnumeric(x) x = num2str(x); end % make sure we have the EOL value if nargin < 2 eol = sprintf('\n'); else if sum(size(eol) > 1) > 1 error('EOL must be a vector.'); end if any(eol(:) > 255) error('EOL can not contain values larger than 255.'); end end if sum(size(x) > 1) > 1 error('STR must be a vector.'); end x = uint8(x); eol = uint8(eol); ndbytes = length(x); % number of decoded bytes nchunks = ceil(ndbytes / 3); % number of chunks/groups nebytes = 4 * nchunks; % number of encoded bytes % add padding if necessary, to make the length of x a multiple of 3 if rem(ndbytes, 3) x(end+1 : 3*nchunks) = 0; end x = reshape(x, [3, nchunks]); % reshape the data y = repmat(uint8(0), 4, nchunks); % for the encoded data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Split up every 3 bytes into 4 pieces % % aaaaaabb bbbbcccc ccdddddd % % to form % % 00aaaaaa 00bbbbbb 00cccccc 00dddddd % y(1,:) = bitshift(x(1,:), -2); % 6 highest bits of x(1,:) y(2,:) = bitshift(bitand(x(1,:), 3), 4); % 2 lowest bits of x(1,:) y(2,:) = bitor(y(2,:), bitshift(x(2,:), -4)); % 4 highest bits of x(2,:) y(3,:) = bitshift(bitand(x(2,:), 15), 2); % 4 lowest bits of x(2,:) y(3,:) = bitor(y(3,:), bitshift(x(3,:), -6)); % 2 highest bits of x(3,:) y(4,:) = bitand(x(3,:), 63); % 6 lowest bits of x(3,:) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Now perform the following mapping % % 0 - 25 -> A-Z % 26 - 51 -> a-z % 52 - 61 -> 0-9 % 62 -> + % 63 -> / % % We could use a mapping vector like % % ['A':'Z', 'a':'z', '0':'9', '+/'] % % but that would require an index vector of class double. % z = repmat(uint8(0), size(y)); i = y <= 25; z(i) = 'A' + double(y(i)); i = 26 <= y & y <= 51; z(i) = 'a' - 26 + double(y(i)); i = 52 <= y & y <= 61; z(i) = '0' - 52 + double(y(i)); i = y == 62; z(i) = '+'; i = y == 63; z(i) = '/'; y = z; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Add padding if necessary. % npbytes = 3 * nchunks - ndbytes; % number of padding bytes if npbytes y(end-npbytes+1 : end) = '='; % '=' is used for padding end if isempty(eol) % reshape to a row vector y = reshape(y, [1, nebytes]); else nlines = ceil(nebytes / 76); % number of lines neolbytes = length(eol); % number of bytes in eol string % pad data so it becomes a multiple of 76 elements y = [y(:) ; zeros(76 * nlines - numel(y), 1)]; y(nebytes + 1 : 76 * nlines) = 0; y = reshape(y, 76, nlines); % insert eol strings eol = eol(:); y(end + 1 : end + neolbytes, :) = eol(:, ones(1, nlines)); % remove padding, but keep the last eol string m = nebytes + neolbytes * (nlines - 1); n = (76+neolbytes)*nlines - neolbytes; y(m+1 : n) = ''; % extract and reshape to row vector y = reshape(y, 1, m+neolbytes); end % output is a character array y = char(y); end
github
ijameslive/coursera-machine-learning-1-master
submitWeb.m
.m
coursera-machine-learning-1-master/mlclass-ex7/submitWeb.m
807
utf_8
a53188558a96eae6cd8b0e6cda4d478d
% submitWeb Creates files from your code and output for web submission. % % If the submit function does not work for you, use the web-submission mechanism. % Call this function to produce a file for the part you wish to submit. Then, % submit the file to the class servers using the "Web Submission" button on the % Programming Exercises page on the course website. % % You should call this function without arguments (submitWeb), to receive % an interactive prompt for submission; optionally you can call it with the partID % if you so wish. Make sure your working directory is set to the directory % containing the submitWeb.m file and your assignment files. function submitWeb(partId) if ~exist('partId', 'var') || isempty(partId) partId = []; end submit(partId, 1); end
github
cgtuebingen/Product-Quantization-Tree-master
ivecs_read.m
.m
Product-Quantization-Tree-master/cpu_version/matlab/ivecs_read.m
1,361
utf_8
a6dcf18c53cf54bf185c73f31ed016ea
% Read a set of vectors stored in the ivec format (int + n * int) % The function returns a set of output vector (one vector per column) % % Syntax: % v = ivecs_read (filename) -> read all vectors % v = ivecs_read (filename, n) -> read n vectors % v = ivecs_read (filename, [a b]) -> read the vectors from a to b (indices starts from 1) function v = ivecs_read (filename, bounds) % open the file and count the number of descriptors fid = fopen (filename, 'rb'); if fid == -1 error ('I/O error : Unable to open the file %s\n', filename) end % Read the vector size d = fread (fid, 1, 'int'); vecsizeof = 1 * 4 + d * 4; % Get the number of vectrors fseek (fid, 0, 1); a = 1; bmax = ftell (fid) / vecsizeof; b = bmax; if nargin >= 2 if length (bounds) == 1 b = bounds; elseif length (bounds) == 2 a = bounds(1); b = bounds(2); end end assert (a >= 1); if b > bmax b = bmax; end if b == 0 | b < a v = []; fclose (fid); return; end % compute the number of vectors that are really read and go in starting positions n = b - a + 1; fseek (fid, (a - 1) * vecsizeof, -1); % read n vectors v = fread (fid, (d + 1) * n, 'int=>double'); v = reshape (v, d + 1, n); % Check if the first column (dimension of the vectors) is correct assert (sum (v (1, 2:end) == v(1, 1)) == n - 1); v = v (2:end, :); fclose (fid);
github
cgtuebingen/Product-Quantization-Tree-master
fvecs_read.m
.m
Product-Quantization-Tree-master/cpu_version/matlab/fvecs_read.m
1,363
utf_8
267b271a3740ad6bf22d8f14965b7c4a
% Read a set of vectors stored in the fvec format (int + n * float) % The function returns a set of output vector (one vector per column) % % Syntax: % v = fvecs_read (filename) -> read all vectors % v = fvecs_read (filename, n) -> read n vectors % v = fvecs_read (filename, [a b]) -> read the vectors from a to b (indices starts from 1) function v = fvecs_read (filename, bounds) % open the file and count the number of descriptors fid = fopen (filename, 'rb'); if fid == -1 error ('I/O error : Unable to open the file %s\n', filename) end % Read the vector size d = fread (fid, 1, 'int'); vecsizeof = 1 * 4 + d * 4; % Get the number of vectrors fseek (fid, 0, 1); a = 1; bmax = ftell (fid) / vecsizeof; b = bmax; if nargin >= 2 if length (bounds) == 1 b = bounds; elseif length (bounds) == 2 a = bounds(1); b = bounds(2); end end assert (a >= 1); if b > bmax b = bmax; end if b == 0 | b < a v = []; fclose (fid); return; end % compute the number of vectors that are really read and go in starting positions n = b - a + 1; fseek (fid, (a - 1) * vecsizeof, -1); % read n vectors v = fread (fid, (d + 1) * n, 'float=>single'); v = reshape (v, d + 1, n); % Check if the first column (dimension of the vectors) is correct assert (sum (v (1, 2:end) == v(1, 1)) == n - 1); v = v (2:end, :); fclose (fid);
github
claassengroup/matLeap-master
isFbcEnabled.m
.m
matLeap-master/libSBML-5.12.0-matlab/isFbcEnabled.m
2,380
utf_8
52e85daac8468f2c9bf66de5b51e04fe
function fbcEnabled = isFbcEnabled() % Checks whether the version of libSBML has been built with % the FBC package extension enabled % Filename : isFbcEnabled.m % Description : check fbc status % Author(s) : SBML Team <[email protected]> % Organization: EMBL-EBI, Caltech % Created : 2011-02-08 % % This file is part of libSBML. Please visit http://sbml.org for more % information about SBML, and the latest version of libSBML. % % Copyright (C) 2013-2014 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % 3. University of Heidelberg, Heidelberg, Germany % % Copyright (C) 2009-2011 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % % Copyright (C) 2006-2008 by the California Institute of Technology, % Pasadena, CA, USA % % Copyright (C) 2002-2005 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. Japan Science and Technology Agency, Japan % % This library is free software; you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation. A copy of the license % agreement is provided in the file named "LICENSE.txt" included with % this software distribution and also available online as % http://sbml.org/software/libsbml/license.html % assume not enabled fbcEnabled = 0; if (isoctave() == '0') filename = fullfile(tempdir, 'fbc.xml'); else filename = fullfile(pwd, 'fbc.xml'); end; writeTempFile(filename); try [m, e] = TranslateSBML(filename, 1, 0); if (length(e) == 0 && isfield(m, 'fbc_version') == 1 ) fbcEnabled = 1; end; delete(filename); catch delete(filename); return end; function writeTempFile(filename) fout = fopen(filename, 'w'); fprintf(fout, '<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n'); fprintf(fout, '<sbml xmlns=\"http://www.sbml.org/sbml/level3/version1/core\" '); fprintf(fout, 'xmlns:fbc=\"http://www.sbml.org/sbml/level3/version1/fbc/version1\" '); fprintf(fout, 'level=\"3\" version=\"1\" fbc:required=\"false\">\n'); fprintf(fout, ' <model/>\n</sbml>\n'); fclose(fout);
github
claassengroup/matLeap-master
buildSBML.m
.m
matLeap-master/libSBML-5.12.0-matlab/buildSBML.m
30,786
utf_8
90b3ea6ab3341cde3685da49306e5977
function buildSBML(varargin) % Builds the MATLAB language interface for libSBML. % % This script is meant to be invoked from libSBML's MATLAB bindings % source directory. LibSBML must already have been compiled and % installed on your system. This script makes the following % assumptions: % % * Linux and Mac systems: the compiled libSBML library must be on the % appropriate library search paths, and/or the appropriate environment % variables must have been set so that programs such as MATLAB can % load the library dynamically. % % * Windows systems: the libSBML binaries (.dll and .lib files) and its % dependencies (such as the XML parser library being used) must be % located together in the same directory. This script also assumes % that libSBML was configured to use the libxml2 XML parser library. % (This assumption is under Windows only.) % % After this script is executed successfully, a second step is necessary % to install the results. This second step is performed by the % "installSBML" script found in the same location as this script. % % (File $Revision: 13171 $ of $Date:: 2011-03-04 10:30:24 +0000#$ % Filename : buildSBML.m % Description : Build MATLAB binding. % Author(s) : SBML Team <[email protected]> % Organization: EMBL-EBI, Caltech % Created : 2011-02-08 % % This file is part of libSBML. Please visit http://sbml.org for more % information about SBML, and the latest version of libSBML. % % Copyright (C) 2013-2014 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % 3. University of Heidelberg, Heidelberg, Germany % % Copyright (C) 2009-2013 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % % Copyright (C) 2006-2008 by the California Institute of Technology, % Pasadena, CA, USA % % Copyright (C) 2002-2005 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. Japan Science and Technology Agency, Japan % % This library is free software; you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation. A copy of the license % agreement is provided in the file named "LICENSE.txt" included with % this software distribution and also available online as % http://sbml.org/software/libsbml/license.html % ========================================================================= % Main loop. % ========================================================================= [matlab_octave, bit64] = check_system(); disp(sprintf('\nConstructing the libSBML %s interface.\n', matlab_octave)); [location, writeAccess, in_installer] = check_location(matlab_octave); if isWindows() build_win(matlab_octave, location, writeAccess, bit64, in_installer); elseif ismac() || isunix() % here we allow input arguments of include and library directories % but we only use these if we are in the source tree if (nargin > 0 && strcmp(location, 'source')) % we need two arguments % one must be the full path to the include directory % two must be the full path to the library directory correctArguments = 0; if (nargin == 2) include_dir_supplied = varargin{1}; lib_dir_supplied = varargin{2}; if checkSuppliedArguments(include_dir_supplied, lib_dir_supplied) correctArguments = 1; end; end; if correctArguments == 0 message = sprintf('\n%s\n%s\n%s\n', ... 'If arguments are passed to the buildSBML script we expect 2 arguments:', ... '1) the full path to the include directory', ... '2) the full path to the directory containing the libSBML library'); error(message); else % arguments are fine - go ahead and build build_unix(matlab_octave, location, writeAccess, bit64, ... include_dir_supplied, lib_dir_supplied); end; else build_unix(matlab_octave, location, writeAccess, bit64); end; else message = sprintf('\n%s\n%s\n', ... 'Unable to determine the type of operating system in use.', ... 'Please contact [email protected] to help resolve this problem.'); error(message); end; disp(sprintf('\n%s%s\n', 'Successfully finished. ', ... 'If appropriate, please run "installSBML" next.')); % ========================================================================= % Support functions. % ========================================================================= % % % Is this windows % Mac OS X 10.7 Lion returns true for a call to ispc() % since we were using that to distinguish between windows and macs we need % to catch this % ------------------------------------------------------------------------ function y = isWindows() y = 1; if isunix() y = 0; return; end; if ismac() y = 0; return; end; if ~ispc() message = sprintf('\n%s\n%s\n', ... 'Unable to determine the type of operating system in use.', ... 'Please contact [email protected] to help resolve this problem.'); error(message); end; % % Assess our computing environment. % ------------------------------------------------------------------------- function [matlab_octave, bit64] = check_system() disp('* Doing preliminary checks of runtime environment ...'); if (strcmp(isoctave(), '0')) matlab_octave = 'MATLAB'; disp(' - This appears to be MATLAB and not Octave.'); else matlab_octave = 'Octave'; disp(' - This appears to be Octave and not MATLAB.'); end; bit64 = 32; if isWindows() if strcmp(computer(), 'PCWIN64') == 1 bit64 = 64; disp(sprintf(' - %s reports the OS is Windows 64-bit.', matlab_octave)); else disp(sprintf(' - %s reports the OS is Windows 32-bit.', matlab_octave)); end; elseif ismac() if strcmp(computer(), 'MACI64') == 1 bit64 = 64; disp(sprintf(' - %s reports the OS is 64-bit MacOS.', matlab_octave)); else % Reading http://www.mathworks.com/help/techdoc/ref/computer.html % it is still not clear to me what a non-64-bit MacOS will report. % Let's not assume the only other alternative is 32-bit, since we % actually don't care here. Let's just say "macos". % disp(sprintf(' - %s reports the OS is MacOS.', matlab_octave)); end; elseif isunix() if strcmp(computer(), 'GLNXA64') == 1 bit64 = 64; disp(sprintf(' - %s reports the OS is 64-bit Linux.', matlab_octave)); else disp(sprintf(' - %s reports the OS is 32-bit Linux.', matlab_octave)); end; end; % % Assess our location in the file system. % ------------------------------------------------------------------------- % Possible values returned: % LOCATION: % 'installed' -> installation directory % 'source' -> libsbml source tree % % WRITEACCESS: % 1 -> we can write in this directory % 0 -> we can't write in this directory % function [location, writeAccess, in_installer] = check_location(matlab_octave) disp('* Trying to establish our location ...'); % This is where things get iffy. There are a lot of possibilities, and % we have to resort to heuristics. % % Linux and Mac: we look for 2 possibilities % - installation dir ends in "libsbml/bindings/matlab" % Detect it by looking for ../../VERSION.txt. % Assume we're in .../share/libsbml/bindings/matlab and that our % library is in .../lib/ % % - source dir ends in "libsbml/src/bindings/matlab" % Detect it by looking for ../../../VERSION.txt. % Assume our library is in ../../ % [remain, first] = fileparts(pwd); if strcmpi(matlab_octave, 'matlab') if ~strcmp(first, 'matlab') error_incorrect_dir('matlab'); else disp(' - We are in the libSBML subdirectory for Matlab.'); end; else if ~strcmp(first, 'octave') error_incorrect_dir('octave'); else disp(' - We are in the libSBML subdirectory for Octave.'); end; end; in_installer = 0; [above_bindings, bindings] = fileparts(remain); if exist(fullfile(above_bindings, 'VERSION.txt')) disp(' - We appear to be in the installation target directory.'); in_installer = 1; if isWindows() location = above_bindings; else location = 'installed'; end; else [libsbml_root, src] = fileparts(above_bindings); if exist(fullfile(libsbml_root, 'VERSION.txt')) disp(' - We appear to be in the libSBML source tree.'); if isWindows() location = libsbml_root; else location = 'source'; end; else % We don't know where we are. if strcmpi(matlab_octave, 'MATLAB') error_incorrect_dir('matlab'); else error_incorrect_dir('octave'); end; end; end; % Test that it looks like we have the expected pieces in this directory. % We don't want to assume particular paths, because we might be % getting run from the libSBML source tree or the installed copy of % the matlab bindings sources. So, we test for just a couple of % things: the tail of the name of the directory in which this file is % located (should be either "matlab" or "octave") and the presence of % another file, "OutputSBML.c", which became part of libsbml at the % same time this new build scheme was introduced. our_name = sprintf('%s.m', mfilename); other_name = 'OutputSBML.cpp'; if ~exist(fullfile(pwd, our_name), 'file') ... || ~exist(fullfile(pwd, other_name), 'file') error_incorrect_dir('matlab'); end; % Check whether we have write access to this directory. fid = fopen('temp.txt', 'w'); writeAccess = 1; if fid == -1 disp(' - We do not have write access here -- will write elsewhere.'); writeAccess = 0; else disp(' - We have write access here! That makes us happy.'); fclose(fid); delete('temp.txt'); end; % % Find include and library dirs (Linux & Mac case). % ------------------------------------------------------------------------- % Return values: % INCLUDE -> the full path to the include directory % LIB -> the full path to the libsbml library directory % function [include, lib] = find_unix_dirs(location, bit64) disp('* Locating libSBML library and include files ...'); % The 'location' argument guides us: % 'installed' -> installation directory % look for libsbml.so or libsbml.dylib in ../../../lib{64}/ % 'source' -> libsbml source tree % look for libsbml.so or libsbml.dylib in ../../.libs/ if ismac() libname = 'libsbml.dylib'; else libname = 'libsbml.so'; end; if strcmpi(location, 'source') [parent, here] = fileparts(pwd); % .. [parent, here] = fileparts(parent); % .. lib = fullfile(parent, '.libs'); libfile = fullfile(lib, libname); if exist(libfile) disp(sprintf(' - Found %s', libfile)); else lib = 'unfound'; end; include = parent; if exist(include) disp(sprintf(' - Root of includes is %s', include)); else error_incorrect_dir('matlab'); end; else % location is 'installed' [parent, here] = fileparts(pwd); % .. [parent, here] = fileparts(parent); % .. [parent, here] = fileparts(parent); % .. lib = fullfile(parent, 'lib'); libfile = fullfile(lib, libname); if exist(libfile) disp(sprintf(' - Found %s', libfile)); else if bit64 == 64 % Try one more common alternative. lib = fullfile(parent, 'lib64'); libfile = fullfile(lib, libname); if exist(libfile) disp(sprintf(' - Found %s', libfile)); else lib = 'unfound'; end; end; end; % In the installed target directory, include will be something % like /usr/local/include % include = fullfile(parent, 'include'); if exist(include) disp(sprintf(' - Root of includes is %s', include)); else error_incorrect_dir('matlab'); end; end; % % we on occasion allow the user to supply arguments for the directories % Check include and library dirs (Linux & Mac case) supplied exist % ------------------------------------------------------------------------- function y = checkSuppliedArguments(include_supplied, lib_supplied) disp('* Checking for libSBML library and include files ...'); % assume we find them y = 1; % check the include directory supplied exists if exist(include_supplied) disp(sprintf(' - Root of includes found at %s', include_supplied)); else disp(sprintf(' - Root of includes NOT found at %s', include_supplied)); y = 0; end; % check that the correct library is found if ismac() libname = 'libsbml.dylib'; else libname = 'libsbml.so'; end; libfile = fullfile(lib_supplied, libname); if exist(libfile) disp(sprintf(' - Found %s', libfile)); else disp(sprintf(' - NOT found %s', libfile)); y = 0; end; % % Drive the build process (Windows version). % ------------------------------------------------------------------------- function build_win(matlab_octave, root, writeAccess, bit64, in_installer) disp('Phase 2: tests for libraries and other dependencies ...'); [include_dir, lib] = find_win_dirs(root, bit64, in_installer); % check that the libraries can all be found found = 1; for i = 1:length(lib) if (exist(lib{i}) ~= 0) disp(sprintf('%s found', lib{i})); else disp(sprintf('%s not found', lib{i})); found = 0; end; end; if (found == 0) error (sprintf('Not all dependencies could be found\n%s%s', ... 'expected the dependencies to be in ', fileparts(lib{1}))); else disp(' - All dependencies found. Good.'); end; % if we do not have write access need to find somewhere else to build if (writeAccess == 0)% must be 0; 1 is for testing % create a new dir in the users path this_dir = pwd; if (matlab_octave == 'MATLAB') user_dir = userpath; user_dir = user_dir(1:length(user_dir)-1); else % This is Octave. Octave doesn't have 'userpath'. user_dir = tempdir; end; disp(sprintf(' - Copying library files to %s ...', user_dir)); if (copyLibraries(this_dir, user_dir, lib) == 1) disp(' - Copying of library files successful.'); else error('Cannot copy library files on this system'); end; disp(sprintf(' - Copying MATLAB binding files to %s ...', user_dir)); if (copyMatlabDir(this_dir, user_dir) == 1) disp('- Copying of MATLAB binding files successful'); else error('Cannot copy matlab binding files on this system'); end; else this_dir = pwd; user_dir = pwd; % copy the library files to here disp(sprintf(' - Copying library files to %s ...', user_dir)); if (copyLibraries(this_dir, user_dir, lib) == 1) disp(' - Copying of library files successful'); else error('Cannot copy library files on this system'); end; end; % build the files compile_mex(include_dir, lib{1}, matlab_octave); % % Find include and library dirs (windows case). % ------------------------------------------------------------------------- % Return values: % INCLUDE -> the full path to the include directory % LIB -> an array of the libsbml dependency libraries % function [include, lib] = find_win_dirs(root, bit64, in_installer) disp('* Locating libSBML library and include files ...'); % in the src tree we expect all lib dlls to be in root/win/bin % and the include dir to be root/src % in the installer the lib will be in root/win32/lib % the dll will be in root/win32/bin % and the include dir to be root/win32/include % and for 64 bits the win32 will be win64 if (in_installer == 0) bin_dir = [root, filesep, 'win', filesep, 'bin']; lib_dir = [root, filesep, 'win', filesep, 'bin']; include = [root, filesep, 'src']; else if (bit64 == 32) bin_dir = [root, filesep, 'win32', filesep, 'bin']; lib_dir = [root, filesep, 'win32', filesep, 'lib']; include = [root, filesep, 'win32', filesep, 'include']; else bin_dir = [root, filesep, 'win64', filesep, 'bin']; lib_dir = [root, filesep, 'win64', filesep, 'lib']; include = [root, filesep, 'win64', filesep, 'include']; end; end; disp(sprintf(' - Checking for the existence of the %s directory ...\n', bin_dir)); % and are the libraries in this directory if ((exist(bin_dir, 'dir') ~= 7) || (exist([bin_dir, filesep, 'libsbml.dll']) == 0)) disp(sprintf('%s directory could not be found\n\n%s\n%s %s', bin_dir, ... 'The build process assumes that the libsbml binaries', ... 'exist at', bin_dir)); message = sprintf('\n%s\n%s', ... 'if they are in another directory please enter the ', ... 'full path to reach the directory from this directory: '); new_bin_dir = input(message, 's'); if (exist(new_bin_dir, 'dir') == 0) error('libraries could not be found'); else bin_dir = new_bin_dir; if (in_installer == 0) lib_dir = bin_dir; end; end; end; if (~strcmp(bin_dir, lib_dir)) disp(sprintf(' - Checking for the existence of the %s directory ...\n', lib_dir)); if (exist(lib_dir, 'dir') ~= 7) disp(sprintf('%s directory could not be found\n\n%s\n%s %s', lib_dir, ... 'The build process assumes that the libsbml binaries', ... 'exist at', lib_dir)); message = sprintf('\n%s\n%s', ... 'if they are in another directory please enter the ', ... 'full path to reach the directory from this directory: '); new_lib_dir = input(message, 's'); if (exist(new_lib_dir, 'dir') == 0) error('libraries could not be found'); else lib_dir = new_lib_dir; end; end; end; % check that the include directory exists disp(sprintf(' - Checking for the existence of the %s directory ...\n', include)); if (exist(include, 'dir') ~= 7) disp(sprintf('%s directory could not be found\n\n%s\n%s %s', include, ... 'The build process assumes that the libsbml include files', ... 'exist at', include)); message = sprintf('\n%s\n%s', ... 'if they are in another directory please enter the ', ... 'full path to reach the directory from this directory: '); new_inc_dir = input(message, 's'); if (exist(new_inc_dir, 'dir') == 0) error('include files could not be found'); else include = new_inc_dir; end; end; % create the array of library files if (bit64 == 32) if (in_installer == 0) lib{1} = [bin_dir, filesep, 'libsbml.lib']; lib{2} = [bin_dir, filesep, 'libsbml.dll']; lib{3} = [bin_dir, filesep, 'libxml2.lib']; lib{4} = [bin_dir, filesep, 'libxml2.dll']; lib{5} = [bin_dir, filesep, 'iconv.lib']; lib{6} = [bin_dir, filesep, 'iconv.dll']; lib{7} = [bin_dir, filesep, 'bzip2.lib']; lib{8} = [bin_dir, filesep, 'bzip2.dll']; lib{9} = [bin_dir, filesep, 'zdll.lib']; lib{10} = [bin_dir, filesep, 'zlib1.dll']; else lib{1} = [lib_dir, filesep, 'libsbml.lib']; lib{2} = [bin_dir, filesep, 'libsbml.dll']; lib{3} = [lib_dir, filesep, 'libxml2.lib']; lib{4} = [bin_dir, filesep, 'libxml2.dll']; lib{5} = [lib_dir, filesep, 'iconv.lib']; lib{6} = [bin_dir, filesep, 'iconv.dll']; lib{7} = [lib_dir, filesep, 'bzip2.lib']; lib{8} = [bin_dir, filesep, 'bzip2.dll']; lib{9} = [lib_dir, filesep, 'zdll.lib']; lib{10} = [bin_dir, filesep, 'zlib1.dll']; end; else if (in_installer == 0) lib{1} = [bin_dir, filesep, 'libsbml.lib']; lib{2} = [bin_dir, filesep, 'libsbml.dll']; lib{3} = [bin_dir, filesep, 'libxml2.lib']; lib{4} = [bin_dir, filesep, 'libxml2.dll']; lib{5} = [bin_dir, filesep, 'libiconv.lib']; lib{6} = [bin_dir, filesep, 'libiconv.dll']; lib{7} = [bin_dir, filesep, 'bzip2.lib']; lib{8} = [bin_dir, filesep, 'libbz2.dll']; lib{9} = [bin_dir, filesep, 'zdll.lib']; lib{10} = [bin_dir, filesep, 'zlib1.dll']; else lib{1} = [lib_dir, filesep, 'libsbml.lib']; lib{2} = [bin_dir, filesep, 'libsbml.dll']; lib{3} = [lib_dir, filesep, 'libxml2.lib']; lib{4} = [bin_dir, filesep, 'libxml2.dll']; lib{5} = [lib_dir, filesep, 'libiconv.lib']; lib{6} = [bin_dir, filesep, 'libiconv.dll']; lib{7} = [lib_dir, filesep, 'bzip2.lib']; lib{8} = [bin_dir, filesep, 'libbz2.dll']; lib{9} = [lib_dir, filesep, 'zdll.lib']; lib{10} = [bin_dir, filesep, 'zlib1.dll']; end; end; % % Drive the build process (Mac and Linux version). % ------------------------------------------------------------------------- function build_unix(varargin) matlab_octave = varargin{1}; location = varargin{2}; writeAccess = varargin{3}; bit64 = varargin{4}; if (nargin == 4) [include, lib] = find_unix_dirs(location, bit64); else include = varargin{5}; lib = varargin{6}; end; if writeAccess == 1 % We can write to the current directory. Our job is easy-peasy. % compile_mex(include, lib, matlab_octave); else % We don't have write access to this directory. Copy the files % somewhere else, relocate to there, and then try building. % working_dir = find_working_dir(matlab_octave); current_dir = pwd; copy_matlab_dir(current_dir, working_dir); cd(working_dir); compile_mex(include, lib, matlab_octave); cd(current_dir); end; % % Run mex/mkoctfile. % ------------------------------------------------------------------------- function compile_mex(include_dir, library_dir, matlab_octave) disp(sprintf('* Creating mex files in %s', pwd)); % list the possible opts files to be tried optsfiles = {'', './mexopts-osx109.sh', './mexopts-osx108.sh', './mexopts-lion.sh', './mexopts-xcode43.sh', './mexopts-xcode45.sh', './mexopts-R2009-R2010.sh', './mexopts-R2008.sh', './mexopts-R2007.sh'}; success = 0; n = 1; if strcmpi(matlab_octave, 'matlab') while(~success && n < length(optsfiles)) try if ~isempty(optsfiles{n}) disp(sprintf('* Trying to compile with mexopts file: %s', optsfiles{n})); end; success = do_compile_mex(include_dir, library_dir, matlab_octave, optsfiles{n}); catch err disp(' ==> The last attempt to build the Matlab bindings failed. We will try again with a different mexopts file'); end; n = n + 1; end; else success = do_compile_mex(include_dir, library_dir, matlab_octave, optsfiles{n}); end; if ~success error('Build failed'); end; function success = do_compile_mex(include_dir, library_dir, matlab_octave, altoptions) inc_arg = ['-I', include_dir]; inc_arg2 = ['-I', library_dir]; lib_arg = ['-L', library_dir]; added_args = [' ']; if ismac() || isunix() added_args = ['-lsbml']; end; % The messy file handle stuff is because this seems to be the best way to % be able to pass arguments to the feval function. if strcmpi(matlab_octave, 'matlab') % on windows the command needs to be different if isWindows() fhandle = @mex; disp(' - Building TranslateSBML ...'); feval(fhandle, 'TranslateSBML.cpp', inc_arg, inc_arg2, library_dir, '-DWIN32'); disp(' - Building OutputSBML ...'); feval(fhandle, 'OutputSBML.cpp', inc_arg, inc_arg2, library_dir, '-DWIN32'); else fhandle = @mex; disp(' - Building TranslateSBML ...'); if ~isempty(altoptions) feval(fhandle, 'TranslateSBML.cpp', '-f', altoptions, inc_arg, inc_arg2, lib_arg, added_args); else feval(fhandle, 'TranslateSBML.cpp', inc_arg, inc_arg2, lib_arg, added_args); end; disp(' - Building OutputSBML ...'); if ~isempty(altoptions) feval(fhandle, 'OutputSBML.cpp', '-f', altoptions, inc_arg, inc_arg2, lib_arg, added_args); else feval(fhandle, 'OutputSBML.cpp', inc_arg, inc_arg2, lib_arg, added_args); end; end; else if isWindows() fhandle = @mkoctfile; disp(' - Building TranslateSBML ...'); feval(fhandle, '--mex', 'TranslateSBML.cpp', '-DUSE_OCTAVE', inc_arg, inc_arg2, ... '-lbz2', '-lz', library_dir); disp(' - Building OutputSBML ...'); feval(fhandle, '--mex', 'OutputSBML.cpp', '-DUSE_OCTAVE', inc_arg, inc_arg2, ... '-lbz2', '-lz', library_dir); else fhandle = @mkoctfile; disp(' - Building TranslateSBML ...'); feval(fhandle, '--mex', 'TranslateSBML.cpp', '-DUSE_OCTAVE', inc_arg, inc_arg2, ... '-lbz2', '-lz', lib_arg, added_args); disp(' - Building OutputSBML ...'); feval(fhandle, '--mex', 'OutputSBML.cpp', '-DUSE_OCTAVE', inc_arg, inc_arg2, ... '-lbz2', '-lz', lib_arg, added_args); end; % mkoctfile --mex TranslateSBML.cpp -DUSE_OCTAVE inc_arg inc_arg2 -lbz2 -lz lib_arg; end; transFile = strcat('TranslateSBML.', mexext()); outFile = strcat('OutputSBML.', mexext()); if ~exist(transFile) || ~exist(outFile) success = 0; else success = 1; end; % % Find a directory where we can copy our files (Linux & Mac version). % % ------------------------------------------------------------------------- function working_dir = find_working_dir(matlab_octave) if strcmpi(matlab_octave, 'matlab') user_dir = userpath; user_dir = user_dir(1:length(user_dir)-1); else % This is Octave. Octave doesn't have 'userpath'. user_dir = tempdir; end; working_dir = fullfile(user_dir, 'libsbml'); if ~exist(working_dir, 'dir') [success, msg, msgid] = mkdir(working_dir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; end; % % Copy the matlab binding directory, with tests. % % This also creates the necessary directories and subdirectories. % ------------------------------------------------------------------------- function copy_matlab_dir(orig_dir, working_dir) disp(sprintf(' - Copying files to %s', working_dir)); % Copy files from src/bindings/matlab. [success, msg, msgid] = copyfile('TranslateSBML.cpp', working_dir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; [success, msg, msgid] = copyfile('OutputSBML.cpp', working_dir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; [success, msg, msgid] = copyfile('*.m', working_dir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; [success, msg, msgid] = copyfile('*.xml', working_dir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; % Copy files from src/bindings/matlab/test. test_subdir = fullfile(working_dir, 'test'); if ~exist(test_subdir, 'dir') [success, msg, msgid] = mkdir(test_subdir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; end; cd 'test'; [success, msg, msgid] = copyfile('*.m', test_subdir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; % Copy files from src/bindings/matlab/test/test-data/. test_data_subdir = fullfile(test_subdir, 'test-data'); if ~exist(test_data_subdir, 'dir') [success, msg, msgid] = mkdir(test_data_subdir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; end; cd 'test-data'; [success, msg, msgid] = copyfile('*.xml', test_data_subdir); if ~success error(sprintf('\n%s\n%s\n', msg, 'Build failed.')); end; % % Print error about being in the wrong location. % ------------------------------------------------------------------------- function error_incorrect_dir(expected) message = sprintf('\n%s\n%s%s%s\n%s\n%s%s%s\n%s\n', ... 'This script needs to be invoked from the libSBML subdirectory ', ... 'ending in "', expected, '". However, it is being invoked', ... 'from the directory', ' "', pwd, '"', ... 'instead. Please change your working directory and re-run this script.'); error(message); % % Copy library files to the given directory on windows % ------------------------------------------------------------------------- function copied = copyLibraries(orig_dir, target_dir, lib) copied = 0; cd (target_dir); % if we moving to another location create a libsbml directory % if we are staying in src/matlab/bindings copy here if (~strcmp(orig_dir, target_dir)) if (exist('libsbml', 'dir') == 0) mkdir('libsbml'); end; cd libsbml; end; new_dir = pwd; % copy the necessary files for i = 1:length(lib) copyfile(lib{i}, new_dir); end; cd(orig_dir); copied = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % creates a copy of the matlab binding directory with tests function copied = copyMatlabDir(orig_dir, target_dir) copied = 0; cd (target_dir); % create libsbml dir if (exist('libsbml', 'dir') == 0) mkdir('libsbml'); end; cd libsbml; new_dir = pwd; %copy files to libsbml cd(orig_dir); copyfile('TranslateSBML.cpp', new_dir); copyfile('OutputSBML.cpp', new_dir); copyfile('*.m', new_dir); copyfile('*.xml', new_dir); cd(new_dir); % delete ('buildLibSBML.m'); % create test dir testdir = fullfile(pwd, 'test'); if (exist(testdir, 'dir') == 0) mkdir('test'); end; cd('test'); new_dir = pwd; %copy test files cd(orig_dir); cd('test'); copyfile('*.m', new_dir); % create test-data dir cd(new_dir); testdir = fullfile(pwd, 'test-data'); if (exist(testdir, 'dir') == 0) mkdir('test-data'); end; cd('test-data'); new_dir = pwd; %copy test-data files cd(orig_dir); cd ('test'); cd ('test-data'); copyfile('*.xml', new_dir); %navigate to new libsbml directory cd(new_dir); cd ..; cd ..; % put in some tests here copied = 1; % ========================================================================= % The end. % % Please leave the following for [X]Emacs users: % Local Variables: % matlab-indent-level: 2 % fill-column: 72 % End: % =========================================================================
github
claassengroup/matLeap-master
CheckAndConvert.m
.m
matLeap-master/libSBML-5.12.0-matlab/CheckAndConvert.m
13,028
utf_8
00513eb63c558601962fb1952bb6ae86
function Formula = CheckAndConvert(Input) % converts from MathML in-fix to MATLAB functions % Filename : CheckAndConvert.m % Description : converts from MathML in-fix to MATLAB functions % Author(s) : SBML Team <[email protected]> % Organization: University of Hertfordshire STRC % Created : 2004-12-13 % % This file is part of libSBML. Please visit http://sbml.org for more % information about SBML, and the latest version of libSBML. % % Copyright (C) 2013-2014 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % 3. University of Heidelberg, Heidelberg, Germany % % Copyright (C) 2009-2013 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % % Copyright (C) 2006-2008 by the California Institute of Technology, % Pasadena, CA, USA % % Copyright (C) 2002-2005 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. Japan Science and Technology Agency, Japan % % This library is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation. A copy of the license agreement is provided % in the file named "LICENSE.txt" included with this software distribution % and also available online as http://sbml.org/software/libsbml/license.html % % The original code contained here was initially developed by: % % Sarah Keating % Science and Technology Research Centre % University of Hertfordshire % Hatfield, AL10 9AB % United Kingdom % % http://www.sbml.org % mailto:[email protected] % % Contributor(s): Formula = strrep(Input, 'arccosh', 'acosh'); Formula = strrep(Formula, 'arccot', 'acot'); Formula = strrep(Formula, 'arccoth', 'acoth'); Formula = strrep(Formula, 'arccsc', 'acsc'); Formula = strrep(Formula, 'arccsch', 'acsch'); Formula = strrep(Formula, 'arcsec', 'asec'); Formula = strrep(Formula, 'arcsech', 'asech'); Formula = strrep(Formula, 'arcsinh', 'asinh'); Formula = strrep(Formula, 'arctanh', 'atanh'); Formula = strrep(Formula, 'exponentiale', 'exp(1)'); Formula = strrep(Formula, 'geq', 'ge'); Formula = strrep(Formula, 'leq', 'le'); Formula = strrep(Formula, 'neq', 'ne'); Formula = strrep(Formula, 'pow', 'power'); % any logical expressions can only have two arguments Formula = SortLogicals(Formula); % log(2,x) must become log2(x) Formula = strrep(Formula, 'log(2,', 'log2('); % root(n,x) must become nthroot(x,n) Index = strfind(Formula, 'root('); for i = 1:length(Index) % create a subformula root(n,x) SubFormula = ''; j = 1; nFunctions=0; %number of functions in expression closedFunctions=0; %number of closed functions while(nFunctions==0 || nFunctions~=closedFunctions) SubFormula(j) = Formula(Index(i)+j-1); if(strcmp(SubFormula(j),')')) closedFunctions=closedFunctions+1; end; if(strcmp(SubFormula(j),'(')) nFunctions=nFunctions+1; end; j = j+1; end; j = 6; n = ''; while(~strcmp(SubFormula(j), ',')) n = strcat(n, SubFormula(j)); j = j+1; end; j = j+1; x = SubFormula(j:length(SubFormula)-1); ReplaceFormula = strcat('nthroot(', x, ',', n, ')'); Formula = strrep(Formula, SubFormula, ReplaceFormula); Index = strfind(Formula, 'root('); end; % log(n,x) must become (log(x)/log(n)) % but log(x) must be left alone LogTypes = IsItLogBase(Formula); Index = strfind(Formula, 'log('); for i = 1:length(Index) if (LogTypes(i) == 1) % create a subformula log(n,x) SubFormula = ''; j = 1; while(~strcmp(Formula(Index(i)+j-1), ')')) SubFormula(j) = Formula(Index(i)+j-1); j = j+1; end; SubFormula = strcat(SubFormula, ')'); j = 5; n = ''; while(~strcmp(SubFormula(j), ',')) n = strcat(n, SubFormula(j)); j = j+1; end; j = j+1; x = ''; while(~strcmp(SubFormula(j), ')')) x = strcat(x, SubFormula(j)); j = j+1; end; ReplaceFormula = sprintf('(log(%s)/log(%s))', x, n); Formula = strrep(Formula, SubFormula, ReplaceFormula); Index = Index + 7; end; end; function y = IsItLogBase(Formula) % returns an array of 0/1 indicating whether each occurence of log is % a log(n,x) or a log(x) % e.g. Formula = 'log(2,3) + log(6)' % IsItLogBase returns y = [1,0] y = 0; % find log LogIndex = strfind(Formula, 'log('); if (isempty(LogIndex)) return; else OpenBracket = strfind(Formula, '('); Comma = strfind(Formula, ','); CloseBracket = strfind(Formula, ')'); for i = 1:length(LogIndex) if (isempty(Comma)) % no commas so no logbase formulas y(i) = 0; else % find the opening bracket Open = find(ismember(OpenBracket, LogIndex(i)+3) == 1); % find closing bracket Close = find(CloseBracket > LogIndex(i)+3, 1); % is there a comma between Greater = find(Comma > OpenBracket(Open)); Less = find(Comma < CloseBracket(Close)); if (isempty(Greater) || isempty(Less)) y(i) = 0; else Equal = find(Greater == Less); if (isempty(Equal)) y(i) = 0; else y(i) = 1; end; end; end; end; end; function Formula = CorrectFormula(OriginalFormula, LogicalExpression) % CorrectFormula takes an OriginalFormula (as a char array) % and a Logical Expression (as a char array with following '(') % and returns the formula written so that the logical expression only takes 2 arguments % % ************************************************************************************* % % EXAMPLE: y = CorrectFormula('and(A,B,C)', 'and(') % % y = 'and(and(A,B), C)' % % find all opening brackets, closing brackets and commas contained % within the original formula OpeningBracketIndex = find((ismember(OriginalFormula, '(')) == 1); ClosingBracketIndex = find((ismember(OriginalFormula, ')')) == 1); CommaIndex = find((ismember(OriginalFormula, ',')) == 1); % check that tha number of brackets matches if (length(OpeningBracketIndex) ~= length(ClosingBracketIndex)) error('Bracket mismatch'); end; % find the commas that are between the arguments of the logical expression % not those that may be part of the argument % in the OpeningBracketIndex the first element refers to the opening % bracket of the expression and the last element of ClosingBracketIndex % refers to the the closing bracket of the expression % commas between other pairs of brackets do not need to be considered % e.g. 'and(gt(d,e),lt(2,e),gt(f,d))' % | | % relevant commas for i = 1:length(CommaIndex) for j = 2:length(OpeningBracketIndex) if ((CommaIndex(i) > OpeningBracketIndex(j)) && (CommaIndex(i) < ClosingBracketIndex(j-1))) CommaIndex(i) = 0; end; end; end; NonZeros = find(CommaIndex ~= 0); % if there is only one relevant comma % implies only two arguments % MATLAB can deal with the OriginalFormula if (length(NonZeros) == 1) Formula = OriginalFormula; return; end; % get elements that represent the arguments of the logical expression % as an array of character arrays % e.g. first element is between opening barcket and first relevant comma % next elements are between relevant commas % last element is between last relevant comma and closing bracket j = OpeningBracketIndex(1); ElementNumber = 1; for i = 1:length(NonZeros) element = ''; j = j+1; while (j <= CommaIndex(NonZeros(i)) - 1) element = strcat(element, OriginalFormula(j)); j = j + 1; end; Elements{ElementNumber} = element; ElementNumber = ElementNumber + 1; end; element = ''; j = j+1; while (j < ClosingBracketIndex(length(ClosingBracketIndex)) - 1) element = strcat(element, OriginalFormula(j)); j = j + 1; end; Elements{ElementNumber} = element; % iteratively replace the first two arguments with the logical expression applied to % the first two arguments % e.g. OriginalFormula = 'and(a,b,c,d)' % becomes 'and(and(a,b),c,d)' % which becomes 'and(and(and(a,b),c),d)' Formula = OriginalFormula; if (length(Elements) > 2) for i = 2:length(Elements)-1 Find = strcat(Elements{i-1}, ',', Elements{i}); Replace = strcat(LogicalExpression, Find, ')'); Formula = strrep(Formula, Find, Replace); Elements{i} = Replace; end; end; function Arguments = CheckLogical(Formula, LogicalExpression) % CheckLogical takes a Formula (as a character array) % and a LogicalExpression (as a char array) % and returns an array of character strings % representing the application of the logical expression within the formula % % NOTE the logical expression is followed by an '(' to prevent confusion % with other character strings within the formula % % ****************************************************************** % EXAMPLE: y = CheckLogical('piecewise(and(A,B,C), 0.2, 1)' , 'and(') % % y = 'and(A,B,C)' % % EXAMPLE: y = CheckLogical('or(and(A,B), and(A,B,C))', 'and(') % % y = 'and(A,B)' 'and(A,B,C)' % find the starting indices of all occurences of the logical expression Start = strfind(Formula, LogicalExpression); % if not found; no arguments - return if (isempty(Start)) Arguments = {}; return; end; for j = 1:length(Start) % each occurence of the logical expression Stop = 0; flag = 0; i = Start(j); output = ''; for i = Start(j):Start(j)+length(LogicalExpression) output = strcat(output, Formula(i)); end; i = i + 1; while ((Stop == 0) && (i <= length(Formula))) c = Formula(i); if (strcmp(c, '(')) flag = flag + 1; output = strcat(output, c); elseif (strcmp(c, ')')) if (flag > 0) output = strcat(output, c); flag = flag - 1; else output = strcat(output, c); Stop = 1; end; else output = strcat(output, c); end; i = i + 1; end; Arguments{j} = output; end; function y = SortLogicals(Formula) % SortLogicals takes a formula as a char array % and returns the formula with and logical expressions applied to only two arguments Formula = LoseWhiteSpace(Formula); Find = CheckLogical(Formula, 'and('); for i = 1:length(Find) Replace = CorrectFormula(Find{i}, 'and('); Formula = strrep(Formula, Find{i}, Replace); end; Find = CheckLogical(Formula, 'xor('); for i = 1:length(Find) Replace = CorrectFormula(Find{i}, 'xor('); Formula = strrep(Formula, Find{i}, Replace); end; Find = CheckLogical(Formula, 'or('); for i = 1:length(Find) Replace = CorrectFormula(Find{i}, 'or('); Formula = strrep(Formula, Find{i}, Replace); end; y = Formula; %********************************************************************** % LoseWhiteSpace(charArray) takes an array of characters % and returns the array with any white space removed % %********************************************************************** function y = LoseWhiteSpace(charArray) % LoseWhiteSpace(charArray) takes an array of characters % and returns the array with any white space removed % %---------------------------------------------------------------- % EXAMPLE: % y = LoseWhiteSpace(' exa mp le') % y = 'example' % %------------------------------------------------------------ % check input is an array of characters if (~ischar(charArray)) error('LoseWhiteSpace(input)\n%s', 'input must be an array of characters'); end; %------------------------------------------------------------- % get the length of the array NoChars = length(charArray); %------------------------------------------------------------- % create an array that indicates whether the elements of charArray are % spaces % e.g. WSpace = isspace(' v b') = [1, 1, 0, 1, 0] % and determine how many WSpace = isspace(charArray); NoSpaces = sum(WSpace); %----------------------------------------------------------- % rewrite the array to leaving out any spaces % remove any numbers from the array of symbols if (NoSpaces > 0) NewArrayCount = 1; for i = 1:NoChars if (~isspace(charArray(i))) y(NewArrayCount) = charArray(i); NewArrayCount = NewArrayCount + 1; end; end; else y = charArray; end;
github
claassengroup/matLeap-master
ConvertFormulaToMathML.m
.m
matLeap-master/libSBML-5.12.0-matlab/ConvertFormulaToMathML.m
9,356
utf_8
340134515b50305b849db7c47490aef3
function Formula = ConvertFormulaToMathML(Input) % converts from MATLAB to MathML in-fix functions % Filename : ConvertFormulaToMathML.m % % This file is part of libSBML. Please visit http://sbml.org for more % information about SBML, and the latest version of libSBML. % % Copyright (C) 2013-2014 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % 3. University of Heidelberg, Heidelberg, Germany % % Copyright (C) 2009-2013 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % % Copyright (C) 2006-2008 by the California Institute of Technology, % Pasadena, CA, USA % % Copyright (C) 2002-2005 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. Japan Science and Technology Agency, Japan % % This library is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation. A copy of the license agreement is provided % in the file named "LICENSE.txt" included with this software distribution % and also available online as http://sbml.org/software/libsbml/license.html % % The original code contained here was initially developed by: % % Sarah Keating % Science and Technology Research Centre % University of Hertfordshire % Hatfield, AL10 9AB % United Kingdom % % http://www.sbml.org % mailto:[email protected] % % Contributor(s): Input = LoseWhiteSpace(Input); Formula = strrep(Input, 'acosh(', 'arccosh('); Formula = strrep(Formula, 'acot(', 'arccot('); Formula = strrep(Formula, 'acoth(', 'arccoth('); Formula = strrep(Formula, 'acsc(', 'arccsc('); Formula = strrep(Formula, 'acsch(', 'arccsch('); Formula = strrep(Formula, 'asec(', 'arcsec('); Formula = strrep(Formula, 'asech(', 'arcsech('); Formula = strrep(Formula, 'asinh(', 'arcsinh('); Formula = strrep(Formula, 'atanh(', 'arctanh('); Formula = strrep(Formula, 'exp(1)', 'exponentiale'); Formula = strrep(Formula, 'ge(', 'geq('); Formula = strrep(Formula, 'le(', 'leq('); Formula = strrep(Formula, 'ne(', 'neq('); Formula = strrep(Formula, 'power(', 'pow('); % log2(x) must become log(2, x) Formula = strrep(Formula, 'log2(', 'log(2, '); % % % nthroot(x,n) must become root(n,x) Index = strfind(Formula, 'nthroot('); for i = 1:length(Index) % create a subformula nthroot(x,n) SubFunction = ''; j = 1; nFunctions=0; %number of functions in expression closedFunctions=0; %number of closed functions while(nFunctions==0 || nFunctions~=closedFunctions) SubFormula(j) = Formula(Index(i)+j-1); if(strcmp(SubFormula(j),')')) closedFunctions=closedFunctions+1; end; if(strcmp(SubFormula(j),'(')) nFunctions=nFunctions+1; end; j = j+1; end; j = 9; n = ''; while(~strcmp(SubFormula(j), ',')) n = strcat(n, SubFormula(j)); j = j+1; end; j = j+1; x = SubFormula(j:length(SubFormula)-1); if (exist('OCTAVE_VERSION')) ReplaceFormula = myRegexprep(SubFormula, n, x, 'once'); ReplaceFormula = myRegexprep(ReplaceFormula,regexptranslate('escape',x),n,2); ReplaceFormula = myRegexprep(ReplaceFormula, 'nthroot', 'root', 'once'); else ReplaceFormula = regexprep(SubFormula, n, x, 'once'); ReplaceFormula = regexprep(ReplaceFormula,regexptranslate('escape',x),n,2); ReplaceFormula = regexprep(ReplaceFormula, 'nthroot', 'root', 'once'); end; Formula = strrep(Formula, SubFormula, ReplaceFormula); Index = strfind(Formula, 'nthroot('); end; % (log(x)/log(n)) must become log(n,x) % but log(x) must be left alone Formula = convertLog(Formula); % function y = convertLog(Formula) y = Formula; LogTypes = IsItLogBase(Formula); num = sum(LogTypes); Index = strfind(Formula, '(log('); subIndex = 1; for i = 1:length(Index) if (LogTypes(i) == 1) % get x and n from (log(x)/log(n)) pairs = PairBrackets(Formula); for j=1:length(pairs) if (pairs(j,1) == Index(i)) break; end; end; subFormula{subIndex} = Formula(Index(i):pairs(j,2)); ff = subFormula{subIndex}; subPairs = PairBrackets(ff); x = ff(subPairs(2,1)+1:subPairs(2,2)-1); n = ff(subPairs(3,1)+1:subPairs(3,2)-1); newFormula{subIndex} = sprintf('log(%s,%s)', n, x); subIndex = subIndex+1; end; end; if (subIndex-1 > num) error('Problem'); end; for i=1:num y = strrep(y, subFormula{i}, newFormula{i}); end; function y = IsItLogBase(Formula) % returns an array of 0/1 indicating whether each occurence of log is % a (log(n)/log(x)) or a log(x) % e.g. Formula = '(log(2)/log(3)) + log(6)' % IsItLogBase returns y = [1,0] y = 0; LogIndex = strfind(Formula, '(log('); if (isempty(LogIndex)) return; else Divide = strfind(Formula, ')/log('); pairs = PairBrackets(Formula); if (isempty(Divide)) return; else % check that the divide occurs between logs for i=1:length(LogIndex) match = 0; for j=1:length(pairs) if (pairs(j, 1) == LogIndex(i)) break; end; end; for k = 1:length(Divide) if (pairs(j+1,2) == Divide(k)) match = 1; break; end; end; y(i) = match; end; end; end; %********************************************************************** % LoseWhiteSpace(charArray) takes an array of characters % and returns the array with any white space removed % %********************************************************************** function y = LoseWhiteSpace(charArray) % LoseWhiteSpace(charArray) takes an array of characters % and returns the array with any white space removed % %---------------------------------------------------------------- % EXAMPLE: % y = LoseWhiteSpace(' exa mp le') % y = 'example' % %------------------------------------------------------------ % check input is an array of characters if (~ischar(charArray)) error('LoseWhiteSpace(input)\n%s', 'input must be an array of characters'); end; %------------------------------------------------------------- % get the length of the array NoChars = length(charArray); %------------------------------------------------------------- % create an array that indicates whether the elements of charArray are % spaces % e.g. WSpace = isspace(' v b') = [1, 1, 0, 1, 0] % and determine how many WSpace = isspace(charArray); NoSpaces = sum(WSpace); %----------------------------------------------------------- % rewrite the array to leaving out any spaces % remove any numbers from the array of symbols if (NoSpaces > 0) NewArrayCount = 1; for i = 1:NoChars if (~isspace(charArray(i))) y(NewArrayCount) = charArray(i); NewArrayCount = NewArrayCount + 1; end; end; else y = charArray; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function pairs = PairBrackets(formula) % PairBrackets takes a string % and returns % an array of indices of each pair of brackets % ordered from the opening bracket index % if (~ischar(formula)) error(sprintf('%s\n%s', 'PairBrackets(formula)', 'first argument must be a string')); end; OpeningBracketIndex = strfind(formula, '('); ClosingBracketIndex = strfind(formula, ')'); % check that the number of brackets matches if (length(OpeningBracketIndex) ~= length(ClosingBracketIndex)) error('Bracket mismatch'); end; if (isempty(OpeningBracketIndex)) pairs = 0; return; end; for i = 1:length(OpeningBracketIndex) j = length(OpeningBracketIndex); while(j > 0) if (OpeningBracketIndex(j) < ClosingBracketIndex(i)) pairs(i,1) = OpeningBracketIndex(j); pairs(i,2) = ClosingBracketIndex(i); OpeningBracketIndex(j) = max(ClosingBracketIndex); j = 0; else j = j - 1; end; end; end; % order the pairs so that the opening bracket index is in ascending order OriginalPairs = pairs; % function 'sort' changes in version 7.0.1 v = version; v_num = str2num(v(1)); if (v_num < 7) TempPairs = sort(pairs, 1); else TempPairs = sort(pairs, 1, 'ascend'); end; for i = 1:length(OpeningBracketIndex) pairs(i, 1) = TempPairs(i, 1); j = find(OriginalPairs == pairs(i, 1)); pairs(i, 2) = OriginalPairs(j, 2); end; function string = myRegexprep(string, repre, repstr, number) %% Parse input arguements n = -1; if isnumeric(number) n = number; elseif strcmpi(number, 'once') n = 1; else error('Invalid argument to myRegexprep'); end; [st, en] = regexp(string, repre); if (n > 0) if (length(st) >= n) st = st(n); en = en(n); else error('Invalid number of matches in myRegexprep'); st = []; end; end; for i = length(st):-1:1 string = [string(1:st(i)-1) repstr string(en(i)+1:length(string))]; end;
github
claassengroup/matLeap-master
installSBML.m
.m
matLeap-master/libSBML-5.12.0-matlab/installSBML.m
12,505
utf_8
d29eeee59c9bb8682a5b13deeeabf9b5
