plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
zongwave/IPASS-master
show_bayer_raw.m
.m
IPASS-master/ReadImage/show_bayer_raw.m
2,940
utf_8
07fb3de8e9e892fb345d92b33e13b085
% show_bayer_raw.m - convert bayer image to RGB % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function show_bayer_raw(width, heigh, bit_depth, bayer_pattern) clear; clc; close all; [filename, pathname] = uigetfile( ... { '*.raw','RAW files (*.raw)'; ... '*.bmp','Bitmap files (*.bmp)'; ... '*.tif','TIF files (*.tif)'; ... '*.jpg','JPEG files (*.jpg)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick a file'); if (nargin < 3) % width = 2048; % heigh = 1092; width = 1920; heigh = 1080; bit_depth = 10; bayer_pattern = 'rggb'; end fullfilename = fullfile(pathname, filename); fip_raw = fopen(fullfilename,'rb'); [RAW, num] = fread(fip_raw, inf, 'uint16'); pixel_count = width * heigh; frame_count = num / pixel_count; fclose(fip_raw); bayer_vid_name = [fullfilename '_bayer']; vidObj = VideoWriter([bayer_vid_name '.mp4'], 'MPEG-4'); open(vidObj); for frame_idx=1: frame_count frame_idx for pix_idx=1 : pixel_count temp(pix_idx) = RAW(pix_idx + (frame_idx-1) * pixel_count); bayer(pix_idx) = double(temp(pix_idx) / (bitshift(1, bit_depth) - 1)); end bayer = reshape(bayer, width, heigh); bayer = bayer'; RGB = demosaic(uint8(255 * bayer), bayer_pattern); writeVideo(vidObj, RGB) end close(vidObj); bayer_filename = [fullfilename '_frame.raw']; fip_bayer = fopen(bayer_filename,'w'); fwrite(fip_bayer, temp, 'uint16'); fclose(fip_bayer); imwrite(RGB, [fullfilename '.bmp']); figure(); imshow(RGB); % for i=1 : 2: (pixel_count - width - 1) % tempR = RAW(i); % tempGr = RAW(i + 1); % tempGb = RAW(i + width); % tempB = RAW(i + width + 1); % % R(i) = double(tempR / (bitshift(1, bit_depth) - 1)); % R(i+1) = R(i); % R(i + width) = R(i); % R(i + width + 1) = R(i); % % G(i) = double((tempGr + tempGb) / (2 * (bitshift(1, bit_depth) - 1))); % G(i + 1) = G(i); % G(i + width) = G(i); % G(i + width + 1) = G(i); % % B(i) = double(tempB / (bitshift(1, bit_depth) - 1)); % B(i + 1) = B(i); % B(i + width) = B(i); % B(i + width + 1) = B(i); % end % % R = reshape(R, width, heigh); % G = reshape(G, width, heigh); % B = reshape(B, width, heigh); % % R = R'; % G = G'; % B = B'; % % RGB = cat(3, R, G, B);
github
zongwave/IPASS-master
sfb3D.m
.m
IPASS-master/Wavelet/biShrink/sfb3D.m
1,567
utf_8
c7ef9448ec966a9f630ab9be5d316f28
function y = sfb3D(lo, hi, sf1, sf2, sf3) % 3D Synthesis Filter Bank % % USAGE: % y = sfb3D(lo, hi, sf1, sf2, sf3); % INPUT: % lo, hi - lowpass subbands % sfi - synthesis filters for dimension i % OUPUT: % y - output array % See afb3D % % WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY % http://taco.poly.edu/WaveletSoftware/ if nargin < 4 sf2 = sf1; sf3 = sf1; end LLL = lo; LLH = hi{1}; LHL = hi{2}; LHH = hi{3}; HLL = hi{4}; HLH = hi{5}; HHL = hi{6}; HHH = hi{7}; % filter along dimension 3 LL = sfb3D_A(LLL, LLH, sf3, 3); LH = sfb3D_A(LHL, LHH, sf3, 3); HL = sfb3D_A(HLL, HLH, sf3, 3); HH = sfb3D_A(HHL, HHH, sf3, 3); % filter along dimension 3 L = sfb3D_A(LL, LH, sf2, 2); H = sfb3D_A(HL, HH, sf2, 2); % filter along dimension 1 y = sfb3D_A(L, H, sf1, 1); % LOCAL FUNCTION function y = sfb3D_A(lo, hi, sf, d) % 3D Synthesis Filter Bank % (along single dimension only) % % y = sfb3D_A(lo, hi, sf, d); % sf - synthesis filters % d - dimension of filtering % see afb2D_A lpf = sf(:, 1); % lowpass filter hpf = sf(:, 2); % highpass filter % permute dimensions of lo and hi so that dimension d is first. p = mod(d-1+[0:2], 3) + 1; lo = permute(lo, p); hi = permute(hi, p); [N1, N2, N3] = size(lo); N = 2*N1; L = length(sf); y = zeros(N+L-2, N2, N3); for k = 1:N3 y(:, :, k) = upfirdn(lo(:, :, k), lpf, 2, 1) + upfirdn(hi(:, :, k), hpf, 2, 1); end y(1:L-2, :, :) = y(1:L-2, :, :) + y(N+[1:L-2], :, :); y = y(1:N, :, :); y = cshift3D(y, 1-L/2, 1); % permute dimensions of y (inverse permutation) y = ipermute(y, p);
github
zongwave/IPASS-master
afb3D.m
.m
IPASS-master/Wavelet/biShrink/afb3D.m
2,569
utf_8
d60f781f473b436449d0a260f6a420c2
function [lo, hi] = afb3D(x, af1, af2, af3) % 3D Analysis Filter Bank % % USAGE: % [lo, hi] = afb3D(x, af1, af2, af3); % INPUT: % x - N1 by N2 by N3 array matrix, where % 1) N1, N2, N3 all even % 2) N1 >= 2*length(af1) % 3) N2 >= 2*length(af2) % 4) N3 >= 2*length(af3) % afi - analysis filters for dimension i % afi(:, 1) - lowpass filter % afi(:, 2) - highpass filter % OUTPUT: % lo - lowpass subband % hi{d}, d = 1..7 - highpass subbands % EXAMPLE: % x = rand(32,64,16); % [af, sf] = farras; % [lo, hi] = afb3D(x, af, af, af); % y = sfb3D(lo, hi, sf, sf, sf); % err = x - y; % max(max(max(abs(err)))) % % WAVELET SOFTWARE AT POLYTECHNIC UNIVERSITY, BROOKLYN, NY % http://taco.poly.edu/WaveletSoftware/ if nargin < 3 af2 = af1; af3 = af1; end % filter along dimension 1 [L, H] = afb3D_A(x, af1, 1); % filter along dimension 2 [LL LH] = afb3D_A(L, af2, 2); [HL HH] = afb3D_A(H, af2, 2); % filter along dimension 3 [LLL LLH] = afb3D_A(LL, af3, 3); [LHL LHH] = afb3D_A(LH, af3, 3); [HLL HLH] = afb3D_A(HL, af3, 3); [HHL HHH] = afb3D_A(HH, af3, 3); lo = LLL; hi{1} = LLH; hi{2} = LHL; hi{3} = LHH; hi{4} = HLL; hi{5} = HLH; hi{6} = HHL; hi{7} = HHH; % LOCAL FUNCTION function [lo, hi] = afb3D_A(x, af, d) % 3D Analysis Filter Bank % (along one dimension only) % % [lo, hi] = afb3D_A(x, af, d); % INPUT: % x - N1xN2xN2 matrix, where min(N1,N2,N3) > 2*length(filter) % (Ni are even) % af - analysis filter for the columns % af(:, 1) - lowpass filter % af(:, 2) - highpass filter % d - dimension of filtering (d = 1, 2 or 3) % OUTPUT: % lo, hi - lowpass, highpass subbands % % % Example % x = rand(32,64,16); % [af, sf] = farras; % d = 2; % [lo, hi] = afb3D_A(x, af, d); % y = sfb3D_A(lo, hi, sf, d); % err = x - y; % max(max(max(abs(err)))) lpf = af(:, 1); % lowpass filter hpf = af(:, 2); % highpass filter % permute dimensions of x so that dimension d is first. p = mod(d-1+[0:2], 3) + 1; x = permute(x, p); % filter along dimension 1 [N1, N2, N3] = size(x); L = size(af, 1)/2; x = cshift3D(x, -L, 1); lo = zeros(L+N1/2, N2, N3); hi = zeros(L+N1/2, N2, N3); for k = 1:N3 lo(:, :, k) = upfirdn(x(:, :, k), lpf, 1, 2); end lo(1:L, :, :) = lo(1:L, :, :) + lo([1:L]+N1/2, :, :); lo = lo(1:N1/2, :, :); for k = 1:N3 hi(:, :, k) = upfirdn(x(:, :, k), hpf, 1, 2); end hi(1:L, :, :) = hi(1:L, :, :) + hi([1:L]+N1/2, :, :); hi = hi(1:N1/2, :, :); % permute dimensions of x (inverse permutation) lo = ipermute(lo, p); hi = ipermute(hi, p);
github
zongwave/IPASS-master
import_video.m
.m
IPASS-master/Wavelet/denoise/import_video.m
1,567
utf_8
901835343dbf77f79712538cb65eba81
% import_video.m - import original video % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function [fullname, vid_frame, frame_count, frame_rate, duration, vid_width, vid_height] = import_video(file) clc; clear; if (nargin < 1) [filename, pathname] = uigetfile( ... {'*.mp4','MP4 files (*.mp4)'; ... '*.mpg','MPEG files (*.mpg)'; ... '*.mov','MOV files (*.mov)'; ... '*.*', 'All Files (*.*)'}, ... 'Pick original noisy video file'); fullname = fullfile(pathname, filename); vidObj = VideoReader(fullname); frame_count = 0; frame_rate = vidObj.FrameRate; vid_height = vidObj.Height; vid_width = vidObj.Width; duration = vidObj.Duration; figure(); title('Original Video'); currAxes = axes; while hasFrame(vidObj) vidFrame = readFrame(vidObj); frame_count = frame_count + 1 vid_frame(frame_count).cdata = vidFrame; image(vid_frame(frame_count).cdata, 'Parent', currAxes); currAxes.Visible = 'off'; pause(0.001/vidObj.FrameRate); end end
github
zongwave/IPASS-master
denoising_dwt.m
.m
IPASS-master/Wavelet/denoise/denoising_dwt.m
4,332
utf_8
22df1599fbd981002d1cf611d21aa922
% denoising_dwt.m - image denoise using wavelet % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function y = denoising_dwt(x, wname, tname, tuning) % Local Adaptive Image Denoising Algorithm % Usage : % y = denoising_dwt(x) % INPUT : % x - a noisy image % OUTPUT : % y - the corresponding denoised image if nargin < 2 wname = 'haar'; tname = 'penalhi'; tuning = 1; end glb = 0; alpha = 1; level = 5; % wavedec2 is a two-dimensional wavelet analysis function. % Vector C is organized as a vector with A(N), H(N), V(N), D(N), H(N-1), V(N-1), D(N-1), ..., H(1), V(1), D(1), where A, H, V, and D are each a row vector. Each vector is the vector column-wise storage of a matrix. % % A contains the approximation coefficients % H contains the horizontal detail coefficients % V contains the vertical detail coefficients % D contains the diagonal detail coefficients % Matrix S is such that % % S(1,:) = size of approximation coefficients(N). % S(i,:) = size of detail coefficients(N-i+2) for i = 2, ...N+1 and S(N+2,:) = size(X). % [C, S] = wavedec2(x, level, wname); sorh = 's'; if glb == 1 % Estimate the noise standard deviation from the % detail coefficients at level 1. det1 = detcoef2('compact', C, S, 1); sigma = median(abs(det1))/0.6745; keepapp = 1; % Use wbmpen for selecting global threshold % for image de-noising. glb_thr = wbmpen(C, S, sigma, alpha) XDEN = wdencmp('gbl', C, S, wname, level, glb_thr, sorh, keepapp); else % Obtain denoising (wavelet shrinkage) thresholds. Use the Birge-Massart strategy with a tuning parameter of 3. % De-noising using level dependent thresholds. % [C,S] is the wavelet decomposition structure of the image to be de-noised, % SCAL defines the multiplicative threshold rescaling (see wden for more information) and % ALFA is a sparsity parameter (see wbmpen for more information). % % THR = wthrmngr('dw2ddenoLVL','penalhi',C,S,ALFA) % ALFA must be such that 2.5 < ALFA < 10 % THR = wthrmngr('dw2ddenoLVL','penalme',C,S,ALFA) % ALFA must be such that 1.5 < ALFA < 2.5 % THR = wthrmngr('dw2ddenoLVL','penallo',C,S,ALFA) % ALFA must be such that 1 < ALFA < 2 % THR = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,SCAL) % THR = wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,S) % if strcmp(tname, 'penalhi') alpha = 5; elseif strcmp(tname, 'penalme') alpha = 2; elseif strcmp(tname, 'penallo') alpha = 1.5; elseif strcmp(tname, 'sqtwolog') alpha = 1; end alpha = alpha * tuning; if strcmp(tname, 'sqrtbal_sn') lvd_thr = wthrmngr('dw2ddenoLVL', tname, C, S) else lvd_thr = wthrmngr('dw2ddenoLVL', tname, C, S, alpha) end % wdencmp is a one- or two-dimensional de-noising and compression-oriented function. % wdencmp performs a de-noising or compression process of a signal or an image, using wavelets. % % [XC,CXC,LXC,PERF0,PERFL2] = wdencmp('gbl',X,'wname',N,THR,SORH,KEEPAPP) returns a de-noised or compressed version XC of input signal X (one- or two-dimensional) obtained by wavelet coefficients thresholding using global positive threshold THR. % % Additional output arguments [CXC,LXC] are the wavelet decomposition structure of XC (see wavedec or wavedec2 for more information). PERF0 and PERFL2 are L2 -norm recovery and compression score in percentage. % % PERFL2 = 100 * (vector-norm of CXC / vector-norm of C)2 if [C,L] denotes the wavelet decomposition structure of X. % [XDEN, cfsDEN, dimCFS] = wdencmp('lvd', C, S, wname, level, lvd_thr, sorh); end % figure; % subplot(1,2,1); % imagesc(x); colormap gray; axis off; % title('Noisy Image'); % subplot(1,2,2); % imagesc(XDEN); colormap gray; axis off; % title('Denoised Image'); y = XDEN; end
github
zongwave/IPASS-master
image_denoise.m
.m
IPASS-master/Wavelet/denoise/image_denoise.m
8,940
utf_8
2dc2762bb65c1d5cf7df5c9c2323027a
% image_denoise.m - image denoise using wavelet % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function varargout = image_denoise(varargin) % IMAGE_DENOISE MATLAB code for image_denoise.fig % IMAGE_DENOISE, by itself, creates a new IMAGE_DENOISE or raises the existing % singleton*. % % H = IMAGE_DENOISE returns the handle to a new IMAGE_DENOISE or the handle to % the existing singleton*. % % IMAGE_DENOISE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in IMAGE_DENOISE.M with the given input arguments. % % IMAGE_DENOISE('Property','Value',...) creates a new IMAGE_DENOISE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before image_denoise_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to image_denoise_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help image_denoise % Last Modified by GUIDE v2.5 19-Jul-2017 11:27:11 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @image_denoise_OpeningFcn, ... 'gui_OutputFcn', @image_denoise_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before image_denoise is made visible. function image_denoise_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to image_denoise (see VARARGIN) % Choose default command line output for image_denoise handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes image_denoise wait for user response (see UIRESUME) % uiwait(handles.figure1); % --- Outputs from this function are returned to the command line. function varargout = image_denoise_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on slider movement. function set_param_Callback(hObject, eventdata, handles) % hObject handle to set_param (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider thresh = get( handles.set_param, 'value'); if rem(thresh, 1) ~= 0 thresh = round(thresh); set(hObject,'Value', thresh) end set(handles.params,'string', thresh); % --- Executes during object creation, after setting all properties. function set_param_CreateFcn(hObject, eventdata, handles) % hObject handle to set_param (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called set(hObject,'Value', 1); % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end function params_Callback(hObject, eventdata, handles) % hObject handle to params (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of params as text % str2double(get(hObject,'String')) returns contents of params as a double % --- Executes during object creation, after setting all properties. function params_CreateFcn(hObject, eventdata, handles) % hObject handle to params (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called set(hObject,'Value', 1); % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in wavelet_basis. function wavelet_basis_Callback(hObject, eventdata, handles) % hObject handle to wavelet_basis (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns wavelet_basis contents as cell array % contents{get(hObject,'Value')} returns selected item from wavelet_basis % --- Executes during object creation, after setting all properties. function wavelet_basis_CreateFcn(hObject, eventdata, handles) % hObject handle to wavelet_basis (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in thresh_setting. function thresh_setting_Callback(hObject, eventdata, handles) % hObject handle to thresh_setting (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns thresh_setting contents as cell array % contents{get(hObject,'Value')} returns selected item from thresh_setting % --- Executes during object creation, after setting all properties. function thresh_setting_CreateFcn(hObject, eventdata, handles) % hObject handle to thresh_setting (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in denoise. function denoise_Callback(hObject, eventdata, handles) % hObject handle to denoise (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) basis_index = get(handles.wavelet_basis,'value'); switch basis_index case 1 wname = 'haar'; case 2 wname = 'db2'; case 3 wname = 'db4'; case 4 wname = 'db8'; case 5 wname = 'coif1'; case 6 wname = 'coif2'; case 7 wname = 'coif4'; case 8 wname = 'sym2'; case 9 wname = 'sym4'; case 10 wname = 'sym8'; case 11 wname = 'bior1.1'; case 12 wname = 'bior3.5'; otherwise wname = 'haar'; end thresh_index = get(handles.thresh_setting,'value'); switch thresh_index case 1 tname = 'penalhi'; case 2 tname = 'penalme'; case 3 tname = 'penallo'; case 4 tname = 'sqtwolog'; case 5 tname = 'sqrtbal_sn'; otherwise tname = 'penalhi'; end tuning = get( handles.set_param, 'value'); wavelet_denoise(wname, tname, tuning);
github
zongwave/IPASS-master
wavelet_denoise.m
.m
IPASS-master/Wavelet/denoise/wavelet_denoise.m
2,731
utf_8
33462ea2d55ccace62dd3cbbf4a3410f
% wavelet_denoise.m - image denoise using wavelet % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Author: Zong Wei <[email protected]> % function wavelet_denoise(wname, tname, tuning) [vid_name, vid_frame, frame_count, frame_rate, duration, vid_width, vid_height] = import_video(); % THR = wthrmngr('dw2ddenoLVL','penalhi',C,S,ALFA) % ALFA must be such that 2.5 < ALFA < 10 % THR = wthrmngr('dw2ddenoLVL','penalme',C,S,ALFA) % ALFA must be such that 1.5 < ALFA < 2.5 % THR = wthrmngr('dw2ddenoLVL','penallo',C,S,ALFA) % ALFA must be such that 1 < ALFA < 2 % THR = wthrmngr('dw2ddenoLVL','sqtwolog',C,S,SCAL) % THR = wthrmngr('dw2ddenoLVL','sqrtbal_sn',C,S) alpha = tuning; glb = 0; vidObj = VideoWriter([vid_name '_wavelet_denoise_' wname '_tuning_' tname '_' mat2str(tuning) '_global_thresh_' mat2str(glb) '.mp4'], 'MPEG-4'); open(vidObj); figure(); title([wname ' Wavelet denoised Video ' tname ' tuning ' mat2str(tuning)]); currAxes = axes; test_frame_count = 20; for iFrame=1: frame_count input = vid_frame(iFrame).cdata; in_name = [vid_name '_' mat2str(iFrame) '.bmp']; if iFrame == 1 imwrite(input, in_name); end [row, col, channel] = size(input); if channel == 3 input_yuv = rgb2yuv(input(:, :, 1), input(:, :, 2), input(:, :, 3)); else input_yuv = rgb2yuv(input(:, :, 1), input(:, :, 1), input(:, :, 1)); end input_yuv = im2double(input_yuv); % Run local adaptive image denoising algorithm for iChannel = 1: channel output_yuv(:, :, iChannel) = 255 * denoising_dwt(input_yuv(:, :, iChannel), wname, tname, tuning); end if channel == 3 output = yuv2rgb(output_yuv(:, :, 1), output_yuv(:, :, 2), output_yuv(:, :, 3), 'YUV444_8'); else output = output_yuv(:, :, 1); end output = im2double(output); out_name = [vid_name '_' mat2str(iFrame) '_wavelet_denoise_' wname '_threh_' tname '_' mat2str(tuning) '.bmp']; if iFrame == 1 imwrite(output, out_name); end image(output, 'Parent', currAxes); currAxes.Visible = 'off'; pause(1/frame_rate); writeVideo(vidObj, output) iFrame end close(vidObj); end
github
gaoyuantim/LHS-Maximin-master
LHS_multi.m
.m
LHS-Maximin-master/LHS_SUM/LHS_multi.m
2,284
utf_8
858bdceba6500914048d76fb477d5a8d
% Input : n = number of points % k = number of dimension % sum = a group of square distance we are insterested in % % Output : A table if there is a conbinaison satisfying the command; % "FALSE" if the result doesn't exist % % SYNTAX : Table = LHS_multi ( n , k , sum) % % Exemple : Table = LHS_multi(5, 8, [40]); % % Result : % % Table = % % 0 1 2 3 4 % 0 1 2 4 3 % 0 3 4 1 2 % 1 2 4 3 0 % 1 4 0 2 3 % 1 4 2 0 3 % 1 4 2 3 0 % 2 1 4 0 3 % Copyright Notice % % Copyright (C) 2016 Yuan Gao <[email protected]> % % Author: Yuan Gao <[email protected]> % % Copying Permission Statement % % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as published % by the Free Software Foundation; either version 2.1 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTA- % BILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General % Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with this program; if not, see % <http://www.gnu.org/licenses/>. function [ table_Fix ] = LHS_Bound_multi( n , k , addition ) num_Addition = length(addition); Table = []; if num_Addition > 0 for i = 1:num_Addition Table_Plus = sos_decompose( addition(i) , k , n - 1); while Table_Plus(1,1) >= n * n Table_Plus(1,:) = []; end Table = [ Table ; Table_Plus]; end [Height, Length] = size(Table); num_Result = zeros(1,(Height + 1)*(n - 1)); for i = 1:Height for j = 1:Length num = sqrt(Table(i,j)); num_Result(1,(i * (n - 1) + num)) = num_Result(1 , (i * (n - 1) + num)) + 1; end end table_Fix = LHS_Bound_Sum(n, k, Height, num_Result)'; end end
github
gaoyuantim/LHS-Maximin-master
sos_decompose.m
.m
LHS-Maximin-master/LHS_SUM/sos_decompose.m
1,980
utf_8
bddfc9e37b618824e38d88e896a3f5f9
% sos_decompose computes decompositions into sum of squares % % SYNTAX: sos = sos_decompose (S, k, n - 1) % % computes all possible decompositions of integer S into a sum of k squares % % EXAMPLE: S = 56, k = 6 % % >> sos = sos_decompose (56, 6, 6) % % sos = % % 36 16 1 1 1 1 % 36 4 4 4 4 4 % 25 16 9 4 1 1 % 16 9 9 9 9 4 % Copyright Notice % % Copyright (C) 2016 CentraleSupelec % % Author: Julien Bect <[email protected]> % % Copying Permission Statement % % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as published % by the Free Software Foundation; either version 2.1 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTA- % BILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General % Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with this program; if not, see % <http://www.gnu.org/licenses/>. function [sos, sos_all] = sos_decompose (S, k, dmax) if k == 1 sos = cell (S, 1); dmax = min (dmax, floor (sqrt (S))); for t = 1:dmax sos{t^2, 1} = t^2; end else [~, sos] = sos_decompose (S, k - 1, dmax); sos = [sos cell(S, 1)]; for SS = k:S, dmax0 = min (dmax, floor (sqrt (SS - (k - 1)))); for t = dmax0:-1:1 B = sos{SS - t^2, k - 1}; if ~ isempty (B) A = t^2 * (ones (size (B, 1), 1)); sos{SS, k} = [sos{SS, k}; [A B]]; end end sos{SS, k} = unique (sort (sos{SS, k}, 2, 'descend'), 'rows'); end end % if sos_all = sos; sos = sos_all{end, end}; end
github
gaoyuantim/LHS-Maximin-master
LHS_D2.m
.m
LHS-Maximin-master/LHS_D2TEST/LHS_D2.m
1,865
utf_8
cfb9abb99c5e99461417b1a9aaed6660
% Input: n = number of points % m = number of dimension % D2 = the square distance tested % % Output: A table of points constructed by the maximin D2 if D2is suitable; % "D2 too big" when D2 is too big % "Dimension is to big" if m is bigger than 3 % % SYNTAX: table = LHS_D2(n , m , D2) % % Exemple: table = LHS(15, 2, 17) % % table = % 0 0 % 1 4 % 2 8 % 3 12 % 4 1 % 5 5 % 6 9 % 7 13 % 8 2 % 9 6 % 10 10 % 11 14 % 12 3 % 13 7 % 14 11 % Copyright Notice % % Copyright (C) 2016 Yuan Gao <[email protected]> % % Author: Yuan Gao <[email protected]> % % Copying Permission Statement % % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as published % by the Free Software Foundation; either version 2.1 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTA- % BILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General % Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with this program; if not, see % <http://www.gnu.org/licenses/>. function [ table ] = LHS_D2( n , m , D2 ) if m == 2 table = LHS_D2_2( n , D2 ); else if m == 3 table = LHS_D2_3( n , D2 ); else disp('Dimension is to big'); end end
github
ojwoodford/ojwul-master
expm_srt_3d_sym.m
.m
ojwul-master/symbolic/expm_srt_3d_sym.m
1,705
utf_8
d73555feef49a0dfba8a2780aed71738
%EXPM_SRT_3D Compute a transformation matrix, given the Lie algebra vector % % M = expm_srt_3d_sym(r, [t, [s]]) % % Computes the symbolic transformation matrix defined by a Lie vector % consisting of a rotation, translation and uniform scaling. % % This function applies the formula given in the paper: % "Distances and Means of Direct Similarities" % M-T Pham et al. % %IN: % r - 3x1 rotation parameter vector % t - 3x1 translation parameter vector. Default: []. % s - scalar uniform scaling parameter. Default: 0. % %OUT: % M - 3x3 (if t == []) or 4x4 transformation matrix. function M = expm_srt_3d_sym(r, t, s) % Default values if nargin < 3 s = sym(0); if nargin < 2 t = []; end end % Angles theta2 = r(:)' * r(:); theta = sqrt(theta2); % Skew matrix W = skew(r); W2 = W * W; % Rotation matrix via Rodrigues formula M = W * sinc(theta) + W2 * cosf(theta) + eye(3); % Apply scale M = M * exp(s); if isempty(t) return; end % Translation multipler if nargin < 3 eta_r = sym(1) - sinc(theta); eta_i = cosf(theta); else x = cos(theta) * exp(s) - 1; y = sin(theta) * exp(s); eta_r = expf(s) - (s * x + theta * y) / (s * s); eta_i = (s * y - theta * x) / (theta * (s * s + theta2)); end eta_r = at0is1(theta2, @(theta2) eta_r / theta2); A = W * eta_i + W2 * eta_r + (eye(3) * expf(s)); % Compute the translation part M(1:3,4) = simplify(A * t(:)); end function x = sinc(x) x = at0is1(x, @(x) sin(x) / x); end function x = cosf(x) x = at0is1(x, @(x) (1 - cos(x)) / (x * x)); end function x = expf(x) x = at0is1(x, @(x) (exp(x) - 1) / x); end function x = at0is1(x, fun) if isequal(x, sym(0)) x = sym(1); else x = fun(x); end end
github
ojwoodford/ojwul-master
line2line_symeq.m
.m
ojwul-master/symbolic/line2line_symeq.m
1,057
utf_8
0dbe06c4fc41a0ef82989a6c30386fb3
%LINE2LINE_SYMEQ Compute the shortest vector between two lines % % y = line2line_symeq(x1, d1, x2, d2) % % Symbolically computes the shortest vector between two lines. % %IN: % x1 - Nx1 point on line 1. % d1 - Nx1 direction vector of line 1. % x2 - Nx1 point on line 2. % d2 - Nx1 direction vector of line 2. % %OUT: % y - Nx1 shortest vector. function y = line2line_symeq(x1, d1, x2, d2) persistent eq tv N = numel(x1); if numel(eq) ~= N % Compute the line to line shortest vector once % Initialize symbolic variables x1_ = sym(sym('x1%d', [N 1]), 'real'); d1_ = sym(sym('d1%d', [N 1]), 'real'); x2_ = sym(sym('x2%d', [N 1]), 'real'); d2_ = sym(sym('d2%d', [N 1]), 'real'); syms l1 l2 real eq = x1_ + d1_ * l1 - x2_ - d2_ * l2; l = solve(jacobian(eq' * eq, [l1 l2]) == [0 0], l1, l2); % Simultaneous equations eq = simplify(subs(eq, [l1; l2], [l.l1; l.l2])); tv = [x1_; d1_; x2_; d2_]; end if nargin < 4 y = eq; else y = subs(eq, tv, [x1; d1; x2; d2]); end
github
ojwoodford/ojwul-master
point2line_symeq.m
.m
ojwul-master/symbolic/point2line_symeq.m
861
utf_8
69a05298ede557a9ee8ad43f6ed3c8fe
%POINT2LINE_SYMEQ Compute the shortest vector between a point and a line % % V = point2line_symeq(X, Y, D) % % Symbolically computes the shortest vector between a point and a line in % N-D. % %IN: % X - Nx1 point. % Y - Nx1 point on the line. % D - Nx1 line direction. % %OUT: % V - Nx1 output vector. function v = point2line_symeq(X, Y, D) persistent eq tv N = numel(X); if numel(tv) ~= N * 3 % Initialize symbolic variables tv = sym(sym('tv%d', [N*3 1]), 'real'); X_ = tv(1:N); Y_ = tv(N+1:2*N); D_ = tv(2*N+1:3*N); % Compute the point to line vector equation once syms l real eq = X_ - Y_ - D_ * l; l_sol = solve(diff(sum(eq .^ 2), l) == sym(0), l); % Minimize error eq = simplify(subs(eq, l, l_sol)); end if nargin < 3 v = eq; else v = subs(eq, tv, [X; Y; D]); end
github
ojwoodford/ojwul-master
auto_jacobian.m
.m
ojwul-master/symbolic/auto_jacobian.m
4,521
utf_8
59d589cacf7beca35565336113c19730
%AUTO_JACOBIAN Write and compile a mex file to compute Jacobian of residuals % % auto_jacobian(residuals, params, fname, var_fixed, var_sum) % % This function differentiates a symbolic set of resdiuals with respect to % some parameters, creates a mex file which can compute the residuals and % the derivatives, and finally compiles the mex file. % %IN: % residuals - Mx1 set of symbolic equations for some residuals. % params - Nx1 set of symbolic variables to differentiate the residuals % with respect to. % fname - String containing the file name (or full path) of the mex file % to be written, including the extension. % var_fixed - Px1 set of symbolic variables which are the same for every % column of var_sum variables. % var_sum - Qx1 set of symbolic variables, of which many sets can be % passed to the mex file (see below). % % The resulting mex function operates in the form: % [res, J] = fname(var_fixed, var_sum) % %IN: % var_fixed - Px1 vector of fixed variables. % var_sum - QxR array of R vectors of variables which are looped over. % %OUT: % res - MxR array of residuals % J - (M*N)xR array of Jacobians function auto_jacobian(residuals, params, fname, var_fixed, var_sum) fprintf('AUTO JACOBIAN: %s\n', fname) % Residuals with zero inputs fprintf('Residuals at zero...'); drawnow; tic res = subs(residuals, params, zeros(size(params))); fprintf(' %gs.\n', toc); % Compute the Jacobian of the residuals fprintf('Compute Jacobian...'); drawnow; tic J = jacobian(residuals, params); fprintf(' %gs.\n', toc); % Linearize the Jacobian w.r.t. the parameters fprintf('Taylor expansion...'); drawnow; tic J = subs(J, params, zeros(size(params))); fprintf(' %gs.\n', toc); % Turn into some C code fprintf('Generating C code...'); drawnow; tic res = res(:)'; J = J(:)'; res_ = write_C_fragment(res); J_ = write_C_fragment(J); % % Generate the other lines of the C file lines = { ... '#include "mex.h"', ... '#include <math.h>', ... 'void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {', ... 'if (nrhs != 2 || nlhs < 1 || nlhs > 2) { mexErrMsgTxt("Unexpected number of arguments."); }', ... ['if (!mxIsDouble(prhs[0]) || mxIsComplex(prhs[0]) || mxGetNumberOfElements(prhs[0]) != ' num2str(numel(var_fixed)) ')'], ... '{ mexErrMsgTxt("First input of unexpected size or type"); }', ... ['if (!mxIsDouble(prhs[1]) || mxIsComplex(prhs[1]) || mxGetM(prhs[1]) != ' num2str(numel(var_sum)) ')'], ... '{ mexErrMsgTxt("Second input of unexpected size or type"); }', ... 'const double *var_fixed = (const double *)mxGetData(prhs[0]);', ... 'const double *var_sum = (const double *)mxGetData(prhs[1]);', ... 'int N = mxGetN(prhs[1]);', ... ['plhs[0] = mxCreateNumericMatrix(' num2str(numel(res)) ', N, mxDOUBLE_CLASS, mxREAL);'], ... 'double *res = (double *)mxGetData(plhs[0]);', ... 'double *J = NULL;', ... ['if (nlhs > 1) { plhs[1] = mxCreateNumericMatrix(' num2str(numel(J)) ', N, mxDOUBLE_CLASS, mxREAL); J = (double *)mxGetData(plhs[1]); }'], ... ['for (int a = 0; a < N; ++a, var_sum += ' num2str(numel(var_sum)) ', res += ' num2str(numel(res)) ') {'], ... res_, ... 'if (J) { ', ... J_, ... ['J += ' num2str(numel(J)) ';'], ... '}}}', ... }; % Write out to a file fid = fopen(fname, 'wt'); for l = lines fprintf(fid, [l{1} '\n']); end fclose(fid); fprintf(' %gs.\n', toc); % Mex the function fprintf('Compiling...'); drawnow; tic try mex(fname, '-O'); catch me % The file might be in use - just report the error fprintf('%s\n', getReport(me, 'basic')); end fprintf(' %gs.\n', toc); end function str = write_C_fragment(symFunc) % Save the C code to file fname = [tempname '.cpp']; ccode(symFunc, 'file', fname); % Read in the code fragment fid = fopen(fname, 'rt'); str = textscan(fid, '%s', 'delimiter', '\n'); fclose(fid); % Delete the file delete(fname); % Deal with single value cases str = str{1}; if numel(symFunc) == 1 str{end} = regexprep(str{end}, '\S+ = ', 'A0[0][0] = '); end % Remove the extra dimension from the output, and change the variable name str = strrep(sprintf(' %s\n', str{:}), 'A0[0][', [inputname(1) '[']); % Add double to the start of temporary variables str = regexprep(str, ' t(\d*) = ', ' double t${$1} = '); % Put in the brackets sub1 = @(n) num2str(str2double(n) - 1); str = regexprep(str, '_l_(\d*)_r_', '[${sub1($1)}]'); end
github
ojwoodford/ojwul-master
line_plane_intersect_symeq.m
.m
ojwul-master/symbolic/line_plane_intersect_symeq.m
976
utf_8
0d0bfa0e138deee193332d77058887cf
