plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jacksky64/imageProcessing-master
matrix2angleaxis.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Rotations/matrix2angleaxis.m
2,499
utf_8
c9fc88c002549f547352b67cc8689c21
% MATRIX2ANGLEAXIS - Homogeneous matrix to angle-axis description % % Usage: t = matrix2angleaxis(T) % % Argument: T - 4x4 Homogeneous transformation matrix, or 3x3 rotation matrix. % Returns: t - 3x1 column vector giving rotation axis with magnitude equal % to the rotation angle in radians. % % Note that only the top left 3x3 rotation component of T is used, any % translation component in T is ignored. % % See also: ANGLEAXIS2MATRIX, ANGLEAXIS2MATRIX2, ANGLEAXISROTATE, NEWANGLEAXIS, % NORMALISEANGLEAXIS % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % 2008 - Original version % May 2013 - Code to trap small rotations added function t = matrix2angleaxis(T) % This code follows the implementation suggested by Hartley and Zisserman R = T(1:3, 1:3); % Extract rotation part of T % Trap case where rotation is very small. (See angleaxis2matrix.m) Reye = R-eye(3); if norm(Reye) < 1e-8 t = [T(3,2); T(1,3); T(2,1)]; return end % Otherwise find rotation axis as the eigenvector having unit eigenvalue % Solve (R-I)v = 0; [v,d] = eig(Reye); % The following code assumes the eigenvalues returned are not necessarily % sorted by size. This may be overcautious on my part. d = diag(abs(d)); % Extract eigenvalues [s, ind] = sort(d); % Find index of smallest one if d(ind(1)) > 0.001 % Hopefully it is close to 0 warning('Rotation matrix is dubious'); end axis = v(:,ind(1)); % Extract appropriate eigenvector if abs(norm(axis) - 1) > .0001 % Debug warning('non unit rotation axis'); end % Now determine the rotation angle twocostheta = trace(R)-1; twosinthetav = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]'; twosintheta = axis'*twosinthetav; theta = atan2(twosintheta, twocostheta); t = theta*axis;
github
jacksky64/imageProcessing-master
quaternionproduct.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Rotations/quaternionproduct.m
818
utf_8
bcfe792d9518a1c110b9957970f4f7c8
% QUATERNIONPRODUCT - Computes product of two quaternions % % Usage: Q = quaternionproduct(A, B) % % Arguments: A, B - Quaternions assumed to be 4-vectors in the % form A = [Aw Ai Aj Ak] % Returns: Q - Quaternion product % % See also: NEWQUATERNION, QUATERNIONROTATE, QUATERNIONCONJUGATE % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ function Q = quaternionproduct(A, B) Q = zeros(4,1); Q(1) = A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4); Q(2) = A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3); Q(3) = A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2); Q(4) = A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1);
github
jacksky64/imageProcessing-master
quaternion2matrix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Rotations/quaternion2matrix.m
1,413
utf_8
7296cadf62f6ca9273e726ffd7e19d95
% QUATERNION2MATRIX - Quaternion to a 4x4 homogeneous transformation matrix % % Usage: T = quaternion2matrix(Q) % % Argument: Q - a quaternion in the form [w xi yj zk] % Returns: T - 4x4 Homogeneous rotation matrix % % See also MATRIX2QUATERNION, NEWQUATERNION, QUATERNIONROTATE % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. function T = quaternion2matrix(Q) Q = Q/norm(Q); % Ensure Q has unit norm % Set up convenience variables w = Q(1); x = Q(2); y = Q(3); z = Q(4); w2 = w^2; x2 = x^2; y2 = y^2; z2 = z^2; xy = x*y; xz = x*z; yz = y*z; wx = w*x; wy = w*y; wz = w*z; T = [w2+x2-y2-z2 , 2*(xy - wz) , 2*(wy + xz) , 0 2*(wz + xy) , w2-x2+y2-z2 , 2*(yz - wx) , 0 2*(xz - wy) , 2*(wx + yz) , w2-x2-y2+z2 , 0 0 , 0 , 0 , 1];
github
jacksky64/imageProcessing-master
newquaternion.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Rotations/newquaternion.m
652
utf_8
57135243008eb6d8ae64557d2f013e6f
% NEWQUATERNION - Construct quaternion % % Q = newquaternion(theta, axis) % % Arguments: theta - angle of rotation % axis - 3-vector defining axis of rotation % Returns: Q - a quaternion in the form [w xi yj zk] % % See Also: QUATERNION2MATRIX, MATRIX2QUATERNION, QUATERNIONROTATE % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ function Q = newquaternion(theta, axis) axis = axis(:)/norm(axis(:)); Q = zeros(4,1); Q(1) = cos(theta/2); Q(2:4) = sin(theta/2)*axis;
github
jacksky64/imageProcessing-master
quaternionrotate.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Rotations/quaternionrotate.m
2,026
utf_8
e0b6a4a18c8be41ee01226e17cbd83e8
% QUATERNIONROTATE - Rotates a 3D vector by a quaternion % % Usage: vnew = quaternionrotate(Q, v) % % Arguments: Q - a quaternion in the form [w xi yj zk] % v - a vector to rotate, either an inhomogeneous 3-vector or a % homogeneous 4-vector % Returns: vnew - rotated vector % % See also MATRIX2QUATERNION, QUATERNION2MATRIX, NEWQUATERNION % Copyright (c) 2008 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % Code forms the equivalent 3x3 rotation matrix from the quaternion and % applies it to a vector % % Note that Qw^2 + Qi^2 + Qj^2 + Qk^2 = 1 % So the top-left entry of the rotation matrix of % Qw^2 + Qi^2 - Qj^2 - Qk^2 % can be rewritten as % Qw^2 + Qi^2 + Qj^2 + Qk^2 - 2Qj^2 - 2Qk^2 % = 1 - 2Qj^2 - 2Qk^2 % % Similar optimization applies to the other diagonal elements function vnew = quaternionrotate(Q, v) % Copy v to vnew to allocate space. If v is a 4 element homogeneous % vector this also sets the homogeneous scale factor of vnew vnew = v; Qw = Q(1); Qi = Q(2); Qj = Q(3); Qk = Q(4); t2 = Qw*Qi; t3 = Qw*Qj; t4 = Qw*Qk; t5 = -Qi*Qi; t6 = Qi*Qj; t7 = Qi*Qk; t8 = -Qj*Qj; t9 = Qj*Qk; t10 = -Qk*Qk; vnew(1) = 2*( (t8 + t10)*v(1) + (t6 - t4)*v(2) + (t3 + t7)*v(3) ) + v(1); vnew(2) = 2*( (t4 + t6)*v(1) + (t5 + t10)*v(2) + (t9 - t2)*v(3) ) + v(2); vnew(3) = 2*( (t7 - t3)*v(1) + (t2 + t9)*v(2) + (t5 + t8)*v(3) ) + v(3);
github
jacksky64/imageProcessing-master
inveuler.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Rotations/inveuler.m
1,296
utf_8
68fbee86dde87b43540b185a69fd8bfe
% INVEULER - inverse of Euler transform % % Usage: [euler1, euler2] = inveuler(T) % % Argument: T - 4x4 Homogeneous transformation matrix or 3x3 rotation matrix % Returns: euler1 = [phi1, theta1, psi1] - the 1st solution and, % euler2 = [phi2, theta2, psi2] - the 2nd solution % % rotz(phi1) * roty(theta1) * rotz(psi1) = T % rotz(euler1(1)) * roty(euler1(2)) * rotz(euler1(3)) = T % % See also: INVRPY, INVHT, ROTX, ROTY, ROTZ % Reference: Richard P. Paul Robot Manipulators: Mathematics, Programming and Control. % MIT Press 1981. Page 68 % % Copyright (c) 2001 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ function [euler1, euler2] = inveuler(T) phi1 = atan2(T(2,3), T(1,3)); phi2 = phi1 + pi; theta1 = atan2(cos(phi1)*T(1,3) + sin(phi1)*T(2,3), T(3,3)); theta2 = atan2(cos(phi2)*T(1,3) + sin(phi2)*T(2,3), T(3,3)); psi1 = atan2(-sin(phi1)*T(1,1) + cos(phi1)*T(2,1), ... -sin(phi1)*T(1,2) + cos(phi1)*T(2,2)); psi2 = atan2(-sin(phi2)*T(1,1) + cos(phi2)*T(2,1), ... -sin(phi2)*T(1,2) + cos(phi2)*T(2,2)); euler1 = [phi1, theta1, psi1]; euler2 = [phi2, theta2, psi2];
github
jacksky64/imageProcessing-master
ternarymix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/ternarymix.m
13,368
utf_8
53527c33bc58e77326e03f0354a5bbb6
% TERNARYMIX Image blending and swiping over three images % % Function uses Barycentric coordinates over a triangle to interpolate/blend % three images. You can also switch to a swiping mode of display between the % three images. % % Usage: ternarymix(im, nodeLabel, normBlend, figNo) % % Arguments: im - 3-element cell array of images to blend. If omitted or % empty a file selection dialog box is presented. % nodeLabel - Optional cell array of strings for labeling the 3 nodes % of the interface. % normBlend - Sets the image normalisation that is used. % 0 - No normalisation applied other than image clamping. % 1 - Image is normalised so that max value in any % channel is 1. This is the default % 2 - Normalise to have fixed mean grey value. % (This is hard-wired at 0.2 . Edit function wbmcb % below to change) % 3 - Normalise so that max grey value is a fixed value % (This is hard-wired at 0.6 . Edit function wbmcb % below to change) % figNo - Optional figure number to use. % % This function sets up an interface consisting of a triangle with nodes % corresponding to the three input images. Positioning the cursor within the % triangle produces an interactive blend of the images formed from a weighted % sum of the images. The weights correspond to the barycentric coordinates of % the cursor within the triangle. The program starts out assigning a lightness % matched basis colour to each image. These colours are nominally red, green % and blue but have been constructed so that they are matched in lightness % values and also have secondary colours that are closely matched. % Unfortunately the normalisation of the blended image undoes some of this % lightness matching but I am not sure there is a good way around this. % % Hitting 'c' cycles the basis colours between the set of lightness matched % Isoluminant colours, the RGB primaries, and grey scale images. % % Hitting 's' toggles between blending and swiping mode. % % See also: LINIMIX, BILINIMIX, CLIQUEMIX, CYCLEMIX, BINARYMIX % Reference: % Peter Kovesi, Eun-Jung Holden and Jason Wong, 2014. % "Interactive Multi-Image Blending for Visualization and Interpretation", % Computers & Geosciences 72 (2014) 147-155. % http://doi.org/10.1016/j.cageo.2014.07.010 % % For information about the construction of the lighness matched basis % colours see: % http://peterkovesi.com/projects/colourmaps/ColourmapTheory/index.html#ternary % Copyright (c) 2012-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % May 2012 - Original version % March 2014 - General cleanup and added option to specify colours associated % with each image when using the RGB option. % Dec 2014 - Updated isoluminant basis colours. Added interactive colour % mode section and swiping. function ternarymix(im, nodeLabel, normBlend, figNo) if ~exist('im', 'var'), im = []; end if ~exist('normBlend', 'var') || isempty(normBlend), normBlend = 1; end if ~exist('figNo', 'var') || isempty(figNo) fig = figure; else fig = figure(figNo); end [im, nImages, fname] = collectncheckimages(im); assert(nImages == 3, 'Three images must be supplied'); [rows,cols] = size(im{1}); if ~exist('nodeLabel', 'var') || isempty(nodeLabel) for n = 1:3 nodeLabel{n} = namenpath(fname{n}); end end % Set up three 'basis' images from the three input images and their % corresponding basis colours. colourdisplay = 'ISO'; imcol = {[0.90 0.17 0.00], [0.00 0.50 0.00], [0.10 0.33 1.00]}; for n = 1:3 % It is useful to truncate extreme image values that are at the ends % of the histogram. Here we remove the 0.25% extremes of the histogram. im{n} = histtruncate(im{n}, 0.25, 0.25); im{n} = normalise(im{n}); % Renormalise 0-1 basis{n} = applycolour(im{n}, imcol{n}); end % Display 1st image and get handle to Cdata in the figure % Suppress display warnings for images that are large S = warning('off'); figure(fig); clf, imposition = [0.35 0.0 0.65 1.0]; subplot('position', imposition); imshow(basis{1}); drawnow imHandle = get(gca,'Children'); warning(S) % Set up interface figure ah = subplot('position',[0.0 0.4 0.35 0.35]); % Draw triangle interface and label vertices theta = [0 2/3*pi 4/3*pi]+pi/2; v = [cos(theta) sin(theta)]; hold on; plot([v(1,:) 0], [v(2,:) 0], 'k.', 'markersize',40) plot([v(1,:) 0], [v(2,:) 0], '.', 'markersize',20, 'Color', [.8 .8 .8]) line([v(1,:) v(1,1)], [v(2,:) v(2,1)], 'LineWidth', 2) for n = 1:nImages text(v(1,n)*1.2, v(2, n)*1.2, nodeLabel{n}, ... 'HorizontalAlignment','center', 'FontWeight', 'bold', 'FontSize', 16); end coltxt = text(-1,-1,'ISO','FontWeight', 'bold', 'FontSize', 16); r = 1.1; axis ([-r r -r r]), axis off, axis equal % Set callback function and window title setwindowsize(fig, [rows cols], imposition); set(fig, 'WindowButtonDownFcn',@wbdcb); set(fig, 'KeyReleaseFcn', @keyreleasecb); set(fig, 'NumberTitle', 'off') set(fig, 'name', ' Ternary Mix') set(fig, 'Menubar','none'); % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; fprintf('\nClick and move the mouse within the triangle interface.\n'); fprintf('Left-click to toggle blending on and off.\n'); fprintf('Hit ''c'' to cycle between isoluminant colours, RGB and grey.\n'); fprintf('Hit ''s'' to toggle between swiping and blending modes.\n\n'); blending = 0; hspot = 0; blendswipe = 'blend'; % Start in blending mode %-------------------------------------------------------------------- % Window button down callback function wbdcb(src,evnt) if strcmp(get(src,'SelectionType'),'normal') if ~blending % Turn blending on blending = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) if hspot % For paper illustration delete(hspot); end else % Turn blending off blending = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') % For paper illustration cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); if gca == ah hspot = plot(x, y, '.', 'color', [0 0 0], 'Markersize', 40'); end end end end %-------------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = get(ah,'CurrentPoint'); xy = [cp(1,1); cp(1,2)]; if strcmp(blendswipe, 'swipe') swipe(xy); else % Blend [w1,w2,w3] = barycentriccoords(xy, v(:,1), v(:,2), v(:,3)); blend = w1*basis{1} + w2*basis{2} + w3*basis{3}; % Various normalisation options if normBlend == 0 % No normalisation blend(blend>1) = 1; % but clamp values to 1 elseif normBlend == 1 || strcmpi(colourdisplay, 'GREY') % Normalise by max value in blend blend = blend/max(blend(:)); elseif normBlend == 2 % Normalise to have fixed mean grey value g = 0.299*blend(:,:,1) + 0.587*blend(:,:,2) + 0.114*blend(:,:,3); g(isnan(g(:))) = []; meang = mean(g(:)); blend = blend/meang*0.2; % Mean grey value of 0.2 blend(blend>1) = 1; % Clamp values to 1 elseif normBlend == 3 % Normalise so that max grey value is a fixed value g = 0.299*blend(:,:,1) + 0.587*blend(:,:,2) + 0.114*blend(:,:,3); blend = blend/max(g(:))*0.6; % Max grey of 0.6 blend(blend>1) = 1; % Clamp values to 1 end set(imHandle,'CData', blend); end end %----------------------------------------------------------------------- % Key Release callback % If 'c' is pressed the display cycles between using Lightness matched % colours, RGB and Grey. If 's' is pressed we toggle between swiping and % blending. function keyreleasecb(src,evnt) if evnt.Character == 'c' if strcmp(colourdisplay, 'ISO') colourdisplay = 'RGB'; set(coltxt, 'String', 'RGB'); imcol = {[1 0 0], [0 1 0], [0 0 1]}; for n = 1:3 basis{n} = applycolour(im{n}, imcol{n}); end elseif strcmp(colourdisplay, 'RGB') colourdisplay = 'GREY'; set(coltxt, 'String', 'Grey'); for n = 1:3 basis{n} = applycolour(im{n}, [1 1 1]); end elseif strcmp(colourdisplay, 'GREY') colourdisplay = 'ISO'; set(coltxt, 'String', 'ISO'); imcol = {[0.90 0.17 0.00], [0.00 0.50 0.00], [0.10 0.33 1.00]}; for n = 1:3 basis{n} = applycolour(im{n}, imcol{n}); end end elseif evnt.Character == 's' % Swipe/Blend toggle if strcmp(blendswipe, 'swipe') blendswipe = 'blend'; else blendswipe = 'swipe'; end end wbmcb(src,evnt); % update the display end %----------------------------------------------------------------------- % Generate swipe image given xy which has its origin at the centre of the % triangle with vertices at a radius of 1 function swipe(xy) % Convert cursor position to row and col coords x = round(( xy(1) + 1) * cols/2); y = round((-xy(2) + 1) * rows/2); % Clamp x and y to image limits x = max(1,x); x = min(cols,x); y = max(1,y); y = min(rows,y); % Three images. 1st image occupies top half, swiped vertically. 2nd and % 3rd images share bottom half and are swiped horizontally. swipeim = [ basis{1}(1:y, :, :) basis{2}(y+1:end, 1:x, :) basis{3}(y+1:end, x+1:end, :)]; set(imHandle,'CData', swipeim); end %------------------------------------------------------------------------ end % of main function and its nested functions %------------------------------------------------------------------------ % Given 3 vertices and a point convert the xy coordinates of the point to % Barycentric coordinates with respect to vertices v1, v2 and v3. % Assumes all arguements are 2-element column vectors. % Returns 3 barycentric coordinates / weights. function [l1,l2,l3] = barycentriccoords(p, v1, v2, v3) l = [v1-v3, v2-v3]\(p-v3); l1 = l(1); l2 = l(2); l3 = 1 - l1 - l2; % Simple clamping of resulting coords to range [0 1] l1 = min(max(l1,0),1); l2 = min(max(l2,0),1); l3 = min(max(l3,0),1); % Perhaps ideally if p is outside triangle p should be projected to the % closest point on the triangle before computing barycentric coords end %------------------------------------------------------------------------ % Function to set up window size nicely function setwindowsize(fig, imsze, imposition) screen = get(0,'ScreenSize'); scsze = [screen(4) screen(3)]; window = get(fig, 'Position'); % Set window height to match image height window(4) = imsze(1); % Set window width to match image width allowing for fractional width of % image specified in imposition window(3) = imsze(2)/imposition(3); % Check size of window relative to screen. If larger rescale the window % size to fit 80% of screen dimension. winsze = [window(4) window(3)]; ratio = max(winsze./scsze); if ratio > 1 winsze = winsze/ratio * 0.8; end window(3:4) = [winsze(2) winsze(1)]; set(fig, 'Position', window); end %---------------------------------------------------------------------------------- % Apply a colour to a scalar image function rgbim = applycolour(im, col) [rows,cols] = size(im); rgbim = zeros(rows,cols,3); for r = 1:rows for c = 1:cols rgbim(r,c,:) = im(r,c)*col(:); end end end
github
jacksky64/imageProcessing-master
binarymix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/binarymix.m
11,564
utf_8
53c5c89d010c8dc56ca1daef824526f9
% BINARYMIX Image blending and swiping between two images % % Function blends two images. Each image is coloured with two lightness % matched colours that sum to white. Like a ternary image but binary! % You can also switch between blending and swiping. % % Usage: binarymix(im, nodeLabel, normBlend, figNo) % % Arguments: im - 2-element cell array of images to blend. If omitted or % empty a file selection dialog box is presented. % nodeLabel - Optional cell array of strings for labeling the 2 nodes % of the interface. % normBlend - Sets the image normalisation that is used. % 0 - No normalisation applied other than image clamping. % 1 - Image is normalised so that max value in any % channel is 1. This is the default % 2 - Normalise to have fixed mean grey value. % (This is hard-wired at 0.2 . Edit function wbmcb % below to change) % 3 - Normalise so that max grey value is a fixed value % (This is hard-wired at 0.6 . Edit function wbmcb % below to change) % figNo - Optional figure number to use. % % This function sets up an interface consisting of a line with nodes at each end % corresponding to the two input images. Positioning the cursor along the line % produces an interactive blend of the images formed from a weighted sum of the % images. % % Hitting 'c' cycles the display between two choices for the image basis colours % and grey scale images. Each set of two basis colours sum to white. Where your % two images/data sets are in agreement, and you are at the blend mid-point, you % will see achromatic regions in the blended result. % % Hitting 's' toggles between blending and swiping mode. % % See also: TERNARYMIX, LINIMIX, BILINIMIX, CLIQUEMIX, CYCLEMIX % Reference: % Peter Kovesi, Eun-Jung Holden and Jason Wong, 2014. % "Interactive Multi-Image Blending for Visualization and Interpretation", % Computers & Geosciences 72 (2014) 147-155. % http://doi.org/10.1016/j.cageo.2014.07.010 % % For information about the construction of the lighness matched basis % colours see: % http://peterkovesi.com/projects/colourmaps/ColourmapTheory/index.html#ternary % Copyright (c) 2012-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % Dec 2014 - Adapted from TERNARYMIX % [0.00 0.71 0.00], [1.00 0.29 1.00]; % Green - Magenta % [1 0.4 0]; b = [0 0.6 1]; % Red/Orange - Blue/Cyan function binarymix(im, nodeLabel, normBlend, figNo) if ~exist('im', 'var'), im = []; end if ~exist('normBlend', 'var') || isempty(normBlend), normBlend = 1; end if ~exist('figNo', 'var') || isempty(figNo) fig = figure; else fig = figure(figNo); end [im, nImages, fname] = collectncheckimages(im); assert(nImages == 2, 'Three images must be supplied'); [rows,cols] = size(im{1}); if ~exist('nodeLabel', 'var') || isempty(nodeLabel) for n = 1:2 nodeLabel{n} = namenpath(fname{n}); end end % Set up two 'basis' images from the two input images and their % corresponding basis colours. % Set up initial lightness matched colours colourdisplay = 'COL1'; imcol = {[0.00 0.71 0.00], [1.00 0.29 1.00]}; for n = 1:2 % It is useful to truncate extreme image values that are at the ends % of the histogram. Here we remove the 0.25% extremes of the histogram. im{n} = histtruncate(im{n}, 0.25, 0.25); im{n} = normalise(im{n}); % Renormalise 0-1 basis{n} = applycolour(im{n}, imcol{n}); end % Display 1st image and get handle to Cdata in the figure % Suppress display warnings for images that are large S = warning('off'); figure(fig); clf, imposition = [0.35 0.0 0.65 1.0]; subplot('position', imposition); imshow(basis{1}); drawnow imHandle = get(gca,'Children'); warning(S) % Set up interface figure ah = subplot('position',[0.0 0.4 0.35 0.35]); % Draw slider interface and label vertices theta = [0 pi]; v = [cos(theta) sin(theta)]; hold on; plot(v(1,:), v(2,:), 'k.', 'markersize',40) plot(v(1,:), v(2,:), '.', 'markersize',20, 'Color', [.8 .8 .8]) line(v(1,:), v(2,:), 'LineWidth', 2) for n = 1:nImages text(v(1,n)*1.2, v(2, n)*1.2, nodeLabel{n}, ... 'HorizontalAlignment','center', 'FontWeight', 'bold', 'FontSize', 16); end r = 1.1; axis ([-r r -r r]), axis off, axis equal % Set callback function and window title setwindowsize(fig, [rows cols], imposition); set(fig, 'WindowButtonDownFcn',@wbdcb); set(fig, 'KeyReleaseFcn', @keyreleasecb); set(fig, 'NumberTitle', 'off') set(fig, 'name', ' Binary Mix') set(fig, 'Menubar','none'); % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; fprintf('\nClick and move the mouse on the slider.\n'); fprintf('Left-click to toggle blending on and off.\n'); fprintf('Hit ''c'' to cycle between two colour choices and grey .\n'); fprintf('Hit ''s'' to toggle between swiping and blending modes.\n\n'); blending = 0; hspot = 0; blendswipe = 'blend'; % Start in blending mode %-------------------------------------------------------------------- % Window button down callback function wbdcb(src,evnt) if strcmp(get(src,'SelectionType'),'normal') if ~blending % Turn blending on blending = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) if hspot % For paper illustration delete(hspot); end else % Turn blending off blending = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') % For paper illustration cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); if gca == ah hspot = plot(x, y, '.', 'color', [0 0 0], 'Markersize', 40'); end end end end %-------------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = get(ah,'CurrentPoint'); xy = [cp(1,1); cp(1,2)]; % Project xy onto segment v1 v2 L = norm(v(:,2) - v(:,1)); v1v2 = (v(:,2) - v(:,1))/L; w = dot( xy - v(:,1), v1v2) / L; if w < 0, w = 0; end if w > 1, w = 1; end if strcmp(blendswipe, 'swipe') swipe(1-w); else % Blend blend = (1-w)*basis{1} + w*basis{2}; % Various normalisation options if normBlend == 0 % No normalisation blend(blend>1) = 1; % but clamp values to 1 elseif normBlend == 1 || strcmpi(col, 'grey') % Normalise by max value in blend blend = blend/max(blend(:)); elseif normBlend == 2 % Normalise to have fixed mean grey value g = 0.299*blend(:,:,1) + 0.587*blend(:,:,2) + 0.114*blend(:,:,3); g(isnan(g(:))) = []; meang = mean(g(:)); blend = blend/meang*0.2; % Mean grey value of 0.2 blend(blend>1) = 1; % Clamp values to 1 elseif normBlend == 3 % Normalise so that max grey value is a fixed value g = 0.299*blend(:,:,1) + 0.587*blend(:,:,2) + 0.114*blend(:,:,3); blend = blend/max(g(:))*0.6; % Max grey of 0.6 blend(blend>1) = 1; % Clamp values to 1 end set(imHandle,'CData', blend); end end %----------------------------------------------------------------------- % Key Release callback % If 'c' is pressed the display cycles between two choices of Lightness matched % colours and Grey. % Pressing 's' toggles between swiping and blending modes function keyreleasecb(src,evnt) if evnt.Character == 'c' % Toggle colours if strcmp(colourdisplay, 'COL1') colourdisplay = 'COL2'; imcol = {[1.0 0.4 0.0], [0.0 0.6 1.0]}; for n = 1:2 basis{n} = applycolour(im{n}, imcol{n}); end elseif strcmp(colourdisplay, 'COL2') colourdisplay = 'GREY'; for n = 1:2 basis{n} = applycolour(im{n}, [1 1 1]); end elseif strcmp(colourdisplay, 'GREY') colourdisplay = 'COL1'; imcol = {[0.00 0.71 0.00], [1.00 0.29 1.00]}; for n = 1:2 basis{n} = applycolour(im{n}, imcol{n}); end end elseif evnt.Character == 's' % Swipe/Blend toggle if strcmp(blendswipe, 'swipe') blendswipe = 'blend'; else blendswipe = 'swipe'; end end wbmcb(src,evnt); % update the display end %----------------------------------------------------------------------- % Generate swipe image given value of w between 0 and 1 function swipe(w) x = round(w*(cols-1)); % Construct swipe image from the input images swipeim = [basis{1}(:, 1:x, :) basis{2}(:, x+1:end, :)]; set(imHandle,'CData', swipeim); end %------------------------------------------------------------------------ end % of main function and its nested functions %------------------------------------------------------------------------ % Function to set up window size nicely function setwindowsize(fig, imsze, imposition) screen = get(0,'ScreenSize'); scsze = [screen(4) screen(3)]; window = get(fig, 'Position'); % Set window height to match image height window(4) = imsze(1); % Set window width to match image width allowing for fractional width of % image specified in imposition window(3) = imsze(2)/imposition(3); % Check size of window relative to screen. If larger rescale the window % size to fit 80% of screen dimension. winsze = [window(4) window(3)]; ratio = max(winsze./scsze); if ratio > 1 winsze = winsze/ratio * 0.8; end window(3:4) = [winsze(2) winsze(1)]; set(fig, 'Position', window); end %---------------------------------------------------------------------------------- % Apply a colour to a scalar image function rgbim = applycolour(im, col) [rows,cols] = size(im); rgbim = zeros(rows,cols,3); for r = 1:rows for c = 1:cols rgbim(r,c,:) = im(r,c)*col(:); end end end
github
jacksky64/imageProcessing-master
logisticweighting.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/logisticweighting.m
3,064
utf_8
2896739e6134ef8ef15bfd4bc3726f12
% LOGISTICWEIGHTING Weighting function based on the logistics function % % Adaptation of the generalised logistics function for defining the variation of % a weighting function for blending images % % Usage: w = logisticweighting(x, b, R) % % Arguments: x - Value, or array of values at which to evaluate the weighting % function. % b - Parameter specifying the growth rate of the logistics function. % This controls the slope of the weighting function at its % midpoint. Probably most convenient to specify this as a % power of 2. % b = 0 Perfect linear transition from wmin to wmax. % b = 2^0 Near linear transition from wmin to wmax. % b = 2^4 Sigmoidal transition. % b = 2^10 Near step-like transition at midpoint. % R - 4-vector specifying [xmin, xmax, wmin, wmax] the minimum and % maximum weights over the minimum and maximum x values that % will be used. The midpoint of the sigmoidal weighting % function will occur at (xmin+xmax)/2 at a value of % (wmin+wmax)/2. Note that if an x value outside of this range % is supplied the resulting weight will also be outside of the % desired range. Defaults to R = [-1 1 -1 1] % % Returns: w - Weight values for each supplied x-coordinate. % % Copyright (c) 2012 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % May 2012 function w = logisticweighting(x, b, R) if ~exist('R', 'var'), R = [-1 1 -1 1]; end b = max(b, 1e-10); % Constrain b to a small value that does not cause % numerical problems [xmin xmax wmin wmax] = deal(R(1), R(2), R(3), R(4)); xHalfRange = (xmax-xmin)/2; wHalfRange = (wmax-wmin)/2; M = (xmin+xmax)/2; % Midpoint of curve % We use a form of the generalised logistics function with asymptotes -A and % +A, and growth rate b. % % W(x) = A - 2*A/(1 + e^(-b*x)) % % First, given the desired value of b, we solve for the value of A that will % generate a generalised logistics curve centred on (0,0) and passing % through (-xrange/2, -wrange/2) and (+xrange/2, +wrange/2) A = wHalfRange/(1 - 2/(1+exp(-b*xHalfRange))); % Apply an offset of M to x to shift the curve to the desired position % and add a vertical offset to obtain the desired weighting range w = A - 2*A./(1 + exp(-b*(x-M))) + (wmin+wHalfRange);
github
jacksky64/imageProcessing-master
cyclemix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/cyclemix.m
9,035
utf_8
3290a5ce842ce329f1eb6607a37fd6af
% CYCLEMIX Multi-image blending over a cyclic sequence of images % % Usage: cyclemix(im, figNo, nodeLabel) % % Arguments: % im - A cell array of images to be blended. If omitted, or % empty, the user is prompted to select images via a file % dialog. % figNo - Optional figure number. % nodeLabel - Optional cell array of strings specifying the labels to % be associated with the nodes on the blending interface. % % This function sets up an interface consisting of a circle with equispaced % nodes around it corresponding to the input images to be blended. An % additional virtual node corresponding to the average of all the images is % placed at the centre of the circle. Positioning the mouse at some location % within the circle generates an interactive blend formed from the weighted sum % of the two image nodes that the mouse is between (in an angular sense) and % between the central average image according to the radial position of the % mouse. % % An application where this blending tool can be useful is to blend between a % sequence of images that have been filtered according to a parameter that is % cyclic, say an orientation filter. % % See also: LINIMIX, BILINIMIX, CLIQUEMIX, TERNARYMIX % Reference: % Peter Kovesi, Eun-Jung Holden and Jason Wong, 2014. % "Interactive Multi-Image Blending for Visualization and Interpretation", % Computers & Geosciences 72 (2014) 147-155. % http://doi.org/10.1016/j.cageo.2014.07.010 % Copyright (c) 2011-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % August 2011 Original version % March 2014 Cleanup and documentation function cyclemix(im, figNo) if ~exist('im', 'var'), im = []; end if ~exist('figNo', 'var') || isempty(figNo) fig = figure; else fig = figure(figNo); end [im, nImages, fname] = collectncheckimages(im); % Compute average image avim = zeros(size(im{1})); for n = 1:nImages avim = avim + im{n}; end avim = avim/nImages; % Generate vertices of blending polygon interface deltaTheta = 2*pi/nImages; theta = [0:(nImages-1)] * deltaTheta; v = [cos(theta) sin(theta)]; % Display 1st image and get handle to Cdata in the figure % Suppress display warnings for images that are large S = warning('off'); figure(fig), clf, imposition = [0.35 0.0 0.65 1.0]; subplot('position', imposition); imshow(normalise(im{1}), 'border', 'tight'); set(fig, 'NumberTitle', 'off') set(fig, 'name', ' CycleMix') set(fig, 'Menubar','none'); imHandle = get(gca,'Children'); warning(S); % Set up interface figure ah = subplot('position',[0.0 0.4 0.35 0.35]); h = circle([0 0], 1, 36, [0 0 1]); set(h,'linewidth',2) hold on plot(v(1,:), v(2,:), '.', 'color', [0 0 0], 'markersize', 40') plot(v(1,:), v(2,:), '.', 'color',[.9 .9 .9], 'markersize',20) radsc = 1.2; for n = 1:nImages if v(1,n) < -0.1 text(v(1,n)*radsc, v(2, n)*radsc, namenpath(fname{n}), ... 'FontSize', 16, 'FontWeight', 'bold',... 'HorizontalAlignment','right'); elseif v(1,n) > 0.1 text(v(1,n)*radsc, v(2, n)*radsc, namenpath(fname{n}), ... 'FontSize', 16, 'FontWeight', 'bold',... 'HorizontalAlignment','left'); else text(v(1,n)*radsc, v(2, n)*radsc, namenpath(fname{n}), ... 'FontSize', 16, 'FontWeight', 'bold',... 'HorizontalAlignment','center'); end end r = 1.25; axis ([-r r -r r]), axis off, axis equal % Set callback function set(fig,'WindowButtonDownFcn',@wbdcb); [rows, cols, ~] = size(im{1}); setwindowsize(fig, [rows cols], imposition); % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; fprintf('\nLeft-click to toggle blending on and off.\n'); blending = 0; hspot = 0; %---------------------------------------------------------------- % Window button down callback function wbdcb(src,evnt) if strcmp(get(src,'SelectionType'),'normal') if ~blending % Turn blending on blending = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) if hspot % For paper illustration delete(hspot); end else % Turn blending off blending = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') % For paper illustration cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); if gca == ah hspot = plot(x, y, '.', 'color', [0 0 0], 'Markersize', 40'); end end end end %---------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); blend(x,y) end %------------------------------------------------------------------- function blend(x,y) % Get radius and angle of cursor relative to centre of circle radius = min(norm([x y]), .999); % Clamp radius to a max of 1 ang = atan2(y,x); % Define a sigmoidal weighting function for radius values ranging from 0 to % 1 yielding weights that range from 1 to 0. This is the weighting that is % applied to the average image associated with the centre of the circular % interface. Using a sigmoidal function provides a slight 'flat spot' at % the centre (and edges) of the interface where the weights do not change % much. This makes the interface a bit easier to use near the centre % which otherwise forms a singularity with respect to cursor movements. radialWeight = logisticweighting(radius, 2^4, [0 1 1 0]); % Compute angular distance to all vertices ds = sin(theta) * cos(ang) - cos(theta) * sin(ang); % Difference in sine. dc = cos(theta) * cos(ang) + sin(theta) * sin(ang); % Difference in cosine. distTheta = abs(atan2(ds,dc)); % Absolute angular distance. % First form a 2-image blend from the two images that are on each side of % the cursor in an angular sense % Zero out angular distances > deltaTheta, these will correspond to nodes % that are not on each side of the cursor in an angular sense. There should % be only two non-zero elements after this. distTheta(distTheta > deltaTheta) = 0; % Form normalised angular blending weights. angularWeight = (deltaTheta-distTheta)/deltaTheta; % Identify the indices of the non-zero weights ind = find(distTheta); if length(ind) == 2 blend = angularWeight(ind(1))*im{ind(1)} + angularWeight(ind(2))*im{ind(2)}; elseif length(ind) == 1 % Unlikely, but possible. blend = angularWeight(ind(1))*im{ind(1)}; end % Now form a 2-image blend between this image and the centre, average image. blend = (1-radialWeight)*blend + radialWeight*avim; blend = normalise(blend); set(imHandle,'CData', blend); end % end of blend %--------------------------------------------------------------------- end % of main function and nested functions %------------------------------------------------------------------------ % Function to set up window size nicely function setwindowsize(fig, imsze, imposition) screen = get(0,'ScreenSize'); scsze = [screen(4) screen(3)]; window = get(fig, 'Position'); % Set window height to match image height window(4) = imsze(1); % Set window width to match image width allowing for fractional width of % image specified in imposition window(3) = imsze(2)/imposition(3); % Check size of window relative to screen. If larger rescale the window % size to fit 80% of screen dimension. winsze = [window(4) window(3)]; ratio = max(winsze./scsze); if ratio > 1 winsze = winsze/ratio * 0.8; end window(3:4) = [winsze(2) winsze(1)]; set(fig, 'Position', window); end
github
jacksky64/imageProcessing-master
swipe.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/swipe.m
4,265
utf_8
127b092d90f1b8edeb9f165489e6bcb0
% SWIPE Interactive image swiping between 2, 3 or 4 images. % % Usage swipe(im, figNo) % % Arguments: im - 2D Cell array of images to be blended. Two, three or four % images can be blended. % figNo - Optional figure window number to use. % % Click in the image to toggle in/out of swiping mode. Move the cursor % within the image to swipe between the input images. % % See also: TERNARYMIX, CYCLEMIX, CLIQUEMIX, LINIMIX, BILINIMIX % % Copyright (c) 2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % June 2013 function swipe(im, figNo) if ~exist('im', 'var'), im = []; end [im, nImages, fname] = collectncheckimages(im); if isempty(im) % Cancel return; end if length(im) < 2 || length(im) > 4 error('Can only swipe between 2, 3 or 4 images'); end [rows,cols,~] = size(im{1}); fprintf('\nClick in the image to toggle in/out of swiping mode \n'); fprintf('Move the cursor within the image to \n'); fprintf('swipe between the input images\n\n'); % Set up figure and handles to image data if exist('figNo','var') fig = figure(figNo); clf; else fig = figure; end S = warning('off'); imshow(im{1}); % imshow(im{1}, 'border', 'tight'); drawnow warning(S) set(fig, 'name', 'CET Image Swiper') set(fig,'Menubar','none'); ah = get(fig,'CurrentAxes'); imHandle = get(ah,'Children'); % Set up button down callback set(fig,'WindowButtonDownFcn',@wbdcb); swiping = 0; % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; %----------------------------------------------------------------------- % Window button down callback. This toggles swiping on and off changing the % cursor appropriately. function wbdcb(src,evnt) if strcmp(get(src,'SelectionType'),'normal') if ~swiping % Turn swiping on swiping = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[8 8]) set(src,'WindowButtonMotionFcn',@wbmcb) else % Turn swiping off swiping = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') end end end %----------------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = round(get(ah,'CurrentPoint')); x = cp(1,1); y = cp(1,2); swipe(x, y) end %----------------------------------------------------------------------- function swipe(x, y) % Clamp x and y to image limits x = max(1,x); x = min(cols,x); y = max(1,y); y = min(rows,y); % Construct swipe image from the input images if length(im) == 2; % Vertical swipe between 2 images swipeim = [im{1}(1:y, :, :) im{2}(y+1:end, :, :)]; % Three images. 1st image occupies top half, swiped vertically. 2nd and % 3rd images share bottom half and are swiped horizontally. elseif length(im) == 3; swipeim = [ im{1}(1:y, :, :) im{2}(y+1:end, 1:x, :) im{3}(y+1:end, x+1:end, :)]; % Four input images placed in quadrants elseif length(im) == 4; swipeim = [im{1}(1:y, 1:x, :) im{2}(1:y, x+1:end, :) im{3}(y+1:end, 1:x, :) im{4}(y+1:end, x+1:end, :)]; end set(imHandle,'CData', swipeim); set(fig, 'name', 'CET Image Swiper') end %--------------------------------------------------------------------------- end % of swipe
github
jacksky64/imageProcessing-master
cliquemix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/cliquemix.m
15,564
utf_8
8d782463d2676131bc2e13681c3bd26e
% CLIQUEMIX Multi-image blending and swiping over a clique % % Function allows blending and swiping between any pair within a collection of images % % Usage: cliquemix(im, B, figNo, nodeLabel) % % Arguments: % im - A cell array of images to be blended. If omitted, or % empty, the user is prompted to select images via a file % dialog. % B - Parameter controlling the weighting function when % blending between two images. % B = 0 Linear transition between images (default) % B = 2^4 Sigmoidal transition at midpoint. % B = 2^10 Near step-like transition at midpoint. % figNo - Optional figure number. % nodeLabel - Optional cell array of strings specifying the labels to % be associated with the nodes on the blending interface. % % This function sets up an interface consisting of a regular polygon with nodes % corresponding to the input images to be blended. Each node is conected to % every other node forming a clique. Positioning the cursor along any of the % edges joining two nodes will generate an interactive blend formed from the % 2-image blend of the images connected by the edge. As the mouse is moved % around the interface the blend snaps to the edge closest to the mouse position % (with some hysteresis to reduce unwanted transitions). A right-click on any % edge will lock the blending to that edge irrespective of the mouse position. % A second right-click will unlock the edge. % % Hitting 's' toggles between blending and swiping mode. % % This tool allows you to compare any image with any other image in a collection % with ease. However once you go beyond about 8 images the difference in edge % lengths on the interface starts to make the tool less natural to use. % % See also: LINIMIX, BILINIMIX, TERNARYMIX, BINARYMIX, CYCLEMIX, LOGISTICWEIGHTING % Reference: % Peter Kovesi, Eun-Jung Holden and Jason Wong, 2014. % "Interactive Multi-Image Blending for Visualization and Interpretation", % Computers & Geosciences 72 (2014) 147-155. % http://doi.org/10.1016/j.cageo.2014.07.010 % Copyright (c) 2011-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % August 2011 - Original version % May 2012 - General rework and cleanup % March 2014 - More tidying up % December 2014 - Incorporation of swiping option function cliquemix(im, B, figNo, nodeLabel) if ~exist('B', 'var') || isempty(B), B = 0; end % linear blending if ~exist('im', 'var'), im = []; end if ~exist('figNo', 'var') || isempty(figNo) fig = figure; else fig = figure(figNo); end [im, nImages, fname] = collectncheckimages(im); % If interface node names have not been supplied use default image names if ~exist('nodeLabel', 'var') nodeLabel = fname; end % Display 1st image and get handle to Cdata in figure(2) % Suppress display warnings for images that are large S = warning('off'); figure(fig), clf; imposition = [0.35 0.0 0.65 1.0]; subplot('position', imposition); imshow(im{1},'border', 'tight'); drawnow imHandle = get(gca,'Children'); warning(S) % Draw the interface clique and label vertices ah = subplot('position',[0.0 0.4 0.35 0.35]); % Generate vertices of blending polygon interface deltaTheta = 2*pi/nImages; theta = [0:(nImages-1)] * deltaTheta + pi/2; v = [cos(theta) sin(theta)]; % Construct list of edges that link the vertices eNo = 0; for n = 1:(nImages-1) for m = (n+1):nImages eNo = eNo+1; edge{eNo}.n1 = n; edge{eNo}.n2 = m; edge{eNo}.v1 = v(:,n); edge{eNo}.v2 = v(:,m); edge{eNo}.h = ... line([edge{eNo}.v1(1) edge{eNo}.v2(1)], ... [edge{eNo}.v1(2) edge{eNo}.v2(2)], ... 'LineWidth', 2); end end hold on plot(v(1,:), v(2,:), '.', 'color', [0 0 0], 'Markersize', 30') hold off radsc = 1.2; for n = 1:nImages if v(1,n) < -0.1 text(v(1,n)*radsc, v(2, n)*radsc, namenpath(nodeLabel{n}), ... 'FontSize', 16, 'FontWeight', 'bold',... 'HorizontalAlignment','right'); elseif v(1,n) > 0.1 text(v(1,n)*radsc, v(2, n)*radsc, namenpath(nodeLabel{n}), ... 'FontSize', 16, 'FontWeight', 'bold',... 'HorizontalAlignment','left'); else text(v(1,n)*radsc, v(2, n)*radsc, namenpath(nodeLabel{n}), ... 'FontSize', 16, 'FontWeight', 'bold',... 'HorizontalAlignment','center'); end end r = 1.2; axis ([-r r -r r]), axis off, axis equal % Set callback function and window title [rows,cols,chan] = size(im{1}); setwindowsize(fig, [rows cols], imposition); set(fig, 'WindowButtonDownFcn',@wbdcb); set(fig, 'KeyReleaseFcn', @keyreleasecb); set(fig, 'NumberTitle', 'off') set(fig, 'name', ' CliqueMix') set(fig, 'Menubar','none'); % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; blending = 0; locked = 0; currentEdge = 1; blendswipe = 'blend'; % Start in blending mode fprintf('\nLeft-click to toggle blending on and off.\n'); fprintf('Right-click to toggle edge locking on and off.\n'); fprintf('A right-click will also turn blending on if it was off\n'); fprintf('Hit ''s'' to toggle between swiping and blending modes.\n\n'); %-------------------------------------------------------------------- % Window button down callback function wbdcb(src,evnt) click = get(src,'SelectionType'); % Left click toggles blending if strcmp(click,'normal') if ~blending % Turn blending on blending = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) else % Turn blending off and unlock blending = 0; locked = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') set(edge{currentEdge}.h, 'color', [0 0 1]); end % Right click toggles edge locking elseif strcmp(click,'alt') if blending && ~locked % Lock to closest edge e = closestedge; if e ~= currentEdge set(edge{currentEdge}.h, 'color', [0 0 1]); currentEdge = e; end set(edge{currentEdge}.h, 'color', [1 0 0]); locked = 1; elseif ~blending && ~locked % Turn blending on and lock to closest edge blending = 1; locked = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) currentEdge = closestedge; set(edge{currentEdge}.h, 'color', [1 0 0]); elseif locked % Unlock locked = 0; set(edge{currentEdge}.h, 'color', [0 0.5 0]); end end end %-------------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); [e, n1, n2, frac] = activeedge(x,y); if strcmp(blendswipe, 'blend') w = logisticweighting(frac, B,[0 1 0 1]); blend = w*im{n1} + (1-w)*im{n2}; else blend = swipe(n1, n2, frac); end set(imHandle,'CData', blend); end %--------------------------------------------------------------------- % ACTIVEEDGE % Establish the edge in the graph that is currently 'active'. Return the node % numbers, n1 and n2, that define the edge and the fractional distance of the % projected cursor point along the edge from n1 to n2 % % This version maintains a ring buffer that records the edge that the cursor % is closest to for the last N instantiations of this function. The 'active' % edge is set to the edge number that appears most frequently in the ring % buffer (the mode). Seems to work quite well however the bahaviour is % dependent on the speed of the computer. It would be good to have something % that was tied to actual time. function [e, n1, n2, frac] = activeedge(x,y) N = 30; % Buffer size persistent ebuf; % Buffer for recording which edge we have been on persistent ptr; % Pointer into buffer. if isempty(ebuf), ebuf = currentEdge*ones(1,N); end if isempty(ptr), ptr = 0; end if locked v1 = edge{currentEdge}.v1; v2 = edge{currentEdge}.v2; [eDist, pfrac] = dist2segment(v1, v2, x, y); e = currentEdge; n1 = edge{currentEdge}.n1; n2 = edge{currentEdge}.n2; frac = 1-pfrac; else % Not locked. Find edge closest to x,y eDist = zeros(1,length(edge)); pfrac = zeros(1,length(edge)); for n = 1:length(edge) v1 = edge{n}.v1; v2 = edge{n}.v2; [eDist(n), pfrac(n)] = dist2segment(v1, v2, x, y); end [minDist, ind] = min(eDist); ptr = mod(ptr+1,N-1); ebuf(ptr+1) = ind; % Set edge to be the one which is most common within ebuf e = mode(ebuf); if e ~= currentEdge set(edge{currentEdge}.h, 'color', [0 0 1]); currentEdge = e; end set(edge{currentEdge}.h, 'color', [0 0.5 0]); % Identify the indices of the images associated with this edge and % also calculate the fractional position we are along this edge for % the blending n1 = edge{e}.n1; n2 = edge{e}.n2; frac = 1-pfrac(e); end end % of activeedge %------------------------------------------------------------------------ % Find edge closest to cursor function e = closestedge cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); eDist = zeros(1,length(edge)); for n = 1:length(edge) v1 = edge{n}.v1; v2 = edge{n}.v2; eDist(n) = dist2segment(v1, v2, x, y); end [~, e] = min(eDist); end %------------------------------------------------------------------------ % Given an x,y coordinate and a line segment with end points v1 and v2. Find the % closest point on the line segment. Return the distance to the line segment % and the fractional distance of the closest point on the segment from v1 to v2. function [d, frac] = dist2segment(v1, v2, x, y) xy = [x;y]; v1v2 = v2-v1; % Vector from v1 to v2 D = norm(v1v2); % Distance v1 to v2 v1xy = xy-v1; % Vector from v1 to xy % projection of v1xy on unit vector v1v2 proj = dot(v1v2/D, v1xy); if proj < 0 % Closest point is v1 d = norm(v1xy); frac = 0; elseif proj > D % Closest point is v2 d = norm(xy-v2); frac = 1; else % Somewhere in the middle pt = v1 + proj*v1v2/D; d = norm(xy-pt); frac = proj/D; end end % of dist2segment %------------------------------------------------------------------------ % Function to set up window size nicely function setwindowsize(fig, imsze, imposition) screen = get(0,'ScreenSize'); scsze = [screen(4) screen(3)]; window = get(fig, 'Position'); % Set window height to match image height window(4) = imsze(1); % Set window width to match image width allowing for fractional width of % image specified in imposition window(3) = imsze(2)/imposition(3); % Check size of window relative to screen. If larger rescale the window % size to fit 80% of screen dimension. winsze = [window(4) window(3)]; ratio = max(winsze./scsze); if ratio > 1 winsze = winsze/ratio * 0.8; end window(3:4) = [winsze(2) winsze(1)]; set(fig, 'Position', window); end %----------------------------------------------------------------------- % Generate swipe image given the two end nodes of the active edge and the % fractional distance along the edge. function swipeim = swipe(n1, n2, frac) % Form vectors from the centre of the image to the corners and construct % the dot product between v(:,n2)-v(:,n1) to determine the extreme % corners of the image that are relevant corner = [1 cols cols 1 1 1 rows rows]; % Vectors from centre of image to top-left, top-right, bottom-right, % bottom-left corners. c = corner - repmat([cols/2; rows/2], 1, 4); % Vector from node 1 to node 2 d = v(:,n2) - v(:,n1); d(2) = -d(2); % Negate y to match image coordinate frame d1 = d/norm(d); % Find c2, the index of corner direction maximally alligned with d dotcd = c'*d; % Dot product between c and d [~,c1] = max(dotcd); c2 = mod((c1-1)-2, 4) + 1; % Opposite corner to c2 c1c2 = corner(:,c2)-corner(:,c1); % Compute distance from c1 to c2 in the direction of d dist = dot(c1c2, d1); % Construct location that is 'frac' units along line parallel to % v(:,n2)-v(:,n1) between the two extreme image corners % This has to be frac*dist from c1 to c2 p = corner(:,c1) + frac*dist*d1; % Cut the image in two at the point along a line perpendicular to % v(:,n2)-v(:,n1) and construct a mask for defining the image parts to be % combined. % Form equation (p - [c;r]).d % mask is where this value is > 0 giving all image points closest to n2 [x,y] = meshgrid(1:cols, 1:rows); x = p(1) - x; y = p(2) - y; mask = (x*d(1) + y*d(2)) < 0; swipeim = im{n2}; if chan == 1 swipeim(mask) = im{n1}(mask); else % Colour swipeim = zeros(rows,cols,chan); for ch = 1:chan swipeim(:,:,ch) = im{n1}(:,:,ch) .* mask + im{n2}(:,:,ch) .* ~mask; end end end %----------------------------------------------------------------------- % Key Release callback % If 's' is pressed system toggles between swiping and blending modes function keyreleasecb(src,evnt) if evnt.Character == 's' % Swipe/Blend toggle if strcmp(blendswipe, 'swipe') blendswipe = 'blend'; else blendswipe = 'swipe'; end end wbmcb(src,evnt); % update the display end %------------------------------------------------------------------------ end % of everything
github
jacksky64/imageProcessing-master
collectncheckimages.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/collectncheckimages.m
5,392
utf_8
7f3d2bd790c314d39156748f34dce0ed
% COLLECTNCHECKIMAGES Collects and checks images prior to blending % % Usage: [im, nImages, fname, pathname] = collectncheckimages(im) % % Used by image blending functions % % Argument: im - Cell arry of images. If omitted a dialog box is % presented so that images can be selected interactively. % % Returns: im - Cell array of images of consistent size and colour class. % If input images are of different sizes the images are % trimmed to the size of the smallest image. If some % images are colour any greyscale images are converted to % colour by copying the image to the R G and B channels. % nImages - Number of images in the cell array. % fname - A cell array of the filenames of the images if they were % interactively selected via a dialog box. % pathname - The file path if the images were selected via a dialog % box. % % If the image selection via a dialog box is cancelled all values are returned % as empty cell arrays or 0 % % See also: LINIMIX, BILINIMIX, TERNARYMIX, CLIQUEMIX, CYCLEMIX % Copyright (c) 2012-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % May 2012 - Original version % March 2014 - Provison for 'im' being a 2D cell array % August 2014 - Fix to avoid normalisation of colour images function [im, nImages, fname, pathname] = collectncheckimages(im) if ~exist('im', 'var') | isempty(im) % We need to select several images fprintf('Select several images...\n'); [fname, pathname] = uigetfile({'*.png';'*.tiff';'*.jpg'},... 'MultiSelect','on'); if isnumeric(fname) && fname == 0 % Selection was cancelled im = {}; nImages = 0; fname = {}; pathname = {}; return end % If single file has been selected place its name in a single element % cell array so that it is consistent with the rest of the code. if isa(fname, 'char') tmp = fname; fname = {}; fname{1} = tmp; end nImages = length(fname); im = cell(1,nImages); for n = 1:nImages im{n} = double(imread([pathname fname{n}])); end elseif iscell(im) % A cell array of images to blend has been supplied. % Give each image a nominal name nImages = prod(size(im)); % (im might be a 2D cell array of images) fname = cell(1,nImages); for n = 1:nImages fname{n} = sprintf('%d', n); end pathname = ''; end if nImages == 1 % See if we have a multi-channel image [rows, cols, chan] = size(im{1}); assert(chan > 1, ... 'Input must be a cell arrayof images, or a multi-channel image'); % Copy the channels out into a cell array of separate images and % generate nominal names. nImages = chan; tmp = im{1}; im = cell(1,nImages); fname = cell(1,nImages); for n = 1:nImages im{n} = tmp(:,:,n); fname{n} = sprintf('Band %d', n); end pathname = ''; end % Check sizes of images rows = zeros(nImages,1); cols = zeros(nImages,1); chan = zeros(nImages,1); for n = 1:nImages [rows(n) cols(n), chan(n)] = size(im{n}); end % If necessary trim all images down to the size of the smallest image and % give a warning. Given that the imput images need to be registered this % should perhaps be classed as an error. if ~all(rows == rows(1)) || ~all(cols == cols(1)) fprintf('Not all images are the same size\n'); fprintf('Trimming images to the match the smallest\n'); minrows = min(rows); mincols = min(cols); for n = 1:nImages im{n} = im{n}(1:minrows, 1:mincols, :); end end % If one image is RGB ensure every image is stored as rgb, even if it % is greyscale. if ~(all(chan == 3) || all(chan == 1)) for n = 1:nImages if chan(n) == 1 % Replicate image in R, G and B channels im{n} = repmat(im{n},[1 1 3]); end end end % Finally normalise images as needed and ensure class is double. Note that % if an input image had three channels we assume it is already normalised % 0-255 (if uint8) or 0-1 (if double) hence we only normalise a double image % if it originally only had one channel. for n = 1:nImages if strcmp(class(im{n}),'uint8') im{n} = double(im{n})/255; elseif chan(n) == 1 im{n} = normalise(double(im{n})); end end
github
jacksky64/imageProcessing-master
linimix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/linimix.m
6,641
utf_8
e8891cc28a8631536ebbdaae2a9dd1a2
% LINIMIX An Interactive Image for viewing multiple images % % Usage: linimix(im, B, figNo, XY) % % Arguments: im - 1D Cell array of images to be blended. If this is not % supplied, or is empty, the user is prompted with a file % dialog to select a series of images. % B - Parameter controlling the weighting function when % blending between two images. % B = 0 Linear transition between images (default) % B = 2^4 Sigmoidal transition at midpoint. % B = 2^10 Near step-like transition at midpoint. % figNo - Optional figure window number to use. % XY - Character 'X' or 'Y' indicating whether x or y movements % of the cursor controls the blending. Defaults to 'Y'. % % This function provides an 'Interactive Image'. It is intended to allow % efficient visual exploration of a sequence of images that have been processed % with a series of different parameter values, for example, scale. The vertical % position of the cursor within the image controls the linear blend between % images. With the cursor at the top the first image is displayed, at the % bottom the last image is displayed. At positions in between blends of % intermediate images are dislayed. % % Click in the image to toggle in/out of blending mode. Move the cursor up and % down within the image to blend between the input images. % % Use BILINIMIX if you want the horizontal position of the cursor to be used % too. This will allow visual exploration of a sequence of images controlled by % two different processing parameters. Alternatively one could blend between % images of two different modalities over some varing parameter, say scale. % % See also: BILINIMIX, TERNARYMIX, CLIQUEMIX, CYCLEMIX, LOGISTICWEIGHTING % Reference: % Peter Kovesi, Eun-Jung Holden and Jason Wong, 2014. % "Interactive Multi-Image Blending for Visualization and Interpretation", % Computers & Geosciences 72 (2014) 147-155. % http://doi.org/10.1016/j.cageo.2014.07.010 % Copyright (c) 2012-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % March 2012 % March 2014 - Allow horizontal or vertical mouse movements to control blending function linimix(im, B, figNo, XY) if ~exist('im', 'var'), im = []; end [im, nImages, fname] = collectncheckimages(im); if ~exist('B', 'var') || isempty(B), B = 0; end if exist('figNo','var') fig = figure(figNo); clf; else fig = figure; end if ~exist('XY', 'var'), XY = 'Y'; end XY = upper(XY); % Generate nodes for the multi-image linear blending [rows,cols,~] = size(im{1}); if XY == 'Y' v = round([0:1/(nImages-1):1] * rows); elseif XY == 'X' v = round([0:1/(nImages-1):1] * cols); else error('XY must be ''x'' or ''y'' ') end fprintf('\nClick in the image to toggle in/out of blending mode \n'); fprintf('Move the cursor within the image to blend between the input images.\n\n'); S = warning('off'); imshow(im{ max(1,fix(nImages/2)) }, 'border', 'tight'); % imshow(im{ max(1,fix(nImages/2)) }); % Uncomment the following line if you want axes displayed % imagesc(im{ max(1,fix(nImages/2)) }); colormap(gray(256)) drawnow warning(S) ah = get(fig,'CurrentAxes'); imHandle = get(ah,'Children'); % Handle to image data % Set up button down callback and window title set(fig, 'WindowButtonDownFcn',@wbdcb); set(fig, 'NumberTitle', 'off') set(fig, 'name', 'CET Linear Image Blender') set(fig, 'Menubar','none'); blending = 0; % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; hspot = 0; hold on %----------------------------------------------------------------------- % Window button down callback. This toggles blending on and off changing the % cursor appropriately. function wbdcb(src,evnt) if strcmp(get(src,'SelectionType'),'normal') if ~blending % Turn blending on blending = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) if hspot % For paper illustration delete(hspot); end else % Turn blending off blending = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') % For paper illustration (need marker size of 95 if using export_fig) cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); hspot = plot(x, y, '.', 'color', [0 0 0], 'Markersize', 50'); end end end %----------------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = get(ah,'CurrentPoint'); if XY == 'Y' p = cp(1,2); p = max(0,p); p = min(rows,p); % clamp to range 0-rows else p = cp(1,1); p = max(0,p); p = min(cols,p); % clamp to range 0-cols end blend(p) end %----------------------------------------------------------------------- function blend(p) % Find distance from each of the vertices v dist = abs(v - p); % Find the two closest vertices [dist, ind] = sort(dist); % w1 is the fractional distance from the cursor to the 2nd image % relative to the distance between the 1st and 2nd images w1 = dist(2)/(dist(1)+dist(2)); % Apply the logistics wighting function to w1 to obtain the desired % transition weighting w = logisticweighting(w1, B, [0 1 0 1]); blendim = w*im{ind(1)} + (1-w)*im{ind(2)}; set(imHandle,'CData', blendim); set(fig, 'name', 'CET Image Blender'); end %--------------------------------------------------------------------------- end % of linimix
github
jacksky64/imageProcessing-master
bilinimix.m
.m
imageProcessing-master/Matlab Code for Computer Vision/Blender/bilinimix.m
5,635
utf_8
f1768150812e05ba0dbf1f8ac2b8e2ec
% BILINIMIX An Interactive Image for viewing multiple images % % Usage: bilinimix(im, figNo) % % Arguments: im - 2D Cell array of greyscale images to be blended. % figNo - Optional figure window number to use. % % This function provides an 'Interactive Image'. It is intended to allow % efficient visual exploration of a sequence of images that have been processed % with a series of two different parameter values, for example, scale and image % mix. The horizontal and vertical position of the cursor within the image % controls the bilinear blend of the two parameters over the images. % % To achieve this you need to prepare a set of images that cover a coarsely % quantized range of properties you want to view. Think of these images as % being arranged in a 2D grid corresponding to the 2D cell array of images % supplied to the function. Positioning the cursor at some location within the % grid will result in a blended image being constructed from the bilinear % interpolation of the 4 images surrounding the cursor position. % % Click in the image to toggle in/out of blending mode. Move the cursor % within the image to blend between the input images. % % See also: LINIMIX, TERNARYMIX, CLIQUEMIX, CYCLEMIX, LOGISTICWEIGHTING % % Note this code is a bit rough in places but is still reasonably useful at this % stage. I suggest you stick with greyscale images at this stage. % Reference: % Peter Kovesi, Eun-Jung Holden and Jason Wong, 2014. % "Interactive Multi-Image Blending for Visualization and Interpretation", % Computers & Geosciences 72 (2014) 147-155. % http://doi.org/10.1016/j.cageo.2014.07.010 % Copyright (c) 2012-2014 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % April 2012 - Original version % March 2014 - General cleanup function bilinimix(im, figNo) assert(iscell(im), 'Input images must be in a cell array'); [gridRows gridCols] = size(im); [im, nImages, fname] = collectncheckimages(im); [minrows,mincols,~] = size(im{1,1}); fprintf('\nClick in the image to toggle in/out of blending mode \n'); fprintf('Move the cursor up-down and left-right within the image to \n'); fprintf('blend between the input images\n\n'); if exist('figNo','var') fig = figure(figNo); clf else fig = figure; end S = warning('off'); imshow(im{ max(1,fix(nImages/2)) }, 'border', 'tight'); drawnow warning(S) ah = get(fig,'CurrentAxes'); imHandle = get(ah,'Children'); % Gives access to Cdata in the figure % Set up button down callback and window title set(fig, 'WindowButtonDownFcn',@wbdcb); set(fig, 'NumberTitle', 'off') set(fig, 'name', 'CET Bilinear Image Blender') set(fig, 'Menubar','none'); blending = 0; % Set up custom pointer myPointer = [circularstruct(7) zeros(15,1); zeros(1, 16)]; myPointer(~myPointer) = NaN; hspot = 0; hold on %----------------------------------------------------------------------- % Window button down callback function wbdcb(src,evnt) if strcmp(get(src,'SelectionType'),'normal') if ~blending % Turn blending on blending = 1; set(src,'Pointer','custom', 'PointerShapeCData', myPointer,... 'PointerShapeHotSpot',[9 9]) set(src,'WindowButtonMotionFcn',@wbmcb) if hspot % For paper illustration delete(hspot); end else % Turn blending off blending = 0; set(src,'Pointer','arrow') set(src,'WindowButtonMotionFcn','') % For paper illustration (need marker size of 95 if using export_fig) cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); hspot = plot(x, y, '.', 'color', [0 0 0], 'Markersize', 50'); end end end %----------------------------------------------------------------------- % Window button move call back function wbmcb(src,evnt) cp = get(ah,'CurrentPoint'); x = cp(1,1); y = cp(1,2); blend(x, y) end %----------------------------------------------------------------------- function blend(x, y) % Clamp x and y to image limits x = max(0,x); x = min(mincols,x); y = max(0,y); y = min(minrows,y); % Compute grid coodinates of (x,y) % im{1,1} im{1,2} ... im{1, gridCols} % .. .. .. % im{gridRows,1} .. ... im{gridRows, gridCols} gx = x/mincols * (gridCols-1) + 1; gy = y/minrows * (gridRows-1) + 1; % Compute bilinear interpolation between the images gxf = floor(gx); gxc = ceil(gx); gyf = floor(gy); gyc = ceil(gy); frac = gxc-gx; blendyf = (frac)*im{gyf,gxf} + (1-frac)*im{gyf,gxc}; blendyc = (frac)*im{gyc,gxf} + (1-frac)*im{gyc,gxc}; frac = gyc-gy; blendim = (frac)*blendyf + (1-frac)*blendyc; set(imHandle,'CData', blendim); end %--------------------------------------------------------------------------- end % of bilinimix
github
jacksky64/imageProcessing-master
findendsjunctions.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/findendsjunctions.m
3,885
utf_8
1c766254222e0b8fd5326786249247bf
% FINDENDSJUNCTIONS - find junctions and endings in a line/edge image % % Usage: [rj, cj, re, ce] = findendsjunctions(edgeim, disp) % % Arguments: edgeim - A binary image marking lines/edges in an image. It is % assumed that this is a thinned or skeleton image % disp - An optional flag 0/1 to indicate whether the edge % image should be plotted with the junctions and endings % marked. This defaults to 0. % % Returns: rj, cj - Row and column coordinates of junction points in the % image. % re, ce - Row and column coordinates of end points in the % image. % % See also: EDGELINK % % Note I am not sure if using bwmorph's 'thin' or 'skel' is best for finding % junctions. Skel can result in an image where multiple adjacent junctions are % produced (maybe this is more a problem with this junction detection code). % Thin, on the other hand, can produce different output when you rotate an image % by 90 degrees. On balance I think using 'thin' is better. Skeletonisation and % thinning is surprisingly awkward. % Copyright (c) 2006-2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % November 2006 - Original version % May 2013 - Call to bwmorph to ensure image is thinned was removed as % this might cause problems if the image used to find % junctions is different from the image used for, say, % edgelinking function [rj, cj, re, ce] = findendsjunctions(b, disp) if nargin == 1 disp = 0; end % Set up look up table to find junctions. To do this we use the function % defined at the end of this file to test that the centre pixel within a 3x3 % neighbourhood is a junction. lut = makelut(@junction, 3); junctions = applylut(b, lut); [rj,cj] = find(junctions); % Set up a look up table to find endings. lut = makelut(@ending, 3); ends = applylut(b, lut); [re,ce] = find(ends); if disp show(edgeim,1), hold on plot(cj,rj,'r+') plot(ce,re,'g+') end %---------------------------------------------------------------------- % Function to test whether the centre pixel within a 3x3 neighbourhood is a % junction. The centre pixel must be set and the number of transitions/crossings % between 0 and 1 as one traverses the perimeter of the 3x3 region must be 6 or % 8. % % Pixels in the 3x3 region are numbered as follows % % 1 4 7 % 2 5 8 % 3 6 9 function b = junction(x) a = [x(1) x(2) x(3) x(6) x(9) x(8) x(7) x(4)]'; b = [x(2) x(3) x(6) x(9) x(8) x(7) x(4) x(1)]'; crossings = sum(abs(a-b)); b = x(5) && crossings >= 6; %---------------------------------------------------------------------- % Function to test whether the centre pixel within a 3x3 neighbourhood is an % ending. The centre pixel must be set and the number of transitions/crossings % between 0 and 1 as one traverses the perimeter of the 3x3 region must be 2. % % Pixels in the 3x3 region are numbered as follows % % 1 4 7 % 2 5 8 % 3 6 9 function b = ending(x) a = [x(1) x(2) x(3) x(6) x(9) x(8) x(7) x(4)]'; b = [x(2) x(3) x(6) x(9) x(8) x(7) x(4) x(1)]'; crossings = sum(abs(a-b)); b = x(5) && crossings == 2;
github
jacksky64/imageProcessing-master
selectseg.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/selectseg.m
3,097
utf_8
bdbe2a909309c465b0131e308d8ddc32
% SELECTSEG - Interactive selection of linesegments with mouse. % % Usage: segs = selectseg(seglist); % % seglist - an Nx4 array storing line segments in the form % [x1 y1 x2 y2 % x1 y1 x2 y2 % . . ] etc % % % See also: EDGELINK, LINESEG, MAXLINEDEV, MERGESEG % % Copyright (c) 2000-2005 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % December 2000 function segs = selectseg(seglist); segs = []; selectedSegs = [NaN]; figure(1), clf, drawseg(seglist,1); Nseg = size(seglist,1); fprintf('Select segments by clicking with the left mouse button\n'); fprintf('Last segment is indicated by clicking with any other mouse button\n'); count = 0; but = 1; while but==1 & count < Nseg [xp,yp,but] = ginput(1); % Get digitised point count = count + 1; rmin = Inf; for s = 1:Nseg r = segdist(xp,yp,seglist(s,:)); % if distance is closest so far and segment is not already % selected... if r < rmin & ~any(selectedSegs==s) rmin = r; closestseg = seglist(s,:); smin = s; end end segs = [segs; closestseg]; % Build up list of segments selectedSegs = [selectedSegs smin]; % Remeber selected seg Nos line([closestseg(1) closestseg(3)], [closestseg(2) closestseg(4)], ... 'Color',[1 0 0]); text((closestseg(1)+closestseg(3))/2, ... (closestseg(2)+closestseg(4))/2, sprintf('%d',count)); end function r = segdist(xp,yp,seg) % Function returns distance from point (xp,yp) to line defined by end % points (x1,y1) (x2,y2) % % % Eqn of line joining end pts (x1 y1) and (x2 y2) can be parameterised by % % x*(y1-y2) + y*(x2-x1) + y2*x1 - y1*x2 = 0 % % (See Jain, Rangachar and Schunck, "Machine Vision", McGraw-Hill % 1996. pp 194-196) x1=seg(1);y1=seg(2); x2=seg(3);y2=seg(4); y1my2 = y1-y2; % Pre-compute parameters x2mx1 = x2-x1; C = y2*x1 - y1*x2; D = norm([x1 y1] - [x2 y2]); % Distance between end points r = abs(xp*y1my2 + yp*x2mx1 + C)/D; % Perp. distance from line to (xp,yp) % Correct the distance if (xp,yp) is `outside' the ends of the segment d1 = [xp yp]-[x1 y1]; d2 = [xp yp]-[x2 y2]; if dot(d1,d2) > 0 % (xp,yp) is not `between' the end points of the % segment r = min(norm(d1),norm(d2)); % return distance to closest end % point end
github
jacksky64/imageProcessing-master
maxlinedev.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/maxlinedev.m
2,478
utf_8
64cc6d88009aa2a148c843e2d4041218
% MAXLINEDEV - Find max deviation from a line in an edge contour. % % Function finds the point of maximum deviation from a line joining the % endpoints of an edge contour. % % Usage: [maxdev, index, D, totaldev] = maxlinedev(x,y) % % Arguments: % x, y - arrays of x,y (col,row) indicies of connected pixels % on the contour. % Returns: % maxdev - Maximum deviation of contour point from the line % joining the end points of the contour (pixels). % index - Index of the point having maxdev. % D - Distance between end points of the contour so that % one can calculate maxdev/D - the normalised error. % totaldev - Sum of the distances of all the pixels from the % line joining the endpoints. % % See also: EDGELINK, LINESEG % % Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/~pk % % December 2000 - Original version % February 2003 - Added calculation of total deviation % August 2006 - Avoid degeneracy when endpoints are coincident % February 2007 - Corrected distance calculation when endpoints are % coincident. function [maxdev, index, D, totaldev] = maxlinedev(x,y) Npts = length(x); if Npts == 1 warning('Contour of length 1'); maxdev = 0; index = 1; D = 1; totaldev = 0; return; elseif Npts == 0 error('Contour of length 0'); end % D = norm([x(1) y(1)] - [x(Npts) y(Npts)]); % Distance between end points D = sqrt((x(1)-x(Npts))^2 + (y(1)-y(Npts))^2); % This runs much faster if D > eps % Eqn of line joining end pts (x1 y1) and (x2 y2) can be parameterised by % % x*(y1-y2) + y*(x2-x1) + y2*x1 - y1*x2 = 0 % % (See Jain, Rangachar and Schunck, "Machine Vision", McGraw-Hill % 1996. pp 194-196) y1my2 = y(1)-y(Npts); % Pre-compute parameters x2mx1 = x(Npts)-x(1); C = y(Npts)*x(1) - y(1)*x(Npts); % Calculate distance from line segment for each contour point d = abs(x*y1my2 + y*x2mx1 + C)/D; else % End points are coincident, calculate distances from 1st point d = sqrt((x - x(1)).^2 + (y - y(1)).^2); D = 1; % Now set D to 1 so that normalised error can be used end [maxdev, index] = max(d); if nargout == 4 totaldev = sum(d.^2); end
github
jacksky64/imageProcessing-master
findisolatedpixels.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/findisolatedpixels.m
1,342
utf_8
e3a3768f5d589a865aa10a992e5197e2
% FINDENDSJUNCTIONS - find isolated pixels in a binary image % % Usage: [r, c] = findisolatedpixels(b) % % Argument: b - A binary image % % Returns: r, c - Row and column coordinates of isolated pixels in the % image. % % See also: FINDENDSJUNCTIONS % % Copyright (c) 2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % May 2013 function [r, c] = findisolatedpixels(b) lut = makelut(@isolated, 3); isolated = applylut(b, lut); [r, c] = find(isolated); %---------------------------------------------------------------------- % Function to test whether the centre pixel within a 3x3 neighbourhood is % isolated. % % Pixels in the 3x3 region are numbered as follows % % 1 4 7 % 2 5 8 % 3 6 9 function b = isolated(x) b = x(5) && sum(x(:)) == 1;
github
jacksky64/imageProcessing-master
drawedgelist.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/drawedgelist.m
5,139
utf_8
37224c54b8034d4fadf13c9b60861db5
% DRAWEDGELIST - plots pixels in edgelists % % Usage: h = drawedgelist(edgelist, rowscols, lw, col, figno, mid) % % Arguments: % edgelist - Cell array of edgelists in the form % { [r1 c1 [r1 c1 etc } % ... % rN cN] ....] % rowscols - Optional 2 element vector [rows cols] specifying the size % of the image from which edges were detected (used to set % size of plotted image). If omitted or specified as [] this % defaults to the bounds of the linesegment points % lw - Optional line width specification. If omitted or specified % as [] it defaults to a value of 1; % col - Optional colour specification. Eg [0 0 1] for blue. This % can also be specified as the string 'rand' to generate a % random color coding for each edgelist so that it is easier % to see how the edges have been broken up into separate % lists. If omitted or specified as [] it defaults to blue. % col can also be a N x 3 array of colours where N is the % length of edgelist, thus specifying a particulr colour for % each edge. % figno - Optional figure number in which to display image. % mid - Optional flag 0/1. If set each edge is drawn by joining % the mid points betwen points along the edge lists. This is % intended only to be used for edgelists at pixel resolution. % It reduces staircasing on diagonal lines giving nicer output. % % Returns: % h - Array of handles to each plotted edgelist % % See also: EDGELINK, LINESEG % Copyright (c) 2003-2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2003 - Original version % September 2004 - Revised and updated % December 2006 - Colour and linewidth specification updated % January 2011 - Axis setting corrected (thanks to Stzpz) % July 2013 - Colours can be specified for each edge % Feb 2014 - Code cleanup + mid segment drawing option function h = drawedgelist(edgelist, rowscols, lw, col, figno, mid) if ~exist('rowscols', 'var') | isempty(rowscols), rowscols = [1 1]; end if ~exist('lw', 'var') | isempty(lw), lw = 1; end if ~exist('col', 'var') | isempty(col), col = [0 0 1]; end if exist('figno', 'var'), figure(figno); end if ~exist('mid', 'var'), mid = 0; end debug = 0; Nedge = length(edgelist); h = zeros(length(edgelist),1); % Set up edge colours if strcmp(col,'rand') col = hsv(Nedge); % HSV colour map with Nedge entries col = col(randperm(Nedge),:); % Form random permutation of colours elseif all(size(col) == [1 3]) % Single colour for all edges col = repmat(col,[Nedge 1]); elseif all(size(col) == [Nedge 3]) % Colour for each edge specified ; % we do not need to do anything else error('Colour not specified properly'); end if mid for I = 1:Nedge melist = midedge(edgelist{I}); h(I) = line(melist(:,2), melist(:,1),... 'LineWidth', lw, 'Color', col(I,:)); end else for I = 1:Nedge h(I) = line(edgelist{I}(:,2), edgelist{I}(:,1),... 'LineWidth', lw, 'Color', col(I,:)); end end if debug for I = 1:Nedge mid = fix(length(edgelist{I})/2); text(edgelist{I}(mid,2), edgelist{I}(mid,1),sprintf('%d',I)) end end % Check whether we need to expand bounds minx = 1; miny = 1; maxx = rowscols(2); maxy = rowscols(1); for I = 1:Nedge minx = min(min(edgelist{I}(:,2)),minx); miny = min(min(edgelist{I}(:,1)),miny); maxx = max(max(edgelist{I}(:,2)),maxx); maxy = max(max(edgelist{I}(:,1)),maxy); end axis('equal'); axis('ij'); axis([minx maxx miny maxy]); if nargout == 0 clear h end %------------------------------------------------------------------------ % Function to construct a new edge list formed by stepping through the mid % points of each segment of the edgelist. The idea is to form a smoother path % along the edgelist. This is intended for edgelists formed at pixel % resolution. function melist = midedge(elist) melist = [elist(1,:); (elist(1:end-1, :) + elist(2:end, :))/2; elist(end,:)];
github
jacksky64/imageProcessing-master
lineseg.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/lineseg.m
3,017
utf_8
ff2e4a5d3f9faabdf548561ed00b22b6
% LINESEG - Form straight line segements from an edge list. % % Usage: seglist = lineseg(edgelist, tol) % % Arguments: edgelist - Cell array of edgelists where each edgelist is an % Nx2 array of (row col) coords. % tol - Maximum deviation from straight line before a % segment is broken in two (measured in pixels). % Returns: % seglist - A cell array of in the same format of the input % edgelist but each seglist is a subsampling of its % corresponding edgelist such that straight line % segments between these subsampled points do not % deviate from the original points by more than tol. % % This function takes each array of edgepoints in edgelist, finds the % size and position of the maximum deviation from the line that joins the % endpoints, if the maximum deviation exceeds the allowable tolerance the % edge is shortened to the point of maximum deviation and the test is % repeated. In this manner each edge is broken down to line segments, % each of which adhere to the original data with the specified tolerance. % % See also: EDGELINK, MAXLINEDEV, DRAWEDGELIST % % Copyright (c) 2000-2006 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % December 2000 - Original version % February 2003 - Added the returning of nedgelist data. % December 2006 - Changed so that separate cell arrays of line segments are % formed, in the same format used for edgelists function seglist = lineseg(edgelist, tol) Nedge = length(edgelist); seglist = cell(1,Nedge); for e = 1:Nedge y = edgelist{e}(:,1); % Note that (col, row) corresponds to (x,y) x = edgelist{e}(:,2); fst = 1; % Indices of first and last points in edge lst = length(x); % segment being considered. Npts = 1; seglist{e}(Npts,:) = [y(fst) x(fst)]; while fst<lst [m,i] = maxlinedev(x(fst:lst),y(fst:lst)); % Find size & posn of % maximum deviation. while m > tol % While deviation is > tol lst = i+fst-1; % Shorten line to point of max deviation by adjusting lst [m,i] = maxlinedev(x(fst:lst),y(fst:lst)); end Npts = Npts+1; seglist{e}(Npts,:) = [y(lst) x(lst)]; fst = lst; % reset fst and lst for next iteration lst = length(x); end end
github
jacksky64/imageProcessing-master
filledgegaps.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/filledgegaps.m
3,911
utf_8
f36cafd2cfd5507602b58f0ebfc6f549
% FILLEDGEGAPS Fills small gaps in a binary edge map image % % Usage: bw2 = filledgegaps(bw, gapsize) % % Arguments: bw - Binary edge image % gapsize - The edge gap size that you wish to be able to fill. % Use the smallest value you can. (Odd values work best). % % Returns: bw2 - The binary edge image with gaps filled. % % % Strategy: A binary circular blob of radius = gapsize/2 is placed at the end of % every edge segment. If the ends of two edge segments are in close proximity % the circular blobs will overlap. The image is then thinned. Where circular % blobs at end points overlap the thinning process will leave behind a line of % pixels linking the two end points. Where an end point is isolated the % thinning process will erode the circular blob away so that the original edge % segment is restored. % % Use the smallest gapsize value you can. With large values all sorts of % unwelcome linking can occur. % % The circular blobs are generated using the function CIRCULARSTRUCT which, % unlike MATLAB's STREL, will accept real valued radius values. Note that I % suggest that you use an odd value for 'gapsize'. This results in a radius % value of the form x.5 being passed to CIRCULARSTRUCT which results in discrete % approximation to a circle that seems to respond to thinning in a 'good' % way. With integer radius values CIRCULARSTRUCT can produce circles that % result in minor artifacts being generated by the thinning process. % % See also: FINDENDSJUNCTIONS, FINDISOLATEDPIXELS, CIRCULARSTRUCT, EDGELINK % Copyright (c) 2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % PK May 2013 function bw = filledgegaps(bw, gapsize) [rows, cols] = size(bw); % Generate a binary circle with radius gapsize/2 (but not less than 1) blob = circularstruct(max(gapsize/2, 1)); rad = (size(blob,1)-1)/2; % Radius of resulting blob matrix. Note % circularstruct returns an odd sized matrix % Get coordinates of end points and of isolated pixels [~, ~, re, ce] = findendsjunctions(bw); [ri, ci] = findisolatedpixels(bw); re = [re;ri]; ce = [ce;ci]; % Place a circular blob at every endpoint and isolated pixel for n = 1:length(re) if (re(n) > rad) && (re(n) < rows-rad) && ... (ce(n) > rad) && (ce(n) < cols-rad) bw(re(n)-rad:re(n)+rad, ce(n)-rad:ce(n)+rad) = ... bw(re(n)-rad:re(n)+rad, ce(n)-rad:ce(n)+rad) | blob; end end bw = bwmorph(bw, 'thin', inf); % Finally thin % At this point, while we may have joined endpoints that were close together % we typically have also generated a number of small loops where there were % more than one endpoint close to an edge. To address this we identfy the % loops by finding 4-connected blobs in the inverted image. Blobs that are % less than or equal to the size of the blobs we used to link edges are % filled in, the image reinverted and then rethinned. L = bwlabel(~bw,4); stats = regionprops(L, 'Area'); % Get blobs with areas <= pi* (gapsize/2)^2 ar = cat(1,stats.Area); ind = find(ar <= pi*(gapsize/2)^2); % Fill these blobs in image bw for n = ind' bw(L==n) = 1; end bw = bwmorph(bw, 'thin', inf); % thin again
github
jacksky64/imageProcessing-master
cleanedgelist.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/cleanedgelist.m
13,314
utf_8
a79468f2b92f2ce262730a04d766d643
% CLEANEDGELIST - remove short edges from a set of edgelists % % Function to clean up a set of edge lists generated by EDGELINK so that % isolated edges and spurs that are shorter that a minimum length are removed. % This code can also be use with a set of line segments generated by LINESEG. % % Usage: nedgelist = cleanedgelist(edgelist, minlength) % % Arguments: % edgelist - a cell array of edge lists in row,column coords in % the form % { [r1 c1 [r1 c1 etc } % r2 c2 ... % ... % rN cN] ....] % minlength - minimum edge length of interest % % Returns: % nedgelist - the new, cleaned up set of edgelists % % See also: EDGELINK, DRAWEDGELIST, LINESEG % Copyright (c) 2006-2007 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % pk at csse uwa edu au % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % December 2006 Original version % February 2007 A major rework to fix several problems, hope they really are % fixed! function nedgelist = cleanedgelist(edgelist, minlength) Nedges = length(edgelist); Nnodes = 2*Nedges; % Each edgelist has two end nodes - the starting point and the ending point. % We build up an adjacency/connection matrix for each node so that we can % determine which, if any, edgelists are connected to a node. We also % maintain an adjacency matrix for the edges themselves. % % It is tricky maintaining all this information but it does allow the % code to run much faster. % First extract the end nodes from each edgelist. The nodes are numbered % so that the start node has number 2*edgenumber-1 and the end node has % number 2*edgenumber node = zeros(Nnodes, 2); for n = 1:Nedges node(2*n-1,:) = edgelist{n}(1,:); node(2*n ,:) = edgelist{n}(end,:); end % Now build the adjacency/connection matrices. A = zeros(Nnodes); % Adjacency matrix for nodes B = zeros(Nedges); % Adjacency matrix for edges for n = 1:Nnodes-1 for m = n+1:Nnodes % If nodes m & n are connected A(n,m) = node(n,1)==node(m,1) && node(n,2)==node(m,2); A(m,n) = A(n,m); if A(n,m) edgen = fix((n+1)/2); edgem = fix((m+1)/2); B(edgen, edgem) = 1; B(edgem, edgen) = 1; end end end % If we sum the columns of the adjacency matrix we get the number of % other edgelists that are connected to an edgelist Nconnections = sum(A); % Connection count array for nodes Econnections = sum(B); % Connection count array for edges % Check every edge to see if any of its ends are connected to just one edge. % This should not happen, but occasionally does due to a problem in % EDGELINK. Here we simply merge it with the edge it is connected to. % Ultimately I want to be able to remove this block of code. % I think there are also some cases that are (still) not properly handled % by CLEANEDGELIST and there may be a case for repeating this block of % code at the end for another final cleanup pass for n = 1:Nedges if ~B(n,n) && ~isempty(edgelist{n}) % if edge is not connected to itself [spurdegree, spurnode, startnode, sconns, endnode, econns] = connectioninfo(n); if sconns == 1 node2merge = find(A(startnode,:)); mergenodes(node2merge,startnode); end if ~isempty(edgelist{n}) % If we have not removed this edge in % the code above check the other end. if econns == 1 node2merge = find(A(endnode,:)); mergenodes(node2merge,endnode); end end end end % Now check every edgelist, if the edgelength is below the minimum length % check if we should remove it. if minlength > 0 for n = 1:Nedges [spurdegree, spurnode] = connectioninfo(n); if ~isempty(edgelist{n}) && edgelistlength(edgelist{n}) < minlength % Remove unconnected lists, or lists that are only connected to % themselves. if ~Econnections(n) || (Econnections(n)==1 && B(n,n) == 1) removeedge(n); % Process edges that are spurs coming from a 3-way junction. elseif spurdegree == 2 %fprintf('%d is a spur\n',n) %%debug linkingedges = find(B(n,:)); if length(linkingedges) == 1 % We have a loop with a spur % coming from the join in the % loop % Just remove the spur, leaving the loop intact. removeedge(n); else % Check the other edges coming from this point. If any % are also spurs make sure we remove the shortest one spurs = n; len = edgelistlength(edgelist{n}); for i = 1:length(linkingedges) spurdegree = connectioninfo(linkingedges(i)); if spurdegree spurs = [spurs linkingedges(i)]; len = [len edgelistlength(edgelist{linkingedges(i)})]; end end linkingedges = [linkingedges n]; [mn,i] = min(len); edge2delete = spurs(i); [spurdegree, spurnode] = connectioninfo(edge2delete); nodes2merge = find(A(spurnode,:)); if length(nodes2merge) ~= 2 error('attempt to merge other than 2 nodes'); end removeedge(edge2delete); mergenodes(nodes2merge(1),nodes2merge(2)) end % Look for spurs coming from 4-way junctions that are below the minimum length elseif spurdegree == 3 removeedge(n); % Just remove it, no subsequent merging needed. end end end % Final cleanup of any new isolated edges that might have been created by % removing spurs. An edge is isolated if it has no connections to other % edges, or is only connected to itself (in a loop). for n = 1:Nedges if ~isempty(edgelist{n}) && edgelistlength(edgelist{n}) < minlength if ~Econnections(n) || (Econnections(n)==1 && B(n,n) == 1) removeedge(n); end end end end % if minlength > 0 % Run through the edgelist and extract out the non-empty lists m = 0; for n = 1:Nedges if ~isempty(edgelist{n}) m = m+1; nedgelist{m} = edgelist{n}; end end %---------------------------------------------------------------------- % Internal function to merge 2 edgelists together at the specified nodes and % perform the necessary updates to the edge adjacency and node adjacency % matrices and the connection count arrays function mergenodes(n1,n2) edge1 = fix((n1+1)/2); % Indices of the edges associated with the nodes edge2 = fix((n2+1)/2); % Get indices of nodes at each end of the two edges s1 = 2*edge1-1; e1 = 2*edge1; s2 = 2*edge2-1; e2 = 2*edge2; if edge1==edge2 % We should not get here, but somehow we occasionally do % fprintf('Nodes %d %d\n',n1,n2) %% debug % warning('Attempt to merge an edge with itself') return end if ~A(n1,n2) error('Attempt to merge nodes that are not connected'); end if mod(n1,2) % node n1 is the start of edge1 flipedge1 = 1; % edge1 will need to be reversed in order to join edge2 else flipedge1 = 0; end if mod(n2,2) % node n2 is the start of edge2 flipedge2 = 0; else flipedge2 = 1; end % Join edgelists together - with appropriate reordering depending on which % end is connected to which. The result is stored in edge1 if ~flipedge1 && ~flipedge2 edgelist{edge1} = [edgelist{edge1}; edgelist{edge2}]; A(e1,:) = A(e2,:); A(:,e1) = A(:,e2); Nconnections(e1) = Nconnections(e2); elseif ~flipedge1 && flipedge2 edgelist{edge1} = [edgelist{edge1}; flipud(edgelist{edge2})]; A(e1,:) = A(s2,:); A(:,e1) = A(:,s2); Nconnections(e1) = Nconnections(s2); elseif flipedge1 && ~flipedge2 edgelist{edge1} = [flipud(edgelist{edge1}); edgelist{edge2}]; A(s1,:) = A(e1,:); A(:,s1) = A(:,e1); A(e1,:) = A(e2,:); A(:,e1) = A(:,e2); Nconnections(s1) = Nconnections(e1); Nconnections(e1) = Nconnections(e2); elseif flipedge1 && flipedge2 edgelist{edge1} = [flipud(edgelist{edge1}); flipud(edgelist{edge2})]; A(s1,:) = A(e1,:); A(:,s1) = A(:,e1); A(e1,:) = A(s2,:); A(:,e1) = A(:,s2); Nconnections(s1) = Nconnections(e1); Nconnections(e1) = Nconnections(s2); else fprintf('merging edges %d and %d\n',edge1, edge2); %%debug error('We should not have got here - edgelists cannot be merged'); end % Now correct the edge adjacency matrix to reflect the new arrangement % The edges that the new edge1 is connected to is all the edges that % edge1 and edge2 were connected to B(edge1,:) = B(edge1,:) | B(edge2,:); B(:,edge1) = B(:,edge1) | B(:,edge2); B(edge1, edge1) = 0; % Recompute connection counts because we have shuffled the adjacency matrices Econnections = sum(B); Nconnections = sum(A); removeedge(edge2); % Finally discard edge2 end % end of mergenodes %-------------------------------------------------------------------- % Function to provide information about the connections at each end of an % edgelist % % [spurdegree, spurnode, startnode, sconns, endnode, econns] = connectioninfo(n) % % spurdegree - If this is non-zero it indicates this edgelist is a spur, the % value is the number of edges this spur is connected to. % spurnode - If this is a spur spurnode is the index of the node that is % connected to other edges, 0 otherwise. % startnode - index of starting node of edgelist. % endnode - index of end node of edgelist. % sconns - number of connections to start node. % econns - number of connections to end node. function [spurdegree, spurnode, startnode, sconns, endnode, econns] = connectioninfo(n) if isempty(edgelist{n}) spurdegree = 0; spurnode = 0; startnode = 0; sconns = 0; endnode = 0; econns = 0; return end startnode = 2*n-1; endnode = 2*n; sconns = Nconnections(startnode); % No of connections to start node econns = Nconnections(endnode); % No of connections to end node if sconns == 0 && econns >= 1 spurdegree = econns; spurnode = endnode; elseif sconns >= 1 && econns == 0 spurdegree = sconns; spurnode = startnode; else spurdegree = 0; spurnode = 0; end end %-------------------------------------------------------------------- % Function to remove an edgelist and perform the necessary updates to the edge % adjacency and node adjacency matrices and the connection count arrays function removeedge(n) edgelist{n} = []; Econnections = Econnections - B(n,:); Econnections(n) = 0; B(n,:) = 0; B(:,n) = 0; nodes2delete = [2*n-1, 2*n]; Nconnections = Nconnections - A(nodes2delete(1),:); Nconnections = Nconnections - A(nodes2delete(2),:); A(nodes2delete, :) = 0; A(:, nodes2delete) = 0; end %-------------------------------------------------------------------- % Function to compute the path length of an edgelist function l = edgelistlength(edgelist) l = sum(sqrt(sum((edgelist(1:end-1,:)-edgelist(2:end,:)).^2, 2))); end %-------------------------------------------------------------------- end % End of cleanedgelists
