plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jacksky64/imageProcessing-master
im_hist_equalize.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_hist_equalize.m
888
utf_8
f3f11d9287d170ff8356974bbc4a06aa
%IM_HIST_EQUALIZE Histogram equalization of images stored in a dataset % (DIP_Image) % % B = IM_HIST_EQUALIZE(A) % B = A*IM_HIST_EQUALIZE % % INPUT % A Dataset with object images dataset (possibly multi-band) % % OUTPUT % B Dataset with filtered images % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE, HIST_EQUALIZE % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_hist_equalize(a) prtrace(mfilename); if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed'); b = setname(b,'Image hist_equalize'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = 1.0*dip_image(a); b = hist_equalize(a); end return
github
jacksky64/imageProcessing-master
isvaldset.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isvaldset.m
1,837
utf_8
150731368016a57335890b7883d2442c
%ISVALDSET Test whether the argument is a valid dataset % % N = ISVALDSET(A); % N = ISVALDSET(A,M); % N = ISVALDSET(A,M,C); % % INPUT % A Input argument, to be tested on dataset % M Minimum number of objects per class in A % C Minimum number of classes in A % % OUTPUT % N 1/0 if A is / isn't a valid dataset % % DESCRIPTION % Test whether A is a proper dataset with at least C classes. % For crisp datasets this function tests whether A is a dataset that has % at least M objects per class and C classes. % For datasets with soft or targets labels it is tested whether A has at % least M objects. % % SEE ALSO % ISDATASET, ISMAPPING, ISDATAIM, ISFEATIM, ISCOMDSET function n = isvaldset(a,m,c) prtrace(mfilename); if nargin < 3 | isempty(c), c = 0; end if nargin < 2 | isempty(m), m = 1; end if nargout == 0 isdataset(a); else n = 1; if ~isdataset(a) n = 0; return end end if c > 0 & getsize(a,3) == 0 if nargout == 0 error([newline 'Labeled dataset expected']) else n = 0; end elseif getsize(a,3) < c if nargout == 0 error([newline 'Dataset should have at least ' num2str(c) ' classes']) else n = 0; end end if islabtype(a,'crisp') & any(classsizes(a) < m) if nargout == 0 if m == 1 error([newline 'Classes should have at least one object.' newline ... 'Remove empty classes by A = remclass(A).']) else cn = num2str(m); error([newline 'Classes should have at least ' cn ' objects.' ... newline 'Remove small classes by A = remclass(A,' cn ')']) end else n = 0; end end if islabtype(a,'soft','targets') & size(a,1) < m error([newline 'Dataset should have at least ' num2str(m) ' objects']) end return
github
jacksky64/imageProcessing-master
im_label.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_label.m
1,355
utf_8
7dbcb468c8d8516bcb86e204f0003626
%IM_LABEL Labeling of binary images stored in a dataset (DIP_Image) % % B = IM_LABEL(A,CONNECTIVITY,MIN_SIZE,MAX_SIZE) % B = A*IM_LABEL([],CONNECTIVITY,MIN_SIZE,MAX_SIZE) % % INPUT % A Dataset with binary object images dataset (possibly multi-band) % N Number of iterations (default 1) % CONNECTIVITY See LABEL % MIN_SIZE Minimum size of objects to be labeled (default 0) % MAX_SIZE Maximum size of objects to be labeled (default 0: all) % % OUTPUT % B Dataset with labeled images % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE, LABEL % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_label(a,connect,minsize,maxsize) prtrace(mfilename); if nargin < 4 | isempty(maxsize), maxsize = 0; end if nargin < 3 | isempty(minsize), minsize = 0; end if nargin < 2 | isempty(connect), connect = 2; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{connect,minsize,maxsize}); b = setname(b,'Image labeling'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,{connect,minsize,maxsize}); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = dip_image(a,'bin'); b = double(label(a,connect,minsize,maxsize)); end return
github
jacksky64/imageProcessing-master
im_gaussf.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_gaussf.m
1,311
utf_8
4cc0d1ee779b18cb90b369721be95fa6
%IM_GAUSSF Gaussian filter of images stored in a dataset (DIPImage) % % B = IM_GAUSSF(A,S) % B = A*IM_GAUSSF([],S) % % INPUT % A Dataset with object images dataset (possibly multi-band) % S Desired standard deviation for filter, default S = 1 % % OUTPUT % B Dataset with Gaussian filtered images % % DESCRIPTION % All, possibly multi-band, 2D images in A are Gaussian filtered using the % DIPImage command GAUSSF. % In case DIPImage is not available, IM_GAUSS may be used. % % SEE ALSO % DATASETS, DATAFILES, DIPIMAGE, GAUSSF, IM_GAUSS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_gaussf(a,s) prtrace(mfilename); if ~isdipimage error('DipImage not available, use im_gauss instead of im_gaussf') end if nargin < 2 | isempty(s), s = 1; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',s); b = setname(b,'Gaussian filter'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,s); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image n = size(a,3); b = zeros(size(a)); for j=1:n aa = 1.0*dip_image(a(:,:,j)); b(:,:,j) = double(gaussf(aa,s)); end end return
github
jacksky64/imageProcessing-master
featself.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featself.m
2,272
utf_8
9ae66ecdd6ab7bfbe60e1d20c6df8412
%FEATSELF Forward feature selection for classification % % [W,R] = FEATSELF(A,CRIT,K,T,FID) % [W,R] = FEATSELF(A,CRIT,K,N,FID) % % INPUT % A Training dataset % CRIT Name of the criterion or untrained mapping % (default: 'NN', i.e. the 1-Nearest Neighbor error) % K Number of features to select (default: K = 0, return optimal set) % T Tuning dataset (optional) % N Number of cross-validations (optional) % FID File ID to write progress to (default [], see PRPROGRESS) % % OUTPUT % W Output feature selection mapping % R Matrix with step-by-step results % % DESCRIPTION % Forward selection of K features using the dataset A. CRIT sets the % criterion used by the feature evaluation routine FEATEVAL. If the % dataset T is given, it is used as test set for FEATEVAL. Alternatvely a % a number of cross-validation N may be supplied. For K = 0, the optimal % feature set (corresponding to the maximum value of FEATEVAL) is returned. % The result W can be used for selecting features using B*W. % The selected features are stored in W.DATA and can be found by +W. % In R, the search is reported step by step as: % % R(:,1) : number of features % R(:,2) : criterion value % R(:,3) : added / deleted feature % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELLR, FEATSEL, % FEATSELO, FEATSELB, FEATSELI, FEATSELP, FEATSELM, PRPROGRESS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: featself.m,v 1.3 2007/04/21 23:06:46 duin Exp $ function [w,r] = featself(a,crit,ksel,t,fid) prtrace(mfilename); if (nargin < 2) | isempty(crit) prwarning(2,'no criterion specified, assuming NN'); crit = 'NN'; end if (nargin < 3) | isempty(ksel) ksel = 0; end if (nargin < 4) prwarning(3,'no tuning set supplied (risk of overfit)'); t = []; end if (nargin < 5) fid = []; end if nargin == 0 | isempty(a) % Create an empty mapping: w = mapping(mfilename,{crit,ksel,t}); else prprogress(fid,'\nfeatself : Forward Feature Selection') [w,r] = featsellr(a,crit,ksel,1,0,t,fid); prprogress(fid,'featself finished\n') end w = setname(w,'Forward FeatSel'); return
github
jacksky64/imageProcessing-master
featseli.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featseli.m
2,740
utf_8
fe8af121437cd0badb3e0fdde5f714d8
%FEATSELI Individual feature selection for classification % % [W,R] = FEATSELI(A,CRIT,K,T) % % INPUT % A Training dataset % CRIT Name of the criterion or untrained mapping % (default: 'NN', i.e. the 1-Nearest Neighbor error) % K Number of features to select (default: sort all features) % T Tuning dataset (optional) % % OUTPUT % W Feature selection mapping % R Matrix with criterion values % % DESCRIPTION % Individual selection of K features using the dataset A. CRIT sets the % criterion used by the feature evaluation routine FEATEVAL. If the dataset % T is given, it is used as test set for FEATEVAL. For K = 0 all features are % selected, but reordered according to the criterion. The result W can be % used for selecting features using B*W. % The selected features are stored in W.DATA and can be found by +W. % In R, the search is reported step by step as: % % R(:,1) : number of features % R(:,2) : criterion value % R(:,3) : added / deleted feature % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELO, FEATSELB, FEATSELF, % FEATSEL, FEATSELP, FEATSELM % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: featseli.m,v 1.5 2009/07/01 07:48:05 davidt Exp $ function [w,r] = featseli(a,crit,ksel,t) prtrace(mfilename); if (nargin < 2) | isempty(crit) prwarning(2,'no criterion specified, assuming NN'); crit = 'NN'; end if (nargin < 3 | isempty(ksel)) ksel = 0; end if (nargin < 4) prwarning(3,'no tuning set supplied (risk of overfit)'); t = []; end % If no arguments are supplied, return an untrained mapping. if (nargin == 0) | (isempty(a)) w = mapping('featseli',{crit,ksel,t}); w = setname(w,'Individual FeatSel'); return end [m,k,c] = getsize(a); featlist = getfeatlab(a); % If KSEL is not given, return all features. if (ksel == 0), ksel = k; end isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a); iscomdset(a,t); critval = zeros(k,1); % Evaluate each feature in turn. s = sprintf('Evaluation of %i features: ',k); prwaitbar(k,s); if (isempty(t)) for j = 1:k prwaitbar(k,j,[s int2str(j)]); critval(j) = feateval(a(:,j),crit); end else for j = 1:k prwaitbar(k,j,[s int2str(j)]); critval(j) = feateval(a(:,j),crit,t(:,j)); end end prwaitbar(0); % Sort the features by criterion value (maximum first). [critval_sorted,J] = sort(-critval); r = [[1:k]', -critval_sorted, J]; J = J(1:ksel)'; % Return the mapping found. w = featsel(k,J); if ~isempty(featlist) w = setlabels(w,featlist(J,:)); end w = setname(w,'Individual FeatSel'); return
github
jacksky64/imageProcessing-master
typp.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/typp.m
1,043
utf_8
8d294b9b1229f66b0f727b0811f2242d
%TYPP list M-File of PRTools % TYPE foo.bar lists the ascii file called 'foo.bar'. % % TYPE foo lists the ascii file called 'foo.m'. % % If files called foo and foo.m both exist, then % TYPE foo lists the file 'foo', and % TYPE foo.m list the file 'foo.m'. % % TYPE FILENAME lists the contents of the file given a full pathname % or a MATLABPATH relative partial pathname (see PARTIALPATH). % % See also DBTYPE, WHICH, HELP, PARTIALPATH. % % This routine is overloaded by PRTools replacing tabs by two spaces function typp(file) [pp,prtools_dir,ext] =fileparts(fileparts(which('typp'))); [pp,file_dir,ext] =fileparts(fileparts(which(file))); if strcmp(prtools_dir,file_dir) & exist(file)==2 fid = fopen([deblank(file),'.m'],'r'); if fid < 0 builtin('type',file); else s = fscanf(fid,'%c'); r = []; w = [0,find(s==9)]; for j = 1:length(w)-1 r = [r,s(w(j)+1:w(j+1)-1),32,32]; end r = [r,s(w(end)+1:end)]; r = setstr(r); disp(r) fclose(fid); end else builtin('type',file); end
github
jacksky64/imageProcessing-master
meanc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/meanc.m
1,652
utf_8
484801a53d01ab23a3259fb7ea43a1d8
%MEANC Mean combining classifier % % W = MEANC(V) % W = V*MEANC % % INPUT % V Set of classifiers (optional) % % OUTPUT % W Mean combiner % % DESCRIPTION % If V = [V1,V2,V3, ... ] is a set of classifiers trained on the same % classes and W is the mean combiner: it selects the class with the mean of % the outputs of the input classifiers. This might also be used as % A*[V1,V2,V3]*MEANC in which A is a dataset to be classified. % % If it is desired to operate on posterior probabilities then the input % classifiers should be extended like V = V*CLASSC; % % For affine mappings the coefficients may be averaged instead of the % classifier results by using AVERAGEC. % % The base classifiers may be combined in a stacked way (operating in the % same feature space by V = [V1,V2,V3, ... ] or in a parallel way % (operating in different feature spaces) by V = [V1;V2;V3; ... ] % % EXAMPLES % PREX_COMBINING % % SEE ALSO % MAPPINGS, DATASETS, VOTEC, MAXC, MINC, MEDIANC, PRODC, % AVERAGEC, STACKED, PARALLEL % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: meanc.m,v 1.3 2010/06/01 08:48:55 duin Exp $ function w = meanc(p1) type = 'mean'; % define the operation processed by FIXEDCC. name = 'Mean combiner'; % define the name of the combiner. % this is the general procedure for all possible % calls of fixed combiners handled by FIXEDCC if nargin == 0 w = mapping('fixedcc','combiner',{[],type,name}); else w = fixedcc(p1,[],type,name); end if isa(w,'mapping') w = setname(w,name); end return
github
jacksky64/imageProcessing-master
adaboostc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/adaboostc.m
3,756
utf_8
622ed5621261168b9796ffdf4e57b129
%ADABOOSTC % % [W,V,ALF] = ADABOOSTC(A,CLASSF,N,RULE,VERBOSE); % % INPUT % A Dataset % CLASSF Untrained weak classifier % N Number of classifiers to be trained % RULE Combining rule (default: weighted voting) % VERBOSE Suppress progress report if 0 (default) % % OUTPUT % W Combined trained classifier % V Cell array of all classifiers % Use VC = stacked(V) for combining % ALF Weights % % DESCRIPTION % % Computation of a combined classifier according to adaboost. % % In total N weighted versions of the training set A are generated % iteratevely and used for the training of the specified classifier. % Weights, to be used for the probabilities of the objects in the training % set to be selected, are updated according to the Adaboost rule. % % The entire set of generated classifiers is given in V. % The set of classifier weigths, according to Adaboost is returned in ALF % % Various aggregating possibilities can be given in % the final parameter rule: % []: WVOTEC, weighted voting. % VOTEC voting % MEANC sum rule % AVERAGEC averaging of coeffients (for linear combiners) % PRODC product rule % MAXC maximum rule % MINC minimum rule % MEDIANC median rule % % REFERENCE % Ji Zhu, Saharon Rosset, Hui Zhou and Trevor Hastie, % Multiclass Adaboost. A multiclass generalization of the Adaboost % algorithm, based on a generalization of the exponential loss. % http://www-stat.stanford.edu/~hastie/Papers/samme.pdf % % SEE ALSO % MAPPINGS, DATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % (Multiclass correction by Marcin Budka, Bournemouth Univ., UK) function [W,V,alf] = adaboostc(a,clasf,n,rule,verbose) prtrace(mfilename); %%INITIALISATION if nargin < 5, verbose = 0; end if nargin < 4, rule = []; end if nargin < 3, n = 100; end if nargin < 2 || isempty(clasf), clasf = nmc; end if nargin < 1 || isempty(a) W = mapping(mfilename,{clasf,n,rule,verbose}); W = setname(W,'Adaboost'); return end [m,k,c] = getsize(a); V = []; laba = getlab(a); %lablist = getlablist(a); %laba = getnlab(a); %p = getprior(a); %a = dataset(a,laba); % use numeric labels for speed %a = setprior(a,p); u = ones(m,1)/m; % initialise object weights alf = zeros(1,n); % space for classifier weights if verbose > 0 && k == 2 figure(verbose); scatterd(a); end %% generate n classifiers for i = 1:n b = gendatw(a,u,m); % sample training set b = setprior(b,getprior(a)); % use original priors w = b*clasf; % train weak classifier ra = a*w; % test weak classifier if verbose && k == 2 plotc(w,1); drawnow end labc = labeld(ra); diff = sum(labc~=laba,2)~=0; % objects erroneously classified erra = sum((diff).*u); % weighted error on original dataset if (erra < (1-1/c)) % if classifier better then random guessing... alf(i) = 0.5*(log((1-erra)/erra) + log(c-1)); correct = find(diff==0); % find correctly classified objects wrong = find(diff==1); % find incorrectly classified objects u(correct) = u(correct)*exp(-alf(i)); % give them the ... u(wrong) = u(wrong)*exp(alf(i)); % proper weights u = u./sum(u); % normalize weights else alf(i) = 0; end %w = setlabels(w,lablist); % restore original labels if verbose disp([erra alf(i) sum(alf)]) end V = [V w]; % store all classifiers end %% combine and return if isempty(rule) W = wvotec(V,alf); % default is weighted combiner else W = traincc(a,V,rule); % otherwise, use user supplied combiner end if verbose > 0 && k == 2 plotc(W,'r',3) ee = a*W*testc; title(['Error: ', num2str(ee)]); end return
github
jacksky64/imageProcessing-master
cmapm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/cmapm.m
5,624
utf_8
7d0c1c3f05b31ca8840e7529ff33c3c6
%CMAPM Compute some special maps % % INPUT % Various % % OUTPUT % W Mapping % % DESCRIPTION % CMAPM computes some special data-independent maps for scaling, selecting or % rotating K-dimensional feature spaces. % % W = CMAPM(K,N) Selects the features listed in the vector N % W = CMAPM(K,P) Polynomial feature map. P should be an N*K matrix % in which each row defines the exponents for the % original features in a polynomial term. Note: for % N = 1 and/or K = 1, feature selection is applied! % W = CMAPM(K,'EXP') Exponential, negative exponential and logarithmic % W = CMAPM(K,'NEXP') mappings. % W = CMAPM(K,'LOG') % W = CMAPM(K,'RANDROT') Defines a random K-dimensional rotation. % W = CMAPM(F,'ROT') The N*K matrix F defines N linear combinations % to be computed by X*F'. % W = CMAPM(X,'SHIFT') Defines a shift of the origin by X. % W = CMAPM(S,'SCALE') Divides the features by the components of the % vector S. % W = CMAPM({X,S},'SCALE') Shift by X and scale by S. % % EXAMPLES % For the polynomial feature map, CMAPM(K,P), P defines exponents for each % feature. So P = [1 0; 0 1; 1 1; 2 0; 0 2; 3 0; 0 3] defines 7 features, % the original 2 (e.g. x and y), a mixture (xy) and all powers of the second % (x^2,y^2) and third (x^3,y^3) order. Another example is P = diag([0.5 0.5 % 0.5]), defining 3 features to be the square roots of the original ones. % % SEE ALSO % MAPPINGS, SCALEM, FEATSELM, KLM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: cmapm.m,v 1.5 2010/02/08 15:31:48 duin Exp $ function w = cmapm(arg1,arg2,par1,par2,par3) prtrace(mfilename); if (nargin < 2) error('insufficient arguments'); end if (~isa(arg1,'dataset')) % First form: ARG1 is a matrix, construct a mapping. data = arg1; if (isstr(arg2)) type = arg2; switch (type) case {'exp','nexp','log'} % Function mappings. w = mapping(mfilename,'fixed',{type},[],data,data); w = setname(w,type); case 'randrot' % Random rotation matrix. [F,V] = preig(covm(randn(100*data,data))); w = affine(F,zeros(1,data)); w = setname(w,'Random Rotation'); case 'rot' % Rotation by given matrix. [n,k] = size(data); w = affine(data',zeros(1,n)); w = setname(w,'Rotation'); case 'shift' % Shift by given vector. k = length(data); w = affine(eye(k),-data); w = setname(w,'Shift'); case 'scale' % Shift, scale & (optionally) clip. if (iscell(data)) % Extract and check parameters. shift = data{1}; scale = data{2}; if (length(data) == 3), clip = data{3}; else, clip = 0; end k = length(scale); if (~isempty(scale)) & (length(shift) ~= k) error('shift and scale should have same dimension') end else % Only a scale is specified; set shift and clip to 0. scale = data; k = length(scale); shift = zeros(1,k); clip = 0; end % Create mapping if (clip) w = mapping(mfilename,'fixed',{'normalize',shift,ones(1,k)./scale,clip},[],k,k); w = setname(w,'Scaling'); else w = affine(1./scale,-shift./scale); end otherwise error(['unknown option ' arg2]) end else % ARG2 is not a string: feature selection or polynomial mapping. if (min(size(arg2)) == 1) % ARG2 is a vector: feature selection, DATA is input feature size prwarning(4,'second input argument is a vector: performing feature selection'); if (min(arg2) < 1) | (max(arg2) > data) error('Selected features out of range') end w = mapping(mfilename,'fixed',{'featsel',arg2},[],data,length(arg2)); w = setname(w,'Feature Selection'); else % ARG2 is a matrix: polynomial mapping. prwarning(4,'second input argument is a matrix: performing polynomial mapping'); [n,k] = size(arg2); if (data ~= k) error('matrix has wrong size') else w = mapping(mfilename,'fixed',{'polynomial',arg2},[],k,n); w = setname(w,'Polynomial'); end end end else % Second form: ARG1 is a dataset, execute some fixed mappings a = +arg1; [m,k] = size(a); % Extract dataset. featlist = getfeatlab(arg1); type = arg2; switch (type) case 'exp' b = exp(a); case 'nexp' b = exp(-a); case 'log' b = log(a); case 'normalize' b = a - repmat(par1,m,1); % Subtract mean (par1). % Multiply by scale; use different ways of looping for small and % P = diag([0.5 0.5 0.5]) % large feature sizes if (m > k), for j = 1:k, b(:,j) = b(:,j)*par2(j); end else, for i = 1:m, b(i,:) = b(i,:).*par2; end end % Clip, if necessary (par3 ~= 0, see SCALEM). if (exist('par3')) & (par3) J = find(b < 0); b(J) = zeros(size(J)); % Set values < 0 to 0... J = find(b > 1); b(J) = ones(size(J)); % ...and values > 1 to 1. end case 'featsel' b = a(:,par1); % Select feature indices (par1). if ~isempty(featlist) featlist = featlist(par1,:); end case 'polynomial' [n,k] = size(par1); % Create polynomial features. b = zeros(m,n); for i = 1:n b(:,i) = prod((a .^ (repmat(par1(i,:),m,1))),2); end featlist = [1:n]'; otherwise error('unknown mapping') end w = setdata(arg1,b,featlist); end return
github
jacksky64/imageProcessing-master
knnm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/knnm.m
2,438
utf_8
e61eb7d473cd279fa7c748f9ad089245
%KNNM K-Nearest Neighbour based density estimate % % W = KNNM(A,KNN) % % D = B*W % % INPUT % A Dataset % KNN Number of nearest neighbours % % OUTPUT % W Density estimate % % DESCRIPTION % A density estimator is constructed based on the k-Nearest Neighbour rule % using the labeled objects in A. All objects, however, are used if the % entire dataset is unlabeled or if A is not a dataset, but a double. % In all cases, just single density estimator W is computed. % Class priors in A are neglected. % % The mapping W may be applied to a new dataset B using DENSITY = B*W. % % SEE ALSO % DATASETS, MAPPINGS, KNNC, QDC, PARZENM, GAUSSM % $Id: knnm.m,v 1.6 2009/02/02 22:11:27 duin Exp $ function w = knnm(a,arg2) prtrace(mfilename); if (nargin < 2) prwarning(2,'number of neighbours to use not specified, assuming 1'); arg2 = 1; end mapname = 'KNN Density Estimation'; if (nargin < 1) | (isempty(a)) % No arguments given: return empty mapping. w = mapping(mfilename,arg2); w = setname(w,mapname); elseif (~isa(arg2,'mapping')) % Train a mapping. knn = arg2; if isa(a,'dataset') labname = getname(a); else labname = ''; end if (~isdataset(a) & ~isdatafile(a)) | getsize(a,3) ~= 1 w = mclassm(a,mapping(mfilename,knn),'weight'); w = setlabels(w,labname); w = setname(w,mapname); return return end islabtype(a,'crisp'); isvaldfile(a,1); a = testdatasize(a,'objects'); a = remclass(a); [m,k] = size(a); w = mapping(mfilename,'trained',{a,knn},labname,k,1); w = setname(w,mapname); else % Execute a trained mapping V. v = arg2; b = v.data{1}; % B is the original training data. knn = v.data{2}; %iscomdset(a,b,0); [m,k] = size(b); u = scalem(b,'variance'); a = a*u; b = b*u; d = sqrt(distm(+a,+b)); % Calculate squared distances [s,J] = sort(d,2); % and find nearest neighbours. ss = s(:,knn); % Find furthest neighbour ss(find(ss==0)) = realmin.^(1/k); % Avoid zero distances f = knn./(m*nsphere(k)*(ss.^k)); % Normalize by the volume of sphere % defined by the furthest neighbour. f = f*prod(u.data.rot); % Correct for scaling w = setdat(a,f,v); % proper normalisation has still to be done. end return function v = nsphere(k) % Volume k-dimensional sphere v = (2*(pi^(k/2))) / (k*gamma(k/2)); return
github
jacksky64/imageProcessing-master
polyc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/polyc.m
2,421
utf_8
044939bf2b4794fc73056fb724c2ac1f
%POLYC Polynomial Classification % % W = polyc(A,CLASSF,N,S) % % INPUT % A Dataset % CLASSF Untrained classifier (optional; default: FISHERC) % N Degree of polynomial (optional; default: 1) % S 1/0, 1 indicates that 2nd order combination terms should be used % (optional; default: 0) % % OUTPUT % W Trained classifier % % DESCRIPTION % Adds polynomial features to the dataset A and runs the untrained % classifier CLASSF. Combinations of 2nd order terms may be constructed. % For higher order terms no combinations are generated. % % SEE ALSO % DATASETS, MAPPINGS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: polyc.m,v 1.3 2007/04/13 09:30:54 duin Exp $ function W = polyc(a,classf,n,s) prtrace(mfilename); if nargin < 4, prwarning(4,'S is not specified, assuming 0, i.e. no higher order terms.'); s = 0; end if nargin < 3 | isempty(n), prwarning(4,'N, the degree of polynomial is not specified, assuming 1.'); n = 1; end if (nargin < 2) | (isempty(classf)), prwarning(4,'CLASSF is not specified, assuming FISHERC.'); classf = fisherc; end % No data, return an untrained mapping. if nargin < 1 | isempty(a) W = mapping('polyc',{classf,n,s}); W = setname(W,'Polynomial classifier'); return; end % Checks for the classifier. ismapping(classf); isuntrained(classf); % Construct the 'feature-construction'-matrix such that: % x_new = x*cmapm(k,P); % See CMAPM. isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a,'features'); a = setprior(a,getprior(a)); [m,k] = size(a); % First all the terms involving the same degree are defined. % Degree 1 P = eye(k); % Degree 2 and higher. for j = 2:n P = [P; j*eye(k)]; end % On request, all the terms involving combinations of different degrees. if s & (k > 1) & n > 1 % All pairs of features (including their higher degree variants) have % to be included. Q = zeros(k*(k-1)/2,k); n = 0; for j1 = 1:k for j2 = j1+1:k n = n+1; Q(n,j2) = Q(n,j2)+1; Q(n,j1) = Q(n,j1)+1; end end P = [P;Q]; end % Define the mapping from P, apply it to A and train the classifier. v = cmapm(k,P); w = a*v*classf; W = v*w; W = setname(W,'Polynomial classifier'); W = setcost(W,a); return;
github
jacksky64/imageProcessing-master
confmat.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/confmat.m
7,695
utf_8
0d64b6fb4a10caf99417d1eda2878c7a
%CONFMAT Construct confusion matrix % % [C,NE,LABLIST] = CONFMAT(LAB1,LAB2,METHOD,FID) % % INPUT % LAB1 Set of labels % LAB2 Set of labels % METHOD 'count' (default) to count number of co-occurences in % LAB1 and LAB2, 'disagreement' to count relative % non-co-occurrence. % FID Write text result to file % % OUTPUT % C Confusion matrix % NE Total number of errors (empty labels are neglected) % LABLIST Unique labels in LAB1 and LAB2 % % DESCRIPTION % Constructs a confusion matrix C between two sets of labels LAB1 % (corresponding to the rows in C) and LAB2 (the columns in C). The order of % the rows and columns is returned in LABLIST. NE is the total number of % errors (sum of non-diagonal elements in C). % % When METHOD = 'count' (default), co-occurences in LAB1 and LAB2 are counted % and returned in C. When METHOD = 'disagreement', the relative disagreement % is returned in NE, and is split over all combinations of labels in C % (such that the rows sum to 1). (The total disagreement for a class equals % one minus the sensitivity for that class as computed by TESTC). % % [C,NE,LABLIST] = CONFMAT(D,METHOD) % % If D is a classification result D = A*W, the labels LAB1 and LAB2 are % internally retrieved by CONFMAT before computing the confusion matrix. % % C = CONFMAT(D) % % This call also applies in case in D = A*W the dataset A has soft labels % W is trained by a soft labeld classifier. % % When no output argument is specified, or when FID is given, the % confusion matrix is displayed or written a to a text file. It is assumed % that LAB1 contains true labels and LAB2 stores estimated labels. % % EXAMPLE % Typical use of CONFMAT is the comparison of true and and estimated labels % of a testset A by application to a trained classifier W: % LAB1 = GETLABELS(A); LAB2 = A*W*LABELD. % More examples can be found in PREX_CONFMAT, PREX_MATCHLAB. % % SEE ALSO % MAPPINGS, DATASETS, GETLABELS, LABELD % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: confmat.m,v 1.8 2010/06/01 08:45:31 duin Exp $ function [CC,ne,lablist1,lablist2] = confmat (arg1,arg2,arg3,fid) prtrace(mfilename); % Check arguments. if nargin < 4, fid = 1; end if nargin < 3 | isempty(arg3) if isdataset(arg1) if islabtype(arg1,'crisp') lablist1 = getlablist(arg1); nlab1 = getnlab(arg1); lab2 = arg1*labeld; nlab2 = renumlab(lab2,lablist1); % try to fit on original lablist if any(nlab2==0) % doesn't fit: contruct its own one [nlab2,lablist2] = renumlab(lab2); else lablist2 = lablist1; end if nargin < 2| isempty(arg2) method = 'count'; prwarning(4,'no method supplied, assuming count'); else method = arg2; end elseif islabtype(arg1,'soft') true_labs = gettargets(arg1); if any(true_labs > 1 | true_labs < 0) error('True soft labels should be between 0 and 1') end est_labs = +arg1; if any(est_labs > 1 | est_labs < 0) error('Estimated soft labels should be between 0 and 1') end C = true_labs'*est_labs; output(C,getlablist(arg1),getfeatlab(arg1),'soft',fid); return else error('Confusion matrix can only be computed for crisp and soft labeld datasets') end else method = 'count'; prwarning(4,'no method supplied, assuming count'); if (nargin < 2 | isempty(arg2)) error('Second label list not supplied') end [nlab1,lablist1] = renumlab(arg1); [nlab2,lablist2] = renumlab(arg2); end else [nlab1,lablist1] = renumlab(arg1); [nlab2,lablist2] = renumlab(arg2); %lab1 = arg1; %lab2 = arg2; method = arg3; end if nargin < 2 if ~isdataset(arg1) error('two labellists or one dataset should be supplied') end end % Renumber LAB1 and LAB2 and find number of unique labels. m = size(nlab1,1); if (m~=size(nlab2,1)) error('LAB1 and LAB2 have to have the same lengths.'); end n1 = size(lablist1,1); n2 = size(lablist2,1); n = max(n1,n2); % Construct matrix of co-occurences (confusion matrix). C = zeros(n1+1,n2+1); for i = 0:n1 K = find(nlab1==i); if (isempty(K)) C(i+1,:) = zeros(1,n2+1); else for j = 0:n2 C(i+1,j+1) = length(find(nlab2(K)==j)); end end end % position rejects and unlabeled object at the end of the matrix D = C; D(1:end-1,1:end-1) = C(2:end,2:end); D(end,:) = [C(1,2:end) C(1,1)]; D(1:end-1,end) = C(2:end,1); C = D; D = D(1:end-1,1:end-1); DD = D(1:min(n1,n2),1:min(n1,n2)); % Calculate number of errors ('count') or disagreement ('disagreement'). % Neglect rejects switch (method) case 'count' J = find(nlab1~=0 & nlab2~=0); ne = nlabcmp(lablist1(nlab1(J),:),lablist2(nlab2(J),:)); case 'disagreement' ne = (sum(sum(D)) - sum(diag(DD)))/m; % Relative sum of off-diagonal ne = ne/m; % entries. E = repmat(sum(D,2),1,n2); % Disagreement = 1 - D = ones(n1,n2)-D./E; % relative co-occurence. D = D / (n-1); otherwise error('unknown method'); end %Distinguish 'rejects / no_labels' from 'non_rejects / fully labeled' if (any(C(:,end) ~= 0) | any(C(end,:)~=0)) & strcmp(method,'count') n1 = n1+1; n2 = n2+1; labch = char(strlab(lablist2),'reject'); labcv = char(strlab(lablist1),'No'); else labch = strlab(lablist2); labcv = strlab(lablist1); %labcv = labch; C = D; end % If no output argument is specified, pretty-print C. if (nargout == 0) | nargin == 4 output(C,labcv,labch,method,fid) end if nargout > 0 CC = C; end return function output(C,labcv,labch,method,fid) n1 = size(labcv,1); n2 = size(labch,1); % Make sure labels are stored in LABC as matrix of characters, % max. 6 per label. if (size(labch,2) > 6) labch = labch(:,1:6); %labcv = labcv(:,1:6); end if (size(labch,2) < 5) labch = [labch repmat(' ',n2,ceil((5-size(labch,2))/2))]; labcv = [labcv repmat(' ',n1,ceil((5-size(labcv,2))/2))]; end %C = round(1000*C./repmat(sum(C,2),1,size(C,2))); nspace = max(size(labcv,2)-7,0); cspace = repmat(' ',1,nspace); %fprintf(fid,['\n' cspace ' | Estimated Labels']); fprintf(fid,['\n True ' cspace '| Estimated Labels']); fprintf(fid,['\n Labels ' cspace '|']); for j = 1:n2, fprintf(fid,'%7s',labch(j,:)); end fprintf(fid,'|'); fprintf(fid,' Totals'); fprintf(fid,'\n '); fprintf(fid,repmat('-',1,8+nspace)); fprintf(fid,'|%s',repmat('-',1,7*n2)); fprintf(fid,'|-------'); fprintf(fid,'\n '); for j = 1:n1 fprintf(fid,' %-7s|',labcv(j,:)); switch (method) case 'count' fprintf(fid,'%5i ',C(j,:)'); fprintf(fid,'|'); fprintf(fid,'%5i',sum(C(j,:))); case 'disagreement' fprintf(fid,' %5.3f ',C(j,:)'); fprintf(fid,'|'); fprintf(fid,' %5.3f ',sum(C(j,:))); case 'soft' fprintf(fid,' %5.2f ',C(j,:)'); fprintf(fid,'|'); fprintf(fid,' %5.2f ',sum(C(j,:))); end fprintf(fid,'\n '); end fprintf(fid,repmat('-',1,8+nspace)); fprintf(fid,'|%s',repmat('-',1,7*n2)); fprintf(fid,'|-------'); fprintf(fid,['\n Totals ' cspace '|']); switch (method) case 'count' fprintf(fid,'%5i ',sum(C)); fprintf(fid,'|'); fprintf(fid,'%5i',sum(C(:))); case 'disagreement' fprintf(fid,' %5.3f ',sum(C)); fprintf(fid,'|'); fprintf(fid,' %5.3f ',sum(C)); case 'soft' fprintf(fid,' %5.2f ',C(j,:)'); fprintf(fid,'|'); fprintf(fid,' %5.2f ',sum(C(:))); end fprintf(fid,'\n\n'); return
github
jacksky64/imageProcessing-master
dps.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/dps.m
3,849
utf_8
940a25b59ab5d19f49a72df1b888cd6a
% DPS Correntropy based, hierarchical density preserving data split % % R = DPS(A,LEVELS,CLASSWISE) % [R H] = DPS(A,LEVELS,CLASSWISE) % % INPUT % A Input dataset % LEVELS Number of split levels, default: 3 % CLASSWISE Use (1, default) or ignore (0) label information % % OUTPUT % R Index array with rotation set with 2^LEVELS folds % H Hierarchy of splits % % DESCRIPTION % Density Preserving Sampling (DPS) divides the input dataset into a given % number of folds (2^LEVELS) by maximizing the correntropy between the folds % and can be used as an alternative for cross-validation. The procedure is % deterministic, so unlike cross-validation it does not need to be repeated. % % REFERENCE % Budka, M., Gabrys, B., 2010. Correntropy-based density-preserving data % sampling as an alternative to standard cross-validation. (Accepted for % publication in Proceedings of the International Joint Conference on % Neural Networks, IJCNN 2010, part of the IEEE World Congress on Computational % Intelligence, WCCI 2010, Barcelona, Spain, July 18-23, 2010) % http://www.budka.co.uk/ function [R H] = dps(A,levels,classwise) if (nargin<3) || isempty(classwise), classwise = 1; end if (nargin<2) || isempty(levels), levels = 3; end islabtype(A,'crisp'); H = zeros(levels,size(A,1)); idxs = cell(1,levels+1); idxs{1} = {1:size(A,1)}; for i = 1:levels for j = 1:2^(i-1) t = helper(A(idxs{i}{j},:),classwise); idxs{i+1}{2*j-1} = idxs{i}{j}(t{1}); idxs{i+1}{2*j} = idxs{i}{j}(t{2}); end for j = 1:length(idxs{i+1}) H(i,idxs{i+1}{j}) = j; end end R = H(end,:); end function idxs = helper(A,classwise) % if the classes aro too small to be divided further, switch to classless mode if classwise && all(classsizes(A)>2), c = getsize(A,3); else classwise = 0; c = 1; end siz = zeros(2,1); idx = cell(1,c); for i = 1:c if classwise, [B BI] = seldat(A,i); % select i-th class else B = A; BI = (1:size(A,1)); end m = length(BI); mask = true(1,m); % mask is used for counting remaining objects D = +distm(B) + diag(inf(m,1)); % working distance matrix Dorg = D; % original distance matrix idx{i} = nan(2,ceil(m/2)); for j = 1:floor(m/2) [mD,I] = min(D,[],1); % \ [mmD,J] = min(mD); % find two closest objects I = I(J(1)); J = J(1); % / mask(I) = 0; mask(J) = 0; % mark them as used % split the objects to maximally increase coverage of both subsets if (mean(Dorg(I,idx{i}(1,1:j-1))) + mean(Dorg(J,idx{i}(2,1:j-1))) < ... mean(Dorg(I,idx{i}(2,1:j-1))) + mean(Dorg(J,idx{i}(1,1:j-1)))) idx{i}(1,j) = J; idx{i}(2,j) = I; else idx{i}(1,j) = I; idx{i}(2,j) = J; end % remove used objects from the distance matrix D(I,:) = inf; D(:,I) = inf; D(J,:) = inf; D(:,J) = inf; end if isempty(j), j = 0; end % in case the loop is not entered at all % odd number of points in class if sum(mask)>0 I = find(mask); if siz(1)<siz(2) idx{i}(1,end) = I; elseif siz(1)>siz(2) idx{i}(2,end) = I; else if (mean(Dorg(I,idx{i}(1,1:j))) < mean(Dorg(I,idx{i}(2,1:j)))) idx{i}(2,j+1) = I; else idx{i}(1,j+1) = I; end end end % convert indexes from class-specific to dataset-specific idx{i}(1,~isnan(idx{i}(1,:))) = BI(idx{i}(1,~isnan(idx{i}(1,:)))); idx{i}(2,~isnan(idx{i}(2,:))) = BI(idx{i}(2,~isnan(idx{i}(2,:)))); % update fold sizes siz(1) = siz(1) + sum(~isnan(idx{i}(1,:))); siz(2) = siz(2) + sum(~isnan(idx{i}(2,:))); end idx = cell2mat(idx); idxs = cell(1,2); idxs{1} = idx(1,~isnan(idx(1,:))); idxs{2} = idx(2,~isnan(idx(2,:))); end