%LINE_PLANE_INTERSECT_SYMEQ Compute the intersection point of a line and a plane % % y = line_plane_intersect_symeq(n, d, x, l) % % Symbolically computes the point of intersection of a line and a plane in % N dimensions. % %IN: % n - Nx1 plane normal. % d - scalar plane offset from origin. % x - Nx1 point on line. % l - Nx1 line direction. % %OUT: % y - Nx1 output point. function y = line_plane_intersect_symeq(n, d, x, l) persistent eq tv N = numel(n); if numel(tv) ~= N * 3 + 1 % Compute the line-plane intersection equation once % Initialize symbolic variables n_ = sym(sym('n%d', [N 1]), 'real'); x_ = sym(sym('x%d', [N 1]), 'real'); l_ = sym(sym('l%d', [N 1]), 'real'); syms d_ y_ real y_ = solve(n_' * (x_ + l_ * y_) + d_ == 0, y_); % Simultaneous equations eq = simplify(x_ + l_ * y_); tv = [n_; d_; x_; l_]; end if nargin < 4 y = eq; else y = subs(eq, tv, [n; d; x; l]); end
github
ojwoodford/ojwul-master
rodrigues_sym.m
.m
ojwul-master/symbolic/rodrigues_sym.m
391
utf_8
d5e8d50b3c288fa16f358e632a712665
%RODRIGUES_SYM Transform angle-axis to rotation matrix via Rodrigues' formula % % R = rodrigues_sym(axis, angle) % %IN: % axis - 3x1 normalized rotation axis vector. % angle - rotation angle in radians. % %OUT: % R - 3x3 rotation matrix function R = rodrigues_sym(axis, angle) R = sin(angle) * skew(axis) + (1 - cos(angle)) * (axis * axis') + cos(angle) * eye(3); end
github
ojwoodford/ojwul-master
line_intersect_symeq.m
.m
ojwul-master/symbolic/line_intersect_symeq.m
999
utf_8
bddacbc394544901eb2327cc6b5a0837
%LINE_INTERSECT_SYMEQ Compute the intersection point of two lines % % y = line_intersect_symeq(x1, n1, x2, n2) % % Symbolically computes the point of intersection of two lines in 2D. % %IN: % x1 - 2x1 point on line 1. % n1 - 2x1 direction of line 1. % x2 - 2x1 point on line 2. % n2 - 2x1 direction of line 2. % %OUT: % v - 2x1 output point. function y = line_intersect_symeq(x1, n1, x2, n2) persistent eq tv if isempty(eq) % Compute the line intersection equation once syms l1 l2 x1_1 x1_2 n1_1 n1_2 x2_1 x2_2 n2_1 n2_2 real tv = [x1_1 x1_2 n1_1 n1_2 x2_1 x2_2 n2_1 n2_2]'; eq = tv(1:2) + tv(3:4) * l1; l1_sol = getfield(solve(eq == tv(5:6) + tv(7:8) * l2, l1, l2), 'l1'); % Simultaneous equations %l1_sol = getfield(solve(diff(sum((tv(5:6) + tv(7:8) * l2 - eq) .^ 2), l1) == 0, l1, l2), 'l1'); % Minimize error eq = simplify(subs(eq, l1, l1_sol)); end if nargin < 4 y = eq; else y = subs(eq, tv, [x1; n1; x2; n2]); end
github
ojwoodford/ojwul-master
epipolar_disparity_symeq.m
.m
ojwul-master/symbolic/epipolar_disparity_symeq.m
1,450
utf_8
f1f4bffbbd83488796b8172d19b7edd4
%EPIPOLAR_DISPARITY_SYMEQ Compute the disparity of a point on/near an % epipolar line % % d = epipolar_disparity_symeq(RX, T, x) % % Symbolically computes the disparity of a point on an epipolar line that % is closest to a point in an image. % %IN: % RX - 3x1 world point multiplied by rotation part of projection matrix % P(:,1:3). % T - 3x1 translation part of project matrix P(:,4). % x - 2x1 corresponding point in the image. % %OUT: % d - output disparity. function [d, d_] = epipolar_disparity_symeq(RX, T, x, cov) persistent eq tv proj = @(X) X(1:2) / X(3); if isempty(eq) % Compute the point to line distance equation once tv = [sym('RX%d', [3 1]); sym('T%d', [3 1]); sym('x%d', [2 1]); col(sym('cov%d', [2 2]))]; assume(tv, 'real'); syms d_ real eq = (proj(tv(1:3) + tv(4:6) * d_) - tv(7:8)); eq = simplify(solve(diff(eq' * eq, d_) == sym(0), d_), 'Steps', 10); % Minimize error end if nargin < 4 d = eq; if nargout > 1 || nargout == 0 % Output the point to line residual error d_ = simplify((proj(tv(1:3) + tv(4:6) * eq) - tv(7:8)), 'Steps', 10); d_ = simplify(sqrt(d_' * d_)); if nargout == 0 % Write a MATLAB function to compute the error matlabFunction(d_, 'File', 'epipolar_error_symeq'); end end else d = subs(eq, tv, [RX; T; x; col(cov)]); end
github
ojwoodford/ojwul-master
expm_sym.m
.m
ojwul-master/symbolic/expm_sym.m
575
utf_8
489d9f3dac40fbc2056f001932f0e1d2
%EXPM_SYM Symbolic matrix exponential, up to a certain order % % B = expm_sym(A, order) % % Given a symbolic (or numeric) matrix, this function computes an % approximation of the matrix exponential up to a certain order. % %IN: % A - MxM input matrix. % order - scalar indicating the order up to which the matrix exponential % is to be computed. % %OUT: % B - MxM output matrix. function B = expm_sym(A, order) B = eye(size(A)); if isa(A, 'sym') B = sym(B); end A_ = B; for a = 1:order A_ = A_ * (A / a); B = B + A_; end
github
ojwoodford/ojwul-master
auto_diff.m
.m
ojwul-master/symbolic/auto_diff.m
1,967
utf_8
8bfe59eb60832fd92cb22fd26784cca2
%AUTO_DIFF Output C code to compute function values and their Jacobian % % C = auto_diff(funcs, vars, curr_val) % % This function differentiates a symbolic set of resdiuals with respect to % some parameters. % %IN: % funcs - Mx1 vector of functional expressions. % vars - Nx1 vector of variables to differentiate over. % curr_val - Nx1 vector of current values for each variable. % %OUT: % C - text array of C code to compute M function outputs and MxN Jacobian % coefficients. function C = auto_diff(funcs, vars, curr_val) % Compute the function values F = subs(funcs, vars, curr_val); % Compute the Jacobian of the functions J = jacobian(funcs, vars); % Linearize the Jacobian w.r.t. the variables J = subs(J, vars, curr_val); % Turn into some C code C = write_C_fragment([F(:)' J(:)']); end function str = write_C_fragment(symFunc) % Save the C code to file fname = [tempname '.cpp']; ccode(symFunc, 'file', fname); % Read in the code fragment fid = fopen(fname, 'rt'); str = textscan(fid, '%s', 'delimiter', '\n'); fclose(fid); % Delete the file delete(fname); % Deal with single value cases str = str{1}; if numel(symFunc) == 1 str{end} = regexprep(str{end}, '\S+ = ', 'A0[0][0] = '); end % Remove the extra dimension from the output, and change the variable name str = strrep(sprintf(' %s\n', str{:}), 'A0[0][', 'out['); % Add float to the start of temporary variables str = regexprep(str, ' t(\d*) = ', ' float t${$1} = '); % Replace special strings % Replace brackets sub1 = @(n) num2str(str2double(n) - 1); str = regexprep(str, '_l_(\d+)_r_', '[${sub1($1)}]'); % Put in dots str = regexprep(str, '_d_', '.'); % Find those outputs which haven't been set I = regexp(str, 'out\[(\d+)\] = ', 'tokens'); I = find(~ismember((0:numel(symFunc)-1)', str2double([I{:}])')); % Set the zero outputs if ~isempty(I) str = [str sprintf(' out[%d] = 0;\n', I - 1)]; end end
github
ojwoodford/ojwul-master
skew.m
.m
ojwul-master/geometry/skew.m
510
utf_8
8d41bfbc4fce7e037e11d9dc8a290ec6
%SKEW Generate 3x3 skew matrices from 3-vectors % % B = skew(A) % % Convert one or more 3-vectors to 3x3 skew matrices. % %IN: % A - 3xM matrix of 3-vectors % %OUT: % B - 3x3xM array of skew matrices function B = skew(A) sz = size(A); assert(sz(1) == 3); sz = [3 3 sz(2:end)]; if isa(A, 'sym') B = sym(zeros(sz)); else B = zeros(sz, class(A)); end B(2,1,:) = A(3,:); B(3,1,:) = -A(2,:); B(1,2,:) = -A(3,:); B(3,2,:) = A(1,:); B(1,3,:) = A(2,:); B(2,3,:) = -A(1,:); end
github
ojwoodford/ojwul-master
dpsimplify.m
.m
ojwul-master/geometry/dpsimplify.m
7,986
utf_8
3ef3a9b3638b7390a28425512f9f262e
function [ps,ix] = dpsimplify(p,tol) % Recursive Douglas-Peucker Polyline Simplification, Simplify % % [ps,ix] = dpsimplify(p,tol) % % dpsimplify uses the recursive Douglas-Peucker line simplification % algorithm to reduce the number of vertices in a piecewise linear curve % according to a specified tolerance. The algorithm is also know as % Iterative Endpoint Fit. It works also for polylines and polygons % in higher dimensions. % % In case of nans (missing vertex coordinates) dpsimplify assumes that % nans separate polylines. As such, dpsimplify treats each line % separately. % % For additional information on the algorithm follow this link % http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm % % Input arguments % % p polyline n*d matrix with n vertices in d % dimensions. % tol tolerance (maximal euclidean distance allowed % between the new line and a vertex) % % Output arguments % % ps simplified line % ix linear index of the vertices retained in p (ps = p(ix)) % % Examples % % 1. Simplify line % % tol = 1; % x = 1:0.1:8*pi; % y = sin(x) + randn(size(x))*0.1; % p = [x' y']; % ps = dpsimplify(p,tol); % % plot(p(:,1),p(:,2),'k') % hold on % plot(ps(:,1),ps(:,2),'r','LineWidth',2); % legend('original polyline','simplified') % % 2. Reduce polyline so that only knickpoints remain by % choosing a very low tolerance % % p = [(1:10)' [1 2 3 2 4 6 7 8 5 2]']; % p2 = dpsimplify(p,eps); % plot(p(:,1),p(:,2),'k+--') % hold on % plot(p2(:,1),p2(:,2),'ro','MarkerSize',10); % legend('original line','knickpoints') % % 3. Simplify a 3d-curve % % x = sin(1:0.01:20)'; % y = cos(1:0.01:20)'; % z = x.*y.*(1:0.01:20)'; % ps = dpsimplify([x y z],0.1); % plot3(x,y,z); % hold on % plot3(ps(:,1),ps(:,2),ps(:,3),'k*-'); % Author: Wolfgang Schwanghart, 13. July, 2010. % w.schwanghart[at]unibas.ch % % Copyright (c) 2009, Wolfgang Schwanghart % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. if nargin == 0 help dpsimplify return end error(nargchk(2, 2, nargin)) % error checking if ~isscalar(tol) || tol<0; error('tol must be a positive scalar') end % nr of dimensions nrvertices = size(p,1); dims = size(p,2); % anonymous function for starting point and end point comparision % using a relative tolerance test compare = @(a,b) abs(a-b)/max(abs(a),abs(b)) <= eps; % what happens, when there are NaNs? % NaNs divide polylines. Inan = any(isnan(p),2); % any NaN at all? Inanp = any(Inan); % if there is only one vertex if nrvertices == 1 || isempty(p); ps = p; ix = 1; % if there are two elseif nrvertices == 2 && ~Inanp; % when the line has no vertices (except end and start point of the % line) check if the distance between both is less than the tolerance. % If so, return the center. if dims == 2; d = hypot(p(1,1)-p(2,1),p(1,2)-p(2,2)); else d = sqrt(sum((p(1,:)-p(2,:)).^2)); end if d <= tol; ps = sum(p,1)/2; ix = 1; else ps = p; ix = [1;2]; end elseif Inanp; % case: there are nans in the p array % --> find start and end indices of contiguous non-nan data Inan = ~Inan; sIX = strfind(Inan',[0 1])' + 1; eIX = strfind(Inan',[1 0])'; if Inan(end)==true; eIX = [eIX;nrvertices]; end if Inan(1); sIX = [1;sIX]; end % calculate length of non-nan components lIX = eIX-sIX+1; % put each component into a single cell c = mat2cell(p(Inan,:),lIX,dims); % now call dpsimplify again inside cellfun. if nargout == 2; [ps,ix] = cellfun(@(x) dpsimplify(x,tol),c,'uniformoutput',false); ix = cellfun(@(x,six) x+six-1,ix,num2cell(sIX),'uniformoutput',false); else ps = cellfun(@(x) dpsimplify(x,tol),c,'uniformoutput',false); end % write the data from a cell array back to a matrix ps = cellfun(@(x) [x;nan(1,dims)],ps,'uniformoutput',false); ps = cell2mat(ps); ps(end,:) = []; % ix wanted? write ix to a matrix, too. if nargout == 2; ix = cell2mat(ix); end else % if there are no nans than start the recursive algorithm ixe = size(p,1); ixs = 1; % logical vector for the vertices to be retained I = true(ixe,1); % call recursive function p = simplifyrec(p,tol,ixs,ixe); ps = p(I,:); % if desired return the index of retained vertices if nargout == 2; ix = find(I); end end % _________________________________________________________ function p = simplifyrec(p,tol,ixs,ixe) % check if startpoint and endpoint are the same % better comparison needed which included a tolerance eps c1 = num2cell(p(ixs,:)); c2 = num2cell(p(ixe,:)); % same start and endpoint with tolerance sameSE = all(cell2mat(cellfun(compare,c1(:),c2(:),'UniformOutput',false))); if sameSE; % calculate the shortest distance of all vertices between ixs and % ixe to ixs only if dims == 2; d = hypot(p(ixs,1)-p(ixs+1:ixe-1,1),p(ixs,2)-p(ixs+1:ixe-1,2)); else d = sqrt(sum(bsxfun(@minus,p(ixs,:),p(ixs+1:ixe-1,:)).^2,2)); end else % calculate shortest distance of all points to the line from ixs to ixe % subtract starting point from other locations pt = bsxfun(@minus,p(ixs+1:ixe,:),p(ixs,:)); % end point a = pt(end,:)'; beta = (a' * pt')./(a'*a); b = pt-bsxfun(@times,beta,a)'; if dims == 2; % if line in 2D use the numerical more robust hypot function d = hypot(b(:,1),b(:,2)); else d = sqrt(sum(b.^2,2)); end end % identify maximum distance and get the linear index of its location [dmax,ixc] = max(d); ixc = ixs + ixc; % if the maximum distance is smaller than the tolerance remove vertices % between ixs and ixe if dmax <= tol; if ixs ~= ixe-1; I(ixs+1:ixe-1) = false; end % if not, call simplifyrec for the segments between ixs and ixc (ixc % and ixe) else p = simplifyrec(p,tol,ixs,ixc); p = simplifyrec(p,tol,ixc,ixe); end end end
github
ojwoodford/ojwul-master
icp_sim.m
.m
ojwul-master/geometry/icp_sim.m
2,615
utf_8
e6c911fa5628d4af5a576be7042fc42f
%ICP_SIM Compute the similarity transform that best aligns two point sets % % T = icp_sim(X, Y, [initialize]) % % Given two sets of points, X and Y, this function iteratively solves the % optimization problem: % % T = argmin_T sum_i min_j || T * homg(X(:,i)) - Y(:,j) || ^ 2 % % subject to T being a similarity transform. % %IN: % X - DxM set of D-dimensional points to transform % Y - DxN set of D-dimensional points to align to (which should be well % distributed) % initialize - Scalar, 0 (no initialization), 1 (try 4 starting % positions), 2 (optimize 4 starting positions for 4 % iterations each). % %OUT: % T - Dx(D+1) similarity transform matrix. function T = icp_sim(X, Y, initialize, debug_vis) % Initialize the search function Xt = X'; Yt = Y'; tri = delaunayn(Yt); find_closest = @(X) dsearchn(Yt, tri, X); % Initialize the output if nargin > 2 && initialize % Prealign using principle components [~, T] = whiten_srt(X); [~, T_] = whiten_srt(Y); % Try 4 possible axis flips R = cat(3, diag([1 1 1 1]), diag([1 -1 -1 1]), diag([-1 1 -1 1]), diag([-1 -1 1 1])); for a = 4:-1:1 d = T_ \ (R(:,:,a) * T); T__{a} = d(1:end-1,:) / d(end,end); if initialize == 1 [~, d] = find_closest(Xt * T__{a}(:,1:end-1)' + T__{a}(:,end)'); scores(a) = sum(d); else [T__{a}, scores(a)] = run_iters(Xt, Yt, T__{a}, find_closest, [], 4); end end % Pick the best [~, a] = min(scores); T = T__{a}; else % Start from the input T = eye(size(X, 1), size(X, 1)+1); end % Debug rendering handle = []; if nargin > 3 && debug_vis figure(); plot3(Yt(:,1), Yt(:,2), Yt(:,3), 'b.'); hold on handle = plot3(Xt(:,1), Xt(:,2), Xt(:,3), 'r.'); end % Iterate until convergence T = run_iters(Xt, Yt, T, find_closest, handle, 100); end function [T, best_score] = run_iters(Xt, Yt, T, find_closest, handle, iters) R = T(:,1:end-1)'; t = T(:,end); best_score = Inf; while iters > 0 iters = iters - 1; % Compute the closest points from X to Y X_ = Xt * R + t'; closest = find_closest(X_); % Debug rendering if ~isempty(handle) set(handle, 'XData', X_(:,1), 'YData', X_(:,2), 'ZData', X_(:,3)); drawnow(); end % Solve the procrustes problem [R, s, t, ~, score] = procrustes(Xt, Yt(closest,:)); % Check the score decreased if score >= best_score break; end best_score = score; % Compute the transform R = s * R; T = [R', t]; end end
github
ojwoodford/ojwul-master
expm_srt_3d.m
.m
ojwul-master/geometry/expm_srt_3d.m
964
utf_8
57095643f98d6b694e028be1a0770c4e
%EXPM_SRT_3D Compute a transformation matrix, given the Lie algebra vector % % M = expm_srt_3d(X) % % Computes the transformation matrix defined by a Lie vector consisting of % a rotation, translation and uniform scaling. % % The computation is done in closed form, using the formulae given in the % paper: % "Distances and Means of Direct Similarities" % M-T Pham et al. % %IN: % X - DxN array, where each column specifies a different % transformation. X(1:3,:) are the rotation components, X(4:6,:) are % the translation components and X(7,:) are the scale components. D % can be 3 (rotation only), 6 (rotation and translation), or 7 % (rotation, translation and scale). % %OUT: % M - 3x(3+D~=3)xN array of transformation matrices. function varargout = expm_srt_3d(varargin) sourceList = {'expm_srt_3d.cpp', '-Xopenmp'}; % Cell array of source files [varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here return
github
ojwoodford/ojwul-master
msac_essenmatrix.m
.m
ojwul-master/geometry/msac_essenmatrix.m
3,819
utf_8
0690ca4344b59de9c1327c1934dbc232
% MSAC_ESSENMATRIX - fits essential matrix using RANSAC % % Usage: [F, inliers] = msac_essenmatrix(x1, x2, K, t) % % Arguments: % x1 - 2xN or 3xN set of homogeneous image points. If the data is % 2xN it is assumed the homogeneous scale factor is 1. % x2 - 2xN or 3xN set of homogeneous image points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % Note that point coordinates are normalised to that their % mean distance from the origin is sqrt(2). The value of % t should be set relative to this, say in the range % 0.001 - 0.01 % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % E - The 3x3 essential matrix such that x2'Fx1 = 0. % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. function [E, D, stats] = msac_essenmatrix(x1, x2, K, t) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end [rows,npts] = size(x1); if rows~=2 && rows~=3 error('x1 and x2 must have 2 or 3 rows'); end if rows == 2 % Pad data with homogeneous scale factor of 1 x1 = [x1; ones(1,npts)]; x2 = [x2; ones(1,npts)]; end % Convert from image to calibrated coordinates x1n = K \ x1; x2n = K \ x2; t = t / prod(K([1 5])); % x1 and x2 are 'stacked' to create a 6xN array for ransac [E, inliers, stats] = msac([x1n; x2n], @(x) calibrated_fivepoint(x(1:3,:), x(4:6,:)), @(E, x) funddist(E, x(1:3,:), x(4:6,:)), 5, t); inliers = inliers < t; if sum(inliers) > 7 % Now do a final least squares fit on the data points considered to % be inliers, using the normalized 8-point algorithm [T, T] = normalise2dpts([x1 x2]); x1n = T * x1; x2n = T * x2; E = fundmatrix(x1n(:,inliers), x2n(:,inliers)); E = T' * E * T; E = E / E(3,3); E = K' * E * K; end if nargout < 2 return; end % Compute the distances D = funddist(K' \ E / K, x1, x2); end %-------------------------------------------------------------------------- % FUNDMATRIX - computes fundamental matrix from 8 or more points % % Function computes the fundamental matrix from 8 or more matching points in % a stereo pair of images. The normalised 8 point algorithm given by % Hartley and Zisserman p265 is used. To achieve accurate results it is % recommended that 12 or more points are used function F = fundmatrix(x1, x2) % Build the constraint matrix F = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(size(x1, 2),1) ]; [U, D, F] = svd(F,0); % Under MATLAB use the economy decomposition % Extract fundamental matrix from the column of V corresponding to % smallest singular value. F = reshape(F(:,9),3,3)'; % Enforce constraint that fundamental matrix has rank 2 by performing % a svd and then reconstructing with the two largest singular values. [U, D, F] = svd(F,0); F = U * diag([D(1,1) D(2,2) 0]) * F'; end %-------------------------------------------------------------------------- % Function to evaluate the first order approximation of the geometric error % (Sampson distance) of the fit of a fundamental matrix with respect to a % set of matched points as needed by RANSAC. See: Hartley and Zisserman, % 'Multiple View Geometry in Computer Vision', page 270. function D = funddist(F, x1, x2) Fx = F * x1; x2tFx1 = sum(x2 .* Fx, 1); Fx = [Fx; F' * x2]; % Evaluate distances D = (x2tFx1 .* x2tFx1) ./ sum(Fx .* Fx, 1); end
github
ojwoodford/ojwul-master
P_from_E.m
.m
ojwul-master/geometry/P_from_E.m
449
utf_8
f98fa8604cb24d9a9117de47abe6ed3c
%P_FROM_E Compute potential motion hypotheses from an essential matrix % % P = P_from_E(E) % %IN: % E - 3x3 essential matrix. % %OUT: % P - 3x4x4 array of 4 potential extrinsic matrices [R, t] (up to scale). function P = P_from_E(P) [U, W, V] = svd(P, 0); W = [0 -1 0; 1 0 0; 0 0 1]; R = U * W * V'; if det(R) < 0 U = -U; R = -R; end U3 = U(:,3); P = U * W' * V'; P = cat(3, [R U3], [R -U3], [P U3], [P -U3]); end
github
ojwoodford/ojwul-master
msac_homography.m
.m
ojwul-master/geometry/msac_homography.m
3,945
utf_8
02cbf66faa2fb293c01d4c9dc6f816ff
% msac_homography - fits fundamental matrix using RANSAC % % Usage: [H, inliers] = msac_homography(x1, x2, t) % % Arguments: % x1 - 2xN set of points. % x2 - 2xN set of homogeneous points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % Note that point coordinates are normalised to that their % mean distance from the origin is sqrt(2). The value of % t should be set relative to this, say in the range % 0.001 - 0.01 % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % H - The 3x3 homography such that x2 = proj(H*homg(x1)). % D - 1xN array of squared errors. % function [H, D, stats] = msac_homography(x1, x2, t) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end % Normalize each set of points so that the origin is at centroid and % mean distance from origin is sqrt(2). normalize2dpts also ensures the % scale parameter is 1. [x1n, T1] = whiten(x1); x1n = homg(x1n); [x2n, T2] = whiten(x2); x2n = homg(x2n); t = t * T2(1) * T2(5); % x1 and x2 are 'stacked' to create a 6xN array for ransac [H, D, stats] = msac([x1n; x2n], @(x) homography2d(x(1:3,:), x(4:6,:)), @(H, x) homogdist2d(H, x(1:3,:), x(4:6,:)), 4, t); D = D < t; % Iterate the least squares fit on the data points considered to % be inliers for a = 1:5 D_ = D; H_ = homography2d(x1n(:,D), x2n(:,D)); if isempty(H_) break; end D = homogdist2d(H_, x1n, x2n) < t; if isequal(D_, D) break; end if sum(D_) > sum(D) break; end H = H_; end % Denormalize H = T2 \ H * T1; if nargout < 2 return; end % Compute the distances D = homogdist2d(H, homg(x1), homg(x2)); end %---------------------------------------------------------------------- % HOMOGRAPHY2D - computes 2D homography % % Usage: H = homography2d(x1, x2) % % Arguments: % x1 - 3xN set of homogeneous points % x2 - 3xN set of homogeneous points such that x1<->x2 % % x - If a single argument is supplied it is assumed that it % is in the form x = [x1; x2] % Returns: % H - the 3x3 homography such that x2 = H*x1 % % This code follows the normalised direct linear transformation % algorithm given by Hartley and Zisserman "Multiple View Geometry in % Computer Vision" p92. function H = homography2d(x1, x2) H = []; if iscolinear(x1) || iscolinear(x2) return; end % Note that it may have not been possible to normalise % the points if one was at infinity so the following does not % assume that scale parameter w = 1. Npts = size(x1, 2); A = zeros(3, Npts, 9); O = [0 0 0]; for n = 1:Npts X = x1(:,n)'; x = x2(1,n); y = x2(2,n); w = x2(3,n); A(1,n,:) = [ O -w*X y*X]; A(2,n,:) = [ w*X O -x*X]; A(3,n,:) = [-y*X x*X O ]; end A = reshape(A, 3*Npts, 9); [U, D, V] = svd(A, 0); % 'Economy' decomposition for speed % Extract homography H = reshape(V(:,9), 3, 3)'; end %---------------------------------------------------------------------- % Function to evaluate the symmetric transfer error of a homography with % respect to a set of matched points as needed by RANSAC. function D = homogdist2d(H, x1, x2) % Calculate, in both directions, the distances D = [x1 - hnormalise(H \ x2); x2 - hnormalise(H * x1)]; D = 0.5 * sum(D .* D, 1); end %---------------------------------------------------------------------- % Test whether any 3 of the 4 points in each set is colinear. function tf = iscolinear(x) try tf = any(normd(cross(x(:,[1 1 1 2]) - x(:,[2 2 3 3]), x(:,[1 1 1 2]) - x(:,[3 4 4 4])), 1) < eps); catch tf = false; end end function x = hnormalise(x) x = x ./ x(end,:); end
github
ojwoodford/ojwul-master
P0To1.m
.m
ojwul-master/geometry/P0To1.m
193
utf_8
4077eb08e6c6ab002a509f85957f07ee
%P0TO1 Convert projection matrices' principal points from 0 to 1 based % % P = P0To1(P) function P = P0To1(P) for a = 1:size(P, 3) P(:,:,a) = [1 0 1; 0 1 1; 0 0 1] * P(:,:,a); end
github
ojwoodford/ojwul-master
PcTo1.m
.m
ojwul-master/geometry/PcTo1.m
296
utf_8
55e365afd092726522dabdacf5b9e609
%PCTO1 Convert projection matrices' principal points from centre to 1 based % % P = PcTo1(P, im) function P = PcTo1(P, im) if numel(im) == 2 || numel(im) == 3 h = im(1); w = im(2); else [h, w, c] = size(im); end K = [1 0 (w+1)/2; 0 1 (h+1)/2; 0 0 1]; P = tmult(K, P);
github
ojwoodford/ojwul-master
lie.m
.m
ojwul-master/geometry/lie.m
6,684
utf_8
f192cb6d610ea2c5d6cbf5e5fea8dd56
classdef lie properties (Hidden = true, SetAccess = protected) G; % Generators for computing tangent Gv; % Generators for computing matrix sz; end methods function this = lie(generators_) if ischar(generators_) generators_ = generators(generators_); end this.sz = [size(generators_, 1) size(generators_, 2)]; this.G = reshape(generators_, [], size(generators_, 3)); this.Gv = pinv(this.G); end % NDIMS - Return the dimensionality of the space function n = ndims(this) n = size(this.G, 2); end % SIZE - Return the size of the warp function sz = size(this) sz = this.sz; end % VEE - Convert from Lie matrix to Lie tangent space function tangent = vee(this, matrix) tangent = this.Gv * reshape(matrix, size(this.Gv, 2), []); end % LOG - Convert from transform to Lie matrix to Lie tangent space function tangent = log(this, transform) [~, ~, N] = size(transform); tangent = this.vee(logm(transform(:,:,1))); % Hack for non-numeric types, e.g. autodiff for a = N:-1:2 tangent(:,a) = this.vee(logm(transform(:,:,a))); end end % HAT - Convert from Lie tangent space to Lie matrix function matrix = hat(this, tangent) matrix = reshape(this.G * tangent, this.sz(1), this.sz(2), []); end % EXP - Convert from Lie tangent space to transform function transform = exp(this, tangent) [~, N] = size(tangent); if N == 1 transform = expm(this.hat(tangent)); return; end transform = expm(this.hat(tangent(:,1))); % Hack for non-numeric types, e.g. autodiff for a = N:-1:2 transform(:,:,a) = expm(this.hat(tangent(:,a))); end end % ADJOINT - Compute the adjoint matrix of a Lie tangent vector function adj = adjoint(this, tangent) end function tangent = Adjoint_times(this, transform, tangent) tangent = tmult(transform, this.hat(tangent)); for a = 1:size(transform, 3) transform(:,:,a) = inv(transform(:,:,a)); end tangent = this.vee(tmult(tangent, transform)); end % LIEBRACKET - Apply the Lie bracket to two Lie tangent vectors function tangent = liebracket(this, tangentA, tangentB) %tangent = this.adjoint(tangentA) * tangentB; A = this.hat(tangentA); B = this.hat(tangentB); tangent = this.vee(tmult(A, B) - tmult(B, A)); end % INTERP1 - Linear interpolation between transforms function Vq = interp1(this, X, V, Xq) for a = numel(X)-1:-1:1 tangents(:,a) = this.log(V(:,:,a+1) / V(:,:,a)); end [~, ind] = histc(Xq, [X(:); Inf]); ind = min(max(ind, 1), numel(X)-1); for a = numel(Xq):-1:1 Vq(:,:,a) = this.exp(tangents(:,ind(a)) * ((Xq(a) - X(ind(a))) / (X(ind(a)+1) - X(ind(a))))) * V(:,:,ind(a)); end end end methods (Static) function check_orthogonal(groups) if nargin < 1 groups = {'so2', 'se2', 'sim2', 'aff2', 'so3', 'rxso3', 'uv3', 'rxuv3', 'se3', 'sim3', 'sl3'}; elseif ~iscell(groups) groups = {groups}; end for group = groups % Chech the generators are orthogonal G = generators(group{1}); G = reshape(G, [], size(G, 3)); dot_prod = tril(squeeze(sum(bsxfun(@times, G, permute(G, [1 3 2])), 1)), -1); [y, x] = find(abs(dot_prod) > 1e-14); if ~isempty(y) y = [y(:)'; x(:)']; warning('The following pairs of %s group generators are not orthogonal:\n%s', group{1}, sprintf(' %d,%d\n', y)); end end end end end function G = generators(group) switch group case 'shift2' % Generators for 2D translations G = zeros(3, 3, 2); G(1,3,1) = 1; % X translation G(2,3,2) = 1; % Y translation case 'so2' % Generators for so2 G = [0 -1; 1 0]; case 'se2' % Generators for se2 G = generators('shift2'); G(1:2,1:2,3) = generators('so2'); % Rotation case 'sim2' % Generators for sim2 G = cat(3, generators('se2'), diag([0.5 0.5 -1])); % Uniform scale case 'rs2' G = generators('sim2'); G = G(:,:,3:4); case 'aff2' % Generators for aff2 (2D affine transformation) G = zeros(3, 3, 6); G(:,:,1:4) = generators('sim2'); G(1,1,5) = 1; % Aspect ratio G(2,2,5) = -1; G(1,2,6) = 1; % Shear G(2,1,6) = 1; case 'so3' % Generators for so3 G = zeros(3, 3, 3); G(3,2,1) = 1; G(2,3,1) = -1; G(1,3,2) = 1; G(3,1,2) = -1; G(1,2,3) = -1; G(2,1,3) = 1; case 'rxso3' % Generators for rxso3 G = generators('so3'); G(1,1,4) = 1; G(2,2,4) = 1; G(3,3,4) = 1; case 'uv3' % 3D unit vector G = generators('so3'); G = G(:,:,2:3); case 'rxuv3' % 3D vector parameterized by rotation and scale G = generators('rxso3'); G = G(:,:,2:4); case 'se3' % Generators for se3 G = zeros(4, 4, 6); G(1,4,1) = 1; G(2,4,2) = 1; G(3,4,3) = 1; G(1:3,1:3,4:6) = generators('so3'); case 'sim3' % Generators for sim3 G = zeros(4, 4, 7); G(1,4,1) = 1; G(2,4,2) = 1; G(3,4,3) = 1; G(1:3,1:3,4:7) = generators('rxso3'); case 'sl3' % Generators for sl3 G = zeros(3, 3, 8); G_ = generators('so3'); G(:,:,1:3) = G_; G_ = abs(G_); G(:,:,4) = 0.5 * G_(:,:,3) - G_(:,:,1) - G_(:,:,2); G(:,:,5) = G_(:,:,2) + G_(:,:,3) - 0.5 * G_(:,:,1); G(:,:,6) = G_(:,:,3) + G_(:,:,1) - 0.5 * G_(:,:,2); G(1,1,7) = -1; G(3,3,7) = 1; G(1,1,8) = 0.5; G(3,3,8) = 0.5; G(2,2,8) = -1; otherwise error('Lie group %s not recognized', group); end % Normalize the generators G = bsxfun(@times, G, 1 ./ sqrt(sum(sum(G .* G, 1), 2))); end
github
ojwoodford/ojwul-master
procrustes.m
.m
ojwul-master/geometry/procrustes.m
965
utf_8
477416028b7bcef304121f739d72aa54
% [R,s,t,Y1,p] = procrustes(X,Y) Procrustes alignment % % Finds the best similarity transformation Y = s.X.R + ones(N,1).t' (in the % least squares sense). % % References: % - Borg & Groenen: "Modern Multidimensional Scaling: Theory and Application", % Springer, 2005 (chapter 20). % - Cox & Cox: "Multidimensional Scaling", 2nd ed. Chapman & Hall, 2000 % (chapter 5). % % In: % X,Y: NxD data sets of row vectors. % Out: % R: DxD orthogonal matrix. % s: scale. % t: Dx1 translation vector. % Y1: NxD matrix, transformed X. % p: Procrustes statistic (normalised error |Y-Y1|?/tr(Y.Y')). % Copyright (c) 2009 by Miguel A. Carreira-Perpinan function [R,s,t,Y1,p] = procrustes(X,Y) [N, D] = size(Y); sY = sum(Y,1); sX = sum(X,1); C = Y'*X - sY'*(sX/N); [U,S,V] = svd(C); R = V*U'; s = sum(sum(C.*R')) / (sum(sum(X.^2))-(sX*sX')/N); t = (sY - s*sX*R)'/N; if nargout > 3 Y1 = bsxfun(@plus,s*X*R,t'); p = sum(sum((Y1-Y).^2))/sum(sum(Y.^2)); end end
github
ojwoodford/ojwul-master
proj2orthonormal.m
.m
ojwul-master/geometry/proj2orthonormal.m
294
utf_8
d84258c1578512ceadd4d88a9a6d2b20
%PROJ2ORTHONORMAL Project a matrix onto an orthonormal basis % % B = proj2orthonormal(A) % %IN: % A - MxN matrix % B - Closest MxN matrix to A, where the rows are unit length and % orthogonal. function A = proj2orthonormal(A) [U, ~, V] = svd(A, 'econ'); A = U * V'; end
github
ojwoodford/ojwul-master
calibrated_fivepoint.m
.m
ojwul-master/geometry/calibrated_fivepoint.m
4,166
utf_8
435ccefe3eb92b250019ff7e2679f5d5
