plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
urbste/MLPnP_matlab_toolbox-master
extractA.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/extractA.m
2,185
utf_8
13ae6c28060717fe4500e5c7fffd82c0
% Apart = extractA(At,Ajc,blk0,blk1,blkstart[,blkstart2]) % EXTRACTA Fast alternative to % Apart = At(blkstart(1):blkstart(2)-1,:). % Instead of blkstart(2), it takes "blkstart2" (if supplied) or % size(At,1)+1 (if neither blkstart(2) nor blkstart2) are available. % % Extract submatrix of % A with subscripts "blkstart(1):blkstart(2)-1" and has its nonzeros per column % bounded bij Ajc1:Ajc2. If Ajc1 = [] (Ajc2=[]) then start at column start % (end at column end) of A. % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also partitA function Apart = extractA(At,Ajc,blk0,blk1,blkstart,blkstart2) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
veccomplex.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/veccomplex.m
3,006
utf_8
f9c6ce5e9906c2b3f5d39a6ed53616c6
% z = veccomplex(x,cpx,K) % ********** INTERNAL FUNCTION OF SEDUMI ********** function z = veccomplex(x,cpx,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % z = zeros(length(x) - cpx.dim,1); dimflqr = K.f+K.l+sum(K.q)+sum(K.r); rsel = 1:dimflqr; nfx = length(cpx.f)+length(cpx.x); imsel = 1:nfx; imsel = imsel' + [zeros(length(cpx.f),1); vec(cpx.x)]; rsel(imsel) = 0; rsel = find(rsel); z(1:dimflqr-nfx) = x(rsel); z(cpx.f) = z(cpx.f) + sqrt(-1) * x(imsel(1:length(cpx.f))); z(cpx.x) = z(cpx.x) + sqrt(-1) * x(imsel(length(cpx.f)+1:end)); % ---------------------------------------- % PSD: % ---------------------------------------- hfirstk = 1+dimflqr + sum(K.s(1:K.rsdpN).^2); % start of Hermitian blocks zfirstk = 1+dimflqr - nfx; % start of psd blocks in z firstk = 1+dimflqr; % start if psd blocks in x k = 1; sk = 1; for knz = 1:length(cpx.s) newk = cpx.s(knz); if newk > k len = sum(K.s(sk:sk+newk-k-1).^2); z(zfirstk:zfirstk+len-1) = x(firstk:firstk+len-1); % copy real PSD blocks zfirstk = zfirstk + len; firstk = firstk + len; sk = sk + newk - k; % handled newk-k real blocks end nksqr = K.s(K.rsdpN + knz)^2; % insert a Hermitian block z(zfirstk:zfirstk+nksqr-1) = x(hfirstk:hfirstk+nksqr-1) ... + i * x(hfirstk+nksqr: hfirstk+2*nksqr-1); zfirstk = zfirstk + nksqr; hfirstk = hfirstk + 2*nksqr; k = newk + 1; % handled up to block newk. end if sk <= K.rsdpN % copy remaining real blocks len = sum(K.s(sk:K.rsdpN).^2); z(zfirstk:zfirstk+len-1) = x(firstk:firstk+len-1); end
github
urbste/MLPnP_matlab_toolbox-master
vec.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/vec.m
1,567
utf_8
f3fc35a93c8a5b99b592835a0b810dd5
% Y = VEC(x) Given an m x n matrix x, this produces the vector Y of length % m*n that contains the columns of the matrix x, stacked below each other. % % See also mat. function x = vec(X) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % [m n] = size(X); x = reshape(X,m*n,1);
github
urbste/MLPnP_matlab_toolbox-master
sdinit.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sdinit.m
4,508
utf_8
267a7f165ea8a2d377b14f1b99a7aba1
% [d, v,vfrm,y,y0, R] = sdinit(At,b,c,dense,K,pars) % SDINIT Initialize with identity solution, for self-dual model. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [d, v,vfrm,y,y0, R] = sdinit(At,b,c,dense,K,pars) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % -------------------------------------------------- % Initialize m = #eqns, n = order(K). % -------------------------------------------------- m = length(b); n = K.l + 2 * length(K.q) + K.rLen + K.hLen; % ------------------------------------------------------------ % Include some inf-norms to determine scaling/magnitude of data. % ------------------------------------------------------------ R.maxb = norm(b,inf); R.maxc = norm(c,inf); % ---------------------------------------- % Choose trivial soln on central path: % y = 0; v = mu * identity with mu := pars.mu * sqrt(norm(b)*norm(c)). % ---------------------------------------- y = zeros(m,1); mu = pars.mu * sqrt((1+R.maxb)*(1+R.maxc)); id = qreshape(eyeK(K),0,K); v = mu * id; y0 = n * mu; % b0 * y0 = norm(v)^2. R.b0 = mu; % ------------------------------------------------------------ % Determine primal/dual scaling "d0", so that x = d0*v, z=v/d0. % sd-var different: x0 = 1, z0 = mu^2. % ------------------------------------------------------------ d0 = sqrt((1+R.maxb) / (1+R.maxc)); x0 = pars.mu; z0 = mu^2 / x0; cx = d0 * (c'*v); R.sd = (z0 + cx)/ y0; % ---------------------------------------- % Since x=d0^2*z, we have d = d0 * identity % ---------------------------------------- d.l = d0^2 * ones(K.l,1); % LP d.l(1) = x0/z0; % =1/mu^2. d.det = d0^2 * ones(length(K.q),1); % LORENTZ d.q1 = (sqrt(2) * d0) * ones(length(K.q),1); % trace part of d0 * identity d.q2 = zeros(K.mainblks(3)-K.mainblks(2),1); d.auxdet = sqrt(2*d.det); d.auxtr = sqrt(2)*(d.q1 + d.auxdet); d.u = sqrt(d0) * id(K.lq+1:end); % sqrt(d0) * identity (PSD) d.perm = []; % ---------------------------------------- % Create Jordan frame of v = mu * identity % vfrm.q denotes Lorentz frame (norm 1/sqrt(2) blocks). % vfrm.s = I in Householder product form, % ---------------------------------------- vfrm.lab = mu*ones(n,1); % identity vfrm.q = d.q2; vfrm.s = qrK(d.u,K); % ---------------------------------------- % Residuals R.b, R.c, R.sd, and size-parameter R.b0. % A x - x0 b - y0 R.b = 0 % -A'y + x0 c + y0 R.c - z = 0 % b'y - c'x + y0 R.sd - z0 = 0 % Rb'y -Rc'x - x0 Rsd = -b0 % ---------------------------------------- R.b = d0 * Amul(At,dense,v,0); % x = d0 *v R.b = (R.b - x0*b) / y0; R.c = vecsym(v/d0-x0*c,K) / y0; % z = v/d0 R.c(1) = 0.0; % for artificial (x0,z0) % ------------------------------------------------------------ % Some inf-norms to determine scaling/magnitude of Residuals. % Note that if R.sd < 0 then this residual may be absorbed into z0. % ------------------------------------------------------------ R.maxRb = max(1e-6, norm(R.b,inf)); R.maxRc = max(1e-6, norm(R.c,inf)); R.norm = max([R.maxRb, R.maxRc, R.sd]); R.w = 2 * pars.w .* [R.maxRb;R.maxRc] ./ [1+R.maxb;1+R.maxc];
github
urbste/MLPnP_matlab_toolbox-master
psdscale.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/psdscale.m
6,141
utf_8
d6b8616345e5086c5e26c53ea7a16b13
% y = psdscale(ud,x,K [,transp]) % PSDSCALE Computes length lenud (=sum(K.s.^2)) vector y. % !transp (default) then y[k] = vec(Ldk' * Xk * Ldk) % transp == 1 then y[k] = vec(Udk' * Xk * Udk) % Uses pivot ordering ud.perm if available and nonempty. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also scaleK, factorK. function y = psdscale(ud,x,K,varargin) % This file is part of SeDuMi 1.3 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA %The function is quite dirty as the type and dimension of the inputs may %change, that is why we have so many subcases. if ~isempty(varargin) transp=varargin{1}; else transp=0; end Ks=K.s; if ~isempty(Ks) N=sum(Ks.^2); y(N,1)=0; else y=[]; return end startindices=K.sblkstart-K.mainblks(end)+1; %Sometimes x containts only the PSD part, sometimes the whole thing xstartindices=startindices+(length(x)-N); permindices=cumsum([1,Ks]); if ~transp if isstruct(ud) if isempty(ud.perm) for i=1:K.rsdpN Ksi=Ks(i); temp=tril(reshape(ud.u(startindices(i):startindices(i+1)-1),Ksi,Ksi)); y(startindices(i):startindices(i+1)-1)=... temp'... *reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi)... *temp; end else for i=1:K.rsdpN Ksi=Ks(i); temp=tril(reshape(ud.u(startindices(i):startindices(i+1)-1),Ksi,Ksi)); X=reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi); %We only permute if we have to if isequal(ud.perm(permindices(i):permindices(i+1)-1),(1:Ksi)') if nnz(X)/(Ksi*Ksi)<0.1 y(startindices(i):startindices(i+1)-1)=... temp'... *sparse(X)... *temp; else y(startindices(i):startindices(i+1)-1)=... temp'... *X... *temp; end else y(startindices(i):startindices(i+1)-1)=... temp'... *X(ud.perm(permindices(i):permindices(i+1)-1),ud.perm(permindices(i):permindices(i+1)-1))... *temp; end end end else for i=1:K.rsdpN Ksi=Ks(i); temp=tril(reshape(ud(startindices(i):startindices(i+1)-1),Ksi,Ksi)); X=reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi); if spars(X)<0.1 y(startindices(i):startindices(i+1)-1)=... temp'... *sparse(X)... *temp; else y(startindices(i):startindices(i+1)-1)=... temp'... *X... *temp; end end end else %transp if isstruct(ud) if isempty(ud.perm) for i=1:K.rsdpN Ksi=Ks(i); temp=triu(reshape(ud.u(startindices(i):startindices(i+1)-1),Ksi,Ksi)); y(startindices(i):startindices(i+1)-1)=... temp'... *reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi)... *temp; end else for i=1:K.rsdpN Ksi=Ks(i); temp=triu(reshape(ud.u(startindices(i):startindices(i+1)-1),Ksi,Ksi)); X=reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi); if isequal(ud.perm(permindices(i):permindices(i+1)-1),(1:Ksi)') if nnz(X)/(Ksi*Ksi)<0.1 y(startindices(i):startindices(i+1)-1)=temp'... *sparse(X)... *temp; else y(startindices(i):startindices(i+1)-1)=temp'... *X... *temp; end else tempy=zeros(Ksi,Ksi); tempy(ud.perm(permindices(i):permindices(i+1)-1),ud.perm(permindices(i):permindices(i+1)-1))=temp'... *X... *temp; y(startindices(i):startindices(i+1)-1)=tempy; end end end else for i=1:K.rsdpN Ksi=Ks(i); temp=triu(reshape(ud(startindices(i):startindices(i+1)-1),Ksi,Ksi)); y(startindices(i):startindices(i+1)-1)=... temp'... *reshape(x(xstartindices(i):xstartindices(i+1)-1),Ksi,Ksi)... *temp; end end end
github
urbste/MLPnP_matlab_toolbox-master
checkpars.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/checkpars.m
5,983
utf_8
cab850e9f461f590a5dafa49bbaba500
% pars = checkpars(pars,lponly) % CHECKPARS Fills in defaults for missing fields in "pars" structure. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function pars = checkpars(pars,lponly) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % -------------------------------------------------- % Algorithm selection parameters % -------------------------------------------------- if ~isfield(pars,'alg') | sum([0 1 2] == pars.alg) == 0 pars.alg = 2; end if ~isfield(pars,'beta') % 0.1 <= beta <= 0.9 (theoretically in (0,1)) pars.beta = 0.5; elseif pars.beta > 0.9 pars.beta = 0.9; elseif pars.beta < 0.1 pars.beta = 0.1; end if ~isfield(pars,'theta') % 0.01 <= theta <= 1.0 (theoretically in (0,1]) if pars.alg == 0 pars.theta = 1; else pars.theta = 0.25; end elseif pars.theta > 1.0 pars.theta = 1.0; elseif pars.theta < 0.01 pars.theta = 0.01; end if ~isfield(pars,'stepdif') pars.stepdif = 2; %adaptive step-differentiation end if ~isfield(pars,'w') pars.w = [1;1]; elseif length(pars.w)~=2 warning('pars.w should be vector of order 2') pars.w = [1;1]; else pars.w = max(pars.w,1e-8); % positive weights end pars.w = reshape(pars.w,2,1); % ------------------------------------------------- % Preprocessing % ------------------------------------------------- % How to treat free variables: 0: split them, 1: put them in Q-cone % (default) if ~isfield(pars,'free') pars.free=1; end if ~isfield(pars,'sdp') pars.sdp=1; %Enable/disable SDP preprocessing end % -------------------------------------------------- % Initialization % -------------------------------------------------- if ~isfield(pars,'mu') | pars.mu <= 0 pars.mu = 1; end % -------------------------------------------------- % Stopping and reporting criteria % -------------------------------------------------- if ~isfield(pars,'fid') % iter output file handle pars.fid = 1; end if ~isfield(pars,'eps') % stopping tolerance pars.eps = 1E-8; end if ~isfield(pars,'bigeps') % threshold for numerr=1 vs 2. pars.bigeps = 1E-3; end if ~isfield(pars,'maxiter') pars.maxiter = 150; end % -------------------------------------------------- % Debugging and algorithmic/diagnostic analysis % -------------------------------------------------- if ~isfield(pars,'vplot') pars.vplot = 0; end if ~isfield(pars,'stopat') pars.stopat = -1; end if ~isfield(pars,'errors') %Print and return the DIMACS errors pars.errors = 1; end if ~isfield(pars,'prep') %Print preprocessing information pars.prep=1; end % -------------------------------------------------- % Dense column handling % -------------------------------------------------- if ~isfield(pars,'denq') pars.denq = 0.75; end if ~isfield(pars,'denf') pars.denf=10; end % -------------------------------------------------- % Numerical control % -------------------------------------------------- if ~isfield(pars,'numtol') % Criterion for refinement pars.numtol = 5E-7; end if ~isfield(pars,'bignumtol') % Criterion for failure pars.bignumtol = 0.9; % will be multiplied by y0. end if ~isfield(pars,'numlvl') pars.numlvl = 0; end if isfield(pars,'chol') cholpars = pars.chol; if ~isfield(cholpars,'skip') cholpars.skip = 1; end if ~isfield(cholpars,'abstol') cholpars.abstol = 1E-20; end if ~isfield(cholpars,'canceltol') % Cancelation in LDL computation cholpars.canceltol = 1E-12; end if ~isfield(cholpars,'maxu') cholpars.maxu = 5E5; end if ~isfield(cholpars,'maxuden') cholpars.maxuden = 5E2; end else cholpars.skip = 1; cholpars.abstol = 1e-20; cholpars.canceltol = 1E-12; cholpars.maxu = 5E5; cholpars.maxuden = 5E2; end pars.chol = cholpars; if isfield(pars,'cg') % Criterion Conjugate Gradient cgpars = pars.cg; if ~isfield(cgpars,'qprec') % Use quadruple precision on main iters cgpars.qprec = 1; end if ~isfield(cgpars,'restol') % Required relative residual accuracy cgpars.restol = 5E-3; end if ~isfield(cgpars,'stagtol') % Stagnation in function progress cgpars.stagtol = 5E-14; end if ~isfield(cgpars,'maxiter') % Max number of cg steps cgpars.maxiter = 49; end if ~isfield(cgpars,'refine') cgpars.refine = 1; end else cgpars.qprec = 1; cgpars.restol = 5E-3; cgpars.stagtol = 5E-14; cgpars.maxiter = 49; cgpars.refine = 1; end pars.cg = cgpars;
github
urbste/MLPnP_matlab_toolbox-master
optstep.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/optstep.m
6,305
utf_8
48415e80b179e639152e1a6da3307dd2
% [x,y] = optstep(A,b,c, y0,y,d,v,dxmdz, K,L,symLden,... % dense,Ablkjc,Aord,ADA,DAt, feasratio, R,pars) % OPTSTEP Implements Mehrotra-Ye type optimality projection for % IPM-LP solver. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [x,y] = optstep(A,b,c, y0,y,d,v,dxmdz, K,L,symLden,... dense,Ablkjc,Aord,ADA,DAt, feasratio, R,pars) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % ------------------------------------------------------------ % For LP-problems, we PROJECT onto OPTIMAL FACE (x0 > 0) *OR* % onto a direction (x0 = 0) with the same sign for c'*x and b'*y. % ------------------------------------------------------------ if abs(abs(feasratio)-1) < 0.1 x0 = sqrt(d.l(1)) * v(1); z0 = x0 / d.l(1); %This value is never used. %deptol = 1E-10 * max(x0,z0); if (feasratio < -0.5) & (x0 < z0^2) x0 = 0; % Try project onto direction. end % ------------------------------------------------------------ % Set d(Non-basic-LP) = 0 % Nonbasic is where dx < dz i.e. dxmdz < 0, ideally: dx_N = -v_N, dz_N = 0. % ------------------------------------------------------------ lpNB = find(dxmdz < 0); d.l(lpNB) = 0; % -------------------------------------------------- % Compute ADA, with d[N] = 0. Hence A[B]*D[B]^2*A[B]'. % -------------------------------------------------- DAt = getDAtm(A,Ablkjc,dense,DAt.denq,d,K); if sum(K.s)==0 %ADA is global already absd=getada(A,K,d,DAt); else ADA = getada1(ADA, A, Ablkjc(:,3), Aord.lqperm, d, K.qblkstart); ADA = getada2(ADA, DAt, Aord, K); [ADA,absd] = getada3(ADA, A, Ablkjc(:,3), Aord, invcholfac(d.u, K, d.perm), K); end % ------------------------------------------------------------ % Block Sparse Cholesky: ADA(L.perm,L.perm) = L.L*diag(L.d)*L.L' % ------------------------------------------------------------ [L.L,L.d,L.skip,L.add] = blkchol(L,ADA,pars.chol,absd); clear ADA; % ------------------------------------------------------------ % Factor dense columns % ------------------------------------------------------------ [Lden,L.d] = deninfac(symLden, L,dense,DAt,d,absd,K.qblkstart,pars.chol); % ------------------------------------------------------------ % Solve ADAt*psi = -x0*b+A*D*v, dx = v-D*At*psi. LEAST SQUARES. % ------------------------------------------------------------ [psi,dx,err.kcg,err.b] = wrapPcg(L,Lden,A,dense,d, DAt,K,... (-x0) * b,v, pars.cg,pars.eps / pars.cg.restol); x = sqrt(d.l) .* dx; % ---------------------------------------- % CHECK WHETHER x[B] >= 0 AND WHETHER RESIDUAL DID NOT DETERIORATE. % ---------------------------------------- if (min(x) < 0.0) | ... (norm(err.b,inf) > 2 * max(max(y0,1e-10 * x0) * R.maxb, y0 * R.maxRb)) x = []; % Incorrect guess of LP-basis return else % ==================== DUAL PART (LP ONLY) ==================== % ------------------------------------------------------------ % Solve A[B]'*dy = x0*c[B]-A[B]'*y, so that zB=0. We solve % the equivalent system obtained after pre-multiplying with A[B]*P(d[b]). % ------------------------------------------------------------ rhs = sqrt(d.l) .* (x0*c - Amul(A,dense,y,1)); % ------------------------------------------------------------ % Solve ADA*dy = A*D*rhs. THIS IS DEBATABLE ! % ------------------------------------------------------------ dy = wrapPcg(L,Lden,A,dense,d, DAt,K,... zeros(length(b),1),rhs, pars.cg,pars.eps / pars.cg.restol); y = y+dy; % ------------------------------------------------------------ % CHECK WHETHER Z[N] >= 0 AND RESID ON Z[B]=0 DID NOT DETERIORATE. % ALSO, we need z0 >= 0 and x0+z0 > 0. % ------------------------------------------------------------ z = x0*c - Amul(A,dense,y,1); z(1) = 0; zB = z; zB(lpNB) = 0; normzB = norm(zB,inf); cx = c'*x; by = b'*y; z0 = by - cx; %[JFS 9/2003: changed condition below if (~isempty(lpNB) & (min(z(lpNB)) < 0.0)) | ... normzB > 5 * max(1E-10 * (x0+(x0==0)) * norm(c), min(y0,1e-8) * norm(R.c)) x = []; % Incorrect guess of LP-basis return end if x0 == 0 if z0 <= 0 x = []; % z0 <= 0 --> P/D Direction not improving anymore return end elseif z0 < - (5E-8) * (1+abs(by) +max(abs(b))) x = []; % x0>0, z0 << 0 then not optimal. return end end else % ------------------------------------------------------------ % If optimality step impossible , then return emptyset. % ------------------------------------------------------------ x = []; y = []; end
github
urbste/MLPnP_matlab_toolbox-master
pretransfo.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/pretransfo.m
12,320
utf_8
b696ed8c17798178167ef32da61fa239
% [At,b,c,K,prep] = pretransfo(At,b,c,K) % PRETRANSFO Checks data and then transforms into internal SeDuMi format. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [At,b,c,K,prep,origcoeff] = pretransfo(At,b,c,K,pars) % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % ---------------------------------------- % Make sure that all fields exist in K-structure % ---------------------------------------- if ~isfield(K,'f') % K.f K.f = 0; elseif isempty(K.f) K.f = 0; elseif (K.f~= floor(K.f)) | (K.f < 0) error('K.f should be nonnegative integer') end if ~isfield(K,'l') % K.l K.l = 0; elseif isempty(K.l) K.l = 0; elseif (K.l~= floor(K.l)) | (K.l < 0) error('K.l should be nonnegative integer') end if ~isfield(K,'q') % K.q K.q = []; elseif sum(K.q) == 0 K.q = []; elseif ~isempty(K.q) if (min(K.q) < 2) | any(K.q~= floor(K.q)) error('K.q should contain only integers bigger than 1') end if size(K.q,1) > 1 K.q = K.q'; end end if ~isfield(K,'r') % K.r K.r = []; elseif sum(K.r) == 0 K.r = []; elseif ~isempty(K.r) if (min(K.r) < 3) | any(K.r~= floor(K.r)) error('K.r should contain only integers bigger than 2') end if size(K.r,1) > 1 K.r = K.r'; end end if ~isfield(K,'s') % K.s K.s = []; elseif sum(K.s) == 0 K.s = []; elseif ~isempty(K.s) if min(K.s < 1) | any(K.s~= floor(K.s)) error('K.s should contain only positive integers') end if size(K.s,2) > 1 K.s = K.s'; end end % ------------------------------------------------------------ % Validity check: Info on complex interpretation of variables % ------------------------------------------------------------ if ~isfield(K,'ycomplex') % K.ycomplex K.ycomplex = []; elseif ~isempty(K.ycomplex) if (min(K.ycomplex) < 1) | (min(size(K.ycomplex)) > 1) | ... any(K.ycomplex~= floor(K.ycomplex)) error('K.ycomplex should be a list containing only positive integers') end if size(K.ycomplex,1) > 1 K.ycomplex = K.ycomplex'; end if max(K.ycomplex) > length(b) error('K.ycomplex out of range') end end if ~isfield(K,'xcomplex') % K.xcomplex K.xcomplex = []; elseif ~isempty(K.xcomplex) if (min(K.xcomplex) < 1) | (min(size(K.xcomplex))) > 1 | ... any(K.xcomplex~= floor(K.xcomplex)) error('K.xcomplex should be a list containing only positive integers') end if size(K.xcomplex,1) > 1 K.xcomplex = K.xcomplex'; end if max(K.xcomplex) > K.f+K.l+sum(K.q)+sum(K.r) error('K.xcomplex out of range') end end if ~isfield(K,'scomplex') % K.scomplex K.scomplex = []; elseif ~isempty(K.scomplex) if min(K.scomplex) < 1 | min(size(K.scomplex)) > 1 | ... any(K.scomplex~= floor(K.scomplex)) error('K.scomplex should be a list containing only positive integers') end if size(K.scomplex,1) > 1 K.scomplex = K.scomplex'; end if max(K.scomplex) > length(K.s) error('K.scomplex out of range') end end % ---------------------------------------- % Check size of At,b,c (w.r.t. K) % Let m = #eq-constraints, N = #variables (before transformations) % ---------------------------------------- if (min(size(b)) > 1) | (min(size(c)) > 1) error('Parameters b and c must be vectors') end m = min(size(At)); N = K.f + K.l + sum(K.q) + sum(K.r) + sum((K.s).^2); if nnz(b) == 0 b = sparse(m,1); elseif length(b) ~= m error('Size b mismatch') end if m ~= size(b,1) % make b an m x 1 vector b = b'; end if nnz(c) == 0 c = sparse(N,1); elseif length(c) ~= N error('Size c mismatch') end if N ~= size(c,1) % make c an N x 1 vector c = c'; end if N <= m error('Should have length(c) > length(b) in any sensible model') end if size(At,2) ~= m if m == size(At,1) At = At'; %user gave A instead of At. else error('Size At mismatches b.') end end if size(At,1) ~= N; error('Size At mismatches cone K.') end % ------------------------------------------------------------ % Check for NaN and Inf % ------------------------------------------------------------ if any(any(isnan(At))) | any(isnan(b)) | any(isnan(c)) error('A,b,c data contains NaN values') end if any(any(isinf(At))) | any(isinf(b)) | any(isinf(c)) error('A,b,c data contains Inf values') end % ------------------------------------------------------------ % Save the standardized data for further use if needed % ------------------------------------------------------------ if isfield(pars,'errors') & pars.errors==1 origcoeff.At=At; origcoeff.c=c; origcoeff.b=b; origcoeff.K=K; else origcoeff=[]; end % ---------------------------------------- % First add constraints IM(Ax)=IM(b) where i in K.ycomplex, i.e. % Make "imag(Ax) = imag(b)" and "imag(y)" explicit. % ---------------------------------------- if ~isempty(K.ycomplex) b = [real(b);... imag(b(K.ycomplex))]; % RE b'*y = [RE b; IM b]'*[RE y; IM y]. At = [At, sqrt(-1) * At(:,K.ycomplex)]; else b = real(b); end m = length(b); % ---------------------------------------- % Transform any complex data into internal format, % which uses only MATLAB's real representation. % ---------------------------------------- cpx = whichcpx(K); cpx.s = K.scomplex; cpx.dim = length(K.xcomplex) + sum(K.s(K.scomplex).^2); At = makereal(sparse(At),K,cpx); c = makereal(sparse(c),K,cpx); K.f = K.f + length(cpx.f); % Update cone K structure wrt complex K.q = vec(K.q) + vec(cpx.q); K.r = vec(K.r) + vec(cpx.r); sperm = ones(length(K.s),1); sperm(cpx.s) = 0; sperm = find(sperm); K.rsdpN = length(sperm); % #real sym PSD blocks K.s = K.s([vec(sperm); vec(cpx.s)]'); prep.cpx = cpx; % ---------------------------------------- % Transform R-cones (rotated Lorentz) into Q-cones (standard Lorentz). % ---------------------------------------- prep.lenKq = length(K.q); if ~isempty(K.r) c(K.f+1:end) = rotlorentz(c(K.f+1:end),K); At(K.f+1:end,:) = rotlorentz(At(K.f+1:end,:),K); K.q = [K.q; K.r]; K.r = []; prep.rq=1; else prep.rq=0; end % --------------------------------------------------- % Remove diagonal SDP blocks % --------------------------------------------------- if ~isfield(pars,'sdp') pars.sdp=1; % Enable/disable SDP preprocessing end if cpx.dim>0 pars.sdp=0; % No SDP preprocessing for complex problems end if length(K.s)>1000 | max(K.s)<10 pars.sdp=0; end if pars.sdp==1 Atf=At(1:K.f,:); cf=c(1:K.f); Kf=K.f; K.f=0; [At,b,c,K,prep.sdp]=preprocessSDP(At(Kf+1:end,:),b,c(Kf+1:end),K); At=[Atf;At]; c=[cf;c]; K.f=Kf; clear Atf cf Kf end % ------------------------------------------------------------ % Search for hidden free variables in split form and convert them into free % variables if pars.free=1 (they stay split if pars.free=0) % ------------------------------------------------------------ if ~isfield(pars,'free') pars.free=1; end if 0 & pars.free & K.l>0 %temporarily disabled due to a bug stest=c(K.f+1:K.f+K.l)-At(K.f+1:K.f+K.l,:)*rand(m,1); %Now we detect if stest contains the same vector twice, or opposite %vectors. [sabssorted,sindex]=sort(abs(stest)); sabsdiff=diff(sabssorted); zeroindex=find(sabsdiff==0); if length(zeroindex)>=2 %Allocate storage for the indices block1ind=zeros(1,length(zeroindex)); block2ind=block1ind; blockind=1; for i=zeroindex' if stest(sindex(i))==-stest(sindex(i+1)) block1ind(blockind)=sindex(i); block2ind(blockind)=sindex(i+1); blockind=blockind+1; end end %Get rid of the tails block1ind=block1ind(1:blockind-1); block2ind=block2ind(1:blockind-1); block1=false(1,K.l); block2=block1; block1(block1ind)=true; block2(block2ind)=true; %block1ind and block2ind contain the corresponding indices of the split %variables, while block1 and block2 the logical vectors that are used %for indexing At=[At(K.f+block1ind,:);At(1:K.f,:);At([false(1,K.f),~(block1+block2)],:);At(K.f+K.l+1:end,:)]; c=[c(K.f+block1ind);c(1:K.f);c([false(1,K.f),~(block1+block2)]);c(K.f+K.l+1:end)]; K.f=K.f+length(block1ind); K.l=K.l-2*length(block1ind); prep.freeblock1=block1ind; prep.freeblock2=block2ind; end end % ------------------------------------------------------------ % Transform F-cone into L-cone or Q-cone % Split if pars.free=0, put in Q-cone otherwise % ------------------------------------------------------------ prep.Kf = K.f; if K.f>0 switch pars.free case 0 At = [-At(1:K.f,:);At]; c = [-c(1:K.f);c]; K.l = K.l + 2 * K.f; K.f = 0; case 1 c=[c(K.f+1:K.f+K.l);0;c(1:K.f);c(K.f+K.l+1:end)]; At=[At(K.f+1:K.f+K.l,:);zeros(1,m);At(1:K.f,:);At(K.f+K.l+1:end,:)]; K.q=[K.f+1;K.q]; K.f=0; end end % -------------------------------------------------- % Split Lorentz blocks in trace-block + norm-bound-blocks % -------------------------------------------------- if ~isempty(K.q) At = qreshape(At,0,K); c = qreshape(c,0,K); end % ---------------------------------------- % Correct A s.t. At has tril-blocks (for PSD), % ---------------------------------------- At = vectril(At,K); c = vectril(c,K); % ---------------------------------------- % Create artificial (x0,z0) variable for % self-dual model % ---------------------------------------- c = [0;c]; %does not affect sparse/dense status of c. At = [zeros(1,m); At]; K.l = K.l + 1; % add (x0,z0) % ---------------------------------------- % Now K has field K.{l,q,s} % Make more detailed description of cone K: % Let K.blkstart(i):K.blkstart(i+1)-1 give the index range of block i. % Compute maxN=max(order), len=sum(order) for LORENTZ, real PSD and herm PSD. % yields: K.{l,q,s, rsdpN,blkstart, rLen,hLen, qMaxn,rMaxn,hMaxn} % ---------------------------------------- K.rsdpN = length(K.s) - length(prep.cpx.s); % # real symmetric PSD vars K = statsK(K); K.mainblks = K.blkstart(cumsum([1 1 length(K.q)])); K.qblkstart = K.blkstart(2:2+length(K.q)); % Also include blkend K.sblkstart = K.blkstart(2+length(K.q):end); K.lq = K.mainblks(end)-1; K.N = length(c); %Correct the sparsity structure of the variables, this can save a lot of %memory. %Correct the sparsity structure of the variables, this can save a lot of %memory. [i j s]=find(At); At=sparse(i,j,s,K.N,m); [i j s]=find(c); c=sparse(i,j,s,K.N,1); [i j s]=find(b); b=sparse(i,j,s,m,1);