github
jacksky64/imageProcessing-master
reorderclasses.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/reorderclasses.m
3,660
utf_8
0f7203be264e07c19eb91ce888d8c812
%REORDERCLASSES Reorder the lablist % % X = REORDERCLASSES(X,LABLIST) % X = REORDERCLASSES(X,I) % % INPUT % X (labeled) dataset % LABLIST correctly ordered lablist % I permutation vector % % OUTPUT % X dataset with reordered classes % % DESCRIPTION % Change the order of the classes in dataset X to the one defined in % LABLIST. When only a single class label is given in LABLIST, this % class is put in the first position, and the others are just kept in % the order they already were. % % For example, when I have a dataset A with a labellist {'apple' % 'banana' 'pear'} and I perform B=REORDERCLASS(A,3) (or identically % B=REORDERCLASS(A,[3 1 2])), I will get a dataset B with a new % labellist of {'pear' 'apple' 'banana'}. % % SEE ALSO % RENUMLAB % Copyright: D.M.J. Tax, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function x = reorderclasses(x,lablist) % First deal with the situation that lablist is a cellarray: if isa(lablist,'cell') if isa(lablist{1},'char') lablist = strvcat(lablist); else % it should be a double... if ~isa(lablist,'double') error('Only stringlabels or numeric labels are allowed.'); end lablist = cell2mat(lablist); end end % ... and make sure numerical labels are column vectors if isa(lablist,'double') lablist = lablist(:); end ll = getlablist(x); c = size(ll,1); % Second deal with the situation that we only supplied a single 'target % class': if size(lablist,1)==1 if isa(lablist,'char') % the single label is a string: matchnr = strmatch(lablist,ll); if isempty(matchnr) error('Cannot find %s in the dataset.',lablist); end else % the single label is a number: % is this number a class label, or the index in the lablist?? if (lablist<1) | (lablist>c) % probably a class label matchnr = find(lablist==ll); if isempty(matchnr) error('Cannot find %d in the dataset.',lablist); end else matchnr = lablist; end end % make a complete permutation matrix: lablist = (1:c)'; lablist(matchnr) = []; lablist = [matchnr; lablist]; end % test to see if lablist has at least enough elements: if size(lablist,1)~=c error('New lablist or permutation vector does not match with number of classes.'); end % Do the matching and reordering, depending if the class labels in X are % string or numerical if isa(ll,'char') % X has string labels if isa(lablist,'char') % we have to match 2 string labels I = zeros(c,1); for i=1:c matchnr = strmatch(lablist(i,:),ll); if isempty(matchnr) error('Label %s cannot be found in the dataset.',lablist(i,:)); end I(i) = matchnr; end else % we have to apply a simple permutation on strings in X if ~isa(lablist,'double') error('Expecting a permutation label or a new lablist.'); end I = lablist; if (min(I)<1) | (max(I)>c) error('Not a valid permutation vector is supplied.'); end lablist = ll(I,:); end else % dataset X has numeric labels if (min(lablist)<1) | (max(lablist)>c) % we are probably NOT dealing with a permutation vector I = zeros(c,1); for i=1:c matchnr = find(lablist(i)==ll); if isempty(matchnr) error('Label %d cannot be found in the dataset.',lablist(i)); end I(i) = matchnr; end else % just a permutation on the numeric labels I = lablist; lablist = ll(I,:); end end % So finally perform the transformation: x = setlablist(x, lablist); [sortedI,I] = sort(I); %kind of inverse the I % and be careful with unlabeled data nlab = getnlab(x); J = find(nlab>0); nlab(J) = I(nlab(J)); x = setnlab(x, nlab); return
github
jacksky64/imageProcessing-master
bayesc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/bayesc.m
2,709
utf_8
64ea328a92377d3fd78dcef88ed92b12
%BAYESC Bayes classifier % % W = BAYESC(WA,WB, ... ,P,LABLIST) % % INPUT % WA, WB, ... Trained mappings for supplying class density estimates % P Vector with class prior probabilities % Default: equal priors % LABLIST List of class names (labels) % % OUTPUT % W Bayes classifier. % % DESCRIPTION % The trained mappings WA,WB, ... should supply proper densities estimates % D for a dataset X by D = X*WA, etcetera. E.g. they should be trained by % commands like GAUSSM(A), PARZENM(A), KNNM(A). Consequently, they should % have a size of K x 1 (assuming that X and A are K-dimensional). Also % sizes of K x N are supported, assuming a combined density estimate for N % classes simultaneously. BAYESC weighs the class densitites by the class % priors in P and names the classes by LABLIST. If LABLIST is not supplied, % the labels stored in the mappings are used. % % REFERENCES % 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd edition, % John Wiley and Sons, New York, 2001. % 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons, New York, 2002. % % SEE ALSO % DATASETS, MAPPINGS, GAUSSM, PARZENM, KNNM % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function w = bayesc(varargin) prtrace(mfilename); n = nargin; p = []; lablist = []; if (nargin > 1) if nargin > 2 & (~ismapping(varargin{end-1})) p = varargin{end-1}; lablist = varargin{end}; n = n-2; elseif (~ismapping(varargin{end})) p = varargin{end}; n = n-1; end end if (nargin < 1 | isempty(varargin{1})) % Definition w = mapping(mfilename,'combiner',{p,lablist}); w = setname(w,'Bayes Classifier'); elseif ismapping(varargin{1}) % Construction of the trained Bayes Classifier w = []; k = size(varargin{1},1); for j=1:n v = varargin{j}; if ~ismapping(v) | getout_conv(v) ~= 0 error('Density estimating mapping expected and not found') end if size(v,1) ~= k error('Mappings / density estimators should be defined for the same dimensionality') end w = [w v]; end c = size(w,2); if isempty(p), p = ones(1,c)/c; end if length(p) ~= c error('Vector with prior probabilities has wrong length') end if isempty(lablist) lablist = getlabels(w); end if size(lablist,1) ~= c error('Label list has wrong size') end w = w*affine(p(:)'); w = setlabels(w,lablist); w = setname(w,'Bayes Classifier'); else error('Wrong input') end
github
jacksky64/imageProcessing-master
traincc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/traincc.m
1,575
utf_8
ce1e8f1e40fd17a4139ac4d705643c2d
%TRAINCC Train combining classifier if needed % % W = TRAINCC(A,W,CCLASSF) % % INPUT % A Training dataset % W A set of classifiers to be combined % CCLASSF Combining classifier % % OUTPUT % B Combined classifier mapping % % DESCRIPTION % The combining classifier CCLASSF is trained by the dataset A*W, if % training is needed. W is typically a set of stacked (operating in the same % feature space) or parallel (operating in different feature spaces; % performed one after another) classifiers to be combined. E.g. if V1, V2 % and V3 are base classifiers, then V = [V1,V2,V3,...] is a stacked % classifier and V = [V1;V2;V3;...] is a parallel one. If CCLASSF is one of % the fixed combining rules like MAXC, then training is skipped. % % This routine is typically called by combining classifier schemes like % BAGGINGC and BOOSTINGC. % % SEE ALSO % DATASETS, MAPPINGS, STACKED, PARALLEL, BAGGINGC, BOOSTINGC % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: traincc.m,v 1.4 2010/06/25 07:55:34 duin Exp $ function w = traincc(a,w,cclassf) prtrace(mfilename); if (~ismapping(cclassf)) error('Combining classifier is an unknown mapping.') end % If CCLASSF is already a combining classifier, just apply it. Otherwise, % train it using A*W. if isuntrained(w) w = a*w; % train base classifiers end w = w*cclassf; if isuntrained(w) w = a*w; % train combiner when needed end w = setcost(w,a); return
github
jacksky64/imageProcessing-master
plotr.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/plotr.m
1,058
utf_8
e922a00d48d26055bff39c4243bfad90
%PLOTR Plot regression % % PLOTR(W) % PLOTR(W,CLR) % % Plot the regression function W, optionally using plot string CLR. % This plot string can be anything that is defined in plot.m. % For the best results (concerning the definition of the axis for % instance) it is wise to first scatter the regression data using % SCATTERR(A). % % The resolution of the plot is determined by the global parameter % GRIDSIZE. % % SEE ALSO % SCATTERR, PLOTC % Copyright: D.M.J. Tax, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function h = plotr(w,clrs) if nargin<2 clrs = 'k-'; end if ~isa(w,'mapping') error('Mapping expected. Old PLOTR has been renamed in PLOTE.'); end % define the input on a grid: V = axis; g = gridsize; %because we are plotting 1D, we can affort many more points compared to %2D: g = g*g; x = linspace(V(1),V(2),g)'; % find the regression outputs: y = x*w; % and plot: hold on; h = plot(x,+y,clrs); % avoid unnecessary output: if nargout<1, clear h; end return
github
jacksky64/imageProcessing-master
matchcost.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/matchcost.m
1,233
utf_8
7f0b9c4e4003b50b936ad26092ce9e5c
% Matchcost % Copyright: D.M.J. Tax, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: matchcost.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function [cost,lablist] = matchcost(orglablist,cost,lablist) prtrace(mfilename,2); k = size(orglablist,1); if (size(cost,1) ~= k) error([newline 'The number of rows in the cost matrix should match the number' ... newline 'of features']) end k = size(lablist,1); if (size(cost,2) ~= k) error([newline 'The number of columns in the cost matrix should match the length' ... newline 'of the lablist']) end if size(cost,2) < size(cost,1) error([newline 'Number of columns in cost matrix should be at least number of rows']) end if (nargin > 2) & (~isempty(lablist)) if size(lablist,1) ~= size(cost,2) error('Wrong number of labels supplied') end I = matchlablist(orglablist,lablist); %DXD that was a bug. if any(I==0) error('Supplied label list should match feature labels') end J = [1:size(lablist,1)]; J(I) = []; % find label in lablist not in dataset cost = [cost(I,I) cost(:,J)]; lablist = lablist([I;J],:); end return
github
jacksky64/imageProcessing-master
txtread.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/txtread.m
696
utf_8
6ebf9789d35e41ef629a89899cc6de7a
%TXTREAD Read text file % % A = TXTREAD(FILENAME,N,START) % % INPUT % FILENAME Name of delimited ASCII file % N Number of elements to be read (default all) % START First element to be read (default 1) % % OUTPUT % A String % % DESCRIPTION % Reads the total file as text string into A % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function a = txtread(file,n,nstart) if nargin < 3, nstart = 1; end if nargin < 2 | isempty(n), n = inf; end fid = fopen(file); if (fid < 0) error('Error in opening file.') end a = fscanf(fid,'%c',n); fclose(fid); return
github
jacksky64/imageProcessing-master
featsel.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featsel.m
1,825
utf_8
a8189a42fced472d3e1bb2f9f56f3b4e
%FEATSEL Selection of known features % % W = FEATSEL(K,J) % % INPUT % K Input dimensionality % J Index vector of features to be selected % % OUTPUT % W Mapping performing the feature selection % % DESCRIPTION % This is a simple support routine that writes feature selection % in terms of a mapping. If A is a K-dimensional dataset and J are % the feature indices to be selected, then B = A*W does the same as % B = A(:,J). % % The use of this routine is a mapping V computed for a lower dimensional % subspace defined by J can now be defined by W = FEATSEL(K,J)*V as a % mapping in the original K-dimensional space. % % The selected features can be retrieved by W.DATA or by +W. % See below for various methods to perform feature selection. % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELF, FEATSELLR, % FEATSELO, FEATSELB, FEATSELI, FEATSELP, FEATSELM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = featsel(k,j) if isa(k,'dataset') %if isa(k,'dataset') & ismapping(j) nodatafile(k); w = k(:,j); elseif isa(k,'mapping') w = k(:,j); else if (any(j) > k | any(j) < 1) error('Features to be selected are not in proper range') end % w = mapping(mfilename,'trained',j(:)',[],k,length(j)); % There seems to be no need to make this mapping 'trained'. % A fixed mapping could be used more easily. % For historical consistency it is left like this (RD) % On second sight a fixed mapping is needed for handling datafiles % w = mapping(mfilename,'trained',j(:)',[],k,length(j)); w = mapping(mfilename,'fixed',j(:)',[],k,length(j)); % w = mapping(mfilename,'combiner',j(:)',[],k,length(j)); w = setname(w,'Feature Selection'); end
github
jacksky64/imageProcessing-master
gaussm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gaussm.m
2,736
utf_8
a025a61e12fe6c77f953ebdd347f1cd5
%GAUSSM Mixture of Gaussians density estimate % % W = GAUSSM(A,K,R,S,M) % W = A*GAUSSM([],K,R,S,M); % % INPUT % A Dataset % K Number of Gaussians to use (default: 1) % R,S,M Regularization parameters, 0 <= R,S <= 1, see QDC % % OUTPUT % W Mixture of Gaussians density estimate % % DESCRIPTION % Estimation of a PDF for the dataset A by a Mixture of Gaussians % procedure. Use is made of EMCLUST(A,QDC,K). Unlabeled objects are % neglected, unless A is entirely unlabeled or double. Then all objects % are used. If A is a multi-class crisp labeled dataset the densities are % estimated class by class and then weighted and combined according their % prior probabilities. In all cases, just single density estimator W is % computed. % % Note that it is necessary to set the label type of A to soft labels % (A = LABTYPE(A,'soft') in order to use the traditional EM algorithm % based on posterior probabilities instead of using crisp labels. % % The mapping W may be applied to a new dataset B using DENSITY = B*W. % % SEE ALSO % DATASETS, MAPPINGS, QDC, MOGC, EMCLUST, PLOTM, TESTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: gaussm.m,v 1.8 2009/02/02 21:57:39 duin Exp $ function w = gaussm(a,n,r,s,dim) prtrace(mfilename) if nargin < 5, dim = []; end if nargin < 4, s = 0; end if nargin < 3, r = 0; end if (nargin < 2) prwarning (2,'number of Gaussians not specified, assuming 1.'); n = 1; end % No arguments specified: return an empty mapping. mapname = 'Mixture of Gaussians'; if (nargin < 1) | (isempty(a)) w = mapping(mfilename,{n,r,s,dim}); w = setname(w,mapname); return end if isa(a,'dataset') labname = getname(a); else labname = ''; end if ((~isdataset(a) & ~isdatafile(a)) | (getsize(a,3) ~= 1 & islabtype(a,'crisp'))) w = mclassm(a,mapping(mfilename,n),'weight'); w = setlabels(w,labname); w = setname(w,mapname); return end [m,k] = getsize(a); if n == 1 [U,G] = meancov(a); res.mean = +U; res.cov = G; res.prior= 1; w = normal_map(res,labname,k,1); else [e,v] = emclust(a,qdc([],r,s,dim),n); ncomp0 = size(v.data.mean,1); iter = 0; while (ncomp0 ~= n & iter < 5) % repeat until exactly n components are found [e,v1] = emclust(a,qdc([],r,s,m),n); ncomp1 = size(v1.data.mean,1); if ncomp1 > ncomp0 v = v1; ncomp0 = ncomp1; end iter = iter + 1; end res = v.data; res.nlab = ones(n,1); % defines that all Gaussian components have to be % combined into a single class. w = mapping('normal_map','trained',res,labname,k,1); end w = setname(w,mapname); return
github
jacksky64/imageProcessing-master
prwaitbarinit.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prwaitbarinit.m
1,294
utf_8
15265af6113db7d793f5a56b190e02a0
%PRWAITBARINIT Low level routine to simplify PRWAITBAR init % % [N,S,COUNT] = PRWAITBARINIT(STRING,N) % % INPUT % STRING - String with text to be written in every waitbar, % e.g. 'Processing %i items: '. This will be parsed % by S = SPRINTF(STRING,N); % N - Total number of items to be processed % % OUTPUT % N - Resulting N (Input N may be expression) % S - Resulting STRING (see above) % COUNT - Counter initialisation, COUNT = 0 % % This routine has to be used in combination with PRWAITBARNEXT, e.g.: % % [n,s,count] = prwaitbarinit('Processing %i items:',size(a,1)*size(a,2)); % for i=1:size(a,1) % for j=1:size(a,2) % < process a(i,j) > % count = prwaitbarnext(n,s,count); % end % end % % PRWAITBARINIT and PRWAITBARNEXT are written on top of PRWAITBAR. If it % is possible that loops like the above are not fully processed, it is % necessary to include as a final call PRWAITBAR(0) % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [n,s,count] = prwaitbarinit(ss,n) s = sprintf(ss,n); if n > 1 prwaitbar(n,s); prwaitbar(n,1,[s int2str(1)]); end count = 0; return
github
jacksky64/imageProcessing-master
prpinv.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prpinv.m
315
utf_8
e3f9437aff6d34596fe94d4b990b2562
%PRPINV Call to PINV() including PRWAITBAR % % B = PRPINV(A) % % This calls B = PINV(A) and includes a message to PRWAITBAR % in case of a large A function B = prpinv(A) [m,n] = size(A); if min([m,n]) > 250 prwaitbaronce('Inverting %i x %i matrix ...',[m,n]); B = pinv(A); prwaitbar(0); else B = pinv(A); end
github
jacksky64/imageProcessing-master
maxc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/maxc.m
1,900
utf_8
27971a25a4f95b74f121b8713b358fb2
%MAXC Maximum combining classifier % % W = MAXC(V) % W = V*MAXC % % INPUT % V Stacked set of classifiers % % OUTPUT % W Combined classifier using max-rule % % DESCRIPTION % If V = [V1,V2,V3, ... ] is a set of classifiers trained on the same % classes, then W is the maximum combiner: it selects the class that gives % the maximal output of the input classifiers. This might also be used as % A*[V1,V2,V3]*MAXC in which A is a dataset to be classified. Consequently, % if S is a similarity matrix with class feature labels (e.g. S = % A*PROXM(A,'r')), then S*MAXC*LABELD is the nearest neighbor classifier. % % If it is desired to operate on posterior probabilities then the input % classifiers should be extended to output these, using V = V*CLASSC. % % The base classifiers may be combined in a stacked way (operating in the % same feature space by V = [V1,V2,V3, ... ] or in a parallel way (operating % in different feature spaces) by V = [V1;V2;V3; ... ]. % % EXAMPLES % see PREX_COMBINING % % SEE ALSO % MAPPINGS, DATASETS, VOTEC, MINC, MEANC, MEDIANC, PRODC, AVERAGEC, % STACKED, PARALLEL % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: maxc.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function w = maxc(p1) % This is the general procedure for all possible calls of fixed combiners: % they are handled by FIXEDCC. type = 'max'; % Define the operation processed by FIXEDCC. name = 'Maximum combiner'; % Define the name of the combiner. % Possible calls: MAXC, MAXC(W) or MAXC(A,W). if (nargin == 0) % No arguments given: return untrained mapping. w = mapping('fixedcc','combiner',{[],type,name}); else w = fixedcc(p1,[],type,name); end if (isa(w,'mapping')) w = setname(w,name); end return
github
jacksky64/imageProcessing-master
kernelc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/kernelc.m
2,552
utf_8
88c72b7bff0916c5ead2b42ec0be0f1b
%KERNELC Arbitrary kernel/dissimilarity based classifier % % W = KERNELC(A,KERNEL,CLASSF) % W = A*KERNELC([],KERNEL,CLASSF) % % INPUT % A Dateset used for training % KERNEL - untrained mapping to compute kernel by A*(A*KERNEL) for % training CLASSF or B*(A*KERNEL) for testing with dataset B, or % - trained mapping to compute a kernel A*KERNEL for training % CLASSF or B*KERNEL for testing with a dataset B % KERNEL should be a functions like PROXM, KERNELM or USERKERNEL. % Default: reduced dissimilarity representation: % KERNELM([],[],'random',0.1,100); % CLASSF Classifier used in kernel space, default LOGLC. % % OUTPUT % W Resulting, trained classifier % % DESCRIPTION % This routine defines a classifier W in the input feature space based % on a kernel or dissimilarity representation defined by KERNEL and a % classifier CLASSF to be trained in the kernel space. % % In case KERNEL is defined by V = KERNELM( ... ) this routine % is identical to W = A*(V*CLASSF), Note that if KERNEL is a mapping, it % may be trained as well as untrained. In the latter case A is used to % build the kernel space as well as to optimize the classifier (like in SVC). % % EXAMPLE % A = GENDATB([100 100]); % Training set of 200 objects % R = GENDATB([10 10]); % Representation set of 20 objects % V = KERNELM(R,'p',3); % Compute kernel % W = KERNELC(A,V,FISHERC) % compute classifier % SCATTERD(A); % Scatterplot of trainingset % HOLD ON; SCATTERD(R,'ko'); % Add representation set to scatterplot % PLOTC(W); % Plot classifier % % SEE ALSO % DATASETS, MAPPINGS, KERNELM, PROXM, USERKERNEL % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = kernelc(a,kernel,classf) prtrace(mfilename); if nargin < 3 | isempty(classf), classf = fisherc; end if nargin < 2 | isempty(kernel) kernel = kernelm([],[],'random',0.7,100); end if nargin < 1 | isempty(a) w = mapping(mfilename,'untrained',{kernel,classf}); else % training islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a,'objects'); isuntrained(classf); ismapping(kernel); if isuntrained(kernel) kernel = a*kernel; end K = a*kernel; w = kernel*(K*classf); end w = setname(w,'Kernel Classifier'); return
github
jacksky64/imageProcessing-master
ismapping.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/ismapping.m
493
utf_8
9616ca5d38d4cc8ea4813f5dcdc0ecac
%ISMAPPING Test whether the argument is a mapping % % N = ISMAPPING(W); % % INPUT % W Input argument % % OUTPUT % N 1/0 if W is/isn't a mapping object % % DESCRIPTION % True (1) if W is a mapping object and false (0), otherwise. % % SEE ALSO % ISDATASET, ISFEATIM, ISDATAIM % $Id: ismapping.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function n = ismapping(w) prtrace(mfilename); n = isa(w,'mapping'); if (nargout == 0) & (n == 0) error([newline 'Mapping expected.']) end return;
github
jacksky64/imageProcessing-master
pls_train.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/pls_train.m
9,379
utf_8
2dc7ca5aaf1d9bcc741e7182373df635
%pls_train Partial Least Squares (training) % % [B,XRes,YRes,Options] = pls_train(X,Y) % [B,XRes,YRes,Options] = pls_train(X,Y,Options) % % INPUT % X [N -by- d_X] the training (input) data matrix, N samples, d_X variables % Y [N -by- d_Y] the training (output) data matrix, N samples, d_Y variables % % Options. % maxLV maximal number of latent variables (will be corrected % if > rank(X)); % maxLV=inf means maxLV=min(N,d_X) -- theoretical maximum % number of LV; % by default =inf % method 'NIPALS' or 'SIMPLS'; by default ='SIMPLS' % % X_centering do nothing (=[] or 0), do mean centering (=nan), center % around some vaue v (=v); % by default =[] % Y_centering do nothing (=[] or 0), do mean centering (=nan), center % around some vaue v (=v); % by default =[] % X_scaling do nothing (=[] or 1), divide each col by std (=nan), % divide by some v (=v); % by default =[] % Y_scaling do nothing (=[] or 1), divide each col by std (=nan), % divide by some v (=v); % by default =[] % % OUTPUT % B [d_X -by- d_Y -by- nLV] collection of regression matrices: % Y_new = X_new*B(:,:,n) represents regression on the first n % latent variables (X_new here after preprocessing, Y_new before % un-preprocessing) % XRes. % ssq [1 -by- nLV] the part of explaind sum of squares of % (preprocessed) X matrix % T [N -by- nLV] scores (transformed (preprocessed) X) % R [d_X -by- nLV] weights (transformation matrix) % P [d_X -by- nLV] loadings (back-transformation matrix) % P(:,k) are the regression coef of % (preprocessed) X on T(:,k) % W [d_X -by- nLV] local weights (local transformation matrix); % ONLY FOR NIPALS % V [d_X -by- nLV] first k columns of this matrix are the % orthornormal basis of the space spanned by k % first columns of P; ONLY FOR SIMPLS % YRes. % ssq [1 -by- nLV] the part of explained sum of squares of % (preprocessed) Y matrix % U [N -by- nLV] scores (transformed (preprocessed) Y) % Q [d_Y -by- nLV] weights (transformation matrix) % C [d_Y -by- nLV] C(:,k) are the regression coeff of % (preprocessed) Y on T(:,k) % bin [1 -by- nLV] bin(k) is the regression coeff of U(:,k) on T(:,k) % % Options. contains the same fields as in input, but the values can be changed % (e.g. after mean centering X_centering = mean(X,1)) % % % DESCRIPTION % Trains PLS (Partial Least Squares) regression model % % Relations between matrices (X end Y are assumed to be preprocessed): % NIPALS: % T = X*R (columns of T are orthogonal) % R = W*prinv(P'*W) % P = X'*T*prinv(T'*T) % U = Y*Q - T*(C'*Q-tril(C'*Q)) % C = Y'*T*prinv(T'*T) = Q*diag(bin) % bin = sqrt(diag(T'*Y*Y'*T))'*prinv(T'*T)) % B = R*C' = W*prinv(P'*W)*C' % % SIMPLS: % T = X*R (columns of T are orthonormal) % P = X'*T % U = Y*Q % C = Y'*T = Q*diag(bin) % bin = sqrt(diag(T'*Y*Y'*T))' % B = R*C' % % BOTH: % T_new = X_new*R % Y_new = X_new*B % % SEE ALSO % pls_apply, pls_transform % Copyright: S.Verzakov, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: pls_train.m,v 1.2 2010/02/08 15:29:48 duin Exp $ function [B, XRes, YRes, Options] = pls_train(X,Y,Options) [N_X, d_X] = size(X); [N_Y, d_Y] = size(Y); if N_X ~= N_Y error('size(X,1) must be equal to size(Y,1)'); else N = N_X; end if nargin < 3 Options = []; end DefaultOptions.X_centering = []; DefaultOptions.Y_centering = []; DefaultOptions.X_scaling = []; DefaultOptions.Y_scaling = []; DefaultOptions.maxLV = inf; DefaultOptions.method = 'SIMPLS'; Options = pls_updstruct(DefaultOptions, Options); if isinf(Options.maxLV) Options.maxLV = min(N,d_X); elseif Options.maxLV > min(N,d_X) error('PLS: The number of LV(s) cannot be greater then min(N,d_X)'); end [X, Options.X_centering, Options.X_scaling] = pls_prepro(X, Options.X_centering, Options.X_scaling); [Y, Options.Y_centering, Options.Y_scaling] = pls_prepro(Y, Options.Y_centering, Options.Y_scaling); ssq_X = sum(X(:).^2); ssq_Y = sum(Y(:).^2); B = zeros(d_X,d_Y,Options.maxLV); XRes.ssq = zeros(1,Options.maxLV); XRes.T = zeros(N,Options.maxLV); XRes.R = zeros(d_X,Options.maxLV); XRes.P = zeros(d_X,Options.maxLV); XRes.W = []; XRes.V = []; YRes.ssq = zeros(1,Options.maxLV); YRes.U = zeros(N,Options.maxLV); YRes.Q = zeros(d_Y,Options.maxLV); YRes.C = zeros(d_Y,Options.maxLV); YRes.bin = zeros(1,Options.maxLV); ev = zeros(1,Options.maxLV); nLV = Options.maxLV; opts.disp = 0; opts.issym = 1; opts.isreal = 1; switch upper(Options.method) case 'NIPALS' XRes.W = zeros(d_X,Options.maxLV); for LV = 1:Options.maxLV S = X'*Y; if d_X <= d_Y if d_X > 1 [w, ev(LV)] = eigs(S*S',1,'LA',opts); else w = 1; ev(LV) = S*S'; end t = X*w; t2 = (t'*t); proj = t/t2; p = X'*proj; c = Y'*proj; bin = norm(c); %bin = sqrt(ev)/t2: q = c/bin; u = Y*q; else if d_Y > 1 [q, ev(LV)] = eigs(S'*S,1,'LA',opts); else q = 1; ev(LV) = S'*S; end u = Y*q; w = X'*u; w = w/norm(w); t = X*w; t2 = (t'*t); proj = t/t2; p = X'*proj; bin = u'*proj; %bin = sqrt(ev)/t2: c = q*bin; end if LV == 1 if ev(LV) == 0 error('PLS: Rank of the covariation matrix X''*Y is zero.'); end elseif ev(LV) <= 1e-16*ev(1) nLV = LV-1; WarnMsg = sprintf(['\nPLS: Rank of the covariation matrix X''*Y is exausted ' ... 'after removing %d Latent Variable(s).\n'... 'Results only for the %d LV(s) will be returned'],nLV,nLV); if exist('prwarning') prwarning(1, WarnMsg); else warning(WarnMsg); end break; end %R = W*prinv(P'*W) %the next portion of the code makes use of the fact taht P'*W is the upper triangle matrix: % %if LV == 1 % InvPTW(1,1) = 1/(p'*w); % r = w*InvPTW(1,1); %else % InvPTW(1:LV,LV) = [(-InvPTW(1:LV-1,1:LV-1)*(XRes.P(:,1:LV-1)'*w)); 1]/(p'*w); % r = [XRes.W(:,1:LV-1), w] * InvPTW(1:LV,LV); %end % %some optimization of the above code (notice that ones(m,0)*ones(0,n) == zeros(m,n)): % r = (w - (XRes.R(:,1:LV-1)*(XRes.P(:,1:LV-1)'*w)))/(p'*w); B(:,:,LV) = r*c'; XRes.ssq(:,LV) = t2*(p'*p)/ssq_X; XRes.T(:,LV) = t; XRes.R(:,LV) = r; XRes.P(:,LV) = p; XRes.W(:,LV) = w; YRes.ssq(:,LV) = t2*(bin.^2)/ssq_Y; YRes.U(:,LV) = u; YRes.Q(:,LV) = q; YRes.C(:,LV) = c; YRes.bin(:,LV) = bin; X = X - t*p'; Y = Y - t*c'; end if nLV < Options.maxLV XRes.W = XRes.W(:,1:nLV); end case 'SIMPLS' XRes.V = zeros(d_X,Options.maxLV); S = X'*Y; for LV = 1:Options.maxLV if d_X <= d_Y if d_X > 1 [r, ev(LV)] = eigs(S*S',1,'LA',opts); else r = 1; ev(LV) = S*S'; end t = X*r; norm_t = norm(t); r = r/norm_t; t = t/norm_t; p = X'*t; c = Y'*t; %c = S'*r; bin = norm(c); %bin = sqrt(ev)/norm_t: q = c/bin; u = Y*q; else if d_Y > 1 [q, ev(LV)] = eigs(S'*S,1,'LA',opts); else q = 1; ev(LV) = S'*S; end r = S*q; t = X*r; norm_t = norm(t); r = r/norm_t; t = t/norm_t; p = X'*t; u = Y*q; bin = u'*t; %bin = ev/norm_t: c = q*bin; end if LV == 1 if ev(LV) == 0 error('PLS: Rank of the covariation matrix X''*Y is zero.'); else v = p; end elseif ev(LV) <= 1e-16*ev(1) nLV = LV-1; WarnMsg = sprintf(['\nPLS: Rank of the covariation matrix X''*Y is exausted ' ... 'after removing %d Latent Variable(s).\n'... 'Results only for the %d LV(s) will be returned'],nLV,nLV); if exist('prwarning') prwarning(1, WarnMsg); else warning(WarnMsg); end break; else v = p - XRes.V(:,1:LV-1)*(XRes.V(:,1:LV-1)'*p); end v = v/norm(v); B(:,:,LV) = r*c'; XRes.ssq(:,LV) = (p'*p)/ssq_X; XRes.T(:,LV) = t; XRes.R(:,LV) = r; XRes.P(:,LV) = p; XRes.V(:,LV) = v; YRes.ssq(:,LV) = (bin.^2)/ssq_Y; YRes.U(:,LV) = u; YRes.Q(:,LV) = q; YRes.C(:,LV) = c; YRes.bin(:,LV) = bin; S = S - v*(v'*S); end if nLV < Options.maxLV XRes.V = XRes.V(:,1:nLV); end end if nLV < Options.maxLV B = B(:,:,1:nLV); XRes.ssq = XRes.ssq(:,1:nLV); XRes.T = XRes.T(:,1:nLV); XRes.R = XRes.R(:,1:nLV); XRes.P = XRes.P(:,1:nLV); YRes.ssq = YRes.ssq(:,1:nLV); YRes.U = YRes.U(:,1:nLV); YRes.Q = YRes.Q(:,1:nLV); YRes.C = YRes.C(:,1:nLV); YRes.bin = YRes.bin(:,1:nLV); Options.maxLV = nLV; end B = cumsum(B,3); return; function A = MakeSym(A) A = 0.5*(A+A'); %A = max(A,A'); return
github
jacksky64/imageProcessing-master
featselo.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featselo.m
4,290
utf_8
4603fe51a9b83f13a1277d846ea96f4d
%FEATSELO Branch and bound feature selection % % W = featselo(A,CRIT,K,T,FID) % % INPUT % A input dataset % CRIT string name of the criterion or untrained mapping % (optional, def= 'NN' 1-Nearest Neighbor error) % K numner of features to select (optional, def: K=2) % T validation set (optional) % N Number of cross-validations (optional) % FID File ID to write progress to (default [], see PRPROGRESS) % % OUTPUT % W output feature selection mapping % % DESCRIPTION % Backward selection of K features by baktracking using the branch % and bound procedure on the data set A. CRIT sets the criterion % used by the feature evaluation routine FEATEVAL. If the data set T % is given, it is used as test set for FEATEVAL. Alternatively a number % of cross-validations N may be supplied. The resulting W can be used for % the selecting features of a dataset B by B*W. % The selected features are stored in W.DATA and can be found by +W. % % This procedure finds the optimum feature set if a monotoneous % criterion is used. The use of a testset does not guarantee that. % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELF, FEATSELB, FEATSELI, % FEATSEL, FEATSELP, FEATSELM, PRPROGRESS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: featselo.m,v 1.7 2009/07/01 09:33:23 duin Exp $ function [W,R] = featselo(A,crit,kmin,T,fid) prtrace(mfilename); if nargin < 2 | isempty(crit), crit = 'NN'; end if nargin < 3 | isempty(kmin), kmin = 2; end if nargin < 4, T = []; end if (nargin < 5) fid = []; end if nargin == 0 | isempty(A) % Create an empty mapping: W = mapping('featselo',{crit,kmin,T}); W = setname(W,'B&B FeatSel'); return end isvaldfile(A,1,2); % at least 1 object per class, 2 classes A = testdatasize(A); if ~is_scalar(T), iscomdset(A,T); end [m,k,c] = getsize(A); featlist = getfeatlab(A); if ((kmin < 1) | (kmin >= k)) error('The desired feature size should be > 0 and < dataset feature size') end % space for criteria values feat = zeros(1,k); % Get performance of the individual features: if isempty(T) for j=1:k feat(j) = feateval(A(:,j),crit); end elseif is_scalar(T) for j=1:k feat(j) = feateval(A(:,j),crit,T); end else for j=1:k feat(j) = feateval(A(:,j),crit,T(:,j)); end end % Get the kmin worst(?) individual features according to their % individual performance: [F,S] = sort(feat); %sometimes the above line is bad compared to the following two %w = featselb(A,crit,[]); %S = fliplr(+w); Iopt = [k-kmin+1:k]; I = [1:k]; J = [zeros(1,kmin),1:(k-kmin-1),k-kmin+1,k+1]; level = k; % Get the performance of Iopt if isdataset(T) bound = feateval(A(:,S(Iopt)),crit,T(:,S(Iopt))); elseif is_scalar(T) bound = feateval(A(:,S(Iopt)),crit,T); else bound = feateval(A(:,S(Iopt)),crit); end C = inf; prprogress(fid,'\nfeatselo : Branch & Bound Feature Selection\n') prwaitbar(100,'Branch & Bound Feature Selection') iter = 0; while length(I) > 0 & J(k+1) == k+1; iter = iter+1; prwaitbar(100,100-100*exp(-iter/1000)); if J(level) == J(level+1) | level <= kmin | C <= bound J(level) = level - kmin; level = level + 1; I = sort([I,J(level)]); J(level) = J(level) + 1; C = inf; else I(J(level)) = []; level = level - 1; if J(level+1) < 3 & level == kmin+1 & 0 % never happens ?? ; else if isdataset(T) C = feateval(A(:,S(I)),crit,T(:,S(I))); elseif is_scalar(T) C = feateval(A(:,S(I)),crit,T); else C = feateval(A(:,S(I)),crit); end %prprogress(fid,' level %i, crit: %10.5e',level,C); if level == kmin & C > bound bound = C; Iopt = I; prprogress(fid,' level %i, crit: %10.5e',level,C); prprogress(fid,' FeatSet: '); prprogress(fid,' %i',S(I)); prprogress(fid,'\n') end %prprogress(fid,'\n') end end end prprogress(fid,'featselo finished\n'); prwaitbar(0); % Store the optimal features in the mapping: W = featsel(k,S(Iopt)); if ~isempty(featlist) W = setlabels(W,featlist(S(Iopt),:)); end W = setname(W,'B&B FeatSel'); R = []; %DXD I'm still not sure what to return return