%CALIBRATED_FIVEPOINT Stewenius & Engel's implementation of Nister's 5 %point algorithm % % [SOLS,EE] = fivePoint(Q1,Q2) % % % Copyright Chris Engels 2004 % % The algorithm follows %@Article{ nister-itpam-04, % author = {Nist\'er, D.}, % journal = pami, % month = {June}, % number = {6}, % title = {Problem}, % pages = {756-770}, % volume = {26}, % year = {2004} %} % % This implemenation was written for the paper % % ARTICLE{stewenius-engels-nister-isprsj-2006, % AUTHOR = {H. Stew\'enius and C. Engels and D. Nist\'er}, % TITLE = {Recent Developments on Direct Relative Orientation}, % JOURNAL = {ISPRS Journal of Photogrammetry and Remote Sensing}, % URL = {http://dx.doi.org/10.1016/j.isprsjprs.2006.03.005}, % VOLUME = {60}, % ISSUE = {4}, % PAGES = {284--294}, % MONTH = JUN, % CODE = {http://vis.uky.edu/~stewe/FIVEPOINT}, % PDF = {http://www.vis.uky.edu/~stewe/publications/stewenius_engels_nister_5pt_isprs.pdf}, % YEAR = 2006 %} % % % Please refer to this paper if you use this code. function Evec = calibrated_fivepoint(Q1,Q2) Q1 = Q1'; Q2 = Q2'; Q = [Q1(:,1).*Q2(:,1) , ... Q1(:,2).*Q2(:,1) , ... Q1(:,3).*Q2(:,1) , ... Q1(:,1).*Q2(:,2) , ... Q1(:,2).*Q2(:,2) , ... Q1(:,3).*Q2(:,2) , ... Q1(:,1).*Q2(:,3) , ... Q1(:,2).*Q2(:,3) , ... Q1(:,3).*Q2(:,3) ] ; % EE = null(Q); [U,S,V]=svd(Q, 0); EE = V(:,6:9); A = calibrated_fivepoint_helper( EE ) ; if 1 p=[1 4 2 3 5 11 7 13 6 12 8 14 17 9 15 18 10 16 19 20] ;%rearrange the columns of A A=A(:,p); A=rref(A) ; B(1,1) =-A(6,11); B(1,2) = A(5,11)-A(6,12); B(1,3) = A(5,12)-A(6,13); B(1,4) = A(5,13); B(1,5) =-A(6,14); B(1,6) = A(5,14)-A(6,15); B(1,7) = A(5,15)-A(6,16); B(1,8) = A(5,16); B(1,9) =-A(6,17); B(1,10)= A(5,17)-A(6,18); B(1,11)= A(5,18)-A(6,19); B(1,12)= A(5,19)-A(6,20); B(1,13)= A(5,20); B(2,1) =-A(8,11); B(2,2) = A(7,11)-A(8,12); B(2,3) = A(7,12)-A(8,13); B(2,4) = A(7,13); B(2,5) =-A(8,14); B(2,6) = A(7,14)-A(8,15); B(2,7) = A(7,15)-A(8,16); B(2,8) = A(7,16); B(2,9) =-A(8,17); B(2,10)= A(7,17)-A(8,18); B(2,11)= A(7,18)-A(8,19); B(2,12)= A(7,19)-A(8,20); B(2,13)= A(7,20); B(3,1) =-A(10,11); B(3,2) = A(9,11)-A(10,12); B(3,3) = A(9,12)-A(10,13); B(3,4) = A(9,13); B(3,5) =-A(10,14); B(3,6) = A(9,14)-A(10,15); B(3,7) = A(9,15)-A(10,16); B(3,8) = A(9,16); B(3,9) =-A(10,17); B(3,10)= A(9,17)-A(10,18); B(3,11)= A(9,18)-A(10,19); B(3,12)= A(9,19)-A(10,20); B(3,13)= A(9,20); b11=B(1,1:4) ; b12=B(1,5:8) ; b13=B(1,9:13) ; b21=B(2,1:4) ; b22=B(2,5:8) ; b23=B(2,9:13) ; b31=B(3,1:4) ; b32=B(3,5:8) ; b33=B(3,9:13); n=(conv(conv(b11,b22),b33) - conv(conv(b11,b23),b32)) +... (conv(conv(b12,b23),b31) - conv(conv(b12,b21),b33)) +... (conv(conv(b13,b21),b32) - conv(conv(b13,b22),b31)); SOLS(:,3)=roots(n); r=SOLS(:,3); for i=1:length(r) if isreal(r(i)) bt(1,1)=b11(1)*r(i)^3 + b11(2)*r(i)^2 + b11(3)*r(i)^1 + b11(4); bt(1,2)=b12(1)*r(i)^3 + b12(2)*r(i)^2 + b12(3)*r(i)^1 + b12(4) ; bt(1,3)=b13(1)*r(i)^4 + b13(2)*r(i)^3 + b13(3)*r(i)^2 + b13(4)*r(i)^1 + b13(5); bt(2,1)=b21(1)*r(i)^3 + b21(2)*r(i)^2 + b21(3)*r(i)^1 + b21(4) ; bt(2,2)=b22(1)*r(i)^3 + b22(2)*r(i)^2 + b22(3)*r(i)^1 + b22(4) ; bt(2,3)=b23(1)*r(i)^4 + b23(2)*r(i)^3 + b23(3)*r(i)^2 + b23(4)*r(i)^1 + b23(5); bt(3,1)=b31(1)*r(i)^3 + b31(2)*r(i)^2 + b31(3)*r(i)^1 + b31(4) ; bt(3,2)=b32(1)*r(i)^3 + b32(2)*r(i)^2 + b32(3)*r(i)^1 + b32(4) ; bt(3,3)=b33(1)*r(i)^4 + b33(2)*r(i)^3 + b33(3)*r(i)^2 + b33(4)*r(i)^1 + b33(5); [U,S,V] = svd( bt); xy1 = V(:,end); if( xy1(3) ~= 0) SOLS(i,1)=xy1(1)./xy1(3); SOLS(i,2)=xy1(2)./xy1(3); end end end SOLS = SOLS'; else A = A(:,1:10)\A(:,11:20); M = -A([1 2 3 5 6 8], :); M(7,1) = 1; M(8,2) = 1; M(9,4) = 1; M(10,7) = 1; [V,D] = eig(M ); SOLS = V(7:9,:)./(ones(3,1)*V(10,:)); end Evec = EE*homg(SOLS); Evec = Evec./ ( ones(9,1)*sqrt(sum( Evec.^2))); Evec = permute(reshape(Evec(:,~imag(Evec(1,:))), 3, 3, []), [2 1 3]); Evec = mat2cell(Evec, 3, 3, ones(size(Evec, 3), 1)); end
github
ojwoodford/ojwul-master
msac_aff2.m
.m
ojwul-master/geometry/msac_aff2.m
1,187
utf_8
65741399892feffa4ab7b8577b762a62
% MSAC_AFF2 Fit an affine matrix using RANSAC % % Usage: [A, D] = msac_aff2(x1, x2, t) % % Arguments: % x1 - 2xN set of homogeneous image points. % x2 - 2xN set of image points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % A - The 3x2 matrix such that A * homg(x1) - x2 is small. % D - 1xN array of squared errors. function [A, D] = msac_aff2(x1, x2, t) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end [rows, npts] = size(x1); if rows ~= 2 error('x1 and x2 must have 2 rows'); end % x1 and x2 are 'stacked' to create a 6xN array for ransac A = msac([x1; x2], @(x) x(3:4,:) / homg(x(1:2,:)), @(A, x) dist(A, x(1:2,:), x(3:4,:)), 3, t); D = []; if nargout < 2 || isempty(A) return; end % Compute the distances D = dist(A, x1, x2); end function D = dist(A, x1, x2) D = A(:,1:2) * x1 - x2 + A(:,3); D = sum(D .* D, 1); end
github
ojwoodford/ojwul-master
P_align.m
.m
ojwul-master/geometry/P_align.m
990
utf_8
d4e627a28c53154425297cf742ecb33b
%P_ALIGN Align one scene to another % % [Ptgt, Xtgt] = P_align(Pref, Ptgt, Xtgt, [indices]) % %IN: % Pref - 3x4xN camera poses of reference trajectory. % Ptgt - 3x4xN camera poses of trajectory to transform. % Xtgt - 3xM array of world coordinates to transform. % indices - 2x1 indices of camera frames to use for the alignment. % Default: [1 2]. % %OUT: % Ptgt - 3x4xN transformed target trajectory % Xtgt - 3xM tranformed world coordinates function [Ptgt, Xtgt] = P_align(Pref, Ptgt, Xtgt, indices) if nargin < 4 indices = [1 2]; end a = indices(1); b = indices(2); N = size(Ptgt, 3); % Adjust the scale s = norm(cc(Pref(:,:,a)) - cc(Pref(:,:,b))) / norm(cc(Ptgt(:,:,a)) - cc(Ptgt(:,:,b))); Ptgt(:,4,:) = Ptgt(:,4,:) * s; Xtgt = Xtgt * s; % Align the origin T = [Ptgt(:,:,a); 0 0 0 1] \ [Pref(:,:,a); 0 0 0 1]; for i = 1:N Ptgt(:,:,i) = Ptgt(:,:,i) * T; end Xtgt = T(1:3,1:3)' * Xtgt + cc(T); end function C = cc(P) C = P(1:3,1:3)' * -P(1:3,4); end
github
ojwoodford/ojwul-master
P_from_H.m
.m
ojwul-master/geometry/P_from_H.m
1,772
utf_8
6449c71bf2d483d6f2dc9df73615be4c
%P_FROM_H Compute motion hypotheses from a homography % % P = P_from_H(H) % %IN: % H - 3x3 homography on calibrated image coordinates, i.e. % K^-1 * X2 = H * K^-1 * X1 % %OUT: % P - 3x4xM array of M potential extrinsic matrices [R, t] (up to scale). % N - 3xM array of corresponding plane normals function [P, N, H] = P_from_H(H) % Use the method of Faugeras to compute the rotations % Do the SVD of H if det(H) < 0 H = -H; end [U, S, V] = svd(H); % Normalize the homography S = diag(S); H = H / S(2); % Check for no motion case if S(1) - S(3) < S(2) * 1e-10 N = [0; 0; 1]; P = [H zeros(3, 1)]; return; end V = V'; S2 = S .* S; % Compute first set ctheta = 1 ./ (S(2) * (S(1) + S(3))); stheta = sqrt((S2(1) - S2(2)) * (S2(2) - S2(3))) * ctheta; ctheta = ctheta * (S2(2) + S(1) * S(3)); R1 = U * [ctheta 0 -stheta; 0 1 0; stheta 0 ctheta] * V; R2 = U * [ctheta 0 stheta; 0 1 0; -stheta 0 ctheta] * V; P = cat(3, R1, R2); % Compute second set ctheta = 1 ./ (S(2) * (S(1) - S(3))); stheta = sqrt((S2(1) - S2(2)) * (S2(2) - S2(3))) * ctheta; ctheta = ctheta * (S(1) * S(3) - S2(2)); R1 = U * [ctheta 0 stheta; 0 -1 0; stheta 0 -ctheta] * V; R2 = U * [ctheta 0 -stheta; 0 -1 0; -stheta 0 -ctheta] * V; P2 = cat(3, R1, R2); % Compute the normals and translations rank1 = cat(3, H - P, -H - P2); N = sum(rank1, 1); n = 1 ./ normd(N, 2); N = N .* n; T = sum(rank1 .* N, 2); N = squeeze(N); % Ensure the first camera is looking at the plane P = cat(3, P, P2); M = N(3,:) > 0; N(:,M) = -N(:,M); T(:,:,M) = -T(:,:,M); % Ensure the second camera is in front of the plane M = dot(reshape(tmult(P, -T, [1 0]), 3, []), N) < 1; P(:,4,:) = cat(3, T); P = P(:,:,M); N = N(:,M); end
github
ojwoodford/ojwul-master
perspectiveIPPE.m
.m
ojwul-master/geometry/perspectiveIPPE.m
13,730
utf_8
9eb53fe152d9e4d6869a892a99234d7b
function [IPPEPoses,refinedPoses] = perspectiveIPPE(U,Q,hEstMethod,opts) %perspectiveIPPE: The solution to Perspective IPPE with point correspondences computed %between points in world coordinates on the plane z=0, and normalised points in the %camera's image. % %Inputs: % %U: 2xN or 3xN matrix holding the model points in world coordinates. If U %is 2xN then the points are defined in world coordinates on the plane z=0 % %Q: 2xN matrix holding the points in the image. These are in normalised %pixel coordinates. That is, the effects of the camera's intrinsic matrix %and lens distortion are corrected, so that the Q projects with a perfect %pinhole model. % %hEstMethod: the homography estimation method, either 'Harker' (default) or 'DLT'. If %'Harker' then the method of Harker and O'Leary is used, from the paper %"Computation of Homographies" in the 2005 British Computer Vision %Conference. Otherwise the Direct Linear Transform is used, from Peter Kovesi's implementation at http://www.csse.uwa.edu.au/~pk. %If hEstMethod=[] then the default is used. % %opts is an optional datastructure holding the fields: %setup IPPE options: %opts.withPoseRefinement = true; %If this is set, we also refine the camera pose from IPPE by gradient-based optimisation (Levenberg–Marquardt). This is designed to give the statistically optimal pose assuming zero mean I.I.D nose for the feature's 2D positions, but requires initialisation (from IPPE). Note that it about two orders of magnitude slower than IPPE. %opts.displayTiming = true; %set this to true if you want to see how long IPPE takes in Matlab. % %Outputs: %IPPEPoses: structure containing the two pose solutions from IPPE. % IPPEPoses.R1 is the first pose's rotation % IPPEPoses.t1 is the first pose's translation % IPPEPoses.R2 is the second pose's rotation % IPPEPoses.t2 is the second pose's translation % IPPEPoses.reprojError1 is the first pose's reprojection error % IPPEPoses.reprojError2 is the second pose's reprojection error % %refinedPoses: structure containing the two refined pose solutions using %Levenberg–Marquardt (same format as IPPEPoses). This is only outputted if opts.withPoseRefinement = true % %Note that the poses are transforms from world %coordinates to camera coordinates. If you %want to get the camera's pose in world coordinates you would get it with %M1 = inv([[R1,t1];[0,0,0,1]]) and M2 = inv([[R2,t2];[0,0,0,1]]) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This file is part of the IPPE package for very fast plane-based pose % estimation from a single perspective image, from the paper "Infinitesimal Plane-based Pose Estimation" % by Toby Collins and Adrien Bartoli, published in the International Journal of Computer Vision, September 2014. % A copy of the author's pre-print version can be found here: http://isit.u-clermont1.fr/~ab/Publications/Collins_Bartoli_IJCV14.pdf % % Feel free to contact Toby ([email protected]) if you have any % questions about the paper and IPPE. % % This package is free and covered by the BSD licence without any warranty. We hope you find this code useful and please cite our paper in your work: % (c) Toby Collins 2015 % %@article{ %year={2014}, %issn={0920-5691}, %journal={International Journal of Computer Vision}, %volume={109}, %number={3}, %doi={10.1007/s11263-014-0725-5}, %title={Infinitesimal Plane-Based Pose Estimation}, %url={http://dx.doi.org/10.1007/s11263-014-0725-5}, %publisher={Springer US}, %keywords={Plane; Pose; SfM; PnP; Homography}, %author={Collins, Toby and Bartoli, Adrien}, %pages={252-286}, %language={English} %} opts = parseOpts(opts); measureTiming = opts.measureTiming; refineSolutions = opts.withPoseRefinement; U = double(U); Q = double(Q); %set defaults for hEstMethod: if isempty(hEstMethod) hEstMethod = 'Harker'; else if ~(strcmp(hEstMethod,'Harker')||strcmp(hEstMethod,'DLT')) error('You must specify a valid homography estimation method in perspectiveIPPE. The options are Harker or DLT'); end end %argument sanity check: assert(size(U,1)==2|size(U,1)==3); assert(size(U,2)==size(Q,2)); assert(size(Q,1) == 2); %n is the number of points: n = size(U,2); modelDims = size(U,1); Uuncentred = U; if modelDims==2 %we zero-center the model points: Pbar = [mean(U,2);0]; U(1,:) = U(1,:)-Pbar(1); U(2,:) = U(2,:)-Pbar(2); else %we rotate the model points onto the plane z=0 and zero center them: Pbar = mean(U,2); MCenter = eye(4); MCenter(1:3,end) = -Pbar; U_ = MCenter(1:3,:)*[U;ones(1,size(U,2))]; [modelRotation,sigs,~] = svd(U_*U_'); modelRotation=modelRotation'; if (sigs(3,3)/sigs(2,2)>1e-5) error('IPPE requires the model points to be planar!'); end modelRotation(4,4) = 1; Mcorrective = modelRotation*MCenter; U = Mcorrective(1:2,:)*[U;ones(1,size(U,2))]; end if measureTiming tic; end %compute the model-to-image homography: switch hEstMethod case 'DLT' H = homography2d([U;ones(1,n)],[Q;ones(1,n)]); case 'Harker' H = homographyHarker([U;ones(1,n)],[Q;ones(1,n)]); end %[ px, py, 1, 0, 0, 0, -px*qx, -py*qx]h = qx %[ 0, 0, 0, px, py, 1, -px*qy, -py*qy]h = qy %Compute the Jacobian J of the homography at (0,0): H = H./H(3,3); J(1,1) = H(1,1)-H(3,1)*H(1,3); J(1,2) = H(1,2)-H(3,2)*H(1,3); J(2,1) = H(2,1)-H(3,1)*H(2,3); J(2,2) = H(2,2)-H(3,2)*H(2,3); %Compute the two rotation solutions: v = [H(1,3);H(2,3)]; [R1,R2] = IPPE_dec(v,J); %Compute the two translation solutions: t1_ = estT(R1,U,Q); t2_ = estT(R2,U,Q); if modelDims==2 t1 = [R1,t1_]*[-Pbar;1]; t2 = [R2,t2_]*[-Pbar;1]; else M1 = [R1,t1_]; M1(4,4) = 1; M2 = [R2,t2_]; M2(4,4) = 1; M1 = M1*Mcorrective; M2 = M2*Mcorrective; R1 = M1(1:3,1:3); R2 = M2(1:3,1:3); t1 = M1(1:3,end); t2 = M2(1:3,end); end [reprojErr1,reprojErr2] = computeReprojErrs(R1,R2,t1,t2,Uuncentred,Q); %sort solutions: if reprojErr1>reprojErr2 [R1,R2,t1,t2,reprojErr1,reprojErr2] = swapSolutions(R1,R2,t1,t2,reprojErr1,reprojErr2); end IPPEPoses.R1 = R1; IPPEPoses.t1 = t1; IPPEPoses.R2 = R2; IPPEPoses.t2 = t2; IPPEPoses.reprojError1 = reprojErr1; IPPEPoses.reprojError2 = reprojErr2; %%with timing? if measureTiming disp('Computing time to estimate homography for IPPE. Warning this slows things down, so turn it off when you are not benchmarking!'); tic; %average timing over 100 runs: for i=1:100 switch hEstMethod case 'DLT' H = homography2d([U;ones(1,n)],[Q;ones(1,n)]); case 'Harker' H = homographyHarker([U;ones(1,n)],[Q;ones(1,n)]); end end tm = toc; disp(['Time to estimate homography: ' num2str(1000*tm/100) 'ms']); disp('Computing time to solve IPPE given homography...'); tic; %average timing over 100 runs: for i=1:100 %Compute the Jacobian J of the homography at (0,0): H = H./H(3,3); J(1,1) = H(1,1)-H(3,1)*H(1,3); J(1,2) = H(1,2)-H(3,2)*H(1,3); J(2,1) = H(2,1)-H(3,1)*H(2,3); J(2,2) = H(2,2)-H(3,2)*H(2,3); %Compute the two rotation solutions: v = [H(1,3);H(2,3)]; [R1,R2] = IPPE_dec(v,J); %Compute the two translation solutions: t1_ = estT(R1,U,Q); t2_ = estT(R2,U,Q); t1 = [R1,t1_]*[-Pbar;1]; t2 = [R2,t2_]*[-Pbar;1]; end tm = toc; disp(['Time to solve IPPE given homography: ' num2str(1000*tm/100) 'ms']); end if modelDims==2 Uuncentred(3,:) = 0; end if refineSolutions poseEst= pnpLMRefinement(Uuncentred,Q,R1,t1,'MLE'); R1 = poseEst.R; t1 = poseEst.t; poseEst= pnpLMRefinement(Uuncentred,Q,R2,t2,'MLE'); R2 = poseEst.R; t2 = poseEst.t; [reprojErr1,reprojErr2] = computeReprojErrs(R1,R2,t1,t2,Uuncentred,Q); %Sort the solutions: if reprojErr1>reprojErr2 [R1,R2,t1,t2,reprojErr1,reprojErr2] = swapSolutions(R1,R2,t1,t2,reprojErr1,reprojErr2); end refinedPoses.R1 = R1; refinedPoses.t1 = t1; refinedPoses.R2 = R2; refinedPoses.t2 = t2; refinedPoses.reprojError1 = reprojErr1; refinedPoses.reprojError2 = reprojErr2; %%with timing? if measureTiming disp('Computing time to refine IPPE solutions with Levenberg Marquardt...'); tic; %average timing over 100 runs: for i=1:100 pnpLMRefinement(Uuncentred,Q,IPPEPoses.R1,IPPEPoses.t1,'MLE'); pnpLMRefinement(Uuncentred,Q,IPPEPoses.R2,IPPEPoses.t2,'MLE'); end tm = toc; disp(['Time to refine IPPE solutions with Levenberg Marquardt: ' num2str(1000*tm/100) 'ms']); end end function [reprojErr1,reprojErr2] = computeReprojErrs(R1,R2,t1,t2,U,Q) %computeReprojErrs: Computes the reprojection errors for the two solutions %generated by IPPE. %transform model points to camera coordinates and project them onto the %image: if size(U,1)==2 PCam1 = R1(:,1:2)*U; PCam2 = R2(:,1:2)*U(1:2,:); else PCam1 = R1*U; PCam2 = R2*U; end PCam1(1,:) = PCam1(1,:) + t1(1); PCam1(2,:) = PCam1(2,:) + t1(2); PCam1(3,:) = PCam1(3,:) + t1(3); PCam2(1,:) = PCam2(1,:) + t2(1); PCam2(2,:) = PCam2(2,:) + t2(2); PCam2(3,:) = PCam2(3,:) + t2(3); Qest_1 = PCam1./[PCam1(3,:);PCam1(3,:);PCam1(3,:)]; Qest_2 = PCam2./[PCam2(3,:);PCam2(3,:);PCam2(3,:)]; %compute reprojection errors: reprojErr1 = norm(Qest_1(1:2,:)-Q); reprojErr2 = norm(Qest_2(1:2,:)-Q); function t = estT(R,psPlane,Q) %Computes the least squares estimate of translation given the rotation solution. if size(psPlane,1)==2 psPlane(3,:) =0; end %qq = homoMult(Kinv,pp')'; Ps = R*psPlane; numPts = size(psPlane,2); Ax = zeros(numPts,3); bx = zeros(numPts,1); Ay = zeros(numPts,3); by = zeros(numPts,1); Ax(:,1) = 1; Ax(:,3) = -Q(1,:); bx(:) = Q(1,:).*Ps(3,:) - Ps(1,:); Ay(:,2) = 1; Ay(:,3) = -Q(2,:); by(:) = Q(2,:).*Ps(3,:) - Ps(2,:); A = [Ax;Ay]; b = [bx;by]; AtA = A'*A; Atb = A'*b; Ainv = IPPE_inv33(AtA); t = Ainv*Atb; function [R1,R2,t1,t2,reprojErr1,reprojErr2] = swapSolutions(R1_,R2_,t1_,t2_,reprojErr1_,reprojErr2_) %swaps the solutions: R1 = R2_; t1 = t2_; reprojErr1 = reprojErr2_; R2 = R1_; t2 = t1_; reprojErr2 = reprojErr1_; function Ainv = IPPE_inv33(A) %computes the inverse of a 3x3 matrix, assuming it is full-rank. a11 = A(1,1); a12 = A(1,2); a13 = A(1,3); a21 = A(2,1); a22 = A(2,2); a23 = A(2,3); a31 = A(3,1); a32 = A(3,2); a33 = A(3,3); Ainv = [[ a22*a33 - a23*a32, a13*a32 - a12*a33, a12*a23 - a13*a22]; [ a23*a31 - a21*a33, a11*a33 - a13*a31, a13*a21 - a11*a23]; [ a21*a32 - a22*a31, a12*a31 - a11*a32, a11*a22 - a12*a21]]; Ainv = Ainv./(a11*a22*a33 - a11*a23*a32 - a12*a21*a33 + a12*a23*a31 + a13*a21*a32 - a13*a22*a31); function opts = parseOpts(opts) if ~isfield(opts,'measureTiming') opts.measureTiming = false; end if ~isfield(opts,'withPoseRefinement') opts.withPoseRefinement = true; end function [R1,R2,gamma] = IPPE_dec(v,J) %IPPE_dec: Computes the two solutions to rotation from the J Jacobian of the %model-to-plane homography H (IPPE Algorithm 1). % % %Inputs v: 2x1 vector holding the point in normalised pixel coordinates %which maps by H^-1 to the point (0,0,0) in world coordinates. % %J: 2x2 Jacobian matrix of H at (0,0). % %Outputs: %R1: 3x3 Rotation matrix (first solution) %R2: 3x3 Rotation matrix (second solution) %gamma: The positive real-valued inverse-scale factor. % %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % This file is part of the IPPE package for very fast plane-based pose % estimation from a single perspective image, from the paper "Infinitesimal Plane-based Pose Estimation" % by Toby Collins and Adrien Bartoli, published in the International Journal of Computer Vision, September 2014. % A copy of the author's pre-print version can be found here: http://isit.u-clermont1.fr/~ab/Publications/Collins_Bartoli_IJCV14.pdf % % Feel free to contact Toby ([email protected]) if you have any % questions about the paper and IPPE. % % This package is free and covered by the BSD licence without any warranty. We hope you find this code useful and please cite our paper in your work: % (c) Toby Collins 2015 % %@article{ %year={2014}, %issn={0920-5691}, %journal={International Journal of Computer Vision}, %volume={109}, %number={3}, %doi={10.1007/s11263-014-0725-5}, %title={Infinitesimal Plane-Based Pose Estimation}, %url={http://dx.doi.org/10.1007/s11263-014-0725-5}, %publisher={Springer US}, %keywords={Plane; Pose; SfM; PnP; Homography}, %author={Collins, Toby and Bartoli, Adrien}, %pages={252-286}, %language={English} %} %compute the correction rotation Rv: t = norm(v); s = norm([v;1]); costh = 1/s; sinth = sqrt(1-1/(s^2)); Kcrs = 1/t*[zeros(2,2),v;-v',0]; Rv = eye(3) + sinth*Kcrs + (1-costh)*Kcrs^2; %setup the 2x2 SVD decomposition: B = [eye(2),-v]*Rv(:,1:2); dt = (B(1,1)*B(2,2) - B(1,2)*B(2,1)); Binv = [B(2,2)/dt, -B(1,2)/dt;-B(2,1)/dt, B(1,1)/dt]; A = Binv*J; %compute the largest singular value of A: AAT = A*transpose(A); gamma = sqrt(1/2*(AAT(1,1) + AAT(2,2) + sqrt((AAT(1,1)-AAT(2,2))^2 + 4*AAT(1,2)^2))); %reconstruct the full rotation matrices: R22_tild = A/gamma; h = eye(2)-R22_tild'*R22_tild; b = [sqrt(h(1,1));sqrt(h(2,2))]; if h(1,2)<0 b(2) = -b(2); end d = IPPE_crs([R22_tild(:,1);b(1)],[R22_tild(:,2);b(2)]); c = d(1:2); a = d(3); R1 = Rv*[R22_tild,c;b',a]; R2 = Rv*[R22_tild,-c;-b',a]; function v3 = IPPE_crs(v1,v2) %3D cross product between vectors v1 and v2 v3 = zeros(3,1); v3(1) = v1(2)*v2(3)-v1(3)*v2(2); v3(2) = v1(3)*v2(1)-v1(1)*v2(3); v3(3) = v1(1)*v2(2)-v1(2)*v2(1);
github
ojwoodford/ojwul-master
euler2rot.m
.m
ojwul-master/geometry/euler2rot.m
2,142
utf_8
9cff5f197c14a730dd7a9d673a384582
%EULER2ROT Computes a rotation matrix from a set of Euler angles. % % R = euler2rot(X) % R = euler2rot(X, type) % % The Euler representation is a set of 3 angles (in radians), which are % applied about the three intrinsic axes of the frame specified. % %IN: % X - 3xM matrix of Euler angle vectors. % type - 1x3 character string representing the intrinsic axes the angles % are applied to. Default: 'xyz'. % %OUT: % R - 3x3xM rotation matrix. function R = euler2rot(X, type) if nargin < 2 type = 'xyz'; end if size(X, 1) == 1 X = shiftdim(X, 1); end sz = size(X); % Compute trig functions c = cos(X); s = sin(X); % Compute matrix switch type case 'zxz' R = [c(1,:) .* c(3,:) - c(2,:) .* s(1,:) .* s(3,:); ... c(3,:) .* s(1,:) + c(1,:) .* c(2,:) .* s(3,:); ... s(2,:) .* s(3,:); ... -c(1,:) .* s(3,:) - c(2,:) .* c(3,:) .* s(1,:); ... c(1,:) .* c(2,:) .* c(3,:) - s(1,:) .* s(3,:); ... c(3,:) .* s(2,:); ... s(1,:) .* s(2,:); ... -c(1,:) .* s(2,:); ... c(2,:)]; case 'xyz' R = [c(2,:) .* c(3,:); ... c(1,:) .* s(3,:) + c(3,:) .* s(1,:) .* s(2,:); ... s(1,:) .* s(3,:) - c(1,:) .* c(3,:) .* s(2,:); ... -c(2,:) .* s(3,:); ... c(1,:) .* c(3,:) - s(1,:) .* s(2,:) .* s(3,:); ... c(3,:) .* s(1,:) + c(1,:) .* s(2,:) .* s(3,:); ... s(2,:); ... -c(2,:) .* s(1,:); ... c(1,:) .* c(2,:)]; case 'zyx' R = [c(1,:) .* c(2,:); ... c(2,:) .* s(1,:); ... -s(2,:); ... c(1,:) .* s(2,:) .* s(3,:) - c(3,:) .* s(1,:); ... c(1,:) .* c(3,:) + s(1,:) .* s(2,:) .* s(3,:); ... c(2,:) .* s(3,:); ... s(1,:) .* s(3,:) + c(1,:) .* c(3,:) .* s(2,:); ... c(3,:) .* s(1,:) .* s(2,:) - c(1,:) .* s(3,:); ... c(2,:) .* c(3,:)]; otherwise error('type not recognised'); end % Reshape R = reshape(R, [3 3 sz(2:end)]);
github
ojwoodford/ojwul-master
quat_norm.m
.m
ojwul-master/geometry/quat_norm.m
221
utf_8
7e72a921038a91e18db404c07385d718
%QUAT_NORM Normalize quaternions function Q = quat_norm(Q) Q = reshape(Q, 4, []); N = sum(Q .* Q); M = N == 0; Q(1,M) = 1; M = ~M & N ~= 1; if any(M) Q(:,M) = bsxfun(@times, Q(:,M), 1./sqrt(N(M))); end end
github
ojwoodford/ojwul-master
P1To0.m
.m
ojwul-master/geometry/P1To0.m
195
utf_8
2b1dec97e51706a081c886259a724c35
%P1TO0 Convert projection matrices' principal points from 1 to 0 based % % P = P1To0(P) function P = P1To0(P) for a = 1:size(P, 3) P(:,:,a) = [1 0 -1; 0 1 -1; 0 0 1] * P(:,:,a); end
github
ojwoodford/ojwul-master
PcTo0.m
.m
ojwul-master/geometry/PcTo0.m
296
utf_8
07536b43cd308df4bab548824fbba6b6
%PCTO0 Convert projection matrices' principal points from centre to 0 based % % P = PcTo0(P, im) function P = PcTo0(P, im) if numel(im) == 2 || numel(im) == 3 h = im(1); w = im(2); else [h, w, c] = size(im); end K = [1 0 (w-1)/2; 0 1 (h-1)/2; 0 0 1]; P = tmult(K, P);
github
ojwoodford/ojwul-master
expmap2rot.m
.m
ojwul-master/geometry/expmap2rot.m
1,044
utf_8
a35272599335ed029c983ac4d61aba74
%EXPMAP2ROT Computes a rotation matrix from exponential map angle. % % R = expmap2rot(X) function R = expmap2rot(X) % Compute the angle sz = size(X); X = reshape(X, 3, []); angle = sqrt(sum(X .* X, 1)); % Initialize output R = repmat([1 0 0 0 1 0 0 0 1]', 1, numel(angle)); % Only update rotations with non-zero angles M = angle ~= 0; angle = angle(M); if ~isempty(angle) % Compute the axes, sin and cos axis = bsxfun(@times, X(:,M), 1./angle); % Compute the skew matrix cpm = zeros(9, numel(angle)); cpm([2 6 7],:) = axis([3 1 2],:); cpm([3 4 8],:) = -axis([2 3 1],:); % Compute the squared skew matrix cpm2 = reshape(bsxfun(@times, reshape(axis, 3, 1, []), reshape(axis, 1, 3, [])), 9, []); cpm2([1 5 9],:) = bsxfun(@minus, cpm2([1 5 9],:), sum(cpm2([1 5 9],:))); % Apply Rodrigues' formula R(:,M) = R(:,M) + bsxfun(@times, cpm, sin(angle)) + bsxfun(@times, cpm2, 1 - cos(angle)); end % Reshape for output R = reshape(R, [3 3 sz(2:end)]);
github
ojwoodford/ojwul-master
gridfit.m
.m
ojwul-master/geometry/gridfit.m
36,357
utf_8
71d40f001761b87b8a56c3b57b6bf849
function [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes,varargin) % gridfit: estimates a surface on a 2d grid, based on scattered data % Replicates are allowed. All methods extrapolate to the grid % boundaries. Gridfit uses a modified ridge estimator to % generate the surface, where the bias is toward smoothness. % % Gridfit is not an interpolant. Its goal is a smooth surface % that approximates your data, but allows you to control the % amount of smoothing. % % usage #1: zgrid = gridfit(x,y,z,xnodes,ynodes); % usage #2: [zgrid,xgrid,ygrid] = gridfit(x,y,z,xnodes,ynodes); % usage #3: zgrid = gridfit(x,y,z,xnodes,ynodes,prop,val,prop,val,...); % % Arguments: (input) % x,y,z - vectors of equal lengths, containing arbitrary scattered data % The only constraint on x and y is they cannot ALL fall on a % single line in the x-y plane. Replicate points will be treated % in a least squares sense. % % ANY points containing a NaN are ignored in the estimation % % xnodes - vector defining the nodes in the grid in the independent % variable (x). xnodes need not be equally spaced. xnodes % must completely span the data. If they do not, then the % 'extend' property is applied, adjusting the first and last % nodes to be extended as necessary. See below for a complete % description of the 'extend' property. % % If xnodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % ynodes - vector defining the nodes in the grid in the independent % variable (y). ynodes need not be equally spaced. % % If ynodes is a scalar integer, then it specifies the number % of equally spaced nodes between the min and max of the data. % % Also see the extend property. % % Additional arguments follow in the form of property/value pairs. % Valid properties are: % 'smoothness', 'interp', 'regularizer', 'solver', 'maxiter' % 'extend', 'tilesize', 'overlap' % % Any UNAMBIGUOUS shortening (even down to a single letter) is % valid for property names. All properties have default values, % chosen (I hope) to give a reasonable result out of the box. % % 'smoothness' - scalar or vector of length 2 - determines the % eventual smoothness of the estimated surface. A larger % value here means the surface will be smoother. Smoothness % must be a non-negative real number. % % If this parameter is a vector of length 2, then it defines % the relative smoothing to be associated with the x and y % variables. This allows the user to apply a different amount % of smoothing in the x dimension compared to the y dimension. % % Note: the problem is normalized in advance so that a % smoothness of 1 MAY generate reasonable results. If you % find the result is too smooth, then use a smaller value % for this parameter. Likewise, bumpy surfaces suggest use % of a larger value. (Sometimes, use of an iterative solver % with too small a limit on the maximum number of iterations % will result in non-convergence.) % % DEFAULT: 1 % % % 'interp' - character, denotes the interpolation scheme used % to interpolate the data. % % DEFAULT: 'triangle' % % 'bilinear' - use bilinear interpolation within the grid % (also known as tensor product linear interpolation) % % 'triangle' - split each cell in the grid into a triangle, % then linear interpolation inside each triangle % % 'nearest' - nearest neighbor interpolation. This will % rarely be a good choice, but I included it % as an option for completeness. % % % 'regularizer' - character flag, denotes the regularization % paradignm to be used. There are currently three options. % % DEFAULT: 'gradient' % % 'diffusion' or 'laplacian' - uses a finite difference % approximation to the Laplacian operator (i.e, del^2). % % We can think of the surface as a plate, wherein the % bending rigidity of the plate is specified by the user % as a number relative to the importance of fidelity to % the data. A stiffer plate will result in a smoother % surface overall, but fit the data less well. I've % modeled a simple plate using the Laplacian, del^2. (A % projected enhancement is to do a better job with the % plate equations.) % % We can also view the regularizer as a diffusion problem, % where the relative thermal conductivity is supplied. % Here interpolation is seen as a problem of finding the % steady temperature profile in an object, given a set of % points held at a fixed temperature. Extrapolation will % be linear. Both paradigms are appropriate for a Laplacian % regularizer. % % 'gradient' - attempts to ensure the gradient is as smooth % as possible everywhere. Its subtly different from the % 'diffusion' option, in that here the directional % derivatives are biased to be smooth across cell % boundaries in the grid. % % The gradient option uncouples the terms in the Laplacian. % Think of it as two coupled PDEs instead of one PDE. Why % are they different at all? The terms in the Laplacian % can balance each other. % % 'springs' - uses a spring model connecting nodes to each % other, as well as connecting data points to the nodes % in the grid. This choice will cause any extrapolation % to be as constant as possible. % % Here the smoothing parameter is the relative stiffness % of the springs connecting the nodes to each other compared % to the stiffness of a spting connecting the lattice to % each data point. Since all springs have a rest length % (length at which the spring has zero potential energy) % of zero, any extrapolation will be minimized. % % Note: The 'springs' regularizer tends to drag the surface % towards the mean of all the data, so too large a smoothing % parameter may be a problem. % % % 'solver' - character flag - denotes the solver used for the % resulting linear system. Different solvers will have % different solution times depending upon the specific % problem to be solved. Up to a certain size grid, the % direct \ solver will often be speedy, until memory % swaps causes problems. % % What solver should you use? Problems with a significant % amount of extrapolation should avoid lsqr. \ may be % best numerically for small smoothnesss parameters and % high extents of extrapolation. % % Large numbers of points will slow down the direct % \, but when applied to the normal equations, \ can be % quite fast. Since the equations generated by these % methods will tend to be well conditioned, the normal % equations are not a bad choice of method to use. Beware % when a small smoothing parameter is used, since this will % make the equations less well conditioned. % % DEFAULT: 'normal' % % '\' - uses matlab's backslash operator to solve the sparse % system. 