github
jacksky64/imageProcessing-master
edgelink.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/edgelink.m
21,107
utf_8
25bee720223bdbc51946de674aa2d085
% EDGELINK - Link edge points in an image into lists % % Usage: [edgelist edgeim, etypr] = edgelink(im, minlength, location) % % **Warning** 'minlength' is ignored at the moment because 'cleanedgelist' % has some bugs and can be memory hungry % % Arguments: im - Binary edge image, it is assumed that edges % have been thinned (or are nearly thin). % minlength - Optional minimum edge length of interest, defaults % to 1 if omitted or specified as []. Ignored at the % moment. % location - Optional complex valued image holding subpixel % locations of edge points. For any pixel the % real part holds the subpixel row coordinate of % that edge point and the imaginary part holds % the column coordinate. See NONMAXSUP. If % this argument is supplied the edgelists will % be formed from the subpixel coordinates, % otherwise the the integer pixel coordinates of % points in 'im' are used. % % Returns: edgelist - a cell array of edge lists in row,column coords in % the form % { [r1 c1 [r1 c1 etc } % r2 c2 ... % ... % rN cN] ....] % % edgeim - Image with pixels labeled with edge number. % Note that junctions in the labeled edge image will be % labeled with the edge number of the last edge that was % tracked through it. Note that this image also includes % edges that do not meet the minimum length specification. % If you want to see just the edges that meet the % specification you should pass the edgelist to % DRAWEDGELIST. % % etype - Array of values, one for each edge segment indicating % its type % 0 - Start free, end free % 1 - Start free, end junction % 2 - Start junction, end free (should not happen) % 3 - Start junction, end junction % 4 - Loop % % This function links edge points together into lists of coordinate pairs. % Where an edge junction is encountered the list is terminated and a separate % list is generated for each of the branches. % % Note I am not sure if using bwmorph's 'thin' or 'skel' is best for % preprocessing the edge image prior to edgelinking. The main issue is the % treatment of junctions. Skel can result in an image where multiple adjacent % junctions are produced (maybe this is more a problem with my junction % detection code). Thin, on the other hand, can produce different output when % you rotate an image by 90 degrees. On balance I think using 'thin' is better. % Note, however, the input image should be 'nearly thin' otherwise the thinning % operation could shorten the ends of structures. Skeletonisation and thinning % is surprisingly awkward. % % See also: DRAWEDGELIST, LINESEG, MAXLINEDEV, CLEANEDGELIST, % FINDENDSJUNCTIONS, FILLEDGEGAPS % Copyright (c) 1996-2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % February 2001 - Original version % September 2004 - Revised to allow subpixel edge data to be used % November 2006 - Changed so that edgelists start and stop at every junction % January 2007 - Trackedge modified to discard isolated pixels and the % problems they cause (thanks to Jeff Copeland) % January 2007 - Fixed so that closed loops are closed! % May 2013 - Completely redesigned with a new linking strategy that % hopefully handles adjacent junctions correctly. It runs % about twice as fast too. function [edgelist, edgeim, etype] = edgelink(im, minlength, location) % Set up some global variables to avoid passing (and copying) of arguments, % this improves speed. global EDGEIM; global ROWS; global COLS; global JUNCT; if ~exist('minlength','var') || isempty(minlength), minlength = 0; end EDGEIM = im ~= 0; % Make sure image is binary. EDGEIM = bwmorph(EDGEIM,'clean'); % Remove isolated pixels % Make sure edges are thinned. Use 'thin' rather than 'skel', see % comments in header. EDGEIM = bwmorph(EDGEIM,'thin',Inf); [ROWS, COLS] = size(EDGEIM); % Find endings and junctions in edge data [RJ, CJ, re, ce] = findendsjunctions(EDGEIM); Njunct = length(RJ); Nends = length(re); % Create a sparse matrix to mark junction locations. This makes junction % testing much faster. A value of 1 indicates a junction, a value of 2 % indicates we have visited the junction. JUNCT = spalloc(ROWS,COLS, Njunct); for n = 1:Njunct JUNCT(RJ(n),CJ(n)) = 1; end % ? Think about using labels >= 2 so that EDGEIM can be uint16, say. % EDGEIM = double(EDGEIM); % Cast to double to allow the use of -ve labelings edgeNo = 0; % Summary of strategy: % 1) From every end point track until we encounter an end point or % junction. As we track points along an edge image pixels are labeled with % the -ve of their edge No. % 2) From every junction track out on any edges that have not been % labeled yet. % 3) Scan through the image looking for any unlabeled pixels. These % correspond to isolated loops that have no junctions. %% 1) Form tracks from each unlabeled endpoint until we encounter another % endpoint or junction. for n = 1:Nends if EDGEIM(re(n),ce(n)) == 1 % Endpoint is unlabeled edgeNo = edgeNo + 1; [edgelist{edgeNo} endType] = trackedge(re(n), ce(n), edgeNo); etype(edgeNo) = endType; end end %% 2) Handle junctions. % Junctions are awkward when they are adjacent to other junctions. We % start by looking at all the neighbours of a junction. % If there is an adjacent junction we first create a 2-element edgetrack % that links the two junctions together. We then look to see if there are % any non-junction edge pixels that are adjacent to both junctions. We then % test to see which of the two junctions is closest to this common pixel and % initiate an edge track from the closest of the two junctions through this % pixel. When we do this we set the 'avoidJunction' flag in the call to % trackedge so that the edge track does not immediately loop back and % terminate on the other adjacent junction. % Having checked all the common neighbours of both junctions we then % track out on any remaining untracked neighbours of the junction for j = 1:Njunct if JUNCT(RJ(j),CJ(j)) ~= 2; % We have not visited this junction JUNCT(RJ(j),CJ(j)) = 2; % Call availablepixels with edgeNo = 0 so that we get a list of % available neighbouring pixels that can be linked to and a list of % all neighbouring pixels that are also junctions. [ra, ca, rj, cj] = availablepixels(RJ(j), CJ(j), 0); for k = 1:length(rj) % For all adjacent junctions... % Create a 2-element edgetrack to each adjacent junction edgeNo = edgeNo + 1; edgelist{edgeNo} = [RJ(j) CJ(j); rj(k) cj(k)]; etype(edgeNo) = 3; % Edge segment is junction-junction EDGEIM(RJ(j), CJ(j)) = -edgeNo; EDGEIM(rj(k), cj(k)) = -edgeNo; % Check if the adjacent junction has some untracked pixels that % are also adjacent to the initial junction. Thus we need to % get available pixels adjacent to junction (rj(k) cj(k)) [rak, cak] = availablepixels(rj(k), cj(k)); % If both junctions have untracked neighbours that need checking... if ~isempty(ra) && ~isempty(rak) % Find untracked neighbours common to both junctions. commonrc = intersect([ra ca], [rak cak], 'rows'); for n = 1:size(commonrc, 1); % If one of the junctions j or k is closer to this common % neighbour use that as the start of the edge track and the % common neighbour as the 2nd element. When we call % trackedge we set the avoidJunction flag to prevent the % track immediately connecting back to the other junction. distj = norm(commonrc(n,:) - [RJ(j) CJ(j)]); distk = norm(commonrc(n,:) - [rj(k) cj(k)]); edgeNo = edgeNo + 1; if distj < distk edgelist{edgeNo} = trackedge(RJ(j), CJ(j), edgeNo, ... commonrc(n,1), commonrc(n,2), 1); else edgelist{edgeNo} = trackedge(rj(k), cj(k), edgeNo, ... commonrc(n,1), commonrc(n,2), 1); end etype(edgeNo) = 3; % Edge segment is junction-junction end end % Track any remaining unlabeled pixels adjacent to this junction k for m = 1:length(rak) if EDGEIM(rak(m), cak(m)) == 1 edgeNo = edgeNo + 1; edgelist{edgeNo} = trackedge(rj(k), cj(k), edgeNo, rak(m), cak(m)); etype(edgeNo) = 3; % Edge segment is junction-junction end end % Mark that we have visited junction (rj(k) cj(k)) JUNCT(rj(k), cj(k)) = 2; end % for all adjacent junctions % Finally track any remaining unlabeled pixels adjacent to original junction j for m = 1:length(ra) if EDGEIM(ra(m), ca(m)) == 1 edgeNo = edgeNo + 1; edgelist{edgeNo} = trackedge(RJ(j), CJ(j), edgeNo, ra(m), ca(m)); etype(edgeNo) = 3; % Edge segment is junction-junction end end end % If we have not visited this junction end % For each junction %% 3) Scan through the image looking for any unlabeled pixels. These % should correspond to isolated loops that have no junctions or endpoints. for ru = 1:ROWS for cu = 1:COLS if EDGEIM(ru,cu) == 1 % We have an unlabeled edge edgeNo = edgeNo + 1; [edgelist{edgeNo} endType] = trackedge(ru, cu, edgeNo); etype(edgeNo) = endType; end end end edgeim = -EDGEIM; % Finally negate image to make edge encodings +ve. % Eliminate isolated edges and spurs that are below the minimum length % ** DISABLED for the time being ** % if nargin >= 2 && ~isempty(minlength) % edgelist = cleanedgelist2(edgelist, minlength); % end % If subpixel edge locations are supplied upgrade the integer precision % edgelists that were constructed with data from 'location'. if nargin == 3 for I = 1:length(edgelist) ind = sub2ind(size(im),edgelist{I}(:,1),edgelist{I}(:,2)); edgelist{I}(:,1) = real(location(ind))'; edgelist{I}(:,2) = imag(location(ind))'; end end clear global EDGEIM; clear global ROWS; clear global COLS; clear global JUNCT; %---------------------------------------------------------------------- % TRACKEDGE % % Function to track all the edge points starting from an end point or junction. % As it tracks it stores the coords of the edge points in an array and labels the % pixels in the edge image with the -ve of their edge number. This continues % until no more connected points are found, or a junction point is encountered. % % Usage: edgepoints = trackedge(rstart, cstart, edgeNo, r2, c2, avoidJunction) % % Arguments: rstart, cstart - Row and column No of starting point. % edgeNo - The current edge number. % r2, c2 - Optional row and column coords of 2nd point. % avoidJunction - Optional flag indicating that (r2,c2) % should not be immediately connected to a % junction (if possible). % % Returns: edgepoints - Nx2 array of row and col values for % each edge point. % endType - 0 for a free end % 1 for a junction % 5 for a loop function [edgepoints endType] = trackedge(rstart, cstart, edgeNo, r2, c2, avoidJunction) global EDGEIM; global JUNCT; if ~exist('avoidJunction', 'var'), avoidJunction = 0; end edgepoints = [rstart cstart]; % Start a new list for this edge. EDGEIM(rstart,cstart) = -edgeNo; % Edge points in the image are % encoded by -ve of their edgeNo. preferredDirection = 0; % Flag indicating we have/not a % preferred direction. % If the second point has been supplied add it to the track and set the % path direction if exist('r2', 'var') && exist('c2', 'var') edgepoints = [edgepoints r2 c2 ]; EDGEIM(r2, c2) = -edgeNo; % Initialise direction vector of path and set the current point on % the path dirn = unitvector([r2-rstart c2-cstart]); r = r2; c = c2; preferredDirection = 1; else dirn = [0 0]; r = rstart; c = cstart; end % Find all the pixels we could link to [ra, ca, rj, cj] = availablepixels(r, c, edgeNo); while ~isempty(ra) || ~isempty(rj) % First see if we can link to a junction. Choose the junction that % results in a move that is as close as possible to dirn. If we have no % preferred direction, and there is a choice, link to the closest % junction % We enter this block: % IF there are junction points and we are not trying to avoid a junction % OR there are junction points and no non-junction points, ie we have % to enter it even if we are trying to avoid a junction if (~isempty(rj) && ~avoidJunction) || (~isempty(rj) && isempty(ra)) % If we have a prefered direction choose the junction that results % in a move that is as close as possible to dirn. if preferredDirection dotp = -inf; for n = 1:length(rj) dirna = unitvector([rj(n)-r cj(n)-c]); dp = dirn*dirna'; if dp > dotp dotp = dp; rbest = rj(n); cbest = cj(n); dirnbest = dirna; end end % Otherwise if we have no established direction, we should pick a % 4-connected junction if possible as it will be closest. This only % affects tracks of length 1 (Why do I worry about this...?!). else distbest = inf; for n = 1:length(rj) dist = sum([rj(n)-r; cj(n)-c]); if dist < distbest rbest = rj(n); cbest = cj(n); distbest = dist; dirnbest = unitvector([rj(n)-r cj(n)-c]); end end preferredDirection = 1; end % If there were no junctions to link to choose the available % non-junction pixel that results in a move that is as close as possible % to dirn else dotp = -inf; for n = 1:length(ra) dirna = unitvector([ra(n)-r ca(n)-c]); dp = dirn*dirna'; if dp > dotp dotp = dp; rbest = ra(n); cbest = ca(n); dirnbest = dirna; end end avoidJunction = 0; % Clear the avoidJunction flag if it had been set end % Append the best pixel to the edgelist and update the direction and EDGEIM r = rbest; c = cbest; edgepoints = [edgepoints r c ]; dirn = dirnbest; EDGEIM(r, c) = -edgeNo; % If this point is a junction exit here if JUNCT(r, c); endType = 1; % Mark end as being a junction return; else % Get the next set of available pixels to link. [ra, ca, rj, cj] = availablepixels(r, c, edgeNo); end end % If we get here we are at an endpoint or our sequence of pixels form a % loop. If it is a loop the edgelist should have start and end points % matched to form a loop. If the number of points in the list is four or % more (the minimum number that could form a loop), and the endpoints are % within a pixel of each other, append a copy of the first point to the end % to complete the loop endType = 0; % Mark end as being free, unless it is reset below if length(edgepoints) >= 4 if abs(edgepoints(1,1) - edgepoints(end,1)) <= 1 && ... abs(edgepoints(1,2) - edgepoints(end,2)) <= 1 edgepoints = [edgepoints edgepoints(1,:)]; endType = 5; % Mark end as being a loop end end %---------------------------------------------------------------------- % AVAILABLEPIXELS % % Find all the pixels that could be linked to point r, c % % Arguments: rp, cp - Row, col coordinates of pixel of interest. % edgeNo - The edge number of the edge we are seeking to % track. If not supplied its value defaults to 0 % resulting in all adjacent junctions being returned, % (see note below) % % Returns: ra, ca - Row and column coordinates of available non-junction % pixels. % rj, cj - Row and column coordinates of available junction % pixels. % % A pixel is avalable for linking if it is: % 1) Adjacent, that is it is 8-connected. % 2) Its value is 1 indicating it has not already been assigned to an edge % 3) or it is a junction that has not been labeled -edgeNo indicating we have % not already assigned it to the current edge being tracked. If edgeNo is % 0 all adjacent junctions will be returned function [ra, ca, rj, cj] = availablepixels(rp, cp, edgeNo) global EDGEIM; global JUNCT; global ROWS; global COLS; % If edgeNo not supplied set to 0 to allow all adjacent junctions to be returned if ~exist('edgeNo', 'var'), edgeNo = 0; end ra = []; ca = []; rj = []; cj = []; % row and column offsets for the eight neighbours of a point roff = [-1 0 1 1 1 0 -1 -1]; coff = [-1 -1 -1 0 1 1 1 0]; r = rp+roff; c = cp+coff; % Find indices of arrays of r and c that are within the image bounds ind = find((r>=1 & r<=ROWS) & (c>=1 & c<=COLS)); % A pixel is avalable for linking if its value is 1 or it is a junction % that has not been labeled -edgeNo for i = ind if EDGEIM(r(i),c(i)) == 1 && ~JUNCT(r(i), c(i)); ra = [ra; r(i)]; ca = [ca; c(i)]; elseif (EDGEIM(r(i),c(i)) ~= -edgeNo) && JUNCT(r(i), c(i)); rj = [rj; r(i)]; cj = [cj; c(i)]; end end %--------------------------------------------------------------------- % UNITVECTOR Normalises a vector to unit magnitude % function nv = unitvector(v) nv = v./sqrt(v(:)'*v(:));
github
jacksky64/imageProcessing-master
edgelist2image.m
.m
imageProcessing-master/Matlab Code for Computer Vision/LineSegments/edgelist2image.m
2,027
utf_8
5c5436b3f23a712f883ddb43a21e1d1c
% EDGELIST2IMAGE - transfers edgelist data back into a 2D image array % % Usage: im = edgelist2image(edgelist, rowscols) % % edgelist - Cell array of edgelists in the form % { [r1 c1 [r1 c1 etc } % ... % rN cN] ....] % rowscols - Optional 2 element vector [rows cols] specifying the size % of the image from which edges were detected (used to set % size of plotted image). If omitted or specified as [] this % defaults to the bounds of the linesegment points % % Note this function will only work effectively on 'dense' edgelist data % obtained, say, directly from edgelink. If you have subsequently fitted % line segments to the edgelist data this function will only mark the endpoints % of the segments, use DRAWEDGELIST instead. % % See also: EDGELINK, DRAWEDGELIST % Copyright (c) 2007 Peter Kovesi % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % September 2007 function im = edgelist2image(edgelist, rowscols) if nargin < 2, rowscols = [1 1]; end Nedge = length(edgelist); % Establish bounds of image minx = 1; miny = 1; maxx = rowscols(2); maxy = rowscols(1); for I = 1:Nedge minx = min(min(edgelist{I}(:,2)),minx); miny = min(min(edgelist{I}(:,1)),miny); maxx = max(max(edgelist{I}(:,2)),maxx); maxy = max(max(edgelist{I}(:,1)),maxy); end % Draw the edgelist data into an image array im = zeros(maxy,maxx); for I = 1:Nedge ind = sub2ind([maxy maxx], edgelist{I}(:,1), edgelist{I}(:,2)); im(ind) = 1; end
github
jacksky64/imageProcessing-master
bandpassfilter.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/bandpassfilter.m
1,514
utf_8
d98c0b715b1b05c4e8c5e415a260dd2c
% BANDPASSFILTER - Constructs a band-pass butterworth filter % % usage: f = bandpassfilter(sze, cutin, cutoff, n) % % where: sze is a two element vector specifying the size of filter % to construct [rows cols]. % cutin and cutoff are the frequencies defining the band pass 0 - 0.5 % n is the order of the filter, the higher n is the sharper % the transition is. (n must be an integer >= 1). % % The frequency origin of the returned filter is at the corners. % % See also: LOWPASSFILTER, HIGHPASSFILTER, HIGHBOOSTFILTER % % Copyright (c) 1999 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % October 1999 function f = bandpassfilter(sze, cutin, cutoff, n) if cutin < 0 | cutin > 0.5 | cutoff < 0 | cutoff > 0.5 error('frequencies must be between 0 and 0.5'); end if rem(n,1) ~= 0 | n < 1 error('n must be an integer >= 1'); end f = lowpassfilter(sze, cutoff, n) - lowpassfilter(sze, cutin, n);
github
jacksky64/imageProcessing-master
upwardcontinue.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/upwardcontinue.m
4,042
utf_8
c50e198c0e568fd171e5713d3d05342b
% UPWARDCONTINUE Upward continuation for magnetic or gravity potential field data % % Usage: [up, pim, psf] = upwardcontinue(im, h, dx, dy) % % Arguments: im - Input potential field image % h - Height to upward continue to (+ve) % dx, dy - Grid spacing in x and y. The upward continuation height % is computed relative to the grid spacing. If omitted dx = % dy = 1, that is, the value of h is in grid spacing units. % If dy is omitted it is assumed dy = dx. % % Returns: up - The upward continued field image % pim - The periodic component of the input potential field % image. See note below. % psf - The point spread function corresponding to the upward % continuation height. % % Upward continuation filtering is done in the frequency domain whereby the % Fourier transform of the upward continued image F(Up) is obtained from the % Fourier transform of the input image F(U) using % F(Up) = e^(-2*pi*h * sqrt(u^2 + v^2)) * F(U) % where u and v are the spatial frequencies over the input grid. % % To minimise edge effect problems Moisan's Periodic FFT is used. This avoids % the need for data tapering. Moisan's "Periodic plus Smooth Image % Decomposition" decomposes an image into two components % im = p + s % where s is the 'smooth' component with mean 0 and p is the 'periodic' % component which has no sharp discontinuities when one moves cyclically across % the image boundaries. % % Accordingly if you are doing residual analysis you should subtract the upward % continued image from the periodic component of the input image 'pim' rather % than from the raw input image 'im'. % % References: % Richard Blakely, "Potential Theory in Gravity and Magnetic Applications" % Cambridge University Press, 1996, pp 315-319 % % L. Moisan, "Periodic plus Smooth Image Decomposition", Journal of % Mathematical Imaging and Vision, vol 39:2, pp. 161-179, 2011. % % See also: PERFFT2 % Copyright (c) Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % June 2012 - Original version % June 2014 - Tidied up and documented function [up, pim, psf] = upwardcontinue(im, h, dx, dy) if ~exist('dx', 'var'), dx = 1; end if ~exist('dy', 'var'), dy = dx; end [rows,cols,chan] = size(im); assert(chan == 1, 'Image must be single channel'); mask = ~isnan(im); % Use Periodic FFT rather than data tapering to minimise edge effects. [IM,~,pim] = perfft2(fillnan(im)); % Generate horizontal and vertical frequency grids that vary from % -0.5 to 0.5 [u1, u2] = meshgrid(([1:cols]-(fix(cols/2)+1))/(cols-mod(cols,2)), ... ([1:rows]-(fix(rows/2)+1))/(rows-mod(rows,2))); % Quadrant shift to put 0 frequency at the corners. Also, divide by grid % size to get correct spatial frequencies u1 = ifftshift(u1)/dx; u2 = ifftshift(u2)/dy; freq = sqrt(u1.^2 + u2.^2); % Matrix values contain spatial frequency % values as a radius from centre (but % quadrant shifted) % Continuation filter in the frequency domain W = exp(-2*pi*h*freq); % Apply filter to obtain upward continuation up = real(ifft2(IM.*W)) .* double(mask); % Reconstruct the spatial representation of the point spread function % corresponding to the upward continuation height psf = real(fftshift(ifft2(W)));
github
jacksky64/imageProcessing-master
highboostfilter.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/highboostfilter.m
1,962
utf_8
ada657e25d617c134fb03bf410b0be5b
% HIGHBOOSTFILTER - Constructs a high-boost Butterworth filter. % % usage: f = highboostfilter(sze, cutoff, n, boost) % % where: sze is a two element vector specifying the size of filter % to construct [rows cols]. % cutoff is the cutoff frequency of the filter 0 - 0.5. % n is the order of the filter, the higher n is the sharper % the transition is. (n must be an integer >= 1). % boost is the ratio that high frequency values are boosted % relative to the low frequency values. If boost is less % than one then a 'lowboost' filter is generated % % % The frequency origin of the returned filter is at the corners. % % See also: LOWPASSFILTER, HIGHPASSFILTER, BANDPASSFILTER % % Copyright (c) 1999-2001 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % October 1999 % November 2001 modified so that filter is specified in terms of high to % low boost rather than a zero frequency offset. function f = highboostfilter(sze, cutoff, n, boost) if cutoff < 0 | cutoff > 0.5 error('cutoff frequency must be between 0 and 0.5'); end if rem(n,1) ~= 0 | n < 1 error('n must be an integer >= 1'); end if boost >= 1 % high-boost filter f = (1-1/boost)*highpassfilter(sze, cutoff, n) + 1/boost; else % low-boost filter f = (1-boost)*lowpassfilter(sze, cutoff, n) + boost; end
github
jacksky64/imageProcessing-master
invfft2.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/invfft2.m
250
utf_8
41b97c8ab7dc15522b2c5a414bf55b38
% INVFFT2 - takes inverse fft and returns real part % % Function to `wrap up' taking the inverse Fourier transform % and extracting the real part into the one operation % Peter Kovesi October 1999 function ift = invfft2(ft) ift = real(ifft2(ft));
github
jacksky64/imageProcessing-master
lowpassfilter.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/lowpassfilter.m
2,448
utf_8
1bdb6b9b70b06af9d2bc12b6b877da54
% LOWPASSFILTER - Constructs a low-pass butterworth filter. % % usage: f = lowpassfilter(sze, cutoff, n) % % where: sze is a two element vector specifying the size of filter % to construct [rows cols]. % cutoff is the cutoff frequency of the filter 0 - 0.5 % n is the order of the filter, the higher n is the sharper % the transition is. (n must be an integer >= 1). % Note that n is doubled so that it is always an even integer. % % 1 % f = -------------------- % 2n % 1.0 + (w/cutoff) % % The frequency origin of the returned filter is at the corners. % % See also: HIGHPASSFILTER, HIGHBOOSTFILTER, BANDPASSFILTER % % Copyright (c) 1999 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % October 1999 % August 2005 - Fixed up frequency ranges for odd and even sized filters % (previous code was a bit approximate) function f = lowpassfilter(sze, cutoff, n) if cutoff < 0 | cutoff > 0.5 error('cutoff frequency must be between 0 and 0.5'); end if rem(n,1) ~= 0 | n < 1 error('n must be an integer >= 1'); end if length(sze) == 1 rows = sze; cols = sze; else rows = sze(1); cols = sze(2); end % Set up X and Y matrices with ranges normalised to +/- 0.5 % The following code adjusts things appropriately for odd and even values % of rows and columns. if mod(cols,2) xrange = [-(cols-1)/2:(cols-1)/2]/(cols-1); else xrange = [-cols/2:(cols/2-1)]/cols; end if mod(rows,2) yrange = [-(rows-1)/2:(rows-1)/2]/(rows-1); else yrange = [-rows/2:(rows/2-1)]/rows; end [x,y] = meshgrid(xrange, yrange); radius = sqrt(x.^2 + y.^2); % A matrix with every pixel = radius relative to centre. f = ifftshift( 1.0 ./ (1.0 + (radius ./ cutoff).^(2*n)) ); % The filter
github
jacksky64/imageProcessing-master
imspect.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/imspect.m
4,926
utf_8
1567515542e483c4deb2ccc804ff7ac9
% IMSPECT - Plots image amplitude spectrum averaged over all orientations. % % Usage: [amp, f, slope] = imspect(im, nbins, lowcut) % \ / % optional % Arguments: % im - Image to be analysed. % nbins - No of frequency bins to use (defaults to 100). % lowcut - Percentage of lower frequencies to ignore when % finding line of best fit. This avoids problems % with amplitude spikes at low frequencies. % (defaults to 2%) . % % Returns: % amp - 1D array of amplitudes. % f - Corresponding array of frequencies. % slope - Slope of line of best fit to the log-log data % % Be wary of using too many frequency bins. With more bins there will be % fewer elements per bin, or even none, producing a very noisy result. % % See also: PERFFT2 % Copyright (c) 2001-2003 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % July 2001 - original version. % May 2003 - correction of frequency origin for even and odd size images. % - corrections to allow for non-square images. % - extra commenting % August 2014 - Changed to use perfft2 rather than fft2 to minimise edge effects function [amp, f, slope] = imspect(im, nbins, lowcut) if nargin < 2 nbins = 100; % Default No of frequency 'bins' end if nargin < 3 lowcut = 2; % Ignore lower 2% of curve when finding end % line of best fit. amp = zeros(1, nbins); % preallocate some memory fcount = ones(1, nbins); mag = fftshift(abs(perfft2(double(im)))); % Amplitude spectrum % Generate a matrix 'radius' every element of which has a value % given by its distance from the centre. This is used to index % the frequency values in the spectrum. [rows, cols] = size(im); [x,y] = meshgrid([1:cols],[1:rows]); % The following fiddles the origin to the correct position % depending on whether we have and even or odd size. % In addition the values of x and y are normalised to +- 0.5 if mod(cols,2) == 0 x = (x-cols/2-1)/cols; else x = (x-(cols+1)/2)/(cols-1); end if mod(rows,2) == 0 y = (y-rows/2-1)/rows; else y = (y-(rows+1)/2)/(rows-1); end radius = sqrt(x.^2 + y.^2); % Quantise radius to the desired number of frequency bins radius = round(radius/max(max(radius))*(nbins-1)) + 1; % Now go through the spectrum and build the histogram of amplitudes % vs frequences. for r = 1:rows for c = 1:cols ind = radius(r,c); amp(ind) = amp(ind)+mag(r,c); fcount(ind) = fcount(ind)+1; end end % Average the amplitude at each frequency bin. We also add 'eps' % to avoid potential problems later on in taking logs. amp = amp./fcount + eps; % Generate corrected frequency scale for each quantised frequency bin. % Note that the maximum frequency is sqrt(0.5) corresponding to the % points in the corners of the spectrum f = [1:nbins]/nbins*sqrt(.5); % Plots % Find first index value beyond the specified histogram cutoff fst = round(nbins*lowcut/100 + 1); figure(1), clf lw = 2; % Line width fs = 16; % Font size plot(f(fst:end),amp(fst:end), 'Linewidth', lw) xlabel('frequency'), ylabel('amplitude'); title('Histogram of amplitude vs frequency'); figure(2), % clf loglog(f(fst:end),amp(fst:end), 'Linewidth', lw) xlabel('log frequency', 'Fontsize', fs, 'Fontweight', 'bold'); ylabel('log amplitude', 'Fontsize', fs, 'Fontweight', 'bold'); % Find line of best fit (ignoring specified fraction of low frequency values) p = polyfit(log(f(fst:end)), log(amp(fst:end)),1); slope = p(1); y = exp(p(1)*log(f(fst:end)) + p(2)); % log(y) = p(1)*log(f) + p(2) hold on loglog(f(fst:end), y,'Color',[1 0 0], 'Linewidth', lw) n = round(nbins/5); text(f(n), amp(n)*2, sprintf('Slope = %.2f',p(1)), ... 'Fontsize', fs, 'Fontweight', 'bold'); % title('Histogram of log amplitude vs log frequency'); set(gca, 'FontSize', 14); set(gca, 'FontWeight', 'bold'); set(gca, 'LineWidth', 1.5);
github
jacksky64/imageProcessing-master
psf.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/psf.m
2,323
utf_8
de5c27f8dd4eb69a3ae36c1be3f20990
% PSF - Generates point spread functions for use with deconvolution fns. % % This function can generate a variety function shapes based around the % Butterworth filter. In plan view the filter can be elliptical and at % any orientation. The `squareness/roundness' of the shape can also be % manipulated. % % Usage: h = psf(sze, order, ang, eccen, rc, sqrness) % % sze - two element array specifying size of filter [rows cols] % order - an even integer specifying the order of the Butterworth filter. % This controls the sharpness of the cutoff. % ang - angle of rotation of the filter in radians % eccen - ratio of eccentricity of the filter shape (major/minor axis ratio) % rc - mean radius of the filter in pixels % sqrness - even integer specifying `squareness' of the filter shape % a value of 2 gives a circular filter (if eccen = 1), higher % values make the shape squarer. % Copyright (c) 1999 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % June 1999 function h = psf(sze, order, ang, eccen, rc, sqrness) if mod(sqrness,2) ~=0 error('squareness parameter must be an even integer'); end rows = sze(1); cols = sze(2); x = ones(rows,1) * [1:cols] - (fix(cols/2)+1); y = [1:rows]' * ones(1,cols) - (fix(rows/2)+1); xp = x*cos(ang) - y*sin(ang); % Rotate axes by specified angle. yp = x*sin(ang) + y*cos(ang); x = sqrt(eccen)*xp; % Distort x and y according to eccentricity. y = yp/sqrt(eccen); radius = (x.^sqrness + y.^sqrness).^(1/sqrness); % Distort distance metric % by squareness measure. h = 1./(1+(radius./rc).^order); % Butterworth filter h = h./(sum(sum(h))); % and normalise.
github
jacksky64/imageProcessing-master
filtergrid.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/filtergrid.m
2,441
utf_8
a196e165846902098ffcbc16ddf71f6c
% FILTERGRID Generates grid for constructing frequency domain filters % % Usage: [radius, u1, u2] = filtergrid(rows, cols) % [radius, u1, u2] = filtergrid([rows, cols]) % % Arguments: rows, cols - Size of image/filter % % Returns: radius - Grid of size [rows cols] containing normalised % radius values from 0 to 0.5. Grid is quadrant % shifted so that 0 frequency is at radius(1,1) % u1, u2 - Grids containing normalised frequency values % ranging from -0.5 to 0.5 in x and y directions % respectively. u1 and u2 are quadrant shifted. % % Used by PHASECONGMONO, PHASECONG3 etc etc % % Copyright (c) 1996-2013 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % % May 2013 function [radius, u1, u2] = filtergrid(rows, cols) % Handle case where rows, cols has been supplied as a 2-vector if nargin == 1 & length(rows) == 2 tmp = rows; rows = tmp(1); cols = tmp(2); end % Set up X and Y spatial frequency matrices, u1 and u2, with ranges % normalised to +/- 0.5 The following code adjusts things appropriately for % odd and even values of rows and columns so that the 0 frequency point is % placed appropriately. if mod(cols,2) u1range = [-(cols-1)/2:(cols-1)/2]/(cols-1); else u1range = [-cols/2:(cols/2-1)]/cols; end if mod(rows,2) u2range = [-(rows-1)/2:(rows-1)/2]/(rows-1); else u2range = [-rows/2:(rows/2-1)]/rows; end [u1,u2] = meshgrid(u1range, u2range); % Quadrant shift so that filters are constructed with 0 frequency at % the corners u1 = ifftshift(u1); u2 = ifftshift(u2); % Construct spatial frequency values in terms of normalised radius from % centre. radius = sqrt(u1.^2 + u2.^2);
github
jacksky64/imageProcessing-master
highpassfilter.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/highpassfilter.m
1,443
utf_8
78f60a0dd6f0ef66653d547868fad1f9
% HIGHPASSFILTER - Constructs a high-pass butterworth filter. % % usage: f = highpassfilter(sze, cutoff, n) % % where: sze is a two element vector specifying the size of filter % to construct [rows cols]. % cutoff is the cutoff frequency of the filter 0 - 0.5 % n is the order of the filter, the higher n is the sharper % the transition is. (n must be an integer >= 1). % % The frequency origin of the returned filter is at the corners. % % See also: LOWPASSFILTER, HIGHBOOSTFILTER, BANDPASSFILTER % % Copyright (c) 1999 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % October 1999 function f = highpassfilter(sze, cutoff, n) if cutoff < 0 | cutoff > 0.5 error('cutoff frequency must be between 0 and 0.5'); end if rem(n,1) ~= 0 | n < 1 error('n must be an integer >= 1'); end f = 1.0 - lowpassfilter(sze, cutoff, n);
github
jacksky64/imageProcessing-master
circsine.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/circsine.m
4,364
utf_8
4b2d3f6974bd3cd11dde7d3b2a600790
% CIRCSINE Generates circular sine wave grating % Can also be use to construct phase congruent patterns % % Usage: im = circsine(sze, wavelength, nScales, ampExponent, offset, p, trim) % % Arguments: % sze - The size of the square image to be produced. % wavelength - The wavelength in pixels of the sine wave. % nScales - No of fourier components used to construct the % signal. This is typically 1, if you want a simple sine % wave, or >50 if you want to build a phase congruent % waveform. Defaults to 1. % ampExponent - Decay exponent of amplitude with frequency. % A value of -1 will produce amplitude inversely % proportional to frequency (this will produce a step % feature if offset is 0) % A value of -2 with an offset of pi/2 will result in a % triangular waveform. % Defaults to -1; % offset - Phase offset to apply to circular pattern. % This controls the feature type, see examples below. % Defaults to pi/2 if nScales is 1, else, 0 % p - Optional parameter specifying the norm to use in % calculating the radius from the centre. This defaults to % 2, resulting in a circular pattern. Large values gives % a square pattern % trim - Optional flag indicating whether you want the % circular pattern trimmed from the corners leaving % only complete cicles. Defaults to 0. % % Examples: % nScales = 1 - You get a simple circular sine wave pattern % nScales 50, ampExponent -1, offset 0 - Square waveform % nScales 50, ampExponent -2, offset pi/2 - Triangular waveform % nScales 50, ampExponent -1.5, offset pi/4 - Something in between square and % triangular % nScales 50, ampExponent -1.5, offset 0 - Looks like a square but is not. % % See also: STARSINE, STEP2LINE % Copyright (c) 2003-2010 Peter Kovesi % Centre for Exploration Targeting % School of Earth and Environment % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % May 2003 - Original version % Nov 2006 - Trim flag added % Dec 2010 - Ability to construct phase congruent patterns, order of argument % list changed function im = circsine(sze, wavelength, nScales, ampExponent, offset, p, trim) if ~exist('trim', 'var'), trim = 0; end if ~exist('p', 'var'), p = 2; end if ~exist('ampExponent', 'var'), ampExponent = -1; end if ~exist('nScales', 'var'), nScales = 1; end % If we have one scale, hence just making a sine wave, and offset is not % specified set it to pi/2 to give cintinuity at the centre if nScales == 1 && ~exist('offset', 'var') offset = pi/2; elseif ~exist('offset', 'var') offset = 0; end if mod(p,2) error('p should be an even number'); end % Place origin at centre for odd sized image, and below and the the % right of centre for an even sized image if mod(sze,2) == 0 % even sized image l = -sze/2; u = sze/2-1; else l = -(sze-1)/2; u = (sze-1)/2; end [x,y] = meshgrid(l:u); r = (x.^p + y.^p).^(1/p); im = zeros(size(r)); for scale = 1:2:(2*nScales-1) im = im + scale^ampExponent* sin(scale* r * 2*pi/wavelength + offset); end if trim % Remove circular pattern from the 'corners' cycles = fix(sze/2/wavelength); % No of complete cycles within sze/2 im = im.* (r < cycles*wavelength) + (r>= cycles*wavelength); end
github
jacksky64/imageProcessing-master
starsine.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/starsine.m
2,906
utf_8
929263192b6c499585f5af175f649a83
% STARSINE Generates phase congruent star shaped sine wave grating % % Usage: im = starsine(sze, nCycles, nScales, ampExponent, offset) % % Arguments: % sze - The size of the square image to be produced. % nCycles - The number of sine wave cycles around centre point. % Typically an integer, but any value can be used. % nScales - No of fourier components used to construct the % signal. This is typically 1, if you want a simple sine % wave, or >50 if you want to build a phase congruent % waveform. % ampExponent - Decay exponent of amplitude with frequency. % A value of -1 will produce amplitude inversely % proportional to frequency (this will produce a step % feature if offset is 0) % A value of -2 with an offset of pi/2 will result in a % triangular waveform. % offset - Phase offset to apply to star pattern. % % Examples: % nScales = 1 - You get a simple sine wave pattern radiating out % from the centre. Use 'offset' if you wish to % rotate it a bit. % nScales 50, ampExponent -1, offset 0 - Square waveform % nScales 50, ampExponent -2, offset pi/2 - Triangular waveform % nScales 50, ampExponent -1.5, offset pi/4 - Something in between square and % triangular % nScales 50, ampExponent -1.5, offset 0 - Looks like a square but is not. % % See also: CIRCSINE, STEP2LINE % Copyright (c) 2010 Peter Kovesi % Centre for Exploration Targeting % School of Earth and Enironment % The University of Western Australia % peter.kovesi at uwa edu au % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % December 2010 function im = starsine(sze, nCycles, nScales, ampExponent, offset) if ~exist('offset', 'var') offset = 0; end % Place origin at centre for odd sized image, and below and the the % right of centre for an even sized image if mod(sze,2) == 0 % even sized image l = -sze/2; u = sze/2-1; else l = -(sze-1)/2; u = (sze-1)/2; end [x,y] = meshgrid(l:u); theta = atan2(y,x); im = zeros(size(theta)); for scale = 1:2:(nScales*2 - 1) im = im + scale^ampExponent*sin(scale*nCycles*theta + offset); end
github
jacksky64/imageProcessing-master
freqcomp.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/freqcomp.m
5,474
utf_8
58a18bdbdc50fca6a82844487445c5ad
% FREQCOMP - Demonstrates image reconstruction from Fourier components % % Usage: recon = freqcomp(im, Npts, delay) % % Arguments: im - Image to be reconstructed. % Npts - Number of frequency components to consider % (defaults to 50). % delay - Optional time delay between animations of the % reconstruction. If this is omitted the function % waits for a key to be pressed before moving to % the next component. % % Returns: recon - The image reconstructed from the specified % number of components % % This program displays: % % * The image. % * The Fourier transform (spectrum) of the image with a conjugate % pair of Fourier components marked with red dots. % * The sine wave basis function that corresponds to the Fourier % transform pair marked in the image above. % * The reconstruction of the image generated from the sum of the sine % wave basis functions considered so far. % Copyright (c) 2002-2003 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % March 2002 - Original version % April 2003 - General cleanup of code function recon = freqcomp(im, Npts, delay) if ndims(im) == 3 im = rgb2gray(im); warning('converting colour image to greyscale'); end if nargin < 2 Npts = 50; end [rows,cols] = size(im); % If necessary crop one row and/or column so that there are an even % number of rows and columns, this makes things easier later. if mod(rows,2) % odd rows = rows-1; end if mod(cols,2) % odd cols = cols-1; end im = im(1:rows,1:cols); rc = fix(rows/2)+1; % Centre point cc = fix(cols/2)+1; % The following code constructs two arrays of coordinates within the FFT % of the image that correspond to complex conjugate pairs of points that % spiral out from the centre visiting every frequency component on % the way. p1 = zeros(Npts,2); % Path 1 p2 = zeros(Npts,2); % Path 2 m = zeros(rows,cols); % Matrix for marking visited points m(rc,cc) = 1; m(rc,cc-1) = 1; m(rc,cc+1) = 1; p1(1,:) = [rc cc-1]; p2(1,:) = [rc cc+1]; d1 = [0 -1]; % initial directions of the paths d2 = [0 1]; % Mark out two symmetric spiral paths out from the centre (I wish I % could think of a neater way of doing this) for n = 2:Npts l1 = [-d1(2) d1(1)]; % left direction l2 = [-d2(2) d2(1)]; lp1 = p1(n-1,:) + l1; % coords of point in left direction lp2 = p2(n-1,:) + l2; if ~m(lp1(1), lp1(2)) % go left p1(n,:) = lp1; d1 = l1; m(p1(n,1), p1(n,2)) = 1; % mark point as visited else % go sraight ahead p1(n,:) = p1(n-1,:) + d1; m(p1(n,1), p1(n,2)) = 1; % mark point as visited end if ~m(lp2(1), lp2(2)) % go left p2(n,:) = lp2; d2 = l2; m(p2(n,1), p2(n,2)) = 1; % mark point as visited else % go sraight ahead p2(n,:) = p2(n-1,:) + d2; m(p2(n,1), p2(n,2)) = 1; % mark point as visited end end % Having constructed the path of frequency components to be visited % we take the FFT of the image and then enter a loop that % incrementally reconstructs the image from its components. IM = fftshift(fft2(im)); recon = zeros(rows,cols); % Initialise reconstruction matrix if max(rows,cols) < 150 fontsze = 7; else fontsze = 10; end figure(1), clf subplot(2,2,1),imagesc(im),colormap gray, axis image, axis off title('Original Image','FontSize',fontsze); subplot(2,2,2),imagesc(log(abs(IM))),colormap gray, axis image axis off, title('Fourier Transform + frequency component pair','FontSize',fontsze); warning off % Turn off warnings that might arise if the images cannot be % displayed full size truesize(1) for n = 1:Npts % Extract the pair of Fourier components F = zeros(rows,cols); F(p1(n,1), p1(n,2)) = IM(p1(n,1), p1(n,2)); F(p2(n,1), p2(n,2)) = IM(p2(n,1), p2(n,2)); % Invert and add to reconstruction f = real(ifft2(fftshift(F))); recon = recon+f; % Display results subplot(2,2,2),imagesc(log(abs(IM))),colormap gray, axis image axis off, title('Fourier Transform + frequency component pair','FontSize',fontsze); hold on, plot([p1(n,2), p2(n,2)], [p1(n,1), p2(n,1)],'r.'); hold off subplot(2,2,3),imagesc(recon),colormap gray, axis image, axis off, title('Reconstruction','FontSize',fontsze); subplot(2,2,4),imagesc(f),colormap gray, axis image, axis off title('Basis function corresponding to frequency component pair','FontSize',fontsze); if nargin == 3 pause(delay); else fprintf('Hit any key to continue \n'); pause end end warning on % Restore warnings
github
jacksky64/imageProcessing-master
psf2.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/psf2.m
3,000
utf_8
20d5aff861110c5341b9d6fec90f8007
% PSF2 - Generates point spread functions for use with deconvolution fns. % % This function can generate a variety function shapes based around the % Butterworth filter. In plan view the filter can be elliptical and at % any orientation. The 'squareness/roundness' of the shape can also be % manipulated. % % Usage: h = psf2(sze, order, ang, lngth, width, sqrness) % % sze - two element array specifying size of filter [rows cols] % order - an even integer specifying the order of the Butterworth filter. % This controls the sharpness of the cutoff. % ang - angle of rotation of the filter in radians. % lngth - length of the filter in pixels along its major axis. % width - width of the filter in pixels along its minor axis. % sqrness - even integer specifying 'squareness' of the filter shape % a value of 2 gives a circular filter (if lngth == width), higher % values make the shape squarer. % % This function is almost identical to psf, it just has a different way of % specifying the function shape whereby length and width are defined % explicitly (rather than an average radius), this may be more convenient for % some applications. % Copyright (c) 1999-2003 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % June 1999 % May 2003 - Changed arguments so that psf is specified in terms of a length % and width rather than an average radius. function h = psf2(sze, order, ang, lngth, width, sqrness) if mod(sqrness,2) ~=0 error('squareness parameter must be an even integer'); end rows = sze(1); cols = sze(2); [x,y] = meshgrid([1:cols],[1:rows]); % The following fiddles the origin to the correct position % depending on whether we have and even or odd size if mod(cols,2) == 0 x = x-cols/2-1; else x = x-(cols+1)/2; end if mod(rows,2) == 0 y = y-rows/2-1; else y = y-(rows+1)/2; end xp = x*cos(ang) - y*sin(ang); % Rotate axes by specified angle. yp = x*sin(ang) + y*cos(ang); rc = lngth/2; % Set cutoff radius to half the length yp = yp*lngth/width; % Adjust y measure to give appropriate relative width. radius = (xp.^sqrness + yp.^sqrness).^(1/sqrness); % Distort distance metric % by squareness measure. h = 1./(1+(radius./rc).^order); % Butterworth filter h = h./(sum(sum(h))); % and normalise.
github
jacksky64/imageProcessing-master
perfft2.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/perfft2.m
3,150
utf_8
8216912bde513f4fbc7b59635da9d870
% PERFFT2 2D Fourier transform of Moisan's periodic image component % % Usage: [P, S, p, s] = perfft2(im) % % Argument: im - Image to be transformed % Returns: P - 2D fft of periodic image component % S - 2D fft of smooth component % p - Periodic component (spatial domain) % s - Smooth component (spatial domain) % % Moisan's "Periodic plus Smooth Image Decomposition" decomposes an image % into two components % im = p + s % where s is the 'smooth' component with mean 0 and p is the 'periodic' % component which has no sharp discontinuities when one moves cyclically across % the image boundaries. % % This wonderful decomposition is very useful when one wants to obtain an FFT of % an image with minimal artifacts introduced from the boundary discontinuities. % The image p gathers most of the image information but avoids periodization % artifacts. % % The typical use of this function is to obtain a 'periodic only' fft of an % image % >> P = perfft2(im); % % Displaying the amplitude spectrum of P will yield a clean spectrum without the % typical vertical-horizontal 'cross' arising from the image boundaries that you % would normally see. % % Note if you are using the function to perform filtering in the frequency % domain you may want to retain s (the smooth component in the spatial domain) % and add it back to the filtered result at the end. % % The computational cost of obtaining the 'periodic only' FFT involves taking an % additional FFT. % % % Reference: % This code is adapted from Lionel Moisan's Scilab function 'perdecomp.sci' % "Periodic plus Smooth Image Decomposition" 07/2012 available at % % http://www.mi.parisdescartes.fr/~moisan/p+s % % Paper: % L. Moisan, "Periodic plus Smooth Image Decomposition", Journal of % Mathematical Imaging and Vision, vol 39:2, pp. 161-179, 2011. % Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % peter.kovesi at uwa edu au % September 2012 function [P, S, p, s] = perfft2(im) if ~isa(im, 'double'), im = double(im); end [rows,cols] = size(im); % Compute the boundary image which is equal to the image discontinuity % values across the boundaries at the edges and is 0 elsewhere s = zeros(size(im)); s(1,:) = im(1,:) - im(end,:); s(end,:) = -s(1,:); s(:,1) = s(:,1) + im(:,1) - im(:,end); s(:,end) = s(:,end) - im(:,1) + im(:,end); % Generate grid upon which to compute the filter for the boundary image in % the frequency domain. Note that cos() is cyclic hence the grid values can % range from 0 .. 2*pi rather than 0 .. pi and then pi .. 0 [cx, cy] = meshgrid(2*pi*[0:cols-1]/cols, 2*pi*[0:rows-1]/rows); % Generate FFT of smooth component S = fft2(s)./(2*(2 - cos(cx) - cos(cy))); % The (1,1) element of the filter will be 0 so S(1,1) may be Inf or NaN S(1,1) = 0; % Enforce 0 mean P = fft2(im) - S; % FFT of periodic component if nargout > 2 % Generate spatial domain results s = real(ifft2(S)); p = im - s; end
github
jacksky64/imageProcessing-master
invfft2shft.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/invfft2shft.m
308
utf_8
1ee9d3b8e1e84f25b0fb5503595f7bfa
% INVFFT2SHFT - takes inverse fft, quadrant shifts and returns real part. % % Function to `wrap up' taking the inverse Fourier transform % quadrant shifting and extraction of the real part into the one operation % Peter Kovesi October 1999 function ift = invfft2shft(ft) ift = fftshift(real(ifft2(ft)));
github
jacksky64/imageProcessing-master
quantizephase.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/quantizephase.m
1,944
utf_8
c4d5690a2daf54b63e4c2fd0ccecb488
% QUANTIZEPHASE Quantize phase values in an image % % Usage: qim = quantizephase(im, N) % % Arguments: im - Image to be processed % N - Desired number of quantized phase values % % Returns: qim - Phase quantized image % % Phase values in an image are important. However, despite this, they can be % quantized very heavily with little perceptual loss. The value of N can be % as low as 4, or even 3! Using N = 2 is also worth a look. % % % Copyright (c) 2011 Peter Kovesi % Centre for Exploration Targeting % The University of Western Australia % http://www.csse.uwa.edu.au/~pk/research/matlabfns/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in all % copies or substantial portions of the Software. % % The software is provided "as is", without warranty of any kind. % May 2011 function qim = quantizephase(im, N) IM = fft2(im); amp = abs(IM); phase = angle(IM); % Quantize the phase values as follows: % Add pi - .001 so that values range [0 - 2pi) % Divide by 2pi so that values range [0 - 1) % Scale by N so that values range [0 - N) % Round twoards 0 using fix giving integers [0 - N-1] % Scale by 2*pi/N to give N discrete phase values [0 - 2*pi) % Subtract pi so that discrete values range [-pi - pi) % Add pi/N to counteract the phase shift induced by rounding towards 0 % using fix. phase = fix( (phase+pi-.001)/(2*pi) * N) * (2*pi)/N - pi + pi/N ; % figure, hist(phase(:),100) % Reconstruct Fourier transform with quantized phase values and take inverse % to obtain the new image. QIM = amp.*(cos(phase) + i*sin(phase)); qim = real(ifft2(QIM));
github
jacksky64/imageProcessing-master
homomorphic.m
.m
imageProcessing-master/Matlab Code for Computer Vision/FrequencyFilt/homomorphic.m
5,424
utf_8
51155a84aab5eba10f502eb788a81b16
% HOMOMORPHIC - Performs homomorphic filtering on an image. % % Function performs homomorphic filtering on an image. This form of % filtering sharpens features and flattens lighting variantions in an image. % It usually is very effective on images which have large variations in % lighting, for example when a subject appears against strong backlighting. % % % Usage: newim = % homomorphic(inimage,boost,CutOff,order,lhistogram_cut,uhistogram_cut, hndl) % homomorphic(inimage,boost,CutOff,order,lhistogram_cut,uhistogram_cut) % homomorphic(inimage,boost,CutOff,order,hndl) % homomorphic(inimage,boost,CutOff,order) % % Parameters: (suggested values are in brackets) % boost - The ratio that high frequency values are boosted % relative to the low frequency values (2). % CutOff - Cutoff frequency of the filter (0 - 0.5) % order - Order of the modified Butterworth style filter that % is used, this must be an integer > 1 (2) % lhistogram_cut - Percentage of the lower end of the filtered image's % histogram to be truncated, this eliminates extreme % values in the image from distorting the final result. (0) % uhistogram_cut - Percentage of upper end of histogram to truncate. (5) % hndl - Optional handle to text box for updating % messages to be sent to a GUI interface. % % If lhistogram_cut and uhistogram_cut are not specified no histogram truncation will be % applied. % % % Suggested values: newim = homomorphic(im, 2, .25, 2, 0, 5); % % homomorphic called with no arguments invokes GUI interface. % % or simply homomorphic to invoke the GUI - GUI version does not work! % Copyright (c) 1999-2001 Peter Kovesi % School of Computer Science & Software Engineering % The University of Western Australia % http://www.csse.uwa.edu.au/ % % Permission is hereby granted, free of charge, to any person obtaining a copy % of this software and associated documentation files (the "Software"), to deal % in the Software without restriction, subject to the following conditions: % % The above copyright notice and this permission notice shall be included in % all copies or substantial portions of the Software. % % The Software is provided "as is", without warranty of any kind. % June 1999 % December 2001 cleaned up and modified to work with colour images function him = homomorphic(im, boost, CutOff, order, varargin) % if nargin == 0 % invoke GUI if it exists % if exist('homomorphicGUI.m'); % homomorphicGUI; % return; % else % error('homomorphicGUI does not exist'); % end % % else if ndims(im) == 2 % Greyscale image him = Ihomomorphic(im, boost, CutOff, order, varargin); else % Assume colour image in RGB format hsv = rgb2hsv(im); % Convert to HSV and apply homomorphic % filtering to just the intensity component. hsv(:,:,3) = Ihomomorphic(hsv(:,:,3), boost, CutOff, order, varargin); him = hsv2rgb(hsv); % Convert back to RGB end % end %------------------------------------------------------------------------ % Internal function that does the real work %------------------------------------------------------------------------ function him = Ihomomorphic(im, boost, CutOff, order, varargin) % The possible elements in varargin are: % {lhistogram_cut, uhistogram_cut, hndl} varargin = varargin{:}; if nargin == 5 nopparams = length(varargin); end if (nopparams == 3) dispStatus = 1; truncate = 1; lhistogram_cut = varargin{1}; uhistogram_cut = varargin{2}; hndl = varargin{3}; elseif (nopparams == 2) dispStatus = 0; truncate = 1; lhistogram_cut = varargin{1}; uhistogram_cut = varargin{2}; elseif (nopparams == 1) dispStatus = 1; truncate = 0; hndl = varargin{1}; elseif (nopparams == 0) dispStatus = 0; truncate = 0; else disp('Usage: newim = homomorphic(inimage,LowGain,HighGain,CutOff,order,lhistogram_cut,uhistogram_cut)'); error('or newim = homomorphic(inimage,LowGain,HighGain,CutOff,order)'); end [rows,cols] = size(im); im = normalise(im); % Rescale values 0-1 (and cast % to `double' if needed). FFTlogIm = fft2(log(im+.01)); % Take FFT of log (with offset % to avoid log of 0). h = highboostfilter([rows cols], CutOff, order, boost); him = exp(real(ifft2(FFTlogIm.*h))); % Apply the filter, invert % fft, and invert the log. if truncate % Problem: % The extreme bright values in the image are exaggerated by the filtering. % These (now very) bright values have the overall effect of darkening the % whole image when we rescale values to 0-255. % % Solution: % Construct a histogram of the image. Find the level below which a high % percentage of the image lies (say 95%). Saturate the grey levels in % the image to this level. if dispStatus set(hndl,'String','Calculating histogram and truncating...'); drawnow; else disp('Calculating histogram and truncating...'); end him = histtruncate(him, lhistogram_cut, uhistogram_cut); else him = normalise(him); % No truncation, but fix range 0-1 end
github
jacksky64/imageProcessing-master
animateHessianGaussian.m
.m
imageProcessing-master/gaussdiff/animateHessianGaussian.m
3,651
utf_8
232429d2012a4e02b1901c352a995c5f
function animateHessianGaussian(fname) %animate HessianGaussian - creates a figure with a rotationg second order %derivative. It is calculated each frame by combining the three kernels of %the Hessian matrix: Lxx, Lyy and Lxy. Using these three kernels, the %second order derivative can be calculated in any direction! % % animateHessianGaussian() displays the animation % % animateHessianGaussian(fname) makes an animated gif of the animation, and % writes it to fname. if nargin==0; fname=[]; end; H = []; % data container H.fname = fname; % create figure H.hf = figure(100202); clf; set(H.hf,'MenuBar','none','position',[500 500 400 300],'NumberTitle','off','color','k'); if ~isempty(H.fname); set(H.hf,'name','Waiting one round before creating AVI...'); else; set(H.hf,'name','Rotating second order Gaussian derivative'); end; colormap winter; shading faceted; % create timer H.ht = timer( 'TimerFcn',@animateHessianGaussian_nextAngle,... 'period',0.05,... 'ExecutionMode','fixedSpacing',... 'TasksToExecute',inf); % create kernels sig = 6; H.Kxx = gaussiankernel2(sig,2,0,4); H.Kyy = gaussiankernel2(sig,0,2,4); H.Kxy = gaussiankernel2(sig,1,1,4); % initialise angle, and set delta-angle H.phi = 0.01; % start slightly more. So animation starts writing to gif after one round H.dphi = 0.05; % init surface plot and axes H.hsurf = surf(H.Kxx); axis([0 40 0 40 -0.0001 0.0001]); axis off; shg; % set axes nice set(gca,'units','normalized','position',[0 0 1 1]); rotate3d on; % store data in the timer object. set(H.ht,'UserData',H); % start timer start(H.ht); end % of main function animateHessianGaussian_nextAngle(hObject,events) try % get data H = get(hObject,'UserData'); % if figure or surfplot gone, stop alltogeher if ~ishandle(H.hf) || ~ishandle(H.hsurf) stop(hObject); delete(hObject); return; end % increase angle H.phi = H.phi + H.dphi; if H.phi>2*pi; H.phi = 0; end; % create kernel from the three base kernels a = cos(H.phi); b = sin(H.phi); patch = a*a*H.Kxx + b*b*H.Kyy + 2*a*b*H.Kxy; % show kernel set(H.hsurf,'CData',patch,'Zdata',patch); drawnow; % make animation? AVI if ~isempty(H.fname) % make screenshot H.movie(1) = getframe(H.hf); if H.phi==0 if ~strcmp( get(H.hf,'name') , 'Creating AVI...' ) set(H.hf,'name','Creating AVI...'); H.movie = getframe(H.hf); else movie2avi(H.movie,H.fname); % write file H.fname=[]; % go to normal mode set(H.hf,'name','Done...'); end elseif strcmp( get(H.hf,'name') , 'Creating AVI...' ) H.movie(end+1) = getframe(H.hf); end end % store data back set(H.ht,'UserData',H); catch disp(lasterr); stop(hObject); delete(hObject); return; end end
github
jacksky64/imageProcessing-master
sphere_sampling.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_alpert/sphere_sampling.m
4,426
utf_8
73ce1de08ecf14075f7fc2425b75c030
function [Points,L,diam,topcol,botcol] = sphere_sampling(N,lrounded,angles,mrounded,ipl) % sphere_sampling - sample points on a sphere. % % [Points,L,diam] = sphere_sampling(N,lrounded,angles,mrounded,ipl) % $Revision: 1.1 $ Paul Leopardi 2003-10-13 % Make angles=1 the default % $Revision: 1.1 $ Paul Leopardi 2003-09-18 % Correct calculation of diameters % Return topcol and botcol: number of regions in top and bottom collars % $Revision: 1.1 $ Paul Leopardi 2003-09-13 % Parameter angles controls whether to locate points via angle or height average % Match twist and offset to Maple version of the algorithm % $Revision: 1.1 $ Paul Leopardi 2003-09-09 % Parameters lrounded and mrounded control rounding of L and m % $Revision: 1.1 $ Paul Leopardi 2003-09-08 % Return diameters % $Revision: 1.1 $ Paul Leopardi 2003-09-08 % for UNSW School of Mathematics global area; if nargin < 2 lrounded = 0; end if nargin < 3 angles = 1; end if nargin < 4 mrounded = 0; end if nargin < 5 ipl = 0; end if N == 1 Points = zeros(3,N); Points(:,1)=[0,0,1]'; L = 1; diam = 2*pi; topcol = 0; botcol = 0; else area = 4*pi/N; % [A,val,exitflag,output] = fsolve(@square,sqrt(area),optimset(optimset('fsolve'),'Display','off')); % A = real(A); A = sqrt(area); Beta = acos(1-2/N); fuzz = eps*2*N; if lrounded == 1 L = 2+max(1,round((pi-2*Beta)/A)); else L = 2+max(1,ceil((pi-2*Beta)/A-fuzz)); end Theta = (pi-2*Beta)/(L-2); mbar = zeros(1,L); mbar(1) = 1; for i = 2:L-1 mbar(i) = N*(cos(Theta*(i-2)+Beta)-cos(Theta*(i-1)+Beta))/2; end mbar(L) = 1; alpha = 0; m = zeros(1,L); m(1) = 1; diam = zeros(1,L); diam(1) = 2*Beta; for i = 2:L if mrounded == 1 m(i) = round(mbar(i)+alpha); else if (mbar(i)-floor(mbar(i)+alpha+fuzz)) < 0.5 m(i) = floor(mbar(i)+alpha+fuzz); else m(i) = ceil(mbar(i)+alpha-fuzz); end end alpha = alpha + mbar(i)-m(i); end if ipl > 0 fprintf('For N=%d, the number of levels cuts L=%d\n', N, L); fprintf('--------------------------------------------------\n'); end Points = zeros(3,N); Points(:,1) = [0,0,1]'; z = 1-(2+m(2))/N; Format = 'Level %3d: mbar(%2d) =%12.8f m(%2d) =%4d diff=%12.8f; Area= %9.5f\n'; i = 1; Area = 1; if ipl > 0 fprintf(Format,i,i,mbar(i),i,m(i),mbar(i)-m(i),Area); end offset = zeros(1,L-1); offset(1) = 0; n=1; for i = 2:L-1 twist=4; if m(i-1) ~= 0 & m(i) ~= 0 offset(i) = offset(i-1)+gcd(m(i),m(i-1))/(2*m(i)*m(i-1))+min(twist,floor(m(i-1)/twist))/m(i-1); else offset(i) = 0; end top = z+m(i)/N; rtop = sqrt(1-top^2); bot = z-m(i)/N; rbot = sqrt(1-bot^2); if m(i) > 1 angle = 2*pi/m(i); if rtop > rbot rside = rtop; hside = top; else rside = rbot; hside = bot; end side = acos([rside,0,hside]*[rside*cos(angle),rside*sin(angle),hside]'); diag = acos([rtop,0,top]*[rbot*cos(angle),rbot*sin(angle),bot]'); diam(i) = max(side,diag); else diam(i) = acos([rtop,0,top]*[-rbot,0,bot]'); end if angles h = cos((acos(top)+acos(bot))/2); else h = z; end r = sqrt(1-h^2); for j = 0:m(i)-1 s = offset(i)+j/m(i); n = n+1; Points(:,n) = [r*cos(2*pi*s),r*sin(2*pi*s),h]'; end Area = 1; if ipl > 0 fprintf(Format,i,i,mbar(i),i,m(i),mbar(i)-m(i),Area); end z = z-(m(i)+m(i+1))/N; end i = L; Area = 1; if ipl > 0 fprintf(Format,i,i,mbar(i),i,m(i),mbar(i)-m(i),Area); end Points(:,N) = [0,0,-1]'; diam(L) = 2*Beta; if L < 3 topcol = 0; botcol = 0; else topcol = m(2); botcol = m(L-1); end end function v=square(A) global area; v=8*asin(sqrt(2)*sin(A/2)/sin(A))-2*pi-area;
github
jacksky64/imageProcessing-master
perform_farthest_point_sampling.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/perform_farthest_point_sampling.m
3,382
utf_8
31f78420f1ab221fe7646f584f5d980e
function [points,D] = perform_farthest_point_sampling( W, points, npoints, options ) % perform_farthest_point_sampling - samples points using farthest seeding strategy % % points = perform_farthest_point_sampling( W, points, npoints ); % % points can be [] or can be a (2,npts) matrix of already computed % sampling locations. % % Copyright (c) 2005 Gabriel Peyre options.null = 0; if nargin<3 npoints = 1; end if nargin<2 points = []; end n = size(W,1); aniso = 0; d = nb_dims(W); if d==4 aniso = 1; d = 2; % tensor field elseif d==5 aniso = 1; d = 3; % tensor field end s = size(W); s = s(1:d); % domain constraints (for shape meshing) L1 = getoptions(options, 'constraint_map', zeros(s) + Inf ); verb = getoptions(options, 'verb', 1); mask = not(L1==-Inf); if isempty(points) % initialize farthest points at random points = round(rand(d,1)*(n-1))+1; % replace by farthest point [points,L] = perform_farthest_point_sampling( W, points, 1 ); Q = ones(size(W)); points = points(:,end); npoints = npoints-1; else % initial distance map [L,Q] = my_eval_distance(W, points, options); % L = min(zeros(s) + Inf, L1); % Q = zeros(s); end for i=1:npoints if npoints>5 && verb==1 progressbar(i,npoints); end options.nb_iter_max = Inf; options.Tmax = Inf; % sum(size(W)); % [D,S] = perform_fast_marching(W, points, options); options.constraint_map = L; pts = points; if not(aniso) pts = pts(:,end); end D = my_eval_distance(W, pts, options); Dold = D; D = min(D,L); % known distance map to lanmarks L = min(D,L1); % cropp with other constraints if not(isempty(Q)) % update Voronoi Q(Dold==D) = size(points,2); end % remove away data D(D==Inf) = 0; if isempty(Q) % compute farthest points [tmp,I] = max(D(:)); [a,b,c] = ind2sub(size(W),I(1)); else % compute farthest steiner point [pts,faces] = compute_saddle_points(Q,D,mask); a = pts(1,1); b = pts(2,1); c = []; if d==3 c = pts(3,1); end end if d==2 % 2D points = [points,[a;b]]; else % 3D points = [points,[a;b;c]]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [D,Q] = my_eval_distance(W, x, options) % D is distance % Q is voronoi segmentation options.null = 0; n = size(W,1); d = nb_dims(W); if std(W(:))<eps % euclidean distance if size(x,2)>1 D = zeros(n)+Inf; Q = zeros(n); for i=1:size(x,2) Dold = D; Qold = Q; D = min(Dold, my_eval_distance(W,x(:,i))); % update voronoi segmentation Q(:) = i; Q(D==Dold) = Qold(D==Dold); end return; end if d==2 [Y,X] = meshgrid(1:n,1:n); D = 1/W(1) * sqrt( (X-x(1)).^2 + (Y-x(2)).^2 ); else [X,Y,Z] = ndgrid(1:n,1:n,1:n); D = 1/W(1) * sqrt( (X-x(1)).^2 + (Y-x(2)).^2 + (Z-x(3)).^2 ); end Q = D*0+1; else [D,S,Q] = perform_fast_marching(W, x, options); end
github
jacksky64/imageProcessing-master
perform_farthest_point_sampling_mesh.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/perform_farthest_point_sampling_mesh.m
1,797
utf_8
3e863c0d0d0a4b012240b09688d4c8ef
function [points,D] = perform_farthest_point_sampling_mesh( vertex,faces, points, nbr_iter, options ) % perform_farthest_point_sampling - samples points using farthest seeding strategy % % [points,D] = perform_farthest_point_sampling_mesh( vertex,faces, points, nbr_iter, options ); % % points can be [] or can be a (nb.points,1) matrix of already computed % sampling locations. % % See also: perform_fast_marching_mesh. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; if nargin<3 nb_iter = 1; end [vertex,faces] = check_face_vertex(vertex,faces); n = size(vertex,2); L1 = getoptions(options, 'constraint_map', zeros(n,1) + Inf ); if nargin<2 || isempty(points) % initialize farthest points at random points = round(rand(1,1)*(n-1))+1; % replace by farthest point [points,L] = perform_farthest_point_sampling_mesh( vertex,faces, points, 1, options ); points = points(end); nbr_iter = nbr_iter-1; else % initial distance map L = min(zeros(n,1) + Inf, L1); end for i=1:nbr_iter if nbr_iter>5 progressbar( i, nbr_iter ); end options.nb_iter_max = Inf; options.constraint_map = L; D = my_eval_distance(vertex,faces, points(end), options); D = min(D,L); % known distance map to lanmarks L = min(D,L1); % cropp with other constraints % remove away data D(D==Inf) = 0; % compute farhtest points [tmp,I] = max(D(:)); points = [points,I(1)]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D = my_eval_distance(vertex,faces,x, options) options.null = 0; if length(x)>1 D = zeros(n)+Inf; for i=1:length(x) D = min(D, my_eval_distance(vertex,faces,x(i))); end return; end [D,Z,Q] = perform_fast_marching_mesh(vertex, faces, x, options);
github
jacksky64/imageProcessing-master
divgrad.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/divgrad.m
1,749
utf_8
531f368d44593d78a30eea65ad3a8134
function G = divgrad(M,options) % divgrad - compute either gradient or divergence. % % G = divgrad(M); % % if M is a 2D array, compute gradient, % if M is a 3D array, compute divergence. % Use centered finite differences. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; if size(M,3)==2 G = mydiv(M,options); else G = mygrad(M,options); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function d = mydiv(g,options) bound = getoptions(options, 'bound', 'sym'); n = size(g,1); d = zeros(n); if strcmp(bound,'sym') d(2:end-1,:) = d(2:end-1,:) + ( g(3:end,:,1)-g(1:end-2,:,1) )/2; d(1,:) = d(1,:) + g(2,:,1)-g(1,:,1); d(end,:) = d(end,:) + g(end,:,1)-g(end-1,:,1); d(:,2:end-1) = d(:,2:end-1) + ( g(:,3:end,2)-g(:,1:end-2,2) )/2; d(:,1) = d(:,1) + g(:,2,2)-g(:,1,2); d(:,end) = d(:,end) + g(:,end,2)-g(:,end-1,2); else sel1 = [2:n 1]; sel2 = [n 1:n-1]; d = g(sel1,:,1)-g(sel2,:,1) + g(:,sel1,2)-g(:,sel2,2); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function g = mygrad(M,options) bound = getoptions(options, 'bound', 'sym'); n = size(M,1); g = zeros(n,n,2); if strcmp(bound,'sym') % on x g(2:end-1,:,1) = ( M(3:end,:)-M(1:end-2,:) )/2; g(1,:,1) = M(2,:)-M(1,:); g(end,:,1) = M(end,:)-M(end-1,:); % on y g(:,2:end-1,2) = ( M(:,3:end)-M(:,1:end-2,:) )/2; g(:,1,1) = M(2,:)-M(1,:); g(:,end,1) = M(:,end)-M(:,end-1); else sel1 = [2:n 1]; sel2 = [n 1:n-1]; g = cat( 3, M(sel1,:)-M(sel2,:), M(:,sel1)-M(:,sel2) )/2; end
github
jacksky64/imageProcessing-master
compute_voronoi_triangulation.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/compute_voronoi_triangulation.m
2,806
utf_8
6ed546707daebe1eb6f945f8834ceb61
function faces = compute_voronoi_triangulation(Q, vertex) % compute_voronoi_triangulation - compute a triangulation % % face = compute_voronoi_triangulation(Q); % % Q is a Voronoi partition function, computed using % perform_fast_marching. % face(:,i) is the ith face. % % Works in 2D and in 3D. % % Copyright (c) 2008 Gabriel Peyre d = nb_dims(Q); if d==2 faces = compute_voronoi_triangulation_2d(Q, vertex); elseif d==3 faces = compute_voronoi_triangulation_3d(Q, vertex); else error('Works only for 2D or 3D data.'); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function faces = compute_voronoi_triangulation_3d(Q, vertex) [dx dy dz] = meshgrid(0:1,0:1,0:1); V = []; for i=1:8 v = Q(1+dx(i):end-1+dx(i),1+dy(i):end-1+dy(i),1+dz(i):end-1+dz(i)); V = [V v(:)]; end V = sort(V,2); V = unique(V, 'rows'); V = V( prod(V,2)>0 ,:); d = V(:,1)*0; for i=1:7 d = d+(V(:,i)~=V(:,i+1)); end if sum(d==4)>1 % warning('Problem with triangulation.'); end % split 5 folds into 2 I = find(d==4); faces = []; for i=1:length(I) v = unique(V(I(i),:)); x = vertex(:,v); % points % barycenter a = sum( x, 2 ) / 5; x = x-repmat(a, [1 size(x,2)]); t = atan2(x(2,:),x(1,:)); [tmp,s] = sort(t); faces = [faces v( s([1 2 3 5]))']; faces = [faces v( s([3 4 1 5]))']; end % faces = [V(I,1:3);V(I,[3 4 1])]; % remaining triangles V = V( d==3 ,:); for i=1:size(V,1) V(i,1:4) = unique(V(i,:)); end faces = [faces, V(:,1:4)']; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function faces = compute_voronoi_triangulation_2d(Q, vertex) V = []; v = Q(1:end-1,1:end-1); V = [V v(:)]; v = Q(2:end,1:end-1); V = [V v(:)]; v = Q(1:end-1,2:end); V = [V v(:)]; v = Q(2:end,2:end); V = [V v(:)]; V = sort(V,2); V = unique(V, 'rows'); V = V( prod(V,2)>0 ,:); d = (V(:,1)~=V(:,2)) + (V(:,2)~=V(:,3)) + (V(:,3)~=V(:,4)); if sum(d==3)>1 warning('Problem with triangulation.'); end % split squares into 2 triangles I = find(d==3); faces = []; for i=1:length(I) v = V(I(i),:); x = vertex(:,v); % points % barycenter a = sum( x, 2 ) / 4; x = x-repmat(a, [1 size(x,2)]); t = atan2(x(2,:),x(1,:)); [tmp,s] = sort(t); faces = [faces; v( s([1 2 3]))]; faces = [faces; v( s([3 4 1]))]; end % faces = [V(I,1:3);V(I,[3 4 1])]; % remaining triangles V = V( d==2 ,:); for i=1:size(V,1) V(i,1:3) = unique(V(i,:)); end faces = [faces; V(:,1:3)]; % return in correct format faces = faces';
github
jacksky64/imageProcessing-master
vol3d.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/vol3d.m
5,899
utf_8
9ce5b72520d76d1225023aa3732b653d
function [model] = vol3d(varargin) %H = VOL3D Volume render 3-D data. % VOL3D uses the orthogonal plane 2-D texture mapping technique for % volume rending 3-D data in OpenGL. Use the 'texture' option to fine % tune the texture mapping technique. This function is best used with % fast OpenGL hardware. % % H = vol3d('CData',data) Create volume render object from input % 3-D data. Use interp3 on data to increase volume % rendering resolution. Returns a struct % encapsulating the pseudo-volume rendering object. % % vol3d(...'Parent',axH) Specify parent axes % % vol3d(...,'texture','2D') Default. Only render texture planes parallel % to nearest orthogonal viewing plane. Requires % doing vol3d(h) to refresh if the view is % rotated (i.e. using cameratoolbar). % % vol3d(...,'texture','3D') Render x,y,z texture planes simultaneously. % This avoids the need to refresh the view but % requires faster OpenGL hardware peformance. % % vol3d(H) Refresh view. Updates rendering of texture planes % to reduce visual aliasing when using the 'texture'='2D' % option. % % NOTES % Use vol3dtool for editing the colormap and alphamap. % Adjusting these maps will allow you to explore your 3-D volume % data at various intensity levels. See documentation on % alphamap and colormap for more information. % % Use interp3 on input date to increase/decrease resolution of data % % Examples: % % % Visualizing fluid flow % v = flow(50); % h = vol3d('cdata',v,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % alphamap('rampdown'), alphamap('decrease'), alphamap('decrease') % % % Visualizing MRI data % load mri.mat % D = squeeze(D); % h = vol3d('cdata',D,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % axis tight; daspect([1 1 .4]) % alphamap('rampup'); % alphamap(.06 .* alphamap); % % See also vol3dtool, alphamap, colormap, opengl, isosurface % Copyright Joe Conti, 2004 if isstruct(varargin{1}) model = varargin{1}; if length(varargin) > 1 varargin = {varargin{2:end}}; end else model = localGetDefaultModel; end if length(varargin)>1 for n = 1:2:length(varargin) switch(lower(varargin{n})) case 'cdata' model.cdata = varargin{n+1}; case 'parent' model.parent = varargin{n+1}; case 'texture' model.texture = varargin{n+1}; end end end if isempty(model.parent) model.parent = gca; end % choose default 3-D view ax = model.parent; axis(ax,'vis3d'); axis(ax,'tight'); [model] = local_draw(model); %------------------------------------------% function [model] = localGetDefaultModel model.cdata = []; model.xdata = []; model.ydata = []; model.zdata = []; model.parent = []; model.handles = []; model.texture = '2D'; %------------------------------------------% function [model,ax] = local_draw(model) cdata = model.cdata; siz = size(cdata); % Define [x,y,z]data if isempty(model.xdata) model.xdata = [0 siz(2)]; end if isempty(model.ydata) model.ydata = [0 siz(1)]; end if isempty(model.zdata) model.zdata = [0 siz(3)]; end try, delete(model.handles); end ax = model.parent; cam_dir = camtarget(ax) - campos(ax); [m,ind] = max(abs(cam_dir)); h = findobj(ax,'type','surface','tag','vol3d'); for n = 1:length(h) try, delete(h(n)); end end is3DTexture = strcmpi(model.texture,'3D'); handle_ind = 1; % Create z-slice if(ind==3 || is3DTexture ) x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)]; diff = model.zdata(2)-model.zdata(1); delta = diff/size(cdata,3); for n = 1:size(cdata,3) slice = double(squeeze(cdata(:,:,n))); h(handle_ind) = surface(x,y,z,'Parent',ax); set(h(handle_ind),'cdatamapping','scaled','facecolor','texture','cdata',slice,... 'edgealpha',0,'alphadata',double(slice),'facealpha','texturemap','tag','vol3d'); z = z + delta; handle_ind = handle_ind + 1; end end % Create x-slice if (ind==1 || is3DTexture ) x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.xdata(2)-model.xdata(1); delta = diff/size(cdata,2); for n = 1:size(cdata,2) slice = double(squeeze(cdata(:,n,:))); h(handle_ind) = surface(x,y,z,'Parent',ax); set(h(handle_ind),'cdatamapping','scaled','facecolor','texture','cdata',slice,... 'edgealpha',0,'alphadata',double(slice),'facealpha','texturemap','tag','vol3d'); x = x + delta; handle_ind = handle_ind + 1; end end % Create y-slice if (ind==2 || is3DTexture) x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.ydata(2)-model.ydata(1); delta = diff/size(cdata,1); for n = 1:size(cdata,1) slice = double(squeeze(cdata(n,:,:))); h(handle_ind) = surface(x,y,z,'Parent',ax); set(h(handle_ind),'cdatamapping','scaled','facecolor','texture','cdata',slice,... 'edgealpha',0,'alphadata',double(slice),'facealpha','texturemap','tag','vol3d'); y = y + delta; handle_ind = handle_ind + 1; end end model.handles = h;
github
jacksky64/imageProcessing-master
compute_geodesic_mesh.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/compute_geodesic_mesh.m
4,234
utf_8
f3e2ddf4b7d47f9f8d9226288e74c5d7
function [path,vlist,plist] = compute_geodesic_mesh(D, vertex, face, x, options) % compute_geodesic_mesh - extract a discrete geodesic on a mesh % % [path,vlist,plist] = compute_geodesic_mesh(D, vertex, face, x, options); % % D is the set of geodesic distances. % % path is a 3D curve that is the shortest path starting at x. % You can force to use a fully discrete descent using % options.method='discrete'. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; verb = getoptions(options, 'verb', 1); if length(x)>1 path = {}; vlist = {}; plist = {}; for i=1:length(x) if length(x)>5 if verb progressbar(i,length(x)); end end [path{i},vlist{i},plist{i}] = compute_geodesic_mesh(D, vertex, face, x(i), options); end return; end method = getoptions(options, 'method', 'continuous'); [vertex,face] = check_face_vertex(vertex,face); if strcmp(method, 'discrete') if isfield(options, 'v2v') vring = options.v2v; else vring = compute_vertex_ring(face); end % path purely on edges vlist = x; vprev = D(x); while true x0 = vlist(end); r = vring{x0}; [v,J] = min(D(r)); x = r(J); if v>=vprev || v==0 break; end vprev = v; vlist(end+1) = x; end path = vertex(:,vlist); plist = vlist*0+1; return; end %%% gradient descent on edges % retrieve adjacency lists m = size(face,2); n = size(vertex,2); % precompute the adjacency datasets if isfield(options, 'e2f') e2f = options.e2f; else e2f = compute_edge_face_ring(face); end if isfield(options, 'v2v') v2v = options.v2v; else v2v = compute_vertex_ring(face); end % initialize the paths [w,f] = vertex_stepping(face, x, e2f, v2v, D); vlist = [x;w]; plist = [1]; Dprev = D(x); while true; % current triangle i = vlist(1,end); j = vlist(2,end); k = get_vertex_face(face(:,f),i,j); a = D(i); b = D(j); c = D(k); % adjacent faces f1 = get_face_face(e2f, f, i,k); f2 = get_face_face(e2f, f, j,k); % compute gradient in local coordinates x = plist(end); y = 1-x; gr = [a-c;b-c]; % twist the gradient u = vertex(:,i) - vertex(:,k); v = vertex(:,j) - vertex(:,k); A = [u v]; A = (A'*A)^(-1); gr = A*gr; nx = gr(1); ny = gr(2); % compute intersection point etas = -y/ny; etat = -x/nx; s = x + etas*nx; t = y + etat*ny; if etas<0 && s>=0 && s<=1 && f1>0 %%% CASE 1 %%% plist(end+1) = s; vlist(:,end+1) = [i k]; % next face f = f1; elseif etat<0 && t>=0 && t<=1 && f2>0 %%% CASE 2 %%% plist(end+1) = t; vlist(:,end+1) = [j k]; % next face f = f2; else %%% CASE 3 %%% if a<=b z = i; else z = j; end [w,f] = vertex_stepping( face, z, e2f, v2v, D); vlist(:,end+1) = [z w]; plist(end+1) = 1; end Dnew = D(vlist(1,end))*plist(end) + D(vlist(2,end))*(1-plist(end)); if Dnew==0 || (Dprev==Dnew && length(plist)>1) break; end Dprev=Dnew; end v1 = vertex(:,vlist(1,:)); v2 = vertex(:,vlist(2,:)); path = v1.*repmat(plist, [3 1]) + v2.*repmat(1-plist, [3 1]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [w,f] = vertex_stepping(face, v, e2f, v2v, D) % adjacent vertex with minimum distance [tmp,I] = min( D(v2v{v}) ); w = v2v{v}(I); f1 = e2f(v,w); f2 = e2f(w,v); if f1<0 f = f2; return; end if f2<0 f = f1; return; end z1 = get_vertex_face(face(:,f1),v,w); z2 = get_vertex_face(face(:,f2),v,w); if D(z1)<D(z2); f = f1; else f = f2; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function k = get_vertex_face(f,v1,v2) if nargin==2 v2 = v1(2); v1 = v1(1); end k = setdiff(f, [v1 v2]); if length(k)~=1 error('Error in get_vertex_face'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = get_face_face(e2f, f, i,j) f1 = e2f(i,j); f2 = e2f(j,i); if f==f1 f = f2; else f = f1; end
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/toolbox/load_image.m
19,503
utf_8
16a3a912ce98f3734882ac9fe80494c2
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = 0.1; % translation gamma = 1/sqrt(2); % slope if isfield( options, 'eta' ) eta = options.eta; end if isfield( options, 'gamma' ) eta = options.gamma; end if isfield( options, 'radius' ) radius = options.radius; end if isfield( options, 'center' ) center = options.center; end if isfield( options, 'center1' ) center1 = options.center1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for some blurring sigma = 0; if isfield(options, 'sigma') sigma = options.sigma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} if isfield(options, 'radius') r = options.radius; else r = 10; end M = create_letter(type(8), r, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; if isfield(options, 'eccentricity') eccentricity = options.eccentricity; else eccentricity = 1.3; end x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' if isfield(options, 'tube_width') w = options.tube_width; else w = 0.06; end c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.tube_width = 0.09; M = load_image('square-tube', n, options); case 'polygon' if isfield(options, 'nb_points') nb_points = options.nb_points; else nb_points = 9; end if isfield(options, 'scaling') scaling = options.scaling; else scaling = 1; end theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' if isfield(options, 'theta') theta = options.theta; else theta = 30 * 2*pi/360; end options.radius = 0.45; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end if isfield(options, 'frequency') f = options.frequency; else f = 30; end if isfield(options, 'width') eta = options.width; else eta = 0.3; end x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' if ~isfield( options, 'width' ) width = round(n/16); else width = options.width; end [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); if isfield(options, 'theta') theta = options.theta; else theta = 0.2; end if isfield(options, 'freq') freq = options.freq; else freq = 0.2; end X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} if isfield(options, 'alpha') alpha = options.alpha; else alpha = 1; end M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian if isfield(options, 'sigma') sigma = options.sigma; else sigma = 10; end M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature if isfield(options, 'c') c = options.c; else c = 0.1; end % angle if isfield(options, 'theta'); theta = options.theta; else theta = pi/sqrt(2); end x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' if isfield(options, 'nbr_periods') nbr_periods = options.nbr_periods; else nbr_periods = 8; end if isfield(options, 'theta') theta = options.theta; else theta = 1/sqrt(2); end if isfield(options, 'skew') skew = options.skew; else skew = 1/sqrt(2); end A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1; end M = randn(n); otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]); M = perform_convolution(M,h); end M = rescale(M) * 256; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
jacksky64/imageProcessing-master
check_face_vertex.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_fast_marching/toolbox/check_face_vertex.m
630
utf_8
5112ad0482fa3700123a6c770f8eb622
function [vertex,face] = check_face_vertex(vertex,face, options) % check_face_vertex - check that vertices and faces have the correct size % % [vertex,face] = check_face_vertex(vertex,face); % % Copyright (c) 2007 Gabriel Peyre vertex = check_size(vertex); face = check_size(face); %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = check_size(a) if isempty(a) return; end if size(a,1)>size(a,2) a = a'; end if size(a,1)<3 && size(a,2)==3 a = a'; end if size(a,1)<=3 && size(a,2)>=3 && sum(abs(a(:,3)))==0 % for flat triangles a = a'; end if size(a,1)~=3 error('face or vertex is not of correct size'); end
github
jacksky64/imageProcessing-master
load_signal.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/load_signal.m
12,338
utf_8
b70e4cb57d6b467ae9c90d4b3310a81f