function installSBML(varargin) % Installs the MATLAB language interface for libSBML. % % This script assumes that the libsbml matlab binding executables files already % exist; either because the user has built them using buildSBML (only % in the src release) or the binding is being installed from an installer. % % Currently prebuilt executables are only available in the windows installers % of libSBML. % % For Linux or Mac users this means that you need to build libsbml and then % run the buildSBML script. % Filename : installSBML.m % Description : install matlab binding % Author(s) : SBML Team <[email protected]> % Organization: EMBL-EBI % % This file is part of libSBML. Please visit http://sbml.org for more % information about SBML, and the latest version of libSBML. % % Copyright (C) 2013-2014 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % 3. University of Heidelberg, Heidelberg, Germany % % Copyright (C) 2009-2013 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % % Copyright (C) 2006-2008 by the California Institute of Technology, % Pasadena, CA, USA % % Copyright (C) 2002-2005 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. Japan Science and Technology Agency, Japan % % This library is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as published by % the Free Software Foundation. A copy of the license agreement is provided % in the file named "LICENSE.txt" included with this software distribution % and also available online as http://sbml.org/software/libsbml/license.html % % ========================================================================= % Main loop. % ========================================================================= % look at input arguments [verbose, directory] = checkInputArguments(varargin); myDisp({'Installing the libSBML interface.'}, verbose); [matlab_octave] = check_system(verbose); [functioning, located] = checkForExecutables(matlab_octave, directory, verbose); if (functioning == 0) if (located == 0) % we didnt find executables where we first looked % try again with a different directory if (isWindows() == 0) if (strcmp(directory, '/usr/local/lib') == 0) directory = '/usr/local/lib'; functioning = checkForExecutables(matlab_octave, directory, verbose); end; else if (strcmp(directory, pwd) == 0) directory = pwd; functioning = checkForExecutables(matlab_octave, directory, verbose); end; end; else % we found executables but they did not work error('%s%s%s\n%s%s', ... 'Executables were located at ', directory, ' but failed to execute', ... 'Please contact the libSBML team [email protected] ', ... 'for further assistance'); end; end; if (functioning == 1) myDisp({'Installation successful'}, verbose); end; end % ========================================================================= % Helper functions % ========================================================================= % check any input arguments %-------------------------------------------------------------------------- function [verbose, directory] = checkInputArguments(input) numArgs = length(input); if (numArgs > 2) reportInputArgumentError('Too many arguments to installSBML'); end; if (numArgs == 0) verbose = 1; if (isWindows() == 1) directory = pwd; else directory = '/usr/local/lib'; end; elseif (numArgs == 1) directory = input{1}; verbose = 1; else directory = input{1}; verbose = input{2}; end; if (verbose ~= 0 && verbose ~= 1) reportInputArgumentError('Incorrect value for verbose flag'); end; if (ischar(directory) ~= 1) reportInputArgumentError('Directory value should be a string'); elseif(exist(directory, 'dir') ~= 7) reportInputArgumentError('Directory value should be a directory'); end; end % display error message relating to input arguments %--------------------------------------------------- function reportInputArgumentError(message) error('%s\n%s\n\t%s%s\n\t%s%s\n\t\t%s', message, ... 'Arguments are optional but if present:', ... 'the first should be a string representing the directory containing ', ... 'the executables', 'the second should be a flag (0 or 1) indicating ', ... 'whether messages should be displayed ', ... '0 - no messages; 1 - display messages'); end % display error messages iff verbose = 1 %----------------------------------------- function myDisp(message, verbose) outputStr = ''; if (verbose == 1) for i=1:length(message) outputStr = sprintf('%s\n%s', outputStr, message{i}); end; end; disp(outputStr); end % % % Is this windows % Mac OS X 10.7 Lion returns true for a call to ispc() % since we were using that to distinguish between windows and macs we need % to catch this % ------------------------------------------------------------------------ function y = isWindows() y = 1; if isunix() y = 0; return; end; if ismac() y = 0; return; end; if ~ispc() error('\n%s\n%s\n', ... 'Unable to determine the type of operating system in use.', ... 'Please contact [email protected] to help resolve this problem.'); end; end % % Assess our computing environment. % ------------------------------------------------------------------------- function [matlab_octave] = check_system(verbose) message{1} = '* Doing preliminary checks of runtime environment ...'; if (strcmp(isoctave(), '0')) matlab_octave = 'MATLAB'; message{2} = ' - This appears to be MATLAB and not Octave.'; else matlab_octave = 'Octave'; message{2} = ' - This appears to be Octave and not MATLAB.'; end; myDisp(message, verbose); end % % check for executables and that they are right ones % ------------------------------------------------------------------------- function [success, located] = checkForExecutables(matlab_octave, directory, verbose) message{1} = 'Checking for executables in '; message{2} = sprintf('\t%s', directory); transFile = strcat('TranslateSBML.', mexext()); outFile = strcat('OutputSBML.', mexext()); thisDirTFile = fullfile(pwd(), transFile); thisDirOFile = fullfile(pwd(), outFile); success = 0; located = 0; if strcmpi(matlab_octave, 'matlab') if (~(exist([directory, filesep, transFile], 'file') ~= 0 ... && exist([directory, filesep, outFile], 'file') ~= 0)) located = 0; else located = 1; end; else % octave is much more picky about whether the files exist % it wants to find the libraries at the same time % exist throws an exception if it cannot find them if (~(myExist(directory, transFile) ~= 0 ... && myExist(directory, outFile) ~= 0)) located = 0; else located = 1; end; end; if (located == 1) % we have found the executables where the user says but % need to check that there are not other files on the path t = which(transFile); o = which(outFile); % exclude the current dir currentT = strcmp(t, thisDirTFile); currentO = strcmp(t, thisDirOFile); found = 0; if (currentT == 1 && currentO == 1) t_found = 0; if (isempty(t) == 0 && strcmp(t, [directory, filesep, transFile]) == 0) found = 1; t_found = 1; elseif (isempty(o) == 0 && strcmp(o, [directory, filesep, outFile]) == 0) found = 1; end; end; if (found == 1) if (t_found == 1) pathDir = t; else pathDir = o; end; error('%s\n%s\n%s', 'Other libsbml executables found on the path at:', ... pathDir, ... 'Please uninstall these before attempting to install again'); end; end; if (located == 1) message{3} = 'Executables found'; else message{3} = 'Executables not found'; end; myDisp(message, verbose); if (located == 1) % we have found the executables % add the directory to the matlab path added = addDir(directory, verbose); % if addDir returns 0 this may be that the user does not have % permission to add to the path if (added == 0) error('%s%s%s%s\n%s%s', ... 'The directory containing the executables could not ', ... 'be added to the ', matlab_octave, ' path', ... 'You may need to run in administrator mode or contact your ', ... 'network manager if running from a network'); elseif (added == 1) % to test the actual files we need to be in the directory % if we happen to be in the src tree where the .m helps files % exist these will get picked up first by the function calls % according to mathworks the only way to avoid this is to cd to the % right dir currentDir = pwd(); cd(directory); success = doesItRun(matlab_octave, verbose, currentDir); cd (currentDir); end; % at this point if success = 0 it means there was an error running % the files - take the directory out of the path if (success == 0 && added == 1) removeDir(directory, verbose); end; end; end % test the installation % ------------------------------------------------------------------------- function success = doesItRun(matlab_octave, verbose, dirForTest) success = 1; message{1} = 'Attempting to execute functions'; myDisp(message, verbose); testFile = fullfile(dirForTest, 'test.xml'); if strcmpi(matlab_octave, 'matlab') try M = TranslateSBML(testFile); message{1} = 'TranslateSBML successful'; catch ME success = 0; message{1} = sprintf('%s\n%s', 'TranslateSBML failed', ME.message); end; else try M = TranslateSBML(testFile); message{1} = 'TranslateSBML successful'; catch success = 0; message{1} = 'TranslateSBML failed'; end; end; if strcmpi(matlab_octave, 'matlab') outFile = [tempdir, filesep, 'test-out.xml']; else if isWindows() outFile = [tempdir, 'temp', filesep, 'test-out.xml']; else outFile = [tempdir, 'test-out.xml']; end; end; if (success == 1) if strcmpi(matlab_octave, 'matlab') try if (verbose == 1) OutputSBML(M, outFile); else OutputSBML(M, outFile, verbose, verbose); end; message{2} = 'OutputSBML successful'; catch ME success = 0; message{2} = sprintf('%s\n%s', 'OutputSBML failed', ME.message); end; else try if (verbose == 1) OutputSBML(M, outFile); else OutputSBML(M, outFile, verbose, verbose); end; message{2} = 'OutputSBML successful'; catch success = 0; message{2} = 'OutputSBML failed'; end; end; end; myDisp(message, verbose); end % add directory to the matlab path % ------------------------------------------------------------------------- function added = addDir(name, verbose) added = 0; addpath(name); if (savepath ~= 0) message{1} = sprintf('Adding %s to path ...\nFailed', name); else message{1} = sprintf('Adding %s to path ...\nSuccess', name); added = 1; end; myDisp(message, verbose); end % remove directory to the matlab path % ------------------------------------------------------------------------- function added = removeDir(name, verbose) added = 0; rmpath(name); if (savepath ~= 0) message{1} = sprintf('Removing %s from path ...\nFailed', name); else message{1} = sprintf('Removing %s from path ...\nSuccess', name); added = 1; end; myDisp(message, verbose); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function found = myExist(directory, filename) found = 0; dirnames = dir(directory); i = 1; while (found == 0 && i <= length(dirnames)) if (dirnames(i).isdir == 0) found = strcmp(dirnames(i).name, filename); end; i = i+1; end; end
github
claassengroup/matLeap-master
isSBML_Model.m
.m
matLeap-master/libSBML-5.12.0-matlab/isSBML_Model.m
107,187
utf_8
498389acf901590bf5411ed06382e606
function [valid, message] = isSBML_Model(varargin) % [valid, message] = isSBML_Model(SBMLModel) % % Takes % % 1. SBMLModel, an SBML Model structure % 2. extensions_allowed (optional) = % - 0, structures should contain ONLY required fields % - 1, structures may contain additional fields (default) % % Returns % % 1. valid = % - 1, if the structure represents % a MATLAB_SBML Model structure of the appropriate % level and version % - 0, otherwise % 2. a message explaining any failure % %<!--------------------------------------------------------------------------- % This file is part of libSBML. Please visit http://sbml.org for more % information about SBML, and the latest version of libSBML. % % Copyright (C) 2013-2014 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % 3. University of Heidelberg, Heidelberg, Germany % % Copyright (C) 2009-2013 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. EMBL European Bioinformatics Institute (EMBL-EBI), Hinxton, UK % % Copyright (C) 2006-2008 by the California Institute of Technology, % Pasadena, CA, USA % % Copyright (C) 2002-2005 jointly by the following organizations: % 1. California Institute of Technology, Pasadena, CA, USA % 2. Japan Science and Technology Agency, Japan % % This library is free software; you can redistribute it and/or modify % it under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation. A copy of the license % agreement is provided in the file named "LICENSE.txt" included with % this software distribution and also available online as % http://sbml.org/software/libsbml/license.html %----------------------------------------------------------------------- --> %check the input arguments are appropriate if (nargin < 1) error('isSBML_Model needs at least one argument'); elseif (nargin == 1) SBMLStructure = varargin{1}; extensions_allowed = 1; elseif (nargin == 2) SBMLStructure = varargin{1}; extensions_allowed = varargin{2}; else error('too many arguments to isSBML_Model'); end; if (isfield(SBMLStructure, 'fbc_version') && isFbcEnabled() == 1) if isfield(SBMLStructure, 'SBML_level') && isfield(SBMLStructure, 'SBML_version') [valid, message] = isSBML_FBC_Model(SBMLStructure, SBMLStructure.SBML_level, ... SBMLStructure.SBML_version, SBMLStructure.fbc_version, extensions_allowed); else [valid, message] = isValidSBML_Model(SBMLStructure, extensions_allowed, 0); end; else [valid, message] = isValidSBML_Model(SBMLStructure, extensions_allowed, 0); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid, message] = isValidSBML_Model(SBMLStructure, ... extensions_allowed, in_fbc) %check the input arguments are appropriate if (length(SBMLStructure) > 1) valid = 0; message = 'cannot deal with arrays of structures'; return; end; if ~isempty(SBMLStructure) if isfield(SBMLStructure, 'SBML_level') level = SBMLStructure.SBML_level; else level = 3; end; if isfield(SBMLStructure, 'SBML_version') version = SBMLStructure.SBML_version; else version = 1; end; else level = 3; version = 1; end; isValidLevelVersionCombination(level, version); message = ''; % check that argument is a structure valid = isstruct(SBMLStructure); % check the typecode typecode = 'SBML_MODEL'; if (valid == 1 && ~isempty(SBMLStructure)) if isfield(SBMLStructure, 'typecode') if (strcmp(typecode, SBMLStructure.typecode) ~= 1) valid = 0; message = 'typecode mismatch'; return; end; else valid = 0; message = 'missing typecode field'; return; end; end; % check that structure contains all the necessary fields [SBMLfieldnames, numFields] = getFieldnames('SBML_MODEL', level, version); if (numFields ==0) valid = 0; message = 'invalid level/version'; end; index = 1; while (valid == 1 && index <= numFields) valid = isfield(SBMLStructure, char(SBMLfieldnames(index))); if (valid == 0); message = sprintf('%s field missing', char(SBMLfieldnames(index))); end; index = index + 1; end; %check that any nested structures are appropriate % functionDefinitions if (valid == 1 && level > 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.functionDefinition)) [valid, message] = isSBML_Struct('SBML_FUNCTION_DEFINITION', ... SBMLStructure.functionDefinition(index), ... level, version, extensions_allowed); index = index + 1; end; end; % unitDefinitions if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.unitDefinition)) [valid, message] = isSBML_Struct('SBML_UNIT_DEFINITION', ... SBMLStructure.unitDefinition(index), ... level, version, extensions_allowed); index = index + 1; end; end; % compartments if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.compartment)) [valid, message] = isSBML_Struct('SBML_COMPARTMENT', ... SBMLStructure.compartment(index), ... level, version, extensions_allowed); index = index + 1; end; end; % species if (valid == 1 && in_fbc == 0) index = 1; while (valid == 1 && index <= length(SBMLStructure.species)) [valid, message] = isSBML_Struct('SBML_SPECIES', ... SBMLStructure.species(index), ... level, version, extensions_allowed); index = index + 1; end; end; % compartmentTypes if (valid == 1 && level == 2 && version > 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.compartmentType)) [valid, message] = isSBML_Struct('SBML_COMPARTMENT_TYPE', ... SBMLStructure.compartmentType(index), ... level, version, extensions_allowed); index = index + 1; end; end; % speciesTypes if (valid == 1 && level == 2 && version > 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.speciesType)) [valid, message] = isSBML_Struct('SBML_SPECIES_TYPE', ... SBMLStructure.speciesType(index), ... level, version, extensions_allowed); index = index + 1; end; end; % parameter if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.parameter)) [valid, message] = isSBML_Struct('SBML_PARAMETER', ... SBMLStructure.parameter(index), ... level, version, extensions_allowed); index = index + 1; end; end; % initialAssignment if (valid == 1 && (level > 2 || (level == 2 && version > 1))) index = 1; while (valid == 1 && index <= length(SBMLStructure.initialAssignment)) [valid, message] = isSBML_Struct('SBML_INITIAL_ASSIGNMENT', ... SBMLStructure.initialAssignment(index), ... level, version, extensions_allowed); index = index + 1; end; end; % rule if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.rule)) [valid, message] = isSBML_Rule(SBMLStructure.rule(index), ... level, version, extensions_allowed); index = index + 1; end; end; % constraints if (valid == 1 && (level > 2 || (level == 2 && version > 1))) index = 1; while (valid == 1 && index <= length(SBMLStructure.constraint)) [valid, message] = isSBML_Struct('SBML_CONSTRAINT', ... SBMLStructure.constraint(index), ... level, version, extensions_allowed); index = index + 1; end; end; % reaction if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.reaction)) [valid, message] = isSBML_Struct('SBML_REACTION', ... SBMLStructure.reaction(index), ... level, version, extensions_allowed); index = index + 1; end; end; % event if (valid == 1 && level > 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.event)) [valid, message] = isSBML_Struct('SBML_EVENT', ... SBMLStructure.event(index), ... level, version, extensions_allowed); index = index + 1; end; end; % report failure if (valid == 0) message = sprintf('Invalid Model structure\n%s\n', message); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid, message] = isSBML_Struct(typecode, SBMLStructure, level, version, extensions_allowed) if (length(SBMLStructure) > 1) valid = 0; message = 'cannot deal with arrays of structures'; return; end; isValidLevelVersionCombination(level, version); message = ''; % check that argument is a structure valid = isstruct(SBMLStructure); % check the typecode if (valid == 1 && ~isempty(SBMLStructure)) if isfield(SBMLStructure, 'typecode') if (strcmp(typecode, SBMLStructure.typecode) ~= 1) valid = 0; message = 'typecode mismatch'; return; end; else valid = 0; message = 'missing typecode field'; return; end; end; % if the level and version fields exist they must match if (valid == 1 && isfield(SBMLStructure, 'level') && ~isempty(SBMLStructure)) if ~isequal(level, SBMLStructure.level) valid = 0; message = 'level mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'version') && ~isempty(SBMLStructure)) if ~isequal(version, SBMLStructure.version) valid = 0; message = 'version mismatch'; end; end; % check that structure contains all the necessary fields [SBMLfieldnames, numFields] = getFieldnames(typecode, level, version); if (numFields ==0) valid = 0; message = 'invalid level/version'; end; index = 1; while (valid == 1 && index <= numFields) valid = isfield(SBMLStructure, char(SBMLfieldnames(index))); if (valid == 0); message = sprintf('%s field missing', char(SBMLfieldnames(index))); end; index = index + 1; end; if (extensions_allowed == 0) % check that the structure contains ONLY the expected fields if (valid == 1) if (numFields ~= length(fieldnames(SBMLStructure))-2) valid = 0; message = sprintf('Unexpected field detected'); end; end; end; % some structures have child structures switch (typecode) case 'SBML_EVENT' % eventAssignments if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.eventAssignment)) [valid, message] = isSBML_Struct('SBML_EVENT_ASSIGNMENT', ... SBMLStructure.eventAssignment(index), ... level, version, extensions_allowed); index = index + 1; end; end; % trigger/delay/priority % these are level and version dependent if (valid == 1) if (level == 2 && version > 2) if (length(SBMLStructure.trigger) > 1) valid = 0; message = 'multiple trigger elements encountered'; elseif (length(SBMLStructure.delay) > 1) valid = 0; message = 'multiple delay elements encountered'; end; if (valid == 1 && length(SBMLStructure.trigger) == 1) [valid, message] = isSBML_Struct('SBML_TRIGGER', ... SBMLStructure.trigger, ... level, version, extensions_allowed); end; if (valid == 1 && length(SBMLStructure.delay) == 1) [valid, message] = isSBML_Struct('SBML_DELAY', ... SBMLStructure.delay, ... level, version, extensions_allowed); end; elseif (level > 2) if (length(SBMLStructure.trigger) > 1) valid = 0; message = 'multiple trigger elements encountered'; elseif (length(SBMLStructure.delay) > 1) valid = 0; message = 'multiple delay elements encountered'; elseif (length(SBMLStructure.priority) > 1) valid = 0; message = 'multiple priority elements encountered'; end; if (valid == 1 && length(SBMLStructure.trigger) == 1) [valid, message] = isSBML_Struct('SBML_TRIGGER', ... SBMLStructure.trigger, ... level, version, extensions_allowed); end; if (valid == 1 && length(SBMLStructure.delay) == 1) [valid, message] = isSBML_Struct('SBML_DELAY', ... SBMLStructure.delay, ... level, version, extensions_allowed); end; if (valid == 1 && length(SBMLStructure.priority) == 1) [valid, message] = isSBML_Struct('SBML_PRIORITY', ... SBMLStructure.priority, ... level, version, extensions_allowed); end; end; end; case 'SBML_KINETIC_LAW' % parameters if (valid == 1 && level < 3) index = 1; while (valid == 1 && index <= length(SBMLStructure.parameter)) [valid, message] = isSBML_Struct('SBML_PARAMETER', ... SBMLStructure.parameter(index), ... level, version, extensions_allowed); index = index + 1; end; end; %check that any nested structures are appropriate % localParameters if (valid == 1 && level > 2) index = 1; while (valid == 1 && index <= length(SBMLStructure.localParameter)) [valid, message] = isSBML_Struct('SBML_LOCAL_PARAMETER', ... SBMLStructure.localParameter(index), ... level, version, extensions_allowed); index = index + 1; end; end; case 'SBML_REACTION' % reactants if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.reactant)) [valid, message] = isSBML_Struct('SBML_SPECIES_REFERENCE', ... SBMLStructure.reactant(index), ... level, version, extensions_allowed); index = index + 1; end; end; % products if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.product)) [valid, message] = isSBML_Struct('SBML_SPECIES_REFERENCE', ... SBMLStructure.product(index), ... level, version, extensions_allowed); index = index + 1; end; end; % modifiers if (valid == 1 && level > 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.modifier)) [valid, message] = isSBML_Struct('SBML_MODIFIER_SPECIES_REFERENCE', ... SBMLStructure.modifier(index), ... level, version, extensions_allowed); index = index + 1; end; end; % kineticLaw if (valid == 1 && length(SBMLStructure.kineticLaw) == 1) [valid, message] = isSBML_Struct('SBML_KINETIC_LAW', ... SBMLStructure.kineticLaw, level, version, extensions_allowed); end; case 'SBML_UNIT_DEFINITION' % unit if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.unit)) [valid, message] = isSBML_Struct('SBML_UNIT', ... SBMLStructure.unit(index), ... level, version, extensions_allowed); index = index + 1; end; end; case 'SBML_SPECIES_REFERENCE' % stoichiometryMath if (level == 2 && version > 2) if (valid == 1 && length(SBMLStructure.stoichiometryMath) == 1) [valid, message] = isSBML_Struct('SBML_STOICHIOMETRY_MATH', ... SBMLStructure.stoichiometryMath, ... level, version, extensions_allowed); end; end; end; % report failure if (valid == 0) message = sprintf('Invalid %s\n%s\n', typecode, message); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid, message] = isSBML_Rule(SBMLStructure, ... level, version, extensions_allowed) if (length(SBMLStructure) > 1) valid = 0; message = 'cannot deal with arrays of structures'; return; end; isValidLevelVersionCombination(level, version); message = ''; if ~isempty(SBMLStructure) if isfield(SBMLStructure, 'typecode') typecode = SBMLStructure.typecode; else valid = 0; message = 'missing typecode'; return; end; else typecode = 'SBML_ASSIGNMENT_RULE'; end; switch (typecode) case {'SBML_ALGEBRAIC_RULE', 'SBML_ASSIGNMENT_RULE', ... 'SBML_COMPARTMENT_VOLUME_RULE', 'SBML_PARAMETER_RULE', ... 'SBML_RATE_RULE', 'SBML_SPECIES_CONCENTRATION_RULE'} [valid, message] = isSBML_Struct(typecode, SBMLStructure, level, version, extensions_allowed); case 'SBML_RULE' [valid, message] = checkRule(SBMLStructure, level, version, extensions_allowed); otherwise valid = 0; message = 'Incorrect rule typecode'; end; function [valid, message] = checkRule(SBMLStructure, level, version, extensions_allowed) message = ''; % check that argument is a structure valid = isstruct(SBMLStructure); % check the typecode typecode = 'SBML_RULE'; if (valid == 1 && ~isempty(SBMLStructure)) if (strcmp(typecode, SBMLStructure.typecode) ~= 1) valid = 0; message = 'typecode mismatch'; end; end; % if the level and version fields exist they must match if (valid == 1 && isfield(SBMLStructure, 'level') && ~isempty(SBMLStructure)) if ~isequal(level, SBMLStructure.level) valid = 0; message = 'level mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'version') && ~isempty(SBMLStructure)) if ~isequal(version, SBMLStructure.version) valid = 0; message = 'version mismatch'; end; end; % check that structure contains all the necessary fields [SBMLfieldnames, numFields] = getAlgebraicRuleFieldnames(level, version); if (numFields ==0) valid = 0; message = 'invalid level/version'; end; index = 1; while (valid == 1 && index <= numFields) valid = isfield(SBMLStructure, char(SBMLfieldnames(index))); if (valid == 0); message = sprintf('%s field missing', char(SBMLfieldnames(index))); end; index = index + 1; end; if (extensions_allowed == 0) % check that the structure contains ONLY the expected fields if (valid == 1) if (numFields ~= length(fieldnames(SBMLStructure))-2) valid = 0; message = sprintf('Unexpected field detected'); end; end; end; % report failure if (valid == 0) message = sprintf('Invalid Rule\n%s\n', message); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid, message] = isSBML_FBCStruct(typecode, SBMLStructure, level, ... version, pkgVersion, extensions_allowed) if (length(SBMLStructure) > 1) valid = 0; message = 'cannot deal with arrays of structures'; return; end; isValidLevelVersionCombination(level, version); message = ''; % check that argument is a structure valid = isstruct(SBMLStructure); % check the typecode if (valid == 1 && ~isempty(SBMLStructure)) if isfield(SBMLStructure, 'typecode') if (strcmp(typecode, SBMLStructure.typecode) ~= 1) valid = 0; message = 'typecode mismatch'; return; end; else valid = 0; message = 'missing typecode field'; return; end; end; % if the level and version fields exist they must match if (valid == 1 && isfield(SBMLStructure, 'level') && ~isempty(SBMLStructure)) if ~isequal(level, SBMLStructure.level) valid = 0; message = 'level mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'version') && ~isempty(SBMLStructure)) if ~isequal(version, SBMLStructure.version) valid = 0; message = 'version mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'fbc_version') && ~isempty(SBMLStructure)) if ~isequal(pkgVersion, SBMLStructure.fbc_version) valid = 0; message = 'fbc version mismatch'; end; end; % check that structure contains all the necessary fields [SBMLfieldnames, numFields] = getFieldnames(typecode, level, version, pkgVersion); if (numFields ==0) valid = 0; message = 'invalid level/version'; end; index = 1; while (valid == 1 && index <= numFields) valid = isfield(SBMLStructure, char(SBMLfieldnames(index))); if (valid == 0); message = sprintf('%s field missing', char(SBMLfieldnames(index))); end; index = index + 1; end; if (extensions_allowed == 0) % check that the structure contains ONLY the expected fields if (valid == 1) if (numFields ~= length(fieldnames(SBMLStructure))) valid = 0; message = sprintf('Unexpected field detected'); end; end; end; % some structures have child structures switch (typecode) case 'SBML_FBC_OBJECTIVE' % eventAssignments if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.fbc_fluxObjective)) [valid, message] = isSBML_FBCStruct('SBML_FBC_FLUXOBJECTIVE', ... SBMLStructure.fbc_fluxObjective(index), ... level, version, pkgVersion, extensions_allowed); index = index + 1; end; end; end; % report failure if (valid == 0) message = sprintf('Invalid %s\n%s\n', typecode, message); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid, message] = isSBML_FBC_Model(SBMLStructure, level, version, ... pkgVersion, extensions_allowed) % [valid, message] = isSBML_FBC_Model(SBMLFBCModel, level, version, pkgVersion) if (length(SBMLStructure) > 1) message = 'cannot deal with arrays of structures'; valid = 0; return; end; isValidLevelVersionCombination(level, version); message = ''; % check that argument is a structure valid = isstruct(SBMLStructure); % check the typecode typecode = 'SBML_MODEL'; if (valid == 1 && ~isempty(SBMLStructure)) if isfield(SBMLStructure, 'typecode') if (strcmp(typecode, SBMLStructure.typecode) ~= 1) valid = 0; message = 'typecode mismatch'; return; end; else valid = 0; message = 'typecode field missing'; return; end; end; % if the level and version fields exist they must match if (valid == 1 && isfield(SBMLStructure, 'SBML_level') && ~isempty(SBMLStructure)) if ~isequal(level, SBMLStructure.SBML_level) valid = 0; message = 'level mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'SBML_version') && ~isempty(SBMLStructure)) if ~isequal(version, SBMLStructure.SBML_version) valid = 0; message = 'version mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'fbc_version') && ~isempty(SBMLStructure)) if ~isequal(pkgVersion, SBMLStructure.fbc_version) valid = 0; message = 'FBC version mismatch'; end; end; if (valid == 1) % do not worry about extra fields at this point % we know we are in an fbc model [valid, message] = isValidSBML_Model(SBMLStructure, extensions_allowed, 1); end; % check that structure contains all the fbc fields if (valid == 1) [SBMLfieldnames, numFields] = getFieldnames('SBML_FBC_MODEL', level, ... version, pkgVersion); if (numFields ==0) valid = 0; message = 'invalid level/version'; end; index = 1; while (valid == 1 && index <= numFields) valid = isfield(SBMLStructure, char(SBMLfieldnames(index))); if (valid == 0); message = sprintf('%s field missing', char(SBMLfieldnames(index))); end; index = index + 1; end; %check that any nested structures are appropriate % fluxBound if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.fbc_fluxBound)) [valid, message] = isSBML_FBCStruct('SBML_FBC_FLUXBOUND', ... SBMLStructure.fbc_fluxBound(index), ... level, version, pkgVersion, extensions_allowed); index = index + 1; end; end; % objective if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.fbc_objective)) [valid, message] = isSBML_FBCStruct('SBML_FBC_OBJECTIVE', ... SBMLStructure.fbc_objective(index), ... level, version, pkgVersion, extensions_allowed); index = index + 1; end; end; %species if (valid == 1) index = 1; while (valid == 1 && index <= length(SBMLStructure.species)) [valid, message] = isSBML_FBC_Species('SBML_FBC_SPECIES', ... SBMLStructure.species(index), ... level, version, pkgVersion, extensions_allowed); index = index + 1; end; end; end; % report failure if (valid == 0) message = sprintf('Invalid FBC Model\n%s\n', message); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [valid, message] = isSBML_FBC_Species(typecode, SBMLStructure, ... level, version, pkgVersion, extensions_allowed) if (length(SBMLStructure) > 1) message = 'cannot deal with arrays of structures'; valid = 0; return; end; isValidLevelVersionCombination(level, version); message = ''; % check that argument is a structure valid = isstruct(SBMLStructure); % check the typecode typecode = 'SBML_SPECIES'; if (valid == 1 && ~isempty(SBMLStructure)) if isfield(SBMLStructure, 'typecode') if (strcmp(typecode, SBMLStructure.typecode) ~= 1) valid = 0; message = 'typecode mismatch'; return; end; else valid = 0; message = 'typecode field missing'; return; end; end; % if the level and version fields exist they must match if (valid == 1 && isfield(SBMLStructure, 'level') && ~isempty(SBMLStructure)) if ~isequal(level, SBMLStructure.level) valid = 0; message = 'level mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'version') && ~isempty(SBMLStructure)) if ~isequal(version, SBMLStructure.version) valid = 0; message = 'version mismatch'; end; end; if (valid == 1 && isfield(SBMLStructure, 'fbc_version') && ~isempty(SBMLStructure)) if ~isequal(pkgVersion, SBMLStructure.fbc_version) valid = 0; message = 'FBC version mismatch'; end; end; if (valid == 1) [valid, message] = isSBML_Struct('SBML_SPECIES', SBMLStructure, level, ... version, 1); end; % check that structure contains all the fbc fields if (valid == 1) [SBMLfieldnames, numFields] = getFieldnames('SBML_FBC_SPECIES', level, ... version); if (numFields ==0) valid = 0; message = 'invalid level/version'; end; index = 1; while (valid == 1 && index <= numFields) valid = isfield(SBMLStructure, char(SBMLfieldnames(index))); if (valid == 0); message = sprintf('%s field missing', char(SBMLfieldnames(index))); end; index = index + 1; end; if (extensions_allowed == 0) % check that the structure contains ONLY the expected fields if (valid == 1) if (numFields ~= length(fieldnames(SBMLStructure))-19) valid = 0; message = sprintf('Unexpected field detected'); end; end; end; end; % report failure if (valid == 0) message = sprintf('Invalid FBC Species\n%s\n', message); end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function valid = isValidLevelVersionCombination(level, version) valid = 1; if ~isIntegralNumber(level) error('level must be an integer'); elseif ~isIntegralNumber(version) error('version must be an integer'); end; if (level < 1 || level > 3) error('current SBML levels are 1, 2 or 3'); end; if (level == 1) if (version < 1 || version > 2) error('SBMLToolbox supports versions 1-2 of SBML Level 1'); end; elseif (level == 2) if (version < 1 || version > 5) error('SBMLToolbox supports versions 1-5 of SBML Level 2'); end; elseif (level == 3) if (version ~= 1) error('SBMLToolbox supports only version 1 of SBML Level 3'); end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function value = isIntegralNumber(number) value = 0; integerClasses = {'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', 'uint64'}; % since the function isinteger does not exist in MATLAB Rel 13 % this is not used %if (isinteger(number)) if (ismember(class(number), integerClasses)) value = 1; elseif (isnumeric(number)) % if it is an integer if (number == fix(number)) value = 1; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getAlgebraicRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'type', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getAssignmentRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getCompartmentFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'name', ... 'volume', ... 'units', ... 'outside', ... 'isSetVolume', ... }; nNumberFields = 8; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'spatialDimensions', ... 'size', ... 'units', ... 'outside', ... 'constant', ... 'isSetSize', ... 'isSetVolume', ... }; nNumberFields = 13; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'compartmentType', ... 'spatialDimensions', ... 'size', ... 'units', ... 'outside', ... 'constant', ... 'isSetSize', ... 'isSetVolume', ... }; nNumberFields = 14; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'compartmentType', ... 'spatialDimensions', ... 'size', ... 'units', ... 'outside', ... 'constant', ... 'isSetSize', ... 'isSetVolume', ... }; nNumberFields = 15; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'compartmentType', ... 'spatialDimensions', ... 'size', ... 'units', ... 'outside', ... 'constant', ... 'isSetSize', ... 'isSetVolume', ... }; nNumberFields = 15; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'spatialDimensions', ... 'size', ... 'units', ... 'constant', ... 'isSetSize', ... 'isSetSpatialDimensions', ... }; nNumberFields = 13; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getCompartmentTypeFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... }; nNumberFields = 6; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... }; nNumberFields = 7; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... }; nNumberFields = 7; end; elseif (level == 3) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getCompartmentVolumeRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'type', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 3) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 4 || version == 5) SBMLfieldnames = []; nNumberFields = 0; end; elseif (level == 3) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getConstraintFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... 'message', ... }; nNumberFields = 7; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... 'message', ... }; nNumberFields = 7; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... 'message', ... }; nNumberFields = 7; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... 'message', ... }; nNumberFields = 7; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getDelayFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getEventAssignmentFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'variable', ... 'math', ... }; nNumberFields = 6; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'variable', ... 'sboTerm', ... 'math', ... }; nNumberFields = 7; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'variable', ... 'math', ... }; nNumberFields = 7; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'variable', ... 'math', ... }; nNumberFields = 7; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'variable', ... 'math', ... }; nNumberFields = 7; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getEventFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'trigger', ... 'delay', ... 'timeUnits', ... 'eventAssignment', ... }; nNumberFields = 10; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'trigger', ... 'delay', ... 'timeUnits', ... 'sboTerm', ... 'eventAssignment', ... }; nNumberFields = 11; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'trigger', ... 'delay', ... 'eventAssignment', ... }; nNumberFields = 10; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'useValuesFromTriggerTime', ... 'trigger', ... 'delay', ... 'eventAssignment', ... }; nNumberFields = 11; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'useValuesFromTriggerTime', ... 'trigger', ... 'delay', ... 'priority', ... 'eventAssignment', ... }; nNumberFields = 12; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getFieldnames(varargin) if (nargin < 3) error('getFieldnames requires 3 arguments'); end; typecode = varargin{1}; level = varargin{2}; version = varargin{3}; if nargin == 4 pkgVersion = varargin{4}; else pkgVersion = 1; end; done = 1; switch (typecode) case {'SBML_ALGEBRAIC_RULE', 'AlgebraicRule', 'algebraicRule'} [SBMLfieldnames, nNumberFields] = getAlgebraicRuleFieldnames(level, version); case {'SBML_ASSIGNMENT_RULE', 'AssignmentRule', 'assignmentRule'} [SBMLfieldnames, nNumberFields] = getAssignmentRuleFieldnames(level, version); case {'SBML_COMPARTMENT', 'Compartment', 'compartment'} [SBMLfieldnames, nNumberFields] = getCompartmentFieldnames(level, version); case {'SBML_COMPARTMENT_TYPE', 'CompartmentType', 'compartmentType'} [SBMLfieldnames, nNumberFields] = getCompartmentTypeFieldnames(level, version); case {'SBML_COMPARTMENT_VOLUME_RULE', 'CompartmentVolumeRule', 'compartmentVolumeRule'} [SBMLfieldnames, nNumberFields] = getCompartmentVolumeRuleFieldnames(level, version); case {'SBML_CONSTRAINT', 'Constraint', 'constraint'} [SBMLfieldnames, nNumberFields] = getConstraintFieldnames(level, version); case {'SBML_DELAY', 'Delay', 'delay'} [SBMLfieldnames, nNumberFields] = getDelayFieldnames(level, version); case {'SBML_EVENT', 'Event', 'event'} [SBMLfieldnames, nNumberFields] = getEventFieldnames(level, version); case {'SBML_EVENT_ASSIGNMENT', 'EventAssignment', 'eventAssignment'} [SBMLfieldnames, nNumberFields] = getEventAssignmentFieldnames(level, version); case {'SBML_FUNCTION_DEFINITION', 'FunctionDefinition', 'functionDefinition'} [SBMLfieldnames, nNumberFields] = getFunctionDefinitionFieldnames(level, version); case {'SBML_INITIAL_ASSIGNMENT', 'InitialAssignment', 'initialAssignment'} [SBMLfieldnames, nNumberFields] = getInitialAssignmentFieldnames(level, version); case {'SBML_KINETIC_LAW', 'KineticLaw', 'kineticLaw'} [SBMLfieldnames, nNumberFields] = getKineticLawFieldnames(level, version); case {'SBML_LOCAL_PARAMETER', 'LocalParameter', 'localParameter'} [SBMLfieldnames, nNumberFields] = getLocalParameterFieldnames(level, version); case {'SBML_MODEL', 'Model', 'model'} [SBMLfieldnames, nNumberFields] = getModelFieldnames(level, version); case {'SBML_MODIFIER_SPECIES_REFERENCE', 'ModifierSpeciesReference', 'modifierSpeciesReference'} [SBMLfieldnames, nNumberFields] = getModifierSpeciesReferenceFieldnames(level, version); case {'SBML_PARAMETER', 'Parameter', 'parameter'} [SBMLfieldnames, nNumberFields] = getParameterFieldnames(level, version); case {'SBML_PARAMETER_RULE', 'ParameterRule', 'parameterRule'} [SBMLfieldnames, nNumberFields] = getParameterRuleFieldnames(level, version); case {'SBML_PRIORITY', 'Priority', 'priority'} [SBMLfieldnames, nNumberFields] = getPriorityFieldnames(level, version); case {'SBML_RATE_RULE', 'RateRule', 'ruleRule'} [SBMLfieldnames, nNumberFields] = getRateRuleFieldnames(level, version); case {'SBML_REACTION', 'Reaction', 'reaction'} [SBMLfieldnames, nNumberFields] = getReactionFieldnames(level, version); case {'SBML_SPECIES', 'Species', 'species'} [SBMLfieldnames, nNumberFields] = getSpeciesFieldnames(level, version); case {'SBML_SPECIES_CONCENTRATION_RULE', 'SpeciesConcentrationRule', 'speciesConcentrationRule'} [SBMLfieldnames, nNumberFields] = getSpeciesConcentrationRuleFieldnames(level, version); case {'SBML_SPECIES_REFERENCE', 'SpeciesReference', 'speciesReference'} [SBMLfieldnames, nNumberFields] = getSpeciesReferenceFieldnames(level, version); case {'SBML_SPECIES_TYPE', 'SpeciesType', 'speciesType'} [SBMLfieldnames, nNumberFields] = getSpeciesTypeFieldnames(level, version); case {'SBML_STOICHIOMETRY_MATH', 'StoichiometryMath', 'stoichiometryMath'} [SBMLfieldnames, nNumberFields] = getStoichiometryMathFieldnames(level, version); case {'SBML_TRIGGER', 'Trigger', 'trigger'} [SBMLfieldnames, nNumberFields] = getTriggerFieldnames(level, version); case {'SBML_UNIT', 'Unit', 'unit'} [SBMLfieldnames, nNumberFields] = getUnitFieldnames(level, version); case {'SBML_UNIT_DEFINITION', 'UnitDefinition', 'unitDefinition'} [SBMLfieldnames, nNumberFields] = getUnitDefinitionFieldnames(level, version); otherwise done = 0; end; if done == 0 switch (typecode) case {'SBML_FBC_FLUXBOUND', 'FluxBound', 'fluxBound'} [SBMLfieldnames, nNumberFields] = getFluxBoundFieldnames(level, version, pkgVersion); case {'SBML_FBC_FLUXOBJECTIVE', 'FluxObjective', 'fluxObjective'} [SBMLfieldnames, nNumberFields] = getFluxObjectiveFieldnames(level, version, pkgVersion); case {'SBML_FBC_OBJECTIVE', 'Objective', 'objective'} [SBMLfieldnames, nNumberFields] = getObjectiveFieldnames(level, version, pkgVersion); case {'SBML_FBC_MODEL', 'FBCModel'} [SBMLfieldnames, nNumberFields] = getFBCModelFieldnames(level, version, pkgVersion); case {'SBML_FBC_SPECIES', 'FBCSpecies'} [SBMLfieldnames, nNumberFields] = getFBCSpeciesFieldnames(level, version, pkgVersion); otherwise error('%s\n%s', ... 'getFieldnames(typecode, level, version', ... 'typecode not recognised'); end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getFunctionDefinitionFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'math', ... }; nNumberFields = 7; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'math', ... }; nNumberFields = 8; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'math', ... }; nNumberFields = 8; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'math', ... }; nNumberFields = 8; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'math', ... }; nNumberFields = 8; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getInitialAssignmentFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'symbol', ... 'math', ... }; nNumberFields = 7; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'symbol', ... 'math', ... }; nNumberFields = 7; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'symbol', ... 'math', ... }; nNumberFields = 7; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'symbol', ... 'math', ... }; nNumberFields = 7; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getKineticLawFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'formula', ... 'parameter', ... 'timeUnits', ... 'substanceUnits', ... }; nNumberFields = 7; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'formula', ... 'math', ... 'parameter', ... 'timeUnits', ... 'substanceUnits', ... }; nNumberFields = 9; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'formula', ... 'math', ... 'parameter', ... 'sboTerm', ... }; nNumberFields = 8; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'math', ... 'parameter', ... }; nNumberFields = 8; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'math', ... 'parameter', ... }; nNumberFields = 8; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... 'localParameter', ... }; nNumberFields = 7; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getLocalParameterFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'value', ... 'units', ... 'isSetValue', ... }; nNumberFields = 10; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getModelFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'SBML_level', ... 'SBML_version', ... 'name', ... 'unitDefinition', ... 'compartment', ... 'species', ... 'parameter', ... 'rule', ... 'reaction', ... }; nNumberFields = 12; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'SBML_level', ... 'SBML_version', ... 'name', ... 'id', ... 'functionDefinition', ... 'unitDefinition', ... 'compartment', ... 'species', ... 'parameter', ... 'rule', ... 'reaction', ... 'event', ... }; nNumberFields = 16; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'SBML_level', ... 'SBML_version', ... 'name', ... 'id', ... 'sboTerm', ... 'functionDefinition', ... 'unitDefinition', ... 'compartmentType', ... 'speciesType', ... 'compartment', ... 'species', ... 'parameter', ... 'initialAssignment', ... 'rule', ... 'constraint', ... 'reaction', ... 'event', ... }; nNumberFields = 21; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'SBML_level', ... 'SBML_version', ... 'name', ... 'id', ... 'sboTerm', ... 'functionDefinition', ... 'unitDefinition', ... 'compartmentType', ... 'speciesType', ... 'compartment', ... 'species', ... 'parameter', ... 'initialAssignment', ... 'rule', ... 'constraint', ... 'reaction', ... 'event', ... }; nNumberFields = 21; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'SBML_level', ... 'SBML_version', ... 'name', ... 'id', ... 'sboTerm', ... 'functionDefinition', ... 'unitDefinition', ... 'compartmentType', ... 'speciesType', ... 'compartment', ... 'species', ... 'parameter', ... 'initialAssignment', ... 'rule', ... 'constraint', ... 'reaction', ... 'event', ... }; nNumberFields = 21; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'SBML_level', ... 'SBML_version', ... 'name', ... 'id', ... 'sboTerm', ... 'functionDefinition', ... 'unitDefinition', ... 'compartment', ... 'species', ... 'parameter', ... 'initialAssignment', ... 'rule', ... 'constraint', ... 'reaction', ... 'event', ... 'substanceUnits', ... 'timeUnits', ... 'lengthUnits', ... 'areaUnits', ... 'volumeUnits', ... 'extentUnits', ... 'conversionFactor', ... }; nNumberFields = 26; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getModifierSpeciesReferenceFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'species', ... }; nNumberFields = 5; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'species', ... 'id', ... 'name', ... 'sboTerm', ... }; nNumberFields = 8; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'species', ... 'id', ... 'name', ... }; nNumberFields = 8; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'species', ... 'id', ... 'name', ... }; nNumberFields = 8; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'species', ... 'id', ... 'name', ... }; nNumberFields = 8; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getParameterFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'name', ... 'value', ... 'units', ... 'isSetValue', ... }; nNumberFields = 7; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'value', ... 'units', ... 'constant', ... 'isSetValue', ... }; nNumberFields = 10; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'value', ... 'units', ... 'constant', ... 'sboTerm', ... 'isSetValue', ... }; nNumberFields = 11; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'value', ... 'units', ... 'constant', ... 'isSetValue', ... }; nNumberFields = 11; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'value', ... 'units', ... 'constant', ... 'isSetValue', ... }; nNumberFields = 11; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'value', ... 'units', ... 'constant', ... 'isSetValue', ... }; nNumberFields = 11; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getParameterRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'type', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 3) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 4 || version == 5) SBMLfieldnames = []; nNumberFields = 0; end; elseif (level == 3) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getPriorityFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getRateRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getReactionFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'name', ... 'reactant', ... 'product', ... 'kineticLaw', ... 'reversible', ... 'fast', ... }; nNumberFields = 9; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'reactant', ... 'product', ... 'modifier', ... 'kineticLaw', ... 'reversible', ... 'fast', ... 'isSetFast', ... }; nNumberFields = 13; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'reactant', ... 'product', ... 'modifier', ... 'kineticLaw', ... 'reversible', ... 'fast', ... 'sboTerm', ... 'isSetFast', ... }; nNumberFields = 14; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'reactant', ... 'product', ... 'modifier', ... 'kineticLaw', ... 'reversible', ... 'fast', ... 'isSetFast', ... }; nNumberFields = 14; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'reactant', ... 'product', ... 'modifier', ... 'kineticLaw', ... 'reversible', ... 'fast', ... 'isSetFast', ... }; nNumberFields = 14; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'reactant', ... 'product', ... 'modifier', ... 'kineticLaw', ... 'reversible', ... 'fast', ... 'isSetFast', ... 'compartment', ... }; nNumberFields = 15; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'type', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 11; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getSpeciesConcentrationRuleFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'type', ... 'formula', ... 'variable', ... 'species', ... 'compartment', ... 'name', ... 'units', ... }; nNumberFields = 10; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 3) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 4 || version == 5) SBMLfieldnames = []; nNumberFields = 0; end; elseif (level == 3) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getSpeciesFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'name', ... 'compartment', ... 'initialAmount', ... 'units', ... 'boundaryCondition', ... 'charge', ... 'isSetInitialAmount', ... 'isSetCharge', ... }; nNumberFields = 11; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'compartment', ... 'initialAmount', ... 'initialConcentration', ... 'substanceUnits', ... 'spatialSizeUnits', ... 'hasOnlySubstanceUnits', ... 'boundaryCondition', ... 'charge', ... 'constant', ... 'isSetInitialAmount', ... 'isSetInitialConcentration', ... 'isSetCharge', ... }; nNumberFields = 18; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'speciesType', ... 'compartment', ... 'initialAmount', ... 'initialConcentration', ... 'substanceUnits', ... 'spatialSizeUnits', ... 'hasOnlySubstanceUnits', ... 'boundaryCondition', ... 'charge', ... 'constant', ... 'isSetInitialAmount', ... 'isSetInitialConcentration', ... 'isSetCharge', ... }; nNumberFields = 19; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'speciesType', ... 'compartment', ... 'initialAmount', ... 'initialConcentration', ... 'substanceUnits', ... 'hasOnlySubstanceUnits', ... 'boundaryCondition', ... 'charge', ... 'constant', ... 'isSetInitialAmount', ... 'isSetInitialConcentration', ... 'isSetCharge', ... }; nNumberFields = 19; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'speciesType', ... 'compartment', ... 'initialAmount', ... 'initialConcentration', ... 'substanceUnits', ... 'hasOnlySubstanceUnits', ... 'boundaryCondition', ... 'charge', ... 'constant', ... 'isSetInitialAmount', ... 'isSetInitialConcentration', ... 'isSetCharge', ... }; nNumberFields = 19; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'compartment', ... 'initialAmount', ... 'initialConcentration', ... 'substanceUnits', ... 'hasOnlySubstanceUnits', ... 'boundaryCondition', ... 'constant', ... 'isSetInitialAmount', ... 'isSetInitialConcentration', ... 'conversionFactor', ... }; nNumberFields = 17; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getSpeciesReferenceFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'species', ... 'stoichiometry', ... 'denominator', ... }; nNumberFields = 6; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'species', ... 'stoichiometry', ... 'denominator', ... 'stoichiometryMath', ... }; nNumberFields = 8; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'species', ... 'id', ... 'name', ... 'sboTerm', ... 'stoichiometry', ... 'stoichiometryMath', ... }; nNumberFields = 10; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'species', ... 'id', ... 'name', ... 'stoichiometry', ... 'stoichiometryMath', ... }; nNumberFields = 10; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'species', ... 'id', ... 'name', ... 'stoichiometry', ... 'stoichiometryMath', ... }; nNumberFields = 10; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'species', ... 'id', ... 'name', ... 'stoichiometry', ... 'constant', ... 'isSetStoichiometry', ... }; nNumberFields = 11; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getSpeciesTypeFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... }; nNumberFields = 6; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... }; nNumberFields = 7; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... }; nNumberFields = 7; end; elseif (level == 3) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getStoichiometryMathFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; end; elseif (level == 3) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getTriggerFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) if (version == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'math', ... }; nNumberFields = 6; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'persistent', ... 'initialValue', ... 'math', ... }; nNumberFields = 8; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getUnitDefinitionFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'name', ... 'unit', ... }; nNumberFields = 5; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'unit', ... }; nNumberFields = 7; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'name', ... 'id', ... 'unit', ... }; nNumberFields = 7; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'unit', ... }; nNumberFields = 8; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'unit', ... }; nNumberFields = 8; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'name', ... 'id', ... 'unit', ... }; nNumberFields = 8; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getUnitFieldnames(level, ... version) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; if (level == 1) SBMLfieldnames = { 'typecode', ... 'notes', ... 'annotation', ... 'kind', ... 'exponent', ... 'scale', ... }; nNumberFields = 6; elseif (level == 2) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'kind', ... 'exponent', ... 'scale', ... 'multiplier', ... 'offset', ... }; nNumberFields = 9; elseif (version == 2) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'kind', ... 'exponent', ... 'scale', ... 'multiplier', ... }; nNumberFields = 8; elseif (version == 3) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'kind', ... 'exponent', ... 'scale', ... 'multiplier', ... }; nNumberFields = 9; elseif (version == 4 || version == 5) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'kind', ... 'exponent', ... 'scale', ... 'multiplier', ... }; nNumberFields = 9; end; elseif (level == 3) if (version == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'kind', ... 'exponent', ... 'scale', ... 'multiplier', ... }; nNumberFields = 9; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getFBCModelFieldnames(level, ... version, pkgVersion) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; % need a check on package version if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) if (pkgVersion == 1) SBMLfieldnames = { 'fbc_version', ... 'fbc_fluxBound', ... 'fbc_objective', ... 'fbc_activeObjective', ... }; nNumberFields = 4; end; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getFBCSpeciesFieldnames(level, ... version, pkgVersion) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; % need a check on package version if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) if (pkgVersion == 1) SBMLfieldnames = { 'fbc_charge', ... 'isSetfbc_charge', ... 'fbc_chemicalFormula', ... 'fbc_version', ... }; nNumberFields = 4; end; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getFluxBoundFieldnames(level, ... version, pkgVersion) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; % need a check on package version if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) if (pkgVersion == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'fbc_id', ... 'fbc_reaction', ... 'fbc_operation', ... 'fbc_value', ... 'isSetfbc_value', ... 'level', ... 'version', ... 'fbc_version', ... }; nNumberFields = 13; end; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getFluxObjectiveFieldnames(level, ... version, pkgVersion) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; % need a check on package version if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) if (pkgVersion == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'fbc_reaction', ... 'fbc_coefficient', ... 'isSetfbc_coefficient', ... 'level', ... 'version', ... 'fbc_version', ... }; nNumberFields = 11; end; end; end; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [SBMLfieldnames, nNumberFields] = getObjectiveFieldnames(level, ... version, pkgVersion) if (~isValidLevelVersionCombination(level, version)) error ('invalid level/version combination'); end; % need a check on package version if (level == 1) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 2) SBMLfieldnames = []; nNumberFields = 0; elseif (level == 3) if (version == 1) if (pkgVersion == 1) SBMLfieldnames = { 'typecode', ... 'metaid', ... 'notes', ... 'annotation', ... 'sboTerm', ... 'fbc_id', ... 'fbc_type', ... 'fbc_fluxObjective', ... 'level', ... 'version', ... 'fbc_version', ... }; nNumberFields = 11; end; end; end;