'backslash' is an alternate name. % % 'symmlq' - uses matlab's iterative symmlq solver % % 'lsqr' - uses matlab's iterative lsqr solver % % 'normal' - uses \ to solve the normal equations. % % % 'maxiter' - only applies to iterative solvers - defines the % maximum number of iterations for an iterative solver % % DEFAULT: min(10000,length(xnodes)*length(ynodes)) % % % 'extend' - character flag - controls whether the first and last % nodes in each dimension are allowed to be adjusted to % bound the data, and whether the user will be warned if % this was deemed necessary to happen. % % DEFAULT: 'warning' % % 'warning' - Adjust the first and/or last node in % x or y if the nodes do not FULLY contain % the data. Issue a warning message to this % effect, telling the amount of adjustment % applied. % % 'never' - Issue an error message when the nodes do % not absolutely contain the data. % % 'always' - automatically adjust the first and last % nodes in each dimension if necessary. % No warning is given when this option is set. % % % 'tilesize' - grids which are simply too large to solve for % in one single estimation step can be built as a set % of tiles. For example, a 1000x1000 grid will require % the estimation of 1e6 unknowns. This is likely to % require more memory (and time) than you have available. % But if your data is dense enough, then you can model % it locally using smaller tiles of the grid. % % My recommendation for a reasonable tilesize is % roughly 100 to 200. Tiles of this size take only % a few seconds to solve normally, so the entire grid % can be modeled in a finite amount of time. The minimum % tilesize can never be less than 3, although even this % size tile is so small as to be ridiculous. % % If your data is so sparse than some tiles contain % insufficient data to model, then those tiles will % be left as NaNs. % % DEFAULT: inf % % % 'overlap' - Tiles in a grid have some overlap, so they % can minimize any problems along the edge of a tile. % In this overlapped region, the grid is built using a % bi-linear combination of the overlapping tiles. % % The overlap is specified as a fraction of the tile % size, so an overlap of 0.20 means there will be a 20% % overlap of successive tiles. I do allow a zero overlap, % but it must be no more than 1/2. % % 0 <= overlap <= 0.5 % % Overlap is ignored if the tilesize is greater than the % number of nodes in both directions. % % DEFAULT: 0.20 % % % 'autoscale' - Some data may have widely different scales on % the respective x and y axes. If this happens, then % the regularization may experience difficulties. % % autoscale = 'on' will cause gridfit to scale the x % and y node intervals to a unit length. This should % improve the regularization procedure. The scaling is % purely internal. % % autoscale = 'off' will disable automatic scaling % % DEFAULT: 'on' % % % Arguments: (output) % zgrid - (nx,ny) array containing the fitted surface % % xgrid, ygrid - as returned by meshgrid(xnodes,ynodes) % % % Speed considerations: % Remember that gridfit must solve a LARGE system of linear % equations. There will be as many unknowns as the total % number of nodes in the final lattice. While these equations % may be sparse, solving a system of 10000 equations may take % a second or so. Very large problems may benefit from the % iterative solvers or from tiling. % % % Example usage: % % x = rand(100,1); % y = rand(100,1); % z = exp(x+2*y); % xnodes = 0:.1:1; % ynodes = 0:.1:1; % % g = gridfit(x,y,z,xnodes,ynodes); % % Note: this is equivalent to the following call: % % g = gridfit(x,y,z,xnodes,ynodes, ... % 'smooth',1, ... % 'interp','triangle', ... % 'solver','normal', ... % 'regularizer','gradient', ... % 'extend','warning', ... % 'tilesize',inf); % % % Author: John D'Errico % e-mail address: [email protected] % Release: 2.0 % Release date: 5/23/06 % Copyright (c) 2016, John D'Errico % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % set defaults params.smoothness = 1; params.interp = 'triangle'; params.regularizer = 'gradient'; params.solver = 'backslash'; params.maxiter = []; params.extend = 'warning'; params.tilesize = inf; params.overlap = 0.20; params.mask = []; params.autoscale = 'on'; params.xscale = 1; params.yscale = 1; % was the params struct supplied? if ~isempty(varargin) if isstruct(varargin{1}) % params is only supplied if its a call from tiled_gridfit params = varargin{1}; if length(varargin)>1 % check for any overrides params = parse_pv_pairs(params,varargin{2:end}); end else % check for any overrides of the defaults params = parse_pv_pairs(params,varargin); end end % check the parameters for acceptability params = check_params(params); % ensure all of x,y,z,xnodes,ynodes are column vectors, % also drop any NaN data x=x(:); y=y(:); z=z(:); k = isnan(x) | isnan(y) | isnan(z); if any(k) x(k)=[]; y(k)=[]; z(k)=[]; end xmin = min(x); xmax = max(x); ymin = min(y); ymax = max(y); % did they supply a scalar for the nodes? if length(xnodes)==1 xnodes = linspace(xmin,xmax,xnodes)'; xnodes(end) = xmax; % make sure it hits the max end if length(ynodes)==1 ynodes = linspace(ymin,ymax,ynodes)'; ynodes(end) = ymax; % make sure it hits the max end xnodes=xnodes(:); ynodes=ynodes(:); dx = diff(xnodes); dy = diff(ynodes); nx = length(xnodes); ny = length(ynodes); ngrid = nx*ny; % set the scaling if autoscale was on if strcmpi(params.autoscale,'on') params.xscale = mean(dx); params.yscale = mean(dy); params.autoscale = 'off'; end % check to see if any tiling is necessary if (params.tilesize < max(nx,ny)) % split it into smaller tiles. compute zgrid and ygrid % at the very end if requested zgrid = tiled_gridfit(x,y,z,xnodes,ynodes,params); else % its a single tile. % mask must be either an empty array, or a boolean % aray of the same size as the final grid. nmask = size(params.mask); if ~isempty(params.mask) && ((nmask(2)~=nx) || (nmask(1)~=ny)) if ((nmask(2)==ny) || (nmask(1)==nx)) error 'Mask array is probably transposed from proper orientation.' else error 'Mask array must be the same size as the final grid.' end end if ~isempty(params.mask) params.maskflag = 1; else params.maskflag = 0; end % default for maxiter? if isempty(params.maxiter) params.maxiter = min(10000,nx*ny); end % check lengths of the data n = length(x); if (length(y)~=n) || (length(z)~=n) error 'Data vectors are incompatible in size.' end if n<3 error 'Insufficient data for surface estimation.' end % verify the nodes are distinct if any(diff(xnodes)<=0) || any(diff(ynodes)<=0) error 'xnodes and ynodes must be monotone increasing' end % do we need to tweak the first or last node in x or y? if xmin<xnodes(1) switch params.extend case 'always' xnodes(1) = xmin; case 'warning' warning('GRIDFIT:extend',['xnodes(1) was decreased by: ',num2str(xnodes(1)-xmin),', new node = ',num2str(xmin)]) xnodes(1) = xmin; case 'never' error(['Some x (',num2str(xmin),') falls below xnodes(1) by: ',num2str(xnodes(1)-xmin)]) end end if xmax>xnodes(end) switch params.extend case 'always' xnodes(end) = xmax; case 'warning' warning('GRIDFIT:extend',['xnodes(end) was increased by: ',num2str(xmax-xnodes(end)),', new node = ',num2str(xmax)]) xnodes(end) = xmax; case 'never' error(['Some x (',num2str(xmax),') falls above xnodes(end) by: ',num2str(xmax-xnodes(end))]) end end if ymin<ynodes(1) switch params.extend case 'always' ynodes(1) = ymin; case 'warning' warning('GRIDFIT:extend',['ynodes(1) was decreased by: ',num2str(ynodes(1)-ymin),', new node = ',num2str(ymin)]) ynodes(1) = ymin; case 'never' error(['Some y (',num2str(ymin),') falls below ynodes(1) by: ',num2str(ynodes(1)-ymin)]) end end if ymax>ynodes(end) switch params.extend case 'always' ynodes(end) = ymax; case 'warning' warning('GRIDFIT:extend',['ynodes(end) was increased by: ',num2str(ymax-ynodes(end)),', new node = ',num2str(ymax)]) ynodes(end) = ymax; case 'never' error(['Some y (',num2str(ymax),') falls above ynodes(end) by: ',num2str(ymax-ynodes(end))]) end end % determine which cell in the array each point lies in [junk,indx] = histc(x,xnodes); %#ok [junk,indy] = histc(y,ynodes); %#ok % any point falling at the last node is taken to be % inside the last cell in x or y. k=(indx==nx); indx(k)=indx(k)-1; k=(indy==ny); indy(k)=indy(k)-1; ind = indy + ny*(indx-1); % Do we have a mask to apply? if params.maskflag % if we do, then we need to ensure that every % cell with at least one data point also has at % least all of its corners unmasked. params.mask(ind) = 1; params.mask(ind+1) = 1; params.mask(ind+ny) = 1; params.mask(ind+ny+1) = 1; end % interpolation equations for each point tx = min(1,max(0,(x - xnodes(indx))./dx(indx))); ty = min(1,max(0,(y - ynodes(indy))./dy(indy))); % Future enhancement: add cubic interpolant switch params.interp case 'triangle' % linear interpolation inside each triangle k = (tx > ty); L = ones(n,1); L(k) = ny; t1 = min(tx,ty); t2 = max(tx,ty); A = sparse(repmat((1:n)',1,3),[ind,ind+ny+1,ind+L], ... [1-t2,t1,t2-t1],n,ngrid); case 'nearest' % nearest neighbor interpolation in a cell k = round(1-ty) + round(1-tx)*ny; A = sparse((1:n)',ind+k,ones(n,1),n,ngrid); case 'bilinear' % bilinear interpolation in a cell A = sparse(repmat((1:n)',1,4),[ind,ind+1,ind+ny,ind+ny+1], ... [(1-tx).*(1-ty), (1-tx).*ty, tx.*(1-ty), tx.*ty], ... n,ngrid); end rhs = z; % do we have relative smoothing parameters? if numel(params.smoothness) == 1 % it was scalar, so treat both dimensions equally smoothparam = params.smoothness; xyRelativeStiffness = [1;1]; else % It was a vector, so anisotropy reigns. % I've already checked that the vector was of length 2 smoothparam = sqrt(prod(params.smoothness)); xyRelativeStiffness = params.smoothness(:)./smoothparam; end % Build regularizer. Add del^4 regularizer one day. switch params.regularizer case 'springs' % zero "rest length" springs [i,j] = meshgrid(1:nx,1:(ny-1)); ind = j(:) + ny*(i(:)-1); m = nx*(ny-1); stiffness = 1./(dy/params.yscale); Areg = sparse(repmat((1:m)',1,2),[ind,ind+1], ... xyRelativeStiffness(2)*stiffness(j(:))*[-1 1], ... m,ngrid); [i,j] = meshgrid(1:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); m = (nx-1)*ny; stiffness = 1./(dx/params.xscale); Areg = [Areg;sparse(repmat((1:m)',1,2),[ind,ind+ny], ... xyRelativeStiffness(1)*stiffness(i(:))*[-1 1],m,ngrid)]; [i,j] = meshgrid(1:(nx-1),1:(ny-1)); ind = j(:) + ny*(i(:)-1); m = (nx-1)*(ny-1); stiffness = 1./sqrt((dx(i(:))/params.xscale/xyRelativeStiffness(1)).^2 + ... (dy(j(:))/params.yscale/xyRelativeStiffness(2)).^2); Areg = [Areg;sparse(repmat((1:m)',1,2),[ind,ind+ny+1], ... stiffness*[-1 1],m,ngrid)]; Areg = [Areg;sparse(repmat((1:m)',1,2),[ind+1,ind+ny], ... stiffness*[-1 1],m,ngrid)]; case {'diffusion' 'laplacian'} % thermal diffusion using Laplacian (del^2) [i,j] = meshgrid(1:nx,2:(ny-1)); ind = j(:) + ny*(i(:)-1); dy1 = dy(j(:)-1)/params.yscale; dy2 = dy(j(:))/params.yscale; Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ... 2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid); [i,j] = meshgrid(2:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); dx1 = dx(i(:)-1)/params.xscale; dx2 = dx(i(:))/params.xscale; Areg = Areg + sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ... xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ... 2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid); case 'gradient' % Subtly different from the Laplacian. A point for future % enhancement is to do it better for the triangle interpolation % case. [i,j] = meshgrid(1:nx,2:(ny-1)); ind = j(:) + ny*(i(:)-1); dy1 = dy(j(:)-1)/params.yscale; dy2 = dy(j(:))/params.yscale; Areg = sparse(repmat(ind,1,3),[ind-1,ind,ind+1], ... xyRelativeStiffness(2)*[-2./(dy1.*(dy1+dy2)), ... 2./(dy1.*dy2), -2./(dy2.*(dy1+dy2))],ngrid,ngrid); [i,j] = meshgrid(2:(nx-1),1:ny); ind = j(:) + ny*(i(:)-1); dx1 = dx(i(:)-1)/params.xscale; dx2 = dx(i(:))/params.xscale; Areg = [Areg;sparse(repmat(ind,1,3),[ind-ny,ind,ind+ny], ... xyRelativeStiffness(1)*[-2./(dx1.*(dx1+dx2)), ... 2./(dx1.*dx2), -2./(dx2.*(dx1+dx2))],ngrid,ngrid)]; end nreg = size(Areg,1); % Append the regularizer to the interpolation equations, % scaling the problem first. Use the 1-norm for speed. NA = norm(A,1); NR = norm(Areg,1); A = [A;Areg*(smoothparam*NA/NR)]; rhs = [rhs;zeros(nreg,1)]; % do we have a mask to apply? if params.maskflag unmasked = find(params.mask); end % solve the full system, with regularizer attached switch params.solver case {'\' 'backslash'} if params.maskflag % there is a mask to use zgrid=nan(ny,nx); zgrid(unmasked) = A(:,unmasked)\rhs; else % no mask zgrid = reshape(A\rhs,ny,nx); end case 'normal' % The normal equations, solved with \. Can be faster % for huge numbers of data points, but reasonably % sized grids. The regularizer makes A well conditioned % so the normal equations are not a terribly bad thing % here. if params.maskflag % there is a mask to use Aunmasked = A(:,unmasked); zgrid=nan(ny,nx); zgrid(unmasked) = (Aunmasked'*Aunmasked)\(Aunmasked'*rhs); else zgrid = reshape((A'*A)\(A'*rhs),ny,nx); end case 'symmlq' % iterative solver - symmlq - requires a symmetric matrix, % so use it to solve the normal equations. No preconditioner. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = symmlq(A(:,unmasked)'*A(:,unmasked), ... A(:,unmasked)'*rhs,tol,params.maxiter); else [zgrid,flag] = symmlq(A'*A,A'*rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % SYMMLQ iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Symmlq performed ',num2str(params.maxiter), ... ' iterations but did not converge.']) case 3 % SYMMLQ stagnated, successive iterates were the same warning('GRIDFIT:solver','Symmlq stagnated without apparent convergence.') otherwise warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' symmlq was too small or too large to continue computing.']) end case 'lsqr' % iterative solver - lsqr. No preconditioner here. tol = abs(max(z)-min(z))*1.e-13; if params.maskflag % there is a mask to use zgrid=nan(ny,nx); [zgrid(unmasked),flag] = lsqr(A(:,unmasked),rhs,tol,params.maxiter); else [zgrid,flag] = lsqr(A,rhs,tol,params.maxiter); zgrid = reshape(zgrid,ny,nx); end % display a warning if convergence problems switch flag case 0 % no problems with convergence case 1 % lsqr iterated MAXIT times but did not converge. warning('GRIDFIT:solver',['Lsqr performed ', ... num2str(params.maxiter),' iterations but did not converge.']) case 3 % lsqr stagnated, successive iterates were the same warning('GRIDFIT:solver','Lsqr stagnated without apparent convergence.') case 4 warning('GRIDFIT:solver',['One of the scalar quantities calculated in',... ' LSQR was too small or too large to continue computing.']) end end % switch params.solver end % if params.tilesize... % only generate xgrid and ygrid if requested. if nargout>1 [xgrid,ygrid]=meshgrid(xnodes,ynodes); end % ============================================ % End of main function - gridfit % ============================================ % ============================================ % subfunction - parse_pv_pairs % ============================================ function params=parse_pv_pairs(params,pv_pairs) % parse_pv_pairs: parses sets of property value pairs, allows defaults % usage: params=parse_pv_pairs(default_params,pv_pairs) % % arguments: (input) % default_params - structure, with one field for every potential % property/value pair. Each field will contain the default % value for that property. If no default is supplied for a % given property, then that field must be empty. % % pv_array - cell array of property/value pairs. % Case is ignored when comparing properties to the list % of field names. Also, any unambiguous shortening of a % field/property name is allowed. % % arguments: (output) % params - parameter struct that reflects any updated property/value % pairs in the pv_array. % % Example usage: % First, set default values for the parameters. Assume we % have four parameters that we wish to use optionally in % the function examplefun. % % - 'viscosity', which will have a default value of 1 % - 'volume', which will default to 1 % - 'pie' - which will have default value 3.141592653589793 % - 'description' - a text field, left empty by default % % The first argument to examplefun is one which will always be % supplied. % % function examplefun(dummyarg1,varargin) % params.Viscosity = 1; % params.Volume = 1; % params.Pie = 3.141592653589793 % % params.Description = ''; % params=parse_pv_pairs(params,varargin); % params % % Use examplefun, overriding the defaults for 'pie', 'viscosity' % and 'description'. The 'volume' parameter is left at its default. % % examplefun(rand(10),'vis',10,'pie',3,'Description','Hello world') % % params = % Viscosity: 10 % Volume: 1 % Pie: 3 % Description: 'Hello world' % % Note that capitalization was ignored, and the property 'viscosity' % was truncated as supplied. Also note that the order the pairs were % supplied was arbitrary. npv = length(pv_pairs); n = npv/2; if n~=floor(n) error 'Property/value pairs must come in PAIRS.' end if n<=0 % just return the defaults return end if ~isstruct(params) error 'No structure for defaults was supplied' end % there was at least one pv pair. process any supplied propnames = fieldnames(params); lpropnames = lower(propnames); for i=1:n p_i = lower(pv_pairs{2*i-1}); v_i = pv_pairs{2*i}; ind = strmatch(p_i,lpropnames,'exact'); if isempty(ind) ind = find(strncmp(p_i,lpropnames,length(p_i))); if isempty(ind) error(['No matching property found for: ',pv_pairs{2*i-1}]) elseif length(ind)>1 error(['Ambiguous property name: ',pv_pairs{2*i-1}]) end end p_i = propnames{ind}; % override the corresponding default in params params = setfield(params,p_i,v_i); %#ok end % ============================================ % subfunction - check_params % ============================================ function params = check_params(params) % check the parameters for acceptability % smoothness == 1 by default if isempty(params.smoothness) params.smoothness = 1; else if (numel(params.smoothness)>2) || any(params.smoothness<=0) error 'Smoothness must be scalar (or length 2 vector), real, finite, and positive.' end end % regularizer - must be one of 4 options - the second and % third are actually synonyms. valid = {'springs', 'diffusion', 'laplacian', 'gradient'}; if isempty(params.regularizer) params.regularizer = 'diffusion'; end ind = find(strncmpi(params.regularizer,valid,length(params.regularizer))); if (length(ind)==1) params.regularizer = valid{ind}; else error(['Invalid regularization method: ',params.regularizer]) end % interp must be one of: % 'bilinear', 'nearest', or 'triangle' % but accept any shortening thereof. valid = {'bilinear', 'nearest', 'triangle'}; if isempty(params.interp) params.interp = 'triangle'; end ind = find(strncmpi(params.interp,valid,length(params.interp))); if (length(ind)==1) params.interp = valid{ind}; else error(['Invalid interpolation method: ',params.interp]) end % solver must be one of: % 'backslash', '\', 'symmlq', 'lsqr', or 'normal' % but accept any shortening thereof. valid = {'backslash', '\', 'symmlq', 'lsqr', 'normal'}; if isempty(params.solver) params.solver = '\'; end ind = find(strncmpi(params.solver,valid,length(params.solver))); if (length(ind)==1) params.solver = valid{ind}; else error(['Invalid solver option: ',params.solver]) end % extend must be one of: % 'never', 'warning', 'always' % but accept any shortening thereof. valid = {'never', 'warning', 'always'}; if isempty(params.extend) params.extend = 'warning'; end ind = find(strncmpi(params.extend,valid,length(params.extend))); if (length(ind)==1) params.extend = valid{ind}; else error(['Invalid extend option: ',params.extend]) end % tilesize == inf by default if isempty(params.tilesize) params.tilesize = inf; elseif (length(params.tilesize)>1) || (params.tilesize<3) error 'Tilesize must be scalar and > 0.' end % overlap == 0.20 by default if isempty(params.overlap) params.overlap = 0.20; elseif (length(params.overlap)>1) || (params.overlap<0) || (params.overlap>0.5) error 'Overlap must be scalar and 0 < overlap < 1.' end % ============================================ % subfunction - tiled_gridfit % ============================================ function zgrid=tiled_gridfit(x,y,z,xnodes,ynodes,params) % tiled_gridfit: a tiled version of gridfit, continuous across tile boundaries % usage: [zgrid,xgrid,ygrid]=tiled_gridfit(x,y,z,xnodes,ynodes,params) % % Tiled_gridfit is used when the total grid is far too large % to model using a single call to gridfit. While gridfit may take % only a second or so to build a 100x100 grid, a 2000x2000 grid % will probably not run at all due to memory problems. % % Tiles in the grid with insufficient data (<4 points) will be % filled with NaNs. Avoid use of too small tiles, especially % if your data has holes in it that may encompass an entire tile. % % A mask may also be applied, in which case tiled_gridfit will % subdivide the mask into tiles. Note that any boolean mask % provided is assumed to be the size of the complete grid. % % Tiled_gridfit may not be fast on huge grids, but it should run % as long as you use a reasonable tilesize. 8-) % Note that we have already verified all parameters in check_params % Matrix elements in a square tile tilesize = params.tilesize; % Size of overlap in terms of matrix elements. Overlaps % of purely zero cause problems, so force at least two % elements to overlap. overlap = max(2,floor(tilesize*params.overlap)); % reset the tilesize for each particular tile to be inf, so % we will never see a recursive call to tiled_gridfit Tparams = params; Tparams.tilesize = inf; nx = length(xnodes); ny = length(ynodes); zgrid = zeros(ny,nx); % linear ramp for the bilinear interpolation rampfun = inline('(t-t(1))/(t(end)-t(1))','t'); % loop over each tile in the grid h = waitbar(0,'Relax and have a cup of JAVA. Its my treat.'); warncount = 0; xtind = 1:min(nx,tilesize); while ~isempty(xtind) && (xtind(1)<=nx) xinterp = ones(1,length(xtind)); if (xtind(1) ~= 1) xinterp(1:overlap) = rampfun(xnodes(xtind(1:overlap))); end if (xtind(end) ~= nx) xinterp((end-overlap+1):end) = 1-rampfun(xnodes(xtind((end-overlap+1):end))); end ytind = 1:min(ny,tilesize); while ~isempty(ytind) && (ytind(1)<=ny) % update the waitbar waitbar((xtind(end)-tilesize)/nx + tilesize*ytind(end)/ny/nx) yinterp = ones(length(ytind),1); if (ytind(1) ~= 1) yinterp(1:overlap) = rampfun(ynodes(ytind(1:overlap))); end if (ytind(end) ~= ny) yinterp((end-overlap+1):end) = 1-rampfun(ynodes(ytind((end-overlap+1):end))); end % was a mask supplied? if ~isempty(params.mask) submask = params.mask(ytind,xtind); Tparams.mask = submask; end % extract data that lies in this grid tile k = (x>=xnodes(xtind(1))) & (x<=xnodes(xtind(end))) & ... (y>=ynodes(ytind(1))) & (y<=ynodes(ytind(end))); k = find(k); if length(k)<4 if warncount == 0 warning('GRIDFIT:tiling','A tile was too underpopulated to model. Filled with NaNs.') end warncount = warncount + 1; % fill this part of the grid with NaNs zgrid(ytind,xtind) = NaN; else % build this tile zgtile = gridfit(x(k),y(k),z(k),xnodes(xtind),ynodes(ytind),Tparams); % bilinear interpolation (using an outer product) interp_coef = yinterp*xinterp; % accumulate the tile into the complete grid zgrid(ytind,xtind) = zgrid(ytind,xtind) + zgtile.*interp_coef; end % step to the next tile in y if ytind(end)<ny ytind = ytind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (ytind(end)+max(3,overlap))>=ny % extend this tile to the edge ytind = ytind(1):ny; end else ytind = ny+1; end end % while loop over y % step to the next tile in x if xtind(end)<nx xtind = xtind + tilesize - overlap; % are we within overlap elements of the edge of the grid? if (xtind(end)+max(3,overlap))>=nx % extend this tile to the edge xtind = xtind(1):nx; end else xtind = nx+1; end end % while loop over x % close down the waitbar close(h) if warncount>0 warning('GRIDFIT:tiling',[num2str(warncount),' tiles were underpopulated & filled with NaNs']) end
github
ojwoodford/ojwul-master
line_plane_intersect.m
.m
ojwul-master/geometry/line_plane_intersect.m
540
utf_8
9b909d96cedd515c326d8d31911ae40b
%LINE_PLANE_INTERSECT Compute the intersection point of a line and a plane % % Z = line_plane_intersect(N, X, Y, D) % % Computes the point of intersection of a line and a plane in M dimensions. % %IN: % N - MxN plane normals. % X - MxN points on plane. % Y - MxN points on line. % D - MxN line directions. % %OUT: % Z - MxN output points. function Y = line_plane_intersect(N, X, Y, D) Y = bsxfun(@plus, Y, bsxfun(@times, D, sum(bsxfun(@times, bsxfun(@minus, X, Y), N), 1) ./ sum(bsxfun(@times, D, N), 1))); end
github
ojwoodford/ojwul-master
clip_line2rect.m
.m
ojwul-master/geometry/clip_line2rect.m
1,709
utf_8
13042b68e1492681d1292f72d51b403a
%CLIP_LINE2RECT Clips a line segment to within a rectangle % % X = clip_line2rect(X, rect) % % Clip a line to a rectangle using the Cohen-Sutherland algorithm, % described here: https://en.wikipedia.org/wiki/Cohen-Sutherland_algorithm % %IN: % X - 2x2 matrix of [x1 x2; y1 y2] start and end points. % rect - 2x2 matrix of [left right; top bottom] rectangle boundaries. % %OUT: % X - 2x2 matrix of [x1 x1; y1 y2] clipped start and end points. function X = clip_line2rect(X, rect) c(1) = area_code(X(:,1), rect); c(2) = area_code(X(:,2), rect); while true if bitand(c(1), c(2)) % Segment is out of the rectangle X(:) = NaN; return; end [c_, ind] = max(c); if c_ == 0 % Segment is inside the rectangle return; end % Clip to one of the crossing axes if c_ >= 8 X(1,ind) = X(1,ind) + (X(1,3-ind) - X(1,ind)) * (rect(2,2) - X(2,ind)) / (X(2,3-ind) - X(2,ind)); X(2,ind) = rect(2,2); elseif c_ >= 4 X(1,ind) = X(1,ind) + (X(1,3-ind) - X(1,ind)) * (rect(2,1) - X(2,ind)) / (X(2,3-ind) - X(2,ind)); X(2,ind) = rect(2,1); elseif c_ >= 2 X(2,ind) = X(2,ind) + (X(2,3-ind) - X(2,ind)) * (rect(1,2) - X(1,ind)) / (X(1,3-ind) - X(1,ind)); X(1,ind) = rect(1,2); else X(2,ind) = X(2,ind) + (X(2,3-ind) - X(2,ind)) * (rect(1,1) - X(1,ind)) / (X(1,3-ind) - X(1,ind)); X(1,ind) = rect(1,1); end c(ind) = area_code(X(:,ind), rect); end end function c = area_code(X, rect) c = uint8(0); if X(1) < rect(1,1) c = uint8(1); elseif X(1) > rect(1,2) c = uint8(2); end if X(2) < rect(2,1) c = uint8(c) + 4; elseif X(2) > rect(2,2) c = uint8(c) + 8; end end
github
ojwoodford/ojwul-master
epipolar_error.m
.m
ojwul-master/geometry/epipolar_error.m
795
utf_8
f1847d888974856b6633fb045ba76e01
%EPIPOLAR_ERROR Compute the perpendicular error of points to epipolar lines % % d = epipolar_error(RX, T, x, [c]) % % Computes the point to line error (i.e. signed distance) of points in an % image to the corresponding epipolar lines. % %IN: % RX - 3xN world points multiplied by rotation part of projection matrix % P(:,1:3). % T - 3x1 or 3xN translation part of projection matrix P(:,4). % x - 2xN corresponding points in the image(s). % c - 2x2xN conditioning matrix to weight the error. % %OUT: % d - 1xN output error. function d = epipolar_error(RX, T, x, cov) T = proj(T); x = x - T; RX = proj(RX) - T; RX = [RX(2,:); -RX(1,:)]; if nargin > 3 RX = tmult(inv22n(cov), RX, [1 0]); x = tmult(cov, x); end d = dot(x, normalize(RX)); end
github
ojwoodford/ojwul-master
msac.m
.m
ojwul-master/geometry/msac.m
3,015
utf_8
76e32992cb6fdf8c15aa1ebe9b9a3696
%MSAC Robustly fit a model to data with the MSAC algorithm % % [model, sqDists] = msac(X, fittingFunc, distFunc, minSamples, distThresh, maxTrials) % %IN: % X - MxN data matrix, with each column being one datum, to which we are % seeking to fit a model. % fittingFunc - Handle to a function that fits a model to minSamples data % from X. It is assumed that the function is of the form: % model = fittingFunc(X); % The fitting function can return multiple models in a cell % array. If this function cannot fit a model, it should an % empty matrix. % distFunc - Handle to a function that computes the squared distances % for each datum in X, given a model. It is assumed that the % function is of the form: % sqDist = distFunc(model, X); % minSamples - The minimum number of samples from X required by % fittingFunc to fit a model. % distThresh - The squared distance threshold used to decide whether the % point is an inlier or not. % maxTrials - Maximum number of iterations. Default: 200. % %OUT: % model - The best scoring model found. % sqDists - 1xN vector of squared distances for the best model found. function [bestM, bestD, stats] = msac(X, fittingFunc, distFunc, minSamples, distThresh, maxTrials) confidence = 0.99999; % Desired probability of choosing at least one sample free from outliers confidence = log1p(-confidence); if nargin < 6 % Assume 30% inliers maxTrials = confidence / (log1p(-(0.3 ^ minSamples)) + 1e-300); end bestM = []; bestD = []; [~, nPoints] = size(X); if nPoints < minSamples stats = zeros(1, 3); return; end numTrials = 0; numFailures = 0; bestScore = Inf; N = maxTrials; while numTrials < N % Select a set of points to try ind = randperm(nPoints, minSamples); % Fit model(s) to this random selection of data points M = fittingFunc(X(:,ind)); if isempty(M) numFailures = numFailures + 1; if (numTrials + numFailures) >= maxTrials break; end continue; end if ~iscell(M) M = {M}; end for a = 1:numel(M) % Compute the distances for each datum D = distFunc(M{a}, X); % Compute a score score = sum(min(D, distThresh)); % Compare the model to the current best if score < bestScore % Compute a new number of trials pNoOutliers = sum(D < distThresh); if pNoOutliers == 0 continue; end pNoOutliers = (pNoOutliers / nPoints) ^ minSamples; N = min(maxTrials, confidence / (log1p(-pNoOutliers) + 1e-300)); % Store the new best model bestScore = score; bestD = D; bestM = M{a}; end end numTrials = numTrials + numel(M); end if nargout > 2 stats = [numTrials numFailures maxTrials]; end end
github
ojwoodford/ojwul-master
proj2so3.m
.m
ojwul-master/geometry/proj2so3.m
280
utf_8
042f2fb40c7c28f8459adae89d5c9510
%PROJ2SO3 Project a 3x3 matrix onto the SO(3) manifold % % B = proj2so3(A) % % Projects a 3x3 matrix onto SO(3) (the space of rotation matrices) in a % least squares way, s.t. B = argmin_{B in SO(3)} || B - A ||_F. function R = proj2so3(R) R = proj2orthonormal(R); end
github
ojwoodford/ojwul-master
rot2angle.m
.m
ojwul-master/geometry/rot2angle.m
383
utf_8
991bf0d787b4959bbd21201f88f7ebc2
%ROT2ANGLE Given rotation matrices, compute their angle of rotation (in degrees) % % angle = rot2angle(R) % %IN: % R - 3x{3,4}xN array of rotation or SO(3) matrices. % %OUT: % angle - 1xN vector of angles, in degrees. function R = rot2angle(R) R = reshape(R, 3*size(R, 2), []); R = sum(R([1 5 9],:), 1); R = (180 / pi) * acos(max(min(0.5 * (R - 1), 1), -1)); end
github
ojwoodford/ojwul-master
rot2euler.m
.m
ojwul-master/geometry/rot2euler.m
496
utf_8
f762bbc225e86939d19abc9c6814951f
%ROT2EULER Converts 3x3xN rotation matrices to 3xN Euler angle representation % % X = rot2euler(R) % % The Euler representation is a [roll; pitch; yaw] set of angles (in % radians), which are applied about the X, Y and Z axes of the frame % respectively, and in that order. function X = rot2euler(R) X = shiftdim(max(min([R(3,3,:) R(3,1,:) R(1,1,:)], 1), -1), 1); X(2,:) = -asin(X(2,:)); cospitch = cos(X(2,:)); X(1,:) = acos(X(1,:) ./ cospitch); X(3,:) = acos(X(3,:) ./ cospitch);
github
ojwoodford/ojwul-master
map_points.m
.m
ojwul-master/geometry/map_points.m
3,939
utf_8
5dee42a5ca70e7692415a6b2b7b8f0bc