function y = load_signal(name, n, options) % load_signal - load a 1D signal % % y = load_signal(name, n, options); % % name is a string that can be : % 'regular' (options.alpha gives regularity) % 'step', 'rand', % 'gaussiannoise' (options.sigma gives width of filtering in pixels), % [natural signals] % 'tiger', 'bell', 'bird' % [WAVELAB signals] % 'HeaviSine', 'Bumps', 'Blocks', % 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', % 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', % 'MishMash', 'WernerSorrows' (Heisenberg), % 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), % 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' % 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' % 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) if nargin<2 n = 1024; end options.null = 0; if isfield(options, 'alpha') alpha = options.alpha; else alpha = 2; end options.rep = ''; switch lower(name) case 'regular' y = gen_signal(n,alpha); case 'step' y = linspace(0,1,n)>0.5; case 'stepregular' y = linspace(0,1,n)>0.5; y=y(:); a = gen_signal(n,2); a = a(:); a = rescale(a,-0.1,0.1); y = y+a; case 'gaussiannoise' % filtered gaussian noise y = randn(n,1); if isfield(options, 'sigma') sigma = options.sigma; % variance in number of pixels else sigma = 20; end m = min(n, 6*round(sigma/2)+1); h = compute_gaussian_filter(m,sigma/(4*n),n); options.bound = 'per'; y = perform_convolution(y,h, options); case 'rand' if isfield(options, 'p1') p1 = options.p1; else c = 10; p1 = 1:c; p1 = p1/sum(p1); end p1 = p1(:); c = length(p1); if isfield(options, 'p2') p2 = options.p2; else if isfield(options, 'evol') evol = options.evol; else evol = 0; end p2 = p1(:) + evol*(rand(c,1)-0.5); p2 = max(p2,0); p2 = p2/sum(p2); end y = zeros(n,1); for i=1:n a = (i-1)/(n-1); p = a*p1+(1-a)*p2; p = p/sum(p); y(i) = rand_discr(p, 1); end case 'bird' [y,fs] = load_sound([name '.wav'], n, options); case 'tiger' [y,fs] = load_sound([name '.au'], n, options); case 'bell' [y,fs] = load_sound([name '.wav'], n, options); otherwise y = MakeSignal(name,n); end y = y(:); function y = gen_signal(n,alpha) % gen_signal - generate a 1D C^\alpha signal of length n. % % y = gen_signal(n,alpha); % % The signal is scaled in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? if nargin<2 alpha = 2; end y = randn(n,1); fy = fft(y); fy = fftshift(fy); % filter with |omega|^{-\alpha} h = (-n/2+1):(n/2); h = (abs(h)+1).^(-alpha-0.5); fy = fy.*h'; fy = fftshift(fy); y = real( ifft(fy) ); y = (y-min(y))/(max(y)-min(y)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sig = MakeSignal(Name,n) % MakeSignal -- Make artificial signal % Usage % sig = MakeSignal(Name,n) % Inputs % Name string: 'HeaviSine', 'Bumps', 'Blocks', % 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', % 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', % 'MishMash', 'WernerSorrows' (Heisenberg), % 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), % 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' % 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' % 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) % n desired signal length % Outputs % sig 1-d signal % % References % Various articles of D.L. Donoho and I.M. Johnstone % if nargin > 1, t = (1:n) ./n; end Name = lower(Name); if strcmp(Name,'heavisine'), sig = 4.*sin(4*pi.*t); sig = sig - sign(t - .3) - sign(.72 - t); elseif strcmp(Name,'bumps'), pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2]; wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; sig = zeros(size(t)); for j =1:length(pos) sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4; end elseif strcmp(Name,'blocks'), pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-4.2)]; sig = zeros(size(t)); for j=1:length(pos) sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ; end elseif strcmp(Name,'doppler'), sig = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05)); elseif strcmp(Name,'ramp'), sig = t - (t >= .37); elseif strcmp(Name,'cusp'), sig = sqrt(abs(t - .37)); elseif strcmp(Name,'sing'), k = floor(n * .37); sig = 1 ./abs(t - (k+.5)/n); elseif strcmp(Name,'hisine'), sig = sin( pi * (n * .6902) .* t); elseif strcmp(Name,'losine'), sig = sin( pi * (n * .3333) .* t); elseif strcmp(Name,'linchirp'), sig = sin(pi .* t .* ((n .* .500) .* t)); elseif strcmp(Name,'twochirp'), sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n .* t)); elseif strcmp(Name,'quadchirp'), sig = sin( (pi/3) .* t .* (n .* t.^2)); elseif strcmp(Name,'mishmash'), % QuadChirp + LinChirp + HiSine sig = sin( (pi/3) .* t .* (n .* t.^2)) ; sig = sig + sin( pi * (n * .6902) .* t); sig = sig + sin(pi .* t .* (n .* .125 .* t)); elseif strcmp(Name,'wernersorrows'), sig = sin( pi .* t .* (n/2 .* t.^2)) ; sig = sig + sin( pi * (n * .6902) .* t); sig = sig + sin(pi .* t .* (n .* t)); pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2]; wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; for j =1:length(pos) sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4; end elseif strcmp(Name,'leopold'), sig = (t == floor(.37 * n)/n); % Kronecker elseif strcmp(Name,'riemann'), sqn = round(sqrt(n)); sig = t .* 0; % Riemann's Non-differentiable Function sig((1:sqn).^2) = 1. ./ (1:sqn); sig = real(ifft(sig)); elseif strcmp(Name,'hypchirps'), % Hyperbolic Chirps of Mallat's book alpha = 15*n*pi/1024; beta = 5*n*pi/1024; t = (1.001:1:n+.001)./n; f1 = zeros(1,n); f2 = zeros(1,n); f1 = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68); f2 = sin(beta./(.8-t)).*(0.1<t).*(t<0.75); M = round(0.65*n); P = floor(M/4); enveloppe = ones(1,M); % the rising cutoff function enveloppe(1:P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-1)*pi))/2; enveloppe(M-P+1:M) = reverse(enveloppe(1:P)); env = zeros(1,n); env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M); sig = (f1+f2).*env; elseif strcmp(Name,'linchirps'), % Linear Chirps of Mallat's book b = 100*n*pi/1024; a = 250*n*pi/1024; t = (1:n)./n; A1 = sqrt((t-1/n).*(1-t)); sig = A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2))); elseif strcmp(Name,'chirps'), % Mixture of Chirps of Mallat's book t = (1:n)./n.*10.*pi; f1 = cos(t.^2*n/1024); a = 30*n/1024; t = (1:n)./n.*pi; f2 = cos(a.*(t.^3)); f2 = reverse(f2); ix = (-n:n)./n.*20; g = exp(-ix.^2*4*n/1024); i1 = (n/2+1:n/2+n); i2 = (n/8+1:n/8+n); j = (1:n)/n; f3 = g(i1).*cos(50.*pi.*j*n/1024); f4 = g(i2).*cos(350.*pi.*j*n/1024); sig = f1+f2+f3+f4; enveloppe = ones(1,n); % the rising cutoff function enveloppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-ones(1,n/8))./(n/8-1)*pi))/2; enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8)); sig = sig.*enveloppe; elseif strcmp(Name,'gabor'), % two modulated Gabor functions in % Mallat's book N = 512; t = (-N:N)*5/N; j = (1:N)./N; g = exp(-t.^2*20); i1 = (2*N/4+1:2*N/4+N); i2 = (N/4+1:N/4+N); sig1 = 3*g(i1).*exp(i*N/16.*pi.*j); sig2 = 3*g(i2).*exp(i*N/4.*pi.*j); sig = sig1+sig2; elseif strcmp(Name,'sineoneoverx'), % sin(1/x) in Mallat's book N = 1024; a = (-N+1:N); a(N) = 1/100; a = a./(N-1); sig = sin(1.5./(i)); sig = sig(513:1536); elseif strcmp(Name,'cusp2'), N = 64; a = (1:N)./N; x = (1-sqrt(a)) + a/2 -.5; M = 8*N; sig = zeros(1,M); sig(M-1.5.*N+1:M-.5*N) = x; sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x); sig(3*N+1:3*N + N) = .5*ones(1,N); elseif strcmp(Name,'smoothcusp'), sig = MakeSignal('Cusp2'); N = 64; M = 8*N; t = (1:M)/M; sigma = 0.01; g = exp(-.5.*(abs(t-.5)./sigma).^2)./sigma./sqrt(2*pi); g = fftshift(g); sig2 = iconv(g',sig)'/M; elseif strcmp(Name,'piece-regular'), sig1=-15*MakeSignal('Bumps',n); t = (1:fix(n/12)) ./fix(n/12); sig2=-exp(4*t); t = (1:fix(n/7)) ./fix(n/7); sig5=exp(4*t)-exp(4); t = (1:fix(n/3)) ./fix(n/3); sigma=6/40; sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2)); sig(1:fix(n/7))= sig6(1:fix(n/7)); sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5)); sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3)); sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2)); sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2; sig((fix(n/2)+2*fix(n/12)):-1:(fix(n/2)+fix(n/12)+1))=sig2; sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))=... -ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25; k=fix(n/2)+2*fix(n/12)+3*fix(n/20); sig((k+1):(k+fix(n/7)))=sig5; diff=n-5*fix(n/5); sig(5*fix(n/5)+1:n)=sig(diff:-1:1); % zero-mean bias=sum(sig)/n; sig=bias-sig; elseif strcmp(Name,'piece-polynomial'), t = (1:fix(n/5)) ./fix(n/5); sig1=20*(t.^3+t.^2+4); sig3=40*(2.*t.^3+t) + 100; sig2=10.*t.^3 + 45; sig4=16*t.^2+8.*t+16; sig5=20*(t+4); sig6(1:fix(n/10))=ones(1,fix(n/10)); sig6=sig6*20; sig(1:fix(n/5))=sig1; sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2; sig((2*fix(n/5)+1):3*fix(n/5))=sig3; sig((3*fix(n/5)+1):4*fix(n/5))=sig4; sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1); diff=n-5*fix(n/5); sig(5*fix(n/5)+1:n)=sig(diff:-1:1); %sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=-ones(1,fix(n/10))*20; sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*10; sig((n-fix(n/10)+1):(n+fix(n/20)-fix(n/10)))=ones(1,fix(n/20))*150; % zero-mean bias=sum(sig)/n; sig=sig-bias; elseif strcmp(Name,'gaussian'), sig=GWN(n,beta); g=zeros(1,n); lim=alpha*n; mult=pi/(2*alpha*n); g(1:lim)=(cos(mult*(1:lim))).^2; g((n/2+1):n)=g((n/2):-1:1); g = rnshift(g,n/2); g=g/norm(g); sig=iconv(g,sig); else disp(sprintf('MakeSignal: I don*t recognize <<%s>>',Name)) disp('Allowable Names are:') disp('HeaviSine'), disp('Bumps'), disp('Blocks'), disp('Doppler'), disp('Ramp'), disp('Cusp'), disp('Crease'), disp('Sing'), disp('HiSine'), disp('LoSine'), disp('LinChirp'), disp('TwoChirp'), disp('QuadChirp'), disp('MishMash'), disp('WernerSorrows'), disp('Leopold'), disp('Sing'), disp('HiSine'), disp('LoSine'), disp('LinChirp'), disp('TwoChirp'), disp('QuadChirp'), disp('MishMash'), disp('WernerSorrows'), disp('Leopold'), disp('Riemann'), disp('HypChirps'), disp('LinChirps'), disp('Chirps'), disp('sineoneoverx'), disp('Cusp2'), disp('SmoothCusp'), disp('Gabor'), disp('Piece-Regular'); disp('Piece-Polynomial'); disp('Gaussian'); end % % Originally made by David L. Donoho. % Function has been enhanced. % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
jacksky64/imageProcessing-master
perform_kmeans.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/perform_kmeans.m
15,880
utf_8
889e597cbf17eb5c230a7d0c9963d860
function [B,seeds,E] = perform_kmeans(X,nbCluster,options) % perform_kmeans - perform the k-means clustering algorithm. % % [B,seeds] = perform_kmeans(X,nbCluster,options); % % 'X' is a [d,n] matrix where d is the dimension of the space % and n is the number of points (that live in R^d). % 'nbCluster' is the number of wanted clusters. % % 'B' is a vector that contain the class membership % of each point. % 'seeds' is the current center of each region. % 'E' is the energy of the segmentation (the lowest, the better). % % You can provide optional parameter in a structure options: % - options.seeds : You can provide initial guess for the centers of the regions % via a [d,nbCluster] matrix 'seeds', where seeds(:,i) % is the ith center point in R^d. % - options.intialization : if you don't provide 'seeds', then % the algorithm will use a initialization depending on 'options.intialization': % * If options.intialization='random' : random choice of centers. % * If options.intialization='greedy' : greedy intialization via % farthest point sampling. % - options.nb_iter is the number of iterations of the Lloyd algorithm. % % Copyright (c) 2004 Gabriel Peyr? if size(X,1)>size(X,2) X = X'; end if nargin<2 nbCluster = 4; end options.null = 1; if isfield(options,'nb_iter') nb_iter = options.nb_iter; else nb_iter = 5; end if isfield(options,'kmeans_code') kmeans_code = options.kmeans_code; else kmeans_code = 2; end if isfield(options,'etol') etol = options.etol; else etol = 0.02; end if kmeans_code==1 [B,seeds,E] = perform_kmeans_old(X,nbCluster,options); elseif kmeans_code==2 [B,seeds,E] = kmeansML(nbCluster,X,'maxiter',nb_iter, 'etol', etol); else [B,seeds,E] = kmeans_light(X', nbCluster, etol); seeds = seeds'; end [membership,E] = computeMembership(X,seeds); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [B,seeds,E] = perform_kmeans_old(X,nbCluster,options); options.null = 1; if isfield(options,'nb_iter') nb_iter = options.nb_iter; else nb_iter = 5; end if isfield(options,'initialization') initialization = options.initialization; else initialization = 'random'; end n = size(X,2); d = size(X,1); % = (2*k+1)^2 if isfield(options,'seeds') && not(isempty(options.seeds)) seeds = options.seeds; else seeds = zeros(d,nbCluster); if strcmp(initialization,'random') % original centers (selected at random) seed_num = floor(rand(nbCluster,1)*n)+1; seeds = X(:,seed_num); elseif strcmp(initialization,'greedy') % select first point at random seeds(:,1) = X(:,floor(rand*n)+1); % replace by farthest point D = compute_distance_to_points(X,seeds(:,1)); [tmp,I] = max(D); I = I(1); seeds(:,1) = X(:,I); for i=2:nbCluster D = compute_distance_to_points(X,seeds(:,1:i-1)); if i>2 D = sum(D); end [tmp,I] = max(D); I = I(1); seeds(:,i) = X(:,I); end else error('Unknown intialization type (should be random/greedy).'); end end D = compute_distance_to_points(X,seeds); % compute region of influence [tmp,B] = min(D); for i=1:nb_iter % compute region center for k=1:nbCluster I = find(B==k); % points belonging to cluster k % geometric barycenter Xk = X(:,I); if ~isempty(I) seeds(:,k) = sum(Xk,2)/length(I); else % warning('Empty cluster created.'); end end % update distance to seed D = compute_distance_to_points(X,seeds); % compute region of influence [tmp,B] = min(D); end if nargout==3 % compute the energy E = 0; for k=1:nbCluster I = find(B==k); % points belonging to cluster k D = compute_distance_to_points(X(:,I),seeds(:,k)); E = E+sum(D); end E = E/( n*d ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Auxiliary function function D = compute_distance_to_points(X,seeds) nbCluster = size(seeds,2); n = size(X,2); D = zeros(nbCluster,n); d = size(X,1); for k=1:nbCluster % distance to seed D(k,:) = sum( (X - repmat(seeds(:,k),1,n)).^2 ); end % kmeans_light: K-means clustering using euclid distance. % % [dataCluster codebook] = kmeans_light(data, K, stopIter) % % Input and output arguments ([]'s are optional): % data (matrix) of size NxD. N is the number of data (classifiee) % vectors,and D is the dimension of each vector. % K (scalar) The number of clusters. % stopIter (scalar) The threshold [0, 1] to stop learning iterations. % Default is .05, and smaller makes continue interations. % dataCluster (matrix) of size Nx1: integers indicating the cluster indicies. % dataCluster(i) is the cluster id for data item i. % codebook (matrix) of size KxD: set of cluster centroids, VQ codewords. % % See also: autolabel.m % % Author : Naotoshi Seo % Date : April, 2006 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [dataCluster codebook distortion] = kmeans_light(data, K, stopIter) if nargin < 3, stopIter = .05; end [N dim] = size(data); if K > N, error('K must be less than or equal to the # of data'); end % Initial codebook codebook = data(randsample(N, K), :); improvedRatio = Inf; distortion = Inf; iter = 0; while true % Calculate euclidean distances between each sample and each codeword d = eucdist2(data, codebook); % Assign each sample to the nearest codeword (centroid) [dataNearClusterDist, dataCluster] = min(d, [], 2); % distortion. If centroids are unchanged, distortion is also unchanged. % smaller distortion is better old_distortion = distortion; distortion = mean(dataNearClusterDist); % If no more improved, break; improvedRatio = 1 - (distortion / old_distortion); % fprintf('%d: improved ratio = %f\n', iter, improvedRatio); iter = iter + 1; if improvedRatio <= stopIter, break, end; % Renew codebook for i=1:K % Get the id of samples which were clusterd into cluster i. idx = find(dataCluster == i); % Calculate centroid of each cluter, and replace codebook codebook(i, :) = mean(data(idx, :)); end end %%%% Euclidean distance matrix between row vectors in X and Y %%%%%%% % Input and output arguments % X: NxDim matrix % Y: PxDim matrix % d: distance matrix of size NxP function d=eucdist2(X,Y); U=~isnan(Y); Y(~U)=0; V=~isnan(X); X(~V)=0; d=abs(X.^2*U'+V*Y'.^2-2*X*Y'); function y = randsample(n, k, replace, w) %RANDSAMPLE Random sample, with or without replacement. % Y = RANDSAMPLE(N,K) returns Y as a 1-by-K vector of values sampled % uniformly at random, without replacement, from the integers 1:N. % % Y = RANDSAMPLE(POPULATION,K) returns K values sampled uniformly at % random, without replacement, from the values in the vector POPULATION. % % Y = RANDSAMPLE(...,REPLACE) returns a sample taken with replacement if % REPLACE is true, or without replacement if REPLACE is false (the default). % % Y = RANDSAMPLE(...,true,W) returns a weighted sample, using positive % weights W, taken with replacement. W is often a vector of probabilities. % This function does not support weighted sampling without replacement. % % Example: Generate a random sequence of the characters ACGT, with % replacement, according to specified probabilities. % % R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15]) % % See also RAND, RANDPERM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 1.1.4.1 $ $Date: 2003/11/01 04:28:51 $ if nargin < 2 error('stats:randsample:TooFewInputs','Requires two input arguments.'); elseif numel(n) == 1 population = []; else population = n; n = numel(population); if length(population)~=n error('stats:randsample:BadPopulation','POPULATION must be a vector.'); end end if nargin < 3 replace = false; end if nargin < 4 w = []; elseif ~isempty(w) if length(w) ~= n if isempty(population) error('stats:randsample:InputSizeMismatch',... 'W must have length equal to N.'); else error('stats:randsample:InputSizeMismatch',... 'W must have the same length as the population.'); end else p = w(:)' / sum(w); end end switch replace % Sample with replacement case {true, 'true', 1} if isempty(w) y = ceil(n .* rand(k,1)); else [dum, y] = histc(rand(k,1),[0 cumsum(p)]); end % Sample without replacement case {false, 'false', 0} if k > n if isempty(population) error('stats:randsample:SampleTooLarge',... 'K must be less than or equal to N for sampling without replacement.'); else error('stats:randsample:SampleTooLarge',... 'K must be less than or equal to the population size.'); end end if isempty(w) % If the sample is a sizeable fraction of the population, % just randomize the whole population (which involves a full % sort of n random values), and take the first k. if 4*k > n rp = randperm(n); y = rp(1:k); % If the sample is a small fraction of the population, a full sort % is wasteful. Repeatedly sample with replacement until there are % k unique values. else x = zeros(1,n); % flags sumx = 0; while sumx < k x(ceil(n * rand(1,k-sumx))) = 1; % sample w/replacement sumx = sum(x); % count how many unique elements so far end y = find(x > 0); y = y(randperm(k)); end else error('stats:randsample:NoWeighting',... 'Weighted sampling without replacement is not supported.'); end otherwise error('stats:randsample:BadReplaceValue',... 'REPLACE must be either true or false.'); end if ~isempty(population) y = population(y); else y = y(:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [membership,means,rms] = kmeansML(k,data,varargin) % [membership,means,rms] = kmeansML(k,data,...) % % Multi-level kmeans. % Tries very hard to always return k clusters. % % INPUT % k Number of clusters % data dxn matrix of data points % 'maxiter' Max number of iterations. [30] % 'dtol' Min change in center locations. [0] % 'etol' Min percent change in RMS error. [0] % 'ml' Multi-level? [true] % 'verbose' Verbose level. [0] % 0 = none % 1 = textual % 2 = visual % % OUTPUT % membership 1xn cluster membership vector % means dxk matrix of cluster centroids % rms RMS error of model % % October 2002 % David R. Martin <[email protected]> % process options maxIter = 30; dtol = 0; etol = 0; ml = true; verbose = 0; for i = 1:2:numel(varargin), opt = varargin{i}; if ~ischar(opt), error('option names not a string'); end if i==numel(varargin), error(sprintf('option ''%s'' has no value',opt)); end val = varargin{i+1}; switch opt, case 'maxiter', maxIter = max(1,val); case 'dtol', dtol = max(0,val); case 'etol', etol = max(0,val); case 'ml', ml = val; case 'verbose', verbose = val; otherwise, error(sprintf('invalid option ''%s''',opt)); end end [membership,means,rms] = ... kmeansInternal(k,data,maxIter,dtol,etol,ml,verbose,1); function [membership,means,rms] = kmeansInternal(... k,data,maxIter,dtol,etol,ml,verbose,retry) [d,n] = size(data); perm = randperm(n); % compute initial means rate = 3; minN = 50; coarseN = round(n/rate); if ~ml | coarseN < k | coarseN < minN, % pick random points as means means = data(:,perm(1:k)); else % recurse on random subsample to get means coarseData = data(:,perm(1:coarseN)); [coarseMem,means] = ... kmeansInternal(k,coarseData,maxIter,dtol,etol,ml,verbose,0); end % Iterate. iter = 0; rms = inf; if verbose>0, fwrite(2,sprintf('kmeansML: n=%d d=%d k=%d [',n,d,k)); end while iter < maxIter, if verbose>0, fwrite(2,'.'); end iter = iter + 1; % Compute cluster membership and RMS error. rmsPrev = rms; [membership,rms] = computeMembership(data,means); % Compute new means and cluster counts. prevMeans = means; [means,counts] = computeMeans(k,data,membership); % The error should always decrease. if rms > rmsPrev, error('bug: rms > rmsPrev'); end % Check for convergence. rmsPctChange = 2 * (rmsPrev - rms) / (rmsPrev + rms + eps); maxMoved = sqrt(max(sum((prevMeans-means).^2))); if rmsPctChange <= etol & maxMoved <= dtol, break; end % Visualize. if verbose>1, kmeansVis(data,membership,means); end end [membership,rms] = computeMembership(data,means); if verbose>0, fwrite(2,sprintf('] rms=%.3g\n',rms)); end % If there's an empty cluster, then re-run kmeans. % Retry a fixed number of times. maxRetries = 3; if find(counts==0), if retry < maxRetries, disp('Warning: Re-runing kmeans due to empty cluster.'); [membership,means] = kmeansInternal( ... k,data,maxIter,dtol,etol,ml,verbose,retry+1); else disp('Warning: There is an empty cluster.'); end end function [membership,rms] = computeMembership(data,means) z = distSqr(data,means); [d2,membership] = min(z,[],2); rms = sqrt(mean(d2)); function [means,counts] = computeMeans(k,data,membership) [d,n] = size(data); means = zeros(d,k); counts = zeros(1,k); for i = 1:k, ind = find(membership==i); counts(i) = length(ind); means(:,i) = sum(data(:,ind),2) / max(1,counts(i)); end % for i = 1:n, % j = membership(i); % means(:,j) = means(:,j) + data(:,i); % counts(j) = counts(j) + 1; % end % for j = 1:k, % means(:,j) = means(:,j) / max(1,counts(j)); % end function z = distSqr(x,y) % function z = distSqr(x,y) % % Return matrix of all-pairs squared distances between the vectors % in the columns of x and y. % % INPUTS % x dxn matrix of vectors % y dxm matrix of vectors % % OUTPUTS % z nxm matrix of squared distances % % This routine is faster when m<n than when m>n. % % David Martin <[email protected]> % March 2003 % Based on dist2.m code, % Copyright (c) Christopher M Bishop, Ian T Nabney (1996, 1997) if size(x,1)~=size(y,1), error('size(x,1)~=size(y,1)'); end [d,n] = size(x); [d,m] = size(y); % z = repmat(sum(x.^2)',1,m) ... % + repmat(sum(y.^2),n,1) ... % - 2*x'*y; z = x'*y; x2 = sum(x.^2)'; y2 = sum(y.^2); for i = 1:m, z(:,i) = x2 + y2(i) - 2*z(:,i); end
github
jacksky64/imageProcessing-master
perform_dct_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/perform_dct_transform.m
7,750
utf_8
07f7ce84cf4f6dfc91ad645a17eab05c
function y = perform_dct_transform(x,dir) % perform_dct_transform - discrete cosine transform % % y = perform_dct_transform(x,dir); % % Copyright (c) 2006 Gabriel Peyre if size(x,1)==1 || size(x,2)==1 % 1D transform if dir==1 y = dct(x); else y = idct(x); end else if dir==1 y = dct2(x); % y = perform_dct2_transform(x); else y = idct2(x); end end function b=dct(a,n) %DCT Discrete cosine transform. % % Y = DCT(X) returns the discrete cosine transform of X. % The vector Y is the same size as X and contains the % discrete cosine transform coefficients. % % Y = DCT(X,N) pads or truncates the vector X to length N % before transforming. % % If X is a matrix, the DCT operation is applied to each % column. This transform can be inverted using IDCT. % % See also FFT, IFFT, IDCT. % Author(s): C. Thompson, 2-12-93 % S. Eddins, 10-26-94, revised % Copyright 1988-2002 The MathWorks, Inc. % $Revision: 1.7 $ $Date: 2002/04/15 01:10:40 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. if nargin == 0, error('Not enough input arguments.'); end if isempty(a) b = []; return end % If input is a vector, make it a column: do_trans = (size(a,1) == 1); if do_trans, a = a(:); end if nargin==1, n = size(a,1); end m = size(a,2); % Pad or truncate input if necessary if size(a,1)<n, aa = zeros(n,m); aa(1:size(a,1),:) = a; else aa = a(1:n,:); end % Compute weights to multiply DFT coefficients ww = (exp(-i*(0:n-1)*pi/(2*n))/sqrt(2*n)).'; ww(1) = ww(1) / sqrt(2); if rem(n,2)==1 | ~isreal(a), % odd case % Form intermediate even-symmetric matrix y = zeros(2*n,m); y(1:n,:) = aa; y(n+1:2*n,:) = flipud(aa); % Compute the FFT and keep the appropriate portion: yy = fft(y); yy = yy(1:n,:); else % even case % Re-order the elements of the columns of x y = [ aa(1:2:n,:); aa(n:-2:2,:) ]; yy = fft(y); ww = 2*ww; % Double the weights for even-length case end % Multiply FFT by weights: b = ww(:,ones(1,m)) .* yy; if isreal(a), b = real(b); end if do_trans, b = b.'; end function b=dct2(arg1,mrows,ncols) %DCT2 Compute 2-D discrete cosine transform. % B = DCT2(A) returns the discrete cosine transform of A. % The matrix B is the same size as A and contains the % discrete cosine transform coefficients. % % B = DCT2(A,[M N]) or B = DCT2(A,M,N) pads the matrix A with % zeros to size M-by-N before transforming. If M or N is % smaller than the corresponding dimension of A, DCT2 truncates % A. % % This transform can be inverted using IDCT2. % % Class Support % ------------- % A can be numeric or logical. The returned matrix B is of % class double. % % Example % ------- % RGB = imread('autumn.tif'); % I = rgb2gray(RGB); % J = dct2(I); % imshow(log(abs(J)),[]), colormap(jet), colorbar % % The commands below set values less than magnitude 10 in the % DCT matrix to zero, then reconstruct the image using the % inverse DCT function IDCT2. % % J(abs(J)<10) = 0; % K = idct2(J); % imview(I) % imview(K,[0 255]) % % See also FFT2, IDCT2, IFFT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.22.4.2 $ $Date: 2003/05/03 17:50:23 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. [m, n] = size(arg1); % Basic algorithm. if (nargin == 1), if (m > 1) & (n > 1), b = dct(dct(arg1).').'; return; else mrows = m; ncols = n; end end % Padding for vector input. a = arg1; if nargin==2, ncols = mrows(2); mrows = mrows(1); end mpad = mrows; npad = ncols; if m == 1 & mpad > m, a(2, 1) = 0; m = 2; end if n == 1 & npad > n, a(1, 2) = 0; n = 2; end if m == 1, mpad = npad; npad = 1; end % For row vector. % Transform. b = dct(a, mpad); if m > 1 & n > 1, b = dct(b.', npad).'; end function a = idct(b,n) %IDCT Inverse discrete cosine transform. % % X = IDCT(Y) inverts the DCT transform, returning the original % vector if Y was obtained using Y = DCT(X). % % X = IDCT(Y,N) pads or truncates the vector Y to length N % before transforming. % % If Y is a matrix, the IDCT operation is applied to each % column. % % See also FFT,IFFT,DCT. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.12.4.1 $ $Date: 2003/01/26 05:59:37 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. % checknargin(1,2,nargin,mfilename); if ~isa(b, 'double') b = double(b); end if min(size(b))==1 if size(b,2)>1 do_trans = 1; else do_trans = 0; end b = b(:); else do_trans = 0; end if nargin==1, n = size(b,1); end m = size(b,2); % Pad or truncate b if necessary if size(b,1)<n, bb = zeros(n,m); bb(1:size(b,1),:) = b; else bb = b(1:n,:); end if rem(n,2)==1 | ~isreal(b), % odd case % Form intermediate even-symmetric matrix. ww = sqrt(2*n) * exp(j*(0:n-1)*pi/(2*n)).'; ww(1) = ww(1) * sqrt(2); W = ww(:,ones(1,m)); yy = zeros(2*n,m); yy(1:n,:) = W.*bb; yy(n+2:n+n,:) = -j*W(2:n,:).*flipud(bb(2:n,:)); y = ifft(yy); % Extract inverse DCT a = y(1:n,:); else % even case % Compute precorrection factor ww = sqrt(2*n) * exp(j*pi*(0:n-1)/(2*n)).'; ww(1) = ww(1)/sqrt(2); W = ww(:,ones(1,m)); % Compute x tilde using equation (5.93) in Jain y = ifft(W.*bb); % Re-order elements of each column according to equations (5.93) and % (5.94) in Jain a = zeros(n,m); a(1:2:n,:) = y(1:n/2,:); a(2:2:n,:) = y(n:-1:n/2+1,:); end if isreal(b), a = real(a); end if do_trans, a = a.'; end function a = idct2(arg1,mrows,ncols) %IDCT2 Compute 2-D inverse discrete cosine transform. % B = IDCT2(A) returns the two-dimensional inverse discrete % cosine transform of A. % % B = IDCT2(A,[M N]) or B = IDCT2(A,M,N) pads A with zeros (or % truncates A) to create a matrix of size M-by-N before % transforming. % % For any A, IDCT2(DCT2(A)) equals A to within roundoff error. % % The discrete cosine transform is often used for image % compression applications. % % Class Support % ------------- % The input matrix A can be of class double or of any % numeric class. The output matrix B is of class double. % % See also DCT2, DCTMTX, FFT2, IFFT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.17.4.1 $ $Date: 2003/01/26 05:55:39 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. % checknargin(1,3,nargin,mfilename); [m, n] = size(arg1); % Basic algorithm. if (nargin == 1), if (m > 1) & (n > 1), a = idct(idct(arg1).').'; return; else mrows = m; ncols = n; end end % Padding for vector input. b = arg1; if nargin==2, ncols = mrows(2); mrows = mrows(1); end mpad = mrows; npad = ncols; if m == 1 & mpad > m, b(2, 1) = 0; m = 2; end if n == 1 & npad > n, b(1, 2) = 0; n = 2; end if m == 1, mpad = npad; npad = 1; end % For row vector. % Transform. a = idct(b, mpad); if m > 1 & n > 1, a = idct(a.', npad).'; end
github
jacksky64/imageProcessing-master
compute_skewness.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/compute_skewness.m
2,386
utf_8
d4d80af526ebb3b179c6b16cd6e2a4e3
function s = compute_skewness(x,center_mean) % compute_skewness compute the Skewness. % returns the sample skewness of the values in X. For a % vector input, S is the third central moment of X, divided by the cube % of its standard deviation. For a matrix input, S is a row vector % containing the sample skewness of each column of X. For N-D arrays, % SKEWNESS operates along the first non-singleton dimension. % % s = compute_skewness(x,center_mean); % The output size for [] is a special case, handle it here. if isequal(x,[]) s = NaN; return; end; if nargin<2 center_mean = 1; end % Figure out which dimension nanmean will work along. sz = size(x); dim = find(sz ~= 1, 1); if isempty(dim) dim = 1; end % Need to tile the output of nanmean to center X. tile = ones(1,ndims(x)); tile(dim) = sz(dim); % Center X, compute its third and second moments, and compute the % uncorrected skewness. if center_mean x0 = x - repmat(nanmean(x), tile); else x0 = x; end s2 = nanmean(x0.^2); % this is the biased variance estimator m3 = nanmean(x0.^3); denom = s2.^(1.5); denom(abs(denom)<eps) = 1; s = m3 ./ denom; function m = nanmean(x,dim) %NANMEAN Mean value, ignoring NaNs. % M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing % values. For vector input, M is the mean value of the non-NaN elements % in X. For matrix input, M is a row vector containing the mean value of % non-NaN elements in each column. For N-D arrays, NANMEAN operates % along the first non-singleton dimension. % % NANMEAN(X,DIM) takes the mean along the dimension DIM of X. % % See also MEAN, NANMEDIAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.13.4.2 $ $Date: 2004/01/24 09:34:32 $ % Find NaNs and set them to zero nans = isnan(x); x(nans) = 0; if nargin == 1 % let sum deal with figuring out which dimension to use % Count up non-NaNs. n = sum(~nans); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x) ./ n; else % Count up non-NaNs. n = sum(~nans,dim); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x,dim) ./ n; end
github
jacksky64/imageProcessing-master
compute_kurtosis.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/compute_kurtosis.m
2,498
utf_8
36e9c2e951aed214419c3eaccfcdcf44
function k = compute_kurtosis(x, center_mean) %compute_kurtosis - compute the Kurtosis. % % returns the sample kurtosis of the values in X. For a % vector input, K is the fourth central moment of X, divided by fourth % power of its standard deviation. For a matrix input, K is a row vector % containing the sample kurtosis of each column of X. For N-D arrays, % KURTOSIS operates along the first non-singleton dimension. % % K = compute_kurtosis(X, center_mean); % % Set center_mean=0 if you do not want to remove the mean before % computing the kurtosis. % The output size for [] is a special case, handle it here. if isequal(x,[]) k = NaN; return; end; if nargin<2 center_mean = 1; end % Figure out which dimension nanmean will work along. sz = size(x); dim = find(sz ~= 1, 1); if isempty(dim) dim = 1; end % Need to tile the output of nanmean to center X. tile = ones(1,ndims(x)); tile(dim) = sz(dim); % Center X, compute its fourth and second moments, and compute the % uncorrected kurtosis. if center_mean x0 = x - repmat(nanmean(x), tile); else x0 = x; end s2 = nanmean(x0.^2); % this is the biased variance estimator m4 = nanmean(x0.^4); denom = s2.^2; denom(abs(denom)<eps) = 1; k = m4 ./ denom; function m = nanmean(x,dim) %NANMEAN Mean value, ignoring NaNs. % M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing % values. For vector input, M is the mean value of the non-NaN elements % in X. For matrix input, M is a row vector containing the mean value of % non-NaN elements in each column. For N-D arrays, NANMEAN operates % along the first non-singleton dimension. % % NANMEAN(X,DIM) takes the mean along the dimension DIM of X. % % See also MEAN, NANMEDIAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.13.4.2 $ $Date: 2004/01/24 09:34:32 $ % Find NaNs and set them to zero nans = isnan(x); x(nans) = 0; if nargin == 1 % let sum deal with figuring out which dimension to use % Count up non-NaNs. n = sum(~nans); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x) ./ n; else % Count up non-NaNs. n = sum(~nans,dim); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x,dim) ./ n; end
github
jacksky64/imageProcessing-master
compute_histogram_distance.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/compute_histogram_distance.m
1,926
utf_8
8d2e4fb98f34f913571462dc3fec7fe2
function D = compute_histogram_distance(H, options) % compute_histogram_distance - compute distance between histograms % % D = compute_histogram_distance(H, options); % % H(:,i) is the ith histogram. % D(i,g) is the distance between histogram i and j. % % options.histmetric is the metric used to compute the distance d(g,h) between two histograms. % We denote by G and H the cumulative distribution, i.e. G=cumsum(g) % 'l2' -> d(g,h)^2 = sum_i (g(i)-h(i))^2 % 'l1' -> d(g,h) = sum_i abs(g(i)-h(i)) % 'cl2' -> d(g,h)^2 = sum_i (G(i)-H(i))^2 % 'cl1' -> d(g,h) = sum_i abs(G(i)-H(i)) % 'chi2' -> d(g,h) = sum_i (G(i)-H(i))^2 / (G(i)+H(i)) % 'bhatta' -> d(g,h) = 1 - sum_i sqrt(G(i)*H(i)) % options.sigma is a pre-smoothing factor, counted in pixels. % % Copyright (c) 2007 Gabriel Peyre if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1.2; end if isfield(options, 'histmetric') histmetric = options.histmetric; else histmetric = 'histmetric'; end %% smooth the histograms n = size(H,1); m = size(H,2); h = compute_gaussian_filter( 21,sigma/(2*n),n); for i=1:m H(:,i) = perform_convolution(H(:,i),h); end % make them sum to 1 H = max(H,0); H = H ./ repmat( sum(H,1), [n 1] ); %% compute distance switch lower(histmetric) case {'cl2' 'cl1'} D = distance_matrix(cumsum(H), histmetric(2:end) ); otherwise D = distance_matrix(H, histmetric ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D = distance_matrix(X,metric) n = size(X,1); % dimension p = size(X,2); A = repmat( reshape(X', [p 1 n] ), [1 p]); B = permute(A, [2 1 3]); switch metric case 'l1' D = sum( abs(A-B), 3 ); case 'l2' D = sqrt( sum( (A-B).^2, 3 ) ); case 'chi2' a = A+B; a(a<eps) = 1; D = sum( ((A-B).^2) ./ a, 3 ); case 'bhatta' D = 1 - sum( sqrt(A.*B), 3 ); otherwise error('Unknown method'); end
github
jacksky64/imageProcessing-master
compute_histogram_rbf.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/compute_histogram_rbf.m
2,360
utf_8
db90055f55a69747e4b061c873ac0365
function h = compute_histogram_rbf(f, sigma, x, options) % compute_histogram_rbf - parzen windows density estimation % % h = compute_histogram_rbf(f, sigma, x); % % f is the signal, h is an estimate of the histogram, % where h(i) is the density of the estimation around value x(i). % % sigma is the bandwidth used to estimate the histogram (approx. size of % the bins). % % If f is (n,2) matrix, then a joint histogram is estimated. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; if size(f,1)<size(f,2) f = f'; end if size(x,1)<size(x,2) x = x'; end nb_samples = Inf; if isfield(options, 'nb_samples') nb_samples = options.nb_samples; end nb_samples = min(nb_samples,size(f,1)); sel = randperm(size(f,1)); sel = sel(1:nb_samples); f = f(sel,:); if size(f,2)==2 h = compute_histogram_rbf_2d(f, sigma, x, options); return; end if isfield(options, 'renormalize') renormalize = options.renormalize; else renormalize = 0; end n = length(x); p = length(f); % number of samples f = f(:); x = x(:); % h is of size p x n h = repmat(f, [1 n]) - repmat( x(:)', [p 1] ); h = exp( -h.^2/(2*sigma^2) ); if renormalize d = repmat( sum(h,2), [1 n] ); d(d<eps) = 1; end h = h./d; h = sum(h,1); h = h(:)/sum(h(:)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function h = compute_histogram_rbf_2d(f, sigma, x, options) options.null = 0; if isfield(options, 'nb_max') nb_max = options.nb_max; else nb_max = 0; end if isfield(options, 'renormalize') renormalize = options.renormalize; else renormalize = 0; end n = size(x,1); p = size(f,1); if p>nb_max h = zeros(n); niter = ceil(p/nb_max); for i=1:niter progressbar(i,niter); sel = (i-1)*nb_max+1:min(i*nb_max,p); h = h + compute_histogram_rbf_2d( f(sel,:) , sigma, x, options); end h = h/sum(h(:)); return; end % hx is of size p x n x n hx = repmat( f(:,1), [1 n n]) - repmat( reshape(x(:,1),[1 n 1]),[p 1 n] ); hy = repmat( f(:,2), [1 n n]) - repmat( reshape(x(:,2),[1 1 n]),[p n 1] ); h = exp( -(hx.^2/(2*sigma(1)^2)+hy.^2/(2*sigma(2)^2)) ); if renormalize d = repmat( sum(sum(h,2),3), [1 n n] ); d(d<eps) = 1; h = h./d; end h = sum(h,1); h = reshape(h,n,n); h = h./sum(sum(h));
github
jacksky64/imageProcessing-master
compute_distance_matrix.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/compute_distance_matrix.m
2,330
utf_8
027fcf29f3d2a1b697af4bbb4d809c77
function dist = compute_distance_matrix(X,x) % compute_distance_matrix - compute pairwise distance matrix. % % D = compute_distance_matrix(X); % or % D = compute_distance_matrix(X,x, metric); % (set x=X) % % We have D(i,j)=|X(:,i)-x(:,j)|^2. % % Copyright (c) 2004 Gabriel Peyre [D,N] = size(X); try if(nargin>=2) % PAIRWISE DISTANCES [d,n] = size(x); if(D~=d) error('Both sets of vectors must have same dimensionality!\n'); end; X2 = sum(X.^2,1); x2 = sum(x.^2,1); if(exist('addchv')==3 & isreal(X)) dist=addchv(X.'*x,-2,x2,X2); else dist = repmat(x2,N,1)+repmat(X2.',1,n)-2*X.'*x; end; else [D,N] = size(X); if(exist('addchv')==3 & isreal(X)) X2 = sum(X.^2,1); dist=addchv(X.'*X,-2,X2,X2); else X2 = repmat(sum(X.^2,1),N,1); dist = X2+X2.'-2*X.'*X; % fprintf('Please install addv and addh.\n'); end; end; % zeros the diagonal dist = dist - diag(diag(dist)); dist = abs( dist ); catch if(nargin==1) dist=distanceBlock(X); else dist=distanceBlock(X,x); end; end; function dist=distanceBlock(X,x); % dist=distance(X,x) % % computes the pairwise squared distance matrix between any column vectors in X and % in x % % INPUT: % % X dxN matrix consisting of N column vectors % x dxn matrix consisting of n column vectors % % OUTPUT: % % dist Nxn matrix % % Example: % Dist=distance(X,X); % is equivalent to % Dist=distance(X); % [D,N] = size(X); if(nargin==1) dist=zeros(N); else dist=zeros(N,size(x,2)); end; B=round(0.1*N); fprintf('Blocksize:%i\n',B); dist=zeros(N); for i=1:B:N bi=min(B,N-i); for j=1:B:N bj=min(B,N-j); dist([i,j]); if(nargin>1) dist(i:i+bi,j:j+bj)=distance(X(:,i:i+bi),x(:,j:j+bj)); else dist(i:i+bi,j:j+bj)=distance(X(:,i:i+bi),X(:,j:j+bj)); end; dist(j:j+bj,i:i+bi)=dist(i:i+bi,j:j+bj).'; end; end; fprintf('\n'); return; %%%% OLD CODE %%% [m,p] = size(X); X2 = sum(X.^2,1); D = repmat(X2,p,1)+repmat(X2',1,p)-2*X'*X;
github
jacksky64/imageProcessing-master
mad.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/mad.m
7,921
utf_8
6d4949e64f7802d97e068c87415b0460
function y = mad(x,flag) %MAD Mean/median absolute deviation. % Y = MAD(X) returns the mean absolute deviation of the values in X. For % vector input, Y is MEAN(ABS(X-MEAN(X)). For a matrix input, Y is a row % vector containing the mean absolute deviation of each column of X. For % N-D arrays, MAD operates along the first non-singleton dimension. % % MAD(X,1) computes Y based on medians, i.e. MEDIAN(ABS(X-MEDIAN(X)). % MAD(X,0) is the same as MAD(X), and uses means. % % MAD treats NaNs as missing values, and removes them. % % See also VAR, STD, IQR. % References: % [1] L. Sachs, "Applied Statistics: A Handbook of Techniques", % Springer-Verlag, 1984, page 253. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.10.2.2 $ $Date: 2004/01/24 09:34:28 $ % The output size for [] is a special case, handle it here. if isequal(x,[]) y = NaN; return; end; if nargin < 2 flag = 0; end % Figure out which dimension nanmean will work along. sz = size(x); dim = find(sz ~= 1, 1); if isempty(dim) dim = 1; end % Need to tile the output of nanmean to center X. tile = ones(1,ndims(x)); tile(dim) = sz(dim); if flag % Compute the median of the absolute deviations from the median. y = nanmedian(abs(x - repmat(nanmedian(x), tile))); else % Compute the mean of the absolute deviations from the mean. y = nanmean(abs(x - repmat(nanmean(x), tile))); end function y = nanmedian(x,dim) %NANMEDIAN Median value, ignoring NaNs. % M = NANMEDIAN(X) returns the sample median of X, treating NaNs as % missing values. For vector input, M is the median value of the non-NaN % elements in X. For matrix input, M is a row vector containing the % median value of non-NaN elements in each column. For N-D arrays, % NANMEDIAN operates along the first non-singleton dimension. % % NANMEDIAN(X,DIM) takes the median along the dimension DIM of X. % % See also MEDIAN, NANMEAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.2.2 $ $Date: 2004/01/24 09:34:33 $ if nargin == 1 y = prctile(x, 50); else y = prctile(x, 50,dim); end function m = nanmean(x,dim) %NANMEAN Mean value, ignoring NaNs. % M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing % values. For vector input, M is the mean value of the non-NaN elements % in X. For matrix input, M is a row vector containing the mean value of % non-NaN elements in each column. For N-D arrays, NANMEAN operates % along the first non-singleton dimension. % % NANMEAN(X,DIM) takes the mean along the dimension DIM of X. % % See also MEAN, NANMEDIAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.13.4.2 $ $Date: 2004/01/24 09:34:32 $ % Find NaNs and set them to zero nans = isnan(x); x(nans) = 0; if nargin == 1 % let sum deal with figuring out which dimension to use % Count up non-NaNs. n = sum(~nans); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x) ./ n; else % Count up non-NaNs. n = sum(~nans,dim); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x,dim) ./ n; end function y = prctile(x,p,dim) %PRCTILE Percentiles of a sample. % Y = PRCTILE(X,P) returns percentiles of the values in X. P is a scalar % or a vector of percent values. When X is a vector, Y is the same size % as P, and Y(i) contains the P(i)-th percentile. When X is a matrix, % the i-th row of Y contains the P(i)-th percentiles of each column of X. % For N-D arrays, PRCTILE operates along the first non-singleton % dimension. % % Y = PRCTILE(X,P,DIM) calculates percentiles along dimension DIM. The % DIM'th dimension of Y has length LENGTH(P). % % Percentiles are specified using percentages, from 0 to 100. For an N % element vector X, PRCTILE computes percentiles as follows: % 1) The sorted values in X are taken as the 100*(0.5/N), 100*(1.5/N), % ..., 100*((N-0.5)/N) percentiles. % 2) Linear interpolation is used to compute percentiles for percent % values between 100*(0.5/N) and 100*((N-0.5)/N) % 3) The minimum or maximum values in X are assigned to percentiles % for percent values outside that range. % % PRCTILE treats NaNs as missing values, and removes them. % % Examples: % y = prctile(x,50); % the median of x % y = prctile(x,[2.5 25 50 75 97.5]); % a useful summary of x % % See also IQR, MEDIAN, NANMEDIAN, QUANTILE. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.4.4 $ $Date: 2004/01/24 09:34:55 $ if ~isvector(p) || numel(p) == 0 error('stats:prctile:BadPercents', ... 'P must be a scalar or a non-empty vector.'); elseif any(p < 0 | p > 100) error('stats:prctile:BadPercents', ... 'P must take values between 0 and 100'); end % Figure out which dimension prctile will work along. sz = size(x); if nargin < 3 dim = find(sz ~= 1,1); if isempty(dim) dim = 1; end dimArgGiven = false; else % Permute the array so that the requested dimension is the first dim. nDimsX = ndims(x); perm = [dim:max(nDimsX,dim) 1:dim-1]; x = permute(x,perm); % Pad with ones if dim > ndims. if dim > nDimsX sz = [sz ones(1,dim-nDimsX)]; end sz = sz(perm); dim = 1; dimArgGiven = true; end % If X is empty, return all NaNs. if isempty(x) if isequal(x,[]) && ~dimArgGiven y = nan(size(p),class(x)); else szout = sz; szout(dim) = numel(p); y = nan(szout,class(x)); end else % Drop X's leading singleton dims, and combine its trailing dims. This % leaves a matrix, and we can work along columns. nrows = sz(dim); ncols = prod(sz) ./ nrows; x = reshape(x, nrows, ncols); x = sort(x,1); nonnans = ~isnan(x); % If there are no NaNs, do all cols at once. if all(nonnans(:)) n = sz(dim); if isequal(p,50) % make the median fast if rem(n,2) % n is odd y = x((n+1)/2,:); else % n is even y = (x(n/2,:) + x(n/2+1,:))/2; end else q = [0 100*(0.5:(n-0.5))./n 100]'; xx = [x(1,:); x(1:n,:); x(n,:)]; y = zeros(numel(p), ncols, class(x)); y(:,:) = interp1q(q,xx,p(:)); end % If there are NaNs, work on each column separately. else % Get percentiles of the non-NaN values in each column. y = nan(numel(p), ncols, class(x)); for j = 1:ncols nj = find(nonnans(:,j),1,'last'); if nj > 0 if isequal(p,50) % make the median fast if rem(nj,2) % nj is odd y(:,j) = x((nj+1)/2,j); else % nj is even y(:,j) = (x(nj/2,j) + x(nj/2+1,j))/2; end else q = [0 100*(0.5:(nj-0.5))./nj 100]'; xx = [x(1,j); x(1:nj,j); x(nj,j)]; y(:,j) = interp1q(q,xx,p(:)); end end end end % Reshape Y to conform to X's original shape and size. szout = sz; szout(dim) = numel(p); y = reshape(y,szout); end % undo the DIM permutation if dimArgGiven y = ipermute(y,perm); end % If X is a vector, the shape of Y should follow that of P, unless an % explicit DIM arg was given. if ~dimArgGiven && isvector(x) y = reshape(y,size(p)); end
github
jacksky64/imageProcessing-master
perform_moment_equalization.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/perform_moment_equalization.m
11,991
utf_8
cd7ec09148f7192b3fda19ca178088e1
function x = perform_moment_equalization(x,y,numdim, options) % perform_kurtosis_equalization - equalize moments of order 1,2,3,4. % % x = perform_moment_equalization(x,y,numdim,options); % % (numdim=1 by default). % % Equalizes the mean, variance, skewness and kurtosis. % Set options.xx=0 to avoid equalizing one of the moment, where % xx='skewness' or 'kurtosis'. % % For 2D arrays, operates along columns unless you specify % x = perform_kurtosis_equalization(x,y,2); % % Copyright (c) 2006 Gabriel Peyr? % mem=mean2(chm); % sk2 = mean2((chm-mem).^3)/mean2((chm-mem).^2).^(3/2); options.null = 0; if nargin<3 numdim = 1; end if size(x,1)>1 && size(x,2)>1 if numdim>1 x = x'; y = y'; end p = size(x,2); for i=1:p if p>100 progressbar(i,p); end x(:,i) = perform_moment_equalization( x(:,i),y(:,i),1,options ); end if numdim>1 x = x'; end return; end dokurt = 1; doskew = 1; if isfield(options, 'kurtosis') dokurt = options.kurtosis; end if isfield(options, 'skewness') doskew = options.skewness; end niter = 1; if std(x(:))<eps && std(y(:))>eps % regenerate random noise ... x = randn(size(x)) * std(y(:)) + mean(y(:)); end if std(y(:))>eps sk = skew2(y); k = kurt2(y); for i=1:niter if dokurt [x, snrk] = modkurt(x,k); end if doskew [x, snrk] = modskew(x,sk); end end end % correct mean and variance if std(x(:))>1e-9 x = (x-mean(x(:))) * std(y(:))/std(x(:)) + mean(y(:)); end function [chm, snrk] = modkurt(ch,k,p); % Modify the kurtosis in one step, by moving in gradient direction until % reaching the desired kurtosis value. % It does not affect the mean nor the variance, but it affects the skewness. % This operation is not an orthogonal projection, but the projection angle is % near pi/2 when k is close to the original kurtosis, which is a realistic assumption % when doing iterative projections in a pyramid, for example (small corrections % to the channels' statistics). % % [chm, snrk] = modkurt(ch,k,p); % ch: channel % k: desired kurtosis (k=M4/M2^2) % p [OPTIONAL]: mixing proportion between k0 and k % it imposes (1-p)*k0 + p*k, % being k0 the current kurtosis. % DEFAULT: p = 1; % Javier Portilla, Oct.12/97, NYU Warn = 0; % Set to 1 if you want to see warning messages if ~exist('p'), p = 1; end me=mean2(ch); ch=ch-me; % Compute the moments m=zeros(12,1); for n=2:12, m(n)=mean2(ch.^n); end % The original kurtosis k0=m(4)/m(2)^2; snrk = snr(k, k-k0); if snrk > 60, chm = ch+me; return end k = k0*(1-p) + k*p; % Some auxiliar variables a=m(4)/m(2); % Coeficients of the numerator (A*lam^4+B*lam^3+C*lam^2+D*lam+E) A=m(12)-4*a*m(10)-4*m(3)*m(9)+6*a^2*m(8)+12*a*m(3)*m(7)+6*m(3)^2*m(6)-... 4*a^3*m(6)-12*a^2*m(3)*m(5)+a^4*m(4)-12*a*m(3)^2*m(4)+... 4*a^3*m(3)^2+6*a^2*m(3)^2*m(2)-3*m(3)^4; B=4*(m(10)-3*a*m(8)-3*m(3)*m(7)+3*a^2*m(6)+6*a*m(3)*m(5)+3*m(3)^2*m(4)-... a^3*m(4)-3*a^2*m(3)^2-3*m(4)*m(3)^2); C=6*(m(8)-2*a*m(6)-2*m(3)*m(5)+a^2*m(4)+2*a*m(3)^2+m(3)^2*m(2)); D=4*(m(6)-a^2*m(2)-m(3)^2); E=m(4); % Define the coefficients of the denominator (F*lam^2+G)^2 F=D/4; G=m(2); % test test = 0; if test, grd = ch.^3 - a*ch - m(3); lam = -0.001:0.00001:0.001; k = (A*lam.^4+B*lam.^3+C*lam.^2+D*lam+E)./... (F*lam.^2 + G).^2; for lam = -0.001:0.00001:0.001, n = lam*100000+101; chp = ch + lam*grd; k2(n) = mean2(chp.^4)/mean2(chp.^2)^2; %k2(n) = mean2(chp.^4); end lam = -0.001:0.00001:0.001; snr(k2, k-k2) end % test % Now I compute its derivative with respect to lambda % (only the roots of derivative = 0 ) d(1) = B*F; d(2) = 2*C*F - 4*A*G; d(3) = 4*F*D -3*B*G - D*F; d(4) = 4*F*E - 2*C*G; d(5) = -D*G; mMlambda = roots(d); tg = imag(mMlambda)./real(mMlambda); mMlambda = mMlambda(find(abs(tg)<1e-6)); lNeg = mMlambda(find(mMlambda<0)); if length(lNeg)==0, lNeg = -1/eps; end lPos = mMlambda(find(mMlambda>=0)); if length(lPos)==0, lPos = 1/eps; end lmi = max(lNeg); lma = min(lPos); lam = [lmi lma]; mMnewKt = polyval([A B C D E],lam)./(polyval([F 0 G],lam)).^2; kmin = min(mMnewKt); kmax = max(mMnewKt); % Given a desired kurtosis, solves for lambda if k<=kmin lam = lmi; if Warn warning('Saturating (down) kurtosis!'); kmin end elseif k>=kmax lam = lma; if Warn warning('Saturating (up) kurtosis!'); kmax end else % Coeficients of the algebraic equation c0 = E - k*G^2; c1 = D; c2 = C - 2*k*F*G; c3 = B; c4 = A - k*F^2; % Solves the equation r=roots([c4 c3 c2 c1 c0]); % Chose the real solution with minimum absolute value with the rigth sign denom = real(r); denom(abs(denom)<eps) = 1; tg = imag(r)./denom; %lambda = real(r(find(abs(tg)<1e-6))); lambda = real(r(find(abs(tg)==0))); if length(lambda)>0, lam = lambda(find(abs(lambda)==min(abs(lambda)))); lam = lam(1); else lam = 0; end end % if ... else % Modify the channel chm=ch+lam*(ch.^3-a*ch-m(3)); % adjust the kurtosis chm=chm*sqrt(m(2)/mean2(chm.^2)); % adjust the variance chm=chm+me; % adjust the mean % Check the result %k2=mean2((chm-me).^4)/(mean2((chm-me).^2))^2; %SNR=snr(k,k-k2) function [chm, snrk] = modskew(ch,sk,p); % Adjust the sample skewness of a vector/matrix, using gradient projection, % without affecting its sample mean and variance. % % This operation is not an orthogonal projection, but the projection angle is % near pi/2 when sk is close to the original skewness, which is a realistic % assumption when doing iterative projections in a pyramid, for example % (small corrections to the channels' statistics). % % [xm, snrk] = modskew(x,sk,p); % sk: new skweness % p [OPTIONAL]: mixing proportion between sk0 and sk % it imposes (1-p)*sk0 + p*sk, % being sk0 the current skewness. % DEFAULT: p = 1; % % JPM. 2/98, IODV, CSIC % 4/00, CNS, NYU Warn = 0; % Set to 1 if you want to see warning messages if ~exist('p'), p = 1; end N=prod(size(ch)); % number of samples me=mean2(ch); ch=ch-me; for n=2:6, m(n)=mean2(ch.^n); end sd=sqrt(m(2)); % standard deviation s=m(3)/sd^3; % original skewness snrk = snr(sk, sk-s); sk = s*(1-p) + sk*p; % Define the coefficients of the numerator (A*lam^3+B*lam^2+C*lam+D) A=m(6)-3*sd*s*m(5)+3*sd^2*(s^2-1)*m(4)+sd^6*(2+3*s^2-s^4); B=3*(m(5)-2*sd*s*m(4)+sd^5*s^3); C=3*(m(4)-sd^4*(1+s^2)); D=s*sd^3; a(7)=A^2; a(6)=2*A*B; a(5)=B^2+2*A*C; a(4)=2*(A*D+B*C); a(3)=C^2+2*B*D; a(2)=2*C*D; a(1)=D^2; % Define the coefficients of the denominator (A2+B2*lam^2) A2=sd^2; B2=m(4)-(1+s^2)*sd^4; b=zeros(1,7); b(7)=B2^3; b(5)=3*A2*B2^2; b(3)=3*A2^2*B2; b(1)=A2^3; if 0, % test lam = -2:0.02:2; S = (A*lam.^3+B*lam.^2+C*lam+D)./... sqrt(b(7)*lam.^6 + b(5)*lam.^4 + b(3)*lam.^2 + b(1)); % grd = ch.^2 - m(2) - sd * s * ch; % for lam = -1:0.01:1, % n = lam*100+101; % chp = ch + lam*grd; % S2(n) = mean2(chp.^3)/abs(mean2(chp.^2))^(1.5); % end lam = -2:0.02:2; figure(1);plot(lam,S);grid;drawnow % snr(S2, S-S2) end % test % Now I compute its derivative with respect to lambda d(8) = B*b(7); d(7) = 2*C*b(7) - A*b(5); d(6) = 3*D*b(7); d(5) = C*b(5) - 2*A*b(3); d(4) = 2*D*b(5) - B*b(3); d(3) = -3*A*b(1); d(2) = D*b(3) - 2*B*b(1); d(1) = -C*b(1); d = d(8:-1:1); mMlambda = roots(d); denom = real(mMlambda); [tmp,I] = find( min(abs(denom))<eps ); denom(I) = 1; tg = imag(mMlambda)./denom; mMlambda = real(mMlambda(find(abs(tg)<1e-6))); lNeg = mMlambda(find(mMlambda<0)); if length(lNeg)==0, lNeg = -1/eps; end lPos = mMlambda(find(mMlambda>=0)); if length(lPos)==0, lPos = 1/eps; end lmi = max(lNeg); lma = min(lPos); lam = [lmi lma]; denom = (polyval(b(7:-1:1),lam)).^0.5; if 0 [tmp,I] = find( min(abs(denom))<eps ); denom(I) = 1; end denom(abs(denom)<eps) = 1; mMnewSt = polyval([A B C D],lam)./denom; skmin = min(mMnewSt); skmax = max(mMnewSt); % Given a desired skewness, solves for lambda if sk<=skmin lam = lmi; if Warn warning('Saturating (down) skewness!'); skmin end elseif sk>=skmax & Warn, lam = lma; if Warn warning('Saturating (up) skewness!'); skmax end else % The equation is sum(c.*lam.^(0:6))=0 c=a-b*sk^2; c=c(7:-1:1); r=roots(c); % Chose the real solution with minimum absolute value with the rigth sign lam=-Inf; co=0; for n=1:min(6,length(r)), denom = real(r(n)); [tmp,I] = find( min(abs(denom))<eps ); denom(I) = 1; tg = imag(r(n))/denom; if (abs(tg)<1e-6)&(sign(real(r(n)))==sign(sk-s)), co=co+1; lam(co)=real(r(n)); end end if min(abs(lam))==Inf if Warn display('Warning: Skew adjustment skipped!'); end lam=0; end p=[A B C D]; if length(lam)>1, foo=sign(polyval(p,lam)); if any(foo==0), lam = lam(find(foo==0)); else lam = lam(find(foo==sign(sk))); % rejects the symmetric solution end if length(lam)>0, lam=lam(find(abs(lam)==min(abs(lam)))); % the smallest that fix the skew lam=lam(1); else lam = 0; end end end % if else % Modify the channel chm=ch+lam*(ch.^2-sd^2-sd*s*ch); % adjust the skewness chm=chm*sqrt(m(2)/mean2(chm.^2)); % adjust the variance chm=chm+me; % adjust the mean % (These don't affect the skewness) % Check the result %mem=mean2(chm); %sk2=mean2((chm-mem).^3)/mean2((chm-mem).^2).^(3/2); %sk - sk2 %SNR=snr(sk,sk-sk2) % S = SKEW2(MTX,MEAN,VAR) % % Sample skew (third moment divided by variance^3/2) of a matrix. % MEAN (optional) and VAR (optional) make the computation faster. function res = skew2(mtx, mn, v) if (exist('mn') ~= 1) mn = mean2(mtx); end if (exist('v') ~= 1) v = var2(mtx,mn); end if (isreal(mtx)) res = mean(mean((mtx-mn).^3)) / (v^(3/2)); else res = mean(mean(real(mtx-mn).^3)) / (real(v)^(3/2)) + ... i * mean(mean(imag(mtx-mn).^3)) / (imag(v)^(3/2)); end % K = KURT2(MTX,MEAN,VAR) % % Sample kurtosis (fourth moment divided by squared variance) % of a matrix. Kurtosis of a Gaussian distribution is 3. % MEAN (optional) and VAR (optional) make the computation faster. % Eero Simoncelli, 6/96. function res = kurt2(mtx, mn, v) if (exist('mn') ~= 1) mn = mean(mean(mtx)); end if (exist('v') ~= 1) v = var2(mtx,mn); end if (isreal(mtx)) res = mean(mean(abs(mtx-mn).^4)) / (v^2); else res = mean(mean(real(mtx-mn).^4)) / (real(v)^2) + ... i*mean(mean(imag(mtx-mn).^4)) / (imag(v)^2); end % M = MEAN2(MTX) % % Sample mean of a matrix. function res = mean2(mtx) res = mean(mean(mtx)); % V = VAR2(MTX,MEAN) % % Sample variance of a matrix. % Passing MEAN (optional) makes the calculation faster. function res = var2(mtx, mn) if (exist('mn') ~= 1) mn = mean2(mtx); end if (isreal(mtx)) res = sum(sum(abs(mtx-mn).^2)) / max((prod(size(mtx)) - 1),1); else res = sum(sum(real(mtx-mn).^2)) + i*sum(sum(imag(mtx-mn).^2)); res = res / max((prod(size(mtx)) - 1),1); end function X=snr(s,n); % Compute the signal-to-noise ratio in dB % X=SNR(signal,noise); % (it does not subtract the means). es=sum(sum(abs(s).^2)); en=sum(sum(abs(n).^2)); if en<eps X = en; else X=10*log10(es/en); end
github
jacksky64/imageProcessing-master
perform_histogram_matching.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/perform_histogram_matching.m
6,400
utf_8
60f90bff8d6cd335507795f1602dafad
function x = perform_histogram_matching(x, y, options) % perform_histogram_matching - match the histogram of two image. % % x = perform_histogram_matching(x, y, nb_bins); % or % x = perform_histogram_matching(x, y, options); % % Perform an equalization of x so that it histogram % matches the histogram of y. % % Works also for vector valued (ie 3D matrix) images. % For color images, ie (n,p,3) sized image, the matching is performed % * in RVB space if options.match_ycbcr=0 % * in YcBCr space if options.match_ycbcr=1 (default, works better) % % Copyright (c) 2005 Gabriel Peyre if nargin>2 && not(isstruct(options)) opt = options; clear options; options.nb_bins = opt; end options.null = 0; nb_bins = getoptions(options, 'nb_bins', 100); match_ycbcr = getoptions(options, 'match_ycbcr', 1); absval = getoptions(options, 'absval', 0); cols = getoptions(options, 'cols', 0); rows = getoptions(options, 'rows', 0); if cols && rows error('You cannote specify both cols and rows'); end if cols && size(x,2)>1 if not(size(x,2)==size(y,2)) error('x and y must have same number of columns'); end if size(x,3)>1 || size(y,3)>1 error('options.cols does not works for color images'); end for i=1:size(x,2) x(:,i) = perform_histogram_matching(x(:,i),y(:,i),options); end return; end if cols && size(x,1)>1 if not(size(x,1)==size(y,1)) error('x and y must have same number of rows'); end if size(x,3)>1 || size(y,3)>1 error('options.rows does not works for color images'); end for i=1:size(x,1) x(i,:) = perform_histogram_matching(x(i,:),y(i,:),options); end return; end if iscell(x) if ~(length(x)==length(y)) error('For cell arrays, src and tgt must have the same length.'); end for i=1:length(x) if length(find(isinf(x{i})))==0 x{i} = perform_histogram_matching(x{i}, y{i}, options); else x{i} = x{i}; end end return; end if size(x,3)>1 if size(x,3)~=size(y,3) error('Src and tgt images must have the same number of components.'); end if size(x,3)==3 && match_ycbcr x = rgb2ycbcr(x); y = rgb2ycbcr(y); end % match each color for i=1:size(y,3) x(:,:,i) = perform_histogram_matching(x(:,:,i), y(:,:,i), options); end if size(x,3)==3 && match_ycbcr x = ycbcr2rgb(x); end return; end if sum(abs(y(:) - mean(y(:))))<1e-8 % histo is crashing for constant signals x = x*0 + mean(y(:)); return; end sx = size(x); x = x(:); y = y(:); if absval s = sign(x); x = abs(x); y = abs(y); end % compute transformed histograms % [N,X] = histo(y, nb_bins); [N,X] = histo_slow(y, nb_bins); x = histoMatch(x, N, X); I = find(isnan(x(:))); x(I) = max(y(:)); if absval x = x .* s; end x = reshape(x,sx); % [N,X] = histo_slow(MTX, nbinsOrBinsize, binCenter); % % Compute a histogram of (all) elements of MTX. N contains the histogram % counts, X is a vector containg the centers of the histogram bins. % % nbinsOrBinsize (optional, default = 101) specifies either % the number of histogram bins, or the negative of the binsize. % % binCenter (optional, default = mean2(MTX)) specifies a center position % for (any one of) the histogram bins. % % How does this differ from MatLab's HIST function? This function: % - allows uniformly spaced bins only. % +/- operates on all elements of MTX, instead of columnwise. % + is much faster (approximately a factor of 80 on my machine). % + allows specification of number of bins OR binsize. Default=101 bins. % + allows (optional) specification of binCenter. % Eero Simoncelli, 3/97. function [N, X] = histo_slow(mtx, nbins, binCtr) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) % fprintf(1,'WARNING: You should compile the MEX version of "histo.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); mtx = mtx(:); %------------------------------------------------------------ %% OPTIONAL ARGS: [mn,mx] = range2(mtx); if (exist('binCtr') ~= 1) binCtr = mean(mtx); end if (exist('nbins') == 1) if (nbins < 0) binSize = -nbins; else binSize = ((mx-mn)/nbins); tmpNbins = round((mx-binCtr)/binSize) - round((mn-binCtr)/binSize); if (tmpNbins ~= nbins) warning('Using %d bins instead of requested number (%d)',tmpNbins,nbins); end end else binSize = ((mx-mn)/101); end firstBin = binCtr + binSize*round( (mn-binCtr)/binSize ); tmpNbins = round((mx-binCtr)/binSize) - round((mn-binCtr)/binSize); bins = firstBin + binSize*[0:tmpNbins]; [N, X] = hist(mtx, bins); % RES = histoMatch(MTX, N, X) % % Modify elements of MTX so that normalized histogram matches that % specified by vectors X and N, where N contains the histogram counts % and X the histogram bin positions (see histo). % Eero Simoncelli, 7/96. function res = histoMatch(mtx, N, X) if ( exist('histo') == 3 ) [oN, oX] = histo(mtx(:), size(X(:),1)); else [oN, oX] = hist(mtx(:), size(X(:),1)); end oStep = oX(2) - oX(1); oC = [0, cumsum(oN)]/sum(oN); oX = [oX(1)-oStep/2, oX+oStep/2]; N = N(:)'; X = X(:)'; N = N + mean(N)/(1e8); %% HACK: no empty bins ensures nC strictly monotonic nStep = X(2) - X(1); nC = [0, cumsum(N)]/sum(N); nX = [X(1)-nStep/2, X+nStep/2]; nnX = interp1(nC, nX, oC, 'linear'); if ( exist('pointOp') == 3 ) res = pointOp(mtx, nnX, oX(1), oStep); else res = reshape(interp1(oX, nnX, mtx(:)),size(mtx,1),size(mtx,2)); end % [MIN, MAX] = range2(MTX) % % Compute minimum and maximum values of MTX, returning them as a 2-vector. % Eero Simoncelli, 3/97. function [mn, mx] = range2(mtx) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) % fprintf(1,'WARNING: You should compile the MEX version of "range2.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); if (~isreal(mtx)) error('MTX must be real-valued'); end mn = min(min(mtx)); mx = max(max(mtx));
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_signal/toolbox/load_image.m
15,910
utf_8
f5a8233f70450d4ce607431750bcffda
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = 0.1; % translation gamma = 1/sqrt(2); % slope if isfield( options, 'eta' ) eta = options.eta; end if isfield( options, 'gamma' ) eta = options.gamma; end if isfield( options, 'radius' ) radius = options.radius; end if isfield( options, 'center' ) center = options.center; end if isfield( options, 'center1' ) center1 = options.center1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for some blurring sigma = 0; if isfield(options, 'sigma') sigma = options.sigma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch type case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} if isfield(options, 'radius') r = options.radius; else r = 10; end M = create_letter(type(8), r, n); case 'grid-circles' if isempty(n) n = 256; end if isfield(options, 'frequency') f = options.frequency; else f = 30; end if isfield(options, 'width') eta = options.width; else eta = 0.3; end x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' if ~isfield( options, 'width' ) width = round(n/16); else width = options.width; end [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); if isfield(options, 'theta') theta = options.theta; else theta = 0.2; end if isfield(options, 'freq') freq = options.freq; else freq = 0.2; end X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} if isfield(options, 'alpha') alpha = options.alpha; else alpha = 1; end M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian if isfield(options, 'sigma') sigma = options.sigma; else sigma = 10; end M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature if isfield(options, 'c') c = options.c; else c = 0.1; end % angle if isfield(options, 'theta'); theta = options.theta; else theta = pi/sqrt(2); end x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' if isfield(options, 'nbr_periods') nbr_periods = options.nbr_periods; else nbr_periods = 8; end if isfield(options, 'theta') theta = options.theta; else theta = 1/sqrt(2); end if isfield(options, 'skew') skew = options.skew; else skew = 1/sqrt(2); end A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1; end M = randn(n); otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]); M = perform_convolution(M,h); end M = rescale(M) * 256; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic');
github
jacksky64/imageProcessing-master
perform_bregman_l1.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/perform_bregman_l1.m
30,356
utf_8
9b24d52e8a09ba53a227bc8fbc8a08d8
function Out = perform_bregman_l1(n,A,b,mu,M,opts,varargin) % Solve the problem % min ||x||_1, subject to Ax = b % by calling the solver FPC for solving multiple instances of % min mu*||x||_1 + 0.5*||Ax-b^k||^2 . % (FPC can be substituted by other solvers for the same subproblem) % % Technical Report: % W. Yin, S. Osher, D. Goldfarb, and J. Darbon. % Bregman Iterative Algorithms for l1-Minimization with Applications to Compressed Sensing. % Rice CAAM TR07-13 or UCLA CAM 07-37 % % INPUT ARGUMENTS: % n, A, b, mu: as shown above % M: see fpc solver % if M=[], use 2-norm for A*x-b; % if M is not empty, use M-norm for A*x-b % (If you don't want how to use M, just let M=[]) % opts: % a structure of options, see l1_Bregman_opts.m % varargin: % placeholder for additional parameters that are passed to FPC % (If you don't want how to use varargin, just ignore it) % % Basic Output: % Out.x the last iterate x^k % Out.dual an approx. dual solution, i.e., a solution for % max_y <b,y>, subject to norm(A'y,'inf') <= 1 % Out.Bregman_itr number of total Bregman iterations % =inf if the max # of iterations is reached before convergence % Out.Out_fpc the output of last call to FPC (see fpc.m or fpc_bb.m) % % Copyright 2007. Wotao Yin, CAAM, Rice University % %% define constants inv_norm_b = 1/norm(b); if (any(opts.disp & [1 0 0 0 0]) || any(opts.record & [0 1 0 0 0 0])) && ~isempty(opts.fpc_opts.xs); inv_norm_xs = 1/norm(opts.fpc_opts.xs); nz_tol=norm(opts.fpc_opts.xs,inf)*opts.rel_nz_eps; nz_xs=abs(opts.fpc_opts.xs)>nz_tol; end if strcmp(opts.fpc,'std'); fpc_solver = @fpc; elseif strcmp(opts.fpc,'bb'); fpc_solver = @fpc_bb; else error('no fpc solver'); end if (opts.inv_mu); mu = 1/mu; end; if (opts.use_rel_tol); tol = opts.rel_res_tol*norm(b); else tol = opts.abs_res_tol; end if (opts.var_fpc_gtol); opts.fpc_opts.gtol = opts.var_fpc_gtol_max; end % data recording initialization if any(opts.record) if any(opts.record & [0 0 0 0 0 1]); Out.fpc_itrs = zeros(opts.itr_max,1); Out.fpc_time = zeros(opts.itr_max,1); end if any(opts.record & [0 0 0 0 1 0]); Out.fpc_res = zeros(opts.itr_max,1); Out.fpc_res_abs = zeros(opts.itr_max,1); end if any(opts.record & [0 0 0 1 0 0]); Out.fpc_gap = zeros(opts.itr_max,1); Out.fpc_res_err1 = zeros(opts.itr_max,1); Out.fpc_res_err2 = zeros(opts.itr_max,1); end if any(opts.record & [0 0 1 0 0 0]); Out.fpc_gtol = zeros(opts.itr_max,1); end if any(opts.record & [0 1 0 0 0 0]); Out.fpc_err = zeros(opts.itr_max,1); Out.fpc_err_abs = zeros(opts.itr_max,1); end if any(opts.record & [1 0 0 0 0 0]); Out.fpc_xk = []; Out.fpc_bk = []; end end % data dimension m = length(b); % implicit or explicit A imp_A = isa(A,'function_handle'); if ~imp_A && isempty(M) && opts.check_eigmax eigs_opts.tol = 1E-4; eigs_opts.disp = 0; eigs_opts.issym = true; fprintf(1, 'checking the eigenvalue of AA''==1...'); if abs(eigs(A*A',1,'lm',eigs_opts)-1)>1e-4; error('AA'' does not have eigenvalue 1, not satisfying the requirement by the subproblem solver FPC.'); end fprintf(1, 'OK!\n\n'); end % main Bregman iterations redo = false; bk = b; for k=1:opts.itr_max % solve the subproblem by calling fpc fpc_t = cputime; Out_fpc = fpc_solver(n,A,bk,mu,M,opts.fpc_opts,varargin{:}); fpc_t = cputime - fpc_t; % data process if (imp_A); Axk = A(false,m,n,Out_fpc.x,[],varargin{:}); else Axk = A*Out_fpc.x; end b_Axk = b - Axk; bk_Axk = bk - Axk; res_norm = norm(b_Axk,2); xk_norm_1 = norm(Out_fpc.x,1); xk_norm_inf = norm(Out_fpc.x,inf); gap = abs((b'*bk_Axk)*mu - xk_norm_1); err1 = (b_Axk'*bk_Axk)*mu; err2 = (bk_Axk'*Axk)*mu - xk_norm_1; if (any(opts.disp & [1 0 0 0 0]) || any(opts.record & [0 1 0 0 0 0]))... && ~isempty(opts.fpc_opts.xs); err=norm(opts.fpc_opts.xs-Out_fpc.x); end % display if any(opts.disp) fprintf(1,'Itr %d:',k); if any(opts.disp & [0 0 0 0 1]); fprintf(1,' itr=%3d time=%.2fs',Out_fpc.itr,fpc_t); end if any(opts.disp & [0 0 0 1 0]); fprintf(1,' l1=%.2e res=%.2e (%.3e)',norm(Out_fpc.x,1),res_norm,res_norm*inv_norm_b); end if any(opts.disp & [0 0 1 0 0]); fprintf(1,' gap=%.2e e1=%+.2e e2=%+.2e',gap,err1,err2); end if any(opts.disp & [0 1 0 0 0]); fprintf(1,' gtol=%.2e',opts.fpc_opts.gtol); end if any(opts.disp & [1 0 0 0 0]) && exist('err','var') nz_xk = abs(Out_fpc.x)>nz_tol; fprintf(1,' err=%.2e (rel=%.2e) miss=%d over=%d',err,err*inv_norm_xs,nnz(nz_xs & (~nz_xk)),nnz(nz_xk & (~nz_xs))); end fprintf(1,'.\n\n'); end % data recording if any(opts.record) if any(opts.record & [0 0 0 0 0 1]); Out.fpc_itrs(k) = Out_fpc.itr; Out.fpc_time(k) = fpc_t; end if any(opts.record & [0 0 0 0 1 0]); Out.fpc_res(k) = res_norm; Out.fpc_res_abs(k) = res_norm*inv_norm_b; end if any(opts.record & [0 0 0 1 0 0]); Out.fpc_gap(k) = gap; Out.fpc_res_err1(k) = err1; Out.fpc_res_err2(k) = err2; end if any(opts.record & [0 0 1 0 0 0]); Out.fpc_gtol(k) = opts.fpc_opts.gtol; end if any(opts.record & [0 1 0 0 0 0]) && exist('err','var'); Out.fpc_err(k) = err; Out.fpc_err_abs(k) = err*inv_norm_xs; end if any(opts.record & [1 0 0 0 0 0]); Out.fpc_xk = [Out.fpc_xk Out_fpc.x]; Out.fpc_bk = [Out.fpc_bk bk]; end end % convergence test if (res_norm<tol); break; end % failure test if (Out_fpc.itr == inf); disp('FPC fail to converge; please use larger mu or allow more FPC iterations.'); break; end if (Out_fpc.itr == 0); disp('mu is too large; FPC returns the solution 0; please reduce mu.'); break; end % data update if abs(err2) <= abs(err1)*5; % proceed to next iteration redo = false; bk = b + bk_Axk; if (opts.use_last); opts.fpc_opts.x0 = Out_fpc.x; end if (opts.var_fpc_gtol); opts.fpc_opts.gtol = max(min( abs(err1/mu)/(nnz(Out_fpc.x)*xk_norm_inf), opts.var_fpc_gtol_max),opts.var_fpc_gtol_min); end else % need to redo last step if redo; disp('Fail to decrease error. Exiting...'); break; end redo = true; disp('Rerun last step with smaller gtol.'); opts.fpc_opts.gtol = opts.fpc_opts.gtol*abs(err1/err2); if Out_fpc.itr == inf; opts.fpc_opts.mxitr = min(round(opts.fpc_opts.mxitr*abs(err2/err1)),opts.fpc_max_mxitr); end end end % save output if (res_norm<tol); Out.Bregman_itr = k; else Out.Bregman_itr = inf; end Out.dual = bk_Axk*mu; Out.Out_fpc = Out_fpc; Out.x = Out_fpc.x; end % Options for l1 Bregman iterations % opts: % opts.fpc % fpc solver selection: 'std', 'bb' % opts.fpc_opts % options passed to fpc % opts.check_eigmax % checking max eigenvale of AA' == 1 or nor (to satisfy FPC's requirement) % opts.fpc_max_mxitr % the ceiling of mxitr for fpc % opts.itr_max % maximum Bregman iterations. Default: 50 % opts.use_rel_tol % true: use opts.rel_res_tol; false; use abs_res_tol. Default: true % opts.rel_res_tol % tolerance of relative residual in 2-norm, ||Au-f||/||f|| % opts.abs_res_tol % tolerance of absolute residual in 2-norm, ||Au-f|| % opts.inv_mu % need to invert mu for the subproblem solver % opts.var_fpc_gtol % varying gtol. Default: true % opts.var_fpc_gtol_max % max gtol if var_fpc_gtol == true. Default: 1e-2 % opts.var_fpc_gtol_min % min gtol if var_fpc_gtol == true. Default: 1e-10 % opts.use_last % use last solution as next starting point, suggest: false (not improvement observed with "true") % opts.rel_nz_eps % used to determine zeros in x^k relative to norm(x^k,inf). Default: 1e-3; % opts.disp % display options (see below). Default: no display % opts.record % data recording options (see below). Default: bin 000001 % % % Display options: % bit 0 right - basic information: fpc_itr, fpc_time % bit 1 - norm(x,1) and residual info: norm(A*x^k-b), norm(A*x^k-b)/norm(b) % bit 2 - accuracy info: gap abs(||x^k||_1 - <b^k-A*x^k,b>/mu), err1 <b^k-A*x^k,b-A*x^k>/mu, err2 <b^k-A*x^k,A*x^k>/mu - ||x^k||_1 % bit 3 - gtol % bit 4 - error. if opts.fpc.xs exists, norm(xs-x^k), norm(xs-x^k)/norm(xs), missed nz, over nz % Data recording options: % bit 0 right - basic information: fpc_itr, fpc_time % bit 1 - residual info % bit 2 - accuracy info % bit 3 - gtol % bit 4 - error % bit 5 - A, b, x^k, b^k % % Copyright 2007. Wotao Yin, CAAM, Rice University function opts = l1_Bregman_opts(opts) %% default values fpc_default = 'bb'; fpc_max_mxitr_default = 1e4; itr_max_default = 50; check_eigmax_default = true; use_rel_tol_default = true; rel_res_tol_default = 1e-5; abs_res_tol_default = 1e-5; inv_mu_default = true; var_fpc_gtol_default = true; var_fpc_gtol_max_default = 1e-2; var_fpc_gtol_min_default = 1e-10; fix_fpc_gtol_default = 1e-5; use_last_default = false; rel_nz_eps_default = 1e-3; disp_default = [0 0 0 0 0]; record_default = [0 0 0 0 0 1]; err_msg=[]; %% option assignment if ~exist('opts','var'); opts = []; end if ~isfield(opts,'fpc'); opts.fpc = fpc_default; end if ~isfield(opts,'fpc_opts') && strcmp(opts.fpc,'std'); opts.fpc_opts = fpc_opts([]); end if ~isfield(opts,'fpc_opts') && strcmp(opts.fpc,'bb'); opts.fpc_opts = fpc_bb_opts([]); end if ~isfield(opts,'check_eigmax'); opts.check_eigmax = check_eigmax_default; end if ~isfield(opts,'fpc_max_mxitr'); opts.fpc_max_mxitr = fpc_max_mxitr_default; end if ~isfield(opts,'itr_max'); opts.itr_max = itr_max_default; end if ~isfield(opts,'opts.use_rel_tol'); opts.use_rel_tol = use_rel_tol_default; end if opts.use_rel_tol == true && ~isfield(opts,'rel_res_tol'); opts.rel_res_tol=rel_res_tol_default; end if opts.use_rel_tol == false && ~isfield(opts,'abs_res_tol'); opts.abs_res_tol=abs_res_tol_default; end if ~isfield(opts,'inv_mu'); opts.inv_mu = inv_mu_default; end if ~isfield(opts,'var_fpc_gtol'); opts.var_fpc_gtol = var_fpc_gtol_default; end if (opts.var_fpc_gtol == true && ~isfield(opts,'var_fpc_gtol_max')); opts.var_fpc_gtol_max=var_fpc_gtol_max_default; end if (opts.var_fpc_gtol == true && ~isfield(opts,'var_fpc_gtol_min')); opts.var_fpc_gtol_min=var_fpc_gtol_min_default; end if opts.var_fpc_gtol == false if ~isfield(opts,'fix_fpc_gtol'); opts.fpc_opts.gtol = fix_fpc_gtol_default; else opts.fpc_opts.gtol = opts.fix_fpc_gtol; end end if ~isfield(opts,'use_last'); opts.use_last = use_last_default; end if ~isfield(opts,'rel_nz_eps'); opts.rel_nz_eps = rel_nz_eps_default; end if ~isfield(opts,'disp'); opts.disp = disp_default; end if ~isfield(opts,'record'); opts.record = record_default; end % if ~isempty(err_msg) % disp([err_msg(3:end) '.']); % error('Error in opts.'); % end % Options for Fixed Point Continuation (FPC) % %-------------------------------------------------------------------------- % DESCRIPTION %-------------------------------------------------------------------------- % % opts = fpc_opts(opts) % % If opts is empty upon input, opts will be returned containing the default % options for fpc.m. % % Alternatively, if opts is passed with some fields already defined, those % fields will be checked for errors, and the remaining fields will be added % and initialized to their default values. % % Table of Options. ** indicates default value. % % FIELD OPTIONAL DESCRIPTION % .x0 YES Initial value of x. If not defined, x will be % initialized according to .init. % .xs YES Original signal xs. If passed, fpc will calculate and % output ||x - xs||/||xs|| in vector Out.n2re. % .init YES If .x0 is not defined, .init specifies how x is to be % initialized. % 0 -> zeros(n,1) % 1 -> x = tau*||AtMb||_Inf * ones(n,1) % ** 2 -> x = tau*AtMb ** % .tau YES 0 < .tau < 2. If not specified, tau is initialized % using a piecewise linear function of delta = m/n. % .mxitr NO Maximum number of inner iterations. % ** 1000 ** % .eta NO Ratio of current ||b - Ax|| to approx. optimal % ||b - Ax|| for next mu value. % ** 4 ** % .fullMu NO If true, then mu = eta*sqrt(n*kap)/phi, where phi = % ||Ax - b||_M, which guarantees that phi(now)/phi(next) % >= eta. Otherwise mu = eta*mu. % ** false ** % .kappa YES Required if fullMu. Is ratio of max and min % eigenvalues of M^{1/2}AA'M^{1/2} (before scaling). % ** not supplied ** % .xtol NO Tolerance on norm(x - xp)/norm(xp). % ** 1E-4 ** % .gtol NO Tolerance on mu*norm(g,'inf') - 1 % ** 0.2 ** %-------------------------------------------------------------------------- function opts = fpc_opts(opts) if isfield(opts,'x0') if ~isvector(opts.x0) || ~min(isfinite(opts.x0)) error('If used, opts.x0 should be an n x 1 vector of finite numbers.'); end elseif isfield(opts,'init') if (opts.init < 0) || (opts.init > 2) || opts.init ~= floor(opts.init) error('opts.init must be an integer between 0 and 2, inclusive.'); end else opts.init = 2; end if isfield(opts,'xs') if ~isvector(opts.xs) || ~min(isfinite(opts.xs)) error('If passed, opts.xs should be an n x 1 vector of finite numbers.'); end end if isfield(opts,'tau') if (opts.tau <= 0) || (opts.tau >= 2) error('If used, opts.tau must be in (0,2).'); end end if isfield(opts,'mxitr') if opts.mxitr < 1 || opts.mxitr ~= floor(opts.mxitr) error('opts.mxitr should be a positive integer.'); end else opts.mxitr = 1000; end if isfield(opts,'xtol') if (opts.xtol < 0) || (opts.xtol > 1) error('opts.xtol is tolerance on norm(x - xp)/norm(xp). Should be in (0,1).'); end else opts.xtol = 1E-4; end if isfield(opts,'gtol') if (opts.gtol < 0) || (opts.gtol > 1) error('opts.gtol is tolerance on mu*norm(g,''inf'') - 1. Should be in (0,1).'); end else opts.gtol = 0.2; end if isfield(opts,'eta') if opts.eta <= 1 error('opts.eta must be greater than one.'); end else opts.eta = 4; end if isfield(opts,'fullMu') if ~islogical(opts.fullMu) error('fullMu should be true or false.'); end else opts.fullMu = false; end if isfield(opts,'kappa') if opts.kappa < 1 error('opts.kappa is a condition number and so should be >= 1.'); end end return % Copyright (c) 2007. Elaine Hale, Wotao Yin, and Yin Zhang % % Last modified 28 August 2007. % Fixed Point Continuation (FPC) for l1 Regularized Least Squares % %-------------------------------------------------------------------------- % GENERAL DESCRIPTION & INPUTS %-------------------------------------------------------------------------- % % Out = fpc(n,A,b,mu,M,opts,varargin) % % Solves % % min ||x||_1 + (mu/2)*||Ax - b||_M^2. % % A may be an explicit m x n matrix, or a function handle that implements % A*x and A'*x. If the latter, this function must have the form % % function y = name(trans,m,n,x,inds,varargin) % % where % % trans - if false then y = A(:,inds)*x, if true then y = A(:,inds)'*x % m, n - A is m x n % x - length(inds) x 1 vector if ~trans; m x 1 vector if trans % inds - vector of indices; if empty the function should return A*x % or A'*x, as appropriate % varargin - placeholder for additional parameters % % b must be an m x 1 vector. % % M can be any m x m positive definite matrix, or the empty matrix. If M % is empty, fpc assumes M = I, which reduces the second term of the % objective to (mu/2)*||Ax - b||_2^2 (standard least squares). % % This function assumes that the maximum eigenvalue of A^T M A is less % than or equal to 1. If your initial problem does not satisfy this % condition, an equivalent problem may be constructed by setting: % sigma^2 = max eigenvalue of A^T M A % mu = mu*sigma^2 % A = A/sigma % b = b/sigma % Also see getM_mu.m. % % fpc_opts.m describes the available options. If opts is passed as empty, % fpc_opts will be called to obtain the default values. % % All variables in varargin are passed to A if A is a function handle. % %-------------------------------------------------------------------------- % OUTPUTS %-------------------------------------------------------------------------- % % Out.x - x at last iteration % Out.f - vector of function values % Out.lam - vector of ||x||_1 % Out.step - vector of norm(x - xp) % Out.mus - vector of mu values for each outer iteration % Out.itr - number of iterations to convergence (or Inf if reach mxitr) % Out.itrs - vector of number of inner iterations completed during each % outer iteration % Out.tau - value of tau % Out.n2re - if opts.xs exists, is vector of norm(x - xs)/norm(xs). % starts with 0th iteration. %-------------------------------------------------------------------------- function Out = fpc(n,A,b,mu,M,opts,varargin) % problem dimension m = length(b); % implicit or explicit A imp = isa(A,'function_handle'); % calculate AtMb if imp if isempty(M), AtMb = A(true,m,n,b,[],varargin{:}); else AtMb = A(true,m,n,M*b,[],varargin{:}); end else if isempty(M), AtMb = A'*b; else AtMb = A'*(M*b); end end % check for 0 solution if mu <= 1/norm(AtMb,'inf'); Out.x = zeros(n,1); Out.itr = 0; Out.itrs = 0; Out.tau = 0; Out.mus = mu; Out.lam = 0; Out.step = []; if isempty(M), Out.f = (mu/2)*(b'*b); else Out.f = (mu/2)*(b'*(M*b)); end if isfield(opts,'xs'), Out.n2re = 1; end return end % get opts if isempty(opts), opts = fpc_opts([]); end % initialize x, nu, tau, mu muf = mu; % final value of mu [x,nu,tau,mu] = fpc_init(n,m,b,AtMb,M,opts); if mu > muf, mu = muf; nu = tau/mu; end Out.mus = mu; Out.tau = tau; % initialize Out.n2re if isfield(opts,'xs'), xs = opts.xs; else xs = []; end if ~isempty(xs), Out.n2re = norm(x - xs)/norm(xs); end xtol = opts.xtol; gtol = opts.gtol; % prepare for iterations Out.step = []; Out.itrs = []; Out.f = []; Out.lam = []; Out.itr = Inf; oitr = 0; Ax = []; % main loop for i = 1:opts.mxitr % store old point xp = x; % get gradient at x and store objective function [g,f,lam] = get_g(x,imp,m,n,mu,A,b,M,AtMb,varargin{:}); Out.f = [Out.f; f]; Out.lam = [Out.lam; lam]; % take fixed-point step y = x - tau*g; x = sign(y).*max(0,abs(y)-nu); nrmxxp = norm(x - xp); Out.step = [Out.step; nrmxxp]; if ~isempty(xs), Out.n2re = [Out.n2re; norm(x - xs)/norm(xs)]; end crit1 = nrmxxp/max(norm(xp),1); crit2 = mu*norm(g,'inf') - 1; if (crit1 < xtol*sqrt(muf/mu)) && (crit2 < gtol) oitr = oitr + 1; if isempty(Out.itrs), Out.itrs = i; else Out.itrs = [Out.itrs; i - sum(Out.itrs)]; end % stop if reached muf if mu == muf Out.x = x; Out.itr = i; [g,f,lam] = get_g(x,imp,m,n,mu,A,b,M,AtMb,varargin{:}); Out.f = [Out.f; f]; Out.lam = [Out.lam; lam]; return end % update mu if opts.fullMu phi = sqrt((2/mu)*(f - lam)); mu = getNextMu(n,phi,opts.eta,opts.kappa); else mu = opts.eta*mu; end mu = min(mu,muf); nu = tau/mu; Out.mus = [Out.mus; mu]; end end % did not converge within opts.mxitr Out.x = x; if isempty(Out.itrs), Out.itrs = i; else Out.itrs = [Out.itrs; i - sum(Out.itrs)]; end end % fpc %-------------------------------------------------------------------------- % SUBFUNCTION FOR INITIALIZATION %-------------------------------------------------------------------------- % % OUTPUTS ----------------------------------------------------------------- % x - initialized based on opts.x0 and opts.init. if opts.x0 exists, % x = opts.x0, otherwise, opts.init determines x: % 0 - x = zeros(n,1) % 1 - x = tau*||AtMb||_Inf * ones(n,1) % 2 - x = tau*AtMb % nu - equals tau/mu % tau - equals opts.tau if exists, otherwise min(1.999,-1.665*m/n+2.665) % mu - set based on x = 0, mu = 1/norm(AtMb,inf), and getNextMu %-------------------------------------------------------------------------- function [x,nu,tau,mu] = fpc_init(n,m,b,AtMb,M,opts) % initialize tau if isfield(opts,'tau'), tau = opts.tau; else tau = min(1.999,-1.665*m/n + 2.665); end % initialize x if isfield(opts,'x0') x = opts.x0; if length(x) ~= n, error('User supplied x0 is wrong size.'); end else switch opts.init case 0, x = zeros(n,1); case 1, x = tau*norm(AtMb,inf)*ones(n,1); case 2, x = tau*AtMb; end end % initialize mu if opts.fullMu && isfield(opts,'kappa') if isempty(M), phi = norm(b); % phi = ||Ax - b||_M else phi = sqrt(b'*(M*b)); end mu = getNextMu(n,phi,opts.eta,opts.kappa); else if opts.fullMu warning('opts.fullMu = true, but opts.kappa is not supplied. Switching to opts.fullMu = false.'); opts.fullMu = false; end mu = opts.eta/norm(AtMb,inf); end % initialize nu nu = tau/mu; end % fpc_init %-------------------------------------------------------------------------- % SUBFUNCTION FOR CALCULATING NEXT mu %-------------------------------------------------------------------------- % % Calculates the next value of mu based on taking a predictor step along % the pareto curve phi(lam). The derivative of this curve is derived in % % van den Berg, E. and M. Friedlander. In pursuit of a root. Preprint, % 2007. % % The steplength is chosen so that phi(current)/phi(next) \approx eta. % Mu is chosen so that the true phi(next) is guaranteed to be <= the % predicted value. % % INPUTS ------------------------------------------------------------------ % n - length of x % phi - ||Ax - b||_M % g - A'M(Ax - b) % eta - parameter for choosing how much phi should decrease during next % outer iteration. getNextMu is approximately the same as choosing % mu = eta*mu. % kap - condition number of A'MA. See getM_mu. %-------------------------------------------------------------------------- function mu = getNextMu(n,phi,eta,kap) mu = eta*sqrt(n*kap)/phi; end % getNextMu %-------------------------------------------------------------------------- % SUBFUNCTION FOR CALCULATING g %-------------------------------------------------------------------------- function [g,f,lam] = get_g(x,imp,m,n,mu,A,b,M,AtMb,varargin) % get A*x if imp Ax = A(false,m,n,x,[],varargin{:}); else Ax = A*x; end % calc g if imp if isempty(M) g = A(true,m,n,Ax,[],varargin{:})-AtMb; else g = A(true,m,n,M*Ax,[],varargin{:})-AtMb; end elseif isempty(M) g = A'*Ax - AtMb; else g = A'*(M*Ax) - AtMb; end % calc f r = Ax - b; lam = sum(abs(x)); if isempty(M) f = 0.5*mu*norm(r)^2 + lam; else f = 0.5*mu*r'*(M*r) + lam; end end % get_g % Copyright (c) 2007. Elaine Hale, Wotao Yin, and Yin Zhang % % Last modified 28 August 2007. % RECOMMENDED M AND mu FOR l1-REGULARIZED WEIGHTED LEAST SQUARES % %-------------------------------------------------------------------------- % DESCRIPTION AND INPUTS %-------------------------------------------------------------------------- % % [M,mu,A,b,sig,kap,tau,M12] = getM_mu(full,mu,m,n,Ameth,A,b,sig1,sig2,alpha) % % Constructs M and mu as described in Hale, Yin and Zhang 2007, based % on the noise estimates sig1 and sig2, and the statistical parameter % alpha. % % full - only relevant if sig1 > 0 and AA' is not a multiple of I. In % this case, and if full == true, then the full estimate for M, % M = (sig1^2 AA' + sig2^2 I)^{-1} is calculated. Otherwise M is % estimated to be (sig1^2 lam_max(AA') + sig2^2)^{-1} I. The % constant is then moved to mu so that M is returned as []. % % mu - if empty, then recommended mu value is calculated. % % m,n - A is an m x n matrix. % % Ameth - indicates what type of A matrix is being passed. values >= 0 % correspond to indices from getData.m. % -1 - generic A matrix % 0 - randn(m,n) (uses analytic bound on min and max % eigenvalues of AA') % 1 - 0 and then columns are scaled to unit norm % 2 - 0 and then QR factorization to obtain orthonormal rows % (AA' = I) % 3 - bernoulli +/- 1 distribution % 4 - partial Hadamard matrix (AA' = nI) % 5 - partial fourier matrix (implicit,AA'=nI,ifft = A'/n) % 6 - partial discrete cosine matrix (implicit,AA'=I) % 7 - partial 2-d fourier matrix (as 5,but AA'=n^2*I) % 8 - partial 2-d discrete cosine matrix (as 6) % Codes -1, 1, and 3 are equivalent; 2, 6 and 8 are equivalent; 4 % and 5 are equivalent. % % A,b - problem data. Only accessed if Ameth <= 4 (A is explicit). % % sig1, sig2 - noise level estimates. In particular we assume that % b = A*(xs + epsilon1) + epsilon2, where epsiloni is iid Gaussian % noise with standard deviation sigi. % % alpha - mu estimate uses 1-alpha chi^2 critial value. mu is not very % sensitive to alpha and alternative is provided in case the % statistics toolbox is not available. Results in Hale, Yin and % Zhang 2007 used alpha = 0.5. % %-------------------------------------------------------------------------- % OUTPUTS %-------------------------------------------------------------------------- % % M - recommended value of M. Returned as [] if M = I. % % mu - if input mu is the empty matrix, output mu is the recommended % value. otherwise, mu is untouched. % % A,b - problem data. Untouched if AA' = I or A is implicit. Otherwise, % A and b are scaled so that the maximum eigenvalue of A'*M*A = 1. % % sig - approximate noise level (standard deviation) of least squares % solution. equal to sqrt(sig1^2 + sig2^2/(min eig of AA')). % % kap - condition number of M12*AA'*M12. % % tau - if AtMA is not well conditioned, tau is returned as 2-eps. % otherwise, tau is returned empty to signal that fpc default % should be used. % % M12 - equal to M^(1/2) if ~isempty(M). %-------------------------------------------------------------------------- function [M,mu,A,b,sig,kap,tau,M12] = getM_mu(full,mu,m,n,Ameth,A,b,sig1,sig2,alpha) tau = []; M12 = []; % options for eigs opts.tol = 1E-4; opts.disp = 0; opts.issym = true; % calculate M, mu, sig, kap, tau, M12 if full && sig1 > 0 && ismember(Ameth,[-1 0 1 3]) % most general case--must calculate full M matrix AAt = A*A'; M = sig1^2*AAt; M(1:m+1:m^2) = M(1:m+1:m^2) + sig2^2; % invert to get M lsopts.SYM = true; lsopts.POSDEF = true; M = linsolve(M,eye(m),lsopts); % need matrix square root M12 = sqrtm(M); M12AAtM12 = M12*AAt*M12; % get eigenvalues smax = sqrt(eigs(M12AAtM12,1,'lm',opts)); smin = sqrt(eigs(M12AAtM12,1,0,opts)); if Ameth == 0 sig = sqrt(sig1^2 + sig2^2/max((1 - sqrt(m/n))^2*n,eps^2)); else sig = sqrt(sig1^2 + sig2^2/max(eigs(AAt,1,0,opts),eps^2)); end kap = smax^2/smin^2; % no tau because full M means well-conditioned AtMA if isempty(mu) if strcmp(which('chi2inv'),''); % avoids chi2inv, is good approximation for large n mu = smax*sqrt(n*kap/m); else mu = smax*sqrt(n*kap/chi2inv(1-alpha,m)); end end else % M is a multiple of I M = []; switch Ameth case {-1,1,3} % unknown eigenvalues AAt = A*A'; smax = sqrt(eigs(AAt,1,'lm',opts)); smin = sqrt(eigs(AAt,1,0,opts)); muSig = sqrt(sig1^2*smax^2 + sig2^2); sig = sqrt(sig1^2 + sig2^2/smin^2); kap = smax^2/smin^2; tau = 2-eps; case 0 % have tight bounds delta = m/n; smax = (1 + sqrt(delta))*sqrt(n); smin = max((1 - sqrt(delta))*sqrt(n),eps); muSig = sqrt(sig1^2*smax^2 + sig2^2); sig = sqrt(sig1^2 + sig2^2/smin^2); kap = smax^2/smin^2; tau = 2-eps; case {2,6,8} % AAt = I smin = 1; smax = 1; sig = sqrt(sig1^2 + sig2^2); muSig = sig; kap = 1; case {4,5} % AAt = nI smin = sqrt(n); smax = sqrt(n); muSig = sqrt(sig1^2*n + sig2^2); sig = sqrt(sig1^2 + sig2^2/n); kap = 1; % if Ameth = 5, b was already scaled by getData since A scaling % is implemented in pfft_wrap_part case 7 smin = n; smax = n; muSig = sqrt(sig1^2*n^2 + sig2^2); sig = sqrt(sig1^2 + sig2^2/n^2); kap = 1; % b was already scaled by getData since A scaling is % implemented in pfft2_wrap_part end % calculate recommended mu if required if isempty(mu) if strcmp(which('chi2inv'),''); % avoids chi2inv, is good approximation for large n mu = (smax/muSig)*sqrt(n*kap/m); else mu = (smax/muSig)*sqrt(n*kap/chi2inv(1-alpha,m)); end end end % scale A and b if required if ismember(Ameth,[-1,0,1,3,4]) A = (1/smax)*A; b = (1/smax)*b; end return % Copyright (c) 2007. Elaine Hale, Wotao Yin, and Yin Zhang % % Last modified 28 August 2007.
