plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
jacksky64/imageProcessing-master
|
savedatafile.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/savedatafile.m
| 8,730 |
utf_8
|
95058a04ca5983f539f85772424cc56a
|
%SAVEDATAFILE Save datafile
%
% B = SAVEDATAFILE(A,FEATSIZE,NAME,NBITS,FILESIZE)
%
% INPUT
% A Datafile, or cell array with datafiles and/or datasets
% FEATSIZE Feature size, i.e. image size of a single object in B
% Default: as it is.
% NAME Desired name of directory
% NBITS # of bits in case of rescaling (8,16 or 32)
% Default: no rescaling
% FILESIZE # of elements stored in a single file
% Default 10000000.
%
% OUTPUT
% B New datafile
%
% The datafile A is completed by desired preprocessing and postprocessing.
% It should therefore be convertable to a dataset. It is saved in the
% directory NAME and B refers to it. If desired the data and target fields
% are compressed (after appropriate rescaling) to NBITS unsigned integers.
% The stored datafile can be retrieved by
%
% B = DATAFILE(NAME)
%
% B is a 'mature' datafile, i.e. a dataset distributed over a number of
% files with maximum size FILESIZE. This has only advantages over a 'raw'
% datafile defined for a directory of images in case of substantial pre-
% and postprocessing, due to the overhead of the dataset construct of B.
% FEATSIZE can be used to reshape the size of object (e.g. from 256 to
% [16 16])
%
% If A is cell array with datafiles and/or datasets, they are first
% horizontally concatenated before the datafile is written. The first
% element in A should be a datafile.
%
% The difference with CREATEDATAFILE is that SAVEDATAFILE assumes that
% the datafile after completion by preprocessing can be converted into a
% dataset and the data is stored as such and a sompact as possible.
% CREATEDATAFILE saves every object in a separate file and is thereby
% useful in case preprocessing does not yield a proper dataset with the
% same number of features for every object.
%
% SEE ALSO DATAFILES, DATASETS, CREATEDATAFILE
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function c = savedatafile(dfile_in,featsize,dirr,nbits,filesize)
prtrace(mfilename,1);
if iscell(dfile_in)
b = dfile_in{1};
[m,k] = size(b);
for j=2:length(dfile_in(:))
if size(dfile_in{j},1) ~= m
error('Datafiles or datasets to be combined should have equal number of objects')
end
k = k+size(dfile_in{j},2);
end
else
b = dfile_in;
[m,k] = size(b);
end
isvaldfile(b);
c = b;
if nargin < 5 % maximum nr of elements in datafile
filesize = 1000000;
end
if nargin < 4 | isempty(nbits) % default: no conversion
nbits = 0;
end
if nargin < 3 | isempty(dirr) % invent name if not supplied
name = getname(b);
if ~isempty(name) & length(name) > 10
name = [deblank(name(1:10)) '_'];
else
name = 'PRDatafile_';
end
dirr = [name num2str(round(rand*100000))]; % make it unique
dirr = fullfile(pwd,dirr); %DXD store it in the working dir
end
if all(nbits ~= [0 1 8 16 32])
error('Illegal number of bits supplied for conversion')
end
if nargin < 2, featsize = []; end
% reorder datafile for faster retrieval
if isdatafile(b) & ~iscell(dfile_in)
file_index = getident(b.dataset,'file_index');
[jj,R] = sort(file_index(:,1)+file_index(:,2)/(max(file_index(:,2),[],1)+1));
b = b(R,:);
end
%[m,k] = size(b);
nobj= floor(filesize/k); % # of objects per file
if nobj<1
error('Filesize is too small. A single object does not even fit in!');
end
nfiles = ceil(m/nobj); % # of files needed
if exist(dirr) == 7 % if datafile already exists
act_dir = pwd;
cd(dirr); % go to it
fclose('all');
delete *.mat % make it empty
delete file*
cd(act_dir) % return to original directory
else % otherwise create it
[pp,ff] = fileparts(dirr);
if isempty(pp)
pp = pwd;
end
mkdir(pp,ff)
end
obj1 = 1; % initialise start object
obj2 = min(obj1+nobj-1,m); % initialise end object
file_index = zeros(m,2);
s = sprintf('Saving %4i datafiles: ',nfiles);
prwaitbar(nfiles,s);
spaces = ' ';
% initialise structure with file information
cfiles = struct('name',cell(1,nfiles),'nbits',[], ...
'offsetd',[],'scaled',[],'offsett',[],'scalet',[]);
for j=1:nfiles % run over all files to be created
prwaitbar(nfiles,j,[s int2str(j)]);
a = dataset(b(obj1:obj2,:)); % convert objects for a single file into dataset
if iscell(dfile_in)
for i=2:length(dfile_in(:))
a = [a dataset(dfile_in{i}(obj1:obj2,:))];
end
end
if ~isempty(featsize)
if prod(featsize) ~= prod(getfeatsize(a))
error('Desired feature size does not match size of data')
else
a = setfeatsize(a,featsize);
end
end
lendata = size(a,2);
[a,scaled,offsetd,scalet,offsett,prec] = convert(a,nbits); % convert precision
filej = ['file',num2str(j)];
fname = fullfile(dirr,filej);
fid = fopen(fname,'w');
if fid<0
error('Unable to write file %s.',fname);
end
fwrite(fid,[a.data a.targets]',prec); % store
fclose(fid);
cfiles(j).name = filej; % name of the file
cfiles(j).prec = prec; % precision
cfiles(j).scaled = scaled; % scaling for datafield
cfiles(j).offsetd = offsetd; % offset for datafield
cfiles(j).scalet = scalet; % scaling for target field
cfiles(j).offsett = offsett; % offset for target field
cfiles(j).sized = a.featsize; % feature (image) size
cfiles(j).sizet = size(a.targets,2); % size target field
% create file_index
file_index(obj1:obj2,1) = repmat(j,obj2-obj1+1,1);
file_index(obj1:obj2,2) = [1:obj2-obj1+1]';
obj1 = obj2+1; % update start object
obj2 = min(obj1+nobj-1,m); % update end object
end
prwaitbar(0);
% finalise datafile definition
c.files = cfiles; % file information
c.type = 'mature'; % mature datafile
preproc.preproc = [];
preproc.pars = {};
c.preproc = preproc; % no preprocessing
c.postproc = mapping([]); % default postprocessing
featsize = getfeatsize(a); % copy feature (image) size
c.postproc = setsize_in(c.postproc,featsize); % set input and ...
c.postproc = setsize_out(c.postproc,featsize); % output size postprocessing
c.dataset = setfeatsize(c.dataset,getfeatsize(a)); % set size datafile
c.dataset = setident(c.dataset,file_index,'file_index'); % store file_index
%DXD give it the name of the directory, not the complete path:
%c.dataset = setname(c.dataset,dirr);
[pname,dname] = fileparts(dirr);
c.dataset = setname(c.dataset,dname);
if isempty(pname), pname = pwd; end
c.rootpath = fullfile(pname,dname);
%DXD this path/filename is *very* strange!
%save(fullfile(pwd,dirr,dirr),'c'); % store the datafile as mat-file for fast retrieval
%DXD I changed it into this:
%save(fullfile(dirr,filej),'c'); % store the datafile as mat-file for
%fast retrieval
save(fullfile(dirr,dname),'c'); % store the datafile as mat-file for fast retrieval
%closemess([],len1+len2);
return
function [a,scaled,offsetd,scalet,offsett,prec] = convert(a,nbits)
% handle precision data and target fields
if nbits == 0 % no conversion
scaled = [];
offsetd = [];
scalet = [];
offsett = [];
prec = 'double';
return;
end
% compute data field conversion pars
data = +a;
maxd = max(max(data));
mind = min(min(data));
scaled = (2^nbits)/(maxd-mind);
offsetd = -mind;
data = (data+offsetd)*scaled;
% compute target field conversion pars
targ = gettargets(a);
if isempty(targ) % no targets set
scalet = [];
offsett = [];
else
maxt = max(max(targ));
mint = min(min(targ));
scalet = (2^nbits)/(maxt-mint);
offsett = -mint;
targ = (targ+offsett)*scalet;
end
% execute conversion
switch nbits
case 8
data = uint8(data);
targ = uint8(targ);
prec = 'uint8';
case 16
data = uint16(data);
targ = uint16(targ);
prec = 'uint16';
case 32
data = uint32(data);
targ = uint32(targ);
prec = 'uint32';
otherwise
error('Desired conversion type not found')
end
% store results
a.data = data;
a.targets = targ;
return
|
github
|
jacksky64/imageProcessing-master
|
pls_transform.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/pls_transform.m
| 1,490 |
utf_8
|
5ebad849b7f357810fd3db9d4b823ba5
|
%pls_transform Partial Least Squares transformation
%
% T = pls_transform(X,R)
% T = pls_transform(X,R,Options)
%
% INPUT
% X [N -by- d_X] the input data matrix, N samples, d_X variables
% R [d_X -by- nLV] the transformation matrix: T_new = X_new*R
% (X_new here after preprocessing, preprocessing and un-preprocessing
% could be done automatically (than Options contains info about
% preprocessing) or manually); normally, R as a field of XRes
% output parameter of pls_train routine
%
% Options structure returned by pls_train (if not supplied then will be
% no preprocessing performed)
%
% OUTPUT
% T [N -by- nLV] scores -- transformed data
%
% DESCRIPTION
% Applys PLS (Partial Least Squares) regression model
%
% SEE ALSO
% pls_train, pls_apply
% Copyright: S.Verzakov, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: pls_transform.m,v 1.1 2007/08/28 11:00:39 davidt Exp $
function T = pls_transform(X,R,Options)
if nargin < 3
Options = [];
end
DefaultOptions.X_centering = [];
DefaultOptions.Y_centering = [];
DefaultOptions.X_scaling = [];
DefaultOptions.Y_scaling = [];
Options = pls_updstruct(DefaultOptions, Options);
[N, d_X] = size(X);
[d_XR, nLv] = size(R);
if d_X ~= d_XR
error('size(X,2) must be equal to size(R,1)');
end
T = pls_prepro(X, Options.X_centering, Options.X_scaling)*R;
return;
|
github
|
jacksky64/imageProcessing-master
|
prdatafiles.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prdatafiles.m
| 3,108 |
utf_8
|
2a830c3be91c9058ada3978a7534d5bd
|
%PRDATAFILES Checks availability of a PRTools datafile
%
% PRDATAFILES
%
% Checks the availability of the 'prdatafiles' directory, downloads the
% Contents file and m-files if necessary and adds it to the search path.
% Lists Contents file.
%
% PRDATAFILES(DFILE)
%
% Checks the availability of the particular datafile DFILE. DFILE should be
% the name of the m-file. If it does not exist in the 'prdatafiles'
% directory an attempt is made to download it from the PRTools web site.
%
% PRDATAFILES(DFILEDIR,SIZE,URL)
%
% This command should be used inside a PRDATAFILES m-file. It checks the
% availability of the particular datafile directory DFILEDIR and downloads
% it if needed. SIZE is the size of the datafile in Mbyte, just used to
% inform the user. In URL the web location may be supplied. Default is
% http://prtools.org/prdatafiles/DFILEDIR.zip
%
% All downloading is done interactively and should be approved by the user.
%
% SEE ALSO
% DATAFILES, PRDATASETS, PRDOWNLOAD
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function prdatafiles(dfile,siz,url)
if nargin < 1, dfile = []; end
if nargin < 2, siz = []; end
if nargin < 3 | isempty(url)
url = ['http://prtools.org/prdatafiles/' dfile '.zip'];
end
if exist('prdatafiles/Contents','file') ~= 2
path = input(['The directory prdatafiles is not found in the search path.' ...
newline 'If it exists, give the path, otherwise hit the return for an automatic download.' ...
newline 'Path to prdatafiles: '],'s');
if ~isempty(path)
addpath(path);
feval(mfilename,dfile,siz);
return
else
[ss,dirname] = prdownload('http://prtools.org/prdatafiles/prdatafiles.zip','prdatafiles');
addpath(dirname)
end
end
if isempty(dfile) % just list Contents file
help('prdatafiles/Contents')
elseif ~isempty(dfile) & nargin == 1 % check / load m-file
% renew all m-files
if strcmp(dfile,'renew')
if exist('prdatafiles/Contents','file') ~= 2
% no prdatafiles in the path, just start
feval(mfilename);
else
dirname = fileparts(which('prdatafiles/Contents'));
prdownload('http://prtools.org/prdatafiles/prdatafiles.zip',dirname);
end
% this just loads the m-file in case it does not exist and updates the
% Contents file
elseif exist(['prdatafiles/' dfile],'file') ~= 2
prdownload(['http://prtools.org/prdatafiles/' dfile '.m'],'prdatafiles');
prdownload('http://prtools.org/prdatafiles/Contents.m','prdatafiles');
end
else % dfile is now the name of the datafile directory
%It might be different from the m-file, so we cann't check it.
rootdir = fileparts(which('prdatafiles/Contents'));
if exist(fullfile(rootdir,dfile),'dir') ~= 7
siz = ['(' num2str(siz) ' MB)'];
q = input(['Datafile is not available, OK to download ' siz ' [y]/n ?'],'s');
if ~isempty(q) & ~strcmp(q,'y')
error('Datafile not found')
end
prdownload(url,rootdir);
disp(['Datafile ' dfile ' ready for use'])
end
end
|
github
|
jacksky64/imageProcessing-master
|
vandermondem.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/vandermondem.m
| 1,043 |
utf_8
|
908771c54d917ff448e9c41eb1bface9
|
%VANDERMONDEM Extend data matrix
%
% Z = VANDERMONDEM(X,N)
%
% INPUT
% X Data matrix
% N Order of the polynomail
%
% OUTPUT
% Z New data matrix containing X upto order N
%
% DESCRIPTION
% Construct the Vandermonde matrix Z from the original data matrix X by
% including all orders upto N. Note that also order 0 is added:
% Z = [ones X X^2 X^3 ... X^N]
% This construction allows for the trivial extension of linear methods
% to obtain polynomail regressions.
%
% SEE ALSO
% LINEARR
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function z = vandemondem(x,n)
if nargin<2, n=1; end
if nargin<1 | isempty(x)
z = mapping(mfilename,'fixed',{n});
z = setname(z,'Vandemonde map');
return
end
% no training, just evaluation:
dat = +x;
[m,dim] = size(dat);
I = 1:dim;
z = ones(m,n*dim+1);
for i=0:(n-1)
z(:,(i+1)*dim+I) = dat.*z(:,i*dim+I);
end
% remove the superfluous ones:
z(:,1:dim-1) = [];
z = setdat(x,z);
return
|
github
|
jacksky64/imageProcessing-master
|
modselc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/modselc.m
| 5,399 |
utf_8
|
3a438f73efa5f4bc8e705b530915c7f8
|
% MODSELC Model selection
%
% V = MODSELC(A,W,N,NREP)
% V = A*(W*MODSELC([],N,NREP))
%
% INPUT
% A Dataset used for training base classifiers and/or selection
% B Dataset used for testing (executing) the selector
% W Set of trained or untrained base classifiers
% N Number of crossvalidations, default 10
% NREP Number of crossvalidation repetitions
%
% OUTPUT
% V Selected classidfer
%
% DESCRIPTION
% This routine selects out of a set of given classifiers stored in W the
% best one on the basis of N-fold crossvalidation (see CROSSVAL), which
% might be repeated NREP times. If W contains a set of already trained
% classifiers, N and NREP are neglected and just the best classifier
% according to the evaluation set A is returned.
%
% This routine can be considered as a classifier combiner based on global
% selection. See DCSC for local, dynamic selection.
%
% SEE ALSO
% DATASETS, MAPPINGS, STACKED, DCSC, CLASSC, TESTD, LABELD
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function OUT = modselc(par1,par2,par3,par4)
prtrace(mfilename);
name = 'Classifier Model Selection';
DefaultN = 10;
DefaultNrep = 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Empty Call MODSELC, MODSELC([],N,NREP)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargin < 1 | isempty(par1)
if nargin > 1 & (ismapping(par2) | iscell(par2))
if nargin < 4 | isempty(par4), par4 = DefaultNrep; end
if nargin < 3 | isempty(par3), par3 = DefaultN; end
OUT = mapping(mfilename,'untrained',{par2,par3,par4});
else
if nargin < 3 | isempty(par3), par3 = DefaultNrep; end
if nargin < 2 | isempty(par2), par2 = DefaultN; end
% If there are no inputs, return an untrained mapping.
% (PRTools transfers the latter into the first)
OUT = mapping(mfilename,'combiner',{par2,par3});
end
OUT = setname(OUT,name);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Storing Base Classifiers: W*MODSELC, MODSELC(W,N,NREP)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif ismapping(par1)
if nargin < 3 | isempty(par3), par3 = DefaultNrep; end
if nargin < 2 | isempty(par2), par2 = DefaultN; end
% call like OUT = MODSELC(W,N) or OUT = W*MODSELC([],N)
% store trained or untrained base classifiers,
% ready for later training of the combiner
BaseClassf = par1;
if ~isparallel(BaseClassf) & ~isstacked(BaseClassf)
error('Parallel or stacked set of base classifiers expected');
end
OUT = mapping(mfilename,'untrained',{BaseClassf,par2,par3});
OUT = setname(OUT,name);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Selection (and training base classifiers if needed):
% A*(W*MODSELC), A*(W*MODSELC([],N,NREP)), MODSELC(A,W,N,NREP)
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
elseif isdataset(par1) & ismapping(par2) & ...
(isuntrained(par2) | (istrained(par2) & (isstacked(par2) | isparallel(par2))))
% call like OUT = MODSELC(TrainSet,W,N,NREP) or TrainSet*(W*MODSELC([],N,NREP))
% (PRTools transfers the latter into the first)
% W is a set of trained or untrained set classifiers.
if nargin < 4 | isempty(par4), par4 = DefaultNrep; end
if nargin < 3 | isempty(par3), par3 = DefaultN; end
TrainSet = par1;
BaseClassf = par2;
N = par3;
Nrep = par4;
isvaldfile(TrainSet,1,2); % at least one object per class, 2 classes
TrainSet = setprior(TrainSet,getprior(TrainSet,0)); % avoid many warnings
if ~(isstacked(BaseClassf) | isparallel(BaseClassf))
if iscombiner(BaseClassf)
error('No base classifiers found')
end
Data = getdata(BaseClassf);
BaseClassf = Data.BaseClassf; % base classifiers were already stored
end
if isuntrained(BaseClassf) % base classifiers untrained, crossval needed
randstate = randreset; % makes routine reproducing
if isparallel(BaseClassf)
BaseClassf = getdata(BaseClassf);
tsize = BaseClassf{end};
if ismapping(tsize)
error(['Training of parallel combined untrained classifier not possible.' ...
newline 'Feature sizes should be stored in the classifier first.'])
end
csize = cumsum([0 tsize(:)']);
n = length(BaseClassf)-1;
e = zeros(1,n);
rstate = randreset;
s = sprintf('Crossvalidating %i base classifiers: ',n);
prwaitbar(n,s)
for j=1:n
prwaitbar(n,j,[s getname(BaseClassf{j})]);
randreset(1);
e(j) = crossval(TrainSet(:,csize(j)+1:csize(j+1)),BaseClassf{j},N,Nrep);
end
prwaitbar(0);
[ee,k] = min(e);
J = [csize(k)+1:csize(k+1)];
OUT = TrainSet(:,J)*BaseClassf{k};
OUT = featsel(csize(end),J)*OUT;
else
if isstacked(BaseClassf)
BaseClassf = getdata(BaseClassf);
end
randreset(1);
e = crossval(TrainSet,BaseClassf,N,Nrep);
[ee,k] = min(e);
OUT = TrainSet*BaseClassf{k};
end
randreset(randstate);
else % base classifiers are trained, check label lists and find best one
BaseClassf = getdata(BaseClassf);
n = length(BaseClassf);
for j=1:n
if ~isequal(getlabels(BaseClassf{j}),getlablist(TrainSet))
error('Training set and base classifiers should deal with same labels')
end
end
e = testc(TrainSet,BaseClassf);
[ee,k] = min([e{:}]);
OUT = BaseClassf{k};
end
else
error('Illegal input');
end
|
github
|
jacksky64/imageProcessing-master
|
classd.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/classd.m
| 550 |
utf_8
|
a9ffc4f859a1a00eb46ce2c2c2d1e9ab
|
%CLASSD Return labels of classified dataset, outdated, use LABELD instead
% $Id: classd.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function labels = classd(a,w)
prtrace(mfilename);
global CLASSD_REPLACED_BY_LABELD
if isempty(CLASSD_REPLACED_BY_LABELD)
disp([newline 'CLASSD has been replaced by LABELD, please use it'])
CLASSD_REPLACED_BY_LABELD = 1;
end
if (nargin == 0)
labels = labeld;
elseif (nargin == 1)
labels = labeld(a);
elseif (nargin == 2)
labels = labeld(a,w);
else
error ('too many arguments');
end
return
|
github
|
jacksky64/imageProcessing-master
|
prcov.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prcov.m
| 353 |
utf_8
|
d356173c3d4ecd94c33278a0d2f06dbc
|
%PRCOV Call to COV() including PRWAITBAR
%
% B = PRCOV(A,tol)
%
% This calls C = COV(A, ...) and includes a message to PRWAITBAR
% in case of a large A
function B = prcov(varargin)
[m,n] = size(varargin{1});
if m*n*n > 1e9
prwaitbaronce('covariance of %i x %i matrix ...',[m,n]);
B = cov(varargin{:});
prwaitbar(0);
else
B = cov(varargin{:});
end
|
github
|
jacksky64/imageProcessing-master
|
im_stretch.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_stretch.m
| 1,275 |
utf_8
|
25193a277ae8513dbcd8c6a259d0b553
|
%IM_STRETCH Contrast stretching of images stored in a dataset (DIP_Image)
%
% B = IM_STRETCH(A,LOW,HIGH,MIN,MAX)
% B = A*IM_STRETCH([],LOW,HIGH,MIN,MAX)
%
% INPUT
% A Dataset with object images dataset (possibly multi-band)
% LOW Lower percentile (default 0)
% HIGH Highest percentile (default 100)
% MIN Miniumum (default 0)
% MAX Maximum (default 255)
%
% OUTPUT
% B Dataset with filtered images
%
% SEE ALSO
% DATASETS, DATAFILES, DIP_IMAGE, STRETCH
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_stretch(a,low,high,min,max)
prtrace(mfilename);
if nargin < 5 | isempty(max), max = 255; end
if nargin < 4 | isempty(min), min = 0; end
if nargin < 3 | isempty(high), high = 100; end
if nargin < 2 | isempty(low), low = 0; end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',{low,high,min,max});
b = setname(b,'Image stretch');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename,{low,high,min,max});
elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image
a = 1.0*dip_image(a);
b = stretch(a,low,high,min,max);
end
return
|
github
|
jacksky64/imageProcessing-master
|
prodc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prodc.m
| 1,633 |
utf_8
|
d89f9184765750c0c705dfc45192da63
|
%PRODC Product combining classifier
%
% W = PRODC(V)
% W = V*PRODC
%
% INPUT
% V Set of classifiers trained on the same classes
%
% OUTPUT
% W Product combiner
%
% DESCRIPTION
% It defines the product combiner on a set of classifiers, e.g.
% V=[V1,V2,V3] trained on the same classes, by selecting the class
% which yields the highest value of the product of the classifier
% outputs. This might also be used as A*[V1,V2,V3]*PRODC in which
% A is a dataset to be classified.
%
% If it is desired to operate on posterior probabilities, then the
% input classifiers should be extended like V = V*CLASSC.
%
% The base classifiers may be combined in a stacked way (operating
% in the same feature space) by V = [V1,V2,V3,...] or in a parallel
% way (operating in different feature spaces) by V = [V1;V2;V3;...].
%
% SEE ALSO
% MAPPINGS, DATASETS, VOTEC, MAXC, MINC, MEDIANC, MEANC, AVERAGEC,
% STACKED, PARALLEL
%
% EXAMPLES
% See PREX_COMBINING.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: prodc.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function w = prodc(p1)
prtrace(mfilename);
type = 'prod'; % Define the operation processed by FIXEDCC.
name = 'Product combiner'; % Define the name of the combiner.
% This is a general procedure for all possible
% calls of fixed combiners handled by FIXEDCC
if nargin == 0
w = mapping('fixedcc','combiner',{[],type,name});
else
w = fixedcc(p1,[],type,name);
end
if isa(w,'mapping'),
w = setname(w,name);
end
return
|
github
|
jacksky64/imageProcessing-master
|
scatterdui.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/scatterdui.m
| 8,832 |
utf_8
|
2a9a07a5ef7fa77da861992b9fb0dddd
|
% SCATTERDUI Scatter plot with user interactivity
%
% SCATTERDUI (A)
% SCATTERDUI (A,DIM,S,CMAP,FONTSIZE,'label','both','legend','gridded')
%
% INPUT
% DATA Dataset
% ... See SCATTERD
%
% OUTPUT
%
% DESCRIPTION
% SCATTERDUI is a wrapper around SCATTERD (see SCATTERD for the options). If
% the user clicks on a sample in the plot, the corresponding index in a
% dataset is written nearby. A right-button click clears all printed indices.
% Buttons along axes allow for browsing through the dataset dimensions.
% Selected points are remembered when the plotted dimension changes.
%
% SEE ALSO
% SCATTERD
% This script is based on the segmentgui of Cris Luengo
% <[email protected]>.
% Copyright: Pavel Paclik, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: scatterdui.m,v 1.3 2006/10/23 10:21:52 davidt Exp $
function fig_hnd=scatterdui (varargin)
prtrace (mfilename);
% First argument is dataset.
a = varargin{1};
% Place all remaining arguments in a string, for the call to SCATTERD.
%args = '';
%for i = 2:size(varargin,2)
%eval(sprintf('p%d = varargin{%d};',i,i)); args = [args sprintf(',p%d',i)];
%end
args = varargin(2:end);
% Are we called through one of the callback handles?
if (ischar(a))
switch (a)
case 'denclick_scatter'
scatterdui_inspect;
case 'scatterdui_change_dim'
scatterdui_change_dim(varargin{2});
end
return
end
% Get figure handle, clear window and start new axis.
% fig_hnd = gcf; clf; ui_data.axis = subplot(1,1,1);
% open a new figure
figure; fig_hnd = gcf; ui_data.axis = subplot(1,1,1);
% tag this figure
set(fig_hnd,'tag','scatterdui');
set(fig_hnd,'busyaction','cancel','DoubleBuffer','on');
% Call SCATTERD.
ui_data.args = args; %eval(['scatterd(a' args,');']);
scatterd(a, args{:});
% Store the data for later reference.
ui_data.a = a;
% Define viable neighborhood for sample ID back-reading.
range_x = get(ui_data.axis,'xlim'); range_y = get(ui_data.axis,'ylim');
ui_data.neighborhood = [0.01*abs(range_x(1)-range_x(end)) ...
0.01*abs(range_y(1)-range_y(end))];
ui_data.point_id = []; ui_data.text_hnd = [];
% Add callback function to axis.
set(ui_data.axis,'ButtonDownFcn','scatterdui(''denclick_scatter'')');
set(get(ui_data.axis,'Children'),'ButtonDownFcn','scatterdui(''denclick_scatter'')');
% Initialise current X- and Y-dimensions.
ui_data.xdim = 1; ui_data.ydim = 2;
% Place buttons for increasing/decreasing the dimensions (features) of
% the dataset shown on the X- and Y-axes of the plot.
pos = get(fig_hnd,'position');
ui_data.x_dim_inc = uicontrol('style','pushbutton', ...
'string','->', ...
'units','normalized', ...
'position',[0.9 0.02 0.05 0.05], ...
'callback','scatterdui(''scatterdui_change_dim'',''xinc'')');
ui_data.x_dim_dec = uicontrol('style','pushbutton', ...
'string','<-', ...
'units','normalized', ...
'position',[0.85 0.02 0.05 0.05], ...
'callback','scatterdui(''scatterdui_change_dim'',''xdec'')');
ui_data.y_dim_inc = uicontrol('style','pushbutton', ...
'string','^', ...
'units','normalized', ...
'position',[0.02 0.9 0.05 0.05], ...
'callback','scatterdui(''scatterdui_change_dim'',''yinc'')');
ui_data.y_dim_dec = uicontrol('style','pushbutton', ...
'string','v', ...
'units','normalized', ...
'position',[0.02 0.85 0.05 0.05], ...
'callback','scatterdui(''scatterdui_change_dim'',''ydec'')');
% Draw feature labels.
featlabs = getfeat(ui_data.a);
%RD Take care that we have proper char labels
if isempty(featlabs)
featlabs = num2str([1:size(ui_data.a,2)]');
elseif (isnumeric(featlabs))
featlabs = num2str(featlabs);
elseif iscellstr(featlabs)
featlabs = char(featlabs);
end;
%RD and store them in the dataset
ui_data.a = setfeatlab(ui_data.a,featlabs);
xlabel(sprintf('%d : %s',ui_data.xdim,featlabs(ui_data.xdim,:)));
ylabel(sprintf('%d : %s',ui_data.ydim,featlabs(ui_data.ydim,:)));
% Save user interface data into figure window. First clear it, to
% avoid a (sometimes) very slow update.
set(fig_hnd,'userdata',[]); set(fig_hnd,'userdata',ui_data);
hold on;
if nargout == 0
clear('fig_hnd');
end
return
% SCATTERDUI_CHANGE_DIM (CODE)
%
% Call-back for the buttons in the window: increases or decreases the
% feature number (dimension) the plot represents on the x- or y-axis. CODE
% can be 'xinc', 'xdec', 'yinc', 'ydec'.
function scatterdui_change_dim (code)
fig_hnd = gcbf; ui_data = get(fig_hnd,'userdata');
[m,k,c] = getsize(ui_data.a);
% Increase/decrease feature shown in X- or Y-axis. Loop around:
% feature k+1 -> 1, features 1-1 -> k.
switch (code)
case 'xinc'
ui_data.xdim = ui_data.xdim + 1;
if (ui_data.xdim > k) ui_data.xdim = 1; end
case 'xdec'
ui_data.xdim = ui_data.xdim - 1;
if (ui_data.xdim == 0), ui_data.xdim = k; end
case 'yinc'
ui_data.ydim = ui_data.ydim + 1;
if (ui_data.ydim > k), ui_data.ydim = 1; end
case 'ydec'
ui_data.ydim = ui_data.ydim - 1;
if (ui_data.ydim == 0), ui_data.ydim = k; end
end
% Redraw figure.
cla; ui_data.axis = subplot(1,1,1);
% I had to add this to make it work!!!:
scatterd(ui_data.a(:,[1 1]));
%eval(['scatterd(ui_data.a(:,[ui_data.xdim,ui_data.ydim])' ui_data.args,');']);
scatterd(ui_data.a(:,[ui_data.xdim,ui_data.ydim]), ui_data.args{:});
% Draw feature labels.
featlabs = getfeat(ui_data.a);
if (isnumeric(featlabs)), featlabs = num2str(featlabs); end;
%PP!! deal with cell labels here: I don't know how, yet
if (iscellstr(featlabs))
featlabs = (1:size(featlabs,1))';
featlabs = num2str(featlabs);
end
xlabel(sprintf('%d : %s',ui_data.xdim,featlabs(ui_data.xdim,:)));
ylabel(sprintf('%d : %s',ui_data.ydim,featlabs(ui_data.ydim,:)));
% Define viable neighborhood for sample ID back-reading.
range_x = get(ui_data.axis,'xlim'); range_y = get(ui_data.axis,'ylim');
ui_data.neighborhood = [0.01*abs(range_x(1)-range_x(end)) ...
0.01*abs(range_y(1)-range_y(end))];
% Redraw selected points.
ui_data.text_hnd = ...
scatterdui_add_labels(ui_data.point_id, ...
+ui_data.a(:,[ui_data.xdim,ui_data.ydim]), ...
ui_data.neighborhood );
% Add callback function to axis.
set(ui_data.axis,'ButtonDownFcn','scatterdui(''denclick_scatter'')');
set(get(ui_data.axis,'Children'),'ButtonDownFcn',...
'scatterdui(''denclick_scatter'')');
% Save user interface data into figure window.
set(fig_hnd,'userdata',[]); set(fig_hnd,'userdata',ui_data);
return
% SCATTERDUI_INSPECT
%
% Callback for mouse-click in axis. Finds all samples in the neighbourhood
% of the clicked point and plots them, with text labels containing the index.
% Right-click clears all selected points.
function scatterdui_inspect
fig_hnd = gcbf; ui_data = get(fig_hnd,'userdata');
if (strcmp(get(fig_hnd,'SelectionType'),'alt'))
% Clear all selected points.
delete(ui_data.text_hnd); ui_data.text_hnd = []; ui_data.point_id = [];
else
point = get(ui_data.axis,'CurrentPoint');
% Get all points close to the selected point from the dataset.
% 'Close' means inside a box around POINT defined by UI_DATA.NEIGHBORHOOD.
a = +ui_data.a; a = a(:,[ui_data.xdim,ui_data.ydim]);
ind = find((a(:,1) >= (point(1) - ui_data.neighborhood(1))) & ...
(a(:,1) <= (point(1) + ui_data.neighborhood(1))) & ...
(a(:,2) >= (point(3) - ui_data.neighborhood(2))) & ...
(a(:,2) <= (point(3) + ui_data.neighborhood(2))));
% If any points fall inside the box, plot them and add them (and their
% text handles) to the user interface data.
if (length(ind) > 0)
text_hnd = scatterdui_add_labels(ind,a,ui_data.neighborhood);
ui_data.point_id = [ui_data.point_id ind'];
ui_data.text_hnd = [ ui_data.text_hnd text_hnd ];
end
end
% Save user interface data into figure window.
set(fig_hnd,'userdata',[]); set(fig_hnd,'userdata',ui_data);
return
% HND = SCATTERDUI_ADD_LABELS (IND,DATA,NEIGHBORHOOD)
%
% Plots samples with indices IND in DATA, and places the indices as text
% labels next to the points (at a (x,y)-distance defined by NEIGHBORHOOD).
% Returns handles to all text labels in HND.
function hnd = scatterdui_add_labels (ind,data,neighborhood)
hold on;
% Plot the data points, plus their index in the dataset as text.
hnd = plot(data(ind,1),data(ind,2),'gh');
for i = 1:length(ind)
hnd=[hnd text(data(ind(i),1) + neighborhood(1), ...
data(ind(i),2) + neighborhood(2), ...
sprintf('%d',ind(i)))];
end
% Add callback function to each of the texts.
set(hnd,'ButtonDownFcn','scatterdui(''denclick_scatter'')');
return
|
github
|
jacksky64/imageProcessing-master
|
primport.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/primport.m
| 2,968 |
utf_8
|
67b864e93a49244199462b27e7dbbc95
|
% PRIMPORT import the old-format prtools datasets
%
% OUT = PRIMPORT(A)
%
% INPUT
% A The Structure to be converted.
%
% OUTPUT
% OUT The imported dataset
%
% DESCRIPTION
% This routine converts old prtools datasets into the new prtools 4.x
% format. Structure A is tested for existence of all the fields forming
% particular dataset format. Prtools 3.x and 4.x formats are supported.
%
% SEE ALSO
% DATASET
% $Id: primport.m,v 1.4 2007/08/24 13:49:59 davidt Exp $
function out = primport(a)
prtrace(mfilename)
% we try to convert only structures
if isstruct(a)
% prtools 3.x format
if isfield(struct(a),'d') & isfield(struct(a),'l') & ...
isfield(struct(a),'p') & isfield(struct(a),'f') & ...
isfield(struct(a),'ll') & isfield(struct(a),'c') & ...
isfield(struct(a), 's')
prwarning(2,'prtools 3.x dataset converted to 4.x');
% lab list could be a cell-array
if iscell(a.ll)
lablist=a.ll{1};
nlab=a.l;
else
[nlab,lablist] = renumlab(a.l);
end
out=dataset(a.d,nlab,'featlab',a.f,'prior',a.p,'lablist',lablist);
if a.c<0
% objects are pixels
xx=-a.c;
yy=size(a.d,1)/xx;
out.objsize=[xx yy];
end
if a.c>0
% objects are pictures
xx=a.c;
yy=size(a.d,2)/xx;
out.featsize=[xx yy];
end
% prtools 4 format
elseif isfield(struct(a),'data') & isfield(struct(a),'lablist') & ...
isfield(struct(a),'nlab') & isfield(struct(a),'labtype') & ...
isfield(struct(a),'targets') & isfield(struct(a), 'featlab') & ...
isfield(struct(a),'prior') & ...
isfield(struct(a),'objsize') & isfield(struct(a),'featsize') & ...
isfield(struct(a),'ident') & isfield(struct(a),'version') & ...
isfield(struct(a),'name') & isfield(struct(a),'user')
%DXD: The previous line was commented out
% Uncommenting made it work:
out = dataset(a.data,a.nlab,'lablist',a.lablist);
if ~isempty(a.labtype), out.labtype=a.labtype; end
if ~isempty(a.targets), out.targets=a.targets; end
if ~isempty(a.featlab), out.featlab=a.featlab; end
if ~isempty(a.prior), out.prior=a.prior; end
if ~isempty(a.objsize), out.objsize=a.objsize; end
if ~isempty(a.featsize), out.featsize=a.featsize; end
if ~isempty(a.ident), out.ident=a.ident; end
if ~isempty(a.version), out.version=a.version; end
if ~isempty(a.name), out.name=a.name; end
if ~isempty(a.user), out.user=a.user; end
% later, the featdom field was included
if isfield(struct(a),'featdom') & ~isempty(a.featdom)
out.featdom = a.featdom;
end
% later, the cost field was included
if isfield(struct(a),'cost') & ~isempty(a.cost)
out.cost = a.cost;
end
prwarning(2,'prtools 4.x converted from structure');
else
out = [];
prwarning(2,'unknown format! The structure cannot be converted into a dataset');
end
else % anything else then structure: just copy to the output
out=a;
end
|
github
|
jacksky64/imageProcessing-master
|
testn.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testn.m
| 2,970 |
utf_8
|
6ca41edfc202366ae9aec6995f980f3b
|
%TESTN Error estimate of discriminant for normal distribution.
%
% E = TESTN(W,U,G,N)
%
% INPUT
% W Trained classifier mapping
% U C x K dataset with C class means, labels and priors (default: [0 .. 0])
% G K x K x C matrix with C class covariance matrices (default: identity)
% N Number of test examples (default 10000)
%
% OUTPUT
% E Estimated error
%
% DESCRIPTION
% This routine estimates as good as possible the classification error
% of Gaussian distributed problems with known means and covariances. N
% normally distributed data vectors with means, labels and prior
% probabilities defined by the dataset U (size [C,K]) and covariance
% matrices G (size [K,K,C]) are generated with the specified labels and are
% tested against the discriminant W. The fraction of incorrectly classified
% data vectors is returned. If W is a linear 2-class discriminant and N
% is not specified, the error is computed analytically.
%
% SEE ALSO
% MAPPINGS, DATASETS, QDC, NBAYESC, TESTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: testn.m,v 1.3 2009/01/27 13:01:42 duin Exp $
function e = testn(w,U,G,m)
prtrace(mfilename);
% Assert that W is a trained mapping.
istrained(w); [k,c] = size(w);
if (nargin < 4) & ~( isaffine(w) & (c == 2) )
prwarning(4,'number of samples N to test with not specified, assuming 10000');
m = 10000;
end
if (nargin < 3)
prwarning(3,'covariance matrices not specified, assuming identity for each class');
G = eye(k);
end
if (nargin < 2)
error('Class means are not specified');
else
[cc,k] = size(U); p = getprior(U); u = +U;
if (cc ~= c)
error('Specified number of class means does not fit classifier')
end
end
% If a single covariance is specified, use it for each class.
if (length(size(G)) == 2)
g = G;
for j = 2:c
G = cat(3,G,g);
end
else
if (size(G,3) ~= c)
error('Specified number of covariances does not fit classifier')
end
end
% Check for analytical case: linear classifier and no data samples requested.
if (nargin < 4) & (isaffine(w)) & (c == 2)
prwarning(1,'computing Bayes error analytically');
e = 0;
v = w.data.rot(:,1); f = w.data.offset(1);
for j = 1:c
% Find the index J of mean j stored in U.
J = findnlab(U,j);
if (length(J) ~= 1)
error('The mean U does not contain correct labels.')
end
q = real(sqrt(v'*G(:,:,j)*v)); % std dev in direction of classifier
d = (2*j-3)*(v'*u(J,:)'+f); % normalized distance to classifier
if (q == 0)
if (d >= 0), e = e + p(j); end
else
e = e + p(j) * (erf(d/(q*sqrt(2)))/2 + 0.5);
end
end
else
% Cannot solve analytically: generate data and test.
a = gendatgauss(m,U,G); % Generate normally distributed data.
a = setlablist(a,getlab(w));
e = testc(a,w); % Find the error of discriminant on the data.
end
return
|
github
|
jacksky64/imageProcessing-master
|
plotc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/plotc.m
| 5,575 |
utf_8
|
e41895c418931e871fbdff32d1fcf052
|
%PLOTC Plot classifiers
%
% PLOTC(W,S,LINE_WIDTH)
% PLOTC(W,LINE_WIDTH,S)
%
% Plots the discriminant as given by the mapping W on predefined axis,
% typically set by scatterd. Discriminants are defined by the points
% where class differences for mapping values are zero.
%
% S is the plot string, e.g. S = 'b--'. In case S = 'col' a color plot is
% produced filling the regions of different classes with different colors.
% Default S = 'k-';
%
% LINE_WIDTH sets the width of the lines and box. Default LINE_WIDTH = 1.5
%
% In W a cell array of classifiers may be given. In S a set of plot strings
% of appropriate size may be given. Automatically a legend is added to
% the plot.
%
% The linear gridsize is read from the global parameter GRIDSIZE, that
% can be set by the function gridsize: for instance 'gridsize(100)'
% default gridsize is 30.
