plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jacksky64/imageProcessing-master
interpretColor.m
.m
imageProcessing-master/Matlab Slicer/imStacks/+uiextras/interpretColor.m
3,396
utf_8
ec1f7605145817838d2c9b712af4287d
function col = interpretColor(str) %interpretColor Interpret a color as an RGB triple % % rgb = uiextras.interpretColor(col) interprets the input color COL and % returns the equivalent RGB triple. COL can be one of: % * RGB triple of floating point numbers in the range 0 to 1 % * RGB triple of UINT8 numbers in the range 0 to 255 % * single character: 'r','g','b','m','y','c','k','w' % * string: one of 'red','green','blue','magenta','yellow','cyan','black' % 'white' % * HTML-style string (e.g. '#FF23E0') % % Examples: % >> uiextras.interpretColor( 'r' ) % ans = % 1 0 0 % >> uiextras.interpretColor( 'cyan' ) % ans = % 0 1 1 % >> uiextras.interpretColor( '#FF23E0' ) % ans = % 1.0000 0.1373 0.8784 % % See also: ColorSpec % Copyright 2005-2010 The MathWorks Ltd. % $Revision: 329 $ % $Date: 2010-08-26 09:53:44 +0100 (Thu, 26 Aug 2010) $ if ischar( str ) str = strtrim(str); str = dequote(str); if str(1)=='#' % HTML-style string if numel(str)==4 col = [hex2dec( str(2) ), hex2dec( str(3) ), hex2dec( str(4) )]/15; elseif numel(str)==7 col = [hex2dec( str(2:3) ), hex2dec( str(4:5) ), hex2dec( str(6:7) )]/255; else error( 'UIExtras:interpretColor:BadColor', 'Invalid HTML color %s', str ); end elseif all( ismember( str, '1234567890.,; []' ) ) % Try the '[0 0 1]' thing first col = str2num( str ); %#ok<ST2NM> if numel(col) == 3 % Conversion worked, so just check for silly values col(col<0) = 0; col(col>1) = 1; end else % that didn't work, so try the name switch upper(str) case {'R','RED'} col = [1 0 0]; case {'G','GREEN'} col = [0 1 0]; case {'B','BLUE'} col = [0 0 1]; case {'C','CYAN'} col = [0 1 1]; case {'Y','YELLOW'} col = [1 1 0]; case {'M','MAGENTA'} col = [1 0 1]; case {'K','BLACK'} col = [0 0 0]; case {'W','WHITE'} col = [1 1 1]; case {'N','NONE'} col = [nan nan nan]; otherwise % Failed error( 'UIExtras:interpretColor:BadColor', 'Could not interpret color %s', num2str( str ) ); end end elseif isfloat(str) || isdouble(str) % Floating point, so should be a triple in range 0 to 1 if numel(str)==3 col = double( str ); col(col<0) = 0; col(col>1) = 1; else error( 'UIExtras:interpretColor:BadColor', 'Could not interpret color %s', num2str( str ) ); end elseif isa(str,'uint8') % UINT8, so range is implicit if numel(str)==3 col = double( str )/255; col(col<0) = 0; col(col>1) = 1; else error( 'UIExtras:interpretColor:BadColor', 'Could not interpret color %s', num2str( str ) ); end else error( 'UIExtras:interpretColor:BadColor', 'Could not interpret color %s', num2str( str ) ); end function str = dequote(str) str(str=='''') = []; str(str=='"') = []; str(str=='[') = []; str(str==']') = [];
github
jacksky64/imageProcessing-master
Container.m
.m
imageProcessing-master/Matlab Slicer/imStacks/+uiextras/Container.m
22,989
utf_8
c9212141cf493e285730ee2a6af4d5c6
classdef Container < hgsetget %Container Container base class % % c = uiextras.Container() creates a new container object. Container % is an abstract class and can only be constructed as the first % actual of a descendent class. % % c = uiextras.Container(param,value,...) creates a new container % object and sets one or more property values. % % See also: uiextras.Box % uiextras.ButtonBox % uiextras.CardPanel % uiextras.Grid % Copyright 2009-2010 The MathWorks, Inc. % $Revision: 367 $ % $Date: 2011-02-10 16:25:22 +0000 (Thu, 10 Feb 2011) $ properties DeleteFcn % function to call when the layout is being deleted [function handle] end % Public properties properties( Dependent, Transient ) BackgroundColor % background color [r g b] BeingDeleted % is the object in the process of being deleted [on|off] Children % list of the children of the layout [handle array] Enable % allow interaction with the contents of this layout [on|off] Parent % handle of the parent container or figure [handle] Position % position [left bottom width height] Tag % tag [string] Type % the object type (class) [string] Units % position units [inches|centimeters|normalized|points|pixels|characters] Visible % is the layout visible on-screen [on|off] end % dependent properties properties( Access = protected, Hidden, Transient ) Listeners = cell( 0, 1 ) % array of listeners end % protected properties properties( SetAccess = private, GetAccess = protected, Hidden, Transient ) UIContainer % associated uicontainer end % read-only protected properties properties( Access = private, Hidden, Transient ) Children_ = zeros( 0, 1 ) % private copy of the children list ChildListeners = cell( 0, 2 ) % listeners for changes to children Enable_ = 'on' % private copy of the enabled state CurrentSize_ = [0 0] % private copy of the size end % private properties methods function obj = Container( varargin ) %Container Container base class constructor % % obj = Container(param,value,...) creates a new Container % object using the (optional) property values specified. This % may only be called by child classes. % Check that we're using the right graphics version if isHGUsingMATLABClasses() error( 'GUILayout:WrongHGVersion', 'Trying to run using double-handle MATLAB graphics against the new graphics system. Please re-install.' ); end % Find if parent has been supplied parent = uiextras.findArg( 'Parent', varargin{:} ); if isempty( parent ) parent = gcf(); end units = uiextras.findArg( 'Units', varargin{:} ); if isempty( units ) units = 'Normalized'; end % Create container args = { 'Parent', parent, ... 'Units', units, ... 'BorderType', 'none' }; obj.UIContainer = uipanel( args{:} ); % Set the background color obj.setPropertyFromDefault( 'BackgroundColor' ); % Tag it! set( obj.UIContainer, 'Tag', strrep( class( obj ), '.', ':' ) ); % Create listeners to resizing of container containerObj = handle( obj.UIContainer ); obj.Listeners{end+1,1} = handle.listener( containerObj, findprop( containerObj, 'PixelBounds' ), 'PropertyPostSet', @obj.onResized ); % Create listeners to addition of container children obj.Listeners{end+1,1} = handle.listener( containerObj, 'ObjectChildAdded', @obj.onChildAddedEvent ); % Watch out for the graphics being destroyed obj.Listeners{end+1,1} = handle.listener( containerObj, 'ObjectBeingDestroyed', @obj.onContainerBeingDestroyed ); % Store Container in container setappdata( obj.UIContainer, 'Container', obj ); end % constructor function container = double( obj ) %double Convert a container to an HG double handle. % % D = double(C) converts a container C to an HG handle D. container = obj.UIContainer; end % double function pos = getpixelposition( obj ) %getpixelposition get the absolute pixel position % % POS = GETPIXELPOSITION(C) gets the absolute position of the container C % within its parent window. The returned position is in pixels. pos = getpixelposition( obj.UIContainer ); end % getpixelposition function tf = isprop( obj, name ) %isprop does this object have the specified property % % TF = ISPROP(C,NAME) checks whether the object C has a % property named NAME. The result, TF, is true if the % property exists, false otherwise. tf = ismember( name, properties( obj ) ); end % isprop function p = ancestor(obj,varargin) %ancestor Get object ancestor % % P = ancestor(H,TYPE) returns the handle of the closest ancestor of h % that matches one of the types in TYPE, or empty if there is no matching % ancestor. TYPE may be a single string (single type) or cell array of % strings (types). If H is a vector of handles then P is a cell array the % same length as H and P{n} is the ancestor of H(n). If H is one of the % specified types then ancestor returns H. % % P = ANCESTOR(H,TYPE,'TOPLEVEL') finds the highest level ancestor of one % of the types in TYPE % % If H is not an Handle Graphics object, ANCESTOR returns empty. p = ancestor( obj.UIContainer, varargin{:} ); end %ancestor function delete( obj ) %delete destroy this layout % % If the user destroys the object, we *must* also remove any % graphics if ~isempty( obj.DeleteFcn ) uiextras.callCallback( obj.DeleteFcn, obj, [] ); end if ishandle( obj.UIContainer ) ... && ~strcmpi( get( obj.UIContainer, 'BeingDeleted' ), 'on' ) delete( obj.UIContainer ); end end % delete end % public methods methods function set.Position( obj, value ) set( obj.UIContainer, 'Position', value ); end % set.Position function value = get.Position( obj ) value = get( obj.UIContainer, 'Position' ); end % get.Position function set.Children( obj, value ) % Check oldChildren = obj.Children_; newChildren = value; [tf, loc] = ismember( oldChildren, newChildren ); if ~isequal( size( oldChildren ), size( newChildren ) ) || any( ~tf ) error( 'GUILayout:Container:InvalidPropertyValue', ... 'Property ''Children'' may only be set to a permutation of itself.' ) end % Set obj.Children_ = newChildren; % Reorder ChildListeners obj.ChildListeners(loc,:) = obj.ChildListeners; % Redraw obj.redraw(); end % set.Children function value = get.Children( obj ) value = obj.Children_; end % get.Children function set.Enable( obj, value ) % Check if ~ischar( value ) || ~ismember( lower( value ), {'on','off'} ) error( 'GUILayout:Container:InvalidPropertyValue', ... 'Property ''Enable'' may only be set to ''on'' or ''off''.' ) end % Apply value = lower( value ); % If we want to switch on but our parent is off, just store % in the app data. if strcmp( value, 'on' ) if isappdata( obj.Parent, 'Container' ) parentObj = getappdata( obj.Parent, 'Container' ); if strcmpi( parentObj.Enable, 'off' ) setappdata( obj.UIContainer, 'OldEnableState', value ); value = 'off'; end end end obj.Enable_ = value; % Apply to children ch = obj.Children_; for ii=1:numel( ch ) obj.helpSetChildEnable( ch(ii), obj.Enable_ ); end % Do the work obj.onEnable( obj, value ); end % set.Enable function value = get.Enable( obj ) value = obj.Enable_; end % get.Enable function set.Units( obj, value ) set( obj.UIContainer, 'Units', value ); end % set.Units function value = get.Units( obj ) value = get( obj.UIContainer, 'Units' ); end % get.Units function set.Parent( obj, value ) set( obj.UIContainer, 'Parent', double( value ) ); end % set.Parent function value = get.Parent( obj ) value = get( obj.UIContainer, 'Parent' ); end % get.Parent function set.Tag( obj, value ) set( obj.UIContainer, 'Tag', value ); end % set.Tag function value = get.Tag( obj ) value = get( obj.UIContainer, 'Tag' ); end % get.Tag function value = get.Type( obj ) value = class( obj ); end % get.Type function value = get.BeingDeleted( obj ) value = get( obj.UIContainer, 'BeingDeleted' ); end % get.BeingDeleted function set.Visible( obj, value ) set( obj.UIContainer, 'Visible', value ); end % set.Visible function value = get.Visible( obj ) value = get( obj.UIContainer, 'Visible' ); end % get.Visible function set.BackgroundColor( obj, value ) set( obj.UIContainer, 'BackgroundColor', value ); obj.onBackgroundColorChanged( obj, value ); end % set.BackgroundColor function value = get.BackgroundColor( obj ) value = get( obj.UIContainer, 'BackgroundColor' ); end % get.BackgroundColor end % accessor methods methods( Access = protected ) function onResized( obj, source, eventData ) %#ok<INUSD> %onResized Callback that fires when a container is resized. newSize = getpixelposition( obj ); newSize = newSize([3,4]); if any(newSize ~= obj.CurrentSize_) % Size has changed, so must redraw obj.CurrentSize_ = newSize; obj.redraw(); end end % onResized function onContainerBeingDestroyed( obj, source, eventData ) %#ok<INUSD> %onContainerBeingDestroyed Callback that fires when the container dies delete( obj ); end % onContainerBeingDestroyed function onChildAdded( obj, source, eventData ) %#ok<INUSD> %onChildAdded Callback that fires when a child is added to a container. obj.redraw(); end % onChildAdded function onChildRemoved( obj, source, eventData ) %#ok<INUSD> %onChildRemoved Callback that fires when a container child is destroyed or reparented. obj.redraw(); end % onChildRemoved function onBackgroundColorChanged( obj, source, eventData ) %#ok<INUSD,MANU> %onBackgroundColorChanged Callback that fires when the container background color is changed end % onChildRemoved function onEnable( obj, source, eventData ) %#ok<INUSD,MANU> %onEnable Callback that fires when the enable state is changed end % onChildRemoved function c = getValidChildren( obj ) %getValidChildren Return a list of only those children not being deleted c = obj.Children; c( strcmpi( get( c, 'BeingDeleted' ), 'on' ) ) = []; end % getValidChildren function repositionChild( obj, child, position ) %repositionChild adjust the position and visibility of a child if position(3)<=0 || position(4)<=0 % Not enough space, so move offscreen instead set( child, 'Position', [-100 -100 10 10] ); else % There's space, so make sure visibility is on % First determine whether to use "Position" or "OuterPosition" if isprop( child, 'ActivePositionProperty' ) propname = get( child, 'ActivePositionProperty' ); else propname = 'Position'; end % Now set the position in pixels, changing the units first if % necessary oldunits = get( child, 'Units' ); if strcmpi( oldunits, 'Pixels' ) set( child, propname, position ); else % Other units, so switch to pixels before setting set( child, 'Units', 'pixels' ); set( child, propname, position ); set( child, 'Units', oldunits ); end end end % repositionChild function setPropertyFromDefault( obj, propName ) %getPropertyDefault Retrieve a default property value. If the %value is not found in the parent or any of its ancestors the %supplied defValue is used. error( nargchk( 2, 2, nargin ) ); parent = get( obj.UIContainer, 'Parent' ); myClass = class(obj); if strncmp( myClass, 'uiextras.', 9 ) myClass = myClass(10:end); end defPropName = ['Default',myClass,propName]; % Getting the default will fail if the default does not exist % of has an invalid value. In that case we leave the current % value as it is. try obj.(propName) = uiextras.get( parent, defPropName ); catch err %#ok<NASGU> % Failed, so leave it alone end end % setPropertyFromDefault function helpSetChildEnable( ~, child, state ) % Set the enabled state of one child widget if strcmpi( get( child, 'Type' ), 'uipanel' ) % Might be another layout if isappdata( child, 'Container' ) child = getappdata( child, 'Container' ); else % Can't enable a panel child = []; end elseif isprop( child, 'Enable' ) % It supports enabling directly else % Doesn't support enabling child = []; end if ~isempty( child ) % We will use a piece of app data % to track the original state to ensure we don't % re-enable something that shouldn't be. if strcmpi( state, 'On' ) if isappdata( child, 'OldEnableState' ) set( child, 'Enable', getappdata( child, 'OldEnableState' ) ); rmappdata( child, 'OldEnableState' ); else set( child, 'Enable', 'on' ); end else if ~isappdata( child, 'OldEnableState' ) setappdata( child, 'OldEnableState', get( child, 'Enable' ) ); end set( child, 'Enable', 'off' ); end end end % helpSetChildEnable end % protected methods methods( Abstract = true, Access = protected ) redraw( obj ) end % abstract methods methods( Access = private, Sealed = true ) function onChildAddedEvent( obj, source, eventData ) %#ok<INUSL> %onChildAddedEvent Callback that fires when a child is added to a container. % Find child in Children child = eventData.Child; if ismember( child, obj.Children_ ) return % not *really* being added end % Only hook up internally if not a "hidden" child. if ~isprop( child, 'HandleVisibility' ) ... || strcmpi( get( child, 'HandleVisibility' ), 'off' ) return; end % We don't want to do anything to the panel title if isappdata( obj.UIContainer, 'PanelTitleCreate' ) ... && getappdata( obj.UIContainer, 'PanelTitleCreate' ) % This child is the panel label. Set its visibility off so % we don't see it again. set( child, 'HandleVisibility', 'off' ); return; end % We also need to ignore legends as they are positioned by % their associated axes. if isa( child, 'axes' ) && strcmpi( get( child, 'Tag' ), 'legend' ) return; end % Add element to Children obj.Children_(end+1,:) = child; % Add elements to ChildListeners. A bug in R2009a and % earlier means we have to be careful about this if isBeforeR2009b() obj.ChildListeners(end+1,:) = ... {handle.listener( child, 'ObjectBeingDestroyed', {@helpDeleteChild,obj} ), ... handle.listener( child, 'ObjectParentChanged', {@helpReparentChild,obj} )}; else obj.ChildListeners(end+1,:) = ... {handle.listener( child, 'ObjectBeingDestroyed', @obj.onChildBeingDestroyedEvent ), ... handle.listener( child, 'ObjectParentChanged', @obj.onChildParentChangedEvent )}; end % We are taking over management of position and will do it % in either pixel or normalized units. units = lower( get( child, 'Units' ) ); if ~ismember( units, {'pixels' ,'normalized'} ) set( child, 'Units', 'Pixels' ); end % If we are disabled, make sure the children are too if strcmpi( obj.Enable_, 'off' ) helpSetChildEnable( obj, child, obj.Enable_ ); end % Call onChildAdded eventData = uiextras.ChildEvent( child, numel( obj.Children_ ) ); obj.onChildAdded( obj, eventData ); end % onChildAddedEvent function onChildBeingDestroyedEvent( obj, source, eventData ) %#ok<INUSD> %onChildBeingDestroyedEvent Callback that fires when a container child is destroyed. % Find child in Children [dummy, loc] = ismember( source, obj.Children_ ); %#ok<ASGLU> % Remove element from Children obj.Children_(loc,:) = []; % Remove elements from ChildListeners obj.ChildListeners(loc,:) = []; % If we are in our death throes, don't start calling callbacks if ishandle( obj.UIContainer ) && ~strcmpi( get( obj.UIContainer, 'BeingDeleted' ), 'ON' ) % Call onChildRemoved eventData = uiextras.ChildEvent( source, loc ); obj.onChildRemoved( obj, eventData ); end end % onChildBeingDestroyedEvent function onChildParentChangedEvent( obj, source, eventData ) %onChildParentChangedEvent Callback that fires when a container child is reparented. if isempty( eventData.NewParent ) ... || eventData.NewParent == obj.UIContainer return % not being reparented *away* end % Find child in Children [dummy, loc] = ismember( source, obj.Children_ ); %#ok<ASGLU> % Remove element from Children obj.Children_(loc,:) = []; % Remove elements from ChildListeners obj.ChildListeners(loc,:) = []; % Call onChildRemoved eventData = uiextras.ChildEvent( source, loc ); obj.onChildRemoved( obj, eventData ); end % onChildParentChangedEvent end % private sealed methods end % classdef % ------------------------------------------------------------------------- % Helper functions to work around a bug in R2009a and earlier function ok = isBeforeR2009b() persistent matlabVersionDate; if isempty( matlabVersionDate ) v = ver( 'MATLAB' ); matlabVersionDate = datenum( v.Date ); % uiwait( msgbox( sprintf( 'Got MATLAB version date: %s', v.Date ) ) ) end ok = ( matlabVersionDate <= datenum( '15-Jan-2009', 'dd-mmm-yyyy' ) ); end function helpDeleteChild( src, evt, obj ) obj.onChildBeingDestroyedEvent( src, evt ); end % helpDeleteChild function helpReparentChild( src, evt, obj ) obj.onChildParentChangedEvent( src, evt ); end % helpReparentChild
github
jacksky64/imageProcessing-master
loadLayoutIcon.m
.m
imageProcessing-master/Matlab Slicer/imStacks/+uiextras/loadLayoutIcon.m
3,144
utf_8
978b9b2fbeb6c98ed1c9a5dd59865fca
function cdata = loadLayoutIcon(imagefilename,bgcol) %loadLayoutIcon Load an icon and set the transparent color % % cdata = uiextras.loadLayoutIcon(filename) tries to load the icon specified by % filename. If the icon is a PNG file with transparency then transparent % pixels are set to NaN. If not, then any pixel that is pure green is set % to transparent (i.e. "green screen"). The resulting CDATA is an RGB % double array. % % cdata = uiextras.loadLayoutIcon(filename,bgcol) tries to merge with the % specified background colour bgcol. Fully transparent pixels are still % set to NaN, but partially transparent ones are merged with the % background. % % See also: IMREAD % Copyright 2005-2010 The MathWorks Ltd. % $Revision: 288 $ % $Date: 2010-07-14 12:23:50 +0100 (Wed, 14 Jul 2010) $ error( nargchk( 1, 2, nargin ) ); if nargin < 2 bgcol = get( 0, 'DefaultUIControlBackgroundColor' ); end % First try normally this_dir = fileparts( mfilename( 'fullpath' ) ); icon_dir = fullfile( this_dir, 'Resources' ); if exist( imagefilename, 'file' ) [cdata,map,alpha] = imread( imagefilename ); elseif exist( fullfile( icon_dir, imagefilename ), 'file' ) [cdata,map,alpha] = imread( fullfile( icon_dir, imagefilename )); else error( 'GUILayout:loadIcon:FileNotFound', 'Cannot open file ''%s''.', imagefilename ); end if ~isempty( map ) cdata = ind2rgb( cdata, map ); end % Convert to double before applying transparency cdata = convertToDouble( cdata ); [rows,cols,depth] = size( cdata ); %#ok<NASGU> if ~isempty( alpha ) alpha = convertToDouble( alpha ); f = find( alpha==0 ); if ~isempty( f ) cdata(f) = nan; cdata(f + rows*cols) = nan; cdata(f + 2*rows*cols) = nan; end % Now blend partial alphas f = find( alpha(:)>0 & alpha(:)<1 ); if ~isempty(f) cdata(f) = cdata(f).*alpha(f) + bgcol(1)*(1-alpha(f)); cdata(f + rows*cols) = cdata(f + rows*cols).*alpha(f) + bgcol(2)*(1-alpha(f)); cdata(f + 2*rows*cols) = cdata(f + 2*rows*cols).*alpha(f) + bgcol(3)*(1-alpha(f)); end else % Instead do a "green screen", treating anything pure-green as transparent f = find((cdata(:,:,1)==0) & (cdata(:,:,2)==1) & (cdata(:,:,3)==0)); cdata(f) = nan; cdata(f + rows*cols) = nan; cdata(f + 2*rows*cols) = nan; end %-------------------------------------------------------------------------% function cdata = convertToDouble( cdata ) % Convert an image to double precision in the range 0 to 1 switch lower( class( cdata ) ) case 'double' % Do nothing case 'single' cdata = double( cdata ); case 'uint8' cdata = double( cdata ) / 255; case 'uint16' cdata = double( cdata ) / 65535; case 'int8' cdata = ( double( cdata ) + 128 ) / 255; case 'int16' cdata = ( double( cdata ) + 32768 ) / 65535; otherwise error( 'GUILayout:LoadIcon:BadCData', ... 'Image data of type ''%s'' is not supported.', class( cdata ) ); end
github
jacksky64/imageProcessing-master
slicer.m
.m
imageProcessing-master/Matlab Slicer/imStacks/oldSlicer/slicer.m
64,794
utf_8
43e52862e3ac94765c312862049ce1bb
function varargout = slicer(varargin) %SLICER Interactive visualization of 3D images % % SLICER is an graphical interface to explore slices of a 3D image. % Index of the current slice is given under the slider, mouse position as % well as cursor value are indicated when mouse is moved over image, and % scrollbars allow to navigate within image. % % SLICER should work with any kind of 3D images: binary, gray scale % (integer or floating-point) or color RGB. % % slicer(IMG) % where IMG is a preloaded M*N*P matrix, opens the slicer GUI, % initialized with image IMG. % User can change current slice with the slider to the left, X and Y % position with the two corresponding sliders, and change the zoom in the % View menu. % % slicer(IMGNAME, ...) % Load the stack specified by IMGNAME. It can be either a tif bundle, the % first file of a series, or a 3D image stored in one of the medical % image format: % * DICOM (*.dcm) % * Analyze (*.hdr) % * MetaImage (*.mhd, *.mha) % It is also possible to import a raw data file, from the File->Import % menu. % % slicer % without argument opens a dialog to read a file (either a set of slices % or a bundle-stack). % % slicer(..., PARAM, VALUE) % Specifies one or more display options as name-value parameter pairs. % Available parameter names are: % * 'slice' the display uses slice given by VALUE as current slice % * 'position' VALUE contains a 1-by-2 vector corresponding to the % (x,y) indices of the upper-left displayed pixel, starting from 1, % and up to the number of voxels in that dimension % * 'zoom' set up the initial zoom (the ratio between the number % of voxels, or user units for calibrated images, and the number of % points on the screen). % * 'name' gives a name to the image (for display in title bar) % * 'spacing' specifies the size of voxel elements. VALUE is a 1-by-3 % row vector containing spacing in x, y and z direction. % * 'origin' specifies coordinate of first voxel in user space % * 'displayRange' the values of min and max gray values to display. The % default behaviour is to use [0 255] for uint8 images, or to % compute bounds such as 95% of the voxels are converted to visible % gray levels for other image types. % % Requires: % * readstack for importing stacks % * Image Processing Toolbox for reading 2D and 3D images % % Examples: % % Explore 3D image stored in 3D Analyze format % metadata = analyze75info('brainMRI.hdr'); % IMG = analyze75read(metadata); % slicer(IMG); % % % show the 10-th slice, with initial magnification equal to 8 % slicer(IMG, 'slice', 10, 'zoom', 8, 'name', 'Brain'); % % --------- % author: David Legland, david.legland(at)grignon.inra.fr % INRA - Cepia Software Platform % created the 21/11/2003 % http://www.pfl-cepia.inra.fr/index.php?page=slicer % HISTORY % 28/06/2004 allows small images % 15/10/2004 add slider for positioning, zoom, and possibility to load % images % 18/10/2004 correct bug for input image type (was set to uint8), and % in positioning. Also add remembering of last opened path. % 19/10/2004 correct bugs in display (view window too large) % 26/10/2004 correct bug for color images (were seen as gray-scale) % 25/03/2005 add size of image in title, and starting options % 29/03/2005 automatically find best zoom when starting, if no zoom is % specified. Add doc. % 21/02/2006 adapt to windows file format % 11/08/2006 display value of clicked points % 14/11/2006 add possibility to use slicer('imageName.tif'); % 30/11/2006 correct bug for binary images introduced with last modif. % 06/12/2006 another bug correction for control on images % 08/08/2007 improve control on coordinate of clicked pixel % 05/01/2010 remove buttons, and put zooms in menu % 06/01/2010 change license, update help, add histogram % 09/03/2010 use dim(1)=x, dim(2)=y % 09/03/2010 add support for voxel spacing, change input options syntax % 10/03/2010 update help, add more input options, update pixel display % 20/06/2010 add a dialog to change image resolution % 22/06/2010 keep grayscale range when transforming image, add about dlg % 12/10/2010 add support to vector images (display the vector norm) % 19/10/2010 add shortcuts and menu shortcuts % 22/10/2010 add support for import of raw stacks % 25/10/2010 change management of 3D rotations % 05/11/2010 display RGB histogram as 3 separate bands % 10/11/2010 add support for Look-Up Tables, clean up menus % 11/01/2011 fix calibration bugs, update display % 02/03/2011 add support for single color LUTs % 27/04/2011 read indexed dicom images, rewrite image import % 27/04/2011 enhance histogram and display of float RGB % 12/08/2011 fix bug when running without input % 29/08/2011 add support for continuous z-sliding % Last Modified by GUIDE v2.5 26-Apr-2011 10:57:02 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @slicer_OpeningFcn, ... 'gui_OutputFcn', @slicer_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargin && isnumeric(varargin{1}) varargin = [varargin(1) {'name', inputname(1)} varargin(2:end)]; end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % =========================================================== %% Initialization functions % --- Executes just before slicer is made visible. function slicer_OpeningFcn(hObject, eventdata, handles, varargin) %#ok<INUSL> % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to slicer (see VARARGIN) % Choose default command line output for slicer handles.output = hObject; % set up global options handles.view = [512 512]; % in pixels handles.lastPath = pwd; handles.titlePattern = 'Slicer - %s [%dx%dx%d] - %g:%g'; handles.pixelCoordRounded = true; % reset image information handles = resetImageData(handles); % attach a listener for mouse wheel scrolling set(handles.mainFrame, 'WindowScrollWheelFcn', @mouseWheelScrolled); % setup listeners for slider continuous changes hListener = handle.listener(handles.moveZSlider, 'ActionEvent', ... @moveZSlider_Callback2); setappdata(handles.moveZSlider, 'sliderListeners', hListener); % Update handles structure guidata(hObject, handles); % if no image specified, open a dialog to choose the file to load if isempty(varargin) showLoadImageDialog(handles); handles = guidata(hObject); % in case the user cancels, display an empty image if isempty(get(handles.imageDisplay, 'UserData')) % initialize with a default image img = zeros([256, 256, 10], 'uint8'); img(:) = 255; set(handles.imageDisplay, 'UserData', img); handles = setupImage(handles); end else var = varargin{1}; if isnumeric(var) || islogical(var) % when input is a 3D or 4D numeric array, use it as image data if length(size(var)) < 3 error('Input should be a 3 or 4 dimensions matrix'); end set(handles.imageDisplay, 'UserData', var); handles = setupImage(handles); elseif ischar(var) % if a character string is given, try to load from an image file importImageDataFile(handles, var); handles = guidata(handles.mainFrame); elseif isa(var, 'Image') % Try to interpret as Image object (not included in default slicer) if ndims(var) ~= 3 error('Need an <Image> object with dimension 3'); end set(handles.imageDisplay, 'UserData', getBuffer(var)); handles = setupImage(handles); % extract image name name = var.name; if ~isempty(name) handles.imgName = name; end % extract spatial calibration handles.voxelOrigin = var.origin; handles.voxelSize = var.spacing; handles.voxelSizeUnit = var.unitName; else error('First argument of "slicer" should be either an image or a string'); end varargin(1) = []; end % Set current slice in the middle of the stack by default handles.slice = ceil(handles.dim(3) / 2); setSlice(handles); % Parses other input arguments handles = parseInputOptions(handles, varargin{:}); updateTitle(handles); % Update handles structure guidata(hObject, handles); function handles = parseInputOptions(handles, varargin) % Parse optional input arguments % iterate over couples of input arguments while length(varargin) > 1 param = varargin{1}; switch lower(param) case 'slice' % setup initial slice pos = varargin{2}; handles.slice = pos(1); case 'position' % setup position of upper-left visible pixel (1-indexed) pos = varargin{2}; handles.cornerPixel = pos(1:2); case 'zoom' % setup initial zoom zoom = varargin{2}; if zoom > handles.zoomMin && zoom < handles.zoomMax handles.zoom = zoom; else disp('slicer: zoom value outside allowed limits'); end case 'spacing' handles.voxelSize = varargin{2}; case 'origin' handles.voxelOrigin = varargin{2}; case 'name' handles.imgName = varargin{2}; case 'displayrange' handles.grayscaleExtent = varargin{2}; otherwise error(['Unknown parameter name: ' param]); end varargin(1:2) = []; end function handles = resetImageData(handles) % Reset handles fields corresponding to image info to default values % display info % size of the view box, in pixels handles.view = [512 512]; handles.dim = [10 10 10]; % index of current slice handles.slice = 1; % index of first visible pixel (x, y indices) handles.cornerPixel = [1 1]; % position, in user unit, of first visible point in viewbox handles.cornerPosition = [0 0]; % current zoom: mutliplier applied to user units when converted to pixel handles.zoom = 1; % TODO: zoomMin and zoomMax should depend on image handles.zoomMin = 1 / 256; handles.zoomMax = 256; % Calibration info, in user unit, in xyz order handles.voxelOrigin = [0 0 0]; handles.voxelSize = [1 1 1]; handles.voxelSizeUnit = ''; % grayscale calibration, will be initialized automatically handles.grayscaleExtent = []; % initialize image info flags handles.color = false; handles.vector = false; % empty lut (corresponds to usual gray-scale) handles.lut = []; % meta info % name of image handles.imgName = ''; % meta-information obtained with rich formats (analyze, metaImage...) % given as a structure, and dependent on fileformat used handles.imgInfo = []; function h_img = displayNewImage(handles) % extract data dim = handles.dim; zoom = handles.zoom; view = handles.view; cdata = computeDisplayData(handles); % reset current axis cla(handles.imageDisplay); hold on; % create an empty image with the appropriate size and data, % and init to the specified slice if handles.color % display as color image h_img = imshow(cdata, 'parent', handles.imageDisplay); else % Display as gray-scale % compute grayscale extent extent = handles.grayscaleExtent; % show grayscale image with appropriate display range h_img = imshow(cdata, ... 'parent', handles.imageDisplay, ... 'DisplayRange', extent); % apply image LUT if isempty(handles.lut) colormap(gray); else colormap(handles.lut); end end % extract calibration data spacing = handles.voxelSize(1:2); origin = handles.voxelOrigin(1:2); % set up appropriate axes xdata = ([0 dim(1)-1] * spacing(1) + origin(1)); ydata = ([0 dim(2)-1] * spacing(2) + origin(2)); set(h_img, 'XData', xdata); set(h_img, 'YData', ydata); % user-coordinates of corner point cornerPoint = (handles.cornerPixel - 1) .* spacing + origin; % setup bounds of viewport: one half-pixel around each bound viewMin = cornerPoint - spacing / 2; viewMax = cornerPoint + view ./ zoom + spacing / 2; set(handles.imageDisplay, 'XLim', [viewMin(1) viewMax(1)]); set(handles.imageDisplay, 'YLim', [viewMin(2) viewMax(2)]); % set up the gui options of image hold on; set(h_img, 'ButtonDownFcn', ... 'slicer(''imageDisplay_ButtonDownFcn'',gcbo,[],guidata(gcbo))'); set(gcf, 'WindowButtonMotionFcn', ... 'slicer(''imageDisplay_ButtonMotionFcn'',gcbo,[],guidata(gcbo))'); % update X and Y sliders updateXYSliders(handles); % update control for changing slice zmax = dim(3); zslice = handles.slice; zslice = min(max(zslice, 1), zmax); handles.slice = zslice; updateZControls(handles); updateTitle(handles); function data = computeDisplayData(handles) % Extract data to display as color or grayscale planar image img = get(handles.imageDisplay, 'UserData'); zslice = handles.slice; if handles.color % display as color image data = img(:, :, :, zslice); elseif handles.vector % in case of a vector image, display the norm of the vector dim = size(img); data = zeros(dim(1), dim(2)); for i = 1:size(img, 3) data = data + double(img(:, :, i, zslice)) .^ 2; end data = sqrt(data); else % for grayscale images, simply extract the appropriate slice data = img(:, :, zslice); end function setImageLUT(hObject, eventdata, handles, lutName) %#ok<INUSL,DEFNU> % Change the LUT of the grayscale image, and refresh the display % lut is specified by its name. nGrays = 256; if strmatch(lutName, 'inverted') lut = repmat((255:-1:0)', 1, 3) / 255; elseif strmatch(lutName, 'blue-gray-red') lut = gray(nGrays); lut(1,:) = [0 0 1]; lut(end,:) = [1 0 0]; elseif strmatch(lutName, 'colorcube') img = get(handles.imageDisplay, 'userdata'); nLabels = round(max(img(:))); map = colorcube(double(nLabels) + 2); lut = [0 0 0; map(sum(map==0, 2)~=3 & sum(map==1, 2)~=3, :)]; elseif strmatch(lutName, 'redLUT') lut = gray(nGrays); lut(:, 2:3) = 0; elseif strmatch(lutName, 'greenLUT') lut = gray(nGrays); lut(:, [1 3]) = 0; elseif strmatch(lutName, 'blueLUT') lut = gray(nGrays); lut(:, 1:2) = 0; elseif strmatch(lutName, 'yellowLUT') lut = gray(nGrays); lut(:, 3) = 0; elseif strmatch(lutName, 'cyanLUT') lut = gray(nGrays); lut(:, 1) = 0; elseif strmatch(lutName, 'magentaLUT') lut = gray(nGrays); lut(:, 2) = 0; else lut = feval(lutName, nGrays); end handles.lut = lut; colormap(handles.imageDisplay, lut); % update gui data guidata(handles.mainFrame, handles); function updateTitle(handles) % set up title of the figure, containing name of figure and current zoom % setup name if isempty(handles.imgName) imgName = 'Unknown Image'; else imgName = handles.imgName; end % display new title zoom = handles.zoom; title = sprintf(handles.titlePattern, imgName, ... handles.dim, max(1, zoom), max(1, 1/zoom)); set(handles.mainFrame, 'Name', title); function setupSliderHandle(hd, mini, maxi, value, step) % setup min, max, set(hd, 'Min', mini); set(hd, 'Max', maxi); % compute step if not specified if ~exist('step', 'var') step = .05; end step2 = min(step*10, (maxi-mini)/2); % setup step, or make slider invisible eps = 1e-10; if value-mini >= -eps && value-maxi <= eps && (maxi-mini) > eps value = min(max(value, mini), maxi); set(hd, 'value', value); set(hd, 'sliderstep', [step step2]); set(hd, 'Enable', 'on'); set(hd, 'Visible', 'on'); else set(hd, 'sliderstep', [1 1]); set(hd, 'Visible', 'off'); end function [mini maxi] = computeGrayScaleExtent(img) % compute grayscale extent of a grayscale image % check image data type if isa(img, 'uint8') % use min-max values depending on image type [mini maxi] = computeTypeExtent(img); elseif islogical(img) % for binary images, the grayscale extent is defined by the type mini = 0; maxi = 1; elseif ndims(img) > 3 % case of vector image: compute max of norm dim = size(img); norm = zeros(dim([1 2 4])); for i = 1:dim(3) norm = norm + squeeze(img(:,:,i,:)) .^ 2; end mini = 0; maxi = sqrt(max(norm(:))); else % for float images, display 99 percents of dynamic [mini maxi] = computeGrayscaleAdjustement(img, .01); end function [mini maxi] = computeTypeExtent(img) % use min-max values depending on image type type = class(img); mini = intmin(type); maxi = intmax(type); % if image has only positive values, use 0 as min if min(img(:)) >= 0 mini = 0; end function [mini maxi] = computeExtremeValues(img) %#ok<DEFNU> % compute min and max (finite) values in image mini = min(img(isfinite(img))); maxi = max(img(isfinite(img))); % If the difference is too small, use default range check if abs(maxi-mini) < 1e-12 warning('Slicer:Grayscale', ... 'could not determine grayscale extent from data'); mini = 0; maxi = 1; end function [mini maxi] = computeGrayscaleAdjustement(img, alpha) % compute grayscale range that maximize vizualisation % use default value for alpha if not specified if nargin == 1 alpha = .01; end % extreme values in image minValue = min(img(isfinite(img))); maxValue = max(img(isfinite(img))); % compute histogram x = linspace(double(minValue), double(maxValue), 10000); h = hist(double(img(:)), x); % special case of images with black background if h(1) > sum(h) * .2 x = x(2:end); h = h(2:end); end cumh = cumsum(h); cdf = cumh / cumh(end); % find indices of extreme values ind1 = find(cdf >= alpha/2, 1, 'first'); ind2 = find(cdf <= 1-alpha/2, 1, 'last'); % compute grascale extent mini = floor(x(ind1)); maxi = ceil(x(ind2)); % small control to avoid mini==maxi if abs(maxi - mini) < 1e-12 mini = minValue; maxi = maxValue; if abs(maxi - mini) < 1e-12 mini = 0; maxi = 1; end end % --- Outputs from this function are returned to the command line. function varargout = slicer_OutputFcn(hObject, eventdata, handles) %#ok<INUSL> % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes during object creation, after setting all properties. function moveZSlider_CreateFcn(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to moveZSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background, change % 'usewhitebg' to 0 to use default. See ISPC and COMPUTER. usewhitebg = 1; if usewhitebg set(hObject,'BackgroundColor',[.9 .9 .9]); else set(hObject, 'BackgroundColor',... get(0,'defaultUicontrolBackgroundColor')); %#ok<UNRCH> end % =========================================================== %% General purpose functions % ------------------------------------------------ function setSlice(handles) % change the current slice. % slice number is the third value of field POS in handles. % get slice slice = handles.slice; % change inner data of image cdata = computeDisplayData(handles); set(handles.h_img, 'CData', cdata); % update gui information for slider and textbox set(handles.moveZSlider, 'Value', slice); set(handles.sliceNumberText, 'String', num2str(slice)); % update gui data guidata(handles.mainFrame, handles); % ------------------------------------------------ function setZoom(handles) % Update zoom of current display % handles structure with handles and user data (see GUIDATA) zoom = handles.zoom; % check zoom has valid values if zoom > handles.zoomMax || zoom < handles.zoomMin disp('zoom value out of bounds'); return; end % compute display extent, in physical coordinates xlim = get(handles.imageDisplay, 'XLim'); ylim = get(handles.imageDisplay, 'YLim'); viewSize = handles.view/zoom; viewCorner1 = [xlim(1) ylim(1)]; viewCorner2 = viewCorner1 + viewSize; % imageExtent = computeImagePhysicalExtent(handles); if viewCorner2(1) > imageExtent(2) viewCorner1(1) = imageExtent(1); end if viewCorner2(2) > imageExtent(4) viewCorner1(2) = imageExtent(3); end viewCorner2 = viewCorner1 + viewSize; set(handles.imageDisplay, 'XLim', [viewCorner1(1) viewCorner2(1)]); set(handles.imageDisplay, 'YLim', [viewCorner1(2) viewCorner2(2)]); handles.cornerPosition = viewCorner1; % update title of the frame updateTitle(handles); updateXYSliders(handles); % gui data already updated in updateXYSLiders %guidata(handles.mainFrame, handles); function updateXYSliders(handles) % update sliders for x and y positions % current zoom zoom = handles.zoom; % set up appropriate axes xlim = get(handles.imageDisplay, 'XLim'); ylim = get(handles.imageDisplay, 'YLim'); % image extent in physical coordinates imageExtent = computeImagePhysicalExtent(handles); % size of viewbox in user units viewSize = handles.view / zoom; % compute limit for x slider bar xmin = imageExtent(1); xmax = imageExtent(2) - viewSize(1); hd = handles.moveXSlider; setupSliderHandle(hd, xmin, xmax, xlim(1), .01); % compute limit for y slider bar ymin = imageExtent(3); ymax = imageExtent(4) - viewSize(2); hd = handles.moveYSlider; setupSliderHandle(hd, ymin, ymax, ymax-ylim(1)+ymin, .01); guidata(handles.mainFrame, handles); function chooseCenterSlice(handles) % max possible slice zmax = handles.dim(3); % setup current slice handles.slice = ceil(zmax / 2); % update controls updateZControls(handles); setSlice(handles); function updateZControls(handles) % update controls for changing slice % max possible slice zmax = handles.dim(3); % check current slice is valid zslice = handles.slice; zslice = min(max(zslice, 1), zmax); handles.slice = zslice; % update slice slider hd = handles.moveZSlider; setupSliderHandle(hd, 1, zmax, zslice, 1/zmax); % update text area set(handles.sliceNumberText, 'String', num2str(zslice)); function extent = computeImagePhysicalExtent(handles) dim = handles.dim; spacing = handles.voxelSize; origin = handles.voxelOrigin; p0 = ([0 0 0] - .5) .* spacing + origin; p1 = ( dim - .5) .* spacing + origin; extent = [p0 ; p1]; extent = extent(:)'; % ------------------------------------------------ function setPosition(handles) % change the position of top-left corner of view. % - update axis limits % - update X- and Y-sliders pos = handles.cornerPosition; % compute center of display, in physical coordinates xlim = get(handles.imageDisplay, 'XLim'); ylim = get(handles.imageDisplay, 'YLim'); % extent of the view, in physical coord viewSize = [xlim(2)-xlim(1) ylim(2)-ylim(1)]; % new position of upper-left corner of view port pos2 = pos + viewSize; set(handles.imageDisplay, 'xlim', [pos(1) pos2(1)]); set(handles.imageDisplay, 'ylim', [pos(2) pos2(2)]); set(handles.moveXSlider, 'Value', pos(1)); ymin = get(handles.moveYSlider, 'Min'); ymax = get(handles.moveYSlider, 'Max'); set(handles.moveYSlider, 'Value', ymax-pos(2)+ymin); guidata(handles.mainFrame, handles); % =========================================================== % callback function for GUI components % ---------------------------------------------------- %% callback functions for sliders % --- Executes on slider movement. function moveZSlider_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to moveZSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % compute new value from slicer position, and update textString zslice = round(get(hObject, 'Value')); zslice = max(get(hObject, 'Min'), min(get(hObject, 'Max'), zslice)); handles.slice = zslice; setSlice(handles); function moveZSlider_Callback2(hObject, eventdata, handles) %#ok<INUSD> % compute new value from slicer position, and update textString zslice = round(get(hObject, 'Value')); zslice = max(get(hObject, 'Min'), min(get(hObject, 'Max'), zslice)); handles = guidata(gcbf); handles.slice = zslice; setSlice(handles); % --- Executes on slider movement. function moveXSlider_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to moveXSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % compute value inside of bounds value = get(hObject, 'Value'); value = min(max(get(hObject, 'Min'), value), get(hObject, 'Max')); % update GUI handles.cornerPosition(1) = value; setPosition(handles); % --- Executes during object creation, after setting all properties. function moveXSlider_CreateFcn(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to moveXSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background, change % 'usewhitebg' to 0 to use default. See ISPC and COMPUTER. usewhitebg = 1; if usewhitebg set(hObject,'BackgroundColor',[.9 .9 .9]); else set(hObject,'BackgroundColor',... get(0,'defaultUicontrolBackgroundColor')); %#ok<UNRCH> end % --- Executes on slider movement. function moveYSlider_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to moveYSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider % compute value inside of bounds value = get(hObject, 'Value'); value = min(max(get(hObject, 'Min'), value), get(hObject, 'Max')); value = get(hObject, 'Max')-value+get(hObject, 'Min'); % update GUI handles.cornerPosition(2) = value; setPosition(handles); % --- Executes during object creation, after setting all properties. function moveYSlider_CreateFcn(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to moveYSlider (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background, change % 'usewhitebg' to 0 to use default. See ISPC and COMPUTER. usewhitebg = 1; if usewhitebg set(hObject,'BackgroundColor',[.9 .9 .9]); else set(hObject,'BackgroundColor',... get(0,'defaultUicontrolBackgroundColor')); %#ok<UNRCH> end % ---------------------------------------------------- %% callback functions for text areas % --- Executes during object creation, after setting all properties. function sliceNumberText_CreateFcn(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to sliceNumberText (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc set(hObject,'BackgroundColor','white'); else set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); end % --- Executes when a new text is typed in sliceNumberText function sliceNumberText_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to sliceNumberText (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of sliceNumberText as text % str2double(get(hObject,'String')) returns contents of sliceNumberText as a double % get entered value for z-slice zslice = str2double(get(hObject, 'String')); % in case of wrong edit, set the string to current value of zslice if isnan(zslice) zslice = handles.slice; end % compute slice number, inside of image bounds zslice = min(max(1, round(zslice)), handles.dim(3)); % update text and slider info handles.slice = zslice; setSlice(handles); % =========================================================== %% callback function for Menu components % -------------------------------------------------------------------- function menuFiles_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to files (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % nothing to do .... % -------------------------------------------------------------------- function itemOpen_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to itemOpen (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) showLoadImageDialog(handles); function showLoadImageDialog(handles) % Display the dialog, determines imaeg type, and setup image accordingly [filename, pathname] = uigetfile( ... {'*.gif;*.jpg;*.jpeg;*.tif;*.tiff;*.bmp;*.hdr;*.dcm;*.mhd', ... 'All Image Files (*.tif, *.hdr, *.dcm, *.mhd, *.bmp, *.jpg)'; ... '*.tif;*.tiff', 'TIF Files (*.tif, *.tiff)'; ... '*.bmp', 'BMP Files (*.bmp)'; ... '*.hdr', 'Mayo Analyze Files (*.hdr)'; ... '*.dcm', 'DICOM Files (*.dcm)'; ... '*.mhd;*.mha', 'MetaImage data files (*.mha, *.mhd)'; ... '*.*', 'All Files (*.*)'}, ... 'Choose a stack or the first slice of a series:', ... handles.lastPath); if isequal(filename,0) || isequal(pathname,0) return; end importImageDataFile(handles, fullfile(pathname, filename)) function importImageDataFile(handles, filename) % Generic function to import data file % dispatch to more specialized functions depending on file extension [filepath basename ext] = fileparts(filename); %#ok<ASGLU> switch lower(ext) case {'.mhd', '.mha'} importMetaImage(handles, filename); case '.hdr' importAnalyzeImage(handles, filename); case '.dcm' importDicomImage(handles, filename); otherwise readImageStack(handles, filename); end function readImageStack(handles, filename) handles = resetImageData(handles); img = readstack(filename); set(handles.imageDisplay, 'userdata', img); [pathname filename ext] = fileparts(filename); handles.imgName = [filename ext]; handles.lastPath = pathname; handles = setupImage(handles); chooseCenterSlice(handles); % -------------------------------------------------------------------- function menuImport_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuImport (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function itemImportDicom_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to itemImportDicom (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile( ... {'*.dcm', 'DICOM Files (*.dcm)'; ... '*.*', 'All Files (*.*)'}, ... 'Choose the DICOM File:', ... handles.lastPath); if isequal(filename,0) || isequal(pathname,0) return; end importDicomImage(handles, fullfile(pathname, filename)); function importDicomImage(handles, filename) % read image data info = dicominfo(filename); [img map] = dicomread(info); img = squeeze(img); % convert indexed image to true RGB image if ~isempty(map) dim = size(img); inds = img; img = zeros([dim(1) dim(2) 3 dim(3)]); for i = 1:3 img(:,:,i,:) = reshape(map(inds(:), i), dim); end end % update display handles = resetImageData(handles); set(handles.imageDisplay, 'userdata', img); [pathname filename ext] = fileparts(filename); handles.imgName = [filename ext]; handles.lastPath = pathname; handles.imgInfo = info; handles = setupImage(handles); chooseCenterSlice(handles); % -------------------------------------------------------------------- function itemImportAnalyze_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to itemImportAnalyze (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile( ... {'*.hdr', 'Mayo Analyze Files (*.hdr)'; ... '*.*', 'All Files (*.*)'}, ... 'Choose the Mayo Analyze header:', ... handles.lastPath); if isequal(filename,0) || isequal(pathname,0) return; end importAnalyzeImage(handles, fullfile(pathname, filename)); function importAnalyzeImage(handles, filename) info = analyze75info(filename); handles = resetImageData(handles); set(handles.imageDisplay, 'userdata', analyze75read(info)); % setup calibration if isfield(info, 'PixelDimensions') handles.voxelSize = info.('PixelDimensions'); end if isfield(info, 'VoxelUnits') handles.voxelSizeUnit = info.('VoxelUnits'); end [pathname filename ext] = fileparts(filename); handles.imgName = [filename ext]; handles.lastPath = pathname; handles.imgInfo = info; handles = setupImage(handles); chooseCenterSlice(handles); % -------------------------------------------------------------------- function itemImportInterfile_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to itemImportInterfile (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile( ... {'*.hdr', 'Interfile header Files (*.hdr)'; ... '*.*', 'All Files (*.*)'}, ... 'Choose the Interfile header:', ... handles.lastPath); if isequal(filename,0) || isequal(pathname,0) return; end importInterfileImage(handles, fullfile(pathname, filename)); function importInterfileImage(handles, filename) info = interfileinfo(filename); handles = resetImageData(handles); set(handles.imageDisplay, 'userdata', interfileread(info)); [pathname filename ext] = fileparts(filename); handles.imgName = [filename ext]; handles.lastPath = pathname; handles.imgInfo = info; handles = setupImage(handles); chooseCenterSlice(handles); % -------------------------------------------------------------------- function itemImportMetaImage_Callback(hObject, eventdata, handles) %#ok<INUSL,DEFNU> % hObject handle to itemImportMetaImage (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile( ... {'*.mhd;*.mha', 'MetaImage data file(*.mha, *.mhd)'; ... '*.*', 'All Files (*.*)'}, ... 'Choose the MetaImage header:', ... handles.lastPath); if isequal(filename,0) || isequal(pathname,0) return; end importMetaImage(handles, fullfile(pathname, filename)); function importMetaImage(handles, filename) info = metaImageInfo(filename); handles = resetImageData(handles); set(handles.imageDisplay, 'userdata', metaImageRead(info)); % setup calibration if isfield(info, 'ElementSize') handles.voxelSize = info.('ElementSize'); else isfield(info, 'ElementSpacing') handles.voxelSize = info.('ElementSpacing'); end if isfield(info, 'ElementOrigin') handles.voxelOrigin = info.('ElementOrigin'); end % setup file infos [pathname filename ext] = fileparts(filename); handles.imgName = [filename ext]; handles.lastPath = pathname; handles.imgInfo = info; handles = setupImage(handles); chooseCenterSlice(handles); % -------------------------------------------------------------------- function itemImportRawData_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemImportRawData (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [filename, pathname] = uigetfile( ... {'*.raw', 'Raw data file(*.raw)'; ... '*.*', 'All Files (*.*)'}, ... 'Import Raw Data', ... handles.lastPath); if isequal(filename,0) || isequal(pathname,0) return; end importRawDataImage(handles, fullfile(pathname, filename)); function importRawDataImage(handles, filename) % dialog to choose image dimensions answers = inputdlg(... {'X Size (columns):', 'Y Size (rows):', 'Z Size (slices):'}, ... 'Input Image Dimensions',... 1, {'10', '10', '10'}); if isempty(answers) return; end % parse dimensions dims = [0 0 0]; for i = 1:3 num = str2num(answers{i}); %#ok<ST2NM> if isempty(num) errordlg(sprintf('Could not parse input number %d', i), ... 'Parsing error'); return; end dims(i) = num; end % dialog to choose data type types = {'uint8', 'int8', 'uint16', 'int16', 'single', 'double'}; [selection, ok] = listdlg(... 