github
jacksky64/imageProcessing-master
callback_fft.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/callback_fft.m
1,815
utf_8
d2cbd486232bc3f7a4a6e537092d87a1
function y = callback_fft(x,dir,options) % callback_fft - callback for sparsity with FFT % % y = callback_fft(x,dir,options); % % Works in 1D and 2D. Orthogonal transforms. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; %% Detect dimension if size(x,1)==1 || size(x,2)==1 ndims = 1; else ndims = 2; end ndims = getoptions(options, 'ndims', ndims); isreal = getoptions(options, 'isreal', +1); remove_high_freq = getoptions(options, 'remove_high_freq', 0); %% Transform if ndims==1 %% 1D n = length(x); if dir==1 y = ifft(x) * sqrt(n); if isreal y = real(y); end else y = fft(x) / sqrt(n); end else n = size(x,1); p = size(x,2); %% 2D if dir==1 if remove_high_freq>0 x = remove_freq(x,remove_high_freq,dir); end y = ifft2(x) * sqrt(n*p); if isreal y = real(y); end else y = fft2(x) / sqrt(n*p); if remove_high_freq>0 y = remove_freq(y,remove_high_freq,dir); end end end %% function y = remove_freq(y,s,dir) %y = fftshift(y); % y(1:s,:) = 0; y(:,1:s) = 0; % y(end-s+2:end,:) = 0; y(:,end-s+2:end) = 0; % y = fftshift(y); % remove only corners y([end-s+2:end 1:s], end/2-s:end/2+s) = 0; y(end/2-s:end/2+s, [end-s+2:end 1:s]) = 0; y(end/2-s:end/2+s, end/2-s:end/2+s) = 0; return; global Qshuf; global Ishuf; if size(Qshuf)~=3*(2*s-1)^2 A = zeros(size(y)); n = size(y,1); s1 = n/2-s+1:n/2+s-1; s2 = [n-s+2:n 1:s]; A(s2, s1) = 1; A(s1, s2) = 1; A(s1,s1) = 1; Ishuf = find(A==1); rand('state', 123456); [Qshuf,R] = qr(rand(length(Ishuf))); end if dir==1 y(Ishuf) = Qshuf*y(Ishuf); else y(Ishuf) = Qshuf'*y(Ishuf); end return;
github
jacksky64/imageProcessing-master
perform_analysis_regularization.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/perform_analysis_regularization.m
2,585
utf_8
c15e65a8b4b77823cd42e992ac708563
function [g,g_list,E] = perform_analysis_regularization(f, G, options) % perform_analysis_regularization - perform a sparse regularization % % [g,g_list,E] = perform_analysis_regularization(f, A, options); % % Method solves, given f of length n, for % min_g E(g) = 1/2*|f-g|^2 + lambda * |A*g|_1 % where A is an (m,n) operator and |x|_1=\sum_k |x(k)| % % A can be a (m,n) matrix or an operator % y = A(x,dir,options); % where dir=1 to computer y=A*x and y=A'*x when dir=-1. % % You have to set lambda in options.lambda. % The number of iteration is options.niter. % The regularization parameter is options.eta (should be small enough). % You can use an increasing lambda by setting options.lambda_min and % options.lambda_max. In that case, g_list contains the list of solutions % for increasing values of lambda. % % It uses the projection algorithm described in % A. Chambolle % "An algorithm for Total variation Minimization and applications" % Journal of Mathematical Imaging and Vision, 20(1), p. 89-97, 2004 % % Copyright (c) 2007 Gabriel Peyre options.null = 0; if isfield(options, 'niter') niter = options.niter; else niter = 100; end if isfield(options, 'eta') eta = options.eta; else eta = 0.1; end if isfield(options, 'g') h = options.h; else h = f*0; end if isfield(options, 'lambda') lambda = options.lambda; else lambda = .3; end if isfield(options, 'lambda_min') lambda_min = options.lambda_min; else lambda_min = lambda; end if isfield(options, 'lambda_max') lambda_max = options.lambda_max; else lambda_max = lambda; end if isfield(options, 'verb') verb = options.verb; else verb = 1; end lambda_list = linspace(lambda_min,lambda_max,niter); f = f(:); n = length(f); if nargout>2 g_list = zeros(n,niter); end E = []; p = appG(G,h,options); for i=1:niter if verb progressbar(i,niter); end lambda = lambda_list(i); h = lambda*appGT(G,p,options); pp = -1/lambda * appG(G,h-f,options); % update p = ( p+eta*pp )./( 1+eta*abs(pp) ); if nargout>2 g = f-h; pg = appG(G,g,options); E(end+1) = .5*norm(h, 'fro')^2 + lambda_max * sum( abs(pg(:)) ); end if nargout>1 g_list(:,i) = f - h; end end g = f - h; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=appG(G,x, options) if isnumeric(G) y = G*x; else y = feval( G,x, 1, options ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=appGT(G,x, options) if isnumeric(G) y = G'*x; else y = feval( G,x, -1, options ); end
github
jacksky64/imageProcessing-master
perform_dictionary_learning.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/perform_dictionary_learning.m
11,227
utf_8
7d719ce3e479bb813629d6651d16f2a3
function [D,X,E] = perform_dictionary_learning(Y,options) % perform_dictionary_learning - learn a dictionnary using K-SVD algorithm % % [D,X,E] = perform_dictionary_learning(Y,options) % % Y is a matrix of size (n,m) containing m column examplar % vector in R^n. % % D is a dictionnary matrix of size (n,K) of K vectors in R^n % that should approximate well the vectors of Y % with few components. % K is given by options.K % % The algorihtm perform the folowing optimization jointly on D and X % min_{D,X} |Y-D*X|^2 subject to |X_k|_0<=s % subject to columns of D having unit norm. % where s=options.nbr_max_atoms. % % It does this optimisation using block coordinate descent. % * Optimization of X knowing D amount to sparse coding, solved using % iterative thresholding: % X <- Thresh_lambda( X + D'*( Y - D*X ) ) % This step is repeated options.niter_inversion times. % * Optimization of D knowing X amount to L2 best fit: % D <- Y*X^+ where X^+ = X'*(X*X')^{-1} % % This algorithm is very much inspired by the MOD algorithm % for dictionary design. % % The number of iteration of the algorithm is given in % options.niter_learning. % The number of iteration for sparse coding during each step of learning % is given by options.niter_inversion. % The sparse coder used is set in options.sparse_coder to either 'omp' or % 'mp' or 'itthresh'. % % options.learning_method can be set to: % 'ksvd': in this case, the dictionary update is computed using the % K-SVD algorithm explained in % "K-SVD: An Algorithm for Designing Overcomplete Dictionaries % for Sparse Representation" % Michal Aharon Michael Elad Alfred Bruckstein, 2006 % 'mod': in this case, the dictionary update is computed using the L2 % best fit as proposed by % "Method of optimal directions for frame design", % K. Engan, S. O. Aase, and J. H. Hus?y, % in Proc. ICASSP, Phoenix, AZ, Mar. 1999, pp. 2443?2446. % 'randomized': apply randomly one or the other algorithm. % 'modortho' same as mod, but the dictionary is constrained to be % orthogonal. In this case, the dictionary must be square. The % idea is taken from % "Learning Unions of Orthonormal Bases with Thresholded Singular Value Decomposition" % S Lesage, R Gribonval, F Bimbot, and L Benaroya % in Proc. ICASSP'05, vol. V, p. 293--296 % 'grad': same as MOD but with a pojected gradient descent. % % If you work with missing data, then you need to provide % mask=options.mask which should a matrix of the same size as Y and % mask(i,j)=0 whenever an entry Y(i,j) is missing (should be Y(i,j)=0) % and mask(i,j)=1 for valid data. % % MOD is usualy faster but KSVD gives a better optimization of the energy. % KSVD is very efficient when a very low sparsity is required (set options.nbr_max_atoms to a small constant). % % Copyright (c) 2007 Gabriel Peyre [n,m] = size(Y); options.null = 0; niter = getoptions(options, 'niter_learning', 10); K = getoptions(options, 'K', n); niter_inversion = getoptions(options, 'niter_inversion', 4); lambda = getoptions(options, 'lambda', mean( sqrt( sum( Y.^2, 1 ) ) ) / 50); sparse_coder = getoptions(options, 'sparse_coder', 'omp'); mu = getoptions(options, 'mu', 1/K); init_dico = getoptions(options, 'init_dico', 'input'); mu_dampling = getoptions(options, 'mu_dampling', 1); lambda_min = getoptions(options, 'lambda_min', lambda); lambda_max = getoptions(options, 'lambda_max', lambda_min*4); mask = getoptions(options, 'mask', []); use_bootstrapping = getoptions(options, 'use_bootstrapping', 0); verb = getoptions(options, 'verb', 1); learning_method = getoptions(options, 'learning_method', 'mod'); if not(isfield(options, 'nbr_max_atoms')) warning('You should set the sparsity options.nbr_max_atoms.'); options.nbr_max_atoms = 4; end if niter>1 options.niter_learning = 1; E = []; for i=1:niter options.lambda = lambda_max - (i-1)/(niter-1)*(lambda_max-lambda_min); if verb progressbar(i,niter); end [D,X] = perform_dictionary_learning(Y,options); options.D = D; options.X = X; if strcmp(sparse_coder, 'strict') || strcmp(sparse_coder, 'omp') || strcmp(sparse_coder, 'mp') if isempty(mask) E(end+1) = norm( Y-D*X, 'fro'); else E(end+1) = norm( (Y-D*X).*mask, 'fro'); end else E(end+1) = 1/2*norm( Y-D*X, 'fro')^2 + lambda_min * sum( abs(X(:)) ); end end % sort the basis vector according to energy e = sum( X.^2, 2 ); [tmp,I] = sort(e); I = I(end:-1:1); D = D(:,I); X = X(I,:); return; end if isfield(options, 'D') && not(isempty(options.D)) D = options.D; else % intialize dictionary switch init_dico case 'input' sel = randperm(m); sel = sel(1:K); D = Y(:,sel); case 'haar1d' D = compute_haar_matrix(n,1); case 'haar2d' D = compute_haar_matrix([sqrt(n) sqrt(n)],1); case 'rand' D = randn(n,K); end if size(D,2)<K D = [D; randn(n,K-size(D,2))]; elseif size(D,2)>K D = D(:,1:K); end D = D - repmat( mean(D), n,1 ); D(:,1) = 1; % enforce low pass D = D ./ repmat( sqrt(sum(D.^2,1)), n,1 ); end if isfield(options, 'X') && not(isempty(options.X)) X = options.X; else X = zeros(size(D,2), size(Y,2)); end % sparse inversion if isempty(mask) if not(strcmp(sparse_coder, 'omp')) && not(strcmp(sparse_coder, 'mp')) % sparse code wiht iterative thresholdings % compute condition number if isfield(options, 'mu') mu = options.mu; else [a,s,b] = svd(D); mu = 1/max(diag(s))^2; end E = []; for i=1:niter_inversion X = X + mu * mu_dampling * D'*( Y - D*X ); if strcmp(sparse_coder, 'soft') t = lambda*mu_dampling*mu; elseif strcmp(sparse_coder, 'hard') % for hard thresholding, the scaling is different t = lambda*sqrt(mu_dampling*mu); end X = perform_thresholding( X, t, sparse_coder); E(end+1) = 1/2*norm( Y-D*X, 'fro')^2 + lambda * sum( abs(X(:)) ); end if E(end)>E(1) warning('Iterative thresholding did not converge, you should lower options.mu_dampling.'); end else % sparse code with matching pursuit if not(isfield(options, 'use_mex')) options.use_mex = 0; end if strcmp(learning_method, 'modortho') M = options.nbr_max_atoms; % number of coefficients to keep p = size(Y,2); % number of signals d = size(Y,1); % use simple best k-term in ortho-basis X = D'*Y; % coefficients [tmp,I] = sort(abs(X)); I = I(end-M,:) + (0:p-1)*d; T = repmat( abs(X(I)), [d 1] ); X = X.*(abs(X)>T); else options.verb = 0; X = perform_omp(D, Y, options); if issparse(X) X = full(X); end end end else if use_bootstrapping % fill-in the missing values Y0 = Y; Y = D*X; Y(mask==1) = Y0(mask==1); % sparse code % options.learning_method = 'mod'; options.verb = 0; X = full( perform_omp(D, Y, options) ); else % sparse code with atom with missing information for k=1:size(Y,2) % progressbar(k,size(Y,2)); I = find(mask(:,k)); X(:,k) = full( perform_omp( D(I,:), Y(I,k), options) ); end options.learning_method = 'grad'; end end if strcmp(learning_method, 'randomized') randomized_ksvd_proportion = getoptions(options, 'randomized_ksvd_proportion', .3); if rand<randomized_ksvd_proportion learning_method = 'ksvd'; else learning_method = 'mod'; end end if strcmp(learning_method, 'ksvd') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % KSVD algorithm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% T = 1e-3; % the first atoms is supposed to be constant for k=2:K % find the exemplar that are using dictionnary basis k I = find( abs(X(k,:))>T ); if ~isempty(I) % compute redisual if 0 D0 = D; D0(:,k) = 0; E0 = Y - D0*X; % restrict to element actually using k E0 = E0(:,I); else S = X(:,I); S(k,:) = 0; E = Y(:,I) - D*S; end % perform SVD [U,S,V] = svd(E); D(:,k) = U(:,1); X(k,I) = S(1) * V(:,1)'; end end elseif strcmp(learning_method, 'mod') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % MOD algorithm %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % dictionary fit warning off; % D = Y * X'*(X*X')^(-1); D = Y * pinv(X); warning on; elseif strcmp(learning_method, 'grad') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Gradient descent of the MOD energy %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isempty(mask) mask = Y*0+1; end if isfield(options, 'niter_grad') niter_grad = options.niter_grad; else niter_grad = 30; end if isfield(options, 'lambda_grad') lambda_grad = options.lambda_grad; else lambda_grad = .01; end % dictionary update by gradient descent Res = (Y-D*X).*mask; errg = []; for it=1:niter_grad D = D + lambda_grad*Res*X'; % normalize D = normalize_dictionary(D); % error Res = (Y-D*X).*mask; errg(end+1) = norm(Res,'fro'); end if errg(end)>errg(1) warning('Gradient descent did not converged'); end elseif strcmp(learning_method, 'modortho') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Orthogonal MOD %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if n~=K error('For modortho learning, n=K is required.'); end [U,S,V] = svd(Y*X'); D = U*V'; else error('Unknown learning method'); end D = normalize_dictionary(D); E = []; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function D = normalize_dictionary(D) n = size(D,1); D = D - repmat( mean(D),[n 1] ); D(:,1) = 1; % enforce low pass % Normalize d = sqrt(sum(D.^2,1)); I = find(d<1e-9); d(I) = 1; D(:,I) = randn(size(D,1),length(I)); d = sqrt(sum(D.^2,1)); D = D ./ repmat( d, n,1 );
github
jacksky64/imageProcessing-master
callback_sensing_rand.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/callback_sensing_rand.m
8,894
utf_8
903359765b01d21f154c6259c5c0c98d
function y = callback_sensing_rand(x, dir, options) % callback_sensing_rand - perform random sensing % % y = callback_sensing_rand(x, dir, options); % % compute y=K*x (dir=1) or y=K^{*}*x (dir=-1) or y=K^{+}*x (pseudo inverse) % where K is a random matrix. % % You need to set options.n and options.p the dimension % of the (p,n) matrix K (P=#measurements) % % options.cs_type selects different kinds of matrix % 'user' : you provide your own matrix % 'fourier' : random sub-selection of frequencies % 'fourier-scramb' : random sub-selection of frequencies of scrambled signal % 'hadamard' : random sub-selection of hadamard projections % 'fourier-scramb' : random sub-selection of hadamard projections of scrambled signal % 'noiselets' : random sub-selection of noiselets projections % 'noiselets-scramb' : random sub-selection of noiselets projections of scrambled signal % 'sinus' : random sub-selection of discrete sinus transform projections % 'sinus-scramb' : random sub-selection of discrete sinus transform projectionsof scrambled signal % % options.rand_matrix (for using your own matrix) % or options.n (size of the signal) and options.p % (number of measurements) for automatic generation. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; cs_type = getoptions(options, 'cs_type', 'sinus'); cs_matrix = getoptions(options, 'cs_matrix', []); csndims = getoptions(options, 'csndims', 1); if csndims==2 options.csndims = 1; if dir==1 y = callback_sensing_rand(x(:), dir, options); else y = callback_sensing_rand(x(:), dir, options); y = reshape(y, sqrt(length(y))*[1 1]); end return; end if not(isempty(cs_matrix)) n = size(cs_matrix, 2); p = size(cs_matrix, 1); else n = getoptions(options, 'n', 0, 1); p = getoptions(options, 'p', 0, 1); end switch lower(cs_type) case {'sinus' 'hadamard' 'fourier' 'sinus-scramb' 'hadamard-scramb' 'fourier-scramb' } y = cs_operator(x, p,n, dir, cs_type); case 'user' if isempty(cs_matrix) error('You must provide options.cs_matrix'); end if dir==1 y = cs_matrix*x; elseif dir==-1 y = cs_matrix'*x; elseif dir==-2 cs_matrix_pinv = getoptions(options, 'cs_matrix_pinv', []); if isempty(cs_matrix_pinv) warning('You should provide options.cs_matrix_pinv'); cs_matrix_pinv = pinv(cs_matrix); end y = cs_matrix_pinv*x; else error('dir should be +1,-1 or -2'); end otherwise error('Unknown CS operator'); end function y = cs_operator(x, m,n, dir, type) % FastCSOperator: The operator form of a random sampling matrix for the % compressed sensing problem. % Specifically, it returns y = A(:,I)*x (mode = 1) or y = A(:,I)'*x (mode = 2), % where A is an mxdim random sampling matrix defined as % A = P*H*Q, where P,Q are random permutation matrices, % H is a fast Hadamard/Fourier operator, and I is % a subset of the columns of A, i.e. a subset of 1:dim of length n. % Pstate - state of random generator for P matrix % Qstate - state of random generator for Q matrix Pstate = 4972169; Qstate = 7256157; do_scramb = 0; if strcmp(type, 'sinus-scramb') || strcmp(type, 'hadamard-scramb') || strcmp(type, 'fourier-scramb') do_scramb = 1; end ntest = size(x,2); if (dir == +1) % analysis % Apply matrix Q rand('state', Qstate); if do_scramb x = x( randperm(n),: ); end % Apply matrix H switch type case {'sinus' 'sinus-scramb'} x = RST(x); case {'hadamard' 'hadamard-scramb'} x = FHT(x); case {'fourier' 'fourier-scramb'} x = fft(x)/sqrt(n); otherwise error('Unknown CS operator'); end % Apply matrix P rand('state', Pstate); sel = randperm(n); y = x(sel(1:m),:); else % Adjoint operator % Apply matrix P^T rand('state', Pstate); sel = randperm(n); y = zeros(n,ntest); y( sel(1:m),: ) = x; % Apply matrix H^T switch type case {'sinus' 'sinus-scramb'} y = Inv_RST(y); case {'hadamard' 'hadamard'} y = Inv_FHT(y); case {'fourier' 'fourier-scramb'} y = ifft(y)*sqrt(n); otherwise error('Unknown CS operator'); end % Apply matrix Q^T if do_scramb rand('state', Qstate); y(randperm(n),:) = y; end end function S = RST(X) % RST: Real Sinusoid Transform of an n-vector % Usage: % S = RST(X); % Inputs: % X input n-vector % Outputs: % S output vector which contains the transform coeffs. % % Description % RST computes a 1-D real sinusoid transform of an n vector, n dyadic, % by taking the fft of X and using conjugate symmetry to eliminate % complex values. % See Also % Inv_RST, RST2 n = size(X,1); S = fft_mid0(X) ./ sqrt(n); n2 = n/2 + 1; % Center point S(2:(n2-1),:) = sqrt(2) .* real(S(2:(n2-1),:)); S((n2+1):n,:) = -sqrt(2) .* imag(S((n2+1):n,:)); % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function X = Inv_RST(S) % Inv_RST: Inverse Real Sinusoid Transform of an n vector % Usage: % X = Inv_RST(S); % Inputs: % S n vector % Outputs: % X reconstructed vector. % % Description % Inv_RST computes the inverse of RST by rearranging frequencies and % taking the inverse 1-D fft. % See Also % RST n = size(S,1); n2 = n/2 + 1; % Center point isqrt2 = 1./sqrt(2); X = S; % Top row X(2:(n2-1),:) = isqrt2 .* (S(2:(n2-1),:) + i .* S(n:-1:(n2+1),:)); X(n:-1:(n2+1),:) = isqrt2 .* (S(2:(n2-1),:) - i .* S(n:-1:(n2+1),:)); X = real(ifft_mid0(X)) .* sqrt(n); % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y=fft_mid0(x) % fftmid0 -- 1d fft with argument [-pi,pi] (instead of [0,2pi]) % Usage: % Y = fft_mid0(X) % Inputs: % X Array(n) % Outputs: % Y Array(n) % Description: % Performs 1d fft with grid (-n/2):(n/2-1) on both time % and frequency side. % y(k) = sum_{t=-n/2}^{n/2-1} exp(i 2pi/n kt) x(t) , (-n/2) <= k < n/2 % y = fftshift(fft(fftshift(x,1)),1); % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y=ifft_mid0(x) % ifft_mid0 -- 1d fft with argument [-pi,pi] (instead of [0,2pi]) % Usage: % Y = ifft_mid0(X) % Inputs: % X Array(n) % Outputs: % Y Array(n) % Description: % Performs 1d fft with grid (-n/2):(n/2-1) on both time % and frequency side. % y(k) = sum_{t=-n/2}^{n/2-1} exp(i 2pi/n kt) x(t) , (-n/2) <= k < n/2 % y = fftshift(ifft(fftshift(x,1)),1); % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = FHT(x) % FHT: Computes the Hadamard transform of a signal % Usage: % y = FHT(x); % Inputs: % x signal of dyadic length % Outputs: % y Hadamard transform coefficients % % Description % FHT computes the Fast Hadamard transform of the signal x. % See Also % IFHT %x = x(:); n = size(x,1); y = x; t = zeros(n,size(x,2)); odds = 1:2:n; evens = 2:2:n; for ii = 1:log2(n) t(odds,:) = y(odds,:) + y(evens,:); t(evens,:) = y(odds,:) - y(evens,:); y(1:(n/2),:) = t(odds,:); y((n/2+1):n,:) = t(evens,:); end y = y ./ sqrt(n); % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = Inv_FHT(x) % Inv_FHT: Computes the inverse Hadamard transform of a signal % Usage: % y = Inv_FHT(x); % Inputs: % x Hadamard transform coefficients % Outputs: % y signal % % Description % Inv_FHT applies the forward Hadamard transform, since it is a self-adjoint operator. % See Also % FHT y = FHT(x); % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
jacksky64/imageProcessing-master
compute_redundant_dictionary.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/compute_redundant_dictionary.m
3,651
utf_8
873380c9481c36f5a06629f27c1719b4
function [D,info] = compute_redundant_dictionary(name,n,options) % compute_redundant_dictionary - compute several redundant dictionaries (matrices) % % [D,info] = compute_redundant_dictionary(name,n,options); % % n is the dimension % options.q controls the redundancy % info is a struct continaining information about the dictionary. % % name can be 'wavelets' (with redundant translation) % 'cosine' (with redundant frequencies) % 'gabor' % % for Gabor, you can select options.gaborloc which controls the ratio of % frequency/time localization. gaborloc==2 means that the gabor atoms are % 2x larger localization in frequencies. % % Copyright (c) 2008 Gabriel Peyre q = getoptions(options, 'q', 4); options.null = 0; switch name case 'wavelets' [D,info.sel] = compute_wav_dictionary(n,q,options); case 'cosine' D = compute_cosine_dictionary(n,q,options); info.sel = 1:size(D,2); case 'gabor' [D,info] = compute_gabor_dictionary(n,q,options); info.sel = 1:size(D,2); otherwise error('Unknown dictionary.'); end %%% function [D,info] = compute_gabor_dictionary(n,q,options) %% compute the freq/time localization factor gaborloc = getoptions(options, 'gaborloc', 1); gaborcpx = getoptions(options, 'gaborcpx', 0); [sigma,sigmaf] = compute_gabor_sigma(n, gaborloc); info.sigma = sigma; info.sigmaf = sigmaf; %% build the windowing functions t = [0:n/2 -n/2+1:-1]; g = exp(-t.^2 / (2*sigma^2) ); sf = sqrt( sigmaf/sigma *n/q ); % spacing in time sx = sqrt( sigma /sigmaf*n/q ); % spacing in frequency x = ( 0:sx:n-1 ); if gaborcpx f = ( 0:sf:n-1 ); else f = ( 0:sf:n/2-1 ); end t = 0:n-1; nx = length(x); nf = length(f); p = nx*nf; % number of atoms %% compute gabor atoms [T,F,X] = ndgrid( t, f, x ); TX = T-X; % shifted if gaborcpx D = exp( -TX.^2 / (2*sigma^2) ) .* exp( 2i*pi/n * TX .* F ); else D = exp( -TX.^2 / (2*sigma^2) ) .* cos( 2*pi/n * TX .* F ); end D = reshape(D, [n p]); D = D ./ repmat( sqrt(sum(abs(D).^2)), [n 1] ); % frequency index F = F(1,:,:); info.F = F(:); % spacial index X = X(1,:,:); info.X = X(:); info.nx = nx; info.nf = nf; %% select the sigma so that the localization freq/time function [sigma,sigmaf] = compute_gabor_sigma(n, gaborloc) % is gaborloc ns = 400; slist = linspace(1,n/8,ns); t = [0:n/2 -n/2+1:-1]; [S,T] = meshgrid( slist,t ); % generate gaussians G = exp(-T.^2 ./ (2*S.^2) ); G = G ./ repmat( sqrt(sum(G.^2)), [n 1] ); % compute FFT GF = real(fft(G)); GF = GF ./ repmat( sqrt(sum(GF.^2)), [n 1] ); % correlation C = G'*GF; % C(i,j) : correlation space_i / freq_j [tmp,I] = max(C, [], 2); slistf = slist(I); r = slistf./slist; [tmp,I] = min(abs(r-gaborloc)); I = I(1); if I==1 || I==ns warning('Problem in detecting Gabor scale'); end sigma = slist(I); sigmaf = slistf(I); %%% function D = compute_cosine_dictionary(n,q,options) s = 0:1/q:n/2; s(end) = []; [F,X] = meshgrid(s,0:n-1); D = cos( 2*pi/n * F.*X); %%% function [D,selj] = compute_wav_dictionary(n,q,options) Jmax = log2(n); Jmin = 2; options.wavelet_type = 'biorthogonal_swapped'; options.wavelet_vm = 4; D = []; sel = [n/2+1:n]; selj = {}; for j=Jmax-2:-1:Jmin y = zeros(n,1); y(sel(end/2)) = 1; psi = perform_wavelet_transform(y, Jmin-1, -1, options); sel = sel(1:end/2); sel = sel-length(sel); % translate qj = max(1/q*n/2^j,1); [Y,X] = meshgrid(1:qj:n,1:n); D = [D psi(mod(X-Y,n)+1)]; selj{j} = size(D,2)-n/qj+1:size(D,2); end
github
jacksky64/imageProcessing-master
perform_omp.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/perform_omp.m
9,857
utf_8
84fa05746f22e0ac58735d2c53b486f1
function X = perform_omp(D,Y,options) % perform_omp - perform orthogonal matching pursuit % % X = perform_omp(D,Y,options); % % D is the dictionary of size (n,p) of p atoms % Y are the m vectors to decompose of size (n,m) % X are the m coefficients of the decomposition of size (p,m). % % Orthogonal matching pursuit is a greedy procedure to minimise % |x|_0 under the constraint that D*x=y. % (maximum sparsity). % You can stop the iteration after |x|_0=k by setting options.nbr_max_atoms=k % You can set relative tolerance options.tol so that iterations stops when % |Y-D*X| < tol*|Y| % % This code calls the fast mex version of Antoine Grolleau % when possible. % % Copyright (c) 2006 Gabriel Peyre if isfield(options, 'sparse_coder') && strcmp(options.sparse_coder, 'mp') X = perform_mp(D,Y,options); return; end options.null = 0; nbr_max_atoms = getoptions(options, 'nbr_max_atoms', 50); tol = getoptions(options, 'tol', 1e-3); use_slow_code = getoptions(options, 'use_slow_code', 0); verb = getoptions(options, 'verb', 1); % P : number of signals, n dimension [n,P]=size(Y); % K : size of the dictionary [n,K]=size(D); if isfield(options, 'use_mex') && options.use_mex==1 && exist('perform_omp_mex')==3 % use fast mex interface X = zeros(K,P); for k=1:P X(:,k) = perform_omp_mex(D,Y(:,k),nbr_max_atoms); end return; end if use_slow_code X = perform_omp_other(Y,D,tol,nbr_max_atoms); return; end for k=1:1:P, if P>20 && verb==1 progressbar(k,P); end a=[]; x = Y(:,k); r = x; % residual I = zeros(nbr_max_atoms,1); % index of the chosen atoms % norm of the original signal e0 = sqrt( sum( r.^2 ) ); for j=1:1:nbr_max_atoms, proj = D'*r; pos = find(abs(proj)==max(abs(proj))); pos = pos(1); I(j) = pos; a=pinv(D(:,I(1:j)))*x; r=x-D(:,I(1:j))*a; % compute error e = sqrt( sum( r.^2 ) ); if e/e0 < tol break; end end; temp=zeros(K,1); temp(I(1:length(a)))=a; X(:,k)=sparse(temp); end; return; function [D,Di,Q,beta,c] = perform_omp_other(f,D,tol,No,ind) % perform_omp - Optimized Orthogonal Matching Pursuit % % It creates an atomic decomposition of a signal using OOMP method. You can choose a % tolerance, the number of atoms to take in or an initial subspace to influence the OOMP % algorithm. Non-selected atoms subtracted by their component in the chosen space are also % available. % % Usage: % x = perform_omp_other(f,D,tol,No,ind); % % Inputs: % f analyzing signal of size (n,s) where s is the number of signals. % D dictionary of normalized atoms of size (n,d) where d is the number % of atoms. % tol desired distance between f and its approximation % the routine will stop if norm(f'-Dsub*(f*beta)')*sqrt(delta)<tol % where delta=1/nbr_max_atoms, nbr_max_atoms is number of points in a sample % No (optional) maximal number of atoms to choose, if the number of chosen % atoms equals to No, routine will stop (default No=size(D,2) % ind (optional) indices determining the initial subspace, % % Outputs: % x coefficients of the decomposition such that f \approx D*x of size (p,s) % % References: % nbr_max_atoms. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", % IEEE Signal Processing Letters, Vol(9,4), 137-140, (2002). % % See also OMPF. % [Dnew,Di]=oompf(f,D,tol); % [Dnew,Di,Q,beta,c]=oompf(f,D,tol,No,ind); % D the dictionary D rearranged according to the selection process % D(:,1:k) contains the atoms chosen into the atomic decomposition % Di indices of atoms in new D written w.r.t the original D % Q Q(:,1:k) contains orthonormal functions spanning new D(:,1:k) % Q(:,k+1:N) contains new D(:,k+1:N) subtracted by the projection % onto the space generated by Q(:,1:k) (resp. D(:,1:k)) % beta 'k' biorthogonal functions corresponding to new D(:,1:k) % c 'k' coefficients of the atomic decomposition % See http://www.ncrg.aston.ac.uk/Projects/BiOrthog/ for more details % verbosity verb = 0; name='OOMPF'; %name of routine % get inputs and setup parameters [nbr_max_atoms,N]=size(D); beta=[]; Di=1:N; % index vector of full-dictionary Q=D; %delta=1/nbr_max_atoms; %uncomment in the case of analytical norm delta=1; %uncomment in the case of discrete norm if nargin<5 ind=[];end if nargin<4 No=N;end if nargin<3 tol=0.01;end; if size(f,2)>1 % code several vectors s = size(f,2); x = zeros(size(D,2),s); for i=1:s if s>20 progressbar(i,s); end x(:,i) = perform_omp_other(f(:,i),D,tol,No,ind); end D = x; return; end % the code use transposed data f = f'; numind=length(ind); %atoms having smaller norm than tol1 are supposed be zero ones tol1=1e-7; %1e-5 %threshold for coefficients tol2=1e-10; %0.0001 %1e-5 if verb tic; fprintf('\n%s is running for tol=%g, tol1=%g and tol2=%g.\n',name,tol,tol1,tol2); fprintf('tol -> required precision, distance ||f-f_approx||\n') fprintf('tol1 -> atoms having smaller norm are supposed to be zero ones.\n'); fprintf('tol2 -> algorithm stops if max(|<f,q>|/||q||)<= tol2.\n'); end %=============================== % Main algorithm: at kth iteration %=============================== H=min(No,N); %maximal number of function in sub-dictionary for k=1:H %finding of maximal coefficient c=zeros(1,N);cc=zeros(1,N); if k<=numind [test,q]=ismember(ind(k),Di); if test~=1 error('Demanded index %d is out of dictionary',ind(k));end c(k)=norm(Q(:,q)); if c(k)<tol1 error('Demanded atom with index %d is dependent on the others.',ind(k)); end; else for p=k:N, c(p)=norm(Q(:,p)); if c(p)>tol1 cc(p)=abs(f*Q(:,p))/c(p);end; end [max_c,q]=max(cc); %stopping criterion (coefficient) if max_c<tol2 k=k-1; if verb fprintf('%s stopped, max(|<f,q>|/||q||)<= tol2=%g.\n',name,tol2); end break; end end if q~=k Q(:,[k q])=Q(:,[q k]); % swap k-th and q-th columns D(:,[k q])=D(:,[q k]); Di([k q])=Di([q k]); end %re-orthogonalization of Q(:,k) w.r.t Q(:,1),..., Q(:,k-1) if k>1 for p=1:k-1 Q(:,k)=Q(:,k)-(Q(:,p)'*Q(:,k))*Q(:,p); end end nork=norm(Q(:,k)); Q(:,k)=Q(:,k)/nork; %normalization % compute biorthogonal functions beta from 1 to k-1 if k>1 beta=beta-Q(:,k)*(D(:,k)'*beta)/nork; end beta(:,k)=Q(:,k)/nork; % kth biorthogonal function %orthogonalization of Q(:,k+1:n) wrt Q(:,k) if k==N, break; end for p=k+1:N % orthogonalization of Q(:,p) wrt Q(:,k) Q(:,p)=Q(:,p)-(Q(:,k)'*Q(:,p))*Q(:,k); end %stopping criterion (distance) if (tol~= 0) & (norm(f'-D(:,1:k)*(f*beta)')*sqrt(delta) < tol) break;end; end c=f*beta; normf=norm(f'-D(:,1:k)*c')*sqrt(delta); if verb fprintf('From %d atoms in this dictionary %s has chosen %d atoms.\n',N,name,k); fprintf('\n%s lasted %g seconds\n',name,toc); fprintf('\nNorm ||f-f_approx|| is %g. \n',normf); end % error testing % orthogonality errortest(Q(:,1:k)); % biorthogonality errortest(D(:,1:k),beta); if nargout==1 x = zeros( size(D,2),1 ); Di = Di(1:length(c)); x(Di(:)) = c(:); D = x; end %Copyright (C) 2006 Miroslav ANDRLE and Laura REBOLLO-NEIRA % %This program is free software; you can redistribute it and/or modify it under the terms %of the GNU General Public License as published by the Free Software Foundation; either %version 2 of the License, or (at your option) any later version. % %This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; %without even the implied warranty of MERCHANTABILITY or FITNESS FOR X PARTICULAR PURPOSE. %See the GNU General Public License for more details. % %You should have received a copy of the GNU General Public License along with this program; %if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, %Boston, MA 02110-1301, USA. function f=errortest(D,beta); % ERRORTEST tests orthogonality of a sequence or biorthogonality of two sequences. % % Usage: errortest(D,beta); % errortest(Q); % % Inputs: % D sequence of vectors % beta (optional) biorthogonal sequence % % Output: % f orthogonality of D or biorthogonality D w.r.t beta % See http://www.ncrg.aston.ac.uk/Projects/BiOrthog/ for more details name='ERRORTEST'; verb = 0; if nargin==1 % orthogonality PP=D'*D;f=norm(eye(size(PP))-PP); if verb fprintf('Orthogonality: %g \n',f); end elseif nargin==2 % biorthogonality PP=beta'*D;f=norm(eye(size(PP))-PP); if verb fprintf('Biorthogonality: %g \n',f); end else if verb fprintf('%s: Wrong number of arguments',name); end end %Copyright (C) 2006 Miroslav ANDRLE and Laura REBOLLO-NEIRA % %This program is free software; you can redistribute it and/or modify it under the terms %of the GNU General Public License as published by the Free Software Foundation; either %version 2 of the License, or (at your option) any later version. % %This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; %without even the implied warranty of MERCHANTABILITY or FITNESS FOR X PARTICULAR PURPOSE. %See the GNU General Public License for more details. % %You should have received a copy of the GNU General Public License along with this program; %if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, %Boston, MA 02110-1301, USA.
github
jacksky64/imageProcessing-master
perform_mca.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/perform_mca.m
6,874
utf_8
f5c4b3fc3e6b267294c05d8f6ec46911
function ML = perform_mca(M, components, options) % perform_mca - perform MCA decomposition % % ML = perform_mca(M, components, options); % % ML(:,:,i) is the layer optained by sparse decomposition in % dictionary Di described by components{i}. % % components is a cell array of structure. % cpt = components{i) discribe the ith transform used. % % It must contains: % cpt.callback: a function of the type % y = function(x,dir,options); % for instance you can set cpt.callback=@callback_atrou % % It can contains: % cpt.options: the options given to the callback % cpt.threshold_factor: an amplification factor for the thresholding. % cpt.tv_correction and cpt.tv_weight: the MCA will perform an % additional TV minimization (usefull for the cartoon layer). % % options contains options for the MCA process such as: % options.niter: number of iterations. % options.saverep: directory to save iterations % options.Tmax and options.Tmin: maximum and minimum threshold % values. Set Tmin=0 if there is no noise in the problem % (decomposition will be exact i.e. M=sum(ML,3) % Set Tmax to approximately the maximum value of the % coefficients of all the transforms of M. % % The references for the Morphological Components Analysis are % % J. Bobin, Y. Moudden, J.-L. Starck and M. Elad, % "Morphological Diversity and Source Separation", % IEEE Transaction on Signal Processing , Vol 13, 7, pp 409--412, 2006. % % M. Elad, J.-L Starck, D. Donoho and P. Querre, % "Simultaneous Cartoon and Texture Image Inpainting using Morphological Component Analysis (MCA)", % Journal on Applied and Computational Harmonic Analysis ACHA , Vol. 19, pp. 340-358, November 2005. % % J.-L. Starck, M. Elad, and D.L. Donoho, % "Image Decomposition Via the Combination of Sparse Representation and a Variational Approach", % IEEE Transaction on Image Processing , 14, 10, 2005. % % J.-L. Starck, M. Elad, and D.L. Donoho, % "Redundant Multiscale Transforms and their Application for Morphological Component Analysis", % Advances in Imaging and Electron Physics , 132, 2004. % % See also: perform_iterative_thresholding. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; if isfield(options, 'niter') niter = options.niter; else niter = 20; end if isfield(options, 'Tmax') Tmax = options.Tmax; else Tmax = 0.2*max(abs(M(:))); end if isfield(options, 'Tmin') Tmin = options.Tmin; else Tmin = 0; end if isfield(options, 'threshold') threshold = options.threshold; else threshold = 'hard'; end if isfield(options, 'saverep') saverep = options.saverep; else saverep = []; end if isfield(options, 'InpaintingMask') InpaintingMask = options.InpaintingMask; else InpaintingMask = []; end s = length(components); % init the residual n = size(M,1); ML = zeros(n,n,s); if not(isempty(InpaintingMask)) q = sum(InpaintingMask(:)==Inf); for k=1:s Mk = ML(:,:,k); Mk(InpaintingMask==Inf) = rand( q,1 ) * max( M(InpaintingMask~=Inf) ); ML(:,:,k) = Mk; end end MLsave = []; for i=1:niter progressbar(i,niter); % current threshold T0 = Tmax + (i-1)/(niter-1)*(Tmin-Tmax); for k=1:s %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % current component cpt = components{k}; % callback function callback = cpt.callback; % options clear opt; opt.null = 0; if isfield(cpt, 'options') opt = cpt.options; end % threshold factor amplification threshold_factor = 1; if isfield(cpt, 'threshold_factor') threshold_factor = cpt.threshold_factor; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute residual T = T0 * threshold_factor; opt.T = T; % compute residual sel = 1:s; sel(k) = []; R = M - sum( ML(:,:,sel), 3); if not(isempty(InpaintingMask)) % enforce known values only outside Mk = ML(:,:,k); R(InpaintingMask==Inf) = Mk(InpaintingMask==Inf); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % perform forward transform RW = feval(callback, R,+1,opt); % perform thresholding if strcmp(cpt.name, 'wav') % do not threshold the low frequency RW1 = perform_thresholding({RW{1:end-1}},T, threshold); RW = {RW1{:}, RW{end}}; else RW = perform_thresholding(RW,T, threshold); end % perform backward transform ML(:,:,k) = feval(callback, RW,-1,opt); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % TV additional sparsening if isfield(cpt, 'tv_correction') && cpt.tv_correction==1 if isfield(options, 'tv_weight') tv_weight = options.tv_weight; else tv_weight = 2.5*max(abs(M(:)))/256; end ML(:,:,k) = perform_tv_correction(ML(:,:,k),tv_weight); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % save result if not(isempty(saverep)) MLsave(:,:,:,i) = ML; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% save all the data if not(isempty(saverep)) % normalize the evolution vmax = max(max(max(MLsave,[],1),[],2),[],4); vmax = repmat(vmax, [n n 1 niter]); vmin = min(min(min(MLsave,[],1),[],2),[],4); vmin = repmat(vmin, [n n 1 niter]); MLsave = (MLsave-vmin) ./ (vmax-vmin); for k=1:s cpt = components{k}; for i=1:niter if isfield(cpt, 'name') str = cpt.name; else str = ['layer' num2str(k)]; end str = [str '-iter' num2string_fixeddigit(i,2)]; warning off; imwrite( MLsave(:,:,k,i), [saverep str '.png'], 'png' ); warning on; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_hard_tresholding(x,t) if iscell(x) for i=1:length(x) y{i} = perform_hard_tresholding(x{i},t); end return; end y = x .* (abs(x) > t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_soft_tresholding(x,t) if iscell(x) for i=1:length(x) y{i} = perform_soft_tresholding(x{i},t); end return; end s = abs(x) - t; s = (s + abs(s))/2; y = sign(x).*s;
github
jacksky64/imageProcessing-master
compute_synthetic_dictionary.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/compute_synthetic_dictionary.m
5,246
utf_8
30de6dc1f7a7b49db0d9b4ae9489fb86
function D = compute_synthetic_dictionary(name, w, options) % compute_synthetic_dictionary - compute a synthetic dictionary % % D = compute_synthetic_dictionary(name, w, options); % % w is the width of the patches. % names is 'edges', 'oscillations', 'lines' or 'crossings'. % % Copyright (c) 2007 Gabriel Peyre options.rescale = 0; options.manifold_type = name; switch lower(name) case {'edges', 'lines'} D = compute_edge_patches(w, options); case 'crossings' D = compute_crossing_patches(w, options); case 'oscillations' D = compute_oscillations_patches(w, options); otherwise error('Unknown type.'); end p = size(D,3); % normalize rescale = getoptions(options, 'rescale', 0); bell = getoptions(options, 'bell', 'constant'); if rescale B = compute_bell_shape(bell, w); B = repmat(B,[1,1,p]); s = sqrt( sum( sum(B .* (D.^2),1), 2) ); D = D ./ repmat(s,[w,w,1]); else D = (D+1)/2; end % shuffle D = reshape(D, w^2, p); D = D(:,randperm(p)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [M,delta_list,theta_list,freq_list] = compute_oscillations_patches(w, options) % [M,delta_list,theta_list] = compute_edge_patches(w, options); options.null = 0; n_theta = getoptions(options, 'n_theta', 12); n_freq = getoptions(options, 'n_freq', 6); t = linspace(0,pi,n_theta+1); t(end) = []; f = linspace(3,8,n_freq); [theta_list,freq_list] = meshgrid( t, f ); theta_list = theta_list(:); freq_list = freq_list(:); p = length(freq_list); x = linspace( -(w-1)/2,(w-1)/2, w ); [Y,X] = meshgrid(x,x); M = []; % zeros(w,w,p*); % compute images for k=1:p t = theta_list(k); f = freq_list(k); y = cos(t)*X + sin(t)*Y; nbt = round(f*2); d = linspace(0,f,nbt+1); d(end)=0; for t=1:nbt M(:,:,k) = cos( 2*pi* (y+d(t))/f ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [M,delta_list,theta_list] = compute_edge_patches(w, options) % [M,delta_list,theta_list] = compute_edge_patches(w, options); options.null = 0; n_delta = getoptions(options, 'n_delta', 11); n_theta = getoptions(options, 'n_theta', 12); sigma = getoptions(options, 'sigma', .1); manifold_type = getoptions(options, 'manifold_type', 'edges'); sigma = sigma*w; dmax = sqrt(2)*w/2+2*sigma; eta = 2; t = linspace(0,2*pi-2*pi/n_theta,n_theta); t = t(:); d = linspace(-1,1,n_delta); d = sign(d).*abs(d).^eta; d = d(:)*dmax; [theta_list,delta_list] = meshgrid( t, d ); theta_list = theta_list(:); delta_list = delta_list(:); p = length(delta_list); x = linspace( -(w-1)/2,(w-1)/2, w ); [Y,X] = meshgrid(x,x); M = zeros(w,w,p); % compute images for k=1:p t = theta_list(k); d = delta_list(k); y = cos(t)*X + sin(t)*Y - d; switch manifold_type case 'edges' A = tanh(y/sigma); case 'lines' A = 2*( 1 - exp( -y.^2 / (2*sigma^2) ) ) - 1; case 'oscillations' if isfield(options, 'freq') freq = options.freq; end A = cos( y*2*pi/freq ); end M(:,:,k) = A; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [M, delta1_list,theta1_list, delta2_list,theta2_list] = compute_crossing_patches(w, options) % [M, delta1_list,theta1_list, delta2_list,theta2_list] = compute_crossing_patches(w, options); options.null = 0; n_delta = getoptions(options, 'n_delta', 11); n_theta = getoptions(options, 'n_theta', 12); sigma = getoptions(options, 'sigma', .1); sigma = sigma*w; dmax = sqrt(2)*w/2+2*sigma; eta = 2; t = linspace(0,pi-pi/n_theta,n_theta); t = t(:); d = linspace(-1,1,n_delta); d = sign(d).*abs(d).^eta; d = d(:)*dmax; [delta1_list,theta1_list,delta2_list,theta2_list] = ndgrid( d, t, d, t ); theta1_list = theta1_list(:); delta1_list = delta1_list(:); theta2_list = theta2_list(:); delta2_list = delta2_list(:); p = length(delta1_list); x = linspace( -(w-1)/2,(w-1)/2, w ); [Y,X] = meshgrid(x,x); c1 = repmat( reshape(cos(theta1_list),[1 1 p]), [w w 1] ); s1 = repmat( reshape(sin(theta1_list),[1 1 p]), [w w 1] ); c2 = repmat( reshape(cos(theta2_list),[1 1 p]), [w w 1] ); s2 = repmat( reshape(sin(theta2_list),[1 1 p]), [w w 1] ); d1 = repmat( reshape(delta1_list,[1 1 p]), [w w 1] ); d2 = repmat( reshape(delta2_list,[1 1 p]), [w w 1] ); X = repmat( X, [1 1 p] ); Y = repmat( Y, [1 1 p] ); A1 = c1.*X + s1.*Y - d1; A1 = 2*( 1 - exp( -A1.^2 / (2*sigma^2) ) ) - 1; A2 = c2.*X + s2.*Y - d2; A2 = 2*( 1 - exp( -A2.^2 / (2*sigma^2) ) ) - 1; M = min(A1,A2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function B = compute_bell_shape(bell, w) switch lower(bell) case 'constant' B = ones(w); case 'sine' x = linspace(0,1,w); x = (1-cos(2*pi*x))/2; B = x'*x; otherwise error('Unknown bell shape'); end
github
jacksky64/imageProcessing-master
perform_debiasing.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/perform_debiasing.m
2,313
utf_8
89cb6ddcc4c67a5af08b981e00c08149
function [x1,err] = perform_debiasing(A,x,y, options) % perform_debiasing - remove bias by orthogonal projection % % x1 = perform_debiasing(A,x,y, options); % % Compute x1 with same support I=find(abs(x)>Thresh) as x that minimize % min | y - A(:,I)*x(I) | % Thresh is set in options.Thresh % % Usefull to remove some bias after L1 minimization. % % If A is an implicit callback function or if options.use_pinv=0, then it % used an itertive gradient descent. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; use_pinv = getoptions(options, 'use_pinv', 1); Thresh = getoptions(options, 'Thresh', 1e-5); verb = getoptions(options, 'verb', 1); if isnumeric(A) && use_pinv if size(x,2)>1 % multiple signals x1 = x*0; for i=1:size(x,2) [x1(:,i),err] = perform_debiasing(A,x(:,i),y(:,i), options); end return; end % use explicit pseudo inverse I = find(abs(x)>Thresh); x1 = x*0; x1(I) = A(:,I)\y; err = []; return; end niter = getoptions(options, 'niter_debiasing', 100); tau = getoptions(options, 'tau', 1); x1 = getoptions(options, 'xguess', x); err = []; x1 = perform_support_projection(x1,x,Thresh); for i=1:niter if verb progressbar(i,niter); end % gradient descent % x <- x + 1/tau * A'*( y-A*x ) r = y - applyop_single( A, x1,+1,options ); err(i) = norm(r, 'fro'); if not(iscell(x)) x1 = x1 + 1/tau * applyop_single( A, r,-1,options ); else xx = applyop_single( A, r,-1,options ); for k=1:length(x) x1{k} = x1{k} + 1/tau * xx{k}; end end % project on support x1 = perform_support_projection(x1,x,Thresh); end %% function x = perform_support_projection(x,x0,Thresh) if iscell(x) for i=1:length(x) x{i} = perform_support_projection(x{i},x0{i},Thresh); end return; end % impose same support x(abs(x0)<Thresh) = 0; %% function y = applyop_single(A,x,dir,options, pA) if isempty(A) y = x; return; end if isnumeric(A) if dir==1 y = A*x; elseif dir==-1 y = A'*x; else if exist('pA') && not(isempty(pA)) y = pA*x; else y = pinv(A)*x; end end else y = feval( A, x, dir, options ); end
github
jacksky64/imageProcessing-master
perform_windowed_fourier_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_windowed_fourier_transform.m
5,038
utf_8
96c27071ef4e8304b6051ed54d7ad8b8
function y = perform_windowed_fourier_transform(x,w,q,n, options) % perform_windowed_fourier_transform - compute a local Fourier transform % % Forward transform: % MF = perform_windowed_fourier_transform(M,w,q,n, options); % Backward transform: % M = perform_windowed_fourier_transform(MF,w,q,n, options); % % w is the width of the window used to perform local computation. % q is the spacing betwen each window. % % MF(:,:,,i,j) contains the spectrum around point ((i-1)*q,(j-1)*q)+1. % % A typical use, for an redundancy of 2x2 could be w=2*q+1 % % options.bound can be either 'per' or 'sym' % % options.normalization can be set to % 'tightframe': tight frame transform, with energy conservation. % 'unit': unit norm basis vectors, usefull to do thresholding % % Copyright (c) 2006 Gabriel Peyre options.null = 0; if size(x,3)>1 dir = -1; if nargin<4 % assume power of 2 size n = q*size(x,3); n = 2^floor(log2(n)); end else dir = 1; n = size(x,1); end if isfield(options, 'bound') bound = options.bound; else bound = 'sym'; bound = 'per'; end if isfield(options, 'transform_type') transform_type = options.transform_type; else transform_type = 'fourier'; end if isfield(options, 'normalization') normalization = options.normalization; else normalization = 'tightframe'; end % perform sampling t = 1:q:n+1; [Y,X] = meshgrid(t,t); p = size(X,1); if mod(w,2)==1 % w = ceil((w-1)/2)*2+1; w1 = (w-1)/2; t = -w1:w1; else t = -w/2+1:w/2; end [dY,dX] = meshgrid(t,t); X = reshape(X,[1 1 p p]); Y = reshape(Y,[1 1 p p]); X = repmat( X, [w w 1 1] ); Y = repmat( Y, [w w 1 1] ); dX = repmat( dX, [1 1 p p] ); dY = repmat( dY, [1 1 p p] ); X1 = X+dX; Y1 = Y+dY; switch lower(bound) case 'sym' X1(X1<1) = 1-X1(X1<1); X1(X1>n) = 2*n+1-X1(X1>n); Y1(Y1<1) = 1-Y1(Y1<1); Y1(Y1>n) = 2*n+1-Y1(Y1>n); case 'per' X1 = mod(X1-1,n)+1; Y1 = mod(Y1-1,n)+1; end % build a weight function if isfield(options, 'window_type') window_type = options.window_type; else window_type = 'sin'; end if isfield(options, 'eta') eta = options.eta; else eta = 1; end if strcmp(window_type, 'sin') t = linspace(0,1,w); W = sin(t(:)*pi).^2; W = W * W'; elseif strcmp(window_type, 'constant') W = ones(w); else error('Unkwnown winow.'); end I = X1 + (Y1-1)*n; %% renormalize the windows weight = zeros(n); for i=1:p for j=1:p weight(I(:,:,i,j)) = weight(I(:,:,i,j)) + W.^2; end end weight = sqrt(weight); Weight = repmat(W, [1 1 p p]); for i=1:p for j=1:p Weight(:,:,i,j) = Weight(:,:,i,j) ./ weight(I(:,:,i,j)); end end if strcmp(normalization, 'unit') if strcmp(transform_type, 'fourier') % for Fourier it is easy Renorm = sqrt( sum( sum( Weight.^2, 1 ), 2 ) )/w; else % for DCT it is less easy ... % take a typical window in the middle of the image weight = Weight(:,:,round(end/2),round(end/2)); % compute diracs [X,Y,fX,fY] = ndgrid(0:w-1,0:w-1,0:w-1,0:w-1); A = 2 * cos( pi/w * ( X+1/2 ).*fX ) .* cos( pi/w * ( Y+1/2 ).*fY ) / w; A(:,:,1,:) = A(:,:,1,:) / sqrt(2); % scale zero frequency A(:,:,:,1) = A(:,:,:,1) / sqrt(2); A = A .* repmat( weight, [1 1 w w] ); Renorm = sqrt( sum( sum( abs(A).^2, 1 ),2 ) ); end Renorm = reshape( Renorm, w,w ); end %% compute the transform if dir==1 y = zeros(eta*w,eta*w,p,p); if mod(w,2)==1 m = (eta*w+1)/2; w1 = (w-1)/2; sel = m-w1:m+w1; else m = (eta*w)/2+1; w1 = w/2; sel = m-w1:m+w1-1; end y(sel,sel,:,:) = x(I) .* Weight; % perform the transform y = my_transform( y, +1, transform_type ); % renormalize if necessary if strcmp(normalization, 'unit') y = y ./ repmat( Renorm, [1 1 p p] ); end else if strcmp(normalization, 'unit') x = x .* repmat( Renorm, [1 1 p p] ); end x = my_transform( x, -1, transform_type ); x = real( x.*Weight ); y = zeros(n); for i=1:p for j=1:p y(I(:,:,i,j)) = y(I(:,:,i,j)) + x(:,:,i,j); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = my_transform(x,dir,transform_type) % my_transform - perform either FFT or DCT with energy conservation. % Works on array of size (w,w,a,b) on the 2 first dimensions. w = size(x,1); if strcmp(transform_type, 'fourier') % normalize for energy conservation if dir==1 y = fftshift( fft2(x) ) / w; else y = ifft2( ifftshift(x*w) ); end elseif strcmp(transform_type, 'dct') for i=1:size(x,3) for j=1:size(x,4) y(:,:,i,j) = perform_dct_transform(x(:,:,i,j),dir); end end else error('Unknown transform'); end
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/load_image.m
15,910
utf_8
f5a8233f70450d4ce607431750bcffda
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = 0.1; % translation gamma = 1/sqrt(2); % slope if isfield( options, 'eta' ) eta = options.eta; end if isfield( options, 'gamma' ) eta = options.gamma; end if isfield( options, 'radius' ) radius = options.radius; end if isfield( options, 'center' ) center = options.center; end if isfield( options, 'center1' ) center1 = options.center1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for some blurring sigma = 0; if isfield(options, 'sigma') sigma = options.sigma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch type case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} if isfield(options, 'radius') r = options.radius; else r = 10; end M = create_letter(type(8), r, n); case 'grid-circles' if isempty(n) n = 256; end if isfield(options, 'frequency') f = options.frequency; else f = 30; end if isfield(options, 'width') eta = options.width; else eta = 0.3; end x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' if ~isfield( options, 'width' ) width = round(n/16); else width = options.width; end [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); if isfield(options, 'theta') theta = options.theta; else theta = 0.2; end if isfield(options, 'freq') freq = options.freq; else freq = 0.2; end X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} if isfield(options, 'alpha') alpha = options.alpha; else alpha = 1; end M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian if isfield(options, 'sigma') sigma = options.sigma; else sigma = 10; end M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature if isfield(options, 'c') c = options.c; else c = 0.1; end % angle if isfield(options, 'theta'); theta = options.theta; else theta = pi/sqrt(2); end x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' if isfield(options, 'nbr_periods') nbr_periods = options.nbr_periods; else nbr_periods = 8; end if isfield(options, 'theta') theta = options.theta; else theta = 1/sqrt(2); end if isfield(options, 'skew') skew = options.skew; else skew = 1/sqrt(2); end A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1; end M = randn(n); otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]); M = perform_convolution(M,h); end M = rescale(M) * 256; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic');
github
jacksky64/imageProcessing-master
grab_inpainting_mask.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/grab_inpainting_mask.m
3,553
utf_8
e1b2c4077e57645a8b91a2bc47fd1245
function [U,point_list] = grab_inpainting_mask(M, options, mode) % grab_inpainting_mask - create a mask from user input % % U = grab_inpainting_mask(M, options); % % options.r is the radius for selection (default r=5). % % Selection stops with right click. % % Copyright (c) 2006 Gabriel Peyre if nargin==3 && mode==1 U = grab_inpainting_mask_old(M, options); return; end options.null = 0; if isfield(options, 'r') r = options.r; else r = 5; end if isfield(options, 'mode') mode = options.mode; else mode = 'points'; end if strcmp(mode, 'line') if not(isfield(options, 'point_list')) [V,point_list] = pick_polygons(rescale(sum(M,3)),r); else point_list = options.point_list; V = draw_polygons(rescale(sum(M,3)),r,point_list); end U = M; U(V==1) = Inf; return; end m = size(M,1); n = size(M,2); s = size(M,3); U = sum(M,3)/3; b = 1; [Y,X] = meshgrid(1:n,1:m); point_list = []; while b==1 clf; hold on; imagesc(rescale(M)); axis image; axis off; colormap gray(256); [y,x,b] = ginput(1); point_list(:,end+1) = [x;y]; I = find((X-x).^2 + (Y-y).^2 <= r^2 ); U(I) = Inf; for k=1:s Ma = M(:,:,k); Ma(I) = 0; M(:,:,k) = Ma; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end function [sk,point_list] = pick_polygons(mask,r) % pick_polygons - ask for the user to build a set of curves % % sk = pick_polygons(mask,r); % % mask is a background image (should be in [0,1] approx). % % The user right-click on a set of point which create a curve. % Left click stop a curve. % Another left click stop the process. % % Copyright (c) 2007 Gabriel Peyre n = size(mask,1); sk = zeros(n); point_list = {}; b = 1; while b(end)==1 % draw a line clf; imagesc(mask+sk); axis image; axis off; colormap gray(256); [y1,x1,b] = ginput(1); pl = [x1;y1]; while b==1 clf; imagesc(mask+sk); axis image; axis off; [y2,x2,c] = ginput(1); if c~=1 if length(pl)>1 point_list{end+1} = pl; end break; end pl(:,end+1) = [x2;y2]; sk = draw_line(sk,x1,y1,x2,y2,r); x1 = x2; y1 = y2; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 80; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function U = grab_inpainting_mask_old(M, r) % grab_inpainting_mask - create a mask from user input % % U = grab_inpainting_mask(M, r); % % r is the radius for selection (default r=5). % % Selection stops with right click. % % Copyright (c) 2006 Gabriel Peyr? if nargin<2 r = 5; end m = size(M,1); n = size(M,2); s = size(M,3); U = sum(M,3)/3; b = 1; [Y,X] = meshgrid(1:n,1:m); while b==1 clf; hold on; imagesc(rescale(M)); axis image; axis off; colormap gray(256); [y,x,b] = ginput(1); I = find((X-x).^2 + (Y-y).^2 <= r^2 ); U(I) = Inf; for k=1:s Ma = M(:,:,k); Ma(I) = 0; M(:,:,k) = Ma; end end
github
jacksky64/imageProcessing-master
perform_atrou_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_atrou_transform.m
23,360
utf_8
ff914c13e923fce2f63396a7faa47d26
function y = perform_atrou_transform(x,Jmin,options) % perform_atrou_transform - compute the "a trou" wavelet transform, % i.e. without subsampling. % % w_list = perform_atrou_transform(M,Jmin,options); % % 'w_list' is a cell array, w_list{ 3*(j-Jmin)+q } % is an imagette of same size as M containing the full transform % at scale j and quadrant q. % The lowest resolution image is in w_list{3*(Jmax-Jmin)+4} = % w_list{end}. % % The ordering is : % { H_j,V_j,D_j, H_{j-1},V_{j-1},D_{j-1}, ..., H_1,V_1,D_1, C } % % 'options' is an (optional) structure that may contains: % options.wavelet_type: kind of wavelet used (see perform_wavelet_transform) % options.wavelet_vm: the number of vanishing moments of the wavelet transform. % % When possible, this code tries to use the following fast mex implementation: % * Rice Wavelet Toolbox : for Daubechies filters, ie when options.wavelet_type='daubechies'. % Only the Windows binaries are included, please refer to % http://www-dsp.rice.edu/software/rwt.shtml % to install on other OS. % % You can set decomp_type = 'quad' or 'tri' for the 7-9 transform. % % Copyright (c) 2006 Gabriel Peyr? % add let it wave a trou transform to the path % path('./cwpt2/',path); % add Rice Wavelet Toolbox transform to the path % path('./rwt/',path); if nargin<3 options.null = 0; end if isfield(options, 'wavelet_type') wavelet_type = options.wavelet_type; wavelet_vm = 4; else wavelet_type = 'biorthogonal'; wavelet_vm = 3; end if isfield(options, 'wavelet_vm') wavelet_vm = options.wavelet_vm; end if isfield(options, 'bound') bound = options.bound; else bound = 'sym'; end % first check for LIW interface, since it's the best code if exist('cwpt2_interface') && ~strcmp(wavelet_type, 'daubechies') && ~strcmp(wavelet_type, 'symmlet') if strcmp(wavelet_type, 'biorthogonal') || strcmp(wavelet_type, 'biorthogonal_swapped') if wavelet_vm~=3 warning('Works only for 7-9 wavelets.'); end wavelet_types = '7-9'; elseif strcmp(wavelet_type, 'battle') if wavelet_vm~=3 warning('Works only for cubic spline wavelets.'); end wavelet_types = 'spline'; else error('Unknown transform.'); end if isfield(options, 'decomp_type') decomp_type = options.decomp_type; else decomp_type = 'quad'; % either 'quad' or 'tri' end if ~iscell(x) dirs = 'forward'; J = log2(size(x,1)) - Jmin; M = x; else dirs = 'inverse'; if strcmp(decomp_type, 'tri') x = { x{1:end-3}, x{end}, x{end-2:end-1} }; else x = { x{1:end-4}, x{end}, x{end-3:end-1} }; end J = 0; M = zeros(size(x{1},1), size(x{1},2), J); for i=1:length(x) M(:,:,i) = x{i}; end end y = cwpt2_interface(M, dirs, wavelet_types, decomp_type, J); if ~iscell(x) M = y; y = {}; for i=1:size(M,3) y{i} = M(:,:,i); end % put low frequency at the end if strcmp(decomp_type, 'tri') y = { y{1:end-3}, y{end-1:end}, y{end-2} }; else y = { y{1:end-4}, y{end-2:end}, y{end-3} }; end end return; end % precompute filters if strcmp(wavelet_type, 'daubechies') fname = 'Daubechies'; if wavelet_vm==1 fname = 'Haar'; end qmf = MakeONFilter(fname,wavelet_vm*2); % in Wavelab, 2nd argument is VM*2 for Daubechies... no comment ... elseif strcmp(wavelet_type, 'symmlet') qmf = MakeONFilter('Symmlet',wavelet_vm); elseif strcmp(wavelet_type, 'battle') qmf = MakeONFilter('Battle',wavelet_vm-1); elseif strcmp(wavelet_type, 'biorthogonal') [qmf,dqmf] = MakeBSFilter( 'CDF', [wavelet_vm,wavelet_vm] ); elseif strcmp(wavelet_type, 'biorthogonal_swapped') [dqmf,qmf] = MakeBSFilter( 'CDF', [wavelet_vm,wavelet_vm] ); else error('Unknown transform.'); end g = qmf; % for phi gg = g; if exist('mirdwt') & exist('mrdwt') & strcmp(wavelet_type, 'daubechies') %%% USING RWT %%% if ~iscell(x) n = length(x); Jmax = log2(n)-1; %%% FORWARD TRANSFORM %%% L = Jmax-Jmin+1; [yl,yh,L] = mrdwt(x,g,L); for j=Jmax:-1:Jmin for q=1:3 s = 3*(Jmax-j)+q-1; M = yh(:,s*n+1:(s+1)*n); y{ 3*(j-Jmin)+q } = M; end end y{ 3*(Jmax-Jmin)+4 } = yl; else n = length(x{1}); Jmax = log2(n)-1; %%% BACKWARD TRANSFORM %%% L = Jmax-Jmin+1; if L ~= (length(x)-1)/3 warning('Jmin is not correct.'); L = (length(x)-1)/3; end yl = x{ 3*(Jmax-Jmin)+4 }; yh = zeros( n,3*L*n ); for j=Jmax:-1:Jmin for q=1:3 s = 3*(Jmax-j)+q-1; yh(:,s*n+1:(s+1)*n) = x{ 3*(j-Jmin)+q }; end end [y,L] = mirdwt(yl,yh,gg,L); end return; end warning('This code is depreciated.'); % for reconstruction h = mirror_filter(g); % for psi hh = g; if exist('dqmf') gg = dqmf; hh = mirror_filter(gg); end n = length(x); Jmax = log2(n)-1; if iscell(x) error('reverse transform is not yet implemented.'); end M = x; Mj = M; % image at current scale (low pass filtered) nh = length(h); ng = length(g); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the transform wb = waitbar(0,'Computing a trou transform.'); for j=Jmax:-1:Jmin waitbar((Jmax-j)/(Jmax-Jmin),wb); % 1st put some zeros in between g and h nz = 2^(Jmax-j); % space between coefs hj = zeros(nz*(nh-1)+1, 1); gj = zeros(nz*(ng-1)+1, 1); hj( 1 + (0:nh-1)*nz ) = h; gj( 1 + (0:ng-1)*nz ) = g; %%%% filter on X %%%% Mjh = zeros(n,n); Mjg = zeros(n,n); for i=1:n Mjh(:,i) = perform_convolution( Mj(:,i), hj, bound ); Mjg(:,i) = perform_convolution( Mj(:,i), gj, bound ); end %%%% filter on Y %%%% Mjhh = zeros(n,n); Mjhg = zeros(n,n); Mjgh = zeros(n,n); Mjgg = zeros(n,n); for i=1:n Mjhh(i,:) = perform_convolution( Mjh(i,:)', hj, bound )'; Mjhg(i,:) = perform_convolution( Mjh(i,:)', gj, bound )'; Mjgh(i,:) = perform_convolution( Mjg(i,:)', hj, bound )'; Mjgg(i,:) = perform_convolution( Mjg(i,:)', gj, bound )'; end Mj = Mjgg; w_list{ 3*(j-Jmin)+1 } = Mjgh; w_list{ 3*(j-Jmin)+2 } = Mjhg; w_list{ 3*(j-Jmin)+3 } = Mjhh; end close(wb); w_list{ 3*(Jmax-Jmin)+4 } = Mj; y = w_list; function f = MakeONFilter(Type,Par) % MakeONFilter -- Generate Orthonormal QMF Filter for Wavelet Transform % Usage % qmf = MakeONFilter(Type,Par) % Inputs % Type string, 'Haar', 'Beylkin', 'Coiflet', 'Daubechies', % 'Symmlet', 'Vaidyanathan','Battle' % Par integer, it is a parameter related to the support and vanishing % moments of the wavelets, explained below for each wavelet. % % Outputs % qmf quadrature mirror filter % % Description % The Haar filter (which could be considered a Daubechies-2) was the % first wavelet, though not called as such, and is discontinuous. % % The Beylkin filter places roots for the frequency response function % close to the Nyquist frequency on the real axis. % % The Coiflet filters are designed to give both the mother and father % wavelets 2*Par vanishing moments; here Par may be one of 1,2,3,4 or 5. % % The Daubechies filters are minimal phase filters that generate wavelets % which have a minimal support for a given number of vanishing moments. % They are indexed by their length, Par, which may be one of % 4,6,8,10,12,14,16,18 or 20. The number of vanishing moments is par/2. % % Symmlets are also wavelets within a minimum size support for a given % number of vanishing moments, but they are as symmetrical as possible, % as opposed to the Daubechies filters which are highly asymmetrical. % They are indexed by Par, which specifies the number of vanishing % moments and is equal to half the size of the support. It ranges % from 4 to 10. % % The Vaidyanathan filter gives an exact reconstruction, but does not % satisfy any moment condition. The filter has been optimized for % speech coding. % % The Battle-Lemarie filter generate spline orthogonal wavelet basis. % The parameter Par gives the degree of the spline. The number of % vanishing moments is Par+1. % % See Also % FWT_PO, IWT_PO, FWT2_PO, IWT2_PO, WPAnalysis % % References % The books by Daubechies and Wickerhauser. % if strcmp(Type,'Haar'), f = [1 1] ./ sqrt(2); end if strcmp(Type,'Beylkin'), f = [ .099305765374 .424215360813 .699825214057 ... .449718251149 -.110927598348 -.264497231446 ... .026900308804 .155538731877 -.017520746267 ... -.088543630623 .019679866044 .042916387274 ... -.017460408696 -.014365807969 .010040411845 ... .001484234782 -.002736031626 .000640485329 ]; end if strcmp(Type,'Coiflet'), if Par==1, f = [ .038580777748 -.126969125396 -.077161555496 ... .607491641386 .745687558934 .226584265197 ]; end if Par==2, f = [ .016387336463 -.041464936782 -.067372554722 ... .386110066823 .812723635450 .417005184424 ... -.076488599078 -.059434418646 .023680171947 ... .005611434819 -.001823208871 -.000720549445 ]; end if Par==3, f = [ -.003793512864 .007782596426 .023452696142 ... -.065771911281 -.061123390003 .405176902410 ... .793777222626 .428483476378 -.071799821619 ... -.082301927106 .034555027573 .015880544864 ... -.009007976137 -.002574517688 .001117518771 ... .000466216960 -.000070983303 -.000034599773 ]; end if Par==4, f = [ .000892313668 -.001629492013 -.007346166328 ... .016068943964 .026682300156 -.081266699680 ... -.056077313316 .415308407030 .782238930920 ... .434386056491 -.066627474263 -.096220442034 ... .039334427123 .025082261845 -.015211731527 ... -.005658286686 .003751436157 .001266561929 ... -.000589020757 -.000259974552 .000062339034 ... .000031229876 -.000003259680 -.000001784985 ]; end if Par==5, f = [ -.000212080863 .000358589677 .002178236305 ... -.004159358782 -.010131117538 .023408156762 ... .028168029062 -.091920010549 -.052043163216 ... .421566206729 .774289603740 .437991626228 ... -.062035963906 -.105574208706 .041289208741 ... .032683574283 -.019761779012 -.009164231153 ... .006764185419 .002433373209 -.001662863769 ... -.000638131296 .000302259520 .000140541149 ... -.000041340484 -.000021315014 .000003734597 ... .000002063806 -.000000167408 -.000000095158 ]; end end if strcmp(Type,'Daubechies'), if Par==4, f = [ .482962913145 .836516303738 ... .224143868042 -.129409522551 ]; end if Par==6, f = [ .332670552950 .806891509311 ... .459877502118 -.135011020010 ... -.085441273882 .035226291882 ]; end if Par==8, f = [ .230377813309 .714846570553 ... .630880767930 -.027983769417 ... -.187034811719 .030841381836 ... .032883011667 -.010597401785 ]; end if Par==10, f = [ .160102397974 .603829269797 .724308528438 ... .138428145901 -.242294887066 -.032244869585 ... .077571493840 -.006241490213 -.012580751999 ... .003335725285 ]; end if Par==12, f = [ .111540743350 .494623890398 .751133908021 ... .315250351709 -.226264693965 -.129766867567 ... .097501605587 .027522865530 -.031582039317 ... .000553842201 .004777257511 -.001077301085 ]; end if Par==14, f = [ .077852054085 .396539319482 .729132090846 ... .469782287405 -.143906003929 -.224036184994 ... .071309219267 .080612609151 -.038029936935 ... -.016574541631 .012550998556 .000429577973 ... -.001801640704 .000353713800 ]; end if Par==16, f = [ .054415842243 .312871590914 .675630736297 ... .585354683654 -.015829105256 -.284015542962 ... .000472484574 .128747426620 -.017369301002 ... -.044088253931 .013981027917 .008746094047 ... -.004870352993 -.000391740373 .000675449406 ... -.000117476784 ]; end if Par==18, f = [ .038077947364 .243834674613 .604823123690 ... .657288078051 .133197385825 -.293273783279 ... -.096840783223 .148540749338 .030725681479 ... -.067632829061 .000250947115 .022361662124 ... -.004723204758 -.004281503682 .001847646883 ... .000230385764 -.000251963189 .000039347320 ]; end if Par==20, f = [ .026670057901 .188176800078 .527201188932 ... .688459039454 .281172343661 -.249846424327 ... -.195946274377 .127369340336 .093057364604 ... -.071394147166 -.029457536822 .033212674059 ... .003606553567 -.010733175483 .001395351747 ... .001992405295 -.000685856695 -.000116466855 ... .000093588670 -.000013264203 ]; end end if strcmp(Type,'Symmlet'), if Par==4, f = [ -.107148901418 -.041910965125 .703739068656 ... 1.136658243408 .421234534204 -.140317624179 ... -.017824701442 .045570345896 ]; end if Par==5, f = [ .038654795955 .041746864422 -.055344186117 ... .281990696854 1.023052966894 .896581648380 ... .023478923136 -.247951362613 -.029842499869 ... .027632152958 ]; end if Par==6, f = [ .021784700327 .004936612372 -.166863215412 ... -.068323121587 .694457972958 1.113892783926 ... .477904371333 -.102724969862 -.029783751299 ... .063250562660 .002499922093 -.011031867509 ]; end if Par==7, f = [ .003792658534 -.001481225915 -.017870431651 ... .043155452582 .096014767936 -.070078291222 ... .024665659489 .758162601964 1.085782709814 ... .408183939725 -.198056706807 -.152463871896 ... .005671342686 .014521394762 ]; end if Par==8, f = [ .002672793393 -.000428394300 -.021145686528 ... .005386388754 .069490465911 -.038493521263 ... -.073462508761 .515398670374 1.099106630537 ... .680745347190 -.086653615406 -.202648655286 ... .010758611751 .044823623042 -.000766690896 ... -.004783458512 ]; end if Par==9, f = [ .001512487309 -.000669141509 -.014515578553 ... .012528896242 .087791251554 -.025786445930 ... -.270893783503 .049882830959 .873048407349 ... 1.015259790832 .337658923602 -.077172161097 ... .000825140929 .042744433602 -.016303351226 ... -.018769396836 .000876502539 .001981193736 ]; end if Par==10, f = [ .001089170447 .000135245020 -.012220642630 ... -.002072363923 .064950924579 .016418869426 ... -.225558972234 -.100240215031 .667071338154 ... 1.088251530500 .542813011213 -.050256540092 ... -.045240772218 .070703567550 .008152816799 ... -.028786231926 -.001137535314 .006495728375 ... .000080661204 -.000649589896 ]; end end if strcmp(Type,'Vaidyanathan'), f = [ -.000062906118 .000343631905 -.000453956620 ... -.000944897136 .002843834547 .000708137504 ... -.008839103409 .003153847056 .019687215010 ... -.014853448005 -.035470398607 .038742619293 ... .055892523691 -.077709750902 -.083928884366 ... .131971661417 .135084227129 -.194450471766 ... -.263494802488 .201612161775 .635601059872 ... .572797793211 .250184129505 .045799334111 ]; end if strcmp(Type,'Battle'), if Par == 1, g = [0.578163 0.280931 -0.0488618 -0.0367309 ... 0.012003 0.00706442 -0.00274588 -0.00155701 ... 0.000652922 0.000361781 -0.000158601 -0.0000867523 ]; end if Par == 3, g = [0.541736 0.30683 -0.035498 -0.0778079 ... 0.0226846 0.0297468 -0.0121455 -0.0127154 ... 0.00614143 0.00579932 -0.00307863 -0.00274529 ... 0.00154624 0.00133086 -0.000780468 -0.00065562 ... 0.000395946 0.000326749 -0.000201818 -0.000164264 ... 0.000103307 ]; end if Par == 5, g = [0.528374 0.312869 -0.0261771 -0.0914068 ... 0.0208414 0.0433544 -0.0148537 -0.0229951 ... 0.00990635 0.0128754 -0.00639886 -0.00746848 ... 0.00407882 0.00444002 -0.00258816 -0.00268646 ... 0.00164132 0.00164659 -0.00104207 -0.00101912 ... 0.000662836 0.000635563 -0.000422485 -0.000398759 ... 0.000269842 0.000251419 -0.000172685 -0.000159168 ... 0.000110709 0.000101113 ]; end l = length(g); f = zeros(1,2*l-1); f(l:2*l-1) = g; f(1:l-1) = reverse(g(2:l)); end f = f ./ norm(f); % % Copyright (c) 1993-5. Jonathan Buckheit and David Donoho % function [qmf,dqmf] = MakeBSFilter(Type,Par) % MakeBSFilter -- Generate Biorthonormal QMF Filter Pairs % Usage % [qmf,dqmf] = MakeBSFilter(Type,Par) % Inputs % Type string, one of: % 'Triangle' % 'Interpolating' 'Deslauriers' (the two are same) % 'Average-Interpolating' % 'CDF' (spline biorthogonal filters in Daubechies's book) % 'Villasenor' (Villasenor's 5 best biorthogonal filters) % Par integer list, e.g. if Type ='Deslauriers', Par=3 specifies % Deslauriers-Dubuc filter, polynomial degree 3 % Outputs % qmf quadrature mirror filter (odd length, symmetric) % dqmf dual quadrature mirror filter (odd length, symmetric) % % See Also % FWT_PBS, IWT_PBS, FWT2_PBS, IWT2_PBS % % References % I. Daubechies, "Ten Lectures on Wavelets." % % G. Deslauriers and S. Dubuc, "Symmetric Iterative Interpolating Processes." % % D. Donoho, "Smooth Wavelet Decompositions with Blocky Coefficient Kernels." % % J. Villasenor, B. Belzer and J. Liao, "Wavelet Filter Evaluation for % Image Compression." % if nargin < 2, Par = 0; end sqr2 = sqrt(2); if strcmp(Type,'Triangle'), qmf = [0 1 0]; dqmf = [.5 1 .5]; elseif strcmp(Type,'Interpolating') | strcmp(Type,'Deslauriers'), qmf = [0 1 0]; dqmf = MakeDDFilter(Par)'; dqmf = dqmf(1:(length(dqmf)-1)); elseif strcmp(Type,'Average-Interpolating'), qmf = [0 .5 .5] ; dqmf = [0 ; MakeAIFilter(Par)]'; elseif strcmp(Type,'CDF'), if Par(1)==1, dqmf = [0 .5 .5] .* sqr2; if Par(2) == 1, qmf = [0 .5 .5] .* sqr2; elseif Par(2) == 3, qmf = [0 -1 1 8 8 1 -1] .* sqr2 / 16; elseif Par(2) == 5, qmf = [0 3 -3 -22 22 128 128 22 -22 -3 3].*sqr2/256; end elseif Par(1)==2, dqmf = [.25 .5 .25] .* sqr2; if Par(2)==2, qmf = [-.125 .25 .75 .25 -.125] .* sqr2; elseif Par(2)==4, qmf = [3 -6 -16 38 90 38 -16 -6 3] .* (sqr2/128); elseif Par(2)==6, qmf = [-5 10 34 -78 -123 324 700 324 -123 -78 34 10 -5 ] .* (sqr2/1024); elseif Par(2)==8, qmf = [35 -70 -300 670 1228 -3126 -3796 10718 22050 ... 10718 -3796 -3126 1228 670 -300 -70 35 ] .* (sqr2/32768); end elseif Par(1)==3, dqmf = [0 .125 .375 .375 .125] .* sqr2; if Par(2) == 1, qmf = [0 -.25 .75 .75 -.25] .* sqr2; elseif Par(2) == 3, qmf = [0 3 -9 -7 45 45 -7 -9 3] .* sqr2/64; elseif Par(2) == 5, qmf = [0 -5 15 19 -97 -26 350 350 -26 -97 19 15 -5] .* sqr2/512; elseif Par(2) == 7, qmf = [0 35 -105 -195 865 363 -3489 -307 11025 11025 -307 -3489 363 865 -195 -105 35] .* sqr2/16384; elseif Par(2) == 9, qmf = [0 -63 189 469 -1911 -1308 9188 1140 -29676 190 87318 87318 190 -29676 ... 1140 9188 -1308 -1911 469 189 -63] .* sqr2/131072; end elseif Par(1)==4, dqmf = [.026748757411 -.016864118443 -.078223266529 .266864118443 .602949018236 ... .266864118443 -.078223266529 -.016864118443 .026748757411] .*sqr2; if Par(2) == 4, qmf = [0 -.045635881557 -.028771763114 .295635881557 .557543526229 ... .295635881557 -.028771763114 -.045635881557 0] .*sqr2; end end elseif strcmp(Type,'Villasenor'), if Par == 1, % The "7-9 filters" qmf = [.037828455506995 -.023849465019380 -.11062440441842 .37740285561265]; qmf = [qmf .85269867900940 reverse(qmf)]; dqmf = [-.064538882628938 -.040689417609558 .41809227322221]; dqmf = [dqmf .78848561640566 reverse(dqmf)]; elseif Par == 2, qmf = [-.008473 .003759 .047282 -.033475 -.068867 .383269 .767245 .383269 -.068867... -.033475 .047282 .003759 -.008473]; dqmf = [0.014182 0.006292 -0.108737 -0.069163 0.448109 .832848 .448109 -.069163 -.108737 .006292 .014182]; elseif Par == 3, qmf = [0 -.129078 .047699 .788486 .788486 .047699 -.129078]; dqmf = [0 .018914 .006989 -.067237 .133389 .615051 .615051 .133389 -.067237 .006989 .018914]; elseif Par == 4, qmf = [-1 2 6 2 -1] / (4*sqr2); dqmf = [1 2 1] / (2*sqr2); elseif Par == 5, qmf = [0 1 1]/sqr2; dqmf = [0 -1 1 8 8 1 -1]/(8*sqr2); end end % % Copyright (c) 1995. Jonathan Buckheit, Shaobing Chen and David Donoho % % Modified by Maureen Clerc and Jerome Kalifa, 1997 % [email protected], [email protected] % function y = mirror_filter(x) % MirrorFilt -- Apply (-1)^t modulation % Usage % h = MirrorFilt(l) % Inputs % l 1-d signal % Outputs % h 1-d signal with DC frequency content shifted % to Nyquist frequency % % Description % h(t) = (-1)^(t-1) * x(t), 1 <= t <= length(x) % % See Also % DyadDownHi % y = -( (-1).^(1:length(x)) ).*x; % % Copyright (c) 1993. Iain M. Johnstone %