github
jacksky64/imageProcessing-master
prwaitbar.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prwaitbar.m
11,571
utf_8
37266483f77f00ad145637eb2148b919
%PRWAITBAR Report PRTools progress by single waitbar % % H = PRWAITBAR(N,M,TEXT) % H = PRWAITBAR(N,TEXT,FLAG) % S = PRWAITBAR % % INPUT % N Integer, total number of steps in loop % M Integer, progress in number of steps in loop % TEXT Text to be displayed in waitbar % FLAG Flag (0/1) % % OUTPUT % H Waitbar handle % S Status PRWAITBAR ('on' or 'off') % % DESCRIPTION % This routine may be used to report progress in PRTools experiments. % It detects and integrates levels of loops. The following calls are % supported: % % PRWAITBAR(N,TEXT) initialize loop % PRWAITBAR(N,TEXT,FLAG) initialize loop if FLAG == 1 % PRWAITBAR(N,M) update progress % PRWAITBAR(N,M,TEXT) update info % PRWAITBAR(0) closes loop level % PRWAITBAR OFF removes waitbar % PRWAITBAR ON switches waitbar on again % PRWAITBAR reset prwaitbar % % A typical sequence of calls is: % ..... % prwaitbar(nfolds,'cross validation') % for j = 1:nfolds % prwaitbar(nfolds,j,['cross validation, fold ' int2str(j)]) % .... % end % prwaitbar(0) % ..... % Calls to PRTWAITBAR may be nested and all progress is merged into a single % waitbar. In this PRWAITBAR differs from Matlab's WAITBAR. % A typical example can be visualised by: % % crossval({gendatb,gendath},{svc,loglc,fisherc},5,2) % % Some other, more high-level routines calling PRWAITBAR are % PRWAITBARINIT, PRWAITBARNEXT, PRWAITBARONCE, PREIG, PRINV, PRPINV, PRRANK, % PRSVD, PRCOV % % SEE ALSO % PRPROGRESS, PRWAITBARINIT, PRWAITBARNEXT, PRWAITBARONCE % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function varargout = prwaitbar(n,m,text) persistent N % array, N(DEPTH) is the loop size at level DEPTH persistent M % array, M(DEPTH) is the present counter values at level DEPTH persistent DEPTH % nesting DEPTH persistent WHANDLE % handle of the waitbar persistent MESS % cell array with message to be displayed at level DEPTH persistent STAT % flag, if STAT = 0, PRWAITBAR is switched off persistent WPOS % position of the waitbar on the screen persistent FNAME % cell array with names of the calling routine at level DEPTH persistent DOIT % flag that may switch off tracking progress at deeper levels persistent NSKIP % level at which tracking progress has been switched off persistent OLDPROG1 % previous progress persistent OLDPROG2 % previous progress %disp(['prwaitbar ' callername]) %disp(nargin) %if nargin > 0, disp(n), end %if nargin > 1, disp(m), end %if nargin > 2, disp(text),end %disp('-------------') if isempty(DEPTH) % initialisation of persistent variables DEPTH = 0; MESS = cell(1,10); FNAME = cell(1,10); STAT = 1; DOIT = 1; end decrease_depth = 0; if nargin == 0 % ---- call: prwaitbar ---- if nargout == 0 %prwaitbar off DEPTH = 0; STAT = 1; DOIT = 1; MESS = cell(1,10); OLDPROG1 = 0; OLDPROG2 = 0; err.message = ''; lasterror(err); % if ishandle(WHANDLE) % delete(WHANDLE); % end else % ---- call: out = prwaitbar ---- if nargout == 1 if STAT == 0, varargout = {'off'}; else varargout = {'on'}; end else varargout = {WHANDLE,N,M,DEPTH,MESS,STAT,WPOS,FNAME,DOIT,NSKIP}; end return end elseif nargin == 1 if isstr(n) & strcmp(n,'off') % ---- call: prwaitbar off ---- if ~isempty(WHANDLE) & ishandle(WHANDLE) WPOS = get(WHANDLE,'position'); % save position as user likes it close(WHANDLE); end N = []; M = []; DEPTH = 0; % set variables at initial values WHANDLE = []; MESS = cell(1,10); STAT = 0; return elseif isstr(n) & strcmp(n,'on') % ---- call: prwaitbar on ---- STAT = 1; % restart waitbar DEPTH = []; return elseif n == 0 & STAT % ---- call: prwaitbar(0) ---- if ~DOIT if (NSKIP == DEPTH) % we are back at the right level, so DOIT = 1; % restart tracking progress end DEPTH = max(DEPTH - 1,1); % counting problem !!! caused by catch-try loops return % let us continue with DEPTH = 1 end if DEPTH < 1 % wrong call, return return end M(DEPTH) = N(DEPTH); % loop almost ready decrease_depth = 1; % decrease depth after plotting progress else return end elseif ~STAT % next commands can be skipped if switched off return elseif nargin == 2 if isstr(m) % ---- call: prwaitbar(n,text) ---- % note: this is a typical call to % start a waitbar cycle DEPTH = DEPTH + 1; % we nest one level deeper if ~DOIT % skip if we dont track progress return end err = lasterror; % we have to find out whether we continue a proper set of prwaitbar calls, or whether % we have to recover from some error or possible interrupt and have to re-initialise % the admin if (~strcmp(err.message,'##') & ~strcmp(err.message,'') & ... ~isempty(strfind(err.identifier,'prtools:'))) | (~ishandle(WHANDLE)) % yes, restart after interrupt prwaitbar; DEPTH = 1; end % find the name of the calling routine [ss,ii] = dbstack; if length(ss) == 1 name = ''; % call from command line!!?? debugging? else [path,name] = fileparts(ss(2).name); if strcmp(name,mfilename) | strncmp(name,'prwait',6) % search deeper in case of internal call [path,name] = fileparts(ss(3).name); end end FNAME{DEPTH} = name; % store it, and display it in waitbar set(WHANDLE,'name',[' PRWAITBAR: ' name]); N(DEPTH) = n; % complete the admin M(DEPTH) = 0; MESS{DEPTH} = m; % note: m contains text elseif DOIT % ---- call: prwaitbar(n,m) ---- DEPTH = max(DEPTH,1); % store admin N(DEPTH) = n; M(DEPTH) = m-1; % store m-1, assuming call is in the start of loop else % skip and return if progress should not be reported return end elseif nargin == 3 if isstr(m) % ---- call: prwaitbat(n,text,flag) ---- if ~DOIT % there is a flag, but we already skip progress DEPTH = DEPTH + 1; % just keep track of loop nesting. else % we are in reporting mode DOIT = (text > 0); % check flag if ~DOIT % stop progress reporting!!! DEPTH = DEPTH + 1; % keep track of loop nesting NSKIP = DEPTH; % store level else % flag does not apply, prwaitbar(n,m); % just print waitbar end end return else % ---- call: prwaitbar(n,m,text) ---- if ~DOIT % skip progress report if needed return end if isempty(WHANDLE) % switch waitbar on if needed prwaitbar; % this only happens if the loop is not properly opened end N(DEPTH) = n; % update admin M(DEPTH) = m-1; MESS{DEPTH} = text; end end if ~STAT | ~DOIT % dont display, (just to be sure) return end % waitbar creation and display if isempty(WHANDLE) % if no waitbar, make one s = sprintf(' \n \n \n' ); % room for 4 levels of text if ~isempty(WPOS) h = waitbar(0,'','position',WPOS); h = waitbar(0,h,s); else h = waitbar(0,s); % create waitbar WPOS = get(h,'position'); end OLDPROG1 = 0; OLDPROG2 = 0; if DEPTH == 0, fnam = []; else, fnam = FNAME{DEPTH}; end % retrieve name of calling routine set(h,'name',[' PRWAITBAR: ' fnam]) %set(h,'HandleVisibility','on'); WHANDLE = h; err.message = '##'; % store for proper continuation in next call lasterror(err); %if ~isempty(WPOS) % if we have a position % set(h,'position',WPOS); % apply it %else % otherwise % WPOS = get(h,'position'); % get it %end end progress = 0; % progress if DEPTH == 0 % still on level zero s = sprintf(' \n \n \n' ); % no message else for j=DEPTH:-1:1 % run over all levels for progress progress = (progress + M(j))/(N(j)); % compute total progress end s = wtext(MESS,N,DEPTH); % construct message end significant1 = (progress - OLDPROG1 >= 0.005 | OLDPROG1 == 0); significant2 = (progress - OLDPROG2 >= 0.0005); if ishandle(WHANDLE) if significant1 % show significant updates only waitbar(progress,WHANDLE,s,'position',WPOS); % update waitbar OLDPROG1 = progress; OLDPROG2 = progress; elseif significant2 % update text more often set(get(get(WHANDLE,'children'),'title'),'string',s); drawnow OLDPROG2 = progress; end else % handle was not proper (anymore) WHANDLE = waitbar(progress,s,'position',WPOS); % reconstruct waitbar OLDPROG1 = progress; OLDPROG2 = progress; end if decrease_depth % update admin DEPTH = DEPTH - 1; if DEPTH == 0 % take care that new waitbar starts fresh err.message = ''; lasterror(err); WPOS = get(WHANDLE,'position'); % but in old position %delete(WHANDLE); %we don't delete but preserve the waitbar for future use %so the following cleanup is needed p=get(get(WHANDLE,'children'),'children'); set(p(2),'erasemode','normal'); waitbar(0,WHANDLE,sprintf(' \n \n \n' )); set(WHANDLE,'name',[' PRWAITBAR: ']); set(p(2),'erasemode','none'); prwaitbar; %no we are ready to leave else if significant1 set(WHANDLE,'name',[' PRWAITBAR: ' FNAME{DEPTH}]); end end end if nargout > 0 varargout = {WHANDLE}; end return function s = wtext(MESS,N,DEPTH) t = cell(1,DEPTH); n = 0; for j=1:DEPTH if N(j) > 1 n = n+1; t{n} = MESS{j}; end end if n == 0 s = sprintf([' \n \n \n \n ']); elseif n == 1 s = sprintf([' \n \n' t{1} '\n ']); elseif n == 2 s = sprintf([' \n' t{1} '\n' t{2} '\n ']); elseif n == 3 s = sprintf([' \n' t{1} '\n' t{2} '\n' t{3}]); else s = sprintf([t{n-3} '\n' t{n-2} '\n' t{n-1} '\n' t{n}]); end return
github
jacksky64/imageProcessing-master
neurc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/neurc.m
4,133
utf_8
b5c828f2c19833cfaf7febcd6f54c3bb
%NEURC Automatic neural network classifier % % W = NEURC (A,UNITS) % % INPUT % A Dataset % UNITS Number of units % Default: 0.2 x size smallest class in A. % % OUTPUT % W Trained feed-forward neural network mapping % % DESCRIPTION % Automatically trained feed-forward neural network classifier with UNITS % units in a single hidden layer. Training, by LMNC, is stopped when the % performance on an artificially generated tuning set of 1000 samples per % class (based on k-nearest neighbour interpolation) does not improve anymore. % % NEURC always tries three random initialisations, with fixed random seeds, % and returns the best result according to the tuning set. This is done in % order to obtain a reproducable result. % % If UNITS is NaN it is optimised by REGOPTC. This may take a long % computing time and is often not significantly better than the default. % % Uses the Mathworks' neural network toolbox. % % SEE ALSO % MAPPINGS, DATASETS, LMNC, BPXNC, GENDATK, REGOPTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: neurc.m,v 1.9 2008/07/03 09:11:44 duin Exp $ function argout = neurc (a,units) prtrace(mfilename); mapname = 'Automatic Neural Classifier'; n_attempts = 3; % Try three different random initialisations. if (nargin < 2) units = []; end if (nargin < 1) | (isempty(a)) w = mapping(mfilename,units); argout = setname(w,mapname); return end [m,k] = size(a); if isempty(units) cs = classsizes(a); units = ceil(0.2*min(cs)); end if (~ismapping(units)) if isnan(units) % optimize complexity parameter: number of neurons defs = {[]}; parmin_max = [1,30]; w = regoptc(a,mfilename,{units},defs,[1],parmin_max,testc([],'soft'),0); return end islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a); %a = setprior(a,getprior(a)); % Second parameter is not a mapping: train a network. % Reproducability: always use same seeds. rand('seed',1); randn('seed',1); opt_err = inf; opt_mapping = []; % Try a number of random initialisations. s = sprintf('%i neural network initializations: ',n_attempts); prwaitbar(n_attempts,s); for attempt = 1:n_attempts prwaitbar(n_attempts,attempt,[s int2str(attempt)]); prwarning(4,'training with initialisation %d of %d',attempt,n_attempts); t = gendatk(a,1000,2,1); % Create tuning set based on training set. w = lmnc(a,units,inf,[],t); % Find LMNC mapping. e = t*w*testc; % Calculate classification error. if (e < opt_err) % If this is the best of the three repetitions, store it. opt_mapping = w; opt_err = e; end end prwaitbar(0); % Output is best network found. argout = setname(opt_mapping,mapname); else nodatafile(a); % Second parameter is a mapping: execute. w = units; data = getdata(w); if (length(data) > 1) % "Old" neural network - network is second parameter: unpack. data = getdata(w); weights = data{1}; pars = data{2}; numlayers = length(pars); output = a; % Output of first layer: dataset. for j = 1:numlayers-1 % Number of inputs (n_in) and outputs (n_out) of neurons in layer J. n_in = pars(j); n_out = pars(j+1); % Calculate output of layer J+1. Note that WEIGHTS contains both % weights (multiplied by previous layer's OUTPUT) and biases % (multiplied by ONES). this_weights = reshape(weights(1:(n_in+1)*n_out),n_in+1,n_out); output = sigm([output,ones(m,1)]*this_weights); % Remove weights of this layer. weights(1:(n_in+1)*n_out) = []; end else % "New" neural network: unpack and simulate using the toolbox. net = data{1}; output = sim(net,+a')'; end; % 2-class case, therefore 1 output: 2nd output is 1-1st output. if (size(output,2) == 1) output = [output (1-output)]; end % Output is mapped dataset. argout = setdat(a,output,w); end return
github
jacksky64/imageProcessing-master
scatterd.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/scatterd.m
10,094
utf_8
b2c8340e223bd55cc3a165e54701df03
%SCATTERD Display scatterplot % % H = SCATTERD(A) % H = SCATTERD(A,DIM,S,CMAP,FONTSIZE,'label','both','legend','gridded') % % INPUT % A Dataset or matrix % DIM Number of dimensions: 1,2 or 3 (optional; default: 2) % S String specifying the colors and markers (optional) % CMAP Matrix with a color map (optional) % % OUTPUT % H Vector of handles % % DESCRIPTION % SCATTERD(A) displays a 2D scatterplot of the first two features of the % dataset A. If the number of dimensions DIM is specified (1..3), it plots % the first D features in a D-dimensional plot (D<4). If the plot string S % is provided, e.g. S = 'w+', all points are plotted accordingly. If given, % different plot strings are used for different classes. See PLOT for the % specification of plot strings. % % If CMAP is specified, the color of the object symbols is determined by % CMAP indexed by the object labels. A colormap has the size [C x 3], where % C is the number of classes. The three components of CMAP(I,:) determine % the red, green and blue components of the color. For instance: % % MAP = HSV; [M,K] = SIZE(A); LABELS = CEIL(64*[1:M]'/M); % A = DATASET(A,LABELS); SCATTERD(A,'.','COLORMAP',MAP); % % This may be used for tracking ordered objects. % % FONTSIZE may be a vector with three elements: fontsize, markersize and % size of the label font in case of a label plot. % % Various other options are: % 'LABEL' : plot labels instead of symbols % 'BOTH' : plot labels next to each sample % 'LEGEND' : place a legend in the figure % 'GRIDDED': make a grid of 2D scatterplots of each pair of features % % All the parameters, except for the dataset A can be specified in any % order or can be left out. % % Classifiers can be plot in the scatterplot by PLOTC. % Note that PLOTC does not work for 1D and 3D scatterplots. % % EXAMPLES % See PREX_CONFMAT, PREX_DENSITY, PREX_PLOTC, PREX_MCPLOT. % % SEE ALSO % DATASETS, COLORMAP, PLOT, PLOTC % Copyright: D. de Ridder, R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: scatterd.m,v 1.8 2010/06/25 09:52:40 duin Exp $ % REVISIONS % DR1 - Dick, 05-10-2004 % Added plotting of unlabeled data as 'k.'. function handle = scatterd(a,p1,p2,p3,p4,p5,p6,p7,p8) prtrace(mfilename); % Defaults d = min(size(a,2),2); % Dimensionality of plot s = []; % Plot symbol(s) map = []; % Color map plotlab = 0; % Put text labels instead of or next to samples plotsym = 1; % Plot symbols for samples plotlegend = 0; % Plot legend gridded = 0; % Make a gridded plot gridrun = 0; % Inner loop in a gridded plot? font_size = []; mark_size = []; lab_size = []; hold_axis = ishold; % A flag to check if 'hold on' is set for the current axis if size(a,2) > 3, a = a(:,1:3); end a = dataset(a); % Allow for a non-dataset data a = remclass(a); if (nargin < 9), par{8} = []; else, par{8} = p8; end if (nargin < 8), par{7} = []; else, par{7} = p7; end if (nargin < 7), par{6} = []; else, par{6} = p6; end if (nargin < 6), par{5} = []; else, par{5} = p5; end if (nargin < 5), par{4} = []; else, par{4} = p4; end if (nargin < 4), par{3} = []; else, par{3} = p3; end if (nargin < 3), par{2} = []; else, par{2} = p2; end if (nargin < 2), par{1} = []; else, par{1} = p1; end % Set up default values. for i = 1:5 if (~isempty(par{i})) if (length(par{i}) == 1) & par{i} < 5 & (~ischar(par{i})) % Dimensionality d = par{i}; par{i} = 2; % Necessary for gridded: D needs to be 2. elseif ((size(par{i},1) > 1) & (size(par{i},2)==3) & (~ischar(par{i}))) % Color map map = par{i}; elseif (strcmp(par{i},'label')) plotlab = 1; plotsym = 0; elseif (strcmp(par{i},'both')) plotlab = 1; plotsym = 1; elseif (strcmp(par{i},'legend')) plotlegend = 1; elseif (strcmp(par{i},'gridded')) gridded = 1; par{i} = 'gridrun'; % Necessary for gridded: otherwise an infinite recursion :) elseif (strcmp(par{i},'gridrun')) gridrun = 1; elseif ~isstr(par{i}) & length(par{i}) <= 3 & par{i}(1) >= 5 font_size = par{i}(1); if length(par{i}) >= 2 mark_size = par{i}(2); end if length(par{i}) == 3 lab_size = par{i}(3); end else s = par{i}; end end end if (gridrun) if isempty(font_size), font_size = 10; end if isempty(mark_size), mark_size = 5; end if isempty(lab_size), lab_size = 8; end elseif (~hold_axis) %clf; cla; if isempty(font_size), font_size = 16; end if isempty(mark_size), mark_size = 7; end if isempty(lab_size), lab_size = 14; end else if isempty(font_size), font_size = get(gca,'fontsize'); end if isempty(mark_size), mark_size = font_size/2; end if isempty(lab_size), lab_size = font_size-2; end end feats = getfeatlab(a,'string'); if isempty(feats) for i=1:size(a,2) feats = strvcat(feats,sprintf('Feature %d',i)); end else if size(feats,2) == 1 feats = [repmat('Feature ',size(feats,1),1) feats]; end end if (gridded) clf; gs = size(a,2); for i = 1:gs for j = 1:gs subplot(gs,gs,(i-1)*gs+j); gridrun = 1; h = feval(mfilename,a(:,[j i]),par{1},par{2},par{3},par{4},par{5},par{6},par{7}); gridrun = 0; if (i~=gs), xlabel(''); end if (j~=1), ylabel(''); end end subplot(111); % Takes care of clf for the next scatterplot. end return; end if (isa(a,'dataset')) & (~isempty(getlablist(a))) [m,k,c] = getsize(a); lab = getnlab(a); lablist = getlablist(a,'string'); ident = getident(a); %DXD: needed for prcursor dataset_name = getname(a); a = double(a); else [m,k] = size(a); lab = ones(m,1); ident = (1:m)'; %DXD: needed for prcursor dataset_name = []; c = 1; a = double(a); end % Character string defining the plotting setup in terms of symbols and colors. if (isempty(s)) vers = version; if (str2num(vers(1)) < 5) col = 'brmw'; sym = ['+*xo.']'; i = [1:20]; ss = [col(i-floor((i-1)/4)*4)' sym(i-floor((i-1)/5)*5)]; else col = 'brmk'; sym = ['+*oxsdv^<>p']'; i = [1:44]; ss = [col(i-floor((i-1)/4)*4)' sym(i-floor((i-1)/11)*11)]; end ss = ['k.'; ss]; % DR1 - Add symbol for "unlabeled" data. [ms,ns] = size(ss); if ms == 1, ss = setstr(ones(m,1)*ss); end else if size(s,1) == 1 ss = repmat(s,c,1); s = []; else ss = s; s = []; end ss = char('k.', ss); % DR1 - Add symbol for "unlabeled" data. %DXD - changed [.] into char(.) end % Define some 'space' OY to be added around the data plotted in symbols. oy = zeros(1,3); if (plotsym) oy = 0.02*(max(a)-min(a)); else s = 'w.'; % Plot white spot instead of symbols. end oy(2) = 0; % Make a plot. lhandle = []; thandle = []; % Also plot label "0" (unlabeled). for i = 0:c J = find(lab==i); if (isempty(s)), symbol = ss(i+1,:); else, symbol = s; end if ((d == 1) & ~isempty(J)) h = plot(a(J,1),zeros(length(J),1),symbol); hold on; set(h,'markersize',mark_size); lhandle = [lhandle h]; if (plotlab) for j = 1:length(J) h = text(a(J(j),1)+oy(1),oy(2),lablist(lab(J(j)),:)); set(h,'fontsize',lab_size); thandle = [thandle h]; if (~isempty(map)), set (h, 'color', map(i+1,:)); end end end elseif ((d == 2) & ~isempty(J)) h = plot(a(J,1),a(J,2),symbol); hold on; set(h,'markersize',mark_size); lhandle = [lhandle h]; if (plotlab) for j = 1:length(J) h = text(a(J(j),1)+oy(1),a(J(j),2)+oy(2),lablist(lab(J(j)),:)); set(h,'fontsize',lab_size); thandle = [thandle h]; if (~isempty(map)), set (h, 'color', map(i+1,:)); end end end elseif (~isempty(J)) h = plot3(a(J,1),a(J,2),a(J,3),symbol); hold on; set(h,'markersize',mark_size); lhandle = [lhandle h]; if (plotlab) for j = 1:length(J) h = text(a(J(j),1)+oy(1),a(J(j),2)+oy(2),a(J(j),3)+oy(3),lablist(lab(J(j)),:)); set(h,'fontsize',lab_size); thandle = [thandle h]; if (~isempty(map)), set (h, 'color', map(i+1,:)); end end end end %DXD: store the object identifiers in the userdata such that you %can retrieve them by prcursor: if ~isempty(J) ud = get(h,'UserData'); ud.ident = ident(J); set(h,'UserData',ud); end end if (plotsym) if (~isempty(map)) for i = 0:c, set (lhandle(i+1), 'color', map(i+1,:)); end end if (plotlegend), [ht, hl] = legend(lhandle(:),lablist); hl = hl(:)'; %set(hl(1:2*c),'markersize',mark_size); lhandle = [lhandle hl]; thandle = [thandle ht(:)']; end end % !%_%*!_% Matlab set(gca,'fontsize',font_size); if (~hold_axis) dd = (max(a,1) - min(a,1))*0.05; % offset, avoiding points on plot box. J = find(dd==0); dd(J) = dd(J)+1; %feats if (d == 1), axis ([min(a(:,1))-dd(1) max(a(:,1))+dd(1) -0.5 0.5]); hx = xlabel(feats(1,:)); thandle = [thandle hx]; elseif (d == 2), axis ([min(a(:,1))-dd(1) max(a(:,1))+dd(1) min(a(:,2))-dd(2) max(a(:,2))+dd(2)]); hx = xlabel(feats(1,:)); hy = ylabel(feats(2,:)); thandle = [thandle(:)' hx hy]; view(2); else % D = 3 axis ([min(a(:,1))-dd(1) max(a(:,1))+dd(1) min(a(:,2))-dd(2) max(a(:,2))+dd(2) min(a(:,3))-dd(3) max(a(:,3))+dd(3)]); hx = xlabel(feats(1,:)); hy = ylabel(feats(2,:)); hz = zlabel(feats(3,:)); thandle = [thandle hx hy hz]; view(3); end end %if (~gridrun) & (length(get(gcf,'children')) < 3 & any(get(gca,'position')>0.80)) if (~gridrun) & (length(get(gcf,'children')) < 3) P = get(gca,'position'); if any(P) > 0.80 & all(P(3:4)>0.50) % don't do this in case of subplots set(gca,'position',[0.13 0.13 0.79 0.78]); % make axis labels visible end end if (~gridrun) & (~isempty(dataset_name)) title(dataset_name); end hold off; if (nargout > 0) handle = [lhandle thandle]; end %DXD this should be standard: vers = version; if (str2num(vers(1)) > 6) prcursor(gcf); datacursormode('off'); end return;
github
jacksky64/imageProcessing-master
vpc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/vpc.m
5,242
utf_8
3bc522bdc5d792c6303aad94091f0788
function B = vpc(A, W) %VPC Voted perceptron classifier % % W = VPC(A) % W = VPC(A, N) % % INPUT % A Dataset % N Number of sweeps % % OUTPUT % W Voted perceptron classifier % % DESCRIPTION % The classifier trains an ensemble of perceptrons on dataset A. The % training procedure performs N full sweeps through the training data. If N % is not specified, 10 sweeps are performed. The total number of % perceptrons in the ensemble is equal to N x GETSIZE(A, 1). % % New objects are classified is performed by allowing the ensemble of % perceptrons to vote on the label of each test point. % % REFERENCE % Y. Freund and R.E. Schapire. Large Margin Classification Using the % Perceptron Algorithm. Machine Learning 37(3):277-296, 1999. % % SEE ALSO % DATASETS, MAPPINGS, PERLC, ADABOOSTC % (C) Laurens van der Maaten, 2010 % University of California, San Diego name = 'Voted perceptron'; % Handle untrained calls like W = vpc([]); if nargin == 0 || isempty(A) B = mapping(mfilename); B = setname(B, name); return; % Handle training on dataset A (use A * vpc, A * vpc([]), and vpc(A)) elseif (nargin == 1 && isa(A, 'dataset')) || (isa(A, 'dataset') && isa(W, 'double')) if nargin == 1 W = 10; end islabtype(A, 'crisp'); isvaldfile(A, 1, 2); A = testdatasize(A, 'features'); A = setprior(A, getprior(A)); [m, k, c] = getsize(A); [data.v, data.c] = train_voted_perceptron(+A, getnlab(A), W); B = mapping(mfilename, 'trained', data, getlablist(A), k, c); B = setname(B, name); % Handle evaluation of a trained voted perceptron W for a dataset A elseif isa(A, 'dataset') && isa(W, 'mapping') test_post = predict_voted_perceptron(+A, W.data.v, W.data.c); A = dataset(A); B = setdata(A, test_post, getlabels(W)); % This should not happen else error('Illegal call'); end end function [v, c] = train_voted_perceptron(train_X, train_labels, max_iter) %TRAIN_VOTED_PERCEPTRON Trains a voted perceptron on the specified data set % % [v, c] = train_voted_perceptron(train_X, train_labels, max_iter) % % The function trains a voted perceptron on the data specified by train_X % and train_labels. For a problem with K classes, the functions trains K % voted perceptrons in a one-vs-all manner. The cell-array v contains the % perceptrons for each class, whereas the cell-array c contains the % corresponding weights of the perceptrons. % % % (C) Laurens van der Maaten, 2010 % University of California, San Diego % Add the bias term to the data train_X = [train_X ones(size(train_X, 1), 1)]; % Initialize some variables [n, d] = size(train_X); lablist = unique(train_labels); no_labels = length(lablist); % Shuffle the data ind = randperm(n); train_X = train_X(ind,:); train_labels = train_labels(ind); % Initialize voted perceptron cell arrays c = cell(no_labels, 1); v = cell(no_labels, 1); % Loop over all classes for k=1:no_labels % Initialize voted perceptron v{k} = zeros(d, ceil(n * max_iter / 4)); % perceptrons c{k} = zeros(1, ceil(n * max_iter / 4)); % survival times index = 1; % Construct appropriate labelling labels = train_labels; labels(labels ~= k) = -1; labels(labels == k) = 1; % Perform learning iterations for iter=1:max_iter % Loop over all data points for i=1:n % Perform prediction y = +sign(train_X(i,:) * v{k}(:,index)); % Train new perceptron if misclassified, or increase weight if y == labels(i) c{k}(index) = c{k}(index) + 1; else v{k}(:,index + 1) = v{k}(:,index) + labels(i) .* train_X(i,:)'; c{k}( index + 1) = 1; index = index + 1; end end end % Make sure we do not have 'empty' perceptrons left v{k} = v{k}(:,1:index); c{k} = c{k}( 1:index); end end function test_post = predict_voted_perceptron(test_X, v, c) %PREDICT_VOTED_PERCEPTRON Classify test data using a voted perceptron % % test_post = predict_voted_perceptron(test_X, v, c, lablist) % % The function classifies the data points in test_X using the voted % perceptron specified by v and c. The voted perceptron can be trained % using the TRAIN_VOTED_PERCEPTRON function. % % % (C) Laurens van der Maaten, 2010 % University of California, San Diego % Add the bias term to the data test_X = [test_X ones(size(test_X, 1), 1)]; % Prediction is maximum over all voted perceptrons test_post = zeros(size(test_X, 1), length(v)); for k=1:length(v) test_post(:,k) = sum(bsxfun(@times, c{k}, +sign(test_X * v{k})), 2); end % Estimate posterior if requested for k=1:length(c) test_post(:,k) = test_post(:,k) + sum(c{k}); end test_post = bsxfun(@rdivide, test_post, sum(test_post, 2)); end
github
jacksky64/imageProcessing-master
featselp.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featselp.m
5,680
utf_8
95c5a90a0e6120fc254389b69a95cdf7
%FEATSELP Pudil's floating feature selection (forward) % % [W,R] = FEATSELP(A,CRIT,K,T,FID) % % INPUT % A Training dataset % CRIT Name of the criterion or untrained mapping % (default: 'NN', 1-Nearest Neighbor error) % K Number of features to select (default: K = 0, select optimal set) % T Tuning dataset (optional) % N Number of cross-validations (optional) % FID File ID to write progress to (default [], see PRPROGRESS) % % OUTPUT % W Feature selection mapping % R Matrix with step-by-step results % % DESCRIPTION % Forward floating selection of K features using the dataset A. CRIT sets % the criterion used by the feature evaluation routine FEATEVAL. If the % dataset T is given, it is used as test set for FEATEVAL. Alternatively % a number of cross-validations N may be supplied. For K = 0, the optimal % feature set (maximum value of FEATEVAL) is returned. The result W can % be used for selecting features in a dataset B using B*W. % The selected features are stored in W.DATA and can be found by +W. % % Note: this routine is highly time consuming. % % In R the search is reported step by step: % % R(:,1) : number of features % R(:,2) : criterion value % R(:,3) : added / deleted feature % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELO, FEATSELB, FEATSELI, % FEATSEL, FEATSELF, FEATSELM, PRPROGRESS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: featselp.m,v 1.5 2009/07/01 09:33:23 duin Exp $ function [w,r] = featselp(a,crit,ksel,t,fid) prtrace(mfilename); if (nargin < 2) | isempty(crit) prwarning(2,'no criterion specified, assuming NN'); crit = 'NN'; end if (nargin < 3) | isempty(ksel) ksel = 0; end if (nargin < 4) | isempty(t) prwarning(3,'no tuning set supplied (risk of overfit)'); t = []; end if (nargin < 5) fid = []; end % If no arguments are supplied, return an untrained mapping. if (nargin == 0) | (isempty(a)) w = mapping('featselp',{crit,ksel,t}); w = setname(w,'Floating FeatSel'); return end isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a); iscomdset(a,t); [m,k,c] = getsize(a); featlist = getfeatlab(a); % If KSEL is not given, return all features. if (ksel == 0) peak = 1; ksel = k; else peak = 0; end if (~isempty(t)) if (k ~= size(t,2)) error('The sizes of the training and tuning dataset do not match.') end end critval_opt = zeros(1,k); % Maximum criterion value for sets of all sizes. critval_max = 0; % Maximum criterion value found so far. I = [1:k]; % Pool of remaining feature indices. J = []; % Pool of selected feature indices. r = []; % Result matrix with selection history. Iopt = J; n = 0; prprogress(fid,'\nfeatselp: Pudils Floating Search\n') while (n < k) critval = zeros(1,length(I)); % Add the best feature. for j = 1:length(I) L = [J,I(j)]; % Add one feature to the already selected ones. if (isempty(t)) % Evaluate the criterion function. critval(j) = feateval(a(:,L),crit); else critval(j) = feateval(a(:,L),crit,t(:,L)); end % If this feature is the best so far and we have not yet selected % KSEL features, store it. if (critval(j) > critval_max) & (n < ksel) n_max = length(L); critval_max = critval(j); Iopt = L; end end [mx,j] = max(critval); % Find best feature of the remaining ones, J = [J, I(j)]; % add it to the set of selected features I(j) = []; % and remove it from the pool. % Store the best criterion value found for any set of n features. n = n + 1; critval_opt(n) = mx; r = [r; [n, mx, J(end)]]; prprogress(fid,' %d %f',r(end,1:2)); prprogress(fid,' %i',J); prprogress(fid,'\n') % Now keep removing features until the criterion gets worse. while (n > 2) critval = zeros(1,n); for j = 1:n L = J; L(j) = []; % Remove one feature from the selected ones. if (isempty(t)) % Evaluate the criterion function. critval(j) = feateval(a(:,L),crit); else critval(j) = feateval(a(:,L),crit,t(:,L)); end % If removing this feature gives the best result so far (or % the same result using less features), and we have not yet % removed all KSEL features, store it. if ((critval(j) > critval_max) | ((critval(j) == critval_max) & ... (length(L) < n_max))) & ... (n <= ksel + 1) n_max = length(L); critval_max = critval(j); Iopt = L; end end % If this subset is better than any found before, store and report it. % Otherwise, stop removing features. [mx,j] = max(critval); if (mx > critval_opt(n-1)) n = n - 1; critval_opt(n) = mx; I = [I,J(j)]; J(j) = []; r = [r; [n, mx, -I(end)]]; prprogress(fid,' %d %f',r(end,1:2)); prprogress(fid,' %i',J); prprogress(fid,'\n') else break; end end % If we have found more than KSEL features, return the mapping using % the best KSEL features. if (n > ksel) if (ksel < length(Iopt)) J = Iopt(1:ksel); else J = Iopt; end prprogress(fid,'featselp finished\n') w = featsel(k,J); if ~isempty(featlist) w = setlabels(w,featlist(J,:)); end w = setname(w,'Floating FeatSel'); return end end prprogress(fid,'featselp finished\n') % Return all features, sorted by their criterion value. w = featsel(k,Iopt); if ~isempty(featlist) w = setlabels(w,featlist(Iopt,:)); end w = setname(w,'Floating FeatSel'); return
github
jacksky64/imageProcessing-master
labelim.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/labelim.m
1,675
utf_8
54421f3d90d172ac5de0915a11706f21
%LABELIM Construct image of object (pixel) labels % % IM = LABELIM(A) % IM = A*LABELIM % % INPUT % A Dataset containing images stored as features % % OUTPUT % IM Image containing the labels of the objects % % DESCRIPTION % For a dataset A containing images stored as features, where each pixel % corresponds to an object, the routine creates an image presenting the % labels of the objects. Note that if the number of classes is small, e.g. % 2, an appropriate colormap will have to be loaded for displaying the % result using IMAGE(LABELS). More appropriate, LABELS should be multiplied % such that the minimum and maximum of LABELS are well spread in the [1,64] % interval of the standard colormaps. % The resulting image may also directly be displayed by: % % LABELIM(A) or % A*LABELIM % for which a suitable colormap is loaded automatically. % % SEE ALSO % DATASETS, CLASSIM % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: labelim.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function labels = labelim(a) prtrace(mfilename); % No arguments given: return an untrained mapping. if (nargin == 0) labels = mapping('labelim','fixed'); return end isfeatim(a); % Assert that A is a feature image dataset. [n,m] = getobjsize(a); % Get image size and reshape labels to image. J = getnlab(a); labels = reshape(J,n,m); if (nargout == 0) n = 61/(size(a,2)+0.5); % If no output is requested, display the imagesc(labels*n); % image with a suitably scaled colormap. colormap colorcube; clear labels; end return
github
jacksky64/imageProcessing-master
parzen_map.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/parzen_map.m
3,716
utf_8
d8c30b56a555094142a25709bf69bcce
