plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
ojwoodford/ojwul-master
|
convert2gray.m
|
.m
|
ojwul-master/image/convert2gray.m
| 394 |
utf_8
|
20ef7eae75c457cf26bbaa3348131014
|
%CONVERT2GRAY Convert an RGB image to grayscale
%
% B = convert2gray(A)
%
%IN:
% A - HxWxC input image, where C = 3 (RGB) or 1 (already grayscale).
%
%OUT:
% B - HxW grayscale output image, of the same class as A.
function im = convert2gray(im)
if size(im, 3) == 3
im = cast(reshape(double(reshape(im, [], 3)) * [0.299; 0.587; 0.114], size(im, 1), size(im, 2)), 'like', im);
end
end
|
github
|
ojwoodford/ojwul-master
|
imwarp.m
|
.m
|
ojwul-master/image/imwarp.m
| 429 |
utf_8
|
e6216334a08f75eb5428bedae35469cf
|
%IMWARP Warp an image according to a homography
%
% im = imwarp(im, H)
%
%IN:
% im - HxWxC image
% H - 3x3 homography matrix from source to target
%
%OUT:
% im - HxWxC resampled output image
function im = imwarp(im, H)
% Compute the coordinates to sample at
X = proj(H \ homg(flipud(ndgrid_cols(1:size(im, 1), 1:size(im, 2)))));
% Resample the image
im = reshape(ojw_interp2(im, X(1,:), X(2,:), '6', 0), size(im));
end
|
github
|
ojwoodford/ojwul-master
|
im2mov.m
|
.m
|
ojwul-master/image/im2mov.m
| 5,227 |
utf_8
|
41e469b5c3e2fb96e4aa5403e2c49598
|
%IM2MOV Convert a sequence of images to a movie file
%
% Examples:
% im2mov infile outfile
% im2mov(A, outfile)
% im2mov(..., '-fps', n)
% im2mov(..., '-quality', q)
% im2mov(..., '-profile', profile)
% im2mov(..., '-nocrop')
%
% This function converts an image sequence to a movie.
%
% To create a video from a series of figures, export to an image sequence
% using export_fig, then convert to a movie, as follows:
%
% frame_num = 0;
% for a = 2 .^ (3:6)
% peaks(a);
% export_fig(sprintf('test.%3.3d.png', frame_num), '-nocrop');
% frame_num = frame_num + 1;
% end
% im2mov('test.000.png', 'output', '-fps', 0.5, '-profile', 'MPEG-4');
%
%IN:
% infile - string containing the name of the first input image.
% outfile - string containing the name of the output video (without an
% extension).
% A - HxWxCxN array of input images, stacked along fourth dimension, to
% be converted to a movie.
% -nocrop - option indicating that the borders of the output are not to
% be cropped.
% -fps - option pair, the value of which gives the number of frames per
% second. Default: 15.
% -quality - option pair, the value of which gives the video quality,
% from 0 to 100. Default: 75.
% -profile - option pair, the value of which is a profile string passed
% to VideoWriter object. Default: 'MPEG-4'.
% Copyright (C) Oliver Woodford 2013
function im2mov(A, varargin)
% Parse the input arguments
[A, options] = parse_args(A, varargin{:});
% Get a consistent interface to the sequence
if isnumeric(A)
im = @(a) A(:,:,:,a);
num_frames = size(A, 4);
elseif ischar(A)
im = imstream(A, 50);
num_frames = im.num_frames;
end
crop_func = @(A) A;
if options.crop ~= 0
%% Determine the borders
A = im(1);
[h, w, c] = size(A);
L = w;
R = w;
T = h;
B = h;
bcol = A(1,1,:);
for n = num_frames:-1:1
A = im(n);
[h, w, c] = size(A);
bail = false;
for l = 1:min(L, w)
for a = 1:c
if ~all(col(A(:,l,a)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
L = l;
bail = false;
for r = min(w, R):-1:L
for a = 1:c
if ~all(col(A(:,r,a)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
R = r;
bail = false;
for t = 1:min(T, h)
for a = 1:c
if ~all(col(A(t,:,a)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
T = t;
bail = false;
for b = min(h, B):-1:T
for a = 1:c
if ~all(col(A(b,:,a)) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
B = b;
end
crop_func = @(A) A(T:B,L:R,:);
end
% Create the movie object
hMov = VideoWriter(options.outfile, options.profile);
set(hMov, 'FrameRate', options.fps);
try
% Not all profiles support quality
set(hMov, 'Quality', options.quality);
catch
end
open(hMov);
% Write out the frames
for a = 1:num_frames
writeVideo(hMov, crop_func(im(a)));
end
close(hMov);
return
%% Parse the input arguments
function [infile, options] = parse_args(infile, varargin)
% Set the defaults
options = struct('outfile', '', ...
'crop', true, ....
'profile', 'MPEG-4', ...
'quality', 75, ...
'fps', 15);
% Go through the arguments
a = 0;
n = numel(varargin);
while a < n
a = a + 1;
if ischar(varargin{a}) && ~isempty(varargin{a})
if varargin{a}(1) == '-'
opt = lower(varargin{a}(2:end));
switch opt
case 'nocrop'
options.crop = false;
otherwise
if ~isfield(options, opt)
error('Option %s not recognized', varargin{a});
end
a = a + 1;
if ischar(varargin{a}) && ~ischar(options.(opt))
options.(opt) = str2double(varargin{a});
else
options.(opt) = varargin{a};
end
end
else
options.outfile = varargin{a};
end
end
end
if isempty(options.outfile)
if ~ischar(infile)
error('No output filename given.');
end
% Generate the output filename from the input filename
[path, outfile] = fileparts(infile);
options.outfile = fullfile(path, outfile);
end
return
function A = col(A)
A = A(:);
return
|
github
|
ojwoodford/ojwul-master
|
mov2im.m
|
.m
|
ojwul-master/image/mov2im.m
| 641 |
utf_8
|
f623093ad1a8a6cae5684eb639972909
|
%MOV2IM Convert a movie file to a sequence of images
%
% Examples:
% mov2im infile outfile_format
%
%IN:
% infile - string containing the name of the input video.
% outfile_format - format string for the movie frames. The filename for
% frame N is given by sprintf(outfile_format, N).
% Copyright (C) Oliver Woodford 2015
function mov2im(infile, outfile_format, varargin)
% Create the movie object
hMov = VideoReader(infile);
% Write out the frames
frame = 0;
while hasFrame(hMov)
imwrite(readFrame(hMov), sprintf(outfile_format, frame), varargin{:});
frame = frame + 1;
end
end
|
github
|
ojwoodford/ojwul-master
|
imnorm.m
|
.m
|
ojwul-master/image/imnorm.m
| 1,278 |
utf_8
|
a6b4caa2db5fa5166a2b34ff89d87eb9
|
%IMNORM Spatially local image normalization
%
% B = imnorm(A, sigma, noise_variance)
% B = imnorm(A, [szy szx], noise_variance)
%
% Apply a local normalization operator (subtracting the mean and
% normalizing the variance) to an image, either with a Gaussian or window
% average weighting.
%
%IN:
% A - HxWxC input image.
% sigma - scalar indicating the standard deviation of the Gaussian
% weighting to apply, in pixels.
% [szy szx] - 1x2 window size for window average weighting.
% noise_variance - scalar variance of image noise.
%
%OUT:
% B - HxWxC normalized image.
function A = imnorm(A, sigma, noise_variance)
% Compute the separable filters
if isscalar(sigma)
fx = max(floor(5/2 * sigma), 1);
fx = gauss_mask(sigma, 0, -fx:fx);
fx = fx / sum(fx);
fy = fx;
elseif isequal(size(sigma), [1 2]) && isequal(sigma, round(sigma))
fy = repmat(1 / sigma(1), sigma(1), 1);
fx = repmat(1 / sigma(2), 1, sigma(2));
else
error('sigma not recognized');
end
% Filter the image
A = double(A);
% Subtract the mean
A = A - imfiltsep(A, fy, fx);
% Divide by the standard deviation
noise_variance = max(noise_variance, 1e-100);
A = A ./ sqrt(imfiltsep(A .* A, fy, fx) + noise_variance);
end
|
github
|
ojwoodford/ojwul-master
|
rng_seeder.m
|
.m
|
ojwul-master/utils/rng_seeder.m
| 589 |
utf_8
|
37ed4745dc7d52079ad2aaced05010da
|
%RNG_SEEDER Seed the random number generator, and print the seed if generated
%
% seed = rng_seeder()
% rng_seeder(seed)
%
% This function intializes the random number generator, and prints out the
% seed if one is not given or output.
%
%IN:
% seed - scalar seed for the random number generator.
%
%OUT:
% seed - scalar seed used to initialize the random number generator.
function seed = rng_seeder(seed)
if nargin < 1 || isempty(seed)
rng('shuffle');
seed = ceil(rand(1) * (2^31));
if nargout < 1
fprintf('RNG seed: %d\n', seed);
end
end
rng(seed);
end
|
github
|
ojwoodford/ojwul-master
|
qfig.m
|
.m
|
ojwul-master/utils/qfig.m
| 450 |
utf_8
|
9f8367ca4007ca0eb5e1e401272d1009
|
%QFIG Quietly select the figure
%
% fh = qfig(fn)
%
% Quietly selects the figure specified, without bringing it into focus
% (unless the figure doesn't exist yet).
%
% IN:
% fn - scalar positive integer, or figure handle indicating the figure
% to select.
%
% OUT:
% fh - handle to the figure.
function f = qfig(f)
try
set(0, 'CurrentFigure', f);
catch
figure(f);
end
if nargout > 0
f = get(0, 'CurrentFigure');
end
end
|
github
|
ojwoodford/ojwul-master
|
ojw_progressbar.m
|
.m
|
ojwul-master/utils/ojw_progressbar.m
| 9,531 |
utf_8
|
ca29d395f2e8d30da82e8b0f31717b83
|
%OJW_PROGRESSBAR Simple progress bar implementation
%
% [this, retval] = ojw_progressbar(tag, proportion, [total, [min_update_interval]])
%
% Starts, updates and closes a progress bar according to the proportion of
% time left. There are two ways of using the function:
%
% % Simple (one line) but more overhead
% for iter = 1:total
% % Code here
% ojw_progressbar('Bar 1', iter/total);
% end
%
% % More complicated (two lines!) but less overhead
% pb = ojw_progressbar('Bar 2', total);
% for iter = 1:total
% % Code here
% update(pb, iter);
% end
%
% IN:
% tag - String that appears on progress bar, specific to each function
% calling OJW_PROGRESSBAR.
% proportion - Proportion of time elapsed, as a function of total (below).
% total - The value of proportion that will indicate completion.
% Default: 1.
% min_update_interval - Minimum time (in seconds) between updates of the
% progress bar. The value is kept while the bar is
% alive. Default: 0.5.
%
% OUT:
% this - Handle to the progressbar object.
% retval - 2 iff time since last report > min_update_interval,
% 1 iff progress bar initialized or reset,
% 0 otherwise.
% Based on Andrew Fitzgibbon's awf_progressbar
classdef ojw_progressbar < handle
properties (Hidden = true, SetAccess = private)
bar;
min_update;
prop;
start_prop;
next_prop;
timer;
last_update;
text_version;
tag;
tag_title;
total;
inverse_total;
end
methods
function [this, retval] = ojw_progressbar(tag, proportion, total, min_update_interval)
% Check the input arguments
if nargin < 2
error('At least 2 input arguments expected');
end
if ~ischar(tag)
error('First argument should be a string');
end
if ~isscalar(proportion) || proportion < 0
error('Second argument should be a non-negative scalar');
end
if nargin > 2
if ~isscalar(total) || total < 0
error('Third argument should be a non-negative scalar');
end
total = double(total);
else
total = 1; % Default total proportion
end
if nargin > 3
if ~isscalar(min_update_interval) || min_update_interval < 0
error('Fourth argument should be a non-negative scalar');
end
min_update_interval = double(min_update_interval);
else
min_update_interval = 0.5; % Default seconds between updates
end
% Record the time
curr_time = clock();
proportion = double(proportion); % Must be a double
% Check the tag exists
tag_title = tag;
tag = tag(isstrprop(tag, 'alphanum'));
v = ojw_progressbar.GetSetPersistent(tag);
if isempty(v)
% No tag by this name
if proportion >= total
% No need to create one
retval = 0;
return;
end
% Create a data structure for this tag
this.bar = [];
this.min_update = min_update_interval; % Default seconds between updates
this.prop = proportion;
this.start_prop = proportion;
this.next_prop = proportion;
this.timer = curr_time;
this.last_update = curr_time;
this.tag_title = tag_title;
this.tag = tag;
this.total = total;
this.inverse_total = 1 / total;
this.text_version = ojw_progressbar.GetSetPersistent('text_version');
% Update our global variable with the changes to this tag
ojw_progressbar.GetSetPersistent(tag, this);
% Ensure it gets closed when the function exits
[~, varname] = fileparts(tempname());
assignin('caller', varname, onCleanup(@() ojw_progressbar(tag, Inf)));
else
% Use the cached the data structure
this = v;
% Update the total if a new one is given
if nargin > 2
this.total = total;
this.inverse_total = 1 / total;
this.next_prop = this.prop;
% Update the minimum update interval if a new one is given
if nargin > 3
this.min_update = min_update_interval;
end
end
end
% Update the bar
retval = update(this, proportion, curr_time);
end
% Function for direct updating
function retval = update(this, proportion, curr_time)
% Check for a fast (i.e. no) update
if proportion < this.next_prop && proportion >= this.prop
retval = 1;
return;
end
% Check for an end to the progress bar
retval = 0;
if proportion >= this.total
% Close the progress bar
if this.text_version
fprintf([repmat(' ', 1, 200) repmat('\b', 1, 200)]);
else
close(this.bar);
drawnow();
end
ojw_progressbar.GetSetPersistent(this.tag, []);
this.prop = this.total;
return;
end
if nargin < 3
curr_time = clock();
proportion = double(proportion); % Must be a double
end
% Check to see if we haven't started again
if proportion < this.prop || proportion == this.start_prop
retval = 1;
elseif etime(curr_time, this.last_update) >= this.min_update
% An update of the progress bar is required
retval = 1 + (proportion > this.start_prop);
else
% No update required
return;
end
this.prop = proportion;
proportion = proportion * this.inverse_total;
if retval == 2
this.last_update = curr_time;
t_elapsed = etime(curr_time, this.timer);
prop_done = this.prop - this.start_prop;
t_remaining = ((this.total - this.prop) * t_elapsed) / prop_done;
this.next_prop = min(this.prop + prop_done * this.min_update * 1.1 / t_elapsed, this.total);
newtitle = sprintf('Elapsed: %s', timestr(t_elapsed));
if proportion > 0.01 || t_elapsed > 30
if t_remaining < 600
newtitle = sprintf('%s, Remaining: %s ', newtitle, timestr(t_remaining));
else
newtitle = sprintf('%s, ETA: %s', newtitle, datestr(datenum(curr_time) + (t_remaining * 1.15741e-5), 0));
end
end
else
% Reset the information
this.start_prop = this.prop;
this.next_prop = this.prop;
this.timer = curr_time;
this.last_update = this.timer;
newtitle = 'Starting...';
end
% Update the waitbar
if this.text_version
% Text version
proportion = floor(proportion * 50);
str = sprintf(' %s |%s%s| %s', this.tag_title, repmat('#', 1, proportion), repmat(' ', 1, 50 - proportion), newtitle);
fprintf([str repmat('\b', 1, numel(str))]);
else
% Graphics version
if ishandle(this.bar)
waitbar(proportion, this.bar, newtitle);
else
% Create the waitbar
this.bar = waitbar(proportion, newtitle, 'Name', this.tag_title);
end
end
drawnow();
end
end
methods (Static = true, Access = private)
function val = GetSetPersistent(tag, val)
% Ensure the global data structure exists
persistent ojw_progressbar_data
if isempty(ojw_progressbar_data)
ojw_progressbar_data.text_version = ~usejava('desktop');
end
if nargin < 2
if isfield(ojw_progressbar_data, tag)
val = ojw_progressbar_data.(tag);
else
val = [];
end
else
ojw_progressbar_data.(tag) = val;
end
end
end
end
% Time string function
function str = timestr(t)
s = rem(t, 60);
m = rem(floor(t/60), 60);
h = floor(t/3600);
if h > 0
str= sprintf('%dh%02dm%02.0fs', h, m, s);
elseif m > 0
str = sprintf('%dm%02.0fs', m, s);
else
str = sprintf('%2.1fs', s);
end
end
|
github
|
ojwoodford/ojwul-master
|
add_genpath_exclude.m
|
.m
|
ojwul-master/utils/add_genpath_exclude.m
| 804 |
utf_8
|
ad7336761638201f97ff7c4fbd2a1b78
|
%ADD_GENPATH_EXCLUDE Add a folder and subdirectories to the path, with exclusions
%
% add_genpath_exclude(folder_path, ...)
%
% For example:
% add_genpath_exclude('ojwul', '/.git', '\.git')
% adds ojwul and subdirectories to the path, excluding .git folders.
%
%IN:
% folder_path - Relative or absolute path to the folder to be added to
% the path.
% ... - Each trailing input can be a string to be matched within folders
% to be excluded.
function add_genpath_exclude(path, varargin)
if ispc()
token = ';';
else
token = ':';
end
path = cd(cd(path));
path = genpath(path);
path = strsplit(path, token);
path = path(1:end-1);
for str = varargin
path = path(cellfun(@isempty, strfind(path, str)));
end
path = sprintf(['%s' token], path{:});
addpath(path);
end
|
github
|
ojwoodford/ojwul-master
|
string2hash.m
|
.m
|
ojwul-master/utils/string2hash.m
| 453 |
utf_8
|
89a6f95ed4a295f057af5040c85cac81
|
%STRING2HASH Convert a string to a 64 char hex hash string (256 bit hash)
%
% hash = string2hash(string)
%
%IN:
% string - a string!
%
%OUT:
% hash - a 64 character string, encoding the 256 bit SHA hash of string
% in hexadecimal.
function hash = string2hash(string)
persistent md
if isempty(md)
md = java.security.MessageDigest.getInstance('SHA-256');
end
hash = sprintf('%2.2x', typecast(md.digest(uint8(string)), 'uint8')');
end
|
github
|
ojwoodford/ojwul-master
|
col.m
|
.m
|
ojwul-master/utils/col.m
| 391 |
utf_8
|
7730db6cdeaee9ea0865f10334719fba
|
%COL Convert an array to a column vector along a particular dimension
%
% B = col(A, [dim])
%
%IN:
% A - Array of any size.
% dim - Positive integer indicating the dimension to arrange the elements
% of A along. Default: 1.
%
%OUT:
% B - Result of shiftdim(A(:), 1-dim).
function x = col(x, dim)
x = reshape(x, numel(x), 1);
if nargin > 1
x = shiftdim(x, 1-dim);
end
end
|
github
|
ojwoodford/ojwul-master
|
recurse_subdirs.m
|
.m
|
ojwul-master/utils/recurse_subdirs.m
| 1,769 |
utf_8
|
79eab70a46d565eaeeca552e4c34314e
|
%RECURSE_SUBDIRS Run a function recursively on a directory structure
%
% varargout = recurse_subdirs(func, base)
%
% This function calls a function, passing in the path to each subdirectory
% in the tree of the current directory (i.e. including subdirectories of
% subdirectories).
%
%IN:
% func - A handle for the function to be called recursively. The function
% should have the form: varargout = func(base).
% base - The path to the directory the function is to be run on.
% Default: cd().
%
%OUT:
% varargout - A cell array of cell arrays of outputs from each call to
% func.
function varargout = recurse_subdirs(func, base)
if nargin < 2
base = cd();
end
% Initialize the output
[varargout{1:nargout}] = deal({});
% Run on this directory
try
fprintf('%s ...', base);
if nargout == 0
func(base);
else
[varargout{1:nargout}] = func(base);
varargout = cellfun(@(v) {{v}}, varargout);
end
fprintf(' DONE\n');
catch me
fprintf(getReport(me));
end
% Go through sub directories
for d = dir(base)'
if d.isdir && d.name(1) ~= '.'
% Do the recursion
name = sprintf('%s/%s', base, d.name);
if nargout == 0
recurse_subdirs(func, name);
else
[v{1:nargout}] = recurse_subdirs(func, name);
% Store the output
if ~all(cellfun(@isempty, v))
if all(cellfun(@isempty, varargout))
varargout = v;
else
for a = 1:nargout
varargout{a} = cat(2, varargout{a}, v{a});
end
end
end
end
end
end
end
|
github
|
ojwoodford/ojwul-master
|
ndgrid_cols.m
|
.m
|
ojwul-master/utils/ndgrid_cols.m
| 727 |
utf_8
|
5cbe7e8b53cc0ad85a2e74377eeaac21
|
%NDGRID_COLS Like NDGRID, but creates column vectors from the outputs
%
% [X, sz] = ndgrid_cols(...)
%
% This function applies passes its inputs directly to NDGRID, then converts
% the outputs to row vectors, which are stacked vertically, so each
% combination of inputs becomes a column vector in the output matrix.
%
%IN:
% varargin - Same as inputs to NDGRID.
%
%OUT:
% X - (nargin)xN matrix of permutation column vectors.
% sz - 1xM array of sizes of outputs that ndgrid would produce with the
% same inputs, such that N = prod(sz).
function [X, sz] = ndgrid_cols(varargin)
X = cell(nargin, 1);
[X{:}] = ndgrid(varargin{:});
sz = size(X{1});
X = cell2mat(cellfun(@(x) x(:)', X, 'UniformOutput', false));
end
|
github
|
ojwoodford/ojwul-master
|
compile.m
|
.m
|
ojwul-master/utils/compile.m
| 15,693 |
utf_8
|
b2adcd1ca5e0fd46a553b939e43229cb
|
%COMPILE Mex compilation helper function
%
% Examples:
% compile func1 func2 ... -option1 -option2 ...
%
% This function can be used to (re)compile a number of mex functions, but
% is also a helper function enabling inline compilation.
function varargout = compile(varargin)
% There are two types of call:
% 1. compile('func1', 'func2', ..., [options]).
% 2. [varargout{1:nargout}] = compile(varargin), called from function to
% be compiled.
% Work out which this is
% Try to get the source list
try
sourceList = evalin('caller', 'sourceList');
catch
sourceList = [];
end
if iscell(sourceList)
%OJW_MEXCOMPILE_SCRIPT Compilation helper script for mex files
%
% Should be placed in the m-file of a mexed function, after the
% following lines of code, thus:
%
% function varargout = mymex(varargin)
% sourceList = {'-Iinclude', '-Llib', 'mymex.c', 'mymexhelper.c', '-lmysharedlib'};
% [varargout{1:nargout} = ojw_mexcompile_script(varargin{:});
%
% The script will compile the source inline (i.e. compile & then run) if
% the function has been called without first being compiled.
%
% If varargin{1} == 'compile' and varargin{2} = last_compilation_time,
% then the script calls ojw_mexcompile to compile the function if any of
% the source files have changed since last_compilation_time.
% Get the name of the calling function
funcName = dbstack('-completenames');
funcPath = fileparts(funcName(2).file);
funcName = funcName(2).name;
% Go to the directory containing the file
currDir = cd(funcPath);
if nargin > 1 && isequal(varargin{1}, 'compile')
% Standard compilation behaviour
[varargout{1:nargout}] = ojw_mexcompile(funcName, sourceList, varargin{2:end});
% Return to the original directory
cd(currDir);
else
% Function called without first being compiled
fprintf('Missing mex file: %s.%s. Will attempt to compile and run.\n', funcName, mexext);
retval = ojw_mexcompile(funcName, sourceList);
% Return to the original directory
cd(currDir);
if retval <= 0
% Flag the error
error('Unable to compile %s.', funcName);
end
% Make sure MATLAB registers the new function
S = which(funcName, '-all');
% Call the now compiled function again
[varargout{1:nargout}] = fevals(funcName, varargin{:});
end
return;
end
% Check for compile flags
for a = nargin:-1:1
M(a) = varargin{a}(1) == '-';
end
for a = find(~M(:))'
% Delete current mex
S = which(varargin{a}, '-all');
if ~iscell(S)
S = {S};
end
s = cellfun(@(s) strcmp(s(end-numel(varargin{a})-1:end), [varargin{a} '.m']), S);
if ~any(s)
error('Function %s not found on the path', varargin{a});
end
s = [S{find(s, 1)}(1:end-2) '.' mexext];
if exist(s, 'file')
delete(s);
assert(exist(s, 'file') == 0, 'Could not delete the mex file:\n %s\nEither it is write protected or it is locked in use by MATLAB.', s);
S = which(varargin{a}, '-all'); % Refresh the function pointed to
end
% Compile
fevals(varargin{a}, 'compile', 0, varargin{M});
% Clear functions and make sure the mex is pointed to
clear(varargin{a});
S = which(varargin{a}, '-all');
assert(exist(s, 'file') ~= 0, 'Compilation of %s failed', varargin{a});
end
end
%OJW_MEXCOMPILE Mex compile helper function
%
% okay = ojw_mexcompile(funcName)
% okay = ojw_mexcompile(..., inputStr)
% okay = ojw_mexcompile(..., lastCompiled)
%
% Compile mexed function, given an optional list of source files and other
% compile options. Can optionally check if source files have been modified
% since the last compilation, and only compile if they have.
%
%IN:
% funcName - string containg the name of the function to compile
% inputStr - cell array of input strings to be passed to mex, e.g. source
% file names, include paths, library paths, optimizer flags,
% etc. Default: {[funcName '.c']}.
% lastCompiled - datenum of the current mex file. Default: 0 (i.e. force
% compilation).
%
%OUT:
% okay - 1: function compiled; 0: up-to-date, no need to compile; -1:
% compilation failed.
function okay = ojw_mexcompile(funcName, varargin)
% Determine architecture
is64bit = mexext;
is64bit = strcmp(is64bit(end-1:end), '64');
% Set defaults for optional inputs
sourceList = [funcName '.c'];
lastCompiled = 0;
% Parse inputs
extraOptions = {};
for a = 1:numel(varargin)
if iscell(varargin{a}) && ischar(varargin{a}{1})
sourceList = varargin{a};
elseif isnumeric(varargin{a}) && isscalar(varargin{a})
lastCompiled = varargin{a};
elseif ischar(varargin{a})
extraOptions = [extraOptions varargin(a)];
end
end
sourceList = [sourceList extraOptions];
okay = 0;
if lastCompiled
compile = false;
% Compile if current mex file is older than any of the source files
% Note: this doesn't consider included files (e.g. header files)
for a = 1:numel(sourceList)
dirSource = dir(sourceList{a});
if ~isempty(dirSource)
if datenum(dirSource.date) > lastCompiled
compile = true;
break;
end
end
end
else
compile = true;
end
% Exit if not compiling
if ~compile
return;
end
okay = -1;
debug = false;
cudaOptions = cell(0, 1);
compiler_options = '';
%L = {''};
% Parse the compile options
for a = 1:numel(sourceList)
if sourceList{a}(1) == '-' % Found an option (not a source file)
switch sourceList{a}(2)
case 'N' % Cuda nvcc option
cudaOptions{end+1} = sourceList{a}(3:end);
sourceList{a} = '';
case 'X' % Special option
[sourceList{a}, co] = feval(sourceList{a}(3:end), debug);
compiler_options = [compiler_options ' ' co];
case 'C' % Compiler option
if ispc()
opt = ['/' strrep(sourceList{a}(3:end), '=', ':')];
else
opt = ['-' sourceList{a}(3:end)];
end
compiler_options = [compiler_options ' ' opt];
sourceList{a} = '';
case 'g' % Debugging on
debug = debug | (numel(sourceList{a}) == 2);
end
else
sourceList{a} = ['"' sourceList{a} '"'];
end
end
L = zeros(numel(sourceList), 1);
gpucc = [];
options_file = [];
% Convert any CUDA files to C++, and any Fortran files to object files
for a = 1:numel(sourceList)
if isempty(sourceList{a}) || sourceList{a}(1) == '-' % Found an option (not a source file)
continue;
end
[ext, ext, ext] = fileparts(sourceList{a}(2:end-1));
switch ext
case '.cu'
% GPU programming - Convert any *.cu files to *.cpp
if isempty(gpucc)
% Create nvcc call
cudaDir = cuda_path();
options_file = ['"' tempname '.txt"'];
fid = fopen(options_file(2:end-1), 'wt');
gpucc = sprintf('"%s%s" --options-file %s', cudaDir, nvcc(), options_file);
fprintf(fid, ' -D_MATLAB_ -I"%s%sextern%sinclude" -m%d', matlabroot, filesep, filesep, 32*(1+is64bit));
% Add cuda specific options
if ~isempty(cudaOptions)
fprintf(fid, ' %s', cudaOptions{:});
end
if ispc && is64bit
cc = mex.getCompilerConfigurations();
fprintf(fid, ' -ccbin "%s\\VC\\bin" -I"%s\\VC\\include"', cc.Location, cc.Location);
end
% Add any include directories from source list and cuda
% specific options
for b = 1:numel(sourceList)
if strcmp(sourceList{b}(1:min(2, end)), '-I')
fprintf(fid, ' %s', sourceList{b});
end
end
% Add the debug flag
if debug
fprintf(fid, ' -g -UNDEBUG -DDEBUG');
else
% Apply optimizations
fprintf(fid, ' -O3 --use_fast_math');
end
fclose(fid);
end
% Compile to object file
outName = ['"' tempname '.o"'];
cmd = sprintf('%s --compile "%s" --output-file %s', gpucc, sourceList{a}, outName);
disp(cmd);
if system(cmd)
% Quit
fprintf('ERROR while converting %s to %s.\n', sourceList{a}, outName);
clean_up([reshape(sourceList(L == 1), [], 1); {options_file}]);
return;
end
sourceList{a} = outName;
L(a) = 1;
case {'.f', '.f90'}
L(a) = 2;
end
end
% Delete the options file
if ~isempty(options_file)
delete(options_file(2:end-1));
options_file = [];
end
% Set the compiler flags
if debug
flags = '-UNDEBUG -DDEBUG';
else
flags = '-O -DNDEBUG';
end
if any(L == 1)
flags = [flags ' ' cuda(debug)];
end
switch mexext
case {'mexglx', 'mexa64', 'mexmaci64', 'mexmaca64'}
if ~debug
compiler_options = [compiler_options ' -O3 -ffast-math -funroll-loops'];
end
flags = sprintf('%s CXXFLAGS="%s" CFLAGS="%s"', flags, compiler_options, compiler_options);
case {'mexw32', 'mexw64'}
flags = sprintf('%s COMPFLAGS="%s $COMPFLAGS"', flags, compiler_options);
end
% Call mex to compile the code
cmd = sprintf('mex -D_MATLAB_=%d %s%s -output "%s"', [100 1] * sscanf(version(), '%d.%d', 2), flags, sprintf(' %s', sourceList{:}), funcName);
disp(cmd);
try
eval(cmd);
okay = 1;
catch me
fprintf('ERROR while compiling %s\n', funcName);
fprintf('%s', getReport(me, 'basic'));
end
% Clean up
clean_up(sourceList(L == 1));
end
function clean_up(sourceList)
% Delete the intermediate files
for a = 1:numel(sourceList)
delete(sourceList{a}(2:end-1));
end
end
function path_str = cuda_path()
path_str = user_string('cuda_path');
if check_cuda_path(path_str)
return;
end
% Check the environment variables
path_str = fullfile(getenv('CUDA_PATH'), '/');
if check_cuda_path(path_str)
user_string('cuda_path', path_str);
return;
end
path_str = get_user_path('CUDA', check_cuda_path, 1);
end
function good = check_cuda_path(path_str)
% Check the cuda path is valid
[good, message] = system(sprintf('"%s%s" -h', path_str, nvcc()));
good = good == 0;
end
function path_ = nvcc()
path_ = ['bin' filesep 'nvcc'];
if ispc
path_ = [path_ '.exe'];
end
end
function path_str = cuda_sdk
path_str = get_user_path('CUDA SDK', @(p) exist([p 'inc' filesep 'cutil.h'], 'file'), 1, ['C' filesep 'common' filesep]);
end
% FEVAL for function which is not a subfunction in this file
function varargout = fevals(func_name_str, varargin)
[varargout{1:nargout}] = feval(str2func(sprintf('@(x) %s(x{:})', func_name_str)), varargin);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SPECIAL OPTIONS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create the compiler options for cuda
function [str, co] = cuda(debug)
co = '';
% Set gpu code compiler & linker flags
is64bit = mexext;
is64bit = strcmp(is64bit(end-1:end), '64');
bitStr = {'32', '', '64', 'Win32', 'x64'};
cudaDir = cuda_path();
str = sprintf('-I"%sinclude" -L"%slib/%s" -lcudart', cudaDir, cudaDir, bitStr{4+is64bit});
end
function [str, co] = cudasdk(debug)
co = '';
str = sprintf('-I"%sinc"', cuda_sdk);
end
% Create the compiler options for lapack/blas
function [str, co] = lapack(debug)
co = '';
str = '-lmwlapack -lmwblas'; % Use MATLAB's versions
end
% Create the compiler options for OpenMP
function [str, co] = openmp(debug)
str = '';
co = '';
if ~debug
if ispc()
co = '/openmp';
elseif ismac()
co = '-Xpreprocessor -fopenmp';
str = get_user_path('OpenMP', @(p) exist([p 'include/omp.h'], 'file'), 1);
if isfolder(sprintf("%s/sys/os/maci64", matlabroot()))
str = sprintf('-I"%sinclude" -L"%s/sys/os/maci64" -liomp5', str, matlabroot());
else
str = sprintf('-I"%sinclude" -L"%s/sys/os/maca64" -lomp', str, matlabroot());
end
else
co = '-fopenmp';
end
end
end
% Create the compiler options for OpenCV
function [str, co] = opencv(debug)
co = '';
str = get_user_path('OpenCV', @(p) exist([p 'include/opencv2'], 'dir'), 1);
str = sprintf('-I"%sinclude" -L"%slib" -lopencv_core -lopencv_calib3d -lopencv_imgproc', str, str);
end
% Add the boost library directory
function [str, co] = boost(debug)
co = '';
str = get_user_path('Boost', @(p) exist(sprintf('%sboost%sshared_ptr.hpp', p, filesep), 'file'), 1);
str = sprintf('-I"%s" -L"%sstage%slib%s"', str, str, filesep, filesep);
end
% Add the directX library directory
function [str, co] = directx(debug)
if ~ispc()
error('DirectX only supported on Windows');
end
co = '';
str = get_user_path('DirectX SDK', @(p) exist(sprintf('%sLib%sx86%sdxguid.lib', p, filesep, filesep), 'file'), 1);
str = sprintf('-L"%sLib%sx%d"', str, filesep, 86-22*is64bit());
end
% Add the Eigen include directory
function [str, co] = eigen(debug)
co = '';
str = get_user_path('Eigen', @(p) exist(sprintf('%sEigen%sCore', p, filesep), 'file'), 1);
str = sprintf('-I"%s"', str(1:end-1));
if ~debug
str = [str ' -DEIGEN_NO_DEBUG'];
end
end
% Add the Ceres library directory
function [str, co] = ceres(debug)
co = '';
str = get_user_path('Ceres', @(p) exist(sprintf('%sinclude%sceres%sceres.h', p, filesep, filesep), 'file'), 1);
str = sprintf('-I"%sinclude" -I"%sconfig" -L"%slib" -lceres', str, str, str);
end
% Add the Suite Sparse library directory
function [str, co] = suitesparse(debug)
co = '';
str = get_user_path('SuiteSparse', @(p) exist(sprintf('%sinclude%sSuiteSparse_config.h', p, filesep), 'file'), 1);
str = sprintf('-I"%sinclude" -L"%slib" -lcholmod', str, str);
end
% Add the glog library directory
function [str, co] = glog(debug)
co = '';
str = get_user_path('glog', @(p) exist(sprintf('%sinclude%sglog%slogging.h', p, filesep, filesep), 'file'), 1);
str = sprintf('-I"%sinclude" -L"%slib" -lglog', str, str);
end
% Add the gflags library directory
function [str, co] = gflags(debug)
co = '';
str = get_user_path('glflags', @(p) exist(sprintf('%sinclude%sgflags%sgflags.h', p, filesep, filesep), 'file'), 1);
str = sprintf('-I"%sinclude" -L"%slib" -lgflags', str, str);
end
% Add the Sophus include directory
function [str, co] = sophus(debug)
co = '';
str = get_user_path('Sophus', @(p) exist(sprintf('%ssophus%sse3.hpp', p, filesep), 'file'), 1);
str = sprintf('-I"%s"', str(1:end-1));
end
% Add the liegroups library
function [str, co] = liegroups(debug)
co = '';
str = get_user_path('liegroups', @(p) exist(sprintf('%sse3.hpp', p), 'file'), 1);
if debug
debug = 'Debug';
else
debug = 'Release';
end
str = sprintf('-I"%s/.." -L"%s/build/%s" -lliegroups', str, str, debug);
end
% Add the ojwul include directory
function [str, co] = ojwul(debug)
co = '';
str = sprintf('-I"%s"', fileparts(fileparts(mfilename('fullpath'))));
end
|
github
|
ojwoodford/ojwul-master
|
temp_cd.m
|
.m
|
ojwul-master/utils/temp_cd.m
| 486 |
utf_8
|
d5d5464b0d93132d4d3e0090e0ec7165
|
%TEMP_CD Switch to a directory for the duration of the calling function
%
% cwd = temp_cd(dirname)
%
%IN:
% dirname - Full or relative path to the directory to switch to.