'ListString', types, ... 'PromptString', 'Choose Data Type:', ... 'SelectionMode', 'single', ... 'Name', 'Data Type'); if ~ok return; end % read raw stack (use correction of some bugs in 'readstack' function) dataType = types{selection}; img = readstack(fullfile(pathname, filename), dataType, dims([2 1 3])); img = permute(img, [2 1 3]); handles = resetImageData(handles); set(handles.imageDisplay, 'userdata', img); % setup file infos handles.imgName = filename; handles.lastPath = pathname; handles = setupImage(handles); chooseCenterSlice(handles); function handles = setupImage(handles) % This function is called after an image has been loaded. % Only image is valid. This function set up other fields from the % values of current image, stored as userdata of 'imageDisplay' object. % % Returns the modified data structure % get imag data img = get(handles.imageDisplay, 'userdata'); % compute image dimension and determines if image is color or grayscale dim = size(img); % check image type handles.color = false; handles.vector = false; if length(dim) > 3 valMin = min(img(:)); valMax = max(img(:)); % choose image nature if dim(3) ~= 3 || valMin < 0 || (isfloat(img) && valMax > 1) handles.vector = true; else handles.color = true; end % keep only spatial dimensions dim = dim([1 2 4]); end % eventually compute grayscale extent if ~handles.color handles.grayscaleExtent = computeGrayScaleExtent(img); [mini maxi] = computeGrayScaleExtent(img); handles.grayscaleExtent = [mini maxi]; end % conversion from Matlab convention to XYZ convention dim = dim([2 1 3]); handles.dim = dim; % setup zoom zoom = computeBestZoom(handles); handles.zoom = zoom; % display the new image h_img = displayNewImage(handles); handles.h_img = h_img; % update gui data guidata(handles.mainFrame, handles); function zoom = computeBestRoundedZoom(handles) % setup initial zoom: find best zoom, rounded to the closest power of 2. % round zoom to closest power of 2 zoom = computeBestZoom(handles); zoom = power(2, round(log2(zoom))); function zoom = computeBestZoom(handles) % find the zoom that best fit the greater dimension % get data dim = handles.dim; view = handles.view; spacing = handles.voxelSize; % compute best zoom zoom = min(view(1:2) ./ dim(1:2) ./ spacing(1:2)); % -------------------------------------------------------------------- function itemQuit_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemQuit (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close(handles.mainFrame); % -------------------------------------------------------------------- function menuImage_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuImage (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menuView_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuView (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menuChangeLUT_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuChangeLUT (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function itemSetMatlabLut_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to itemSetMatlabLut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function setColorLut_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to setColorLut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function itemDisplayImageInfo_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemDisplayImageInfo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) info = handles.imgInfo; if isempty(info) errordlg('No meta-information defined for this image', ... 'Image Error', 'modal'); return; end % extract field names fields = fieldnames(info); nFields = length(fields); % create data table as a cell array of strings data =cell(nFields, 2); for i=1:nFields data{i, 1} = fields{i}; dat = info.(fields{i}); if ischar(dat) data{i,2} = dat; elseif isnumeric(dat) data{i,2} = num2str(dat); else data{i,2} = '...'; end end % create name for figure if isempty(handles.imgName) name = 'Image Metadata'; else name = sprintf('MetaData for image <%s>', handles.imgName); end % creates and setup newfigure f = figure('MenuBar', 'none', 'Name', name); set(f, 'units', 'pixels'); pos = get(f, 'position'); width = pos(3); % sum of width is not equal to 1 to avoid rounding errors. columnWidth = {round(width * .30), round(width * .69)}; % display the data table uitable(... 'Parent', f, ... 'Units','normalized',... 'Position', [0 0 1 1], ... 'Data', data, ... 'RowName', [], ... 'ColumnName', {'Name', 'Value'}, ... 'ColumnWidth', columnWidth, ... 'ColumnFormat', {'char', 'char'}, ... 'ColumnEditable', [false, false]); % -------------------------------------------------------------------- function itemChangeVoxelSize_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemChangeVoxelSize (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % configure dialog spacing = handles.voxelSize; prompt = {... 'Size in X direction:', ... 'Size in Y direction:', ... 'Size in Z direction:', ... 'Unit name:'}; title = 'Image resolution'; defaultValues = [cellstr(num2str(spacing'))' {handles.voxelSizeUnit}]; % ask for answer answer = inputdlg(prompt, title, 1, defaultValues); if isempty(answer) return; end for i = 1:3 spacing(i) = str2double(answer{i}); if isnan(spacing(i)) warning('slicer:parsing', 'could not parse resolution string'); return; end end handles.voxelSize = spacing; handles.voxelSizeUnit = answer{4}; % setup zoom zoom = computeBestRoundedZoom(handles); handles.zoom = zoom; % display the new image h_img = displayNewImage(handles); handles.h_img = h_img; % update gui data guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function menuGrayscaleRange_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuGrayscaleRange (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function itemGrayRangeImage_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemGrayRangeImage (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if handles.color || handles.vector return end % compute grayscale extent img = get(handles.imageDisplay, 'userdata'); mini = min(img(:)); maxi = max(img(:)); % setup appropriate grayscale for image set(get(handles.h_img, 'parent'), 'CLim', [mini maxi]); % stores grayscale infos handles.grayscaleExtent = [mini maxi]; guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function itemGrayRangeDataType_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemGrayRangeDataType (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if handles.color || handles.vector return end img = get(handles.imageDisplay, 'userdata'); % compute grayscale extent mini = 0; maxi = 1; if isinteger(img) type = class(img); mini = intmin(type); maxi = intmax(type); elseif isfloat(img) mini = min(img(:)); maxi = max(img(:)); end % setup appropriate grayscale for image set(get(handles.h_img, 'parent'), 'CLim', [mini maxi]); % stores grayscale infos handles.grayscaleExtent = [mini maxi]; guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function itemGrayRangeManual_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemGrayRangeManual (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) if handles.color || handles.vector return end img = get(handles.imageDisplay, 'userdata'); % get extreme values for grayscale in image minimg = min(img(:)); maximg = max(img(:)); % get actual value for grayscale range ax = get(handles.h_img, 'parent'); clim = get(ax, 'CLim'); % define dialog options if isinteger(minimg) prompt = {... sprintf('Min grayscale value (%d):', minimg), ... sprintf('Max grayscale value (%d):', maximg)}; else prompt = {... sprintf('Min grayscale value (%f):', minimg), ... sprintf('Max grayscale value (%f):', maximg)}; end dlg_title = 'Input for grayscale range'; num_lines = 1; def = {num2str(clim(1)), num2str(clim(2))}; % open the dialog answer = inputdlg(prompt, dlg_title, num_lines, def); % if user cancel, return if isempty(answer) return; end % convert input texts into numerical values mini = str2double(answer{1}); maxi = str2double(answer{2}); % setup appropriate grayscale for image set(get(handles.h_img, 'parent'), 'CLim', [mini maxi]); % stores grayscale infos handles.grayscaleExtent = [mini maxi]; guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function menuTransform_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuTransform (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function itemRotateImageLeft_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemRotateImageLeft (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotateImage(handles, 3, -1); % -------------------------------------------------------------------- function itemRotateImageRight_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemRotateImageRight (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotateImage(handles, 3, 1); % -------------------------------------------------------------------- function itemRotateImageXUp_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemRotateImageXUp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotateImage(handles, 1, -1); % -------------------------------------------------------------------- function itemRotateImageXDown_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemRotateImageXDown (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotateImage(handles, 1, 1); % -------------------------------------------------------------------- function itemRotateImageYLeft_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemRotateImageYLeft (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotateImage(handles, 2, -1); % -------------------------------------------------------------------- function itemRotateImageYRight_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemRotateImageYRight (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) rotateImage(handles, 2, 1); function handles = rotateImage(handles, axis, n) % Rotate the inner 3D image and the associated meta-information % axis is given between 1 and 3, in XYZ convention % n is the number of rotations (typically 1, 2, 3 or -1) % extract image data img = get(handles.imageDisplay, 'userdata'); % convert to ijk ordering axis = xyz2ijk(axis); % performs image rotation, and get axis permutation parameters [img inds] = rotateStack90(img, axis, n); set(handles.imageDisplay, 'userdata', img); % permute meta info handles.dim = handles.dim(inds); handles.voxelSize = handles.voxelSize(inds); handles.voxelOrigin = handles.voxelOrigin(inds); % computes new best zoom handles.zoom = computeBestRoundedZoom(handles); % for rotation that imply z axis, need to change zslice if axis ~= 3 % setup current slice in the middle of the stack handles.slice = round(handles.dim(3)/2); end % display the new image handles.h_img = displayNewImage(handles); % need to update handles for h_img guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function itemFlipImageX_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemFlipImageX (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.imageDisplay, 'userdata', ... flipdim(get(handles.imageDisplay, 'userdata'), 2)); % display the new image handles.h_img = displayNewImage(handles); % need to update handles for h_img guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function itemFlipImageY_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemFlipImageY (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set(handles.imageDisplay, 'userdata', ... flipdim(get(handles.imageDisplay, 'userdata'), 1)); % display the new image handles.h_img = displayNewImage(handles); % need to update handles for h_img guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function itemFlipImageZ_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemFlipImageZ (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) dim = 3; if handles.color || handles.vector dim = 4; end set(handles.imageDisplay, 'userdata', ... flipdim(get(handles.imageDisplay, 'userdata'), dim)); % display the new image handles.h_img = displayNewImage(handles); % need to update handles for h_img guidata(handles.mainFrame, handles); % -------------------------------------------------------------------- function itemShowOrthoSlices_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemShowOrthoSlices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % get display data pos = round(handles.dim / 2); spacing = handles.voxelSize; % create figure with 3 orthogonal slices figure(); orthoSlices(get(handles.imageDisplay, 'userdata'), pos, spacing, ... 'DisplayRange', handles.grayscaleExtent, 'lut', handles.lut); % -------------------------------------------------------------------- function itemShow3dOrthoSlices_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemShow3dOrthoSlices (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % get display data pos = round(handles.dim / 2); spacing = handles.voxelSize; % create figure with 3 orthogonal slices figure(); orthoSlices3d(get(handles.imageDisplay, 'userdata'), pos, spacing, ... 'DisplayRange', handles.grayscaleExtent, 'lut', handles.lut); view(3); % -------------------------------------------------------------------- function itemZoomIn_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemZoomIn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.zoom = handles.zoom*2; setZoom(handles); % -------------------------------------------------------------------- function itemZoomOut_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemZoomOut (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.zoom = handles.zoom/2; setZoom(handles); % -------------------------------------------------------------------- function itemZoomOne_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemZoomOne (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.zoom = 1; setZoom(handles); % -------------------------------------------------------------------- function itemZoomBest_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemZoomBest (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) handles.zoom = computeBestZoom(handles); % update properties setZoom(handles); % -------------------------------------------------------------------- function itemViewHistogram_Callback(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % hObject handle to itemViewHistogram (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % create new figure if isempty(handles.imgName) name = 'Image Histogram'; else name = ['Histogram of image ' handles.imgName]; end figure('Name', name, 'NumberTitle', 'Off'); fprintf('Computing histogram...'); img = get(handles.imageDisplay, 'UserData'); % in the case of vector image, compute histogram of image norm if handles.vector img = sqrt(sum(double(img) .^ 2, 3)); end if ~handles.color % Process gray-scale image [minimg maximg] = computeGrayScaleExtent(img); x = linspace(double(minimg), double(maximg), 256); hist(double(img(:)), x); colormap jet; elseif handles.color % process RGB 3D image % determine max value in the channels if isinteger(img) maxi = 255; else maxi = 1; end % compute histogram of each channel h = zeros(256, 3); x = linspace(0, maxi, 256); for i = 1:3 im = img(:,:,i,:); h(:,i) = hist(double(im(:)), x); end % display each color histogram as stairs, to see the 3 curves hh = stairs(x, h); set(hh(1), 'color', [1 0 0]); % red set(hh(2), 'color', [0 1 0]); % green set(hh(3), 'color', [0 0 1]); % blue minimg = 0; maximg = maxi; end fprintf(' done\n'); xlim([minimg maximg]); % -------------------------------------------------------------------- function menuHelp_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to menuHelp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % nothing to do .... % -------------------------------------------------------------------- function itemAbout_Callback(hObject, eventdata, handles) %#ok<INUSD,DEFNU> % hObject handle to itemAbout (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) title = 'About Slicer'; info = dir(which('slicer')); message = {... ' 3D Slicer for Matlab', ... [' v ' datestr(info.datenum, 1)], ... '', ... ' Author: David Legland', ... '[email protected]', ... ' (c) INRA - Cepia', ... ''}; msgbox(message, title); % -------------------------------------------------------------------- function imageDisplay_ButtonDownFcn(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % Update display of mouse coordinate and pixel value % get axis coordinate of point, and convert to image coord point = get(handles.imageDisplay, 'currentPoint'); displayPixelCoords(handles, point); function imageDisplay_ButtonMotionFcn(hObject, eventdata, handles) %#ok<DEFNU,INUSL> % Update display of mouse coordinate and pixel value % get axis coordinate of point, and convert to image coord point = get(handles.imageDisplay, 'currentPoint'); displayPixelCoords(handles, point); function mouseWheelScrolled(hObject, eventdata) handles = guidata(hObject); newIndex = handles.slice - eventdata.VerticalScrollCount; newIndex = min(max(newIndex, 1), handles.dim(3)); handles.slice = newIndex; setSlice(handles); function displayPixelCoords(handles, point) point = point(1, 1:2); coord = round(pointToIndex(handles, point)); % control on bounds of image if sum(coord < 1) > 0 || sum(coord > handles.dim(1:2)) > 0 set(handles.pointValueText, 'string', ''); return; end % Display coordinates of clicked point if sum(handles.voxelSize ~= 1) > 0 locString = sprintf('(x,y) = (%d,%d) px = (%5.2f,%5.2f) %s', ... coord(1), coord(2), point(1), point(2), handles.voxelSizeUnit); else locString = sprintf('(x,y) = (%d,%d) px', coord(1), coord(2)); end set(handles.pointXText, 'String', locString); img = get(handles.imageDisplay, 'userdata'); % Display value of selected pixel if handles.color % case of color pixel: values are red, green and blue rgb = img(coord(2), coord(1), :, handles.slice); if isinteger(rgb) pattern = 'RGB=(%d %d %d)'; else pattern = 'RGB=(%g %g %g)'; end valueString = sprintf(pattern, rgb(1), rgb(2), rgb(3)); elseif handles.vector % case of vector image: compute norm of the pixel values = img(coord(2), coord(1), :, handles.slice); norm = sqrt(sum(double(values(:)) .^ 2)); valueString = sprintf('value=%g', norm); else % case of a gray-scale pixel value = img(coord(2), coord(1), handles.slice); if ~isfloat(value) valueString = sprintf('value=%3d', value); else valueString = sprintf('value=%g', value); end end set(handles.pointValueText, 'string', valueString); function point = displayToUserPoint(handles, point) %#ok<INUSL,DEFNU> % Converts a point in view coordinate to a point in user coordinate function index = pointToIndex(handles, point) % Converts coordinates of a point in physical dimension to image index % First element is column index, second element is row index, both are % given in floating point and no rounding is performed. spacing = handles.voxelSize(1:2); origin = handles.voxelOrigin(1:2); index = (point - origin) ./ spacing + 1;
github
jacksky64/imageProcessing-master
find_features.m
.m
imageProcessing-master/MatlabSIFT/find_features.m
6,216
utf_8
094478485c587da35b2ec95a2e4059a7
%///////////////////////////////////////////////////////////////////////////////////////////// % % find_features - scale space feature detector based upon difference of gaussian filters. % selects features based upon their maximum response in scale space % % Usage: maxima = find_features(pyr, img, thresh, radius, radius2, min_sep, edgeratio, disp_flag, img_flag) % % Parameters: % pyr : cell array of filtered image pyramid (built with build_pyramid) % img : original image (only used for visualization) % thresh : threshold value for maxima search (minimum filter response considered) % radius : radius for maxima comparison within current scale % radius2: radius for maxima comparison between neighboring scales % disp_flag: 1- display each scale level on separate figure. 0 - display nothing % img_flag: 1 - display filter responses. 0 - display original images. % % Returns: % % maxima - cell array of nX2 matrices of row,column coordinates of selected points on each scale level % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function maxima = find_features(pyr, img, scl, thresh, radius, radius2, disp_flag, img_flag) % pts = find_features(pyr,img,scl,thresh,radius,radius2,disp_flag,1); levels = size(pyr); levels = levels(2); mcolor = [ 0 1 0; %color array for display of features at different scales 0 1 0; 1 0 0; .2 .5 0; 0 0 1; 1 0 1; 0 1 1; 1 .5 0 .5 1 0 0 1 .5 .5 1 .5]; [himg,wimg] = size(img); %get size of images [h,w] = size(pyr{2}); for i=2:levels-1 [h,w] = size(pyr{i}); [h2,w2] = size(pyr{i+1}); %find maxima mx = find_extrema(pyr{i},thresh,radius); %find maxima at current scale level mx2 = round((mx-1)/scl) + 1; %find coords in level above mx_above = neighbor_max(pyr{i},pyr{i+1},mx,mx2,radius2); %do neighbor comparison in scale space above if i>1 mx2 = round((mx-1)*scl) + 1; %find coords in level below mx_below = neighbor_max(pyr{i},pyr{i-1},mx,mx2,radius2); %do comparison in scale below maxima{i} = plist(mx, mx_below & mx_above); %get coord list for retained maxima and minima else maxima{i} = plist(mx, mx_above); end %find minima %if i==11, % keyboard; %end; mx = find_extrema(-pyr{i},thresh,radius); %find minima at current scale level mx2 = round((mx-1)/scl) + 1; %find coords in level above mx_above = neighbor_max(-pyr{i},-pyr{i+1},mx,mx2,radius2); %do neighbor comparison in scale space above if i>1 mx2 = round((mx-1)*scl) + 1; %find coords in level below mx_below = neighbor_max(-pyr{i},-pyr{i-1},mx,mx2,radius2); %do comparison in scale below mxtemp = plist(mx, mx_below & mx_above); %get coord list for retained maxima and minima else mxtemp = plist(mx, mx_above); end maxima{i} = [maxima{i}; mxtemp]; %combine maxima and minima into list for return %display results if desired if disp_flag > 0 figure if img_flag == 0 tmp=resample_bilinear(img,himg/h); imagesc(tmp); colormap gray; show_plist(maxima{i},mcolor(mod(i-1,7)+1,:),'+'); else imagesc(pyr{i}); colormap gray; show_plist(maxima{i},mcolor(mod(i-1,7)+1,:),'+'); end end end %////////////////////////////////////////////////////////////////////////////////////////////// % % Compare a vector of pixels with its neighbors in another scale % %////////////////////////////////////////////////////////////////////////////////////////////// function v = neighbor_max(img1,img2,i,i2,radius) % i and i2 are column vectors of r,c coords if (size(i2,1))==0 | size(img2,1)<11 | size(img2,2)<11 v=zeros(length(i),1); else [h,w] = size(img1); [h2,w2] = size(img2); [y,x]=meshgrid(-20:20,-20:20); %create set of offsets within radius z = (x.^2+y.^2)<=radius^2; [y,x]=find(z); x=x-21; y=y-21; radius=ceil(radius); bound = ones(size(i2,1),2)*[h2-radius 0;0 w2-radius]; %create boundary listing i2 = i2 - ((i2 > bound).*(i2-bound+1)); %test bounds to make all points within image i2 = i2 + ((i2 < radius+1).*(radius-i2+1)); i2 = vec(i2,h2); %create indices from x,y coords i = vec(i,h); p = img1(i); res = ones(length(i),1); for j=1:length(x) %check against all points within radius itest = i2 + x(j) + h2*y(j); p2 = img2(itest); res = res & (p>=p2); end v = res; %store results in binary vector end %////////////////////////////////////////////////////////////////////////////////////////////// function v = vec(points,h) y = points(:,1); x = points(:,2); v = y + (x-1)*h; %create index vectors %////////////////////////////////////////////////////////////////////////////////////////////// function p = plist(points, flags) p = points(find(flags),:);
github
jacksky64/imageProcessing-master
plot_matched.m
.m
imageProcessing-master/MatlabSIFT/plot_matched.m
718
utf_8
8f4f810fdb7b9dffc21e850731443e63
% % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [] = plot_matched(p,w,img,num_flag) if ~exist('num_flag') num_flag = 0; end figure(gcf); imagesc(img) hold on colormap gray for i=1:size(p,2) x = p(1,i)+1; y = p(2,i)+1; sz = w(i); if x>size(img,2) x end if num_flag ~= 1 plot(x,y,'g+'); %draw box around real feature else plot(x,y,'g+'); %draw box around real feature text(x,y,sprintf('%d',i),'color','r'); end drawbox(0,sz,x,y,[0 1 0]); end
github
jacksky64/imageProcessing-master
build_pyramid.m
.m
imageProcessing-master/MatlabSIFT/build_pyramid.m
2,047
utf_8
a5763817edf3ff11db24c6b7f8c8124f
%///////////////////////////////////////////////////////////////////////////////////////////// % % build_pyramid - build scaled image pyramid and difference of gaussians pyramid % % Usage: [pyr,imp] = build_pyramid(img,levels,scl); % % Parameters: % % img : original image % levels : number of levels in pyramid % scl : scaling factor between pyramid levels % % Returns: % % pyr : difference of gaussians filtered image pyramid % imp : image pyramid cell array % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [pyr,imp] = build_pyramid(img,levels,scl) img2 = img; img2 = resample_bilinear(img2,1/2); %expand to retain spatial frequencies %img2 = imresize(img2,2,'bilinear'); %expand to retain spatial frequencies sigma=1.5; %variance for laplacian filter sigma2=1.5; %variance for downsampling sig_delta = (1.6-.6)/levels; for i=1:levels if i==1 img3 = img2; img2 = filter_gaussian(img2,7,.5); %slightly filter bottom level end imp{i}=img2; A = filter_gaussian(img2,7,sigma); %calculate difference of gaussians B = filter_gaussian(A,7,sigma); pyr{i} = A-B; %store result in cell array if i==1 img2 = img3; else B = filter_gaussian(img2,7,sigma2); %anti-alias for downsampling B = filter_gaussian(B,7,sigma2); end img2 = resample_bilinear(B,scl); %downsample for next level end %show_pyramid(pyr) %show pyramid if desired %/////////////////////////////////////////////////////////////////////////////// function show_pyramid(pyr) close all [h,w] = size(pyr); for i=1:w figure imagesc(pyr{i}); colormap gray; end
github
jacksky64/imageProcessing-master
construct_key.m
.m
imageProcessing-master/MatlabSIFT/construct_key.m
817
utf_8
4f74405436aafff224bcd89245dd5d5b
function key = construct_key(px, py, img, sz) pct = .75; [h,w] = size(img); [yoff,xoff] = meshgrid(-1:1,-1:1); yoff = yoff(:)*pct; xoff = xoff(:)*pct; for i = 1:size(yoff,1) ctrx = px + xoff(i)*sz*2; %method using interpolated values ctry = py + yoff(i)*sz*2; [y,x] = meshgrid(ctry-sz:sz/3:ctry+sz,ctrx-sz:sz/3:ctrx+sz); y=y(:); x=x(:); t = 0; c = 0; for k=1:size(y,1) if x(k)<w-1 & x(k)>1 & y(k)<h-1 & y(k)>1 t = t + interp(img,x(k),y(k)); c=c+1; end end if c==0 c end t = t/c; key(i) = t; end key = key/sum(key);
github
jacksky64/imageProcessing-master
motion_corr2.m
.m
imageProcessing-master/MatlabSIFT/motion_corr2.m
4,570
utf_8
f87063db26fa6fcececf205f713cac11
% MOTION_CORR - Computes a set of interest point correspondences % between two successive frames in an image % sequence. First, a Harris corner detector is used % to choose interest points. Then, CORR is used to % obtain a matching, using both geometric constraints % and local similarity of the points' intensity % neighborhoods. % % Usage: [p1, p2, a, F] = motion_corr(im1, im2[, OPTIONS]) % % Arguments: % im1 - an image % im2 - another image % Options: % 'p1' - an m x 3 matrix whose rows are % (homogeneous) coordinates of interest % points in im1; if supplied, % this matrix will be returned as p1; it can be % the empty matrix [] (in which case it is as if % they were not supplied) % 'smoothing' - pre-smoothing before corner detection % (default: 2.0) % 'nmsrad' - radius for non-maximal suppression of Harris % response matrix (default: 2) % 'rthresh' - relative threshold for Harris response % matrix (default: 0.3) % 'rthresh2' - smaller relative threshold used to % search for matches in the second image % (default: rthresh / 2.0) % 'sdthresh' - a distance threshold; no matches will be % accepted such that the Sampson distance % is greater than the threshold (default: 1.0) % 'dthresh' - a distance threshold; no matches will be % accepted such that the Euclidean % distance between the matched points is % greater than dthresh (default: 30) % % This function also accepts options for CORR. % % Returns: % % a - an m x 1 assignment vector. a(i) is the index of % the feature of the second image that was matched % to feature i of the first image. For example, % p1(i, :) is matched to p2(a(i), :). If feature i % (of the first image) was not matched to any % feature in the second image, then a(i) is zero. % F - the fundamental matrix used to compute the matching. % % See also CORR and HARRIS_PTS. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [p1, p2 , a, F] = motion_corr2(f1,k1,f2,k2,im1,im2, varargin) % STEP 0: Process options [p1, ... smoothing, ... nmsrad, ... rthresh, ... rthresh2, ... sdthresh, ... dthresh, ... corr_opts] = process_options(varargin, 'p1', [], ... 'smoothing', 2, ... 'nmsrad', 2, ... 'rthresh', 0.3, ... 'rthresh2', nan, ... 'sdthresh', 1e-2, ... 'dthresh', 30); if (isnan(rthresh2)) rthresh2 = rthresh / 2.0; end % STEP 2: Form a cost matrix based upon local properties of the % interest points. The cost metric we use here is the sum of % squared differences of intensity values in a square % neighborhood around the pixels; a hard Euclidean distance % threshold is implemented so all point pairs that are too far % apart are given infinite cost. C = make_cost(k1,k2); p1 = f1(:,1:2); %create homogeneous coordinates p2 = f2(:,1:2); p1(:,3) = 1; p2(:,3) = 1; % STEP 3: Compute the correspondence. [a, F] = corr(p1, p2, C, 'sdthresh', sdthresh, corr_opts{:});
github
jacksky64/imageProcessing-master
getpts.m
.m
imageProcessing-master/MatlabSIFT/getpts.m
6,081
utf_8
e4c6a997168907b5b857ddf6c8d0fbac
%display features with sub-pixel and sub-scale accuracy %Scott Ettinger function [features] = getpts(img, pyr, scl,imp,pts,hood_size,radius,min_separation,edgeratio) mcolor = [ 0 1 0; %color array for display of features at different scales 0 1 0; 1 0 0; .2 .5 0; 0 0 1; 1 0 1; 0 1 1; 1 .5 0 .5 1 0 0 1 .5 .5 1 .5]; [ho,wo]=size(img); [h2,w2]=size(imp{2}); hood_size = hood_size + ~mod(hood_size, 2); % ensure neighborhood size is odd w = (hood_size+1)/2; %create offset list for ring of pixels [ry2,rx2]=meshgrid(-20:20,-20:20); z = (rx2.^2+ry2.^2)<=(radius)^2 & (rx2.^2+ry2.^2)>(radius-1)^2; [ry2,rx2]=find(z); rx2=rx2-21; ry2=ry2-21; F = fspecial('gaussian', hood_size, 2); ndx = 1; for j=2:length(imp)-1 p=pts{j}; img=imp{j}; [dh,dw]=size(img); np = 1; min_sep = min_separation*max(max(pyr{j})); for i=1:size(p,1) ptx = p(i,2); pty = p(i,1); if p(i,1) < radius+3 %ensure neighborhood is not outside of image p(i,1) = radius+3; end if p(i,1) > dh-radius-3 p(i,1) = dh-radius-3; end if p(i,2) < radius+3 p(i,2) = radius+3; end if p(i,2) > dw-radius-3 p(i,2) = dw-radius-3; end %adjust to sub pixel maxima location r = [pyr{j}(pty-1,ptx-1:ptx+1) ;pyr{j}(pty,ptx-1:ptx+1) ;pyr{j}(pty+1,ptx-1:ptx+1)]; [pcy,pcx] = fit_paraboloid(r); %find center of paraboloid if abs(pcy)>1 %ignore extreme offsets due to singularities in parabola fitting pcy=0; pcx=0; end if abs(pcx)>1 pcx=0; pcy=0; end p(i,1) = p(i,1) + pcy; %adjust center p(i,2) = p(i,2) + pcx; ptx = p(i,2); pty = p(i,1); px=(pts{j}(i,2)+pcx - 1)*scl^(j-2) + 1; %calculate point locations at pyramid level 2 py=(pts{j}(i,1)+pcy - 1)*scl^(j-2) + 1; y1 = interp(pyr{j-1},(p(i,2)-1)*scl+1, (p(i,1)-1)*scl+1); %get response on surrounding scale levels using interpolation y3 = interp(pyr{j+1},(p(i,2)-1)/scl+1, (p(i,1)-1)/scl+1); y2 = interp(pyr{j},p(i,2),p(i,1)); coef = fit_parabola(0,1,2,y1,y2,y3); % fit 3 scale points to parabola scale_ctr = -coef(2)/2/coef(1); %find max in scale space if abs(scale_ctr-1)>1 %ignore extreme values due to singularities in parabola fitting scale_ctr=0; end %eliminate edge points and enforce minimum separation rad2 = radius * scl^(scale_ctr-1); %adust radius size for scale space o=0:pi/8:2*pi-pi/8; %create ring of points at radius around test point rx = (rad2)*cos(o); ry = (rad2)*sin(o); rmax = 1e-9; rmin = 1e9; gp_flag = 1; pval = interp(pyr{j},ptx,pty); rtst = []; %check points on ring around feature point for k=1:length(rx) rtst(k) = interp(pyr{j},ptx+rx(k),pty+ry(k)); %get value with bilinear interpolation if pval> 0 %calculate distance from feature point response for each point rtst(k) = pval - rtst(k); else rtst(k) = rtst(k) - pval; end gp_flag = gp_flag * rtst(k)>min_sep; %test for valid maxima above noise floor if rtst(k)>rmax %find min and max rmax = rtst(k); end if rtst(k)<rmin rmin = rtst(k); end end fac = scl/(wo*2/size(pyr{2},2)); [cl,or] = f_class(rtst); if rmax/rmin > edgeratio gp_flag=0; if cl ~= 2 %keep all edge intersections gp_flag = 1; else ang = min(abs([(or(1)-or(2)) (or(1)-(or(2)-2*pi))])); if ang < 6.5*pi/8; %keep edges with angles more acute than 145 deg. gp_flag = 1; end end end %save info features(ndx,1) = (px-1)*wo/w2*fac +1; %save x and y position (sub pixel adjusted) features(ndx,2) = (py-1)*wo/w2*fac +1; features(ndx,3) = j+scale_ctr-1; %save scale value (sub scale adjusted in units of pyramid level) features(ndx,4) = ((hood_size-4)*scl^(j-2+scale_ctr-1))*wo/w2*fac; %save size of feature on original image features(ndx,5) = gp_flag; %save edge flag features(ndx,6) = or(1); %save edge orientation angle features(ndx,7) = coef(1); %save curvature of response through scale space ndx = ndx + 1; end end function v = interp(img,xc,yc) %bilinear interpolation between points px = floor(xc); py = floor(yc); alpha = xc-px; beta = yc-py; nw = img(py,px); ne = img(py,px+1); sw = img(py+1,px); se = img(py+1,px+1); v = (1-alpha)*(1-beta)*nw + ... %interpolate (1-alpha)*beta*sw + ... alpha*(1-beta)*ne + ... alpha*beta*se; function f = gauss1d(order,sig) f=0; i=0; j=0; %generate gaussian coefficients for x = -fix(order/2):1:fix(order/2) i = i + 1; f(i) = 1/2/pi*exp(-((x^2)/(2*sig^2))); end f = f / sum(sum(f)); %normalize filter
github
jacksky64/imageProcessing-master
resample_bilinear.m
.m
imageProcessing-master/MatlabSIFT/resample_bilinear.m
1,248
utf_8
2b3be967a23972ebbdbcdb98673578f1
%///////////////////////////////////////////////////////////////////////////////////////////// % Author : Scott Ettinger % % resample_bilinear(img, ratio) % % resamples a 2d matrix by the ratio given by the ratio parameter using bilinear interpolation % the 1,1 entry of the matrix is always duplicated. %///////////////////////////////////////////////////////////////////////////////////////////// function img2 = resample_bilinear(img, ratio) img=double(img); [h,w]=size(img); %get size of image [y,x]=meshgrid( 1:ratio:h-1, 1:ratio:w-1 ); %create vectors of X and Y values for new image [h2,w2] = size(x); %get dimensions of new image x = x(:); %convert to vectors y = y(:); alpha = x - floor(x); %calculate alphas and betas for each point beta = y - floor(y); fx = floor(x); fy = floor(y); inw = fy + (fx-1)*h; %create index for neighboring pixels ine = fy + fx*h; isw = fy+1 + (fx-1)*h; ise = fy+1 + fx*h; img2 = (1-alpha).*(1-beta).*img(inw) + ... %interpolate (1-alpha).*beta.*img(isw) + ... alpha.*(1-beta).*img(ine) + ... alpha.*beta.*img(ise); img2 = reshape(img2,h2,w2); %turn back into 2d img2 = img2';
github
jacksky64/imageProcessing-master
filter_laplacian.m
.m
imageProcessing-master/MatlabSIFT/filter_laplacian.m
1,803
utf_8
8cca88c2df0ef869c1bc3dbd496262e3
%///////////////////////////////////////////////////////////////////////////////////////////// % Author : Scott Ettinger % % filter_gaussian(img, order, sig) % % The image is first padded with the outer image data enough times to allow for the size of the % filter used. function image_out = filter_gaussian(img,order,sig) h1 = gauss1d(order,sig); %create filter coefficient matrix h2 = conv2(h1, [.5 0 -.5]); h3 = conv2(h2,h2); h3 = h3/sum(abs(h3)); order = length(h3); img2 = img; for i=1:floor(order/2) %pad image borders with enough for filter order [h,w] = size(img2); img2 = [img2(1,1) img2(1,:) img2(1,w); img2(:,1) img2 img2(:,w); img2(h,1) img2(h,:) img2(h,w)]; end image_out = conv2(img2,h3','valid'); % do the filtering image_out = image_out(:,floor(order/2)+1:end-floor(order/2)); image_out2 = conv2(img2,h3,'valid'); % do the filtering image_out2 = image_out2(floor(order/2)+1:end-floor(order/2),:); image_out = -image_out-image_out2; %///////////////////////////////////////////////////////////////////////////////////////// function f = gauss1d(order,sig) f=0; i=0; j=0; %generate gaussian coefficients for x = -fix(order/2):1:fix(order/2) i = i + 1; f(i) = 1/2/pi*exp(-((x^2)/(2*sig^2))); end f = f / sum(sum(f)); %normalize filter %///////////////////////////////////////////////////////////////////////////////////////// function f = gauss2d(order,sig) f=0; i=0; j=0; %generate gaussian coefficients for x = -fix(order/2):1:fix(order/2) j=j+1; i=0; for y = -fix(order/2):1:fix(order/2) i=i+1; f(i,j) = 1/2/pi*exp(-((x^2+y^2)/(2*sig^2))); end end f = f / sum(sum(f)); %normalize filter
github
jacksky64/imageProcessing-master
match_dv_odometry.m
.m
imageProcessing-master/MatlabSIFT/match_dv_odometry.m
392
utf_8
e49b9238207c097440046bded7eddc6f
function od_out = match_dv_odometry(od_in,dv) c = 1; i = 1; while i<size(dv,1) & c<size(od_in,1) while od_in(c,1)<dv(i) & c<size(od_in,1) %find matching odometry measurement c = c+1; end od_out(i,:) = od_in(c,:); i=i+1; end for k=i:size(dv,1) od_out(k,:)=od_in(c,:); end
github
jacksky64/imageProcessing-master
detect_features.m
.m
imageProcessing-master/MatlabSIFT/detect_features.m
3,146
utf_8
daa7ae4ed1d013fbbe23f8bd824affde
%///////////////////////////////////////////////////////////////////////////////////////////// % % detect_features - scale space feature detector based upon difference of gaussian filters. % selects features based upon their maximum response in scale space % % Usage: [features,pyr,imp,keys] = detect_features(img, scl, disp_flag, thresh, radius, radius2, radius3, min_sep, edgeratio) % % Parameters: % % img : original image % scl : scaling factor between levels of the image pyramid % thresh : threshold value for maxima search (minimum filter response considered) % radius : radius for maxima comparison within current scale % radius2: radius for maxima comparison between neighboring scales % radius3: radius for edge rejection test % min_sep : minimum separation for maxima selection. % edgeratio: maximum ratio of eigenvalues of feature curvature for edge rejection. % disp_flag: 1- display each scale level on separate figure. 0 - no display % % Returns: % % features - matrix with one row for each feature consisting of the following: % [x position, y position, scale(sub-level), size of feature on image, edge flag, % edge orientation, curvature of response through scale space ] % % pyr, imp - filter response and image pyramids % keys - key values generated for each feature by construct_key.m % % Notes: % recommended parameter values are: % scl = 1.5; thresh = 3; radius = 4; radius2 = 4; radius3 = 4; min_sep = .04; edgeratio = 5; % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [features,pyr,imp,keys] = detect_features(img, scl, disp_flag, thresh, radius, radius2, radius3, min_sep, edgeratio) if ~exist('scl') scl = 1.5; end if ~exist('thresh') thresh = 3; end if ~exist('radius') radius = 4; end if ~exist('radius2') radius2 = 4; end if ~exist('radius3') radius3 = 4; end if ~exist('min_sep') min_sep = .04; end if ~exist('edgeratio') edgeratio = 5; end if ~exist('disp_flag') disp_flag = 0; end if size(img,3) > 1 img = rgb2gray(img); end % Computation of the maximum number of levels: Lmax = floor(min(log(2*size(img)/12)/log(scl))); %build image pyramid and difference of gaussians filter response pyramid [pyr,imp] = build_pyramid(img,Lmax,scl); %get the feature points pts = find_features(pyr,img,scl,thresh,radius,radius2,disp_flag,1); %classify points and create sub-pixel and sub-scale adjustments [features,keys] = refine_features(img,pyr,scl,imp,pts,radius3,min_sep,edgeratio);
github
jacksky64/imageProcessing-master
find_extrema.m
.m
imageProcessing-master/MatlabSIFT/find_extrema.m
2,761
utf_8
63c3ac08500a3e375157d034a61ccc11
%///////////////////////////////////////////////////////////////////////////////////////////// % % find_extrema - finds local maxima within a grayscale image. Each point is % checked against all of the pixels within a given radius to be a local max/min. % The magnitude of pixel values must be above the given threshold to be picked % as a valid maxima or minima. % % Usage: m = find_extrema(img,thresh,radius,min_separation) % % Parameters: % img : image matrix % thresh : threshold value % radius : pixel radius % % Returns: % % m - an nX2 matrix of row,column coordinates of selected points % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [mx] = find_extrema(img,thresh,radius) %img = abs(img); [h,w] = size(img); % get interior image subtracting radius pixels from border p = img(radius+1:h-radius, radius+1:w-radius); %get pixels above threshold [yp,xp] = find(p>thresh); yp=yp+radius; xp=xp+radius; pts = yp+(xp-1)*h; %create offset list for immediate neighborhood z=ones(3,3); z(2,2)=0; [y,x]=find(z); y=y-2; x=x-2; if size(pts,2)>size(pts,1) pts = pts'; end %test for max within immediate neighborhood if size(pts,1)>0 maxima=ones(length(pts),1); for i=1:length(x) pts2 = pts + y(i) + x(i)*h; maxima = maxima & img(pts)>img(pts2); end xp = xp(find(maxima)); %save maxima yp = yp(find(maxima)); pts = yp+(xp-1)*h; %create new index list of good points end %create offset list for radius of pixels [y,x]=meshgrid(-20:20,-20:20); z = (x.^2+y.^2)<=radius^2 & (x.^2+y.^2)>(1.5)^2; %include points within radius without immediate neighborhood [y,x]=find(z); x=x-21; y=y-21; %create offset list for ring of pixels [y2,x2]=meshgrid(-20:20,-20:20); z = (x2.^2+y2.^2)<=(radius)^2 & (x2.^2+y2.^2)>(radius-1)^2; [y2,x2]=find(z); x2=x2-21; y2=y2-21; maxima = ones(length(pts),1); %test within radius of pixels (done after first test for slight speed increase) if size(pts,1)>0 for i = 1:length(x) pts2 = pts + y(i) + x(i)*h; maxima = maxima & img(pts)>img(pts2); %test points end xp = xp(find(maxima)); %save maxima from immediate neighborhood yp = yp(find(maxima)); pts = yp+(xp-1)*h; %create new index list mx = [yp xp]; else mx = []; end
github
jacksky64/imageProcessing-master
filter_gaussian.m
.m
imageProcessing-master/MatlabSIFT/filter_gaussian.m
1,539
utf_8
8c018c4d76363cdb193b6ee5e49ca6a8
%///////////////////////////////////////////////////////////////////////////////////////////// % Author : Scott Ettinger % % filter_gaussian(img, order, sig) % % The image is first padded with the outer image data enough times to allow for the size of the % filter used. function image_out = filter_gaussian(img,order,sig) img2 = img; for i=1:floor(order/2) %pad image borders with enough for filter order [h,w] = size(img2); img2 = [img2(1,1) img2(1,:) img2(1,w); img2(:,1) img2 img2(:,w); img2(h,1) img2(h,:) img2(h,w)]; end f = gauss1d(order,sig); %create filter coefficient matrix image_out = conv2(img2,f,'valid'); % do the filtering image_out = conv2(image_out,f','valid'); % do the filtering %///////////////////////////////////////////////////////////////////////////////////////// function f = gauss1d(order,sig) f=0; i=0; j=0; %generate gaussian coefficients for x = -fix(order/2):1:fix(order/2) i = i + 1; f(i) = 1/2/pi*exp(-((x^2)/(2*sig^2))); end f = f / sum(sum(f)); %normalize filter %///////////////////////////////////////////////////////////////////////////////////////// function f = gauss2d(order,sig) f=0; i=0; j=0; %generate gaussian coefficients for x = -fix(order/2):1:fix(order/2) j=j+1; i=0; for y = -fix(order/2):1:fix(order/2) i=i+1; f(i,j) = 1/2/pi*exp(-((x^2+y^2)/(2*sig^2))); end end f = f / sum(sum(f)); %normalize filter
github
jacksky64/imageProcessing-master
gauss2dx.m
.m
imageProcessing-master/MatlabSIFT/gauss2dx.m
573
utf_8
852c8ed3ce8569434a4da1e70ad4ee40
%Author : Scott Ettinger %Details: % %gauss2d(order, sig) % %Generates a normalized 2d matrix to use as a gaussian convolution filter % order - size of filter matrix. Returns an order X order matrix % sig - sigma value in gaussian equation function f = gauss2dx(order,sig) f=0; i=0; j=0; %generate gaussian coefficients for x = -fix(order/2):1:fix(order/2) j=j+1; i=0; for y = -fix(order/2):1:fix(order/2) i=i+1; f(i,j) = 1/2/pi*exp(-((x^2+y^2)/(2*sig^2))); end end f = f / sum(sum(f)); %normalize filter
github
jacksky64/imageProcessing-master
refine_features.m
.m
imageProcessing-master/MatlabSIFT/refine_features.m
8,711
utf_8
bcf05884bf144765d706ddf4d1c707b2
%///////////////////////////////////////////////////////////////////////////////////////////// % % refine_features - scale space feature detector based upon difference of gaussian filters. % selects features based upon their maximum response in scale space % % Usage: features = refine_features(img, pyr, scl, imp, pts, radius, min_separation, edgeratio) % % Parameters: % % img : original image % pyr : cell array of filtered image pyramid % scl : scaling factor between levels of the image pyramid % imp : image pyramid cell array % pts : cell array of selected points on each pyramid level % radius : radius for edge rejection test % min_separation : minimum separation distance for maxima rejection. % edgeratio: maximum ratio of eigenvalues of feature curvature for edge rejection. % % Returns: % % features - matrix with one row for each feature consisting of the following: % [x loc, y loc, scale value, size, edge flag, edge orientation, scale space curvature] % % where: % x loc and y loc are the x and y positions on the original image % scale value is the sub level adjusted scale value % size is the size of the feature in pixels on the original image % edge flag is zero if the feature is classified as an edge % edge orientation is the angle made by the edge through the feature point % scale space curvature is a rough confidence measure of feature prominence % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [features,keys] = refine_features(img, pyr, scl, imp,pts, radius, min_separation, edgeratio) [ho,wo]=size(img); [h2,w2]=size(imp{2}); %create offset list for ring of pixels [ry2,rx2]=meshgrid(-20:20,-20:20); z = (rx2.^2+ry2.^2)<=(radius)^2 & (rx2.^2+ry2.^2)>(radius-1)^2; [ry2,rx2]=find(z); rx2=rx2-21; ry2=ry2-21; ndx = 1; %loop through each level of pyramid for j=2:length(imp)-1 p=pts{j}; %get current level filter response img=imp{j}; %get current level image [dh,dw]=size(img); np = 1; min_sep = min_separation*max(max(pyr{j})); %calculate minimum separation for valid maximum for i=1:size(p,1) ptx = p(i,2); pty = p(i,1); if p(i,1) < radius+3 %ensure neighborhood is not outside of image p(i,1) = radius+3; end if p(i,1) > dh-radius-3 p(i,1) = dh-radius-3; end if p(i,2) < radius+3 p(i,2) = radius+3; end if p(i,2) > dw-radius-3 p(i,2) = dw-radius-3; end %adjust to sub pixel maxima location r = pyr{j}(pty-1:pty+1,ptx-1:ptx+1); %get 3X3 neighborhood of pixels [pcy,pcx] = fit_paraboloid(r); %find center of paraboloid fit to points if abs(pcy)>1 %ignore extreme offsets due to singularities in parabola fitting pcy=0; pcx=0; end if abs(pcx)>1 pcx=0; pcy=0; end p(i,1) = p(i,1) + pcy; %adjust center p(i,2) = p(i,2) + pcx; ptx = p(i,2); pty = p(i,1); px=(pts{j}(i,2)+pcx - 1)*scl^(j-2) + 1; %calculate point locations at pyramid level 2 py=(pts{j}(i,1)+pcy - 1)*scl^(j-2) + 1; %calculate Sub-Scale level adjustment y1 = interp(pyr{j-1},(p(i,2)-1)*scl+1, (p(i,1)-1)*scl+1); %get response on surrounding scale levels using interpolation y3 = interp(pyr{j+1},(p(i,2)-1)/scl+1, (p(i,1)-1)/scl+1); y2 = interp(pyr{j},p(i,2),p(i,1)); coef = fit_parabola(0,1,2,y1,y2,y3); % fit neighborhood of 3 scale points to parabola scale_ctr = -coef(2)/2/coef(1); %find max in scale space if abs(scale_ctr-1)>1 %ignore extreme values due to singularities in parabola fitting scale_ctr=0; end %eliminate edge points and enforce minimum separation rad2 = radius * scl^(scale_ctr-1); %adust radius size to account for new scale value o=0:pi/8:2*pi-pi/8; %create ring of points at radius around test point rx = (rad2)*cos(o); ry = (rad2)*sin(o); rmax = 1e-9; %init max and min values rmin = 1e9; gp_flag = 1; pval = interp(pyr{j},ptx,pty); %get response at feature center rtst = []; %check points on ring around feature point for k=1:length(rx) rtst(k) = interp(pyr{j},ptx+rx(k),pty+ry(k)); %get ring point value with bilinear interpolation if pval> 0 %calculate distance from feature point for each point in ring rtst(k) = pval - rtst(k); else rtst(k) = rtst(k) - pval; end gp_flag = gp_flag * rtst(k)>min_sep; %test for valid maxima above noise floor if rtst(k)>rmax %find min and max rmax = rtst(k); end if rtst(k)<rmin rmin = rtst(k); end end fac = scl/(wo*2/size(pyr{2},2)); %calculate size offset due to edge effects of downsampling [cl,or] = f_class(rtst); %classify features and get orientations if rmax/rmin > edgeratio %test for edge criterion gp_flag=0; if cl ~= 2 %keep all intersections (# ridges > 2) gp_flag = 1; else ang = min(abs([(or(1)-or(2)) (or(1)-(or(2)-2*pi))])); if ang < 6.5*pi/8; %keep edges with angles more acute than 145 deg. gp_flag = 1; end end end %save info features(ndx,1) = (px-1)*wo/w2*fac +1; %save x and y position (sub pixel adjusted) features(ndx,2) = (py-1)*wo/w2*fac +1; features(ndx,3) = j+scale_ctr-1; %save scale value (sub scale adjusted in units of pyramid level) features(ndx,4) = ((7-4)*scl^(j-2+scale_ctr-1))*wo/w2*fac; %save size of feature on original image features(ndx,5) = gp_flag; %save edge flag features(ndx,6) = or(1); %save edge orientation angle features(ndx,7) = coef(1); %save curvature of response through scale space if features(ndx,1) > wo px end keys(ndx,:) = construct_key(ptx,pty,imp{j},3 * scl^(scale_ctr-1)); ndx = ndx + 1; end end function v = interp(img,xc,yc) %bilinear interpolation between points px = floor(xc); py = floor(yc); alpha = xc-px; beta = yc-py; nw = img(py,px); ne = img(py,px+1); sw = img(py+1,px); se = img(py+1,px+1); v = (1-alpha)*(1-beta)*nw + ... %interpolate (1-alpha)*beta*sw + ... alpha*(1-beta)*ne + ... alpha*beta*se;
github
jacksky64/imageProcessing-master
plotpoints.m
.m
imageProcessing-master/MatlabSIFT/plotpoints.m
1,035
utf_8
d4872923af1d87538633d8cac8642041
%///////////////////////////////////////////////////////////////////////////////////////////// % % plotpoints - visualize features generated by detect_features % Usage: plotpoints(p,img,num_flag) % % Parameters: % % img : original image % p: vector of points % numflag : 0 - plot with crosshairs 1-plot with number index % % Returns: nothing, generates figure % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [] = plotpoints(p,img,num_flag) if ~exist('num_flag') num_flag = 0; end figure(gcf) imagesc(img) hold on colormap gray for i=1:size(p,1) x = p(i,1); y = p(i,2); if num_flag ~= 1 plot(x,y,'g+'); %draw box around real feature else plot(x,y,'g+'); text(x,y,sprintf('%d',i),'color','m'); end end hold off;
github
jacksky64/imageProcessing-master
showfeatures.m
.m
imageProcessing-master/MatlabSIFT/showfeatures.m
1,487
utf_8
b04b890bdf153576182207d6307c2af1
%///////////////////////////////////////////////////////////////////////////////////////////// % % showfeatures - visualize features generated by detect_features % Usage: showfeatures(features,img) % % Parameters: % % img : original image % features: matrix generated by detect_features % % Returns: nothing, generates figure % % Author: % Scott Ettinger % [email protected] % % May 2002 %///////////////////////////////////////////////////////////////////////////////////////////// function [] = showfeatures(features,img,num_flag) if ~exist('num_flag') num_flag = 0; end figure(gcf); imagesc(img) hold on colormap gray for i=1:size(features,1) x = features(i,1); y = features(i,2); sz = features(i,4); if x>size(img,2) x end if features(i,5) > 0 %check edge flag if num_flag ~= 1 plot(x,y,'g+'); %draw box around real feature else text(x,y,sprintf('%d',i),'color','m'); end if abs(features(i,7))>1.8 drawbox(0,sz,x,y,[0 0 1]); else drawbox(0,sz,x,y,[0 .9 .2]); end else %draw as edge ang = features(i,6); px = [x-sz*cos(ang) x+sz*cos(ang)]; py = [y-sz*sin(ang) y+sz*sin(ang)]; plot(px,py,'r'); end end hold off;
github
jacksky64/imageProcessing-master
make_cost.m
.m
imageProcessing-master/MatlabSIFT/make_cost.m
227
utf_8
d6ebc15f2e3ae829983736bf8d34646b
function c = make_cost(k1, k2) for i=1:size(k1,1) for k=1:size(k2,1) c(i,k) = sum((k1(i,:) - k2(k,:)).^2); end end
github
jacksky64/imageProcessing-master
motion_corr.m
.m
imageProcessing-master/MatlabSIFT/motion_corr.m
6,466
utf_8
2e27a037d9c354cc545b0c88be7a7648