%MAP POINTS Maps 3D points onto a series of input images % % map_points([options]) % % Plots the feature points obtained from a Structure from Motion algorithm % onto the input images in the sequence. % % IN: % options - Pairs of arguments, the first being the option name and the % second being the value. See the m file for details of the % options available. function map_points(varargin) state.points = 'y.'; % Format string to use when plotting points. state.tracks = 'c-'; % Format string to use when plotting tracks. state.depth_thresh = 1e300; % Furthest depth to plot state.stream_name = 'input.000.png'; % Name of the first frame in the sequence state.Pi = []; % Camera projection matrices state.X = []; % 3d scene points state = vgg_argparse(state, varargin); % Initialize variables state.stream = imstream(state.stream_name, 100); if isempty(state.Pi) || isempty(state.X) path = fileparts(state.stream_name); if ~isempty(path) s = load([path '/data.mat']); else s = load('data.mat'); end if isempty(state.Pi) Pi = PcTo1(s.Pi, state.stream(1)); % Convert P matrices to MATLAB indexing conventions. else Pi = state.Pi; end if isempty(state.X) points = s.points; else points = state.X; end else Pi = state.Pi; points = state.X; end state = rmfield(state, {'Pi', 'X'}); if size(points, 1) ~= 3 points = points'; end points(4,:) = 1; state.num_in = size(Pi, 3); state.ind = 0; state.projected_points = zeros(state.num_in, size(points, 2), 3); for n = 1:state.num_in % Project the 3-D points A = Pi(:,:,n) * points; state.projected_points(n,:,3) = A(3,:); A(3,:) = 1 ./ A(3,:); state.projected_points(n,:,1) = A(1,:) .* A(3,:); state.projected_points(n,:,2) = A(2,:) .* A(3,:); end if sum(sum(state.projected_points(:,:,3)<0)) > (numel(state.projected_points) / 6) state.projected_points(:,:,3) = -state.projected_points(:,:,3); end clear A % Render the figure layout fig = gcf(); figure(fig); clf('reset'); state.hIm = imdisp(state.stream(1)); hold on if ~isempty(state.tracks) state.hTracks = plot(zeros(100, 1), zeros(100, 1), state.tracks); end state.hPoints = plot(zeros(100, 1), zeros(100, 1), state.points); hold off % Set the callbacks set(fig, 'KeyPressFcn', @keypress_callback, 'UserData', state, 'Interruptible', 'off', 'BusyAction', 'cancel'); % Update the figure event_data.Character = 29; keypress_callback(fig, event_data); end function keypress_callback(fig, event_data) % Check what key was pressed and update the image index as necessary switch event_data.Character case 28 % Left off = -2; case 29 % Right off = 0; case 30 % Up off = 9; case 31 % Down off = -11; otherwise return end state = get(fig, 'UserData'); state.ind = mod(state.ind + off, state.num_in) + 1; % Select points in front of the camera and within a certain range A = state.stream(state.ind); M = state.projected_points(state.ind,:,3) > 0 & state.projected_points(state.ind,:,3) < state.depth_thresh; M = M & state.projected_points(state.ind,:,1) > 1 & state.projected_points(state.ind,:,1) < size(A, 2); M = M & state.projected_points(state.ind,:,2) > 1 & state.projected_points(state.ind,:,2) < size(A, 1); % Update the image and points set(state.hIm, 'CData', A); if ~isempty(state.tracks) && state.ind > 1 X = state.projected_points(max(state.ind-4,1):state.ind,M,1); X(end+1,:) = NaN; Y = state.projected_points(max(state.ind-4,1):state.ind,M,2); Y(end+1,:) = NaN; set(state.hTracks, 'XData', X(:), 'YData', Y(:)); end set(state.hPoints, 'XData', state.projected_points(state.ind,M,1), 'YData', state.projected_points(state.ind,M,2)); drawnow; set(fig, 'UserData', state); end
github
ojwoodford/ojwul-master
camera_extrinsics.m
.m
ojwul-master/geometry/camera_extrinsics.m
764
utf_8
f97f7abb368f88889cdd2cf50d85e7ec
%CAMERA_EXTRINSICS Compute camera extrinsics from projection matrices % % [Pe, K] = camera_extrinsics(P) % % Given an array of 3x4 camera projection matrices, this function computes % their extrinsics (matrices in SE3), and (optionally) their intrinsics % (upper triangular 3x3 matrices). % % The output is such that P(:,:,i) = K(:,:,i) * Pe(:,:,i), for all i. % %IN: % P - 3x4xM array of camera projection matrices. % %OUT: % Pe - 3x4xM array of SE3 camera extrinsics matrices. % K - 3x3xM array of upper triangular camera intrinsics matrices. function [P, K] = camera_extrinsics(P) sz = [size(P) 1]; K = zeros([3, 3, sz(3:end)]); for a = 1:prod(sz(3:end)) [K(:,:,a), R, t] = KR_from_P(P(:,:,a)); P(:,:,a) = [R R*-t]; end
github
ojwoodford/ojwul-master
iou.m
.m
ojwul-master/geometry/iou.m
780
utf_8
ed9a0b83ae67aa80477559307018ae6f
%IOU Compute the intersection over union of two shapes % % score = iou(A, B) % % Compute the intersection over union of two shapes, represented either by % logical images, or by polygons. % %IN: % A - 2xM polygon coordinates, or HxW logical matrix. % B - 2xN polygon coordinates, or HxW logical matrix. % %OUT: % score - scalar intersection over union score, in the range [0, 1]. function score = iou(A, B) if isnumeric(A) && size(A, 1) == 2 && isnumeric(B) && size(B, 1) == 2 % Polygons A = polyshape(A'); B = polyshape(B'); score = area(intersect(A, B)) / area(union(A, B)); elseif islogical(A) && islogical(B) && isequal(size(A), size(B)) % Bitmaps score = sum(A(:) & B(:)) / sum(A(:) | B(:)); else error('Inputs not recognized'); end end
github
ojwoodford/ojwul-master
rot2quat.m
.m
ojwul-master/geometry/rot2quat.m
1,201
utf_8
dc07a0572e836f2439454e0544aaecf9
%ROT2QUAT Convert an array of 3x3 rotation matrices into quaternions % % Q = rot2quat(R, [w_last]) % % This function generates quaternions of the form [w x y z]', such that R = % eye(3) corresponds to Q = [1 0 0 0]'. If w_last is true, quaternions are % of the form [x y z w]. % %IN: % R - 3x3xN array of rotation matrices. % w_last - boolean indicating whether quaternions should be of the form % [x y z w]'. Default: false. % %OUT: % Q - 4xN array of corresponding quaternions. function Q = rot2quat(R, w_last) M = cat(3, [1 0 0 0 0 0 0; 0 0 0 0 1 0 -1; 0 0 -1 0 0 1 0; 0 1 0 -1 0 0 0], ... [0 0 0 0 1 0 -1; 1 0 0 0 0 0 0; 0 1 0 1 0 0 0; 0 0 1 0 0 1 0], ... [0 0 -1 0 0 1 0; 0 1 0 1 0 0 0; 1 0 0 0 0 0 0; 0 0 0 0 1 0 1], ... [0 1 0 -1 0 0 0; 0 0 1 0 0 1 0; 0 0 0 0 1 0 1; 1 0 0 0 0 0 0]); sz = size(R); R = reshape(R, 9, []); [m, n] = max([1, 1, 1; 1, -1, -1; -1, 1, -1; -1, -1, 1] * R([1 5 9],:)); m = sqrt(1 + m) / 2; Q = sum(bsxfun(@times, M(:,:,n), shiftdim([m; bsxfun(@times, R([2 3 4 6 7 8],:), 1 ./ (4 * m))], -1)), 2); Q = reshape(Q, [4 sz(3:end) 1]); if nargin > 1 && w_last Q = Q([2:4 1],:); end end
github
ojwoodford/ojwul-master
icp.m
.m
ojwul-master/geometry/icp.m
19,735
utf_8
9bd93b4bacde8a9293369d5fb1d1af8a
function [TR, TT, ER, t] = icp(q,p,varargin) % Perform the Iterative Closest Point algorithm on three dimensional point % clouds. % % [TR, TT] = icp(q,p) returns the rotation matrix TR and translation % vector TT that minimizes the distances from (TR * p + TT) to q. % p is a 3xm matrix and q is a 3xn matrix. % % [TR, TT] = icp(q,p,k) forces the algorithm to make k iterations % exactly. The default is 10 iterations. % % [TR, TT, ER] = icp(q,p,k) also returns the RMS of errors for k % iterations in a (k+1)x1 vector. ER(0) is the initial error. % % [TR, TT, ER, t] = icp(q,p,k) also returns the calculation times per % iteration in a (k+1)x1 vector. t(0) is the time consumed for preprocessing. % % Additional settings may be provided in a parameter list: % % Boundary % {[]} | 1x? vector % If EdgeRejection is set, a vector can be provided that indexes into % q and specifies which points of q are on the boundary. % % EdgeRejection % {false} | true % If EdgeRejection is true, point matches to edge vertices of q are % ignored. Requires that boundary points of q are specified using % Boundary or that a triangulation matrix for q is provided. % % Extrapolation % {false} | true % If Extrapolation is true, the iteration direction will be evaluated % and extrapolated if possible using the method outlined by % Besl and McKay 1992. % % Matching % {bruteForce} | Delaunay | kDtree % Specifies how point matching should be done. % bruteForce is usually the slowest and kDtree is the fastest. % Note that the kDtree option is depends on the Statistics Toolbox % v. 7.3 or higher. % % Minimize % {point} | plane | lmaPoint % Defines whether point to point or point to plane minimization % should be performed. point is based on the SVD approach and is % usually the fastest. plane will often yield higher accuracy. It % uses linearized angles and requires surface normals for all points % in q. Calculation of surface normals requires substantial pre % proccessing. % The option lmaPoint does point to point minimization using the non % linear least squares Levenberg Marquardt algorithm. Results are % generally the same as in points, but computation time may differ. % % Normals % {[]} | n x 3 matrix % A matrix of normals for the n points in q might be provided. % Normals of q are used for point to plane minimization. % Else normals will be found through a PCA of the 4 nearest % neighbors. % % ReturnAll % {false} | true % Determines whether R and T should be returned for all iterations % or only for the last one. If this option is set to true, R will be % a 3x3x(k+1) matrix and T will be a 3x1x(k+1) matrix. % % Triangulation % {[]} | ? x 3 matrix % A triangulation matrix for the points in q can be provided, % enabling EdgeRejection. The elements should index into q, defining % point triples that act together as triangles. % % Verbose % {false} | true % Enables extrapolation output in the Command Window. % % Weight % {@(match)ones(1,m)} | Function handle % For point or plane minimization, a function handle to a weighting % function can be provided. The weighting function will be called % with one argument, a 1xm vector that specifies point pairs by % indexing into q. The weighting function should return a 1xm vector % of weights for every point pair. % % WorstRejection % {0} | scalar in ]0; 1[ % Reject a given percentage of the worst point pairs, based on their % Euclidean distance. % % Martin Kjer and Jakob Wilm, Technical University of Denmark, 2012 % Copyright (c) 2012, Jakob Wilm & Hans Martin Kjer % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % Use the inputParser class to validate input arguments. inp = inputParser; inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3); inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3); inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5); inp.addParamValue('Boundary', [], @(x)size(x,1) == 1); inp.addParamValue('EdgeRejection', false, @(x)islogical(x)); inp.addParamValue('Extrapolation', false, @(x)islogical(x)); validMatching = {'bruteForce','Delaunay','kDtree'}; inp.addParamValue('Matching', 'bruteForce', @(x)any(strcmpi(x,validMatching))); validMinimize = {'point','plane','lmapoint'}; inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize))); inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3); inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3); inp.addParamValue('ReturnAll', false, @(x)islogical(x)); inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3); inp.addParamValue('Verbose', false, @(x)islogical(x)); inp.addParamValue('Weight', @(x)ones(1,length(x)), @(x)isa(x,'function_handle')); inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1); inp.parse(q,p,varargin{:}); arg = inp.Results; clear('inp'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Actual implementation % Allocate vector for RMS of errors in every iteration. t = zeros(arg.iter+1,1); % Start timer tic; Np = size(p,2); % Transformed data point cloud pt = p; % Allocate vector for RMS of errors in every iteration. ER = zeros(arg.iter+1,1); % Initialize temporary transform vector and matrix. T = zeros(3,1); R = eye(3,3); % Initialize total transform vector(s) and rotation matric(es). TT = zeros(3,1, arg.iter+1); TR = repmat(eye(3,3), [1,1, arg.iter+1]); % If Minimize == 'plane', normals are needed if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals)) arg.Normals = lsqnormest(q,4); end % If Matching == 'Delaunay', a triangulation is needed if strcmp(arg.Matching, 'Delaunay') DT = DelaunayTri(transpose(q)); end % If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3) if strcmp(arg.Matching, 'kDtree') kdOBJ = KDTreeSearcher(transpose(q)); end % If edge vertices should be rejected, find edge vertices if arg.EdgeRejection if isempty(arg.Boundary) bdr = find_bound(q, arg.Triangulation); else bdr = arg.Boundary; end end if arg.Extrapolation % Initialize total transform vector (quaternion ; translation vec.) qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)]; % Allocate vector for direction change and change angle. dq = zeros(7,arg.iter+1); theta = zeros(1,arg.iter+1); end t(1) = toc; % Go into main iteration loop for k=1:arg.iter % Do matching switch arg.Matching case 'bruteForce' [match mindist] = match_bruteForce(q,pt); case 'Delaunay' [match mindist] = match_Delaunay(q,pt,DT); case 'kDtree' [match mindist] = match_kDtree(q,pt,kdOBJ); end % If matches to edge vertices should be rejected if arg.EdgeRejection p_idx = not(ismember(match, bdr)); q_idx = match(p_idx); mindist = mindist(p_idx); else p_idx = true(1, Np); q_idx = match; end % If worst matches should be rejected if arg.WorstRejection edge = round((1-arg.WorstRejection)*sum(p_idx)); pairs = find(p_idx); [~, idx] = sort(mindist); p_idx(pairs(idx(edge:end))) = false; q_idx = match(p_idx); mindist = mindist(p_idx); end if k == 1 ER(k) = sqrt(sum(mindist.^2)/length(mindist)); end switch arg.Minimize case 'point' % Determine weight vector weights = arg.Weight(match); [R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx)); case 'plane' weights = arg.Weight(match); [R,T] = eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx)); case 'lmaPoint' [R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx)); end % Add to the total transformation TR(:,:,k+1) = R*TR(:,:,k); TT(:,:,k+1) = R*TT(:,:,k)+T; % Apply last transformation pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); % Root mean of objective function ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx)); % If Extrapolation, we might be able to move quicker if arg.Extrapolation qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)]; dq(:,k+1) = qq(:,k+1) - qq(:,k); theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1)))); if arg.Verbose disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]); end if k>2 && theta(k+1) < 10 && theta(k) < 10 d = [ER(k+1), ER(k), ER(k-1)]; v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))]; vmax = 25 * norm(dq(:,k+1)); dv = extrapolate(v,d,vmax); if dv ~= 0 q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1)); q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4)); qq(:,k+1) = q_mark; TR(:,:,k+1) = quat2rmat(qq(1:4,k+1)); TT(:,:,k+1) = qq(5:7,k+1); % Reapply total transformation pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np); % Recalculate root mean of objective function % Note this is costly and only for fun! switch arg.Matching case 'bruteForce' [~, mindist] = match_bruteForce(q,pt); case 'Delaunay' [~, mindist] = match_Delaunay(q,pt,DT); case 'kDtree' [~, mindist] = match_kDtree(q,pt,kdOBJ); end ER(k+1) = sqrt(sum(mindist.^2)/length(mindist)); end end end t(k+1) = toc; end if not(arg.ReturnAll) TR = TR(:,:,end); TT = TT(:,:,end); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [match mindist] = match_bruteForce(q, p) m = size(p,2); n = size(q,2); match = zeros(1,m); mindist = zeros(1,m); for ki=1:m d=zeros(1,n); for ti=1:3 d=d+(q(ti,:)-p(ti,ki)).^2; end [mindist(ki),match(ki)]=min(d); end mindist = sqrt(mindist); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [match mindist] = match_Delaunay(q, p, DT) match = transpose(nearestNeighbor(DT, transpose(p))); mindist = sqrt(sum((p-q(:,match)).^2,1)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [match mindist] = match_kDtree(~, p, kdOBJ) [match mindist] = knnsearch(kdOBJ,transpose(p)); match = transpose(match); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = eq_point(q,p,weights) m = size(p,2); n = size(q,2); % normalize weights weights = weights ./ sum(weights); % find data centroid and deviations from centroid q_bar = q * transpose(weights); q_mark = q - repmat(q_bar, 1, n); % Apply weights q_mark = q_mark .* repmat(weights, 3, 1); % find data centroid and deviations from centroid p_bar = p * transpose(weights); p_mark = p - repmat(p_bar, 1, m); % Apply weights %p_mark = p_mark .* repmat(weights, 3, 1); N = p_mark*transpose(q_mark); % taking points of q in matched order [U,~,V] = svd(N); % singular value decomposition R = V*diag([1 1 det(U*V')])*transpose(U); T = q_bar - R*p_bar; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = eq_plane(q,p,n,weights) n = n .* repmat(weights,3,1); c = cross(p,n); cn = vertcat(c,n); C = cn*transpose(cn); b = - [sum(sum((p-q).*repmat(cn(1,:),3,1).*n)); sum(sum((p-q).*repmat(cn(2,:),3,1).*n)); sum(sum((p-q).*repmat(cn(3,:),3,1).*n)); sum(sum((p-q).*repmat(cn(4,:),3,1).*n)); sum(sum((p-q).*repmat(cn(5,:),3,1).*n)); sum(sum((p-q).*repmat(cn(6,:),3,1).*n))]; X = C\b; cx = cos(X(1)); cy = cos(X(2)); cz = cos(X(3)); sx = sin(X(1)); sy = sin(X(2)); sz = sin(X(3)); R = [cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz; cy*sz cx*cz+sx*sy*sz cx*sy*sz-cz*sx; -sy cy*sx cx*cy]; T = X(4:6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R,T] = eq_lmaPoint(q,p) Rx = @(a)[1 0 0; 0 cos(a) -sin(a); 0 sin(a) cos(a)]; Ry = @(b)[cos(b) 0 sin(b); 0 1 0; -sin(b) 0 cos(b)]; Rz = @(g)[cos(g) -sin(g) 0; sin(g) cos(g) 0; 0 0 1]; Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3)); myfun = @(x,xdata)Rot(x(1:3))*xdata+repmat(x(4:6),1,length(xdata)); options = optimset('Algorithm', 'levenberg-marquardt'); x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options); R = Rot(x(1:3)); T = x(4:6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extrapolation in quaternion space. Details are found in: % % Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes. % IEEE Transactions on pattern analysis and machine intelligence, 239?256. function [dv] = extrapolate(v,d,vmax) p1 = polyfit(v,d,1); % linear fit p2 = polyfit(v,d,2); % parabolic fit v1 = -p1(2)/p1(1); % linear zero crossing v2 = -p2(2)/(2*p2(1)); % polynomial top point if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1]) disp('Parabolic update!'); dv = v2; elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])... || (v2 < 0 && issorted([0 v1 vmax])) disp('Line based update!'); dv = v1; elseif v1 > vmax && v2 > vmax disp('Maximum update!'); dv = vmax; else disp('No extrapolation!'); dv = 0; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Determine the RMS error between two point equally sized point clouds with % point correspondance. % ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices. function ER = rms_error(p1,p2) dsq = sum(power(p1 - p2, 2),1); ER = sqrt(mean(dsq)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Converts (orthogonal) rotation matrices R to (unit) quaternion % representations % % Input: A 3x3xn matrix of rotation matrices % Output: A 4xn matrix of n corresponding quaternions % % http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion function quaternion = rmat2quat(R) Qxx = R(1,1,:); Qxy = R(1,2,:); Qxz = R(1,3,:); Qyx = R(2,1,:); Qyy = R(2,2,:); Qyz = R(2,3,:); Qzx = R(3,1,:); Qzy = R(3,2,:); Qzz = R(3,3,:); w = 0.5 * sqrt(1+Qxx+Qyy+Qzz); x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz); y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz); z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz); quaternion = reshape([w;x;y;z],4,[]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Converts (unit) quaternion representations to (orthogonal) rotation matrices R % % Input: A 4xn matrix of n quaternions % Output: A 3x3xn matrix of corresponding rotation matrices % % http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix function R = quat2rmat(quaternion) q0(1,1,:) = quaternion(1,:); qx(1,1,:) = quaternion(2,:); qy(1,1,:) = quaternion(3,:); qz(1,1,:) = quaternion(4,:); R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy; 2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx; 2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Least squares normal estimation from point clouds using PCA % % H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. % Surface reconstruction from unorganized points. % In Proceedings of ACM Siggraph, pages 71:78, 1992. % % p should be a matrix containing the horizontally concatenated column % vectors with points. k is a scalar indicating how many neighbors the % normal estimation is based upon. % % Note that for large point sets, the function performs significantly % faster if Statistics Toolbox >= v. 7.3 is installed. % % Jakob Wilm 2010 function n = lsqnormest(p, k) m = size(p,2); n = zeros(3,m); v = ver('stats'); if ~isempty(v) && str2double(v.Version) >= 7.5 neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1)); else neighbors = k_nearest_neighbors(p, p, k+1); end for i = 1:m x = p(:,neighbors(2:end, i)); p_bar = 1/k * sum(x,2); P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P %P = 2*cov(x); [V,D] = eig(P); [~, idx] = min(diag(D)); % choses the smallest eigenvalue n(:,i) = V(:,idx); % returns the corresponding eigenvector end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Program to find the k - nearest neighbors (kNN) within a set of points. % Distance metric used: Euclidean distance % % Note that this function makes repetitive use of min(), which seems to be % more efficient than sort() for k < 30. function [neighborIds neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k) numDataPoints = size(dataMatrix,2); numQueryPoints = size(queryMatrix,2); neighborIds = zeros(k,numQueryPoints); neighborDistances = zeros(k,numQueryPoints); D = size(dataMatrix, 1); %dimensionality of points for i=1:numQueryPoints d=zeros(1,numDataPoints); for t=1:D % this is to avoid slow repmat() d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2; end for j=1:k [s,t] = min(d); neighborIds(j,i)=t; neighborDistances(j,i)=sqrt(s); d(t) = NaN; % remove found number from d end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Boundary point determination. Given a set of 3D points and a % corresponding triangle representation, returns those point indices that % define the border/edge of the surface. function bound = find_bound(pts, poly) %Correcting polygon indices and converting datatype poly = double(poly); pts = double(pts); %Calculating freeboundary points: TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)'); FF = freeBoundary(TR); %Output bound = FF(:,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
ojwoodford/ojwul-master
KR_from_P.m
.m
ojwul-master/geometry/KR_from_P.m
424
utf_8
02dc227cf003aa17ea2fff578a4d449e
%KR_from_P Generate K, R and t matrices from a 3x4 projection matrix % % [K, R, t] = KR_from_P(P) % % P = scalar * K * R * [eye(3) -t] function [K, R, t] = KR_from_P(P) st = @(M) M(end:-1:1,end:-1:1)'; [R, K] = qr(st(P(:,1:3))); K = st(K); I = diag(K) < 0; K(:,I) = -K(:,I); if nargout > 1 R = st(R); R(I,:) = -R(I,:); if nargout > 2 t = (K * R) \ -P(:,4); end end K = K / K(3,3);
github
ojwoodford/ojwul-master
epipolar_disparity.m
.m
ojwul-master/geometry/epipolar_disparity.m
1,249
utf_8
9f4bd1fc9640f3290556b864f06f64e5
%EPIPOLAR_DISPARITY Compute the disparity of points on/near epipolar lines % % d = epipolar_disparity(RX, T, x) % % Computes the disparity of points on epipolar lines that are closest to % points in an image. % %IN: % RX - 3xN world points multiplied by rotation part of projection matrix % P(:,1:3). % T - 3x1 or 3xN translation part of projection matrix P(:,4). % x - 2xN corresponding points in the image(s). % %OUT: % d - 1xN output disparity. % dx - 2xN derivative of d w.r.t. x function [d, dx] = epipolar_disparity(RX, T, x) sum2 = @(X) [X(1,:)+X(2,:); X(3,:)]; RXT = sum2(bsxfun(@times, RX, T)); RX2 = sum2(RX .* RX); T2 = sum2(T .* T); Tx = sum(bsxfun(@times, T(1:2,:), x), 1); RXx = sum(RX(1:2,:) .* x, 1); n = T(3,:) .* RX2(1,:) - RXT(1,:) .* RX(3,:) + Tx .* RX2(2,:) - RXT(2,:) .* RXx; d = T2(1,:) .* RX(3,:) - RXT(1,:) .* T(3,:) + RXx .* T2(2,:) - RXT(2,:) .* Tx; if nargout > 1 % Compute the derivative dx = bsxfun(@times, bsxfun(@times, T(1:2,:), RX2(2,:)) - bsxfun(@times, RX(1:2,:), RXT(2,:)), d) + ... bsxfun(@times, bsxfun(@times, T(1:2,:), RXT(2,:)) - bsxfun(@times, RX(1:2,:), T2(2,:)), n); dx = bsxfun(@times, dx, 1 ./ (d .* d)); end d = n ./ d; end
github
ojwoodford/ojwul-master
msac_fundmatrix.m
.m
ojwul-master/geometry/msac_fundmatrix.m
3,810
utf_8
e5fd0ac329c9365e4e0dc7ace1eec21b
% MSAC_FUNDMATRIX - fits fundamental matrix using RANSAC % % Usage: [F, inliers] = msac_fundmatrix(x1, x2, t) % % Arguments: % x1 - 2xN or 3xN set of homogeneous points. If the data is % 2xN it is assumed the homogeneous scale factor is 1. % x2 - 2xN or 3xN set of homogeneous points such that x1<->x2. % t - The distance threshold between data point and the model % used to decide whether a point is an inlier or not. % Note that point coordinates are normalised to that their % mean distance from the origin is sqrt(2). The value of % t should be set relative to this, say in the range % 0.001 - 0.01 % % Note that it is assumed that the matching of x1 and x2 are putative and it % is expected that a percentage of matches will be wrong. % % Returns: % F - The 3x3 fundamental matrix such that x2'Fx1 = 0. % inliers - An array of indices of the elements of x1, x2 that were % the inliers for the best model. % Copyright (c) 2004-2005 Peter Kovesi function [F, D, stats] = msac_fundmatrix(x1, x2, t) if ~all(size(x1)==size(x2)) error('Data sets x1 and x2 must have the same dimension'); end [rows,npts] = size(x1); if rows~=2 && rows~=3 error('x1 and x2 must have 2 or 3 rows'); end if rows == 2 % Pad data with homogeneous scale factor of 1 x1 = [x1; ones(1,npts)]; x2 = [x2; ones(1,npts)]; end % Normalize each set of points so that the origin is at centroid and % mean distance from origin is sqrt(2). normalize2dpts also ensures the % scale parameter is 1. [T, T] = normalise2dpts([x1 x2]); x1n = T * x1; x2n = T * x2; t = t * T(1) * T(5); % x1 and x2 are 'stacked' to create a 6xN array for ransac [F, inliers, stats] = msac([x1n; x2n], @(x) fundmatrix(x(1:3,:), x(4:6,:)), @(F, x) funddist(F, x(1:3,:), x(4:6,:)), 8, t); inliers = inliers < t; % Now do a final least squares fit on the data points considered to % be inliers. F = fundmatrix(x1n(:,inliers), x2n(:,inliers)); % Denormalize F = T' * F * T; F = F / F(3,3); if nargout < 2 return; end % Compute the distances D = funddist(F, x1, x2); end %-------------------------------------------------------------------------- % FUNDMATRIX - computes fundamental matrix from 8 or more points % % Function computes the fundamental matrix from 8 or more matching points in % a stereo pair of images. The normalised 8 point algorithm given by % Hartley and Zisserman p265 is used. To achieve accurate results it is % recommended that 12 or more points are used function F = fundmatrix(x1, x2) % Build the constraint matrix F = [x2(1,:)'.*x1(1,:)' x2(1,:)'.*x1(2,:)' x2(1,:)' ... x2(2,:)'.*x1(1,:)' x2(2,:)'.*x1(2,:)' x2(2,:)' ... x1(1,:)' x1(2,:)' ones(size(x1, 2),1) ]; [U, D, F] = svd(F,0); % Under MATLAB use the economy decomposition % Extract fundamental matrix from the column of V corresponding to % smallest singular value. F = reshape(F(:,9),3,3)'; % Enforce constraint that fundamental matrix has rank 2 by performing % a svd and then reconstructing with the two largest singular values. [U, D, F] = svd(F,0); F = U * diag([D(1,1) D(2,2) 0]) * F'; end %-------------------------------------------------------------------------- % Function to evaluate the first order approximation of the geometric error % (Sampson distance) of the fit of a fundamental matrix with respect to a % set of matched points as needed by RANSAC. See: Hartley and Zisserman, % 'Multiple View Geometry in Computer Vision', page 270. function D = funddist(F, x1, x2) Fx = F * x1; x2tFx1 = sum(x2 .* Fx, 1); Fx = [Fx; F' * x2]; % Evaluate distances D = (x2tFx1 .* x2tFx1) ./ sum(Fx .* Fx, 1); end
github
ojwoodford/ojwul-master
plane_fit.m
.m
ojwul-master/geometry/plane_fit.m
512
utf_8
0c9c37021ab1e4eaf2e1eb03c2d2cf9a
%PLANE_FIT Weighted least squares plane fit to 3D points % % N = plane_fit(X, [W]) % % Finds the (weighted) least squares fit of a plane to 3D points, such that % N' * homg(X) = 0. % %IN: % X - 3xM matrix of 3D points. % W - 1xM vector of weights per point. Default: ones(1, M). % %OUT: % N - 1x4 plane equation vector. function N = plane_fit(X, W) m = mean(X, 2); X = bsxfun(@minus, X, m); if nargin > 1 X = bsxfun(@times, X, sqrt(W(:)')); end [N, ~] = svd(X, 0); N = N(:,3)'; N(4) = -(N * m); end
github
ojwoodford/ojwul-master
epipolar_demo.m
.m
ojwul-master/geometry/epipolar_demo.m
2,902
utf_8
33517fb629c7e7fa6883f3ee908344db
%EPIPOLAR_DEMO Interactively show epipolar geometry between two images % % epipolar_demo(ims, F) % % Given a pair of images and their fundamental matrix, or two projection % matrices from world to image coordinates, this function renders the % epipolar geometry of a given pixel from one image in the second image. % Lines can be stored by clicking on pixels. % % IN: % ims - 2x1 cell array of input images % F - 3x3 fundamental matrix or 3x4x2 set of projection matrices. function epipolar_demo(ims, F) % Convert projection matrices to a fundamental matrx if isequal(size(F), [3 4 2]) F = F_from_P(F); end state.F = {F, F'}; % Initialize the plot clf; nn = [NaN; NaN]; for a = 2:-1:1 % Render the image state.im(a).hAx = axes('Position', [0.01+(a-1)*0.495 0.01 0.485 0.98]); state.im(a).sz = size(ims{a}); image(ims{a}); colormap(gray(256)); axis equal off xlim([0.5 state.im(a).sz(2)+0.5]); ylim([0.5 state.im(a).sz(1)+0.5]); % Render the line hold on state.im(a).hL = plot(nn, nn, 'r-'); hold off end set(gcf(), 'Interruptible', 'off', 'BusyAction', 'cancel', 'WindowButtonUpFcn', @mouseup_callback, 'WindowButtonMotionFcn', @mouse_callback, 'UserData', state); end function mouse_callback(fig, evnt) state = get(fig, 'UserData'); nn = [NaN; NaN]; for a = 1:2 % Get the mouse location y = get(state.im(a).hAx, 'CurrentPoint'); x = round(y(1,1)); y = round(y(1,2)); % Check if it is over the image if x < 1 || x > state.im(a).sz(2) || y < 1 || y > state.im(a).sz(1) % Clear the line in the other image X = nn; Y = nn; else % Plot the epipolar line in the other image [X, Y] = compute_line(state, a, x, y); end set(state.im(3-a).hL, 'XData', X, 'YData', Y); end drawnow(); end function mouseup_callback(fig, evnt) state = get(fig, 'UserData'); % Render the point and line in a random colour col = rand(1, 3); for a = 1:2 % Get the mouse location y = get(state.im(a).hAx, 'CurrentPoint'); x = round(y(1,1)); y = round(y(1,2)); % Check if it is over the image if x < 1 || x > state.im(a).sz(2) || y < 1 || y > state.im(a).sz(1) continue; end % Plot the epipolar line in the other image [X, Y] = compute_line(state, a, x, y); set(fig, 'CurrentAxes', state.im(a).hAx); hold on plot(x, y, 'r+', 'Color', col); hold off set(fig, 'CurrentAxes', state.im(3-a).hAx); hold on plot(X, Y, 'r-', 'Color', col); hold off end drawnow; end function [X, Y] = compute_line(state, a, x, y) L = state.F{a} * [x; y; 1]; if L(1) > L(2) X = [0.5; state.im(3-a).sz(2)+0.5]; Y = (-L(3) - L(1) * X) / L(2); else Y = [0.5; state.im(3-a).sz(1)+0.5]; X = (-L(3) - L(2) * Y) / L(1); end end
github
ojwoodford/ojwul-master
line_intersect.m
.m
ojwul-master/geometry/line_intersect.m
594
utf_8
5e41795b812d28bb6ac63664a7340d16
%LINE_INTERSECT Compute the intersection point of two lines % % [y, l] = line_intersect(x1, n1, x2, n2) % % Computes the point of intersection of two lines in 2D. % %IN: % x1 - 2xN points on line 1. % n1 - 2xN directions of line 1. % x2 - 2xN points on line 2. % n2 - 2xN directions of line 2. % %OUT: % v - 2xN output point. % l - 1xN distance of intersection from x1 in units of norm(n1). function [y, l] = line_intersect(x1, n1, x2, n2) n2 = [n2(2,:); -n2(1,:)]; l = (sum(n2 .* x2, 1) - sum(n2 .* x1, 1)) ./ sum(n1 .* n2, 1); y = x1 + bsxfun(@times, n1, l);