%
%OUT:
% cwd - Path string to current directory.
function cwd = temp_cd(dirname)
assert(evalin('caller', 'exist(''temp_cd_cleanupObj'', ''var'');') == 0, 'temp_cd cannot be called twice in the same function');
cwd = cd(dirname);
co = onCleanup(@() cd(cwd));
assignin('caller', 'temp_cd_cleanupObj', co);
end
|
github
|
ojwoodford/ojwul-master
|
str2fun.m
|
.m
|
ojwul-master/utils/str2fun.m
| 1,423 |
utf_8
|
cbdee8fc068af54566c8a6c414da697f
|
%STR2FUN Construct a function_handle from a function name or path.
% FUNHANDLE = STR2FUN(S) constructs a function_handle FUNHANDLE to the
% function named in the character vector S. The S input must be a
% character vector. The S input cannot be a character array with
% multiple rows or a cell array of character vectors.
%
% You can create a function handle using either the @function syntax or
% the STR2FUN command. You can create an array of function handles from
% character vectors by creating the handles individually with STR2FUN,
% and then storing these handles in a cell array.
%
% Examples:
%
% To create a function handle from the function name, 'humps':
%
% fhandle = str2func('humps')
% fhandle =
% @humps
%
% To call STR2FUNC on a cell array of character vectors, use the
% CELLFUN function. This returns a cell array of function handles:
%
% fh_array = cellfun(@str2func, {'sin' 'cos' 'tan'}, ...
% 'UniformOutput', false);
% fh_array{2}(5)
% ans =
% 0.2837
%
% See also STR2FUNC, FUNCTION_HANDLE, FUNC2STR, FUNCTIONS.
function fun = str2fun(str)
assert(ischar(str));
if str(1) ~= '@'
[p, str] = fileparts(str);
if ~isempty(p)
cwd = cd(p);
cleanup_obj = onCleanup(@() cd(cwd));
end
end
fun = evalin('caller', sprintf('str2func(''%s'')', str));
end
|
github
|
ojwoodford/ojwul-master
|
vgg_argparse.m
|
.m
|
ojwul-master/utils/vgg_argparse.m
| 1,946 |
utf_8
|
9831dc65a204ed7cf28af3acd5487ffd
|
%VGG_ARGPARSE Parse variable arguments into a structure
% opts = vgg_argparse(inopts,varargin)
% inopts: structure (cells array) listing valid members and default values
% varargin: variable arguments of form '<name>',<value>,...
% opts: opts modified by varargin
%
% Example:
% function f = foo(varargin)
% opts = vgg_argparse(struct('maxiters',10,'verbose',0), varargin)
% ...
%
% An unknown option (ie, present in varargin but absent in inopts)
% causes an error. Calling the function as
% [opts,rem_opts] = vgg_argparse(inopts,varargin) returns the unknown
% option(s) in rem_opts for later use rather than causes an error.
%
% May also use OPTS = VGG_ARGPARSE(OPTS, ASTRUCT) where ASTRUCT is a struct
% of options.
% Author: Mark Everingham <[email protected]>
% modified by werner, Jan 03
% modified by ojw, Mar 14
% Date: 16 Jan 02
function [opts, rem_opts] = vgg_argparse(opts, varargin)
if iscell(opts)
opts = struct(opts{:});
end
inopts = -1;
if isempty(varargin)
inopts = struct([]);
elseif nargin == 2
if isempty(varargin{1})
inopts = struct([]);
elseif isstruct(varargin{1})
inopts = varargin{1};
elseif iscell(varargin{1})
varargin = varargin{1};
if isstruct(varargin{1})
inopts = varargin{1};
end
else
error('Single argument');
end
end
if isequal(inopts, -1)
% Construct struct in for loop to allow duplicates (overwrite)
inopts = struct();
for a = 1:2:numel(varargin)-1
inopts.(varargin{a}) = varargin{a+1};
end
end
rem_opts = [];
for fn = fieldnames(inopts)'
if isfield(opts, fn{1})
opts.(fn{1}) = inopts.(fn{1});
else
rem_opts.(fn{1}) = inopts.(fn{1});
end
end
if nargout < 2 && ~isempty(rem_opts)
v = fieldnames(rem_opts);
error(['Bad arguments: ' sprintf('''%s'' ', v{:})]);
end
|
github
|
ojwoodford/ojwul-master
|
user_string.m
|
.m
|
ojwul-master/utils/user_string.m
| 3,273 |
utf_8
|
1001def19cdf03ef0095097e934b6640
|
%USER_STRING Get/set a user specific string
%
% Examples:
% string = user_string(string_name)
% isSaved = user_string(string_name, new_string)
%
% Function to get and set a string in a system or user specific file. This
% enables, for example, system specific paths to binaries to be saved.
%
% The specified string will be saved in a file named <string_name>.txt,
% either in a subfolder named .ignore under this file's folder, or in the
% user's prefdir folder (in case this file's folder is non-writable).
%
% IN:
% string_name - String containing the name of the string required, which
% sets the filename storing the string: <string_name>.txt
% new_string - The new string to be saved in the <string_name>.txt file
%
% OUT:
% string - The currently saved string. Default: ''
% isSaved - Boolean indicating whether the save was succesful
% Copyright (C) Oliver Woodford 2011-2014, Yair Altman 2015-
% This method of saving paths avoids changing .m files which might be in a
% version control system. Instead it saves the user dependent paths in
% separate files with a .txt extension, which need not be checked in to
% the version control system. Thank you to Jonas Dorn for suggesting this
% approach.
% 10/01/2013 - Access files in text, not binary mode, as latter can cause
% errors. Thanks to Christian for pointing this out.
% 29/05/2015 - Save file in prefdir if current folder is non-writable (issue #74)
function string = user_string(string_name, string)
if ~ischar(string_name)
error('string_name must be a string.');
end
% Create the full filename
fname = [string_name '.txt'];
dname = fullfile(fileparts(mfilename('fullpath')), '.ignore');
file_name = fullfile(dname, fname);
if nargin > 1
% Set string
if ~ischar(string)
error('new_string must be a string.');
end
% Make sure the save directory exists
%dname = fileparts(file_name);
if ~exist(dname, 'dir')
% Create the directory
try
if ~mkdir(dname)
string = false;
return
end
catch
string = false;
return
end
% Make it hidden
try
fileattrib(dname, '+h');
catch
end
end
% Write the file
fid = fopen(file_name, 'wt');
if fid == -1
% file cannot be created/updated - use prefdir if file does not already exist
% (if file exists but is simply not writable, don't create a duplicate in prefdir)
if ~exist(file_name,'file')
file_name = fullfile(prefdir, fname);
fid = fopen(file_name, 'wt');
end
if fid == -1
string = false;
return;
end
end
try
fprintf(fid, '%s', string);
catch
fclose(fid);
string = false;
return
end
fclose(fid);
string = true;
else
% Get string
fid = fopen(file_name, 'rt');
if fid == -1
% file cannot be read, try to read the file in prefdir
file_name = fullfile(prefdir, fname);
fid = fopen(file_name, 'rt');
if fid == -1
string = '';
return
end
end
string = fgetl(fid);
fclose(fid);
end
end
|
github
|
ojwoodford/ojwul-master
|
bsxfun.m
|
.m
|
ojwul-master/utils/bsxfun.m
| 4,309 |
utf_8
|
2f5ffcbfa7ab333f15990ab47e3fe49f
|
% BSXFUN Binary Singleton Expansion Function
% C = BSXFUN(FUNC,A,B) applies the element-by-element binary operation
% specified by the function handle FUNC to arrays A and B, with singleton
% expansion enabled. FUNC can be one of the following built-in functions:
%
% @plus Plus
% @minus Minus
% @times Array multiply
% @rdivide Right array divide
% @ldivide Left array divide
% @power Array power
% @max Binary maximum
% @min Binary minimum
% @rem Remainder after division
% @mod Modulus after division
% @atan2 Four-quadrant inverse tangent; result in radians
% @atan2d Four-quadrant inverse tangent; result in dgrees
% @hypot Square root of sum of squares
% @eq Equal
% @ne Not equal
% @lt Less than
% @le Less than or equal
% @gt Greater than
% @ge Greater than or equal
% @and Element-wise logical AND
% @or Element-wise logical OR
% @xor Logical EXCLUSIVE OR
%
% FUNC can also be a handle to any binary element-wise function not listed
% above. A binary element-wise function in the form of C = FUNC(A,B)
% accepts arrays A and B of arbitrary but equal size and returns output
% of the same size. Each element in the output array C is the result
% of an operation on the corresponding elements of A and B only. FUNC must
% also support scalar expansion, such that if A or B is a scalar, C is the
% result of applying the scalar to every element in the other input array.
%
% The corresponding dimensions of A and B must be equal to each other, or
% equal to one. Whenever a dimension of A or B is singleton (equal to
% one), BSXFUN virtually replicates the array along that dimension to
% match the other array. In the case where a dimension of A or B is
% singleton and the corresponding dimension in the other array is zero,
% BSXFUN virtually diminishes the singleton dimension to zero.
%
% The size of the output array C is equal to
% max(size(A),size(B)).*(size(A)>0 & size(B)>0). For example, if
% size(A) == [2 5 4] and size(B) == [2 1 4 3], then size(C) == [2 5 4 3].
%
% Examples:
%
% Subtract the column means from the matrix A:
% A = magic(5);
% A = bsxfun(@minus, A, mean(A));
%
% Scale each row of A by its maximum absolute value:
% A = rand(5);
% A = bsxfun(@rdivide, A, max(abs(A),[],2));
%
% Compute z(x, y) = x.*sin(y) on a grid:
% x = 1:10;
% y = x.';
% z = bsxfun(@(x, y) x.*sin(y), x, y);
%
% See also REPMAT, ARRAYFUN
function C = bsxfun(func, A, B)
% Catch bsxfun on symbolic arrays
if ~isa(A, 'sym') && ~isa(B, 'sym')
% Call the normal bsxfun
C = builtin('bsxfun', func, A, B);
else
% Repmat method
if isscalar(A)
C = reshape(func(A, B(:)), size(B));
return
elseif isscalar(B)
C = reshape(func(A(:), B), size(A));
return
end
sA = size(A);
sB = size(B);
% Enlarge the smaller of the two sizes
s = numel(sA) - numel(sB);
if s < 0
sA = [sA ones(1, -s)];
elseif s > 0
sB = [sB ones(1, s)];
end
% Calculate the output array size
sMax = max(sA, sB) .* (sA > 0 & sB > 0);
% Make sure arrays have same size of dimension or size 1
a = sA ~= sMax;
b = sB ~= sMax;
if any(a & sA ~= 1) || any(b & sB ~= 1)
error('A and B must have equal or singleton dimensions');
end
if ~all(sMax)
% Some entries are zero, so array is empty
C = sym(zeros(sMax));
return
end
% Resize the arrays to have the same size, sMax
if any(a)
A = repmat(A, sMax ./ sA);
end
if any(b)
B = repmat(B, sMax ./ sB);
end
% Apply the function
C = reshape(func(A(:), B(:)), sMax);
end
end
|
github
|
ojwoodford/ojwul-master
|
maximize.m
|
.m
|
ojwul-master/utils/maximize.m
| 884 |
utf_8
|
2b1e724a67b717d50a29e1186d1e6612
|
%MAXIMIZE Maximize a figure window to fill the entire screen
%
% Examples:
% maximize
% maximize(hFig)
%
% Maximizes the current or input figure so that it fills the whole of the
% screen that the figure is currently on. This function is platform
% independent.
%
%IN:
% hFig - Handle of figure to maximize. Default: gcf.
function maximize(hFig)
if nargin < 1
hFig = gcf();
end
% Java-less method (since R2018a)
if exist('verLessThan', 'file') && ~verLessThan('matlab', '9.4')
set(hFig, 'WindowState', 'maximized');
return;
end
% Old Java version
drawnow(); % Required to avoid Java errors
set(hFig, 'WindowStyle', 'normal');
% Suppress warning about Java obsoletion
oldState = warning('off', 'MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame');
jFig = get(handle(hFig), 'JavaFrame');
jFig.setMaximized(true);
warning(oldState);
end
|
github
|
ojwoodford/ojwul-master
|
bitwise_hamming.m
|
.m
|
ojwul-master/bitwise/bitwise_hamming.m
| 4,768 |
utf_8
|
9f5bb67a39572295bc759ee01457d8c9
|
%BITWISE_HAMMING Compute all hamming distances between two sets of bit vectors
%
% C = bitwise_hamming(A, B, [thresh])
%
% Given two sets of bit vectors (each column being a bit vector), compute
% the hamming distances between all pairs of vectors between the two sets.
% If a threshold is given, return only those values below the threshold.
%
%IN:
% A - MxP matrix of bit vectors.
% B - MxQ matrix of bit vectors.
% thresh - A scalar bit count threshold.
%
%OUT:
% C - PxQ matrix of bitwise hamming distances, or Nx3 is of values be;low
% the threshold distance, thresh (if given), where each row is
function C = bitwise_hamming(A, B, thresh)
% Typecast to integer
[A, bytelen] = cast_to_largest_integer(A);
[B, bytelenb] = cast_to_largest_integer(B);
assert(bytelen == bytelenb, 'Input columns must be of the same bit-length');
% Get the input sizes
[a, a] = size(A);
[c, b] = size(B);
% Check if joint array less than 64MB
if a * b * bytelen < 67108864
% Do the bitxor in one go
A = repmat(A, [1 1 b]);
B = repmat(reshape(B, c, 1, b), [1 a 1]);
C = reshape(bitcount(bitxor(A, B)), a, b);
if nargin > 2
M = find(C < thresh);
L(:,3) = double(C(M));
[L(:,1), L(:,2)] = ind2sub(size(C), M);
C = L;
end
else
% Do the bitxor in a loop, to avoid too much memory use
if nargin > 2
C = zeros(a*b, 3);
I = 0;
if c == 1
if b > a % Do the smallest for loop
for i = a:-1:1
D = bitcount(bitxor(A(:,i), B))';
M = find(D < thresh);
if isempty(M)
continue;
end
I = I(end)+1:I(end)+numel(M);
C(I,2) = M;
C(I,3) = D(M);
C(I,1) = i;
end
else
for i = b:-1:1
D = bitcount(bitxor(B(:,i), A));
M = find(D < thresh);
if isempty(M)
continue;
end
I = I(end)+1:I(end)+numel(M);
C(I,1) = M;
C(I,3) = D(M);
C(I,2) = i;
end
end
else
if b > a % Do the smallest for loop
for i = a:-1:1
D = bitcount(bitxor(repmat(A(:,i), [1 b]), B))';
M = find(D < thresh);
if isempty(M)
continue;
end
I = I(end)+1:I(end)+numel(M);
C(I,2) = M;
C(I,3) = D(M);
C(I,1) = i;
end
else
for i = b:-1:1
D = bitcount(bitxor(repmat(B(:,i), [1 a]), A));
M = find(D < thresh);
if isempty(M)
continue;
end
I = I(end)+1:I(end)+numel(M);
C(I,1) = M;
C(I,3) = D(M);
C(I,2) = i;
end
end
end
C = C(1:I(end),:);
else
if c == 1
if b > a % Do the smallest for loop
for i = a:-1:1
C(i,:) = bitcount(bitxor(A(:,i), B));
end
else
for i = b:-1:1
C(:,i) = bitcount(bitxor(B(:,i), A))';
end
end
else
if b > a % Do the smallest for loop
for i = a:-1:1
C(i,:) = bitcount(bitxor(repmat(A(:,i), [1 b]), B));
end
else
for i = b:-1:1
C(:,i) = bitcount(bitxor(repmat(B(:,i), [1 a]), A))';
end
end
end
end
end
end
function [A, bytelen] = cast_to_largest_integer(A)
[a, b] = size(A);
switch class(A)
case {'double', 'int64', 'uint64'}
bytelen = 8 * a;
case {'single', 'int32', 'uint32'}
bytelen = 4 * a;
case {'int16', 'uint16'}
bytelen = 2 * a;
case {'int8', 'uint8'}
bytelen = a;
otherwise
error('Class %s not supported.', class(A));
end
if mod(bytelen, 8) == 0
A = reshape(typecast(A(:), 'uint64'), bytelen/8, b);
elseif mod(bytelen, 4) == 0
A = reshape(typecast(A(:), 'uint32'), bytelen/4, b);
elseif mod(bytelen, 2) == 0
A = reshape(typecast(A(:), 'uint16'), bytelen/2, b);
else
A = reshape(typecast(A(:), 'uint8'), bytelen, b);
end
end
|
github
|
ojwoodford/ojwul-master
|
DataHash.m
|
.m
|
ojwul-master/bitwise/DataHash.m
| 22,490 |
utf_8
|
f8f52f3077dddaf31779b71355a47695
|
function Hash = DataHash(Data, varargin)
% DATAHASH - Checksum for Matlab array of any type
% This function creates a hash value for an input of any type. The type and
% dimensions of the input are considered as default, such that UINT8([0,0]) and
% UINT16(0) have different hash values. Nested STRUCTs and CELLs are parsed
% recursively.
%
% Hash = DataHash(Data, Opts...)
% INPUT:
% Data: Array of these built-in types:
% (U)INT8/16/32/64, SINGLE, DOUBLE, (real/complex, full/sparse)
% CHAR, LOGICAL, CELL (nested), STRUCT (scalar or array, nested),
% function_handle, string.
% Opts: Char strings to specify the method, the input and theoutput types:
% Input types:
% 'array': The contents, type and size of the input [Data] are
% considered for the creation of the hash. Nested CELLs
% and STRUCT arrays are parsed recursively. Empty arrays of
% different type reply different hashs.
% 'file': [Data] is treated as file name and the hash is calculated
% for the files contents.
% 'bin': [Data] is a numerical, LOGICAL or CHAR array. Only the
% binary contents of the array is considered, such that
% e.g. empty arrays of different type reply the same hash.
% 'ascii': Same as 'bin', but only the 8-bit ASCII part of the 16-bit
% Matlab CHARs is considered.
% Output types:
% 'hex', 'HEX': Lower/uppercase hexadecimal string.
% 'double', 'uint8': Numerical vector.
% 'base64': Base64.
% 'short': Base64 without padding.
% Hashing method:
% 'SHA-1', 'SHA-256', 'SHA-384', 'SHA-512', 'MD2', 'MD5'.
% Call DataHash without inputs to get a list of available methods.
%
% Default: 'MD5', 'hex', 'array'
%
% OUTPUT:
% Hash: String, DOUBLE or UINT8 vector. The length depends on the hashing
% method.
% If DataHash is called without inputs, a struct is replied:
% .HashVersion: Version number of the hashing method of this tool. In
% case of bugs or additions, the output can change.
% .Date: Date of release of the current HashVersion.
% .HashMethod: Cell string of the recognized hash methods.
%
% EXAMPLES:
% % Default: MD5, hex:
% DataHash([]) % 5b302b7b2099a97ba2a276640a192485
% % MD5, Base64:
% DataHash(int32(1:10), 'short', 'MD5') % +tJN9yeF89h3jOFNN55XLg
% % SHA-1, Base64:
% S.a = uint8([]);
% S.b = {{1:10}, struct('q', uint64(415))};
% DataHash(S, 'SHA-1', 'HEX') % 18672BE876463B25214CA9241B3C79CC926F3093
% % SHA-1 of binary values:
% DataHash(1:8, 'SHA-1', 'bin') % 826cf9d3a5d74bbe415e97d4cecf03f445f69225
% % SHA-256, consider ASCII part only (Matlab's CHAR has 16 bits!):
% DataHash('abc', 'SHA-256', 'ascii')
% % ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad
% % Or equivalently by converting the input to UINT8:
% DataHash(uint8('abc'), 'SHA-256', 'bin')
%
% NOTES:
% Function handles and user-defined objects cannot be converted uniquely:
% - The subfunction ConvertFuncHandle uses the built-in function FUNCTIONS,
% but the replied struct can depend on the Matlab version.
% - It is tried to convert objects to UINT8 streams in the subfunction
% ConvertObject. A conversion by STRUCT() might be more appropriate.
% Adjust these subfunctions on demand.
%
% MATLAB CHARs have 16 bits! Use Opt.Input='ascii' for comparisons with e.g.
% online hash generators.
%
% Matt Raum suggested this for e.g. user-defined objects:
% DataHash(getByteStreamFromArray(Data))
% This works very well, but unfortunately getByteStreamFromArray is
% undocumented, such that it might vanish in the future or reply different
% output.
%
% For arrays the calculated hash value might be changed in new versions.
% Calling this function without inputs replies the version of the hash.
%
% The older style for input arguments is accepted also: Struct with fields
% 'Input', 'Method', 'OutFormat'.
%
% The C-Mex function GetMD5 is 2 to 100 times faster, but obtains MD5 only:
% http://www.mathworks.com/matlabcentral/fileexchange/25921
%
% Tested: Matlab 2009a, 2015b(32/64), 2016b, 2018b, Win7/10
% Author: Jan Simon, Heidelberg, (C) 2011-2019 matlab.2010(a)n(MINUS)simon.de
%
% See also: TYPECAST, CAST.
%
% Michael Kleder, "Compute Hash", no structs and cells:
% http://www.mathworks.com/matlabcentral/fileexchange/8944
% Tim, "Serialize/Deserialize", converts structs and cells to a byte stream:
% http://www.mathworks.com/matlabcentral/fileexchange/29457
% Copyright (c) 2018-2019, Jan Simon
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% * Redistributions of source code must retain the above copyright notice, this
% list of conditions and the following disclaimer.
%
% * Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution
% * Neither the name of nor the names of its
% contributors may be used to endorse or promote products derived from this
% software without specific prior written permission.
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
% FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
% DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
% SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
% CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
% OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% $JRev: R-R V:043 Sum:VbfXFn6217Hp Date:18-Apr-2019 12:11:42 $
% $License: BSD (use/copy/change/redistribute on own risk, mention the author) $
% $UnitTest: uTest_DataHash $
% $File: Tools\GLFile\DataHash.m $
% History:
% 001: 01-May-2011 21:52, First version.
% 007: 10-Jun-2011 10:38, [Opt.Input], binary data, complex values considered.
% 011: 26-May-2012 15:57, Fixed: Failed for binary input and empty data.
% 014: 04-Nov-2012 11:37, Consider Mex-, MDL- and P-files also.
% Thanks to David (author 243360), who found this bug.
% Jan Achterhold (author 267816) suggested to consider Java objects.
% 016: 01-Feb-2015 20:53, Java heap space exhausted for large files.
% Now files are process in chunks to save memory.
% 017: 15-Feb-2015 19:40, Collsions: Same hash for different data.
% Examples: zeros(1,1) and zeros(1,1,0)
% complex(0) and zeros(1,1,0,0)
% Now the number of dimensions is included, to avoid this.
% 022: 30-Mar-2015 00:04, Bugfix: Failed for strings and [] without TYPECASTX.
% Ross found these 2 bugs, which occur when TYPECASTX is not installed.
% If you need the base64 format padded with '=' characters, adjust
% fBase64_enc as you like.
% 026: 29-Jun-2015 00:13, Changed hash for STRUCTs.
% Struct arrays are analysed field by field now, which is much faster.
% 027: 13-Sep-2015 19:03, 'ascii' input as abbrev. for Input='bin' and UINT8().
% 028: 15-Oct-2015 23:11, Example values in help section updated to v022.
% 029: 16-Oct-2015 22:32, Use default options for empty input.
% 031: 28-Feb-2016 15:10, New hash value to get same reply as GetMD5.
% New Matlab version (at least 2015b) use a fast method for TYPECAST, such
% that calling James Tursa's TYPECASTX is not needed anymore.
% Matlab 6.5 not supported anymore: MException for CATCH.
% 033: 18-Jun-2016 14:28, BUGFIX: Failed on empty files.
% Thanks to Christian (AuthorID 2918599).
% 035: 19-May-2018 01:11, STRING type considered.
% 040: 13-Nov-2018 01:20, Fields of Opt not case-sensitive anymore.
% 041: 09-Feb-2019 18:12, ismethod(class(V),) to support R2018b.
% 042: 02-Mar-2019 18:39, base64: in Java, short: Base64 with padding.
% Unit test. base64->short.
% OPEN BUGS:
% Nath wrote:
% function handle refering to struct containing the function will create
% infinite loop. Is there any workaround ?
% Example:
% d= dynamicprops();
% addprop(d,'f');
% d.f= @(varargin) struct2cell(d);
% DataHash(d.f) % infinite loop
% This is caught with an error message concerning the recursion limit now.
%#ok<*CHARTEN>
% Reply current version if called without inputs: ------------------------------
if nargin == 0
R = Version_L;
if nargout == 0
disp(R);
else
Hash = R;
end
return;
end
% Parse inputs: ----------------------------------------------------------------
[Method, OutFormat, isFile, isBin, Data] = ParseInput(Data, varargin{:});
% Create the engine: -----------------------------------------------------------
try
Engine = java.security.MessageDigest.getInstance(Method);
catch ME % Handle errors during initializing the engine:
if ~usejava('jvm')
Error_L('needJava', 'DataHash needs Java.');
end
Error_L('BadInput2', 'Invalid hashing algorithm: [%s]. %s', ...
Method, ME.message);
end
% Create the hash value: -------------------------------------------------------
if isFile
[FID, Msg] = fopen(Data, 'r'); % Open the file
if FID < 0
Error_L('BadFile', ['Cannot open file: %s', char(10), '%s'], Data, Msg);
end
% Read file in chunks to save memory and Java heap space:
Chunk = 1e6; % Fastest for 1e6 on Win7/64, HDD
Count = Chunk; % Dummy value to satisfy WHILE condition
while Count == Chunk
[Data, Count] = fread(FID, Chunk, '*uint8');
if Count ~= 0 % Avoid error for empty file
Engine.update(Data);
end
end
fclose(FID);
elseif isBin % Contents of an elementary array, type tested already:
if ~isempty(Data) % Engine.update fails for empty input!
if isnumeric(Data)
if isreal(Data)
Engine.update(typecast(Data(:), 'uint8'));
else
Engine.update(typecast(real(Data(:)), 'uint8'));
Engine.update(typecast(imag(Data(:)), 'uint8'));
end
elseif islogical(Data) % TYPECAST cannot handle LOGICAL
Engine.update(typecast(uint8(Data(:)), 'uint8'));
elseif ischar(Data) % TYPECAST cannot handle CHAR
Engine.update(typecast(uint16(Data(:)), 'uint8'));
% Bugfix: Line removed
elseif myIsString(Data)
if isscalar(Data)
Engine.update(typecast(uint16(Data{1}), 'uint8'));
else
Error_L('BadBinData', 'Bin type requires scalar string.');
end
else % This should have been caught above!
Error_L('BadBinData', 'Data type not handled: %s', class(Data));
end
end
else % Array with type:
Engine = CoreHash(Data, Engine);
end
% Calculate the hash: ----------------------------------------------------------
Hash = typecast(Engine.digest, 'uint8');
% Convert hash specific output format: -----------------------------------------
switch OutFormat
case 'hex'
Hash = sprintf('%.2x', double(Hash));
case 'HEX'
Hash = sprintf('%.2X', double(Hash));
case 'double'
Hash = double(reshape(Hash, 1, []));
case 'uint8'
Hash = reshape(Hash, 1, []);
case 'short'
Hash = fBase64_enc(double(Hash), 0);
case 'base64'
Hash = fBase64_enc(double(Hash), 1);
otherwise
Error_L('BadOutFormat', ...