github
urbste/MLPnP_matlab_toolbox-master
deninfac.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/deninfac.m
3,918
utf_8
503533718cba50772b20a1ec05ff62ec
% [Lden, Ld] = deninfac(symLden, L,dense,DAt, d, absd, qblkstart,pars) % DENINFAC % Uses pars.maxuden as max. allowable |L(i,k)|. Otherwise num. reordering. % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi function [Lden, Ld] = deninfac(symLden, L,dense,DAt, d, absd, qblkstart,pars) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------------------ % INITIALIZE: check the numerical tolerance parameters in "pars", % and supply with defaults if necessary. % ------------------------------------------------------------ if nargin < 7 pars.maxuden = 10; % Stability of product-form factors else if ~isfield(pars,'maxuden') pars.maxuden = 10; % Stability of product-form factors end end % -------------------------------------------------- % Scaling: let Ad = Aden * Dden, as [LP, QBLK, QNORM, QTR] % with QBLK=DAt.denq, and the others dense.A(:,j)*dj, % with dj = sqrt(d.l(k)) or dj=sqrt(d.det(k)). % NOTE that A*P(d)*A' = ADA + Ad * Ad'. % -------------------------------------------------- if length(dense.cols) > 0 i1 = dense.l+1; i2 = i1 + length(dense.q); Ad = [dense.A(:,1:i1-1), DAt.denq, dense.A(:,i2:end), dense.A(:,i1:i2-1)]; smult = [d.l(dense.cols(1:dense.l)); ones(length(dense.q),1); ... adenscale(dense,d,qblkstart); -d.det(dense.q)]; % -------------------------------------------------- % Correct for sparse part, i.e. let LAD = L\Ad % (this also handles L.perm) % -------------------------------------------------- LAD = sparfwslv(L,Ad, symLden.LAD); clear Ad; % -------------------------------------------------- % Factor the dense columns as "diag+rank-1"=diag(L.d)+LAD(:,k)*LAD(:,k)' % --------------------------------------------------' [Lden, Ld] = dpr1fact(LAD, L.d, symLden, smult, pars.maxuden); Lden.dz = symLden.dz; Lden.first = symLden.first; Lden.perm = symLden.perm; clear LAD; else % -------------------------------------------------- % If no dense columns % -------------------------------------------------- Lden.betajc = 0; Ld = L.d; Lden.rowperm = 1:length(L.d); end % ------------------------------------------------------------ % If still Ld(i) = 0, then set to something positive. Otherwise % we cannot do PCG. % ------------------------------------------------------------ skip = find(L.skip); if length(skip) > 0 dtol = pars.canceltol * absd(L.perm(skip)); dtol = max(dtol, pars.abstol); Ld(skip(Ld(skip) <= dtol)) = 1; end
github
urbste/MLPnP_matlab_toolbox-master
eigK.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/eigK.m
4,372
utf_8
06d3bd415e6d53fd32cb95cbdc12ff37
% [lab,q,f] = eigK(x,K) % % EIGK Computes the spectral values ("eigenvalues") or even the complete % spectral decomposition of a vector x with respect to a self-dual % homogeneous cone K. % % > LAB = EIGK(x,K) This yield the spectral values of x with respect to % the self-dual homogeneous cone that you describe in the structure % K. Up to 3 fields can be used, called K.l, K.q and K.s, for % Linear, Quadratic and Semi-definite. Type `help sedumi' for more % details on this structure. % % The length of the vector LAB is the order of the cone. Remark that % x in K if and only if LAB>=0, and x in int(K) if and only if LAB>0. % % > [LAB,Q,F] = EIGK(x,K) Also produces the eigenvectors for the symmetric and % Hermitian parts of x (corresponding to K.s), and the Lorentz frame F % for the Lorentz blocks in x (corresponding to K.q). This extended % version of EIGK is intended for INTERNAL USE BY SEDUMI. % % See also sedumi, mat, vec, eyeK. function [lab,q,f] = eigK(x,K) % THE M-FILE VERSION OF THIS FUNCTION IS HERE ONLY AS ILLUSTRATION. % SEE THE C-SOURCE FOR THE MEX-VERSION. % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ') lab = zeros(K.l + 2*length(K.q) + sum(K.s),1); % ---------------------------------------- % LP: lab = x % ---------------------------------------- lab(1:K.l) = x(1:K.l); firstk = K.l+1; nextlab = K.l+1; % ---------------------------------------- % LORENTZ: (lab, f) = qeig(x) % ---------------------------------------- if nargout < 3 for k=1:length(K.q) nk = K.q(k); lastk = firstk + nk - 1; lab(nextlab:nextlab+1) = qeig(x(firstk:lastk)); firstk = lastk + 1; nextlab = nextlab + 2; end else nextf = 1; for k=1:length(K.q) nk = K.q(k); lastk = firstk + nk - 1; [labk, fk] = qeig(x(firstk:lastk)); lab(nextlab:nextlab+1) = labk; f(nextf:nextf+nk-2) = fk; firstk = lastk + 1; nextlab = nextlab + 2; nextf = nextf + nk-1; end end % ---------------------------------------- % SDP: [q,lab] = eig(x) % ---------------------------------------- offq = firstk - 1; q = zeros(length(x)-offq,1); for k = 1:K.rsdpN nk = K.s(k); lastk = firstk + nk*nk - 1; Xk = mat(x(firstk:lastk),nk); Xk = (Xk + Xk') / 2; [Qk, Labk] = eig(Xk); lab(nextlab:nextlab+nk-1) = diag(Labk); q(firstk-offq:lastk-offq) = Qk; firstk = lastk + 1; nextlab = nextlab + nk; end for k = (1+K.rsdpN):length(K.s) nk = K.s(k); ifirstk = firstk + nk*nk; lastk = ifirstk + nk*nk - 1; Xk = mat(x(firstk:ifirstk-1)+sqrt(-1)*x(ifirstk:lastk),nk); [Qk, Labk] = eig(Xk); lab(nextlab:nextlab+nk-1) = real(diag(Labk)); q(firstk-offq:ifirstk-1-offq) = real(Qk); q(ifirstk-offq:lastk-offq) = imag(Qk); firstk = lastk + 1; nextlab = nextlab + nk; end
github
urbste/MLPnP_matlab_toolbox-master
wrapPcg.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/wrapPcg.m
4,662
utf_8
33ac2b19c5fe1a1134b316f4ebd23ff3
% [y,r,k, DAy] = normeqPcg(L,Lden,At,dense,d, DAt,K, b, cgpars, y0,rhs) % % WRAPPCG Solve y from AP(d)A' * y = b % using PCG-method and Cholesky L as conditioner. % If L is sufficiently accurate, then only 1 CG-step is needed. % In general, proceeds until ||DAy - DA'(AD^2A')^{-1}b|| % has converged (to zero). k = #(CG-iterations). % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi, loopPcg function [y,dx,k, r] = wrapPcg(L,Lden,At,dense,d, DAt,K, rb,rv,cgpars, y0) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % -------------------------------------------------- % INITIALIZE: % -------------------------------------------------- restol = y0 * cgpars.restol; dx = [sqrt(d.l).*rv(1:K.l); asmDxq(d,rv,K); psdscale(d,rv,K,1)]; r = Amul(At,dense,dx); if ~isempty(rb) r = r+rb; end % -------------------------------------------------- % Pre - Conditioning/ Direct Solving: % Solve L*THETA*L'*p = r, set ssqrNew = r'*inv(L*THETA*L')*r. % -------------------------------------------------- p = fwdpr1(Lden,sparfwslv(L, r)); y = p ./ L.d; ssqrNew = p'*y; p = sparbwslv(L, bwdpr1(Lden,y)); % -------------------------------------------------- % SCALING OPERATION AND MATRIX*VECTOR. % Let dx = D*A'*p % Set alpha = ssqrNew / ||dx||^2 % -------------------------------------------------- x = vecsym(Amul(At,dense,p,1), K); dx = [sqrt(d.l).*x(1:K.l); asmDxq(d,x,K); psdscale(d,x,K)]; ssqrdx = norm(dx)^2; if ssqrdx <= 0.0 y = zeros(length(r),1); k = 0; dx = rv; return end % -------------------------------------------------- % Take 1st step: y *= alpha, alpha:=ssqrNew / ssqrdx, % dx = rv - alpha * dx. % -------------------------------------------------- k = 1; alpha = ssqrNew / ssqrdx; y = alpha * p; dx = rv - alpha * dx; % -------------------------------------------------- % Compute 1st residual r := b + A*D*dx. (MATRIX*VECTOR). % -------------------------------------------------- x = [sqrt(d.l).*dx(1:K.l); asmDxq(d,dx,K); psdscale(d,dx,K,1)]; r = Amul(At,dense,x); if ~isempty(rb) r = r + rb; end normr = norm(r,inf); if normr < restol return % No CG nor refinement needed. end STOP = 0; trial = 0; k = 1; % -------------------------------------------------- % Conjugate Gradient until convergence % -------------------------------------------------- while ~STOP [dy,dk, x] = loopPcg(L,Lden,At,dense,d, DAt,K, r,p,ssqrNew,... cgpars, restol); if isempty(dy) return else % ------------------------------------------------------------ % Add step from PCG-method. If P(d) is highly ill-conditioned, then % "x=DA*dy" as returned from PCG is inaccurate, and the residual % based on x can differ from the internal PCG residual. Therefore, % we recompute r based on x, and refine if needed & allowed. % ------------------------------------------------------------ k = k + dk; y = y + dy; dx = dx - x; x = [sqrt(d.l).*dx(1:K.l); asmDxq(d,dx,K); psdscale(d,dx,K,1)]; r = Amul(At,dense,x); if ~isempty(rb) r = r+rb; end normr = norm(r,inf); if normr < restol return elseif trial >= cgpars.refine return else p = []; trial = trial + 1; % Refine end end end
github
urbste/MLPnP_matlab_toolbox-master
tdet.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/tdet.m
1,694
utf_8
7a2fdbbae2cf6f49c63b0fbe423048b2
% tdetx = tdet(x,K) % TDET Computes twice determinant for Lorentz block % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function tdetx = tdet(x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % if isempty(K.q) tdetx = zeros(0,1); else ix = K.mainblks; tdetx = x(ix(1):ix(2)-1).^2 - ddot(x(ix(2):ix(3)-1),x,K.qblkstart); end
github
urbste/MLPnP_matlab_toolbox-master
ordmmdmex.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/ordmmdmex.m
1,271
utf_8
52e36ec5ff391ea9ae94aeabe2ec625a
% perm = ordmmdmex(adjncy) % Computes multiple-minimum-degree permutation, for sparse % Cholesky. Adjncy is a sparse symmetric matrix; its diagonal % is irrelevant. % % Invokes SPARSPAK-A Release III. % % ********** INTERNAL FUNCTION OF CHOLTOOL ********** function perm = ordmmdmex(adjncy) % % This file is part of CholTool 1.00 % Copyright (C) 1998 Jos F. Sturm % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. % error('At OS prompt, type "make" to create cholTool mex-files.')
github
urbste/MLPnP_matlab_toolbox-master
quadadd.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/quadadd.m
1,820
utf_8
c572f57ef1c018be8ff6b54d32f1f68a
% [zhi,zlo] = quadadd(xhi,xlo,y) % QUADADD Compute (zhi+zlo) = (xhi+xlo) + y. % x an z are in double-double format (quad precision) % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [zhi,zlo] = quadadd(xhi,xlo,y) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
vectril.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/vectril.m
1,762
utf_8
596076d71a5720b9d23f6c2af80d7169
% y = vectril(x,K) % VECTRIL converts "PSD" blocks to lower triangular form. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function y = vectril(x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
partitA.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/partitA.m
1,819
utf_8
ac14fb30f072acdffff699c73c39969a
% Ablkjc = partitA(At,blkstart) % PARTITA Partition columns of A according to the subscripts listed in blkstart. % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi function Ablkjc = partitA(At,blkstart) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
psdinvjmul.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/psdinvjmul.m
1,787
utf_8
2f5dd1773e6936a7c8110592366f1204
% z = psdinvjmul(xlab,xfrm, y, K) % PSDINVJMUL solves x jmul z = y, with x = XFRM*diag(xlab)*XFRM' % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function z = psdinvjmul(xlab,xfrm, y, K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
getDAt.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getDAt.m
2,042
utf_8
5003dccd008c5373ceb19926294a9cad
% [DAtq, DAts] = getDAt(At,Ablk,colsel, d,ud,K) % %Creates % DAt.s full nnz x 1 vector, containing nonzeroblocks(T) with T a % sparse N x length(colsel) matrix, with Ablk.s(:,colsel) block struct. % NOTE: only triu(.) stored per block, with redundant 0's in tril. % So triu(Ud*Aik*Ud') in nonzero block (i,k). % DAt.q length(K.q) x m with Ablk.q sparsity structure. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [DAtq, DAts] = getDAt(At,Ablk,colsel, d,ud,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
bwdpr1.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/bwdpr1.m
1,834
utf_8
9c24d885cc3170d12fbb75ca74edecb1
% y = bwdpr1(Lden, b) % BWDPR1 Solves "PROD_k L(pk,betak)' * y = b", where % L(p,beta) = eye(n) + tril(p*beta',-1). % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi, dpr1fact, fwdpr1 function y = bwdpr1(Lden, b) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
frameit.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/frameit.m
1,599
utf_8
ba115a5f45db40a0d4b7b0d571b6d132
% x = frameit(lab,frmq,frms,K) % FRAMEIT % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function x = frameit(lab,frmq,frms,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % x = [lab(1:K.l); qframeit(lab,frmq,K); psdframeit(lab,frms,K)];
github
urbste/MLPnP_matlab_toolbox-master
getada1.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getada1.m
2,344
utf_8
72456fbfce3581bef8cffe63918f52ef
% ADA = getada1(ADA, A,Ajc2,perm, d, blkstart) % GETADA1 Compute ADA(i,j) = (D(d^2; LP,Lorentz)*A.t(:,i))' *A.t(:,j), % and exploit sparsity as much as possible. % Ajc2 points just beyond LP/Lorentz nonzeros for each column % blkstart = K.qblkstart partitions into Lorentz blocks. % % IMPORTANT 1: only LP and sparse Lorentz part. PSD part ignored altogether. % For Lorentz, it uses only det(dk) * ai[k]'*aj[k]. % IMPORTANT 2: Computes ADA only on triu(ADA(Aord.lqperm,Aord.lqperm)). % Remaining entries are set to 0. (CAUTION: sparse(ADA) will therefore % destroy the sparsity structure !). % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi, getada2, getada3 function ADA = getada1(ADA, A,Ajc2,perm, d, blkstart) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
sddir.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sddir.m
3,345
utf_8
00ebfa573895fcf59bc790b35a0eb489
% [dx,dy,dz,dy0, err] = sddir(L,Lden,Lsd,p,... % d,v,vfrm,At,DAt,dense, R,K,y,y0,b, pars) % SDDIR Direction decomposition for Ye-Todd-Mizuno self-dual embedding. % Here, p is the direction p = dx+dz. If p=[], then assume p=-v, % the "affine scaling" direction. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [dx,dy,dz,dy0, err] = sddir(L,Lden,Lsd,pv,... d,v,vfrm,At,DAt,dense, R,K,y,y0,b, pars,pMode) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------ % dy0 = v'*pv, ADp = A*D(d)*pv % ------------------------------------------------ switch pMode, case 1, % Spectral values w.r.t. vfrm dy0 = (vfrm.lab'*pv) / R.b0; pv = frameit(pv,vfrm.q,vfrm.s,K); % Let p = VFRM * p. case 2, % Affine scaling dy0 = -y0; pv = -v; case 3, dy0 = (v'*pv) / R.b0; end % ------------------------------------------------------------ % Solve AP(d)A' * ypv = dy0 * Rb + AD(dy0*DRc - pv) % and let xpv = (dy0*DRc - pv) - DA'*ypv. % This yields AD*xpv = err.b-dy0*Rb. % ------------------------------------------------------------ [dy,dx,err.kcg,err.b] = wrapPcg(L,Lden,At,dense,d, DAt,K,... dy0*R.b, dy0*Lsd.DRc - pv, pars.cg,min(1,y0) * R.maxRb); % ------------------------------------------------------------ % Solve denom * rdx0 = y0*(DRc'*xpv+Rb'*ypv)-(err.b'*y) % Here, rdx0 = deltax0/x0. % ------------------------------------------------------------ rdx0 = (y0*(Lsd.DRc'*dx+R.b'*dy) - err.b'*y) / Lsd.denom; % ------------------------------------------------------------ % Set dy -= rdx0 * ysd % dx = rdx0 * xsd - dx % error dRb := rdx0 * Lsd.b - err.b % ------------------------------------------------------------ dy = dy - rdx0 * Lsd.y; dx = rdx0 * Lsd.x - dx; % Now, AD*dx = deltax0*b + dy0*Rb... err.b = rdx0 * Lsd.b - err.b; % ... + err.b err.maxb = norm(err.b,inf); dx(1) = rdx0 * v(1); dz = pv - dx;
github
urbste/MLPnP_matlab_toolbox-master
bwblkslv.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/bwblkslv.m
1,547
utf_8
8392d4a8efb4ba647f3f5059fc90edc4
% BWBLKSLV Solves block sparse upper-triangular system. % y = bwblkslv(L,b) yields the same result as % y(L.perm,:) = L.L'\b % However, BWBLKSLV is faster than the built-in operator "\", % because it uses dense linear algebra and loop-unrolling on % supernodes. % % Typical use, with X sparse m x m positive definite and b is m x n: % L = sparchol(symbchol(X),X); % y = bwblkslv(L,fwblkslv(L,b)); % Then y solves X*y=b. % % See also symbchol, fwblkslv, mldivide, mrdivide function y = bwblkslv(L,b) % % This file is part of CholTool 1.00 % Copyright (C) 1998 Jos F. Sturm % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. % error('At OS prompt, type "make" to create cholTool mex-files.')
github
urbste/MLPnP_matlab_toolbox-master
sqrtinv.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sqrtinv.m
1,819
utf_8
1d87c91e62f09b80ad5b80563b96d812
% y = sqrtinv(q,vlab,K) % SQRTINV Computes for PSD-cone, y = (Q / diag(sqrt(vlab)))', so that % Y'*Y = inv(Q * diag(vlab) * Q'). % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function y = sqrtinv(q,vlab,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
vecsym.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/vecsym.m
1,769
utf_8
836318344fa94f06b78511242b1f98df
% y = vecsym(x,K) % VECSYM For the PSD submatrices, we let Yk = (Xk+Xk')/2 % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function y = vecsym(x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
makereal.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/makereal.m
1,811
utf_8
2a6f23ea7781f51d1b806b9a14c7f8e3
% y = makereal(x,K,cpx) % MAKEREAL Converts matrix in MATLAB-complex format to internal % SeDuMi format. % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi function y = makereal(x,K,cpx) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
Amul.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/Amul.m
2,017
utf_8
3aaf3bc6429b1b21f6f9c4d526ef9653
% y = Amul(At,dense,x,transp) % AMUL Computes A*x (transp=0) or A'*x (transp=1), taking care of dense.A. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function y = Amul(At,dense,x,transp) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % if nargin < 4 transp = 0; end if transp == 0 %Since At is sparse calculating At'*x takes a lot of time, while x'*At %is much faster! y = (x'*At)'; %y(m) and x(N). else y = full(At*x); % y(N) and x(m) end if length(dense.cols) > 0 if transp == 0 y = y + dense.A*x(dense.cols); else y = full(At*x); y(dense.cols) = dense.A'*x; end end
github
urbste/MLPnP_matlab_toolbox-master
stepdif.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/stepdif.m
6,835
utf_8
803f391d9c0c26053c444dba070d4fcf
% [t,rcdx] = stepdif(d,R,y0,x,y,z,dy0,dx,dy,dz,b,mint,tpmtd) % STEPDIF Implements Primal-Dual Step-Differentiation for self-dual model % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [t,rcdx] = stepdif(d,R,y0,x,y,z,dy0,dx,dy,dz,b,mint,tpmtd) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------------------ % Self-Dual Primal/Dual Step length differentiation: % ------------------------------------------------------------ d0 = sqrt(d.l(1)); % ------------------------------------------------------------ % Compute (rdy0, rcdx) := ((dy0,cdx) - rdx0 * (y0,cx))/y0 using that % cx - by + z0 = y0*R.sd. % ------------------------------------------------------------ rdx0 = dx(1) / x(1); rdy0 = dy0 / y0 - rdx0; rcdx = full(b'*dy - rdx0*(b'*y)) - (dz(1)-rdx0*z(1))/d0; rcdx = rdy0 * R.sd + rcdx / y0; gap = R.b0 * y0; if tpmtd > 0 del1 = (z'*dx) / gap; dRg = rdx0 * R.sd + rcdx; else del1 = (x'*dz) / gap; dRg = (dy0/y0) * R.sd - rcdx; end % ------------------------------------------------------------ % CASE Rsd > 0: gap constraint locally part of merit. % CASE Rsd < 0: gap constraint locally not part of merit. % ------------------------------------------------------------ usegap = (R.sd > 0) | (R.sd == 0 & dRg > 0); if usegap r0 = R.w(1)+R.w(2)+R.sd; beta = (rdy0 * R.w(1) + rcdx)/ r0; else r0 = R.w(1)+R.w(2); beta = rdy0 * R.w(1)/ r0; end % ------------------------------------------------------------ % CASE tp > td: merit is multiplied by 1 + t * (rdx0 + beta) % CASE tp < td: merit is multiplied by 1 + t * (dy0/y0 - beta) % ------------------------------------------------------------ if tpmtd > 0 beta = rdx0 + beta; else beta = (dy0/y0) - beta; end % ------------------------------------------------------------ % Compute the minimizer t of the local merit function % ------------------------------------------------------------ c = 2*[beta;rdx0*del1] - (rdx0 + del1)*[1;beta]; if c(1) <= 0 % ------------------------------------------------------------ % If merit decreasing at t=0, i.e. c(1)<0, then consider t > 0 % ------------------------------------------------------------ if c(2) >= 0 t = abs(tpmtd); % merit decreasing for all feasible t>=0 else t = min(abs(tpmtd),c(1) / c(2)); % Set derivative c(1)-t*c(2) to zero end else % ------------------------------------------------------------ % If merit increasing at t=0, i.e. c(1)>0, then consider t < 0 % ------------------------------------------------------------ if c(2) >= 0 t = mint; % c(1)-t*c(2) > 0 for all feasible t<=0 else t = max(mint,c(1) / c(2)); % Set derivative c(1)-t*c(2) to zero end end % ------------------------------------------------------------ % Compute the break point, where R.sd + t*dRg = 0. % ------------------------------------------------------------ if dRg ~= 0 tg = -R.sd / dRg; else tg = t; % no break point, keep optimal t end if tg <= 0 if t > 0 tg = t; % no positive break point, keep optimal t > 0. end else if t < 0 tg = t; % break point positive, keep optimal t < 0. end end % ------------------------------------------------------------ % If t beyond break point, then minimize merit for t >= tg. % ------------------------------------------------------------ if abs(t) > abs(tg) if usegap % Now, EXCLUDE gap for |t|>|tg|: beta = rdy0 * R.w(1)/ r0; alpha = 1 - R.sd / r0; % Remove contribution from Rsd else % Now, INCLUDE gap for |t|>|tg|: beta = (rdy0 * R.w(1) + rcdx)/ r0; alpha = 1 + R.sd / r0; % Include contribution from Rsd end if tpmtd > 0 beta = rdx0*alpha + beta; else beta = (dy0/y0)*alpha - beta; end % ------------------------------------------------------------ % Compute the minimizer |t| >= |tg| of the merit function beyond tg % ------------------------------------------------------------ c = 2*[beta;rdx0*del1] - (rdx0 + del1)*[1;beta]; % ------------------------------------------------------------ % If t >= tg >= 0: % ------------------------------------------------------------ if t >= 0 if c'*[1;-tg] <= 0 if c(2) >= 0 t = abs(tpmtd); % c(1)-t*c(2)<=0 for all feasible t>=tg else t = min(abs(tpmtd),c(1) / c(2)); % Set c(1)-t*c(2) to zero end else t = tg; % merit is increasing at t=tg >= 0. end % ------------------------------------------------------------ % If t <= tg <= 0: % ------------------------------------------------------------ else if c'*[1;-tg] >= 0 if c(2) >= 0 t = mint; % c(1)-t*c(2)>=0 for all feasible t<=tg else t = max(mint,c(1) / c(2)); % Set c(1)-t*c(2) to zero end else t = tg; % merit is decreasing at t=tg <= 0. end end end % |t|>|tg| % ------------------------------------------------------------ % Observe the break-point of Rp (tpmtd>0) or Rd (tpmtd<0), where % y0+t*dy0 = 0. Hitting this makes (P) resp. (D) feasible. % ------------------------------------------------------------ if y0+t*dy0 <= 0 t = -y0/dy0; % For simplicity, we don't search beyond break point. end rcdx = y0*rcdx;
github
urbste/MLPnP_matlab_toolbox-master
qblkmul.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/qblkmul.m
1,854
utf_8
6d0657e21b25ab28c73f188a12897063
% y = qblkmul(mu,d,blkstart) % QBLKMUL yields length(y)=blkstart(end)-blkstart(1) vector with % y[k] = mu(k) * d[k]; the blocks d[k] are partitioned by blkstart. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function y = qblkmul(mu,d,blkstart) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
psdjmul.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/psdjmul.m
1,879
utf_8
ecb7cb8f061c366336a3f25c0fb25188
% z = psdmul(x,y, K) % PSDMUL for full x,y. Computes (XY+YX)/2 % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function z = psdjmul(x,y, K) % % This file is part of SeDuMi 1.3 by Imre Polik % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % startindices=K.sblkstart; z=zeros(K.N-startindices(1)+1,1); Ks=K.s; endindex=K.mainblks(end); clear K for k = 1:length(Ks) Ksk=Ks(k); startk=startindices(k); startkp=startindices(k+1); temp=reshape(x(startk:startkp-1),Ksk,Ksk)*reshape(y(startk:startkp-1),Ksk,Ksk); z(startk-endindex+1:startkp-endindex)=temp+temp'; end z=z/2;
github
urbste/MLPnP_matlab_toolbox-master
widelen.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/widelen.m
4,536
utf_8
7ad4c5e8a463c198e9e5bc466e5c5bf2
% [t,wr,w] = widelen(xc,zc,y0, dx,dz,dy0,d2y0, maxt,pars,K) % % WIDELEN Computes approximate wide-region neighborhood step length. % Does extensive line search only if it pays, that is the resulting % rate will be at most twice the best possible rate, and the step-length % at least half of the best possible step length. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [t,wr,w] = widelen(xc,zc,y0, dx,dz,dy0,d2y0, maxt,pars,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % thetaSQR = pars.theta^2; ix = K.mainblks; % -------------------------------------------------- % For descent directions (dy0/y0 < 0), let fullt be % s.t. y0 + fullt * dy0 + fullt^2 * min(d2y0,0) = 0 (NB: y0 is duality gap) % This is used to compute the desired accuracy in t (when rate -> 0). % -------------------------------------------------- if dy0 < -1E-5 * y0 if d2y0 < 0 % Concave decreasing: gap(fullt) < 0 where y0+fullt*dy0=0. fullt = 2 * y0 /(-dy0 + sqrt(dy0^2 - 4*y0*d2y0)); % < y0/abs(dy0). else fullt = y0 / (-dy0); end if fullt <= 0 error('Assertion failed: fullt <= 0') end else fullt = 2*maxt; end tR = min(maxt, fullt); if tR < 0 error('Assertion failed: tR >= 0') end % ------------------------------------------------------------ % rate = (y0+t*dy0)/y0 = 1 - (t/fullt) = (fullt - t)/fullt. % It can never be better than (fullt - tR)/fullt. % The next criterion ensures that we're never worse than twice best rate' % ------------------------------------------------------------ t = 0.0; ntry = 0; % do loop at least once while (t < 0.5 * tR) | ( (fullt-tR) + (1e-7 * fullt) < (tR - t) ) | ntry==0 ntry = 1; if tR == maxt % Bisection tM = 0.1 * t + 0.9 * tR; else tM = 0.5 * (t + tR); end xM = xc + tM*dx; zM = zc + tM*dz; % -------------------------------------------------- % Let w = D(xM)*zM, compute lambda(w). % -------------------------------------------------- % LORENTZ wM.tdetx = tdet(xM,K); wM.tdetz = tdet(zM,K); detxz = wM.tdetx .* wM.tdetz / 4; if isempty(K.q) lab2q = zeros(0,1); else halfxz = (xM(ix(1):ix(2)-1).*zM(ix(1):ix(2)-1)... + ddot(xM(ix(2):ix(3)-1),zM,K.qblkstart)) / 2; tmp = halfxz.^2 - detxz; if tmp > 0 lab2q = halfxz + sqrt(tmp); else lab2q = halfxz; end end % PSD wM.ux = psdfactor(xM,K); wM.s = psdscale(wM.ux,zM,K); % ALL: wM.lab = [xM(1:K.l).*zM(1:K.l); detxz ./ lab2q; lab2q; psdeig(wM.s,K)]; [deltaM,hM,alphaM] = iswnbr(wM.lab, thetaSQR); if (deltaM <= pars.beta) | ((tM < fullt / 10) & (deltaM < 1)) w = wM; t = tM; wr.h=hM; wr.alpha=alphaM; wr.delta=deltaM; else tR = tM; end end % ------------------------------------------------------------ % In the nasty case that we could not make any progress, (t=0), % take last middle value. % ------------------------------------------------------------ if t == 0 w = wM; t = tM; wr.h=hM; wr.alpha=alphaM; wr.delta=deltaM; end wr.desc = 1; % always descent direction.