%PARZEN_MAP Map a dataset on a Parzen densities based classifier % % F = PARZEN_MAP(A,W) % % INPUT % A Dataset % W Trained Parzen classifier mapping (default: PARZENC(A)) % % OUTPUT % F Mapped dataset % % DESCRIPTION % Maps the dataset A by the Parzen density based classfier W. F*sigm are the % posterior probabilities. W should be trained by a classifier like PARZENC. % This routine is called automatically to solve A*W, if W is trained by % PARZENC. % % The global PRMEMORY is read for the maximum size of the internally declared % matrix, default inf. % % SEE ALSO % MAPPINGS, DATASETS, PARZENC, TESTP % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: parzen_map.m,v 1.5 2008/08/18 21:16:26 duin Exp $ function f = parzen_map(b,w) prtrace(mfilename); % If no mapping is supplied, train one. if (nargin < 2) w = parzenc(b); end pars = getdata(w); a = pars{1}; % Stored training dataset. h = pars{2}; % Smoothing paramater. [m,k,c] = getsize(a); nlab = getnlab(a); p = getprior(a); % do we have priors set in the mapping? if length(pars)==3 p=pars{3}; end % Prepare a matrix with smoothing parameters for each class and feature. if (size(h,1) == 1) h = repmat(h,c,1); end if (size(h,2) == 1) h = repmat(h,1,k); end if (any(size(h) ~= [c,k])) error('The size of the array with smoothing parameters does not match that of the training set of W.'); end [mt,kt] = size(b); if (kt ~= k) error('The size of the set A does not match that of the training set of W.'); end [num,n] = prmem(mt,m); f = ones(mt,c); % Prob. densities for each test sample and class. for j = 0:num-1 % Process each chunk of the test set separately. if (j == num-1) nn = mt - num*n + n; % Last chunk may have smaller size. else nn = n; end range = [j*n+1:j*n+nn]; % Estimate the class probabilities. for i = 1:c if islabtype(a,'crisp') I = findnlab(a,i); hh = h(i,:); % Parameters for this class. % Calculate squared distances to kernel centers. D = +distm(a(I,:)./repmat(hh,length(I),1), ... +b(range,:)./repmat(hh,length(range),1)); if (length(I) > 0) f(range,i) = mean(exp(-D*0.5),1)'; % Apply kernel. end const = repmat(-log(length(I)),length(I),1); else hh = h(i,:); I = find(a.targets(:,i) > 0); % Avoid objects with zero weight v = a.targets(I,i); D = distm(+a(I,:)./repmat(hh,length(I),1), ... +b(range,:)./repmat(hh,length(range),1)); f(range,i) = exp(-D'*0.5) * v / sum(v); const = log(v/sum(v)); end % Normalize and multiply by class prior to get a density. Add REALMIN % to prevent division-by-zero errors. f(range,i) = p(i)*f(range,i)/((sqrt(2*pi).^k)*prod(hh)+realmin); if (getout_conv(w) == 2) % take log of density to preserve tails J = find(f(range,i) <= 1e-303); N = find(f(range,i) > 1e-303); f(range(N),i) = log(f(range(N),i)); [dm,R] = min(D(:,J)); % for zero densities use nearest neighbor only %f(range(J),i) = log(p(i)/((sqrt(2*pi).^k)*prod(hh)+realmin)) - dm'*0.5 + const(R); f(range(J),i) = log(p(i)) - k*log(sqrt(2*pi)) - sum(log(hh)) - dm'*0.5 + const(R); % in case of soft labels this is tricki. We just hope that the % weight of the nearest neighbor is sufficiently large end end end if (getout_conv(w) == 2) % scale to gain accuracy in the tails fmax = max(f,[],2); f = f - repmat(fmax,1,c); f = exp(f); else f = f + realmin; % avoid devision by 0 in computing posterios later end f = setdata(b,f,getlabels(w)); return
github
jacksky64/imageProcessing-master
shiftop.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/shiftop.m
1,526
utf_8
b750bb7f4cdb20bd552bc18639636e71
%SHIFTOP Shift operating point of classifier % % S = SHIFTOP(D,E,C) % S = SHIFTOP([],E,C); % % INPUT % D Dataset, classification matrix (two classes only) % E Desired error class N for D*TESTC % C Index of desired class (default: C = 1) % % OUTPUT % S Mapping, such that E = TESTC(D*S,[],LABEL) % % DESCRIPTION % If D = A*W, with A a test dataset and W a trained classifier, then an ROC % curve can be computed and plotted by ER = ROC(D,C), PLOTE(ER). C is the % desired class number for which the error is plotted along the horizontal % axis. % The classifier W can be given any operating point along this curve by % W = W*SHIFTOP(D,E,C) % % The class index C refers to its position in the label list of the dataset % A used for training the classifier that yielded D. The relation to LABEL % is LABEL = CLASSNAME(A,C); C = GETCLASSI(A,LABEL). % % SEE ALSO % DATASETS, MAPPINGS, TESTC, ROC, PLOTE, CLASSNAME, GETCLASSI function w = shiftop(d,e,n) isdataset(d); if any(any(+d)) < 0 error('Classification matrix should have non-negative entries only') end [m,c] = size(d); if c ~= 2 error('Only two-class classification matrices are supported') end if nargin < 3 | isempty(n) n = 1; end s = classsizes(d); d = seldat(d,n)*normm; [~,L] = sort(+d(:,n)); k = floor(e*s(n)); k = max(k,1); % avoid k = 0 alf = +(d(L(k),:)+d(L(k+1),:))/2; if n == 1 w = diag([alf(2)/alf(1) 1]); else w = diag([1 alf(1)/alf(2)]); end w = affine(w);
github
jacksky64/imageProcessing-master
fisherm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/fisherm.m
3,331
utf_8
f729ad07dd78730a8680ff448b9c31b4
%FISHERM Optimal discrimination linear mapping (Fisher mapping, LDA) % % W = FISHERM(A,N,ALF) % % INPUT % A Dataset % N Number of dimensions to map to, N < C, where C is the number of classes % (default: min(C,K)-1, where K is the number of features in A) % ALF Preserved variance in the pre-whitening step % % OUTPUT % W Fisher mapping % % DESCRIPTION % Finds a mapping of the labeled dataset A onto an N-dimensional linear % subspace such that it maximizes the the between scatter over the within % scatter (also called the Fisher mapping [1 or LDA]). Note that N should be % less than the number of classes in A. If supplied, ALF determines the % preserved variance in the prewhitening step (i.e. removal of insignificant % eigenvectors in the within-scatter, the EFLD procedure [2]), see KLMS. % % The resulting mapping is not orthogonal. It may be orthogonalised by ORTH. % % REFERENCES % [1] K. Fukunaga, Introduction to statistical pattern recognition, 2nd % ed., Academic Press, New York, 1990. % [2] C. Liu and H. Wechsler, Robust Coding Schemes for Indexing and Retrieval % from Large Face Databases, IEEE Transactions on Image Processing, vol. 9, % no. 1, 2000, 132-136. % % SEE ALSO % MAPPINGS, DATASETS, NLFISHERM, KLM, PCA, KLMS, ORTH % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: fisherm.m,v 1.4 2007/04/21 23:05:59 duin Exp $ function w = fisherm(a,n,alf) prtrace(mfilename); if (nargin < 3) alf = []; prwarning (4, 'no pre-whitening reduction specified, so take all features'); end if (nargin < 2) prwarning (4, 'number of dimensions to map to not specified, assuming min(C,K)-1'); n = []; end % If no arguments are specified, return an untrained mapping. if (nargin < 1) | (isempty(a)) w = mapping('fisherm',{n,alf}); w = setname(w,'Fisher mapping'); return end islabtype(a,'crisp','soft'); a = testdatasize(a); isvaldset(a,2,2); % at least 2 objects per class, 2 classes [m,k,c] = getsize(a); % If N is not given, set it. %DXD Question: why do we subtract here 1 from k? Should it not be % the next one?? %if (isempty(n)), n = min(k,c)-1; end if (isempty(n)), n = min(k,c-1); end if (n >= m) | (n >= c) | (n > k) error('The dataset is too small or has too few classes for the requested dimensionality') end % A Fisher mapping is determined by the eigenvectors of inv(W)*B, where W % is the within-scatter matrix, i.e. the average covariance matrix % weighted by the prior probabilities, and B is the between-scatter % matrix. % To simplify computations, W can be set to the identity matrix if A is % centered and sphered by KLMS. a = setprior(a,getprior(a)); % set priors to avoid unnecessary warnings v = klms(a,alf); a = a*v; % Calculate eigenvectors of B. u = pca(meancov(a),n); if (n == 0) %DXD: Careful here: I wanted to make the option n==0 behave the % same as in pca(x,0) and bhatm(x,0). Unfortunately, it was % already defined. So I overrule it now!!!! Please correct % if you don't agree! w = u; return %w = v; % Only one feature is available (k=1) else w = v*u; % Construct final mapping. end w = setname(w,'Fisher mapping'); return
github
jacksky64/imageProcessing-master
im_box.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_box.m
2,487
utf_8
0744833225729dd9a4c7960608872873
%IM_BOX Find rectangular image in datafile enclosing a blob (0/1 image) % % B = IM_BOX(A) % B = A*IM_BOX % % If A is a 0/1 image then B is the same image with all empty (0) border % columns and rows removed. % % B = IM_BOX(A,N) % % If A is a 0/1 image then B is the same image, but having in each direction % N empty (0) columns and rows around the object (1). % % B = IM_BOX(A,[NX1 NX2 NY1 NY2]) % % If A is a 0/1 image then B is the same image, but having NX1, NX2 empty % columns (0) left, respectively right of the object (1) and NY1, NY2 empty % rows (0) above, respectively below the object(1). % % B = IM_BOX(A,N,ALF) % % Adds as many empty (0) columns or rows such that the aspect ratio of % images (height/width) equals ALF. For ALF == 1, square images are returned. % For ALF == 0, images are taken as they are and N rows and columns are % added. % % SEE ALSO % DATASETS, DATAFILES % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [b,J] = im_box(a,n,alf) prtrace(mfilename); if nargin < 3, alf = []; end if nargin < 2 | isempty(n), n= []; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{n,alf}); b = setname(b,'Image bounding box'); elseif isdataset(a) error('Command cannot be used for datasets as it may change image size') elseif isdatafile(a) isobjim(a); b = filtim(a,mfilename,{n,alf}); b = setfeatsize(b,getfeatsize(a)); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image if isa(a,'dip_image'), a = double(a); end if isempty(n) jx = find(sum(a,1) ~= 0); jy = find(sum(a,2) ~= 0); J = [min(jy),max(jy),min(jx),max(jx)]; b = a(min(jy):max(jy),min(jx):max(jx)); else if (~isempty(alf) & alf == 0) c = a; else c = feval(mfilename,a); end [my,mx] = size(c); if length(n) == 1 n = [n n n n]; elseif length(n) ~= 4 error('Second parameter should be scalar or vector of length 4') end b = zeros(my+n(3)+n(4),mx+n(1)+n(2)); b(n(3)+1:n(3)+my,n(1)+1:n(1)+mx) = c; end if ~isempty(alf) & alf ~= 0 [m,k] = size(b); r = round(m*alf) - k; if r == 0 ; elseif r >= 1 % add r columns c = zeros(m,k+r); c(:,ceil(r/2):ceil(r/2)+k-1) = b; b = c; else % add rows r = round(k/alf) - m; c = zeros(m+r,k); c(ceil(r/2):ceil(r/2)+m-1,:) = b; b = c; end end end return
github
jacksky64/imageProcessing-master
im_patch.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_patch.m
5,368
utf_8
cee874a6d4aa0b4e1e79057508a0eeb8
%IM_PATCH Generate patches from images % % B = IM_PATCH(A,PSIZE,PNUM,TYPE) % B = IM_PATCH(A,PSIZE,COORD,'user') % W = IM_PATCH([],PSIZE,PNUM,TYPE) % B = A*W % % INPUT % A Dataset or datafile with (multi-band) object images dataset % PSIZE 2-dimensional patch size. If PSIZE is 1-dimensional square % patches of size PSIZE x PSIZE are generated. In case PSIZE < 1, % it is taken relatuive to the images size. In this case patches % may become non-square for non-square images. Default 3 x 3 % PNUM Number of patches, see TYPE, default 1 % COORD Given set of N x 2 image coordinates of patch centra. This may % be given either in pixels (ANY(COORD > 1) or relative to the % image size (ALL(COORD <= 1). % TYPE 'syst': systematic sampling generating PNUM x PNUM patches % 'rand': generation of a random set op PNUM patches % 'user': user defined patch positions, see COORD % Default: 'syst'. % % OUTPUT % W Mapping performing the desired patch generation % B Resulting dataset or datafile with the same number of objects % as in A. Single images are replaced by the patches. % % DESCRIPTION % The object images (including their N bands) are sampled and windows of size % PSIZE are generated, replacing the original image object. They are stored % as [PSIZE(1) PSIZE(2) NUM*N] image objects, in which N is the original % number of bands and NUM is either PNUM (for TYPE is 'rand' or 'user') or % PNUM x PNUM (for TYPE is 'syst'). % % By BAND2OBJ(B,N) individual patches can be transformed into objects. % % EXAMPLES % B = IM_PATCH(A,0.5) % generate just the central parts of the images % B = IM_PATCH(A,[3 5],2) % generates 4 patches of size 3x5 in centra of % % the four quadrants % B = IM_PATCH(A,0.1,10,'rand') % generate at random positions 10 patches % %each with a linear size of 0.1 of the image size. % % SEE ALSO % DATASETS, DATAFILES, BAND2OBJ % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_patch(a,psize,pnum,option,N) prtrace(mfilename); if nargin < 5, N = []; end % N just needed for datafiles that want to have a single patch if nargin < 4 | isempty(option), option = 'syst'; end if nargin < 3, pnum = 1; end if nargin < 2, psize = [3 3]; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{psize,pnum,option}); b = setname(b,'Image patches'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); fsize = getfeatsize(a,3); if strcmp(option,'rand') pnum = rand(pnum,2); % generate desired number of points option = 'user'; end b = filtim(a,mfilename,{psize,pnum,option},0); else % here we have a single image a = double(a); asize = size(a); if length(psize) == 1, psize = [psize psize]; end if all(psize < 1), psize = psize.*asize; end % user want to know how many patches if ~isempty(N) & N == 0 % this is just a hack, could be smarter if strcmp(option,'syst') if length(pnum == 1), npatches = pnum*pnum; else, npatches = prod(pnum); end elseif strcmp(option,'user'), npatches = size(pnum,1); elseif strcmp(option,'random'), npatches = pnum; else error('Unknown option'); end b = npatches; return end rsize = round(psize); if strcmp(option,'syst') if length(pnum) == 1, pnum = [pnum pnum]; end if isempty(N) patches = zeros(rsize(1),rsize(2),pnum(1)*pnum(2)); else patches = zeros(rsize(1),rsize(2),length(N)); end for i=1:2 if pnum(i)*psize(i) <= asize(i) %s(i) = asize(i)/(2*pnum(i))-psize(i)/2+0.5; s(i) = asize(i)/(2*pnum(i))-psize(i)/2+1; d(i) = asize(i)/pnum(i); else %s(i) = 0.5; s(i) = 1; d(i) = (asize(i)-psize(i))/(pnum(i)-1); end end if isempty(N) for j2 = 1:pnum(2) for j1 = 1:pnum(1) aa = a(round(s(1)+(j1-1)*d(1)):round(s(1)+(j1-1)*d(1))+rsize(1)-1, ... round(s(2)+(j2-1)*d(2)):round(s(2)+(j2-1)*d(2))+rsize(2)-1); patches(:,:,(j2-1)*pnum(1)+j1) = aa; end end else for n = 1:length(N) j2 = floor((N(n)-1)/pnum(1))+1; j1 = N(n) - pnum(1)*(j2-1); aa = a(round(s(1)+(j1-1)*d(1)):round(s(1)+(j1-1)*d(1))+rsize(1)-1, ... round(s(2)+(j2-1)*d(2)):round(s(2)+(j2-1)*d(2))+rsize(2)-1); patches(:,:,n) = aa; end end elseif strcmp(option,'rand') locs = rand(pnum,2); if ~isempty(N) locs = locs(N,2); end patches = feval(mfilename,a,psize,locs,option); elseif strcmp(option,'user') locs = pnum; if ~isempty(N) locs = locs(N,:); end pnum = size(locs,1); patches = zeros(rsize(1),rsize(2),pnum); if all(locs(:) <= 1) % positions given as relative coordinates locs = locs.*repmat([asize(1)-psize(1),asize(2)-psize(2)],pnum,1); locs = locs + repmat([0.5 0.5],pnum,1); end border = max(ceil(rsize/2)); a = bord(a,NaN,border); % create mirror border to avoid problems (takes time!!) locs = locs + border; for j = 1:pnum s = round(locs(j,:)-psize/2); patches(:,:,j) = a(s(1):s(1)+rsize(1)-1,s(2):s(2)+rsize(2)-1); end end b = patches; end return
github
jacksky64/imageProcessing-master
pca.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/pca.m
1,888
utf_8
4f05b0416c32e4724340e266115a23e8
%PCA Principal component analysis (PCA or MCA on overall covariance matrix) % % [W,FRAC] = PCA(A,N) % [W,N] = PCA(A,FRAC) % % INPUT % A Dataset % N or FRAC Number of dimensions (>= 1) or fraction of variance (< 1) % to retain; if > 0, perform PCA; otherwise MCA. Default: N = inf. % % OUTPUT % W Affine PCA mapping % FRAC or N Fraction of variance or number of dimensions retained. % % DESCRIPTION % This routine performs a principal component analysis (PCA) or minor % component analysis (MCA) on the overall covariance matrix (weighted % by the class prior probabilities). It finds a rotation of the dataset A to % an N-dimensional linear subspace such that at least (for PCA) or at most % (for MCA) a fraction FRAC of the total variance is preserved. % % PCA is applied when N (or FRAC) >= 0; MCA when N (or FRAC) < 0. If N is % given (abs(N) >= 1), FRAC is optimised. If FRAC is given (abs(FRAC) < 1), % N is optimised. % % Objects in a new dataset B can be mapped by B*W, W*B or by A*PCA([],N)*B. % Default (N = inf): the features are decorrelated and ordered, but no % feature reduction is performed. % % ALTERNATIVE % % V = PCA(A,0) % % Returns the cumulative fraction of the explained variance. V(N) is the % cumulative fraction of the explained variance by using N eigenvectors. % % Use KLM for a principal component analysis on the mean class covariance. % Use FISHERM for optimizing the linear class separability (LDA). % % SEE ALSO % MAPPINGS, DATASETS, PCLDC, KLLDC, KLM, FISHERM % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: pca.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function [w,truefrac] = pca (varargin) prtrace(mfilename); [w,truefrac] = pcaklm(mfilename,varargin{:}); return
github
jacksky64/imageProcessing-master
im_threshold.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_threshold.m
2,565
utf_8
c0695bb34cf81afd570191ccd7a06f38
%IM_THRESHOLD Threshold images stored in a dataset (DIP_Image) % % B = IM_THRESHOLD(A,TYPE,PAR,INV) % B = A*IM_THRESHOLD([],TYPE,PAR,INV) % % INPUT % A Dataset with object images (possibly multi-band) % TYPE Type of procedure, see below % PAR Related parameter % INV If INV = 1, result inverted, default INV = 0. % % OUTPUT % B Dataset with thresholded images % % DESCRIPTION % The following procedures are supported (TYPE) % 'isodata': Thresholding using the Isodata algorithm, % for more options (mask image, several thresholds) % see dip_isodatathreshold. (default) % 'triangle': Thresholding using chord method % (a.k.a. skewed bi-modality, maximum distance to triangle) % by Zack, Rogers and Latt (1973). % 'background': Thresholding using unimodal background-symmetry method. % 'fixed': Thresholding at a fixed value. % 'double': Thresholding between two fixed values. % 'volume': Thresholding to obtain a given volume fraction. % 'hysteresis': From the binary image (in>low) only those regions are % selected for which at least one pixel is (in>high) % % The following parameters are related to these procedures (PAR): % ('background'): Distance to the peak where we cut-off, in % terms of the half-width at half the maximum. % Inf selects the default value, which is 2. % ('fixed'): Threshold value. Inf means halfway between % minimum and maximum value. % ('double'): Two threshold values. Inf means min+[1/3,2/3]*(max-min). % ('volume'): Parameter = the volume fraction (Inf means 0.5) % ('hysteresis'):Two values: low, high (see above) % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE, THRESHOLD % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_threshold(a,type,par,inv) prtrace(mfilename); if nargin < 4 | isempty(inv), inv = 0; end if nargin < 3 | isempty(par), par = inf; end if nargin < 2 | isempty(type), type = 'isodata'; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{type,par,inv}); b = setname(b,'Image threshold'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,{type,par,inv}); b = setfeatsize(b,getfeatsize(a)); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = 1.0*dip_image(a); b = threshold(a,type,par); if inv b = 1-b; end end return
github
jacksky64/imageProcessing-master
nmc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nmc.m
2,128
utf_8
d6c35ba10f1a2d77641d5948b832dd6f
%NMC Nearest Mean Classifier % % W = NMC(A) % W = A*NMC % % INPUT % A Dataset % % OUTPUT % W Nearest Mean Classifier % % DESCRIPTION % Computation of the nearest mean classifier between the classes in the % dataset A. The use of soft labels is supported. Prior probabilities are % not used. % % The difference with NMSC is that NMSC is based on an assumption of normal % distributions and thereby automatically scales the features and is % sensitive to class priors. NMC is a plain nearest mean classifiers that % is feature scaling sensitive and unsensitive to class priors. % % SEE ALSO % DATASETS, MAPPINGS, NMSC, LDC, FISHERC, QDC, UDC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: nmc.m,v 1.14 2009/12/09 15:49:54 duin Exp $ function W = nmc(a) prtrace(mfilename); if nargin < 1 | isempty(a) W = mapping(mfilename); W = setname(W,'Nearest Mean'); return end islabtype(a,'crisp','soft'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes [m,k,c] = getsize(a); if isdatafile(a), a = setfeatsize(a,k); end if c == 2 % 2-class case: store linear classifier u = meancov(a); u1 = +u(1,:); u2 = +u(2,:); R = [u1-u2]'; offset =(u2*u2' - u1*u1')/2; W = affine([R -R],[offset -offset],a,getlablist(a)); W = cnormc(W,a); W = setname(W,'Nearest Mean'); else if all(classsizes(a) > 1) a = setprior(a,0); % NMC should be independent of priors: make them equal p = getprior(a); U = zeros(c,k); V = zeros(c,k); s = sprintf('NMC: Processing %i classes: ',c); prwaitbar(c,s); for j=1:c prwaitbar(c,j,[s int2str(j)]); b = seldat(a,j); [v,u] = var(b); U(j,:) = +u; V(j,:) = +v; end prwaitbar(0); %G = mean(V'*p') * eye(k); G = mean(V(:)); w.mean = +U; w.cov = G; w.prior =p; W = normal_map(w,getlablist(a),k,c); W = setname(W,'Nearest Mean'); W = setcost(W,a); else u = meancov(a); W = knnc(u,1); W = setname(W,'Nearest Mean'); end end W = setcost(W,a); return
github
jacksky64/imageProcessing-master
gendats.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendats.m
2,033
utf_8
5ec6c34e8c8a19bcc26bfd04944c5b6d
%GENDATS Generation of a simple classification problem of 2 Gaussian classes % % A = GENDATS (N,K,D,LABTYPE) % % INPUT % N Dataset size, or 2-element array of class sizes (default: [50 50]). % K Dimensionality of the dataset to be generated (default: 2). % D Distance between class means in the first dimension (default: 1). % LABTYPE Label type to generate, 'crisp' or 'soft' (default: 'crisp'). % % OUTPUT % A Dataset. % % DESCRIPTION % Generation of a K-dimensional 2-class dataset A of N objects. Both classes % are Gaussian distributed with identity matrix as covariance matrix. Their % means are on a distance D. Class priors are P(1) = P(2) = 0.5. % % If N is a vector of sizes, exactly N(I) objects are generated for class I, % I = 1,2. % % LABTYPE defines the desired label type: 'crisp' or 'soft'. In the latter % case true posterior probabilities are set for the labels. % % SEE ALSO % DATASETS, PRDATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: gendats.m,v 1.3 2009/01/27 13:01:42 duin Exp $ function A = gendats (N,k,d,labtype) prtrace(mfilename); if (nargin < 1), prwarning(2,'class sizes not specified, assuming [50 50]'); N = [50 50]; end if (nargin < 2), prwarning(2,'dimensionality not specified, assuming 2'); k = 2; end if (nargin < 3), prwarning(2,'class mean distance not specified, assuming 1'); d = 2; end if (nargin < 4), prwarning(2,'label type not specified, assuming "crisp"'); labtype = 'crisp'; end % Set equal priors and generate random class sizes according to these. p = [0.5 0.5]; N = genclass(N,p); % Unit covariance matrices, zero mean except for distance D in first dim. GA = eye(k); GB = eye(k); ma = zeros(1,k); mb = zeros(1,k); mb(1) = d; U = dataset([ma;mb],[1 2]'); U = setprior(U,p); % Create dataset. A = gendatgauss(N,U,cat(3,GA,GB),labtype); A = setname(A,'Simple Problem'); return
github
jacksky64/imageProcessing-master
ffnc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/ffnc.m
9,651
utf_8
810924cee56981dbe41a86706eeed34c
%FFNC Feed-forward neural net classifier back-end % % [W,HIST] = FFNC (ALG,A,UNITS,ITER,W_INI,T,FID) % % INPUT % ALG Training algorithm: 'bpxnc' for back-propagation (default), 'lmnc' % for Levenberg-Marquardt % A Training dataset % UNITS Array indicating number of units in each hidden layer (default: [5]) % ITER Number of iterations to train (default: inf) % W_INI Weight initialisation network mapping (default: [], meaning % initialisation by Matlab's neural network toolbox) % T Tuning set (default: [], meaning use A) % FID File ID to write progress to (default [], see PRPROGRESS) % % OUTPUT % W Trained feed-forward neural network mapping % HIST Progress report (see below) % % DESCRIPTION % This function should not be called directly, but through one of its % front-ends, BPXNC or LMNC. Uses the Mathworks' Neural Network toolbox. % % SEE ALSO % MAPPINGS, DATASETS, BPXNC, LMNC, NEURC, RNNC, RBNC, PRPROGRESS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: ffnc.m,v 1.10 2009/07/26 18:43:12 duin Exp $ function [w,hist] = ffnc(alg,a,units,max_iter,w_ini,tt,fid) prtrace(mfilename); % Settings for the different training algorithms. if exist('nnet') ~= 7 error('Neural network toolbox not found') end if (strcmp(alg,'bpxnc')) mapname = 'BP Neural Classf'; elseif (strcmp(alg,'lmnc')) mapname = 'LM Neural Classf'; else error('illegal training algorithm specified'); end; % Check arguments if (nargin < 7), fid = []; end; if (nargin < 6) | (isempty(tt)) prwarning(2,'no tuning set supplied, using training set for tuning (risk of overfit)'); if (nargin < 2), t = []; else, t = a; end; tt = []; % preserve input for regopt calls else t = tt; end if (nargin < 5) | (isempty(w_ini)) prwarning(3,'no initialisation supplied, using Nguyen-Widrow random initialisation'); w_ini = []; end if (nargin < 4) | (isempty(max_iter)) prwarning(3,'no maximum number of iterations supplied, assuming infinite'); max_iter = inf; end if (nargin < 3) | (isempty(units)) prwarning(2,'no network architecture specified, assuming one hidden layer of 5 units'); units = 5; end if (nargin < 2) | (isempty(a)) w = mapping(alg,{units,max_iter,w_ini,t,fid}); w = setname(w,mapname); hist = []; return end a = setprior(a,getprior(a)); t = setprior(a,getprior(t)); if isnan(units) % optimize complexity parameter: number of neurons defs = {5,[],[],[],[]}; parmin_max = [1,30;0,0;0,0;0,0;0,0]; [w,hist] = regoptc(a,alg,{units,max_iter,w_ini,tt,fid},defs,[1],parmin_max,testc([],'soft'),0); return end % Training target values. prwarning (4, 'using training targets 0.9/0.1'); target_high = 0.9; target_low = 0.1; % Check whether the dataset is valid. islabtype(a,'crisp'); isvaldfile(a,1,2); % At least 1 object per class, 2 classes a = testdatasize(a); t = testdatasize(t); iscomdset(a,t); % Check whether training and tuning set match %a = setprior(a,getprior(a)); %t = setprior(a,getprior(t)); [m,k,c] = getsize(a); lablist = getlablist(a); % Standard training parameters. disp_freq = inf; err_goal = 0.02/m; % Mean-squared error goal, stop if reached trnsf_fn = 'logsig'; % Transfer function perf_fn = 'mse'; % Performance function % Settings for the different training algorithms. tp.show = disp_freq; tp.time = inf; tp.goal = err_goal; if (strcmp(alg,'bpxnc')) trnalg = 'traingdx'; lrnalg = 'learngdm'; burnin = 500; % Never stop training before this many iters tp.epochs = min(50,max_iter); % Iteration unit tp.lr = 0.01; % BP, initial value for adaptive learning rate tp.lr_inc = 1.05; % BP, multiplier for increasing learning rate tp.lr_dec = 0.7; % BP, multiplier for decreasing learning rate tp.mc = 0.95; % BP, momentum tp.max_perf_inc = 1.04; % BP, error ratio tp.min_grad = 1e-6; % BP, minimum performance gradient tp.max_fail = 5; % BP, maximum validation failures speed = 10000; % waitbar speed elseif (strcmp(alg,'lmnc')) trnalg = 'trainlm'; lrnalg = 'learngdm'; burnin = 50; % Never stop training before this many iters tp.epochs = min(1,max_iter); % Iteration unit tp.mem_reduc = 1; % Trade-off between memory & speed tp.max_fail = 1; % LM, maximum validation failures tp.min_grad = 1e-6; % LM, minimum gradient, stop if reached tp.mu = 0.001; % LM, initial value for adaptive learning rate tp.mu_inc = 10; % LM, multiplier for increasing learning rate tp.mu_dec = 0.1; % LM, multiplier for decreasing learning rate tp.mu_max = 1e10; % LM, maximum learning rate speed = 100; % waitbar speed end; % Scale each feature to the range [0,1]. prwarning(3,'scaling such that training set features have range [0,1]'); ws = scalem(a,'domain'); a_scaled = a*ws; t_scaled = t*ws; % Set number of network outputs: 1 for 2 classes, c for c > 2 classes. if (c == 2), cout = 1; else cout = c; end % Create target matrix: row C contains a high value at position C, % the correct class, and a low one for the incorrect ones (place coding). if (cout > 1) target = target_low * ones(c,c) + (target_high - target_low) * eye(c); else target = [target_high; target_low]; end % Create the target arrays for both datasets. target_a = target(getnlab(a),:)'; target_t = target(getnlab(t),:)'; % Create the network layout: K inputs, N(:) hidden units, COUT outputs. numlayers = length(units)+1; numunits = [k,units(:)',cout]; transfer_fn = cellstr(char(ones(numlayers,1)*trnsf_fn)); % Create network and set training parameters. The network is initialised % by the Nguyen-Widrow rule by default. warning('OFF','NNET:Obsolete') net = newff(ones(numunits(1),1)*[0 1],numunits(2:end),... transfer_fn,trnalg,lrnalg,perf_fn); net.trainParam = tp; % If an initial network is specified, use its weights and biases. if (~isempty(w_ini)) % Use given initialisation. [data,lab,type_w] = get(w_ini,'data','labels','mapping_file'); if (strcmp(type_w,'sequential')) a_scaled = a*data{1}; t_scaled = t*data{1}; ws = data{1}; [data,lab,type_w] = get(data{2},'data','labels','mapping_file'); end % Check whether the mapping's dimensions are the same as the network's. [kw,cw] = size(w_ini); net_ini = data{1}; if (~strcmp(type_w,'neurc')) | (kw ~= k) | (cw ~= c) | ... (net.numInputs ~= net_ini.numInputs) | ... (net.numLayers ~= net_ini.numLayers) | ... (net.numOutputs ~= net_ini.numOutputs) | ... any(net.biasConnect ~= net_ini.biasConnect) | ... any(net.inputConnect ~= net_ini.inputConnect) | ... any(net.outputConnect ~= net_ini.outputConnect) error('incorrect size initialisation network supplied') end % Check whether the initialisation network was trained on the same data. [dummy1,nlab,dummy2] = renumlab(lablist,lab); if (max(nlab) > c) error('initialisation network should be trained on same classes') end net.IW = net_ini.IW; net.LW = net_ini.LW; net.b = net_ini.b; end % Initialize loop opt_err = inf; opt_iter = inf; opt_net = net; iter = 0; this_iter = 1; hist = []; % Loop while % - training has not gone on for longer than 50 iterations or 2 times the % number of iterations for which the error was minimal, and % - the number of iterations does not exceed the maximum % - the actual training function still performed some iterations prprogress(fid,'%s: neural net, %i units: \n',alg,units); prprogress(fid,'%i %5.3f %5.3f\n',0,1,1); s = sprintf('%s: neural net, %i units',alg,units); prwaitbar(100,s); while ((iter <= 2*opt_iter) | (iter < burnin)) & ... (iter < max_iter) & (this_iter > 0) & (opt_err > 0) prwaitbar(100,100-100*exp(-iter/speed)); % Call TRAIN, from Matlab's NN toolbox. prwarning(4,'[%d] calling NNETs train', iter); %net.trainParam.mu = min(net.trainParam.mu_max*0.9999,net.trainParam.mu); net.trainParam.showWindow = 0; net.trainParam.showCommandLine = 0; [net,tr] = train(net,+a_scaled',target_a); this_iter = length(tr.epoch)-1; iter = iter + this_iter; % Copy current learning rate as the one to start with for the next time. if (strcmp(alg,'bpxnc')) net.trainParam.lr = tr.lr(end); else net.trainParam.mu = tr.mu(end); end; % Map train and tuning set. w = mapping('neurc','trained',{net},lablist,k,c); w = setname(w,mapname); % Calculate mean squared errors (MSE). out_a = a_scaled*w; out_t = t_scaled*w; mse_a = mean(mean(((out_a(:,1:cout))-target_a').^2,1)); mse_t = mean(mean(((out_t(:,1:cout))-target_t').^2,1)); % Calculate classification errors. e_a = testc(a_scaled,w); e_t = testc(t_scaled,w); % If this error is minimal, store the iteration number and weights. if (e_t < opt_err) opt_err = e_t; opt_iter = iter; opt_net = net; end w1 = cell2mat(net.IW); w1 = w1(:); %w2 = cell2mat(net.LW'); bugfix, doesnot work for multilayer networks %w2 = w2(:); netLW = net.LW(:); w2 = []; for j=1: length(netLW) ww = netLW{j}; w2 = [w2; ww(:)]; end hist = [hist; iter e_a e_t mse_a mse_t ... mean([w1; w2].^2)]; prprogress(fid,'%i %5.3f %5.3f\n',iter,e_t,opt_err); end prwaitbar(0); % Create mapping. w = ws*mapping('neurc','trained',{opt_net},lablist,k,c); w = setname(w,mapname); w = setcost(w,a); return
github
jacksky64/imageProcessing-master
im_resize.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_resize.m
3,822
utf_8
9b9aa3cc9eb40cb875da06de9efcddb7
%IM_RESIZE Mapping for resizing object images in datasets and datafiles % % B = IM_RESIZE(A,SIZE,METHOD) % B = A*IM_RESIZE([],SIZE,METHOD) % % INPUT % A Dataset or datafile % SIZE Desired size % METHOD Method, see IMRESIZE % % OUTPUT % B Dataset or datafile % % DESCRIPTION % The objects stored as images in the dataset or datafile A are resized % using the IMRESIZE command. Default METHOD is 'nearest' (nearest % neighbor interpolation). % % A special method is 'preserve', which exactly copies the existing data, % cuts it, or extends it with zeros as far as appropriate. In SIZE the % desired output size has to be stored. Note that for proper use in % PRTools third size parameter of multi-band images, e.g. 3 for RGB % images, has to be supplied. % % In case SIZE is a scalar the default METHOD is 'preserve', which % implies that the first SIZE samples are taken, which is useful if % A is a 1-D signal. Otherwise the deafult METHOD is 'nearest'. % % SEE ALSO % MAPPINGS, DATASETS, DATAFILES, IM2OBJ, DATA2IM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands %DXD 24-8-2007 % I rewrote a part of this function. Now there are default values % given, a bug is removed, and the identation is correct again. function b = im_resize(a,imsize,method,par) if nargin < 4 par = []; end if nargin < 3 method = []; end if nargin < 2 | isempty(imsize) imsize = [16 16]; end if nargin < 1 a = []; end if isempty(method) if length(imsize) == 1 method = 'preserve'; else method = 'nearest'; end end if isempty(a) b = mapping(mfilename,'fixed',{imsize,method}); b = setname(b,'im_resize'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename,{imsize,method},imsize); % prepare execution image by image else b = double(a); if strcmp(method,'preserve') | strcmp(method,'preserve_bottom') | ... strcmp(method,'preserve_centre') | strcmp(method,'preserve_top') % copy the image pixel by pixel into a larger or smaller image sizeb = size(b); % original size if length(imsize) == 1 imsize = [1 imsize]; end if length(sizeb) == 3 & length(imsize) == 2 imsize(3) = sizeb(3); end if length(imsize) ~= length(sizeb) error('Desired images size should have as many dimension as data') end sizec = min(imsize,sizeb); % size of part to be copied subs = cell(1,length(sizec)); % store indices in cell array [subs{:}] = ind2sub(sizec,[1:prod(sizec)]); subsb = subs; subsc = subs; % cell arrays for original and result switch method case 'preserve_bottom' delc = imsize-sizeb; case 'preserve_centre' delc = round((imsize-sizeb)/2); case {'preserve_top','preserve'} delc = zeros(1,length(imsize)); end for j=1:length(delc) % indices for if delc(j) > 0 % result subsc{j} = subs{j} + delc(j); elseif delc(j) < 0 % and original subsb{j} = subs{j} - delc(j); end end Lc = sub2ind(imsize,subsc{:}); % corresponding linear coordinates of result Lb = sub2ind(sizeb,subsb{:}); % corresponding linear coordinates of original c = zeros(imsize); % embed result in zeros c(Lc) = b(Lb); % copy b = c; % store result else % resizing the image using Matlab's imresize if length(imsize) > 1 b = imresize(b,imsize(1:2),method); elseif imsize > 1 & round(imsize) == imsize b = imresize(a,[imsize imsize],method); else [m,n] = size(a); b = imresize(a,round(imsize*[m,n]),method); end end end