'[Opt.Format] must be: HEX, hex, uint8, double, base64.');
end
end
% ******************************************************************************
function Engine = CoreHash(Data, Engine)
% Consider the type and dimensions of the array to distinguish arrays with the
% same data, but different shape: [0 x 0] and [0 x 1], [1,2] and [1;2],
% DOUBLE(0) and SINGLE([0,0]):
% < v016: [class, size, data]. BUG! 0 and zeros(1,1,0) had the same hash!
% >= v016: [class, ndims, size, data]
Engine.update([uint8(class(Data)), ...
typecast(uint64([ndims(Data), size(Data)]), 'uint8')]);
if issparse(Data) % Sparse arrays to struct:
[S.Index1, S.Index2, S.Value] = find(Data);
Engine = CoreHash(S, Engine);
elseif isstruct(Data) % Hash for all array elements and fields:
F = sort(fieldnames(Data)); % Ignore order of fields
for iField = 1:length(F) % Loop over fields
aField = F{iField};
Engine.update(uint8(aField));
for iS = 1:numel(Data) % Loop over elements of struct array
Engine = CoreHash(Data(iS).(aField), Engine);
end
end
elseif iscell(Data) % Get hash for all cell elements:
for iS = 1:numel(Data)
Engine = CoreHash(Data{iS}, Engine);
end
elseif isempty(Data) % Nothing to do
elseif isnumeric(Data)
if isreal(Data)
Engine.update(typecast(Data(:), 'uint8'));
else
Engine.update(typecast(real(Data(:)), 'uint8'));
Engine.update(typecast(imag(Data(:)), 'uint8'));
end
elseif islogical(Data) % TYPECAST cannot handle LOGICAL
Engine.update(typecast(uint8(Data(:)), 'uint8'));
elseif ischar(Data) % TYPECAST cannot handle CHAR
Engine.update(typecast(uint16(Data(:)), 'uint8'));
elseif myIsString(Data) % [19-May-2018] String class in >= R2016b
classUint8 = uint8([117, 105, 110, 116, 49, 54]); % 'uint16'
for iS = 1:numel(Data)
% Emulate without recursion: Engine = CoreHash(uint16(Data{iS}), Engine)
aString = uint16(Data{iS});
Engine.update([classUint8, ...
typecast(uint64([ndims(aString), size(aString)]), 'uint8')]);
if ~isempty(aString)
Engine.update(typecast(uint16(aString), 'uint8'));
end
end
elseif isa(Data, 'function_handle')
Engine = CoreHash(ConvertFuncHandle(Data), Engine);
elseif (isobject(Data) || isjava(Data)) && ismethod(class(Data), 'hashCode')
Engine = CoreHash(char(Data.hashCode), Engine);
else % Most likely a user-defined object:
try
BasicData = ConvertObject(Data);
catch ME
error(['JSimon:', mfilename, ':BadDataType'], ...
'%s: Cannot create elementary array for type: %s\n %s', ...
mfilename, class(Data), ME.message);
end
try
Engine = CoreHash(BasicData, Engine);
catch ME
if strcmpi(ME.identifier, 'MATLAB:recursionLimit')
ME = MException(['JSimon:', mfilename, ':RecursiveType'], ...
'%s: Cannot create hash for recursive data type: %s', ...
mfilename, class(Data));
end
throw(ME);
end
end
end
% ******************************************************************************
function [Method, OutFormat, isFile, isBin, Data] = ParseInput(Data, varargin)
% Default options: -------------------------------------------------------------
Method = 'MD5';
OutFormat = 'hex';
isFile = false;
isBin = false;
% Check number and type of inputs: ---------------------------------------------
nOpt = nargin - 1;
Opt = varargin;
if nOpt == 1 && isa(Opt{1}, 'struct') % Old style Options as struct:
Opt = struct2cell(Opt{1});
nOpt = numel(Opt);
end
% Loop over strings in the input: ----------------------------------------------
for iOpt = 1:nOpt
aOpt = Opt{iOpt};
if ~ischar(aOpt)
Error_L('BadInputType', '[Opt] must be a struct or chars.');
end
switch lower(aOpt)
case 'file' % Data contains the file name:
isFile = true;
case {'bin', 'binary'} % Just the contents of the data:
if (isnumeric(Data) || ischar(Data) || islogical(Data) || ...
myIsString(Data)) == 0 || issparse(Data)
Error_L('BadDataType', ['[Bin] input needs data type: ', ...
'numeric, CHAR, LOGICAL, STRING.']);
end
isBin = true;
case 'array'
isBin = false; % Is the default already
case {'asc', 'ascii'} % 8-bit part of MATLAB CHAR or STRING:
isBin = true;
if ischar(Data)
Data = uint8(Data);
elseif myIsString(Data) && numel(Data) == 1
Data = uint8(char(Data));
else
Error_L('BadDataType', ...
'ASCII method: Data must be a CHAR or scalar STRING.');
end
case 'hex'
if aOpt(1) == 'H'
OutFormat = 'HEX';
else
OutFormat = 'hex';
end
case {'double', 'uint8', 'short', 'base64'}
OutFormat = lower(aOpt);
otherwise % Guess that this is the method:
Method = upper(aOpt);
end
end
end
% ******************************************************************************
function FuncKey = ConvertFuncHandle(FuncH)
% The subfunction ConvertFuncHandle converts function_handles to a struct
% using the Matlab function FUNCTIONS. The output of this function changes
% with the Matlab version, such that DataHash(@sin) replies different hashes
% under Matlab 6.5 and 2009a.
% An alternative is using the function name and name of the file for
% function_handles, but this is not unique for nested or anonymous functions.
% If the MATLABROOT is removed from the file's path, at least the hash of
% Matlab's toolbox functions is (usually!) not influenced by the version.
% Finally I'm in doubt if there is a unique method to hash function handles.
% Please adjust the subfunction ConvertFuncHandles to your needs.
% The Matlab version influences the conversion by FUNCTIONS:
% 1. The format of the struct replied FUNCTIONS is not fixed,
% 2. The full paths of toolbox function e.g. for @mean differ.
FuncKey = functions(FuncH);
% Include modification file time and file size. Suggested by Aslak Grinsted:
if ~isempty(FuncKey.file)
d = dir(FuncKey.file);
if ~isempty(d)
FuncKey.filebytes = d.bytes;
FuncKey.filedate = d.datenum;
end
end
% ALTERNATIVE: Use name and path. The <matlabroot> part of the toolbox functions
% is replaced such that the hash for @mean does not depend on the Matlab
% version.
% Drawbacks: Anonymous functions, nested functions...
% funcStruct = functions(FuncH);
% funcfile = strrep(funcStruct.file, matlabroot, '<MATLAB>');
% FuncKey = uint8([funcStruct.function, ' ', funcfile]);
% Finally I'm afraid there is no unique method to get a hash for a function
% handle. Please adjust this conversion to your needs.
end
% ******************************************************************************
function DataBin = ConvertObject(DataObj)
% Convert a user-defined object to a binary stream. There cannot be a unique
% solution, so this part is left for the user...
try % Perhaps a direct conversion is implemented:
DataBin = uint8(DataObj);
% Matt Raum had this excellent idea - unfortunately this function is
% undocumented and might not be supported in te future:
% DataBin = getByteStreamFromArray(DataObj);
catch % Or perhaps this is better:
WarnS = warning('off', 'MATLAB:structOnObject');
DataBin = struct(DataObj);
warning(WarnS);
end
end
% ******************************************************************************
function Out = fBase64_enc(In, doPad)
% Encode numeric vector of UINT8 values to base64 string.
B64 = org.apache.commons.codec.binary.Base64;
Out = char(B64.encode(In)).';
if ~doPad
Out(Out == '=') = [];
end
% Matlab method:
% Pool = [65:90, 97:122, 48:57, 43, 47]; % [0:9, a:z, A:Z, +, /]
% v8 = [128; 64; 32; 16; 8; 4; 2; 1];
% v6 = [32, 16, 8, 4, 2, 1];
%
% In = reshape(In, 1, []);
% X = rem(floor(bsxfun(@rdivide, In, v8)), 2);
% d6 = rem(numel(X), 6);
% if d6 ~= 0
% X = [X(:); zeros(6 - d6, 1)];
% end
% Out = char(Pool(1 + v6 * reshape(X, 6, [])));
%
% p = 3 - rem(numel(Out) - 1, 4);
% if doPad && p ~= 0 % Standard base64 string with trailing padding:
% Out = [Out, repmat('=', 1, p)];
% end
end
% ******************************************************************************
function T = myIsString(S)
% isstring was introduced in R2016:
persistent hasString
if isempty(hasString)
matlabVer = [100, 1] * sscanf(version, '%d.', 2);
hasString = (matlabVer >= 901); % isstring existing since R2016b
end
T = hasString && isstring(S); % Short-circuting
end
% ******************************************************************************
function R = Version_L()
% The output differs between versions of this function. So give the user a
% chance to recognize the version:
% 1: 01-May-2011, Initial version
% 2: 15-Feb-2015, The number of dimensions is considered in addition.
% In version 1 these variables had the same hash:
% zeros(1,1) and zeros(1,1,0), complex(0) and zeros(1,1,0,0)
% 3: 29-Jun-2015, Struct arrays are processed field by field and not element
% by element, because this is much faster. In consequence the hash value
% differs, if the input contains a struct.
% 4: 28-Feb-2016 15:20, same output as GetMD5 for MD5 sums. Therefore the
% dimensions are casted to UINT64 at first.
% 19-May-2018 01:13, STRING type considered.
R.HashVersion = 4;
R.Date = [2018, 5, 19];
R.HashMethod = {};
try
Provider = java.security.Security.getProviders;
for iProvider = 1:numel(Provider)
S = char(Provider(iProvider).getServices);
Index = strfind(S, 'MessageDigest.');
for iDigest = 1:length(Index)
Digest = strtok(S(Index(iDigest):end));
Digest = strrep(Digest, 'MessageDigest.', '');
R.HashMethod = cat(2, R.HashMethod, {Digest});
end
end
catch ME
fprintf(2, '%s\n', ME.message);
R.HashMethod = 'error';
end
end
% ******************************************************************************
function Error_L(ID, varargin)
error(['JSimon:', mfilename, ':', ID], ['*** %s: ', varargin{1}], ...
mfilename, varargin{2:nargin - 1});
end
|
github
|
ojwoodford/ojwul-master
|
bitcount.m
|
.m
|
ojwul-master/bitwise/bitcount.m
| 1,281 |
utf_8
|
08975f47b04e6ab70dc6894320d1e49d
|
%BITCOUNT Count the number of set bits in each column of the input
%
% B = bitcount(A)
%
% Count the number of set bits in each column of the input array,
% typecast as a bit vector.
%
%IN:
% A - MxNx... input array.
%
%OUT:
% B - 1xNx... output array of bit counts.
function A = bitcount(A)
persistent lufun lutable
if isempty(lutable)
% Generate the lookup table
lutable = uint8(sum(dec2bin(0:255) - '0', 2));
% Use intlut function if possible
lufun = which('intlut');
if isempty(lufun)
lufun = @intlutsub;
else
cwd = cd();
try
cd([fileparts(lufun) '/private']);
intlutmex(uint8(0), uint8(0));
lufun = str2func('intlutmex');
catch
lufun = @intlut;
end
cd(cwd);
end
end
% Convert to an index into the lookup table
sz = size(A);
sz(1) = 1;
[n, n] = size(A);
A = reshape(typecast(A(:), 'uint8'), [], n);
% Look up the number of set bits for each byte
A = lufun(A, lutable);
% Sum the number of set bits per column
if size(A, 1) < 32
A = sum(A, 1, 'native');
else
A = sum(A, 1);
end
A = reshape(A, sz);
end
function A = intlutsub(A, lutable)
A = lutable(uint16(A) + uint16(1));
end
|
github
|
ojwoodford/ojwul-master
|
fit_gaussian.m
|
.m
|
ojwul-master/stats/fit_gaussian.m
| 647 |
utf_8
|
e4bfa184e5ae30b876c1a3415e6ddfbd
|
%FIT_GAUSSIAN Fit a multi-variate gaussian to data.
%
% [mu, whiten] = fit_gaussian(X)
%
% Fit a multi-variate gaussian to data. This function can handle
% under-constrained data.
%
% IN:
% X - MxN matrix of N vectors of dimension M.
%
% OUT:
% mu - Mx1 distribution mean.
% whiten - Mx(min(M,N)) whitening matrix.
function [mu, whiten] = fit_gaussian(X)
% Compute the mean and subtract
mu = mean(X, 2);
X = bsxfun(@minus, X, mu);
% Do the economy svd, to avoid memory issues
[whiten, V] = svd(X, 'econ');
% Compute the whitening matrix
whiten = diag(sqrt(size(X, 2) - 1) ./ (diag(V) + 1e-300)) * whiten';
end
|
github
|
ojwoodford/ojwul-master
|
qpbo.m
|
.m
|
ojwul-master/optimize/qpbo.m
| 4,377 |
utf_8
|
5a8872c3010e87e8bc72194a2040c0d7
|
%QPBO Binary MRF energy minimization on non-submodular graphs
%
% [L stats] = qpbo(UE, PI, PE, [TI, TE], [options])
%
% Uses the Quadratic Pseudo-Boolean Optimization (QPBO - an extension of
% graph cuts that solves the "roof duality" problem, allowing graphs with
% submodular edges to be solved) to solve binary, pairwise and triple
% clique MRF energy minimization problems.
%
% The algorithm can be viewed as fusing two labellings in such a way as to
% minimize output labellings energy:
% L = FUSE(L0, L1)
% In particular the solution has these properties:
% P1: Not all nodes are labelled. Nodes which are labelled form part of
% an optimal labelling.
% P2: If all unlabelled nodes in L are fixed to L0, then E(L) <= E(L0).
%
% This function also implements QPBO-P and QPBO-I. See "Optimizing binary
% MRFs via extended roof duality", Rother et al., CVPR 2007, for more
% details.
%
% This function uses mexified C++ code downloaded from www page of Vladimir
% Kolmogorov. To acknowledge him/reference the correct papers, see his web
% page for details.
%
% IN:
% UE - 2xM matrix of unary terms for M nodes, or M = UE(1) if numel(UE)
% == 1 (assumes all unary terms are zero). UE can be any type, but
% PE and TE must be of the same type; also, optimality is not
% guaranteed for non-integer types.
% PI - {2,3}xN uint32 matrix, each column containing the following
% information on an edge: [start_node end_node
% [pairwise_energy_table_index]]. If there are only 2 rows then
% pairwise_energy_table_index is assumed to be the column number,
% therefore you must have N == P.
% PE - 4xP pairwise energy table, each column containing the energies
% [E00 E01 E10 E11] for a given edge.
% TI - {3,4}xQ uint32 matrix, each column containing the following
% information on a triple clique: [node1 node2 node3
% [triple_clique_energy_table_index]]. If there are only 3 rows then
% triple_clique_energy_table_index is assumed to be the column
% number, therefore you must have Q == R.
% TE - 8xR triple clique energy table, each column containing the
% energies [E000 E001 E010 E011 E100 E101 E110 E111] for a given
% triple clique.
% options - 2x1 cell array. options{1} is a 1x4 uint32 vector of optional
% parameters:
% FirstNNodes - Only labels of nodes 1:FirstNNodes will be output.
% Also limits nodes considered in QPBO-P and QPBO-I.
% Default: M.
% ImproveMethod - 0: Unlabelled nodes not improved; 1: QPBO-I
% employed, assuming preferred label is L0. 2: QPBO-I
% employed, using user-defined labelling returned by
% callback_func.
% ContractIters - Number of iterations of QPBO-P to do. Default: 0.
% LargerInternal - 0: input type also used internally; 1: code uses a
% larger representation (i.e. more bits) for energies
% than that provided, reducing the possibility of
% edges becoming saturated. Default: 0.
% options{2} - callback_func, a function name or handle which,
% given the labelling L (the first output of this
% function), returns a logical array of the same
% size defining a labelling to be transfromed by
% QPBO-I.
%
% OUT:
% L - 1xFirstNNodes int32 matrix of the energy minimizing state of each
% node. Labels {0,1} are the optimal label (in a weak sense), while
% labels < 0 indicate unlabelled nodes. For unlabelled nodes, if L(x)
% == L(y) then x and y are in the same "strongly connected region".
% stats - 3x1 int32 vector of stats:
% stats(1) - number of unlabelled pixels
% stats(2) - number of strongly connected regions of unlabelled pixels
% stats(3) - number of unlabelled pixels after running QPBO-P
% $Id: qpbo.m,v 1.1 2007/12/07 11:27:56 ojw Exp $
function varargout = qpbo(varargin)
sd = 'private/qpbo/';
sourceList = {['-I' sd], 'qpbo.cpp', [sd 'QPBO_.cpp'],...
[sd 'QPBO_maxflow.cpp'], [sd 'QPBO_extra.cpp'],...
[sd 'QPBO_postprocessing.cpp']};
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
cd_learn_normal.m
|
.m
|
ojwul-master/optimize/cd_learn_normal.m
| 6,890 |
utf_8
|
938e9df7096531476e5785896d25e2be
|
function estim = cd_learn_normal(varargin)
%CD_LEARN_NORMAL Demos contrastive divergence learning
%
% params = cd_learn_normal(options)
%
% Uses contrastive divergence to learn the parameters of a normal
% distribution that training data is generated from, and displays the
% results on completion. Assumes we don't know the normalization factor of
% the model we're learning.
%
% IN:
% options - Pairs of arguments, the first being a string containing the
% name of the option, the second being the value of the option.
% Possible options are:
% 'data' - The number of training data values to use (Default: 1000),
% or a vector of training data.
% 'niter' - The number of parameter updates to carry out (Default:
% 3000).
% 'mcmc' - The number of MCMC sampling cycles to use (Default: 1).
% 'step' - The step size factor (Default: 0.01).
% 'perturb' - The perturbation distribution from which to draw
% updates to the data points in each MCMC cycle (Default:
% @(n,sigma) randn(n,1)*sigma).
% 'start' - The parameters to initialize our proposal distribution to,
% (Default: [0 1]).
% 'finish' - The parameters of the distribution we are aiming for
% (Default: [2*rand(1) 0.5+rand(1)]). Ignored if training
% data is given.
% 'show_results' - Results graphically displayed if non-zero (Default:
% true).
%
% OUT:
% params - (niter+1)x2 matrix of model parameters at each iteration.
% Load options
opts.data = 1000;
opts.niter = 3000;
opts.mcmc = 1;
opts.step = 0.01;
opts.start = [0 1];
opts.finish = [2*rand(1) 0.5+rand(1)];
opts.perturb = @(n,sigma) randn(n, 1) * sigma;
opts.show_output = true;
opts = argparse(opts, varargin{:});
% Generate the data and our initial state
if numel(opts.data) == 1
X = randn(opts.data, 1);
X = (X * opts.finish(2)) + opts.finish(1);
else
X = opts.data(:);
opts.data = numel(opts.data);
end
params = opts.start(:);
% Buffers for recording display data
estim = zeros(2, opts.niter+1);
estim(:,1) = params;
compare = estim;
for iter = 1:opts.niter
% Create confabulations using MCMC (Metropolis algorithm)
x = X;
px = calc_unnormalized_probability(x, params);
for k = 1:opts.mcmc
% Sample from our perturbation distribution
y = x + opts.perturb(opts.data, params(2));
% Reject some of the samples
py = calc_unnormalized_probability(y, params);
L = py > (px .* rand(opts.data, 1));
x(L) = y(L);
px(L) = py(L);
end
% Calculate the gradient of our energy function
grad = opts.step * (calc_expectation_logfx(X, params) - calc_expectation_logfx(x, params));
% Update our parameters
params = params + grad;
if params(2) <= 0
params(2) = 1e-7; % Ensure sd is positive
end
% Record this for display later
estim(:,iter+1) = params;
end
% Display the results
estim = estim(:,1:iter+1)';
if opts.show_output
mu = mean(X);
sd = sqrt(var(X, 1));
clf
subplot(311);
plot([0 iter], [mu mu], 'r-');
hold on
plot(0:iter, estim(:,1), 'b-');
data.l1 = axis;
data.l1 = data.l1(3:4);
data.h1 = plot([0 0], data.l1, 'k-');
title(sprintf('Mean - actual: %g, learnt: %g', mu, estim(end,1)));
legend('Linear solve', 'Contrastive divergence', 'Location', 'Best');
subplot(312);
plot([0 iter], [sd sd], 'r-');
hold on
plot(0:iter, estim(:,2), 'b-');
data.l2 = axis;
data.l2 = data.l2(3:4);
data.h2 = plot([0 0], data.l2, 'k-');
title(sprintf('Standard deviation - actual: %g, learnt: %g', sd, estim(end,2)));
legend('Linear solve', 'Contrastive divergence', 'Location', 'Best');
subplot(313);
plot(X, abs(randn(size(X)))*0.1+0.01, 'k.');
hold on
data.normal{1} = [-3:0.25:-0.75 -0.5:0.1:0.5 0.75:0.25:3];
data.normal{2} = exp(-(data.normal{1} .^ 2));
[X, Y] = calc_normal_dist(mu, sd, data.normal);
plot(X, Y, 'r-');
[X, Y] = calc_normal_dist(estim(1,1), estim(1,2), data.normal);
data.h3 = plot(X, Y, 'b-');
X = axis;
axis([X(1)-1 X(2)+1 X(3) X(4)]);
title('Estimated distributions - use mouse or arrow keys to select a column above');
legend('Data points', 'Linear solve', 'Contrastive divergence', 'Location', 'Best');
% Initialize the callbacks
data.col = 0;
data.niter = iter;
data.step = round(iter/300);
data.estim = estim;
data.compare = compare;
set(gcf, 'WindowButtonDownFcn', @mousedown_callback, ...
'KeyPressFcn', @keypress_callback, ...
'UserData', data);
end
if nargout == 0
clear estim
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Helper functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function grad = calc_expectation_logfx(X, params)
A = X - params(1);
B = (A .^ 2) / (params(2) ^ 3);
A = A / (params(2) ^ 2);
grad = [mean(A); mean(B)];
end
function px = calc_unnormalized_probability(X, params)
px = exp(-((X - params(1)) .^ 2) / (2 * (params(2) ^ 2)));
end
% The functions below are only used for displaying results
function [X, Y] = calc_normal_dist(mu, sd, range)
X = range{1} * sd + mu;
Y = range{2} / (sd * sqrt(2 * pi));
end
function data = plot_data(data)
data.col = mod(data.col, data.niter);
% Plot the new lines
set(data.h1, 'XData', data.col([1 1]), 'YData', data.l1);
set(data.h2, 'XData', data.col([1 1]), 'YData', data.l2);
[X, Y] = calc_normal_dist(data.estim(data.col+1,1), data.estim(data.col+1,2), data.normal);
set(data.h3, 'XData', X, 'YData', Y);
drawnow();
end
function keypress_callback(fig, event_data)
data = get(fig, 'UserData');
key = lower(event_data.Character);
% Which keys do what
switch key
case 28 % Left
data.col = data.col - data.step;
case 29 % Right
data.col = data.col + data.step;
case 31 % Down
data.col = data.col - 10 * data.step;
case 30 % Up
data.col = data.col + 10 * data.step;
end
data = plot_data(data);
set(fig, 'UserData', data);
end
function mousedown_callback(fig, event_data)
% Detect which function is required
button = get(fig, 'SelectionType');
data = get(fig, 'UserData');
switch button
case 'extend'
case 'alt'
otherwise
% Button 1:
data.col = get(gca, 'CurrentPoint');
data.col = round(data.col(1));
data = plot_data(data);
set(fig, 'UserData', data);
end
end
function opts = argparse(opts, varargin)
if isempty(varargin)
inopts = struct([]);
else
inopts = struct(varargin{:});
end
fn = fieldnames(inopts);
for i = 1:length(fn)
if isfield(opts, fn{i})
opts.(fn{i}) = inopts.(fn{i});
else
error('Bad argument: ''%s''', fn{i});
end
end
end
|
github
|
ojwoodford/ojwul-master
|
dp_pair_chain.m
|
.m
|
ojwul-master/optimize/dp_pair_chain.m
| 708 |
utf_8
|
cfd16b503833f9e7ed38686b86431031
|
%DP_PAIR_CHAIN Dynamic programming on a chain of pairwise links
%
% Examples:
% L = dp_pair_chain(U, E)
% [L en] = dp_pair_chain(U, E)
%
% Minimize the cost of a set of pairwise chains.
%
%IN:
% U - PxQxR array of unary costs (double, single or uint32)
% E - PxP or PxPx(Q-1)xR array of pairwise costs (same type as U).
%
%OUT:
% L - QxR int32 array of optimal labels (numbered between 1 and P).
% en - 1xR vector of minimum costs per chain.
% $Id: dp_pair_chain.m,v 1.1 2007/12/07 11:27:55 ojw Exp $
function varargout = dp_pair_chain(varargin)
sourceList = {'dp_pair_chain.cpp', '-Xopenmp'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
simulated_annealing.m
|
.m
|
ojwul-master/optimize/simulated_annealing.m
| 4,238 |
utf_8
|
f7934e45f1d5640779962e7f527c9e5f
|
%SIMULATED_ANNEALING Perform simulated annealing on conditional energies
%
% [X en] = simulated_annealing(X0, energy, T, varargin)
%
% Simulated annealing for discrete energy minimization labelling problems
% for which conditional energy distributions can be computed. Given an
% initial labelling, a normalized cooling schedule, and a function which
% returns conditional energy distributions, perform simulated annealing,
% cycling over all variables in a fixed, random order, once for each input
% temperature.
%
% The cooling schedule is normalized so that 100 means random (uniform)
% sampling, while 0 (freezing) means deterministic selection of the energy
% minimizing label (i.e. ICM).
%
%IN:
% X0 - Initial labelling array, containing for each variable in the state
% space a label index from 1 to n, where n is the number of possible
% labels for that variable (a value which can vary from variable to
% variable).
% energy - A handle to a function to compute the current total or
% conditional energy, with the following arguments:
% E = energy(X, j, varargin{:});
% X is given labelling, j is the index of the variable in X for
% which the conditional energy distribution, E, is to be
% computed (E has length n, where n is the number of possible
% labels for variable j). If j = 0 then the function returns the
% energy of the state X (so E is scalar). varargin are the
% trailing input variables passed into the function
% simulated_annealing.
% T - Nx1 normalized temperature cooling schedule, with a temperature
% value for each cycle through all of the input variables (i.e. N
% cycles total).
% varargin - All trailing input variables are passed to the function
% energy. Anonymous functions can be used instead, but this
% method can be faster.
%
%OUT:
% X - Lowest energy labelling found.
% en - Energy of X.
% $Id: simulated_annealing.m,v 1.9 2008/10/03 15:59:04 ojw Exp $
function [X, en] = simulated_annealing(X0, energy, T, varargin)
% Calculate initial energy
en = zeros(numel(T)+1, 1);
en(1) = energy(X0, 0, varargin{:});
enMin = en(1);
X = X0;
% Cache values needed to evaluate start temperature
nX = numel(X0);
nT = numel(T);
if any(T(:))
Tcurr = -1;
Tot = 0;
sumN = 0;
for a = 1:nX
% Calculate the conditional energy
enCon = energy(X0, a, varargin{:});
Tot = Tot + sum(exp(min(enCon) - enCon));
sumN = sumN + numel(enCon);
end
% Scale temperatures
T = (min(max(T, 0), 100) * (0.01 * (sumN - nX)) + nX) / sumN;
T0 = nX / sumN;
else
% Just doing ICM
T0 = 0;
end
I = randperm(nX); % Use a random order, but the same one every iteration
for t = 1:nT
% Set the temperature automatically
if T(t) == T0
% Freeze
Tcurr = -Inf;
else
%fprintf('Ratio wanted: %g. Ratio got: %g.\n', T(t), Tot/sumN);
% Estimate correct temperature for next iteration
Tcurr = Tcurr * (log(T(t)) / log(Tot/sumN-eps));
if Tcurr == -Inf
% Stuck freezing when we shouldn't be
Tcurr = -1; % Arbitrary!
elseif Tcurr >= 0
% Stuck trying to overcook
Tcurr = -eps;
end
end
en(t+1) = en(t);
Tot = 0;
for a = I
% Calculate the conditional energy
enCon = energy(X0, a, varargin{:});
% Sample from the conditional distribution
if Tcurr == -Inf
% Freeze
[s, P] = min(enCon);
else
% Draw from the distribution, raised by some temperature
P = enCon * Tcurr;
P = cumsum(exp(P - max(P)));
Tot = Tot + P(end);
P = 1 + sum(P(1:end-1) < (rand(1) * P(end)));
end
en(t+1) = en(t+1) + (enCon(P) - enCon(X0(a)));
X0(a) = P;
end
% Keep track of the lowest energy
if en(t+1) < enMin
X = X0;
enMin = en(t+1);
end
ojw_progressbar('Simulated annealing', t / nT);
end
return
|
github
|
ojwoodford/ojwul-master
|
trw_bp.m
|
.m
|
ojwul-master/optimize/trw_bp.m
| 2,447 |
utf_8
|
57d5a8ab7552ea350909384ce697dec5
|
%TRW_BP Multi-label MRF energy minimization using TRW-S & LBP
%
% [L energy lower_bound] = vgg_trw_bp(UE, PI, PE, [options])
%
% Uses the message passing algorithms TRW-S or LBP to solve an MRF energy
% minimization problem with binary or multiple labels.
%
% This function uses mexified C++ code written by Vladimir Kolmogorov, and
% downloaded from Microsoft Research. See "Convergent Tree-Reweighted
% Message Passing for Energy Minimization", Kolmogorov, PAMI 2006 for
% details.
%
% IN:
% UE - HxW cell array of unary terms for H*W nodes in the graph. Each
% cell contains a KxL double matrix, with the first row being the L
% energies for each of the L possible labels for that node. The
% number of labels does not need to be constant across nodes.
% PI - {2,3}xN uint32 matrix, each column containing the following
% information on an edge: [start_node end_node
% [pairwise_energy_table_index]]. If there are only 2 rows then
% pairwise_energy_table_index is assumed to be the column number,
% therefore you must have N == P.
% PE - 1xP cell array of pairwise functions. Each cell gives the
% a pairwise function of the form defined by options(1). If the form
% is general (i.e. lookup table) then the cell conatins a L1xL2
% matrix, where L1 and L2 are the number of labels for the start and
% end nodes respectively.
% options - 1x3 int32 vector of optional parameters:
% UseTRW - 0: use LBP; otherwise: use TRW-S. Default: 1.
% Type - Pairwise energy functional type. 0: general. 1: truncated
% quadratic - min(a*(l1-l2)^2,b). 2: truncated linear -
% min(a*abs(l1-l2),b). Easy to add support for others. Default:
% 0.
% MaxIters - number of iterations of LBP or TRW to do. Default: 30.
%
% OUT:
% L - HxW uint16 matrix of the energy minimizing state of each
% node.
% energy - scalar giving E(L).
% lower_bound - scalar giving a lower bound on E(L) for any L. Only
% calculated by TRW-S (i.e. 0 for LBP).
% $Id: trw_bp.m,v 1.2 2008/03/10 18:45:27 ojw Exp $
function varargout = trw_bp(varargin)
sd = 'private/trw-s/';
sourceList = {['-I' sd], 'trw_bp.cxx', [sd 'MRFEnergy.cpp'],...
[sd 'minimize.cpp'], [sd 'ordering.cpp'],...
[sd 'treeProbabilities.cpp']};
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
global_basin.m
|
.m
|
ojwul-master/optimize/global_basin.m
| 718 |
utf_8
|
4ed7d9117482aaf974cadcde31d9c101
|
%GLOBAL_BASIN Output binary mask of watershed for the global min of array
%
% B = global_basin(A)
%
% This function computes the binary mask of all those points in an array
% from which local minimization (e.g. gradient descent with small steps)
% would lead to the global minimum of the array. This is the watershed of
% the global minimum. This assumes that the input array is a regular
% sampling of a Euclidean cost space.
%
%IN:
% A - N-dim array of scalar values
%
%OUT:
% B - size(A) logical array, with true indicating this point would lead
% to the global minimum.
function B = global_basin(A)
B = watershed(A, conndef(ndims(A), 'maximal'));
[b, b] = min(A(:));
B = B == B(b);
|
github
|
ojwoodford/ojwul-master
|
load_field.m
|
.m
|
ojwul-master/io/load_field.m
| 317 |
utf_8
|
0c31b7afe4727eefccf1f04a9c95a46f
|
%LOAD_FIELD Load only one field from a file
%
% x = load_field(name, field)
%
%IN:
% name - Filename string of the file containing the field.