github
urbste/MLPnP_matlab_toolbox-master
psdeig.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/psdeig.m
2,542
utf_8
bc17e014fe3b156a7abb2d2def46cf81
% [lab,q] = psdeig(x,K) % PSDEIG Computes spectral coefficients of x w.r.t. K % Arguments "q" is optional - without it's considerably faster. % FLOPS indication: 1.3 nk^3 versus 9.0 nk^3 for nk=500, % 1.5 nk^3 9.8 nk^3 for nk=50. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [lab,q] = psdeig(x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % Ks=K.s; if isempty(Ks) lab=[]; return end lab(sum(Ks),1)=0; startindices=K.sblkstart-K.mainblks(end)+1; labindices=cumsum([1,Ks]); ncones=length(Ks); if nargout==1 %only eigenvalues are needed, not eigenvectors for k = 1:ncones Xk = reshape(x(startindices(k):startindices(k+1)-1),Ks(k),Ks(k)); lab(labindices(k):labindices(k+1)-1) = eig(Xk + Xk'); end else %eigenvalues and eigenvectors q=zeros(sum(Ks.^2),1); for k = 1:ncones Xk = reshape(x(startindices(k):startindices(k+1)-1),Ks(k),Ks(k)); [q(startindices(k):startindices(k+1)-1), temp] = eig(Xk + Xk'); lab(labindices(k):labindices(k+1)-1)=diag(temp); end end %We actually got the eigenvalues of twice the matrices, so we need to scale %them back. lab=lab/2;
github
urbste/MLPnP_matlab_toolbox-master
sdfactor.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sdfactor.m
2,631
utf_8
e62701908298cc22d28d0d80e71a8eda
% [Lsd,Rscl] = sdfactor(L,Lden, dense,DAt, d,v,y, At,K,R,y0,pars) % SDFACTOR Factor self-dual embedding % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi function Lsd = sdfactor(L,Lden, dense,DAt, d,v,y, At,c,K,R,y0,pars) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------------------ % Compute D*Rc % ------------------------------------------------------------ Lsd.DRc = [sqrt(d.l).*R.c(1:K.l); asmDxq(d,R.c,K); psdscale(d,R.c,K)]; % ------------------------------------------------------------ % Solve AP(d)A' * ysd = y0*Rb + AD(y0*DRc-2v) % and let xsd = (y0*DRc-2v) - DA'*ysd. % ------------------------------------------------------------ [Lsd.y,Lsd.x,Lsd.kcg,Lsd.b] = wrapPcg(L,Lden,At,dense,d, DAt,K, y0*R.b,... y0*Lsd.DRc - 2*v, pars.cg, min(1,y0)*R.maxRb); % ------------------------------------------------------------ % Now let ysd -= y and xsd += v. % It follows then that AD*xsd = x0 * b + Lsd.b, where Lsd.b = numerical error. % ------------------------------------------------------------ Lsd.y = Lsd.y - y; Lsd.x = Lsd.x + v; % ------------------------------------------------------------ % Compute denom = norm(xsd)^2 % ------------------------------------------------------------ Lsd.denom = norm(Lsd.x)^2 + Lsd.b'*Lsd.y;
github
urbste/MLPnP_matlab_toolbox-master
maxstep.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/maxstep.m
2,654
utf_8
db3c75d25c32a5a7d4faacb1fec04a1a
% tp = maxstep(dx,x,auxx,K) % MAXSTEP Computes maximal step length to the boundary of the cone K. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function tp = maxstep(dx,x,auxx,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------------------ % LP: % ------------------------------------------------------------ mindx = min(dx(1:K.l) ./ x(1:K.l)); % ------------------------------------------------------------ % Lorentz: compute min(eig(y)) with y:=D(x)\dx. We have % lab1+lab2 = tr y = x'Jdx / detx, and % (lab2-lab1)^2 = (tr y)^2 - 4 det y = [(x'Jdx)^2 - tdetx*tdetdx] / detx^2 % ------------------------------------------------------------ if ~isempty(K.q) ix = K.mainblks; reltr = x(ix(1):ix(2)-1).*dx(ix(1):ix(2)-1)... - ddot(x(ix(2):ix(3)-1),dx,K.qblkstart); norm2 = reltr.^2 - tdet(dx,K).*auxx.tdet; if norm2 > 0 norm2 = sqrt(norm2); end mindxq = min( (reltr - norm2)./auxx.tdet); mindx = min(mindx, mindxq); end % ------------------------------------------------------------ % PSD: % ------------------------------------------------------------ if ~isempty(K.s) reldx = psdinvscale(auxx.u, dx,K); mindxs = minpsdeig(reldx, K); mindx = min(mindx, mindxs); end tp = 1 / max(-mindx, 1E-16);
github
urbste/MLPnP_matlab_toolbox-master
getada3.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getada3.m
2,058
utf_8
d49bb1a28bf96a590093e290a6d3a67d
% [ADA,absd] = getada3(ADA, A,Ajc1,Aord, udsqr,K) % GETADA3 Compute ADA(i,j) = (D(d^2)*A.t(:,i))' *A.t(:,j), % and exploit sparsity as much as possible. % absd - length m output vector, containing % absd(i) = abs((D(d^2)*A.t(:,i))' *abs(A.t(:,i)). % Hence, diag(ADA)./absd gives a measure of cancelation (in [0,1]). % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi, getada1, getada2 function [ADA,absd] = getada3(ADA, A,Ajc1,Aord, udsqr,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
mat.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/mat.m
1,783
utf_8
b49140ac21c615f717adf5867e9c6906
% Y = MAT(x,n) or Y = MAT(x) (the 2nd argument is optional) % Given a vector of length n^2, this produces the n x n matrix % Y such that x = vec(Y). In other words, x contains the columns of the % matrix Y, stacked below each other. % % See also vec. function X = mat(x,n) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % if nargin < 2 n = floor(sqrt(length(x))); if (n*n) ~= length(x) error('Argument X has to be a square matrix') end end X = reshape(x,n,n);
github
urbste/MLPnP_matlab_toolbox-master
blkchol.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/blkchol.m
2,546
utf_8
c68bccd002bc901358fe00cd2e2c0720
% [L.L, L.d, L.skip, L.add] = blkchol(L,X,pars,absd) % BLKCHOL Fast block sparse Cholesky factorization. % The sparse Cholesky factor will be placed in the fields L.L, L.d; % the symbolic factorization fields remain unchanged. % On input, L should be the symbolic factorization structure of X, % as created by SYMBCHOL. % Performs LDL' factorization of X(L.perm,L.perm). % % There are important differences with CHOL(X(L.perm,L.perm))': % % - BLKCHOL uses the supernodal partition L.XSUPER, % to use dense linear algebra on dense subblocks. % This explains the performance benefit of BLKCHOL over CHOL. % % - BLKCHOL never fails. % % - To solve "X*y = b", use % >> [L.L,L.d,L.skip,L.add] = blkchol(symbchol(X),X); % >> L.d(find(L.skip)) = inf; % >> y = sparbwslv(L, sparfwslv(L,b) ./ L.d); % % For numerical reasons, "blkchol" may skip unstable pivots, % or add on the diagonal. Such pivots are then listed in L.{skip,add}. % % See also symbchol, sparfwslv, sparbwslv, [symbfact, symmmd, chol]. function [L.L, L.d, L.skip, L.add] = blkchol(L,X,pars,absd) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % error('Build the SeDuMi binaries by typing make at the command prompt.');
github
urbste/MLPnP_matlab_toolbox-master
psdfactor.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/psdfactor.m
2,394
utf_8
4b39d3f804a5c6dd20d084a82c1a41e3
% [ux,ispos] = psdfactor(x,K) % PSDFACTOR UX'*UX Cholesky factorization % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function [ux,ispos] = psdfactor(x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % disp('The SeDuMi binaries are not installed.') % disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') % disp('For more information see the file Install.txt.') % error(' ') Ks=K.s; N=sum(Ks.^2); ux=zeros(N,1); ispos=true; startindices=K.sblkstart-K.mainblks(end)+1; %Sometimes x containts only the PSD part, sometimes the whole thing xstartindices=startindices+(length(x)-N); for i=1:K.rsdpN [temp, flag]=chol(reshape(x(xstartindices(i):xstartindices(i+1)-1),Ks(i),Ks(i)),'lower'); if ~flag %The matrix is PD ux(startindices(i):startindices(i+1)-1)=(temp+tril(temp,-1)'); % TODO This could be made a bit faster else %The matrix is not PD, stop immediately. ispos=false; break end end %TODO: Check if the matrices are ever sparse.
github
urbste/MLPnP_matlab_toolbox-master
adendotd.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/adendotd.m
1,833
utf_8
e21167ad58997c4f3bdd86d2433972f2
% Ad = Adendotd(dense, d, sparAd, Ablk, blkstart) % ADENDOTD Computes d[k]'*Aj[k] for Lorentz blocks that are to be factored % by dpr1fact. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function Ad = Adendotd(dense, d, sparAd, Ablk, blkstart) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
qjmul.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/qjmul.m
2,476
utf_8
e434772ee132e40b3ab58f68111dd18d
% z = qjmul(x,y,K) % QJMUL Implements Jordan product for Lorentz cones % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function z = qjmul(x,y,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % if isempty(K.q) z = zeros(0,1); else % ------------------------------------------------------------ % Let i1, i2 such that x(i1:i2-1) = "x1", i.e. Lorentz trace part. % ------------------------------------------------------------ if length(x) ~= length(y) error('x,y size mismatch'); end ix = K.mainblks; if length(x) < K.lq % Only q-part given? ix = (1-ix(1)) + ix; if length(x) ~= length(y) error('x, y size mismatch') end end % ------------------------------------------------------------ % Let z1 = x'*y/sqrt2, z2 = (x1*y2+y1*x2)/sqrt2 % ------------------------------------------------------------ z1 = x(ix(1):ix(2)-1).*y(ix(1):ix(2)-1)... + ddot(x(ix(2):ix(3)-1),y,K.qblkstart); z = [z1; qblkmul(x(ix(1):ix(2)-1),y,K.qblkstart)... + qblkmul(y(ix(1):ix(2)-1),x,K.qblkstart)] / sqrt(2); end
github
urbste/MLPnP_matlab_toolbox-master
wregion.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/wregion.m
8,078
utf_8
ce92b33341db85f802e7d9e5cd2a69d7
% [xscl,y,zscl,y0, w,relt, dxmdz,err, wr] = wregion(L,Lden,Lsd,... % d,v,vfrm,A,DAt,dense, R,K,y,y0,b, pars, wr) % WREGION Implements Sturm-Zhang Wide-region Interior Point Method. % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi function [xscl,y,zscl,y0, w,relt, dxmdz,err, wr] = ... wregion(L,Lden,Lsd,d,v,vfrm,A,DAt,dense, R,K,y,y0,b, pars, wr) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % STOP = 0; n = length(vfrm.lab); % ---------------------------------------- % INITIAL CENTERING % ---------------------------------------- if wr.delta > 0.0 % initial centering needed ? vTAR = (1-wr.alpha) * max(wr.h,vfrm.lab); pv = 2*(vTAR-vfrm.lab); pMode = 1; [dx, dy, dz, dy0, errc] = sddir(L,Lden,Lsd,pv,... d,v,vfrm,A,DAt,dense, R,K,y,y0,b, pars,pMode); % ------------------------------------------------------------ % Take initial centering step % ------------------------------------------------------------ xc = v + dx; %scaled zc = v + dz; yc = y + dy; y0c = y0+dy0; uxc.tdet = tdet(xc,K); uzc.tdet = tdet(zc,K); [uxc.u,xispos] = psdfactor(xc,K); [uzc.u,zispos] = psdfactor(zc,K); critval = max(y0, sqrt(min(d.l(1),1/d.l(1)))*v(1)); % >= y0 critval = max(1E-3, pars.cg.restol) * critval * R.maxRb; if (~xispos) | (~zispos) | (errc.maxb > critval) ... | ( (~isempty(uxc.tdet)) & (min(uxc.tdet) <= 0.0)) ... | ( (~isempty(uzc.tdet)) & (min(uzc.tdet) <= 0.0)) STOP = -1; % Reject and terminate dxmdz = []; err = errc; end pv = -vTAR; else vTAR = vfrm.lab; xc = v; % No initial centering needed. ix = K.mainblks; uxc.tdet = 2*vfrm.lab(ix(1):ix(2)-1) .* vfrm.lab(ix(2):2*ix(2)-ix(1)-1); [uxc.u] = psdfactor(xc,K); zc = v; uzc = uxc; %zscl=xscl=v yc = y; y0c = y0; errc.b = sparse(length(y),1); errc.maxb = 0; errc.db0 = 0; pv = []; % Means pv = -v, the predictor direction. pMode = 2; end % ---------------------------------------- % PREDICTOR % ---------------------------------------- if STOP ~= -1 [dx,dy,dz,dy0, err] = sddir(L,Lden,Lsd,pv,... d,v,vfrm,A,DAt,dense, R,K,y,y0,b, pars,pMode); dxmdz = dx-dz; if (pars.alg ~= 0) pMode = 3; gd1 = [dxmdz(1:K.l)./vTAR(1:K.l);qinvjmul(vTAR,vfrm.q,dxmdz, K);... psdinvjmul(vTAR,vfrm.s,dxmdz, K)]; maxt1 = min(maxstep(dx,xc,uxc,K), maxstep(dz,zc,uzc,K)); % ---------------------------------------- % 2ND ORDER CORRECTOR % alg == 1 : 2nd order expansion of v = sqrt(eig(D(x)z)), like Sturm-Zhang. % alg == 2 : 2nd order expansion of vsqr = eig(D(x)z), like Mehrotra. % ---------------------------------------- switch pars.alg case 1 % alg 1: v-expansion tTAR = 1-(1-maxt1); pv = tTAR^2*[gd1(1:K.l).*dxmdz(1:K.l); qjmul(gd1,dxmdz,K);... psdjmul(gd1,dxmdz,K)]; pv2 = 2*tTAR*(1-tTAR)*((sum(vTAR)/n)*ones(n,1) - vTAR) -(2*tTAR)*vTAR; case 2 % alg 2: v^2, like Mehrotra. tTAR = 1-(1-maxt1)^3; pv = (tTAR / 4) * [gd1(1:K.l).*dxmdz(1:K.l); qjmul(gd1,dxmdz,K);... psdjmul(gd1,dxmdz,K)]; pv2 = ((1-tTAR)*tTAR*R.b0*y0/n)./vTAR - (1+tTAR/4)*vTAR; end pv = pv + frameit(pv2, vfrm.q, vfrm.s, K); [dx,dy,dz,dy0, err] = sddir(L,Lden,Lsd,pv,... d,v,vfrm,A,DAt,dense, R,K,y,y0,b, pars,pMode); end % ---------------------------------------- % The steplength should be such that % y0(t) * maxRb + t*errb <= (1+phi*t*|dy0/y0|) * y0(t)*maxRb % i.e. errb <= phi*(-dy0) * (1+t*dy0/y0) * maxRb % ---------------------------------------- PHI = 0.5; if dy0 < 0 & (PHI*dy0^2*R.maxRb)~=0 critval = - (PHI * dy0*R.maxRb + err.maxb)*y0c / (PHI*dy0^2*R.maxRb); else critval = 1; end if critval <= 0 STOP = -1; else % ---------------------------------------- % Compute boundary step length "maxt". % ---------------------------------------- tp = maxstep(dx,xc,uxc,K); td = maxstep(dz,zc,uzc,K); if dy0 < 0 % keep (t/y0Next)*errmaxb <= R.maxRb. tp = min(tp,critval); end if xc(1)+ td * dx(1) < 0 % Cannot step beyond x0=0. td = xc(1) / (-dx(1)); end maxt = min(tp,td); % ---------------------------------------- % CREGION NBRHD STEP OF PRED+COR % ---------------------------------------- [t,wr,w] = widelen(xc,zc,y0c, dx,dz,dy0,0, maxt,pars,K); % ---------------------------------------- % Take step (in scaled space) % ---------------------------------------- xscl = xc + t*dx; y = yc + t*dy; zscl = zc + t*dz; y0 = y0c + t*dy0; if pars.stepdif == 1 [tdif,rcdx]=stepdif(d,R,y0,xscl,y,zscl,dy0,dx,dy,dz,b,-t,tp-td); if tdif ~= 0 rdx0 = dx(1) / xscl(1); mu = 1+tdif*rdx0; if tp > td newx = xscl + tdif*dx; newz = mu*zscl; else newx = mu*xscl; newz = zscl+tdif*dz; end [tdif,wr,w] = trydif(tdif,wr,w, newx,newz,pars,K); end else tdif = 0; end if tdif ~= 0 rdy0 = dy0 - rdx0 * y0; zscl = newz; xscl = newx; if tp > td y = mu*y; y0 = mu*y0; err.b = (tdif*rdy0) * R.b + errc.b + (t+tdif) * err.b; err.g = tdif * rcdx; relt.p = (t+tdif)/tp; relt.d = t/td; else % td > tp y = y + tdif * dy; y0 = y0 + tdif * dy0; err.b = -(tdif*rdy0)*R.b + mu*(errc.b + t * err.b); err.g = -tdif * rcdx; relt.p = t/tp; relt.d = (t+tdif)/td; end else err.b = errc.b + t * err.b; err.g = 0; relt.p = t / maxt; relt.d = relt.p; end wr.tpmtd = tp-td; err.maxb = (errc.maxb + t*err.maxb); % to be divided by y0 err.db0 = xscl'*zscl - y0*R.b0; % to be divided by y0 end % critval > 0 end % STOP ~= -1 if STOP == -1 relt.p = 0; relt.d = 0; w = []; xscl = []; zscl = []; err.b=zeros(size(b)); err.db0 = 0; err.g = 0; end
github
urbste/MLPnP_matlab_toolbox-master
ddot.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/ddot.m
2,037
utf_8
84d2f349adf12e8af949276642e7f8b7
% ddotX = ddot(d,X,blkstart [, Xblkjc]) % DDOT Given N x m matrix X, creates (blkstart(end)-blkstart(1)) x m matrix % ddotX, having entries d[i]'* xj[i] for each (Lorentz norm bound) block % blkstart(i):blkstart(i+1)-1. If X is sparse, then Xblkjc(:,2:3) should % point to first and 1-beyond-last nonzero in blkstart range for each column. % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi, partitA function ddotX = ddot(d,X,blkstart, Xblkjc) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
getdense.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/getdense.m
4,750
utf_8
148ac691260be32d5670b2a037c94119
% [dense,Adotdden] = getdense(At,Ablkjc,K,pars) % GETDENSE Creates dense.{l,cols,q}. % Try to find small proportion of the cone primitives that appear % in a large proportion of the primal constraints. % % ******************** INTERNAL FUNCTION OF SEDUMI ******************** % % See also sedumi function [dense,Adotdden] = getdense(At,Ablkjc,K,pars) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % ------------------------------------------------------------ % Initialize: colnz = #nz-constraints per LP/LOR variable, % h = MAX(5, max{#nz-constraints | PSD-blocks}) % "5" is taken as a number that should not be beyond the denq-quantile. % ------------------------------------------------------------ NORMDEN = 5; colnz = sum(spones(extractA(At,Ablkjc,0,3,1,K.lq+1)),2); h = max([NORMDEN; sum(findblks(At,Ablkjc,3,[],K.sblkstart),2)]); [N,m] = size(At); % ------------------------------------------------------------ % Replace colnz-entries for the Lorentz-trace ("x1") variables by % nnz-constraints for that Lorentz block. Namely, these variables % must be removed if the Lorentz block (d[k]*d[k]'*a[k]) is removed. % ------------------------------------------------------------ i1 = K.mainblks(1); i2 = K.mainblks(2); % Bounds Lorentz trace. Ablkq = extractA(At,Ablkjc,1,2,i1,i2); if i1 < i2 % MATLAB 5.0, 5.1 cannot handle spones(empty) Ablkq2 = findblks(At,Ablkjc,2,3,K.qblkstart); % Tag if any nonzero in block Ablkq = spones(spones(Ablkq) + Ablkq2); colnz(i1:i2-1) = sum(Ablkq,2); % And store at Lorentz trace pos. end % ------------------------------------------------------------ % FIND THE denq-quantile for DENSE COLUMNS: % If e.g. pars.denq = 0.75 and pars.denf = 20: % Find 75% quantile spquant. anything denser than 20*spquant is % tagged as dense. % NB: spquant is chosen such that all columns with nnz <= h are to left of it. % This is because we don't allow PSD-block removal. % ------------------------------------------------------------ bigcolnz = colnz(colnz > h); % h must be left anyhow denqN = ceil(pars.denq * length(colnz)) - (N-length(bigcolnz)); if denqN < 1 % denqN is quantile on 1:length(bigcolnz) basis spquant = h; % Take h as threshold else ordnzs = sort(bigcolnz); spquant = ordnzs(denqN); % Take spquant > h as threshold end % ------------------------------------------------------------ % Find LP cols, LORENTZ cols, and LORENTZ blocks with >denf*spquant nzs % ------------------------------------------------------------ dense.cols = find(colnz > pars.denf * spquant); %dense LP, Q-blk, Q-cols dense.q = find(colnz(i1:i2-1) > pars.denf * spquant); %dense Q-blks dense.l = length(find(dense.cols < i1)); %#dense LP cols. % ---------------------------------------- % The number of dense columns should be small relative to % the number of constraints - otherwise we better do 1 full Chol. % ---------------------------------------- if length(dense.cols) > m / 2; dense.l = 0; dense.cols = []; dense.q = []; end if isempty(dense.q) Adotdden = sparse(m,0); % = Ablkq(dense.q,:)' block struct. else % -------------------------------------------------- % HANDLE DENSE LORENTZ BLOCKS % Let Adotdden lists the nz-constraints for each dense q-block. % -------------------------------------------------- Adotdden = Ablkq(dense.q,:)'; end
github
urbste/MLPnP_matlab_toolbox-master
givensrot.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/givensrot.m
1,725
utf_8
9208cb8125b4fadfb9abc085d8b315db
% y = givensrot(gjc,g,x,K) % GIVENSROT % % ********** INTERNAL FUNCTION OF SEDUMI ********** % % See also sedumi function y = givensrot(gjc,g,x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % disp('The SeDuMi binaries are not installed.') disp('In Matlab, launch "install_sedumi" in the folder you put the SeDuMi files.') disp('For more information see the file Install.txt.') error(' ')
github
urbste/MLPnP_matlab_toolbox-master
sparbwslv.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/sparbwslv.m
1,987
utf_8
ddbdea0707b9d46c24cbca973a60de5f
% SPARBWSLV Solves block sparse upper-triangular system. % y = sparbwslv(L,b) yields the same result as % y(L.perm,:) = L.L'\b % However, SPARBWSLV is faster than the built-in operator "\", % because it uses dense linear algebra and loop-unrolling on % supernodes. % % Typical use, with X sparse m x m positive definite and b is m x n: % L = sparchol(symbchol(X),X); % L.d(L.dep) = inf; % y = sparbwslv(L,sparfwslv(L,b) ./ L.d); % Then y solves X*y=b. % % See also symbchol, sparchol, sparfwslv, mldivide, mrdivide. function y = sparbwslv(L,b) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % y = bwblkslv(L,b); %y(L.perm,:) = L.L'\b;
github
urbste/MLPnP_matlab_toolbox-master
cellK.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/cellK.m
3,487
utf_8
4fc2753dbba84d2e10c5a8ff4e7def27
% xcell = cellK(x,K) % CELLK Stores SeDuMi cone K-vector in cell-array format. % % On output xcell.f and xcell.l are the free and >=0 components, % xcell.q{k}, xcell.r{k} and xcell.s{k} contain the Lorentz, % Rotated Lorentz, and PSD-components, resp. % xcell.s{k} is a K.s(k) x K.s(k) matrix. % % See also eigK, eyeK, sedumi. function xcell = cellK(x,K) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % Remark: the cell-array scheme is inspired by SDPT3. % Unlike in SDPT3 though, the cells are grouped in % fields like xcell.q and xcell.s. if nargin < 2 error('cellK needs 2 input arguments') end if ~isstruct(K) error('K should be a structure') end i = 1; if isfield(K,'f') xcell.f = x(i:i+K.f-1); i = i + K.f; end if isfield(K,'l') xcell.l = x(i:i+K.l-1); i = i + K.l; end % ------------------------------------------------------------ % Lorentz: this only works OUTSIDE sedumi, not for internal storage % ------------------------------------------------------------ if isfield(K,'q') for k = 1: length(K.q) xcell.q{k} = x(i:i+K.q(k)-1); i = i + K.q(k); end end if isfield(K,'r') for k = 1: length(K.r) xcell.r{k} = x(i:i+K.r(k)-1); i = i + K.r(k); end end % ------------------------------------------------------------ % PSD-blocks: % ------------------------------------------------------------ if isfield(K,'s') if ~isfield(K,'rsdpN') for k = 1: length(K.s) xcell.s{k} = mat(x(i:i+K.s(k)^2-1)); i = i + K.s(k)^2; end else % ------------------------------------------------------------ % Only applicable for internal storage: complex-as-real-storage % ------------------------------------------------------------ for k = 1: K.rsdpN xcell.s{k} = mat(x(i:i+K.s(k)^2-1)); i = i + K.s(k)^2; end j = sqrt(-1); for k = K.rsdpN+1:length(K.s) xcell.s{k} = mat(x(i:i+K.s(k)^2-1)); i = i + K.s(k)^2; xcell.s{k} = xcell.s{k} + j * mat(x(i:i+K.s(k)^2-1)); i = i + K.s(k)^2; end end end
github
urbste/MLPnP_matlab_toolbox-master
prelp.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/prelp.m
3,778
utf_8
90dcf5c14b1c6445ecad52fc904fd1ec
% PRELP Loads and preprocesses LP from an MPS file. % % > [A,b,c,lenx,lbounds] = PRELP('problemname') % The above command results in an LP in standard form, % - Instead of specifying the problemname, you can also use PRELP([]), to % get the problem from the file /tmp/default.mat. % - Also, you may type PRELP without any input arguments, and get prompted % for a name. % % MINIMIZE c'*x SUCH THAT A*x = b AND x>= 0. % % So, you can solve it with SeDuMi: % > [x,y,info] = SEDUMI(A,b,c); % % After solving, post-process it with % > [x,objp] = POSTPROCESS(x(1:lenx),lbounds). % % REMARK x(lenx+1:length(x)) will contain upper-bound slacks. % % IMPORTANT works only if LIPSOL is installed on your system. % % See also sedumi, getproblem, postprocess (LIPSOL), frompack, lipsol. function [A,b,c,lenx,lbounds] = prelp(pname) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% global OUTFID global Ubounds_exist if ~exist('loadata','file') | ~exist('preprocess','file') error('To use PRELP, you need to have LIPSOL installed.') end %-------------------------------------------------- % LOAD LP PROBLEM INTO MEMORY %-------------------------------------------------- if (nargin == 0) pname = input('Enter problem name: ','s'); end t0 = cputime; [A,b,c,lbounds,ubounds,BIG,NAME] = loadata(pname); times(1) = cputime - t0; %-------------------------------------------------- % PREPROCESS LP PROBLEM % NB: Y.Zhang's preprocess returns lbounds for post- % processing; the pre-processed problem has x>=0. %-------------------------------------------------- t0 = cputime; [A,b,c,lbounds,ubounds,FEASIBLE] = ... preprocess(A,b,c,lbounds,ubounds,BIG); if ~FEASIBLE fprintf('\n'); if isempty(OUTFID) return; end; msginf = 'Infeasibility detected in preprocessing'; fprintf(OUTFID, [pname ' 0 ' msginf '\n']); return; end; %[A,b,c,ubounds] = scaling(A,b,c,ubounds); %-------------------------------------------------- % INSERT UBOUND- CONSTRAINTS IN THE A-MATRIX %-------------------------------------------------- b = full(b); c = full(c); [m,lenx] = size(A); if Ubounds_exist nub = nnz(ubounds); A= [ A sparse(m,nub); sparse(1:nub,find(ubounds),1,nub,lenx) speye(nub) ]; b = [b; nonzeros(ubounds)]; c = [c; zeros(nub,1)]; else ubounds = []; end %-------------------------------------------------- % LOCATE DENSE COLUMNS %-------------------------------------------------- %checkdense(A); times(2) = cputime - t0;
github
urbste/MLPnP_matlab_toolbox-master
feasreal.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/feasreal.m
4,144
utf_8
454dcb6c42c0642ed5c5a524e84bec58
% FEASREAL Generates a random sparse optimization problem with % linear, quadratic and semi-definite constraints. Output % can be used by SEDUMI. All data will be real-valued. % % The following two lines are typical: % > [AT,B,C,K] = FEASREAL; % > [X,Y,INFO] = SEDUMI(AT,B,C,K); % % An extended version is: % > [AT,B,C,K] = FEASREAL(m,lpN,lorL,rconeL,sdpL,denfac) % % SEE ALSO sedumi AND feascpx. function [At,b,c,K] = feasreal(m,nLP,qL,rL,nL,denfac) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% if nargin < 6 denfac = 0.1; if nargin < 5 nL = 1+ round(7*rand(1,5)); fprintf('Choosing random SDP-product cone K.s.\n') if nargin < 4 rL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ R-product cone K.r.\n') if nargin < 3 qL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ-product cone K.q.\n') if(nargin < 2) nLP = 10; fprintf('Choosing default K.l=%3.0f.\n',nLP) if nargin < 1 m=10; fprintf('Choosing default m=%3.0f.\n',m) end end end end end end if isempty(nLP) nLP = 0; end nblk = length(nL) + length(rL) + length(qL) + nLP; denfac = min(1, max(denfac,2/nblk)); fprintf('Choosing block density denfac=%6.4f per row\n',denfac) Apattern=sparse(m,nblk); for j=1:m pati = sprandn(1,nblk,denfac); Apattern(j,:) = (pati~= 0); end sumnLsqr = sum(nL.^2); x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1); x(1:nLP) = rand(nLP,1); At = sparse(length(x),m); At(1:nLP,:) = sprandn(Apattern(:,1:nLP)'); firstk = nLP+1; %[nA, mA] = size(At); % LORENTZ: for k=1:length(qL) nk = qL(k); lastk = firstk + nk - 1; x(firstk) = rand; for j=1:m if Apattern(j,nLP+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)); end end firstk = lastk + 1; end % RCONE (Rotated Lorentz): for k=1:length(rL) nk = rL(k); lastk = firstk + nk - 1; x(firstk) = rand; x(firstk+1) = rand; for j=1:m if Apattern(j,nLP+length(qL)+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)); end end firstk = lastk + 1; end % SDP: for k=1:length(nL) nk = nL(k); lastk = firstk + nk*nk - 1; Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts. for j=1:m if Apattern(j,nLP+length(qL)+length(rL)+k)==1 Aik = sprandsym(nk,1/nk); %on average 1 nonzero per row At(firstk:lastk,j) = vec( (Aik+Aik') ); end end firstk = lastk + 1; end b = full(At'*x); y = rand(m,1)-0.5; c = sparse(At*y)+x; K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