github
jacksky64/imageProcessing-master
remoutl.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/remoutl.m
1,593
utf_8
30de9687b8f002b3fc42aa90be9ee9dd
%REMOUTL Remove outliers from a dataset % % B = REMOUTL(A,T,P) % B = A*REMOUTL([],T,P) % % INPUT % A Dataset % T Threshold for outlier detection (default 3) % P Fraction of distances passing T (default 0.10) % % OUTPUT % B Dataset % % DESCRIPTION % Outliers in A are removed, other objects are copied to B. Class by class % a distance matrix is constructed and objects are removed that have a fraction % P of their distances larger than the average distance in the class + T times % the standard deviation of the within-class distances. This routine works % also on unlabeled datasets. In partially labeled datasets the unlabeled % objects are neglected. function a = remoutl(a,t,p); if nargin < 3, t = []; end if nargin < 2, p = []; end if nargin < 1 | isempty(a) a = mapping(mfilename,'fixed',{t,p}); a = setname(a,'rem_outliers'); return end a = testdatasize(a); c = getsize(a,3); if c == 0 d = sqrt(distm(+a)); J = findoutd(d,t,p); a(J,:) = []; else R = []; for j=1:c L = findnlab(a,j); d = sqrt(distm(seldat(a,j))); J = findoutd(d,t,p); R = [R;L(J)]; end a(R,:) = []; end %FINDOUTD Detect outliers in distance matrix % % J = FINDOUTD(D,T,P) % % Find the indices of the objects in the dissimilarity representation D % that have a fraction P (default P = 0.10) of their distances larger than % mean(D(:)) + T * std(D), default T = 3. function J = findoutd(d,t,p); if nargin < 3 | isempty(p), p = 0.10; end if nargin < 2 | isempty(t), t = 3; end x = +d; x = x(:); L = find(x~=0); x = x(L); s = mean(x) + t * std(x); J = find(sum(+d > s,2) > p*size(d,2));
github
jacksky64/imageProcessing-master
histm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/histm.m
4,184
utf_8
aa606d4c44c644bd3466cbf920b12c6a
%HISTM Histogramming: mapping of dataset (datafile) to histogram % % W = HISTM(A,N) % W = A*HISTM([],N) % C = B*W % % C = HISTM(B,X) % C = B*HISTM([],X) % % % % INPUT % A Dataset or datafile for defining histogram bins (training) % N Scalar defining number of histogram bins (default 10) % % B Dataset or datafile to be transformed into a histogram with % predifined bins. % X User defined histogram bins (centers) % % OUTPUT % C Dataset or datafile with histogram bin frequencies % % DESCRIPTION % For every object in the dataset B the set of feature values is mapped % into a histogram, specifying for each bin the number of features having a % value as specified for that bin. This is particular useful if the objects % are images and the features are pixels. In that case for every image a % histogram is found. % % The dataset A may be used to find the proper histogram bins. In that case % histograms with N bins are constructed between the minimum and maximum % values over all objects in A. % % Formally HISTM([],N) is an untrained mapping, to be trained by A as the % dataset (datafile) A is used to determine the histogram bin centers. % In case the bins are given like in HISTM(B,X) then we have a trained mapping. % Consequently, if A is a datafile then in C = A*HISTM(A,10) all objects in % A are processed twice. Once for determining the bin positions and once for % filling them. If appropriate a command like C = A*HISTM(A(1,:),10) is % thereby significantly faster. % % SEE ALSO % DATASETS, DATAFILES, MAPPINGS, HIST function w = histm(a,bins) fixed = 0; if nargin < 2, bins = 10; end if nargin < 1, a = []; end if isdouble(bins) & ~is_scalar(bins) fixed = 1; end if ismapping(bins) bins = getdata(bins); %DXD: I don't know how to solve it fixed = 1; end mapname = 'histogramming'; if fixed % fixed histograms if isempty(a) %w = mapping(mfilename,'fixed',bins,bins(:),0,length(bins)); %DXD make it a trained mapping, you know the output size % Unfortunately, you don't really know, because for color % images you get a histogram *per* color band. Therefore I % decided not to set the feature labels. w = mapping(mfilename,'trained',bins,[],0,0); % size_out is unknown % as it depends on the number of bands w = setname(w,mapname); else n = getfeatsize(a,3); if isdatafile(a) %w = addpostproc(a,histm,length(bins)*n); w = addpostproc(a,histm([],bins)); else [m,k] = size(a); fsize = getfeatsize(a); h = zeros(m,length(bins),n); for i=1:m im = reshape(+a(i,:),fsize); for j=1:n imj = im(:,:,j); hh = hist(imj(:),length(bins)); h(i,:,j) = hh; end end h = reshape(h,m,length(bins)*n); w = setdat(a,h); end end else % adjustable histograms if isempty(a) % defining w = mapping(mfilename,'untrained',bins); w = setname(w,mapname); elseif ~ismapping(bins) % training if bins < 3 error('Number of histogram bins should be larger than 2') end bins = bins - 2; % room for end bins if isdatafile(a) % oeps! training from datafile next = 1; % we just find minimum and maximum xmin = inf; % of all feature values in all datafiles xmax = -inf; while next > 0 [b,next] = readdatafile(a,next); b = +b; xmin = min(min(b(:)),xmin); xmax = max(max(b(:)),xmax); end binsize = (xmax-xmin)/bins; % and compute the bins X = [xmin+binsize/2:binsize:xmax-binsize/2]'; n = bins; else [N,X] = hist(+a,bins); n = size(N,1); end X(1) = X(1)-10*eps; % forces all objects inside edges X = [2*X(1)-X(2) ; X ; 2*X(end)-X(end-1)]; outsize = getfeatsize(a,3)*(n+2); w = mapping(mfilename,'trained',X,[1:outsize]',getfeatsize(a),outsize); w = setname(w,mapname); else % execution, bins is a mapping w = feval(mfilename,a,getdata(bins)); % use fixed mapping end end return
github
jacksky64/imageProcessing-master
costm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/costm.m
3,037
utf_8
8d9480389c20643eb572a49a15806a5c
%COSTM Cost mapping, classification using costs % % Y = COSTM(X,C,LABLIST) % W = COSTM([],C,LABLIST) % % DESCRIPTION % Maps the classifier output X (assumed to be posterior probability % estimates) to the cost-outputs, defined by the cost-matrix C: % % C(i,j) = cost of misclassifying an object from class i as class j. % % Default C is the cost matrix stored in the dataset X. % The order of the classes is defined by LABLIST. When no lablist is % given, the order as given by GETFEATLAB(X) is assumed. % In order to apply this mapping, it is assumed that the dataset X % represents posterior class probabilities (i.e. normalized by % classc). % % EXAMPLE % x = gendatb(100); % w1 = x*ldc; % standard classifier % C = [0 2; 1 0]; % new cost matrix % w2 = w1*classc*costm([],C); % classifier using this cost-matrix % % SEE ALSO % MAPPINGS, CLASSC, TESTD, TESTCOST, SETCOST % Copyright: D.M.J. Tax, R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function w = costm(a,C,lablist) prtrace(mfilename); % costm is implemented as a trained mapping to enable proper handling % of constructs like W = fisherc(train)*costm([],C,Clab); test*W; if nargin < 3, lablist = []; end if nargin < 2, C = []; end [s_in,s_out] = size(C); if nargin < 1 | isempty(a) w = mapping(mfilename,'combiner',{C,lablist}); w = setname(w,'Mis-classification-cost'); return end if ismapping(a) % we do something like w*costm() if isempty(lablist) lablist = getlabels(a); end if ~isempty(C) & ~isempty(lablist) % match the labels with that of the previous mapping [C,lablist] = matchcost(a.labels,C,lablist); end % and now we have a trained mapping: w = mapping(mfilename,'trained',{a,C,lablist},lablist,size(a,1),s_out); elseif isdataset(a) & ismapping(C) % we deal now with d*costm() w = feval(mfilename, a*C.data{1}, C.data{2}, C.data{3}); elseif isdataset(a) & ~ismapping(C) % the case that d*costm([],C,lablist) if ~isempty(C) % store in dataset for standard error checking handling % I doubt whether it is really the right thing to do % as it may disturb a different labellingsystem in case % we are dealing with a testset. a = setcost(a,C,lablist); end C = a.cost; % retrieve from dataset if isempty(C) % still empty, no costs w = a; else % Get the data size d = size(a,2); if ( (size(C,1) ~= d) | (size(C,2) < d) ) error('Cost matrix has wrong size'); end % Map the dataset using the costs: w = a*C; % Now we have a problem: PRTools expects that the estimated class % has the highest output, and here we have calculated the cost % (which should be low!) % Thus we patch: w = -w; %w = setfeatlab(w,getfeatlab(a)); if isempty(lablist) lablist = getfeatlab(a); end w = setfeatlab(w,lablist); end else error('Input should be mapping or dataset'); end return
github
jacksky64/imageProcessing-master
remclass.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/remclass.m
715
utf_8
015f458b4cb61086e8c3c94574db9072
%REMCLASS Remove small classes % % B = REMCLASS(A,N) % % INPUT % A Dataset % N Integer, maximum class size to be removed (optional; default 0) % % OUTPUT % B Dataset % % DESCRIPTION % Classes having N objects or less are removed. The corresponding objects % are made unlabeled. Use SELDAT to remove unlabeled objects. % In case of soft labeled objects the number of objects in A is compared % with N. If it is smaller all object labels are removed (NaN). % % SEE ALSO % SELDAT, GENDAT function b = remclass(a,n) prtrace(mfilename); if nargin < 2, n = 0; end N = classsizes(a); J = find(N <= n); L = findnlab(a,J); b = setnlab(a,0,L); b = setlablist(b); return
github
jacksky64/imageProcessing-master
clevals.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/clevals.m
7,795
utf_8
78938416bcf29c02dc21b55343c11a1c
%CLEVALS Classifier evaluation (feature size/learning curve), bootstrap possible % % E = CLEVALS(A,CLASSF,FEATSIZE,TRAINSIZES,NREPS,T) % % INPUT % A Training dataset % CLASSF Classifier to evaluate % FEATSIZE Vector of feature sizes % (default: 1:K, where K is the number of features in A) % TRAINSIZES Vector of class sizes, used to generate subsets of A % (default [2,3,5,7,10,15,20,30,50,70,100]) % NREPS Number of repetitions (default 1) % T Tuning set, or 'bootstrap' (default [], i.e. use remaining % objects in A) % % OUTPUT % E Error structure (see PLOTE) % % DESCRIPTION % Generates at random, for all feature sizes defined in FEATSIZES or all % class sizes defined in TRAINSIZES, training sets out of the dataset A and % uses these for training the untrained classifier CLASSF. CLASSF may also % be a cell array of untrained classifiers; in this case the routine will be % run for all of them. The resulting trained classifiers are tested on all % objects in A. This procedure is then repeated N times. % % Training set generation is done "with replacement" and such that for each % run the larger training sets include the smaller ones and that for all % classifiers the same training sets are used. % % If CLASSF is fully deterministic, this function uses the RAND random % generator and thereby reproduces if its seed is reset (see RAND). % If CLASSF uses RANDN, its seed may have to be set as well. % % EXAMPLES % See PREX_CLEVAL. % % SEE ALSO % MAPPINGS, DATASETS, CLEVALB, TESTC, PLOTE % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: clevals.m,v 1.4 2008/07/03 09:05:50 duin Exp $ function e = clevals(a,classf,featsizes,learnsizes,nreps,t,fid) prtrace(mfilename); prwaitbar % use of fid is outdated if (nargin < 6) prwarning(2,'no tuning set supplied, bootstrapping'); t = []; end; if (nargin < 5) prwarning(2,'number of repetitions not specified, assuming NREPS = 1'); nreps = 1; end; % If a single mapping is given, convert it to a 1 x 1 cell array. if (ismapping(classf)), classf = {classf}; end % Correct for old argument order. if (isdataset(classf)) & (ismapping(a)) tmp = a; a = classf; classf = {tmp}; end if (isdataset(classf)) & (iscell(a)) & (ismapping(a{1})) tmp = a; a = classf; classf = tmp; end if ~iscell(classf), classf = {classf}; end % Assert that all is right. isdataset(a); ismapping(classf{1}); % Remove requested class sizes that are larger than the size of the % smallest class. mc = classsizes(a); [m,k,c] = getsize(a); % Defaults for size arrays. if (nargin < 4) prwarning(2,'vector of training set class sizes not specified, assuming [2,3,5,7,10,15,20,30,50,70,100]'); learnsizes = [2,3,5,7,10,15,20,30,50,70,100]; end; if (nargin < 3) prwarning(2,'vector of feature sizes not specified, assuming K'); featsizes = k; end; learncurve = 0; featcurve = 0; if (isempty(featsizes)) % Learning curve. toolarge = find(learnsizes >= min(mc)); if (~isempty(toolarge)) prwarning(2,['training set class sizes ' num2str(learnsizes(toolarge)) ... ' larger than the minimal class size in A; removed them']); learnsizes(toolarge) = []; end learnsizes = learnsizes(:)'; featsizes = k; sizes = learnsizes; learncurve = 1; else % Feature size curve. toolarge = find(featsizes > k); if (~isempty(toolarge)) prwarning(2,['feature sizes ' num2str(featsizes(toolarge)) ... ' larger than number of features in A; removed them']); featsizes(toolarge) = []; end if (max(size(learnsizes)) > 1) error('For a feature curve, specify a scalar LEARNSIZE.'); end; featsizes = featsizes(:)'; sizes = featsizes; featcurve = 1; end; % Fill the error structure. nw = length(classf(:)); datname = getname(a); e.error = zeros(nw,length(sizes)); e.std = zeros(nw,length(sizes)); e.xvalues = sizes(:)'; e.n = nreps; e.names = []; if (nreps > 1) e.ylabel= ['Averaged error (' num2str(nreps) ' experiments)']; elseif (nreps == 1) e.ylabel = 'Error'; else error('Number of repetitions NREPS should be >= 1.'); end; if (~isempty(datname)) if (isempty(t)) e.title = ['Bootstrapped learning curve on ' datname]; else e.title = ['Learning curve on ' datname]; end end; if (learncurve) e.xlabel = 'Training set size'; else e.xlabel = 'Feature size'; end; if (sizes(end)/sizes(1) > 20) e.plot = 'semilogx'; % If range too large, use a log-plot for X. end % Report progress. s1 = sprintf('clevals: %i classifiers: ',nw); prwaitbar(nw,s1); % Store the seed, to reset the random generator later for different % classifiers. seed = rand('state'); % Loop over all classifiers (with index WI). for wi = 1:nw % Assert that CLASSF{WI} is an untrained mapping. isuntrained(classf{wi}); name = getname(classf{wi}); e.names = char(e.names,name); prwaitbar(nw,wi,[s1 name]); % E1 will contain the error estimates. e1 = zeros(nreps,length(sizes)); % Take care that classifiers use same training set. rand('state',seed); seed2 = seed; % For N repetitions... s2 = sprintf('clevals: %i repetitions: ',nreps); prwaitbar(nreps,s2); for i = 1:nreps prwaitbar(nreps,i,[s2 int2str(i)]); if (isempty(t)) % Bootstrap. Store the randomly permuted indices of samples of class % CI to use in this training set in JR(CI,:). JR = zeros(c,max(learnsizes)); for ci = 1:c JC = findnlab(a,ci); % Necessary for reproducable training sets: set the seed and store % it after generation, so that next time we will use the previous one. rand('state',seed2); R = ceil(rand(1,max(learnsizes))*length(JC)); JR(ci,:) = JC(R)'; seed2 = rand('state'); end t = a; end % Either the outer loop or the inner loop will be traversed just once, % depending on whether we want to find a learning curve or feature % size curve. ii = 0; nlearns = length(learnsizes); s3 = sprintf('cleval: %i sizes: ',nlearns); prwaitbar(nlearns,s3); for li = 1:nlearns nj = learnsizes(li); prwaitbar(nlearns,li,[s3 int2str(li) ' (' int2str(nj) ')']); nfeatsizes = length(featsizes); s4 = sprintf('clevals: %i feature sizes: ',nfeatsizes); prwaitbar(nfeatsizes,s4); for fi = 1:nfeatsizes prwaitbar(nfeatsizes,fi,[s4 int2str(fi) ' (' int2str(featsizes(fi)) ')']); ii = ii + 1; % Ja will contain the indices for this training set, Jt for % the tuning set. Ja = []; for ci = 1:c Ja = [Ja;JR(ci,1:nj)']; end; Jt = setdiff(1:m,Ja); % Train classifier CLASSF{WI} on this training set and % calculate error on tuning set. if (learncurve) e1(i,ii) = testc(a, ... a(Ja,1:featsizes(fi))*classf{wi}); else e1(i,ii) = testc(t(Jt,1:featsizes(fi)), ... a(Ja,1:featsizes(fi))*classf{wi}); end; end prwaitbar(0); end prwaitbar(0); end prwaitbar(0); % Calculate average error and standard deviation for this classifier % (or set the latter to zero if there's been just 1 repetition). e.error(wi,:) = mean(e1,1); if (nreps == 1) e.std(wi,:) = zeros(1,size(e.std,2)); else e.std(wi,:) = std(e1)/sqrt(nreps); end end prwaitbar(0); % The first element is the empty string [], remove it. e.names(1,:) = []; return
github
jacksky64/imageProcessing-master
nlfisherm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nlfisherm.m
3,145
utf_8
72b443c040e6a245d4a94d5ca1cde5d6
%NLFISHERM Non-linear Fisher Mapping according to Marco Loog % % W = NLFISHERM(A,N) % % INPUT % A Dataset % N Number of dimensions (optional; default: MIN(K,C)-1, where % K is the dimensionality of A and C is the number of classes) % % OUTPUT % W Non-linear Fisher mapping % % DESCRIPTION % Finds a mapping of the labeled dataset A to a N-dimensional linear % subspace emphasizing the class separability for neighboring classes. % % REFERENCES % 1. R. Duin, M. Loog and R. Haeb-Umbach, Multi-Class Linear Feature % Extraction by Nonlinear PCA, in: ICPR15, 15th Int. Conf. on Pattern % Recognition, vol.2, IEEE Computer Society Press, 2000, 398-401. % 2. M. Loog, R.P.W. Duin and R. Haeb-Umbach, Multiclass Linear Dimension % Reduction by Weighted Pairwise Fisher Criteria, IEEE Trans. on % Pattern Analysis and Machine Intelligence, vol.23, no.7, 2001, 762-766. % % SEE ALSO % MAPPINGS, DATASETS, FISHERM, KLM, PCA % Copyright: M. Loog, R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: nlfisherm.m,v 1.4 2010/02/08 15:29:48 duin Exp $ function W = nlfisherm(a,n) prtrace(mfilename); if (nargin < 2) n = []; end % No input data, an untrained mapping returned. if (nargin < 1) | (isempty(a)) W = mapping('nlfisherm',n); W = setname(W,'Non-linear Fisher mapping'); return; end islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 2 objects per class, 2 classes a = testdatasize(a); [m,k,c] = getsize(a); prior = getprior(a); a = setprior(a,prior); if (isempty(n)) n = min(k,c)-1; prwarning(4,'Dimensionality N not supplied, assuming MIN(K,C)-1.'); end if (n >= m) | (n >= c) error('Dataset too small or has too few classes for demanded output dimensionality.') end % Non-linear Fisher mapping is determined by the eigenvectors of CW^{-1}*CB, % where CW is the within-scatter, understood as the averaged covariance % matrix weighted by the prior probabilities, and CB is the between-scatter, % modified in a nonlinear way. % To simplify the computations, CW can be set to the identity matrix. w = klms(a); % A is changed such that CW = I and the mean of A is shifted to the origin. b = a*w; k = size(b,2); u = +meancov(b); d = +distm(u); % D is the Mahalanobis distance between the classes. % Compute the weights E to be used in the modified between-scatter matrix G % E should diminish the influence of large distances D. e = 0.5*erf(sqrt(d)/(2*sqrt(2))); G = zeros(k,k); for j = 1:c for i=j+1:c % Marco-Loog Mapping G = G + prior(i)*prior(j)*e(i,j)*(u(j,:)-u(i,:))'*(u(j,:)-u(i,:))/d(i,j); G = (G + G')/2; % Avoid a numerical inaccuracy: cov. matrix should be symmetric! end end % Perform the eigendecomposition of the modified between-scatter matrix. [F,V] = preig(G); [v,I] = sort(-diag(V)); I = I(1:n); rot = F(:,I); off = -mean(b*F(:,I)); % After non-linear transformations, NLFISHERM is stored as an affine (linear) map. W = affine(rot,off,a); W = setname(w*W,'Non-linear Fisher mapping'); return;
github
jacksky64/imageProcessing-master
mdsc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/mdsc.m
3,283
utf_8
5aeefec94fce41fbe831891e643a2f93
%MDSC Manhatten Dissimilarity Space Classification % % W = MDSC(A,R,CLASSF) % W = A*FDSC([],R,CLASSF) % D = X*W % % INPUT % A Dateset used for training % R Dataset used for representation % or a fraction of A to be used for this. % Default: R = A. % CLASSF Classifier used in dissimilarity space % Default LIBSVC([],[],100) % X Test set. % % OUTPUT % W Resulting, trained feature space classifier % D Classification matrix % % DESCRIPTION % This is a dissimilarity based classifier intended for a feature % respresentation. The training set A is used to compute for every class % its own eigenspace. All eigenvectors are used. A dissimilarity space is % built by the Manhatten (L1, or Minkowsky-1 or city block) distances % between training objects A or test objects X and the representation % objects R after transformation (i.e. rotation) them to the eigenspace of % the class of the particular represention object. % % Note that Euclidean distances are not affected by rotation, but Manhatten % distances are. % % New objects in feature space can be classified by D = X*W or by % D = MAP(X,W). Labels can be found by LAB = D*LABELD or LAB = LABELD(D). % % SEE ALSO % DATASETS, MAPPINGS, FDSC % Copyright: S.W. Kim, R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = mdsc(a,r,classf) if nargin < 3 | isempty(classf), classf = libsvc([],[],100); end if nargin < 2, r = []; end if nargin < 1 | isempty(a) w = mapping(mfilename,'untrained',{r,classf}); w = setname(w,'ManhattenDisSpaceC'); return end isvaldfile(a,2,2); % at least 2 objects per class, 2 classes if isempty(r) r = a; % default representation set is the training set elseif is_scalar(r) [r,a] = gendat(a,r); % or we take a random fraction end % Training set and representation set should belong to the same set of % classes. Let us check that. laba = getlablist(a); labr = getlablist(r); [nlab1,nlab2,lablist] = renumlab(laba,labr); c = size(lablist,1); if any([length(unique(nlab1)) length(unique(nlab2))] ~= c) error('Training set and representation set should contain the same classes') end % We are now ready to compute the classifier. The set of class dependent % rotations will be stored in a stacked set of mappings v. v = cell(1,c); for j=1:c % compute the mapping for every class b = seldat(a,getclassi(a,lablist(j,:))); % training set of class j [e,d] = preig(covm(b)); % its eigenvalue decomposition u = affine(e); % the rotation, apply it to the represention s = seldat(r,getclassi(r,lablist(j,:)))*u; % objects of the same class v{j} = u*proxm(s,'m',1); % store the rotation and the proximity mapping % to the rotated representation objects end v = stacked(v); % combine all mappings as a stacked mapping d = a*v; n = disnorm(d); w = a*(v*n*classf); % apply it to the training set, compute the classifier % and include the mapping for use by the test objects w = setname(w,'ManhattenDisSpaceC'); return
github
jacksky64/imageProcessing-master
isuntrained.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isuntrained.m
746
utf_8
f722c42ff9acdb259cab4bf5896afa5a
%ISUNTRAINED Test on untrained mapping % % I = ISUNTRAINED(W) % ISUNTRAINED(W) % % True if the mapping type of W is 'untrained' (see HELP MAPPINGS). % If called without an output argument ISUNTRAINED generates % an error if the mapping type of W is not 'untrained'. % $Id: isuntrained.m,v 1.1 2009/03/18 16:12:41 duin Exp $ function i = isuntrained(w) prtrace(mfilename,2); if iscell(w) i = strcmp(w{1}.mapping_type,'untrained'); for j=2:length(w) if strcmp(w{j}.mapping_type,'untrained') ~= i error('Cell array of classifiers cannot be partially trained') end end else i = strcmp(w.mapping_type,'untrained'); end if (nargout == 0) & (i == 0) error([newline '---- Untrained mapping expected ----']) end return
github
jacksky64/imageProcessing-master
rnnc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rnnc.m
2,817
utf_8
916bb7ca9fd194f6c83f71f944206b17
%RNNC Random Neural Net classifier % % W = RNNC(A,N,S) % % INPUT % A Input dataset % N Number of neurons in the hidden layer % S Standard deviation of weights in an input layer (default: 1) % % OUTPUT % W Trained Random Neural Net classifier % % DESCRIPTION % W is a feed-forward neural net with one hidden layer of N sigmoid neurons. % The input layer rescales the input features to unit variance; the hidden % layer has normally distributed weights and biases with zero mean and % standard deviation S. The output layer is trained by the dataset A. % Default N is number of objects * 0.2, but not more than 100. % % If N and/or S is NaN they are optimised by REGOPTC. % % Uses the Mathworks' Neural Network toolbox. % % SEE ALSO % MAPPINGS, DATASETS, LMNC, BPXNC, NEURC, RBNC % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: rnnc.m,v 1.4 2007/06/19 11:45:08 duin Exp $ function w = rnnc(a,n,s) prtrace(mfilename); if exist('nnet') ~= 7 error('Neural network toolbox not found') end mapname = 'Random Neural Net'; if (nargin < 3) prwarning(3,'standard deviation of hidden layer weights not given, assuming 1'); s = 1; end if (nargin < 2) n = []; end % No input arguments: return an untrained mapping. if (nargin < 1) | (isempty(a)) w = mapping('rnnc',{n,s}); w = setname(w,mapname); return end islabtype(a,'crisp'); isvaldfile(a,1,2); % at least 1 object per class, 2 classes a = testdatasize(a); [m,k,c] = getsize(a); if isempty(n) n = min(ceil(m/5),100); prwarning(3,['no number of hidden units specified, assuming ' num2str(n)]); end if isnan(n) | isnan(s) % optimize complexity parameter: number of neurons, st. dev. defs = {m/5,1}; parmin_max = [1,min(m,100);0.01,10]; w = regoptc(a,mfilename,{n,s},defs,[1,2],parmin_max,testc([],'soft'),[0,1]); return end % The hidden layer scales the input to unit variance, then applies a % random rotation and offset. w_hidden = scalem(a,'variance'); w_hidden = w_hidden * cmapm(randn(n,k)*s,'rot'); w_hidden = w_hidden * cmapm(randn(1,n)*s,'shift'); % The output layer applies a FISHERC to the nonlinearly transformed output % of the hidden layer. w_output = w_hidden * sigm; w_output = fisherc(a*w_output); % Construct the network and insert the weights. transfer_fn = { 'logsig','logsig','logsig' }; net = newff(ones(k,1)*[0 1],[n size(w_output,2)],transfer_fn,'traingdx','learngdm','mse'); net.IW{1,1} = w_hidden.data.rot'; net.b{1,1} = w_hidden.data.offset'; net.LW{2,1} = w_output.data.rot'; net.b{2,1} = w_output.data.offset'; w = mapping('neurc','trained',{net},getlabels(w_output),k,c); w = setname(w,mapname); w = setcost(w,a); return
github
jacksky64/imageProcessing-master
fdsc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/fdsc.m
3,173
utf_8
cd9903c57175b348ec71705429713f3a
%FDSC Feature based Dissimilarity Space Classification % % W = FDSC(A,R,FEATMAP,TYPE,P,CLASSF) % W = A*FDSC([],R,FEATMAP,TYPE,P,CLASSF) % D = X*W % % INPUT % A Dateset used for training % R Dataset used for representation % or a fraction of A to be used for this. % Default: R = A. % FEATMAP Preprocessing in feature space (e.g. SCALEM) % Default: no preprocessing. % TYPE Dissimilarity rule, see PROXM % Default 'DISTANCE'. % P Parameter for dissimilarity rule, see PROXM % Default P = 1. % CLASSF Classifier used in dissimilarity space % Default LIBSVC([],[],100) % X Test set % % OUTPUT % W Resulting, trained feature space classifier % D Classification matrix % % DESCRIPTION % This routine builds a classifier in feature space based on a % dissimilarity representation defined by the representation set R % and the dissimilarities found by A*FEATMAP*PROXM(R*FEATMAP,TYPE,P). % FEATMAP is a preprocessing in feature space, e.g. scaling % (SCALEM([],'variance') or pre-whitening (KLMS). % % R can either be explicitely given, or by a fraction of A. In the % latter case the part of A that is randomly generated to create the % representation set R is excluded from the training set. % % New objects in feature space can be classified by D = B*W or by % D = MAP(B,W). Labels can be found by LAB = D*LABELD or LAB = LABELD(D). % % EXAMPLE % A = GENDATB([100 100]); % Training set of 200 objects % R = GENDATB([10 10]); % Representation set of 20 objects % W = FDSC(A,R); % Compute classifier % SCATTERD(A); % Scatterplot of trainingset % HOLD ON; SCATTERD(R,'ko'); % Add representation set to scatterplot % PLOTC(W); % Plot classifier % % SEE ALSO % DATASETS, MAPPINGS, SCALEM, KLMS, PROXM, LABELD, KERNELC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = fdsc(a,r,featmap,type,p,classf) if nargin < 6 | isempty(classf), classf = libsvc([],[],100); end if nargin < 5 | isempty(p), p = 1; end if nargin < 4 | isempty(type), type = 'distance'; end if nargin < 3 | isempty(featmap), featmap = []; end if nargin < 2, r = []; end if nargin < 1 | isempty(a) w1 = mapping(mfilename,'untrained',{r,featmap,type,p,classf}); w = setname(w1,['FDSC ',getname(classf)]); return end isvaldfile(a,1,2); % at least 1 object per class, 2 classes if isdataset(a) | isdatafile(a) isvaldfile(a,1,1); if isempty(featmap) v = scalem(a); % shift mean to the origin elseif isuntrained(featmap) v = a*featmap; elseif ismapping(featmap) v = featmap; else error('Feature mapping expected') end if isempty(r) r = a; elseif is_scalar(r) [r,a] = gendat(a,r); end w = proxm(r*v,type,p); if ~isuntrained(classf) error('Untrained classifier expected') end b = a*v*w; %b = testdatasize(b); n = disnorm(b); u = b*n*classf; w = v*w*n*u; else error('Unexpected input') end
github
jacksky64/imageProcessing-master
spatm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/spatm.m
2,054
utf_8
e46a002860322effbf2030ce585f464d
%SPATM Augment image dataset with spatial label information % % E = SPATM(D,S) % E = D*SPATM([],S) % % INPUT % D image dataset classified by a classifier % S smoothing parameter (optional, default: sigma = 1.0) % % OUTPUT % E augmented dataset with additional spatial information % % DESCRIPTION % If D = A*W*CLASSC, the output of a classification of a dataset A % containing feature images, then E is an augmented version of D: % E = [D T]. T contains the spatial information in D, such that % it adds for each class of which the objects in D are assigned to, % a Gaussian convoluted (std. dev s) 0/1 image with '1'-s on the % pixel positions (objects) of that class. T is normalized such that % its row sums are 1. It thereby effectively contains Parzen estimates % of the posterior class probabilities if the image is considered as a % feature space. Default: S = 1. % % Spatial and feature information can be combined by feeding E into % a class combiner, e.g: A*W*CLASSC*SPATM([],2)*MAXC % % SEE ALSO % DATASETS, MAPPINGS, PREX_SPATM % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: spatm.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function b = spatm(a,s) prtrace(mfilename); if nargin < 2, s = 1; end if nargin < 1 | isempty(a) b = mapping('spatm','fixed',s); return end % assertion: the image with pixels being objects is required isfeatim(a); % initialize the label-image y: [m,k,c] = getsize(a); [n1,n2] = getobjsize(a); %DXD Avoid that the feature labels might be reordered... %[labt,x,newlablist] = renumlab(getfeatlab(a),labeld(a)); [dummy,x] = max(a,[],2); y = zeros(n1,n2,max(x)); y((x(:)-1)*n1*n2 + [1:n1*n2]') = ones(n1,n2); % make the label-image a dataset: z = im2feat(y); % Store also all the useful things like prior or lablist z = setdat(a,z); % smooth the label-image and add it to the dataset a: b = [a datgauss(z,s)]; %b = datgauss(z,s); return
github
jacksky64/imageProcessing-master
matchlab.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/matchlab.m
2,443
utf_8
4ce3510698452c48d4c4a857a3131926
%MATCHLAB Compare two labellings and rotate the labels for an optimal match % % LABELS = MATCHLAB(LAB1,LAB2) % % INPUT % LAB1,LAB2 Label lists of the same objects % % OUTPUT % LABELS A rotated version of LAB2, optimally matched with LAB1 % % DESCRIPTION % LAB1 and LAB2 are label lists for the same objects. The returned LABELS % constitute a rotated version of LAB2, such that the difference with % LAB1 is minimized. This can be used for the alignment of cluster results. % % EXAMPLES % See PREX_MATCHLAB. % % SEE ALSO % DATASETS, HCLUST, MODESEEK, KMEANS, EMCLUST % $Id: matchlab.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function [lab,L] = matchlab(lab1,lab2) prtrace(mfilename); [ok1,lab1] = iscolumn(lab1); [ok2,lab2] = iscolumn(lab2); if (~ok1) | (~ok2) prwarning(5,'Label lists should be column lists. LAB1 and LAB2 are made so.'); end % Compute the confusion matrix and renumber the labels. C = confmat(lab1,lab2); [nl1,nl2,lablist] = renumlab(lab1,lab2); % N1 and N2 describe the number of distinct labels (classes) in LAB1 and LAB2. [n1,n2] = size(C); L = zeros(n2,1); % Label list for the rotated LAB2 K = [1:n1]; % Class labels of LAB1 % Find the best match based on the confusion numbers. for i=1:n1 [NN,r] = min(sum(C(:,K),1) - max(C(:,K),[],1)); j = K(r); % J is the actual class of LAB2 [nn,s] = max(C(:,j)); % to be assigned as S. L(j) = s; C(:,j) = zeros(n1,1); % J is already processed, remove it K(r) = []; % from further considerations. end lab = lablist(L(nl2),:); return; %ISCOLUMN Checks whether the argument is a column array % % [OK,Y] = ISCOLUMN(X) % % INPUT % X Array: an array of entities such as numbers, strings or cells % % OUTPUT % OK 1 if X is a column array and 0, otherwise % Y X or X' to ensure that Y is a column array % % DESCRIPTION % Returns 1 if X is a column array and 0, otherwise. Y is the column % version of X. If X is a matrix, an error is returned. % % Important: note that an array of one entity only is considered as % a column array. So, X = 'Apple', X = {'Apple'} or X = 1 are column % arrays. % function [ok,x] = iscolumn(x) s = size(x); if (isstr(x)) % Char array ok = 1; else % Vector of numbers ok = (s(1) > 1 & s(2) == 1) | all(s == 1); if all(s > 1) error('X is a matrix. A vector is expected.'); end end if (~ok), x = x'; end return;
github
jacksky64/imageProcessing-master
sequential.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/sequential.m
3,611
utf_8
c0548a91d3772beb03a2c590f1a43189