github
compneuro-da/rsHRF-master
rsHRF_mvgc.m
.m
rsHRF-master/rsHRF_mvgc.m
14,061
utf_8
288e227bc8fac13e21ff0084b5cd9265
function [F,pvalue] = rsHRF_mvgc(data,order,regmode,flag_1to2,flag_pvalue) % Calculate time-domain multivariate Granger causalities % data: nvars x nobs x ntrials % F(i,j): from i to j. % pvalue: F-test. % %% References % [1] L. Barnett and A. K. Seth, The MVGC The MVGC multivariate Granger causality toolbox: % A new approach to Granger-causal inference. J. Neurosci. Methods 223, 2014 % [2] X. Kitagawa, An algorithm for solving the matrix equation X = F X F'+S, % Internat. J. Control 25(5), 1977. % [3] S. Hammarling, "Numerical solution of the stable, non-negative definite % Lyapunov equation", IMA J. Numer. Anal. 2, 1982. [nvars,nobs,ntrials] = size(data); % full regression % owstate = warn_supp; [G,SIG,info] = data_to_autocov(data,order,regmode); % warn_test(owstate, 'in full regression - bad autocovariance matrix? Check output of ''var_info'''); % if warn_if(isbad(SIG),'in full regression - regression failed'), return; end % show-stopper! if ~flag_1to2 F = nan(nvars); pvalue = nan(nvars); else F = NaN; pvalue = nan; end % var_info(info,true); % report results (and bail out on error) if info.error fprintf('.') else LSIG = log(diag(SIG)); for j = 1:nvars % reduced regression jo = [1:j-1 j+1:nvars]; % omit j % owstate = warn_supp; [~,SIGj] = autocov_to_var(G(jo,jo,:)); % warn_test(owstate, sprintf('in reduced regression for target node %d - bad autocovariance matrix? Check output of ''var_info''',j)); % if warn_if(isbad(SIGj),sprintf('in reduced regression for target node %d - regression failed',j)), continue; end % show-stopper! LSIGj = log(diag(SIGj)); if flag_1to2 F = LSIGj(1)-LSIG(2); break else for ii=1:nvars-1 i = jo(ii); F(j,i) = LSIGj(ii)-LSIG(i); end end end if flag_pvalue tstat = ''; pvalue = mvgc_pval(F,order,nobs,ntrials,1,1,nvars-2,tstat); % take careful note of arguments! end end function [G,SIG,info] = data_to_autocov(X,p,regmode) if nargin < 3 || isempty(regmode), regmode = 'LWR'; end [n,m,N] = size(X); assert(p < m,'too many lags'); p1 = p+1; A = NaN; SIG = NaN; G = NaN; info.error = 1; X = demean(X); % no constant term if strcmpi(regmode,'OLS') % OLS (QR decomposition) M = N*(m-p); np = n*p; % stack lags X0 = reshape(X(:,p1:m,:),n,M); % concatenate trials for unlagged observations XL = zeros(n,p,M); for k = 1:p XL(:,k,:) = reshape(X(:,p1-k:m-k,:),n,M); % concatenate trials for k-lagged observations end XL = reshape(XL,np,M); % stack lags A = X0/XL; % OLS using QR decomposition if isbad(A); return; end % something went badly wrong if nargout > 1 E = X0-A*XL; % residuals SIG = (E*E')/(M-1); % residuals covariance matrix E = reshape(E,n,m-p,N); % put residuals back into per-trial form end A = reshape(A,n,n,p); % so A(:,:,k) is the k-lag coefficients matrix elseif strcmpi(regmode,'LWR') % LWR (Morf) q1n = p1*n; I = eye(n); % store lags XX = zeros(n,p1,m+p,N); for k = 0:p XX(:,k+1,k+1:k+m,:) = X; % k-lagged observations end % initialise recursion AF = zeros(n,q1n); % forward AR coefficients AB = zeros(n,q1n); % backward AR coefficients (reversed compared with Morf's treatment) k = 1; % model order is k-1 kn = k*n; M = N*(m-k); kf = 1:kn; % forward indices kb = q1n-kn+1:q1n; % backward indices XF = reshape(XX(:,1:k,k+1:m,:),kn,M); XB = reshape(XX(:,1:k,k:m-1,:),kn,M); [CXF,cholp] = chol(XF*XF'); if cholp, return; end % show-stopper! [CXB,cholp] = chol(XB*XB'); if cholp, return; end % show-stopper! AF(:,kf) = CXF'\I; AB(:,kb) = CXB'\I; % and loop while k <= p EF = AF(:,kf)*reshape(XX(:,1:k,k+1:m,:),kn,M); % forward prediction errors EB = AB(:,kb)*reshape(XX(:,1:k,k:m-1,:),kn,M); % backward prediction errors [CEF,cholp] = chol(EF*EF'); if cholp, return; end % show-stopper! [CEB,cholp] = chol(EB*EB'); if cholp, return; end % show-stopper! R = CEF'\(EF*EB')/CEB; % normalised reflection coefficients [RF,cholp] = chol(I-R*R'); if cholp, return; end % show-stopper! [RB,cholp] = chol(I-R'*R); if cholp, return; end % show-stopper! k = k+1; kn = k*n; M = N*(m-k); kf = 1:kn; kb = q1n-kn+1:q1n; AFPREV = AF(:,kf); ABPREV = AB(:,kb); AF(:,kf) = RF'\(AFPREV-R*ABPREV); AB(:,kb) = RB'\(ABPREV-R'*AFPREV); end if nargout > 1 E = AFPREV(:,1:n)\EF; % residuals SIG = (E*E')/(M-1); % residuals covariance matrix E = reshape(E,n,m-p,N); % put residuals back into per-trial form end A = reshape(-AF(:,1:n)\AF(:,n+1:end),n,n,p); % so A(:,:,k) is the k-lag coefficients matrix else error('bad regression mode ''%s''\n',regmode); end % Autocovariance calculation [G,info] = var_to_autocov(A,SIG); function Y = demean(X,normalise) if nargin < 2 || isempty(normalise), normalise = false; end [n,m,N] = size(X); U = ones(1,N*m); Y = X(:,:); Y = Y-mean(Y,2)*U; if normalise Y = Y./(std(Y,[],2)*U); end Y = reshape(Y,n,m,N); function b = isbad(x,demand_allfinite) if nargin < 2 || isempty(demand_allfinite), demand_allfinite = true; end if demand_allfinite b = ~all(isfinite(x(:))); else b = ~any(isfinite(x(:))); end function [G,info] = var_to_autocov(A,SIG,acmaxlags,acdectol,aitr,maxiters,maxrelerr) %global have_dlyap; % default parameters if nargin < 3 || isempty(acmaxlags), acmaxlags = 0; end % calculate maximum lags automatically if nargin < 4 || isempty(acdectol), acdectol = 1e-8; end % autocovariance decay tolerance if nargin < 5 || isempty(aitr), aitr = false; end % use "accelerated" iterative Lyapunov equation solver % iterative algorithm only: ensure defaults for utils/dlyap_aitr.m. if nargin < 6, maxiters = []; end if nargin < 7, maxrelerr = []; end [n,n1,p] = size(A); assert(n1 == n,'VAR coefficients matrix has bad shape'); pn1 = (p-1)*n; [nn1,nn2] = size(SIG); assert(nn1 == nn2,'residuals covariance matrix not square'); assert(nn1 == n ,'residuals covariance matrix doesn''t match VAR coefficients matrix'); % initialise info struct info.error = 0; info.errmsg = ''; info.warnings = 0; info.warnmsg = cell(0,1); info.rho = NaN; info.iters = NaN; info.acrelerr = NaN; info.acminlags = NaN; info.aclags = NaN; G = []; % construct VAR coefficients for 1-lag problem A1 = [reshape(A,n,p*n); eye(pn1) zeros(pn1,n)]; % calculate spectral radius try info.rho = max(abs(eig(A1))); catch info.error = 1; info.errmsg = 'eig(Input matrix contains NaN or Inf.)'; return end if info.rho >= 1 info.error = 1; info.errmsg = 'unstable VAR (unit root)'; return end % construct residual covariances for 1-lag problem if ~isposdef(SIG); info.error = 2; info.errmsg = 'residuals covariance matrix not positive-definite'; return; end SIG1 = [SIG zeros(n,pn1); zeros(pn1,n) zeros(pn1)]; % solve the Lyapunov equation for the 1-lag covariance matrix try if aitr [G1,info.iters] = dlyap_aitr(A1,SIG1,maxiters,maxrelerr); % experimental: fast, but needs more testing else % G1 = dlyap(A1,SIG1); % dlyap seems to work better here without balancing, which seems to break positive-definitiveness G1 = lyapslv('D',A1,[],-SIG1); % sometimes. However lyapslv is not an official interface, so this could conceivably break in future. end catch except info.error = 3; info.errmsg = ['Lyapunov equation solver failed: ' except.message]; return end info.acrelerr = norm(A1*G1*A1'-G1+SIG1)/norm(SIG1); % this should be small (see below) maxacrelerr = 1e-8; % probably shouldn't be hard-coded :-/ if info.acrelerr > maxacrelerr info.warnings = info.warnings+1; info.warnmsg{info.warnings} = sprintf('large relative error = %g (tolerance = %g)',info.acrelerr,maxacrelerr); end % estimate number of autocov lags info.acminlags = ceil(log(acdectol)/log(info.rho)); % minimum lags to achieve specified tolerance if acmaxlags < 0 % use exactly -acmaxlags lags (not encouraged, hence undocumented!) info.aclags = -acmaxlags; elseif acmaxlags > 0 % use at most acmaxlags lags info.aclags = min(info.acminlags,acmaxlags); else % acmaxlags == 0 - use minimum acceptable lags (recommended) info.aclags = info.acminlags; end if info.aclags < info.acminlags info.warnings = info.warnings+1; info.warnmsg{info.warnings} = sprintf('too few autocovariance lags = %d (minimum = %d)',info.aclags,info.acminlags); end if ~isposdef(G1); info.error = 4; info.errmsg = '1-lag covariance matrix not positive-definite'; return end q = info.aclags; q1 = q+1; % calculate recursively from 1-lag solution (which supplies up to p-1 lags), from p lags up to q [n,~,p] = size(A); assert(info.aclags >= p,'number of lags is too small'); % lags must be at least number of VAR lags pn = p*n; G = cat(3,reshape(G1(1:n,:),n,n,p),zeros(n,n,q1-p)); % autocov forward sequence B = [zeros((q1-p)*n,n); G1(:,end-n+1:end)]; % autocov backward sequence A = reshape(A,n,pn); % coefficients for k = p:q r = q1-k; G(:,:,k+1) = A*B(r*n+1:r*n+pn,:); B((r-1)*n+1:r*n,:) = G(:,:,k+1); end function pd = isposdef(A) [~,p] = chol(A); pd = ~(p > 0); function [AF,SIG] = autocov_to_var(G) [n,~,q1] = size(G); q = q1-1; qn = q*n; G0 = G(:,:,1); % covariance GF = reshape(G(:,:,2:end),n,qn)'; % forward autocov sequence GB = reshape(permute(flipdim(G(:,:,2:end),3),[1 3 2]),qn,n); % backward autocov sequence AF = zeros(n,qn); % forward coefficients AB = zeros(n,qn); % backward coefficients (reversed compared with Whittle's treatment) % initialise recursion k = 1; % model order r = q-k; kf = 1:k*n; % forward indices kb = r*n+1:qn; % backward indices AF(:,kf) = GB(kb,:)/G0; AB(:,kb) = GF(kf,:)/G0; % and loop for k=2:q AAF = (GB((r-1)*n+1:r*n,:)-AF(:,kf)*GB(kb,:))/(G0-AB(:,kb)*GB(kb,:)); % DF/VB AAB = (GF((k-1)*n+1:k*n,:)-AB(:,kb)*GF(kf,:))/(G0-AF(:,kf)*GF(kf,:)); % DB/VF AFPREV = AF(:,kf); ABPREV = AB(:,kb); r = q-k; kf = 1:k*n; kb = r*n+1:qn; AF(:,kf) = [AFPREV-AAF*ABPREV AAF]; AB(:,kb) = [AAB ABPREV-AAB*AFPREV]; end if nargout > 1 SIG = G0-AF*GF; end AF = reshape(AF,n,n,q); function pval = mvgc_pval(x,p,m,N,nx,ny,nz,tstat) if nargin < 7, nz = []; end % ensure default if nargin < 8, tstat = []; end % ensure default pval = NaN(size(x)); % output p-value matrix is same shape as x matrix nn = ~isnan(x); % indices of non-NaN x values (logical array) x = x(nn); % vectorise non-NaN x values pval(nn) = 1-mvgc_cdf(x,0,p,m,N,nx,ny,nz,tstat); % assume null hypothesis F = 0 function P = mvgc_cdf(x,X,p,m,N,nx,ny,nz,tstat) assert(isvector(x),'evaluation values must be a vector'); n = length(x); assert(isvector(X),'MVGC values must be a vector'); assert(all(X >= 0),'MVGC values must be non-negative'); if isscalar(X) X = X*ones(n,1); else assert(length(X) == n,'MVGC values must match evaluation values'); end if nargin < 8 || isempty(nz), nz = 0; end % unconditional if nargin < 9 || isempty(tstat); ftest = nx == 1; % default: use F-distribution for univariate predictee, chi2 for multivariate else switch lower(tstat) case 'f' % Granger F-test form assert(nx == 1,'F-distribution is not appropriate for multivariate predictee'); ftest = true; case 'chi2' % Geweke chi2 test form ftest = false; otherwise error('unknown distribution (must be ''chi2'' or ''F'')'); end end P = zeros(n,1); m = N*(m-p); % effective number of observations (p-lag autoregression loses p observations per trial) if ftest if any(X > 0), fprintf(2,'WARNING (mvgc_cdf): non-central F-distribution is experimental\n'); end d1 = p*ny; % #{full model parameters} - #{reduced model parameters} d2 = m-p*(1+ny+nz); % #{observations} - #{full model parameters} mm = d2/d1; for i = 1:n xx = exp(x(i))-1; % Granger form: (RSS_reduced - RSS_full) / RSS_full if X(i) > 0 % non-central XX = exp(X(i))-1; % Granger form P(i) = ncfcdf(mm*xx,d1,d2,m*XX); % NOTE: non-centrality parameter factor might reasonably be m, d2 or d2-2 else P(i) = fcdf(mm*xx,d1,d2); end end else d = p*nx*ny; % note that d does not depend on the number of conditioning variables for i = 1:n if X(i) > 0 % non-central P(i) = ncx2cdf(m*x(i),d,m*X(i)); else P(i) = chi2cdf(m*x(i),d); end end end function [X,iters] = dlyap_aitr(A,Q,maxiters,maxrelerr) if nargin < 3 || isempty(maxiters), maxiters = 100; end if nargin < 4 || isempty(maxrelerr), maxrelerr = 1e-8; end assert(size(A,2) == size(A,1),'matrix A not square'); assert(isequal(size(Q),size(A)),'matrix Q does not match matrix A'); X = Q; AA = A; snorm = norm(Q,'fro'); minrelerr = realmax; for iters = 1:maxiters+1 relerr = norm(X-A*X*A'-Q,'fro')/snorm; if relerr < maxrelerr % only start convergence test after max rel error threshold reached if relerr >= minrelerr, break; end % deemed converged end if relerr < minrelerr, minrelerr = relerr; end X = AA*X*AA'+X; AA = AA*AA; end if iters > maxiters throw(MException('MVGC:XMaxItrs','exceeded maximum iterations (max. rel. error = %e)',relerr)); end
github
compneuro-da/rsHRF-master
rsHRF_inpaint_nans3.m
.m
rsHRF-master/rsHRF_inpaint_nans3.m
8,268
utf_8
312e077493b6496d54e1e9bc634bab03
function B=rsHRF_inpaint_nans3(A,method) % INPAINT_NANS3: in-paints over nans in a 3-D array % usage: B=INPAINT_NANS3(A) % default method (0) % usage: B=INPAINT_NANS3(A,method) % specify method used % % Solves approximation to a boundary value problem to % interpolate and extrapolate holes in a 3-D array. % % Note that if the array is large, and there are many NaNs % to be filled in, this may take a long time, or run into % memory problems. % % arguments (input): % A - n1 x n2 x n3 array with some NaNs to be filled in % % method - (OPTIONAL) scalar numeric flag - specifies % which approach (or physical metaphor to use % for the interpolation.) All methods are capable % of extrapolation, some are better than others. % There are also speed differences, as well as % accuracy differences for smooth surfaces. % % method 0 uses a simple plate metaphor. % method 1 uses a spring metaphor. % % method == 0 --> (DEFAULT) Solves the Laplacian % equation over the set of nan elements in the % array. % Extrapolation behavior is roughly linear. % % method == 1 --+ Uses a spring metaphor. Assumes % springs (with a nominal length of zero) % connect each node with every neighbor % (horizontally, vertically and diagonally) % Since each node tries to be like its neighbors, % extrapolation is roughly a constant function where % this is consistent with the neighboring nodes. % % There are only two different methods in this code, % chosen as the most useful ones (IMHO) from my % original inpaint_nans code. % % % arguments (output): % B - n1xn2xn3 array with NaNs replaced % % % Example: % % A linear function of 3 independent variables, % % used to test whether inpainting will interpolate % % the missing elements correctly. % [x,y,z] = ndgrid(-10:10,-10:10,-10:10); % W = x + y + z; % % % Pick a set of distinct random elements to NaN out. % ind = unique(ceil(rand(3000,1)*numel(W))); % Wnan = W; % Wnan(ind) = NaN; % % % Do inpainting % Winp = inpaint_nans3(Wnan,0); % % % Show that the inpainted values are essentially % % within eps of the originals. % std(Winp(ind) - W(ind)) % ans = % 4.3806e-15 % % % See also: griddatan, inpaint_nans % % Author: John D'Errico % e-mail address: [email protected] % Release: 1 % Release date: 8/21/08 % Need to know which elements are NaN, and % what size is the array. Unroll A for the % inpainting, although inpainting will be done % fully in 3-d. NA = size(A); A = A(:); nt = prod(NA); k = isnan(A(:)); % list the nodes which are known, and which will % be interpolated nan_list=find(k); known_list=find(~k); % how many nans overall nan_count=length(nan_list); % convert NaN indices to (r,c) form % nan_list==find(k) are the unrolled (linear) indices % (row,column) form [n1,n2,n3]=ind2sub(NA,nan_list); % both forms of index for all the nan elements in one array: % column 1 == unrolled index % column 2 == index 1 % column 3 == index 2 % column 4 == index 3 nan_list=[nan_list,n1,n2,n3]; % supply default method if (nargin<2) || isempty(method) method = 0; elseif ~ismember(method,[0 1]) error 'If supplied, method must be one of: {0,1}.' end % alternative methods switch method case 0 % The same as method == 1, except only work on those % elements which are NaN, or at least touch a NaN. % horizontal and vertical neighbors only talks_to = [-1 0 0;1 0 0;0 -1 0;0 1 0;0 0 -1;0 0 1]; neighbors_list=identify_neighbors(NA,nan_list,talks_to); % list of all nodes we have identified all_list=[nan_list;neighbors_list]; % generate sparse array with second partials on row % variable for each element in either list, but only % for those nodes which have a row index > 1 or < n L = find((all_list(:,2) > 1) & (all_list(:,2) < NA(1))); nL=length(L); if nL>0 fda=sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-1 0 1],nL,1), ... repmat([1 -2 1],nL,1),nt,nt); else fda=spalloc(nt,nt,size(all_list,1)*7); end % 2nd partials on column index L = find((all_list(:,3) > 1) & (all_list(:,3) < NA(2))); nL=length(L); if nL>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-NA(1) 0 NA(1)],nL,1), ... repmat([1 -2 1],nL,1),nt,nt); end % 2nd partials on third index L = find((all_list(:,4) > 1) & (all_list(:,4) < NA(3))); nL=length(L); if nL>0 ntimesm = NA(1)*NA(2); fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-ntimesm 0 ntimesm],nL,1), ... repmat([1 -2 1],nL,1),nt,nt); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list(:,1)),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 1 % Spring analogy % interpolating operator. % list of all springs between a node and a horizontal % or vertical neighbor hv_list=[-1 -1 0 0;1 1 0 0;-NA(1) 0 -1 0;NA(1) 0 1 0; ... -NA(1)*NA(2) 0 0 -1;NA(1)*NA(2) 0 0 1]; hv_springs=[]; for i=1:size(hv_list,1) hvs=nan_list+repmat(hv_list(i,:),nan_count,1); k=(hvs(:,2)>=1) & (hvs(:,2)<=NA(1)) & ... (hvs(:,3)>=1) & (hvs(:,3)<=NA(2)) & ... (hvs(:,4)>=1) & (hvs(:,4)<=NA(3)); hv_springs=[hv_springs;[nan_list(k,1),hvs(k,1)]]; end % delete replicate springs hv_springs=unique(sort(hv_springs,2),'rows'); % build sparse matrix of connections nhv=size(hv_springs,1); springs=sparse(repmat((1:nhv)',1,2),hv_springs, ... repmat([1 -1],nhv,1),nhv,prod(NA)); % eliminate knowns rhs=-springs(:,known_list)*A(known_list); % and solve... B=A; B(nan_list(:,1))=springs(:,nan_list(:,1))\rhs; end % all done, make sure that B is the same shape as % A was when we came in. B=reshape(B,NA); % ==================================================== % end of main function % ==================================================== % ==================================================== % begin subfunctions % ==================================================== function neighbors_list=identify_neighbors(NA,nan_list,talks_to) % identify_neighbors: identifies all the neighbors of % those nodes in nan_list, not including the nans % themselves % % arguments (input): % NA - 1x3 vector = size(A), where A is the % array to be interpolated % nan_list - array - list of every nan element in A % nan_list(i,1) == linear index of i'th nan element % nan_list(i,2) == row index of i'th nan element % nan_list(i,3) == column index of i'th nan element % nan_list(i,4) == third index of i'th nan element % talks_to - px2 array - defines which nodes communicate % with each other, i.e., which nodes are neighbors. % % talks_to(i,1) - defines the offset in the row % dimension of a neighbor % talks_to(i,2) - defines the offset in the column % dimension of a neighbor % % For example, talks_to = [-1 0;0 -1;1 0;0 1] % means that each node talks only to its immediate % neighbors horizontally and vertically. % % arguments(output): % neighbors_list - array - list of all neighbors of % all the nodes in nan_list if ~isempty(nan_list) % use the definition of a neighbor in talks_to nan_count=size(nan_list,1); talk_count=size(talks_to,1); nn=zeros(nan_count*talk_count,3); j=[1,nan_count]; for i=1:talk_count nn(j(1):j(2),:)=nan_list(:,2:4) + ... repmat(talks_to(i,:),nan_count,1); j=j+nan_count; end % drop those nodes which fall outside the bounds of the % original array L = (nn(:,1)<1) | (nn(:,1)>NA(1)) | ... (nn(:,2)<1) | (nn(:,2)>NA(2)) | ... (nn(:,3)<1) | (nn(:,3)>NA(3)); nn(L,:)=[]; % form the same format 4 column array as nan_list neighbors_list=[sub2ind(NA,nn(:,1),nn(:,2),nn(:,3)),nn]; % delete replicates in the neighbors list neighbors_list=unique(neighbors_list,'rows'); % and delete those which are also in the list of NaNs. neighbors_list=setdiff(neighbors_list,nan_list,'rows'); else neighbors_list=[]; end
github
compneuro-da/rsHRF-master
rsHRF_band_filter.m
.m
rsHRF-master/rsHRF_band_filter.m
1,907
utf_8
0a42ce81cbe9a24d88c672994eebab72
function x = rsHRF_band_filter(x,TR,Bands,m) % data: x nobs*nvar if nargin<4 m = 5000; %block size end nvar = size(x,2); nbin = ceil(nvar/m); for i=1:nbin if i~=nbin ind_X = (i-1)*m+1:i*m ; else ind_X = (i-1)*m+1:nvar ; end x1 = x(:,ind_X); x1 = conn_filter(TR,Bands,x1,'full') +...%mean-center by default repmat(mean(x1,1),size(x1,1),1); %mean back in x(:,ind_X) = x1; end clear x1; function [y,fy]=conn_filter(rt,filter,x,option) % from CONN toolbox, www.conn-toolbox.org USEDCT=true; if nargin<4, option='full'; end if strcmpi(option,'base'), Nx=x; x=eye(Nx); end if USEDCT % discrete cosine basis Nx=size(x,1); fy=fft(cat(1,x,flipud(x)),[],1); f=(0:size(fy,1)-1); f=min(f,size(fy,1)-f); switch(lower(option)) case {'full','base'} idx=find(f<filter(1)*(rt*size(fy,1))|f>=filter(2)*(rt*size(fy,1))); %idx=idx(idx>1); fy(idx,:)=0; k=1; %2*size(fy,1)*(min(.5,filter(2)*rt)-max(0,filter(1)*rt))/max(1,size(fy,1)-numel(idx)); y=real(ifft(fy,[],1))*k; y=y(1:Nx,:); case 'partial' idx=find(f>=filter(1)*(rt*size(x,1))&f<filter(2)*(rt*size(x,1))); %if ~any(idx==1), idx=[1,idx]; end y=fy(idx,:); end else % discrete fourier basis fy=fft(x,[],1); f=(0:size(fy,1)-1); f=min(f,size(fy,1)-f); switch(lower(option)) case 'full' idx=find(f<filter(1)*(rt*size(fy,1))|f>=filter(2)*(rt*size(fy,1))); %idx=idx(idx>1); fy(idx,:)=0; k=1; %2*size(fy,1)*(min(.5,filter(2)*rt)-max(0,filter(1)*rt))/max(1,size(fy,1)-numel(idx)); y=real(ifft(fy,[],1))*k; case 'partial' idx=find(f>=filter(1)*(rt*size(x,1))&f<filter(2)*(rt*size(x,1))); %if ~any(idx==1), idx=[1,idx]; end y=fy(idx,:); end end
github
compneuro-da/rsHRF-master
rsHRF_deleteoutliers.m
.m
rsHRF-master/rsHRF_deleteoutliers.m
3,398
utf_8
afbe5d17fc43047bd25f0386a8ff14b3
function [b,idx,outliers] = rsHRF_deleteoutliers(a,alpha,rep); % [B, IDX, OUTLIERS] = DELETEOUTLIERS(A, ALPHA, REP) % % For input vector A, returns a vector B with outliers (at the significance % level alpha) removed. Also, optional output argument idx returns the % indices in A of outlier values. Optional output argument outliers returns % the outlying values in A. % % ALPHA is the significance level for determination of outliers. If not % provided, alpha defaults to 0.05. % % REP is an optional argument that forces the replacement of removed % elements with NaNs to presereve the length of a. (Thanks for the % suggestion, Urs.) % % This is an iterative implementation of the Grubbs Test that tests one % value at a time. In any given iteration, the tested value is either the % highest value, or the lowest, and is the value that is furthest % from the sample mean. Infinite elements are discarded if rep is 0, or % replaced with NaNs if rep is 1 (thanks again, Urs). % % Appropriate application of the test requires that data can be reasonably % approximated by a normal distribution. For reference, see: % 1) "Procedures for Detecting Outlying Observations in Samples," by F.E. % Grubbs; Technometrics, 11-1:1--21; Feb., 1969, and % 2) _Outliers in Statistical Data_, by V. Barnett and % T. Lewis; Wiley Series in Probability and Mathematical Statistics; % John Wiley & Sons; Chichester, 1994. % A good online discussion of the test is also given in NIST's Engineering % Statistics Handbook: % http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm % % ex: % [B,idx,outliers] = deleteoutliers([1.1 1.3 0.9 1.2 -6.4 1.2 0.94 4.2 1.3 1.0 6.8 1.3 1.2], 0.05) % returns: % B = 1.1000 1.3000 0.9000 1.2000 1.2000 0.9400 1.3000 1.0000 1.3000 1.2000 % idx = 5 8 11 % outliers = -6.4000 4.2000 6.8000 % % ex: % B = deleteoutliers([1.1 1.3 0.9 1.2 -6.4 1.2 0.94 4.2 1.3 1.0 6.8 1.3 1.2 % Inf 1.2 -Inf 1.1], 0.05, 1) % returns: % B = 1.1000 1.3000 0.9000 1.2000 NaN 1.2000 0.9400 NaN 1.3000 1.0000 NaN 1.3000 1.2000 NaN 1.2000 NaN 1.1000 % Written by Brett Shoelson, Ph.D. % [email protected] % 9/10/03 % Modified 9/23/03 to address suggestions by Urs Schwartz. % Modified 10/08/03 to avoid errors caused by duplicate "maxvals." % (Thanks to Valeri Makarov for modification suggestion.) if nargin == 1 alpha = 0.05; rep = 0; elseif nargin == 2 rep = 0; elseif nargin == 3 if ~ismember(rep,[0 1]) error('Please enter a 1 or a 0 for optional argument rep.') end elseif nargin > 3 error('Requires 1,2, or 3 input arguments.'); end if isempty(alpha) alpha = 0.05; end b = a; b(isinf(a)) = NaN; %Delete outliers: outlier = 1; while outlier tmp = b(~isnan(b)); meanval = mean(tmp); maxval = tmp(find(abs(tmp-mean(tmp))==max(abs(tmp-mean(tmp))))); maxval = maxval(1); sdval = std(tmp); tn = abs((maxval-meanval)/sdval); critval = zcritical(alpha,length(tmp)); outlier = tn > critval; if outlier tmp = find(a == maxval); b(tmp) = NaN; end end if nargout >= 2 idx = find(isnan(b)); end if nargout > 2 outliers = a(idx); end if ~rep b=b(~isnan(b)); end return function zcrit = zcritical(alpha,n) %ZCRIT = ZCRITICAL(ALPHA,N) % Computes the critical z value for rejecting outliers (GRUBBS TEST) tcrit = tinv(alpha/(2*n),n-2); zcrit = (n-1)/sqrt(n)*(sqrt(tcrit^2/(n-2+tcrit^2)));
github
compneuro-da/rsHRF-master
rsHRF_ROI_sig_job.m
.m
rsHRF-master/rsHRF_ROI_sig_job.m
2,097
utf_8
4fa12ffe69a0327b9e3b1ead60f2170d
function rsHRF_ROI_sig_job(job) ROI = job.Datasig; %cell file [data_txt,mat_name]= rsHRF_check_ROIsig(ROI); tmp = data_txt(:,1); if job.para_global.combine_ROI data = cell2mat(tmp'); % combine all ROI together tmp={}; tmp{1} = data; [~,outname,~] = fileparts(data_txt{1,2}); fprintf('Combine all input ROIs for connectivity analysis, output is "*comb_%s*.mat"\n',outname) end nROI = length(tmp); for i=1:nROI data = tmp{i}; if isempty(data_txt{1,2}) error('No data input!') else [fpath,name,~] = fileparts(data_txt{1,2}); if job.para_global.combine_ROI job.raw_outname = ['combROI_',name]; else if isempty(mat_name{i}) job.raw_outname = name; else job.raw_outname = [name,'_',mat_name{i}]; end end end outdir = job.outdir{1}; if isempty(outdir) outdir = fpath; else if ~exist(outdir,'dir') mkdir(outdir) end end [data,data_nuisancerm] = rsHRF_denoise_job(job,data); flag_ROI = 1; if isfield(job,'HRFE') % deconvolution rsHRF_deconv_job(job,data,data_nuisancerm,flag_ROI, outdir); else rsHRF_conn_job(job,data,flag_ROI, outdir); end end function [data_txt,var_name]= rsHRF_check_ROIsig(ROI) nROI = length(ROI); data_txt = cell(nROI,2); var_name = cell(nROI,1); for i=1:nROI tmp2 = ROI(i).sigdata{1}; [~,~,ext] = fileparts(tmp2); if strfind(ext,'txt') data_txt{i,1} = load(tmp2); data_txt{i,2} = tmp2; elseif strfind(ext,'mat') tmp3 = load(tmp2); var_name{i} = strcat(ROI(i).name); try eval(['data_txt{i,1} = tmp3.',var_name{i},';']); catch tmp4 = fieldnames(tmp3); if length(tmp4)==1 eval(['data_txt{i,1} = tmp3.',tmp4{1},';']); else error(['there are more than one variable in mat file, and no variable ''',var_name,'" in mat file']); end end data_txt{i,2} = tmp2; end end
github
compneuro-da/rsHRF-master
rsHRF_estimation_temporal_basis.m
.m
rsHRF-master/rsHRF_estimation_temporal_basis.m
11,630
utf_8
1f2b9bf962a3d78fb4dc5359a2f908e3
function [beta_hrf, bf, event_bold] = rsHRF_estimation_temporal_basis(data,xBF,temporal_mask,flag_parfor) % xBF.TR = 2; % xBF.T = 8; % xBF.T0 = fix(xBF.T/2); (reference time bin, see slice timing) % xBF.dt = xBF.TR/xBF.T; % xBF.AR_lag = 1; % xBF.thr = 1; % xBF.len = 25; % xBF.localK = 2; % temporal_mask: scrubbing mask. % By: Guo-Rong Wu ([email protected]). % Faculty of Psychology, Southwest University. % History: % - 2015-04-17 - Initial version. % - 2018-07-18 - fix Warning: Rank deficient, copy code from regress.m % addd AR_lag=0. % set paramater for local peak detection. % - 2019-08-01 - add temporal basis set (Fourier Set, Gamma function) if nargin<4 flag_parfor = 1; end [N, nvar] = size(data); if isnan(xBF.order) para = rsHRF_global_para; xBF.order = para.num_basis; end bf = wgr_spm_get_bf(xBF); warning('off','all') fprintf('#%d \n',nvar) beta_hrf = cell(1,nvar); event_bold= cell(1,nvar); if flag_parfor parfor i=1:nvar [beta_hrf{1,i}, event_bold{i}] =wgr_hrf_estimation(data(:,i),xBF,N,bf,temporal_mask); end else for i=1:nvar [beta_hrf{1,i}, event_bold{i}] =wgr_hrf_estimation(data(:,i),xBF,N,bf,temporal_mask); end end beta_hrf =cell2mat(beta_hrf); warning on return function [bf] = wgr_spm_get_bf(xBF) % Fill in basis function structure % FORMAT [xBF] = spm_get_bf(xBF) % % xBF.dt - time bin length {seconds} % xBF.name - description of basis functions specified % 'Canonical HRF (with time derivative)' % 'Canonical HRF (with time and dispersion derivatives)' % 'Gamma functions' % 'Fourier set' % 'Fourier Set (Hanning)' % xBF.T - microtime resolution (for 'Canonical HRF*') % bf - array of basis functions %__________________________________________________________________________ % % spm_get_bf prompts for basis functions to model event or epoch-related % responses. The basis functions returned are unitary and orthonormal % when defined as a function of peri-stimulus time in time-bins. % It is at this point that the distinction between event and epoch-related % responses enters. %__________________________________________________________________________ % Copyright (C) 1999-2011 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_get_bf.m 4473 2011-09-08 18:07:45Z guillaume $ % Edited by Guorong Wu. 2019-08-02 %-Length of time bin %-------------------------------------------------------------------------- dt = xBF.dt; %'time bin for basis functions {secs}'; l = xBF.len; h = xBF.order; %-Create basis functions %========================================================================== %-Microtime resolution %---------------------------------------------------------------------- fMRI_T = xBF.T; %-Create basis functions %========================================================================== fprintf('Basis function: %s\n',xBF.name) switch xBF.name case {'Fourier set','Fourier set (Hanning)'} %---------------------------------------------------------------------- pst = [0:dt:l]'; pst = pst/max(pst); %-Hanning window %---------------------------------------------------------------------- if strcmp(xBF.name,'Fourier set (Hanning)') g = (1 - cos(2*pi*pst))/2; else g = ones(size(pst)); end %-Zeroth and higher Fourier terms %---------------------------------------------------------------------- bf = g; for i = 1:h bf = [bf g.*sin(i*2*pi*pst)]; bf = [bf g.*cos(i*2*pi*pst)]; end case {'Gamma functions'} %---------------------------------------------------------------------- pst = [0:dt:l]'; bf = spm_gamma_bf(pst,h); otherwise %-Canonical hemodynamic response function %---------------------------------------------------------------------- [bf, p] = spm_hrf(dt,[],fMRI_T); p(end) = xBF.len; [bf, p] = spm_hrf(dt,p,fMRI_T); %-Add time derivative %---------------------------------------------------------------------- if strfind(xBF.name,'time') dp = 1; p(6) = p(6) + dp; D = (bf(:,1) - spm_hrf(dt,p,fMRI_T))/dp; bf = [bf D(:)]; p(6) = p(6) - dp; %-Add dispersion derivative %------------------------------------------------------------------ if strfind(xBF.name,'dispersion') dp = 0.01; p(3) = p(3) + dp; D = (bf(:,1) - spm_hrf(dt,p,fMRI_T))/dp; bf = [bf D(:)]; end end end %-Orthogonalise and fill in basis function structure %-------------------------------------------------------------------------- bf = spm_orth(bf); return %========================================================================== %- S U B - F U N C T I O N S %========================================================================== function bf = spm_gamma_bf(u,h) % Return basis functions (Gamma functions) used for Volterra expansion % FORMAT bf = spm_gamma_bf(u,h); % u - times {seconds} % h - order % bf - basis functions (mixture of Gammas) %__________________________________________________________________________ u = u(:); bf = []; for i = 2:(1 + h) m = 2^i; s = sqrt(m); bf = [bf spm_Gpdf(u,(m/s)^2,m/s^2)]; end function [beta_hrf, u0]= wgr_hrf_estimation(dat,xBF,N,bf,temporal_mask) %% estimate HRF thr = xBF.thr; if ~isfield(xBF,'localK') if xBF.TR<=2 localK = 1; else localK = 2; end else localK = xBF.localK; end u0 = rsHRF_find_event_vector(dat,thr,localK,temporal_mask); u = [ full(u0) zeros(xBF.T-1,N) ]; u = reshape(u,1,[]); %(microtime) [beta, lag] = wgr_hrf_fit(dat,xBF,u,bf); beta_hrf = beta; beta_hrf(end+1) = lag; u0 = find(full(u0(:))); return function varargout = wgr_hrf_fit(dat,xBF,u,bf) % u - BOLD event vector (microtime). % nlag - time lag from neural event to BOLD event . lag = xBF.lag; AR_lag = xBF.AR_lag; nlag = length(lag); erm = zeros(1,nlag); beta = zeros(size(bf,2)+1,nlag); % fprintf('Converged after ') for i=1:nlag u_lag = [u(1,lag(i)+1:end) zeros(1,lag(i))]'; [erm(i), beta(:,i)] = wgr_glm_estimation(dat,u_lag,bf,xBF.T,xBF.T0,AR_lag); end [~, id] = rsHRF_knee_pt(erm); if id==nlag id = id-1; end varargout{1} = beta(:,id+1); if nargout>1 varargout{2} = lag(id+1); end % fprintf('iterations!\n') return function [res_sum, Beta] = wgr_glm_estimation(dat,u,bf,T,T0,AR_lag) % u: BOLD event vector (microtime). nscans = size(dat,1); x = wgr_onset_design(u,bf,T,T0,nscans); X = [x ones(nscans,1)]; [res_sum, Beta] = wgr_glsco(X,dat,AR_lag); return function X = wgr_onset_design(u,bf,T,T0,nscans) % u: BOLD event vector (microtime). % bf: - basis set matrix % T: - microtime resolution (number of time bins per scan) % T0: - microtime onset (reference time bin, see slice timing) ind = 1:length(u); X = []; for p = 1:size(bf,2) x = conv(u,bf(:,p)); x = x(ind); X = [X x]; end %-Resample regressors at acquisition times X = X( (0:(nscans - 1))*T + T0, :); return function [res_sum, Beta] = wgr_glsco(X,Y,AR_lag) % Linear regression when disturbance terms follow AR(p) % ----------------------------------- % Model: % Yt = Xt * Beta + ut , % ut = Phi1 * u(t-1) + ... + Phip * u(t-p) + et % where et ~ N(0,s^2) % ----------------------------------- % Algorithm: % Cochrane-Orcutt iterated regression (Feasible generalized least squares) % ----------------------------------- % Usage: % Y = dependent variable (n * 1 vector) % X = regressors (n * k matrix) % AR_lag = number of lags in AR process % ----------------------------------- % Returns: % Beta = estimator corresponding to the k regressors if nargin < 3; AR_lag = 0;end if nargin < 4; max_iter = 20;end [nobs, nvar] = size(X); % Beta = X\Y; Beta = wgr_regress(Y,X); resid = Y - X * Beta; if ~AR_lag %res_sum = sum(resid.^2); res_sum=cov(resid); return end max_tol = min(1e-6,max(abs(Beta))/1000); for r = 1:max_iter % fprintf('Iteration No. %d\n',r) Beta_temp = Beta; X_AR = zeros(nobs-2*AR_lag,AR_lag); for m = 1:AR_lag X_AR(:,m) = resid(AR_lag+1-m:nobs-AR_lag-m); end Y_AR = resid(AR_lag+1:nobs-AR_lag); % AR_para = X_AR\Y_AR; AR_para = wgr_regress(Y_AR,X_AR); X_main = X(AR_lag+1:nobs,:); Y_main = Y(AR_lag+1:nobs); for m = 1:AR_lag X_main = X_main-AR_para(m)*X(AR_lag+1-m:nobs-m,:); Y_main = Y_main-AR_para(m)*Y(AR_lag+1-m:nobs-m); end % Beta = X_main\Y_main; Beta = wgr_regress(Y_main,X_main); resid = Y(AR_lag+1:nobs) - X(AR_lag+1:nobs,:)*Beta; if max(abs(Beta-Beta_temp)) < max_tol % fprintf('%d ,',r) % fprintf('Converged after %d iterations!\n',r) break end end % res_sum = sum(resid.^2); res_sum = cov(resid); %if r == max_iter % fprintf('Maximum %d iteration reached.\n',max_iter) %end return function [hrf,p] = spm_hrf(RT,P,T) % Haemodynamic response function % FORMAT [hrf,p] = spm_hrf(RT,p,T) % RT - scan repeat time % p - parameters of the response function (two Gamma functions) % % defaults % {seconds} % p(1) - delay of response (relative to onset) 6 % p(2) - delay of undershoot (relative to onset) 16 % p(3) - dispersion of response 1 % p(4) - dispersion of undershoot 1 % p(5) - ratio of response to undershoot 6 % p(6) - onset {seconds} 0 % p(7) - length of kernel {seconds} 32 % % T - microtime resolution [Default: 16] % % hrf - haemodynamic response function % p - parameters of the response function %__________________________________________________________________________ % Copyright (C) 1996-2015 Wellcome Trust Centre for Neuroimaging % Karl Friston % $Id: spm_hrf.m 6594 2015-11-06 18:47:05Z guillaume $ %-Parameters of the response function %-------------------------------------------------------------------------- try p = spm_get_defaults('stats.fmri.hrf'); catch p = [6 16 1 1 6 0 32]; end if nargin > 1 p(1:length(P)) = P; end %-Microtime resolution %-------------------------------------------------------------------------- if nargin > 2 fMRI_T = T; else fMRI_T = spm_get_defaults('stats.fmri.t'); end %-Modelled haemodynamic response function - {mixture of Gammas} %-------------------------------------------------------------------------- dt = RT/fMRI_T; u = [0:ceil(p(7)/dt)] - p(6)/dt; hrf = spm_Gpdf(u,p(1)/p(3),dt/p(3)) - spm_Gpdf(u,p(2)/p(4),dt/p(4))/p(5); hrf = hrf([0:floor(p(7)/RT)]*fMRI_T + 1); hrf = hrf'/sum(hrf); function b = wgr_regress(y,X) % copy from function [b,bint,r,rint,stats] = regress(y,X,alpha) [n,ncolX] = size(X); % Use the rank-revealing QR to remove dependent columns of X. [Q,R,perm] = qr(X,0); if isempty(R) p = 0; elseif isvector(R) p = double(abs(R(1))>0); else p = sum(abs(diag(R)) > max(n,ncolX)*eps(R(1))); end if p < ncolX % warning(message('stats:regress:RankDefDesignMat')); R = R(1:p,1:p); Q = Q(:,1:p); perm = perm(1:p); end % Compute the LS coefficients, filling in zeros in elements corresponding % to rows of X that were thrown out. b = zeros(ncolX,1); b(perm) = R \ (Q'*y);
github
compneuro-da/rsHRF-master
rsHRF_viewer.m
.m
rsHRF-master/rsHRF_viewer.m
13,643
utf_8
31ffdd725e57f1fd4c1d762605d380a4
function st = rsHRF_viewer(job); % [email protected] ; Guo-Rong Wu % 2017, 18th May. % 2019, 25th Oct, updated. % 2020, 9th Oct, colorbar Yticklabel removed. underlay_img = job.underlay_nii{1}; img = job.stat_nii{1}; HRF_mat = job.HRF_mat; clear st; spm_orthviews('Reset'); global st st.fig = figure('Visible','on',... 'numbertitle','off',... 'menubar','none',... 'units','normalized',... 'color','w',... 'position',[0.05,0.05,0.25,0.4],... 'name','HRF Viewer (v1.1)',... 'resize','on'); h = spm_orthviews('Image', underlay_img, [0 0.05 1 1]); st.h = h; st.underlay_img = underlay_img; %% MNI input info.mni_tx = uicontrol('Parent',st.fig,... 'style','pushbutton',... 'units','norm',... 'position',[0.58 0.45 0.21 0.08],... 'string','MNI (x,y,z)',... 'backgroundc','w',... 'fontunits', 'normalized', 'fontsize',0.35,... 'horizontalalign','center',... 'value',1,... 'TooltipString','Sphere Radius'); info.mni_tx = uicontrol('Parent',st.fig,... 'style','pushbutton',... 'units','norm',... 'position',[0.82 0.45 0.13 0.08],... 'string','Radius',... 'backgroundc','w',... 'fontunits', 'normalized', 'fontsize',0.35,... 'horizontalalign','center',... 'value',1,... 'TooltipString','Sphere Radius'); info.ed_mni = uicontrol('Parent',st.fig,... 'style','edit',... 'unit','norm',... 'position',[0.58 0.36 0.21 0.08],... 'fontunits', 'normalized', 'fontsize',0.5,... 'string','0 0 0',... 'KeyPressFcn',@wgr_edit_mni,... 'horizontalalign','center'); info.ed_radius = uicontrol('Parent',st.fig,... 'style','edit',... 'unit','norm',... 'position',[0.82 0.36 0.13 0.08],... 'fontunits', 'normalized', 'fontsize',0.5,... 'string','0',... 'horizontalalign','center'); %% threshold /extent info.thresh = uicontrol('Parent',st.fig,... 'style','pushbutton',... 'units','norm',... 'position',[0.58 0.25 0.21 0.08],... 'string','Threshold',... 'backgroundc','w',... 'fontunits', 'normalized', 'fontsize',0.4,... 'horizontalalign','center',... 'value',1,... 'TooltipString','...'); info.extent = uicontrol('Parent',st.fig,... 'style','pushbutton',... 'units','norm',... 'position',[0.82 0.25 0.13 0.08],... 'string','Extent',... 'backgroundc','w',... 'fontunits', 'normalized', 'fontsize',0.4,... 'horizontalalign','center',... 'value',1,... 'TooltipString','Sphere Radius'); info.ed_threshold = uicontrol('Parent',st.fig,... 'style','edit',... 'unit','norm',... 'position',[0.58 0.15 0.21 0.08],... 'fontunits', 'normalized', 'fontsize',0.5,... 'string','-1.9 1.9',... 'callback',@wgr_update,... 'horizontalalign','center'); info.ed_extent = uicontrol('Parent',st.fig,... 'style','edit',... 'unit','norm',... 'position',[0.82 0.15 0.13 0.08],... 'fontunits', 'normalized', 'fontsize',0.5,... 'string','20',... 'callback',@wgr_update,... 'horizontalalign','center'); info.intensity = uicontrol('Parent',st.fig,... 'style','pushbutton',... 'units','norm',... 'backgroundc','w',... 'position',[0.58 0.05 0.21 0.08],... 'string','',... 'TooltipString','value/intensity',... 'fontunits', 'normalized', 'fontsize',0.5,'val',1); info.plot = uicontrol('Parent',st.fig,... 'style','pushbutton',... 'units','norm',... 'backgroundc','w',... 'position',[0.82 0.05 0.13 0.08],... 'string','Plot',... 'callback',@wgr_plot_hrf,... 'TooltipString','Plot HRF shape',... 'fontunits', 'normalized', 'fontsize',0.4,'val',1); st.info = info; if ~isempty(img) vv = spm_vol(img); st.v = vv; refinfo = load(HRF_mat{1}{1},'v0'); if any(vv.mat - refinfo.v0.mat) fprintf('(Underlay image) %s \n is different from (1st, ''v0.mat'') \n%s\n',underlay_img, HRF_mat{1}{1}) end [data, mni] = spm_read_vols(vv); data(isnan(data))=0; st.mni = mni; st.stat_data = data; [peakcoord, peakintensity] = wgr_update; end spm_orthviews('Reposition',peakcoord); movegui(st.fig,'center'); set(info.ed_mni,'string',sprintf('[%d,%d,%d]',round(peakcoord))); set(info.intensity,'string',sprintf('%3.3f',peakintensity)); %% HRF shapes fprintf('checking HRF mat-files...\n') refinfo = load(HRF_mat{1}{1},'v0','smask_ind'); if 0 % keep only survived voxels idunique = intersect(refinfo.smask_ind,pos); else idunique = refinfo.smask_ind; end k00=0; for i=1:length(HRF_mat) group = HRF_mat{i}; for j=1:size(group,1) aa = load(group{j},'v0','smask_ind'); if any(aa.v0.mat - refinfo.v0.mat) fprintf('%s \n is different from (1st, ''v0.mat'') \n%s\n',group{j}, HRF_mat{1}{1}) else idunique = intersect(idunique,aa.smask_ind); end k00=k00+1; end end fprintf('\nDone\n') % fprintf('keep only survived voxels\n other voxels information will be removed.\n') % fprintf('Loading HRF Shapes (only survived #%d voxels)...\n',length(idunique)) fprintf('Loading HRF Shapes...\n',length(idunique)) ng = length(HRF_mat); aa = load(HRF_mat{1}{1},'hrfa'); mf = zeros(size(aa.hrfa,1),length(idunique),ng); sf = mf; for i=1:ng group = HRF_mat{i}; k00 = size(group,1); for j=1:k00 fprintf('.') aa = load(group{j},'v0','smask_ind','hrfa'); if j==1 HRFa = zeros(size(aa.hrfa,1),length(idunique),k00); end [C,ia,ib] = intersect(aa.smask_ind, idunique); HRFa(:,:,j) = aa.hrfa(:,ia); end mf(:,:,i) = mean(HRFa,3); % sf(:,:,i) = std(HRFa,0,3);%std sf(:,:,i) = std(HRFa,0,3)./sqrt(k00);%SE end fprintf('Done\n') aa = load(group{j},'para'); st.dt = aa.para.dt; st.mf = mf; st.sf = sf; st.idunique = idunique; set(st.fig,'WindowButtonDownFcn',@wgr_get_crosshairs); %double click function [] = wgr_edit_mni(varargin) global st mni_coord = str2num(get(st.info.ed_mni,'string')); spm_orthviews('Reposition',mni_coord); v = st.v; data = st.stat_data; c_cor = mni2cor(mni_coord, v.mat)'; cvalue = data(c_cor(1),c_cor(2),c_cor(3)); set(st.info.intensity,'string',sprintf('%3.3f',cvalue)); function [] = wgr_get_crosshairs(varargin) global st if strcmp(get(gcf,'SelectionType'),'normal') mni_coord= spm_orthviews('pos')'; v = st.v; data = st.stat_data; c_cor = mni2cor(mni_coord,v.mat); cvalue = data(c_cor(1),c_cor(2),c_cor(3)); set(st.info.ed_mni,'string',sprintf('[%d,%d,%d]',round(mni_coord))); set(st.info.intensity,'string',sprintf('%3.3f',cvalue)); return end function []=wgr_plot_hrf(varargin) global st mni_coord= spm_orthviews('pos')'; radius = str2num(get(st.info.ed_radius,'string')); if radius xY = []; xY.def='sphere'; xY.xyz= mni_coord'; xY.spec = radius; [xY, XYZmm, ~] = spm_ROI(xY, st.tmpmni); mni_coord = [XYZmm';mni_coord]; else xY.xyz= mni_coord'; end mf = st.mf; sf = st.sf; idunique = st.idunique; v = st.v; dt = st.dt; data = st.stat_data; c_cor = mni2cor(mni_coord,v.mat); cid = sub2ind(size(data),c_cor(:,1),c_cor(:,2),c_cor(:,3) ); % id = find(idunique==cid); %length(cid)==1; [C,id,ib] = intersect(idunique,cid); mf0 = squeeze(mean(mf(:,id,:),2)); sf0 = squeeze(mean(sf(:,id,:),2)); nobs = size(mf,1); xx = (1:nobs)*dt; if isempty(id) fprintf('no HRF information in this position \n') else figure1 = figure('color','w'); ax = axes('Parent',figure1,'Position',[0.15 0.15 0.7 0.7]); movegui(figure1,'east'); ng = size(mf0,2); if ng<7 colo = {'r','b','g',[1 0 1],'k',[0.8 0.6 0]}; else colo1 = jet(ng); for i=1:ng colo{i} = colo1(i,:); end end hold all; for i=1:ng flag_norm = 0; %peak normalization if flag_norm mf0(:,i) = mf0(:,i) ./max(mf0(:,i) ); end plot(ax, xx,mf0(:,i) ,'LineWidth',2,'color',colo{i}); end for i=1:ng if any(sf0(:,i)) fill(ax, [xx fliplr(xx)], [mf0(:,i)'+sf0(:,1)' fliplr(mf0(:,i)'-sf0(:,i)')],colo{i}, ... 'LineStyle','none','LineWidth',1,'EdgeColor',colo{i},'edgealpha',0,'facealpha',0.5); end end xlim(ax,[0 max(xx)]) axis square a = mf0 - 1.5*sf0 ; minx = min(a(:)); a = mf0 + 1.5*sf0; maxx= max(a(:)); ylim(ax,[minx maxx]) hold off gg={}; for i=1:ng gg{i} = ['G',num2str(i)]; end legend(ax,gg,'box','off') set(ax,'FontName','Calibri','FontSize',14); %'Cambria','Times New Roman' box on xlabel(ax,'Time(s)') if radius title(sprintf('HRF (center MNI:[%d,%d,%d], spherical radius: %3.2f,#%dvoxels)',round(xY.xyz), radius,size(mni_coord,1))); else title(sprintf('HRF (MNI:[%d,%d,%d])',round(xY.xyz))); end % set(st.info.ed_mni,'string',sprintf('[%d,%d,%d]',round(mni_coord))); % set(st.info.intensity,'string',sprintf('%3.3f',cvalue)); end return % function [peakcoord, peakintensity] = wgr_threshold_map() function [peakcoord, peakintensity] = wgr_update(varargin) mni_coord= spm_orthviews('pos')'; global st mni = st.mni ; data = st.stat_data ; T_threhold = str2num(get(st.info.ed_threshold,'string')); extent_clu = str2num(get(st.info.ed_extent,'string')); v = st.v ; data(data>T_threhold(1)&data<T_threhold(2))=0; XYZ = mni2cor(mni', v.mat)'; if extent_clu>1 id = find(data~=0); [x0,y0,z0] = ind2sub(v.dim,id); A = spm_clusters([x0 y0 z0]'); clu = unique(A(:)); clu_len = zeros(max(clu),1); id2 = []; for kk= 1:max(clu) tmp = find(A(:)==kk); clu_len(kk) = length(tmp); if clu_len(kk)>= extent_clu id2 = [id2;tmp]; end end dat = zeros(v.dim); dat(id(id2)) = data(id(id2)); data = dat; clear dat end pos = find(data~=0); numVoxels = length(pos); if numVoxels==0 fprintf('No survived results <%3.2f or >%3.2f \n',T_threhold) return else fprintf('#%d voxels\n',numVoxels) end tmpmni = mni(:,pos); tmpintensity = data(pos); tmpXYZ = XYZ(:,pos); st.tmpmni = tmpmni; st.tmpXYZ = tmpXYZ; st.tmpZ = tmpintensity; peakpos = find(abs(tmpintensity) == max(abs(tmpintensity))); peakpos = peakpos(1); peakcoord = tmpmni(:,peakpos)'; peakintensity = tmpintensity(peakpos); if any(tmpintensity>0) && any(tmpintensity<0) spm_figure('Colormap','gray-jet') elseif any(tmpintensity>0) && ~any(tmpintensity<0) spm_figure('Colormap','gray-hot') else %if ~any(tmpintensity>0) & any(tmpintensity<0) spm_figure('Colormap','gray-cool') end st.h = spm_orthviews('Image', st.underlay_img, [0 0.05 1 1]); spm_orthviews('AddBlobs', st.h, st.tmpXYZ, st.tmpZ, st.v.mat); spm_orthviews('Reposition',mni_coord); fprintf('Peak MNI: [%d %d %d], Peak value: %2.3f\n',[round(peakcoord) peakintensity]) spm_orthviews('Redraw'); hh= cellfun(@(x) isempty(x), st.vols); id= find(hh); for i=2:id(1)-2 st.vols{i, 1}.blobs{1, 1}.cbar.YTickLabel={}; end return function coordinate = mni2cor(mni, T) if isempty(mni) coordinate = []; return; end coordinate = [mni(:,1) mni(:,2) mni(:,3) ones(size(mni,1),1)]*(inv(T))'; coordinate(:,4) = []; coordinate = round(coordinate); return;
github
compneuro-da/rsHRF-master
rsHRF_conn_run.m
.m
rsHRF-master/rsHRF_conn_run.m
15,141
utf_8
d03feabaea5d3171c10d2d0cb822b2bc
function rsHRF_conn_run(data, connroinfo,v0,name,outdir,flag_pval_pwgc,flag_nii_gii); %data: nobs x nvar (3D index) fprintf('Connectivity analysis...\n ') meastr = {'pwGC','CGC','PCGC','Pearson','PartialPearson','Spearman','PartialSpearman',}; para_global = rsHRF_global_para; regmode = para_global.regmode; % for GC for j=1:size(connroinfo,1) fprintf('Conn %d\n',j) roiid = connroinfo{j,1}; nroi = size(roiid,1); flag_seedROI = connroinfo{j,2}; conn_type = connroinfo{j,3}; order = connroinfo{j,4}; ndinfo = connroinfo{j,5}; ROI = []; for i=1:nroi tmp = nanmean(data(:,roiid{i,1}),2) ; ROI(:,i) = tmp; end if nroi==0 %&& isempty(v0) ROI = data; end if ~flag_seedROI % seed map if flag_nii_gii==1 ext_nii_gii = '.nii'; else ext_nii_gii = '.gii'; end smask_ind = find(var(data)>0); dat.data = data(:,smask_ind); dat.ROI = ROI; dat3 = zeros(v0.dim); if conn_type==1 || conn_type==2 || conn_type==3 if conn_type==2 conn_type = 1; % pairwise warning('Change Contional GC to Pairwise GC') elseif conn_type==3 conn_type = 1; % pairwise warning('Change Partially Contioned GC to Pairwise GC') end disp('Pairwise GC for seed based connectivity analysis') [M] = wgr_GC(dat,order,ndinfo,conn_type,regmode,flag_pval_pwgc); ordeinfo = ['_order',num2str(order)]; for i=1:nroi if nroi>1 tmp = [num2str(i),'_']; else tmp = ''; end fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_outflow_pwGC',ordeinfo,ext_nii_gii]); out.outflow_pwGC{i} = fname; gc = M.GC_Matrix_Out(i,:); dat3(smask_ind) = gc; rsHRF_write_file(fname,dat3,flag_nii_gii,v0) fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_outflow_N_pwGC',ordeinfo,ext_nii_gii]); out.outflow_N_pwGC{i} = fname; dat3(smask_ind) = wgr_pwgc_2normal(gc,M.nobs,order); rsHRF_write_file(fname,dat3,flag_nii_gii,v0) if flag_pval_pwgc fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_outflow_pval_pwGC',ordeinfo,ext_nii_gii]); out.outflow_pval_pwGC{i} = fname; dat3(smask_ind) = M.pval_GC_Matrix_Out(i,:); rsHRF_write_file(fname,dat3,flag_nii_gii,v0) end fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_inflow_pwGC',ordeinfo,ext_nii_gii]); out.inflow_pwGC{i} = fname; gc = M.GC_Matrix_In(i,:); dat3(smask_ind) = gc; rsHRF_write_file(fname,dat3,flag_nii_gii,v0) fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_inflow_N_pwGC',ordeinfo,ext_nii_gii]); out.inflow_N_pwGC{i} = fname; dat3(smask_ind) = wgr_pwgc_2normal(gc,M.nobs,order); rsHRF_write_file(fname,dat3,flag_nii_gii,v0) seed_information = roiid(i,:); save(fullfile(outdir,[connroinfo{j,6},tmp,name,'_SeedInfo_pwGC',ordeinfo,'.mat']),'seed_information'); if flag_pval_pwgc fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_inflow_pval_pwGC',ordeinfo,ext_nii_gii]); out.inflow_pval_pwGC{i} = fname; dat3(smask_ind) = M.pval_GC_Matrix_In(i,:); rsHRF_write_file(fname,dat3,flag_nii_gii,v0) end end else [M] = wgr_FC(dat,conn_type); for i=1:nroi if nroi>1 tmp = [num2str(i),'_']; else tmp = ''; end fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_corr_',meastr{connroinfo{j,3}},ext_nii_gii]); out.corr{i} = fname; dat3(smask_ind) = M.Matrix_r(i,:); rsHRF_write_file(fname,dat3,flag_nii_gii,v0) fname = fullfile(outdir,[connroinfo{j,6},tmp,name,'_Z_',meastr{connroinfo{j,3}},ext_nii_gii]); out.Z{i} = fname; dat3(smask_ind) = M.Matrix_z(i,:); rsHRF_write_file(fname,dat3,flag_nii_gii,v0) seed_information = roiid(i,:); save(fullfile(outdir,[connroinfo{j,6},tmp,name,'_SeedInfo_',meastr{connroinfo{j,3}},'.mat']),'seed_information'); end end else %ROI to ROI dat.data = ROI; dat.ROI = []; if conn_type==1 || conn_type==2 || conn_type==3 % 1:pairwise 2:conditional 3: partially conditioned M = wgr_GC(dat,order,ndinfo, conn_type,regmode, flag_pval_pwgc); save(fullfile(outdir,[connroinfo{j,6},name,'_',meastr{connroinfo{j,3}},'.mat']),'M','roiid'); else M = wgr_FC(dat,conn_type); save(fullfile(outdir,[connroinfo{j,6},name,'_Corr_',meastr{connroinfo{j,3}},'.mat']),'M','roiid'); end end end function c = wgr_pwgc_2normal(gc,nobs,order) c = (nobs-order).*gc - (order-1)/3; c(c<0)=0; c = sqrt(c); function [M] = wgr_GC(dat,order,ndinfo,flag_pw_cgc,regmode,flag_pval_pwgc,m); % flag_pw_cgc, 1: pairwise GC, 2: conditional GC, 3: partially conditioned GC. gcstr = {'Pairwise GC','Conditional GC','Partially Conditioned GC'}; data = dat.data; [nobs,nvar] = size(data); ROI = dat.ROI; [nobsROI,nROI] = size(ROI); M.seed_num = nROI; if nROI if nobsROI~=nobs error('different observations (ROI vs Data)') end end if nobs<10 warning('Too few observations !') end fprintf('Data dimension: %d x %d\n',nobs,nvar); if flag_pw_cgc==2 % CGC if nobs<nvar fprintf('#observation < #variable\n'); error('CGC stop!') end end if nargin<7 m = 5000; %block size end M.nvar=nvar; M.nobs=nobs; M.order = order; M.GC_type = gcstr{flag_pw_cgc}; M.ndinfo = ndinfo; if flag_pw_cgc==3 % if nnz(ndinfo)==1 nd = ndinfo(1); if isnan(nd) nd = 6; end ndmax = ndinfo(2); if isnan(ndmax) ndmax = nd+1; end end nbin = ceil(nvar/m); indX={}; indY={}; matrix={}; matrix_out = {}; matrix_in={}; p_matrix_out={}; p_matrix_in={}; if nROI %ROI to data nbinROI = ceil(nROI/m); for i=1:nbinROI if i~=nbinROI ind_X = (i-1)*m+1:i*m ; else ind_X = (i-1)*m+1:nROI ; end indX{i} = ind_X; for j=1:nbin if j~=nbin ind_Y = (j-1)*m+1:j*m ; else ind_Y = (j-1)*m+1:nvar ; end indY{j} = ind_Y; if flag_pval_pwgc [matrix_out{i,j}, matrix_in{i,j}, p_matrix_out{i,j}, p_matrix_in{i,j}] = ... wgr_seedGC(ind_X,ind_Y,ROI,data,order,1,regmode); else [matrix_out{i,j}, matrix_in{i,j}] = wgr_seedGC(ind_X,ind_Y,ROI,data,order,0,regmode); %only pairwise. end end end else % data to data if flag_pw_cgc==3 [y_inform_gain, cind] = wgr_init_partial_conditioning(data,[],ndmax,order); M.information_gain = y_inform_gain; M.condition_id = cind; end if flag_pw_cgc==1 [M.GC_Matrix, M.pval_Matrix] = wgr_PWGC(data,order,regmode,flag_pval_pwgc); end if flag_pw_cgc==2 [M.GC_Matrix, M.pval_Matrix] = rsHRF_mvgc(data',order,regmode,0,flag_pval_pwgc); end if flag_pw_cgc==3 [M.GC_Matrix, M.pval_Matrix] = wgr_PCGC(data,order,cind,nd,regmode,flag_pval_pwgc); end end if nROI M.GC_Matrix_Out = nan(nROI,nvar); M.GC_Matrix_In = M.GC_Matrix_Out ; for i=1:nbinROI for j=1:nbin M.GC_Matrix_Out(indX{i},indY{j}) = matrix_out{i,j}; M.GC_Matrix_In(indX{i},indY{j}) = matrix_in{i,j}; if flag_pval_pwgc M.pval_GC_Matrix_Out(indX{i},indY{j}) = p_matrix_out{i,j}; M.pval_GC_Matrix_In(indX{i},indY{j}) = p_matrix_in{i,j}; end end end else if flag_pw_cgc==1 M.GC_Matrix_N = wgr_pwgc_2normal(M.GC_Matrix,nobs,order); end end clear matrix* p_* indX indY function [F,pvalue] = wgr_PWGC(data,order,regmode,flag_pval); [nvar] = size(data,2); F = zeros(nvar); if flag_pval pvalue = nan(nvar); end for drive=1:nvar for target=1:nvar if drive~=target dat = data(:,[drive target])'; [F0,p0] = rsHRF_mvgc(dat,order,regmode,0,flag_pval); F(drive,target) = F0(1,2); pvalue(drive,target) = p0(1,2); F(target,drive) = F0(2,1); pvalue(target,drive) = p0(2,1); end end end function [F,pvalue] = wgr_PCGC(data,order,cind,nd,regmode,flag_pval); [nvar] = size(data,2); F = zeros(nvar); if flag_pval pvalue = nan(nvar); end parfor drive=1:nvar for target=1:nvar if drive~=target zid = setdiff(cind(drive,:),target,'stable'); dat = data(:,[drive target zid(1:nd)])'; [F(drive,target),pvalue(drive,target)] = ... rsHRF_mvgc(dat,order,regmode,1,flag_pval); end end end function [gc_out, gc_in, p_out, p_in] = wgr_seedGC(ind_X,ind_Y,ROI,data1,order,flag_pval,regmode); [nvar1] = length(ind_X); [nvar2] = length(ind_Y); gc_out = zeros(nvar1,nvar2); gc_in = gc_out; if flag_pval p_out = nan(nvar1,nvar2); p_in = p_out; end parfor drive=1:nvar1 for target=1:nvar2 data = [ROI(:,ind_X(drive)) data1(:,ind_Y(target))]'; [F,pvalue] = rsHRF_mvgc(data,order,regmode,0,flag_pval); if length(F)>1 gc_out(drive,target) = F(1,2); gc_in(drive,target) = F(2,1); p_out(drive,target) = pvalue(1,2); p_in(drive,target) = pvalue(2,1); end end end function [M] = wgr_FC(dat,conn_type,m); % conn_type, 4/5: pearson, 6/7: spearman if conn_type==4 con_type = 'Pearson'; flag_partial=0; elseif conn_type==5 con_type = 'Pearson'; flag_partial=1; elseif conn_type==6 con_type = 'Spearman'; flag_partial=0; elseif conn_type==7 con_type = 'Spearman'; flag_partial=1; end data = dat.data; [nobs,nvar] = size(data); ROI = dat.ROI; [nobsROI,nROI] = size(ROI); M.seed_num = nROI; if nROI if nobsROI~=nobs error('different observations (ROI vs Data)') end end if nobs<10 warning('Too few observations !') end fprintf('Data dimension: %d x %d\n',nobs,nvar); if nargin<3 m = 5000; %block size end M.nvar=nvar; M.nobs=nobs; nbin = ceil(nvar/m); indX={}; indY={}; matrix={}; if nROI %ROI to data nbinROI = ceil(nROI/m); for i=1:nbinROI if i~=nbinROI ind_X = (i-1)*m+1:i*m ; else ind_X = (i-1)*m+1:nROI ; end indX{i} = ind_X; for j=1:nbin if j~=nbin ind_Y = (j-1)*m+1:j*m ; else ind_Y = (j-1)*m+1:nvar ; end indY{j} = ind_Y; matrix_r{i,j} = corr(ROI(:,ind_X),data(:,ind_Y), 'type', con_type); matrix_z{i,j} = atanh(matrix_r{i,j}) ; end end else % data to data if flag_partial % partial correlation if nobs<nvar fprintf('#observation < #variable\n'); error('partial correlation stop!') end end if ~flag_partial for i=1:nbin if i~=nbin ind_X = (i-1)*m+1:i*m ; else ind_X = (i-1)*m+1:nvar ; end indX{i} = ind_X; for j=1:nbin if j~=nbin ind_Y = (j-1)*m+1:j*m ; else ind_Y = (j-1)*m+1:nvar ; end indY{j} = ind_Y; [matrix_r{i,j},matrix_p{i,j}] = corr(data(:,ind_X),data(:,ind_Y), 'type',con_type); matrix_z{i,j} = atanh(matrix_r{i,j}) ; end end else indX{1} = 1:nvar ; indY{1} = 1:nvar ; [matrix_r{1,1},matrix_p{1,1}] = partialcorr(data, 'type',con_type); matrix_z{1,1} = atanh(matrix_r{1,1}) ; end end if nROI M.Matrix_r = nan(nROI,nvar); M.Matrix_z = M.Matrix_r; for i=1:nbinROI for j=1:nbin M.Matrix_r(indX{i},indY{j}) = matrix_r{i,j}; M.Matrix_z(indX{i},indY{j}) = matrix_z{i,j}; end end else M.Matrix_r = nan(nvar,nvar); for i=1:nbin for j=1:nbin M.Matrix_r(indX{i},indY{j}) = matrix_r{i,j}; M.Matrix_z(indX{i},indY{j}) = matrix_z{i,j}; M.Matrix_pval(indX{i},indY{j}) = matrix_p{i,j}; end end M.Matrix_r(1:nvar+1:end)=0; %remove diag value. M.Matrix_z(1:nvar+1:end)=0; %remove diag value. M.Matrix_pval(1:nvar+1:end)=1; %remove diag value. end clear matrix* indX indY function [y, ind] = wgr_init_partial_conditioning(data,seed_signal,ndmax,order) [N,nvar] = size(data); X=cell(nvar,1); past_ind = repmat([1:order],N-order,1) + repmat([0:N-order-1]',1,order); for i=1:nvar past_data= reshape(data(past_ind,i),N-order,order); X{i}= past_data - repmat(mean(past_data), N-order, 1); %%remove mean end ind=zeros(nvar,ndmax); y=ind; if ~isempty(seed_signal) [N2,nvar2] = size(seed_signal); if N~=N2 error('check #observation of seed_signal !') else ind = nan(nvar2,ndmax); y = ind; parfor drive=1:nvar2 past_data = reshape(seed_signal(past_ind,drive),N-order,order); drive_sig = past_data - repmat(mean(past_data), N-order, 1); [y(drive,:), ind(drive,:)]=wgr_information_gain(drive_sig,X,nvar,ndmax); end end else ind = nan(nvar,ndmax); y = ind; parfor drive=1:nvar [y(drive,:), ind(drive,:)]=wgr_information_gain(drive,X,nvar,ndmax); %do not allow to dynamic plot end end function [y, ind]= wgr_information_gain(drive,X,nvar,ndmax) if nnz(drive)==1 indici=setdiff(1:nvar,drive);%,'stable'); t=X{drive}; else %seed signal indici= 1:nvar ; t=drive; end Zt=[]; ind=nan(1,ndmax); y = ind; for nd=1:ndmax n1=length(indici); z=zeros(n1,1); for k=1:n1 Zd=[Zt X{indici(k)}]; z(k)= wgr_MI_gaussian(Zd,t); end [y(1,nd), id] = max(z); Zt = [Zt, X{indici(id)}]; ind(1,nd) = indici(id); indici = setdiff(indici, indici(id));%,'stable'); end function mi = wgr_MI_gaussian(Y,X) % X: N x k_x Y: N x k_y % condtional mutual information % mi = gaussian mutual information X,Y XY_cov = X'*Y; %%here we delete the factor: 1/N. X_cov = X'*X; Y_cov = Y'*Y; all_cov = [X_cov XY_cov;XY_cov' Y_cov]; mi = 0.5*log(abs(det(X_cov)*det(Y_cov)/det(all_cov))); return