github
urbste/MLPnP_matlab_toolbox-master
sdpa2vec.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/sdpa2vec.m
2,352
utf_8
f055b4df357f6cf3b426ce27869bc738
% x = sdpavec(E,K) % Takes an SDPA type sparse data description E, i.e. % E(1,:) = block, E(2,:) = row, E(3,:) = column, E(4,:) = entry, % and transforms it into a "long" vector, with vectorized matrices for % each block stacked under each other. The size of each matrix block % is given in the field K.s. % ********** INTERNAL FUNCTION OF SEDUMI ********** function x = sdpa2vec(E,K,invperm) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % % ------------------------------------------------------------ % Split E into blocks E[1], E[2], ..., E[length(K.s)] % ------------------------------------------------------------ [xir,xjc] = sdpasplit(E(1,:),length(K.s)); x = sparse([],[],[],0,0,2*size(E,2)); for knz = 1:length(xir) permk = xir(knz); k = invperm(permk); if k > K.l k = k - K.l; % matrix nk = K.s(k); Ek = E(2:4,xjc(knz):xjc(knz+1)-1); Xk = sparse(Ek(1,:),Ek(2,:),Ek(3,:),nk,nk); Xk = Xk + triu(Xk,1)'; x=[x;Xk(:)]; else x=[x;E(4,xjc(knz))]; end end
github
urbste/MLPnP_matlab_toolbox-master
blk2vec.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/blk2vec.m
1,653
utf_8
0d48b96f66e746fce480e7a3e9c271a5
% x = blk2vec(X,nL) % % Converts a block diagonal matrix into a vector. % % ********** INTERNAL FUNCTION OF FROMPACK ********** function x = blk2vec(X,nL) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA % nblk = length(nL); sumnk = 0; x = []; for k = 1:nblk nk = nL(k); x = [x; vec(X(sumnk+1:sumnk + nk,sumnk+1:sumnk + nk))] ; sumnk = sumnk + nk; end
github
urbste/MLPnP_matlab_toolbox-master
writesdp.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/writesdp.m
4,727
utf_8
7ee3825bacdd560c93d4b6b930c5796f
% This function takes a problem in SeDuMi MATLAB format and writes it out % in SDPpack format. % % Usage: % % writesdp(fname,A,b,c,K) % % fname Name of SDPpack file, in quotes % A,b,c,K Problem in SeDuMi form % % Notes: % % Problems with complex data are not allowed. % % Rotated cone constraints are not supported. % % Nonsymmetric A.s and C.s matrices are symmetrized with A=(A+A')/2 % a warning is given when this happens. % % Floating point numbers are written out with 18 decimal digits for % accuracy. % % Please contact the author (Brian Borchers, [email protected]) with any % questions or bug reports. % function writesdp(fname,A,b,c,K) %From: Brian Borchers[SMTP:[email protected]] %Sent: Wednesday, December 08, 1999 12:33 PM %To: [email protected] % %Here's a MATLAB routine that will take a problem in SeDuMi's MATLAB format %and write it out in SDPpack format. % % First, check for complex numbers in A, b, or c. % if (isreal(A) ~= 1), disp('A is not real!'); return; end; if (isreal(b) ~= 1), disp('b is not real!'); return; end; if (isreal(c) ~= 1), disp('c is not real!'); return; end; % % Check for any rotated cone constraints. % if (isfield(K,'r') & (~isempty(K.r)) & (K.r ~= 0)), disp('rotated cone constraints are not yet supported.'); return; end; % % Get the size data. % if (isfield(K,'l')), nlin=K.l; sizelin=nlin; if (isempty(sizelin)), sizelin=0; nlin=0; end; else nlin=0; sizelin=0; end; if (isfield(K,'s')), nsdpblocks=length(K.s); %sizesdp=sum((K.s).^2); %if (isempty(sizesdp)), %sizesdp=0; %nsdpblocks=0; %end; else %sizesdp=0; nsdpblocks=0; end; if (isfield(K,'q')), nqblocks=length(K.q); sizeq=sum(K.q); if (isempty(sizeq)), sizeq=0; nqblocks=0; end; else nqblocks=0; sizeq=0; end; m=length(b); % % Open up the file for writing. % fid=fopen(fname,'w'); % % Print out m, the number of constraints. % fprintf(fid,'%d \n',m); % % Next, b, with one entry per line. % fprintf(fid,'%.18e\n',full(b)); % % Next, the semidefinite part. % if (nsdpblocks == 0), fprintf(fid,'0\n'); else % % Print out the number of semidefinite blocks. % fprintf(fid,'%d\n',nsdpblocks); % % For each block, print out its size. % fprintf(fid,'%d\n',full(K.s)); % % Next, the cost matrix C.s. % % % First, calculate where in c things start. % base=sizelin+sizeq+1; % % Next, work through the blocks. % for i=1:nsdpblocks, fprintf(fid,'1\n'); work=c(base:base+K.s(i)^2-1); work=reshape(work,K.s(i),K.s(i)); if (work ~= work'), disp('Non symmetric C.s matrix!'); work=(work+work')/2; end; work=triu(work); [II,JJ,V]=find(work); cnt=length(II); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; % % Next, update to the next base. % base=base+K.s(i)^2; end; % % Now, loop through the constraints, one at a time. % for cn=1:m, % % Print out the SDP part of constraint cn. % base=sizelin+sizeq+1; for i=1:nsdpblocks, fprintf(fid,'1\n'); work=A(cn,base:base+K.s(i)^2-1); work=reshape(work,K.s(i),K.s(i)); if (work ~= work'), disp('Non symmetric A.s matrix!'); work=(work+work')/2; end; work=triu(work); [II,JJ,V]=find(work); cnt=length(II); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; % % Next, update to the next base. % base=base+K.s(i)^2; end; % % Done with constraint cn % end; % % Done with SDP part. % end; % % Next, handle the Quadratic part. % % % Describe the Q blocks. % if (nqblocks == 0), fprintf(fid,'0\n'); else fprintf(fid,'%d\n',nqblocks); fprintf(fid,'%d\n',full(K.q)); % % Find C.q. % base=sizelin+1; cq=c(base:base+sizeq-1); % % Print out the C.q coefficients. % fprintf(fid,'%.18e\n',full(cq)); % % Next, the constraint matrix A.q. % Aq=A(:,base:base+sizeq-1); % % Print out the count of nonzeros. % [II,JJ,V]=find(Aq); cnt=length(II); fprintf(fid,'1\n'); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; % % End of handling quadratic part. % end; % % % Finally, handle the linear part. % if (nlin == 0), fprintf(fid,'0\n'); else % % Print out the number of linear variables. % fprintf(fid,'%d\n',nlin); % % Print out C.l % fprintf(fid,'%.18e\n',full(c(1:nlin))); % % Print out the A matrix. % Al=A(:,1:nlin); [II,JJ,V]=find(Al); cnt=length(II); fprintf(fid,'1\n'); fprintf(fid,'%d\n',cnt); if (cnt ~= 0), fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]'); end; end;
github
urbste/MLPnP_matlab_toolbox-master
frompack.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/frompack.m
2,509
utf_8
a4730dcb4ec069944953dce753da973d
% FROMPACK Converts a cone problem in SDPPACK format to SEDUMI format. % % [At,c] = frompack(A,b,C,blk) Given a problem (A,b,C,blk) in the % SDPPACK-0.9-beta format, this produces At and c for use with % SeDuMi. This lets you execute % % [x,y,info] = SEDUMI(At,b,c,blk); % % IMPORTANT: this function assumes that the SDPPACK function `smat' % exists in your search path. % % SEE ALSO sedumi. function [At,c] = frompack(A,b,C,blk) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% m = length(b); % ---------------------------------------- % In SDPPACK, 0s are sometimes used as emptyset and vice versa. % ---------------------------------------- if blk.l == 0 A.l = []; C.l = []; end if isempty(blk.q) A.q = []; C.q = []; end if isempty(blk.s) A.s = []; C.s = []; end % ---------------------------------------- % SDP: % ---------------------------------------- Asdp = []; if sum(blk.s) == 0 csdp = []; else for i=1:m Asdp = [Asdp blk2vec( smat(sparse(A.s(i,:)),blk.s), blk.s ) ]; end csdp = blk2vec(C.s,blk.s); end % ---------------------------------------- % Assemble LP, LORENTZ and SDP. %---------------------------------------- At = [A.l'; A.q'; Asdp]; c = [C.l; C.q; csdp];
github
urbste/MLPnP_matlab_toolbox-master
feascpx.m
.m
MLPnP_matlab_toolbox-master/gOp/SeDuMi_1_3 2/conversion/feascpx.m
4,385
utf_8
c48c6cf336cdb94ad12b04e1efd2417b
% FEASCPX Generates a random sparse optimization problem with % linear, quadratic and semi-definite constraints. Output % can be used by SEDUMI. Includes complex-valued data. % % The following two lines are typical: % > [AT,B,C,K] = FEASCPX; % > [X,Y,INFO] = SEDUMI(AT,B,C,K); % % An extended version is: % > [AT,B,C,K] = FEASCPX(m,lpN,lorL,rconeL,sdpL,denfac) % % SEE ALSO sedumi AND feasreal. function [At,b,c,K] = feascpx(m,nLP,qL,rL,nL,denfac) % % This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko % Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1) % % Copyright (C) 2001 Jos F. Sturm (up to 1.05R5) % Dept. Econometrics & O.R., Tilburg University, the Netherlands. % Supported by the Netherlands Organization for Scientific Research (NWO). % % Affiliation SeDuMi 1.03 and 1.04Beta (2000): % Dept. Quantitative Economics, Maastricht University, the Netherlands. % % Affiliations up to SeDuMi 1.02 (AUG1998): % CRL, McMaster University, Canada. % Supported by the Netherlands Organization for Scientific Research (NWO). % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; if not, write to the Free Software % Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA % 02110-1301, USA% if nargin < 6 denfac = 0.1; if nargin < 5 nL = 1+ round(7*rand(1,5)); fprintf('Choosing random SDP-product cone K.s.\n') if nargin < 4 rL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ R-product cone K.r.\n') if nargin < 3 qL = 3 + round(4*rand(1,5)); fprintf('Choosing random LORENTZ-product cone K.q.\n') if(nargin < 2) nLP = 10; fprintf('Choosing default K.l=%3.0f.\n',nLP) if nargin < 1 m=10; fprintf('Choosing default m=%3.0f.\n',m) end end end end end end if isempty(nLP) nLP = 0; end nblk = length(nL) + length(rL) + length(qL) + nLP; denfac = min(1, max(denfac,2/nblk)); fprintf('Choosing block density denfac=%6.4f per row\n',denfac) Apattern=sparse(m,nblk); for j=1:m pati = sprandn(1,nblk,denfac); Apattern(j,:) = (pati~= 0); end sumnLsqr = sum(nL.^2); x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1); x(1:nLP) = rand(nLP,1); At = sparse(length(x),m); At(1:nLP,:) = sprandn(Apattern(:,1:nLP)'); firstk = nLP+1; %[nA, mA] = size(At); % LORENTZ: for k=1:length(qL) nk = qL(k); lastk = firstk + nk - 1; x(firstk) = rand; for j=1:m if Apattern(j,nLP+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ... sparse([0;sprand(nk-1,1,1/sqrt(nk))]); end end firstk = lastk + 1; end % RCONE (Rotated Lorentz): for k=1:length(rL) nk = rL(k); lastk = firstk + nk - 1; x(firstk) = rand; x(firstk+1) = rand; for j=1:m if Apattern(j,nLP+length(qL)+k)==1 At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ... sparse([0;0;sprand(nk-2,1,1/sqrt(nk-1))]); end end firstk = lastk + 1; end % SDP: for k=1:length(nL) nk = nL(k); lastk = firstk + nk*nk - 1; Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts. for j=1:m if Apattern(j,nLP+length(qL)+length(rL)+k)==1 rAik = sprandsym(nk,1/nk); %on average 1 nonzero per row iAik = sprand(nk,nk,1/nk); %on average 1 nonzero per row At(firstk:lastk,j) = vec(rAik + sqrt(-1)*(iAik-iAik')); end end firstk = lastk + 1; end b = real(full(At'*x)); y = rand(m,1)-0.5; c = sparse(At*y)+x; K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
github
urbste/MLPnP_matlab_toolbox-master
appendimages.m
.m
MLPnP_matlab_toolbox-master/ASPnP/appendimages.m
461
utf_8
a7ad42558236d4f7bd90dc6e72631d54
% im = appendimages(image1, image2) % % Return a new image that appends the two images side-by-side. function im = appendimages(image1, image2) % Select the image with the fewest rows and fill in enough empty rows % to make it the same height as the other image. rows1 = size(image1,1); rows2 = size(image2,1); if (rows1 < rows2) image1(rows2,1) = 0; else image2(rows1,1) = 0; end % Now append both images side-by-side. im = [image1 image2];
github
urbste/MLPnP_matlab_toolbox-master
PnP_Reproj_NLS_Matlab.m
.m
MLPnP_matlab_toolbox-master/ASPnP/PnP_Reproj_NLS_Matlab.m
1,767
utf_8
10261b578cc0cc01f64c72439bf7f95f
function [Rr tr] = PnP_Reproj_NLS_Matlab(U,u,R0,t0) %to refine the column-triplet by using nonlinear least square %it's much better than the fminunc used by CVPR12. %there are three fractional formulations, anyone is equivalently good. %there are two constrained formulations, yet neither is good. %the reason is that: eliminating the unkown scale. ---> similar to %reprojection error and homogeneous error %transform matrix to unit quaternion q = matrix2quaternion(R0); %nonlinear least square parameter setting options = optimset('Algorithm','trust-region-reflective','Jacobian','on','DerivativeCheck','off','Display','off'); %call matlab lsqnonlin [var,resnorm] = lsqnonlin(@(var)valuegradient(var,U,u),[q(:);t0(:)],[],[],options); %denormalize data qr = var(1:4); tr = var(5:end); normqr = norm(qr); tr = tr/(normqr)^2; qr = qr/normqr; %trasform back into matrix form Rr = quaternion2matrix(qr); end %formulation 1 function [fval grad] = valuegradient(var,U,u) npt = size(U,2); fval = zeros(2*npt,1); grad = zeros(2*npt,7); a = var(1); b = var(2); c = var(3); d = var(4); R = [a^2+b^2-c^2-d^2 2*b*c-2*a*d 2*b*d+2*a*c 2*b*c+2*a*d a^2-b^2+c^2-d^2 2*c*d-2*a*b 2*b*d-2*a*c 2*c*d+2*a*b a^2-b^2-c^2+d^2]; t1 = var(5); t2 = var(6); t3 = var(7); for i = 1:npt vec = R*U(:,i) + [t1;t2;t3]; fval(2*(i-1)+1) = u(1,i) - vec(1)/vec(3); fval(2*i) = u(2,i) - vec(2)/vec(3); temp1 = [2*[a -d c;b c d; -c b a; -d -a b]*U(:,i); 1; 0; 0].'; temp2 = [2*[d a -b;c -b -a;b c d; a -d c]*U(:,i); 0; 1; 0].'; temp3 = [2*[-c b a;d a -b;-a d -c; b c d]*U(:,i); 0; 0; 1].'; grad(2*(i-1)+1,:) = (-temp1*vec(3) + temp3*vec(1))/(vec(3)^2); grad(2*i,:) = (-temp2*vec(3) + temp3*vec(2))/(vec(3)^2); end end
github
urbste/MLPnP_matlab_toolbox-master
matrix2quaternion.m
.m
MLPnP_matlab_toolbox-master/ASPnP/matrix2quaternion.m
2,010
utf_8
ad7a1983aceaa9953be167eddabb22ae
% MATRIX2QUATERNION - Homogeneous matrix to quaternion % % Converts 4x4 homogeneous rotation matrix to quaternion % % Usage: Q = matrix2quaternion(T) % % Argument: T - 4x4 Homogeneous transformation matrix % Returns: Q - a quaternion in the form [w, xi, yj, zk] % % See Also QUATERNION2MATRIX % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. function Q = matrix2quaternion(T) % This code follows the implementation suggested by Hartley and Zisserman R = T(1:3, 1:3); % Extract rotation part of T % Find rotation axis as the eigenvector having unit eigenvalue % Solve (R-I)v = 0; [v,d] = eig(R-eye(3)); % The following code assumes the eigenvalues returned are not necessarily % sorted by size. This may be overcautious on my part. d = diag(abs(d)); % Extract eigenvalues [s, ind] = sort(d); % Find index of smallest one if d(ind(1)) > 0.001 % Hopefully it is close to 0 warning('Rotation matrix is dubious'); end axis = v(:,ind(1)); % Extract appropriate eigenvector if abs(norm(axis) - 1) > .0001 % Debug warning('non unit rotation axis'); end % Now determine the rotation angle twocostheta = trace(R)-1; twosinthetav = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]'; twosintheta = axis'*twosinthetav; theta = atan2(twosintheta, twocostheta); Q = [cos(theta/2); axis*sin(theta/2)];
github
urbste/MLPnP_matlab_toolbox-master
ASPnP_V2.m
.m
MLPnP_matlab_toolbox-master/ASPnP/ASPnP_V2.m
1,810
utf_8
c026dfb2094099da6ec6ceccacdc2472
function [R0, t0, cost] = ASPnP_V2(U, u) % R = cat(3, rotx(pi/2), roty(pi/2), rotz(pi/2)); t = mean(U,2); cost = inf; C_est = []; t_est = []; for i = 1:3 % Make a random rotation pp = R(:,:,i) * (U - repmat(t, 1, size(U,2))); %case1 [C_est_i, t_est_i] = ASPnP_Case1_V2(pp, u); %rotate back to the original system for j = 1:size(t_est_i,2) t_est_i(:,j) = t_est_i(:,j) - C_est_i(:,:,j) * R(:,:,i) * t; C_est_i(:,:,j) = C_est_i(:,:,j) * R(:,:,i); end %stack all rotations and translations if size(t_est_i,2) > 0 C_est = cat(3,C_est, C_est_i); t_est = [t_est t_est_i]; end end %among all these solutions, choose the one with smallest reprojection error %how to determine multiple solutions with the same reprojection error??? index = ones(1,size(t_est,2)); for i = 1:size(t_est,2) proj = C_est(:,:,i)*U+t_est(:,i)*ones(1,size(u,2)); %not in front of the camera if min(proj(3,:)) < 0 index(i) = 0; end %calculate reprojection error proj = proj./repmat(proj(3,:),3,1); err = proj(1:2,:)-u; error(i) = sum(sum(err.*err)); end %choose the one with smallest reprojection error error0 = min(error(index>0)); if isempty(error0) R0 = []; t0 = []; cost = inf; return; end %using 5% as tolerance to detect multiple solutions rr = find((error<error0*1.05).*(index>0)); R0 = C_est(:,:,rr); t0 = t_est(:,rr); cost = error(rr); end function r = rotx(t) ct = cos(t); st = sin(t); r = [1 0 0; 0 ct -st; 0 st ct]; end function r = roty(t) % roty: rotation about y-axi- ct = cos(t); st = sin(t); r = [ct 0 st; 0 1 0; -st 0 ct]; end function r = rotz(t) % rotz: rotation about z-axis ct = cos(t); st = sin(t); r = [ct -st 0 st ct 0 0 0 1]; end
github
urbste/MLPnP_matlab_toolbox-master
quaternion2matrix.m
.m
MLPnP_matlab_toolbox-master/ASPnP/quaternion2matrix.m
1,431
utf_8
49448898df2a32720040da4eb82aced9
% QUATERNION2MATRIX - Quaternion to a 4x4 homogeneous transformation matrix % % Usage: T = quaternion2matrix(Q) % % Argument: Q - a quaternion in the form [w xi yj zk] % Returns: T - 4x4 Homogeneous rotation matrix % % See also MATRIX2QUATERNION, NEWQUATERNION, QUATERNIONROTATE % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. function T = quaternion2matrix(Q) Q = Q/norm(Q); % Ensure Q has unit norm % Set up convenience variables w = Q(1); x = Q(2); y = Q(3); z = Q(4); w2 = w^2; x2 = x^2; y2 = y^2; z2 = z^2; xy = x*y; xz = x*z; yz = y*z; wx = w*x; wy = w*y; wz = w*z; T = [w2+x2-y2-z2 , 2*(xy - wz) , 2*(wy + xz) , 0 2*(wz + xy) , w2-x2+y2-z2 , 2*(yz - wx) , 0 2*(xz - wy) , 2*(wx + yz) , w2-x2-y2+z2 , 0 0 , 0 , 0 , 1]; T = T(1:3,1:3); end
github
urbste/MLPnP_matlab_toolbox-master
p3p.m
.m
MLPnP_matlab_toolbox-master/p3p_code_final/p3p.m
6,878
utf_8
d624eafb3c1568d6d9f7f7751a6cab47
% Copyright (c) 2011, Laurent Kneip, ETH Zurich % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are met: % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % * Neither the name of ETH Zurich nor the % names of its contributors may be used to endorse or promote products % derived from this software without specific prior written permission. % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND % ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED % WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % DISCLAIMED. IN NO EVENT SHALL ETH ZURICH BE LIABLE FOR ANY % DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES % (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND % ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT % (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % % p3p.m % % % Author: Laurent Kneip % Description: Compute the absolute pose of a camera using three 3D-to-2D correspondences % Reference: A Novel Parametrization of the P3P-Problem for a Direct Computation of % Absolute Camera Position and Orientation % % Input: worldPoints: 3x3 matrix with corresponding 3D world points (each column is a point) % imageVectors: 3x3 matrix with UNITARY feature vectors (each column is a vector) % Output: poses: 3x16 matrix that will contain the solutions % form: [ 3x1 position(solution1) 3x3 orientation(solution1) 3x1 position(solution2) 3x3 orientation(solution2) ... ] % the obtained orientation matrices are defined as transforming points from the cam to the world frame function poses = p3p( worldPoints, imageVectors ) % Initialization of the solution matrix, extraction of world points and feature vectors poses = zeros(3,4*4); P1 = worldPoints(:,1); P2 = worldPoints(:,2); P3 = worldPoints(:,3); % Verification that world points are not colinear vector1 = P2 - P1; vector2 = P3 - P1; if norm(cross(vector1,vector2)) == 0 return end % Creation of intermediate camera frame f1 = imageVectors(:,1); f2 = imageVectors(:,2); f3 = imageVectors(:,3); e1 = f1; e3 = cross(f1,f2); norm_e3 = sqrt(sum(e3.*e3)); e3 = e3 ./ repmat(norm_e3,3,1); e2 = cross(e3,e1); T = [ e1'; e2'; e3' ]; f3 = T*f3; % Reinforce that f3[2] > 0 for having theta in [0;pi] if ( f3(3,1) > 0 ) f1 = imageVectors(:,2); f2 = imageVectors(:,1); f3 = imageVectors(:,3); e1 = f1; e3 = cross(f1,f2); norm_e3 = sqrt(sum(e3.*e3)); e3 = e3 ./ repmat(norm_e3,3,1); e2 = cross(e3,e1); T = [ e1'; e2'; e3' ]; f3 = T*f3; P1 = worldPoints(:,2); P2 = worldPoints(:,1); P3 = worldPoints(:,3); end % Creation of intermediate world frame n1 = P2-P1; norm_n1 = sqrt(sum(n1.*n1)); n1 = n1 ./ repmat(norm_n1,3,1); n3 = cross(n1,(P3-P1)); norm_n3 = sqrt(sum(n3.*n3)); n3 = n3 ./ repmat(norm_n3,3,1); n2 = cross(n3,n1); N = [ n1'; n2'; n3' ]; % Extraction of known parameters P3 = N*(P3-P1); d_12 = sqrt(sum((P2 - P1).^2)); f_1 = f3(1,1)/f3(3,1); f_2 = f3(2,1)/f3(3,1); p_1 = P3(1,1); p_2 = P3(2,1); cos_beta = f1'*f2; b = 1/(1-cos_beta^2) - 1; if cos_beta < 0 b = -sqrt(b); else b = sqrt(b); end % Definition of temporary variables for avoiding multiple computation f_1_pw2 = f_1^2; f_2_pw2 = f_2^2; p_1_pw2 = p_1^2; p_1_pw3 = p_1_pw2 * p_1; p_1_pw4 = p_1_pw3 * p_1; p_2_pw2 = p_2^2; p_2_pw3 = p_2_pw2 * p_2; p_2_pw4 = p_2_pw3 * p_2; d_12_pw2 = d_12^2; b_pw2 = b^2; % Computation of factors of 4th degree polynomial factor_4 = -f_2_pw2*p_2_pw4 ... -p_2_pw4*f_1_pw2 ... -p_2_pw4; factor_3 = 2*p_2_pw3*d_12*b ... +2*f_2_pw2*p_2_pw3*d_12*b ... -2*f_2*p_2_pw3*f_1*d_12; factor_2 = -f_2_pw2*p_2_pw2*p_1_pw2 ... -f_2_pw2*p_2_pw2*d_12_pw2*b_pw2 ... -f_2_pw2*p_2_pw2*d_12_pw2 ... +f_2_pw2*p_2_pw4 ... +p_2_pw4*f_1_pw2 ... +2*p_1*p_2_pw2*d_12 ... +2*f_1*f_2*p_1*p_2_pw2*d_12*b ... -p_2_pw2*p_1_pw2*f_1_pw2 ... +2*p_1*p_2_pw2*f_2_pw2*d_12 ... -p_2_pw2*d_12_pw2*b_pw2 ... -2*p_1_pw2*p_2_pw2; factor_1 = 2*p_1_pw2*p_2*d_12*b ... +2*f_2*p_2_pw3*f_1*d_12 ... -2*f_2_pw2*p_2_pw3*d_12*b ... -2*p_1*p_2*d_12_pw2*b; factor_0 = -2*f_2*p_2_pw2*f_1*p_1*d_12*b ... +f_2_pw2*p_2_pw2*d_12_pw2 ... +2*p_1_pw3*d_12 ... -p_1_pw2*d_12_pw2 ... +f_2_pw2*p_2_pw2*p_1_pw2 ... -p_1_pw4 ... -2*f_2_pw2*p_2_pw2*p_1*d_12 ... +p_2_pw2*f_1_pw2*p_1_pw2 ... +f_2_pw2*p_2_pw2*d_12_pw2*b_pw2; % Computation of roots x=solveQuartic([factor_4 factor_3 factor_2 factor_1 factor_0]); % Backsubstitution of each solution for i=1:4 cot_alpha = (-f_1*p_1/f_2-real(x(i))*p_2+d_12*b)/(-f_1*real(x(i))*p_2/f_2+p_1-d_12); cos_theta = real(x(i)); sin_theta = sqrt(1-real(x(i))^2); sin_alpha = sqrt(1/(cot_alpha^2+1)); cos_alpha = sqrt(1-sin_alpha^2); if cot_alpha < 0 cos_alpha = -cos_alpha; end C = [ d_12*cos_alpha*(sin_alpha*b+cos_alpha); cos_theta*d_12*sin_alpha*(sin_alpha*b+cos_alpha); sin_theta*d_12*sin_alpha*(sin_alpha*b+cos_alpha) ]; C = P1 + N'*C; R = [ -cos_alpha -sin_alpha*cos_theta -sin_alpha*sin_theta; sin_alpha -cos_alpha*cos_theta -cos_alpha*sin_theta; 0 -sin_theta cos_theta ]; R = N'*R'*T; poses(1:3,(i-1)*4+1) = C; poses(1:3,(i-1)*4+2:(i-1)*4+4) = R; end end
github
urbste/MLPnP_matlab_toolbox-master
solveQuartic.m
.m
MLPnP_matlab_toolbox-master/p3p_code_final/solveQuartic.m
2,592
utf_8
74f88b5276461cd93fe0d00b39cd0b76
% Copyright (c) 2011, Laurent Kneip, ETH Zurich % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are met: % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % * Neither the name of ETH Zurich nor the % names of its contributors may be used to endorse or promote products % derived from this software without specific prior written permission. % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND % ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED % WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE % DISCLAIMED. IN NO EVENT SHALL ETH ZURICH BE LIABLE FOR ANY % DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES % (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; % LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND % ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT % (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS % SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. function roots = solveQuartic( factors ) A = factors(1,1); B = factors(1,2); C = factors(1,3); D = factors(1,4); E = factors(1,5); A_pw2 = A*A; B_pw2 = B*B; A_pw3 = A_pw2*A; B_pw3 = B_pw2*B; A_pw4 = A_pw3*A; B_pw4 = B_pw3*B; alpha = -3*B_pw2/(8*A_pw2)+C/A; beta = B_pw3/(8*A_pw3)-B*C/(2*A_pw2)+D/A; gamma = -3*B_pw4/(256*A_pw4)+B_pw2*C/(16*A_pw3)-B*D/(4*A_pw2)+E/A; alpha_pw2 = alpha*alpha; alpha_pw3 = alpha_pw2*alpha; P = -alpha_pw2/12-gamma; Q = -alpha_pw3/108+alpha*gamma/3-beta^2/8; R = -Q/2+sqrt(Q^2/4+P^3/27); U = R^(1/3); if U == 0 y = -5*alpha/6-Q^(1/3); else y = -5*alpha/6-P/(3*U)+U; end w = sqrt(alpha+2*y); roots(1,1) = -B/(4*A) + 0.5*(w+sqrt(-(3*alpha+2*y+2*beta/w))); roots(2,1) = -B/(4*A) + 0.5*(w-sqrt(-(3*alpha+2*y+2*beta/w))); roots(3,1) = -B/(4*A) + 0.5*(-w+sqrt(-(3*alpha+2*y-2*beta/w))); roots(4,1) = -B/(4*A) + 0.5*(-w-sqrt(-(3*alpha+2*y-2*beta/w))); end
github
OpenWaterAnalytics/epanet-example-networks-master
nh2cl.m
.m
epanet-example-networks-master/msx-examples/Batch-NH2Cl/nh2cl.m
2,326
utf_8
df91b63da638b7e7db9bdaad7fa25448
function [t,y]=nh2cl(ph) %Matlab code to verify NH2CL bacth model results of EPANET-MSX %input argument: pH value %output: t = time in hour % y = matrix to store the time series of the species concentration % y[:,j] is the time series vector of spcies with index j % species index in the DAE systemn %HOCL 1 Hypochlorous acid %NH3 2 Ammonia %NH2CL 3 Monochloramine %NHCL2 4 Dichloramine %I 5 Unidentified intermediate compound %H 6 %ALK 7 Alkalinity %OCL 8 Hypochlorite Ion %NH4 9 Ammonium Ion %CO3 10 %H2CO3 11 %HCO3 12 %OH 13 %M is the Mass matrix for DAE, first 7 equations are differential equations and the %other 6 are algebraic equations M = zeros(13,13); for i = 1:7 M(i,i)= 1.0; end % Initial condition y0 =zeros(13,1); y0(3) = 0.05e-3; % Initial [NH2CL] y0(6) = 10^(-ph); % Initial [H] y0(7) = 0.004; % Initial [ALK] tspan = [0 168]; % Simulation Time tol = 1e-8*ones(1,13); % Absolute tolerance options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',tol, ... 'Vectorized','off', 'BDF', 'on'); [t,y] = ode15s(@f,tspan,y0,options); %-------------------------------------------------------------------------- function out = f(t,y) k1 = 1.5e10; k2 = 7.6e-2; k3 = 1.0e6; k4 = 2.3e-3; k6 = 2.2e8; k7 = 4.0e5; k8 = 1.0e8; k9 = 3.0e7; k10 = 55.0; k5 = 2.5e7*y(6)+4.0e4*y(11)+800*y(12); a1 = k1*y(1)*y(2); a2 = k2*y(3); a3 = k3*y(1)*y(3); a4 = k4*y(4); a5 = k5*y(3)*y(3); a6 = k6*y(4)*y(2)*y(6); a7 = k7*y(4)*y(13); a8 = k8*y(5)*y(4); a9 = k9*y(5)*y(3); a10 = k10*y(3)*y(4); %Evalutaion of DAEs out(1,1) = -a1+a2-a3+a4+a8; %d[HOCL]/dt out(2,1) = -a1+a2+a5-a6; %d[NH3]/dt out(3,1) = a1-a2-a3+a4-a5+a6-a9-a10; %d[NH2CL]/dt out(4,1) = a3-a4+a5-a6-a7-a8-a10; %d[NHCL2]/dt out(5,1) = a7-a8-a9; %d[I]/dt out(6,1) = 0; %constant pH out(7,1) = 0; %constant alkalinity %The following are equilibrium equations out(8,1) = y(6)*y(8) - 3.16e-8*y(1); out(9,1) = y(6)*y(2) - 5.01e-10*y(9); out(10,1) = y(6)*y(10)- 5.01e-11*y(12); out(11,1) = y(6)*y(12) - 5.01e-7*y(11); out(12,1) = y(7) - y(12) - 2*y(10) - y(13) + y(6); out(13,1) = y(6)*y(13) - 1.0e-14;