%SEQUENTIAL Sequential mapping % % V = SEQUENTIAL(W1,W2) % B = SEQUENTIAL(A,W) % % INPUT % W,W1,W2 Mappings % A Dataset % % OUTPUT % V Sequentially combined mapping % B Dataset % % DESCRIPTION % The two mappings W1 and W2 are combined into a single mapping V. Note % that SEQUENTIAL(W1,W2) is equivalent to W1*W2. If W2 is a mapping of % a type 'combiner', it is called to make a combination attempt. % SEQUENTIAL(A,W) maps the dataset A by the sequential mapping W. % % This routine is automatically called to execute W = W1*W2 or B = A*W2 in % case W2 is a sequential mapping. It should not be directly called by users. % % SEE ALSO % MAPPINGS, DATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: sequential.m,v 1.6 2010/06/25 09:52:40 duin Exp $ function w = sequential(w1,w2,w3) prtrace(mfilename); % Just necessary to inform MAP. if (nargin == 0) w = mapping(mfilename,'combiner'); return; end [m1,k1] = size(w1); [m2,k2] = size(w2); if (~isa(w2,'mapping')) error('Second argument should be a mapping.') end if isa(w1,'mapping') % Definition if isempty(w1) % treat empty mapping as unity mapping w = w2; elseif (iscombiner(w2)) % Execute the mapping W2. map = getmapping_file(w2); pars = getdata(w2); w = feval(map,w1,pars{:}); else % W2 is just a general mapping. if (k1 > 0) & (m2 > 0) & (k1 ~= m2) error('Inner mapping/data sizes do not agree.') end % Define the mapping type after combining W1 and W2. if (isuntrained(w1)) | (isuntrained(w2)) mappingtype = 'untrained'; elseif (istrained(w1)) | (istrained(w2)) mappingtype = 'trained'; else mappingtype = 'fixed'; end if strcmp(mappingtype,'untrained') labels = []; size_in = 0; size_out = 0; elseif (m2 == 0 | k2 == 0) & (m1 ~= 0) & (k1 ~= 0) % E.G. TRAINED * FIXED labels = getlabels(w1); size_in = getsize_in(w1); size_out = getsize_out(w1); elseif (m2 ~= 0) & (k2 ~= 0) & (m1 == 0 | k1 == 0) % FIXED * TRAINED labels = getlabels(w2); size_in = getsize_in(w2); size_out = getsize_out(w2); elseif ~istrained(w2) % TRAINED * FIXED labels = getlabels(w1); size_in = getsize_in(w1); size_out = getsize_out(w2); else % TRAINED * TRAINED labels = getlabels(w2); size_in = getsize_in(w1); size_out = getsize_out(w2); end w = mapping(mfilename,mappingtype,{w1,w2},labels,size_in,size_out); end w = setbatch(w,(getbatch(w1) & getbatch(w2))); elseif isempty(w2) % treat empty mapping as unity mapping w = w1; else % Execution. We are here, when SEQUENTIAL(A,V) is called. if nargin == 3 % needed as MAP breaks down sequential mappings w2 = w2*w3; % restore them! end a = w1; if (~isa(a,'double')) & (~isa(a,'dataset')) error('Just datasets or doubles can be mapped.') end % V can be a more complex mapping. v = +w2; v1 = v{1}; v2 = v{2}; if (isuntrained(v1)) if (isuntrained(v2)) u = a*v1; w = u*(a*u*v2); else w = a*v1*v2; end else if (isuntrained(v2)) w = v1*(a*v1*v2); % may be v1 changed the dimensionality, reset it: w = setsize_in(w,size(a,2)); else w = a*v1*v2; featlabels = getlabels(w2); if (isdataset(w)) & ~isempty(featlabels) w = setfeatlab(w,featlabels); end end end if ismapping(w) w = setbatch(w,getbatch(w2)); end end return;
github
jacksky64/imageProcessing-master
gendatd.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatd.m
2,549
utf_8
2490ae4a0fa5edd6119f172424195e52
%GENDATD Generation of 'difficult' normally distributed classes % % A = GENDATD(N,K,D1,D2,LABTYPE) % % INPUT % N Number of objects in each of the classes (default: [50 50]) % K Dimensionality of the dataset (default: 2) % D1 Difference in mean in feature 1 (default: 3) % D2 Difference in mean in feature 2 (default: 3) % LABTYPE 'crisp' or 'soft' labels (default: 'crisp'). % % OUTPUT % A Generated dataset % % DESCRIPTION % Generation of a K-dimensional 2-class dataset A of N objects. % Class variances are very different for the first two dimensions. % Separation is thereby, for small sample sizes, 'difficult'. % % D1 is the difference between the means for the first feature, D2 % is the difference between the means for the second feature. In all % other directions the means are equal. The two covariance matrices % are equal with a variance of 1 in all directions except for the % second feature, which has a variance of 40. The first two feature % are rotated over 45 degrees to construct a strong correlation. % Class priors are P(1) = P(2) = 0.5. % % If N is a vector of sizes, exactly N(I) objects are generated % for class I, I = 1,2. % % LABTYPE defines the desired label type: 'crisp' or 'soft'. In the % latter case true posterior probabilities are set for the labels. % % SEE ALSO % DATASETS, PRDATASETS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: gendatd.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function A = gendatd(N,k,d1,d2,labtype) prtrace(mfilename); if nargin < 5, labtype = 'crisp'; end if nargin < 4, d2 = 3; end if nargin < 3, d1 = 3; end if nargin < 2, k = 2; end if nargin < 1, N = [50 50]; end if k < 2, error('Number of features should be larger than 1'), end V = ones(1,k); V(2) = 40; V = sqrt(V); p = [0.5 0.5]; N = genclass(N,p); ma = zeros(1,k); mb = zeros(1,k); mb(1:2) = [d1, d2]; A = [randn(N(1),k).*V(ones(1,N(1)),:) + ma(ones(1,N(1)),:); ... randn(N(2),k).*V(ones(1,N(2)),:) + mb(ones(1,N(2)),:)]; A(:,1:2) = A(:,1:2)*[1 -1; 1 1]./sqrt(2); lab = genlab(N); A = dataset(A,lab,'name','Difficult Dataset','prior',p); switch labtype case 'crisp' ; case 'soft' U = dataset([ma(1:2);mb(1:2)],getlablist(A)); G = diag(V(1:2)); W = nbayesc(U,G); targets = A(:,1:2)*W*classc; A = setlabtype(A,'soft',targets); otherwise error(['Label type ' labtype ' not supported']) end return
github
jacksky64/imageProcessing-master
showfigs.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/showfigs.m
700
utf_8
cd1ab9d2bc6692b6dccc8b2cd94faea6
%SHOWFIGS Show all figures on the screen % % SHOWFIGS(K) % % Use K figures on a row function showfigs(k) h = sort(get(0,'children')); % handles for all figures n = length(h); % number of figure if nargin == 0 k = ceil(sqrt(n)); % figures to be shown end s = 0.95/k; % screen stitch r = 0.93; % image size reduction t = 0.055; % top gap b = 0.005; % border gap fig = 0; set(0,'units','pixels'); monpos = get(0,'monitorposition'); for i=1:k for j=1:k fig = fig+1; if fig > n, break; end set(h(fig),'units','pixels','position',[(j-1)*s+b,(1-t)-i*s,s*r,s*r]*monpos(4)); figure(h(fig)); end end for j=n:-1:1, figure(h(j)); end
github
jacksky64/imageProcessing-master
parsc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/parsc.m
822
utf_8
c12237507f36a7b2589880ab583a1e25
%PARSC Parse classifier % % PARSC(W) % % Displays the type and, for combining classifiers, the structure of the % mapping W. % % See also MAPPINGS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: parsc.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function parsc(w,space) prtrace(mfilename); % If W is not a mapping, do not generate an error but simply return. if (~isa(w,'mapping')) return; end if (nargin == 1) space = ''; end % Display W's type. display(w,space); % If W is a combining classifier, recursively call PARSC to plot the % combined classier. pars = getdata(w); if (iscell(pars)) space = [space ' ']; for i=1:length(pars) parsc(pars{i},space) end end return
github
jacksky64/imageProcessing-master
nusvo.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nusvo.m
13,099
utf_8
77ea7fcfc5be9ceba0683f334fd54943
%NUSVO Support Vector Optimizer: NU algorithm % % [V,J,NU,C] = NUSVO(K,NLAB,NU,OPTIONS) % % INPUT % K Similarity matrix % NLAB Label list consisting of -1/+1 % NU Regularization parameter (0 < NU < 1): expected fraction of SV (optional; default: 0.01) % OPTIONS % .PD_CHECK force positive definiteness of the kernel by adding a small constant % to a kernel diagonal (default: 1) % .BIAS_IN_ADMREG it may happen that bias of svc (b term) is not defined, then % if BIAS_IN_ADMREG == 1, b will be taken from its admissible % region (if the region is bounded, the midpoint will be used); % if BIAS_IN_ADMREG == 0 the situation will be considered as % an optimization failure and treated accordingly (deafault: 1) % .ALLOW_UB_BIAS_ADMREG it may happen that bias admissible region is unbounded % if ALLOW_UB_BIAS_ADMREG == 1, b will be heuristically taken % from its admissible region, otherwise(ALLOW_UB_BIAS_ADMREG == 0) % the situation will be considered as an optimization failure and % treated accordingly (deafault: 1) % .PF_ON_FAILURE if the optimization is failed (optimizer did not converge, or there are % problems with finding of the bias term and PF_ON_FAILURE == 1, % then Pseudo Fisher classifier will be computed, % otherwise (PF_ON_FAILURE == 0) an error will be issued (default: 1) % % % OUTPUT % V Vector of weights for the support vectors % J Index vector pointing to the support vectors % NU NU parameter (useful when NU was automatically selected) % C C regularization parameter of SVC algorithm, which gives the same classifier % % % % DESCRIPTION % A low level routine that optimizes the set of support vectors for a 2-class % classification problem based on the similarity matrix K computed from the % training set. SVO is called directly from SVC. The labels NLAB should indicate % the two classes by +1 and -1. Optimization is done by a quadratic programming. % If available, the QLD function is used, otherwise an appropriate Matlab routine. % % NU is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where % Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX is supplied % to the routine it will be changed to the NU_MAX. % % If NU is less than some NU_MIN which depends on the overlap between classes % algorithm will typically take long time to converge (if at all). % So, it is advisable to set NU larger than expected overlap. % % Weights V are rescaled in a such manner as if they were returned by SVO with the parameter C. % % SEE ALSO % SVC_NU, SVO, SVC % Copyright: S.Verzakov, [email protected] % Based on SVO.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: nusvo.m,v 1.3 2010/02/08 15:29:48 duin Exp $ function [v,J,nu,C] = nusvo(K,y,nu,Options,arg) % old call: K,y,nu,pd,abort_on_error prtrace(mfilename); % Old call conventions if nargin > 4 | (nargin == 4 & ~isstruct(Options) & isempty(Options)) abort_on_error = []; if nargin == 5 abort_on_error = arg; end pd = []; if nargin >= 4 pd = Options; end clear Options Options.pd_check = pd; Options.bias_in_admreg = 1; Options.allow_ub_bias_admreg = 1; Options.pf_on_failure = ~abort_on_error; end if nargin < 4 Options = []; end DefOptions.pd_check = 1; DefOptions.bias_in_admreg = 1; DefOptions.allow_ub_bias_admreg = 1; DefOptions.pf_on_failure = 1; Options = updstruct(DefOptions,Options,1); if nargin < 3 prwarning(3,'The regularization parameter NU is not specified, assuming 0.01.'); nu = 0.01; end nu_max = 1 - abs(nnz(y == 1) - nnz(y == -1))/length(y); nu_max = nu_max*(1-1e-6); % to be on a safe side if nu > nu_max prwarning(3,['nu==' num2str(nu) ' is not feasible; set to ' num2str(nu_max)]); nu = nu_max; end vmin = 1e-9; % Accuracy to determine when an object becomes the support object. % Set up the variables for the optimization. n = size(K,1); D = (y*y').*K; f = zeros(1,n); A = [y';ones(1,n)]; b = [0; nu*n]; lb = zeros(n,1); ub = ones(n,1); p = rand(n,1); D = (D+D')/2; % guarantee symmetry if Options.pd_check % Make the kernel matrix K positive definite. i = -30; while (pd_check (D + (10.0^i) * eye(n)) == 0) i = i + 1; end if (i > -30), prwarning(2,'K is not positive definite. The kernel is regularized by adding 10.0^(%d)*I',i); end i = i+2; D = D + (10.0^(i)) * eye(n); end % Minimization procedure initialization: % 'qp' minimizes: 0.5 x' D x + f' x % subject to: Ax <= b % if (exist('qld') == 3) v = qld (D, f, -A, b, lb, ub, p, length(b)); elseif (exist('quadprog') == 2) prwarning(1,'QLD not found, the Matlab routine QUADPROG is used instead.') v = quadprog(D, f, [], [], A, b, lb, ub); else prwarning(1,'QLD not found, the Matlab routine QP is used instead.') verbos = 0; negdef = 0; normalize = 1; v = qp(D, f, A, b, lb, ub, p, length(b), verbos, negdef, normalize); end try % check if the optimizer returned anything if isempty(v) error('Optimization did not converge.'); end % Find all the support vectors. J = find(v > vmin); Jp = J(y(J) == 1); Jm = J(y(J) == -1); % Sanity check: if there are support objects from both classes if isempty(J) error('There are no support objects.'); elseif isempty(Jp) error('There are no support objects from the positive class.'); elseif isempty(Jm) error('There are no support objects from the negative class.'); end % Find the SV on the boundary I = J(v(J) < 1-vmin); Ip = I(y(I) == 1); Im = I(y(I) == -1); % Include class information into object weights v = y.*v; [rho, b] = FindRhoAndB(nu,y,K,v,J,Jp,Jm,Ip,Im,Options); v = [v(J); b]/rho; C = 1/rho; catch if Options.pf_on_failure prwarning(1,[lasterr ' Pseudo-Fisher is computed instead.']); n = size(K,1); %v = prpinv([K ones(n,1)])*y; v = prpinv([K ones(n,1); ones(1,n) 0])*[y; 0]; J = [1:n]'; C = nan; else rethrow(lasterror); end end return; function [rho, b] = FindRhoAndB(nu,y,K,v,J,Jp,Jm,Ip,Im,Options) % There are boundary support objects from both classes, we can use them to find a bias term if ~isempty(Ip) & ~isempty(Im) % r1 = rho-b r1 = mean(K(Ip,J)*v(J)); % r2 = rho+b r2 = -mean(K(Im,J)*v(J)); else % Boundary support objects are absent at least in one of classes n = length(v); % non SV, we need them to resctric the addmissible region from above J0 = (1:n)'; J0(J) = []; J0p = J0(y(J0) == 1); J0m = J0(y(J0) == -1); % Only margin errors SV exist if isempty(Ip) & isempty(Im) % If only margin error SV's are present then it has to be true % nSVp = nSVm, nu*n = nSVp + nSVm, it means that % rho and b should be in the region % lb1 <= rho-b <= ub1, lb2 <= rho+b <= ub2 % rho > 0 (rho = 0 corresponds to the zero margin solution, and cannot be % interpreted as a standard SVC) if length(Jp) ~= length(Jm) error('Inconsistency: only margin errors SV exist and nSVp ~= nSVm.'); elseif nu*n ~= length(J) error('Inconsistency: only margin errors SV exist and nu*n ~= nSV.'); elseif ~Options.bias_in_admreg error('The bias term is undefined.'); end % suport objects are always exist, the region is alway bounded from below % if there are no nonSV, the region is unbounded from above % r1 = rho-b lb1 = max(K(Jp,J)*v(J)); ub1 = min([K(J0p,J)*v(J); inf]); % r2 = rho+b lb2 = -min(K(Jm,J)*v(J)); ub2 = -max([K(J0m,J)*v(J); -inf]); if lb1 > ub1 | lb2 > ub2 error('Admissible region of the bias term is empty.'); end if isinf(ub1) | isinf(ub2) Msg = 'Admissible region of the bias term is unbounded'; if Options.allow_ub_bias_admreg prwarning(1,Msg); else error(Msg); end end % admissible region is a a part of % domain [lb1; ub1] x [lb2; ub2] which is above r2 = -r1 line % % we put (r1,r2) on a rectangle diagonal connecting upper right and bottom left % corners half way from the point of intersection between this diagonal and line r2 = -r1; % % first we make a rectangle bounded (put upper right corner above r2 = -r1 line) if isinf(ub1) ub1 = max(-lb2,lb1)+1; end if isinf(ub2) ub2 = max(-lb1,lb2)+1; end r1_intersection = (ub2*lb1 - ub1*lb2)/(ub2-lb2 + ub1-lb1); r2_intersection = -r1_intersection; % it may happen that intersecton does not exist: % % 1) the whole domain is above line r2 = -r1, % then we use bottom left corner insted of it % % 2) the whole domain is below line r2 = - r1, it means that there is no solution % with positive margin and the condition r1+r2 > 0 will be violated (we check it at the end) lb1 = max(lb1,r1_intersection); lb2 = max(lb2,r2_intersection); r1 = (lb1 + ub1)/2; r2 = (lb2 + ub2)/2; % Only margin errors SV are present in the negative class elseif ~isempty(Ip) & isempty(Im) % r1 = rho-b r1 = mean(K(Ip,J)*v(J)); % rho-b % r2 = rho+b lb2 = -min(K(Jm,J)*v(J)); ub2 = -max([K(J0m,J)*v(J); -inf]); if lb2 > ub2 error('The admissible region of the bias term is empty.'); end % we need to minimize(2*mSVm - nu*n)*r2 % s.t. lb2 <= r2 <= ub2, r2 > -r1 coeff_sign = 2*length(Jm) - nu*n; if coeff_sign > 0 r2 = lb2; % put r2 to the lowest value, it has to be large than -r1 elseif coeff_sign < 0 r2 = ub2; % If coeff_sign <0 it means, that nu*n > 2*mSVm % Also, nu*n <= nu_max*n = n-abs(np-nm) = 2*min(np,nm) % mSVm < min(np,nm) <= nm % thus nm-mSVm = nonSVm+bSVm = nonSVm > 0 and ub2 < inf else % coeff_sing == 0 if ~Options.bias_in_admreg error('The bias term is undefined.'); end % correcting lb2 in such a way that rho >= 0, for (r1,lb2), % it may happen that lb2 > ub2, let's check it later (r1+r2 > 0) lb2 = max(lb2,-r1); if isinf(ub2) Msg = 'Admissible region of the bias term is unbounded'; if Options.allow_ub_bias_admreg prwarning(1,Msg); ub2 = lb2 + 1; else error(Msg); end end r2 = (lb2+ub2)/2; end % Only margin errors SV are present in the positive class elseif isempty(Ip) & ~isempty(Im) % r1 = rho-b lb1 = max(K(Jp,J)*v(J)); ub1 = min([K(J0p,J)*v(J); inf]); % r2 = rho+b r2 = -mean(K(Im,J)*v(J)); if lb1 > ub1 error('The admissible region of the bias term is empty.'); end % we need to minimize(2*mSVp - nu*n)*r1 % s.t. lb1 <= r1 <= ub1, r2 > -r1 coeff_sign = 2*length(Jp) - nu*n; if coeff_sign > 0 r1 = lb1; % put r1 to the lowest value, it has to be large than -r2 elseif coeff_sign < 0 r1 = ub1; % If coeff_sign <0 it means, that nu*n > 2*mSVp % Also, nu*n <= nu_max*n = n-abs(np-nm) = 2*min(np,nm) % mSVp < min(np,nm) <= np % thus np-mSVp = nonSVp+bSVp = nonSVp > 0 and ub1 < inf else % coeff_sing == 0 if ~Options.bias_in_admreg error('The bias term is undefined.'); end % correcting lb1 in such a way that rho >= 0, for (lb1,r2), % it may happen that lb1 > ub1, let's check it later (r1+r2 > 0) lb1 = max(lb1,-r2); if isinf(ub1) Msg = 'The admissible region of the bias term is unbounded.'; if Options.allow_ub_bias_admreg prwarning(1,Msg); ub2 = lb1 + 1; else error(Msg); end end r1 = (lb1+ub1)/2; end end if r1 + r2 <= 0 error('The solution with the positive margin does not exist.'); elseif isinf(r1) | isinf(r2) % This should never happen, because nu <=nu_max error('The contradiction is detected. Although nu <=nu_max, the rho (functional margin size) is infinite'); end end rho = (r2+r1)/2; b = (r2-r1)/2; return
github
jacksky64/imageProcessing-master
bagc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/bagc.m
5,838
utf_8
34c5773a5b24755a649f551adf94c547
%BAGC Bag classifier for classifying sets of objects % % [WBAG,WOBJ] = BAGC(A,OBJCLASSF,BAGINDEX,BAGCOMBC,BAGCLASSF,BAGLAB) % D = B*WBAG % % INPUT % A Training dataset with object labels and bag indices % B Test Dataset with index list of bags, stored as label list % OBJCLASSF Trained or untrained object classifier, default QDC % BAGINDEX String or a label_list_index defining in which label list % of A the bag indices are stored, default 2. % BAGCOMBC Combiner for objects in a bag, default VOTEC % BAGCLASSF Untrained classifier for bags, default FISHERC % BAGLAB String or a label_list_index defining in which label list % of A the bag labels are stored. Objects with the same % bag index should have the same bag label. % Default is the current labeling of A % % OUTPUT % WBAG Trained bag classifier % WOBJ Trained object classifier % D Classification matrix of bags in B % % DESCRIPTION % This routine offers a classifier for bags (e.g. images) of objects % (e.g. pixels) stored in a single dataset. The objects in the training % set A should have at least two labels: bag labels (the class of their bag) % and bag indices, defining which objects belong to the same bag. These two % label sets should be stored by the ADDLABELS command in the dataset A. % Refer to the multi-labeling system (see MULTI_LABELING) offered by % PRTools. The current object labels of A can be the bag labels, but may % also be different, e.g. true object labels. % % BAGINDEX should be a label_list_name or a label_list_index defining the % label list used for storing the bag indices that refer to the bag an % object belongs to. The same label_list_name or label_list_index should be % used for defining the bags of the test objects in B. % % All objects in A are used to train the object classifier OBJCLASSF if it % is untrained. The current object labels are used for that. Classification % results of the objects in the same bag are combined by BAGCOMBC, which % can be any of the fixed combiners MEANC, PRODC, PERC, MAXC, etcetera. % This results for every bag in a single confidence vector for the classes. % % If an untrained bag classifier BAGCLASSF is supplied, the bag confidence % vectors are used to train a bag classifier. % % New bags, organised in a dataset like B, with the proper bag indices per % object stored in a label list with the same name or label_list_index as % used in A, can be classified by the bag classifier WBAG. % % If no bag classifier BAGCLASSF was defined during training, just the % results of the object classifier WOBJ are returned combined by BAGCOMBC % over the objects in the same bag in B. In this case the final result is % identical to B*(A*WOBJ)*BAGCC([],BAGCOMBC), provided that A has class % labels and B is labeled by its bag indices. % % SEE ALSO % DATASETS, MAPPINGS, MULTI_LABELING, BAGCC, LOSO, % DATASET/ADDLABELS, DATASET/CHANGELABLIST % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function [out1,out2] = bagc(a,objclassf,bagindex,bagcombc,bagclassf,baglab) if nargin < 6 | isempty(baglab), baglab = []; end if nargin < 5 | isempty(bagclassf), bagclassf = []; end if nargin < 4 | isempty(bagcombc), bagcombc = votec; end if nargin < 3 | isempty(bagindex), bagindex = 2; end if nargin < 2 | isempty(objclassf), objclassf = qdc; end if nargin < 1 | isempty(a) % define the mapping wset = mapping(mfilename,'untrained',{objclassf,bagindex,setcombc,bagclassf,baglab}); out1 = setname(wset,'Set classifier'); elseif isuntrained(objclassf) | nargin > 2 | ~strcmp(getmapping_file(objclassf),mfilename) % train the mapping (classifier) % we need datasets with at least 1 object per class and 2 classes isvaldset(a,1,2); % if the object classifier is untrained, train it, else use it if isuntrained(objclassf) wobj = a*objclassf; else wobj = objclassf; end if ismapping(bagclassf) & isuntrained(bagclassf) % if the bag labels are not given, % use the objcts labels for the bags too if isempty(setlab), setlab = curlablist(a); end % classifiy the dataset and change labeling to bag index x = changelablist(a*wobj,setindex); % avoid empty bags x = setlablist(x); % combine object results to bag results d = bagcc(x,bagcombc); % change to bag labels d = changelablist(d,baglab); % train bag classifier bagclassf = d*bagclassf; % get outputlabels labels_out = getlabels(bagclassf); else labels_out = getlabels(wobj); end % store all what is needed for execution in the mapping out1 = mapping(mfilename,'trained',{wobj,bagcombc,bagclassf,bagindex,baglab}, ... labels_out, size(a,2),size(labels_out,1)); % prevent batch execution out1 = setbatch(out1,0); % return the object classifier as well out2 = wobj; else % here we are for execution % the mapping is stored in objclassf w = getdata(objclassf); % save current lablist curlist = curlablist(a); % use the bag index for the test set if supplied if ~isempty(w{4}), testset = changelablist(a,w{4}); end % classify test set by the object classifier d = testset*w{1}; % avoid empty bags d = setlablist(d); % combine objects in the same bag d = bagcc(d,w{2}); % reset lablist for classification matrix d = changelablist(d,curlist); % apply the set classifier, if defined if ~isempty(w{3}), d = d*w{3}; end % that is it, define class labels as feature labels out1 = setfeatlab(d,getlabels(objclassf)); end
github
jacksky64/imageProcessing-master
isdatafile.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isdatafile.m
432
utf_8
3db749ec603b6905a19079febdbe4ad0
%ISDATAFILE Test whether the argument is a datafile % % N = ISDATAFILE(A); % % INPUT % A Input argument % % OUTPUT % N 1/0 if A is/isn't a datafile % % DESCRIPTION % The function ISDATAFILE test if A is a datafile object. % % SEE ALSO % ISMAPPING, ISDATAIM, ISFEATIM function n = isdatafile(a) prtrace(mfilename); n = isa(a,'datafile'); if (nargout == 0) & (n == 0) error([newline 'Datafile expected.']) end return;
github
jacksky64/imageProcessing-master
getlab.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/getlab.m
1,052
utf_8
b98123fcb599f94c58d4cf2fc066238a
%GETLAB Get labels of dataset or mapping % % LABELS = GETLAB(A) % LABELS = GETLAB(W) % % INPUT % A Dataset % W Mapping % % OUTPUT % LABELS Labels % % DESCRIPTION % Returns the labels of the objects in the dataset A or the feature labels % assigned by the mapping W. % % If A (or W) is neither a dataset nor a mapping, a set of dummy % labels is returned, one for each row in A. All these labels have the % value NaN. % % Note that for datasets and mappings GETLAB() is effectively the same % as GETLABELS(). % % SEE ALSO % DATASETS, MAPPINGS, GETLABELS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: getlab.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function labels = getlab(a) prtrace(mfilename); if isa(a,'dataset') labels = getlabels(a,'crisp'); elseif isa(a,'datafile') labels = getlabels(a,'crisp'); elseif isa(a,'mapping') labels = getlabels(a); else labels = repmat(NaN,size(a,1),1); end return
github
jacksky64/imageProcessing-master
nlabeld.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nlabeld.m
1,491
utf_8
68528c7a976a65375113b0826d3e77c2
%NLABELD Return numeric labels of classified dataset % % NLABELS = NLABELD(Z) % NLABELS = Z*NLABELD % NLABELS = NLABELD(A,W) % NLABELS = A*W*NLABELD % % INPUT % Z Classified dataset, or % A,W Dataset and classifier mapping % % OUTPUT % NLABELS vector of numeric labels % % DESCRIPTION % Returns the numberic labels of the classified dataset Z (typically the result of a % mapping or classification A*W). For each object in Z (i.e. each row) the % feature label or class label (i.e. the column label) of the maximum column % value is returned. % % SEE ALSO % MAPPINGS, DATASETS, TESTC, PLOTC % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands function labels = nlabeld(a,w) prtrace(mfilename); if (nargin == 0) % Untrained mapping. labels = mapping(mfilename,'fixed'); elseif (nargin == 1) % In a classified dataset, the feature labels contain the output % of the classifier. [m,k] = size(a); featlist = getfeatlab(a); if (k == 1) % If there is one output, assume it's a 2-class discriminant: % decision boundary = 0. J = 2 - (double(a) >= 0); else % Otherwise, pick the column containing the maximum output. [dummy,J] = max(+a,[],2); end labels = J; elseif (nargin == 2) % Just construct classified dataset and call again. labels = feval(mfilename,a*w); else error ('too many arguments'); end return
github
jacksky64/imageProcessing-master
issequential.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/issequential.m
690
utf_8
423df5d323415d1898676c9dc38ba5de
%ISSEQUENTIAL Test on sequential mapping % % N = ISSEQUENTIAL(W) % ISSEQUENTIAL(W) % % INPUT % W input mapping % % OUTPUT % N logical value % % DESCRIPTION % Returns true for sequential mappings. If no output is required, % false outputs are turned into errors. This may be used for % assertion. % % SEE ALSO % ISMAPPING, ISSEQUENTIAL function n = issequential(w) prtrace(mfilename); if isa(w,'mapping') & strcmp(w.mapping_file,'sequential') n = 1; else n = 0; end % generate error if input is not a sequential mapping % AND no output is requested (assertion) if nargout == 0 & n == 0 error([newline '---- Sequential mapping expected -----']) end return
github
jacksky64/imageProcessing-master
meancov.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/meancov.m
4,697
utf_8
516e769bd293798e8908454943696bae
%MEANCOV Estimation of the means and covariances from multiclass data % % [U,G] = MEANCOV(A,N) % % INPUT % A Dataset % N Normalization to use for calculating covariances: by M, the number % of samples in A (N = 1) or by M-1 (default, unbiased, N = 0). % % OUTPUT % U Mean vectors % G Covariance matrices % % DESCRIPTION % Computation of a set of mean vectors U and a set of covariance matrices G % of the C classes in the dataset A. The covariance matrices are stored as a % 3-dimensional matrix G of the size K x K x C, the class mean vectors as a % labeled dataset U of the size C x K. % % The use of soft labels or target labels is supported. % % SEE ALSO % DATASETS, NBAYESC, DISTMAHA % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: meancov.m,v 1.7 2010/02/08 15:31:47 duin Exp $ function [U,G] = meancov(a,n) prtrace(mfilename); % N determines whether the covariances are normalized by M (N = 1) or by % M-1 (unbiased, N = 0), where M is the number of objects. if nargin < 1 U = mapping(mfilename,'fixed'); return end if (nargin < 2 | isempty(n)) prwarning(4,'normalisation not specified, assuming by M-1'); n = 0; end if (n ~= 1) & (n ~= 0) error('Second parameter should be either 0 or 1.') end if (isdouble(a)) % A is a matrix: compute mean and covariances U = mean(a); % in the usual way. if nargout > 1 G = prcov(a,n); end elseif (isdatafile(a)) if nargout < 2 U = meancov_datafile(a,n); else [U,G] = meancov_datafile(a,n); end elseif (isdataset(a)) [m,k,c] = getsize(a); if nargout == 2 G = zeros(k,k,c); end if (islabtype(a,'crisp')) if (c==0) % special solution if all data is unlabeled U = mean(+a); if nargout > 1 G = prcov(+a,n); end else for i = 1:c J = findnlab(a,i); if isempty(J) U(i,:) = repmat(NaN,1,k); if nargout > 1 G(:,:,i) = repmat(NaN,k,k); end else U(i,:) = mean(a(J,:),1); if (nargout > 1) G(:,:,i) = covm(a(J,:),n); end end end end labu = getlablist(a); elseif (islabtype(a,'soft')) problab = gettargets(a); % Here we also have to be careful for unlabeled data if (c==0) prwarning(2,'The dataset has soft labels but no targets defined: using targets 1'); U = mean(+a); if nargout > 1 G = prcov(+a,n); end else U = zeros(c,k); for i = 1:c g = problab(:,i); if mean(g) == 0 % all targets are zero: zero mean, zero cov. G(:,:,i) = zeros(k,k); else % Calculate relative weights for the means. g = g/mean(g); U(i,:) = mean(a.*repmat(g,1,k)); % Weighted mean vectors if (nargout > 1) u = mean(a.*repmat(sqrt(g),1,k)); % needed to weight cov terms properly G(:,:,i) = covm(a.*repmat(sqrt(g),1,k),1) - U(i,:)'*U(i,:) + u'*u; % Re-normalise by M-1 if requested. if (n == 0) G(:,:,i) = m*G(:,:,i)/(m-1); end end end end end labu = getlablist(a); else % Default action. U = mean(a); if nargout > 1 G = covm(a,n); end labu = []; end % Add attributes of A to U. U = dataset(U,labu,'featlab',getfeatlab(a), ... 'featsize',getfeatsize(a)); if (~islabtype(a,'targets')) % p = getprior(a); U = setprior(U,a.prior); end else error('Illegal datatype') end return %MEANCOV Datafile overload function [u,g] = meancov_datafile(a,n) if nargin < 2, n = []; end [m,k,c] = getsize(a); k = 0; % just for detecting first loop next = 1; while next > 0 [b,next] = readdatafile(a,next); if k == 0 k = size(b,2); if c == 0 u = zeros(1,k); else u = zeros(c,k); end if nargout > 1 if c == 0 g = zeros(k,k); else g = zeros(k,k,c); end end end %compute for each call to readdatafile contributions to mean and cov bb = + b; if c == 0 u = u + sum(bb,1); else nlab = getnlab(b); for j=1:size(b,1) if nlab(j) > 0 u(nlab(j),:) = u(nlab(j),:) + bb(j,:); if nargout > 1 g(:,:,nlab(j)) = g(:,:,nlab(j)) + bb(j,:)'*bb(j,:); end end end end end f = classsizes(a); u = u ./ repmat(f',1,k); if nargout == 2 for j=1:c g(:,:,j) = g(:,:,j)/f(j) - u(j,:)'*u(j,:); if isempty(n) | n == 0 g(:,:,j) = (f(j)/(f(j)-1))*g(:,:,j); end end end u = dataset(u,getlablist(b)); u.prior = b.prior; return
github
jacksky64/imageProcessing-master
lmnc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/lmnc.m
1,729
utf_8
d81df5248a7ba509f542ad246d4ee62e
%LMNC Levenberg-Marquardt trained feed-forward neural net classifier % % [W,HIST] = LMNC (A,UNITS,ITER,W_INI,T) % % INPUT % A Dataset % UNITS Vector with numbers of units in each hidden layer (default: [5]) % ITER Number of iterations to train (default: inf) % W_INI Weight initialization network mapping (default: [], meaning % initialization by Matlab's neural network toolbox) % T Tuning set (default: [], meaning use A) % % OUTPUT % W Trained feed-forward neural network mapping % HIST Progress report (see below) % % DESCRIPTION % A feed-forward neural network classifier with length(N) hidden layers with % N(I) units in layer I is computed for the dataset A. Training is stopped % after ITER epochs (at least 50) or if the iteration number exceeds twice % that of the best classification result. This is measured by the labeled % tuning set T. If no tuning set is supplied A is used. W_INI is used, if % given, as network initialization. Use [] if the standard Matlab % initialization is desired. Progress is reported in file FID (default 0). % % The entire training sequence is returned in HIST (number of epochs, % classification error on A, classification error on T, MSE on A, MSE on T, % mean of squared weights). % % Uses the Mathworks' Neural Network toolbox. % % SEE ALSO % MAPPINGS, DATASETS, BPXNC, NEURC, RNNC, RBNC, PRPROGRESS % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Physics, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: lmnc.m,v 1.3 2007/06/15 09:58:30 duin Exp $ function [w,hist] = lmnc(varargin) prtrace(mfilename); [w,hist] = ffnc(mfilename,varargin{:}); return
github
jacksky64/imageProcessing-master
nbayesc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nbayesc.m
1,973
utf_8
f3a84fd0ca90586f58eeb8c3cb521e93
%NBAYESC Bayes Classifier for given normal densities % % W = NBAYESC(U,G) % % INPUT % U Dataset of means of classes % G Covariance matrices (optional; default: identity matrices) % % OUTPUT % W Bayes classifier % % DESCRIPTION % Computation of the Bayes normal classifier between a set of classes. % The means, labels and priors are defined by the dataset U of the size % [C x K]. The covariance matrices are stored in a matrix G of the % size [K x K x C], where K and C correspond to the dimensionality and % the number of classes, respectively. % % If C is 1, then G is treated as the common covariance matrix, yielding % a linear solution. For G = I, the nearest mean solution is obtained. % % This routine gives the exact solution for the given parameters, while % the trainable classifiers QDC and LDC give approximate solutions, based % on the parameter estimates from a training set. For a given dataset, U % and G can be computed by MEANCOV. % % EXAMPLES % [U,G] = MEANCOV(GENDATB(25)); % W = NBAYESC(U,G); % % SEE ALSO % MAPPINGS, DATASETS, QDC, LDC, NMC. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: nbayesc.m,v 1.4 2009/01/04 21:11:07 duin Exp $ function W = nbayesc(U,G); prtrace(mfilename); [cu,ku] = size(U); % CU is the number of classes and KU - the dimensionality if nargin == 1, prwarning(4,'Covariance matrix is not specified, the identity matrix is assumed.'); G = eye(ku); end [k1,k2,c] = size(G); % C = 1, if G is the common covariance matrix. if (c ~= 1 & c ~= cu) | (k1 ~= k2) | (k1 ~= ku) error('Covariance matrix or a set of means has a wrong size.') end pars.mean = +U; pars.cov = G; pars.prior = getprior(U); %W = mapping('normal_map','trained',pars,getlablist(U),ku,cu); W = normal_map(pars,getlablist(U),ku,cu); W = setname(W,'BayesNormal'); W = setcost(W,U); return;
github
jacksky64/imageProcessing-master
im2feat.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im2feat.m
2,376
utf_8
e83cbb9ad8a4892f4b9e358f6649c454