github
compneuro-da/rsHRF-master
rsHRF_estimation_impulseest.m
.m
rsHRF-master/rsHRF_estimation_impulseest.m
3,318
utf_8
70435fdafab02c8b3db7641bff6ee530
function [hrfa,event_bold] = rsHRF_estimation_impulseest(data,para); % Nonparametric impulse response estimation. % System Identification Toolbox is required. % % By: Guo-Rong Wu ([email protected]). % Faculty of Psychology, Southwest University. % History: % - 2015-04-17 - Initial version. % para.thr=[1]; % para.lag=[2,6]; % para.TR = 2; % para.len = 24; % second % para.localK = 1; % local peak, f([-localK: localK]+t) <= f(t) % if 0 % Options set for impulseest % options = impulseestOptions; % see impulseestOptions.m for help % options.RegularizationKernel = 'HF'; %Regularizing kernel, used for regularized estimates of impulse response for all input-output channels. Regularization reduces variance of estimated model coefficients and produces a smoother response by trading variance for bias % % 'TC' ? Tuned and correlated kernel, Default: 'TC' % % 'none' ? No regularization is used % % 'CS' ? Cubic spline kernel % % 'SE' ? Squared exponential kernel % % 'SS' ? Stable spline kernel % % 'HF' ? High frequency stable spline kernel % % 'DI' ? Diagonal kernel % % 'DC' ? Diagonal and correlated kernel % options.PW = 5; %Order of the input prewhitening filter. Must be one of the following: % % 'auto' ? Uses a filter of order 10 when RegularizationKernel is 'none'; otherwise, 0. % % Nonnegative integer: Use a nonzero value of prewhitening only for unregularized estimation (RegularizationKernel is 'none'). % % Default: 'auto' % para.options = options; % end % [hrfa,para] = rsHRF_estimation_impulseest(randn(200,5),para); % x = 0:para.TR:para.len; % plot(x, hrfa) if ~exist('impulseest.m') fprintf('System Identification Toolbox is required.\n') return end nvar = size(data,2); if ~isfield(para,'temporal_mask') % temporal_mask: generated from scrubbing. para.temporal_mask=[]; end hrfa = cell(1,nvar); event_bold= cell(1,nvar); parfor i=1:nvar [hrfa{i},event_bold{i}] = wgr_impulseest_HRF(data(:,i),para); end hrfa =cell2mat(hrfa); return function [rsH,u] = wgr_impulseest_HRF(data,para) nscans = size(data,1); if ~isfield(para,'options') opt = []; else opt = para.options; end if ~isfield(para,'localK') if para.TR>=2 localK = 1; else localK = 2; end else localK = para.localK; end u = rsHRF_find_event_vector(data,para.thr,localK,para.temporal_mask); u = u(:); lag = para.lag; nlag = length(lag); frameRate = 1/para.TR; NN = fix(para.len*frameRate); bic = zeros(nlag,1); tic %% rs-HRF for i=nlag:-1:1 u_lag = full([u(lag(i)+1:end,:); zeros(lag(i),1)]); srs = iddata(data, u_lag, para.TR); % srs = detrend(srs); if isempty(opt) srsiiu = impulseest(srs,NN); else srsiiu = impulseest(srs,NN,opt); end bic(i,1) = srsiiu.Report.Fit.BIC; HR(:,i) = srsiiu.Report.Parameters.ParVector; end toc [~,id] = min(bic); rsH = HR(:,id); u = find(full(u));
github
compneuro-da/rsHRF-master
rsHRF_knee_pt.m
.m
rsHRF-master/rsHRF_knee_pt.m
5,902
utf_8
f22baf6900ab2ca29cb21378d8bdef01
function [res_x, idx_of_result] = rsHRF_knee_pt(y) res_x=[]; [~,id] = knee_pt(y); [~,idm] = min(y); ratio = abs(y(id)-y(idm))/range(y); if ratio>0.5 idx_of_result = idm; else idx_of_result = id; end end function [res_x, idx_of_result] = knee_pt(y,x,just_return) %Returns the x-location of a (single) knee of curve y=f(x) % (this is useful for e.g. figuring out where the eigenvalues peter out) % %Also returns the index of the x-coordinate at the knee % %Parameters: % y (required) vector (>=3 elements) % x (optional) vector of the same size as y % just_return (optional) boolean % %If just_return is True, the function will not error out and simply return a Nan on %detected error conditions % %Important: The x and y don't need to be sorted, they just have to %correspond: knee_pt([1,2,3],[3,4,5]) = knee_pt([3,1,2],[5,3,4]) % %Important: Because of the way the function operates y must be at least 3 %elements long and the function will never return either the first or the %last point as the answer. % %Defaults: %If x is not specified or is empty, it's assumed to be 1:length(y) -- in %this case both returned values are the same. %If just_return is not specified or is empty, it's assumed to be false (ie the %function will error out) % % %The function operates by walking along the curve one bisection point at a time and %fitting two lines, one to all the points to left of the bisection point and one %to all the points to the right of of the bisection point. %The knee is judged to be at a bisection point which minimizes the %sum of errors for the two fits. % %the errors being used are sum(abs(del_y)) or RMS depending on the %(very obvious) internal switch. Experiment with it if the point returned %is not to your liking -- it gets pretty subjective... % % %Example: drawing the curve for the submission % x=.1:.1:3; y = exp(-x)./sqrt(x); [i,ix]=knee_pt(y,x); % figure;plot(x,y); % rectangle('curvature',[1,1],'position',[x(ix)-.1,y(ix)-.1,.2,.2]) % axis('square'); % %Food for thought: In the best of possible worlds, per-point errors should %be corrected with the confidence interval (i.e. a best-line fit to 2 %points has a zero per-point fit error which is kind-a wrong). %Practially, I found that it doesn't make much difference. % %dk /2012 %{ % test vectors: [i,ix]=knee_pt([30:-3:12,10:-2:0]) %should be 7 and 7 knee_pt([30:-3:12,10:-2:0]') %should be 7 knee_pt(rand(3,3)) %should error out knee_pt(rand(3,3),[],false) %should error out knee_pt(rand(3,3),[],true) %should return Nan knee_pt([30:-3:12,10:-2:0],[1:13]) %should be 7 knee_pt([30:-3:12,10:-2:0],[1:13]*20) %should be 140 knee_pt([30:-3:12,10:-2:0]+rand(1,13)/10,[1:13]*20) %should be 140 knee_pt([30:-3:12,10:-2:0]+rand(1,13)/10,[1:13]*20+rand(1,13)) %should be close to 140 x = 0:.01:pi/2; y = sin(x); [i,ix]=knee_pt(y,x) %should be around .9 andaround 90 [~,reorder]=sort(rand(size(x)));xr = x(reorder); yr=y(reorder);[i,ix]=knee_pt(yr,xr) %i should be the same as above and xr(ix) should be .91 knee_pt([10:-1:1]) %degenerate condition -- returns location of the first "knee" error minimum: 2 %} %set internal operation flags use_absolute_dev_p = true; %ow quadratic %deal with issuing or not not issuing errors issue_errors_p = true; if (nargin > 2 && ~isempty(just_return) && just_return) issue_errors_p = false; end %default answers res_x = nan; idx_of_result = nan; %check... if (isempty(y)) if (issue_errors_p) error('knee_pt: y can not be an empty vector'); end return; end %another check if (sum(size(y)==1)~=1) if (issue_errors_p) error('knee_pt: y must be a vector'); end return; end %make a vector y = y(:); %make or read x if (nargin < 2 || isempty(x)) x = (1:length(y))'; else x = x(:); end %more checking if (ndims(x)~= ndims(y) || ~all(size(x) == size(y))) if (issue_errors_p) error('knee_pt: y and x must have the same dimensions'); end return; end %and more checking if (length(y) < 3) [res_x, idx_of_result] = min(y); return; end %make sure the x and y are sorted in increasing X-order if (nargin > 1 && any(diff(x)<0)) [~,idx]=sort(x); y = y(idx); x = x(idx); else idx = 1:length(x); end %the code below "unwraps" the repeated regress(y,x) calls. It's %significantly faster than the former for longer y's % %figure out the m and b (in the y=mx+b sense) for the "left-of-knee" sigma_xy = cumsum(x.*y); sigma_x = cumsum(x); sigma_y = cumsum(y); sigma_xx = cumsum(x.*x); n = (1:length(y))'; det = n.*sigma_xx-sigma_x.*sigma_x; mfwd = (n.*sigma_xy-sigma_x.*sigma_y)./det; bfwd = -(sigma_x.*sigma_xy-sigma_xx.*sigma_y) ./det; %figure out the m and b (in the y=mx+b sense) for the "right-of-knee" sigma_xy = cumsum(x(end:-1:1).*y(end:-1:1)); sigma_x = cumsum(x(end:-1:1)); sigma_y = cumsum(y(end:-1:1)); sigma_xx = cumsum(x(end:-1:1).*x(end:-1:1)); n = (1:length(y))'; det = n.*sigma_xx-sigma_x.*sigma_x; mbck = flipud((n.*sigma_xy-sigma_x.*sigma_y)./det); bbck = flipud(-(sigma_x.*sigma_xy-sigma_xx.*sigma_y) ./det); %figure out the sum of per-point errors for left- and right- of-knee fits error_curve = nan(size(y)); for breakpt = 2:length(y-1) delsfwd = (mfwd(breakpt).*x(1:breakpt)+bfwd(breakpt))-y(1:breakpt); delsbck = (mbck(breakpt).*x(breakpt:end)+bbck(breakpt))-y(breakpt:end); %disp([sum(abs(delsfwd))/length(delsfwd), sum(abs(delsbck))/length(delsbck)]) if (use_absolute_dev_p) % error_curve(breakpt) = sum(abs(delsfwd))/sqrt(length(delsfwd)) + sum(abs(delsbck))/sqrt(length(delsbck)); error_curve(breakpt) = sum(abs(delsfwd))+ sum(abs(delsbck)); else error_curve(breakpt) = sqrt(sum(delsfwd.*delsfwd)) + sqrt(sum(delsbck.*delsbck)); end end %find location of the min of the error curve [~,loc] = min(error_curve); res_x = x(loc); idx_of_result = idx(loc); end
github
compneuro-da/rsHRF-master
tbx_cfg_rsHRF.m
.m
rsHRF-master/tbx_cfg_rsHRF.m
38,917
utf_8
f8345a7a0e695df20bd7cf743caa5b5e
function HRFrs = tbx_cfg_rsHRF % Configuration file for toolbox 'rsHRF' % https://github.com/guorongwu/rsHRF % $Id: rsHRF.m if ~isdeployed addpath(fullfile(spm('Dir'),'toolbox','rsHRF')); end % --------------------------------------------------------------------- % NIfTI Data % --------------------------------------------------------------------- GNIfTI_Data = cfg_files; GNIfTI_Data.tag = 'images'; GNIfTI_Data.name = 'Scans'; GNIfTI_Data.help = {'Select NIfTI/GIfTI images.'}; GNIfTI_Data.filter = {'image','mesh'}; GNIfTI_Data.ufilter = '.*'; GNIfTI_Data.num = [1 inf]; GNIfTI_Data.help = {'3D or 4D NIfTI images; 2D GIfTI file (.gii)' 'or select 1st volume/frame of a 4D NIfTI file,' 'we will expand all the volumes from this file.'}; % --------------------------------------------------------------------- % ROI signal Data % --------------------------------------------------------------------- Signal_file = cfg_files; Signal_file.tag = 'sigdata'; Signal_file.name = 'Preprocessed ROI signals'; Signal_file.help = {'Select ROI signal files.'}; Signal_file.filter = 'any'; Signal_file.ufilter = '.*'; Signal_file.num = [1 1]; Signal_file.help = { 'Select the *.txt/*.mat file(s) containing your ROI signal.' }; % --------------------------------------------------------------------- % name Name % --------------------------------------------------------------------- name = cfg_entry; name.tag = 'name'; name.name = 'Variable Name in the Mat-file'; name.help = { 'Only for *.mat file' 'Enter the variable name of your ROI signals in Mat file; eg. ''data'' '}; name.strtype = 's'; name.val = {''}; name.num = [1 inf]; Signal_Dat = cfg_branch; Signal_Dat.tag = 'Datasig'; Signal_Dat.name = 'Data'; Signal_Dat.val = {Signal_file, name}; Signal_Dat.help = { 'Select the *.txt/*.mat file(s) containing details of your ROI signal.' 'You will need to enter the "Variable Name in Mat-file" if you select Mat-file ' }; Signal_Data = cfg_repeat; Signal_Data.tag = 'Data'; Signal_Data.name = 'Data'; Signal_Data.values = {Signal_Dat}; Signal_Data.num = [1 inf]; Signal_Data.help = { 'The same parameters specified below ' 'will be applied to all data' }; % --------------------------------------------------------------------- % odir Output Directory % --------------------------------------------------------------------- Outdir = cfg_files; Outdir.tag = 'outdir'; Outdir.name = 'Output Directory'; Outdir.help = {'Select the directory where write analysis results.'}; Outdir.filter = 'dir'; Outdir.ufilter = '.*'; Outdir.num = [1 1]; Outdir.val = {{''}}; % --------------------------------------------------------------------- % RT Interscan interval % --------------------------------------------------------------------- TR = cfg_entry; TR.tag = 'TR'; TR.name = 'TR'; TR.help = {'Interscan interval, TR, (specified in seconds). This is the time between acquiring a plane of one volume and the same plane in the next volume. It is assumed to be constant throughout.'}; TR.strtype = 'r'; TR.num = [1 1]; % --------------------------------------------------------------------- % Bands % --------------------------------------------------------------------- Bands = cfg_entry; Bands.tag = 'bands'; Bands.name = 'Band-pass filter(Hz)'; Bands.help = {'0.01 ~ 0.1 Hz. '}; Bands.strtype = 'e'; Bands.val = {[0.01, 0.1]}; Bands.num = [1 2]; TR2filter = TR; TR2filter.val = {nan}; TR2filter.help = {'Keep "nan" if it has been specified in HRF estimation step.'}; % --------------------------------------------------------------------- % Bandfilters % --------------------------------------------------------------------- Bandfilter = cfg_repeat; Bandfilter.tag = 'BPF'; Bandfilter.name = 'Band-pass Filter'; Bandfilter.help = {'Band-pass Filter.'}; Bandfilter.values = {Bands,TR2filter}; Bandfilter.num = [0 2]; % --------------------------------------------------------------------- % Despiking % --------------------------------------------------------------------- Despiking = cfg_menu; Despiking.tag = 'Despiking'; Despiking.name = 'Despiking'; Despiking.help = {'Temporal despiking with a hyperbolic tangent squashing function'}; Despiking.labels = {'No', 'Yes'}; Despiking.values = {0,1}; Despiking.val = {0}; % --------------------------------------------------------------------- % Detrend % --------------------------------------------------------------------- Detrending = cfg_menu; Detrending.tag = 'Detrend'; Detrending.name = 'Polynomial Detrending'; Detrending.help = {'...'}; Detrending.labels = {'No', 'Linear', '2nd order Poly', '3rd order Poly'}; Detrending.values = {0,1,2,3}; Detrending.val = {0}; % --------------------------------------------------------------------- % Despiking % --------------------------------------------------------------------- ROI1st = cfg_menu; ROI1st.tag = 'which1st'; ROI1st.name = 'Which First?'; ROI1st.labels = { 'First denoise then generate ROI signal' 'First generate ROI signal then denoise' 'No ROI analysis' }'; ROI1st.values = {1,2,3}; ROI1st.val = {3}; % --------------------------------------------------------------------- % ROI % --------------------------------------------------------------------- ROIs_coordinate = cfg_entry; ROIs_coordinate.tag = 'ROI'; ROIs_coordinate.name = 'ROI (x,y,z,radius [in mm])'; ROIs_coordinate.strtype = 'e'; ROIs_coordinate.num = [inf 4]; ROIs_coordinate.val = {[4,-53,26,6];}; ROIs_coordinate.help = {'ROI (x, y & z, in mm, with k mm radius)'}; % --------------------------------------------------------------------- % ROI mask % --------------------------------------------------------------------- ROImasks = cfg_files; ROImasks.tag = 'images'; ROImasks.name = 'ROI mask images'; ROImasks.help = {'Select ROI mask images (>=1).'}; ROImasks.filter = 'image'; ROImasks.ufilter = '.*'; ROImasks.val = {{''}}; ROImasks.num = [1 inf]; ROImasks.help = {'you can select more than one NIfTI image'}; % --------------------------------------------------------------------- % White matter/CSF/Whole brain mask % --------------------------------------------------------------------- covmasks = ROImasks ; covmasks.name = 'Covariate images (white matter, CSF, whole brain mask etc.)'; % --------------------------------------------------------------------- % Mean or Principal component for covariate images % --------------------------------------------------------------------- mpc = cfg_entry; mpc.tag = 'mpc'; mpc.name = 'Mean or Eigenvariate'; mpc.help = {'0: mean signal' '1: 1st eigenvariate (principal component,PC)' '5: 1st to 5th eigenvariates' '[0 1 2]: Extract mean from the 1st mask, 1st PC from 2nd mask, 1st to 2nd PCs from 3rd mask' }; mpc.strtype = 'e'; mpc.val = {[0]}; mpc.num = [1 inf]; WMCSFmasks = cfg_branch; WMCSFmasks.tag = 'imcov'; WMCSFmasks.name = 'Image Covariates'; WMCSFmasks.help = {'Only for NIfTI data' 'Image mask to extract Regressors that may confound the data.'}; WMCSFmasks.val = {covmasks, mpc}; % --------------------------------------------------------------------- % multi_reg Multiple regressors % --------------------------------------------------------------------- multi_reg = cfg_files; multi_reg.tag = 'multi_reg'; multi_reg.name = 'Multiple regressors'; multi_reg.val = {{''}}; multi_reg.help = { 'Select the *.txt/*.mat file(s) containing details of your multiple regressors. ' 'If you have multiple regressors eg. realignment parameters (rp_*.txt), then entering the details a regressor at a time is very inefficient. This option can be used to load all the required information in one go. ' 'You will first need to create a *.mat file containing a matrix R or a *.txt file containing the regressors. Each column of R will contain a different regressor.' '' }'; multi_reg.filter = 'mat'; multi_reg.ufilter = '.*'; multi_reg.num = [0 Inf]; % --------------------------------------------------------------------- % generic Regressors % --------------------------------------------------------------------- covreg = cfg_repeat; covreg.tag = 'generic'; covreg.name = 'Nuisance Covariates'; covreg.help = {'Regressors that may confound the data.'}; covreg.values = {multi_reg WMCSFmasks}; covreg.num = [0 Inf]; % --------------------------------------------------------------------- % ROI Atlas % --------------------------------------------------------------------- Atlas = cfg_files; Atlas.tag = 'atlas'; Atlas.name = 'Atlas image'; Atlas.help = {'Select a Atlas image.'}; Atlas.filter = 'image'; Atlas.ufilter = '.*'; Atlas.val = {{''}}; Atlas.num = [1 1]; % --------------------------------------------------------------------- % ROI Mesh Atlas % --------------------------------------------------------------------- Atlasmesh = cfg_files; Atlasmesh.tag = 'meshatlas'; Atlasmesh.name = 'Mesh Atlas'; Atlasmesh.help = {'Select a surface based Atlas.'}; Atlasmesh.filter = 'mesh'; Atlasmesh.ufilter = '.*'; Atlasmesh.val = {{''}}; Atlasmesh.num = [1 1]; % --------------------------------------------------------------------- % ROI Mesh % --------------------------------------------------------------------- maskmesh = cfg_files; maskmesh.tag = 'meshmask'; maskmesh.name = 'Mesh Mask'; maskmesh.help = {'Select a surface based mask.'}; maskmesh.filter = 'mesh'; maskmesh.ufilter = '.*'; maskmesh.val = {{''}}; maskmesh.num = [1 1]; % --------------------------------------------------------------------- % ROI All together % --------------------------------------------------------------------- genericROI = cfg_repeat; genericROI.tag = 'genericROI'; genericROI.name = 'ROI (Coordinate / NIfTI)'; genericROI.help = { 'Select ROIs (Coordinates / NIfTI)' }'; genericROI.values = {ROIs_coordinate ROImasks Atlas}; genericROI.num = [1 Inf]; % --------------------------------------------------------------------- % SurfROI All together % --------------------------------------------------------------------- genericSurfROI = cfg_repeat; genericSurfROI.tag = 'genericROI'; genericSurfROI.name = 'ROI (GIfTI)'; genericSurfROI.help = { 'Select ROIs (GIfTI)' }'; genericSurfROI.values = {maskmesh Atlasmesh}; genericSurfROI.num = [1 Inf]; % --------------------------------------------------------------------- % Denoising % --------------------------------------------------------------------- Denoising = cfg_branch; Denoising.tag = 'Denoising'; Denoising.name = 'Denoising'; Denoising.val = {covreg, Detrending, Bandfilter, Despiking,ROI1st}; Denoising.help = {'Remove possible confounds.'}; Denoising2 = Denoising; Denoising2.val = {covreg, Detrending, Bandfilter, Despiking}; Denoising_surf = Denoising; Denoising_surf.val = {covreg, Detrending, Bandfilter, Despiking, ROI1st}; % --------------------------------------------------------------------- % Despiking % --------------------------------------------------------------------- rmoutlier = cfg_menu; rmoutlier.tag = 'rmoutlier'; rmoutlier.name = 'Remove Outlier& Inpaint 3D'; rmoutlier.help = {'Remove Outlier in HRF parameters (replaced by nan ) and inpaint nan value by inpaint_nans3.m'}; rmoutlier.labels = {'No', 'Yes'}; rmoutlier.values = {0,1}; rmoutlier.val = {1}; % --------------------------------------------------------------------- % Explicit Mask % --------------------------------------------------------------------- brainmask = cfg_files; brainmask.tag = 'mask'; brainmask.name = 'Explicit Mask'; brainmask.help = {'Specify an image for expicity masking the analysis.'}; brainmask.filter = {'image','mesh'}; brainmask.ufilter = '.*'; brainmask.val = {{''}}; brainmask.num = [1 1]; %-------------------------------------------------------------------------- % prefix Filename Prefix %-------------------------------------------------------------------------- prefix = cfg_entry; prefix.tag = 'prefix'; prefix.name = 'Filename prefix'; prefix.strtype = 's'; prefix.num = [1 Inf]; prefix.help = {'String to be prepended to the filenames of the HRF deconvolved image file(s). Default prefix is ''Deconv_''.'}; prefix.val = {'Deconv_'}; %-------------------------------------------------------------------------- % HRF model %-------------------------------------------------------------------------- hrfm = cfg_menu; hrfm.tag = 'hrfm'; hrfm.name = 'HRF Basis Functions'; hrfm.labels = { 'Canonical HRF (with time derivative)' 'Canonical HRF (with time and dispersion derivatives)' 'Gamma Functions' 'Fourier Set' 'Fourier Set (Hanning)' 'Finite Impulse Response (FIR)' 'Smooth FIR' }'; hrfm.values = {1,2,3,4,5,6,7}; hrfm.val = {2}; hrfm.help = { 'The canonical HRF combined with time and dispersion derivatives comprise an ''informed'' basis set, as the shape of the canonical response conforms to the hemodynamic response that is commonly observed. The incorporation of the derivate terms allow for variations in subject-to-subject and voxel-to-voxel responses. The time derivative allows the peak response to vary by plus or minus a second and the dispersion derivative allows the width of the response to vary.' 'The Fourier set consists of a constant and KF sine and KF cosine functions of harmonic periods T, T/2,T/KF seconds(i.e. K = 2KF + 1 basis functions). Linear combinations of the (orthonormal) FIR or Fourier basis functions can capture any shape of response up to a specified frequency (KF /T in the case of the Fourier set).' 'The HRF is assumed to be bounded at zero for t<0 and t>T , the Fourier basis functions can also be windowed (e.g. by a Hanning window) within this range.' 'A set of gamma functions of increasing dispersions can be obtained by increasing p (p is an integer phase-delay, the peak delay is given by pd, and the dispersion by pd^2, d is the time-scaling). In SPM, these functions (as with all basis functions) are orthogonalized with respect to one another.' 'Impulse Response (FIR) set captures any shape of response up to a given frequency limit.' 'Smooth FIR: add a gaussian prior on the filter parameter alpha - It filtered out some noise of the standard FIR.' }; % --------------------------------------------------------------------- % length of HRF {seconds} % --------------------------------------------------------------------- hrflen = cfg_entry; hrflen.tag = 'hrflen'; hrflen.name = 'Length of HRF (seconds)'; hrflen.help = {'Enter the length/duration of HRF {seconds}, i.e. Post-stimulus window length (in seconds).'}; hrflen.strtype = 'r'; hrflen.num = [Inf 1]; hrflen.val = {32}; % --------------------------------------------------------------------- % Number of basis functions % --------------------------------------------------------------------- num_basis = cfg_entry; num_basis.tag = 'num_basis'; num_basis.name = 'Number of basis functions (k)'; num_basis.help = {'Only setting for ''Gamma Functions'' (k), ''Fourier Set'' (2k+1), ''Fourier Set (Hanning)'' (2k+1)'}; num_basis.strtype = 'n'; num_basis.num = [1 1]; num_basis.val = {nan}; % --------------------------------------------------------------------- % Minimum & Maximum delay % --------------------------------------------------------------------- mdelay = cfg_entry; mdelay.tag = 'mdelay'; mdelay.name = 'Minimum & Maximum delay (seconds)'; mdelay.help = {'4 ~ 8 s'}; mdelay.strtype = 'e'; mdelay.val = {[4, 8]}; mdelay.num = [1 2]; % --------------------------------------------------------------------- % Threshold for event detection % --------------------------------------------------------------------- thr = cfg_entry; thr.tag = 'thr'; thr.name = 'Threshold (SD) for event detection'; thr.help = {'default Threshold = 1, i.e. local peaks and ( amplitude > mean + Threshold*standard deviation threshold) were selected as the candicate events'}; thr.strtype = 'r'; thr.val = {1}; thr.num = [1 1]; % --------------------------------------------------------------------- % local spontaneou event definition % --------------------------------------------------------------------- localK = cfg_entry; localK.tag = 'localK'; localK.name = 'K (local peak f([-K:K]+t)<=f(t) )'; localK.help = {'default K = 2, i.e. local peaks definition f([-2: 2]+t) <= f(t)'}; localK.strtype = 'r'; localK.val = {2};% local peak, f([-2: 2]+t) <= f(t) localK.num = [1 1]; % --------------------------------------------------------------------- % Temporal mask % --------------------------------------------------------------------- tmask = cfg_entry; tmask.tag = 'tmask'; tmask.name = 'Temporal mask for event detection'; tmask.help = {'default no mask for BOLD event detect (using nan). 0(exclude) / 1(include) for point process.' 'e.g. [0 1 0 0 1 1 1 1], ssame length with BOLD signal'}; tmask.strtype = 'r'; tmask.val = {nan}; tmask.num = [1 inf]; % --------------------------------------------------------------------- % cvi Serial correlations % --------------------------------------------------------------------- cvi = cfg_menu; cvi.tag = 'cvi'; cvi.name = 'Serial correlations'; cvi.help = { 'Serial correlations in fMRI time series due to aliased biorhythms and unmodelled neuronal activity can be accounted for using an autoregressive AR(1) model during parameter estimation. ' % 'This estimate assumes the same correlation structure for each voxel, within each session. ReML estimates are then used to correct for non-sphericity during inference by adjusting the statistics and degrees of freedom appropriately. The discrepancy between estimated and actual intrinsic (i.e. prior to filtering) correlations are greatest at low frequencies. Therefore specification of the high-pass filter is particularly important. ' % 'Serial correlation can be ignored if you choose the ''none'' option. Note that the above options only apply if you later specify that your model will be estimated using the Classical (ReML) approach. If you choose Bayesian estimation these options will be ignored. For Bayesian estimation, the choice of noisemodel (AR model order) is made under the estimation options. ' }'; cvi.labels = {'none', 'AR(1)', 'AR(2)','AR(3)'}; cvi.values = {0,1,2,3}; cvi.val = {0}; % --------------------------------------------------------------------- % fmri_t Microtime resolution % --------------------------------------------------------------------- fmri_t = cfg_entry; fmri_t.tag = 'fmri_t'; fmri_t.name = 'Microtime resolution'; fmri_t.help = { 'value >1 does not work for FIR or sFIR' '' 'The microtime resolution, t, is the number of time-bins per scan used when building regressors. ' 'If you have performed slice-timing correction, change this parameter to match the number of slices specified there; otherwise, you would typically not need to change this.' '' }'; fmri_t.strtype = 'n'; fmri_t.num = [1 1]; fmri_t.val = {1}; % --------------------------------------------------------------------- % fmri_t0 Microtime onset % --------------------------------------------------------------------- fmri_t0 = cfg_entry; fmri_t0.tag = 'fmri_t0'; fmri_t0.name = 'Microtime onset'; fmri_t0.help = { 'value >1 works for Canon2DD or CanonTD' '' 'The microtime onset, t0, is the reference time-bin at which the regressors are resampled to coincide with data acquisition.' 'If you have performed slice-timing correction, you must change this parameter to match the reference slice specified there.' 'Otherwise, you might still want to change this if you have non-interleaved acquisition and you wish to sample the regressors so that they are appropriate for a slice in a particular part of the brain.' 'For example, if t0 = 1, then the regressors will be appropriate for the first slice; if t0=t, then the regressors will be appropriate for the last slice.' 'Setting t0 = t/2 is a good compromise if you are interested in slices at the beginning and end of the acquisition, or if you have interleaved data, or if you have 3D EPI data.' '' }'; fmri_t0.strtype = 'n'; fmri_t0.num = [1 1]; fmri_t0.val = {1}; % HRF deconvolution %-------------------------------------------------------------------------- HRFdeconv = cfg_menu; HRFdeconv.tag = 'hrfdeconv'; HRFdeconv.name = 'HRF Deconvolution'; HRFdeconv.labels = { 'HRF Deconvolution on Unfiltered Data' 'HRF Deconvolution on Filtered Data' 'DO NOT Perform HRF Deconvolution' }'; HRFdeconv.values = {1,2,3}; HRFdeconv.val = {1}; HRFdeconv.help = {'HRF deconvolution on filtered or unfiltered data'}; % --------------------------------------------------------------------- % HRF estimation % --------------------------------------------------------------------- HRFE = cfg_branch; HRFE.tag = 'HRFE'; HRFE.name = 'HRF estimation'; HRFE.val = {hrfm, TR, hrflen, num_basis, mdelay, cvi, fmri_t, fmri_t0,thr,localK, tmask, HRFdeconv}; HRFE.help = {'HRF estimation.'}; % --------------------------------------------------------------------- % save deconvolved signal % --------------------------------------------------------------------- deconv_save = cfg_menu; deconv_save.tag = 'deconv_save'; deconv_save.name = 'Save Deconvolved Data'; deconv_save.labels = {'No', 'Yes'}; deconv_save.values = {0,1}; deconv_save.val = {1}; deconv_save.help = {'...'}; % --------------------------------------------------------------------- % save HRF in mat-file % --------------------------------------------------------------------- hrfmat_save = deconv_save; hrfmat_save.tag = 'hrfmat_save'; hrfmat_save.name = 'Save HRF mat-file'; % --------------------------------------------------------------------- % save HRF in NIfTI-file % --------------------------------------------------------------------- hrfnii_save = deconv_save; hrfnii_save.tag = 'hrfnii_save'; hrfnii_save.name = 'Save HRF NIfTI/GIfTI-file'; % --------------------------------------------------------------------- % save Job parameters in mat-file % --------------------------------------------------------------------- job_save = deconv_save; job_save.tag = 'job_save'; job_save.name = 'Save job parameters'; % --------------------------------------------------------------------- % Save files % --------------------------------------------------------------------- Datasave = cfg_branch; Datasave.tag = 'savedata'; Datasave.name = 'Save Data'; Datasave.val = {deconv_save,hrfmat_save,hrfnii_save, job_save}; Datasave.help = {'Save files.'}; DatasaveROI = Datasave; DatasaveROI.val = {deconv_save,hrfmat_save, job_save}; % --------------------------------------------------------------------- % seed to voxels or ROI2ROI % --------------------------------------------------------------------- seedROI = cfg_menu; seedROI.tag = 'Seed_ROI'; seedROI.name = 'Seed or ROI'; seedROI.help = {'Seed: 1 to n'; ' ROI: n to n'}; seedROI.labels = {'Seed to voxels', 'ROI to ROI'}; seedROI.values = {0,1}; seedROI.val = {0}; seedROIsurf = seedROI; seedROIsurf.labels = {'Seed to vertices', 'ROI to ROI'}; % --------------------------------------------------------------------- % connectivity method FC % --------------------------------------------------------------------- FCM = cfg_menu; FCM.tag = 'method'; FCM.name = 'Method'; FCM.help = {'...'}; FCM.labels = {'Pearson Correlation', 'Pearson Partial Correlation (only for ROIs)', 'Spearman Correlation', 'Spearman Partial Correlation (only for ROIs)'}; FCM.values = {4,5,6,7}; FCM.val = {4}; % --------------------------------------------------------------------- % connectivity method GC % --------------------------------------------------------------------- GCM = FCM; GCM.labels = {'Pairwise GC(Granger causality)', 'Conditional GC (only for ROIs)', 'Partially Conditioned GC (only for ROIs)'}; GCM.values = {1,2,3}; GCM.val = {1}; % --------------------------------------------------------------------- % data for connectivity % --------------------------------------------------------------------- CONNData = cfg_menu; CONNData.tag = 'data4conn'; CONNData.name = 'Data for Connectivity'; CONNData.help = {'Select BOLD or/and Deconvolved BOLD'}; CONNData.labels = {'BOLD', 'Deconvolved BOLD', 'BOLD and Deconvolved BOLD'}; CONNData.values = {1,2,3}; CONNData.val = {2}; % --------------------------------------------------------------------- % Model order for GC % --------------------------------------------------------------------- Morder = cfg_entry; Morder.tag = 'morder'; Morder.name = 'Model order for GC'; Morder.help = {'default model order = 1, input only for Granger causality analysis'}; Morder.strtype = 'r'; Morder.val = {1}; Morder.num = [1 1]; % --------------------------------------------------------------------- % Information for PCGC % --------------------------------------------------------------------- ndinfo = cfg_entry; ndinfo.tag = 'ndinfo'; ndinfo.name = 'Parameters for PCGC'; ndinfo.help = {'Number of conditional variable (nd), Maximum nd' 'Parameters for Partially Conditioned Granger Causality Analysis' 'Recommended value: nd = 6, maximum nd = nd+1'}; ndinfo.strtype = 'r'; ndinfo.val = {[nan nan]}; ndinfo.num = [1 2]; %-------------------------------------------------------------------------- % prefix Connectivity Prefix %-------------------------------------------------------------------------- conname = prefix; conname.val = {'Conn_'}; conname.num = [1 Inf]; conname.help ={'String to be prepended to the filenames of the connectivity file(s). Default prefix is "Conn_".'}; % --------------------------------------------------------------------- % Connectivity Analysis FC % --------------------------------------------------------------------- FCA = cfg_branch; FCA.tag = 'conn'; FCA.name = 'FC'; FCA.val = {CONNData, seedROI, genericROI, FCM, conname}; FCA.help = {'Functional connectivity analysis.'}; FCA2 = FCA; FCA2.val = {seedROI, genericROI, FCM, conname}; FCAsurf = FCA; FCAsurf.val = {CONNData, seedROIsurf, genericSurfROI, FCM, conname}; FCAsurf2 = FCA; FCAsurf2.val = {seedROIsurf, genericSurfROI, FCM, conname}; FCAROI = FCA; FCAROI.val = {CONNData, FCM, conname}; FCAROI2 = FCAROI; FCAROI2.val = {FCM, conname}; % --------------------------------------------------------------------- % Connectivity Analysis GC % --------------------------------------------------------------------- GCA = cfg_branch; GCA.tag = 'connG'; GCA.name = 'GC'; GCA.val = {CONNData, seedROI, genericROI, GCM, Morder, ndinfo, conname}; GCA.help = {'Granger causality analysis.'}; GCA2 = GCA; GCA2.val = {seedROI, genericROI, GCM, Morder, ndinfo, conname}; GCAsurf = GCA; GCAsurf.val = {CONNData, seedROIsurf, genericSurfROI, GCM, Morder, ndinfo, conname}; GCAsurf2 = GCA; GCAsurf2.val = {seedROIsurf, genericSurfROI, GCM, Morder, ndinfo, conname}; GCAROI = GCA; GCAROI.val = {CONNData, GCM, Morder, ndinfo, conname}; GCAROI2 = GCAROI; GCAROI2.val = {GCM, Morder, ndinfo,conname}; % connectivity % --------------------------------------------------------------------- cona = cfg_repeat; cona.tag = 'connectivity'; cona.name = 'Connectivity Analysis'; cona.help = {'Granger causality or Functional connectivity analysis.'}; cona.values = {FCA,GCA}; cona.num = [0 inf]; cona2 = cona; cona2.values = {FCA2,GCA2}; conaSurf = cona; conaSurf.values = {FCAsurf,GCAsurf}; conaSurf2= cona; conaSurf2.values = {FCAsurf2,GCAsurf2}; connROI = cona; connROI.values = {FCAROI, GCAROI}; connROI2 = cona; connROI2.values = {FCAROI2, GCAROI2}; % --------------------------------------------------------------------- % ROI-wise HRF deconvolution % --------------------------------------------------------------------- ROI_rsHRF = cfg_exbranch; ROI_rsHRF.tag = 'ROI_rsHRF'; ROI_rsHRF.name = 'ROI-wise HRF deconvolution'; ROI_rsHRF.val = {GNIfTI_Data, Denoising, genericROI, HRFE, brainmask, connROI, Outdir, DatasaveROI, prefix}; ROI_rsHRF.prog = @wgr_vox_ROI_rsHRF_conn; ROI_rsHRF.help = {'NIfTI data'}; % --------------------------------------------------------------------- % (Surface) ROI-wise HRF deconvolution % --------------------------------------------------------------------- SurfROI_rsHRF = cfg_exbranch; SurfROI_rsHRF.tag = 'SurfROI_rsHRF'; SurfROI_rsHRF.name = '(Surface)ROI-wise HRF deconvolution'; SurfROI_rsHRF.val = {GNIfTI_Data, Denoising_surf, genericSurfROI, HRFE, brainmask, connROI, Outdir, DatasaveROI, prefix}; SurfROI_rsHRF.prog = @wgr_vertex_ROI_rsHRF_conn; % --------------------------------------------------------------------- % ROI-wise CONN % --------------------------------------------------------------------- ROI_conn = cfg_exbranch; ROI_conn.tag = 'ROI_conn'; ROI_conn.name = 'ROI-wise Connectivity Analysis'; ROI_conn.val = {GNIfTI_Data, Denoising, genericROI, brainmask, connROI2, Outdir,job_save}; ROI_conn.prog = @wgr_vox_ROI_rsHRF_conn; ROI_conn.help = {'NIfTI data'}; % --------------------------------------------------------------------- % (Surface) ROI-wise CONN % --------------------------------------------------------------------- SurfROI_conn = cfg_exbranch; SurfROI_conn.tag = 'SurfROI_conn'; SurfROI_conn.name = '(Surface)ROI-wise Connectivity Analysis'; SurfROI_conn.val = {GNIfTI_Data, Denoising, genericSurfROI, brainmask, connROI2, Outdir,job_save}; SurfROI_conn.prog = @wgr_vertex_ROI_rsHRF_conn; SurfROI_conn.help = {'GIfTI data'}; % --------------------------------------------------------------------- % voxel-wise HRF deconvolution % --------------------------------------------------------------------- vox_rsHRF = cfg_exbranch; vox_rsHRF.tag = 'vox_rsHRF'; vox_rsHRF.name = 'Voxel-wise HRF deconvolution'; vox_rsHRF.val = {GNIfTI_Data, Denoising, HRFE, rmoutlier,brainmask, cona, Outdir, Datasave, prefix}; vox_rsHRF.prog = @wgr_vox_ROI_rsHRF_conn; vox_rsHRF.help = {'NIfTI data'}; %{'Voxel-wise HRF deconvolution'}; % --------------------------------------------------------------------- % vertex-wise HRF deconvolution % --------------------------------------------------------------------- mesh_rsHRF = cfg_exbranch; mesh_rsHRF.tag = 'mesh_rsHRF'; mesh_rsHRF.name = 'Vertex-wise HRF deconvolution'; mesh_rsHRF.val = {GNIfTI_Data, Denoising, HRFE, brainmask, conaSurf, Outdir, Datasave, prefix}; mesh_rsHRF.prog = @wgr_vertex_ROI_rsHRF_conn; mesh_rsHRF.help = {'GIfTI data'}; %{'Vertex-wise HRF deconvolution'}; % --------------------------------------------------------------------- % voxel-wise CONN % --------------------------------------------------------------------- vox_conn = cfg_exbranch; vox_conn.tag = 'vox_conn'; vox_conn.name = 'Voxel-wise Connectivity Analysis'; vox_conn.val = {GNIfTI_Data, Denoising, brainmask, cona2, Outdir, job_save}; vox_conn.prog = @wgr_vox_ROI_rsHRF_conn; vox_conn.help = {'NIfTI data'}; % --------------------------------------------------------------------- % vertex-wise CONN % --------------------------------------------------------------------- mesh_conn = cfg_exbranch; mesh_conn.tag = 'mesh_conn'; mesh_conn.name = 'Vertex-wise Connectivity Analysis'; mesh_conn.val = {GNIfTI_Data, Denoising, brainmask, conaSurf2, Outdir, job_save}; mesh_conn.prog = @wgr_vertex_ROI_rsHRF_conn; mesh_conn.help = {'NIfTI data'}; % --------------------------------------------------------------------- % ROI-signal HRF deconvolution % --------------------------------------------------------------------- sig_rsHRF = cfg_exbranch; sig_rsHRF.tag = 'sig_rsHRF'; sig_rsHRF.name = 'ROI signal HRF deconvolution'; sig_rsHRF.val = {Signal_Data, Denoising2, HRFE, connROI, Outdir, DatasaveROI, prefix}; sig_rsHRF.help = {'..'}; sig_rsHRF.prog = @wgr_sig_rsHRF_conn; sig_rsHRF.help = {'Please DO NOT select NIFTI files in Nuisance Covariates!'}; %{'ROI-signal HRF deconvolution' %'Please DO NOT select NIFTI files in Nuisance Covariates!' % --------------------------------------------------------------------- % ROI-signal CONN % --------------------------------------------------------------------- sig_conn = cfg_exbranch; sig_conn.tag = 'sig_conn'; sig_conn.name = 'ROI-signal Connectivity Analysis'; sig_conn.val = {Signal_Data, Denoising2, connROI2, Outdir,job_save}; sig_conn.help = {'..'}; sig_conn.prog = @wgr_sig_rsHRF_conn; sig_conn.help = {'Please DO NOT select NIFTI files in Nuisance Covariates!'}; % --------------------------------------------------------------------- % HRF Mat-files % --------------------------------------------------------------------- HRF_mat = cfg_files; HRF_mat.tag = 'HRF_mat'; HRF_mat.name = 'HRF Mat-files'; HRF_mat.val = {{''}}; HRF_mat.help = { 'Select individual *.mat file(s) containing HRF shapes (generate by rsHRF toolbox). ' 'Add a new ''HRF Mat-files'' for different groups (Plot each group HRF shapes seperately)' }'; HRF_mat.filter = 'mat'; HRF_mat.ufilter = '.*'; HRF_mat.num = [0 Inf]; % --------------------------------------------------------------------- % Statistical NIfTI file % --------------------------------------------------------------------- snifti = cfg_files; snifti.tag = 'stat_nii'; snifti.name = 'Statistical Image'; snifti.filter = {'image'}; snifti.ufilter = '.*'; snifti.num = [1 1]; snifti.help = {'Select the statistical image (NIfTI).' 'a statistical image for voxel location.'}; % --------------------------------------------------------------------- % Statistical NIfTI file % --------------------------------------------------------------------- unifti = cfg_files; unifti.tag = 'underlay_nii'; unifti.name = 'Underlay Image'; unifti.filter = {'image'}; unifti.ufilter = '.*'; unifti.num = [1 1]; unifti.help = {'Select the underlay image (NIfTI).'}; % default_nii = fullfile(spm('Dir'),'canonical','avg152T1.nii'); % --------------------------------------------------------------------- % GroupID % --------------------------------------------------------------------- GroupID = cfg_entry; GroupID.tag = 'GroupID'; GroupID.name = 'Group ID'; GroupID.help = {'Add a Group ID if you include all different group file together in one ''HRF Mat-files'' ,' 'e.g. 1 1 2 2 3 3'}; GroupID.strtype = 'e'; GroupID.val = {[]}; GroupID.num = [1 inf]; % --------------------------------------------------------------------- % Group HRF files % --------------------------------------------------------------------- HRF_mats = cfg_repeat; HRF_mats.tag = 'display_mat'; HRF_mats.name = 'HRF mat-files'; HRF_mats.help = {'Select individual Mat-files for HRF shape plotting.'}; HRF_mats.values = {HRF_mat}; HRF_mats.num = [0 Inf]; % --------------------------------------------------------------------- % Display HRF file % --------------------------------------------------------------------- HRF_Display = cfg_exbranch; HRF_Display.tag = 'display_HRF'; HRF_Display.name = 'HRF Viewer'; HRF_Display.val = {unifti, snifti, HRF_mats}; HRF_Display.prog = @wgr_vox_rsHRF_display; HRF_Display.help = {'Select the NIfTI files and HRF Mat-files(grouped according to the statistical maps)'}; % --------------------------------------------------------------------- % rsHRF deconvolution & connectivity analysis % --------------------------------------------------------------------- HRFrs = cfg_choice; HRFrs.tag = 'rsHRF'; HRFrs.name = 'rsHRF'; HRFrs.help = {'resting state HRF deconvolution and connectivity analysis.'}; HRFrs.values = {vox_rsHRF, mesh_rsHRF, ROI_rsHRF, SurfROI_rsHRF, sig_rsHRF, vox_conn, mesh_conn, ROI_conn, SurfROI_conn, sig_conn, HRF_Display}; %====================================================================== function wgr_vox_ROI_rsHRF_conn(job) rsHRF(job,'volume'); %====================================================================== function wgr_vertex_ROI_rsHRF_conn(job) rsHRF(job,'mesh') %====================================================================== function wgr_sig_rsHRF_conn(job) rsHRF(job,'sig') %====================================================================== function wgr_vox_rsHRF_display(job) rsHRF(job,'display')
github
compneuro-da/rsHRF-master
rsHRF_estimation_FIR.m
.m
rsHRF-master/rsHRF_estimation_FIR.m
5,644
utf_8
f525c14ab84e3a3979b752846777a816
function [beta_rshrf,event_bold] = rsHRF_estimation_FIR(data,para,temporal_mask,flag_parfor) % temporal_mask: generated from scrubbing. % By: Guo-Rong Wu ([email protected]). % Faculty of Psychology, Southwest University. % History: % - 2015-04-17 - Initial version. if nargin<4 flag_parfor = 1; end para.temporal_mask=temporal_mask; [N,nvar] = size(data); % warning off beta_rshrf = cell(1,nvar); event_bold= cell(1,nvar); if flag_parfor parfor i=1:nvar [beta_rshrf{i}, event_bold{i}] = wgr_FIR_estimation_HRF(data(:,i),para,N); end else for i=1:nvar [beta_rshrf{i}, event_bold{i}] = wgr_FIR_estimation_HRF(data(:,i),para,N); end end beta_rshrf =cell2mat(beta_rshrf); % warning on return function [beta_hrf,u] = wgr_FIR_estimation_HRF(data,para,N) if ~isfield(para,'localK') if para.TR<=2 localK = 1; else localK = 2; end else localK = para.localK; end u = rsHRF_find_event_vector(data,para.thr,localK,para.temporal_mask); u = find(full(u(:))); lag = para.lag; nlag = length(lag); len_bin=floor(para.len/para.TR); hrf = zeros(len_bin+1,nlag); Cov_E = zeros(1,nlag); kk=1; for i_lag=1:nlag RR = u-i_lag; RR(RR<=0)=[]; if ~isempty(RR) design = zeros(N,1); design(RR) = 1; [hrf(:,kk),Cov_E(kk)] = wgr_Fit_FIR2(design,data,para); else Cov_E(kk) = inf; end kk = kk+1; end [~, ind] = rsHRF_knee_pt(Cov_E); % this is a function to find the elbow point of a curve, there should be an equivalent in Python if ind==length(Cov_E) ind = ind-1; end beta_hrf = hrf(:,ind+1); beta_hrf(end+1) = lag(ind+1); function [hrf,res_sum] = wgr_Fit_FIR2(input,output,para) % NN : length of impulse response NN = floor(para.len/para.TR); flag_sfir = double(strcmp(para.estimation,'sFIR')); % X : convolution matrix X = toeplitz(input, [input(1) zeros(1, NN-1)]); X = [X ones(size(input))]; % h : impulse response estimate if flag_sfir MRI = wgr_smFIR(NN-1,para.TR); sigma = 1; sMRI0 = sigma^2*MRI; sMRI = zeros(NN+1); sMRI(1:NN,1:NN) = sMRI0; if ~para.AR_lag hrf = (X'*X+sMRI)\X'*output; %smoothed solution resid = output - X * hrf; res_sum=cov(resid); else [res_sum, hrf] = wgr_glsco_sm(X,output,para.AR_lag,sMRI); end else if ~para.AR_lag hrf = X \ output; resid = output - X * hrf; res_sum=cov(resid); else [res_sum, hrf] = wgr_glsco_sm(X,output,para.AR_lag,[]); end end function MRI = wgr_smFIR(nh,dt) fwhm =7; % fwhm=7 seconds smoothing - ref. Goutte C=(1:nh)'*(ones(1,nh)); h = sqrt(1/(fwhm/dt)); v = 0.1; R = v*exp(-h/2*(C-C').^2); RI = inv(R); MRI = zeros(nh+1); MRI(1:nh,1:nh) = RI; return function [res_sum, Beta] = wgr_glsco_sm(X,Y,AR_lag,sMRI,max_iter) % Linear regression when disturbance terms follow AR(p) % ----------------------------------- % Model: % Yt = Xt * Beta + ut , % ut = Phi1 * u(t-1) + ... + Phip * u(t-p) + et % where et ~ N(0,s^2) % ----------------------------------- % Algorithm: % Cochrane-Orcutt iterated regression (Feasible generalized least squares) % ----------------------------------- % Usage: % Y = dependent variable (n * 1 vector) % X = regressors (n * k matrix) % AR_lag = number of lags in AR process % ----------------------------------- % Returns: % Beta = estimator corresponding to the k regressors if nargin < 3; AR_lag = 1; sMRI = []; end if nargin < 5; max_iter = 20;end [nobs] = size(X,1); if isempty(sMRI) Beta = wgr_regress(Y,X); else Beta = (X'*X+sMRI)\X'*Y; %smoothed solution end resid = Y - X * Beta; if ~AR_lag %res_sum = sum(resid.^2); res_sum=cov(resid); return end max_tol = min(1e-6,max(abs(Beta))/1000); for r = 1:max_iter % fprintf('Iteration No. %d\n',r) Beta_temp = Beta; X_AR = zeros(nobs-2*AR_lag,AR_lag); for m = 1:AR_lag X_AR(:,m) = resid(AR_lag+1-m:nobs-AR_lag-m); end Y_AR = resid(AR_lag+1:nobs-AR_lag); % AR_para = X_AR\Y_AR; AR_para = wgr_regress(Y_AR,X_AR); X_main = X(AR_lag+1:nobs,:); Y_main = Y(AR_lag+1:nobs); for m = 1:AR_lag X_main = X_main-AR_para(m)*X(AR_lag+1-m:nobs-m,:); Y_main = Y_main-AR_para(m)*Y(AR_lag+1-m:nobs-m); end % Beta = X_main\Y_main; if isempty(sMRI) Beta = wgr_regress(Y_main,X_main); else Beta = (X_main'*X_main+sMRI)\X_main'*Y_main; %smoothed solution end resid = Y(AR_lag+1:nobs) - X(AR_lag+1:nobs,:)*Beta; if max(abs(Beta-Beta_temp)) < max_tol % fprintf('%d ,',r) % fprintf('Converged after %d iterations!\n',r) break end end % res_sum = sum(resid.^2); res_sum = cov(resid); %if r == max_iter % fprintf('Maximum %d iteration reached.\n',max_iter) %end return function b = wgr_regress(y,X) % copy from function [b,bint,r,rint,stats] = regress(y,X,alpha) [n,ncolX] = size(X); % Use the rank-revealing QR to remove dependent columns of X. [Q,R,perm] = qr(X,0); if isempty(R) p = 0; elseif isvector(R) p = double(abs(R(1))>0); else p = sum(abs(diag(R)) > max(n,ncolX)*eps(R(1))); end if p < ncolX % warning(message('stats:regress:RankDefDesignMat')); R = R(1:p,1:p); Q = Q(:,1:p); perm = perm(1:p); end % Compute the LS coefficients, filling in zeros in elements corresponding % to rows of X that were thrown out. b = zeros(ncolX,1); b(perm) = R \ (Q'*y);
github
compneuro-da/rsHRF-master
rsHRF_denoise_job.m
.m
rsHRF-master/rsHRF_denoise_job.m
5,773
utf_8
636514ba272caf404eab51266b00844e
function [data,data_nuisancerm] = rsHRF_denoise_job(job,data) Nscans = size(data,1); flag_delete = job.para_global.delete_files; % delete temporary files (generated wm/csf/brainmask) covariates = job.Denoising.generic; if ~isempty(covariates) fprintf('Reading Covariates ...\n') [txt,mat,nii]= wgr_check_covariates(covariates); if nargin==3 % NIFTI if ~isempty(nii) nii2 = cell(1,length(nii)); for i=1:length(nii) nii2{1,i} = spm_file(nii{i,1},'prefix',['bin_',job.raw_outname]); spm_imcalc({job.ref_nii;nii{i,1}},nii2{1,i},'(i1~=0).*(i2>0.9)',{0,0,0,16}); v0 = spm_vol(nii2{1,i}); datam = spm_read_vols(v0); if flag_delete delete(v0.fname) end id = find(datam==1); clear datam if isempty(id) error(['no survived voxels (>0.9) in ',nii{i,1}]) else if nii{i,2} numcomps = nii{i,2}; z = data(:,id); z(isnan(z))=0; m = size(z,2) ; if m<numcomps error(['# components = ',num2str(m),', < ', num2str(numcomps)]) else pc = pca(z); end nii2{1,i} = z*pc(:,1:numcomps); else nii2{1,i} = nanmean(data(:,id),2); end end end nii = cell2mat(nii2); clear nii2 datam else nii = []; end nuisance = [txt mat nii]; elseif nargin==2 nuisance = [txt mat]; end else nuisance = []; end %% Denoising parameters p_detrend = job.Denoising.Detrend; if p_detrend nuisance_detrend = zeros(Nscans,p_detrend); for i = 1:p_detrend d = (1:Nscans).^i; nuisance_detrend(:,i+1) = d(:)./(Nscans.^i); end else nuisance_detrend= []; end if ~isempty(nuisance) && ~isempty(nuisance_detrend) fprintf('Removing nuisance regressors & Detrend................. \n ') elseif isempty(nuisance) && ~isempty(nuisance_detrend) fprintf('Detrend................. \n ') elseif ~isempty(nuisance) && isempty(nuisance_detrend) fprintf('Removing nuisance regressors................. \n ') end nuisance = [nuisance_detrend nuisance]; if ~isempty(nuisance) nuisance = bsxfun(@minus, nuisance, sum(nuisance, 1)./Nscans);% Remove the mean nuisance = [orth(nuisance) ones(Nscans, 1)]; mu = sum(data, 1)./Nscans; % mean data = data - nuisance*(nuisance\data); data = bsxfun(@plus, data, mu); end data_nuisancerm = data; BPF = job.Denoising.BPF; [Bands,TR] = wgr_check_bpf(BPF); if ~isempty(Bands) fprintf('Frequency filter.................... \n ') if isnan(TR) if isfield(job,'HRFE') TR = job.HRFE.TR ; else error('Please add TR information for Filtering') end else if isfield(job,'HRFE') if TR ~= job.HRFE.TR ; error('Different TR for HRF estimation and Filtering') end end end data = rsHRF_band_filter(data,TR,Bands); end if job.Denoising.Despiking fprintf(' Temporal despiking with a hyperbolic tangent squashing function... \n') data = wgr_despiking(data); end function x1 = wgr_despiking(x1) my=repmat(median(x1,1),[size(x1,1),1]); sy=repmat(4*median(abs(x1-my)),[size(x1,1),1]); x1=my+sy.*tanh((x1-my)./max(eps,sy)); function [Bands,TR] = wgr_check_bpf(BPF) if length(BPF)==1 try Bands = BPF{1}.bands; TR = nan; catch error('please check your setting for band-pass filtering \n') end elseif length(BPF)==2 try Bands = BPF{1}.bands; TR = BPF{2}.TR; catch try Bands = BPF{2}.bands; TR = BPF{1}.TR; catch error('please check your setting for band-pass filtering \n') end end else Bands =[]; TR=nan; end function [txt,mat,nii]= wgr_check_covariates(covariates) txt={}; mat = {}; nii = {}; k1 =1 ; k2 = 1; k3 = 1; for i=1:length(covariates) tmp = covariates{i}; flag = isfield(tmp,'multi_reg'); if flag for j=1: length(tmp.multi_reg) tmp2 = strcat(tmp.multi_reg{j}); [~,~,ext] = fileparts(tmp2); if ~isempty(strfind(ext,'txt')) txt{1,k1} = load(tmp2); k1 = k1+1; elseif ~isempty(strfind(ext,'mat')) tmp3 = load(tmp2); try mat{1,k2} = tmp3.R; catch tmp4 = fieldnames(tmp3); if length(tmp4)==1 eval(['mat{1,k2} = tmp3.',tmp4{1},';']); else error('there are more than one variable in your mat file'); end end k2 = k2+1; else error('Unknown File Types') end continue; end end flag = isfield(tmp,'imcov'); if flag for j=1: length(tmp.imcov.images) tmp2 = strcat(tmp.imcov.images{j}); nii{k3,1} = tmp2; if length(tmp.imcov.mpc)==length(tmp.imcov.images) nii{k3,2} = tmp.imcov.mpc(j); elseif length(tmp.imcov.mpc)==1 nii{k3,2} = tmp.imcov.mpc(1); end k3 = k3+1; end continue; end end txt = cell2mat(txt); mat = cell2mat(mat);