%
% See also MAPPINGS, SCATTERD, PLOTM, GRIDSIZE
% Examples in PREX_CONFMAT, PREX_PLOTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: plotc.m,v 1.6 2009/10/30 11:01:47 davidt Exp $
function handle = plotc(w,varargin)
prtrace(mfilename);
linew = 1.5;
s = [];
if nargin < 1 | isempty(w)
handle = mapping(mfilename,'combiner',s);
return
end
% Extract the plotwidth and linewidth:
for j = 1:nargin-1
if isstr(varargin{j})
s = varargin{j};
else
linew = varargin{j};
end
end
ss = char('k-','r-','b-','m-','k--','r--','b--','m--');
ss = char(ss,'k-.','r-.','b-.','m-.','k:','r:','b:','m:');
% When we want to plot a list of classifiers, we set up different
% plot strings ss and call plotc several times.
if iscell(w)
w = w(:);
n = length(w);
names = [];
% Check if sufficient plotstrings are available
if ~isempty(s)
if size(s,1) == 1
s = repmat(s,n,1);
elseif size(s,1) ~= n
error('Wrong number of plot strings')
end
else
s = ss(1:n,:);
end
% Plot the individual boundaries by calling 'mfilename' (i.e. this
% function again)
names = [];
hh = [];
for i=1:n
h = feval(mfilename,w{i},deblank(s(i,:)),linew);
hh = [hh h(1)];
names = char(names,getname(w{i}));
end
% Finally fix the legend:
names(1,:) = [];
legend(hh,names,0);
if nargout > 0
handle = hh;
end
return
end
% Now the task is to plot a single boundary (multiple boundaries are
% already covered above):
if ~isa(w,'mapping') | ~istrained(w)
error('Trained classifier expected')
end
[k,c] = size(w);
c = max(c,2);
if nargin < 2 | isempty(s) % default plot string
s = 1;
end
%DXD: Stop when the classifier is not in 2D:
if (k~=2)
error('Plotc can only plot classifiers operating in 2D.');
end
if ~isstr(s)
if s > 16 | s < 1
error('Plotstring undefined')
else
s = deblank(ss(s,:));
end
end
% Get the figure size from the current figure:
hold on
V=axis;
hh = [];
set(gca,'linewidth',linew)
% linear discriminant
if isaffine(w) & c == 2 & ~strcmp(s,'col') % plot as vector
d = +w;
n = size(d.rot,2);
if n == 2, n = 1; end
for i = 1:n
w1 = d.rot(:,i); w0 = d.offset(i);
J = find(w1==0);
if ~isempty(J)
w1(J) = repmat(realmin,size(J));
end
x = sort([V(1),V(2),(-w1(2)*V(3)-w0)/w1(1),(-w1(2)*V(4)-w0)/w1(1)]);
x = x(2:3);
y = (-w1(1)*x-w0)/w1(2);
h = plot(x,y,s);
set(h,'linewidth',linew)
hh = [hh h];
end
else % general case: find contour(0)
% First define the mesh grid:
n = gridsize;
m = (n+1)*(n+1);
dx = (V(2)-V(1))/n;
dy = (V(4)-V(3))/n;
[X Y] = meshgrid(V(1):dx:V(2),V(3):dy:V(4));
D = double([X(:),Y(:),zeros(m,k-2)]*w);
if min(D(:)) >=0, D = log(D+realmin); end % avoid infinities
% A two-class output can be given in one real number, avoid this
% special case and fix it:
if c == 2 & min(size(D)) == 1; D = [D -D]; end
c = size(D,2);
if ~strcmp(s,'col')
% Plot the contour lines
if c < 3
Z = reshape(D(:,1) - D(:,2),n+1,n+1);
if ~isempty(contourc([V(1):dx:V(2)],[V(3):dy:V(4)],Z,[0 0]))
[cc h] = contour([V(1):dx:V(2)],[V(3):dy:V(4)],Z,[0 0],s);
set(h,'linewidth',linew)
%DXD Matlab 7 has different handle definitions:
if str2num(version('-release'))>13,
h = get(h,'children');
end
hh = [hh;h];
end
else
for j=1:c-1
L = [1:c]; L(j) = [];
Z = reshape( D(:,j) - max(D(:,L),[],2),n+1,n+1);
if ~isempty(contourc([V(1):dx:V(2)],[V(3):dy:V(4)],Z,[0 0]))
[cc h] = contour([V(1):dx:V(2)],[V(3):dy:V(4)],Z,[0 0],s);
set(h,'linewidth',linew)
%DXD Matlab 7 has different handle definitions:
if str2num(version('-release'))>13,
h = get(h,'children');
end
hh = [hh;h];
end
end
end
else
% Fill the areas with some colour:
col = 0; mapp = hsv(c+1); h = [];
for j=1:c
L = [1:c]; L(j) = [];
Z = reshape( D(:,j) - max(D(:,L)',[],1)',n+1,n+1);
Z = [-inf*ones(1,n+3);[-inf*ones(n+1,1),Z,-inf*ones(n+1,1)];-inf*ones(1,n+3)];
col = col + 1;
if ~isempty(contourc([V(1)-dx:dx:V(2)+dx],[V(3)-dy:dy:V(4)+dy],Z,[0 0]))
[cc h] = contour([V(1)-dx:dx:V(2)+dx],[V(3)-dy:dy:V(4)+dy],Z,[0 0]);
while ~isempty(cc)
len = cc(2,1);
h = [h;fill(cc(1,2:len+1),cc(2,2:len+1),mapp(col,:),'FaceAlpha',0.5)];
%fill(cc(1,2:len+1),cc(2,2:len+1),mapp(col,:),'FaceAlpha',0.5);
cc(:,1:len+1) = [];
end
hh = [hh;h];
end
end
end
end
axis(V);
% Return the handles if they are requested:
if nargout > 0, handle = hh; end
hold off
return
|
github
|
jacksky64/imageProcessing-master
|
prsvd.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prsvd.m
| 426 |
utf_8
|
b8c97273dada58abf140fc88b5c1f239
|
%PRSVD Call to SVD() including PRWAITBAR
%
% VARARGOUT = PRSVD(VARARGIN)
%
% This calls B = RANK(A,tol) and includes a message to PRWAITBAR
% in case of a large A
function varargout = prsvd(varargin)
[m,n] = size(varargin{1});
varargout = cell(1,nargout);
if min([m,n]) >= 500
prwaitbaronce('SVD of %i x %i matrix ...',[m,n]);
[varargout{:}] = svd(varargin{:});
prwaitbar(0);
else
[varargout{:}] = svd(varargin{:});
end
|
github
|
jacksky64/imageProcessing-master
|
im2obj.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im2obj.m
| 3,036 |
utf_8
|
f910d69b3caaaaddcaab0f7e7dc9a09d
|
%IM2OBJ Convert Matlab images or datafile to dataset object
%
% B = IM2OBJ(IM,A)
% B = IM2OBJ(IM,FEATSIZE)
%
% INPUT
% IM X*Y image, X*Y*C image, X*Y*K array of K images,
% X*Y*C*K array of color images, or cell-array of images
% The images may be given as a datafile.
% A Input dataset
% FEATSIZE Vector with desired feature sizes to solve ambiguities
%
% OUTPUT
% B Dataset with IM added
%
% DESCRIPTION
% Add standard Matlab images, as objects, to an existing dataset A. If A is
% not given, a new dataset is created. Images of type 'uint8' are converted
% to 'double' and divided by 256. The resulting feature size is X*Y or
% X*Y*C. The set of images IM may be given as a datafile.
%
% SEE ALSO
% DATASETS, DATAFILES, IM2FEAT, DATA2IM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: im2obj.m,v 1.5 2008/07/28 08:59:47 duin Exp $
function a = im2obj (im,a)
prtrace(mfilename);
if iscell(im)
imsize = size(im{1});
else
imsize = size(im);
end
nodataset = 0;
if (nargin > 1)
if (~isdataset(a)) & size(a,1) ~= 1
error('second argument should be a dataset or a size vector');
end
if isdataset(a)
featsize = getfeatsize(a);
else
featsize = a;
nodataset = 1;
end
else % no information on feature size, assume most simple solution
nodataset = 1;
if length(imsize) == 2
featsize = imsize;
else
featsize = imsize(1:end-1);
end
end
if length(featsize) == length(imsize)
nobj = 1;
elseif length(featsize) == (length(imsize)-1)
nobj = imsize(end);
elseif length(featsize) == (length(imsize)-2) & imsize(3) == 1
nobj = imsize(end);
else
wrongfeatsize;
end
if any(featsize ~= imsize(1:length(featsize)))
wrongfeatsize;
end
if (isa(im,'cell'))
% If IM is a cell array of images, unpack it and recursively call IM2OBJ
% to add each image.
im = im(:); % Reshape to 1D cell array.
for i = 1:length(im)
b = feval(mfilename,im{i});
if ~isempty(a) & any(a.objsize ~= b.objsize)
error('Images should have equal sizes')
end
a = [a; feval(mfilename,im{i},featsize)];
end
elseif isdatafile(im)
if (nargin < 2)
a = dataset([]);
end
testdatasize(im);
a = [a; feval(mfilename,data2im(im))];
else
% If IM is an image or array of images, reshape it and add it in one go.
% Convert to double, if necessary
if (isa(im,'uint8'))
prwarning(4,'image is uint8; converting to double and dividing by 256');
im = double(im)/256;
else
im = double(im);
end
% ready for the real work, at last!
if nobj == 1
im = im(:)';
else
im = shiftdim(im,ndims(im)-1);
im = reshape(im,nobj,prod(featsize));
end
if nodataset
a = dataset(im);
a = setfeatsize(a,featsize);
else
a = [a; im];
end
end
return
function wrongfeatsize
error('Desired feature size and size of supplied image array are inconsistent')
return
|
github
|
jacksky64/imageProcessing-master
|
getwindows.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/getwindows.m
| 3,090 |
utf_8
|
843fd3b7f8928e6809061d465551396d
|
%GETWINDOWS Get pixel feature vectors around given pixels in image dataset
%
% L = GETWINDOWS(A,INDEX,WSIZE,INCLUDE)
% L = GETWINDOWS(A,[ROW,COL],WSIZE,INCLUDE)
%
% INPUT
% A Dataset containing feature images
% INDEX Index vector of target pixels in the images (Objects in A)
% ROW Column vector of row-coordinates of target pixels
% COL Column vector of column-coordinates of target pixels
% WSIZE Desired size of rectangular window around target pixels
% INCLUDE Flag (0/1), indicating whether target pixels should be included
% (1, default), or not (0) in result.
% OUTPUT
% B Index in A of window pixels
%
% DESCRIPTION
% This routine generates all objects in a dataset constructed by image
% features that are in a window of size WSIZE around the target pixels
% given by INDEX, or by [ROW,COL]. If WSIZE is omitted or empty ([],
% default), just the 4 4-conntected neighbors of the target pixels are
% returned. L points to the window pixels, such that A(L,:) is a dataset
% of the corresponding objects.
%
% SEE ALSO
% DATASETS, IM2FEAT
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function L = getwindows(a,index,wsize,include)
if nargin < 4, includeflag = 1; end
if nargin < 3, wsize = []; end
isdataset(a);
isfeatim(a);
imsize = getobjsize(a);
if size(index,2) == 1
[row,col] = ind2sub(imsize,index);
elseif size(index,2) == 2
row = index(:,1);
col = index(:,2);
end
n = length(row);
imsize = getobjsize(a);
if ~isempty(wsize) % rectangular neighborhoods
if length(wsize) == 1 % square windows
row1 = ceil(wsize/2)-1; col1 = row1; % # pixels above / left of target pixel
row2 = floor(wsize/2); col2 = row2; % # pixels below / right of target pixel
elseif length(wsize) == 2 % possibly non-square windows
row1 = ceil(wsize(1)/2)-1;
row2 = floor(wsize(1)/2);
col1 = ceil(wsize(2)/2)-1;
col2 = floor(wsize(2)/2);
else
error('Window size should be 1D or 2D')
end
[R,C] = meshgrid([-row1:row2],[-col1:col2]);
k = length(R(:));
R = repmat(row(:),1,k)+repmat(R(:)',length(row),1);
C = repmat(col(:),1,k)+repmat(C(:)',length(col),1);
else
R = repmat(row(:),1,5)+repmat([0 -1 0 1 0],length(row),1);
C = repmat(col(:),1,5)+repmat([-1 0 0 0 1],length(col),1);
end
JR = [find(R <= 0); find(R > imsize(1))];
R(JR) = []; C(JR) = [];
JC = [find(C <= 0); find(C > imsize(2))];
R(JC) = []; C(JC) = [];
L = sub2ind(imsize,R,C);
%b(L) = ones(length(L),1);
if include % we are done
L = unique(L);
else % remove given objects
b = zeros(imsize); % create an image of the right size
b(L) = ones(length(L),1); % flag the objects we found.
Z = sub2ind(imsize,row,col); % for all original objects,
b(Z) = zeros(length(Z),1); % remove flags
L = find(b > 0); % and see what is left
end
%b = a(L,:);
L = unique(L);
J = [find(L<1); find(L>prod(imsize))];
L(J) = [];
%b = a(L,:);
|
github
|
jacksky64/imageProcessing-master
|
getopt_pars.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/getopt_pars.m
| 795 |
utf_8
|
320c88660dd14251da5693f9e2f3d6d7
|
%GETOPT_PARS Get optimal parameters from REGOPTC
%
% PARS = GETOPT_PARS
% GETOPT_PARS
%
% DESCRIPTION
% This routine retrieves the parameters as used in the final call
% in computing a classifier they are optimised by REGOPTC.
function pars = getopt_pars
global REGOPT_PARS
if nargout == 0
s = [];
for j = 1:length(REGOPT_PARS)
if isempty(REGOPT_PARS{j})
s = [s ' []'];
elseif isstr(REGOPT_PARS{j})
s = [s ' ' REGOPT_PARS{j}];
elseif isdataset(REGOPT_PARS{j})
s = [s ' dataset'];
elseif ismapping(REGOPT_PARS{j})
s = [s ' mapping'];
elseif isstruct(REGOPT_PARS{j})
s = [s ' structure'];
else
s = [s ' ' num2str(REGOPT_PARS{j})];
end
end
fprintf(1,'\nParameters used: %s \n\n',s);
else
pars = REGOPT_PARS;
end
|
github
|
jacksky64/imageProcessing-master
|
map.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/map.m
| 9,939 |
utf_8
|
83957b0af503a00779627d5493540bc5
|
%MAP Map a dataset, train a mapping or classifier, or combine mappings
%
% B = MAP(A,W) or B = A*W
%
% Maps a dataset A by a fixed or trained mapping (or classifier) W,
% generating
% a new dataset B. This is done object by object. So B has as many objects
% (rows) as A. The number of features of B is determined by W. All dataset
% fields of A are copied to B, except the feature labels. These are defined
% by the labels stored in W.
%
% V = MAP(A,W) or B = A*W
%
% If W is an untrained mapping (or classifier), it is trained by the dataset A.
% The resulting trained mapping (or classifier) is stored in V.
%
% V = MAP(W1,W2) or V = W1*W2
%
% The two mappings W1 and W2 are combined sequentially. See SEQUENTIAL for
% a description. The resulting combination is stored in V.
%
% See also DATASETS, MAPPINGS, SEQUENTIAL
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: map.m,v 1.19 2010/06/10 22:31:12 duin Exp $
function [d, varargout] = map(a,b,batch)
prtrace(mfilename);
% if map is already computed, take it
% if map needs to be stored, do so.
if nargout == 1 & nargin == 2 & stamp_map > 0
d = stamp_map(a,b);
if ~isempty(d)
return
end
end
if nargin < 3, batch = []; end
varargout = repmat({[]},[1, max((nargout-1),0)]);
global CHECK_SIZES % enables the possibility to avoid checking of sizes
[ma,ka] = size(a);
[mb,kb] = size(b);
% force batch processing for large datasets
if isempty(batch) & ma >= 10000
batch = 1000;
end
if ~isempty(batch) & ismapping(b) & isdataset(a) & ~isfeatim(a) & getbatch(b)
% batch mode
s = sprintf('Mapping %i objects: ',ma);
prwaitbar(ma,s);
%DXD map the first batch to setup the output dataset:
dd = map(a(1:batch,:),b);
%DXD first test if we are dealing with a mapping that outputs just a
%single value (like testc):
nb = size(dd,1);
average_output = 0;
if (nb~=batch)
if (nb==1)
warning('prtools:map:AverageBatchOutputs',...
['The mapping appears to return a single object from a input',...
newline,...
'dataset. The objects resulting from different batches in the batch',...
newline,'processing will be *averaged*.']);
average_output = 1;
end
end
kb = size(dd,2);
nobatch = 0;
if isdataset(dd)
d = setdata(a,zeros(ma,kb));
% d = dataset(zeros(ma,kb),getlabels(a));
% d = setlablist(dd,getlablist(dd));
% if ~isempty(a,'prior')
% d = setprior(d,getprior(a,0));
% end
d = setfeatlab(d,getfeatlab(dd));
elseif isa(dd,'double')
d = zeros(ma,kb);
else
% irregular, escape from batch processing
nobatch = 1;
prwaitbar(0);
end
d(1:batch,:) = dd;
if ~nobatch
n = floor(ma/batch);
prwaitbar(ma,batch,[s int2str(batch)]);
for j=2:n
L = (j-1)*batch+1:j*batch;
aa = doublem(a(L,:));
d(L,:) = map(aa,b);
prwaitbar(ma,j*batch,[s int2str(j*batch)]);
end
L = n*batch+1:ma;
if ~isempty(L)
aa = doublem(a(L,:));
dd = map(aa,b);
d(L,:) = dd;
end
if isdataset(d)
featlabd = getfeatlab(d);
d = setdat(a,d);
d = setfeatlab(d,featlabd);
end
if average_output
d = mean(d,1);
end
prwaitbar(0);
return
end
end
if iscell(a) | iscell(b)
% if (iscell(a) & min([ma,ka]) ~= 1) | (iscell(b)& min([mb,kb]) ~= 1)
% error('Only one-dimensional cell arrays are supported')
% end
if iscell(a) & ~iscell(b)
d = cell(size(a));
[n,s,count] = prwaitbarinit('Mapping %i cells: ',numel(a));
for i = 1:size(a,1);
for j = 1:size(a,2);
d{i,j} = map(a{i,j},b);
count = prwaitbarnext(n,s,count);
end
end
elseif ~iscell(a) & iscell(b)
d = cell(size(b));
[n,s,count] = prwaitbarinit('Mapping %i cells: ',numel(b));
for i = 1:size(b,1);
for j = 1:size(b,2);
d{i,j} = map(a,b{i,j});
count = prwaitbarnext(n,s,count);
end
end
else
if size(a,2) == 1 & size(b,1) == 1
d = cell(length(a),length(b));
[n,s,count] = prwaitbarinit('Mapping %i cells: ',numel(d));
for i = 1:length(a)
for j = 1:length(b)
d{i,j} = map(a{i},b{j});
count = prwaitbarnext(n,s,count);
end
end
elseif all(size(a) == size(b))
d = cell(size(a));
[n,s,count] = prwaitbarinit('Mapping %i cells: ',numel(d));
for i = 1:size(a,1)
for j = 1:size(a,2)
d{i,j} = map(a{i,j},b{i,j});
count = prwaitbarnext(n,s,count);
end
end
else
error('Cell sizes do not match')
end
end
return
end
if all([ma,mb,ka,kb] ~= 0) & ~isempty(a) & ~isempty(b) & ka ~= mb & CHECK_SIZES
error(['Output size of first argument should match input size of second.' ...
newline 'Checking sizes might be skipped by defining gloabal CHECK_SIZES = 0'])
end
if isa(a,'mapping') & isa(b,'mapping')
if isempty(b) % empty mappings are treated as unity mappings
d = a;
elseif istrained(a) & isaffine(a) & istrained(b) & isaffine(b)
% combine affine mappings
d = affine(a,b);
else
d = sequential(a,b);
end
elseif isa(a,'dataset') | isa(a,'datafile') | isa(a,'double') | isa(a,'uint8') | isa(a,'uint16') | isa(a,'dipimage')
if isa(a,'uint8') | isa(a,'uint16') | isa(a,'dipimage')
a = double(a);
end
if ~isa(b,'mapping')
error('Second argument should be mapping or classifier')
end
if isempty(b) % treat empty mappings as unity mappings
d = a;
return
% produce empty mapping (i.e. unity mapping)
% if input data is empty
elseif isempty(a)
d = mapping([]);
return
% handle scalar * mapping by .* (see times.m)
elseif isa(a,'double') & ka == 1 & ma == 1
d = a.*b;
return;
end
mapp = getmapping_file(b);
if isuntrained(b)
pars = +b;
if issequential(b) | isstacked(b) | isparallel(b)
%iscombiner(feval(mapp)) % sequentiall, parallel and stacked need
% special treatment as untrained combiners
% matlab 5 cannot handle the case [d, varargout{:}] = feval when varargout is empty
% because of this we have next piece of code
if isempty(varargout)
d = feval(mapp,a,b);
else
[d, varargout{:}] = feval(mapp,a,b);
end
else
if ~iscell(pars), pars = {pars}; end
if isempty(varargout)
d = feval(mapp,a,pars{:});
else
[d, varargout{:}] = feval(mapp,a,pars{:});
end
end
if ~isa(d,'mapping')
error('Training an untrained classifier should produce a mapping')
end
if getout_conv(b) > 1
d = d*classc;
end
d = setscale(d,getscale(b)*getscale(d));
name = getname(b);
if ~isempty(name)
d = setname(d,name);
end
d = setbatch(d,getbatch(b));
elseif isdatafile(a) & istrained(b)
if issequential(b)
d = feval(mapp,a,b);
else
d = addpostproc(a,{b}); % just add mapping to postprocesing and execute later
end
elseif isdatafile(a)
try % try whether this is a mapping that knows how to handle a datafile
pars = getdata(b); % parameters supplied in fixed mapping definition
if nargout > 0
if isempty(varargout)
d = feval(mapp,a,pars{:});
else
[d, varargout{:}] = feval(mapp,a,pars{:});
end
else
feval(mapp,a,pars{:})
return
end
catch
[lastmsg,lastid] = lasterr;
if ~strcmp(lastid,'prtools:nodatafile')
error(lastmsg);
end
d = addpostproc(a,{b}); % just add mapping to postprocesing and execute later
return
end
elseif isfixed(b) & isparallel(b)
d = parallel(a,b);
elseif isfixed(b) | iscombiner(b)
if ~isdataset(a)
a = dataset(a);
end
pars = getdata(b); % parameters supplied in fixed mapping definition
if ~iscell(pars), pars = {pars}; end
if nargout > 0
if isempty(varargout)
fsize = getsize_in(b);
if any(fsize~=0) & ~isobjim(a)
a = setfeatsize(a,fsize); % needed to set object images, sometimes
end
d = feval(mapp,a,pars{:}); % sequential mappings are split! Solve there!
else
[d, varargout{:}] = feval(mapp,a,pars{:});
end
else
feval(mapp,a,pars{:})
return
end
elseif istrained(b)
if ~isdataset(a)
a = dataset(a);
end
if isempty(varargout)
fsize = getsize_in(b);
if any(fsize~=0) & ~isobjim(a)
a = setfeatsize(a,fsize); % needed to set object images, sometimes
end
d = feval(mapp,a,b);
else
[d, varargout{:}] = feval(mapp,a,b);
end
if ~isreal(+d)
prwarning(2,'Complex values appeared in dataset');
end
if isdataset(d)
d = setcost(d,b.cost);
% see if we have reasonable data in the dataset
end
else
error(['Unknown mapping type: ' getmapping_type(b)])
end
if isdataset(d)
% we assume that just a basic dataset is returned,
% including setting of feature labels, but that scaling
% and outputconversion still have to be done.
% scaling
v = getscale(b);
if length(v) > 1, v = repmat(v(:)',ma,1); end
d = v.*d;
% outputconversion
switch getout_conv(b);
case 1 % SIGM output
if size(d,2) == 1
d = [d -d]; % obviously still single output discriminant
d = setfeatlab(d,d.featlab(1:2,:));
end
d = sigm(d);
case 2 % NORMM output
if size(d,2) == 1
d = [d 1-d]; % obviously still single output discriminant
d = setfeatlab(d,d.featlab(1:2,:));
end % needs conversion to two-classes before normm
d = normm(d);
case 3 % SIGM and NORMM output
if size(d,2) == 1
d = [d -d]; % obviously still single output discriminant
d = setfeatlab(d,d.featlab(1:2,:));
end % needs conversion to two-classes before sigmoid
d = sigm(d);
d = normm(d);
end
%DXD finally, apply the cost matrix when it is defined in the
%mapping/dataset:
d = costm(d);
end
elseif isa(a,'mapping')
if isa(b,'dataset')
error('Datasets should be given as first argument')
elseif isdouble(b) & isscalar(b)
d = setscale(a,b*getscale(a));
elseif istrained(a) & isdouble(b)
d = a*affine(b);
else
error('Mapping not supported')
end
else
%a
b
error('Data type not supported')
end
|
github
|
jacksky64/imageProcessing-master
|
filtim.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/filtim.m
| 5,011 |
utf_8
|
bd97d5621d52f453ea77064e9fa1a408
|
%FILTIM Mapping to filter multiband image objects in datasets and datafiles
%
% B = FILTIM(A,FILTER_COMMAND,{PAR1,PAR2,....},SIZE)
% B = A*FILTIM([],FILTER_COMMAND,{PAR1,PAR2,....},SIZE)
%
% INPUT
% A Dataset or datafile with multi-band image objects
% FILTER_COMMAND String with function name
% {PAR1, ... } Cell array with optional parameters to FILTER_COMMAND
% SIZE Output size of the mapping (default: input size)
%
% OUTPUT
% B Dataset containing multi-band images processed by
% FILTER_COMMAND, band by band.
%
% DESCRIPTION
% For each band of each object stored in A a filter operation is performed as
%
% OBJECT_OUT = FILTER_COMMAND(OBJECT_IN,PAR1,PAR2,....)
%
% The results are collected and stored in B. In case A (and thereby B) is
% a datafile, execution is postponed until conversion into a dataset, or a
% call to SAVEDATAFILE.
%
% The difference between FILTIM and the similar command FILTM is that
% FILTIM is aware of the band structure of the objects. As FILTIM treats
% the bands separately it cannot be used for commands that change the number
% of bands (like RGB2GRAY) or need to access them all.
%
% EXAMPLE
% a = delft_images; b = a(120 121 131 230)*col2gray
% e = b*filtim([],'fft2')*filtim([],'abs')*filtim([],'fftshift');
% figure; show(e); figure; show((1+e)*filtim([],'log'));
%
% SEE ALSO
% DATASETS, DATAFILES, IM2OBJ, DATA2IM, IM2FEAT, DATGAUSS, DATFILT, FILTM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = filtim(a,command,pars,outsize)
prtrace(mfilename);
if nargin < 4, outsize = []; end
if nargin < 3, pars = {}; end
if nargin < 2
error('No command given')
end
if ~iscell(pars), pars = {pars}; end
mapname = 'Dataset/file band filtering';
if isempty(a) % no data, so just mapping definition
b = mapping(mfilename,'fixed',{command,pars});
if ~isempty(outsize)
b = setsize_out(b,outsize);
end
b = setname(b,mapname);
elseif isdatafile(a)
% for datafiles filters will be stored
isobjim(a);
if isempty(getpostproc(a)) % as preprocessing (if no postproc defined)
b = addpreproc(a,mfilename,{command pars},outsize);
else % or as mapping as postprocessing
v = mapping(mfilename,'fixed',{command,pars});
if ~isempty(outsize)
v = setsize_out(v,outsize);
end
v = setname(v,mapname);
b = addpostproc(a,v);
end
elseif isdataset(a)
% convert to image and process
isobjim(a);
m = size(a,1);
d = data2im(a);
out = feval(mfilename,d,command,pars); % effectively jumps to double (below)
fsize = size(out);
if m > 1
fsize = fsize(1:3);
if fsize(3) == 1
fsize = fsize(1:2);
end
end
% store processed images in dataset
b = setdata(a,im2obj(out,fsize));
b = setfeatsize(b,fsize);
else % double
% make imsize 4D: horz*vert*bands*objects
imsize = size(a);
if length(imsize) == 2
imsize = [imsize 1 1];
elseif length(imsize) == 3
imsize = [imsize 1];
end
% find size of first image
first = execute(command,getsubim(a,1,1),pars);
%first = feval(command,getsubim(a,1,1),pars{:});
if all(imsize(3:4) == 1) % preserve DipLib format for the time being
b = first;
return
end
first = double(first); % for Dip_Image users
outsize = size(first);
if length(outsize) == 3 % single subimage generates multiple bands !!
b = repmat(first(:,:,1),[1 1 imsize(3)*outsize(3) imsize(4)]);
else
b = repmat(first,[1 1 imsize(3:4)]);
end
% process all other images
[nn,s,count] = prwaitbarinit('Filtering %i images',imsize(4));
for j = 1:imsize(4)
for i = 1:imsize(3)
ima = double(execute(command,getsubim(a,i,j),pars));
%ima = double(feval(command,getsubim(a,i,j),pars{:}));
if (any(outsize ~= size(ima))) % check size
error('All image sizes should be the same')
end
if length(outsize) == 2 % simple case: image_in --> image_out
b(:,:,i,j) = ima;
else % advanced: image_in --> bands out
b(:,:,i:imsize(3):end,j) = ima;
end
end
count = prwaitbarnext(imsize(4),'Filtering %i images: ',count);
end
end
return
function asub = getsubim(a,i,j)
% needed as Dip_Image cannot handle 4d subsript if data is 2d or 3d
n = ndims(a);
if n == 2
if i ~= 1 | j ~= 1
error('Illegal image requested')
end
asub = a;
elseif n == 3
if j ~= 1
error('Illegal image requested')
end
asub = a(:,:,i);
elseif n == 4
asub = a(:,:,i,j);
else
error('Incorrect image supplied')
end
function out = execute(command,a,pars)
exist_command = exist(command);
if isstr(command) & any([2 3 5 6] == exist_command)
out = feval(command,a,pars{:});
elseif ismapping(command)
out = map(a,command);
else
error([command ': Filter command not found'])
end
return
|
github
|
jacksky64/imageProcessing-master
|
resizem.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/resizem.m
| 1,270 |
utf_8
|
ce577df4423128217dbf0c54502e6915
|
%RESIZEM Mapping for resizing object images in datasets and datafiles
%(outdated, rplaced by im_resize)
%
% B = RESIZEM(A,SIZE,METHOD)
% B = A*RESIZEM([],SIZE,METHOD)
%
% INPUT
% A Dataset or datafile
% SIZE Desired size
% METHOD Method, see IMRESIZE
%
% OUTPUT
% B Dataset or datafile
%
% DESCRIPTION
% The objects stored as images in the dataset or datafile A are resized
% using the IMRESIZE command. Default METHOD is 'nearest' (nearest neighbor
% interpolation. In SIZE the desired output size has to be stored. Note
% that for proper use in PRTools third size parameter of multi-band images,
% e.g. 3 for RGB images, has to be supplied.
%
% SEE ALSO
% MAPPINGS, DATASETS, DATAFILES, IM2OBJ, DATA2IM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = resizem(a,imsize,method)
if nargin < 3 | isempty(method)
method = 'nearest';
end
if isempty(a)
b = mapping(mfilename,'fixed',{imsize,method});
b = setname(b,'image resize');
b = setsize_out(b,imsize);
return
end
isvaldfile(a,0);
if isdataset(a)
isobjim(a);
end
b = filtm(a,'imresize',{imsize(1:2),method},imsize);
|
github
|
jacksky64/imageProcessing-master
|
testdatasize.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testdatasize.m
| 2,682 |
utf_8
|
28a7eda7986d21fdcc452f3bf4accf70
|
%TESTDATASIZE of datafiles and convert to dataset
%
% B = TESTDATASIZE(A,STRING,FLAG)
%
% INPUT
% A DATAFILE or DATASET
% STRING 'data' (default) or 'features' or 'objects'
% FLAG TRUE / FALSE, (1/0) (Default TRUE)
%
% OUTPUT
% B DATASET (if FLAG == 1 and conversion possible)
% TRUE if FLAG == 0 and conversion possible
% FALSE if FLAG == 0 and conversion not possible%
% DESCRIPTION
% If FLAG == 1, depending on the value of PRMEMORY and the size of the
% datafile A, it is converted to a dataset, otherwise an error is generated.
% If FLAG == 0, depending on the value of PRMEMORY and the size of the
% datafile A, the output B is set to TRUE (conversion possible) or FALSE
% (conversion not possible).
%
% The parameter STRING controls the type of comparison:
%
% 'data' PROD(SIZE(A)) < PRMEMORY
% 'objects' SIZE(A,1).^2 < PRMEMORY
% 'features' SIZE(A,2).^2 < PRMEMORY
%
% SEE ALSO
% DATASETS, DATAFILES, PRMEMORY
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = testdatasize(a,type,flag)
prtrace(mfilename);
if nargin < 3,
flag = 1;
end
if nargin < 2
type = 'data';
end
%if isdataset(a) & 0 % neglect: test of datasets not appropriate
if isdataset(a) | isdouble(a)
if flag
b = a;
else
b = 1;
end
return
end
% Now we have a datafile
a = setfeatsize(a,0); % featsize of datafiles is unreliable
b = 1;
switch type
case 'data'
if prod(size(a)) > prmemory
if flag
error(['Dataset too large for memory.' newline ...
'Size is ' int2str(prod(size(a))) ', memory is ' int2str(prmemory) newline ...
'Reduce the data or increase the memory by prmemory.'])
else
b = 0;
end
end
case 'objects'
if size(a,1).^2 > prmemory
if flag
error(['Number of objects too large for memory.' newline ...
'Size is ' int2str(size(a,1).^2) ', memory is ' int2str(prmemory) newline ...
'Reduce the data or increase the memory by prmemory.'])
else
b = 0;
end
end
case 'features'
if size(a,2).^2 > prmemory
if flag
error(['Number of features too large for memory.' newline ...
'Size is ' int2str(size(a,2).^2) ', memory is ' int2str(prmemory) newline ...
'Reduce the data or increase the memory by prmemory.'])
else
b = 0;
end
end
otherwise
error('Unknown test requested')
end
if nargout > 0
if flag
b = dataset(a);
end
end
return
|
github
|
jacksky64/imageProcessing-master
|
nu_svr.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/nu_svr.m
| 4,319 |
utf_8
|
8eaeaa6ed5f4f5b39397258f05ca1b8e
|
%NU_SVR Support Vector Classifier: NU algorithm
%
% [W,J,C] = NU_SVR(A,TYPE,PAR,C,SVR_TYPE,NU_EPS,MC,PD)
%
% INPUT
% A Dataset
% TYPE Type of the kernel (optional; default: 'p')
% PAR Kernel parameter (optional; default: 1)
% C Regularization parameter (0 < C < 1): expected fraction of SV
% (optional; default: 0.25)
% SVR_TYPE This type can be 'nu' or 'epsilon'
% NU_EPS The corresponding value for NU or epsilon
% MC Do or do not data mean-centering (optional; default: 1 (to do))
% PD Do or do not the check of the positive definiteness (optional;
% default: 1 (to do))
%
% OUTPUT
% W Mapping: Support Vector Classifier
% J Object identifiers of support objects
% C Equivalent C regularization parameter of SVM-C algorithm
%
% DESCRIPTION
% Optimizes a support vector classifier for the dataset A by
% quadratic programming. The classifier can be of one of the types
% as defined by PROXM. Default is linear (TYPE = 'p', PAR = 1). In J
% the identifiers of the support objects in A are returned.
%
% C belogs to the interval (0,1). C close to 1 allows for more class
% overlap. Default C = 0.25.
%
% C is bounded from above by NU_MAX = (1 - ABS(Lp-Lm)/(Lp+Lm)), where
% Lp (Lm) is the number of positive (negative) samples. If NU > NU_MAX
% is supplied to the routine it will be changed to the NU_MAX.
%
% If C is less than some NU_MIN which depends on the overlap between
% classes algorithm will typically take long time to converge (if at
% all). So, it is advisable to set NU larger than expected overlap.
%
% Output is rescaled in a such manner as if it were returned by SVC with
% the parameter C.
%
%
% SEE ALSO
% NU_SVRO, SVO, SVC, MAPPINGS, DATASETS, PROXM
% Copyright: S.Verzakov, [email protected]
% Based on SVC.M by D.M.J. Tax, D. de Ridder, R.P.W. Duin
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: nu_svr.m,v 1.2 2009/01/31 18:43:11 duin Exp $
function [W, J, epsilon_or_nu] = nu_svcr(a,type,par,C,svr_type,nu_or_epsilon,mc,pd)
prtrace(mfilename);
if nargin < 2 | ~isa(type,'mapping')
if nargin < 8
pd = 1;
end
if nargin < 7
mc = 1;
end
if nargin < 6
nu_or_epsilon = [];
end
if nargin < 5 | isempty(svr_type)
svr_type = 'epsilon';
end
switch svr_type
case 'nu'
if isempty(nu_or_epsilon)
prwarning(3,'nu is not specified, assuming 0.25.');
nu_or_epsilon = 0.25;
end
%nu = nu_or_epsilon;
case {'eps', 'epsilon'}
svr_type = 'epsilon';
if isempty(nu_or_epsilon)
prwarning(3,'epsilon is not specified, assuming 1e-2.');
nu_or_epsilon = 1e-2;
end
%epsilon = nu_or_epsilon;
end
if nargin < 4 | isempty(C)
prwarning(3,'C set to 1\n');
C = 1;
end
if nargin < 3 | isempty(par)
par = 1;
prwarning(3,'Kernel parameter par set to 1\n');
end
if nargin < 2 | isempty(type)
type = 'p';
prwarning(3,'Polynomial kernel type is used\n');
end
if nargin < 1 | isempty(a)
W = mapping(mfilename,{type,par,C,svr_type,nu_or_epsilon,mc,pd});
W = setname(W,['Support Vector Regression (' svr_type ' algorithm)']);
return;
end
islabtype(a,'targets');
[m,k] = getsize(a);
y = gettargets(a);
% The 1-dim SVR
if size(y,2) == 1 % 1-dim regression
uy = mean(y);
y = y - uy;
if mc
u = mean(a);
a = a - ones(m,1)*u;
else
u = [];
end
K = a*proxm(a,type,par);
% Perform the optimization:
[v,J,epsilon_or_nu] = nu_svro(+K,y,C,svr_type,nu_or_epsilon,pd);
% Store the results:
v(end) = v(end)+uy;
W = mapping(mfilename,'trained',{u,a(J,:),v,type,par},getlablist(a),k,1);
W = setname(W,['Support Vector Regression (' svr_type ' algorithm)']);
%W = setcost(W,a);
J = getident(a,J);
%J = a.ident(J);
else
error('multivariate SVR is not supported');
end
else % execution
w = +type;
m = size(a,1);
% The first parameter w{1} stores the mean of the dataset. When it
% is supplied, remove it from the dataset to improve the numerical
% precision. Then compute the kernel matrix using proxm.
if isempty(w{1})
d = a*proxm(w{2},w{4},w{5});
else
d = (a-ones(m,1)*w{1})*proxm(w{2},w{4},w{5});
end
% When Data is mapped by the kernel, now we just have a linear
% regression w*x+b:
d = [d ones(m,1)] * w{3};
W = setdat(a,d,type);
end
return;
|
github
|
jacksky64/imageProcessing-master
|
reducm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/reducm.m
| 1,511 |
utf_8
|
17bcfd079a7d710c4b823060e4dc27e4
|
%REDUCM Reduce to minimal space
%
% W = REDUCM(A)
%
% Ortho-normal mapping to a space in which the dataset A exactly fits.
% This is useful for datasets with more features than objects. For the
% objects in B = A*W holds that their dimensionality is minimum, their mean
% is zero, the covariance matrix is diagonal with decreasing variances and
% the inter-object distances are equal to those of A.
%
% For this mapping just the labeled objects in A are used, unless A is
% entirely unlabeled. In that case all objects are used.
%
% See also MAPPINGS, DATASETS, NLFISHERM, KLM, PCA
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: reducm.m,v 1.5 2010/02/08 15:29:48 duin Exp $
function W = reducm(a)
prtrace(mfilename);
if nargin < 1 | isempty(a)
W = mapping('reducm');
W = setname(W,'Reduction mapping');
return
end
a = testdatasize(a);
% Find the subspace R of dataset 'a' (actually data matrix 'b'):
b = +cdats(a,1);
[m,k] = size(b);
[R,s,v] = prsvd(b',0);
% Map the data:
b = b*R;
% Find the number of non-singular dimensions
% (can be found from svd??)
r = rank(b);
if r == m, r = r-1; end
% Order the dimensions according to the variance:
% Overdone if we have already the svd
G = prcov(b);
[F V] = preig(G);
[v,I] = sort(-diag(V));
I = I(1:r);
% And store the result in an affine mapping:
R = R*F(:,I);
W = affine(R,-mean(b*F(:,I)),a);
return
|
github
|
jacksky64/imageProcessing-master
|
classim.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/classim.m
| 1,941 |
utf_8
|
f32ac66484a886f0f8055dc61dd99584
|
%CLASSIM Classify image and return resulting label image
%
% LABELS = CLASSIM(Z)
% LABELS = CLASSIM(A,W)
% LABELS = A*W*CLASSIM
%
% INPUT
% Z Classified dataset, or
% A,W Dataset and classifier mapping
%
% OUTPUT
% LABELS Label image
% When no output is requested, the label image is displayed.
%
% DESCRIPTION
% Returns an image with the labels of the classified dataset image Z
% (typically, the result of a mapping or classification A*W in which A is
% a set of images stored as features using IM2FEAT). For each object in
% Z (a pixel), a numeric class label is returned. The colormap is loaded
% automatically.
%
% Note that if the number of classes is small, e.g. 2, an appropriate
% colormap has to be loaded for displaying the result by IMAGE(LABELS),
% or more appropriately, LABELS should be multiplied such that the minimum
% and maximum of LABELS are well spread in the [1,64] interval of the
% standard colormaps.
%
% EXAMPLES
% PREX_SPATM
%
% SEE ALSO
% MAPPINGS, DATASETS, IM2FEAT, LABELD
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: classim.m,v 1.3 2007/09/09 21:21:20 duin Exp $
function labels = classim(a,w)
prtrace(mfilename);
% Untrained mapping
if nargin == 0
labels = mapping('classim','fixed');
return
end
if nargin == 2
ismapping(w);
a = a*w;
end
% Assertion: generate an error, if a is not a dataset with objects as pixels
isfeatim(a);
if size(a,2) == 1
% Assuming the 2-class case
J = 2 - (double(a) >= 0);
else
% Multi-class problem
[mx,J] = max(double(a),[],2);
end
%fl = renumlab(getfeatlab(a));
%labels = reshape(fl(J),getobjsize(a));
labels = reshape(J,getobjsize(a));
% Display the label image
if nargout == 0
n = 61/(size(a,2) +0.5);
imagesc(labels*n)
colormap colorcube
clear labels
end
return;
|
github
|
jacksky64/imageProcessing-master
|
gendatb.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatb.m
| 1,475 |
utf_8
|
785af17a0d25f1cc4ff2a4c43265dabc
|
%GENDATB Generation of banana shaped classes
%
% A = GENDATB(N,S)
%
% INPUT
% N number of generated samples of vector with
% number of samples per class
% S variance of the normal distribution (opt, def: s=1)
%
% OUTPUT
% A generated dataset
%
% DESCRIPTION
% Generation of a 2-dimensional 2-class dataset A of N objects with a
% banana shaped distribution. The data is uniformly distributed along the
% bananas and is superimposed with a normal distribution with standard
% deviation S in all directions. Class priors are P(1) = P(2) = 0.5.
% Defaults: N = [50,50], S = 1.
%
% SEE ALSO
% DATASETS, PRDATASETS
% Copyright: A. Hoekstra, R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: gendatb.m,v 1.3 2008/03/20 07:53:58 duin Exp $
function a = gendatb(N,s)
prtrace(mfilename);
if nargin < 1, N = [50,50]; end
if nargin < 2, s = 1; end
% Default size of the banana:
r = 5;
% Default class prior probabilities:
p = [0.5 0.5];
N = genclass(N,p);
domaina = 0.125*pi + rand(1,N(1))*1.25*pi;
a = [r*sin(domaina') r*cos(domaina')] + randn(N(1),2)*s;
domainb = 0.375*pi - rand(1,N(2))*1.25*pi;
a = [a; [r*sin(domainb') r*cos(domainb')] + randn(N(2),2)*s + ...
ones(N(2),1)*[-0.75*r -0.75*r]];
lab = genlab(N);
a = dataset(a,lab,'name','Banana Set','lablist',genlab([1;1]),'prior',p);
return
|
github
|
jacksky64/imageProcessing-master
|
im_invert.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_invert.m
| 743 |
utf_8
|
934a5a84ab57a0240f1787e6af4d17c7
|
%IM_INVERT Inversion of images stored in a dataset
%
% A = IM_INVERT(A)
% A = A*IM_INVERT
%
% Inverts image A by subtracting it from its maximum
%
% SEE ALSO
% DATASETS, DATAFILES
% Copyright: D. de Ridder, R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_invert(a)
prtrace(mfilename);
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed');
b = setname(b,'Image inverse');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename);
elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image
if isa(a,'dip_image'), a = double(a); end
b = max(max(max(a)))-a;
end
return
|
github
|
jacksky64/imageProcessing-master
|
disnorm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/disnorm.m
| 1,646 |
utf_8
|
17034f60f84d0b97b101998541c77e85
|
%DISNORM Normalization of a dissimilarity matrix
%
% V = DISNORM(D,OPT)
% F = E*V
%
% INPUT
% D NxN dissimilarity matrix or dataset, which sets the norm
% E Matrix to be normalized, e.g. D itself
% OPT 'max' : maximum dissimilarity is set to 1 by global rescaling
% 'mean': average dissimilarity is set to 1 by global rescaling (default)
%
% OUTPUT
% V Fixed mapping
% F Normalized dissimilarity data
%
% DEFAULT
% OPT = 'mean'
%
% DESCRIPTION
% Operation on dissimilarity matrices, like the computation of classifiers
% in dissimilarity space, may depend on the scaling of the dissimilarities
% (a single scalar for the entire matrix). This routine computes a scaling
% for a giving matrix, e.g. a training set and applies it to other
% matrices, e.g. the same training set or based on a test set.
% Copyright: Elzbieta Pekalska, [email protected]
% Faculty EWI, Delft University of Technology and
% School of Computer Science, University of Manchester
function V = disnorm(D,opt)
if nargin < 2,
opt = 'mean';
end
if nargin == 0 | isempty(D)
V = mapping(mfilename,{opt});
V = setname(V,'Disnorm');
return
end
if ~isdataset(D)
D = dataset(D,1);
D = setfeatlab(D,getlabels(D));
end
%DEFINE mapping
if isstr(opt)
% discheck(D);
opt = lower(opt);
if strcmp(opt,'mean')
n = size(D,1);
m = sum(sum(+D))/(n*(n-1));
elseif strcmp(opt,'max')
m = max(D(:));
else
error('Wrong OPT.')
end
if nargout > 1
D = D./m;
end
V = mapping(mfilename,'trained',{m},[],size(D,2),size(D,2));
return;
end
% APPLY mapping
if ismapping(opt)
opt = getdata(opt,1);
V = D./opt;
return;
end
|
github
|
jacksky64/imageProcessing-master
|
prinv.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prinv.m
| 309 |
utf_8
|
89acc1f05a67a2900135b943a8cd4614
|
%PRINV Call to INV() including PRWAITBAR
%
% B = PRINV(A)
%
% This calls B = INV(A) and includes a message to PRWAITBAR
% in case of a large A
function B = prinv(A)
[m,n] = size(A);
if min([m,n]) >= 500
prwaitbaronce('Inverting %i x %i matrix ...',[m,n]);
B = inv(A);
prwaitbar(0);
else
B = inv(A);
end
|
github
|
jacksky64/imageProcessing-master
|
matchlablist.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/matchlablist.m
| 1,366 |
utf_8
|
ac9318c7c49e2c458090ca4d64934eea
|
%MATCHLABLIST Match entries of lablist1 with lablist2
%
% I = MATCHLABLIST(LABLIST1,LABLIST2)
%
% INPUT
% LABLIST1 list of class names
% LABLIST2 list of class names
%
% OUTPUT
% I indices for LABLIST1 appearing in LABLIST2
%
% DESCRIPTION
% Find the indices of places where the entries of LABLIST1 appear
% in LABLIST2, i.e. LABLIST1 = LABLIST2(I).