github
zinsmatt/StructureFromMotion-master
torr_unit2sphere.m
.m
StructureFromMotion-master/code/torr_unit2sphere.m
575
utf_8
ff5aaca95792e2cc250b4fe118d1bc84
% By Philip Torr 2002 % copyright Microsoft Corp. function [a,b] = torr_unit2sphere(rot_axis) % %convert rot_axis to spherical coords % sin a sin b % sin a cos b % cos a rot_axis = rot_axis/norm(rot_axis); %normalize so second coordinate + ve %rot_axis = rot_axis * sign(rot_axis(2)); a = acos(rot_axis(3)); %b = atan(rot_axis(1)/rot_axis(2)); b = acos(rot_axis(2)/sin(a)); %need to sort the signs out: % %there are two solutions for a % a2 = -a; % b2 = -b; if abs(rot_axis(1) - sin(a) * sin(b)) < 0.000001 return else b = -b; end
github
zinsmatt/StructureFromMotion-master
torr_triangulate.m
.m
StructureFromMotion-master/code/torr_triangulate.m
1,372
utf_8
fae00b93ffeacd252c09620d63df8527
% By Philip Torr 2002 % copyright Microsoft Corp. %this function calculates the set of 3D points given matches and two projection matrices %for this method to work best the matches must be corrected to lie on the epipolar lines %P-i ith row of the P matrix then %constraints are of the form x p_3^t - p_1 & y p_3^t - p_2 function X = torr_triangulate(matches, m3, P1, P2) %first establish the 4 x 4 matrix J such that J^X = 0 [nr no_matches] = size(matches); x1 = matches(:,1)/m3; y1 = matches(:,2)/m3; x2 = matches(:,3)/m3; y2 = matches(:,4)/m3; for i = 1:nr J(1,1) = P1(3,1) * x1(i) - P1(1,1); J(1,2) = P1(3,2) * x1(i) - P1(1,2); J(1,3) = P1(3,3) * x1(i) - P1(1,3); J(1,4) = P1(3,4) * x1(i) - P1(1,4); J(2,1) = P1(3,1) * y1(i) - P1(2,1); J(2,2) = P1(3,2) * y1(i) - P1(2,2); J(2,3) = P1(3,3) * y1(i) - P1(2,3); J(2,4) = P1(3,4) * y1(i) - P1(2,4); J(3,1) = P2(3,1) * x2(i) - P2(1,1); J(3,2) = P2(3,2) * x2(i) - P2(1,2); J(3,3) = P2(3,3) * x2(i) - P2(1,3); J(3,4) = P2(3,4) * x2(i) - P2(1,4); J(4,1) = P2(3,1) * y2(i) - P2(2,1); J(4,2) = P2(3,2) * y2(i) - P2(2,2); J(4,3) = P2(3,3) * y2(i) - P2(2,3); J(4,4) = P2(3,4) * y2(i) - P2(2,4); X(:,i) = torr_ls(J); end %at the moment this is unnormalized so that chierality can be determined
github
zinsmatt/StructureFromMotion-master
torr_linear_EtoPX.m
.m
StructureFromMotion-master/code/torr_linear_EtoPX.m
4,403
utf_8
72468f003e54de860e3dda2c72e05ed4
% By Philip Torr 2002 % copyright Microsoft Corp. %takes an essential matrix and a set of corrected matches, and outputs projection matrices, 3D points etc %all via linear estimation; need camera calibration matrix too function [P1,P2,R,t,rot_axis,rot_angle,g] = torr_linear_EtoPX(E,matches,C,m3) %stage 1 generate twisted pairs etc [U,S,V] = svd(E); %note that there is a one p[arameter family of SVD's for E S(2,2) = S(1,1); S(3,3)=0; if abs(S(3,3)) > 0.00001 error('E must be rank 2 to self calibrate'); end if abs(S(1,1) - S(2,2)) > 0.00001 error('E must have two equal singular values'); end %use Hartley matrices: W = [0 -1 0; 1 0 0; 0 0 1]; Z = [0 1 0; -1 0 0; 0 0 0]; Tx = U * Z * U'; R1 = U * W * V'; R2 = U * W' * V'; R1 = R1 * sign(det(R1)) * sign(det(C)); R2 = R2 * sign(det(R2)) * sign(det(C)); %the left epipole is, which gives the direction of translation u3 = U(:,3); %such that u3' * E = 0, %next establish the four possible camera matrix pairs as points out in Maybank, Hartley & zisserman etc %first camera is 3x4 at origin of the world system. P1 = [C'; 0,0,0]'; %given this there are four choices for the second, we normalize them so that the %determinant of the first 3x3 is greater than zero, this is useful for determining chierality later P21 = C * [ R1'; u3']'; P22 = C * [ R1'; -u3']'; P23 = C * [ R2'; u3']'; P24 = C * [ R2'; -u3']'; %next we take one point to determine the chierality of the camera X1 = torr_triangulate(matches, m3, P1, P21); X2 = torr_triangulate(matches, m3, P1, P22); X3 = torr_triangulate(matches, m3, P1, P23); X4 = torr_triangulate(matches, m3, P1, P24); %next reproject and compare with the images %the chieral constraint is sign(det M) * sign (third homog coord of reprojected image) * sign (fourth homog coord X) % to make sure we dont get any outliers we average the inequalities over all the points, ones with a bad sign % can later be removed as outleirs. %we want chieral for both cameras to be positive ax1 = P1 * X1; %ax1 = ax1 *m3/ax1(3) ax2 = P1 * X2; %ax2 = ax2 *m3/ax2(3) ax3 = P1 * X3; %ax3 = ax3 *m3/ax3(3) ax4 = P1 * X4; %ax4 = ax4 *m3/ax4(3); bx1 = P21 * X1; %bx1 = bx1 *m3/bx1(3) bx2 = P22 * X2; %bx2 = bx2 *m3/bx2(3) bx3 = P23 * X3; %bx3 = bx3 *m3/bx3(3) bx4 = P24 * X4; %bx4 = bx4 *m3/bx4(3); chieral1 = (sign(ax1(3,:) ) .* sign (X1(4,:))) + (sign(bx1(3,:) ) .* sign (X1(4,:))); chieral2 = (sign(ax2(3,:) ) .* sign (X1(4,:))) + (sign(bx2(3,:) ) .* sign (X2(4,:))); chieral3 = (sign(ax3(3,:) ) .* sign (X1(4,:))) + (sign(bx3(3,:) ) .* sign (X3(4,:))); chieral4 = (sign(ax4(3,:) ) .* sign (X1(4,:))) + (sign(bx4(3,:) ) .* sign (X4(4,:))); chieral_sum = [sum(chieral1) sum(chieral2) sum(chieral3) sum(chieral4)]; [max_ch correct_interpretation] = max(chieral_sum); switch correct_interpretation case 1 R = R1; t = u3; P2 = P21; case 2 R = R1; t = -u3; P2 = P22; case 3 R = R2; t = u3; P2 = P23; case 4 R = R2; t = -u3; P2 = P24; end %next recover the parameters of the rotation... % [VR,DR] = eig(R); % % dd = [DR(1,1), DR(2,2), DR(3,3)]; % [Y Index] = find(dd==1); % % %determine axis of rotation % axis = VR(:,Index(1)); rot_axis = [R(3,2)-R(2,3), R(1,3) - R(3,1), R(2,1) - R(1,2)]; rot_axis = rot_axis /norm(rot_axis); rot_angle = acos( (trace(R)-1)/2); [a b] = torr_unit2sphere(rot_axis); [ta tb] = torr_unit2sphere(t); %put together intrinisc and extrinsic parameters % % %here p is the set of paramets such that % g(1) = focal length % g(2-3) rotation axis % g(4) rotation angle % g(5-6) translation direction g(1) = 1/C(3,3); g(2) = a; g(3) = b; g(4) = rot_angle; g(5) = ta; g(6) = tb; % % CCC = C; % %convert intrinsic and extinsics to a F matrix % C(3,3) = 1/g(1); % rot_axis2 = torr_sphere2unit([g(2) g(3)]); % tt = torr_sphere2unit([g(5) g(6)]); % rot_angle2 = g(4); % % %Rogregues % II = [1 0 0; 0 1 0; 0 0 1]; % AX = torr_skew_sym(rot_axis2); % % %note -sin produce RR' % RR = (cos(rot_angle2) * II +sin(rot_angle2) * AX + (1 - cos(rot_angle2)) * rot_axis2 * rot_axis2'); % % TX = torr_skew_sym(tt); % nnE = TX * RR; % % %F = inv(C') * nnE * inv(C); % F = inv(C') * nnE * inv(C); % f = reshape(F,9,1);
github
zinsmatt/StructureFromMotion-master
torr_ls.m
.m
StructureFromMotion-master/code/torr_ls.m
722
utf_8
7c4c0bc1a34e1fcfbd3cf317115e4055
% By Philip Torr 2002 % copyright Microsoft Corp. % % %designed for the good of the world by Philip Torr % copyright Philip Torr and Microsoft Corp 2002 % orthogonal regression see % @article{Torr97c, % author="Torr, P. H. S. and Murray, D. W. ", % title="The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix", % journal="IJCV", % volume = 24, % number = 3, % pages = {271--300}, % year=1997 % } % function [vec, error] = torr_ls(D) try [U, S, V] = svd(D); catch disp('what happeend?'); end V; vec = V(:,length(V)); error = S(length(V),length(V)); %disp('performing least squares')
github
karaimer/camera-pipeline-white-balancing-experiment-master
general_cc.m
.m
camera-pipeline-white-balancing-experiment-master/ColorConstancy/general_cc.m
3,050
utf_8
22c2d001fd8a73a38eca87458096413a
% general_cc: estimates the light source of an input_image. % % Depending on the parameters the estimation is equal to Grey-Wolrd, Max-RGB, general Grey-World, % Shades-of-Gray or Grey-Edge algorithm. % % SYNOPSIS: % [white_R ,white_G ,white_B,output_data] = general_cc(input_data,njet,mink_norm,sigma,mask_im) % % INPUT : % input_data : color input image (NxMx3) % njet : the order of differentiation (range from 0-2). % mink_norm : minkowski norm used (if mink_norm==-1 then the max % operation is applied which is equal to minkowski_norm=infinity). % mask_im : binary images with zeros on image positions which % should be ignored. % OUTPUT: % [white_R,white_G,white_B] : illuminant color estimation % output_data : color corrected image % LITERATURE : % % J. van de Weijer, Th. Gevers, A. Gijsenij % "Edge-Based Color Constancy" % IEEE Trans. Image Processing, accepted 2007. % % The paper includes references to other Color Constancy algorithms % included in general_cc.m such as Grey-World, and max-RGB, and % Shades-of-Gray. function [white_R ,white_G ,white_B,output_data] = general_cc(input_data,njet,mink_norm,sigma,mask_im) if(nargin<2), njet=0; end if(nargin<3), mink_norm=1; end if(nargin<4), sigma=1; end if(nargin<5), mask_im=zeros(size(input_data,1),size(input_data,2)); end % remove all saturated points saturation_threshold = 255; mask_im2 = mask_im + (dilation33(double(max(input_data,[],3)>=saturation_threshold))); mask_im2=double(mask_im2==0); mask_im2=set_border(mask_im2,sigma+1,0); % the mask_im2 contains pixels higher saturation_threshold and which are % not included in mask_im. output_data=input_data; if(njet==0) if(sigma~=0) for ii=1:3 input_data(:,:,ii)=gDer(input_data(:,:,ii),sigma,0,0); end end end if(njet>0) [Rx,Gx,Bx]=norm_derivative(input_data, sigma, njet); input_data(:,:,1)=Rx; input_data(:,:,2)=Gx; input_data(:,:,3)=Bx; end input_data=abs(input_data); if(mink_norm~=-1) % minkowski norm = (1,infinity > kleur=power(input_data,mink_norm); white_R = power(sum(sum(kleur(:,:,1).*mask_im2)),1/mink_norm); white_G = power(sum(sum(kleur(:,:,2).*mask_im2)),1/mink_norm); white_B = power(sum(sum(kleur(:,:,3).*mask_im2)),1/mink_norm); som=sqrt(white_R^2+white_G^2+white_B^2); white_R=white_R/som; white_G=white_G/som; white_B=white_B/som; else %minkowski-norm is infinit: Max-algorithm R=input_data(:,:,1); G=input_data(:,:,2); B=input_data(:,:,3); white_R=max(R(:).*mask_im2(:)); white_G=max(G(:).*mask_im2(:)); white_B=max(B(:).*mask_im2(:)); som=sqrt(white_R^2+white_G^2+white_B^2); white_R=white_R/som; white_G=white_G/som; white_B=white_B/som; end output_data(:,:,1)=output_data(:,:,1)/(white_R*sqrt(3)); output_data(:,:,2)=output_data(:,:,2)/(white_G*sqrt(3)); output_data(:,:,3)=output_data(:,:,3)/(white_B*sqrt(3));
github
karaimer/camera-pipeline-white-balancing-experiment-master
normalize.m
.m
camera-pipeline-white-balancing-experiment-master/ColorConstancy/normalize.m
361
utf_8
b8213b1fd1409a252b98087255fb1194
function Y = normalize(X, min, max) % Normalize the data into the range of 0 and 1 according to the name of the % camera % input: % X: data needed to be normalized % min: minimum value % max: maximum value % output: % Y: data after normalizing % Normalize the data X X = double(X); Y = (X - min) / (max - min); Y(Y<0) = 0; Y(Y>1) = 1;
github
Wiesen/Robotics-Estimation-and-Learning-master
occGridMapping.m
.m
Robotics-Estimation-and-Learning-master/2D Occupancy Grid Mapping/AssignmentWEEK3/occGridMapping.m
1,672
utf_8
1e30e43c6c1f9fd9ce0543be233bfaad
% Robotics: Estimation and Learning % WEEK 3 % % Complete this function following the instruction. function myMap = occGridMapping(ranges, scanAngles, pose, param) %% Parameters % the number of grids for 1 meter. myResol = param.resol; % the initial map size in pixels myMap = zeros(param.size); % the origin of the map in pixels myOrigin = param.origin; % Log-odd parameters lo_occ = param.lo_occ; lo_free = param.lo_free; lo_max = param.lo_max; lo_min = param.lo_min; %% Loop N = size(pose,2); K = size(ranges, 1); for i = 1:N % for each time pose_orig = [pose(1, i), pose(2, i)]; theta = pose(3, i); % local coordinates of occupied points in real world occ_local = [ranges(:,i) .* cos(theta + scanAngles), -ranges(:,i) .* sin(theta + scanAngles)]; % coordinate of robot in metric map pose_grid = ceil(myResol * pose_orig); for j = 1:K % Find grids hit by the rays (in the gird map coordinate) occ_grid = ceil(myResol * (occ_local(j,:) + pose_orig)); % Find occupied-measurement cells and free-measurement cells [freex, freey] = bresenham(pose_grid(1), pose_grid(2), occ_grid(1), occ_grid(2)); free = sub2ind(size(myMap),freey + myOrigin(2), freex + myOrigin(1)); occ = sub2ind(size(myMap), occ_grid(2) + myOrigin(2), occ_grid(1) + myOrigin(1)); % Update the log-odds myMap(free) = myMap(free) - lo_free; myMap(occ) = myMap(occ) + lo_occ; end end myMap(myMap < lo_min) = lo_min; myMap(myMap > lo_max) = lo_max; end
github
Wiesen/Robotics-Estimation-and-Learning-master
detectBall.m
.m
Robotics-Estimation-and-Learning-master/Color Learning and Target Detection/AssignmentWEEK1/detectBall.m
1,313
utf_8
395dd878f3e2f3573c1c707d1ea21202
% Robotics: Estimation and Learning % WEEK 1 % % Complete this function following the instruction. function [segI, loc] = detectBall(I) % function [segI, loc] = detectBall(I) % % INPUT % I 120x160x3 numerial array % % OUTPUT % segI 120x160 numeric array % loc 1x2 or 2x1 numeric array %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Hard code your learned model parameters here load('mu.mat', 'mu'); load('sig.mat', 'sig'); thre = 8e-6; % Find ball-color pixels using your model dI = double(I); row = size(dI, 1); col = size(dI, 2); for i = 1:3 dI(:,:,i) = dI(:,:,i) - mu(i); end dI = reshape(dI, row*col, 3); dI = exp(-0.5 * sum(dI * inv(sig) .* dI, 2)) ./ (2 * pi)^1.5 ./ det(sig)^0.5; dI = reshape(dI, row, col); % Do more processing to segment out the right cluster of pixels. dI = dI > thre; segI = false(size(dI)); CC = bwconncomp(dI); numPixels = cellfun(@numel,CC.PixelIdxList); [~,idx] = max(numPixels); segI(CC.PixelIdxList{idx}) = true; % figure, imshow(segI); hold on; % Compute the location of the ball center S = regionprops(CC,'Centroid'); loc = S(idx).Centroid; % plot(loc(1), loc(2),'r+'); % Note: In this assigment, the center of the segmented ball area will be considered for grading. % (You don't need to consider the whole ball shape if the ball is occluded.) end
github
EoinDavey/Competitive-master
d08.m
.m
Competitive-master/AdventOfCode2021/d08_octave/d08.m
2,282
utf_8
eca51b7f494841063e25532af674fa52
1; % Mark this as a script-file, not a function file (octave weirdness) function cell = split2sets( l ) cell = strsplit(l, " "); cell = cellfun(@unique, cell, "UniformOutput", false); endfunction function splt = splitInpLine( line ) splt = strsplit(line, " | "); splt = cellfun(@split2sets, splt, "UniformOutput", false); splt = cell2struct(splt, { "in", "out" }, 2); endfunction function cnt = count1478( l ) cnt = 0; for x = l, s = x{1}; if ismember(length(s), [ 2 3 4 7 ]) cnt++; endif end endfunction function part1( inp ) sm = 0; for x = inp, l = x{1}; sm += count1478(l.out); end printf("Part 1: %d\n", sm); endfunction function f = firstMatch(func, arr) for elt = arr, x = elt{1}; if func(x) f = x; return endif end endfunction function part2(inp) sm = 0; for x = inp, l = x{1}; mp = {}; ls = arrayfun(@(x) firstMatch(@(y) length(y) == x, l.in), [ 2 3 4 7 ], "UniformOutput", false); mp{1} = ls{1}; mp{7} = ls{2}; mp{4} = ls{3}; mp{8} = ls{4}; t = setdiff(mp{7}, mp{1}); uw = setdiff(mp{4}, mp{1}); mp{10} = firstMatch(@(x) length(x) == 6 && length(setdiff(uw, x)) != 0, l.in); w = setdiff(mp{8}, mp{10}); u = setdiff(uw, w); mp{5} = firstMatch(@(x) length(x) == 5 && length(setdiff(union(t,uw), x)) == 0, l.in); v = setdiff(mp{1}, mp{5}); y = setdiff(mp{1}, v); mp{9} = union(mp{5},v); z = setdiff(mp{9}, unique([t u v w y])); x = setdiff(mp{8}, unique([t u v w y z])); mp{2} = unique([t v w x z]); mp{3} = unique([t v y z w]); mp{6} = unique([t u w x y z]); val = 0; for x = l.out, x = x{1}; val *= 10; for k = 1:10, if strcmp(mp{k}, x) == 1 val += mod(k, 10) ; endif end end sm += val; end printf("Part 2: %d\n", sm) endfunction inp = strsplit(fileread("/code/d08_octave/d08.txt"), "\n") ; inp(end) = []; inp = cellfun("splitInpLine", inp, "UniformOutput", false); part1(inp); part2(inp);
github
ihowat/setsm_postprocessing-master
boundaryAdjust.m
.m
setsm_postprocessing-master/boundaryAdjust.m
4,292
utf_8
376829e3e673a4e1a0fdce4d6ef23a33
function boundaryAdjust(fileNames,varargin) % boundaryAdjust adjust tile based on offsets with neighbors over buffers % % boundaryAdjust(fileNames) where fileNames is a cell of full filenames of % tile files. Files must be named row_col_*.mat, where the row and col are % the tile row and column numbers in the tile arrangment (so the tile above % would be (row+1)_col_*.mat . The tiles above, below, left and right are % loading and the offset over the buffer is caculated. The values are then % upscaled by the resizeFraction, which should be ~ the fractional width % of the buffer, and added along the edges of a correction field (dz0) % that is then filled through interpolation. dz0 is generated for all % tiles in the list and then, afterward, is applied to all tiles in the % list. A flag, adusted, is added with value false if dz0 has not been % applied and true if it has. % % boundaryAdjust(fileNames,'noApply')only calculates/saves the dz0 field % but does not apply it to z. resizeFraction=0.1; if ~iscell(fileNames) fileNames = {fileNames}; end %% dz0 calc and write loop - this could be run simultaneously/parallel i=1; for i =1:length(fileNames) fprintf('Calculating offset grid for %s .... ',fileNames{i}) m0=matfile(fileNames{i}); if any(strcmp(fields(m0),'dz0')) fprintf('dz0 already exists, skipping\n') continue end calcdz0(fileNames{i},resizeFraction) fprintf('done\n') end if ~isempty(varargin) if any(strcmpi(varargin,'noapply')) return end end %% dz0 apply loop - this could be run simultaneously/parallel i=1; for i =1:length(fileNames) fprintf('Applying offset to %s ....',fileNames{i}) m0=matfile(fileNames{i}); if any(strcmp(fields(m0),'adjusted')) if m0.adjusted fprintf('adjusted flag already true, skipping\n') continue end end if ~any(strcmp(fields(m0),'dz0')) fprintf('dz0 doesnt exist, skipping\n') continue end m0.Properties.Writable = true; m0.z = m0.z - m0.dz0; m0.adjusted = true; fprintf('done\n') end function calcdz0(fileName,resizeFraction) m0=matfile(fileName); s=whos(m0); sz= s(strcmp({s.name},'z')).size; dz0 = nan(ceil(sz.*resizeFraction)); [path,name,ext]=fileparts(fileName); if isempty(path) path='.'; end a = strsplit(name,'_'); stringLength=num2str(length(a{1})); tileRow=str2num(a{1}); tileCol=str2num(a{2}); formatString = ['%s/%0',stringLength,'d_%0',stringLength,'d']; % above file1 = [sprintf(formatString,path,tileRow+1,tileCol),... sprintf('_%s',a{3:end}),ext]; if exist(file1,'file') m1=matfile(file1); dzbuff = getdzbuff(m0,m1); dz0(1,:) = imresize(nanmean(dzbuff),resizeFraction); else dz0(1,:) = 0; end % below file1 = [sprintf(formatString,path,tileRow-1,tileCol),... sprintf('_%s',a{3:end}),ext]; if exist(file1,'file') m1=matfile(file1); dzbuff = getdzbuff(m0,m1); dz0(end,:) =imresize(nanmean(dzbuff),resizeFraction); else dz0(end,:) = 0; end % left file1 = [sprintf(formatString,path,tileRow,tileCol-1),... sprintf('_%s',a{3:end}),ext]; if exist(file1,'file') m1=matfile(file1); dzbuff = getdzbuff(m0,m1); dz0(:,1) = imresize(nanmean(dzbuff,2),resizeFraction); else dz0(:,1) = 0; end % right file1 = [sprintf(formatString,path,tileRow,tileCol+1),... sprintf('_%s',a{3:end}),ext]; if exist(file1,'file') m1=matfile(file1); dzbuff = getdzbuff(m0,m1); dz0(:,end) = imresize(nanmean(dzbuff,2),resizeFraction); else dz0(:,end) = 0; end dz0=single(inpaint_nans(double(dz0),2)); dz0 = imresize(dz0,sz); dz0 = dz0./2; m0.Properties.Writable = true; m0.dz0 = dz0; m0.adjusted = false; function dzbuff=getdzbuff(m0,m1) c0 = m0.x >= min(m1.x) & m0.x <= max(m1.x); r0 = m0.y >= min(m1.y) & m0.y <= max(m1.y); c0 = [find(c0,1,'first'),find(c0,1,'last')]; r0 = [find(r0,1,'first'),find(r0,1,'last')]; if isempty(c0) || isempty(r0); error('no overlap between tiles'); end c1 = m1.x >= min(m0.x) & m1.x <= max(m0.x); r1 = m1.y >= min(m0.y) & m1.y <= max(m0.y); c1 = [find(c1,1,'first'),find(c1,1,'last')]; r1 = [find(r1,1,'first'),find(r1,1,'last')]; dzbuff = m0.z(r0(1):r0(2),c0(1):c0(2)) - m1.z(r1(1):r1(2),c1(1):c1(2));
github
ihowat/setsm_postprocessing-master
edgeFeather.m
.m
setsm_postprocessing-master/edgeFeather.m
3,170
utf_8
84c92b942f4233783b93659efa115329
function W = edgeFeather(M0,M1,varargin) % EDGEFEATHER get weights for merging two images with edge feathering % %W = edgeFeather(M0,M1,buff) where M0 and M1 are equally sized BW images %with ones for data and zeros for no data. buff is the cutline buffer for %merging - greater == means more overlap used for feather buff=0; f0=0; % overlap fraction where back z weight goes to zero f1=1; % overlap fraction where back z weight goes to one maxInterpPixels = 1e6; % parse input args for i=1:2:length(varargin) switch lower(varargin{i}) case 'buffer' buff=varargin{i+1}; case 'overlaprange' f0=varargin{i+1}(1); f1=varargin{i+1}(2); otherwise error('Unknown input arguments') end end % crop to just region of overlap A= single(M0 & M1); % if no overlap, send 1/0 mask back if ~any(A(:)) W=nan(size(M0)); W(M0) = 1; W(M1) = 0; return end % crop to area of overlap A(A==0)=NaN; [~,rb,cb] = cropnans(A,buff); %Make overlap mask removing isolated pixels A=single(bwareaopen(... ~M0(rb(1):rb(2),cb(1):cb(2)) & M1(rb(1):rb(2),cb(1):cb(2)),... 1000)); % nodata in back and data in front = 1 A(bwareaopen(... M0(rb(1):rb(2),cb(1):cb(2)) & ~M1(rb(1):rb(2),cb(1):cb(2)),... 1000)) =2 ; % data in back and nodata in front = 2 % do weight interpolation on low res grid for speed if numel(A) <= maxInterpPixels; maxInterpPixels=numel(A); end Ar=imresize(A,maxInterpPixels./numel(A),'nearest'); %Ar=imresize(A,.1,'nearest'); fprintf('%d pixels\n',numel(Ar)); % interpolation grid [C,R] = meshgrid(1:size(Ar,2),1:size(Ar,1)); % pixles on outside of boundary of overlap region B = bwboundaries(Ar~=0, 8, 'noholes'); B = cell2mat(B); if size(B,2) ~= 2 warning('no overlap boundaries returned, no feathering applied'); W=nan(size(M0)); W(M1) = 0; W(M0) = 1; return end n=sub2ind(size(Ar),B(:,1),B(:,2)); warning off F = scatteredInterpolant(C(n),R(n),double(Ar(n))); warning on try Ar(Ar==0)=F(C(Ar==0),R(Ar==0)); catch warning('interpolation failed, no feathering applied'); W=nan(size(M0)); W(M1) = 0; W(M0) = 1; return end Ar=imresize(Ar,size(A),'bilinear'); Ar(A==1 & Ar ~=1)=1; Ar(A==2 & Ar ~=2)=2; A=Ar-1; A(A < 0) = 0; A(A > 1) = 1; W=single(M0); W(rb(1):rb(2),cb(1):cb(2)) = A; W(M0 & ~M1) = NaN; clear A % shift weights so that more of the reference layer is kept W=(1/(f1-f0)).*W-f0/(f1-f0); W(W > 1) = 1; W(W < 0) = 0; function [A,r,c] = cropnans(varargin) % cropnans crop array of bordering nans % % [A,r,c] = cropnans(A) A=varargin{1}; buff=0; if nargin == 2; buff=varargin{2}; end r = []; c = []; M = ~isnan(A); if ~any(M(:)); return; end rowsum = sum(M) ~= 0; colsum = sum(M,2) ~= 0; c(1) = find(rowsum,1,'first')-buff; c(2) = find(rowsum,1,'last')+buff; r(1) = find(colsum,1,'first')-buff; r(2) = find(colsum,1,'last')+buff; if c(1) < 1; c(1)=1; end if r(1) < 1; r(1)=1; end if c(2) > size(A,2); c(2)=size(A,2); end if r(2) > size(A,1); r(2)=size(A,1); end A = A(r(1):r(2),c(1):c(2));
github
ihowat/setsm_postprocessing-master
QCStrips.m
.m
setsm_postprocessing-master/QCStrips.m
2,874
utf_8
caaf539387dedcf78e5b5d7dd67db162
function QCStrips(stripDir,varargin) outFile=[stripDir,'/qc.mat']; system(['rm ',stripDir,'/._*']); fileNames=dir([stripDir,'/*dem_browse.tif']); fileNames=cellfun( @(x) [stripDir,'/',x], {fileNames.name},'uniformOutput',false); fileNames=fileNames(:); flag=zeros(size(fileNames)); x=cell(size(fileNames)); y=cell(size(fileNames)); if exist(outFile,'file') a=load(outFile); [~,IA,IB] = intersect(fileNames,a.fileNames); flag(IA) = a.flag(IB); x(IA) = a.x(IB); y(IA) = a.y(IB); clear a end if ~isempty(varargin) switch lower(varargin{1}) case 'redolast' n=find(flag ~=0,1,'last'); flag(n)=0; x{n}=[]; y{n}=[]; end end for i=1:length(fileNames) if flag(i) ~= 0; continue; end fprintf('%d of %d\n',sum(flag ~= 0) + 1,length(fileNames)) [x{i},y{i},flag(i)]=imedit(fileNames{i}); save(outFile,'fileNames','x','y','flag'); eval(['! chmod 664 ',outFile]); end function [x,y,flag]=imedit(fileName) I=readGeotiff(fileName); %Ior=readGeotiff(strrep(fileName,'_dem_browse.tif','_ortho_browse.tif')); % %% % landclass = subsetGimpIceMask(... % min(I.x)-30,max(I.x)+30,min(I.y)-30,max(I.y)+30); % % if ~isempty(landclass.ocean) % % if any(landclass.ocean(:)) % % % I.ocean = interp2(landclass.x,landclass.y(:),single(landclass.ocean),... % I.x,I.y(:),'*nearest'); % % I.z(logical(I.ocean))=0; % end % end %% imagesc(I.x,I.y,I.z,'alphadata',I.z ~= 0) set(gca,'color','r') axis xy equal tight; colormap gray; hold on; % set(gcf,'units','normalized'); % set(gcf,'position',[0.01,0.01,.35,.9]) flag=[]; x=cell(1); y=cell(1); i=1; while i fprintf('%s\n',fileName) flag=input('Enter quality flag: 1=good, 2=partial, 3=manual edit, 4=poor, 5=bad/error\n'); if ~isempty(flag) if isnumeric(flag) if flag == 1 || flag == 2 || flag == 3 || flag == 4 || flag == 5 break; end end end if iscell(flag); flag=flag{1}; end fprintf('%d not recogized, try again\n',flag); end if flag == 1 || flag == 2; clf; return; end if flag == 4 || flag == 5 x{1} = [min(I.x);min(I.x);max(I.x);max(I.x);min(I.x)]; y{1} = [min(I.y);max(I.y);max(I.y);min(I.y);min(I.y)]; clf return end fprintf('entering manual edit mode\n') while i [~,x{i},y{i}] = roipoly; plot(x{i},y{i},'r') while i s=input('continue editing this image? (y/n)\n','s'); if ~strcmpi(s,'y') && ~strcmpi(s,'n') fprintf('%s not recogized, try again\n',s); else break end end if strcmpi(s,'n'); break; end i=i+1; end clf
github
ihowat/setsm_postprocessing-master
QCStripsByTile.m
.m
setsm_postprocessing-master/QCStripsByTile.m
14,534
utf_8
b8a120517c227bece02070e7dbe83389