%IM2FEAT Convert Matlab images or datafile to dataset feature % % B = IM2FEAT(IM,A) % % INPUT % IM X*Y image, X*Y*K array of K images, or cell-array of images % The images may be given as a datafile. % A Input dataset % % OUTPUT % B Dataset with IM added % % DESCRIPTION % Add standard Matlab images, as features, to an existing dataset A. If A is % not given, a new dataset is created. Images of type 'uint8' are converted % to 'double' and divided by 256. The set of images IM may be given as a % datafile. % % SEE ALSO % DATASETS, DATAFILES, IM2OBJ, DATA2IM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: im2feat.m,v 1.4 2008/07/28 08:59:47 duin Exp $ function a = im2feat (im,a) prtrace(mfilename); if (isa(im,'cell')) % If IM is a cell array of images, unpack it and recursively call IM2FEAT % to add each image. im = im(:); if (nargin < 2) a = dataset([]); end n = length(im); s = sprintf('Converting %i images: ',n); prwaitbar(n,s); for i = 1:length(im) prwaitbar(n,i,[s int2str(i)]); a = [a feval(mfilename,im{i})]; end prwaitbar(0); elseif isdatafile(im) if (nargin < 2) a = dataset([]); end testdatasize(im); a = [a feval(mfilename,data2im(im))]; else % If IM is an image or array of images, reshape it and add it in one go. n = size(im,3); imsize = size(im); if length(imsize) == 4 m = imsize(4); else m = 1; end imsize = imsize(1:2); % Convert to double, if necessary if (isa(im,'uint8') | isa(im,'uint16')) prwarning(4,'Image is uint; converting to double and dividing by 256'); im = double(im)/256; end % Reshape images to vectors and store bands as features in dataset. if m==1 imm = reshape(im,imsize(1)*imsize(2),n); objsize = imsize(1:2); else imm = []; for i=1:m imm = [imm; reshape(im(:,:,:,i),imsize(1)*imsize(2),n)]; end objsize = [imsize(1:2) m]; end if (nargin > 1) if (~isa(a,'dataset')) error('Second argument is not a dataset') end if (size(imm,1) ~= size(a,1)) error('Image size and dataset object size do not match') end a = [a imm]; else a = dataset(imm); a = setobjsize(a,objsize); end end return
github
jacksky64/imageProcessing-master
datasetconv.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/datasetconv.m
352
utf_8
b95f2e854d2189ab21fc91db2b4dc30c
%DATASETCONV Convert to dataset if needed % % A = DATASETCONV(A) % % If A is not a dataset it is converted to a dataset. % % SEE ALSO % DATASETS, DATASET function a = datasetconv(a) % This is just programmed like this for speed, as % a = dataset(a) will do the same but involves more checking if ~isdataset(a) a = dataset(a); end
github
jacksky64/imageProcessing-master
normm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/normm.m
2,861
utf_8
cb4e55cf8a9dfcb89939f885a33d9420
%NORMM Apply Minkowski-P distance normalization map % % B = A*NORMM(P) % B = NORMM(A,P) % % INPUT % A Dataset or matrix % P Order of the Minkowski distance (optional; default: 1) % % OUTPUT % B Dataset or matrix of normalized Minkowski-P distances % % DESCRIPTION % Normalizes the distances of all objects in the dataset A such that their % Minkowski-P distances to the origin equal one. For P=1 (default), this is % useful for normalizing the probabilities. For 1-dimensional datasets % (SIZE(A,2)=1), a second feature is added before the normalization such % that A(:,2)=1-A(:,1). % % Note that NORMM(P) or NORMM([],P) is a fixed mapping. % % SEE ALSO % MAPPINGS, DATASETS, CLASSC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: normm.m,v 1.4 2007/12/10 15:56:06 davidt Exp $ function w = normm(a,p) prtrace(mfilename); if (nargin == 0) | (isempty(a)) % No data, store the parameters of a fixed mapping. if nargin<2, p=1; end; w = mapping(mfilename,'fixed',{p}); w = setname(w,'Normalization Mapping'); elseif (nargin == 2) & (isempty(a)) % No data, store the parameters of a fixed mapping. w = mapping(mfilename,'fixed',p); w = setname(w,'Normalization Mapping'); elseif (nargin == 1 & (isa(a,'dataset') | length(a) > 1)) | (nargin == 2) % We have the case of either W = NORMM(A) or W = NORMM(A,P), % hence W is now a dataset A with normalized Minkowski-P distances. [m,k] = size(a); if (k == 1) & isdataset(a) % Normalisation of a 1-D dataset may only be used for one-class % classification outcomes. So we test whether this is the case as % good as possible and send out warnings as well a = [a 1-a]; % Add a second feature, handy for the normalization. k = 2; prwarning(4,'SIZE(A,2)=1, so the second feature 1-A(:,1) is added.'); featlist = getfeatlab(a); if size(featlist,1) < 2 error('No two class-names found; probably a wrong dataset used.') else a = setfeatlab(a,featlist(1:2,:)); end end if (nargin == 1), prwarning(3,'Parameter P is not specified, 1 is assumed.'); p = 1; end % Compute the Minkowski-P distances to the origin. if (p == 1) dist = sum(abs(a),2); % Simplify the computations for P=1. else dist = sum(abs(a).^p,2).^(1/p); end % For non-zero distances, scale them to 1. % Note that W is now a dataset with scaled Minkowski distances. J = find(dist ~= 0); w = a; if ~isempty(J) w(J,:) = +a(J,:)./repmat(dist(J,1),1,k); end elseif (nargin == 1) & isa(a,'double') & (length(a) == 1) % We have the case W = NORMM(P), hence W is the mapping. w = mapping(mfilename,'fixed',a); w = setname(w,'Normalization Mapping'); else error('Operation undefined.') end return;
github
jacksky64/imageProcessing-master
isobjim.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isobjim.m
772
utf_8
c465aa4b99a145aff0001ec8b413bdba
%ISOBJIM test if the dataset contains objects that are images % % N = ISOBJIM(A) % ISOBJIM(A) % % INPUT % A input dataset % % OUTPUT % N logical value % % DESCRIPTION % True if dataset contains objects that are images. If no output is required, % false outputs are turned into errors. This may be used for assertion. % % SEE ALSO % ISDATASET, ISDATAIM % $Id: isobjim.m,v 1.5 2009/01/31 15:43:10 duin Exp $ function n = isobjim(a) prtrace(mfilename); n = (isa(a,'dataset') & length(a.featsize) > 1) | isdatafile(a); % generate error if input is not a dataset with image data with % pixels being features AND no output is requested (assertion) if nargout == 0 & n == 0 error([newline '---- Dataset with object images expected -----']) end return
github
jacksky64/imageProcessing-master
datgauss.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/datgauss.m
2,418
utf_8
ace1a3fbf372299804b0c039c7127923
%DATGAUSS Apply Gaussian filter on images in a dataset % % B = DATGAUSS(A,SIGMA) % % INPUT % A Dataset containing images % SIGMA Standard deviation of Gaussian filter (default 1) % % OUTPUT % B Dataset with filtered images % % DESCRIPTION % All images stored as objects (rows) or as features (columns) of dataset A % are filtered with a Gaussian filter with standard deviation SIGMA and % stored in dataset B. Image borders are mirrored before filtering. % % SEE ALSO % DATASETS, DATAIM, IM2OBJ, IM2FEAT, DATUNIF, DATFILT % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: datgauss.m,v 1.5 2009/01/04 21:04:44 duin Exp $ function a = datgauss(a,sigma) prtrace(mfilename); if nargin < 2 | isempty(sigma) sigma = 1; end if nargin < 1 | isempty(a) a = mapping(mfilename,'fixed',{sigma}); a = setname(a,'Gaussian filter'); return end if ismapping(sigma) w = sigma; sigma = w.data{1}; end % Convert dataset to image or image array. im = data2im(a); [imheight,imwidth,nim] = size(im); % Check argument. sigma = sigma(:); if (length(sigma) ~= 1) & (length(sigma) ~= nim) error('incorrect mumber of standard deviations specified') end % Create filter(s): 1D Gaussian. bordersize = ceil(2*sigma); filtersize = 2*bordersize + 1; filter = exp(-repmat((([1:filtersize] - bordersize - 1).^2),length(sigma),1) ... ./repmat((2.*sigma.*sigma),1,filtersize)); % Gaussian(s). filter = filter ./ repmat(sum(filter,2),1,filtersize); % Normalize. % Replicate filter if just a single SIGMA was specified. if (length(sigma) == 1) bordersize = repmat(bordersize,nim,1); filter = repmat(filter,nim,1); end % Process all images... if exist('gaussf') == 2 for i=1:nim im(:,:,i) = double(gaussf(1*im(:,:,i),sigma)); end else for i = 1:nim out = bord(im(:,:,i),NaN,bordersize(i)); % Add mirrored border. out = conv2(filter(i,:),filter(i,:),out,'same'); % Convolve with filter. im(:,:,i) = resize(out,bordersize(i),imheight,imwidth); % Crop back to original size. end end % Place filtered images back in dataset. im = squeeze(im); if (isfeatim(a)) a = setdata(a,im2feat(im),getfeatlab(a)); else a = setdata(a,im2obj(im,getfeatsize(a)),getfeatlab(a)); end return
github
jacksky64/imageProcessing-master
prforum.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prforum.m
94
utf_8
f268817c3db7b653655098ff868b5e86
%PRFORUM % % N = PRFORUM(L) % %PRTools test function prforum(k) prforum_private(k);
github
jacksky64/imageProcessing-master
qdc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/qdc.m
4,296
utf_8
4055290392ab0ff63272a6d4c54a5402
%QDC Quadratic Bayes Normal Classifier (Bayes-Normal-2) % % [W,R,S,M] = QDC(A,R,S,M) % W = A*QDC([],R,S) % % INPUT % A Dataset % R,S Regularization parameters, 0 <= R,S <= 1 % (optional; default: no regularization, i.e. R,S = 0) % M Dimension of subspace structure in covariance matrix (default: K, % all dimensions) % % OUTPUT % W Quadratic Bayes Normal Classifier mapping % R Value of regularization parameter R as used % S Value of regularization parameter S as used % M Value of regularization parameter M as used % % DESCRIPTION % Computation of the quadratic classifier between the classes of the dataset % A assuming normal densities. R and S (0 <= R,S <= 1) are regularization % parameters used for finding the covariance matrix by % % G = (1-R-S)*G + R*diag(diag(G)) + S*mean(diag(G))*eye(size(G,1)) % % This covariance matrix is then decomposed as G = W*W' + sigma^2 * eye(K), % where W is a K x M matrix containing the M leading principal components % and sigma^2 is the mean of the K-M smallest eigenvalues. % % % % The use of soft labels is supported. The classification A*W is computed by % NORMAL_MAP. % % If R, S or M is NaN the regularisation parameter is optimised by REGOPTC. % The best result are usually obtained by R = 0, S = NaN, M = [], or by % R = 0, S = 0, M = NaN (which is for problems of moderate or low dimensionality % faster). If no regularisation is supplied a pseudo-inverse of the % covariance matrix is used in case it is close to singular. % % EXAMPLES % See PREX_MCPLOT, PREX_PLOTC. % % REFERENCES % 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd % edition, John Wiley and Sons, New York, 2001. % 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons, % New York, 2002. % % SEE ALSO % MAPPINGS, DATASETS, REGOPTC, NMC, NMSC, LDC, UDC, QUADRC, NORMAL_MAP % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: qdc.m,v 1.8 2010/02/08 15:29:48 duin Exp $ function [w,r,s,dim] = qdc(a,r,s,dim) prtrace(mfilename); if (nargin < 4) prwarning(4,'subspace dimensionality M not given, assuming K'); dim = []; end if (nargin < 3) | isempty(s) prwarning(4,'Regularisation parameter S not given, assuming 0.'); s = 0; end if (nargin < 2) | isempty(r) prwarning(4,'Regularisation parameter R not given, assuming 0.'); r = 0; end if (nargin < 1) | (isempty(a)) % No input arguments: w = mapping(mfilename,{r,s,dim}); % return an untrained mapping. elseif any(isnan([r,s,dim])) % optimize regularisation parameters defs = {0,0,[]}; parmin_max = [1e-8,9.9999e-1;1e-8,9.9999e-1;1,size(a,2)]; [w,r,s,dim] = regoptc(a,mfilename,{r,s,dim},defs,[3 2 1],parmin_max,testc([],'soft'),[1 1 0]); else % training islabtype(a,'crisp','soft'); % Assert A has the right labtype. isvaldfile(a,2,2); % at least 2 objects per class, 2 classes [m,k,c] = getsize(a); % If the subspace dimensionality is not given, set it to all dimensions. if (isempty(dim)), dim = k; end; dim = round(dim); if (dim < 1) | (dim > k) error ('Number of dimensions M should lie in the range [1,K].'); end [U,G] = meancov(a); % Calculate means and priors. pars.mean = +U; pars.prior = getprior(a); % Calculate class covariance matrices. pars.cov = zeros(k,k,c); for j = 1:c F = G(:,:,j); % Regularize, if requested. if (s > 0) | (r > 0) F = (1-r-s) * F + r * diag(diag(F)) +s*mean(diag(F))*eye(size(F,1)); end % If DIM < K, extract the first DIM principal components and estimate % the noise outside the subspace. if (dim < k) dim = min(rank(F)-1,dim); [eigvec,eigval] = preig(F); eigval = diag(eigval); [dummy,ind] = sort(-eigval); % Estimate sigma^2 as avg. eigenvalue outside subspace. sigma2 = mean(eigval(ind(dim+1:end))); % Subspace basis: first DIM eigenvectors * sqrt(eigenvalues). F = eigvec(:,ind(1:dim)) * diag(eigval(ind(1:dim))) * eigvec(:,ind(1:dim))' + ... sigma2 * eye(k); end pars.cov(:,:,j) = F; end w = normal_map(pars,getlab(U),k,c); w = setcost(w,a); end w = setname(w,'Bayes-Normal-2'); return;
github
jacksky64/imageProcessing-master
roc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/roc.m
5,483
utf_8
8d0022cbb75dfc2d81a59beca6ddc7b7
%ROC Receiver-Operator Curve % % E = ROC(A,W,C,N) % E = ROC(B,C,N) % % INPUT % A Dataset % W Trained classifier, or % B Classification result, B = A*W*CLASSC % C Index of desired class (default: C = 1) % N Number of points on the Receiver-Operator Curve (default: 100) % % OUTPUT % E Structure containing the error of the two classes % % DESCRIPTION % Computes N points on the receiver-operator curve of the classifier W for % class C in the labeled dataset B, which is typically the result of % B = A*W; or for the dataset A labelled by applying the (cell array of) % trained classifiers W. % % Note that a Receiver-Operator Curve is related to a specific class (class C) % for which the errors are plotted horizontally. The total error on all other % classes is plotted vertically. The class index C refers to its position in % the label list of the dataset (A or B). It can be found by GETCLASSI. % % The curve is computed for N thresholds of the posteriori probabilities % stored in B. The resulting error frequencies for the two classes are % stored in the structure E. E.XVALUES contains the errors in the first % class, E.ERROR contains the errors in the second class. In multi-class % problems these are the mean values in a single class, respectively the % mean values in all other classes. This may not be very useful, but not % much more can be done as for multi-class cases the ROC is equivalent to a % multi-dimensional surface. % % Use PLOTE(E) for plotting the result. In the plot the two types of error % are annotated as 'Error I' (error of the first kind) and 'Error II' (error % of the second kind). All error estimates are weighted according the class % prior probabilities. Remove the priors in A or B (by setprior(A,[])) to % produce a vanilla ROC. % % EXAMPLES % Train set A and test set T: % B = T*NMC(A); E = ROC(T,50); PLOTE(E); % Plots a single curve % E = ROC(T,A*{NMC,UDC,QDC}); PLOTE(E); % Plots 3 curves % % REFERENCES % 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd edition, % John Wiley and Sons, New York, 2001. % 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons, New York, % 2002. % % SEE ALSO % DATASETS, MAPPINGS, PLOTE, REJECT, TESTC, GETCLASSI % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: roc.m,v 1.8 2009/07/09 14:17:38 davidt Exp $ function e = roc(a,w,clas,n) % Depending on the call, CLAS may the third or second argument. % and N the third or the fourth. if nargin < 4, n = []; end if nargin < 3, clas= []; end if nargin < 2, w = []; end if nargin < 1, a= []; end if isempty(a) e = mapping('roc','fixed',{w,clas,n}); return; end name = []; num_w = 1; compute = 0; if isa(w,'double') | isempty(w) n = clas; clas = w; b = a; elseif iscell(w) num_w = length(w); compute = 1; elseif ismapping(w) istrained(w); b = a*w*classc; name = getname(w); else error('Classifier or cell array of classifiers expected.') end if isempty(n), n = 100; prwarning(4,'number of ROC points not given, assuming 100'); end if isempty(clas) clas = 1; prwarning(4,'no class given, class 1 assumed'); end p = getprior(a); datname = getname(a); lablist = getlablist(a,'string'); if size(lablist,1)<2 error('At least two classes should be present for computing the ROC curve.'); end if clas > size(lablist,1) error('Wrong class number') end clasname= lablist(clas,:); %DXD: also check the class sizes: cs = classsizes(a); if cs(clas)==0 error(['Class ',clas,' does not contain objects.']); end cs(clas) = 0; if sum(cs)==0 error(['One of the classes does not contain objects.']); end % Set up the ROC structure. e.error = zeros(num_w,n+1); e.std = zeros(num_w,n+1); e.xvalues = [0:n]/n;; e.n = 1; e.xlabel = 'Error I'; e.ylabel = 'Error II'; e.plot = 'plot'; e.names = name; if (~isempty(datname)) e.title = ['ROC curve for the ' datname ', class ' clasname]; end for j = 1:num_w thr = []; % Threshold range, will be set below. % If a cell array of classifiers was given, apply each one here. if (compute) v = w{j}; if (~istrained(v)) error('The supplied classifier mappings should be trained.') end b = a*v*classc; e.names = char(e.names,getname(v)); else b = b*normm; % make sure we have a normalised classification matrix end [m,c] = size(b); nlab = getnlab(b); d = sort(b(:)); % Attempt to compute a good threshold range on the first classified % dataset. if (isempty(thr)) thr = [min(d)-eps d(ceil(([1:n-1]/(n-1))*m*c))' 1]; end e1 = []; e2 = []; % NLAB_OUT will be one where B is larger than THR. I = matchlablist(getlablist(b),getfeatlab(b)); % Correct possible changes class orders nlab_out = (repmat(+b(:,I(clas)),1,n+1) >= repmat(thr,m,1)); % ERRS will be 1 where the numeric label is unequal to NLAB_OUT % (i.e., where errors occur). errs = (repmat((nlab==clas),1,n+1) ~= nlab_out); % Split the cases where ERRS = 1 into cases for CLAS (E1) and all % other classes (E2). e1 = [mean(errs(find(nlab==clas),:),1)]; e2 = [mean(errs(find(nlab~=clas),:),1)]; % Fill results in the ROC structure. e.error(j,:) = e2; e.xvalues(j,:) = e1; end % First name will be the empty string [], remove it. if (num_w > 1) e.names(1,:) = []; end return
github
jacksky64/imageProcessing-master
myfixedmapping.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/myfixedmapping.m
3,358
utf_8
d32084aeb276bb7537cce545039c805b
%MYFIXEDMAPPING Skeleton for a user supplied mapping % % W = MYFIXEDMAPPING([],PAR] % W = MYFIXEDMAPPING % B = A*MYFIXEDMAPPING % B = A*MYFIXEDMAPPING([],PAR] % B = MYFIXEDMAPPING(A,PAR) % % INPUT % A Dataset % PAR Parameter % % OUTPUT % W Mapping definition % B Dataset A mapped by MYFIXEDMAPPING % % DESCRIPTION % This is a fake routine just offering the skeleton of a user supplied % fixed mapping. By changing the lines indicated in the source and renaming % the routine user may program their own mapping. The routine as it is just % selects the features (columns of A) as defined in PAR. % % SEE ALSO % DATASETS, MAPPINGS % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function OUT = myfixedmapping(A,PAR) % take care that there is always a second parameter, even if you don't % need it, PRTools will. % define here the default values for all parameters. Defaults might be % empty ([]), but the routine should then test on that if the parameter % is used. if (nargin < 2) PAR = []; end % determine the type of call if (nargin == 0) | (isempty(A)) % we are here if the routine is called by W = myfixedmapping, or by % W = myfixedmapping([],PAR) % this is a definition call. So we need to return a fixed mapping OUT = mapping(mfilename,'fixed',{PAR}); % the first parameter in the above call is the name of the routine that % should handle the mapping when it is called with data. Usually this % is this routine. Its name is returned by mfilename. % The third parameter is cell array containing all parameters of the % call. Defaults should be substituted. OUT = setname(OUT,'Fixed Mapping Skeleton'); % Here just a name is supplied for your own information. It is % displayed when you call the routine without a ';' else % now we have a normal call with a dataset A and parameter PAR. % Let us first check the inputs isdataset(A); % returns an error if A is not a dataset % checking parameter values depends on the mapping we want to % implement. In our fake example it should be in the range of feature % numbers. If there are still empty parameter values they should be % given a sensible value here. if isempty(PAR) % select all features by defaults (i.e. do nothing) PAR = [1:size(A,2)]; end if any(PAR < 1) | any(PAR > size(A,2)) % Features to be selected should be in a proper range error('Feature number out of range') end % now the mapping itself should be programmed. We can simpy put % OUT = A(:,PAR); % but sometimes operations on the data stored in the dataset are needed % that cannot be done within PRTools. The following serves as an % example on how this might be done. data = getdata(A); % isolate the data from the dataset data = data(:,PAR); % do whatever is needed. Replace this line by what % is needed for defining the desired operation of % myfixedmapping OUT = setdata(A,data); % resubstitute the resulting data into the % original data structure of A. The resulting % dataset has thereby the same name, user- and % ident-fields as input dataset. end return
github
jacksky64/imageProcessing-master
prwaitbaronce.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prwaitbaronce.m
903
utf_8
a3e428983a44e7ed0cab38cf4eac163c
%PRWAITBARONCE Generate single prwaitbar message % % PRWAITBARONCE(STRING,PAR) % % INPUT % STRING - String with text to be written in the waitbar, % e.g. '%i x %i eigenvalue decomposition: '. % This will be parsed by S = SPRINTF(STRING,PAR{:}); % PAR - scalar or cell array with parameter values % % This routine has to be used in combination with PRWAITBAR(0), e.g.: % % prwaitbaronce('%i x %i eigenvalue decomposition ... ',{n,n}) % [Q,L] = eig(H); % prwaitbar(0) % % It makes clear to the user what is happening. % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function prwaitbaronce(ss,par) if nargin < 2 prwaitbar(2,ss); elseif ~iscell(par) prwaitbar(2,sprintf(ss,par)); else prwaitbar(2,sprintf(ss,par{:})); end return
github
jacksky64/imageProcessing-master
stamp_map.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/stamp_map.m
4,244
utf_8
63bbd553d399602bb1ab73c0929db82d
%STAMP_MAP Stamping and storing of mappings for fast reusage % % C = STAMP_MAP(A,W) or C = A*W % U = STAMP_MAP(V,W) or U = V*W % % This routine is equivalent to MAP except that it stores previous % results (C or U) and retrieves them when the same inputs (A and W % or V and W) are given. This is especially good in case of combining % classifier studies when the same mappings have to be computed multiple % times. % % Note that only the highest level of calls to MAP are stored by STAMP_MAP. % If multiple calls to lower level calls (e.g. somewhere included in a % complicated combined classifier) are expected, they should be called % first explicitely. % % STAMP_MAP is automatically called inside MAP (and thereby by every % overloaded * operation between datasets and mappings) controlled by % the following settings: % % STAMP_MAP(0) - disables all storage and retrieval of mappings. % This should be called when no duplicates are expected % as it prevents the unnecessary checking of inputs. % STAMP_MAP(1) - Retrieving of stored results only only. % No new results are stored. % STAMP_MAP(2) - Enables retrieval as well as storage of results. % % SEE ALSO % DATASETS, MAPPINGS, MAP % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function c = stamp_map(a,b) persistent CHECK_STAMPS nstamps cell_stamp stamps if isempty(CHECK_STAMPS) CHECK_STAMPS = 0; nstamps = 0; stamps = zeros(1000,3); cell_stamp = cell(1,1000); end if nargin == 0 c = CHECK_STAMPS; elseif nargin == 1 if a < 3 CHECK_STAMPS = a; if nargout > 0 c = a; end else disp(nstamps) for j=1:nstamps fprintf('STAMPS: %10.6e %10.6e: ',stamps(j,:)); cell_stamp{j} end end else if CHECK_STAMPS == 0 % checking is off, no stamp_mapping c = []; % execution call: try to pass this routine elseif iscell(a) | iscell(b) % don't handle cell constructs c = []; elseif CHECK_STAMPS == 1 | CHECK_STAMPS == 2 % checking is on sa = getstamp(a); sb = getstamp(b); Ja = find(stamps(1:nstamps,1)==sa); J = []; if ~isempty(Ja) Jb = find(stamps(Ja,2)==sb); if ~isempty(Jb) % found, we have it! J = Ja(Jb); if ~isempty(J) & length(J) > 1 error('Stamps are not unique') end c = cell_stamp{J}; % use it! stamps(J,3) = stamps(J,3)+1; %disp(['found: ' getname(a) '..,..' getname(b)]) end end if isempty(J) % not found, let map do the work checkstamps = CHECK_STAMPS; % Take care that we skip stamp_map CHECK_STAMPS = checkstamps+2; % when we call map c = map(a,b); % during execution of map CHECK_STAMPS will be reset CHECK_STAMPS = checkstamps; % so this is in fact not needed if CHECK_STAMPS == 2 % store as well %disp(['stored: ' getname(a) '..,..' getname(b)]) nstamps = nstamps + 1; if nstamps > length(cell_stamp) stamps = [stamps; zeros(1000,3)]; cell_stamp = [cell_stamp cell(1,1000)]; end stamps(nstamps,1:2) = [sa,sb]; cell_stamp{nstamps} = c; end end elseif CHECK_STAMPS == 3 | CHECK_STAMPS == 4 CHECK_STAMPS = CHECK_STAMPS-2; % reset of computation of map c = []; else ; end end return %GETSTAMP Compute unique stamp for data % % S = GETSTAMP(A) % %Computes 64-bit stamp S of input A function s = getstamp(a) s = 0; type = class(a); switch(type) case 'char' a = abs(a); n = length(a(:)); s = s + abs(sin(1:n))*(a(:)); case 'double' n = length(a(:)); s = s + abs(sin(1:n)*a(:)); case {'mapping','dataset','datafile'} a = struct2cell(struct(a)); s = s + getstamp(a); case 'struct' a = struct2cell(a); s = s + getstamp(a); case 'cell' for j=1:length(a(:)) s = s + getstamp(a{j}); end otherwise try n = length(a(:)); s = s + abs(sin(1:n))*abs(double(a(:))); catch ; end end
github
jacksky64/imageProcessing-master
featselv.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featselv.m
1,072
utf_8
c4a82524f1333db4a149ebaf8e45203b
%FEATSELV Varying feature selection % % W = FEATSELV(A) % W = A*FEATSELV % % Selects all features with a non-zero variance. % Classifiers can be trained like A*(FEATSELV*LDC([],1E-3)) to make % use of this feature selection % % SEE ALSO % MAPPINGS, DATASETS, FEATEVAL, FEATSELO, FEATSELB, FEATSELF, % FEATSEL, FEATSELP, FEATSELM, FEATSELI % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = featselv(a) prtrace(mfilename); % If no arguments are supplied, return an untrained mapping. if (nargin == 0) | (isempty(a)) w = mapping('featselv'); else [m,k,c] = getsize(a); featlist = getfeatlab(a); v = std(+a); J = find(v > 1e-6 & v < 1e6); if isempty(J) error('All objects are equal') end % Return the mapping found. w = featsel(k,J); if ~isempty(featlist) w = setlabels(w,featlist(J,:)); end end w = setname(w,'Varying FeatSel'); return
github
jacksky64/imageProcessing-master
isvaldfile.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isvaldfile.m
2,064
utf_8
add4fdfc5794d47ac7f0165a39792c80
%ISVALDFILE Test whether the argument is a valid datafile or dataset % % N = ISVALDFILE(A); % N = ISVALDFILE(A,M); % N = ISVALDFILE(A,M,C); % % INPUT % A Input argument, to be tested on datafile or dataset % M Minimum number of objects per class in A % C Minimum number of classes in A % % OUTPUT % N 1/0 if A is / isn't a valid datafile or dataset % % DESCRIPTION % The function ISVALDFILE tests if A is a datafile or dataset that has % at least C classes. It is an extension of ISVALDSET and can be used it % when datasets as well as datafiles are allowed. % For datafiles(sets) with soft or targets labels it is tested whether A % has at least M objects. % % SEE ALSO % ISDATASET, ISMAPPING, ISDATAIM, ISFEATIM, ISCOMDSET, ISVALDSET function n = isvaldfile(a,m,c) prtrace(mfilename); if nargin < 3 | isempty(c), c = 0; end if nargin < 2 | isempty(m), m = 0; end if nargout == 0 if ~isdatafile(a) isdataset(a); end else n = 1; if ~isdatafile(a) & ~isdataset(a) n = 0; return end end if c == 1 & getsize(a,3) == 0 ; % accept unlabeled dataset as having one class elseif c > 0 & getsize(a,3) == 0 if nargout == 0 error([newline 'Labeled datafile(set) expected']) else n = 0; end elseif getsize(a,3) < c if nargout == 0 error([newline 'Datafile(set) should have at least ' num2str(c) ' classes']) else n = 0; end end if islabtype(a,'crisp') & any(classsizes(a) < m) if nargout == 0 if m == 1 error([newline 'Classes should have at least one object.' newline ... 'Remove empty classes by A = remclass(A).']) else cn = num2str(m); error([newline 'Classes should have at least ' cn ' objects.' ... newline 'Remove small classes by A = remclass(A,' cn ')']) end else n = 0; end end if islabtype(a,'soft','targets') & size(a,1) < m error([newline 'Datafile(set) should have at least ' num2str(m) ' objects']) end return
github
jacksky64/imageProcessing-master
prrank.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prrank.m
359
utf_8
bd7b267f3361cdd10b064e53104abc0b
%PRRANK Call to RANK() including PRWAITBAR % % B = PRRANK(A,tol) % % This calls B = RANK(A,tol) and includes a message to PRWAITBAR % in case of a large A function B = prrank(varargin) [m,n] = size(varargin{1}); if min([m,n]) >= 500 prwaitbaronce('Rank of %i x %i matrix ...',[m,n]); B = rank(varargin{:}); prwaitbar(0); else B = rank(varargin{:}); end
github
jacksky64/imageProcessing-master
prprogress.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prprogress.m
2,167
utf_8
45837f238a625e60b78f5cb0f8f737ca
%PRPROGRESS Report progress of some PRTools iterative routines % % PRPROGRESS ON % % All progress of all routines will be written to the command window. % % PRPROGRESS(FID) % % Progress reports will be written to the file with file descriptor FID. % % PRPROGRESS(FID,FORMAT,...) % % Writes progress message to FID. If FID == [], the predefined destination % (command window or file) is used. % % PRPROGRESS OFF % PRPROGRESS(0) % % Progress reporting is turned off. % % PRPROGRESS % % Toggles between PRPROGRESS ON and PRPROGRESS OFF % % FID = PRPROGRESS % % Retrieves the status of PRPROGRESS % % Some routines (e.g. CLEVAL) have a switch in the function call by which % progress reporting for that routine only can be initiated. % % By default, PRPROGRESS is switched off. Interactive progress tracing can % be best following by PRWAITBAR % % SEE ALSO % PRWAITBAR % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function fid = prprogress(par,varargin) persistent GLOBALPRPROGRESS mlock; % prevents GLOBALPRPROGRESS being cleared by CLEAR ALL if isempty(GLOBALPRPROGRESS) GLOBALPRPROGRESS = 0; end if nargin == 0 if nargout == 0 if GLOBALPRPROGRESS ~= 0, GLOBALPRPROGRESS = 0; else GLOBALPRPROGRESS = 1; end else fid = GLOBALPRPROGRESS; end elseif nargin == 1 & nargout == 0 if isstr(par) switch par case {'on','ON'} GLOBALPRPROGRESS = 1; case {'off','OFF'} GLOBALPRPROGRESS = 0; otherwise error('Illegal input for PRPROGRESS') end else GLOBALPRPROGRESS = par; end elseif (GLOBALPRPROGRESS > 0) & (~isempty(par)) & (par>0) %DXD, fid=0 means no printing... s = sprintf(varargin{:}); n = fprintf(par,s); if nargout > 0 fid = length(s); end elseif GLOBALPRPROGRESS > 0 s = sprintf(varargin{:}); n = fprintf(GLOBALPRPROGRESS,s); if nargout > 0 fid = length(s); end else if nargout > 0 fid = 0; end end return
github
jacksky64/imageProcessing-master
renumlab.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/renumlab.m
5,523
utf_8
ac9d5150e678debdb0b3b1bbdc792d64
%RENUMLAB Renumber labels % % [NLAB,LABLIST] = RENUMLAB(LABELS) % [NLAB1,NLAB2,LABLIST] = RENUMLAB(LABELS1,LABELS2) % % INPUT % LABELS,LABELS1,LABELS2 Array of labels % % OUTPUT % NLAB,NLAB1,NLAB2 Vector of numeric labels % LABLIST Unique labels % % DESCRIPTION % If a single array of labels LABELS is supplied, it is converted and % renumbered to a vector of numeric labels NLAB. The conversion table % LABLIST is such that LABELS = LABLIST(NLAB,:). When two arrays LABELS1 % and LABELS2 are given, they are combined into two numeric label vectors % NLAB1 and NLAB2 with a common conversion table LABLIST. % % Note that numeric labels with value -inf or NaN and string labels CHAR(0) % are interpreted as missing labels. Their entry in NLAB will be 0 and they % will not have an entry in LABLIST. % % A special command is % % NLAB = RENUMLAB(LABELS,LABLIST) % % which returns the indices of LABELS in a given LABLIST. % % SEE ALSO % DATASET % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: renumlab.m,v 1.7 2009/01/04 22:18:57 duin Exp $ function [out1,out2,out3] = renumlab(slab1,slab2) prtrace(mfilename); out1 = []; out2 = []; out3 = []; % Obsolete call? if (isempty(slab1)) & (nargin == 1 | isempty(slab2)) return end % Clean up the symbolic labels. slab1 = clean_lab(slab1); if (nargin == 1) | (isempty(slab2)) % Find unique labels for LABLIST and indices into LABLIST for NLAB. [lablist,dummy,nlab] = unique(slab1,'rows'); % Remove "missing label", if present. [lablist,nlab] = remove_empty_label(lablist,nlab); % Set output arguments. out1 = nlab; out2 = lablist; elseif nargout > 1 | nargin == 1 % Check whether SLAB1 and SLAB2 match in type. if (isstr(slab1) ~= isstr(slab2)) error(['Label lists do not match.' ... newline 'They should be both characters, strings or numbers']) end % Clean up SLAB2 and put the union of SLAB1 and SLAB2 into SLAB. slab2 = clean_lab(slab2); if isstr(slab1), slab = char(slab1,slab2); else, slab = [slab1;slab2]; end % Find unique labels for LABLIST and indices into LABLIST for NLAB. if (iscell(slab)) [lablist,dummy,nlab] = unique(slab); else [lablist,dummy,nlab] = unique(slab,'rows'); end; % Remove "missing label", if present. [lablist,nlab] = remove_empty_label(lablist,nlab); % Set output arguments. out1 = nlab(1:size(slab1,1)); % Renumbered SLAB1 labels out2 = nlab(size(slab1,1)+1:end); % Renumbered SLAB2 labels out3 = lablist; else % nargout == 1 & nargin > 1, call like nlab = renumlab(labels,lablist) [k2,s2] = feval(mfilename,slab2); [n1,n2,s12] = feval(mfilename,slab1,slab2); % This gives a headache, but it seems to work R = zeros(size(s12,1),1); % zeros for all possible labels J = find(n2~=0); R(n2(J)) = J; % substitute the existing ones J = find(n1~=0); out1 = zeros(length(n1),1); % space for output out1(J) = R(n1(J)); % replace existing ones by their index in lablist % pffft !!!! if 0 if size(s12,1) > size(s2,1) % some labels are not in lablist % This gives a headache, but it seems to work S = zeros(max([n1;n2]),1); % zeros for all possible labels R = S; R(n2) = [1:length(n2)]; % substitute the existing ones S(n2) = n2; % all indices zeros, except the existing ones n1 = S(n1); % replace non-existing ones by zeros J = find(n1~=0); % these are the existing ones out1 = zeros(length(n1),1); % space for output out1(J) = R(n1(J)); % replace existing ones by their index in lablist % pffft !!!! else % easy! J = find(~isnan(n2)); [nn2,listn2] = sort(n2(J)); out1 = zeros(length(n2),1); out1(J) = listn2(n1(J)); %alternative version %what is above seems not always working %J = find(n2~=0); %[nn2,listn2] = sort(n2(J)); %listn2 = J(listn2); %J = find(n1~=0); %out1 = zeros(length(n1),1); %out1(J) = listn2(n1(J)); end end end return % LAB = CLEAN_LAB(LAB) % % Clean labels; for now, just replaces occurences of NaN in numeric labels % by -inf (both denoting "missing labels"). function slab = clean_lab(slab) if (iscell(slab)) % Cell array of labels. ; elseif isempty(slab) ; elseif (size(slab,2) == 1) & (~isstr(slab)) % Vector of numeric labels. J = isnan(slab); slab(J) = -inf; elseif (isstr(slab)) % Array of string labels. ; else error('labels should be strings or scalars') end return % [LABLIST,NLAB] = REMOVE_EMPTY_LABEL (LABLIST,NLAB) % % Removes the empty first label from LABLIST and NLAB (corresponding to the % "missing label"), if present. function [lablist,nlab] = remove_empty_label (lablist,nlab) % Find occurences of '' (in cell array label lists), '\0' (in string % label lists) or -inf (in numeric label lists) and remove them. if (iscellstr(lablist)) % Cell array of labels. if (strcmp(lablist{1},'')), lablist(1) = []; nlab = nlab -1; end elseif (isstr(lablist)) % Array of string labels. if (strcmp(lablist(1,:),char(0))) | isempty(deblank(lablist(1,:))) lablist(1,:) = []; nlab = nlab -1; end else % Vector of numeric labels. if (lablist(1) == -inf), lablist(1) = []; nlab = nlab -1; end end return