github
compneuro-da/rsHRF-master
test_rsHRF_VolumeROI_cfg_job.m
.m
rsHRF-master/unittests/test_rsHRF_VolumeROI_cfg_job.m
3,599
utf_8
eecfea0bae7198621a2519e43ff4ce03
function tests = test_rsHRF_VolumeROI_cfg_job % Unit Tests for (Volume) ROI rsHRF estimation/deconvolution and FC analysis tests = functiontests(localfunctions); function test_VolumeROI(testCase) out_dir = tempdir; conprefix = 'Conntest_'; deconvprefix = 'Deconvtest_'; filename = 'rsHRF_demo'; expected_output = {fullfile(out_dir,[deconvprefix,filename,'_job.mat']) fullfile(out_dir,[deconvprefix,filename,'_hrf.mat']) fullfile(out_dir,[conprefix,filename,'_deconv_Corr_PartialSpearman.mat']) }; fpath = fileparts(which('rsHRF.m')); fnii = fullfile(fpath,'unittests','rsHRF_demo.nii,1'); atlas_nii = fullfile(fpath,'unittests','rsHRF_demo_atlas.nii,1'); mask_nii= fullfile(fpath,'unittests','rsHRF_demo_mask.nii'); matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.images = {fnii}; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.Denoising.generic = {}; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.Denoising.Detrend = 0; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.Denoising.BPF = {}; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.Denoising.Despiking = 0; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.Denoising.which1st = 3; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.genericROI{1}.atlas = {atlas_nii}; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.hrfm = 2; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.TR = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.num_basis = NaN; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.cvi = 0; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.fmri_t = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.fmri_t0 = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.localK = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.tmask = NaN; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.hrfdeconv = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.mask = {''}; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.connectivity{1}.conn.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.connectivity{1}.conn.method = 7; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.connectivity{1}.conn.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.outdir = {out_dir}; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.savedata.deconv_save = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.prefix = deconvprefix; spm('defaults', 'FMRI'); spm_jobman('run', matlabbatch); job = load(expected_output{1}); job = job.job; testCase.assertTrue(isfield(job,'prefix')); job = load(expected_output{2}); testCase.assertEqual(size(job.PARA), [3 10]); job = load(expected_output{3}); testCase.assertTrue(isfield(job,'M')); testCase.assertEqual(size(job.M.Matrix_z), [10 10]); try delete(fullfile(out_dir,[deconvprefix '*'])) delete(fullfile(out_dir,[conprefix,'*'])) end matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.connectivity = cell(1, 0); matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.mask = {mask_nii}; for i=[1 3:7] matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.HRFE.hrfm = i; deconvprefix2 = ['Deconvtest_',num2str(i),'_']; matlabbatch{1}.spm.tools.rsHRF.ROI_rsHRF.prefix = deconvprefix2; spm_jobman('run', matlabbatch); expected_output2 = fullfile(out_dir,[deconvprefix2,filename,'_hrf.mat']); job = load(expected_output2); testCase.assertEqual(size(job.PARA), [3 10]); end try delete(fullfile(out_dir,[deconvprefix,'*'])) end
github
compneuro-da/rsHRF-master
test_rsHRF_estimation_impulseest.m
.m
rsHRF-master/unittests/test_rsHRF_estimation_impulseest.m
907
utf_8
abe8a389bdc31bef81d29d08ff88c27c
function tests = test_rsHRF_estimation_impulseest % Unit Tests for rsHRF_estimation_impulseest tests = functiontests(localfunctions); function test_rsHRF_impulseest(testCase) import matlab.unittest.constraints.* fpath = fileparts(which('rsHRF.m')); cd(fullfile(fpath,'demo_codes')) load('HCP_100307_rfMRI_REST1_LR_Atlas_hp2000_clean_dtseries.mat') TR = .72; bands=[0.01 0.1]; bold_sig = double(zscore(bold_sig)); data = rsHRF_band_filter(bold_sig,TR,bands); para.TR = TR; para.len = 24; para.temporal_mask=[]; para.T = 1; para.T0 = 1; para.thr = 1; min_onset_search = 4; max_onset_search = 8; para.dt = para.TR/para.T; para.lag = fix(min_onset_search/para.dt):fix(max_onset_search/para.dt); [beta_hrf, event_bold] = rsHRF_estimation_impulseest(data,para); testCase.verifyThat(beta_hrf, HasSize([fix(para.len/TR)+ 1,1])); testCase.verifyThat(event_bold, IsOfClass('cell'));
github
compneuro-da/rsHRF-master
test_rsHRF_estimation_deconvolution.m
.m
rsHRF-master/unittests/test_rsHRF_estimation_deconvolution.m
2,473
utf_8
b547768210512d21a0a5be08f2a9de4b
function tests = test_rsHRF_estimation_deconvolution % Unit Tests for band filter, HRF (parameter) estimation and (iterative Wiener) deconvolution tests = functiontests(localfunctions); function test_rsHRF_core(testCase) import matlab.unittest.constraints.* fpath = fileparts(which('rsHRF.m')); cd(fullfile(fpath,'demo_codes')) load('HCP_100307_rfMRI_REST1_LR_Atlas_hp2000_clean_dtseries.mat') TR = .72; bands=[0.01 0.1]; bold_sig = zscore(bold_sig); data = rsHRF_band_filter(bold_sig,TR,bands); % Unit Tests for band filter testCase.verifyThat(data, HasSize(size(bold_sig))); testCase.verifyThat(data, HasLength(length(bold_sig))); para.TR = TR; BF = {'Canonical HRF (with time derivative)' 'Canonical HRF (with time and dispersion derivatives)' 'Gamma functions' 'Fourier set' 'Fourier set (Hanning)' 'FIR' 'sFIR'}; para.order = 3; para.len = 24; beta_size=[2 3 para.order repmat(para.order*2+1,1,2) repmat(fix(para.len/TR),1,2) ] + 2; temporal_mask = []; para.T = 2; para.T0 = 1; if para.T==1 para.T0 = 1; end para.AR_lag = 1; para.thr = 1; min_onset_search = 4; max_onset_search = 8; for bf_id = 1:length(BF) para.name = BF{bf_id}; if bf_id>5 para.T = 1; para.T0 = 1; end para.dt = para.TR/para.T; para.lag = fix(min_onset_search/para.dt):fix(max_onset_search/para.dt); if bf_id<=5 [beta_hrf, bf, event_bold] = rsHRF_estimation_temporal_basis(data,para,temporal_mask); hrfa = bf*beta_hrf(1:size(bf,2),:); %HRF else para.estimation = BF{bf_id}; % sFIR [beta_hrf, event_bold] = rsHRF_estimation_FIR(data,para,temporal_mask); hrfa = beta_hrf(1:end-2,:); end % Unit Tests for rsHRF_estimation_temporal_basis & rsHRF_estimation_FIR testCase.verifyThat(beta_hrf, HasSize([beta_size(bf_id),1])); testCase.verifyThat(event_bold, IsOfClass('cell')); PARA = rsHRF_get_HRF_parameters(hrfa,para.dt); % Unit Tests for rsHRF_get_HRF_parameters testCase.verifyThat(PARA, HasSize([3,1])); T = round(para.len/TR); if para.T>1 hrfa_TR = resample(hrfa,1,para.T); else hrfa_TR = hrfa; end hrf=hrfa_TR; data_deconv = rsHRF_iterative_wiener_deconv(data,hrf,10,1); % Unit Tests for rsHRF_iterative_wiener_deconv testCase.verifyThat(data_deconv, HasSize(size(data))); end
github
compneuro-da/rsHRF-master
test_rsHRF_Signals_cfg_job.m
.m
rsHRF-master/unittests/test_rsHRF_Signals_cfg_job.m
3,627
utf_8
4b435d5e34417d5d19a2e39f11845c98
function tests = test_rsHRF_Signals_cfg_job % Unit Tests for (Signal)ROI rsHRF estimation/deconvolution and FC analysis tests = functiontests(localfunctions); function test_Signals(testCase) out_dir = tempdir; conprefix = 'Conntest_'; deconvprefix = 'Deconvtest_'; filename = 'rsHRF_demo'; expected_output = {fullfile(out_dir,[deconvprefix,'combROI_',filename,'_job.mat']) fullfile(out_dir,[deconvprefix,'combROI_',filename,'_hrf.mat']) fullfile(out_dir,[conprefix,'combROI_',filename,'_deconv_Corr_Spearman.mat']) }; fpath = fileparts(which('rsHRF.m')); gii = fullfile(fpath,'unittests','rsHRF_demo.gii'); a = gifti(gii); dd = double(a.cdata'); sig1 = fullfile(out_dir,[filename,'.txt']); sig2 = fullfile(out_dir,[filename,'.mat']); save(sig1,'dd','-ascii'); save(sig2,'dd'); matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Datasig(1).sigdata = {sig2}; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Datasig(1).name = 'dd'; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Datasig(2).sigdata = {sig1}; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Datasig(2).name = ''; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Denoising.generic = {}; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Denoising.Detrend = 0; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Denoising.BPF = {}; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.Denoising.Despiking = 0; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.hrfm = 2; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.TR = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.num_basis = NaN; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.cvi = 0; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.fmri_t = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.fmri_t0 = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.tmask = NaN; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.hrfdeconv = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.connectivity{1}.conn.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.connectivity{1}.conn.method = 6; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.connectivity{1}.conn.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.outdir = {out_dir}; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.savedata.deconv_save = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.prefix = deconvprefix; spm('defaults', 'FMRI'); spm_jobman('run', matlabbatch); job = load(expected_output{1}); job = job.job; testCase.assertTrue(isfield(job,'prefix')); job = load(expected_output{2}); testCase.assertEqual(size(job.PARA), [3 10]); job = load(expected_output{3}); testCase.assertTrue(isfield(job,'M')); testCase.assertEqual(size(job.M.Matrix_z), [10 10]); try delete(fullfile(out_dir,[deconvprefix '*'])) delete(fullfile(out_dir,[conprefix,'*'])) end matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.connectivity = cell(1, 0); for i=[1 3:7] matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.HRFE.hrfm = i; deconvprefix2 = ['Deconvtest_',num2str(i),'_']; matlabbatch{1}.spm.tools.rsHRF.sig_rsHRF.prefix = deconvprefix2; spm_jobman('run', matlabbatch); expected_output2 = fullfile(out_dir,[deconvprefix2,'combROI_',filename,'_hrf.mat']); job = load(expected_output2); testCase.assertEqual(size(job.PARA), [3 10]); end try delete(fullfile(out_dir,[deconvprefix,'*'])) end
github
compneuro-da/rsHRF-master
test_rsHRF_Voxelwise_cfg_job.m
.m
rsHRF-master/unittests/test_rsHRF_Voxelwise_cfg_job.m
4,580
utf_8
f87d49d4621efdea5bb8f9a023c5e8f9
function tests = test_rsHRF_Voxelwise_cfg_job % Unit Tests for voxelwise rsHRF estimation/deconvolution and FC/GC analysis tests = functiontests(localfunctions); function test_voxelwise(testCase) out_dir = tempdir; conprefix = 'Conntest_'; deconvprefix = 'Deconvtest_'; filename = 'rsHRF_demo'; expected_output = {fullfile(out_dir,[deconvprefix,filename,'_job.mat']) fullfile(out_dir,[deconvprefix,filename,'_hrf.mat']) fullfile(out_dir,[conprefix,filename,'_deconv_pwGC.mat']) fullfile(out_dir,[conprefix,'10_',filename,'_deconv_Olrm_Z_Pearson.nii']) }; fpath = fileparts(which('rsHRF.m')); fnii = fullfile(fpath,'unittests','rsHRF_demo.nii,1'); atlas_nii = fullfile(fpath,'unittests','rsHRF_demo_atlas.nii,1'); mask_nii= fullfile(fpath,'unittests','rsHRF_demo_mask.nii,1'); matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.images = {fnii}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.generic = {}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.Detrend = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.BPF = {}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.Despiking = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.which1st = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrfm = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.TR = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.num_basis = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.cvi = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.fmri_t = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.fmri_t0 = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.tmask = NaN; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrfdeconv = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.rmoutlier = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.mask = {''}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{1}.conn.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{1}.conn.Seed_ROI = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{1}.conn.genericROI{1}.atlas = {atlas_nii}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{1}.conn.method = 4; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{1}.conn.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.Seed_ROI = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.genericROI{1}.atlas = {atlas_nii}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.method = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.morder = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.ndinfo = [NaN NaN]; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity{2}.connG.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.outdir = {out_dir}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.deconv_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.hrfnii_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.prefix = deconvprefix; spm('defaults', 'FMRI'); spm_jobman('run', matlabbatch); job = load(expected_output{1}); job = job.job; testCase.assertTrue(isfield(job,'prefix')); job = load(expected_output{2}); testCase.assertEqual(size(job.PARA_rm), [3 27]); job = load(expected_output{3}); testCase.assertTrue(isfield(job,'M')); testCase.assertEqual(size(job.M.GC_Matrix), [10 10]); testCase.assertTrue(exist(expected_output{4},'file') > 0); try delete(fullfile(out_dir,[deconvprefix '*'])) delete(fullfile(out_dir,[conprefix,'*'])) end matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.rmoutlier = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity = cell(1, 0); matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.mask = {mask_nii}; for i=[1 3:7] matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrfm = i; deconvprefix2 = ['Deconvtest_',num2str(i),'_']; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.prefix = deconvprefix2; spm_jobman('run', matlabbatch); expected_output2 = fullfile(out_dir,[deconvprefix2,filename,'_hrf.mat']); job = load(expected_output2); testCase.assertEqual(size(job.PARA), [3 1]); end try delete(fullfile(out_dir,[deconvprefix,'*'])) end
github
compneuro-da/rsHRF-master
test_rsHRF_SurfROI_cfg_job.m
.m
rsHRF-master/unittests/test_rsHRF_SurfROI_cfg_job.m
4,263
utf_8
2013a3fc83ac25d8c8a1acc35293762c
function tests = test_rsHRF_SurfROI_cfg_job % Unit Tests for (surface) ROI rsHRF estimation/deconvolution and FC/GC analysis tests = functiontests(localfunctions); function test_SurfROI(testCase) out_dir = tempdir; conprefix = 'Conntest_'; deconvprefix = 'Deconvtest_'; filename = 'rsHRF_demo'; expected_output = {fullfile(out_dir,[deconvprefix,filename,'_job.mat']) fullfile(out_dir,[deconvprefix,filename,'_hrf.mat']) fullfile(out_dir,[conprefix,filename,'_deconv_PCGC.mat']) fullfile(out_dir,[conprefix,filename,'_deconv_Corr_PartialPearson.mat']) }; fpath = fileparts(which('rsHRF.m')); fgii = fullfile(fpath,'unittests','rsHRF_demo.gii'); atlas_gii = fullfile(fpath,'unittests','rsHRF_demo_atlas.gii'); mask_gii= fullfile(fpath,'unittests','rsHRF_demo_mask.gii'); matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.images = {fgii}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.generic = {}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.Detrend = 0; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.BPF = {}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.Despiking = 0; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.which1st = 3; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.genericROI{1}.meshatlas = {atlas_gii}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.hrfm = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.TR = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.num_basis = NaN; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.cvi = 0; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.fmri_t = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.fmri_t0 = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.tmask = NaN; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.hrfdeconv = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.mask = {''}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{1}.conn.data4conn = 3; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{1}.conn.method = 5; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{1}.conn.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{2}.connG.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{2}.connG.method = 3; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{2}.connG.morder = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{2}.connG.ndinfo = [2 3]; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity{2}.connG.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.outdir = {out_dir}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.savedata.deconv_save = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.prefix = deconvprefix; spm('defaults', 'FMRI'); spm_jobman('run', matlabbatch); job = load(expected_output{1}); job = job.job; testCase.assertTrue(isfield(job,'prefix')); job = load(expected_output{2}); testCase.assertEqual(size(job.PARA), [3 5]); job = load(expected_output{3}); testCase.assertTrue(isfield(job,'M')); testCase.assertEqual(size(job.M.GC_Matrix), [5 5]); testCase.assertTrue(exist(expected_output{4},'file') > 0); try delete(fullfile(out_dir,[deconvprefix '*'])) delete(fullfile(out_dir,[conprefix,'*'])) end matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity = cell(1, 0); matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.mask = {mask_gii}; for i=[1 3:7] matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.hrfm = i; deconvprefix2 = ['Deconvtest_',num2str(i),'_']; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.prefix = deconvprefix2; spm_jobman('run', matlabbatch); expected_output2 = fullfile(out_dir,[deconvprefix2,filename,'_hrf.mat']); job = load(expected_output2); testCase.assertEqual(size(job.PARA), [3 5]); end try delete(fullfile(out_dir,[deconvprefix,'*'])) end
github
compneuro-da/rsHRF-master
test_rsHRF_find_event_vector.m
.m
rsHRF-master/unittests/test_rsHRF_find_event_vector.m
451
utf_8
4edc3607ff94c7875c9bd03d8d332592
function tests = test_rsHRF_find_event_vector % Unit Tests for rsHRF_find_event_vector tests = functiontests(localfunctions); function test_rsHRF_find_event_vector_1(testCase) import matlab.unittest.constraints.* matrix = randn(200,1); ts = [20,60,100 150]; matrix(ts)=10; % plot(matrix) event = rsHRF_find_event_vector(matrix,1,1,[]); testCase.verifyThat(event, IsOfClass('double')); testCase.assertTrue(all(ismember(ts,find(event))));
github
compneuro-da/rsHRF-master
test_rsHRF_Viewer_cfg_job.m
.m
rsHRF-master/unittests/test_rsHRF_Viewer_cfg_job.m
2,559
utf_8
63817f367f41761dadd3b7993ce9ac50
function tests = test_rsHRF_Viewer_cfg_job % Unit Tests for voxelwise rsHRF display tests = functiontests(localfunctions); function test_Viewer(testCase) out_dir = tempdir; deconvprefix = 'Deconvtest_'; filename = 'rsHRF_demo'; expected_output = {fullfile(out_dir,[deconvprefix,filename,'_job.mat']) fullfile(out_dir,[deconvprefix,filename,'_hrf.mat']) }; fpath = fileparts(which('rsHRF.m')); fnii = fullfile(fpath,'unittests','rsHRF_demo.nii,1'); atlas_nii = fullfile(fpath,'unittests','rsHRF_demo_atlas.nii,1'); matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.images = {fnii}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.generic = {}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.Detrend = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.BPF = {}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.Despiking = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.which1st = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrfm = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.TR = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.num_basis = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.cvi = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.fmri_t = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.fmri_t0 = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.tmask = NaN; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrfdeconv = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.rmoutlier = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.mask = {''}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.outdir = {out_dir}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.deconv_save = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.hrfnii_save = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.prefix = deconvprefix; spm('defaults', 'FMRI'); spm_jobman('run', matlabbatch); matlabbatch={}; matlabbatch{1}.spm.tools.rsHRF.display_HRF.underlay_nii = {atlas_nii}; matlabbatch{1}.spm.tools.rsHRF.display_HRF.stat_nii = {atlas_nii}; matlabbatch{1}.spm.tools.rsHRF.display_HRF.HRF_mat = {expected_output([2 2 2])}; spm('defaults', 'FMRI'); spm_jobman('run', matlabbatch); try delete(fullfile(out_dir,[deconvprefix '*'])) end close all
github
compneuro-da/rsHRF-master
test_rsHRF_Vertexwise_cfg_job.m
.m
rsHRF-master/unittests/test_rsHRF_Vertexwise_cfg_job.m
4,546
utf_8
e9b9a5b0e1b3b62113143415f517edd9
function tests = test_rsHRF_Vertexwise_cfg_job % Unit Tests for vertexwise rsHRF estimation/deconvolution and FC/GC analysis tests = functiontests(localfunctions); function test_vertexwise(testCase) out_dir = tempdir; conprefix = 'Conntest_'; deconvprefix = 'Deconvtest_'; filename = 'rsHRF_demo'; expected_output = {fullfile(out_dir,[deconvprefix,filename,'_job.mat']) fullfile(out_dir,[deconvprefix,filename,'_hrf.mat']) fullfile(out_dir,[conprefix,filename,'_deconv_CGC.mat']) fullfile(out_dir,[conprefix,'5_',filename,'_deconv_Z_Pearson.gii']) }; fpath = fileparts(which('rsHRF.m')); fgii = fullfile(fpath,'unittests','rsHRF_demo.gii'); atlas_gii = fullfile(fpath,'unittests','rsHRF_demo_atlas.gii'); mask_gii= fullfile(fpath,'unittests','rsHRF_demo_mask.gii'); matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.images = {fgii}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.Denoising.generic = {}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.Denoising.Detrend = 0; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.Denoising.BPF = {}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.Denoising.Despiking = 0; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.Denoising.which1st = 3; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.hrfm = 2; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.TR = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.num_basis = 3; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.cvi = 0; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.fmri_t = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.fmri_t0 = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.tmask = NaN; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.hrfdeconv = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.mask = {''}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{1}.conn.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{1}.conn.Seed_ROI = 0; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{1}.conn.genericROI{1}.meshatlas = {atlas_gii}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{1}.conn.method = 4; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{1}.conn.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.data4conn = 2; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.Seed_ROI = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.genericROI{1}.meshatlas = {atlas_gii}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.method = 2; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.morder = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.ndinfo = [NaN NaN]; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity{2}.connG.prefix = conprefix; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.outdir = {out_dir}; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.savedata.deconv_save = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.savedata.hrfnii_save = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.prefix = deconvprefix; spm('defaults', 'FMRI'); % spm_jobman('interactive', matlabbatch); spm_jobman('run', matlabbatch); job = load(expected_output{1}); job = job.job; testCase.assertTrue(isfield(job,'prefix')); job = load(expected_output{2}); testCase.assertEqual(size(job.PARA), [3 5]); job = load(expected_output{3}); testCase.assertTrue(isfield(job,'M')); testCase.assertEqual(size(job.M.GC_Matrix), [5 5]); testCase.assertTrue(exist(expected_output{4},'file') > 0); try delete(fullfile(out_dir,[deconvprefix '*'])) delete(fullfile(out_dir,[conprefix,'*'])) end matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.connectivity = cell(1, 0); matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.mask = {mask_gii}; for i=[1 3:7] matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.HRFE.hrfm = i; deconvprefix2 = ['Deconvtest_',num2str(i),'_']; matlabbatch{1}.spm.tools.rsHRF.mesh_rsHRF.prefix = deconvprefix2; spm_jobman('run', matlabbatch); expected_output2 = fullfile(out_dir,[deconvprefix2,filename,'_hrf.mat']); job = load(expected_output2); testCase.assertEqual(size(job.PARA), [3 1]); end try delete(fullfile(out_dir,[deconvprefix,'*'])) end
github
compneuro-da/rsHRF-master
rsHRF_estimation_impulseest_IO.m
.m
rsHRF-master/demo_codes/rsHRF_estimation_impulseest_IO.m
11,440
utf_8
99bc4a399cc92d67ce2bbff4a3eb25e2
function [hrf] = rsHRF_estimation_impulseest_IO(input, output, para) %% detrend if ~isempty(para.flag_detrend) input = spm_detrend(input,para.flag_detrend); output = spm_detrend(output,para.flag_detrend); end %% filtering if ~isempty(para.Band) output = bandpass_filt(output, 1/para.TR, para.Band, 10, 'fir', 'twopass', 1); % output = rsHRF_band_filter(output,para.TR,para.Band); end if 0 figure plot(zscore([input output])) end %% neural binay stimulus onset u0 = rsHRF_find_event_vector(input,para.thr,para.localK,para.temporal_mask); u0 = full(u0(:)); srs0 = iddata(output, u0, para.TR); srs0.InputName = 'LFP-bin'; srs0.OutputName = 'OIS'; NN=fix(para.len*1/para.TR); srsiiu_lfp_bin = impulseest(srs0,NN,para.options); %% LFP HRF srs = iddata(output, input, para.TR); srs.InputName = 'LFP'; srs.OutputName = 'OIS'; srsii_lfp = impulseest(srs,NN,para.options); H_LFP_bin = srsiiu_lfp_bin.Report.Parameters.ParVector; H_LFP = srsii_lfp.Report.Parameters.ParVector; [H_Blind] = rsHRF_estimation_impulseest(output,para); hrf.H_LFP_bin=H_LFP_bin; hrf.H_LFP=H_LFP; hrf.H_Blind=H_Blind; function filt = bandpass_filt(data, Fs, Fbp, N, type, dir, meanback) % % BANDPASS_FILT applies a band-pass filter to the data in a specified % frequency band. % % %USAGE %----- % filt = bandpass_filt(data, Fsample, Fbp, N, type, dir, meanback) % % %INPUT %----- % - DATA : data matrix (Nsamples x Nchannels) % - FSAMPLE : sampling frequency in Hz % - FBP : frequency band, specified as [Fhp Flp] % Fhp = 0 => low-pass filter % Flp = inf => high-pass filter % - N : filter order (positive integer). If N=[], the default value % will be used: 4 ('but') or dependent upon frequency band and % data length ('fir', 'firls') % - TYPE : filter type. If TYPE='', the default value will be used. % 'but' Butterworth IIR filter (default) % 'fir' FIR filter using Matlab fir1 function % 'firls' FIR filter using Matlab firls function (requires % Matlab Signal Processing Toolbox) % - DIR : filter direction. If DIR='', the default value will be used. % 'onepass' forward filter only % 'onepass-reverse' reverse filter only, i.e. backward in time % 'twopass' zero-phase forward and reverse filter (default) % 'twopass-reverse' zero-phase reverse and forward filter % 'twopass-average' average of the twopass and the twopass-reverse % - MEANBACK: 1 (add the mean back after filtering [default]) or 0 (do not add) % % Note that a one- or two-pass filter has consequences for the strength of % the filter, i.e. a two-pass filter with the same filter order will % attenuate the signal twice as strong. % % %EXAMPLE %------- % T = .5; % [s] => sampling freq. = 1/T => Nyquist freq. = 1/(2T) % t = (0:T:2*pi*10)'; % f1 = (1/2/T)*.030; % f2 = (1/2/T)*.050; % f3 = (1/2/T)*.075; % x1 = 10*sin(2*pi*f1*t); % x2 = 4*sin(2*pi*f2*t); % x3 = 15*cos(2*pi*f3*t); % x = x1 + x2 + x3; % % type = {'but' 'fir' 'firls'}; % dir = {'onepass' 'onepass-reverse' 'twopass' 'twopass-reverse' 'twopass-average'}; % addmean = 0; N=10; tt=1; dd=3; % % xLP = bandpass_filt(x, 1/T, [0 (f2+f3)/2], N, type{tt}, dir{dd}, addmean); % figure, plot(t,x,t,xLP,t,x1+x2) % title(sprintf('Low-pass filter (%s - %s)', type{tt}, dir{dd})) % legend('Original', 'Filtered', 'f1 & f2') % xHP = bandpass_filt(x, 1/T, [(f1+f2)/2 inf], N, type{tt}, dir{dd}, addmean); % figure, plot(t,x,t,xHP,t,x2+x3) % title(sprintf('High-pass filter (%s - %s)', type{tt}, dir{dd})) % legend('Original', 'Filtered', 'f2 & f3') % xBP = bandpass_filt(x, 1/T, [(f1+f2)/2 (f2+f3)/2], 6, type{tt}, dir{dd}, addmean); % figure, plot(t,x,t,xBP,t,x2) % title(sprintf('Band-pass filter (%s - %s)', type{tt}, dir{dd})) % legend('Original', 'Filtered', 'f2') % Copyright (c) 2003-2008, Robert Oostenveld % % This file is part of FieldTrip, see http://www.ru.nl/neuroimaging/fieldtrip % for the documentation and details. % % FieldTrip is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % FieldTrip is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with FieldTrip. If not, see <http://www.gnu.org/licenses/>. % % $Id: ft_preproc_lowpassfilter.m 7123 2012-12-06 21:21:38Z roboos $ % $Id: ft_preproc_bandpassfilter.m 7123 2012-12-06 21:21:38Z roboos $ % $Id: ft_preproc_highpassfilter.m 7123 2012-12-06 21:21:38Z roboos $ % $Id: filter_with_correction.m 7123 2012-12-06 21:21:38Z roboos $ % Default values %========================================================================== if nargin<4 || isempty(N) N = []; % set the default filter order later end if nargin<5 || isempty(type) type = 'but'; % set the default filter type end if nargin<6 || isempty(dir) dir = 'twopass'; % set the default filter direction end if nargin<7 || isempty(meanback) meanback = 1; % set the default option for the mean end % Initialize %========================================================================== Fbp = sort(Fbp); if Fbp(1)==0 && isinf(Fbp(2)) % full spectrum => nothing should be done filt = data; return end if Fbp(1)==0 % low-pass filter Fbp = Fbp(2); ftype = -1; % filter type elseif isinf(Fbp(2)) % high-pass filter Fbp = Fbp(1); ftype = 1; % filter type else % band-pass filter ftype = 0; % filter type end Fn = Fs/2; % Nyquist frequency Nsamples = size(data, 1); data = data.'; % Nchannels x Nsamples % Compute filter coefficients %========================================================================== switch type case 'but' if isempty(N) if ftype==-1 || ftype==1 % low- and high-pass filters N = 6; elseif ftype==0 % band-pass filter N = 4; end end if ftype==-1 % low-pass filter [B, A] = butter(N, Fbp/Fn); elseif ftype==1 % high-pass filter [B, A] = butter(N, Fbp/Fn, 'high'); elseif ftype==0 % band-pass filter [B, A] = butter(N, [Fbp(1)/Fn Fbp(2)/Fn]); end case 'fir' if isempty(N) if ftype==-1 || ftype==1 % low- and high-pass filters N = 3*fix(Fs / Fbp); if ftype==1 && rem(N, 2)==1 N = N + 1; end elseif ftype==0 % band-pass filter N = 3*fix(Fs / Fbp(1)); % old: 25 end end if N > floor( (Nsamples - 1) / 3) if ftype==1 N = floor(Nsamples/3) - 2; if rem(N, 2)==1 N = N + 1; % "fir1" always uses an even filter order for the highpass configuration end else N = floor(Nsamples/3) - 1; end end if ftype==-1 % low-pass filter [B, A] = fir1(N, Fbp/Fn); elseif ftype==1 % high-pass filter [B, A] = fir1(N, Fbp/Fn, 'high'); elseif ftype==0 % band-pass filter [B, A] = fir1(N, [Fbp(1)/Fn Fbp(2)/Fn]); end case 'firls' % from NUTMEG's implementation if isempty(N) if ftype==-1 || ftype==1 % low- and high-pass filters N = 3*fix(Fs / Fbp); if ftype==1 && rem(N, 2)==1 N = N + 1; end elseif ftype==0 % band-pass filter N = 3*fix(Fs / Fbp(1)); end end if N > floor( (Nsamples - 1) / 3) if ftype==1 N = floor(Nsamples/3) - 2; if rem(N, 2)==1 N = N + 1; end else N = floor(Nsamples/3) - 1; end end f = 0:0.001:1; if rem(length(f), 2)~=0 f(end) = []; end z = zeros(1, length(f)); if ftype==-1 % low-pass filter [val, pos1] = min(abs(Fs*f/2 - 0)); if isfinite(Fbp) [val, pos2] = min(abs(Fs*f/2 - Fbp)); else pos2 = length(f); end elseif ftype==1 % high-pass filter [val,pos1] = min(abs(Fs*f/2 - Fbp)); pos2 = length(f); elseif ftype==0 % band-pass filter if isfinite(Fbp(1)) [val, pos1] = min(abs(Fs*f/2 - Fbp(1))); else [val, pos2] = min(abs(Fs*f/2 - Fbp(2))); pos1 = pos2; end if isfinite(Fbp(2)) [val, pos2] = min(abs(Fs*f/2 - Fbp(2))); else pos2 = length(f); end end z(pos1:pos2) = 1; A = 1; B = firls(N, f, z); % requires Matlab signal processing toolbox otherwise error('Unsupported filter type "%s"', type); end % Apply A to the data and correct edge-artifacts for one-pass filtering %========================================================================== poles = roots(A); if any(abs(poles) >= 1) %poles fprintf(['Calculated filter coefficients have poles on or outside\n' ... 'the unit circle and will not be stable. Try a higher cutoff\n' ... 'frequency or a different type/order of filter.\n']) filt = []; return end dcGain = sum(B)/sum(A); mu = sum(data, 2)/Nsamples; % data mean data = bsxfun(@minus, data, mu); % zero-mean switch dir case 'onepass' offset = data(:,1); data = data - repmat(offset, 1, Nsamples); filt = filter(B, A, data.').' + repmat(dcGain*offset, 1, Nsamples); % old: filt = filter(B, A, data.'); case 'onepass-reverse' offset = data(:, end); data = fliplr(data) - repmat(offset, 1, Nsamples); filt = filter(B, A, data.').'; filt = fliplr(filt) + repmat(dcGain*offset, 1, Nsamples); % old: data=fliplr(data); filt=filter(B, A, data.'); filt fliplr(filt); case 'twopass' % filtfilt does the correction for us filt = filtfilt(B, A, data.').'; case 'twopass-reverse' % filtfilt does the correction for us filt = fliplr(filtfilt(B, A, fliplr(data).').'); case 'twopass-average' % take the average from the twopass and the twopass-reverse filt1 = filtfilt(B, A, data.').'; filt2 = fliplr(filtfilt(B, A, fliplr(data).').'); filt = (filt1 + filt2)/2; otherwise error('Unsupported filter direction "%s"', dir); end if meanback filt = bsxfun(@plus, filt, mu); % add mean back to the filtered data end filt = filt.'; % restore data shape
github
compneuro-da/rsHRF-master
rsHRF_demo_UCLA_sub_gamma3_wm.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/rsHRF_demo_UCLA_sub_gamma3_wm.m
2,409
utf_8
1647fe41b830244fd71da5d19fd54003
function rsHRF_demo_UCLA_sub_gamma3_wm(fl,fnii,niimask,mainoutdir,csf_mat) [fpath,name,~] = fileparts(fl); id = strfind(name,'_task'); subid = name(1:id(1)-1); gunzip([fnii,'.gz']) a= spm_load(fl); b = load(csf_mat); acomp = [b.csf_acompcor]; Q1 = [a.X, a.Y, a.Z, a.RotX, a.RotY, a.RotZ]; HM = [Q1, [zeros(1,size(Q1,2));diff(Q1)]]; FD = a.FramewiseDisplacement; FD(1)=0; tmask = double(FD<0.3); if mean(FD)>0.2 return end nui = [acomp HM]; txtfile = fullfile(fpath,[name,'_csf.txt']); save(txtfile,'nui','-ascii') outdir = fullfile(mainoutdir,subid); rsHRF_gamma3HRF_batch_job([fnii,',1'],txtfile,tmask,niimask,outdir) delete(fnii) function rsHRF_gamma3HRF_batch_job(fnii,txtfile,tmask,nii_mask,outdir) matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.images = {fnii}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.generic{1}.multi_reg = {txtfile}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.Detrend = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.BPF{1}.bands = [0.01 0.1]; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.Denoising.Despiking = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrfm = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.TR = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.hrflen = 32; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.cvi = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.num_basis = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.fmri_t = 5; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.fmri_t0 = 3; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.HRFE.tmask = tmask; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.rmoutlier = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.mask = {nii_mask}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.connectivity = {}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.outdir = {outdir}; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.deconv_save = 0; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.hrfnii_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.vox_rsHRF.prefix = 'T5to3AR1_'; spm('defaults', 'FMRI'); spm_jobman('interactive',matlabbatch); spm_jobman('run',matlabbatch);
github
compneuro-da/rsHRF-master
rsHRF_demo_UCLA_sub_Fourier_surf_ROI.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/rsHRF_demo_UCLA_sub_Fourier_surf_ROI.m
2,687
utf_8
bd72bb48f9957960369ac13f17f771ba
%----------------------------------------------------------------------- % Job saved on 01-Oct-2020 17:30:46 by cfg_util (rev $Rev: 7345 $) % spm SPM - SPM12 (7771) % cfg_basicio BasicIO - Unknown %----------------------------------------------------------------------- function rsHRF_demo_UCLA_sub_Fourier_surf_ROI(fl,gnii,mainoutdir,atlasgii) [fpath,name,~] = fileparts(fl); id = strfind(name,'_task'); subid = name(1:id(1)-1); a= spm_load(fl); acomp = [a.aCompCor00, a.aCompCor01, a.aCompCor02, a.aCompCor03, a.aCompCor04, a.aCompCor05]; Q1 = [a.X, a.Y, a.Z, a.RotX, a.RotY, a.RotZ]; HM = [Q1, [zeros(1,size(Q1,2));diff(Q1)]]; FD = a.FramewiseDisplacement; FD(1)=0; if mean(FD)>0.2 return end tmask = double(FD<0.3); nui = [acomp HM]; txtfile = fullfile(fpath,[name,'.txt']); save(txtfile,'nui','-ascii') outdir = fullfile(mainoutdir,subid); matlabbatch={}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.images = {gnii}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.generic{1}.multi_reg = {txtfile}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.Detrend = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.BPF{1}.bands = [0.01 0.1]; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.Despiking = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.Denoising.which1st = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.genericROI{1}.meshatlas = {atlasgii}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.hrfm = 5; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.TR = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.hrflen = 20; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.num_basis = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.mdelay = [4 8]; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.cvi = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.fmri_t = 5; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.fmri_t0 = 3; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.thr = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.localK = 2; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.HRFE.tmask = tmask; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.mask = {''}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.connectivity = {}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.outdir = {outdir}; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.savedata.deconv_save = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.savedata.hrfmat_save = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.savedata.job_save = 1; matlabbatch{1}.spm.tools.rsHRF.SurfROI_rsHRF.prefix = 'T5to3AR1_'; spm('defaults', 'FMRI'); % spm_jobman('interactive', matlabbatch); spm_jobman('run', matlabbatch);
github
compneuro-da/rsHRF-master
W_Calculate_RVR.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/W_Calculate_RVR.m
2,383
utf_8
1c9ded04ddc186db35091bbb267ac855
function [w_Brain, model_All] = W_Calculate_RVR(Subjects_Data, Subjects_Scores, Covariates, Pre_Method, ResultantFolder) % % Subject_Data: % m*n matrix % m is the number of subjects % n is the number of features % % Subject_Scores: % the continuous variable to be predicted,[1*m] % % Covariates: % m*n matrix % m is the number of subjects % n is the number of covariates % % Pre_Method: % 'Normalize', 'Scale', 'None' % % ResultantFolder: % the path of folder storing resultant files % if nargin >= 5 if ~exist(ResultantFolder, 'dir') mkdir(ResultantFolder); end end [Subjects_Quantity, Features_Quantity] = size(Subjects_Data); if ~isempty(Covariates) [~, Covariates_quantity] = size(Covariates); M = 1; for j = 1:Covariates_quantity M = M + term(Covariates(:, j)); end slm = SurfStatLinMod(Subjects_Data, M); Subjects_Data = Subjects_Data - repmat(slm.coef(1, :), Subjects_Quantity, 1); for j = 1:Covariates_quantity Subjects_Data = Subjects_Data - ... repmat(Covariates(:, j), 1, Features_Quantity) .* repmat(slm.coef(j + 1, :), Subjects_Quantity, 1); end end if strcmp(Pre_Method, 'Normalize') %Normalizing MeanValue = mean(Subjects_Data); StandardDeviation = std(Subjects_Data); [~, columns_quantity] = size(Subjects_Data); for j = 1:columns_quantity Subjects_Data(:, j) = (Subjects_Data(:, j) - MeanValue(j)) / StandardDeviation(j); end elseif strcmp(Pre_Method, 'Scale') % Scaling to [0 1] MinValue = min(Subjects_Data); MaxValue = max(Subjects_Data); [~, columns_quantity] = size(Subjects_Data); for j = 1:columns_quantity Subjects_Data(:, j) = (Subjects_Data(:, j) - MinValue(j)) / (MaxValue(j) - MinValue(j)); end end % SVR Subjects_Data = double(Subjects_Data); d.train{1} = Subjects_Data * Subjects_Data'; d.test{1} = Subjects_Data * Subjects_Data'; d.tr_targets = Subjects_Scores'; d.use_kernel = 1; d.pred_type = 'regression'; model_All = prt_machine_rvr(d, []); w_Brain = zeros(1, Features_Quantity); for i = 1:length(model_All.alpha) w_Brain = w_Brain + model_All.alpha(i) * Subjects_Data(i, :); end w_Brain = w_Brain / norm(w_Brain); if nargin >= 5 save([ResultantFolder filesep 'w_Brain.mat'], 'w_Brain'); end
github
compneuro-da/rsHRF-master
W_Calculate_RVR_SGE.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/W_Calculate_RVR_SGE.m
389
utf_8
ed548906c32e0c3951f1c7fc894f7392
function W_Calculate_RVR_SGE(Subjects_Data_Path, Rand_Scores, ID, Covariates, Pre_Method, ResultantFolder) tmp = load(Subjects_Data_Path); FieldName = fieldnames(tmp); for i = 1:length(ID) disp(ID(i)); [w_Brain, ~] = W_Calculate_RVR(tmp.(FieldName{1}), Rand_Scores{i}, Covariates, Pre_Method); save([ResultantFolder filesep 'w_Brain_' num2str(ID(i)) '.mat'], 'w_Brain'); end
github
compneuro-da/rsHRF-master
SurfStatWriteVol1.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/SurfStatWriteVol1.m
19,785
utf_8
bad41c0fa1d7c525f5619d09cbf3db77
function SurfStatWriteVol( d, Z, T ); %Writes volumetric image data in MINC, ANALYZE, NIFTI or AFNI format. % % Usage: fmris_write_image( d [, Z, T] ). % % d.file_name = file name with extension .mnc, .img, .nii or .brik as above % Z = vector of slices. % T = vector of times. % If Z and T are omitted, writes the entire volume. file = deblank(d.file_name); [base,ext]=fileparts2(file); d.file_name=[base ext]; switch lower(ext) case '.mnc' if nargin == 3 if length(T)<=160 fmris_write_minc(d,Z,T); else fn=deblank(d.file_name); d.file_name=[fn(1:(length(fn)-3)) 'nii']; fmris_write_nifti(d,Z,T); end else if d.dim(4)<=160 fmris_write_minc(d); else fn=deblank(d.file_name); d.file_name=[fn(1:(length(fn)-3)) 'nii']; fmris_write_nifti(d); end end case '.img' if nargin == 3 fmris_write_analyze(d,Z,T); else fmris_write_analyze(d); end case '.brik' if nargin == 3 fmris_write_afni(d,Z,T); else fmris_write_afni(d); end case '.nii' if nargin == 3 fmris_write_nifti(d,Z,T); else fmris_write_nifti(d); end otherwise ['Unknown file extension'] end return end %% function [base,ext]=fileparts2(string) if isstr(string) [path,name,ext]=fileparts(deblank(string)); else [path,name,ext]=fileparts(deblank(string.file_name)); end if strcmp(ext,'.gz') [path2,name,ext]=fileparts(name); end if isempty(path) base=name; else base=[path '/' name]; end return end %% function [d]=fmris_write_afni(d,Z,T); existinfo=0; if ~isfield(d,'dim') & isfield(d,'parent_file') [path,name,ext]=fileparts(deblank(d.parent_file)); [err, Infoparent] = BrikInfo([path '/' name '.HEAD']); d.dim=[Infoparent.DATASET_DIMENSIONS(1:3) Infoparent.DATASET_RANK(2)]; existinfo=1; end if nargin==1 Z=1:d.dim(3); T=1:d.dim(4); end Opt.Prefix=d.file_name(1:(length(d.file_name)-5)); Opt.Slices=Z; Opt.Frames=T; Opt.NoCheck=1; if Z(1)==1 & T(1)==1 if ~existinfo [path,name,ext]=fileparts(deblank(d.parent_file)); [err, Infoparent] = BrikInfo([path '/' name '.HEAD']); end [path,name,ext]=fileparts(deblank(d.file_name)); Info.LABEL_1=name; Info.DATASET_NAME=['./' name]; if isfield(d,'origin') Info.ORIGIN=d.origin; else Info.ORIGIN=Infoparent.ORIGIN; end if isfield(d,'vox') Info.DELTA=d.vox; else Info.DELTA=Infoparent.DELTA; end Info.SCENE_DATA=Infoparent.SCENE_DATA; Info.ORIENT_SPECIFIC=Infoparent.ORIENT_SPECIFIC; Info.TYPESTRING=Infoparent.TYPESTRING; Opt.NoCheck=0; end Info.DATASET_DIMENSIONS=[d.dim(1:3) 0 0]; Info.DATASET_RANK=[3 d.dim(4) 0 0 0 0 0 0]; Info.BRICK_TYPES=repmat(3,1,d.dim(4)); Info.TypeName='float'; Info.TypeBytes=4; Info.BYTEORDER_STRING='MSB_FIRST'; Info.MachineFormat='ieee-be'; if isfield(d,'df') if ~isempty(d.df) Info.WORSLEY_DF=d.df; end end if isfield(d,'nconj') if ~isempty(d.nconj) Info.WORSLEY_NCONJ=d.nconj; end end if isfield(d,'fwhm') if ~isempty(d.fwhm) Info.WORSLEY_FWHM=d.fwhm; end end [err, ErrMessage, Info] = WriteBrik(d.data, Info, Opt); return end %% function [d]=fmris_write_analyze(d,Z,T); % Write Analyze format Image Volumes % % Usage % % rpm_write_analyze(d,Z,T); % % Writes image data and attributes from the structure d. % The following fields are required from d. % % d.file_path: '/kop1/data/fdg/' % d.file_name: 'n03309_3d_dy2_CS-Cal_K1' % d.data: [128x128x31 double] % d.vox: [2.0900 2.0900 3.4200] % d.vox_units: 'mm' % d.vox_offset: 0 % d.calib_units: 'min^-1' % d.origin: [0 0 0]; % d.descrip: 'Parametric Image - K1 (1)' % % All other information is generated automatically. % % (c) Roger Gunn & John Aston if isfield(d,'parent_file') d2=SurfStatReadVol(d.parent_file,0,0); d.vox=d2.vox; d.vox_units=d2.vox_units; d.calib_units=''; d.origin=d2.origin; d.vox_offset=d2.vox_offset; end if ~isfield(d,'descrip') d.descrip=''; end file=d.file_name; d.origin=-d.origin./d.vox(1:3); if length(size(d.data))<5&size(d.data,1)>1&size(d.data,2)>1&length(d.origin)<4 d.calib = [1 1]; d.precision='float'; % Write Header if nargin==1 [d]=Write_Analyze_Hdr(d); elseif nargin==3 if (T(1)==1&Z(1)==1) [d]=Write_Analyze_Hdr(d); else d3 = fmris_read_image(file,0,0); d.hdr = d3.hdr; end end if ~isstruct(d); return end % Write Image if nargin==1 if ~isempty(d) fid = fopen(file,'w','n'); if fid > -1 for t=1:d.hdr.dim(5) for z=1:d.hdr.dim(4) fwrite(fid,d.data(:,:,z,t)/d.hdr.funused1,d.precision); end end fclose (fid); else errordlg('Cannot open file for writing ','Write Error');d=[];return; end end elseif nargin==3 if T(1)~=1|Z(1)~=1 if ~exist(file,'file') errordlg('Please write Plane 1 Frame 1 first','Write Error');return; end else fid=fopen(file,'w','n');fclose(fid); end fid = fopen(file,'r+','n'); if fid > -1 if T(1)==1&Z(1)==1 plane=zeros(d.dim(1:2)); for t=1:d.hdr.dim(5) for z=1:d.hdr.dim(4) fwrite(fid,plane,d.precision); end end end for t=1:length(T) for z=1:length(Z) fseek(fid,4*d.dim(1)*d.dim(2)*((T(t)-1)*d.dim(3)+Z(z)-1),'bof'); if length(Z)~=1; fwrite(fid,d.data(:,:,z,t),'float'); else fwrite(fid,d.data(:,:,t),'float'); end end end fclose (fid); else errordlg('Cannot open file for writing ','Write Error');d=[];return; end end else errordlg('Incompatible data structure: Check dimension and Origin ','Write Error'); end return; end %% function [d]=Write_Analyze_Hdr(d); % Write Analyze Header from the structure d % Adapted from John Ashburners spm_hwrite.m d.file_name_hdr=[d.file_name(1:(length(d.file_name)-3)) 'hdr']; file=d.file_name_hdr; fid = fopen(file,'w','n'); if fid > -1 d.hdr.data_type = ['dsr ' 0]; d.hdr.db_name = [' ' 0]; if isfield(d,'dim') d.hdr.dim = [4 1 1 1 1 0 0 0]; d.hdr.dim(2:(1+length(d.dim(find(d.dim)))))= d.dim(find(d.dim)); else d.hdr.dim = [4 1 1 1 1 0 0 0]; d.hdr.dim(2:(1+length(size(d.data)))) = size(d.data); end d.hdr.pixdim = [4 0 0 0 0 0 0 0]; d.hdr.pixdim(2:(1+length(d.vox))) = d.vox; d.hdr.vox_units = [0 0 0 0]; d.hdr.vox_units(1:min([3 length(d.vox_units)])) = d.vox_units(1:min([3 length(d.vox_units)])); d.hdr.vox_offset = d.vox_offset; d.hdr.calmin = d.calib(1); d.hdr.calmax = d.calib(2); switch d.precision case 'uint1' % 1 bit d.hdr.datatype = 1; d.hdr.bitpix = 1; d.hdr.glmin = 0; d.hdr.glmax = 1; d.hdr.funused1 = 1; case 'uint8' % 8 bit % d.hdr.datatype = 2; % d.hdr.bitpix = 8; % d.hdr.glmin = 0; % d.hdr.glmax = 255; % d.hdr.funused1 = abs(d.hdr.calmin)/255; errordlg('You should write a float image','8 Bit Write Error');d=[];return; case 'int16' % 16 bit d.hdr.datatype = 4; d.hdr.bitpix = 16; if abs(d.hdr.calmin)>abs(d.hdr.calmax) d.hdr.funused1 = abs(d.hdr.calmin)/(2^15-1); else d.hdr.funused1 = abs(d.hdr.calmax)/(2^15-1); end d.hdr.glmin = round(d.hdr.funused1*d.hdr.calmin); d.hdr.glmax = round(d.hdr.funused1*d.hdr.calmin); case 'int32' % 32 bit d.hdr.datatype = 8; d.hdr.bitpix = 32; if abs(d.hdr.calmin)>abs(d.hdr.calmax) d.hdr.funused1 = abs(d.hdr.calmin)/(2^31-1); else d.hdr.funused1 = abs(d.hdr.calmax)/(2^31-1); end d.hdr.glmin = round(d.hdr.funused1*d.hdr.calmin); d.hdr.glmax = round(d.hdr.funused1*d.hdr.calmin); case 'float' % float (32 bit) d.hdr.datatype = 16; d.hdr.bitpix = 32; d.hdr.glmin = 0; d.hdr.glmax = 0; d.hdr.funused1 = 1; case 'double' % double (64 bit) d.hdr.datatype = 64; d.hdr.bitpix = 64; d.hdr.glmin = 0; d.hdr.glmax = 0; d.hdr.funused1 = 1; otherwise errordlg('Unrecognised precision (d.type)','Write Error');d=[];return; end d.hdr.descrip = zeros(1,80);d.hdr.descrip(1:min([length(d.descrip) 79]))=d.descrip(1:min([length(d.descrip) 79])); d.hdr.aux_file = ['none ' 0]; d.hdr.origin = [0 0 0 0 0];d.hdr.origin(1:length(d.origin))=d.origin; % write (struct) header_key %--------------------------------------------------------------------------- fseek(fid,0,'bof'); fwrite(fid,348, 'int32'); fwrite(fid,d.hdr.data_type, 'char' ); fwrite(fid,d.hdr.db_name, 'char' ); fwrite(fid,0, 'int32'); fwrite(fid,0, 'int16'); fwrite(fid,'r', 'char' ); fwrite(fid,'0', 'char' ); % write (struct) image_dimension %--------------------------------------------------------------------------- fseek(fid,40,'bof'); fwrite(fid,d.hdr.dim, 'int16'); fwrite(fid,d.hdr.vox_units, 'char' ); fwrite(fid,zeros(1,8), 'char' ); fwrite(fid,0, 'int16'); fwrite(fid,d.hdr.datatype, 'int16'); fwrite(fid,d.hdr.bitpix, 'int16'); fwrite(fid,0, 'int16'); fwrite(fid,d.hdr.pixdim, 'float'); fwrite(fid,d.hdr.vox_offset, 'float'); fwrite(fid,d.hdr.funused1, 'float'); fwrite(fid,0, 'float'); fwrite(fid,0, 'float'); fwrite(fid,d.hdr.calmax, 'float'); fwrite(fid,d.hdr.calmin, 'float'); fwrite(fid,0, 'int32'); fwrite(fid,0, 'int32'); fwrite(fid,d.hdr.glmax, 'int32'); fwrite(fid,d.hdr.glmin, 'int32'); % write (struct) data_history %--------------------------------------------------------------------------- fwrite(fid,d.hdr.descrip, 'char'); fwrite(fid,d.hdr.aux_file, 'char'); fwrite(fid,0, 'char'); fwrite(fid,d.hdr.origin, 'uint16'); fwrite(fid,zeros(1,10), 'char'); if isfield(d,'df') fwrite(fid,sprintf('%10g',d.df(1)),'char'); if length(d.df)>1 fwrite(fid,sprintf('%10g',d.df(2)),'char'); else fwrite(fid,zeros(1,10),'char'); end else fwrite(fid,zeros(1,20),'char'); end if isfield(d,'fwhm') fwrite(fid,sprintf('%10g',d.fwhm(1)),'char'); if length(d.fwhm)>1 fwrite(fid,sprintf('%10g',d.fwhm(2)),'char'); else fwrite(fid,zeros(1,10),'char'); end else fwrite(fid,zeros(1,20),'char'); end if isfield(d,'nconj') fwrite(fid,sprintf('%3g',d.nconj),'char'); else fwrite(fid,zeros(1,3),'char'); end fwrite(fid,zeros(1,32),'char'); s = ftell(fid); fclose(fid); else errordlg('Cannot open file for writing ','Write Error');d=[];return; end return; end %% function [d]=fmris_write_minc(d,Z,T); if ~(d.file_name(1)=='/' | d.file_name(2)==':') if d.file_name(1:2)=='./' d.file_name=[pwd d.file_name(3:length(file))]; else d.file_name=[pwd '/' d.file_name]; end end fid=fopen(d.parent_file); d.parent_file=fopen(fid); fclose(fid); if ~isfield(d,'dim') d.dim = fliplr(miinquire(d.parent_file,'imagesize')'); d.dim = d.dim + (d.dim == 0); end if nargin==1 Z=1:d.dim(3); T=1:d.dim(4); end if isfield(d,'precision') precision=d.precision; if isempty(precision) precision='float'; end else precision='float'; end if T(1)==1 & Z(1)==1 dim=d.dim; if dim(4)==1 dim(4)=0; end if exist(d.file_name,'file') delete(d.file_name); end newh=newimage(d.file_name,fliplr(dim),d.parent_file,precision); if isfield(d,'df') miwriteatt(d.file_name,'df','df',d.df); end if isfield(d,'nconj') miwriteatt(d.file_name,'nconj','nconj',d.nconj); end if isfield(d,'fwhm') miwriteatt(d.file_name,'fwhm','fwhm',d.fwhm); end else newh=openimage(d.file_name,'w'); end d.data=squeeze(reshape(d.data,d.dim(1)*d.dim(2),length(Z),length(T))); if d.dim(4)<=1 putimages(newh,d.data,Z); elseif length(T)==1|length(Z)==1 putimages(newh,d.data,Z,T); else for i=1:length(T) putimages(newh,squeeze(d.data(:,:,i)),Z,T(i)); end end closeimage(newh); return end %% function [d]=fmris_write_nifti(d,Z,T) if nargin<2 Z=1; T=1; end if Z(1)==1 & T(1)==1 fidout=fopen(d.file_name,'w'); isniftiparent=0; if isfield(d,'parent_file') if exist(d.parent_file) pf=deblank(d.parent_file); ext=pf((length(pf)-2):length(pf)); isniftiparent=(ext=='nii'); end end if isniftiparent machineformats='nlbdgcas'; for i=1:length(machineformats) fid=fopen(d.parent_file,'r',machineformats(i)); sizeof_hdr=fread(fid,1,'int'); if sizeof_hdr==348; %Must have found a formt that works, so break and continue using this format break else %Need to close if file is not native format %else if the file format is 's', then 7 stranded files are left orphaned and never closed. fclose(fid); end end data_type=fread(fid,10,'char'); db_name=fread(fid,18,'char'); extents=fread(fid,1,'int'); session_error=fread(fid,1,'short'); regular=char(fread(fid,1,'char')'); dim_info=char(fread(fid,1,'char')'); dim=fread(fid,8,'short'); intent_p =fread(fid,3,'float'); intent_code =fread(fid,1,'short'); datatype=fread(fid,1,'short'); bitpix=fread(fid,1,'short'); slice_start=fread(fid,1,'short'); pixdim=fread(fid,8,'float'); vox_offset=fread(fid,1,'float'); scl_slope=fread(fid,1,'float'); scl_inter=fread(fid,1,'float'); slice_end=fread(fid,1,'short'); slice_code =char(fread(fid,1,'char')'); xyzt_units =char(fread(fid,1,'char')'); cal_max=fread(fid,1,'float'); cal_min=fread(fid,1,'float'); slice_duration=fread(fid,1,'float'); toffset=fread(fid,1,'float'); glmax=fread(fid,1,'int'); glmin=fread(fid,1,'int'); descrip=char(fread(fid,80,'char')'); aux_file=char(fread(fid,24,'char')'); qform_code =fread(fid,1,'short'); sform_code =fread(fid,1,'short'); quatern_b =fread(fid,1,'float'); quatern_c =fread(fid,1,'float'); quatern_d =fread(fid,1,'float'); qoffset_x =fread(fid,1,'float'); qoffset_y =fread(fid,1,'float'); qoffset_z =fread(fid,1,'float'); srow_x =fread(fid,4,'float'); srow_y =fread(fid,4,'float'); srow_z =fread(fid,4,'float'); intent_name=char(fread(fid,16,'char')'); magic =fread(fid,4,'char'); fclose(fid); else data_type=' '; db_name=' '; extents=0; session_error=0; regular='r'; dim_info=' '; slice_start=0; pixdim=ones(1,8); slice_code =' '; xyzt_units =' '; cal_max=25500; cal_min=3; slice_duration=0; toffset=0; aux_file=' '; qform_code =1; sform_code =0; quatern_b =0; quatern_c =1; quatern_d =0; qoffset_x =d.origin(1); qoffset_y =d.origin(2); qoffset_z =d.origin(3); srow_x =[0 0 0 0]; srow_y =[0 0 0 0]; srow_z =[0 0 0 0]; intent_name=' '; end sizeof_hdr=348; datatype=16; bitpix=32; vox_offset=352; scl_slope =0; scl_inter =0; slice_end=0; glmax=0; glmin=0; descrip=['FMRISTAT' repmat(' ',1,72)]; magic =[double('n+1') 0]'; dim=ones(1,8); dim(1)=max(find(d.dim>1)); dim((1:dim(1))+1)=d.dim(1:dim(1)); if isfield(d,'vox') pixdim=ones(1,8); pixdim(1)=-1; pixdim((1:dim(1))+1)=d.vox(1:dim(1)); end intent_p=zeros(1,2); if isfield(d,'df') intent_p(1:length(d.df))=d.df; intent_code=length(d.df)+2; else intent_code=0; end intent_q=zeros(1,2); if isfield(d,'fwhm'); intent_q(1:length(d.fwhm))=d.fwhm; end; intent_q=round(intent_q/100*2^16); intent_q=(intent_q.*(intent_q>=0)-2^16).*(intent_q<2^16)+2^16; descrip=['FMRISTAT' repmat(' ',1,72)]; fwrite(fidout,sizeof_hdr,'int'); fwrite(fidout,data_type,'char'); fwrite(fidout,db_name,'char'); fwrite(fidout,extents,'int'); fwrite(fidout,session_error,'short'); fwrite(fidout,regular,'char'); fwrite(fidout,dim_info,'char'); fwrite(fidout,dim,'short'); fwrite(fidout,intent_p,'float'); fwrite(fidout,intent_q,'short'); fwrite(fidout,intent_code,'short'); fwrite(fidout,datatype,'short'); fwrite(fidout,bitpix,'short'); fwrite(fidout,slice_start,'short'); fwrite(fidout,pixdim,'float'); fwrite(fidout,vox_offset,'float'); fwrite(fidout,scl_slope ,'float'); fwrite(fidout,scl_inter ,'float'); fwrite(fidout,slice_end,'short'); fwrite(fidout,slice_code,'char'); fwrite(fidout,xyzt_units,'char'); fwrite(fidout,cal_max,'float'); fwrite(fidout,cal_min,'float'); fwrite(fidout,slice_duration,'float'); fwrite(fidout,toffset,'float'); fwrite(fidout,glmax,'int'); fwrite(fidout,glmin,'int'); fwrite(fidout,descrip,'char'); fwrite(fidout,aux_file,'char'); fwrite(fidout,qform_code,'short'); fwrite(fidout,sform_code,'short'); fwrite(fidout,quatern_b,'float'); fwrite(fidout,quatern_c,'float'); fwrite(fidout,quatern_d,'float'); fwrite(fidout,qoffset_x,'float'); fwrite(fidout,qoffset_y,'float'); fwrite(fidout,qoffset_z,'float'); fwrite(fidout,srow_x,'float'); fwrite(fidout,srow_y,'float'); fwrite(fidout,srow_z,'float'); fwrite(fidout,intent_name,'char'); fwrite(fidout,magic,'char'); fwrite(fidout,0,'float'); else fidout=fopen(d.file_name,'r+'); end if nargin<2 Z=1:d.dim(3); T=1:d.dim(4); end vox_offset=352; if ~isfield(d,'precision') | isempty(d.precision); d.precision='float32'; end; if ~isfield(d,'byte') | isempty(d.byte); d.byte=4; end; if Z(1)==1 & T(1)==1 & ~(all(Z==1:d.dim(3)) & all(T==1:d.dim(4))) for t=1:d.dim(4) fwrite(fidout,zeros(1,prod(d.dim(1:3))),d.precision); end end if all(Z>0)&all(Z<=d.dim(3))&all(T>0)&all(T<=d.dim(4)) for t=1:length(T) for z=1:length(Z) position=d.byte*((T(t)-1)*prod(d.dim(1:3))+(Z(z)-1)*prod(d.dim(1:2)))+vox_offset; status=fseek(fidout,position,'bof'); if length(size(d.data))==4 fwrite(fidout,d.data(:,:,z,t),d.precision); elseif length(T)==1 fwrite(fidout,d.data(:,:,z),d.precision); elseif length(Z)==1 fwrite(fidout,d.data(:,:,t),d.precision); else 'Slices and/or frames do not match data' end end end else 'Slices and/or frames out of range:' Z T end fclose(fidout); return; end