github
ojwoodford/ojwul-master
rot2expmap.m
.m
ojwul-master/geometry/rot2expmap.m
410
utf_8
d484cd1eda51e7558ba93cc2bccd196b
%ROT2EXPMAP Converts 3x3xN rotation matrices to 3xN exponential mappings % % X = rot2expmap(R) function X = rot2expmap(R) sz = [size(R) 1]; th = reshape(acos(1 - mod((0.5 * (1 - min(R(1,1,:) + R(2,2,:) + R(3,3,:), 3)) - 1), 2)), [1 sz(3:end)]); X = reshape([R(3,2,:)-R(2,3,:); R(1,3,:)-R(3,1,:); R(2,1,:)-R(1,2,:)], [3 sz(3:end)]); X = bsxfun(@times, X, th ./ (sqrt(sum(X .* X, 1)) + 1e-300)); end
github
ojwoodford/ojwul-master
homg.m
.m
ojwul-master/geometry/homg.m
257
utf_8
db8f103523c3288323bcb424c53c36e5
%HOMG Homogenize vectors % % Y = homg(X) % % Homogenize an array of vectors along the first dimension, by % concatenating a 1. % %IN: % X - MxN input array. % %OUT: % Y - (M+1)xN output array. function X = homg(X) X(end+1,:) = 1; end
github
ojwoodford/ojwul-master
proj.m
.m
ojwul-master/geometry/proj.m
484
utf_8
eff570a09cdbf49c19e36e5d6c7ad40c
%PROJ Project points onto the image plane % % [Y, z] = proj(X) % % Project points into a lower dimension by dividing thorugh by the last % dimension, e.g. pinhole camera projection. % %IN: % X - MxN input array. % %OUT: % Y - (M-1)xN output array. % z - 1xN array of normalizing values, z = 1./X(end,:). function [X, z] = proj(X) sz = size(X); sz(1) = sz(1) - 1; z = 1 ./ X(end,:); X = reshape(X(1:end-1,:) .* z, sz); sz(1) = 1; z = reshape(z, sz); end
github
ojwoodford/ojwul-master
camera_centers.m
.m
ojwul-master/geometry/camera_centers.m
700
utf_8
80044a4d4a6d96ed96ca63e3fefb787d
%CAMERA_CENTERS Compute camera centers from projection matrices % % C = camera_extrinsics(P, [cam2world]) % % Given an array of 3x4 camera projection matrices, this function computes % their camera centers in world coordinates. % %IN: % P - 3x4xM array of camera projection matrices. % cam2world - logical value indicating if projection matrices are camera % to world transforms. % %OUT: % C - 3xM array of camera center vectors matrices. function C = camera_centers(P, cam2world) if nargin < 2 cam2world = false; end for a = size(P, 3):-1:1 [K, R, C(:,a)] = KR_from_P(P(:,:,a)); if cam2world C(:,a) = R * -C(:,a); end end end
github
ojwoodford/ojwul-master
expmap2quat.m
.m
ojwul-master/geometry/expmap2quat.m
304
utf_8
b77537c91f5fd77950dcf3795b2b11d5
%EXPMAP2QUAT Convert an exponential mapping rotation to a quaternion % % Q = expmap2quat(E) function Q = expmap2quat(E) theta = sqrt(sum(E .* E)); M = theta > 1e-8; m = repmat(0.5, size(theta)); m(M) = sin(theta(M) / 2) ./ theta(M); Q = [cos(theta / 2); bsxfun(@times, m, reshape(E, 3, []))];
github
ojwoodford/ojwul-master
quat2rot.m
.m
ojwul-master/geometry/quat2rot.m
969
utf_8
d9a11247636b15f5ba35afd87b83f742
%QUAT2ROT Convert a quaternion to a 3x3 rotation matrix % % R = quat2rot(Q, [w_last]) % % This function takes in quaternions of the form [w x y z]', such that Q = % [1 0 0 0]' corresponds to R = eye(3). If w_last is true, quaternions are % of the form [x y z w]. % %IN: % Q - 4xN array of quaternions in the form [w x y z]'. % w_last - boolean indicating whether quaternions should be of the form % [x y z w]'. Default: false. % %OUT: % R - 3x3xN array of corresponding rotation matrices. function R = quat2rot(Q, w_last) R = quat_norm(Q); if nargin > 1 && w_last R = R([4 1:3],:); end R = bsxfun(@times, reshape(R, 4, 1, []), reshape(R, 1, 4, [])); R = [R(1,1,:)+R(2,2,:)-R(3,3,:)-R(4,4,:), 2*(R(2,3,:)-R(4,1,:)), 2*(R(2,4,:)+R(3,1,:)); 2*(R(2,3,:)+R(4,1,:)), R(1,1,:)-R(2,2,:)+R(3,3,:)-R(4,4,:), 2*(R(3,4,:)-R(2,1,:)); 2*(R(2,4,:)-R(3,1,:)), 2*(R(3,4,:)+R(2,1,:)), R(1,1,:)-R(2,2,:)-R(3,3,:)+R(4,4,:)]; end
github
ojwoodford/ojwul-master
F_from_P.m
.m
ojwul-master/geometry/F_from_P.m
491
utf_8
345ef11fa64de08d9c9894dc39518bf1
%F_FROM_P Compute a fundamental matrix from two projection matrices % % F = F_from_P(P) % %IN: % P - 3x4x2 array of two projection matrices. % %OUT: % F - 3x3 fundamental matrix. function F = F_from_P(F) X1 = F([2 3],:,1); X2 = F([3 1],:,1); X3 = F([1 2],:,1); Y1 = F([2 3],:,2); Y2 = F([3 1],:,2); Y3 = F([1 2],:,2); F = [det([X1; Y1]) det([X2; Y1]) det([X3; Y1]) det([X1; Y2]) det([X2; Y2]) det([X3; Y2]) det([X1; Y3]) det([X2; Y3]) det([X3; Y3])]; end
github
ojwoodford/ojwul-master
compute_homography.m
.m
ojwul-master/geometry/compute_homography.m
1,054
utf_8
7954818e4f2450fc02a71011d85d3f60
%COMPUTE_HOMOGRAPHY Compute a best fit homography from correspondences % % H = compute_homography(X, Y, [normalize]) % % Compute a hmography from correspondences using the normalized DLT % algorithm as described in "Multiple View Geometry in Computer Vision". % %IN: % X - 2xN array of points in image one. % Y - 2xN array of points in image two. % normalize - boolean flag indicating whether to normalize the inputs. % %OUT: % H - 3x3 best fit homography from X to Y. function H = compute_homography(X, Y, normalize) if nargin < 3 normalize = true; end if normalize % Normalize [X, Tx] = whiten(X); [Y, Ty] = whiten(Y); end % Create the constraints matrix V = zeros(3, size(X, 2), 3, 3); X = homg(X); V(:,:,1,2) = -X; V(:,:,2,1) = X; Z = X .* Y(1,:); V(:,:,2,3) = -Z; V(:,:,3,2) = Z; Z = X .* Y(2,:); V(:,:,1,3) = Z; V(:,:,3,1) = -Z; V = reshape(permute(V, [3 2 1 4]), [], 9); % Decompose [~, ~, V] = svd(V, 0); % Extract homography H = reshape(V(:,9), 3, 3)'; if normalize % Denormalize H = Ty \ H * Tx; end end
github
ojwoodford/ojwul-master
P0toC.m
.m
ojwul-master/geometry/P0toC.m
332
utf_8
51fe9e195c4a10ae282e822c64ec3bc8
%P0TOC Convert projection matrices' principal points from 0 to centre based % % P = P0toC(P, im) function P = P0toC(P, im) if numel(im) == 2 || numel(im) == 3 h = im(1); w = im(2); else [h w c] = size(im); end K = [1 0 (1-w)/2; 0 1 (1-h)/2; 0 0 1]; for a = 1:size(P, 3) P(:,:,a) = K * P(:,:,a); end
github
ojwoodford/ojwul-master
calibrated_fivepoint_helper.m
.m
ojwul-master/geometry/private/calibrated_fivepoint_helper.m
292
utf_8
9f053f0467f5d3d87d32dbe5bdae388b
%CALIBRATED_FIVEPOINT_HELPER Helper for the calibrated five point algorithm function varargout = calibrated_fivepoint_helper(varargin) sourceList = {'calibrated_fivepoint_helper.c'}; % Cell array of source files [varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here return
github
ojwoodford/ojwul-master
mesh_sample_random.m
.m
ojwul-master/mesh/mesh_sample_random.m
1,513
utf_8
32282e6edfe831bf30fee01781c6aba8
%MESH_SAMPLE_RANDOM Randomly sample points on a mesh % % [P, N] = mesh_sample_random(V, E, nPts) % % Randomly sample points from a uniform distrubution over the surface area % of a triangulated 3D mesh. % %IN: % V - 3xM matrix of 3D vertex coordinates. % E - 3xN matrix of the 3 vertex indices for each of N triangles. % nPts - integer number of points to sample on the mesh. % %OUT: % P - 3x(nPts) matrix of sampled points. function [P, N] = mesh_sample_random(V, E, nPts) % Compute a cdf of area of triangles [A, A] = mesh_area(V, E); A = cumsum(A); % Sample nPts and assign to triangles A = histc(rand(nPts, 1), [0 A ./ A(end)]); A(end-1) = A(end-1) + A(end); A(end) = 0; P = zeros(3, nPts); N = zeros(3, nPts); nPts = 0; % For each triangle... for a = find(A)' % Get triangle vertices V_ = V(:,E(:,a)); % Compute the canonical frame C = V_(:,[2 3]) - V_(:,[1 1]); % Compute the normal N_ = cross(C(:,1), C(:,2)); N_ = N_ / norm(N_); % Compute random sample points S = rand(2, A(a)); M = sum(S, 1) > 1; S(:,M) = 1 - S(:,M); % Compute the points P_ = C(:,1) * S(1,:) + C(:,2) * S(2,:); % Add the canonical frame origin P_ = bsxfun(@plus, P_, V_(:,1)); % Add the points to the list I = nPts+1:nPts+size(P_, 2); P(:,I) = P_; N(1,I) = N_(1); N(2,I) = N_(2); N(3,I) = N_(3); nPts = nPts + size(P_, 2); end end
github
ojwoodford/ojwul-master
mesh_area.m
.m
ojwul-master/mesh/mesh_area.m
547
utf_8
91ad16853d5c0df5b926712246af6ac9
%MESH_AREA Compute the surface area of a triangulated mesh % % [a, A] = mesh_area(V, E) % % Compute the surface area of a 3D triangulated mesh % %IN: % V - 3xM matrix of 3D vertex coordinates. % E - 3xN matrix of the 3 vertex indices for each of N triangles. % %OUT: % a - scalar surface area of entire mesh. % A - 1xN surface area of each triangle. function [a, A] = mesh_area(V, E) A = normd(cross(V(:,E(2,:)) - V(:,E(1,:)), V(:,E(3,:)) - V(:,E(1,:))), 1); a = sum(A) * 0.5; if nargout > 1 A = A * 0.5; end end
github
ojwoodford/ojwul-master
mesh_sample_regular.m
.m
ojwul-master/mesh/mesh_sample_regular.m
1,628
utf_8
a38dd507da4c7ba30927e37f32533aa1
%MESH_SAMPLE_REGULAR Regularly sample points on a mesh % % [P, I] = mesh_sample_regular(V, E, interval) % % Sample points regularly over the surface of a triangulated 3D mesh. % %IN: % V - 3xM matrix of 3D vertex coordinates. % E - 3xN matrix of the 3 vertex indices for each of N triangles. % interval - > 0: scalar distance between sample points, % < 0: a target number of points. % %OUT: % P - 3xQ matrix of sampled points. % I - 1xQ source face indices. function [P, J] = mesh_sample_regular(V, E, interval) J = zeros(1, max(1e7, -interval)); P = zeros(3, numel(J)); if interval < 0 % Estimate an interval based on target number of points interval = sqrt(mesh_area(V, E) / -interval); end % For each triangle... I = 0; for a = 1:size(E, 2) % Get triangle vertices V_ = V(:,E(:,a)); % Compute the canonical frame C = V_(:,[2 3]) - V_(:,[1 1]); N = sum(C .* C, 1); N(1) = sqrt(N(1)); N(2) = sqrt(N(2) - ((C(:,1)' * C(:,2)) / N(1)) .^ 2); % Compute regular sample points S = mod(V(:,1)' * C, interval); [S, N] = ndgrid((S(1):interval:N(1))/N(1), (S(2):interval:N(2))/N(2)); S = [S(:)'; N(:)']; S = S(:,sum(S, 1)<1); if isempty(S) continue; end % Compute the points P_ = C(:,1) * S(1,:) + C(:,2) * S(2,:); % Add the canonical frame origin P_ = bsxfun(@plus, P_, V_(:,1)); % Add the points to the list I = I(end)+1:I(end)+size(P_, 2); P(:,I) = P_; J(I) = a; end P = P(:,1:I(end)); J = J(1:I(end)); end
github
ojwoodford/ojwul-master
render_camera_trajectories.m
.m
ojwul-master/graphics/render_camera_trajectories.m
985
utf_8
af131b75b50439f42713b2dd131470e4
%RENDER_CAMERA_TRAJECTORIES Render the path of a set of cameras % % h = render_camera_tractories(P1, P2, ...) % h = render_camera_tractories(P1, I1, ...) % % Render a set of camera trajectories % %IN: % P1 - 3x4xM camera projection matrices defining a camera trajectory. % I1 - 1xK indices of keyframes from trajectory P1. % P2 - 3x4xN camera projection matrices. % etc. % %OUT: % h - handles to the line objects created for trajectories. function h = render_camera_trajectories(varargin) colours = 'brgkmcy'; tf = ishold; hold on a = 1; c = 0; while a <= nargin T = camera_centers(varargin{a}); h(a) = plot3(T(1,:)', T(2,:)', T(3,:)', [colours(mod(c, numel(colours))+1) '-']); a = a + 1; if a <= nargin && isvector(varargin{a}) h(a) = plot3(T(1,varargin{a})', T(2,varargin{a})', T(3,varargin{a})', [colours(mod(c, numel(colours))+1) 'o']); a = a + 1; end c = c + 1; end if ~tf hold off end
github
ojwoodford/ojwul-master
render_depthmap.m
.m
ojwul-master/graphics/render_depthmap.m
1,363
utf_8
09395644eca8d75d2ada22a002dd739a
%RENDER_DEPTHMAP Renders a coloured depthmap as a point cloud % % h = render_depthmap(P, Z, [im, [num_colors, [marker, [marker_size]]]]) % % Renders a coloured depthmap in world coordinates. % %IN: % P - 3x4 projection matrix from world to image coordinates. % Z - MxN depthmap. % im - MxNx3 RGB image. Default: [] (points coloured blue); % num_colors - scalar indicating the number of colour quantization levels % (0 for no quantization). Default: 0. % marker - character representing the marker to use. Default: '.'. % marker_size - scalar marker size. Default: 6. % %OUT: % h - handle(s) to created graphics object(s). function h = render_depthmap(P, Z, im, num_colors, marker, marker_size) % Set defaults if nargin < 6 marker_size = 6; if nargin < 5 marker = '.'; if nargin < 4 num_colors = 256; if nargin < 3 im = []; end end end end if isempty(im) im = 'b'; else im = im2double(reshape(permute(im, [3 1 2]), 3, [])); end % Compute the 3D points in world coordinates [Y, X] = ndgrid(1:size(Z, 1), 1:size(Z, 2)); X = X .* Z; Y = Y .* Z; Z = [X(:)'; Y(:)'; Z(:)']; Z(4,:) = 1; Z = [P; 0 0 0 1] \ Z; Z = Z(1:3,:); % Render h = render_points(Z, im, num_colors, marker, marker_size);
github
ojwoodford/ojwul-master
render_confusion.m
.m
ojwul-master/graphics/render_confusion.m
3,126
utf_8
20180acf03e7d192dc9ad37694994387
%RENDER_CONFUSION Render a confusion matrix % % render_confusion(M[, class_names]) % % Renders a confusion matrix into the current axes. % %IN: % M - NxN confusion matrix. % class_names - Nx1 cell array of class name strings. Default: {} (not % shown). function render_confusion(M, class_names, varargin) % Default optional arguments opts.cmap = '-gray'; %opts.cmap = '-hot*'; % Alternative option opts.totals = false; opts.normalize_rows = true; opts.labels = true; opts.font_size = 0.4; % Proportion of box height opts.font = 'Times'; opts = vgg_argparse(opts, varargin); % Create a totals row at the bottom if opts.totals M(end+1,:) = sum(M, 1); end % Create the background image if opts.normalize_rows M_ = bsxfun(@times, M, 1./sum(M, 2)); else M_ = M; end im = sc(kron(M_, ones(8)), opts.cmap, [0 1]); image(im); im = sc(im(1:8:end,1:8:end,:), 'rgb2gray'); im = im(:,:,1); % Write the values [h, w] = size(M); color = {'k', 'w'}; hold on for x = 1:w for y = 1:h text(x*8-3.5, y*8-3.5, sprintf('%.2g', M(y,x)), 'FontName', opts.font, 'Units', 'Data', 'FontUnits', 'Normalized', 'FontSize', opts.font_size/h, 'Color', color{1+(im(y,x)<0.5)}, 'HorizontalAlignment', 'center', 'VerticalAlignment', 'middle'); end end hold off % Write labels if opts.labels set(xlabel('Output class'), 'FontName', opts.font, 'FontUnits', 'Normalized', 'FontSize', 1.2*opts.font_size/h); set(ylabel('Ground truth class'), 'FontName', opts.font, 'FontUnits', 'Normalized', 'FontSize', 1.2*opts.font_size/h); end if opts.totals text(w*8+2, h*8-3.5, 'TOTAL', 'FontName', opts.font, 'Units', 'Data', 'FontUnits', 'Normalized', 'FontSize', opts.font_size/h, 'Color', 'k', 'HorizontalAlignment', 'left', 'VerticalAlignment', 'middle'); end % Sort out the axes axis equal tight set(gca, 'XTick', [], 'YTick', []); if nargin < 2 || isempty(class_names) return end % Write the class names hold on for x = 1:numel(class_names) if opts.labels % Right edge text(w*8+2, x*8-3.5, class_names{x}, 'FontName', opts.font, 'Rotation', 45, 'Units', 'Data', 'FontUnits', 'Normalized', 'FontSize', opts.font_size/h, 'Color', 'k', 'HorizontalAlignment', 'left', 'VerticalAlignment', 'middle'); % Top edge text(x*8-3.5, -2, class_names{x}, 'FontName', opts.font, 'Rotation', 45, 'Units', 'Data', 'FontUnits', 'Normalized', 'FontSize', opts.font_size/h, 'Color', 'k', 'HorizontalAlignment', 'left', 'VerticalAlignment', 'middle'); else % Left edge text(-2, x*8-3.5, class_names{x}, 'FontName', opts.font, 'Rotation', 45, 'Units', 'Data', 'FontUnits', 'Normalized', 'FontSize', opts.font_size/h, 'Color', 'k', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'middle'); % Bottom edge text(x*8-3.5, h*8+2, class_names{x}, 'FontName', opts.font, 'Rotation', 45, 'Units', 'Data', 'FontUnits', 'Normalized', 'FontSize', opts.font_size/h, 'Color', 'k', 'HorizontalAlignment', 'right', 'VerticalAlignment', 'middle'); end end hold off
github
ojwoodford/ojwul-master
fill_triangles.m
.m
ojwul-master/graphics/fill_triangles.m
2,144
utf_8
9f10608ea5309943fb34710bcf314ee8
%FILL_TRIANGLES Standard, linear interpolation triangle renderer % % fill_triangles(I, P, zbuff) % J = fill_triangles(I, P, zbuff) % % A software implementation of a standard, linear interpolation (i.e. % incorrect for perspective), z-buffered triangle renderer. % % IN: % I - CxMxN double or single input image array. A single array makes the % rendering faster, but less accurate. C is the number of channels % to be interpolated. If there are only two dimensions then C is % assumed to be 1, and M and N the given dimensions. If zbuff != 0 % then the first channel must be the initialised z-buffer. The % remaining channels are the initial image colours or texture % vertices, depending on what is being interpolated. % P - (2+C)x(3T) matrix, of the same type as I. In the first two % rows are the x and y image coordinates respectively, and the rest % of the rows are the channel values of each vertex, in the same % order as in I. The number of columns must be a multiple of 3, % each group of 3 columns being the 3 verices of a triangle, with T % triangles in total. Note that shared vertices have multiple % entries, allowing for flat shaded faces. % zbuff - 1, 0 or -1. If 0, z-buffering is not used, and pixels are % simply painted over each other in the order of triangles % given. 1 means that smaller z-depths are deemed nearer, and % -1 means that smaller z-depths are deemed further away. % % OUT: % J - CxMxN output image array, of same type as I. Each channel is the % same as that from I, but updated according to the list of % triangles provided, and the z-test for each pixel (if z-buffering % is used). WARNING: If no output argument is provided, the input % array I is written into directly; use with care! function varargout = fill_triangles(varargin) sourceList = {'fill_triangles.cpp'}; % Cell array of source files [varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here return
github
ojwoodford/ojwul-master
add_datatip.m
.m
ojwul-master/graphics/add_datatip.m
4,135
utf_8
95e2c55fdb8fb5e37a1e2ee4524c7206
%ADD_DATATIP Add datatip data to graphical objects % % h = add_datatip(h, callback_func, value) % h = add_datatip(h, value) % h = add_datatip(h, 'Name', value, ...) % h = add_datatip(h, callback_func, value) % h = add_datatip(h, callback_func, 'Name', value, ...) % % Example: % add_datatip(plot(rand(3, 1)), @disp, 'Name', {'Tom', 'Dick', 'Harry'}); % % Add data to graphical objects, for querying using datatips. % %IN: % h - Scalar graphics object handle, to which to add the data. % value - MxN numeric array or 1xN cell array of data, the ith column or % cell of which is to be displayed when the ith datapoint is % selected. % 'Name' - String indicating the name of the data value, so that % name/value pairs can be used. % callback_func - Handle to callback function called with a structure % holding the data as input. % %OUT: % h - The input scalar graphics handle, for inline usage (see example). function h = add_datatip(h, varargin) assert(isscalar(h), 'Only one handle expected'); % Check for a callback if nargin > 1 && isa(varargin{1}, 'function_handle') callback = varargin(1); varargin = varargin(2:end); else callback = {}; end % Check we have name value pairs if numel(varargin) > 1 varargin = reshape(varargin, 2, []); assert(all(cellfun(@ischar, varargin(1,:))), 'Name, value pairs expected'); end % Set the 'UserData' property of this object set(h, 'UserData', [varargin(:); callback], 'Tag', 'add_datatip'); % Set the data tip function set(datacursormode(ancestor(h, 'Figure')), 'UpdateFcn', @datatip_txtfun); end function str = datatip_txtfun(obj, event) % Get the position of the object that was clicked X = event.Position'; % Check if the string is cached persistent last_pos persistent last_str if isequal(last_pos, X) str = last_str; return; end % Check if this has an add_datatip structure id = []; if strcmp(event.Target.Tag, 'add_datatip') % Find the point that was clicked hTarg = event.Target; if numel(X) == 3 Y = [hTarg.XData(:)'; hTarg.YData(:)'; hTarg.ZData(:)']; else Y = [hTarg.XData(:)'; hTarg.YData(:)']; end [md, id] = sqdist2closest(X, Y); Z = Y(:,id); else % Query all the datatip objects objs = findobj(ancestor(event.Target, 'Axes'), 'Tag', 'add_datatip'); Z = NaN(size(X, 1), 1); md = Inf; for a = 1:numel(objs) if numel(X) == 3 Y = [objs(a).XData(:)'; objs(a).YData(:)'; objs(a).ZData(:)']; else Y = [objs(a).XData(:)'; objs(a).YData(:)']; end [d, id] = sqdist2closest(X, Y); if d < md md = d; Z = Y(:,id); hTarg = objs(a); end if md == 0 break; end end end if isempty(id) str = ''; return; end % Check if the string is cached if isequal(last_pos, Z) str = last_str; obj.Cursor.Position = Z'; return; end % Generate the structure to display str = struct('X', Z(1), 'Y', Z(2)); if numel(X) == 3 str.Z = Z(3); end data = hTarg.UserData; if ~isempty(data) try N = numel(data) - isa(data{end}, 'function_handle'); if N > 1 for a = 1:2:N if iscell(data{a+1}) str.(data{a}) = data{a+1}{id}; else str.(data{a}) = data{a+1}(:,id)'; end end elseif N == 1 if iscell(data{1}) str.Data = data{1}{id}; else str.Data = data{1}(:,id)'; end end if N ~= numel(data) % Call the callback data{end}(str, id); end catch me fprintf('Error in datatip callback: %s\n', getReport(me, 'basic')); fprintf('ID: %d\n', id); fprintf('Str:\n%s\n', str); end end % Stringify the structure str = regexprep(evalc('disp(str)'), '\n *', '\n'); % Store to avoid repetition of computation when we move the cursor last_pos = Z; last_str = str; % Set the data cursor position obj.Cursor.Position = Z'; end
github
ojwoodford/ojwul-master
fill_triangles_demo.m
.m
ojwul-master/graphics/fill_triangles_demo.m
7,810
utf_8
46326f2d8edc46a4fa9a86a36d339bcf
%FILL_TRIANGLES_DEMO Demonstrates fill_triangles % % fill_triangles_demo([resolution, [use_single]]) % % Demonstrates usage of the fill_triangles function by rendering a % cube with flat shaded, gouraud shaded and texture mapped sides. % % Rotate the cube using arrow keys. Quit by pressing q. % % IN: % resolution - resolution of scene to render, in pixels. Default: 200. % use_single - non-zero if single precision is to be used, otherwise % (default) double precision is used. Single precision % approximately doubles the speed of the triangle % renderer. function fill_triangles_demo(resolution, use_single) clf reset; %set(gcf,'DoubleBuffer','on'); map = jet(256); map = map(end:-1:1,:); colormap(map); map = []; if nargin < 1 resolution = 400; end % Cube vertices CP = [-1 -1 -1 ; 1 -1 -1 ; 1 1 -1 ; -1 1 -1; ... -1 -1 1 ; 1 -1 1 ; 1 1 1 ; -1 1 1]'; % Cube vertex colours for gouraud shaded faces CC = colorcube(8)' * 255; % Cube triangles (must be clockwise outwards) T = [1 3 2 ; 1 4 3 ; ... 1 2 5 ; 2 6 5 ; ... 2 3 6 ; 3 7 6 ; ... 3 4 7 ; 4 8 7 ; ... 1 8 4 ; 1 5 8; ... 5 6 7 ; 5 7 8]'; % Initialise parameters I = zeros(4, resolution, resolution); I(1,:,:) = 1/6; Q = zeros(6, 36); half_res = resolution / 2; perspective_correct = 1; % Initialise the gouraud shaded faces P = CC(:,T); % Initialise the flat shaded faces P(:,7:12) = repmat([255 0 0]', [1 6]); % Red P(:,19:24) = repmat([0 0 255]', [1 6]); % Blue % Initialise the texture mapped faces % Face 1 TM1 = double(imread('cameraman.tif')); TM1 = TM1(:,:,[1 1 1]); P(1,1:6) = 350; % Index of the texture TV = [1 1; size(TM1, 2) 1; size(TM1, 2) size(TM1, 1); 1 size(TM1, 1)]'; P(2:3,1:6) = TV(:,T(1:6)); % Coordinates on the texture % Face 1 TM2 = double(imread('peppers.png')); P(1,31:36) = 450; % Index of the texture TV = [1 1 ; size(TM2, 2) 1 ; size(TM2, 2) size(TM2, 1); 1 size(TM2, 1)]'; P(2:3,31:36) = TV(:,T(31:36)-4); % Coordinates on the texture P = repmat(P, [2 1]); P = reshape(P, [6 3 12]); one = 1; if nargin > 1 && use_single I = single(I); P = single(P); TM1 = single(TM1); TM2 = single(TM2); one = single(1); end time = zeros(1, 6); f = 0; %R = eye(3); R = [cos(pi/3) -sin(pi/3) 0 ; sin(pi/3) cos(pi/3) 0; 0 0 1] * ... [cos(-pi/6) 0 -sin(-pi/6) ; 0 1 0 ; sin(-pi/6) 0 cos(-pi/6)] * ... [1 0 0 ; 0 cos(pi/6) -sin(pi/6) ; 0 sin(pi/6) cos(pi/6)]; incr = pi / 60; % 3 degrees Rx = [1 0 0 ; 0 cos(incr) -sin(incr) ; 0 sin(incr) cos(incr)]; Ry = [cos(incr) 0 -sin(incr) ; 0 1 0 ; sin(incr) 0 cos(incr)]; lims = [5 - sqrt(3) 6]; lims(2) = 255 / (lims(2) - lims(1)); % Set up the button callback for interactive control fig_h = gcf; figure(fig_h); pos = get(0, 'ScreenSize'); pos = round(pos/2); pos = [pos(3:4) resolution*2+300 resolution+300]; pos(1:2) = pos(1:2) - round(pos(3:4)/2); set(fig_h, 'KeyPressFcn', @keypress_callback, 'Units', 'pixels', 'Position', pos); % Create the plot layout subplot(121); H1 = imshow(zeros(resolution, resolution, 3, 'uint8')); set(gca, 'xlimmode', 'manual', 'ylimmode', 'manual',... 'zlimmode', 'manual', 'climmode', 'manual',... 'alimmode', 'manual'); title({'Cube with 2 flat shaded', '2 gouraud shaded & 2', 'texture mapped sides'}); xlabel({'Use arrow keys', 'to rotate the cube.', 'Press q to quit.', 'Press p to toggle', 'perspective correct', 'interpolation'}); subplot(122); H2 = imshow(zeros(resolution, resolution, 3, 'uint8')); set(gca, 'xlimmode', 'manual', 'ylimmode', 'manual',... 'zlimmode', 'manual', 'climmode', 'manual',... 'alimmode', 'manual'); title('Calculated depth map of cube.') while true t = tic; X = R * CP; X(3,:) = X(3,:) + 5; X(1,:) = resolution * X(1,:) ./ X(3,:) + half_res; X(2,:) = resolution * X(2,:) ./ X(3,:) + half_res; time(6) = time(6) + toc(t); t = tic; % Cull back facing triangles Q = reshape(X(1:2,T), [2 3 12]); Q(:,1,:) = Q(:,2,:) - Q(:,1,:); Q(:,2,:) = Q(:,3,:) - Q(:,2,:); Q = squeeze((Q(1,1,:) .* Q(2,2,:)) - (Q(2,1,:) .* Q(1,2,:))); L = find(Q < 0); Q = reshape(P(:,:,L), [6 3*length(L)]); L = reshape(T(:,L), [1 3*length(L)]); Q(1:3,:) = X(:,L); time(5) = time(5) + toc(t); t = tic; if perspective_correct % Ensure perspective correct interpolation by dividing through by depth V = 1 ./ Q(3,:); Q(3,:) = V; for a = 4:size(Q, 1) Q(a,:) = Q(a,:) .* V; end time(2) = time(2) + toc(t); t = tic; % Call the triangle renderer J = fill_triangles(I, Q, -1); time(1) = time(1) + toc(t); t = tic; % Divide through by interpolated inverse depth, for perspective correct % interpolation V = one ./ J(1,:); J(1,:) = V; for a = 2:size(J, 1) J(a,:) = J(a,:) .* V; end time(2) = time(2) + toc(t); else % Call the triangle renderer J = fill_triangles(I, Q, 0); time(1) = time(1) + toc(t); end t = tic; % Render the texture mapped surfaces L = J(2,:,:) > 400; if any(L(:)) J(2:4,L) = squeeze(ojw_interp2(TM2, J(3,L), J(4,L), 'l', one))'; else L = J(2,:,:) > 300 & J(2,:,:) <= 400; if any(L(:)) J(2:4,L) = squeeze(ojw_interp2(TM1, J(3,L), J(4,L), 'l', one))'; end end time(3) = time(3) + toc(t); t = tic; % Display the output J = shiftdim(J, 1); Z = J(:,:,1); RGB = uint8(J(:,:,2:end)); set(H1, 'CData', RGB); Z = uint8((Z - lims(1)) * lims(2)) + 1; set(H2, 'Cdata', Z); drawnow; time(4) = time(4) + toc(t); f = f + 1; % Get the key press while true set(fig_h, 'userData', '') waitfor(fig_h, 'userData') button = lower(get(fig_h, 'userData')); switch button case 31 R = Rx * R; break case 30 R = Rx' * R; break case 29 R = Ry * R; break case 28 R = Ry' * R; break case 'p' perspective_correct = xor(1, perspective_correct); if perspective_correct I(1,:,:) = 1/6; else I(1,:,:) = 6; end break case {'q', '', 13} close(gcf); total = sum(time); fprintf('Rendering speed of %0.0f frames per second, with processing time allocated as follows:\n', f / total); total = total - time(4); time = time * 100; fprintf(' Projection - %0.1f%%\n', time(6) / total); fprintf(' Back face culling - %0.1f%%\n', time(5) / total); fprintf(' Triangle rendering - %0.1f%%\n', time(1) / total); fprintf(' Perspective correction - %0.1f%%\n', time(2) / total); fprintf(' Texture mapping - %0.1f%%\n', time(3) / total); fprintf('And drawing to the screen accounting for %0.1f times all these time put together!\n', time(4) / (100 * total)); return end end end return function keypress_callback(source_handle, event_data) set(source_handle, 'userData', event_data.Character); return
github
ojwoodford/ojwul-master
render_lines_points.m
.m
ojwul-master/graphics/render_lines_points.m
3,632
utf_8
888f491af2803912c9d584f8c7b700e8
%RENDER_LINES_POINTS Renders a set of coloured points and/or lines % % h = render_line_points(X, [C, [options]]) % % Renders a set of coloured 2D or 3D points or lines, either as a set of % lineseries objects (quantized colours, fast rendering) or as a patch % object (exact colours, slow rendering), depending on the number of % colours requested. % %IN: % X - MxNxP set of P M-D points (if N==1) or lines with N-1 segments, % where M is 2 or 3. % C - 3xP set of RGB colours for each point/line, or a single colorspec. % Default: 'b'. % options - string value pairs: % NumColors - scalar indicating the number of colour quantization % levels (0 for no quantization). Default: 0. % Marker - character representing the marker to use. Default: '.' for % points, 'none' for lines. % MarkerSize - scalar marker size. Default: 6. % LineStyle - line style string. Default: '-'. % LineWidth - scalar line width. Default: 0.5. % Alpha - scalar line transparency. Default: 1. % %OUT: % h - handle(s) to created graphics object(s). function h = render_lines_points(X, C, varargin) % Set defaults if size(X, 2) == 1 opts.Marker = '.'; else opts.Marker = 'none'; end opts.MarkerSize = 6; opts.LineStyle = '-'; opts.LineWidth = 0.5; opts.NumColors = 0; opts.Alpha = 1; if nargin < 2 C = 'b'; else % Parse input options opts = vgg_argparse(opts, varargin); end % Create the options parameters alpha = opts.Alpha; if alpha < 1 num_colors = 0; else num_colors = opts.NumColors; end if size(X, 2) == 1 opts.LineStyle = 'none'; end opts = {'Marker', opts.Marker, 'MarkerSize', opts.MarkerSize, 'LineWidth', opts.LineWidth, 'LineStyle', opts.LineStyle}; X(:,end+1,:) = NaN; col = @(X) X(:); if numel(C) <= 3 && alpha == 1 % One colour, so just plot as a line series if size(X, 1) < 3 h = plot(col(X(1,:,:)), col(X(2,:,:)), 'b-', 'Color', C(:)', opts{:}); else h = plot3(col(X(1,:,:)), col(X(2,:,:)), col(X(3,:,:)), 'b-', 'Color', C(:)', opts{:}); end return; end % Colour per point C = C'; if num_colors < 1 % Plot as a patch object: points are exact colours, but the plot is % slow to render and manipulate if isscalar(C) C = repmat(rem(floor((strfind('kbgcrmyw', C) - 1) * [0.25 0.5 1]), 2), [size(X, 3) 1]); end C = repmat(reshape(C, 1, [], 3), [size(X, 2) 1 1]); if size(X, 1) < 3 h = patch(shiftdim(X(1,:,:), 1), shiftdim(X(2,:,:), 1), C, 'FaceColor', 'none', 'EdgeColor', 'flat', 'MarkerEdgeColor', 'flat', opts{:}, 'EdgeAlpha', alpha); else h = patch(shiftdim(X(1,:,:), 1), shiftdim(X(2,:,:), 1), shiftdim(X(3,:,:), 1), C, 'FaceColor', 'none', 'EdgeColor', 'flat', 'MarkerEdgeColor', 'flat', opts{:}, 'EdgeAlpha', alpha); end else % Plot as a set of single colour line objects: colours are quantized % but the plot is faster to update [I, C] = rgb2ind(reshape(C, 1, [], 3), num_colors, 'nodither'); num_colors = size(C, 1); I = accumarray(I(:)+1, (1:size(X, 3))', [num_colors 1], @(I) {I}); tf = ishold(); hold on for a = num_colors:-1:1 if ~isempty(I{a}) if size(X, 1) < 3 h(a) = plot(col(X(1,:,I{a})), col(X(2,:,I{a})), 'b-', 'Color', C(a,:), opts{:}); else h(a) = plot3(col(X(1,:,I{a})), col(X(2,:,I{a})), col(X(3,:,I{a})), 'b-', 'Color', C(a,:), opts{:}); end end end if ~tf hold off end end
github
ojwoodford/ojwul-master
render_mesh.m
.m
ojwul-master/graphics/render_mesh.m
1,556
utf_8
2d87007efdf740c405e50b496a7fdd19