github
jacksky64/imageProcessing-master
rbnc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rbnc.m
3,564
utf_8
9664c09d16c78330d2de8a63f79b3fe0
%RBNC Radial basis function neural network classifier % % W = RBNC(A,UNITS) % % INPUT % A Dataset % UNITS Number of RBF units in hidden layer % % OUTPUT % W Radial basis neural network mapping % % DESCRIPTION % A feed-forward neural network classifier with one hidden layer with % UNITS radial basis units is computed for labeled dataset A. % Default UNITS is number of objects * 0.2, but not more than 100. % Uses the Mathworks' Neural Network toolbox. % % If UNITS is NaN it is optimised by REGOPTC. This may take a long % computing time and is often not significantly better than the default. % % This routine calls MathWork's SOLVERB routine (Neural Network toolbox) % as SOLVB. % % SEE ALSO % MAPPINGS, DATASETS, LMNC, BPXNC, NEURC, RNNC, REGOPTC % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: rbnc.m,v 1.4 2007/06/19 11:45:08 duin Exp $ function w = rbnc(a,units) prtrace(mfilename); if exist('nnet') ~= 7 error('Neural network toolbox not found') end if nargin < 2, units = []; end if (nargin <1) | isempty(a) % Create an empty mapping: w = mapping(mfilename,units); w = setname(w,'RBF Neural Network'); return end if isempty(units) units = min(ceil(size(a,1)/5),100); prwarning(2,['no number of hidden units specified, assuming ' num2str(units)]); end if isnan(units) % optimize complexity parameter: number of neurons defs = {[]}; parmin_max = [1,30]; w = regoptc(a,mfilename,{units},defs,[1],parmin_max,testc([],'soft'),0); return end if units > size(a,1) error('Number of hidden units should not increase datasize') end % Training target values. target_low = 0.1; target_high = 0.9; islabtype(a,'crisp'); isvaldfile(a,2,2); % at least 2 objects per class, 2 classes a = testdatasize(a); [m,k,c] = getsize(a); nlab = getnlab(a); % Set standard training parameters. disp_freq = inf; % Display interval: switch off err_goal = 0.005*m; % Sum squared error goal, stop if reached sigma = 0.5; % RBF kernel width % Create target matrix: row C contains a high value at position C, % the correct class, and a low one for the incorrect ones (place coding). target = target_low * ones(c,c) + (target_high - target_low) * eye(c); target = target(nlab,:)'; % Shift and scale the training set to zero mean, unit variance. ws = scalem(a,'variance'); % Add noise to training set, as SOLVB sometimes has problems with % identical inputs. r = randn(m,k) * 1e-6; % Compute RBF network. % RD I changed the below call from NEWRBE() to NEWRB() and added % the number of units as parameter. NEWRBE always uses M units % net = newrb(+(a*ws)'+r',target,sigma); net = newrb(+(a*ws)'+r',target,0,sigma,units,inf); weight1 = net.IW{1,1}; weight2 = net.LW{2,1}; bias1 = net.b{1}; bias2 = net.b{2}; n_hidden_units = length(bias1); % Construct resulting map. First apply the shift and scale mapping WS. % The first layer then calculates EXP(-D), where D are the squared % distances to RBF kernel centers, scaled by the biases. w = ws*proxm(weight1,'distance',2); % RBF distance map w = w*cmapm(bias1'.^(-2),'scale'); % Multiply by scale (sq. bias) w = w*cmapm(n_hidden_units,'nexp'); % Take negative exponential % Second layer is affine mapping on output of first layer, followed % by a sigmoid mapping. w = nodatafile*w*affine(weight2',bias2',[],getlablist(a))*sigm; w = setname(w,'RBF Neural Classf'); return
github
jacksky64/imageProcessing-master
prdataset.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prdataset.m
2,177
utf_8
62381781251a635adbb3dbd86682f0e3
%PRDATASET Load and convert dataset from disk % % A = PRDATASET(NAME,M,N) % % The dataset given in NAME is loaded from a .mat file and converted % to the current PRTools definition. Objects and features requested % by the index vectors M and N are returned. % % See PRDATA for loading arbitrary data into a PRTools dataset. % See PRDATASETS for an overview of datasets. % Copyright: R.P.W. Duin, [email protected] % Faculty of Applied Sciences, Delft University of Technology % P.O. Box 5046, 2600 GA Delft, The Netherlands % $Id: prdataset.m,v 1.3 2009/12/21 10:35:12 duin Exp $ function a = prdataset(name,M,N,no_message) prtrace(mfilename); persistent FIRST; if isempty(FIRST), FIRST = 1; end if nargin < 4, no_message = 0; end if nargin < 3, N = []; end if nargin < 2, M = []; end if exist([name '.mat']) ~= 2 error([newline '---- Dataset ''' name ''' not available ----']) end s = warning; warning off b = load(name); warning(s); % Try to find out what data we actually loaded: names = fieldnames(b); eval(['a = b.' names{1} ';']); if ~isdataset(a) & ndims(a) > 2 % We loaded an image? a = im2feat(a); prwarning(2,'Assumed that a feature image is loaded') else a = dataset(a); end [m,k] = size(a); % Maybe a subset of the features is requested: if ~isempty(N) if min(size(N)) ~= 1 error([newline 'Feature indices should be stored in vector']) end if max(N) > k error([newline 'Dataset has not the requested features']) end a = a(:,N); end % Maybe a subset of the objects are requested: if ~isempty(M) if min(size(M)) ~= 1 error([newline 'Object indices should be stored in vector']) end if max(M) > m error([newline 'Dataset has not the requested objects']) end a = a(M,:); end if FIRST & ~no_message disp(' ') disp('*** You are using one of the datasets distibuted by PRTools. Most of them') disp('*** are publicly available on the Internet and converted to the PRTools') disp('*** format. See the Contents of the datasets directory (HELP PRDATASETS)') disp('*** or the load routine of the specific dataset to retrieve its source.') disp(' ') FIRST = 0; end return
github
jacksky64/imageProcessing-master
distmaha.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/distmaha.m
2,996
utf_8
dea417eab0552e74f75db3c579415a17
%DISTMAHA Mahalanobis distance % % D = DISTMAHA (A,U,G) % % INPUT % A Dataset % U Mean(s) (optional; default: estimate on classes in A) % G Covariance(s) (optional; default: estimate on classes in A) % % OUTPUT % D Mahalanobis distance matrix % % DESCRIPTION % Computes the M*N Mahanalobis distance matrix of all vectors in M*K dataset % A to an N*K dataset of points U, using the covariance matrix or matrices % G. G should be either be one K*K matrix, or a K*K*N matrix containing a % covariance matrix for each point in U. % % When U and G are not specified, it estimates the C*C Mahalanobis distance % matrix between all classes in A: the distance between the means, % relative to the average per-class covariance matrix. % % SEE ALSO % DATASETS, DISTM, PROXM, MEANCOV % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: distmaha.m,v 1.4 2010/02/08 15:31:48 duin Exp $ function d = distmaha (a,u,g) prtrace(mfilename); [m,k,c] = getsize(a); a = testdatasize(a); a = testdatasize(a,'features'); if (nargin == 1) % Calculate Mahalanobis distance matrix between classes in dataset: % the distance matrix between the class means, sphered using the % average covariance matrix of the per-class centered data. u = zeros(c,k); for i = 1:c J = findnlab(a,i); if (~isempty(J)) % Mean of class I. u(i,:) = mean(a(J,:),1); % Remove class mean, for later covariance calculation. a(J,:) = a(J,:) - repmat(+u(i,:),length(J),1); end end % Sphere means and calculate distance matrix. [E,V] = preig(covm(a)); u = u*E*sqrt(prinv(V)); d = distm(u); elseif (nargin == 2) % Calculate Euclidean distance between data and means. prwarning(4,'covariance matrix not specified, assuming G = I'); d = distm(a,u); elseif (nargin == 3) % Calculate distance between A and distributions specified by U and G. % Check arguments. [kg1,kg2,cg] = size(g); [cu,ku] = size(u); if any([kg1,kg2,ku] ~= k) | (cu ~= cg & cg ~= 1) error('sizes of mean(s) and covariance(s) do not match') end % Get labels of means if present, or assign labels 1:N. These are % only used in the construction of the dataset D. if (isa(u,'dataset')), labels = getlab(u); else, labels = [1:cu]'; end % If there is only one covariance matrix, invert it here. if (cg == 1), g_inv = prinv(g); end d = zeros(m,cu); for j = 1:cu % If each mean has its own covariance matrix, invert it here. if (cg ~= 1), g_inv = prinv(g(:,:,j)); end % And calculate the standard Mahalanobis distance. d(:,j) = sum((a-repmat(+u(j,:),m,1))'.*(g_inv*(a-repmat(+u(j,:),m,1))'),1)'; end % Construct the distance matrix dataset. d = setdata(a,d,labels); d = setname(d,'Maha Dist'); else error('incorrect number of arguments') end return
github
jacksky64/imageProcessing-master
selectim.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/selectim.m
1,152
utf_8
3422b0b2161ddca7f72bcf27039e7cb3
%SELECTIM Select one or more images in multiband image or dataset % % B = SELECTIM(A,N) % B = A*SELECTIM([],N) % % INPUT % A Multiband image or dataset containing multiband images % N Vector or scalar pointing to desired images % % OUTPUT % B New, reduced, multiband image or dataset % % This function is obsolete. Use the more general command BANDSEL instead. function b = selectim(a,n) if nargin < 2, n = 1; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{n}) b = setname(b,'SelectImage'); return end if isdataset(a) im = data2im(a); if ndims(im) < 3 | ndims(im) > 4 error('3D images expected') elseif ndims(im) == 3 im = im(:,:,n); else im = im(:,:,n,:); end fsize = size(im); if isobjim(a) b = setdat(a,im2obj(im,fsize(1:3))); b = setfeatsize(b,fsize(1:3)); else b = im2feat(im); end elseif isdatafile(a) b = a*filtm([],'selectim',n); elseif isa(a,'double') if ndims(a) ~= 3 error('3D images expected') end b = a(:,:,n); else error('Unexpected datatype') end return
github
jacksky64/imageProcessing-master
doublem.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/doublem.m
452
utf_8
af0d345d5316cb22136b39db9aed4eb6
%DOUBLEM Datafile mapping for conversion to double % % B = DOUBLEM(A) % B = A*DOUBLEM % % For datasets B = A, in all other cases A is converted to double. function a = doublem(a) prtrace(mfilename); if nargin < 1 | isempty(a) a = mapping(mfilename,'fixed'); a = setname(a,'double'); elseif isdataset(a) a = setdat(a,double(+a)); elseif isdatafile(a) a = a*filtm([],'double'); else a = double(a); end return
github
jacksky64/imageProcessing-master
im_harris.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_harris.m
13,420
utf_8
39fab5bf9a6fc25ad377d6d50d407aaa
%IM_HARRIS Harris corner detector % % X = IM_HARRIS(A,N,SIGMA) % % INPUT % A Datafile or dataset with images % N Number of desired Harris points per image (default 100) % SIGMA Smoothing size (default 3) % % OUTPUT % X Dataset with a [N,3] array with for every image % x, y and strength per Harris point. % % DESCRIPTION % We use Kosevi's [1] software to find the corner points according to % Harris [2]. On top of the Kosevi Harris point detector we run % - multi-feature images (e.g. color images) are averaged % - only points that are maximum in a K x K window are selected. % If less points are found, K is iteratively reduced. % The initial value of K is about 4*SIGMA. % Although SIGMA can be interpreted as scaling parameter, it might be % better to appropriately subsample images instead of using a large SIGMA. % % If you use this software for publications, please refer to [1] and [2]. % % REFERENCES % [1] P. D. Kovesi, MATLAB and Octave Functions for Computer Vision and % Image Processing, School of Computer Science & Software Engineering, % The University of Western Australia. Available from: % <http://www.csse.uwa.edu.au/~pk/research/matlabfns/>. % [2] C. Harris and M. Stephens, A combined corner and edge detector, % Proc. 4th Alvey Vision Conf., 1988, pp. 147-151. % % EXAMPLE % delfigs % a = kimia; % take simple shapesas example % b = gendat(a,25)*im_gray; % just 25 images at random % c = data2im(b); % convert dataset to images for display % x = im_harris(b,15,1); % compute maximum 15 Harris points at scale 1 % y = data2im(x); % unpack dataset with results % for j=1:25 % show results one by one % figure(j); imagesc(c(:,:,1,j)); colormap gray; hold on % scatter(y(:,1,1,j),y(:,2,1,j),'r*'); % end % showfigs function x = im_harris(a,n,s,k) prtrace(mfilename); if nargin < 3 | isempty(s), s = 3; end if nargin < 2 | isempty(n), n = 100; end if nargin < 1 | isempty(a) x = mapping(mfilename,'fixed',{n,s}); x = setname(x,'Harris points'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); a = im_gray(a); x = filtim(a,mfilename,{n,s}); else a = double(a); if size(a,3) ~= 1 error('2D gray value image expected'); end [mr,mc] = size(a); % here we put a border of 15 pixels around the image aa = bord(a,NaN,15); % mirroring the border to avoid artificial corners cc = harris(aa,s); % at the image border, finally we take the c = resize(cc,15,mr,mc); % original image size (bord and resize are in ./private) cdip = 1.0*dip_image(c); fsizes = [25,21,17,13,11,9,7,5,3]; F = find(fsizes < 4*s); fsizes = fsizes(F); for fsize = fsizes cmax = double(maxf(cdip,fsize)); % here we find the points that in a fsize-window J = find(cmax == c); % are a local maximum [Iy,Ix] = ind2sub(size(c),J); % second attempt to get rid of image border points K = find(Iy > 3 & Ix >3 & Iy < (mr-2) & Ix < (mc-2)); J = J(K); Z = find(cmax(J) > 0); % find non-zeros only J = J(Z); if length(J) > n % if we have sufficient points break; % stop end % otherwise, get more local maxima end cs = cmax(J); [ss,R] = sort(-cs); % rank Harris points if length(J) >= n % find x,y coordinates of first n Harris points [Iy,Ix] = ind2sub(size(c),J(R(1:n))); x = [Ix, Iy, -ss(1:n)]; else x = zeros(n,3); [Iy,Ix] = ind2sub(size(c),J(R)); x(1:length(R),:) = [Ix, Iy, -ss(1:length(R))]; end end return % HARRIS - Harris corner detector % % Usage: cim = harris(im, sigma) % [cim, r, c] = harris(im, sigma, thresh, radius, disp) % [cim, r, c, rsubp, csubp] = harris(im, sigma, thresh, radius, disp) % % Arguments: % im - image to be processed. % sigma - standard deviation of smoothing Gaussian. Typical % values to use might be 1-3. % thresh - threshold (optional). Try a value ~1000. % radius - radius of region considered in non-maximal % suppression (optional). Typical values to use might % be 1-3. % disp - optional flag (0 or 1) indicating whether you want % to display corners overlayed on the original % image. This can be useful for parameter tuning. This % defaults to 0 % % Returns: % cim - binary image marking corners. % r - row coordinates of corner points. % c - column coordinates of corner points. % rsubp - If five return values are requested sub-pixel % csubp - localization of feature points is attempted and % returned as an additional set of floating point % coords. Note that you may still want to use the integer % valued coords to specify centres of correlation windows % for feature matching. % % If thresh and radius are omitted from the argument list only 'cim' is returned % as a raw corner strength image. You may then want to look at the values % within 'cim' to determine the appropriate threshold value to use. Note that % the Harris corner strength varies with the intensity gradient raised to the % 4th power. Small changes in input image contrast result in huge changes in % the appropriate threshold. % References: % C.G. Harris and M.J. Stephens. "A combined corner and edge detector", % Proceedings Fourth Alvey Vision Conference, Manchester. % pp 147-151, 1988. % % Alison Noble, "Descriptions of Image Surfaces", PhD thesis, Department % of Engineering Science, Oxford University 1989, p45. % Copyright (c) 2002-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % March 2002 - original version % December 2002 - updated comments % August 2005 - changed so that code calls nonmaxsuppts function [cim, r, c, rsubp, csubp] = harris(im, sigma, thresh, radius, disp) error(nargchk(2,5,nargin)); if nargin == 4 disp = 0; end if ~isa(im,'double') im = double(im); end subpixel = nargout == 5; d_x = [-1 0 1; -1 0 1; -1 0 1]; % Derivative masks d_y = d_x'; Ix = conv2(im, d_x, 'same'); % Image derivatives Iy = conv2(im, d_y, 'same'); % Generate Gaussian filter of size 6*sigma (+/- 3sigma) and of % minimum size 1x1. g = fspecial('gaussian',max(1,fix(6*sigma)), sigma); Ix2 = conv2(Ix.^2, g, 'same'); % Smoothed squared image derivatives Iy2 = conv2(Iy.^2, g, 'same'); Ixy = conv2(Ix.*Iy, g, 'same'); % Compute the Harris corner measure. Note that there are two measures % that can be calculated. I prefer the first one below as given by % Nobel in her thesis (reference above). The second one (commented out) % requires setting a parameter, it is commonly suggested that k=0.04 - I % find this a bit arbitrary and unsatisfactory. cim = (Ix2.*Iy2 - Ixy.^2)./(Ix2 + Iy2 + eps); % My preferred measure. % k = 0.04; % cim = (Ix2.*Iy2 - Ixy.^2) - k*(Ix2 + Iy2).^2; % Original Harris measure. if nargin > 2 % We should perform nonmaximal suppression and threshold if disp % Call nonmaxsuppts to so that image is displayed if subpixel [r,c,rsubp,csubp] = nonmaxsuppts(cim, radius, thresh, im); else [r,c] = nonmaxsuppts(cim, radius, thresh, im); end else % Just do the nonmaximal suppression if subpixel [r,c,rsubp,csubp] = nonmaxsuppts(cim, radius, thresh); else [r,c] = nonmaxsuppts(cim, radius, thresh); end end end % NONMAXSUPPTS - Non-maximal suppression for features/corners % % Non maxima suppression and thresholding for points generated by a feature % or corner detector. % % Usage: [r,c] = nonmaxsuppts(cim, radius, thresh, im) % / % optional % % [r,c, rsubp, csubp] = nonmaxsuppts(cim, radius, thresh, im) % % Arguments: % cim - corner strength image. % radius - radius of region considered in non-maximal % suppression. Typical values to use might % be 1-3 pixels. % thresh - threshold. % im - optional image data. If this is supplied the % thresholded corners are overlayed on this % image. This can be useful for parameter tuning. % Returns: % r - row coordinates of corner points (integer valued). % c - column coordinates of corner points. % rsubp - If four return values are requested sub-pixel % csubp - localization of feature points is attempted and % returned as an additional set of floating point % coords. Note that you may still want to use the integer % valued coords to specify centres of correlation windows % for feature matching. % % Copyright (c) 2003-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % September 2003 Original version % August 2005 Subpixel localization and Octave compatibility function [r,c, rsubp, csubp] = nonmaxsuppts(cim, radius, thresh, im) v = version; Octave = v(1)<'5'; % Crude Octave test subPixel = nargout == 4; % We want sub-pixel locations [rows,cols] = size(cim); % Extract local maxima by performing a grey scale morphological % dilation and then finding points in the corner strength image that % match the dilated image and are also greater than the threshold. sze = 2*radius+1; % Size of dilation mask. mx = ordfilt2(cim,sze^2,ones(sze)); % Grey-scale dilate. % Make mask to exclude points within radius of the image boundary. bordermask = zeros(size(cim)); bordermask(radius+1:end-radius, radius+1:end-radius) = 1; % Find maxima, threshold, and apply bordermask cimmx = (cim==mx) & (cim>thresh) & bordermask; [r,c] = find(cimmx); % Find row,col coords. if subPixel % Compute local maxima to sub pixel accuracy if ~isempty(r) % ...if we have some ponts to work with ind = sub2ind(size(cim),r,c); % 1D indices of feature points w = 1; % Width that we look out on each side of the feature % point to fit a local parabola % Indices of points above, below, left and right of feature point indrminus1 = max(ind-w,1); indrplus1 = min(ind+w,rows*cols); indcminus1 = max(ind-w*rows,1); indcplus1 = min(ind+w*rows,rows*cols); % Solve for quadratic down rows cy = cim(ind); ay = (cim(indrminus1) + cim(indrplus1))/2 - cy; by = ay + cy - cim(indrminus1); rowshift = -w*by./(2*ay); % Maxima of quadradic % Solve for quadratic across columns cx = cim(ind); ax = (cim(indcminus1) + cim(indcplus1))/2 - cx; bx = ax + cx - cim(indcminus1); colshift = -w*bx./(2*ax); % Maxima of quadradic rsubp = r+rowshift; % Add subpixel corrections to original row csubp = c+colshift; % and column coords. else rsubp = []; csubp = []; end end if nargin==4 & ~isempty(r) % Overlay corners on supplied image. if Octave warning('Only able to display points under Octave'); if subPixel plot(csubp,rsubp,'r+'), title('corners detected'); else plot(c,r,'r+'), title('corners detected'); end [rows,cols] = size(cim); axis([1 cols 1 rows]); axis('equal'); axis('ij') else figure(1), imshow(im,[]), hold on if subPixel plot(csubp,rsubp,'r+'), title('corners detected'); else plot(c,r,'r+'), title('corners detected'); end end end
github
jacksky64/imageProcessing-master
filtm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/filtm.m
3,963
utf_8
7a05a77f873c14f7b9776858cb33417a
%FILTM Mapping to filter objects in datasets and datafiles % % B = FILTM(A,FILTER_COMMAND,{PAR1,PAR2,....},SIZE) % B = A*FILTM([],FILTER_COMMAND,{PAR1,PAR2,....},SIZE) % % INPUT % A Dataset or datafile % FILTER_COMMAND String with function name % {PAR1, ... } Cell array with optional parameters to FILTER_COMMAND % SIZE Output size of the mapping (default: input size) % % OUTPUT % B Dataset or datafile of images processed by FILTER_COMMAND % % DESCRIPTION % For each object stored in A a filter operation is performed as % % OBJECT_OUT = FILTER_COMMAND(OBJECT_IN,PAR1,PAR2,....) % % The results are collected and stored in B. In case A (and thereby B) is % a datafile, execution is postponed until conversion into a dataset, or a % call to SAVEDATAFILE or CREATEDATAFILE. % % EXAMPLES % b = filtm(a,'conv2',{[-1 0 1; -1 0 1; -1 0 1],'same'}); % Performs a convolution with a horizontal gradient filter (see CONV2). % % There is a similar command FILTIM that is recommended for handling % multi-band images. % % SEE ALSO % DATASETS, DATAFILES, IM2OBJ, DATA2IM, IM2FEAT, DATGAUSS, DATFILT, FILTIM % SAVEDATAFILE ,CREATEDATAFILE % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = filtm(a,command,pars,outsize) prtrace(mfilename); if nargin < 4, outsize = []; end if nargin < 3, pars = {}; end if nargin < 2 error('No command given') end if ~iscell(pars), pars = {pars}; end mapname = 'dataset/file image filtering'; if isempty(a) % no data, so just mapping definition b = mapping(mfilename,'fixed',{command,pars}); if ~isempty(outsize) b = setsize_out(b,outsize); end b = setname(b,mapname); elseif isdatafile(a) % for datafiles filters are stored if isempty(getpostproc(a)) & ~ismapping(command) % as preprocessing (if no postproc defined) b = addpreproc(a,command,pars,outsize); else % or as mapping as postprocessing if ismapping(command) % we have already a mapping v = command; else % just a string, construct mapping v = mapping(mfilename,'fixed',{command,pars}); v = setname(v,mapname); end if ~isempty(outsize) % user wants to set an output size (hope he has good reasons) v = setsize_out(v,outsize); % add it to mapping end b = addpostproc(a,v); % store mapping end if ~isempty(outsize) b = setfeatsize(b,outsize); % set featsize equal to output size end return elseif isdataset(a) % are executed here m = size(a,1); d = +a; imsize = getfeatsize(a); % Perform command on first image to check whether image size stays equal if length(imsize) == 1 imsize = [1 imsize]; end first = execute(command,reshape(d(1,:),imsize),pars); first = double(first); % for DipLib users if isempty(outsize) outsize = size(first); end % process all other images out = repmat(first(:)',m,1); for i = 2:m ima = double(execute(command,reshape(d(i,:),imsize),pars)); sima = size(ima); if (any(outsize ~= sima(1:length(outsize)))) error('All image sizes should be the same') end out(i,:) = ima(:)'; end % store processed images in dataset b = setdata(a,out); b = setfeatsize(b,outsize); elseif iscell(a) b = cell(size(a)); n = numel(b); s = sprintf('Filtering %i objects: ',n); prwaitbar(n,s); for i=1:n prwaitbar(n,i,[s int2str(i)]); b{i} = feval(mfilename,a{i},command,pars,outsize); end prwaitbar(0); else b = feval(command,a,pars{:}); end return function out = execute(command,a,pars) exist_command = exist(command); if isstr(command) & any([2 3 5 6] == exist_command) out = feval(command,a,pars{:}); elseif ismapping(command) out = map(a,command); else error('Filter command not found') end return
github
jacksky64/imageProcessing-master
perc.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/perc.m
1,819
utf_8
0074226bc6558b7c32d83f440cdb313d
%PERC Percentile combining classifier % % W = PERC(V,P) % W = V*PERC([],P) % % INPUT % V Set of classifiers % P Percentile, 0 <= P <= 100 % % OUTPUT % W Percentile combining classifier on V % % DESCRIPTION % If V = [V1,V2,V3, ... ] is a set of classifiers trained on the % same classes and W is the percentile combiner: it selects the class % defined by the percentile of the outputs of the input classifiers. This % might also be used as A*[V1,V2,V3]*PERC([],P) in which A is a dataset to % be classified. % % PERC([],0) is equal to MINC % PERC([],50) is equal to MEDIANC % PERC([],100) is equal to MAXC % % If it is desired to operate on posterior probabilities then the % input classifiers should be extended like V = V*CLASSC; % % The base classifiers may be combined in a stacked way (operating % in the same feature space by V = [V1,V2,V3, ... ] or in a parallel % way (operating in different feature spaces) by V = [V1;V2;V3; ... ] % % SEE ALSO % MAPPINGS, DATASETS, VOTEC, MAXC, MINC, MEANC, MEDIANC, PRODC, % AVERAGEC, STACKED, PARALLEL % % EXAMPLES % See PREX_COMBINING % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function w = perc(p1,par) if nargin < 2 | par < 0 | par > 100 error('Percentile between 0 and 100 should be defined for percentile combiner') end type = 'perc'; % define the operation processed by FIXEDCC. % define the name of the combiner. % this is the general procedure for all possible calls of fixed combiners % handled by FIXEDCC name = 'Percentile combiner'; if nargin == 0 w = mapping('fixedcc','combiner',{[],type,name,par}); else w = fixedcc(p1,[],type,name,par); end if isa(w,'mapping') w = setname(w,name); end return
github
jacksky64/imageProcessing-master
mds_cs.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/mds_cs.m
3,083
utf_8
3146fafdcca70fc84952a465cab553ce
% MDS_CS Classical scaling % % W = MDS_CS(D,N) % % INPUT % D Square dissimilarity matrix of the size M x M % N Desired output dimensionality (optional; default: 2) % % OUTPUT % W Classical scaling mapping % % DESCRIPTION % A linear mapping of objects given by a symmetric distance matrix D with % a zero diagonal onto an N-dimensional Euclidean space such that the square % distances are preserved as much as possible. % % D is assumed to approximate the Euclidean distances, i.e. % D_{ij} = sqrt(sum_k (x_i-x_j)^2). % % % REFERENCES % 1. I. Borg and P. Groenen, Modern Multidimensional Scaling, Springer Verlag, Berlin, % 1997. % 2. T.F. Cox and M.A.A. Cox, Multidimensional Scaling, Chapman and Hall, London, 1994. % % SEE ALSO % MAPPINGS, MDS_INIT, MDS_CS % % Copyright: Elzbieta Pekalska, Robert P.W. Duin, [email protected], 2000-2003 % Faculty of Applied Sciences, Delft University of Technology % function W = mds_cs (D,n) if nargin < 2, n = 2; end if nargin < 1 | isempty(D) W = mapping(mfilename,n); W = setname(W,'Classical MDS'); return end [m,mm] = size(D); if (isa(D,'dataset') | isa(D,'double')) if isa(n,'mapping') % The projection is already defined; apply it to new data w = getdata(n); [m,n] = size(D); if isa(D,'dataset'), lab = getlab(D); D = +D; else lab = []; end D = remove_nan(D); D = D.^2; Q = w{1}; me = w{2}; L = w{3}; Z = -repmat(1/n,n,n); Z(1:n+1:end) = Z(1:n+1:end) + 1; % Z = eye(n) - ones(n,n)/n data = -0.5 * (D - me(ones(m,1),:)) * Z * Q * diag(sqrt(abs(L))./L); if ~isempty(lab), W = dataset(data,lab); else W = data; end return; end end % Definition of the projection; we are here only if there is no projection yet if ~issym(D,1e-12), error('Matrix should be symmetric.') end D = remove_nan(D); D = +D.^2; B = -repmat(1/m,m,m); B(1:m+1:end) = B(1:m+1:end) + 1; % B = eye(m) - ones(m,m)/m B = -0.5 * B * D * B; % B is now the matrix of inner products ok = 0; p = 1; k = min (p*n,m); options.disp = 0; options.isreal = 1; options.issym = 1; while ~ok & k <= m, % Find k largest eigenvalues k = min (p*n,m); [V,S,U] = eigs(B,k,'lm',options); s = diag(real(S)); [ss,I] = sort(-s); ok = sum(s>0) >= n; p = p+1; end if ~ok & k == m, error ('The wanted configuration cannot be found.'); end J = I(1:n); W = mapping(mfilename,'trained',{V(:,J), mean(D,2)', s(J)},[],m,length(J)); W = setname(W,'Classical MDS'); return function D = remove_nan(D) % Remove all appearing NaN's by replacing them by the nearest neighbors. % [m,mm] = size(D); nanindex = find(isnan(D(:))); if ~isempty(nanindex), for i=1:m K = find(isnan(D(i,:))); I = 1:mm; [md,kk] = min(D(i,:)); if md < eps, I(kk) = []; end D(i,K) = min(D(i,I)); end % check whether the diagonal is of all zeros if length(intersect(find(D(:) < eps), 1:m+1:(m*m))) >= m, D = (D+D')/2; end end
github
jacksky64/imageProcessing-master
rsquared.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rsquared.m
727
utf_8
c4f5d33e644e6c2cdbbdc3edefb6c7e4
%RSQUARED R^2 statistic % % E = RSQUARED(X,W) % E = RSQUARED(X*W) % E = X*W*RSQUARED % % INPUT % X Regression dataset % W Regression mapping % % OUTPUT % E The R^2-statistic % % DESCRIPTION % Compute the R^2 statistic of regression W on dataset X. % % SEE ALSO % TESTR % Copyright: D.M.J. Tax, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function r2 = rsquared(x,w) if nargin==0 r2 = mapping(mfilename,'fixed'); return elseif nargin==1 y = gettargets(x); yhat = +x(:,1); meany = mean(y); r2 = (sum((yhat-meany).^2))/(sum((y-meany).^2)); else ismapping(w); istrained(w); r2 = feval(mfilename, x*w); end
github
jacksky64/imageProcessing-master
im_skel.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_skel.m
816
utf_8
8b6fef0e8819522166a1b00bf7a945ca
%IM_SKEL Skeleton of binary images stored in a dataset (DIP_Image) % % B = IM_SKEL(A) % B = A*IM_SKEL % % INPUT % A Dataset with binary object images dataset % % OUTPUT % B Dataset with skeleton images % % SEE ALSO % DATASETS, DATAFILES, DIP_IMAGE, BSKELETON % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_berosion(a) prtrace(mfilename); if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed'); b = setname(b,'Image skeleton'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtim(a,mfilename); elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image a = dip_image(a,'bin'); b = bskeleton(a,0,'natural'); end return
github
jacksky64/imageProcessing-master
klm.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/klm.m
1,967
utf_8
d875ae891450009ebf5dfea7d03bb079
%KLM Karhunen-Loeve Mapping (PCA or MCA of mean covariance matrix) % % [W,FRAC] = KLM(A,N) % [W,N] = KLM(A,FRAC) % % INPUT % A Dataset % N or FRAC Number of dimensions (>= 1) or fraction of variance (< 1) % to retain; if > 0, perform PCA; otherwise MCA. % Default: N = inf. % % OUTPUT % W Affine Karhunen-Loeve mapping % FRAC or N Fraction of variance or number of dimensions retained. % % DESCRIPTION % The Karhunen-Loeve Mapping performs a principal component analysis % (PCA) or minor component analysis (MCA) on the mean class covariance % matrix (weighted by the class prior probabilities). It finds a % rotation of the dataset A to an N-dimensional linear subspace such % that at least (for PCA) or at most (for MCA) a fraction FRAC of the % total variance is preserved. % % PCA is applied when N (or FRAC) >= 0; MCA when N (or FRAC) < 0. If N % is given (abs(N) >= 1), FRAC is optimised. If FRAC is given % (abs(FRAC) < 1), N is optimised. % % Objects in a new dataset B can be mapped by B*W, W*B or by % A*KLM([],N)*B. Default (N = inf): the features are decorrelated and % ordered, but no feature reduction is performed. % % ALTERNATIVE % % V = KLM(A,0) % % Returns the cummulative fraction of the explained variance. V(N) is % the cumulative fraction of the explained variance by using N % eigenvectors. % % Use PCA for a principal component analysis on the total data % covariance. Use FISHERM for optimizing the linear class % separability (LDA). % % This function is basically a wrapper around pcaklm.m. % % SEE ALSO % MAPPINGS, DATASETS, PCAKLM, PCLDC, KLLDC, PCA, FISHERM % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands % $Id: klm.m,v 1.2 2006/03/08 22:06:58 duin Exp $ function [w,truefrac] = klm (varargin) prtrace(mfilename); [w,truefrac] = pcaklm(mfilename,varargin{:}); return
github
jacksky64/imageProcessing-master
im_gray.m
.m
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_gray.m
1,529
utf_8
f259e1fe56cc90cab8d8e3ac4efe0e7f
%IM_GRAY Conversion of multi-band images into gray images % % B = IM_GRAY(A,V) % B = A*IM_GRAY([],V) % % INPUT % A Multiband image or dataset with multi-band images as objects % V Weight vector, one weight per band. Default: equal weights. % % OUTPUT % B Output image or dataset. % % DESCRIPTION % The multi-band components in the image A (3rd dimension) or in the % objects in the dataset A are weigthed (default: equal weights) and % averaged. % % SEE ALSO % MAPPINGS, DATASETS, DATAFILES % Copyright: R.P.W. Duin, [email protected] % Faculty EWI, Delft University of Technology % P.O. Box 5031, 2600 GA Delft, The Netherlands function b = im_gray(a,v) prtrace(mfilename,2); if nargin < 2, v = []; end if nargin < 1 | isempty(a) b = mapping(mfilename,'fixed',{v}); b = setname(b,'Color-to-gray conversion'); elseif isa(a,'dataset') % allows datafiles too isobjim(a); b = filtm(a,mfilename,v); imsize = getfeatsize(a); b = setfeatsize(b,imsize(1:2)); else a = double(a); imsize = size(a); if isempty(v) if length(imsize) == 3 b = mean(a,3); b = squeeze(b); elseif length(imsize) == 2 b = a; else error('Illegal image size') end else if length(imsize) == 2 b = a; else b = zeros(imsize(1),imsize(2),size(a,1)); for i=1:size(a,1) for j=1:size(im,3) b(:,:,i) =b(:,:,i) + b(:,:,j,i)*v(j); end end end end end return