% Note that this operation is not symmetric, changing the order of
% LABLIST1 and LABLIST2 changes I!
% I(i) = 0 for labels appearing in LABLIST1 that are not in LABLIST2.
%
% SEE ALSO
% DATASETS, RENUMLAB
% Copyright: D.M.J. Tax [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function I = matchlablist(lablist1,lablist2)
prtrace(mfilename);
n = size(lablist1,1);
I = zeros(n,1); % the resulting vector
if isempty(lablist2) % nothing fits
return
end
if iscell(lablist1) & iscell(lablist2)
lablist1 = char(lablist1);
lablist2 = char(lablist2);
end
for i=1:n
if isstr(lablist1) & isstr(lablist2)
tmp = strmatch(deblank(lablist1(i,:)),lablist2,'exact');
elseif ~isstr(lablist1) & ~isstr(lablist2)
tmp = find(~sum((lablist2 ~= repmat(lablist1(i),size(lablist2,1),1)),2));
else
tmp = zeros(size(lablist1,1),1);
end
if ~isempty(tmp)
I(i) = tmp(1);
else
I(i) = 0;
end
end
return
|
github
|
jacksky64/imageProcessing-master
|
gendatl.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatl.m
| 1,532 |
utf_8
|
aba983637cf024f09083ee34afe47bb2
|
%GENDATL Generation of Lithuanian classes
%
% A = GENDATL(N,S)
%
% INPUT
% N Number of objects per class (optional; default: [50 50])
% S Standard deviation for the data generation (optional; default: 1)
%
% OUTPUT
% A Dataset
%
% DESCRIPTION
% Generation of Lithuanian classes, a 2-dimensional, 2-class dataset A
% of N objects according to the definition given by Raudys.
% The data is uniformly distributed along two sausages and is superimposed
% by a normal distribution with standard deviation S in all directions.
% Class priors are P(1) = P(2) = 0.5.
%
% SEE ALSO
% DATASETS, PRDATASETS
% Copyright: M. Skurichina, R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: gendatl.m,v 1.3 2007/06/19 11:44:14 duin Exp $
function a = gendatl(N,s)
prtrace(mfilename);
if nargin < 1,
prwarning(3,'Class cardinalities are not specified, assuming [50 50].');
N = [50 50];
end
if nargin < 2,
prwarning(4,'Standard deviation for the data generation is not specified, assuming 1.');
s = 1;
end
if (length(N) == 1),
N(2) = N(1);
end;
u1 = 2*pi/3*(rand(N(1),1)-0.5*ones(N(1),1));
u2 = 2*pi/3*(rand(N(2),1)-0.5*ones(N(2),1));
a = [[10*cos(u1) + s*randn(N(1),1) 10*sin(u1) + s*randn(N(1),1)]; ...
[6.2*cos(u2) + s*randn(N(2),1) 6.2*sin(u2) + s*randn(N(2),1)]];
lab = genlab(N);
a = dataset(a,lab,'name','Lithuanian Classes');
a = setlablist(a,[1 2]');
a = setprior(a,[0.5 0.5]);
return;
|
github
|
jacksky64/imageProcessing-master
|
invsigm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/invsigm.m
| 1,435 |
utf_8
|
15b41aa9cbad0fb4cad94337d3a9eb78
|
%INVSIGM Inverse sigmoid map
%
% W = W*INVSIGM
% B = INVSIGM(ARG)
%
% INPUT
% ARG Mapping/Dataset
%
% OUTPUT
% W Mapping transforming posterior probabilities into distances.
%
% DESCRIPTION
% The inverse sigmoidal transformation to transform a classifier to a
% mapping, transforming posterior probabilities into distances.
%
% SEE ALSO
% MAPPINGS, DATASETS, CLASSC, SIGM
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: invsigm.m,v 1.3 2007/03/22 08:54:59 duin Exp $
function w = invsigm(arg)
prtrace(mfilename);
if nargin == 0
% Create an empty mapping:
w = mapping('invsigm','combiner');
w = setname(w,'Inverse Sigmoidal Mapping');
elseif isa(arg,'mapping')
% If the mapping requested a SIGM transformation (out_conv=1), it
% is now removed (out_conv=0):
if arg.out_conv == 1
w = set(arg,'out_conv',0);
if arg.size_out == 2
w.size_out = 1;
w.labels = w.labels(1,:);
data.rot = w.data.rot(:,1);
data.offset = w.data.offset(1);
data.lablist_in = w.data.lablist_in;
w.data = data;
end
else
w_s = setname(mapping('invsigm','fixed'),'Inverse Sigmoidal Mapping');
w = arg*w_s;
end
else
% The data is really transformed:
if isdatafile(arg)
w = addpostproc(arg,invsigm);
else % datasets and doubles
w = log(arg+realmin) - log(1-arg+realmin);
end
end
return
|
github
|
jacksky64/imageProcessing-master
|
isdataim.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isdataim.m
| 956 |
utf_8
|
541eb52b33cb75affee631ee0b4db63f
|
%ISDATAIM Returns true if a dataset contains image objects or image features
%
% N = ISDATAIM(A)
%
% INPUT
% A Dataset
%
% OUTPUT
% N Scalar: 1 if A contains images as objects or features, otherwise 0
%
% DESCRIPTION
% If no output argument is given, the function will produce an error if A does
% not contain image objects or features (i.e. it will act as an assertion).
%
% SEE ALSO
% ISOBJIM, ISFEATIM
% $Id: isdataim.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function n = isdataim (a)
prtrace(mfilename);
if (nargin < 1)
error('Insufficient number of arguments.');
end
% The FEATSIZE and OBJSIZE fields of a dataset indicate whether it contains
% images.
n = (isa(a,'dataset')) & ((length(a.featsize) > 1) | (length(a.objsize) > 1)) ;
% Generate and error if the input is not a dataset with image data and
% no output is requested (assertion).
if (nargout == 0) & (n == 0)
error('Dataset with images expected.')
end
return
|
github
|
jacksky64/imageProcessing-master
|
mogc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/mogc.m
| 2,240 |
utf_8
|
cc799611be99de1d4a78f49de3d7a6d6
|
%MOGC Mixture of Gaussian classifier
%
% W = MOGC(A,N)
% W = A*MOGC([],N);
% W = A*MOGC([],N,R,S);
%
% INPUT
% A Dataset
% N Number of mixtures (optional; default 2)
% R,S Regularization parameters, 0 <= R,S <= 1, see QDC
% OUTPUT
%
% DESCRIPTION
% For each class j in A a density estimate is made by GAUSSM, using N(j)
% mixture components. Using the class prior probabilities they are combined
% into a single classifier W. If N is a scalar, this number is applied to
% each class. The relative size of the components is stored in W.DATA.PRIOR.
%
% EXAMPLES
% PREX_DENSITY
%
% SEE ALSO
% DATASETS, MAPPINGS, QDC, PLOTM, TESTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: mogc.m,v 1.6 2009/11/23 09:22:28 davidt Exp $
function w = mogc(a,n,r,s);
prtrace(mfilename);
if nargin < 4, s = 0; end
if nargin < 3, r = 0; end
if nargin < 2, n = 2; end
if nargin < 1 | isempty(a)
w = mapping(mfilename,{n,r,s});
w = setname(w,'MoG Classifier');
return
end
islabtype(a,'crisp','soft');
isvaldfile(a,n,2); % at least n objects per class, 2 classes
% Initialize all the parameters:
a = testdatasize(a);
a = testdatasize(a,'features');
[m,k,c] = getsize(a);
p = getprior(a);
a = setprior(a,p);
if length(n) == 1
n = repmat(n,1,c);
end
if length(n) ~= c
error('Numbers of components does not match number of classes')
end
w = [];
d.mean = zeros(sum(n),k);
d.cov = zeros(k,k,sum(n));
d.prior = zeros(1,sum(n));
d.nlab = zeros(1,sum(n));
d.det = zeros(1,sum(n));
if(any(classsizes(a)<n))
error('One or more class sizes too small for desired number of components')
end
% Estimate a MOG for each of the classes:
w = [];
n1 = 1;
for j=1:c
n2 = n1 + n(j) - 1;
b = seldat(a,j);
%b = setlabtype(b,'soft');
v = gaussm(b,n(j),r,s);
d.mean(n1:n2,:) = v.data.mean;
d.cov(:,:,n1:n2)= v.data.cov;
d.prior(n1:n2) = v.data.prior*p(j);
d.nlab(n1:n2) = j;
d.det(n1:n2) = v.data.det;
n1 = n2+1;
end
w = mapping('normal_map','trained',d,getlablist(a),k,c);
%w = normal_map(d,getlablist(a),k,c);
w = setname(w,'MoG Classifier');
w = setcost(w,a);
return;
|
github
|
jacksky64/imageProcessing-master
|
sigm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/sigm.m
| 1,231 |
utf_8
|
6c752530c0b60971e1d8bf944baa4512
|
%SIGM Sigmoid map
%
% W = W*SIGM
% B = A*SIGM
% W = W*SIGM([],SCALE)
% B = SIGM(A,SCALE)
%
% INPUT
% A Dataset (optional)
% SCALE Scaling parameter (optional, default: 1)
%
% OUTPUT
% W Sigmoid mapping, or
% B Dataset A mapped by sigmoid mapping
%
% DESCRIPTION
% Sigmoidal transformation, useful to transform a map to classifier,
% producing posterior probability estimates. The parameter SCALE scales the
% data first (A/SCALE), before the transformation. Default: SCALE = 1, i.e.
% no scaling.
%
% SEE ALSO
% DATASETS, MAPPINGS, CLASSC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: sigm.m,v 1.3 2007/04/13 09:31:44 duin Exp $
function out = sigm (a,scale)
prtrace(mfilename);
if (nargin < 2)
prwarning(3,'no scale supplied, assuming 1');
scale = [];
end
% Depending on the type of call, return a mapping or sigmoid-mapped data.
if (nargin == 0) | (isempty(a))
w = mapping(mfilename,'fixed',scale);
w = setname(w,'Sigmoidal Mapping');
out = w;
elseif (isempty(scale))
out = 1./(1+exp(-a));
else
out = 1./(1+exp(-a/scale));
end
return
|
github
|
jacksky64/imageProcessing-master
|
klldc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/klldc.m
| 1,713 |
utf_8
|
ee649fb58c45cab210ff1f23d1817d73
|
%KLLDC Linear classifier built on the KL expansion of the common covariance matrix
%
% W = KLLDC(A,N)
% W = KLLDC(A,ALF)
%
% INPUT
% A Dataset
% N Number of significant eigenvectors
% ALF 0 < ALF <= 1, percentage of the total variance explained (default: 0.9)
%
% OUTPUT
% W Linear classifier
%
% DESCRIPTION
% Finds the linear discriminant function W for the dataset A. This is done
% by computing the LDC on the data projected on the first eigenvectors of
% the averaged covariance matrix of the classes. Either first N eigenvectors
% are used or the number of eigenvectors is determined such that ALF, the
% percentage of the total variance is explained. (Karhunen Loeve expansion)
%
% If N (ALF) is NaN it is optimised by REGOPTC.
%
% SEE ALSO
% MAPPINGS, DATASETS, PCLDC, KLM, FISHERM, REGOPTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: klldc.m,v 1.4 2007/06/13 21:59:42 duin Exp $
function W = klldc(a,n)
prtrace(mfilename);
if nargin < 2
n = [];
prwarning(4,'number of significant eigenvectors not supplied, 0.9 variance explained');
end
if nargin == 0 | isempty(a)
W = mapping('klldc',{n});
elseif isnan(n) % optimize regularisation parameter
defs = {1};
parmin_max = [1,size(a,2)];
W = regoptc(a,mfilename,{n},defs,[1],parmin_max,testc([],'soft'),0);
else
islabtype(a,'crisp','soft');
isvaldfile(a,2,2); % at least 2 object per class, 2 classes
a = testdatasize(a,'features');
a = setprior(a,getprior(a));
v = klm(a,n);
W = v*ldc(a*v);
W = setcost(W,a);
end
W = setname(W,'KL Bayes-Normal-1');
return
|
github
|
jacksky64/imageProcessing-master
|
weakc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/weakc.m
| 1,898 |
utf_8
|
f1146600c4e707fdea7974fe5cb918a0
|
%WEAKC Weak Classifier
%
% [W,V] = WEAKC(A,ALF,ITER,R)
% VC = WEAKC(A,ALF,ITER,R,1)
%
% INPUT
% A Dataset
% ALF Fraction of objects to be used for training (def: 0.5)
% ITER Number of trials
% R R = 0: use NMC (default)
% R = 1: use FISHERC
% R = 2: use UDC
% R = 3: use QDC
% otherwise arbitrary untrained classifier
%
% OUTPUT
% W Best classifier over ITER runs
% V Cell array of all classifiers
% Use VC = stacked(V) for combining
% VC Combined set of classifiers
%
% WEAKC uses subsampled versions of A for training. Testing is done
% on the entire training set A. The best classifier is returned in W.
%
% SEE ALSO
% MAPPINGS, DATASETS, FISHERC, UDC, QDC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [w,v] = weakc(a,n,iter,r,s)
prtrace(mfilename);
% INITIALISATION
if nargin < 5, s = 0; end
if nargin < 4, r = 0; end
if nargin <3, iter = 1; end
if nargin < 2, n = 1; end
if nargin < 1 | isempty(a)
w = mapping(mfilename,{n,iter,r,s});
w = setname(w,'Weak');
return
end
% TRAINING
v = {};
emin = 1;
for it = 1:iter % Loop
b = gendat(a,n); % subsample training set
if ~ismapping(r) % select classifier and train
if r == 0
ww = nmc(b);
elseif r == 1
ww = fisherc(b);
elseif r == 2
ww = udc(b);
elseif r == 3
ww = qdc(b);
else
error('Illegal classifier requested')
end
else
ww = b*r;
end
v = {v{:} ww}; % store all classifiers in v
% select best classifier and store in w
e = a*ww*testc;
if e < emin
emin = e;
w = ww;
end
end
if s == 1
w = stacked(v);
end
return
|
github
|
jacksky64/imageProcessing-master
|
bhatm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/bhatm.m
| 3,010 |
utf_8
|
14b1869e8b30889e9d06b9665b57b7a4
|
%BHATM Bhattacharryya linear feature extraction mapping
%
% W = BHATM(A,N)
%
% INPUT
% A Dataset
% N Number of dimensions to map to (N >= 1), or fraction of cumulative
% contribution to retain (0 < N < 1)
%
% OUTPUT
% W Bhattacharryya mapping
%
% DESCRIPTION
% Finds a mapping of the labeled dataset A onto an N-dimensional linear
% subspace such that it maximizes the Bhattacharrryya distance between the
% classes, assuming Gaussian distributions. Only for two-class datasets.
%
% SEE ALSO
% MAPPINGS, DATASETS, FISHERM, NLFISHERM, KLM, PCA
% Copyright: F. van der Heijden(1) and Dick de Ridder(2)
% (1) Laboratory for Measurement and Instrumentation, Dept. of Electrical
% Engineering, University of Twente, Enschede, The Netherlands
% (2) Faculty of Electrical Engineering, Mathematics and Computer Science
% Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
% $Id: bhatm.m,v 1.5 2010/02/08 15:31:48 duin Exp $
function w = bhatm(a,n)
prtrace(mfilename);
if (nargin < 2)
prwarning (4, 'fraction to map to not specified, assuming 0.9');
n = 0.9;
end
% If no arguments are specified, return an untrained mapping.
if (nargin < 1) | (isempty(a))
w = mapping('bhatm',{n});
w = setname(w,'Bhatta mapping');
return
end
% Check input.
a = testdatasize(a);
islabtype(a,'crisp');
isvaldset(a,2,2); % At least 2 objects per class, 2 classes
a = setprior(a,getprior(a)); % set priors to avoid unnecessary warnings
[m,k,c] = getsize(a);
if (c ~= 2)
error ('works only on two-class datasets');
end;
% Shift mean of data to origin.
b = a*scalem(a);
% Get class means and covariances.
[U,G] = meancov(b);
G1 = G(:,:,1); G2 = G(:,:,2);
[E1,D1] = preig(G1); A = D1^-0.5*E1'; G2 = A*G2*A'; % Whiten the first class
G2 = (G2+G2')/2; % Enforce symmetry
[E2,D2]=preig(G2); % Decorrelate the second
% Contributions to Bhattacharryya distance.
d = E2'*A*(U(1,:)-U(2,:))'; D2 = diag(D2);
Jb = 0.25*((d.^2)./(1.+D2)) + 0.5*log(0.5*(D2.^0.5 + D2.^-0.5));
% Calculate transform matrix.
W = E2'*D1^-0.5*E1'; % The full transformation matrix
[Jb,I] = sort(-Jb); % Sort according to Jb
W = W(I,:); % Same
%DXD: If N=0 we just want to get the Jb for all dimensions
if (n==0)
w = cumsum(Jb)/sum(Jb);
return
end
% If a fraction N is given, find number of dimensions.
if (n < 1)
Jb = cumsum(-Jb); % Accumulate Jb
ind = find(Jb < n*Jb(k)); % Find important components
if (length(ind)==0)
n = 1;
else
n = ind(length(ind)); % D is last important component
end
end;
% Construct affine mapping.
rot = W(1:n,1:k)'; off = -mean(b*rot);
w = affine(rot,off,a);
w = setname(w,'Bhatta mapping');
return
|
github
|
jacksky64/imageProcessing-master
|
prwaitbarnext.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prwaitbarnext.m
| 684 |
utf_8
|
c8d48c4427ac50247a6b8ab6481e7c2c
|
%PRWAITBARNEXT Low level routine to simplify PRWAITBAR next calls
%
% COUNT = PRWAITBARNEXT(N,STRING,COUNT)
%
% Update call for PRWAITBAR after initialisation by PRWAITBARINIT.
%
% In case COUNT = 0 it initializes as well and a separate call to
% PRWAITBARINIT is not needed.
%
% SEE PRWAITBARINIT
function count = prwaitbarnext(n,ss,count)
if count < 0
[n,s,count] = prwaitbarinit(ss,n);
else
s = sprintf(ss,n);
end
if n > 1
count = count + 1;
% we show one count more as prwaitbarnext typically is at the end of a
% loop, while prwaitbar is at the beginning
prwaitbar(n,count+1,[s int2str(count+1)]);
if count == n
prwaitbar(0);
end
end
return
|
github
|
jacksky64/imageProcessing-master
|
libsvc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/libsvc.m
| 4,941 |
utf_8
|
fc38617bb5605c8cb8f39d1e7cb6a360
|
%LIBSVC Support Vector Classifier by libsvm
%
% [W,J] = LIBSVC(A,KERNEL,C)
%
% INPUT
% A Dataset
% KERNEL Mapping to compute kernel by A*MAP(A,KERNEL)
% or string to compute kernel by FEVAL(KERNEL,A,A)
% or cell array with strings and parameters to compute kernel by
% FEVAL(KERNEL{1},A,A,KERNEL{2:END})
% Default: linear kernel (PROXM([],'P',1))
% C Trade_off parameter in the support vector classifier.
% Default C = 1;
%
% OUTPUT
% W Mapping: Support Vector Classifier
% J Object idences of support objects. Can be also obtained as W{4}
%
% DESCRIPTION
% Optimizes a support vector classifier for the dataset A by the libsvm
% package, see http://www.csie.ntu.edu.tw/~cjlin/libsvm/. LIBSVC calls the
% svmtrain routine of libsvm for training. Classifier execution for a
% test dataset B may be done by D = B*W; In D posterior probabilities are
% given as computed by svmpredict using the '-b 1' option.
%
% The kernel may be supplied in KERNEL by
% - an untrained mapping, e.g. a call to PROXM like W = LIBSVC(A,PROXM([],'R',1))
% - a string with the name of the routine to compute the kernel from A
% - a cell-array with this name and additional parameters.
% This will be used for the evaluation of a dataset B by B*W or MAP(B,W) as
% well.
%
% If KERNEL = 0 (or not given) it is assumed that A is already the
% kernelmatrix (square). In this also a kernel matrix should be supplied at
% evaluation by B*W or MAP(B,W). However, the kernel has to be computed with
% respect to support objects listed in J (the order of objects in J does matter).
%
% REFERENCES
% R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using the second order
% information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005
%
% SEE ALSO
% MAPPINGS, DATASETS, SVC, PROXM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [W,J,u] = libsvc(a,kernel,C)
prtrace(mfilename);
libsvmcheck;
if nargin < 3
C = 1;
end
if nargin < 2 | isempty(kernel)
kernel = proxm([],'p',1);
end
if nargin < 1 | isempty(a)
W = mapping(mfilename,{kernel,C});
W = setname(W,'LIBSVM Classifier');
return;
end
%opt = ['-s 0 -t 4 -b 1 -c ',num2str(C)];
opt = ['-s 0 -t 4 -b 1 -e 1e-3 -c ',num2str(C), ' -q'];
if (~ismapping(kernel) | isuntrained(kernel)) % training
islabtype(a,'crisp');
isvaldfile(a,1,2); % at least 1 object per class, 2 classes
a = testdatasize(a,'objects');
[m,k,c] = getsize(a);
nlab = getnlab(a);
K = compute_kernel(a,a,kernel);
K = min(K,K'); % make sure kernel is symmetric
K = [[1:m]' K]; % as libsvm wants it
% call libsvm
u = svmtrain(nlab,K,opt);
% Store the results:
J = full(u.SVs);
if isempty(J) | J == 0
aa = 0;
end
if isequal(kernel,0)
s = [];
% in_size = length(J);
in_size = 0; % to allow old and new style calls
else
s = a(J,:);
in_size = k;
end
lablist = getlablist(a);
W = mapping(mfilename,'trained',{u,s,kernel,J,opt},lablist(u.Label,:),in_size,c);
W = setname(W,'LIBSVM Classifier');
W = setcost(W,a);
else % execution
v = kernel;
w = +v;
m = size(a,1);
u = w{1};
s = w{2};
kernel = w{3};
J = w{4};
opt = w{5};
K = compute_kernel(a,s,kernel);
k = size(K,2);
if k ~= length(J)
if isequal(kernel,0)
if (k > length(J)) & (k >= max(J))
% precomputed kernel; old style call
prwarning(2,'Old style execution call: The precomputed kernel was calculated on a test set and the whole training set!')
else
error(['Inappropriate precomputed kernel!' newline ...
'For the execution the kernel matrix should be computed on a test set' ...
newline 'and the set of support objects']);
end
else
error('Kernel matrix has the wrong number of columns');
end
else
% kernel was computed with respect to the support objects
% we make an approprite correction in the libsvm structure
u.SVs = sparse((1:length(J))');
end
K = [[1:m]' K]; % as libsvm wants it
[lab,acc,d] = svmpredict(getnlab(a),K,u,' -b 1');
W = setdat(a,d,v);
end
return;
function K = compute_kernel(a,s,kernel)
% compute a kernel matrix for the objects a w.r.t. the support objects s
% given a kernel description
if isstr(kernel) % routine supplied to compute kernel
K = feval(kernel,a,s);
elseif iscell(kernel)
K = feval(kernel{1},a,s,kernel{2:end});
elseif ismapping(kernel)
K = a*map(s,kernel);
elseif kernel == 0 % we have already a kernel
K = a;
else
error('Do not know how to compute kernel matrix')
end
K = +K;
return
|
github
|
jacksky64/imageProcessing-master
|
randreset.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/randreset.m
| 673 |
utf_8
|
c649bdd2f643bc2dc74a2f7aab5fabbc
|
%RANDRESET Reset state of random generators
%
% RANDRESET - reset states to 1
% RANDRESET(STATE) - reset states to STATE
% STATE = RANDRESET - retrieve present state (no reset)
% OLDSTATE = RANDRESET(STATE) - retrieve present state and reset
function output = randreset(state)
if nargin < 1 & nargout < 1
state = 1;
end
if nargout > 0
randstate = cell(1,2);
randstate{1} = rand('state');
randstate{2} = randn('state');
output = randstate;
end
if ~(nargout == 1 & nargin == 0)
if iscell(state)
rand('state',state{1});
randn('state',state{2});
else
rand('state',state);
randn('state',state);
end
end
|
github
|
jacksky64/imageProcessing-master
|
rsscc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rsscc.m
| 1,918 |
utf_8
|
b6e779e3c66d0dcceb1f7815cd10ef16
|
%RSSCC Random subspace combining classifier
%
% W = RSSCC(A,CLASSF,NFEAT,NCLASSF)
%
% INPUT
% A Dataset
% CLASSF Untrained base classifier
% NFEAT Number of features for training CLASSF
% NCLASSF Number of base classifiers
%
% OUTPUT
% W Combined classifer
%
% DESCRIPTION
% This procedure computes a combined classifier consisting out of NCLASSF
% base classifiers, each trained by a random set of NFEAT features of A.
% W is just the set of base classifiers and still needs a combiner, e.g.
% use W*MAXC or W*VOTEC.
%
% SEE ALSO
% DATASETS, MAPPINGS, PARALLEL
function w = rsscc(a,classf,nfeat,nclassf)
if nargin < 4, nclassf = []; end
if nargin < 3, nfeat = []; end
if nargin < 2, classf = nmc; end
if nargin < 1 | isempty(a)
w = mapping(mfilename,'untrained',{classf,nfeat,nclassf});
w = setname(w,'rsscc');
elseif isuntrained(classf) % training
isvaldset(a,1,1);
[m,k] = size(a);
if isempty(nfeat)
nfeat = max(round(m/10),2); % use at least 2D feature spaces
end
if isempty(nclassf)
nclassf = max(ceil(k/nfeat),10); % use at least 10 classifiers
end
if nfeat >= k % allow for small feature sizes (k < nfeat)
nfeat = k; % use all features
nclassf = 1; % compute a single classifier
end
nsets = ceil(nfeat*nclassf/k);
featset = [];
for j=1:nsets
featset = [featset, randperm(k)];
end
featset = featset(1:nfeat*nclassf);
featset = reshape(featset,nclassf,nfeat);
w = [];
s = sprintf('Compute %i classifiers: ',nclassf);
prwaitbar(nclassf,s);
for j=1:nclassf
prwaitbar(nclassf,j,[s num2str(j)]);
w = [w; a(:,featset(j,:))*classf];
end
prwaitbar(0)
w = mapping(mfilename,'trained',{w,featset},getlablist(a),k,getsize(a,3));
else % execution, trained classifier stored in classf
wdata = getdata(classf);
w = wdata{1};
featset = wdata{2}';
w = a(:,featset(:))*w;
end
|
github
|
jacksky64/imageProcessing-master
|
fisherc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/fisherc.m
| 3,055 |
utf_8
|
4284de41090f4d633d00ff52b68a8594
|
%FISHERC Fisher's Least Square Linear Classifier
%
% W = FISHERC(A)
%
% INPUT
% A Dataset
%
% OUTPUT
% W Fisher's linear classifier
%
% DESCRIPTION
% Finds the linear discriminant function between the classes in the
% dataset A by minimizing the errors in the least square sense. This
% is a multi-class implementation using the one-against-all strategy.
%
% This classifier also works for soft and target labels.
%
% For high dimensional datasets or small sample size situations, the
% Pseudo-Fisher procedure is used, which is based on a pseudo-inverse.
%
% This classifier, like all other non-density based classifiers, does not
% use the prior probabilities stored in the dataset A. Consequently, it
% is just for two-class problems and equal class prior probabilities
% equivalent to LDC, which assumes normal densities with equal covariance
% matrices.
%
% Note that A*(KLMS([],N)*NMC) performs a very similar operation, but uses
% the prior probabilities to estimate the mean class covariance matrix used
% in the pre-whitening operation performed by KLMS. The reduced
% dimensionality N controls some regularization.
%
% REFERENCES
% 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd ed.
% John Wiley and Sons, New York, 2001.
% 2. A. Webb, Statistical Pattern Recognition, Wiley, New York, 2002.
% 3. S. Raudys and R.P.W. Duin, On expected classification error of the
% Fisher linear classifier with pseudo-inverse covariance matrix, Pattern
% Recognition Letters, vol. 19, no. 5-6, 1998, 385-392.
%
% SEE ALSO
% MAPPINGS, DATASETS, TESTC, LDC, NMC, FISHERM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: fisherc.m,v 1.6 2010/02/08 15:31:48 duin Exp $
function W = fisherc(a)
prtrace(mfilename);
% No input arguments, return an untrained mapping.
if (nargin < 1) | (isempty(a))
W = mapping(mfilename);
W = setname(W,'Fisher');
return;
end
isvaldfile(a,1,2); % at least 1 object per class, 2 classes
a = testdatasize(a);
[m,k,c] = getsize(a);
if islabtype(a,'crisp') & c > 2
W = mclassc(a,fisherc);
return
end
y = gettargets(a);
if islabtype(a,'soft')
y = invsigm(y); % better to give [0,1] targets full range
end
u = mean(a);
% Shift A to the origin. This is not significant, just increases accuracy.
% A is extended by ones(m,1), a trick to incorporate a free weight in the
% hyperplane definition.
b = [+a-repmat(u,m,1), ones(m,1)];
if (rank(b) <= k)
% This causes Fisherc to be the Pseudo-Fisher Classifier
prwarning(2,'The dimensionality is too large. Pseudo-Fisher is trained instead.');
v = prpinv(b)*y;
else
% Fisher is identical to the Min-Square-Error solution.
v = b\y;
end
offset = v(k+1,:) - u*v(1:k,:); % Free weight.
W = affine(v(1:k,:),offset,a,getlablist(a),k,c);
% Normalize the weights for good posterior probabilities.
W = cnormc(W,a);
W = setname(W,'Fisher');
return;
|
github
|
jacksky64/imageProcessing-master
|
dyadicm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/dyadicm.m
| 3,915 |
utf_8
|
fd78b4e2ab69cf6302874f80423e54e0
|
%DYADICM Dyadic dataset mapping
%
% B = DYADICM(A,P,Q,SIZE)
%
% INPUT
% A Input dataset
% P Scalar multiplication factor (default 1)
% or string (name of a routine)
% Q Scalar multiplication factor (default 1)
% or feature size needed for splitting A
% SIZE Desired images size of output objects
%
% OUTPUT
% B Dataset
%
% DESCRIPTION
% This fixed mapping is a low-level routine to facilitate dyadic datafile
% operations. A should be a horizontal concatenation of two identically
% shaped datasets: A = [A1 A2]. B is now computed as B = P*A1 + Q*A2.
% The feature size for the objects in B is set to SIZE.
%
% If P is a string (name of a routine) the dataset A is horizontally
% split and COMMAND(A1,A2) is called, in which COMMAND is the name of the
% routine stored in P.
%
% If P is a string and Q is a number then the above split is made using
% the first Q columns (features) of A for A1 and the remaining for A2.
%
% This routine has been written for use by PRTools programmers only.
% Note that although this routine shows itself as a fixed mapping, it
% is sometimes externally set to a combiner.
%
% SEE ALSO
% DATASETS, MAPPINGS, DATAFILES
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = dyadicm(a,p,q,fsize)
prtrace(mfilename,2);
if nargin < 4, fsize = []; end
if nargin < 3, q = []; end
if nargin < 2, p = []; end
if nargin < 1 | isempty(a)
% note that this routine is sometimes externally set to a combiner
b = mapping(mfilename,'fixed',{p,q,fsize});
b = setsize_out(b,prod(fsize));
b = setname(b,'dyadicm');
return
end
if isempty(p), p = 1; end
if ismapping(a)
% note that this routine is sometimes externally set to a combiner
if istrained(a)
b = a*mapping(mfilename,'fixed',{p,q,fsize});
else
b = mapping(mfilename,'untrained',{a,p,q,fsize});
end
elseif isdataset(a) & ismapping(p)
pdata = getdata(p);
c = getsize(a,3); % number of classes, size of mappings
w = a*pdata{1}; % training the stacked untrained classifier
v = feval(mfilename,[],pdata{2:3},c); % prepare dyadicm
v = setsize_in(v,2*c); % and its input size
b = w*v; % feed it with the stacked classifiers
b = setlabels(b,getlablist(a)); % set its output labels.
else % the basic call by data and parameters
% The dataset A has horizontally to be split in two datasets A1, A2.
% If P and Q are scalars or if Q = [], this is done half-half.
% If P is a string (name of a routine) and Q is a number, this is
% interpreted as the number of columns (features) of A that go to A1.
% The remaining part goes to A2.
[a1,a2,fsize] = split_dataset(a,p,q,fsize);
if isstr(p) % some routine tells us what to do
if isempty(q)
b = feval(p,a1,a2);
else
b = feval(p,a1,a2,q{:});
end
else % addition
if isempty(q), q = 1; end
b = p*a1 + q*a2;
end
if ~isdataset(b)
b = double(b); % convert in case of logicals or DipImage
elseif ~isempty(fsize) & ~iscell(a) % can a be a cell?
b = setfeatsize(b,fsize);
end
end
return
function [a1,a2,fsize] = split_dataset(a,p,q,fsize)
if iscell(a)
a1 = double(a{1});
a2 = double(a{2});
elseif isstr(p) & ~isempty(q)
isdataset(a);
fsize = q;
a1 = a(:,1:q);
a2 = a(:,q+1:end);
else
isdataset(a);
k = size(a,2);
if isempty(fsize) | fsize == 0
fsize = k/2;
end
if 2*prod(fsize) ~= k
error('Desired feature size should be half of input feature size')
end
if k ~= 2*floor(k/2)
error('Feature size of dataset should be multiple of 2')
end
a1 = a(:,1:k/2);
a2 = a(:,k/2+1:k);
end
|
github
|
jacksky64/imageProcessing-master
|
mds.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/mds.m
| 34,203 |
utf_8
|
ad1048b580af1294a41a46963ebcd5e1
|
%MDS - Multidimensional Scaling - a variant of Sammon mapping
%
% [W,J,stress] = MDS(D,Y,OPTIONS)
% [W,J,stress] = MDS(D,N,OPTIONS)
%
% INPUT
% D Square (M x M) dissimilarity matrix
% Y M x N matrix containing starting configuration, or
% N Desired output dimensionality
% OPTIONS Various parameters of the minimization procedure put into
% a structure consisting of the following fields: 'q', 'optim',
% 'init','etol','maxiter', 'isratio', 'itmap', 'st' and 'inspect'
% (default:
% OPTIONS.q = 0
% OPTIONS.optim = 'pn'
% OPTIONS.init = 'cs'
% OPTIONS.etol = 1e-6 (the precise value depends on q)
% OPTIONS.maxiter = inf
% OPTIONS.isratio = 0
% OPTIONS.itmap = 'yes'
% OPTIONS.st = 1
% OPTIONS.inspect = 2).
%
% OUTPUT
% W Multidimensional scaling mapping
% J Index of points removed before optimization
% stress Vector of stress values
%
% DESCRIPTION
% Finds a nonlinear MDS map (a variant of the Sammon map) of objects
% represented by a symmetric distance matrix D with zero diagonal, given
% either the dimensionality N or the initial configuration Y. This is done
% in an iterative manner by minimizing the Sammon stress:
%
% e = 1/(sum_{i<j} D_{ij}^(Q+2)) sum_{i<j} (D_{ij} - DY_{ij})^2 * D_{ij}^Q
%
% where DY is the distance matrix of Y, which should approximate D. If D(i,j)
% = 0 for any different points i and j, then one of them is superfluous. The
% indices of these points are returned in J.
%
% OPTIONS is an optional variable, using which the parameters for the mapping
% can be controlled. It may contain the following fields:
%
% Q Stress measure to use (see above): -2,-1,0,1 or 2.
% INIT Initialisation method for Y: 'randp', 'randnp', 'maxv', 'cs'
% or 'kl'. See MDS_INIT for an explanation.
% OPTIM Minimization procedure to use: 'pn' for Pseudo-Newton or
% 'scg' for Scaled Conjugate Gradients.
% ETOL Tolerance of the minimization procedure. Usually, it should be
% MAXITER in the order of 1e-6. If MAXITER is given (see below), then the
% optimization is stopped either when the error drops below ETOL or
% MAXITER iterations are reached.
% ISRATIO Indicates whether a ratio MDS should be performed (1) or not (0).
% If ISRATIO is 1, then instead of fitting the dissimilarities
% D_{ij}, A*D_{ij} is fitted in the stress function. The value A
% is estimated analytically in each iteration.
% ITMAP Determines the way new points are mapped, either in an iterative
% manner ('yes') by minimizing the stress; or by a linear projection
% ('no').
% ST Status, determines whether after each iteration the stress should
% INSPECT be printed on the screen (1) or not (0). When INSPECT > 0,
% ST = 1 and the mapping is onto 2D or larger, then the progress
% is plotted during the minimization every INSPECT iterations.
%
% Important:
% 1. It is assumed that D either is or approximates a Euclidean distance
% matrix, i.e. D_{ij} = sqrt (sum_k(x_i - x_j)^2).
% 2. Missing values can be handled; they should be marked by 'NaN' in D.
%
% EXAMPLES:
% opt.optim = 'scg';
% opt.init = 'cs';
% D = sqrt(distm(a)); % Compute the Euclidean distance dataset of A
% w1 = mds(D,2,opt); % An MDS map onto 2D initialized by Classical Scaling,
% % optimized by a Scaled Conjugate Gradients algorithm
% n = size(D,1);
% y = rand(n,2);
% w2 = mds(D,y,opt); % An MDS map onto 2D initialized by random vectors
%
% z = rand(n,n); % Set around 40% of the random distances to NaN, i.e.
% z = (z+z')/2; % not used in the MDS mapping
% z = find(z <= 0.6);
% D(z) = NaN;
% D(1:n+1:n^2) = 0; % Set the diagonal to zero
% opt.optim = 'pn';
% opt.init = 'randnp';
% opt.etol = 1e-8; % Should be high, as only some distances are used
% w3 = mds(D,2,opt); % An MDS map onto 2D initialized by a random projection
%
% REFERENCES
% 1. M.F. Moler, A Scaled Conjugate Gradient Algorithm for Fast Supervised
% Learning', Neural Networks, vol. 6, 525-533, 1993.
% 2. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,
% Numerical Recipes in C, Cambridge University Press, Cambridge, 1992.
% 3. I. Borg and P. Groenen, Modern Multidimensional Scaling, Springer
% Verlag, Berlin, 1997.
% 4. T.F. Cox and M.A.A. Cox, Multidimensional Scaling, Chapman and Hall,
% London, 1994.
%
% SEE ALSO
% MAPPINGS, MDS_STRESS, MDS_INIT, MDS_CS
%
% Copyright: Elzbieta Pekalska, Robert P.W. Duin, [email protected], 2000-2003
% Faculty of Applied Sciences, Delft University of Technology
%
function [w,J,err,opt,y] = mds(D,y,options)
if (nargin < 3)
options = []; % Will be filled by MDS_SETOPT, below.
end
opt = mds_setopt(options);
if (nargin < 2) | (isempty(y))
prwarning(2,'no output dimensionality given, assuming N = 2.');
y = 2;
end
% No arguments given: return an untrained mapping.
if (nargin < 1) | (isempty(D))
w = mapping(mfilename,{y,opt,[],[],[],[]});
w = setname(w,'MDS');
return
end
% YREP contains representative objects in the projected MDS space, i.e.
% for which the mapping exists. YREP is empty for the original MDS, since
% no projection is available yet.
yrep = [];
if (isdataset(D) | isa(D,'double'))
[m,mm] = size(D);
% Convert D to double, but retain labels in LAB.
if (isdataset(D)), lab = getlab(D); D = +D; else, lab = ones(m,1); end;
if (ismapping(y))
% The MDS mapping exists; this means that YREP has already been stored.
pars = getdata(y); [k,c] = size(y);
y = []; % Empty, should now be found.
yrep = pars{1}; % There exists an MDS map, hence YREP is stored.
opt = pars{2}; % Options used for the mapping.
II = pars{3}; % Index of non-repeated points in YREP.
winit = pars{4}; % The Classical Scaling map, if INIT = 'cs'.
v = pars{5}; % Weights used for adding new points if ITMAP = 'no'.
n = c; % Number of dimensions of the projected space.
% Initialization by 'cs' is not possible when there is no winit
% (i.e. the CS map) and new points should be added.
if (strcmp(opt.init,'cs')) & (isempty(winit))
prwarning(2,'OPTIONS.init = cs is not possible when adding points; using kl.');
opt.init = 'kl';
end
% If YREP is a scalar, we have an empty mapping.
if (max(size(yrep)) == 1)
y = yrep;
yrep = [];
end
% Check whether D is a matrix with the zero diagonal for the existing map.
if (m == mm) & (length(intersect(find(D(:)<eps),1:m+1:(m*mm))) >= m)
w = yrep; % D is the same matrix as in the projection process;
return % YREP is then the solution
end
if (length(pars) < 6) | (isempty(pars{6}))
yinit = [];
else
yinit = pars{6}; % Possible initial configuration for points to
% be added to an existing map
if (size(yinit,1) ~= size(D,1))
prwarning(2,'the size of the initial configuration does not match that of the dissimilarity matrix, using random initialization.')
yinit =[];
end
end
else
% No MDS mapping available yet; perform the checks.
if (~issym(D,1e-12))
prwarning(2,'D is not a symmetric matrix; will average.');
D = (D+D')/2;
end
% Check the number of zeros on the diagonal
if (any(abs(diag(D)) > 0))
error('D should have a zero diagonal');
end
end
else % D is neither a dataset nor a matrix of doubles
error('D should be a dataset or a matrix of doubles.');
end
if (~isempty(y))
% Y is the initial configuration or N, no MDS map exists yet;
% D is a square matrix.
% Remove identical points, i.e. points for which D(i,j) = 0 for i ~= j.
% I contains the indices of points left for the MDS mapping, J those
% of the removed points and P those of the points left in I which were
% identical to those removed.
[I,J,P] = mds_reppoints(D);
D = D(I,I);
[ni,nc] = size(D);
% NANID is an extra field in the OPTIONS structure, containing the indices
% of NaN values (= missing values) in distance matrix D.
opt.nanid = find(isnan(D(:)) == 1);
% Initialise Y.
[m2,n] = size(y);
if (max(m2,n) == 1) % Y is a scalar, hence really is a dimensionality N.
n = y;
[y,winit] = mds_init(D,n,opt.init);
else
if (mm ~= m2)
error('The matrix D and the starting configuration Y should have the same number of columns.');
end
winit = [];
y = +y(I,:);
end
% The final number of true distances is:
no_dist = (ni*(ni-1) - length(opt.nanid))/2;
else
% This happens only if we add extra points to an existing MDS map.
% Remove identical points, i.e. points for which D(i,j) = 0 for i ~= j.
% I contains the indices of points left for the MDS mapping, J those
% of the removed points and P those of the points left in I which were
% identical to those removed.
[I,J,P] = mds_reppoints(D(:,II));
D = D(I,II);
[ni,nc] = size(D);
yrep = yrep(II,:);
n = size(yrep,2);
% NANID is an extra field in the OPTIONS structure, containing the indices
% of NaN values (= missing values) in distance matrix D.
opt.nanid = find(isnan(D(:)));
% Initialise Y. if the new points should be added in an iterative manner.
[m2,n] = size(yrep);
if (~isempty(yinit)) % An initial configuration exists.
y = yinit;
elseif (strcmp(opt.init, 'cs')) & (~isempty(winit))
y = D*winit;
else
y = mds_init(D,n,opt.init);
end
if (~isempty(opt.nanid)) % Rescale.
scale = (max(yrep)-min(yrep))./(max(y)-min(y));
y = y .* repmat(scale,ni,1);
end
% The final number of true distances is:
no_dist = (ni*nc - length(opt.nanid));
end
% Check whether there is enough data left.
if (~isempty(opt.nanid))
if (n*ni+2 > no_dist),
error('There are too many missing distances: it is not possible to determine the MDS map.');
end
if (strcmp (opt.itmap,'no'))
opt.itmap = 'yes';
prwarning(1,'Due to the missing values, the projection can only be iterative. OPTIONS are changed appropriately.')
end
end
if (opt.inspect > 0)
opt.plotlab = lab(I,:); % Labels to be used for plotting in MDS_SAMMAP.
else
opt.plotlab = [];
end
if (isempty(yrep)) | (~isempty(yrep) & strcmp(opt.itmap, 'yes'))
% Either no MDS exists yet OR new points should be mapped in an iterative manner.
printinfo(opt);
[yy,err] = mds_sammap(D,y,yrep,opt);
% Define the linear projection of distances.
v = [];
if (isempty(yrep)) & (isempty(opt.nanid))
if (rank(D) < m)
v = prpinv(D)*yy;
else
v = D \ yy;
end
end
else
% New points should be added by a linear projection of dissimilarity data.
yy = D*v;
end
% Establish the projected configuration including the removed points.
y = zeros(m,n); y(I,:) = +yy;
if (~isempty(J))
if (~isempty(yrep))
y(J,:) = +yrep(II(P),:);
else
for k=length(J):-1:1 % J: indices of removed points.
y(J(k),:) = y(P(k),:); % P: indices of points equal to points in J.
end
end
end
% In the definition step: shift the obtained configuration such that the
% mean lies at the origin.
if (isempty(yrep))
y = y - ones(length(y),1)*mean(y);
y = dataset(y,lab);
else
w = dataset(y,lab);
return;
end
% In the definition step: the mapping should be stored.
opt = rmfield(opt,'nanid'); % These fields are to be used internally only;
opt = rmfield(opt,'plotlab'); % not to be set up from outside
w = mapping(mfilename,'trained',{y,opt,I,winit,v,[]},[],m,n);
w = setname(w,'MDS');
return
% **********************************************************************************
% Extra functions
% **********************************************************************************
% PRINTINFO(OPT)
%
% Prints progress information to the file handle given by OPT.ST.
function printinfo(opt)
fprintf(opt.st,'Sammon mapping, error function with the parameter q=%d\n',opt.q);
switch (opt.optim)
case 'pn',
fprintf(opt.st,'Minimization by Pseudo-Newton algorithm\n');
case 'scg',
fprintf(opt.st,'Minimization by Scaled Conjugate Gradients algorithm\n');
otherwise
error(strcat('Possible initialization methods: pn (Pseudo-Newton), ',...