% field - Name string of the field to be loaded.
%OUT:
% x - Loaded field.
function x = load_field(name, field)
x = load(name, field);
x = x.(field);
end
|
github
|
ojwoodford/ojwul-master
|
read_wobj.m
|
.m
|
ojwul-master/io/read_wobj.m
| 15,880 |
utf_8
|
6ae16c6146e94ba4869abdc7d72d8084
|
function OBJ=read_wobj(fullfilename)
% Read the objects from a Wavefront OBJ file
%
% OBJ=read_wobj(filename);
%
% OBJ struct containing:
%
% OBJ.vertices : Vertices coordinates
% OBJ.vertices_texture: Texture coordinates
% OBJ.vertices_normal : Normal vectors
% OBJ.vertices_point : Vertice data used for points and lines
% OBJ.material : Parameters from external .MTL file, will contain parameters like
% newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks,
% example of an entry from the material object:
% OBJ.material(i).type = newmtl
% OBJ.material(i).data = 'vase_tex'
% OBJ.objects : Cell object with all objects in the OBJ file,
% example of a mesh object:
% OBJ.objects(i).type='f'
% OBJ.objects(i).data.vertices: [n x 3 double]
% OBJ.objects(i).data.texture: [n x 3 double]
% OBJ.objects(i).data.normal: [n x 3 double]
%
% Example,
% OBJ=read_wobj('examples\example10.obj');
% FV.vertices=OBJ.vertices;
% FV.faces=OBJ.objects(3).data.vertices;
% figure, patch(FV,'facecolor',[1 0 0]); camlight
%
% Function is written by D.Kroon University of Twente (June 2010)
% Copyright (c) 2010, Dirk-Jan Kroon
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
verbose=true;
if(exist('fullfilename','var')==0)
[filename, filefolder] = uigetfile('*.obj', 'Read obj-file');
fullfilename = [filefolder filename];
end
filefolder = fileparts( fullfilename);
if(verbose),disp(['Reading Object file : ' fullfilename]); end
% Read the DI3D OBJ textfile to a cell array
file_words = file2cellarray( fullfilename);
% Remove empty cells, merge lines split by "\" and convert strings with values to double
[ftype fdata]= fixlines(file_words);
% Vertex data
vertices=[]; nv=0;
vertices_texture=[]; nvt=0;
vertices_point=[]; nvp=0;
vertices_normal=[]; nvn=0;
material=[];
% Surface data
no=0;
% Loop through the Wavefront object file
for iline=1:length(ftype)
if(mod(iline,10000)==0),
if(verbose),disp(['Lines processed : ' num2str(iline)]); end
end
type=ftype{iline}; data=fdata{iline};
% Switch on data type line
switch(type)
case{'mtllib'}
if(iscell(data))
datanew=[];
for i=1:length(data)
datanew=[datanew data{i}];
if(i<length(data)), datanew=[datanew ' ']; end
end
data=datanew;
end
filename_mtl=fullfile(filefolder,data);
material=readmtl(filename_mtl,verbose);
case('v') % vertices
nv=nv+1;
if(length(data)==3)
% Reserve block of memory
if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:3)=0; end
% Add to vertices list X Y Z
vertices(nv,1:3)=data;
else
% Reserve block of memory
if(mod(nv,10000)==1), vertices(nv+1:nv+10001,1:4)=0; end
% Add to vertices list X Y Z W
vertices(nv,1:4)=data;
end
case('vp')
% Specifies a point in the parameter space of curve or surface
nvp=nvp+1;
if(length(data)==1)
% Reserve block of memory
if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1)=0; end
% Add to vertices point list U
vertices_point(nvp,1)=data;
elseif(length(data)==2)
% Reserve block of memory
if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:2)=0; end
% Add to vertices point list U V
vertices_point(nvp,1:2)=data;
else
% Reserve block of memory
if(mod(nvp,10000)==1), vertices_point(nvp+1:nvp+10001,1:3)=0; end
% Add to vertices point list U V W
vertices_point(nvp,1:3)=data;
end
case('vn')
% A normal vector
nvn=nvn+1; if(mod(nvn,10000)==1), vertices_normal(nvn+1:nvn+10001,1:3)=0; end
% Add to vertices list I J K
vertices_normal(nvn,1:3)=data;
case('vt')
% Vertices Texture Coordinate in photo
% U V W
nvt=nvt+1;
if(length(data)==1)
% Reserve block of memory
if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1)=0; end
% Add to vertices texture list U
vertices_texture(nvt,1)=data;
elseif(length(data)==2)
% Reserve block of memory
if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:2)=0; end
% Add to vertices texture list U V
vertices_texture(nvt,1:2)=data;
else
% Reserve block of memory
if(mod(nvt,10000)==1), vertices_texture(nvt+1:nvt+10001,1:3)=0; end
% Add to vertices texture list U V W
vertices_texture(nvt,1:3)=data;
end
case('l')
no=no+1; if(mod(no,10000)==1), objects(no+10001).data=struct(); end
array_vertices=[];
array_texture=[];
for i=1:length(data),
switch class(data)
case 'cell'
tvals=str2double(stringsplit(data{i},'/'));
case 'string'
tvals=str2double(stringsplit(data,'/'));
otherwise
tvals=data(i);
end
val=tvals(1);
if(val<0), val=val+1+nv; end
array_vertices(i)=val;
if(length(tvals)>1),
val=tvals(2);
if(val<0), val=val+1+nvt; end
array_texture(i)=val;
end
end
objects(no).type='l';
objects(no).data.vertices=array_vertices;
objects(no).data.texture=array_texture;
case('f')
no=no+1; if(mod(no,10000)==1), objects(no+10001).data=struct(); end
array_vertices=[];
array_texture=[];
array_normal=[];
for i=1:length(data);
switch class(data)
case 'cell'
tvals=str2double(stringsplit(data{i},'/'));
case 'string'
tvals=str2double(stringsplit(data,'/'));
otherwise
tvals=data(i);
end
val=tvals(1);
if(val<0), val=val+1+nv; end
array_vertices(i)=val;
if(length(tvals)>1),
if(isfinite(tvals(2)))
val=tvals(2);
if(val<0), val=val+1+nvt; end
array_texture(i)=val;
end
end
if(length(tvals)>2),
val=tvals(3);
if(val<0), val=val+1+nvn; end
array_normal(i)=val;
end
end
% A face of more than 3 indices is always split into
% multiple faces of only 3 indices.
objects(no).type='f';
findex=1:min (3,length(array_vertices));
objects(no).data.vertices=array_vertices(findex);
if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end
if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end
for i=1:length(array_vertices)-3;
no=no+1; if(mod(no,10000)==1), objects(no+10001).data=struct(); end
findex=[1 2+i 3+i];
findex(findex>length(array_vertices))=findex(findex>length(array_vertices))-length(array_vertices);
objects(no).type='f';
objects(no).data.vertices=array_vertices(findex);
if(~isempty(array_texture)),objects(no).data.texture=array_texture(findex); end
if(~isempty(array_normal)),objects(no).data.normal=array_normal(findex); end
end
case{'#','$'}
% Comment
tline=' %';
if(iscell(data))
for i=1:length(data), tline=[tline ' ' data{i}]; end
else
tline=[tline data];
end
if(verbose), disp(tline); end
case{''}
otherwise
no=no+1;
if(mod(no,10000)==1), objects(no+10001).data=struct(); end
objects(no).type=type;
objects(no).data=data;
end
end
% Initialize new object list, which will contain the "collapsed" objects
objects2(no).data=struct();
index=0;
i=0;
while (i<no), i=i+1;
type=objects(i).type;
% First face found
if((length(type)==1)&&(type(1)=='f'))
% Get number of faces
for j=i:no
type=objects(j).type;
if((length(type)~=1)||(type(1)~='f'))
j=j-1; break;
end
end
numfaces=(j-i)+1;
index=index+1;
objects2(index).type='f';
% Process last face first to allocate memory
objects2(index).data.vertices(numfaces,:)= objects(i).data.vertices;
if(isfield(objects(i).data,'texture'))
objects2(index).data.texture(numfaces,:) = objects(i).data.texture;
else
objects2(index).data.texture=[];
end
if(isfield(objects(i).data,'normal'))
objects2(index).data.normal(numfaces,:) = objects(i).data.normal;
else
objects2(index).data.normal=[];
end
% All faces to arrays
for k=1:numfaces
objects2(index).data.vertices(k,:)= objects(i+k-1).data.vertices;
if(isfield(objects(i).data,'texture'))
objects2(index).data.texture(k,:) = objects(i+k-1).data.texture;
end
if(isfield(objects(i).data,'normal'))
objects2(index).data.normal(k,:) = objects(i+k-1).data.normal;
end
end
i=j;
else
index=index+1;
objects2(index).type=objects(i).type;
objects2(index).data=objects(i).data;
end
end
% Add all data to output struct
OBJ.objects=objects2(1:index);
OBJ.material=material;
OBJ.vertices=vertices(1:nv,:);
OBJ.vertices_point=vertices_point(1:nvp,:);
OBJ.vertices_normal=vertices_normal(1:nvn,:);
OBJ.vertices_texture=vertices_texture(1:nvt,:);
if(verbose),disp('Finished Reading Object file'); end
function twords=stringsplit(tline,tchar)
% Get start and end position of all "words" separated by a char
i=find(tline(2:end-1)==tchar)+1; i_start=[1 i+1]; i_end=[i-1 length(tline)];
% Create a cell array of the words
twords=cell(1,length(i_start)); for j=1:length(i_start), twords{j}=tline(i_start(j):i_end(j)); end
function file_words=file2cellarray(filename)
% Open a DI3D OBJ textfile
fid=fopen(filename,'r');
if fid == -1
file_words = '';
return;
end
file_text=fread(fid, inf, 'uint8=>char')';
fclose(fid);
file_lines = regexp(file_text, '\n+', 'split');
file_words = regexp(file_lines, '\s+', 'split');
function [ftype fdata]=fixlines(file_words)
ftype=cell(size(file_words));
fdata=cell(size(file_words));
iline=0; jline=0;
while(iline<length(file_words))
iline=iline+1;
twords=removeemptycells(file_words{iline});
if(~isempty(twords))
% Add next line to current line when line end with '\'
while(strcmp(twords{end},'\')&&iline<length(file_words))
iline=iline+1;
twords(end)=[];
twords=[twords removeemptycells(file_words{iline})];
end
% Values to double
type=twords{1};
stringdold=true;
j=0;
switch(type)
case{'#','$'}
for i=2:length(twords)
j=j+1; twords{j}=twords{i};
end
otherwise
for i=2:length(twords)
str=twords{i};
val=str2double(str);
stringd=~isfinite(val);
if(stringd)
j=j+1; twords{j}=str;
else
if(stringdold)
j=j+1; twords{j}=val;
else
twords{j}=[twords{j} val];
end
end
stringdold=stringd;
end
end
twords(j+1:end)=[];
jline=jline+1;
ftype{jline}=type;
if(length(twords)==1), twords=twords{1}; end
fdata{jline}=twords;
end
end
ftype(jline+1:end)=[];
fdata(jline+1:end)=[];
function b=removeemptycells(a)
j=0; b={};
for i=1:length(a);
if(~isempty(a{i})),j=j+1; b{j}=a{i}; end;
end
function objects=readmtl(filename_mtl,verbose)
if(verbose),disp(['Reading Material file : ' filename_mtl]); end
file_words=file2cellarray(filename_mtl);
if isempty(file_words)
objects = struct();
if(verbose),disp('Material file not found'); end
return;
end
% Remove empty cells, merge lines split by "\" and convert strings with values to double
[ftype, fdata]= fixlines(file_words);
% Surface data
objects.type(length(ftype))=0;
objects.data(length(ftype))=0;
no=0;
% Loop through the Wavefront object file
for iline=1:length(ftype)
type=ftype{iline}; data=fdata{iline};
% Switch on data type line
switch(type)
case{'#','$'}
% Comment
tline=' %';
if(iscell(data))
for i=1:length(data), tline=[tline ' ' data{i}]; end
else
tline=[tline data];
end
if(verbose), disp(tline); end
case{''}
otherwise
no=no+1;
if(mod(no,10000)==1), objects(no+10001).data=struct(); end
objects(no).type=type;
objects(no).data=data;
end
end
objects=objects(1:no);
if(verbose),disp('Finished Reading Material file'); end
|
github
|
ojwoodford/ojwul-master
|
read_float32.m
|
.m
|
ojwul-master/io/read_float32.m
| 306 |
utf_8
|
ca7c4beb289a078ff916ee21d5220d62
|
%READ_FLOAT32 Read an entire file in as an array of 32-bit floats
%
% A = read_float32(fname)
%
%IN:
% fname - string containing the filename of the file to be read.
%
%OUT:
% A - Nx1 single array of the values in the file.
function A = read_float32(fname)
A = read_bin(fname, 'float32');
|
github
|
ojwoodford/ojwul-master
|
write_text.m
|
.m
|
ojwul-master/io/write_text.m
| 1,376 |
utf_8
|
220bb0478703b9cb82ce59c35f18ab32
|
%WRITE_TEXT Write out an array to a text file
%
% write_text(A, fname, append)
%
% Writes out an array to a text file using the minimum number of
% significant figures required to reconstruct the exact binary number when
% read in.
%
% The array is written out row by row, with dimensions 3 and higher
% concatenated. I.e. if the input array is 20x10x3 then the text file will
% have 20x3=60 rows, each containing 10 numbers.
%
%IN:
% A - array to be saved.
% fname - string containing the name of the output file.
% append - boolean indicating whether the file is to be appended to or
% overwritten (default).
function write_text(A, fname, append)
if ischar(A) || isstring(A)
fmt = '%s';
else
assert(isnumeric(A), 'Exporting non-numeric variables not supported');
assert(isreal(A), 'Exporting complex numbers not tested');
A = permute(A, [2 1 3]);
A = A(:,:);
switch class(A)
case 'double'
fmt = '%.16g ';
case 'single'
fmt = '%.8g ';
otherwise
fmt = '%d ';
end
fmt = [repmat(fmt, [1 size(A, 1)]) '\n'];
end
permission = 'wt';
if nargin > 2 && append(1)
permission = 'at';
end
fh = fopens(fname, permission);
if fh == -1
error('Could not open file %s for writing.', fname);
end
fprintf(fh, fmt, A);
fclose(fh);
|
github
|
ojwoodford/ojwul-master
|
read_ply.m
|
.m
|
ojwul-master/io/read_ply.m
| 5,687 |
utf_8
|
b34b22a96aec386a8a7c5cbf579eb898
|
%% read ply
% Read mesh data from ply format mesh file
%
%% Syntax
% [face,vertex]= read_ply(filename)
% [face,vertex,color] = read_ply(filename)
%
%% Description
% filename: string, file to read.
%
% face : double array, nf x 3 array specifying the connectivity of the mesh.
% vertex: double array, nv x 3 array specifying the position of the vertices.
% color : double array, nv x 3 or nf x 3 array specifying the color of the vertices or faces.
%
%% Example
% [face,vertex] = read_ply('cube.ply');
% [face,vertex,color] = read_ply('cube.ply');
%
%% Contribution
% Author : Meng Bin
% Created: 2014/03/05
% Revised: 2014/03/07 by Meng Bin, Block read to enhance reading speed
% Revised: 2014/03/17 by Meng Bin, modify doc format
%
% Copyright 2014 Computational Geometry Group
% Department of Mathematics, CUHK
% http://www.math.cuhk.edu.hk/~lmlui
% Geometry Processing Package is available under the MIT license
%
% Copyright (c) 2014 The Chinese University of Hong Kong
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
function [face,vertex,color] = read_ply(filename)
fid = fopen(filename,'r');
if( fid==-1 )
error('Can''t open the file.');
end
% read header
str = '';
while (~feof(fid) && isempty(str))
str = strtrim(fgets(fid));
end
if ~strcmpi(str(1:3), 'ply')
error('The file is not a valid ply one.');
end
file_format = '';
nvert = 0;
nface = 0;
stage = '';
while (~feof(fid))
str = strtrim(fgets(fid));
if strcmpi(str, 'end_header')
break;
end
tokens = regexp(str,'\s+','split');
if (size(tokens,2) <= 2)
continue;
end
if strcmpi(tokens(1), 'comment')
elseif strcmpi(tokens(1), 'format')
file_format = lower(tokens(2));
elseif strcmpi(tokens(1), 'element')
if strcmpi(tokens(2),'vertex')
nvert = str2double(tokens{3});
stage = 'vertex';
elseif strcmpi(tokens(2),'face')
nface = str2double(tokens{3});
stage = 'face';
end
elseif strcmpi(tokens(1), 'property')
end
end
if strcmpi(file_format, 'ascii')
[face,vertex,color] = read_ascii(fid, nvert, nface);
%elseif strcmp(lower(file_format), 'binary_little_endian')
%elseif strcmp(lower(file_format), 'binary_big_endian')
else
error('The file is not a valid ply one. We only support ascii now.');
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [face,vertex,color] = read_ascii(fid, nvert, nface)
% read ASCII format ply file
color = [];
%read vertex info
tot_cnt = 0;
cols = 0;
A = [];
tline = '';
while (~feof(fid) && (isempty(tline) || tline(1) == '#'))
pos = ftell(fid);
tline = strtrim(fgets(fid));
end
C = regexp(tline,'\s+','split');
% read columns of vertex line
cols = size(C,2);
%rewind to starting of the line
fseek(fid, pos,-1);
%vertex and color line format string
format = strcat(repmat('%f ', [1, cols]), '\n');
%start reading
while (~feof(fid) && tot_cnt < cols*nvert)
[A_,cnt] = fscanf(fid,format, cols*nvert-tot_cnt);
tot_cnt = tot_cnt + cnt;
A = [A;A_];
skip_comment_blank_line(fid,1);
end
if tot_cnt~=cols*nvert
warning('Problem in reading vertices. number of vertices doesnt match header.');
end
A = reshape(A, cols, tot_cnt/cols);
vertex = A(1:3,:)';
% extract vertex color
if cols == 6
color = A(4:6,:)';
elseif cols > 6
color = A(4:7,:)';
end
%read face info
tot_cnt = 0;
A = [];
tline = '';
while (~feof(fid) && (isempty(tline) || tline(1) == '#'))
pos = ftell(fid);
tline = strtrim(fgets(fid));
end
C = regexp(tline,'\s+','split');
% read columns of face line
nvert_f = str2num(C{1});
cols = nvert_f+1;
if isempty(color)
cols = size(C,2);
end
%rewind to starting of the line
fseek(fid, pos,-1);
%face and color line format string
format = strcat(repmat('%d ', [1, nvert_f+1]), repmat('%f ', [1, cols-nvert_f-1]));
format = strcat(format, '\n');
while (~feof(fid) && tot_cnt < cols*nface)
[A_,cnt] = fscanf(fid,format, cols*nface-tot_cnt);
tot_cnt = tot_cnt + cnt;
A = [A;A_];
skip_comment_blank_line(fid,1);
end
if tot_cnt~=cols*nface
warning('Problem in reading faces. Number of faces doesnt match header.');
end
A = reshape(A, cols, tot_cnt/cols);
face = A(2:nvert_f+1,:)'+1;
% extract face color
if cols > nvert_f+1
color = A(nvert_f+2:cols,:)';
end
color = color*1.0/255;
function [tline] = skip_comment_blank_line(fid,rewind)
% skip empty and comment lines
% get next content line
% if rewind==1, then rewind to the starting of the content line
tline = '';
if rewind==1
pos = ftell(fid);
end
while (~feof(fid) && (isempty(tline)))
if rewind==1
pos = ftell(fid);
end
tline = strtrim(fgets(fid));
end
if rewind==1
fseek(fid, pos,-1);
end
|
github
|
ojwoodford/ojwul-master
|
get_user_path.m
|
.m
|
ojwul-master/io/get_user_path.m
| 1,844 |
utf_8
|
be1d8bac23899f0064233e1635f9aee4
|
%GET_USER_PATH Get a user/computer-specific directory or file path
%
% path_str = get_user_path(name, check_path, type [append])
%
% Ask a user to select a specific directory or file, and store its path.
% If a valid path already exists, use this.
%
%IN:
% name - Name of the directory to be found.
% check_path - Handle to function which takes path_str as input and
% returns a boolean indicating whether the path is valid.
% type - Scalar. 1 for directory, 2 for file, 3 for application folder.
% append - String to append to path_str before checking and storing.
% Default: ''.
%
%OUT:
% path_str - Path to user specific directory.
function path_str = get_user_path(name, check_path, type, append)
if nargin < 4
append = '';
end
% Check if we already have a valid path
tag = [strrep(lower(name), ' ', '_') '_path'];
path_str = user_string(tag);
if check_path(path_str)
return;
end
% Ask the user to enter the path
type_name = {'directory', 'file', 'application folder'};
help = sprintf('Please select your %s %s.', name, type_name{type});
while 1
if ismac() % Is a Mac
% Give separate warning as the uigetdir dialogue box doesn't have a
% title
uiwait(warndlg(help))
type = min(type, 2);
end
if type == 2
[file, path_str] = uigetfile('*', help);
if file == 0
path_str = 0;
else
path_str = [path_str file];
end
else
path_str = uigetdir('/', help);
end
if isequal(path_str, 0)
% User hit cancel or closed window
error('%s not found.', name);
end
path_str = [path_str filesep append];
% Check the path
if ~check_path(path_str)
continue;
end
% Store the valid path
user_string(tag, path_str);
return;
end
end
|
github
|
ojwoodford/ojwul-master
|
json_write.m
|
.m
|
ojwul-master/io/json_write.m
| 794 |
utf_8
|
88d106691d8319da9c329c12fcc0a16d
|
%JSON_WRITE Write a MATLAB variable to a JSON file
%
% json_write(var, fname)
%
% This function wraps the JSON for Modern C++ class in a mex wrapper, for
% fast writing of MATLAB variables into JSON files.
%
%IN:
% var - MATLAB variable to be written to a JSON file.
% filename - String of filename (if in current directory) or full or
% relative path to the JSON file to be written to.
% Many thanks to Niels Lohmann for his JSON for Modern C++ class:
% https://nlohmann.github.io/json/
% Thanks also to Sam Hare for pointing me to said class.
function varargout = json_write(varargin)
sourceList = {'json_write.cpp', '-largeArrayDims'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
stlwrite.m
|
.m
|
ojwul-master/io/stlwrite.m
| 10,820 |
utf_8
|
c0d2afd34d9e64039055c0120d2a0800
|
function stlwrite(filename, varargin)
%STLWRITE Write STL file from patch or surface data.
%
% STLWRITE(FILE, FV) writes a stereolithography (STL) file to FILE for a
% triangulated patch defined by FV (a structure with fields 'vertices'
% and 'faces').
%
% STLWRITE(FILE, FACES, VERTICES) takes faces and vertices separately,
% rather than in an FV struct
%
% STLWRITE(FILE, X, Y, Z) creates an STL file from surface data in X, Y,
% and Z. STLWRITE triangulates this gridded data into a triangulated
% surface using triangulation options specified below. X, Y and Z can be
% two-dimensional arrays with the same size. If X and Y are vectors with
% length equal to SIZE(Z,2) and SIZE(Z,1), respectively, they are passed
% through MESHGRID to create gridded data. If X or Y are scalar values,
% they are used to specify the X and Y spacing between grid points.
%
% STLWRITE(...,'PropertyName',VALUE,'PropertyName',VALUE,...) writes an
% STL file using the following property values:
%
% MODE - File is written using 'binary' (default) or 'ascii'.
%
% TITLE - Header text (max 80 chars) written to the STL file.
%
% TRIANGULATION - When used with gridded data, TRIANGULATION is either:
% 'delaunay' - (default) Delaunay triangulation of X, Y
% 'f' - Forward slash division of grid quads
% 'b' - Back slash division of quadrilaterals
% 'x' - Cross division of quadrilaterals
% Note that 'f', 'b', or 't' triangulations now use an
% inbuilt version of FEX entry 28327, "mesh2tri".
%
% FACECOLOR - Single colour (1-by-3) or one-colour-per-face (N-by-3)
% vector of RGB colours, for face/vertex input. RGB range
% is 5 bits (0:31), stored in VisCAM/SolidView format
% (http://en.wikipedia.org/wiki/STL_(file_format)#Color_in_binary_STL)
%
% Example 1:
% % Write binary STL from face/vertex data
% tmpvol = false(20,20,20); % Empty voxel volume
% tmpvol(8:12,8:12,5:15) = 1; % Turn some voxels on
% fv = isosurface(~tmpvol, 0.5); % Make patch w. faces "out"
% stlwrite('test.stl',fv) % Save to binary .stl
%
% Example 2:
% % Write ascii STL from gridded data
% [X,Y] = deal(1:40); % Create grid reference
% Z = peaks(40); % Create grid height
% stlwrite('test.stl',X,Y,Z,'mode','ascii')
%
% Example 3:
% % Write binary STL with coloured faces
% cVals = fv.vertices(fv.faces(:,1),3); % Colour by Z height.
% cLims = [min(cVals) max(cVals)]; % Transform height values
% nCols = 255; cMap = jet(nCols); % onto an 8-bit colour map
% fColsDbl = interp1(linspace(cLims(1),cLims(2),nCols),cMap,cVals);
% fCols8bit = fColsDbl*255; % Pass cols in 8bit (0-255) RGB triplets
% stlwrite('testCol.stl',fv,'FaceColor',fCols8bit)
% Original idea adapted from surf2stl by Bill McDonald. Huge speed
% improvements implemented by Oliver Woodford. Non-Delaunay triangulation
% of quadrilateral surface courtesy of Kevin Moerman. FaceColor
% implementation by Grant Lohsen.
%
% Author: Sven Holcombe, 11-24-11
% Check valid filename path
path = fileparts(filename);
if ~isempty(path) && ~exist(path,'dir')
error('Directory "%s" does not exist.',path);
end
% Get faces, vertices, and user-defined options for writing
[faces, vertices, options] = parseInputs(varargin{:});
asciiMode = strcmp( options.mode ,'ascii');
% Create the facets
facets = single(vertices');
facets = reshape(facets(:,faces'), 3, 3, []);
% Compute their normals
V1 = squeeze(facets(:,2,:) - facets(:,1,:));
V2 = squeeze(facets(:,3,:) - facets(:,1,:));
normals = V1([2 3 1],:) .* V2([3 1 2],:) - V2([2 3 1],:) .* V1([3 1 2],:);
clear V1 V2
normals = bsxfun(@times, normals, 1 ./ sqrt(sum(normals .* normals, 1)));
facets = cat(2, reshape(normals, 3, 1, []), facets);
clear normals
% Open the file for writing
permissions = {'w','wb+'};
fid = fopen(filename, permissions{asciiMode+1});
if (fid == -1)
error('stlwrite:cannotWriteFile', 'Unable to write to %s', filename);
end
% Write the file contents
if asciiMode
% Write HEADER
fprintf(fid,'solid %s\r\n',options.title);
% Write DATA
fprintf(fid,[...
'facet normal %.7E %.7E %.7E\r\n' ...
'outer loop\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'vertex %.7E %.7E %.7E\r\n' ...
'endloop\r\n' ...
'endfacet\r\n'], facets);
% Write FOOTER
fprintf(fid,'endsolid %s\r\n',options.title);
else % BINARY
% Write HEADER
fprintf(fid, '%-80s', options.title); % Title
fwrite(fid, size(facets, 3), 'uint32'); % Number of facets
% Write DATA
% Add one uint16(0) to the end of each facet using a typecasting trick
facets = reshape(typecast(facets(:), 'uint16'), 12*2, []);
% Set the last bit to 0 (default) or supplied RGB
facets(end+1,:) = options.facecolor;
fwrite(fid, facets, 'uint16');
end
% Close the file
fclose(fid);
fprintf('Wrote %d faces\n',size(faces, 2));
%% Input handling subfunctions
function [faces, vertices, options] = parseInputs(varargin)
% Determine input type
if isstruct(varargin{1}) % stlwrite('file', FVstruct, ...)
if ~all(isfield(varargin{1},{'vertices','faces'}))
error( 'Variable p must be a faces/vertices structure' );
end
faces = varargin{1}.faces;
vertices = varargin{1}.vertices;
options = parseOptions(varargin{2:end});
elseif isnumeric(varargin{1})
firstNumInput = cellfun(@isnumeric,varargin);
firstNumInput(find(~firstNumInput,1):end) = 0; % Only consider numerical input PRIOR to the first non-numeric
numericInputCnt = nnz(firstNumInput);
options = parseOptions(varargin{numericInputCnt+1:end});
switch numericInputCnt
case 3 % stlwrite('file', X, Y, Z, ...)
% Extract the matrix Z
Z = varargin{3};
% Convert scalar XY to vectors
ZsizeXY = fliplr(size(Z));
for i = 1:2
if isscalar(varargin{i})
varargin{i} = (0:ZsizeXY(i)-1) * varargin{i};
end
end
% Extract X and Y
if isequal(size(Z), size(varargin{1}), size(varargin{2}))
% X,Y,Z were all provided as matrices
[X,Y] = varargin{1:2};
elseif numel(varargin{1})==ZsizeXY(1) && numel(varargin{2})==ZsizeXY(2)
% Convert vector XY to meshgrid
[X,Y] = meshgrid(varargin{1}, varargin{2});
else
error('stlwrite:badinput', 'Unable to resolve X and Y variables');
end
% Convert to faces/vertices
if strcmp(options.triangulation,'delaunay')
faces = delaunay(X,Y);
vertices = [X(:) Y(:) Z(:)];
else
if ~exist('mesh2tri','file')
error('stlwrite:missing', '"mesh2tri" is required to convert X,Y,Z matrices to STL. It can be downloaded from:\n%s\n',...
'http://www.mathworks.com/matlabcentral/fileexchange/28327')
end
[faces, vertices] = mesh2tri(X, Y, Z, options.triangulation);
end
case 2 % stlwrite('file', FACES, VERTICES, ...)
faces = varargin{1};
vertices = varargin{2};
otherwise
error('stlwrite:badinput', 'Unable to resolve input types.');
end
end
if size(faces,2)~=3
errorMsg = {
sprintf('The FACES input array should hold triangular faces (N x 3), but was detected as N x %d.',size(faces,2))
'The STL format is for triangulated surfaces (i.e., surfaces made from 3-sided triangles).'
'The Geom3d package (https://www.mathworks.com/matlabcentral/fileexchange/24484-geom3d) contains'
'a "triangulateFaces" function which can be used convert your faces into triangles.'