github
compneuro-da/rsHRF-master
SurfStatReadVol1.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/SurfStatReadVol1.m
17,058
utf_8
a06b1de60d4f9453d2516675335e9cad
function d = SurfStatReadVol1( file, Z, T ); %Reads a single volumetric file in MINC, ANALYZE, NIFTI or AFNI format. % % Usage: d = SurfStatReadVol1( file [, Z, T] ). % % file = file name with extension .mnc, .img, .nii or .brik as above. % Z = vector of slices. % T = vector of times. % If Z and T are both 0, then just the header is read into d. % If Z and T are omitted, reads the entire volume. if ~isstr(file) d = file; if isfield(d,'data') & nargin==3 if length(size(d.data))==4 & Z~=0 & T~=0 d.data=file.data(:,:,Z,T); end if length(size(d.data))==3 & length(Z)>1 & length(T)==1 d.data=file.data(:,:,Z); end if length(size(d.data))==3 & length(Z)==1 & length(T)>1 d.data=file.data(:,:,T); end if length(size(d.data))==3 & length(Z)==1 & length(T)==1 & Z>0 & T>0 d.data=file.data(:,:,Z); end end return end file = deblank(file); [path,name,ext]=fileparts(file); if strcmp(ext,'.gz') if isunix unix(['gunzip ' file]); else ['Can''t gunzip on non-unix system'] return end [path,name,ext]=fileparts(name) end switch lower(ext) case '.mnc' if nargin == 3 d = fmris_read_minc(file,Z,T); else d = fmris_read_minc(file); end case '.img' if nargin == 3 d = fmris_read_analyze(file,Z,T); else d = fmris_read_analyze(file); end if isfield(d,'data') d.data(isnan(d.data))=0; end; d.origin=-d.origin.*d.vox(1:3); case '.brik' if nargin == 3 d = fmris_read_afni(file,Z,T); else d = fmris_read_afni(file); end case '.nii' if nargin == 3 d = fmris_read_nifti(file,Z,T); else d = fmris_read_nifti(file); end otherwise ['Unknown file extension'] end d.parent_file=file; return end %% function [d]=fmris_read_afni(file,Z,T) [err, Info]=BrikInfo(file); d.dim = [Info.DATASET_DIMENSIONS(1:3) Info.DATASET_RANK(2)]; if nargin == 1 Z = 1:d.dim(3); T = 1:d.dim(4); end if (T(1)~=0)&(Z(1)~=0) Opt.Slices=Z; Opt.Frames=T; [err, d.data, Info, ErrMessage] = BrikLoad(file, Opt); d.calib = [min(min(min(min(d.data)))) max(max(max(max(d.data))))]; end d.vox = Info.DELTA; d.vox_units = ''; d.vox_offset = 0; d.precision = ''; d.calib_units = ''; d.origin = Info.ORIGIN; d.descrip = ''; if isfield(Info,'WORSLEY_DF') df=Info.WORSLEY_DF; else df=[]; end if ~isempty(df) d.df=df; end if isfield(Info,'WORSLEY_NCONJ') nconj=Info.WORSLEY_NCONJ; else nconj=[]; end if ~isempty(nconj) d.nconj=nconj; end if isfield(Info,'WORSLEY_FWHM') fwhm=Info.WORSLEY_FWHM; else fwhm=[]; end if ~isempty(fwhm) d.fwhm=fwhm; end return; end %% function d=fmris_read_analyze(file,Z,T); % Read in 1 4D or >1 3D Analyze format Image Volumes % % Usage % % d=Read_Analyze(file); % Reads in all image data and attributes into the structure d. % % d=Read_Analyze(file,Z,T); % Reads in chosen planes and frames and attributes into the structure d. % Z and T are vectors e.g. Z=1:31;T=1:12; or Z=[24 26];T=[1 3 5]; % % (c) Roger Gunn & John Aston % Get machine format on which the file was written: machineformat=getmachineformat(file); if ~isempty(machineformat) % Read Header Information d=Read_Analyze_Hdr(file,machineformat); d.file_name=file; % try to get file precision if it is unknown: if strcmp(d.precision,'Unknown') d.precision=getprecision(deblank(file),machineformat,d.dim,d.global); end % Read Image Data if ~isempty(d) & ~strcmp(d.precision,'Unknown') if nargin==1 | strcmp(d.precision,'uint1') % Read in Whole Analyze Volume fid = fopen(d.file_name,'r',machineformat); if fid > -1 d.data=d.scale*reshape(fread(fid,prod(d.dim),d.precision),d.dim(1),d.dim(2),d.dim(3),d.dim(4)); fclose(fid); else errordlg('Check Image File: Existence, Permissions ?','Read Error'); end; if nargin==3 if all(Z>0)&all(Z<=d.dim(3))&all(T>0)&all(T<=d.dim(4)) d.data=d.data(:,:,Z,T); d.Z=Z; d.T=T; else errordlg('Incompatible Matrix Identifiers !','Read Error'); end end elseif nargin==3 % Read in Chosen Planes and Frames if (T(1)~=0)|(Z(1)~=0) if all(Z>0)&all(Z<=d.dim(3))&all(T>0)&all(T<=d.dim(4)) fid = fopen(d.file_name,'r',machineformat); if fid > -1 d.data=zeros(d.dim(1),d.dim(2),length(Z),length(T)); for t=1:length(T) for z=1:length(Z) status=fseek(fid,d.hdr.byte*((T(t)-1)*prod(d.dim(1:3))+(Z(z)-1)*prod(d.dim(1:2))),'bof'); d.data(:,:,z,t)=d.scale*fread(fid,[d.dim(1) d.dim(2)],d.precision); end end d.Z=Z; d.T=T; fclose(fid); else errordlg('Check Image File: Existence, Permissions ?','Read Error'); end; else errordlg('Incompatible Matrix Identifiers !','Read Error'); end; end; else errordlg('Unusual Number of Arguments','Read Error'); end; else if strcmp(d.precision,'Unknown'); errordlg('Unknown Data Type (Precision?)','Read Error'); end end; else errordlg('Unknown Machine Format','Read Error'); end % if there is no slice thickness, set it to 6mm: if d.vox(3)==0 d.vox(3)=6; end return; end %% function machineformat=getmachineformat(file); % Get machine format by reading the d.hdr.dim(1) attribute and % making sure it is 1, 2, 3 or 4. machineformat=[]; for mf='nlbdgcas' fid = fopen([file(1:(length(file)-3)) 'hdr'],'r',mf); if fid > -1 fseek(fid,40,'bof'); if any(fread(fid,1,'int16')==1:4) machineformat=mf; fclose(fid); break else fclose(fid); end else errordlg('Check Header File: Existence, Permissions ?','Read Error'); break end end return end %% function precision=getprecision(file,machineformat,dim,range); % Get precision by reading a value from the middle of the .img file and % making sure it is within the global attribute precisions=['int8 ' 'int16 ' 'int32 ' 'int64 ' 'uint8 ' 'uint16 ' 'uint32 ' 'uint64 ' 'single ' 'float32' 'double ' 'float64' ]; nbytes=[1 2 4 8 1 2 4 8 4 4 8 8]; middle_vol=dim(1)*dim(2)*floor(dim(3)/2)+dim(1)*round(dim(2)/2)+round(dim(1)/2); h=dir(file); n=ceil(h.bytes/prod(dim)); fid = fopen(file,'r',machineformat); if fid > -1 for i=1:size(precisions,1) if nbytes(i)==n status=fseek(fid,middle_vol*n,'bof'); if status==0 precision=deblank(precisions(i,:)); x=fread(fid,10,precision); if all(range(1)<=x) & all(x<=range(2)) return end end end end end errordlg('Check Header File: Existence, Permissions ?','Read Error'); precision='Unknown'; return end %% function d=Read_Analyze_Hdr(file,machineformat); % Read Analyze Header information into the structure d % Adapted from John Ashburners spm_hread.m fid = fopen([file(1:(length(file)-3)) 'hdr'],'r',machineformat); if fid > -1 % read (struct) header_key %--------------------------------------------------------------------------- fseek(fid,0,'bof'); d.hdr.sizeof_hdr = fread(fid,1,'int32'); d.hdr.data_type = deblank(setstr(fread(fid,10,'char'))'); d.hdr.db_name = deblank(setstr(fread(fid,18,'char'))'); d.hdr.extents = fread(fid,1,'int32'); d.hdr.session_error = fread(fid,1,'int16'); d.hdr.regular = deblank(setstr(fread(fid,1,'char'))'); d.hdr.hkey_un0 = deblank(setstr(fread(fid,1,'char'))'); % read (struct) image_dimension %--------------------------------------------------------------------------- fseek(fid,40,'bof'); d.hdr.dim = fread(fid,8,'int16'); d.hdr.vox_units = deblank(setstr(fread(fid,4,'char'))'); d.hdr.cal_units = deblank(setstr(fread(fid,8,'char'))'); d.hdr.unused1 = fread(fid,1,'int16'); d.hdr.datatype = fread(fid,1,'int16'); d.hdr.bitpix = fread(fid,1,'int16'); d.hdr.dim_un0 = fread(fid,1,'int16'); d.hdr.pixdim = fread(fid,8,'float'); d.hdr.vox_offset = fread(fid,1,'float'); d.hdr.funused1 = fread(fid,1,'float'); d.hdr.funused2 = fread(fid,1,'float'); d.hdr.funused3 = fread(fid,1,'float'); d.hdr.cal_max = fread(fid,1,'float'); d.hdr.cal_min = fread(fid,1,'float'); d.hdr.compressed = fread(fid,1,'int32'); d.hdr.verified = fread(fid,1,'int32'); d.hdr.glmax = fread(fid,1,'int32'); d.hdr.glmin = fread(fid,1,'int32'); % read (struct) data_history %--------------------------------------------------------------------------- fseek(fid,148,'bof'); d.hdr.descrip = deblank(setstr(fread(fid,80,'char'))'); d.hdr.aux_file = deblank(setstr(fread(fid,24,'char'))'); d.hdr.orient = fread(fid,1,'char'); d.hdr.origin = fread(fid,5,'uint16'); d.hdr.generated = deblank(setstr(fread(fid,10,'char'))'); d.hdr.scannum = deblank(setstr(fread(fid,10,'char'))'); d.hdr.patient_id = deblank(setstr(fread(fid,10,'char'))'); d.hdr.exp_date = deblank(setstr(fread(fid,10,'char'))'); d.hdr.exp_time = deblank(setstr(fread(fid,10,'char'))'); d.hdr.hist_un0 = deblank(setstr(fread(fid,3,'char'))'); d.hdr.views = fread(fid,1,'int32'); d.hdr.vols_added = fread(fid,1,'int32'); d.hdr.start_field = fread(fid,1,'int32'); d.hdr.field_skip = fread(fid,1,'int32'); d.hdr.omax = fread(fid,1,'int32'); d.hdr.omin = fread(fid,1,'int32'); d.hdr.smax = fread(fid,1,'int32'); d.hdr.smin = fread(fid,1,'int32'); fclose(fid); % Put important information in main structure %--------------------------------------------------------------------------- d.dim = d.hdr.dim(2:5)'; vox = d.hdr.pixdim(2:5)'; if vox(4)==0 vox(4)=[]; end d.vox = vox; d.vox_units = d.hdr.vox_units; d.vox_offset = d.hdr.vox_offset; scale = d.hdr.funused1; d.scale = ~scale + scale; d.global = [d.hdr.glmin d.hdr.glmax]; d.calib = [d.hdr.cal_min d.hdr.cal_max]; d.calib_units = d.hdr.cal_units; d.origin = d.hdr.origin(1:3)'; d.descrip = d.hdr.descrip(1:max(find(d.hdr.descrip))); if ~isnan(str2double(d.hdr.scannum)); d.df(1) =str2double(d.hdr.scannum); end if ~isnan(str2double(d.hdr.patient_id)); d.df(2) =str2double(d.hdr.patient_id); end if ~isnan(str2double(d.hdr.exp_date)); d.fwhm(1)=str2double(d.hdr.exp_date); end if ~isnan(str2double(d.hdr.exp_time)); d.fwhm(2)=str2double(d.hdr.exp_time); end if ~isnan(str2double(d.hdr.hist_un0)); d.nconj =str2double(d.hdr.hist_un0); end switch d.hdr.datatype case 1 d.precision = 'uint1'; d.hdr.byte = 0; case 2 d.precision = 'uint8'; d.hdr.byte = 1; case 4 d.precision = 'int16'; d.hdr.byte = 2; case 8 d.precision = 'int32'; d.hdr.byte = 4; case 16 d.precision = 'float'; d.hdr.byte = 4; case 64 d.precision = 'double'; d.hdr.byte = 8; otherwise d.precision = 'Unknown'; d.hdr.byte = 0; end else d=[]; errordlg('Check Header File: Existence, Permissions ?','Read Error'); end return end %% function [d]=fmris_read_minc(file,Z,T) fid=fopen(file); file=fopen(fid); fclose(fid); d.file_name = file; d.dim = fliplr(miinquire(file,'imagesize')'); d.dim = d.dim + (d.dim == 0); if nargin == 1 Z = 1:d.dim(3); T = 1:d.dim(4); end if (T~=0)&(Z~=0) if d.dim(4)==1 images = mireadimages(file,Z-1); else n=length(T); images=[]; for i=0:floor((n-1)/256) frames=T((i*256+1):min((i+1)*256,n)); images = [images mireadimages(file,Z-1,frames-1)]; end end d.data = reshape(images,[d.dim(1:2) length(Z) length(T)]); d.calib = [min(min(min(min(d.data)))) max(max(max(max(d.data))))]; end [x_vox, y_vox, z_vox] = miinquire(file,'attvalue','xspace','step','attvalue','yspace','step','attvalue','zspace','step'); d.vox = [x_vox y_vox z_vox]; d.vox_units = ''; d.vox_offset = 0; d.precision = ''; d.calib_units = ''; [x_origin, y_origin, z_origin] = miinquire(file,'attvalue','xspace','start','attvalue','yspace','start','attvalue','zspace','start'); d.origin = [x_origin y_origin z_origin]; d.descrip = ''; df=miinquire(file, 'attvalue', 'df', 'df'); if ~isempty(df) d.df=df; end nconj=miinquire(file, 'attvalue', 'nconj', 'nconj'); if ~isempty(nconj) d.nconj=nconj; end fwhm=miinquire(file, 'attvalue', 'fwhm', 'fwhm'); if ~isempty(fwhm) d.fwhm=fwhm; end return; end %% function [d]=fmris_read_nifti(file,Z,T) d.file_name=file; machineformats='nlbdgcas'; for i=1:length(machineformats) fid=fopen(file,'r',machineformats(i)); if fid == -1; fprintf('Invalid file %s',file) end sizeof_hdr=fread(fid,1,'int'); if sizeof_hdr==348; %Must have found a formt that works, so break and continue using this format break; else %Need to close if file is not native format %else if the file format is 's', then 7 stranded files are left orphaned and never closed. fclose(fid); end end data_type=fread(fid,10,'char'); db_name=fread(fid,18,'char'); extents=fread(fid,1,'int'); session_error=fread(fid,1,'short'); regular=char(fread(fid,1,'char')'); dim_info=char(fread(fid,1,'char')'); dim=fread(fid,8,'short'); intent_p =fread(fid,2,'float'); intent_q =fread(fid,2,'uint16'); intent_code =fread(fid,1,'short'); datatype=fread(fid,1,'short'); bitpix=fread(fid,1,'short'); slice_start=fread(fid,1,'short'); pixdim=fread(fid,8,'float'); vox_offset=fread(fid,1,'float'); scl_slope =fread(fid,1,'float'); scl_inter =fread(fid,1,'float'); slice_end=fread(fid,1,'short'); slice_code =char(fread(fid,1,'char')'); xyzt_units =char(fread(fid,1,'char')'); cal_max=fread(fid,1,'float'); cal_min=fread(fid,1,'float'); slice_duration=fread(fid,1,'float'); toffset=fread(fid,1,'float'); glmax=fread(fid,1,'int'); glmin=fread(fid,1,'int'); descrip=char(fread(fid,80,'char')'); aux_file=char(fread(fid,24,'char')'); qform_code =fread(fid,1,'short'); sform_code =fread(fid,1,'short'); quatern_b =fread(fid,1,'float'); quatern_c =fread(fid,1,'float'); quatern_d =fread(fid,1,'float'); qoffset_x =fread(fid,1,'float'); qoffset_y =fread(fid,1,'float'); qoffset_z =fread(fid,1,'float'); srow_x =fread(fid,4,'float'); srow_y =fread(fid,4,'float'); srow_z =fread(fid,4,'float'); intent_name=char(fread(fid,16,'char')'); magic =char(fread(fid,4,'char')'); d.machineformat=machineformats(i); d.dim=ones(1,4); if dim(1)==5 if dim(5)==1 dim=[4; dim(2:4); dim(6); zeros(3,1)] else dim fclose(fid); return end end d.dim(1:dim(1))=dim((1:dim(1))+1); d.vox=zeros(1,3); d.vox(1:dim(1))=pixdim((1:dim(1))+1); %Attempt to fill out more information for a complete nifti description d.vox_offset = vox_offset; d.scale = scl_slope; d.intercept = scl_inter; d.global = [glmin glmax]; d.calib = [cal_min cal_max]; if qform_code>0; d.origin = [qoffset_x qoffset_y qoffset_z]; else d.origin = [srow_x(4) srow_y(4) srow_z(4)]; end d.descrip = descrip; d.parent_file=file; if intent_p(1)>0; d.df(1)=intent_p(1); end; if intent_p(2)>0; d.df(2)=intent_p(2); end; intent_q=intent_q/2^16*100; if intent_q(1)>0; d.fwhm(1)=intent_q(1); end; if intent_q(2)>0; d.fwhm(2)=intent_q(2); end; if nargin<2 Z=1:d.dim(3); T=1:d.dim(4); end if Z(1)==0 & T(1)==0 fclose(fid); return end types=lower(['UINT8 ';'INT16 ';'INT32 ';'FLOAT32';'FLOAT64']); codes=[2; 4; 8; 16; 64]; d.precision=[]; for i=1:5 if datatype==codes(i) d.precision=deblank(types(i,:)); end end if isempty(d.precision) unknown_datatype=datatype fclose(fid); return end %d.byte=bitpix/8 d.byte=4; if all(Z>0)&all(Z<=d.dim(3))&all(T>0)&all(T<=d.dim(4)) d.data=zeros(d.dim(1),d.dim(2),length(Z),length(T)); for t=1:length(T) for z=1:length(Z) position=d.byte*((T(t)-1)*prod(d.dim(1:3))+(Z(z)-1)*prod(d.dim(1:2)))+vox_offset; status=fseek(fid,position,'bof'); d.data(:,:,z,t)=fread(fid,[d.dim(1) d.dim(2)],d.precision); end end fclose(fid); else Z T fclose(fid); return end if scl_slope~=0 d.data=d.data*scl_slope+scl_inter; end return; end
github
compneuro-da/rsHRF-master
stat_threshold.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/stat_threshold.m
27,286
utf_8
75dcc644078e278b556f0acc871d984d
function [ peak_threshold, extent_threshold, ... peak_threshold_1, extent_threshold_1, t, rho ] = ... stat_threshold( search_volume, num_voxels, fwhm, df, p_val_peak, ... cluster_threshold, p_val_extent, nconj, nvar, EC_file, expr, nprint ); %Thresholds and P-values of peaks and clusters of random fields in any D. % % [PEAK_THRESHOLD, EXTENT_THRESHOLD, PEAK_THRESHOLD_1 EXTENT_THRESHOLD_1] = % STAT_THRESHOLD([ SEARCH_VOLUME [, NUM_VOXELS [, FWHM [, DF [, P_VAL_PEAK % [, CLUSTER_THRESHOLD [, P_VAL_EXTENT [, NCONJ [, NVAR [, EC_FILE % [, TRANSFORM [, NPRINT ]]]]]]]]]]]] ); % % If P-values are supplied, returns the thresholds for local maxima % or peaks (PEAK_THRESHOLD) (if thresholds are supplied then it % returns P-values) for the following SPMs: % - Z, chi^2, t, F, Hotelling's T^2, Roy's maximum root, maximum % canonical correlation, cross- and auto-correlation; % - scale space Z and chi^2; % - conjunctions of NCONJ of these (except cross- and auto-correlation); % and spatial extent of contiguous voxels above CLUSTER_THRESHOLD % (EXTENT_THRESHOLD) except conjunctions. Note that for the multivariate % statistics spatial extent is measured in resels for the higher % dimensional space formed by adding sphere(s) to the search region. % % For peaks (local maxima), two methods are used: % random field theory (Worsley et al. 1996, Human Brain Mapping, 4:58-73), % and a simple Bonferroni correction based on the number of voxels % in the search region. The final threshold is the minimum of the two. % % For clusters, the method of Cao, 1999, Advances in Applied Probability, % 31:577-593 is used. The cluster size is only accurate for large % CLUSTER_THRESHOLD (say >3) and large resels = SEARCH_VOLUME / FWHM^D. % % PEAK_THRESHOLD_1 is the height of a single peak chosen in advance, and % EXTENT_THRESHOLD_1 is the extent of a single cluster chosen in advance % of looking at the data, e.g. the nearest peak or cluster to a pre-chosen % voxel or ROI - see Friston KJ. Testing for anatomically specified % regional effects. Human Brain Mapping. 5(2):133-6, 1997. % % SEARCH_VOLUME is the volume of the search region in mm^3. The method for % finding PEAK_THRESHOLD works well for any value of SEARCH_VOLUME, even % SEARCH_VOLUME = 0 (default), which gives the threshold for the image at % a single voxel. The random field theory threshold is based on the % assumption that the search region is a sphere in 3D, which is a very % tight lower bound for any non-spherical region. % For a non-spherical D-dimensional region, set SEARCH_VOLUME to a vector % of the D+1 intrinsic volumes of the search region. In D=3 these are % [Euler characteristic, 2 * caliper diameter, 1/2 surface area, volume]. % E.g. for a sphere of radius r in 3D, use [1, 4*r, 2*pi*r^2, 4/3*pi*r^3], % which is equivalent to just SEARCH_VOLUME = 4/3*pi*r^3. % For a 2D search region, use [1, 1/2 perimeter length, area]. % For cross- and auto-correlations, where correlation is maximized over all % pairs of voxels from two search regions, SEARCH_VOLUME has two rows % interpreted as above - see Cao, J. & Worsley, K.J. (1999). The geometry % of correlation fields, with an application to functional connectivity of % the brain. Annals of Applied Probability, 9:1021-1057. % % NUM_VOXELS is the number of voxels (3D) or pixels (2D) in the search % volume. For cross- and auto-correlations, use two rows. Default is 1. % % FWHM is the fwhm in mm of a smoothing kernel applied to the data. Default % is 0.0, i.e. no smoothing, which is roughly the case for raw fMRI data. % For motion corrected fMRI data, use at least 6mm; for PET data, this would % be the scanner fwhm of about 6mm. Using the geometric mean of the three % x,y,z FWHM's is a very good approximation if they are different. % If you have already calculated resels, then set SEARCH_VOLUME=resels % and FWHM=1. Cluster extents will then be in resels, rather than mm^3. % For cross- and auto-correlations, use two rows. For scale space, use two % columns for the min and max fwhm (only for Z and chi^2 SPMs). % % DF=[DF1 DF2; DFW1 DFW2 0] is a 2 x 2 matrix of degrees of freedom. % If DF2 is 0, then DF1 is the df of the T statistic image. % If DF1=Inf then it calculates thresholds for the Gaussian image. % If DF2>0 then DF1 and DF2 are the df's of the F statistic image. % DFW1 and DFW2 are the numerator and denominator df of the FWHM image. % They are only used for calculating cluster resel p-values and thresholds % (ignored if NVAR>1 or NCONJ>1 since there are no theoretical results). % The random estimate of the local resels adds variability to the summed % resels of the cluster. The distribution of the local resels summed over a % region depends on the unknown spatial correlation structure of the resels, % so we assume that the resels are constant over the cluster, reasonable if the % clusters are small. The cluster resels are then multiplied by the random resel % distribution at a point. This gives an upper bound to p-values and thresholds. % If DF=[DF1 DF2] (row) then DFW1=DFW2=Inf, i.e. FWHM is fixed. % If DF=[DF1; DFW1] (column) then DF2=0 and DFW2=DFW1, i.e. t statistic. % If DF=DF1 (scalar) then DF2=0 and DFW1=DFW2=Inf, i.e. t stat, fixed FWHM. % If any component of DF >= 1000 then it is set to Inf. Default is Inf. % % P_VAL_PEAK is the row vector of desired P-values for peaks. % If the first element is greater than 1, then they are % treated as peak values and P-values are returned. Default is 0.05. % To get P-values for peak values < 1, set the first element > 1, % set the second to the deisired peak value, then discard the first result. % % CLUSTER_THRESHOLD is the scalar threshold of the image for clusters. % If it is <= 1, it is taken as a probability p, and the % cluter_thresh is chosen so that P( T > cluster_thresh ) = p. % Default is 0.001, i.e. P( T > cluster_thresh ) = 0.001. % % P_VAL_EXTENT is the row vector of desired P-values for spatial extents % of clusters of contiguous voxels above CLUSTER_THRESHOLD. % If the first element is greater than 1, then they are treated as % extent values and P-values are returned. Default is 0.05. % % NCONJ is the number of conjunctions. If NCONJ > 1, calculates P-values and % thresholds for peaks (but not clusters) of the minimum of NCONJ independent % SPM's - see Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C., % Worsley, K.J. (1999). Multi-subject fMRI studies and conjunction analyses. % NeuroImage, 10:385-396. Default is NCONJ = 1 (no conjunctions). % % NVAR is the number of variables for multivariate equivalents of T and F % statistics, found by maximizing T^2 or F over all linear combinations of % variables, i.e. Hotelling's T^2 for DF1=1, Roy's maximum root for DF1>1. % For maximum canonical cross- and auto-correlations, use two rows. % See Worsley, K.J., Taylor, J.E., Tomaiuolo, F. & Lerch, J. (2004). Unified % univariate and multivariate random field theory. Neuroimage, 23:S189-195. % Default is 1, i.e. univariate statistics. % % EC_FILE: file for EC densities in IRIS Explorer latin module format. % Ignored if empty (default). % % EXPR: matlab expression applied to threshold in t, e.g. 't=sqrt(t);'. % % NPRINT: maximum number of P-values or thresholds to print. Default 5. % % Examples: % % T statistic, 1000000mm^3 search volume, 1000000 voxels (1mm voxel volume), % 20mm smoothing, 30 degrees of freedom, P=0.05 and 0.01 for peaks, cluster % threshold chosen so that P=0.001 at a single voxel, P=0.05 and 0.01 for extent: % % stat_threshold(1000000,1000000,20,30,[0.05 0.01],0.001,[0.05 0.01]); % % peak_threshold = 5.0826 5.7853 % Cluster_threshold = 3.3852 % peak_threshold_1 = 4.8782 5.5955 % extent_threshold = 3340.3 6315.5 % extent_threshold_1 = 2911.5 5719.6 % % Check: Suppose we are given peak values of 5.0826, 5.7853 and % spatial extents of 3340.3, 6315.5 above a threshold of 3.3852, % then we should get back our original P-values: % % stat_threshold(1000000,1000000,20,30,[5.0826 5.7853],3.3852,[3340.3 6315.5]); % % P_val_peak = 0.0500 0.0100 % P_val_peak_1 = 0.0318 0.0065 % P_val_extent = 0.0500 0.0100 % P_val_extent_1 = 0.0379 0.0074 % % Another way of doing this is to use the fact that T^2 has an F % distribution with 1 and 30 degrees of freedom, and double the P values: % % stat_threshold(1000000,1000000,20,[1 30],[0.1 0.02],0.002,[0.1 0.02]); % % peak_threshold = 25.8330 33.4702 % Cluster_threshold = 11.4596 % peak_threshold_1 = 20.7886 27.9741 % extent_threshold = 3297.8 6305.2 % extent_threshold_1 = 1936.4 4420.3 % % Note that sqrt([25.8330 33.4702 11.4596])=[5.0826 5.7853 3.3852] % in agreement with the T statistic thresholds, but the spatial extent % thresholds are very close but not exactly the same. % % If the shape of the search region is known, then the 'intrinisic % volume' must be supplied. E.g. for a spherical search region with % a volume of 1000000 mm^3, radius r: % % r=(1000000/(4/3*pi))^(1/3); % stat_threshold([1 4*r 2*pi*r^2 4/3*pi*r^3], ... % 1000000,20,30,[0.05 0.01],0.001,[0.05 0.01]); % % gives the same results as our first example. A 100 x 100 x 100 cube % % stat_threshold([1 300 30000 1000000], ... % 1000000,20,30,[0.05 0.01],0.001,[0.05 0.01]); % % gives slightly higher thresholds (5.0969, 5.7976) for peaks, but the cluster % thresholds are the same since they depend (so far) only on the volume and % not the shape. For a 2D circular search region of the same radius r, use % % stat_threshold([1 pi*r pi*r^2],1000000,20,30,[0.05 0.01],0.001,[0.05 0.01]); % % A volume of 0 returns the usual uncorrected threshold for peaks, % which can also be found by setting NUM_VOXELS=1, FWHM = 0: % % stat_threshold(0,1,20,30,[0.05 0.01]) % stat_threshold(1,1, 0,30,[0.05 0.01]); % % For non-isotropic fields, replace the SEARCH_VOLUME by the vector of resels % (see Worsley et al. 1996, Human Brain Mapping, 4:58-73), and set FWHM=1, % so that EXTENT_THRESHOLD's are measured in resels, not mm^3. If the % resels are estimated from residuals, add an extra row to DF (see above). % % For the conjunction of 2 and 3 T fields as above: % % stat_threshold(1000000,1000000,20,30,[0.05 0.01],[],[],2) % stat_threshold(1000000,1000000,20,30,[0.05 0.01],[],[],3) % % returns lower thresholds of [3.0251 3.3984] and [2.2336 2.5141] resp. Note % that there are as yet no theoretical results for extents so they are NaN. % % For Hotelling's T^2 e.g. for linear models of deformations (NVAR=3): % % stat_threshold(1000000,1000000,20,[1 30],[0.05 0.01],[],[],1,3) % % For Roy's max root, e.g. for effective connectivity using deformations, % % stat_threshold(1000000,1000000,20,[3 30],[0.05 0.01],[],[],1,3) % % There are no theoretical results for mulitvariate extents so they are NaN. % Check: A Hotelling's T^2 with Inf df is the same as a chi^2 with NVAR df % % stat_threshold(1000000,1000000,20,[1 Inf],[],[],[],[],NVAR) % stat_threshold(1000000,1000000,20,[NVAR Inf])*NVAR % % should give the same answer! % % Cross- and auto-correlations: to threshold the auto-correlation of fmrilm % residuals (100 df) over all pairs of 1000000 voxels in a 1000000mm^3 % region with 20mm FWHM smoothing, use df=99 (one less for the correlation): % % stat_threshold([1000000; 1000000], [1000000; 1000000], 20, 99, 0.05) % % which gives a T statistic threshold of 6.7923 with 99 df. To convert to % a correlation, use 6.7923/sqrt(99+6.7923^2)=0.5638. Note that auto- % correlations are symmetric, so the P-value is in fact 0.05/2=0.025; on the % other hand, we usually want a two sided test of both positive and negative % correlations, so the P-value should be doubled back to 0.05. For cross- % correlations, e.g. between n=321 GM density volumes (1000000mm^3 ball, % FWHM=13mm) and cortical thickness on the average surface (250000mm^2, % FWHM=18mm), use 321-2=319 df for removing the constant and the correlation. % Note that we use P=0.025 to threshold both +ve and -ve correlations. % % r=(1000000/(4/3*pi))^(1/3); % stat_threshold([1 4*r 2*pi*r^2 4/3*pi*r^3; 1 0 250000 0], ... % [1000000; 40962], [13; 18], 319, 0.025) % % This gives a T statistic threshold of 6.7158 with 319 df. To convert to % a correlation, use 6.7158/sqrt(319+6.7158^2)=0.3520. Note that NVAR can be % greater than one for maximum canonical cross- and auto-correlations % between all pairs of multivariate imaging data. Finally, the spatial % extent for 5D clusters of connected correlations is 5.9228e+006 mm^5. % % Scale space: suppose we smooth 1000000 voxels in a 1000000mm^3 region % from 6mm to 30mm in 10 steps ( e.g. fwhm=6*(30/6).^((0:9)/9) ): % % stat_threshold(1000000, 1000000*10, [6 30]) % % gives a scale space threshold of 5.0663, only slightly higher than the % 5.0038 you get from using the highest resolution data only, i.e. % % stat_threshold(1000000, 1000000, 6) %############################################################################ % COPYRIGHT: Copyright 2003 K.J. Worsley % Department of Mathematics and Statistics, % McConnell Brain Imaging Center, % Montreal Neurological Institute, % McGill University, Montreal, Quebec, Canada. % [email protected] , www.math.mcgill.ca/keith % % Permission to use, copy, modify, and distribute this % software and its documentation for any purpose and without % fee is hereby granted, provided that this copyright % notice appears in all copies. The author and McGill University % make no representations about the suitability of this % software for any purpose. It is provided "as is" without % express or implied warranty. %############################################################################ % Defaults: if nargin<1; search_volume=[]; end if nargin<2; num_voxels=[]; end if nargin<3; fwhm=[]; end if nargin<4; df=[]; end if nargin<5; p_val_peak=[]; end if nargin<6; cluster_threshold=[]; end if nargin<7; p_val_extent=[]; end if nargin<8; nconj=[]; end if nargin<9; nvar=[]; end if nargin<10; EC_file=[]; end if nargin<11; expr=[]; end if nargin<12; nprint=[]; end if isempty(search_volume); search_volume=0; end if isempty(num_voxels); num_voxels=1; end if isempty(fwhm); fwhm=0.0; end if isempty(df); df=Inf; end if isempty(p_val_peak); p_val_peak=0.05; end if isempty(cluster_threshold); cluster_threshold=0.001; end if isempty(p_val_extent); p_val_extent=0.05; end if isempty(nconj); nconj=1; end if isempty(nvar); nvar=1; end if isempty(nprint); nprint=5; end if size(fwhm,1)==1; fwhm(2,:)=fwhm; end if size(fwhm,2)==1; scale=1; else scale=fwhm(1,2)/fwhm(1,1); fwhm=fwhm(:,1); end; isscale=(scale>1); if length(num_voxels)==1; num_voxels(2,1)=1; end if size(search_volume,2)==1 radius=(search_volume/(4/3*pi)).^(1/3); search_volume=[ones(length(radius),1) 4*radius 2*pi*radius.^2 search_volume]; end if size(search_volume,1)==1 search_volume=[search_volume; [1 zeros(1,size(search_volume,2)-1)]]; end lsv=size(search_volume,2); fwhm_inv=all(fwhm>0)./(fwhm+any(fwhm<=0)); resels=search_volume.*repmat(fwhm_inv,1,lsv).^repmat(0:lsv-1,2,1); invol=resels.*(4*log(2)).^(repmat(0:lsv-1,2,1)/2); for k=1:2 D(k,1)=max(find(invol(k,:)))-1; end % determines which method was used to estimate fwhm (see fmrilm or multistat): df_limit=4; if length(df)==1; df=[df 0]; end if size(df,1)==1; df=[df; Inf Inf; Inf Inf]; end if size(df,2)==1; df=[df df]; df(1,2)=0; end if size(df,1)==2; df=[df; df(2,:)]; end % is_tstat=1 if it is a t statistic is_tstat=(df(1,2)==0); if is_tstat df1=1; df2=df(1,1); else df1=df(1,1); df2=df(1,2); end if df2 >= 1000; df2=Inf; end df0=df1+df2; dfw1=df(2:3,1); dfw2=df(2:3,2); for k=1:2 if dfw1(k) >= 1000; dfw1(k)=Inf; end if dfw2(k) >= 1000; dfw2(k)=Inf; end end if length(nvar)==1; nvar(2,1)=df1; end if isscale & (D(2)>1 | nvar(1,1)>1 | df2<Inf) D nvar df2 fprintf('Cannot do scale space.'); return end Dlim=D+[scale>1; 0]; DD=Dlim+nvar-1; % Values of the F statistic: t=((1000:-1:1)'/100).^4; % Find the upper tail probs cumulating the F density using Simpson's rule: if df2==Inf u=df1*t; b=exp(-u/2-log(2*pi)/2+log(u)/4)*df1^(1/4)*4/100; else u=df1*t/df2; b=exp(-df0/2*log(1+u)+log(u)/4-betaln(1/2,(df0-1)/2))*(df1/df2)^(1/4)*4/100; end t=[t; 0]; b=[b; 0]; n=length(t); sb=cumsum(b); sb1=cumsum(b.*(-1).^(1:n)'); pt1=sb+sb1/3-b/3; pt2=sb-sb1/3-b/3; tau=zeros(n,DD(1)+1,DD(2)+1); tau(1:2:n,1,1)=pt1(1:2:n); tau(2:2:n,1,1)=pt2(2:2:n); tau(n,1,1)=1; tau(:,1,1)=min(tau(:,1,1),1); % Find the EC densities: u=df1*t; for d=1:max(DD) for e=0:min(min(DD),d) s1=0; cons=-((d+e)/2+1)*log(pi)+gammaln(d)+gammaln(e+1); for k=0:(d-1+e)/2 [i,j]=ndgrid(0:k,0:k); if df2==Inf q1=log(pi)/2-((d+e-1)/2+i+j)*log(2); else q1=(df0-1-d-e)*log(2)+gammaln((df0-d)/2+i)+gammaln((df0-e)/2+j) ... -gammalni(df0-d-e+i+j+k)-((d+e-1)/2-k)*log(df2); end q2=cons-gammalni(i+1)-gammalni(j+1)-gammalni(k-i-j+1) ... -gammalni(d-k-i+j)-gammalni(e-k-j+i+1); s2=sum(sum(exp(q1+q2))); if s2>0 s1=s1+(-1)^k*u.^((d+e-1)/2-k)*s2; end end if df2==Inf s1=s1.*exp(-u/2); else s1=s1.*exp(-(df0-2)/2*log(1+u/df2)); end if DD(1)>=DD(2) tau(:,d+1,e+1)=s1; if d<=min(DD) tau(:,e+1,d+1)=s1; end else tau(:,e+1,d+1)=s1; if d<=min(DD) tau(:,d+1,e+1)=s1; end end end end % For multivariate statistics, add a sphere to the search region: a=zeros(2,max(nvar)); for k=1:2 j=(nvar(k)-1):-2:0; a(k,j+1)=exp(j*log(2)+j/2*log(pi) ... +gammaln((nvar(k)+1)/2)-gammaln((nvar(k)+1-j)/2)-gammaln(j+1)); end rho=zeros(n,Dlim(1)+1,Dlim(2)+1); for k=1:nvar(1) for l=1:nvar(2) rho=rho+a(1,k)*a(2,l)*tau(:,(0:Dlim(1))+k,(0:Dlim(2))+l); end end if is_tstat if nvar==1 t=[sqrt(t(1:(n-1))); -flipdim(sqrt(t),1)]; rho=[rho(1:(n-1),:,:); flipdim(rho,1)]/2; for i=0:D(1) for j=0:D(2) rho(n-1+(1:n),i+1,j+1)=-(-1)^(i+j)*rho(n-1+(1:n),i+1,j+1); end end rho(n-1+(1:n),1,1)=rho(n-1+(1:n),1,1)+1; n=2*n-1; else t=sqrt(t); end end % For scale space: if scale>1 kappa=D(1)/2; tau=zeros(n,D(1)+1); for d=0:D(1) s1=0; for k=0:d/2 s1=s1+(-1)^k/(1-2*k)*exp(gammaln(d+1)-gammaln(k+1)-gammaln(d-2*k+1) ... +(1/2-k)*log(kappa)-k*log(4*pi))*rho(:,d+2-2*k,1); end if d==0 cons=log(scale); else cons=(1-1/scale^d)/d; end tau(:,d+1)=rho(:,d+1,1)*(1+1/scale^d)/2+s1*cons; end rho(:,1:(D(1)+1),1)=tau; end if D(2)==0 d=D(1); if nconj>1 % Conjunctions: b=gamma(((0:d)+1)/2)/gamma(1/2); for i=1:d+1 rho(:,i,1)=rho(:,i,1)/b(i); end m1=zeros(n,d+1,d+1); for i=1:d+1 j=i:d+1; m1(:,i,j)=rho(:,j-i+1,1); end for k=2:nconj for i=1:d+1 for j=1:d+1 m2(:,i,j)=sum(rho(:,1:d+2-i,1).*m1(:,i:d+1,j),2); end end m1=m2; end for i=1:d+1 rho(:,i,1)=m1(:,1,i)*b(i); end end if ~isempty(EC_file) if d<3 rho(:,(d+2):4,1)=zeros(n,4-d-2+1); end fid=fopen(EC_file,'w'); % first 3 are dimension sizes as 4-byte integers: fwrite(fid,[n max(d+2,5) 1],'int'); % next 6 are bounding box as 4-byte floats: fwrite(fid,[0 0 0; 1 1 1],'float'); % rest are the data as 4-byte floats: if ~isempty(expr) eval(expr); end fwrite(fid,t,'float'); fwrite(fid,rho,'float'); fclose(fid); end end if all(fwhm>0) pval_rf=zeros(n,1); for i=1:D(1)+1 for j=1:D(2)+1 pval_rf=pval_rf+invol(1,i)*invol(2,j)*rho(:,i,j); end end else pval_rf=Inf; end % Bonferroni pt=rho(:,1,1); pval_bon=abs(prod(num_voxels))*pt; % Minimum of the two: pval=min(pval_rf,pval_bon); tlim=1; if p_val_peak(1) <= tlim peak_threshold=minterp1(pval,t,p_val_peak); if length(p_val_peak)<=nprint peak_threshold end else % p_val_peak is treated as a peak value: P_val_peak=interp1(t,pval,p_val_peak); i=isnan(P_val_peak); P_val_peak(i)=(is_tstat & (p_val_peak(i)<0)); peak_threshold=P_val_peak; if length(p_val_peak)<=nprint P_val_peak end end if all(fwhm<=0) | any(num_voxels<0) peak_threshold_1=p_val_peak+NaN; extent_threshold=p_val_extent+NaN; extent_threshold_1=extent_threshold; return end % Cluster_threshold: if cluster_threshold > tlim tt=cluster_threshold; else % cluster_threshold is treated as a probability: tt=minterp1(pt,t,cluster_threshold); if nprint>0 Cluster_threshold=tt end end d=sum(D); rhoD=interp1(t,rho(:,D(1)+1,D(2)+1),tt); p=interp1(t,pt,tt); % Pre-selected peak: pval=rho(:,D(1)+1,D(2)+1)./rhoD; if p_val_peak(1) <= tlim peak_threshold_1=minterp1(pval,t, p_val_peak); if length(p_val_peak)<=nprint peak_threshold_1 end else % p_val_peak is treated as a peak value: P_val_peak_1=interp1(t,pval,p_val_peak); i=isnan(P_val_peak_1); P_val_peak_1(i)=(is_tstat & (p_val_peak(i)<0)); peak_threshold_1=P_val_peak_1; if length(p_val_peak)<=nprint P_val_peak_1 end end if d==0 | nconj>1 | nvar(1)>1 | scale>1 extent_threshold=p_val_extent+NaN; extent_threshold_1=extent_threshold; if length(p_val_extent)<=nprint extent_threshold extent_threshold_1 end return end % Expected number of clusters: EL=invol(1,D(1)+1)*invol(2,D(2)+1)*rhoD; cons=gamma(d/2+1)*(4*log(2))^(d/2)/fwhm(1)^D(1)/fwhm(2)^D(2)*rhoD/p; if df2==Inf & dfw1(1)==Inf & dfw1(2)==Inf if p_val_extent(1) <= tlim pS=-log(1-p_val_extent)/EL; extent_threshold=(-log(pS)).^(d/2)/cons; pS=-log(1-p_val_extent); extent_threshold_1=(-log(pS)).^(d/2)/cons; if length(p_val_extent)<=nprint extent_threshold extent_threshold_1 end else % p_val_extent is now treated as a spatial extent: pS=exp(-(p_val_extent*cons).^(2/d)); P_val_extent=1-exp(-pS*EL); extent_threshold=P_val_extent; P_val_extent_1=1-exp(-pS); extent_threshold_1=P_val_extent_1; if length(p_val_extent)<=nprint P_val_extent P_val_extent_1 end end else % Find dbn of S by taking logs then using fft for convolution: ny=2^12; a=d/2; b2=a*10*max(sqrt(2/(min(df1+df2,min(dfw1)))),1); if df2<Inf b1=a*log((1-(1-0.000001)^(2/(df2-d)))*df2/2); else b1=a*log(-log(1-0.000001)); end dy=(b2-b1)/ny; b1=round(b1/dy)*dy; y=((1:ny)'-1)*dy+b1; numrv=1+(d+(D(1)>0)+(D(2)>0))*(df2<Inf)+... (D(1)*(dfw1(1)<Inf)+(dfw2(1)<Inf))*(D(1)>0)+...; (D(2)*(dfw1(2)<Inf)+(dfw2(2)<Inf))*(D(2)>0); f=zeros(ny,numrv); mu=zeros(1,numrv); if df2<Inf % Density of log(Beta(1,(df2-d)/2)^(d/2)): yy=exp(y./a)/df2*2; yy=yy.*(yy<1); f(:,1)=(1-yy).^((df2-d)/2-1).*((df2-d)/2).*yy/a; mu(1)=exp(gammaln(a+1)+gammaln((df2-d+2)/2)-gammaln((df2+2)/2)+a*log(df2/2)); else % Density of log(exp(1)^(d/2)): yy=exp(y./a); f(:,1)=exp(-yy).*yy/a; mu(1)=exp(gammaln(a+1)); end nuv=[]; aav=[]; if df2<Inf nuv=df2+2-(1:d); aav=[repmat(-1/2,1,d)]; for k=1:2 if D(k)>0; nuv=[df1+df2-D(k) nuv]; aav=[D(k)/2 aav]; end; end; end for k=1:2 if dfw1(k)<Inf & D(k)>0 if dfw1(k)>df_limit nuv=[nuv dfw1(k)-dfw1(k)/dfw2(k)-(0:(D(k)-1))]; else nuv=[nuv repmat(dfw1(k)-dfw1(k)/dfw2(k),1,D(k))]; end aav=[aav repmat(1/2,1,D(k))]; end if dfw2(k)<Inf nuv=[nuv dfw2(k)]; aav=[aav -D(k)/2]; end end for i=1:(numrv-1) nu=nuv(i); aa=aav(i); yy=y/aa+log(nu); % Density of log((chi^2_nu/nu)^aa): f(:,i+1)=exp(nu/2*yy-exp(yy)/2-(nu/2)*log(2)-gammaln(nu/2))/abs(aa); mu(i+1)=exp(gammaln(nu/2+aa)-gammaln(nu/2)-aa*log(nu/2)); end % Check: plot(y,f); sum(f*dy,1) should be 1 omega=2*pi*((1:ny)'-1)/ny/dy; shift=complex(cos(-b1*omega),sin(-b1*omega))*dy; prodfft=prod(fft(f),2).*shift.^(numrv-1); % Density of Y=log(B^(d/2)*U^(d/2)/sqrt(det(Q))): ff=real(ifft(prodfft)); % Check: plot(y,ff); sum(ff*dy) should be 1 mu0=prod(mu); % Check: plot(y,ff.*exp(y)); sum(ff.*exp(y)*dy.*(y<10)) should equal mu0 alpha=p/rhoD/mu0*fwhm(1)^D(1)*fwhm(2)^D(2)/(4*log(2))^(d/2); % Integrate the density to get the p-value for one cluster: pS=cumsum(ff(ny:-1:1))*dy; pS=pS(ny:-1:1); % The number of clusters is Poisson with mean EL: pSmax=1-exp(-pS*EL); if p_val_extent(1) <= tlim yval=minterp1(-pSmax,y,-p_val_extent); % Spatial extent is alpha*exp(Y) -dy/2 correction for mid-point rule: extent_threshold=alpha*exp(yval-dy/2); % For a single cluster: yval=minterp1(-pS,y,-p_val_extent); extent_threshold_1=alpha*exp(yval-dy/2); if length(p_val_extent)<=nprint extent_threshold extent_threshold_1 end else % p_val_extent is now treated as a spatial extent: logpval=log(p_val_extent/alpha+(p_val_extent<=0))+dy/2; P_val_extent=interp1(y,pSmax,logpval); extent_threshold=P_val_extent.*(p_val_extent>0)+(p_val_extent<=0); % For a single cluster: P_val_extent_1=interp1(y,pS,logpval); extent_threshold_1=P_val_extent_1.*(p_val_extent>0)+(p_val_extent<=0); if length(p_val_extent)<=nprint P_val_extent P_val_extent_1 end end end return function x=gammalni(n); i=find(n>=0); x=Inf+n; if ~isempty(i) x(i)=gammaln(n(i)); end return function iy=minterp1(x,y,ix); % interpolates only the monotonically increasing values of x at ix n=length(x); mx=x(1); my=y(1); xx=x(1); for i=2:n if x(i)>xx xx=x(i); mx=[mx xx]; my=[my y(i)]; end end iy=interp1(mx,my,ix); return
github
compneuro-da/rsHRF-master
SurfStatResels.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/SurfStatResels.m
17,594
utf_8
7a46dc3835272228e7108dd7cfc676d2
function [resels, reselspvert, edg] = SurfStatResels( slm, mask ); %Resels of surface or volume data inside a mask. % % Usage: [resels, reselspvert, edg] = SurfStatResels( slm [, mask] ) % % slm.resl = e x k matrix of sum over observations of squares of % differences of normalized residuals along each edge. % slm.tri = t x 3 matrix of triangle indices, 1-based, t=#triangles. % or % slm.lat = 3D logical array, 1=in, 0=out. % mask = 1 x v, 1=inside, 0=outside, v=#vertices, % = ones(1,v), i.e. the whole surface, by default. % % resels = 1 x (D+1) vector of 0,...,D dimensional resels of the mask, % = EC of the mask if slm.resl is not given. % reselspvert = 1 x v vector of D-dimensional resels per mask vertex. % edg = e x 2 matrix of edge indices, 1-based, e=#edges. % The first version of this function (below) was much more elegant. % There were two reasons why I had to abandon it: % 1) for volumetric data, the edg, tri and tet matrices become huge, often % exceeding the memory capacity - they require 62 integers per voxel, as % opposed to 12 integers per vertex for surface data. % 2) even if memory is not exceeded, the "unique" and "ismember" functions % take a huge amount of time; the original version is ~7 times slower. % To overcome 1), I had to resort to a slice-wise implementation for % volumetric data. To cut down storage, the edg, tri and tet matrices are % formed only for two adjacent slices in the volume. The slm.lat data is % then copied into one slice, then the other, in an alternating fashion. % Since the tetrahedral filling is also alternating, there is no need to % recompute the edg, tri and tet matrices. However the ordering of the edg % matrix is crucial - it must match the SurfStatEdg function so that % slm.resl is synchronised. The ordering of the tri and tet matrices is not % important. % To avoid the "unique" function in 2), the edg and tri matrices were % created by hand, rather than derived from the tet matrix. To avoid the % "ismember" function, edge look-up was implemented by a sparse matrix. % This reduces execution time to ~18%. However it will not work for large % dimensions, since the largest index of a sparse matrix is 2^31. If this % is exceeded, then "interp1" is used which is slower but still reduces the % time to ~45% that of "ismember". Traingle area look-up was avoided by % simply re-computing trangle areas from the edges. % % Here is the original SurfStatResels function: % % if isfield(surf,'tri') % tri=sort(surf.tri,2); % edg=unique([tri(:,[1 2]); tri(:,[1 3]); tri(:,[2 3])],'rows'); % tet=[]; % end % if isfield(surf,'lat') % % Fill lattice with 5 tetrahedra per cube % [I,J,K]=size(surf.lat); % [i,j,k]=ndgrid(1:int32(I),1:int32(J),1:int32(K)); % i=i(:); % j=j(:); % k=k(:); % c1=find(rem(i+j+k,2)==0 & i<I & j<J & k<K); % c2=find(rem(i+j+k,2)==0 & i>1 & j<J & k<K); % clear i j k % IJ=I*J; % tet=[c1 c1+1 c1+1+I c1+1+IJ; % c1 c1+I c1+1+I c1+I+IJ; % c1 c1+1+I c1+1+IJ c1+I+IJ; % c1 c1+IJ c1+1+IJ c1+I+IJ; % c1+1+I c1+1+IJ c1+I+IJ c1+1+I+IJ; % c2-1 c2 c2-1+I c2-1+IJ; % c2 c2-1+I c2+I c2+I+IJ; % c2 c2-1+I c2-1+IJ c2+I+IJ; % c2 c2-1+IJ c2+IJ c2+I+IJ; % c2-1+I c2-1+IJ c2-1+I+IJ c2+I+IJ]; % clear c1 c2 % % Find triangles and edges % tri=unique([tet(:,[1 2 3]); tet(:,[1 2 4]); ... % tet(:,[1 3 4]); tet(:,[2 3 4])],'rows'); % edg=unique([tri(:,[1 2]); tri(:,[1 3]); tri(:,[2 3])],'rows'); % % index by voxels in the lat % vid=cumsum(surf.lat(:)).*surf.lat(:); % % only inside the lat % edg=vid(edg(all(surf.lat(edg),2),:)); % tri=vid(tri(all(surf.lat(tri),2),:)); % tet=vid(tet(all(surf.lat(tet),2),:)); % end % % m=sum(mask(:)); % lkc(1,1)=m; % %% LKC of edges % maskedg=all(mask(edg),2); % lkc(1,2)=sum(maskedg); % if isfield(slm,'resl') % r1=mean(sqrt(slm.resl(maskedg,:)),2); % lkc(2,2)=sum(r1); % end % % %% LKC of triangles % masktri=all(mask(tri),2); % lkc(1,3)=sum(masktri); % if isfield(slm,'resl') % [tf,loc]=ismember(tri(masktri,[1 2]),edg,'rows'); l12=slm.resl(loc,:); % [tf,loc]=ismember(tri(masktri,[1 3]),edg,'rows'); l13=slm.resl(loc,:); % [tf,loc]=ismember(tri(masktri,[2 3]),edg,'rows'); l23=slm.resl(loc,:); % a=max(4*l12.*l13-(l12+l13-l23).^2,0); % r2=mean(sqrt(a),2)/4; % lkc(2,3)=sum(mean(sqrt(l12)+sqrt(l13)+sqrt(l23),2))/2; % lkc(3,3)=sum(r2); % end % % if isfield(slm,'lat') % %% LKC of tetrahedra % masktet=all(mask(tet),2); % trimasktri=tri(masktri,:); % lkc(1,4)=sum(masktet); % if isfield(slm,'resl') % [tf,loc]=ismember(tet(masktet,[1 2 3]),trimasktri,'rows'); a4=a(loc,:); % [tf,loc]=ismember(tet(masktet,[1 2 4]),trimasktri,'rows'); a3=a(loc,:); % [tf,loc]=ismember(tet(masktet,[1 3 4]),trimasktri,'rows'); a2=a(loc,:); % [tf,loc]=ismember(tet(masktet,[2 3 4]),trimasktri,'rows'); a1=a(loc,:); % % [tf,loc]=ismember(tet(masktet,[1 2]),edg,'rows'); l12=slm.resl(loc,:); % [tf,loc]=ismember(tet(masktet,[1 3]),edg,'rows'); l13=slm.resl(loc,:); % [tf,loc]=ismember(tet(masktet,[2 3]),edg,'rows'); l23=slm.resl(loc,:); % [tf,loc]=ismember(tet(masktet,[1 4]),edg,'rows'); l14=slm.resl(loc,:); % [tf,loc]=ismember(tet(masktet,[2 4]),edg,'rows'); l24=slm.resl(loc,:); % [tf,loc]=ismember(tet(masktet,[3 4]),edg,'rows'); l34=slm.resl(loc,:); % % d12=4*l12.*l34-(l13+l24-l23-l14).^2; % d13=4*l13.*l24-(l12+l34-l23-l14).^2; % d14=4*l14.*l23-(l12+l34-l24-l13).^2; % % h=(a1<=0)|(a2<=0); % delta12=sum(mean(sqrt(l34).*pacos((d12-a1-a2)./sqrt(a1.*a2+h)/2.*(1-h)+h),2)); % h=(a1<=0)|(a3<=0); % delta13=sum(mean(sqrt(l24).*pacos((d13-a1-a3)./sqrt(a1.*a3+h)/2.*(1-h)+h),2)); % h=(a1<=0)|(a4<=0); % delta14=sum(mean(sqrt(l23).*pacos((d14-a1-a4)./sqrt(a1.*a4+h)/2.*(1-h)+h),2)); % h=(a2<=0)|(a3<=0); % delta23=sum(mean(sqrt(l14).*pacos((d14-a2-a3)./sqrt(a2.*a3+h)/2.*(1-h)+h),2)); % h=(a2<=0)|(a4<=0); % delta24=sum(mean(sqrt(l13).*pacos((d13-a2-a4)./sqrt(a2.*a4+h)/2.*(1-h)+h),2)); % h=(a3<=0)|(a4<=0); % delta34=sum(mean(sqrt(l12).*pacos((d12-a3-a4)./sqrt(a3.*a4+h)/2.*(1-h)+h),2)); % % r3=mean(sqrt(max((4*a1.*a2-(a1+a2-d12).^2)./(l34+(l34<=0)).*(l34>0),0)),2)/48; % % lkc(2,4)=(delta12+delta13+delta14+delta23+delta24+delta34)/(2*pi); % lkc(3,4)=sum(mean(sqrt(a1)+sqrt(a2)+sqrt(a3)+sqrt(a4),2))/8; % lkc(4,4)=sum(r3); % end % end if isfield(slm,'tri') tri=sort(slm.tri,2); edg=unique([tri(:,[1 2]); tri(:,[1 3]); tri(:,[2 3])],'rows'); if nargin<2 v=max(edg(:)); mask=logical(zeros(1,v)); mask(edg)=1; else if size(mask,1)>1 mask=mask'; end v=size(mask,2); end m=sum(mask(:)); lkc(1,1)=m; %% LKC of edges maskedg=all(mask(edg),2); lkc(1,2)=sum(maskedg); if isfield(slm,'resl') r1=mean(sqrt(slm.resl(maskedg,:)),2); lkc(2,2)=sum(r1); end %% LKC of triangles masktri=all(mask(tri),2); lkc(1,3)=sum(masktri); if isfield(slm,'resl') [tf,loc]=ismember(tri(masktri,[1 2]),edg,'rows'); l12=slm.resl(loc,:); [tf,loc]=ismember(tri(masktri,[1 3]),edg,'rows'); l13=slm.resl(loc,:); [tf,loc]=ismember(tri(masktri,[2 3]),edg,'rows'); l23=slm.resl(loc,:); a=max(4*l12.*l13-(l12+l13-l23).^2,0); r2=mean(sqrt(a),2)/4; lkc(2,3)=sum(mean(sqrt(l12)+sqrt(l13)+sqrt(l23),2))/2; lkc(3,3)=sum(r2); end if nargout>=2 reselspvert=zeros(v,1); for j=1:3 reselspvert=reselspvert+accumarray(tri(masktri,j),r2,[v 1]); end D=2; reselspvert=reselspvert'/(D+1)/sqrt(4*log(2))^D; end end %% if isfield(slm,'lat') edg=SurfStatEdg(slm); % The lattice is filled with 5 alternating tetrahedra per cube [I,J,K]=size(slm.lat); IJ=I*J; [i,j]=ndgrid(1:int32(I),1:int32(J)); i=i(:); j=j(:); c1=int32(find(rem(i+j,2)==0 & i<I & j<J)); c2=int32(find(rem(i+j,2)==0 & i>1 & j<J)); c11=int32(find(rem(i+j,2)==0 & i==I & j<J)); c21=int32(find(rem(i+j,2)==0 & i==I & j>1)); c12=int32(find(rem(i+j,2)==0 & i<I & j==J)); c22=int32(find(rem(i+j,2)==0 & i>1 & j==J)); d1=find(rem(i+j,2)==1 & i<I & j<J)+IJ; d2=find(rem(i+j,2)==1 & i>1 & j<J)+IJ; tri1=[c1 c1+1 c1+1+I; % bottom slice c1 c1+I c1+1+I; c2-1 c2 c2-1+I; c2 c2-1+I c2+I]; tri2=[c1 c1+1 c1+1+IJ; % between slices c1 c1+IJ c1+1+IJ; c1 c1+I c1+I+IJ; c1 c1+IJ c1+I+IJ; c1 c1+1+I c1+1+IJ; c1 c1+1+I c1+I+IJ; c1 c1+1+IJ c1+I+IJ; c1+1+I c1+1+IJ c1+I+IJ; c2-1 c2 c2-1+IJ; c2 c2-1+IJ c2+IJ; c2-1 c2-1+I c2-1+IJ; c2-1+I c2-1+IJ c2-1+I+IJ; c2 c2-1+I c2+I+IJ; c2 c2-1+IJ c2+I+IJ; c2 c2-1+I c2-1+IJ; c2-1+I c2-1+IJ c2+I+IJ; c11 c11+I c11+I+IJ; c11 c11+IJ c11+I+IJ; c21-I c21 c21-I+IJ; c21 c21-I+IJ c21+IJ; c12 c12+1 c12+1+IJ; c12 c12+IJ c12+1+IJ; c22-1 c22 c22-1+IJ; c22 c22-1+IJ c22+IJ]; tri3=[d1 d1+1 d1+1+I; % top slice d1 d1+I d1+1+I; d2-1 d2 d2-1+I; d2 d2-1+I d2+I]; tet1=[c1 c1+1 c1+1+I c1+1+IJ; % between slices c1 c1+I c1+1+I c1+I+IJ; c1 c1+1+I c1+1+IJ c1+I+IJ; c1 c1+IJ c1+1+IJ c1+I+IJ; c1+1+I c1+1+IJ c1+I+IJ c1+1+I+IJ; c2-1 c2 c2-1+I c2-1+IJ; c2 c2-1+I c2+I c2+I+IJ; c2 c2-1+I c2-1+IJ c2+I+IJ; c2 c2-1+IJ c2+IJ c2+I+IJ; c2-1+I c2-1+IJ c2-1+I+IJ c2+I+IJ]; v=sum(slm.lat(:)); if nargin<2 mask=logical(ones(1,v)); else if size(mask,1)>1 mask=mask'; end end if nargout>=2 reselspvert=zeros(v,1); end vs=cumsum(squeeze(sum(sum(slm.lat)))); vs=int32([0; vs; vs(K)]); es=0; lat=logical(zeros(I,J,2)); lat(:,:,1)=slm.lat(:,:,1); lkc=zeros(4); fprintf(1,'%s',[num2str(K) ' slices to resel, % remaining: 100 ']); n10=floor(K/10); for k=1:K if rem(k,n10)==0 fprintf(1,'%s',[num2str(round(100*(1-k/K))) ' ']); end f=rem(k,2); if k<K lat(:,:,f+1)=slm.lat(:,:,k+1); else lat(:,:,f+1)=zeros(I,J); end vid=int32(cumsum(lat(:)).*lat(:))'; if f edg1=edg(edg(:,1)>vs(k) & edg(:,1)<=vs(k+1),:)-vs(k); edg2=edg(edg(:,1)>vs(k) & edg(:,2)<=vs(k+2),:)-vs(k); tri=[vid(tri1(all(lat(tri1),2),:)); vid(tri2(all(lat(tri2),2),:))]; mask1=mask((vs(k)+1):vs(k+2)); else edg1=[edg(edg(:,1)>vs(k) & edg(:,2)<=vs(k+1),:)-vs(k)+vs(k+2)-vs(k+1); edg(edg(:,1)<=vs(k+1) & edg(:,2)>vs(k+1),2)-vs(k+1) ... edg(edg(:,1)<=vs(k+1) & edg(:,2)>vs(k+1),1)-vs(k)+vs(k+2)-vs(k+1)]; edg2=[edg1; edg(edg(:,1)>vs(k+1) & edg(:,2)<=vs(k+2),:)-vs(k+1)]; tri=[vid(tri3(all(lat(tri3),2),:)); vid(tri2(all(lat(tri2),2),:))]; mask1=[mask((vs(k+1)+1):vs(k+2)) mask((vs(k)+1):vs(k+1))]; end tet=vid(tet1(all(lat(tet1),2),:)); m1=max(double(edg2(:,1))); ue=double(edg2(:,1))+m1*(double(edg2(:,2))-1); e=size(edg2,1); ae=1:e; if e<2^31 sparsedg=sparse(ue,1,ae); end %% lkc1=zeros(4); lkc1(1,1)=sum(mask((vs(k)+1):vs(k+1))); %% LKC of edges maskedg=all(mask1(edg1),2); lkc1(1,2)=sum(maskedg); if isfield(slm,'resl') r1=mean(sqrt(slm.resl(find(maskedg)+es,:)),2); lkc1(2,2)=sum(r1); end %% LKC of triangles masktri=all(mask1(tri),2); lkc1(1,3)=sum(masktri); if isfield(slm,'resl') if e<2^31 l12=slm.resl(sparsedg(tri(masktri,1)+m1*(tri(masktri,2)-1),1)+es,:); l13=slm.resl(sparsedg(tri(masktri,1)+m1*(tri(masktri,3)-1),1)+es,:); l23=slm.resl(sparsedg(tri(masktri,2)+m1*(tri(masktri,3)-1),1)+es,:); else l12=slm.resl(interp1(ue,ae,tri(masktri,1)+m1*(tri(masktri,2)-1),'nearest')+es,:); l13=slm.resl(interp1(ue,ae,tri(masktri,1)+m1*(tri(masktri,3)-1),'nearest')+es,:); l23=slm.resl(interp1(ue,ae,tri(masktri,2)+m1*(tri(masktri,3)-1),'nearest')+es,:); end a=max(4*l12.*l13-(l12+l13-l23).^2,0); r2=mean(sqrt(a),2)/4; lkc1(2,3)=sum(mean(sqrt(l12)+sqrt(l13)+sqrt(l23),2))/2; lkc1(3,3)=sum(r2); if nargout>=2 & K==1 for j=1:3 if f v1=tri(masktri,j)+vs(k); else v1=tri(masktri,j)+vs(k+1); v1=v1-int32(v1>vs(k+2))*(vs(k+2)-vs(k)); end reselspvert=reselspvert+accumarray(v1,r2,[v 1]); end end end %% LKC of tetrahedra masktet=all(mask1(tet),2); lkc1(1,4)=sum(masktet); if isfield(slm,'resl') & k<K if e<2^31 l12=slm.resl(sparsedg(tet(masktet,1)+m1*(tet(masktet,2)-1),1)+es,:); l13=slm.resl(sparsedg(tet(masktet,1)+m1*(tet(masktet,3)-1),1)+es,:); l23=slm.resl(sparsedg(tet(masktet,2)+m1*(tet(masktet,3)-1),1)+es,:); l14=slm.resl(sparsedg(tet(masktet,1)+m1*(tet(masktet,4)-1),1)+es,:); l24=slm.resl(sparsedg(tet(masktet,2)+m1*(tet(masktet,4)-1),1)+es,:); l34=slm.resl(sparsedg(tet(masktet,3)+m1*(tet(masktet,4)-1),1)+es,:); else l12=slm.resl(interp1(ue,ae,tet(masktet,1)+m1*(tet(masktet,2)-1),'nearest')+es,:); l13=slm.resl(interp1(ue,ae,tet(masktet,1)+m1*(tet(masktet,3)-1),'nearest')+es,:); l23=slm.resl(interp1(ue,ae,tet(masktet,2)+m1*(tet(masktet,3)-1),'nearest')+es,:); l14=slm.resl(interp1(ue,ae,tet(masktet,1)+m1*(tet(masktet,4)-1),'nearest')+es,:); l24=slm.resl(interp1(ue,ae,tet(masktet,2)+m1*(tet(masktet,4)-1),'nearest')+es,:); l34=slm.resl(interp1(ue,ae,tet(masktet,3)+m1*(tet(masktet,4)-1),'nearest')+es,:); end a4=max(4*l12.*l13-(l12+l13-l23).^2,0); a3=max(4*l12.*l14-(l12+l14-l24).^2,0); a2=max(4*l13.*l14-(l13+l14-l34).^2,0); a1=max(4*l23.*l24-(l23+l24-l34).^2,0); d12=4*l12.*l34-(l13+l24-l23-l14).^2; d13=4*l13.*l24-(l12+l34-l23-l14).^2; d14=4*l14.*l23-(l12+l34-l24-l13).^2; h=(a1<=0)|(a2<=0); delta12=sum(mean(sqrt(l34).*pacos((d12-a1-a2)./sqrt(a1.*a2+h)/2.*(1-h)+h),2)); h=(a1<=0)|(a3<=0); delta13=sum(mean(sqrt(l24).*pacos((d13-a1-a3)./sqrt(a1.*a3+h)/2.*(1-h)+h),2)); h=(a1<=0)|(a4<=0); delta14=sum(mean(sqrt(l23).*pacos((d14-a1-a4)./sqrt(a1.*a4+h)/2.*(1-h)+h),2)); h=(a2<=0)|(a3<=0); delta23=sum(mean(sqrt(l14).*pacos((d14-a2-a3)./sqrt(a2.*a3+h)/2.*(1-h)+h),2)); h=(a2<=0)|(a4<=0); delta24=sum(mean(sqrt(l13).*pacos((d13-a2-a4)./sqrt(a2.*a4+h)/2.*(1-h)+h),2)); h=(a3<=0)|(a4<=0); delta34=sum(mean(sqrt(l12).*pacos((d12-a3-a4)./sqrt(a3.*a4+h)/2.*(1-h)+h),2)); r3=mean(sqrt(max((4*a1.*a2-(a1+a2-d12).^2)./(l34+(l34<=0)).*(l34>0),0)),2)/48; lkc1(2,4)=(delta12+delta13+delta14+delta23+delta24+delta34)/(2*pi); lkc1(3,4)=sum(mean(sqrt(a1)+sqrt(a2)+sqrt(a3)+sqrt(a4),2))/8; lkc1(4,4)=sum(r3); if nargout>=2 for j=1:4 if f v1=tet(masktet,j)+vs(k); else v1=tet(masktet,j)+vs(k+1); v1=v1-int32(v1>vs(k+2))*(vs(k+2)-vs(k)); end reselspvert=reselspvert+accumarray(v1,r3,[v 1]); end end end lkc=lkc+lkc1; es=es+size(edg1,1); end if nargout>=2 D=2+(K>1); reselspvert=reselspvert'/(D+1)/sqrt(4*log(2))^D; end fprintf(1,'%s\n','Done'); end %% resels D=size(lkc,1)-1; D2=size(lkc,2)-1; tpltz=toeplitz((-1).^(0:D),(-1).^(0:D2)); lkcs=sum(tpltz.*lkc,2)'; lkcs=lkcs(1:max(find(abs(lkcs)))); resels=lkcs./sqrt(4*log(2)).^(0:D); return end %% function y=pacos(x) y=acos(min(abs(x),1).*sign(x)); return end
github
compneuro-da/rsHRF-master
RVR_W_Permutation.m
.m
rsHRF-master/demo_codes/rsHRF_demo_UCLA/RVR/RVR_W_Permutation.m
1,696
utf_8
527f7c4ad4cfdbe7ec572b365bb43319