'or scg (Scaled Conjugate Gradients).'));
end
return
% **********************************************************************************
% [I,J,P] = MDS_REPPOINTS(D)
%
% Finds the indices of repeated/left points. J contains the indices of
% repeated points in D. This means that for each j in J, there is a point
% k ~= j such that D(J(j),k) = 0. I contains the indices of the remaining
% points, and P those of the points in I that were identical to those in J.
% Directly used in MDS routine.
function [I,J,P] = mds_reppoints(D)
epsilon = 1e-20; % Differences smaller than this are assumed to be zero.
[m,mm] = size(D);
I = 1:m; J = []; P = [];
if (m == mm) & (all(abs(D(1:m+1:end)) <= epsilon))
K = intersect (find (triu(ones(m),1)), find(D < epsilon));
if (~isempty(K))
P = mod(K,m);
J = fix(K./m) + 1;
I(J) = [];
end
else
[J,P] = find(D<=epsilon);
I(J) = [];
end
return;
% **********************************************************************************
% MDS_SETOPT Sets parameters for the MDS mapping
%
% OPT = MDS_SETOPT(OPT_GIVEN)
%
% INPUT
% OPT_GIVEN Parameters for the MDS mapping, described below (default: [])
%
% OUTPUT
% OPT Structure of chosen options; if OPT_GIVEN is empty, then
% OPT.q = 0
% OPT.optim = 'pn'
% OPT.init = 'cs'
% OPT.etol = 1e-6 (the precise value depends on q)
% OPT.maxiter = inf
% OPT.itmap = 'yes'
% OPT.isratio = 0
% OPT.st = 1
% OPT.inspect = 2
%
% DESCRIPTION
% Parameters for the MDS mapping can be set or changed. OPT_GIVEN consists
% of the following fields: 'q', 'init', 'optim', 'etol', 'maxiter','itmap',
% 'isratio', 'st' and 'inspect'. OPTIONS can include all the fields or some
% of them only. The fields of OPT have some default values, which can be
% changed by the OPT_GIVEN field values. If OPT_GIVEN is empty, then OPT
% contains all default values. For a description of the fields, see MDS.
%
% Copyright: Elzbieta Pekalska, [email protected], 2000-2003
% Faculty of Applied Sciences, Delft University of Technology
%
function opt = mds_setopt (opt_given)
opt.q = 0;
opt.init = 'cs';
opt.optim = 'pn';
opt.st = 1;
opt.itmap = 'yes';
opt.maxiter = inf;
opt.inspect = 2;
opt.etol = inf;
opt.isratio = 0;
opt.nanid = []; % Here are some extra values; set up in the MDS routine.
opt.plotlab = []; % Not to be changed by the user.
if (~isempty(opt_given))
if (~isstruct(opt_given))
error('OPTIONS should be a structure with at least one of the following fields: q, init, etol, optim, maxiter, itmap, isratio, st or inspect.');
end
fn = fieldnames(opt_given);
if (~all(ismember(fn,fieldnames(opt))))
error('Wrong field names; valid field names are: q, init, optim, etol, maxiter, itmap, isratio, st or inspect.')
end
for i = 1:length(fn)
opt = setfield(opt,fn{i},getfield(opt_given,fn{i}));
end
end
if (isempty(intersect(opt.q,-2:1:2)))
error ('OPTIONS.q should be -2, -1, 0, 1 or 2.');
end
if (opt.maxiter < 2)
error ('OPTIONS.iter should be at least 1.');
end
if (isinf(opt.etol))
switch (opt.q) % Different defaults for different stresses.
case -2,
opt.etol = 1e-6;
case {-1,0}
opt.etol = 10*sqrt(eps);
case {1,2}
opt.etol = sqrt(eps);
end
elseif (opt.etol <= 0) | (opt.etol >= 0.1)
error ('OPTIONS.etol should be positive and smaller than 0.1.');
end
if (~ismember(opt.optim, {'pn','scg'}))
error('OPTIONS.optim should be pn or scg.');
end
if (~ismember(opt.itmap, {'yes','no'}))
error('OPTIONS.itmap should be yes or no.');
end
return
% **********************************************************************************
% MDS_SAMMAP Sammon iterative nonlinear mapping for MDS
%
% [YMAP,ERR] = MDS_SAMMAP(D,Y,YREP,OPTIONS)
%
% INPUT
% D Square (M x M) dissimilarity matrix
% Y M x N matrix containing starting configuration, or
% YREP Configuration of the representation points
% OPTIONS Various parameters of the minimization procedure put into
% a structure consisting of the following fields: 'q', 'optim',
% 'init','etol','maxiter', 'isratio', 'itmap', 'st' and 'inspect'
% (default:
% OPTIONS.q = 0
% OPTIONS.optim = 'pn'
% OPTIONS.init = 'cs'
% OPTIONS.etol = 1e-6 (the precise value depends on q)
% OPTIONS.maxiter = inf
% OPTIONS.isratio = 0
% OPTIONS.itmap = 'yes'
% OPTIONS.st = 1
% OPTIONS.inspect = 2).
%
% OUTPUT
% YMAP Mapped configuration
% ERR Sammon stress
%
% DESCRIPTION
% Maps the objects given by a symmetric distance matrix D (with a zero
% diagonal) onto, say, an N-dimensional configuration YMAP by an iterative
% minimization of a variant of the Sammon stress. The minimization starts
% from the initial configuration Y; see MDS_INIT.
%
% YREP is the Sammon configuration of the representation set. It is used
% when new points have to be projected. In other words, if D is an M x M
% symmetric distance matrix, then YREP is empty; if D is an M x N matrix,
% then YMAP is sought such that D can approximate the distances between YMAP
% and YREP.
%
% Missing values can be handled by marking them by NaN in D.
%
% SEE ALSO
% MAPPINGS, MDS, MDS_CS, MDS_INIT, MDS_SETOPT
%
% Copyright: Elzbieta Pekalska, [email protected], 2000-2003
% Faculty of Applied Sciences, Delft University of Technology
%
function [y,err] = mds_sammap(Ds,y,yrep,opt)
if (nargin < 4)
opt = []; % Will be filled by MDS_SETOPT, below.
end
if isempty(opt), opt = mds_setopt(opt); end
if (nargin < 3)
yrep = [];
end
% Extract labels and calculate distance matrix.
[m,n] = size(y);
if (~isempty(yrep))
replab = getlab(yrep);
yrep = +yrep;
D = sqrt(distm(y,yrep));
else
D = sqrt(distm(y));
yrep = [];
replab = [];
end
if (isempty(opt.plotlab))
opt.plotlab = ones(m,1);
end
it = 0; % Iteration number.
eold = inf; % Previous stress (error).
% Calculate initial stress.
[e,a]= mds_samstress(opt.q,y,yrep,Ds,D,opt.nanid,opt.isratio); err = e;
fprintf(opt.st,'iteration: %4i stress: %3.8d\n',it,e);
switch (opt.optim)
case 'pn', % Pseudo-Newton minimization.
epr = e; % Previous values of E, EOLD for line search algorithm.
eepr = e;
add = 1e-4; % Avoid G2 equal 0; see below.
BETA = 1e-3; % Parameter for line search algorithm.
lam1 = 0;
lam2 = 1; % LAM (the step factor) lies in (LAM1, LAM2).
LMIN = 1e-10; % Minimum acceptable value for LAM in line search.
lambest = 1e-4; % LAM = LAMBEST, if LAM was not found.
% Loop until the error change falls below the tolerance or until
% the maximum number of iterations is reached.
while (abs(e-eold) >= opt.etol*(1 + abs(e))) & (it < opt.maxiter)
% Plot progress if requested.
if (opt.st > 0) & (opt.inspect > 0) & (mod(it,opt.inspect) == 0)
% if (it == 0), figure(1); clf; end
mds_plot(y,yrep,opt.plotlab,replab,e);
end
yold = y; eold = e;
% Calculate the stress.
[e,a] = mds_samstress (opt.q,yold,yrep,Ds,[],opt.nanid,opt.isratio);
% Calculate gradients and pseudo-Newton update P.
[g1,g2,cc] = mds_gradients (opt.q,yold,yrep,a*Ds,[],opt.nanid);
p = (g1/cc)./(abs(g2/cc) + add);
slope = g1(:)' * p(:);
lam = 1;
% Search for a suitable step LAM using a line search.
while (1)
% Take a step and calculate the delta error DE.
y = yold + lam .* p;
[e,a] = mds_samstress(opt.q,y,yrep,Ds,[],opt.nanid,opt.isratio);
de = e - eold;
% Stop if the condition for a suitable lam is fulfilled.
if (de < BETA * lam * slope)
break;
end
% Try to find a suitable step LAM.
if (lam ~= 1)
r1 = de - lam*slope;
r2 = epr - eepr - lam2*slope;
aa = (2*de + r1/lam^2 - r2/lam2^2)/(lam2-lam1)^3;
bb = ((-lam2*r1)/lam^2 +(lam*r2)/lam2^2)/(lam2-lam1)^2;
if (abs(aa) <= eps)
lamtmp = -0.5 * slope/bb;
else
lamtmp = (-bb + sqrt(max(0,(bb^2 - 3*aa*slope))))/(3*aa);
end
% Prevent LAM from becoming too large.
if (lamtmp > 0.5 * lam), lamtmp = 0.5 * lam; end
else
lamtmp = -0.5 * slope/(e - eold - slope);
end
% Prevent LAM from becoming too small.
lam2 = lam;
lam = max(lamtmp, 0.1*lam);
epr = e;
eepr = eold;
if (lam < LMIN)
y = yold + lambest .* p;
[e,a] = mds_samstress(opt.q,y,yrep,Ds,[],opt.nanid,opt.isratio);
break;
end
end
it = it + 1;
err = [err; e];
fprintf(opt.st,'iteration: %4i stress: %3.8d\n',it,e);
end
case 'scg', % Scaled Conjugate Gradient minimization.
sigma0 = 1e-8;
lambda = 1e-8; % Regularization parameter.
lambda1 = 0;
% Calculate initial stress and direction of decrease P.
[e,a] = mds_samstress(opt.q,y,yrep,Ds,D,opt.nanid,opt.isratio);
g1 = mds_gradients(opt.q,y,yrep,a*Ds,D,opt.nanid); % Gradient
p = -g1; % Direction of decrease
gnorm2 = g1(:)' * g1(:);
success = 1;
% Sanity check.
if (gnorm2 < 1e-15)
prwarning(2,['Gradient is nearly zero: ' gnorm2 ' (unlikely); initial configuration is the right one.']);
return
end
% Loop until the error change falls below the tolerance or until
% the maximum number of iterations is reached.
while (abs(eold - e) > opt.etol * (1 + e)) & (it < opt.maxiter)
g0 = g1; % Previous gradient
pnorm2 = p(:)' * p(:);
eold = e;
% Plot progress if requested.
if (opt.inspect > 0) & (mod(it,opt.inspect) == 0)
% if (it == 0), figure(1); clf; end
mds_plot(y,yrep,opt.plotlab,replab,e);
end
if (success)
sigma = sigma0/sqrt(pnorm2); % SIGMA: a small step from y to yy
yy = y + sigma .*p;
[e,a] = mds_samstress(opt.q,yy,yrep,Ds,[],opt.nanid,opt.isratio);
g2 = mds_gradients(opt.q,yy,yrep,a*Ds,[],opt.nanid); % Gradient for yy
s = (g2-g1)/sigma; % Approximation of Hessian*P directly, instead of computing
delta = p(:)' * s(:); % the Hessian, since only DELTA = P'*Hessian*P is in fact needed
end
% Regularize the Hessian indirectly to make it positive definite.
% DELTA is now computed as P'* (Hessian + regularization * Identity) * P
delta = delta + (lambda1 - lambda) * pnorm2;
% Indicate if the Hessian is negative definite; the regularization above was too small.
if (delta < 0)
lambda1 = 2 * (lambda - delta/pnorm2); % Now the Hessian will be positive definite
delta = -delta + lambda * pnorm2; % This is obtained after plugging lambda1
lambda = lambda1; % into the formulation a few lines above.
end
mi = - p(:)' * g1(:);
yy = y + (mi/delta) .*p; % mi/delta is a step size
[ee,a] = mds_samstress(opt.q,yy,yrep,Ds,[],opt.nanid,opt.isratio);
% This minimization procedure is based on the second order approximation of the
% stress function by using the gradient and the Hessian approximation. The Hessian
% is regularized, but maybe not sufficiently. The ratio Dc (<=1) below indicates
% a proper approximation, if Dc is close to 1.
Dc = 2 * delta/mi^2 * (e - ee);
e = ee;
% If Dc > 0, then the stress can be successfully decreased.
success = (Dc >= 0);
if (success)
y = yy;
[ee,a] = mds_samstress(opt.q,yy,yrep,Ds,[],opt.nanid,opt.isratio);
g1 = mds_gradients(opt.q,yy,yrep,a*Ds,[],opt.nanid);
gnorm2 = g1(:)' * g1(:);
lambda1 = 0;
beta = max(0,(g1(:)'*(g1(:)-g0(:)))/mi);
p = -g1 + beta .* p; % P is a new conjugate direction
if (g1(:)'*p(:) >= 0 | mod(it-1,n*m) == 0),
p = -g1; % No much improvement, restart
end
if (Dc >= 0.75)
lambda = 0.25 * lambda; % Make the regularization smaller
end
it = it + 1;
err = [err; e];
fprintf (opt.st,'iteration: %4i stress: %3.8d\n',it,e);
else % Dc < 0
% Note that for Dc < 0, the iteration number IT is not increased,
% so the Hessian is further regularized until SUCCESS equals 1.
lambda1 = lambda;
end
% The approximation of the Hessian was poor or the stress was not
% decreased (Dc < 0), hence the regularization lambda is enlarged.
if (Dc < 0.25)
lambda = lambda + delta * (1 - Dc)/pnorm2;
end
end
end
return;
% **********************************************************************************
%MDS_STRESS - Calculate Sammon stress during optimization
%
% E = MDS_SAMSTRESS(Q,Y,YREP,Ds,D,NANINDEX)
%
% INPUT
% Q Indicator of the Sammon stress; Q = -2,-1,0,1,2
% Y Current lower-dimensional configuration
% YREP Configuration of the representation objects; it should be
% empty when no representation set is considered
% Ds Original distance matrix
% D Approximate distance matrix (optional; otherwise computed from Y)
% NANINDEX Index of the missing values; marked in Ds by NaN (optional; to
% be found in Ds)
%
% OUTPUT
% E Sammon stress
%
% DESCRIPTION
% Computes the Sammon stress between the original distance matrix Ds and the
% approximated distance matrix D between the mapped configuration Y and the
% configuration of the representation set YREP, expressed as follows:
%
% E = 1/(sum_{i<j} Ds_{ij}^(q+2)) sum_{i<j} (Ds_{ij} - D_{ij})^2 * Ds_{ij}^q
%
% It is directly used in the MDS_SAMMAP routine.
%
% Copyright: Elzbieta Pekalska, Robert P.W. Duin, [email protected], 2000-2003
% Faculty of Applied Sciences, Delft University of Technology
%
function [e,alpha] = mds_samstress (q,y,yrep,Ds,D,nanindex,isratio)
% If D is not given, calculate it from Y, the current mapped points.
if (nargin < 5) | (isempty(D))
if (~isempty(yrep))
D = sqrt(distm(y,yrep));
else
D = sqrt(distm(y));
end
end
if (nargin < 6)
nanindex = []; % Not given, so calculate below.
end
if (nargin < 7)
isratio = 0; % Assume this is meant.
end
todefine = isempty(yrep);
[m,n] = size(y); [mm,k] = size(Ds);
if (m ~= mm)
error('The sizes of Y and Ds do not match.');
end
if (any(size(D) ~= size(Ds)))
error ('The sizes of D and Ds do not match.');
end
m2 = m*k;
% Convert to double.
D = +D; Ds = +Ds;
% I is the index of non-NaN, non-zero (> eps) values to be included
% for the computation of the stress.
I = 1:m2;
if (~isempty(nanindex))
I(nanindex) = [];
end
O = [];
if (todefine), O = 1:m+1:m2; end
I = setdiff(I,O);
% If OPTIONS.isratio is set, calculate optimal ALPHA to scale with.
if (isratio)
alpha = sum((Ds(I).^q).*D(I).^2)/sum((Ds(I).^(q+1)).*D(I));
Ds = alpha*Ds;
else
alpha = 1;
end
% C is the normalization factor.
c = sum(Ds(I).^(q+2));
% If Q == 0, prevent unnecessary calculation (X^0 == 1).
if (q ~= 0)
e = sum(Ds(I).^q .*((Ds(I)-D(I)).^2))/c;
else
e = sum(((Ds(I)-D(I)).^2))/c;
end
return;
% **********************************************************************************
%MDS_GRADIENTS - Gradients for variants of the Sammon stress
%
% [G1,G2,CC] = MDS_GRADIENTS(Q,Y,YREP,Ds,D,NANINDEX)
%
% INPUT
% Q Indicator of the Sammon stress; Q = -2,-1,0,1,2
% Y Current lower-dimensional configuration
% YREP Configuration of the representation objects; it should be
% empty when no representation set is considered
% Ds Original distance matrix
% D Approximate distance matrix (optional; otherwise computed from Y)
% nanindex Index of missing values; marked in Ds by NaN (optional;
% otherwise found from Ds)
%
% OUTPUT
% G1 Gradient direction
% G2 Approximation of the Hessian by its diagonal
%
% DESCRIPTION
% This is a routine used directly in the MDS_SAMMAP routine.
%
% SEE ALSO
% MDS, MDS_INIT, MDS_SAMMAP, MDS_SAMSTRESS
%
% Copyright: Elzbieta Pekalska, Robert P.W. Duin, [email protected], 2000-2003
% Faculty of Applied Sciences, Delft University of Technology
%
function [g1,g2,c] = mds_gradients(q,y,yrep,Ds,D,nanindex)
% If D is not given, calculate it from Y, the current mapped points.
y = +y;
yrep = +yrep;
if (nargin < 5) | (isempty(D))
if (~isempty(yrep))
D = sqrt(distm(y,yrep));
else
D = sqrt(distm(y));
end
end
% If NANINDEX is not given, find it from Ds.
if (nargin < 6)
nanindex = find(isnan(Ds(:))==1);
end
% YREP is empty if no representation set is defined yet.
% This happens when the mapping should be defined.
todefine = (isempty(yrep));
if (todefine)
yrep = y;
end
[m,n] = size(y); [mm,k] = size(Ds);
if (m ~= mm)
error('The sizes of Y and Ds do not match.');
end
if (any(size(D) ~= size(Ds)))
error ('The sizes of D and Ds do not match.');
end
m2 = m*k;
% Convert to doubles.
D = +D; Ds = +Ds;
% I is the index of non-NaN, non-zero (> eps) values to be included
% for the computation of the gradient and the Hessians diagonal.
I = (1:m2)';
if (~isempty(nanindex))
I(nanindex) = [];
end
K = find(Ds(I) <= eps | D(I) <= eps);
I(K) = [];
% C is a normalization factor.
c = -2/sum(Ds(I).^(q+2));
% Compute G1, the gradient.
h1 = zeros(m2,1);
if (q == 0) % Prevent unnecessary computation when Q = 0.
h1(I) = (Ds(I)-D(I)) ./ D(I);
else
h1(I) = (Ds(I)-D(I)) ./ (D(I).*(Ds(I).^(-q)));
end
h1 = reshape (h1',m,k);
g2 = h1 * ones(k,n); % Here G2 is assigned only temporarily,
g1 = c * (g2.*y - h1*yrep); % for the computation of G1.
% Compute G2, the diagonal of the Hessian, if requested.
if (nargout > 1)
h2 = zeros(m2,1);
switch (q)
case -2,
h2(I) = -1./(Ds(I).*D(I).^3);
case -1,
h2(I) = -1./(D(I).^3);
case 0,
h2(I) = - Ds(I)./(D(I).^3);
case 1,
h2(I) = - Ds(I).^2./(D(I).^3);
case 2,
h2(I) = -(Ds(I)./D(I)).^3;
end
h2 = reshape (h2',m,k);
g2 = c * (g2 + (h2*ones(k,n)).*y.^2 + h2*yrep.^2 - 2*(h2*yrep).*y);
end
return;
% **********************************************************************************
%MDS_PLOT Plots the results of the MDS mapping in a 2D or 3D figure
%
% MDS_PLOT(Y,YREP,LAB,REPLAB,E)
%
% INPUT
% Y Configuration in 2D or 3D space
% YREP Configuration of the representation points in 2D or 3D space
% LAB Labels of Y
% REPLAB Labels of YREP
% E Stress value
%
% DESCRIPTION
% Used directly in MDS_SAMMAP routine.
function mds_plot (y,yrep,lab,replab,e)
% This is done in a rather complicated way in order to speed up drawing.
K = min(size(y,2),3);
if (K > 1)
y = +y;
col = 'brmk';
sym = ['+*xosdv^<>p']';
ii = [1:44];
s = [col(ii-floor((ii-1)/4)*4)' sym(ii-floor((ii-1)/11)*11)];
[nlab,lablist] = renumlab([replab;lab]); c = max(nlab);
[ms,ns] = size(s); if (ms == 1), s = setstr(ones(m,1)*s); end
yy = [yrep; y];
cla;
if (K == 2)
hold on;
for i = 1:c
J = find(nlab==i); plot(yy(J,1),yy(J,2),s(i,:));
end
else
for i = 1:c
J = find(nlab==i); plot3(yy(J,1),yy(J,2),yy(J,3),s(i,:));
if (i == 1), hold on; grid on; end
end
end
title(sprintf('STRESS: %f', e));
axis equal;
drawnow;
end
return;
|
github
|
jacksky64/imageProcessing-master
|
fixedcc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/fixedcc.m
| 6,296 |
utf_8
|
7f063504ddd492c6c189c15418da0f1a
|
%FIXEDCC Construction of fixed combiners
%
% V = FIXEDCC(A,W,TYPE,NAME,PAR)
%
% INPUT
% A Dataset
% W A set of classifier mappings
% TYPE The type of combination rule
% NAME The name of this combination rule
% PAR Possible parameter for combiner defined by TYPE
%
% OUTPUT
% V Mapping
%
% DESCRIPTION
% Define a mapping V which applies the combination rule TYPE to the
% set of mappings W. The set of mappings W should be a parallel
% combination (see MAPPINGS).
%
% The TYPE of combining can be any of the following:
% average, min, max, mean, median, prod, vote,
%
% Note that average is only possible for affine 2-class classifiers.
%
% When W is a set of classifiers and A a dataset (possibly the result
% of B*W, where W is again a set of classifiers) then:
%
% V = FIXEDCC(W,[],TYPE) combines the mappings W with the comb. rule TYPE
% V = FIXEDCC(A,[],TYPE) computes the combining output for dataset A
% V = FIXEDCC(A,W,TYPE) computes the combining output for dataset A,
% where W is trained using A
%
% EXAMPLES
% See prex_combining.
%
% SEE ALSO
% MAPPINGS, VOTEC, MAXC, MEANC, MEDIANC, MINC, PRODC, AVERAGEC
% $Id: fixedcc.m,v 1.3 2009/02/04 10:53:10 duin Exp $
function v = fixedcc(a,w,type,name,par)
prtrace(mfilename);
if nargin == 0
% Without input, just return an completely empty combiner mapping (even
% without defining the combination rule):
v = mapping(mfilename,'combiner');
return
end
if nargin < 5, par = []; end
if isempty(a)
% just return a combiner mapping with just the combining rule
v = mapping(mfilename,'combiner',{[],type,name,par});
elseif isa(a,'mapping') & isempty(w)
% v = comb_classifier*fixedcc,
% we combine a set of classifiers, not interesting, except for the
% 'average' type, there a new affine transformation is computed:
if isuntrained(a) % store untrained comb_classifier
v = mapping(mfilename,'untrained',{a,type,name,par});
else % handle or store trained comb_classifier and all info
[nclass,classlist] = renumlab(getlabels(a));
% Special case is to average affine coefficients for 'average' combining
switch type
case 'average'
if ~(isaffine(a) & size(classlist,1) == 2)
error('Average combining only possible for affine 2-class classifiers')
end
n = length(a.data);
rot = zeros(size(a,1),1);
off = 0;
for j=1:length(a.data)
rot = rot + a.data{j}.data.rot(:,1);
off = off + a.data{j}.data.offset(1);
end
v = affine(rot/n,off/n);
otherwise
% Standard procedure: make a new trained mapping
v = mapping(mfilename,'trained',{a,type,name,par});
end
v = set(v,'size_in',size(a,1),'size_out',size(classlist,1),'labels',classlist);
v = setcost(v,a);
end
elseif isa(a,'dataset') & isempty(w)
% Call like v = dataset*fixedcc,
% Here the work will be done:
% the dataset has already been mapped through the mappings, and the outputs
% should be processed according to the combiner type.
% get all the relevant parameters:
[m,k] = size(a);
featlist = getfeatlab(a);
if isempty(featlist)
prwarning(2,'No class names given: numbering inserted')
nclass = [1:k]';
classlist = [1:k]';
else
[nclass,classlist] = renumlab(featlist);
end
c = size(classlist,1);
d = zeros(size(a,1),c);
b = +a; % the classifier outputs to be processed
%DXD: I need for my one-class classifiers that the feature domains
%are retained:
newfeatdom = getfeatdom(a);
if ~isempty(newfeatdom)
newfeatdom = newfeatdom(1:size(d,2));
end
% for each of the classes the outputs should now be combined to a new
% one, using the combining rule:
for j=1:c
J = find(nclass==j);
switch type
case 'min'
d(:,j) = min(b(:,J),[],2);
case 'max'
d(:,j) = max(b(:,J),[],2);
case 'mean'
d(:,j) = mean(b(:,J),2);
case 'prod'
%d(:,j) = prod(b(:,J),2);
d(:,j) = exp(sum(log(b(:,J)),2));
case 'median'
d(:,j) = median(b(:,J),2);
case 'vote' % Assumes that classifier outcomes are well ordered in b
% For voting we cannot combine the basic classifier outputs,
% but we should use the classifier labels:
n = size(a,2) / c;
if ~isint(n)
error('All classifiers should refer to all classes')
end
% First get the votes for each of the classes:
[nf,fl] = renumlab(featlist);
mlab = zeros(m,n);
for j=1:n
J = [(j-1)*c+1:j*c];
labels = labeld(a(:,J));
[nl,nlab,ll] = renumlab(fl,labels);
mlab(:,j) = nlab;
end
% Then count the number of votes:
for j=1:c
d(:,j) = (sum(mlab==j,2)+1)/(n+c);
end
%DXD: for this voting rule, the feature domain will change:
for k=1:c
newfeatdom{k} = [0 inf; 0 inf];
end
case 'perc'
d(:,j) = prctile(b(:,J),par,2);
case 'average'
error([newline 'Average combiner should directly call the classifiers' ...
newline 'e.g. A*AVERAGEC([W1 W2 W3]), or A*([W1 W2 W3]*AVERAGEC)'])
otherwise
error(['Unknown method for fixed combining: ' type])
end
end
v = setdata(a,d,classlist);
%DXD: I need for my one-class classifiers that the feature domains
%are retained:
if ~isempty(newfeatdom)
v = setfeatdom(v,newfeatdom);
end
elseif isa(a,'dataset') & isa(w,'mapping')
% call like v = dataset * trained combiner (e.g. a*votec([u v w]))
% This means that we first have to map the data through the mappings, and
% then map this new dataset through the combiner:
if strcmp(getmapping_file(w),mfilename)
% Then we already have a nice combining rule:
% get the relevant parameters:
type = w.data{2};
name = w.data{3};
par - w.data{4};
% Evaluate the mapped data (a*w.data{1}) by this combining rule:
v = feval(mfilename,a*w.data{1},[],type,name,par);
else
% We will use the parameters given in the argument list
% evaluate the mapped data (a*w) by this combining rule:
v = feval(mfilename,a*w,[],type,name,par);
end
else % this should not happen
error('Call cannot be parsed')
end
if isa(v,'mapping')
v = setname(v,name);
end
return
|
github
|
jacksky64/imageProcessing-master
|
gendath.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendath.m
| 1,639 |
utf_8
|
a279b0efc2f6f7597ef201039460de3f
|
%GENDATH Generation of Highleyman classes
%
% A = GENDATH(N,LABTYPE)
%
% INPUT
% N Number of objects (optional; default: [50,50])
% LABTYPE Label type (optional; default: 'crisp')
%
% OUTPUT
% A Generated dataset
%
% DESCRIPTION
% Generation of a 2-dimensional 2-class dataset A of N objects
% according to Highleyman.
%
% The two Highleyman classes are defined by
% 1: Gauss([1 1],[1 0; 0 0.25]).
% 2: Gauss([2 0],[0.01 0; 0 4]).
% Class priors are P(1) = P(2) = 0.5
%
% If N is a vector of sizes, exactly N(I) objects are generated
% for class I, I = 1,2.
%
% LABTYPE defines the desired label type: 'crisp' or 'soft'. In the
% latter case true posterior probabilities are set for the labels.
%
% Defaults: N = [50,50], LABTYPE = 'crisp'.
%
% EXAMPLES
% PREX_PLOTC, PREX_CLEVAL
%
% SEE ALSO
% DATASETS, GAUSS, PRDATASETS
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: gendath.m,v 1.5 2009/01/27 13:01:42 duin Exp $
function A = gendath(N,labtype)
prtrace(mfilename);
if nargin < 1, N = [50, 50]; end
if nargin < 2, labtype = 'crisp'; end
GA = [1 0; 0 0.25];
GB = [0.01 0; 0 4];
G = cat(3,GA,GB);
p = [0.5 0.5];
N = genclass(N,p);
U = dataset([1 1; 2 0],[1 2]','prior',p);
U = setprior(U,p);
A = gendatgauss(N,U,G);
A = setname(A,'Highleyman Dataset');
switch labtype
case 'crisp'
;
case 'soft'
W = nbayesc(U,cat(3,GA,GB));
targets = A*W*classc;
A = setlabtype(A,'soft',targets);
otherwise
error(['Label type ' labtype ' not supported'])
end
return
|
github
|
jacksky64/imageProcessing-master
|
plotgtm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/plotgtm.m
| 4,021 |
utf_8
|
b23f60d48591b5a6f674a0de4bca4108
|
%PLOTGTM Plot a trained GTM mapping in 1D, 2D or 3D
%
% H = PLOTGTM (W)
%
% INPUT
% W Trained GTM mapping
%
% OUTPUT
% H Graphics handles
%
% DESCRIPTION
% Creates a plot of the GTM manifold in the original data space, but at
% most in 3D.
%
% SEE ALSO
% GTM, SOM, PLOTSOM
% (c) Dick de Ridder, 2003
% Information & Communication Theory Group
% Faculty of Electrical Engineering, Mathematics and Computer Science
% Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
function ret = plotgtm (w)
prtrace(mfilename);
global GRIDSIZE;
gs = [ 100 10 5 ]+1;
if (~ismapping(w)) | (~strcmp(get(w,'name'),'GTM'))
error ('can only plot a GTM mapping');
else
data = getdata(w); K = data{1}; M = data{2};
W = data{3}; sigma = data{4}; mapto = data{5};
end;
[d,D] = size(w); KK = prod(K); MM = prod(M);
phi_mu = makegrid(M,D); % Basis function centers.
phi_sigma = 2/(mean(M)-1); % Basis function widths.
% For plotting.
if (D == 1),
Kplot = gs(1); sz = 1/(gs(1)-1);
xplot = 0:sz:1;
elseif (D == 2)
Kplot = gs(2)^2; sz = 1/(gs(2)-1);
[xx,yy] = meshgrid(0:sz:1,0:sz:1);
xplot = [reshape(xx,1,Kplot); reshape(yy,1,Kplot)];
elseif (D >= 3)
Kplot = gs(3)^3; sz = 1/(gs(3)-1);
[xx,yy,zz] = meshgrid(0:sz:1,0:sz:1,0:sz:1);
xplot = [reshape(xx,1,Kplot); reshape(yy,1,Kplot); reshape(zz,1,Kplot)];
D = 3;
end;
% Pre-calculate Phiplot.
for j = 1:Kplot
for i = 1:MM
Phiplot(i,j) = exp(-(xplot(1:D,j)-phi_mu(1:D,i))'*(xplot(1:D,j)-phi_mu(1:D,i))/(phi_sigma^2));
end;
end;
% Plot grid lines.
yplot = W(1:d,:)*Phiplot;
hold on; h = [];
if (D == 1)
h = [h plot(yplot(1,:),yplot(2,:),'k-')];
elseif (D == 2)
for k = 1:gs(2)
h = [h plot(yplot(1,(k-1)*gs(2)+1:k*gs(2)),yplot(2,(k-1)*gs(2)+1:k*gs(2)),'k-')];
h = [h plot(yplot(1,k:gs(2):end),yplot(2,k:gs(2):end),'k-')];
end;
elseif (D >= 3)
for k = 1:gs(3)
for l = 1:gs(3)
h = [h plot3(yplot(1,(k-1)*gs(3)^2+(l-1)*gs(3)+1:(k-1)*gs(3)^2+l*gs(3)),...
yplot(2,(k-1)*gs(3)^2+(l-1)*gs(3)+1:(k-1)*gs(3)^2+l*gs(3)),...
yplot(3,(k-1)*gs(3)^2+(l-1)*gs(3)+1:(k-1)*gs(3)^2+l*gs(3)),'k-')];
h = [h plot3(yplot(1,(k-1)*gs(3)^2+l:gs(3):k*gs(3)^2),...
yplot(2,(k-1)*gs(3)^2+l:gs(3):k*gs(3)^2),...
yplot(3,(k-1)*gs(3)^2+l:gs(3):k*gs(3)^2),'k-')];
h = [h plot3(yplot(1,(k-1)*gs(3)+l:gs(3)^2:end),...
yplot(2,(k-1)*gs(3)+l:gs(3)^2:end),...
yplot(3,(k-1)*gs(3)+l:gs(3)^2:end),'k-')];
end;
end;
view(3);
end;
set (h,'LineWidth',2);
hold off;
if (nargout > 0), ret = h; end;
return
% GRID = MAKEGRID (K,D)
%
% Create a KK = prod(K)-dimensional grid with dimensions K(1), K(2), ... of
% D-dimensional uniformly spaced grid points on [0,1]^prod(K), and store it
% as a D x KK matrix X.
function grid = makegrid (K,D)
KK = prod(K);
for h = 1:D
xx{h} = 0:(1/(K(h)-1)):1; % Support point means
end;
% Do that voodoo / that you do / so well...
if (D==1)
xm = xx;
else
cmd = '[';
for h = 1:D-1, cmd = sprintf ('%sxm{%d}, ', cmd, h); end;
cmd = sprintf ('%sxm{%d}] = ndgrid(', cmd, D);
for h = 1:D-1, cmd = sprintf ('%sxx{%d}, ', cmd, h); end;
cmd = sprintf ('%sxx{%d});', cmd, D); eval(cmd);
end;
cmd = 'mm = zeros(D, ';
for h = 1:D-1, cmd = sprintf ('%s%d, ', cmd, K(h)); end;
cmd = sprintf ('%s%d);', cmd, K(D)); eval (cmd);
for h = 1:D
cmd = sprintf ('mm(%d,', h);
for g = 1:D-1, cmd = sprintf ('%s:,', cmd); end;
cmd = sprintf ('%s:) = xm{%d};', cmd, h); eval (cmd);
end;
grid = reshape(mm,D,KK);
return
|
github
|
jacksky64/imageProcessing-master
|
drbmc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/drbmc.m
| 20,444 |
utf_8
|
fc2e95de4fb99b6c90dbe11a9b994b18
|
function [B, ll] = drbmc(A, W, L, I)
%DRBMC Discriminative Restricted Boltzmann Machine classifier
%
% W = DRBMC(A)
% W = DRBMC(A, N)
% W = DRBMC(A, N, L)
%
% INPUT
% A Dataset
% N Number of hidden units
% L Regularization parameter (L2)
%
% OUTPUT
% W Discriminative Restricted Boltzmann Machine classifier
%
% DESCRIPTION
% The classifier trains a discriminative Restricted Boltzmann Machine (RBM)
% on dataset A. The discriminative RBM can be viewed as a logistic
% regressor with hidden units. The discriminative RBM has N hidden units
% (default = 50). It is trained with L2 regularization using regularization
% parameter L (default = 0).
%
% New objects are classified in the same way as in a logistic regressor,
% using a softmax function over the labels.
%
% REFERENCE
% H. Larochelle and Y. Bengio. Classification using Discriminative Restricted
% Boltzmann Machines. Proceedings of the 25th International Conference on
% Machine Learning (ICML), pages 536?543, 2008.
%
% SEE ALSO
% DATASETS, MAPPINGS, LOGLC
% (C) Laurens van der Maaten, 2010
% University of California, San Diego
name = 'Discr. RBM';
% Handle untrained calls like W = drbmc([]);
if nargin == 0 || isempty(A)
B = mapping(mfilename);
B = setname(B, name);
return;
% Handle training on dataset A (use A * drbmc, A * drbmc([]), and drbmc(A))
elseif (nargin == 1 && isa(A, 'dataset')) || (isa(A, 'dataset') && isa(W, 'double'))
if nargin < 2
W = 10;
end
if nargin < 3
L = 0;
else
if ~isa(L, 'double')
error('Illegal call');
end
end
if nargin < 4
I = 1e-3;
else
if ~isa(I, 'double')
error('Illegal call');
end
end
islabtype(A, 'crisp');
isvaldfile(A, 1, 2);
A = testdatasize(A, 'features');
A = setprior(A, getprior(A));
[m, k, c] = getsize(A);
% Normalize data and add extra feature
train_X = +A;
data.min_X = min(train_X(:));
train_X = train_X - data.min_X;
data.max_X = max(train_X(:));
train_X = train_X / data.max_X;
train_X = (train_X * 2) - 1;
data.max_radius = max(sum(train_X .^ 2, 2));
train_X = [train_X sqrt(data.max_radius - sum(train_X .^ 2, 2))];
% Train the dRBM
[data.machine, ll] = train_drbm(train_X, getnlab(A), W, 100, L, I);
B = mapping(mfilename, 'trained', data, getlablist(A), k, c);
B = setname(B, name);
% Handle evaluation of a trained dRBM W for a dataset A
elseif isa(A, 'dataset') && isa(W, 'mapping')
% Normalize data and add extra feature
test_X = +A;
test_X = test_X - W.data.min_X;
test_X = test_X / W.data.max_X;
test_X = (test_X * 2) - 1;
test_X = [test_X sqrt(W.data.max_radius - sum(test_X .^ 2, 2))];
% Evaluate dRBM
[test_labels, test_post] = predict_ff(W.data.machine, test_X, length(W.labels));
A = dataset(A);
B = setdata(A, test_post, getlabels(W));
ll = [];
% This should not happen
else
error('Illegal call');
end
end
function [machine, ll] = train_drbm(X, labels, h, max_iter, weight_cost, variance)
%TRAIN_DRBM Trains a discrimative RBM using gradient descent
%
% machine = train_drbm(X, labels, h, max_iter, weight_cost, variance)
%
% Trains a discriminative Restricted Boltzmann Machine on dataset X. The RBM
% has h hidden nodes (default = 100). The training is performed by means of
% the gradient descent. The visible and hidden units are binary stochastic,
% whereas the label layer has softmax units. The maximum number of
% iterations can be specified through max_iter (default = 30).
% The trained RBM is returned in the machine struct.
%
%
% (C) Laurens van der Maaten
% University of California San Diego, 2010
% Process inputs
if ischar(X)
load(X);
end
if ~exist('h', 'var') || isempty(h)
h = 100;
end
if ~exist('max_iter', 'var') || isempty(max_iter)
max_iter = 15;
end
if ~exist('weight_cost', 'var') || isempty(weight_cost)
weight_cost = 0;
end
% Randomly permute data
ind = randperm(size(X, 1));
X = X(ind,:);
labels = labels(ind);
% Convert labels to binary matrix
no_labels = length(unique(labels));
label_matrix = zeros(length(labels), no_labels);
label_matrix(sub2ind(size(label_matrix), (1:length(labels))', labels)) = 1;
% Initialize some variables
[n, v] = size(X);
machine.W = randn(v, h) * variance;
machine.labW = randn(no_labels, h) * variance;
machine.bias_upW = zeros(1, h);
machine.bias_labW = zeros(1, no_labels);
% Main loop
for iter=1:max_iter
% Encode current solution
x = [machine.W(:); machine.labW(:); machine.bias_upW(:); machine.bias_labW(:)];
% Run conjugate gradients using five linesearches
% checkgrad('drbm_grad', x, 1e-7, machine, cur_X, cur_lab, cur_labmat, weight_cost)
x = minimize(x, 'drbm_grad', 9, machine, X, labels, label_matrix, weight_cost);
% Process the updated solution
ii = 1;
machine.W = reshape(x(ii:ii - 1 + numel(machine.W)), size(machine.W));
ii = ii + numel(machine.W);
machine.labW = reshape(x(ii:ii - 1 + numel(machine.labW)), size(machine.labW));
ii = ii + numel(machine.labW);
machine.bias_upW = reshape(x(ii:ii - 1 + numel(machine.bias_upW)), size(machine.bias_upW));
ii = ii + numel(machine.bias_upW);
machine.bias_labW = reshape(x(ii:ii - 1 + numel(machine.bias_labW)), size(machine.bias_labW));
end
machine.type = 'drbm';
ll = drbm_grad(x, machine, X, labels, label_matrix, weight_cost);
end
function [test_labels, test_post] = predict_ff(machine, test_X, no_labels)
%PREDICT_FF Perform label predictions in a feed-forward neural network
%
% [test_labels, test_post] = predict_ff(network, test_X, no_labels)
%
% The function performs label prediction in the feed-forward neural net
% specified in network (trained using TRAIN_DBN) on dataset test_X. The
% predicted labels are returned in test_labels. The class posterior is
% returned in test_post.
%
%
% (C) Laurens van der Maaten
% University of California San Diego, 2010
% Precompute W dot X + bias
Wx = bsxfun(@plus, test_X * machine.W, machine.bias_upW);
% Loop over all labels to compute p(y|x)
n = size(test_X, 1);
energy = zeros(n, size(machine.labW, 2), no_labels);
label_logpost = zeros(n, no_labels);
for i=1:no_labels
% Clamp current label
lab = zeros(1, no_labels);
lab(i) = 1;
% Compute log-posterior probability for current class
energy(:,:,i) = bsxfun(@plus, lab * machine.labW, Wx);
label_logpost(:,i) = machine.bias_labW(i) + sum(log(1 + exp(energy(:,:,i))), 2);
end
test_post = exp(bsxfun(@minus, label_logpost, max(label_logpost, [], 2)));
test_post = bsxfun(@rdivide, test_post, sum(test_post, 2));
[foo, test_labels] = max(test_post, [], 2);
end
function [C, dC] = drbm_grad(x, machine, X, labels, label_matrix, weight_cost)
%DRBM_GRAD Computes gradient for training a discriminative RBM
%
% [C, dC] = drbm_grad(x, machine, X, labels, label_matrix)
%
% Computes gradient for training a discriminative RBM.