github
jacksky64/imageProcessing-master
perform_dct_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_dct_transform.m
7,750
utf_8
07f7ce84cf4f6dfc91ad645a17eab05c
function y = perform_dct_transform(x,dir) % perform_dct_transform - discrete cosine transform % % y = perform_dct_transform(x,dir); % % Copyright (c) 2006 Gabriel Peyre if size(x,1)==1 || size(x,2)==1 % 1D transform if dir==1 y = dct(x); else y = idct(x); end else if dir==1 y = dct2(x); % y = perform_dct2_transform(x); else y = idct2(x); end end function b=dct(a,n) %DCT Discrete cosine transform. % % Y = DCT(X) returns the discrete cosine transform of X. % The vector Y is the same size as X and contains the % discrete cosine transform coefficients. % % Y = DCT(X,N) pads or truncates the vector X to length N % before transforming. % % If X is a matrix, the DCT operation is applied to each % column. This transform can be inverted using IDCT. % % See also FFT, IFFT, IDCT. % Author(s): C. Thompson, 2-12-93 % S. Eddins, 10-26-94, revised % Copyright 1988-2002 The MathWorks, Inc. % $Revision: 1.7 $ $Date: 2002/04/15 01:10:40 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. if nargin == 0, error('Not enough input arguments.'); end if isempty(a) b = []; return end % If input is a vector, make it a column: do_trans = (size(a,1) == 1); if do_trans, a = a(:); end if nargin==1, n = size(a,1); end m = size(a,2); % Pad or truncate input if necessary if size(a,1)<n, aa = zeros(n,m); aa(1:size(a,1),:) = a; else aa = a(1:n,:); end % Compute weights to multiply DFT coefficients ww = (exp(-i*(0:n-1)*pi/(2*n))/sqrt(2*n)).'; ww(1) = ww(1) / sqrt(2); if rem(n,2)==1 | ~isreal(a), % odd case % Form intermediate even-symmetric matrix y = zeros(2*n,m); y(1:n,:) = aa; y(n+1:2*n,:) = flipud(aa); % Compute the FFT and keep the appropriate portion: yy = fft(y); yy = yy(1:n,:); else % even case % Re-order the elements of the columns of x y = [ aa(1:2:n,:); aa(n:-2:2,:) ]; yy = fft(y); ww = 2*ww; % Double the weights for even-length case end % Multiply FFT by weights: b = ww(:,ones(1,m)) .* yy; if isreal(a), b = real(b); end if do_trans, b = b.'; end function b=dct2(arg1,mrows,ncols) %DCT2 Compute 2-D discrete cosine transform. % B = DCT2(A) returns the discrete cosine transform of A. % The matrix B is the same size as A and contains the % discrete cosine transform coefficients. % % B = DCT2(A,[M N]) or B = DCT2(A,M,N) pads the matrix A with % zeros to size M-by-N before transforming. If M or N is % smaller than the corresponding dimension of A, DCT2 truncates % A. % % This transform can be inverted using IDCT2. % % Class Support % ------------- % A can be numeric or logical. The returned matrix B is of % class double. % % Example % ------- % RGB = imread('autumn.tif'); % I = rgb2gray(RGB); % J = dct2(I); % imshow(log(abs(J)),[]), colormap(jet), colorbar % % The commands below set values less than magnitude 10 in the % DCT matrix to zero, then reconstruct the image using the % inverse DCT function IDCT2. % % J(abs(J)<10) = 0; % K = idct2(J); % imview(I) % imview(K,[0 255]) % % See also FFT2, IDCT2, IFFT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.22.4.2 $ $Date: 2003/05/03 17:50:23 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. [m, n] = size(arg1); % Basic algorithm. if (nargin == 1), if (m > 1) & (n > 1), b = dct(dct(arg1).').'; return; else mrows = m; ncols = n; end end % Padding for vector input. a = arg1; if nargin==2, ncols = mrows(2); mrows = mrows(1); end mpad = mrows; npad = ncols; if m == 1 & mpad > m, a(2, 1) = 0; m = 2; end if n == 1 & npad > n, a(1, 2) = 0; n = 2; end if m == 1, mpad = npad; npad = 1; end % For row vector. % Transform. b = dct(a, mpad); if m > 1 & n > 1, b = dct(b.', npad).'; end function a = idct(b,n) %IDCT Inverse discrete cosine transform. % % X = IDCT(Y) inverts the DCT transform, returning the original % vector if Y was obtained using Y = DCT(X). % % X = IDCT(Y,N) pads or truncates the vector Y to length N % before transforming. % % If Y is a matrix, the IDCT operation is applied to each % column. % % See also FFT,IFFT,DCT. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.12.4.1 $ $Date: 2003/01/26 05:59:37 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. % checknargin(1,2,nargin,mfilename); if ~isa(b, 'double') b = double(b); end if min(size(b))==1 if size(b,2)>1 do_trans = 1; else do_trans = 0; end b = b(:); else do_trans = 0; end if nargin==1, n = size(b,1); end m = size(b,2); % Pad or truncate b if necessary if size(b,1)<n, bb = zeros(n,m); bb(1:size(b,1),:) = b; else bb = b(1:n,:); end if rem(n,2)==1 | ~isreal(b), % odd case % Form intermediate even-symmetric matrix. ww = sqrt(2*n) * exp(j*(0:n-1)*pi/(2*n)).'; ww(1) = ww(1) * sqrt(2); W = ww(:,ones(1,m)); yy = zeros(2*n,m); yy(1:n,:) = W.*bb; yy(n+2:n+n,:) = -j*W(2:n,:).*flipud(bb(2:n,:)); y = ifft(yy); % Extract inverse DCT a = y(1:n,:); else % even case % Compute precorrection factor ww = sqrt(2*n) * exp(j*pi*(0:n-1)/(2*n)).'; ww(1) = ww(1)/sqrt(2); W = ww(:,ones(1,m)); % Compute x tilde using equation (5.93) in Jain y = ifft(W.*bb); % Re-order elements of each column according to equations (5.93) and % (5.94) in Jain a = zeros(n,m); a(1:2:n,:) = y(1:n/2,:); a(2:2:n,:) = y(n:-1:n/2+1,:); end if isreal(b), a = real(a); end if do_trans, a = a.'; end function a = idct2(arg1,mrows,ncols) %IDCT2 Compute 2-D inverse discrete cosine transform. % B = IDCT2(A) returns the two-dimensional inverse discrete % cosine transform of A. % % B = IDCT2(A,[M N]) or B = IDCT2(A,M,N) pads A with zeros (or % truncates A) to create a matrix of size M-by-N before % transforming. % % For any A, IDCT2(DCT2(A)) equals A to within roundoff error. % % The discrete cosine transform is often used for image % compression applications. % % Class Support % ------------- % The input matrix A can be of class double or of any % numeric class. The output matrix B is of class double. % % See also DCT2, DCTMTX, FFT2, IFFT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.17.4.1 $ $Date: 2003/01/26 05:55:39 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. % checknargin(1,3,nargin,mfilename); [m, n] = size(arg1); % Basic algorithm. if (nargin == 1), if (m > 1) & (n > 1), a = idct(idct(arg1).').'; return; else mrows = m; ncols = n; end end % Padding for vector input. b = arg1; if nargin==2, ncols = mrows(2); mrows = mrows(1); end mpad = mrows; npad = ncols; if m == 1 & mpad > m, b(2, 1) = 0; m = 2; end if n == 1 & npad > n, b(1, 2) = 0; n = 2; end if m == 1, mpad = npad; npad = 1; end % For row vector. % Transform. a = idct(b, mpad); if m > 1 & n > 1, a = idct(a.', npad).'; end
github
jacksky64/imageProcessing-master
perform_thresholding.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_thresholding.m
2,482
utf_8
0f3a43687bf3809b0789cace4871a1e6
function y = perform_thresholding(x, t, type) % perform_thresholding - perform hard or soft thresholding % % y = perform_thresholding(x, t, type); % % type is either 'hard' or 'soft' or 'semisoft' % t is the threshold % % works also for complex data, and for cell arrays. % % if type is 'strict' then it keeps the t largest entry in each % column of x. % % Copyright (c) 2006 Gabriel Peyre if nargin<3 type = 'hard'; end if iscell(x) % for cell arrays for i=1:size(x,1) for j=1:size(x,2) y{i,j} = perform_thresholding(x{i,j},t, type); end end return; end switch lower(type) case {'hard', ''} y = perform_hard_thresholding(x,t); case 'soft' y = perform_soft_thresholding(x,t); case 'semisoft' y = perform_semisoft_thresholding(x,t); case 'strict' y = perform_strict_thresholding(x,t); otherwise error('Unkwnown thresholding type.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = perform_strict_thresholding(X,s) %% keep only the s largest coefficients in each column of X v = sort(abs(X)); v = v(end:-1:1,:); v = v(round(s),:); v = repmat(v, [size(X,1) 1]); X = X .* (abs(X)>=v); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_hard_thresholding(x,t) t = t(1); y = x .* (abs(x) > t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_soft_thresholding(x,t) if not(isreal(x)) % complex threshold d = abs(x); d(d<eps) = 1; x = x./d .* perform_soft_thresholding(d,t); end t = t(1); s = abs(x) - t; s = (s + abs(s))/2; y = sign(x).*s; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_semisoft_thresholding(x,t) if length(t)==1 t = [t 2*t]; end t = sort(t); y = x; y(abs(x)<t(1)) = 0; I = find(abs(x)>=t(1) & abs(x)<t(2)); y( I ) = sign(x(I)) .* t(2)/(t(2)-t(1)) .* (abs(x(I))-t(1));
github
jacksky64/imageProcessing-master
cgsolve.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/cgsolve.m
1,626
utf_8
144fb53044ae853bc0d1d7f6cf8f8f3d
% cgsolve.m % % Solve a symmetric positive definite system Ax = b via conjugate gradients. % % Usage: [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose) % % A - Either an NxN matrix, or a function handle. % % b - N vector % % tol - Desired precision. Algorithm terminates when % norm(Ax-b)/norm(b) < tol . % % maxiter - Maximum number of iterations. % % verbose - If 0, do not print out progress messages. % Default = 1. % % Written by: Justin Romberg, Caltech % Email: [email protected] % Created: October 2005 % function [x, res, iter] = cgsolve(A, b, tol, maxiter, verbose) if (nargin < 5), verbose = 1; end implicit = isa(A,'function_handle'); x = zeros(length(b),1); r = b; d = r; delta = r'*r; delta0 = b'*b; numiter = 0; bestx = x; bestres = sqrt(delta/delta0); while ((numiter < maxiter) & (delta > tol^2*delta0)) % q = A*d if (implicit), q = A(d); else, q = A*d; end alpha = delta/(d'*q); x = x + alpha*d; if (mod(numiter+1,50) == 0) % r = b - Aux*x if (implicit), r = b - A(x); else, r = b - A*x; end else r = r - alpha*q; end deltaold = delta; delta = r'*r; beta = delta/deltaold; d = r + beta*d; numiter = numiter + 1; if (sqrt(delta/delta0) < bestres) bestx = x; bestres = sqrt(delta/delta0); end if ((verbose) & (mod(numiter,50)==0)) disp(sprintf('cg: Iter = %d, Best residual = %8.3e, Current residual = %8.3e', ... numiter, bestres, sqrt(delta/delta0))); end end if (verbose) disp(sprintf('cg: Iterations = %d, best residual = %14.8e', numiter, bestres)); end x = bestx; res = bestres; iter = numiter;
github
jacksky64/imageProcessing-master
SolveOMP.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/SolveOMP.m
5,517
utf_8
f4e04a5fa97a57fc5a3f3cebae686a5e
function [sols, iters, activationHist] = SolveOMP(A, y, N, maxIters, lambdaStop, solFreq, verbose, OptTol) % SolveOMP: Orthogonal Matching Pursuit % Usage % [sols, iters, activationHist] = SolveOMP(A, y, N, maxIters, lambdaStop, solFreq, verbose, OptTol) % Input % A Either an explicit nxN matrix, with rank(A) = min(N,n) % by assumption, or a string containing the name of a % function implementing an implicit matrix (see below for % details on the format of the function). % y vector of length n. % N length of solution vector. % maxIters maximum number of iterations to perform. If not % specified, runs to stopping condition (default) % lambdaStop If specified, the algorithm stops when the last coefficient % entered has residual correlation <= lambdaStop. % solFreq if =0 returns only the final solution, if >0, returns an % array of solutions, one every solFreq iterations (default 0). % verbose 1 to print out detailed progress at each iteration, 0 for % no output (default) % OptTol Error tolerance, default 1e-5 % Outputs % sols solution(s) of OMP % iters number of iterations performed % activationHist Array of indices showing elements entering % the solution set % Description % SolveOMP is a greedy algorithm to estimate the solution % of the sparse approximation problem % min ||x||_0 s.t. A*x = b % The implementation implicitly factors the active set matrix A(:,I) % using Cholesky updates. % The matrix A can be either an explicit matrix, or an implicit operator % implemented as an m-file. If using the implicit form, the user should % provide the name of a function of the following format: % y = OperatorName(mode, m, n, x, I, dim) % This function gets as input a vector x and an index set I, and returns % y = A(:,I)*x if mode = 1, or y = A(:,I)'*x if mode = 2. % A is the m by dim implicit matrix implemented by the function. I is a % subset of the columns of A, i.e. a subset of 1:dim of length n. x is a % vector of length n is mode = 1, or a vector of length m is mode = 2. % See Also % SolveLasso, SolveBP, SolveStOMP % if nargin < 8, OptTol = 1e-5; end if nargin < 7, verbose = 0; end if nargin < 6, solFreq = 0; end if nargin < 5, lambdaStop = 0; end if nargin < 4, maxIters = length(y); end explicitA = ~(ischar(A) || isa(A, 'function_handle')); n = length(y); % Parameters for linsolve function % Global variables for linsolve function global opts opts_tr machPrec opts.UT = true; opts_tr.UT = true; opts_tr.TRANSA = true; machPrec = 1e-5; % Initialize x = zeros(N,1); k = 1; R_I = []; activeSet = []; sols = []; res = y; normy = norm(y); resnorm = normy; done = 0; while ~done if (explicitA) corr = A'*res; else corr = feval(A,2,n,N,res,1:N,N); % = A'*y end [maxcorr i] = max(abs(corr)); newIndex = i(1); % Update Cholesky factorization of A_I [R_I, flag] = updateChol(R_I, n, N, A, explicitA, activeSet, newIndex); if flag==0 activeSet = [activeSet newIndex]; end % Solve for the least squares update: (A_I'*A_I)dx_I = corr_I dx = zeros(N,1); if k==27 a = 1; end z = linsolve(R_I,corr(activeSet),opts_tr); dx(activeSet) = linsolve(R_I,z,opts); x(activeSet) = x(activeSet) + dx(activeSet); % Compute new residual if (explicitA) res = y - A(:,activeSet) * x(activeSet); else Ax = feval(A,1,n,N,x,1:N,N); res = y - Ax; end resnorm = norm(res); if ((resnorm <= OptTol*normy) | ((lambdaStop > 0) & (maxcorr <= lambdaStop))) done = 1; end if verbose fprintf('Iteration %d: Adding variable %d\n', k, newIndex); end k = k+1; if k >= maxIters done = 1; end if done | ((solFreq > 0) & (~mod(k,solFreq))) sols = [sols x]; end end iters = k; activationHist = activeSet; clear opts opts_tr machPrec %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R, flag] = updateChol(R, n, N, A, explicitA, activeSet, newIndex) % updateChol: Updates the Cholesky factor R of the matrix % A(:,activeSet)'*A(:,activeSet) by adding A(:,newIndex) % If the candidate column is in the span of the existing % active set, R is not updated, and flag is set to 1. global opts_tr machPrec flag = 0; if (explicitA) newVec = A(:,newIndex); else e = zeros(N,1); e(newIndex) = 1; newVec = feval(A,1,n,N,e,1:N,N); end if length(activeSet) == 0, R = sqrt(sum(newVec.^2)); else if (explicitA) p = linsolve(R,A(:,activeSet)'*A(:,newIndex),opts_tr); else AnewVec = feval(A,2,n,length(activeSet),newVec,activeSet,N); p = linsolve(R,AnewVec,opts_tr); end q = sum(newVec.^2) - sum(p.^2); if (q <= machPrec) % Collinear vector flag = 1; else R = [R p; zeros(1, size(R,2)) sqrt(q)]; end end % % Copyright (c) 2006. Yaakov Tsaig % % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
jacksky64/imageProcessing-master
l1eq_pd.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/l1eq_pd.m
5,308
utf_8
c2d14a529c067d730ebee8140ec5ecc4
% l1eq_pd.m % % Solve % min_x ||x||_1 s.t. Ax = b % % Recast as linear program % min_{x,u} sum(u) s.t. -u <= x <= u, Ax=b % and use primal-dual interior point method % % Usage: xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) % % x0 - Nx1 vector, initial point. % % A - Either a handle to a function that takes a N vector and returns a K % vector , or a KxN matrix. If A is a function handle, the algorithm % operates in "largescale" mode, solving the Newton systems via the % Conjugate Gradients algorithm. % % At - Handle to a function that takes a K vector and returns an N vector. % If A is a KxN matrix, At is ignored. % % b - Kx1 vector of observations. % % pdtol - Tolerance for primal-dual algorithm (algorithm terminates if % the duality gap is less than pdtol). % Default = 1e-3. % % pdmaxiter - Maximum number of primal-dual iterations. % Default = 50. % % cgtol - Tolerance for Conjugate Gradients; ignored if A is a matrix. % Default = 1e-8. % % cgmaxiter - Maximum number of iterations for Conjugate Gradients; ignored % if A is a matrix. % Default = 200. % % Written by: Justin Romberg, Caltech % Email: [email protected] % Created: October 2005 % function xp = l1eq_pd(x0, A, At, b, pdtol, pdmaxiter, cgtol, cgmaxiter) largescale = isa(A,'function_handle'); if (nargin < 5), pdtol = 1e-3; end if (nargin < 6), pdmaxiter = 50; end if (nargin < 7), cgtol = 1e-8; end if (nargin < 8), cgmaxiter = 200; end N = length(x0); alpha = 0.01; beta = 0.5; mu = 10; gradf0 = [zeros(N,1); ones(N,1)]; x = x0; u = 1.01*max(abs(x))*ones(N,1) + 1e-2; fu1 = x - u; fu2 = -x - u; lamu1 = -1./fu1; lamu2 = -1./fu2; if (largescale) v = -A(lamu1-lamu2); Atv = At(v); rpri = A(x) - b; else v = -A*(lamu1-lamu2); Atv = A'*v; rpri = A*x - b; end sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); pditer = 0; done = (sdg < pdtol) | (pditer >= pdmaxiter); while (~done) pditer = pditer + 1; w1 = -1/tau*(-1./fu1 + 1./fu2) - Atv; w2 = -1 - 1/tau*(1./fu1 + 1./fu2); w3 = -rpri; sig1 = -lamu1./fu1 - lamu2./fu2; sig2 = lamu1./fu1 - lamu2./fu2; sigx = sig1 - sig2.^2./sig1; if (largescale) w1p = w3 - A(w1./sigx - w2.*sig2./(sigx.*sig1)); h11pfun = @(z) -A(1./sigx.*At(z)); [dv, cgres, cgiter] = cgsolve(h11pfun, w1p, cgtol, cgmaxiter, 0); if (cgres > 1/2) disp('Primal-dual: Cannot solve system. Returning previous iterate.'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - At(dv))./sigx; Adx = A(dx); Atdv = At(dv); else H11p = -A*diag(1./sigx)*A'; w1p = w3 - A*(w1./sigx - w2.*sig2./(sigx.*sig1)); [dv,hcond] = linsolve(H11p,w1p); if (hcond < 1e-14) disp('Primal-dual: Matrix ill-conditioned. Returning previous iterate.'); xp = x; return end dx = (w1 - w2.*sig2./sig1 - A'*dv)./sigx; Adx = A*dx; Atdv = A'*dv; end du = (w2 - sig2.*dx)./sig1; dlamu1 = (lamu1./fu1).*(-dx+du) - lamu1 - (1/tau)*1./fu1; dlamu2 = (lamu2./fu2).*(dx+du) - lamu2 - 1/tau*1./fu2; % make sure that the step is feasible: keeps lamu1,lamu2 > 0, fu1,fu2 < 0 indp = find(dlamu1 < 0); indn = find(dlamu2 < 0); s = min([1; -lamu1(indp)./dlamu1(indp); -lamu2(indn)./dlamu2(indn)]); indp = find((dx-du) > 0); indn = find((-dx-du) > 0); s = (0.99)*min([s; -fu1(indp)./(dx(indp)-du(indp)); -fu2(indn)./(-dx(indn)-du(indn))]); % backtracking line search backiter = 0; xp = x + s*dx; up = u + s*du; vp = v + s*dv; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = xp - up; fu2p = -xp - up; rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); rpp = rpri + s*Adx; while(norm([rdp; rcp; rpp]) > (1-alpha*s)*resnorm) s = beta*s; xp = x + s*dx; up = u + s*du; vp = v + s*dv; Atvp = Atv + s*Atdv; lamu1p = lamu1 + s*dlamu1; lamu2p = lamu2 + s*dlamu2; fu1p = xp - up; fu2p = -xp - up; rdp = gradf0 + [lamu1p-lamu2p; -lamu1p-lamu2p] + [Atvp; zeros(N,1)]; rcp = [-lamu1p.*fu1p; -lamu2p.*fu2p] - (1/tau); rpp = rpri + s*Adx; backiter = backiter+1; if (backiter > 32) disp('Stuck backtracking, returning last iterate.') xp = x; return end end % next iteration x = xp; u = up; v = vp; Atv = Atvp; lamu1 = lamu1p; lamu2 = lamu2p; fu1 = fu1p; fu2 = fu2p; % surrogate duality gap sdg = -(fu1'*lamu1 + fu2'*lamu2); tau = mu*2*N/sdg; rpri = rpp; rcent = [-lamu1.*fu1; -lamu2.*fu2] - (1/tau); rdual = gradf0 + [lamu1-lamu2; -lamu1-lamu2] + [Atv; zeros(N,1)]; resnorm = norm([rdual; rcent; rpri]); done = (sdg < pdtol) | (pditer >= pdmaxiter); disp(sprintf('Iteration = %d, tau = %8.3e, Primal = %8.3e, PDGap = %8.3e, Dual res = %8.3e, Primal res = %8.3e',... pditer, tau, sum(u), sdg, norm(rdual), norm(rpri))); if (largescale) disp(sprintf(' CG Res = %8.3e, CG Iter = %d', cgres, cgiter)); else disp(sprintf(' H11p condition number = %8.3e', hcond)); end end
github
jacksky64/imageProcessing-master
perform_tv_correction.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_tv_correction.m
985
utf_8
e9637dd038c9c859b0c6dedd242fecae
function y = perform_tv_correction(x,T) % perform_tv_correction - perform correction of the image to that it minimizes the TV norm. % % y = perform_tv_correction(x,T); % % Perform correction using thresholding of haar wavelet coefficients on 1 % scale. % % Copyright (c) 2006 Gabriel Peyre n = size(x,1); Jmin = log2(n)-1; % do haar transform options.wavelet_type = 'daubechies'; options.wavelet_vm = 1; y = perform_atrou_transform(x,Jmin,options); % perform soft thesholding y = perform_soft_tresholding(y,T); % do reconstruction y = perform_atrou_transform(y,Jmin,options); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_soft_tresholding(x,t) if iscell(x) for i=1:length(x) y{i} = perform_soft_tresholding(x{i},t); end return; end s = abs(x) - t; s = (s + abs(s))/2; y = sign(x).*s;
github
jacksky64/imageProcessing-master
perform_windowed_dct_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_windowed_dct_transform.m
2,282
utf_8
9c456075e56465427a4442c1e5c9afc8
function y = perform_windowed_dct_transform(x,w,q,n, options) % perform_windowed_dct_transform - compute a local DCT transform % % Forward transform: % MF = perform_windowed_dct_transform(M,w,q,n, options); % Backward transform: % M = perform_windowed_dct_transform(MF,w,q,n, options); % % w is the width of the window used to perform local computation. % q is the spacing betwen each window. % % MF(:,:,,i,j) contains the transform around point ((i-1)*q,(j-1)*q)+1. % % A typical use, for an redundancy of 2x2 could be w=2*q % % Copyright (c) 2007 Gabriel Peyre options.transform_type = 'dct'; y = perform_windowed_fourier_transform(x,w,q,n, options); return; %%%%%%%%%%% OLD CODE %%%%%%%%%%%% options.null = 0; if size(x,3)>1 dir = -1; if nargin<4 % assume power of 2 size n = q*size(x,3); n = 2^floor(log2(n)); end else dir = 1; n = size(x,1); end % perform sampling t = 1:q:n-w+1; [Y,X] = meshgrid(t,t); p = size(X,1); w = ceil(w/2)*2; w1 = w/2; t = 0:w-1; [dY,dX] = meshgrid(t,t); X = reshape(X,[1 1 p p]); Y = reshape(Y,[1 1 p p]); X = repmat( X, [w w 1 1] ); Y = repmat( Y, [w w 1 1] ); dX = repmat( dX, [1 1 p p] ); dY = repmat( dY, [1 1 p p] ); X1 = X+dX; Y1 = Y+dY; if 0 I = find(X1<1); X1(I) = 1-X1(I); I = find(X1>n); X1(I) = 2*n+1-X1(I); I = find(Y1<1); Y1(I) = 1-Y1(I); I = find(Y1>n); Y1(I) = 2*n+1-Y1(I); end % build a weight function if isfield(options, 'window_type') window_type = options.window_type; else window_type = 'constant'; end if strcmp(window_type, 'sin') || strcmp(window_type, 'sine') t = linspace(0,1,w); W = sin(t(:)*pi).^2; W = W * W'; elseif strcmp(window_type, 'constant') W = ones(w); else error('Unkwnown winow.'); end I = X1 + (Y1-1)*n; if dir==1 y = x(I) .* repmat( W, [1 1 p p] ); y = my_dct_transform( y, +1 ); else x = my_dct_transform( x, -1 ); weight = zeros(n); y = zeros(n); for i=1:p for j=1:p y(I(:,:,i,j)) = y(I(:,:,i,j)) + x(:,:,i,j); weight(I(:,:,i,j)) = weight(I(:,:,i,j)) + W; end end y = real( y./weight ); end function y = my_dct_transform(x,dir) for i=1:size(x,3) for j=1:size(x,4) y(:,:,i,j) = perform_dct_transform(x(:,:,i,j),dir); end end
github
jacksky64/imageProcessing-master
mad.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/mad.m
7,921
utf_8
6d4949e64f7802d97e068c87415b0460
function y = mad(x,flag) %MAD Mean/median absolute deviation. % Y = MAD(X) returns the mean absolute deviation of the values in X. For % vector input, Y is MEAN(ABS(X-MEAN(X)). For a matrix input, Y is a row % vector containing the mean absolute deviation of each column of X. For % N-D arrays, MAD operates along the first non-singleton dimension. % % MAD(X,1) computes Y based on medians, i.e. MEDIAN(ABS(X-MEDIAN(X)). % MAD(X,0) is the same as MAD(X), and uses means. % % MAD treats NaNs as missing values, and removes them. % % See also VAR, STD, IQR. % References: % [1] L. Sachs, "Applied Statistics: A Handbook of Techniques", % Springer-Verlag, 1984, page 253. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.10.2.2 $ $Date: 2004/01/24 09:34:28 $ % The output size for [] is a special case, handle it here. if isequal(x,[]) y = NaN; return; end; if nargin < 2 flag = 0; end % Figure out which dimension nanmean will work along. sz = size(x); dim = find(sz ~= 1, 1); if isempty(dim) dim = 1; end % Need to tile the output of nanmean to center X. tile = ones(1,ndims(x)); tile(dim) = sz(dim); if flag % Compute the median of the absolute deviations from the median. y = nanmedian(abs(x - repmat(nanmedian(x), tile))); else % Compute the mean of the absolute deviations from the mean. y = nanmean(abs(x - repmat(nanmean(x), tile))); end function y = nanmedian(x,dim) %NANMEDIAN Median value, ignoring NaNs. % M = NANMEDIAN(X) returns the sample median of X, treating NaNs as % missing values. For vector input, M is the median value of the non-NaN % elements in X. For matrix input, M is a row vector containing the % median value of non-NaN elements in each column. For N-D arrays, % NANMEDIAN operates along the first non-singleton dimension. % % NANMEDIAN(X,DIM) takes the median along the dimension DIM of X. % % See also MEDIAN, NANMEAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.2.2 $ $Date: 2004/01/24 09:34:33 $ if nargin == 1 y = prctile(x, 50); else y = prctile(x, 50,dim); end function m = nanmean(x,dim) %NANMEAN Mean value, ignoring NaNs. % M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing % values. For vector input, M is the mean value of the non-NaN elements % in X. For matrix input, M is a row vector containing the mean value of % non-NaN elements in each column. For N-D arrays, NANMEAN operates % along the first non-singleton dimension. % % NANMEAN(X,DIM) takes the mean along the dimension DIM of X. % % See also MEAN, NANMEDIAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.13.4.2 $ $Date: 2004/01/24 09:34:32 $ % Find NaNs and set them to zero nans = isnan(x); x(nans) = 0; if nargin == 1 % let sum deal with figuring out which dimension to use % Count up non-NaNs. n = sum(~nans); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x) ./ n; else % Count up non-NaNs. n = sum(~nans,dim); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x,dim) ./ n; end function y = prctile(x,p,dim) %PRCTILE Percentiles of a sample. % Y = PRCTILE(X,P) returns percentiles of the values in X. P is a scalar % or a vector of percent values. When X is a vector, Y is the same size % as P, and Y(i) contains the P(i)-th percentile. When X is a matrix, % the i-th row of Y contains the P(i)-th percentiles of each column of X. % For N-D arrays, PRCTILE operates along the first non-singleton % dimension. % % Y = PRCTILE(X,P,DIM) calculates percentiles along dimension DIM. The % DIM'th dimension of Y has length LENGTH(P). % % Percentiles are specified using percentages, from 0 to 100. For an N % element vector X, PRCTILE computes percentiles as follows: % 1) The sorted values in X are taken as the 100*(0.5/N), 100*(1.5/N), % ..., 100*((N-0.5)/N) percentiles. % 2) Linear interpolation is used to compute percentiles for percent % values between 100*(0.5/N) and 100*((N-0.5)/N) % 3) The minimum or maximum values in X are assigned to percentiles % for percent values outside that range. % % PRCTILE treats NaNs as missing values, and removes them. % % Examples: % y = prctile(x,50); % the median of x % y = prctile(x,[2.5 25 50 75 97.5]); % a useful summary of x % % See also IQR, MEDIAN, NANMEDIAN, QUANTILE. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.4.4 $ $Date: 2004/01/24 09:34:55 $ if ~isvector(p) || numel(p) == 0 error('stats:prctile:BadPercents', ... 'P must be a scalar or a non-empty vector.'); elseif any(p < 0 | p > 100) error('stats:prctile:BadPercents', ... 'P must take values between 0 and 100'); end % Figure out which dimension prctile will work along. sz = size(x); if nargin < 3 dim = find(sz ~= 1,1); if isempty(dim) dim = 1; end dimArgGiven = false; else % Permute the array so that the requested dimension is the first dim. nDimsX = ndims(x); perm = [dim:max(nDimsX,dim) 1:dim-1]; x = permute(x,perm); % Pad with ones if dim > ndims. if dim > nDimsX sz = [sz ones(1,dim-nDimsX)]; end sz = sz(perm); dim = 1; dimArgGiven = true; end % If X is empty, return all NaNs. if isempty(x) if isequal(x,[]) && ~dimArgGiven y = nan(size(p),class(x)); else szout = sz; szout(dim) = numel(p); y = nan(szout,class(x)); end else % Drop X's leading singleton dims, and combine its trailing dims. This % leaves a matrix, and we can work along columns. nrows = sz(dim); ncols = prod(sz) ./ nrows; x = reshape(x, nrows, ncols); x = sort(x,1); nonnans = ~isnan(x); % If there are no NaNs, do all cols at once. if all(nonnans(:)) n = sz(dim); if isequal(p,50) % make the median fast if rem(n,2) % n is odd y = x((n+1)/2,:); else % n is even y = (x(n/2,:) + x(n/2+1,:))/2; end else q = [0 100*(0.5:(n-0.5))./n 100]'; xx = [x(1,:); x(1:n,:); x(n,:)]; y = zeros(numel(p), ncols, class(x)); y(:,:) = interp1q(q,xx,p(:)); end % If there are NaNs, work on each column separately. else % Get percentiles of the non-NaN values in each column. y = nan(numel(p), ncols, class(x)); for j = 1:ncols nj = find(nonnans(:,j),1,'last'); if nj > 0 if isequal(p,50) % make the median fast if rem(nj,2) % nj is odd y(:,j) = x((nj+1)/2,j); else % nj is even y(:,j) = (x(nj/2,j) + x(nj/2+1,j))/2; end else q = [0 100*(0.5:(nj-0.5))./nj 100]'; xx = [x(1,j); x(1:nj,j); x(nj,j)]; y(:,j) = interp1q(q,xx,p(:)); end end end end % Reshape Y to conform to X's original shape and size. szout = sz; szout(dim) = numel(p); y = reshape(y,szout); end % undo the DIM permutation if dimArgGiven y = ipermute(y,perm); end % If X is a vector, the shape of Y should follow that of P, unless an % explicit DIM arg was given. if ~dimArgGiven && isvector(x) y = reshape(y,size(p)); end
github
jacksky64/imageProcessing-master
perform_wavelet_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/perform_wavelet_transform.m
61,619
utf_8
9e8ee118ad0e2225d236b242630cc67a
function y = perform_wavelet_transform(x, Jmin, dir, options) % perform_wavelet_transform - wrapper to wavelab Wavelet transform (1D/2D and orthogonal/biorthogonal). % % y = perform_wavelet_transform(x, Jmin, dir, options); % % 'x' is either a 1D or a 2D array. % 'Jmin' is the minimum scale (i.e. the coarse channel is of size 2^Jmin % in 1D). % 'dir' is +1 for fwd transform and -1 for bwd. % 'options.wavelet_vm' is the number of Vanishing moment (both for primal and dual). % 'options.wavelet_type' can be % 'daubechies', 'symmlet', 'battle', 'biorthogonal'. % % Typical use : % M = <load your image here>; % Jmin = 4; % options.wavelet_type = 'biorthogonal_swapped'; % options.wavelet_vm = 4; % MW = perform_wavelet_transform(M, Jmin, +1, options); % Mt = <perform some modification on MW> % M = perform_wavelet_transform(Mt, Jmin, -1, options); % % 'y' is an array of the same size as 'x'. This means that for the 2D % we are stuck to the wavelab coding style, i.e. the result % of each transform is an array organized using Mallat's ordering % (whereas Matlab official toolbox use a 1D ordering for the 2D transform). % % Here the transform automaticaly select symmetric boundary condition % if you use a symmetric filter. If your filter is not symmetric % (e.g. Dauechies filters) then as the output must have same length % as the input, the boundary condition are automatically set to periodic. % % You do not need Wavelab to use this function (the Wavelab .m file are % included in this script). However, for faster execution time, you % should install the mex file within the Wavelab distribution. % http://www-stat.stanford.edu/~wavelab/ % % Copyright (c) 2005 Gabriel Peyre if nargin<3 dir = 1; end if nargin<2 Jmin = 3; end options.null = 0; if isfield(options, 'wavelet_type') wavelet_type = options.wavelet_type; else wavelet_type = 'daubechies'; end if isfield(options, 'wavelet_vm') VM = options.wavelet_vm; else VM = 4; end if isfield(options, 'ti') % for translation-invariant transform ti = options.ti; else ti = 0; end ndim = length(size(x)); if ndim==2 && ( size(x,2)==1 || size(x,1)==1 ) ndim=1; end % for color images if ndims(x)>2 y = x; for i=1:size(x,3) y(:,:,i) = perform_wavelet_transform(x(:,:,i), Jmin, dir, options); end return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % WAVELAB %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % generate filters switch lower(wavelet_type) case 'daubechies' qmf = MakeONFilter('Daubechies',VM*2); % in Wavelab, 2nd argument is VM*2 for Daubechies... no comment ... case 'haar' qmf = MakeONFilter('Haar'); % in Wavelab, 2nd argument is VM*2 for Daubechies... no comment ... case 'symmlet' qmf = MakeONFilter('Symmlet',VM); case 'battle' qmf = MakeONFilter('Battle',VM-1); dqmf = qmf; % we need dual filter case 'biorthogonal' [qmf,dqmf] = MakeBSFilter( 'CDF', [VM,VM] ); case 'biorthogonal_swapped' [dqmf,qmf] = MakeBSFilter( 'CDF', [VM,VM] ); otherwise error('Unknown transform.'); end % translation invariant transform if ti if ndim==2 && size(x,2)<50 ndim = 1; end if ndim==1 if dir==1 y = TI2Stat( FWT_TI(x,Jmin,qmf) ); else y = IWT_TI( Stat2TI(x),qmf); end elseif ndim==2 if dir==1 y = FWT2_TI(x,Jmin,qmf); else y = IWT2_TI(x,Jmin,qmf); end end return; end % perform transform if ~exist('dqmf') %%% ORTHOGONAL %%% if ndim==1 if dir==1 y = FWT_PO(x,Jmin,qmf); else y = IWT_PO(x,Jmin,qmf); end elseif ndim==2 if dir==1 y = FWT2_PO(x,Jmin,qmf); else y = IWT2_PO(x,Jmin,qmf); end end else %%% BI-ORTHOGONAL %%% if ndim==1 if dir==1 y = FWT_SBS(x,Jmin,qmf,dqmf); else y = IWT_SBS(x,Jmin,qmf,dqmf); end elseif ndim==2 if dir==1 y = FWT2_SBS(x,Jmin,qmf,dqmf); else y = IWT2_SBS(x,Jmin,qmf,dqmf); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % WAVELAB DISTRIBUTION -- http://www-stat.stanford.edu/~wavelab/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % WAVELAB DISTRIBUTION -- http://www-stat.stanford.edu/~wavelab/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = MakeONFilter(Type,Par) % MakeONFilter -- Generate Orthonormal QMF Filter for Wavelet Transform % Usage % qmf = MakeONFilter(Type,Par) % Inputs % Type string, 'Haar', 'Beylkin', 'Coiflet', 'Daubechies', % 'Symmlet', 'Vaidyanathan','Battle' % Par integer, it is a parameter related to the support and vanishing % moments of the wavelets, explained below for each wavelet. % % Outputs % qmf quadrature mirror filter % % Description % The Haar filter (which could be considered a Daubechies-2) was the % first wavelet, though not called as such, and is discontinuous. % % The Beylkin filter places roots for the frequency response function % close to the Nyquist frequency on the real axis. % % The Coiflet filters are designed to give both the mother and father % wavelets 2*Par vanishing moments; here Par may be one of 1,2,3,4 or 5. % % The Daubechies filters are minimal phase filters that generate wavelets % which have a minimal support for a given number of vanishing moments. % They are indexed by their length, Par, which may be one of % 4,6,8,10,12,14,16,18 or 20. The number of vanishing moments is par/2. % % Symmlets are also wavelets within a minimum size support for a given % number of vanishing moments, but they are as symmetrical as possible, % as opposed to the Daubechies filters which are highly asymmetrical. % They are indexed by Par, which specifies the number of vanishing % moments and is equal to half the size of the support. It ranges % from 4 to 10. % % The Vaidyanathan filter gives an exact reconstruction, but does not % satisfy any moment condition. The filter has been optimized for % speech coding. % % The Battle-Lemarie filter generate spline orthogonal wavelet basis. % The parameter Par gives the degree of the spline. The number of % vanishing moments is Par+1. % % See Also % FWT_PO, IWT_PO, FWT2_PO, IWT2_PO, WPAnalysis % % References % The books by Daubechies and Wickerhauser. % if strcmp(Type,'Haar'), f = [1 1] ./ sqrt(2); end if strcmp(Type,'Beylkin'), f = [ .099305765374 .424215360813 .699825214057 ... .449718251149 -.110927598348 -.264497231446 ... .026900308804 .155538731877 -.017520746267 ... -.088543630623 .019679866044 .042916387274 ... -.017460408696 -.014365807969 .010040411845 ... .001484234782 -.002736031626 .000640485329 ]; end if strcmp(Type,'Coiflet'), if Par==1, f = [ .038580777748 -.126969125396 -.077161555496 ... .607491641386 .745687558934 .226584265197 ]; end if Par==2, f = [ .016387336463 -.041464936782 -.067372554722 ... .386110066823 .812723635450 .417005184424 ... -.076488599078 -.059434418646 .023680171947 ... .005611434819 -.001823208871 -.000720549445 ]; end if Par==3, f = [ -.003793512864 .007782596426 .023452696142 ... -.065771911281 -.061123390003 .405176902410 ... .793777222626 .428483476378 -.071799821619 ... -.082301927106 .034555027573 .015880544864 ... -.009007976137 -.002574517688 .001117518771 ... .000466216960 -.000070983303 -.000034599773 ]; end if Par==4, f = [ .000892313668 -.001629492013 -.007346166328 ... .016068943964 .026682300156 -.081266699680 ... -.056077313316 .415308407030 .782238930920 ... .434386056491 -.066627474263 -.096220442034 ... .039334427123 .025082261845 -.015211731527 ... -.005658286686 .003751436157 .001266561929 ... -.000589020757 -.000259974552 .000062339034 ... .000031229876 -.000003259680 -.000001784985 ]; end if Par==5, f = [ -.000212080863 .000358589677 .002178236305 ... -.004159358782 -.010131117538 .023408156762 ... .028168029062 -.091920010549 -.052043163216 ... .421566206729 .774289603740 .437991626228 ... -.062035963906 -.105574208706 .041289208741 ... .032683574283 -.019761779012 -.009164231153 ... .006764185419 .002433373209 -.001662863769 ... -.000638131296 .000302259520 .000140541149 ... -.000041340484 -.000021315014 .000003734597 ... .000002063806 -.000000167408 -.000000095158 ]; end end if strcmp(Type,'Daubechies'), if Par==4, f = [ .482962913145 .836516303738 ... .224143868042 -.129409522551 ]; end if Par==6, f = [ .332670552950 .806891509311 ... .459877502118 -.135011020010 ... -.085441273882 .035226291882 ]; end if Par==8, f = [ .230377813309 .714846570553 ... .630880767930 -.027983769417 ... -.187034811719 .030841381836 ... .032883011667 -.010597401785 ]; end if Par==10, f = [ .160102397974 .603829269797 .724308528438 ... .138428145901 -.242294887066 -.032244869585 ... .077571493840 -.006241490213 -.012580751999 ... .003335725285 ]; end if Par==12, f = [ .111540743350 .494623890398 .751133908021 ... .315250351709 -.226264693965 -.129766867567 ... .097501605587 .027522865530 -.031582039317 ... .000553842201 .004777257511 -.001077301085 ]; end if Par==14, f = [ .077852054085 .396539319482 .729132090846 ... .469782287405 -.143906003929 -.224036184994 ... .071309219267 .080612609151 -.038029936935 ... -.016574541631 .012550998556 .000429577973 ... -.001801640704 .000353713800 ]; end if Par==16, f = [ .054415842243 .312871590914 .675630736297 ... .585354683654 -.015829105256 -.284015542962 ... .000472484574 .128747426620 -.017369301002 ... -.044088253931 .013981027917 .008746094047 ... -.004870352993 -.000391740373 .000675449406 ... -.000117476784 ]; end if Par==18, f = [ .038077947364 .243834674613 .604823123690 ... .657288078051 .133197385825 -.293273783279 ... -.096840783223 .148540749338 .030725681479 ... -.067632829061 .000250947115 .022361662124 ... -.004723204758 -.004281503682 .001847646883 ... .000230385764 -.000251963189 .000039347320 ]; end if Par==20, f = [ .026670057901 .188176800078 .527201188932 ... .688459039454 .281172343661 -.249846424327 ... -.195946274377 .127369340336 .093057364604 ... -.071394147166 -.029457536822 .033212674059 ... .003606553567 -.010733175483 .001395351747 ... .001992405295 -.000685856695 -.000116466855 ... .000093588670 -.000013264203 ]; end end if strcmp(Type,'Symmlet'), if Par==4, f = [ -.107148901418 -.041910965125 .703739068656 ... 1.136658243408 .421234534204 -.140317624179 ... -.017824701442 .045570345896 ]; end if Par==5, f = [ .038654795955 .041746864422 -.055344186117 ... .281990696854 1.023052966894 .896581648380 ... .023478923136 -.247951362613 -.029842499869 ... .027632152958 ]; end if Par==6, f = [ .021784700327 .004936612372 -.166863215412 ... -.068323121587 .694457972958 1.113892783926 ... .477904371333 -.102724969862 -.029783751299 ... .063250562660 .002499922093 -.011031867509 ]; end if Par==7, f = [ .003792658534 -.001481225915 -.017870431651 ... .043155452582 .096014767936 -.070078291222 ... .024665659489 .758162601964 1.085782709814 ... .408183939725 -.198056706807 -.152463871896 ... .005671342686 .014521394762 ]; end if Par==8, f = [ .002672793393 -.000428394300 -.021145686528 ... .005386388754 .069490465911 -.038493521263 ... -.073462508761 .515398670374 1.099106630537 ... .680745347190 -.086653615406 -.202648655286 ... .010758611751 .044823623042 -.000766690896 ... -.004783458512 ]; end if Par==9, f = [ .001512487309 -.000669141509 -.014515578553 ... .012528896242 .087791251554 -.025786445930 ... -.270893783503 .049882830959 .873048407349 ... 1.015259790832 .337658923602 -.077172161097 ... .000825140929 .042744433602 -.016303351226 ... -.018769396836 .000876502539 .001981193736 ]; end if Par==10, f = [ .001089170447 .000135245020 -.012220642630 ... -.002072363923 .064950924579 .016418869426 ... -.225558972234 -.100240215031 .667071338154 ... 1.088251530500 .542813011213 -.050256540092 ... -.045240772218 .070703567550 .008152816799 ... -.028786231926 -.001137535314 .006495728375 ... .000080661204 -.000649589896 ]; end end if strcmp(Type,'Vaidyanathan'), f = [ -.000062906118 .000343631905 -.000453956620 ... -.000944897136 .002843834547 .000708137504 ... -.008839103409 .003153847056 .019687215010 ... -.014853448005 -.035470398607 .038742619293 ... .055892523691 -.077709750902 -.083928884366 ... .131971661417 .135084227129 -.194450471766 ... -.263494802488 .201612161775 .635601059872 ... .572797793211 .250184129505 .045799334111 ]; end if strcmp(Type,'Battle'), if Par == 1, g = [0.578163 0.280931 -0.0488618 -0.0367309 ... 0.012003 0.00706442 -0.00274588 -0.00155701 ... 0.000652922 0.000361781 -0.000158601 -0.0000867523 ]; end if Par == 3, g = [0.541736 0.30683 -0.035498 -0.0778079 ... 0.0226846 0.0297468 -0.0121455 -0.0127154 ... 0.00614143 0.00579932 -0.00307863 -0.00274529 ... 0.00154624 0.00133086 -0.000780468 -0.00065562 ... 0.000395946 0.000326749 -0.000201818 -0.000164264 ... 0.000103307 ]; end if Par == 5, g = [0.528374 0.312869 -0.0261771 -0.0914068 ... 0.0208414 0.0433544 -0.0148537 -0.0229951 ... 0.00990635 0.0128754 -0.00639886 -0.00746848 ... 0.00407882 0.00444002 -0.00258816 -0.00268646 ... 0.00164132 0.00164659 -0.00104207 -0.00101912 ... 0.000662836 0.000635563 -0.000422485 -0.000398759 ... 0.000269842 0.000251419 -0.000172685 -0.000159168 ... 0.000110709 0.000101113 ]; end l = length(g); f = zeros(1,2*l-1); f(l:2*l-1) = g; f(1:l-1) = reverse(g(2:l)); end f = f ./ norm(f); % % Copyright (c) 1993-5. Jonathan Buckheit and David Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wcoef = FWT_PO(x,L,qmf) % FWT_PO -- Forward Wavelet Transform (periodized, orthogonal) % Usage % wc = FWT_PO(x,L,qmf) % Inputs % x 1-d signal; length(x) = 2^J % L Coarsest Level of V_0; L << J % qmf quadrature mirror filter (orthonormal) % Outputs % wc 1-d wavelet transform of x. % % Description % 1. qmf filter may be obtained from MakeONFilter % 2. usually, length(qmf) < 2^(L+1) % 3. To reconstruct use IWT_PO % % See Also % IWT_PO, MakeONFilter % [n,J] = dyadlength(x) ; wcoef = zeros(1,n) ; beta = ShapeAsRow(x); %take samples at finest scale as beta-coeffts for j=J-1:-1:L alfa = DownDyadHi(beta,qmf); wcoef(dyad(j)) = alfa; beta = DownDyadLo(beta,qmf) ; end wcoef(1:(2^L)) = beta; wcoef = ShapeLike(wcoef,x); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [n,J] = dyadlength(x) % dyadlength -- Find length and dyadic length of array % Usage % [n,J] = dyadlength(x) % Inputs % x array of length n = 2^J (hopefully) % Outputs % n length(x) % J least power of two greater than n % % Side Effects % A warning is issued if n is not a power of 2. % % See Also % quadlength, dyad, dyad2ix % n = length(x) ; J = ceil(log(n)/log(2)); if 2^J ~= n , disp('Warning in dyadlength: n != 2^J') end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function row = ShapeAsRow(sig) % ShapeAsRow -- Make signal a row vector % Usage % row = ShapeAsRow(sig) % Inputs % sig a row or column vector % Outputs % row a row vector % % See Also % ShapeLike % row = sig(:)'; % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadHi(x,qmf) % DownDyadHi -- Hi-Pass Downsampling operator (periodized) % Usage % d = DownDyadHi(x,f) % Inputs % x 1-d signal at fine scale % f filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadLo, UpDyadHi, UpDyadLo, FWT_PO, iconv % d = iconv( MirrorFilt(qmf),lshift(x)); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = MirrorFilt(x) % MirrorFilt -- Apply (-1)^t modulation % Usage % h = MirrorFilt(l) % Inputs % l 1-d signal % Outputs % h 1-d signal with DC frequency content shifted % to Nyquist frequency % % Description % h(t) = (-1)^(t-1) * x(t), 1 <= t <= length(x) % % See Also % DyadDownHi % y = -( (-1).^(1:length(x)) ).*x; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = lshift(x) % lshift -- Circular left shift of 1-d signal % Usage % l = lshift(x) % Inputs % x 1-d signal % Outputs % l 1-d signal % l(i) = x(i+1) except l(n) = x(1) % y = [ x( 2:length(x) ) x(1) ]; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = iconv(f,x) % iconv -- Convolution Tool for Two-Scale Transform % Usage % y = iconv(f,x) % Inputs % f filter % x 1-d signal % Outputs % y filtered result % % Description % Filtering by periodic convolution of x with f % % See Also % aconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo % n = length(x); p = length(f); if p <= n, xpadded = [x((n+1-p):n) x]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(p*n -p + i-1,n); z(i) = x(imod); end xpadded = [z x]; end ypadded = filter(f,1,xpadded); y = ypadded((p+1):(n+p)); % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function i = dyad(j) % dyad -- Index entire j-th dyad of 1-d wavelet xform % Usage % ix = dyad(j); % Inputs % j integer % Outputs % ix list of all indices of wavelet coeffts at j-th level % i = (2^(j)+1):(2^(j+1)) ; % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadLo(x,qmf) % DownDyadLo -- Lo-Pass Downsampling operator (periodized) % Usage % d = DownDyadLo(x,f) % Inputs % x 1-d signal at fine scale % f filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadHi, UpDyadHi, UpDyadLo, FWT_PO, aconv % d = aconv(qmf,x); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = aconv(f,x) % aconv -- Convolution Tool for Two-Scale Transform % Usage % y = aconv(f,x) % Inputs % f filter % x 1-d signal % Outputs % y filtered result % % Description % Filtering by periodic convolution of x with the % time-reverse of f. % % See Also % iconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo % n = length(x); p = length(f); if p < n, xpadded = [x x(1:p)]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(i-1,n); z(i) = x(imod); end xpadded = [x z]; end fflip = reverse(f); ypadded = filter(fflip,1,xpadded); y = ypadded(p:(n+p-1)); % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function vec = ShapeLike(sig,proto) % ShapeLike -- Make 1-d signal with given shape % Usage % vec = ShapeLike(sig,proto) % Inputs % sig a row or column vector % proto a prototype shape (row or column vector) % Outputs % vec a vector with contents taken from sig % and same shape as proto % % See Also % ShapeAsRow % sp = size(proto); ss = size(sig); if( sp(1)>1 & sp(2)>1 ) disp('Weird proto argument to ShapeLike') elseif ss(1)>1 & ss(2) > 1, disp('Weird sig argument to ShapeLike') else if(sp(1) > 1), if ss(1) > 1, vec = sig; else vec = sig(:); end else if ss(2) > 1, vec = sig; else vec = sig(:)'; end end end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT_PO(wc,L,qmf) % IWT_PO -- Inverse Wavelet Transform (periodized, orthogonal) % Usage % x = IWT_PO(wc,L,qmf) % Inputs % wc 1-d wavelet transform: length(wc) = 2^J. % L Coarsest scale (2^(-L) = scale of V_0); L << J; % qmf quadrature mirror filter % Outputs % x 1-d signal reconstructed from wc % % Description % Suppose wc = FWT_PO(x,L,qmf) where qmf is an orthonormal quad. mirror % filter, e.g. one made by MakeONFilter. Then x can be reconstructed by % x = IWT_PO(wc,L,qmf) % % See Also % FWT_PO, MakeONFilter % wcoef = ShapeAsRow(wc); x = wcoef(1:2^L); [n,J] = dyadlength(wcoef); for j=L:J-1 x = UpDyadLo(x,qmf) + UpDyadHi(wcoef(dyad(j)),qmf) ; end x = ShapeLike(x,wc); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadLo(x,qmf) % UpDyadLo -- Lo-Pass Upsampling operator; periodized % Usage % u = UpDyadLo(d,f) % Inputs % d 1-d signal at coarser scale % f filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo, DownDyadHi, UpDyadHi, IWT_PO, iconv % y = iconv(qmf, UpSample(x) ); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpSample(x,s) % UpSample -- Upsampling operator % Usage % u = UpSample(d[,s]) % Inputs % d 1-d signal, of length n % s upsampling scale, default = 2 % Outputs % u 1-d signal, of length s*n with zeros % interpolating alternate samples % u(s*i-1) = d(i), i=1,...,n % if nargin == 1, s = 2; end n = length(x)*s; y = zeros(1,n); y(1:s:(n-s+1) )=x; % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadHi(x,qmf) % UpDyadHi -- Hi-Pass Upsampling operator; periodized % Usage % u = UpDyadHi(d,f) % Inputs % d 1-d signal at coarser scale % f filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo, DownDyadHi, UpDyadLo, IWT_PO, aconv % y = aconv( MirrorFilt(qmf), rshift( UpSample(x) ) ); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = rshift(x) % rshift -- Circular right shift of 1-d signal % Usage % r = rshift(x) % Inputs % x 1-d signal % Outputs % r 1-d signal % r(i) = x(i-1) except r(1) = x(n) % n = length(x); y = [ x(n) x( 1: (n-1) )]; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [qmf,dqmf] = MakeBSFilter(Type,Par) % MakeBSFilter -- Generate Biorthonormal QMF Filter Pairs % Usage % [qmf,dqmf] = MakeBSFilter(Type,Par) % Inputs % Type string, one of: % 'Triangle' % 'Interpolating' 'Deslauriers' (the two are same) % 'Average-Interpolating' % 'CDF' (spline biorthogonal filters in Daubechies's book) % 'Villasenor' (Villasenor's 5 best biorthogonal filters) % Par integer list, e.g. if Type ='Deslauriers', Par=3 specifies % Deslauriers-Dubuc filter, polynomial degree 3 % Outputs % qmf quadrature mirror filter (odd length, symmetric) % dqmf dual quadrature mirror filter (odd length, symmetric) % % See Also % FWT_PBS, IWT_PBS, FWT2_PBS, IWT2_PBS % % References % I. Daubechies, "Ten Lectures on Wavelets." % % G. Deslauriers and S. Dubuc, "Symmetric Iterative Interpolating Processes." % % D. Donoho, "Smooth Wavelet Decompositions with Blocky Coefficient Kernels." % % J. Villasenor, B. Belzer and J. Liao, "Wavelet Filter Evaluation for % Image Compression." % if nargin < 2, Par = 0; end sqr2 = sqrt(2); if strcmp(Type,'Triangle'), qmf = [0 1 0]; dqmf = [.5 1 .5]; elseif strcmp(Type,'Interpolating') | strcmp(Type,'Deslauriers'), qmf = [0 1 0]; dqmf = MakeDDFilter(Par)'; dqmf = dqmf(1:(length(dqmf)-1)); elseif strcmp(Type,'Average-Interpolating'), qmf = [0 .5 .5] ; dqmf = [0 ; MakeAIFilter(Par)]'; elseif strcmp(Type,'CDF'), if Par(1)==1, dqmf = [0 .5 .5] .* sqr2; if Par(2) == 1, qmf = [0 .5 .5] .* sqr2; elseif Par(2) == 3, qmf = [0 -1 1 8 8 1 -1] .* sqr2 / 16; elseif Par(2) == 5, qmf = [0 3 -3 -22 22 128 128 22 -22 -3 3].*sqr2/256; end elseif Par(1)==2, dqmf = [.25 .5 .25] .* sqr2; if Par(2)==2, qmf = [-.125 .25 .75 .25 -.125] .* sqr2; elseif Par(2)==4, qmf = [3 -6 -16 38 90 38 -16 -6 3] .* (sqr2/128); elseif Par(2)==6, qmf = [-5 10 34 -78 -123 324 700 324 -123 -78 34 10 -5 ] .* (sqr2/1024); elseif Par(2)==8, qmf = [35 -70 -300 670 1228 -3126 -3796 10718 22050 ... 10718 -3796 -3126 1228 670 -300 -70 35 ] .* (sqr2/32768); end elseif Par(1)==3, dqmf = [0 .125 .375 .375 .125] .* sqr2; if Par(2) == 1, qmf = [0 -.25 .75 .75 -.25] .* sqr2; elseif Par(2) == 3, qmf = [0 3 -9 -7 45 45 -7 -9 3] .* sqr2/64; elseif Par(2) == 5, qmf = [0 -5 15 19 -97 -26 350 350 -26 -97 19 15 -5] .* sqr2/512; elseif Par(2) == 7, qmf = [0 35 -105 -195 865 363 -3489 -307 11025 11025 -307 -3489 363 865 -195 -105 35] .* sqr2/16384; elseif Par(2) == 9, qmf = [0 -63 189 469 -1911 -1308 9188 1140 -29676 190 87318 87318 190 -29676 ... 1140 9188 -1308 -1911 469 189 -63] .* sqr2/131072; end elseif Par(1)==4, dqmf = [.026748757411 -.016864118443 -.078223266529 .266864118443 .602949018236 ... .266864118443 -.078223266529 -.016864118443 .026748757411] .*sqr2; if Par(2) == 4, qmf = [0 -.045635881557 -.028771763114 .295635881557 .557543526229 ... .295635881557 -.028771763114 -.045635881557 0] .*sqr2; end end elseif strcmp(Type,'Villasenor'), if Par == 1, % The "7-9 filters" qmf = [.037828455506995 -.023849465019380 -.11062440441842 .37740285561265]; qmf = [qmf .85269867900940 reverse(qmf)]; dqmf = [-.064538882628938 -.040689417609558 .41809227322221]; dqmf = [dqmf .78848561640566 reverse(dqmf)]; elseif Par == 2, qmf = [-.008473 .003759 .047282 -.033475 -.068867 .383269 .767245 .383269 -.068867... -.033475 .047282 .003759 -.008473]; dqmf = [0.014182 0.006292 -0.108737 -0.069163 0.448109 .832848 .448109 -.069163 -.108737 .006292 .014182]; elseif Par == 3, qmf = [0 -.129078 .047699 .788486 .788486 .047699 -.129078]; dqmf = [0 .018914 .006989 -.067237 .133389 .615051 .615051 .133389 -.067237 .006989 .018914]; elseif Par == 4, qmf = [-1 2 6 2 -1] / (4*sqr2); dqmf = [1 2 1] / (2*sqr2); elseif Par == 5, qmf = [0 1 1]/sqr2; dqmf = [0 -1 1 8 8 1 -1]/(8*sqr2); end end % % Copyright (c) 1995. Jonathan Buckheit, Shaobing Chen and David Donoho % % Modified by Maureen Clerc and Jerome Kalifa, 1997 % [email protected], [email protected] % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wcoef = FWT_SBS(x,L,qmf,dqmf) % FWT_SBS -- Forward Wavelet Transform (symmetric extension, biorthogonal, symmetric) % Usage % wc = FWT_SBS(x,L,qmf,dqmf) % Inputs % x 1-d signal; arbitrary length % L Coarsest Level of V_0; L << J % qmf quadrature mirror filter (symmetric) % dqmf quadrature mirror filter (symmetric, dual of qmf) % Outputs % wc 1-d wavelet transform of x. % % Description % 1. qmf filter may be obtained from MakePBSFilter % 2. usually, length(qmf) < 2^(L+1) % 3. To reconstruct use IWT_SBS % % See Also % IWT_SBS, MakePBSFilter % % References % Based on the algorithm developed by Christopher Brislawn. % See "Classification of Symmetric Wavelet Transforms" % [n,J] = dyadlength(x); wcoef = zeros(1,n); beta = ShapeAsRow(x); % take samples at finest scale as beta-coeffts dp = dyadpartition(n); for j=J-1:-1:L, [beta, alfa] = DownDyad_SBS(beta,qmf,dqmf); dyadj = (dp(j+1)+1):dp(j+2); wcoef(dyadj) = alfa; end wcoef(1:length(beta)) = beta; wcoef = ShapeLike(wcoef,x); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function dp = dyadpartition(n) % dyadpartition -- determine dyadic partition in wavelet transform of % nondyadic signals J = ceil(log2(n)); m = n; for j=J-1:-1:0; if rem(m,2)==0, dps(j+1) = m/2; m = m/2; else dps(j+1) = (m-1)/2; m = (m+1)/2; end end dp = cumsum([1 dps]); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [beta, alpha] = DownDyad_SBS(x,qmf,dqmf) % DownDyad_SBS -- Symmetric Downsampling operator % Usage % [beta,alpha] = DownDyad_SBS(x,qmf,dqmf) % Inputs % x 1-d signal at fine scale % qmf quadrature mirror filter % dqmf dual quadrature mirror filter % Outputs % beta coarse coefficients % alpha fine coefficients % See Also % FWT_SBS % % oddf = (rem(length(qmf),2)==1); oddf = ~(qmf(1)==0 & qmf(length(qmf))~=0); oddx = (rem(length(x),2)==1); % symmetric extension of x if oddf, ex = extend(x,1,1); else ex = extend(x,2,2); end % convolution ebeta = DownDyadLo_PBS(ex,qmf); ealpha = DownDyadHi_PBS(ex,dqmf); % project if oddx, beta = ebeta(1:(length(x)+1)/2); alpha = ealpha(1:(length(x)-1)/2); else beta = ebeta(1:length(x)/2); alpha = ealpha(1:length(x)/2); end % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = extend(x, par1, par2) % extend -- perform various kinds of symmetric extension % if par1==1 & par2==1, y = [x x((length(x)-1):-1:2)]; elseif par1==1 & par2==2, y = [x x((length(x)-1):-1:1)]; elseif par1==2 & par2==1, y = [x x(length(x):-1:2)]; elseif par1==2 & par2==2, y = [x reverse(x)]; end % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadLo_PBS(x,qmf) % DownDyadLo_PBS -- Lo-Pass Downsampling operator (periodized,symmetric) % Usage % d = DownDyadLo_PBS(x,sf) % Inputs % x 1-d signal at fine scale % sf symmetric filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadHi_PBS, UpDyadHi_PBS, UpDyadLo_PBS, FWT_PBSi, symm_aconv % d = symm_aconv(qmf,x); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = symm_aconv(sf,x) % symm_aconv -- Symmetric Convolution Tool for Two-Scale Transform % Usage % y = symm_aconv(sf,x) % Inputs % sf symmetric filter % x 1-d signal % Outputs % y filtered result % % Description % Filtering by periodic convolution of x with the % time-reverse of sf. % % See Also % symm_iconv, UpDyadHi_PBS, UpDyadLo_PBS, DownDyadHi_PBS, DownDyadLo_PBS % n = length(x); p = length(sf); if p < n, xpadded = [x x(1:p)]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(i-1,n); z(i) = x(imod); end xpadded = [x z]; end fflip = reverse(sf); ypadded = filter(fflip,1,xpadded); if p < n, y = [ypadded((n+1):(n+p)) ypadded((p+1):(n))]; else for i=1:n, imod = 1 + rem(p+i-1,n); y(imod) = ypadded(p+i); end end shift = (p-1)/ 2 ; shift = 1 + rem(shift-1, n); y = [y((1+shift):n) y(1:(shift))] ; % % Copyright (c) 1995. Shaobing Chen and David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadHi_PBS(x,qmf) % DownDyadHi_PBS -- Hi-Pass Downsampling operator (periodized,symmetric) % Usage % d = DownDyadHi_PBS(x,sqmf) % Inputs % x 1-d signal at fine scale % sqmf symmetric filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadLo_PBS, UpDyadHi_PBS, UpDyadLo_PBS, FWT_PBS, symm_iconv % d = symm_iconv( MirrorSymmFilt(qmf),lshift(x)); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = MirrorSymmFilt(x) % MirrorSymmFilt -- apply (-1)^t modulation to symmetric filter % Usage % h = MirrorSymmFilt(l) % Inputs % l symmetric filter % Outputs % h symmetric filter with DC frequency content shifted % to Nyquist frequency % % Description % h(t) = (-1)^t * x(t), -k <= t <= k ; length(x)=2k+1 % % See Also % DownDyadHi_PBS % k = (length(x)-1)/2; y = ( (-1).^((-k):k) ) .*x; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = symm_iconv(sf,x) % symm_iconv -- Symmetric Convolution Tool for Two-Scale Transform % Usage % y = iconv(sf,x) % Inputs % sf symmetric filter % x 1-d signal % Output % y filtered result % % Description % Filtering by periodic convolution of x with sf % % See Also % symm_aconv, UpDyadHi_PBS, UpDyadLo_PBS, DownDyadHi_PBS, DownDyadLo_PBS % n = length(x); p = length(sf); if p <= n, xpadded = [x((n+1-p):n) x]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(p*n -p + i-1,n); z(i) = x(imod); end xpadded = [z x]; end ypadded = filter(sf,1,xpadded); y = ypadded((p+1):(n+p)); shift = (p+1)/2; shift = 1 + rem(shift-1, n); y = [y(shift:n) y(1:(shift-1))]; % % Copyright (c) 1995. Shaobing Chen and David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT_SBS(wc,L,qmf,dqmf) % iwt_po -- Inverse Wavelet Transform (symmetric extension, biorthogonal, symmetric) % Usage % x = IWT_SBS(wc,L,qmf,dqmf) % Inputs % wc 1-d wavelet transform: length(wc)= 2^J. % L Coarsest scale (2^(-L) = scale of V_0); L << J; % qmf quadrature mirror filter % dqmf dual quadrature mirror filter (symmetric, dual of qmf) % Outputs % x 1-d signal reconstructed from wc % Description % Suppose wc = FWT_SBS(x,L,qmf,dqmf) where qmf and dqmf are orthonormal % quad. mirror filters made by MakeBioFilter. Then x can be reconstructed % by % x = IWT_SBS(wc,L,qmf,dqmf) % See Also: % FWT_SBS, MakeBioFilter % wcoef = ShapeAsRow(wc); [n,J] = dyadlength(wcoef); dp = dyadpartition(n); x = wcoef(1:dp(L+1)); for j=L:J-1, dyadj = (dp(j+1)+1):dp(j+2); x = UpDyad_SBS(x, wcoef(dyadj), qmf, dqmf); end x = ShapeLike(x,wc); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = UpDyad_SBS(beta,alpha,qmf,dqmf) % UpDyad_SBS -- Symmetric Upsampling operator % Usage % x = UpDyad_SBS(beta,alpha,qmf,dqmf) % Inputs % beta coarse coefficients % alpha fine coefficients % qmf quadrature mirror filter % dqmf dual quadrature mirror filter % Outputs % x 1-d signal at fine scale % See Also % DownDyad_SBS, IWT_SBS % % oddf = (rem(length(qmf),2)==1); oddf = ~(qmf(1)==0 & qmf(length(qmf))~=0); oddx = (length(beta) ~= length(alpha)); L = length(beta)+length(alpha); if oddf, if oddx, ebeta = extend(beta,1,1); ealpha = extend(alpha,2,2); else ebeta = extend(beta,2,1); ealpha = extend(alpha,1,2); end else if oddx, ebeta = extend(beta,1,2); ealpha = [alpha 0 -reverse(alpha)]; else ebeta = extend(beta,2,2); ealpha = [alpha -reverse(alpha)]; end end coarse = UpDyadLo_PBS(ebeta,dqmf); fine = UpDyadHi_PBS(ealpha,qmf); x = coarse + fine; x = x(1:L); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadLo_PBS(x,qmf) % UpDyadLo_PBS -- Lo-Pass Upsampling operator; periodized % Usage % u = UpDyadLo_PBS(d,sf) % Inputs % d 1-d signal at coarser scale % sf symmetric filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo_PBS , DownDyadHi_PBS , UpDyadHi_PBS, IWT_PBS, symm_iconv % y = symm_iconv(qmf, UpSample(x,2) ); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadHi_PBS(x,qmf) % UpDyadHi_PBS -- Hi-Pass Upsampling operator; periodized % Usage % u = UpDyadHi_PBS(d,f) % Inputs % d 1-d signal at coarser scale % sf symmetric filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo_PBS, DownDyadHi_PBS, UpDyadLo_PBS, IWT_PBS, symm_aconv % y = symm_aconv( MirrorSymmFilt(qmf), rshift( UpSample(x,2) ) ); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wc = FWT2_SBS(x,L,qmf,dqmf) % FWT2_SBS -- 2-dimensional wavelet transform % (symmetric extension, bi-orthogonal) % Usage % wc = FWT2_SBS(x,L,qmf,dqmf) % Inputs % x 2-d image (n by n array, n arbitrary) % L coarsest level % qmf low-pass quadrature mirror filter % dqmf high-pass dual quadrature mirror filter % Output % wc 2-d wavelet transform % Description % A two-dimensional Wavelet Transform is computed for the % matrix x. To reconstruct, use IWT2_SBS. % See Also % IWT2_SBS % [m,J] = dyadlength(x(:,1)); [n,K] = dyadlength(x(1,:)); wc = x; mc = m; nc = n; J = min([J,K]); for jscal=J-1:-1:L, if rem(mc,2)==0, top = (mc/2+1):mc; bot = 1:(mc/2); else top = ((mc+1)/2+1):mc; bot = 1:((mc+1)/2); end if rem(nc,2)==0, right = (nc/2+1):nc; left = 1:(nc/2); else right = ((nc+1)/2+1):nc; left = 1:((nc+1)/2); end for ix=1:mc, row = wc(ix,1:nc); [beta,alpha] = DownDyad_SBS(row,qmf,dqmf); wc(ix,left) = beta; wc(ix,right) = alpha; end for iy=1:nc, column = wc(1:mc,iy)'; [beta,alpha] = DownDyad_SBS(column,qmf,dqmf); wc(bot,iy) = beta'; wc(top,iy) = alpha'; end mc = bot(length(bot)); nc = left(length(left)); end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT2_SBS(wc,L,qmf,dqmf) % IWT2_SBS -- Inverse 2d Wavelet Transform % (symmetric extention, bi-orthogonal) % Usage % x = IWT2_SBS(wc,L,qmf,dqmf) % Inputs % wc 2-d wavelet transform [n by n array, n arbitrary] % L coarse level % qmf low-pass quadrature mirror filter % dqmf high-pas dual quadrature mirror filter % Outputs % x 2-d signal reconstructed from wc % Description % If wc is the result of a forward 2d wavelet transform, with % wc = FWT2_SBS(x,L,qmf,dqmf) % then x = IWT2_SBS(wc,L,qmf,dqmf) reconstructs x exactly if qmf is a nice % quadrature mirror filter, e.g. one made by MakeBioFilter % See Also: % FWT2_SBS, MakeBioFilter % [m,J] = dyadlength(wc(:,1)); [n,K] = dyadlength(wc(1,:)); % assume m==n, J==K x = wc; dpm = dyadpartition(m); for jscal=L:J-1, bot = 1:dpm(jscal+1); top = (dpm(jscal+1)+1):dpm(jscal+2); all = [bot top]; nc = length(all); for iy=1:nc, x(all,iy) = UpDyad_SBS(x(bot,iy)', x(top,iy)', qmf, dqmf)'; end for ix=1:nc, x(ix,all) = UpDyad_SBS(x(ix,bot), x(ix,top), qmf, dqmf); end end % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wc = FWT2_PO(x,L,qmf) % FWT2_PO -- 2-d MRA wavelet transform (periodized, orthogonal) % Usage % wc = FWT2_PO(x,L,qmf) % Inputs % x 2-d image (n by n array, n dyadic) % L coarse level % qmf quadrature mirror filter % Outputs % wc 2-d wavelet transform % % Description % A two-dimensional Wavelet Transform is computed for the % array x. To reconstruct, use IWT2_PO. % % See Also % IWT2_PO, MakeONFilter % [n,J] = quadlength(x); wc = x; nc = n; for jscal=J-1:-1:L, top = (nc/2+1):nc; bot = 1:(nc/2); for ix=1:nc, row = wc(ix,1:nc); wc(ix,bot) = DownDyadLo(row,qmf); wc(ix,top) = DownDyadHi(row,qmf); end for iy=1:nc, row = wc(1:nc,iy)'; wc(top,iy) = DownDyadHi(row,qmf)'; wc(bot,iy) = DownDyadLo(row,qmf)'; end nc = nc/2; end % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT2_PO(wc,L,qmf) % IWT2_PO -- Inverse 2-d MRA wavelet transform (periodized, orthogonal) % Usage % x = IWT2_PO(wc,L,qmf) % Inputs % wc 2-d wavelet transform [n by n array, n dyadic] % L coarse level % qmf quadrature mirror filter % Outputs % x 2-d signal reconstructed from wc % % Description % If wc is the result of a forward 2d wavelet transform, with % wc = FWT2_PO(x,L,qmf), then x = IWT2_PO(wc,L,qmf) reconstructs x % exactly if qmf is a nice qmf, e.g. one made by MakeONFilter. % % See Also % FWT2_PO, MakeONFilter % [n,J] = quadlength(wc); x = wc; nc = 2^(L+1); for jscal=L:J-1, top = (nc/2+1):nc; bot = 1:(nc/2); all = 1:nc; for iy=1:nc, x(all,iy) = UpDyadLo(x(bot,iy)',qmf)' ... + UpDyadHi(x(top,iy)',qmf)'; end for ix=1:nc, x(ix,all) = UpDyadLo(x(ix,bot),qmf) ... + UpDyadHi(x(ix,top),qmf); end nc = 2*nc; end % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [n,J] = quadlength(x) % quadlength -- Find length and dyadic length of square matrix % Usage % [n,J] = quadlength(x) % Inputs % x 2-d image; size(n,n), n = 2^J (hopefully) % Outputs % n length(x) % J least power of two greater than n % % Side Effects % A warning message is issue if n is not a power of 2, % or if x is not a square matrix. % s = size(x); n = s(1); if s(2) ~= s(1), disp('Warning in quadlength: nr != nc') end k = 1 ; J = 0; while k < n , k=2*k; J = 1+J ; end ; if k ~= n , disp('Warning in quadlength: n != 2^J') end % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wp = FWT_TI(x,L,qmf) % FWT_TI -- translation invariant forward wavelet transform % Usage % TIWT = FWT_TI(x,L,qmf) % Inputs % x array of dyadic length n=2^J % L degree of coarsest scale % qmf orthonormal quadrature mirror filter % Outputs % TIWT stationary wavelet transform table % formally same data structure as packet table % % See Also % IWT_TI % [n,J] = dyadlength(x); D = J-L; wp = zeros(n,D+1); x = ShapeAsRow(x); % wp(:,1) = x'; for d=0:(D-1), for b=0:(2^d-1), s = wp(packet(d,b,n),1)'; hsr = DownDyadHi(s,qmf); hsl = DownDyadHi(rshift(s),qmf); lsr = DownDyadLo(s,qmf); lsl = DownDyadLo(rshift(s),qmf); wp(packet(d+1,2*b ,n),d+2) = hsr'; wp(packet(d+1,2*b+1,n),d+2) = hsl'; wp(packet(d+1,2*b ,n),1 ) = lsr'; wp(packet(d+1,2*b+1,n),1 ) = lsl'; end end % % Copyright (c) 1994. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function tiwt = FWT2_TI(x,L,qmf) % FWT_TI -- 2-D translation invariant forward wavelet transform % Usage % TIWT = FWT2_TI(x,L,qmf) % Inputs % x 2-d image (n by n real array, n dyadic) % L degree of coarsest scale % qmf orthonormal quadrature mirror filter % Outputs % TIWT translation-invariant wavelet transform table, (3*(J-L)+1)*n by n % % See Also % IWT2_TI, IWT2_TIMedian % [n,J] = quadlength(x); D = J-L; tiwt = zeros((3*D+1)*n, n); lastx = (3*D*n+1):(3*D*n+n); lasty = 1:n; tiwt(lastx,lasty) = x; % for d=0:(D-1), l = J-d-1; ns = 2^(J-d); for b1=0:(2^d-1), for b2=0:(2^d-1), s = tiwt(3*D*n+packet(d,b1,n), packet(d,b2,n)); wc00 = FWT2_PO(s,l,qmf); wc01 = FWT2_PO(CircularShift(s,0,1),l,qmf); wc10 = FWT2_PO(CircularShift(s,1,0),l,qmf); wc11 = FWT2_PO(CircularShift(s,1,1),l,qmf); index10 = packet(d+1,2*b1,n); index20 = packet(d+1,2*b2,n); index11 = packet(d+1,2*b1+1,n); index21 = packet(d+1,2*b2+1,n); % horizontal stuff tiwt(3*d*n + index10 , index20) = wc00(1:(ns/2),(ns/2+1):ns); tiwt(3*d*n + index11, index20) = wc01(1:(ns/2),(ns/2+1):ns); tiwt(3*d*n + index10 , index21) = wc10(1:(ns/2),(ns/2+1):ns); tiwt(3*d*n + index11 , index21) = wc11(1:(ns/2),(ns/2+1):ns); % vertical stuff tiwt((3*d+1)*n + index10 , index20) = wc00((ns/2+1):ns,1:(ns/2)); tiwt((3*d+1)*n + index11, index20) = wc01((ns/2+1):ns,1:(ns/2)); tiwt((3*d+1)*n + index10 , index21) = wc10((ns/2+1):ns,1:(ns/2)); tiwt((3*d+1)*n + index11 , index21) = wc11((ns/2+1):ns,1:(ns/2)); % diagonal stuff tiwt((3*d+2)*n + index10 , index20) = wc00((ns/2+1):ns,(ns/2+1):ns); tiwt((3*d+2)*n + index11, index20) = wc01((ns/2+1):ns,(ns/2+1):ns); tiwt((3*d+2)*n + index10 , index21) = wc10((ns/2+1):ns,(ns/2+1):ns); tiwt((3*d+2)*n + index11 , index21) = wc11((ns/2+1):ns,(ns/2+1):ns); % low freq stuff tiwt(3*D*n + index10 , index20) = wc00(1:(ns/2),1:(ns/2)); tiwt(3*D*n + index11, index20) = wc01(1:(ns/2),1:(ns/2)); tiwt(3*D*n + index10 , index21) = wc10(1:(ns/2),1:(ns/2)); tiwt(3*D*n + index11 , index21) = wc11(1:(ns/2),1:(ns/2)); end, end end % % Copyright (c) 1995. David L. Donoho and Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function p=packet(d,b,n) % packet -- Packet table indexing % Usage % p = packet(d,b,n) % Inputs % d depth of splitting in packet decomposition % b block index among 2^d possibilities at depth d % n length of signal % Outputs % p linear indices of all coeff's in that block % npack = 2^d; p = ( (b * (n/npack) + 1) : ((b+1)*n/npack ) ) ; % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT_TI(pkt,qmf) % IWT_TI -- Invert translation invariant wavelet transform % Usage % x = IWT_TI(TIWT,qmf) % Inputs % TIWT translation-invariant wavelet transform table % qmf quadrature mirror filter % Outputs % x 1-d signal reconstructed from translation-invariant % transform TIWT % % See Also % FWT_TI % [n,D1] = size(pkt); D = D1-1; J = log2(n); L = J-D; % wp = pkt; % sig = wp(:,1)'; for d= D-1:-1:0, for b=0:(2^d-1) hsr = wp(packet(d+1,2*b ,n),d+2)'; hsl = wp(packet(d+1,2*b+1,n),d+2)'; lsr = sig(packet(d+1,2*b ,n) ); lsl = sig(packet(d+1,2*b+1,n) ); loterm = (UpDyadLo(lsr,qmf) + lshift(UpDyadLo(lsl,qmf)))/2; hiterm = (UpDyadHi(hsr,qmf) + lshift(UpDyadHi(hsl,qmf)))/2; sig(packet(d,b,n)) = loterm+hiterm; end end x = sig; % % Copyright (c) 1994. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT2_TI(tiwt,L,qmf) % IWT2_TI -- Invert 2-d translation invariant wavelet transform % Usage % x = IWT2_TI(TIWT,qmf) % Inputs % TIWT translation-invariant wavelet transform table, (3*(J-L)+1)*n by n % L degree of coarsest scale % qmf quadrature mirror filter % Outputs % x 2-d image reconstructed from translation-invariant transform TIWT % % See Also % FWT2_TI, IWT2_TIMedian % [D1,n] = size(tiwt); J = log2(n); D = J-L; % lastx = (3*D*n+1):(3*D*n+n); lasty = 1:n; x = tiwt(lastx,lasty); for d=(D-1):-1:0, l = J-d-1; ns = 2^(J-d); for b1=0:(2^d-1), for b2=0:(2^d-1), index10 = packet(d+1,2*b1,n); index20 = packet(d+1,2*b2,n); index11 = packet(d+1,2*b1+1,n); index21 = packet(d+1,2*b2+1,n); wc00 = [x(index10,index20) tiwt(3*d*n+index10,index20) ; ... tiwt((3*d+1)*n+index10,index20) tiwt((3*d+2)*n+index10,index20)]; wc01 = [x(index11,index20) tiwt(3*d*n+index11,index20) ; ... tiwt((3*d+1)*n+index11,index20) tiwt((3*d+2)*n+index11,index20)]; wc10 = [x(index10,index21) tiwt(3*d*n+index10,index21) ; ... tiwt((3*d+1)*n+index10,index21) tiwt((3*d+2)*n+index10,index21)]; wc11 = [x(index11,index21) tiwt(3*d*n+index11,index21) ; ... tiwt((3*d+1)*n+index11,index21) tiwt((3*d+2)*n+index11,index21)]; x(packet(d,b1,n), packet(d,b2,n)) = ( IWT2_PO(wc00,l,qmf) + .... CircularShift(IWT2_PO(wc01,l,qmf),0,-1) + ... CircularShift(IWT2_PO(wc10,l,qmf),-1,0) + ... CircularShift(IWT2_PO(wc11,l,qmf),-1,-1) ) / 4; end, end end % % Copyright (c) 1995. David L. Donoho and Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function result = CircularShift(matrix, colshift, rowshift) % CIRCULARSHIFT: Circular shifting of a matrix/image, i.e., pixels that get % shifted off one side of the image are put back on the other side. % % result = circularShift(matrix, colshift, rowshift) % % EPS, DJH '96 lastrow = size(matrix, 1); lastcol = size(matrix, 2); result = matrix; % Shift the cols if (colshift>0) result = [result(:,[lastcol-colshift+1:lastcol]) ... result(:,[1:lastcol-colshift])]; else colshift = -colshift; result = [result(:,[colshift+1:lastcol]) ... result(:,[1:colshift])]; end % Shift the rows if (rowshift>0) result = [result([lastrow-rowshift+1:lastrow],:) ; ... result([1:lastrow-rowshift],:)]; else rowshift = -rowshift; result = [result([rowshift+1:lastrow],:) ; ... result([1:rowshift],:)]; end function x = reverse(x) x = x(end:-1:1); function StatWT = TI2Stat(TIWT) % TI2Stat -- Convert Translation-Invariant Transform to Stationary Wavelet Transform % Usage % StatWT = TI2Stat(TIWT) % Inputs % TIWT translation invariant table from FWT_TI % Outputs % StatWT stationary wavelet transform table table as FWT_Stat % % See Also % Stat2TI, FWT_TI, FWT_Stat % StatWT = TIWT; [n,D1] = size(StatWT); D = D1-1; J = log2(n); L = J-D; % index = 1; for d=1:D, nb = 2^d; nk = n/nb; index = [ (index+nb/2); index]; index = index(:)'; for b= 0:(nb-1), StatWT(d*n + (index(b+1):nb:n)) = TIWT(d*n + packet(d,b,n)); end end for b= 0:(nb-1), StatWT((index(b+1):nb:n)) = TIWT(packet(d,b,n)); end % % Copyright (c) 1994. Shaobing Chen % function TIWT = Stat2TI(StatWT) % Stat2TI -- Convert Stationary Wavelet Transform to Translation-Invariant Transform % Usage % TIWT = Stat2TI(StatWT) % Inputs % StatWT stationary wavelet transform table as FWT_Stat % Outputs % TIWT translation-invariant transform table as FWT_TI % % See Also % Stat2TI, FWT_TI, FWT_Stat % TIWT = StatWT; [n,D1] = size(StatWT); D = D1-1; index = 1; for d=1:D, nb = 2^d; nk = n/nb; index = [ (index+nb/2); index]; index = index(:)'; for b= 0:(nb-1), TIWT(d*n + packet(d,b,n)) = StatWT(d*n + (index(b+1):nb:n)); end end for b= 0:(nb-1), TIWT(packet(d,b,n)) = StatWT((index(b+1):nb:n)); end % % Copyright (c) 1994. Shaobing Chen % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