};
error('stlwrite:nonTriangles', '%s\n',errorMsg{:})
end
if ~isempty(options.facecolor) % Handle colour preparation
facecolor = uint16(options.facecolor);
%Set the Valid Color bit (bit 15)
c0 = bitshift(ones(size(faces,1),1,'uint16'),15);
%Red color (10:15), Blue color (5:9), Green color (0:4)
c0 = bitor(bitshift(bitand(2^6-1, facecolor(:,1)),10),c0);
c0 = bitor(bitshift(bitand(2^11-1, facecolor(:,2)),5),c0);
c0 = bitor(bitand(2^6-1, facecolor(:,3)),c0);
options.facecolor = c0;
else
options.facecolor = 0;
end
function options = parseOptions(varargin)
IP = inputParser;
IP.addParamValue('mode', 'binary', @ischar)
IP.addParamValue('title', sprintf('Created by stlwrite.m %s',datestr(now)), @ischar);
IP.addParamValue('triangulation', 'delaunay', @ischar);
IP.addParamValue('facecolor',[], @isnumeric)
IP.addParamValue('facecolour',[], @isnumeric)
IP.parse(varargin{:});
options = IP.Results;
if ~isempty(options.facecolour)
options.facecolor = options.facecolour;
end
function [F,V]=mesh2tri(X,Y,Z,tri_type)
% function [F,V]=mesh2tri(X,Y,Z,tri_type)
%
% Available from http://www.mathworks.com/matlabcentral/fileexchange/28327
% Included here for convenience. Many thanks to Kevin Mattheus Moerman
% [email protected]
% 15/07/2010
%------------------------------------------------------------------------
[J,I]=meshgrid(1:1:size(X,2)-1,1:1:size(X,1)-1);
switch tri_type
case 'f'%Forward slash
TRI_I=[I(:),I(:)+1,I(:)+1; I(:),I(:),I(:)+1];
TRI_J=[J(:),J(:)+1,J(:); J(:),J(:)+1,J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'b'%Back slash
TRI_I=[I(:),I(:)+1,I(:); I(:)+1,I(:)+1,I(:)];
TRI_J=[J(:)+1,J(:),J(:); J(:)+1,J(:),J(:)+1];
F = sub2ind(size(X),TRI_I,TRI_J);
case 'x'%Cross
TRI_I=[I(:)+1,I(:); I(:)+1,I(:)+1; I(:),I(:)+1; I(:),I(:)];
TRI_J=[J(:),J(:); J(:)+1,J(:); J(:)+1,J(:)+1; J(:),J(:)+1];
IND=((numel(X)+1):numel(X)+prod(size(X)-1))';
F = sub2ind(size(X),TRI_I,TRI_J);
F(:,3)=repmat(IND,[4,1]);
Fe_I=[I(:),I(:)+1,I(:)+1,I(:)]; Fe_J=[J(:),J(:),J(:)+1,J(:)+1];
Fe = sub2ind(size(X),Fe_I,Fe_J);
Xe=mean(X(Fe),2); Ye=mean(Y(Fe),2); Ze=mean(Z(Fe),2);
X=[X(:);Xe(:)]; Y=[Y(:);Ye(:)]; Z=[Z(:);Ze(:)];
end
V=[X(:),Y(:),Z(:)];
|
github
|
ojwoodford/ojwul-master
|
write_wobj.m
|
.m
|
ojwul-master/io/write_wobj.m
| 9,798 |
utf_8
|
3004ab65ebe5ca6b284c74c7b326861d
|
function write_wobj(OBJ,fullfilename)
% Write objects to a Wavefront OBJ file
%
% write_wobj(OBJ,filename);
%
% OBJ struct containing:
%
% OBJ.vertices : Vertices coordinates
% OBJ.vertices_texture: Texture coordinates
% OBJ.vertices_normal : Normal vectors
% OBJ.vertices_point : Vertice data used for points and lines
% OBJ.material : Parameters from external .MTL file, will contain parameters like
% newmtl, Ka, Kd, Ks, illum, Ns, map_Ka, map_Kd, map_Ks,
% example of an entry from the material object:
% OBJ.material(i).type = newmtl
% OBJ.material(i).data = 'vase_tex'
% OBJ.objects : Cell object with all objects in the OBJ file,
% example of a mesh object:
% OBJ.objects(i).type='f'
% OBJ.objects(i).data.vertices: [n x 3 double]
% OBJ.objects(i).data.texture: [n x 3 double]
% OBJ.objects(i).data.normal: [n x 3 double]
%
% example reading/writing,
%
% OBJ=read_wobj('examples\example10.obj');
% write_wobj(OBJ,'test.obj');
%
% example isosurface to obj-file,
%
% % Load MRI scan
% load('mri','D'); D=smooth3(squeeze(D));
% % Make iso-surface (Mesh) of skin
% FV=isosurface(D,1);
% % Calculate Iso-Normals of the surface
% N=isonormals(D,FV.vertices);
% L=sqrt(N(:,1).^2+N(:,2).^2+N(:,3).^2)+eps;
% N(:,1)=N(:,1)./L; N(:,2)=N(:,2)./L; N(:,3)=N(:,3)./L;
% % Display the iso-surface
% figure, patch(FV,'facecolor',[1 0 0],'edgecolor','none'); view(3);camlight
% % Invert Face rotation
% FV.faces=[FV.faces(:,3) FV.faces(:,2) FV.faces(:,1)];
%
% % Make a material structure
% material(1).type='newmtl';
% material(1).data='skin';
% material(2).type='Ka';
% material(2).data=[0.8 0.4 0.4];
% material(3).type='Kd';
% material(3).data=[0.8 0.4 0.4];
% material(4).type='Ks';
% material(4).data=[1 1 1];
% material(5).type='illum';
% material(5).data=2;
% material(6).type='Ns';
% material(6).data=27;
%
% % Make OBJ structure
% clear OBJ
% OBJ.vertices = FV.vertices;
% OBJ.vertices_normal = N;
% OBJ.material = material;
% OBJ.objects(1).type='g';
% OBJ.objects(1).data='skin';
% OBJ.objects(2).type='usemtl';
% OBJ.objects(2).data='skin';
% OBJ.objects(3).type='f';
% OBJ.objects(3).data.vertices=FV.faces;
% OBJ.objects(3).data.normal=FV.faces;
% write_wobj(OBJ,'skinMRI.obj');
%
% Function is written by D.Kroon University of Twente (June 2010)
% Copyright (c) 2010, Dirk-Jan Kroon
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
if(exist('fullfilename','var')==0)
[filename, filefolder] = uiputfile('*.obj', 'Write obj-file');
fullfilename = [filefolder filename];
end
[filefolder,filename] = fileparts( fullfilename);
if(isfield(OBJ,'faces')&&~isempty(OBJ.faces))
if isfield(OBJ, 'objects')
OBJ.objects(end+1).type = 'f';
else
OBJ.objects(1).type = 'f';
end
OBJ.objects(end).data.vertices = OBJ.faces;
end
comments=cell(1,4);
comments{1}=' Produced by Matlab Write Wobj exporter ';
comments{2}='';
fid = fopen(fullfilename,'w');
write_comment(fid,comments);
if(isfield(OBJ,'material')&&~isempty(OBJ.material))
filename_mtl=fullfile(filefolder,[filename '.mtl']);
fprintf(fid,'mtllib %s\n',filename_mtl);
write_MTL_file(filename_mtl,OBJ.material)
end
if(isfield(OBJ,'vertices')&&~isempty(OBJ.vertices))
write_vertices(fid,OBJ.vertices,'v');
end
if(isfield(OBJ,'vertices_point')&&~isempty(OBJ.vertices_point))
write_vertices(fid,OBJ.vertices_point,'vp');
end
if(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal))
write_vertices(fid,OBJ.vertices_normal,'vn');
end
if(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture))
write_vertices(fid,OBJ.vertices_texture,'vt');
end
for i=1:length(OBJ.objects)
type=OBJ.objects(i).type;
data=OBJ.objects(i).data;
switch(type)
case 'usemtl'
fprintf(fid,'usemtl %s\n',data);
case 'f'
check1=(isfield(OBJ,'vertices_texture')&&~isempty(OBJ.vertices_texture));
check2=(isfield(OBJ,'vertices_normal')&&~isempty(OBJ.vertices_normal));
if(check1&&check2)
for j=1:size(data.vertices,1)
fprintf(fid,'f %d/%d/%d',data.vertices(j,1),data.texture(j,1),data.normal(j,1));
fprintf(fid,' %d/%d/%d', data.vertices(j,2),data.texture(j,2),data.normal(j,2));
fprintf(fid,' %d/%d/%d\n', data.vertices(j,3),data.texture(j,3),data.normal(j,3));
end
elseif(check1)
for j=1:size(data.vertices,1)
fprintf(fid,'f %d/%d',data.vertices(j,1),data.texture(j,1));
fprintf(fid,' %d/%d', data.vertices(j,2),data.texture(j,2));
fprintf(fid,' %d/%d\n', data.vertices(j,3),data.texture(j,3));
end
elseif(check2)
for j=1:size(data.vertices,1)
fprintf(fid,'f %d//%d',data.vertices(j,1),data.normal(j,1));
fprintf(fid,' %d//%d', data.vertices(j,2),data.normal(j,2));
fprintf(fid,' %d//%d\n', data.vertices(j,3),data.normal(j,3));
end
else
for j=1:size(data.vertices,1)
fprintf(fid,'f %d %d %d\n',data.vertices(j,1),data.vertices(j,2),data.vertices(j,3));
end
end
otherwise
fprintf(fid,'%s ',type);
if(iscell(data))
for j=1:length(data)
if(ischar(data{j}))
fprintf(fid,'%s ',data{j});
else
fprintf(fid,'%0.5g ',data{j});
end
end
elseif(ischar(data))
fprintf(fid,'%s ',data);
else
for j=1:length(data)
fprintf(fid,'%0.5g ',data(j));
end
end
fprintf(fid,'\n');
end
end
fclose(fid);
function write_MTL_file(filename,material)
fid = fopen(filename,'w');
comments=cell(1,2);
comments{1}=' Produced by Matlab Write Wobj exporter ';
comments{2}='';
write_comment(fid,comments);
for i=1:length(material)
type=material(i).type;
data=material(i).data;
switch(type)
case('newmtl')
fprintf(fid,'%s ',type);
fprintf(fid,'%s\n',data);
case{'Ka','Kd','Ks'}
fprintf(fid,'%s ',type);
fprintf(fid,'%5.5f %5.5f %5.5f\n',data);
case('illum')
fprintf(fid,'%s ',type);
fprintf(fid,'%d\n',data);
case {'Ns','Tr','d'}
fprintf(fid,'%s ',type);
fprintf(fid,'%5.5f\n',data);
otherwise
fprintf(fid,'%s ',type);
if(iscell(data))
for j=1:length(data)
if(ischar(data{j}))
fprintf(fid,'%s ',data{j});
else
fprintf(fid,'%0.5g ',data{j});
end
end
elseif(ischar(data))
fprintf(fid,'%s ',data);
else
for j=1:length(data)
fprintf(fid,'%0.5g ',data(j));
end
end
fprintf(fid,'\n');
end
end
comments=cell(1,2);
comments{1}='';
comments{2}=' EOF';
write_comment(fid,comments);
fclose(fid);
function write_comment(fid,comments)
for i=1:length(comments), fprintf(fid,'# %s\n',comments{i}); end
function write_vertices(fid,V,type)
switch size(V,2)
case 1
for i=1:size(V,1)
fprintf(fid,'%s %5.5f\n', type, V(i,1));
end
case 2
for i=1:size(V,1)
fprintf(fid,'%s %5.5f %5.5f\n', type, V(i,1), V(i,2));
end
case 3
for i=1:size(V,1)
fprintf(fid,'%s %5.5f %5.5f %5.5f\n', type, V(i,1), V(i,2), V(i,3));
end
otherwise
end
switch(type)
case 'v'
fprintf(fid,'# %d vertices \n', size(V,1));
case 'vt'
fprintf(fid,'# %d texture verticies \n', size(V,1));
case 'vn'
fprintf(fid,'# %d normals \n', size(V,1));
otherwise
fprintf(fid,'# %d\n', size(V,1));
end
|
github
|
ojwoodford/ojwul-master
|
write_bin.m
|
.m
|
ojwul-master/io/write_bin.m
| 715 |
utf_8
|
a0c3679b8d3d39851291017cce94c39d
|
%WRITE_BIN Write out an array to a binary file
%
% write_bin(A, fname)
%
% Writes out an array to a binary file in the format of the data in the
% array. I.e. if the array is of type uint32 then the values are saved to
% file as 32-bit unsigned integers. This function cannot save complex
% numbers.
%
%IN:
% A - array to be saved.
% fname - string containing the name of the output file.
function write_bin(A, fname)
assert(isnumeric(A), 'Exporting non-numeric variables not supported');
assert(isreal(A), 'Exporting complex numbers not tested');
fh = fopens(fname, 'w', 'n');
if fh == -1
error('Could not open file %s for writing.', fname);
end
fwrite(fh, A, class(A));
fclose(fh);
|
github
|
ojwoodford/ojwul-master
|
json_read.m
|
.m
|
ojwul-master/io/json_read.m
| 812 |
utf_8
|
bab4c1c2c0d67a3e0d2f0d01b385fa9a
|
%JSON_READ Mex wrapper to C++ class for fast reading of JSON files
%
% var = json_read(filename)
%
% This function wraps the JSON for Modern C++ class in a mex wrapper, for
% fast loading of JSON files into MATLAB variables.
%
%IN:
% filename - String of filename (if in current directory) or full or
% relative path to the JSON file to be read in.
%
%OUT:
% var - MATLAB interpretation of the JSON data.
% Many thanks to Niels Lohmann for his JSON for Modern C++ class:
% https://nlohmann.github.io/json/
% Thanks also to Sam Hare for pointing me to said class.
function varargout = json_read(varargin)
sourceList = {'json_read.cpp', '-largeArrayDims'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
read_bin.m
|
.m
|
ojwul-master/io/read_bin.m
| 498 |
utf_8
|
9b2d92e5eda0ed038bf0e108342fbac4
|
%READ_BIN Read an entire file in as an array of a given type
%
% A = read_bin(fname, type)
%
%IN:
% fname - string containing the filename of the file to be read.
% type - string indicating the datatype of the values in the file.
%
%OUT:
% A - Nx1 array of the values in the file, of datatype type.
function A = read_bin(fname, type)
fh = fopens(fname, 'r');
if fh == -1
error('Could not open file %s for reading.', fname);
end
A = fread(fh, ['*' type]);
fclose(fh);
|
github
|
ojwoodford/ojwul-master
|
fopens.m
|
.m
|
ojwul-master/io/fopens.m
| 5,918 |
utf_8
|
b712bcfc2438ae7217099a12ba390fc6
|
%FOPENS Open file which is always closed when the function exits.
% FID = FOPENS(FILENAME) opens the file FILENAME for read access.
% FILENAME is a string containing the name of the file to be opened.
% (On PC systems, FOPENS opens files for binary read access.)
%
% FILENAME can be a MATLABPATH relative partial pathname. If the
% file is not found in the current working directory, FOPENS searches for
% it on the MATLAB search path. On UNIX systems, FILENAME may also start
% with a "~/" or a "~username/", which FOPENS expands to the current
% user's home directory or the specified user's home directory,
% respectively.
%
% FID is a scalar MATLAB integer valued double, called a file identifier.
% You use FID as the first argument to other file input/output
% routines, such as FREAD and FCLOSE. If FOPENS cannot open the file, it
% throws an error.
%
% FID = FOPENS(FILENAME,PERMISSION) opens the file FILENAME in the
% mode specified by PERMISSION:
%
% 'r' open file for reading
% 'w' open file for writing; discard existing contents
% 'a' open or create file for writing; append data to end of file
% 'r+' open (do not create) file for reading and writing
% 'w+' open or create file for reading and writing; discard
% existing contents
% 'a+' open or create file for reading and writing; append data
% to end of file
% 'W' open file for writing without automatic flushing
% 'A' open file for appending without automatic flushing
%
% FILENAME can be a MATLABPATH relative partial pathname only if the file
% is opened for reading.
%
% You can open files in binary mode (the default) or in text mode.
% In binary mode, no characters get singled out for special treatment.
% In text mode on the PC, the carriage return character preceding
% a newline character is deleted on input and added before the newline
% character on output. To open a file in text mode, append 't' to the
% permission string, for example 'rt' and 'w+t'. (On Unix, text and
% binary mode are the same, so this has no effect. On PC systems
% this is critical.)
%
% If the file is opened in update mode ('+'), you must use an FSEEK or
% FREWIND between an input command like FREAD, FSCANF, FGETS, or FGETL
% and an output command like FWRITE or FPRINTF. You must also use an
% FSEEK or FREWIND between an output command and an input command.
%
% Two file identifiers are automatically available and need not be
% opened. They are FID=1 (standard output) and FID=2 (standard error).
%
% [FID, MESSAGE] = FOPENS(FILENAME,...) returns a system dependent error
% message if the open is not successful.
%
% [FID, MESSAGE] = FOPENS(FILENAME,PERMISSION,MACHINEFORMAT) opens the
% specified file with the specified PERMISSION and treats data read
% using FREAD or data written using FWRITE as having a format given
% by MACHINEFORMAT. MACHINEFORMAT is one of the following strings:
%
% 'native' or 'n' - local machine format - the default
% 'ieee-le' or 'l' - IEEE floating point with little-endian
% byte ordering
% 'ieee-be' or 'b' - IEEE floating point with big-endian
% byte ordering
% 'ieee-le.l64' or 'a' - IEEE floating point with little-endian
% byte ordering and 64 bit long data type
% 'ieee-be.l64' or 's' - IEEE floating point with big-endian byte
% ordering and 64 bit long data type.
%
% [FID, MESSAGE] = FOPENS(FILENAME,PERMISSION,MACHINEFORMAT,ENCODING)
% opens the specified file using the specified PERMISSION and
% MACHINEFORMAT. ENCODING is a string that specifies the character
% encoding scheme associated with the file. It must be the empty
% string ('') or a name or alias for an encoding scheme. Some examples
% are 'UTF-8', 'latin1', 'US-ASCII', and 'Shift_JIS'. For common names
% and aliases, see the Web site
% http://www.iana.org/assignments/character-sets. If ENCODING is
% unspecified or is the empty string (''), MATLAB's default encoding
% scheme is used.
%
% [FILENAME,PERMISSION,MACHINEFORMAT,ENCODING] = FOPENS(FID) returns the
% filename, permission, machine format, and character encoding values
% used by MATLAB when it opened the file associated with identifier FID.
% MATLAB does not determine these output values by reading information
% from the opened file. For any of these parameters that were not
% specified when the file was opened, MATLAB returns its default value.
% The ENCODING string is a standard character encoding scheme name that
% may not be the same as the ENCODING argument used in the call to FOPEN
% that opened the file. An invalid FID returns empty strings for all
% output arguments.
%
% FIDS = FOPENS('all') returns a row vector containing the file
% identifiers for all the files currently opened by the user
% (but not 1 or 2).
%
% The 'W' and 'A' permissions do not automatically perform a flush
% of the current output buffer after output operations.
%
% Any file opened with FOPENS will automatically be closed when the
% function exits, even through an error, or when the workspace is
% cleared.
%
% See also FOPEN.
function varargout = fopens(varargin)
% Silly check
if nargout == 0
return
end
% Call fopen
[varargout{1:nargout}] = fopen(varargin{:});
% Check if opened
if isequal(varargout{1}, -1)
% Not opened. Throw an error.
error('File %s could not be opened', varargin{1});
else
% Set the cleanup function
[name, name] = fileparts(tempname);
name = ['CloseFileOnExitObj_' name];
assignin('caller', name, onCleanup(@() fclose_quiet(varargout{1})));
end
end
function fclose_quiet(fid)
try
fclose(fid);
catch
end
end
|
github
|
ojwoodford/ojwul-master
|
svm_read_sparse.m
|
.m
|
ojwul-master/classify/svm_read_sparse.m
| 254 |
utf_8
|
2156b44a43e178996d2b95d5723a22f5
|
% SVM_READ_SPARSE Mex wrapper interface to the svm library
function varargout = svm_read_sparse(varargin)
sourceList = {'svm_read_sparse.c'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
roc_curve.m
|
.m
|
ojwul-master/classify/roc_curve.m
| 1,184 |
utf_8
|
ee9f65b707b7f495ee759487bafaa1d2
|
%ROC_CURVE Compute the x and y parameters of an ROC curve
%
% [X, Y, auc] = roc_curve(scores, ground_truth)
%
% Compute the parameters of a Receiver Operating Characteristic curve,
% which plots true positive rate against false positive rate, over a range
% of classification thresholds.
%
%IN:
% scores - Mx1 vector of classification scores for M test variables.
% ground_truth - Mx1 logical vector indicating the ground_truth class for
% each test variable (true is positive).
%
%OUT:
% X - (M+1)x1 vector of false positive rates with increasing
% classification threshold.
% Y - (M+1)x1 vector of true positive rates with increasing
% classification threshold.
% auc - scalar area under the curve.
function [X, Y, auc] = roc_curve(scores, ground_truth)
% Order the scores
[~, order] = sort(scores, 'descend');
ground_truth = ground_truth(order);
% Compute the true positive rate
Y = [0; cumsum(ground_truth(:))];
Y = Y / Y(end);
% Compute the false positive rate
X = [0; cumsum(~ground_truth(:))];
X = X / X(end);
if nargout < 3
return
end
% Compute the area under the curve
auc = (diff(X)' * (Y(1:end-1) + Y(2:end))) * 0.5;
end
|
github
|
ojwoodford/ojwul-master
|
svm_predict.m
|
.m
|
ojwul-master/classify/svm_predict.m
| 1,026 |
utf_8
|
688b6ffb6f6bdb0e0f1d9e065a701fd1
|
% SVM_PREDICT Mex wrapper interface to the svm library
%
% [predicted_label, accuracy, decision_values/prob_estimates] = svmpredict(testing_label_vector, testing_instance_matrix, model [,'libsvm_options']);
%
% -testing_label_vector:
% An m by 1 vector of prediction labels. If labels of test
% data are unknown, simply use any random values.
% -testing_instance_matrix:
% An m by n matrix of m testing instances with n features.
% It can be dense or sparse.
% -model:
% The output of svmtrain.
% -libsvm_options:
% A string of testing options in the same format as that of LIBSVM.
function varargout = svm_predict(varargin)
sourceDir = 'private/libsvm/';
sourceList = {['-I' sourceDir], 'svm_predict.cpp', [sourceDir 'svm.cpp'], ...
[sourceDir 'svm_model_matlab.cpp'], '-largeArrayDims'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
fiksvm_predict.m
|
.m
|
ojwul-master/classify/fiksvm_predict.m
| 971 |
utf_8
|
619c7d52f9ec6e4903b099fe3295215d
|
% FIKSVM_PREDICT Mex wrapper interface to the svm library
%
% Usage: [exact_values, pwconst_values, pwlinear_values,[times]] = ...
% fiksvm_predict(testing_label_vector, testing_instance_matrix, model,'libsvm_options')
%
% Output:
% exact_values : predictions using binary search
% pwconst_values : approximation using piecewise constant function
% pwlinear_values : approximation using piecewise linear function
% [times] : running times
%
%
% libsvm_options:
% -b probability_estimates: whether to predict probability estimates, 0 or 1 (default 0);
% -v verbose flag : 0 or 1 (default 0);
% -n number of bins : [2,...] (default 100);
function varargout = fiksvm_predict(varargin)
sourceDir = 'private/libsvm/';
sourceList = {['-I' sourceDir], 'fiksvm_predict.cpp', [sourceDir 'fiksvm.cpp']}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
svm_demo.m
|
.m
|
ojwul-master/classify/svm_demo.m
| 2,009 |
utf_8
|
e635ff91ea3db75613b2d90885d71a9e
|
%SVM_DEMO A simple demo of SVM classification
%
% svm_demo(N)
%
% Train different binary SVM classifiers on 2D data, and visualize the
% results.
%
%IN:
% N - Integer number of 2D points to train and test on. Default: 500.
function svm_demo(N)
if nargin < 1
N = 500;
end
% Create some classification training data
train_data = rand(2, N);
train_class = gt_class(train_data);
% Train 3 types of SVM
kernels = {'linear', 'intersection', 'radial'};
for a = numel(kernels):-1:1
% Use the libsvm library
obj(a) = libsvm(struct('kernel', kernels{a}, 'probabilistic', 1, 'type', 'epsilon-svr'));
tic;
% Train the SVM
train(obj(a), train_data, train_class);
t(1,a) = toc;
end
% Create some test data
test_data = rand(2, N);
test_class = gt_class(test_data);
% Classify test data using the 3 learned classifiers
for a = numel(obj):-1:1
tic;
output{a} = test(obj(a), test_data);
t(2,a) = toc;
end
% Render the results
% Times & accuracy
for a = 1:numel(kernels)
fprintf('Kernel: %15s. Training: %8gs. Test: %8gs. Accuracy: %g%%.\n', kernels{a}, t(1,a), t(2,a), 100*mean((test_class' < 0.5) == (output{a} < 0.5)));
end
% Classifications
figure;
subplot(221);
render(train_data, train_class);
title 'Training data'
subplot(222);
render(test_data, output{1});
title 'Linear classification'
subplot(223);
render(test_data, output{2});
title 'Intersection classification'
subplot(224);
render(test_data, output{3});
title 'Radial basis classification'
end
% Use a cubic class boundary
function class = gt_class(data)
class = ([1, -1.5, 0.57]/0.07 * [data(1,:).^3; data(1,:).^2; data(1,:)]) < data(2,:);
end
% Render the points
function render(data, prob)
hold on
patch(data(1,:), data(2,:), double(prob), 'FaceColor', 'none', 'EdgeColor', 'none', 'Marker', '+', 'MarkerEdgeColor', 'flat', 'CDataMapping', 'scaled');
hold off
caxis([0 1]);
colormap(squeeze(real2rgb(1:256, [1 0 0; 0 0 1])));
end
|
github
|
ojwoodford/ojwul-master
|
linear_predict.m
|
.m
|
ojwul-master/classify/linear_predict.m
| 1,333 |
utf_8
|
51ebe96e9f67b299e7822af80f846381
|
% LINEAR_PREDICT Mex wrapper interface to the linear svm library
%
% [predicted_label, accuracy, decision_values/prob_estimates] = linear_predict(testing_label_vector, testing_instance_matrix, model [, 'liblinear_options', 'col']);
%
% -testing_label_vector:
% An m by 1 vector of prediction labels. If labels of test
% data are unknown, simply use any random values. (type must be double)
% -testing_instance_matrix:
% An m by n matrix of m testing instances with n features.
% It must be a sparse matrix. (type must be double)
% -model:
% The output of train.
% -liblinear_options:
% A string of testing options in the same format as that of LIBLINEAR.
% -col:
% if 'col' is set, each column of testing_instance_matrix is a data instance. Otherwise each row is a data instance.
function varargout = linear_predict(varargin)
sourceDir = 'private/liblinear/matlab/';
sourceList = {['-I' sourceDir], 'linear_predict.c', [sourceDir 'linear_model_matlab.c'], ...
[sourceDir '../linear.cpp'], [sourceDir '../tron.cpp'], [sourceDir '../blas/*.c'], ...
'-largeArrayDims'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
linear_train.m
|
.m
|
ojwul-master/classify/linear_train.m
| 1,135 |
utf_8
|
9d26e561f17d09f7178f3a3c68b33e85
|
% LINEAR_TRAIN Mex wrapper interface to the linear svm library
%
% model = linear_train(training_label_vector, training_instance_matrix [,'liblinear_options', 'col']);
%
% -training_label_vector:
% An m by 1 vector of training labels. (type must be double)
% -training_instance_matrix:
% An m by n matrix of m training instances with n features.
% It must be a sparse matrix. (type must be double)
% -liblinear_options:
% A string of training options in the same format as that of LIBLINEAR.
% -col:
% if 'col' is set, each column of training_instance_matrix is a data instance. Otherwise each row is a data instance.
function varargout = linear_train(varargin)
sourceDir = 'private/liblinear/matlab/';
sourceList = {['-I' sourceDir], 'linear_train.c', [sourceDir 'linear_model_matlab.c'], ...
[sourceDir '../linear.cpp'], [sourceDir '../tron.cpp'], [sourceDir '../blas/*.c'], ...
'-largeArrayDims'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
svm_precomp_model.m
|
.m
|
ojwul-master/classify/svm_precomp_model.m
| 414 |
utf_8
|
93448d99ffc7328ebb914386e77e8eb8
|
% SVM_PRECOMP_MODEL Mex wrapper interface to the svm library
function varargout = svm_precomp_model(varargin)
sourceDir = 'private/libsvm/';
sourceList = {['-I' sourceDir], 'svm_precomp_model.cpp', [sourceDir 'svm.cpp'], ...
[sourceDir 'svm_model_matlab.cpp'], [sourceDir 'fiksvm.cpp']}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
svm_train.m
|
.m
|
ojwul-master/classify/svm_train.m
| 824 |
utf_8
|
6e6b58d056e746c8dd4e981e19013be6
|
% SVM_TRAIN Mex wrapper interface to the svm library
%
% model = svm_train(training_label_vector, training_instance_matrix, [,'libsvm_options']);
%
% -training_label_vector:
% An m by 1 vector of training labels.
% -training_instance_matrix:
% An m by n matrix of m training instances with n features.
% It can be dense or sparse.
% -libsvm_options:
% A string of training options in the same format as that of LIBSVM.
function varargout = svm_train(varargin)
sourceDir = 'private/libsvm/';
sourceList = {['-I' sourceDir], 'svm_train.cpp', [sourceDir 'svm.cpp'], ...
[sourceDir 'svm_model_matlab.cpp'], '-largeArrayDims'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
separable_steerable_filter.m
|
.m
|
ojwul-master/filter/separable_steerable_filter.m
| 3,348 |
utf_8
|
e3883fff343cc4c0c1a56aa00bbac3be
|
%SEPARABLE_STEERABLE_FILTER Compute the basis and weights of separable steerable filters
%
% [basis, weight_fun] = separable_steerable_filter(r, coeff, X)
%
% Decompose a steerable filter formed from an odd or even parity polynomial
% times a Gaussian window into a separable basis using the equations in
% Appendix D of:
% "The Design and Use of Steerable Filters", Freeman & Adelson, TPAMI 1991
%
%IN:
% r - Scalar radius (s.d.) of the Gaussian window.
% coeff - 1xN vector of coefficients of the polynomial, highest order first.
% X - 1xM vector of x (and y) locations to sample the filter at.
%
%OUT:
% basis - Mx2xN array of N pairs of separable filters (y direction filter first).
% weight_fun - handle to a function which takes an angle as input and
% returns the N weights for the basis filter responses which
% should be summed to give the output of the original filter
% at that angle.
function [basis, weight_fun] = separable_steerable_filter(r, coeff, X)
% Default parameters for visualizing
if nargin < 3
if nargin < 2
if nargin < 1
% Radius of the Gaussian mask
r = 1;
end
% Coefficients of the polynomial, highest order first
coeff = [4 0 -2];
end
% Values of x (and y) to evaluate the filter basis at
X = linspace(-r*4, r*4, 400);
end
X = reshape(X, 1, []);
% Check filter is odd or even parity
assert(all(coeff(1:2:end) == 0) || all(coeff(2:2:end) == 0), 'Filter not odd or even parity');
% Construct the filter function
f = @(theta, x, y) filter_val(r, coeff, theta, x, y);
% Compute regularly spaced angles
N = find(fliplr(coeff), 1, 'last') - 1;
theta = linspace(0, pi, N+2);
theta = theta(1:end-1);
% Compute the filters at those angles
F = f(reshape(theta, 1, 1, 1, []), X, X');
% Compute the weight function of eqn. 42
K = (0:N)';
weight_fun = @(theta) bsxfun(@times, (-1 .^ K) .* (factorial(N) ./ (factorial(K) .* factorial(N - K))), bsxfun(@power, cos(theta), N-K) .* bsxfun(@power, sin(theta), K));
% Compute the K matrix of eqn. 43
K = weight_fun(theta)';
% Compute the basis filters
basis = K \ reshape(permute(F, [4 1 2 3]), numel(theta), []);
M = numel(X);
basis = reshape(basis', M, M, N+1);
% Compute the separable x and y directions of each filter
[x, x] = max(abs(reshape(basis, M*M, N+1)), [], 1);
[y, x] = ind2sub([M M], x);
B = basis;
basis = zeros(M, 2, N+1);
for a = 1:N+1
v = 1 ./ sqrt(abs(B(y(a),x(a),a)));
basis(:,1,a) = B(:,x(a),a) * v * sign(B(y(a),x(a),a));
basis(:,2,a) = B(y(a),:,a) * v;
end
% Display the filters and basis
if nargout == 0
figure(1); clf reset; sc(F, 'diff');
figure(2); clf reset; sc(reshape(B, M, M, 1, N+1), 'diff');
clear basis weight_fun
end
end
% Function to construct the Gaussian mask
function g = gauss_mask(x, y, r)
g = exp(-0.5 * bsxfun(@plus, x .* x, y .* y) / (r * r)) / (r * sqrt(2 * pi));
end
% Function to construct the oriented filter
function v = filter_val(r, coeff, theta, x, y)
% Compute x' of eqn. 38
v = bsxfun(@plus, bsxfun(@times, x, cos(theta)), bsxfun(@times, y, sin(theta)));
% Multiply the Gaussian mask by the polynomial (eqn. 37)
v = bsxfun(@times, gauss_mask(x, y, r), polyval(coeff, v));
end
|
github
|
ojwoodford/ojwul-master
|
find_first.m
|
.m
|
ojwul-master/numeric/find_first.m
| 1,001 |
utf_8
|
f48f512bfb5b53e2022805b0c86b9125
|
%FIND_FIRST Fast, vectorized version of find(A, 1, 'first')
%
% B = find_first(A)
% B = find_first(A, start)
% B = find_first(A, operator, value)
% B = find_first(A, operator, value, start)
%
% Find the first element in each column vector of an array which meets a
% particular comparison criterion.
%
% Example:
% find_first(rand(10, 10), '>', 0.8)
%
%IN:
% A - MxN real numeric array.