%
%
% (C) Laurens van der Maaten
% University of California San Diego, 2010
% Decode the current solution
if ~isempty(x)
ii = 1;
machine.W = reshape(x(ii:ii - 1 + numel(machine.W)), size(machine.W));
ii = ii + numel(machine.W);
machine.labW = reshape(x(ii:ii - 1 + numel(machine.labW)), size(machine.labW));
ii = ii + numel(machine.labW);
machine.bias_upW = reshape(x(ii:ii - 1 + numel(machine.bias_upW)), size(machine.bias_upW));
ii = ii + numel(machine.bias_upW);
machine.bias_labW = reshape(x(ii:ii - 1 + numel(machine.bias_labW)), size(machine.bias_labW));
end
no_labels = size(label_matrix, 2);
n = size(X, 1);
% Precompute W dot X + bias
Wx = bsxfun(@plus, X * machine.W, machine.bias_upW);
% Loop over all labels to compute p(y|x)
energy = zeros(n, size(machine.labW, 2), no_labels);
label_logpost = zeros(n, no_labels);
for i=1:no_labels
% Clamp current label
lab = zeros(1, no_labels);
lab(i) = 1;
% Compute log-posterior probability for current class
energy(:,:,i) = bsxfun(@plus, lab * machine.labW, Wx);
label_logpost(:,i) = machine.bias_labW(i) + sum(log(1 + exp(energy(:,:,i))), 2);
end
label_post = exp(bsxfun(@minus, label_logpost, max(label_logpost, [], 2)));
label_post = bsxfun(@rdivide, label_post, sum(label_post, 2));
% Compute cost function -sum(log p(y|x))
Pyx = log(sum(label_matrix .* label_post, 2));
C = -sum(Pyx) + weight_cost * sum(machine.W(:) .^ 2);
% Only compute gradients if they are requested
if nargout > 1
% Precompute sigmoids of energies, and products with label posterior
sigmoids = 1 ./ (1 + exp(-energy));
sigmoids_label_post = sigmoids;
for i=1:no_labels
sigmoids_label_post(:,:,i) = bsxfun(@times, sigmoids_label_post(:,:,i), label_post(:,i));
end
% Initialize gradients
grad_W = zeros(size(machine.W));
grad_labW = zeros(size(machine.labW));
grad_bias_upW = zeros(size(machine.bias_upW));
% Sum gradient with respect to the data-hidden weights
for i=1:no_labels
ind = find(labels == i);
grad_W = grad_W + X(ind,:)' * sigmoids(ind,:,i) - X' * sigmoids_label_post(:,:,i);
end
grad_W = grad_W - 2 * weight_cost * machine.W;
% Compute gradient with respect to bias on label-hidden weights
for i=1:no_labels
grad_labW(i,:) = sum(sigmoids(labels == i,:,i), 1) - sum(sigmoids_label_post(:,:,i), 1);
end
% Compute gradient with respect to bias on hidden units
for i=1:no_labels
grad_bias_upW = grad_bias_upW + sum(sigmoids(labels == i,:,i), 1) - sum(sigmoids_label_post(:,:,i), 1);
end
% Compute the gradient with respect to bias on labels
grad_bias_labW = sum(label_matrix - label_post, 1);
% Encode the gradient
dC = -[grad_W(:); grad_labW(:); grad_bias_upW(:); grad_bias_labW(:)];
end
end
function [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5);
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, P4, P5)
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = [f, '(X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
if length>0, S=['Linesearch']; else S=['Function evaluation']; end
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quanteties
while 1
while ((f2 > f1+z1*RHO*d1) | (d2 > -SIG*d1)) & (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit
else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!
end
if isnan(z2) | isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect
end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2
end
if f2 > f1+z1*RHO*d1 | d2 > -SIG*d1
break; % this is a failure
elseif d2 > SIG*d1
success = 1; break; % success
elseif M == 0
break; % failure
end
A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) | isnan(z2) | isinf(z2) | z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount
else
z2 = (limit-z1)/2; % otherwise bisect
end
elseif (limit > -0.5) & (z2+z1 > limit) % extraplation beyond max?
z2 = (limit-z1)/2; % bisect
elseif (limit < -0.5) & (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit
elseif z2 < -z3*INT
z2 = -z3*INT;
elseif (limit > -0.5) & (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);
end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;
end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail
else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed | i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed
end
end
end
function d = checkgrad(f, X, e, P1, P2, P3, P4, P5, P6);
% checkgrad checks the derivatives in a function, by comparing them to finite
% differences approximations. The partial derivatives and the approximation
% are printed and the norm of the diffrence divided by the norm of the sum is
% returned as an indication of accuracy.
%
% usage: checkgrad('f', X, e, P1, P2, ...)
%
% where X is the argument and e is the small perturbation used for the finite
% differences. and the P1, P2, ... are optional additional parameters which
% get passed to f. The function f should be of the type
%
% [fX, dfX] = f(X, P1, P2, ...)
%
% where fX is the function value and dfX is a vector of partial derivatives.
%
% Carl Edward Rasmussen, 2001-08-01.
argstr = [f, '(X']; % assemble function call strings
argstrd = [f, '(X+dx'];
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
argstrd = [argstrd, ',P', int2str(i)];
end
argstr = [argstr, ')'];
argstrd = [argstrd, ')'];
[y dy] = eval(argstr); % get the partial derivatives dy
dh = zeros(length(X),1) ;
for j = 1:length(X)
dx = zeros(length(X),1);
dx(j) = dx(j) + e; % perturb a single dimension
y2 = eval(argstrd);
dx = -dx ;
y1 = eval(argstrd);
dh(j) = (y2 - y1)/(2*e);
end
disp([dy dh]) % print the two vectors
d = norm(dh-dy)/norm(dh+dy); % return norm of diff divided by norm of sum
end
|
github
|
jacksky64/imageProcessing-master
|
prtrace.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prtrace.m
| 2,266 |
utf_8
|
2492aac5f515f3f1e84df641d32beb43
|
%PRTRACE Trace PRTools routines
%
% Routine is outdated and will directly return
%
% PRTRACE ON Tracing of the PRTools routines is switched on
% PRTRACE OFF Tracing of the PRTools routines is switched off
% PRTRACE(MESSAGE,LEVEL)
%
% INPUT
% MESSAGE String
% LEVEL Trace level (optional; default: 1/0 if PRTRACE is ON/OFF)
%
% DESCRIPTION
% Note that PRTRACE describes both a global variable (ON/OFF) and a function.
% If PRTRACE is ON, each access to each PRTools routine is reported.
% Additional trace messages may be added by PRTRACE(MESSAGE) in which MESSAGE
% is a string, listed when the command is encountered and PRTRACE is ON. The
% standard MESSAGE is the name of the executing m-file (MFILENAME).
%
% PRTRACE(MESSAGE,LEVEL) lists the traced message above some level. If
% PRTRACE is switched ON, the trace-level is increased by one. Only
% if LEVEL >= trace-level, MESSAGE is displayed. If PRTRACE is switched
% OFF, the trace-level is reset to 0. For all main routines of PRTools,
% LEVEL is set to 1. All basic routines defining MAPPINGS and DATASETS
% (except for MAPPING and DATASET themselves) have the trace-level of 2.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: prtrace.m,v 1.4 2008/07/28 09:02:30 duin Exp $
function prtrace(message,level)
return
% persistent PRTRACEGLOBAL
%
% % If PRTRACEGLOBAL was not defined, do it now.
% if isempty(PRTRACEGLOBAL)
% PRTRACEGLOBAL = 0;
% dataset; % make sure that PRTools is activated
% end
%
% % Check the input arguments.
% if (nargin == 0)
% ;
% elseif (~isstr(message))
% error('No MESSAGE string found.')
% else
% % Depending on message, we should turn the messaging ON or OFF, or we
% % have to increase the trace-level and show the message when the
% % trace-level is high enough.
%
% switch message
% case {'on','ON'}
% PRTRACEGLOBAL = PRTRACEGLOBAL+1;
% case {'off','OFF'}
% PRTRACEGLOBAL = 0;
% otherwise
% if (PRTRACEGLOBAL)
% if (nargin == 1)
% level = 1;
% end
% if (PRTRACEGLOBAL >= level)
% disp(message);
% end
% end
% end
% end
%
% return;
|
github
|
jacksky64/imageProcessing-master
|
featselm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/featselm.m
| 3,336 |
utf_8
|
ca470807d2d85e5ff55358b1b70152ae
|
%FEATSELM Feature selection map
%
% [W,R] = FEATSELM(A,CRIT,METHOD,K,T,PAR1,...)
%
% INPUT
% A Training dataset
% CRIT Name of criterion: 'in-in', 'maha-s', 'NN' or others
% (see FEATEVAL) or an untrained classifier V (default: 'NN')
% METHOD - 'forward' : selection by featself (default)
% - 'float' : selection by featselp
% - 'backward': selection by featselb
% - 'b&b' : branch and bound selection by featselo
% - 'ind' : individual
% - 'lr' : plus-l-takeaway-r selection by featsellr
% - 'sparse' : use sparse untrained classifier CRIT
% K Desired number of features (default: K = 0, return optimal set)
% T Tuning set to be used in FEATEVAL (optional)
% PAR1,.. Optional parameters:
% - L,R : for 'lr' (default: L = 1, R = 0)
%
% OUTPUT
% W Feature selection mapping
% R Matrix with step by step results
%
% DESCRIPTION
% Computation of a mapping W selecting K features. This routines offers a
% central interface to all other feature selection methods. W can be used
% for selecting features in a dataset B using B*W.
%
% SEE ALSO
% MAPPINGS, DATASETS, FEATEVAL, FEATSELO, FEATSELB, FEATSELI,
% FEATSELP, FEATSELF, FEATSELLR
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [w,res] = featselm(a,crit,arg3,ksel,t,par1,par2)
prtrace(mfilename);
if (nargin < 2 | isempty(crit))
prwarning(2,'criterion not specified, assuming NN');
crit = 'NN';
end
if (nargin < 3 | isempty(arg3))
prwarning(2,'method not specified, assuming forward');
arg3 = 'forward';
end
if (nargin < 4)
ksel = [];
end
if (nargin < 5)
prwarning(3,'no tuning set supplied (risk of overfit)');
t = [];
end
if (nargin < 6), par1 = []; end;
if (nargin < 7), par2 = []; end;
% If no arguments are supplied, return an untrained mapping.
if (nargin == 0) | (isempty(a))
w = mapping('featselm',{crit,arg3,ksel,t,par1,par2});
w = setname(w,'Feature Selection');
return
end
a = testdatasize(a);
[m,k] = size(a);
if (isstr(arg3))
method = arg3; % If the third argument is a string,
switch (method) % it specifies the method to use.
case {'forward','featself'}
[w,res] = featself(a,crit,ksel,t);
case {'float','featselp'}
[w,res] = featselp(a,crit,ksel,t);
case {'backward','featselb'}
[w,res] = featselb(a,crit,ksel,t);
case {'b&b','featselo'}
[w,res] = featselo(a,crit,ksel,t);
case {'ind','featseli'}
[w,res] = featseli(a,crit,ksel,t);
case {'lr','featsellr'}
[w,res] = featsellr(a,crit,ksel,par1,par2,t);
case {'sparse'}
v = a*crit;
if isaffine(v)
v = getdata(v,'rot');
w = featsel(size(a,2),find(v(:,1) == 0));
else
v = getdata(v,'beta');
end
w = featsel(size(a,2),find(v(:,1) ~= 0));
otherwise
error('Unknown method specified.')
end
elseif (ismapping(arg3))
w = arg3; % If the third argument is a mapping,
isuntrained(w); % assert it is untrained and train
[w,res] = feval(mfilename,a,crit,w.mapping_file,ksel,t,par1,par2);
else
error('Illegal method specified.')
end
return
|
github
|
jacksky64/imageProcessing-master
|
seldat.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/seldat.m
| 5,055 |
utf_8
|
44125bd3175a5107456aafda72e2e865
|
%SELDAT Select subset of dataset
%
% [B,J] = SELDAT(A,C,F,N)
% B = A*SELDAT([],C,F,N)
% [B,J] = SELDAT(A,D)
%
% INPUT
% A Dataset
% C Indexes of classes (optional; default: all)
% F Indexes of features (optional; default: all)
% N Indices of objects extracted from classes in C
% Should be cell array in case of multiple classes
% (optional; default: all)
% D Dataset
%
% OUTPUT
% B Subset of the dataset A
% J Indices of returned objects in dataset A: B = A(J,:)
%
% DESCRIPTION
% B is a subset of the dataset A defined by the set of classes (C),
% the set of features (F) and the set of objects (N). Classes and
% features have to be identified by their index. The order of class
% names can be found by GETLABLIST(A). The index of a particular
% class can be determined by GETCLASSI. N is applied to all classes
% defined in C. Defaults: select all, except unlabeled objects.
%
% In case A is soft labeled or is a target dataset by B = SELDAT(A,C) the
% entire dataset is returned, but the labels or targets are reduced to the
% selected class (target) C.
%
% B = SELDAT(A,D)
%
% If D is a dataset that is somehow is derived from A, e.g. by selection
% and mappings, then the corresponding objects of A are retrieved by their
% object identifiers and returned into B.
%
% B = SELDAT(A)
%
% Retrieves all labeled objects of A.
%
% In all cases empty classes are removed.
%
% EXAMPLES
% Generate 8 class, 2-D dataset and select: the second feature, objects
% 1 from class 1, 0 from class 2 and 1:3 from class 6
%
% A = GENDATM([3,3,3,3,3,3,3,3]);
% B = SELDAT(A,[1 2 6],2,{1;[];1:3});
% or
% B = SELDAT(A,[],2,{1;[];[];[];[];1:3});
%
% SEE ALSO
% DATASETS, GENDAT, GETLABLIST, GETCLASSI, REMCLASS
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: seldat.m,v 1.13 2009/02/19 12:27:10 duin Exp $
function [b,J] = seldat(a,clas,feat,n)
prtrace(mfilename);
if nargin < 4, n = {}; end
if nargin < 3, feat = []; end
if nargin < 2, clas = []; end
if isempty(a), b = mapping(mfilename,'fixed',{clas,feat,n}); return; end
[m,k,c] = getsize(a);
allfeat = 0;
allclas = 0;
if isempty(feat), allfeat = 1; feat = [1:k]; end
if (isempty(clas) & isempty(n)) allclas = 1; clas = [1:c]; end
if isdataset(clas)
% If input D is a dataset, it is assumed that D was derived from
% A, and therefore the object identifiers have to be matched.
J = getident(clas);
L = findident(a,J);
L = cat(1,L{:});
b = a(L,:);
else
% Otherwise, we have to extract the right class/fetaures and/or
% objects:
%if ~islabtype(a,'crisp') & ~allclas
% error('Class selection only possible in case of crisp labels')
%end
if max(feat) > k
error('Feature out of range');
end
%DXD: allow for selection based on class names instead of class
%indices:
if ~isa(clas,'double')
% names in cell arrays are also possible
if isa(clas,'cell')
clas = strvcat(clas);
end
% be sure we are dealing with char's here (if it were doubles,
% we were not even allowed to enter here)
if ~isa(clas,'char')
error('I am expecting class indices or names.');
end
% match the names with the lablist:
names = clas;
ll = getlablist(a);
clas = zeros(1,size(names,1));
for i = 1:size(names,1)
%DXD test if the class is present at all, otherwise an error
%occurs:
found = strmatch(names(i,:),ll);
if ~isempty(found)
clas(1,i) = found;
end
end
end
clas = clas(:)';
if max(clas) > c
error('Class number out of range')
end
if iscell(n)
if (~(isempty(n) | isempty(clas))) & (length(n) ~= size(clas,2))
error('Number of cells in N should be equal to the number of classes')
end
else
if size(clas,2) > 1
error('N should be a cell array, specifying objects for each class');
end
n = {n};
end
% Do the extraction:
if allclas & isempty(n)
J = findnlab(a,0);
if ~isempty(J)
a(J,:) = [];
end
else
if isempty(clas) & ~isempty(n)
clas = zeros(1,length(n));
for i = 1:length(n)
if(~isempty(n(i)))
clas(1,i) = i;
end
end
end
if islabtype(a,'crisp')
J = [];
for j = 1:size(clas,2)
JC = findnlab(a,clas(1,j));
if ~isempty(n)
if max(cat(1,n{j})) > length(JC)
error('Requested objects not available in dataset')
end
J = [J; JC(n{j})];
else
J = [J; JC];
end
end
a = a(J,:);
else
labl = getlablist(a); labl = labl(clas,:);
targ = gettargets(a); targ = targ(:,clas);
[tt,nlab] = max(targ,[],2);
a = setnlab(a,1);
a = setlablist(a,labl);
a = settargets(a,targ);
a = setnlab(a,nlab);
if ~isempty(a.prior)
priora = a.prior(clas);
priora = priora/sum(priora);
a.prior = priora;
end
end
end
if allfeat
b = a;
else
b = a(:,feat);
end
end
b = setlablist(b); % reset lablist to remove empty classes
return;
|
github
|
jacksky64/imageProcessing-master
|
gtm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gtm.m
| 7,622 |
utf_8
|
01519a52974eadcfbb3cd939ee1f98b7
|
%GTM Fit a Generative Topographic Mapping using the
% expectation-maximisation algorithm.
%
% [W,L] = GTM (A,K,M,MAPTYPE,REG,EPS,MAXITER)
%
% INPUT
% A Dataset or double matrix
% K Vector containing number of nodes per dimension (default: [5 5], 2D map)
% M Vector containing number of basis functions per dimension (default: [10 10])
% MAPTYPE Map onto mean of posterior ('mean', default) or mode ('mode')
% REG Regularisation (default: 0)
% EPS Change in likelihood to stop training (default: 1e-5)
% MAXITER Maximum number of iterations (default: inf)
%
% OUTPUT
% W GTM mapping
% L Likelihood
%
% DESCRIPTION
% Trains a Generative Topographic Mapping of any dimension, using the EM
% algorithm.
%
% REFERENCES
% Bishop, C.M., Svensen, M. and Williams, C.K.I., "GTM: The Generative
% Topographic Mapping", Neural Computation 10(1):215-234, 1998.
%
% SEE ALSO
% PLOTGTM, SOM, PLOTSOM
% (c) Dick de Ridder, 2003
% Information & Communication Theory Group
% Faculty of Electrical Engineering, Mathematics and Computer Science
% Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
function [w,L] = gtm (a, arg2, M, mapto, reg, epsilon, maxiter)
prtrace(mfilename);
step = 10;
if (nargin < 2)
prwarning(3,'number of nodes K not given, assuming [5 5] (2D map)');
arg2 = [5 5];
end;
if (~ismapping(arg2))
if (nargin < 7)
maxiter = inf;
end;
if (nargin < 6)
prwarning(3,'stopping criteria not given, assuming EPSILON = 1e-10');
epsilon = 1e-10;
end;
if (nargin < 5)
prwarning(3,'regularisation REG not given, assuming 0');
reg = 0;
end;
if (nargin < 4)
prwarning(3,'mapping type MAPTO not given, assuming mean');
mapto = 'mean';
end;
if (nargin < 3)
prwarning(3,'number of basis functions M not given, assuming 10');
M = 5;
end;
end;
if (nargin == 0) | isempty(a)
W = mapping(mfilename);
W = setname(W,'GTM');
return;
end
% Prevent annoying messages: we will tell the user about any problems.
warning off;
a = testdatasize(a);
t = +a'; [d,N] = size(t); [m,k] = size(a);
% If we're to apply a trained mapping, unpack its parameters.
if (ismapping(arg2))
w = arg2; data = getdata(w);
K = data{1}; M = data{2};
W = data{3}; sigma = data{4}; mapto = data{5};
else
K = arg2;
end;
% Create a KK-dimensional grid with dimensions K(1), K(2), ... of
% D-dimensional grid points and store it as a D x KK matrix X. Do the
% same for the basis function centers PHI_MU, with grid dimensions M(1), ...
K = reshape(K,1,prod(size(K))); % Turn into vectors.
M = reshape(M,1,prod(size(M)));
% Check: either K or M should be a vector, or both should be vectors of
% the same length.
if (length(K) > 1) & (length(M) == 1)
M = M * ones(1,length(K));
elseif (length(M) > 1) & (length(K) == 1)
K = K * ones(1,length(M));
elseif (length(K) ~= length(M))
error ('Length of vectors K and M should be equal, or K and/or M should be scalar.');
end;
D = length(K); KK = prod(K); MM = prod(M);
if (D > d)
error ('Length of vectors K and M should be <= the data dimensionality.');
end;
x = makegrid(K,D); % Grid points.
phi_mu = makegrid(M,D); % Basis function centers.
phi_sigma = 2/(mean(M)-1); % Basis function widths.
% Pre-calculate Phi.
for j = 1:KK
for i = 1:MM
Phi(i,j) = exp(-(x(:,j)-phi_mu(:,i))'*(x(:,j)-phi_mu(:,i))/(phi_sigma^2));
end;
end;
if (~ismapping(arg2)) % Train mapping.
tries = 0; retry = 1;
while ((retry == 1) & (tries <= 5))
% Initialisation.
ptx = zeros(KK,N);
R = (1/KK)*ones(KK,N);
C = prcov(t'); [U,DD] = preig(C); [dummy,ind] = sort(-diag(DD));
W = U(:,ind(1:D))*x*prpinv(Phi);
if (size(C,1) > D)
sigma = sqrt(DD(D+1,D+1));
else
sigma = 1/mean(M);
end;
done = 0; iter = 0; retry = 0; likelihood = 1.0e20;
while ((~done) & (~retry))
iter = iter + 1;
done = 1;
factor1 = (1/(2*pi*sigma^2))^(d/2);
factor2 = (-1/(2*sigma^2));
WPhi = W*Phi;
for i = 1:KK
ptx(i,:) = factor1 * exp(factor2*sum((WPhi(:,i)*ones(1,N)-t).^2));
end;
if (~retry)
s = sum(ptx); s(find(s==0)) = realmin; % Prevent divide-by-zero.
R = ptx ./ (ones(size(ptx,1),1)*s);
G = diag(sum(R'));
% M-step #1 (eqn. 12)
W = (prinv(Phi*G*Phi' + reg*eye(MM))*Phi*R*t')';
% M-step #1 (eqn. 13)
s = 0; WPhi = W*Phi;
for i = 1:KK
s = s + sum(R(i,:).*sum((WPhi(:,i)*ones(1,N)-t).^2));
end;
sigma = sqrt((1/(N*d)) * s);
% Re-calculate log-likelihood.
prev_likelihood = likelihood; likelihood = sum(log(mean(ptx)+realmin));
if (rem (iter,step) == 0)
prwarning (10, sprintf('[%3d] L: %2.2f (change: %2.2e)', ...
iter, likelihood, abs ((likelihood - prev_likelihood)/likelihood)));
end;
% Continue?
done = (abs ((likelihood - prev_likelihood)/likelihood) < epsilon);
done = (done | (iter > maxiter));
if (~isfinite(likelihood))
prwarning(3,'Problem is poorly conditioned, retrying');
retry = 1; tries = tries + 1;
end;
end;
end;
end;
L = likelihood;
if (~retry)
w = mapping(mfilename,'trained',{K,M,W,sigma,mapto},[],k,D);
w = setname(w,'GTM');
else
prwarning(3,'Problem is too poorly conditioned, giving up');
prwarning(3,'Consider lowering K and M or increasing REG');
w = [];
end;
else % Apply mapping.
factor1 = (1/(2*pi*sigma^2))^(d/2);
factor2 = (-1/(2*sigma^2));
WPhi = W*Phi;
for i = 1:KK
ptx(i,:) = factor1 * exp(factor2*sum((WPhi(:,i)*ones(1,N)-t).^2));
end;
s = sum(ptx); s(find(s==0)) = realmin; % Prevent divide-by-zero.
R = ptx ./ (ones(size(ptx,1),1)*s);
switch(mapto)
case 'mean',
out = (x*R)';
case 'mode',
[dummy,ind] = max(R); out = x(:,ind)';
otherwise,
error ('unknown mapping type: should be mean or mode')
end;
w = setdata(a,out,getlabels(w));
end;
warning on;
return
% GRID = MAKEGRID (K,D)
%
% Create a KK = prod(K)-dimensional grid with dimensions K(1), K(2), ... of
% D-dimensional uniformly spaced grid points on [0,1]^prod(K), and store it
% as a D x KK matrix X.
function grid = makegrid (K,D)
KK = prod(K);
for h = 1:D
xx{h} = 0:(1/(K(h)-1)):1; % Support point means
end;
% Do that voodoo / that you do / so well...
if (D==1)
xm = xx;
else
cmd = '[';
for h = 1:D-1, cmd = sprintf ('%sxm{%d}, ', cmd, h); end;
cmd = sprintf ('%sxm{%d}] = ndgrid(', cmd, D);
for h = 1:D-1, cmd = sprintf ('%sxx{%d}, ', cmd, h); end;
cmd = sprintf ('%sxx{%d});', cmd, D); eval(cmd);
end;
cmd = 'mm = zeros(D, ';
for h = 1:D-1, cmd = sprintf ('%s%d, ', cmd, K(h)); end;
cmd = sprintf ('%s%d);', cmd, K(D)); eval (cmd);
for h = 1:D
cmd = sprintf ('mm(%d,', h);
for g = 1:D-1, cmd = sprintf ('%s:,', cmd); end;
cmd = sprintf ('%s:) = xm{%d};', cmd, h); eval (cmd);
end;
grid = reshape(mm,D,KK);
return
|
github
|
jacksky64/imageProcessing-master
|
naivebcc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/naivebcc.m
| 4,467 |
utf_8
|
98b2b2891939f7514f2b34f6ca7d6cac
|
% NAIVEBCC Naive Bayes Combining Classifier
%
% W = A*(WU*NAIVEBCC)
% W = WT*NAIVEBCC(B*WT)
% D = C*W
%
% INPUT
% A Dataset used for training base classifiers as well as combiner
% B Dataset used for training combiner of trained base classifiers
% C Dataset used for testing (executing) the combiner
% WU Set of untrained base classifiers, see STACKED
% WT Set of trained base classifiers, see STACKED
%
% OUTPUT
% W Trained Naive Bayes Combining Classifier
% D Dataset with prob. products (over base classifiers) per class
%
% DESCRIPTION
% During training the combiner computes the probabilities
% P(class | classifier outcomes) based on the crisp class assignements
% made by the base classifiers for the training set. During execution the
% product of these probabilities are computed, again following the crisp
% class assignments of the base classifiers. These products are returned
% as columns in D. Use CLASSC to normalise the outcomes. Use TESTD or
% LABELD to inspect performances and assigned labels.
%
% NAIVEBCC differs from the classifier NAIVEBC by the fact that the
% latter uses continuous inputs (no crisp labeling) and does not make a
% distinction between classifiers. Like almost any other classifier
% however, NAIVEBC may be used as a trained combiner as well.
%
% REFERENCE
% 1. Kuncheva, LI. Combining pattern classifiers, 2004, pp.126-128.
%
% SEE ALSO
% DATASETS, MAPPINGS, STACKED, NAIVEBC, CLASSC, TESTD, LABELD
% Copyright: Chunxia Zhang, R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function V = naivebcc(A,W)
prtrace(mfilename);
name = 'Naive Bayes combiner';
if nargin < 1 | isempty(A)
% If there are no inputs, return an untrained mapping.
V = mapping(mfilename);
V = setname(V,name);
elseif nargin == 1
% call like V = NBC(A): train a NB classifier on the outcomes of the
% base classifiers. So A has c x k columns:
% c outcomes (classes) x k classifiers
islabtype(A,'crisp'); % allow crisp labels only
isvaldfile(A,1,2); % at least one object per class, 2 classes
A = testdatasize(A,'features'); % test whether they fit
A = setprior(A,getprior(A,0)); % avoid many warnings
[m,k,c] = getsize(A); % size of training set (m objects; k features; c classes)
L = k/c; % compute the number of classifiers
G = zeros(L*c,c); % confusion matrix for each base classifier
for i = 1:L
data = +A(:,(i-1)*c+1:i*c);
[max_val,max_ind] = max(data,[],2);
CM = zeros(c,c); % the (k,s)th entry indicates the number of elements
% whose true labels are omega_k and are assigned to omega_s
for k = 1:c
for s = 1:c
CM(k,s) = sum(A.nlab == k & max_ind == s);
end
end
G((i-1)*c+1:i*c,:) = CM'; % transpose the confusion matrix to facilitate
% the further computation
end
vector = classsizes(A);
% Find all class probs for all classifiers P(class | classifiers)
% P = (vector/m)*prod((G+1/c)./repmat(vector+1,size(G,1),1));
P = (G+1/c)./repmat(vector+1,size(G,1),1); % P(x|class)
P = P.*repmat(getprior(A),size(P,1),1); % P(x|class) P(class)
q = sum(P,2); % P(x)
P = P./repmat(q,1,c); % P(class|x)
V = mapping(mfilename,'trained',P,getlablist(A),L*c,c);
V = setname(V,name);
elseif nargin == 2 & ismapping(W) % execution
% call like V = A*W, in which W is a trained NBC
isdataset(A);
[m,k] = size(A);
P = getdata(W); % Prob matrix found by training
c = size(P,2); % Number of classes
L = size(P,1)/c; % number of classifiers
% We assume that the k features of A (columns) are the results of
% L classifiers producing c outcomes. We will construct a matrix
% M with for every classifier a 1 for its maximum class (most
% confident) class.
M = zeros(m,k);
for i = 1:L
NM = zeros(m,c);
S = (i-1)*c+1:i*c;
[maxv,maxi] = max(+A(:,S),[],2);
NM(sub2ind([m,c],[1:m]',maxi)) = ones(m,1);
M(:,S) = NM;
end
% Now the confidences of the combiner will be estimated according
% to the product over the classifiers of P(classifier|class)
% estimated during training
d = zeros(m,c);
R = reshape(find(M'==1)-[1:c:m*c*L]',L,m)'+repmat([1:c:c*L],m,1);
for j=1:c
q = P(:,j)';
d(:,j) = prod(q(R),2);
end
%d = d*normm; % normalise confidences, leave to user
V = setdat(A,d,W); % store in dataset
end
return
|
github
|
jacksky64/imageProcessing-master
|
gendatgauss.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendatgauss.m
| 4,913 |
utf_8
|
979e2ea312308dfc22d0d67f3d74fb28
|
%GENDATGAUSS (Formerly GAUSS) Generation of a multivariate Gaussian dataset
%
% A = GENDATGAUSS(N,U,G,LABTYPE)
%
% INPUT (in case of generation a 1-class dataset in K dimensions)
% N Number of objects to be generated (default 50).
% U Desired mean (vector of length K).
% G K x K covariance matrix. Default eye(K).
% LABTYPE Label type (default 'crisp')
%
% INPUT (in case of generation a C-class dataset in K dimensions)
% N Vector of length C with numbers of objects per class.
% U C x K matrix with class means, or
% Dataset with means, labels and priors of classes
% (default: zeros(C,K))
% G K x K x C covariance matrix of right size.
% Default eye(K);
% LABTYPE Label type (default 'crisp')
%
% OUTPUT
% A Dataset containing multivariate Gaussian data
%
% DESCRIPTION
% Generation of N K-dimensional Gaussian distributed samples for C classes.
% The covariance matrices should be specified in G (size K*K*C) and the
% means, labels and prior probabilities can be defined by the dataset U with
% size (C*K). If U is not a dataset, it should be a C*K matrix and A will
% be a dataset with C classes.
%
% If N is a vector, exactly N(I) objects are generated for class I,
% I = 1..C.
%
% EXAMPLES
% 1. Generation of 100 points in 2D with mean [1 1] and default covariance
% matrix:
%
% GENDATGAUSS(100,[0 0])
%
% 2. Generation of 50 points for each of two 1-dimensional distributions with
% mean -1 and 1 and with variances 1 and 2:
%
% GENDATGAUSS([50 50],[-1;1],CAT(3,1,2))
%
% Note that the two 1-dimensional class means should be given as a column
% vector [1;-1], as [1 -1] defines a single 2-dimensional mean. Note that
% the 1-dimensional covariance matrices degenerate to scalar variances,
% but have still to be combined into a collection of square matrices using
% the CAT(3,....) function.
%
% 3. Generation of 300 points for 3 classes with means [0 0], [0 1] and
% [1 1] and covariance matrices [2 1; 1 4], EYE(2) and EYE(2):
%
% GENDATGAUSS(300,[0 0; 0 1; 1 1]*3,CAT(3,[2 1; 1 4],EYE(2),EYE(2)))
%
% SEE ALSO
% DATASETS, PRDATASETS
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function a = gendatgauss(n,u,g,labtype)
prtrace(mfilename);
if (nargin < 1)
prwarning (2,'number of samples not specified, assuming N = 50');
n = 50;
end
cn = length(n);
if (nargin < 2)
prwarning (2,'means not specified; assuming one dimension, mean zero');
u = zeros(cn,1);
end;
if (nargin < 3)
prwarning (2,'covariances not specified, assuming unity');
g = eye(size(u,2));
end
if (nargin < 4)
prwarning (3,'label type not specified, assuming crisp');
labtype = 'crisp';
end
% Return an empty dataset if the number of samples requested is 0.
if (length(n) == 1) & (n == 0)
a = dataset([]);
return
end
% Find C, desired number of classes based on U and K, the number of
% dimensions. Make sure U is a dataset containing the means.
if (isa(u,'dataset'))
[m,k,c] = getsize(u);
lablist = getlablist(u);
p = getprior(u);
if c == 0
u = double(u);
end
end
if isa(u,'double')
[m,k] = size(u);
c = m;
lablist = genlab(ones(c,1));
u = dataset(u,lablist);
p = ones(1,c)/c;
end
if (cn ~= c) & (cn ~= 1)
error('The number of classes specified by N and U does not match');
end
% Generate a class frequency distribution according to the desired priors.
n = genclass(n,p);
% Find CG, the number of classes according to G.
% Make sure G is not a dataset.
if (isempty(g))
g = eye(k);
cg = 1;
else
g = real(+g); [k1,k2,cg] = size(g);
if (k1 ~= k) | (k2 ~= k)
error('The number of dimensions of the means U and covariance matrices G do not match');
end
if (cg ~= m & cg ~= 1)
error('The number of classes specified by the means U and covariance matrices G do not match');
end
end
% Create the data A by rotating and scaling standard normal distributions
% using the eigenvectors of the specified covariance matrices, and adding
% the means.
a = [];
for i = 1:m
j = min(i,cg); % Just in case CG = 1 (if G was not specified).
% Sanity check: user can pass non-positive definite G.
[V,D] = preig(g(:,:,j)); V = real(V); D = real(D); D = max(D,0);
a = [a; randn(n(i),k)*sqrt(D)*V' + repmat(+u(i,:),n(i),1)];
end
% Convert A to dataset by adding labels and priors.
labels = genlab(n,lablist);
a = dataset(a,labels,'lablist',lablist,'prior',p);
% If non-crisp labels are requested, use output of Bayes classifier.
switch (labtype)
case 'crisp'
;
case 'soft'
w = nbayesc(u,g);
targets = a*w*classc;
a = setlabtype(a,'soft',targets);
otherwise
error(['Label type ' labtype ' not supported'])
end
a = setname(a,'Gaussian Data');
return
|
github
|
jacksky64/imageProcessing-master
|
marksize.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/marksize.m
| 421 |
utf_8
|
5f56b132318a2fe2d3554b9581dfe7b6
|
%MARKSIZE Change markersize in lineplot or scatterplot
%
% marksize(size,marker)
%
% The marker fontsize (default set by matlab to 6) is reset
% to size for the given marker, default: all markers.
%
function marksize(siz,marker)
if nargin == 1, marker = ' '; end
h = get(gca,'Children')';
for i = h
if strcmp(get(i,'Type'),'line')
if nargin == 1 | get(i,'Marker') == marker
set(i,'MarkerSize',siz);
end
end
end
|
github
|
jacksky64/imageProcessing-master
|
svmr.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/svmr.m
| 2,133 |
utf_8
|
a4b79163f7829d338e4df40e406fc30c
|
%SVMR SVM regression
%
% W = SVMR(X,NU,KTYPE,KPAR,EP)
%
% INPUT
% X Regression dataset
% NU Fraction of objects outside the 'data tube'
% KTYPE Kernel type (default KTYPE='p', for polynomial)
% KPAR Extra parameter for the kernel
% EP Epsilon, with of the 'data tube'
%
% OUTPUT
% W Support vector regression
%
% DESCRIPTION
% Train an nu-Support Vector Regression on dataset X with parameter NU.
% The kernel is defined by kernel type KTYPE and kernel parameter KPAR.
% For the definitions of these kernels, have a look at proxm.m.
%
% SEE ALSO
% LINEARR, PROXM, GPR, SVC
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function y = svmr(x,nu,ktype,kpar,ep)
if nargin<5
ep = 0.2;
end
if nargin<4
kpar = 1;
end
if nargin<3
ktype = 'p';
end
if nargin<2
nu = 0.01;
end
if nargin<1 | isempty(x)
y = mapping(mfilename,{nu,ktype,kpar,ep});
y = setname(y,'SVM regression');
return
end
if ~ismapping(nu) %training
[n,d] = size(x);
y = gettargets(x);
% kernel mapping:
wk = proxm(+x,ktype,kpar);
K = +(x*wk);
% setup optimization:
tol = 1e-6;
C = 1/(n*nu);
H = [K -K; -K K];
f = repmat(ep,2*n,1) - [y; -y];
A = [];
b = [];
Aeq = [ones(1,n) -ones(1,n)];
beq = 0;
lb = zeros(2*n,1);
ub = repmat(C,2*n,1);
%do the optimization:
if exist('qld')
alf = qld(H,f,Aeq,beq,lb,ub,[],1);
else
alf = quadprog(H,f,A,b,Aeq,beq,lb,ub);
end
% find SV's
w = alf(1:n)-alf((n+1):end); % the real weights
Isv = find(abs(w)>tol);
Ibnd = find(abs(w(Isv))<C-tol);
% for the 'real' sv's, we want the classifier output to compute the
% offset:
I = Isv(Ibnd);
out1 = sum(repmat(w',length(Ibnd),1).*K(I,:),2);
sw = sign(w);
out = y(I) - out1 - sw(I).*ep;
% store the useful parameters:
W.b = mean(out);
W.wk = proxm(+x(Isv,:),ktype,kpar);
W.w = w(Isv);
y = mapping(mfilename,'trained',W,1,d,1);
y = setname(y,'Linear regression');
else
% evaluation
W = getdata(nu);
[n,d] = size(x);
Kz = +(x*W.wk);
out = sum(repmat(W.w',n,1).*Kz,2) + repmat(W.b,n,1);
y = setdat(x,out);
end
|
github
|
jacksky64/imageProcessing-master
|
scatterr.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/scatterr.m
| 729 |
utf_8
|
7d9a51df0874b46f92b6d1850ff9eaaf
|
%SCATTERR Scatter regression data
%
% H = SCATTERR(X,CLRS)
%
% INPUT
% X Regression dataset
% CLRS Plot string (default CLRS = 'k.')
%
% OUTPUT
% H Vector of handles
%
% DESCRIPTION
% Scatter the regression dataset X with marker colors CLRS.
%
% SEE ALSO
% PLOTR
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function h = plottarget(x,clrs)
if nargin<2
clrs = 'k.';
end
y = gettargets(x);
h = plot(+x(:,1),y,clrs);
fl = getfeatlab(x);
xlabel(fl(1,:));
ylabel('target');
% also set the identifiers:
ud = get(h,'UserData');
ud.ident = getident(x);
set(h,'UserData',ud);
if nargout<1
clear h;
end
return
|
github
|
jacksky64/imageProcessing-master
|
istrained.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/istrained.m
| 719 |
utf_8
|
16db91f39638d441eeea6d5517bdd52a
|
%ISTRAINED Test on trained mapping
%
% I = ISTRAINED(W)
% ISTRAINED(W)
%
% True if the mapping type of W is 'trained' (see HELP MAPPINGS). If
% called without an output argument ISTRAINED generates an error if the
% mapping type of W is not 'trained'.
% $Id: istrained.m,v 1.1 2009/03/18 16:12:41 duin Exp $
function i = istrained(w)
prtrace(mfilename,2);
if iscell(w)
i = strcmp(w{1}.mapping_type,'trained');
for j=2:length(w)
if strcmp(w{j}.mapping_type,'trained') ~= i
error('Cell array of classifiers cannot be partially trained')
end
end
else
i = strcmp(w.mapping_type,'trained');
end
if nargout == 0 & i == 0
error([newline '---- Trained mapping expected ----'])
end
return
|
github
|
jacksky64/imageProcessing-master
|
testk.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testk.m
| 1,874 |
utf_8
|
e4041302fe206e0842baa466bfa2e810
|
%TESTK Error estimation of the K-NN rule
%
% E = TESTK(A,K,T)
%
% INPUT
% A Training dataset
% K Number of nearest neighbors (default 1)
% T Test dataset (default [], i.e. find leave-one-out estimate on A)
%
% OUTPUT
% E Estimated error of the K-NN rule
%
% DESCRIPTION
% Tests a dataset T on the training dataset A using the K-NN rule and
% returns the classification error E. In case no set T is provided, the
% leave-one-out error estimate on A is returned.
%
% The advantage of using TESTK over TESTC is that it enables leave-one-out
% error estimation. However, TESTK is based on just counting errors and
% does not weight with testobject priors.
%
% SEE ALSO
% DATASETS, KNNC, KNN_MAP, TESTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: testk.m,v 1.4 2009/07/22 19:29:41 duin Exp $
function [e,labels] = testk(a,knn,t)
prtrace(mfilename);
if (nargin < 2)
prwarning(2,'number of neighbours K not specified, assuming 1');
knn = 1;
end
% Calculate the KNN classifier.
a = seldat(a); % get labeled objects only
w = knnc(a,knn);
[m,k] = size(a);
nlab = getnlab(a);
lablist = getlablist(a);
if (nargin <= 2) % Leave-one-out error estimate.
d = knn_map([],w); % Posterior probabilities of KNNC(A,KNN).
[dmax,J] = max(d,[],2); % Find the maximum.
e = nlabcmp(J,nlab)/m; % Calculate error: compare numerical labels.
else % Error estimation on tuning set T.
[n,kt] = size(t);
if (k ~= kt)
error('Number of features of A and T do not match.');
end
d = knn_map(t,w); % Posterior probabilities of T*KNNC(A,KNN).
[dmax,J] = max(d,[],2); % Find the maximum.
% Calculate error: compare full labels.
e = nlabcmp(getlab(t),lablist(J,:))/n;
end
labels = lablist(J,:);
return
|
github
|
jacksky64/imageProcessing-master
|
userkernel.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/userkernel.m
| 1,998 |
utf_8
|
67ccb0c570bbc7742a528966a9f20de7
|
%USERKERNEL Construct user defined kernel mapping
%
% K = USERKERNEL(B,R,FUNC,P1,P2, ...)
% K = B*USERKERNEL([],R,FUNC,P1,P2, ...)
% W = USERKERNEL([],R,FUNC,P1,P2, ...)
% W = R*USERKERNEL([],[],FUNC,P1,P2, ...)
% K = B*W
%
% INPUT
% R Dataset, representation set, default B
% B Dataset
% FUNC String with function name to compute kernels (proximities) by
% K = FEVAL(FUNC,B,R,P1,P2, ...)
%
% OUTPUT
% W Trained kernel mapping
% K Kernel (proximity) matrix
%
% DESCRIPTION
% The kernel matrix K is computed according to the definition given by the
% user supplied function FUNC. The size of K is [SIZE(B,1) SIZE(R,1)]
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function w = userkernel(a,r,kernel,varargin)
prtrace(mfilename);
if nargin < 3, kernel = []; end
if nargin < 2, r = []; end
if nargin < 1, a = []; end
if isempty(a) & isempty(r)
w = mapping(mfilename,'untrained',{[],kernel,varargin{:}});
w = setname(w,'userkernel mapping');
elseif isempty(r)
[m,k] = size(a);
w = mapping(mfilename,'trained',{a,kernel,varargin},getlab(a),k,m);
elseif isempty(a)
[m,k] = size(r);
w = mapping(mfilename,'trained',{r,kernel,varargin},getlab(r),k,m);
elseif ismapping(r) % execution of a*userkernel (trained)
u = getdata(r);
[r,kernel,pars] = deal(u{:});
w = compute_kernel(kernel,a,r,pars);
elseif isdataset(a) % execution
w = compute_kernel(kernel,a,r,varargin);
end
function k = compute_kernel(kernel,a,r,pars)
if isempty(kernel)
error('No kernel function or kernel mapping supplied')
elseif ~exist(kernel)
error('kernel function not found')
end
if isempty(pars)
k = feval(kernel,+a,+r);
else
k = feval(kernel,+a,+r,pars{:});
end
k = setdat(a,k);
if isdataset(r)
k = setfeatlab(k,getlabels(r));
end
return
|
github
|
jacksky64/imageProcessing-master
|
ldc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/ldc.m
| 5,010 |
utf_8
|
852b8584fa6dc210f4cb125a86fe288c
|
%LDC Linear Bayes Normal Classifier (BayesNormal_1)
%
% [W,R,S,M] = LDC(A,R,S,M)
% W = A*LDC([],R,S,M);
%
% INPUT
% A Dataset
% R,S Regularization parameters, 0 <= R,S <= 1
% (optional; default: no regularization, i.e. R,S = 0)
% M Dimension of subspace structure in covariance matrix (default: K,
% all dimensions)
%
% OUTPUT
% W Linear Bayes Normal Classifier mapping
% R Value of regularization parameter R as used
% S Value of regularization parameter S as used
% M Value of regularization parameter M as usedd
%
% DESCRIPTION
% Computation of the linear classifier between the classes of the dataset A
% by assuming normal densities with equal covariance matrices. The joint
% covariance matrix is the weighted (by a priori probabilities) average of
% the class covariance matrices. R and S (0 <= R,S <= 1) are regularization
% parameters used for finding the covariance matrix G by:
%
% G = (1-R-S)*G + R*diag(diag(G)) + S*mean(diag(G))*eye(size(G,1))
%
% This covariance matrix is then decomposed as
%
% G = W*W' + sigma^2 * eye(K)
%
% where W is a K x M matrix containing the M leading principal components
% and sigma^2 is the mean of the K-M smallest eigenvalues. The use of soft labels
% is supported. The classification A*W is computed by NORMAL_MAP.
%
% If R, S or M is NaN the regularisation parameter is optimised by REGOPTC.
% The best result are usually obtained by R = 0, S = NaN, M = [], or by
% R = 0, S = 0, M = NaN (which is for problems of moderate or low dimensionality
% faster). If no regularisation is supplied a pseudo-inverse of the
% covariance matrix is used in case it is close to singular.