% MOTION_CORR - Computes a set of interest point correspondences % between two successive frames in an image % sequence. First, a Harris corner detector is used % to choose interest points. Then, CORR is used to % obtain a matching, using both geometric constraints % and local similarity of the points' intensity % neighborhoods. % % Usage: [p1, p2, a, F] = motion_corr(im1, im2[, OPTIONS]) % % Arguments: % im1 - an image % im2 - another image % Options: % 'p1' - an m x 3 matrix whose rows are % (homogeneous) coordinates of interest % points in im1; if supplied, % this matrix will be returned as p1; it can be % the empty matrix [] (in which case it is as if % they were not supplied) % 'smoothing' - pre-smoothing before corner detection % (default: 2.0) % 'nmsrad' - radius for non-maximal suppression of Harris % response matrix (default: 2) % 'rthresh' - relative threshold for Harris response % matrix (default: 0.3) % 'rthresh2' - smaller relative threshold used to % search for matches in the second image % (default: rthresh / 2.0) % 'sdthresh' - a distance threshold; no matches will be % accepted such that the Sampson distance % is greater than the threshold (default: 1.0) % 'dthresh' - a distance threshold; no matches will be % accepted such that the Euclidean % distance between the matched points is % greater than dthresh (default: 30) % % This function also accepts options for CORR. % % Returns: % p1 - an m x 3 matrix whose rows are the % (homogeneous) coordinates of interest points % in im1 (this will be the value given to the 'p1' % option, if it is supplied) % p2 - an n x 3 matrix whose rows are the % (homogeneous) coordinates of interest points % in im2 % a - an m x 1 assignment vector. a(i) is the index of % the feature of the second image that was matched % to feature i of the first image. For example, % p1(i, :) is matched to p2(a(i), :). If feature i % (of the first image) was not matched to any % feature in the second image, then a(i) is zero. % F - the fundamental matrix used to compute the matching. % % See also CORR and HARRIS_PTS. % Copyright (C) 2002 Mark A. Paskin % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 % USA. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [p1, p2, a, F] = motion_corr(im1, im2, varargin) % STEP 0: Process options [p1, ... smoothing, ... nmsrad, ... rthresh, ... rthresh2, ... sdthresh, ... dthresh, ... corr_opts] = process_options(varargin, 'p1', [], ... 'smoothing', 2, ... 'nmsrad', 2, ... 'rthresh', 0.3, ... 'rthresh2', nan, ... 'sdthresh', 1.0, ... 'dthresh', 30); if (isnan(rthresh2)) rthresh2 = rthresh / 2.0; end 'yes this is the right file...' % STEP 1: Extract interest points in the second image. Note that % this is done with the smaller (or more forgiving) % relative threshold. Later, we will re-threshold to % remove those points in im2 that remain unmatched and do % not satisfy rthresh (the more selective threshold). [p2, z2] = harris_pts(im2, 'smoothing', smoothing, ... 'nmsrad', nmsrad, 'rthresh', rthresh2); % If no interest points were provided for the first image, compute them if (isempty(p1)) p1 = harris_pts(im1, 'smoothing', smoothing, 'nmsrad', nmsrad, ... 'rthresh', rthresh); else % Ensure the final coordinates are unity p1 = p1 ./ p1(:, [3 3 3]); end % STEP 2: Form a cost matrix based upon local properties of the % interest points. The cost metric we use here is the sum of % squared differences of intensity values in a square % neighborhood around the pixels; a hard Euclidean distance % threshold is implemented so all point pairs that are too far % apart are given infinite cost. D = disteusq(p1(:, 1:2), p2(:, 1:2), 'xs'); N1 = nbhds(im1, round(p1(:, 2)), round(p1(:, 1)), 5, 5); N2 = nbhds(im2, round(p2(:, 2)), round(p2(:, 1)), 5, 5); C = disteusq(double(N1), double(N2), 'x'); C(find(D > dthresh)) = Inf; % STEP 3: Compute the correspondence. [a, F] = corr(p1, p2, C, 'sdthresh', sdthresh, corr_opts{:}); % STEP 4: Enforce thresholds. Keep only those points in the second % image that (a) obey the primary relative threshold or (b) % are matched with points in the first image. i = find(a); k = setdiff(find(z2 >= rthresh * max(z2)), a(i)); p2 = p2([a(i); k], :); a(i) = 1:length(i); figure imagesc(im1); colormap gray hold on for i=1:size(p1,1) plot(p1(i,1),p1(i,2),'g+'); end for i=1:size(p1,1) x = p1(i,1); y = p1(i,2); if a(i)~=0 u = p2(a(i),1)-p1(i,1); v = p2(a(i),2)-p1(i,2); plot([x x+u],[y y+v],'y'); end end figure imagesc(im2); colormap gray hold on for i=1:size(p2,1) plot(p2(i,1),p2(i,2),'g+'); end
github
jacksky64/imageProcessing-master
skeleton.m
.m
imageProcessing-master/FastMarching_version3b/skeleton.m
6,068
utf_8
bc89aea0d0615547c269a6f02eb57787
function S=skeleton(I,verbose) % This function Skeleton will calculate an accurate skeleton (centerlines) % of an object represented by an binary image / volume using the fastmarching % distance transform. % % S=skeleton(I,verbose) % % inputs, % I : A 2D or 3D binary image % verbose : Boolean, set to true (default) for debug information % % outputs % S : Cell array with the centerline coordinates of the skeleton branches % % Literature % Robert van Uitert and Ingmar Bitter : "Subvoxel precise skeletons of volumetric % data base on fast marching methods", 2007. % % Example 2D, % % % Read Blood vessel image % I=im2double(rgb2gray(imread('images/vessels2d.png'))); % % % Convert double image to logical % Ibin=I<0.5; % % % Use fastmarching to find the skeleton % S=skeleton(Ibin); % % Display the skeleton % figure, imshow(Ibin); hold on; % for i=1:length(S) % L=S{i}; % plot(L(:,2),L(:,1),'-','Color',rand(1,3)); % end % % % Example 3D, % % % Read Blood vessel image % load('images/vessels3d'); % % Note, this data is pre-processed from Dicom ConeBeam-CT with % % V = imfill(Vraw > 30000,'holes'); % % % Use fastmarching to find the skeleton % S=skeleton(V); % % % % Show the iso-surface of the vessels % figure, % FV = isosurface(V,0.5) % patch(FV,'facecolor',[1 0 0],'facealpha',0.3,'edgecolor','none'); % view(3) % camlight % % Display the skeleton % hold on; % for i=1:length(S) % L=S{i}; % plot3(L(:,2),L(:,1),L(:,3),'-','Color',rand(1,3)); % end if(nargin<2), verbose=true; end if(size(I,3)>1), IS3D=true; else IS3D=false; end % Distance to vessel boundary BoundaryDistance=getBoundaryDistance(I,IS3D); if(verbose), disp('Distance Map Constructed'); end % Get maximum distance value, which is used as starting point of the % first skeleton branch [SourcePoint,maxD]=maxDistancePoint(BoundaryDistance,I,IS3D); % Make a fastmarching speed image from the distance image SpeedImage=(BoundaryDistance/maxD).^4; SpeedImage(SpeedImage==0)=1e-10; % Skeleton segments found by fastmarching SkeletonSegments=cell(1,1000); % Number of skeleton iterations itt=0; while(true) if(verbose), disp(['Find Branches Iterations : ' num2str(itt)]); end % Do fast marching using the maximum distance value in the image % and the points describing all found branches are sourcepoints. [T,Y] = msfm(SpeedImage, SourcePoint, false, false); % Trace a branch back to the used sourcepoints StartPoint=maxDistancePoint(Y,I,IS3D); ShortestLine=shortestpath(T,StartPoint,SourcePoint,1,'rk4'); % Calculate the length of the new skeleton segment linelength=GetLineLength(ShortestLine,IS3D); % Stop finding branches, if the lenght of the new branch is smaller % then the diameter of the largest vessel if(linelength<maxD*2), break; end; % Store the found branch skeleton itt=itt+1; SkeletonSegments{itt}=ShortestLine; % Add found branche to the list of fastmarching SourcePoints SourcePoint=[SourcePoint ShortestLine']; end SkeletonSegments(itt+1:end)=[]; S=OrganizeSkeleton(SkeletonSegments,IS3D); if(verbose), disp(['Skeleton Branches Found : ' num2str(length(S))]); end function ll=GetLineLength(L,IS3D) if(IS3D) dist=sqrt((L(2:end,1)-L(1:end-1,1)).^2+ ... (L(2:end,2)-L(1:end-1,2)).^2+ ... (L(2:end,3)-L(1:end-1,3)).^2); else dist=sqrt((L(2:end,1)-L(1:end-1,1)).^2+ ... (L(2:end,2)-L(1:end-1,2)).^2); end ll=sum(dist); function S=OrganizeSkeleton(SkeletonSegments,IS3D) n=length(SkeletonSegments); if(IS3D) Endpoints=zeros(n*2,3); else Endpoints=zeros(n*2,2); end l=1; for w=1:n ss=SkeletonSegments{w}; l=max(l,length(ss)); Endpoints(w*2-1,:)=ss(1,:); Endpoints(w*2,:) =ss(end,:); end CutSkel=spalloc(size(Endpoints,1),l,10000); ConnectDistance=2^2; for w=1:n ss=SkeletonSegments{w}; ex=repmat(Endpoints(:,1),1,size(ss,1)); sx=repmat(ss(:,1)',size(Endpoints,1),1); ey=repmat(Endpoints(:,2),1,size(ss,1)); sy=repmat(ss(:,2)',size(Endpoints,1),1); if(IS3D) ez=repmat(Endpoints(:,3),1,size(ss,1)); sz=repmat(ss(:,3)',size(Endpoints,1),1); end if(IS3D) D=(ex-sx).^2+(ey-sy).^2+(ez-sz).^2; else D=(ex-sx).^2+(ey-sy).^2; end check=min(D,[],2)<ConnectDistance; check(w*2-1)=false; check(w*2)=false; if(any(check)) j=find(check); for i=1:length(j) line=D(j(i),:); [foo,k]=min(line); if((k>2)&&(k<(length(line)-2))), CutSkel(w,k)=1; end end end end pp=0; for w=1:n ss=SkeletonSegments{w}; r=[1 find(CutSkel(w,:)) length(ss)]; for i=1:length(r)-1 pp=pp+1; S{pp}=ss(r(i):r(i+1),:); end end function BoundaryDistance=getBoundaryDistance(I,IS3D) % Calculate Distance to vessel boundary % Set all boundary pixels as fastmarching source-points (distance = 0) if(IS3D),S=ones(3,3,3); else S=ones(3,3); end B=xor(I,imdilate(I,S)); ind=find(B(:)); if(IS3D) [x,y,z]=ind2sub(size(B),ind); SourcePoint=[x(:) y(:) z(:)]'; else [x,y]=ind2sub(size(B),ind); SourcePoint=[x(:) y(:)]'; end % Calculate Distance to boundarypixels for every voxel in the volume SpeedImage=ones(size(I)); BoundaryDistance = msfm(SpeedImage, SourcePoint, false, true); % Mask the result by the binary input image BoundaryDistance(~I)=0; function [posD,maxD]=maxDistancePoint(BoundaryDistance,I,IS3D) % Mask the result by the binary input image BoundaryDistance(~I)=0; % Find the maximum distance voxel [maxD,ind] = max(BoundaryDistance(:)); if(~isfinite(maxD)) error('Skeleton:Maximum','Maximum from MSFM is infinite !'); end if(IS3D) [x,y,z]=ind2sub(size(I),ind); posD=[x;y;z]; else [x,y]=ind2sub(size(I),ind); posD=[x;y]; end
github
jacksky64/imageProcessing-master
msfm.m
.m
imageProcessing-master/FastMarching_version3b/msfm.m
5,104
utf_8
8166322eef83fa858c709f64c52df7ba
function [T,Y]=msfm(F, SourcePoints, UseSecond, UseCross) % This function MSFM calculates the shortest distance from a list of % points to all other pixels in an image volume, using the % Multistencil Fast Marching Method (MSFM). This method gives more accurate % distances by using second order derivatives and cross neighbours. % % [T,Y]=msfm(F, SourcePoints, UseSecond, UseCross) % % inputs, % F: The 2D or 3D speed image. The speed function must always be larger % than zero (min value 1e-8), otherwise some regions will % never be reached because the time will go to infinity. % SourcePoints : A list of starting points [2 x N ] or [3 x N] (distance zero) % UseSecond : Boolean Set to true if not only first but also second % order derivatives are used (default) % UseCross : Boolean Set to true if also cross neighbours % are used (default) % outputs, % T : Image with distance from SourcePoints to all pixels % Y : Image for augmented fastmarching with, euclidian distance from % SourcePoints to all pixels. (Used by skeletonize method) % % Note: % Run compile_c_files.m to allow 3D fast marching and for cpu-effective % registration of 2D fast marching. % % Note(2): % Accuracy of this method is enhanced by just summing the coefficients % of the cross and normal terms as suggested by Olivier Roy. % % Literature : M. Sabry Hassouna et Al. Multistencils Fast Marching % Methods: A Highly Accurate Solution to the Eikonal Equation on % Cartesian Domains % % % Example 2D, % SourcePoint = [51; 51]; % SpeedImage = ones([101 101]); % [X Y] = ndgrid(1:101, 1:101); % T1 = sqrt((X-SourcePoint(1)).^2 + (Y-SourcePoint(2)).^2); % % % Run fast marching 1th order, 1th order multi stencil % % and 2th orde and 2th orde multi stencil % % tic; T1_FMM1 = msfm(SpeedImage, SourcePoint, false, false); toc; % tic; T1_MSFM1 = msfm(SpeedImage, SourcePoint, false, true); toc; % tic; T1_FMM2 = msfm(SpeedImage, SourcePoint, true, false); toc; % tic; T1_MSFM2 = msfm(SpeedImage, SourcePoint, true, true); toc; % % % Show results % fprintf('\nResults with T1 (Matlab)\n'); % fprintf('Method L1 L2 Linf\n'); % Results = cellfun(@(x)([mean(abs(T1(:)-x(:))) mean((T1(:)-x(:)).^2) max(abs(T1(:)-x(:)))]), {T1_FMM1(:) T1_MSFM1(:) T1_FMM2(:) T1_MSFM2(:)}, 'UniformOutput',false); % fprintf('FMM1: %9.5f %9.5f %9.5f\n', Results{1}(1), Results{1}(2), Results{1}(3)); % fprintf('MSFM1: %9.5f %9.5f %9.5f\n', Results{2}(1), Results{2}(2), Results{2}(3)); % fprintf('FMM2: %9.5f %9.5f %9.5f\n', Results{3}(1), Results{3}(2), Results{3}(3)); % fprintf('MSFM2: %9.5f %9.5f %9.5f\n', Results{4}(1), Results{4}(2), Results{4}(3)); % % % Example 2D, multiple starting points, % % SourcePoint=rand(2,100)*255+1; % SpeedImage = ones([256 256]); % tic; T1_MSFM2 = msfm(SpeedImage, SourcePoint, true, true); toc; % figure, imshow(T1_MSFM2,[]); colormap(hot(256)); % % % Example 3D, % SourcePoint = [21; 21; 21]; % SpeedImage = ones([41 41 41]); % [X,Y,Z] = ndgrid(1:41, 1:41, 1:41); % T1 = sqrt((X-SourcePoint(1)).^2 + (Y-SourcePoint(2)).^2 + (Z-SourcePoint(3)).^2); % % % Run fast marching 1th order, 1th order multi stencil % % and 2th orde and 2th orde multi stencil % % tic; T1_FMM1 = msfm(SpeedImage, SourcePoint, false, false); toc; % tic; T1_MSFM1 = msfm(SpeedImage, SourcePoint, false, true); toc; % tic; T1_FMM2 = msfm(SpeedImage, SourcePoint, true, false); toc; % tic; T1_MSFM2 = msfm(SpeedImage, SourcePoint, true, true); toc; % % % Show results % fprintf('\nResults with T1 (Matlab)\n'); % fprintf('Method L1 L2 Linf\n'); % Results = cellfun(@(x)([mean(abs(T1(:)-x(:))) mean((T1(:)-x(:)).^2) max(abs(T1(:)-x(:)))]), {T1_FMM1(:) T1_MSFM1(:) T1_FMM2(:) T1_MSFM2(:)}, 'UniformOutput',false); % fprintf('FMM1: %9.5f %9.5f %9.5f\n', Results{1}(1), Results{1}(2), Results{1}(3)); % fprintf('MSFM1: %9.5f %9.5f %9.5f\n', Results{2}(1), Results{2}(2), Results{2}(3)); % fprintf('FMM2: %9.5f %9.5f %9.5f\n', Results{3}(1), Results{3}(2), Results{3}(3)); % fprintf('MSFM2: %9.5f %9.5f %9.5f\n', Results{4}(1), Results{4}(2), Results{4}(3)); % % Function is written by D.Kroon University of Twente (Oct 2010) add_function_paths(); if(nargin<3), UseSecond=false; end if(nargin<4), UseCross=false; end if(nargout>1) if(size(F,3)>1) [T,Y]=msfm3d(F, SourcePoints, UseSecond, UseCross); else [T,Y]=msfm2d(F, SourcePoints, UseSecond, UseCross); end else if(size(F,3)>1) T=msfm3d(F, SourcePoints, UseSecond, UseCross); else T=msfm2d(F, SourcePoints, UseSecond, UseCross); end end function add_function_paths() try functionname='msfm.m'; functiondir=which(functionname); functiondir=functiondir(1:end-length(functionname)); addpath([functiondir '/functions']) addpath([functiondir '/shortestpath']) catch me disp(me.message); end
github
jacksky64/imageProcessing-master
msfm2d.m
.m
imageProcessing-master/FastMarching_version3b/functions/msfm2d.m
11,010
utf_8
f96cf4a042008f8a5e6c2c2f847e3a67
function [T,Y]=msfm2d(F, SourcePoints, usesecond, usecross) % This function MSFM2D calculates the shortest distance from a list of % points to all other pixels in an image, using the % Multistencil Fast Marching Method (MSFM). This method gives more accurate % distances by using second order derivatives and cross neighbours. % % T=msfm2d(F, SourcePoints, UseSecond, UseCross) % % inputs, % F: The speed image. The speed function must always be larger % than zero (min value 1e-8), otherwise some regions will % never be reached because the time will go to infinity. % SourcePoints : A list of starting points [2 x N] (distance zero) % UseSecond : Boolean Set to true if not only first but also second % order derivatives are used (default) % UseCross : Boolean Set to true if also cross neighbours % are used (default) % outputs, % T : Image with distance from SourcePoints to all pixels % % Note: % Compile the c file "mex msfm2d.c" for cpu-effective registration % % Literature : M. Sabry Hassouna et Al. Multistencils Fast Marching % Methods: A Highly Accurate Solution to the Eikonal Equation on % Cartesian Domains % % Example, % SourcePoint = [51; 51]; % SpeedImage = ones([101 101]); % [X Y] = ndgrid(1:101, 1:101); % T1 = sqrt((X-SourcePoint(1)).^2 + (Y-SourcePoint(2)).^2); % % % Run fast marching 1th order, 1th order multi stencil % % and 2th orde and 2th orde multi stencil % % tic; T1_FMM1 = msfm2d(SpeedImage, SourcePoint, false, false); toc; % tic; T1_MSFM1 = msfm2d(SpeedImage, SourcePoint, false, true); toc; % tic; T1_FMM2 = msfm2d(SpeedImage, SourcePoint, true, false); toc; % tic; T1_MSFM2 = msfm2d(SpeedImage, SourcePoint, true, true); toc; % % % Show results % fprintf('\nResults with T1 (Matlab)\n'); % fprintf('Method L1 L2 Linf\n'); % Results = cellfun(@(x)([mean(abs(T1(:)-x(:))) mean((T1(:)-x(:)).^2) max(abs(T1(:)-x(:)))]), {T1_FMM1(:) T1_MSFM1(:) T1_FMM2(:) T1_MSFM2(:)}, 'UniformOutput',false); % fprintf('FMM1: %9.5f %9.5f %9.5f\n', Results{1}(1), Results{1}(2), Results{1}(3)); % fprintf('MSFM1: %9.5f %9.5f %9.5f\n', Results{2}(1), Results{2}(2), Results{2}(3)); % fprintf('FMM2: %9.5f %9.5f %9.5f\n', Results{3}(1), Results{3}(2), Results{3}(3)); % fprintf('MSFM2: %9.5f %9.5f %9.5f\n', Results{4}(1), Results{4}(2), Results{4}(3)); % % Example multiple starting points, % SourcePoint=rand(2,100)*255+1; % SpeedImage = ones([256 256]); % tic; T1_MSFM2 = msfm2d(SpeedImage, SourcePoint, true, true); toc; % figure, imshow(T1_MSFM2,[]); colormap(hot(256)); % % Function is written by D.Kroon University of Twente (June 2009) % Distance image, also used to store the index of narrowband pixels % during marching process T = zeros(size(F))-1; % Augmented Fast Marching (For skeletonize) Ed=nargout>1; % Euclidian distance image if(Ed), Y = zeros(size(F)); end % Pixels which are processed and have a final distance are frozen Frozen = zeros(size(F)); % Free memory to store neighbours of the (segmented) region neg_free = 100000; neg_pos=0; if(Ed), neg_list = zeros(4,neg_free); else neg_list = zeros(3,neg_free); end % (There are 3 pixel classes: % - frozen (processed) % - narrow band (boundary) (in list to check for the next pixel with smallest distance) % - far (not yet used) % Neighbours ne =[-1 0; 1 0; 0 -1; 0 1]; SourcePoints=int32(floor(SourcePoints)); % set all starting points to distance zero and frozen for z=1:size(SourcePoints,2) % starting point x= SourcePoints(1,z); y=SourcePoints(2,z); % Set starting point to frozen and distance to zero Frozen(x,y)=1; T(x,y)=0; end % Add all neighbours of the starting points to narrow list for z=1:size(SourcePoints,2) % starting point x=SourcePoints(1,z); y=SourcePoints(2,z); for k=1:4, % Location of neighbour i=x+ne(k,1); j=y+ne(k,2); % Check if current neighbour is not yet frozen and inside the % picture if((i>0)&&(j>0)&&(i<=size(F,1))&&(j<=size(F,2))&&(Frozen(i,j)==0)) Tt=1/max(F(i,j),eps); Ty=1; % Update distance in neigbour list or add to neigbour list if(T(i,j)>0) if(neg_list(1,T(i,j))>Tt) neg_list(1,T(i,j))=Tt; end if(Ed) neg_list(4,T(i,j))=min(Ty,neg_list(4,T(i,j))); end else neg_pos=neg_pos+1; % If running out of memory at a new block if(neg_pos>neg_free), neg_free = neg_free +100000; neg_list(1,neg_free)=0; end if(Ed) neg_list(:,neg_pos)=[Tt;i;j;Ty]; else neg_list(:,neg_pos)=[Tt;i;j]; end T(i,j)=neg_pos; end end end end % Loop through all pixels of the image for itt=1:numel(F) % Get the pixel from narrow list (boundary list) with smallest % distance value and set it to current pixel location [t,index]=min(neg_list(1,1:neg_pos)); if(neg_pos==0), break; end x=neg_list(2,index); y=neg_list(3,index); Frozen(x,y)=1; T(x,y)=neg_list(1,index); if(Ed), Y(x,y)=neg_list(4,index); end % Remove min value by replacing it with the last value in the array if(index<neg_pos), neg_list(:,index)=neg_list(:,neg_pos); x2=neg_list(2,index); y2=neg_list(3,index); T(x2,y2)=index; end neg_pos =neg_pos-1; % Loop through all 4 neighbours of current pixel for k=1:4, % Location of neighbour i=x+ne(k,1); j=y+ne(k,2); % Check if current neighbour is not yet frozen and inside the % picture if((i>0)&&(j>0)&&(i<=size(F,1))&&(j<=size(F,2))&&(Frozen(i,j)==0)) Tt=CalculateDistance(T,F(i,j),size(F),i,j,usesecond,usecross,Frozen); if(Ed) Ty=CalculateDistance(Y,1,size(F),i,j,usesecond,usecross,Frozen); end % Update distance in neigbour list or add to neigbour list if(T(i,j)>0) neg_list(1,T(i,j))=min(Tt,neg_list(1,T(i,j))); if(Ed) neg_list(4,T(i,j))=min(Ty,neg_list(4,T(i,j))); end else neg_pos=neg_pos+1; % If running out of memory at a new block if(neg_pos>neg_free), neg_free = neg_free +100000; neg_list(1,neg_free)=0; end if(Ed) neg_list(:,neg_pos)=[Tt;i;j;Ty]; else neg_list(:,neg_pos)=[Tt;i;j]; end T(i,j)=neg_pos; end end end end function Tt=CalculateDistance(T,Fij,sizeF,i,j,usesecond,usecross,Frozen) % Boundary and frozen check -> current patch Tpatch=inf(5,5); for nx=-2:2 for ny=-2:2 in=i+nx; jn=j+ny; if((in>0)&&(jn>0)&&(in<=sizeF(1))&&(jn<=sizeF(2))&&(Frozen(in,jn)==1)) Tpatch(nx+3,ny+3)=T(in,jn); end end end % The values in order is 0 if no neighbours in that direction % 1 if 1e order derivatives is used and 2 if second order % derivatives are used Order=zeros(1,4); % Make 1e order derivatives in x and y direction Tm(1) = min( Tpatch(2,3) , Tpatch(4,3)); if(isfinite(Tm(1))), Order(1)=1; end Tm(2) = min( Tpatch(3,2) , Tpatch(3,4)); if(isfinite(Tm(2))), Order(2)=1; end % Make 1e order derivatives in cross directions if(usecross) Tm(3) = min( Tpatch(2,2) , Tpatch(4,4)); if(isfinite(Tm(3))), Order(3)=1; end Tm(4) = min( Tpatch(2,4) , Tpatch(4,2)); if(isfinite(Tm(4))), Order(4)=1; end end % Make 2e order derivatives if(usesecond) Tm2=zeros(1,4); % pixels with a pixeldistance 2 from the center must be % lower in value otherwise use other side or first order ch1=(Tpatch(1,3)<Tpatch(2,3))&&isfinite(Tpatch(2,3)); ch2=(Tpatch(5,3)<Tpatch(4,3))&&isfinite(Tpatch(4,3)); if(ch1&&ch2),Tm2(1) =min( (4*Tpatch(2,3)-Tpatch(1,3))/3 , (4*Tpatch(4,3)-Tpatch(5,3))/3); Order(1)=2; elseif(ch1), Tm2(1) =(4*Tpatch(2,3)-Tpatch(1,3))/3; Order(1)=2; elseif(ch2), Tm2(1) =(4*Tpatch(4,3)-Tpatch(5,3))/3; Order(1)=2; end ch1=(Tpatch(3,1)<Tpatch(3,2))&&isfinite(Tpatch(3,2)); ch2=(Tpatch(3,5)<Tpatch(3,4))&&isfinite(Tpatch(3,4)); if(ch1&&ch2),Tm2(2) =min( (4*Tpatch(3,2)-Tpatch(3,1))/3 , (4*Tpatch(3,4)-Tpatch(3,5))/3); Order(2)=2; elseif(ch1), Tm2(2)=(4*Tpatch(3,2)-Tpatch(3,1))/3; Order(2)=2; elseif(ch2), Tm2(2)=(4*Tpatch(3,4)-Tpatch(3,5))/3; Order(2)=2; end if(usecross) ch1=(Tpatch(1,1)<Tpatch(2,2))&&isfinite(Tpatch(2,2)); ch2=(Tpatch(5,5)<Tpatch(4,4))&&isfinite(Tpatch(4,4)); if(ch1&&ch2),Tm2(3) =min( (4*Tpatch(2,2)-Tpatch(1,1))/3 , (4*Tpatch(4,4)-Tpatch(5,5))/3); Order(3)=2; elseif(ch1), Tm2(3)=(4*Tpatch(2,2)-Tpatch(1,1))/3; Order(3)=2; elseif(ch2), Tm2(3)=(4*Tpatch(4,4)-Tpatch(5,5))/3; Order(3)=2; end ch1=(Tpatch(1,5)<Tpatch(2,4))&&isfinite(Tpatch(2,4)); ch2=(Tpatch(5,1)<Tpatch(4,2))&&isfinite(Tpatch(4,2)); if(ch1&&ch2),Tm2(4) =min( (4*Tpatch(2,4)-Tpatch(1,5))/3 , (4*Tpatch(4,2)-Tpatch(5,1))/3); Order(4)=2; elseif(ch1), Tm2(4)=(4*Tpatch(2,4)-Tpatch(1,5))/3; Order(4)=2; elseif(ch2), Tm2(4)=(4*Tpatch(4,2)-Tpatch(5,1))/3; Order(4)=2; end end else Tm2=zeros(1,4); end % Calculate the distance using x and y direction Coeff = [0 0 -1/(max(Fij^2,eps))]; for t=1:2; switch(Order(t)) case 1, Coeff=Coeff+[1 -2*Tm(t) Tm(t)^2]; case 2, Coeff=Coeff+[1 -2*Tm2(t) Tm2(t)^2]*(2.2500); end end Tt=roots(Coeff); Tt=max(Tt); % Calculate the distance using the cross directions if(usecross) Coeff = Coeff + [0 0 -1/(max(Fij^2,eps))]; for t=3:4; switch(Order(t)) case 1, Coeff=Coeff+0.5*[1 -2*Tm(t) Tm(t)^2]; case 2, Coeff=Coeff+0.5*[1 -2*Tm2(t) Tm2(t)^2]*(2.2500); end end Tt2=roots(Coeff); Tt2=max(Tt2); % Select minimum distance value of both stensils if(~isempty(Tt2)), Tt=min(Tt,Tt2); end end % Upwind condition check, current distance must be larger % then direct neighbours used in solution DirectNeigbInSol=Tm(isfinite(Tm)); if(nnz(DirectNeigbInSol>=Tt)>0) % Will this ever happen? Tt=min(DirectNeigbInSol)+(1/(max(Fij,eps))); end function z=roots(Coeff) a=Coeff(1); b=Coeff(2); c=Coeff(3); d=max((b*b)-4.0*a*c,0); if(a~=0) z(1)= (-b - sqrt(d)) / (2.0*a); z(2)= (-b + sqrt(d)) / (2.0*a); else z(1)= (2.0*c)/(-b - sqrt(d)); z(2)= (2.0*c)/(-b + sqrt(d)); end
github
jacksky64/imageProcessing-master
region_measurement.m
.m
imageProcessing-master/3dViewer/region_measurement.m
10,315
utf_8
3281727018491aae4fe7dcd5a14fe172
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright: % Jun Tan % University of Texas Southwestern Medical Center % Department of Radiation Oncology % Last edited: 08/19/2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = region_measurement(varargin) % REGION_MEASUREMENT MATLAB code for region_measurement.fig % REGION_MEASUREMENT, by itself, creates a new REGION_MEASUREMENT or raises the existing % singleton*. % % H = REGION_MEASUREMENT returns the handle to a new REGION_MEASUREMENT or the handle to % the existing singleton*. % % REGION_MEASUREMENT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in REGION_MEASUREMENT.M with the given input arguments. % % REGION_MEASUREMENT('Property','Value',...) creates a new REGION_MEASUREMENT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before region_measurement_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to region_measurement_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help region_measurement % Last Modified by GUIDE v2.5 19-Aug-2014 22:40:16 % Begin initialization code - DO NOT EDIT gui_Singleton = 0; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @region_measurement_OpeningFcn, ... 'gui_OutputFcn', @region_measurement_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before region_measurement is made visible. function region_measurement_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to region_measurement (see VARARGIN) % Choose default command line output for region_measurement handles.output = hObject; % Update handles structure guidata(hObject, handles); parse_args(hObject, varargin); setappdata(hObject, 'entry_update_data', @parse_args); set(hObject, 'Visible', getappdata(hObject, 'initialVisible')); % ------------------------------------------------------------------- function parse_args(hFig, args) handles = guidata(hFig); numArgs = length(args); assert(1 == numArgs || 2 == numArgs || 3 == numArgs, 'Must have 1, 2, or 3 arguments'); setappdata(handles.figure_rs, 'regionType', 1); % 1: rectangle, 2: disc. setappdata(handles.figure_rs, 'mainFigHandle', []); setappdata(handles.figure_rs, 'initialVisible', 'on'); if 1 == numArgs if is_handle(args{1}) setappdata(handles.figure_rs, 'mainFigHandle', args{1}); setappdata(handles.figure_rs, 'initialVisible', 'off'); else parse_region_data(handles, args{1}); end elseif 2 == numArgs if is_handle(args{2}) setappdata(handles.figure_rs, 'mainFigHandle', args{2}); else assert(strcmpi('Rectangle', args{2}) || strcmpi('Disc', args{2}) || strcmpi('Drawn', args{2}), ... 'Region shape must be disc or rectangle or user-drawn.'); if strcmpi('Disc', args{2}) setappdata(handles.figure_rs, 'regionType', 2); elseif strcmpi('Drawn', args{2}) setappdata(handles.figure_rs, 'regionType', 3); end end parse_region_data(handles, args{1}); else % if 3 == numArgs assert(strcmpi('Disc', args{2}) || strcmpi('Rectangle', args{2}) || strcmpi('Drawn', args{2}), ... 'Region shape must be disc or rectangle or user-drawn.'); if strcmpi('Disc', args{2}) setappdata(handles.figure_rs, 'regionType', 2); elseif strcmpi('Drawn', args{2}) setappdata(handles.figure_rs, 'regionType', 3); end assert(is_handle(args{3}), 'The third argument must be a valid GUI handle.'); setappdata(handles.figure_rs, 'mainFigHandle', args{3}); parse_region_data(handles, args{1}); end update_measurement(handles); % ------------------------------------------------------------------- function parse_region_data(handles, regionData) regionType = getappdata(handles.figure_rs, 'regionType'); if 1 == regionType || 2 == regionType assert((isnumeric(regionData) || islogical(regionData)) && ismatrix(regionData), ... 'Data must be gray or binary 2D image.'); setappdata(handles.figure_rs, 'regionData', double(regionData)); else %3 == regionType assert(isa(regionData, 'cell') && isa(regionData{1}, 'double') && isa(regionData{2}, 'logical') .... && isequal(size(regionData{1}), size(regionData{2}))); setappdata(handles.figure_rs, 'regionData', regionData{1}); setappdata(handles.figure_rs, 'regionMask', regionData{2}); end % ------------------------------------------------------------------- function update_measurement(handles) regionData = getappdata(handles.figure_rs, 'regionData'); regionType = getappdata(handles.figure_rs, 'regionType'); pixels = []; if 1 == regionType || 2 == regionType data = cell(6, 2); data{1, 1} = ' Shape'; data{2, 1} = ' #Points'; data{3, 1} = ' Area'; data{4, 1} = ' Width'; data{5, 1} = ' Height'; data{6, 1} = ' Max'; data{7, 1} = ' Min'; data{8, 1} = ' Mean'; data{9, 1} = ' SD'; if 1 == regionType data{1, 2} = ' Rectangle'; pixels = regionData(:); elseif 2 == regionType data{1, 2} = ' Disc'; h = size(regionData, 1); w = size(regionData, 2); cy = h / 2.0 + 0.5; cx = w / 2.0 + 0.5; [x, y] = meshgrid(1:w, 1:h); dx = abs(x - cx); dy = abs(y - cy); c = ((dx .^ 2) / (cx .^ 2) + (dy .^ 2) ./ (cy .^ 2)) <= 1; pixels = regionData(c); end data{2, 2} = numel(pixels); if data{2, 2} > 0 data{3, 2} = numel(pixels); data{4, 2} = size(regionData, 2); data{5, 2} = size(regionData, 1); data{6, 2} = max(pixels); data{7, 2} = min(pixels); data{8, 2} = mean(pixels); data{9, 2} = std(pixels); end else %if 3 == regionType data = cell(16, 2); data{1, 1} = ' Shape'; data{2, 1} = ' Area'; data{3, 1} = ' Centroid.X'; data{4, 1} = ' Centroid.Y'; data{5, 1} = ' W.Cent.X'; data{6, 1} = ' W.Cent.Y'; data{7, 1} = ' Orientation'; data{8, 1} = ' Major Axis'; data{9, 1} = ' Minor Axis'; data{10, 1} = ' Equiv Diam'; data{11, 1} = ' Perimeter'; data{12, 1} = ' Solidity'; data{13, 1} = ' Max'; data{14, 1} = ' Min'; data{15, 1} = ' Mean'; data{16, 1} = ' SD'; img = getappdata(handles.figure_rs, 'regionData'); mask = getappdata(handles.figure_rs, 'regionMask'); stats = regionprops(mask, img, ... {'Area', 'Centroid', 'Orientation', 'MajorAxisLength', 'MinorAxisLength', ... 'EquivDiameter', 'Perimeter', 'Solidity', 'MaxIntensity', 'MinIntensity', ... 'MeanIntensity', 'WeightedCentroid'}); if length(stats) >= 1 stats = stats(1); pixels = img(mask); data{1, 2} = 'User-Drawn'; data{2, 2} = stats.Area; data{3, 2} = stats.Centroid(1); data{4, 2} = stats.Centroid(2); data{5, 2} = stats.WeightedCentroid(1); data{6, 2} = stats.WeightedCentroid(2); data{7, 2} = stats.Orientation; data{8, 2} = stats.MajorAxisLength; data{9, 2} = stats.MinorAxisLength; data{10, 2} = stats.EquivDiameter; data{11, 2} = stats.Perimeter; data{12, 2} = stats.Solidity; data{13, 2} = stats.MaxIntensity; data{14, 2} = stats.MinIntensity; data{15, 2} = stats.MeanIntensity; data{16, 2} = std(pixels); end end set(handles.uitable_stats, 'Data', data); if ~isempty(pixels) hist(handles.axes_hist, pixels, 100); box(handles.axes_hist, 'off'); xlabel(handles.axes_hist, 'Pixel value'); ylabel(handles.axes_hist, 'Counts'); end check_grid(handles); % ------------------------------------------------------------------- function check_grid(handles) if 1 == get(handles.checkbox_grid, 'Value') grid(handles.axes_hist, 'on'); else grid(handles.axes_hist, 'off'); end % --- Outputs from this function are returned to the command line. function varargout = region_measurement_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in checkbox_grid. function checkbox_grid_Callback(hObject, eventdata, handles) % hObject handle to checkbox_grid (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_grid check_grid(handles); % --- Executes when user attempts to close figure_rs. function figure_rs_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure_rs (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mainFigHandle = getappdata(handles.figure_rs, 'mainFigHandle'); if is_handle(mainFigHandle) hFun = getappdata(mainFigHandle, 'hFunCallbackRegionMeasurementClosed'); if isa(hFun, 'function_handle') feval(hFun, mainFigHandle); end else delete(hObject); end
github
jacksky64/imageProcessing-master
vi_isoline.m
.m
imageProcessing-master/3dViewer/vi_isoline.m
7,864
utf_8
57f608cd389b82381976ee8981ad3aee
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright: % Jun Tan % University of Texas Southwestern Medical Center % Department of Radiation Oncology % Last edited: 08/19/2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = vi_isoline(varargin) % VI_ISOLINE MATLAB code for vi_isoline.fig % VI_ISOLINE, by itself, creates a new VI_ISOLINE or raises the existing % singleton*. % % H = VI_ISOLINE returns the handle to a new VI_ISOLINE or the handle to % the existing singleton*. % % VI_ISOLINE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in VI_ISOLINE.M with the given input arguments. % % VI_ISOLINE('Property','Value',...) creates a new VI_ISOLINE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before vi_isoline_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to vi_isoline_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help vi_isoline % Last Modified by GUIDE v2.5 25-Aug-2014 11:57:32 % Begin initialization code - DO NOT EDIT gui_Singleton = 0; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @vi_isoline_OpeningFcn, ... 'gui_OutputFcn', @vi_isoline_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before vi_isoline is made visible. function vi_isoline_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to vi_isoline (see VARARGIN) % Choose default command line output for vi_isoline handles.output = hObject; % Update handles structure guidata(hObject, handles); numArgs = length(varargin); assert(1 == numArgs && is_handle(varargin{1}), 'Only allow main GUI handle as argument.'); setappdata(handles.figure_isoline, 'mainFigHandle', varargin{1}); data = cell(20, 2); data(:, 2) = {false}; set(handles.uitable_isovalues, 'Data', data); set(hObject, 'Visible', 'off'); % ------------------------------------------------------------------- function send_isovalues_to_main_gui(handles) mainFigHandle = getappdata(handles.figure_isoline, 'mainFigHandle'); if is_handle(mainFigHandle) hFun = getappdata(mainFigHandle, 'hFunCallbackIsolineUpdate'); if isa(hFun, 'function_handle') data = get(handles.uitable_isovalues, 'Data'); isovalues = [data{:, 1}]; shown = [data{1:length(isovalues), 2}]; isovalues = isovalues(shown); showCLabel = 1 == get(handles.checkbox_clabel, 'Value'); feval(hFun, mainFigHandle, isovalues, showCLabel); end end % --- Outputs from this function are returned to the command line. function varargout = vi_isoline_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes when entered data in editable cell(s) in uitable_isovalues. function uitable_isovalues_CellEditCallback(hObject, eventdata, handles) % hObject handle to uitable_isovalues (see GCBO) % eventdata structure with the following fields (see UITABLE) % Indices: row and column indices of the cell(s) edited % PreviousData: previous data for the cell(s) edited % EditData: string(s) entered by the user % NewData: EditData or its converted form set on the Data property. Empty if Data was not changed % Error: error string when failed to convert EditData to appropriate value for Data % handles structure with handles and user data (see GUIDATA) data = get(handles.uitable_isovalues, 'Data'); if 1 == eventdata.Indices(2) % Only need to check data for column 1. if isempty(eventdata.EditData) % Delete cell content to delete a value. data{eventdata.Indices(1), eventdata.Indices(2)} = []; elseif isnan(eventdata.NewData) % Entered a non-numeric string. Revert change. data{eventdata.Indices(1), eventdata.Indices(2)} = eventdata.PreviousData; disp('Must enter a number.'); set(handles.uitable_isovalues, 'Data', data); return; elseif length(find([data{:, 1}] == eventdata.NewData)) > 1 % Entered a existing value. Revert change. data{eventdata.Indices(1), eventdata.Indices(2)} = eventdata.PreviousData; disp('Must enter a value that did not exist.'); set(handles.uitable_isovalues, 'Data', data); return; else % Show by default if entered a new value. data(eventdata.Indices(1), 2) = {true}; set(handles.uitable_isovalues, 'Data', data); end end data = data(~cellfun(@isempty, data(:, 1)), :); [~, idx] = sort(cell2mat(data(:, 1))); data = data(idx, :); data((size(data, 1)+1):20, 2) = {false}; set(handles.uitable_isovalues, 'Data', data); send_isovalues_to_main_gui(handles); % --- Executes when user attempts to close figure_isoline. function figure_isoline_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure_isoline (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mainFigHandle = getappdata(handles.figure_isoline, 'mainFigHandle'); if is_handle(mainFigHandle) hFun = getappdata(mainFigHandle, 'hFunCallbackIsolineClosed'); if isa(hFun, 'function_handle') feval(hFun, mainFigHandle); end else delete(hObject); end % --- Executes on button press in checkbox_clabel. function checkbox_clabel_Callback(hObject, eventdata, handles) % hObject handle to checkbox_clabel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_clabel send_isovalues_to_main_gui(handles); % --- Executes on button press in pushbutton_showAll. function pushbutton_showAll_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_showAll (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) data = get(handles.uitable_isovalues, 'Data'); numVals = length([data{:, 1}]); data(1:numVals, 2) = {true}; set(handles.uitable_isovalues, 'Data', data); send_isovalues_to_main_gui(handles); % --- Executes on button press in pushbutton_hideAll. function pushbutton_hideAll_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_hideAll (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) data = get(handles.uitable_isovalues, 'Data'); numVals = length([data{:, 1}]); data(1:numVals, 2) = {false}; set(handles.uitable_isovalues, 'Data', data); send_isovalues_to_main_gui(handles);
github
jacksky64/imageProcessing-master
vi.m
.m
imageProcessing-master/3dViewer/vi.m
78,447
utf_8
d16920fc5fbdbfde1720a0708614b1fb
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright: % Jun Tan % University of Texas Southwestern Medical Center % Department of Radiation Oncology % Last edited: 08/19/2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = vi(varargin) % VI MATLAB code for vi.fig % VI, by itself, creates a new VI or raises the existing % singleton*. % % H = VI returns the handle to a new VI or the handle to % the existing singleton*. % % VI('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in VI.M with the given input arguments. % % VI('Property','Value',...) creates a new VI or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before vi_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to vi_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help vi % Last Modified by GUIDE v2.5 19-Aug-2014 13:59:42 % Begin initialization code - DO NOT EDIT gui_Singleton = 0; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @vi_OpeningFcn, ... 'gui_OutputFcn', @vi_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before vi is made visible. function vi_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to vi (see VARARGIN) % Choose default command line output for vi handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes vi wait for user response (see UIRESUME) % uiwait(handles.figure_vi); if nargin <= 3 img = flipud(phantom('Modified Shepp-Logan', 512)); % Generate a phantom image if no input is given. img = int32(1000 * (img - 0.2) / 0.2); else img = varargin{1}; end assert(isnumeric(img) || islogical(img), 'First argument must be numeric.'); img = squeeze(img); % Remove singleton dimensions. maxPixelVal = max(img(:)); minPixelVal = min(img(:)); assert(maxPixelVal ~= minPixelVal, 'Image must contain at least 2 different values.'); numDims = ndims(img); assert((2 == numDims || 3 == numDims) && all(size(img) > 1), 'Image must be either 2D or 3D.'); options = varargin(2:end); assert(0 == mod(length(options), 2), 'Argument must be name and value pairs.'); argCheckMap = containers.Map; argCheckMap('clim') = false; argCheckMap('aspect') = false; setappdata(handles.figure_vi, 'argCheckMap', argCheckMap); while ~isempty(options) && length(options) >= 2 check_arg(handles, options{1}, options{2}); options = options(3:end); end argCheckMap = getappdata(handles.figure_vi, 'argCheckMap'); imgSize = size(img); if 2 == numDims % 2D images don't need these uicontrols. set([ ... handles.radiobutton_sagittalView, ... handles.radiobutton_coronalView, ... handles.radiobutton_3dSlice, ... handles.togglebutton_light, ... handles.togglebutton_rotate, ... handles.slider_xSliceNo, ... handles.slider_ySliceNo, ... handles.slider_zSliceNo, ... handles.edit_sliceNo, ... handles.slider_sliceNo], ... 'Enable', 'off'); set(handles.slider_sliceNo, 'Max', 1, 'Min', 0, 'SliderStep', [0.1 0.1]); elseif 3 == numDims % 3D images need multiple views, rotation, etc. set([ ... handles.radiobutton_sagittalView, ... handles.radiobutton_coronalView, ... handles.radiobutton_3dSlice, ... handles.togglebutton_light, ... handles.togglebutton_rotate, ... handles.slider_xSliceNo, ... handles.slider_ySliceNo, ... handles.slider_zSliceNo, ... handles.edit_sliceNo, ... handles.slider_sliceNo], ... 'Enable', 'on'); set(handles.slider_xSliceNo, 'Max', imgSize(2), 'Min', 1, 'SliderStep', [1/(imgSize(2)-1) 10/(imgSize(2)-1)]); set(handles.slider_ySliceNo, 'Max', imgSize(1), 'Min', 1, 'SliderStep', [1/(imgSize(1)-1) 10/(imgSize(1)-1)]); set(handles.slider_zSliceNo, 'Max', imgSize(3), 'Min', 1, 'SliderStep', [1/(imgSize(3)-1) 10/(imgSize(3)-1)]); sliceNo3d = ceil(imgSize / 2); % Initially display center slices. sliceNo3d = sliceNo3d([2 1 3]); % Reorder as [x y z]. setappdata(handles.figure_vi, 'sliceNo3d', sliceNo3d); set(handles.slider_xSliceNo, 'Value', sliceNo3d(1)); set(handles.slider_ySliceNo, 'Value', sliceNo3d(2)); set(handles.slider_zSliceNo, 'Value', sliceNo3d(3)); set(handles.slider_sliceNo, 'Min', 1); end setappdata(handles.figure_vi, 'imgData', img); setappdata(handles.figure_vi, 'imgSize', imgSize); setappdata(handles.figure_vi, 'numDims', numDims); cb = colorbar('peer', handles.axes_colorBar, 'location', 'west'); setappdata(handles.figure_vi, 'colorBar', cb); % Get number string format. if isinteger(img) || islogical(img) dataFormat = '%.0f'; else % if isfloat(img) maxVal = max(abs(maxPixelVal), abs(minPixelVal)); if maxVal > 1e5 || maxVal < 1e-1 dataFormat = '%.3e'; else dataFormat = '%.3f'; end end setappdata(handles.figure_vi, 'dataFormat', dataFormat); set(handles.text_maxPixelVal, 'String', num2str(maxPixelVal, dataFormat)); set(handles.text_minPixelVal, 'String', num2str(minPixelVal, dataFormat)); set(handles.axes_2dViewer, 'CLimMode', 'manual'); if ~argCheckMap('clim') set_clims(handles, minPixelVal, maxPixelVal); end if ~argCheckMap('aspect') setappdata(handles.figure_vi, 'aspectRatio', [1 1 1]); end setappdata(handles.figure_vi, 'buttonDown', false); setappdata(handles.figure_vi, 'ptOnAxesBtnDown', [1 1]); setappdata(handles.figure_vi, 'regionType', 'Rectangle'); setup_ui_menus(handles.figure_vi); update_window_info(handles); plot_resize_arrow(handles.axes_resizeArrow); update_view_type(handles); % ------------------------------------------------------------------- function setup_ui_menus(hFig) uiMenus = struct; guiChildren = get(hFig, 'Children'); for i = 1 : length(guiChildren) child = guiChildren(i); childTag = get(child, 'Tag'); if strcmpi('menu_moreWindowSettings', childTag) uiMenus.menu_moreWindowSettings = child; elseif strcmpi('menu_selectRegionType', childTag) uiMenus.menu_selectRegionType = child; end end setappdata(hFig, 'uiMenus', uiMenus); % ------------------------------------------------------------------- function plot_resize_arrow(hAxes) hold(hAxes, 'on'); setappdata(hAxes, 'resizeArrow', [ ... plot(hAxes, [9 15], [9 15], 'b'), ... plot(hAxes, [15 15], [15 1], 'b'), ... plot(hAxes, [15 1], [15 15], 'b')]); set(getappdata(hAxes, 'resizeArrow'), 'HitTest', 'off'); hold(hAxes, 'off'); axis(hAxes, 'off'); % ------------------------------------------------------------------- function check_arg(handles, argName, argVal) assert(ischar(argName), 'Argument name must be characters.'); argCheckMap = getappdata(handles.figure_vi, 'argCheckMap'); if strcmpi('window', argName) && isnumeric(argVal) && 2 == length(argVal) set_clims(handles, argVal(2) - argVal(1) / 2, argVal(2) + argVal(1) / 2); argCheckMap('clim') = true; elseif strcmpi('range', argName) && isnumeric(argVal) && 2 == length(argVal) set_clims(handles, argVal(1), argVal(2)); argCheckMap('clim') = true; elseif strcmpi('aspect', argName) && isnumeric(argVal) && 3 == length(argVal) setappdata(handles.figure_vi, 'aspectRatio', argVal); argCheckMap('aspect') = true; else error([argName ' is not a valid argument name.']); end setappdata(handles.figure_vi, 'argCheckMap', argCheckMap); % ------------------------------------------------------------------- function update_window_info(handles) dataFormat = getappdata(handles.figure_vi, 'dataFormat'); cLim = get(handles.axes_2dViewer, 'CLim'); set(handles.edit_windowMax, 'String', num2str(cLim(2), dataFormat)); set(handles.edit_windowMin, 'String', num2str(cLim(1), dataFormat)); set(handles.edit_windowWidth, 'String', num2str(range(cLim), dataFormat)); set(handles.edit_windowLevel, 'String', num2str(mean(cLim), dataFormat)); % ------------------------------------------------------------------- function update_view_type(handles) sliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); viewType = get_view_type(handles); if viewType == 4 set(handles.uipanel_2dViewer, 'Visible', 'off'); set(handles.uipanel_3dSlicer, 'Visible', 'on'); set([ ... handles.togglebutton_light, ... handles.togglebutton_rotate, ... handles.slider_xSliceNo, ... handles.slider_ySliceNo, ... handles.slider_zSliceNo], ... 'Enable', 'on'); update_slice_3d(handles, sliceNo3d(1), sliceNo3d(2), sliceNo3d(3), true); else rotate3d(handles.axes_3dSlicer, 'off'); % If in 3D rotating status, turn it off. set(handles.uipanel_2dViewer, 'Visible', 'on'); set(handles.uipanel_3dSlicer, 'Visible', 'off'); set([ ... handles.togglebutton_light, ... handles.togglebutton_rotate, ... handles.slider_xSliceNo, ... handles.slider_ySliceNo, ... handles.slider_zSliceNo], ... 'Enable', 'off'); imgSize = getappdata(handles.figure_vi, 'imgSize'); switch viewType case 1 sliceSize = imgSize([1 2]); if 2 == getappdata(handles.figure_vi, 'numDims') numSlices = 1; sliceNo = 1; else numSlices = imgSize(3); sliceNo = sliceNo3d(3); end case 2 sliceSize = imgSize([3 1]); numSlices = imgSize(2); sliceNo = sliceNo3d(1); case 3 sliceSize = imgSize([3 2]); numSlices = imgSize(1); sliceNo = sliceNo3d(2); otherwise error('Invalid view type!'); end setappdata(handles.figure_vi, 'sliceSize', sliceSize); setappdata(handles.figure_vi, 'numSlices', numSlices); set(handles.text_numSlices, 'String', ['/ ' num2str(numSlices)]); if numSlices > 1 set(handles.slider_sliceNo, ... 'Max', numSlices, ... 'SliderStep', [1/(numSlices-1) 10/(numSlices-1)]); end update_slice_2d(handles, sliceNo, true); end % ------------------------------------------------------------------- function update_slice_3d(handles, xSliceNo, ySliceNo, zSliceNo, newView) oldSliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); imgSize = getappdata(handles.figure_vi, 'imgSize'); xSliceNo = max(min(round(xSliceNo), imgSize(2)), 1); ySliceNo = max(min(round(ySliceNo), imgSize(1)), 1); zSliceNo = max(min(round(zSliceNo), imgSize(3)), 1); setappdata(handles.figure_vi, 'sliceNo3d', [xSliceNo ySliceNo zSliceNo]); set(handles.slider_xSliceNo, 'Value', xSliceNo); set(handles.slider_ySliceNo, 'Value', ySliceNo); set(handles.slider_zSliceNo, 'Value', zSliceNo); img = getappdata(handles.figure_vi, 'imgData'); hSlices = getappdata(handles.figure_vi, 'hSlices'); if newView && isempty(hSlices) hSlices = slice(handles.axes_3dSlicer, double(img), xSliceNo, ySliceNo, zSliceNo); setappdata(handles.figure_vi, 'hSlices', hSlices); xlabel(handles.axes_3dSlicer, 'x - L/R'); ylabel(handles.axes_3dSlicer, 'y - A/P'); zlabel(handles.axes_3dSlicer, 'z - I/S'); set(handles.axes_3dSlicer, ... 'XLim', [1 imgSize(2)], 'YLim', [1 imgSize(1)], 'ZLim', [1 imgSize(3)]); cLim = get(handles.axes_2dViewer, 'CLim'); set_clims(handles, cLim(1), cLim(2)); shading(handles.axes_3dSlicer, 'flat'); aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); daspect(handles.axes_3dSlicer, 1 ./ [aspectRatio(1) aspectRatio(2) aspectRatio(3)]); set_colormap(handles); % Create light source at camera position. hLight = light('Parent', handles.axes_3dSlicer, ... 'Position', get(handles.axes_3dSlicer, 'CameraPosition')); setappdata(handles.figure_vi, 'hLight', hLight); set_light(handles); else if oldSliceNo3d(1) ~= xSliceNo set(hSlices(1), ... 'CData', double(squeeze(img(:, xSliceNo, :))), ... 'XData', ones(imgSize(1), imgSize(3)) * xSliceNo); end if oldSliceNo3d(2) ~= ySliceNo set(hSlices(2), ... 'CData', double(squeeze(img(ySliceNo, :, :))), ... 'YData', ones(imgSize(2), imgSize(3)) * ySliceNo); end if oldSliceNo3d(3) ~= zSliceNo set(hSlices(3), ... 'CData', double(squeeze(img(:, :, zSliceNo))), ... 'ZData', ones(imgSize(1), imgSize(2)) * zSliceNo); end end check_rotate(handles); % ------------------------------------------------------------------- function set_light(handles) axes(handles.axes_3dSlicer); % Must make axes_3dSlicer current for lighting. if 1 == get(handles.togglebutton_light, 'Value') lighting phong; else lighting none; end % ------------------------------------------------------------------- function rotate_pre_callback(obj, evd) setappdata(obj, 'rotating', true); % ------------------------------------------------------------------- function rotate_post_callback(obj, evd) setappdata(obj, 'rotating', false); % ------------------------------------------------------------------- function check_rotate(handles) if 1 == get(handles.togglebutton_rotate, 'Value') rotate3d(handles.axes_3dSlicer, 'on'); h = rotate3d(handles.figure_vi); set(h, ... 'ActionPreCallback', @rotate_pre_callback, ... 'ActionPostCallback', @rotate_post_callback, ... 'Enable', 'on'); else rotate3d(handles.axes_3dSlicer, 'off'); end % ------------------------------------------------------------------- function update_slice_2d(handles, sliceNo, newView) numSlices = getappdata(handles.figure_vi, 'numSlices'); sliceNo = max(min(round(sliceNo), numSlices), 1); sliceNoEdit = round(str2double(get(handles.edit_sliceNo, 'String'))); if sliceNo ~= sliceNoEdit set(handles.edit_sliceNo, 'String', num2str(sliceNo)); end sliceNoSlider = round(get(handles.slider_sliceNo, 'Value')); if sliceNo ~= sliceNoSlider set(handles.slider_sliceNo, 'Value', sliceNo); end setappdata(handles.figure_vi, 'sliceNo', sliceNo); set(handles.edit_sliceNo, 'String', num2str(sliceNo)); img = getappdata(handles.figure_vi, 'imgData'); sliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); viewType = get_view_type(handles); switch viewType case 1 sliceImage = squeeze(img(:, :, sliceNo)); sliceNo3d(3) = sliceNo; case 2 sliceImage = squeeze(img(:, sliceNo, :))'; sliceNo3d(1) = sliceNo; case 3 sliceImage = squeeze(img(sliceNo, :, :))'; sliceNo3d(2) = sliceNo; otherwise error('Invalid view type!'); end setappdata(handles.figure_vi, 'sliceNo3d', sliceNo3d); setappdata(handles.figure_vi, 'sliceImage', sliceImage); if newView cLim = get(handles.axes_2dViewer, 'CLim'); hSliceImage = imshow(flipud(sliceImage), cLim, 'Parent', handles.axes_2dViewer); set_colormap(handles); setappdata(handles.figure_vi, 'hSliceImage', hSliceImage); else hSliceImage = getappdata(handles.figure_vi, 'hSliceImage'); set(hSliceImage, 'CData', flipud(sliceImage)); end update_aspect_ratio(handles); hFigSliceStats = getappdata(handles.figure_vi, 'hFigSliceStats'); if is_handle(hFigSliceStats) feval(getappdata(hFigSliceStats, 'entry_update_data'), ... hFigSliceStats, {sliceImage, handles.figure_vi}); end hDrawRegion = getappdata(handles.figure_vi, 'hDrawRegion'); hFigRegionMeasurement = getappdata(handles.figure_vi, 'hFigRegionMeasurement'); if is_handle(hFigRegionMeasurement) && is_handle(hDrawRegion) if strcmpi('Drawn', getappdata(handles.figure_vi, 'regionType')) hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); hFigRegionMeasurement = getappdata(handles.figure_vi, 'hFigRegionMeasurement'); if is_handle(hFigRegionMeasurement) && is_handle(hDrawRegionAdd) update_user_drawn_region_data(handles); hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); if is_handle(hDrawRegionAdd) && strcmpi('on', get(hDrawRegionAdd, 'Visible')) set(hDrawRegionAdd, 'LineStyle', '-', 'Color', 'r'); end end else update_region_data(handles); end end hDrawLine = getappdata(handles.figure_vi, 'hDrawLine'); hFigLineMeasurement = getappdata(handles.figure_vi, 'hFigLineMeasurement'); if is_handle(hFigLineMeasurement) && is_handle(hDrawLine) update_line_data(handles); end if 1 == get(handles.togglebutton_isoline, 'Value') update_isolines(handles); end % ------------------------------------------------------------------- function set_clims(handles, loLim, hiLim) set(handles.axes_2dViewer, 'CLim', [loLim hiLim]); set(handles.axes_3dSlicer, 'CLim', [loLim hiLim]); set(handles.axes_colorBar, 'CLim', [loLim hiLim]); % ------------------------------------------------------------------- function set_colormap(handles) cm = getappdata(handles.figure_vi, 'pixelCMap'); if isempty(cm) setappdata(handles.figure_vi, 'pixelCMap', colormap(handles.axes_2dViewer)); else cmInd = get(handles.listbox_colorMaps,'Value'); switch cmInd case 1 cm = getappdata(handles.figure_vi, 'pixelCMap'); colormap(handles.axes_2dViewer, cm); otherwise contents = cellstr(get(handles.listbox_colorMaps,'String')); cmapFun = lower(contents{cmInd}); colormap(handles.axes_2dViewer, feval(cmapFun, 256)); end end % ------------------------------------------------------------------- function update_aspect_ratio(handles) aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); switch get_view_type(handles) case 1 set(handles.axes_2dViewer, 'DataAspectRatio', aspectRatio([1 2 3])); case 2 set(handles.axes_2dViewer, 'DataAspectRatio', aspectRatio([3 2 1])); case 3 set(handles.axes_2dViewer, 'DataAspectRatio', aspectRatio([3 1 2])); otherwise end daspect(handles.axes_3dSlicer, 1 ./ [aspectRatio(1) aspectRatio(2) aspectRatio(3)]); set(handles.edit_xAspectRatio, 'String', num2str(aspectRatio(1), '%.1f')); set(handles.edit_yAspectRatio, 'String', num2str(aspectRatio(2), '%.1f')); set(handles.edit_zAspectRatio, 'String', num2str(aspectRatio(3), '%.1f')); % ------------------------------------------------------------------- function viewType = get_view_type(handles) viewType = find(get(handles.uipanel_viewType, 'SelectedObject') == ... [handles.radiobutton_transverseView ... handles.radiobutton_sagittalView ... handles.radiobutton_coronalView ... handles.radiobutton_3dSlice]); % ------------------------------------------------------------------- function set_obj_pos(hObj, x, top, width, height) parentPos = get(get(hObj, 'Parent'), 'Position'); y = parentPos(4) - top - height + 1; set(hObj, 'Position', [x y width height]); % ------------------------------------------------------------------- function [minWidth, minHeight] = get_min_gui_size(hFig) uicontrolTypes = ... {'checkbox', 'edit', 'listbox', 'pushbutton', .... 'radiobutton', 'slider', 'text', 'togglebutton', ... 'axes', 'uitable', 'uipanel', 'uibuttongroup'}; children = get(hFig, 'Children'); children(~ismember(get(children, 'Type'), uicontrolTypes)) = []; children(strcmpi(get(children, 'Visible'), 'off')) = []; children(strcmpi(get(children, 'Tag'), 'uipanel_resizeArrow')) = []; numChildren = length(children); width = zeros(numChildren, 1); top = zeros(numChildren, 1); bottom = zeros(numChildren, 1) + 999; for i = 1 : numChildren child = children(i); pos = get(child, 'Position'); width(i) = pos(1) + pos(3); top(i) = pos(2) + pos(4); bottom(i) = pos(2); if isprop(child, 'TightInset') ti = get(child, 'TightInset'); width(i) = width(i) + ti(3); top(i) = top(i) + ti(4); bottom(i) = bottom(i) - ti(2); end end minWidth = max(width); minHeight = max(top) - min(bottom); % ------------------------------------------------------------------- function auto_layout(handles) guiPos = get(handles.figure_vi, 'Position'); viewSize = getappdata(handles.figure_vi, 'sliceSize'); set(handles.axes_top, 'XLim', [1 viewSize(2)]); set(handles.axes_bottom, 'XLim', [1 viewSize(2)]); set(handles.axes_left, 'YLim', [1 viewSize(1)]); set(handles.axes_right, 'YLim', [1 viewSize(1)]); aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); viewType = get_view_type(handles); switch viewType case 1 viewSize(1) = viewSize(1) * aspectRatio(1); viewSize(2) = viewSize(2) * aspectRatio(2); case 2 viewSize(1) = viewSize(1) * aspectRatio(3); viewSize(2) = viewSize(2) * aspectRatio(1); case 3 viewSize(1) = viewSize(1) * aspectRatio(3); viewSize(2) = viewSize(2) * aspectRatio(2); otherwise end leftPanelPos = get(handles.uipanel_leftControls, 'Position'); controlPanelPos2d = get(handles.uipanel_2dControls, 'Position'); tiT = get(handles.axes_top, 'TightInset'); tiTHeight = tiT(4) + 10 + tiT(2); tiB = get(handles.axes_bottom, 'TightInset'); tiBHeight = tiB(4) + 10 + tiB(2); tiL = get(handles.axes_left, 'TightInset'); tiLWidth = tiL(1) + 10 + tiL(3); tiR = get(handles.axes_right, 'TightInset'); tiRWidth = tiR(1) + 10 + tiR(3); viewerX = leftPanelPos(3) + 5; viewerY = 1; viewerWidth = max(controlPanelPos2d(3), tiLWidth + 2 + viewSize(2) + 2 + tiRWidth); viewerHeight = controlPanelPos2d(4) + 2 + tiTHeight + 2 + viewSize(1) + 2 + tiBHeight; controlPanelPos3d = get(handles.uipanel_3dControls, 'Position'); imgSize = getappdata(handles.figure_vi, 'imgSize'); if 2 == length(imgSize) imgSize(3) = 1; end slicerX = leftPanelPos(3) + 5; slicerY = 1; slicerWidth = ceil(max(controlPanelPos3d(3), max(imgSize .