%RENDER_MESH Renders a triangulated mesh % % h = render_mesh(vertices, faces) % % Renders a triangulated mesh defined by a set of vertices and faces % containing vertex indices. % %IN: % vertices - Mx3 matrix of triangle vertices (rows). % faces - Nx3 matrix of vertex indices for each triangle (columns). % options - string value pairs: % NumColors - scalar indicating the number of colour quantization % levels (0 for no quantization). Default: 0. % Marker - character representing the marker to use. Default: '.' for % points, 'none' for lines. % MarkerSize - scalar marker size. Default: 6. % LineStyle - line style string. Default: '-'. % LineWidth - scalar line width. Default: 0.5. % Alpha - scalar line transparency. Default: 1. % %OUT: % h - handle(s) to created graphics object(s). function h = render_mesh(vertices, faces, varargin) % Set defaults opts.Marker = 'none'; opts.MarkerSize = 6; opts.LineStyle = 'none'; opts.FaceColor = 'flat'; opts.LineWidth = 0.5; % Parse input options opts = vgg_argparse(opts, varargin); % Create the options parameters opts = {'Marker', opts.Marker, 'MarkerSize', opts.MarkerSize, 'LineWidth', opts.LineWidth, 'LineStyle', opts.LineStyle, 'FaceColor', opts.FaceColor}; h = patch('Vertices', vertices, 'Faces', faces, 'FaceVertexCData', repmat([0.7 0.7 0.7], size(vertices, 1), 1), 'EdgeColor', 'flat', 'MarkerEdgeColor', 'flat', 'BackFaceLighting', 'reverselit', 'FaceLighting', 'phong', opts{:}); end
github
ojwoodford/ojwul-master
select3Dpoints.m
.m
ojwul-master/graphics/select3Dpoints.m
5,519
utf_8
7c40d771619a082531f50c68e2bc788b
%SELECT3DPOINTS Select a subset of 3D points % % ind = select3Dpoints(X) % % Interactively select a subset of 3D points, by rotating, translating and % zooming in on the points, then holding down shift and either clicking on % or drawing round points. Radio buttons allow the user to toggle whether % selected points are added to or removed from the subset. Close the figure % to return the selected point indices. % %IN: % X - 3xN set of points to select from. % %OUT: % ind - Indices of the selected set of points. function ind = select3Dpoints(X) % Initialize variables global select3DpointsState select3DpointsState.X = X'; select3DpointsState.M = false(size(X, 2), 1); select3DpointsState.lastM = select3DpointsState.M; select3DpointsState.mode = 0; select3DpointsState.points = zeros(3, 0); % Create the figure select3DpointsState.fig = figure('Color', 'w', 'Name', 'Select 3D points by holding down shift and clicking or drawing round points'); % Create the radio buttons bg = uibuttongroup('Visible', 'off',... 'Units', 'pixels', ... 'OuterPosition', [0 0 150 70],... 'SelectionChangedFcn', @bselection); uicontrol(bg,'Style',... 'radiobutton',... 'String','current OR selection',... 'UserData', 0, ... 'Position', [0 50 150 16], ... 'HandleVisibility','off'); uicontrol(bg,'Style',... 'radiobutton',... 'String','current AND selection',... 'UserData', 1, ... 'Position', [0 34 150 16], ... 'HandleVisibility','off'); uicontrol(bg,'Style',... 'radiobutton',... 'String','current OR NOT selection',... 'UserData', 2, ... 'Position', [0 18 150 16], ... 'HandleVisibility','off'); uicontrol(bg,'Style',... 'radiobutton',... 'String','current AND NOT selection',... 'UserData', 3, ... 'Position', [0 2 150 16], ... 'HandleVisibility','off'); set(bg, 'Visible', 'on'); uicontrol('Style', 'pushbutton', 'String', 'Undo', 'Position', [2 72 70 15], 'HandleVisibility','off', 'Callback', @undo); % Create the plot select3DpointsState.ax2 = axes('Position', [0 0 1 1]); select3DpointsState.green = plot(NaN, NaN, 'g-'); xlim([0 1]); ylim([0 1]); axis off select3DpointsState.ax3 = axes('Position', [0 0 1 1]); select3DpointsState.blue = plot3(select3DpointsState.X(:,1), select3DpointsState.X(:,2), select3DpointsState.X(:,3), 'b.', 'MarkerSize', 1); hold on; select3DpointsState.red = plot3(NaN, NaN, NaN, 'r.', 'MarkerSize', 1); axis equal off camtarget(median(select3DpointsState.X, 1)'); % Set the callback, pass pointCloud to the callback function set(select3DpointsState.fig, 'WindowButtonUpFcn', @up, 'WindowButtonDownFcn', @down); % Require shift to be pressed to select point. Otherwise, control the % figure. fcw([0 2 2], '-block'); % Output the selected point indices ind = find(select3DpointsState.M); end function bselection(source, event) global select3DpointsState select3DpointsState.mode = event.NewValue.UserData; end function render() global select3DpointsState X = select3DpointsState.X(~select3DpointsState.M,:); set(select3DpointsState.blue, 'XData', X(:,1), 'YData', X(:,2), 'ZData', X(:,3)); X = select3DpointsState.X(select3DpointsState.M,:); set(select3DpointsState.red, 'XData', X(:,1), 'YData', X(:,2), 'ZData', X(:,3)); drawnow(); end function undo(varargin) global select3DpointsState select3DpointsState.M = select3DpointsState.lastM; render(); end function up(varargin) global select3DpointsState set(select3DpointsState.fig, 'WindowButtonMotionFcn', []); X = select3DpointsState.points'; % Convert the points to 2d [x, y] = ds2fig(select3DpointsState.ax3, [select3DpointsState.X(:,1); X(:,1)], [select3DpointsState.X(:,2); X(:,2)], [select3DpointsState.X(:,3); X(:,3)]); % Scale according to dimensions set(select3DpointsState.ax3, 'Units', 'pixels'); pos = get(select3DpointsState.ax3, 'Position'); x = pos(3) * x; y = pos(4) * y; n = size(X, 1); select3DpointsState.lastM = select3DpointsState.M; if n < 3 % Select the closest point ind = dsearchn([x(1:end-n) y(1:end-n)], [x(end) y(end)]); M = false(size(select3DpointsState.M)); M(ind) = true; else % Select points in the polyshape M = inpolygon(x(1:end-n), y(1:end-n), x(end-n+1:end), y(end-n+1:end)); end % Update the point set if select3DpointsState.mode > 1 M = ~M; end if mod(select3DpointsState.mode, 2) == 0 select3DpointsState.M = select3DpointsState.M | M(:); else select3DpointsState.M = select3DpointsState.M & M(:); end % Update the rendering set(select3DpointsState.green, 'XData', NaN, 'YData', NaN); render(); end function down(varargin) global select3DpointsState X = get(select3DpointsState.ax3, 'CurrentPoint'); select3DpointsState.points = X(1,:)'; X = get(select3DpointsState.ax2, 'CurrentPoint'); select3DpointsState.selection = X(1,1:2); set(select3DpointsState.fig, 'WindowButtonMotionFcn', @move); end function move(varargin) global select3DpointsState X = get(select3DpointsState.ax3, 'CurrentPoint'); select3DpointsState.points = [select3DpointsState.points X(1,:)']; X = get(select3DpointsState.ax2, 'CurrentPoint'); select3DpointsState.selection = [select3DpointsState.selection; X(1,1:2)]; set(select3DpointsState.green, 'XData', select3DpointsState.selection(:,1), 'YData', select3DpointsState.selection(:,2)); drawnow(); end
github
ojwoodford/ojwul-master
render_camera.m
.m
ojwul-master/graphics/render_camera.m
3,128
utf_8
89969def23d69d6d318684255716a22c
%RENDER_CAMERA Render 3D camera models, given projection matrices % % h = render_camera(P, [scale, [colour, [cam2world]]) % % Render a set of cameras. % %IN: % P - 3x4xN camera projection matrices. % scale - scalar value indicating the size of the camera. Default: 1. % colour - 1x3 colour value for the camera. Default: [0.5 0.5 0.5]. % cam2world - logical indicating whether P are given in camera to world % coordinate frame forms. Default: false. % %OUT: % h - handle to the patch object created. function h = render_camera(P, scale, colour, cam2world) % Create a cone % Vertices nSegments = 50; verts = ones(nSegments+1, 3); x = linspace(0, pi*2, nSegments+1)'; verts(:,1) = 0.5 * cos(x); verts(:,2) = 0.5 * sin(x); verts(end,:) = 0; % Camera center / cone point verts(:,3) = verts(:,3) * 1.6; % Elongate % Faces faces = zeros(nSegments, 3); faces(:,1) = 1:nSegments; faces(:,2) = faces(:,1) + 1; faces(:,3) = nSegments+1; faces(end,3) = 1; % Create a cube % Faces faces(end+1:end+12,:) = [2 1 3; 2 3 4; 6 5 7; 6 7 8; 5 1 2; 5 2 6; 7 3 4; 7 4 8; 3 1 5; 3 5 7; 4 2 6; 4 6 8] + size(verts, 1); % Vertices verts(end+1:end+8,:) = (dec2bin(0:7) - '0') - 0.5; % Add on a vertical pointer verts(end+1,:) = [0 -1 0]; % Scale if nargin > 1 verts = verts * scale; end if nargin > 0 && size(P, 1) == 3 && size(P, 2) == 4 % Replicate face indices for each camera c = numel(P) / 12; nv = size(verts, 1); faces = reshape(bsxfun(@plus, reshape(faces, [], 1, 3), 0:nv:nv*(c-1)), [], 3); % Transform the vertices coordinates into each camera frame V = [verts ones(nv, 1)]; verts = zeros(nv, c, 3); for a = 1:c % Extract extrinsics [K, R, t] = KR_from_P(P(:,:,a)); % Multiply vertices by camera projection matrix if nargin < 4 || ~cam2world P_ = [R; t']; else P_ = [R'; (R*-t)']; end verts(:,a,:) = reshape(V * P_, [], 1, 3); end verts = reshape(verts, [], 3); end % Compute face normals N = verts'; N = reshape(N(:,faces'), 3, 3, []); V1 = squeeze(N(:,2,:) - N(:,1,:)); V2 = squeeze(N(:,3,:) - N(:,1,:)); N = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:); clear V1 V2 N = bsxfun(@times, N, 1 ./ sqrt(sum(N .* N, 1))); % Make vertex normals normals = zeros(size(verts)); normals(faces(:,1),:) = N'; % Render if nargin < 3 colour = [0.5 0.5 0.5]; end if ischar(colour) colour = str2color(colour); end if size(colour, 1) == size(P, 3) && size(colour, 2) == 3 colour = repmat(shiftdim(colour, -1), [nSegments+12 1 1]); colour = reshape(colour, [], 3); end h = patch('Vertices', verts, 'Faces', faces, 'VertexNormals', normals, 'FaceVertexCData', colour, 'FaceColor', 'flat', 'EdgeColor', 'none', 'BackFaceLighting', 'reverselit', 'FaceLighting', 'flat'); % hold on % verts = reshape(verts, nSegments+10,[], 3); % plot3([verts(nSegments+1,:,1); verts(end,:,1)], [verts(nSegments+1,:,2); verts(end,:,2)], [verts(nSegments+1,:,3); verts(end,:,3)], 'r-');
github
ojwoodford/ojwul-master
render_circles.m
.m
ojwul-master/graphics/render_circles.m
1,041
utf_8
2099e4c0cbaec1fc2da328f579010de1
%RENDER_CIRCLES Draw a set of circles % % h = render_circles(X, nsides, col) % %IN: % X - 3xN array of circles defined by [center_x; center_y; radius]. % nsides - Scalar indicating the number of sides to use for each polygon. % Default: 64. % col - Colour to use for the circles. Default: 'b'. function h = render_circles(X, nsides, color) % Default parameters if nargin < 2 nsides = 64; end nsides = max(round(nsides), 3); % Make sure it is an integer >= 3 if nargin < 3 color = [0 0 1]; end % Compute the coordinates X = reshape(X, 3, []); radii = X(3,:); poly_sides = linspace(0, 2 * pi, nsides)'; Y = bsxfun(@plus, bsxfun(@times, sin(poly_sides), radii), X(2,:)); X = bsxfun(@plus, bsxfun(@times, cos(poly_sides), radii), X(1,:)); % Expand the color if size(color, 1) ~= size(X, 2) color = repmat(color, [size(X, 2) 1]); end % Render using patch (so can have different coloured circles) h = patch(X, Y, repmat(shiftdim(color, -1), [size(X, 1) 1 1]), 'FaceColor', 'none', 'EdgeColor', 'flat'); end
github
ojwoodford/ojwul-master
ds2fig.m
.m
ojwul-master/graphics/ds2fig.m
10,583
utf_8
90ecb3172bcb3caf027cd86737d78a7b
function [XFIG, YFIG, DEEP] = ds2fig(varargin) %DS2FIG Transform data space coordinates to normalized figure coordinates. % [XFIG,YFIG,DEEP] = DS2FIG(X,Y,Z) transforms corresponding elements of % data stored in data space coordinates X,Y,Z to normalized figure % coordinates (XFIG, YFIG). if the point is closer to you, the value % in DEEP will be bigger. The DEEP value of points which on the view % plane containing 'CameraTarget' is 0. % X,Y,Z must be the same size. % XFIG,YFIG,DEEP will be the same size as X,Y,Z. % [XFIG,YFIG,DEEP] = DS2FIG(X,Y) use Z always be 0. % [XFIG,YFIG,DEEP] = DS2FIG(axes_handle,...) use axes_handle instead of gca % % Example: % % create a surface and draw % [x, y, z] = peaks; % z = z + 10; % surf(x, y, z); % shading interp; % axis tight; % set(gca, 'Projection', 'perspective', 'CameraUpVector', [2, 1, 0], ... % 'XDir', 'reverse', 'ZScale', 'log'); % % find maximum and minimum % [zMax, maxIdx] = max(z(:)); % [zMin, minIdx] = min(z(:)); % idx = [minIdx, maxIdx]; % % use this function to translate maximum and minimum point % [xFig, yFig] = ds2fig(x(idx), y(idx), z(idx)); % % annotate it % annotation('textarrow', [.9, xFig(1)], [.2, yFig(1)], 'String', 'MIN'); % annotation('textarrow', [.2, xFig(2)], [.8, yFig(2)], 'String', 'MAX'); % % Conditions it will work: % setting valid properties of axes including: 'Camera*', 'Projection', % 'View', 'DataAspectRatio*', 'PlotBoxAspectRatio*', 'XLim', 'YLim', % 'ZLim', 'XDir', 'YDir', 'ZDir', 'XScale', 'YScale', 'ZScale'. % modify axes appearance by using 'axis *' and 'view(*)'. % using 'Zoom In', 'Zoom Out', 'Pan', 'Rotate 3D' in Figure Tool. % Conditions it will not work: % while using log scale axes, if you set the low boundary of 'XLim' less % than or equal to 0, then matlab will auto calculate a valid one % and use it, but this program can't get the actually low boundary. % % NOTE: % This program written through observing the behavior of how matlab render % axes content into figure. It may not work properly in some cases that % I omitted. It work fine in MATLAB 8.0, and should work properly at % other version, since the render algorithm may change rarely. % Copyright (c) 2013, MinLong Kwong <[email protected]> % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. % Revision history: % 10/10/2013 Original code release. % check if axes handle is available if length(varargin{1}) == 1 && ishandle(varargin{1}) ... && strcmp(get(varargin{1}, 'type'), 'axes') hAxes = varargin{1}; varargin = varargin(2:end); else hAxes = gca; end % get data space coordinates from arguments if length(varargin) == 1 error('too fiew arguments'); elseif length(varargin) >= 4 error('too many arguments'); else X = varargin{1}; Y = varargin{2}; if length(varargin) == 3 Z = varargin{3}; else Z = zeros(size(X)); end end % check if all arguments are same size dataSize = size(X); if ~(all(size(Y) == dataSize) && all(size(Z) == dataSize)) error('X,Y,Z should be the same size'); end % build data space coordinates X = X(:); Y = Y(:); Z = Z(:); dataCoord = [X, Y, Z, ones(size(X))]'; dataCoord = AdjustLogScaleData(hAxes, dataCoord); % transform and build figure coordinates matrixTransform = AxesTransformToFigure(hAxes); figureCoord = matrixTransform * dataCoord; % perspective division XFIG = reshape(figureCoord(1, :) ./ figureCoord(4, :), dataSize); YFIG = reshape(figureCoord(2, :) ./ figureCoord(4, :), dataSize); DEEP = reshape(figureCoord(3, :) ./ figureCoord(4, :), dataSize); end function coordLiner = AdjustLogScaleData(hAxes, coordLogOrLiner) % adjust axes data for log scale coordLiner = coordLogOrLiner; % obtain data isLogScale = strcmp(get(hAxes, {'XScale', 'YScale', 'ZScale'}), 'log'); lim = get(gca, {'XLim', 'YLim', 'ZLim'}); % adjust for i = 1:3 if isLogScale(i) if lim{i}(1) <= 0 error(['low boundary of ''', 'W'+i, 'Lim'' should not less', ... ' than or equal to 0 in log scale axes, consider set ''', ... 'W'+i, 'LimMode'' to ''auto''.']); end rate = (log(coordLogOrLiner(i, :)) - log(lim{i}(1))) ... / (log(lim{i}(2)) - log(lim{i}(1))); coordLiner(i, :) = rate * (lim{i}(2) - lim{i}(1)) + lim{i}(1); end end end function matrixTransform = AxesTransformToFigure(hAxes) % get transform matrix which transform axes coordinate to figure coordinate matrixTransform = []; %%%% obtain data needed % camera viewAngle = get(hAxes, 'CameraViewAngle'); viewTarget = get(hAxes, 'CameraTarget'); viewPosition = get(hAxes, 'CameraPosition'); viewUp = get(hAxes, 'CameraUpVector'); % axes direction axesDirection = strcmp(get(hAxes, {'XDir', 'YDir', 'ZDir'}), 'normal'); % data scale dataZLim = get(hAxes, 'ZLim'); dataRatio = get(hAxes, 'DataAspectRatio'); if any(dataRatio == 0), return, end plotBoxRatio = get(hAxes, 'PlotBoxAspectRatio'); if any(plotBoxRatio == 0), return, end % is perspective isPerspective = strcmp(get(hAxes, 'Projection'), 'perspective'); % axes position axesUnitsOriginal = get(hAxes, 'Units'); set(hAxes, 'Units', 'normalized'); positionNormal = get(hAxes, 'Position'); set(hAxes, 'Units', 'pixels'); positionPixel = get(hAxes, 'Position'); set(hAxes, 'Units', axesUnitsOriginal); % stretch stretchMode = strcmp(get(hAxes, {'CameraViewAngleMode', ... 'DataAspectRatioMode', 'PlotBoxAspectRatioMode'}), 'auto'); stretchToFill = all(stretchMode); stretchToFit = ~stretchToFill && stretchMode(1); stretchNone = ~stretchToFill && ~stretchToFit; %%%% model view matrix % move data space center to viewTarget point matrixTranslate = eye(4); matrixTranslate(1:3, 4) = -viewTarget; % rescale data % note: matlab will rescale data space by dividing DataAspectRatio % and normalize z direction to 1 to makeup the 'PlotBox' scaleFactor = dataRatio / dataRatio(3) * (dataZLim(2) - dataZLim(1)); scaleDirection = axesDirection * 2 - 1; matrixRescale = diag([scaleDirection ./ scaleFactor, 1]); % rotate the 'PlotBox' vecticesZUp = matrixRescale * ... [matrixTranslate * [viewPosition, 1]', [viewUp, 1]']; zVector = vecticesZUp(1:3, 1); upVector = vecticesZUp(1:3, 2); viewDistance = sqrt(dot(zVector, zVector)); zDirection = zVector / viewDistance; yVector = upVector - zDirection * dot(zDirection, upVector); yDirection = yVector / sqrt(dot(yVector, yVector)); matrixRotate = blkdiag( ... [cross(yDirection, zDirection), yDirection, zDirection]', 1); %%%% projection matrix % note: matlab will project the rotated 'PlotBox' to an area of % [-0.5, 0.5; -0.5, 0.5] matrixProjection = eye(4); matrixProjection(4, 3) = -isPerspective / viewDistance; projectionArea = 2 * tan(viewAngle * pi / 360) * viewDistance; matrixProjection = diag([ones(1, 3), projectionArea]) * matrixProjection; %%%% stretch matrix % stretch the projective 'PlotBox' into the position retangle of the axes % note: stretch will first detect data region if stretchToFill || stretchToFit plotBox = [0 0 0; 0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1]' - .5; plotBox = diag(plotBoxRatio / plotBoxRatio(3)) * plotBox; edgeVertices = matrixProjection * matrixRotate * [plotBox; ones(1, 8)]; edgeVertices(1, :) = edgeVertices(1, :) ./ edgeVertices(4, :); edgeVertices(2, :) = edgeVertices(2, :) ./ edgeVertices(4, :); edgeVertices = edgeVertices(1:2, :)'; % note: the low boundary and the high boundary of data region may be % difference in perspective projection, so the figure should move % to center, but here no need to do so, because matlab ignore it dataRegion = max(edgeVertices) - min(edgeVertices); % note: matlab have a strange addition stretch in stretch to fit mode. % one side of the data region will hit the position rectangle, % and matlab will assume data region of that side to be 1 keeping % aspect ratio. if stretchToFit strangeFactor = dataRegion ./ positionPixel(3:4); if strangeFactor(1) > strangeFactor(2) dataRegion = dataRegion / dataRegion(1); else dataRegion = dataRegion / dataRegion(2); end end else % note: if no stretch, it will use projection area as data region dataRegion = [1, 1]; end % note: stretch than apply a stretchFactor to the data, such that it fit % in the axes position retangle if stretchToFit || stretchNone stretchFactor = dataRegion ./ positionPixel(3:4); stretchFactor = stretchFactor / max(stretchFactor); else stretchFactor = [1, 1]; end matrixStretch = diag([stretchFactor ./ dataRegion, 1, 1]); %%%% view port matrix matrixViewPort = diag([positionNormal(3:4), 1, 1]); matrixViewPort(1:2, 4) = positionNormal(1:2) + positionNormal(3:4) / 2; %%%% return transformation matrix matrixTransform = matrixViewPort * matrixStretch * matrixProjection * ... matrixRotate * matrixRescale * matrixTranslate; end
github
ojwoodford/ojwul-master
clickA3DPoint.m
.m
ojwul-master/graphics/clickA3DPoint.m
4,502
utf_8
4fa9bd3ce294023f769a750970db6966
function index = clickA3DPoint(pointCloud, faces) %CLICKA3DPOINT % H = CLICKA3DPOINT(POINTCLOUD) shows a 3D point cloud and lets the user % select points by clicking on them. The selected point is highlighted % and its index in the point cloud will is printed on the screen. % POINTCLOUD should be a 3*N matrix, represending N 3D points. % Handle to the figure is returned. % % other functions required: % CALLBACKCLICK3DPOINT mouse click callback function % ROWNORM returns norms of each row of a matrix % % To test this function ... % pointCloud = rand(3,100)*100; % h = clickA3DPoint(pointCloud); % % now rotate or move the point cloud and try it again. % (on the figure View menu, turn the Camera Toolbar on, ...) % % To turn off the callback ... % set(h, 'WindowButtonDownFcn',''); % % by Babak Taati % http://rcvlab.ece.queensu.ca/~taatib % Robotics and Computer Vision Laboratory (RCVLab) % Queen's University % May 4, 2005 % revised Oct 30, 2007 % revised May 19, 2009 % Copyright (c) 2009, Babak Taati % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. if nargin < 1 error('Requires one input arguments.') end if size(pointCloud, 1)~=3 error('Input point cloud must be a 3*N matrix.'); end % show the point cloud h = figure(); plot3(pointCloud(1,:), pointCloud(2,:), pointCloud(3,:), 'b.'); cameratoolbar('Show'); % show the camera toolbar hold on; % so we can highlight clicked points without clearing the figure if nargin > 1 patch('Vertices', pointCloud', 'Faces', faces', 'FaceVertexCData', repmat([0.7 0.7 0.7], size(pointCloud, 2), 1), 'EdgeColor', 'k', 'LineStyle', '-', 'FaceColor', 'flat'); end global pointCloudIndex pointCloudIndex = []; % set the callback, pass pointCloud to the callback function set(h, 'WindowButtonDownFcn', {@callbackClickA3DPoint, pointCloud}, 'UserData', []); % Require shift to be pressed to select point. Otherwise, control the % figure. fcw([0 2 2]); while isempty(pointCloudIndex) pause(0.1); end index = pointCloudIndex; close(h); end function callbackClickA3DPoint(src, eventData, pointCloud) % CALLBACKCLICK3DPOINT mouse click callback function for CLICKA3DPOINT % % The transformation between the viewing frame and the point cloud frame % is calculated using the camera viewing direction and the 'up' vector. % Then, the point cloud is transformed into the viewing frame. Finally, % the z coordinate in this frame is ignored and the x and y coordinates % of all the points are compared with the mouse click location and the % closest point is selected. % % Babak Taati - May 4, 2005 % revised Oct 31, 2007 % revised Jun 3, 2008 % revised May 19, 2009 ax = gca(); point = get(ax, 'CurrentPoint'); % mouse click position % Get 2d coordinates in the current view [x, y] = ds2fig(ax, [pointCloud(1,:) point(1,1)], [pointCloud(2,:) point(1,2)], [pointCloud(3,:) point(1,3)]); % Scale according to dimensions set(ax, 'Units', 'pixels'); pos = get(ax, 'Position'); x = pos(3) * x; y = pos(4) * y; % find the nearest neighbour to the clicked point global pointCloudIndex pointCloudIndex = dsearchn([x(1:end-1)' y(1:end-1)'], [x(end) y(end)]); end
github
ojwoodford/ojwul-master
fcw.m
.m
ojwul-master/graphics/fcw.m
17,033
utf_8
b7936c59c3b9991036fc89d92790ce62
%FCW Figure Control Widget: Manipulate figures with key and button presses % % fcw([fig], [buttons], [modifiers]) % fcw(..., '-link') % fcw(..., '-block') % % Allows the user to rotate, pan and zoom an axes using key presses and % mouse gestures. Additionally, press q to quit the widget, r to reset the % axes and escape to close the figure. This function is non-blocking, but % fixes axes aspect ratios. % % This function plays nicely with other figure callbacks, if called after % other callbacks have been created. Only figure interactions not used by % fcw() are passed to previously existing callbacks. % % IN: % fig - Handle of the figure to be manipulated (default: gcf). % buttons - 4x1 cell array indicating the function to associate with % each mouse button (left to right) and the scroll action. % Functions can be any of: % 'rot' - Rotate about x and y axes of viewer's coordinate % frame % 'rotz' - Rotate about z axis of viewer's coordinate frame % 'zoom' - Zoom (change canera view angle) % 'zoomz' - Move along z axis of viewer's coordinate frame % 'pan' - Pan % '' - Don't use that button % Default: {'rot', 'zoomz', 'pan', 'zoomz'}). % modifiers - 1x3 numeric vector indicating which of the modifier keys % (shift, ctrl, alt respectively) should be pressed (1), not % pressed (0), or can be either (other value), for fcw to % react to button/key presses. E.g. [0 1 NaN] indicates that % fcw should react to button/key presses if and only if shift % is not pressed and ctrl is pressed; alt is ignored. % Default: [NaN NaN NaN] (i.e. react to all button presses). % '-link' - Specify each axis in the figure to maintain the same pose % '-block' - The function doesn't return control to the caller until the % widget is quit (by pressing 'q') or the function is closed. % This can be useful if collecting data in another callback, % to be returned by the calling function. % (C) Copyright Oliver Woodford 2006-2015 % The initial code came from Torsten Vogel's view3d function, which was in % turn inspired by rotate3d from The MathWorks, Inc. % Thanks to Sam Johnson for some bug fixes and good feature requests. function fcw(varargin) % Parse input arguments assert(nargin < 4, 'Too many input arguments'); buttons = {'rot', 'zoomz', 'pan', 'zoom'}; fig = gcf(); link = false; block = false; modifiers = NaN(1, 3); for a = 1:nargin v = varargin{a}; if ischar(v) && numel(v) > 1 && v(1) == '-' switch v case '-link' link = true; case '-block' block = true; otherwise error('Unknown option: %s.', v); end elseif isscalar(v) && ishandle(v) fig = ancestor(v, 'figure'); assert(~isempty(fig), 'Unrecognized handle'); elseif iscell(v) && numel(v) == 4 && all(cellfun(@ischar, v)) buttons = v; elseif isnumeric(v) && numel(v) == 3 modifiers = v(:)'; else error('Input not recognized'); end end % Flush any pending draws drawnow(); % Clear any visualization modes we might be in pan(fig, 'off'); zoom(fig, 'off'); rotate3d(fig, 'off'); % Find all the 3D axes hAx = findobj(fig, 'Type', 'axes', '-depth', 1); M = false(numel(hAx), 1); for a = 1:numel(hAx) zl = zlim(hAx(a)); M(a) = zl(2) ~= 1 || (zl(1) ~= -1 && zl(1) ~= 0); end hAx = hAx(M); % For each set of axes data.view = containers.Map('KeyType', 'double', 'ValueType', 'any'); for h = hAx' % Set everything to manual set(h, 'CameraViewAngleMode', 'manual', 'CameraTargetMode', 'manual', 'CameraPositionMode', 'manual'); % Store the camera viewpoint data.view(double(h)) = camview(h); end % Store the data % Link if necessary if link data.link = linkprop(hAx, {'CameraPosition', 'CameraTarget', 'CameraViewAngle', 'CameraUpVector', 'Projection'}); end % Get existing callbacks, and quit a previous instance of fcw if running [prev_mousedown, prev_mouseup, prev_keypress, prev_scroll] = quit_widget(fig); % Create the data storage object hData = uipanel(fig, 'Tag', 'fcw_data', 'Visible', 'off', 'Position', [0 0 0 0]); set(hData, 'UserData', data); % Create the modifier checking function M = modifiers == 0 | modifiers == 1; if ~any(M) modifiers = @(varargin) false; else modifiers = modifiers(M); mods = {'shift', 'control', 'alt'}; mods = mods(M); modifiers = @(varargin) ~isequal(ismember(mods, get(fig, 'CurrentModifier')), modifiers); end % Initialize the callbacks set(fig, 'WindowButtonDownFcn', [{@fcw_mousedown, {str2func(['fcw_' buttons{1}]), str2func(['fcw_' buttons{2}]), str2func(['fcw_' buttons{3}])}, modifiers} prev_mousedown], ... 'WindowButtonUpFcn', [{@fcw_mouseup, modifiers} prev_mouseup], ... 'KeyPressFcn', [{@fcw_keypress, modifiers} prev_keypress], ... 'WindowScrollWheelFcn', [{@fcw_scroll, str2func(['fcw_' buttons{4}]), modifiers} prev_scroll], ... 