%
% Note that A*(KLMS([],N)*NMC) performs a similar operation by first
% pre-whitening the data in an N-dimensional space, followed by the
% nearest mean classifier. The regularization controlled by N is different
% from the above in LDC as it entirely removes small variance directions.
%
% To some extend LDC is also similar to FISHERC.
%
% EXAMPLES
% See PREX_PLOTC.
% a = gendatd; % generate Gaussian distributed data in two classes
% w = ldc(a); % compute a linear classifier between the classes
% scatterd(a); % make a scatterplot
% plotc(w) % plot the classifier
%
% REFERENCES
% 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd edition,
% John Wiley and Sons, New York, 2001.
% 2. A. Webb, Statistical Pattern Recognition, John Wiley & Sons, New York, 2002.
% 3. C. Liu and H. Wechsler, Robust Coding Schemes for Indexing and Retrieval
% from Large Face Databases, IEEE Transactions on Image Processing, vol. 9,
% no. 1, 2000, 132-136.
%
% SEE ALSO
% MAPPINGS, DATASETS, REGOPTC, NMC, NMSC, LDC, UDC, QUADRC, NORMAL_MAP, FISHERC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: ldc.m,v 1.11 2010/02/08 15:31:48 duin Exp $
function [W,r,s,dim] = ldc(a,r,s,dim)
prtrace(mfilename);
if (nargin < 4)
prwarning(4,'subspace dimensionality M not given, assuming K');
dim = [];
end
if (nargin < 3) | isempty(s)
prwarning(4,'Regularisation parameter S not given, assuming 0.');
s = 0;
end
if (nargin < 2) | isempty(r)
prwarning(4,'Regularisation parameter R not given, assuming 0.');
r = 0;
end
if (nargin < 1) | (isempty(a)) % No input arguments:
W = mapping(mfilename,{r,s,dim}); % return an untrained mapping.
elseif any(isnan([r,s,dim])) % optimize regularisation parameters
defs = {0,0,[]};
parmin_max = [1e-8,9.9999e-1;1e-8,9.9999e-1;1,size(a,2)];
[W,r,s,dim] = regoptc(a,mfilename,{r,s,dim},defs,[3 2 1],parmin_max,testc([],'soft'),[1 1 0]);
else % training
islabtype(a,'crisp','soft');
isvaldfile(a,2,2); % at least 2 object per class, 2 classes
[m,k,c] = getsize(a);
% Calculate mean vectors, priors and the covariance matrix G.
%DXD: for large datasets (high dim, many classes) it is impossible
%to keep all cov. matrices into memory. We have to loop over the
%individual classes:
%[U,G] = meancov(a);
U = meancov(a);
w.mean = +U;
w.prior = getprior(a);
%G = reshape(sum(reshape(G,k*k,c)*w.prior',2),k,k);
[tmpU,G] = meancov(seldat(a,1));
G = w.prior(1)*G;
for i=2:c
[tmpU,tmpG] = meancov(seldat(a,i));
G = G + w.prior(i)*tmpG;
end
clear tmpG;
% Regularize
if (s > 0) | (r > 0)
G = (1-r-s)*G + r * diag(diag(G)) + s*mean(diag(G))*eye(size(G,1));
end
if (dim < k)
dim = min(rank(G)-1,dim);
[eigvec,eigval] = preig(G); eigval = diag(eigval);
[dummy,ind] = sort(-eigval);
% Estimate sigma^2 as avg. eigenvalue outside subspace.
sigma2 = mean(eigval(ind(dim+1:end)));
% Subspace basis: first DIM eigenvectors * sqrt(eigenvalues).
G = eigvec(:,ind(1:dim)) * diag(eigval(ind(1:dim))) * eigvec(:,ind(1:dim))' + ...
sigma2 * eye(k);
end
w.cov = G;
W = normal_map(w,getlab(U),k,c);
W = setcost(W,a);
end
W = setname(W,'Bayes-Normal-1');
return
|
github
|
jacksky64/imageProcessing-master
|
gendati.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendati.m
| 1,667 |
utf_8
|
d55740da279d0ca29c66d7e9a9581d96
|
%GENDATI Create dataset from randomly selected windows in a given image
%
% A = GENDATI(IMAGE,WSIZE,N,LABEL)
%
% INPUT
% IMAGE - Image of any dimensionality
% WSIZE - Vector with size of the window
% N - Number windows to be generated
% LABEL - Optional string or number with label for all objects
%
% OUTPUT
% A - Dataset of N objects and prod(WSIZE) features
%
% DESCRIPTION
% Windows of the specified size are arbitrarily positioned in the
% image, converted to a row vector and stored in the dataset A.
%
% If specified, all objects have label LABEL. Otherwise they are
% unlabeled.
%
% SEE ALSO
% DATASETS
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function a = gendati(im,ws,m,label)
if nargin < 4, label = []; end
if nargin < 3, m = 100; end
n = length(ws);
imsize = size(im);
if length(imsize) ~= n
error('Window size should have same number of components as image size')
end
if any(ws > imsize)
error('Window size should not be larger than image size')
end
we = prod(ws);
n = length(ws);
window_offset = [0:ws(1)-1]';
for j=2:n
wo = window_offset;
for i=1:ws(j)-1
wo = wo + prod(imsize(1:j-1));
window_offset = cat(j,window_offset,wo);
end
end
window_offset = window_offset(:)';
N = cell(1,n);
for j=1:n
R = imsize(j)-ws(j)+1;
N(j) = {ceil(rand(m,1)*R)};
end
N = sub2ind(imsize,N{:});
a = zeros(m,prod(ws));
for i=1:m
a(i,:) = im(N(i)+window_offset);
end
a = dataset(a);
a = setfeatsize(a,ws);
if ~isempty(label)
a = setlabels(a,label);
end
|
github
|
jacksky64/imageProcessing-master
|
im_bdilation.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_bdilation.m
| 1,266 |
utf_8
|
58572ed6d27092bdd0a812440507dfcb
|
%IM_BDILATION Binary dilation of images stored in a dataset (DIP_Image)
%
% B = IM_BDILATION(A,N,CONNECTIVITY,EDGE_CONDITION)
% B = A*IM_BDILATION([],N,CONNECTIVITY,EDGE_CONDITION)
%
% INPUT
% A Dataset with binary object images dataset (possibly multi-band)
% N Number of iterations (default 1)
% CONNECTIVITY See BDILATION
% EDGE_CONDITION Value of edge, default 0
%
% OUTPUT
% B Dataset with dilated images
%
% SEE ALSO
% DATASETS, DATAFILES, DIP_IMAGE, BDILATION
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function b = im_bdilation(a,n,connect,edgecon)
prtrace(mfilename);
if nargin < 4 | isempty(edgecon), edgecon = 0; end
if nargin < 3 | isempty(connect), connect = -2; end
if nargin < 2 | isempty(n), n = 1; end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',{n,connect,edgecon});
b = setname(b,'Image dilation');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename,{n,connect,edgecon});
elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image
a = dip_image(a,'bin');
b = bdilation(a,n,connect,edgecon);
end
return
|
github
|
jacksky64/imageProcessing-master
|
ridger.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/ridger.m
| 1,036 |
utf_8
|
f3d6e200f6fabf110cd0dc0db2f057b6
|
%RIDGER Ridge Regression
%
% W = RIDGER(X,LAMBDA)
%
% INPUT
% X Regression dataset
% LAMBDA Regularization parameter (default LAMBDA=1)
%
% OUTPUT
% W Ridge regression mapping
%
% DESCRIPTION
% Perform a ridge regression on dataset X, with the regularization
% parameter LAMBDA.
%
% SEE ALSO
% LASSOR, PLOTR, LINEARR
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function y = ridger(x,lambda)
if nargin<2
lambda = 1;
end
if nargin<1 | isempty(x)
y = mapping(mfilename,{lambda});
y = setname(y,'Ridge regression');
return
end
if ~ismapping(lambda) %training
[n,d] = size(x);
y = gettargets(x);
X = +x;
beta = prpinv(X'*X + diag(repmat(lambda,d,1)))*X'*(y-mean(y));
W = [mean(y); beta]; % don't forget the offset
y = mapping(mfilename,'trained',W,1,d,1);
y = setname(y,'Ridge regression');
else
% evaluation
w = getdata(lambda);
[n,d] = size(x);
out = [ones(n,1) +x]*w;
y = setdat(x,out);
end
|
github
|
jacksky64/imageProcessing-master
|
bpxnc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/bpxnc.m
| 1,765 |
utf_8
|
7e46cf4aa7c956f4e576e53a00508a32
|
%BPXNC Back-propagation trained feed-forward neural net classifier
%
% [W,HIST] = BPXNC (A,UNITS,ITER,W_INI,T,FID)
%
% INPUT
% A Dataset
% UNITS Array indicating number of units in each hidden layer (default: [5])
% ITER Number of iterations to train (default: inf)
% W_INI Weight initialisation network mapping (default: [], meaning
% initialisation by Matlab's neural network toolbox)
% T Tuning set (default: [], meaning use A)
% FID File descriptor to report progress to (default: 0, no report)
%
% OUTPUT
% W Trained feed-forward neural network mapping
% HIST Progress report (see below)
%
% DESCRIPTION
% A feed-forward neural network classifier with length(N) hidden layers with
% N(I) units in layer I is computed for the dataset A. Training is stopped
% after ITER epochs (at least 50) or if the iteration number exceeds twice
% that of the best classification result. This is measured by the labeled
% tuning set T. If no tuning set is supplied A is used. W_INI is used, if
% given, as network initialisation. Use [] if the standard Matlab
% initialisation is desired. Progress is reported in file FID (default 0).
%
% The entire training sequence is returned in HIST (number of epochs,
% classification error on A, classification error on T, MSE on A, MSE on T).
%
% Uses the Mathwork's Neural Network toolbox.
%
% SEE ALSO
% MAPPINGS, DATASETS, LMNC, NEURC, RNNC, RBNC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: bpxnc.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function [w,hist] = bpxnc(varargin)
prtrace(mfilename);
[w,hist] = ffnc(mfilename,varargin{:});
return
|
github
|
jacksky64/imageProcessing-master
|
edicon.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/edicon.m
| 5,932 |
utf_8
|
feac26635d4fbb0b972e4435a7e6bf14
|
% EDICON Multi-edit and condense a training set
%
% J = EDICON(D,NSETS,NITERS,NTRIES)
%
% INPUT
% D Distance matrix dataset
% NSETS Number of subsets for editing, or [] for no editing (default: 3)
% NITERS Number of iterations for editing (default: 5)
% NTRIES Number of tries for condensing, or [] for no condensing (dflt: 10)
%
% OUTPUT
% J Indices of retained samples
%
% DESCRIPTION
% Returns the set of objects J such that the nearest neigbour gives zero error
% on the remaining objects. If MODE = 0, multi-edit the dataset represented by
% distance matrix D first. D can be computed from a dataset A by A*proxm(A).
%
% REFERENCES
% Devijver, P. and Kittler, J. "Pattern recognition", Prentice-Hall, 1982.
%
% SEE ALSO
% DATASET, KNNC, PROXM
% Copyright: E. Pekalska and D. de Ridder, {E.Pekalska,D.deRidder}@ewi.tudelft.nl
% Faculty of Electrical Engineering, Mathematics and Computer Science
% Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
function J = edicon (D,no_subsets,max_iter,no_tries)
if (nargin < 4 | isempty(no_tries))
prwarning(4,'number of tries for condensing not specified, assuming 10');
no_tries = 10;
end;
if (nargin < 3 | isempty(max_iter))
prwarning(4,'number of iterations for editing not specified, assuming 5');
max_iter = 5;
end;
if (nargin < 2 | isempty(no_subsets))
prwarning(4,'number of subsets for editing not specified, assuming 3');
no_subsets = 5;
end;
% Extract dataset information.
nlab = getnlab(D); lablist = getlablist(D);
[m,k,c] = getsize(D); p = getprior(D);
if (~isdataset(D) | (m ~= k))
error('require a square distance matrix dataset');
end
J = 1:m; % Initialise index array.
% If requested, apply the multi-edit algorithm.
if (~isempty(no_subsets))
iter = 1;
while (iter <= max_iter)
% 1. Create NO_SUBSETS distinct subsets out of the sample indices
% remaining in J. Store the subset indices in subset_ind{.}.
% Note: this is slightly more complicated than strictly
% necessary, to enforce that each class is represented equally
% in each subset.
m = length(J); J = J(randperm(m));
subset_size = floor(m/no_subsets);
% Find the MC(J) indices of samples belonging to class J in CLASS_IND{J}.
% Also create a random permutation for class J.
for j = 1:c
class_ind{j} = find(nlab(J)==j);
mc(j) = length(class_ind{j});
perm{j} = randperm(mc(j));
end;
% Distribute the samples over the subsets, per class.
for i = 1:no_subsets
subset_ind{i} = [];
for j = 1:c
num = min(floor(mc(j)/no_subsets),length(class_ind{j}));
subset_ind{i} = [subset_ind{i}; class_ind{j}(1:num)];
class_ind{j} = class_ind{j}(num+1:end);
end;
perm_subset_ind{i} = J(subset_ind{i});
end;
% 2. In turn, classify each subset I using 1-NN on subset I+1.
drop = [];
for i = 1:no_subsets
L1 = perm_subset_ind{i};
L2 = perm_subset_ind{mod(i,no_subsets)+1};
if (length(L2)>1)
[dummy,nearest] = min(D(L2,L1));
else
nearest = 1;
end;
drop = [drop; subset_ind{i}(find(nlab(L1)~=nlab(L2(nearest))))];
end;
% 3. Discard incorrectly classified samples from J.
if (isempty(drop))
iter = iter + 1;
else
J(drop) = []; iter = 0;
end;
end;
D = D(J,J);
end;
% Condense.
if (~isempty(no_tries))
% Extract dataset information.
nlab = getnlab(D); lablist = getlablist(D);
[m,k,c] = getsize(D); p = getprior(D);
D = +D;
% The whole procedure starts from a random object and continues to add
% objects, so it is not optimal. Therefore it is repeated NO_TRIES times
% and the smallest set found is returned.
K = zeros(m,no_tries); storesz = zeros(1,no_tries);
for o = 1:no_tries
% Start with 1 sample index in STORE, the others in GRABBAG.
p = randperm(m); store = p(1); grabbag = p(2:m);
% While there are changes...
transfer = 0;
while (~transfer) & (~isempty(grabbag))
storelab = nlab(store);
grabbaglab = nlab(grabbag);
new_grabbag = [];
% For all samples in GRABBAG...
transfer = 0;
for k = 1:length(grabbag)
% ... find the nearest sample in STORE...
[dummy,z] = min(D(grabbag(k),store));
% ... if it has a different label, move it to STORE.
if (storelab(z) ~= grabbaglab(k))
store = [store; grabbag(k)];
storelab = [storelab; grabbaglab(k)];
transfer = 1;
else
new_grabbag = [new_grabbag; grabbag(k)];
end;
end;
grabbag = new_grabbag;
end
% Remember the STORE and its size for this repetition.
storesz(o) = length(store);
K(1:storesz(o),o) = store;
end
% Take the STORE with minimal size.
[minsz,minszind] = min(storesz);
J = J(K(1:minsz,minszind));
end;
return
|
github
|
jacksky64/imageProcessing-master
|
isstacked.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/isstacked.m
| 796 |
utf_8
|
eb8484829ee9efe2498d3fae02ee6066
|
%ISSTACKED Test on stacked mapping
%
% N = ISSTACKED(W)
% ISSTACKED(W)
%
% INPUT
% W Mapping
%
% OUTPUT
% N Scalar, 1 if W is a stacked mapping, 0 otherwise
%
% DESCRIPTION
% Returns 1 for stacked mappings. If no output is requested, false outputs
% are turned into errors. This may be used for assertion.
%
% SEE ALSO
% ISMAPPING, ISPARALLEL
% $Id: isstacked.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function n = isstacked(w)
prtrace(mfilename);
if (isa(w,'mapping')) & (strcmp(w.mapping_file,'stacked') | ...
strcmp(w.mapping_file,'dyadicm'))
n = 1;
else
n = 0;
end
% Generate an error if the input is not a stacked mapping and no output
% is requested (assertion).
if (nargout == 0) & (n == 0)
error([newline '---- Stacked mapping expected -----'])
end
return
|
github
|
jacksky64/imageProcessing-master
|
gendat.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/gendat.m
| 4,567 |
utf_8
|
741d390eee21a0c39a0f761c86e04757
|
%GENDAT Random sampling of datasets for training and testing
%
% [A,B,IA,IB] = GENDAT(X,N)
% A = X*GENDAT([],N)
% [A,B,IA,IB] = GENDAT(X)
% [A,B,IA,IB] = GENDAT(X,ALF)
% A = X*GENDAT([],ALF)
%
% INPUT
% X Dataset
% N,ALF Number/fraction of objects to be selected
% (optional; default: bootstrapping)
%
% OUTPUT
% A,B Datasets
% IA,IB Original indices from the dataset X
%
% DESCRIPTION
% Generation of N objects from dataset X. They are stored in dataset A,
% the remaining objects in dataset B. IA and IB are the indices of the
% objects selected from X for A and B. The random object generation follows
% the class prior probabilities. So is the prior probability of a class is
% PA, then in expectation PA*N objects are selected from that class. If N
% is large or if one of the classes has too few objects in A, the number of
% generated objects might be less than N.
%
% If N is a vector of sizes, exactly N(i) objects are generated for class i.
% Classes are ordered using RENUMLAB(GETLAB(X)).
%
% If the function is called without specifying N, the data set X is
% bootstrapped and stored in A. Not selected samples are stored in B.
%
% ALF should be a scalar < 1. For each class a fraction ALF of the objects
% is selected for A and the not selected objects are stored in B.
%
% If X is a cell array of datasets the command is executed for each
% dataset separately. Results are stored in cell arrays. For each dataset
% the random seed is reset, resulting in aligned sets for the generated
% datasets if the sets in X were aligned.
%
% EXAMPLES
% See PREX_PLOTC.
%
% SEE ALSO
% DATASETS, GENSUBSETS
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: gendat.m,v 1.7 2010/06/01 08:48:55 duin Exp $
function [A,B,IA,IB] = gendat(X,N);
prtrace(mfilename);
if (nargin < 2), N = []; end
if (nargin < 1 | isempty(X))
A = mapping(mfilename,'fixed',N);
A = setname(A,'Data sampling');
return
end
% If an input is a cell array of datasets, apply this procedure
% to the individual datasets.
if (iscell(X))
A = cell(size(X));
B = cell(size(X));
IA = cell(size(X));
IB = cell(size(X));
seed = rand('seed');
for j=1:length(X(:))
rand('seed',seed);
[A{j},B{j},IA{j},IB{j}] = feval(mfilename,X{j},N);
end
return;
end
% When required, get the right number of objects from the given
% fraction ALF.
if ~isdatafile(X), X = dataset(X); end
X = setlablist(X); % remove empty classes first
[m,k,c] = getsize(X);
% we need at least one class below:
unlabeled = 0;
if c==0,
X=cdats(X,1);
c=1;
unlabeled = 1; % we need to correct for labeling at the end
end
R = classsizes(X);
if ~isempty(N) & length(N) ~= 1 & length(N) ~= c
error('Data size should be scalar or a vector matching the number of classes')
end
if ~islabtype(X,'crisp')
if numel(N) > 1
prwarning(1,'Specification of numbers of objects per class not possible for given label type')
N = sum(N);
end
if N < 1, N = ceil(N*m); end
end
if (nargin == 2) & all(N < 1) & islabtype(X,'crisp')
%DXD it should also be possible to have a fraction for each of the
%classes, I think...
if length(N)==1
N = ceil(N*R);
else
N = ceil(N(:).*R(:));
end
end
% Depending if N (or ALF) is given, the objects are created using
% subsampling or bootstrapping.
IA = [];
if (nargin < 2) | (isempty(N)) % Bootstrap
for i=1:c
J = findnlab(X,i);
K = ceil(rand(R(i),1)*R(i));
IA = [IA; J(K)];
end
else % Subsampling
if ~islabtype(X,'crisp')
K = randperm(m);
if (N > m)
%DXD: I would like to have just a warning:
%error('More objects requested than available.')
prwarning(4,'More objects requested than available.')
N = m;
end
IA = K(1:N);
else
%p = X.prior; % avoid warning
if isempty(X,'prior')
p = classsizes(X);
p = p/sum(p);
else
p = getprior(X);
end
%p = getprior(X);
N = genclass(N,p);
for i=1:c
J = findnlab(X,i);
K = randperm(R(i));
if (N(i) > R(i))
%DXD: I would like to have just a warning:
%error('More objects requested than available.')
prwarning(1,'More objects requested than available in class %d.',i)
N(i) = R(i);
end
IA = [IA; J(K(1:N(i)))];
end
end
end
% Finally, extract the datasets:
IB = [1:m]';
IB(IA) = [];
if unlabeled
X = setlabels(X,[]); % reset unlabeling
end
A = X(IA,:);
B = X(IB,:);
return;
|
github
|
jacksky64/imageProcessing-master
|
pcldc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/pcldc.m
| 1,556 |
utf_8
|
6795cecd9c8f254cdc84b6cf74d6ece4
|
%PCLDC Linear classifier using PC expansion on the joint data.
%
% W = PCLDC(A,N)
% W = PCLDC(A,ALF)
%
% INPUT
% A Dataset
% N Number of eigenvectors
% ALF Total explained variance (default: ALF = 0.9)
%
% OUTPUT
% W Mapping
%
% DESCRIPTION
% Finds the linear discriminant function W for the dataset A
% computing the LDC on a projection of the data on the first N
% eigenvectors of the total dataset (Principle Component Analysis).
%
% When ALF is supplied the number of eigenvalues is chosen such that at
% least a part ALF of the total variance is explained.
%
% If N (ALF) is NaN it is optimised by REGOPTC.
%
% SEE ALSO
% MAPPINGS, DATASETS, KLLDC, KLM, FISHERM, REGOPTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: pcldc.m,v 1.4 2007/06/13 21:59:42 duin Exp $
function W = pcldc(a,n)
prtrace(mfilename);
if nargin < 2, n = []; end
if nargin == 0 | isempty(a)
W = mapping('pcldc',{n});
elseif isnan(n) % optimize regularisation parameter
defs = {1};
parmin_max = [1,size(a,2)];
W = regoptc(a,mfilename,{n},defs,[1],parmin_max,testc([],'soft'),0);
else
islabtype(a,'crisp','soft');
isvaldfile(a,2,2); % at least 2 object per class, 2 classes
a = testdatasize(a,'features');
a = setprior(a,getprior(a));
% Make a sequential classifier combining PCA and LDC:
v = pca(a,n);
W = v*ldc(a*v);
W = setcost(W,a);
end
W = setname(W,'PC Bayes-Normal-1');
return
|
github
|
jacksky64/imageProcessing-master
|
im_maxf.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_maxf.m
| 1,134 |
utf_8
|
2f834256ee1f68b17045bb73babd63ff
|
%IM_MAXF Maximum filter of images stored in a dataset (DIP_Image)
%
% B = IM_MAXF(A,SIZE,SHAPE)
% B = A*IM_MAXF([],SIZE,SHAPE)
%
% INPUT
% A Dataset with object images dataset (possibly multi-band)
% SIZE Filter width in pixels, default SIZE = 7
% SHAPE String with shape:'rectangular', 'elliptic', 'diamond'
% Default: elliptic
%
% OUTPUT
% B Dataset with filtered images
%
% SEE ALSO
% DATASETS, DATAFILES, DIP_IMAGE, MINF
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_maxf(a,size,shape)
prtrace(mfilename);
if nargin < 3 | isempty(shape), shape = 'elliptic'; end
if nargin < 2 | isempty(size), size = 7; end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',{size,shape});
b = setname(b,'Maximum filter');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename,{size,shape});
elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image
a = 1.0*dip_image(a);
b = maxf(a,size,shape);
end
return
|
github
|
jacksky64/imageProcessing-master
|
prdownload.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prdownload.m
| 2,080 |
utf_8
|
b8843c8b48d744580c216fc478b612d3
|
%PRDOWNLOAD Download well defined data and toolboxes
%
% STATUS = PRDOWNLOAD(URL,DIRNAME)
%
% INPUT
% URL String containing URL of file to be downloaded
% DIRNAME Final directory for download, created if necessary
% README Name of possible readme-file to be preserved
%
% DESCRIPTION
% The URL will be downloaded in directory DIRNAME (to be created if
% needed). The resulting file will be uncompressed in case of a zip-, gz-
% or tar-file.
%
% The main purpose of this routine is to download missing datafiles or
% datasets from PRDATAFILES and PRDATASETS.
%
% SEE ALSO
% PRDATASETS, PRDATAFILES
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [status,dirname] = prdownload(url,dirname)
% create target directory if needed
if exist(dirname,'dir') ~= 7
success = mkdir(dirname);
if ~success
maindir = input(['It is not possible to create a directory here.' newline ...
'Please give another location: '],'s');
dirname = fullfile(maindir,dirname);
mkdir(dirname);
end
end
% download
[dd,ff,xx]= fileparts(url);
filename = [ff xx];
disp(['Downloading ' filename ' ....'])
rfilename = fullfile(dirname,filename);
if ~usejava('jvm') & isunix
[stat,s] = unix(['wget -q -O ' rfilename [' '] url]);
status = (stat == 0);
else
[f,status] = urlwrite(url,rfilename);
end
if status == 0
error('Server unreachable or file not found')
end
% assume file is created, uncompress if needed
% delete compressed file
if strcmp(xx,'.zip')
disp('Decompression ....')
if ~usejava('jvm') & isunix
[stat,s] = unix(['unzip ' rfilename ' -d ' dirname]);
else
unzip(rfilename,dirname);
end
delete(rfilename);
elseif strcmp(xx,'.gz')
disp('Decompression ....')
gunzip(filename,dirname);
delete(filename);
elseif strcmp(xx,'.tar')| strcmp(xx,'.tgz') | strcmp(xx,'.tar.gz')
disp('Decompression ....')
untar(filename,dirname);
delete(filename);
end
disp('Ready')
|
github
|
jacksky64/imageProcessing-master
|
votec.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/votec.m
| 1,705 |
utf_8
|
ecfba23be0f9a5b45b42b9d0caabaae5
|
%VOTEC Voting combining classifier
%
% W = VOTEC(V)
% W = V*VOTEC
%
% INPUT
% V Set of classifiers
%
% OUTPUT
% W Voting combiner
%
% DESCRIPTION
% If V = [V1,V2,V3,...] is a stacked set of classifiers trained for the
% same classes, W is the voting combiner: it selects the class with the
% highest vote of the base classifiers. This might also be used as
% A*[V1,V2,V3]*VOTEC in which A is a dataset to be classified.
%
% The direct classifier outputs D = B*W for a test set B are posterior
% probability estimates. D(i,j) = (v+1) / (n+c), in which v is the number
% of votes object i receives for the j-th class. n is the total number of
% classifiers, c the total number of classes.
%
% The base classifiers may be combined in a stacked way (operating in the
% same feature space) by V = [V1,V2,V3, ... ] or in a parallel way
% (operating in different feature spaces) by V = [V1;V2;V3; ... ]
%
% EXAMPLES
% PREX_COMBINING
%
% SEE ALSO
% MAPPINGS, DATASETS, PRODC, MAXC, MINC,
% MEDIANC, MEANC, AVERAGEC, STACKED, PARALLEL
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: votec.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function w = votec(p1)
prtrace(mfilename);
type = 'vote'; % define the operation processed by FIXEDCC.
name = 'Voting combiner'; % define the name of the combiner.
% this is the general procedure for all possible
% calls of fixed combiners handled by FIXEDCC
if nargin == 0
w = mapping('fixedcc','combiner',{[],type,name});
else
w = fixedcc(p1,[],type,name);
end
if isa(w,'mapping')
w = setname(w,name);
end
return
|
github
|
jacksky64/imageProcessing-master
|
dataim.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/dataim.m
| 2,017 |
utf_8
|
114c84e258c8243a70363e9e342145a0
|
%DATAIM Image operation on dataset images
%
% B = DATAIM(A,'IMAGE_COMMAND',PAR1,PAR2,....)
%
% INPUT
% A Dataset containing images
% IMAGE_COMMAND Function name
% PAR1, ... Optional parameters to IMAGE_COMMAND
%
% OUTPUT
% B Dataset containing images processed by IMAGE_COMMAND
%
% DESCRIPTION
% For each image stored in A (as either feature or object), performs
%
% IMAGE_OUT = IMAGE_COMMAND(IMAGE_IN,PAR1,PAR2,....)
%
% and stores the result in dataset B.
%
% EXAMPLES
% B = DATAIM (A,'CONV2',[-1 0 1; -1 0 1; -1 0 1],'same');
% Performs a convolution with a horizontal gradient filter (see CONV2).
%
% SEE ALSO
% DATASETS, IM2OBJ, DATA2IM, IM2FEAT, DATGAUSS, DATFILT
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: dataim.m,v 1.4 2007/03/22 08:53:12 duin Exp $
function b = dataim (a,command,varargin)
prtrace(mfilename);
isdataim(a); % Assert that A contains images.
im = data2im(a); % Convert A to array of images.
[m,k] = size(a); [height,width,n_im] = size(im);
% Perform command on first image to check whether image size stays equal
% (for feature images; the number of objects can change without problems).
first = feval(command,im(:,:,1),varargin{:});
first = double(first); % for DipLib users
[newheight,newwidth] = size(first);
if (isfeatim(a)) & ((newheight ~= height) | (newwidth ~= width))
error('image size is not allowed to change')
end
% Process the remaining images.
out = zeros(newheight,newwidth,n_im); out(:,:,1) = first;
for i = 2:n_im
out(:,:,i) = double(feval(command,im(:,:,i),varargin{:}));
end
% Convert the image array back into a dataset.
if (isfeatim(a))
b = setdata(a,im2feat(out),getfeatlab(a)); %images are stored in columns
else
b = setdata(a,im2obj(out)); %images are stored in rows
b = setfeatsize(b,size(first));
end
return
|
github
|
jacksky64/imageProcessing-master
|
hclust.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/hclust.m
| 3,650 |
utf_8
|
2c71eb6b426dcac1014b6a0cfa5230c7
|
%HCLUST hierarchical clustering
%
% [LABELS, DENDROGRAM] = HCLUST(D,TYPE,K)
% DENDROGRAM = HCLUST(D,TYPE)
%
% INPUT
% D dissimilarity matrix
% TYPE string name of clustering criterion (optional)
% 's' or 'single' : single linkage (default_
% 'c' or 'complete' : complete linkage
% 'a' or 'average' : average linkage (weighted over cluster sizes)
% K number of clusters (optional)
%
% OUTPUT
% LABELS vector with labels
% DENDROGRAM matrix with dendrogram
%
% DESCRIPTION
% Computation of cluster labels and a dendrogram between the clusters for
% objects with a given distance matrix D. K is the desired number of
% clusters. The dendrogram is a 2*K matrix. The first row yields all
% cluster sizes. The second row is the cluster level on which the set of
% clusters starting at that position is merged with the set of clusters
% just above it in the dendrogram. A dendrogram may be plotted by PLOTDG.
%
% DENDROGRAM = HCLUST(D,TYPE)
%
% As in this case no clustering level is supplied, just the entire
% dendrogram is returned.
%
% EXAMPLE
% a = gendats([25 25],20,5); % 50 points in 20-dimensional feature space
% d = sqrt(distm(a)); % Euclidean distances
% dendg = hclust(d,'complete'); % dendrogram
% plotdg(dendg)
% lab = hclust(d,'complete',2); % labels
% confmat(lab,getlabels(a)); % confusion matrix
%
% SEE ALSO
% PLOTDG, KMEANS, KCENTRES, MODESEEK, EMCLUST
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: hclust.m,v 1.3 2008/02/14 11:54:43 duin Exp $
function [labels, dendrogram] = hclust(D,type,k)
prtrace(mfilename);
if nargin < 3, k = []; end
if nargin < 2, type = 's'; end
[m,m1] = size(D);
if m ~= m1
error('Input matrix should be square')
end
D = D + diag(inf*ones(1,m)); % set diagonal at infinity.
W = [1:m+1]; % starting points of clusters in linear object set.
V = [1:m+2]; % positions of objects in final linear object set.
F = inf * ones(1,m+1); % distance of next cluster to previous cluster to be stored at first point of second cluster
Z = ones(1,m); % number of samples in a cluster (only for average linkage)
for n = 1:m-1
% find minimum distance D(i,j) i<j
[di,I] = min(D); [dj,j] = min(di); i = I(j);
if i > j, j1 = j; j = i; i = j1; end
% combine clusters i,j
switch type
case {'s','single'}
D(i,:) = min(D(i,:),D(j,:));
case {'c','complete'}
D(i,:) = max(D(i,:),D(j,:));
case {'a','average'}
D(i,:) = (Z(i)*D(i,:) + Z(j)*D(j,:))/(Z(i)+Z(j));
Z(i:j-1) = [Z(i)+Z(j),Z(i+1:j-1)]; Z(j) = [];
otherwise
error('Unknown clustertype desired')
end
D(:,i) = D(i,:)';
D(i,i) = inf;
D(j,:) = []; D(:,j) = [];
% store cluster distance
F(V(j)) = dj;
% move second cluster in linear ordering right after first cluster
IV = [1:V(i+1)-1,V(j):V(j+1)-1,V(i+1):V(j)-1,V(j+1):m+1];
W = W(IV); F = F(IV);
% keep track of object positions and cluster distances
V = [V(1:i),V(i+1:j) + V(j+1) - V(j),V(j+2:m-n+3)];
end
if ~isempty(k) | nargout == 2
if isempty(k), k = m; end
labels = zeros(1,m);
[S,J] = sort(-F); % find cluster level
I = sort(J(1:k+1)); % find all indices where cluster starts
for i = 1:k % find for all objects cluster labels
labels(W(I(i):I(i+1)-1)) = i * ones(1,I(i+1)-I(i));
end % compute dendrogram
dendrogram = [I(2:k+1) - I(1:k); F(I(1:k))];
labels = labels';
else
labels = [W(1:m);F(1:m)]; % full dendrogram
end
return
|
github
|
jacksky64/imageProcessing-master
|
feat2obj.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/feat2obj.m
| 420 |
utf_8
|
40b24bd841ad312efce9f97e06480b2e
|
%FEAT2OBJ Transform feature images to object images in dataset
%
% B = FEAT2OBJ(A)
%
% INPUT
% A Dataset with object images, possible with multiple bands
%
% OUTPUT
% B Dataset with features images
%
% SEE ALSO
% DATASETS, IM2OBJ, IM2FEAT, DATA2IM, OBJ2FEAT
function b = feat2obj(a)
prtrace(mfilename);
isdataset(a)
isfeatim(a);
im = data2im(a);
b = im2feat(im);
|
github
|
jacksky64/imageProcessing-master
|
plotd.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/plotd.m
| 427 |
utf_8
|
8dc4baf0dd8f08102e21faafd7850f50
|
%PLOTD Plot classifiers, outdated, use PLOTC instead
% $Id: plotd.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function handle = plotd(varargin)
prtrace(mfilename);
global PLOTD_REPLACED_BY_PLOTC
if isempty(PLOTD_REPLACED_BY_PLOTC)
disp([newline 'PLOTD has been replaced by PLOTC, please use it'])
PLOTD_REPLACED_BY_PLOTC = 1;
end
if nargout > 0
handle = plotc(varargin{:});
else
plotc(varargin{:});
end
return
|
github
|
jacksky64/imageProcessing-master
|
prwarning.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/prwarning.m
| 1,697 |
utf_8
|
c0d8edc3c3037c62d44ea9d6c3f46f96
|
%PRWARNING Show PRTools warning
%
% PRWARNING(LEVEL,FORMAT,...)
%
% Shows the message (given as FORMAT and a variable number of arguments),
% if the current PRWARNING level is >= LEVEL. Output is written to standard
% error ouput (FID = 2).
%
% PRWARNING(LEVEL) - Set the current PRWARNING level
%
% Set the PRWARNING level to LEVEL. The default level is 1.
% The levels currently in use are:
% 0 no warnings
% 1 severe warnings (default)
% 2 warnings
% 3 light warnings
% 10 general messages
% 20 program flow messages
% 30 debugging messages
%
% PRWARNING OFF - Same as PRWARNING(0)
% PRWARNING ON - Same as PRWARNING(1)
% PRWARNING - Same as PRWARNING(1)
% Copyright: D. de Ridder, R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: prwarning.m,v 1.5 2007/11/30 16:29:49 duin Exp $
function lev = prwarning (level, varargin)
persistent PRWARNINGGLOBAL;
if (isempty (PRWARNINGGLOBAL))
PRWARNINGGLOBAL = 1;
end
if (nargin == 0) & (nargout == 0) % Set warning level to default
PRWARNINGGLOBAL = 1;
elseif (nargin == 1) % Set warning level
if isstr(level) & strcmp(level,'off')
level = 0;
elseif isstr(level) & strcmp(level,'on')
level = 1;
end
PRWARNINGGLOBAL = level;
elseif nargin > 0
if (level <= PRWARNINGGLOBAL)
[st,i] = dbstack; % Find and display calling function (if any)
if (length(st) > 1)
caller = st(2).name;
[paths,name] = fileparts(caller);
fprintf (2, 'PR_Warning: %s: ', name);
end;
fprintf (2, varargin{:});
fprintf (2, '\n');
end
end
if nargout > 0
lev = PRWARNINGGLOBAL;
end
return
|
github
|
jacksky64/imageProcessing-master
|
is_scalar.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/is_scalar.m
| 408 |
utf_8
|
6714336395873cf354df615113a965da
|
%IS_SCALAR Test on scalar (size = [1,1])
%
% N = IS_SCALAR(P);
%
% INPUT
% P Input argument
%
% OUTPUT
% N 1/0 if A is/isn't scalar
%
% DESCRIPTION
% The function IS_SCALAR tests if P is scalar.
function n = is_scalar(p)
prtrace(mfilename);
n = all(size(p) == ones(1,length(size(p))));
if (nargout == 0) & (n == 0)
error([newline 'Scalar variable expected.'])
end
return;
|
github
|
jacksky64/imageProcessing-master
|
compute_kernel.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/compute_kernel.m
| 502 |
utf_8
|
e17f2af48790f6d9308283c48906dab5
|
function K = compute_kernel(a,s,kernel)
% compute a kernel matrix for the objects a w.r.t. the support objects s
% given a kernel description
if isstr(kernel) % routine supplied to compute kernel
K = feval(kernel,a,s);
elseif iscell(kernel)
K = feval(kernel{1},a,s,kernel{2:end});
elseif ismapping(kernel)
K = a*map(s,kernel);
elseif kernel == 0 % we have already a kernel
K = a;
else
error('Do not know how to compute kernel matrix')
end
K = +K;
return
|
github
|
jacksky64/imageProcessing-master
|
im_moments.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_moments.m
| 10,678 |
utf_8
|
43751390d5cb45c351dcb6db219ffaa6
|
%IM_MOMENTS PRTools routine for computing central moments of object images
%
% M = IM_MOMENTS(A,TYPE,MOMENTS)
% M = A*IM_MOMENTS([],TYPE,MOMENTS)
%
% INPUT
% A Dataset with object images dataset (possibly multi-band)
% TYPE Desired type of moments
% MOMENTS Desired moments
%
% OUTPUT
% M Dataset with moments replacing images (poosibly multi-band)
%
% DESCRIPTION
% Computes for all images in A a (1*N) vector M moments as defined by TYPE
% and MOMENTS. The following types are supported:
%
% TYPE = 'none' Standard moments as specified in the Nx2 array MOMENTS.
% Moments are computed with respect to the image center.
% This is the default for TYPE.
% Default MOMENTS = [1 0; 0 1];
% TYPE = 'central' Central moments as specified in the Nx2 array MOMENTS.
% Moments are computed with respect to the image mean
% Default MOMENTS = [2 0; 1 1; 0 2], which computes
% the variance in the x-direction (horizontal), the
% covariance between x and y and the variance in the
% y-direction (vertical).
% TYPE = 'scaled' Scale-invariant moments as specified in the Nx2 array
% MOMENTS. Default MOMENTS = [2 0; 1 1; 0 2].
% After: M. Sonka et al.,
% Image processing, analysis and machine vision.
% TYPE = 'hu' Calculates 7 moments of Hu, invariant to translation,
% rotation and scale.
% After: M. Sonka et al.,
% Image processing, analysis and machine vision.
% TYPE = 'zer' Calculates the Zernike moments up to the order as
% specified in the scalar MOMENTS (1 <= MOMENTS <= 12).
% MOMENTS = 12 generates in total 47 moments.
% After: A. Khotanzad and Y.H. Hong, Invariant image
% recognition by Zernike moments, IEEE-PAMI, vol. 12,
% no. 5, 1990, 489-497.
%
% SEE ALSO
% DATASETS, DATAFILES
% Copyright: D. de Ridder, R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_moments(a,type,mom)
prtrace(mfilename);
if nargin < 3, mom = []; end
if nargin < 2 | isempty(type), type = 'none'; end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',{type,mom});
b = setname(b,'Image moments');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename,{type,mom});
elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image
if isa(a,'dip_image'), a = double(a); end
switch type
case {'none'}
if isempty(mom)
mom = [1 0; 0 1];
end
b = moments(a,mom(:,1),mom(:,2),0,0);
case {'central'}
if isempty(mom)
mom = [2 0; 1 1; 0 2];
end
b = moments(a,mom(:,1),mom(:,2),1,0);
case {'scaled'}
if isempty(mom)
mom = [2 0; 1 1; 0 2];
end
b = moments(a,mom(:,1)',mom(:,2)',1,1);
case {'hu' 'Hu'}
b = hu_moments(a);
case {'zer' 'zernike' 'Zernike'}
if isempty(mom)
mom = 12;
end
b = zernike_moments(a,mom);
otherwise
error('Moments should be of type none, central, scaled, hu or zer')
end
else
error('Illegal datatype for input')
end
return
% M = MOMENTS (IM, P, Q, CENTRAL, SCALED)
%
% Calculates moments of order (P+Q) (can be arrays of indentical length)
% on image IM. If CENTRAL is set to 1 (default: 0), returns translation-
% invariant moments; if SCALED is set to 1 (default: 0), returns scale-
% invariant moments.
%
% After: M. Sonka et al., Image processing, analysis and machine vision.
function m = moments (im,p,q,central,scaled)
if (nargin < 5), scaled = 0; end;
if (nargin < 4), central = 0; end;
if (nargin < 3)
error ('Insufficient number of parameters.');
end;
if (length(p) ~= length(q))
error ('Arrays P and Q should have equal length.');
end;
if (scaled & ~central)
error ('Scale-invariant moments should always be central.');
end;
% xx, yy are grids with co-ordinates
[xs,ys] = size(im);
[xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2);
if (central)
% Calculate zeroth and first order moments
m00 = sum(sum(im));
m10 = sum(sum(im.*xx));
m01 = sum(sum(im.*yy));
% This gives the center of gravity
xc = m10/m00;
yc = m01/m00;
% Subtract this from the grids to center the object
xx = xx - xc;
yy = yy - yc;
end;
% Calculate moment(s) (p,q).
for i = 1:length(p)
m(i) = sum(sum((xx.^p(i)).*(yy.^q(i)).*im));
end;
if (scaled)
c = 1 + (p+q)/2;
% m00 should be known, as scaled moments are always central
m = m ./ (m00.^c);
end;
return;
% M = HU_MOMENTS (IM)
%
% Calculates 7 moments of Hu on image IM, invariant to translation,
% rotation and scale.
%
% After: M. Sonka et al., Image processing, analysis and machine vision.
function m = hu_moments (im)
p = [ 1 0 2 1 2 0 3 ];
q = [ 1 2 0 2 1 3 0 ];
n = moments(im,p,q,1,1);
m(1) = n(2) + n(3);
m(2) = (n(3) - n(2))^2 + 4*n(1)^2;
m(3) = (n(7) - 3*n(4))^2 + (3*n(5) - n(6))^2;
m(4) = (n(7) + n(4))^2 + ( n(5) + n(6))^2;
m(5) = ( n(7) - 3*n(4)) * (n(7) + n(4)) * ...
( (n(7) + n(4))^2 - 3*(n(5) + n(6))^2) + ...
(3*n(5) - n(6)) * (n(5) + n(6)) * ...
(3*(n(7) + n(4))^2 - (n(5) + n(6))^2);
m(6) = (n(3) - n(2)) * ((n(7) + n(4))^2 - (n(5) + n(6))^2) + ...
4*n(1) * (n(7)+n(4)) * (n(5)+n(6));
m(7) = (3*n(5) - n(6)) * (n(7) + n(4)) * ...
( (n(7) + n(4))^2 - 3*(n(5) + n(6))^2) - ...
( n(7) - 3*n(4)) * (n(5) + n(6)) * ...
(3*(n(7) + n(4))^2 - (n(5) + n(6))^2);
return;
% M = ZERNIKE_MOMENTS (IM, ORDER)
%
% Calculates Zernike moments up to and including ORDER (<= 12) on image IM.