function QCStripsByTile(regionNum,varargin) %% Argins %regionNum='02'; % region number tilefile = 'PGC_Imagery_Mosaic_Tiles_Antarctica.mat'; %PGC/NGA Tile definition file, required arcdemfile= 'rema_tiles.mat'; % lists which tiles go to which regions, required dbasefile = 'rema_strips_8m_wqc_cs2bias.mat'; % database file changePath='/Users/ihowat'; %if set, will change the path to the REMA directory from what's in the database file. set to [] if none. % if an older set of mosaic files already exist, we can speed things up by % check to see if they already have 100% coverage - will skip if do. Leave % empty if none. tileDir= dir(['/data4/REMA/region_',regionNum,'*']); if ~isempty(tileDir) tileDir= ['/data4/REMA/',tileDir(1).name,'/mosaic_reg_qc_feather/40m/']; end %% defaults startfrom = 1; minN = 500; minArea = 500; % parse inputs for i=1:2:length(varargin) eval([varargin{i},'=',num2str(varargin{i+1}),';']); end %% Find tiles in this region and load meta % Get tile Defs tiles=load(tilefile); a=load(arcdemfile); %remove duplicated tile entries keeping just first occurence [~,n] = unique(a.tileName,'stable'); a = structfun(@(x) ( x(n) ), a, 'UniformOutput', false); % get index of this region number n=a.regionNum==str2num(regionNum); % check to make sure we find sum if ~(any(n)); error('no tiles matched for this region number'); end % match region number to overlapping tiles [~,n]=intersect(tiles.I,a.tileName(n)); % crop tile structure to overlapping tiles tiles = structfun(@(x) ( x(n) ), tiles, 'UniformOutput', false); % load database structure meta=load(dbasefile); % alter paths in database if set if ~isempty(changePath) meta.f = strrep(meta.f,'/data4',changePath); meta.region = strrep(meta.region,'/data4',changePath); end %check meta file for required fields if ~isfield(meta,'avg_rmse'); error('meta stucture missing avg_rmse field '); end if ~isfield(meta,'xmax'); error('meta stucture missing xmax field '); end if ~isfield(meta,'ymax'); error('meta stucture missing ymax field '); end if ~isfield(meta,'xmin'); error('meta stucture missing ymin field '); end if ~isfield(meta,'ymin'); error('meta stucture missing ymin field '); end if ~isfield(meta,'x'); error('meta stucture missing x field '); end if ~isfield(meta,'y'); error('meta stucture missing y field '); end if ~isfield(meta,'f'); error('meta stucture missing f field '); end % select the whichever registration has the better sigma_bias (all or 1 yr) if isfield(meta,'sigma_all') && isfield(meta,'sigma_1yr') && ~isfield(meta,'sigma') meta.sigma = nanmin([meta.sigma_all(:)';meta.sigma_1yr(:)'])'; end % if no ground control error field, just set to nan if ~isfield(meta,'sigma') meta.sigma = nan(size(meta.f)); end % if ground control error > 1, set to NaN meta.sigma(meta.sigma > 1) = NaN; % set 0 RMSE (single scenes) to NaN meta.avg_rmse(meta.avg_rmse == 0) = NaN; % tile loop for i=startfrom:length(tiles.I) fprintf(' \n') fprintf('Working tile %d of %d: %s \n',i,length(tiles.I),tiles.I{i}); tile = structfun(@(x) ( x(i) ), tiles, 'UniformOutput', false); % check existing tile for coverage if ~isempty(tileDir) if exist([tileDir,tile.I{1},'_40m_dem.mat'],'file') load([tileDir,tile.I{1},'_40m_dem.mat'],'N'); if sum(N(:))./numel(N) == 1 fprintf('tile coverage complete, skipping\n') clear N continue end end end qctile(tile,meta,minN,minArea,changePath); end function qctile(tiles,meta,minN,minArea,changePath) %% Spatial coverage search % make tile boundary polygon tilevx = [tiles.x0;tiles.x0;tiles.x1;tiles.x1;tiles.x0]; tilevy = [tiles.y0;tiles.y1;tiles.y1;tiles.y0;tiles.y0]; % quick search: find strips within range of this tile. This does not % account for background area of around strips but just pairs them down to % speed the poly intersection loop n = meta.xmax > tiles.x0 & meta.xmin < tiles.x1 & ... meta.ymax > tiles.y0 & meta.ymin < tiles.y1; if ~any(n); fprintf('no strip overlap\n'); return; end % get polys meta = structfun(@(x) ( x(n,:) ), meta, 'UniformOutput', false); % search for all strips overlapping this tile in=zeros(size(meta.f)); for i=1:length(in) in(i) = any(inpolygon(meta.x{i},meta.y{i},tilevx,tilevy)) | ... any(inpolygon(tilevx,tilevy,meta.x{i},meta.y{i})); end if ~any(in); fprintf('no strip overlap\n'); return; end % crop meta data struct to only overlapping strips meta = structfun(@(x) ( x(logical(in),:) ), meta, 'UniformOutput', false); fprintf('%d files overlapping this tile, ',sum(in)); % add existing qc data meta = addQC2Meta(meta,changePath); fprintf('%d files with existing qc\n',sum(meta.qc ~= 0)); % remove already added entries from metadata if any(meta.qc == 5) fprintf('removing %d files with qc flag=5\n',sum(meta.qc == 5)); meta = structfun(@(x) ( x(meta.qc ~= 5 ,:) ), meta, 'UniformOutput', false); if isempty(meta.f); fprintf('all strips removed, returning \n'); return; end end % build grid res = 40; buff = 0; x = tiles.x0-buff*res: res:tiles.x1+buff*res; y = tiles.y1+buff*res:-res:tiles.y0-buff*res; y = y(:); N= zeros(length(y),length(x),'uint8'); % apply coastline if isfield(tiles,'coastline') fprintf('applying coastline, '); A = false(size(N)); i=1; for i=1:length(tiles.coastline{1}) if isempty(tiles.coastline{1}{i}); continue; end A(roipoly(x,y,N,tiles.coastline{1}{i}(1,:),... tiles.coastline{1}{i}(2,:))) = true; end percent_filled = 100*sum(~A(:))./numel(A); if percent_filled > 0.2 N(~A) = 1; else percent_filled =0; end clear A fprintf('%.2f%% filled as water\n',percent_filled); if percent_filled == 100; fprintf('returning \n'); return; end end %% Build Grid Point Index Field % make a cell for each file containing the col-wise indices of the data % points on the tile grid. This is used search for new or existing data on % the grid within each search iteration. fprintf('calculating tile pixel coverage for each strip, '); % initialize output field meta.gridPointInd=cell(size(meta.f)); % can be slow, so we'll use a counter count = 0; % already qc'd files to add to N add2N = meta.qc > 0 & meta.qc < 4; fprintf('%d already qc-passed files will be added \n',sum(add2N)) if ~any(~add2N); fprintf('all files already passed qc, returning \n'); return; end % file loop for i=1:length(meta.f) % counter if i>1 for p=1:count fprintf('\b'); end; %delete line before count = fprintf('strip %d of %d',i,size(meta.f,1)); end % locate grid pixels within footprint polygon BW = roipoly(x, y, N, meta.x{i}, meta.y{i}); %if mask data exists, apply it if meta.qc(i) == 3 j=1; for j=1:length(meta.maskPolyx{i}) BW(roipoly(x,y,BW,... meta.maskPolyx{i}{j},meta.maskPolyy{i}{j}))=0; end end % add if already qc'd if add2N(i); N(BW) = 1; continue; end % convert BW mask to col-wise indices and save to cell meta.gridPointInd{i}=find(BW); % get rid of mask clear BW end % clear counter line for p=1:count fprintf('\b'); end; % check if filled percent_filled = 100*sum(N(:))./numel(N); fprintf('%.2f%% filled\n',percent_filled); if percent_filled == 100; fprintf('returning \n'); return; end % remove already added entries from metadata meta = structfun(@(x) ( x(~add2N ,:) ), meta, 'UniformOutput', false); % make another field with the number of data points meta.gridPointN=cellfun(@length,meta.gridPointInd); %remove strips below a minimum size stripArea = nan(size(meta.f)); for i=1:length(meta.f) stripArea(i) = polyarea(meta.x{i}, meta.y{i})./1000^2; end fprintf('removing %d strips smaller than %.1f km^2\n',sum(stripArea < minArea),minArea); meta = structfun(@(x) ( x(stripArea >= minArea ,:) ), meta, 'UniformOutput', false); %% coverage test loop if ~isfield(meta,'rmse'); meta.rmse=nan(size(meta.f));end if ~isfield(meta,'dtrans'); meta.dtrans=zeros(length(meta.f),3); end if ~isfield(meta,'overlap'); meta.overlap=zeros(size(meta.f)); end % number existing data points overlapping file %% recountFlag=true; skipn = 0; while length(meta.f) >= 1 percent_filled = 100*sum(N(:))./numel(N); if percent_filled == 100; fprintf('100%% filled returning \n',percent_filled); return; end fprintf('%.2f%% filled\n', percent_filled); % loop through files in boundary and find # of new/existing points if recountFlag for i=1:length(meta.f) % subset of N at data points in this file Nsub=N(meta.gridPointInd{i}); % count existing data points meta.overlap(i)=sum(Nsub); % count new data points meta.gridPointN(i) = sum(~Nsub); end end recountFlag=false; % remove rendundant files (with already 100% coverage) redundantFlag = meta.gridPointN < minN; if any(redundantFlag) % remove redundant files from lists meta = structfun(@(x) ( x(~redundantFlag,:) ), meta, 'UniformOutput', false); fprintf('%d redundant files (N < %d) removed\n',sum(redundantFlag),minN); if isempty(meta.f); fprintf('all strips removed, returning \n'); return; end end A = nansum([100.*meta.gridPointN./numel(N),1./(meta.avg_rmse.^2)],2); [~,n]=sort(A,'descend'); if skipn < 0; skipn = length(n)-1; end % skip if skipped on last iteration if length(n) >= 1+skipn n = n(1+skipn); else n=n(1); skipn = 0; end fprintf('%d of %d strips remaining\n',skipn+1,length(meta.f)); fileName=strrep(meta.f{n},'meta.txt','dem_browse.tif'); fprintf('%s\n',fileName); fprintf('%d new pointsm, gcp sigma=%.2f, mean coreg RMSE=%.2f, max coreg RMSE=%.2f \n',... meta.gridPointN(n),meta.sigma(n),meta.avg_rmse(n), meta.max_rmse(n)); % localfileName = strrep(fileName,'/data4/REMA','~/rema8mStripBrowse'); localfileName = fileName; I=readGeotiff(localfileName); Ni=interp2(x,y(:),N,I.x,I.y(:),'*nearest'); imagesc(I.x,I.y,I.z,'alphadata',single(I.z ~= 0)) set(gca,'color','r') axis xy equal tight; colormap gray; hold on; imagesc(I.x,I.y,Ni,'alphadata',single(Ni).*.5) if isfield(tiles,'coastline') i=1; for i=1:length(tiles.coastline{1}) if isempty(tiles.coastline{1}{i}); continue; end plot(tiles.coastline{1}{i}(1,:),... tiles.coastline{1}{i}(2,:),'b','linewidth',1) end end plot([tiles.x0,tiles.x0,tiles.x1,tiles.x1,tiles.x0], [tiles.y0,tiles.y1,tiles.y1,tiles.y0,tiles.y0],'w','linewidth',2) set(gca,'xlim',[min(I.x)-500 max(I.x)+500],'ylim',[min(I.y)-500 max(I.y)+500]); %set(gcf,'units','normalized'); %set(gcf,'position',[0.01,0.01,.35,.9]) qc=load([fileparts(fileName),'/qc.mat']); fileNames = qc.fileNames; % alter paths in database if set if ~isempty(changePath) fileNames = strrep(fileNames,'/data4',changePath); end [~,IA]=intersect(fileNames, fileName); if isempty(IA); error('this file name not matched in the qc.mat, probably need to upadate it.'); end if qc.flag(IA) ~= 4 && qc.flag(IA) ~= 0 fprintf('flag previoulsy changed to %d, applying\n',qc.flag(IA)) else j=1; while j try flag=input('Enter quality flag: 0=skip,9=back, 1=good, 2=partial, 3=manual edit, 4=poor, 5=unuseable, 6=quit\n'); if ~isempty(flag) if isnumeric(flag) if flag == 0 || flag == 9 || flag == 1 || flag == 2 || flag == 3 || flag == 4 || flag == 5 || flag == 6 break; end end end catch fprintf('%d not recogized, try again\n',flag); end if iscell(flag); flag=flag{1}; end fprintf('%d not recogized, try again\n',flag); end if flag == 6; clf; return; end if flag == 0; skipn = skipn+1; clf; continue; end if flag == 9; skipn = skipn-1; clf; continue; end qc.flag(IA)=flag; if flag == 1 || flag == 2 qc.x{IA}=cell(1); qc.y{IA}=cell(1); end if flag == 3 fprintf('entering manual edit mode\n') j=1; while j [~,qc.x{IA}{j},qc.y{IA}{j}] = roipoly; plot(qc.x{IA}{j},qc.y{IA}{j},'g','linewidth',2) while j s=input('continue editing this image? (y/n)\n','s'); if ~strcmpi(s,'y') && ~strcmpi(s,'n') fprintf('%s not recogized, try again\n',s); else break end end if strcmpi(s,'n'); break; end j=j+1; end end save([fileparts(fileName),'/qc.mat'],'-struct','qc'); end clf if qc.flag(IA) > 0 && qc.flag(IA) < 4 M = I.z ~=0; j=1; for j=1:length(qc.x{IA}) M(roipoly(I.x,I.y,M,qc.x{IA}{j},qc.y{IA}{j}))=0; end M=interp2(I.x,I.y(:),single(M),x,y(:),'*nearest'); N(M == 1) = 1; recountFlag=true; % remove this file from the meta struct in=1:length(meta.f); in(n)=[]; meta = structfun(@(x) ( x(in,:) ), meta, 'UniformOutput', false); skipn = 0; elseif qc.flag(IA) == 4 || qc.flag(IA) == 5 % remove this file from the meta struct in=1:length(meta.f); in(n)=[]; meta = structfun(@(x) ( x(in,:) ), meta, 'UniformOutput', false); end end %
github
ihowat/setsm_postprocessing-master
scenes2strips.m
.m
setsm_postprocessing-master/scenes2strips.m
11,888
utf_8
43d6e503811d77f86c6c1e33be32256c
function [X,Y,Z,M,O,trans,rmse,f]=scenes2strips(demdir,f) %SCENES2STRIPS merge scenes into strips % % [x,y,z,m,o,trans,rmse,f]=scenes2strips(demdir,f) merges the % scene geotiffs listed in cellstr f within directory demdir after % ordering them by position. If a break in coverage is detected between % scene n and n+1 only the first 1:n scenes will be merged. The data are % coregistered at overlaps using iterative least squares, starting with % scene n=1. % Outputs are the strip grid coorinates x,y and strip elevation, z, % matchtag, m and orthoimage, o. The 3D translations are given in 3xn % vector trans, along with root-mean-squared of residuals, rmse. The % output f gives the list of filenames in the mosaic. If a break is % detected, the list of output files will be less than the input. % % Version 3.0, Ian Howat, Ohio State University, 2015 %% Order Scenes in north-south or east-west direction by aspect ratio fprintf('ordering %d scenes\n',length(f)) f = orderPairs(demdir,f); % intialize output stats trans=zeros(3,length(f)); rmse=zeros(1,length(f)); % file loop for i=1:length(f) % construct filenames demFile = [demdir,'/',f{i}]; matchFile= strrep(demFile,'dem.tif','matchtag.tif'); orthoFile= strrep(demFile,'dem.tif','ortho.tif'); %shadeFile= strrep(demFile,'dem.tif','dem_shade.tif'); edgeMaskFile= strrep(demFile,'dem.tif','edgemask.tif'); dataMaskFile= strrep(demFile,'dem.tif','datamask.tif'); fprintf('scene %d of %d: %s\n',i,length(f),demFile) try [x,y,z,o,m,me,md] = loaddata(demFile,matchFile,orthoFile,edgeMaskFile,... dataMaskFile); catch ME fprintf('%s %s: data read error, skipping \n',ME.identifier,ME.message); continue; end % check for no data if ~any(md(:)); fprintf('no data, skipping \n'); continue; end; %Apply Masks [x,y,z,o,m] = applyMasks(x,y,z,o,m,me,md); dx = x(2)-x(1); dy = y(2)-y(1); % check for non-integer grid if rem(x(1)./dx,1) ~= 0 || rem(y(1)./dy,1) ~= 0 [x,y,z,m,o] = regrid(x,y,z,m,o); end % if first scene in strip, set as strip and continue to next scene if ~exist('X','var') X=x; clear x; Y=y; clear y; Z=z; clear z; M=m; clear m; O=o; clear o; continue; end % pad new arrays to stabilize interpolation buff=10*dx+1; z=padarray(z,[buff buff],NaN); m=padarray(m,[buff buff]); o=padarray(o,[buff buff]); x=[x(1)-dx.*(buff:-1:1),x,x(end)+dx.*(1:buff)]; y=[y(1)+dx.*(buff:-1:1),y,y(end)-dx.*(1:buff)]; % expand strip coverage to encompass new scene if x(1) < X(1); X1=x(1):dx:X(1)-dx; X=[X1,X]; Z=[nan(size(Z,1),length(X1)),Z]; M=[false(size(M,1),length(X1)),M]; O=[zeros(size(O,1),length(X1)),O]; clear X1 end if x(end) > X(end); X1=X(end)+dx:dx:x(end); X=[X,X1]; Z=[Z,nan(size(Z,1),length(X1))]; M=[M,false(size(M,1),length(X1))]; O=[O,zeros(size(O,1),length(X1))]; clear X1 end if y(1) > Y(1); Y1=y(1):-dx:Y(1)+dx; Y=[Y1,Y]; Z=[nan(length(Y1),size(Z,2));Z]; M=[false(length(Y1),size(M,2));M]; O=[zeros(length(Y1),size(O,2));O]; clear Y1 end if y(end) < Y(end); Y1=Y(end)-dx:-dx:y(end); Y=[Y,Y1]; Z=[Z;nan(length(Y1),size(Z,2))]; M=[M;false(length(Y1),size(M,2))]; O=[O;zeros(length(Y1),size(O,2))]; clear Y1; end % map new dem pixels to swath. These must return integers. If not, % interpolation will be required, which is currently not supported. c0 = find(x(1) == X); c1 = find(x(end) == X); r0 = find(y(1) == Y); r1 = find(y(end) == Y); %crop to overlap Zsub=Z(r0:r1,c0:c1); Xsub=X(c0:c1); Ysub=Y(r0:r1); Msub=M(r0:r1,c0:c1); Osub=O(r0:r1,c0:c1); %% NEW MOSAICING CODE % crop to just region of overlap A= single( ~isnan(Zsub) & ~isnan(z)); %check for segment break if sum(A(:)) <= 1000; f=f(1:i-1); trans = trans(:,1:i-1); rmse = rmse(1:i-1); break end A(A==0)=NaN; [~,r,c] = cropnans(A,buff); %Make overlap mask removing isolated pixels A=single(bwareaopen(... isnan(Zsub(r(1):r(2),c(1):c(2))) & ~isnan(z(r(1):r(2),c(1):c(2))),... 1000)); % nodata in strip and data in scene is a one % check for redundant scene if sum(A(:)) <= 1000; fprintf('redundant scene, skipping \n'); continue; end; A(bwareaopen(... ~isnan(Zsub(r(1):r(2),c(1):c(2))) & isnan(z(r(1):r(2),c(1):c(2))),... 1000))=2; % data in strip and no data in scene is a two % tic % % USING REGIONFILL - Requires matlab 2015a or newer % A = regionfill(A,A==0) -1; % toc Ar=imresize(A,.1,'nearest'); [C R] = meshgrid(1:size(Ar,2),1:size(Ar,1)); % pixles on outside of boundary of overlap region B = bwboundaries(Ar~=0, 8, 'noholes'); B = cell2mat(B); n=sub2ind(size(Ar),B(:,1),B(:,2)); warning off F = scatteredInterpolant(C(n),R(n),double(Ar(n))); warning on Ar(Ar==0)=F(C(Ar==0),R(Ar==0)); Ar=imresize(Ar,size(A),'bilinear'); Ar(A==1 & Ar ~=1)=1; Ar(A==2 & Ar ~=2)=2; A=Ar-1; A(A < 0) = 0; A(A > 1) = 1; W=single(~isnan(Zsub)); W(r(1):r(2),c(1):c(2)) = A; clear A W(isnan(Zsub) & isnan(z)) = NaN; % shift weights so that more of the reference layer is kept f0=.25; % overlap fraction where ref z weight goes to zero f1=.55; % overlap fraction where ref z weight goes to one W=(1/(f1-f0)).*W-f0/(f1-f0); W(W > 1) = 1; W(W < 0) = 0; % remove <25% edge of coverage from each in pair Zsub(W == 0) = NaN; Msub(W == 0) = 0; Osub(W == 0) = 0; z(W >= 1) = NaN; m(W >= 1) = 0; o(W >= 1) = 0; %% Coregistration % coregister this scene to the strip mosaic [~,trans(:,i),rmse(i)] = ... coregisterdems(Xsub(c(1):c(2)),Ysub(r(1):r(2)),... Zsub(r(1):r(2),c(1):c(2)),... x(c(1):c(2)),y(r(1):r(2)),... z(r(1):r(2),c(1):c(2)),... Msub(r(1):r(2),c(1):c(2)),... m(r(1):r(2),c(1):c(2))); %check for segment break if isnan(rmse(i)); fprintf('Unable to coregister, breaking segment\n') f=f(1:i-1); trans = trans(:,1:i-1); rmse = rmse(1:i-1); break end % interpolation grid xi=x - trans(2,i); yi=y - trans(3,i); %check uniform spacing is maintained (sometimes rounding errors) if length(unique(diff(xi))) > 1; xi=round(xi,4); end if length(unique(diff(yi))) > 1; yi=round(yi,4); end % interpolate the floating data to the reference grid zi = interp2(xi,yi,z-trans(1,i),Xsub(:)',Ysub(:),'*linear'); clear z % interpolate the mask to the same grid mi = interp2(xi,yi,single(m),Xsub(:)',Ysub(:),'*nearest'); mi(isnan(mi)) = 0; % convert back to uint8 mi = logical(mi); clear m % interpolate ortho to same grid oi = single(o); oi(oi==0) = NaN; % set border to NaN so wont be interpolated oi = interp2(xi,yi,oi,Xsub(:)',Ysub(:),'*cubic'); clear o clear Xsub Ysub % remove border 0's introduced by nn interpolation M3 = ~isnan(zi); M3=imerode(M3,ones( 6 )); % border cutline zi(~M3)=NaN; mi(~M3)=0; clear M3 % remove border on orthos seperately M4= ~isnan(oi); M4=imerode(M4,ones( 6 )); oi(~M4)=NaN; clear M4 % make weighted elevation grid A= Zsub.*W + zi.*(1-W); A( isnan(Zsub) & ~isnan(zi))= zi( isnan(Zsub) & ~isnan(zi)); A(~isnan(Zsub) & isnan(zi))=Zsub(~isnan(Zsub) & isnan(zi)); clear zi Zsub % put strip subset back into full array Z(r0:r1,c0:c1) = A; clear A % for the matchtag, just straight combination M(r0:r1,c0:c1) = Msub | mi; clear Msub Mi % make weighted ortho grid Osub = single(Osub); Osub(Osub==0) = NaN; A= Osub.*W + oi.*(1-W); clear W A( isnan(Osub) & ~isnan(oi))= oi( isnan(Osub) & ~isnan(oi)); A(~isnan(Osub) & isnan(oi))= Osub(~isnan(Osub) & isnan(oi)); clear Osub oi A(isnan(A)) = 0; % convert back to uint16 A = uint16(A); O(r0:r1,c0:c1) = A; clear A end %crop to data if exist('Z','var') && any(~isnan(Z(:))) [Z,rcrop,ccrop] = cropnans(Z); if ~isempty(rcrop); X = X(ccrop(1):ccrop(2)); Y = Y(rcrop(1):rcrop(2)); M = M(rcrop(1):rcrop(2),ccrop(1):ccrop(2)); O = O(rcrop(1):rcrop(2),ccrop(1):ccrop(2)); Z(isnan(Z)) = -9999; end else X=[]; Y=[]; Z=[]; M=[]; O=[]; end function [x,y,z,o,m,me,md] = loaddata(demFile,matchFile,orthoFile,edgeMaskFile,dataMaskFile) % loaddata load data files and perform basic conversions d=readGeotiff(demFile); x=d.x; y=d.y; z=d.z; clear d sz=size(z); d=readGeotiff(matchFile); szd=size(d.z); if any(szd ~= sz); m = interp2(d.x,d.y,single(d.z),... x(:)',y(:),'*nearest'); m(isnan(m)) = 0; % convert back to uint16 m = logical(m); else m=d.z; end clear d o=zeros(size(z)); if exist(orthoFile,'file') d=readGeotiff(orthoFile); szd=size(d.z); if any(szd ~= sz); d.z = single(d.z); d.z(d.z==0) = NaN; % set border to NaN so wont be interpolated o = interp2(d.x,d.y,d.z,... x(:)',y(:),'*cubic'); o(isnan(o)) = 0; % convert back to uint16 o = uint16(o); else o=d.z; end clear d end if exist(edgeMaskFile,'file') d=readGeotiff(edgeMaskFile); szd=size(d.z); if any(szd ~= sz); error('edgemaskfile wrong dimensions'); end me=d.z; clear d; else warning('No edgeMaskFile found, no mask applied') me=ones(sz,'logical'); end if exist(dataMaskFile,'file') d=readGeotiff(dataMaskFile); szd=size(d.z); if any(szd ~= sz); error('datamaskfile wrong dimensions'); end md=d.z; else warning('No dataMaskFile found, no mask applied') md=ones(sz,'logical'); end z(z < -100 | z == 0 | z == -NaN | isinf(z) ) = NaN; function [x,y,z,o,m] = applyMasks(x,y,z,o,m,me,md) z(~md) = NaN; m(~md) = 0; o(~me) = 0; if any(~isnan(z(:))); [z,rcrop,ccrop] = cropnans(z); x = x(ccrop(1):ccrop(2)); y = y(rcrop(1):rcrop(2)); m = m(rcrop(1):rcrop(2),ccrop(1):ccrop(2)); o = o(rcrop(1):rcrop(2),ccrop(1):ccrop(2)); end function [X,Y,Z,M,O] = regrid(X,Y,Z,M,O) dx = X(2)-X(1); dy = Y(2)-Y(1); Xi = X(1) + (dx-rem(X(1)/dx,1)*dx):dx:X(end); Yi = Y(1) - (rem(Y(1)/dy,1)*dy):dy:Y(end); Zi = interp2(X,Y(:),Z,Xi,Yi(:),'*linear'); M = interp2(X,Y(:),single(M),Xi,Yi(:),'*nearest'); M(isnan(M)) = 0; % convert back to uint8 M = logical(M); % interpolate ortho to same grid O = single(O); O(isnan(Z)) = NaN; % set border to NaN so wont be interpolated O = interp2(X,Y(:),O,Xi,Yi(:),'*cubic'); O(isnan(O)) = 0; % convert back to uint16 O = uint16(O); Z = Zi; X = Xi; Y = Yi; function [A,r,c] = cropnans(varargin) % cropnans crop array of bordering nans % % [A,r,c] = cropnans(A) A=varargin{1}; buff=0; if nargin == 2; buff=varargin{2}; end r = []; c = []; M = ~isnan(A); if ~any(M(:)); return; end rowsum = sum(M) ~= 0; colsum = sum(M,2) ~= 0; c(1) = find(rowsum,1,'first')-buff; c(2) = find(rowsum,1,'last')+buff; r(1) = find(colsum,1,'first')-buff; r(2) = find(colsum,1,'last')+buff; if c(1) < 1; c(1)=1; end if r(1) < 1; r(1)=1; end if c(2) > size(A,2); c(2)=size(A,2); end if r(2) > size(A,1); r(2)=size(A,1); end A = A(r(1):r(2),c(1):c(2));
github
ihowat/setsm_postprocessing-master
DecimatePoly.m
.m
setsm_postprocessing-master/DecimatePoly.m
7,059
utf_8
59d47c972e3d1145b213349afa979c50
function [C_out,i_rem]=DecimatePoly(C,opt) % Reduce the complexity of a 2D simple (i.e. non-self intersecting), closed % piecewise linear contour by specifying boundary offset tolerance. % IMPORTANT: This function may not preserve the topology of the original % polygon. % % INPUT ARGUMENTS: % - C : N-by-2 array of polygon co-ordinates, such that the first, % C(1,:), and last, C(end,:), points are the same. % - opt : opt can be specified in one of two ways: % ----------------------APPROACH #1 (default) ----------------- % - opt : opt=[B_tol 1], where B_tol is the maximum acceptible % offset from the original boundary, B_tol must be % expressed in the same lenth units as the co-ords in % C. Default setting is B_tol=Emin/2, where Emin is the % length of the shortest edge. % ----------------------APPROACH #2---------------------------- % - opt : opt=[P_tol 2], where P_tol is the fraction of the % total number of polygon's vertices to be retained. % Accordingly, P_tol must be a real number on the % interval (0,1). % % OUTPUT: % - C_out : M-by-2 array of polygon coordinates. % - i_rem : N-by-1 logical array used to indicate which vertices were % removed during decimation. % % ALGORITHM: % 1) For every vertex compute the boundary offset error. % 2) Rank all vertics according to the error score from step 1. % 3) Remove the vertex with the lowest error. % 4) Recompute and accumulate the errors for the two neighbours adjacent to % the deleted vertex and go back to step 2. % 5) Repeat step 2 to 4 until no more vertices can be removed or the number % of vertices has reached the desired number. % % AUTHOR: Anton Semechko ([email protected]) % DATE: Jan.2011 % % Check the input args if nargin<2, opt={}; end opt=CheckInputArgs(C,opt); N=size(C,1); i_rem=false(N,1); if N<=4, C_out=C; return end % Tolerance parameter, perimeter and area of the input polygon [Po,Emin]=PolyPerim(C); B_tol=Emin/2; Ao=PolyArea(C); No=N-1; if ~isempty(opt), B_tol=opt(1); end Nmin=3; if opt(2)==2 Nmin=round((N-1)*opt(1)); if (N-1)==Nmin, return; end if Nmin<3, Nmin=3; end end % Remove the (repeating) end-point C(end,:)=[]; N=N-1; % Compute the distance offset errors -------------------------------------- D31=circshift(C,[-1 0])-circshift(C,[1 0]); D21=C-circshift(C,[1 0]); dE_new2=sum(D31.^2,2); % length^2 of potential new edges % Find the closest point to the current vertex on the new edge t=sum(D21.*D31,2)./dE_new2; if t<0, t(t<0)=0; end %#ok<*BDSCI> if t>1, t(t>1)=1; end V=circshift(C,[1 0])+bsxfun(@times,t,D31); % Evaluate the distance^2 Err_D2=sum((V-C).^2,2); % Initialize distance error accumulation array DEAA=zeros(N,1); % Begin decimation -------------------------------------------------------- idx_ret=1:N; % keep track of retained vertices while true % Find the vertices whose removal will satisfy the decimation criterion idx_i=Err_D2<B_tol; if sum(idx_i)==0 && N>Nmin && opt(2)==2 B_tol=B_tol*sqrt(1.5); continue end idx_i=find(idx_i); if isempty(idx_i) || N==Nmin, break; end N=N-1; % Vertex with the smallest net error [~,i_min]=min(Err_D2(idx_i)); idx_i=idx_i(i_min); % Update the distance error accumulation array DEAA(idx_i)=DEAA(idx_i)+sqrt(Err_D2(idx_i)); i1=idx_i-1; if i1<1, i1=N; end i3=idx_i+1; if i3>N, i3=1; end DEAA(i1)=DEAA(idx_i); DEAA(i3)=DEAA(idx_i); % Recompute the errors for the vertices neighbouring the vertex marked % for deletion i1_1=i1-1; if i1_1<1, i1_1=N; end i1_3=i3; i3_1=i1; i3_3=i3+1; if i3_3>N, i3_3=1; end err_D1=RecomputeErrors(C([i1_1,i1,i1_3],:)); err_D3=RecomputeErrors(C([i3_1,i3,i3_3],:)); % Upadate the errors Err_D2(i1)=(sqrt(err_D1)+ DEAA(i1)).^2; Err_D2(i3)=(sqrt(err_D3)+ DEAA(i3)).^2; % Remove the vertex C(idx_i,:)=[]; idx_ret(idx_i)=[]; DEAA(idx_i)=[]; Err_D2(idx_i)=[]; end C=[C;C(1,:)]; C_out=C; i_rem(idx_ret)=true; i_rem=~i_rem; i_rem(end)=i_rem(1); % Perimeter and area of the simplified polygon P=PolyPerim(C); A=PolyArea(C); % Performance summary fprintf('\t\t# of verts\t\tperimeter\t\tarea\n') fprintf('in\t\t%-5u\t\t\t%-.2f\t\t\t%-.2f\n',No,Po,Ao) fprintf('out\t\t%-5u\t\t\t%-.2f\t\t\t%-.2f\n',N,P,A) fprintf('-----------------------------------------------------\n') fprintf('change\t%-5.2f%%\t\t\t%-5.2f%%\t\t\t%-5.2f%%\n\n',(N-No)/No*100,(P-Po)/Po*100,(A-Ao)/Ao*100) %========================================================================== function err_D2=RecomputeErrors(V) % Recompute the distance offset error for a small subset of polygonal % vertices. % % - V : 3-by-2 array of triangle vertices, where V(2,:) is the vertex % marked for removal. % Compute the distance offset error --------------------------------------- D31=V(3,:)-V(1,:); D21=V(2,:)-V(1,:); dE_new2=sum(D31.^2,2); % length^2 of potential new edge % Find the closest point to the current vertex on the new edge t=sum(D21.*D31,2)/dE_new2; if t<0, t(t<0)=0; end if t>1, t(t>1)=1; end p=V(1,:)+bsxfun(@times,t,D31); % Evaluate the distance^2 err_D2=sum((p-V(2,:)).^2); %========================================================================== function [P,Emin]=PolyPerim(C) % Polygon perimeter. dE=C(2:end,:)-C(1:(end-1),:); dE=sqrt(sum(dE.^2,2)); P=sum(dE); Emin=min(dE); %========================================================================== function A=PolyArea(C) % Polygon area. dx=C(2:end,1)-C(1:(end-1),1); dy=C(2:end,2)+C(1:(end-1),2); A=abs(sum(dx.*dy)/2); %========================================================================== function opt=CheckInputArgs(C,opt) % Check the validity of the input arguments siz=size(C); if numel(siz)~=2 || siz(2)>siz(1) || ~isnumeric(C) || ~ismatrix(C) || ndims(C)~=2 error('First input argument must be a N-by-2 array of polygon vertices') end if ~isequal(C(1,:),C(end,:)) error('First and last points in C must be the same') end if isempty(opt), return; end if ~isnumeric(opt) || numel(opt)~=2 error('Incorrect entry for 2nd input argument') end if ~(opt(2)==1 || opt(2)==2) error('Incorrect entry for 2nd input argument. opt(2) must be set to 1 or 2.') end if opt(2)==1 && opt(1)<=eps error('Incorrect entry for 2nd input argument. When opt(2)==1, opt(1) must be greater than zero.') end if opt(2)==2 && (opt(1)<=eps || opt(1)>=1) error('Incorrect entry for 2nd input argument. When opt(2)==2, opt(1) must be on the interval (0,1).') end