jacksky64/imageProcessing-master
pdco.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_sparsity/toolbox/pdco.m
54,786
utf_8
24b840a986d1c21cadf453a476c677e6
function [x,y,z,inform,PDitns,CGitns,time] = ... pdco( Fname,Aname,b,bl,bu,d1,d2,options,x0,y0,z0,xsize,zsize ) %----------------------------------------------------------------------- % pdco.m: Primal-Dual Barrier Method for Convex Objectives (23 Sep 2003) %----------------------------------------------------------------------- % [x,y,z,inform,PDitns,CGitns,time] = ... % pdco(Fname,Aname,b,bl,bu,d1,d2,options,x0,y0,z0,xsize,zsize); % % solves optimization problems of the form % % minimize phi(x) + 1/2 norm(D1*x)^2 + 1/2 norm(r)^2 % x,r % subject to A*x + D2*r = b, bl <= x <= bu, r unconstrained, % % where % phi(x) is a smooth convex function defined by function Fname; % A is an m x n matrix defined by matrix or function Aname; % b is a given m-vector; % D1, D2 are positive-definite diagonal matrices defined from d1, d2. % In particular, d2 indicates the accuracy required for % satisfying each row of Ax = b. % % D1 and D2 (via d1 and d2) provide primal and dual regularization % respectively. They ensure that the primal and dual solutions % (x,r) and (y,z) are unique and bounded. % % A scalar d1 is equivalent to d1 = ones(n,1), D1 = diag(d1). % A scalar d2 is equivalent to d2 = ones(m,1), D2 = diag(d2). % Typically, d1 = d2 = 1e-4. % These values perturb phi(x) only slightly (by about 1e-8) and request % that A*x = b be satisfied quite accurately (to about 1e-8). % Set d1 = 1e-4, d2 = 1 for least-squares problems with bound constraints. % The problem is then equivalent to % % minimize phi(x) + 1/2 norm(d1*x)^2 + 1/2 norm(A*x - b)^2 % subject to bl <= x <= bu. % % More generally, d1 and d2 may be n and m vectors containing any positive % values (preferably not too small, and typically no larger than 1). % Bigger elements of d1 and d2 improve the stability of the solver. % % At an optimal solution, if x(j) is on its lower or upper bound, % the corresponding z(j) is positive or negative respectively. % If x(j) is between its bounds, z(j) = 0. % If bl(j) = bu(j), x(j) is fixed at that value and z(j) may have % either sign. % % Also, r and y satisfy r = D2 y, so that Ax + D2^2 y = b. % Thus if d2(i) = 1e-4, the i-th row of Ax = b will be satisfied to % approximately 1e-8. This determines how large d2(i) can safely be. % % % EXTERNAL FUNCTIONS: % options = pdcoSet; provided with pdco.m % [obj,grad,hess] = Fname( x ); provided by user % y = Aname( name,mode,m,n,x ); provided by user if pdMat % is a string, not a matrix % % INPUT ARGUMENTS: % Fname may be an explicit n x 1 column vector c, % or a string containing the name of a function Fname.m %%%!!! Revised 12/16/04 !!! % (Fname cannot be a function handle) % such that [obj,grad,hess] = Fname(x) defines % obj = phi(x) : a scalar, % grad = gradient of phi(x) : an n-vector, % hess = diag(Hessian of phi): an n-vector. % Examples: % If phi(x) is the linear function c'*x, Fname could be % be the vector c, or the name or handle of a function % that returns % [obj,grad,hess] = [c'*x, c, zeros(n,1)]. % If phi(x) is the entropy function E(x) = sum x(j) log x(j), % Fname should return % [obj,grad,hess] = [E(x), log(x)+1, 1./x]. % Aname may be an explicit m x n matrix A (preferably sparse!), % or a string containing the name of a function Aname.m %%%!!! Revised 12/16/04 !!! % (Aname cannot be a function handle) % such that y = aname( name,mode,m,n,x ) % returns y = A*x (mode=1) or y = A'*x (mode=2). % The input parameter "name" will be the string 'Aname' % or whatever the name of the actual function is. % b is an m-vector. % bl is an n-vector of lower bounds. Non-existent bounds % may be represented by bl(j) = -Inf or bl(j) <= -1e+20. % bu is an n-vector of upper bounds. Non-existent bounds % may be represented by bu(j) = Inf or bu(j) >= 1e+20. % d1, d2 may be positive scalars or positive vectors (see above). % options is a structure that may be set and altered by pdcoSet % (type help pdcoSet). % x0, y0, z0 provide an initial solution. % xsize, zsize are estimates of the biggest x and z at the solution. % They are used to scale (x,y,z). Good estimates % should improve the performance of the barrier method. % % % OUTPUT ARGUMENTS: % x is the primal solution. % y is the dual solution associated with Ax + D2 r = b. % z is the dual solution associated with bl <= x <= bu. % inform = 0 if a solution is found; % = 1 if too many iterations were required; % = 2 if the linesearch failed too often. % = 3 if the step lengths became too small. % PDitns is the number of Primal-Dual Barrier iterations required. % CGitns is the number of Conjugate-Gradient iterations required % if an iterative solver is used (LSQR). % time is the cpu time used. %---------------------------------------------------------------------- % PRIVATE FUNCTIONS: % pdxxxbounds % pdxxxdistrib % pdxxxlsqr % pdxxxlsqrmat % pdxxxmat % pdxxxmerit % pdxxxresid1 % pdxxxresid2 % pdxxxstep % % GLOBAL VARIABLES: % global pdDDD1 pdDDD2 pdDDD3 % % % NOTES: % The matrix A should be reasonably well scaled: norm(A,inf) =~ 1. % The vector b and objective phi(x) may be of any size, but ensure that % xsize and zsize are reasonably close to norm(x,inf) and norm(z,inf) % at the solution. % % The files defining Fname and Aname % must not be called Fname.m or Aname.m!! % % % AUTHOR: % Michael Saunders, Systems Optimization Laboratory (SOL), % Stanford University, Stanford, California, USA. % [email protected] % % CONTRIBUTORS: % Byunggyoo Kim, Samsung, Seoul, Korea. % [email protected] % % DEVELOPMENT: % 20 Jun 1997: Original version of pdsco.m derived from pdlp0.m. % 29 Sep 2002: Original version of pdco.m derived from pdsco.m. % Introduced D1, D2 in place of gamma*I, delta*I % and allowed for general bounds bl <= x <= bu. % 06 Oct 2002: Allowed for fixed variabes: bl(j) = bu(j) for any j. % 15 Oct 2002: Eliminated some work vectors (since m, n might be LARGE). % Modularized residuals, linesearch % 16 Oct 2002: pdxxx..., pdDDD... names rationalized. % pdAAA eliminated (global copy of A). % Aname is now used directly as an explicit A or a function. % NOTE: If Aname is a function, it now has an extra parameter. % 23 Oct 2002: Fname and Aname can now be function handles. % 01 Nov 2002: Bug fixed in feval in pdxxxmat. % 19 Apr 2003: Bug fixed in pdxxxbounds. % 07 Aug 2003: Let d1, d2 be scalars if input that way. % 10 Aug 2003: z isn't needed except at the end for output. % 10 Aug 2003: mu0 is now an absolute value -- the initial mu. % 13 Aug 2003: Access only z1(low) and z2(upp) everywhere. % stepxL, stepxU introduced to keep x within bounds. % (With poor starting points, dx may take x outside, % where phi(x) may not be defined. % Entropy once gave complex values for the gradient!) % 16 Sep 2003: Fname can now be a vector c, implying a linear obj c'*x. % 19 Sep 2003: Large system K4 dv = rhs implemented. % 23 Sep 2003: Options LSproblem and LSmethod replaced by Method. % 18 Nov 2003: stepxL, stepxU gave trouble on lptest (see 13 Aug 2003). % Disabled them for now. Nonlinear problems need good x0. % 19 Nov 2003: Bugs with x(fix) and z(fix). % In particular, x(fix) = bl(fix) throughout, so Objective % in iteration log is correct for LPs with explicit c vector. %----------------------------------------------------------------------- global pdDDD1 pdDDD2 pdDDD3 if 0 myprintf('\n --------------------------------------------------------') myprintf('\n pdco.m Version of 19 Nov 2003') myprintf('\n Primal-dual barrier method to minimize a convex function') myprintf('\n subject to linear constraints Ax + r = b, bl <= x <= bu') myprintf('\n --------------------------------------------------------\n') end m = length(b); n = length(bl); %--------------------------------------------------------------------- % Decode Fname. %--------------------------------------------------------------------- %%%!!! Revised 12/16/04 !!! % Fname cannot be a function handle operator = ischar(Fname); explicitF = ~operator; if explicitF myprintf('\n') mydisp('The objective is linear') else fname = Fname; myprintf('\n') mydisp(['The objective function is named ' fname]) end %--------------------------------------------------------------------- % Decode Aname. %--------------------------------------------------------------------- %%%!!! Revised 12/16/04 !!! % Aname cannot be a function handle operator = ischar(Aname) || isa(Aname, 'function_handle'); explicitA = ~operator; if explicitA % assume Aname is an explicit matrix A. nnzA = nnz(Aname); if issparse(Aname) myprintf('The matrix A is an explicit sparse matrix') else myprintf('The matrix A is an explicit dense matrix' ) end myprintf('\n\nm = %8g n = %8g nnz(A) =%9g', m,n,nnzA) else if ischar(Aname) mydisp(['The matrix A is an operator defined by ' Aname]) end myprintf('\nm = %8g n = %8g', m,n) end normb = norm(b ,inf); normx0 = norm(x0,inf); normy0 = norm(y0,inf); normz0 = norm(z0,inf); myprintf('\nmax |b | = %8g max |x0| = %8.1e', normb , normx0) myprintf( ' xsize = %8.1e', xsize) myprintf('\nmax |y0| = %8g max |z0| = %8.1e', normy0, normz0) myprintf( ' zsize = %8.1e', zsize) %--------------------------------------------------------------------- % Initialize. %--------------------------------------------------------------------- true = 1; false = 0; zn = zeros(n,1); nb = n + m; nkkt = nb; CGitns = 0; inform = 0; % 07 Aug 2003: No need for next lines. %if length(d1)==1, d1 = d1*ones(n,1); end % Allow scalar d1, d2 %if length(d2)==1, d2 = d2*ones(m,1); end % to mean d1*e, d2*e %--------------------------------------------------------------------- % Grab input options. %--------------------------------------------------------------------- maxitn = options.MaxIter; featol = options.FeaTol; opttol = options.OptTol; steptol = options.StepTol; stepSame = options.StepSame; % 1 means stepx==stepz x0min = options.x0min; z0min = options.z0min; mu0 = options.mu0; Method = options.Method; itnlim = options.LSQRMaxIter * min(m,n); atol1 = options.LSQRatol1; % Initial atol atol2 = options.LSQRatol2; % Smallest atol, unless atol1 is smaller conlim = options.LSQRconlim; wait = options.wait; %--------------------------------------------------------------------- % Set other parameters. %--------------------------------------------------------------------- kminor = 0; % 1 stops after each iteration eta = 1e-4; % Linesearch tolerance for "sufficient descent" maxf = 10; % Linesearch backtrack limit (function evaluations) maxfail = 1; % Linesearch failure limit (consecutive iterations) bigcenter = 1e+3; % mu is reduced if center < bigcenter thresh = 1e-8; % For sparse LU with Method=41 % Parameters for LSQR. atolmin = eps; % Smallest atol if linesearch back-tracks btol = 0; % Should be small (zero is ok) show = false; % Controls LSQR iteration log gamma = max(d1); delta = max(d2); myprintf('\n\nx0min = %8g featol = %8.1e', x0min, featol) myprintf( ' d1max = %8.1e', gamma) myprintf( '\nz0min = %8g opttol = %8.1e', z0min, opttol) myprintf( ' d2max = %8.1e', delta) myprintf( '\nmu0 = %8.1e steptol = %8g', mu0 , steptol) myprintf( ' bigcenter= %8g' , bigcenter) myprintf('\n\nLSQR:') myprintf('\natol1 = %8.1e atol2 = %8.1e', atol1 , atol2 ) myprintf( ' btol = %8.1e', btol ) myprintf('\nconlim = %8.1e itnlim = %8g' , conlim, itnlim) myprintf( ' show = %8g' , show ) % Method = 3; %%% Hardwire LSQR % Method = 41; %%% Hardwire K4 and sparse LU myprintf('\n\nMethod = %8g (1=chol 2=QR 3=LSQR 41=K4)', Method) if wait myprintf('\n\nReview parameters... then type "return"\n') keyboard end if eta < 0 myprintf('\n\nLinesearch disabled by eta < 0') end %--------------------------------------------------------------------- % All parameters have now been set. % Check for valid Method. %--------------------------------------------------------------------- time = cputime; if operator if Method==3 % relax else myprintf('\n\nWhen A is an operator, we have to use Method = 3') Method = 3; end end if Method== 1, solver = ' Chol'; head3 = ' Chol'; elseif Method== 2, solver = ' QR'; head3 = ' QR'; elseif Method== 3, solver = ' LSQR'; head3 = ' atol LSQR Inexact'; elseif Method==41, solver = ' LU'; head3 = ' L U res'; else error('Method must be 1, 2, 3, or 41') end %--------------------------------------------------------------------- % Categorize bounds and allow for fixed variables by modifying b. %--------------------------------------------------------------------- [low,upp,fix] = pdxxxbounds( bl,bu ); nfix = length(fix); if nfix > 0 x1 = zn; x1(fix) = bl(fix); r1 = pdxxxmat( Aname, 1, m, n, x1 ); b = b - r1; % At some stage, might want to look at normfix = norm(r1,inf); end %--------------------------------------------------------------------- % Scale the input data. % The scaled variables are % xbar = x/beta, % ybar = y/zeta, % zbar = z/zeta. % Define % theta = beta*zeta; % The scaled function is % phibar = ( 1 /theta) fbar(beta*xbar), % gradient = (beta /theta) grad, % Hessian = (beta2/theta) hess. %--------------------------------------------------------------------- beta = xsize; if beta==0, beta = 1; end % beta scales b, x. zeta = zsize; if zeta==0, zeta = 1; end % zeta scales y, z. theta = beta*zeta; % theta scales obj. % (theta could be anything, but theta = beta*zeta makes % scaled grad = grad/zeta = 1 approximately if zeta is chosen right.) bl(fix)= bl(fix)/beta; bu(fix)= bu(fix)/beta; bl(low)= bl(low)/beta; bu(upp)= bu(upp)/beta; d1 = d1*( beta/sqrt(theta) ); d2 = d2*( sqrt(theta)/beta ); beta2 = beta^2; b = b /beta; y0 = y0/zeta; x0 = x0/beta; z0 = z0/zeta; %--------------------------------------------------------------------- % Initialize vectors that are not fully used if bounds are missing. %--------------------------------------------------------------------- rL = zn; rU = zn; cL = zn; cU = zn; x1 = zn; x2 = zn; z1 = zn; z2 = zn; dx1 = zn; dx2 = zn; dz1 = zn; dz2 = zn; clear zn %--------------------------------------------------------------------- % Initialize x, y, z1, z2, objective, etc. % 10 Aug 2003: z isn't needed here -- just at end for output. %--------------------------------------------------------------------- x = x0; y = y0; x(fix) = bl(fix); x(low) = max( x(low) , bl(low)); x(upp) = min( x(upp) , bu(upp)); x1(low)= max( x(low) - bl(low), x0min ); x2(upp)= max(bu(upp) - x(upp), x0min ); z1(low)= max( z0(low) , z0min ); z2(upp)= max(-z0(upp) , z0min ); clear x0 y0 z0 %%%%%%%%%% Assume hess is diagonal for now. %%%%%%%%%%%%%%%%%% if explicitF obj = (Fname'*x)*beta; grad = Fname; hess = zeros(n,1); else [obj,grad,hess] = feval( Fname, (x*beta) ); end obj = obj /theta; % Scaled obj. grad = grad*(beta /theta) + (d1.^2).*x;% grad includes x regularization. H = hess*(beta2/theta) + (d1.^2); % H includes x regularization. %--------------------------------------------------------------------- % Compute primal and dual residuals: % r1 = b - A*x - d2.^2*y % r2 = grad - A'*y + (z2-z1) % rL = bl - x + x1 % rU = -bu + x + x2 %--------------------------------------------------------------------- [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( Aname,fix,low,upp, ... b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ); %--------------------------------------------------------------------- % Initialize mu and complementarity residuals: % cL = mu*e - X1*z1. % cU = mu*e - X2*z2. % % 25 Jan 2001: Now that b and obj are scaled (and hence x,y,z), % we should be able to use mufirst = mu0 (absolute value). % 0.1 worked poorly on StarTest1 with x0min = z0min = 0.1. % 29 Jan 2001: We might as well use mu0 = x0min * z0min; % so that most variables are centered after a warm start. % 29 Sep 2002: Use mufirst = mu0*(x0min * z0min), % regarding mu0 as a scaling of the initial center. % 07 Aug 2003: mulast is controlled by opttol. % mufirst should not be smaller. % 10 Aug 2003: Revert to mufirst = mu0 (absolute value). %--------------------------------------------------------------------- % mufirst = mu0*(x0min * z0min); mufirst = mu0; mulast = 0.1 * opttol; mufirst = max( mufirst, mulast ); mu = mufirst; [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ); fmerit = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ); % Initialize other things. PDitns = 0; converged = 0; atol = atol1; atol2 = max( atol2, atolmin ); atolmin = atol2; pdDDD2 = d2; % Global vector for diagonal matrix D2 % Iteration log. stepx = 0; stepz = 0; nf = 0; itncg = 0; nfail = 0; head1 = '\n\nItn mu stepx stepz Pinf Dinf'; head2 = ' Cinf Objective nf center'; myprintf([ head1 head2 head3 ]) regterm = norm(d1.*x)^2 + norm(d2.*y)^2; objreg = obj + 0.5*regterm; objtrue = objreg * theta; myprintf('\n%3g ', PDitns ) myprintf('%6.1f%6.1f' , log10(Pinf ), log10(Dinf)) myprintf('%6.1f%15.7e', log10(Cinf0), objtrue ) myprintf(' %8.1f' , center ) if Method==41 myprintf(' thresh=%7.1e', thresh) end if kminor myprintf('\n\nStart of first minor itn...\n') keyboard end %--------------------------------------------------------------------- % Main loop. %--------------------------------------------------------------------- while ~converged PDitns = PDitns + 1; % 31 Jan 2001: Set atol according to progress, a la Inexact Newton. % 07 Feb 2001: 0.1 not small enough for Satellite problem. Try 0.01. % 25 Apr 2001: 0.01 seems wasteful for Star problem. % Now that starting conditions are better, go back to 0.1. r3norm = max([Pinf Dinf Cinf]); atol = min([atol r3norm*0.1]); atol = max([atol atolmin ]); if Method<=3 %----------------------------------------------------------------- % Solve (*) for dy. %----------------------------------------------------------------- % Define a damped Newton iteration for solving f = 0, % keeping x1, x2, z1, z2 > 0. We eliminate dx1, dx2, dz1, dz2 % to obtain the system % % [-H2 A' ] [dx] = [w ], H2 = H + D1^2 + X1inv Z1 + X2inv Z2, % [ A D2^2] [dy] = [r1] w = r2 - X1inv(cL + Z1 rL) % + X2inv(cU + Z2 rU), % % which is equivalent to the least-squares problem % % min || [ D A']dy - [ D w ] ||, D = H2^{-1/2}. (*) % || [ D2 ] [D2inv r1] || %----------------------------------------------------------------- H(low) = H(low) + z1(low)./x1(low); H(upp) = H(upp) + z2(upp)./x2(upp); w = r2; w(low) = w(low) - (cL(low) + z1(low).*rL(low))./x1(low); w(upp) = w(upp) + (cU(upp) + z2(upp).*rU(upp))./x2(upp); H = 1./H; % H is now Hinv (NOTE!) H(fix) = 0; D = sqrt(H); pdDDD1 = D; rw = [explicitA Method m n 0 0 0]; % Passed to LSQR. if Method==1 % -------------------------------------------------------------- % Use chol to get dy % -------------------------------------------------------------- AD = Aname*sparse( 1:n, 1:n, D, n, n ); ADDA = AD*AD' + sparse( 1:m, 1:m, (d2.^2), m, m ); if PDitns==1, P = symamd(ADDA); end % Do ordering only once. [R,indef] = chol(ADDA(P,P)); if indef myprintf('\n\n chol says AD^2A'' is not pos def') myprintf('\n Use bigger d2, or set options.Method = 2 or 3') break end % dy = ADDA \ rhs; rhs = Aname*(H.*w) + r1; dy = R \ (R'\rhs(P)); dy(P) = dy; elseif Method==2 % -------------------------------------------------------------- % Use QR to get dy % -------------------------------------------------------------- DAt = sparse( 1:n, 1:n, D, n, n )*(Aname'); if PDitns==1, P = colamd(DAt); end % Do ordering only once. if length(d2)==1 D2 = d2*speye(m); else D2 = spdiags(d2,0,m,m); end DAt = [ DAt; D2 ]; rhs = [ D.*w; r1./d2 ]; % dy = DAt \ rhs; [rhs,R] = qr(DAt(:,P),rhs,0); dy = R \ rhs; dy(P) = dy; else % -------------------------------------------------------------- % Method=3. Use LSQR (iterative solve) to get dy % -------------------------------------------------------------- rhs = [ D.*w; r1./d2 ]; damp = 0; if explicitA % A is a sparse matrix. precon = true; if precon % Construct diagonal preconditioner for LSQR AD = Aname*sparse( 1:n, 1:n, D, n, n ); AD = AD.^2; wD = sum(AD,2); % Sum of sqrs of each row of AD. %(Sparse) wD = sqrt( full(wD) + (d2.^2) ); %(Dense) pdDDD3 = 1./wD; clear AD wD end else % A is an operator precon = false; end rw(7) = precon; info.atolmin = atolmin; info.r3norm = fmerit; % Must be the 2-norm here. [ dy, istop, itncg, outfo ] = ... pdxxxlsqr( nb,m,'pdxxxlsqrmat',Aname,rw,rhs,damp, ... atol,btol,conlim,itnlim,show,info ); if precon, dy = pdDDD3 .* dy; end if istop==3 | istop==7 % conlim or itnlim myprintf('\n LSQR stopped early: istop = %3d', istop) end atolold = outfo.atolold; atol = outfo.atolnew; r3ratio = outfo.r3ratio; CGitns = CGitns + itncg; end % computation of dy % dy is now known. Get dx, dx1, dx2, dz1, dz2. grad = pdxxxmat( Aname,2,m,n,dy ); % grad = A'dy grad(fix) = 0; % Is this needed? % grad is a work vector dx = H .* (grad - w); dx1(low) = - rL(low) + dx(low); dx2(upp) = - rU(upp) - dx(upp); dz1(low) = (cL(low) - z1(low).*dx1(low)) ./ x1(low); dz2(upp) = (cU(upp) - z2(upp).*dx2(upp)) ./ x2(upp); elseif Method==41 %----------------------------------------------------------------- % Solve the symmetric-structure 4 x 4 system K4 dv = t: % % ( X1 Z1 ) [dz1] = [tL], tL = cL + Z1 rL % ( X2 -Z2 ) [dz2] [tU] tU = cU + Z2 rU % ( I -I -H1 A' ) [dx ] [r2] % ( A D2^2 ) [dy ] [r1] %----------------------------------------------------------------- X1 = ones(n,1); X1(low) = x1(low); X2 = ones(n,1); X2(upp) = x2(upp); if length(d2)==1 D22 = d2^2*speye(m); else D22 = spdiags(d2.^2,0,m,m); end Onn = sparse(n,n); Omn = sparse(m,n); if PDitns==1 % First time through: Choose LU ordering from % lower-triangular part of dummy K4 I1 = sparse( low, low, ones(length(low),1), n, n ); I2 = sparse( upp, upp, ones(length(upp),1), n, n ); K4 =[speye(n) Onn Onn Omn' Onn speye(n) Onn Omn' I1 I2 speye(n) Omn' Omn Omn Aname speye(m)]; p = symamd(K4); % mydisp(' '); keyboard end K4 = [spdiags(X1,0,n,n) Onn spdiags(z1,0,n,n) Omn' Onn spdiags(X2,0,n,n) -spdiags(z2,0,n,n) Omn' I1 -I2 -spdiags(H,0,n,n) Aname' Omn Omn Aname D22]; tL = zeros(n,1); tL(low) = cL(low) + z1(low).*rL(low); tU = zeros(n,1); tU(upp) = cU(upp) + z2(upp).*rU(upp); rhs = [tL; tU; r2; r1]; % dv = K4 \ rhs; % BIG SYSTEM! [L,U,P] = lu( K4(p,p), thresh ); % P K4 = L U dv = U \ (L \ (P*rhs(p))); dv(p) = dv; resK4 = norm((K4*dv - rhs),inf) / norm(rhs,inf); dz1 = dv( 1: n); dz2 = dv( n+1:2*n); dx = dv(2*n+1:3*n); dy = dv(3*n+1:3*n+m); dx1(low) = - rL(low) + dx(low); dx2(upp) = - rU(upp) - dx(upp); end %------------------------------------------------------------------- % Find the maximum step. % 13 Aug 2003: We need stepxL, stepxU also to keep x feasible % so that nonlinear functions are defined. % 18 Nov 2003: But this gives stepx = 0 for lptest. (??) %-------------------------------------------------------------------- stepx1 = pdxxxstep( x1(low), dx1(low) ); stepx2 = pdxxxstep( x2(upp), dx2(upp) ); stepz1 = pdxxxstep( z1(low), dz1(low) ); stepz2 = pdxxxstep( z2(upp), dz2(upp) ); % stepxL = pdxxxstep( x(low), dx(low) ); % stepxU = pdxxxstep( x(upp), dx(upp) ); % stepx = min( [stepx1, stepx2, stepxL, stepxU] ); stepx = min( [stepx1, stepx2] ); stepz = min( [stepz1, stepz2] ); stepx = min( [steptol*stepx, 1] ); stepz = min( [steptol*stepz, 1] ); if stepSame % For NLPs, force same step stepx = min( stepx, stepz ); % (true Newton method) stepz = stepx; end %------------------------------------------------------------------- % Backtracking linesearch. %------------------------------------------------------------------- fail = true; nf = 0; while nf < maxf nf = nf + 1; x = x + stepx * dx; y = y + stepz * dy; x1(low) = x1(low) + stepx * dx1(low); x2(upp) = x2(upp) + stepx * dx2(upp); z1(low) = z1(low) + stepz * dz1(low); z2(upp) = z2(upp) + stepz * dz2(upp); if explicitF obj = (Fname'*x)*beta; grad = Fname; hess = zeros(n,1); else [obj,grad,hess] = feval( Fname, (x*beta) ); end obj = obj /theta; grad = grad*(beta /theta) + (d1.^2).*x; H = hess*(beta2/theta) + (d1.^2); [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( Aname,fix,low,upp, ... b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ); [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ); fmeritnew = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ); step = min( stepx, stepz ); if fmeritnew <= (1 - eta*step)*fmerit fail = false; break; end % Merit function didn't decrease. % Restore variables to previous values. % (This introduces a little error, but save lots of space.) x = x - stepx * dx; y = y - stepz * dy; x1(low) = x1(low) - stepx * dx1(low); x2(upp) = x2(upp) - stepx * dx2(upp); z1(low) = z1(low) - stepz * dz1(low); z2(upp) = z2(upp) - stepz * dz2(upp); % Back-track. % If it's the first time, % make stepx and stepz the same. if nf==1 & stepx~=stepz stepx = step; elseif nf < maxf stepx = stepx/2; end; stepz = stepx; end if fail myprintf('\n Linesearch failed (nf too big)'); nfail = nfail + 1; else nfail = 0; end %------------------------------------------------------------------- % Set convergence measures. %-------------------------------------------------------------------- regterm = norm(d1.*x)^2 + norm(d2.*y)^2; objreg = obj + 0.5*regterm; objtrue = objreg * theta; primalfeas = Pinf <= featol; dualfeas = Dinf <= featol; complementary = Cinf0 <= opttol; enough = PDitns>= 4; % Prevent premature termination. converged = primalfeas & dualfeas & complementary & enough; %------------------------------------------------------------------- % Iteration log. %------------------------------------------------------------------- str1 = sprintf('\n%3g%5.1f' , PDitns , log10(mu) ); str2 = sprintf('%6.3f%6.3f' , stepx , stepz ); if stepx < 0.001 | stepz < 0.001 str2 = sprintf('%6.1e%6.1e' , stepx , stepz ); end str3 = sprintf('%6.1f%6.1f' , log10(Pinf) , log10(Dinf)); str4 = sprintf('%6.1f%15.7e', log10(Cinf0), objtrue ); str5 = sprintf('%3g%8.1f' , nf , center ); if center > 99999 str5 = sprintf('%3g%8.1e' , nf , center ); end myprintf([str1 str2 str3 str4 str5]) if Method== 1 if PDitns==1, myprintf(' %8g', nnz(R)); end elseif Method== 2 if PDitns==1, myprintf(' %8g', nnz(R)); end elseif Method== 3 myprintf(' %5.1f%7g%7.3f', log10(atolold), itncg, r3ratio) elseif Method==41, resK4 = max( resK4, 1e-99 ); myprintf(' %8g%8g%6.1f', nnz(L),nnz(U),log10(resK4)) end %------------------------------------------------------------------- % Test for termination. %------------------------------------------------------------------- if kminor myprintf( '\nStart of next minor itn...\n') keyboard end if converged myprintf('\nConverged') elseif PDitns >= maxitn myprintf('\nToo many iterations') inform = 1; break elseif nfail >= maxfail myprintf('\nToo many linesearch failures') inform = 2; break elseif step <= 1e-10 myprintf('\nStep lengths too small') inform = 3; break else % Reduce mu, and reset certain residuals. stepmu = min( stepx , stepz ); stepmu = min( stepmu, steptol ); muold = mu; mu = mu - stepmu * mu; if center >= bigcenter, mu = muold; end % mutrad = mu0*(sum(Xz)/n); % 24 May 1998: Traditional value, but % mu = min(mu,mutrad ); % it seemed to decrease mu too much. mu = max(mu,mulast); % 13 Jun 1998: No need for smaller mu. [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ); fmerit = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ); % Reduce atol for LSQR (and SYMMLQ). % NOW DONE AT TOP OF LOOP. atolold = atol; % if atol > atol2 % atolfac = (mu/mufirst)^0.25; % atol = max( atol*atolfac, atol2 ); % end % atol = min( atol, mu ); % 22 Jan 2001: a la Inexact Newton. % atol = min( atol, 0.5*mu ); % 30 Jan 2001: A bit tighter % If the linesearch took more than one function (nf > 1), % we assume the search direction needed more accuracy % (though this may be true only for LPs). % 12 Jun 1998: Ask for more accuracy if nf > 2. % 24 Nov 2000: Also if the steps are small. % 30 Jan 2001: Small steps might be ok with warm start. % 06 Feb 2001: Not necessarily. Reinstated tests in next line. if nf > 2 | step <= 0.01 atol = atolold*0.1; end end end %--------------------------------------------------------------------- % End of main loop. %--------------------------------------------------------------------- % Print statistics. x(fix) = 0; % Exclude x(fix) temporarily from |x|. z = zeros(n,1); % Exclude z(fix) also. z(low) = z1(low); z(upp) = z(upp) - z2(upp); myprintf('\n\nmax |x| =%10.3f', norm(x,inf)) myprintf(' max |y| =%10.3f', norm(y,inf)) myprintf(' max |z| =%10.3f', norm(z,inf)) % excludes z(fix) myprintf(' scaled') bl(fix)= bl(fix)*beta; % Unscale bl, bu, x, y, z. bu(fix)= bu(fix)*beta; bl(low)= bl(low)*beta; bu(upp)= bu(upp)*beta; x = x*beta; y = y*zeta; z = z*zeta; myprintf( '\nmax |x| =%10.3f', norm(x,inf)) myprintf(' max |y| =%10.3f', norm(y,inf)) myprintf(' max |z| =%10.3f', norm(z,inf)) % excludes z(fix) myprintf(' unscaled') x(fix) = bl(fix); % Reinstate x(fix). % Reconstruct b. b = b *beta; if nfix > 0 x1 = zeros(n,1); x1(fix) = bl(fix); r1 = pdxxxmat( Aname, 1, m, n, x1 ); b = b + r1; myprintf('\nmax |x| and max |z| exclude fixed variables') end % Evaluate function at final point. % Reconstruct z. This finally defines z(fix). if explicitF obj = (Fname'*x); grad = Fname; hess = zeros(n,1); else [obj,grad,hess] = feval( Fname, x ); end z = grad - pdxxxmat( Aname,2,m,n,y ); % z = grad - A'y time = cputime - time; str1 = sprintf('\nPDitns =%10g', PDitns ); str2 = sprintf( 'itns =%10g', CGitns ); myprintf( [str1 ' ' solver str2] ) myprintf(' time =%10.1f', time); pdxxxdistrib( abs(x),abs(z) ); % Private function if wait keyboard end %----------------------------------------------------------------------- % End function pdco.m %----------------------------------------------------------------------- function [low,upp,fix] = pdxxxbounds( bl,bu ) % Categorize various types of bounds. % pos overlaps with low. % neg overlaps with upp. % two overlaps with low and upp. % fix and free are disjoint from all other sets. bigL = -9.9e+19; bigU = 9.9e+19; pos = find( bl==0 & bu>=bigU ); neg = find( bl<=bigL & bu==0 ); low = find( bl> bigL & bl< bu ); upp = find( bu< bigU & bl< bu ); two = find( bl> bigL & bu< bigU & bl< bu ); fix = find( bl==bu ); free = find( bl<=bigL & bu>=bigU ); myprintf('\n\nBounds:\n [0,inf] [-inf,0]') myprintf(' Finite bl Finite bu Two bnds Fixed Free') myprintf('\n %8g %9g %10g %10g %9g %7g %7g', ... length(pos), length(neg), length(low), ... length(upp), length(two), length(fix), length(free)) %----------------------------------------------------------------------- % End private function pdxxxbounds %----------------------------------------------------------------------- function pdxxxdistrib( x,z ) % pdxxxdistrib(x) or pdxxxdistrib(x,z) prints the % distribution of 1 or 2 vectors. % % 18 Dec 2000. First version with 2 vectors. two = nargin > 1; myprintf('\n\nDistribution of vector x') if two, myprintf(' z'); end x1 = 10^(floor(log10(max(x)+eps)) + 1); z1 = 10^(floor(log10(max(z)+eps)) + 1); x1 = max(x1,z1); kmax = 10; for k = 1:kmax x2 = x1; x1 = x1/10; if k==kmax, x1 = 0; end nx = length(find(x>=x1 & x<x2)); myprintf('\n[%7.3g,%7.3g )%10g', x1, x2, nx); if two nz = length(find(z>=x1 & z<x2)); myprintf('%10g', nz); end end mydisp(' ') %----------------------------------------------------------------------- % End private function pdxxxdistrib %----------------------------------------------------------------------- function [ x, istop, itn, outfo ] = ... pdxxxlsqr( m, n, aprodname, iw, rw, b, damp, ... atol, btol, conlim, itnlim, show, info ) % Special version of LSQR for use with pdco.m. % It continues with a reduced atol if a pdco-specific test isn't % satisfied with the input atol. % % LSQR solves Ax = b or min ||b - Ax||_2 if damp = 0, % or min || (b) - ( A )x || otherwise. % || (0) (damp I) ||2 % A is an m by n matrix defined by y = aprod( mode,m,n,x,iw,rw ), % where the parameter 'aprodname' refers to a function 'aprod' that % performs the matrix-vector operations. % If mode = 1, aprod must return y = Ax without altering x. % If mode = 2, aprod must return y = A'x without altering x. % WARNING: The file containing the function 'aprod' % must not be called aprodname.m !!!! %----------------------------------------------------------------------- % LSQR uses an iterative (conjugate-gradient-like) method. % For further information, see % 1. C. C. Paige and M. A. Saunders (1982a). % LSQR: An algorithm for sparse linear equations and sparse least squares, % ACM TOMS 8(1), 43-71. % 2. C. C. Paige and M. A. Saunders (1982b). % Algorithm 583. LSQR: Sparse linear equations and least squares problems, % ACM TOMS 8(2), 195-209. % 3. M. A. Saunders (1995). Solution of sparse rectangular systems using % LSQR and CRAIG, BIT 35, 588-604. % % Input parameters: % iw, rw are not used by lsqr, but are passed to aprod. % atol, btol are stopping tolerances. If both are 1.0e-9 (say), % the final residual norm should be accurate to about 9 digits. % (The final x will usually have fewer correct digits, % depending on cond(A) and the size of damp.) % conlim is also a stopping tolerance. lsqr terminates if an estimate % of cond(A) exceeds conlim. For compatible systems Ax = b, % conlim could be as large as 1.0e+12 (say). For least-squares % problems, conlim should be less than 1.0e+8. % Maximum precision can be obtained by setting % atol = btol = conlim = zero, but the number of iterations % may then be excessive. % itnlim is an explicit limit on iterations (for safety). % show = 1 gives an iteration log, % show = 0 suppresses output. % info is a structure special to pdco.m, used to test if % was small enough, and continuing if necessary with smaller atol. % % % Output parameters: % x is the final solution. % istop gives the reason for termination. % istop = 1 means x is an approximate solution to Ax = b. % = 2 means x approximately solves the least-squares problem. % rnorm = norm(r) if damp = 0, where r = b - Ax, % = sqrt( norm(r)**2 + damp**2 * norm(x)**2 ) otherwise. % xnorm = norm(x). % var estimates diag( inv(A'A) ). Omitted in this special version. % outfo is a structure special to pdco.m, returning information % about whether atol had to be reduced. % % Other potential output parameters: % anorm, acond, arnorm, xnorm % % 1990: Derived from Fortran 77 version of LSQR. % 22 May 1992: bbnorm was used incorrectly. Replaced by anorm. % 26 Oct 1992: More input and output parameters added. % 01 Sep 1994: Matrix-vector routine is now a parameter 'aprodname'. % Print log reformatted. % 14 Jun 1997: show added to allow printing or not. % 30 Jun 1997: var added as an optional output parameter. % It returns an estimate of diag( inv(A'A) ). % 12 Feb 2001: atol can now be reduced and iterations continued if necessary. % info, outfo are new problem-dependent parameters for such purposes. % In this version they are specialized for pdco.m. %----------------------------------------------------------------------- % Initialize. msg=['The exact solution is x = 0 ' 'Ax - b is small enough, given atol, btol ' 'The least-squares solution is good enough, given atol ' 'The estimate of cond(Abar) has exceeded conlim ' 'Ax - b is small enough for this machine ' 'The least-squares solution is good enough for this machine' 'Cond(Abar) seems to be too large for this machine ' 'The iteration limit has been reached ']; % wantvar= nargout >= 6; % if wantvar, var = zeros(n,1); end itn = 0; istop = 0; nstop = 0; ctol = 0; if conlim > 0, ctol = 1/conlim; end; anorm = 0; acond = 0; dampsq = damp^2; ddnorm = 0; res2 = 0; xnorm = 0; xxnorm = 0; z = 0; cs2 = -1; sn2 = 0; % Set up the first vectors u and v for the bidiagonalization. % These satisfy beta*u = b, alfa*v = A'u. u = b(1:m); x = zeros(n,1); alfa = 0; beta = norm( u ); if beta > 0 u = (1/beta) * u; v = feval( aprodname, 2, m, n, u, iw, rw ); alfa = norm( v ); end if alfa > 0 v = (1/alfa) * v; w = v; end arnorm = alfa * beta; if arnorm==0, mydisp(msg(1,:)); return, end rhobar = alfa; phibar = beta; bnorm = beta; rnorm = beta; head1 = ' Itn x(1) Function'; head2 = ' Compatible LS Norm A Cond A'; if show mydisp(' ') mydisp([head1 head2]) test1 = 1; test2 = alfa / beta; str1 = sprintf( '%6g %12.5e %10.3e', itn, x(1), rnorm ); str2 = sprintf( ' %8.1e %8.1e', test1, test2 ); mydisp([str1 str2]) end %---------------------------------------------------------------- % Main iteration loop. %---------------------------------------------------------------- while itn < itnlim itn = itn + 1; % Perform the next step of the bidiagonalization to obtain the % next beta, u, alfa, v. These satisfy the relations % beta*u = A*v - alfa*u, % alfa*v = A'*u - beta*v. u = feval( aprodname, 1, m, n, v, iw, rw ) - alfa*u; beta = norm( u ); if beta > 0 u = (1/beta) * u; anorm = norm([anorm alfa beta damp]); v = feval( aprodname, 2, m, n, u, iw, rw ) - beta*v; alfa = norm( v ); if alfa > 0, v = (1/alfa) * v; end end % Use a plane rotation to eliminate the damping parameter. % This alters the diagonal (rhobar) of the lower-bidiagonal matrix. rhobar1 = norm([rhobar damp]); cs1 = rhobar / rhobar1; sn1 = damp / rhobar1; psi = sn1 * phibar; phibar = cs1 * phibar; % Use a plane rotation to eliminate the subdiagonal element (beta) % of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix. rho = norm([rhobar1 beta]); cs = rhobar1/ rho; sn = beta / rho; theta = sn * alfa; rhobar = - cs * alfa; phi = cs * phibar; phibar = sn * phibar; tau = sn * phi; % Update x and w. t1 = phi /rho; t2 = - theta/rho; dk = (1/rho)*w; x = x + t1*w; w = v + t2*w; ddnorm = ddnorm + norm(dk)^2; % if wantvar, var = var + dk.*dk; end % Use a plane rotation on the right to eliminate the % super-diagonal element (theta) of the upper-bidiagonal matrix. % Then use the result to estimate norm(x). delta = sn2 * rho; gambar = - cs2 * rho; rhs = phi - delta * z; zbar = rhs / gambar; xnorm = sqrt(xxnorm + zbar^2); gamma = norm([gambar theta]); cs2 = gambar / gamma; sn2 = theta / gamma; z = rhs / gamma; xxnorm = xxnorm + z^2; % Test for convergence. % First, estimate the condition of the matrix Abar, % and the norms of rbar and Abar'rbar. acond = anorm * sqrt( ddnorm ); res1 = phibar^2; res2 = res2 + psi^2; rnorm = sqrt( res1 + res2 ); arnorm = alfa * abs( tau ); % Now use these norms to estimate certain other quantities, % some of which will be small near a solution. test1 = rnorm / bnorm; test2 = arnorm/( anorm * rnorm ); test3 = 1 / acond; t1 = test1 / (1 + anorm * xnorm / bnorm); rtol = btol + atol * anorm * xnorm / bnorm; % The following tests guard against extremely small values of % atol, btol or ctol. (The user may have set any or all of % the parameters atol, btol, conlim to 0.) % The effect is equivalent to the normal tests using % atol = eps, btol = eps, conlim = 1/eps. if itn >= itnlim, istop = 7; end if 1 + test3 <= 1, istop = 6; end if 1 + test2 <= 1, istop = 5; end if 1 + t1 <= 1, istop = 4; end % Allow for tolerances set by the user. if test3 <= ctol, istop = 3; end if test2 <= atol, istop = 2; end if test1 <= rtol, istop = 1; end %------------------------------------------------------------------- % SPECIAL TEST THAT DEPENDS ON pdco.m. % Aname in pdco is iw in lsqr. % dy is x % Other stuff is in info. % We allow for diagonal preconditioning in pdDDD3. %------------------------------------------------------------------- if istop > 0 r3new = arnorm; r3ratio = r3new / info.r3norm; atolold = atol; atolnew = atol; if atol > info.atolmin if r3ratio <= 0.1 % dy seems good % Relax elseif r3ratio <= 0.5 % Accept dy but make next one more accurate. atolnew = atolnew * 0.1; else % Recompute dy more accurately myprintf('\n ') myprintf(' ') myprintf(' %5.1f%7g%7.3f', log10(atolold), itn, r3ratio) atol = atol * 0.1; atolnew = atol; istop = 0; end end outfo.atolold = atolold; outfo.atolnew = atolnew; outfo.r3ratio = r3ratio; end %------------------------------------------------------------------- % See if it is time to print something. %------------------------------------------------------------------- prnt = 0; if n <= 40 , prnt = 1; end if itn <= 10 , prnt = 1; end if itn >= itnlim-10, prnt = 1; end if rem(itn,10)==0 , prnt = 1; end if test3 <= 2*ctol , prnt = 1; end if test2 <= 10*atol , prnt = 1; end if test1 <= 10*rtol , prnt = 1; end if istop ~= 0 , prnt = 1; end if prnt==1 if show str1 = sprintf( '%6g %12.5e %10.3e', itn, x(1), rnorm ); str2 = sprintf( ' %8.1e %8.1e', test1, test2 ); str3 = sprintf( ' %8.1e %8.1e', anorm, acond ); mydisp([str1 str2 str3]) end end if istop > 0, break, end end % End of iteration loop. % Print the stopping condition. if show mydisp(' ') mydisp('LSQR finished') mydisp(msg(istop+1,:)) mydisp(' ') str1 = sprintf( 'istop =%8g itn =%8g', istop, itn ); str2 = sprintf( 'anorm =%8.1e acond =%8.1e', anorm, acond ); str3 = sprintf( 'rnorm =%8.1e arnorm =%8.1e', rnorm, arnorm ); str4 = sprintf( 'bnorm =%8.1e xnorm =%8.1e', bnorm, xnorm ); mydisp([str1 ' ' str2]) mydisp([str3 ' ' str4]) mydisp(' ') end %----------------------------------------------------------------------- % End private function pdxxxlsqr %----------------------------------------------------------------------- function y = pdxxxlsqrmat( mode, mlsqr, nlsqr, x, Aname, rw ) % pdxxxlsqrmat is required by pdco.m (when it calls pdxxxlsqr.m). % It forms Mx or M'x for some operator M that depends on Method below. % % mlsqr, nlsqr are the dimensions of the LS problem that lsqr is solving. % % Aname is pdco's Aname. % % rw contains parameters [explicitA Method LSdamp] % from pdco.m to say which least-squares subproblem is being solved. % % global pdDDD1 pdDDD3 provides various diagonal matrices % for each value of Method. %----------------------------------------------------------------------- % 17 Mar 1998: First version to go with pdsco.m and lsqr.m. % 01 Apr 1998: global pdDDD1 pdDDD3 now used for efficiency. % 11 Feb 2000: Added diagonal preconditioning for LSQR, solving for dy. % 14 Dec 2000: Added diagonal preconditioning for LSQR, solving for dx. % 12 Feb 2001: Included in pdco.m as private function. % Specialized to allow only solving for dy. % 03 Oct 2002: First version to go with pdco.m with general H2 and D2. % 16 Oct 2002: Aname is now the user's Aname. %----------------------------------------------------------------------- global pdDDD1 pdDDD2 pdDDD3 Method = rw(2); precon = rw(7); if Method==3 % The operator M is [ D1 A'; D2 ]. m = nlsqr; n = mlsqr - m; if mode==1 if precon, x = pdDDD3.*x; end t = pdxxxmat( Aname, 2, m, n, x ); % Ask 'aprod' to form t = A'x. y = [ (pdDDD1.*t); (pdDDD2.*x) ]; else t = pdDDD1.*x(1:n); y = pdxxxmat( Aname, 1, m, n, t ); % Ask 'aprod' to form y = A t. y = y + pdDDD2.*x(n+1:mlsqr); if precon, y = pdDDD3.*y; end end else error('Error in pdxxxlsqrmat: Only Method = 3 is allowed at present') end %----------------------------------------------------------------------- % End private function pdxxxlsqrmat %----------------------------------------------------------------------- function y = pdxxxmat( Aname, mode, m, n, x ) % y = pdxxxmat( Aname, mode, m, n, x ) % computes y = Ax (mode=1) or A'x (mode=2) % for a matrix A defined by pdco's input parameter Aname. %----------------------------------------------------------------------- % 04 Apr 1998: Default A*x and A'*y function for pdco.m. % Assumed A was a global matrix pdAAA created by pdco.m % from the user's input parameter A. % 16 Oct 2002: pdAAA eliminated to save storage. % User's parameter Aname is now passed thru to here. % 01 Nov 2002: Bug: feval had one too many parameters. %----------------------------------------------------------------------- if (ischar(Aname) || isa(Aname, 'function_handle')) y = feval( Aname, mode, m, n, x ); else if mode==1, y = Aname*x; else y = Aname'*x; end end %----------------------------------------------------------------------- % End private function pdxxxmat %----------------------------------------------------------------------- function fmerit = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ) % Evaluate the merit function for Newton's method. % It is the 2-norm of the three sets of residuals. f = [norm(r1) norm(r2) norm(rL(low)) norm(rU(upp)) norm(cL(low)) norm(cU(upp))]; fmerit = norm(f); %----------------------------------------------------------------------- % End private function pdxxxmerit %----------------------------------------------------------------------- function [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( Aname,fix,low,upp, ... b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ) % Form residuals for the primal and dual equations. % rL, rU are output, but we input them as full vectors % initialized (permanently) with any relevant zeros. % 13 Aug 2003: z2-z1 coded more carefully % (although MATLAB was doing the right thing). % 19 Nov 2003: r2(fix) = 0 has to be done after r2 = grad - r2; m = length(b); n = length(bl); x(fix) = 0; r1 = pdxxxmat( Aname, 1, m, n, x ); r2 = pdxxxmat( Aname, 2, m, n, y ); r1 = b - r1 - (d2.^2).*y; r2 = grad - r2; % + (z2-z1); % grad includes (d1.^2)*x r2(fix) = 0; r2(upp) = r2(upp) + z2(upp); r2(low) = r2(low) - z1(low); rL(low) = ( bl(low) - x(low)) + x1(low); rU(upp) = (- bu(upp) + x(upp)) + x2(upp); Pinf = max([norm(r1,inf) norm(rL(low),inf) norm(rU(upp),inf)]); Dinf = norm(r2,inf); Pinf = max( Pinf, 1e-99 ); Dinf = max( Dinf, 1e-99 ); %----------------------------------------------------------------------- % End private function pdxxxresid1 %----------------------------------------------------------------------- function [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ) % Form residuals for the complementarity equations. % cL, cU are output, but we input them as full vectors % initialized (permanently) with any relevant zeros. % Cinf is the complementarity residual for X1 z1 = mu e, etc. % Cinf0 is the same for mu=0 (i.e., for the original problem). x1z1 = x1(low).*z1(low); x2z2 = x2(upp).*z2(upp); cL(low) = mu - x1z1; cU(upp) = mu - x2z2; maxXz = max( [max(x1z1) max(x2z2)] ); minXz = min( [min(x1z1) min(x2z2)] ); maxXz = max( maxXz, 1e-99 ); minXz = max( minXz, 1e-99 ); center = maxXz / minXz; Cinf = max([norm(cL(low),inf) norm(cU(upp),inf)]); Cinf0 = maxXz; %----------------------------------------------------------------------- % End private function pdxxxresid2 %----------------------------------------------------------------------- function step = pdxxxstep( x, dx ) % Assumes x > 0. % Finds the maximum step such that x + step*dx >= 0. step = 1e+20; blocking = find( dx < 0 ); if length( blocking ) > 0 steps = x(blocking) ./ (- dx(blocking)); step = min( steps ); end % % Copyright (c) 2006. Michael Saunders % % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function myprintf(s,a,b,c,d,e,f,g,h,i,j,k,l,m,n) function mydisp(s)
github
jacksky64/imageProcessing-master
perform_lifting_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_lifting_transform.m
5,259
utf_8
10f0ac03e72e5bb21bb572abfb21eceb
function x = perform_lifting_transform(x, Jmin, dir, options) % perform_lifting_transform - peform fast lifting transform % % y = perform_lifting_transform(x, Jmin, dir, options); % % Implement 1D and 2D symmetric wavelets with symmetric boundary treatements, using % a lifting implementation. % % h = options.filter gives the coefficients of the lifting filter. % You can use h='linear' or h='7-9' to select automatically biorthogonal % transform with 2 and 4 vanishing moments. % % You can set options.ti=1 to compute a translation invariant wavelet % transform. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; h = getoptions(options, 'filter', 'linear'); if isstr(h) % P/U/P/U/etc the last coefficient is scaling switch lower(h) case {'linear' '5-3'} h = [1/2 1/4 sqrt(2)]; case {'9-7' '7-9'} h = [1.586134342 -.05298011854 -.8829110762 .4435068522 1.149604398]; otherwise error('Unknown filter'); end end % detect dimensionality % d = getoptions(options,'ndims',-1); d = -1; if isfield(options, 'ndims') ndims = options.ndims; end if d<0 if size(x,1)==1 || size(x,2)==1 d = 1; else d = 2; end end ti = getoptions(options, 'ti', 0); % number of lifting steps n = size(x,1); m = (length(h)-1)/2; Jmax = log2(n)-1; jlist = Jmax:-1:Jmin; if dir==-1 jlist = jlist(end:-1:1); end if ti==0 % subsampled for j=jlist if d==1 x(1:2^(j+1),:) = lifting_step( x(1:2^(j+1),:), h, dir); else x(1:2^(j+1),1:2^(j+1)) = lifting_step( x(1:2^(j+1),1:2^(j+1)), h, dir); x(1:2^(j+1),1:2^(j+1)) = lifting_step( x(1:2^(j+1),1:2^(j+1))', h, dir)'; end end else % TI nJ = Jmax-Jmin+1; if dir==1 && d==1 x = repmat(x,[1 1 nJ+1]); elseif dir==1 && d==2 x = repmat(x,[1 1 3*nJ+1]); end for j=jlist dist = 2^(Jmax-j); if d==1 if dir==1 x(:,:,[1 j-Jmin+2]) = lifting_step_ti( x(:,:,1), h, dir, dist); else x(:,:,1) = lifting_step_ti( x(:,:,[1 j-Jmin+2]), h, dir, dist); end else dj = 3*(j-Jmin); if dir==1 x(:,:,[1 dj+2]) = lifting_step_ti( x(:,:,1), h, dir, dist); x(:,:,[1 dj+3]) = lifting_step_ti( x(:,:,1)', h, dir, dist); x(:,:,1) = x(:,:,1)'; x(:,:,dj+3) = x(:,:,dj+3)'; x(:,:,[dj+[2 4]]) = lifting_step_ti( x(:,:,dj+2)', h, dir, dist); x(:,:,dj+2) = x(:,:,dj+2)'; x(:,:,dj+4) = x(:,:,dj+4)'; else x(:,:,dj+2) = x(:,:,dj+2)'; x(:,:,dj+4) = x(:,:,dj+4)'; x(:,:,dj+2) = lifting_step_ti( x(:,:,[dj+[2 4]]), h, dir, dist)'; x(:,:,1) = x(:,:,1)'; x(:,:,dj+3) = x(:,:,dj+3)'; x(:,:,1) = lifting_step_ti( x(:,:,[1 dj+3]), h, dir, dist)'; x(:,:,1) = lifting_step_ti( x(:,:,[1 dj+2]), h, dir, dist); end end end if dir==-1 x = x(:,:,1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = lifting_step(x, h, dir) % number of lifting steps m = (length(h)-1)/2; if dir==1 % split d = x(2:2:end,:); x = x(1:2:end,:); for i=1:m d = d - h(2*i-1) * ( x + x([2:end end],:) ); x = x + h(2*i ) * ( d + d([1 1:end-1],:) ); end x = [x*h(end);d/h(end)]; else % retrieve detail coefs d = x(end/2+1:end,:)*h(end); x = x(1:end/2,:)/h(end); for i=m:-1:1 x = x - h(2*i ) * ( d + d([1 1:end-1],:) ); d = d + h(2*i-1) * ( x + x([2:end end],:) ); end % merge x1 = zeros(size(x,1)*2,size(x,2)); x1(1:2:end,:) = x; x1(2:2:end,:) = d; x = x1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = lifting_step_ti(x, h, dir, dist) % number of lifting steps m = (length(h)-1)/2; n = size(x,1); s1 = (1:n)+dist; s2 = (1:n)-dist; % boundary conditions s1(s1>n) = 2*n-s1(s1>n); s1(s1<1) = 2-s1(s1<1); s2(s2>n) = 2*n-s2(s2>n); s2(s2<1) = 2-s2(s2<1); % s1 = [2 1:n-1]; s2 = [2:n n-1]; if dir==1 % split d = x; for i=1:m d = d - h(2*i-1) * ( x(s1,:) + x(s2,:) ); x = x + h(2*i ) * ( d(s1,:) + d(s2,:) ); end x = cat(3,x*h(end),d/h(end)); else % retrieve detail coefs d = x(:,:,2)*h(end); x = x(:,:,1)/h(end); for i=m:-1:1 x = x - h(2*i ) * ( d(s1,:) + d(s2,:) ); d = d + h(2*i-1) * ( x(s1,:) + x(s2,:) ); end % merge x = (x+d)/2; end
github
jacksky64/imageProcessing-master
perform_wavelet_matching.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_wavelet_matching.m
5,655
utf_8
ce80d6388fa6824a0f269c8a29c4f023
function [M1,MW,MW1] = perform_wavelet_matching(M1,M,options) % perform_wavelet_matching - match multiscale histograms % % M1 = perform_wavelet_matching(M1,M,options); % % M1 is the image to synthesize. % M is the exemplar image. % % This function match the histogram of the image and the histogram % of each sub-band of a wavelet-like pyramid. % % To do texture synthesis, one should apply several time this function. % You can do it by setting the value of options.niter_synthesis. % This leads to the synthesis as described in % % Pyramid-Based Texture Analysis/Synthesis % D. Heeger, J. Bergen, % Siggraph 1995 % % The transform used for synthesis is options.synthesis_method, which can % be either 'steerable' 'wavelets-ortho' 'quincunx-ti' 'wavelets-ti' % 'wavelets-circle'. % % See also perform_wavelet_transform, perform_histogram_equalization % % Copyright (c) 2007 Gabriel Peyre options.null = 0; niter_synthesis = getoptions(options, 'niter_synthesis', 1); verb = getoptions(options, 'verb', 0); if not(isfield(options, 'color_mode')) options.color_mode = 'pca'; end if isfield(options, 'color_mode') && strcmp(options.color_mode, 'pca') && ~isfield(options, 'ColorP') && size(M,3)==3 [tmp,options.ColorP] = change_color_mode(M,+1,options); end rgb_postmatching = getoptions(options, 'rgb_postmatching', 0); if size(M,3)==3 options.niter_synthesis = 1; options.verb = 0; for iter=1:niter_synthesis if verb progressbar(iter, niter_synthesis); end % color images M = change_color_mode(M, +1,options); M1 = change_color_mode(M1,+1,options); for i=1:size(M,3) M1(:,:,i) = perform_wavelet_matching(M1(:,:,i),M(:,:,i), options); end M = change_color_mode(M, -1,options); M1 = change_color_mode(M1,-1,options); if rgb_postmatching for i=1:size(M,3) M1(:,:,i) = perform_histogram_equalization(M1(:,:,i),M(:,:,i)); end end end return; end if size(M,3)>1 for i=1:size(M,3) [M1(:,:,i),MW,MW1] = perform_wavelet_matching(M1(:,:,i),M(:,:,i),options); end return; end n = size(M,1); n1 = size(M1,1); synthesis_method = getoptions(options, 'synthesis_method', 'steerable'); m = 2^( ceil(log2(n)) ); m1 = 2^( ceil(log2(n1)) ); M = perform_image_extension(M,m); M1 = perform_image_extension(M1,m1); % precompute input MW = my_transform(M, m, +1, options); for iter=1:niter_synthesis if verb progressbar(iter, niter_synthesis); end % spatial equalization M1 = my_equalization(M1,M); % forward transforms MW1 = my_transform(M1, m1, +1, options); % wavelet domain equalization MW1 = my_equalization(MW1,MW); % backward transform M1 = my_transform(MW1, m1, -1, options); % spatial equalization M1 = my_equalization(M1,M); end M1 = M1(1:n1,1:n1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = my_equalization(M,M0) options.absval = 0; options.rows = 0; options.cols = 0; options.dim3 = 1; if iscell(M) for i=1:min(length(M),length(M0)) M{i} = my_equalization(M{i},M0{i}); end return; end if size(M,3)>1 for i=1:min(size(M,3),size(M0,3)) M(:,:,i) = my_equalization(M(:,:,i),M0(:,:,i)); end return; end M = perform_histogram_equalization(M,M0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = my_transform(M, n, dir, options) synthesis_method = getoptions(options, 'synthesis_method', 'steerable'); deltaJ = 5; if strcmp(synthesis_method, 'steerable') deltaJ = 3; end Jmax = log2(n)-1; Jmin = max(Jmax-deltaJ+1,3); % steerable options if not(isfield(options, 'nb_orientations')) options.nb_orientations = 4; end % wave ortho options options.wavelet_type = 'biorthogonal_swapped'; options.wavelet_vm = 4; switch synthesis_method case 'steerable' M = perform_steerable_transform(M, Jmin, options); case 'wavelets-ortho' if dir==-1 M = convert_wavelets2list(M, Jmin); end M = perform_wavelet_transform(M, Jmin, dir, options); if dir==1 M = convert_wavelets2list(M, Jmin); end case 'quincunx-ti' M = perform_quicunx_wavelet_transform_ti(M,Jmin,options); case 'wavelets-ti' options.wavelet_type = 'biorthogonal'; options.wavelet_vm = 3; M = perform_atrou_transform(M,Jmin,options); case 'wavelets-circle' if dir==-1 M = wavecircle2list(M,Jmin); end wavelet_modulo = getoptions(options, 'wavelet_modulo', 2*pi); M = perform_circle_haar_transform(M, Jmin, dir, wavelet_modulo, options); if dir==1 M = wavecircle2list(M,Jmin); end otherwise error('Unknown transform.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function MW = wavecircle2list(M,Jmin) if not(iscell(M)) n = size(M,1); Jmax = log2(n)-1; MW = {}; for j=Jmax:-1:Jmin MW{end+1} = M(end/2+1:end,:); M(end/2+1:end,:) = []; MW{end+1} = M(:,end/2+1:end); M(:,end/2+1:end) = []; end MW{end+1} = M; else n = size(M{1},1)*2; MW = M{end}; for i=length(M)-1:-1:1 if mod(i,2)==0 MW = [MW, M{i}]; else MW = [MW; M{i}]; end end end
github
jacksky64/imageProcessing-master
perform_quicunx_wavelet_transform_ti.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_quicunx_wavelet_transform_ti.m
3,927
utf_8
b81d7eec362739361304b4e77817f9d6
function M = perform_quicunx_wavelet_transform_ti(M,Jmin,options) % perform_quicunx_wavelet_transform_ti - translation invariant quincunx wavelets % % Forward % MW = perform_quicunx_wavelet_transform_ti(M,Jmin,options); % Backward % M = perform_quicunx_wavelet_transform_ti(MW,Jmin,options); % % The implementation is based on lifting. % % You can set the number of primal (analysis) and dual (synthesis) % vanishing moments % options.primal_vm (only 2/4 is supported). % options.dual_vm (only 2/4 is supported). % % You can set the boundary conditions to % options.bound = 'per' (periodic) % options.bound = 'sym' (symmetric) % % This transform (but not TI) is described in % Wavelet Families of Increasing Order in Arbitrary Dimensions % Jelena Kovacevic, Wim Sweldens % IEEE Trans. Image Proc, 2000. % % % Copyright (c) 2008 Gabriel Peyre options.null = 0; n = size(M,1); Jmax = log2(n)-1; % number of scales J = (Jmax-Jmin+1)*2; bound = getoptions(options, 'bound', 'per'); primal_vm = getoptions(options, 'primal_vm', 4); dual_vm = getoptions(options, 'dual_vm', 4); [dX,dY,w] = get_quincunx_filter(primal_vm); [dX1,dY1,w1] = get_quincunx_filter(dual_vm); dir = +1; if size(M,3)>1 dir=-1; end if dir==1 M0 = M; else M0 = M(:,:,end); end [Y,X] = meshgrid(1:n,1:n); jlist = 0:J-1; if dir==-1 jlist = jlist(end:-1:1); end W_ini = repmat( reshape(w,1,1,length(w)), n,n ); W1_ini = repmat( reshape(w1,1,1,length(w1)), n,n )/2; Xn = W_ini; Yn = W_ini; Xn1 = W_ini; Yn1 = W_ini; for j=jlist j1 = floor(j/2); dj = 2^j1; % rotate the filters [dXj,dYj] = rotate_quincunx(dX,dY, j); [dXj1,dYj1] = rotate_quincunx(dX1,dY1, j); % build set of indices for k=1:length(dX) Xn(:,:,k) = X+dXj(k); Yn(:,:,k) = Y+dYj(k); end for k=1:length(dX1) Xn1(:,:,k) = X+dXj1(k); Yn1(:,:,k) = Y+dYj1(k); end % boundary conditions W = W_ini; W1 = W1_ini; if strcmp(bound,'sym') I = find( Xn>n | Xn<1 |Yn>n | Yn<1 ); W(I) = 0; I = find( Xn1>n | Xn1<1 |Yn1>n | Yn1<1 ); W1(I) = 0; end Xn = mod(Xn-1,n)+1; Yn = mod(Yn-1,n)+1; Xn1 = mod(Xn1-1,n)+1; Yn1 = mod(Yn1-1,n)+1; % linear indexes In = Xn+(Yn-1)*n; In1 = Xn1+(Yn1-1)*n; if dir==1 % detail coefficients d = sum(W,3); d(d==0) = 1; % 0 should not happend anyway D = M0 - sum(M0(In).*W,3) ./ d; M(:,:,j+1) = D; % update coarse d = sum(W1,3); d(d==0) = 1; M0 = M0 + .5 * sum(D(In1).*W1,3) ./ d; else %% NB : since we are in TI mode, needs to be carefull and mix 2 %% retrieves % retrieve coarse D = M(:,:,j+1); d = sum(W1,3); d(d==0) = 1; M0a = M0 - .5 * sum(D(In1).*W1,3) ./ d; % other retrieve d = sum(W,3); d(d==0) = 1; M0 = M(:,:,j+1) + sum(M0a(In).*W,3) ./ d; M0 = (M0+M0a)/2; end end if dir==1 % record coarse M(:,:,end+1) = M0; else M = M0; end %%%%%%%%%%%%%%%%% function [dX,dY,w] = get_quincunx_filter(vm) switch vm case 2 dX = [0 0 1 -1]; dY = [1 -1 0 0]; w = [1 1 1 1]; case 4 dX = [0 0 1 -1 2 2 -2 -2 1 -1 1 -1]; dY = [1 -1 0 0 1 -1 1 -1 2 2 -2 -2]; w = [10 10 10 10 -1 -1 -1 -1 -1 -1 -1 -1]; case 6 dX = [0 0 1 -1 2 2 -2 -2 1 -1 1 -1 0 0 3 -3 ... 3 3 -3 -3 2 2 -2 -2]; dY = [1 -1 0 0 1 -1 1 -1 2 2 -2 -2 3 -3 0 0 ... 2 -2 2 -2 3 -3 3 -3]; w = [174*ones(1,4) -27*ones(1,8) 2*ones(1,4) 3*ones(1,8)]; otherwise error('Only 2/4 vanishing moments are supported.'); end w = w/sum(w); %%%%%%%%%%%%%%%%% function [dXj,dYj] = rotate_quincunx(dX,dY, j) A = [1 1;-1 1]; A = A^j; dXj = A(1,1)*dX + A(1,2)*dY; dYj = A(2,1)*dX + A(2,2)*dY;
github
jacksky64/imageProcessing-master
perform_curvelet_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_curvelet_transform.m
33,957
utf_8
63811c4cedefc4b0a5ede5a2b3269c54