function RVR_W_Permutation(Data_Path, Scores, Perm_times_Range, RandIndex_Folder, Covariates, Pre_Method, ResultantFolder, Queue) TaskQuantity = 100; JobsPerTask = fix(length(Perm_times_Range) / TaskQuantity); JobsRemain = mod(length(Perm_times_Range), TaskQuantity * JobsPerTask); mkdir([ResultantFolder filesep 'rand_perm']); for i = 1:100 i ID = Perm_times_Range([(i - 1) * JobsPerTask + 1 : i * JobsPerTask]); if i == 100 & JobsRemain ID = [ID Perm_times_Range(length(Perm_times_Range) - JobsRemain + 1 : end)]; end for j = 1:length(ID) % Rand_Index = randperm(length(Scores)); load([RandIndex_Folder filesep 'RandID_' num2str(ID(j)) '.mat']); Rand_Index = RandID; Rand_Score{j} = Scores(Rand_Index); end save([ResultantFolder filesep 'rand_perm' filesep 'rand_perm_' num2str(i) '.mat'], 'Rand_Score'); Job_Name = ['perm_W_' num2str(i)]; pipeline.(Job_Name).command = 'W_Calculate_RVR_SGE(opt.para1, opt.para2, opt.para3, opt.para4, opt.para5, opt.para6)'; pipeline.(Job_Name).opt.para1 = Data_Path; pipeline.(Job_Name).opt.para2 = Rand_Score; pipeline.(Job_Name).opt.para3 = ID; pipeline.(Job_Name).opt.para4 = Covariates; pipeline.(Job_Name).opt.para5 = Pre_Method; pipeline.(Job_Name).opt.para6 = ResultantFolder; clear Rand_Score; end Pipeline_opt.mode = 'qsub'; Pipeline_opt.qsub_options = Queue; Pipeline_opt.mode_pipeline_manager = 'batch'; Pipeline_opt.max_queued = 200; Pipeline_opt.flag_verbose = 1; Pipeline_opt.flag_pause = 0; Pipeline_opt.flag_update = 1; Pipeline_opt.path_logs = [ResultantFolder filesep 'logs']; psom_run_pipeline(pipeline,Pipeline_opt);
github
lhmRyan/deep-supervised-hashing-DSH-master
classification_demo.m
.m
deep-supervised-hashing-DSH-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
kpzhang93/MTCNN_face_detection_alignment-master
test.m
.m
MTCNN_face_detection_alignment-master/code/codes/camera_demo/test.m
8,824
utf_8
484a3e8719f2102fd5aa6c841209b5ed
function varargout = test(varargin) gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @test_OpeningFcn, ... 'gui_OutputFcn', @test_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end function test_OpeningFcn(hObject, eventdata, handles, varargin) handles.output = hObject; guidata(hObject, handles); function varargout = test_OutputFcn(hObject, eventdata, handles) varargout{1} = handles.output; function pushbutton1_Callback(hObject, eventdata, handles) threshold=[0.6 0.7 str2num(get(findobj('tag','edit4'),'string'))] factor=0.709; minsize=str2num(get(findobj('tag','edit6'),'string')); stop=0.03; mypath=get(findobj('tag','edit1'),'string') addpath(mypath); caffe.reset_all(); caffe.set_mode_cpu(); mypath=get(findobj('tag','edit3'),'string') addpath(mypath); cameraid=get(findobj('tag','edit2'),'string') camera=imaqhwinfo; camera=camera.InstalledAdaptors{str2num(cameraid)} vid1= videoinput(camera,1,get(findobj('tag','edit5'),'string')); warning off all usbVidRes1=get(vid1,'videoResolution'); nBands1=get(vid1,'NumberOfBands'); hImage1=imshow(zeros(usbVidRes1(2),usbVidRes1(1),nBands1)); preview(vid1,hImage1); prototxt_dir = './model/det1.prototxt'; model_dir = './model/det1.caffemodel'; PNet=caffe.Net(prototxt_dir,model_dir,'test'); prototxt_dir = './model/det2.prototxt'; model_dir = './model/det2.caffemodel'; RNet=caffe.Net(prototxt_dir,model_dir,'test'); prototxt_dir = './model/det3.prototxt'; model_dir = './model/det3.caffemodel'; ONet=caffe.Net(prototxt_dir,model_dir,'test'); prototxt_dir = './model/det4.prototxt'; model_dir = './model/det4.caffemodel'; LNet=caffe.Net(prototxt_dir,model_dir,'test'); rec=rectangle('Position',[1 1 1 1],'Edgecolor','r'); while (1) img=getsnapshot(vid1); [total_boxes point]=detect_face(img,minsize,PNet,RNet,ONet,threshold,false,factor); try delete(rec); catch end numbox=size(total_boxes,1); for j=1:numbox; rec(j)=rectangle('Position',[total_boxes(j,1:2) total_boxes(j,3:4)-total_boxes(j,1:2)],'Edgecolor','g','LineWidth',3); rec(6*numbox+j)=rectangle('Position',[point(1,j),point(6,j),5,5],'Curvature',[1,1],'FaceColor','g','LineWidth',3); rec(12*numbox+j)=rectangle('Position',[point(2,j),point(7,j),5,5],'Curvature',[1,1],'FaceColor','g','LineWidth',3); rec(18*numbox+j)=rectangle('Position',[point(3,j),point(8,j),5,5],'Curvature',[1,1],'FaceColor','g','LineWidth',3); rec(24*numbox+j)=rectangle('Position',[point(4,j),point(9,j),5,5],'Curvature',[1,1],'FaceColor','g','LineWidth',3); rec(30*numbox+j)=rectangle('Position',[point(5,j),point(10,j),5,5],'Curvature',[1,1],'FaceColor','g','LineWidth',3); end pause(stop) end function edit1_Callback(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit1 as text % str2double(get(hObject,'String')) returns contents of edit1 as a double % --- Executes during object creation, after setting all properties. function edit1_CreateFcn(hObject, eventdata, handles) % hObject handle to edit1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit2_Callback(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit2 as text % str2double(get(hObject,'String')) returns contents of edit2 as a double % --- Executes during object creation, after setting all properties. function edit2_CreateFcn(hObject, eventdata, handles) % hObject handle to edit2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit3_Callback(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit3 as text % str2double(get(hObject,'String')) returns contents of edit3 as a double % --- Executes during object creation, after setting all properties. function edit3_CreateFcn(hObject, eventdata, handles) % hObject handle to edit3 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit4_Callback(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit4 as text % str2double(get(hObject,'String')) returns contents of edit4 as a double % --- Executes during object creation, after setting all properties. function edit4_CreateFcn(hObject, eventdata, handles) % hObject handle to edit4 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit5_Callback(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit5 as text % str2double(get(hObject,'String')) returns contents of edit5 as a double % --- Executes during object creation, after setting all properties. function edit5_CreateFcn(hObject, eventdata, handles) % hObject handle to edit5 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit6_Callback(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit6 as text % str2double(get(hObject,'String')) returns contents of edit6 as a double % --- Executes during object creation, after setting all properties. function edit6_CreateFcn(hObject, eventdata, handles) % hObject handle to edit6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
dailymoyuan/Compressed-Air-Energy-Storage-for-wind-energy-storage-master
air_tank.m
.m
Compressed-Air-Energy-Storage-for-wind-energy-storage-master/air_tank.m
713
utf_8
e066bd0364ff84d95ed16714340c9d7e
%---------------air storage tank-----------------% function [Cp_nrm,Turbine_trq] = fcn(v_wind,wp) Cpmax=0.4825; rated_trb=36; Pw_rated=600; w=wp*pi/30; air_rho=1.225; r_blade=30; swept_area=pi*r_blade^2; lambda=(r_blade*w)/v_wind; beta=0; c1=0.51760*0.15; c2=116*1.512; c3=0.4; c4=5; c5=21*1.36; c6=0.0068; Cp=c1*(c2.*(1./(lambda+0.08*beta)-0.035./(beta.^3+1))-c3*beta-c4)... .*exp(-c5.*(1*0.47./(lambda+0.08*beta)-0.035./(beta.^3+1)))+c6*lambda; Cp_nrm=Cp*100/Cpmax; Power=0.5*Cp*air_rho*swept_area*v_wind^3; Turbine_trq=1e-3*0.5*Cp*air_rho*swept_area*v_wind^3/w; loss_per_stg=0.01; gr_stg=2; loss_gr=(loss_per_stg*gr_stg*wp/rated_trb)*Pw_rated; if w==0 w=1; end
github
dailymoyuan/Compressed-Air-Energy-Storage-for-wind-energy-storage-master
expension_stage.m
.m
Compressed-Air-Energy-Storage-for-wind-energy-storage-master/expension_stage.m
1,022
utf_8
989a4e95cfda9e8f92cdc3e960ee60fa
%-----------expansion stage--------------% function [Pout_caes,Tout_LP, Tin_LP,Tout_HP,pout_HP,pout_LP, P_HP, P_LP] = fcn(P_need_left, dm, pin_HP, Tin_HP) B1 = 3; % compression ratio for high turbines B2 = 15; % compression ratio for low turbines n_t = 0.85; % efficiency of both turbines nHX = 0.7; % efficiency of heat exchanger HX Thx_f = 283; % temperature of HX fluid [K] R = 0.287; % air cte [KJ/Kg.K] --> Pout_caes is in [KW] % initialize value Pout_caes=0; Tout_LP=0; Tout_HP=0; Tin_LP=0; pout_HP=0; pout_LP=0; P_HP = 0; P_LP = 0; if P_need_left > 0 % pressure of turbines pout_HP = pin_HP/B1; pin_LP = pout_HP; pout_LP = pin_LP/B2; Tout_HP = Tin_HP/(B1^0.2857); Tout_hx = Tout_HP+nHX*(Thx_f-Tout_HP); Tin_LP = Tout_hx; Tout_LP = Tin_LP/(B2^0.2857); P_HP = n_t*abs(dm)*R*3.5*(Tin_HP - Tout_HP); P_LP = n_t*abs(dm)*R*3.5*(Tin_LP - Tout_LP); Pout_caes = P_need_left; end end
github
dailymoyuan/Compressed-Air-Energy-Storage-for-wind-energy-storage-master
charge_mode_supervisor_control_logic.m
.m
Compressed-Air-Energy-Storage-for-wind-energy-storage-master/charge_mode_supervisor_control_logic.m
1,933
utf_8
6f936eba5c79806e40c79bfeff7e47e8
%--------battery charging/discharging mode transtion login definition with time step count-----------\\ function [P_excess,P_need,P_real,P_without_supplu] = fcn(P_auto,real_Tload,auto_Tload,wm,P_aero) P_real = real_Tload * (wm *pi/30); if P_auto > P_real P_without_supplu = 0; else P_without_supplu = P_auto; end act_t= 20; % Time constant to determine if excess power is available or power needed to maintain minimum power delivary time_stp=0.001; % simulation time step persistent counter1 counter2 if isempty(counter1) counter1=0; % initialize couter1 end if isempty(counter2) counter2=0; % initialize couter2 end %--------charging number count definition-----------\\ if P_auto >= P_real P_need = 0; counter1=counter1+1; if counter1 > act_t/time_stp % number of counter1 P_excess = P_auto - P_real; else % counter1<act_t/time_stp P_excess = 0; end else P_excess=0; counter1=0; end %-------discharging number count definition-----------\\ if P_auto <= P_real P_excess=0; counter2=counter2+1; if counter2>act_t/time_stp % number of counter1 P_need = P_real - P_auto; else % counter2 < act_t/time_stp P_need = 0; end else P_need=0; counter2=0; end end
github
dailymoyuan/Compressed-Air-Energy-Storage-for-wind-energy-storage-master
compression_stage.m
.m
Compressed-Air-Energy-Storage-for-wind-energy-storage-master/compression_stage.m
560
utf_8
22222521bd8765bab9448af0f63d4045
%------setting Pelec as the power input from P_exceed of wind farm-----% %------used to compress air and store it in the air tank---------------% function dm_c = fcn(Tout, P_ex, p) dm_c = 0; n_c = 0.877; %efficiency of each compressor Tin = 293; %environment temperature [k] R = 0.287; %air-gas constant kj/kg.k Pideal = P_ex/(n_c); p_max = 40; % maximum pressure in air tank if P_ex > 0 dm_c = Pideal/(R*3.5*(Tout-Tin)); if p >= p_max dm_c = 0; end end end
github
dailymoyuan/Compressed-Air-Energy-Storage-for-wind-energy-storage-master
storage_size_def.m
.m
Compressed-Air-Energy-Storage-for-wind-energy-storage-master/storage_size_def.m
400
utf_8
5d699f45672b6e9e824e1d3b655d4972
%turbine output is messured in Kwh - energy % n is the efficiency of the turbine % a is the number of turbines used % pm is the maximum pressure of the tank in [Pa] function [sc,m,V] = fcn(turbine_out,Tin_ct,Tout_ct,Ts) n = 0.85; a = 2; pm = 4e+6; cp = 1.005; R = 287.06; sc = turbine_out/(n^a); m = sc*3600/(cp*(Tout_ct-Tin_ct)); V = m*R*Ts/pm;
github
kunzhan/Pulse-coupled_neural_networks_PCNN-master
GrayStretch.m
.m
Pulse-coupled_neural_networks_PCNN-master/functions/GrayStretch.m
1,449
utf_8
59810661bc80ef21e7702aeaf24fe2b3
function GS = GrayStretch(I,Per) % The code was written by Jicai Teng, Jinhui Shi, Kun Zhan % $Revision: 1.0.0.0 $ $Date: 2014/12/06 $ 17:58:47 $ % Reference: % [1] K Zhan, J Shi, Q Li, J Teng, M Wang, % "Image segmentation using fast linking SCM," % in Proc. of IJCNN, IEEE, vol. 25, pp. 2093-2100, 2015. % [2] K Zhan, J Teng, J Shi, Q Li, M Wang, % "Feature-linking model for image enhancement," % Neural Computation, 28(5), 1072-1100, 2016. [m,M] = FindingMm(I,Per); GS = uint8((double(I)-m)./(M-m)*255); end function [minI,MaxI] = FindingMm(I,Per) h = imhist(I); All = sum(h); ph = h ./ All; mth_ceiling = BoundFinding(ph,Per); Mph=fliplr(ph')'; Mth_floor = BoundFinding(Mph,Per); Mth_floor = 256 - Mth_floor + 1; ConstraintJudge = @(x,y) sum(h(x:y))/All >= Per; Difference = zeros(256,256) + inf; for m = mth_ceiling:-1:1 for M = Mth_floor:256 if (h(m) > 0 )&&(h(M) > 0) if ConstraintJudge(m,M) Difference(m,M) = M - m; end end end end minD = min(Difference(:)); [m, M] = find(Difference==minD); minI = m(1) - 1; MaxI = M(1) - 1; end function m_ceiling = BoundFinding(ph,Per) cumP = cumsum(ph); n = 1; residualP = 1-Per; while cumP(n) < residualP n = n + 1; end m_ceiling = n; end
github
herenvarno/caffe-master
classification_demo.m
.m
caffe-master/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
zongwave/IPASS-master
BM3DDEB.m
.m
IPASS-master/BM3D/BM3D/BM3DDEB.m
17,170
utf_8
1ca4e4613bf8a4a204335f69e5b9a1ca
function [ISNR, y_hat_RWI] = BM3DDEB(experiment_number, test_image_name) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Copyright (c) 2008-2014 Tampere University of Technology. All rights reserved. % This work should only be used for nonprofit purposes. % % AUTHORS: % Kostadin Dabov % Alessandro Foi email: alessandro.foi _at_ tut.fi %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % This function implements the image deblurring method proposed in: % % [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image % restoration by sparse 3D transform-domain collaborative filtering," % Proc SPIE Electronic Imaging, January 2008. % % FUNCTION INTERFACE: % % [PSNR, y_hat_RWI] = BM3DDEB(experiment_number, test_image_name) % % INPUT: % 1) experiment_number: 1 -> PSF 1, sigma^2 = 2 % 2 -> PSF 1, sigma^2 = 8 % 3 -> PSF 2, sigma^2 = 0.308 % 4 -> PSF 3, sigma^2 = 49 % 5 -> PSF 4, sigma^2 = 4 % 6 -> PSF 5, sigma^2 = 64 % % 2) test_image_name: a valid filename of a grayscale test image % % OUTPUT: % 1) ISNR: the output improvement in SNR, dB % 2) y_hat_RWI: the restored image % % ! The function can work without any of the input arguments, % in which case, the internal default ones are used ! % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Fixed regularization parameters (obtained empirically after a rough optimization) Regularization_alpha_RI = 4e-4; Regularization_alpha_RWI = 5e-3; %%%% Experiment number (see below for details, e.g. how the blur is generated, etc.) if (exist('experiment_number') ~= 1) experiment_number = 3; % 1 -- 6 end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Select a single image filename (might contain path) %%%% if (exist('test_image_name') ~= 1) test_image_name = [ % 'Lena512.png' 'Cameraman256.png' % 'barbara.png' % 'house.png' ]; end %%%% Select 2D transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'): transform_2D_HT_name = 'dst'; %% 2D transform (of size N1 x N1) used in Step 1 transform_2D_Wiener_name = 'dct'; %% 2D transform (of size N1_wiener x N1_wiener) used in Step 2 transform_3rd_dimage_name = 'haar'; %% 1D tranform used in the 3-rd dim, the same for both steps %%%% Step 1 (BM3D with collaborative hard-thresholding) parameters: N1 = 8; %% N1 x N1 is the block size Nstep = 3; %% sliding step to process every next refernece block N2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimensiona of a 3D array) Ns = 39; %% length of the side of the search neighborhood for full-search block-matching (BM) tau_match = 6000;%% threshold for the block distance (d-distance) lambda_thr2D = 0; %% threshold for the coarse initial denoising used in the d-distance measure lambda_thr3D = 2.9; %% threshold for the hard-thresholding beta = 0; %% the beta parameter of the 2D Kaiser window used in the reconstruction %%%% Step 2 (BM3D with collaborative Wiener filtering) parameters: N1_wiener = 8; Nstep_wiener = 2; N2_wiener = 16; Ns_wiener = 39; tau_match_wiener = 800; beta_wiener = 0; %%%% Specify whether to print results and display images print_to_screen = 1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Note: touch below this point only if you know what you are doing! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Make parameters compatible with the interface of the mex-functions %%%% [Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, 0); %% get (normalized) forward and inverse transform matrices [TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name, 0); %% get (normalized) forward and inverse transform matrices if (strcmp(transform_3rd_dimage_name, 'haar') == 1), %%% Fast internal transform is used, no need to generate transform %%% matrices. hadper_trans_single_den = {}; inverse_hadper_trans_single_den = {}; else %%% Create transform matrices. The transforms are later applied by %%% vector-matrix multiplications for hpow = 0:ceil(log2(max(N2,N2_wiener))), h = 2^hpow; [Tfor3rd, Tinv3rd] = getTransfMatrix(h, transform_3rd_dimage_name, 0); hadper_trans_single_den{h} = single(Tfor3rd); inverse_hadper_trans_single_den{h} = single(Tinv3rd'); end end if beta == 0 & beta_wiener == 0 Wwin2D = ones(N1,N1); Wwin2D_wiener = ones(N1_wiener,N1_wiener); else Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the hard-thresholding part Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the Wiener filtering part end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Read an image and generate a blurred and noisy image %%%% y = im2double(imread(test_image_name)); if experiment_number==1 sigma=sqrt(2)/255; for x1=-7:7; for x2=-7:7; v(x1+8,x2+8)=1/(x1^2+x2^2+1); end, end; v=v./sum(v(:)); end if experiment_number==2 sigma=sqrt(8)/255; s1=0; for a1=-7:7; s1=s1+1; s2=0; for a2=-7:7; s2=s2+1; v(s1,s2)=1/(a1^2+a2^2+1); end, end; v=v./sum(v(:)); end if experiment_number==3 BSNR=40; sigma=-1; % if "sigma=-1", then the value of sigma depends on the BSNR v=ones(9); v=v./sum(v(:)); end if experiment_number==4 sigma=7/255; v=[1 4 6 4 1]'*[1 4 6 4 1]; v=v./sum(v(:)); % PSF end if experiment_number==5 sigma=2/255; v=fspecial('gaussian', 25, 1.6); end if experiment_number==6 sigma=8/255; v=fspecial('gaussian', 25, .4); end [Xv, Xh] = size(y); [ghy,ghx] = size(v); big_v = zeros(Xv,Xh); big_v(1:ghy,1:ghx)=v; big_v=circshift(big_v,-round([(ghy-1)/2 (ghx-1)/2])); % pad PSF with zeros to whole image domain, and center it V = fft2(big_v); % frequency response of the PSF y_blur = imfilter(y, v(end:-1:1,end:-1:1), 'circular'); % performs blurring (by circular convolution) randn('seed',0); %%% fix seed for the random number generator if sigma == -1; %% check whether to use BSNR in order to define value of sigma sigma=sqrt(norm(y_blur(:)-mean(y_blur(:)),2)^2 /(Xh*Xv*10^(BSNR/10))); % compute sigma from the desired BSNR end %%%% Create a blurred and noisy observation z = y_blur + sigma*randn(Xv,Xh); tic; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Step 1: Final estimate by Regularized Inversion (RI) followed by %%%% BM3D with collaborative hard-thresholding %%%% %%%% Step 1.1. Regularized Inversion RI= conj(V)./( (abs(V).^2) + Regularization_alpha_RI * Xv*Xh*sigma^2); % Transfer Matrix for RI %% Standard Tikhonov Regularization zRI=real(ifft2( fft2(z).* RI )); % Regularized Inverse Estimate (RI OBSERVATION) stdRI = zeros(N1, N1); for ii = 1:N1, for jj = 1:N1, UnitMatrix = zeros(N1,N1); UnitMatrix(ii,jj)=1; BasisElementPadded = zeros(Xv, Xh); BasisElementPadded(1:N1,1:N1) = Tinv*UnitMatrix*Tinv'; TransfBasisElementPadded = fft2(BasisElementPadded); stdRI(ii,jj) = sqrt( (1/(Xv*Xh)) * sum(sum(abs(TransfBasisElementPadded.*RI).^2)) )*sigma; end, end %%%% Step 1.2. Colored noise suppression by BM3D with collaborative hard- %%%% thresholding y_hat_RI = bm3d_thr_colored_noise(zRI, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,... lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, sigma, 0, single(Tfor), single(Tinv)',... inverse_hadper_trans_single_den, single(stdRI'), Wwin2D, 0, 1 ); PSNR_INITIAL_ESTIMATE = 10*log10(1/mean((y(:)-y_hat_RI(:)).^2)); ISNR_INITIAL_ESTIMATE = PSNR_INITIAL_ESTIMATE - 10*log10(1/mean((y(:)-z(:)).^2)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Step 2: Final estimate by Regularized Wiener Inversion (RWI) followed %%%% by BM3D with collaborative Wiener filtering %%%% %%%% Step 2.1. Regularized Wiener Inversion Wiener_Pilot = abs(fft2(double(y_hat_RI))); %%% Wiener reference estimate RWI = conj(V).*Wiener_Pilot.^2./(Wiener_Pilot.^2.*(abs(V).^2) + Regularization_alpha_RWI*Xv*Xh*sigma^2); % Transfer Matrix for RWI (uses standard regularization 'a-la-Tikhonov') zRWI = real(ifft2(fft2(z).*RWI)); % RWI OBSERVATION stdRWI = zeros(N1_wiener, N1_wiener); for ii = 1:N1_wiener, for jj = 1:N1_wiener, UnitMatrix = zeros(N1_wiener,N1_wiener); UnitMatrix(ii,jj)=1; BasisElementPadded = zeros(Xv, Xh); BasisElementPadded(1:N1_wiener,1:N1_wiener) = TinvW*UnitMatrix*TinvW'; TransfBasisElementPadded = fft2(BasisElementPadded); stdRWI(ii,jj) = sqrt( (1/(Xv*Xh)) * sum(sum(abs(TransfBasisElementPadded.*RWI).^2)) )*sigma; end, end %%%% Step 2.2. Colored noise suppression by BM3D with collaborative Wiener %%%% filtering y_hat_RWI = bm3d_wiener_colored_noise(zRWI, y_hat_RI, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ... 0, tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, 0, single(stdRWI'), single(TforW), single(TinvW)',... inverse_hadper_trans_single_den, Wwin2D_wiener, 0, 1, single(ones(N1_wiener)) ); elapsed_time = toc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Calculate the final estimate's PSNR and ISNR, print them, and show the %%%% restored image %%%% PSNR = 10*log10(1/mean((y(:)-y_hat_RWI(:)).^2)); ISNR = PSNR - 10*log10(1/mean((y(:)-z(:)).^2)); if print_to_screen == 1 fprintf('Image: %s, Exp %d, Time: %.1f sec, PSNR-RI: %.2f dB, PSNR-RWI: %.2f, ISNR-RWI: %.2f dB\n', ... test_image_name, experiment_number, elapsed_time, PSNR_INITIAL_ESTIMATE, PSNR, ISNR); figure,imshow(z); figure,imshow(double(y_hat_RWI)); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Some auxiliary functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels) % % Create forward and inverse transform matrices, which allow for perfect % reconstruction. The forward transform matrix is normalized so that the % l2-norm of each basis element is 1. % % [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels) % % INPUTS: % % N --> Size of the transform (for wavelets, must be 2^K) % % transform_type --> 'dct', 'dst', 'hadamard', or anything that is % listed by 'help wfilters' (bi-orthogonal wavelets) % 'DCrand' -- an orthonormal transform with a DC and all % the other basis elements of random nature % % dec_levels --> If a wavelet transform is generated, this is the % desired decomposition level. Must be in the % range [0, log2(N)-1], where "0" implies % full decomposition. % % OUTPUTS: % % Tforward --> (N x N) Forward transform matrix % % Tinverse --> (N x N) Inverse transform matrix % if exist('dec_levels') ~= 1, dec_levels = 0; end if N == 1, Tforward = 1; elseif strcmp(transform_type, 'hadamard') == 1, Tforward = hadamard(N); elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274; 0.219417649252501 0.449283757993216 0.449283757993216 0.219417649252501 -0.219417649252501 -0.449283757993216 -0.449283757993216 -0.219417649252501; 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846 -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284; -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846; 0.707106781186547 -0.707106781186547 0 0 0 0 0 0; 0 0 0.707106781186547 -0.707106781186547 0 0 0 0; 0 0 0 0 0.707106781186547 -0.707106781186547 0 0; 0 0 0 0 0 0 0.707106781186547 -0.707106781186547]; elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274; 0.490392640201615 0.415734806151273 0.277785116509801 0.097545161008064 -0.097545161008064 -0.277785116509801 -0.415734806151273 -0.490392640201615; 0.461939766255643 0.191341716182545 -0.191341716182545 -0.461939766255643 -0.461939766255643 -0.191341716182545 0.191341716182545 0.461939766255643; 0.415734806151273 -0.097545161008064 -0.490392640201615 -0.277785116509801 0.277785116509801 0.490392640201615 0.097545161008064 -0.415734806151273; 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274; 0.277785116509801 -0.490392640201615 0.097545161008064 0.415734806151273 -0.415734806151273 -0.097545161008064 0.490392640201615 -0.277785116509801; 0.191341716182545 -0.461939766255643 0.461939766255643 -0.191341716182545 -0.191341716182545 0.461939766255643 -0.461939766255643 0.191341716182545; 0.097545161008064 -0.277785116509801 0.415734806151273 -0.490392640201615 0.490392640201615 -0.415734806151273 0.277785116509801 -0.097545161008064]; elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it Tforward = [ 0.161229841765317 0.303012985114696 0.408248290463863 0.464242826880013 0.464242826880013 0.408248290463863 0.303012985114696 0.161229841765317; 0.303012985114696 0.464242826880013 0.408248290463863 0.161229841765317 -0.161229841765317 -0.408248290463863 -0.464242826880013 -0.303012985114696; 0.408248290463863 0.408248290463863 0 -0.408248290463863 -0.408248290463863 0 0.408248290463863 0.408248290463863; 0.464242826880013 0.161229841765317 -0.408248290463863 -0.303012985114696 0.303012985114696 0.408248290463863 -0.161229841765317 -0.464242826880013; 0.464242826880013 -0.161229841765317 -0.408248290463863 0.303012985114696 0.303012985114696 -0.408248290463863 -0.161229841765317 0.464242826880013; 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863; 0.303012985114696 -0.464242826880013 0.408248290463863 -0.161229841765317 -0.161229841765317 0.408248290463863 -0.464242826880013 0.303012985114696; 0.161229841765317 -0.303012985114696 0.408248290463863 -0.464242826880013 0.464242826880013 -0.408248290463863 0.303012985114696 -0.161229841765317]; elseif strcmp(transform_type, 'dct') == 1, Tforward = dct(eye(N)); elseif strcmp(transform_type, 'dst') == 1, Tforward = dst(eye(N)); elseif strcmp(transform_type, 'DCrand') == 1, x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x); if (Q(1) < 0), Q = -Q; end; Tforward = Q'; else %% a wavelet decomposition supported by 'wavedec' %%% Set periodic boundary conditions, to preserve bi-orthogonality dwtmode('per','nodisp'); Tforward = zeros(N,N); for i = 1:N Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type); %% construct transform matrix end end %%% Normalize the basis elements Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))'; %%% Compute the inverse transform matrix Tinverse = inv(Tforward); return;
github
zongwave/IPASS-master
CBM3D.m
.m
IPASS-master/BM3D/BM3D/CBM3D.m
28,530
utf_8
9a3e40b8b0f177169d223c8676892b13
function [PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma, profile, print_to_screen, colorspace) % % CBM3D is algorithm for attenuation of additive white Gaussian noise from % color RGB images. This algorithm reproduces the results from the article: % % [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Color image % denoising via sparse 3D collaborative filtering with grouping constraint in % luminance-chrominance space," submitted to IEEE Int. Conf. Image Process., % January 2007, in review, preprint at http://www.cs.tut.fi/~foi/GCF-BM3D. % % FUNCTION INTERFACE: % % [PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma, profile, print_to_screen, colorspace) % % ! The function can work without any of the input arguments, % in which case, the internal default ones are used ! % % BASIC USAGE EXAMPLES: % % Case 1) Using the default parameters (i.e., image name, sigma, etc.) % % [PSNR, yRGB_est] = CBM3D; % % Case 2) Using an external noisy image: % % % Read an RGB image and scale its intensities in range [0,1] % yRGB = im2double(imread('image_House256rgb.png')); % % Generate the same seed used in the experimental results of [1] % randn('seed', 0); % % Standard deviation of the noise --- corresponding to intensity % % range [0,255], despite that the input was scaled in [0,1] % sigma = 25; % % Add the AWGN with zero mean and standard deviation 'sigma' % zRGB = yRGB + (sigma/255)*randn(size(yRGB)); % % Denoise 'zRGB'. The denoised image is 'yRGB_est', and 'NA = 1' % % because the true image was not provided % [NA, yRGB_est] = CBM3D(1, zRGB, sigma); % % Compute the putput PSNR % PSNR = 10*log10(1/mean((yRGB(:)-yRGB_est(:)).^2)) % % show the noisy image 'zRGB' and the denoised 'yRGB_est' % figure; imshow(min(max(zRGB,0),1)); % figure; imshow(min(max(yRGB_est,0),1)); % % Case 3) If the original image yRGB is provided as the first input % argument, then some additional information is printed (PSNRs, % figures, etc.). That is, "[NA, yRGB_est] = BM3D(1, zRGB, sigma);" in the % above code should be replaced with: % % [PSNR, yRGB_est] = CBM3D(yRGB, zRGB, sigma); % % % INPUT ARGUMENTS (OPTIONAL): % 1) yRGB (M x N x 3): Noise-free RGB image (needed for computing PSNR), % replace with the scalar 1 if not available. % 2) zRGB (M x N x 3): Noisy RGBimage (intensities in range [0,1] or [0,255]) % 3) sigma (double) : Std. dev. of the noise (corresponding to intensities % in range [0,255] even if the range of zRGB is [0,1]) % 4) profile (char) : 'np' --> Normal Profile % 'lc' --> Fast Profile % 5) print_to_screen : 0 --> do not print output information (and do % not plot figures) % 1 --> print information and plot figures % 6) colorspace (char): 'opp' --> use opponent colorspace % 'yCbCr' --> use yCbCr colorspace % % OUTPUTS: % 1) PSNR (double) : Output PSNR (dB), only if the original % image is available, otherwise PSNR = 0 % 2) yRGB_est (M x N x 3): Final RGB estimate (in the range [0,1]) % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Copyright (c) 2007-2011 Tampere University of Technology. % All rights reserved. % This work should only be used for nonprofit purposes. % % AUTHORS: % Kostadin Dabov, email: dabov _at_ cs.tut.fi % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% In case, there is no input image (zRGB or yRGB), then use the filename %%%% below to read an original image (might contain path also). Later, %%%% artificial AWGN noise is added and this noisy image is processed %%%% by the CBM3D. %%%% image_name = [ % 'kodim12.png' 'image_Lena512rgb.png' % 'image_House256rgb.png' % 'image_Peppers512rgb.png' % 'image_Baboon512rgb.png' % 'image_F16_512rgb.png' ]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Quality/complexity trade-off %%%% %%%% 'np' --> Normal Profile (balanced quality) %%%% 'lc' --> Low Complexity Profile (fast, lower quality) %%%% %%%% 'high' --> High Profile (high quality, not documented in [1]) %%%% %%%% 'vn' --> This profile is automatically enabled for high noise %%%% when sigma > 40 %%%% %%%% 'vn_old' --> This is the old 'vn' profile that was used in [1]. %%%% It gives inferior results than 'vn' in most cases. %%%% if (exist('profile') ~= 1) profile = 'np'; %% default profile end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Specify the std. dev. of the corrupting noise %%%% if (exist('sigma') ~= 1), sigma = 50; %% default standard deviation of the AWGN end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Colorspace in which we perform denoising. BM is applied to the first %%%% component and the matching information is re-used for the other two. %%%% if (exist('colorspace') ~= 1), colorspace = 'opp'; %%% (valid colorspaces are: 'yCbCr' and 'opp') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Following are the parameters for the Normal Profile. %%%% %%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'): transform_2D_HT_name = 'bior1.5'; %% transform used for the HT filt. of size N1 x N1 transform_2D_Wiener_name = 'dct'; %% transform used for the Wiener filt. of size N1_wiener x N1_wiener transform_3rd_dim_name = 'haar'; %% transform used in the 3-rd dim, the same for HT and Wiener filt. %%%% Hard-thresholding (HT) parameters: N1 = 8; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering Nstep = 3; %% sliding step to process every next reference block N2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array) Ns = 39; %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd tau_match = 3000;%% threshold for the block-distance (d-distance) lambda_thr2D = 0; %% threshold parameter for the coarse initial denoising used in the d-distance measure lambda_thr3D = 2.7; %% threshold parameter for the hard-thresholding in 3D transform domain beta = 2.0; %% parameter of the 2D Kaiser window used in the reconstruction %%%% Wiener filtering parameters: N1_wiener = 8; Nstep_wiener = 3; N2_wiener = 32; Ns_wiener = 39; tau_match_wiener = 400; beta_wiener = 2.0; %%%% Block-matching parameters: stepFS = 1; %% step that forces to switch to full-search BM, "1" implies always full-search smallLN = 'not used in np'; %% if stepFS > 1, then this specifies the size of the small local search neighb. stepFSW = 1; smallLNW = 'not used in np'; thrToIncStep = 8; %% used in the HT filtering to increase the sliding step in uniform regions if strcmp(profile, 'lc') == 1, Nstep = 6; Ns = 25; Nstep_wiener = 5; N2_wiener = 16; Ns_wiener = 25; thrToIncStep = 3; smallLN = 3; stepFS = 6*Nstep; smallLNW = 2; stepFSW = 5*Nstep_wiener; end % Profile 'vn' was proposed in % Y. Hou, C. Zhao, D. Yang, and Y. Cheng, 'Comment on "Image Denoising by Sparse 3D Transform-Domain % Collaborative Filtering"', accepted for publication, IEEE Trans. on Image Processing, July, 2010. % as a better alternative to that initially proposed in [1] (which is currently in profile 'vn_old') if (strcmp(profile, 'vn') == 1) | (sigma > 40), N2 = 32; Nstep = 4; N1_wiener = 11; Nstep_wiener = 6; lambda_thr3D = 2.8; thrToIncStep = 3; tau_match_wiener = 3500; tau_match = 25000; Ns_wiener = 39; end % The 'vn_old' profile corresponds to the original parameters for strong noise proposed in [1]. if (strcmp(profile, 'vn_old') == 1) & (sigma > 40), transform_2D_HT_name = 'dct'; N1 = 12; Nstep = 4; N1_wiener = 11; Nstep_wiener = 6; lambda_thr3D = 2.8; lambda_thr2D = 2.0; thrToIncStep = 3; tau_match_wiener = 3500; tau_match = 5000; Ns_wiener = 39; end decLevel = 0; %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number) thr_mask = ones(N1); %% N1xN1 mask of threshold scaling coeff. --- by default there is no scaling, however the use of different thresholds for different wavelet decompoistion subbands can be done with this matrix if strcmp(profile, 'high') == 1, decLevel = 1; Nstep = 2; Nstep_wiener = 2; lambda_thr3D = 2.5; vMask = ones(N1,1); vMask((end/4+1):end/2)= 1.01; vMask((end/2+1):end) = 1.07; %% this allows to have different threhsolds for the finest and next-to-the-finest subbands thr_mask = vMask * vMask'; beta = 2.5; beta_wiener = 1.5; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Note: touch below this point only if you know what you are doing! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Check whether to dump information to the screen or reamin silent dump_output_information = 1; if (exist('print_to_screen') == 1) & (print_to_screen == 0), dump_output_information = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Create transform matrices, etc. %%%% [Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, decLevel); %% get (normalized) forward and inverse transform matrices [TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name); %% get (normalized) forward and inverse transform matrices if (strcmp(transform_3rd_dim_name, 'haar') == 1) | (strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1), %%% If Haar is used in the 3-rd dimension, then a fast internal transform is used, thus no need to generate transform %%% matrices. hadper_trans_single_den = {}; inverse_hadper_trans_single_den = {}; else %%% Create transform matrices. The transforms are later applied by %%% matrix-vector multiplication for the 1D case. for hpow = 0:ceil(log2(max(N2,N2_wiener))), h = 2^hpow; [Tfor3rd, Tinv3rd] = getTransfMatrix(h, transform_3rd_dim_name, 0); hadper_trans_single_den{h} = single(Tfor3rd); inverse_hadper_trans_single_den{h} = single(Tinv3rd'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% 2D Kaiser windows used in the aggregation of block-wise estimates %%%% if beta_wiener==2 & beta==2 & N1_wiener==8 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default Wwin2D = [ 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924; 0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989; 0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846; 0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325; 0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325; 0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846; 0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989; 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924]; Wwin2D_wiener = Wwin2D; else Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the aggregation of the Wiener filt. part end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% If needed, read images, generate noise, or scale the images to the %%%% [0,1] interval %%%% if (exist('yRGB') ~= 1) | (exist('zRGB') ~= 1) yRGB = im2double(imread(image_name)); %% read a noise-free image randn('seed', 0); %% generate seed zRGB = yRGB + (sigma/255)*randn(size(yRGB)); %% create a noisy image else % external images image_name = 'External image'; % convert zRGB to double precision zRGB = double(zRGB); % convert yRGB to double precision yRGB = double(yRGB); % if zRGB's range is [0, 255], then convert to [0, 1] if (max(zRGB(:)) > 10), % a naive check for intensity range zRGB = zRGB / 255; end % if yRGB's range is [0, 255], then convert to [0, 1] if (max(yRGB(:)) > 10), % a naive check for intensity range yRGB = yRGB / 255; end end if (size(zRGB,3) ~= 3) | (size(zRGB,4) ~= 1), error('CBM3D accepts only input RGB images (i.e. matrices of size M x N x 3).'); end % Check if the true image yRGB is a valid one; if not, then we cannot compute PSNR, etc. yRGB_is_invalid_image = (length(size(zRGB)) ~= length(size(yRGB))) | (size(zRGB,1) ~= size(yRGB,1)) | (size(zRGB,2) ~= size(yRGB,2)) | (size(zRGB,3) ~= size(yRGB,3)); if (yRGB_is_invalid_image), dump_output_information = 0; end [Xv, Xh, numSlices] = size(zRGB); %%% obtain image sizes if numSlices ~= 3 fprintf('Error, an RGB color image is required!\n'); return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Change colorspace, compute the l2-norms of the new color channels %%%% [zColSpace l2normLumChrom] = function_rgb2LumChrom(zRGB, colorspace); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Print image information to the screen %%%% if dump_output_information == 1, fprintf(sprintf('Image: %s (%dx%dx%d), sigma: %.1f\n', image_name, Xv, Xh, numSlices, sigma)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Step 1. Basic estimate by collaborative hard-thresholding and using %%%% the grouping constraint on the chrominances. %%%% tic; y_hat = bm3d_thr_color(zColSpace, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,... lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, sigma/255, thrToIncStep, single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(thr_mask), 'unused arg', 'unused arg', l2normLumChrom, Wwin2D, smallLN, stepFS ); estimate_elapsed_time = toc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Step 2. Final estimate by collaborative Wiener filtering and using %%%% the grouping constraint on the chrominances. %%%% tic; yRGB_est = bm3d_wiener_color(zColSpace, y_hat, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ... 'unused_arg', tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, sigma/255, 'unused arg', single(TforW), single(TinvW)', inverse_hadper_trans_single_den, 'unused arg', 'unused arg', l2normLumChrom, Wwin2D_wiener, smallLNW, stepFSW ); wiener_elapsed_time = toc; yRGB_est = double(yRGB_est); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Convert back to RGB colorspace %%%% yRGB_est = function_LumChrom2rgb(yRGB_est, colorspace); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Calculate final estimate's PSNR and ISNR, print them, and show the %%%% denoised image %%%% PSNR = 0; %% Remains 0 if the true image yRGB is not available if (~yRGB_is_invalid_image), % then we assume yRGB is a valid image PSNR = 10*log10(1/mean((yRGB(:)-yRGB_est(:)).^2)); end if dump_output_information == 1, fprintf(sprintf('FINAL ESTIMATE (total time: %.1f sec), PSNR: %.2f dB\n', ... wiener_elapsed_time + estimate_elapsed_time, PSNR)); figure, imshow(min(max(zRGB,0),1)); title(sprintf('Noisy %s, PSNR: %.3f dB (sigma: %d)', ... image_name(1:end-4), 10*log10(1/mean((yRGB(:)-zRGB(:)).^2)), sigma)); figure, imshow(min(max(yRGB_est,0),1)); title(sprintf('Denoised %s, PSNR: %.3f dB', ... image_name(1:end-4), PSNR)); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Some auxiliary functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels) % % Create forward and inverse transform matrices, which allow for perfect % reconstruction. The forward transform matrix is normalized so that the % l2-norm of each basis element is 1. % % [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels) % % INPUTS: % % N --> Size of the transform (for wavelets, must be 2^K) % % transform_type --> 'dct', 'dst', 'hadamard', or anything that is % listed by 'help wfilters' (bi-orthogonal wavelets) % 'DCrand' -- an orthonormal transform with a DC and all % the other basis elements of random nature % % dec_levels --> If a wavelet transform is generated, this is the % desired decomposition level. Must be in the % range [0, log2(N)-1], where "0" implies % full decomposition. % % OUTPUTS: % % Tforward --> (N x N) Forward transform matrix % % Tinverse --> (N x N) Inverse transform matrix % if exist('dec_levels') ~= 1, dec_levels = 0; end if N == 1, Tforward = 1; elseif strcmp(transform_type, 'hadamard') == 1, Tforward = hadamard(N); elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274; 0.219417649252501 0.449283757993216 0.449283757993216 0.219417649252501 -0.219417649252501 -0.449283757993216 -0.449283757993216 -0.219417649252501; 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846 -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284; -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846; 0.707106781186547 -0.707106781186547 0 0 0 0 0 0; 0 0 0.707106781186547 -0.707106781186547 0 0 0 0; 0 0 0 0 0.707106781186547 -0.707106781186547 0 0; 0 0 0 0 0 0 0.707106781186547 -0.707106781186547]; elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274; 0.490392640201615 0.415734806151273 0.277785116509801 0.097545161008064 -0.097545161008064 -0.277785116509801 -0.415734806151273 -0.490392640201615; 0.461939766255643 0.191341716182545 -0.191341716182545 -0.461939766255643 -0.461939766255643 -0.191341716182545 0.191341716182545 0.461939766255643; 0.415734806151273 -0.097545161008064 -0.490392640201615 -0.277785116509801 0.277785116509801 0.490392640201615 0.097545161008064 -0.415734806151273; 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274; 0.277785116509801 -0.490392640201615 0.097545161008064 0.415734806151273 -0.415734806151273 -0.097545161008064 0.490392640201615 -0.277785116509801; 0.191341716182545 -0.461939766255643 0.461939766255643 -0.191341716182545 -0.191341716182545 0.461939766255643 -0.461939766255643 0.191341716182545; 0.097545161008064 -0.277785116509801 0.415734806151273 -0.490392640201615 0.490392640201615 -0.415734806151273 0.277785116509801 -0.097545161008064]; elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it Tforward = [ 0.161229841765317 0.303012985114696 0.408248290463863 0.464242826880013 0.464242826880013 0.408248290463863 0.303012985114696 0.161229841765317; 0.303012985114696 0.464242826880013 0.408248290463863 0.161229841765317 -0.161229841765317 -0.408248290463863 -0.464242826880013 -0.303012985114696; 0.408248290463863 0.408248290463863 0 -0.408248290463863 -0.408248290463863 0 0.408248290463863 0.408248290463863; 0.464242826880013 0.161229841765317 -0.408248290463863 -0.303012985114696 0.303012985114696 0.408248290463863 -0.161229841765317 -0.464242826880013; 0.464242826880013 -0.161229841765317 -0.408248290463863 0.303012985114696 0.303012985114696 -0.408248290463863 -0.161229841765317 0.464242826880013; 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863; 0.303012985114696 -0.464242826880013 0.408248290463863 -0.161229841765317 -0.161229841765317 0.408248290463863 -0.464242826880013 0.303012985114696; 0.161229841765317 -0.303012985114696 0.408248290463863 -0.464242826880013 0.464242826880013 -0.408248290463863 0.303012985114696 -0.161229841765317]; elseif strcmp(transform_type, 'dct') == 1, Tforward = dct(eye(N)); elseif strcmp(transform_type, 'dst') == 1, Tforward = dst(eye(N)); elseif strcmp(transform_type, 'DCrand') == 1, x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x); if (Q(1) < 0), Q = -Q; end; Tforward = Q'; else %% a wavelet decomposition supported by 'wavedec' %%% Set periodic boundary conditions, to preserve bi-orthogonality dwtmode('per','nodisp'); Tforward = zeros(N,N); for i = 1:N Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type); %% construct transform matrix end end %%% Normalize the basis elements Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))'; %%% Compute the inverse transform matrix Tinverse = inv(Tforward); return; function [y, A, l2normLumChrom]=function_rgb2LumChrom(xRGB, colormode) % Forward color-space transformation ( inverse transformation is function_LumChrom2rgb.m ) % % Alessandro Foi - Tampere University of Technology - 2005 - 2006 Public release v1.03 (March 2006) % ----------------------------------------------------------------------------------------------------------------------------------------------- % % SYNTAX: % % [y A l2normLumChrom] = function_rgb2LumChrom(xRGB, colormode); % % INPUTS: % xRGB is RGB image with range [0 1]^3 % % colormode = 'opp', 'yCbCr', 'pca', or a custom 3x3 matrix % % 'opp' Opponent color space ('opp' is equirange version) % 'yCbCr' The standard yCbCr (e.g. for JPEG images) % 'pca' Principal components (note that this transformation is renormalized to be equirange) % % OUTPUTS: % y is color-transformed image (with range typically included in or equal to [0 1]^3, depending on the transformation matrix) % % l2normLumChrom (optional) l2-norm of the transformation (useful for noise std calculation) % A transformation matrix (used necessarily if colormode='pca') % % NOTES: - If only two outputs are used, then the second output is l2normLumChrom, unless colormode='pca'; % - 'opp' is used by default if no colormode is specified. % % % USAGE EXAMPLE FOR PCA TRANSFORMATION: % %%%% -- forward color transformation -- % if colormode=='pca' % [zLumChrom colormode] = function_rgb2LumChrom(zRGB,colormode); % 'colormode' is assigned a 3x3 transform matrix % else % zLumChrom = function_rgb2LumChrom(zRGB,colormode); % end % % %%%% [ ... ] Some processing [ ... ] % % %%%% -- inverse color transformation -- % zRGB=function_LumChrom2rgb(zLumChrom,colormode); % if nargin==1 colormode='opp'; end change_output=0; if size(colormode)==[3 3] A=colormode; l2normLumChrom=sqrt(sum(A.^2,2)); else if strcmp(colormode,'opp') A=[1/3 1/3 1/3; 0.5 0 -0.5; 0.25 -0.5 0.25]; end if strcmp(colormode,'yCbCr') A=[0.299 0.587 0.114; -0.16873660714285 -0.33126339285715 0.5; 0.5 -0.4186875 -0.0813125]; end if strcmp(colormode,'pca') A=princomp(reshape(xRGB,[size(xRGB,1)*size(xRGB,2) 3]))'; A=A./repmat(sum(A.*(A>0),2)-sum(A.*(A<0),2),[1 3]); %% ranges are normalized to unitary length; else if nargout==2 change_output=1; end end end %%%% Make sure that each channel's intensity range is [0,1] maxV = sum(A.*(A>0),2); minV = sum(A.*(A<0),2); yNormal = (reshape(xRGB,[size(xRGB,1)*size(xRGB,2) 3]) * A' - repmat(minV, [1 size(xRGB,1)*size(xRGB,2)])') * diag(1./(maxV-minV)); % put in range [0,1] y = reshape(yNormal, [size(xRGB,1) size(xRGB,2) 3]); %%%% The l2-norm of each of the 3 transform basis elements l2normLumChrom = diag(1./(maxV-minV))*sqrt(sum(A.^2,2)); if change_output A=l2normLumChrom; end return; function yRGB=function_LumChrom2rgb(x,colormode) % Inverse color-space transformation ( forward transformation is function_rgb2LumChrom.m ) % % Alessandro Foi - Tampere University of Technology - 2005 - 2006 Public release v1.03 (March 2006) % ----------------------------------------------------------------------------------------------------------------------------------------------- % % SYNTAX: % % yRGB = function_LumChrom2rgb(x,colormode); % % INPUTS: % x is color-transformed image (with range typically included in or equal to [0 1]^3, depending on the transformation matrix) % % colormode = 'opp', 'yCbCr', or a custom 3x3 matrix (e.g. provided by the forward transform when 'pca' is selected) % % 'opp' opponent color space ('opp' is equirange version) % 'yCbCr' standard yCbCr (e.g. for JPEG images) % % OUTPUTS: % x is RGB image (with range [0 1]^3) % % % NOTE: 'opp' is used by default if no colormode is specified % if nargin==1 colormode='opp'; end if size(colormode)==[3 3] A=colormode; B=inv(A); else if strcmp(colormode,'opp') A =[1/3 1/3 1/3; 0.5 0 -0.5; 0.25 -0.5 0.25]; B =[1 1 2/3;1 0 -4/3;1 -1 2/3]; end if strcmp(colormode,'yCbCr') A=[0.299 0.587 0.114; -0.16873660714285 -0.33126339285715 0.5; 0.5 -0.4186875 -0.0813125]; B=inv(A); end end %%%% Make sure that each channel's intensity range is [0,1] maxV = sum(A.*(A>0),2); minV = sum(A.*(A<0),2); xNormal = reshape(x,[size(x,1)*size(x,2) 3]) * diag(maxV-minV) + repmat(minV, [1 size(x,1)*size(x,2)])'; % put in range [0,1] yRGB = reshape(xNormal * B', [ size(x,1) size(x,2) 3]); return;
github
zongwave/IPASS-master
BM3D.m
.m
IPASS-master/BM3D/BM3D/BM3D.m
22,747
utf_8
7e2312aaf69cead1edcfd768d113392d