github
rajul614/ResolutionTheoremSolving-master
CS4300_PL_Resolve.m
.m
ResolutionTheoremSolving-master/CS4300_PL_Resolve.m
1,448
utf_8
f202bde8ee21c01221056b1194d7fec7
function resolvents = CS4300_PL_Resolve(clause1,clause2) % CS4300_PL_Resolve - resolution theorem prover % On input: % clause1 : 1rst conjuctive clause % clause2 : 2nd conjuctive clause % On output: % resolvents : results of resolve % Call: % resolvents = CS4300_PL_Resolve([17,-2,5],[-17,5]); % Author: % Rajul Ramchandani and Conan Zhang % UU % Fall 2016 % resolvents = []; num_resolvent = 1; for c1 = 1:length(clause1) d1 = clause1(c1); for c2 = 1:length(clause2) d2 = clause2(c2); if(d1 == -d2) v1 = [clause1(1:c1-1), clause1(c1+1:end),clause2(1:c2-1), clause2(c2+1:end)]; %v1 = Rem_Contradictions(v1); v1 = unique(v1); resolvents(num_resolvent).clauses = sort(v1); num_resolvent = num_resolvent + 1; end end end resolvents = Rem_Duplicates(resolvents); %ask prof about removing duplicates end function rem_contradictions = Rem_Contradictions(v1) rem_contradictions = []; rem_counter = 1; for i = 1:length(v1) for j = i+1:length(v1) if(v1(i) == -v1(j)) v1(i) = 0; v1(j) = 0; end end end for i = 1:length(v1) if(v1(i) ~= 0) rem_contradictions(rem_counter) = v1(i); rem_counter = rem_counter + 1; end end end
github
rajul614/ResolutionTheoremSolving-master
CS4300_RTP.m
.m
ResolutionTheoremSolving-master/CS4300_RTP.m
2,976
utf_8
a79b8bf9a2c5b8869846b2cb5155784c
function Sip = CS4300_RTP(sentences,thm,vars) % CS4300_RTP - resolution theorem prover % On input: % clause (CNF data structure): array of conjuctive clauses % (i).clauses % each clause is a list of integers (- for negated literal) % thm (CNF datastructure): a disjunctive clause to be tested % vars (1xn vector): list of variables (positive integers) % On output: % Sip (CNF data structure): results of resolution % []: proved sentence |- thm % not []: thm does not follow from clause % Call: (example from Russell & Norvig, p. 252) % DP(1).clauses = [-1,2,3,4]; % DP(2).clauses = [-2]; % DP(3).clauses = [-3]; % DP(4).clauses = [1]; % thm = [4]; % vars = [1,2,3,4]; % Sr = CS4300_RTP(DP,thm,vars); % Author: % Rajul Ramchandani and Conan Zhang % UU % Fall 2016 % clause = sentences; new = []; iteration_count = 0; for k = 1:length(thm) clause(end+1).clauses = -thm(k); end initial_clause_count = length(clause) ctable = {}; while 1 for c1 = 1:length(clause) for c2 = c1+1:length(clause) iteration_count = iteration_count + 1; resolvents = CS4300_PL_Resolve(clause(c1).clauses, clause(c2).clauses); %Uncomment to get ctable with [c1] [c2] [resolvents] % ctable{end+1, 1} = c1; % ctable{end, 2} = c2; % if Contains_Empty_Clause(resolvents) % ctable{end, 3} = []; % elseif(~isempty(resolvents)) % ctable{end, 3} = resolvents.clauses % end if Contains_Empty_Clause(resolvents) Sip = []; %Uncomment to print ctable when done %ctable sentences_produced = length(clause) - initial_clause_count iteration_count return; end new = [new resolvents]; new = Rem_Duplicates(new); %Uncomment for Table of with new for every iteration %T = struct2table(new) end end if Is_Subset(new, clause) Sip = clause; sentences_produced = length(clause) - initial_clause_count iteration_count return; end clause = [clause, new]; clause = Rem_Duplicates(clause); end end function contains_empty = Contains_Empty_Clause(resolvents) contains_empty = 0; for i = 1:length(resolvents) if isempty(resolvents(i).clauses) contains_empty = 1; return; end end end function is_subset = Is_Subset(new, clause) is_subset = 0; counter = 0; for r1 = 1:length(new) currentNew = new(r1); for r2 = 1:length(clause) currentSentence = clause(r2); if isequal(currentNew, currentSentence) counter = counter + 1; end end end if counter == length(new) is_subset = 1; end end
github
MengLiuPurdue/find_densest_subgraph-master
max_density.m
.m
find_densest_subgraph-master/small_graph_test/max_density.m
653
utf_8
0a737e85e2fd52f22a72a295a9c10cbc
%find the subgraph with the maximum density in an undirected graph through brutal search %the undirected graph is represented by an adjcent matrix A %density is the maximum density and cut is the corresponding subgraph function [density,cut]=max_density(A) density=0; [n,n]=size(A); for i=0:(2^n-1) temp=0; a=bitget(i,n:-1:1); for j=1:n for k=1:n if a(j)*a(k)*A(j,k)~=0 temp=temp+A(j,k); end end end count=sum(a); temp=temp/count; if temp>density max_cut=a; density=temp; end end j=1; for i=1:n if max_cut(i)==1 cut(j,1)=i; j=j+1; end end
github
MengLiuPurdue/find_densest_subgraph-master
readSMAT.m
.m
find_densest_subgraph-master/matlab_wrapper_sparse/readSMAT.m
2,054
utf_8
df9a6fc0686543129dd465f7a5fb0991
function A = readSMAT(filename) % readSMAT reads an indexed sparse matrix representation of a matrix % and creates a MATLAB sparse matrix. % % A = readSMAT(filename) % filename - the name of the SMAT file % A - the MATLAB sparse matrix % % David Gleich % Copyright, Stanford University, 2005-2010 if (~exist(filename,'file')) error('readSMAT:fileNotFound', 'Unable to read file %s', filename); end if (exist(strcat(filename, '.info'), 'file')) s = load(filename); mdata = load(strcat(filename, '.info')); ind_i = s(:,1)+1; ind_j = s(:,2)+1; val = s(:,3); A = sparse(ind_i,ind_j,val, mdata(1), mdata(2)); return; end; [pathstr,name,ext] = fileparts(filename); if ~isempty(strfind(ext,'.gz')) [m n i j v] = readSMATGZ(realpath(filename)); A = sparse(i,j,v,m,n); return; end; s = load(filename,'-ascii'); m = s(1,1); n = s(1,2); try ind_i = s(2:length(s),1)+1; ind_j = s(2:length(s),2)+1; val = s(2:length(s),3); clear s; A = sparse(ind_i,ind_j,val, m, n); catch fprintf('... trying block read ...\n'); blocksize = 1000000; curpos = 2; blocknum = 1; nzleft = s(1,3); A = sparse(m,n); while (nzleft > 0) curblock = min(nzleft, blocksize); fprintf('block %i (%i - %i)\n', blocknum, curpos-1, curpos+curblock-2); curpart = curpos:(curpos+curblock-1); ind_i = s(curpart,1)+1; ind_j = s(curpart,2)+1; val = s(curpart,3); A = A + sparse(ind_i, ind_j, val, m, n); nzleft = nzleft - curblock; curpos = curpos + curblock; blocknum = blocknum + 1; end end function S = merge_structs(A, B) % MERGE_STRUCTS Merge two structures. % % S = merge_structs(A, B) makes the structure S have all the fields from A % and B. Conflicts are resolved by using the value in A. % % % merge_structs.m % David Gleich % % Revision 1.00 % 19 Octoboer 2005 % S = A; fn = fieldnames(B); for ii = 1:length(fn) if ~isfield(A, fn{ii}) S.(fn{ii}) = B.(fn{ii}); end end
github
MengLiuPurdue/find_densest_subgraph-master
run_densest_subgraph.m
.m
find_densest_subgraph-master/6_node_test/run_densest_subgraph.m
3,172
utf_8
a5045a1820edce666c0b310b580a1100
function [S,density,algd] = run_densest_subgraph(A) % Write output and run the commands % assert(issymmetric(A)); % assert(~any(diag(A))); mydir = fileparts(mfilename('fullpath')); mygfile = fullfile(mydir,'run_dsubgraph.smat'); myoutfile = fullfile(mydir,'run-dsubgraph.out'); writeSMAT(mygfile, A); status = system(sprintf(... '"%s" "%s" "%s"', fullfile(mydir, 'find_densest_subgraph'), ... mygfile,myoutfile)); if status == 0 try fid = fopen(myoutfile, 'r'); algd = textscan(fid, '%f', 1); algd = algd{1}; num = textscan(fid, '%d', 1); vals = textscan(fid, '%d', num{1}); S = vals{1}+1; density = full(sum(sum(A(S,S)))/numel(S)); fclose(fid); catch me fclose(fid); rethrow(me) end end if nargout < 2 fprintf(' Output density: %f\n', algd); fprintf(' Computed density: %f\n', density); end function writeSMAT(filename, A, optionsu) % WRITESMAT writes a matrix in a sparse matrix (SMAT) form. % % WRITESMAT(filename, A, options) % filename - the filename to write % A - the matrix % % options.format value format (e.g. %i or %f) % options.ut upper triangular (only print the upper triangular part) % options.graph assume the column size is the same as the row size % % options.blocksize blocksize to write out extremely large matrices. % % David Gleich % Copyright, 2005-2010 options = struct('format', '%f', 'ut', 'no', 'graph', 'no', ... 'onebased', 'no', 'blocksize', 1000000); if (nargin > 2) options = merge_structs(optionsu, options); end; fid = fopen(filename, 'wt'); if (strcmp(options.ut', 'yes')) A = triu(A); [i, j, v] = find(A); else [i, j, v] = find(A); end nz = length(i); [m n] = size(A); if m==1, i = i'; j = j'; v = v'; end if (strcmp(options.graph, 'yes')) fprintf(fid, '%i %i\n', m, nz); else fprintf(fid, '%i %i %i\n', m, n, nz); end; fmt = sprintf('%s %s %s\\n', '%i', '%i', options.format); if (~strcmp(options.onebased, 'yes')) i = i-1; j = j-1; end; try fprintf(fid, fmt, [i j v]'); catch fprintf('... trying block write ...\n'); blocksize = options.blocksize; startblock = 1; blocknum = 1; nzleft = nz; while (nzleft > 0) curblock = min(nzleft, blocksize); fprintf('block %i (%i - %i)\n', blocknum, startblock, startblock+curblock-1); curpart = startblock:(startblock+curblock-1); fprintf(fid, fmt, [i(curpart) j(curpart) v(curpart)]'); nzleft = nzleft - curblock; startblock = startblock+curblock; blocknum = blocknum+1; end; end; %for ii=1:length(i) % fprintf(fid, '%i %i %f\n', i(ii)-1, j(ii)-1, v(ii)); %end fclose(fid); function S = merge_structs(A, B) % MERGE_STRUCTS Merge two structures. % % S = merge_structs(A, B) makes the structure S have all the fields from A % and B. Conflicts are resolved by using the value in A. % % % merge_structs.m % David Gleich % % Revision 1.00 % 19 Octoboer 2005 % S = A; fn = fieldnames(B); for ii = 1:length(fn) if ~isfield(A, fn{ii}) S.(fn{ii}) = B.(fn{ii}); end end
github
MengLiuPurdue/find_densest_subgraph-master
max_density.m
.m
find_densest_subgraph-master/6_node_test/max_density.m
633
utf_8
edf1d2d157f71e56c6930b8c4fafeeb5
%find the subgraph with the maximum density in an undirected graph through brutal search %the undirected graph is represented by an adjcent matrix A %density is the maximum density and cut is the corresponding subgraph function [density,cut]=max_density(A) density=0; for i=0:63 temp=0; a=bitget(i,6:-1:1); for j=1:6 for k=1:6 if a(j)*a(k)*A(j,k)~=0 temp=temp+A(j,k); end end end count=sum(a); temp=temp/count; if temp>density max_cut=a; density=temp; end end j=1; for i=1:6 if max_cut(i)==1 cut(j,1)=i; j=j+1; end end
github
mhturner/MHT-Rieke-analysis-master
singleEpochPlusImagingTraces.m
.m
MHT-Rieke-analysis-master/JauiModel&TreeTools/epoch-tree-gui/singleEpochPlusImagingTraces.m
4,170
utf_8
3cea9f4f1fac67a40972ad2511c061d6
function singleEpochPlusImagingTraces(epochTree, fig, doInit) %Show info about one Epoch at at time, under given EpochTree % [email protected] % 2 Feb. 2009 %MHT added imaging traces 20171025 import riekesuite.guitools.*; if ~nargin && ~isobject(epochTree) disp(sprintf('%s needs an EpochTree', mfilename)); return end if nargin < 2 disp(sprintf('%s needs a figure', mfilename)); return end if nargin < 3 doInit = false; end % init when told, or when this is not the 'current function' of the figure figData = get(fig, 'UserData'); if doInit || ~isfield(figData, 'currentFunction') || ~strcmp(figData.currentFunction, mfilename) % create new panel slider, info table delete(get(fig, 'Children')); figData.currentFunction = mfilename; x = .02; w = .96; noData = {... 'number', []; ... 'date', []; ... 'isSelected', []; ... 'includeInAnalysis', []; ... 'tags', []}; figData.infoTable = uitable('Parent', fig', ... 'Units', 'normalized', ... 'Position', [x .8, w, .18], ... 'Data', noData, ... 'RowName', {}, ... 'ColumnName', [], ... 'ColumnEditable', false); figData.panel = uipanel('Parent', fig, ... 'Units', 'normalized', ... 'Position', [x .05 w .75]); figData.next = uicontrol('Parent', fig, ... 'Units', 'normalized', ... 'Position', [x 0 w .05], ... 'Style', 'slider', ... 'Callback', {@plotNextEpoch, figData}); set(fig, 'UserData', figData, 'ResizeFcn', {@canvasResizeFcn, figData}); canvasResizeFcn(figData.panel, [], figData); end % get all Epochs under the given tree el = getTreeEpochs(epochTree); n = el.length; if n set(figData.next, ... 'Enable', 'on', ... 'UserData', el, ... 'Min', 1, ... 'Max', n+eps, ... 'SliderStep', [1/n, 1/n], ... 'Value', 1); plotNextEpoch(figData.next, [], figData); else delete(get(figData.panel, 'Children')); set(figData.next, 'Enable', 'off'); end function plotNextEpoch(slider, event, figData) % slider control picks one Epoch ind = round(get(slider, 'Value')); el = get(slider, 'UserData'); ep = el.valueByIndex(ind); % various Epoch info to table rows infoData = get(figData.infoTable, 'Data'); infoData{1,2} = sprintf('%d of %d', ind, el.length); infoData{2,2} = datestr(ep.startDate, 31); infoData{3,2} = logical(ep.isSelected); infoData{4,2} = logical(ep.includeInAnalysis); tags = ep.keywords; %if tags.isEmpty skip this for now % infoData{5,2} = 'no tags'; %else % infoData{5,2} = sprintf('%s, ',tags{:}); %how do I do this in jauimodel? %end set(figData.infoTable, 'Data', infoData); set(figData.panel, 'Title', 'getting response data...'); drawnow; % Epoch responses in subplots temp = ep.responses.keySet; temp.remove('Optometer'); resps = temp.toArray; nResp = length(resps); for ii = 1:nResp sp = subplot(nResp+1, 1, ii, 'Parent', figData.panel); cla(sp); respData = riekesuite.getResponseVector(ep, resps(ii)); if ischar(respData) % dont' break when lazyLoads disabled ylabel(sp, respData); else line(1:length(respData), respData, 'Parent', sp); ylabel(sp, resps(ii)); end end set(figData.panel, 'Title', 'responses:'); drawnow; % add Imaging Traces: sp = subplot(nResp+1, 1, nResp+1, 'Parent', figData.panel); cla(sp); try ScanRes = getLineScanDataFromEpoch(ep); catch ScanRes = []; end if isempty(ScanRes) text(0.3,0.5,'No Line Scan Data Found','Parent',sp) else colors = pmkmp(max(size(ScanRes.channelData,1),2)); for cc = 1:size(ScanRes.channelData,1) %for channels line(ScanRes.frameTimes,ScanRes.channelData(cc,:,1),... 'Color',colors(cc,:),'Parent', sp); end end function canvasResizeFcn(panel, event, figData) % set infoTable column widths proportionally oldUnits = get(figData.infoTable, 'Units'); set(figData.infoTable, 'Units', 'pixels'); tablePos = get(figData.infoTable, 'Position'); set(figData.infoTable, 'Units', oldUnits); set(figData.infoTable, 'ColumnWidth', {.2*tablePos(3), .65*tablePos(3)});
github
mhturner/MHT-Rieke-analysis-master
singleEpoch.m
.m
MHT-Rieke-analysis-master/JauiModel&TreeTools/epoch-tree-gui/singleEpoch.m
3,631
utf_8
8cd875fdf9621f2baef1745d10d5c0db
function singleEpoch(epochTree, fig, doInit) %Show info about one Epoch at at time, under given EpochTree % [email protected] % 2 Feb. 2009 import riekesuite.guitools.*; if ~nargin && ~isobject(epochTree) disp(sprintf('%s needs an EpochTree', mfilename)); return end if nargin < 2 disp(sprintf('%s needs a figure', mfilename)); return end if nargin < 3 doInit = false; end % init when told, or when this is not the 'current function' of the figure figData = get(fig, 'UserData'); if doInit || ~isfield(figData, 'currentFunction') || ~strcmp(figData.currentFunction, mfilename) % create new panel slider, info table delete(get(fig, 'Children')); figData.currentFunction = mfilename; x = .02; w = .96; noData = {... 'number', []; ... 'date', []; ... 'isSelected', []; ... 'includeInAnalysis', []; ... 'tags', []}; figData.infoTable = uitable('Parent', fig', ... 'Units', 'normalized', ... 'Position', [x .8, w, .18], ... 'Data', noData, ... 'RowName', {}, ... 'ColumnName', [], ... 'ColumnEditable', false); figData.panel = uipanel('Parent', fig, ... 'Units', 'normalized', ... 'Position', [x .05 w .75]); figData.next = uicontrol('Parent', fig, ... 'Units', 'normalized', ... 'Position', [x 0 w .05], ... 'Style', 'slider', ... 'Callback', {@plotNextEpoch, figData}); set(fig, 'UserData', figData, 'ResizeFcn', {@canvasResizeFcn, figData}); canvasResizeFcn(figData.panel, [], figData); end % get all Epochs under the given tree el = getTreeEpochs(epochTree); n = el.length; if n set(figData.next, ... 'Enable', 'on', ... 'UserData', el, ... 'Min', 1, ... 'Max', n+eps, ... 'SliderStep', [1/n, 1/n], ... 'Value', 1); plotNextEpoch(figData.next, [], figData); else delete(get(figData.panel, 'Children')); set(figData.next, 'Enable', 'off'); end function plotNextEpoch(slider, event, figData) % slider control picks one Epoch ind = round(get(slider, 'Value')); el = get(slider, 'UserData'); ep = el.valueByIndex(ind); % various Epoch info to table rows infoData = get(figData.infoTable, 'Data'); infoData{1,2} = sprintf('%d of %d', ind, el.length); infoData{2,2} = datestr(ep.startDate, 31); infoData{3,2} = logical(ep.isSelected); infoData{4,2} = logical(ep.includeInAnalysis); tags = ep.keywords; %if tags.isEmpty skip this for now % infoData{5,2} = 'no tags'; %else % infoData{5,2} = sprintf('%s, ',tags{:}); %how do I do this in jauimodel? %end set(figData.infoTable, 'Data', infoData); set(figData.panel, 'Title', 'getting response data...'); drawnow; % Epoch responses in subplots temp = ep.responses.keySet; temp.remove('Optometer'); resps = temp.toArray; nResp = length(resps); for ii = 1:nResp sp = subplot(nResp, 1, ii, 'Parent', figData.panel); cla(sp); respData = riekesuite.getResponseVector(ep, resps(ii)); if ischar(respData) % dont' break when lazyLoads disabled ylabel(sp, respData); else line(1:length(respData), respData, 'Parent', sp); ylabel(sp, resps(ii)); end end set(figData.panel, 'Title', 'responses:'); drawnow; function canvasResizeFcn(panel, event, figData) % set infoTable column widths proportionally oldUnits = get(figData.infoTable, 'Units'); set(figData.infoTable, 'Units', 'pixels'); tablePos = get(figData.infoTable, 'Position'); set(figData.infoTable, 'Units', oldUnits); set(figData.infoTable, 'ColumnWidth', {.2*tablePos(3), .65*tablePos(3)});
github
mhturner/MHT-Rieke-analysis-master
rotavg.m
.m
MHT-Rieke-analysis-master/Utilities/imageAnalysisTools/rotavg.m
514
utf_8
d6c4c1e17260944b706084b0a20b6979
% rotavg.m - function to compute rotational average of (square) array % by Bruno Olshausen % % function f = rotavg(array) % % array can be of dimensions N x N x M, in which case f is of % dimension NxM. N should be even. % function f = rotavg(array) [N N M]=size(array); [X Y]=meshgrid(-N/2:N/2-1,-N/2:N/2-1); [theta rho]=cart2pol(X,Y); rho=round(rho); i=cell(N/2+1,1); for r=0:N/2 i{r+1}=find(rho==r); end f=zeros(N/2+1,M); for m=1:M a=array(:,:,m); for r=0:N/2 f(r+1,m)=mean(a(i{r+1})); end end
github
mhturner/MHT-Rieke-analysis-master
SpikeDetector.m
.m
MHT-Rieke-analysis-master/Utilities/SpikeTrainTools/SpikeDetector.m
7,059
utf_8
3a0849383ba6e1021cb2407051fba5f2
function [SpikeTimes, SpikeAmplitudes, RefractoryViolations] = SpikeDetector(DataMatrix,varargin) %SpikeDetector detects spikes in an extracellular / cell attached recording % [SpikeTimes, SpikeAmplitudes, RefractoryViolations] = SpikeDetector(dataMatrix,varargin) % RETURNS % SpikeTimes: In datapoints. Cell array. Or array if just one trial; % SpikeAmplitudes: Cell array. % RefractoryViolations: Indices of SpikeTimes that had refractory % violations. Cell array. % REQUIRED INPUTS % DataMatrix: Each row is a trial % OPTIONAL ARGUMENTS % CheckDetection: (false) (logical) Plots clustering information for % each trace % SampleRate: (1e4) (Hz) % RefractoryPeriod: (1.5e-3) (sec) % SearchWindow; (1.2e-3) (sec) To look for rebounds. Search interval % is (peak time +/- SearchWindow/2) % RemoveRefractoryViolations: (true) (logical) removes refractory violations from % spike times and spike amplitudes % thresholdSpikeFactor: (10) (numeric, a.u.) how many noise st-devs % above zero must spike amplitudes be? Uses mean cluster amplitude to % detect "no spike" trials (doesn't filter out individual spikes this % way). Be very careful of setting this too high. % % Clusters peak waveforms into 2 clusters using k-means. Based on three % quantities about each spike waveform: amplitude of the peak, amlitude % of a rebound on the right and left. % MHT 9.23.2016 - Ported over from personal version % MHT 1.25.2017 - Added option to remove refractory violation spike times ip = inputParser; ip.addRequired('DataMatrix',@ismatrix); addParameter(ip,'CheckDetection',false,@islogical); addParameter(ip,'SampleRate',1e4,@isnumeric); addParameter(ip,'RefractoryPeriod',1.5E-3,@isnumeric); addParameter(ip,'SearchWindow',1.2E-3,@isnumeric); addParameter(ip,'RemoveRefractoryViolations',true,@islogical); addParameter(ip,'thresholdSpikeFactor',10,@isnumeric); ip.parse(DataMatrix,varargin{:}); DataMatrix = ip.Results.DataMatrix; CheckDetection = ip.Results.CheckDetection; SampleRate = ip.Results.SampleRate; RefractoryPeriod = ip.Results.RefractoryPeriod * SampleRate; % datapoints SearchWindow = ip.Results.SearchWindow * SampleRate; % datapoints RemoveRefractoryViolations = ip.Results.RemoveRefractoryViolations; thresholdSpikeFactor = ip.Results.thresholdSpikeFactor; CutoffFrequency = 500; %Hz DataMatrix = highPassFilter(DataMatrix,CutoffFrequency,1/SampleRate); nTraces = size(DataMatrix,1); SpikeTimes = cell(nTraces,1); SpikeAmplitudes = cell(nTraces,1); RefractoryViolations = cell(nTraces,1); if (CheckDetection) figHandle = figure(40); end for tt=1:nTraces currentTrace = DataMatrix(tt,:); if abs(max(currentTrace)) > abs(min(currentTrace)) % flip it over, big peaks down currentTrace = -currentTrace; end % get peaks [peakAmplitudes, peakTimes] = getPeaks(currentTrace,-1); % -1 for negative peaks peakTimes = peakTimes(peakAmplitudes<0); % only negative deflections peakAmplitudes = abs(peakAmplitudes(peakAmplitudes<0)); % only negative deflections % get rebounds on either side of each peak rebound = getRebounds(peakTimes,currentTrace,SearchWindow); % cluster spikes clusteringData = [peakAmplitudes', rebound.Left', rebound.Right']; startMatrix = [median(peakAmplitudes) median(rebound.Left) median(rebound.Right);... max(peakAmplitudes) max(rebound.Left) max(rebound.Right)]; clusteringOptions = statset('MaxIter',10000); try %traces with no spikes sometimes throw an "empty cluster" error in kmeans [clusterIndex, centroidAmplitudes] = kmeans(clusteringData, 2,... 'start',startMatrix,'Options',clusteringOptions); catch err if strcmp(err.identifier,'stats:kmeans:EmptyCluster') %initialize clusters using random sampling instead [clusterIndex, centroidAmplitudes] = kmeans(clusteringData,2,'start','sample','Options',clusteringOptions); end end [~,spikeClusterIndex] = max(centroidAmplitudes(:,1)); %find cluster with largest peak amplitude nonspikeClusterIndex = setdiff([1 2],spikeClusterIndex); %nonspike cluster index spikeIndex_logical = (clusterIndex == spikeClusterIndex); %spike_ind_log is logical, length of peaks % get spike times and amplitudes SpikeTimes{tt} = peakTimes(spikeIndex_logical); SpikeAmplitudes{tt} = peakAmplitudes(spikeIndex_logical); nonspikeAmplitudes = peakAmplitudes(~spikeIndex_logical); %check for no spikes trace %how many st-devs greater is spike peak than noise peak? sigF = (mean(SpikeAmplitudes{tt}) - mean(nonspikeAmplitudes)) / std(nonspikeAmplitudes); if sigF < thresholdSpikeFactor; %no spikes SpikeTimes{tt} = []; SpikeAmplitudes{tt} = []; RefractoryViolations{tt} = []; disp(['Trial ' num2str(tt) ': no spikes. SF = ',num2str(sigF)]); % figHandle = figure(40); % plotClusteringData(); if (CheckDetection) plotClusteringData(); end continue end % check for refractory violations RefractoryViolations{tt} = find(diff(SpikeTimes{tt}) < RefractoryPeriod) + 1; ref_violations = length(RefractoryViolations{tt}); if ref_violations > 0 % % figHandle = figure(40); % % plotClusteringData() if (RemoveRefractoryViolations) disp(['Trial ' num2str(tt) ': ' num2str(ref_violations) ' refractory violations removed']); else disp(['Trial ' num2str(tt) ': ' num2str(ref_violations) ' refractory violations remain']); end end if (CheckDetection) plotClusteringData() end end if (RemoveRefractoryViolations) for tt = 1:length(SpikeTimes) SpikeTimes{tt}(RefractoryViolations{tt}) = []; SpikeAmplitudes{tt}(RefractoryViolations{tt}) = []; end end if length(SpikeTimes) == 1 %return vector not cell array if only 1 trial SpikeTimes = SpikeTimes{1}; SpikeAmplitudes = SpikeAmplitudes{1}; RefractoryViolations = RefractoryViolations{1}; end function plotClusteringData() figure(figHandle) subplot(1,2,1); hold on; plot3(peakAmplitudes(clusterIndex==spikeClusterIndex),... rebound.Left(clusterIndex==spikeClusterIndex),... rebound.Right(clusterIndex==spikeClusterIndex),'ro') plot3(peakAmplitudes(clusterIndex==nonspikeClusterIndex),... rebound.Left(clusterIndex==nonspikeClusterIndex),... rebound.Right(clusterIndex==nonspikeClusterIndex),'ko') xlabel('Peak Amplitude'); ylabel('L rebound'); zlabel('R rebound') view([8 36]) subplot(1,2,2) plot(currentTrace,'k'); hold on; plot(SpikeTimes{tt}, ... currentTrace(SpikeTimes{tt}),'rx') plot(SpikeTimes{tt}(RefractoryViolations{tt}), ... currentTrace(SpikeTimes{tt}(RefractoryViolations{tt})),'go') title(['SpikeFactor = ', num2str(sigF)]) drawnow; pause(); clf; end end
github
mhturner/MHT-Rieke-analysis-master
fitCRF_cumGauss.m
.m
MHT-Rieke-analysis-master/Utilities/Curves&Stuff/fitCRF_cumGauss.m
1,244
utf_8
e4e4e2699a7107896e9fc06386856689
function res = fitCRF_cumGauss(contrast,response,params0) % res = fitCRF_cumGauss(contrast,response,params0) % Fitting wrapper for CRFcumGauss LB = [0, -Inf, -Inf, -Inf]; UB = [Inf Inf Inf Inf]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',1000*length(LB),'Display','off'); [params, ~, ~]=lsqnonlin(@CRF_err,params0,LB,UB,fitOptions,contrast,response); alphaScale = params(1); betaSens = params(2); gammaXoff = params(3); epsilonYoff = params(4); predResp = CRFcumGauss(contrast,alphaScale,betaSens,gammaXoff,epsilonYoff); ssErr=sum((response-predResp).^2); %sum of squares of residual ssTot=sum((response-mean(response)).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.alphaScale=params(1); res.betaSens=params(2); res.gammaXoff=params(3); res.epsilonYoff = params(4); res.rSquared=rSquared; end function err = CRF_err(params,contrast,response) %error fxn for fitting CRF fxn with contrast spots... alphaScale = params(1); betaSens = params(2); gammaXoff = params(3); epsilonYoff = params(4); fit = CRFcumGauss(contrast,alphaScale,betaSens,gammaXoff,epsilonYoff); err = (fit - response); end