* aspectRatio) * 1.4)); slicerHeight = controlPanelPos3d(4) + slicerWidth; set_obj_pos(handles.uipanel_leftControls, leftPanelPos(1), 1, leftPanelPos(3), leftPanelPos(4)); set_obj_pos(handles.uipanel_2dViewer, viewerX, viewerY, viewerWidth, viewerHeight); set_obj_pos(handles.uipanel_2dControls, 1, 1, controlPanelPos2d(3), controlPanelPos2d(4)); set_obj_pos(handles.axes_top, ... tiLWidth+2, ... controlPanelPos2d(4) + 2 + tiT(4)+2, ... viewSize(2), 10); set_obj_pos(handles.axes_bottom, ... tiLWidth+2, ... controlPanelPos2d(4) + 2 + tiTHeight + 2 + viewSize(1) + 2, ... viewSize(2), 10); set_obj_pos(handles.axes_left, ... tiL(1) + 2, ... controlPanelPos2d(4) + 2 + tiTHeight + 2, ... 10, viewSize(1)); set_obj_pos(handles.axes_right, ... tiLWidth + 2 + viewSize(2) + 2, ... controlPanelPos2d(4) + 2 + tiTHeight + 2, ... 10, viewSize(1)); set_obj_pos(handles.axes_2dViewer, ... tiLWidth + 2, ... controlPanelPos2d(4) + 2 + tiTHeight + 2, ... viewSize(2), viewSize(1)); set_obj_pos(handles.uipanel_3dSlicer, slicerX, slicerY, slicerWidth, slicerHeight); set_obj_pos(handles.uipanel_3dControls, 1, 1, controlPanelPos3d(3), controlPanelPos3d(4)); set_obj_pos(handles.axes_3dSlicer, 70, 80, slicerWidth - 120, slicerHeight - 130); cb = getappdata(handles.figure_vi, 'colorBar'); if 4 == viewType colorBarX = slicerX + slicerWidth + 10; else colorBarX = viewerX + viewerWidth + 10; end colorBarY = max(controlPanelPos2d(4), controlPanelPos3d(4)) + 30; colorBarHeight = max(256, min(512, guiPos(4) - colorBarY - 30)); set_obj_pos(handles.axes_colorBar, colorBarX, colorBarY, 20, colorBarHeight); set(cb, 'Units', 'pixels'); set_obj_pos(cb, colorBarX, colorBarY, 20, colorBarHeight); [minWidth, minHeight] = get_min_gui_size(handles.figure_vi); if minWidth > guiPos(3) || minHeight > guiPos(4) set(handles.uipanel_resizeArrow, ... 'Position', [guiPos(3)-20 5 17 17], ... 'Visible', 'on'); else set(handles.uipanel_resizeArrow, 'Visible', 'off'); end % ------------------------------------------------------------------- function [ptOnAxesCurrent, onImage] = get_pointer_pos(handles) if 4 == get_view_type(handles) imgSize = getappdata(handles.figure_vi, 'imgSize'); ptOnAxesCurrent = round(get(handles.axes_3dSlicer, 'CurrentPoint')); onImage = all(ptOnAxesCurrent(:) >= 1) ... && ptOnAxesCurrent(1, 1) <= imgSize(2) ... && ptOnAxesCurrent(1, 2) <= imgSize(1) ... && ptOnAxesCurrent(1, 3) <= imgSize(3) ... && ptOnAxesCurrent(2, 1) <= imgSize(2) ... && ptOnAxesCurrent(2, 2) <= imgSize(1) ... && ptOnAxesCurrent(2, 3) <= imgSize(3); else sliceSize = getappdata(handles.figure_vi, 'sliceSize'); ptOnAxesCurrent = get(handles.axes_2dViewer, 'CurrentPoint'); ptOnAxesCurrent = round(ptOnAxesCurrent(1, 1:2)); ptOnAxesCurrent(2) = sliceSize(1) - ptOnAxesCurrent(2) + 1; onImage = ptOnAxesCurrent(1) >= 1 && ptOnAxesCurrent(1) <= sliceSize(2) ... && ptOnAxesCurrent(2) >= 1 && ptOnAxesCurrent(2) <= sliceSize(1); end % ------------------------------------------------------------------- function event_image_stats_closed(hGui) assert(is_handle(hGui)); handles = guidata(hGui); set(handles.togglebutton_sliceStats, 'Value', 0); set_image_stats(handles, 0); % ------------------------------------------------------------------- function event_region_measurement_closed(hGui) assert(is_handle(hGui)); handles = guidata(hGui); set(handles.togglebutton_regionMeasure, 'Value', 0); set_region_measure(handles, 0); % ------------------------------------------------------------------- function event_line_measurement_closed(hGui) assert(is_handle(hGui)); handles = guidata(hGui); set(handles.togglebutton_lineMeasure, 'Value', 0); set_line_measure(handles, 0); % ------------------------------------------------------------------- function event_isoline_closed(hGui) assert(is_handle(hGui)); handles = guidata(hGui); set(handles.togglebutton_isoline, 'Value', 0); set_isoline(handles, 0); % ------------------------------------------------------------------- function msg_map_isoline_update(hGui, isovalues, showCLabel) assert(is_handle(hGui)); handles = guidata(hGui); setappdata(handles.figure_vi, 'isovalues', isovalues); setappdata(handles.figure_vi, 'showCLabel', showCLabel); update_isolines(handles); % ------------------------------------------------------------------- function update_isolines(handles) if 0 == get(handles.togglebutton_isoline, 'Value') return; end hIsolines = getappdata(handles.figure_vi, 'hIsolines'); if is_handle(hIsolines) delete(hIsolines); end isovalues = getappdata(handles.figure_vi, 'isovalues'); if 1 == numel(isovalues) isovalues = [isovalues isovalues]; end sliceImage = getappdata(handles.figure_vi, 'sliceImage'); hold(handles.axes_2dViewer, 'on'); [c, hIsolines] = contour(handles.axes_2dViewer, flipud(sliceImage), isovalues, 'color', 'r'); showCLabel = getappdata(handles.figure_vi, 'showCLabel'); if showCLabel clabel(c, hIsolines); end hold(handles.axes_2dViewer, 'off'); setappdata(handles.figure_vi, 'hIsolines', hIsolines); % ------------------------------------------------------------------- function set_image_stats(handles, showTool) hFigSliceStats = getappdata(handles.figure_vi, 'hFigSliceStats'); if 1 == showTool if ~is_handle(hFigSliceStats) sliceImage = getappdata(handles.figure_vi, 'sliceImage'); hFigSliceStats = image_stats(sliceImage, handles.figure_vi); setappdata(handles.figure_vi, 'hFigSliceStats', hFigSliceStats); setappdata(handles.figure_vi, 'hFunCallbackSliceStatsClosed', @event_image_stats_closed); pos1 = get(handles.figure_vi, 'Position'); pos2 = get(hFigSliceStats, 'Position'); set(hFigSliceStats, 'Position', [pos1(1)+pos1(3)+16 pos1(2) pos2(3) pos2(4)]); end set(hFigSliceStats, 'Visible', 'on'); figure(handles.figure_vi); else if is_handle(hFigSliceStats) set(hFigSliceStats, 'Visible', 'off'); end end % ------------------------------------------------------------------- function set_region_measure(handles, showTool) % Delete region plot on image. hDrawRegion = getappdata(handles.figure_vi, 'hDrawRegion'); if is_handle(hDrawRegion) delete(hDrawRegion); end hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); if is_handle(hDrawRegionAdd) delete(hDrawRegionAdd); end hFigRegionMeasurement = getappdata(handles.figure_vi, 'hFigRegionMeasurement'); if 1 == showTool if ~is_handle(hFigRegionMeasurement) hFigRegionMeasurement = region_measurement(handles.figure_vi); setappdata(handles.figure_vi, 'hFigRegionMeasurement', hFigRegionMeasurement); setappdata(handles.figure_vi, 'hFunCallbackRegionMeasurementClosed', @event_region_measurement_closed); pos1 = get(handles.figure_vi, 'Position'); pos2 = get(hFigRegionMeasurement, 'Position'); set(hFigRegionMeasurement, 'Position', [pos1(1)+pos1(3)+16 pos1(2) pos2(3) pos2(4)]); end set(hFigRegionMeasurement, 'Visible', 'on'); figure(handles.figure_vi); if strcmpi('Drawn', getappdata(handles.figure_vi, 'regionType')) update_user_drawn_region_data(handles); hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); if is_handle(hDrawRegionAdd) && strcmpi('on', get(hDrawRegionAdd, 'Visible')) set(hDrawRegionAdd, 'LineStyle', '-', 'Color', 'r'); end else update_region_data(handles); end else if is_handle(hFigRegionMeasurement) set(hFigRegionMeasurement, 'Visible', 'off'); end end % ------------------------------------------------------------------- function set_line_measure(handles, showTool) % Delete line plot on image. hDrawLine = getappdata(handles.figure_vi, 'hDrawLine'); if is_handle(hDrawLine) delete(hDrawLine); end hFigLineMeasurement = getappdata(handles.figure_vi, 'hFigLineMeasurement'); if 1 == showTool if ~is_handle(hFigLineMeasurement) % Open a new line measurement GUI next to main GUI. hFigLineMeasurement = line_measurement(handles.figure_vi); setappdata(handles.figure_vi, 'hFigLineMeasurement', hFigLineMeasurement); setappdata(handles.figure_vi, 'hFunCallbackLineMeasurementClosed', @event_line_measurement_closed); pos1 = get(handles.figure_vi, 'Position'); pos2 = get(hFigLineMeasurement, 'Position'); set(hFigLineMeasurement, 'Position', [pos1(1)+pos1(3)+16 pos1(2) pos2(3) pos2(4)]); end set(hFigLineMeasurement, 'Visible', 'on'); figure(handles.figure_vi); update_line_data(handles); else if is_handle(hFigLineMeasurement) set(hFigLineMeasurement, 'Visible', 'off'); end end % ------------------------------------------------------------------- function set_isoline(handles, showTool) hIsolines = getappdata(handles.figure_vi, 'hIsolines'); if is_handle(hIsolines) delete(hIsolines); end hFigIsoline = getappdata(handles.figure_vi, 'hFigIsoline'); if 1 == showTool if ~is_handle(hFigIsoline) % Open a new isoline GUI next to main GUI. hFigIsoline = vi_isoline(handles.figure_vi); setappdata(handles.figure_vi, 'hFigIsoline', hFigIsoline); setappdata(handles.figure_vi, 'hFunCallbackIsolineClosed', @event_isoline_closed); setappdata(handles.figure_vi, 'hFunCallbackIsolineUpdate', @msg_map_isoline_update); pos1 = get(handles.figure_vi, 'Position'); pos2 = get(hFigIsoline, 'Position'); set(hFigIsoline, 'Position', [pos1(1)+pos1(3)+16 pos1(2) pos2(3) pos2(4)]); end set(hFigIsoline, 'Visible', 'on'); figure(handles.figure_vi); update_isolines(handles); else if is_handle(hFigIsoline) set(hFigIsoline, 'Visible', 'off'); end end % ------------------------------------------------------------------- function update_user_drawn_region_data(handles) userDrawRegionVertices = getappdata(handles.figure_vi, 'userDrawRegionVertices'); if isempty(userDrawRegionVertices) return; end hDrawRegion = getappdata(handles.figure_vi, 'hDrawRegion'); if ishandle(hDrawRegion) delete(hDrawRegion); setappdata(handles.figure_vi, 'hDrawRegion', []); end hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); if ishandle(hDrawRegionAdd) delete(hDrawRegionAdd); setappdata(handles.figure_vi, 'hDrawRegionAdd', []); end viewSize = getappdata(handles.figure_vi, 'sliceSize'); x = userDrawRegionVertices(:, 1); y = userDrawRegionVertices(:, 2); sliceImage = getappdata(handles.figure_vi, 'sliceImage'); hold(handles.axes_2dViewer, 'on'); hDrawRegion = plot(handles.axes_2dViewer, x, viewSize(1) - y, 'r'); hDrawRegionAdd = plot(handles.axes_2dViewer, x([end 1]), viewSize(1) - y([end 1]), ':y'); hold(handles.axes_2dViewer, 'off'); setappdata(handles.figure_vi, 'hDrawRegion', hDrawRegion); setappdata(handles.figure_vi, 'hDrawRegionAdd', hDrawRegionAdd); hFigRegionMeasurement = getappdata(handles.figure_vi, 'hFigRegionMeasurement'); if is_handle(hFigRegionMeasurement) mask = poly2mask(x, y, viewSize(1), viewSize(2)); feval(getappdata(hFigRegionMeasurement, 'entry_update_data'), ... hFigRegionMeasurement, ... {{double(sliceImage), mask}, getappdata(handles.figure_vi, 'regionType'), handles.figure_vi}); end % ------------------------------------------------------------------- function update_region_data(handles) posRegion = getappdata(handles.figure_vi, 'posRegion'); if isempty(posRegion) return; end x1 = posRegion(1); x2 = posRegion(2); y1 = posRegion(3); y2 = posRegion(4); hDrawRegion = getappdata(handles.figure_vi, 'hDrawRegion'); viewSize = getappdata(handles.figure_vi, 'sliceSize'); rectX = min(x1, x2); rectY = min(viewSize(1) - [y1 y2]) + 1; rectWidth = range([x1, x2]); rectHeight = range([y1, y2]); if rectWidth > 0 && rectHeight > 0 if is_handle(hDrawRegion) set(hDrawRegion, 'Position', [rectX, rectY, rectWidth, rectHeight]); else if strcmpi('Rectangle', getappdata(handles.figure_vi, 'regionType')) curvature = [0 0]; else curvature = [1 1]; end hDrawRegion = rectangle( ... 'Position', [rectX, rectY, rectWidth, rectHeight], ... 'Parent', handles.axes_2dViewer, ... 'EdgeColor', 'r', ... 'Curvature', curvature); setappdata(handles.figure_vi, 'hDrawRegion', hDrawRegion); end end sliceImage = getappdata(handles.figure_vi, 'sliceImage'); hFigRegionMeasurement = getappdata(handles.figure_vi, 'hFigRegionMeasurement'); if is_handle(hFigRegionMeasurement) feval(getappdata(hFigRegionMeasurement, 'entry_update_data'), ... hFigRegionMeasurement, ... {sliceImage(min(y1, y2) : max(y1, y2), min(x1, x2) : max(x1, x2)), ... getappdata(handles.figure_vi, 'regionType'), handles.figure_vi}); end % ------------------------------------------------------------------- function update_line_data(handles) posLine = getappdata(handles.figure_vi, 'posLine'); if isempty(posLine) return; end x1 = posLine(1); x2 = posLine(2); y1 = posLine(3); y2 = posLine(4); lineLen = ceil(sqrt((x1 - x2) ^ 2 + (y1 - y2) ^ 2)); if lineLen < 2 return; end hDrawLine = getappdata(handles.figure_vi, 'hDrawLine'); viewSize = getappdata(handles.figure_vi, 'sliceSize'); if is_handle(hDrawLine) set(hDrawLine, ... 'XData', [x1 x2], ... 'YData', viewSize(1) - [y1 y2] + 1); else hDrawLine = line( ... [x1 x2], viewSize(1) - [y1 y2] + 1, ... 'Parent', handles.axes_2dViewer, ... 'Color', 'r'); setappdata(handles.figure_vi, 'hDrawLine', hDrawLine); end sliceImage = getappdata(handles.figure_vi, 'sliceImage'); viewSize = getappdata(handles.figure_vi, 'sliceSize'); if ~isfloat(sliceImage) sliceImage = double(sliceImage); end [cx, cy, c] = improfile(sliceImage, [x1 x2], [y1 y2], lineLen); hFigLineMeasurement = getappdata(handles.figure_vi, 'hFigLineMeasurement'); if is_handle(hFigLineMeasurement) feval(getappdata(hFigLineMeasurement, 'entry_update_data'), ... hFigLineMeasurement, {[c cx cy], [1 viewSize(2) 1 viewSize(1)], handles.figure_vi}); end % ------------------------------------------------------------------- function [pt, nPlane] = pick_3d_point(handles) assert(4 == get_view_type(handles)); ptOnAxesCurrent = round(get(handles.axes_3dSlicer, 'CurrentPoint')); hSlices = getappdata(handles.figure_vi, 'hSlices'); xdata = get(hSlices(1), 'XData'); ydata = get(hSlices(2), 'YData'); zdata = get(hSlices(3), 'ZData'); ptPos = zeros(3, 3); ptPos(1, 1) = xdata(1); ptPos(1, 2) = interp1nosort(ptOnAxesCurrent(:, 1), ptOnAxesCurrent(:, 2), xdata(1)); ptPos(1, 3) = interp1nosort(ptOnAxesCurrent(:, 1), ptOnAxesCurrent(:, 3), xdata(1)); ptPos(2, 1) = interp1nosort(ptOnAxesCurrent(:, 2), ptOnAxesCurrent(:, 1), ydata(1)); ptPos(2, 2) = ydata(1); ptPos(2, 3) = interp1nosort(ptOnAxesCurrent(:, 2), ptOnAxesCurrent(:, 3), ydata(1)); ptPos(3, 1) = interp1nosort(ptOnAxesCurrent(:, 3), ptOnAxesCurrent(:, 1), zdata(1)); ptPos(3, 2) = interp1nosort(ptOnAxesCurrent(:, 3), ptOnAxesCurrent(:, 2), zdata(1)); ptPos(3, 3) = zdata(1); ptPos = round(ptPos); d2 = zeros(3, 1); if any(isnan(ptPos(1, :))) d2(1) = inf; else d2(1) = sum((ptOnAxesCurrent(1, :) - ptPos(1, :)) .^ 2); end if any(isnan(ptPos(2, :))) d2(2) = inf; else d2(2) = sum((ptOnAxesCurrent(1, :) - ptPos(2, :)) .^ 2); end if any(isnan(ptPos(3, :))) d2(3) = inf; else d2(3) = sum((ptOnAxesCurrent(1, :) - ptPos(3, :)) .^ 2); end if ~all(isinf(d2)) [~, nPlane] = min(d2); pt = ptPos(nPlane, :); else nPlane = 0; pt = []; end % --- Outputs from this function are returned to the command line. function varargout = vi_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on mouse motion over figure - except title and menu. function figure_vi_WindowButtonMotionFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) [ptOnAxesCurrent, onImage] = get_pointer_pos(handles); is2d = 4 ~= get_view_type(handles); cursorType = get(handles.figure_vi, 'Pointer'); if is2d && onImage && ~strcmpi(cursorType, 'cross') set(handles.figure_vi, 'Pointer', 'crosshair'); elseif ~onImage && ~strcmpi(cursorType, 'arrow') set(handles.figure_vi, 'Pointer', 'arrow'); end if ~onImage set(handles.text_pixelInfo, 'String', ''); set(handles.text_voxelInfo, 'String', ''); return; end buttonDown = getappdata(handles.figure_vi, 'buttonDown'); selectionType = get(handles.figure_vi, 'SelectionType'); leftButtonDown = buttonDown && strcmpi(selectionType, 'normal'); rightButtonDown = buttonDown && strcmpi(selectionType, 'alt'); ptOnAxesBtnDown = getappdata(handles.figure_vi, 'ptOnAxesBtnDown'); dataFormat = getappdata(handles.figure_vi, 'dataFormat'); if is2d sliceImage = getappdata(handles.figure_vi, 'sliceImage'); set(handles.text_pixelInfo, 'String', ... ['(' num2str(round(ptOnAxesCurrent(1))) ', ' num2str(round(ptOnAxesCurrent(2))) ') '... num2str(sliceImage(ptOnAxesCurrent(2), ptOnAxesCurrent(1)), dataFormat)]); else [pt, nPlane] = pick_3d_point(handles); if 0 == nPlane set(handles.text_voxelInfo, 'String', ''); else hSlices = getappdata(handles.figure_vi, 'hSlices'); sliceImage = get(hSlices(nPlane), 'CData'); if 1 == nPlane v = sliceImage(pt(2), pt(3)); elseif 2 == nPlane v = sliceImage(pt(1), pt(3)); elseif 3 == nPlane v = sliceImage(pt(2), pt(1)); end set(handles.text_voxelInfo, 'String', ... ['(' num2str(pt(1)) ', ' num2str(pt(2)) ', ' num2str(pt(3)) ') '... num2str(v, dataFormat)]); end end ptOnFigCurrent = get(handles.figure_vi, 'CurrentPoint'); if buttonDown ptOnFigBtnDown = getappdata(handles.figure_vi, 'ptOnFigBtnDown'); ptShift = ptOnFigCurrent - ptOnFigBtnDown; end measuringLine = 1 == get(handles.togglebutton_lineMeasure, 'Value'); measuringRegion = 1 == get(handles.togglebutton_regionMeasure, 'Value'); if leftButtonDown && ~measuringLine && ~measuringRegion % Change window. % Move mouse down to INCREASE level to DECREASE the brightness. % Move mouse left and right to change width. referenceCLim = getappdata(handles.figure_vi, 'referenceCLim'); windowLevel = mean(referenceCLim); windowWidth = range(referenceCLim); windowLevel = windowLevel - windowWidth * ptShift(2) / 1000; windowWidth = max(eps('single'), windowWidth + windowWidth * ptShift(1) / 500); windowMax = windowLevel + windowWidth / 2; windowMin = windowLevel - windowWidth / 2; set_clims(handles, windowMin, windowMax); update_window_info(handles); elseif is2d && leftButtonDown && measuringLine && ~measuringRegion % Line measurement. setappdata(handles.figure_vi, 'posLine', ... [ptOnAxesBtnDown(1), ptOnAxesCurrent(1), ptOnAxesBtnDown(2), ptOnAxesCurrent(2)]); update_line_data(handles); elseif is2d && leftButtonDown && ~measuringLine && measuringRegion % Region measurement. if strcmpi('Drawn', getappdata(handles.figure_vi, 'regionType')) userDrawRegionVertices = getappdata(handles.figure_vi, 'userDrawRegionVertices'); assert(~isempty(userDrawRegionVertices)); userDrawRegionVertices = [userDrawRegionVertices; ptOnAxesCurrent]; setappdata(handles.figure_vi, 'userDrawRegionVertices', userDrawRegionVertices); update_user_drawn_region_data(handles); else setappdata(handles.figure_vi, ... 'posRegion', [ptOnAxesBtnDown(1), ptOnAxesCurrent(1), ptOnAxesBtnDown(2), ptOnAxesCurrent(2)]); update_region_data(handles); end elseif ~is2d && 1 == get(handles.togglebutton_rotate, 'Value') hLight = getappdata(handles.figure_vi, 'hLight'); set(hLight, 'Position', get(handles.axes_3dSlicer, 'CameraPosition')); elseif ~is2d && rightButtonDown referenceNPlane = getappdata(handles.figure_vi, 'referenceNPlane'); referenceSliceNo3d = getappdata(handles.figure_vi, 'referenceSliceNo3d'); if referenceNPlane == 1 update_slice_3d(handles, referenceSliceNo3d(1) + ptShift(2), referenceSliceNo3d(2), referenceSliceNo3d(3), false); elseif referenceNPlane == 2 update_slice_3d(handles, referenceSliceNo3d(1), referenceSliceNo3d(2) + ptShift(2), referenceSliceNo3d(3), false); elseif referenceNPlane == 3 update_slice_3d(handles, referenceSliceNo3d(1), referenceSliceNo3d(2), referenceSliceNo3d(3) + ptShift(2), false); else end end % --- Executes on scroll wheel click while the figure is in focus. function figure_vi_WindowScrollWheelFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata structure with the following fields (see FIGURE) % VerticalScrollCount: signed integer indicating direction and number of clicks % VerticalScrollAmount: number of lines scrolled for each click % handles structure with handles and user data (see GUIDATA) if 4 == get_view_type(handles) return; end [~, onImage] = get_pointer_pos(handles); if ~onImage return; end numSlices = getappdata(handles.figure_vi, 'numSlices'); sliceNo = getappdata(handles.figure_vi, 'sliceNo'); sliceNo = sliceNo - eventdata.VerticalScrollCount(1); sliceNo = max(min(sliceNo, numSlices), 1); setappdata(handles.figure_vi, 'sliceNo', sliceNo); set(handles.edit_sliceNo, 'String', num2str(sliceNo)); update_slice_2d(handles, sliceNo, false); function edit_windowMax_Callback(hObject, eventdata, handles) % hObject handle to edit_windowMax (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_windowMax as text % str2double(get(hObject,'String')) returns contents of edit_windowMax as a double cLim = get(handles.axes_2dViewer, 'CLim'); windowMin = cLim(1); windowMax = str2double(get(hObject,'String')); if windowMax < windowMin windowMax = windowMin; end set_clims(handles, windowMin, windowMax); update_window_info(handles); % --- Executes during object creation, after setting all properties. function edit_windowMax_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_windowMax (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_windowMin_Callback(hObject, eventdata, handles) % hObject handle to edit_windowMin (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_windowMin as text % str2double(get(hObject,'String')) returns contents of edit_windowMin as a double cLim = get(handles.axes_2dViewer, 'CLim'); windowMax = cLim(2); windowMin = str2double(get(hObject,'String')); if windowMin > windowMax windowMin = windowMax; end set_clims(handles, windowMin, windowMax); update_window_info(handles); % --- Executes during object creation, after setting all properties. function edit_windowMin_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_windowMin (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_windowWidth_Callback(hObject, eventdata, handles) % hObject handle to edit_windowWidth (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_windowWidth as text % str2double(get(hObject,'String')) returns contents of edit_windowWidth as a double windowWidth = str2double(get(hObject,'String')); if windowWidth < 1 windowWidth = 1; end cLim = get(handles.axes_2dViewer, 'CLim'); windowLevel = mean(cLim); windowMax = windowLevel + windowWidth / 2; windowMin = windowLevel - windowWidth / 2; set_clims(handles, windowMin, windowMax); update_window_info(handles); % --- Executes during object creation, after setting all properties. function edit_windowWidth_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_windowWidth (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_windowLevel_Callback(hObject, eventdata, handles) % hObject handle to edit_windowLevel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_windowLevel as text % str2double(get(hObject,'String')) returns contents of edit_windowLevel as a double windowLevel = str2double(get(hObject,'String')); cLim = get(handles.axes_2dViewer, 'CLim'); windowWidth = range(cLim); windowMax = windowLevel + windowWidth / 2; windowMin = windowLevel - windowWidth / 2; set_clims(handles, windowMin, windowMax); update_window_info(handles); % --- Executes during object creation, after setting all properties. function edit_windowLevel_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_windowLevel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_sliceNo_Callback(hObject, eventdata, handles) % hObject handle to edit_sliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_sliceNo as text % str2double(get(hObject,'String')) returns contents of edit_sliceNo as a double update_slice_2d(handles, round(str2double(get(hObject,'String'))), false); % --- Executes during object creation, after setting all properties. function edit_sliceNo_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_sliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on slider movement. function slider_sliceNo_Callback(hObject, eventdata, handles) % hObject handle to slider_sliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider update_slice_2d(handles, get(hObject, 'Value'), false); % --- Executes during object creation, after setting all properties. function slider_sliceNo_CreateFcn(hObject, eventdata, handles) % hObject handle to slider_sliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes when selected object is changed in uipanel_viewType. function uipanel_viewType_SelectionChangeFcn(hObject, eventdata, handles) % hObject handle to the selected object in uipanel_viewType % eventdata structure with the following fields (see UIBUTTONGROUP) % EventName: string 'SelectionChanged' (read only) % OldValue: handle of the previously selected object or empty if none was selected % NewValue: handle of the currently selected object % handles structure with handles and user data (see GUIDATA) update_view_type(handles); auto_layout(handles); % --- Executes on mouse press over figure background, over a disabled or % --- inactive control, or over an axes background. function figure_vi_WindowButtonDownFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) setappdata(handles.figure_vi, 'buttonDown', true); setappdata(handles.figure_vi, 'ptOnFigBtnDown', get(handles.figure_vi, 'CurrentPoint')); [ptOnAxesCurrent, onImage] = get_pointer_pos(handles); if ~onImage return; end setappdata(handles.figure_vi, 'ptOnAxesBtnDown', ptOnAxesCurrent); selectionType = get(handles.figure_vi, 'SelectionType'); if strcmpi(selectionType, 'normal') hDrawRegion = getappdata(handles.figure_vi, 'hDrawRegion'); if is_handle(hDrawRegion) delete(hDrawRegion); setappdata(handles.figure_vi, 'hDrawRegion', []); end hDrawLine = getappdata(handles.figure_vi, 'hDrawLine'); if is_handle(hDrawLine) delete(hDrawLine); setappdata(handles.figure_vi, 'hDrawLine', []); end hDrawRegion = getappdata(handles.figure_vi, 'hDrawRegion'); if ishandle(hDrawRegion) delete(hDrawRegion); setappdata(handles.figure_vi, 'hDrawRegion', []); end hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); if ishandle(hDrawRegionAdd) delete(hDrawRegionAdd); setappdata(handles.figure_vi, 'hDrawRegionAdd', []); end cLim = get(handles.axes_2dViewer, 'CLim'); setappdata(handles.figure_vi, 'referenceCLim', cLim); if strcmpi('Drawn', getappdata(handles.figure_vi, 'regionType')) ... && 1 == get(handles.togglebutton_regionMeasure, 'Value') setappdata(handles.figure_vi, 'userDrawRegionVertices', ptOnAxesCurrent); end elseif strcmpi(selectionType, 'alt') [~, nPlane] = pick_3d_point(handles); setappdata(handles.figure_vi, 'referenceNPlane', nPlane); sliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); setappdata(handles.figure_vi, 'referenceSliceNo3d', sliceNo3d); end % --- Executes on mouse press over figure background, over a disabled or % --- inactive control, or over an axes background. function figure_vi_WindowButtonUpFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) setappdata(handles.figure_vi, 'buttonDown', false); hDrawRegionAdd = getappdata(handles.figure_vi, 'hDrawRegionAdd'); if is_handle(hDrawRegionAdd) && strcmpi('on', get(hDrawRegionAdd, 'Visible')) set(hDrawRegionAdd, 'LineStyle', '-', 'Color', 'r'); end function edit_zAspectRatio_Callback(hObject, eventdata, handles) % hObject handle to edit_zAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_zAspectRatio as text % str2double(get(hObject,'String')) returns contents of edit_zAspectRatio as a double aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); aspectRatio(3) = str2double(get(hObject, 'String')); setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); % --- Executes during object creation, after setting all properties. function edit_zAspectRatio_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_zAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_yAspectRatio_Callback(hObject, eventdata, handles) % hObject handle to edit_yAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_yAspectRatio as text % str2double(get(hObject,'String')) returns contents of edit_yAspectRatio as a double aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); aspectRatio(2) = str2double(get(hObject, 'String')); setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); % --- Executes during object creation, after setting all properties. function edit_yAspectRatio_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_yAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_xAspectRatio_Callback(hObject, eventdata, handles) % hObject handle to edit_xAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_xAspectRatio as text % str2double(get(hObject,'String')) returns contents of edit_xAspectRatio as a double aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); aspectRatio(1) = str2double(get(hObject, 'String')); setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); % --- Executes during object creation, after setting all properties. function edit_xAspectRatio_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_xAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on button press in pushbutton_resetAspectRatio. function pushbutton_resetAspectRatio_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_resetAspectRatio (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) aspectRatio = [1 1 1]; setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); % --- Executes on button press in pushbutton_moreWindows. function pushbutton_moreWindows_Callback(hObject, eventdata, handles) % hObject handle to pushbutton_moreWindows (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) uiMenus = getappdata(handles.figure_vi, 'uiMenus'); pos1 = get(handles.pushbutton_moreWindows, 'Position'); pos2 = get(handles.uipanel_windowSetting, 'Position'); pos3 = get(handles.uipanel_leftControls, 'Position'); set(uiMenus.menu_moreWindowSettings, 'Position', pos1(1:2)+pos2(1:2)+pos3(1:2), 'Visible', 'on'); % --- Executes on key press with focus on figure_vi and none of its controls. function figure_vi_KeyPressFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata structure with the following fields (see FIGURE) % Key: name of the key that was pressed, in lower case % Character: character interpretation of the key(s) that was pressed % Modifier: name(s) of the modifier key(s) (i.e., control, shift) pressed % handles structure with handles and user data (see GUIDATA) if strcmpi(eventdata.Character, '+') aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); if isempty(eventdata.Modifier) aspectRatio = aspectRatio * 1.1; elseif strcmpi(eventdata.Modifier{1}, 'control') aspectRatio = aspectRatio * 1.5; end setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); elseif strcmpi(eventdata.Character, '-') aspectRatio = getappdata(handles.figure_vi, 'aspectRatio'); if isempty(eventdata.Modifier) aspectRatio = aspectRatio / 1.1; elseif strcmpi(eventdata.Modifier{1}, 'control') aspectRatio = aspectRatio / 1.5; end if all(aspectRatio > 0.2) setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); end elseif strcmpi(eventdata.Character, '*') aspectRatio = [1 1 1]; setappdata(handles.figure_vi, 'aspectRatio', aspectRatio); update_aspect_ratio(handles); auto_layout(handles); else end % --- Executes on selection change in listbox_colorMaps. function listbox_colorMaps_Callback(hObject, eventdata, handles) % hObject handle to listbox_colorMaps (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns listbox_colorMaps contents as cell array % contents{get(hObject,'Value')} returns selected item from listbox_colorMaps set_colormap(handles); % --- Executes during object creation, after setting all properties. function listbox_colorMaps_CreateFcn(hObject, eventdata, handles) % hObject handle to listbox_colorMaps (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: listbox controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on slider movement. function slider_xSliceNo_Callback(hObject, eventdata, handles) % hObject handle to slider_xSliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider sliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); update_slice_3d(handles, get(hObject, 'Value'), sliceNo3d(2), sliceNo3d(3), false); % --- Executes during object creation, after setting all properties. function slider_xSliceNo_CreateFcn(hObject, eventdata, handles) % hObject handle to slider_xSliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider_ySliceNo_Callback(hObject, eventdata, handles) % hObject handle to slider_ySliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider sliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); update_slice_3d(handles, sliceNo3d(1), get(hObject, 'Value'), sliceNo3d(3), false); % --- Executes during object creation, after setting all properties. function slider_ySliceNo_CreateFcn(hObject, eventdata, handles) % hObject handle to slider_ySliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % --- Executes on slider movement. function slider_zSliceNo_Callback(hObject, eventdata, handles) % hObject handle to slider_zSliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'Value') returns position of slider % get(hObject,'Min') and get(hObject,'Max') to determine range of slider sliceNo3d = getappdata(handles.figure_vi, 'sliceNo3d'); update_slice_3d(handles, sliceNo3d(1), sliceNo3d(2), get(hObject, 'Value'), false); % --- Executes during object creation, after setting all properties. function slider_zSliceNo_CreateFcn(hObject, eventdata, handles) % hObject handle to slider_zSliceNo (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: slider controls usually have a light gray background. if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor',[.9 .9 .9]); end % -------------------------------------------------------------------- function mi_windowPelvis_Callback(hObject, eventdata, handles) % hObject handle to mi_windowPelvis (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -160, 240); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowBone_Callback(hObject, eventdata, handles) % hObject handle to mi_windowBone (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -750, 1750); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowBreast_Callback(hObject, eventdata, handles) % hObject handle to mi_windowBreast (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -250, 150); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowAbdomen_Callback(hObject, eventdata, handles) % hObject handle to mi_windowAbdomen (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -125, 225); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowLung_Callback(hObject, eventdata, handles) % hObject handle to mi_windowLung (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -1000, 250); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowLiver_Callback(hObject, eventdata, handles) % hObject handle to mi_windowLiver (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -25, 125); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowCerebellum_Callback(hObject, eventdata, handles) % hObject handle to mi_windowCerebellum (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -20, 100); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowReset_Callback(hObject, eventdata, handles) % hObject handle to mi_windowReset (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) img = getappdata(handles.figure_vi, 'imgData'); maxPixelVal = max(img(:)); minPixelVal = min(img(:)); set_clims(handles, minPixelVal, maxPixelVal); update_window_info(handles); % -------------------------------------------------------------------- function menu_moreWindowSettings_Callback(hObject, eventdata, handles) % hObject handle to menu_moreWindowSettings (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function mi_windowCustom1_Callback(hObject, eventdata, handles) % hObject handle to mi_windowCustom1 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -1000, 1000); update_window_info(handles); % -------------------------------------------------------------------- function mi_windowCustom2_Callback(hObject, eventdata, handles) % hObject handle to mi_windowCustom2 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) set_clims(handles, -1500, 1500); update_window_info(handles); % --- Executes on button press in togglebutton_rotate. function togglebutton_rotate_Callback(hObject, eventdata, handles) % hObject handle to togglebutton_rotate (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton_rotate check_rotate(handles); % --- Executes on button press in togglebutton_light. function togglebutton_light_Callback(hObject, eventdata, handles) % hObject handle to togglebutton_light (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton_light set_light(handles); % --- Executes on button press in togglebutton_sliceStats. function togglebutton_sliceStats_Callback(hObject, eventdata, handles) % hObject handle to togglebutton_sliceStats (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton_sliceStats if 1 == get(hObject, 'Value') set([ ... handles.togglebutton_regionMeasure, ... handles.togglebutton_lineMeasure, ... handles.togglebutton_isoline], 'Value', 0); set_region_measure(handles, 0); set_line_measure(handles, 0); set_isoline(handles, 0); set_image_stats(handles, 1); else set_image_stats(handles, 0); end % --- Executes on button press in togglebutton_regionMeasure. function togglebutton_regionMeasure_Callback(hObject, eventdata, handles) % hObject handle to togglebutton_regionMeasure (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton_regionMeasure if 1 == get(hObject, 'Value') set([ ... handles.togglebutton_sliceStats, ... handles.togglebutton_lineMeasure, ... handles.togglebutton_isoline], 'Value', 0); set_image_stats(handles, 0); set_line_measure(handles, 0); set_isoline(handles, 0); set_region_measure(handles, 1); else set_region_measure(handles, 0); end % --- Executes on button press in togglebutton_lineMeasure. function togglebutton_lineMeasure_Callback(hObject, eventdata, handles) % hObject handle to togglebutton_lineMeasure (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton_lineMeasure if 1 == get(hObject, 'Value') set([ ... handles.togglebutton_sliceStats, ... handles.togglebutton_regionMeasure, ... handles.togglebutton_isoline], 'Value', 0); set_image_stats(handles, 0); set_region_measure(handles, 0); set_isoline(handles, 0); set_line_measure(handles, 1); else set_line_measure(handles, 0); end % --- Executes on button press in togglebutton_isoline. function togglebutton_isoline_Callback(hObject, eventdata, handles) % hObject handle to togglebutton_isoline (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of togglebutton_isoline if 1 == get(hObject, 'Value') set([ ... handles.togglebutton_sliceStats, ... handles.togglebutton_regionMeasure, ... handles.togglebutton_lineMeasure], 'Value', 0); set_image_stats(handles, 0); set_region_measure(handles, 0); set_line_measure(handles, 0); set_isoline(handles, 1); else set_isoline(handles, 0); end % --- Executes when figure_vi is resized. function figure_vi_ResizeFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) auto_layout(handles); % --- Executes when user attempts to close figure_vi. function figure_vi_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure_vi (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) hFigSliceStats = getappdata(handles.figure_vi, 'hFigSliceStats'); if is_handle(hFigSliceStats) delete(hFigSliceStats); setappdata(handles.figure_vi, 'hFigSliceStats', []); end hFigRegionMeasurement = getappdata(handles.figure_vi, 'hFigRegionMeasurement'); if is_handle(hFigRegionMeasurement) delete(hFigRegionMeasurement); setappdata(handles.figure_vi, 'hFigRegionMeasurement', []); end hFigLineMeasurement = getappdata(handles.figure_vi, 'hFigLineMeasurement'); if is_handle(hFigLineMeasurement) delete(hFigLineMeasurement); setappdata(handles.figure_vi, 'hFigLineMeasurement', []); end hFigIsoline = getappdata(handles.figure_vi, 'hFigIsoline'); if is_handle(hFigIsoline) delete(hFigIsoline); setappdata(handles.figure_vi, 'hFigIsoline', []); end delete(hObject); % -------------------------------------------------------------------- function mi_regionRect_Callback(hObject, eventdata, handles) % hObject handle to mi_regionRect (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) select_region_type(handles, 'Rectangle'); % -------------------------------------------------------------------- function mi_regionDisc_Callback(hObject, eventdata, handles) % hObject handle to mi_regionDisc (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) select_region_type(handles, 'Disc'); % ------------------------------------------------------------------- function select_region_type(handles, regionType) uiMenus = getappdata(handles.figure_vi, 'uiMenus'); menuItems = get(uiMenus.menu_selectRegionType, 'Children'); for i = 1 : length(menuItems) mi = menuItems(i); miLabel = get(mi, 'Label'); if strcmpi(regionType, miLabel) || strcmpi(regionType, 'Drawn') && strcmpi(miLabel, 'User Drawn') set(mi, 'Checked', 'on'); setappdata(handles.figure_vi, 'regionType', regionType); else set(mi, 'Checked', 'off'); end end % -------------------------------------------------------------------- function menu_selectRegionType_Callback(hObject, eventdata, handles) % hObject handle to menu_selectRegionType (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % --- If Enable == 'on', executes on mouse press in 5 pixel border. % --- Otherwise, executes on mouse press in 5 pixel border or over togglebutton_regionMeasure. function togglebutton_regionMeasure_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to togglebutton_regionMeasure (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) uiMenus = getappdata(handles.figure_vi, 'uiMenus'); pos1 = get(handles.togglebutton_regionMeasure, 'Position'); pos2 = get(handles.uipanel_2dControls, 'Position'); pos3 = get(handles.uipanel_2dViewer, 'Position'); set(uiMenus.menu_selectRegionType, 'Position', pos1(1:2)+pos2(1:2)+pos3(1:2), 'Visible', 'on'); % -------------------------------------------------------------------- function mi_regionDrawn_Callback(hObject, eventdata, handles) % hObject handle to mi_regionDrawn (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) select_region_type(handles, 'Drawn');
github
jacksky64/imageProcessing-master
line_measurement.m
.m
imageProcessing-master/3dViewer/line_measurement.m
15,958
utf_8
9c31465f555fe9cfba04eb2e0626fca9
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright: % Jun Tan % University of Texas Southwestern Medical Center % Department of Radiation Oncology % Last edited: 08/19/2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = line_measurement(varargin) % LINE_MEASUREMENT MATLAB code for line_measurement.fig % LINE_MEASUREMENT, by itself, creates a new LINE_MEASUREMENT or raises the existing % singleton*. % % H = LINE_MEASUREMENT returns the handle to a new LINE_MEASUREMENT or the handle to % the existing singleton*. % % LINE_MEASUREMENT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in LINE_MEASUREMENT.M with the given input arguments. % % LINE_MEASUREMENT('Property','Value',...) creates a new LINE_MEASUREMENT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before line_measurement_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to line_measurement_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help line_measurement % Last Modified by GUIDE v2.5 16-Aug-2014 00:56:14 % Begin initialization code - DO NOT EDIT gui_Singleton = 0; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @line_measurement_OpeningFcn, ... 'gui_OutputFcn', @line_measurement_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before line_measurement is made visible. function line_measurement_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to line_measurement (see VARARGIN) % Choose default command line output for line_measurement handles.output = hObject; % Update handles structure guidata(hObject, handles); parse_args(hObject, varargin); setappdata(hObject, 'entry_update_data', @parse_args); set(hObject, 'Visible', getappdata(hObject, 'initialVisible')); % ------------------------------------------------------------------- function parse_args(hFig, args) handles = guidata(hFig); numArgs = length(args); assert(1 == numArgs || 2 == numArgs || 3 == numArgs, 'Must have 1, 2, or 3 arguments'); setappdata(handles.figure_lp, 'xyLims', []); setappdata(handles.figure_lp, 'mainFigHandle', []); setappdata(handles.figure_lp, 'initialVisible', 'on'); if 1 == numArgs if is_handle(args{1}) setappdata(handles.figure_lp, 'mainFigHandle', args{1}); setappdata(handles.figure_lp, 'initialVisible', 'off'); else parse_line_data(handles, args{1}); end elseif 2 == numArgs parse_line_data(handles, args{1}) if is_handle(args{2}) setappdata(handles.figure_lp, 'mainFigHandle', args{2}); else parse_lim_data(handles, args{2}); end else % if 3 == numArgs parse_line_data(handles, args{1}) parse_lim_data(handles, args{2}); assert(is_handle(args{3}), 'The third argument must be a valid GUI handle.'); setappdata(handles.figure_lp, 'mainFigHandle', args{3}); end hSel = getappdata(handles.figure_lp, 'hSelectedPoint'); if ~isempty(hSel) delete(hSel); setappdata(handles.figure_lp, 'hSelectedPoint', []); end update_measurement(handles); % ------------------------------------------------------------------- function parse_line_data(handles, lineData) % lineData: Each row is 1 point. First number is value. % lineType: % 1: coordinate is row number. % 2: coordinate is 1D (x). % 3: coordinate is 2D (x, y). assert(isnumeric(lineData) || islogical(lineData), 'Data type must be numeric or logical.'); pointValues = lineData(:, 1); pointPos = lineData(:, 2:end); numPoints = numel(pointValues); assert(numPoints > 1, 'Must have at least 2 points.'); numPosDims = size(pointPos, 2); assert(numPosDims <= 2, 'Dimenson ust be 1D or 2D.'); if 0 == numPosDims pointPos = (1 : numPoints)'; lineType = 1; elseif 1 == numPosDims lineType = 1; else lineType = 2; end assert(2 == lineType || 1 == lineType && all(diff(pointPos) > 0), ... 'Coordinates must be monotonically increasing.'); setappdata(handles.figure_lp, 'lineType', lineType); setappdata(handles.figure_lp, 'pointValues', pointValues); setappdata(handles.figure_lp, 'pointPos', pointPos); get_data_format(handles, pointValues, pointPos); % ------------------------------------------------------------------- function parse_lim_data(handles, xyLims) assert(isnumeric(xyLims), 'Coordinate limits must be numeric.'); assert(4 == numel(xyLims) && numel(xyLims) == length(xyLims) ... && xyLims(2) > xyLims(1) && xyLims(4) > xyLims(3), ... 'X and Y lims must be [xLower xUpper yLower yUpper] for .'); setappdata(handles.figure_lp, 'xyLims', xyLims); % ------------------------------------------------------------------- function get_data_format(handles, pointValues, pointPos) if all(0 == rem(pointValues, 1)) valueFormat = '%.0f'; valueMaxExp = 0; else [valueFormat, valueMaxExp] = find_float_text_format(max(abs(pointValues(:)))); end if all(0 == rem(pointPos(:), 1)) posFormat = '%.0f'; posMaxExp = 0; else [posFormat, posMaxExp] = find_float_text_format(max(abs(pointPos(:)))); end setappdata(handles.figure_lp, 'valueFormat', valueFormat); setappdata(handles.figure_lp, 'valueMaxExp', valueMaxExp); setappdata(handles.figure_lp, 'posFormat', posFormat); setappdata(handles.figure_lp, 'posMaxExp', posMaxExp); % ------------------------------------------------------------------- function [fmt, maxExp] = find_float_text_format(v) v = abs(v); % Force v to be >= 0, though not always necessary. if v >= 1e3 || v <= 0 fmt = '%.3e'; maxExp = floor(log10(v)); elseif v >= 1e2 fmt = '%.1f'; maxExp = 0; elseif v >= 1e1 fmt = '%.2f'; maxExp = 0; else fmt = '%.3f'; maxExp = 0; end % ------------------------------------------------------------------- function s = format_float(v, fmt, maxExp) if fmt(end) == 'e' v = v / (10 ^ maxExp); s = [sprintf('%.3f', v) 'e+03']; else s = sprintf(fmt, v); end if '-' ~= s(1) s = [' ' s]; end % ------------------------------------------------------------------- function update_measurement(handles) stats = cell(6, 2); stats{1, 1} = ' #Points'; stats{2, 1} = ' Length'; stats{3, 1} = ' Max'; stats{4, 1} = ' Min'; stats{5, 1} = ' Mean'; stats{6, 1} = ' SD'; pointValues = getappdata(handles.figure_lp, 'pointValues'); stats{1, 2} = length(pointValues); if stats{1, 2} > 0 stats{3, 2} = max(pointValues); stats{4, 2} = min(pointValues); if ~isempty(pointValues) stats{5, 2} = mean(pointValues); end if ~isempty(pointValues) stats{6, 2} = std(pointValues); end pointPos = getappdata(handles.figure_lp, 'pointPos'); if 1 == getappdata(handles.figure_lp, 'lineType') set(handles.checkbox_stretch, 'Visible', 'off'); stats{2, 2} = range(pointPos); update_2d_profile(handles); else % if 2 == lineType set(handles.checkbox_stretch, 'Visible', 'on'); numSegments = length(pointPos) - 1; segmentLength = zeros(1, numSegments); for i = 1 : numSegments segmentLength(i) = pdist2(pointPos(i, :), pointPos(i+1, :)); end stats{2, 2} = sum(segmentLength); setappdata(handles.figure_lp, 'segmentLength', segmentLength); update_3d_profile(handles); end valueFormat = getappdata(handles.figure_lp, 'valueFormat'); valueMaxExp = getappdata(handles.figure_lp, 'valueMaxExp'); valueText = arrayfun(@(x)format_float(x, valueFormat, valueMaxExp), ... pointValues, 'UniformOutput', false); posFormat = getappdata(handles.figure_lp, 'posFormat'); posMaxExp = getappdata(handles.figure_lp, 'posMaxExp'); posText = arrayfun(@(x)format_float(x, posFormat, posMaxExp), ... pointPos, 'UniformOutput', false); set(handles.uitable_points, 'Data', [valueText posText]); end set(handles.uitable_stats, 'Data', stats); check_grid(handles); check_marker(handles); % ------------------------------------------------------------------- function update_2d_profile(handles) pointValues = getappdata(handles.figure_lp, 'pointValues'); pointPos = getappdata(handles.figure_lp, 'pointPos'); h = plot(handles.axes_lineProfile, pointPos, pointValues, 'linewidth', 2); setappdata(handles.figure_lp, 'hProfile', h); rotate3d(handles.axes_lineProfile, 'off'); box(handles.axes_lineProfile, 'off'); xlabel(handles.axes_lineProfile, 'x'); ylabel(handles.axes_lineProfile, 'Value'); setappdata(handles.figure_lp, 'segmentLength', []); set(handles.uitable_points, 'ColumnName', {'Value', 'x'}); set(handles.uitable_points, 'ColumnWidth', {65, 40}); % ------------------------------------------------------------------- function update_3d_profile(handles) pointValues = getappdata(handles.figure_lp, 'pointValues'); pointPos = getappdata(handles.figure_lp, 'pointPos'); if isempty(pointValues) || isempty(pointPos) return; end if 1 == get(handles.checkbox_stretch, 'Value') segmentLength = getappdata(handles.figure_lp, 'segmentLength'); h = plot(handles.axes_lineProfile, [0 cumsum(segmentLength)], pointValues, 'linewidth', 1); setappdata(handles.figure_lp, 'hProfile', h); rotate3d(handles.axes_lineProfile, 'off'); box(handles.axes_lineProfile, 'off'); xlabel(handles.axes_lineProfile, 'Cumulative distance from first point'); ylabel(handles.axes_lineProfile, 'Value'); else h = plot3(handles.axes_lineProfile, pointPos(:, 1), pointPos(:, 2), pointValues, 'linewidth', 1); setappdata(handles.figure_lp, 'hProfile', h); rotate3d(handles.axes_lineProfile, 'on'); xyLims = getappdata(handles.figure_lp, 'xyLims'); if isempty(xyLims) xlim(handles.axes_lineProfile, 'auto'); ylim(handles.axes_lineProfile, 'auto'); else xlim(handles.axes_lineProfile, xyLims(1:2)); ylim(handles.axes_lineProfile, xyLims(3:4)); end box(handles.axes_lineProfile, 'off'); xlabel(handles.axes_lineProfile, 'x'); ylabel(handles.axes_lineProfile, 'y'); zlabel(handles.axes_lineProfile, 'Value'); end set(handles.uitable_points, 'ColumnName', {'Value', 'x', 'y'}); set(handles.uitable_points, 'ColumnWidth', {50, 40, 40}); % ------------------------------------------------------------------- function check_grid(handles) if 1 == get(handles.checkbox_grid, 'Value') grid(handles.axes_lineProfile, 'on'); else grid(handles.axes_lineProfile, 'off'); end % ------------------------------------------------------------------- function check_marker(handles) h = getappdata(handles.figure_lp, 'hProfile'); if 1 == get(handles.checkbox_marker, 'Value') set(h, 'Marker', 'o', 'MarkerEdgeColor', 'none', 'MarkerFaceColor', 'r'); else set(h, 'Marker', 'none'); end % --- Outputs from this function are returned to the command line. function varargout = line_measurement_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in checkbox_stretch. function checkbox_stretch_Callback(hObject, eventdata, handles) % hObject handle to checkbox_stretch (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_stretch hSel = getappdata(handles.figure_lp, 'hSelectedPoint'); if is_handle(hSel) delete(hSel); end setappdata(handles.figure_lp, 'hSelectedPoint', []); update_3d_profile(handles); check_grid(handles); check_marker(handles); % --- Executes on button press in checkbox_grid. function checkbox_grid_Callback(hObject, eventdata, handles) % hObject handle to checkbox_grid (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_grid check_grid(handles); % --- Executes on button press in checkbox_marker. function checkbox_marker_Callback(hObject, eventdata, handles) % hObject handle to checkbox_marker (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_marker check_marker(handles); % --- Executes when selected cell(s) is changed in uitable_points. function uitable_points_CellSelectionCallback(hObject, eventdata, handles) % hObject handle to uitable_points (see GCBO) % eventdata structure with the following fields (see UITABLE) % Indices: row and column indices of the cell(s) currently selecteds % handles structure with handles and user data (see GUIDATA) if isempty(eventdata.Indices) return; end r = eventdata.Indices(1); hProfile = getappdata(handles.figure_lp, 'hProfile'); if isempty(hProfile) return; end xd = get(hProfile, 'XData'); yd = get(hProfile, 'YData'); zd = get(hProfile, 'ZData'); lineType = getappdata(handles.figure_lp, 'lineType'); hSel = getappdata(handles.figure_lp, 'hSelectedPoint'); if isempty(hSel) hold(handles.axes_lineProfile, 'on'); if 1 == lineType || 1 == get(handles.checkbox_stretch, 'Value') hSel = plot(handles.axes_lineProfile, xd(r), yd(r)); else hSel = plot3(handles.axes_lineProfile, xd(r), yd(r), zd(r)); end set(hSel, 'Marker', 'o', 'MarkerEdgeColor', 'm', 'MarkerFaceColor', 'g'); hold(handles.axes_lineProfile, 'off'); setappdata(handles.figure_lp, 'hSelectedPoint', hSel); else set(hSel, 'XData', xd(r), 'YData', yd(r)); if 2 == lineType && 0 == get(handles.checkbox_stretch, 'Value') set(hSel, 'ZData', zd(r)); end end % -------------------------------------------------------------------- function uitable_points_ButtonDownFcn(hObject, eventdata, handles) % hObject handle to uitable_points (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) hSel = getappdata(handles.figure_lp, 'hSelectedPoint'); if ~isempty(hSel) delete(hSel); setappdata(handles.figure_lp, 'hSelectedPoint', []); end % --- Executes when user attempts to close figure_lp. function figure_lp_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure_lp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mainFigHandle = getappdata(handles.figure_lp, 'mainFigHandle'); if is_handle(mainFigHandle) hFun = getappdata(mainFigHandle, 'hFunCallbackLineMeasurementClosed'); if isa(hFun, 'function_handle') feval(hFun, mainFigHandle); end else delete(hObject); end