function y = perform_curvelet_transform(x,options) % perform_curvelet_transform - a wrapper to curvlab % % M = perform_curvelet_transform(MW,options); % % Forward and backward curvelet transform % You must provide options.n (width of the image). % % Visit www.curvelab.org for the full code. options.null = 0; finest = getoptions(options, 'finest',1) ; % =1(curv) =2(wav) nbscales = getoptions(options, 'nbscales', 5); % log2(size(M,1))-2; nbangles_coarse = getoptions(options, 'nbangles_coarse', 16); is_real = getoptions(options, 'is_real', 0); n = getoptions(options, 'n', 1,1); if not(iscell(x)) % fwd transform y = fdct_wrapping(x, is_real, finest, nbscales, nbangles_coarse); else y = real( ifdct_wrapping(x, is_real, n,n ) ); end %% function C = fdct_wrapping(x, is_real, finest, nbscales, nbangles_coarse) % fdct_wrapping.m - Fast Discrete Curvelet Transform via wedge wrapping - Version 1.0 % % Inputs % x M-by-N matrix % % Optional Inputs % is_real Type of the transform % 0: complex-valued curvelets % 1: real-valued curvelets % [default set to 0] % finest Chooses one of two possibilities for the coefficients at the % finest level: % 1: curvelets % 2: wavelets % [default set to 2] % nbscales number of scales including the coarsest wavelet level % [default set to ceil(log2(min(M,N)) - 3)] % nbangles_coarse % number of angles at the 2nd coarsest level, minimum 8, % must be a multiple of 4. [default set to 16] % % Outputs % C Cell array of curvelet coefficients. % C{j}{l}(k1,k2) is the coefficient at % - scale j: integer, from finest to coarsest scale, % - angle l: integer, starts at the top-left corner and % increases clockwise, % - position k1,k2: both integers, size varies with j % and l. % If is_real is 1, there are two types of curvelets, % 'cosine' and 'sine'. For a given scale j, the 'cosine' % coefficients are stored in the first two quadrants (low % values of l), the 'sine' coefficients in the last two % quadrants (high values of l). % % See also ifdct_wrapping.m, fdct_wrapping_param.m % % By Laurent Demanet, 2004 X = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x))); [N1,N2] = size(X); if nargin < 2, is_real = 0; end; if nargin < 3, finest = 2; end; if nargin < 4, nbscales = ceil(log2(min(N1,N2)) - 3); end; if nargin < 5, nbangles_coarse = 16; end; % Initialization: data structure nbangles = [1, nbangles_coarse .* 2.^(ceil((nbscales-(nbscales:-1:2))/2))]; if finest == 2, nbangles(nbscales) = 1; end; C = cell(1,nbscales); for j = 1:nbscales C{j} = cell(1,nbangles(j)); end; % Loop: pyramidal scale decomposition M1 = N1/3; M2 = N2/3; if finest == 1, % Initialization: smooth periodic extension of high frequencies bigN1 = 2*floor(2*M1)+1; bigN2 = 2*floor(2*M2)+1; equiv_index_1 = 1+mod(floor(N1/2)-floor(2*M1)+(1:bigN1)-1,N1); equiv_index_2 = 1+mod(floor(N2/2)-floor(2*M2)+(1:bigN2)-1,N2); X = X(equiv_index_1,equiv_index_2); % Invariant: equiv_index_1(floor(2*M1)+1) == (N1 + 2 - mod(N1,2))/2 % is the center in frequency. Same for M2, N2. window_length_1 = floor(2*M1) - floor(M1) - 1 - (mod(N1,3)==0); window_length_2 = floor(2*M2) - floor(M2) - 1 - (mod(N2,3)==0); % Invariant: floor(M1) + floor(2*M1) == N1 - (mod(M1,3)~=0) % Same for M2, N2. coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; if mod(N1,3)==0, lowpass_1 = [0, lowpass_1, 0]; end; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; if mod(N2,3)==0, lowpass_2 = [0, lowpass_2, 0]; end; lowpass = lowpass_1'*lowpass_2; Xlow = X .* lowpass; scales = nbscales:-1:2; else M1 = M1/2; M2 = M2/2; window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass = lowpass_1'*lowpass_2; hipass = sqrt(1 - lowpass.^2); Xlow_index_1 = ((-floor(2*M1)):floor(2*M1)) + ceil((N1+1)/2); Xlow_index_2 = ((-floor(2*M2)):floor(2*M2)) + ceil((N2+1)/2); Xlow = X(Xlow_index_1, Xlow_index_2) .* lowpass; Xhi = X; Xhi(Xlow_index_1, Xlow_index_2) = Xhi(Xlow_index_1, Xlow_index_2) .* hipass; C{nbscales}{1} = fftshift(ifft2(ifftshift(Xhi)))*sqrt(prod(size(Xhi))); if is_real, C{nbscales}{1} = real(C{nbscales}{1}); end; scales = (nbscales-1):-1:2; end; for j = scales, M1 = M1/2; M2 = M2/2; window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass = lowpass_1'*lowpass_2; hipass = sqrt(1 - lowpass.^2); Xhi = Xlow; % size is 2*floor(4*M1)+1 - by - 2*floor(4*M2)+1 Xlow_index_1 = ((-floor(2*M1)):floor(2*M1)) + floor(4*M1) + 1; Xlow_index_2 = ((-floor(2*M2)):floor(2*M2)) + floor(4*M2) + 1; Xlow = Xlow(Xlow_index_1, Xlow_index_2); Xhi(Xlow_index_1, Xlow_index_2) = Xlow .* hipass; Xlow = Xlow .* lowpass; % size is 2*floor(2*M1)+1 - by - 2*floor(2*M2)+1 % Loop: angular decomposition l = 0; nbquadrants = 2 + 2*(~is_real); nbangles_perquad = nbangles(j)/4; for quadrant = 1:nbquadrants M_horiz = M2 * (mod(quadrant,2)==1) + M1 * (mod(quadrant,2)==0); M_vert = M1 * (mod(quadrant,2)==1) + M2 * (mod(quadrant,2)==0); if mod(nbangles_perquad,2), wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right(end:-1:1)]; else wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right((end-1):-1:1)]; end; wedge_endpoints = wedge_ticks(2:2:(end-1)); % integers wedge_midpoints = (wedge_endpoints(1:(end-1)) + wedge_endpoints(2:end))/2; % integers or half-integers % Left corner wedge l = l+1; first_wedge_endpoint_vert = round(2*floor(4*M_vert)/(2*nbangles_perquad) + 1); length_corner_wedge = floor(4*M_vert) - floor(M_vert) + ceil(first_wedge_endpoint_vert/4); Y_corner = 1:length_corner_wedge; [XX,YY] = meshgrid(1:(2*floor(4*M_horiz)+1),Y_corner); width_wedge = wedge_endpoints(2) + wedge_endpoints(1) - 1; slope_wedge = (floor(4*M_horiz) + 1 - wedge_endpoints(1))/floor(4*M_vert); left_line = round(2 - wedge_endpoints(1) + slope_wedge*(Y_corner - 1)); % integers [wrapped_data, wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); % Coordinates of the top-left corner of the wedge wrapped % around the origin. Some subtleties when the wedge is % even-sized because of the forthcoming 90 degrees rotation for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+1+abs(cols-1))); new_row = 1 + mod(row - first_row, length_corner_wedge); wrapped_data(new_row,:) = Xhi(row,admissible_cols) .* (cols > 0); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; slope_wedge_right = (floor(4*M_horiz)+1 - wedge_midpoints(1))/floor(4*M_vert); mid_line_right = wedge_midpoints(1) + slope_wedge_right*(wrapped_YY - 1); % not integers in general coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(2) - wedge_endpoints(1)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); C2 = 1/(1/(2*(floor(4*M_horiz))/(wedge_endpoints(1) - 1) - 1) + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = C2 / (2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) + 1; coord_corner = C1 + C2 * ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))) ./ ... (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))); wl_left = fdct_wrapping_window(coord_corner); [wl_right,wr_right] = fdct_wrapping_window(coord_right); wrapped_data = wrapped_data .* (wl_left .* wr_right); switch is_real case 0 wrapped_data = rot90(wrapped_data,-(quadrant-1)); C{j}{l} = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); case 1 wrapped_data = rot90(wrapped_data,-(quadrant-1)); x = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); C{j}{l} = sqrt(2)*real(x); C{j}{l+nbangles(j)/2} = sqrt(2)*imag(x); end; % Regular wedges length_wedge = floor(4*M_vert) - floor(M_vert); Y = 1:length_wedge; first_row = floor(4*M_vert)+2-ceil((length_wedge+1)/2)+... mod(length_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); for subl = 2:(nbangles_perquad-1); l = l+1; width_wedge = wedge_endpoints(subl+1) - wedge_endpoints(subl-1) + 1; slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(subl))/floor(4*M_vert); left_line = round(wedge_endpoints(subl-1) + slope_wedge*(Y - 1)); [wrapped_data, wrapped_XX, wrapped_YY] = deal(zeros(length_wedge,width_wedge)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_wedge); wrapped_data(new_row,:) = Xhi(row,cols); wrapped_XX(new_row,:) = XX(row,cols); wrapped_YY(new_row,:) = YY(row,cols); end; slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(subl-1))/floor(4*M_vert); mid_line_left = wedge_midpoints(subl-1) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl) - wedge_endpoints(subl-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert)+1 - wrapped_YY); slope_wedge_right = ((floor(4*M_horiz)+1) - wedge_midpoints(subl))/floor(4*M_vert); mid_line_right = wedge_midpoints(subl) + slope_wedge_right*(wrapped_YY - 1); coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl+1) - wedge_endpoints(subl)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_right); wrapped_data = wrapped_data .* (wl_left .* wr_right); switch is_real case 0 wrapped_data = rot90(wrapped_data,-(quadrant-1)); C{j}{l} = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); case 1 wrapped_data = rot90(wrapped_data,-(quadrant-1)); x = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); C{j}{l} = sqrt(2)*real(x); C{j}{l+nbangles(j)/2} = sqrt(2)*imag(x); end; end; % Right corner wedge l = l+1; width_wedge = 4*floor(4*M_horiz) + 3 - wedge_endpoints(end) - wedge_endpoints(end-1); slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(end))/floor(4*M_vert); left_line = round(wedge_endpoints(end-1) + slope_wedge*(Y_corner - 1)); [wrapped_data, wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+2*floor(4*M_horiz)+1-abs(cols-(2*floor(4*M_horiz)+1)))); new_row = 1 + mod(row - first_row, length_corner_wedge); wrapped_data(new_row,:) = Xhi(row,admissible_cols) .* (cols <= (2*floor(4*M_horiz)+1)); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(end))/floor(4*M_vert); mid_line_left = wedge_midpoints(end) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(end) - wedge_endpoints(end-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert) + 1 - wrapped_YY); C2 = -1/(2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1 + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = -C2 * (2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY - 1)/floor(4*M_vert)) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY - 1)/floor(4*M_vert)) - 1; coord_corner = C1 + C2 * (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))) ./ ... ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_corner); wrapped_data = wrapped_data .* (wl_left .* wr_right); switch is_real case 0 wrapped_data = rot90(wrapped_data,-(quadrant-1)); C{j}{l} = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); case 1 wrapped_data = rot90(wrapped_data,-(quadrant-1)); x = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); C{j}{l} = sqrt(2)*real(x); C{j}{l+nbangles(j)/2} = sqrt(2)*imag(x); end; if quadrant < nbquadrants, Xhi = rot90(Xhi); end; end; end; % Coarsest wavelet level C{1}{1} = fftshift(ifft2(ifftshift(Xlow)))*sqrt(prod(size(Xlow))); if is_real == 1, C{1}{1} = real(C{1}{1}); end; function x = ifdct_wrapping(C, is_real, M, N) % ifdct_wrapping.m - Inverse Fast Discrete Curvelet Transform via wedge wrapping - Version 1.0 % This is in fact the adjoint, also the pseudo-inverse % % Inputs % C Cell array containing curvelet coefficients (see % description in fdct_wrapping.m) % is_real As used in fdct_wrapping.m % M, N Size of the image to be recovered (not necessary if finest % = 2) % % Outputs % x M-by-N matrix % % See also fdct_wrapping.m % % By Laurent Demanet, 2004 % Initialization nbscales = length(C); nbangles_coarse = length(C{2}); nbangles = [1, nbangles_coarse .* 2.^(ceil((nbscales-(nbscales:-1:2))/2))]; if length(C{end}) == 1, finest = 2; else finest = 1; end; if finest == 2, nbangles(nbscales) = 1; end; if nargin < 2, is_real = 0; end; if nargin < 4, if finest == 1, error('Syntax: IFCT_wrapping(C,M,N) where the matrix to be recovered is M-by-N'); end; [N1,N2] = size(C{end}{1}); else N1 = M; N2 = N; end; M1 = N1/3; M2 = N2/3; if finest == 1; bigN1 = 2*floor(2*M1)+1; bigN2 = 2*floor(2*M2)+1; X = zeros(bigN1,bigN2); % Initialization: preparing the lowpass filter at finest scale window_length_1 = floor(2*M1) - floor(M1) - 1 - (mod(N1,3)==0); window_length_2 = floor(2*M2) - floor(M2) - 1 - (mod(N2,3)==0); coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; if mod(N1,3)==0, lowpass_1 = [0, lowpass_1, 0]; end; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; if mod(N2,3)==0, lowpass_2 = [0, lowpass_2, 0]; end; lowpass = lowpass_1'*lowpass_2; scales = nbscales:-1:2; else M1 = M1/2; M2 = M2/2; bigN1 = 2*floor(2*M1)+1; bigN2 = 2*floor(2*M2)+1; X = zeros(bigN1,bigN2); window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass = lowpass_1'*lowpass_2; hipass_finest = sqrt(1 - lowpass.^2); scales = (nbscales-1):-1:2; end; % Loop: pyramidal reconstruction Xj_topleft_1 = 1; Xj_topleft_2 = 1; for j = scales, M1 = M1/2; M2 = M2/2; window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass_next = lowpass_1'*lowpass_2; hipass = sqrt(1 - lowpass_next.^2); Xj = zeros(2*floor(4*M1)+1,2*floor(4*M2)+1); % Loop: angles l = 0; nbquadrants = 2 + 2*(~is_real); nbangles_perquad = nbangles(j)/4; for quadrant = 1:nbquadrants M_horiz = M2 * (mod(quadrant,2)==1) + M1 * (mod(quadrant,2)==0); M_vert = M1 * (mod(quadrant,2)==1) + M2 * (mod(quadrant,2)==0); if mod(nbangles_perquad,2), wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right(end:-1:1)]; else wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right((end-1):-1:1)]; end; wedge_endpoints = wedge_ticks(2:2:(end-1)); % integers wedge_midpoints = (wedge_endpoints(1:(end-1)) + wedge_endpoints(2:end))/2; % Left corner wedge l = l+1; first_wedge_endpoint_vert = round(2*floor(4*M_vert)/(2*nbangles_perquad) + 1); length_corner_wedge = floor(4*M_vert) - floor(M_vert) + ceil(first_wedge_endpoint_vert/4); Y_corner = 1:length_corner_wedge; [XX,YY] = meshgrid(1:(2*floor(4*M_horiz)+1),Y_corner); width_wedge = wedge_endpoints(2) + wedge_endpoints(1) - 1; slope_wedge = (floor(4*M_horiz) + 1 - wedge_endpoints(1))/floor(4*M_vert); left_line = round(2 - wedge_endpoints(1) + slope_wedge*(Y_corner - 1)); [wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_corner_wedge); admissible_cols = round(1/2*(cols+1+abs(cols-1))); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; slope_wedge_right = (floor(4*M_horiz)+1 - wedge_midpoints(1))/floor(4*M_vert); mid_line_right = wedge_midpoints(1) + slope_wedge_right*(wrapped_YY - 1); % not integers % in general coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(2) - wedge_endpoints(1)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); C2 = 1/(1/(2*(floor(4*M_horiz))/(wedge_endpoints(1) - 1) - 1) + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = C2 / (2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) + 1; coord_corner = C1 + C2 * ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))) ./ ... (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))); wl_left = fdct_wrapping_window(coord_corner); [wl_right,wr_right] = fdct_wrapping_window(coord_right); switch is_real case 0 wrapped_data = fftshift(fft2(ifftshift(C{j}{l})))/sqrt(prod(size(C{j}{l}))); wrapped_data = rot90(wrapped_data,(quadrant-1)); case 1 x = C{j}{l} + sqrt(-1)*C{j}{l+nbangles(j)/2}; wrapped_data = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x)))/sqrt(2); wrapped_data = rot90(wrapped_data,(quadrant-1)); end; wrapped_data = wrapped_data .* (wl_left .* wr_right); % Unwrapping data for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+1+abs(cols-1))); new_row = 1 + mod(row - first_row, length_corner_wedge); Xj(row,admissible_cols) = Xj(row,admissible_cols) + wrapped_data(new_row,:); % We use the following property: in an assignment % A(B) = C where B and C are vectors, if % some value x repeats in B, then the % last occurrence of x is the one % corresponding to the eventual assignment. end; % Regular wedges length_wedge = floor(4*M_vert) - floor(M_vert); Y = 1:length_wedge; first_row = floor(4*M_vert)+2-ceil((length_wedge+1)/2)+... mod(length_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); for subl = 2:(nbangles_perquad-1); l = l+1; width_wedge = wedge_endpoints(subl+1) - wedge_endpoints(subl-1) + 1; slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(subl))/floor(4*M_vert); left_line = round(wedge_endpoints(subl-1) + slope_wedge*(Y - 1)); [wrapped_XX, wrapped_YY] = deal(zeros(length_wedge,width_wedge)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_wedge); wrapped_XX(new_row,:) = XX(row,cols); wrapped_YY(new_row,:) = YY(row,cols); end; slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(subl-1))/floor(4*M_vert); mid_line_left = wedge_midpoints(subl-1) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl) - wedge_endpoints(subl-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert)+1 - wrapped_YY); slope_wedge_right = ((floor(4*M_horiz)+1) - wedge_midpoints(subl))/floor(4*M_vert); mid_line_right = wedge_midpoints(subl) + slope_wedge_right*(wrapped_YY - 1); coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl+1) - wedge_endpoints(subl)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_right); switch is_real case 0 wrapped_data = fftshift(fft2(ifftshift(C{j}{l})))/sqrt(prod(size(C{j}{l}))); wrapped_data = rot90(wrapped_data,(quadrant-1)); case 1 x = C{j}{l} + sqrt(-1)*C{j}{l+nbangles(j)/2}; wrapped_data = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x)))/sqrt(2); wrapped_data = rot90(wrapped_data,(quadrant-1)); end; wrapped_data = wrapped_data .* (wl_left .* wr_right); % Unwrapping data for row = Y cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_wedge); Xj(row,cols) = Xj(row,cols) + wrapped_data(new_row,:); end; end; % for subl % Right corner wedge l = l+1; width_wedge = 4*floor(4*M_horiz) + 3 - wedge_endpoints(end) - wedge_endpoints(end-1); slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(end))/floor(4*M_vert); left_line = round(wedge_endpoints(end-1) + slope_wedge*(Y_corner - 1)); [wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+2*floor(4*M_horiz)+1-abs(cols-(2*floor(4*M_horiz)+1)))); new_row = 1 + mod(row - first_row, length_corner_wedge); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; YY = Y_corner'*ones(1,width_wedge); slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(end))/floor(4*M_vert); mid_line_left = wedge_midpoints(end) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(end) - wedge_endpoints(end-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert)+1 - wrapped_YY); C2 = -1/(2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1 + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = -C2 * (2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY-1)/floor(4*M_vert)) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY-1)/floor(4*M_vert)) - 1; coord_corner = C1 + C2 * (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))) ./ ... ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_corner); switch is_real case 0 wrapped_data = fftshift(fft2(ifftshift(C{j}{l})))/sqrt(prod(size(C{j}{l}))); wrapped_data = rot90(wrapped_data,(quadrant-1)); case 1 x = C{j}{l} + sqrt(-1)*C{j}{l+nbangles(j)/2}; wrapped_data = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x)))/sqrt(2); wrapped_data = rot90(wrapped_data,(quadrant-1)); end; wrapped_data = wrapped_data .* (wl_left .* wr_right); % Unwrapping data for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+2*floor(4*M_horiz)+1-abs(cols-(2*floor(4*M_horiz)+1)))); new_row = 1 + mod(row - first_row, length_corner_wedge); Xj(row,fliplr(admissible_cols)) = Xj(row,fliplr(admissible_cols)) + wrapped_data(new_row,end:-1:1); % We use the following property: in an assignment % A(B) = C where B and C are vectors, if % some value x repeats in B, then the % last occurrence of x is the one % corresponding to the eventual assignment. end; Xj = rot90(Xj); end; % for quadrant Xj = Xj .* lowpass; Xj_index1 = ((-floor(2*M1)):floor(2*M1)) + floor(4*M1) + 1; Xj_index2 = ((-floor(2*M2)):floor(2*M2)) + floor(4*M2) + 1; Xj(Xj_index1, Xj_index2) = Xj(Xj_index1, Xj_index2) .* hipass; loc_1 = Xj_topleft_1 + (0:(2*floor(4*M1))); loc_2 = Xj_topleft_2 + (0:(2*floor(4*M2))); X(loc_1,loc_2) = X(loc_1,loc_2) + Xj; % Preparing for loop reentry or exit Xj_topleft_1 = Xj_topleft_1 + floor(4*M1) - floor(2*M1); Xj_topleft_2 = Xj_topleft_2 + floor(4*M2) - floor(2*M2); lowpass = lowpass_next; end; % for j if is_real Y = X; X = rot90(X,2); X = X + conj(Y); end % Coarsest wavelet level M1 = M1/2; M2 = M2/2; Xj = fftshift(fft2(ifftshift(C{1}{1})))/sqrt(prod(size(C{1}{1}))); loc_1 = Xj_topleft_1 + (0:(2*floor(4*M1))); loc_2 = Xj_topleft_2 + (0:(2*floor(4*M2))); X(loc_1,loc_2) = X(loc_1,loc_2) + Xj .* lowpass; % Finest level M1 = N1/3; M2 = N2/3; if finest == 1, % Folding back onto N1-by-N2 matrix shift_1 = floor(2*M1)-floor(N1/2); shift_2 = floor(2*M2)-floor(N2/2); Y = X(:,(1:N2)+shift_2); Y(:,N2-shift_2+(1:shift_2)) = Y(:,N2-shift_2+(1:shift_2)) + X(:,1:shift_2); Y(:,1:shift_2) = Y(:,1:shift_2) + X(:,N2+shift_2+(1:shift_2)); X = Y((1:N1)+shift_1,:); X(N1-shift_1+(1:shift_1),:) = X(N1-shift_1+(1:shift_1),:) + Y(1:shift_1,:); X(1:shift_1,:) = X(1:shift_1,:) + Y(N1+shift_1+(1:shift_1),:); else % Extension to a N1-by-N2 matrix Y = fftshift(fft2(ifftshift(C{nbscales}{1})))/sqrt(prod(size(C{nbscales}{1}))); X_topleft_1 = ceil((N1+1)/2) - floor(M1); X_topleft_2 = ceil((N2+1)/2) - floor(M2); loc_1 = X_topleft_1 + (0:(2*floor(M1))); loc_2 = X_topleft_2 + (0:(2*floor(M2))); Y(loc_1,loc_2) = Y(loc_1,loc_2) .* hipass_finest + X; X = Y; end; x = fftshift(ifft2(ifftshift(X)))*sqrt(prod(size(X))); if is_real, x = real(x); end; function [wl,wr] = fdct_wrapping_window(x) % fdct_wrapping_window.m - Creates the two halves of a C^inf compactly supported window % % Inputs % x vector or matrix of abscissae, the relevant ones from 0 to 1 % % Outputs % wl,wr vector or matrix containing samples of the left, resp. right % half of the window % % Used at least in fdct_wrapping.m and ifdct_wrapping.m % % By Laurent Demanet, 2004 wr = zeros(size(x)); wl = zeros(size(x)); x(abs(x) < 2^-52) = 0; wr((x > 0) & (x < 1)) = exp(1-1./(1-exp(1-1./x((x > 0) & (x < 1))))); wr(x <= 0) = 1; wl((x > 0) & (x < 1)) = exp(1-1./(1-exp(1-1./(1-x((x > 0) & (x < 1)))))); wl(x >= 1) = 1; normalization = sqrt(wl.^2 + wr.^2); wr = wr ./ normalization; wl = wl ./ normalization;
github
jacksky64/imageProcessing-master
perform_atrou_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_atrou_transform.m
23,527
utf_8
4cde4e609d6784e61c27a06afbba626b
function y = perform_atrou_transform(x,Jmin,options) % perform_atrou_transform - compute the "a trou" wavelet transform, % % This function is depreciated, use perform_wavelet_transform instead. % % Copyright (c) 2006 Gabriel Peyre % w_list = perform_atrou_transform(M,Jmin,options); % % 'w_list' is a cell array, w_list{ 3*(j-Jmin)+q } % is an imagette of same size as M containing the full transform % at scale j and quadrant q. % The lowest resolution image is in w_list{3*(Jmax-Jmin)+4} = % w_list{end}. % % The ordering is : % { H_j,V_j,D_j, H_{j-1},V_{j-1},D_{j-1}, ..., H_1,V_1,D_1, C } % % 'options' is an (optional) structure that may contains: % options.wavelet_type: kind of wavelet used (see perform_wavelet_transform) % options.wavelet_vm: the number of vanishing moments of the wavelet transform. % % When possible, this code tries to use the following fast mex implementation: % * Rice Wavelet Toolbox : for Daubechies filters, ie when options.wavelet_type='daubechies'. % Only the Windows binaries are included, please refer to % http://www-dsp.rice.edu/software/rwt.shtml % to install on other OS. % % You can set decomp_type = 'quad' or 'tri' for the 7-9 transform. % % Copyright (c) 2006 Gabriel Peyre % warning('This function is depreciated, use perform_wavelet_transform instead.'); % add let it wave a trou transform to the path % path('./cwpt2/',path); % add Rice Wavelet Toolbox transform to the path % path('./rwt/',path); if nargin<3 options.null = 0; end wavelet_type = getoptions(options, 'wavelet_type', 'biorthogonal'); wavelet_vm = getoptions(options, 'wavelet_vm', 3); bound = getoptions(options, 'bound', 'sym'); % first check for LIW interface, since it's the best code if exist('cwpt2_interface') && ~strcmp(wavelet_type, 'daubechies') && ~strcmp(wavelet_type, 'symmlet') if strcmp(wavelet_type, 'biorthogonal') || strcmp(wavelet_type, 'biorthogonal_swapped') if wavelet_vm~=3 warning('Works only for 7-9 wavelets.'); end wavelet_types = '7-9'; elseif strcmp(wavelet_type, 'battle') if wavelet_vm~=3 warning('Works only for cubic spline wavelets.'); end wavelet_types = 'spline'; else error('Unknown transform.'); end if isfield(options, 'decomp_type') decomp_type = options.decomp_type; else decomp_type = 'quad'; % either 'quad' or 'tri' end if ~iscell(x) dirs = 'forward'; J = log2(size(x,1)) - Jmin; M = x; else dirs = 'inverse'; if strcmp(decomp_type, 'tri') x = { x{1:end-3}, x{end}, x{end-2:end-1} }; else x = { x{1:end-4}, x{end}, x{end-3:end-1} }; end J = 0; M = zeros(size(x{1},1), size(x{1},2), J); for i=1:length(x) M(:,:,i) = x{i}; end end y = cwpt2_interface(M, dirs, wavelet_types, decomp_type, J); if ~iscell(x) M = y; y = {}; for i=1:size(M,3) y{i} = M(:,:,i); end % put low frequency at the end if strcmp(decomp_type, 'tri') y = { y{1:end-3}, y{end-1:end}, y{end-2} }; else y = { y{1:end-4}, y{end-2:end}, y{end-3} }; end end return; end % precompute filters if strcmp(wavelet_type, 'daubechies') fname = 'Daubechies'; if wavelet_vm==1 fname = 'Haar'; end qmf = MakeONFilter(fname,wavelet_vm*2); % in Wavelab, 2nd argument is VM*2 for Daubechies... no comment ... elseif strcmp(wavelet_type, 'symmlet') qmf = MakeONFilter('Symmlet',wavelet_vm); elseif strcmp(wavelet_type, 'battle') qmf = MakeONFilter('Battle',wavelet_vm-1); elseif strcmp(wavelet_type, 'biorthogonal') [qmf,dqmf] = MakeBSFilter( 'CDF', [wavelet_vm,wavelet_vm] ); elseif strcmp(wavelet_type, 'biorthogonal_swapped') [dqmf,qmf] = MakeBSFilter( 'CDF', [wavelet_vm,wavelet_vm] ); else error('Unknown transform.'); end g = qmf; % for phi gg = g; if exist('mirdwt') & exist('mrdwt') & strcmp(wavelet_type, 'daubechies') %%% USING RWT %%% if ~iscell(x) n = length(x); Jmax = log2(n)-1; %%% FORWARD TRANSFORM %%% L = Jmax-Jmin+1; [yl,yh,L] = mrdwt(x,g,L); for j=Jmax:-1:Jmin for q=1:3 s = 3*(Jmax-j)+q-1; M = yh(:,s*n+1:(s+1)*n); y{ 3*(j-Jmin)+q } = M; end end y{ 3*(Jmax-Jmin)+4 } = yl; % reverse the order of the frequencies y = { y{end-1:-1:1} y{end} }; else n = length(x{1}); Jmax = log2(n)-1; % reverse the order of the frequencies x = { x{end-1:-1:1} x{end} }; %%% BACKWARD TRANSFORM %%% L = Jmax-Jmin+1; if L ~= (length(x)-1)/3 warning('Jmin is not correct.'); L = (length(x)-1)/3; end yl = x{ 3*(Jmax-Jmin)+4 }; yh = zeros( n,3*L*n ); for j=Jmax:-1:Jmin for q=1:3 s = 3*(Jmax-j)+q-1; yh(:,s*n+1:(s+1)*n) = x{ 3*(j-Jmin)+q }; end end [y,L] = mirdwt(yl,yh,gg,L); end return; end %% error('This code is depreciated.'); % for reconstruction h = mirror_filter(g); % for psi hh = g; if exist('dqmf') gg = dqmf; hh = mirror_filter(gg); end n = length(x); Jmax = log2(n)-1; if iscell(x) error('reverse transform is not yet implemented.'); end M = x; Mj = M; % image at current scale (low pass filtered) nh = length(h); ng = length(g); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute the transform wb = waitbar(0,'Computing a trou transform.'); for j=Jmax:-1:Jmin waitbar((Jmax-j)/(Jmax-Jmin),wb); % 1st put some zeros in between g and h nz = 2^(Jmax-j); % space between coefs hj = zeros(nz*(nh-1)+1, 1); gj = zeros(nz*(ng-1)+1, 1); hj( 1 + (0:nh-1)*nz ) = h; gj( 1 + (0:ng-1)*nz ) = g; %%%% filter on X %%%% Mjh = zeros(n,n); Mjg = zeros(n,n); for i=1:n Mjh(:,i) = perform_convolution( Mj(:,i), hj, bound ); Mjg(:,i) = perform_convolution( Mj(:,i), gj, bound ); end %%%% filter on Y %%%% Mjhh = zeros(n,n); Mjhg = zeros(n,n); Mjgh = zeros(n,n); Mjgg = zeros(n,n); for i=1:n Mjhh(i,:) = perform_convolution( Mjh(i,:)', hj, bound )'; Mjhg(i,:) = perform_convolution( Mjh(i,:)', gj, bound )'; Mjgh(i,:) = perform_convolution( Mjg(i,:)', hj, bound )'; Mjgg(i,:) = perform_convolution( Mjg(i,:)', gj, bound )'; end Mj = Mjgg; w_list{ 3*(j-Jmin)+1 } = Mjgh; w_list{ 3*(j-Jmin)+2 } = Mjhg; w_list{ 3*(j-Jmin)+3 } = Mjhh; end close(wb); w_list{ 3*(Jmax-Jmin)+4 } = Mj; y = w_list; function f = MakeONFilter(Type,Par) % MakeONFilter -- Generate Orthonormal QMF Filter for Wavelet Transform % Usage % qmf = MakeONFilter(Type,Par) % Inputs % Type string, 'Haar', 'Beylkin', 'Coiflet', 'Daubechies', % 'Symmlet', 'Vaidyanathan','Battle' % Par integer, it is a parameter related to the support and vanishing % moments of the wavelets, explained below for each wavelet. % % Outputs % qmf quadrature mirror filter % % Description % The Haar filter (which could be considered a Daubechies-2) was the % first wavelet, though not called as such, and is discontinuous. % % The Beylkin filter places roots for the frequency response function % close to the Nyquist frequency on the real axis. % % The Coiflet filters are designed to give both the mother and father % wavelets 2*Par vanishing moments; here Par may be one of 1,2,3,4 or 5. % % The Daubechies filters are minimal phase filters that generate wavelets % which have a minimal support for a given number of vanishing moments. % They are indexed by their length, Par, which may be one of % 4,6,8,10,12,14,16,18 or 20. The number of vanishing moments is par/2. % % Symmlets are also wavelets within a minimum size support for a given % number of vanishing moments, but they are as symmetrical as possible, % as opposed to the Daubechies filters which are highly asymmetrical. % They are indexed by Par, which specifies the number of vanishing % moments and is equal to half the size of the support. It ranges % from 4 to 10. % % The Vaidyanathan filter gives an exact reconstruction, but does not % satisfy any moment condition. The filter has been optimized for % speech coding. % % The Battle-Lemarie filter generate spline orthogonal wavelet basis. % The parameter Par gives the degree of the spline. The number of % vanishing moments is Par+1. % % See Also % FWT_PO, IWT_PO, FWT2_PO, IWT2_PO, WPAnalysis % % References % The books by Daubechies and Wickerhauser. % if strcmp(Type,'Haar'), f = [1 1] ./ sqrt(2); end if strcmp(Type,'Beylkin'), f = [ .099305765374 .424215360813 .699825214057 ... .449718251149 -.110927598348 -.264497231446 ... .026900308804 .155538731877 -.017520746267 ... -.088543630623 .019679866044 .042916387274 ... -.017460408696 -.014365807969 .010040411845 ... .001484234782 -.002736031626 .000640485329 ]; end if strcmp(Type,'Coiflet'), if Par==1, f = [ .038580777748 -.126969125396 -.077161555496 ... .607491641386 .745687558934 .226584265197 ]; end if Par==2, f = [ .016387336463 -.041464936782 -.067372554722 ... .386110066823 .812723635450 .417005184424 ... -.076488599078 -.059434418646 .023680171947 ... .005611434819 -.001823208871 -.000720549445 ]; end if Par==3, f = [ -.003793512864 .007782596426 .023452696142 ... -.065771911281 -.061123390003 .405176902410 ... .793777222626 .428483476378 -.071799821619 ... -.082301927106 .034555027573 .015880544864 ... -.009007976137 -.002574517688 .001117518771 ... .000466216960 -.000070983303 -.000034599773 ]; end if Par==4, f = [ .000892313668 -.001629492013 -.007346166328 ... .016068943964 .026682300156 -.081266699680 ... -.056077313316 .415308407030 .782238930920 ... .434386056491 -.066627474263 -.096220442034 ... .039334427123 .025082261845 -.015211731527 ... -.005658286686 .003751436157 .001266561929 ... -.000589020757 -.000259974552 .000062339034 ... .000031229876 -.000003259680 -.000001784985 ]; end if Par==5, f = [ -.000212080863 .000358589677 .002178236305 ... -.004159358782 -.010131117538 .023408156762 ... .028168029062 -.091920010549 -.052043163216 ... .421566206729 .774289603740 .437991626228 ... -.062035963906 -.105574208706 .041289208741 ... .032683574283 -.019761779012 -.009164231153 ... .006764185419 .002433373209 -.001662863769 ... -.000638131296 .000302259520 .000140541149 ... -.000041340484 -.000021315014 .000003734597 ... .000002063806 -.000000167408 -.000000095158 ]; end end if strcmp(Type,'Daubechies'), if Par==4, f = [ .482962913145 .836516303738 ... .224143868042 -.129409522551 ]; end if Par==6, f = [ .332670552950 .806891509311 ... .459877502118 -.135011020010 ... -.085441273882 .035226291882 ]; end if Par==8, f = [ .230377813309 .714846570553 ... .630880767930 -.027983769417 ... -.187034811719 .030841381836 ... .032883011667 -.010597401785 ]; end if Par==10, f = [ .160102397974 .603829269797 .724308528438 ... .138428145901 -.242294887066 -.032244869585 ... .077571493840 -.006241490213 -.012580751999 ... .003335725285 ]; end if Par==12, f = [ .111540743350 .494623890398 .751133908021 ... .315250351709 -.226264693965 -.129766867567 ... .097501605587 .027522865530 -.031582039317 ... .000553842201 .004777257511 -.001077301085 ]; end if Par==14, f = [ .077852054085 .396539319482 .729132090846 ... .469782287405 -.143906003929 -.224036184994 ... .071309219267 .080612609151 -.038029936935 ... -.016574541631 .012550998556 .000429577973 ... -.001801640704 .000353713800 ]; end if Par==16, f = [ .054415842243 .312871590914 .675630736297 ... .585354683654 -.015829105256 -.284015542962 ... .000472484574 .128747426620 -.017369301002 ... -.044088253931 .013981027917 .008746094047 ... -.004870352993 -.000391740373 .000675449406 ... -.000117476784 ]; end if Par==18, f = [ .038077947364 .243834674613 .604823123690 ... .657288078051 .133197385825 -.293273783279 ... -.096840783223 .148540749338 .030725681479 ... -.067632829061 .000250947115 .022361662124 ... -.004723204758 -.004281503682 .001847646883 ... .000230385764 -.000251963189 .000039347320 ]; end if Par==20, f = [ .026670057901 .188176800078 .527201188932 ... .688459039454 .281172343661 -.249846424327 ... -.195946274377 .127369340336 .093057364604 ... -.071394147166 -.029457536822 .033212674059 ... .003606553567 -.010733175483 .001395351747 ... .001992405295 -.000685856695 -.000116466855 ... .000093588670 -.000013264203 ]; end end if strcmp(Type,'Symmlet'), if Par==4, f = [ -.107148901418 -.041910965125 .703739068656 ... 1.136658243408 .421234534204 -.140317624179 ... -.017824701442 .045570345896 ]; end if Par==5, f = [ .038654795955 .041746864422 -.055344186117 ... .281990696854 1.023052966894 .896581648380 ... .023478923136 -.247951362613 -.029842499869 ... .027632152958 ]; end if Par==6, f = [ .021784700327 .004936612372 -.166863215412 ... -.068323121587 .694457972958 1.113892783926 ... .477904371333 -.102724969862 -.029783751299 ... .063250562660 .002499922093 -.011031867509 ]; end if Par==7, f = [ .003792658534 -.001481225915 -.017870431651 ... .043155452582 .096014767936 -.070078291222 ... .024665659489 .758162601964 1.085782709814 ... .408183939725 -.198056706807 -.152463871896 ... .005671342686 .014521394762 ]; end if Par==8, f = [ .002672793393 -.000428394300 -.021145686528 ... .005386388754 .069490465911 -.038493521263 ... -.073462508761 .515398670374 1.099106630537 ... .680745347190 -.086653615406 -.202648655286 ... .010758611751 .044823623042 -.000766690896 ... -.004783458512 ]; end if Par==9, f = [ .001512487309 -.000669141509 -.014515578553 ... .012528896242 .087791251554 -.025786445930 ... -.270893783503 .049882830959 .873048407349 ... 1.015259790832 .337658923602 -.077172161097 ... .000825140929 .042744433602 -.016303351226 ... -.018769396836 .000876502539 .001981193736 ]; end if Par==10, f = [ .001089170447 .000135245020 -.012220642630 ... -.002072363923 .064950924579 .016418869426 ... -.225558972234 -.100240215031 .667071338154 ... 1.088251530500 .542813011213 -.050256540092 ... -.045240772218 .070703567550 .008152816799 ... -.028786231926 -.001137535314 .006495728375 ... .000080661204 -.000649589896 ]; end end if strcmp(Type,'Vaidyanathan'), f = [ -.000062906118 .000343631905 -.000453956620 ... -.000944897136 .002843834547 .000708137504 ... -.008839103409 .003153847056 .019687215010 ... -.014853448005 -.035470398607 .038742619293 ... .055892523691 -.077709750902 -.083928884366 ... .131971661417 .135084227129 -.194450471766 ... -.263494802488 .201612161775 .635601059872 ... .572797793211 .250184129505 .045799334111 ]; end if strcmp(Type,'Battle'), if Par == 1, g = [0.578163 0.280931 -0.0488618 -0.0367309 ... 0.012003 0.00706442 -0.00274588 -0.00155701 ... 0.000652922 0.000361781 -0.000158601 -0.0000867523 ]; end if Par == 3, g = [0.541736 0.30683 -0.035498 -0.0778079 ... 0.0226846 0.0297468 -0.0121455 -0.0127154 ... 0.00614143 0.00579932 -0.00307863 -0.00274529 ... 0.00154624 0.00133086 -0.000780468 -0.00065562 ... 0.000395946 0.000326749 -0.000201818 -0.000164264 ... 0.000103307 ]; end if Par == 5, g = [0.528374 0.312869 -0.0261771 -0.0914068 ... 0.0208414 0.0433544 -0.0148537 -0.0229951 ... 0.00990635 0.0128754 -0.00639886 -0.00746848 ... 0.00407882 0.00444002 -0.00258816 -0.00268646 ... 0.00164132 0.00164659 -0.00104207 -0.00101912 ... 0.000662836 0.000635563 -0.000422485 -0.000398759 ... 0.000269842 0.000251419 -0.000172685 -0.000159168 ... 0.000110709 0.000101113 ]; end l = length(g); f = zeros(1,2*l-1); f(l:2*l-1) = g; f(1:l-1) = reverse(g(2:l)); end f = f ./ norm(f); % % Copyright (c) 1993-5. Jonathan Buckheit and David Donoho % function [qmf,dqmf] = MakeBSFilter(Type,Par) % MakeBSFilter -- Generate Biorthonormal QMF Filter Pairs % Usage % [qmf,dqmf] = MakeBSFilter(Type,Par) % Inputs % Type string, one of: % 'Triangle' % 'Interpolating' 'Deslauriers' (the two are same) % 'Average-Interpolating' % 'CDF' (spline biorthogonal filters in Daubechies's book) % 'Villasenor' (Villasenor's 5 best biorthogonal filters) % Par integer list, e.g. if Type ='Deslauriers', Par=3 specifies % Deslauriers-Dubuc filter, polynomial degree 3 % Outputs % qmf quadrature mirror filter (odd length, symmetric) % dqmf dual quadrature mirror filter (odd length, symmetric) % % See Also % FWT_PBS, IWT_PBS, FWT2_PBS, IWT2_PBS % % References % I. Daubechies, "Ten Lectures on Wavelets." % % G. Deslauriers and S. Dubuc, "Symmetric Iterative Interpolating Processes." % % D. Donoho, "Smooth Wavelet Decompositions with Blocky Coefficient Kernels." % % J. Villasenor, B. Belzer and J. Liao, "Wavelet Filter Evaluation for % Image Compression." % if nargin < 2, Par = 0; end sqr2 = sqrt(2); if strcmp(Type,'Triangle'), qmf = [0 1 0]; dqmf = [.5 1 .5]; elseif strcmp(Type,'Interpolating') | strcmp(Type,'Deslauriers'), qmf = [0 1 0]; dqmf = MakeDDFilter(Par)'; dqmf = dqmf(1:(length(dqmf)-1)); elseif strcmp(Type,'Average-Interpolating'), qmf = [0 .5 .5] ; dqmf = [0 ; MakeAIFilter(Par)]'; elseif strcmp(Type,'CDF'), if Par(1)==1, dqmf = [0 .5 .5] .* sqr2; if Par(2) == 1, qmf = [0 .5 .5] .* sqr2; elseif Par(2) == 3, qmf = [0 -1 1 8 8 1 -1] .* sqr2 / 16; elseif Par(2) == 5, qmf = [0 3 -3 -22 22 128 128 22 -22 -3 3].*sqr2/256; end elseif Par(1)==2, dqmf = [.25 .5 .25] .* sqr2; if Par(2)==2, qmf = [-.125 .25 .75 .25 -.125] .* sqr2; elseif Par(2)==4, qmf = [3 -6 -16 38 90 38 -16 -6 3] .* (sqr2/128); elseif Par(2)==6, qmf = [-5 10 34 -78 -123 324 700 324 -123 -78 34 10 -5 ] .* (sqr2/1024); elseif Par(2)==8, qmf = [35 -70 -300 670 1228 -3126 -3796 10718 22050 ... 10718 -3796 -3126 1228 670 -300 -70 35 ] .* (sqr2/32768); end elseif Par(1)==3, dqmf = [0 .125 .375 .375 .125] .* sqr2; if Par(2) == 1, qmf = [0 -.25 .75 .75 -.25] .* sqr2; elseif Par(2) == 3, qmf = [0 3 -9 -7 45 45 -7 -9 3] .* sqr2/64; elseif Par(2) == 5, qmf = [0 -5 15 19 -97 -26 350 350 -26 -97 19 15 -5] .* sqr2/512; elseif Par(2) == 7, qmf = [0 35 -105 -195 865 363 -3489 -307 11025 11025 -307 -3489 363 865 -195 -105 35] .* sqr2/16384; elseif Par(2) == 9, qmf = [0 -63 189 469 -1911 -1308 9188 1140 -29676 190 87318 87318 190 -29676 ... 1140 9188 -1308 -1911 469 189 -63] .* sqr2/131072; end elseif Par(1)==4, dqmf = [.026748757411 -.016864118443 -.078223266529 .266864118443 .602949018236 ... .266864118443 -.078223266529 -.016864118443 .026748757411] .*sqr2; if Par(2) == 4, qmf = [0 -.045635881557 -.028771763114 .295635881557 .557543526229 ... .295635881557 -.028771763114 -.045635881557 0] .*sqr2; end end elseif strcmp(Type,'Villasenor'), if Par == 1, % The "7-9 filters" qmf = [.037828455506995 -.023849465019380 -.11062440441842 .37740285561265]; qmf = [qmf .85269867900940 reverse(qmf)]; dqmf = [-.064538882628938 -.040689417609558 .41809227322221]; dqmf = [dqmf .78848561640566 reverse(dqmf)]; elseif Par == 2, qmf = [-.008473 .003759 .047282 -.033475 -.068867 .383269 .767245 .383269 -.068867... -.033475 .047282 .003759 -.008473]; dqmf = [0.014182 0.006292 -0.108737 -0.069163 0.448109 .832848 .448109 -.069163 -.108737 .006292 .014182]; elseif Par == 3, qmf = [0 -.129078 .047699 .788486 .788486 .047699 -.129078]; dqmf = [0 .018914 .006989 -.067237 .133389 .615051 .615051 .133389 -.067237 .006989 .018914]; elseif Par == 4, qmf = [-1 2 6 2 -1] / (4*sqr2); dqmf = [1 2 1] / (2*sqr2); elseif Par == 5, qmf = [0 1 1]/sqr2; dqmf = [0 -1 1 8 8 1 -1]/(8*sqr2); end end % % Copyright (c) 1995. Jonathan Buckheit, Shaobing Chen and David Donoho % % Modified by Maureen Clerc and Jerome Kalifa, 1997 % [email protected], [email protected] % function y = mirror_filter(x) % MirrorFilt -- Apply (-1)^t modulation % Usage % h = MirrorFilt(l) % Inputs % l 1-d signal % Outputs % h 1-d signal with DC frequency content shifted % to Nyquist frequency % % Description % h(t) = (-1)^(t-1) * x(t), 1 <= t <= length(x) % % See Also % DyadDownHi % y = -( (-1).^(1:length(x)) ).*x; % % Copyright (c) 1993. Iain M. Johnstone %
github
jacksky64/imageProcessing-master
perform_spiht_coding.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_spiht_coding.m
16,676
utf_8
887f72ff117400ec78d7f4bd15f07015
function [y,nbr_bits] = perform_spiht_coding(x,options) % perform_spiht_coding - SPIHT coding of wavelet coefficients % % Coding : % options.Jmin = ??; % minimum scale of the transform % options.nb_bits = ??; % target number of bits % [stream,nbr_bits] = perform_spiht_coding(MW,options); % Decoding : % MW = perform_spiht_coding(stream); % % This is a simple wrapper of the code of Jing Tian % <scuteejtian at hotmail.com> options.null = 0; if isfield(options, 'arithmetic_coding') arithmetic_coding = options.arithmetic_coding; else arithmetic_coding = 1; end if size(x,1)>1 && size(x,2)>1 if isfield(options, 'Jmin') Jmin = options.Jmin; else warning('You should provide options.Jmin'); Jmin = 4; end if isfield(options, 'nb_bits') nb_bits = options.nb_bits; else nb_bits = floor( prod(size(x))*0.1 ); end %----------- Coding ---------------- Jmax = log2(size(x,1))-1; level = Jmax-Jmin+1; y = func_SPIHT_Enc(x, nb_bits, level); y = y(:); if arithmetic_coding % remove trailing 2 I = find(y==2); y(I) = []; % the 3 first entry are [size nb_bitsplanes level] [z,nbr_bits] = perform_arithmetic_coding(y(4:end), +1, options); y = [y(1:3); z]; nbr_bits = nbr_bits + 16; % approx 16 bits else nbr_bits = nb_bits; end else %----------- Decoding ---------------- if arithmetic_coding x = x(:); % the 3 first entry are [size nb_bitsplanes level] z = perform_arithmetic_coding(x(4:end), -1, options); x = [x(1:3); z]; nbr_bits = -1; end y = func_SPIHT_Dec(x(:)'); end function out = func_SPIHT_Enc(m, max_bits, level) % Matlab implementation of SPIHT (without Arithmatic coding stage) % % Encoder % % input: m : input image in wavelet domain % max_bits : maximum bits can be used % level : wavelet decomposition level % % output: out : bit stream % % Jing Tian % Contact me : [email protected] % This program is part of my undergraduate project in GuangZhou, P. R. China. % April - July 1999 %----------- Initialization ----------------- bitctr = 0; out = 2*ones(1,max_bits - 14); n_max = floor(log2(abs(max(max(m)')))); Bits_Header = 0; Bits_LSP = 0; Bits_LIP = 0; Bits_LIS = 0; %----------- output bit stream header ---------------- % image size, number of bit plane, wavelet decomposition level should be % written as bit stream header. out(1,[1 2 3]) = [size(m,1) n_max level]; bitctr = bitctr + 24; index = 4; Bits_Header = Bits_Header + 24; %----------- Initialize LIP, LSP, LIS ---------------- temp = []; bandsize = 2.^(log2(size(m, 1)) - level + 1); temp1 = 1 : bandsize; for i = 1 : bandsize temp = [temp; temp1]; end LIP(:, 1) = temp(:); temp = temp'; LIP(:, 2) = temp(:); LIS(:, 1) = LIP(:, 1); LIS(:, 2) = LIP(:, 2); LIS(:, 3) = zeros(length(LIP(:, 1)), 1); pstart = 1; pend = bandsize / 2; for i = 1 : bandsize / 2 LIS(pstart : pend, :) = []; pdel = pend - pstart + 1; pstart = pstart + bandsize - pdel; pend = pend + bandsize - pdel; end LSP = []; n = n_max; %----------- coding ---------------- while(bitctr < max_bits) % Sorting Pass LIPtemp = LIP; temp = 0; for i = 1:size(LIPtemp,1) temp = temp+1; if (bitctr + 1) >= max_bits if (bitctr < max_bits) out(length(out))=[]; end return end if abs(m(LIPtemp(i,1),LIPtemp(i,2))) >= 2^n % 1: positive; 0: negative out(index) = 1; bitctr = bitctr + 1; index = index +1; Bits_LIP = Bits_LIP + 1; sgn = m(LIPtemp(i,1),LIPtemp(i,2))>=0; out(index) = sgn; bitctr = bitctr + 1; index = index +1; Bits_LIP = Bits_LIP + 1; LSP = [LSP; LIPtemp(i,:)]; LIP(temp,:) = []; temp = temp - 1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIP = Bits_LIP + 1; end end LIStemp = LIS; temp = 0; i = 1; while ( i <= size(LIStemp,1)) temp = temp + 1; if LIStemp(i,3) == 0 if bitctr >= max_bits return end max_d = func_MyDescendant(LIStemp(i,1),LIStemp(i,2),LIStemp(i,3),m); if max_d >= 2^n out(index) = 1; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; x = LIStemp(i,1); y = LIStemp(i,2); if (bitctr + 1) >= max_bits if (bitctr < max_bits) out(length(out))=[]; end return end if abs(m(2*x-1,2*y-1)) >= 2^n LSP = [LSP; 2*x-1 2*y-1]; out(index) = 1; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; sgn = m(2*x-1,2*y-1)>=0; out(index) = sgn; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; LIP = [LIP; 2*x-1 2*y-1]; end if (bitctr + 1) >= max_bits if (bitctr < max_bits) out(length(out))=[]; end return end if abs(m(2*x-1,2*y)) >= 2^n LSP = [LSP; 2*x-1 2*y]; out(index) = 1; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; sgn = m(2*x-1,2*y)>=0; out(index) = sgn; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; LIP = [LIP; 2*x-1 2*y]; end if (bitctr + 1) >= max_bits if (bitctr < max_bits) out(length(out))=[]; end return end if abs(m(2*x,2*y-1)) >= 2^n LSP = [LSP; 2*x 2*y-1]; out(index) = 1; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; sgn = m(2*x,2*y-1)>=0; out(index) = sgn; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; LIP = [LIP; 2*x 2*y-1]; end if (bitctr + 1) >= max_bits if (bitctr < max_bits) out(length(out))=[]; end return end if abs(m(2*x,2*y)) >= 2^n LSP = [LSP; 2*x 2*y]; out(index) = 1; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; sgn = m(2*x,2*y)>=0; out(index) = sgn; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; LIP = [LIP; 2*x 2*y]; end if ((2*(2*x)-1) < size(m) & (2*(2*y)-1) < size(m)) LIS = [LIS; LIStemp(i,1) LIStemp(i,2) 1]; LIStemp = [LIStemp; LIStemp(i,1) LIStemp(i,2) 1]; end LIS(temp,:) = []; temp = temp-1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; end else if bitctr >= max_bits return end max_d = func_MyDescendant(LIStemp(i,1),LIStemp(i,2),LIStemp(i,3),m); if max_d >= 2^n out(index) = 1; bitctr = bitctr + 1; index = index +1; x = LIStemp(i,1); y = LIStemp(i,2); LIS = [LIS; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0]; LIStemp = [LIStemp; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0]; LIS(temp,:) = []; temp = temp - 1; else out(index) = 0; bitctr = bitctr + 1; index = index +1; Bits_LIS = Bits_LIS + 1; end end i = i+1; end % Refinement Pass temp = 1; value = floor(abs(2^(n_max-n+1)*m(LSP(temp,1),LSP(temp,2)))); while (value >= 2^(n_max+2) & (temp <= size(LSP,1))) if bitctr >= max_bits return end s = bitget(value,n_max+2); out(index) = s; bitctr = bitctr + 1; index = index +1; Bits_LSP = Bits_LSP + 1; temp = temp + 1; if temp <= size(LSP,1) value = floor(abs(2^(n_max-n+1)*m(LSP(temp,1),LSP(temp,2)))); end end n = n - 1; end function m = func_SPIHT_Dec(in) % Matlab implementation of SPIHT (without Arithmatic coding stage) % % Decoder % % input: in : bit stream % % output: m : reconstructed image in wavelet domain % % Jing Tian % Contact me : [email protected] % This program is part of my undergraduate project in GuangZhou, P. R. China. % April - July 1999 %----------- Initialization ----------------- % image size, number of bit plane, wavelet decomposition level should be % written as bit stream header. m = zeros(in(1,1)); n_max = in(1,2); level = in(1,3); ctr = 4; %----------- Initialize LIP, LSP, LIS ---------------- temp = []; bandsize = 2.^(log2(in(1,1)) - level + 1); temp1 = 1 : bandsize; for i = 1 : bandsize temp = [temp; temp1]; end LIP(:, 1) = temp(:); temp = temp'; LIP(:, 2) = temp(:); LIS(:, 1) = LIP(:, 1); LIS(:, 2) = LIP(:, 2); LIS(:, 3) = zeros(length(LIP(:, 1)), 1); pstart = 1; pend = bandsize / 2; for i = 1 : bandsize / 2 LIS(pstart : pend, :) = []; pdel = pend - pstart + 1; pstart = pstart + bandsize - pdel; pend = pend + bandsize - pdel; end LSP = []; %----------- coding ---------------- n = n_max; while (ctr <= size(in,2)) %Sorting Pass LIPtemp = LIP; temp = 0; for i = 1:size(LIPtemp,1) temp = temp+1; if ctr > size(in,2) return end if in(1,ctr) == 1 ctr = ctr + 1; if in(1,ctr) > 0 m(LIPtemp(i,1),LIPtemp(i,2)) = 2^n + 2^(n-1); else m(LIPtemp(i,1),LIPtemp(i,2)) = -2^n - 2^(n-1); end LSP = [LSP; LIPtemp(i,:)]; LIP(temp,:) = []; temp = temp - 1; end ctr = ctr + 1; end LIStemp = LIS; temp = 0; i = 1; while ( i <= size(LIStemp,1)) temp = temp + 1; if ctr > size(in,2) return end if LIStemp(i,3) == 0 if in(1,ctr) == 1 ctr = ctr + 1; x = LIStemp(i,1); y = LIStemp(i,2); if ctr > size(in,2) return end if in(1,ctr) == 1 LSP = [LSP; 2*x-1 2*y-1]; ctr = ctr + 1; if in(1,ctr) == 1 m(2*x-1,2*y-1) = 2^n + 2^(n-1); else m(2*x-1,2*y-1) = -2^n - 2^(n-1); end ctr = ctr + 1; else LIP = [LIP; 2*x-1 2*y-1]; ctr = ctr + 1; end if ctr > size(in,2) return end if in(1,ctr) == 1 ctr = ctr + 1; LSP = [LSP; 2*x-1 2*y]; if in(1,ctr) == 1; m(2*x-1,2*y) = 2^n + 2^(n-1); else m(2*x-1,2*y) = -2^n - 2^(n-1); end ctr = ctr + 1; else LIP = [LIP; 2*x-1 2*y]; ctr = ctr + 1; end if ctr > size(in,2) return end if in(1,ctr) == 1 ctr = ctr + 1; LSP = [LSP; 2*x 2*y-1]; if in(1,ctr) == 1 m(2*x,2*y-1) = 2^n + 2^(n-1); else m(2*x,2*y-1) = -2^n - 2^(n-1); end ctr = ctr + 1; else LIP = [LIP; 2*x 2*y-1]; ctr = ctr + 1; end if ctr > size(in,2) return end if in(1,ctr) == 1 ctr = ctr + 1; LSP = [LSP; 2*x 2*y]; if in(1,ctr) == 1 m(2*x,2*y) = 2^n + 2^(n-1); else m(2*x,2*y) = -2^n - 2^(n-1); end ctr = ctr + 1; else LIP = [LIP; 2*x 2*y]; ctr = ctr + 1; end if ((2*(2*x)-1) < size(m) & (2*(2*y)-1) < size(m)) LIS = [LIS; LIStemp(i,1) LIStemp(i,2) 1]; LIStemp = [LIStemp; LIStemp(i,1) LIStemp(i,2) 1]; end LIS(temp,:) = []; temp = temp-1; else ctr = ctr + 1; end else if in(1,ctr) == 1 x = LIStemp(i,1); y = LIStemp(i,2); LIS = [LIS; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0]; LIStemp = [LIStemp; 2*x-1 2*y-1 0; 2*x-1 2*y 0; 2*x 2*y-1 0; 2*x 2*y 0]; LIS(temp,:) = []; temp = temp - 1; end ctr = ctr + 1; end i = i+1; end % Refinement Pass temp = 1; value = m(LSP(temp,1), LSP(temp,2)); while (abs(value) >= 2^(n+1) & (temp <= size(LSP,1))) if ctr > size(in,2) return end value = value + ((-1)^(in(1,ctr) + 1)) * (2^(n-1))*sign(m(LSP(temp,1),LSP(temp,2))); m(LSP(temp,1),LSP(temp,2)) = value; ctr = ctr + 1; temp = temp + 1; if temp <= size(LSP,1) value = m(LSP(temp,1),LSP(temp,2)); end end n = n-1; end function value = func_MyDescendant(i, j, type, m) % Matlab implementation of SPIHT (without Arithmatic coding stage) % % Find the descendant with largest absolute value of pixel (i,j) % % input: i : row coordinate % j : column coordinate % type : type of descendant % m : whole image % % output: value : largest absolute value % % Jing Tian % Contact me : [email protected] % This program is part of my undergraduate project in GuangZhou, P. R. China. % April - July 1999 s = size(m,1); S = []; index = 0; a = 0; b = 0; while ((2*i-1)<s & (2*j-1)<s) a = i-1; b = j-1; mind = [2*(a+1)-1:2*(a+2^index)]; nind = [2*(b+1)-1:2*(b+2^index)]; chk = mind <= s; len = sum(chk); if len < length(mind) mind(len+1:length(mind)) = []; end chk = nind <= s; len = sum(chk); if len < length(nind) nind(len+1:length(nind)) = []; end S = [S reshape(m(mind,nind),1,[])]; index = index + 1; i = 2*a+1; j = 2*b+1; end if type == 1 S(:,1:4) = [];; end value = max(abs(S));
github
jacksky64/imageProcessing-master
perform_blsgsm_denoising.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_blsgsm_denoising.m
41,741
utf_8
d7adcb441f0d91f470957d7d1083332f
function y = perform_blsgsm_denoising(x, options) % perform_blsgsm_denoising - denoise an image using BLS-GSM % % y = perform_blsgsm_denoising(x, options); % % BLS-GSM stands for "Bayesian Least Squares - Gaussian Scale Mixture". % % This function is a wrapper for the code of J.Portilla. % % You can change the following optional parameters % options.Nor: Number of orientations (for X-Y separable wavelets it can % only be 3) % options.repres1: Type of pyramid ('uw': shift-invariant version of an orthogonal wavelet, in this case) % options.repres2: Type of wavelet (daubechies wavelet, order 2N, for 'daubN'; in this case, 'Haar') % % Other parameter that should not be changed unless really needed. % options.blSize n x n coefficient neighborhood (n must be odd): % options.parent including or not (1/0) in the % neighborhood a coefficient from the same spatial location % options.boundary Boundary mirror extension, to avoid boundary artifacts % options.covariance Full covariance matrix (1) or only diagonal elements (0). % options.optim Bayes Least Squares solution (1), or MAP-Wiener solution in two steps (0) % % Default parameters favors speed. % To get the optimal results, one should use: % options.Nor = 8; 8 orientations % options.repres1 = 'fs'; Full Steerable Pyramid, 5 scales for 512x512 % options.repres2 = ''; Dummy parameter when using repres1 = 'fs' % options.parent = 1; Include a parent in the neighborhood % % J Portilla, V Strela, M Wainwright, E P Simoncelli, % "Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain," % IEEE Transactions on Image Processing. vol 12, no. 11, pp. 1338-1351, % November 2003 % % Javier Portilla, Universidad de Granada, Spain % Adapted by Gabriel Peyre in 2007 options.null = 0; if isfield(options, 'sigma') sig = options.sigma; else sig = perform_noise_estimation(x) end [Ny,Nx] = size(x); % Pyramidal representation parameters Nsc = ceil(log2(min(Ny,Nx)) - 4); % Number of scales (adapted to the image size) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters if isfield(options, 'Nor') Nor = options.Nor; else Nor = 3; % Number of orientations (for X-Y separable wavelets it can only be 3) end if isfield(options, 'repres1') repres1 = options.repres1; else repres1 = 'uw'; % Type of pyramid (shift-invariant version of an orthogonal wavelet, in this case) end if isfield(options, 'repres2') repres2 = options.repres2; else repres2 = 'daub1'; % Type of wavelet (daubechies wavelet, order 2N, for 'daubN'; in this case, 'Haar') end % Model parameters (optimized: do not change them unless you are an advanced user with a deep understanding of the theory) if isfield(options, 'blSize') blSize = options.blSize; else blSize = [3 3]; % n x n coefficient neighborhood of spatial neighbors within the same subband end if isfield(options, 'parent') parent = options.parent; else parent = 0; % including or not (1/0) in the neighborhood a coefficient from the same spatial location end if isfield(options, 'boundary') boundary = options.boundary; else boundary = 1; % Boundary mirror extension, to avoid boundary artifacts end if isfield(options, 'covariance') covariance = options.covariance; else covariance = 1; % Full covariance matrix (1) or only diagonal elements (0). end if isfield(options, 'optim') optim = options.optim; else optim = 1; % Bayes Least Squares solution (1), or MAP-Wiener solution in two steps (0) end PS = ones(size(x)); % power spectral density (in this case, flat, i.e., white noise) seed = 0; % Uncomment the following 4 code lines for reproducing the results of our IEEE Trans. on Im. Proc., Nov. 2003 paper % This configuration is slower than the previous one, but it gives slightly better results (SNR) % on average for the test images "lena", "barbara", and "boats" used in the % cited article. % Nor = 8; % 8 orientations % repres1 = 'fs'; % Full Steerable Pyramid, 5 scales for 512x512 % repres2 = ''; % Dummy parameter when using repres1 = 'fs' % parent = 1; % Include a parent in the neighborhood % Call the denoising function y = denoi_BLS_GSM(x, sig, PS, blSize, parent, boundary, Nsc, Nor, covariance, optim, repres1, repres2, seed); function im_d = denoi_BLS_GSM(im, sig, PS, blSize, parent, boundary, Nsc, Nor, covariance, optim, repres1, repres2, seed); % [im_d,im,SNR_N,SNR,PSNR] = denoi_BLS_GSM(im, sig, ft, PS, blSize, parent, boundary, Nsc, Nor, covariance, optim, repres1, repres2, seed); % % im: input noisy image % sig: standard deviation of noise % PS: Power Spectral Density of noise ( fft2(autocorrelation) ) % NOTE: scale factors do not matter. Default is white. % blSize: 2x1 or 1x2 vector indicating local neighborhood % ([sY sX], default is [3 3]) % parent: Use parent yes/no (1/0) % Nsc: Number of scales % Nor: Number of orientations. For separable wavelets this MUST be 3. % covariance: Include / Not Include covariance in the GSM model (1/0) % optim: BLS / MAP-Wiener(2-step) (1/0) % repres1: Possible choices for representation: % 'w': orthogonal wavelet % (uses buildWpyr, reconWpyr) % repres2 (optional): % haar: - Haar wavelet. % qmf8, qmf12, qmf16 - Symmetric Quadrature Mirror Filters [Johnston80] % daub2,daub3,daub4 - Daubechies wavelet [Daubechies88] (#coef = 2N, para daubN). % qmf5, qmf9, qmf13: - Symmetric Quadrature Mirror Filters [Simoncelli88,Simoncelli90] % 'uw': undecimated orthogonal wavelet, Daubechies, pyramidal version % (uses buildWUpyr, reconWUpyr). % repres2 (optional): 'daub<N>', where <N> is a positive integer (e.g., 2) % 's': steerable pyramid [Simoncelli&Freeman95]. % (uses buildSFpyr, reconSFpyr) % 'fs': full steerable pyramid [Portilla&Simoncelli02]. % (uses buildFullSFpyr2, reconsFullSFpyr2) % seed (optional): Seed used for generating the Gaussian noise (when ft == 0) % By default is 0. % % im_d: denoising result % Javier Portilla, Univ. de Granada, 5/02 % revision 31/03/2003 % revision 7/01/2004 % Last revision 15/11/2004 if ~exist('blSize'), blSzX = 3; % Block size blSzY = 3; else blSzY = blSize(1); blSzX = blSize(2); end if (blSzY/2==floor(blSzY/2))|(blSzX/2==floor(blSzX/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('PS'), no_white = 0; % Power spectral density of noise. Default is white noise else no_white = 1; end if ~exist('parent'), parent = 1; end if ~exist('boundary'), boundary = 1; end if ~exist('Nsc'), Nsc = 4; end if ~exist('Nor'), Nor = 8; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('repres1'), repres1 = 'fs'; end if ~exist('repres2'), repres2 = ''; end if (((repres1=='w') | (repres1=='uw')) & (Nor~=3)), warning('For X-Y separable representations Nor must be 3. Nor = 3 assumed.'); Nor = 3; end if ~exist('seed'), seed = 0; end [Ny Nx] = size(im); % We ensure that the processed image has dimensions that are integer % multiples of 2^(Nsc+1), so it will not crash when applying the % pyramidal representation. The idea is padding with mirror reflected % pixels (thanks to Jesus Malo for this idea). Npy = ceil(Ny/2^(Nsc+1))*2^(Nsc+1); Npx = ceil(Nx/2^(Nsc+1))*2^(Nsc+1); if Npy~=Ny | Npx~=Nx, Bpy = Npy-Ny; Bpx = Npx-Nx; im = bound_extension(im,Bpy,Bpx,'mirror'); im = im(Bpy+1:end,Bpx+1:end); % add stripes only up and right end % size of the extension for boundary handling if (repres1 == 's') | (repres1 == 'fs'), By = (blSzY-1)*2^(Nsc-2); Bx = (blSzX-1)*2^(Nsc-2); else By = (blSzY-1)*2^(Nsc-1); Bx = (blSzX-1)*2^(Nsc-1); end if ~no_white, % White noise PS = ones(size(im)); end % As the dimensions of the power spectral density (PS) support and that of the % image (im) do not need to be the same, we have to adapt the first to the % second (zero padding and/or cropping). PS = fftshift(PS); isoddPS_y = (size(PS,1)~=2*(floor(size(PS,1)/2))); isoddPS_x = (size(PS,2)~=2*(floor(size(PS,2)/2))); PS = PS(1:end-isoddPS_y, 1:end-isoddPS_x); % ensures even dimensions for the power spectrum PS = fftshift(PS); [Ndy,Ndx] = size(PS); % dimensions are even delta = real(ifft2(sqrt(PS))); delta = fftshift(delta); aux = delta; delta = zeros(Npy,Npx); if (Ndy<=Npy)&(Ndx<=Npx), delta(Npy/2+1-Ndy/2:Npy/2+Ndy/2,Npx/2+1-Ndx/2:Npx/2+Ndx/2) = aux; elseif (Ndy>Npy)&(Ndx>Npx), delta = aux(Ndy/2+1-Npy/2:Ndy/2+Npy/2,Ndx/2+1-Npx/2:Ndx/2+Npx/2); elseif (Ndy<=Npy)&(Ndx>Npx), delta(Npy/2+1-Ndy/2:Npy/2+1+Ndy/2-1,:) = aux(:,Ndx/2+1-Npx/2:Ndx/2+Npx/2); elseif (Ndy>Npy)&(Ndx<=Npx), delta(:,Npx/2+1-Ndx/2:Npx/2+1+Ndx/2-1) = aux(Ndy/2+1-Npy/2:Ndy/2+1+Npy/2-1,:); end if repres1 == 'w', PS = abs(fft2(delta)).^2; PS = fftshift(PS); % noise, to be used only with translation variant transforms (such as orthogonal wavelet) delta = real(ifft2(sqrt(PS).*exp(j*angle(fft2(randn(size(PS))))))); end %Boundary handling: it extends im and delta if boundary, im = bound_extension(im,By,Bx,'mirror'); if repres1 == 'w', delta = bound_extension(delta,By,Bx,'mirror'); else aux = delta; delta = zeros(Npy + 2*By, Npx + 2*Bx); delta(By+1:By+Npy,Bx+1:Bx+Npx) = aux; end else By=0;Bx=0; end delta = delta/sqrt(mean2(delta.^2)); % Normalize the energy (the noise variance is given by "sig") delta = sig*delta; % Impose the desired variance to the noise % main t1 = clock; if repres1 == 's', % standard steerable pyramid im_d = decomp_reconst(im, Nsc, Nor, [blSzX blSzY], delta, parent,covariance,optim,sig); elseif repres1 == 'fs', % full steerable pyramid im_d = decomp_reconst_full(im, Nsc, Nor, [blSzX blSzY], delta, parent, covariance, optim, sig); elseif repres1 == 'w', % orthogonal wavelet if ~exist('repres2'), repres2 = 'daub1'; end filter = repres2; im_d = decomp_reconst_W(im, Nsc, filter, [blSzX blSzY], delta, parent, covariance, optim, sig); elseif repres1 == 'uw', % undecimated daubechies wavelet if ~exist('repres2'), repres2 = 'daub1'; end if repres2(1:4) == 'haar', daub_order = 2; else daub_order = 2*str2num(repres2(5)); end im_d = decomp_reconst_WU(im, Nsc, daub_order, [blSzX blSzY], delta, parent, covariance, optim, sig); else error('Invalid representation parameter. See help info.'); end t2 = clock; elaps = t2 - t1; elaps(4)*3600+elaps(5)*60+elaps(6); % elapsed time, in seconds im_d = im_d(By+1:By+Npy,Bx+1:Bx+Npx); im_d = im_d(1:Ny,1:Nx); function fh = decomp_reconst_full(im,Nsc,Nor,block,noise,parent,covariance,optim,sig); % Decompose image into subbands, denoise, and recompose again. % fh = decomp_reconst(im,Nsc,Nor,block,noise,parent,covariance,optim,sig); % covariance: are we considering covariance or just variance? % optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) % sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) % Version using the Full steerable pyramid (2) (High pass residual % splitted into orientations). % JPM, Univ. de Granada, 5/02 % Last Revision: 11/04 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('sig'), sig = sqrt(mean(noise.^2)); end [pyr,pind] = buildFullSFpyr2(im,Nsc,Nor-1); [pyrN,pind] = buildFullSFpyr2(noise,Nsc,Nor-1); pyrh = real(pyr); Nband = size(pind,1)-1; for nband = 2:Nband, % everything except the low-pass residual fprintf('%d % ',round(100*(nband-1)/(Nband-1))) aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); [Nsy,Nsx] = size(aux); prnt = parent & (nband < Nband-Nor); % has the subband a parent? BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension if prnt, aux = pyrBand(pyr, pind, nband+Nor); auxn = pyrBand(pyrN, pind, nband+Nor); if nband>Nor+1, % resample 2x2 the parent if not in the high-pass oriented subbands. aux = real(expand(aux,2)); auxn = real(expand(auxn,2)); end BL(:,:,2) = aux; BLn(:,:,2) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconFullSFpyr2(pyrh,pind); function fh = decomp_reconst_W(im,Nsc,filter,block,noise,parent,covariance,optim,sig); % Decompose image into subbands, denoise using BLS-GSM method, and recompose again. % fh = decomp_reconst(im,Nsc,filter,block,noise,parent,covariance,optim,sig); % im: image % Nsc: number of scales % filter: type of filter used (see namedFilters) % block: 2x1 vector indicating the dimensions (rows and columns) of the spatial neighborhood % noise: signal with the same autocorrelation as the noise % parent: include (1) or not (0) a coefficient from the immediately coarser scale in the neighborhood % covariance: are we considering covariance or just variance? % optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) % sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) % Version using a critically sampled pyramid (orthogonal wavelet), as implemented in MatlabPyrTools (Eero). % JPM, Univ. de Granada, 3/03 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('sig'), sig = sqrt(mean(noise.^2)); end Nor = 3; % number of orientations: vertical, horizontal and mixed diagonals (for compatibility) [pyr,pind] = buildWpyr(im,Nsc,filter,'circular'); [pyrN,pind] = buildWpyr(noise,Nsc,filter,'circular'); pyrh = pyr; Nband = size(pind,1); for nband = 1:Nband-1, % everything except the low-pass residual fprintf('%d % ',round(100*(nband-1)/(Nband-1))) aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); prnt = parent & (nband < Nband-Nor); % has the subband a parent? BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn; if prnt, aux = pyrBand(pyr, pind, nband+Nor); auxn = pyrBand(pyrN, pind, nband+Nor); aux = real(expand(aux,2)); auxn = real(expand(auxn,2)); BL(:,:,2) = aux; BLn(:,:,2) = auxn; end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconWpyr(pyrh,pind,filter,'circular'); function fh = decomp_reconst_WU(im,Nsc,daub_order,block,noise,parent,covariance,optim,sig); % Decompose image into subbands (undecimated wavelet), denoise, and recompose again. % fh = decomp_reconst_wavelet(im,Nsc,daub_order,block,noise,parent,covariance,optim,sig); % im : image % Nsc: Number of scales % daub_order: Order of the daubechie fucntion used (must be even). % block: size of neighborhood within each undecimated subband. % noise: image having the same autocorrelation as the noise (e.g., a delta, for white noise) % parent: are we including the coefficient at the central location at the next coarser scale? % covariance: are we considering covariance or just variance? % optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) % sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) % Javier Portilla, Univ. de Granada, 3/03 % Revised: 11/04 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('sig'), sig = sqrt(mean(noise.^2)); end Nor = 3; % Number of orientations: vertical, horizontal and (mixed) diagonals. [pyr,pind] = buildWUpyr(im,Nsc,daub_order); [pyrN,pind] = buildWUpyr(noise,Nsc,daub_order); pyrh = real(pyr); Nband = size(pind,1)-1; for nband = 2:Nband, % everything except the low-pass residual % fprintf('%d % ',round(100*(nband-1)/(Nband-1))) progressbar(nband-1,Nband-1); aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); [Nsy, Nsx] = size(aux); prnt = parent & (nband < Nband-Nor); % has the subband a parent? BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension if prnt, aux = pyrBand(pyr, pind, nband+Nor); auxn = pyrBand(pyrN, pind, nband+Nor); if nband>Nor+1, % resample 2x2 the parent if not in the high-pass oriented subbands. aux = real(expand(aux,2)); auxn = real(expand(auxn,2)); end BL(:,:,2) = aux; BLn(:,:,2) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconWUpyr(pyrh,pind,daub_order); function fh = decomp_reconst(fn,Nsc,Nor,block,noise,parent,covariance,optim,sig); % Decompose image into subbands, denoise, and recompose again. % fh = decomp_reconst(fn,Nsc,Nor,block,noise,parent); % Javier Portilla, Univ. de Granada, 5/02 % Last revision: 11/04 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end [pyr,pind] = buildSFpyr(fn,Nsc,Nor-1); [pyrN,pind] = buildSFpyr(noise,Nsc,Nor-1); pyrh = real(pyr); Nband = size(pind,1); for nband = 1:Nband -1, fprintf('%d % ',round(100*nband/(Nband-1))) aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); [Nsy,Nsx] = size(aux); prnt = parent & (nband < Nband-1-Nor) & (nband>1); BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension if prnt, aux = pyrBand(pyr, pind, nband+Nor); aux = real(expand(aux,2)); auxn = pyrBand(pyrN, pind, nband+Nor); auxn = real(expand(auxn,2)); BL(:,:,2) = aux; BLn(:,:,2) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconSFpyr(pyrh,pind); function x_hat = denoi_BLS_GSM_band(y,block,noise,prnt,covariance,optim,sig); % It solves for the BLS global optimum solution, using a flat (pseudo)prior for log(z) % x_hat = denoi_BLS_GSM_band(y,block,noise,prnt,covariance,optim,sig); % % prnt: Include/ Not Include parent (1/0) % covariance: Include / Not Include covariance in the GSM model (1/0) % optim: BLS / MAP-Wiener(2-step) (1/0) % JPM, Univ. de Granada, 5/02 % Last revision: JPM, 4/03 if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end [nv,nh,nb] = size(y); nblv = nv-block(1)+1; % Discard the outer coefficients nblh = nh-block(2)+1; % for the reference (centrral) coefficients (to avoid boundary effects) nexp = nblv*nblh; % number of coefficients considered zM = zeros(nv,nh); % hidden variable z x_hat = zeros(nv,nh); % coefficient estimation N = prod(block) + prnt; % size of the neighborhood Ly = (block(1)-1)/2; % block(1) and block(2) must be odd! Lx = (block(2)-1)/2; if (Ly~=floor(Ly))|(Lx~=floor(Lx)), error('Spatial dimensions of neighborhood must be odd!'); end cent = floor((prod(block)+1)/2); % reference coefficient in the neighborhood % (central coef in the fine band) Y = zeros(nexp,N); % It will be the observed signal (rearranged in nexp neighborhoods) W = zeros(nexp,N); % It will be a signal with the same autocorrelation as the noise foo = zeros(nexp,N); % Compute covariance of noise from 'noise' n = 0; for ny = -Ly:Ly, % spatial neighbors for nx = -Lx:Lx, n = n + 1; foo = shift(noise(:,:,1),[ny nx]); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); W(:,n) = vector(foo); end end if prnt, % parent n = n + 1; foo = noise(:,:,2); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); W(:,n) = vector(foo); end C_w = innerProd(W)/nexp; sig2 = mean(diag(C_w(1:N-prnt,1:N-prnt))); % noise variance in the (fine) subband clear W; if ~covariance, if prnt, C_w = diag([sig2*ones(N-prnt,1);C_w(N,N)]); else C_w = diag(sig2*ones(N,1)); end end % Rearrange observed samples in 'nexp' neighborhoods n = 0; for ny=-Ly:Ly, % spatial neighbors for nx=-Lx:Lx, n = n + 1; foo = shift(y(:,:,1),[ny nx]); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); Y(:,n) = vector(foo); end end if prnt, % parent n = n + 1; foo = y(:,:,2); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); Y(:,n) = vector(foo); end clear foo % For modulating the local stdv of noise if exist('sig') & prod(size(sig))>1, sig = max(sig,sqrt(1/12)); % Minimum stdv in quantified (integer) pixels subSampleFactor = log2(sqrt(prod(size(sig))/(nv*nh))); zW = blurDn(reshape(sig, size(zM)*2^subSampleFactor)/2^subSampleFactor,subSampleFactor); zW = zW.^2; zW = zW/mean2(zW); % Expectation{zW} = 1 z_w = vector(zW(Ly+1:Ly+nblv,Lx+1:Lx+nblh)); end [S,dd] = eig(C_w); S = S*real(sqrt(dd)); % S*S' = C_w iS = pinv(S); clear noise C_y = innerProd(Y)/nexp; sy2 = mean(diag(C_y(1:N-prnt,1:N-prnt))); % observed (signal + noise) variance in the subband C_x = C_y - C_w; % as signal and noise are assumed to be independent [Q,L] = eig(C_x); % correct possible negative eigenvalues, without changing the overall variance L = diag(diag(L).*(diag(L)>0))*sum(diag(L))/(sum(diag(L).*(diag(L)>0))+(sum(diag(L).*(diag(L)>0))==0)); C_x = Q*L*Q'; sx2 = sy2 - sig2; % estimated signal variance in the subband sx2 = sx2.*(sx2>0); % + (sx2<=0); if ~covariance, if prnt, C_x = diag([sx2*ones(N-prnt,1);C_x(N,N)]); else C_x = diag(sx2*ones(N,1)); end end [Q,L] = eig(iS*C_x*iS'); % Double diagonalization of signal and noise la = diag(L); % eigenvalues: energy in the new represetnation. la = real(la).*(real(la)>0); % Linearly transform the observations, and keep the quadratic values (we do not model phase) V = Q'*iS*Y'; clear Y; V2 = (V.^2).'; M = S*Q; m = M(cent,:); % Compute p(Y|log(z)) if 1, % non-informative prior lzmin = -20.5; lzmax = 3.5; step = 2; else % gamma prior for 1/z lzmin = -6; lzmax = 4; step = 0.5; end lzi = lzmin:step:lzmax; nsamp_z = length(lzi); zi = exp(lzi); laz = la*zi; p_lz = zeros(nexp,nsamp_z); mu_x = zeros(nexp,nsamp_z); if ~exist('z_w'), % Spatially invariant noise pg1_lz = 1./sqrt(prod(1 + laz,1)); % normalization term (depends on z, but not on Y) aux = exp(-0.5*V2*(1./(1+laz))); p_lz = aux*diag(pg1_lz); % That gives us the conditional Gaussian density values % for the observed samples and the considered samples of z % Compute mu_x(z) = E{x|log(z),Y} aux = diag(m)*(laz./(1 + laz)); % Remember: laz = la*zi mu_x = V.'*aux; % Wiener estimation, for each considered sample of z else % Spatially variant noise rep_z_w = repmat(z_w, 1, N); for n_z = 1:nsamp_z, rep_laz = repmat(laz(:,n_z).',nexp,1); aux = rep_laz + rep_z_w; % lambda*z_u + z_w p_lz(:,n_z) = exp(-0.5*sum(V2./aux,2))./sqrt(prod(aux,2)); % Compute mu_x(z) = E{x|log(z),Y,z_w} aux = rep_laz./aux; mu_x(:,n_z) = (V.'.*aux)*m.'; end end [foo, ind] = max(p_lz.'); % We use ML estimation of z only for the boundaries. clear foo if prod(size(ind)) == 0, z = ones(1,size(ind,2)); else z = zi(ind).'; end clear V2 aux % For boundary handling uv=1+Ly; lh=1+Lx; dv=nblv+Ly; rh=nblh+Lx; ul1=ones(uv,lh); u1=ones(uv-1,1); l1=ones(1,lh-1); ur1=ul1; dl1=ul1; dr1=ul1; d1=u1; r1=l1; zM(uv:dv,lh:rh) = reshape(z,nblv,nblh); % Propagation of the ML-estimated z to the boundaries % a) Corners zM(1:uv,1:lh)=zM(uv,lh)*ul1; zM(1:uv,rh:nh)=zM(uv,rh)*ur1; zM(dv:nv,1:lh)=zM(dv,lh)*dl1; zM(dv:nv,rh:nh)=zM(dv,rh)*dr1; % b) Bands zM(1:uv-1,lh+1:rh-1)=u1*zM(uv,lh+1:rh-1); zM(dv+1:nv,lh+1:rh-1)=d1*zM(dv,lh+1:rh-1); zM(uv+1:dv-1,1:lh-1)=zM(uv+1:dv-1,lh)*l1; zM(uv+1:dv-1,rh+1:nh)=zM(uv+1:dv-1,rh)*r1; % We do scalar Wiener for the boundary coefficients if exist('z_w'), x_hat = y(:,:,1).*(sx2*zM)./(sx2*zM + sig2*zW); else x_hat = y(:,:,1).*(sx2*zM)./(sx2*zM + sig2); end % Prior for log(z) p_z = ones(nsamp_z,1); % Flat log-prior (non-informative for GSM) p_z = p_z/sum(p_z); % Compute p(log(z)|Y) from p(Y|log(z)) and p(log(z)) (Bayes Rule) p_lz_y = p_lz*diag(p_z); clear p_lz if ~optim, p_lz_y = (p_lz_y==max(p_lz_y')'*ones(1,size(p_lz_y,2))); % ML in log(z): it becomes a delta function % at the maximum end aux = sum(p_lz_y, 2); if any(aux==0), foo = aux==0; p_lz_y = repmat(~foo,1,nsamp_z).*p_lz_y./repmat(aux + foo,1,nsamp_z)... + repmat(foo,1,nsamp_z).*repmat(p_z',nexp,1); % Normalizing: p(log(z)|Y) else p_lz_y = p_lz_y./repmat(aux,1,nsamp_z); % Normalizing: p(log(z)|Y) end clear aux; % Compute E{x|Y} = int_log(z){ E{x|log(z),Y} p(log(z)|Y) d(log(z)) } aux = sum(mu_x.*p_lz_y, 2); x_hat(1+Ly:nblv+Ly,1+Lx:nblh+Lx) = reshape(aux,nblv,nblh); clear mu_x p_lz_y aux function im_ext = bound_extension(im,By,Bx,type); % im_ext = bound_extension(im,B,type); % % Extend an image for avoiding boundary artifacts, % % By, Bx: widths of the added stripes. % type: 'mirror' Mirror extension % 'mirror_nr': Mirror without repeating the last pixel % 'circular': fft2-like % 'zeros' % Javier Portilla, Universidad de Granada, Jan 2004 [Ny,Nx,Nc] = size(im); im_ext = zeros(Ny+2*By,Nx+2*Bx,Nc); im_ext(By+1:Ny+By,Bx+1:Nx+Bx,:) = im; if strcmp(type,'mirror'), im_ext(1:By,:,:) = im_ext(2*By:-1:By+1,:,:); im_ext(:,1:Bx,:) = im_ext(:,2*Bx:-1:Bx+1,:); im_ext(Ny+1+By:Ny+2*By,:,:) = im_ext(Ny+By:-1:Ny+1,:,:); im_ext(:,Nx+1+Bx:Nx+2*Bx,:) = im_ext(:,Nx+Bx:-1:Nx+1,:); im_ext(1:By,1:Bx,:) = im_ext(2*By:-1:By+1,2*Bx:-1:Bx+1,:); im_ext(Ny+1+By:Ny+2*By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(Ny+By:-1:Ny+1,Nx+Bx:-1:Nx+1,:); im_ext(1:By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(2*By:-1:By+1,Nx+Bx:-1:Nx+1,:); im_ext(Ny+1+By:Ny+2*By,1:Bx,:) = im_ext(Ny+By:-1:Ny+1,2*Bx:-1:Bx+1,:); elseif strcmp(type,'mirror_nr'), im_ext(1:By,:,:) = im_ext(2*By+1:-1:By+2,:,:); im_ext(:,1:Bx,:) = im_ext(:,2*Bx+1:-1:Bx+2,:); im_ext(Ny+1+By:Ny+2*By,:,:) = im_ext(Ny+By-1:-1:Ny,:,:); im_ext(:,Nx+1+Bx:Nx+2*Bx,:) = im_ext(:,Nx+Bx-1:-1:Nx,:); im_ext(1:By,1:Bx,:) = im_ext(2*By+1:-1:By+2,2*Bx+1:-1:Bx+2,:); im_ext(Ny+1+By:Ny+2*By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(Ny+By-1:-1:Ny,Nx+Bx-1:-1:Nx,:); im_ext(1:By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(2*By+1:-1:By+2,Nx+Bx-1:-1:Nx,:); im_ext(Ny+1+By:Ny+2*By,1:Bx,:) = im_ext(Ny+By-1:-1:Ny,2*Bx+1:-1:Bx+2,:); elseif strcmp(type,'circular'), im_ext(1:By,:,:) = im_ext(Ny+1:Ny+By,:,:); im_ext(:,1:Bx,:) = im_ext(:,Nx+1:Nx+Bx,:); im_ext(Ny+1+By:Ny+2*By,:,:) = im_ext(By+1:2*By,:,:); im_ext(:,Nx+1+Bx:Nx+2*Bx,:) = im_ext(:,Bx+1:2*Bx,:); im_ext(1:By,1:Bx,:) = im_ext(Ny+1:Ny+By,Nx+1:Nx+Bx,:); im_ext(Ny+1+By:Ny+2*By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(By+1:2*By,Bx+1:2*Bx,:); im_ext(1:By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(Ny+1:Ny+By,Bx+1:2*Bx,:); im_ext(Ny+1+By:Ny+2*By,1:Bx,:) = im_ext(By+1:2*By,Nx+1:Nx+Bx,:); end % M = MEAN2(MTX) % % Sample mean of a matrix. function res = mean2(mtx) res = mean(mean(mtx)); function [pyr,pind] = buildWUpyr(im, Nsc, daub_order); % [PYR, INDICES] = buildWUpyr(IM, HEIGHT, DAUB_ORDER) % % Construct a separable undecimated orthonormal QMF/wavelet pyramid % on matrix (or vector) IM. % % HEIGHT specifies the number of pyramid levels to build. Default % is maxPyrHt(IM,FILT). You can also specify 'auto' to use this value. % % DAUB_ORDER: specifies the order of the daubechies wavelet filter used % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. % JPM, Univ. de Granada, 03/2003, based on Rice Wavelet Toolbox % function "mrdwt" and on Matlab Pyrtools from Eero Simoncelli. if Nsc < 1, display('Error: Number of scales must be >=1.'); else, Nor = 3; % fixed number of orientations; h = daubcqf(daub_order); [lpr,yh] = mrdwt(im, h, Nsc+1); % performs the decomposition [Ny,Nx] = size(im); % Reorganize the output, forcing the same format as with buildFullSFpyr2 pyr = []; pind = zeros((Nsc+1)*Nor+2,2); % Room for a "virtual" high pass residual, for compatibility nband = 1; for nsc = 1:Nsc+1, for nor = 1:Nor, nband = nband + 1; band = yh(:,(nband-2)*Nx+1:(nband-1)*Nx); sh = (daub_order/2 - 1)*2^nsc; % approximate phase compensation if nor == 1, % horizontal band = shift(band, [sh 2^(nsc-1)]); elseif nor == 2, % vertical band = shift(band, [2^(nsc-1) sh]); else band = shift(band, [sh sh]); % diagonal end if nsc>2, band = real(shrink(band,2^(nsc-2))); % The low freq. bands are shrunk in the freq. domain end pyr = [pyr; vector(band)]; pind(nband,:) = size(band); end end band = lpr; band = shrink(band,2^Nsc); pyr = [pyr; vector(band)]; pind(nband+1,:) = size(band); end function [h_0,h_1] = daubcqf(N,TYPE) % [h_0,h_1] = daubcqf(N,TYPE); % % Function computes the Daubechies' scaling and wavelet filters % (normalized to sqrt(2)). % % Input: % N : Length of filter (must be even) % TYPE : Optional parameter that distinguishes the minimum phase, % maximum phase and mid-phase solutions ('min', 'max', or % 'mid'). If no argument is specified, the minimum phase % solution is used. % % Output: % h_0 : Minimal phase Daubechies' scaling filter % h_1 : Minimal phase Daubechies' wavelet filter % % Example: % N = 4; % TYPE = 'min'; % [h_0,h_1] = daubcqf(N,TYPE) % h_0 = 0.4830 0.8365 0.2241 -0.1294 % h_1 = 0.1294 0.2241 -0.8365 0.4830 % % Reference: "Orthonormal Bases of Compactly Supported Wavelets", % CPAM, Oct.89 % %File Name: daubcqf.m %Last Modification Date: 01/02/96 15:12:57 %Current Version: daubcqf.m 2.4 %File Creation Date: 10/10/88 %Author: Ramesh Gopinath <[email protected]> % %Copyright (c) 2000 RICE UNIVERSITY. All rights reserved. %Created by Ramesh Gopinath, Department of ECE, Rice University. % %This software is distributed and licensed to you on a non-exclusive %basis, free-of-charge. Redistribution and use in source and binary forms, %with or without modification, are permitted provided that the following %conditions are met: % %1. Redistribution of source code must retain the above copyright notice, % this list of conditions and the following disclaimer. %2. Redistribution in binary form must reproduce the above copyright notice, % this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. %3. All advertising materials mentioning features or use of this software % must display the following acknowledgment: This product includes % software developed by Rice University, Houston, Texas and its contributors. %4. Neither the name of the University nor the names of its contributors % may be used to endorse or promote products derived from this software % without specific prior written permission. % %THIS SOFTWARE IS PROVIDED BY WILLIAM MARSH RICE UNIVERSITY, HOUSTON, TEXAS, %AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, %BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS %FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RICE UNIVERSITY %OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, %EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, %PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; %OR BUSINESS INTERRUPTIONS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, %WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR %OTHERWISE), PRODUCT LIABILITY, OR OTHERWISE ARISING IN ANY WAY OUT OF THE %USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % %For information on commercial licenses, contact Rice University's Office of %Technology Transfer at [email protected] or (713) 348-6173 if(nargin < 2), TYPE = 'min'; end; if(rem(N,2) ~= 0), error('No Daubechies filter exists for ODD length'); end; K = N/2; a = 1; p = 1; q = 1; h_0 = [1 1]; for j = 1:K-1, a = -a * 0.25 * (j + K - 1)/j; h_0 = [0 h_0] + [h_0 0]; p = [0 -p] + [p 0]; p = [0 -p] + [p 0]; q = [0 q 0] + a*p; end; q = sort(roots(q)); qt = q(1:K-1); if TYPE=='mid', if rem(K,2)==1, qt = q([1:4:N-2 2:4:N-2]); else qt = q([1 4:4:K-1 5:4:K-1 N-3:-4:K N-4:-4:K]); end; end; h_0 = conv(h_0,real(poly(qt))); h_0 = sqrt(2)*h_0/sum(h_0); %Normalize to sqrt(2); if(TYPE=='max'), h_0 = fliplr(h_0); end; if(abs(sum(h_0 .^ 2))-1 > 1e-4) error('Numerically unstable for this value of "N".'); end; h_1 = rot90(h_0,2); h_1(1:2:N)=-h_1(1:2:N); % [RES] = shift(MTX, OFFSET) % % Circular shift 2D matrix samples by OFFSET (a [Y,X] 2-vector), % such that RES(POS) = MTX(POS-OFFSET). function res = shift(mtx, offset) dims = size(mtx); offset = mod(-offset,dims); res = [ mtx(offset(1)+1:dims(1), offset(2)+1:dims(2)), ... mtx(offset(1)+1:dims(1), 1:offset(2)); ... mtx(1:offset(1), offset(2)+1:dims(2)), ... mtx(1:offset(1), 1:offset(2)) ]; % [VEC] = vector(MTX) % % Pack elements of MTX into a column vector. Same as VEC = MTX(:) % Previously named "vectorize" (changed to avoid overlap with Matlab's % "vectorize" function). function vec = vector(mtx) vec = mtx(:); function ts = shrink(t,f) % im_shr = shrink(im0, f) % % It shrinks (spatially) an image into a factor f % in each dimension. It does it by cropping the % Fourier transform of the image. % JPM, 5/1/95. % Revised so it can work also with exponents of 3 factors: JPM 5/2003 [my,mx] = size(t); T = fftshift(fft2(t))/f^2; Ts = zeros(my/f,mx/f); cy = ceil(my/2); cx = ceil(mx/2); evenmy = (my/2==floor(my/2)); evenmx = (mx/2==floor(mx/2)); y1 = cy + 2*evenmy - floor(my/(2*f)); y2 = cy + floor(my/(2*f)); x1 = cx + 2*evenmx - floor(mx/(2*f)); x2 = cx + floor(mx/(2*f)); Ts(1+evenmy:my/f,1+evenmx:mx/f)=T(y1:y2,x1:x2); if evenmy, Ts(1+evenmy:my/f,1)=(T(y1:y2,x1-1)+T(y1:y2,x2+1))/2; end if evenmx, Ts(1,1+evenmx:mx/f)=(T(y1-1,x1:x2)+T(y2+1,x1:x2))/2; end if evenmy & evenmx, Ts(1,1)=(T(y1-1,x1-1)+T(y1-1,x2+1)+T(y2+1,x1-1)+T(y2+1,x2+1))/4; end Ts = fftshift(Ts); Ts = shift(Ts, [1 1] - [evenmy evenmx]); ts = ifft2(Ts); % RES = pyrBand(PYR, INDICES, BAND_NUM) % % Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet, % or steerable). Subbands are numbered consecutively, from finest % (highest spatial frequency) to coarsest (lowest spatial frequency). % Eero Simoncelli, 6/96. function res = pyrBand(pyr, pind, band) res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) ); % RES = pyrBandIndices(INDICES, BAND_NUM) % % Return indices for accessing a subband from a pyramid % (gaussian, laplacian, QMF/wavelet, steerable). % Eero Simoncelli, 6/96. function indices = pyrBandIndices(pind,band) if ((band > size(pind,1)) | (band < 1)) error(sprintf('BAND_NUM must be between 1 and number of pyramid bands (%d).', ... size(pind,1))); end if (size(pind,2) ~= 2) error('INDICES must be an Nx2 matrix indicating the size of the pyramid subbands'); end ind = 1; for l=1:band-1 ind = ind + prod(pind(l,:)); end indices = ind:ind+prod(pind(band,:))-1; function res = reconWUpyr(pyr, pind, daub_order); % RES = reconWUpyr(PYR, INDICES, DAUB_ORDER) % Reconstruct image from its separable undecimated orthonormal QMF/wavelet pyramid % representation, as created by buildWUpyr. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. % % DAUB_ORDER: specifies the order of the daubechies wavelet filter used % JPM, Univ. de Granada, 03/2003, based on Rice Wavelet Toolbox % functions "mrdwt" and "mirdwt", and on Matlab Pyrtools from Eero Simoncelli. Nor = 3; Nsc = (size(pind,1)-2)/Nor-1; h = daubcqf(daub_order); yh = []; nband = 1; last = prod(pind(1,:)); % empty "high pass residual band" for compatibility with full steerpyr 2 for nsc = 1:Nsc+1, % The number of scales corresponds to the number of pyramid levels (also for compatibility) for nor = 1:Nor, nband = nband +1; first = last + 1; last = first + prod(pind(nband,:)) - 1; band = pyrBand(pyr,pind,nband); sh = (daub_order/2 - 1)*2^nsc; % approximate phase compensation if nsc > 2, band = expand(band, 2^(nsc-2)); end if nor == 1, % horizontal band = shift(band, [-sh -2^(nsc-1)]); elseif nor == 2, % vertical band = shift(band, [-2^(nsc-1) -sh]); else band = shift(band, [-sh -sh]); % diagonal end yh = [yh band]; end end nband = nband + 1; band = pyrBand(pyr,pind,nband); lpr = expand(band,2^Nsc); res= mirdwt(lpr,yh,h,Nsc+1); function te = expand(t,f) % im_exp = expand(im0, f) % % It expands (spatially) an image into a factor f % in each dimension. It does it filling in with zeros % the expanded Fourier domain. % JPM, 5/1/95. % Revised so it can work also with exponents of 3 factors: JPM 5/2003 [my mx] = size(t); my = f*my; mx = f*mx; Te = zeros(my,mx); T = f^2*fftshift(fft2(t)); cy = ceil(my/2); cx = ceil(mx/2); evenmy = (my/2==floor(my/2)); evenmx = (mx/2==floor(mx/2)); y1 = cy + 2*evenmy - floor(my/(2*f)); y2 = cy + floor(my/(2*f)); x1 = cx + 2*evenmx - floor(mx/(2*f)); x2 = cx + floor(mx/(2*f)); Te(y1:y2,x1:x2)=T(1+evenmy:my/f,1+evenmx:mx/f); if evenmy, Te(y1-1,x1:x2)=T(1,2:mx/f)/2; Te(y2+1,x1:x2)=((T(1,mx/f:-1:2)/2)').'; end if evenmx, Te(y1:y2,x1-1)=T(2:my/f,1)/2; Te(y1:y2,x2+1)=((T(my/f:-1:2,1)/2)').'; end if evenmx & evenmy, esq=T(1,1)/4; Te(y1-1,x1-1)=esq; Te(y1-1,x2+1)=esq; Te(y2+1,x1-1)=esq; Te(y2+1,x2+1)=esq; end Te=fftshift(Te); Te = shift(Te, [1 1] - [evenmy evenmx]); te=ifft2(Te); % RES = innerProd(MTX) % % Compute (MTX' * MTX) efficiently (i.e., without copying the matrix) function res = innerProd(mtx) %% NOTE: THIS CODE SHOULD NOT BE USED! (MEX FILE IS CALLED INSTEAD) % fprintf(1,'WARNING: You should compile the MEX version of "innerProd.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); res = mtx' * mtx;