github
mhturner/MHT-Rieke-analysis-master
fitSpikeInputOutput.m
.m
MHT-Rieke-analysis-master/Utilities/Curves&Stuff/fitSpikeInputOutput.m
1,080
utf_8
afeab1d724cfd7bf3e8aaa32461ac18c
function res = fitSpikeInputOutput(inputs,response,params0) % res = fitSpikeInputOutput(inputs,response,params0) % Fitting wrapper for SpikeOutput_cumGauss LB = [0, -Inf, -Inf]; UB = [Inf Inf Inf]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB)); [params, ~, ~]=lsqnonlin(@errFun,params0,LB,UB,fitOptions,inputs,response); alphaScale = params(1); betaSens = params(2); gammaXoff = params(3); predResp = SpikeOutput_cumGauss(inputs,alphaScale,betaSens,gammaXoff); ssErr=sum((response-predResp).^2); %sum of squares of residual ssTot=sum((response-mean(response)).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.alphaScale=params(1); res.betaSens=params(2); res.gammaXoff=params(3); res.rSquared=rSquared; end function err = errFun(params,inputs,response) %error fxn alphaScale = params(1); betaSens = params(2); gammaXoff = params(3); fit = SpikeOutput_cumGauss(inputs,alphaScale,betaSens,gammaXoff); err = (fit - response); end
github
mhturner/MHT-Rieke-analysis-master
fitCRF_sigmoid.m
.m
MHT-Rieke-analysis-master/Utilities/Curves&Stuff/fitCRF_sigmoid.m
1,096
utf_8
563daf5d03284142d39a95ef38be209c
function res = fitCRF_sigmoid(contrast,response,params0) % res = fitCRF_sigmoid(contrast,response,params0) % Fitting wrapper for sigmoidCRF LB = [0, -Inf 0 -Inf]; UB = [Inf Inf Inf Inf]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB),'Display','off'); [params, ~, ~]=lsqnonlin(@CRF_err,params0,LB,UB,fitOptions,contrast,response); k = params(1); c0 = params(2); amp = params(3); yOff = params(4); predResp = sigmoidCRF(contrast,k,c0,amp,yOff); ssErr=sum((response-predResp).^2); %sum of squares of residual ssTot=sum((response-mean(response)).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.k=params(1); res.c0=params(2); res.amp=params(3); res.yOff=params(4); res.rSquared=rSquared; end function err = CRF_err(params,contrast,response) %error fxn for fitting CRF fxn with contrast spots... k = params(1); c0 = params(2); amp = params(3); yOff = params(4); fit = sigmoidCRF(contrast,k,c0,amp,yOff); err = (fit - response); end
github
mhturner/MHT-Rieke-analysis-master
freezeColors.m
.m
MHT-Rieke-analysis-master/Utilities/PlotTools/freezeColors.m
9,753
utf_8
611c1ec5ba6c9a145252ce43179845dd
function freezeColors(varargin) % freezeColors Lock colors of plot, enabling multiple colormaps per figure. (v2.3) % % Problem: There is only one colormap per figure. This function provides % an easy solution when plots using different colomaps are desired % in the same figure. % % freezeColors freezes the colors of graphics objects in the current axis so % that subsequent changes to the colormap (or caxis) will not change the % colors of these objects. freezeColors works on any graphics object % with CData in indexed-color mode: surfaces, images, scattergroups, % bargroups, patches, etc. It works by converting CData to true-color rgb % based on the colormap active at the time freezeColors is called. % % The original indexed color data is saved, and can be restored using % unfreezeColors, making the plot once again subject to the colormap and % caxis. % % % Usage: % freezeColors applies to all objects in current axis (gca), % freezeColors(axh) same, but works on axis axh. % % Example: % subplot(2,1,1); imagesc(X); colormap hot; freezeColors % subplot(2,1,2); imagesc(Y); colormap hsv; freezeColors etc... % % Note: colorbars must also be frozen. Due to Matlab 'improvements' this can % no longer be done with freezeColors. Instead, please % use the function CBFREEZE by Carlos Adrian Vargas Aguilera % that can be downloaded from the MATLAB File Exchange % (http://www.mathworks.com/matlabcentral/fileexchange/24371) % % h=colorbar; cbfreeze(h), or simply cbfreeze(colorbar) % % For additional examples, see test/test_main.m % % Side effect on render mode: freezeColors does not work with the painters % renderer, because Matlab doesn't support rgb color data in % painters mode. If the current renderer is painters, freezeColors % changes it to zbuffer. This may have unexpected effects on other aspects % of your plots. % % See also unfreezeColors, freezeColors_pub.html, cbfreeze. % % % John Iversen ([email protected]) 3/23/05 % % Changes: % JRI ([email protected]) 4/19/06 Correctly handles scaled integer cdata % JRI 9/1/06 should now handle all objects with cdata: images, surfaces, % scatterplots. (v 2.1) % JRI 11/11/06 Preserves NaN colors. Hidden option (v 2.2, not uploaded) % JRI 3/17/07 Preserve caxis after freezing--maintains colorbar scale (v 2.3) % JRI 4/12/07 Check for painters mode as Matlab doesn't support rgb in it. % JRI 4/9/08 Fix preserving caxis for objects within hggroups (e.g. contourf) % JRI 4/7/10 Change documentation for colorbars % Hidden option for NaN colors: % Missing data are often represented by NaN in the indexed color % data, which renders transparently. This transparency will be preserved % when freezing colors. If instead you wish such gaps to be filled with % a real color, add 'nancolor',[r g b] to the end of the arguments. E.g. % freezeColors('nancolor',[r g b]) or freezeColors(axh,'nancolor',[r g b]), % where [r g b] is a color vector. This works on images & pcolor, but not on % surfaces. % Thanks to Fabiano Busdraghi and Jody Klymak for the suggestions. Bugfixes % attributed in the code. % Free for all uses, but please retain the following: % Original Author: % John Iversen, 2005-10 % [email protected] appdatacode = 'JRI__freezeColorsData'; [h, nancolor] = checkArgs(varargin); %gather all children with scaled or indexed CData cdatah = getCDataHandles(h); %current colormap cmap = colormap; nColors = size(cmap,1); cax = caxis; % convert object color indexes into colormap to true-color data using % current colormap for hh = cdatah', g = get(hh); %preserve parent axis clim parentAx = getParentAxes(hh); originalClim = get(parentAx, 'clim'); % Note: Special handling of patches: For some reason, setting % cdata on patches created by bar() yields an error, % so instead we'll set facevertexcdata instead for patches. if ~strcmp(g.Type,'patch'), cdata = g.CData; else cdata = g.FaceVertexCData; end %get cdata mapping (most objects (except scattergroup) have it) if isfield(g,'CDataMapping'), scalemode = g.CDataMapping; else scalemode = 'scaled'; end %save original indexed data for use with unfreezeColors siz = size(cdata); setappdata(hh, appdatacode, {cdata scalemode}); %convert cdata to indexes into colormap if strcmp(scalemode,'scaled'), %4/19/06 JRI, Accommodate scaled display of integer cdata: % in MATLAB, uint * double = uint, so must coerce cdata to double % Thanks to O Yamashita for pointing this need out idx = ceil( (double(cdata) - cax(1)) / (cax(2)-cax(1)) * nColors); else %direct mapping idx = cdata; %10/8/09 in case direct data is non-int (e.g. image;freezeColors) % (Floor mimics how matlab converts data into colormap index.) % Thanks to D Armyr for the catch idx = floor(idx); end %clamp to [1, nColors] idx(idx<1) = 1; idx(idx>nColors) = nColors; %handle nans in idx nanmask = isnan(idx); idx(nanmask)=1; %temporarily replace w/ a valid colormap index %make true-color data--using current colormap realcolor = zeros(siz); for i = 1:3, c = cmap(idx,i); c = reshape(c,siz); c(nanmask) = nancolor(i); %restore Nan (or nancolor if specified) realcolor(:,:,i) = c; end %apply new true-color color data %true-color is not supported in painters renderer, so switch out of that if strcmp(get(gcf,'renderer'), 'painters'), set(gcf,'renderer','zbuffer'); end %replace original CData with true-color data if ~strcmp(g.Type,'patch'), set(hh,'CData',realcolor); else set(hh,'faceVertexCData',permute(realcolor,[1 3 2])) end %restore clim (so colorbar will show correct limits) if ~isempty(parentAx), set(parentAx,'clim',originalClim) end end %loop on indexed-color objects % ============================================================================ % % Local functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getCDataHandles -- get handles of all descendents with indexed CData %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hout = getCDataHandles(h) % getCDataHandles Find all objects with indexed CData %recursively descend object tree, finding objects with indexed CData % An exception: don't include children of objects that themselves have CData: % for example, scattergroups are non-standard hggroups, with CData. Changing % such a group's CData automatically changes the CData of its children, % (as well as the children's handles), so there's no need to act on them. narginchk(1,1) hout = []; if isempty(h),return;end ch = get(h,'children'); for hh = ch' g = get(hh); if isfield(g,'CData'), %does object have CData? %is it indexed/scaled? if ~isempty(g.CData) && isnumeric(g.CData) && size(g.CData,3)==1, hout = [hout; hh]; %#ok<AGROW> %yes, add to list end else %no CData, see if object has any interesting children hout = [hout; getCDataHandles(hh)]; %#ok<AGROW> end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getParentAxes -- return handle of axes object to which a given object belongs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hAx = getParentAxes(h) % getParentAxes Return enclosing axes of a given object (could be self) narginchk(1,1) %object itself may be an axis if strcmp(get(h,'type'),'axes'), hAx = h; return end parent = get(h,'parent'); if (strcmp(get(parent,'type'), 'axes')), hAx = parent; else hAx = getParentAxes(parent); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% checkArgs -- Validate input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h, nancolor] = checkArgs(args) % checkArgs Validate input arguments to freezeColors nargs = length(args); narginchk(0,3) %grab handle from first argument if we have an odd number of arguments if mod(nargs,2), h = args{1}; if ~ishandle(h), error('JRI:freezeColors:checkArgs:invalidHandle',... 'The first argument must be a valid graphics handle (to an axis)') end % 4/2010 check if object to be frozen is a colorbar if strcmp(get(h,'Tag'),'Colorbar'), if ~exist('cbfreeze.m'), warning('JRI:freezeColors:checkArgs:cannotFreezeColorbar',... ['You seem to be attempting to freeze a colorbar. This no longer'... 'works. Please read the help for freezeColors for the solution.']) else cbfreeze(h); return end end args{1} = []; nargs = nargs-1; else h = gca; end %set nancolor if that option was specified nancolor = [nan nan nan]; if nargs == 2, if strcmpi(args{end-1},'nancolor'), nancolor = args{end}; if ~all(size(nancolor)==[1 3]), error('JRI:freezeColors:checkArgs:badColorArgument',... 'nancolor must be [r g b] vector'); end nancolor(nancolor>1) = 1; nancolor(nancolor<0) = 0; else error('JRI:freezeColors:checkArgs:unrecognizedOption',... 'Unrecognized option (%s). Only ''nancolor'' is valid.',args{end-1}) end end
github
mhturner/MHT-Rieke-analysis-master
getCellInfoFromEpochList.m
.m
MHT-Rieke-analysis-master/EpochListAnalysisFunctions/getCellInfoFromEpochList.m
1,808
utf_8
cf9215f0e983f57a668c54fa0eeaec5d
function cellInfo = getCellInfoFromEpochList(epochList) % res = getCellInfoFromEpochList(epochList) % MHT 5/17/16 ip = inputParser; ip.addRequired('epochList',@(x)isa(x,'edu.washington.rieke.symphony.generic.GenericEpochList')); ip.parse(epochList); epochList = ip.Results.epochList; firstCellID = char(epochList.elements(1).cell.label); for epochIndex = 1:epochList.length thisCellID = char(epochList.elements(epochIndex).cell.label); if ~strcmp(firstCellID,thisCellID) error('Mulitple cells included in this epochList') end end cellID = char(epochList.firstValue.cell.label); if epochList.firstValue.protocolSettings.keySet.contains('source:type') cellType = epochList.firstValue.protocolSettings('source:type'); si = strfind(cellType,'\'); if isempty(si) else %sub-class (e.g. "RGC\ ON-parasol") cellType = cellType(si+1:end); si = strfind(cellType,'-'); cellType(si) = []; end if or(strcmp(cellType,'unknown'), isempty(cellType)) keywords = char(epochList.keywords); cellType = checkAgainstKeywords(keywords); end else cellKeywords = char(epochList.keywords); cellType = checkAgainstKeywords(cellKeywords); end cellInfo.cellID = cellID; cellInfo.cellType = cellType; function res = checkAgainstKeywords(keywords) if ~isempty(strfind(keywords,'ONparasol')) res = char('ONparasol'); elseif ~isempty(strfind(keywords,'OFFparasol')) res = char('OFFparasol'); elseif ~isempty(strfind(keywords,'ONmidget')) res = char('ONmidget'); elseif ~isempty(strfind(keywords,'OFFmidget')) res = char('OFFmidget'); elseif ~isempty(strfind(keywords,'horizontal')) res = char('horizontal'); else res = 'noCellTypeTag'; end end end
github
mhturner/MHT-Rieke-analysis-master
fitNormcdfNonlinearity.m
.m
MHT-Rieke-analysis-master/Modeling/CSmodels/fitNormcdfNonlinearity.m
972
utf_8
d0891f99f64656159e191abc8c560459
function res = fitNormcdfNonlinearity(x,response,params0) %res is params for fxn normcdfNonlinearity %params is [alpha, beta, gamma, epsilon] % % params0=[max(resp), mean(diff(resp)), 0, 0]'; LB = [-Inf -Inf -Inf -Inf]; UB = [Inf Inf Inf max(response(:))]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB),'Display','off'); [params, ~, residual]=lsqnonlin(@modelErrorFxn,params0,LB,UB,fitOptions,x,response); ssErr=sum(residual.^2); %sum of squares of residual ssTot=sum((response(:)-mean(response(:))).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.alpha=params(1); res.beta=params(2); res.gamma=params(3); res.epsilon=params(4); res.rSquared=rSquared; end function err = modelErrorFxn(params,x,response) %error fxn for fitting summed NLinearity function alpha = params(1); beta = params(2); gamma = params(3); epsilon = params(4); fit = normcdfNonlinearity(x,alpha,beta,gamma,epsilon); err = fit - response; end
github
mhturner/MHT-Rieke-analysis-master
fitCSModel_SharedNL.m
.m
MHT-Rieke-analysis-master/Modeling/CSmodels/fitCSModel_SharedNL.m
1,342
utf_8
9e876de9c0cee9c52c7e70d87c160858
function res = fitCSModel_SharedNL(x,y,z_data,params0) %fits summed nonlinearity, r = f(aX + Y) %res is params for fxn summedNLin %params is [a, alpha, beta, gamma, epsilon] % % params0=[2, max(z_data), mean(diff(z_data))/mean(diff(x+y)), 0, 0]'; LB = [0 -Inf -Inf -Inf -Inf]; UB = [Inf Inf Inf Inf max(z_data(:))]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB),'Display','off'); [params, ~, residual]=lsqnonlin(@modelErrorFxn,params0,LB,UB,fitOptions,x,y,z_data); ssErr=sum(residual.^2); %sum of squares of residual ssTot=nansum((z_data(:)-nanmean(z_data(:))).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.a=params(1); res.alpha=params(2); res.beta=params(3); res.gamma=params(4); res.epsilon=params(5); res.rSquared=rSquared; end function err = modelErrorFxn(params,x,y,response) %error fxn for fitting summed NLinearity function a = params(1); alpha = params(2); beta = params(3); gamma = params(4); epsilon = params(5); %reshape x,y and response to arrays [X1,X2] = meshgrid(x',y'); response=reshape(response,[1, size(response,1)*size(response,2)]); % take out any NaNs in z data, don't fit with those points fitInds = find(~isnan(response)); response = response(fitInds); fit = CSModel_SharedNL(X1(fitInds),X2(fitInds),a,alpha,beta,gamma,epsilon); err = fit - response; end
github
mhturner/MHT-Rieke-analysis-master
fitNLinearity_2D.m
.m
MHT-Rieke-analysis-master/Modeling/CSmodels/fitNLinearity_2D.m
1,628
utf_8
52a9f02cbd7631ed449309d0728696e9
function res = fitNLinearity_2D(x,y,z_data,beta0) %fits 2D nonlinearity with smooth surface which is a modified bivariate %cumulative normal distribution % alpha*C(mu,sigma)+epsilon % where C is mvncdf() fxn %x and y define axes 1 and 2 (bins centers, basically) %z_data is an x by y matrix of response values %beta is [alpha mu1 mu2 std1 std2 corr12 epsilon] LB = [max(z_data(:)) min(x) min(y) 0 0 -1 -Inf]; UB = [Inf max(x) max(y) Inf Inf 1 0]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB),'Display','off'); [beta, ~, residual]=lsqnonlin(@BivarCumNorm_err,beta0,LB,UB,fitOptions,x,y,z_data); ssErr=sum(residual.^2); %sum of squares of residual ssTot=nansum((z_data(:)-nanmean(z_data(:))).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.alpha=beta(1); res.mu=[beta(2) beta(3)]; res.sigma=[beta(4)^2 beta(6)*beta(4)*beta(5);beta(6)*beta(4)*beta(5) beta(5)^2]; res.epsilon=beta(7); res.rSquared=rSquared; end function err = BivarCumNorm_err(beta,x,y,response) %error fxn for fitting Bivariate Cumulative Normal surface to 2D %nonlinearity alpha=beta(1); mu=[beta(2) beta(3)]; sigma1=beta(4); sigma2=beta(5); corr12=beta(6); epsilon=beta(7); sigma=[sigma1^2 corr12*sigma1*sigma2;corr12*sigma1*sigma2 sigma2^2]; %reshape x,y and response to arrays [X1,X2] = meshgrid(x',y'); response=reshape(response,[size(response,1)*size(response,2),1]); % take out any NaNs in z data, don't fit with those points fitInds = find(~isnan(response)); response = response(fitInds); fit = JointNLin_mvcn(X1(fitInds)',X2(fitInds)',alpha,mu,sigma,epsilon); err = fit - response; end
github
mhturner/MHT-Rieke-analysis-master
fitCSModel_ThreeNL.m
.m
MHT-Rieke-analysis-master/Modeling/CSmodels/fitCSModel_ThreeNL.m
2,086
utf_8
9c411b5c3487657c8d79a661de2f4f6f
function res = fitCSModel_ThreeNL(C,S,response,params0) %Takes in binned generator signals for Center and Surround, along with %corresponding response - same input as fitting joint model %fits thee-NL center-surround model: R = nShared[nC(hC*C) + nS(hS*S)] %where nC, nS, and nShared are modified cumulative gaussian NLinearities %res is params for fxn CSModel_ThreeNL %params is [alphaC, betaC, gammaC,... % alphaS, betaS, gammaS,... % alphaShared, betaShared, gammaShared,... % epsilon] % params0=[max(z_data), mean(diff(z_data))/mean(diff(C)), 0, max(z_data), % mean(diff(z_data))/mean(diff(S)), 0, 0]'; LB = [-1 -Inf -1 -1 -Inf -1 -Inf -Inf -Inf -Inf]; UB = [1 Inf 1 1 Inf 1 Inf Inf Inf Inf]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB),'Display','off'); [params, ~, residual]=lsqnonlin(@modelErrorFxn,params0,LB,UB,fitOptions,C,S,response); ssErr=sum(residual.^2); %sum of squares of residual ssTot=nansum((response(:)-nanmean(response(:))).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.alphaC=params(1); res.betaC=params(2); res.gammaC=params(3); res.alphaS=params(4); res.betaS=params(5); res.gammaS=params(6); res.alphaShared=params(7); res.betaShared=params(8); res.gammaShared=params(9); res.epsilon=params(10); res.rSquared=rSquared; end function err = modelErrorFxn(params,x,y,response) %error fxn for fitting summed NLinearity function alphaC = params(1); betaC = params(2); gammaC = params(3); alphaS = params(4); betaS = params(5); gammaS = params(6); alphaShared = params(7); betaShared = params(8); gammaShared = params(9); epsilon = params(10); %reshape x,y and response to arrays [X1,X2] = meshgrid(x',y'); response=reshape(response,[1, size(response,1)*size(response,2)]); % take out any NaNs in z data, don't fit with those points fitInds = find(~isnan(response)); response = response(fitInds); fit = CSModel_ThreeNL(X1(fitInds),X2(fitInds),... alphaC,betaC,gammaC,alphaS,betaS,gammaS,alphaShared,betaShared,gammaShared,epsilon); err = fit - response; end
github
mhturner/MHT-Rieke-analysis-master
fitCSModel_IndependentNL.m
.m
MHT-Rieke-analysis-master/Modeling/CSmodels/fitCSModel_IndependentNL.m
1,794
utf_8
f423a43fd62fca9366df40b55b3cb726
function res = fitCSModel_IndependentNL(C,S,response,params0) %Takes in binned generator signals for Center and Surround, along with %corresponding response - same input as fitting joint model %fits independent center-surround model: R = nC(hC*C) + nS(hS*S) %where nC and nS are modified cumulative gaussian NLinearities %res is params for fxn indCSmodel %params is [alphaC, betaC, gammaC,... % alphaS, betaS, gammaS, epsilon] % params0=[max(z_data), mean(diff(z_data))/mean(diff(C)), 0, max(z_data), % mean(diff(z_data))/mean(diff(S)), 0, 0]'; LB = [-Inf -Inf -Inf -Inf -Inf -Inf -Inf]; UB = [Inf Inf Inf Inf Inf Inf Inf]; fitOptions = optimset('MaxIter',1500,'MaxFunEvals',600*length(LB),'Display','off'); [params, ~, residual]=lsqnonlin(@modelErrorFxn,params0,LB,UB,fitOptions,C,S,response); ssErr=sum(residual.^2); %sum of squares of residual ssTot=nansum((response(:)-nanmean(response(:))).^2); %total sum of squares rSquared=1-ssErr/ssTot; %coefficient of determination res.alphaC=params(1); res.betaC=params(2); res.gammaC=params(3); res.alphaS=params(4); res.betaS=params(5); res.gammaS=params(6); res.epsilon=params(7); res.rSquared=rSquared; end function err = modelErrorFxn(params,x,y,response) %error fxn for fitting summed NLinearity function alphaC = params(1); betaC = params(2); gammaC = params(3); alphaS = params(4); betaS = params(5); gammaS = params(6); epsilon = params(7); %reshape x,y and response to arrays [X1,X2] = meshgrid(x',y'); response=reshape(response,[1, size(response,1)*size(response,2)]); % take out any NaNs in z data, don't fit with those points fitInds = find(~isnan(response)); response = response(fitInds); fit = CSModel_IndependentNL(X1(fitInds),X2(fitInds),alphaC,betaC,gammaC,alphaS,betaS,gammaS,epsilon); err = fit - response; end
github
rohitrango/CS251-master
backward_solve_3.m
.m
CS251-master/lab4/inlab/cs251_group37/lab01_group37_final/backward_solve_3.m
562
utf_8
d115b4d0d808cf01e9b6bbd899102689
%Function for backward solving 3*3 matrix function y = backward_solve_3(x) b = x'(:); % Convert input matrix to a vector load Apush; % Load the matrix which shows the lights toggled on pressing a specific button. AdjA = round(det(A)*inv(A)); % Calculating the adjoint of the above matrix z = mod(-AdjA*b,2); % Solving the equation (b + Ax) % 2 = 0 for x using modular arithmetics % x = (-AdjA*b) % 2 y = reshape(z,3,3)'; % Coverting vector to a 3*3 matrix showing the buttons to be pressed for lights out endfunction
github
rohitrango/CS251-master
backward_solve.m
.m
CS251-master/lab4/inlab/cs251_group37/lab01_group37_final/backward_solve.m
1,988
utf_8
9983b121aff2924a4fa35ad0460d39cd
% function res = backward_solve(x) % b = x(:); % m = size(x,1); % n = size(x,2); % A = zeros(m*n); % % generating the matrix A, when boxes are numbered vertically % %%% NOTE: we have a faster version to calculate A, using no for loop. Written explanation is difficult. % %%% But we can explain verbally. It is attached as a comment below. % for ai = 1:m*n % if(ai>1 && mod(ai,m)!=1) %checks if it is not boundary cases % A(ai,ai-1) = 1; %i toggles i-1 % endif % if(ai<m*n && mod(ai,m)!=0) %checks if it is not boundary cases % A(ai,ai+1) = 1; %i toggles i+1 % endif % if(ai>m) %checks if it is not boundary cases % A(ai,ai-m) = 1; %i toggles i-m % endif % if(ai<=m*n-m) %checks if it is not boundary cases % A(ai,ai+m) = 1; %i toggles i+m % endif % endfor % A = A + eye(m*n); %i toggles i % adjA = round(det(A)*inv(A)); % compute adjoint A % res = mod(adjA*b,2); % solve the equation % res = reshape(res,m,n); % reshape to appropriate size % endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% FASTER VERSION:- function res = backward_solve(x) b = x(:); m = size(x,1); n = size(x,2); A = zeros(m*n); % generating the matrix A A = findFactor(size(x')); % A(i,i) = 1 for all i adjA = round(det(A)*inv(A)); % compute adjoint A res = mod(adjA*b,2); % solve the equation res = reshape(res,m,n); % reshape to appropriate size endfunction %% file findFactor.m :- % function res = findFactor(size) % m = size(1); % n = size(2); % ID = eye(m*n); % res = ID; % ID(n:n:m*n,n:n:m*n) = 0; % res(m*n+1 : (m*n)^2) += ID(1 : m*n*(m*n-1)); % ID(n:n:m*n,n:n:m*n) = eye(m); % ID(n+1:n:m*n,n+1:n:m*n)=0; % res(1 : m*n*(m*n-1)) += ID(m*n+1 : (m*n)^2); % ID(n+1:n:m*n,n+1:n:m*n)= eye(m-1); % res(m*n^2+1 : (m*n)^2) += ID(1 : m*n^2*(m-1)); % res(1 : m*n^2*(m-1)) += ID(m*n^2+1 : (m*n)^2); % endfunction; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
rohitrango/CS251-master
backward_solve_3.m
.m
CS251-master/lab1/Outlab Final Submission/backward_solve_3.m
562
utf_8
d115b4d0d808cf01e9b6bbd899102689
%Function for backward solving 3*3 matrix function y = backward_solve_3(x) b = x'(:); % Convert input matrix to a vector load Apush; % Load the matrix which shows the lights toggled on pressing a specific button. AdjA = round(det(A)*inv(A)); % Calculating the adjoint of the above matrix z = mod(-AdjA*b,2); % Solving the equation (b + Ax) % 2 = 0 for x using modular arithmetics % x = (-AdjA*b) % 2 y = reshape(z,3,3)'; % Coverting vector to a 3*3 matrix showing the buttons to be pressed for lights out endfunction
github
rohitrango/CS251-master
backward_solve.m
.m
CS251-master/lab1/Outlab Final Submission/backward_solve.m
1,988
utf_8
9983b121aff2924a4fa35ad0460d39cd
% function res = backward_solve(x) % b = x(:); % m = size(x,1); % n = size(x,2); % A = zeros(m*n); % % generating the matrix A, when boxes are numbered vertically % %%% NOTE: we have a faster version to calculate A, using no for loop. Written explanation is difficult. % %%% But we can explain verbally. It is attached as a comment below. % for ai = 1:m*n % if(ai>1 && mod(ai,m)!=1) %checks if it is not boundary cases % A(ai,ai-1) = 1; %i toggles i-1 % endif % if(ai<m*n && mod(ai,m)!=0) %checks if it is not boundary cases % A(ai,ai+1) = 1; %i toggles i+1 % endif % if(ai>m) %checks if it is not boundary cases % A(ai,ai-m) = 1; %i toggles i-m % endif % if(ai<=m*n-m) %checks if it is not boundary cases % A(ai,ai+m) = 1; %i toggles i+m % endif % endfor % A = A + eye(m*n); %i toggles i % adjA = round(det(A)*inv(A)); % compute adjoint A % res = mod(adjA*b,2); % solve the equation % res = reshape(res,m,n); % reshape to appropriate size % endfunction %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% FASTER VERSION:- function res = backward_solve(x) b = x(:); m = size(x,1); n = size(x,2); A = zeros(m*n); % generating the matrix A A = findFactor(size(x')); % A(i,i) = 1 for all i adjA = round(det(A)*inv(A)); % compute adjoint A res = mod(adjA*b,2); % solve the equation res = reshape(res,m,n); % reshape to appropriate size endfunction %% file findFactor.m :- % function res = findFactor(size) % m = size(1); % n = size(2); % ID = eye(m*n); % res = ID; % ID(n:n:m*n,n:n:m*n) = 0; % res(m*n+1 : (m*n)^2) += ID(1 : m*n*(m*n-1)); % ID(n:n:m*n,n:n:m*n) = eye(m); % ID(n+1:n:m*n,n+1:n:m*n)=0; % res(1 : m*n*(m*n-1)) += ID(m*n+1 : (m*n)^2); % ID(n+1:n:m*n,n+1:n:m*n)= eye(m-1); % res(m*n^2+1 : (m*n)^2) += ID(1 : m*n^2*(m-1)); % res(1 : m*n^2*(m-1)) += ID(m*n^2+1 : (m*n)^2); % endfunction; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%