github
jacksky64/imageProcessing-master
image_stats.m
.m
imageProcessing-master/3dViewer/image_stats.m
5,961
utf_8
5e350d3d77071a8cfdaf1904d9583a79
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Copyright: % Jun Tan % University of Texas Southwestern Medical Center % Department of Radiation Oncology % Last edited: 08/19/2014 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function varargout = image_stats(varargin) % IMAGE_STATS MATLAB code for image_stats.fig % IMAGE_STATS, by itself, creates a new IMAGE_STATS or raises the existing % singleton*. % % H = IMAGE_STATS returns the handle to a new IMAGE_STATS or the handle to % the existing singleton*. % % IMAGE_STATS('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in IMAGE_STATS.M with the given input arguments. % % IMAGE_STATS('Property','Value',...) creates a new IMAGE_STATS or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before image_stats_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to image_stats_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help image_stats % Last Modified by GUIDE v2.5 11-Aug-2014 20:13:00 % Begin initialization code - DO NOT EDIT gui_Singleton = 0; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @image_stats_OpeningFcn, ... 'gui_OutputFcn', @image_stats_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before image_stats is made visible. function image_stats_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to image_stats (see VARARGIN) % Choose default command line output for image_stats handles.output = hObject; % Update handles structure guidata(hObject, handles); parse_args(hObject, varargin); setappdata(hObject, 'entry_update_data', @parse_args); set(hObject, 'Visible', getappdata(hObject, 'initialVisible')); % ------------------------------------------------------------------- function parse_args(hFig, args) handles = guidata(hFig); numArgs = length(args); assert(1 == numArgs || 2 == numArgs, 'Must have 1 or 2 arguments'); setappdata(handles.figure_is, 'mainFigHandle', []); setappdata(handles.figure_is, 'initialVisible', 'on'); parse_image_data(handles, args{1}); if 2 == numArgs assert(is_handle(args{2})); setappdata(handles.figure_is, 'initialVisible', 'off'); setappdata(handles.figure_is, 'mainFigHandle', args{2}); end update_stats(handles); % ------------------------------------------------------------------- function parse_image_data(handles, imageData) assert((isnumeric(imageData) || islogical(imageData)) && ismatrix(imageData), ... 'Data must be gray or binary 2D image.'); setappdata(handles.figure_is, 'imageData', double(imageData)); % ------------------------------------------------------------------- function update_stats(handles) imageData = getappdata(handles.figure_is, 'imageData'); data = imageData(:); hist(handles.axes_hist, data, 100); box(handles.axes_hist, 'off'); xlabel(handles.axes_hist, 'Pixel value'); ylabel(handles.axes_hist, 'Counts'); stats = cell(6, 2); stats{1, 1} = ' Area'; stats{1, 2} = numel(data); stats{2, 1} = ' Width'; stats{2, 2} = size(imageData, 2); stats{3, 1} = ' Height'; stats{3, 2} = size(imageData, 1); stats{4, 1} = ' Max'; stats{4, 2} = max(data); stats{5, 1} = ' Min'; stats{5, 2} = min(data); stats{6, 1} = ' Mean'; stats{6, 2} = mean(data); stats{7, 1} = ' SD'; stats{7, 2} = std(data); set(handles.uitable_stats, 'Data', stats); check_grid(handles); % ------------------------------------------------------------------- function check_grid(handles) if 1 == get(handles.checkbox_grid, 'Value') grid(handles.axes_hist, 'on'); else grid(handles.axes_hist, 'off'); end % --- Outputs from this function are returned to the command line. function varargout = image_stats_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in checkbox_grid. function checkbox_grid_Callback(hObject, eventdata, handles) % hObject handle to checkbox_grid (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: get(hObject,'Value') returns toggle state of checkbox_grid check_grid(handles); % --- Executes when user attempts to close figure_is. function figure_is_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figure_is (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) mainFigHandle = getappdata(handles.figure_is, 'mainFigHandle'); if is_handle(mainFigHandle) hFun = getappdata(mainFigHandle, 'hFunCallbackSliceStatsClosed'); if isa(hFun, 'function_handle') feval(hFun, mainFigHandle); end else delete(hObject); end
github
jacksky64/imageProcessing-master
knnc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/knnc.m
3,535
utf_8
20362e51c361d7899c025ded631e1d9b
%KNNC K-Nearest Neighbor Classifier % % [W,K,E] = KNNC(A,K) % [W,K,E] = KNNC(A) % % INPUT % A Dataset % K Number of the nearest neighbors (optional; default: K is % optimized with respect to the leave-one-out error on A) % % OUTPUT % W k-NN classifier % K Number of the nearest neighbors used % E The leave-one-out error of the KNNC % % DESCRIPTION % Computation of the K-nearest neighbor classifier for the dataset A. % The resulting classifier W is automatically evaluated by KNN_MAP. % % Warning: class prior probabilities in A are neglected. % % SEE ALSO % MAPPINGS, DATASETS, KNN_MAP % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: knnc.m,v 1.4 2007/04/13 09:29:57 duin Exp $ function [W,knn,e,ek] = knnc(a,knn) prtrace(mfilename); if (nargin < 2) prwarning(4,'Number of nearest neighbors not supplied, optimized wrt the leave-one-out error.'); knn = []; end % No input data, return an untrained classifier. if (nargin == 0) | (isempty(a)) W = mapping('knnc',knn); if (isempty(knn)) W = setname(W,'K-NN Classifier'); else W = setname(W,[num2str(knn) '-NN Classifier']); end return; end islabtype(a,'crisp','soft'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a); a = testdatasize(a,'objects'); a = seldat(a); % get labeled objects only [m,k,c] = getsize(a); nlab = getnlab(a); if (isempty(knn)) % Optimize knn by the LOO procedure. [num,bat] = prmem(m,m); z = zeros(1,m); N = zeros(c,m); for i = 0:num-1 % Compute the distance matrix part by part if (i == num-1) % depending on the available memory. nn = m - num*bat + bat; else nn = bat; end I = [i*bat+1:i*bat+nn]; D=+distm(a,a(I,:)); [Y,L] = sort(D); % Sort in columns. % L are the labels of the nearest-to-further neighbors for the objects from I. L = nlab(L)'; Ymax = zeros(nn,m); Yc = zeros(nn,m); if islabtype(a,'soft') error('Soft labels not yet allowed for optimisation of k') end for j = 1:c Y = +(L == j); % Mark by 1 the positions of the class j in for n = 3:m % the ordered distances to the objects from I. Y(:,n) = Y(:,n-1) + Y(:,n); end % Y is NN x M; for objects from I, Y(:,P) counts all the objects % from the class j that are within the first P nearest neighbors. Y(:,1) = zeros(nn,1); J = Y > Ymax; % J is the index of the 'winning' class Ymax(J) = Y(J); % within the first nearest neighbors. Yc(J) = j*ones(size(Yc(J))); end z = z + sum(Yc == repmat(nlab(I),1,m),1); % number of objects correctly classified for knn = 0,1,2,... end name = 'K-NN Classifier'; [e,knn] = max(z); % select best neighborhood size knn = knn-1; % correct for leave-one-out knn = max(knn,1); % correct for pathological case knn = 0 (it appeared to exist!: all objects were % incorrectly classified for all neighbood sizes). e = 1 - e/m; ek = 1 - z/m; ek(1) = []; else % knn is fixed if (knn > m) error('The number of neighbors should not be larger than number of training objects.') end if (nargout > 2) e = testk(a,knn); end name = [num2str(knn) '-NN Classifier']; end W = mapping('knn_map','trained',{a,knn},getlablist(a),k,c); W = setname(W,name); W = setcost(W,a); return
github
jacksky64/imageProcessing-master
im_skel_meas.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_skel_meas.m
1,669
utf_8
dcdcd014bc93aaef5301141e3c64512a
%IM_SKEL_MEASURE Computation by DIP_Image of skeleton-based features % % F = IM_SKEL_MEASURE(A,FEATURES) % % INPUT % A Dataset with binary object images dataset % FEATURES Features to be computed % % OUTPUT % F Dataset with computed features % % DESCRIPTION % The following features may be computed on the skeleton images in A: % 'branch', 'end', 'link', 'single'. They should be combined in a cell % array. % % Use FEATURES = 'all' for computing all features (default). % % SEE ALSO % DATASETS, DATAFILES, IM_SKEL, DIP_IMAGE, BSKELETON % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_skel_meas(a,features) prtrace(mfilename); if nargin < 2 | isempty(features), features = 'all'; end if strcmp(features,'all') features = {'branch', 'end', 'link', 'single'}; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed'); b = setname(b,'Skeleton features',{features}); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,{features}); b = setfeatlab(b,features); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image b = []; if ~iscell(features), features = {features}; end for i = 1:length(features) if strcmp (features{i}, 'branch') b = [ b sum(getbranchpixel(a)) ]; end; if strcmp (features{i}, 'end') b = [ b sum(getendpixel(a)) ]; end; if strcmp (features{i}, 'link') b = [ b sum(getlinkpixel(a)) ]; end; if strcmp (features{i}, 'single') b = [ b sum(getsinglepixel(a)) ]; end; end; end return
github
jacksky64/imageProcessing-master
im_fft.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_fft.m
859
utf_8
9c39c2a03e24449fb0baa8cf48e786b2
%IM_FFT 2D FFT of all images in dataset % % F = IM_FFT(A) % % INPUT % A Dataset with object images (possibly multi-band) % % OUTPUT % F Dataset with FFT images % % SEE ALSO % DATASETS, DATAFILES, FFT2 % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_fft(a,varargin) prtrace(mfilename); if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',varargin); b = setname(b,'Image FFT'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,varargin); b = setfeatsize(b,getfeatsize(a)); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = double(a); b = fft2(a); if nargin > 1 for j=1:nargin-1 b = filtim(b,varargin{j}); end end end return
github
jacksky64/imageProcessing-master
parzenm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/parzenm.m
2,629
utf_8
fc2c033dbde1f0e376cebdb6f43eb220
%PARZENM Estimate Parzen densities % % W = PARZENM(A,H) % W = A*PARZENM([],H) % % D = B*W % % INPUT % A Input dataset % H Smoothing parameters (scalar, vector) % % OUTPUT % W output mapping % % DESCRIPTION % A Parzen distribution is estimated for the labeled objects in A. Unlabeled % objects are neglected, unless A is entirely unlabeled or double. Then all % objects are used. If A is a multi-class dataset the densities are estimated % class by class and then weighted and combined according their prior % probabilities. In all cases, just single density estimator W is computed. % % The mapping W may be applied to a new dataset B using DENSITY = B*W. % % The smoothing parameter H is estimated by PARZENML if not supplied. It can % be a scalar or a vector with as many components as A has features. % % SEE ALSO % DATASETS, MAPPINGS, KNNM, GAUSSM, PARZENML, PARZENDC, KNNM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: parzenm.m,v 1.5 2008/05/21 11:49:59 duin Exp $ function w = parzenm(a,h,n) prtrace(mfilename); if (nargin < 3), n = 1; end if (nargin < 2), h = []; end % No input arguments specified: return an untrained mapping. mapname = 'Parzen Density Estimation'; if (nargin < 1 | isempty(a)) w = mapping(mfilename,{h,n}); w = setname(w,mapname); return; end a = dataset(a); a = remclass(a); labname = getname(a); islabtype(a,'crisp','soft'); isvaldfile(a,2,1); % at least 2 objects per class, 1 class a = testdatasize(a); a = testdatasize(a,'objects'); if (getsize(a,3) ~= 1) w = mclassm(a,mapping(mfilename,h),'weight'); w = setlabels(w,labname); w = setname(w,mapname); return end [m,k] = size(a); % Scale A such that its mean is shifted to the origin and % the variances of all features are scaled to 1. if isempty(h) % if no smoothing parameter given, we have to estimate % it later, lets scale first ws = scalem(a,'variance'); else ws = affine(ones(1,k),zeros(1,k),a); end b = a*ws; % SCALE is basically [1/mean(A) 1/STD(A)] based on the properties of SCALEM. scale = ws.data.rot; if (size(scale,1) ~= 1) % formally ws.data.rot stores a rotation matrix scale = diag(scale)'; % extract the diagonal if it does, end % otherwise we already have the diagonal if isempty(h) if n==1 h = repmat(parzenml(b),1,k)./scale; else h = repmat(emparzenml(b,n),1,k)./repmat(scale,n,1); end end w = mapping('parzen_map','trained',{a,h},labname,k,1); w = setname(w,mapname); return
github
jacksky64/imageProcessing-master
col2gray.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/col2gray.m
1,596
utf_8
8f52ea4434366e7be840bf8ffebaf7dd
%COL2GRAY Mapping for converting multi-band images into single band images % % B = COL2GRAY(A,V) % B = A*COL2GRAY([],V) % % INPUT % A Multiband image or dataset with multi-band images as objects % V Weight vector, one weight per band. Default: equal weights. % % OUTPUT % B Output image or dataset. % % DESCRIPTION % The multi-band components in the image A (3rd dimension) or in the % objects in the dataset A are weigthed (default: equal weights) and % averaged. % % SEE ALSO % MAPPINGS, DATASTS, DATAFILES % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = col2gray(a,v) prtrace(mfilename,2); if nargin < 2, v = []; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{v}); b = setname(b,'Color-to-gray conversion'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtm(a,mfilename,v); imsize = getfeatsize(a); b = setfeatsize(b,imsize(1:2)); elseif isa(a,'double') imsize = size(a); if isempty(v) if length(imsize) == 3 b = mean(a,3); b = squeeze(b); elseif length(imsize) == 2 b = a; else error('Illegal image size') end else if length(imsize) == 2 b = a; else b = zeros(imsize(1),imsize(2),size(a,1)); for i=1:size(a,1) for j=1:size(im,3) b(:,:,i) =b(:,:,i) + b(:,:,j,i)*v(j); end end end end else error('Illegal datatype for input') end return
github
jacksky64/imageProcessing-master
nulibsvc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nulibsvc.m
5,160
utf_8
d2e65d89f90066e16b5bd949f48decea
%NULIBSVC Support Vector Classifier by libsvm, nu version % % [W,J,NU] = NULIBSVC(A,KERNEL,NU) % % INPUT % A Dataset % KERNEL Mapping to compute kernel by A*MAP(A,KERNEL) % or string to compute kernel by FEVAL(KERNEL,A,A) % or cell array with strings and parameters to compute kernel by % FEVAL(KERNEL{1},A,A,KERNEL{2:END}) % Default: linear kernel. % NU nu value, upperbound error. % Default NU is derived from 1-NN error. % % OUTPUT % W Mapping: Support Vector Classifier % J Object idences of support objects. Can be also obtained as W{4} % NU Actual nu_value used % % DESCRIPTION % Optimizes a support vector classifier for the dataset A by the libsvm % package, see http://www.csie.ntu.edu.tw/~cjlin/libsvm/. LIBSVC calls the % svmtrain routine of libsvm for training. Classifier execution for a % test dataset B may be done by D = B*W; In D posterior probabilities are % given as computed by svmpredict using the '-b 1' option. % % The kernel may be supplied in KERNEL by % - an untrained mapping, e.g. a call to PROXM like W = LIBSVC(A,PROXM([],'R',1)) % - a string with the name of the routine to compute the kernel from A % - a cell-array with this name and additional parameters. % This will be used for the evaluation of a dataset B by B*W or MAP(B,W) as % well. % % If KERNEL = 0 (or not given) it is assumed that A is already the % kernelmatrix (square). In this also a kernel matrix should be supplied at % evaluation by B*W or MAP(B,W). However, the kernel has to be computed with % respect to support objects listed in J (the order of objects in J does matter). % % REFERENCES % R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order % information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005 % % SEE ALSO % MAPPINGS, DATASETS, LIBSVC, SVC, PROXM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [W,J,NU] = libsvc(a,kernel,NU) prtrace(mfilename); libsvmcheck; if nargin < 3 NU = []; end if nargin < 2 | isempty(kernel) kernel = proxm([],'p',1); end if nargin < 1 | isempty(a) W = mapping(mfilename,{kernel,NU}); W = setname(W,'LIBSVM Classifier'); return; end if (~ismapping(kernel) | isuntrained(kernel)) % training if isempty(NU), NU = 2*min(max(testk(a,1),0.01),(0.8*min(classsizes(a))/size(a,1))); end %disp(NU) opt = ['-s 1 -t 4 -b 1 -n ',num2str(NU), ' -q']; islabtype(a,'crisp'); isvaldset(a,1,2); % at least 1 object per class, 2 classes [m,k,c] = getsize(a); nlab = getnlab(a); K = compute_kernel(a,a,kernel); K = min(K,K'); % make sure kernel is symmetric K = [[1:m]' K]; % as libsvm wants it % call libsvm u = svmtrain(nlab,K,opt); if isempty(u) prwarning(1,'nulibsvc: no solution for SVM, pseudo-inverse will be used') W = lkc(K,0); J = [1:m]'; return end % Store the results: J = full(u.SVs); if isequal(kernel,0) s = []; in_size = length(J); % in_size = 0; % to allow old and new style calls else s = a(J,:); in_size = k; end lablist = getlablist(a); W = mapping(mfilename,'trained',{u,s,kernel,J,opt},lablist(u.Label,:),in_size,c); W = setname(W,'LIBSVM Classifier'); W = setcost(W,a); else % execution v = kernel; w = +v; m = size(a,1); u = w{1}; s = w{2}; kernel = w{3}; J = w{4}; opt = w{5}; K = compute_kernel(a,s,kernel); k = size(K,2); if k ~= length(J) if isequal(kernel,0) if (k > length(J)) & (k >= max(J)) % precomputed kernel; old style call prwarning(1,'Old style execution call: The precomputed kernel was calculated on a test set and the whole training set!') else error('Inappropriate precomputed kernel!\nFor the execution the kernel matrix should be computed on a test set and the set of support objects'); end else error('Kernel matrix has the wrong number of columns'); end else % kernel was computed with respect to the support objects % we make an approprite correction in the libsvm structure u.SVs = sparse((1:length(J))'); end K = [[1:m]' K]; % as libsvm wants it [lab,acc,d] = svmpredict(getnlab(a),K,u,'-b 1'); W = setdat(a,d,v); end return; function K = compute_kernel(a,s,kernel) % compute a kernel matrix for the objects a w.r.t. the support objects s % given a kernel description if isstr(kernel) % routine supplied to compute kernel K = feval(kernel,a,s); elseif iscell(kernel) K = feval(kernel{1},a,s,kernel{2:end}); elseif ismapping(kernel) K = a*map(s,kernel); elseif kernel == 0 % we have already a kernel K = a; else error('Do not know how to compute kernel matrix') end K = +K; return
github
jacksky64/imageProcessing-master
cleval.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/cleval.m
8,372
utf_8
db8f67007c6c315e32e927542219cbac
%CLEVAL Classifier evaluation (learning curve) % % E = CLEVAL(A,CLASSF,TRAINSIZES,NREPS,T,TESTFUN) % % INPUT % A Training dataset % CLASSF Classifier to evaluate % TRAINSIZE Vector of training set sizes, used to generate subsets of A % (default [2,3,5,7,10,15,20,30,50,70,100]). TRAINSIZE is per % class unless A has no priors set or has soft labels. % NREPS Number of repetitions (default 1) % T Tuning dataset (default [], use remaining samples in A) % TESTFUN Mapping,evaluation function (default classification error) % % OUTPUT % E Error structure (see PLOTE) containing training and test % errors % % DESCRIPTION % Generates at random, for all class sizes defined in TRAINSIZES, training % sets out of the dataset A and uses these for training the untrained % classifier CLASSF. CLASSF may also be a cell array of untrained % classifiers; in this case the routine will be run for all of them. The % resulting trained classifiers are tested on the training objects and % on the left-over test objects. This procedure is then repeated NREPS % times. The default test routine is classification error estimation by % TESTC([],'crisp'). % % Training set generation is done "with replacement" and such that for each % run the larger training sets include the smaller ones and that for all % classifiers the same training sets are used. % % If CLASSF is fully deterministic, this function uses the RAND random % generator and thereby reproduces if its seed is reset (see RAND). % If CLASSF uses RANDN, its seed may have to be set as well. % % Per default both the true error (error on the test set) and the % apparent error (error on the training set) are computed. They will be % visible when the curves are plotted using PLOTE. % % EXAMPLE % See PREX_CLEVAL % % SEE ALSO % MAPPINGS, DATASETS, CLEVALB, TESTC, PLOTE % Copyright: D.M.J. Tax, R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function e = cleval(a,classf,learnsizes,nreps,t,testfun) prtrace(mfilename); if (nargin < 6) | isempty(testfun) testfun = testc([],getlabtype(a)); end; if (nargin < 5) | isempty(t) prwarning(2,'no tuning set T supplied, using remaining samples in A'); t = []; end; if (nargin < 4) | isempty(nreps); prwarning(2,'number of repetitions not specified, assuming NREPS = 1'); nreps = 1; end; if (nargin < 3) | isempty(learnsizes); prwarning(2,'vector of training set class sizes not specified, assuming [2,3,5,7,10,15,20,30,50,70,100]'); learnsizes = [2,3,5,7,10,15,20,30,50,70,100]; end; % Correct for old argument order. if (isdataset(classf)) & (ismapping(a)) tmp = a; a = classf; classf = {tmp}; end if (isdataset(classf)) & (iscell(a)) & (ismapping(a{1})) tmp = a; a = classf; classf = tmp; end if ~iscell(classf), classf = {classf}; end % Assert that all is right. isdataset(a); ismapping(classf{1}); if (~isempty(t)), isdataset(t); end % Remove requested class sizes that are larger than the size of the % smallest class. [m,k,c] = getsize(a); if ~isempty(a,'prior') & islabtype(a,'crisp') classs = true; mc = classsizes(a); toolarge = find(learnsizes >= min(mc)); if (~isempty(toolarge)) prwarning(2,['training set class sizes ' num2str(learnsizes(toolarge)) ... ' larger than the minimal class size; removed them']); learnsizes(toolarge) = []; end else if islabtype(a,'crisp') & isempty(a,'prior') prwarning(1,['No priors found in dataset, class frequencies are used.' ... newline ' Training set sizes hold for entire dataset']); end classs = false; toolarge = find(learnsizes >= m); if (~isempty(toolarge)) prwarning(2,['training set sizes ' num2str(learnsizes(toolarge)) ... ' larger than number of objects; removed them']); learnsizes(toolarge) = []; end end learnsizes = learnsizes(:)'; % Fill the error structure. nw = length(classf(:)); datname = getname(a); e.n = nreps; e.error = zeros(nw,length(learnsizes)); e.std = zeros(nw,length(learnsizes)); e.apperror = zeros(nw,length(learnsizes)); e.appstd = zeros(nw,length(learnsizes)); e.xvalues = learnsizes(:)'; if classs e.xlabel = 'Training set size per class'; else e.xlabel = 'Training set size'; end e.names = []; if (nreps > 1) e.ylabel= ['Averaged error (' num2str(nreps) ' experiments)']; elseif (nreps == 1) e.ylabel = 'Error'; else error('Number of repetitions NREPS should be >= 1.'); end; if (~isempty(datname)) e.title = ['Learning curve on ' datname]; end if (learnsizes(end)/learnsizes(1) > 20) e.plot = 'semilogx'; % If range too large, use a log-plot for X. end % Report progress. s1 = sprintf('cleval: %i classifiers: ',nw); prwaitbar(nw,s1); % Store the seed, to reset the random generator later for different % classifiers. seed = rand('state'); % Loop over all classifiers (with index WI). for wi = 1:nw if (~isuntrained(classf{wi})) error('Classifiers should be untrained.') end name = getname(classf{wi}); e.names = char(e.names,name); prwaitbar(nw,wi,[s1 name]); % E1 will contain the error estimates. e1 = zeros(nreps,length(learnsizes)); e0 = zeros(nreps,length(learnsizes)); % Take care that classifiers use same training set. rand('state',seed); seed2 = seed; % For NREPS repetitions... s2 = sprintf('cleval: %i repetitions: ',nreps); prwaitbar(nreps,s2); for i = 1:nreps prwaitbar(nreps,i,[s2 int2str(i)]); % Store the randomly permuted indices of samples of class CI to use in % this training set in JR(CI,:). if classs JR = zeros(c,max(learnsizes)); for ci = 1:c JC = findnlab(a,ci); % Necessary for reproducable training sets: set the seed and store % it after generation, so that next time we will use the previous one. rand('state',seed2); JD = JC(randperm(mc(ci))); JR(ci,:) = JD(1:max(learnsizes))'; seed2 = rand('state'); end elseif islabtype(a,'crisp') rand('state',seed2); % get seed for reproducable training sets % generate indices for the entire dataset taking care that in % the first 2c objects we have 2 objects for every class [a1,a2,I1,I2] = gendat(a,2*ones(1,c)); JD = randperm(m-2*c); JR = [I1;I2(JD)]; seed2 = rand('state'); % save seed for reproducable training sets else % soft labels rand('state',seed2); % get seed for reproducable training sets JR = randperm(m); seed2 = rand('state'); % save seed for reproducable training sets end li = 0; % Index of training set. nlearns = length(learnsizes); s3 = sprintf('cleval: %i sizes: ',nlearns); prwaitbar(nreps,s3); for j = 1:nlearns nj = learnsizes(j); prwaitbar(nlearns,j,[s3 int2str(j) ' (' int2str(nj) ')']); li = li + 1; % J will contain the indices for this training set. J = []; if classs for ci = 1:c J = [J;JR(ci,1:nj)']; end; else J = JR(1:nj); end trainset = a(J,:); trainset = setprior(trainset,getprior(trainset,0)); w = trainset*classf{wi}; % Use right classifier. e0(i,li) = trainset*w*testfun; if (isempty(t)) Jt = ones(m,1); Jt(J) = zeros(size(J)); Jt = find(Jt); % Don't use training set for testing. testset = a(Jt,:); testset = setprior(testset,getprior(testset,0)); e1(i,li) = testset*w*testfun; else testset = setprior(t,getprior(t,0)); e1(i,li) = testset*w*testfun; end end prwaitbar(0); end prwaitbar(0); % Calculate average error and standard deviation for this classifier % (or set the latter to zero if there's been just 1 repetition). e.error(wi,:) = mean(e1,1); e.apperror(wi,:) = mean(e0,1); if (nreps == 1) e.std(wi,:) = zeros(1,size(e.std,2)); e.appstd(wi,:) = zeros(1,size(e.appstd,2)); else e.std(wi,:) = std(e1)/sqrt(nreps); e.appstd(wi,:) = std(e0)/sqrt(nreps); end end prwaitbar(0); % The first element is the empty string [], remove it. e.names(1,:) = []; return
github
jacksky64/imageProcessing-master
classc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/classc.m
3,622
utf_8
095c4dd1edad8a43a38da8b9d9263191
%CLASSC Convert classifier to normalized classifier (yielding confidences) % % V = CLASSC(W) % V = W*CLASSC % D = CLASSC(A*W) % D = A*W*CLASSC % D = CLASSC(A,W) % % INPUT % W Trained or untrained classifier % A Dataset % % OUTPUT % V Normalized classifier producing confidences instead of % densities or distances (after training if W is untrained) % % DESCRIPTION % The trained or untrained classifier W may yield densities or unnormalised % confidences. The latter holds for two-class discriminants like FISHERC % and SVC as well as for neural networks. Such classifiers use or should % use CNORMC to convert distances to confidences. In multi-class problems % as well as in combining schemes they do not produce normalises % confidences. These outcomes, like the density outcomes of classifiers % liek QDC, LDC and PARZENC, can be converted by CLASSC into confidences: % the sum of the outcomes will be one for every object. % % In case W is a one-dimensional mapping, it is converted into a two-class % classifier, provided that during the construction a class label was % supplied. If not, the mapping cannot be converted and an error is % generated. % % CLASSC lists the outcomes on the screen in case no output argument is % supplied. Also true and estimated labels are supplied. % % SEE ALSO % MAPPINGS, DATASETS, CNORMC, LABELD % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: classc.m,v 1.5 2010/02/23 15:21:54 duin Exp $ function w = classc(w,flag) prtrace(mfilename); if nargin < 2, flag = 0; end % flag forces non=combiner behavior avoiding recursion if (nargin == 0) % Untrained mapping. w = mapping('classc','combiner',flag); elseif (ismapping(w)) % If mapping is stacked or parallel, recurse over the individual % sub-mappings and call CLASSC for each of them. if ((isstacked(w)) | (isparallel(w))) & (flag == 0) v = cell(1,length(w.data)); for j = 1:length(w.data) if ismapping(w.data{j}) % the parallel combiner may have nonmapping data v{j} = feval(mfilename,w.data{j}); else v{j} = w.data{j}; end end w = setdata(w,v); w = feval(mfilename,w,1); % and here CLASSC is called for the combiner avoiding recursion else conv = get(w,'out_conv'); if (conv < 1) % Set the "normalization" bit in the mapping's output conversion flag w = set(w,'out_conv',conv+2); else prwarning(3,'mapping is already a classifier'); end; end elseif (isdataset(w)) if ismapping(flag) if nargout == 1 w = feval(mfilename,w*flag); else feval(mfilename,w*flag); clear w; end return end w = w*normm; w = w*costm; if nargout == 0 % list outcomes on the screen ww = +w; ss = repmat('-',1,9*size(ww,2)); fprintf('\n True Estimated Class \nLabels Labels Confidences\n'); fprintf('------------------%s\n',ss); nlab = getnlab(w); [wmax,K] = max(ww,[],2); lablist = getlablist(w); if ~isempty(lablist) & ~ischar(lablist) nlab = lablist(nlab); K = lablist(K); end for j=1:size(ww,1) if (nlab(j) ~= K(j)) fprintf(' %3.0f ->%3.0f ',nlab(j),K(j)); else fprintf(' %3.0f %3.0f ',nlab(j),K(j)); end fprintf(' %7.4f',ww(j,:)); fprintf('\n'); end lablist = getlablist(w); if ischar(lablist) fprintf('\n'); for j=1:size(lablist,1) fprintf(' %i %s\n',j,lablist(j,:)); end end clear w; end else error('input should be mapping or dataset'); end return
github
jacksky64/imageProcessing-master
featselb.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featselb.m
2,850
utf_8
242e3f5afed7c113de4956acdbf3b569
%FEATSELB Backward feature selection for classification % % [W,R] = FEATSELB(A,CRIT,K,T,FID) % [W,R] = FEATSELB(A,CRIT,K,N,FID) % % INPUT % A Dataset % CRIT String name of the criterion or untrained mapping % (optional; default: 'NN', i.e. 1-Nearest Neighbor error) % K Number of features to select % (optional; default: return optimally ordered set of all features) % T Tuning set (optional) % N Number of cross-validations % FID File ID to write progress to (default [], see PRPROGRESS) % % OUTPUT % W Output feature selection mapping % R Matrix with step-by-step results of the selection % % DESCRIPTION % Backward selection of K features using the dataset A. CRIT sets the % criterion used by the feature evaluation routine FEATEVAL. If the % dataset T is given, it is used as test set for FEATEVAL. Alternatvely a % a number of cross-validation N may be supplied. For K = 0, the optimal % feature set (corresponding to the maximum value of FEATEVAL) is returned. % The result W can be used for selecting features by B*W. In this case, % features are ranked optimally. % The selected features are stored in W.DATA and can be found by +W. % In R, the search is reported step by step as: % % R(:,1) : number of features % R(:,2) : criterion value % R(:,3) : added / deleted feature % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELLR, FEATSEL, % FEATSELO, FEATSELF, FEATSELI, FEATSELP, FEATSELM, PRPROGRESS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: featselb.m,v 1.6 2008/07/03 09:08:43 duin Exp $ function [w,r] = featselb(a,crit,ksel,t,fid) prtrace(mfilename); if (nargin < 2) | isempty(crit) prwarning(2,'No criterion specified, assuming 1-NN.'); crit = 'NN'; end if (nargin < 3) | isempty(ksel) ksel = 0; % Consider all the features and sort them. end if (nargin < 4) prwarning(3,'No tuning set supplied.'); t = []; end if (nargin < 5) fid = []; end if nargin == 0 | isempty(a) % Create an empty mapping: w = mapping(mfilename,{crit,ksel,t}); else prprogress(fid,'\nfeatselb : Backward Feature Selection') [w,r] = featsellr(a,crit,ksel,0,1,t,fid); %DXD This is a patch: when the number of features has to be %optimized, and all features seem useful, when the list of %features is not reshuffled to reflect the relative importance of %the features: % (Obviously, this should be fixed in featsellr, but I don't % understand what is happening in there) dim = size(a,2); if (ksel==0) & (length(getdata(w))==dim) rr = -r(:,3); rr(1) = []; rr = [setdiff((1:dim)',rr) rr(end:-1:1)']; w = setdata(w,rr); end prprogress(fid,'featselb finished\n') end w = setname(w,'Backward FeatSel'); return
github
jacksky64/imageProcessing-master
issym.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/issym.m
768
utf_8
d029ef5dca799d320df7ee0deb0d19fa
%ISSYM Checks whether a matrix is symmetric % % OK = ISSYM(A,DELTA) % % INPUT % A Dataset % DELTA Parameter for the precision check (optional; default: 1e-12) % % OUTPUT % OK 1 if the matrix A is symmetric and 0, otherwise. % % DESCRIPTION % A is considered as a symmetric matrix, when it is square and % max(max(A-A')) is smaller than DELTA. % % % Robert P.W. Duin, Elzbieta Pekalska, [email protected] % Faculty of Applied Sciences, Delft University of Technology % function [ok,nn] = issym(A,delta) if nargin < 2, prwarning(6,'The precision is not provided, set up to 1e-12.'); delta = 1e-12; end A = +A; [m,k] = size(A); if m ~= k, error ('Matrix should be square.') end nn = max(max((A-A'))); ok = (nn < delta); return;
github
jacksky64/imageProcessing-master
misval.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/misval.m
2,478
utf_8
c3add71d533e6203113d88dfc8a0fd1c
%MISVAL Fix the missing values in a dataset % % B = MISVAL(A,VAL) % B = A*MISVAL([],VAL) % % INPUT % A Dataset, containing NaNs (missing values) % VAL String with substitution option % or value used for substitution % % B Dataset with NaNs substituted % % DESCRIPTION % % The following values for VAL are possible: % 'remove' remove objects (rows) that contain missing values (default) % 'f-remove' remove features (columns) that contain missing values % 'mean' fill the entries with the mean of their features % 'c-mean' fill the entries with the class mean of their features % <value> fill the entries with a fixed constant % % SEE ALSO % DATASETS % Copyright: D.M.J. Tax, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [x,msg] = misval(x,val) if nargin < 2 | isempty(val), val = 'remove'; end if nargin < 1 | isempty(x) x = mapping(mfilename,val); x = setname(x,'missing value') else x = dataset(x); [m,k,c] = getsize(x); % Where are the offenders? I = isnan(x); % If there are missing values, go: if any(I(:)) switch val case {'remove' 'delete'} J = find(sum(I,2)==0); x = x(J,:); msg = 'Objects with missing values have been removed.'; case {'f-remove' 'f-delete'} J = find(sum(I,1)==0); x = x(:,J); msg = 'Features with missing values have been removed.'; case 'mean' for i=1:k J = ~I(:,i); if any(I(:,i)) %is there a missing value in this feature? if ~any(J) error('Missing value cannot be filled: all values are NaN.'); end mn = mean(x(J,i)); x(find(I(:,i)),i) = mn; end end msg = 'Missing values have been replaced by the feature mean.'; case 'c-mean' for j=1:c L = findnlab(x,j); for i=1:k J = ~I(L,i); if any(I(L,i)) %is there a missing value in this feature for this class? if ~any(J) error('Missing value cannot be filled: all values are NaN.'); end mn = mean(x(J,i)); x(find(I(:,i)),i) = mn; end end end msg = 'Missing values have been replaced by the class feature mean.'; otherwise if isstr(val) error('unknown option') end if ~isa(val,'double') error('Missing values can only be filled by scalars.'); end x(I) = val; msg = sprintf('Missing values have been replaced by %f.',val); end end end return
github
jacksky64/imageProcessing-master
isdataset.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isdataset.m
501
utf_8
0b61fa069741029a5c4bf06e4ba660c4
%ISDATASET Test whether the argument is a dataset % % N = ISDATASET(A); % % INPUT % A Input argument % % OUTPUT % N 1/0 if A is/isn't a dataset % % DESCRIPTION % The function ISDATASET test if A is a dataset object. % % SEE ALSO % ISMAPPING, ISDATAIM, ISFEATIM % $Id: isdataset.m,v 1.3 2007/03/22 08:54:59 duin Exp $ function n = isdataset(a) prtrace(mfilename); n = isa(a,'dataset') & ~isa(a,'datafile'); if (nargout == 0) & (n == 0) error([newline 'Dataset expected.']) end return;
github
jacksky64/imageProcessing-master
stumpc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/stumpc.m
14,270
utf_8
eafef64246953de2e60096c0899fd40e
%STUMPC Decision stump classifier % % W = STUMPC(A,CRIT,N) % % Computation of a decision tree classifier out of a dataset A using % a binary splitting criterion CRIT: % INFCRIT - information gain % MAXCRIT - purity (default) % FISHCRIT - Fisher criterion % Just N (default N=1) nodes are computed. % % see also DATASETS, MAPPINGS, TREEC, TREE_MAP % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: stumpc.m,v 1.2 2009/07/10 11:19:20 duin Exp $ function w = treec(a,crit,n) prtrace(mfilename); if nargin < 3 | isempty(n), n = 1; end if nargin < 2 | isempty(crit), crit = 'maxcrit'; end % When no input data is given, an empty tree is defined: if nargin == 0 | isempty(a) w = mapping(mfilename,{crit,n}); w = setname(w,'Decision Stump'); return end % Given some data, a tree can be trained islabtype(a,'crisp'); isvaldset(a,1,2); % at least 1 object per class, 2 classes % First get some useful parameters: [m,k,c] = getsize(a); nlab = getnlab(a); tree = maketree(+a,nlab,c,crit,n); % Store the results: w = mapping('tree_map','trained',{tree,1},getlablist(a),k,c); w = setname(w,'Decision Tree'); w = setcost(w,a); return %MAKETREE General tree building algorithm % % tree = maketree(A,nlab,c,crit,stop) % % Constructs a binary decision tree using the criterion function % specified in the string crit ('maxcrit', 'fishcrit' or 'infcrit' % (default)) for a set of objects A. stop is an optional argument % defining early stopping according to the Chi-squared test as % defined by Quinlan [1]. stop = 0 (default) gives a perfect tree % (no pruning) stop = 3 gives a pruned version stop = 10 a heavily % pruned version. % % Definition of the resulting tree: % % tree(n,1) - feature number to be used in node n % tree(n,2) - threshold t to be used % tree(n,3) - node to be processed if value <= t % tree(n,4) - node to be processed if value > t % tree(n,5:4+c) - aposteriori probabilities for all classes in % node n % % If tree(n,3) == 0, stop, class in tree(n,1) % % This is a low-level routine called by treec. % % See also infstop, infcrit, maxcrit, fishcrit and mapt. % Authors: Guido te Brake, TWI/SSOR, Delft University of Technology % R.P.W. Duin, TN/PH, Delft University of Technology % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function tree = maketree(a,nlab,c,crit,n) prtrace(mfilename); [m,k] = size(a); % Construct the tree: % When all objects have the same label, create an end-node: if all([nlab == nlab(1)]) % Avoid giving 0-1 probabilities, but 'regularize' them a bit using % a 'uniform' Bayesian prior: p = ones(1,c)/(m+c); p(nlab(1)) = (m+1)/(m+c); tree = [nlab(1),0,0,0,p]; else % now the tree is recursively constructed further: [f,j,t] = feval(crit,+a,nlab); % use desired split criterion p = sum(expandd(nlab),1); if length(p) < c, p = [p,zeros(1,c-length(p))]; end % When the stop criterion is not reached yet, we recursively split % further: if n >= 1 % Make the left branch: J = find(a(:,j) <= t); tl = maketree(+a(J,:),nlab(J),c,crit,n-1); % Make the right branch: K = find(a(:,j) > t); tr = maketree(+a(K,:),nlab(K),c,crit,n-1); % Fix the node labelings before the branches can be 'glued' % together to a big tree: [t1,t2] = size(tl); tl = tl + [zeros(t1,2) tl(:,[3 4])>0 zeros(t1,c)]; [t3,t4] = size(tr); tr = tr + (t1+1)*[zeros(t3,2) tr(:,[3 4])>0 zeros(t3,c)]; % Make the complete tree: the split-node and the branches: tree= [[j,t,2,t1+2,(p+1)/(m+c)]; tl; tr]; else % We reached the stop criterion, so make an end-node: [mt,cmax] = max(p); tree = [cmax,0,0,0,(p+1)/(m+c)]; end end return %MAXCRIT Maximum entropy criterion for best feature split. % % [f,j,t] = maxcrit(A,nlabels) % % Computes the value of the maximum purity f for all features over % the data set A given its numeric labels. j is the optimum feature, % t its threshold. This is a low level routine called for constructing % decision trees. % % [1] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, % Classification and regression trees, Wadsworth, California, 1984. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function [f,j,t] = maxcrit(a,nlab) prtrace(mfilename); [m,k] = size(a); c = max(nlab); % -variable T is an (2c)x k matrix containing: % minimum feature values class 1 % maximum feature values class 1 % minimum feature values class 2 % maximum feature values class 2 % etc. % -variable R (same size) contains: % fraction of objects which is < min. class 1. % fraction of objects which is > max. class 1. % fraction of objects which is < min. class 2. % fraction of objects which is > max. class 2. % etc. % These values are collected and computed in the next loop: T = zeros(2*c,k); R = zeros(2*c,k); for j = 1:c L = (nlab == j); if sum(L) == 0 T([2*j-1:2*j],:) = zeros(2,k); R([2*j-1:2*j],:) = zeros(2,k); else T(2*j-1,:) = min(a(L,:),[],1); R(2*j-1,:) = sum(a < ones(m,1)*T(2*j-1,:),1); T(2*j,:) = max(a(L,:),[],1); R(2*j,:) = sum(a > ones(m,1)*T(2*j,:),1); end end % From R the purity index for all features is computed: G = R .* (m-R); % and the best feature is found: [gmax,tmax] = max(G,[],1); [f,j] = max(gmax); Tmax = tmax(j); if Tmax ~= 2*floor(Tmax/2) t = (T(Tmax,j) + max(a(find(a(:,j) < T(Tmax,j)),j)))/2; else t = (T(Tmax,j) + min(a(find(a(:,j) > T(Tmax,j)),j)))/2; end return %INFCRIT The information gain and its the best feature split. % % [f,j,t] = infcrit(A,nlabels) % % Computes over all features the information gain f for its best % threshold from the dataset A and its numeric labels. For f=1: % perfect discrimination, f=0: complete mixture. j is the optimum % feature, t its threshold. This is a lowlevel routine called for % constructing decision trees. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function [g,j,t] = infcrit(a,nlab) prtrace(mfilename); [m,k] = size(a); c = max(nlab); mininfo = ones(k,2); % determine feature domains of interest [sn,ln] = min(a,[],1); [sx,lx] = max(a,[],1); JN = (nlab(:,ones(1,k)) == ones(m,1)*nlab(ln)') * realmax; JX = -(nlab(:,ones(1,k)) == ones(m,1)*nlab(lx)') * realmax; S = sort([sn; min(a+JN,[],1); max(a+JX,[],1); sx]); % S(2,:) to S(3,:) are interesting feature domains P = sort(a); Q = (P >= ones(m,1)*S(2,:)) & (P <= ones(m,1)*S(3,:)); % these are the feature values in those domains for f=1:k, % repeat for all features af = a(:,f); JQ = find(Q(:,f)); SET = P(JQ,f)'; if JQ(1) ~= 1 SET = [P(JQ(1)-1,f), SET]; end n = length(JQ); if JQ(n) ~= m SET = [SET, P(JQ(n)+1,f)]; end n = length(SET) -1; T = (SET(1:n) + SET(2:n+1))/2; % all possible thresholds L = zeros(c,n); R = L; % left and right node object counts per class for j = 1:c J = find(nlab==j); mj = length(J); if mj == 0 L(j,:) = realmin*ones(1,n); R(j,:) = L(j,:); else L(j,:) = sum(repmat(af(J),1,n) <= repmat(T,mj,1)) + realmin; R(j,:) = sum(repmat(af(J),1,n) > repmat(T,mj,1)) + realmin; end end infomeas = - (sum(L .* log10(L./(ones(c,1)*sum(L)))) ... + sum(R .* log10(R./(ones(c,1)*sum(R))))) ... ./ (log10(2)*(sum(L)+sum(R))); % criterion value for all thresholds [mininfo(f,1),j] = min(infomeas); % finds the best mininfo(f,2) = T(j); % and its threshold end g = 1-mininfo(:,1)'; [finfo,j] = min(mininfo(:,1)); % best over all features t = mininfo(j,2); % and its threshold return %FISHCRIT Fisher's Criterion and its best feature split % % [f,j,t] = fishcrit(A,nlabels) % % Computes the value of the Fisher's criterion f for all features % over the dataset A with given numeric labels. Two classes only. j % is the optimum feature, t its threshold. This is a lowlevel % routine called for constructing decision trees. % Copyright R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function [f,j,t] = fishcrit(a,nlab) prtrace(mfilename); [m,k] = size(a); c = max(nlab); if c > 2 error('Not more than 2 classes allowed for Fisher Criterion') end % Get the mean and variances of both the classes: J1 = find(nlab==1); J2 = find(nlab==2); u = (mean(a(J1,:),1) - mean(a(J2,:),1)).^2; s = std(a(J1,:),0,1).^2 + std(a(J2,:),0,1).^2 + realmin; % The Fisher ratio becomes: f = u ./ s; % Find then the best feature: [ff,j] = max(f); % Given the feature, compute the threshold: m1 = mean(a(J1,j),1); m2 = mean(a(J2,j),1); w1 = m1 - m2; w2 = (m1*m1-m2*m2)/2; if abs(w1) < eps % the means are equal, so the Fisher % criterion (should) become 0. Let us set the thresold % halfway the domain t = (max(a(J1,j),[],1) + minc(a(J2,j),[],1)) / 2; else t = w2/w1; end return %INFSTOP Quinlan's Chi-square test for early stopping % % crt = infstop(A,nlabels,j,t) % % Computes the Chi-square test described by Quinlan [1] to be used % in maketree for forward pruning (early stopping) using dataset A % and its numeric labels. j is the feature used for splitting and t % the threshold. % % [1] J.R. Quinlan, Simplifying Decision Trees, % Int. J. Man - Machine Studies, vol. 27, 1987, pp. 221-234. % % See maketree, treec, classt, prune % Guido te Brake, TWI/SSOR, TU Delft. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function crt = infstop(a,nlab,j,t) prtrace(mfilename); [m,k] = size(a); c = max(nlab); aj = a(:,j); ELAB = expandd(nlab); L = sum(ELAB(aj <= t,:),1) + 0.001; R = sum(ELAB(aj > t,:),1) + 0.001; LL = (L+R) * sum(L) / m; RR = (L+R) * sum(R) / m; crt = sum(((L-LL).^2)./LL + ((R-RR).^2)./RR); return %PRUNEP Pessimistic pruning of a decision tree % % tree = prunep(tree,a,nlab,num) % % Must be called by giving a tree and the training set a. num is the % starting node, if omitted pruning starts at the root. Pessimistic % pruning is defined by Quinlan. % % See also maketree, treec, mapt % Guido te Brake, TWI/SSOR, TU Delft. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function tree = prunep(tree,a,nlab,num) prtrace(mfilename); if nargin < 4, num = 1; end; [N,k] = size(a); c = size(tree,2)-4; if tree(num,3) == 0, return, end; w = mapping('treec','trained',{tree,num},[1:c]',k,c); ttt=tree_map(dataset(a,nlab),w); J = testc(ttt)*N; EA = J + nleaves(tree,num)./2; % expected number of errors in tree P = sum(expandd(nlab,c),1); % distribution of classes %disp([length(P) c]) [pm,cm] = max(P); % most frequent class E = N - pm; % errors if substituted by leave SD = sqrt((EA * (N - EA))/N); if (E + 0.5) < (EA + SD) % clean tree while removing nodes [mt,kt] = size(tree); nodes = zeros(mt,1); nodes(num) = 1; n = 0; while sum(nodes) > n; % find all nodes to be removed n = sum(nodes); J = find(tree(:,3)>0 & nodes==1); nodes(tree(J,3)) = ones(length(J),1); nodes(tree(J,4)) = ones(length(J),1); end tree(num,:) = [cm 0 0 0 P/N]; nodes(num) = 0; nc = cumsum(nodes); J = find(tree(:,3)>0);% update internal references tree(J,[3 4]) = tree(J,[3 4]) - reshape(nc(tree(J,[3 4])),length(J),2); tree = tree(~nodes,:);% remove obsolete nodes else K1 = find(a(:,tree(num,1)) <= tree(num,2)); K2 = find(a(:,tree(num,1)) > tree(num,2)); tree = prunep(tree,a(K1,:),nlab(K1),tree(num,3)); tree = prunep(tree,a(K2,:),nlab(K2),tree(num,4)); end return %PRUNET Prune tree by testset % % tree = prunet(tree,a) % % The test set a is used to prune a decision tree. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function tree = prunet(tree,a) prtrace(mfilename); [m,k] = size(a); [n,s] = size(tree); c = s-4; erre = zeros(1,n); deln = zeros(1,n); w = mapping('treec','trained',{tree,1},[1:c]',k,c); [f,lab,nn] = tree_map(a,w); % bug, this works only if a is dataset, labels ??? [fmax,cmax] = max(tree(:,[5:4+c]),[],2); nngood = nn([1:n]'+(cmax-1)*n); errn = sum(nn,2) - nngood;% errors in each node sd = 1; while sd > 0 erre = zeros(n,1); deln = zeros(1,n); endn = find(tree(:,3) == 0)'; % endnodes pendl = max(tree(:,3*ones(1,length(endn)))' == endn(ones(n,1),:)'); pendr = max(tree(:,4*ones(1,length(endn)))' == endn(ones(n,1),:)'); pend = find(pendl & pendr); % parents of two endnodes erre(pend) = errn(tree(pend,3)) + errn(tree(pend,4)); deln = pend(find(erre(pend) >= errn(pend))); % nodes to be leaved sd = length(deln); if sd > 0 tree(tree(deln,3),:) = -1*ones(sd,s); tree(tree(deln,4),:) = -1*ones(sd,s); tree(deln,[1,2,3,4]) = [cmax(deln),zeros(sd,3)]; end end return %NLEAVES Computes the number of leaves in a decision tree % % number = nleaves(tree,num) % % This procedure counts the number of leaves in a (sub)tree of the % tree by using num. If num is omitted, the root is taken (num = 1). % % This is a utility used by maketree. % Guido te Brake, TWI/SSOR, TU Delft % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function number = nleaves(tree,num) prtrace(mfilename); if nargin < 2, num = 1; end if tree(num,3) == 0 number = 1 ; else number = nleaves(tree,tree(num,3)) + nleaves(tree,tree(num,4)); end return
github
jacksky64/imageProcessing-master
plote.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/plote.m
8,258
utf_8
c431f890485b05d5b57ec1142bf67d65
%PLOTE Plot error curves % % H = PLOTE(E,LINEWIDTH,S,FONTSIZE,OPTIONS) % % INPUT % E Structure containing error curves (see e.g. CLEVAL) % LINEWIDTH Line width, < 5 (default 2) % S Plot strings % FONTSIZE Font size, >= 5 (default 16) % OPTIONS Character strings: % 'nolegend' suppresses the legend plot % 'errorbar' add errorbars to the plot % 'noapperror' suppresses the apparent error plot % % OUTPUT % H Array of graphics handles % % DESCRIPTION % Various evaluation routines like CLEVAL return an error curves packed in a % structure E. PLOTE uses the information stored in E to plot the curves. The % remaining parameters may be given in an arbitrary order. % % E may contain the following fields (E.ERROR is obligatory): % E.ERROR C x N matrix of error values for C methods at N points % (typically errors estimated on an independent test set) % E.XVALUES C x N matrix of measurement points; if 1 x N, it is used for % all C curves % E.TITLE the title of the plot % E.XLABEL the label for the x-axis % E.YLABEL the label for the y-axis % E.NAMES a string array of C names used for creating a LEGEND % E.PLOT the plot command in a string: 'plot', 'semilogx', 'semilogy' % or 'loglog' % E.STD C x N matrix with standard deviations of the mean error values % which are plotted if ERRBAR == 1 % Note that this is the st. dev. in the estimate of the mean % and not the std. dev. of the error itself. % E.APPERROR C x N matrix of error values for C methods at N points % (typically errors estimated on the training set) % E.APPSTD C x N matrix with standard deviations of the mean % APPERROR values which are plotted if ERRBAR == 1 % % These fields are automatically set by a series of commands like CLEVAL, % CLEVALF, ROC and REJECT. % % The legend generated by PLOTE can be removed by LEGEND OFF. A new legend % may be created by the LEGEND command using the handles stored in H. % % E may be a cell array of structures. These structures are combined % vertically, assuming multiple runs of the same method and % horizontally, assuming different methods. % % EXAMPLES % See PREX_CLEVAL % % SEE ALSO % CLEVAL, CLEVALF, ROC, REJECT % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: plote.m,v 1.5 2009/11/26 10:45:43 davidt Exp $ function handle = plote(varargin) prtrace(mfilename); % Set default parameter values. e = []; s = []; linewidth = 2; nolegend = 0; fontsize = 16; errbar = 0; noapperror = 0; ss = char('k-','r-','b-','m-','k--','r--','b--','m--'); ss = char(ss,'k-.','r-.','b-.','m-.','k:','r:','b:','m:'); ss_app = char('k--','r--','b--','m--','k:','r:','b:','m:'); ss_app = char(ss_app,'k--','r--','b--','m--','k-','r-','b-','m-'); % The input is so flexible, that we have to do a lot of work... for j = 1:nargin p = varargin{j}; if (isstruct(p)) | iscell(p) e = p; elseif (isstr(p)) & (strcmp(p,'errorbar') | strcmp(p,'ERRORBAR')) errbar = 1; elseif (isstr(p)) & (strcmp(p,'nolegend') | strcmp(p,'NOLEGEND')) nolegend = 1; elseif (isstr(p)) & (strcmp(p,'noapperror') | strcmp(p,'NOAPPERROR')) noapperror = 1; elseif (isstr(p)) ss = p; elseif (length(p) == 1) & (p < 5) linewidth = p; elseif (length(p) == 1) & (p >= 5) fontsize = p; end end if iscell(e) if min(size(e)) > 1 ee = cell(1,size(e,2)); for j=1:size(e,2) ee{j} = vertcomb(e(:,j)); end e = horzcomb(ee); elseif size(e,1) > 1 e = vertcomb(e); elseif size(e,2) > 1 e = horzcomb(e); else e = e{1}; end end % Handle multiple plots if length(e) > 1 names = []; hold_stat = ishold; h = []; ymax = 0; for j = 1:length(e) if errbar & isfield(e,'std') if noapperror hh = plote(e(j),linewidth,ss(j,:),'nolegend','errorbar','noapperror'); else hh = plote(e(j),linewidth,ss(j,:),'nolegend','errorbar'); end else if noapperror hh = plote(e(j),linewidth,ss(j,:),'nolegend','noapperror'); else hh = plote(e(j),linewidth,ss(j,:),'nolegend'); end end V = axis; ymax = max(ymax,V(4)); hold on if ~isfield(e(j),'names') e(j).names = ' '; end names = char(names,e(j).names); h = [h; hh]; end names(1,:) = []; V(4) = ymax; axis(V); if ~nolegend legend(h,names,0); end if ~hold_stat, hold off; end if nargout > 0, handle = h; end return end % Check if we have the required data and data fields. if (isempty(e)) error('Error structure not specified.') end if (~isfield(e,'error')) error('Input structure should contain the ''error''-field.'); end n = size(e.error,1); if (~isfield(e,'xvalues')) e.xvalues = [1:length(e.error)]; end if (size(e.xvalues,1) == 1) e.xvalues = repmat(e.xvalues,n,1); end if (isempty(s)) if n > size(ss,1) nn = ceil(n/size(ss,1)); ss = repmat(ss,nn,1); ss_app = repmat(ss_app,nn,1); end s = ss(1:n,:); s_app = ss_app(1:n,:); end if (size(s,1) == 1) & (n > 1) s = repmat(s,n,1); s_app = repmat(s_app,n,1); end if (size(s,1) < n) error('Insufficient number of plot strings.') end if (~isfield(e,'plot')) e.plot = 'plot'; end if errbar & isfield(e,'std') ploterrorbar = 1; else ploterrorbar = 0; end plotapperror = (~noapperror && isfield(e,'apperror')); % We can now start making the plot. if ~ishold clf; end h = []; ha = []; % handles for true and apparent error for j = 1:n L = find(e.error(j,:) ~= NaN); if ploterrorbar hh = feval('errorbar',e.xvalues(j,L),e.error(j,L),e.std(j,L),deblank(s(j,:))); else hh = feval(e.plot,e.xvalues(j,L),e.error(j,L),deblank(s(j,:))); end set(hh,'linewidth',linewidth); hold on; h = [h hh(end)]; % and the apparent error if plotapperror hh = errorbar(e.xvalues(j,L),e.apperror(j,L),e.appstd(j,L),... deblank(s_app(j,:))); ha = [ha hh(end)]; end end % That was basically it, now we only have to beautify it. errmax = max(e.error(:)); set(gca,'fontsize',fontsize); if (isfield(e,'xlabel')), xlabel(e.xlabel); end if (isfield(e,'ylabel')), ylabel(e.ylabel); end if (isfield(e,'title')), title(e.title); end if (isfield(e,'names')) & (~isempty(e.names) & (~nolegend)) if plotapperror % take care for the legend in this case nrn = size(e.names,1); names = {}; for j=1:nrn names{j} = ['\epsilon ' e.names(j,:)]; %names{j} = ['true error ' e.names(j,:)]; end for j=1:nrn names{nrn+j} = ['\epsilon_A ' e.names(j,:)]; %names{nrn+j} = ['apparent error ' e.names(j,:)]; end legend([h ha],strvcat(names),0); else legend(h,e.names,0); end end % A lot of work to make the scaling of the y-axis nice. if (errmax > 0.6) errmax = ceil(errmax*5)/5; yticks = [0:0.2:errmax]; elseif (errmax > 0.3) errmax = ceil(errmax*10)/10; yticks = [0:0.1:errmax]; elseif (errmax > 0.2) errmax = ceil(errmax*20)/20; yticks = [0:0.05:errmax]; elseif (errmax > 0.1) errmax = ceil(errmax*30)/30; yticks = [0:0.03:errmax]; elseif (errmax > 0.06) errmax = ceil(errmax*50)/50; yticks = [0:0.02:errmax]; elseif (errmax > 0.03) errmax = ceil(errmax*100)/100; yticks = [0:0.01:errmax]; else yticks = [0:errmax/3:errmax]; end % atttempt to beautify plot if (e.xvalues(end) >= 2) %DXD %axis([e.xvalues(1)-1,e.xvalues(end)+1,0,errmax]); axis([min(min(e.xvalues)),max(max(e.xvalues)),0,errmax]); elseif (e.xvalues(1) == 0) axis([-0.003,e.xvalues(end),0,errmax]); end set(gca,'ytick',yticks); hold off; if (nargout > 0), handle = h; end; return function e = vertcomb(e) % combine cell array e1 = e{1}; for j=2:length(e); e2 = e{j}; v = e1.n*(e1.n*(e1.std.^2) + e1.error.^2); v = v + e2.n*(e2.n*(e2.std.^2) + e2.error.^2); n = e1.n + e2.n; e1.error = (e1.n*e1.error + e2.n*e2.error)/n; e1.std = sqrt((v/n - e1.error.^2)/n); e1.n = n; end e = e1; return function ee = horzcomb(e) % combine cell array for j=1:length(e) ee(j) = e{j}; end