function [PSNR, y_est] = BM3D(y, z, sigma, profile, print_to_screen) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % BM3D is an algorithm for attenuation of additive white Gaussian noise from % grayscale images. This algorithm reproduces the results from the article: % % [1] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image Denoising % by Sparse 3D Transform-Domain Collaborative Filtering," % IEEE Transactions on Image Processing, vol. 16, no. 8, August, 2007. % preprint at http://www.cs.tut.fi/~foi/GCF-BM3D. % % % FUNCTION INTERFACE: % % [PSNR, y_est] = BM3D(y, z, sigma, profile, print_to_screen) % % ! The function can work without any of the input arguments, % in which case, the internal default ones are used ! % % BASIC USAGE EXAMPLES: % % Case 1) Using the default parameters (i.e., image name, sigma, etc.) % % [PSNR, y_est] = BM3D; % % Case 2) Using an external noisy image: % % % Read a grayscale image and scale its intensities in range [0,1] % y = im2double(imread('Cameraman256.png')); % % Generate the same seed used in the experimental results of [1] % randn('seed', 0); % % Standard deviation of the noise --- corresponding to intensity % % range [0,255], despite that the input was scaled in [0,1] % sigma = 25; % % Add the AWGN with zero mean and standard deviation 'sigma' % z = y + (sigma/255)*randn(size(y)); % % Denoise 'z'. The denoised image is 'y_est', and 'NA = 1' because % % the true image was not provided % [NA, y_est] = BM3D(1, z, sigma); % % Compute the putput PSNR % PSNR = 10*log10(1/mean((y(:)-y_est(:)).^2)) % % show the noisy image 'z' and the denoised 'y_est' % figure; imshow(z); % figure; imshow(y_est); % % Case 3) If the original image y is provided as the first input % argument, then some additional information is printed (PSNRs, % figures, etc.). That is, "[NA, y_est] = BM3D(1, z, sigma);" in the % above code should be replaced with: % % [PSNR, y_est] = BM3D(y, z, sigma); % % % INPUT ARGUMENTS (OPTIONAL): % % 1) y (matrix M x N): Noise-free image (needed for computing PSNR), % replace with the scalar 1 if not available. % 2) z (matrix M x N): Noisy image (intensities in range [0,1] or [0,255]) % 3) sigma (double) : Std. dev. of the noise (corresponding to intensities % in range [0,255] even if the range of z is [0,1]) % 4) profile (char) : 'np' --> Normal Profile % 'lc' --> Fast Profile % 5) print_to_screen : 0 --> do not print output information (and do % not plot figures) % 1 --> print information and plot figures % % OUTPUTS: % 1) PSNR (double) : Output PSNR (dB), only if the original % image is available, otherwise PSNR = 0 % 2) y_est (matrix M x N): Final estimate (in the range [0,1]) % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Copyright (c) 2006-2011 Tampere University of Technology. % All rights reserved. % This work should only be used for nonprofit purposes. % % AUTHORS: % Kostadin Dabov, email: dabov _at_ cs.tut.fi % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% In case, a noisy image z is not provided, then use the filename %%%% below to read an original image (might contain path also). Later, %%%% artificial AWGN noise is added and this noisy image is processed %%%% by the BM3D. %%%% image_name = [ % 'montage.png' % 'Cameraman256.png' % 'boat.png' 'Lena512.png' % 'house.png' % 'barbara.png' % 'peppers256.png' % 'fingerprint.png' % 'couple.png' % 'hill.png' % 'man.png' ]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Quality/complexity trade-off profile selection %%%% %%%% 'np' --> Normal Profile (balanced quality) %%%% 'lc' --> Low Complexity Profile (fast, lower quality) %%%% %%%% 'high' --> High Profile (high quality, not documented in [1]) %%%% %%%% 'vn' --> This profile is automatically enabled for high noise %%%% when sigma > 40 %%%% %%%% 'vn_old' --> This is the old 'vn' profile that was used in [1]. %%%% It gives inferior results than 'vn' in most cases. %%%% if (exist('profile') ~= 1) profile = 'np'; %% default profile end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Specify the std. dev. of the corrupting noise %%%% if (exist('sigma') ~= 1), sigma = 100; %% default standard deviation of the AWGN end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Following are the parameters for the Normal Profile. %%%% %%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'): transform_2D_HT_name = 'bior1.5'; %% transform used for the HT filt. of size N1 x N1 transform_2D_Wiener_name = 'dct'; %% transform used for the Wiener filt. of size N1_wiener x N1_wiener transform_3rd_dim_name = 'haar'; %% transform used in the 3-rd dim, the same for HT and Wiener filt. %%%% Hard-thresholding (HT) parameters: N1 = 8; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering Nstep = 3; %% sliding step to process every next reference block N2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array) Ns = 39; %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd tau_match = 3000;%% threshold for the block-distance (d-distance) lambda_thr2D = 0; %% threshold parameter for the coarse initial denoising used in the d-distance measure lambda_thr3D = 2.7; %% threshold parameter for the hard-thresholding in 3D transform domain beta = 2.0; %% parameter of the 2D Kaiser window used in the reconstruction %%%% Wiener filtering parameters: N1_wiener = 8; Nstep_wiener = 3; N2_wiener = 32; Ns_wiener = 39; tau_match_wiener = 400; beta_wiener = 2.0; %%%% Block-matching parameters: stepFS = 1; %% step that forces to switch to full-search BM, "1" implies always full-search smallLN = 'not used in np'; %% if stepFS > 1, then this specifies the size of the small local search neighb. stepFSW = 1; smallLNW = 'not used in np'; thrToIncStep = 8; % if the number of non-zero coefficients after HT is less than thrToIncStep, % than the sliding step to the next reference block is incresed to (nm1-1) if strcmp(profile, 'lc') == 1, Nstep = 6; Ns = 25; Nstep_wiener = 5; N2_wiener = 16; Ns_wiener = 25; thrToIncStep = 3; smallLN = 3; stepFS = 6*Nstep; smallLNW = 2; stepFSW = 5*Nstep_wiener; end % Profile 'vn' was proposed in % Y. Hou, C. Zhao, D. Yang, and Y. Cheng, 'Comment on "Image Denoising by Sparse 3D Transform-Domain % Collaborative Filtering"', accepted for publication, IEEE Trans. on Image Processing, July, 2010. % as a better alternative to that initially proposed in [1] (which is currently in profile 'vn_old') if (strcmp(profile, 'vn') == 1) | (sigma > 40), N2 = 32; Nstep = 4; N1_wiener = 11; Nstep_wiener = 6; lambda_thr3D = 2.8; thrToIncStep = 3; tau_match_wiener = 3500; tau_match = 25000; Ns_wiener = 39; end % The 'vn_old' profile corresponds to the original parameters for strong noise proposed in [1]. if (strcmp(profile, 'vn_old') == 1) & (sigma > 40), transform_2D_HT_name = 'dct'; N1 = 12; Nstep = 4; N1_wiener = 11; Nstep_wiener = 6; lambda_thr3D = 2.8; lambda_thr2D = 2.0; thrToIncStep = 3; tau_match_wiener = 3500; tau_match = 5000; Ns_wiener = 39; end decLevel = 0; %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number) thr_mask = ones(N1); %% N1xN1 mask of threshold scaling coeff. --- by default there is no scaling, however the use of different thresholds for different wavelet decompoistion subbands can be done with this matrix if strcmp(profile, 'high') == 1, %% this profile is not documented in [1] decLevel = 1; Nstep = 2; Nstep_wiener = 2; lambda_thr3D = 2.5; vMask = ones(N1,1); vMask((end/4+1):end/2)= 1.01; vMask((end/2+1):end) = 1.07; %% this allows to have different threhsolds for the finest and next-to-the-finest subbands thr_mask = vMask * vMask'; beta = 2.5; beta_wiener = 1.5; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Note: touch below this point only if you know what you are doing! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Check whether to dump information to the screen or remain silent dump_output_information = 1; if (exist('print_to_screen') == 1) & (print_to_screen == 0), dump_output_information = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Create transform matrices, etc. %%%% [Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, decLevel); %% get (normalized) forward and inverse transform matrices [TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name, 0); %% get (normalized) forward and inverse transform matrices if (strcmp(transform_3rd_dim_name, 'haar') == 1) | (strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1), %%% If Haar is used in the 3-rd dimension, then a fast internal transform is used, thus no need to generate transform %%% matrices. hadper_trans_single_den = {}; inverse_hadper_trans_single_den = {}; else %%% Create transform matrices. The transforms are later applied by %%% matrix-vector multiplication for the 1D case. for hpow = 0:ceil(log2(max(N2,N2_wiener))), h = 2^hpow; [Tfor3rd, Tinv3rd] = getTransfMatrix(h, transform_3rd_dim_name, 0); hadper_trans_single_den{h} = single(Tfor3rd); inverse_hadper_trans_single_den{h} = single(Tinv3rd'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% 2D Kaiser windows used in the aggregation of block-wise estimates %%%% if beta_wiener==2 & beta==2 & N1_wiener==8 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default Wwin2D = [ 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924; 0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989; 0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846; 0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325; 0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325; 0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846; 0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989; 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924]; Wwin2D_wiener = Wwin2D; else Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the aggregation of the Wiener filt. part end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% If needed, read images, generate noise, or scale the images to the %%%% [0,1] interval %%%% if (exist('y') ~= 1) | (exist('z') ~= 1) y = im2double(imread(image_name)); %% read a noise-free image and put in intensity range [0,1] randn('seed', 0); %% generate seed z = y + (sigma/255)*randn(size(y)); %% create a noisy image else % external images image_name = 'External image'; % convert z to double precision if needed z = double(z); % convert y to double precision if needed y = double(y); % if z's range is [0, 255], then convert to [0, 1] if (max(z(:)) > 10), % a naive check for intensity range z = z / 255; end % if y's range is [0, 255], then convert to [0, 1] if (max(y(:)) > 10), % a naive check for intensity range y = y / 255; end end if (size(z,3) ~= 1) | (size(y,3) ~= 1), error('BM3D accepts only grayscale 2D images.'); end % Check if the true image y is a valid one; if not, then we cannot compute PSNR, etc. y_is_invalid_image = (length(size(z)) ~= length(size(y))) | (size(z,1) ~= size(y,1)) | (size(z,2) ~= size(y,2)); if (y_is_invalid_image), dump_output_information = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Print image information to the screen %%%% if dump_output_information == 1, fprintf('Image: %s (%dx%d), sigma: %.1f\n', image_name, size(z,1), size(z,2), sigma); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Step 1. Produce the basic estimate by HT filtering %%%% tic; y_hat = bm3d_thr(z, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,... lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, (sigma/255), thrToIncStep, single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(thr_mask), Wwin2D, smallLN, stepFS ); estimate_elapsed_time = toc; if dump_output_information == 1, PSNR_INITIAL_ESTIMATE = 10*log10(1/mean((y(:)-double(y_hat(:))).^2)); fprintf('BASIC ESTIMATE, PSNR: %.2f dB\n', PSNR_INITIAL_ESTIMATE); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Step 2. Produce the final estimate by Wiener filtering (using the %%%% hard-thresholding initial estimate) %%%% tic; y_est = bm3d_wiener(z, y_hat, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ... 'unused arg', tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, (sigma/255), 'unused arg', single(TforW), single(TinvW)', inverse_hadper_trans_single_den, Wwin2D_wiener, smallLNW, stepFSW, single(ones(N1_wiener)) ); wiener_elapsed_time = toc; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Calculate the final estimate's PSNR, print it, and show the %%%% denoised image next to the noisy one %%%% y_est = double(y_est); PSNR = 0; %% Remains 0 if the true image y is not available if (~y_is_invalid_image), % checks if y is a valid image PSNR = 10*log10(1/mean((y(:)-y_est(:)).^2)); % y is valid end if dump_output_information == 1, fprintf('FINAL ESTIMATE (total time: %.1f sec), PSNR: %.2f dB\n', ... wiener_elapsed_time + estimate_elapsed_time, PSNR); figure, imshow(z); title(sprintf('Noisy %s, PSNR: %.3f dB (sigma: %d)', ... image_name(1:end-4), 10*log10(1/mean((y(:)-z(:)).^2)), sigma)); figure, imshow(y_est); title(sprintf('Denoised %s, PSNR: %.3f dB', ... image_name(1:end-4), PSNR)); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Some auxiliary functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels) % % Create forward and inverse transform matrices, which allow for perfect % reconstruction. The forward transform matrix is normalized so that the % l2-norm of each basis element is 1. % % [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels) % % INPUTS: % % N --> Size of the transform (for wavelets, must be 2^K) % % transform_type --> 'dct', 'dst', 'hadamard', or anything that is % listed by 'help wfilters' (bi-orthogonal wavelets) % 'DCrand' -- an orthonormal transform with a DC and all % the other basis elements of random nature % % dec_levels --> If a wavelet transform is generated, this is the % desired decomposition level. Must be in the % range [0, log2(N)-1], where "0" implies % full decomposition. % % OUTPUTS: % % Tforward --> (N x N) Forward transform matrix % % Tinverse --> (N x N) Inverse transform matrix % if exist('dec_levels') ~= 1, dec_levels = 0; end if N == 1, Tforward = 1; elseif strcmp(transform_type, 'hadamard') == 1, Tforward = hadamard(N); elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274; 0.219417649252501 0.449283757993216 0.449283757993216 0.219417649252501 -0.219417649252501 -0.449283757993216 -0.449283757993216 -0.219417649252501; 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846 -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284; -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846; 0.707106781186547 -0.707106781186547 0 0 0 0 0 0; 0 0 0.707106781186547 -0.707106781186547 0 0 0 0; 0 0 0 0 0.707106781186547 -0.707106781186547 0 0; 0 0 0 0 0 0 0.707106781186547 -0.707106781186547]; elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274; 0.490392640201615 0.415734806151273 0.277785116509801 0.097545161008064 -0.097545161008064 -0.277785116509801 -0.415734806151273 -0.490392640201615; 0.461939766255643 0.191341716182545 -0.191341716182545 -0.461939766255643 -0.461939766255643 -0.191341716182545 0.191341716182545 0.461939766255643; 0.415734806151273 -0.097545161008064 -0.490392640201615 -0.277785116509801 0.277785116509801 0.490392640201615 0.097545161008064 -0.415734806151273; 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274; 0.277785116509801 -0.490392640201615 0.097545161008064 0.415734806151273 -0.415734806151273 -0.097545161008064 0.490392640201615 -0.277785116509801; 0.191341716182545 -0.461939766255643 0.461939766255643 -0.191341716182545 -0.191341716182545 0.461939766255643 -0.461939766255643 0.191341716182545; 0.097545161008064 -0.277785116509801 0.415734806151273 -0.490392640201615 0.490392640201615 -0.415734806151273 0.277785116509801 -0.097545161008064]; elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it Tforward = [ 0.161229841765317 0.303012985114696 0.408248290463863 0.464242826880013 0.464242826880013 0.408248290463863 0.303012985114696 0.161229841765317; 0.303012985114696 0.464242826880013 0.408248290463863 0.161229841765317 -0.161229841765317 -0.408248290463863 -0.464242826880013 -0.303012985114696; 0.408248290463863 0.408248290463863 0 -0.408248290463863 -0.408248290463863 0 0.408248290463863 0.408248290463863; 0.464242826880013 0.161229841765317 -0.408248290463863 -0.303012985114696 0.303012985114696 0.408248290463863 -0.161229841765317 -0.464242826880013; 0.464242826880013 -0.161229841765317 -0.408248290463863 0.303012985114696 0.303012985114696 -0.408248290463863 -0.161229841765317 0.464242826880013; 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863; 0.303012985114696 -0.464242826880013 0.408248290463863 -0.161229841765317 -0.161229841765317 0.408248290463863 -0.464242826880013 0.303012985114696; 0.161229841765317 -0.303012985114696 0.408248290463863 -0.464242826880013 0.464242826880013 -0.408248290463863 0.303012985114696 -0.161229841765317]; elseif strcmp(transform_type, 'dct') == 1, Tforward = dct(eye(N)); elseif strcmp(transform_type, 'dst') == 1, Tforward = dst(eye(N)); elseif strcmp(transform_type, 'DCrand') == 1, x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x); if (Q(1) < 0), Q = -Q; end; Tforward = Q'; else %% a wavelet decomposition supported by 'wavedec' %%% Set periodic boundary conditions, to preserve bi-orthogonality dwtmode('per','nodisp'); Tforward = zeros(N,N); for i = 1:N Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type); %% construct transform matrix end end %%% Normalize the basis elements Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))'; %%% Compute the inverse transform matrix Tinverse = inv(Tforward); return;
github
zongwave/IPASS-master
Demo_IDDBM3D.m
.m
IPASS-master/BM3D/BM3D/IDDBM3D/Demo_IDDBM3D.m
9,349
utf_8
092ac706ce756d878d1d006a5698eb72
function [isnr, y_hat] = Demo_IDDBM3D(experiment_number, test_image_name) % ------------------------------------------------------------------------------------------ % % Demo software for BM3D-frame based image deblurring % Public release ver. 0.8 (beta) (June 03, 2011) % % ------------------------------------------------------------------------------------------ % % This function implements the IDDBM3D image deblurring algorithm proposed in: % % [1] A.Danielyan, V. Katkovnik, and K. Egiazarian, "BM3D frames and % variational image deblurring," submitted to IEEE TIP, May 2011 % % ------------------------------------------------------------------------------------------ % % authors: Aram Danielyan % Vladimir Katkovnik % % web page: http://www.cs.tut.fi/~foi/GCF-BM3D/ % % contact: [email protected] % % ------------------------------------------------------------------------------------------ % Copyright (c) 2011 Tampere University of Technology. % All rights reserved. % This work should be used for nonprofit purposes only. % ------------------------------------------------------------------------------------------ % % Disclaimer % ---------- % % Any unauthorized use of these routines for industrial or profit-oriented activities is % expressively prohibited. By downloading and/or using any of these files, you implicitly % agree to all the terms of the TUT limited license (included in the file Legal_Notice.txt). % ------------------------------------------------------------------------------------------ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % FUNCTION INTERFACE: % % [psnr, y_hat] = Demo_IDDBM3D(experiment_number, test_image_name) % % INPUT: % 1) experiment_number: 1 -> PSF 1, sigma^2 = 2 % 2 -> PSF 1, sigma^2 = 8 % 3 -> PSF 2, sigma^2 = 0.308 % 4 -> PSF 3, sigma^2 = 49 % 5 -> PSF 4, sigma^2 = 4 % 6 -> PSF 5, sigma^2 = 64 % 7-13 -> experiments 7-13 are not described in [1]. % see this file for the blur and noise parameters. % 2) test_image_name: a valid filename of a grayscale test image % % OUTPUT: % 1) isnr the output improvement in SNR, dB % 2) y_hat: the restored image % % ! The function can work without any of the input arguments, % in which case, the internal default ones are used ! % % To run this demo functions within the BM3D package should be accessible to Matlab %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% addpath('../') if ~exist('experiment_number','var'), experiment_number=3; end if ~exist('test_image_name','var'), test_image_name='Cameraman256.png'; end filename=test_image_name; if 1 % initType = 'bm3ddeb'; %use output of the BM3DDEB to initialize the algorithm else initType = 'zeros'; %use zero image to initialize the algorithm end matchType = 'bm3ddeb'; %build groups using output of the BM3DDEB algorithm numIt = 200; fprintf('Experiment number: %d\n', experiment_number); fprintf('Image: %s\n', filename); %% ------- Generating bservation --------------------------------------------- disp('--- Generating observation ----'); y=im2double(imread(filename)); [yN,xN]=size(y); switch experiment_number case 1 sigma=sqrt(2)/255; for x1=-7:7; for x2=-7:7; h(x1+8,x2+8)=1/(x1^2+x2^2+1); end, end; h=h./sum(h(:)); case 2 sigma=sqrt(8)/255; s1=0; for a1=-7:7; s1=s1+1; s2=0; for a2=-7:7; s2=s2+1; h(s1,s2)=1/(a1^2+a2^2+1); end, end; h=h./sum(h(:)); case 3 BSNR=40; sigma=-1; % if "sigma=-1", then the value of sigma depends on the BSNR h=ones(9); h=h./sum(h(:)); case 4 sigma=7/255; h=[1 4 6 4 1]'*[1 4 6 4 1]; h=h./sum(h(:)); % PSF case 5 sigma=2/255; h=fspecial('gaussian', 25, 1.6); case 6 sigma=8/255; h=fspecial('gaussian', 25, .4); %extra experiments case 7 BSNR=30; sigma=-1; h=ones(9); h=h./sum(h(:)); case 8 BSNR=20; sigma=-1; h=ones(9); h=h./sum(h(:)); case 9 BSNR=40; sigma=-1; h=fspecial('gaussian', 25, 1.6); case 10 BSNR=20; sigma=-1; h=fspecial('gaussian', 25, 1.6); case 11 BSNR=15; sigma=-1; h=fspecial('gaussian', 25, 1.6); case 12 BSNR=40; sigma=-1; % if "sigma=-1", then the value of sigma depends on the BSNR h=ones(19); h=h./sum(h(:)); case 13 BSNR=25; sigma=-1; % if "sigma=-1", then the value of sigma depends on the BSNR h=ones(19); h=h./sum(h(:)); end y_blur = imfilter(y, h, 'circular'); % performs blurring (by circular convolution) if sigma == -1; %% check whether to use BSNR in order to define value of sigma sigma=sqrt(norm(y_blur(:)-mean(y_blur(:)),2)^2 /(yN*xN*10^(BSNR/10))); % Xv% compute sigma from the desired BSNR end %%%% Create a blurred and noisy observation randn('seed',0); z = y_blur + sigma*randn(yN, xN); bsnr=10*log10(norm(y_blur(:)-mean(y_blur(:)),2)^2 /sigma^2/yN/xN); psnr_z =PSNR(y,z,1,0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fprintf('Observation BSNR: %4.2f, PSNR: %4.2f\n', bsnr, psnr_z); %% ----- Computing initial estimate --------------------- disp('--- Computing initial estimate ----'); [dummy, y_hat_RI,y_hat_RWI,zRI] = BM3DDEB_init(experiment_number, y, z, h, sigma); switch lower(initType) case 'zeros' y_hat_init=zeros(size(z)); case 'zri' y_hat_init=zRI; case 'ri' y_hat_init=y_hat_RI; case 'bm3ddeb' y_hat_init=y_hat_RWI; end switch lower(matchType) case 'z' match_im = z; case 'y' match_im = y; case 'zri' match_im = zRI; case 'ri' match_im = y_hat_RI; case 'bm3ddeb' match_im = y_hat_RWI; end psnr_init = PSNR(y, y_hat_init,1,0); fprintf('Initialization method: %s\n', initType); fprintf('Initial estimate ISNR: %4.2f, PSNR: %4.2f\n', psnr_init-psnr_z, psnr_init); %% ------- Core algorithm --------------------- %------ Description of the parameters of the IDDBM3D function ---------- %y - true image (use [] if true image is unavaliable) %z - observed %h - blurring PSF %y_hat_init - initial estimate y_0 %match_im - image used to constuct groups and calculate weights g_r %sigma - standard deviation of the noise %threshType = 'h'; %use 's' for soft thresholding %numIt - number of iterations %gamma - regularization parameter see [1] %tau - regularization parameter see [1] (thresholding level) %xi - regularization parameter see [1], it is always set to 1 in this implementation %showFigure - set to True to display figure with current estimate %-------------------------------------------------------------------- threshType = 'h'; showFigure = true; switch threshType case {'s'} gamma_tau_xi_inits= [ 0.0004509 0.70 1;%1 0.0006803 0.78 1;%2 0.0003485 0.65 1;%3 0.0005259 0.72 1;%4 0.0005327 0.82 1;%5 7.632e-05 0.25 1;%6 0.0005818 0.81 1;%7 0.001149 1.18 1;%8 0.0004155 0.74 1;%9 0.0005591 0.74 1;%10 0.0007989 0.82 1;%11 0.0006702 0.75 1;%12 0.001931 1.83 1;%13 ]; case {'h'} gamma_tau_xi_inits= [ 0.00051 3.13 1;%1 0.0006004 2.75 1;%2 0.0004573 2.91 1;%3 0.0005959 2.82 1;%4 0.0006018 3.63 1;%5 0.0001726 2.24 1;%6 0.00062 2.98 1;%7 0.001047 3.80 1;%8 0.0005125 3.00 1;%9 0.0005685 2.80 1;%10 0.0005716 2.75 1;%11 0.0005938 2.55 1;%12 0.001602 4.16 1;%13 ]; end gamma = gamma_tau_xi_inits(experiment_number,1); tau = gamma_tau_xi_inits(experiment_number,2)/255*2.7; xi = gamma_tau_xi_inits(experiment_number,3); disp('-------- Start ----------'); fprintf('Number of iterations to perform: %d\n', numIt); fprintf('Thresholding type: %s\n', threshType); y_hat = IDDBM3D(y, h, z, y_hat_init, match_im, sigma, threshType, numIt, gamma, tau, xi, showFigure); psnr = PSNR(y,y_hat,1,0); isnr = psnr-psnr_z; disp('-------- Results --------'); fprintf('Final estimate ISNR: %4.2f, PSNR: %4.2f\n', isnr, psnr); return; end function PSNRdb = PSNR(x, y, maxval, borders) if ~exist('borders', 'var'), borders = 0; end if ~exist('maxval', 'var'), maxval = 255; end xx=borders+1:size(x,1)-borders; yy=borders+1:size(x,2)-borders; PSNRdb = zeros(1,size(x,3)); for fr=1:size(x,3) err = x(xx,yy,fr) - y(xx,yy,fr); PSNRdb(fr) = 10 * log10((maxval^2)/mean2(err.^2)); end end
github
zongwave/IPASS-master
function_CreateLPAKernels.m
.m
IPASS-master/BM3D/BM3D/BM3D-SAPCA/function_CreateLPAKernels.m
5,192
utf_8
b5ac9173b2024d53c79babfd89c0aaf9
% Creates LPA kernels cell array (function_CreateLPAKernels) % % Alessandro Foi - Tampere University of Technology - 2003-2005 % --------------------------------------------------------------- % % Builds kernels cell arrays kernels{direction,size} % and kernels_higher_order{direction,size,1:2} % kernels_higher_order{direction,size,1} is the 3D matrix % of all kernels for that particular direction/size % kernels_higher_order{direction,size,2} is the 2D matrix % containing the orders indices for the kernels % contained in kernels_higher_order{direction,size,1} % % --------------------------------------------------------------------- % % kernels_higher_order{direction,size,1}(:,:,1) is the funcion estimate kernel % kernels_higher_order{direction,size,1}(:,:,2) is a first derivative estimate kernel % % kernels_higher_order{direction,size,1}(:,:,n) is a higher order derivative estimate kernel % whose orders with respect to x and y are specified in % kernels_higher_order{direction,size,2}(n,:)= % =[xorder yorder xorder+yorder] % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [kernels, kernels_higher_order]=function_createLPAkernels(m,h1,h2,TYPE,window_type,directional_resolution,sig_winds,beta) %-------------------------------------------------------------------------- % LPA ORDER AND KERNELS SIZES %-------------------------------------------------------------------------- % m=[2,0]; % THE VECTOR ORDER OF LPA; % h1=[1 2 3 4 5]; % sizes of the kernel % h2=[1 2 3 4 5]; % row vectors h1 and h2 need to have the same lenght %-------------------------------------------------------------------------- % WINDOWS PARAMETERS %-------------------------------------------------------------------------- % sig_winds=[h1*1 ; h1*1]; % Gaussian parameter % beta=1; % Parameter of window 6 % window_type=1 ; % window_type=1 for uniform, window_type=2 for Gaussian % window_type=6 for exponentions with beta % window_type=8 for Interpolation % TYPE=00; % TYPE IS A SYMMETRY OF THE WINDOW % 00 SYMMETRIC % 10 NONSYMMETRIC ON X1 and SYMMETRIC ON X2 % 11 NONSYMMETRIC ON X1,X2 (Quadrants) % % for rotated directional kernels the method that is used for rotation can be specified by adding % a binary digit in front of these types, as follows: % % 10 % 11 ARE "STANDARD" USING NN (Nearest Neighb.) (you can think of these numbers with a 0 in front) % 00 % % 110 % 111 ARE EXACT SAMPLING OF THE EXACT ROTATED KERNEL % 100 % % 210 % 211 ARE WITH BILINEAR INTERP % 200 % % 310 % 311 ARE WITH BICUBIC INTERP (not reccomended) % 300 %-------------------------------------------------------------------------- % DIRECTIONAL PARAMETERS %-------------------------------------------------------------------------- % directional_resolution=4; % number of directions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%% From this point onwards this file and the create_LPA_kernels.m should be identical %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% lenh=max(length(h1),length(h2)); clear kernels clear kernels_higher_order kernels=cell(directional_resolution,lenh); kernels_higher_order=cell(directional_resolution,lenh,2); THETASTEP=2*pi/directional_resolution; THETA=[0:THETASTEP:2*pi-THETASTEP]; s1=0; for theta=THETA, s1=s1+1; for s=1:lenh, [gh,gh1,gh1degrees]=function_LPAKernelMatrixTheta(ceil(h2(s)),ceil(h1(s)),window_type,[sig_winds(1,s) sig_winds(2,s)],TYPE,theta, m); kernels{s1,s}=gh; % degree=0 kernel kernels_higher_order{s1,s,1}=gh1; % degree>=0 kernels kernels_higher_order{s1,s,2}=gh1degrees; % polynomial indexes matrix end % different lengths loop end % different directions loop
github
zongwave/IPASS-master
function_Window2D.m
.m
IPASS-master/BM3D/BM3D/BM3D-SAPCA/function_Window2D.m
2,356
utf_8
d7eb1c5259345f71197ec8f94d93107c
% Returns a scalar/matrix weights (window function) for the LPA estimates % function w=function_Window2D(X,Y,window,sig_wind, beta); % X,Y scalar/matrix variables % window - type of the window weight % sig_wind - std scaling for the Gaussian ro-weight % beta -parameter of the degree in the weights %---------------------------------------------------------------------------------- % V. Katkovnik & A. Foi - Tampere University of Technology - 2002-2005 function w=function_Window2D(X,Y,window,sig_wind, beta,ratio); if nargin == 5 ratio=1; end IND=(abs(X)<=1)&(abs(Y)<=1); IND2=((X.^2+Y.^2)<=1); IND3=((X.^2+(Y*ratio).^2)<=1); if window==1 % rectangular symmetric window w=IND; end if window==2 %Gaussian X=X/sig_wind(1); Y=Y/sig_wind(2); w = IND.*exp(-(X.^2 + Y.^2)/2); %*(abs(Y)<=0.1*abs(X));%.*IND2; %((X.^2+Y.^2)<=1); end if window==3 % Quadratic window w=(1-(X.^2+Y.^2)).*((X.^2+Y.^2)<=1); end if window==4 % triangular symmetric window w=(1-abs(X)).*(1-abs(Y)).*((X.^2+Y.^2)<=1); end if window==5 % Epanechnikov symmetric window w=(1-X.^2).*(1-Y.^2).*((X.^2+Y.^2)<=1); end if window==6 % Generalized Gaussian X=X/sig_wind; Y=Y/sig_wind; w = exp(-((X.^2 + Y.^2).^beta)/2).*((X.^2+Y.^2)<=1); end if window==7 X=X/sig_wind; Y=Y/sig_wind; w = exp(-abs(X) - abs(Y)).*IND; end if window==8 % Interpolation w=(1./(abs(X).^4+abs(Y).^4+0.0001)).*IND2; end if window==9 % Interpolation NORM=(abs(X)).^2+(abs(Y)).^2+0.0001; w=(1./NORM.*(1-sqrt(NORM)).^2).*(NORM<=1); end if window==10 w=((X.^2+Y.^2)<=1); end if window==11 temp=asin(Y./sqrt(X.^2+Y.^2+eps)); temp=temp*0.6; % Width of Beam temp=(temp>0)*min(temp,1)+(temp<=0)*max(temp,-1); w=max(0,IND.*cos(pi*temp)); end if window==111 temp=asin(Y./sqrt(X.^2+Y.^2+eps)); temp=temp*0.8; % Width of Beam temp=(temp>0)*min(temp,1)+(temp<=0)*max(temp,-1); w=max(0,IND3.*(cos(pi*temp)>0)); % w=((X.^2+Y.^2)<=1); end if window==112 temp=atan(Y/(X+eps)); %temp=temp*0.8; % Width of Beam %temp=(temp>0)*min(temp,1)+(temp<=0)*max(temp,-1); w=max(0,IND3.*((abs(temp))<=pi/4)); % w=((X.^2+Y.^2)<=1); end
github
zongwave/IPASS-master
function_LPAKernelMatrixTheta.m
.m
IPASS-master/BM3D/BM3D/BM3D-SAPCA/function_LPAKernelMatrixTheta.m
6,420
utf_8
e4d4b5ab9a0cc7fe4e417116778164e7
% Return the discrete kernels for LPA estimation and their degrees matrix % % function [G, G1, index_polynomials]=function_LPAKernelMatrixTheta(h2,h1,window_type,sig_wind,TYPE,theta, m) % % % Outputs: % % G kernel for function estimation % G1 kernels for function and derivative estimation % G1(:,:,j), j=1 for function estimation, j=2 for d/dx, j=3 for d/dy, % contains 0 and all higher order kernels (sorted by degree: % 1 x y y^2 x^3 x^2y xy^2 y^3 etc...) % index_polynomials matrix of degrees first column x powers, second % column y powers, third column total degree % % % Inputs: % % h2, h1 size of the kernel (size of the "asymmetrical portion") % m=[m(1) m(2)] the vector order of the LPA any order combination should work % "theta" is an angle of the directrd window % "TYPE" is a type of the window support % "sig_wind" - vector - sigma parameters of the Gaussian wind % "beta"- parameter of the power in some weights for the window function % (these last 3 parameters are fed into function_Window2D function) % % % Alessandro Foi, 6 march 2004 function [G, G1, index_polynomials]=function_LPAKernelMatrixTheta(h2,h1,window_type,sig_wind,TYPE,theta, m) global beta %G1=0; m(1)=min(h1,m(1)); m(2)=min(h2,m(2)); % builds ordered matrix of the monomes powers number_of_polynomials=(min(m)+1)*(max(m)-min(m)+1)+(min(m)+1)*min(m)/2; % =size(index_polynomials,1) index_polynomials=zeros(number_of_polynomials,2); index3=1; for index1=1:min(m)+1 for index2=1:max(m)+2-index1 index_polynomials(index3,:)=[index1-1,index2-1]; index3=index3+1; end end if m(1)>m(2) index_polynomials=fliplr(index_polynomials); end index_polynomials(:,3)=index_polynomials(:,1)+index_polynomials(:,2); %calculates degrees of polynomials index_polynomials=sortrows(sortrows(index_polynomials,2),3); %sorts polynomials by degree (x first) %===================================================================================================================================== halfH=max(h1,h2); H=-halfH+1:halfH-1; % creates window function and then rotates it % win_fun=zeros(halfH-1,halfH-1); for x1=H for x2=H if TYPE==00|TYPE==200|TYPE==300 % SYMMETRIC WINDOW win_fun1(x2+halfH,x1+halfH)=function_Window2D(x1/h1/(1-1000*eps),x2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight end if TYPE==11|TYPE==211|TYPE==311 % NONSYMMETRIC ON X1,X2 WINDOW win_fun1(x2+halfH,x1+halfH)=(x1>=-0.05)*(x2>=-0.05)*function_Window2D(x1/h1/(1-1000*eps),x2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight end if TYPE==10|TYPE==210|TYPE==310 % NONSYMMETRIC ON X1 WINDOW win_fun1(x2+halfH,x1+halfH)=(x1>=-0.05)*function_Window2D(x1/h1/(1-1000*eps),x2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight end if TYPE==100|TYPE==110|TYPE==111 % exact sampling xt1=x1*cos(-theta)+x2*sin(-theta); xt2=x2*cos(-theta)-x1*sin(-theta); if TYPE==100 % SYMMETRIC WINDOW win_fun1(x2+halfH,x1+halfH)=function_Window2D(xt1/h1/(1-1000*eps),xt2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight end if TYPE==111 % NONSYMMETRIC ON X1,X2 WINDOW win_fun1(x2+halfH,x1+halfH)=(xt1>=-0.05)*(xt2>=-0.05)*function_Window2D(xt1/h1/(1-1000*eps),xt2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight end if TYPE==110 % NONSYMMETRIC ON X1 WINDOW win_fun1(x2+halfH,x1+halfH)=(xt1>=-0.05)*function_Window2D(xt1/h1/(1-1000*eps),xt2/h2/(1-1000*eps),window_type,sig_wind,beta,h2/h1); % weight end end end end win_fun=win_fun1; if (theta~=0)&(TYPE<100) win_fun=imrotate(win_fun1,theta*180/pi,'nearest'); % use 'nearest' or 'bilinear' for different interpolation schemes ('bicubic'...?) end if (theta~=0)&(TYPE>=200)&(TYPE<300) win_fun=imrotate(win_fun1,theta*180/pi,'bilinear'); % use 'nearest' or 'bilinear' for different interpolation schemes ('bicubic'...?) end if (theta~=0)&(TYPE>=300) win_fun=imrotate(win_fun1,theta*180/pi,'bicubic'); % use 'nearest' or 'bilinear' for different interpolation schemes ('bicubic'...?) end % make the weight support a square win_fun2=zeros(max(size(win_fun))); win_fun2((max(size(win_fun))-size(win_fun,1))/2+1:max(size(win_fun))-((max(size(win_fun))-size(win_fun,1))/2),(max(size(win_fun))-size(win_fun,2))/2+1:max(size(win_fun))-((max(size(win_fun))-size(win_fun,2))/2))=win_fun; win_fun=win_fun2; %===================================================================================================================================== %%%% rotated coordinates H=-(size(win_fun,1)-1)/2:(size(win_fun,1)-1)/2; halfH=(size(win_fun,1)+1)/2; h_radious=halfH; Hcos=H*cos(theta); Hsin=H*sin(theta); %%%% Calculation of FI matrix FI=zeros(number_of_polynomials); i1=0; for s1=H i1=i1+1; i2=0; for s2=H i2=i2+1; x1=Hcos(s1+h_radious)-Hsin(s2+h_radious); x2=Hsin(s1+h_radious)+Hcos(s2+h_radious); phi=sqrt(win_fun(s2+halfH,s1+halfH))*(prod(((ones(number_of_polynomials,1)*[x1 x2]).^index_polynomials(:,1:2)),2)./prod(gamma(index_polynomials(:,1:2)+1),2).*(-ones(number_of_polynomials,1)).^index_polynomials(:,3)); FI=FI+phi*phi'; end % end of s2 end % end of s1 %FI_inv=((FI+1*eps*eye(size(FI)))^(-1)); % invert FI matrix FI_inv=pinv(FI); % invert FI matrix (using pseudoinverse) G1=zeros([size(H,2) size(H,2) number_of_polynomials]); %%%% Calculation of mask i1=0; for s1=H i1=i1+1; i2=0; for s2=H i2=i2+1; x1=Hcos(s1+h_radious)-Hsin(s2+h_radious); x2=Hsin(s1+h_radious)+Hcos(s2+h_radious); phi=FI_inv*win_fun(s2+halfH,s1+halfH)*(prod(((ones(number_of_polynomials,1)*[x1 x2]).^index_polynomials(:,1:2)),2)./prod(gamma(index_polynomials(:,1:2)+1),2).*(-ones(number_of_polynomials,1)).^index_polynomials(:,3)); G(i2,i1,1)=phi(1); % Function Est G1(i2,i1,:)=phi(:)'; % Function est & Der est on X Y etc... end % end of s1 end % end of s2 %keyboard
github
zongwave/IPASS-master
bfilter.m
.m
IPASS-master/Bilateral/bfilter.m
4,290
utf_8
14e396b5cb0f534b1709d7c6fc512e35
% Douglas R. Lanman, Brown University, September 2006. % [email protected], http://mesh.brown.edu/dlanman %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Pre-process input and select appropriate filter. function B = bfilter(A,w,sigma) % Verify that the input image exists and is valid. if ~exist('A','var') || isempty(A) error('Input image A is undefined or invalid.'); end if ~isfloat(A) || ~sum([1,3] == size(A,3)) || ... min(A(:)) < 0 || max(A(:)) > 1 error(['Input image A must be a double precision ',... 'matrix of size NxMx1 or NxMx3 on the closed ',... 'interval [0,1].']); end % Verify bilateral filter window size. if ~exist('w','var') || isempty(w) || ... numel(w) ~= 1 || w < 1 w = 5; end w = ceil(w); % Verify bilateral filter standard deviations. if ~exist('sigma','var') || isempty(sigma) || ... numel(sigma) ~= 2 || sigma(1) <= 0 || sigma(2) <= 0 sigma = [3 0.1]; end % Apply either grayscale or color bilateral filtering. if size(A,3) == 1 B = bfltGray(A,w,sigma(1),sigma(2)); else B = bfltColor(A,w,sigma(1),sigma(2)); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Implements bilateral filtering for grayscale images. function B = bfltGray(A,w,sigma_d,sigma_r) % Pre-compute Gaussian distance weights. [X,Y] = meshgrid(-w:w,-w:w); %????????e.g. % [x,y]=meshgrid(-1:1,-1:1) % % x = % % -1 0 1 % -1 0 1 % -1 0 1 % % % y = % % -1 -1 -1 % 0 0 0 % 1 1 1 %?????? G = exp(-(X.^2+Y.^2)/(2*sigma_d^2)); % Create waitbar. h = waitbar(0,'Applying bilateral filter...'); set(h,'Name','Bilateral Filter Progress'); % Apply bilateral filter. %?????H ??????G ??????????F dim = size(A); B = zeros(dim); for i = 1:dim(1) for j = 1:dim(2) % Extract local region. iMin = max(i-w,1); iMax = min(i+w,dim(1)); jMin = max(j-w,1); jMax = min(j+w,dim(2)); %????????????(iMin:iMax,jMin:jMax) I = A(iMin:iMax,jMin:jMax);%????????????I % Compute Gaussian intensity weights. H = exp(-(I-A(i,j)).^2/(2*sigma_r^2)); % Calculate bilateral filter response. F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); B(i,j) = sum(F(:).*I(:))/sum(F(:)); end waitbar(i/dim(1)); end % Close waitbar. close(h); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Implements bilateral filter for color images. function B = bfltColor(A,w,sigma_d,sigma_r) % Convert input sRGB image to CIELab color space. % if exist('applycform','file') % A = applycform(A,makecform('srgb2lab')); % else % A = colorspace('Lab<-RGB',A); % end A = zjRGB2Lab(A); % Pre-compute Gaussian domain weights. [X,Y] = meshgrid(-w:w,-w:w); G = exp(-(X.^2+Y.^2)/(2*sigma_d^2)); % Rescale range variance (using maximum luminance). sigma_r = 100*sigma_r; % Create waitbar. % h = waitbar(0,'Applying bilateral filter...'); % set(h,'Name','Bilateral Filter Progress'); % Apply bilateral filter. dim = size(A); B = zeros(dim); for i = 1:dim(1) for j = 1:dim(2) % Extract local region. iMin = max(i-w,1); iMax = min(i+w,dim(1)); jMin = max(j-w,1); jMax = min(j+w,dim(2)); I = A(iMin:iMax,jMin:jMax,:); % Compute Gaussian range weights. dL = I(:,:,1)-A(i,j,1); da = I(:,:,2)-A(i,j,2); db = I(:,:,3)-A(i,j,3); H = exp(-(dL.^2+da.^2+db.^2)/(2*sigma_r^2)); % Calculate bilateral filter response. F = H.*G((iMin:iMax)-i+w+1,(jMin:jMax)-j+w+1); norm_F = sum(F(:)); B(i,j,1) = sum(sum(F.*I(:,:,1)))/norm_F; B(i,j,2) = sum(sum(F.*I(:,:,2)))/norm_F; B(i,j,3) = sum(sum(F.*I(:,:,3)))/norm_F; end % waitbar(i/dim(1)); end % Convert filtered image back to sRGB color space. % if exist('applycform','file') % B = applycform(B,makecform('lab2srgb')); % else % B = colorspace('RGB<-Lab',B); % end B=zjLab2RGB(B); % Close waitbar. % close(h);
github
zongwave/IPASS-master
main_3DNR.m
.m
IPASS-master/3DNR/main_3DNR.m
6,682
utf_8
f177462edf06fa0a49921cb8a9670c37
function main_3DNR() clear; clc; close all; [filename, pathname, filterindex] = uigetfile( ... { '*.bmp','Bitmap files (*.bmp)'; ... '*.png','PNG files (*.png)'; ... '*.jpg','JPEG files (*.jpg)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick a file', ... 'MultiSelect', 'on'); if (iscell(filename) == 0); if filename == 0; number_of_images = 0; else number_of_images = 1; end else number_of_images = length(filename); end fullfilename = fullfile(pathname, filename); if number_of_images == 1 [pathstr, name, ext] = fileparts(fullfilename); else [pathstr, name, ext] = fileparts(fullfilename{number_of_images}); end sum_frame = 0; if number_of_images > 1 for i = 1: number_of_images reference{i} = im2double(imread(fullfile(pathname, filename{i}))); sum_frame = sum_frame + reference{i}; end observed = reference{number_of_images}; average_rgb_frame = sum_frame / number_of_images; else reference{1} = im2double(imread(fullfile(pathname, filename))); observed = reference{1}; average_rgb_frame = reference{1}; end [image_height, image_width, channel] = size(observed); fname = [pathstr '/' name '_' mat2str(number_of_images) '_frames_averaged.bmp']; imwrite(average_rgb_frame, fname); % % blocks from referenced frame % ref_block_x_radius = 1; ref_block_y_radius = 1; ref_block_x_count = 2 * ref_block_x_radius + 1; ref_block_y_count = 2 * ref_block_y_radius + 1; ref_block_width = 4; ref_block_height = 4; block_x_count = ceil(image_width / ref_block_width); block_y_count = ceil(image_height / ref_block_height); for ref_y_block = 0 : ref_block_y_count - 1 for ref_x_block = 1 : ref_block_x_count ref_block_x_index{ref_x_block + ref_y_block * ref_block_x_count} = (ref_x_block - 1 - ref_block_x_radius); ref_block_y_index{ref_x_block + ref_y_block * ref_block_x_count} = (ref_y_block - ref_block_y_radius); end end for image_y_start = 1 : ref_block_height : image_height - ref_block_height + 1 for image_x_start = 1 : ref_block_width : image_width - ref_block_width + 1 block_x_index = ceil(image_x_start / ref_block_width); block_y_index = ceil(image_y_start / ref_block_height); for ref_y_block = 0 : ref_block_y_count - 1 for ref_x_block = 1 : ref_block_x_count block_x_start{ref_x_block + ref_y_block * ref_block_x_count} = image_x_start + ref_block_width * ref_block_x_index{ref_x_block + ref_y_block * ref_block_x_count}; block_y_start{ref_x_block + ref_y_block * ref_block_x_count} = image_y_start + ref_block_height * ref_block_y_index{ref_x_block + ref_y_block * ref_block_x_count}; end end for block_index = 1 : ref_block_x_count * ref_block_y_count if (block_x_start{block_index} < 1) block_x_start{block_index} = 1; end if (block_y_start{block_index} < 1) block_y_start{block_index} = 1; end if (image_width - block_x_start{block_index} < ref_block_width - 1) block_x_start{block_index} = image_width - ref_block_width + 1; end if (image_height - block_y_start{block_index} < ref_block_height - 1) block_y_start{block_index} = image_height - ref_block_height + 1; end end for image_index = 1 : number_of_images % figure(); for block_index = 1 : ref_block_x_count * ref_block_y_count reference_blocks{image_index}{block_index} = reference{image_index}(block_y_start{block_index} : block_y_start{block_index} + ref_block_height - 1, block_x_start{block_index} : block_x_start{block_index} + ref_block_width - 1, :); if (image_index == number_of_images) && (block_index == ref_block_y_radius * ref_block_x_count + ref_block_x_radius + 1) current_block = reference_blocks{image_index}{block_index}; end % subplot(ref_block_x_count, ref_block_y_count, block_index); % imshow(reference_blocks{image_index}{block_index}); end end res_block = weighted_average(current_block, reference_blocks); restored(image_y_start : image_y_start + ref_block_height - 1, image_x_start : image_x_start + ref_block_width - 1, :) = res_block; end end figure(); subplot(2, 2, 1); imshow(average_rgb_frame); title(['Averaged image,' mat2str(number_of_images) ' number of images']); subplot(2, 2, 2); imshow(observed); title('orignal image'); subplot(2, 2, 3); imshow(restored); title('3D denoise image'); fname_restored = [pathstr '/' name '_' mat2str(number_of_images) '_frames_restored.bmp']; imwrite(restored, fname_restored); subplot(2, 2, 4); imshow(reference_blocks{number_of_images}{ref_block_x_count * ref_block_y_count}); end function res_block = weighted_average(cur_block, ref_blocks) image_count = length(ref_blocks); block_count = length(ref_blocks{1}); weight_sum = 0; [block_height, block_width, channel] = size(cur_block); res_block = zeros(block_height, block_width, channel); for image_index = 1 : image_count for block_index = 1: block_count dist = sum(sum( (ref_blocks{image_index}{block_index} - cur_block) .* (ref_blocks{image_index}{block_index} - cur_block) )); MAG = (block_height * block_width) * ref_blocks{image_index}{block_index}(ceil(block_height/2), ceil(block_width/2)) - sum(sum(ref_blocks{image_index}{block_index})); MAG = abs(MAG) / (block_height * block_width - 1); if MAG < 0.5 alpha = 1; else alpha = 2; end weight = exp(-3.0 * dist(1, 1, :) * alpha); weight_sum = weight_sum + weight; res_block(:, :, 1) = res_block(:, :, 1) + ref_blocks{image_index}{block_index}(:, :, 1) .* weight(:, :, 1); res_block(:, :, 2) = res_block(:, :, 2) + ref_blocks{image_index}{block_index}(:, :, 2) .* weight(:, :, 2); res_block(:, :, 3) = res_block(:, :, 3) + ref_blocks{image_index}{block_index}(:, :, 3) .* weight(:, :, 3); end end res_block(:, :, 1) = res_block(:, :, 1) ./ weight_sum(:, :, 1); res_block(:, :, 2) = res_block(:, :, 2) ./ weight_sum(:, :, 2); res_block(:, :, 3) = res_block(:, :, 3) ./ weight_sum(:, :, 3); end
github
zongwave/IPASS-master
import_video.m
.m
IPASS-master/VideoStab/import_video.m
1,568
utf_8
4f3b5d25af12d202e844be7fb4c54d3f
% import_video.m - import original video % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function [fullname, vid_frame, frame_count, frame_rate, duration, vid_width, vid_height] = import_video(file) clc; clear; if (nargin < 1) [filename, pathname] = uigetfile( ... {'*.mp4','MP4 files (*.mp4)'; ... '*.mpg','MPEG files (*.mpg)'; ... '*.mov','MOV files (*.mov)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick original shaky video file'); fullname = fullfile(pathname, filename); vidObj = VideoReader(fullname); frame_count = 0; frame_rate = vidObj.FrameRate; vid_height = vidObj.Height; vid_width = vidObj.Width; duration = vidObj.Duration; figure(); title('Original Video'); currAxes = axes; while hasFrame(vidObj) vidFrame = readFrame(vidObj); frame_count = frame_count + 1; vid_frame(frame_count).cdata = vidFrame; image(vid_frame(frame_count).cdata, 'Parent', currAxes); currAxes.Visible = 'off'; pause(0.001/vidObj.FrameRate); end end
github
zongwave/IPASS-master
import_image_keypoints.m
.m
IPASS-master/VideoStab/import_image_keypoints.m
1,618
utf_8
4c6de30ee56355c8aaaf8c830b95763b
% import_image_keypoints.m - import image keypoints to do calibration % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function [frame_count, frame_idx, p0, p1] = import_image_keypoints(file) if (nargin < 1) [filename, pathname] = uigetfile( ... {'*.log','LOG files (*.log)'; ... '*.data','DATA files (*.bmp)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick keypoints file'); fid = fopen(fullfile(pathname, filename)); else fid = fopen('keypoints.log'); end; frewind(fid); calib = textscan(fid, '%s %d %s %f %f %s', 'Delimiter', ','); fclose(fid); frame_idx = calib{1}; point_idx = calib{2}; x0 = calib{3}; y0 = calib{4}; x1 = calib{5}; y1 = calib{6}; point_count = size(point_idx); for i=1:point_count(1) fidx(i) = textscan(frame_idx{i}, '%*s %d'); px0(i) = textscan(x0{i}, '%*s %*s %*s %f'); py1(i) = textscan(y1{i}, '%f %*s %*s %*s %*s %*s'); end frame_idx = cell2mat(fidx)'; frame_count = max(frame_idx); x0 = cell2mat(px0)'; y1 = cell2mat(py1)'; p0 = double([ x0 y0 ]); p1 = double([ x1 y1 ]); end
github
zongwave/IPASS-master
import_camera_pose.m
.m
IPASS-master/VideoStab/import_camera_pose.m
6,954
utf_8
f0fd1745dcac8421aaaae5600dc0f7e0
% import_camera_pose.m - import camera pose data acquired from Gyroscope % & Accelerometer % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function [ts, translation, quatern] = import_camera_pose(file) clear; clc; close all if (nargin < 1) [filename, pathname] = uigetfile( ... { '*.csv','CSV files (*.csv)'; ... '*.data','DATA files (*.data)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick Gyro & Acc 6-DOF file'); end [pathstr, name, ext] = fileparts(filename) if strcmp(ext, '.data') fid = fopen(fullfile(pathname, filename)); csv_file = [pathname 'gyro_data.csv']; else fid = fopen('gyro.data'); end; if strcmp(ext, '.csv') format long gyro_data = dlmread(fullfile(pathname, filename)); figure(); subplot(2, 3, 1); plot(gyro_data(:, 1), 'r', 'LineWidth', 2); hold on plot(gyro_data(:, 2), 'g', 'LineWidth', 2); hold on plot(gyro_data(:, 3), 'b', 'LineWidth', 2); hold on plot(gyro_data(:, 4), 'k', 'LineWidth', 2); hold on title('Gyro Quaternion'); legend('X', 'Y', 'Z', 'W'); subplot(2, 3, 2); plot(gyro_data(:, 5), 'r', 'LineWidth', 2); hold on plot(gyro_data(:, 6), 'g', 'LineWidth', 2); hold on plot(gyro_data(:, 7), 'b', 'LineWidth', 2); hold on title('Gyro Translation'); legend('X', 'Y', 'Z'); sample_count = size(gyro_data); quatern = gyro_data(:, 1:4); translation = gyro_data(:, 5:7); ts = gyro_data(:, 8); else frewind(fid); frame = textscan(fid, '%s %s %s %s %s', 'Delimiter',':'); fclose(fid); timestamp = frame{3}; position = frame{4}; orientation = frame{5}; sample_count = size(timestamp); for i=1:sample_count(1) ts(i) = textscan(timestamp{i}, '%f'); end ts = cell2mat(ts)'; d = diff(ts); frame_gap = (d ./ min(d)) - 1; display(['avg frame rate: ' num2str(1/mean(d))]); display(['max frame rate: ' num2str(1/min(d))]); display(['max frame gap: ' num2str(max(frame_gap))]); display(['num frames dropped: ' num2str(sum(round(frame_gap)))]); for i=1:sample_count(1) translation{i} = textscan(position{i}, '%f %f %f', 'Delimiter', ','); end for i=1:sample_count(1) trans_x(i) = (translation{i}{1}); trans_y(i) = (translation{i}{2}); trans_z(i) = (translation{i}{3}); end translation = [trans_x; trans_y; trans_z]'; for i=1:sample_count(1) orientation{i} = textscan(orientation{i}, '%f %f %f %f', 'Delimiter', ','); end for i=1:sample_count(1) orient_x(i) = (orientation{i}{1}); orient_y(i) = (orientation{i}{2}); orient_z(i) = (orientation{i}{3}); orient_w(i) = (orientation{i}{4}); end quatern = [orient_x; orient_y; orient_z; orient_w]'; if strcmp(ext, '.data') dlmwrite(csv_file, [quatern translation ts], 'precision', '%12.6f'); end figure(); subplot(2, 3, 1); plot(trans_x, 'r', 'LineWidth', 2); hold on plot(trans_y, 'g', 'LineWidth', 2); hold on plot(trans_z, 'b', 'LineWidth', 2); hold on title('Gyro Translation'); legend('X', 'Y', 'Z'); subplot(2, 3, 2); plot(orient_x, 'r', 'LineWidth', 2); hold on plot(orient_y, 'g', 'LineWidth', 2); hold on plot(orient_z, 'b', 'LineWidth', 2); hold on plot(orient_w, 'k', 'LineWidth', 2); hold on title('Gyro Orientation'); legend('X', 'Y', 'Z', 'W'); end eulerAngle = zeros(3, sample_count(1)); rotAxis = zeros(4, sample_count(1)); rotMatrix = zeros(3, 3, sample_count(1)); % %% Quaternion to Matrix convertType = int32(0); convert_rotation(convertType, quatern', eulerAngle, rotAxis, rotMatrix); points = ones(sample_count(1), 3); for i=1:size(rotMatrix, 3) points(i, :) = rotMatrix(:, :, i) * points(i, :)'; end subplot(2, 3, 3); plot3(points(:, 1), points(:, 2), points(:, 3), 'r', 'LineWidth', 2); hold on title('Transform Points'); xlabel('X', 'Fontsize', 15); ylabel('Y', 'Fontsize', 15); zlabel('Z', 'Fontsize', 15); % %% Quaternion to Euler angle convertType = int32(1); convert_rotation(convertType, quatern', eulerAngle, rotAxis, rotMatrix); eulerAngle = (eulerAngle * 180 / 3.1415926); subplot(2, 3, 4); plot(eulerAngle(1, :), 'r', 'LineWidth', 2); hold on plot(eulerAngle(2, :), 'g', 'LineWidth', 2); hold on plot(eulerAngle(3, :), 'b', 'LineWidth', 2); hold on title('Euler Angles'); legend('Euler Angle X(roll)', 'Euler Angle Y(pitch)', 'Euler Angle Z(yaw)'); % %% Quaternion to Rotation Axis convertType = int32(2); convert_rotation(convertType, quatern', eulerAngle, rotAxis, rotMatrix); subplot(2, 3, 5); plot(rotAxis(1, :), 'r', 'LineWidth', 2); hold on plot(rotAxis(2, :), 'g', 'LineWidth', 2); hold on plot(rotAxis(3, :), 'b', 'LineWidth', 2); hold on title('Rotation Axis'); legend('Rotation Axis X', 'Rotation Axis Y', 'Rotation Axis Z'); subplot(2, 3, 6); plot(rotAxis(4, :), 'k', 'LineWidth', 2); hold on legend('Rotation Axis degree'); %%% Test by SpinCalc %% Quaternion to Matrix % rotMatrix_SC = SpinCalc('QtoDCM', quatern, 0.01, 1); % points = ones(ts_count(1), 3); % for i=1:size(rotMatrix_SC, 3) % points(i, :) = rotMatrix_SC(:, :, i) * points(i, :)'; % end % % figure(); % subplot(2, 3, 3); % plot3(points(:, 1), points(:, 2), points(:, 3), 'r', 'LineWidth', 2); % hold on % title('SpinCalc Transform Points'); % xlabel('X', 'Fontsize', 15); % ylabel('Y', 'Fontsize', 15); % zlabel('Z', 'Fontsize', 15); % %% Quaternion to Euler angles % eulerAngle_SC = SpinCalc('QtoEA123', quatern, 0.01, 1); % subplot(2, 3, 4); % plot(eulerAngle_SC(:, 1), 'r', 'LineWidth', 2); % hold on % plot(eulerAngle_SC(:, 2), 'g', 'LineWidth', 2); % hold on % plot(eulerAngle_SC(:, 3), 'b', 'LineWidth', 2); % hold on % title('SpinCalc Euler Angles'); % legend('Euler Angles X', 'Euler Angles Y', 'Euler Angles Z'); % %% Quternion to rotation vector % rotAxis_SC = SpinCalc('QtoEV', quatern, 0.01, 1); % subplot(2, 3, 5); % plot(rotAxis_SC(:, 1), 'r', 'LineWidth', 2); % hold on % plot(rotAxis_SC(:, 2), 'g', 'LineWidth', 2); % hold on % plot(rotAxis_SC(:, 3), 'b', 'LineWidth', 2); % hold on % title('SpinCalc Rotation Axis'); % legend('Rotation Axis X', 'Rotation Axis Y', 'Rotation Axis Z'); % subplot(2, 3, 6); % plot(rotAxis_SC(:, 4), 'k', 'LineWidth', 2); % hold on % legend('Rotation Axis degree'); % % end
github
zongwave/IPASS-master
analyze_projective2d.m
.m
IPASS-master/VideoStab/analyze_projective2d.m
3,766
utf_8
34bcc79f60bb6e618bdf8dbb62dfb619
% analyze_projective2d.m - Plot projection matrix to analyze % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function analyze_projective2d(file) clc; clear; close all; if (nargin < 1) [filename, pathname, filterindex] = uigetfile( ... {'*.mat','MAT files (*.mat)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick projective 2D file', ... 'MultiSelect', 'on'); if (iscell(filename) == 0) if filename == 0 num_of_mat = 0; else num_of_mat = 1; end else num_of_mat = length(filename); end for i=1: num_of_mat if (iscell(filename) == 0) rot_mat = load(fullfile(pathname, filename)); else rot_mat = load(fullfile(pathname, filename{i})); end field = fieldnames(rot_mat); if strcmp(field, 'gyro_mat') projective2d = rot_mat.gyro_mat; curve{i} = 'Gyro 3DOF'; elseif strcmp(field, 'rot_mat') projective2d = rot_mat.rot_mat(); curve{i} = 'Optical Flow'; end trans_x = projective2d(1, 3, :); t_x{i} = trans_x(:); trans_y = projective2d(2, 3, :); t_y{i} = trans_y(:); curve_len{i} = size(t_y{i}, 1); scale_x = projective2d(1, 1, :); s_x{i} = scale_x(:); scale_y = projective2d(2, 2, :); s_y{i} = scale_y(:); rot_x = projective2d(1, 2, :); r_x{i} = rot_x(:); rot_y = projective2d(2, 1, :); r_y{i} = rot_y(:); proj_x = projective2d(3, 1, :); p_x{i} = proj_x(:); proj_y = projective2d(3, 2, :); p_y{i} = proj_y(:); homo_w = projective2d(3, 3, :); h_w{i} = homo_w(:); end if curve_len{1} > 270 curve_step = 3; elseif curve_len{1} > 180 curve_step = 2; else curve_step = 1; end figure(); subplot(3, 3, 1); for i=1: num_of_mat plot(s_x{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' S_X'], [curve{2} ' S_X']); subplot(3, 3, 2); for i=1: num_of_mat plot(r_x{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' R_X'], [curve{2} ' R_X']); subplot(3, 3, 3); for i=1: num_of_mat plot(t_x{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' T_X'], [curve{2} ' T_X']); subplot(3, 3, 4); for i=1: num_of_mat plot(r_y{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' R_Y'], [curve{2} ' R_Y']); subplot(3, 3, 5); for i=1: num_of_mat plot(s_y{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' S_Y'], [curve{2} ' S_Y']); subplot(3, 3, 6); for i=1: num_of_mat plot(t_y{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' T_Y'], [curve{2} ' T_Y']); subplot(3, 3, 7); for i=1: num_of_mat plot(p_x{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' P_X'], [curve{2} ' P_X']); subplot(3, 3, 8); for i=1: num_of_mat plot(p_y{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' P_Y'], [curve{2} ' P_Y']); subplot(3, 3, 9); for i=1: num_of_mat plot(h_w{i}(1: curve_step: curve_len{i}), 'LineWidth', 2); hold on end legend([curve{1} ' H_W'], [curve{2} ' H_W']); end
github
zongwave/IPASS-master
import_camera_intrinsics.m
.m
IPASS-master/VideoStab/import_camera_intrinsics.m
2,899
utf_8
6c47f85b592721490e586123d7eec883
% import_camera_intrinsics.m - import camera calibration data to get % intrinsic parameters % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function [fc, cc, alpha_c, kc, fc_error, cc_error, alpha_c_error, kc_error, frame_size] = import_camera_intrinsics(file) clc; clear; if (nargin < 1) [filename, pathname] = uigetfile( ... {'*.mat','MAT files (*.mat)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick camera calibration file'); calib_result = load(fullfile(pathname, filename)); field = fieldnames(calib_result); % Intrinsic Camera Parameters % Color CameraIntrinsics by Tango API % image_width: 1920, image_height :1080, % fx: 1750.517953, fy: 1752.121844, % cx: 961.158431, cy: 543.400556, % image_plane_distance: 1.823456. % Color Camera Frame with respect to IMU Frame, % Position: 0.046403, -0.007203, -0.003940. % Orientation: 0.007697, 0.999966, -0.002460, 0.001833 %-- Focal length: %fc = [ 1754.975680239204800 ; 1751.235395306768200 ]; fc = getfield(calib_result, 'fc'); % fc = [1750.517953; 1752.121844]; %-- Principal point: %cc = [ 980.930704001504180 ; 533.190157376837190 ]; cc = getfield(calib_result, 'cc'); % cc = [961.158431; 543.400556]; %-- Skew coefficient: %alpha_c = 0.000000000000000; alpha_c = getfield(calib_result, 'alpha_c'); %-- Distortion coefficients: %kc = [ 0.125138728392555 ; -0.370741771854929 ; -0.002331438922038 ; 0.005065576610383 ; 0.000000000000000 ]; kc = getfield(calib_result, 'kc'); %-- Focal length uncertainty: %fc_error = [ 44.984729995744409 ; 45.109724834116975 ]; fc_error = getfield(calib_result, 'fc_error'); %-- Principal point uncertainty: %cc_error = [ 13.861062313971287 ; 8.157315653129363 ]; cc_error = getfield(calib_result, 'cc_error'); %-- Skew coefficient uncertainty: %alpha_c_error = 0.000000000000000; alpha_c_error = getfield(calib_result, 'alpha_c_error'); %-- Distortion coefficients uncertainty: %kc_error = [ 0.016094474616848 ; 0.082081733828857 ; 0.001497247209278 ; 0.002034878656146 ; 0.000000000000000 ]; kc_error = getfield(calib_result, 'kc_error'); %-- Image size: %nx = 1920; %ny = 1080; nx = getfield(calib_result, 'nx'); ny = getfield(calib_result, 'ny'); frame_size = [nx; ny]; end
github
zongwave/IPASS-master
video_stabilization.m
.m
IPASS-master/VideoStab/video_stabilization.m
3,444
utf_8
63a76012bd6a73fb8e6c53ea0bde733f
% video_stabilizaton.m - main function to launch video stabilization % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function video_stabilization(file) clc clear close all if (nargin < 1) [filename, pathname] = uigetfile( ... {'*.mat','Mat files (*.mat)'; ... '*.data','DATA files (*.data)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick pre-calculated rotation Matrix file'); if filename ~= 0 proj_mat = load(fullfile(pathname, filename)); field = fieldnames(proj_mat); homo_mat = cell2mat(getfield(proj_mat, cell2mat(field))); homo_mat = reshape(homo_mat, 3, 3, size(homo_mat, 2)/3); if strcmp(field, 'homo_mat') video_stab_interface(0, 0, 0, 0, 0, 0, homo_mat); rot_mat = homo_mat; matrix_type = 'Optical Flow Motion Stab'; else rot_mat = homo_mat; matrix_type = 'Optical Flow'; end else % Intrinsic Camera Parameters [fc, cc, alpha_c, kc, fc_error, cc_error, alpha_c_error, kc_error, frame_size] = import_camera_intrinsics(); % Extrinsic Camera Parameters [gyro_ts, gyro_pos, gyro_quat] = import_camera_pose(); frame_ts = gyro_ts; readout_time = 0; gyro_delay = 0; gyro_drifft = 0; rot_mat = zeros(3, 3, size(gyro_ts, 1)); calib_param = [fc; cc; alpha_c; readout_time; gyro_delay; gyro_drifft]; video_stab_interface(frame_ts, frame_size, gyro_pos', gyro_quat', gyro_ts, calib_param, rot_mat); matrix_type = 'Gyro 3DOF'; end [vid_name, vid_frame, frame_count, frame_rate, duration, vid_width, vid_height] = import_video(); if filename ~= 0 save([vid_name '_' matrix_type '_rot.mat'], 'rot_mat'); else gyro_mat = rot_mat(:, :, 1:frame_count); save([vid_name '_' matrix_type '_rot.mat'], 'gyro_mat'); end mat_size = size(rot_mat); if max(mat_size) < frame_count warp_count = max(mat_size); else warp_count = frame_count; end vidObj = VideoWriter([vid_name '_stabilized_' matrix_type '.mp4'], 'MPEG-4'); open(vidObj); crop_ratio = 0.05; cropped_x = vid_width*crop_ratio; cropped_y = vid_height*crop_ratio; cropped_width = vid_width*(1-2*crop_ratio); cropped_height = vid_height*(1-2*crop_ratio); figure(); title(['Stabilized Video: ' matrix_type]); currAxes = axes; for i=1: frame_count if i <= warp_count warp_idx = i; else warp_idx = warp_count; end warp_mat = projective2d(inv(rot_mat(:, :, warp_idx)')); % rot_mat(:, :, warp_idx) outputView = imref2d([vid_height, vid_width]); stabilized = imwarp(vid_frame(i).cdata, warp_mat, 'OutputView', outputView); cropped = imcrop(stabilized, [cropped_x, cropped_y, cropped_width, cropped_height]); scaled = imresize(cropped, [vid_height, vid_width]); image(scaled, 'Parent', currAxes); currAxes.Visible = 'off'; pause(1/frame_rate); writeVideo(vidObj, scaled) end close(vidObj); end
github
zongwave/IPASS-master
sensor_calibraion.m
.m
IPASS-master/VideoStab/sensor_calibraion.m
2,075
utf_8
87988e8b55e6952551ee3fa327ddeba4
% sensor_calibration.m - Optimal camera & gyrocope calibration parameters % by build in function 'fminunc' % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function [optimal_calib] = sensor_calibraion() clc; clear; close all; [frame_count, frame_idx, p0, p1] = import_image_keypoints(); [gyro_time, gyro_pos, gyro_quat] = import_camera_pose(); frame_time = gyro_time; % Intrinsic Camera Parameters [fc, cc, alpha_c, kc, fc_error, cc_error, alpha_c_error, kc_error, frame_size] = import_camera_intrinsics(); % focal_x; focal_y; orig_x; orig_y; readout_time; gyro_delay; gyro_drifft; readout_time = 0; gyro_delay = 0; gyro_drifft = 0; init_calib = [fc; cc; alpha_c; readout_time; gyro_delay; gyro_drifft]; rot_mat = zeros(3, 3, size(gyro_quat, 1)); % optimal calibration parameters. % Set options for fminunc % options = optimset('GradObj', 'on', 'MaxIter', 400); options = optimoptions(@fminunc, ... 'Display','iter', ... 'Algorithm','quasi-newton', ... 'MaxFunctionEvaluations',8000); % Run fminunc to obtain the optimal calibration parameter optimal_calib = fminunc(@(calib_param)(cost_function(calib_param, ... frame_idx, p0', p1', frame_time, frame_size, ... gyro_pos', gyro_quat', gyro_time, ... rot_mat)), ... init_calib, options); display(optimal_calib); display(init_calib); end