% Default: ORDER = 12.
function m = zernike_moments (im, order)
if (nargin < 2), order = 12; end;
if (order < 1 | order > 12), error ('order should be 1..12'); end;
% xx, yy are grids with co-ordinates
[xs,ys] = size(im);
[xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2);
% Calculate center of mass and distance of any pixel to it
m = moments (im,[0 1 0],[0 0 1],0,0);
xc = m(2)/m(1); yc = m(3)/m(1);
xx = xx - xc; yy = yy - yc;
len = sqrt(xx.^2+yy.^2);
max_len = max(max(len));
% Map pixels to unit circle; prevent divide by zero.
rho = len/max_len;
rho_tmp = rho; rho_tmp(find(rho==0)) = 1;
theta = acos((xx/max_len)./rho_tmp);
% Flip angle for pixels above center of mass
yneg = length(find(yy(:,1)<0));
theta(:,1:yneg) = 2*pi - theta(:,1:yneg);
% Calculate coefficients
c = zeros(order,order);
s = zeros(order,order);
i = 1;
for n = 2:order
for l = n:-2:0
r = polynomial (n,l,rho);
c = sum(sum(r.*cos(l*theta)))*((n+1)/(pi*max_len^2));
s = sum(sum(r.*sin(l*theta)))*((n+1)/(pi*max_len^2));
m(i) = sqrt(c^2+s^2);
i = i + 1;
end;
end;
return
function p = polynomial (n,l,rho)
switch (n)
case 2, switch (l)
case 0, p = 2*(rho.^2)-1;
case 2, p = (rho.^2);
end;
case 3, switch (l)
case 1, p = 3*(rho.^3)-2*rho;
case 3, p = (rho.^3);
end;
case 4, switch (l)
case 0, p = 6*(rho.^4)-6*(rho.^2)+1;
case 2, p = 4*(rho.^4)-3*(rho.^2);
case 4, p = (rho.^4);
end;
case 5, switch (l)
case 1, p = 10*(rho.^5)-12*(rho.^3)+3*rho;
case 3, p = 5*(rho.^5)- 4*(rho.^3);
case 5, p = (rho.^5);
end;
case 6, switch (l)
case 0, p = 20*(rho.^6)-30*(rho.^4)+12*(rho.^2)-1;
case 2, p = 15*(rho.^6)-20*(rho.^4)+ 6*(rho.^2);
case 4, p = 6*(rho.^6)- 5*(rho.^4);
case 6, p = (rho.^6);
end;
case 7, switch (l)
case 1, p = 35*(rho.^7)-60*(rho.^5)+30*(rho.^3)-4*rho;
case 3, p = 21*(rho.^7)-30*(rho.^5)+10*(rho.^3);
case 5, p = 7*(rho.^7)- 6*(rho.^5);
case 7, p = (rho.^7);
end;
case 8, switch (l)
case 0, p = 70*(rho.^8)-140*(rho.^6)+90*(rho.^4)-20*(rho.^2)+1;
case 2, p = 56*(rho.^8)-105*(rho.^6)+60*(rho.^4)-10*(rho.^2);
case 4, p = 28*(rho.^8)- 42*(rho.^6)+15*(rho.^4);
case 6, p = 8*(rho.^8)- 7*(rho.^6);
case 8, p = (rho.^8);
end;
case 9, switch (l)
case 1, p = 126*(rho.^9)-280*(rho.^7)+210*(rho.^5)-60*(rho.^3)+5*rho;
case 3, p = 84*(rho.^9)-168*(rho.^7)+105*(rho.^5)-20*(rho.^3);
case 5, p = 36*(rho.^9)- 56*(rho.^7)+ 21*(rho.^5);
case 7, p = 9*(rho.^9)- 8*(rho.^7);
case 9, p = (rho.^9);
end;
case 10, switch (l)
case 0, p = 252*(rho.^10)-630*(rho.^8)+560*(rho.^6)-210*(rho.^4)+30*(rho.^2)-1;
case 2, p = 210*(rho.^10)-504*(rho.^8)+420*(rho.^6)-140*(rho.^4)+15*(rho.^2);
case 4, p = 129*(rho.^10)-252*(rho.^8)+168*(rho.^6)- 35*(rho.^4);
case 6, p = 45*(rho.^10)- 72*(rho.^8)+ 28*(rho.^6);
case 8, p = 10*(rho.^10)- 9*(rho.^8);
case 10, p = (rho.^10);
end;
case 11, switch (l)
case 1, p = 462*(rho.^11)-1260*(rho.^9)+1260*(rho.^7)-560*(rho.^5)+105*(rho.^3)-6*rho;
case 3, p = 330*(rho.^11)- 840*(rho.^9)+ 756*(rho.^7)-280*(rho.^5)+ 35*(rho.^3);
case 5, p = 165*(rho.^11)- 360*(rho.^9)+ 252*(rho.^7)- 56*(rho.^5);
case 7, p = 55*(rho.^11)- 90*(rho.^9)+ 36*(rho.^7);
case 9, p = 11*(rho.^11)- 10*(rho.^9);
case 11, p = (rho.^11);
end;
case 12, switch (l)
case 0, p = 924*(rho.^12)-2772*(rho.^10)+3150*(rho.^8)-1680*(rho.^6)+420*(rho.^4)-42*(rho.^2)+1;
case 2, p = 792*(rho.^12)-2310*(rho.^10)+2520*(rho.^8)-1260*(rho.^6)+280*(rho.^4)-21*(rho.^2);
case 4, p = 495*(rho.^12)-1320*(rho.^10)+1260*(rho.^8)- 504*(rho.^6)+ 70*(rho.^4);
case 6, p = 220*(rho.^12)- 495*(rho.^10)+ 360*(rho.^8)- 84*(rho.^6);
case 8, p = 66*(rho.^12)- 110*(rho.^10)+ 45*(rho.^8);
case 10, p = 12*(rho.^12)- 11*(rho.^10);
case 12, p = (rho.^12);
end;
end;
return
|
github
|
jacksky64/imageProcessing-master
|
svc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/svc.m
| 5,562 |
utf_8
|
86dd8221e27b55319d8d9001503e5f92
|
%SVC Support Vector Classifier
%
% [W,J] = SVC(A,KERNEL,C)
% [W,J] = SVC(A,TYPE,PAR,C)
% W = A*SVC([],KERNEL,C)
% W = A*SVC([],TYPE,PAR,C)
%
% INPUT
% A Dataset
% KERNEL - Untrained mapping to compute kernel by A*(A*KERNEL) during
% training, or B*(A*KERNEL) during testing with dataset B.
% - String to compute kernel matrices by FEVAL(KERNEL,B,A)
% Default: linear kernel (PROXM([],'p',1));
% TYPE Kernel type (see PROXM)
% PAR Kernel parameter (see PROXM)
% C Regularization parameter (optional; default: 1)
%
% OUTPUT
% W Mapping: Support Vector Classifier
% J Object indices of support objects
%
% DESCRIPTION
% Optimizes a support vector classifier for the dataset A by quadratic
% programming. The non-linearity is determined by the kernel.
% If KERNEL = 0 it is assumed that A is already the kernelmatrix (square).
% In this case also a kernel matrix B should be supplied at evaluation by
% B*W or MAP(B,W).
%
% There are several ways to define KERNEL, e.g. PROXM([],'r',1) for a
% radial basis kernel or by USERKERNEL for a user defined kernel.
%
% If C is NaN this regularisation parameter is optimised by REGOPTC.
%
% See for more possibilties SVCINFO
%
% SEE ALSO
% MAPPINGS, DATASETS, PROXM, USERKERNEL, NUSVC, RBSVC, REGOPTC
% Copyright: D. de Ridder, D. Tax, S. Verzakov, R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: svc.m,v 1.11 2009/07/22 19:29:41 duin Exp $
function [W,J,C,nu,alginf] = svc(a,kernel,par1,par2)
prtrace(mfilename);
if nargin > 1 & ~isempty(kernel) & isstr(kernel) & exist(kernel) ~= 2
% old call: svc(a,type,par,C)
Options = [];
if nargin == 4
C = par2;
end
if nargin < 4 | isempty(par2)
C = 1;
prwarning(3,'Regularization parameter C set to 1\n');
end
if nargin < 3 | isempty(par1)
par1 = 1;
prwarning(3,'Kernel parameter par set to 1\n');
end
kernel = proxm([],kernel,par1);
else % new call
if nargin < 4
Options = [];
else
Options = par2;
end
if nargin >= 3
C = par1;
end
if nargin < 3 | isempty(par1)
C = 1;
end
if nargin < 2 | isempty(kernel)
kernel = proxm([],'p',1);
end
end
DefOptions.mean_centering = 1;
DefOptions.pd_check = 1;
DefOptions.bias_in_admreg = 1;
DefOptions.pf_on_failure = 1;
DefOptions.multiclass_mode = 'single';
Options = updstruct(DefOptions,Options,1);
if nargin < 1 | isempty(a)
W = mapping(mfilename,{kernel,C});
W = setname(W,'Support Vector Classifier');
elseif (~ismapping(kernel) | isuntrained(kernel)) % training
islabtype(a,'crisp');
isvaldfile(a,1,2); % at least 1 object per class, 2 classes
a = testdatasize(a,'objects');
[m,k,c] = getsize(a);
nlab = getnlab(a);
% The SVC is basically a 2-class classifier. More classes are
% handled by mclassc.
if c == 2 % two-class classifier
if (isnan(C))|length(C)>1 % optimize trade-off parameter
defs = {proxm([],'p',1),1,[]};
if isnan(C) % use a default range of C values
parmin_max = [0,0;1e-2,1e2;0,0]; % kernel and Options can not be optimised
else % use the range that is supplied by the user
parmin_max = [0 0; min(C) max(C); 0 0];
C = NaN;
end
[W,J,C,nu,alginf] = regoptc(a,mfilename,{kernel,C,Options},defs,[2],parmin_max,testc([],'soft'));
else
% Compute the parameters for the optimization:
y = 3 - 2*nlab;
if ~isequal(kernel,0)
if Options.mean_centering
u = mean(a); % shift origin for better accuracy
b = a - repmat(u,[m,1]);
else
b = a;
u = [];
end
K = b*(b*kernel);
K = min(K,K'); % make sure kernel matrix is symmetric
% Perform the optimization:
[v,J,C,nu] = svo(+K,y,C,Options);
s = b(J,:);
insize = k;
else % kernel is already given!
K = min(a,a'); % make sure kernel matrix is symmetric
% Perform the optimization:
[v,J,C,nu] = svo(+K,y,C,Options);
s = [];
u = [];
insize = size(K,2); % ready for kernel inputs
end
% Store the results:
W = mapping(mfilename,'trained',{u,s,v,kernel,J},getlablist(a),insize,2);
% Note: even in case kernel is a mapping, we store the untrained
% mapping, as training is just administration
W = cnormc(W,a);
W = setcost(W,a);
alginf.svc_type = 'C-SVM';
alginf.kernel = kernel;
alginf.C = C;
alginf.nu = nu;
alginf.nSV = length(J);
alginf.classsizes = [nnz(y==1), nnz(y==-1)];
alginf.pf = isnan(nu);
W = setname(W,'Support Vector Classifier');
end
else % multi-class classifier:
[W,J,C,nu,alginf] = mclassc(a,mapping(mfilename,{kernel,C,Options}),Options.multiclass_mode);
end
W = setname(W,'Support Vector Classifier');
else % execution
v = kernel;
w = +v;
m = size(a,1);
if isempty(w{2})
K = a; % user supplied testkernel
J = w{5};
if size(K,2) > length(J) & size(K,2) >= max(J)
K = K(:,J); % probably full test kernel
elseif size(K,2) ~= length(J)
error('Wrong test kernel supplied')
end
else
% The first parameter w{1} stores the mean of the dataset. When it
% is supplied, remove it from the dataset to improve the numerical
% precision. Then compute the kernel matrix using proxm:
if isempty(w{1})
K = a*(w{2}*w{4});
else
K = (a-ones(m,1)*w{1})*(w{2}*w{4});
end
end
% Data is mapped by the kernel, now we just have a linear
% classifier w*x+b:
d = [K ones(m,1)] * w{3};
W = setdat(a,[d -d],v);
end
return
|
github
|
jacksky64/imageProcessing-master
|
rblibsvc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/rblibsvc.m
| 1,915 |
utf_8
|
d62453cf819c693d66f8887bf17adde8
|
%RBSVC Automatic radial basis Support Vector Classifier using LIBSVM
%
% [W,KERNEL,NU] = RBLIBSVC(A)
%
% INPUT
% A Dataset
%
% OUTPUT
% W Mapping: Radial Basis Support Vector Classifier
% KERNEL Untrained mapping, representing the optimised kernel
% NU Resulting value for NU from NUSVC
%
% DESCRIPTION
% This routine computes a classifier by NULIBSVC using a radial basis kernel
% with an optimised standard deviation by REGOPTC. The resulting classifier
% W is identical to NULIBSVC(A,KERNEL,NU). As the kernel optimisation is based
% on internal cross-validation the dataset A should be sufficiently large.
% Moreover it is very time-consuming as the kernel optimisation needs
% about 100 calls to LIBSVC.
%
% SEE ALSO
% MAPPINGS, DATASETS, PROXM, LIBSVC, NULIBSVC, REGOPTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [w,kernel,nu] = rblibsvc(a,sig)
if nargin < 2 | isempty(sig)
sig = NaN;
end
if nargin < 1 | isempty(a)
w = mapping(mfilename,{sig});
else
islabtype(a,'crisp');
isvaldfile(a,2,2); % at least 1 object per class, 2 classes
a = testdatasize(a,'objects');
c = getsize(a,3);
if isnan(sig) % optimise sigma
% find upper bound
d = sqrt(+distm(a));
sigmax = min(max(d)); % max: smallest furthest neighbor distance
% find lower bound
d = d + 1e100*eye(size(a,1));
sigmin = max(min(d)); % min: largest nearest neighbor distance
% call optimiser
defs = {1};
parmin_max = [sigmin,sigmax];
[w,kernel,nu] = regoptc(a,mfilename,{sig},defs,[1],parmin_max,testc([],'soft'));
else % kernel is given
kernel = proxm([],'r',sig);
[w,J,nu] = nulibsvc(a,kernel);
end
end
w = setname(w,'RB LIBSVM Classifier');
return
|
github
|
jacksky64/imageProcessing-master
|
im_bpropagation.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_bpropagation.m
| 2,387 |
utf_8
|
c75c17355488eceb9ea5baddea69c6ff
|
%IM_BPROPAGATION Binary propagation of images stored in a dataset (DIP_Image)
%
% B = IM_BPROPAGATION(A1,A2,N,CONNECTIVITY,EDGE_CONDITION)
%
% INPUT
% A1 Dataset with binary object images dataset (possibly multi-band)
% to be treated as seed for the propagation
% A2 Dataset with binary object images dataset (possibly multi-band)
% to be treated as mask for the propagation
% N Number of iterations (default inf)
% CONNECTIVITY See BPROPAGATION
% EDGE_CONDITION Value of edge, default 1
%
% OUTPUT
% B Dataset with propagated images
%
% DESCRIPTION
% The binary images in A1 are dilated under the condition that the result
% stays inside the components stored in A2.
%
% EXAMPLE
% a = delft_idb; a = seldat(a,9); delfigs
% mask = a*im_gray*im_threshold; figure, show(mask)
% seed = mask*im_berosion; figure, show(seed)
% cleaned = im_bpropagation(seed,mask); figure, show(cleaned)
% showfigs
%
% SEE ALSO
% DATASETS, DATAFILES, DIP_IMAGE, BPROPAGATION
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_bpropagation(a1,a2,n,connect,edgecon)
prtrace(mfilename);
if nargin < 5 | isempty(edgecon), edgecon = 1; end
if nargin < 4 | isempty(connect), connect = 2; end
if nargin < 3 | isempty(n), n = inf; end
if isdataset(a1)
if ~isdataset(a2)
error('Seed and mask images should be both datasets')
end
fsize = getfeatsize(a1);
if any(getfeatsize(a2) ~= fsize)
error('Image structures of seed and mask images should be identical')
end
if length(fsize) == 2, fsize = [fsize 1]; end
if size(a1,1) ~= size(a2,1)
error('Same number of seed and mask images expected')
end
out = [];
seed = data2im(a1);
mask = data2im(a2);
for i=1:size(a1,1)
for j=1:fsize(3)
f = feval(mfilename,seed(:,:,j,i),mask(:,:,j,i),n,connect,edgecon);
seed(:,:,j,i) = f;
end
end
b = setdat(a,im2obj);
elseif isdatafile(a1)
if ~isdatafile(a2)
error('Seed and mask images should be both datafiles')
end
b = dyadic(a1,mfilename,a2,{n,connect,edgecon});
elseif isa(a1,'double') | isa(a2,'dip_image') % here we have a single image
a1 = dip_image(a1,'bin');
a2 = dip_image(a2,'bin');
b = bpropagation(a1,a2,n,connect,edgecon);
end
return
|
github
|
jacksky64/imageProcessing-master
|
im_unif.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_unif.m
| 1,204 |
utf_8
|
7f05e468c2eabcdf937dabf7598b1738
|
%IM_UNIF Uniform filter of images stored in a dataset/datafile
%
% B = IM_UNIF(A,SX,SY)
% B = A*IM_UNIF([],SX,SY)
%
% INPUT
% A Dataset with object images dataset (possibly multi-band)
% SX Desired horizontal width for filter, default SX = 3
% SY Desired vertical width for filter, default SY = SX
%
% OUTPUT
% B Dataset/datafile with Gaussian filtered images
%
% SEE ALSO
% DATASETS, DATAFILES, IM_GAUSSF, FILTIM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_gauss(a,sx,sy)
prtrace(mfilename);
if nargin < 3, sy = []; end
if nargin < 2 | isempty(sx), sx = 3; end
if isempty(sy), sy = sx; end
if (sx<1 | sy<1)
error('Filter width should be at least 1')
end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',{sx,sy});
b = setname(b,'Uniform filter');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
b = filtim(a,mfilename,{sx,sy});
elseif isa(a,'double') % here we have a single image
rx = round(sx);
fx = [1:rx]/rx;
ry = round(sy);
fy = [1:ry]/ry;
b = conv2(fy,fx,a,'same');
end
return
|
github
|
jacksky64/imageProcessing-master
|
newfig.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/newfig.m
| 942 |
utf_8
|
88e9e3d9057179f2294f97a98ab73c79
|
%NEWFIG Create new figure on given position
%
% NEWFIG(FIGURE_NUMBER,FIGURE_PER_ROW)
%
% INPUT
% FIGURE_NUMBER Number of the figure
% FIGURE_PER_ROW Figures per row (default: 4)
%
% OUTPUT
%
% DESCRIPTION
% Creates figure number FIGURE_NUMBER and places it on the screen,
% such that (when sufficient figures are created), the screen is
% covered by an array of figures, with FIGURE_PER_ROW figures per row.
%
% SEE ALSO
% SCATTERD, PLOTC
% $Id: newfig.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function newfig(fign,n);
if nargin < 2, n=4; end
if nargin < 1, fign=gcf+1; end
% if the figure already exist, kill it!
if any(get(0,'children') == fign)
delete(fign);
end
% Create the figure,
figure(fign);
set(gcf,'menubar','none');
% and place it in the correct position:
ny = 1-ceil(fign/n)/n;
nx = (fign -1 - n*floor((fign-1)/n))/n;
d = 1/n;
set(gcf,'units','normalized','position',[nx ny d*0.95 d*0.85]);
return
|
github
|
jacksky64/imageProcessing-master
|
scalem.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/scalem.m
| 3,471 |
utf_8
|
ea9e240e095bc805e8a74b190c3b73f7
|
%SCALEM Compute scaling map
%
% W = SCALEM(A,T)
%
% INPUT
% A Dataset
% T Type of scaling (optional; default: the class priors weighted mean of A
% is shifted to the origin)
%
% OUTPUT
% W Scaling mapping
%
% DESCRIPTION
% Computes a scaling map W, whose type depends on the parameter T:
%
% [], 'c-mean' - The mean of A is shifted to the origin. Class priors are taken
% into account.
% 'mean' - The mean of A is shifted to the origin. This is computed for
% the data as given in A, neglecting class priors.
% 'c-variance' - The mean of A is shifted to the origin and the average class
% variances (within-scatter) are normalized. Class priors are
% taken into account.
% 'variance' - The mean of A is shifted to the origin and the total variances
% of all features are scaled to 1. This is computed for the
% data as given in A, neglecting class priors.
% '2-sigma' - For each feature f, the 2-sigma interval, [f-2*std(f),f+2*std(f)]
% is rescaled to [0,1]. Values outside this domain are clipped.
% Class priors are taken into account.
% 'domain' - The domain for all features in the dataset A is set to [0,1].
% This is computed for the data as given in A, neglecting class priors.
%
% The map W may be applied to a new dataset B by B*W.
%
% SEE ALSO
% MAPPING, DATASET
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: scalem.m,v 1.9 2009/11/27 08:52:02 duin Exp $
function W = scalem(a,t)
prtrace(mfilename);
if nargin < 2
prwarning(4,'No mapping type specified. The class priors weighted mean of A is shifted to the origin.');
t = '';
elseif isempty(t)
t = '';
end
%DXD Make the naming even better:
dname = 'Scaling mapping';
switch t
case 'mean'
dname = 'zero-mean';
case {'','c-mean'}
dname = 'zero-mean (+class priors)';
case 'variance'
dname = 'unit-var';
case 'c-variance'
dname = 'unit-var (+class priors)';
case '2-sigma'
dname = '0-1 scaling (+-2 standard dev.)';
case 'domain'
dname = '0-1 scaling';
end
% No data, return an untrained mapping.
if (nargin < 1) | isempty(a)
W = mapping('scalem',{t});
W = setname(W,dname);
return;
end
[a,c,lablist] = cdats(a,1);
[m,k] = size(a);
switch t
case {'','c-mean'}
u = meancov(a);
u =getprior(a)*(+u);
s = ones(1,k);
clip = 0;
case 'mean'
a = remclass(a);
u = mean(a,1);
s = ones(1,k);
clip = 0;
case 'c-variance'
p = getprior(a);
U = meancov(a);
u = p*(+U);
s = zeros(1,k);
for j=1:c
s = s + p(j)*var(seldat(a,j)*cmapm(+U(j,:),'shift'));
end
s = sqrt(s);
clip = 0;
case 'variance'
%[u,G] = meancov(+a);
%s = sqrt(diag(G))';
u = mean(a,1);
s = std(a,0,1);
clip = 0;
case '2-sigma'
p = getprior(a);
U = meancov(a);
u = p*(+U);
s = zeros(1,k);
for j=1:c
s = s + p(j)*var(seldat(a,j));
end
s = sqrt(s);
s = 4*s;
u = u-0.5*s;
clip = 1;
case 'domain'
mx = max(a,[],1)+eps;
mn = min(a,[],1)-eps;
u = mn;
s = (mx - mn)*(1+eps);
clip = 0;
otherwise
error('Unknown option')
end
J = find(s==0);
s(J) = ones(size(J)); % No scaling for zero variances.
W = cmapm({u,s,clip},'scale');
W.size_out = a.featsize;
W = setlabels(W,getfeatlab(a));
return;
|
github
|
jacksky64/imageProcessing-master
|
mclassm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/mclassm.m
| 2,458 |
utf_8
|
dfa95c18e9a18bd2606c311f0d9acf3e
|
%MCLASSM Computation of a combined, multi-class based mapping
%
% W = MCLASSM(A,MAPPING,MODE,PAR)
%
% INPUT
% A Dataset
% MAPPING Untrained mapping
% MODE Combining mode (optional; default: 'weight')
% PAR Parameter needed for the combining
%
% OUTPUT
% W Combined mapping
%
% DESCRIPTION
% If A is a unlabeled dataset or double matrix, it is converted to a
% one-class dataset. For one-class datasets A, the mapping is computed,
% calling the untrained MAPPING using the labeled samples of A only.
% For multi-class datasets separate mappings are determined for each class
% in A. They are combined as defined by MODE and PAR. The following
% combining rules are supported:
% 'weight': weight the mapping outcome for class j by PAR(j) and sum
% over the classes. This is useful for densities in which case
% PAR is typically the set of class priors (these are in fact
% the defaults if MODE = 'weight').
% 'mean' : combine by averaging.
% 'min' : combine by the minimum rule.
% 'max' : combine by the maximum rule.
%
% This routine is only defined for datasets with crisp labels.
%
% SEE ALSO
% DATASETS, MAPPINGS
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function w = mclassm(a,mapp,mode,par);
prtrace(mfilename);
if nargin < 4, par = []; end
if nargin < 3, mode = 'weight'; end
if nargin < 2, mapp = []; end
if nargin < 1 | isempty(a)
w = mapping(mfilename,{classf,mode});
return
end
if ~isa(mapp,'mapping') | ~isuntrained(mapp)
error('Second parameter should be untrained mapping')
end
[a,c,lablist,p] = cdats(a);
%islabtype(a,'crisp');
if c == 1
w = a*mapp;
else
w = [];
for j=1:c
b = seldat(a,j);
w = [w,b*mapp];
end
if ismapping(mode)
w = w*mode
elseif isstr(mode)
switch mode
case 'mean'
w = w*meanc;
case 'min'
w = w*minc;
case 'max'
w = w*maxc;
case 'weight'
if size(w{1},2) ~= 1
error('Weighted combining only implemented for K to 1 mappings')
end
if isempty(par)
par = p;
end
lenw = length(w.data);
if length(par) ~= lenw
error(['Wrong number of weights. It should be ' num2str(lenw)])
end
w = w*affine(par(:));
otherwise
error('Unknown combining mode')
end
end
w = setsize(w,[size(a,2),1]);
w = setlabels(w,lablist);
end
return
|
github
|
jacksky64/imageProcessing-master
|
cdats.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/cdats.m
| 1,958 |
utf_8
|
2686ee521a7698c29fa5e642699dbd21
|
%CDATS Support routine for checking datasets
%
% [B,C,LABLIST,P] = CDATS(A,REDUCE)
%
% INPUT
% A Dataset or double
% REDUCE 0/1, Reduce A to labeled samples (1) or not (0, default), optional.
%
% OUTPUT
% B Dataset
% C Number of classes
% LABLIST Label list of A
% P Priors
%
% DESCRIPTION
% This routine supports dataset checking and conversion for mappings
% and density estimators. If A is double it is converted to a one-class
% dataset with all labels set to 1. The same holds if A is an entirely
% unlabeled dataset. The label list of A is returned in LABLIST, but
% for multi-class datasets LABLIST is set to 1. C is the number of classes
% in A. The priors are returned in P (length C), the dataset itself in B.
% If REDUCE is 1, all unlabeled objects are removed.
%
% If A has soft labels, B = A.
% If A does not have labels but targets: C = 1, LABLIST = [], P = 1.
%
% SEE ALSO
% DATASETS, MAPPINGS
function [a,c,lablist,p] = cdats(a,red)
prtrace(mfilename);
if (nargin < 2), red = 0; end
if (isdataset(a) & islabtype(a,'targets'))
c = 1; lablist = []; p = 1;
elseif (isdataset(a) & islabtype(a,'soft'))
c = getsize(a,3);
lablist = getlablist(a);
if nargout > 3, p = getprior(a); end
else
if ~isvaldfile(a)
a = dataset(a);
end
c = getsize(a,3);
if nargout > 3 % avoid unnecessary warnings
p = getprior(a);
end
if (c == 0)
a = setlabels(a,1);
p = 1;
c = 1;
lablist = 1;
prwarning(4,'Dataset unlabeled: all objects will be used')
elseif (c == 1)
p = 1;
if (red == 1)
a = seldat(a); % remove unlabeled objects
end
lablist = getlablist(a);
else
prwarning(4,'Multiclass dataset will be combined using priors')
if (red == 1)
a = seldat(a); % remove unlabeled objects
end
lablist = 1;
end
isvaldfile(a,1,1); % at least one object per class
end;
return
|
github
|
jacksky64/imageProcessing-master
|
proxm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/proxm.m
| 5,944 |
utf_8
|
87c619ec24866c3bd3663663f102710f
|
%PROXM Proximity mapping
%
% W = PROXM(A,TYPE,P,WEIGHTS)
% W = A*PROXM([],TYPE,P,WEIGHTS)
%
% INPUT
% A Dataset
% TYPE Type of the proximity (optional; default: 'distance')
% P Parameter of the proximity (optional; default: 1)
% WEIGHTS Weights (optional; default: all 1)
%
% OUTPUT
% W Proximity mapping
%
% DESCRIPTION
% Computation of the [K x M] proximity mapping (or kernel) defined by
% the [M x K] dataset A. Unlabeled objects in A are neglected.
% If B is an [N x K] dataset, then D=B*W is the [N x M] proximity matrix
% between B and A. The proximities can be defined by the following types:
%
% 'POLYNOMIAL' | 'P': SIGN(A*B'+1).*(A*B'+1).^P
% 'HOMOGENEOUS' | 'H': SIGN(A*B').*(A*B').^P
% 'EXPONENTIAL' | 'E': EXP(-(||A-B||)/P)
% 'RADIAL_BASIS' | 'R': EXP(-(||A-B||.^2)/(P*P))
% 'SIGMOID' | 'S': SIGM((SIGN(A*B').*(A*B'))/P)
% 'DISTANCE' | 'D': ||A-B||.^P
% 'MINKOWSKI' | 'M': SUM(|A-B|^P).^(1/P)
% 'CITY-BLOCK' | 'C': SUM(|A-B|)
% 'COSINE' | 'O': 1 - (A*B')/||A||*||B||
%
% In the polynomial case for a non-integer P, the proximity is computed
% as D = SIGN(S+1).*ABS(S+1).^P, in order to avoid problems with negative
% inner products S = A*B'. The features of the objects in A and B may be
% weighted by the weights in the vector WEIGHTS.
%
% SEE ALSO
% MAPPINGS, DATASETS
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% 27-11-2008, Marc Hulsman, MR1
% Added kernel normalization.
% $Id: proxm.m,v 1.10 2010/01/15 13:39:01 duin Exp $
function W = proxm(A,type,s,weights)
prtrace(mfilename);
if (nargin < 4)
weights = [];
prwarning(4,'Weights are not supplied, assuming all 1.');
end
if (nargin < 3) | (isempty(s))
s = 1;
prwarning(4,'The proximity parameter is not supplied, assuming 1.');
end
if (nargin < 2) | (isempty(type))
type = 'd';
prwarning(4,'Type of the proximity is not supplied, assuming ''DISTANCE''.');
end
% No data, return an untrained mapping.
if (nargin < 1) | (isempty(A))
W = mapping(mfilename,{type,s,weights});
W = setname(W,'Proximity mapping');
return;
end
[m,k] = size(A);
if (isstr(type))
% Definition of the mapping, just store parameters.
all = char('polynomial','p','homogeneous','h','exponential','e','radial_basis','r', ...
'sigmoid','s','distance','d','minkowski','m','city-block','c',...
'cosine','o','uniform','u','ndiff');
if (~any(strcmp(cellstr(all),type)))
error(['Unknown proximity type: ' type])
end
A = cdats(A,1);
[m,k] = size(A);
%if (isa(A,'dataset'))
if (isdataset(A))
A = testdatasize(A);
W = mapping(mfilename,'trained',{A,type,s,weights},getlab(A), ...
getfeatsize(A),getobjsize(A));
else
W = mapping(mfilename,'trained',{A,type,s,weights},[],k,m);
end
W = setname(W,'Proximity mapping');
elseif isa(type,'mapping')
% Execution of the mapping: compute a proximity matrix
% between the input data A and B; output stored in W.
w = type;
[B,type,s,weights] = deal(w.data{1},w.data{2},w.data{3},w.data{4});
[kk,n] = size(w);
if (k ~= kk)
error('Mismatch in sizes between the mapping and its data stored internally.');
end
if (~isempty(weights))
if (length(weights) ~= k),
error('Weight vector has a wrong length.');
end
A = A.*(ones(m,1)*weights(:)');
B = B.*(ones(n,1)*weights(:)');
end
switch type
case {'polynomial','p'}
D = +(A*B');
D = D + ones(m,n);
if (s ~= round(s))
D = +sign(D).*abs(D).^s;
elseif (s ~= 1)
D = D.^s;
end
case {'homogeneous','h'}
D = +(A*B');
if (s ~= round(s))
D = +sign(D).*abs(D).^s;
elseif (s ~= 1)
D = D.^s;
end
case {'sigmoid','s'}
D = +(A*B');
D = sigm(D/s);
case {'city-block','c'}
D = zeros(m,n);
t = sprintf('Processing %i objects: ',n);
prwaitbar(n,t);
for j=1:n
prwaitbar(n,j,[t int2str(j)]);
D(:,j) = sum(abs(A - repmat(+B(j,:),m,1)),2);
end
prwaitbar(0);
case {'minkowski','m'}
D = zeros(m,n);
t = sprintf('Processing %i objects: ',n);
prwaitbar(n,t);
for j=1:n
prwaitbar(n,j,[t int2str(j)]);
D(:,j) = sum(abs(A - repmat(+B(j,:),m,1)).^s,2).^(1/s);
end
prwaitbar(0);
case {'exponential','e'}
D = dist2(B,A);
D = exp(-sqrt(D)/s);
case {'radial_basis','r'}
D = dist2(B,A);
D = exp(-D/(s*s));
case {'distance','d'}
D = dist2(B,A);
if s ~= 2
D = sqrt(D).^s;
end
case {'cosine','o'}
D = +(A*B');
lA = sqrt(sum(A.*A,2));
lB = sqrt(sum(B.*B,2));
D = 1 - D./(lA*lB');
case {'ndiff'}
D = zeros(m,n);
t = sprintf('Processing %i objects: ',n);
prwaitbar(n,t);
for j=1:n
prwaitbar(n,j,[t int2str(j)]);
D(:,j) = sum(+A ~= repmat(+B(j,:),m,1),2);
end
prwaitbar(0);
otherwise
error('Unknown proximity type')
end
W = setdat(A,D,w);
else
error('Illegal TYPE argument.')
end
return;
function D = dist2(B,A)
% Computes square Euclidean distance, avoiding large matrices for a high
% dimensionality data
ma = size(A,1);
mb = size(B,1);
if isdatafile(A)
D = zeros(ma,mb);
next = 1;
while next > 0
[a,next,J] = readdatafile(A,next);
D(J,:) = +dist2(a,B);
end
elseif isdatafile(B)
D = zeros(ma,mb);
next = 1;
while next > 0 % we need another version of readdatafile here, as due
[b,next,J] = readdatafile2(B,next); % to persistent variables double
D(:,J) = +dist2(A,b); % looping can not be handled correctly
end
else % A and B are not datafiles
D = ones(ma,1)*sum(B'.*B',1);
D = D + sum(A.*A,2)*ones(1,mb);
D = D - 2 .* (+A)*(+B)';
% Clean result.
J = find(D<0);
D(J) = zeros(size(J));
end
return
|
github
|
jacksky64/imageProcessing-master
|
createdatafile.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/createdatafile.m
| 8,747 |
utf_8
|
8012e1f74bccfd7b83ae3557a6a3c0c5
|
%CREATEDATAFILE Create datafile on disk
%
% B = CREATEDATAFILE(A,DIR,ROOT,TYPE,CMD,FMT)
%
% INPUT
% A Datafile
% DIR Name of datafile, default: name of A
% ROOT Root directory in which datafile should be created
% default: present directory
% TYPE Datafile type ('raw' (default) or 'cell')
% CMD Command for writing files, default: IMWRITE
% FMT Format, default 'bmp'
%
% OUTPUT
% B New datafile
%
% DESCRIPTION
% The existing datafile A is recreated on disk, one file per object,
% including all preprocessing. The IDENT.IDENT field and the class priors
% of A are copied. All other addional information of A is lost.
% The order of objects in A and B may differ.
%
% Raw datafiles are stored as integer images, use TYPE = 'cell' to store
% floats.
%
% The difference between CREATEDATAFILE and SAVEDATAFILE is that the latter
% assumes that the datafile after completion by preprocessing can be converted
% into a dataset and the data is stored as such and as compact as possible.
% CREATEDATAFILE saves every object in a separate file and is thereby
% useful in case preprocessing does not yield a proper dataset with the
% same number of features for every object.
%
% SEE ALSO DATAFILES, DATASETS, SAVEDATAFILE
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = createdatafile(a,dirr,root,type,par1,par2)
prtrace(mfilename,1);
isdatafile(a);
if nargin < 6, par2 = []; end
if nargin < 5, par1 = []; end
if nargin < 4, type = 'raw'; end
if nargin < 3 | isempty(root), root = pwd; end
if nargin < 2, dirr = getname(a); end
if ~any(strcmp(type,{'raw','cell'}))
error('Type of datafile is wrong or not supported');
end
actdir = cd;
cd(root);
if exist(dirr) == 7 % if datafile already exists
cd(dirr); % go to it
fclose('all');
delete *.mat % make it empty
delete file*
else
[success,mess] = mkdir(dirr);
if ~success
error(mess)
end
cd(dirr)
end
if strcmp(type,'raw')
% construct standard raw datafile
if isempty(par1), par1 = 'imwrite'; end
if isempty(par2), par2 = 'bmp'; end
cmd = par1;
fmt = par2;
subdirs = getlablist(a,'string');
nlab = getnlab(a);
m = length(nlab);
s = sprintf('Creating %i files: ',m);
prwaitbar(m,s);
n = 0;
if ~isempty(subdirs)
for j=1:size(subdirs,1) % run over all classes
sname = deblank(subdirs(j,:));
[success,mess] = mkdir(sname);
if ~success
error(mess);
end
cd(sname)
J = find(nlab==j);
p = floor(log10(length(J)))+1;
form = ['%' int2str(p) '.' int2str(p) 'i'];
for j = 1:length(J)
n = n+1;
prwaitbar(m,n,[s int2str(n)]);
im = data2im(a(J(j),:));
feval(cmd,im,['file_' num2str(j,form)],fmt);
end
cd ..
end
end
J = find(nlab == 0);
if ~isempty(J)
p = floor(log10(length(J)))+1;
form = ['%' int2str(p) '.' int2str(p) 'i'];
for j = 1:length(J)
n = n+1;
prwaitbar(m,n,[s int2str(n)]);
im = data2im(a(J(j),:));
feval(cmd,im,['file_' num2str(j,form)],fmt);
end
end
prwaitbar(0);
cd ..
b = datafile(dirr);
if ~isempty(a,'prior')
b = setprior(b,getprior(a));
end
id = getident(a);
b = setident(b,id);
cd(dirr);
save([dirr '.mat'],'b');
cd(actdir);
elseif strcmp(type,'cell')
%store datafiles in cells
if isempty(par1) % maximum nr of elements in datafile
par1 = 1000000;
end
if isempty(par2) % default: no conversion
par2 = 0;
end
filesize = par1;
nbits = par2;
% reorder datafile for faster retrieval
file_index = getident(a.dataset,'file_index');
[jj,R] = sort(file_index(:,1)+file_index(:,2)/(max(file_index(:,2),[],1)+1));
a = a(R,:);
[RR,S] = sort(R); % to reconstruct order later
dirname = fullfile(root,dirr);
m = length(R);
file_index = zeros(m,2);
% initialise structure with file information
% skip this for the time being
% cfiles = struct('name',cell(1),'nbits',[], ...
% 'offsetd',[],'scaled',[],'offsett',[],'scalet',[]);
nobjects = 1;
files = {};
s = sprintf('Storing %i objects: ',m);
prwaitbar(m,s)
prwaitbar(m,nobjects,[s int2str(nobjects)]);
im = data2im(a(1,:));
imsize = prod(size(im));
nfiles = 0;
while (nobjects <= m)
nfiles = nfiles+1;
obj1 = nobjects;
fsize = imsize;
imcells = {im};
sizefit = 1;
mm = 0;
nobjects = nobjects+1;
prwaitbar(m,nobjects,[s int2str(nobjects)]);
while (nobjects <= m) & sizefit
im = data2im(a(nobjects,:)); % convert single object
imsize = prod(size(im));
nobjects = nobjects+1;
mm = mm+1;
if (fsize+imsize < filesize) & (mm < m/50)
% store data in same file as long as size fits
% and never more than 2% of the objects
% (this is just to keep better track of progress)
fsize = fsize+imsize;
imcells = {imcells{:} im};
sizefit = 1;
obj2 = nobjects;
else
sizefit = 0;
obj2 = nobjects-1;
nobjects = obj2;
end
end
obj2 = min(obj2,m);
% [imcells,scaled,offsetd,scalet,offsett,prec] = convert(imcells,nbits); % convert precision
filej = ['file_' num2str(nfiles,'%4.4i')];
fname = fullfile(dirname,filej);
files = {files{:} filej};
save(fname,'imcells');
% disp([filej ' ' int2str(length(imcells))]);
% save(fname,'imcells','scaled','offsetd','scalet','offsett','prec');
% cfiles(j).name = filej; % name of the file
% cfiles(j).prec = prec; % precision
% cfiles(j).scaled = scaled; % scaling for datafield
% cfiles(j).offsetd = offsetd; % offset for datafield
% cfiles(j).scalet = scalet; % scaling for target field
% cfiles(j).offsett = offsett; % offset for target field
% cfiles(j).sized = a.featsize; % feature (image) size
% cfiles(j).sizet = size(a.targets,2); % size target field
% % create file_index
file_index(obj1:obj2,1) = repmat(nfiles,obj2-obj1+1,1);
file_index(obj1:obj2,2) = [1:obj2-obj1+1]';
end
% finalise datafile definition
b = datafile;
b.files = files; % file information
b.rootpath = dirname;
b.type = 'cell'; % cell datafile
preproc.preproc = [];
preproc.pars = {};
b.preproc = preproc; % no preprocessing
b.dataset = setident(a.dataset,file_index,'file_index'); % store file_index
b.dataset = setname(b.dataset,dirr);
b = b(S,:); % reconstruct order of objects
save(fullfile(dirname,dirr),'b'); % store the datafile as mat-file for fast retrieval
prwaitbar(0);
cd(actdir);
end
return
function [a,scaled,offsetd,scalet,offsett,prec] = convert(a,nbits)
% handle precision data and target fields
if nbits == 0 % no conversion
scaled = [];
offsetd = [];
scalet = [];
offsett = [];
prec = 'double';
return;
end
% compute data field conversion pars
data = +a;
maxd = max(max(data));
mind = min(min(data));
scaled = (2^nbits)/(maxd-mind);
offsetd = -mind;
data = (data+offsetd)*scaled;
% compute target field conversion pars
targ = gettargets(a);
if isempty(targ) % no targets set
scalet = [];
offsett = [];
else
maxt = max(max(targ));
mint = min(min(targ));
scalet = (2^nbits)/(maxt-mint);
offsett = -mint;
targ = (targ+offsett)*scalet;
end
% execute conversion
switch nbits
case 8
data = uint8(data);
targ = uint8(targ);
prec = 'uint8';
case 16
data = uint16(data);
targ = uint16(targ);
prec = 'uint16';
case 32
data = uint32(data);
targ = uint32(targ);
prec = 'uint32';
otherwise
error('Desired conversion type not found')
end
% store results
a.data = data;
a.targets = targ;
return
return
|
github
|
jacksky64/imageProcessing-master
|
chernoffm.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/chernoffm.m
| 2,908 |
utf_8
|
f68913a263bb7296e579bd8fe2007935
|
%CHERNOFFM Suboptimal discrimination linear mapping (Chernoff mapping)
%
% W = CHERNOFFM(A,N,R)
%
% INPUT
% A Dataset
% N Number of dimensions to map to, N < C, where C is the number of classes
% (default: min(C,K)-1, where K is the number of features in A)
% R Regularization variable, 0 <= r <= 1, default is r = 0, for r = 1 the
% Chernoff mapping is (should be) equal to the Fisher mapping
%
% OUTPUT
% W Chernoff mapping
%
% DESCRIPTION
% Finds a mapping of the labeled dataset A onto an N-dimensional linear
% subspace such that it maximizes the heteroscedastic Chernoff criterion
% (also called the Chernoff mapping).
%
% REFERENCE
% M. Loog and R.P.W. Duin, Linear Dimensionality Reduction via a Heteroscedastic
% Extension of LDA: The Chernoff Criterion, IEEE Transactions on pattern
% analysis and machine intelligence, vol. PAMI-26, no. 6, 2004, 732-739.
%
% SEE ALSO
% MAPPINGS, DATASETS, FISHERM, NLFISHERM, KLM, PCA
% Copyright: M. Loog, [email protected]
% Image Sciences Institute, University Medical Center Utrecht
% P.O. Box 85500, 3508 GA Utrecht, The Netherlands
% $Id: chernoffm.m,v 1.3 2010/02/08 15:31:48 duin Exp $
function W = chernoffm(a,n,r)
prtrace(mfilename);
if (nargin < 3)
r = 0;
end
if (nargin < 2)
prwarning (4, 'number of dimensions to map to not specified, assuming min(C,K)-1');
n = [];
end
% If no arguments are specified, return an untrained mapping.
if (nargin < 1) | (isempty(a))
W = mapping('chernoffm',{n,r});
W = setname(W,'Chernoff mapping');
return
end
isvaldset(a,2,2); % at least 2 objects per class, 2 classes
% If N is not given, set it.