github
jacksky64/imageProcessing-master
data2im.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/data2im.m
3,061
utf_8
e249f7bb34cbd866b2b0767974b132cc
%DATA2IM Convert PRTools dataset or datafile to image % % IM = DATA2IM(A,J) % IM = DATA2IM(A(J,:)) % % INPUT % A Dataset or datafile containing images % J Desired images % % OUTPUT % IM If A is dataset, IM is a X*Y*N*K matrix with K images. % K is the number of images (length(J)) % N is the number of bands per image. % N = 3 for RGB images, N = 1 for gray value images. % % If A is a datafile, IM is a cell array of K images. % % DESCRIPTION % An image, or a set of images stored in the objects or features of the % dataset A are retrieved and returned as a 3D matrix IM. In case A is a % datafile the images are stored in a cell array, except when a single % image is requested. % % SEE ALSO % DATASETS, IM2OBJ, IM2FEAT % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: data2im.m,v 1.13 2010/02/03 13:17:17 duin Exp $ function im = data2im(a,J) prtrace(mfilename); if nargin > 1, a = a(J,:); end if isdatafile(a) m = size(a,1); im = cell(1,m); s = sprintf('Unpacking %i images: ',m); prwaitbar(m,s); for j=1:m prwaitbar(m,j,[s int2str(j)]); %im{j} = readdatafile(a,1,0); im{j} = feval(mfilename,dataset(a(j,:))); end prwaitbar(0); if m==1 im = im{1}; end return end %a = testdatasize(a); % Oeps, datafiles are first converted to datasets % and then to images. This can be done better! %isdataim(a); % Assert that A contains image(s). data = +a; % Extract data from dataset, for computational advantage. [m,k] = size(a); [objsize,featsize] = get(a,'objsize','featsize'); % Reshape data into output array. if (isfeatim(a)) % A contains K images stored as features (each object is a pixel). if length(objsize) == 1 im = zeros(1,objsize(1),k); for j = 1:k im(1,:,j) = reshape(data(:,j),1,objsize(1)); end elseif length(objsize) == 2 im = zeros(objsize(1),objsize(2),k); for j = 1:k im(:,:,j) = reshape(data(:,j),objsize(1),objsize(2)); end elseif length(objsize) == 3 im = zeros(objsize(1),objsize(2),k,objsize(3)); for j = 1:k im(:,:,j,:) = reshape(data(:,j),objsize(1),objsize(2),objsize(3)); end else error('Unable to handle these images') end else % A contains M images stored as objects (each feature is a pixel). if length(featsize) == 1 im = zeros(1,featsize(1),1,m); for j = 1:m im(1,:,1,j) = reshape(data(j,:),1,featsize(1)); end elseif length(featsize) == 2 im = zeros(featsize(1),featsize(2),1,m); for j = 1:m im(:,:,1,j) = reshape(data(j,:),featsize(1),featsize(2)); end elseif length(featsize) == 3 im = zeros(featsize(1),featsize(2),featsize(3),m); for j = 1:m im(:,:,:,j) = reshape(data(j,:),featsize(1),featsize(2),featsize(3)); end else error('Unable to handle these images') end %im = squeeze(im); % some routines, like filtim, fail by squeezing end return
github
jacksky64/imageProcessing-master
lkc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/lkc.m
3,252
utf_8
5e29d726e68a367e8bc996a32c8cc158
%LKC Linear kernel classifier % % W = LKC(A,KERNEL) % % INPUT % A Dataset % KERNEL Mapping to compute kernel by A*MAP(A,KERNEL) % or string to compute kernel by FEVAL(KERNEL,A,A) % or cell array with strings and parameters to compute kernel by % FEVAL(KERNEL{1},A,A,KERNEL{2:END}) % Default: linear kernel (PROXM([],'P',1)) % % OUTPUT % W Mapping: Support Vector Classifier % % DESCRIPTION % This is a fall-back routine for other kernel procedures like SVC, RBSVC % and LIBSVC. If they fail due to optimization problems they may fall back % to this routine which computes a linear classifier in kernelspace using % they pseudo-inverse of the kernel. % % The kernel may be supplied in KERNEL by % - an untrained mapping, e.g. a call to PROXM like W = LIBSVC(A,PROXM([],'R',1)) % - a string with the name of the routine to compute the kernel from A % - a cell-array with this name and additional parameters. % This will be used for the evaluation of a dataset B by B*W or MAP(B,W) as % well. % % If KERNEL = 0 it is assumed that A is already the kernel matrix (square). % In this also a kernel matrix should be supplied at evaluation by B*W or % MAP(B,W). % % SEE ALSO % MAPPINGS, DATASETS, SVC, PROXM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function W = lkc(a,kernel) prtrace(mfilename); if nargin < 2 | isempty(kernel) kernel = proxm([],'p',1); end if nargin < 1 | isempty(a) W = mapping(mfilename,{kernel}); W = setname(W,'LKC Classifier'); return; end if (~ismapping(kernel) | isuntrained(kernel)) % training islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a,'objects'); [m,k,c] = getsize(a); nlab = getnlab(a); K = compute_kernel(a,a,kernel); K = min(K,K'); % make sure kernel is symmetric targets = gettargets(setlabtype(a,'targets')); v = prpinv([K ones(m,1); ones(1,m) 0])*[targets; zeros(1,c)]; lablist = getlablist(a); W = mapping(mfilename,'trained',{v,a,kernel},lablist,size(a,2),c); W = setname(W,'LKC Classifier'); W = cnormc(W,a); W = setcost(W,a); else % execution w = kernel; v = getdata(w,1); % weights s = getdata(w,2); % trainset or empty kernel = getdata(w,3); % kernelfunction or 0 m = size(a,1); K = compute_kernel(a,s,kernel); % kernel testset % Data is mapped by the kernel, now we just have a linear % classifier w*x+b: d = [K ones(m,1)]*v; if size(d,2) == 1, d = [d -d]; end W = setdat(a,d,w); end return; function K = compute_kernel(a,s,kernel) % compute a kernel matrix for the objects a w.r.t. the support objects s % given a kernel description if isstr(kernel) % routine supplied to compute kernel K = feval(kernel,a,s); elseif iscell(kernel) K = feval(kernel{1},a,s,kernel{2:end}); elseif ismapping(kernel) K = a*map(s,kernel); elseif kernel == 0 % we have already a kernel K = a; else error('Do not know how to compute kernel matrix') end K = +K; return
github
jacksky64/imageProcessing-master
feateval.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/feateval.m
5,360
utf_8
574c3145ddb5fb970c464b329f8d8a60
%FEATEVAL Evaluation of feature set for classification % % J = FEATEVAL(A,CRIT,T) % J = FEATEVAL(A,CRIT,N) % % INPUT % A input dataset % CRIT string name of a method or untrained mapping % T validation dataset (optional) % N number of cross-validations (optional) % % OUTPUT % J scalar criterion value % % DESCRIPTION % Evaluation of features by the criterion CRIT, using objects in the % dataset A. The larger J, the better. Resulting J-values are % incomparable over the various methods. % The following methods are supported: % % crit='in-in' : inter-intra distance. % crit='maha-s': sum of estimated Mahalanobis distances. % crit='maha-m': minimum of estimated Mahalanobis distances. % crit='eucl-s': sum of squared Euclidean distances. % crit='eucl-m': minimum of squared Euclidean distances. % crit='NN' : 1-Nearest Neighbour leave-one-out % classification performance (default). % (performance = 1 - error). % crit='mad' : mean absolute deviation (only for regression!) % crit='mse' : mean squared error (only for regression!) % % For classification problems, CRIT can also be any untrained % classifier, e.g. LDC([],1e-6,1e-6). Then the classification error is % used for a performance estimate. If supplied, the dataset T is used % for obtaining an unbiased estimate of the performance of classifiers % trained with the dataset A. If a number of cross-validations N is % supplied, the routine is run for N times with different training and % test sets generated from A by cross-validation. Results are averaged. % If T nor N are given, the apparent performance on A is used. % % SEE ALSO % DATASETS, FEATSELO, FEATSELB, FEATSELF, FEATSELP, FEATSELM, FEATRANK % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % REVISIONS % DXD1: David Tax, 08-05-2003 % I added the inter/intra distance criterion. % DXD2: David Tax, 10-06-2011 % I added the MAD and MSE criteria for regression. % $Id: feateval.m,v 1.11 2010/02/08 15:31:48 duin Exp $ function J = feateval(a,crit,t) prtrace(mfilename); [ma,k,c] = getsize(a); if nargin < 2 crit = 'NN'; end if nargin < 3 t =[]; prwarning(4,'Where needed, input dataset is used for validation') end if is_scalar(t) & ~isdataset(t) % cross-validation desired, t rotations % Why is it programmed like this ????? % % K = crossval(a,nmc,t,0); % trick to get rotation set from crossval % J = 0; % JALL = [1:size(a,1)]; % if ~ismapping(crit) | ~isuntrained(crit) % error('Cross-validation only possible with untrained classifiers') % end % for j=1:t % JIN = JALL; % JOUT = find(K==j); % JIN(JOUT) = []; % JOUT = JALL(JOUT); % train = a(JIN,:); % test = a(JOUT,:); % J = J + feval(mfilename,train,crit,test); % end % J = J/t; % return % end % % Let us do it simpel: if ~ismapping(crit) | ~isuntrained(crit) error('Cross-validation only possible with untrained classifiers') end J = 1-crossval(a,crit,t); return end % islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a); iscomdset(a,t); if isstr(crit) %DXD1 if strcmp(crit,'in-in') % inter/intra distances islabtype(a,'crisp','soft'); if isempty(t) [U,G] = meancov(a); else [U,G] = meancov(t); end S_b = prcov(+U); % between scatter prior = getprior(a); S_w = reshape(sum(reshape(G,k*k,c)*prior',2),k,k); % within scatter J = trace(prinv(S_w)*S_b); elseif strcmp(crit,'maha-s') | strcmp(crit,'maha-m') % Mahalanobis distances islabtype(a,'crisp','soft'); if isempty(t) D = distmaha(a); else [U,G] = meancov(a); D = distmaha(t,U,G); D = meancov(D); end if strcmp(crit,'maha-m') D = D + realmax*eye(c); J = min(min(D)); else J = sum(sum(D))/2; end elseif strcmp(crit,'eucl-s') | strcmp(crit,'eucl-m') % Euclidean distances islabtype(a,'crisp','soft'); U = meancov(a); if isempty(t) D = distm(U); else D = distm(t,U); D = meancov(D); end if strcmp(crit,'eucl-m') D = D + realmax*eye(c); J = min(min(D)); else J = sum(sum(D))/2; end elseif strcmp(crit,'NN') % 1-NN performance islabtype(a,'crisp','soft'); if isempty(t) J = 1 - testk(a,1); else J = 1 - testk(a,1,t); end elseif strcmp(crit,'kcentres') % data radius, unsupervised % assumes disrep, so experimental J = max(min(+a,[],2)); if J == 0, J = inf; else J = 1/J; end elseif strcmp(crit,'representation_error') % also unsupervised J = mean(min(+a,[],2)); if J == 0, J = inf; else J = 1/J; end elseif strcmp(crit,'mad') % Mean Absolute Deviation for regression J = 1-testr(a*linearr(a,0.001,1),'mad'); elseif strcmp(crit,'mse') % Mean Squared Error for regression J = 1-testr(a*linearr(a,0.001,1),'mse'); else error('Criterion undefined'); end else ismapping(crit); if isuntrained(crit) if isempty(t) J = 1 - (a * (a * crit) * testc); else J = 1 - (t * (a * crit) * testc); end elseif isfixed(crit) J = a * crit; else error('Criterion should be defined by an untrained or fixed mapping') end end return
github
jacksky64/imageProcessing-master
dcsc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/dcsc.m
7,568
utf_8
e21c176dfd20be277f7484f749f2319b
% DCSC Dynamic Classifier Selection Combiner % % V = DCSC(A,W,K,TYPE) % V = A*(W*DCSC([],K,TYPE)) % D = B*V % % INPUT % A Dataset used for training base classifiers as well as combiner % B Dataset used for testing (executing) the combiner % W Set of trained or untrained base classifiers % K Integer, number of neighbors % TYPE 'soft' (default) or 'crisp' % % OUTPUT % V Trained Dynamic Classifier Selection % D Dataset with prob. products (over base classifiers) per class % % DESCRIPTION % This dynamic classifier selection takes for every object to be % classified the K nearest neighbors of an evaluation set (training set) A % and determines which classifier performs best over this set of objects. % If the base classifiers (STACKED or PARALLEL) are untrained, A is used to % train them as well. % % The selection of the best classifier can be made in a soft or in a crisp % way. If TYPE is 'soft' (default) classifier confidences are averaged (see % CLASSC), otherwise the best classifier is selected by voting. % % REFERENCE % G. Giacinto and F. Roli, Methods for Dynamic Classifier Selection % 10th Int. Conf. on Image Anal. and Proc., Venice, Italy (1999), 659-664. % % SEE ALSO % DATASETS, MAPPINGS, STACKED, NAIVEBC, CLASSC, TESTD, LABELD % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function OUT = dcsc(par1,par2,par3,par4) prtrace(mfilename); name = 'Dynamic Classifier Selection'; DefaultNumNeigh = 20; DefaultType = 'soft'; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Empty Call DCSC, DCSC([],K,TYPE) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin < 1 | isempty(par1) if nargin < 3 | isempty(par3), par3 = DefaultType; end if nargin < 2 | isempty(par2), par2 = DefaultNumNeigh; end % If there are no inputs, return an untrained mapping. % (PRTools transfers the latter into the first) OUT = mapping(mfilename,'combiner',{par2,par3}); OUT = setname(OUT,name); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Storing Base Classifiers: W*DCSC, DCSC(W,K,TYPE) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif ismapping(par1) if nargin < 3 | isempty(par3), par3 = DefaultType; end if nargin < 2 | isempty(par2), par2 = DefaultNumNeigh; end % call like OUT = DCSC(W,k) or OUT = W*DCSC([],k) % store trained or untrained base classifiers, % ready for later training of the combiner BaseClassf = par1; if ~isparallel(BaseClassf) & ~isstacked(BaseClassf) error('Parallel or stacked set of base classifiers expected'); end if ~(isa(par2,'double') & length(par2)==1 & isint(par2)) error('Number of neighbors should be integer scalar') end OUT = mapping(mfilename,'untrained',{BaseClassf,par2,par3}); OUT = setname(OUT,name); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Training Combiner (and base classifiers if needed): % A*(W*DCSC), A*(W*DCSC([],K,TYPE)), DCSC(A,W,K,TYPE) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif isdataset(par1) & ismapping(par2) & ... (isuntrained(par2) | (istrained(par2) & (isstacked(par2) | isparallel(par2)))) % call like OUT = DCSC(TrainSet,W,k,type) or TrainSet*(W*DCSC([],k,type)) % (PRTools transfers the latter into the first) % W is a set of trained or untrained set classifiers. if nargin < 4 | isempty(par4), par4 = DefaultType; end if nargin < 3 | isempty(par3), par3 = DefaultNumNeigh; end TrainSet = par1; BaseClassf = par2; islabtype(TrainSet,'crisp'); % allow crisp labels only isvaldfile(TrainSet,1,2); % at least one object per class, 2 classes TrainSet = setprior(TrainSet,getprior(TrainSet,0)); % avoid many warnings if ~(isstacked(BaseClassf) | isparallel(BaseClassf)) if iscombiner(BaseClassf) error('No base classifiers found') end Data = getdata(BaseClassf); BaseClassf = Data.BaseClassf; % base classifiers were already stored end if isuntrained(BaseClassf) % base classifiers untrained, so train them! BaseClassf = TrainSet*BaseClassf; n = length(getdata(BaseClassf)); else % base classifiers are trained, just check label lists BaseClassifiers = getdata(BaseClassf); n = length(BaseClassifiers); for j=1:n if ~isequal(getlabels(BaseClassifiers{j}),getlablist(TrainSet)) error('Training set and base classifiers should deal with same labels') end end end Data.BaseClassf = BaseClassf; if nargin > 2 % overrules previously defined k (NumNeigh) Data.NumNeigh = par3; end if nargin > 3 % overrules previously defined type if strcmp(par4,'soft') Data.SoftVote = 1; else Data.SoftVote = 0; end end % Let us determine for every object in the trainingset how good it is % classified by every base classifier [m,p,c] = getsize(TrainSet); %n = size(BaseClassf,2)/c; % nr. of base classifiers ClassTrain1 = reshape(+(TrainSet*BaseClassf),m,c,n); ClassTrain2 = zeros(m,n); for j=1:n ct = ClassTrain1(:,:,j)*normm; ct = ct(sub2ind([m,c],[1:m]',[getnlab(TrainSet)])); ClassTrain2(:,j) = ct; end if ~Data.SoftVote % find crisp outcomes [cmax,L] = max(ClassTrain2,[],2); ClassTrain2 = zeros(m,n); ClassTrain2(sub2ind([m,n],[1:m]',L)) = ones(length(L),1); end Data.ClassTrain = ClassTrain2; Data.TrainSet = TrainSet; OUT = mapping(mfilename,'trained',Data,getlablist(TrainSet),size(TrainSet,2),getsize(TrainSet,3)); OUT = setname(OUT,name); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Evaluation of the trained combiner V: B*V, DCSC(B,V,K) % TYPE cannot be changed anymore % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% elseif isdataset(par1) & ismapping(par2) & istrained(par2) if nargin < 3 | isempty(par3), par3 = DefaultNumNeigh; end TestSet = par1; BaseClassf = getdata(par2,'BaseClassf'); TrainSet = getdata(par2,'TrainSet'); [m,p,c] = getsize(TrainSet); n = size(BaseClassf,2)/c; % nr. of base classifiers if nargin > 2 k = par3; else k = getdata(par2,'NumNeigh'); end D = distm(TestSet,TrainSet); % disputable procedure for parallel base classifiers [dd,J] = sort(+D,2); % J stores the numeric labels of the nearest training objects ClassPerf = zeros(size(TestSet,1),n); % base classifier performances per testobject TestSize = size(TestSet,1); N = [1:TestSize]; kk = k; ClassTrain = getdata(par2,'ClassTrain'); while ~isempty(N) & kk > 0 for j=1:n % find for every testobject and for all classifiers the mean % performance (i.e. the mean of the correct class assignments) over % its neighborhood ClassPerf(:,j) = mean(reshape(ClassTrain(J(:,1:kk),j),TestSize,kk),2); end [cc,L(N,:)] = sort(-ClassPerf(N,:),2); NN = find(cc(:,1) == cc(:,2)); % solve ties N = N(NN); % select objects that suffer from ties kk = kk-1; % try once more with smaller set of neighbors end U = getdata(BaseClassf); d = zeros(TestSize,c); feats = 0; % counter to find feature numbers for parallel classifiers for j=1:n featsize = size(U{j},1); Lj = find(L(:,1)==j); if ~isempty(Lj) if isparallel(BaseClassf) % retrieve features for parallel classifiers d(Lj,:) = +(TestSet(Lj,feats+1:feats+featsize)*U{j}); else d(Lj,:) = +(TestSet(Lj,:)*U{j}); end end feats = feats+featsize; end OUT = setdat(TestSet,d,par2); else error('Illegal input'); end
github
jacksky64/imageProcessing-master
gendatm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatm.m
1,444
utf_8
052286de99e508d15b878b8079f7d6c7
%GENDATM Generation of multi-class 2-D data % % A = GENDATM(N) % % INPUT % N Vector of class sizes (default: 20) % % OUTPUT % A Dataset % % DESCRIPTION % Generation of N samples in 8 classes of 2 dimensionally distributed data % vectors. Classes have equal prior probabilities. If N is a vector of % sizes, exactly N(I) objects are generated for class I, I = 1..8. % % SEE ALSO % DATASETS, PRDATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: gendatm.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function a = gendatm(n) prtrace(mfilename); if (nargin == 0) prwarning(3,'number of samples to generate not specified, assuming 20'); n = repmat(20,1,8); end; % Set equal priors and generate a class distribution according to it. p = repmat(1/8,1,8); n = genclass(n,p); % Generate 8 classes... a1 = +gendath(n(1:2)); % ...first 2 classes: Highleyman data. a2 = +gendatc(n(3:4))./5; % ...next 2 classes : spherical classes. a3 = +gendatb(n(5:6))./5; % ...next 2 classes : banana data. a4 = +gendatl(n(7:8))./5; % ...next 2 classes : Lithuanian data. % Glue classes together with some proper offsets. a = [a1; a2+5; a3+repmat([5,0],n(5)+n(6),1); a4+repmat([0 5],n(7)+n(8),1)]; lab = genlab(n,['a';'b';'c';'d';'e';'f';'g';'h']); a = dataset(a,lab,'name','Multi-Class Problem'); return
github
jacksky64/imageProcessing-master
crossval.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/crossval.m
8,860
utf_8
0fd850193167e8858f4201c769c67060
%CROSSVAL Error/performance estimation by cross validation (rotation) % % [ERR,CERR,NLAB_OUT] = CROSSVAL(A,CLASSF,NFOLDS,1,TESTFUN) % [ERR,STDS] = CROSSVAL(A,CLASSF,NFOLDS,NREP,TESTFUN) % [ERR,CERR,NLAB_OUT] = CROSSVAL(A,CLASSF,NFOLDS,'DPS',TESTFUN) % R = CROSSVAL(A,[],NFOLDS,0) % % INPUT % A Input dataset % CLASSF The untrained classifier to be tested. % NFOLDS Number of folds % (default: number of samples: leave-one-out) % NREP Number of repetitions (default: 1) % TESTFUN Mapping,evaluation function (default classification error) % % OUTPUT % ERR Average test error or performance weighted by class priors. % CERR Unweighted test errors or performances per class % NLAB_OUT Assigned numeric labels % STDS Standard deviation over the repetitions. % R Index array with rotation set % % DESCRIPTION % Cross validation estimation of the error or performance (defined by TESTFUN) % of the untrained classifier CLASSF using the dataset A. The set is randomly % permutated and divided in NFOLDS (almost) equally sized parts, using a % stratified procedure. The classifier is trained on NFOLDS-1 parts and the % remaining part is used for testing. This is rotated over all parts. ERR % is % their weighted avarage over the class priors. CERR are the class error % frequencies. The inputs A and/or CLASSF may be cell arrays of datasets and % classifiers. In that case ERR is an array with on position ERR(i,j) the % error or performance of classifier j for dataset i. In this mode CERR and % NLAB_OUT are returned in cell arrays. % % For NREP > 1 the mean error(s) over the repetitions is returned in ERR % and the standard deviations in the observed errors in STDS. % % If NREP == 'DPS', crossvalidation is done by density preserving data % splitting (DPS). In this case NFOLD should be a power of 2. % % In case NREP == 0 an index array is returned pointing to a fold for every % object. No training or testing is done. This is useful for handling % training and testing outside CROSSVAL. % % REFERENCES % 1. R. Kohavi: A Study of Cross-Validation and Bootstrap for Accuracy % Estimation and Model Selection. IJCAI 1995: 1137-1145. % 2. H. Larochelle and Y. Bengio. Classification using Discriminative Restricted % Boltzmann Machines. Proceedings of the 25th International Conference on % Machine Learning (ICML), pages 536-543, 2008. % % SEE ALSO % DATASETS, MAPPINGS, DPS, CLEVAL, TESTC % Copyright: D.M.J. Tax, R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: crossval.m,v 1.16 2010/06/25 07:55:34 duin Exp $ function [err,cerr,nlabout,tclassf,tress] = crossval(data,classf,n,nrep,testf,fid) prtrace(mfilename); if nargin < 6, fid = []; end if nargin < 5, testf = []; end if nargin < 4, nrep = []; end if nargin < 3, n = []; end if ~ismapping(testf) & isempty(fid) % correct for old call without testf fid = testf; testf = []; end if iscell(data) % generate prior warnings now for j=1:length(data) data{j} = setprior(data{j},getprior(data{j})); end else data = setprior(data,getprior(data)); end warnlevel = prwarning; prwarning(0); % datasets or classifiers are cell arrays if iscell(classf) | iscell(data) seed = rand('state'); if ~iscell(classf), classf = {classf}; end if ~iscell(data), data = {data}; end if isdataset(classf{1}) & ismapping(data{1}) % correct for old order dd = data; data = classf; classf = dd; end numc = length(classf); numd = length(data); cerr = cell(numd,numc); if nargout > 3 if isempty(nrep) tclassf=cell(n,1,numc,numd); tress =cell(n,1,numc,numd); else tclassf=cell(n,nrep,numc,numd); tress =cell(n,nrep,numc,numd); end end nlab_out = cell(numd,numc); s1 = sprintf('crossval: %i classifiers: ',numc); prwaitbar(numc,s1); e = zeros(numd,numc); for jc = 1:numc % Run over a set of classifiers %disp(['classifier ' num2str(jc)]) prwaitbar(numc,jc,[s1 getname(classf{jc})]); s2 = sprintf('crossval: %i datasets: ',numd); prwaitbar(numd,s2); for jd = 1:numd % Run over a set of datasets prwaitbar(numd,jd,[s2 getname(data{jd})]); rand('state',seed); if nargout > 3 % store resulting classifiers [ee,cc,nn,tclassf(:,:,jc,jd),tress(:,:,jc,jd)] = feval(mfilename,data{jd},classf{jc},n,nrep,testf); else [ee,cc,nn] = feval(mfilename,data{jd},classf{jc},n,nrep,testf); end e(jd,jc) = ee; cerr(jd,jc) = {cc}; nlabout(jd,jc) = {nn}; end prwaitbar(0); end prwaitbar(0); if nrep > 1, cerr = cell2mat(cerr); nlabout = NaN; end if nargout == 0 fprintf('\n %i-fold cross validation result for',n); disperror(data,classf,e); end if nargout > 0, err = e; end else % single dataset, single classifier data = setprior(data,getprior(data)); % just to generate warning when needed if isempty(nrep), nrep = 1; end if isstr(nrep) if ~islabtype(data,'crisp') error('Density preserving splitting only upported for crisp labeled datasets') end if strcmp(lower(nrep),'dps') proc = 'dps'; nrep = 1; else error('Sampling procedure not found') end elseif islabtype(data,'crisp') proc = 'stratified'; else proc = 'straight'; end if nrep > 1 s3 = sprintf('crossval: %i repetitions: ',nrep); prwaitbar(nrep,s3); ee = zeros(1,nrep); for j=1:nrep prwaitbar(nrep,j,[s3 int2str(j)]); if nargout > 3 [ee(j),ss,nlabout,tclassf(:,j,1,1),tress(:,j,1,1)] = feval(mfilename,data,classf,n,1,testf); else [ee(j),ss,nlabout] = feval(mfilename,data,classf,n,1,testf); end end prwaitbar(0); err = mean(ee); cerr = std(ee); nlabout = NaN; prwarning(warnlevel); return end if isdataset(classf) & ismapping(data) % correct for old order dd = data; data = classf; classf = dd; end isdataset(data); if nrep > 0, ismapping(classf); end [m,k,c] = getsize(data); lab = getlab(data); if isempty(n), n = m; end if n == m & ~isempty(testf) error('No external error routine allowed in case of leave-one-out cross validation') end if n > m warning('Number of folds too large: reset to leave-one-out') n = m; elseif n <= 1 error('Wrong size for number of cross-validation batches') end if (nrep > 0 & ~isuntrained(classf)) error('Classifier should be untrained') end J = randperm(m); N = classsizes(data); % attempt to find an more equal distribution over the classes if strcmp(proc,'stratified') if all(N >= n) & (c>1) K = zeros(1,m); for i = 1:length(N) L = findnlab(data(J,:),i); M = mod(0:N(i)-1,n)+1; K(L) = M; end else K = mod(1:m,n)+1; end elseif strcmp(proc,'dps') J = [1:m]; ndps = floor(log2(n)); if n~=2^ndps error('Number of folds should be power of 2') end K = dps(data,ndps); else K = mod(1:m,n)+1; end nlabout = zeros(m,1); if nrep == 0 % trick to return rotation set err = zeros(1,m); err(J) = K; prwarning(warnlevel); return end f = zeros(n,1); tress = zeros(size(data,1),getsize(data,3)); s4 = sprintf('crossval, %i-folds: ',n); prwaitbar(n,s4); for i = 1:n prwaitbar(n,i,[s4 int2str(i)]); %disp(['fold ',num2str(i)]); OUT = find(K==i); JOUT=J(OUT); JIN = J; JIN(OUT) = []; train_data = data(JIN,:); %train_data = setprior(train_data,getprior(train_data)); w = train_data*classf; % training % testing if nargout > 3 tclassf(i,1,1,1) = {w}; end testres = data(JOUT,:)*w; if nargout > 4 tress(JOUT,:) = testres; end if ~isempty(testf) f(i) = testres*testf; end testout = testres*maxc; [mx,nlabout(JOUT)] = max(+testout,[],2); % nlabout contains class assignments end prwaitbar(0); %correct for different order of lablist and labels assigned by %classifier. Assume this is constant over folds. if (c>1) % we are dealing with a classifier nlist = renumlab(getfeatlab(testout),getlablist(data)); nlabout = nlist(nlabout); if isempty(testf) f = zeros(1,c); for j=1:c J = findnlab(data,j); f(j) = sum(nlabout(J)~=j)/length(J); end e = f*getprior(data,0)'; else e = mean(f); % f already weighted by class priors inside testf end else % we are dealing with a regression problem e = mean(f); end if nargout > 0 err = e; if isempty(testf) cerr = f; else cerr = []; nlabout = []; end else disp([num2str(n) '-fold cross validation error on ' num2str(size(data,1)) ' objects: ' num2str(e)]) end end prwarning(warnlevel); return
github
jacksky64/imageProcessing-master
featsetc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featsetc.m
323
utf_8
af3d4cb5cf54ec2cf01ef80386e579cc
%FEATSETC Set classifier % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [out1,out2] = featsetc(a,objclassf,fsetindex,fsetcombc,fsetclassf,fsetlab) error('featsetc has been replaced by bagc')
github
jacksky64/imageProcessing-master
baggingc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/baggingc.m
2,478
utf_8
e1527f453891053e0d7cc405f8973486
%BAGGINGC Bootstrapping and aggregation of classifiers % % W = BAGGINGC (A,CLASSF,N,ACLASSF,T) % % INPUT % A Training dataset. % CLASSF The base classifier (default: nmc) % N Number of base classifiers to train (default: 100) % ACLASSF Aggregating classifier (default: meanc), [] for no aggregation. % T Tuning set on which ACLASSF is trained (default: [], meaning use A) % % OUTPUT % W A combined classifier (if ACLASSF was given) or a stacked % classifier (if ACLASSF was []). % % DESCRIPTION % Computation of a stabilised version of a classifier by bootstrapping and % aggregation ('bagging'). In total N bootstrap versions of the dataset A % are generated and used for training of the untrained classifier CLASSF. % Aggregation is done using the combining classifier specified in CCLASSF. % If ACLASSF is a trainable classifier it is trained by the tuning dataset % T, if given; else A is used for training. The default aggregating classifier % ACLASSF is MEANC. Default base classifier CLASSF is NMC. % % SEE ALSO % DATASETS, MAPPINGS, NMC, MEANC, BOOSTINGC % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: baggingc.m,v 1.3 2010/06/01 08:47:05 duin Exp $ function w = baggingc (a,clasf,n,rule,t) prtrace(mfilename); if (nargin < 5), prwarning(2,'no tuning set supplied, using training set for tuning (risk of overfit)'); t = []; end if (nargin < 4) prwarning(2,'aggregating classifier not specified, assuming meanc'); rule = meanc; end if (nargin < 3) | isempty(n), prwarning(2,'number of repetitions not specified, assuming 100'); n = 100; end if (nargin < 2) | isempty(clasf), prwarning(2,'base classifier not specified, assuming nmc'); clasf = nmc; end if ((nargin < 1) | isempty(a)) w = mapping('baggingc',{clasf,n,rule}); return end iscomdset(a,t); % test compatibility training and tuning set % Concatenate N classifiers on bootstrap samples (100%) taken % from the training set. w = []; for i = 1:n w = [w gendat(a)*clasf]; end % If no aggregating classifier is given, just return the N classifiers... if (~isempty(rule)) % ... otherwise, train the aggregating classifier on the train or % tuning set. if (isempty(t)) w = traincc(a,w,rule); else w = traincc(t,w,rule); end end w = setcost(w,a); return
github
jacksky64/imageProcessing-master
svo_nu.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/svo_nu.m
3,962
utf_8
396fa04268e3a40213f79e02eb83ee67
%SVO_NU Support Vector Optimizer: NU algorithm % % [V,J,C] = SVO(K,NLAB,NU,PD) % % INPUT % K Similarity matrix % NLAB Label list consisting of -1/+1 % NU Regularization parameter (0 < NU < 1): expected fraction of SV (optional; default: 0.25) % % PD Do or do not the check of the positive definiteness (optional; default: 1 (to do)) % % OUTPUT % V Vector of weights for the support vectors % J Index vector pointing to the support vectors % C Equivalent C regularization parameter of SVM-C algorithm % % DESCRIPTION % A low level routine that optimizes the set of support vectors for a 2-class % classification problem based on the similarity matrix K computed from the % training set. SVO is called directly from SVC. The labels NLAB should indicate % the two classes by +1 and -1. Optimization is done by a quadratic programming. % If available, the QLD function is used, otherwise an appropriate Matlab routine. % % NU is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where % Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX is supplied % to the routine it will be changed to the NU_MAX. % % If NU is less than some NU_MIN which depends on the overlap between classes % algorithm will typically take long time to converge (if at all). % So, it is advisable to set NU larger than expected overlap. % % Weights V are rescaled in a such manner as if they were returned by SVO with the parameter C. % % SEE ALSO % SVC_NU, SVO, SVC % Copyright: S.Verzakov, [email protected] % Based on SVO.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: svo_nu.m,v 1.3 2010/02/08 15:29:48 duin Exp $ function [v,J,C] = svo_nu(K,y,nu,pd) prtrace(mfilename); if (nargin < 4) pd = 1; end if (nargin < 3) prwarning(3,'Third parameter (nu) not specified, assuming 0.25.'); nu = 0.25; end nu_max = 1 - abs(nnz(y == 1) - nnz(y == -1))/length(y); if nu > nu_max prwarning(3,['nu==' num2str(nu) ' is not feasible; set to ' num2str(nu_max)]); nu = nu_max; end vmin = 1e-9; % Accuracy to determine when an object becomes the support object. % Set up the variables for the optimization. n = size(K,1); D = (y*y').*K; f = zeros(1,n); A = [y';ones(1,n)]; b = [0; nu*n]; lb = zeros(n,1); ub = ones(n,1); p = rand(n,1); if pd % Make the kernel matrix K positive definite. i = -30; while (pd_check (D + (10.0^i) * eye(n)) == 0) i = i + 1; end if (i > -30), prwarning(2,'K is not positive definite. The diagonal is regularized by 10.0^(%d)*I',i); end i = i+2; D = D + (10.0^(i)) * eye(n); end % Minimization procedure initialization: % 'qp' minimizes: 0.5 x' D x + f' x % subject to: Ax <= b % if (exist('qld') == 3) v = qld (D, f, -A, b, lb, ub, p, length(b)); elseif (exist('quadprog') == 2) prwarning(1,'QLD not found, the Matlab routine QUADPROG is used instead.') v = quadprog(D, f, [], [], A, b, lb, ub); else prwarning(1,'QLD not found, the Matlab routine QP is used instead.') verbos = 0; negdef = 0; normalize = 1; v = qp(D, f, A, b, lb, ub, p, length(b), verbos, negdef, normalize); end % Find all the support vectors. J = find(v > vmin); % First find the SV on the boundary I = J(v(J) < 1-vmin); Ip = I(y(I) == 1); Im = I(y(I) == -1); if (isempty(v) | isempty(Ip) | isempty(Im)) %error('Quadratic Optimization failed. Pseudo-Fisher is computed instead.'); prwarning(1,'Quadratic Optimization failed. Pseudo-Fisher is computed instead.'); v = prpinv([K ones(n,1)])*y; J = [1:n]'; C = nan; return; end v = y.*v; %wxI = K(I,J)*v(J); wxIp = mean(K(Ip,J)*v(J),1); % rho-b wxIm = mean(K(Im,J)*v(J),1); % -rho-b rho = 0.5*(wxIp-wxIm); b = -0.5*(wxIp+wxIm); %b = mean(rho*y(I) - wxI); v = [v(J); b]/rho; C = 1/rho; return;
github
jacksky64/imageProcessing-master
im_dbr.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_dbr.m
4,020
utf_8
af0771a52e215a85ee7b958c4661a1ce
%IM_DBR Image Database Retrieval GUI % % [RANK,TARG,OUTL] = IM_DBR(DBASE,FSETS,CLASSF,COMB) % % INPUT % DBASE - Dataset or datafile with N object images % FSETS - Cell array with maximum 4 feature sets % CLASSF - Cell array with untrained classifiers (Default: KNNC([],1)) % COMB - Combining classifier (Default: MEANC) % % OUTPUT % RANK - Index array ranking the N object images % TARG - Index array pointing to user defined target images % OUTL - Index array pointing to user defined outlier images % % DESCRIPTION % This command generates a Graphical User Interface (GUI) enabling the user % to label a database of images in 'target' and 'outlier' images in an % interactive and iterative way. Up to four feature sets can be given and % corresponding classifiers that assist the user by predict an object ranking % based on classification confidences for the 'target' class. % % The GUI shows the top-10 of the ranking and the user should classify % them as targets or outliers (original object labels in DBASE are % neglected). There are buttons for browsing through the ranked database % or through the selected targets and outliers. Classifiers can be trained % according to two different strategies using the top right buttons: % Classify - uses all stored target and outlier objects (shown in the top % left windows) for building a training set as well as the % hand labeled images in the present screen. % Label - uses just the hand labeled images in the present screen % and neglects the stored targets and outliers. This enables % a more flexible, but still controlled browsing throug the % database. % Reset - Resets the entire procedure by deleting all selected targets % and outliers. % Quit - Deletes the GUI and returns the ranking and selected targets % and outliers to the user. % A few additional buttons and sliders for controlling the system behavior: % - Delete and move buttons for the selected targets and outliers % - Weights for the feature sets. For each feature set a different % classifier is computed generating target confidences for all images. % This influences the operation of the combiniong classifier. % The weights can be changed by a slider for every feature set. % By default weights are 1. % - Two buttons for setting all labels as target ('All target') or outlier % ('All outlier'). % - Labels for the individual images can be changed by a mouse-click in the % image or on the image check-box. % - For all images a target confidence is computed. Depending on the 'all' % and 'unlabeled' radio buttons at the bottom the ranking of all images % or of the yet unlabeled images are shown. % Note: It is not an error, but for most classifiers useless or % counterproductive to label an object as target as well as outlier. % % EXAMPLE % % This example assumes that the Kimia images are available as datafile % % and that the DipImage image processing package is available. % prwaitbar on % a = kimia_images; % x = im_moments(a,'hu'); % x = setname(x,'Hu moments'); % y = im_measure(a,a,{'size','perimeter','ccbendingenergy'}); % y = setname(y,'Shape features'); % [R,T,L] = im_dbr(a,{x,y}); % do your own search % delfigs % figure(1); show(a(R,:)); % show ranking % figure(2); show(a(T,:)); % show targets % figure(3); show(a(L,:)); % show outliers % showfigs % % SEE ALSO % DATASETS, DATAFILES, MAPPINGS, KNNC, MEANC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [R,T,L] = im_dbr(dbase,featsets,classf,comb); if sscanf(version('-release'),'%i') < 14 error('IM_DBR needs Matlab version 14 or higher') end if nargin < 4, comb = meanc; end if nargin < 3, classf = knnc([],1); end [R,T,L] = image_dbr(dbase,featsets,classf,comb); return
github
jacksky64/imageProcessing-master
testr.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testr.m
1,212
utf_8
3fb7df399bfa4a82711fe3d24a4e08d7
%TESTR MSE for regression % % E = TESTR(X,W,TYPE) % E = TESTR(X*W,TYPE) % E = X*W*TESTR([],TYPE) % % INPUT % X Regression dataset % W Regression mapping % TYPE Type of error measure, default: mean squared error % % OUTPUT % E Mean squared error % % DESCRIPTION % Compute the error of regression W on dataset X. The following error % measures have been defined for TYPE: % 'mse' mean squared error % 'mad' mean absolute deviation % % SEE ALSO % RSQUARED, TESTC % Copyright: D.M.J. Tax, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function e = testr(x,w,type) if nargin<3 type = 'mse'; end if nargin<2 w = []; end if isstr(w) type = w; w = []; end if nargin<1 | isempty(x) e = mapping(mfilename,'fixed',{w,type}); e = setname(e,type); return end if (ismapping(w) & istrained(w)) a = a*w; end switch type case 'mse' e = mean((+x(:,1) - gettargets(x)).^2); case 'mad' e = mean(abs(+x(:,1) - gettargets(x))); otherwise error('Error %s is not implemented.',type); end if nargout==0 %display results on the screen: fprintf('Error on %d objects: %f.\n',... size(x,1), e); clear e; end
github
jacksky64/imageProcessing-master
stacked.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/stacked.m
4,901
utf_8
79804a8343df74d2068f63cfa3b6d6be
%STACKED Combining classifiers in the same feature space % % WC = STACKED(W1,W2,W3, ....) or WC = [W1,W2,W3, ...] % WC = STACKED({W1,W2,W3, ...}) or WC = [{W1,W2,W3, ...}] % WC = STACKED(WC,W1,W2, ....) or WC = [WC,W2,W3, ...] % % INPUT % W1,W2,W3 Set of classifiers % % OUTPUT % WC Combined classifier % % DESCRIPTION % The base classifiers (or mappings) W1, W2, W3, ... defined in the same % feature space are combined in WC. This is a classifier defined for the % same number of features as each of the base classifiers and with the % combined set of outputs. So, for three two class classifiers defined for % the classes 'c1' and 'c2', a dataset A is mapped by D = A*WC on the outputs % 'c1','c2','c1','c2','c1','c2', which are the feature labels of D. Note that % classification by LABELD(D) finds for each vector in D the feature label % of the column with the maximum value. This is equivalent to using the % maximum combiner MAXC, % % Other fixed combining rules like PRODC, MEANC, and VOTEC can be applied by % D = A*WC*PRODC. A trained combiner like FISHERC has to be supplied with % the appropriate training set by AC = A*WC; VC = AC*FISHERC. So the % expression VC = A*WC*FISHERC yields a classifier, not a dataset as with % fixed combining rules. This classifier operates in the intermediate % feature space, the output space of the set of base classifiers. A new % dataset B has to be mapped to this intermediate space first by BC = B*WC % before it can be classified by D = BC*VC. As this is equivalent to D = % B*WC*VC, the total trained combiner is WTC = WC*VC = WC*A*WC*FISHERC. To % simplify this procedure PRTools executes the training of a combined % classifier by WTC = A*(WC*FISHERC) as WTC = WC*A*WC*FISHERC. % % It is also possible to combine a set of untrained classifiers, e.g. WC = % [LDC NMC KNNC([],1)]*CLASSC, in which CLASSC takes care that all outputs % will be transformed to appropriate posterior probabilities. Training of % all base classifiers is done by WC = A*WC. Again, this may be combined % with training of a combiner by WTC = A*(WC*FISHERC). % % EXAMPLES % PREX_COMBINING % SEE ALSO % MAPPINGS, DATASETS, MAXC, MINC, MEANC, % MEDIANC, PRODC, FISHERC, PARALLEL % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: stacked.m,v 1.4 2009/03/18 16:17:59 duin Exp $ function w = stacked(varargin) prtrace(mfilename); % No arguments given: just return map information. if (nargin == 0) w = mapping(mfilename,'combiner'); return end % Single argument: should be a mapping or cell array of mappings. if (nargin == 1) v = varargin{1}; % If V is a single mapping, process it directly. if (~iscell(v)) if (~isa(v,'mapping')) error('Mapping expected.') end w = mapping('stacked',getmapping_type(v),{v},getlabels(v)); w = set(w,'size',getsize(v)); else % If V is a cell array of mappings, call this function recursively. if (size(v,1) ~= 1) error('Row of cells containing mappings expected') end w = feval(mfilename,v{:}); end return end % Multiple arguments, all of which are mappings: combine them. %if (~((nargin == 2) & (isa(varargin{1},'dataset')))) if (~(isa(varargin{1},'dataset'))) % Get the first mapping. v1 = varargin{1}; if (isempty(v1)) start = 3; v1 = varargin{2}; else start = 2; end ismapping(v1); % Assert V1 is a mapping. k = prod(getsize_in(v1)); labels = getlabels(v1); type = getmapping_type(v1); % If V1 is already a stacked mapping without output conversion, % unpack it to re-stack. if (~strcmp(getmapping_file(v1),mfilename)) | getout_conv(v1) > 1 v = {v1}; else v = getdata(v1); end % Now stack the second to the last mapping onto the first. for j = start:nargin v2 = varargin{j}; if (~strcmp(type,getmapping_type(v2))) error('All mappings should be of the same type.') end if (getsize(v2,1) ~= k) error('Mappings should have equal numbers of inputs.') end v = [v {v2}]; labels = [labels;getlabels(v2)]; end w = mapping('stacked',type,v,labels,k); else % The first argument is a dataset: apply the stacked mapping. a = varargin{1}; v = varargin{2}; if (~isa(v,'mapping')) error('Mapping expected as second argument.') end if nargin==2 & isstacked(v) n = length(v.data); else v = varargin(2:end); n = nargin-1; end % Calculate W, the output of the stacked mapping on A. w = []; for j = 1:n b = a*v{j}; % If, for a mapping to 1D (e.g. a 2-class discriminant) % more than 1 output is returned, truncate. if (size(v{j},2) == 1) b = b(:,1); end w = [w b]; % Concatenate the outputs. end end return
github
jacksky64/imageProcessing-master
bandsel.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/bandsel.m
4,320
utf_8
b397f93a16fc65c469e370035595021d
%BANDSEL Selection of bands from object images % % B = BANDSEL(A,J) % W = BANDSEL([],J) % B = A*BANDSEL([],J) % % INPUT % A Dataset or datafile with multi-band object images % J Indices of bands to be selected % % OUTPUT % W Mapping performing the band selection % B Dataset with selected bands (ordered according to J) % % DESCRIPTION % If the objects in a dataset or datafile A are multi-band images, e.g. RGB % images, or the result of IM_PATCH, then the featsize of A is [M,N,L] for % for L bands of an M x N images. This routine makes a selection J out of % L. The routine BAND2OBJ may be used to organize the bands vertically % as separate objects. However, BANDSEL nor BAND2OBJ can be applied to % datafiles for which already a bandselection has been defined by BANDSEL. % % % SEE ALSO % DATASETS, DATAFILES, IM2OBJ, IM_PATCH, BAND2OBJ % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = bandsel(a,J) mapname = 'Band Selection'; if nargin < 2, J = 1; end if nargin < 1 | isempty(a) w = mapping(mfilename,'fixed',{J}); w = setname(w,mapname); elseif isdatafile(a) % just store administration if size(J,1) ~= 1 if size(J,1) ~= size(a,1) error('Matrix with band indices does not match number of objects') end else J = repmat(J,size(a,1),1); end %determine number of bands to be selected if iscell(J) n = size(J{1},2); else n = size(J,2); end %store bandselection as a mapping to be executed %during dataset conversion v = mapping(mfilename,'fixed',{[]},[],0,0); % make the mappings identical, i.e. independent of v.data % and store the data in the ident field under 'bandsel'. % This will enable vertical concatenation of datafiles J0 = getident(a,'bandsel'); J1 = zeros(size(J)); if ~isempty(J0) % we already have a bandselection set; change it if size(J,1) == 1 J1 = J0(:,J); else for j=1:size(J0,1) J1(j,:) = J0(j,J(j,:)); end end else J1 = J; end %correct bandnames in ident a = setident(a,J1,'bandsel'); bandnames = getident(a,'bandnames'); if ~isempty(bandnames) for j=1:size(a,1) bandnames{j} = bandnames{j}(J(j,:),:); end a = setident(a,bandnames,'bandnames'); end v = setdata(v,[]); w = addpostproc(a,v); elseif isdataset(a) % execute m = size(a,1); if isempty(J) % J is stored in a.ident.bandsel J = getident(a,'bandsel'); % we assume that new bandnames are already set, % simulataneously with bandsel if isempty(J) % no bandselection defined w = a; return end else if size(J,1) == 1 J = repmat(J(:)',m,1); else if size(J,1) ~= m error('Wrong size of band selection array') end end bandnames = getident(a,'bandnames'); if ~isempty(bandnames) for j=1:m bandnames{j} = bandnames{j}(J,:); end a = setident(a,bandnames,'bandnames'); end end isobjim(a); fsize = getfeatsize(a); if length(fsize) < 3 error('No image bands defined for dataset') end if any(J(:) > fsize(3)) id = getident(a); id = id(find(J>fsize(3))); error(['Wrong index for image bands. Object ident: ' int2str(id(1))] ) end k = prod(fsize(1:2)); % size of a band L = repmat((J(:,1)-1)*k,1,k)+repmat([1:k],m,1); % indices of band_1 per object if size(J,2) > 1 % concatenate in case of multiple band selection for j=2:size(J,2) LL = repmat((J(:,j)-1)*k,1,k)+repmat([1:k],m,1); % indices of band_j per object L = [L LL]; % indices for all bands to be selected end end adata = getdata(a); % Let us do the selection on the data bdata = zeros(m,k*size(J,2)); for i=1:m % can this be done faster? bdata(i,:) = adata(i,L(i,:)); end b = setdat(a,bdata); % store the data in a dataset with all information of a b = setident(b,[],'bandsel'); % bandselection done, avoid second in case of stacked selections w = setfeatsize(b,[fsize(1:2) size(J,2)]); else error('Illegal command') end
github
jacksky64/imageProcessing-master
datfilt.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/datfilt.m
1,208
utf_8
31f36e31d9f2ba195de6f48b03120f3c
%DATFILT Filtering of dataset images % % B = DATFILT(A,F) % % INPUT % A Dataset with image data % F Matrix with the convolution mask % % OUTPUT % B Dataset containing all the images after filtering % % DESCRIPTION % All images stored in the dataset A are horizontally and vertically % convoluted by the 1-dimensional filter F. A uniform N*N filter is, % thereby, realized by DATFILT(A,ONES(1,N)/N). % % SEE ALSO % DATASETS, IM2OBJ, DATA2IM, IM2FEAT, DATGAUSS, DATAIM % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: datfilt.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function a = datfilt(a,f) prtrace(mfilename); [m,k] = getsize(a); n = length(f); nn = floor(n/2); im = data2im(a); [imheight,imwidth,nim] = size(im); for i=1:nim % Add a border with NN pixels, set the border to % the mirrored original values (private function). c = bord(im(:,:,i),NaN,nn); c = conv2(f,f,c,'same'); im(:,:,i) = resize(c,nn,imheight,imwidth); end if (isfeatim(a)) a = setdata(a,im2feat(im),getfeatlab(a)); else a = setdata(a,im2obj(im),getfeatlab(a)); end return;
github
jacksky64/imageProcessing-master
linewidth.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/linewidth.m
605
utf_8
38780117b4f229c290a054070793bd28
%LINEWIDTH Set linewidth in plot % % linewidth(width) %Set linewidth for current figure function linewidth(width) if strcmp(get(gca,'type'),'line') set(gca,'linewidth',width); end children = get(gca,'children'); set_linewidth_children(children,width) return function set_linewidth_children(children,width) if isempty(children), return, end for i = children(:)' if length(i) > 1 set_linewidth_children(i,width) return end if strcmp(get(i,'type'),'line') | strcmp(get(i,'type'),'patch') set(i,'linewidth',width); end children2 = get(i,'children'); set_linewidth_children(children2,width) end
github
jacksky64/imageProcessing-master
medianc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/medianc.m
1,428
utf_8
b359e761a6b0660209c316be6d90edfb
%MEDIANC Median combining classifier % % W = MEDIANC(V) % W = V*MEDIANC % % INPUT % V Set of classifiers % % OUTPUT % W Median combining classifier on V % % DESCRIPTION % If V = [V1,V2,V3, ... ] is a set of classifiers trained on the same % classes, then W is the median combiner: it selects the class with % the median of the outputs of the input classifiers. This might also % be used as A*[V1,V2,V3]*MEDIANC, in which A is a dataset to be % classified. % % If it is desired to operate on posterior probabilities then the input % classifiers should be extended to output these, as V = V*CLASSC. % % SEE ALSO % MAPPINGS, DATASETS, VOTEC, MAXC, MINC, PRODC, MEANC, AVERAGEC, STACKED, % PARALLEL, FIXEDCC % % EXAMPLES % See PREX_COMBINING. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: medianc.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function w = medianc (p1) prtrace (mfilename); % The median combiner is constructed as a fixed combiner (FIXEDCC) of % type 'median'. type = 'median'; name = 'Median combiner'; % Possible calls: MEDIANC, MEDIANC(W) or MEDIANC(A,W). if (nargin == 0) w = mapping('fixedcc','combiner',{[],type,name}); else w = fixedcc(p1,[],type,name); end if (isa(w,'mapping')) w = setname(w,name); end return
github
jacksky64/imageProcessing-master
im_rotate.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_rotate.m
1,230
utf_8
adfb824fe371037f44f120c02c27249f
%IM_ROTATE Rotate all images in dataset % % B = IM_ROTATE(A,ALF) % % INPUT % A Dataset with object images (possibly multi-band) % ALF Rotation angle (in radians), % default: rotation to main axis % % OUTPUT % B Dataset with rotated object images % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_rotate(a,alf) prtrace(mfilename); if nargin < 2, alf = []; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{alf}); b = setname(b,'Image rotate'); elseif isdataset(a) error('Command cannot be used for datasets as it may change image size') elseif isdatafile(a) isobjim(a); b = filtim(a,mfilename,{alf}); b = setfeatsize(b,getfeatsize(a)); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = double(a); if isempty(alf) m = im_moments(a,'central',[1 2 0; 1 0 2]'); C = [m(2) m(1); m(1) m(3)]; [E,D] = preig(C); [DD,ind] = sort(diag(D)); alf = atan2(E(2,ind(1)),E(1,ind(1)))+pi/2; end b = imrotate(a,alf*360/(2*pi),'bilinear','crop'); end return