% operator - string of a comparison operator, e.g. '>'. Default: '~='.
% value - 1xN or scalar array of values to use in the comparison.
% Default: 0.
% start - 1xN or scalar uint32 array of offsets from the start of each
% vector at which to start searching.
%
%OUT:
% B - 1xN uint32 array of indices of first element in each column vector
% meeting the criterion, or 0 if none are found.
function varargout = find_first(varargin)
sourceList = {'find_first.cpp', '-Xopenmp'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
dimsel.m
|
.m
|
ojwul-master/numeric/dimsel.m
| 1,511 |
utf_8
|
21dccb0ea6801c98b303e4707b05f5f8
|
%DIMSEL Select one indexed element from each vector along a given dimension
%
% B = dimsel(A, I)
%
% Given as input a numeric array, A, and an index array, I, which contains
% indices along a particular dimension of A, output the indexed elements of
% A.
%
% For example, in the code:
% A = rand(3);
% [B, I] = max(A, [], 2);
% C = dimsel(A, I);
% the arrays B and C are identical.
%
%IN:
% A - Multi-dimensional numeric array.
% I - Multi-dimensional index array, of the same size as A but for one
% dimension, which must be singleton. The array must consist of
% positive intergers in the range [1,N], where N is the length of the
% dimension of A that is singleton for I.
%
%OUT:
% B - Output array.
function A = dimsel(A, I)
% Check inputs
szA = size(A);
szI = size(I);
if isequal(szA, szI) || isempty(A)
return;
end
if numel(szI) ~= numel(szA)
szI = [szI 1];
end
assert(all(szI == szA | szI == 1), 'Dimensions do not match');
dim = find(szI ~= szA);
assert(numel(dim) == 1, 'Only one dimension of I should be different from that of A');
% Construct the index array
stride = cumprod([1 szA]);
if stride(dim+1) == stride(end)
I = I(:) * stride(dim) + (1-stride(dim):0)';
elseif stride(dim) == 1
I = I(:) + (0:stride(dim+1):stride(end)-1)';
else
I = I(:) * stride(dim) + reshape(bsxfun(@plus, (1-stride(dim):0)', 0:stride(dim+1):stride(end)-1), [], 1);
end
% Construct the output
A = reshape(A(I), szI);
|
github
|
ojwoodford/ojwul-master
|
first.m
|
.m
|
ojwul-master/numeric/first.m
| 819 |
utf_8
|
6656ebac8a73f0f3965ebb5eb3161baa
|
%FIRST Returns indices of the first non-zero elements along the given dimension
%
% B = first(A, [dim])
%
% For each vector along the given dimension, this function returns the
% index of the first non-zero element along that vector, or 0 if there is
% no non-zero element.
%
%IN:
% A - MxNx... input array
% dim - dimension of A along which to find the first non-zero element.
% Default: first non-singleton dimension of A.
%
%OUT
% B - 1xNx... output array (size dependent on which dimension specified).
function A = first(A, dim)
if nargin < 2
dim = find(size(A) ~= 1, 'first', 1);
if isempty(dim)
dim = 1;
end
end
if ~islogical(A)
A = A ~= 0;
end
n = size(A, dim);
A = cumsum(A, dim);
A = sum(A > 0, dim);
A = (n + 1) - A;
A(A==n+1) = 0;
end
|
github
|
ojwoodford/ojwul-master
|
gauss_mask.m
|
.m
|
ojwul-master/numeric/gauss_mask.m
| 1,101 |
utf_8
|
fb9150428ba19cc33aa5d2f465a0a953
|
%GAUSS_MASK Compute 1D Nth derivative of a Gaussian
%
% Examples:
% F = gauss_mask(sigma)
% F = gauss_mask(sigma, deriv)
% F = gauss_mask(sigma, deriv, X)
%
% This function computes the Nth derivative of a Gaussian, in 1D.
%
% IN:
% sigma - Standard deviation of the Gaussian.
% deriv - The derivative to compute. Default: 0.
% X - Values of x at which to compute Gaussian. Default:
% -floor(4*sigma):floor(4*sigma).
%
% OUT:
% F - The vector of values of Nth derivative of the zero-mean Gaussian
% with standard deviation sigma, evaluated at the values in X.
function F = gauss_mask(sigma, deriv, X)
if nargin < 3
% Determine necessary filter support (for Gaussian).
X = max(floor(4 * sigma), 1);
X = -X:X;
end
% Compute standard Gaussian
s2 = -1 ./ sigma .^ 2;
F = exp((0.5 * s2) * X .* X) ./ (sigma * sqrt(2 * pi));
if nargin > 1 && deriv
% Compute 1st derivative
F_ = F;
F = s2 * X .* F;
% Compute nth derivative
for a = 2:deriv
F__ = F_;
F_ = F;
F = s2 * ((a - 1) .* F__ + X .* F_);
end
end
return
|
github
|
ojwoodford/ojwul-master
|
zero_mean.m
|
.m
|
ojwul-master/numeric/zero_mean.m
| 523 |
utf_8
|
b8edf0ff597b9b20b5cf70e48aeaee55
|
%ZERO_MEAN Subtract the means from a set of vectors to make them zero mean
%
% Y = zero_mean(X)
% Y = zero_mean(X, dim)
%
% Subtract the mean along a specified dimension from all vectors in an
% array, making them zero mean.
%
%IN:
% X - Array containing vectors to zero mean.
% dim - Dimension along which to zero-mean X. Default: first
% non-singleton dimension of X.
%
%OUT:
% Y - Zero-meaned X.
function X = zero_mean(X, varargin)
X = bsxfun(@minus, X, mean(X, varargin{:}));
end
|
github
|
ojwoodford/ojwul-master
|
isapprox.m
|
.m
|
ojwul-master/numeric/isapprox.m
| 1,409 |
utf_8
|
5ebc8a650be39b533bbbfe311488be94
|
%ISAPPROX Check if A and B are approximately equal
%
% [tf, d] = isapprox(A, B, tol)
%
% Determines whether two input arrays are approximately equal. If a
% tolerance is given, and no outputs are requested, the function asserts if
% the inputs aren't approximately equal.
%
%IN:
% A - Numeric array.
% B - Numeric array to compare against A.
% tol - Scalar tolerance (proportion of the magnitude).
%
%OUT:
% tf - Boolean indicating if A and B are approximately equal.
% d - Maximum difference between A and B (proportion of the magnitude).
% D - Per element different between A and B (proportion of the magnitude).
function [tf, d, D] = isapprox(A, B, tol)
tf = isequal(size(A), size(B));
if ~tf
if nargout == 0
error('Matrices have differing sizes: [ %s] and [ %s].', sprintf('%d ', size(A)), sprintf('%d ', size(B)));
else
d = -1;
end
return;
end
d = abs(A - B);
d2 = abs(A + B);
if issparse(d2)
[i, j, d] = find(d);
if isempty(d)
d = 0;
d2 = 0;
else
i = i + (j - 1) * size(d2, 1);
d2 = full(d2(i));
end
end
D = d ./ (d2 + 1);
d = 2 * max(D(:));
if nargin < 3
if nargout == 0
fprintf('Matrices differ by scale %g.\n', d);
return;
end
tol = eps * 2;
end
tf = d < tol;
if nargout == 0
assert(tf, 'Matrices differ outside tolerance. Largest scale difference: %g.', d);
end
end
|
github
|
ojwoodford/ojwul-master
|
extremum.m
|
.m
|
ojwul-master/numeric/extremum.m
| 614 |
utf_8
|
51a4fafafae5abcb7335319637a6da18
|
%EXTREMUM Compute the extreme value along a given dimension
%
% B = extremum(A, [dim])
%
% Output the most extreme value (furthest from 0) along a specified
% dimension of an input array.
%
%IN:
% A - Numeric input array.
% dim - Dimension along which to compute the extremum. Default: first
% non-singleton dimension.
%
%OUT:
% B - Output array.
function A = extremum(A, dim)
if nargin < 2
% Find the first non-singleton dimension
dim = find(size(A) > 1, 1, 'first');
if isempty(dim)
return;
end
end
[I, I] = max(abs(A), [], dim);
A = dimsel(A, I);
|
github
|
ojwoodford/ojwul-master
|
sqdist.m
|
.m
|
ojwul-master/numeric/sqdist.m
| 784 |
utf_8
|
56bd1dee4c97472b5aebb3d958a26641
|
%SQDIST Squared Euclidean distance between sets of vectors
%
% D = sqdist(A, [B])
%
% IN:
% A - MxJ matrix of columnwise vectors.
% B - MxK matrix of columnwise vectors. Default: B = A.
%
% OUT:
% D - JxK Squared distance between each vector in A and each vector in B.
function D = sqdist(A, B)
if nargin < 2
B = A;
A2 = A .* A;
B2 = A2;
A = permute(-2 * A, [2 3 1]);
A2 = permute(A2, [2 3 1]);
else
A = permute(A, [2 3 1]);
A2 = A .* A;
B2 = B .* B;
if numel(A) <= numel(B)
A = -2 * A;
else
B = -2 * B;
end
end
A = reshape(cat(2, ones(size(A)), A, A2), size(A, 1), []);
B = reshape(cat(1, shiftdim(B2, -1), shiftdim(B, -1), ones([1 size(B)])), [], size(B, 2));
D = A * B;
end
|
github
|
ojwoodford/ojwul-master
|
normalize.m
|
.m
|
ojwul-master/numeric/normalize.m
| 582 |
utf_8
|
a11f36e044a61612a4bb2b0651a2062b
|
%NORMALIZE Set vectors in an array to be of unit length
%
% Y = normalize(X)
% Y = normalize(X, dim)
%
% Set all the non-zero vectors in an array, along a specified dimension, to
% be of unit length.
%
%IN:
% X - Array containing vectors to normalize.
% dim - Dimension along which to normalize X. Default: first
% non-singleton dimension of X.
%
%OUT:
% Y - Normalized X.
function X = normalize(X, varargin)
normalizer = normd(X, varargin{:});
M = normalizer ~= 0;
normalizer(M) = 1 ./ normalizer(M);
X = bsxfun(@times, X, normalizer);
end
|
github
|
ojwoodford/ojwul-master
|
all_finite.m
|
.m
|
ojwul-master/numeric/all_finite.m
| 291 |
utf_8
|
1f4977902fa9382cafc15932c81c65f7
|
%ALL_FINITE Checks if all the elements in an array are finite
%
% tf = all_finite(x)
%
%IN:
% x - Numeric array.
%
%OUT:
% tf - Boolean indicating whether all elements of x are finite.
function x = all_finite(x)
if issparse(x)
[~, ~, x] = find(x);
end
x = all(isfinite(x(:)));
end
|
github
|
ojwoodford/ojwul-master
|
array_snake_indices.m
|
.m
|
ojwul-master/numeric/array_snake_indices.m
| 921 |
utf_8
|
1036fca344d56d2f1a94ebffb868560d
|
%ARRAY_SNAKE_INDICES List of indices snaking through an array
%
% I = array_snake_indices(sz)
%
% Produces a list of all the indices into an array of size sz, with each
% consecutive index referencing a neighbouring element to the previous
% index.
%
%IN:
% sz - 1xN vector of the size of array to index.
%
%OUT:
% I - (prod(sz))x1 uint32 vector of array indices.
function I = array_snake_indices(sz)
% Initialize the indices
I = uint32(1):uint32(prod(sz));
if isempty(I)
return;
end
% Re-order the indices so they snake through the array
sz = sz(sz>1);
for a = 2:numel(sz)
I = reshape(I, prod(sz(1:a-1)), sz(a), []);
I(:,2:2:end,:) = I(end:-1:1,2:2:end,:);
end
I = I(:);
if nargout > 0
return;
end
% Test the output
X = arrayfun(@(s) {1:s}, sz);
[X{:}] = ndgrid(X{:});
X = cellfun(@(s) col(s(I)), X, 'UniformOutput', false);
X = cat(2, X{:});
Y = sum(abs(diff(X)), 2);
assert(all(Y == 1));
end
|
github
|
ojwoodford/ojwul-master
|
range01.m
|
.m
|
ojwul-master/numeric/range01.m
| 665 |
utf_8
|
e05a9fe686b93d39d6355913b9be9179
|
%RANGE01 Apply gain and bias so range of data is exactly [0, 1]
%
% Y = range01(X, [dim])
%
% Set all vectors in X along the specified dimension to be in the range
% [0,1].
%
%IN:
% X - Array containing vectors to rescale to range [0, 1].
% dim - Dimension along which to zero-mean X. Default: first
% non-singleton dimension of X.
%
%OUT:
% Y - Rescaled X.
function X = range01(X, dim)
if nargin < 2
% Find the first non-singleton dimension
dim = find(size(X) > 1, 1, 'first');
if isempty(dim)
return;
end
end
X = bsxfun(@minus, X, min(X, [], dim));
X = bsxfun(@times, X, 1./max(X, [], dim));
end
|
github
|
ojwoodford/ojwul-master
|
normd.m
|
.m
|
ojwul-master/numeric/normd.m
| 483 |
utf_8
|
15ade47822ea81b1839ab3528ecf0fa4
|
%NORMD Compute the 2-norms of vectors in an array along a specific dimension
%
% Y = normd(X)
% Y = normd(X, dim)
%
% Compute the 2-norms of vectors in an array, along a specific dimension.
%
%IN:
% X - Array containing vectors to compute the norms of.
% dim - Dimension along which to compute the 2-norm. Default: first
% non-singleton dimension of X.
%
%OUT:
% Y - 2-norms of X.
function X = normd(X, varargin)
X = sqrt(sum(X .* X, varargin{:}));
|
github
|
ojwoodford/ojwul-master
|
inv44n.m
|
.m
|
ojwul-master/linear/inv44n.m
| 2,251 |
utf_8
|
14bff2f4c1537e18cea4be0b8fc0b81c
|
%INV44N Compute the inverse of an array of 4x4 matrices
%
% [B, d] = inv44n(A)
%
% Vectorized computation of the inverse of multiple 4x4 matrices.
%
%IN:
% A - 4x4xN array.
%
%OUT:
% B - 4x4xN array, where B(:,:,a) = inv(A(:,:,a)).
% d - 1xN array, where d(a) = det(A(:,:,a)).
function [B, det] = inv44n(A)
s0 = A(1,1,:) .* A(2,2,:) - A(2,1,:) .* A(1,2,:);
s1 = A(1,1,:) .* A(2,3,:) - A(2,1,:) .* A(1,3,:);
s2 = A(1,1,:) .* A(2,4,:) - A(2,1,:) .* A(1,4,:);
s3 = A(1,2,:) .* A(2,3,:) - A(2,2,:) .* A(1,3,:);
s4 = A(1,2,:) .* A(2,4,:) - A(2,2,:) .* A(1,4,:);
s5 = A(1,3,:) .* A(2,4,:) - A(2,3,:) .* A(1,4,:);
c5 = A(3,3,:) .* A(4,4,:) - A(4,3,:) .* A(3,4,:);
c4 = A(3,2,:) .* A(4,4,:) - A(4,2,:) .* A(3,4,:);
c3 = A(3,2,:) .* A(4,3,:) - A(4,2,:) .* A(3,3,:);
c2 = A(3,1,:) .* A(4,4,:) - A(4,1,:) .* A(3,4,:);
c1 = A(3,1,:) .* A(4,3,:) - A(4,1,:) .* A(3,3,:);
c0 = A(3,1,:) .* A(4,2,:) - A(4,1,:) .* A(3,2,:);
det = s0 .* c5 - s1 .* c4 + s2 .* c3 + s3 .* c2 - s4 .* c1 + s5 .* c0;
invdet = 1 ./ det;
B(1,1,:) = ( A(2,2,:) .* c5 - A(2,3,:) .* c4 + A(2,4,:) .* c3) .* invdet;
B(1,2,:) = (-A(1,2,:) .* c5 + A(1,3,:) .* c4 - A(1,4,:) .* c3) .* invdet;
B(1,3,:) = ( A(4,2,:) .* s5 - A(4,3,:) .* s4 + A(4,4,:) .* s3) .* invdet;
B(1,4,:) = (-A(3,2,:) .* s5 + A(3,3,:) .* s4 - A(3,4,:) .* s3) .* invdet;
B(2,1,:) = (-A(2,1,:) .* c5 + A(2,3,:) .* c2 - A(2,4,:) .* c1) .* invdet;
B(2,2,:) = ( A(1,1,:) .* c5 - A(1,3,:) .* c2 + A(1,4,:) .* c1) .* invdet;
B(2,3,:) = (-A(4,1,:) .* s5 + A(4,3,:) .* s2 - A(4,4,:) .* s1) .* invdet;
B(2,4,:) = ( A(3,1,:) .* s5 - A(3,3,:) .* s2 + A(3,4,:) .* s1) .* invdet;
B(3,1,:) = ( A(2,1,:) .* c4 - A(2,2,:) .* c2 + A(2,4,:) .* c0) .* invdet;
B(3,2,:) = (-A(1,1,:) .* c4 + A(1,2,:) .* c2 - A(1,4,:) .* c0) .* invdet;
B(3,3,:) = ( A(4,1,:) .* s4 - A(4,2,:) .* s2 + A(4,4,:) .* s0) .* invdet;
B(3,4,:) = (-A(3,1,:) .* s4 + A(3,2,:) .* s2 - A(3,4,:) .* s0) .* invdet;
B(4,1,:) = (-A(2,1,:) .* c3 + A(2,2,:) .* c1 - A(2,3,:) .* c0) .* invdet;
B(4,2,:) = ( A(1,1,:) .* c3 - A(1,2,:) .* c1 + A(1,3,:) .* c0) .* invdet;
B(4,3,:) = (-A(4,1,:) .* s3 + A(4,2,:) .* s1 - A(4,3,:) .* s0) .* invdet;
B(4,4,:) = ( A(3,1,:) .* s3 - A(3,2,:) .* s1 + A(3,3,:) .* s0) .* invdet;
end
|
github
|
ojwoodford/ojwul-master
|
cross.m
|
.m
|
ojwul-master/linear/cross.m
| 2,275 |
utf_8
|
730d29b6bf45181cf2d3a230017ba4af
|
function c = cross(a,b,dim)
%CROSS Vector cross product.
% C = CROSS(A,B) returns the cross product of the vectors
% A and B. That is, C = A x B. A and B must be 3 element
% vectors.
%
% C = CROSS(A,B) returns the cross product of A and B along the
% first dimension of length 3.
%
% C = CROSS(A,B,DIM), where A and B are N-D arrays, returns the cross
% product of vectors in the dimension DIM of A and B. A and B must
% have the same size, and both SIZE(A,DIM) and SIZE(B,DIM) must be 3.
%
% Class support for inputs A,B:
% float: double, single
%
% See also DOT.
% Copyright 1984-2012 The MathWorks, Inc.
% Special case: A and B are vectors
if isvector(a) && isvector(b)
if (nargin == 2 && (length(a) ~= 3 || length(b) ~= 3)) || ...
(nargin == 3 && (size(a,dim)~=3 || size(b,dim)~=3))
error(message('MATLAB:cross:InvalidDimAorBForCrossProd'))
end
% Calculate cross product
c = [a(2).*b(3)-a(3).*b(2);
a(3).*b(1)-a(1).*b(3);
a(1).*b(2)-a(2).*b(1)];
if ~iscolumn(a) || ~iscolumn(b)
c = c.';
end
else % general case
% Check dimensions
sza = size(a);
szb = size(b);
sza(end+1:numel(sza)) = 1;
szb(end+1:numel(szb)) = 1;
if any(sza ~= szb & sza ~= 1 & szb ~= 1)
error(message('MATLAB:cross:InputSizeMismatch'));
end
if nargin == 2
dim = find(sza == 3,1);
if isempty(dim)
error(message('MATLAB:cross:InvalidDimAorB'));
end
elseif size(a, dim) ~= 3
error(message('MATLAB:cross:InvalidDimAorBForCrossProd'))
end
if size(b, dim) ~= 3
error(message('MATLAB:cross:InvalidDimAorBForCrossProd'))
end
if dim == 1
% Calculate cross product
c = ro(bsxfun(@times, a, ro(b)) - bsxfun(@times, ro(a), b));
else
% Permute so that DIM becomes the row dimension
perm = [dim:max([ndims(a) ndims(b) dim]) 1:dim-1];
a = permute(a, perm);
b = permute(b, perm);
% Calculate cross product
c = ro(bsxfun(@times, a, ro(b)) - bsxfun(@times, ro(a), b));
% Post-process.
c = ipermute(c, perm);
end
end
end
function X = ro(X)
X = reshape(X([2 3 1],:), size(X));
end
|
github
|
ojwoodford/ojwul-master
|
isposdef.m
|
.m
|
ojwul-master/linear/isposdef.m
| 266 |
utf_8
|
0c7220c903df17ddae3c6d1f2f6d7544
|
%ISPOSDEF Check if a square matrix is positive definite
%
% tf = isposdef(A)
%
%IN:
% A - NxN matrix.
%
%OUT:
% tf - boolean indicating whether A is positive definite.
function tf = isposdef(A)
[~, tf] = chol(A);
tf = (tf == 0) && (rank(A) == size(A, 1));
end
|
github
|
ojwoodford/ojwul-master
|
inv33n.m
|
.m
|
ojwul-master/linear/inv33n.m
| 564 |
utf_8
|
cc713280e9ef287893c776d0bb44b625
|
%INV33N Compute the inverse of an array of 3x3 matrices
%
% [B, d] = inv33n(A)
%
% Vectorized computation of the inverse of multiple 3x3 matrices.
%
%IN:
% A - 3x3xN array.
%
%OUT:
% B - 3x3xN array, where B(:,:,a) = inv(A(:,:,a)).
% d - 1xN array, where d(a) = det(A(:,:,a)).
function [T, det] = inv33n(T)
sz = size(T);
det = det33n(T);
T = reshape(T, 9, []);
T = T([5 8 2 7 1 4 4 7 1],:) .* T([9 3 6 6 9 3 8 2 5],:) - T([8 2 5 4 7 1 7 1 4],:) .* T([6 9 3 9 3 6 5 8 2],:);
T = reshape(bsxfun(@times, (T + 1e-322), 1 ./ det), sz);
end
|
github
|
ojwoodford/ojwul-master
|
invSE3n.m
|
.m
|
ojwul-master/linear/invSE3n.m
| 435 |
utf_8
|
b18da849ddbbaed68c17c33dbcb4a630
|
%INVSE3N Compute the inverse of an array of 3x4 SE3 matrices
%
% [B, d] = invSE3n(A)
%
% Vectorized computation of the inverse of multiple 3x4 SE3 matrices.
%
%IN:
% A - 3x4xN array of SE3 matrices.
%
%OUT:
% B - 3x4xN array of inverse SE3 matrices.
function T = invSE3n(T)
R = permute(T(1:3,1:3,:), [2 1 3]); % Transpose the R matrix
T(1:3,1:3,:) = R;
T(1:3,4,:) = tmult(R, -T(1:3,4,:)); % Compute R' * -T
end
|
github
|
ojwoodford/ojwul-master
|
det33n.m
|
.m
|
ojwul-master/linear/det33n.m
| 584 |
utf_8
|
3d07d701f15024db467c402a4600390a
|
%DET33N Compute the determinant of an array of 3x3 matrices
%
% d = det33n(A)
%
% Vectorized computation of the determinant of multiple 3x3 matrices.
%
%IN:
% A - 3x3xN array.
%
%OUT:
% d - 1xN array, where d(a) = det(A(:,:,a)).
function T = det33n(T)
T = reshape(T, 9, []);
cond = zeros(size(T));
d = 1 ./ (1 + abs(T([1 5 9],:)));
cond([1 5 9],:) = d;
T = tmult(reshape(T, 3, 3, []), reshape(cond, 3, 3, []));
T = reshape(T, 9, []);
T = T([1 2 3 1 3 2],:) .* T([5 6 4 6 5 4],:) .* T([9 7 8 8 7 9],:);
T = sum(T(1:3,:) - T(4:6,:));
T = T ./ prod(d);
end
|
github
|
ojwoodford/ojwul-master
|
pca.m
|
.m
|
ojwul-master/linear/pca.m
| 1,299 |
utf_8
|
41e51e264202aacba6887d551cf4746e
|
%PCA Principal component analysis
%
% [T, Y, V] = pca(X)
%
% IN:
% X - MxN matrix of N vectors of dimension M.
%
% OUT:
% T - Mx(M+1) Projection matrix for PCA transformation
% Y - MxN matrix of transformed vectors, where Y = T * [X; ones(1, N)].
% V - Mx1 list of eigen values associated with each dimension.
function [T, X, V] = pca(X)
% Check for NaNs
if ~any(isnan(X(:)))
% Compute the mean and subtract
t = mean(X, 2);
X = bsxfun(@minus, X, t);
% Do the economy svd, to avoid memory issues
[R, V] = svd(X, 'econ');
R = R';
if nargout > 2
% Square the singular values to give eigenvalues
V = diag(V);
V = (V .* V) ./ size(X, 2);
end
else
% Have NaNs!
% Compute the mean and subtract
t = mean(X, 2, 'omitnan');
X = bsxfun(@minus, X, t);
% Compute the covariance matrix
sd = sqrt(mean(X .* X, 2, 'omitnan'));
C = corrcoef(X', 'rows', 'pairwise');
C = C .* (sd * sd');
% Compute the eigen values and vectors
[R, V] = eig(C);
% Reorder so largest first
V = flipud(diag(V));
R = R(:,end:-1:1)';
end
% Compose the transform
T = [R -(R * t)];
if nargout > 1
% Apply the transform
X = R * X;
end
end
|
github
|
ojwoodford/ojwul-master
|
tmult.m
|
.m
|
ojwul-master/linear/tmult.m
| 2,711 |
utf_8
|
a0e531042d0030663fd3f37c2dc1fbc2
|
%TMULT Tensor matrix multiply
%
% C = tmult(A, B, [transpose])
%
% Matrix multiplication over tensor arrays (i.e. arrays of matrices), with
% the ability to transpose matrices first.
%
% C = tmult(A, B) is equivalent to:
%
% sz = [size(B) 1];
% sz(1) = size(A, 1);
% C = zeros(sz);
% for a = 1:prod(sz(3:end))
% C(:,:,a) = A(:,:,a) * B(:,:,a);
% end
%
% but is completely vectorized, so much faster. Tmult also supports
% bsxfun-style expansion of singular dimensions where appropriate, such
% that tmult(rand(4, 3, 10), rand(3, 2)) yields a 4x2x10 output.
%
%IN:
% A - PxQx... array of input PxQ matrices, or QxP if transposed.
% B - QxRx... array of input QxR matrices, or RxQ if transposed.
% transpose - 2x1 logical array indicating which of the input matrices
% need to be transposed before the multiply. Default: [0 0].
%
%OUT:
% C - PxRx... output array.
function A = tmult(A, B, transpose)
szB = [size(B) 1];
szA = [size(A) 1];
if nargin < 3
transpose = 0;
else
transpose = [transpose(:); 0];
transpose = [1 2] * (transpose(1:2) ~= 0);
if transpose == 3
% Permutation required. Choose the matrix which permutes fastest.
pa = any(szA(1:2) == 1);
pb = any(szB(1:2) == 1);
if pa || (~pb && numel(A) < numel(B))
if ~pa
p = 1:numel(szA);
p(1:2) = p([2 1]);
A = permute(A, p);
end
szA(1:2) = szA([2 1]);
transpose = 2;
else
if ~pb
p = 1:numel(szB);
p(1:2) = p([2 1]);
B = permute(B, p);
end
szB(1:2) = szB([2 1]);
transpose = 1;
end
end
end
switch transpose
case 0
% No transposes
A = reshape(A, szA([1:2 end 3:end-1]));
B = reshape(B, szB([end 1:end-1]));
dim = 2;
szB(1) = szA(1);
case 1
% First matrix transposed
A = reshape(A, szA([1:2 end 3:end-1]));
B = reshape(B, szB([1 end 2:end]));
dim = 1;
szB(1) = szA(2);
case 2
% Second matrix transposed
A = reshape(A, szA([1 end 2:end]));
B = reshape(B, szB([end 1:end-1]));
dim = 3;
szB(2) = szB(1);
szB(1) = szA(1);
end
% Compute the output
A = dot(A, B, dim);
% Reshape to expected size
szA = [szA ones(1, numel(szB)-numel(szA))];
szB = [szB ones(1, numel(szA)-numel(szB))];
M = [szA; szB];
M = (max(M) <= 1) & (min(M) == 0);
M(1:2) = false;
szB(3:end) = max(szB(3:end), szA(3:end));
szB(M) = 0;
A = reshape(A, szB);
end
|
github
|
ojwoodford/ojwul-master
|
chol22n.m
|
.m
|
ojwul-master/linear/chol22n.m
| 525 |
utf_8
|
cac431a9a2f1d476ea0b607172597a6f
|
%CHOL22N Compute the Cholesky decomposition of an array of 2x2 matrices
%
% B = chol22n(A)
%
% Vectorized computation of the Cholesky decomposition of multiple 2x2
% matrices.
%
%IN:
% A - 2x2xN array.
%
%OUT:
% B - 2x2xN array, where B(:,:,a) = chol(A(:,:,a), 'lower').
% Formula from here: http://metamerist.blogspot.com/2008/03/googlaziness-cholesky-2x2.html
function T = chol22n(T)
a = sqrt(T(1,1,:));
b = T(2,1,:) ./ a;
c = sqrt(T(2,2,:) - b .* b);
T = [a zeros(1, 1, size(T, 3)); b c];
end
|
github
|
ojwoodford/ojwul-master
|
whiten_srt.m
|
.m
|
ojwul-master/linear/whiten_srt.m
| 693 |
utf_8
|
81a53816a156dc60778e232690a33aa9
|
%WHITEN_SRT Transform data to be zero mean and close to identity covariance
%
% [Y, T] = whiten_srt(X)
%
% Apply a similarity transform to the data such that the mean is zero and
% the covariance is as close to the identity as possible.
%
%IN:
% X - MxN array of N vectors of dimension M to be whitened
%
% Y - (M+1)xN array of whitened data.
% T - (M+1)x(M+1) matrix for the transformation proj(T \ homg(Y)) = X.
function [X, T] = whiten_srt(X)
% Subtract the mean
mu = mean(X, 2);
X = bsxfun(@minus, X, mu);
% Whitening the covariance
[T, s] = svd(X * X');
T = T * sqrt((size(X, 2) - 1) ./ max(diag(s)));
X = T * X;
% Construct the transform
T(:,end+1) = T * -mu;
T(3,3) = 1;
end
|
github
|
ojwoodford/ojwul-master
|
whiten.m
|
.m
|
ojwul-master/linear/whiten.m
| 762 |
utf_8
|
74a208f31dba9cc99791735e5ef5310d
|
%WHITEN Transform data to be zero mean and identity covariance
%
% [Y, T] = whiten(X, [epsilon])
%
%IN:
% X - MxN array of N vectors od dimension M to be whitened
% epsilon - scalar value to add to eigen values to avoid amplifying
% noise. Default: 1e-4.
%
% Y - MxN array of whitened data.