'BusyAction', 'cancel'); if block % Block until the figure is closed or the widget is quit while 1 try pause(0.01); if isempty(get(hData, 'UserData')) break; end catch % Figure was closed break; end end end end function tf = isinvalid(cax, map) tf = isempty(cax) || ~map.isKey(double(cax)) || ~isequal(size(map(double(cax))), [4 4]); end function fcw_keypress(src, eventData, modifiers, varargin) fig = ancestor(src, 'figure'); cax = get(fig, 'CurrentAxes'); hData = findobj(fig, 'Tag', 'fcw_data', '-depth', 1); if isinvalid(cax, hData.UserData.view) || modifiers() % Check the required modifiers were pressed, else do nothing % Call the other keypress callbacks if ~isempty(varargin) varargin{1}(src, eventData, varargin{2:end}); end return; end step = 1; if ismember('shift', eventData.Modifier) step = 2; end if ismember('control', eventData.Modifier) step = step * 4; end % Which keys do what switch eventData.Key case {'v', 'leftarrow'} fcw_pan([], [step 0], cax); case {'g', 'rightarrow'} fcw_pan([], [-step 0], cax); case {'b', 'downarrow'} fcw_pan([], [0 step], cax); case {'h', 'uparrow'} fcw_pan([], [0 -step], cax); case {'n', 'x'} fcw_rotz([], [0 step], cax); case {'j', 's'} fcw_rotz([], [0 -step], cax); case {'m', 'z'} fcw_zoom([], [0 -step], cax); case {'k', 'a'} fcw_zoom([], [0 step], cax); case 'l' fcw_rot([], [0 step], cax); case 'p' fcw_rot([], [0 -step], cax); case 'w' fcw_rot([], [-step 0], cax); case 'q' fcw_rot([], [step 0], cax); case 'r' % Reset all the axes for h = findobj(fig, 'Type', 'axes', '-depth', 1)' if hData.UserData.view.isKey(double(h)) camview(h, hData.UserData.view(double(h))); end end case 'q' % Quit the widget quit_widget(fig); case 'escape' close(fig); otherwise % Call the other keypress callbacks if ~isempty(varargin) varargin{1}(src, eventData, varargin{2:end}); end end end function fcw_mousedown(src, eventData, funcs, modifiers, varargin) % Check an axes is selected fig = ancestor(src, 'figure'); cax = get(fig, 'CurrentAxes'); hData = findobj(fig, 'Tag', 'fcw_data', '-depth', 1); if isinvalid(cax, hData.UserData.view) || modifiers() % Check the required modifiers were pressed, else do nothing % Call the other mousedown callbacks % This allows other interactions to be used easily alongside fcw() if ~isempty(varargin) varargin{1}(src, eventData, varargin{2:end}); end return; end % Get the button pressed switch get(fig, 'SelectionType') case 'extend' % Middle button method = funcs{2}; case 'alt' % Right hand button method = funcs{3}; case 'open' % Double click camview(cax, hData.UserData.view(double(cax))); return; otherwise method = funcs{1}; end % Set the cursor switch func2str(method) case {'fcw_zoom', 'fcw_zoomz'} shape=[ 2 2 2 2 2 2 2 2 2 2 NaN NaN NaN NaN NaN NaN ; 2 1 1 1 1 1 1 1 1 2 NaN NaN NaN NaN NaN NaN ; 2 1 2 2 2 2 2 2 2 2 NaN NaN NaN NaN NaN NaN ; 2 1 2 1 1 1 1 1 1 2 NaN NaN NaN NaN NaN NaN ; 2 1 2 1 1 1 1 1 2 NaN NaN NaN NaN NaN NaN NaN ; 2 1 2 1 1 1 1 2 NaN NaN NaN NaN NaN NaN NaN NaN ; 2 1 2 1 1 1 1 1 2 NaN NaN NaN 2 2 2 2 ; 2 1 2 1 1 2 1 1 1 2 NaN 2 1 2 1 2 ; 2 1 2 1 2 NaN 2 1 1 1 2 1 1 2 1 2 ; 2 2 2 2 NaN NaN NaN 2 1 1 1 1 1 2 1 2 ; NaN NaN NaN NaN NaN NaN NaN NaN 2 1 1 1 1 2 1 2 ; NaN NaN NaN NaN NaN NaN NaN 2 1 1 1 1 1 2 1 2 ; NaN NaN NaN NaN NaN NaN 2 1 1 1 1 1 1 2 1 2 ; NaN NaN NaN NaN NaN NaN 2 2 2 2 2 2 2 2 1 2 ; NaN NaN NaN NaN NaN NaN 2 1 1 1 1 1 1 1 1 2 ; NaN NaN NaN NaN NaN NaN 2 2 2 2 2 2 2 2 2 2 ]; case 'fcw_pan' shape=[ NaN NaN NaN NaN NaN NaN NaN 2 2 NaN NaN NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN NaN 2 1 1 2 NaN NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN 2 1 1 1 1 2 NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN 1 1 1 1 1 1 NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN NaN 2 1 1 2 NaN NaN NaN NaN NaN NaN ; NaN NaN 2 1 NaN NaN 2 1 1 2 NaN NaN 1 2 NaN NaN ; NaN 2 1 1 2 2 2 1 1 2 2 2 1 1 2 NaN ; 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 ; 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 ; NaN 2 1 1 2 2 2 1 1 2 2 2 1 1 2 NaN ; NaN NaN 2 1 NaN NaN 2 1 1 2 NaN NaN 1 2 NaN NaN ; NaN NaN NaN NaN NaN NaN 2 1 1 2 NaN NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN 1 1 1 1 1 1 NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN 2 1 1 1 1 2 NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN NaN 2 1 1 2 NaN NaN NaN NaN NaN NaN ; NaN NaN NaN NaN NaN NaN NaN 2 2 NaN NaN NaN NaN NaN NaN NaN ]; case {'fcw_rotz', 'fcw_rot'} % Rotate shape=[ NaN NaN NaN 2 2 2 2 2 NaN 2 2 NaN NaN NaN NaN NaN ; NaN NaN NaN 1 1 1 1 1 2 1 1 2 NaN NaN NaN NaN ; NaN NaN NaN 2 1 1 1 1 2 1 1 1 2 NaN NaN NaN ; NaN NaN 2 1 1 1 1 1 2 2 1 1 1 2 NaN NaN ; NaN 2 1 1 1 2 1 1 2 NaN NaN 2 1 1 2 NaN ; NaN 2 1 1 2 NaN 2 1 2 NaN NaN 2 1 1 2 NaN ; 2 1 1 2 NaN NaN NaN NaN NaN NaN NaN NaN 2 1 1 2 ; 2 1 1 2 NaN NaN NaN NaN NaN NaN NaN NaN 2 1 1 2 ; 2 1 1 2 NaN NaN NaN NaN NaN NaN NaN NaN 2 1 1 2 ; 2 1 1 2 NaN NaN NaN NaN NaN NaN NaN NaN 2 1 1 2 ; NaN 2 1 1 2 NaN NaN 2 1 2 NaN 2 1 1 2 NaN ; NaN 2 1 1 2 NaN NaN 2 1 1 2 1 1 1 2 NaN ; NaN NaN 2 1 1 1 2 2 1 1 1 1 1 2 NaN NaN ; NaN NaN NaN 2 1 1 1 2 1 1 1 1 2 NaN NaN NaN ; NaN NaN NaN NaN 2 1 1 2 1 1 1 1 1 NaN NaN NaN ; NaN NaN NaN NaN NaN 2 2 NaN 2 2 2 2 2 NaN NaN NaN ]; otherwise return end % Record where the pointer is global FCW_POS FCW_POS = get(0, 'PointerLocation'); % Set the cursor and callback set(ancestor(src, 'figure'), 'Pointer', 'custom', 'pointershapecdata', shape, 'WindowButtonMotionFcn', {method, cax}); end function fcw_mouseup(src, eventData, modifiers, varargin) if modifiers() % Call the other mouseup callbacks % This allows other interactions to be used easily alongside fcw() if ~isempty(varargin) varargin{1}(src, eventData, varargin{2:end}); end return; end % Clear the cursor and callback set(ancestor(src, 'figure'), 'WindowButtonMotionFcn', [], 'Pointer', 'arrow'); end function fcw_scroll(src, eventData, func, modifiers, varargin) % Get the axes handle fig = ancestor(src, 'figure'); cax = get(fig, 'CurrentAxes'); hData = findobj(fig, 'Tag', 'fcw_data', '-depth', 1); if isinvalid(cax, hData.UserData.view) || modifiers() % Check the required modifiers were pressed, else do nothing % Call the other mousedown callbacks % This allows other interactions to be used easily alongside fcw() if ~isempty(varargin) varargin{1}(src, eventData, varargin{2:end}); end return; end % Call the scroll function func([], [0 -10*eventData.VerticalScrollCount], cax); end function d = check_vals(s, d) % Check the inputs to the manipulation methods are valid global FCW_POS if ~isempty(s) % Return the mouse pointers displacement new_pt = get(0, 'PointerLocation'); d = FCW_POS - new_pt; FCW_POS = new_pt; end end % Figure manipulation functions function fcw_rot(s, d, cax) d = check_vals(s, d); try % Rotate XY camorbit(cax, d(1), d(2), 'camera', [0 0 1]); catch me % Error, so release mouse down fcw_mouseup(cax); fprintf('%s\n', getReport(me, 'extended')); end end function fcw_rotz(s, d, cax) d = check_vals(s, d); try % Rotate Z camroll(cax, d(2)); catch me % Error, so release mouse down fcw_mouseup(cax); fprintf('%s\n', getReport(me, 'extended')); end end function fcw_zoom(s, d, cax) d = check_vals(s, d); % Zoom d = (1 - 0.01 * sign(d(2))) ^ abs(d(2)); try camzoom(cax, d); catch me % Error, so release mouse down fcw_mouseup(cax); fprintf('%s\n', getReport(me, 'extended')); end end function fcw_zoomz(s, d, cax) d = check_vals(s, d); % Zoom by moving towards the camera d = (1 - 0.01 * sign(d(2))) ^ abs(d(2)) - 1; try camdolly(cax, 0, 0, d, 'fixtarget', 'camera'); catch me % Error, so release mouse down fcw_mouseup(cax); fprintf('%s\n', getReport(me, 'extended')); end end function fcw_pan(s, d, cax) D = check_vals(s, d); try % Pan camdolly(cax, D(1), D(2), 0, 'movetarget', 'pixels'); catch me % Error, so release mouse down fcw_mouseup(cax); fprintf('%s\n', getReport(me, 'extended')); end end function A = to_cell(A) if ~iscell(A) if isempty(A) A = {}; else A = {A}; end end A = reshape(A, 1, []); end function [prev_mousedown, prev_mouseup, prev_keypress, prev_scroll] = quit_widget(fig) % Get the current callbacks prev_mousedown = to_cell(get(fig, 'WindowButtonDownFcn')); prev_mouseup = to_cell(get(fig, 'WindowButtonUpFcn')); prev_keypress = to_cell(get(fig, 'KeyPressFcn')); prev_scroll = to_cell(get(fig, 'WindowScrollWheelFcn')); % Remove the fcw callbacks (assuming they're first) if ~isempty(prev_mousedown) && strcmp('fcw_mousedown', func2str(prev_mousedown{1})) prev_mousedown = prev_mousedown(4:end); end if ~isempty(prev_mouseup) && strcmp('fcw_mouseup', func2str(prev_mouseup{1})) prev_mouseup = prev_mouseup(2:end); end if ~isempty(prev_keypress) && strcmp('fcw_keypress', func2str(prev_keypress{1})) prev_keypress = prev_keypress(2:end); end if ~isempty(prev_scroll) && strcmp('fcw_scroll', func2str(prev_scroll{1})) prev_scroll = prev_scroll(4:end); end % Reset the callbacks set(fig, 'WindowButtonDownFcn', prev_mousedown, 'WindowButtonUpFcn', prev_mouseup, 'KeyPressFcn', prev_keypress, 'WindowScrollWheelFcn', prev_scroll, 'WindowButtonMotionFcn', [], 'Pointer', 'arrow'); % Flag the end hData = findobj(fig, 'Tag', 'fcw_data', '-depth', 1); set(hData, 'UserData', []); delete(hData); end
github
ojwoodford/ojwul-master
vol3d.m
.m
ojwul-master/graphics/vol3d.m
7,613
utf_8
2fba9993538c21f421f72e55f2d73836
%H = VOL3D Volume render 3-D data. % VOL3D uses the orthogonal plane 2-D texture mapping technique for % volume rending 3-D data in OpenGL. Use the 'texture' option to fine % tune the texture mapping technique. This function is best used with % fast OpenGL hardware. % % vol3d Provide a demo of functionality. % % H = vol3d('CData',data) Create volume render object from input % 3-D data. Use interp3 on data to increase volume % rendering resolution. Returns a struct % encapsulating the pseudo-volume rendering object. % XxYxZ array represents scaled colormap indices. % XxYxZx3 array represents truecolor RGB values for % each voxel (along the 4th dimension). % % vol3d(...,'Alpha',alpha) XxYxZ array of alpha values for each voxel, in % range [0,1]. Default: data (interpreted as % scaled alphamap indices). % % vol3d(...,'Parent',axH) Specify parent axes. Default: gca. % % vol3d(...,'XData',x) 1x2 x-axis bounds. Default: [0 size(data, 2)]. % vol3d(...,'YData',y) 1x2 y-axis bounds. Default: [0 size(data, 1)]. % vol3d(...,'ZData',z) 1x2 z-axis bounds. Default: [0 size(data, 3)]. % % vol3d(...,'texture','2D') Only render texture planes parallel to nearest % orthogonal viewing plane. Requires doing % vol3d(h) to refresh if the view is rotated % (i.e. using cameratoolbar). % % vol3d(...,'texture','3D') Default. Render x,y,z texture planes % simultaneously. This avoids the need to % refresh the view but requires faster OpenGL % hardware peformance. % % vol3d(H) Refresh view. Updates rendering of texture planes % to reduce visual aliasing when using the 'texture'='2D' % option. % % NOTES % Use vol3dtool (from the original vol3d FEX submission) for editing the % colormap and alphamap. Adjusting these maps will allow you to explore % your 3-D volume data at various intensity levels. See documentation on % alphamap and colormap for more information. % % Use interp3 on input date to increase/decrease resolution of data % % Examples: % % % Visualizing fluid flow % v = flow(50); % h = vol3d('cdata',v,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % alphamap('rampdown'), alphamap('decrease'), alphamap('decrease') % % % Visualizing MRI data % load mri.mat % D = squeeze(D); % h = vol3d('cdata',D,'texture','3D'); % view(3); % axis tight; daspect([1 1 .4]) % alphamap('rampup'); % alphamap(.06 .* alphamap); % % See also alphamap, colormap, opengl, isosurface % Copyright Joe Conti, 2004 % Improvements by Oliver Woodford, 2008-2011, with permission of the % copyright holder. function model = vol3d(varargin) if nargin == 0 demo_vol3d; return end if isstruct(varargin{1}) model = varargin{1}; if length(varargin) > 1 varargin = {varargin{2:end}}; end else model = localGetDefaultModel(); end if length(varargin)>1 for n = 1:2:length(varargin) switch(lower(varargin{n})) case 'cdata' model.cdata = varargin{n+1}; case 'parent' model.parent = varargin{n+1}; case 'texture' model.texture = varargin{n+1}; case 'alpha' model.alpha = varargin{n+1}; case 'xdata' model.xdata = varargin{n+1}([1 end]); case 'ydata' model.ydata = varargin{n+1}([1 end]); case 'zdata' model.zdata = varargin{n+1}([1 end]); end end end if isempty(model.parent) model.parent = gca(); end [model] = local_draw(model); %------------------------------------------% function [model] = localGetDefaultModel() model.cdata = []; model.alpha = []; model.xdata = []; model.ydata = []; model.zdata = []; model.parent = []; model.handles = []; model.texture = '3D'; tag = tempname; model.tag = ['vol3d_' tag(end-11:end)]; %------------------------------------------% function [model,ax] = local_draw(model) cdata = model.cdata; siz = size(cdata); % Define [x,y,z]data if isempty(model.xdata) model.xdata = [0 siz(2)]; end if isempty(model.ydata) model.ydata = [0 siz(1)]; end if isempty(model.zdata) model.zdata = [0 siz(3)]; end try delete(model.handles); catch end ax = model.parent; cam_dir = camtarget(ax) - campos(ax); [m,ind] = max(abs(cam_dir)); opts = {'Parent',ax,'cdatamapping',[],'alphadatamapping',[],'facecolor','texturemap','edgealpha',0,'facealpha','texturemap','tag',model.tag}; if ndims(cdata) > 3 opts{4} = 'direct'; else cdata = double(cdata); opts{4} = 'scaled'; end if isempty(model.alpha) alpha = cdata; if ndims(model.cdata) > 3 alpha = sqrt(sum(double(alpha).^2, 4)); alpha = alpha - min(alpha(:)); alpha = 1 - alpha / max(alpha(:)); end opts{6} = 'scaled'; else alpha = model.alpha; if ~isequal(siz(1:3), size(alpha)) error('Incorrect size of alphamatte'); end opts{6} = 'none'; end h = findobj(ax,'type','surface','tag',model.tag); for n = 1:length(h) try delete(h(n)); catch end end is3DTexture = strcmpi(model.texture,'3D'); handle_ind = 1; % Create z-slice if(ind==3 || is3DTexture ) x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)]; diff = model.zdata(2)-model.zdata(1); delta = diff/size(cdata,3); for n = 1:size(cdata,3) cslice = squeeze(cdata(:,:,n,:)); aslice = double(squeeze(alpha(:,:,n))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); z = z + delta; handle_ind = handle_ind + 1; end end % Create x-slice if (ind==1 || is3DTexture ) x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.xdata(2)-model.xdata(1); delta = diff/size(cdata,2); for n = 1:size(cdata,2) cslice = squeeze(cdata(:,n,:,:)); aslice = double(squeeze(alpha(:,n,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); x = x + delta; handle_ind = handle_ind + 1; end end % Create y-slice if (ind==2 || is3DTexture) x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.ydata(2)-model.ydata(1); delta = diff/size(cdata,1); for n = 1:size(cdata,1) cslice = squeeze(cdata(n,:,:,:)); aslice = double(squeeze(alpha(n,:,:))); h(handle_ind) = surface(x,y,z,cslice,'alphadata',aslice,opts{:}); y = y + delta; handle_ind = handle_ind + 1; end end model.handles = h; function demo_vol3d figure; load mri.mat vol3d('cdata', squeeze(D), 'xdata', [0 1], 'ydata', [0 1], 'zdata', [0 0.7]); colormap(bone(256)); alphamap([0 linspace(0.1, 0, 255)]); axis equal off set(gcf, 'color', 'w'); view(3);
github
ojwoodford/ojwul-master
imstereo.m
.m
ojwul-master/graphics/imstereo.m
3,367
utf_8
747884c9db67d08af6d700f8d12eaa44
function imstereo(A, B) if ischar(A) A = imread(A); end if nargin > 1 if ischar(B) B = imread(B); end state.sbs = [A B]; else state.sbs = A; w = floor(size(A, 2) / 2); B = A(:,w+1:end,:); A = A(:,1:w,:); end state.state = 1; state.offset = 0; % Create the first image state.hIm = imdisp(state.sbs); state.hAx = get(state.hIm, 'Parent'); % Move it to the external monitor hFig = gcf; mp = get(0, 'MonitorPositions'); if size(mp, 1) > 1 p = get(hFig, 'Position'); p(1:2) = mp(2, 1:2); set(hFig, 'Position', p); end drawnow; % Maximize it set(hFig, 'MenuBar', 'none', 'Color', 'k'); maximize(hFig); drawnow; % Prepare resized images state.maxoffset = 200; dims = get(hFig, 'Position'); dims = dims(3:4); w = max(size(A, 2), size(B, 2)); h = size(state.sbs, 1); f = min((dims - [state.maxoffset 0])./[w h]); h = floor(h * f); state.resized = cell(2, 1); state.resize{1} = imresize(A, [h floor(w*f)], 'bicubic'); state.resize{2} = imresize(B, [h floor(size(B, 2)*f)], 'bicubic'); state.pos = [0 0 max(size(state.resize{1}, 2), size(state.resize{2}, 2))+state.maxoffset size(state.resize{1}, 1)]; state.pos(1:2) = ceil((dims - state.pos(3:4))/2) - 1; % Set the callback for image navigation, and save the image data in the figure set(hFig, 'KeyPressFcn', @keypress_callback, 'UserData', state, 'Interruptible', 'off', 'BusyAction', 'cancel'); return % Keypress callback % The function which does all the display stuff function keypress_callback(fig, event_data) % Check what key was pressed and update the image index as necessary newstate = 0; off = 0; flip = 0; switch event_data.Character case 27 % Escape close(fig); return case 28 % Left off = -1; case 29 % Right off = 1; case 30 % Up off = -10; case 31 % Down off = 10; case 's' newstate = 1; case 'h' newstate = 2; case 'v' newstate = 3; case 'f' flip = 1; otherwise return end % Get the state data state = get(fig, 'UserData'); if newstate == 0 newstate = state.state; else state.state = newstate; end if flip state.resize(1:2) = state.resize([2 1]); end state.offset = max(min(state.offset + off, state.maxoffset), -state.maxoffset); % Display the new image switch newstate case 1 % Side by side A = state.sbs; set(state.hAx); set(state.hAx, 'Units', 'normalized', 'Position', [0 0 1 1]); case 2 % Horizontal stripes A = zeros(state.pos(4), state.pos(3), size(state.resize{1}, 3), class(state.resize{1})); A(1:2:end,(1:size(state.resize{1}, 2))+floor(state.maxoffset/2)-floor(state.offset/2),:) = state.resize{1}(1:2:end,:,:); A(2:2:end,(1:size(state.resize{2}, 2))+floor(state.maxoffset/2)+ceil(state.offset/2),:) = state.resize{2}(2:2:end,:,:); set(state.hAx, 'Units', 'pixels', 'Position', state.pos); case 3 % Vertical subpixel interleaving error('Vertical subpixel interleaving not yet supported'); end % Set the image data set(state.hIm, 'CData', A); % Reset the axes limits set(state.hAx, 'XLim', [0.5 size(A, 2)+0.5], 'YLim', [0.5 size(A, 1)+0.5]); drawnow; % Save the current state set(fig, 'UserData', state); return
github
ojwoodford/ojwul-master
ojw_gaussian_pyramid.m
.m
ojwul-master/image/ojw_gaussian_pyramid.m
1,699
utf_8
0a0ef1ad7c73878bf3ce37d9f1cb06d5
%OJW_GAUSSIAN_PYRAMID Creates a gaussian image pyramid % % B = ojw_gaussian_pyramid(A, max_depths, [F]) % % Generates the gaussian pyramid of an image of any class. % % IN: % A - MxNxC input image, or Sx1 cell array of input images. % max_depths - scalar indicating maximum number of additional pyramid % levels to calculate. % F - Tx1 filter to apply to image in x and y directions before % downsampling. Default: fspecial('gaussian', [5 1], 1/sqrt(2)). % % OUT: % B - 1xL (or SxL) cell array, where B{1} == A, and B{2},..,B{L} are the % subsampled pyramid levels. function B = ojw_gaussian_pyramid(A, max_depths, F) if nargin < 3 % Use a separable smoothing filter F = [0.25 0.5 0.25]; end % Multi-cell input if iscell(A) B = reshape(A, numel(A), 1); B{1,max_depths+1} = []; for a = 1:numel(A) C = ojw_gaussian_pyramid(A{a}, max_depths, F); B(a,1:numel(C)) = C; end return end % Calculate number of depths required d = ceil(log2(max(size(A, 1), size(A, 2)))); if nargin > 1 d = min(d, max_depths); end d = d + 1; % Initialize the first level B = cell(1, d); B{1} = A; % Convert to singles for higher accuracy (especially with logical arrays) % but leave doubles as they are in_class = class(A); if ~isa(A, 'double') C = single(A); F = single(F); else C = A; F = double(F); end % Calculate other levels for a = 2:d % Filter and subsample C = filter_subsample(C, F); % Cast image if strcmp(in_class, 'logical') B{a} = C > 0.5; else B{a} = cast(C, in_class); end end return
github
ojwoodford/ojwul-master
imfiltsep.m
.m
ojwul-master/image/imfiltsep.m
865
utf_8
40f8d90cecc063fe74b4b309e2a7af45
%IMFILTSEP Fast separable filtering on a multi-channel image % % B = imfiltsep(A, fy, fx) % % Fast separable filtering of multi-channel images, using symmetric % padding, providing an output of the same size as the input. % %IN: % A - HxWxC input image. % fy - filter to apply to the columns. % fx - filter to apply to the rows. % %OUT: % B - HxWxC filtered output image. function I = imfiltsep(I, fy, fx) if nargin < 3 fx = fy; end % Compute the padding indices [H, W, C] = size(I); sympadding = @(N, n) [ceil(n/2-0.5)+1:-1:2 1:N N-1:-1:N-floor(n/2-0.5)]; Y = sympadding(H, numel(fy)); X = sympadding(W, numel(fx)); % For each channel separately for c = 1:C % Compute the padded array J = I(Y,X,c); % Convolve J = conv2(fy(:), fx(:), J, 'valid'); % Insert into array I(:,:,c) = J; end end
github
ojwoodford/ojwul-master
imdilate_.m
.m
ojwul-master/image/imdilate_.m
1,183
utf_8
c37726cafa9893163e283d0d65a7061e
%IMDILATE_ Dilate image % % B = imdilate_(A, nhood) % % This function duplicates behaviour of the IMDILATE function (without % needing the Image Processing Toolbox) for a subset of inputs. If IMDILATE % is available, it is used. % %IN: % A - HxW logical or grayscale image. % nhood - PxQ matrix of 1s and 0s indicating the neighbourhood of a pixel % to be dilated. % %OUT: % B - HxW dilated image. function B = imdilate_(A, nhood) % Use the IPT if available if license('test', 'image_toolbox') B = imdilate(A, nhood); return; end % Cache indices for the dilation persistent cache if isempty(cache) || ~isequal(nhood, cache.nhood) || ~isequal(size(A), cache.sz) cache.nhood = nhood; cache.sz = size(A); [y, x] = find(nhood); y = int32(y - ceil(size(nhood, 1) * 0.5 + 0.5)); x = int32(x - ceil(size(nhood, 2) * 0.5 + 0.5)) - int32(1); [Y, X] = ndgrid(int32(1:cache.sz(1)), int32(1:cache.sz(2))); X = min(max(X(:)' + x(:), int32(0)), cache.sz(2)-1); Y = min(max(Y(:)' + y(:), int32(1)), cache.sz(1)); cache.ind = X * int32(cache.sz(1)) + Y; end % Perform the dilation B = reshape(max(A(cache.ind), [], 1), cache.sz); end
github
ojwoodford/ojwul-master
imgrad.m
.m
ojwul-master/image/imgrad.m
4,924
utf_8
cd9eb1f9a8f1ad0f709eab8e0ef36557
%IMGRAD Calculate gradients of an image in x and y directions % % [Ix, Iy] = imgrad(I, sigma, [mcm]) % G = imgrad(I, sigma, [mcm]) % % Computes x and y gradients of an image. The implementation uses % separable, steerable filters, hence is fast. % % For multi-channel images, the gradient is computed in the colour % direction of greatest change, by defualt, using the method described in: % DiZenzo, S. [1986]. "A note on the gradient of a multi-image", % CVGIP, Vol. 33, pp. 116-125. % Other methods can be selected. % % IN: % I - HxWxC input image. % filter - String denoting named filter ['Bilinear', 'Central', % 'Prewitt', 'Sobel', 'Simoncelli'] or scalar value determing % the scale of the gradient filter (essentially the amount of % pre-smoothing to apply). If 'Simoncelli', the 7-tap values % from Farid, H. and Simoncelli, E. "Differentiation of Discrete % Multi-Dimensional Signals". IEEE Trans. Image Processing. % 13(4): 496-508 (2004) are used. % mcm - multi-channel method: 'dizenzo' (default), 'norm', 'pca', % 'rgb2gray', 'none'. % % OUT: % Ix - HxW array of gradient images in the x direction. % Iy - HxW array of gradient images in the y direction. % G - HxWx2 array of gradient images in x and y directions, i.e. cat(3, % Ix, Iy). function [Ix, Iy] = imgrad(I, filter, mcm) % Set the default arguments if nargin < 3 mcm = 'dizenzo'; end I = double(I); [h, w, c] = size(I); % Convert multi-channel images to single channel, if required if c > 1 switch lower(mcm) case 'rgb2gray' % Standard RGB to grey conversion assert(c == 3, 'Image must have 3 channels'); I = reshape(reshape(I, h*w, c) * [0.299; 0.587; 0.114], h, w); c = 1; case 'pca' % Compress along the first principle component of colour I = reshape(I, h*w, c)'; T = pca(I); I = reshape(T(1,1:end-1) * I, h, w); c = 1; end end if ischar(filter) switch lower(filter) case 'bilinear' % Gradient resulting from bilinear interpolation g = [1 1]; gp = [1 -1]; case 'central' % Central differences g = 1; gp = [1 0 -1]; case 'prewitt' g = [1 1 1]; gp = [1 0 -1]; case 'sobel' g = [1 2 1]; gp = [1 0 -1]; case 'simoncelli' % Use 7-tap filter from: % Farid, H. and Simoncelli, E. "Differentiation of Discrete Multi-Dimensional Signals" % IEEE Trans. Image Processing. 13(4): 496-508 (2004) g = [0.004711 0.069321 0.245410 0.361117 0.245410 0.069321 0.004711]; gp = [0.018708 0.125376 0.193091 0.000000 -0.193091 -0.125376 -0.018708]; otherwise error('Filter %s unrecognized', filter); end X = 1:numel(gp); X = X - mean(X); else % Determine necessary filter support (for Gaussian). X = max(floor((5 / 2) * filter), 1); X = -X:X; % Evaluate 1D Gaussian filter (and its derivative). g = gauss_mask(filter, 0, X); gp = gauss_mask(filter, 1, X); end % Normalize the filters g = g / sum(g); gp = gp / sum(abs(gp) .* abs(X)); % Calculate image gradients Ix = imfiltsep(I, g, gp); Iy = imfiltsep(I, gp, g); % Compress multi-channelled images if c > 1 switch lower(mcm) case 'dizenzo' % Compute maximum gradient using method in: % DiZenzo, S. [1986]. "A note on the gradient of a multi-image", % CVGIP, Vol. 33, pp. 116-125. % Compute inner product of Jacobian with itself J = [shiftdim(sum(Ix .* Ix, 3), -1); shiftdim(sum(Iy .* Iy, 3), -1); shiftdim(sum(Ix .* Iy, 3), -1)]; % Compute the first eigen vector lambda = J(1,:) - J(2,:); lambda = 0.5 * (J(1,:) + J(2,:) + sqrt(lambda .* lambda + 4 * (J(3,:) .* J(3,:)))); J_ = [J(2,:)-lambda; -J(3,:)]; J = [-J(3,:); J(1,:)-lambda]; M = sum(J .* J, 1) < sum(J_ .* J_, 1); J(:,M) = J_(:,M); J = bsxfun(@times, J, sqrt(lambda) ./ (normd(J, 1) + 1e-100)); Ix = reshape(J(1,:), h, w); Iy = reshape(J(2,:), h, w); case 'norm' % Compute the gradient norm Ix = sign(sum(Ix, 3)) .* normd(Ix, 3); Iy = sign(sum(Iy, 3)) .* normd(Iy, 3); case 'none' % Leave as is otherwise error('Multi-channel method %s not recognized', mcm); end end % Concatenate if necessary if nargout == 1 Ix = cat(3, Ix, Iy); end return
github
ojwoodford/ojwul-master
ojw_interp2.m
.m
ojwul-master/image/ojw_interp2.m
1,743
utf_8
c89cbb73c375246f6d26894a9f6ecd34
%OJW_INTERP2 Fast 2d interpolation for images % % V = ojw_interp2(A, X, Y) % V = ojw_interp2(A, X, Y, interp_mode) % V = ojw_interp2(A, X, Y, interp_mode, oobv) % V = ojw_interp2(A, X, Y, interp_mode, oobv, max_num_threads) % % 2d interpolation on a regular grid - similar to MATLAB's interp2() but % with much less overhead, and supports multiple channels and types. Note % that while results of 'linear' and 'nearest' interpolation are the same % as those of interp2(), those of cubic are not - ojw_interp2 uses a cubic % hermite spline that is very fast to compute, unlike the natural cubic % spline employed by interp2(), which does, however, yield a smoother % interpolation. % % If compiled with OpenMP, this function splits the work across N threads, % where N is the smaller of max_num_threads and omp_get_num_procs(). % %IN: % A - HxWxC double, single, uint16, int16, uint8, int8 or Logical array. % X - MxN horizontal offsets (1 being the centre of the first pixel). % Y - MxN vertical offsets (1 being the centre of the first pixel). % interp_mode - string, either 'nearest', 'linear', 'cubic', 'magic', % '4lanczos', or '6lanczos'. Default: 'linear'. % oobv - 1x1 Out of bounds value. Default: NaN. % max_num_threads - 1x1 upper bound on the maximum number of threads to % be used. Default: 1024^2. %OUT: % V - MxNxC interpolated values. Class is the same as that of oobv. % G - 2xMxNxC array of gradients of V in x and y directions: % [shiftdim(Vx, -1); shiftdim(Vy, -1)]. function varargout = ojw_interp2(varargin) sourceList = {'ojw_interp2.cpp', '-Xopenmp', '-Cstd=c++11'}; % Cell array of source files [varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here end
github
ojwoodford/ojwul-master
ojw_box_pyramid.m
.m
ojwul-master/image/ojw_box_pyramid.m
1,660
utf_8
b3cbbd67b60ed5d6b061f81b419c9dc4
%OJW_BOX_PYRAMID Creates an image pyramid using box filtering % % B = ojw_box_pyramid(A, max_depths) % % Generates the image pyramid of an image of any class. % % IN: % A - MxNxC input image, or Sx1 cell array of input images. % max_depths - scalar indicating maximum number of additional pyramid % levels to calculate. % % OUT: % B - 1xL (or SxL) cell array, where B{1} == A, and B{2},..,B{L} are the % subsampled pyramid levels. function B = ojw_box_pyramid(A, max_depths) % Multi-cell input if iscell(A) B = reshape(A, numel(A), 1); B{1,max_depths+1} = []; for a = 1:numel(A) C = ojw_box_pyramid(A{a}, max_depths); B(a,1:numel(C)) = C; end return end % Calculate number of depths required d = ceil(log2(max(size(A, 1), size(A, 2)))); if nargin > 1 d = min(d, max_depths); end d = d + 1; % Initialize the first level B = cell(1, d); B{1} = A; % Convert to singles for higher accuracy (especially with logical arrays) % but leave doubles as they are in_class = class(A); if ~isa(A, 'double') C = single(A); else C = A; end % Calculate other levels for a = 2:d % Filter and subsample if mod(size(C, 1), 2) C = padarray(C, [1 0], 'replicate', 'post'); end C = C(1:2:end,:,:) + C(2:2:end,:,:); if mod(size(C, 2), 2) C = padarray(C, [0 1], 'replicate', 'post'); end C = C(:,1:2:end,:) + C(:,2:2:end,:); C = C * 0.25; % Cast image if strcmp(in_class, 'logical') B{a} = C > 0.5; else B{a} = cast(C, in_class); end end return
github
ojwoodford/ojwul-master
imnonmaxsup.m
.m
ojwul-master/image/imnonmaxsup.m
1,581
utf_8
3a434f880c28f81007baab20f9b09472
%IMNONMAXSUP Non-maxima suppression in an image % % M = imnonmaxsup(I, [radius, [mask_val]]) % %IN: % I - HxW image % radius - scalar value of radius (in pixels) within which to suppress % maxima. Default: 1.5. % mask_val - scalar value which is used to mask previous maxima prior to % iterating the search for maxima. Default: output single % iteration maxima only. % %OUT: % M - HxW mask indicating which pixels are local maxima function M = imnonmaxsup(I, radius, mask_val) % Set the default radius if nargin < 2 radius = 1.5; end radius2 = radius * radius; % Find 4-connected maxima (must be greater than neighbours) M = I(2:end-1,2:end-1); M = M > I(1:end-2,2:end-1) & ... M > I(3:end,2:end-1) & ... M > I(2:end-1,1:end-2) & ... M > I(2:end-1,3:end); M = [false(1, size(M, 2)+2); false(size(M, 1), 1) M false(size(M, 1), 1); false(1, size(M, 2)+2)]; if radius2 >= 2 || nargin > 2 % Extended supression required % Compute the neighbourhood [y, x] = ndgrid(-floor(radius):floor(radius)); nhood = (y .* y + x .* x) <= radius2; % Dilate the image J = imdilate_(I, nhood); % Return mask of maximal points M = J == I & M; if nargin > 2 % Iterate the search I(imdilate_(M, nhood)) = mask_val; while any(I(:)) J = imdilate_(I, nhood); J = (J == I) & (I ~= mask_val); I(imdilate_(J, nhood)) = mask_val; M = M | J; end end end end
github
ojwoodford/ojwul-master
ojw_interp2_debug.m
.m
ojwul-master/image/ojw_interp2_debug.m
348
utf_8
7fc44f6c579ad0ad1f6dd7ce07c482d0
%OJW_INTERP2_DEBUG Image sampling, with plotting of the sample points function varargout = ojw_interp2_debug(varargin) % Forward the call, for error checking [varargout{1:nargout}] = ojw_interp2(varargin{:}); % Render the sample points figure(7429); clf reset; imdisp(varargin{1}); hold on; plot(double(varargin{2}), double(varargin{3}), 'r.'); end
github
ojwoodford/ojwul-master
image_alignment_demo.m
.m
ojwul-master/image/image_alignment_demo.m
2,999
utf_8
7c9011c2a9ac3111d0ff32d10aa8c9e2
%IMAGE_ALIGNMENT_DEMO Demonstrates image alignment % % image_alignment_demo() % % This function demonstrates image alignment via a homography, using % various techniques: % - Lie algebra: a Lie representation of homography updates. % - Auto differentiation: automatically compute the Jacobian of residuals. % - Gauss-Newton: gradient descent with automatic step size computation. % - Analytic image gradients: fast image & gradient sampling using ojw_interp2. function image_alignment_demo(A) if nargin < 1 A = imread('peppers.png'); end sz = size(A); render(); % Create a target image [y, x] = ndgrid(linspace(sz(1)/2-50, sz(1)/2+50, 100), linspace(sz(2)/2-50, sz(2)/2+50, 100)); ref = ojw_interp2(A, x, y); % Did you call "mex ojw_interp2.cpp" first? % Create a small homography Hgt = eye(3) + randn(3) * 0.0002; X = Hgt * [x(:)'; y(:)'; ones(1, numel(x))]; % Use SL(3) representation of a homography sl3 = lie('sl3'); % Create a cost function H = eye(3); for a = 1:100 % Create a delta vector of 8 variables dH = autodiff(zeros(8, 1)); % The magic line!!!! % Compute the homgraphy update dH = exp(sl3, dH); % Apply the homography Y = (H * dH) * X; Y = bsxfun(@times, Y(1:2,:), Y(3,:)); % Sample the image tgt = ojw_interp2(A, Y(1,:), Y(2,:)); tgt = reshape(tgt, size(ref)); % Compute the residuals r = tgt - ref; % Read out the *automagically* computed gradient of the residuals J = reshape(grad(r), 8, []); r = double(r); % Compute the gauss-newton step step = J' \ r(:); % Visualization render(ref, r, tgt); % Check for convergence if norm(step) < 1e-12 break; end % Apply the step H = H * exp(sl3, -step); end end function render(ref, r, tgt) persistent handles if nargin == 0 handles = []; return; end cost = r(:)' * r(:); r = log(1 + sum(r .* r, 3)); tgt = double(tgt) / 255; try handles.X = [handles.X handles.X(end)+1]; handles.Y = [handles.Y cost]; figure(handles.fig); set(handles.diff_im, 'CData', r); set(handles.tgt_im, 'CData', tgt); set(handles.plot, 'XData', handles.X, 'YData', handles.Y); catch handles.fig = figure(5680); clf; set(handles.fig, 'Color', 'w'); axes('OuterPosition', [0 0.5 1/3 0.5]); image(ref/255); title 'Reference image' axis equal off axes('OuterPosition', [1/3 0.5 1/3 0.5]); handles.diff_im = imagesc(r); title 'Pixel difference magnitude' axis equal off axes('OuterPosition', [2/3 0.5 1/3 0.5]); handles.tgt_im = image(tgt); title 'Target image' axis equal off axes('OuterPosition', [0 0 1 0.5]); handles.X = 1; handles.Y = cost; handles.plot = plot(handles.X, handles.Y); xlim([1 100]); ylim([0 cost*1.05]); ylabel Cost xlabel Iteration end drawnow; end
github
ojwoodford/ojwul-master
filter_subsample.m
.m
ojwul-master/image/filter_subsample.m
949
utf_8
a5032e2f3563655e0986a6425d71ad82
%FILTER_SUBSAMPLE Filters and subsamples an image by a factor of 2 % % B = filter_subsample(A, F) % % Given an image and a one dimensional filter, this function convolves the % image with the filter along its first two dimensions, and then subsamples % the resulting image by a factor of two in both those dimensions. % % Support for new types, and for two filters for non-symmetrical, separable % filtering can easily be added to this function. % % IN: % A - MxNxC input image. % F - Lx1 filter to be applied separably to A. F must be double iff A is % double, otherwise it must be single. % % OUT: % B - (M+1)/2x(N+1)/2xC output image, of the same class as A. % $Id: filter_subsample.m,v 1.2 2007/08/02 11:34:56 ojw Exp $ function varargout = filter_subsample(varargin) sourceList = {'filter_subsample.cpp', '-Xopenmp'}; % Cell array of source files [varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here return