github
jacksky64/imageProcessing-master
gensubsets.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gensubsets.m
2,064
utf_8
b46581d4b9ea139026fe9db863da530c
%GENSUBSETS Generate sequence of embedded training sets % % [L,R] = GENSUBSETS(NLAB,S) % [L,R] = GENSUBSETS(A,S) % % INPUT % NLAB Column vector of numeric labels of some dataset A. % NLAB = GETNLAB(A) % A Dataset for which subsets are to be created % S Array of growing subset sizes. % S(K,J) should specify the size of training set K for class J with % numeric label J. % % OUTPUT % L Cell array of length SIZE(S,1)+1 containing a series of growing % sets of indices or datasets. Datasets can be reconstructed from % indices by A(L{K},:). The last element of L refers to the % original dataset A % R Cell array of length SIZE(S,1)+1 containing a series of shrinking % sets of indices or datasets. Datasets can be reconstructed from % indices by A(R{K},:). The last element of R is empty. % % DESCRIPTION % Learning curves of classifier performances should be based on a % consistent set of training sets, such that training set K1 is a subset of % training set K2 if K1 < K2. This routine generates such a set on the % basis of the numeric labels of the dataset A. L refers to the selected % objects and R to the deselected ones. % % SEE ALSO % DATASETS, GENDAT % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [L,R] = gensubsets(input,S) if isdataset(input) nlab = getnlab(input); else nlab = input; end [n,c] = size(S); % number of subsets n, number of classes c if max(nlab) ~= c error('Number of columns of size matrix not equal to number of classes') end m = length(nlab); L = cell(1,n+1); R = cell(1,n+1); a = dataset([1:m]',nlab); % make fake dataset with data equal indices L{n+1} = [1:m]'; R{n+1} = []; for j=n:-1:1 [inset,outset] = gendat(a(L{j+1},:),S(j,:)); L{j} = +inset; R{j} = [R{j+1};+outset]; end if isdataset(input) for j=1:n+1 L{j} = input(L{j},:); R{j} = input(R{j},:); end end
github
jacksky64/imageProcessing-master
ploto.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/ploto.m
1,981
utf_8
a555d41642039708da0330e072b05329
%PLOTO Plot objects as 1-D functions of the feature number % % [HH HO HC] = PLOTO(A,N) % % INPUT % A Dataset % N Integer % % OUTPUT % HH Lines handles % HO Object identifier handles % HC Class number handles % % DESCRIPTION % Produces 1-D function plots for all the objects in dataset A. The plots % are organised as subplots, N on a row. Default is the squareroot of the % number of objects. Object identifiers and class numbers are written in % the correspopnding plots. % % See also DATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [h_out1,h_out2,h_out3] = ploto(a,p) prtrace(mfilename); if nargin < 2, p = []; end [m,k,c] = getsize(a); nlab = getnlab(a); % Define the color for each of the classes: if c == 2 map = [0 0 1; 1 0 0]; else map = hsv(c); end % Make subplots for each object, so a grid of p x q subplots is % defined h = []; if ~isempty(p) q = ceil(m/p); elseif m > 3 p = ceil(sqrt(m)); q = ceil(m/p); else p = m; q = 1; end % Get the object labels labs = getlabels(a); ymin = min(a.data(:)); ymax = max(a.data(:)); V = [1 k ymin ymax]; % Make the plot for each of the objects: h = []; ho = []; hc = []; s = sprintf('Plot %i objects: ',m); prwaitbar(m,s); for j = 1:m if isdatafile(a) | 1 prwaitbar(m,j,[s int2str(j)]); b = +dataset(a(j,:)); ymin = min(b); ymax = max(b); k = length(b); V = [1 k ymin ymax]; else b = +a(j,:); end % Create the subplots with the correct sizes: subplot(q,p,j) hh = plot(b); set(gca,'xtick',[]); set(gca,'ytick',[]); axis(gca,V); ho = [ho text(2,ymax-0.15*(ymax-ymin),getident(a(j,:),'string'))]; hc = [hc text(3*k/4,ymax-0.15*(ymax-ymin),num2str(nlab(j)))]; h = [h hh]; hold on end prwaitbar(0); % The last details to take care of: if nargout > 0 h_out1 = h; h_out2 = ho; h_out3 = hc; end return
github
jacksky64/imageProcessing-master
iscomdset.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/iscomdset.m
1,536
utf_8
e4f1285eb09e4258dd2fb8a71fa2e676
%ISCOMDSET Test whether datasets are compatible % % N = ISCOMDSET(A,B,CLAS); % % INPUT % A Input argument, to be tested on dataset % B Input argument, to be tested on compatibility with A % CLAS 1/0, test on equal classes (1) or don't test (0) % (optional; default 1) % % OUTPUT % N 1/0 if A and B are / are not compatible datasets % % DESCRIPTION % The function ISCOMDSET tests whether A and B are compatible % datasets, i.e. have the same features and the same classes. % % SEE ALSO % ISDATASET, ISMAPPING, ISDATAIM, ISFEATIM, ISVALDFILE, ISVALDSET function n = iscomdset(a,b,clas) prtrace(mfilename); if nargin < 3, clas = 1; end if isempty(b) % return of second dataset empty (i.e. not supplied) return end if nargout == 0 isdataset(a); isdataset(b); else n = isdataset(a) & isdataset(b); end featlaba = setstr(getfeatlab(a)); featlabb = setstr(getfeatlab(b)); nf = strcmp(featlaba,featlabb); if ~nf if nargout == 0 error([newline 'Datasets for training and testing/tuning should' newline ... 'have the same features in the same order.']) else n = 0; end end if clas lablista = setstr(getlablist(a)); lablistb = setstr(getlablist(b)); no = strcmp(lablista,lablistb); if ~no if nargout == 0 error([newline 'Datasets for training and testing/tuning should' newline ... 'have the same class labels in the same order.']) else n = 0; end end end return
github
jacksky64/imageProcessing-master
prdata.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prdata.m
1,605
utf_8
5945233e9aca3aff5de534a83caf9910
%PRDATA Read data files % % A = PRDATA(FILENAME,FLAG) % % INPUT % FILENAME Name of delimited ASCII file containing rows of data % FLAG If not 0, first column is assumed to contain labels (default 1) % % OUTPUT % A Dataset % % DESCRIPTION % Reads data into the dataset A. The first word of each line is interpreted % as label data. Each line is stored row-wise and interpreted as the feature % values of a single object. % % SEE ALSO % DATASETS, PRDATASET % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: prdata.m,v 1.3 2008/03/20 07:42:01 duin Exp $ function a = prdata(file,labels) prtrace(mfilename); % ASCII magic... if (strcmp(computer,'MAC2')), crlf = 13; else, crlf = 10; end if (nargin < 2) prwarning(4,'first column of file is assumed to contain labels'); labels = 1; end % Open the file. fid = fopen(file); if (fid < 0) error('Error in opening file.') end % Read the data. First, find the number of items on the first line. s = fread(fid,inf,'uchar'); i = find(s==crlf); n = length(sscanf(setstr(s(1:i(1))),'%e')); fseek(fid,0,'bof'); % Return to the begin of the file. [a,num] = fscanf(fid,'%e',inf); % Keep reading N objects per line. a = reshape(a,n,num/n)'; % Reshape to the correct data matrix. % Create the dataset, depending where the labels were stored. if (labels) lab=a(:,1); a(:,1)=[]; a = dataset(a,lab); else a = dataset(a); end % And close the file. fclose(fid); return
github
jacksky64/imageProcessing-master
affine.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/affine.m
6,661
utf_8
6cff6eade53ed2451811ada3fd31a10b
%AFFINE Construct affine (linear) mapping from parameters % % W = AFFINE(R,OFFSET,LABLIST_IN,LABLIST_OUT,SIZE_IN,SIZE_OUT) % W = AFFINE(R,OFFSET,A) % W = AFFINE(W1,W2) % % INPUT % R Matrix of a linear mapping from a K- to an L-dimensional space % OFFSET Shift applied after R; a row vector of the length L % (optional; default: zeros(1,L)) % LABLIST_IN Labels of the features of the input space % (optional; default: (1:K)') % LABLIST_OUT Labels of the features of the output space, e.g. class names % for linear classifiers (optional; default: (1:L)') % SIZE_IN If based on images: size vector of the input dimensionality % (optional; default: K) % SIZE_OUT If based on images: size vector of the output dimensionality % (optional; default: L) % A Dataset (LAB_IN_LIST and SIZE_IN are derived from A) % W1,W2 Affine mappings % % OUTPUT % W Affine mapping % % DESCRIPTION % Defines a mapping W based on a linear transformation R and an offset. % R should be a [K x L] matrix describing a linear transformation from % a K-dimensional space to an L-dimensional space. If K=1, then R is % interpreted as the diagonal of an [L x L] diagonal matrix. OFFSET is % a row vector of the length L, added afterwords. % % Affine mappings are treated by PRTools in a special way. A scaling % defined for an affine mapping, e.g. by W = SETSCALE(W,SCALE) is directly % executed by a multiplication of the coefficients. Also, the product of % two affine mappings is directly converted to a new affine mapping. % Finally, the transpose of an affine mapping exists and is defined as % an another affine mapping. Consequently, this routine also executes % W = AFFINE(W1,W2) if W1 and W2 are affine and B = AFFINE(A,W), if A % is a dataset and W is an affine mapping. % % An [M x K] dataset A can be mapped as D = A*W. The result is equivalent % to [+A, ones(M,1)]*[R; OFFSET]. The dataset D has feature labels stored % in LABLIST. The number of this labels should, thereby, be at least L. % % SEE ALSO % DATASETS, MAPPINGS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: affine.m,v 1.10 2009/03/17 10:03:51 duin Exp $ function w = affine(R,offset,lablist_in, lablist_out,size_in,size_out) prtrace(mfilename); if (nargin == 1) | (~isa(offset,'mapping')) % Definition of an affine mapping [m,k] = size(R); if (nargin < 6) prwarning(5,'SIZE_OUT is not specified. The number of columns of R, %d, is assumed.', k); size_out = k; end if (nargin < 5) prwarning(5,'SIZE_IN is not specified. The number of rows of R, %d, is assumed.', m); size_in = m; end if (nargin < 4) prwarning(5,'LABLIST_OUT is not specified, [1:%d]'' assumed.', k); lablist_out = []; end if (nargin < 3) prwarning(5,'LABLIST_IN is not specified, [1:%d]'' assumed.', m); lablist_in = []; end if (nargin < 2) | (isempty(offset)) prwarning(3,'OFFSET not specified, a zero vector assumed.'); offset = zeros(1,k); end % Check consistencies if (~isa(R,'double')) error('No proper transformation matrix stored.') end if (size_in == 1) & nargin < 3 % R is a scaling vector size_in = size_out; end if (isempty(lablist_in)) lablist_in = genlab(1,[1:size_in]'); end cost = []; if (isa(lablist_in,'dataset')) % Copy labels from dataset/datafile cost = lablist_in.cost; size_in = getfeatsize(lablist_in); lablist_in = getfeatlab(lablist_in); %if isempty(lablist_in) % lablist_in = num2str([1:size_in]'); %end % size_out = k; % Wrong for classifiers defined for 1D datasets end if ~isempty(lablist_in) & (size(lablist_in,1) < m) error('Wrong number of input labels supplied.') end if isempty(lablist_out) lablist_out = genlab(1,[1:size_out]'); end if (size(lablist_out,1) < k) error('Wrong number of output labels supplied.') end if any(size(offset) ~= [1,k]) error('Offset is not a row vector of the correct size.') end % Store the results: d.rot = R; d.offset = offset; d.lablist_in = lablist_in; w = mapping(mfilename,'trained',d,lablist_out,size_in,size_out); w = setcost(w,cost); elseif isa(R,'mapping') % Two mappings, stored in R and OFFSET, should be combined. w1 = R; w2 = offset; if (~isclassifier(w1)) & (~isclassifier(w2)) & (strcmp(getmapping_file(w1),'affine')) & (strcmp(getmapping_file(w2),'affine')) % Combine two affine mappings % If d1.rot or d2.rot are vectors, they have to be interpreted as % the diagonal matrices, unless the inner dimension does not fit. d1 = +w1; d2 = +w2; if (size(d1.rot,1) == 1) % d1.rot is a vector if (size(d2.rot) == 1) % d2.rot is a vector d.rot = d1.rot.*d2.rot; d.offset = d1.offset.*d2.rot + d2.offset; else % d2.rot is a matrix d.rot = repmat(d1.rot',1,size(d2.rot,2)).*d2.rot; d.offset = d1.offset*d2.rot + d2.offset; end else % d1.rot is a matrix %RD Here comes a bug fix that I needed to continue, I am not sure it %RD is sufficient It may even introduce new problems, especially for % 1D datasets. %if size(d2.rot,1) == 1 % d2.rot is vector if (size(d1.rot,2) > 1) & (size(d2.rot,1) == 1) % d2.rot is a vector d.rot = d1.rot.*repmat(d2.rot,size(d1.rot,1),1); d.offset = d1.offset.*d2.rot + d2.offset; else % d2.rot is a matrix d.rot = d1.rot*d2.rot; d.offset = d1.offset*d2.rot + d2.offset; end end d.lablist_in = d1.lablist_in; w = mapping(mfilename,'trained',d,getlabels(w2),getsize_in(w1),getsize_out(w2)); else % Store a sequential mapping. w = sequential(w1,w2); end else % Execution of the affine mapping. % R is a dataset, OFFSET defines the mapping. v = offset; [m,k] = size(R); d = +v; if all(size(v) == 0) d.rot = repmat(d.rot,1,k); d.offset = zeros(1,k); end if (size(d.rot,1) == 1) & (k > 1) % No rotation, just a scaling x = zeros(m,k); Rdat = +R; if (m > k) % Necessary switch for handling large feature sizes. for j=1:k x(:,j) = Rdat(:,j)*d.rot(j); end else for i=1:m x(i,:) = Rdat(i,:).*d.rot; end end x = x + repmat(d.offset,m,1); else % Rotation. x = [+R,ones(m,1)] * [d.rot;d.offset]; end if size(v,2) == 2 & size(x,2) == 1 x = [x -x]; end w = setdat(R,x,v); end return;
github
jacksky64/imageProcessing-master
show.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/show.m
1,832
utf_8
747bec8ec7718217efb36afb78ddd30a
%SHOW PRTools general show % % H = SHOW(A,N,B) % % INPUT % A Image % N Number of images on a row % B Intensity value of background (default 0.5); % % OUTPUT % H Graphics handle % % DESCRIPTION % PRTools offers a SHOW command for variables of the data classes DATASET % and DATAFILE. In order to have a simliar command for images not converted % to a DATASET this commands made availble. A should be 2D, 3D or 4D image. % % 2D images are fully displayed. % % 3D images are converted to a dataset with as many feature images as given % in the 3rd dimension and displayed by DATASET/SHOW. % % 4D images with 3 bands in the 3rd dimension are converted to a dataset with % as many 3-color object images as are given in the 4th dimension and % displayed by DATASET/SHOW % % All other 4D images are converted to a dataset with as many 2D feature % images as given by the dimensions 3 and 4 and displayed by DATASET/SHOW. % Unless given otherwise, N is set to size(A,3). % % SEE ALSO DATASET/SHOW DATAFILE/SHOW % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function h = show(a,n,background) prtrace(mfilename); if nargin < 3, background = 0.5; end if nargin < 2, n = []; end a = double(a); s = size(a); if length(s) == 2 if any(s==1) error('Image expected') end a = im2obj(a); elseif length(s) == 3 & s(3) ~= 3 a = im2feat(a); a = dataset(a,NaN); % avoid display label image else if length(s) >= 3 & s(3) == 3 a = im2obj(a,s(1:3)); else a = reshape(a,s(1),s(2),prod(s(3:end))); a = im2feat(a); a = dataset(a,0); % avoid display label image end end if nargout > 0 h = show(a,n,background); else show(a,n,background); end
github
jacksky64/imageProcessing-master
gauss.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gauss.m
4,857
utf_8
f871f6aac7a86da963a8c0f48b508082
%GAUSS Generation of a multivariate Gaussian dataset % % A = GAUSS(N,U,G,LABTYPE) % % INPUT (in case of generation a 1-class dataset in K dimensions) % N Number of objects to be generated (default 50). % U Desired mean (vector of length K). % G K x K covariance matrix. Default eye(K). % LABTYPE Label type (default 'crisp') % % INPUT (in case of generation a C-class dataset in K dimensions) % N Vector of length C with numbers of objects per class. % U C x K matrix with class means, or % Dataset with means, labels and priors of classes % (default: zeros(C,K)) % G K x K x C covariance matrix of right size. % Default eye(K); % LABTYPE Label type (default 'crisp') % % OUTPUT % A Dataset containing multivariate Gaussian data % % DESCRIPTION % Generation of N K-dimensional Gaussian distributed samples for C classes. % The covariance matrices should be specified in G (size K*K*C) and the % means, labels and prior probabilities can be defined by the dataset U with % size (C*K). If U is not a dataset, it should be a C*K matrix and A will % be a dataset with C classes. % % If N is a vector, exactly N(I) objects are generated for class I, I = 1..C. % % EXAMPLES % 1. Generation of 100 points in 2D with mean [1 1] and default covariance % matrix: % % GAUSS(100,[1 1]) % % 2. Generation of 50 points for each of two 1-dimensional distributions with % mean -1 and 1 and with variances 1 and 2: % % GAUSS([50 50],[-1;1],CAT(3,1,2)) % % Note that the two 1-dimensional class means should be given as a column % vector [1;-1], as [1 -1] defines a single 2-dimensional mean. Note that % the 1-dimensional covariance matrices degenerate to scalar variances, % but have still to be combined into a collection of square matrices using % the CAT(3,....) function. % % 3. Generation of 300 points for 3 classes with means [0 0], [0 1] and % [1 1] and covariance matrices [2 1; 1 4], EYE(2) and EYE(2): % % GAUSS(300,[0 0; 0 1; 1 1]*3,CAT(3,[2 1; 1 4],EYE(2),EYE(2))) % % SEE ALSO % DATASETS, PRDATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function a = gauss(n,u,g,labtype) prtrace(mfilename); if (nargin < 1) prwarning (2,'number of samples not specified, assuming N = 50'); n = 50; end cn = length(n); if (nargin < 2) prwarning (2,'means not specified; assuming one dimension, mean zero'); u = zeros(cn,1); end; if (nargin < 3) prwarning (2,'covariances not specified, assuming unity'); g = eye(size(u,2)); end if (nargin < 4) prwarning (3,'label type not specified, assuming crisp'); labtype = 'crisp'; end % Return an empty dataset if the number of samples requested is 0. if (length(n) == 1) & (n == 0) a = dataset([]); return end % Find C, desired number of classes based on U and K, the number of % dimensions. Make sure U is a dataset containing the means. if (isa(u,'dataset')) [m,k,c] = getsize(u); lablist = getlablist(u); p = getprior(u); if c == 0 u = double(u); end end if isa(u,'double') [m,k] = size(u); c = m; lablist = genlab(ones(c,1)); u = dataset(u,lablist); p = ones(1,c)/c; end if (cn ~= c) & (cn ~= 1) error('The number of classes specified by N and U does not match'); end % Generate a class frequency distribution according to the desired priors. n = genclass(n,p); % Find CG, the number of classes according to G. % Make sure G is not a dataset. if (isempty(g)) g = eye(k); cg = 1; else g = real(+g); [k1,k2,cg] = size(g); if (k1 ~= k) | (k2 ~= k) error('The number of dimensions of the means U and covariance matrices G do not match'); end if (cg ~= m & cg ~= 1) error('The number of classes specified by the means U and covariance matrices G do not match'); end end % Create the data A by rotating and scaling standard normal distributions % using the eigenvectors of the specified covariance matrices, and adding % the means. a = []; for i = 1:m j = min(i,cg); % Just in case CG = 1 (if G was not specified). % Sanity check: user can pass non-positive definite G. [V,D] = preig(g(:,:,j)); V = real(V); D = real(D); D = max(D,0); a = [a; randn(n(i),k)*sqrt(D)*V' + repmat(+u(i,:),n(i),1)]; end % Convert A to dataset by adding labels and priors. labels = genlab(n,lablist); a = dataset(a,labels,'lablist',lablist,'prior',p); % If non-crisp labels are requested, use output of Bayes classifier. switch (labtype) case 'crisp' ; case 'soft' w = nbayesc(u,g); targets = a*w*classc; a = setlabtype(a,'soft',targets); otherwise error(['Label type ' labtype ' not supported']) end a = setname(a,'Gaussian Data'); return
github
jacksky64/imageProcessing-master
nlabcmp.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nlabcmp.m
975
utf_8
91014c1ad5b78b2874f44cf02e296fcb
%NLABCMP Compare two label lists and count the differences % % [N,C] = NLABCMP(LAB1,LAB2) % % INPUT % LAB1, % LAB2 Label lists % % OUTPUT % C A 0/1 vector pointing to different/equal labels % N Number of differences in LAB1 and LAB2 % % DESCRIPTION % Compares two label lists and counts the disagreements between them. % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: nlabcmp.m,v 1.4 2008/07/28 08:57:42 duin Exp $ function [N,C] = nlabcmp(S1,S2) prtrace(mfilename); [m,k] = size(S1); [n,l] = size(S2); if (m ~= n) error('Label list sizes do not match.') end if (iscell(S1) ~= iscell(S2)) error('Label lists should be both cells, strings or numeric.') end if (iscell(S1)) C = strcmp(S1,S2); elseif (all(size(S1) == size(S2))) C = all(S1'==S2',1)'; else C = strcmp(cellstr(S1),cellstr(S2)); end N = m - sum(C); return
github
jacksky64/imageProcessing-master
featsellr.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featsellr.m
9,276
utf_8
899156db13a08ae7791a4a549dd9d1c7
%FEATSELLR Plus-L-takeaway-R feature selection for classification % % [W,RES] = FEATSELLR(A,CRIT,K,L,R,T,FID) % % INPUT % A Dataset % CRIT String name of the criterion or untrained mapping % (optional; default: 'NN', i.e. 1-Nearest Neighbor error) % K Number of features to select % (optional; default: return optimally ordered set of all features) % L Number of features to select at a time (plus-L, default: 1), L ~= R % R Number of features to deselect at a time (takeaway-R, default: 0) % T Tuning set (optional) % N Number of cross-validations (optional) % FID File ID to write progress to (default [], see PRPROGRESS) % % OUTPUT % W Output feature selection mapping % RES Matrix with step-by-step results of the selection % % DESCRIPTION % Floating selection of K features using the dataset A, by iteratively % selecting L optimal features and deselecting R. Starts from the full % set of features when L < R, otherwise from the empty set. CRIT sets the % criterion used by the feature evaluation routine FEATEVAL. If the dataset % T is given, it is used as a tuning set for FEATEVAL. Alternatively % a number of cross-validations N may be supplied. For K = 0, the optimal % feature set (maximum value of FEATEVAL) is returned. The result W can be % used for selecting features by B*W. In this case, features are ranked % optimally. % The selected features are stored in W.DATA and can be found by +W. % In R, the search is reported step by step as: % % RES(:,1) : number of features % RES(:,2) : criterion value % RES(:,3:3+max(L,R)) : added / deleted features % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSEL % FEATSELO, FEATSELB, FEATSELF, FEATSELI, FEATSELP, FEATSELM, PRPROGRESS % Copyright: D. de Ridder, [email protected] % Faculty of Electrical Engineering, Mathematics and Computer Science % Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands % $Id: featsellr.m,v 1.6 2009/11/27 08:53:00 duin Exp $ function [w,res] = featsellr(a,crit,ksel,l,r,t,fid) prtrace(mfilename); if (nargin < 2) | isempty(crit) prwarning(2,'No criterion specified, assuming 1-NN.'); crit = 'NN'; end if (nargin < 3) | isempty(ksel) ksel = 0; % Consider all the features and sort them. end if (nargin < 4) | isempty(l) l = 1; end; if (nargin < 5) | isempty(r) r = 0; end; if (nargin < 6) prwarning(3,'No tuning set supplied.'); t = []; end if (nargin < 7) fid = []; end if (l==r) error('In ''Plus-L-takeaway-R feature selection'' L should be unequal to R') end % No inputs arguments provided, return an untrained mapping. if (nargin == 0) | (isempty(a)) w = mapping('featsellr',{crit,ksel,t}); w = setname(w,'+L-R FeatSel'); return end isvaldfile(a,1,2); % At least 1 object per class, 2 classes. a = testdatasize(a); a = setprior(a,getprior(a)); if ~is_scalar(t), iscomdset(a,t); end [m,k,c] = getsize(a); featlist = getfeatlab(a); % Initialise counters. state.l = l; state.r = r; if (state.l > state.r) % Start from empty set. state.I = []; % Pool of selected feature indices. state.critval_opt = 0; % Maximum criterion value found so far. state.res = zeros(0,2+max(l,r)); % Report of selection process. else state.I = [1:k]; % Pool of the feature indices to be used. state.critval_opt = feateval(a,crit,t); % Max. criterion found so far. state.res = [k,state.critval_opt,zeros(1,max(l,r))]; % Report of selection process. end; state.I_opt = state.I; state.critval = []; % Evaluate the criterion function for the entire dataset A. prprogress(fid,['\nfeatsellr: Plus-' num2str(l) '-takeaway-' num2str(r) ... ' feature selection\n']) if ksel == 0 if (l > r) s = sprintf('Forward search of optimal feature set out of %i: ',k); else s = sprintf('Backward search of optimal feature set out of %i: ',k); end nsize = k; else s = sprintf('Selection of %i features: ',ksel); nsize = abs(length(state.I)-ksel); end prwaitbar(nsize,s); while (ksel == 0 & (((state.l > state.r) & (length(state.I) <= k-state.l)) | ... ((state.l < state.r) & (length(state.I) > state.r)))) | ... (ksel > 0 & state.l > state.r & length(state.I) < ksel) | ... (ksel > 0 & state.l < state.r & length(state.I) > ksel) % Calculate criterion values C for the features in I and find the feature % giving the maximum. if (l > r) state = plusl(a,crit,t,state,fid); if (r > 0), state = takeawayr(a,crit,t,state,fid); end; prwaitbar(nsize,length(state.I),[s int2str(length(state.I))]); else state = takeawayr(a,crit,t,state,fid); if (l > 0), state = plusl(a,crit,t,state,fid); end; prwaitbar(nsize,k-length(state.I),[s int2str(length(state.I))]); end; end; prwaitbar(0); % Make sure we end up with exactly KSEL features. if (ksel == 0) & (state.l > state.r) & (length(state.I) < k) state.l = k - length(state.I); state = plusl(a,crit,t,state,fid); elseif (ksel == 0) & (state.l < state.r) & (length(state.I) > 1) state.r = length(state.I) - 1; state = takeawayr(a,crit,t,state,fid); elseif (ksel > 0) & (state.l > state.r) & (length(state.I) > ksel) state.r = length(state.I) - ksel; state = takeawayr(a,crit,t,state,fid); elseif (ksel > 0) & (state.l < state.r) & (length(state.I) < ksel) state.l = ksel - length(state.I); state = plusl(a,crit,t,state,fid); end; if (ksel ~= 0), state.I_opt = state.I; end; w = featsel(k,state.I_opt); if ~isempty(featlist) w = setlabels(w,featlist(state.I_opt,:)); end w = setname(w,'+L-R FeatSel'); res = state.res; prprogress(fid,'featsellr finished\n') return; function state = plusl(a,crit,t,state,fid) % J contains the indices of the nonselected features. [m,k,c] = getsize(a); J = setdiff(1:k,state.I); critval_opt = 0; Jsub_opt = []; % Find all possible choices of L indices out of J. [Jsub,ind] = npickk(J,state.l); while (~isempty(Jsub)) % Calculate the criterion when subset JSUB is added. if (isempty(t)) critval = feateval(a(:,[state.I Jsub]),crit); elseif is_scalar(t) critval = feateval(a(:,[state.I Jsub]),crit,t); else critval = feateval(a(:,[state.I Jsub]),crit,t(:,[state.I Jsub])); end; % Store the best subset and its criterion value. if (critval > critval_opt) critval_opt = critval; Jsub_opt = Jsub; end; [Jsub,ind] = npickk(J,state.l,ind); end; state.I = [state.I Jsub_opt]; if (critval_opt > state.critval_opt) | ... (critval_opt == state.critval_opt & ... length(state.I) < length(state.I_opt)), state.critval_opt = critval_opt; state.I_opt = state.I; end; line = [length(state.I),critval_opt,... [Jsub_opt zeros(1,size(state.res,2)-2-length(Jsub_opt))]]; prprogress(fid,' %d %f \n',line(1:2)); state.res = [state.res; line]; return function state = takeawayr(a,crit,t,state,fid) % J contains the indices of the selected features. [m,k,c] = getsize(a); J = state.I; critval_opt = 0; Jsub_opt = []; % Find all possible choices of L indices out of J. [Jsub,ind] = npickk(J,state.r); while (~isempty(Jsub)) % Calculate the criterion when subset JSUB is removed. if (isempty(t)) critval = feateval(a(:,[setdiff(state.I,Jsub)]),crit); elseif is_scalar(t) critval = feateval(a(:,[setdiff(state.I,Jsub)]),crit,t); else critval = feateval(a(:,[setdiff(state.I,Jsub)]),crit,... t(:,[setdiff(state.I,Jsub)])); end; % Store the best subset and its criterion value. if (critval > critval_opt) critval_opt = critval; Jsub_opt = Jsub; end; [Jsub,ind] = npickk(J,state.r,ind); end; state.I = setdiff(state.I,Jsub_opt); if (critval_opt > state.critval_opt) | ... (critval_opt == state.critval_opt & ... length(state.I) < length(state.I_opt)), state.critval_opt = critval_opt; state.I_opt = state.I; end; line = [length(state.I),critval_opt,... [-Jsub_opt zeros(1,size(state.res,2)-2-length(Jsub_opt))]]; prprogress(fid,' %d %f \n',line(1:2)); state.res = [state.res; line]; return % NPICKK - A kind-of-recursive implementation of NCHOOSEK. % % Picks K elements out of vector V and returns them in R, with their indices % in I. Initialise with [R,I] = NPICKK(V,K); subsequent calls should be % [R,I] = NPICKK(V,K,I). If the set is exhausted, returns R = I = []. function [r,i] = npickk(v,k,i) n = length(v); if (nargin < 3) | (isempty(i)) i = 1:k; j = 1; else % Increase the last index. j = k; i(j) = i(j) + 1; % While there's an overflow, increase the previous index % and reset the subsequent ones. while (i(j) > n-(k-j)) & (j >= 2) i(j-1) = i(j-1) + 1; for l = j:k i(l) = i(l-1) + 1; end; j = j - 1; end; end; % If the last index is too large, we're done. if (i(end) > n) r = []; i = []; else r = v(i); end; return
github
jacksky64/imageProcessing-master
prdatasets.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prdatasets.m
3,170
utf_8
a203d844b15ee8e794afdc358bd12a83
%PRDATASETS Checks availability of a PRTOOLS dataset % % PRDATASETS % % Checks the availability of the PRDATASETS directory, downloads the % Contents file and m-files if necessary and adds it to the search path. % Lists Contents file. % % PRDATASETS(DSET) % % Checks the availability of the particular dataset DSET. DSET should be % the name of the m-file. If it does not exist in the 'prdatasets' % directory an attempt is made to download it from the PRTools web site. % % PRDATASETS(DSET,SIZE,URL) % % This command should be used inside a PRDATASETS m-file. It checks the % availability of the particular dataset file and downloads it if needed. % SIZE is the size of the dataset in Mbyte, just used to inform the user. % In URL the web location may be supplied. Default is % http://prtools.org/prdatafiles/DSET.mat % % All downloading is done interactively and should be approved by the user. % % SEE ALSO % DATASETS, PRDATAFILES, PRDOWNLOAD % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function prdatasets(dset,siz,url) if nargin < 3, url = []; end if nargin > 0 & isempty(url) url = ['http://prtools.org/prdatasets/' dset '.mat']; end if nargin < 2, siz = []; end if nargin < 1, dset = []; end dirname = fullfile(cd,'prdatasets'); if exist('prdatasets/Contents','file') ~= 2 path = input(['The directory prdatasets is not found in the search path.' ... newline 'If it exists, give the path, otherwise hit the return for an automatic download.' ... newline 'Path to prdatasets: '],'s'); if ~isempty(path) addpath(path); feval(mfilename,dset,siz); return else dirname = fullfile(cd,'prdatasets'); [ss,dirname] = prdownload('http://prtools.org/prdatasets/prdatasets.zip',dirname); addpath(dirname) end end if isempty(dset) % just list Contents file help('prdatasets/Contents') elseif ~isempty(dset) & nargin == 1 % check / load m-file % this just loads the m-file in case it does not exist and updates the % Contents file if strcmp(dset,'renew') if exist('prdatasets/Contents','file') ~= 2 % no prdatasets in the path, just start feval(mfilename); else dirname = fileparts(which('prdatasets/Contents')); prdownload('http://prtools.org/prdatasets/prdatasets.zip',dirname); end elseif exist(['prdatasets/' dset],'file') ~= 2 prdownload(['http://prtools.org/prdatasets/' dset '.m'],dirname); prdownload('http://prtools.org/prdatasets/Contents.m',dirname); end else % now we load the m-file as well as the data given by the url % feval(mfilename,dset); % don't do this to allow for different mat-file % naming rootdir = fileparts(which('prdatasets/Contents')); [pp,ff,xx] = fileparts(url); if exist(fullfile(rootdir,[ff xx]),'file') ~= 2 siz = ['(' num2str(siz) ' MB)']; q = input(['Dataset is not available, OK to download ' siz ' [y]/n ?'],'s'); if ~isempty(q) & ~strcmp(q,'y') error('Dataset not found') end prdownload(url,rootdir); disp(['Dataset ' dset ' ready for use']) end end
github
jacksky64/imageProcessing-master
gentrunk.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gentrunk.m
1,849
utf_8
3a239e0c7a1bf3700f24ce43dc0e7187
%GENTRUNK Generation of Trunk's classification problem of 2 Gaussian classes % % A = GENTRUNK(N,K) % % INPUT % N Dataset size, or 2-element array of class sizes (default: [50 50]). % K Dimensionality of the dataset to be generated (default: 2). % % OUTPUT % A Dataset. % % DESCRIPTION % Generation of a K-dimensional 2-class dataset A of N objects. Both classes % are Gaussian distributed with the idenity matrix as covariance matrix. % The means of the first class are defined by ua(j) = 1/sqrt(j). The means % for the second class are ub = -ua. These means are such that the Nearest % Mean Classifier always shows peaking for a finite training set. % % REFERENCES % 1. G.V. Trunk, A Problem of Dimensionality: A Simple Example, IEEE Trans. % Pattern Analysis and Machine Intelligence, vol. 1, pp. 306-307, 1979 % 2. A.K. Jain, R.P.W. Duin, and J. Mao, Statistical Pattern Recognition: % A Review, IEEE Transactions on Pattern Analysis and Machine Intelligence, % vol. 22, pp. 4-37, 2000. % % EXAMPLE % a = gentrunk([1000 1000],200); % e = clevalf(a,nmc,[1:9 10:5:25 50:25:200],[5 5],25); % plote(e) % % SEE ALSO % DATASETS, PRDATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: gentrunk.m,v 1.2 2009/01/27 13:01:42 duin Exp $ function A = gendats (N,k) prtrace(mfilename); if (nargin < 1), N = [50 50]; end if (nargin < 2), k = 50; end % Set equal priors and generate random class sizes according to these. p = [0.5 0.5]; N = genclass(N,p); % Unit covariance matrices GA = eye(k); GB = eye(k); % Trunk means ma = 1./sqrt(1:k); mb = -ma; U = dataset([ma;mb],[1 2]'); U = setprior(U,p); % Create dataset. A = gendatgauss(N,U,cat(3,GA,GB)); A = setname(A,'Trunk''s Problem'); return
github
jacksky64/imageProcessing-master
setdat.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/setdat.m
1,305
utf_8
c0fb96a1040be90efb0e4d9553ba0e5d
%SETDAT Reset data and feature labels of dataset for classification output % % A = SETDAT(A,DATA,W) % % INPUT % A Dataset % DATA Dataset or double % W Mapping (optional) % % OUTPUT % A Dataset % % DESCRIPTION % The data in the dataset A is replaced by DATA (dataset or double). The % number of objects in A and DATA should be equal. Optionally, A is given % the feature labels and the output size as defined by the the mapping W. % This call is identical to: % A = SETDATA(A,DATA); % A = SET(A,'featlab',GETLABELS(W),'featsize',GETSIZE_OUT(W)); % % SEE ALSO % DATASET, SETDATA % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: setdat.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function a = setdat(a,b,w) prtrace(mfilename); if ~isdataset(a) a = dataset(a); end a = setdata(a,b); if (nargin > 2) if (~isa(w,'mapping')) error('Third parameter should be mapping') end % Special case: 2 classes, p(class2) = 1-p(class1). %No! this should not be done here! %if (size(a,2) == 1) & (size(w,2) == 2) % a = [a 1-a]; %end % Add attributes of W to A. a = set(a,'featlab',getlabels(w),'featsize',getsize_out(w)); end return;
github
jacksky64/imageProcessing-master
testc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testc.m
15,179
utf_8
80b4f31f69f8abb91b74a44a0c35913c
%TESTC Test classifier, error / performance estimation % % [E,C] = TESTC(A*W,TYPE) % [E,C] = TESTC(A,W,TYPE) % E = A*W*TESTC([],TYPE) % % [E,F] = TESTC(A*W,TYPE,LABEL) % [E,F] = TESTC(A,W,TYPE,LABEL) % E = A*W*TESTC([],TYPE,LABEL) % % INPUT % A Dataset % W Trained classifier mapping % TYPE Type of performance estimate, default: probability of error % LABEL Target class, default: none % % OUTPUT % E Error / performance estimate % C Number of erroneously classified objects per class. % They are sorted according to A.LABLIST % F Error / performance estimate of the non-target classes % % DESCRIPTION % This routine supplies several performance estimates for a trained % classifier W based on a test dataset A. It is possible to supply a cell % array of datasets {A*W}, an N x 1 cell array of datasets {A} and an N x M % cell array of mappings {W}. % % A should contain test objects for every class assigned by W. % Objects in A belonging to different classes than defined for W as well % as unlabeled objects are neglected. Note that this implies that TESTC % applied to a rejecting classifier (e.g. REJECTC) estimates the % performance on the not rejected objects only. By % [E,C] = TESTC(A,W); E = (C./CLASSSIZES(A))*GETPRIOR(A)'; % the classification error with respect to all objects in A may be % computed. Use CONFMAT for an overview of the total class assignment % including the unlabeled (rejected) objects. % % In case of missing classes in A, [E,C] = TESTC(A*W) returns in E a NaN % but in C still the number of erroneously classified objects per class. % % If LABEL is given, the performance estimate relates just to that class as % target class. If LABEL is not given a class average is returned weighted % by the class priors. % % The following performance measures are supported for TYPE: % 'crisp' Expected classification error based on error counting, % weighted by the class priors (default). % 'FN' E False negative % F False positive % 'TP' E True positive % F True negative % 'soft' Expected classification error based on soft error % summation, i.e. a sum of the absolute difference between % classifier output and target, weighted by class priors. % 'F' Lissack and Fu error estimate % 'mse' Expected mean square difference between classifier output % and target (based on soft labels), weighted by class % priors. % 'auc' Area under the ROC curve (this is an error and not a % performance!). For multi class problems this is the % weigthed average (by class priors) of the one-against-rest % contributions of the classes. % 'precision' E Fraction of true target objects among the objects % classified as target. The target class is defined by LABEL. % Priors are not used. % F Recall, fraction of correctly classified objects in the % target class. Priors are not used. % 'sensitivity' E Fraction of correctly classified objects in the target % class (defined by LABEL). Priors are not used. % Sensitivity as used her is identical to recall. % F Specificity, fraction non target objects that are not % classified into the target class (defined by LABEL). % Priors are not used. % % EXAMPLES % See PREX_PLOTC. % % SEE ALSO % MAPPINGS, DATASETS, CONFMAT, REJECTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: testc.m,v 1.19 2010/02/18 15:57:07 duin Exp $ function [OUT1,OUT2] = testc(a,w,type,label) prtrace(mfilename); if nargin < 4, label = []; end if nargin < 3, type = []; end if nargin < 2, w = []; end if nargin < 1, a = []; end if isstr(w) % takes care of testc(a*w,type,label) label = type; type = w; w = []; end % % if isempty(type) % type = 'crisp'; % end if (isempty(a)) % prepares a*testc([],w,type,label), or a*testc([],type,label) out1 = mapping(mfilename,'fixed',{w,type,label}); out1 = setname(out1,'testc'); out1 = setbatch(out1,0); % Don't run in batch mode out2 = []; elseif (~ismapping(w) & ~iscell(w)) | (ismapping(w) & isfixed(w) & strcmp(getname(w),'testc')) % call like testc(a*w,type,label), or a*testc([],w,type,label) which % results in testc(a*w,V) in which V = testc([],type,label) if ismapping(w) % retrieve parameters stored in testc([],w,type,label label = getdata(w,3); type = getdata(w,2); w = getdata(w,1); end if (iscell(a)) % If this argument is a cell array, recursively call this % function to get errors for all elements in the cell array. out1 = zeros(size(a)); out2 = cell(size(a)); for j1 = 1:size(a,1) for j2 = 1:size(a,2) [out1(j1,j2),out2{j1,j2}] = feval(mfilename,a{j1,j2},w,type,label); end end elseif (isdatafile(a)) % datafile needs some handling as we need to % process all objects separately c = getsize(a,3); out2 = zeros(1,c); next = 1; a = setprior(a,getprior(a)); while next > 0 [b,next] = readdatafile(a,next); if isempty(w) [out1,class_err] = feval(mfilename,dataset(b)); else [out1,class_err] = feval(mfilename,b,w,type,label); end out2 = out2 + class_err; end if isempty(a.prior) out1 = sum(out2)/size(a,1); else p = getprior(a); csizes = classsizes(a); if any(csizes == 0) out1 = NaN; prwarning(1,'Some classses have no test objects') else out1 = (out2./classsizes(a))*p'; end end else % here we are for the real work isdataset(a); % we need a real dataset for evaluation if (ismapping(w) & istrained(w)) a = a*w; end fflab = renumlab(getfeatlab(a)); if any(fflab == 0) % reject option! Allowed? if isempty(strmatch(type,char('crisp','FN','TP','precision','sensitivity'))) error('Reject option incompatible with desired error measure') else % remove all objects to be rejected reject_col = find(fflab == 0); [ma,J] = max(+a,[],2); L = find(J~=reject_col); a = a(L,:); end end a = a*maxc; % takes care that every class appears as a single column in a %a = remclass(a); lablist = getlablist(a); % classes of interest featlab = getfeatlab(a); flab = renumlab(featlab,lablist); csizes = classsizes(a); if any(flab == 0) prwarning(1,'Some classes assigned by the classifier have no test objects') end if any (csizes == 0) if nargout < 2 | ~isempty(label) % no error / performance measure can be returned error('Some classes have no test objects') else % we can, however, return, the error per class prwarning(2,'Some classes have no test objects') c = getsize(a,3); I = matchlablist(a*labeld,lablist); nlab = getnlab(a); OUT2 = zeros(1,c); for j=1:c J = find(nlab==j); OUT2(j) = sum(I(J)~=j); end OUT1 = NaN; end return end clab = renumlab(lablist,featlab); if any(clab == 0) prwarning(1,'Superfluous test objects found, they will be neglected') J = find(clab~=0); a = seldat(a,J); a = setlablist(a); csizes = csizes(J); end [m,k,c] = getsize(a); p = getprior(a); labtype = getlabtype(a); if isempty(type) % set default error measure types if islabtype(a,'crisp') type = 'crisp'; elseif islabtype(a,'soft') type = 'soft'; else type = 'mse' end end confm = cmat(a); % compute confusion matrix if isempty(label) lablist = getlablist(a); out2 = (csizes - diag(confm)'); out = zeros(1,c); out1 = 0; for j = 1:c % compute crit one-against-rest % confm2 = [confm(j,j) sum(confm(j,:))-confm(j,j); sum(confm(:,j))-confm(j,j) ... % sum(confm(:))-sum(confm(:,j))-sum(confm(j,:)) + confm(j,j)]; confm2 = [confm(j,j) csizes(j)-confm(j,j); sum(confm(:,j))-confm(j,j) ... sum(confm(:))-sum(confm(:,j))-csizes(j) + confm(j,j)]; b = seldat(a,j); out(j) = comp_crit(type,confm2,a,j,lablist(j,:)); if isempty(a.prior) out1 = out1 + out(j); else out1 = out1 + p(j) * out(j) / size(b,1); end end if isempty(a.prior) out1 = out1 / m; end else n = getclassi(a,label); confm2 = [confm(n,n) sum(confm(n,:))-confm(n,n); sum(confm(:,n))-confm(n,n) ... sum(confm(:))-sum(confm(:,n))-sum(confm(n,:)) + confm(n,n)]; [out1 out2] = comp_crit(type,confm2,a,n,label); out1 = out1/csizes(n); out2 = out2/(m-csizes(n)); end end elseif (iscell(a)) | (iscell(w)) % If there are two input arguments and either of them is a cell array, % recursively call this function on each of the cells. % Non-cell array inputs are turned into 1 x 1 cell arrays. if (~iscell(a)), a = {a}; end if (~iscell(w)), w = {w}; end if (min(size(a) > 1)) error('2D cell arrays of datasets not supported') end % Check whether the number of datasets matches the number of mappings. if (length(a) == 1) a = repmat(a,size(w,1)); elseif (min(size(w)) == 1 & length(a) ~= length(w)) | ... (min(size(w)) > 1 & length(a) ~= size(w,1)) error('Number of datasets does not match cell array size of classifiers.') end % Now recursively call this function for each combination of dataset % A{I} and mapping W{I,J}. out1 = cell(size(w)); out2 = cell(size(w)); for i=1:size(w,1) for j=1:size(w,2) [out1{i,j},out2{i,j}] = feval(mfilename,a{i}*w{i,j},type,label); end end else % Assert that the second argument is a trained mapping, and call % this function on the mapped data. ismapping(w); istrained(w); [out1,out2]= feval(mfilename,a*w,type,label); end % If there are no output arguments, display the error(s) calculated. % Otherwise, copy the calculated errors to the output arguments. if (nargout == 0) & (nargin > 0) if (iscell(a)) if (nargin == 1) for j1 = 1:size(a,1) for j2 = 1:size(a,2) disp(['Mean classification error on ' ... num2str(size(a{j1,j2},1)) ' test objects: ' num2str(out1(j1,j2))]); end end else fprintf('\n Test results result for'); disperror(a,w(1,:),cell2mat(out1)); end else if (nargin == 1) disp(['Mean classification error on ' num2str(size(a,1)) ' test objects: ' num2str(out1)]) else if ~isempty(w) %DXD empty mapping can happen after a*w*testc fprintf(' %s',getname(w,20)); else %DXD is this a good alternative? fprintf(' %s',getname(a,20)); end fprintf(' %5.3f',out1); fprintf('\n'); end end else OUT1 = out1; OUT2 = out2; end return %TESTAUC Multiclass error area under the ROC % % E = TESTAUC(A*W) % E = TESTAUC(A,W) % E = A*W*TESTAUC % % INPUT % A Dataset to be classified % W Classifier % % OUTPUT % E Error, Area under the ROC % % DESCRIPTION % The area under the error ROC is computed for the datset A w.r.t. the % classifer W. The estimator is based on a rank analysis of the classifier % outcomes. Ties are broken by a two-way sorting and averaging. % % The multiclass situation is solved by averaging over all outcomes of % the one-against-rest ROCs. % % Note that E is an error and not a performance measure like the AUC often % used in literature. % % SEE ALSO % DATASETS, MAPPINGS, TESTC, ROC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function e = testauc(a,w,n) prtrace(mfilename); if nargin < 3, n = []; end if (nargin == 0) | (isempty(a)) % No input arguments given: return mapping information. e = mapping(mfilename,'fixed',{label}); e = setbatch(e,0); return elseif (nargin == 1 | isempty(w)) % Classification matrix already computed d = a; else % Compute classification matrix now d = a*w; end [m,k,c] = getsize(d); s = classsizes(d); if k == 1 % classifier with a single class outcome, make two for consistency d = [d 1-d]; k = 2; end if isempty(n) e = zeros(1,c); for j = 1:c e(j) = auc_one(d,s,j); end e = e*getprior(d)'; else e = auc_one(d,s,n); end return function e = auc_one(d,s,j) % compute AUC for class j versus rest m = size(d,1); lablist = getlablist(d); % class names n = findfeatlab(d,lablist(j,:)); % forward sorting [ds,J1] = sort(-d(:,n)); [j1,K1] = sort(J1); % backward sorting to solve ties [ds,J2] = sort(flipud(-d(:,n))); [j2,K2] = sort(J2); K2 = flipud(K2); % get all object indices for this class K = findnlab(d,j); % retrieve number of wrong pairs e = (sum(K1(K)) + sum(K2(K))-(s(j)*(s(j)+1)))/2; % error contribution e = e / ((m-s(j))*s(j)); return function confm = cmat(a) % simplified confusion matrix procedure, class order as in c.lablist % a should be a classification matrix with the same feature labels % (no doubles) as a.lablist lablist = getlablist(a); featlab = getfeatlab(a); N = getsize(a,3); flab = renumlab(featlab,lablist); nlab = getnlab(a); aa = +a; confm = zeros(N,N); for j=1:N J = find(nlab==j); [mx,K] = max(aa(J,:),[],2); confm(j,:) = histc(flab(K)',1:N); end function [out1,out2] = comp_crit(type,c,a,n,label) % c : 2 x 2 confusion matrix % a : classification data % n : relevant class switch type case 'crisp' out1 = c(1,2); out2 = c(2,1); case 'FN' out1 = c(1,2); out2 = c(2,1); % FP case 'TP' out1 = c(1,1); out2 = c(2,2); % TN case 'precision' out1 = c(1,1)/(c(1,1)+c(2,1)); out1 = out1*(c(1,1)+c(1,2)); % sum of per sample contributions out2 = c(1,1)/(c(1,1)+c(1,2)); % recall (=sensitivity) out2 = out2*(c(2,2)+c(2,1)); % sum of per sample contributions case 'sensitivity' out1 = c(1,1)/(c(1,1)+c(1,2)); out1 = out1*(c(1,1)+c(1,2)); % sum of per sample contributions out2 = c(2,2)/(c(2,1)+c(2,2)); % specificity out2 = out2*(c(2,2)+c(2,1)); % sum of per sample contributions case 'soft' % normalised difference between desired and real targets a = setlabtype(a,'soft')*classc; t = gettargets(a); k = findfeatlab(a,label); d = abs(+a(:,k) - t(:,n)); J = find(isnan(d)); d(J) = ones(size(J)); out1 = sum(d)/2; % needed for consistency as every error is counted twice %out1 = sum(d); out2 = []; case 'F' % Lissack and Fu error b = seldat(a,n)*classc; out1 = sum(1-max(+b,[],2)); out2 = []; case {'mse','MSE'} k = findfeatlab(a,label); b = seldat(a,n); out1 = sum((+b(:,k)-gettargets(b)).^2); case {'nmse','NMSE'} % use normalised outputs k = findfeatlab(a,label); b = seldat(a,n)*classc; out1 = sum((+b(:,k)-gettargets(b)).^2); case {'auc','AUC'} out1 = testauc(a,[],n)*(c(1,1)+c(1,2));% sum of per sample contributions out2 = []; otherwise error('Error / performance type not found') end
github
jacksky64/imageProcessing-master
labeld.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/labeld.m
3,452
utf_8
a0eb48345f2f78a977286d3b730bf6ee
%LABELD Find labels of classification dataset (perform crisp classification) % % LABELS = LABELD(Z) % LABELS = Z*LABELD % LABELS = LABELD(A,W) % LABELS = A*W*LABELD % LABELS = LABELD(Z,THRESH) % LABELS = Z*LABELD([],THRESH) % LABELS = LABELD(A,W,THRESH) % LABELS = A*W*LABELD([],THRESH) % % INPUT % Z Classification dataset, or % A,W Dataset and classifier mapping % THRESH Rejection threshold % % OUTPUT % LABELS List of labels % % DESCRIPTION % Returns the labels of the classification dataset Z (typically the result % of a mapping or classification A*W). For each object in Z (i.e. each row) % the feature label or class label (i.e. the column label) of the maximum % column value is returned. % % Effectively, this performs the classification. It can also be considered % as a conversion from soft labels Z to crisp labels. % % When the parameter THRESH is supplied, then all objects which % classifier output falls below this value are rejected. The returned % label is then NaN or a string with spaces (depending if the labels are % numeric or string). Because the output of the classifier is used, it % is recommended to convert the output to a posterior prob. output using % CLASSC. (David Tax, 27-12-2004) % % SEE ALSO % MAPPINGS, DATASETS, TESTC, PLOTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function labels = labeld(a,w,thresh) prtrace(mfilename); % Add the possibility to reject objects for which the posterior is % too low: if (nargin < 3) thresh = []; end if (nargin == 2) & isa(w,'double') % we did something like labeld(z,0.3) thresh = w; w = []; end if (nargin < 2) w = []; end if (nargin == 0) | isempty(a) % Untrained mapping. labels = mapping(mfilename,'fixed',{thresh}); elseif isempty(w) if (isdatafile(a)) % datafile needs to process objects separately labels = cell(size(a,1),1); next = 1; while next > 0 [b,next,J] = readdatafile(a,next); labs = feval(mfilename,b,[],thresh); for i=1:length(J) labels{J(i)} = labs(i,:); end end if isstr(labels{1}) labels = char(labels); else labels = cell2mat(labels); end return end % In a classified dataset, the feature labels contain the output % of the classifier. [m,k] = size(a); featlist = getfeatlab(a); Jrej = []; % as a start, we don't reject objects if (k == 1) % If there is one output, assume it's a 2-class discriminant: % decision boundary = 0. J = 2 - (double(a) >= 0); if ~isempty(thresh) warning('Inproper thresholding of the 2-class dataset, please use classc.'); end else % Otherwise, pick the column containing the maximum output. [dummy,J] = max(+a,[],2); % Reject the objects which have posteriors lower than the % threshold if ~isempty(thresh) Jrej = find(dummy<thresh); end end labels = featlist(J,:); % Take care for the rejected objects: if ~isempty(Jrej) if isa(featlist,'double') labels(Jrej) = NaN; elseif isa(featlist,'char') labels(Jrej,:) = repmat(' ',size(featlist(1,:)) ); % Trick!:-) else error('The featlist of A is confusing. Cannot make a reject label'); end end else % Just construct classified dataset and call again. labels = feval(mfilename,a*w,thresh); end return
github
jacksky64/imageProcessing-master
nmsc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nmsc.m
2,013
utf_8
d6f267790fb4836284cfe76cb9641f13
%NMSC Nearest Mean Scaled Classifier % % W = NMSC(A) % W = A*NMSC % % INPUT % A Trainign dataset % % OUTPUT % W Nearest Mean Scaled Classifier mapping % % DESCRIPTION % Computation of the linear discriminant for the classes in the dataset A % assuming normal distributions with zero covariances and equal class variances. % The use of soft labels is supported. % % The difference with NMC is that NMSC is based on an assumption of normal % distributions and thereby automatically scales the features and is % sensitive to class priors. NMC is a plain nearest mean classifier that is % feature scaling sensitive and unsensitive to class priors. % % SEE ALSO % DATASETS, MAPPINGS, NMC, LDC ,FISHERC, QDC, UDC % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: nmsc.m,v 1.7 2008/01/25 10:20:07 duin Exp $ function w = nmsc(a) prtrace(mfilename); % No input arguments: return an untrained mapping. if (nargin < 1) | (isempty(a)) w = mapping(mfilename); w = setname(w,'Scaled Nearest Mean'); return end islabtype(a,'crisp','soft'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes [m,k,c] = getsize(a); p = getprior(a); a = setprior(a,p); [U,GG] = meancov(a); % All class covariance matrices are assumed to be diagonal. They are % weighted by the priors, unlike the standard nearest mean classifier (NMC). G = zeros(c,k); for j = 1:c G(j,:) = diag(GG(:,:,j))'; end G = p*G; % The two-class case is special, as it can be conveniently stored as an % affine mapping. if (c == 2) ua = +U(1,:); ub = +U(2,:); R = G*(ua - ub)'; R = ((ua - ub)./G)'; offset = ((ub./G)*ub' - (ua./G)*ua')/2 + log(p(1)/p(2)); w = affine(R,offset,a,getlablist(a),k,c); w = cnormc(w,a); else pars.mean = +U; pars.cov = G; pars.prior = p; w = normal_map(pars,getlab(U),k,c); end w = setname(w,'Scaled Nearest Mean'); w = setcost(w,a); return
github
jacksky64/imageProcessing-master
testauc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testauc.m
2,064
utf_8
f5ad0b21b349ec323644d52b39eb9be6