[m,k,c] = getsize(a); if (isempty(n)), n = min(k,c)-1; end
if (n >= m)
error('The dataset is too small for the requested dimensionality')
end
% To simplify computations, the within scatter W is set to the identity matrix
% therefore A is centered and sphered by KLMS.
v = klms(a); a = a*v;
k = size(v,2); % dimensionalities may have changed for small training sets
% Now determine a solution to the Chernoff criterion
[U,G] = meancov(a);
CHERNOFF = zeros(k);
p = getprior(a);
for i = 1:c-1 % loop over all class pairs
for j = i+1:c
p_i = p(i)/(p(i)+p(j)); p_j = p(j)/(p(i)+p(j));
G_i = (1-r)*G(:,:,i) + r*eye(k); G_j = (1-r)*G(:,:,j) + r*eye(k);
G_ij = p_i*G_i + p_j*G_j;
m_ij = sqrtm(real(prinv(G_ij)))*(U(i,:) - U(j,:))';
CHERNOFF = CHERNOFF + p(i) * p(j) * ...
( m_ij * m_ij' ...
+ 1/(p_i*p_j) * ( logm(G_ij) ...
- p_i * logm(G_i) - p_j * logm(G_j) ) );
end
end
[F,V] = preig(CHERNOFF);
[dummy,I] = sort(-diag(V));
I = I(1:n);
rot = F(:,I);
off = -mean(a*F(:,I));
preW = affine(rot,off,a);
W = v*preW; % Construct final mapping.
W = setname(W,'Chernoff mapping');
return
|
github
|
jacksky64/imageProcessing-master
|
band2obj.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/band2obj.m
| 2,883 |
utf_8
|
19a57f14d1c5f11326b820a3fb24691f
|
%BAND2OBJ Mapping image bands to objects
%
% B = BAND2OBJ(A,N)
% W = BAND2OBJ([],N)
% B = A*W
%
% INPUT
% A Dataset or datafile with multiband image objects.
% N Number of successive bands to be combined in an object.
% The number of image bands in A should be multiple of N.
% Default N = 1.
%
% OUTPUT
% W Mapping performing the band selection
% B Output dataset or datafile.
%
% DESCRIPTION
% If the objects in a dataset or datafile A are multi-band images, e.g. RGB
% images, or the result of IM_PATCH, then the featsize of A is [C,R,L] for
% for L bands of a C x R image. This routine combines sets of N successive
% bands as separate objects. The total number of objects is thereby
% enlarged by a factor L/N. All information of the constituting objects
% like labels, is copied to the newly created objects.
%
% Note: BAND2OBJ cannot be applied to datafiles for which already a
% bandselection (BANDSEL) has been defined.
%
% SEE ALSO
% DATASETS, DATAFILES, BANDSEL, IM2OBJ, DATA2IM
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = band2obj(a,N)
mapname = 'Bands to Objects';
if nargin < 2, N = []; end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',{N});
b = setname(b,mapname);
else
isvaldfile(a);
%isobjim(a); % datafiles have object images
m = size(a,1);
if isempty(N) % all needed for treating variable numbers of bands
bandnames = getident(a,'bandnames');
if ~isempty(bandnames)
K = zeros(m,1);
for j=1:m, K(j,:) = size(bandnames{j},1); end
if any(K~=K(1))
N = zeros(m,max(K));
for j=1:m, N(j,1:K(j)) = [1:K(j)]; end
else
N = 1;
end
else
N = 1;
end
end
if size(N,1) == m & m > 1 % per object all bands to be selected are given
k = max(N(:));
b = [];
s = sprintf('Checking %i bands: ',k);
prwaitbar(k,s);
for j=1:k
prwaitbar(k,j,[s int2str(j)]);
[I,J] = find(N==j); % Finds all objects for which we have to select band j
if ~isempty(I)
b = [b; bandsel(a(I,:),repmat(j,length(I),1))]; % wrong !!!! bandsel expects something else, solve there!
end
end
prwaitbar(0);
elseif size(N,1) == 1 % N is number of successive objects to be combined
k = getfeatsize(a,3); % We assume that all objects have the same number of bands
if k > 1
if N*round(k/N) ~= k
error('Number of images bands should be multiple of N')
end
s = sprintf('Checking %i bands: ',k);
prwaitbar(k,s);
prwaitbar(k,1,[s '1']);
b = bandsel(a,1:N);
for j=2:round(k/N)
prwaitbar(k,j,[s int2str(j)]);
b = [b; bandsel(a,(j-1)*N+1:j*N)];
end
prwaitbar(0);
else
b = a;
end
else
error('Second parameter has wrong size')
end
end
return
|
github
|
jacksky64/imageProcessing-master
|
libsvmcheck.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/libsvmcheck.m
| 474 |
utf_8
|
403ba4e83ee91c67c682c9edc2565eac
|
%LIBSVMCHECK Check whether the LIBSVM toolbox is in the path
function libsvmcheck
if exist('svmpredict','file') ~= 3 & exist('svmpredict.dll','file') ~= 2
error([newline 'The LIBSVM package is not found. Download and install it from' ...
newline 'http://www.csie.ntu.edu.tw/~cjlin/libsvm/'])
else
p = which('svmtrain');
if ~isempty(strfind(p,'biolearn'))
error('The bioinfo toolbox is in the way, please remove it from the path')
end
end
|
github
|
jacksky64/imageProcessing-master
|
labcmp.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/labcmp.m
| 1,172 |
utf_8
|
bfc40e4bb42265de6ee75522b63e650f
|
%LABCMP Compare label sets
%
% [JNE,JEQ] = LABCMP(LABELS1,LABELS2)
%
% INPUT
% LABELS1 - list of labels (strings or numeric)
% LABELS2 - list of labels (strings or numeric)
%
% OUTPUT
% JNE - Indices of non-matching labels
% JEQ - indices of matching labels
%
% DESCRIPTION
% The comparison of two label sets is particular useful to find
% erroneaously classified objects. For example, if W is a trained
% classifier and A a labeled testset, then the estimated labels are
% given by LAB_EST = A*W*LABELD, while the true labels can be found
% by LAB_TRUE = GETLABELS(A). The erroneously and correctly classfied
% objects can be found by [JNE,JEQ] = LABCMP(LAB_EST,LAB_TRUE).
%
% See also MAPPINGS, DATASETS, LABELD, TESTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [Jne,Jeq] = labcmp(lab1,lab2);
prtrace(mfilename);
[m1,n1] = size(lab1);
[m2,n2] = size(lab2);
if (m1 ~= m2)
error('Label sets should have equal sizes')
end
[nn,J] = nlabcmp(lab1,lab2);
Jne = find(~J);
Jeq = find(J);
return
|
github
|
jacksky64/imageProcessing-master
|
testd.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/testd.m
| 1,602 |
utf_8
|
bf21d1853b98c052c9eafb4cbdd51fef
|
%TESTD Find classification error of dataset applied to given classifier
%
% [E,C] = TESTD(A,W)
% [E,C] = TESTD(A*W)
% E = A*W*TESTD
%
% INPUT
% A Dataset
% W Classifier
%
% OUTPUT
% E Fraction of labeled objects in A that is erroneously classified
% C Vector with numbers of erroneously classified objects per class.
% They are sorted according to A.LABLIST
%
% DESCRIPTION
% This routine performs a straightforward testing of the labeled objects
% in A by the classifier W. Unlabeled objects are neglected. Just a
% fraction of the erroneously classified objects is returned. Not all
% classes have to be present in A and class priors are neglected. TESTD
% thereby essentially differs from TESTC which tests the classifier instead
% of the dataset. Labels found for the individual objects by the classifier
% W may be retrieved by LABELD
%
% SEE ALSO
% DATASETS, MAPPINGS, TESTD, LABELD
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [error,class_errors] = testd(a,w)
if nargin < 2, w = []; end
if nargin < 1 | isempty(a)
error = mapping(mfilename,'fixed',{w});
error = setname(error,'testd');
class_errors = [];
elseif isempty(w)
s = classsizes(a);
c = getsize(a,3);
class_errors = zeros(1,c);
n = 0;
for j=1:c
b = seldat(a,j);
if ~isempty(b)
class_errors(j) = nlabcmp(getlabels(b),b*labeld);
end
n = n+size(b,1);
end
error = sum(class_errors)/n;
else
[error,class_errors] = testd(a*w);
end
return
|
github
|
jacksky64/imageProcessing-master
|
im_stat.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/im_stat.m
| 2,355 |
utf_8
|
c9d64e86fc06111f67c8b0dae44e983c
|
%IM_STAT Computation of some image statistics
%
% B = IM_STAT(A,STAT)
% B = A*IM_STAT([],STAT)
%
% INPUT
% A Dataset with object images dataset (possibly multi-band)
% STAT String cell array or series of statistics
%
% OUTPUT
% B Dataset with statistics replacing images (possibly multi-band)
%
% DESCRIPTION
% For all images in the dataset A the statistics as defined in the
% cell array STAT are computed. The following statistics are supported:
% (order is arbitrary)
%
% 'mean', 'row_mean', 'col_mean', 'std', 'row_std','col_std',
% 'min', 'row_min', 'col_min, 'max', 'row_max','col_max,
% 'median','row_median','col_median','size','sum'
%
% Default STAT = {'mean','var','min','max','size'}
%
% SEE ALSO
% DATASETS, DATAFILES
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = im_stat(a,varargin)
prtrace(mfilename);
if nargin < 2 | isempty(varargin)
stats = {'mean','std','min','max','size'};
else
stats = varargin;
end
if iscell(stats{1})
stats = stats{1};
end
if nargin < 1 | isempty(a)
b = mapping(mfilename,'fixed',stats);
b = setname(b,'Image statistics');
elseif isa(a,'dataset') % allows datafiles too
isobjim(a);
outsize = [size(stats,1)*getfeatsize(a,3)];
b = filtim(a,mfilename,{stats},outsize);
elseif isa(a,'double') | isa(a,'dip_image') % here we have a single image
if isa(a,'dip_image'), a = double(a); end
n = length(stats);
b = [];
for i=1:n
switch stats{i}
case 'mean'
b = [b mean(a(:))];
case 'std'
b = [b std(a(:))];
case 'min'
b = [b min(a(:))];
case 'max'
b = [b max(a(:))];
case 'median'
b = [b median(a(:))];
case 'row_mean'
b = [b mean(a,2)'];
case 'row_std'
b = [b std(a,2)'];
case 'row_min'
b = [b min(a,[],2)'];
case 'row_max'
b = [b max(a,[],2)'];
case 'row_median'
b = [b median(a,2)'];
case 'col_mean'
b = [b mean(a,1)];
case 'col_std'
b = [b std(a,1)];
case 'col_min'
b = [b min(a,[],1)];
case 'col_max'
b = [b max(a,[],1)];
case 'col_median'
b = [b median(a,1)];
case 'size'
b = [b size(a)];
case 'sum'
b = [b sum(a(:))];
otherwise
error('Desired statistics not supported')
end
end
end
return
|
github
|
jacksky64/imageProcessing-master
|
cnormc.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/cnormc.m
| 2,947 |
utf_8
|
556f4711a78ff297eba70268c848f9dd
|
%CNORMC Classifier normalisation for ML posterior probabilities
%
% W = CNORMC(W,A)
%
% INPUT
% W Classifier mapping
% A Labeled dataset
%
% OUTPUT
% W Scaled classifier mapping
%
% DESCRIPTION
% The mapping W is scaled such that the likelihood of the posterior
% probabilities of the samples in A, estimated by A*W*SIGM, are maximized.
% This is particularly suitable for two-class discriminants. To obtain
% consistent classifiers in PRTools, it is necessary to call CNORMC in the
% construction of all classifiers that output distances instead of densities
% or posterior probability estimates.
%
% If A has soft labels or target labels, W is returned without change.
%
% SEE ALSO
% MAPPINGS, DATASETS, CLASSC
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Sciences, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
% $Id: cnormc.m,v 1.5 2008/07/03 09:14:02 duin Exp $
function w = cnormc (w,a)
prtrace(mfilename);
% Parameters
reg = 1e-7; % Regularization, important for non-overlapping classes.
epsilon = 1e-6; % Stop when change in likelihood falls below this.
% Check arguments.
if (~ismapping(w))
error('first argument should be a mapping');
end
if (islabtype(a,'targets'))
prwarning(4,'Dataset has target labels, not taking any action.');
return;
end
if (islabtype(a,'soft'))
prwarning(4,'Dataset has soft labels, scaling optimization is not yet implemented.');
w = setscale(w,0.01); % just a trial
w = setout_conv(w,1);
return;
end
[m,k,c] = getsize(a); nlab = getnlab(a); p = getprior(a,0);
mapped = double(a*w); % Calculate mapping outputs.
if (c == 2) & (size(mapped,2) == 1)
mapped = [mapped -mapped]; % Old (perhaps unnecessary) transformation
% for classifiers that give distances.
end
mapped = mapped(m*(nlab-1)+[1:m]'); % Select output corresponding to label
% (uses 1D matrix addressing).
% Initialise variables.
scale = 1e-10; likelihood = -inf; likelihood_new = -realmax;
% Iteratively update scale to maximize likelihood of outputs.
while (abs(likelihood_new - likelihood) > epsilon)
% Class A is, for each object, the class the object is classified as;
% class B stands for all other classes.
pax = sigm(mapped*scale,1); % Estimate of P(class A|x).
pbx = 1 - pax; % Estimate of P(class B|x).
likelihood = likelihood_new;
likelihood_new = mean(p(nlab)'.*log(pax + realmin)) - reg*log(scale+1);
% Gradient step to maximize likelihood.
scale = scale + ((p(nlab)'.*pbx)' * mapped - reg*m/(scale+1)) / ...
((p(nlab)'.*mapped.*pax)'*(mapped.*pbx) - ...
m*reg/((scale+1)*(scale+1)) + realmin);
end
% Dirty trick to avoid 0 and inf.
scale = min(max(scale,0.1/(std(mapped)+1e-16)),1e16);
% Adjust mapping: set scale and set output conversion to SIGM(1).
w = setscale(w,scale);
w = setout_conv(w,1);
return;
|
github
|
jacksky64/imageProcessing-master
|
immoments.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/immoments.m
| 10,334 |
utf_8
|
1b7a586afad05f118e8011c8bf59958a
|
%IMMOMENTS PRTools routine for computing central moments of object images
%
% M = IMMOMENTS(A,TYPE,MOMENTS)
%
% INPUT
% A Dataset with object images dataset
% TYPE Desired type of moments
% MOMENTS Desired moments
%
% OUTPUT
% M Dataset with moments replacing images
%
% DESCRIPTION
% Computes for the image A a (1*N) vector M moments as defined by TYPE
% and MOMENTS. The following types are supported:
%
% TYPE = 'none' Standard moments as specified in the Nx2 array MOMENTS.
% Moments are computed with respect to the image center.
% This is the default for TYPE.
% Default MOMENTS = [1 0; 0 1];
% TYPE = 'central' Central moments as specified in the Nx2 array MOMENTS.
% Moments are computed with respect to the image mean
% Default MOMENTS = [2 0; 1 1; 0 2], which computes
% the variance in the x-direction (horizontal), the
% covariance between x and y and the variance in the
% y-direction (vertical).
% TYPE = 'scaled' Scale-invariant moments as specified in the Nx2 array
% MOMENTS. Default MOMENTS = [2 0; 1 1; 0 2].
% After: M. Sonka et al.,
% Image processing, analysis and machine vision.
% TYPE = 'hu' Calculates 7 moments of Hu, invariant to translation,
% rotation and scale.
% After: M. Sonka et al.,
% Image processing, analysis and machine vision.
% TYPE = 'zer' Calculates the Zernike moments up to the order as
% specified in the scalar MOMENTS (1 <= MOMENTS <= 12).
% MOMENTS = 12 generates in total 47 moments.
% After: A. Khotanzad and Y.H. Hong, Invariant image
% recognition by Zernike moments, IEEE-PAMI, vol. 12,
% no. 5, 1990, 489-497.
%
% See DATASETS
% Copyright: D. de Ridder, R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function b = immoments(a,type,mom)
if nargin < 3, mom = []; end
if nargin < 2 | isempty(type), type = 'none'; end
isobjim(a);
[m,k] = size(a);
im = data2im(a);
for i = 1:m
imi = im(:,:,i);
switch type
case {'none'}
if isempty(mom)
mom = [1 0; 0 1];
end
mout = moments(imi,mom(:,1),mom(:,2),0,0);
case {'central'}
if isempty(mom)
mom = [2 0; 1 1; 0 2];
end
mout = moments(imi,mom(:,1),mom(:,2),1,0);
case {'scaled'}
if isempty(mom)
mom = [2 0; 1 1; 0 2];
end
mout = moments(imi,mom(:,1)',mom(:,2)',1,1);
case {'hu' 'Hu'}
mout = hu_moments(imi);
case {'zer' 'zernike' 'Zernike'}
if isempty(mom)
mom = 12;
end
mout = zernike_moments(imi,mom);
otherwise
error('Moments should be of type none, central, scaled, hu or zer')
end
if i==1
b = zeros(m,length(mout));
end
b(i,:) = mout;
end
b = setdata(a,b);
% M = MOMENTS (IM, P, Q, CENTRAL, SCALED)
%
% Calculates moments of order (P+Q) (can be arrays of indentical length)
% on image IM. If CENTRAL is set to 1 (default: 0), returns translation-
% invariant moments; if SCALED is set to 1 (default: 0), returns scale-
% invariant moments.
%
% After: M. Sonka et al., Image processing, analysis and machine vision.
function m = moments (im,p,q,central,scaled)
if (nargin < 5), scaled = 0; end;
if (nargin < 4), central = 0; end;
if (nargin < 3)
error ('Insufficient number of parameters.');
end;
if (length(p) ~= length(q))
error ('Arrays P and Q should have equal length.');
end;
if (scaled & ~central)
error ('Scale-invariant moments should always be central.');
end;
% xx, yy are grids with co-ordinates
[xs,ys] = size(im);
[xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2);
if (central)
% Calculate zeroth and first order moments
m00 = sum(sum(im));
m10 = sum(sum(im.*xx));
m01 = sum(sum(im.*yy));
% This gives the center of gravity
xc = m10/m00;
yc = m01/m00;
% Subtract this from the grids to center the object
xx = xx - xc;
yy = yy - yc;
end;
% Calculate moment(s) (p,q).
for i = 1:length(p)
m(i) = sum(sum((xx.^p(i)).*(yy.^q(i)).*im));
end;
if (scaled)
c = 1 + (p+q)/2;
% m00 should be known, as scaled moments are always central
m = m ./ (m00.^c);
end;
return;
% M = HU_MOMENTS (IM)
%
% Calculates 7 moments of Hu on image IM, invariant to translation,
% rotation and scale.
%
% After: M. Sonka et al., Image processing, analysis and machine vision.
function m = hu_moments (im)
p = [ 1 0 2 1 2 0 3 ];
q = [ 1 2 0 2 1 3 0 ];
n = moments(im,p,q,1,1);
m(1) = n(2) + n(3);
m(2) = (n(3) - n(2))^2 + 4*n(1)^2;
m(3) = (n(7) - 3*n(4))^2 + (3*n(5) - n(6))^2;
m(4) = (n(7) + n(4))^2 + ( n(5) + n(6))^2;
m(5) = ( n(7) - 3*n(4)) * (n(7) + n(4)) * ...
( (n(7) + n(4))^2 - 3*(n(5) + n(6))^2) + ...
(3*n(5) - n(6)) * (n(5) + n(6)) * ...
(3*(n(7) + n(4))^2 - (n(5) + n(6))^2);
m(6) = (n(3) - n(2)) * ((n(7) + n(4))^2 - (n(5) + n(6))^2) + ...
4*n(1) * (n(7)+n(4)) * (n(5)+n(6));
m(7) = (3*n(5) - n(6)) * (n(7) + n(4)) * ...
( (n(7) + n(4))^2 - 3*(n(5) + n(6))^2) - ...
( n(7) - 3*n(4)) * (n(5) + n(6)) * ...
(3*(n(7) + n(4))^2 - (n(5) + n(6))^2);
return;
% M = ZERNIKE_MOMENTS (IM, ORDER)
%
% Calculates Zernike moments up to and including ORDER (<= 12) on image IM.
% Default: ORDER = 12.
function m = zernike_moments (im, order)
if (nargin < 2), order = 12; end;
if (order < 1 | order > 12), error ('order should be 1..12'); end;
% xx, yy are grids with co-ordinates
[xs,ys] = size(im);
[xx,yy] = meshgrid(-(ys-1)/2:1:(ys-1)/2,-(xs-1)/2:1:(xs-1)/2);
% Calculate center of mass and distance of any pixel to it
m = moments (im,[0 1 0],[0 0 1],0,0);
xc = m(2)/m(1); yc = m(3)/m(1);
xx = xx - xc; yy = yy - yc;
len = sqrt(xx.^2+yy.^2);
max_len = max(max(len));
% Map pixels to unit circle; prevent divide by zero.
rho = len/max_len;
rho_tmp = rho; rho_tmp(find(rho==0)) = 1;
theta = acos((xx/max_len)./rho_tmp);
% Flip angle for pixels above center of mass
yneg = length(find(yy(:,1)<0));
theta(:,1:yneg) = 2*pi - theta(:,1:yneg);
% Calculate coefficients
c = zeros(order,order);
s = zeros(order,order);
i = 1;
for n = 2:order
for l = n:-2:0
r = polynomial (n,l,rho);
c = sum(sum(r.*cos(l*theta)))*((n+1)/(pi*max_len^2));
s = sum(sum(r.*sin(l*theta)))*((n+1)/(pi*max_len^2));
m(i) = sqrt(c^2+s^2);
i = i + 1;
end;
end;
return
function p = polynomial (n,l,rho)
switch (n)
case 2, switch (l)
case 0, p = 2*(rho.^2)-1;
case 2, p = (rho.^2);
end;
case 3, switch (l)
case 1, p = 3*(rho.^3)-2*rho;
case 3, p = (rho.^3);
end;
case 4, switch (l)
case 0, p = 6*(rho.^4)-6*(rho.^2)+1;
case 2, p = 4*(rho.^4)-3*(rho.^2);
case 4, p = (rho.^4);
end;
case 5, switch (l)
case 1, p = 10*(rho.^5)-12*(rho.^3)+3*rho;
case 3, p = 5*(rho.^5)- 4*(rho.^3);
case 5, p = (rho.^5);
end;
case 6, switch (l)
case 0, p = 20*(rho.^6)-30*(rho.^4)+12*(rho.^2)-1;
case 2, p = 15*(rho.^6)-20*(rho.^4)+ 6*(rho.^2);
case 4, p = 6*(rho.^6)- 5*(rho.^4);
case 6, p = (rho.^6);
end;
case 7, switch (l)
case 1, p = 35*(rho.^7)-60*(rho.^5)+30*(rho.^3)-4*rho;
case 3, p = 21*(rho.^7)-30*(rho.^5)+10*(rho.^3);
case 5, p = 7*(rho.^7)- 6*(rho.^5);
case 7, p = (rho.^7);
end;
case 8, switch (l)
case 0, p = 70*(rho.^8)-140*(rho.^6)+90*(rho.^4)-20*(rho.^2)+1;
case 2, p = 56*(rho.^8)-105*(rho.^6)+60*(rho.^4)-10*(rho.^2);
case 4, p = 28*(rho.^8)- 42*(rho.^6)+15*(rho.^4);
case 6, p = 8*(rho.^8)- 7*(rho.^6);
case 8, p = (rho.^8);
end;
case 9, switch (l)
case 1, p = 126*(rho.^9)-280*(rho.^7)+210*(rho.^5)-60*(rho.^3)+5*rho;
case 3, p = 84*(rho.^9)-168*(rho.^7)+105*(rho.^5)-20*(rho.^3);
case 5, p = 36*(rho.^9)- 56*(rho.^7)+ 21*(rho.^5);
case 7, p = 9*(rho.^9)- 8*(rho.^7);
case 9, p = (rho.^9);
end;
case 10, switch (l)
case 0, p = 252*(rho.^10)-630*(rho.^8)+560*(rho.^6)-210*(rho.^4)+30*(rho.^2)-1;
case 2, p = 210*(rho.^10)-504*(rho.^8)+420*(rho.^6)-140*(rho.^4)+15*(rho.^2);
case 4, p = 129*(rho.^10)-252*(rho.^8)+168*(rho.^6)- 35*(rho.^4);
case 6, p = 45*(rho.^10)- 72*(rho.^8)+ 28*(rho.^6);
case 8, p = 10*(rho.^10)- 9*(rho.^8);
case 10, p = (rho.^10);
end;
case 11, switch (l)
case 1, p = 462*(rho.^11)-1260*(rho.^9)+1260*(rho.^7)-560*(rho.^5)+105*(rho.^3)-6*rho;
case 3, p = 330*(rho.^11)- 840*(rho.^9)+ 756*(rho.^7)-280*(rho.^5)+ 35*(rho.^3);
case 5, p = 165*(rho.^11)- 360*(rho.^9)+ 252*(rho.^7)- 56*(rho.^5);
case 7, p = 55*(rho.^11)- 90*(rho.^9)+ 36*(rho.^7);
case 9, p = 11*(rho.^11)- 10*(rho.^9);
case 11, p = (rho.^11);
end;
case 12, switch (l)
case 0, p = 924*(rho.^12)-2772*(rho.^10)+3150*(rho.^8)-1680*(rho.^6)+420*(rho.^4)-42*(rho.^2)+1;
case 2, p = 792*(rho.^12)-2310*(rho.^10)+2520*(rho.^8)-1260*(rho.^6)+280*(rho.^4)-21*(rho.^2);
case 4, p = 495*(rho.^12)-1320*(rho.^10)+1260*(rho.^8)- 504*(rho.^6)+ 70*(rho.^4);
case 6, p = 220*(rho.^12)- 495*(rho.^10)+ 360*(rho.^8)- 84*(rho.^6);
case 8, p = 66*(rho.^12)- 110*(rho.^10)+ 45*(rho.^8);
case 10, p = 12*(rho.^12)- 11*(rho.^10);
case 12, p = (rho.^12);
end;
end;
return
|
github
|
jacksky64/imageProcessing-master
|
treec.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/treec.m
| 16,984 |
utf_8
|
29eeede09436dd3d3938e71eb5adf663
|
%TREEC Build a decision tree classifier
%
% W = TREEC(A,CRIT,PRUNE,T)
%
% Computation of a decision tree classifier out of a dataset A using
% a binary splitting criterion CRIT:
% INFCRIT - information gain
% MAXCRIT - purity (default)
% FISHCRIT - Fisher criterion
%
% Pruning is defined by prune:
% PRUNE = -1 pessimistic pruning as defined by Quinlan.
% PRUNE = -2 testset pruning using the dataset T, or, if not
% supplied, an artificially generated testset of 5 x size of
% the training set based on parzen density estimates.
% see PARZENML and GENDATP.
% PRUNE = 0 no pruning (default).
% PRUNE > 0 early pruning, e.g. prune = 3
% PRUNE = 10 causes heavy pruning.
%
% If CRIT or PRUNE are set to NaN they are optimised by REGOPTC.
%
% see also DATASETS, MAPPINGS, TREE_MAP, REGOPTC
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: treec.m,v 1.9 2009/07/26 18:52:08 duin Exp $
function w = treec(a,crit,prune,t)
prtrace(mfilename);
% When no input data is given, an empty tree is defined:
if nargin == 0 | isempty(a)
if nargin <2,
w = mapping('treec');
elseif nargin < 3, w = mapping('treec',{crit});
elseif nargin < 4, w = mapping('treec',{crit,prune});
else, w = mapping('treec',{crit,prune,t});
end
w = setname(w,'Decision Tree');
return
end
if nargin < 3, prune = []; end
if nargin < 2, crit = []; end
parmin_max = [1,3;-1,10];
optcrit = inf;
if isnan(crit) & isnan(prune) % optimize criterion and pruning, grid search
global REGOPT_OPTCRIT REGOPT_PARS
for n = 1:3
defs = {n,0};
v = regoptc(a,mfilename,{crit,prune},defs,[2],parmin_max,testc([],'soft'),[0,0]);
if REGOPT_OPTCRIT < optcrit
w = v; optcrit = REGOPT_OPTCRIT; regoptpars = REGOPT_PARS;
end
end
REGOPT_PARS = regoptpars;
elseif isnan(crit) % optimize criterion
defs = {1,0};
w = regoptc(a,mfilename,{crit,prune},defs,[1],parmin_max,testc([],'soft'),[0,0]);
elseif isnan(prune) % optimize pruning
defs = {1,0};
w = regoptc(a,mfilename,{crit,prune},defs,[2],parmin_max,testc([],'soft'),[0,0]);
else % training for given parameters
islabtype(a,'crisp');
isvaldfile(a,1,2); % at least 1 object per class, 2 classes
%a = testdatasize(a);
a = dataset(a);
% First get some useful parameters:
[m,k,c] = getsize(a);
nlab = getnlab(a);
% Define the splitting criterion:
if nargin == 1 | isempty(crit), crit = 2; end
if ~isstr(crit)
if crit == 0 | crit == 1, crit = 'infcrit';
elseif crit == 2, crit = 'maxcrit';
elseif crit == 3, crit = 'fishcrit';
else, error('Unknown criterion value');
end
end
% Now the training can really start:
if (nargin == 1) | (nargin == 2)
tree = maketree(+a,nlab,c,crit);
elseif nargin > 2
% We have to apply a pruning strategy:
if prune == -1, prune = 'prunep'; end
if prune == -2, prune = 'prunet'; end
% The strategy can be prunep/prunet:
if isstr(prune)
tree = maketree(+a,nlab,c,crit);
if prune == 'prunep'
tree = prunep(tree,a,nlab);
elseif prune == 'prunet'
if nargin < 4
t = gendatp(a,5*sum(nlab==1));
end
tree = prunet(tree,t);
else
error('unknown pruning option defined');
end
else
% otherwise the tree is just cut after level 'prune'
tree = maketree(+a,nlab,c,crit,prune);
end
else
error('Wrong number of parameters')
end
% Store the results:
w = mapping('tree_map','trained',{tree,1},getlablist(a),k,c);
w = setname(w,'Decision Tree');
w = setcost(w,a);
end
return
%MAKETREE General tree building algorithm
%
% tree = maketree(A,nlab,c,crit,stop)
%
% Constructs a binary decision tree using the criterion function
% specified in the string crit ('maxcrit', 'fishcrit' or 'infcrit'
% (default)) for a set of objects A. stop is an optional argument
% defining early stopping according to the Chi-squared test as
% defined by Quinlan [1]. stop = 0 (default) gives a perfect tree
% (no pruning) stop = 3 gives a pruned version stop = 10 a heavily
% pruned version.
%
% Definition of the resulting tree:
%
% tree(n,1) - feature number to be used in node n
% tree(n,2) - threshold t to be used
% tree(n,3) - node to be processed if value <= t
% tree(n,4) - node to be processed if value > t
% tree(n,5:4+c) - aposteriori probabilities for all classes in
% node n
%
% If tree(n,3) == 0, stop, class in tree(n,1)
%
% This is a low-level routine called by treec.
%
% See also infstop, infcrit, maxcrit, fishcrit and mapt.
% Authors: Guido te Brake, TWI/SSOR, Delft University of Technology
% R.P.W. Duin, TN/PH, Delft University of Technology
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function tree = maketree(a,nlab,c,crit,stop)
prtrace(mfilename);
[m,k] = size(a);
if nargin < 5, stop = 0; end;
if nargin < 4, crit = []; end;
if isempty(crit), crit = 'infcrit'; end;
% Construct the tree:
% When all objects have the same label, create an end-node:
if all([nlab == nlab(1)])
% Avoid giving 0-1 probabilities, but 'regularize' them a bit using
% a 'uniform' Bayesian prior:
p = ones(1,c)/(m+c); p(nlab(1)) = (m+1)/(m+c);
tree = [nlab(1),0,0,0,p];
else
% now the tree is recursively constructed further:
[f,j,t] = feval(crit,+a,nlab); % use desired split criterion
if isempty(t)
crt = 0;
else
crt = infstop(+a,nlab,j,t); % use desired early stopping criterion
end
p = sum(expandd(nlab),1);
if length(p) < c, p = [p,zeros(1,c-length(p))]; end
% When the stop criterion is not reached yet, we recursively split
% further:
if crt > stop
% Make the left branch:
J = find(a(:,j) <= t);
tl = maketree(+a(J,:),nlab(J),c,crit,stop);
% Make the right branch:
K = find(a(:,j) > t);
tr = maketree(+a(K,:),nlab(K),c,crit,stop);
% Fix the node labelings before the branches can be 'glued'
% together to a big tree:
[t1,t2] = size(tl);
tl = tl + [zeros(t1,2) tl(:,[3 4])>0 zeros(t1,c)];
[t3,t4] = size(tr);
tr = tr + (t1+1)*[zeros(t3,2) tr(:,[3 4])>0 zeros(t3,c)];
% Make the complete tree: the split-node and the branches:
tree= [[j,t,2,t1+2,(p+1)/(m+c)]; tl; tr];
else
% We reached the stop criterion, so make an end-node:
[mt,cmax] = max(p);
tree = [cmax,0,0,0,(p+1)/(m+c)];
end
end
return
%MAXCRIT Maximum entropy criterion for best feature split.
%
% [f,j,t] = maxcrit(A,nlabels)
%
% Computes the value of the maximum purity f for all features over
% the data set A given its numeric labels. j is the optimum feature,
% t its threshold. This is a low level routine called for constructing
% decision trees.
%
% [1] L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone,
% Classification and regression trees, Wadsworth, California, 1984.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function [f,j,t] = maxcrit(a,nlab)
prtrace(mfilename);
[m,k] = size(a);
c = max(nlab);
% -variable T is an (2c)x k matrix containing:
% minimum feature values class 1
% maximum feature values class 1
% minimum feature values class 2
% maximum feature values class 2
% etc.
% -variable R (same size) contains:
% fraction of objects which is < min. class 1.
% fraction of objects which is > max. class 1.
% fraction of objects which is < min. class 2.
% fraction of objects which is > max. class 2.
% etc.
% These values are collected and computed in the next loop:
T = zeros(2*c,k); R = zeros(2*c,k);
for j = 1:c
L = (nlab == j);
if sum(L) == 0
T([2*j-1:2*j],:) = zeros(2,k);
R([2*j-1:2*j],:) = zeros(2,k);
else
T(2*j-1,:) = min(a(L,:),[],1);
R(2*j-1,:) = sum(a < ones(m,1)*T(2*j-1,:),1);
T(2*j,:) = max(a(L,:),[],1);
R(2*j,:) = sum(a > ones(m,1)*T(2*j,:),1);
end
end
% From R the purity index for all features is computed:
G = R .* (m-R);
% and the best feature is found:
[gmax,tmax] = max(G,[],1);
[f,j] = max(gmax);
Tmax = tmax(j);
if Tmax ~= 2*floor(Tmax/2)
t = (T(Tmax,j) + max(a(find(a(:,j) < T(Tmax,j)),j)))/2;
else
t = (T(Tmax,j) + min(a(find(a(:,j) > T(Tmax,j)),j)))/2;
end
if isempty(t)
[f,j,t] = infcrit(a,nlab);
prwarning(3,'Maxcrit not feasible for decision tree, infcrit is used')
end
return
%INFCRIT The information gain and its the best feature split.
%
% [f,j,t] = infcrit(A,nlabels)
%
% Computes over all features the information gain f for its best
% threshold from the dataset A and its numeric labels. For f=1:
% perfect discrimination, f=0: complete mixture. j is the optimum
% feature, t its threshold. This is a lowlevel routine called for
% constructing decision trees.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function [g,j,t] = infcrit(a,nlab)
prtrace(mfilename);
[m,k] = size(a);
c = max(nlab);
mininfo = ones(k,2);
% determine feature domains of interest
[sn,ln] = min(a,[],1);
[sx,lx] = max(a,[],1);
JN = (nlab(:,ones(1,k)) == ones(m,1)*nlab(ln)') * realmax;
JX = -(nlab(:,ones(1,k)) == ones(m,1)*nlab(lx)') * realmax;
S = sort([sn; min(a+JN,[],1); max(a+JX,[],1); sx]);
% S(2,:) to S(3,:) are interesting feature domains
P = sort(a);
Q = (P >= ones(m,1)*S(2,:)) & (P <= ones(m,1)*S(3,:));
% these are the feature values in those domains
for f=1:k, % repeat for all features
af = a(:,f);
JQ = find(Q(:,f));
SET = P(JQ,f)';
if JQ(1) ~= 1
SET = [P(JQ(1)-1,f), SET];
end
n = length(JQ);
if JQ(n) ~= m
SET = [SET, P(JQ(n)+1,f)];
end
n = length(SET) -1;
T = (SET(1:n) + SET(2:n+1))/2; % all possible thresholds
L = zeros(c,n); R = L; % left and right node object counts per class
for j = 1:c
J = find(nlab==j); mj = length(J);
if mj == 0
L(j,:) = realmin*ones(1,n); R(j,:) = L(j,:);
else
L(j,:) = sum(repmat(af(J),1,n) <= repmat(T,mj,1)) + realmin;
R(j,:) = sum(repmat(af(J),1,n) > repmat(T,mj,1)) + realmin;
end
end
infomeas = - (sum(L .* log10(L./(ones(c,1)*sum(L)))) ...
+ sum(R .* log10(R./(ones(c,1)*sum(R))))) ...
./ (log10(2)*(sum(L)+sum(R))); % criterion value for all thresholds
[mininfo(f,1),j] = min(infomeas); % finds the best
mininfo(f,2) = T(j); % and its threshold
end
g = 1-mininfo(:,1)';
[finfo,j] = min(mininfo(:,1)); % best over all features
t = mininfo(j,2); % and its threshold
return
%FISHCRIT Fisher's Criterion and its best feature split
%
% [f,j,t] = fishcrit(A,nlabels)
%
% Computes the value of the Fisher's criterion f for all features
% over the dataset A with given numeric labels. Two classes only. j
% is the optimum feature, t its threshold. This is a lowlevel
% routine called for constructing decision trees.
% Copyright R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function [f,j,t] = fishcrit(a,nlab)
prtrace(mfilename);
[m,k] = size(a);
c = max(nlab);
if c > 2
error('Not more than 2 classes allowed for Fisher Criterion')
end
% Get the mean and variances of both the classes:
J1 = find(nlab==1);
J2 = find(nlab==2);
u = (mean(a(J1,:),1) - mean(a(J2,:),1)).^2;
s = std(a(J1,:),0,1).^2 + std(a(J2,:),0,1).^2 + realmin;
% The Fisher ratio becomes:
f = u ./ s;
% Find then the best feature:
[ff,j] = max(f);
% Given the feature, compute the threshold:
m1 = mean(a(J1,j),1);
m2 = mean(a(J2,j),1);
w1 = m1 - m2; w2 = (m1*m1-m2*m2)/2;
if abs(w1) < eps % the means are equal, so the Fisher
% criterion (should) become 0. Let us set the thresold
% halfway the domain
t = (max(a(J1,j),[],1) + min(a(J2,j),[],1)) / 2;
else
t = w2/w1;
end
return
%INFSTOP Quinlan's Chi-square test for early stopping
%
% crt = infstop(A,nlabels,j,t)
%
% Computes the Chi-square test described by Quinlan [1] to be used
% in maketree for forward pruning (early stopping) using dataset A
% and its numeric labels. j is the feature used for splitting and t
% the threshold.
%
% [1] J.R. Quinlan, Simplifying Decision Trees,
% Int. J. Man - Machine Studies, vol. 27, 1987, pp. 221-234.
%
% See maketree, treec, classt, prune
% Guido te Brake, TWI/SSOR, TU Delft.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function crt = infstop(a,nlab,j,t)
prtrace(mfilename);
[m,k] = size(a);
c = max(nlab);
aj = a(:,j);
ELAB = expandd(nlab);
L = sum(ELAB(aj <= t,:),1) + 0.001;
R = sum(ELAB(aj > t,:),1) + 0.001;
LL = (L+R) * sum(L) / m;
RR = (L+R) * sum(R) / m;
crt = sum(((L-LL).^2)./LL + ((R-RR).^2)./RR);
return
%PRUNEP Pessimistic pruning of a decision tree
%
% tree = prunep(tree,a,nlab,num)
%
% Must be called by giving a tree and the training set a. num is the
% starting node, if omitted pruning starts at the root. Pessimistic
% pruning is defined by Quinlan.
%
% See also maketree, treec, mapt
% Guido te Brake, TWI/SSOR, TU Delft.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function tree = prunep(tree,a,nlab,num)
prtrace(mfilename);
if nargin < 4, num = 1; end;
[N,k] = size(a);
c = size(tree,2)-4;
if tree(num,3) == 0, return, end;
w = mapping('treec','trained',{tree,num},[1:c]',k,c);
ttt=tree_map(dataset(a,nlab),w);
J = testc(ttt)*N;
EA = J + nleaves(tree,num)./2; % expected number of errors in tree
P = sum(expandd(nlab,c),1); % distribution of classes
%disp([length(P) c])
[pm,cm] = max(P); % most frequent class
E = N - pm; % errors if substituted by leave
SD = sqrt((EA * (N - EA))/N);
if (E + 0.5) < (EA + SD) % clean tree while removing nodes
[mt,kt] = size(tree);
nodes = zeros(mt,1); nodes(num) = 1; n = 0;
while sum(nodes) > n; % find all nodes to be removed
n = sum(nodes);
J = find(tree(:,3)>0 & nodes==1);
nodes(tree(J,3)) = ones(length(J),1);
nodes(tree(J,4)) = ones(length(J),1);
end
tree(num,:) = [cm 0 0 0 P/N];
nodes(num) = 0; nc = cumsum(nodes);
J = find(tree(:,3)>0);% update internal references
tree(J,[3 4]) = tree(J,[3 4]) - reshape(nc(tree(J,[3 4])),length(J),2);
tree = tree(~nodes,:);% remove obsolete nodes
else
K1 = find(a(:,tree(num,1)) <= tree(num,2));
K2 = find(a(:,tree(num,1)) > tree(num,2));
tree = prunep(tree,a(K1,:),nlab(K1),tree(num,3));
tree = prunep(tree,a(K2,:),nlab(K2),tree(num,4));
end
return
%PRUNET Prune tree by testset
%
% tree = prunet(tree,a)
%
% The test set a is used to prune a decision tree.
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function tree = prunet(tree,a)
prtrace(mfilename);
[m,k] = size(a);
[n,s] = size(tree);
c = s-4;
erre = zeros(1,n);
deln = zeros(1,n);
w = mapping('treec','trained',{tree,1},[1:c]',k,c);
[f,lab,nn] = tree_map(a,w); % bug, this works only if a is dataset, labels ???
[fmax,cmax] = max(tree(:,[5:4+c]),[],2);
nngood = nn([1:n]'+(cmax-1)*n);
errn = sum(nn,2) - nngood;% errors in each node
sd = 1;
while sd > 0
erre = zeros(n,1);
deln = zeros(1,n);
endn = find(tree(:,3) == 0)'; % endnodes
pendl = max(tree(:,3*ones(1,length(endn)))' == endn(ones(n,1),:)');
pendr = max(tree(:,4*ones(1,length(endn)))' == endn(ones(n,1),:)');
pend = find(pendl & pendr); % parents of two endnodes
erre(pend) = errn(tree(pend,3)) + errn(tree(pend,4));
deln = pend(find(erre(pend) >= errn(pend))); % nodes to be leaved
sd = length(deln);
if sd > 0
tree(tree(deln,3),:) = -1*ones(sd,s);
tree(tree(deln,4),:) = -1*ones(sd,s);
tree(deln,[1,2,3,4]) = [cmax(deln),zeros(sd,3)];
end
end
return
%NLEAVES Computes the number of leaves in a decision tree
%
% number = nleaves(tree,num)
%
% This procedure counts the number of leaves in a (sub)tree of the
% tree by using num. If num is omitted, the root is taken (num = 1).
%
% This is a utility used by maketree.
% Guido te Brake, TWI/SSOR, TU Delft
% Copyright: R.P.W. Duin, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
function number = nleaves(tree,num)
prtrace(mfilename);
if nargin < 2, num = 1; end
if tree(num,3) == 0
number = 1 ;
else
number = nleaves(tree,tree(num,3)) + nleaves(tree,tree(num,4));
end
return
|
github
|
jacksky64/imageProcessing-master
|
getfeat.m
|
.m
|
imageProcessing-master/Matlab PRTools/prtools_com/prtools/getfeat.m
| 855 |
utf_8
|
d0e5811fcde6732e0e08c00c43e50989
|
%GETFEAT Get feature labels of a dataset or a mapping
%
% LABELS = GETFEAT(A)
% LABELS = GETFEAT(W)
%
% INPUT
% A,W Dataset or mapping
%
% OUTPUT
% LABELS Label vector with feature labels
%
% DESCRIPTION
% Returns the labels of the features in the dataset A or the labels
% assigned by the mapping W.
%
% Note that for a mapping W, getfeat(W) is effectively the same as GETLAB(W).
%
% SEE ALSO
% DATASETS, MAPPINGS, GETLAB
% Copyright: R.P.W. Duin, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
% $Id: getfeat.m,v 1.2 2006/03/08 22:06:58 duin Exp $
function labels = getfeat(par)
if isdataset(par) | isdatafile(par)
labels = getfeatlab(par);
elseif isa(par,'mapping')
labels = getlabels(par);
else
error([newline 'Dataset or mapping expected.'])
end
return;
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.