% T - (M+1)x(M+1) matrix for the transformation [Y; 1] = T * [X; 1].
function [X, T] = whiten(X, epsilon)
% Set the default epsilon
if nargin < 2
epsilon = 1e-4;
end
% Subtract the mean
mu = mean(X, 2);
X = bsxfun(@minus, X, mu);
% Whitening the covariance
[V, D] = svd(X * X');
T = V' * diag(sqrt((size(X, 2) - 1) ./ (diag(D) + epsilon))) * V;
X = T * X;
% Construct the transform
mu = T * -mu;
T(end+1,end+1) = 1;
T(1:end-1,end) = mu;
end
|
github
|
ojwoodford/ojwul-master
|
linear_regressor.m
|
.m
|
ojwul-master/linear/linear_regressor.m
| 2,399 |
utf_8
|
2b1edd7949fb50b4886bc0009e8a8527
|
classdef linear_regressor < handle
properties (SetAccess = private, Hidden = true)
parameters;
regularization_lambda = 0;
isquadratic = false;
end
methods
function this = linear_regressor(quad, reg)
if nargin > 0
this.isquadratic = quad;
if nargin > 1
this.regularization_lambda = reg;
end
end
end
function train(this, X, y)
% Preprocess the data
X = quadraticize(this, X');
norm_mat = compute_normalization(X);
X(:,end+1) = 1;
X = X * norm_mat;
% Train
if this.regularization_lambda
% Minimize the regularized cost using a local optimizer
this.parameters = fmincg(@(theta) linear_regression_cost(X, y, theta, this.regularization_lambda), zeros(size(X, 2), 1), optimset('MaxIter', 200, 'GradObj', 'on'));
else
% Solve the normal equation linear system
this.parameters = (X' * X) \ (X' * y(:));
end
% Apply the normalization
this.parameters = norm_mat * this.parameters;
end
function y = test(this, X)
% Preprocess the data
X = quadraticize(this, X');
X(:,end+1) = 1;
% Compute the output
y = X * this.parameters;
end
function X = quadraticize(this, X)
if this.isquadratic
[m, n] = size(X);
X = [X reshape(bsxfun(@times, X, reshape(X, m, 1, n)), m, n*n)];
end
end
end
end
function norm_mat = compute_normalization(X)
m = mean(X, 1);
X = bsxfun(@minus, X, m);
s = 1 ./ (sqrt(mean(X .* X, 1)) + 1e-38);
norm_mat = diag(s);
norm_mat(end+1,:) = -(m .* s);
norm_mat(end,end+1) = 1;
end
function [J, grad] = linear_regression_cost(X, y, theta, lambda)
if nargin < 4
lambda = 0;
end
m = numel(y); % number of training examples
hx = X * theta;
grad = hx - y(:);
J = grad' * grad;
if lambda
J = J + (theta(2:end)' * theta(2:end)) * lambda;
end
J = J / (2 * m);
if nargout > 1
grad = sum(bsxfun(@times, grad, X), 1)' / m;
if lambda
grad(2:end) = grad(2:end) + theta(2:end) * (lambda / m);
end
end
end
|
github
|
ojwoodford/ojwul-master
|
eig22n.m
|
.m
|
ojwul-master/linear/eig22n.m
| 710 |
utf_8
|
d4eb84365738b510a317624640f6432c
|
%EIG22N Compute the eigenvalues and eigenvectors of 2x2 matrices
%
% [e, V] = eig22n(A)
%
% Vectorized computation of the eigenvalues and eigenvectors of multiple
% 2x2 matrices.
%
%IN:
% A - 2x2xN array.
%
%OUT:
% e - 2x1xN array, where e(:,a) = eig(A(:,:,a)).
% V - 2x2xN array, where [V(:,:,a), ~] = eig(A(:,:,a)).
function [e, V] = eig22n(A)
% First compute the eigenvalues using the quadratic equation
b = A(1,1,:) + A(2,2,:);
e = A(2,1,:) .* A(1,2,:) - A(1,1,:) .* A(2,2,:);
e = sqrt(b .* b + 4 * e);
e = [b + e; b - e] * 0.5;
if nargout < 2
return;
end
% Now solve for the eigenvectors
V = normalize(reshape(sum(A, 1), 2, 1, []) - reshape(e, 1, 2, []), 1);
V = [-V(2,:,:); V(1,:,:)];
end
|
github
|
ojwoodford/ojwul-master
|
inv22n.m
|
.m
|
ojwul-master/linear/inv22n.m
| 509 |
utf_8
|
d3988bcba15c758442d58d984be90c23
|
%INV22N Compute the inverse of an array of 2x2 matrices
%
% [B, d] = inv22n(A)
%
% Vectorized computation of the inverse of multiple 2x2 matrices.
%
%IN:
% A - 2x2xN array.
%
%OUT:
% B - 2x2xN array, where B(:,:,a) = inv(A(:,:,a)).
% d - 1xN array, where d(a) = det(A(:,:,a)).
function [T, det] = inv22n(T)
sz = size(T);
T = reshape(T, 4, []);
T = T([4 2 3 1],:);
T(2:3,:) = -T(2:3,:);
det = T(1,:) .* T(4,:) - T(2,:) .* T(3,:);
T = reshape(bsxfun(@times, T, 1 ./ det), sz);
end
|
github
|
ojwoodford/ojwul-master
|
edge_demo.m
|
.m
|
ojwul-master/edges/edge_demo.m
| 1,554 |
utf_8
|
9a4ed09075dbf09302013c950184e2b6
|
%EDGE_DEMO Compute and visualize the gradient and edgels of an image
%
% edge_demo
% edge_demo(A, scale, thresh)
%
%IN:
% A - HxWxC image. Default: Use peppers.png
% scale - sigma of Gaussian blur to apply during edge detection.
% Default: 0.7.
% thresh - Threshold on edgel suppression. If negative, magnitude is
% interpreted as the proportion of pixels to return as edgels.
% Default: -0.05, i.e. keep top 5% of pixels, by edge strength.
function edge_demo(A, scale, thresh)
% Set default arguments
if nargin < 3
thresh = -0.05; % Negative numbers indicate ratio of edges to keep
if nargin < 2
scale = 0.7;
if nargin < 1
A = imread('peppers.png');
end
end
end
% Compute the gradient image
tic;
G = imgrad(A, scale, 'dizenzo');
t1 = toc;
% Compute a reasonable edgel threshold
if thresh < 0
s = sort(reshape(sum(G .* G, 3), [], 1), 'descend');
thresh = sqrt(s(ceil(end*-thresh)));
fprintf('Edgel threshold: %g\n', thresh);
end
% Compute the edgels
tic;
X = compute_edgels(G, thresh);
t2 = toc;
% Visualization
fprintf('Computing gradients: %gs\nExtracting edgels: %gs\n', t1, t2);
clf;
% Render the gradient image
sc(G, 'flow', [0 thresh*2]);
% Render the edgels
hold on
c = 0.5 * cos(reshape(X(3,:), 1, 1, []));
s = 0.5 * sin(reshape(X(3,:), 1, 1, []));
X = bsxfun(@plus, reshape(X(1:2,:), 2, 1, []), [-s s; c -c]);
plot(squeeze(X(1,:,:)), squeeze(X(2,:,:)), 'r-', 'LineWidth', 2);
hold off
|
github
|
ojwoodford/ojwul-master
|
edge_orient.m
|
.m
|
ojwul-master/edges/edge_orient.m
| 1,697 |
utf_8
|
15cb5f6b3da227debeff758ef7043493
|
%EDGE_ORIENT Calculate edge filter responses at any orientation
%
% [R, O, G] = edge_orient(I, sigma, [mcm])
%
% Returns a handle to a function that generates an edge filter response
% image using angularly adaptive filtering, and also outputs the angle that
% gives maximal edge response. The implementation uses separable, steerable
% filters, hence is fast.
%
% For multi-channel images, the gradient is computed in the colour
% direction of greatest change.
%
% IN:
% I - HxWxC input image.
% sigma - Scalar value determing the scale of the edge filter
% (essentially the amount of pre-smoothing to apply).
% mcm - multi-channel method: 'dizenzo' (default), 'norm', 'pca',
% 'rgb2gray'.
%
% OUT:
% R - @(theta) anonymous function, which, when given a scalar angle (in
% radians), or HxW angle array, returns an HxW edge filter response
% image for the angle(s) given. R(O) is the maximal edge filter
% response for each pixel.
% O - HxW edge orientation image, returning the angle, in radians, of the
% maximal filter response at each pixel.
% G - HxWx2 array of gradient images in x and y directions, along third
% dimension.
function [R, O, G] = edge_orient(I, sigma, mcm)
% Set the default method
if nargin < 3
mcm = 'dizenzo';
end
% Compute the image gradients
[Ix, Iy] = imgrad(I, sigma, mcm);
% Output function that generates response at any angle
R = @(theta) cos(theta) .* Ix + sin(theta) .* Iy;
if nargout > 1
% Evaluate the orientation, in radians
O = atan2(Iy, Ix);
if nargout > 2
G = cat(3, Ix, Iy);
end
end
return
|
github
|
ojwoodford/ojwul-master
|
edge_grad_max.m
|
.m
|
ojwul-master/edges/edge_grad_max.m
| 2,128 |
utf_8
|
59bbc912b76006eae4bc3b0b297e10d2
|
%EDGE_GRAD_MAX Mask of gradient maxima
%
% M = edge_grad_max(G, [thresh, [M]])
%
% Given a gradient image, computes the magnitude of locally maximal (in the
% direction of maximum gradient) gradients.
%
% IN:
% G - HxWx2 array of gradient images in x and y directions, along third
% dimension.
% thresh - Scalar value determining the threshold of the second
% derivative of gradient above which to ignore edges. Default:
% 0.
% M - HxW logical image of pixels to look for maxima at.
%
% OUT:
% Mo - HxWx3 masked gradient (0 if not locally maximal), gradient and
% gradient derivative magnitudes image.
% X - 2x(sum(M(:))) array of subpixel edgelet dimensions.
function [M, X] = edge_grad_max(G, thresh, M)
% Default values
if nargin < 3
M = true(size(G, 1), size(G, 2));
if nargin < 2
thresh = 0;
end
end
% Sample in direction of maximum gradient
GM = reshape(G, [], 2);
GM = GM(M,:);
off = bsxfun(@times, GM, 1./(max(abs(GM), [], 2) + 1e-100));
[Y, X] = find(M);
a = reshape(ojw_interp2(G, bsxfun(@plus, X, [-off(:,1) off(:,1)]), bsxfun(@plus, Y, [-off(:,2) off(:,2)]), 'l', cast(0, class(G))), [], 2, 2);
% Compute normalized edge direction
mag = normd(GM, 2);
nm = bsxfun(@times, GM, 1 ./ (mag + 1e-100));
% Compute derivatives of gradient magnitude in direction of maximum
% gradient
a = abs(sum(bsxfun(@times, a, reshape(nm, [], 1, 2)), 3));
deriv_2nd = 2 * mag - sum(a, 2);
% Output the edge gradient magnitude
M_ = M;
M = zeros(numel(M), 2);
M(M_,1) = mag;
M(M_,2) = mag;
M(M_,3) = deriv_2nd;
% Find gradient maxima above the threshold
M_(M_) = all(bsxfun(@gt, mag, a), 2) & mag > thresh & deriv_2nd > thresh;
% Mask boundary pixels
M_([1 end],:) = false;
M_(:,[1 end]) = false;
% Mask output magnitudes
M(~M_,1) = 0;
M = reshape(M, [size(G, 1), size(G, 2) 3]);
if nargout > 1
% Sub-pixel refine the edgelets in the direction of maximum gradient
off = 0.5 * normd(off, 2) .* diff(a, 1, 2) ./ deriv_2nd;
X = [(X + nm(:,1) .* off)'; (Y + nm(:,2) .* off)'];
end
end
|
github
|
ojwoodford/ojwul-master
|
edge_scale.m
|
.m
|
ojwul-master/edges/edge_scale.m
| 3,642 |
utf_8
|
2f8b378bdf47530ade9e24ab3a115f5a
|
%EDGE_SCALE Compute an edge scale image
%
% [S, G, E] = edge_scale(I, [max_octaves, [levels_per_octave, [thresh]]])
%
% Output the edge scale of each pixel, and a list of edgels, if requested.
% The scale of an edge is determined by the amount of image smoothing
% required before it stops being a locally maximal gradient.
%
% IN:
% I - HxWxC input image.
% max_octaves - integer indicating the number of scale octaves to search
% over, from 0 (original image only) to Inf (coarsest scale
% possible). Default: Inf.
% levels_per_octave - positive integer indicating the number scale levels
% to have per octave (halving of image size).
% Default: 1.
%
% OUT:
% S - HxW edge scale image, indicating for each pixel the coarsest octave
% at which that pixel is an edge (starting from 0), or -1 if not an
% edge.
% G - HxWx2 gradient image at the finest scale.
% E - 5xN list of edgels, each column giving [x y angle mag scale] of the
% edgel centre.
function [S, G, E] = edge_scale(I, max_octaves, levels_per_octave, thresh)
% Default values
if nargin < 4
thresh = 0;
if nargin < 3
levels_per_octave = 1;
if nargin < 2
max_octaves = Inf;
end
end
end
[h, w, c] = size(I);
max_octaves = min(max_octaves, floor(log2(min(h, w))) - 3);
max_octaves = max_octaves * levels_per_octave - 1;
% Prefilter the image
sigma = 1.0;
if sigma > 0.5
I = filter(I, sqrt(sigma * sigma - 0.25));
end
% Compute the gradient image at the coarsest scale
grad = @(I) imgrad(I, 0, 'norm');
[Ix, Iy] = grad(I);
G = cat(3, Ix, Iy);
if nargout < 3
% Compute the gradient maxima and subpixel locations
M = edge_grad_max(G, thresh);
M = M(:,:,1) ~= 0;
else
% Compute the gradient maxima and subpixel locations
[M, X] = edge_grad_max(G, thresh);
mag = M(:,:,1);
M = mag ~= 0;
mag = mag(M);
% Compute the edge angles, in radians
angle = atan2(Iy(M), Ix(M));
% Output only those edgelets which meet the criteria
E = [X(:,M); angle'; mag'];
Morig = M;
end
clear Ix Iy
% Initialize the scale image
S = (M - 1) * levels_per_octave;
% Now go over each further octave
scale = 0;
octave = 0;
Mlow = M;
while any(Mlow(:))
% Increase the scale
scale = scale + 1;
if scale > max_octaves
break;
end
% Compute the filter
sigma_new = sigma * (2 ^ (1 / levels_per_octave));
g = gauss_mask(sqrt(sigma_new * sigma_new - sigma * sigma));
sigma = sigma_new;
% Filter the image
I = filter(I, g);
% Subsample if necessary
if mod(scale, levels_per_octave) == 0
I = I(1:2:end,1:2:end,:);
Mlow = conv2([1 1 1], [1; 1; 1], single(Mlow), 'same') > 0;
Mlow = Mlow(1:2:end,1:2:end);
sigma = sigma / 2;
octave = octave + 1;
end
% Find the gradient maxima
M_ = edge_grad_max(grad(I), 0, Mlow);
M_ = M_(:,:,1) ~= 0;
Mlow = Mlow & M_;
% Upscale to original size
M_(end+1,end+1) = false;
M_ = single(M_);
for a = 1:octave;
M_ = interp2(M_);
end
% Update the mask
M_ = M_(1:h,1:w) ~= 0;
M = M & M_;
% Update the scales
S(M) = scale;
end
% Rescale the scale
S = S / levels_per_octave;
% Add scale onto the edgelet descriptions
if nargout > 1
E = [E; S(Morig)'];
end
end
function I = filter(I, g)
g = g / sum(g);
I = imfiltsep(I, g, g);
end
|
github
|
ojwoodford/ojwul-master
|
compute_edgels.m
|
.m
|
ojwul-master/edges/compute_edgels.m
| 3,118 |
utf_8
|
f0cfd6d776fe3d002ffd49a5f7164962
|
%COMPUTE_EDGELS Extract edgels from a gradient image
%
% E = compute_edgels(G, thresh)
%
% Returns a list of edgel positions and normal angles, each edgel being a
% pixel long, given a gradient image and threshold parameter.
%
% IN:
% G - HxWx2 array of gradient images in x and y directions, along third
% dimension.
% thresh - Scalar value determining the threshold of the second
% derivative of gradient at which to ignore edges.
%
% OUT:
% E - 3xN list of edgels, each column giving [x y angle] of the edgel
% centre.
% I - Mx1 list of chain start indices (if min_length > 0)
function [E, I] = compute_edgels(G, thresh, min_length, join_thresh)
if nargin < 4
join_thresh = 0;
if nargin < 3
min_length = 0;
if nargin < 2
thresh = 0;
end
end
end
% Compute the gradient maxima and subpixel locations
[M, E] = edge_grad_max(G, thresh);
% Compute the edgeness map
M_ = M(:,:,1) ~= 0;
M = (M(:,:,3) .* M_) ./ (M(:,:,2) + 20);
% Output only those edgelets which meet the criteria
G = reshape(G, [], 2);
E = [E(:,M_); normalize([-G(M_,2)'; G(M_,1)']); M(M_)'];
% Compute the edgelets or edge chains
I = [];
if min_length
% Create an index matrix
I = M;
M_ = find(M_);
n = numel(M_);
I(M_) = 1:n;
I(I==0) = n + 1;
% Extract the neighbours to the right and below
Y = [E zeros(5, 1)];
off = size(M, 1);
off = [-off-1, -off, -off+1, -1, 1, off-1, off, off+1]';
I = I(bsxfun(@plus, M_', off));
Y = reshape(Y(:,I), 5, 8, n);
% Compute the edge score for the neighbours
Z = normalize(bsxfun(@minus, reshape(E(1:2,:), 2, 1, []), Y(1:2,:,:)));
Z = reshape(bsxfun(@times, abs(sum(bsxfun(@times, reshape(E(3:4,:), 2, 1, []), Z), 1) .* sum(Y(3:4,:,:) .* Z, 1)) .* Y(5,:,:), reshape(E(5,:), 1, 1, [])), 8, n);
% Compute the chains
[J, I] = compute_chains(Z, I, min_length, join_thresh);
E = E(:,J);
end
% Compute the edge angles, in radians
E = [E(1:2,:); atan2(-E(3,:), E(4,:)); E(5,:)];
end
function [I, J] = compute_chains(Z, L, min_length, thresh)
I = zeros(size(Z, 2), 1);
ic = 0;
ic_last = 0;
J = I;
jc = 1;
K = uint8(sum(Z > thresh, 1)');
M = [K < 0; true];
i_ = uint32(0);
opts = {'==', uint8(1)};
while 1
% Select the start point
i = find_first(K, opts{:}, i_);
if ~i
if isempty(opts)
break;
end
opts = {};
continue;
end
i_ = i;
J(jc) = ic + 1;
% Build the chain
l = 0;
m = thresh * (i ~= uint32(0)) + 1;
while m > thresh
% Add to the chain
ic = ic + 1;
I(ic) = i;
M(i) = true;
K(i) = 0;
l = l + 1;
% Find the next edge
k = Z(:,i);
k(M(L(:,i))) = 0;
[m, j] = max(k);
i = L(j,i);
end
% Check it's long enough
if l < min_length;
ic = ic_last;
else
jc = jc + 1;
ic_last = ic;
end
end
I = I(1:ic);
J = J(1:jc-1);
end
|
github
|
ojwoodford/ojwul-master
|
tensor_voted_edges.m
|
.m
|
ojwul-master/edges/tensor_voted_edges.m
| 2,114 |
utf_8
|
0f69548b15f818bc7e694233d37f96d7
|
% Author: Emmanuel Maggiori. March 2014.
%
% Complimentary material for the literature review:
% "Perceptual grouping by tensor voting: a comparative survey of recent approaches". E Maggiori, HL Manterola, M del fresno. To be published in IET Computer Vision.
%
% Implementation of Steerable Tensor Voting as published in:
% "An efficient method for tensor voting using steerable filters", Franken et. al. ECCV 2006.
function grad_im = tensor_voted_edges(grad_im, sigma)
s = normd(grad_im, 3);
be = pi/2 + mod(atan2(grad_im(:,:,2), grad_im(:,:,1)), pi);
[height, width] = size(s);
c0=c(0,s,be);
c2=c(2,s,be);
c4=c(4,s,be);
c6=c(6,s,be);
c2bar=conj(c2);
w0=w(0,height,width,sigma);
w2=w(2,height,width,sigma);
w4=w(4,height,width,sigma);
w6=w(6,height,width,sigma);
w8=w(8,height,width,sigma);
c0_f=fft2(c0);
c2_f=fft2(c2);
c4_f=fft2(c4);
c6_f=fft2(c6);
c2bar_f=fft2(c2bar);
w0_f=fft2(w0);
w2_f=fft2(w2);
w4_f=fft2(w4);
w6_f=fft2(w6);
w8_f=fft2(w8);
w0_c2bar=w0_f.*c2bar_f; %eight convolutions required
w2_c0=w2_f.*c0_f;
w4_c2=w4_f.*c2_f;
w6_c4=w6_f.*c4_f;
w8_c6=w8_f.*c6_f;
w0_c0=w0_f.*c0_f;
w2_c2=w2_f.*c2_f;
w4_c4=w4_f.*c4_f;
U_minus2= ifftshift( ifft2( (w0_c2bar) + 4*(w2_c0) + 6*(w4_c2) + 4*(w6_c4) + (w8_c6) ) );
U_2=conj(U_minus2);
U_0= real( ifftshift( ifft2( 6*(w0_c0) + 8*(w2_c2) + 2*(w4_c4) )));
saliency = abs(U_minus2);
orientation = 0.5 * angle(U_minus2);
grad_im = cat(3, saliency .* sin(orientation), saliency .* cos(orientation));
end
function im = c(m,s,be) %s: stickness field, be:orientation field
im=s.*exp(-1i*m*be);
end
function kernel = w(m,h,w,sigma)
w2=ceil(w/2.0);
h2=ceil(h/2.0);
[x, y] = meshgrid(1:w,1:h);
kernel = exp(-(((x-w2).^2+(y-h2).^2)/(2*sigma^2))).*(((x-w2)+1i*(y-h2))./(sqrt((x-w2).^2+(y-h2).^2))).^m;
kernel(h2,w2)=1;
end
|
github
|
ojwoodford/ojwul-master
|
fast_kmeans.m
|
.m
|
ojwul-master/cluster/fast_kmeans.m
| 1,324 |
utf_8
|
6cf23c5f257a6576ed755100821fcb1f
|
%FAST_KMEANS Compute k-means cluster centres
%
% [CX sse I] = fast_kmeans(X, params[, CX])
%
% This function computes k-means cluster centres. It will work faster if
% data is projected onto principle components first.
%
% IN:
% X - MxN matrix of N input vectors of dimension M.
% params - [nclusters max_iters min_sse_delta robust_thresh].
% nclusters: number of required clusters.
% max_iters: maximum number of iterations.
% min_sse_delta: convergence threshold for change in error score.
% robust_thresh: reject outliers more than robust_thresh
% squared distance away from all cluster
% centers. If 0, no outlier rejection.
% CX - Mx(nclusters) matrix of initial cluster centres of X. Default:
% randomly initialized to nclusters different vectors from X.
%
% OUT:
% CX - Mx(nclusters) matrix of updated cluster centres of X.
% sse - Sum of squared errors of distances to cluster centres.
% I - Nx1 uint32 vector of cluster indices each input vector is assigned
% to.
function varargout = fast_kmeans(varargin)
sourceList = {'fast_kmeans.cpp', '-Xopenmp'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
isautodiff.m
|
.m
|
ojwul-master/autodiff/isautodiff.m
| 104 |
utf_8
|
114480bc63ab1389236fc7fac0cbbea5
|
%ISAUTODIFF Helper for autodiff
function tf = isautodiff(varargin)
tf = false(1, max(nargin, 1));
end
|
github
|
ojwoodford/ojwul-master
|
var_indices.m
|
.m
|
ojwul-master/autodiff/var_indices.m
| 90 |
utf_8
|
343c2c6be93b20eb08c12d5780c90d43
|
%VAR_INDICES Dummy helper function for autodiff
function c = var_indices(a)
c = [];
end
|
github
|
ojwoodford/ojwul-master
|
autodiff.m
|
.m
|
ojwul-master/autodiff/autodiff.m
| 25,193 |
utf_8
|
27a380b7799c8c8099d41e76ab04c2e2
|
% A class for doing autodifferentiation
classdef autodiff
properties (SetAccess = private, Hidden = true)
value; % Function values Mx...xN
deriv; % Jacobian values VxMx...xN
varind; % Variable indices 1xV
end
methods
function obj = autodiff(a, v, b)
obj.value = a;
if nargin > 1
obj.varind = v(:)';
%assert(isequal(obj.varind, unique(obj.varind)));
if nargin > 2
obj.deriv = b;
%assert(isequal(size(b), [numel(obj.varind) size(a)]));
else
% We assume that there is 1 varind per element in a
obj.deriv = reshape(eye(numel(v)), [numel(a) size(a)]);
end
else
obj.varind = 1:numel(a);
obj.deriv = reshape(eye(numel(a)), [numel(a) size(a)]);
end
end
% Get the values
function c = double(obj)
c = obj.value;
end
function c = grad(obj, vars)
if nargin < 2
vars = obj.varind;
elseif isscalar(vars) && vars < 0
% Return sparse output
n = numel(obj.value);
c = sparse(repmat(obj.varind(:), [n 1]), ...
reshape(repmat(1:n, [numel(obj.varind(:)) 1]), [], 1), ...
obj.deriv(:), ...
-vars, n);
return;
end
n = numel(vars);
if n == numel(obj.varind) && n == vars(end) && n == obj.varind(end)
c = obj.deriv;
else
c = zeros([n size(obj.value)]);
[Lia, Locb] = ismember(vars, obj.varind);
c(Lia,:) = obj.deriv(Locb(Lia),:);
end
end
function c = var_indices(obj)
c = obj.varind;
end
function disp(obj, varargin)
fprintf('Value:\n');
disp(obj.value, varargin{:});
fprintf('Gradient:\n');
disp(obj.deriv, varargin{:});
fprintf('Gradient indices:\n');
disp(obj.varind, varargin{:});
end
% Elementwise operators
function c = plus(a, b)
c = double(a) + double(b);
[d, v] = add_grads(grad(a), grad(b), var_indices(a), var_indices(b), size(c));
c = autodiff(c, v, d);
end
function c = uminus(a)
c = autodiff(-a.value, a.varind, -a.deriv);
end
function c = minus(a, b)
c = a + (-b);
end
function c = times(a, b)
da = double(a);
db = double(b);
d = [];
v = [];
if isautodiff(a)
d = a.deriv .* shiftdim(db, -1);
end
if isautodiff(b)
v = b.deriv .* shiftdim(da, -1);
end
c = da .* db;
[d, v] = add_grads(d, v, var_indices(a), var_indices(b), size(c));
c = autodiff(c, v, d);
end
function c = dot(a, b, dim)
if nargin < 3
dim = first_nonsingleton_dim(a, b);
end
da = double(a);
db = double(b);
d = [];
v = [];
if isautodiff(a)
d = sum(a.deriv .* shiftdim(db, -1), dim+1);
end
if isautodiff(b)
v = sum(b.deriv .* shiftdim(da, -1), dim+1);
end
c = dot(da, db, dim);
[d, v] = add_grads(d, v, var_indices(a), var_indices(b), size(c));
c = autodiff(c, v, d);
end
function c = rdivide(a, b)
da = double(a);
db = double(b);
d = [];
v = [];
if isautodiff(a)
d = a.deriv .* shiftdim(db, -1);
end
if isautodiff(b)
v = b.deriv .* -shiftdim(da, -1);
end
c = da ./ db;
[d, v] = add_grads(d, v, var_indices(a), var_indices(b), size(c));
c = autodiff(c, v, d .* shiftdim(1 ./ (db .* db), -1));
end
function c = ldivide(a, b)
c = rdivide(b, a);
end
function c = power(a, b)
da = double(a);
db = double(b);
d = [];
v = [];
c = da .^ db;
if isautodiff(a)
d = a.deriv .* shiftdim((da .^ (db-1)) .* db, -1);
end
if isautodiff(b)
v = b.deriv .* shiftdim(c .* log(da), -1);
end
[d, v] = add_grads(d, v, var_indices(a), var_indices(b), size(c));
c = autodiff(c, v, d);
end
function c = bsxfun(func, a, b)
c = func(a, b);
end
function c = conj(a)
c = autodiff(conj(a.value), a.varind, conj(a.deriv));
end
function c = abs(a)
M = a.value < 0;
c = reshape(a.deriv, [], numel(a.value));
c(:,M) = -c(:,M);
c = autodiff(abs(a.value), a.varind, reshape(c, size(a.deriv)));
end
function c = exp(a)
c = exp(a.value);
c = autodiff(c, a.varind, shiftdim(c, -1) .* a.deriv);
end
function c = log(a)
c = autodiff(log(a.value), a.varind, a.deriv .* (1 ./ shiftdim(a.value, -1)));
end
function c = sqrt(a)
c = sqrt(a.value);
c = autodiff(c, a.varind, a.deriv .* shiftdim(min(0.5 ./ c, 1e300), -1));
end
function c = sin(a)
c = autodiff(sin(a.value), a.varind, a.deriv .* shiftdim(cos(a.value), -1));
end
function c = cos(a)
c = autodiff(cos(a.value), a.varind, a.deriv .* shiftdim(-sin(a.value), -1));
end
function c = tan(a)
c = sec(a.value);
c = autodiff(tan(a.value), a.varind, a.deriv .* shiftdim(c .* c, -1));
end
function c = asin(a)
c = autodiff(asin(a.value), a.varind, a.deriv .* shiftdim(1 ./ sqrt(1 - a.value .* a.value), -1));
end
function c = acos(a)
c = autodiff(acos(a.value), a.varind, a.deriv .* shiftdim(-1 ./ sqrt(1 - a.value .* a.value), -1));
end
function c = atan(a)
c = autodiff(atan(a.value), a.varind, a.deriv .* shiftdim(1 ./ (1 + a.value .* a.value), -1));
end
% Matrix operators
function c = mtimes(a, b)
if isscalar(a) || isscalar(b)
c = times(a, b);
return;
end
da = double(a);
db = double(b);
c = da * db;
v = combine_varind(a, b);
sz = [numel(v) size(c)];
if isautodiff(a)
g = reshape(reshape(grad(a, v), [], size(da, 2)) * db, sz);
else
g = 0;
end
if isautodiff(b)
g = g + reshape(sum(shiftdim(da, -1) .* permute(grad(b, v), [1 4 2 3]), 3), sz);
end
c = autodiff(c, v, g);
end
function c = mrdivide(a, b)
if isscalar(a) || isscalar(b)
c = rdivide(a, b);
return;
end
error('Matrix divides not yet supported in autodiff. Use inv if possible.');
end
function c = mldivide(a, b)
if isscalar(a) || isscalar(b)
c = ldivide(a, b);
return;
end
error('Matrix divides not yet supported in autodiff. Use inv if possible.');
end
function c = inv(a)
c = inv(a.value);
sz = [size(a.deriv) 1];
d = -shiftdim(c, -1) .* reshape(a.deriv, sz([1 end 2:end-1]));
d = reshape(sum(d, 3), sz);
d = d .* shiftdim(c, -2);
d = reshape(sum(d, 3), sz);
c = autodiff(c, a.varind, d);
end
function c = pinv(a)
c = pinv(a.value);
ct = c';
d = permute(a.deriv, [1 3 2]);
sz = [size(a.deriv) 1];
if sz(2) >= sz(3)
d_ = reshape(sum(d .* shiftdim(ct, -2), 3), sz(1), sz(3), sz(3));
d_ = d_ - reshape(sum(shiftdim(c * a.value, -1) .* reshape(d_, sz(1), 1, sz(3), sz(3)), 3), sz(1), sz(3), sz(3));
d_ = d_ - reshape(sum(shiftdim(c, -1) .* reshape(a.deriv, sz(1), 1, sz(2), sz(3)), 3), sz(1), sz(3), sz(3));
d = reshape(d - reshape(sum(sum(d .* shiftdim(a.value, -2), 3) .* shiftdim(c, -3), 4), sz(1), sz(3), sz(2)), sz(1), 1, sz(3), sz(2));
d = reshape(sum(d_ .* shiftdim(c, -2), 3), sz(1), sz(3), sz(2)) + reshape(sum(shiftdim(c * ct, -1) .* d, 3), sz(1), sz(3), sz(2));
else
d_ = reshape(sum(shiftdim(ct, -1) .* reshape(d, sz(1), 1, sz(3), sz(2)), 3), sz(1), sz(2), sz(2));
d_ = d_ - reshape(sum(d_ .* shiftdim(a.value * c, -2), 3), sz(1), sz(2), sz(2));
d_ = d_ - reshape(sum(a.deriv .* shiftdim(c, -2), 3), sz(1), sz(2), sz(2));
d = d - reshape(sum(shiftdim(c, -1) .* reshape(sum(shiftdim(a.value, -1) .* reshape(d, sz(1), 1, sz(3), sz(2)), 3), sz(1), 1, sz(2), sz(2)), 3), sz(1), sz(3), sz(2));
d = reshape(sum(shiftdim(c, -1) .* reshape(d_, sz(1), 1, sz(2), sz(2)), 3), sz(1), sz(3), sz(2)) + reshape(sum(d .* shiftdim(ct * c, -2), 3), sz(1), sz(3), sz(2));
end
c = autodiff(c, a.varind, d);
end
function c = expm(a)
c = expm(a.value);
sz = [size(a.deriv) 1];
d = shiftdim(c, -1) .* reshape(a.deriv, sz([1 end 2:end-1]));
d = reshape(sum(d, 3), sz);
c = autodiff(c, a.varind, d);
end
function c = logm(a)
sz = [size(a.deriv) 1];
d = shiftdim(inv(a.value), -1) .* reshape(a.deriv, sz([1 end 2:end-1]));
d = reshape(sum(d, 3), sz);
c = autodiff(logm(a.value), a.varind, d);
end
% Reduction methods: Sum, prod, min, max
function c = sum(a, dim, flag)
assert(nargin < 3 || strcmp(flag, 'default'), 'Only default option supported');
if nargin < 2
dim = first_nonsingleton_dim(a);
end
c = autodiff(sum(a.value, dim), a.varind, sum(a.deriv, dim+1));
end
function c = prod(a, dim)
if nargin < 2
dim = first_nonsingleton_dim(a);
end
c = a.value;
c(c==0) = 1e-154;
c = autodiff(prod(a.value, dim), a.varind, sum(a.deriv .* shiftdim(prod(c, dim) .* (1 ./ c), -1), dim+1));
end
function c = select(a, b, M)
da = double(a);
db = double(b);
v = combine_varind(a, b);
ga = grad(a, v);
gb = grad(b, v);
if isscalar(a)
M = ~M;
db(M) = da;
gb(:,M) = repmat(ga, [1 sum(M(:))]);
c = autodiff(db, v, gb);
elseif isscalar(b)
da(M) = db;
ga(:,M) = repmat(gb, [1 sum(M(:))]);
c = autodiff(da, v, ga);
else
da(M) = db(M);
ga(:,M) = gb(:,M);
c = autodiff(da, v, ga);
end
end
function [c, d] = min(a, b, dim)
if nargin > 1 && ~isempty(b)
d = double(a) > double(b);
c = select(a, b, d);
else
if nargin < 3
dim = first_nonsingleton_dim(a);
end
[c, d] = min(a.value, [], dim);
c = autodiff(c, var_indices(a), dimsel(a.deriv, d, dim));
end
end
function [c, d] = max(a, b, dim)
if nargin > 1 && ~isempty(b)
d = double(a) < double(b);
c = select(a, b, d);
else
if nargin < 3
dim = first_nonsingleton_dim(a);
end
[c, d] = max(a.value, [], dim);
c = autodiff(c, var_indices(a), dimsel(a.deriv, d, dim));
end
end
% Logical operators
function c = lt(a, b)
c = lt(double(a), double(b));
end
function c = le(a, b)
c = le(double(a), double(b));
end
function c = gt(a, b)
c = gt(double(a), double(b));
end
function c = ge(a, b)
c = ge(double(a), double(b));
end
function c = eq(a, b)
c = eq(double(a), double(b));
end
function c = ne(a, b)
c = ne(double(a), double(b));
end
% Access functions
function c = end(a, k, n)
if k < n
c = size(a.value, k);
else
sz = size(a.value);
if numel(sz) < k
c = 1;
else
c = prod(sz(k:end));
end
end
end
function c = subsref(a, s)
assert(strcmp(s.type, '()'));
c = a.value(s.subs{:});
c = autodiff(c, a.varind, reshape(a.deriv(:,s.subs{:}), [size(a.deriv, 1) size(c)]));
end
function c = subsasgn(a, s, b)
assert(strcmp(s.type, '()'));
c = double(a);
c(s.subs{:}) = double(b);
v = combine_varind(a, b);
d = grad(a, v);
s_ = [{':'} s.subs];
d_ = grad(b, v);
if isscalar(b)
d_ = repmat(d_, [1 size(c(s.subs{:}))]);
end
d(s_{:}) = d_;
c = autodiff(c, v, d);
end
% Array concatenation
function c = cat(dim, varargin)
c = cellfun(@double, varargin, 'Uniform', false);
v = combine_varind(varargin{:});
d = cellfun(@(x) grad(x, v), varargin, 'Uniform', false);
c = autodiff(cat(dim, c{:}), v, cat(dim+1, d{:}));
end
function c = horzcat(varargin)
c = cat(2, varargin{:});
end
function c = vertcat(varargin)
c = cat(1, varargin{:});
end
function c = repmat(a, varargin)
c = autodiff(repmat(a.value, varargin{:}), a.varind, repmat(a.deriv, cat(2, 1, varargin{:})));
end
% Transpose, permute, reshape, shiftdim etc.