%TESTAUC Multiclass error area under the ROC % % E = TESTAUC(A*W) % E = TESTAUC(A,W) % E = A*W*TESTAUC % % INPUT % A Dataset to be classified % W Classifier % % OUTPUT % E Error, Area under the ROC % % DESCRIPTION % The area under the ROC is computed for the datset A w.r.t. the % classifer W. The estimator is based on a rank analysis of the classifier % outcomes. Ties are broken by a two-way sorting and averaging. % % The multiclass situation is solved by averaging over all outcomes of % the one-against-rest ROCs. % % Note that E is an error and not a performance measure like the AUC often % used in literature. % % SEE ALSO % DATASETS, MAPPINGS, TESTC, ROC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function e = testauc(a,w) prtrace(mfilename); if (nargin == 0) | (isempty(a)) % No input arguments given: return mapping information. e = mapping(mfilename,'fixed'); return elseif (nargin == 1) % Classification matrix already computed d = a; else % Compute classification matrix now d = a*w; end [m,k,c] = getsize(d); s = classsizes(d); if k == 1 % classifier with a single class outcome, make two for consistency d = [d 1-d]; k = 2; end class_names = getfeatlab(d); % class names e = zeros(1,c); for j=1:c % run over all classes % forward sorting [ds,J1] = sort(-d(:,j)); [j1,K1] = sort(J1); % backward sorting to solve ties [ds,J2] = sort(flipud(-d(:,j))); [j2,K2] = sort(J2); K2 = flipud(K2); % get all object indices for this class K = findlabels(d,class_names(j,:)); % retrieve number of wrong pairs e(j) = (sum(K1(K)) + sum(K2(K))-(s(j)*(s(j)+1)))/2; % error contribution e(j) = e(j) / ((m-s(j))*s(j)); end % average over all classes e = mean(e);
github
jacksky64/imageProcessing-master
genclass.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/genclass.m
1,579
utf_8
b363022121705e34497b3a5c067eabd1
%GENCLASS Generate class frequency distribution % % M = GENCLASS(N,P) % % INPUT % N Number (scalar) % P Prior probabilities % % OUTPUT % M Class frequency distribution % % DESCRIPTION % Generates a class frequency distribution M of N (scalar) samples % over a set of classes with prior probabilities given by the vector P. % The numbers of elements in P determines the number of classes and % thereby the number of elements in M. P should be such that SUM(P) = 1. % If N is a vector with length C, then M=N is returned. This transparent % behavior is implemented to avoid tests in other routines. % % Note that this is a random process, so M = GENCLASS(100,[0.5, 0.5]) % may result in M = [45 55]. % % This routines is used in various data generation routines like % GENDATH to determine the distribution of the objects over the classes. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: genclass.m,v 1.3 2006/09/26 12:55:32 duin Exp $ function N = genclass(N,p) prtrace(mfilename); if nargin < 2 | isempty(p) p = ones(1,length(N))/length(N); end c = length(p); if length(N) == c ; elseif length(N) > 1 error('Mismatch in numbers of classes') else if nargin < 2 | isempty(p) p = repmat(1/c,1,c); end P = cumsum(p); if abs(P(c)-1) > 1e-10 error('Sum of class prior probabilities should be one') end X = rand(N,1); K = repmat(X,1,c) < repmat(P(:)',N,1); L = sum(K,1); N = L - [0 L(1:c-1)]; end return
github
jacksky64/imageProcessing-master
prtools_news.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prtools_news.m
2,342
utf_8
b439aced7644c0559d07b4f2e2542d8c
%PRTOOLS_NEWS List PRTools news and download new versions % % PRTOOLS_NEWS List PRTools news % PRTOOLS_NEWS(DIRNAME,UNZIP) Reload PRTools % % DIRNAME is the directory to download PRTools. If UNZIP == 1 % (default 0) it is unzipped. function out = prtools_news(dirname,unzip_link) % to be implemented later: % try % % fake, just to be sure that PRTools datasets are used % dataset(rand(5,2),genlab(5),'name','apple'); % catch % error([newline 'PRTools has not been properly installed. It should be at the top of' ... % newline 'the Matlab path. After restarting Matlab adjust and save the path' ... % newline 'and give ''prtools'' as the first command']); % end % % if nargin > 0 & ~isempty(dirname) % if dirname == -1 % return % this was just a test to see whether PRTools was properly installed % end % end if ~usejava('jvm') if nargout == 1 out = ' No Java (JVM) installed, some commands cannot be used'; elseif nargin == 0 error('Java (JVM) has not been installed, so the ''prtools''-command does not work') end end if nargin < 2, unzip_link = 0; end [links,mod] = readlinks; if nargin == 0 if nargout == 0 if isempty(links) error('Error in reaching PRTools web links'); else web(links{1},'-browser'); end else out = mod; % needed for call in dataset end elseif nargin == 1 & dirname == 0 % read mod disp(mod); elseif isempty(links) error('Error in reaching PRTools web links'); else if isempty(dirname) dirname = pwd; end if ~isstr(dirname) n = dirname; dirname = pwd; else n = 2; end [pp,ff] = fileparts(links{n}); if unzip_link [pp,ff] = fileparts(links{n}); fprintf(1,'Downloading and unzipping %s ....\n',ff) unzip(links{n},dirname); disp('Download ready'); else if exist(dirname) == 0 mkdir(dirname); end fprintf(1,'Downloading %s ....\n',ff) [pathname,filename,ext] = fileparts(links{n}); fname = fullfile(dirname,[filename ext]); if ~usejava('jvm') & isunix [status,fname] = unix('wget -q -O - http://prtools.org/files/prtoolslinks.txt'); if status > 1 error('Download failed, no Java?') end else [pathname,status] = urlwrite(links{n},fname); end disp('Download ready'); end end
github
jacksky64/imageProcessing-master
gendatw.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatw.m
834
utf_8
c8923ae31b9b5ca941d682f2f264e9ce
%GENDATW Sample dataset by given weigths % % B = GENDATW(A,V,N) % % INPUT % A Dataset % V Vector with weigths for each object in A % N Number of objects to be generated (default size A); % % OUTPUT % B Dataset % % DESCRIPTION % The dataset A is sampled using the weigths in V as a prior distribution. function b = gendatw(a,v,n) isdataset(a); if nargin < 3, n = size(a,1); end v = v./sum(v); if any(v<0) error('Weights should be positive'); end mins = 0; nn = 0; while(mins < 2) N = genclass(n,v); L = []; while any(N > 0) L = [L find(N > 0)]; N = N-1; end b = a(L,:); mins = min(classsizes(b)); nn = nn + 1; if nn > 100 error('Problems with weighted subsampling: classes have disappeared. Please enlarge training set.') end end return
github
jacksky64/imageProcessing-master
kernelm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/kernelm.m
5,348
utf_8
3e8ef13d0db7c522ec59556fa1e416ba
%KERNELM Kernel mapping, dissimilarity representation % % [W,J] = KERNELM(A,KERNEL,SELECT,P1,P2 , ...) % W = A*KERNELM([],KERNEL,SELECT,P1,P2 , ...) % K = B*W % % INPUT % A,B Datasets % KERNEL Untrained kernel / dissimilarity representation, % a mapping computing proximities between objects. % default: Euclidean dissimilarities: PROXM([],'d',1) % SELECT Name of object selection procedure, see below % P1,P2, ... Additional parameters for SELECT % % OUTPUT % W Mapping % J Vector with indices of selected objects for representation % K Kernel matrix, dissimilarity representation, % size [SIZE(B,1) LENGTH(J)] % % DESCRIPTION % Computes the kernel mapping W for the representation objects in A. The % computation of the kernel matrix, which is a proximity matrix (similarities % or dissimilarities) should be defined in KERNEL by an untrained mapping like % PROXM for predefined proximities or USERKERNEL for user specified % proximities. % A*KERNEL should 'train' the kernel, i.e. specify A as representation set. % B*(A*KERNEL) should compute the kernel matrix: a dataset. % % Initially, the kernel mapping has a size [SIZE(A,2) SIZE(A,1)]. For % increased efficiency or accuracy the representation set may be reduced % by a routine given by the string SELECT to select to objects J, using % possibly additional parameters P1, P2, etcetera. This option of % representation set reduction is the only difference between the use of % KERNELM and routines like PROXM and USERKERNEL. % % The following choices for SELECT are supported: % % 'random' random selection of P1 objects, maximum P2 % 'gendat' [X,Y,J] = GENDAT(A,P1) % 'kcentres' [LAB,J] = KCENTRES(DISTM(A),P1,P2) % 'modeseek' [LAB,J] = MODESEEK(DISTM(A),P1) % 'edicon' J = EDICON(DISTM(A),P1,P2,P3) % 'featsel' J = +FEATSELM(A*KERNELM(A,TYPE,P),P1,P2,P3) % % REFERENCES % 1. E.Pekalska, R.P.W.Duin, P.Paclik, Prototype selection for dissimilarity- % based classification, Pattern Recognition, vol. 39, no. 2, 2006, 189-208. % 2. E.Pekalska and R.P.W.Duin, The Dissimilarity Representation for Pattern % Recognition, Foundations and Applications, World Scientific, 2005, 1-607. % % EXAMPLE % A = GENDATB; % W = (SCALEM*KERNELM([],[],'random',5)*LOGLC); % SCATTERD(A) % PLOTC(A*W) % % SEE ALSO % DATASETS, MAPPINGS, PROXM, USERKERNEL % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: kernelm.m,v 1.7 2007/07/10 08:25:29 duin Exp $ function w = kernelm(a,kernel,select,varargin); prtrace(mfilename); if isempty(varargin), varargin = {[] [] []}; end if length(varargin) == 1, varargin = {varargin{:} [] []}; end if length(varargin) == 2, varargin = {varargin{:} []}; end if (nargin < 3) select = []; prwarning(4,'No representation set reduction specified.') end if (nargin < 2) | isempty(kernel) prwarning(3,'No kernel mapping specified. Euclidean distances assumed') kernel = proxm([],'d',1); end if (nargin < 1) | (isempty(a)) % Definition: an untrained mapping. w = mapping(mfilename,{kernel,select,varargin{:}}); w = setname(w,'Kernel mapping'); elseif isstr(kernel) % old format of call: kernelm(a,type,p,n), training type = kernel; p = select; if ~isempty(varargin) if length(varargin) > 1 error('Wrong parameters supplied') end n = varargin{1}; else n = []; end [m,k] = size(a); kernel = proxm([],type,p); w = mapping(mfilename,'trained',{a*kernel},getlab(a),k,m); if ~isempty(n) w = w*pca(a*w,n); end w = setname(w,'Kernel Mapping'); elseif isa(kernel,'mapping') & ~strcmp(getmapping_file(kernel),mfilename) % training a = testdatasize(a); a = testdatasize(a,'objects'); isuntrained(kernel); [m,k] = size(a); %w = mapping('kernelm','trained',{a*kernel},getlab(a),k,m); if isempty(select) w = mapping('kernelm','trained',{a*kernel},getlab(a),k,m); elseif ismapping(select) r = a*select; w = mapping('kernelm','trained',{r*kernel},getlab(a),k,size(r,1)); else switch select case 'random' J = randperm(m); n = varargin{1}; if isempty(n) | n > m error('Number of objects to be selected not given or too large') end if n < 1, n = ceil(n*m); end % fraction given if ~isempty(varargin{2}) n = min(n,varargin{2}); end J = J(1:n); case 'gendat' [x,y,J] = gendat(a,varargin{1}); case 'kcentres' [lab,J] = kcentres(distm(a),varargin{1:2}); case 'modeseek' [lab,J] = modeseek(distm(a),varargin{1}); case 'edicon' J = edicon(distm(a),varargin{1:3}); case 'featsel' w = mapping('kernelm','trained',{a*kernel},getlab(a),k,m); J = +featselm(a*w,varargin{1:3}); otherwise error('Unknown choice for object selection') end % redefine mapping with reduced representation set labels_out = getlab(a); w = mapping('kernelm','trained',{a(J,:)*kernel},labels_out(J,:),k,length(J)); end w = setname(w,'Kernel Mapping'); else % Execution of the mapping, w will be a dataset. kern = getdata(kernel,1); % trained kernel is stored in datafield K = a*kern; w = setdat(a,K,kern); end return;
github
jacksky64/imageProcessing-master
rbsvc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rbsvc.m
2,053
utf_8
41cca5dbfaed944ed3654474ee369f0b
%RBSVC Automatic radial basis Support Vector Classifier % % [W,KERNEL,NU] = RBSVC(A) % % INPUT % A Dataset % % OUTPUT % W Mapping: Radial Basis Support Vector Classifier % KERNEL Untrained mapping, representing the optimised kernel % NU Resulting value for NU from NUSVC % % DESCRIPTION % This routine computes a classifier by NUSVC using a radial basis kernel % with an optimised standard deviation by REGOPTC. The resulting classifier % W is identical to NUSVC(A,KERNEL,NU). As the kernel optimisation is based % on internal cross-validation the dataset A should be sufficiently large. % Moreover it is very time-consuming as the kernel optimisation needs % about 100 calls to SVC. % % SEE ALSO % MAPPINGS, DATASETS, PROXM, SVC, NUSVC, REGOPTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [w,kernel,nu] = rbsvc(a,sig) if nargin < 2 | isempty(sig) sig = NaN; end if nargin < 1 | isempty(a) w = mapping(mfilename,{sig}); else islabtype(a,'crisp'); isvaldfile(a,2,2); % at least 1 object per class, 2 classes a = testdatasize(a,'objects'); c = getsize(a,3); if (c > 2) % Compute c classifiers: each class against all others. w = mclassc(a,mapping(mfilename,{sig})); else if isnan(sig) % optimise sigma % find upper bound d = sqrt(+distm(a)); sigmax = min(max(d)); % max: smallest furthest neighbor distance % find lower bound d = d + 1e100*eye(size(a,1)); sigmin = max(min(d)); % min: largest nearest neighbor distance % call optimiser defs = {1}; parmin_max = [sigmin,sigmax]; [w,kernel,nu] = regoptc(a,mfilename,{sig},defs,[1],parmin_max,testc([],'soft')); else % kernel is given kernel = proxm([],'r',sig); [w,J,nu] = nusvc(a,kernel); end end end w = setname(w,'RB Support Vector Classifier'); return
github
jacksky64/imageProcessing-master
gendatp.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatp.m
2,955
utf_8
5b3389c5a8b91866cde0c9f0155e41ab
%GENDATP Parzen density data generation % % B = GENDATP(A,N,S,G) % % INPUT % A Dataset % N Number(s) of points to be generated (optional; default: 50 per class) % S Smoothing parameter(s) % (optional; default: a maximum likelihood estimate based on A) % G Covariance matrix used for generation of the data % (optional; default: the identity matrix) % % OUTPUT % B Dataset of points generated according to Parzen density % % DESCRIPTION % Generation of a dataset B of N points by using the Parzen estimate of the % density of A based on a smoothing parameter S. N might be a row/column % vector with different numbers for each class. Similarly, S might be % a vector with different smoothing parameters for each class. If S = 0, % then S is determined by a maximum likelihood estimate using PARZENML. % If N is a vector, then exactly N(I) objects are generated for the class I. % G is the covariance matrix to be used for generating the data. G may be % a 3-dimensional matrix storing separate covariance matrices for each class. % % SEE ALSO % DATASETS, GENDATK % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: gendatp.m,v 1.5 2010/03/25 15:41:39 duin Exp $ function B = gendatp(A,N,s,G) prtrace(mfilename); if (nargin < 1) error('No dataset found'); end A = dataset(A); A = setlablist(A); % remove empty classes first [m,k,c] = getsize(A); p = getprior(A); if (nargin < 2) prwarning(4,'Number of points not specified, 50 per class assumed.'); N = repmat(50,1,c); end if (nargin < 3) prwarning(4,'Smoothing parameter(s) not specified, to be determined be an ML estimate.'); s = 0; end if (length(s) == 1) s = repmat(s,1,c); end if (length(s) ~= c) error('Wrong number of smoothing parameters.') end if (nargin < 4) prwarning(4,'Covariance matrices not specified, identity matrix assumed.'); covmat = 0; % covmat indicates whether a covariance matrix should be used % 0 takes the identity matrix as the covariance matrix else covmat = 1; if (ndims(G) == 2) G = repmat(G,[1 1 c]); end if any(size(G) ~= [k k c]) error('Covariance matrix has a wrong size.') end end N = genclass(N,p); lablist = getlablist(A); B = []; labels = []; % Loop over classes. for j=1:c a = getdata(A,j); a = dataset(a); ma = size(a,1); if (s(j) == 0) % Estimate the smoothing parameter. h = parzenml(a); else h = s(j); end if (~covmat) b = a(ceil(rand(N(j),1) * ma),:) + randn(N(j),k).*repmat(h,N(j),k); else b = a(ceil(rand(N(j),1) * ma),:) + ... gendatgauss(N(j),zeros(1,k),G(:,:,j)).*repmat(h,N(j),k); end B = [B;b]; labels = [labels; repmat(lablist(j,:),N(j),1)]; end B = dataset(B,labels); B = setprior(B,p); B = set(B,'featlab',getfeatlab(A),'name',getname(A),'featsize',getfeatsize(A)); return
github
jacksky64/imageProcessing-master
spirals.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/spirals.m
553
utf_8
9c160bf41b06bee2e4e497139043f7f5
%SPIRALS 194 objects with 2 features in 2 classes % % A = SPIRALS % A = SPIRALS(M,N) % % Load the dataset in A, select the objects and features according to the % index vectors M and N. This is one of the Spiral dataset implementations. % % See also DATASETS, PRDATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function a = spirals(M,N); if nargin < 2, N = []; end if nargin < 1, M = []; end a = prdataset('spirals',M,N); a = setname(a,'Spirals');
github
jacksky64/imageProcessing-master
plotdg.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/plotdg.m
1,889
utf_8
a5fda91cafdb6a5f1d4df34153470a49
%PLOTDG Plot dendrogram % % PLOTDG(DENDROGRAM,K) % % INPUT % DENDROGRAM Dendrogram % K Number of clusters % % OUTPUT % % DESCRIPTION % Plots a dendrogram as generated by HCLUST. If the optional K is given the % dendrogram is compressed first to K clusters. Along the horizontal axis % the numbers stored in DENDROGRAM(1,:) are written as text. The dendrogram % itself is defined by DENDROGRAM(2,:) in which each entry stands for the % level on which the previous and next group of objects are clustered. % % SEE ALSO % HCLUST % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: plotdg.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function plotdg(dendrogram,k) prtrace(mfilename); [n,m] = size(dendrogram); if n ~= 2 error('No proper dendrogram supplied') end if nargin == 2 % compress dendrogram to k clusters if k > m error('Number of clusters should be less than sample size') end F = [dendrogram(2,:),inf]; S = sort(-F); t = -S(k+1); % find cluster level I = [find(F >= t),m+1]; % find all indices where cluster starts dendrogram = [I(2:k+1) - I(1:k); F(I(1:k))]; m = k; end [S,I] = sort(dendrogram(2,:)); C = [0:m-1;1:m;zeros(1,m);2:m+1]; X = zeros(m,4); Y = X; T = zeros(m,4); for i=1:m-1 X(i,:) = [C(2,I(i)), C(2,I(i)), C(2,C(1,I(i))), C(2,C(1,I(i)))]; Y(i,:) = [C(3,I(i)), S(i), S(i), C(3,C(1,I(i)))]; C(:,C(1,I(i))) = [C(1,C(1,I(i))), (C(2,I(i)) + C(2,C(1,I(i))))/2, ... S(i), C(4,I(i))]'; C(1,C(4,I(i))) = C(1,I(i)); T(i,:) = sprintf('%4d',dendrogram(1,i)); end T(m,:) = sprintf('%4d',dendrogram(1,m)); T = char(T); X(m,:) = [0 0 m+1 m+1]; Y(m,:) = [0 0 0 0]; plot(X',Y','-b'); h = gca; set(h,'box','off'); set(h,'xtick',[1:m]); set(h,'xticklabel',T); set(h,'fontsize',8) return
github
jacksky64/imageProcessing-master
newline.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/newline.m
174
utf_8
2a39d991937508030bfbf1e69ec3c1a6
%NEWLINE The platform dependent newline character % % c = newline % $Id: newline.m,v 1.3 2010/03/18 12:25:21 duin Exp $ function c = newline c = sprintf('\n'); return
github
jacksky64/imageProcessing-master
genlab.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/genlab.m
3,076
utf_8
f6ea44f4198613eeb28e3339d6174aa7
%GENLAB Generate labels for classes % % LABELS = GENLAB(N,LABLIST) % % INPUT % N Number of labels to be generated % LABLIST Label names (optional; default: numeric labels 1,2,3,...) % % OUTPUT % LABELS Labels in a column vector or strinag array % % DESCRIPTION % Generate a set of labels as defined by the LABLIST. N is a number or % a row/column vector of the values for each class. If N is a vector, then % the first N(i) labels get the value LABLIST(i,:). N should have as many % components as LABLIST. If N is a scalar, then N labels are generated for % each class. LABLIST is a column vector or a string array. Labels can be % used to construct a labeled dataset. % % EXAMPLES % Numeric labels, 1..10, 10 classes, 100 labels per class. % LAB1 = GENLAB(100*ones(1,10)); % Character labels, 3 classes, 10 labels per class. % LAB2 = GENLAB([10 10 10], ['A';'B';'C']); % Name labels, 2 classes, 50 labels per class. % The commands below are equivalent. % LAB3 = GENLAB([50 50], {'Apple'; 'Pear'}); % LAB3 = GENLAB([50 50], ['Apple'; 'Pear ']); % % SEE ALSO % DATASETS, DATASET % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: genlab.m,v 1.4 2009/09/23 08:33:55 duin Exp $ function labels = genlab(n,lablist) prtrace(mfilename); if (nargin == 1) % Create numeric labels. labels = []; lab = 1; if (all(n == n(1))) % All label categories have equal cardinalities. J = repmat([1:length(n)],n(1),1); labels = J(:); else for i = 1:length(n) labels = [labels; repmat(lab,n(i),1)]; lab = lab+1; end end else % LABLIST present % Create string or character labels. if iscell(lablist), lablist = lablist(:); end [m,ncol] = size(lablist); if m ~= length(n) % This is only possible when all label categories have equal cardinalities. if (length(n) > 1) error('Wrong number of labels supplied.') else J = repmat([1:m],n,1); labels = lablist(J(:),:); end elseif (iscell(lablist)) % Cell array % We are here when e.g. GENLAB([10 10],{'Apple'; 'Pear'}) is called. labels = {}; for i = 1:length(n) labels = [labels; repmat(lablist(i),n(i),1)]; end labels = char(labels); % cell string labels are not supported anymore elseif (isstr(lablist)) % Character array % We are here when e.g. GENLAB([10 10],['Apple'; 'Pear ']) is called. labels = char(repmat(lablist(1,:),n(1),1)); for i = 2:length(n) if (n(i) > 0) labels = char(labels,repmat(lablist(i,:),n(i),1)); end end if (n(1) == 0) % First label category not wanted. labels(1,:) = []; end else % Again numeric labels. % We are here, when e.g. GENLAB([10 10 10], [3;6;7]) is called. if (ncol > 1) error('Labels should be characters, strings or single numbers.') end labels = []; for i = 1:length(n) labels = [labels; repmat(lablist(i),n(i),1)]; end end end return
github
jacksky64/imageProcessing-master
im_berosion.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_berosion.m
1,256
utf_8
ea9ba28359fad8fd157dc7a9cb947476
%IM_BEROSION Binary erosion of images stored in a dataset (DIP_Image) % % B = IM_BEROSION(A,N,CONNECTIVITY,EDGE_CONDITION) % B = A*IM_BEROSION([],N,CONNECTIVITY,EDGE_CONDITION) % % INPUT % A Dataset with binary object images dataset (possibly multi-band) % N Number of iterations (default 1) % CONNECTIVITY See BEROSION % EDGE_CONDITION Value of edge, default 1 % % OUTPUT % B Dataset with eroded images % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE, BEROSION % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function b = im_berosion(a,n,connect,edgecon) prtrace(mfilename); if nargin < 4 | isempty(edgecon), edgecon = 1; end if nargin < 3 | isempty(connect), connect = -2; end if nargin < 2 | isempty(n), n = 1; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{n,connect,edgecon}); b = setname(b,'Image erosion'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,{n,connect,edgecon}); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = dip_image(a,'bin'); b = berosion(a,n,connect,edgecon); end return
github
jacksky64/imageProcessing-master
im_minf.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_minf.m
1,134
utf_8
fe024d15ba47c051482648153256c205
%IM_MINF Minimum filter of images stored in a dataset (DIP_Image) % % B = IM_MINF(A,SIZE,SHAPE) % B = A*IM_MINF([],SIZE,SHAPE) % % INPUT % A Dataset with object images dataset (possibly multi-band) % SIZE Filter width in pixels, default SIZE = 7 % SHAPE String with shape:'rectangular', 'elliptic', 'diamond' % Default: elliptic % % OUTPUT % B Dataset with filtered images % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE, MINF % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_minf(a,size,shape) prtrace(mfilename); if nargin < 3 | isempty(shape), shape = 'elliptic'; end if nargin < 2 | isempty(size), size = 7; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{size,shape}); b = setname(b,'Minimum filter'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,{size,shape}); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = 1.0*dip_image(a); b = minf(a,size,shape); end return
github
jacksky64/imageProcessing-master
setname.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/setname.m
287
utf_8
038915ac208df9ac19248da017fefef0
%SETNAME Mapping for easy name setting % % A = A*SETNAME([],NAME) % W = W*SETNAME([],NAME) % %Set name of dataset A or mapping W function a = setname(a,varargin) if nargin < 1 | isempty(a) a = mapping(mfilename,'combiner',varargin); else a = setname(a,varargin); end
github
jacksky64/imageProcessing-master
subsc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/subsc.m
4,474
utf_8
c48deab246d0527ec9f8facef7c0cb91
%SUBSC Subspace Classifier % % W = SUBSC(A,N) % W = SUBSC(A,FRAC) % % INPUT % A Dataset % N or FRAC Desired model dimensionality or fraction of retained % variance per class % % OUTPUT % W Subspace classifier % % DESCRIPTION % Each class in the trainingset A is described by linear subspace of % dimensionality N, or such that at least a fraction FRAC of its variance % is retained. This is realised by calling PCA(AI,N) or PCA(AI,FRAC) for % each subset AI of A (objects of class I). For each class a model is % built that assumes that the distances of the objects to the class % subspaces follow a one-dimensional distribution. % % New objects are assigned to the class of the nearest subspace. % Classification by D = B*W, in which W is a trained subspace classifier % and B is a testset, returns a dataset D with one-dimensional densities % for each of the classes in its columns. % % If N (ALF) is NaN it is optimised by REGOPTC. % % REFERENCE % E. Oja, The Subspace Methods of Pattern Recognition, Wiley, New York, 1984. % % SEE ALSO % DATASETS, MAPPINGS, PCA, FISHERC, FISHERM, GAUSSM, REGOPTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function W = subsc(A,N) name = 'Subspace classf.'; % handle default if nargin < 2, N = 1; end % handle untrained calls like subsc([],3); if nargin < 1 | isempty(A) W = mapping(mfilename,{N}); W = setname(W,name); return end if isa(N,'double') & isnan(N) % optimize regularisation parameter defs = {1}; parmin_max = [1,size(A,2)]; W = regoptc(A,mfilename,{N},defs,[1],parmin_max,testc([],'soft'),0); elseif isa(N,'double') % handle training like A*subsc, A*subsc([],3), subsc(A) % PRTools takes care that they are all converted to subsc(A,N) islabtype(A,'crisp'); % allow crisp labels only isvaldfile(A,1,2); % at least one object per class, two objects A = testdatasize(A,'features'); A = setprior(A,getprior(A)); [m,k,c] = getsize(A); % size of the training set for j = 1:c % run over all classes B = seldat(A,j); % get the objects of a single class only u = mean(B); % compute its mean B = B - repmat(u,size(B,1),1); % subtract mean v = pca(B,N); % compute PCA for this class v = v*v'; % trick: affine mappings in the original space B = B - B*v; % differences of objects and their mappings s = mean(sum(B.*B,2)); % mean square error w.r.t. the subspace data(j).u = u; % store mean data(j).w = v; % store mapping data(j).s = s; % store mean square distance end % define trained mapping, % store class labels and size W = mapping(mfilename,'trained',data,getlablist(A),k,c); W = setname(W,name); elseif isa(N,'mapping') % handle evaluation of a trained subspace classifier W for a dataset A. % The command D = A*W is by PRTools translated into D = subsc(A,W) % Such a call is detected here by the fact that N appears to be a mapping. W = N; % avoid confusion: call the mapping W m = size(A,1); % number of test objects [k,c] = size(W); % mapping size: from K features to C classes d = zeros(m,c); % output: C class densities for M objects for j=1:c % run over all classes u = W.data(j).u; % class mean in training set v = W.data(j).w; % mapping to subspace in original space s = W.data(j).s; % mean square distance B = A - repmat(u,m,1); % substract mean from test set B = B - B*v; % differences objects and their mappings d(:,j) = sum(B.*B,2)/s; % convert to distance and normalise end d = exp(-d/2)/sqrt(2*pi); % convert to normal density A = dataset(A); % make sure A is a dataset d = setdata(A,d,getlabels(W)); % take data from D and use % class labels as given in W % other information in A is preserved W = d; % return result in output variable W else error('Illegal call') % this should not happen end return
github
jacksky64/imageProcessing-master
reject.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/reject.m
3,470
utf_8
e28c512648bc1dc90ebb01253058ff9d
%REJECT Compute the error-reject trade-off curve % % E = REJECT(D); % E = REJECT(A,W); % % INPUT % D Classification result, D = A*W % A Dataset % W Cell array of trained classifiers % % OUTPUT % E Structure storing the error curve and information needed for plotting % % DESCRIPTION % E = REJECT(D) computes the error-reject curve of the classification % result D = A*W, in which A is a dataset and W is a classifier. E is % a structure storing the error curve in E.ERROR. Use PLOTE(E) for % plotting the result. % % E = REJECT(A,W) computes a set of error-reject curves for all trained % classifiers stored in the cell array W. % % EXAMPLES % A - training set, B - test set: % D = B*NMC(A); E = REJECT(D); PLOTE(E); % Plots a single curve % E = REJECT(B,A*{NMC,UDC,QDC}); PLOTE(E); % Plots 3 curves % % REFERENCES % 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd edition, % John Wiley and Sons, New York, 2001. % 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons, New York, 2002. % % SEE ALSO % DATASETS, MAPPINGS, PLOTE, ROC, TESTC % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: reject.m,v 1.3 2007/02/15 10:11:15 davidt Exp $ function e = reject(A,W) prtrace(mfilename); % No data, return an untrained mapping. if (nargin == 0) | (isempty(A)) e = mapping('reject','fixed'); return; end compute = 0; % COMPUTE is 1 if the classier W should be applied to A. name = []; if (nargin == 2) if iscell(W) classfno = length(W); % Number of classifiers, hence error curves. compute = 1; elseif ismapping(W) % W is one classifier only. if ~istrained(W) error('Classifier should be trained.') end D = A*W*classc; % Normalize the outputs of W and apply it to the data A. classfno = 1; name = getname(W); else error('Second parameter should be a classifier or a cell array of classifiers.') end else % Only one input argument. D = A; classfno = 1; end % Fill the structure E with information needed for plotting. m = size(A,1); e.error = zeros(classfno,m+1); % m+1 for storing error of 0 size dataset e.std = zeros(classfno,m+1); e.xvalues = [0:m]/m;; e.n = 1; datname = getname(A); if ~isempty(datname) e.title = ['Reject curve for the ' datname]; end e.xlabel= 'Reject'; e.ylabel= 'Error'; e.plot = 'plot'; e.names = name; for j=1:classfno if (compute) w = W{j}; if ~istrained(w) error('Classifier should be trained.') end D = A*w*classc; % Normalize the outputs of W and apply it to A. e.names = char(e.names,getname(w)); end % Compare the classification result with the actual labels. % N is a 0/1 vector pointing to all distinct/equal labels. [err,n] = nlabcmp(labeld(D),getlab(D)); % A trick: if D consists of one column, as before returned by % FISHERC in case of a 2-class problem. % May be they don't exist anymore in PRTools, but once they did % and may be they pop up again. if (size(D,2) == 1) D = [D 1-D]; end % Sort the objects, starting from the closest to the decision % boundary to the furthest away. [y,J] = sort(max(+D,[],2)); % 1/0 in N corresponds now to objects correctly/wrongly classified. n = 1-n(J)'; e.error(j,:) = [err err-cumsum(n)]/m; end if (classfno > 1) e.names(1,:) = []; end return;
github
jacksky64/imageProcessing-master
rejectc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rejectc.m
2,045
utf_8
5edd5997a9b5130d788a7e1c2c935433
%REJECTC Construction of a rejecting classifier % % WR = REJECTC(A,W,FRAC,TYPE) % % INPUT % A Dataset % W Trained or untrained classifier % FRAC Fraction to be rejected. Default: 0.05 % TYPE String with reject type: 'ambiguity' or 'outlier'. % 'a' and 'o' are supported as well. Default is 'a'. % % OUTPUT % WR Rejecting classifier % % EXAMPLE % a = gendatb % w = ldc(a); % v = rejectc(a,w,0.2); % scatterd(a); % plotc(w); % plotc(v,'r') % % DESCRIPTION % This command extends an arbitrary classifier with a reject option. If WR % is used for classifying a dataset B, then D = B*WR has C+1 columns % ('features'), one for every class in A and an additional one that takes % care of the rejection: a NaN for numeric labels (classnames in A) or en % empty string for string labels. % NOTE: Objects that are rejected are not counted as an error in TESTC. The % classification error estimated by TESTC just considers the total number % of objects for wich B*WR*LABELD has a correct classname and neglects all % others. So by rejection the error estimate by TESTC may increase, % decrease or stay equal. % % SEE ALSO % DATASETS, MAPPINGS, LABELD, TESTC, REJECTM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w_out = rejectc(a,w,frac,type) if nargin < 4, type = 'a'; end if nargin < 3, frac = 0.05; end ismapping(w); isdataset(a); if isuntrained(w), w = a*w; end istrained(w); conv = getout_conv(w); if isstr(getlablist(a)) rejname = ''; else rejname = NaN; end switch(type) case{'a','ambiguity'} w_out = w*classc*rejectm(a*w*classc,frac,rejname); case{'o','outlier'} conv = getout_conv(w); if conv > 1 w = setout_conv(w,conv-2); elseif conv == 1 error('Outlier reject not (yet) supported for this classifier') end w_out = w*rejectm(a*w,frac,rejname); otherwise error('Unknown reject type') end
github
jacksky64/imageProcessing-master
gendatk.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatk.m
3,686
utf_8
7b5a0540b3986a375806e98dd13c0cf5
%GENDATK K-Nearest neighbor data generation % % B = GENDATK(A,N,K,S) % % INPUT % A Dataset % N Number of points (optional; default: 50) % K Number of nearest neighbors (optional; default: 1) % S Standard deviation (optional; default: 1) % % OUTPUT % B Generated dataset % % DESCRIPTION % Generation of N points using the K-nearest neighbors of objects in the % dataset A. First, N points of A are chosen in a random order. Next, to each % of these points and for each direction (feature), a Gaussian-distributed % offset is added with the zero mean and the standard deviation: S * the mean % signed difference between the point of A under consideration and its K % nearest neighbors in A. % % The result of this procedure is that the generated points follow the local % density properties of the point from which they originate. % % If A is a multi-class dataset the above procedure is followed class by % class, neglecting objects of other classes and possibly unlabeled objects. % % If N is a vector of sizes, exactly N(I) objects are generated % for class I. Default N is 100 objects per class. % % SEE ALSO % DATASETS, GENDATP % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: gendatk.m,v 1.4 2007/04/23 12:49:29 duin Exp $ function B = gendatk(A,N,k,stdev) prtrace(mfilename); if (nargin < 4) prwarning(3,'Standard deviation of the added Gaussian noise is not specified, assuming 1.'); stdev = 1; end if (nargin < 3) prwarning(3,'Number of nearest neighbors to be used is not specified, assuming 1.'); k = 1; end if (nargin < 2) prwarning(3,'Number of samples to generate is not specified, assuming 50.'); N = []; % This happens some lines below. end if (nargin < 1) error('No dataset found.'); end A = dataset(A); A = setlablist(A); % remove empty classes first [m,n,c] = getsize(A); prior = getprior(A); if isempty(N), N = repmat(50,1,c); % 50 samples are generated. end N = genclass(N,prior); % Generate class frequencies according to the priors. lablist = getlablist(A); B = []; labels = []; % Loop over classes. for j=1:c a = getdata(A,j); % The j-th class. [D,I] = sort(distm(a)); I = I(2:k+1,:); % Indices of the K nearest neighbors. alf = randn(k,N(j))*stdev; % Normally distributed 'noise'. nu = ceil(N(j)/size(a,1)); % It is possible that NU > 1 if many objects have to be generated. J = randperm(size(a,1)); J = repmat(J,nu,1)'; J = J(1:N(j)); % Combine the NU repetitions of J into one column vector. b = zeros(N(j),n); % Loop over features. for f = 1:n % Take all objects given by J, consider feature F. % Their K nearest neighbors are given by I(:,J) % We reshape them as a N(j) by K matrix (N(j) is the length of J) % Compute all differences between them and the original objects % Multiply these differences by the std dev stored in alf % Transpose and sum over the K neighbors, normalize by K % Transpose again and add to the original objects b(:,f) = a(J,f) + sum(( ( a(J,f)*ones(1,k) - ... reshape(+a(I(:,J),f),k,N(j))' ) .* alf' )' /k, 1)'; end B = [B;b]; labels = [labels; repmat(lablist(j,:),N(j),1)]; end B = dataset(B,labels,'prior',A.prior); %B = set(B,'featlab',getfeatlab(A),'name',getname(A),'featsize',getfeatsize(A)); %DXD. Added this exception, because else it's going to complain % that the name is not a string. B = set(B,'featlab',getfeatlab(A),'featsize',getfeatsize(A)); if ~isempty(getname(A)) B = setname(B,getname(A)); end return;
github
jacksky64/imageProcessing-master
nusvc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nusvc.m
4,575
utf_8
efaf4b65ce42bc988eab73dc28fea2c0
%NUSVC Support Vector Classifier: NU algorithm % % [W,J,NU] = NUSVC(A,KERNEL,NU) % W = A*SVC([],KERNEL,NU) % % INPUT % A Dataset % KERNEL - Untrained mapping to compute kernel by A*(A*KERNEL) during % training, or B*(A*KERNEL) during testing with dataset B. % - String to compute kernel matrices by FEVAL(KERNEL,B,A) % Default: linear kernel (PROXM([],'p',1)); % NU Regularization parameter (0 < NU < 1): expected fraction of SV % (optional; default: max(leave-one-out 1_NN error,0.01)) % % OUTPUT % W Mapping: Support Vector Classifier % J Object indices of support objects % NU Actual nu_value used % % DESCRIPTION % Optimizes a support vector classifier for the dataset A by quadratic % programming. The difference with the standard SVC routine is the use and % interpretation of the regularisation parameter NU. It is an upperbound % for the expected classification error. By default NU is estimated by the % leave-one-error of the 1_NN rule. For NU = NaN an automatic optimisation % is performed using REGOPTC. % % If KERNEL = 0 it is assumed that A is already the kernelmatrix (square). % In this case also a kernel matrix B should be supplied at evaluation by % B*W or MAP(B,W). % % There are several ways to define KERNEL, e.g. PROXM([],'r',1) for a % radial basis kernel or by USERKERNEL for a user defined kernel. % % SEE ALSO % MAPPINGS, DATASETS, SVC, NUSVO, PROXM, USERKERNEL, REGOPTC % Copyright: S.Verzakov, [email protected] % Based on SVC byby: D. de Ridder, D. Tax, R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: nusvc.m,v 1.6 2010/06/25 09:50:40 duin Exp $ function [W,J,nu,C,alginf] = nusvc(a,kernel,nu,Options) prtrace(mfilename); if nargin < 4 Options = []; end DefOptions.mean_centering = 1; DefOptions.pd_check = 1; DefOptions.bias_in_admreg = 1; DefOptions.allow_ub_bias_admreg = 1; DefOptions.pf_on_failure = 1; DefOptions.multiclass_mode = 'single'; Options = updstruct(DefOptions,Options,1); if nargin < 3 nu = []; prwarning(3,'Regularization parameter nu set to NN error\n'); end if nargin < 2 | isempty(kernel) kernel = proxm([],'p',1); end if nargin < 1 | isempty(a) W = mapping(mfilename,{kernel,nu,Options}); elseif (~ismapping(kernel) | isuntrained(kernel)) % training pd = 1; % switches, fixed here. mc = 1; islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a,'objects'); [m,k,c] = getsize(a); nlab = getnlab(a); % if isempty(nu), nu = max(testk(a,1),0.01); end if isempty(nu) nu = 2*min(max(testk(a,1),0.01),(0.8*min(classsizes(a))/size(a,1))); end % The SVC is basically a 2-class classifier. More classes are % handled by mclassc. if c == 2 % two-class classifier if (isnan(nu)) % optimize trade-off parameter defs = {proxm([],'p',1),[],[]}; parmin_max = [0,0;0.001,0.999;0,0]; % kernel and Options can not be optimised [W,J,nu,C,alginf] = regoptc(a,mfilename,{kernel,nu,Options},defs,[2],parmin_max,testc([],'soft')); else % Compute the parameters for the optimization: y = 3 - 2*nlab; if ~isequal(kernel,0) if mc u = mean(a); b = a -ones(m,1)*u; else b = a; u = []; end K = b*(b*kernel); % Perform the optimization: [v,J,nu,C] = nusvo(+K,y,nu,Options); s = b(J,:); insize = k; else % kernel is already given! K = min(a,a'); % make sure kernel matrix is symmetric % Perform the optimization: [v,J,nu,C] = nusvo(+K,y,nu,Options); u = []; s = []; insize = size(K,2); % ready for kernel inputs end % Store the results, use SVC for execution W = mapping('svc','trained',{u,s,v,kernel,J},getlablist(a),insize,2); W = cnormc(W,a); W = setcost(W,a); alginf.svc_type = 'nu-SVM'; alginf.kernel = kernel; alginf.C = C; alginf.nu = nu; alginf.nSV = length(J); alginf.classsizes = [nnz(y==1), nnz(y==-1)]; alginf.pf = isnan(C); end else % multi-class classifier: [W,J,nu,C,alginf] = mclassc(a,mapping(mfilename,{kernel,nu,Options}),'single'); end W = setname(W,'Support Vector Classifier (nu version)'); end return;
github
jacksky64/imageProcessing-master
prarff.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prarff.m
3,226
utf_8
b9a5520deaa586036751cc082ae2f646
%PRARFF COnvert ARFF file into PRTools dataset % % A = PRARFF(FILE) % % INPUT % FILE ARFF file % % OUTPUT % A Dataset in PRTools format % % DESCRIPTION % ARFF files as used in WEKA are converted into PRTools format. In case % they don't fit (non-numeric features, varying feature length) an error is % generated. % % SEE ALSO % DATASETS function a = prarff(file) if nargin < 1 | exist(file) ~= 2 error('file not found'); end t = txtread(file); c = cell2str(t); k = 0; nodata = 1; for j=1:length(c); if nodata [s,u] = strtok(c{j}); if strcmp(s,'@relation') name = strtrim(u); end if strcmp(s,'@attribute') k = k+1; u = strrep(u,'''',''); [featlab{k},u] = strtok(u); if strcmp(featlab{k},'class') featlab(k) = []; k = k-1; % skip as we determine lablist from data field % u = strrep(u,'{','{'''); % u = strrep(u,'}','''}'); % u = strrep(u,',',''','''); % eval(['lablist = ' u]); else if ~any(strcmp(strtrim(u),{'numeric','integer','real'})) warning(['Non-numeric attributes are not supported ' ... file ' ' u]); a = []; return end end end if strcmp(s,'@data') nodata = 0; form = [repmat('%e,',1,k) '%s']; a = zeros(length(c)-j,k); m = 0; end else if length(find(c{j}==',')) == k m = m+1; x = sscanf(c{j},form); a(m,:) = x(1:k); labels{m} = char(x(k+1:end))'; elseif length(find(c{j}==',')) == k-1 % unlabeled? m = m+1; x = sscanf(c{j},form); a(m,:) = x(1:k); labels{m} = ''; else error('Data size doesn''t match number of attributes') end end end a = dataset(a,labels); a = setfeatlab(a,featlab); a = setname(a,name); return %STR2CELL String to cell conversion % % C = STR2CELL(S) % % INPUT % S String % % OUTPUT % A Cell array % % DESCRIPTION % The string S is broken into a set of strings, one for each line. Each of % them is place into a different element of the cell araay C function c = cell2str(s) if nargin < 1 | ~ischar(s) error('No input string found') end s = strrep([s char(10)],char([10 13]),char(10)); s = strrep(s,char([13 10]),char(10)); s = strrep(s,char([10 10]),char(10)); s = strrep(s,char(13),char(10)); n = [0 strfind(s,char(10))]; c = cell(length(n-1),1); for j=1:length(n)-1 c{j} = s(n(j)+1:n(j+1)-1); end if isempty(c{end}) c(end) = []; end %TXTREAD Read text file % % A = TXTREAD(FILENAME,N,START) % % INPUT % FILENAME Name of delimited ASCII file % N Number of elements to be read (default all) % START First element to be read (default 1) % % OUTPUT % A String % % DESCRIPTION % Reads the total file as text string into A % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function a = txtread(file,n,nstart) if nargin < 3, nstart = 1; end if nargin < 2 | isempty(n), n = inf; end fid = fopen(file); if (fid < 0) error('Error in opening file.') end a = fscanf(fid,'%c',n); fclose(fid); return %
github
jacksky64/imageProcessing-master
prmemory.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prmemory.m
1,969
utf_8
4831b62875e22b1bfcfc7f3d412afe7e
%PRMEMORY Set/get size of memory usage % % N = PRMEMORY(N) % % N : The desired / retrieved maximum size data of matrices (in % matrix elements) % % DESCRIPTION % This retoutine sets or retrieves a global variable GLOBALPRMEMORY that % controls the maximum size of data matrices in PRTools. Routines like % KNNC, KNN_MAP, PARZEN_MAP and TESTP make use of it by computing % additional loops and avoiding to define very large distance matrices. % The default for this maximum size is set to 10000000. For most % computers there is no need to reduce it. There is not much speed up % to be expected if it is enlarged. % % PRMEMORY gives also the number of elements for which a conversion from % datafiles to datasets is approved. % % This facility is illustrated by the following example, using the % routine PRMEM. % % Assume that an array of the size [M x K] has to be computed. The % numbers of LOOPS and ROWS are determined which are needed such that % ROWS*K < GLOBALPRMEMORY (a global variable that is initialized in this % routine, if necessary). The final number of rows for the last loop % is returned in LAST. % % EXAMPLES % [M,K] = size(A); % [LOOPS,ROWS,LAST] = prmem(M,K); % if (LOOPS == 1) % RESULT = < compute the result based on A > % else % RESULT = 0; % for J =1:LOOPS % if (J == LOOPS), N = LAST; else N = ROWS; end % NN = (J-1)*ROWS; % RESULT = RESULT + < compute a partial result based on A(NN+1:NN+N,:) > % end % end % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: prmemory.m,v 1.2 2007/04/13 09:30:54 duin Exp $ function n_out = prmemory(n_in) prtrace(mfilename) persistent GLOBALPRMEMORY; if (isempty(GLOBALPRMEMORY)) GLOBALPRMEMORY = 10000000; end if nargin > 0 GLOBALPRMEMORY = n_in; end if nargout > 0 n_out = GLOBALPRMEMORY; elseif nargin == 0 disp(GLOBALPRMEMORY) end return;
github
jacksky64/imageProcessing-master
im_scale.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_scale.m
1,217
utf_8
523e0781344f11a37de848be741dc80c
%IM_SCALE Scale all binary images in a datafile to a giving fraction of pixels 'on' % % B = IM_SCALE(A,P) % B = A*IM_SCALE([],P) % % B is a zoomed in / out version of A such that about a fraction % P of the image pixels is 'on' (1). % % SEE ALSO % DATASETS, DATAFILES, IM_BOX, IM_CENTER % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_scale(a,p) prtrace(mfilename); if nargin < 2 | isempty(p), p = 0.5; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{p}); b = setname(b,'Image bounding box'); elseif isdataset(a) error('Command cannot be used for datasets as it may change image size') elseif isdatafile(a) isobjim(a); b = filtim(a,mfilename,{p}); b = setfeatsize(b,getfeatsize(a)); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image sca = sqrt(p/mean(a(:))); sa = size(a); c = imresize(double(a),round(sca*sa),'nearest'); sc = size(c); d = abs(floor((sc - sa)/2)); if sca < 1 b = zeros(size(a)); b(d(1)+1:d(1)+sc(1),d(2)+1:d(2)+sc(2)) = c; else b = c(d(1)+1:d(1)+sa(1),d(2)+1:d(2)+sa(2)); end end return
github
jacksky64/imageProcessing-master
kcentres.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/kcentres.m
5,769
utf_8
f5d8e03cc086b9c56daea98db515307e
%KCENTRES Finds K center objects from a distance matrix % % [LAB,J,DM] = KCENTRES(D,K,N) % % INPUT % D Distance matrix between, e.g. M objects (may be a dataset) % K Number of center objects to be found (optional; default: 1) % N Number of trials starting from a random initialization % (optional; default: 1) % % OUTPUT % LAB Integer labels: each object is assigned to its nearest center % J Indices of the center objects % DM A list of distances corresponding to J: for each center in J % the maximum distance of the objects assigned to this center. % % DESCRIPTION % Finds K center objects from a symmetric distance matrix D. The center % objects are chosen from all M objects such that the maximum of the % distances over all objects to the nearest center is minimized. For K > 1, % the results depend on a random initialization. The procedure is repeated % N times and the best result is returned. % % If N = 0, initialisation is not random, but done by a systematic % selection based on a greedy approach. % % SEE ALSO % HCLUST, KMEANS, EMCLUST, MODESEEK % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: kcentres.m,v 1.5 2008/07/03 09:08:43 duin Exp $ function [labels,Jopt,dm] = kcentres(d,k,n) if (nargin < 3) | isempty(n) n = 1; prwarning(4,'Number of trials not supplied, assuming one.'); end if (nargin < 2) | isempty(k) k = 1; prwarning(4,'Number of centers not supplied, assuming one.'); end if(isdataset(d)) d = +d; prwarning(4,'Distance matrix is convert to double.'); end [m,m2] = size(d); if ( ~issym(d,1e-12) | any(diag(d) > 1e-14) ) error('Distance matrix should be symmetric and have zero diagonal') end % checking for a zero diagonal t = eye(m) == 1; if(~all(d(t)==0)) error('Distance matrix should have a zero diagonal.') end if (k == 1) dmax = max(d); [dm,Jopt] = min(dmax); labels = repmat(1,m,1); return; end if k > m error('Number of centres should not exceed number of objects') end % We are here only if K (> 1) centers are to be found. % Loop over number of trials. dmax = max(max(d)); dopt = inf; s = sprintf('k-centres, %i attempts: ',n); prwaitbar(n,s,n>1); if n == 0 nrep = 1; else nrep = n; end for tri = 1:nrep prwaitbar(n,tri,[s int2str(tri)]); if n == 0 M = kcentresort(d,k); % systematic initialisation else M = randperm(m); M = M(1:k); % Random initializations end J = zeros(1,k); % Center objects to be found. % Iterate until J == M. See below. while 1, [dm,I] = min(d(M,:)); % Find K centers. for i = 1:k JJ = find(I==i); if (isempty(JJ)) %JJ can be empty if two or more objects are in the same position of % feature space in dataset J(i) = 0; else % Find objects closest to the object M(i) [dummy,j,dm] = kcentres(d(JJ,JJ),1,1); J(i) = JJ(j); end end J(find(J==0)) = []; k = length(J); if k == 0 error('kcentres fails as some objects are identical: add some noise') end if (length(M) == k) & (all(M == J)) % K centers are found. [dmin,labs] = min(d(J,:)); dmin = max(dmin); break; end M = J; end % Store the optimal centers in JOPT. if (dmin <= dopt) dopt = dmin; labels = labs'; Jopt = J; end end prwaitbar(0) % Determine the best centers over the N trials. dm = zeros(1,k); for i=1:k L = find(labels==i); dm(i) = max(d(Jopt(i),L)); end return; %KCENTRESORT Sort objects given by dissimilarity matrix % % N = KCENTRESORT(D,P,CRIT) % % INPUT % D Square dissimilarity matrix, zeros on diagonal % P Number of prototypes to be selected % CRIT 'dist' or 'centre' % % OUTPUT % N Indices of selected prototypes % % DESCRIPTION % Sort objects given by square dissim matrix D using a greedy approach % such that the maximum NN distance from all objects (prototypes) % to the first K: max(min(D(:,N(1:K),[],2)) is minimized. % % This routines tries to sample the objects such that they are evenly % spaced judged from their dissimilarities. This may be used as % initialisation in KCENTRES. It works reasonably, but not very good. % % SEE ALSO % KCENTRES % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function N = kcentresort(d,p,crit); d = +d; m = size(d,1); if nargin < 3, crit = 'dist'; end if nargin < 2 | isempty(p), p = m; end L = [1:m]; N = zeros(1,p); [dd,n] = min(max(d,[],2)); % this is the first (central) prototype e = d(:,n); % store here the distances to the nearest prototype (dNNP) f = min(d,repmat(e,1,m)); % replace distances that are larger than dNNP by dNNP N(1) = n; % ranking of selected prototypes L(n) = []; % candidate prototypes (all not yet selected objects) for k=2:p % extend prototype set if strcmp(crit,'centre') [dd,n] = min(max(f(L,L),[],1)); % This selects the next prototype out of candidates in L e = min([d(:,L(n)) e],[],2); % update dNNP f = min(d,repmat(e,1,m)); % update replacement of distances that are larger % than dNNP by dNNP elseif strcmp(crit,'dist') [dd,n] = max(mean(d(N(find(N > 0)),L))); else error('Illegal crit') end N(k) = L(n); % update list of selected prototypes L(n) = []; % update list of candidate prototypes end
github
jacksky64/imageProcessing-master
bagcc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/bagcc.m
3,054
utf_8
82d80a12e773b00901ef371565572def
%BAGCC Combining classifier for classifying bags of objects % % DBAG = BAGCC(DOBJ,COMBC) % DBAG = DOBJ*BAGCC([],COMBC) % % INPUT % DOBJ Dataset, classification matrix, output of some base classifier % COMBC Combiner, e.g. MAXC (default VOTEC) % % OUTPUT % DBAG Dataset, classification matrix for the bags in DOBJ % % DESCRIPTION % This routine combines object classification results of bags of objects % stored in DOBJ. It is assumed that the current labels of DOBJ are bag % identifiers and defining objects belonging to the same bag. Objects of % the same bag are combined by COMBC into a single classification result % and returned by DBAG. % % DBAG gets as many objects as there are bags defined for DOBJ. Effectively % the first object of every bag in DOBJ is replaced by the combined result % and other objects of that bag are deleted. DBAG has the same feature % labels (most likely the class names) as DOBJ and stores as object % identifiers the bag identifiers stored in the label list of DOBJ. % A possible multi-labeling definition of DOBJ is preserved. % % This routine is called by BAGC where needed. % % SEE ALSO % DATASETS, BAGC, MULTI-LABELING % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [dbag,id] = bagcc(dobj,combc) if nargin < 2 | isempty(combc), combc = votec; end if nargin < 1 | isempty(dobj) % define the mapping dbag = mapping(mfilename,'untrained',{combc}); dbag = setname(dbag,'Bag combiner'); else % execution % we should have a proper dataset isdataset(dobj); % the class names are the bag indentifiers bagnames = classnames(dobj); % retrieve datasize, and number of sets c [m,k,c] = getsize(dobj); % get number of objects for every set s = classsizes(dobj); % dobj is a classification matrix, so its features point to classes featlab = getfeatlab(dobj); % reserve spave for the result dbag = dataset(zeros(c,k)); % space the object identifiers of the first object per bag id = zeros(c,1); t = sprintf('Combining %i bags: ',c); prwaitbar(c,t); % run over all bags for j=1:c prwaitbar(c,j,[t int2str(j)]); % get the objects in the bag y = seldat(dobj,j); % the identifier of the first object id(j) = getident(y(1,:)); %create a dataset with all objects in the bag concatenated horizontally y = +y'; y = dataset(y(:)'); % give the the proper class labels y = setfeatlab(y,repmat(featlab,s(j),1)); % now classifier combiners can be used dbag(j,:) = y*combc; end prwaitbar(0); % find the first objects of every set J = findident(dobj,id); % and replace them by the bag combining result % so object labels become bag labels dbag = setdata(dobj(J,:),dbag); % give columns the classnames dbag = setfeatlab(dbag,featlab); % use set bag names as bag identifiers dbag = setident(dbag,bagnames); end