function c = ctranspose(a)
c = permute(conj(a), [2 1]);
end
function c = transpose(a)
c = permute(a, [2 1]);
end
function c = permute(a, order)
c = autodiff(permute(a.value, order), a.varind, permute(a.deriv, [1 order+1]));
end
function c = ipermute(a, order)
order(order) = 1:numel(order);
c = permute(a, order);
end
function c = reshape(a, varargin)
if nargin == 2 && isnumeric(varargin{1})
c = autodiff(reshape(a.value, varargin{1}), a.varind, reshape(a.deriv, [size(a.deriv, 1) varargin{1}]));
else
c = autodiff(reshape(a.value, varargin{:}), a.varind, reshape(a.deriv, size(a.deriv, 1), varargin{:}));
end
end
function c = shiftdim(a, n)
if (n > 0)
m = ndims(a.value);
n = rem(n, m);
c = permute(a, [n+1:m, 1:n]);
else
c = reshape(a, [ones(1, -n), size(a.value)]);
end
end
% Size and is*
function varargout = size(a, varargin)
[varargout{1:nargout}] = size(a.value, varargin{:});
end
function c = length(a)
if isempty(a)
c = 0;
else
c = max(size(a));
end
end
function c = ndims(a)
c = ndims(a.value);
end
function c = numel(a)
c = numel(a.value);
end
function c = isautodiff(a)
c = true;
end
function c = isfloat(a)
c = isfloat(a.value);
end
function c = isempty(a)
c = isempty(a.value);
end
function c = isscalar(a)
c = isscalar(a.value);
end
function c = isreal(a)
c = isreal(a.value) & isreal(a.deriv);
end
function c = isnan(a)
c = isnan(a.value) | shiftdim(any(isnan(a.deriv)), 1);
end
function c = isfinite(a)
c = isfinite(a.value) & shiftdim(all(isfinite(a.deriv)), 1);
end
% Other functions
function c = ojw_interp2(I, x, y, varargin)
if isautodiff(x) && isautodiff(y) && ~isautodiff(I)
[c, d] = ojw_interp2(I, x.value, y.value, varargin{:});
c = autodiff(c, x.varind, x.deriv .* d(1,:,:,:) + y.deriv .* d(2,:,:,:));
elseif isautodiff(I) && ~isautodiff(x) && ~isautodiff(y)
[h, w, n] = size(I.value);
sz = size(I.value);
[sz(1), sz(2)] = size(x);
c = [shiftdim(I.value, -1); I.grad];
c = reshape(reshape(c, size(c, 1), numel(I.value))', h, w, []);
c = ojw_interp2(c, x, y, varargin{:});
c = reshape(c, size(c, 1), size(c, 2), n, numel(I.varind)+1);
c = autodiff(reshape(c(:,:,:,1), sz), I.varind, reshape(permute(c(:,:,:,2:end), [4 1 2 3]), [numel(I.varind) sz]));
else
error('Unexpected variables');
end
end
% Alternative method avoids a subsref of autodiff variables (for
% speed)
function c = ojw_interp2_alt(I, x, varargin)
if isautodiff(x) && ~isautodiff(I)
[c, d] = ojw_interp2(I, x.value(:,:,1), x.value(:,:,2), varargin{:});
c = autodiff(c, x.varind, x.deriv(:,:,:,1) .* d(1,:,:,:) + x.deriv(:,:,:,2) .* d(2,:,:,:));
else
error('Unexpected variables');
end
end
function c = expm_srt_3d(dP)
dP.value(1:3,:) = dP.value(1:3,:) * sqrt(2);
dP.deriv(:,1:3,:) = dP.deriv(:,1:3,:) * sqrt(2);
switch size(dP, 1)
case 3
type = 'so3';
case 6
type = 'se3';
dP = autodiff(dP.value([4:6 1:3],:), dP.varind, dP.deriv(:,[4:6 1:3],:));
case 7
type = 'sim3';
dP.value(7,:) = dP.value(7,:) * sqrt(3);
dP.deriv(:,7,:) = dP.deriv(:,7,:) * sqrt(3);
dP = autodiff(dP.value([4:6 1:3 7],:), dP.varind, dP.deriv(:,[4:6 1:3 7],:));
otherwise
error('Size of dP not recognized');
end
c = exp(lie(type), dP);
c = autodiff(c.value(1:3,:,:), c.varind, c.deriv(:,1:3,:,:));
end
function c = conv2(varargin)
% Get the shape
if ischar(varargin{end})
shape = varargin{end};
varargin = varargin(1:end-1);
else
shape = 'full';
end
v = combine_varind(varargin{:});
n = numel(v);
c = double(varargin{end});
if isautodiff(varargin{end})
d = permute(grad(varargin{end}, v), [2 3 1]);
else
d = [];
end
if numel(varargin) == 3
varargin{1} = reshape(varargin{1}, [], 1);
varargin{2} = reshape(varargin{2}, 1, []);
conv2_ = @(A, B) conv2(B, A, shape);
else
conv2_ = @(A, B) conv2(A, B, shape);
end
for a = 1:numel(varargin)-1
ca = double(varargin{a});
if ~isempty(d)
for b = n:-1:1
d_(:,:,b) = conv2_(ca, d(:,:,b));
end
d = d_;
clear d_
end
if isautodiff(varargin{a})
da = permute(grad(varargin{a}, v), [2 3 1]);
for b = n:-1:1
d_(:,:,b) = conv2_(da(:,:,b), c);
end
if isempty(d)
d = d_;
else
d = d + d_;
end
clear d_
end
c = conv2_(ca, c);
end
d = permute(d, [3 1 2]);
c = autodiff(c, v, d);
end
function a = homg(a)
a.value(end+1,:) = 1;
a.deriv(:,end+1,:) = 0;
end
function [c, z] = proj(a)
sz = size(a.value);
sz(1) = sz(1) - 1;
c = a.value(1:end-1,:);
z = 1 ./ a.value(end,:);
c = c .* z;
z = shiftdim(z, -1);
dz = -z .* a.deriv(:,end,:);
d = a.deriv(:,1:end-1,:) .* z + shiftdim(c, -1) .* dz;
c = autodiff(reshape(c, sz), a.varind, reshape(d, [size(d, 1) sz]));
if nargout > 1
sz(1) = 1;
dz = dz .* z;
z = autodiff(reshape(z, sz), a.varind, reshape(dz, [size(dz, 1) sz]));
end
end
% Debug
function check_size(a)
sz1 = size(a.value);
sz2 = size(a.deriv);
if numel(sz2) == 2
sz2(3) = 1;
end
assert(isequal(sz1, sz2(2:end)), 'Unexpected array sizes. Value: [%s]. Derivative: [%s].\n', sprintf('%d ', sz1), sprintf('%d ', sz2));
end
end
end
% Helpers
function dim = first_nonsingleton_dim(a, b)
sza = size(a);
if nargin > 1
szb = size(b);
sza(end+1:numel(szb)) = 1;
szb(end+1:numel(sza)) = 1;
sza = min(sza, szb);
end
dim = find(sza > 1, 1, 'first');
if isempty(dim)
dim = 1;
end
end
function g = expand_array(ga, va, v, fill)
[l, l] = ismember(va, v);
sz = size(ga);
sz(1) = numel(v);
g = repmat(fill, sz);
g(l,:) = ga(:,:);
end
function [c, v] = add_grads(ga, gb, va, vb, sz)
if isempty(va)
sz2 = size(gb);
sz = [sz2(1) sz];
sz2(end+1:numel(sz)) = 1;
sz2 = max(sz2, 1);
c = repmat(gb, sz ./ sz2);
v = vb;
return;
end
if isempty(vb)
sz2 = size(ga);
sz = [sz2(1) sz];
sz2(end+1:numel(sz)) = 1;
sz2 = max(sz2, 1);
c = repmat(ga, sz ./ sz2);
v = va;
return;
end
n = numel(va);
if (n == vb(end) && n == numel(vb) && n == va(end)) || isequal(va, vb)
c = ga + gb;
v = va;
return;
end
v = combine_varind_({va, vb});
c = expand_array(ga, va, v, 0) + expand_array(gb, vb, v, 0);
end
function A = dimsel(A, I, dim)
% Construct the index array
szA = size(A);
szI = size(I);
stride = cumprod([1 szA(2:end)]);
if stride(dim+1) == stride(end)
I = I(:) * stride(dim) + (1-stride(dim):0)';
elseif stride(dim) == 1
I = I(:) + (0:stride(dim+1):stride(end)-1)';
else
I = I(:) * stride(dim) + reshape((1-stride(dim):0)' + (0:stride(dim+1):stride(end)-1), [], 1);
end
% Construct the output
A = reshape(A(:,I), [szA(1) szI]);
end
function v = combine_varind(varargin)
v = combine_varind_(cellfun(@var_indices, varargin, 'UniformOutput', false));
end
function v = combine_varind_(varinds)
varinds = varinds(~cellfun(@isempty, varinds));
[n, m] = max(cellfun(@(c) c(end), varinds));
if numel(varinds) == 1 || numel(varinds{m}) == n
v = varinds{m};
return;
end
v = false(1, n);
v([varinds{:}]) = true;
v = find(v);
end
|
github
|
ojwoodford/ojwul-master
|
ojw_interp2_alt.m
|
.m
|
ojwul-master/autodiff/ojw_interp2_alt.m
| 850 |
utf_8
|
d8690ddac7c190d31d55d7348871f54d
|
%OJW_INTERP2_ALT Fast 2d interpolation for images
%
% V = ojw_interp2_alt(A, X)
% V = ojw_interp2_alt(A, X, interp_mode)
% V = ojw_interp2_alt(A, X, interp_mode, oobv)
%
% Wrapper to ojw_interp2 which has horizontal and vertical coordinates
% concatenated along the third dimension into one array.
%
%IN:
% A - HxWxC double, single, uint16, int16, uint8, int8 or Logical array.
% X - MxNx2 sample coordinates (1,1 being the centre of the top left
% pixel).
% interp_mode - string, either 'nearest', 'linear', 'cubic', 'magic',
% '3lanczos', or '5lanczos'. Default: 'linear'.
% oobv - 1x1 Out of bounds value. Default: NaN.
%
%OUT:
% V - MxNxC interpolated values. Class is the same as that of oobv.
function varargout = ojw_interp2_alt(A, X, varargin)
[varargout{1:nargout}] = ojw_interp2(A, X(:,:,1), X(:,:,2), varargin{:});
end
|
github
|
ojwoodford/ojwul-master
|
grad.m
|
.m
|
ojwul-master/autodiff/grad.m
| 221 |
utf_8
|
401e020bd53921b653fe42f0dc0629b9
|
%GRAD Dummy helper function for autodiff
function c = grad(a, vars)
if nargin < 2
c = 0;
elseif isscalar(vars) && vars < 0
c = sparse(-vars, numel(a));
else
c = zeros([numel(vars) size(a)]);
end
end
|
github
|
ojwoodford/ojwul-master
|
refine_subpixel.m
|
.m
|
ojwul-master/features/refine_subpixel.m
| 1,323 |
utf_8
|
2fb324b22128ffd02507ef1746c82bb5
|
%REFINE_SUBPIXEL N-dimensional sub-pixel refinement
%
% [offset, val] = refine_subpixel(A, M)
%
% Computes the offsets and values of the refined positions of maxima/minima
% in an N-dimensional array, by fitting a quadratic around the points.
%
%IN:
% A - An N-dimensional array of size sz.
% M - A binary mask of size sz indicating which points in the array are
% to be refined, or a 1xL list of the indices of such points.
%
%OUT:
% offset - NxL array of offset positions of the estimated true
% maximum/minimum from the integer position.
% val - 1xL estimated values at the subpixel maxima/minima.
function [offset, val] = refine_subpixel(V, c)
% Compute the indices
if islogical(c)
c = find(c);
end
c = reshape(c, 1, []);
% Compute some dimension values
sz = cumprod(size(V));
sz = [1 sz(1:end-1)]';
% Compute the Jacobian (central differences along each dimension)
Vp = V(bsxfun(@plus, c, sz));
Vn = V(bsxfun(@minus, c, sz));
J = 0.5 * (Vp - Vn);
% Compute the Hessian (no skew though, to ensure positive semi-definite)
Vc = V(c);
H = Vp + Vn - 2 * Vc;
% Compute the offsets and values
offset = -J ./ H;
if nargout > 1
val = col(Vc, 2) + dot(J, offset);
end
offset(:,any(abs(offset) >= 1)) = 0;
%assert(all(abs(offset(:)) < 1));
end
|
github
|
ojwoodford/ojwul-master
|
fast_corners.m
|
.m
|
ojwul-master/features/fast_corners.m
| 892 |
utf_8
|
51b22d38c75dfc9d3eeca1cd61e2fae2
|
%FAST_CORNERS Call mexed FAST corner detector
%
% [XY, scores] = fast_corners(I, thresh, type)
%
% FAST corner detection using Ed Rosten's C implementation. Method
% published in:
% "Machine learning for high-speed corner detection",
% E. Rosten & T. Drummond, ECCV 2006.
%
%IN:
% I - HxW uint8 grayscale image.
% thresh - scalar integer threshold for nonmax-suppression.
% type - {9,10,11,12} type of corner detector to use.
%
%OUT:
% XY - 2xN uint16 array of x,y coordinates of corners.
% score - 1xN uint16 array corner scores.
function varargout = fast_corners(varargin)
sd = 'private/fast/';
sourceList = {[sd 'fast_mex.c'], [sd 'fast_9.c'], [sd 'fast_10.c'], [sd 'fast_11.c'], ...
[sd 'fast_12.c'], [sd 'nonmax.c'], [sd 'fast.c']}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
end
|
github
|
ojwoodford/ojwul-master
|
extract_features.m
|
.m
|
ojwul-master/features/extract_features.m
| 1,610 |
utf_8
|
5e25a2a041b3867b15db27af4864c6bb
|
%EXTRACT_FEATURES Extract interest points from a detector score image
%
% [X, s] = extract_features(score, [radius, [thresh, [subpixel]]])
%
% Finds the local maxima in the input detector score image.
%
%IN:
% score - HxW interest point detector score.
% radius - Scalar indicating the radius of non-maxima suppression to
% apply. Default: 1.5.
% thresh - Threshold on corner suppression. If negative, magnitude is
% interpreted as the proportion of strongest corners to keep.
% Default: -0.5, i.e. keep top 50% of corners.
% subpixel - Boolean indicating whether subpixel refinement is wanted.
% Default: true.
%
%OUT:
% X - 2xN matrix of interest point locations.
% s - 1xN vector of interest point scores.
function [X, score] = extract_features(score, radius, thresh, subpixel)
% Set the default values
if nargin < 4
subpixel = true;
if nargin < 3
thresh = -0.5;
if nargin < 2
radius = 1.5;
end
end
end
% Find the local maxima
M = imnonmaxsup(score, radius);
% Reject boundary maxima
M([1 end],:) = false;
M(:,[1 end]) = false;
% Keep only those above the threshold
if thresh < 0
s = sort(score(M), 'descend');
thresh = s(ceil(end*-thresh));
end
M = M & score >= thresh;
% Compute the indices
[y, x] = find(M);
X = [y(:)'; x(:)'];
if subpixel
% Sub-pixel refinement
X = X + refine_subpixel(score, M);
end
% Put x coordinate first
X = X([2 1],:);
% Output the scores
if nargout > 1
score = score(M);
end
end
|
github
|
ojwoodford/ojwul-master
|
corners.m
|
.m
|
ojwul-master/features/corners.m
| 1,326 |
utf_8
|
cb352371b69acdedf06ea6f61d8d00b4
|
%CORNERS Compute corner detector score
%
% score = corners(I, [sigma], method)
%
%IN:
% I - HxWxC image
% sigma - Scalar value determing the scale of the gradient filter.
% Default: 1.
% method - String determing the method to use: 'harris', 'noble'
% or 'shi-tomasi'. Default: 'shi-tomasi'.
%
%OUT:
% score - HxW corner detector score.
function score = corners(I, varargin)
% Set the default values
method = 'shi-tomasi';
sigma = 1;
for v = varargin(:)'
if ischar(v{1})
method = v{1};
elseif isscalar(v{1})
sigma = v{1};
else
error('Input argument not recognized');
end
end
% Compute the image gradient
[Ix, Iy] = imgrad(I, 'Sobel');
% Compute 1D Gaussian filter from sigma
g = max(floor((5 / 2) * sigma), 1);
g = -g:g;
g = gauss_mask(sigma, 0, g);
% Region integration
Ix2 = imfiltsep(Ix .* Ix, g', g);
Iy2 = imfiltsep(Iy .* Iy, g', g);
Ixy = imfiltsep(Ix .* Iy, g', g);
% Compute trace and determinant of structure tensor
T = Ix2 + Iy2;
D = Ix2 .* Iy2 - Ixy .* Ixy;
% Compute the corner score
switch lower(method)
case 'harris'
score = D - 0.04 * T .* T;
case 'noble'
score = D ./ (T + 1e-300);
case 'shi-tomasi'
score = T - sqrt(T .* T - 2 * D);
end
end
|
github
|
ojwoodford/ojwul-master
|
dog.m
|
.m
|
ojwul-master/features/dog.m
| 279 |
utf_8
|
a1b8d4163884aa428f3e0c43500dd4a6
|
%DOG Difference of Gaussians blob detector
%
% features = dog(I)
%
%IN:
% I - HxWxC image
%
%OUT:
% features - 4xN frames of N features: [X; Y; scale; orientation].
function features = dog(I)
if size(I, 3) == 3
I = rgb2gray(I);
end
features = vl_sift(single(I));
end
|
github
|
ojwoodford/ojwul-master
|
interest_point_demo.m
|
.m
|
ojwul-master/features/interest_point_demo.m
| 3,385 |
utf_8
|
8516f6ee54d76a2f85743454d8f59737
|
%INTEREST_POINT_DEMO Compute and visualize the interest points of an image
%
% interest_point_demo
% interest_point_demo(A, [scale, [thresh, [detector]]])
%
%IN:
% A - HxWxC image. Default: Use peppers.png
% scale - scale of the interest points to be detected (if applicable).
% Default: 2.
% thresh - threshold on point suppression. If negative, magnitude is
% interpreted as the proportion of strongest points to keep.
% Default: -0.5, i.e. keep top 50% of points.
% detector - string of the detector name. Default: 'noble'.
function interest_point_demo(A, detector, scale, thresh)
% Set default arguments
if nargin < 4
thresh = -0.5; % Negative numbers indicate ratio of edges to keep
if nargin < 3
scale = 2;
if nargin < 2
detector = 'noble';
if nargin < 1
A = imread('peppers.png');
end
end
end
end
switch lower(detector)
case {'harris', 'noble', 'shi-tomasi'}
% Compute the detector score image
tic();
score = corners(A, scale, detector);
t1 = toc();
% Compute the interest points
tic();
X = extract_features(score, 1.5, thresh, true);
t2 = toc();
% Visualization
fprintf('Computing corner detector score: %gs\nExtracting interest points: %gs\n', t1, t2);
clf;
% Render the score over the image
sc(cat(3, score, A), 'prob');
% Render the interest points
hold on
plot(X(1,:), X(2,:), 'y.', 'MarkerSize', 10);
hold off
case 'fast'
% Compute the detector score image
if size(A, 3) == 3
A = rgb2gray(A);
end
scale = max(min(round(scale), 12), 9);
tic();
[X, score] = fast_corners(A, max(thresh, 1), scale);
t1 = toc();
fprintf('Extracting interest points: %gs\n', t1);
% Keep only those above the threshold
if thresh < 0
tic();
s = sort(score, 'descend');
thresh = s(ceil(end*-thresh));
M = score >= thresh;
score = score(M);
X = X(:,M);
t1 = toc();
fprintf('Selecting interest points: %gs\n', t1);
end
% Visualization
clf;
% Render the image
sc(A);
% Render the interest points
m = max(score);
C = parula(m);
hold on
I = accumarray(score', (1:numel(score))', [m 1], @(I) {I});
hold on
for a = 1:m
if isempty(I{a})
continue;
end
plot(col(X(1,I{a})), col(X(2,I{a})), 'b.', 'Color', C(a,:), 'MarkerSize', 10);
end
hold off
case 'dog'
% Compute the detector score image
tic();
features = dog(A);
t1 = toc();
% Visualization
fprintf('Detecting DoG features: %gs\n', t1);
clf;
% Show the image
imdisp(A);
% Render the interest points
hold on
render_circles(features(1:3,:), 64, [1 0 0]);
hold off
otherwise
error('Detector method %s not recognized', detector);
end
end
|
github
|
ojwoodford/ojwul-master
|
vl_dsift.m
|
.m
|
ojwul-master/features/vlfeat/vl_dsift.m
| 5,724 |
utf_8
|
a5e67611f562f0b69ababcc52b234260
|
% VL_DSIFT Dense SIFT
% [FRAMES,DESCRS] = VL_DSIFT(I) extracts a dense set of SIFT
% keypoints from image I. I must be of class SINGLE and grayscale.
% FRAMES is a 2 x NUMKEYPOINTS, each colum storing the center (X,Y)
% of a keypoint frame (all frames have the same scale and
% orientation). DESCRS is a 128 x NUMKEYPOINTS matrix with one
% descriptor per column, in the same format of VL_SIFT().
%
% VL_DSIFT() does NOT compute a Gaussian scale space of the image
% I. Instead, the image should be pre-smoothed at the desired scale
% level, e.b. by using the VL_IMSMOOTH() function.
%
% The scale of the extracted descriptors is controlled by the option
% SIZE, i.e. the width in pixels of a spatial bin (recall that a
% SIFT descriptor is a spatial histogram with 4 x 4 bins).
%
% The sampling density is controlled by the option STEP, which is
% the horizontal and vertical displacement of each feature cetner to
% the next.
%
% The sampled image area is controlled by the option BOUNDS,
% defining a rectangle in which features are comptued. A descriptor
% is included in the rectangle if all the centers of the spatial
% bins are included. The upper-left descriptor is placed so that the
% uppler-left spatial bin center is algined with the upper-left
% corner of the rectangle.
%
% By default, VL_DSIFT() computes features equivalent to
% VL_SIFT(). However, the FAST option can be used to turn on an
% variant of the descriptor (see VLFeat C API documentation for
% further details) which, while not strictly equivalent, it is much
% faster.
%
% VL_DSIFT() accepts the following options:
%
% Step:: 1
% Extracts a SIFT descriptor each STEP pixels.
%
% Size:: 3
% A spatial bin covers SIZE pixels.
%
% Bounds:: [whole image]
% Specifies a rectangular area where descriptors should be
% extracted. The format is [XMIN, YMIN, XMAX, YMAX]. If this
% option is not specified, the entiere image is used. The
% bounding box is clipped to the image boundaries.
%
% Norm::
% If specified, adds to the FRAMES ouptut argument a third
% row containint the descriptor norm, or engergy, before
% contrast normalization. This information can be used to
% suppress low contrast descriptors.
%
% Fast::
% If specified, use a piecewise-flat, rather than Gaussian,
% windowing function. While this breaks exact SIFT equivalence,
% in practice is much faster to compute.
%
% FloatDescriptors::
% If specified, the descriptor are returned in floating point
% rather than integer format.
%
% Verbose::
% If specified, be verbose.
%
% RELATION TO THE SIFT DETECTOR
%
% In the standard SIFT detector/descriptor, implemented by
% VL_SIFT(), the size of a spatial bin is related to the keypoint
% scale by a multiplier, called magnification factor, and denoted
% MAGNIF. Therefore, the keypoint scale corresponding to the
% descriptors extracted by VL_DSIFT() is equal to SIZE /
% MAGNIF. VL_DSIFT() does not use MAGNIF because, by using dense
% sampling, it avoids detecting keypoints in the first plance.
%
% VL_DSIFT() does not smooth the image as SIFT does. Therefore, in
% order to obtain equivalent results, the image should be
% pre-smoothed approriately. Recall that in SIFT, for a keypoint of
% scale S, the image is pre-smoothed by a Gaussian of variance S.^2
% - 1/4 (see VL_SIFT() and VLFeat C API documentation).
%
% Example::
% This example produces equivalent SIFT descriptors using
% VL_DSIFT() and VL_SIFT():
%
% binSize = 8 ;
% magnif = 3 ;
% Is = vl_imsmooth(I, sqrt((binSize/magnif)^2 - .25)) ;
%
% [f, d] = vl_dsift(Is, 'size', binSize) ;
% f(3,:) = binSize/magnif ;
% f(4,:) = 0 ;
% [f_, d_] = vl_sift(I, 'frames', f) ;
%
% Remark::
% The equivalence is never exact due to (i) boundary effects
% and (ii) the fact that VL_SIFT() downsamples the image to save
% computation. It is, however, usually very good.
%
% Remark::
% In categorization it is often useful to under-smooth the image,
% comared to standard SIFT, in order to keep the gradients
% sharp.
%
% FURTHER DETAILS ON THE GEOMETRY
%
% As mentioned, the VL_DSIFT() descriptors cover the bounding box
% specified by BOUNDS = [XMIN YMIN XMAX YMAX]. Thus the top-left bin
% of the top-left descriptor is placed at (XMIN, YMIN). The next
% three bins to the right are at XMIN + SIZE, XMIN + 2*SIZE, XMIN +
% 3*SIZE. The X coordiante of the center of the first descriptor is
% therefore at (XMIN + XMIN + 3*SIZE) / 2 = XMIN + 3/2 * SIZE. For
% instance, if XMIN = 1 and SIZE = 3 (default values), the X
% coordinate of the center of the first descriptor is at 1 + 3/2 * 3
% = 5.5. For the second descriptor immediately to its right this is
% 5.5 + STEP, and so on.
%
% See also:: VL_HELP(), VL_SIFT().
% AUTORIGHTS
% Copyright (C) 2007-10 Andrea Vedaldi and Brian Fulkerson
%
% This file is part of VLFeat, available under the terms of the
% GNU GPLv2, or (at your option) any later version.
function varargout = vl_dsift(varargin)
base = '../private/vlfeat';
if ismember(computer('arch'), {'maca64'})
sourceList = {['-I' base], 'vl_dsift.c', [base '/vl/dsift.c'], [base '/vl/generic.c'], [base '/vl/host.c'], [base '/vl/imopv.c'], [base '/vl/random.c']}; % Cell array of source files
else
sourceList = {['-I' base], '-D__SSE2__', 'vl_dsift.c', [base '/vl/dsift.c'], [base '/vl/generic.c'], [base '/vl/host.c'], [base '/vl/imopv.c'], [base '/vl/imopv_sse2.c'], [base '/vl/random.c']}; % Cell array of source files
end
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
github
|
ojwoodford/ojwul-master
|
vl_ubcmatch.m
|
.m
|
ojwul-master/features/vlfeat/vl_ubcmatch.m
| 1,416 |
utf_8
|
9fa45a4773984b53f3103700b3b9b2e0
|
% VL_UBCMATCH Match SIFT features
% MATCHES = VL_UBCMATCH(DESCR1, DESCR2) matches the two sets of SIFT
% descriptors DESCR1 and DESCR2.
%
% [MATCHES,SCORES] = VL_UBCMATCH(DESCR1, DESCR2) retuns the matches and
% also the squared Euclidean distance between the matches.
%
% The function uses the algorithm suggested by D. Lowe [1] to reject
% matches that are too ambiguous.
%
% VL_UBCMATCH(DESCR1, DESCR2, THRESH) uses the specified threshold
% THRESH. A descriptor D1 is matched to a descriptor D2 only if the
% distance d(D1,D2) multiplied by THRESH is not greater than the
% distance of D1 to all other descriptors. The default value of
% THRESH is 1.5.
%
% The storage class of the descriptors can be either DOUBLE, FLOAT,
% INT8 or UINT8. Usually integer classes are faster.
%
% REFERENCES
%
% [1] D. G. Lowe, Distinctive image features from scale-invariant
% keypoints. IJCV, vol. 2, no. 60, pp. 91-110, 2004.
%
% See also VL_HELP(), VL_SIFT().
% AUTORIGHTS
% Copyright (C) 2007-10 Andrea Vedaldi and Brian Fulkerson
%
% This file is part of VLFeat, available under the terms of the
% GNU GPLv2, or (at your option) any later version.
function varargout = vl_ubcmatch(varargin)
base = '../private/vlfeat';
sourceList = {['-I' base], 'vl_ubcmatch.c'}; % Cell array of source files
[varargout{1:nargout}] = compile(varargin{:}); % Compilation happens here
return
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.