github
jacksky64/imageProcessing-master
perform_segmentation.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_segmentation.m
5,024
utf_8
838e39d3911cf7fa55e00ec1a6c11952
function [B,err] = perform_segmentation(E,options) % perform_segmentation - perform image segmentation % % B = perform_segmentation(E,options); % % E is an (n,n,k) set of k dimensional features vectors (one per pixel in % the image). % % options.segmentation_method can be % 'simple': E(:,:,k) should be minimum in area where texture i is % present. The algorithm uses a simple filtering. % 'chan-vese': E(:,:,k) should be minimum in area where texture i is % present. The algorithm uses a Chan-Vese active contour. % 'kmeans': E(i,j,:) is a feature vector around pixel (i,j). % the algorithm compute feature center for each texture using % k-means and then perform nearest-neighbors classification. % % Copyright (c) 2007 Gabriel Peyre n = size(E,1); ntextures = size(E,3); segmentation_method = getoptions(options, 'segmentation_method', 'simple'); oracle = getoptions(options, 'oracle', []); lambda = getoptions(options, 'lambda', 1.2); % for testing various filtering sizes if isempty(oracle) nmu = 1; mu = getoptions(options, 'mu', 4); mu_list = mu; else nmu = getoptions(options, 'nmu', 18); mumax = getoptions(options, 'mumax', 10); mu_list = linspace( 0.1,mumax,nmu ); end % best dictionary switch segmentation_method case 'simple' q = size(E,3); q1 = min(20,q); % PCA dimension err_list = []; B1 = {}; for i=1:nmu progressbar(i,nmu); EE = perform_blurring(E,mu_list(i)); [tmp,B1{i}] = min(EE,[],3); if not(isempty(oracle)) err_list(i) = 1 - sum( B1{i}(:)~=oracle(:) )/n^2; else err_list(i) = 0; end end [err,i] = max(err_list); B = B1{i}; case 'kmeans' %% perform clustering via Kmeans ntextures = getoptions(options, 'ntextures',[],1); q = size(E,3); q1 = min(20,q); % PCA dimension err_list = []; B1 = {}; for i=1:nmu progressbar(i,nmu); % apply non-linearity + smoothing E1 = perform_blurring(E,mu_list(i)); E1 = reshape(E1,[n^2 q])'; % add spacial relationship % rescale the features E1 = E1 - repmat(min(E1,[],2),[1 n^2]); E1 = E1 ./ repmat( median(E1,2),[1 n^2]); % dimension reduction [Y,E1] = pca(E1,q1); % do k-means on a subset options.nb_iter = 50; options.kmeans_code = 3; [B1{i},seeds,rms] = perform_kmeans(E1,ntextures,options); B1{i} = reshape(B1{i},n,n); [B1{i},err_list(end+1)] = fit_segmentation(B1{i},oracle); end [err,i] = max(err_list); B = B1{i}; case 'chan-vese' % active contours En = zeros(n,n,ntextures); if ntextures==2 En = E(:,:,1)-E(:,:,2); elseif ntextures==4 v = {[4 2] [3 1] [4 3] [2 1] }; for k=1:4 En(:,:,k) = E(:,:,v{k}(1))-E(:,:,v{k}(2)); a = En(:,:,k); % En(:,:,k) = En(:,:,k)-median(a(:)); a = En(:,:,k); % En(:,:,k) = lambda * En(:,:,k)/std( a(:) ); end else error('Works only for 2/4 textures'); end % normalize options.E = lambda * En/sqrt( mean(En(:).^2) ); if not(isfield(options, 'Tmax')) options.Tmax = 180; end options.redistance_freq = 10; options.dt = 0.5; options.display_freq = 10; if not(isfield(options, 'nb_svg')) options.nb_svg = 0; end options.solver = 'grad'; namec = 'small-disks'; % initial shape Dist0 = compute_levelset_shape(namec, n); if ntextures==4 % shift this function for the other phase sel = mod( (1:n) + 8,n )+1; Dist0 = cat(3,Dist0,Dist0(sel,sel)); end fprintf('Active contours:'); Dist = perform_active_contour(Dist0, 'chan-vese-user', options); if ntextures==2 B = (Dist>0)+1; else B = zeros(n); D1 = Dist(:,:,1); D2 = Dist(:,:,2); B(D1<0 & D2<0) = 1; B(D1<0 & D2>=0) = 2; B(D1>=0 & D2<0) = 3; B(D1>=0 & D2>=0) = 4; end end err = 0; if not(isempty(oracle)) [B,err] = fit_segmentation(B,oracle); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [B,err] = fit_segmentation(B,B0) if isempty(B0) return; end n = size(B,1); % check for optimal permutation to fit B0 ntextures = max(B(:)); P = perms(1:ntextures); err1 = []; for k=1:size(P,1) pp = P(k,:)'; err1(k) = sum( P(k,B(:))'==B0(:) )/n^2; end [err,k] = max(err1); B = reshape( P(k,B), size(B) );
github
jacksky64/imageProcessing-master
perform_histogram_matching_wavelet.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_histogram_matching_wavelet.m
4,495
utf_8
2583a784c610f9a09bd02673493e83f1
function MW_src = perform_histogram_matching_wavelet(MW_src,MW_tgt, Jmin, options) % perform_histogram_matching_wavelet - match the histogram of a wavelet transform % % Matching of wavelet coefficients only: % options.dotransform=0 % MW_src = perform_histogram_matching_wavelet(MW_src,MW_tgt,Jmin,options); % Matching of image + wavelet coefficients: % options.dotransform=1 % M_src = perform_histogram_matching_wavelet(M_src,M_tgt,Jmin,options); % % Match the spacial histogram of the image and the histogram of each % wavelet sub-band. % % Works also for color images. % % You can set options.use_histomatching=0 if you want to equalize the % kurtosis and skewness of subbands and not their histograms % (works well for natural images). % % Copyright (c) 2004 Gabriel Peyr? if nargin>=4 if ~isstruct(options) error('options should be a structure.'); end end options.null = 0; dotransform = getoptions(options, 'dotransform', 1); niter_synthesis = getoptions(options, 'niter_synthesis', 1); if nargin<3 Jmin = 3; end if niter_synthesis>1 options.niter_synthesis = 1; for i=1:niter_synthesis MW_src = perform_histogram_matching_wavelet(MW_src,MW_tgt, Jmin, options); end return; end if size(MW_src,3)==3 options.color_mode = 'pca'; [MW_src,options.ColorP] = change_color_mode(MW_src,+1,options); [MW_tgt,options.ColorP] = change_color_mode(MW_tgt,+1,options); for i=1:size(MW_src,3) MW_src(:,:,i) = perform_histogram_matching_wavelet(MW_src(:,:,i),MW_tgt(:,:,i),Jmin, options); end [MW_src,options.ColorP] = change_color_mode(MW_src,-1,options); return; end if size(MW_src,3)>1 for i=1:size(MW_src,3) MW_src(:,:,i) = perform_histogram_matching_wavelet(MW_src(:,:,i),MW_tgt(:,:,i),Jmin, options); end return; end % for spacial histogram, do not consider absval options.absval = 0; options.rows = 0; options.cols = 0; if dotransform == 1 % perform image extension n1 = size(MW_src,1); n2 = size(MW_tgt,1); n = max(n1,n2); n = 2^( ceil(log2(n)) ); MW_src = perform_image_extension(MW_src,n); MW_tgt = perform_image_extension(MW_tgt,n); options.wavelet_type = 'biorthogonal_swapped'; options.wavelet_vm = 4; % perform spacial matching MW_src = perform_matching(MW_src, MW_tgt, options); % compute transform MW_src = perform_wavelet_transform(MW_src, Jmin, +1, options); MW_tgt = perform_wavelet_transform(MW_tgt, Jmin, +1, options); % perform coefficients matching options.dotransform = 0; MW_src = perform_histogram_matching_wavelet(MW_src,MW_tgt,Jmin, options); % undo transforms MW_src = perform_wavelet_transform(MW_src, Jmin, -1, options); MW_tgt = perform_wavelet_transform(MW_tgt, Jmin, -1, options); % perform spacial matching MW_src = perform_matching(MW_src, MW_tgt, options); MW_src = MW_src(1:n1,1:n1); return; end if size(MW_src,1)~=size(MW_tgt,1) error('Wavelets coefficients should be of the same size.'); end mm = size(MW_src); Jmax = log2(mm)-1; for j=Jmax:-1:Jmin for q=1:3 [selx,sely] = compute_quadrant_selection(j,q); MW_src(selx,sely) = match_statistics(MW_src(selx,sely), MW_tgt(selx,sely), options); end end % match low scales selx = 1:2^Jmin; sely = 1:2^Jmin; MW_src(selx,sely) = perform_matching(MW_src(selx,sely), MW_tgt(selx,sely), options); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = perform_matching(x,y, options) % x = perform_histogram_matching(x,y, options); x = perform_histogram_equalization(x,y, options); function M = perform_image_extension(M,n) m = size(M,1); k = n-m; while k>size(M,1) M = perform_image_extension(M,size(M,1)*2); k = k - size(M,1)/2; end M = [M; M(end:-1:end-k+1,:)]; M = [M, M(:,end:-1:end-k+1)]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = match_statistics(x,y, options) options.null = 0; if isfield(options, 'use_histomatching') use_histomatching = options.use_histomatching; else use_histomatching = 1; end if isfield(options, 'nb_bins') nb_bins = options.nb_bins; else nb_bins = 100; end if use_histomatching options.absval = 1; x = perform_matching(x, y, options); else x = perform_kurtosis_equalization(x,y); end
github
jacksky64/imageProcessing-master
perform_steerable_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_steerable_transform.m
62,306
utf_8
8682ba128191ecc103c6b02364081a6e
function y = perform_steerable_transform(x, Jmin,options) % perform_steerable_transform - steerable pyramidal transform % % y = perform_steerable_transform(x, Jmin,options); % % This is just a convenient wrapper to the original steerable % matlab toolbox of Simoncelli that can be downloaded from % http://www.cns.nyu.edu/~eero/STEERPYR/ % % It provide a simpler interface that directly output a cell % array of images. Usage : % % M = load_image('lena'); % MS = perform_steerable_transform(M, 3); % synthesis % M1 = perform_steerable_transform(MS); % reconstruction % % options.nb_orientations : number of orientation of the pyramid (1/2/4/6) % % Copyright (c) 2005 Gabriel Peyr? if nargin<3 options.null = 0; end if nargin<2 Jmin = 4; end if isfield(options, 'nb_orientations') nb_orientations = options.nb_orientations; else nb_orientations = 4; % can be 1/2/4/6 end if nb_orientations~=1 && nb_orientations~=2 && nb_orientations~=4 && nb_orientations~=6 error('The number of orientation should be 1,2,4 or 6.'); end filts = ['sp' num2str(nb_orientations-1) 'Filters']; if ~iscell(x) Jmax = log2(size(x,1))-1; if Jmax-Jmin+1>5 warning('Cannot construct pyramid higher than 5 levels'); Jmin = Jmax-4; end nbr_bands = Jmax - Jmin + 1; % fwd transform [pyr,pind] = buildSpyr(x, nbr_bands, filts); % copy into cell array y = {}; for k=1:size(pind, 1) indices = pyrBandIndices(pind,k); L = length(indices); % length of this scale y{k} = reshape( pyr(indices), sqrt(L), sqrt(L) ); end else n = size(x{1},1); Jmax = log2(n)-1; nbr_bands = Jmax - Jmin + 1; % copy from cell array pind = n ./ 2.^(0:nbr_bands-1); pind = repmat(pind, nb_orientations, 1); pind = [pind(:), pind(:)]; pind = [pind(1,:); pind]; pind = [pind; pind(end,:)/2]; % build the matrix n = sum( prod(pind,2) ); pyr = zeros(n, 1); for k=1:size(pind, 1) indices = pyrBandIndices(pind,k); L = length(indices); % length of this scale pyr(indices) = x{k}(:); end % bwd transform y = reconSpyr(pyr, pind, filts); end % [PYR, INDICES, STEERMTX, HARMONICS] = buildSpyr(IM, HEIGHT, FILTFILE, EDGES) % % Construct a steerable pyramid on matrix IM. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(size(IM),size(FILT)). % You can also specify 'auto' to use this value. % % FILTFILE (optional) should be a string referring to an m-file that % returns the rfilters. (examples: 'sp0Filters', 'sp1Filters', % 'sp3Filters','sp5Filters'. default = 'sp1Filters'). EDGES specifies % edge-handling, and defaults to 'reflect1' (see corrDn). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % See the function STEER for a description of STEERMTX and HARMONICS. % Eero Simoncelli, 6/96. % See http://www.cis.upenn.edu/~eero/steerpyr.html for more % information about the Steerable Pyramid image decomposition. function [pyr,pind,steermtx,harmonics] = buildSpyr(im, ht, filtfile, edges) %----------------------------------------------------------------- %% DEFAULTS: if (exist('filtfile') ~= 1) filtfile = 'sp1Filters'; end if (exist('edges') ~= 1) edges= 'reflect1'; end if (isstr(filtfile) & (exist(filtfile) == 2)) [lo0filt,hi0filt,lofilt,bfilts,steermtx,harmonics] = eval(filtfile); else fprintf(1,'\nUse buildSFpyr for pyramids with arbitrary numbers of orientation bands.\n'); error('FILTFILE argument must be the name of an M-file containing SPYR filters.'); end max_ht = maxPyrHt(size(im), size(lofilt,1)); if ( (exist('ht') ~= 1) | (ht == 'auto') ) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end %----------------------------------------------------------------- hi0 = corrDn(im, hi0filt, edges); lo0 = corrDn(im, lo0filt, edges); [pyr,pind] = buildSpyrLevs(lo0, ht, lofilt, bfilts, edges); pyr = [hi0(:) ; pyr]; pind = [size(hi0); pind]; % [PYR, INDICES, STEERMTX, HARMONICS] = buildSFpyr(IM, HEIGHT, ORDER, TWIDTH) % % Construct a steerable pyramid on matrix IM, in the Fourier domain. % This is similar to buildSpyr, except that: % % + Reconstruction is exact (within floating point errors) % + It can produce any number of orientation bands. % - Typically slower, especially for non-power-of-two sizes. % - Boundary-handling is circular. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(size(IM),size(FILT)); % % The squared radial functions tile the Fourier plane, with a raised-cosine % falloff. Angular functions are cos(theta-k\pi/(K+1))^K, where K is % the ORDER (one less than the number of orientation bands, default= 3). % % TWIDTH is the width of the transition region of the radial lowpass % function, in octaves (default = 1, which gives a raised cosine for % the bandpass filters). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % See the function STEER for a description of STEERMTX and HARMONICS. % Eero Simoncelli, 5/97. % See http://www.cns.nyu.edu/~eero/STEERPYR/ for more % information about the Steerable Pyramid image decomposition. function [pyr,pind,steermtx,harmonics] = buildSFpyr(im, ht, order, twidth) %----------------------------------------------------------------- %% DEFAULTS: max_ht = floor(log2(min(size(im)))) - 2; if (exist('ht') ~= 1) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (exist('order') ~= 1) order = 3; elseif ((order > 15) | (order < 0)) fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n'); order = min(max(order,0),15); else order = round(order); end nbands = order+1; if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %----------------------------------------------------------------- %% Steering stuff: if (mod((nbands),2) == 0) harmonics = [0:(nbands/2)-1]'*2 + 1; else harmonics = [0:(nbands-1)/2]'*2; end steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even'); %----------------------------------------------------------------- dims = size(im); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); imdft = fftshift(fft2(im)); lo0dft = imdft .* lo0mask; [pyr,pind] = buildSFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands); hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); hi0dft = imdft .* hi0mask; hi0 = ifft2(ifftshift(hi0dft)); pyr = [real(hi0(:)) ; pyr]; pind = [size(hi0); pind]; % Steerable pyramid filters. Transform described in: % % @INPROCEEDINGS{Simoncelli95b, % TITLE = "The Steerable Pyramid: A Flexible Architecture for % Multi-Scale Derivative Computation", % AUTHOR = "E P Simoncelli and W T Freeman", % BOOKTITLE = "Second Int'l Conf on Image Processing", % ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 } % % Filter kernel design described in: % %@INPROCEEDINGS{Karasaridis96, % TITLE = "A Filter Design Technique for % Steerable Pyramid Image Transforms", % AUTHOR = "A Karasaridis and E P Simoncelli", % BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA", % MONTH = "May", YEAR = 1996 } % Eero Simoncelli, 6/96. function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp0Filters(); harmonics = [ 0 ]; lo0filt = [ ... -4.514000e-04 -1.137100e-04 -3.725800e-04 -3.743860e-03 -3.725800e-04 -1.137100e-04 -4.514000e-04 -1.137100e-04 -6.119520e-03 -1.344160e-02 -7.563200e-03 -1.344160e-02 -6.119520e-03 -1.137100e-04 -3.725800e-04 -1.344160e-02 6.441488e-02 1.524935e-01 6.441488e-02 -1.344160e-02 -3.725800e-04 -3.743860e-03 -7.563200e-03 1.524935e-01 3.153017e-01 1.524935e-01 -7.563200e-03 -3.743860e-03 -3.725800e-04 -1.344160e-02 6.441488e-02 1.524935e-01 6.441488e-02 -1.344160e-02 -3.725800e-04 -1.137100e-04 -6.119520e-03 -1.344160e-02 -7.563200e-03 -1.344160e-02 -6.119520e-03 -1.137100e-04 -4.514000e-04 -1.137100e-04 -3.725800e-04 -3.743860e-03 -3.725800e-04 -1.137100e-04 -4.514000e-04]; lofilt = [ ... -2.257000e-04 -8.064400e-04 -5.686000e-05 8.741400e-04 -1.862800e-04 -1.031640e-03 -1.871920e-03 -1.031640e-03 -1.862800e-04 8.741400e-04 -5.686000e-05 -8.064400e-04 -2.257000e-04 -8.064400e-04 1.417620e-03 -1.903800e-04 -2.449060e-03 -4.596420e-03 -7.006740e-03 -6.948900e-03 -7.006740e-03 -4.596420e-03 -2.449060e-03 -1.903800e-04 1.417620e-03 -8.064400e-04 -5.686000e-05 -1.903800e-04 -3.059760e-03 -6.401000e-03 -6.720800e-03 -5.236180e-03 -3.781600e-03 -5.236180e-03 -6.720800e-03 -6.401000e-03 -3.059760e-03 -1.903800e-04 -5.686000e-05 8.741400e-04 -2.449060e-03 -6.401000e-03 -5.260020e-03 3.938620e-03 1.722078e-02 2.449600e-02 1.722078e-02 3.938620e-03 -5.260020e-03 -6.401000e-03 -2.449060e-03 8.741400e-04 -1.862800e-04 -4.596420e-03 -6.720800e-03 3.938620e-03 3.220744e-02 6.306262e-02 7.624674e-02 6.306262e-02 3.220744e-02 3.938620e-03 -6.720800e-03 -4.596420e-03 -1.862800e-04 -1.031640e-03 -7.006740e-03 -5.236180e-03 1.722078e-02 6.306262e-02 1.116388e-01 1.348999e-01 1.116388e-01 6.306262e-02 1.722078e-02 -5.236180e-03 -7.006740e-03 -1.031640e-03 -1.871920e-03 -6.948900e-03 -3.781600e-03 2.449600e-02 7.624674e-02 1.348999e-01 1.576508e-01 1.348999e-01 7.624674e-02 2.449600e-02 -3.781600e-03 -6.948900e-03 -1.871920e-03 -1.031640e-03 -7.006740e-03 -5.236180e-03 1.722078e-02 6.306262e-02 1.116388e-01 1.348999e-01 1.116388e-01 6.306262e-02 1.722078e-02 -5.236180e-03 -7.006740e-03 -1.031640e-03 -1.862800e-04 -4.596420e-03 -6.720800e-03 3.938620e-03 3.220744e-02 6.306262e-02 7.624674e-02 6.306262e-02 3.220744e-02 3.938620e-03 -6.720800e-03 -4.596420e-03 -1.862800e-04 8.741400e-04 -2.449060e-03 -6.401000e-03 -5.260020e-03 3.938620e-03 1.722078e-02 2.449600e-02 1.722078e-02 3.938620e-03 -5.260020e-03 -6.401000e-03 -2.449060e-03 8.741400e-04 -5.686000e-05 -1.903800e-04 -3.059760e-03 -6.401000e-03 -6.720800e-03 -5.236180e-03 -3.781600e-03 -5.236180e-03 -6.720800e-03 -6.401000e-03 -3.059760e-03 -1.903800e-04 -5.686000e-05 -8.064400e-04 1.417620e-03 -1.903800e-04 -2.449060e-03 -4.596420e-03 -7.006740e-03 -6.948900e-03 -7.006740e-03 -4.596420e-03 -2.449060e-03 -1.903800e-04 1.417620e-03 -8.064400e-04 -2.257000e-04 -8.064400e-04 -5.686000e-05 8.741400e-04 -1.862800e-04 -1.031640e-03 -1.871920e-03 -1.031640e-03 -1.862800e-04 8.741400e-04 -5.686000e-05 -8.064400e-04 -2.257000e-04]; mtx = [ 1.000000 ]; hi0filt = [... 5.997200e-04 -6.068000e-05 -3.324900e-04 -3.325600e-04 -2.406600e-04 -3.325600e-04 -3.324900e-04 -6.068000e-05 5.997200e-04 -6.068000e-05 1.263100e-04 4.927100e-04 1.459700e-04 -3.732100e-04 1.459700e-04 4.927100e-04 1.263100e-04 -6.068000e-05 -3.324900e-04 4.927100e-04 -1.616650e-03 -1.437358e-02 -2.420138e-02 -1.437358e-02 -1.616650e-03 4.927100e-04 -3.324900e-04 -3.325600e-04 1.459700e-04 -1.437358e-02 -6.300923e-02 -9.623594e-02 -6.300923e-02 -1.437358e-02 1.459700e-04 -3.325600e-04 -2.406600e-04 -3.732100e-04 -2.420138e-02 -9.623594e-02 8.554893e-01 -9.623594e-02 -2.420138e-02 -3.732100e-04 -2.406600e-04 -3.325600e-04 1.459700e-04 -1.437358e-02 -6.300923e-02 -9.623594e-02 -6.300923e-02 -1.437358e-02 1.459700e-04 -3.325600e-04 -3.324900e-04 4.927100e-04 -1.616650e-03 -1.437358e-02 -2.420138e-02 -1.437358e-02 -1.616650e-03 4.927100e-04 -3.324900e-04 -6.068000e-05 1.263100e-04 4.927100e-04 1.459700e-04 -3.732100e-04 1.459700e-04 4.927100e-04 1.263100e-04 -6.068000e-05 5.997200e-04 -6.068000e-05 -3.324900e-04 -3.325600e-04 -2.406600e-04 -3.325600e-04 -3.324900e-04 -6.068000e-05 5.997200e-04 ]; bfilts = [ ... -9.066000e-05 -1.738640e-03 -4.942500e-03 -7.889390e-03 -1.009473e-02 -7.889390e-03 -4.942500e-03 -1.738640e-03 -9.066000e-05 ... -1.738640e-03 -4.625150e-03 -7.272540e-03 -7.623410e-03 -9.091950e-03 -7.623410e-03 -7.272540e-03 -4.625150e-03 -1.738640e-03 ... -4.942500e-03 -7.272540e-03 -2.129540e-02 -2.435662e-02 -3.487008e-02 -2.435662e-02 -2.129540e-02 -7.272540e-03 -4.942500e-03 ... -7.889390e-03 -7.623410e-03 -2.435662e-02 -1.730466e-02 -3.158605e-02 -1.730466e-02 -2.435662e-02 -7.623410e-03 -7.889390e-03 ... -1.009473e-02 -9.091950e-03 -3.487008e-02 -3.158605e-02 9.464195e-01 -3.158605e-02 -3.487008e-02 -9.091950e-03 -1.009473e-02 ... -7.889390e-03 -7.623410e-03 -2.435662e-02 -1.730466e-02 -3.158605e-02 -1.730466e-02 -2.435662e-02 -7.623410e-03 -7.889390e-03 ... -4.942500e-03 -7.272540e-03 -2.129540e-02 -2.435662e-02 -3.487008e-02 -2.435662e-02 -2.129540e-02 -7.272540e-03 -4.942500e-03 ... -1.738640e-03 -4.625150e-03 -7.272540e-03 -7.623410e-03 -9.091950e-03 -7.623410e-03 -7.272540e-03 -4.625150e-03 -1.738640e-03 ... -9.066000e-05 -1.738640e-03 -4.942500e-03 -7.889390e-03 -1.009473e-02 -7.889390e-03 -4.942500e-03 -1.738640e-03 -9.066000e-05 ]'; % Steerable pyramid filters. Transform described in: % % @INPROCEEDINGS{Simoncelli95b, % TITLE = "The Steerable Pyramid: A Flexible Architecture for % Multi-Scale Derivative Computation", % AUTHOR = "E P Simoncelli and W T Freeman", % BOOKTITLE = "Second Int'l Conf on Image Processing", % ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 } % % Filter kernel design described in: % %@INPROCEEDINGS{Karasaridis96, % TITLE = "A Filter Design Technique for % Steerable Pyramid Image Transforms", % AUTHOR = "A Karasaridis and E P Simoncelli", % BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA", % MONTH = "May", YEAR = 1996 } % Eero Simoncelli, 6/96. function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp1Filters(); harmonics = [ 1 ]; %% filters only contain first harmonic. mtx = eye(2); lo0filt = [ ... -8.701000e-05 -1.354280e-03 -1.601260e-03 -5.033700e-04 2.524010e-03 -5.033700e-04 -1.601260e-03 -1.354280e-03 -8.701000e-05 -1.354280e-03 2.921580e-03 7.522720e-03 8.224420e-03 1.107620e-03 8.224420e-03 7.522720e-03 2.921580e-03 -1.354280e-03 -1.601260e-03 7.522720e-03 -7.061290e-03 -3.769487e-02 -3.297137e-02 -3.769487e-02 -7.061290e-03 7.522720e-03 -1.601260e-03 -5.033700e-04 8.224420e-03 -3.769487e-02 4.381320e-02 1.811603e-01 4.381320e-02 -3.769487e-02 8.224420e-03 -5.033700e-04 2.524010e-03 1.107620e-03 -3.297137e-02 1.811603e-01 4.376250e-01 1.811603e-01 -3.297137e-02 1.107620e-03 2.524010e-03 -5.033700e-04 8.224420e-03 -3.769487e-02 4.381320e-02 1.811603e-01 4.381320e-02 -3.769487e-02 8.224420e-03 -5.033700e-04 -1.601260e-03 7.522720e-03 -7.061290e-03 -3.769487e-02 -3.297137e-02 -3.769487e-02 -7.061290e-03 7.522720e-03 -1.601260e-03 -1.354280e-03 2.921580e-03 7.522720e-03 8.224420e-03 1.107620e-03 8.224420e-03 7.522720e-03 2.921580e-03 -1.354280e-03 -8.701000e-05 -1.354280e-03 -1.601260e-03 -5.033700e-04 2.524010e-03 -5.033700e-04 -1.601260e-03 -1.354280e-03 -8.701000e-05 ]; lofilt = [ ... -4.350000e-05 1.207800e-04 -6.771400e-04 -1.243400e-04 -8.006400e-04 -1.597040e-03 -2.516800e-04 -4.202000e-04 1.262000e-03 -4.202000e-04 -2.516800e-04 -1.597040e-03 -8.006400e-04 -1.243400e-04 -6.771400e-04 1.207800e-04 -4.350000e-05 ; ... 1.207800e-04 4.460600e-04 -5.814600e-04 5.621600e-04 -1.368800e-04 2.325540e-03 2.889860e-03 4.287280e-03 5.589400e-03 4.287280e-03 2.889860e-03 2.325540e-03 -1.368800e-04 5.621600e-04 -5.814600e-04 4.460600e-04 1.207800e-04 ; ... -6.771400e-04 -5.814600e-04 1.460780e-03 2.160540e-03 3.761360e-03 3.080980e-03 4.112200e-03 2.221220e-03 5.538200e-04 2.221220e-03 4.112200e-03 3.080980e-03 3.761360e-03 2.160540e-03 1.460780e-03 -5.814600e-04 -6.771400e-04 ; ... -1.243400e-04 5.621600e-04 2.160540e-03 3.175780e-03 3.184680e-03 -1.777480e-03 -7.431700e-03 -9.056920e-03 -9.637220e-03 -9.056920e-03 -7.431700e-03 -1.777480e-03 3.184680e-03 3.175780e-03 2.160540e-03 5.621600e-04 -1.243400e-04 ; ... -8.006400e-04 -1.368800e-04 3.761360e-03 3.184680e-03 -3.530640e-03 -1.260420e-02 -1.884744e-02 -1.750818e-02 -1.648568e-02 -1.750818e-02 -1.884744e-02 -1.260420e-02 -3.530640e-03 3.184680e-03 3.761360e-03 -1.368800e-04 -8.006400e-04 ; ... -1.597040e-03 2.325540e-03 3.080980e-03 -1.777480e-03 -1.260420e-02 -2.022938e-02 -1.109170e-02 3.955660e-03 1.438512e-02 3.955660e-03 -1.109170e-02 -2.022938e-02 -1.260420e-02 -1.777480e-03 3.080980e-03 2.325540e-03 -1.597040e-03 ; ... -2.516800e-04 2.889860e-03 4.112200e-03 -7.431700e-03 -1.884744e-02 -1.109170e-02 2.190660e-02 6.806584e-02 9.058014e-02 6.806584e-02 2.190660e-02 -1.109170e-02 -1.884744e-02 -7.431700e-03 4.112200e-03 2.889860e-03 -2.516800e-04 ; ... -4.202000e-04 4.287280e-03 2.221220e-03 -9.056920e-03 -1.750818e-02 3.955660e-03 6.806584e-02 1.445500e-01 1.773651e-01 1.445500e-01 6.806584e-02 3.955660e-03 -1.750818e-02 -9.056920e-03 2.221220e-03 4.287280e-03 -4.202000e-04 ; ... 1.262000e-03 5.589400e-03 5.538200e-04 -9.637220e-03 -1.648568e-02 1.438512e-02 9.058014e-02 1.773651e-01 2.120374e-01 1.773651e-01 9.058014e-02 1.438512e-02 -1.648568e-02 -9.637220e-03 5.538200e-04 5.589400e-03 1.262000e-03 ; ... -4.202000e-04 4.287280e-03 2.221220e-03 -9.056920e-03 -1.750818e-02 3.955660e-03 6.806584e-02 1.445500e-01 1.773651e-01 1.445500e-01 6.806584e-02 3.955660e-03 -1.750818e-02 -9.056920e-03 2.221220e-03 4.287280e-03 -4.202000e-04 ; ... -2.516800e-04 2.889860e-03 4.112200e-03 -7.431700e-03 -1.884744e-02 -1.109170e-02 2.190660e-02 6.806584e-02 9.058014e-02 6.806584e-02 2.190660e-02 -1.109170e-02 -1.884744e-02 -7.431700e-03 4.112200e-03 2.889860e-03 -2.516800e-04 ; ... -1.597040e-03 2.325540e-03 3.080980e-03 -1.777480e-03 -1.260420e-02 -2.022938e-02 -1.109170e-02 3.955660e-03 1.438512e-02 3.955660e-03 -1.109170e-02 -2.022938e-02 -1.260420e-02 -1.777480e-03 3.080980e-03 2.325540e-03 -1.597040e-03 ; ... -8.006400e-04 -1.368800e-04 3.761360e-03 3.184680e-03 -3.530640e-03 -1.260420e-02 -1.884744e-02 -1.750818e-02 -1.648568e-02 -1.750818e-02 -1.884744e-02 -1.260420e-02 -3.530640e-03 3.184680e-03 3.761360e-03 -1.368800e-04 -8.006400e-04 ; ... -1.243400e-04 5.621600e-04 2.160540e-03 3.175780e-03 3.184680e-03 -1.777480e-03 -7.431700e-03 -9.056920e-03 -9.637220e-03 -9.056920e-03 -7.431700e-03 -1.777480e-03 3.184680e-03 3.175780e-03 2.160540e-03 5.621600e-04 -1.243400e-04 ; ... -6.771400e-04 -5.814600e-04 1.460780e-03 2.160540e-03 3.761360e-03 3.080980e-03 4.112200e-03 2.221220e-03 5.538200e-04 2.221220e-03 4.112200e-03 3.080980e-03 3.761360e-03 2.160540e-03 1.460780e-03 -5.814600e-04 -6.771400e-04 ; ... 1.207800e-04 4.460600e-04 -5.814600e-04 5.621600e-04 -1.368800e-04 2.325540e-03 2.889860e-03 4.287280e-03 5.589400e-03 4.287280e-03 2.889860e-03 2.325540e-03 -1.368800e-04 5.621600e-04 -5.814600e-04 4.460600e-04 1.207800e-04 ; ... -4.350000e-05 1.207800e-04 -6.771400e-04 -1.243400e-04 -8.006400e-04 -1.597040e-03 -2.516800e-04 -4.202000e-04 1.262000e-03 -4.202000e-04 -2.516800e-04 -1.597040e-03 -8.006400e-04 -1.243400e-04 -6.771400e-04 1.207800e-04 -4.350000e-05 ]; hi0filt = [... -9.570000e-04 -2.424100e-04 -1.424720e-03 -8.742600e-04 -1.166810e-03 -8.742600e-04 -1.424720e-03 -2.424100e-04 -9.570000e-04 ; ... -2.424100e-04 -4.317530e-03 8.998600e-04 9.156420e-03 1.098012e-02 9.156420e-03 8.998600e-04 -4.317530e-03 -2.424100e-04 ; ... -1.424720e-03 8.998600e-04 1.706347e-02 1.094866e-02 -5.897780e-03 1.094866e-02 1.706347e-02 8.998600e-04 -1.424720e-03 ; ... -8.742600e-04 9.156420e-03 1.094866e-02 -7.841370e-02 -1.562827e-01 -7.841370e-02 1.094866e-02 9.156420e-03 -8.742600e-04 ; ... -1.166810e-03 1.098012e-02 -5.897780e-03 -1.562827e-01 7.282593e-01 -1.562827e-01 -5.897780e-03 1.098012e-02 -1.166810e-03 ; ... -8.742600e-04 9.156420e-03 1.094866e-02 -7.841370e-02 -1.562827e-01 -7.841370e-02 1.094866e-02 9.156420e-03 -8.742600e-04 ; ... -1.424720e-03 8.998600e-04 1.706347e-02 1.094866e-02 -5.897780e-03 1.094866e-02 1.706347e-02 8.998600e-04 -1.424720e-03 ; ... -2.424100e-04 -4.317530e-03 8.998600e-04 9.156420e-03 1.098012e-02 9.156420e-03 8.998600e-04 -4.317530e-03 -2.424100e-04 ; ... -9.570000e-04 -2.424100e-04 -1.424720e-03 -8.742600e-04 -1.166810e-03 -8.742600e-04 -1.424720e-03 -2.424100e-04 -9.570000e-04 ]; bfilts = -[ ... 6.125880e-03 -8.052600e-03 -2.103714e-02 -1.536890e-02 -1.851466e-02 -1.536890e-02 -2.103714e-02 -8.052600e-03 6.125880e-03 ... -1.287416e-02 -9.611520e-03 1.023569e-02 6.009450e-03 1.872620e-03 6.009450e-03 1.023569e-02 -9.611520e-03 -1.287416e-02 ... -5.641530e-03 4.168400e-03 -2.382180e-02 -5.375324e-02 -2.076086e-02 -5.375324e-02 -2.382180e-02 4.168400e-03 -5.641530e-03 ... -8.957260e-03 -1.751170e-03 -1.836909e-02 1.265655e-01 2.996168e-01 1.265655e-01 -1.836909e-02 -1.751170e-03 -8.957260e-03 ... 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 ... 8.957260e-03 1.751170e-03 1.836909e-02 -1.265655e-01 -2.996168e-01 -1.265655e-01 1.836909e-02 1.751170e-03 8.957260e-03 ... 5.641530e-03 -4.168400e-03 2.382180e-02 5.375324e-02 2.076086e-02 5.375324e-02 2.382180e-02 -4.168400e-03 5.641530e-03 ... 1.287416e-02 9.611520e-03 -1.023569e-02 -6.009450e-03 -1.872620e-03 -6.009450e-03 -1.023569e-02 9.611520e-03 1.287416e-02 ... -6.125880e-03 8.052600e-03 2.103714e-02 1.536890e-02 1.851466e-02 1.536890e-02 2.103714e-02 8.052600e-03 -6.125880e-03; ... ... -6.125880e-03 1.287416e-02 5.641530e-03 8.957260e-03 0.000000e+00 -8.957260e-03 -5.641530e-03 -1.287416e-02 6.125880e-03 ... 8.052600e-03 9.611520e-03 -4.168400e-03 1.751170e-03 0.000000e+00 -1.751170e-03 4.168400e-03 -9.611520e-03 -8.052600e-03 ... 2.103714e-02 -1.023569e-02 2.382180e-02 1.836909e-02 0.000000e+00 -1.836909e-02 -2.382180e-02 1.023569e-02 -2.103714e-02 ... 1.536890e-02 -6.009450e-03 5.375324e-02 -1.265655e-01 0.000000e+00 1.265655e-01 -5.375324e-02 6.009450e-03 -1.536890e-02 ... 1.851466e-02 -1.872620e-03 2.076086e-02 -2.996168e-01 0.000000e+00 2.996168e-01 -2.076086e-02 1.872620e-03 -1.851466e-02 ... 1.536890e-02 -6.009450e-03 5.375324e-02 -1.265655e-01 0.000000e+00 1.265655e-01 -5.375324e-02 6.009450e-03 -1.536890e-02 ... 2.103714e-02 -1.023569e-02 2.382180e-02 1.836909e-02 0.000000e+00 -1.836909e-02 -2.382180e-02 1.023569e-02 -2.103714e-02 ... 8.052600e-03 9.611520e-03 -4.168400e-03 1.751170e-03 0.000000e+00 -1.751170e-03 4.168400e-03 -9.611520e-03 -8.052600e-03 ... -6.125880e-03 1.287416e-02 5.641530e-03 8.957260e-03 0.000000e+00 -8.957260e-03 -5.641530e-03 -1.287416e-02 6.125880e-03 ... ]'; % Steerable pyramid filters. Transform described in: % % @INPROCEEDINGS{Simoncelli95b, % TITLE = "The Steerable Pyramid: A Flexible Architecture for % Multi-Scale Derivative Computation", % AUTHOR = "E P Simoncelli and W T Freeman", % BOOKTITLE = "Second Int'l Conf on Image Processing", % ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 } % % Filter kernel design described in: % %@INPROCEEDINGS{Karasaridis96, % TITLE = "A Filter Design Technique for % Steerable Pyramid Image Transforms", % AUTHOR = "A Karasaridis and E P Simoncelli", % BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA", % MONTH = "May", YEAR = 1996 } % Eero Simoncelli, 6/96. function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp3Filters(); harmonics = [1 3]; mtx = [ ... 0.5000 0.3536 0 -0.3536 -0.0000 0.3536 0.5000 0.3536 0.5000 -0.3536 0 0.3536 -0.0000 0.3536 -0.5000 0.3536]; hi0filt = [ -4.0483998600E-4 -6.2596000498E-4 -3.7829999201E-5 8.8387000142E-4 1.5450799838E-3 1.9235999789E-3 2.0687500946E-3 2.0898699295E-3 2.0687500946E-3 1.9235999789E-3 1.5450799838E-3 8.8387000142E-4 -3.7829999201E-5 -6.2596000498E-4 -4.0483998600E-4 -6.2596000498E-4 -3.2734998967E-4 7.7435001731E-4 1.5874400269E-3 2.1750701126E-3 2.5626500137E-3 2.2892199922E-3 1.9755100366E-3 2.2892199922E-3 2.5626500137E-3 2.1750701126E-3 1.5874400269E-3 7.7435001731E-4 -3.2734998967E-4 -6.2596000498E-4 -3.7829999201E-5 7.7435001731E-4 1.1793200392E-3 1.4050999889E-3 2.2253401112E-3 2.1145299543E-3 3.3578000148E-4 -8.3368999185E-4 3.3578000148E-4 2.1145299543E-3 2.2253401112E-3 1.4050999889E-3 1.1793200392E-3 7.7435001731E-4 -3.7829999201E-5 8.8387000142E-4 1.5874400269E-3 1.4050999889E-3 1.2960999738E-3 -4.9274001503E-4 -3.1295299996E-3 -4.5751798898E-3 -5.1014497876E-3 -4.5751798898E-3 -3.1295299996E-3 -4.9274001503E-4 1.2960999738E-3 1.4050999889E-3 1.5874400269E-3 8.8387000142E-4 1.5450799838E-3 2.1750701126E-3 2.2253401112E-3 -4.9274001503E-4 -6.3222697936E-3 -2.7556000277E-3 5.3632198833E-3 7.3032598011E-3 5.3632198833E-3 -2.7556000277E-3 -6.3222697936E-3 -4.9274001503E-4 2.2253401112E-3 2.1750701126E-3 1.5450799838E-3 1.9235999789E-3 2.5626500137E-3 2.1145299543E-3 -3.1295299996E-3 -2.7556000277E-3 1.3962360099E-2 7.8046298586E-3 -9.3812197447E-3 7.8046298586E-3 1.3962360099E-2 -2.7556000277E-3 -3.1295299996E-3 2.1145299543E-3 2.5626500137E-3 1.9235999789E-3 2.0687500946E-3 2.2892199922E-3 3.3578000148E-4 -4.5751798898E-3 5.3632198833E-3 7.8046298586E-3 -7.9501636326E-2 -0.1554141641 -7.9501636326E-2 7.8046298586E-3 5.3632198833E-3 -4.5751798898E-3 3.3578000148E-4 2.2892199922E-3 2.0687500946E-3 2.0898699295E-3 1.9755100366E-3 -8.3368999185E-4 -5.1014497876E-3 7.3032598011E-3 -9.3812197447E-3 -0.1554141641 0.7303866148 -0.1554141641 -9.3812197447E-3 7.3032598011E-3 -5.1014497876E-3 -8.3368999185E-4 1.9755100366E-3 2.0898699295E-3 2.0687500946E-3 2.2892199922E-3 3.3578000148E-4 -4.5751798898E-3 5.3632198833E-3 7.8046298586E-3 -7.9501636326E-2 -0.1554141641 -7.9501636326E-2 7.8046298586E-3 5.3632198833E-3 -4.5751798898E-3 3.3578000148E-4 2.2892199922E-3 2.0687500946E-3 1.9235999789E-3 2.5626500137E-3 2.1145299543E-3 -3.1295299996E-3 -2.7556000277E-3 1.3962360099E-2 7.8046298586E-3 -9.3812197447E-3 7.8046298586E-3 1.3962360099E-2 -2.7556000277E-3 -3.1295299996E-3 2.1145299543E-3 2.5626500137E-3 1.9235999789E-3 1.5450799838E-3 2.1750701126E-3 2.2253401112E-3 -4.9274001503E-4 -6.3222697936E-3 -2.7556000277E-3 5.3632198833E-3 7.3032598011E-3 5.3632198833E-3 -2.7556000277E-3 -6.3222697936E-3 -4.9274001503E-4 2.2253401112E-3 2.1750701126E-3 1.5450799838E-3 8.8387000142E-4 1.5874400269E-3 1.4050999889E-3 1.2960999738E-3 -4.9274001503E-4 -3.1295299996E-3 -4.5751798898E-3 -5.1014497876E-3 -4.5751798898E-3 -3.1295299996E-3 -4.9274001503E-4 1.2960999738E-3 1.4050999889E-3 1.5874400269E-3 8.8387000142E-4 -3.7829999201E-5 7.7435001731E-4 1.1793200392E-3 1.4050999889E-3 2.2253401112E-3 2.1145299543E-3 3.3578000148E-4 -8.3368999185E-4 3.3578000148E-4 2.1145299543E-3 2.2253401112E-3 1.4050999889E-3 1.1793200392E-3 7.7435001731E-4 -3.7829999201E-5 -6.2596000498E-4 -3.2734998967E-4 7.7435001731E-4 1.5874400269E-3 2.1750701126E-3 2.5626500137E-3 2.2892199922E-3 1.9755100366E-3 2.2892199922E-3 2.5626500137E-3 2.1750701126E-3 1.5874400269E-3 7.7435001731E-4 -3.2734998967E-4 -6.2596000498E-4 -4.0483998600E-4 -6.2596000498E-4 -3.7829999201E-5 8.8387000142E-4 1.5450799838E-3 1.9235999789E-3 2.0687500946E-3 2.0898699295E-3 2.0687500946E-3 1.9235999789E-3 1.5450799838E-3 8.8387000142E-4 -3.7829999201E-5 -6.2596000498E-4 -4.0483998600E-4 ]; lo0filt = [ -8.7009997515E-5 -1.3542800443E-3 -1.6012600390E-3 -5.0337001448E-4 2.5240099058E-3 -5.0337001448E-4 -1.6012600390E-3 -1.3542800443E-3 -8.7009997515E-5 -1.3542800443E-3 2.9215801042E-3 7.5227199122E-3 8.2244202495E-3 1.1076199589E-3 8.2244202495E-3 7.5227199122E-3 2.9215801042E-3 -1.3542800443E-3 -1.6012600390E-3 7.5227199122E-3 -7.0612900890E-3 -3.7694871426E-2 -3.2971370965E-2 -3.7694871426E-2 -7.0612900890E-3 7.5227199122E-3 -1.6012600390E-3 -5.0337001448E-4 8.2244202495E-3 -3.7694871426E-2 4.3813198805E-2 0.1811603010 4.3813198805E-2 -3.7694871426E-2 8.2244202495E-3 -5.0337001448E-4 2.5240099058E-3 1.1076199589E-3 -3.2971370965E-2 0.1811603010 0.4376249909 0.1811603010 -3.2971370965E-2 1.1076199589E-3 2.5240099058E-3 -5.0337001448E-4 8.2244202495E-3 -3.7694871426E-2 4.3813198805E-2 0.1811603010 4.3813198805E-2 -3.7694871426E-2 8.2244202495E-3 -5.0337001448E-4 -1.6012600390E-3 7.5227199122E-3 -7.0612900890E-3 -3.7694871426E-2 -3.2971370965E-2 -3.7694871426E-2 -7.0612900890E-3 7.5227199122E-3 -1.6012600390E-3 -1.3542800443E-3 2.9215801042E-3 7.5227199122E-3 8.2244202495E-3 1.1076199589E-3 8.2244202495E-3 7.5227199122E-3 2.9215801042E-3 -1.3542800443E-3 -8.7009997515E-5 -1.3542800443E-3 -1.6012600390E-3 -5.0337001448E-4 2.5240099058E-3 -5.0337001448E-4 -1.6012600390E-3 -1.3542800443E-3 -8.7009997515E-5 ]; lofilt = [ -4.3500000174E-5 1.2078000145E-4 -6.7714002216E-4 -1.2434000382E-4 -8.0063997302E-4 -1.5970399836E-3 -2.5168000138E-4 -4.2019999819E-4 1.2619999470E-3 -4.2019999819E-4 -2.5168000138E-4 -1.5970399836E-3 -8.0063997302E-4 -1.2434000382E-4 -6.7714002216E-4 1.2078000145E-4 -4.3500000174E-5 1.2078000145E-4 4.4606000301E-4 -5.8146001538E-4 5.6215998484E-4 -1.3688000035E-4 2.3255399428E-3 2.8898599558E-3 4.2872801423E-3 5.5893999524E-3 4.2872801423E-3 2.8898599558E-3 2.3255399428E-3 -1.3688000035E-4 5.6215998484E-4 -5.8146001538E-4 4.4606000301E-4 1.2078000145E-4 -6.7714002216E-4 -5.8146001538E-4 1.4607800404E-3 2.1605400834E-3 3.7613599561E-3 3.0809799209E-3 4.1121998802E-3 2.2212199401E-3 5.5381999118E-4 2.2212199401E-3 4.1121998802E-3 3.0809799209E-3 3.7613599561E-3 2.1605400834E-3 1.4607800404E-3 -5.8146001538E-4 -6.7714002216E-4 -1.2434000382E-4 5.6215998484E-4 2.1605400834E-3 3.1757799443E-3 3.1846798956E-3 -1.7774800071E-3 -7.4316998944E-3 -9.0569201857E-3 -9.6372198313E-3 -9.0569201857E-3 -7.4316998944E-3 -1.7774800071E-3 3.1846798956E-3 3.1757799443E-3 2.1605400834E-3 5.6215998484E-4 -1.2434000382E-4 -8.0063997302E-4 -1.3688000035E-4 3.7613599561E-3 3.1846798956E-3 -3.5306399222E-3 -1.2604200281E-2 -1.8847439438E-2 -1.7508180812E-2 -1.6485679895E-2 -1.7508180812E-2 -1.8847439438E-2 -1.2604200281E-2 -3.5306399222E-3 3.1846798956E-3 3.7613599561E-3 -1.3688000035E-4 -8.0063997302E-4 -1.5970399836E-3 2.3255399428E-3 3.0809799209E-3 -1.7774800071E-3 -1.2604200281E-2 -2.0229380578E-2 -1.1091699824E-2 3.9556599222E-3 1.4385120012E-2 3.9556599222E-3 -1.1091699824E-2 -2.0229380578E-2 -1.2604200281E-2 -1.7774800071E-3 3.0809799209E-3 2.3255399428E-3 -1.5970399836E-3 -2.5168000138E-4 2.8898599558E-3 4.1121998802E-3 -7.4316998944E-3 -1.8847439438E-2 -1.1091699824E-2 2.1906599402E-2 6.8065837026E-2 9.0580143034E-2 6.8065837026E-2 2.1906599402E-2 -1.1091699824E-2 -1.8847439438E-2 -7.4316998944E-3 4.1121998802E-3 2.8898599558E-3 -2.5168000138E-4 -4.2019999819E-4 4.2872801423E-3 2.2212199401E-3 -9.0569201857E-3 -1.7508180812E-2 3.9556599222E-3 6.8065837026E-2 0.1445499808 0.1773651242 0.1445499808 6.8065837026E-2 3.9556599222E-3 -1.7508180812E-2 -9.0569201857E-3 2.2212199401E-3 4.2872801423E-3 -4.2019999819E-4 1.2619999470E-3 5.5893999524E-3 5.5381999118E-4 -9.6372198313E-3 -1.6485679895E-2 1.4385120012E-2 9.0580143034E-2 0.1773651242 0.2120374441 0.1773651242 9.0580143034E-2 1.4385120012E-2 -1.6485679895E-2 -9.6372198313E-3 5.5381999118E-4 5.5893999524E-3 1.2619999470E-3 -4.2019999819E-4 4.2872801423E-3 2.2212199401E-3 -9.0569201857E-3 -1.7508180812E-2 3.9556599222E-3 6.8065837026E-2 0.1445499808 0.1773651242 0.1445499808 6.8065837026E-2 3.9556599222E-3 -1.7508180812E-2 -9.0569201857E-3 2.2212199401E-3 4.2872801423E-3 -4.2019999819E-4 -2.5168000138E-4 2.8898599558E-3 4.1121998802E-3 -7.4316998944E-3 -1.8847439438E-2 -1.1091699824E-2 2.1906599402E-2 6.8065837026E-2 9.0580143034E-2 6.8065837026E-2 2.1906599402E-2 -1.1091699824E-2 -1.8847439438E-2 -7.4316998944E-3 4.1121998802E-3 2.8898599558E-3 -2.5168000138E-4 -1.5970399836E-3 2.3255399428E-3 3.0809799209E-3 -1.7774800071E-3 -1.2604200281E-2 -2.0229380578E-2 -1.1091699824E-2 3.9556599222E-3 1.4385120012E-2 3.9556599222E-3 -1.1091699824E-2 -2.0229380578E-2 -1.2604200281E-2 -1.7774800071E-3 3.0809799209E-3 2.3255399428E-3 -1.5970399836E-3 -8.0063997302E-4 -1.3688000035E-4 3.7613599561E-3 3.1846798956E-3 -3.5306399222E-3 -1.2604200281E-2 -1.8847439438E-2 -1.7508180812E-2 -1.6485679895E-2 -1.7508180812E-2 -1.8847439438E-2 -1.2604200281E-2 -3.5306399222E-3 3.1846798956E-3 3.7613599561E-3 -1.3688000035E-4 -8.0063997302E-4 -1.2434000382E-4 5.6215998484E-4 2.1605400834E-3 3.1757799443E-3 3.1846798956E-3 -1.7774800071E-3 -7.4316998944E-3 -9.0569201857E-3 -9.6372198313E-3 -9.0569201857E-3 -7.4316998944E-3 -1.7774800071E-3 3.1846798956E-3 3.1757799443E-3 2.1605400834E-3 5.6215998484E-4 -1.2434000382E-4 -6.7714002216E-4 -5.8146001538E-4 1.4607800404E-3 2.1605400834E-3 3.7613599561E-3 3.0809799209E-3 4.1121998802E-3 2.2212199401E-3 5.5381999118E-4 2.2212199401E-3 4.1121998802E-3 3.0809799209E-3 3.7613599561E-3 2.1605400834E-3 1.4607800404E-3 -5.8146001538E-4 -6.7714002216E-4 1.2078000145E-4 4.4606000301E-4 -5.8146001538E-4 5.6215998484E-4 -1.3688000035E-4 2.3255399428E-3 2.8898599558E-3 4.2872801423E-3 5.5893999524E-3 4.2872801423E-3 2.8898599558E-3 2.3255399428E-3 -1.3688000035E-4 5.6215998484E-4 -5.8146001538E-4 4.4606000301E-4 1.2078000145E-4 -4.3500000174E-5 1.2078000145E-4 -6.7714002216E-4 -1.2434000382E-4 -8.0063997302E-4 -1.5970399836E-3 -2.5168000138E-4 -4.2019999819E-4 1.2619999470E-3 -4.2019999819E-4 -2.5168000138E-4 -1.5970399836E-3 -8.0063997302E-4 -1.2434000382E-4 -6.7714002216E-4 1.2078000145E-4 -4.3500000174E-5 ]; bfilts = [... -8.1125000725E-4 4.4451598078E-3 1.2316980399E-2 1.3955879956E-2 1.4179450460E-2 1.3955879956E-2 1.2316980399E-2 4.4451598078E-3 -8.1125000725E-4 ... 3.9103501476E-3 4.4565401040E-3 -5.8724298142E-3 -2.8760801069E-3 8.5267601535E-3 -2.8760801069E-3 -5.8724298142E-3 4.4565401040E-3 3.9103501476E-3 ... 1.3462699717E-3 -3.7740699481E-3 8.2581602037E-3 3.9442278445E-2 5.3605638444E-2 3.9442278445E-2 8.2581602037E-3 -3.7740699481E-3 1.3462699717E-3 ... 7.4700999539E-4 -3.6522001028E-4 -2.2522680461E-2 -0.1105690673 -0.1768419296 -0.1105690673 -2.2522680461E-2 -3.6522001028E-4 7.4700999539E-4 ... 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 ... -7.4700999539E-4 3.6522001028E-4 2.2522680461E-2 0.1105690673 0.1768419296 0.1105690673 2.2522680461E-2 3.6522001028E-4 -7.4700999539E-4 ... -1.3462699717E-3 3.7740699481E-3 -8.2581602037E-3 -3.9442278445E-2 -5.3605638444E-2 -3.9442278445E-2 -8.2581602037E-3 3.7740699481E-3 -1.3462699717E-3 ... -3.9103501476E-3 -4.4565401040E-3 5.8724298142E-3 2.8760801069E-3 -8.5267601535E-3 2.8760801069E-3 5.8724298142E-3 -4.4565401040E-3 -3.9103501476E-3 ... 8.1125000725E-4 -4.4451598078E-3 -1.2316980399E-2 -1.3955879956E-2 -1.4179450460E-2 -1.3955879956E-2 -1.2316980399E-2 -4.4451598078E-3 8.1125000725E-4; ... ... 0.0000000000 -8.2846998703E-4 -5.7109999034E-5 4.0110000555E-5 4.6670897864E-3 8.0871898681E-3 1.4807609841E-2 8.6204400286E-3 -3.1221499667E-3 ... 8.2846998703E-4 0.0000000000 -9.7479997203E-4 -6.9718998857E-3 -2.0865600090E-3 2.3298799060E-3 -4.4814897701E-3 1.4917500317E-2 8.6204400286E-3 ... 5.7109999034E-5 9.7479997203E-4 0.0000000000 -1.2145539746E-2 -2.4427289143E-2 5.0797060132E-2 3.2785870135E-2 -4.4814897701E-3 1.4807609841E-2 ... -4.0110000555E-5 6.9718998857E-3 1.2145539746E-2 0.0000000000 -0.1510555595 -8.2495503128E-2 5.0797060132E-2 2.3298799060E-3 8.0871898681E-3 ... -4.6670897864E-3 2.0865600090E-3 2.4427289143E-2 0.1510555595 0.0000000000 -0.1510555595 -2.4427289143E-2 -2.0865600090E-3 4.6670897864E-3 ... -8.0871898681E-3 -2.3298799060E-3 -5.0797060132E-2 8.2495503128E-2 0.1510555595 0.0000000000 -1.2145539746E-2 -6.9718998857E-3 4.0110000555E-5 ... -1.4807609841E-2 4.4814897701E-3 -3.2785870135E-2 -5.0797060132E-2 2.4427289143E-2 1.2145539746E-2 0.0000000000 -9.7479997203E-4 -5.7109999034E-5 ... -8.6204400286E-3 -1.4917500317E-2 4.4814897701E-3 -2.3298799060E-3 2.0865600090E-3 6.9718998857E-3 9.7479997203E-4 0.0000000000 -8.2846998703E-4 ... 3.1221499667E-3 -8.6204400286E-3 -1.4807609841E-2 -8.0871898681E-3 -4.6670897864E-3 -4.0110000555E-5 5.7109999034E-5 8.2846998703E-4 0.0000000000; ... ... 8.1125000725E-4 -3.9103501476E-3 -1.3462699717E-3 -7.4700999539E-4 0.0000000000 7.4700999539E-4 1.3462699717E-3 3.9103501476E-3 -8.1125000725E-4 ... -4.4451598078E-3 -4.4565401040E-3 3.7740699481E-3 3.6522001028E-4 0.0000000000 -3.6522001028E-4 -3.7740699481E-3 4.4565401040E-3 4.4451598078E-3 ... -1.2316980399E-2 5.8724298142E-3 -8.2581602037E-3 2.2522680461E-2 0.0000000000 -2.2522680461E-2 8.2581602037E-3 -5.8724298142E-3 1.2316980399E-2 ... -1.3955879956E-2 2.8760801069E-3 -3.9442278445E-2 0.1105690673 0.0000000000 -0.1105690673 3.9442278445E-2 -2.8760801069E-3 1.3955879956E-2 ... -1.4179450460E-2 -8.5267601535E-3 -5.3605638444E-2 0.1768419296 0.0000000000 -0.1768419296 5.3605638444E-2 8.5267601535E-3 1.4179450460E-2 ... -1.3955879956E-2 2.8760801069E-3 -3.9442278445E-2 0.1105690673 0.0000000000 -0.1105690673 3.9442278445E-2 -2.8760801069E-3 1.3955879956E-2 ... -1.2316980399E-2 5.8724298142E-3 -8.2581602037E-3 2.2522680461E-2 0.0000000000 -2.2522680461E-2 8.2581602037E-3 -5.8724298142E-3 1.2316980399E-2 ... -4.4451598078E-3 -4.4565401040E-3 3.7740699481E-3 3.6522001028E-4 0.0000000000 -3.6522001028E-4 -3.7740699481E-3 4.4565401040E-3 4.4451598078E-3 ... 8.1125000725E-4 -3.9103501476E-3 -1.3462699717E-3 -7.4700999539E-4 0.0000000000 7.4700999539E-4 1.3462699717E-3 3.9103501476E-3 -8.1125000725E-4; ... ... 3.1221499667E-3 -8.6204400286E-3 -1.4807609841E-2 -8.0871898681E-3 -4.6670897864E-3 -4.0110000555E-5 5.7109999034E-5 8.2846998703E-4 0.0000000000 ... -8.6204400286E-3 -1.4917500317E-2 4.4814897701E-3 -2.3298799060E-3 2.0865600090E-3 6.9718998857E-3 9.7479997203E-4 -0.0000000000 -8.2846998703E-4 ... -1.4807609841E-2 4.4814897701E-3 -3.2785870135E-2 -5.0797060132E-2 2.4427289143E-2 1.2145539746E-2 0.0000000000 -9.7479997203E-4 -5.7109999034E-5 ... -8.0871898681E-3 -2.3298799060E-3 -5.0797060132E-2 8.2495503128E-2 0.1510555595 -0.0000000000 -1.2145539746E-2 -6.9718998857E-3 4.0110000555E-5 ... -4.6670897864E-3 2.0865600090E-3 2.4427289143E-2 0.1510555595 0.0000000000 -0.1510555595 -2.4427289143E-2 -2.0865600090E-3 4.6670897864E-3 ... -4.0110000555E-5 6.9718998857E-3 1.2145539746E-2 0.0000000000 -0.1510555595 -8.2495503128E-2 5.0797060132E-2 2.3298799060E-3 8.0871898681E-3 ... 5.7109999034E-5 9.7479997203E-4 -0.0000000000 -1.2145539746E-2 -2.4427289143E-2 5.0797060132E-2 3.2785870135E-2 -4.4814897701E-3 1.4807609841E-2 ... 8.2846998703E-4 -0.0000000000 -9.7479997203E-4 -6.9718998857E-3 -2.0865600090E-3 2.3298799060E-3 -4.4814897701E-3 1.4917500317E-2 8.6204400286E-3 ... 0.0000000000 -8.2846998703E-4 -5.7109999034E-5 4.0110000555E-5 4.6670897864E-3 8.0871898681E-3 1.4807609841E-2 8.6204400286E-3 -3.1221499667E-3 ... ]'; % Steerable pyramid filters. Transform described in: % % @INPROCEEDINGS{Simoncelli95b, % TITLE = "The Steerable Pyramid: A Flexible Architecture for % Multi-Scale Derivative Computation", % AUTHOR = "E P Simoncelli and W T Freeman", % BOOKTITLE = "Second Int'l Conf on Image Processing", % ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 } % % Filter kernel design described in: % %@INPROCEEDINGS{Karasaridis96, % TITLE = "A Filter Design Technique for % Steerable Pyramid Image Transforms", % AUTHOR = "A Karasaridis and E P Simoncelli", % BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA", % MONTH = "May", YEAR = 1996 } % Eero Simoncelli, 6/96. function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp5Filters(); harmonics = [1 3 5]; mtx = [ ... 0.3333 0.2887 0.1667 0.0000 -0.1667 -0.2887 0.0000 0.1667 0.2887 0.3333 0.2887 0.1667 0.3333 -0.0000 -0.3333 -0.0000 0.3333 -0.0000 0.0000 0.3333 0.0000 -0.3333 0.0000 0.3333 0.3333 -0.2887 0.1667 -0.0000 -0.1667 0.2887 -0.0000 0.1667 -0.2887 0.3333 -0.2887 0.1667]; hi0filt = [ -0.00033429 -0.00113093 -0.00171484 -0.00133542 -0.00080639 -0.00133542 -0.00171484 -0.00113093 -0.00033429 -0.00113093 -0.00350017 -0.00243812 0.00631653 0.01261227 0.00631653 -0.00243812 -0.00350017 -0.00113093 -0.00171484 -0.00243812 -0.00290081 -0.00673482 -0.00981051 -0.00673482 -0.00290081 -0.00243812 -0.00171484 -0.00133542 0.00631653 -0.00673482 -0.07027679 -0.11435863 -0.07027679 -0.00673482 0.00631653 -0.00133542 -0.00080639 0.01261227 -0.00981051 -0.11435863 0.81380200 -0.11435863 -0.00981051 0.01261227 -0.00080639 -0.00133542 0.00631653 -0.00673482 -0.07027679 -0.11435863 -0.07027679 -0.00673482 0.00631653 -0.00133542 -0.00171484 -0.00243812 -0.00290081 -0.00673482 -0.00981051 -0.00673482 -0.00290081 -0.00243812 -0.00171484 -0.00113093 -0.00350017 -0.00243812 0.00631653 0.01261227 0.00631653 -0.00243812 -0.00350017 -0.00113093 -0.00033429 -0.00113093 -0.00171484 -0.00133542 -0.00080639 -0.00133542 -0.00171484 -0.00113093 -0.00033429]; lo0filt = [ 0.00341614 -0.01551246 -0.03848215 -0.01551246 0.00341614 -0.01551246 0.05586982 0.15925570 0.05586982 -0.01551246 -0.03848215 0.15925570 0.40304148 0.15925570 -0.03848215 -0.01551246 0.05586982 0.15925570 0.05586982 -0.01551246 0.00341614 -0.01551246 -0.03848215 -0.01551246 0.00341614]; lofilt = 2*[ 0.00085404 -0.00244917 -0.00387812 -0.00944432 -0.00962054 -0.00944432 -0.00387812 -0.00244917 0.00085404 -0.00244917 -0.00523281 -0.00661117 0.00410600 0.01002988 0.00410600 -0.00661117 -0.00523281 -0.00244917 -0.00387812 -0.00661117 0.01396746 0.03277038 0.03981393 0.03277038 0.01396746 -0.00661117 -0.00387812 -0.00944432 0.00410600 0.03277038 0.06426333 0.08169618 0.06426333 0.03277038 0.00410600 -0.00944432 -0.00962054 0.01002988 0.03981393 0.08169618 0.10096540 0.08169618 0.03981393 0.01002988 -0.00962054 -0.00944432 0.00410600 0.03277038 0.06426333 0.08169618 0.06426333 0.03277038 0.00410600 -0.00944432 -0.00387812 -0.00661117 0.01396746 0.03277038 0.03981393 0.03277038 0.01396746 -0.00661117 -0.00387812 -0.00244917 -0.00523281 -0.00661117 0.00410600 0.01002988 0.00410600 -0.00661117 -0.00523281 -0.00244917 0.00085404 -0.00244917 -0.00387812 -0.00944432 -0.00962054 -0.00944432 -0.00387812 -0.00244917 0.00085404]; bfilts = [... 0.00277643 0.00496194 0.01026699 0.01455399 0.01026699 0.00496194 0.00277643 ... -0.00986904 -0.00893064 0.01189859 0.02755155 0.01189859 -0.00893064 -0.00986904 ... -0.01021852 -0.03075356 -0.08226445 -0.11732297 -0.08226445 -0.03075356 -0.01021852 ... 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 ... 0.01021852 0.03075356 0.08226445 0.11732297 0.08226445 0.03075356 0.01021852 ... 0.00986904 0.00893064 -0.01189859 -0.02755155 -0.01189859 0.00893064 0.00986904 ... -0.00277643 -0.00496194 -0.01026699 -0.01455399 -0.01026699 -0.00496194 -0.00277643; ... -0.00343249 -0.00640815 -0.00073141 0.01124321 0.00182078 0.00285723 0.01166982 ... -0.00358461 -0.01977507 -0.04084211 -0.00228219 0.03930573 0.01161195 0.00128000 ... 0.01047717 0.01486305 -0.04819057 -0.12227230 -0.05394139 0.00853965 -0.00459034 ... 0.00790407 0.04435647 0.09454202 -0.00000000 -0.09454202 -0.04435647 -0.00790407 ... 0.00459034 -0.00853965 0.05394139 0.12227230 0.04819057 -0.01486305 -0.01047717 ... -0.00128000 -0.01161195 -0.03930573 0.00228219 0.04084211 0.01977507 0.00358461 ... -0.01166982 -0.00285723 -0.00182078 -0.01124321 0.00073141 0.00640815 0.00343249; ... 0.00343249 0.00358461 -0.01047717 -0.00790407 -0.00459034 0.00128000 0.01166982 ... 0.00640815 0.01977507 -0.01486305 -0.04435647 0.00853965 0.01161195 0.00285723 ... 0.00073141 0.04084211 0.04819057 -0.09454202 -0.05394139 0.03930573 0.00182078 ... -0.01124321 0.00228219 0.12227230 -0.00000000 -0.12227230 -0.00228219 0.01124321 ... -0.00182078 -0.03930573 0.05394139 0.09454202 -0.04819057 -0.04084211 -0.00073141 ... -0.00285723 -0.01161195 -0.00853965 0.04435647 0.01486305 -0.01977507 -0.00640815 ... -0.01166982 -0.00128000 0.00459034 0.00790407 0.01047717 -0.00358461 -0.00343249; ... -0.00277643 0.00986904 0.01021852 -0.00000000 -0.01021852 -0.00986904 0.00277643 ... -0.00496194 0.00893064 0.03075356 -0.00000000 -0.03075356 -0.00893064 0.00496194 ... -0.01026699 -0.01189859 0.08226445 -0.00000000 -0.08226445 0.01189859 0.01026699 ... -0.01455399 -0.02755155 0.11732297 -0.00000000 -0.11732297 0.02755155 0.01455399 ... -0.01026699 -0.01189859 0.08226445 -0.00000000 -0.08226445 0.01189859 0.01026699 ... -0.00496194 0.00893064 0.03075356 -0.00000000 -0.03075356 -0.00893064 0.00496194 ... -0.00277643 0.00986904 0.01021852 -0.00000000 -0.01021852 -0.00986904 0.00277643; ... -0.01166982 -0.00128000 0.00459034 0.00790407 0.01047717 -0.00358461 -0.00343249 ... -0.00285723 -0.01161195 -0.00853965 0.04435647 0.01486305 -0.01977507 -0.00640815 ... -0.00182078 -0.03930573 0.05394139 0.09454202 -0.04819057 -0.04084211 -0.00073141 ... -0.01124321 0.00228219 0.12227230 -0.00000000 -0.12227230 -0.00228219 0.01124321 ... 0.00073141 0.04084211 0.04819057 -0.09454202 -0.05394139 0.03930573 0.00182078 ... 0.00640815 0.01977507 -0.01486305 -0.04435647 0.00853965 0.01161195 0.00285723 ... 0.00343249 0.00358461 -0.01047717 -0.00790407 -0.00459034 0.00128000 0.01166982; ... -0.01166982 -0.00285723 -0.00182078 -0.01124321 0.00073141 0.00640815 0.00343249 ... -0.00128000 -0.01161195 -0.03930573 0.00228219 0.04084211 0.01977507 0.00358461 ... 0.00459034 -0.00853965 0.05394139 0.12227230 0.04819057 -0.01486305 -0.01047717 ... 0.00790407 0.04435647 0.09454202 -0.00000000 -0.09454202 -0.04435647 -0.00790407 ... 0.01047717 0.01486305 -0.04819057 -0.12227230 -0.05394139 0.00853965 -0.00459034 ... -0.00358461 -0.01977507 -0.04084211 -0.00228219 0.03930573 0.01161195 0.00128000 ... -0.00343249 -0.00640815 -0.00073141 0.01124321 0.00182078 0.00285723 0.01166982]'; % HEIGHT = maxPyrHt(IMSIZE, FILTSIZE) % % Compute maximum pyramid height for given image and filter sizes. % Specifically: the number of corrDn operations that can be sequentially % performed when subsampling by a factor of 2. % Eero Simoncelli, 6/96. function height = maxPyrHt(imsz, filtsz) imsz = imsz(:); filtsz = filtsz(:); if any(imsz == 1) % 1D image imsz = prod(imsz); filtsz = prod(filtsz); elseif any(filtsz == 1) % 2D image, 1D filter filtsz = [filtsz(1); filtsz(1)]; end if any(imsz < filtsz) height = 0; else height = 1 + maxPyrHt( floor(imsz/2), filtsz ); end % RES = corrDn(IM, FILT, EDGES, STEP, START, STOP) % % Compute correlation of matrices IM with FILT, followed by % downsampling. These arguments should be 1D or 2D matrices, and IM % must be larger (in both dimensions) than FILT. The origin of filt % is assumed to be floor(size(filt)/2)+1. % % EDGES is a string determining boundary handling: % 'circular' - Circular convolution % 'reflect1' - Reflect about the edge pixels % 'reflect2' - Reflect, doubling the edge pixels % 'repeat' - Repeat the edge pixels % 'zero' - Assume values of zero outside image boundary % 'extend' - Reflect and invert % 'dont-compute' - Zero output when filter overhangs input boundaries % % Downsampling factors are determined by STEP (optional, default=[1 1]), % which should be a 2-vector [y,x]. % % The window over which the convolution occurs is specfied by START % (optional, default=[1,1], and STOP (optional, default=size(IM)). % % NOTE: this operation corresponds to multiplication of a signal % vector by a matrix whose rows contain copies of the FILT shifted by % multiples of STEP. See upConv.m for the operation corresponding to % the transpose of this matrix. % Eero Simoncelli, 6/96, revised 2/97. function res = corrDn(im, filt, edges, step, start, stop) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) % fprintf(1,'WARNING: You should compile the MEX version of "corrDn.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster, and provides more boundary-handling options.\n'); %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('edges') == 1) if (strcmp(edges,'reflect1') ~= 1) warning('Using REFLECT1 edge-handling (use MEX code for other options).'); end end if (exist('step') ~= 1) step = [1,1]; end if (exist('start') ~= 1) start = [1,1]; end if (exist('stop') ~= 1) stop = size(im); end %------------------------------------------------------------ % Reverse order of taps in filt, to do correlation instead of convolution filt = filt(size(filt,1):-1:1,size(filt,2):-1:1); tmp = rconv2(im,filt); res = tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)); % RES = RCONV2(MTX1, MTX2, CTR) % % Convolution of two matrices, with boundaries handled via reflection % about the edge pixels. Result will be of size of LARGER matrix. % % The origin of the smaller matrix is assumed to be its center. % For even dimensions, the origin is determined by the CTR (optional) % argument: % CTR origin % 0 DIM/2 (default) % 1 (DIM/2)+1 % Eero Simoncelli, 6/96. function c = rconv2(a,b,ctr) if (exist('ctr') ~= 1) ctr = 0; end if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) )) large = a; small = b; elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) )) large = b; small = a; else error('one arg must be larger than the other in both dimensions!'); end ly = size(large,1); lx = size(large,2); sy = size(small,1); sx = size(small,2); %% These values are one less than the index of the small mtx that falls on %% the border pixel of the large matrix when computing the first %% convolution response sample: sy2 = floor((sy+ctr-1)/2); sx2 = floor((sx+ctr-1)/2); % pad with reflected copies clarge = [ large(sy-sy2:-1:2,sx-sx2:-1:2), large(sy-sy2:-1:2,:), ... large(sy-sy2:-1:2,lx-1:-1:lx-sx2); ... large(:,sx-sx2:-1:2), large, large(:,lx-1:-1:lx-sx2); ... large(ly-1:-1:ly-sy2,sx-sx2:-1:2), ... large(ly-1:-1:ly-sy2,:), ... large(ly-1:-1:ly-sy2,lx-1:-1:lx-sx2) ]; c = conv2(clarge,small,'valid'); % [PYR, INDICES] = buildSpyrLevs(LOIM, HEIGHT, LOFILT, BFILTS, EDGES) % % Recursive function for constructing levels of a steerable pyramid. This % is called by buildSpyr, and is not usually called directly. % Eero Simoncelli, 6/96. function [pyr,pind] = buildSpyrLevs(lo0,ht,lofilt,bfilts,edges); if (ht <= 0) pyr = lo0(:); pind = size(lo0); else % Assume square filters: bfiltsz = round(sqrt(size(bfilts,1))); bands = zeros(prod(size(lo0)),size(bfilts,2)); bind = zeros(size(bfilts,2),2); for b = 1:size(bfilts,2) filt = reshape(bfilts(:,b),bfiltsz,bfiltsz); band = corrDn(lo0, filt, edges); bands(:,b) = band(:); bind(b,:) = size(band); end lo = corrDn(lo0, lofilt, edges, [2 2], [1 1]); [npyr,nind] = buildSpyrLevs(lo, ht-1, lofilt, bfilts, edges); pyr = [bands(:); npyr]; pind = [bind; nind]; end % RES = pyrBandIndices(INDICES, BAND_NUM) % % Return indices for accessing a subband from a pyramid % (gaussian, laplacian, QMF/wavelet, steerable). % Eero Simoncelli, 6/96. function indices = pyrBandIndices(pind,band) if ((band > size(pind,1)) | (band < 1)) error(sprintf('BAND_NUM must be between 1 and number of pyramid bands (%d).', ... size(pind,1))); end if (size(pind,2) ~= 2) error('INDICES must be an Nx2 matrix indicating the size of the pyramid subbands'); end ind = 1; for l=1:band-1 ind = ind + prod(pind(l,:)); end indices = ind:ind+prod(pind(band,:))-1; % RES = reconSpyr(PYR, INDICES, FILTFILE, EDGES, LEVS, BANDS) % % Reconstruct image from its steerable pyramid representation, as created % by buildSpyr. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % % FILTFILE (optional) should be a string referring to an m-file that returns % the rfilters. examples: sp0Filters, sp1Filters, sp3Filters % (default = 'sp1Filters'). % EDGES specifies edge-handling, and defaults to 'reflect1' (see % corrDn). % % LEVS (optional) should be a list of levels to include, or the string % 'all' (default). 0 corresonds to the residual highpass subband. % 1 corresponds to the finest oriented scale. The lowpass band % corresponds to number spyrHt(INDICES)+1. % % BANDS (optional) should be a list of bands to include, or the string % 'all' (default). 1 = vertical, rest proceeding anti-clockwise. % Eero Simoncelli, 6/96. function res = reconSpyr(pyr, pind, filtfile, edges, levs, bands) %%------------------------------------------------------------ %% DEFAULTS: if (exist('filtfile') ~= 1) filtfile = 'sp1Filters'; end if (exist('edges') ~= 1) edges= 'reflect1'; end if (exist('levs') ~= 1) levs = 'all'; end if (exist('bands') ~= 1) bands = 'all'; end %%------------------------------------------------------------ if (isstr(filtfile) & (exist(filtfile) == 2)) [lo0filt,hi0filt,lofilt,bfilts,steermtx,harmonics] = eval(filtfile); nbands = spyrNumBands(pind); if ((nbands > 0) & (size(bfilts,2) ~= nbands)) error('Number of pyramid bands is inconsistent with filter file'); end else error('filtfile argument must be the name of an M-file containing SPYR filters.'); end maxLev = 1+spyrHt(pind); if strcmp(levs,'all') levs = [0:maxLev]'; else if (any(levs > maxLev) | any(levs < 0)) error(sprintf('Level numbers must be in the range [0, %d].', maxLev)); end levs = levs(:); end if strcmp(bands,'all') bands = [1:nbands]'; else if (any(bands < 1) | any(bands > nbands)) error(sprintf('Band numbers must be in the range [1,3].', nbands)); end bands = bands(:); end if (spyrHt(pind) == 0) if (any(levs==1)) res1 = pyrBand(pyr,pind,2); else res1 = zeros(pind(2,:)); end else res1 = reconSpyrLevs(pyr(1+prod(pind(1,:)):size(pyr,1)), ... pind(2:size(pind,1),:), ... lofilt, bfilts, edges, levs, bands); end res = upConv(res1, lo0filt, edges); %% residual highpass subband if any(levs == 0) upConv( subMtx(pyr, pind(1,:)), hi0filt, edges, [1 1], [1 1], size(res), res); end % [NBANDS] = spyrNumBands(INDICES) % % Compute number of orientation bands in a steerable pyramid with % given index matrix. If the pyramid contains only the highpass and % lowpass bands (i.e., zero levels), returns 0. % Eero Simoncelli, 2/97. function [nbands] = spyrNumBands(pind) if (size(pind,1) == 2) nbands = 0; else % Count number of orientation bands: b = 3; while ((b <= size(pind,1)) & all( pind(b,:) == pind(2,:)) ) b = b+1; end nbands = b-2; end % [HEIGHT] = spyrHt(INDICES) % % Compute height of steerable pyramid with given index matrix. % Eero Simoncelli, 6/96. function [ht] = spyrHt(pind) nbands = spyrNumBands(pind); % Don't count lowpass, or highpass residual bands if (size(pind,1) > 2) ht = (size(pind,1)-2)/nbands; else ht = 0; end % RES = reconSpyrLevs(PYR,INDICES,LOFILT,BFILTS,EDGES,LEVS,BANDS) % % Recursive function for reconstructing levels of a steerable pyramid % representation. This is called by reconSpyr, and is not usually % called directly. % Eero Simoncelli, 6/96. function res = reconSpyrLevs(pyr,pind,lofilt,bfilts,edges,levs,bands); nbands = size(bfilts,2); lo_ind = nbands+1; res_sz = pind(1,:); % Assume square filters: bfiltsz = round(sqrt(size(bfilts,1))); if any(levs > 1) if (size(pind,1) > lo_ind) nres = reconSpyrLevs( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)), ... pind(lo_ind:size(pind,1),:), ... lofilt, bfilts, edges, levs-1, bands); else nres = pyrBand(pyr,pind,lo_ind); % lowpass subband end res = upConv(nres, lofilt, edges, [2 2], [1 1], res_sz); else res = zeros(res_sz); end if any(levs == 1) ind = 1; for b = 1:nbands if any(bands == b) bfilt = reshape(bfilts(:,b), bfiltsz, bfiltsz); upConv(reshape(pyr(ind:ind+prod(res_sz)-1), res_sz(1), res_sz(2)), ... bfilt, edges, [1 1], [1 1], res_sz, res); end ind = ind + prod(res_sz); end end % RES = pyrBand(PYR, INDICES, BAND_NUM) % % Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet, % or steerable). Subbands are numbered consecutively, from finest % (highest spatial frequency) to coarsest (lowest spatial frequency). % Eero Simoncelli, 6/96. function res = pyrBand(pyr, pind, band) res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) ); % RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES) % % Upsample matrix IM, followed by convolution with matrix FILT. These % arguments should be 1D or 2D matrices, and IM must be larger (in % both dimensions) than FILT. The origin of filt % is assumed to be floor(size(filt)/2)+1. % % EDGES is a string determining boundary handling: % 'circular' - Circular convolution % 'reflect1' - Reflect about the edge pixels % 'reflect2' - Reflect, doubling the edge pixels % 'repeat' - Repeat the edge pixels % 'zero' - Assume values of zero outside image boundary % 'extend' - Reflect and invert % 'dont-compute' - Zero output when filter overhangs OUTPUT boundaries % % Upsampling factors are determined by STEP (optional, default=[1 1]), % a 2-vector [y,x]. % % The window over which the convolution occurs is specfied by START % (optional, default=[1,1], and STOP (optional, default = % step .* (size(IM) + floor((start-1)./step))). % % RES is an optional result matrix. The convolution result will be % destructively added into this matrix. If this argument is passed, the % result matrix will not be returned. DO NOT USE THIS ARGUMENT IF % YOU DO NOT UNDERSTAND WHAT THIS MEANS!! % % NOTE: this operation corresponds to multiplication of a signal % vector by a matrix whose columns contain copies of the time-reversed % (or space-reversed) FILT shifted by multiples of STEP. See corrDn.m % for the operation corresponding to the transpose of this matrix. % Eero Simoncelli, 6/96. revised 2/97. function result = OLD_upConv(im,filt,edges,step,start,stop,res) %% THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX version of "upConv.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster, and provides more boundary-handling options.\n'); %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('edges') == 1) if (strcmp(edges,'reflect1') ~= 1) warning('Using REFLECT1 edge-handling (use MEX code for other options).'); end end if (exist('step') ~= 1) step = [1,1]; end if (exist('start') ~= 1) start = [1,1]; end % A multiple of step if (exist('stop') ~= 1) stop = step .* (floor((start-ones(size(start)))./step)+size(im)); end if ( ceil((stop(1)+1-start(1)) / step(1)) ~= size(im,1) ) error('Bad Y result dimension'); end if ( ceil((stop(2)+1-start(2)) / step(2)) ~= size(im,2) ) error('Bad X result dimension'); end if (exist('res') ~= 1) res = zeros(stop-start+1); end %------------------------------------------------------------ tmp = zeros(size(res)); tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)) = im; result = rconv2(tmp,filt) + res; % MTX = subMtx(VEC, DIMENSIONS, START_INDEX) % % Reshape a portion of VEC starting from START_INDEX (optional, % default=1) to the given dimensions. % Eero Simoncelli, 6/96. function mtx = subMtx(vec, sz, offset) if (exist('offset') ~= 1) offset = 1; end vec = vec(:); sz = sz(:); if (size(sz,1) ~= 2) error('DIMENSIONS must be a 2-vector.'); end mtx = reshape( vec(offset:offset+prod(sz)-1), sz(1), sz(2) );
github
jacksky64/imageProcessing-master
perform_quincunx_wavelet_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_quincunx_wavelet_transform.m
23,730
utf_8
1adf6e891e72693338d272d2f7c03be8
function [y,quincunx_filters] = perform_quincunx_wavelet_transform(x,Jmin,dir,options) % perform_quincunx_wavelet_transform - compute quincunx transform % % Forward transform % [MW,options.quincunx_filters] = perform_quincunx_wavelet_transform(M,Jmin,+1,options); % Backward transform % M = perform_quincunx_wavelet_transform(MW,Jmin,-1,options); % % This is a simple wrapper to the code of % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland % % For more information, see % Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets % D. Van De Ville, T. Blu, M. Unser % IEEE Transactions on Image Processing, vol. 14, no. 11, pp. 1798-1813, November 2005. % % options.type is the type of transform: % - McClellan: O/B/D, % - Polyharmonic Rabut: Po/Pb/Pd % - Polyharmonic isotropic: PO/PB/PD % options.gamma is the degree of the wavelet transform options.null = 0; % Setup parameters of wavelet transform % ------------------------------------- % 1. Type of wavelet transform % - McClellan: O/B/D, % - Polyharmonic Rabut: Po/Pb/Pd % - Polyharmonic isotropic: PO/PB/PD if isfield(options, 'type') type = options.type; else type='PO'; end % 2. Degree of the wavelet transform % (order gamma polyharmonic=degree alpha+2) if isfield(options, 'gamma') gamma = options.gamma; else gamma = 4; end alpha=gamma-2; % 3. Number of iterations n = size(x,1); Jmax = log2(n)-1; J = 2*(Jmax-Jmin+1); % Precalculate filters % -------------------- if isfield(options, 'quincunx_filters') quincunx_filters = options.quincunx_filters; FA = quincunx_filters{1}; FS = quincunx_filters{2}; else [FA,FS]=FFTquincunxfilter2D([size(x)],alpha,type); quincunx_filters{1} = FA; quincunx_filters{2} = FS; end % Perform wavelet analysis % ------------------------ if dir==1 y = FFTquin2D_analysis(x,J,FA); y=real(y); else y = FFTquin2D_synthesis(x,J,FS); end function A0=autocorr2d(H) % AUTOCORR2D % Iterative frequency domain calculation of the 2D autocorrelation % function. A=autocorr2d(H) computes the frequency response of % the autocorrelation filter A(exp(2*i*Pi*nu)) corresponding to the % scaling function with refinement filter H. % Please note that the 2D grid of the refinement filter (nu), % corresponds to a uniformly sampled grid, twice as coarse % (in each dimension) as the given filter H. % % Please treat this source code as confidential! % Its content is part of work in preparation to be submitted: % % T. Blu, D. Van De Ville, M. Unser, ''Numerical methods for the computation % of wavelet correlation sequences,'' SIAM Numerical Analysis. % % Biomedical Imaging Group, EPFL, Lausanne, Switzerland. len1=size(H,1)/2; len2=size(H,2)/2; % stop criterion crit=1e-4; improvement=1.0; % initial "guess" A0=ones(len1,len2); % calculation loop while improvement>crit, % sinc interpolation if 1, Af=fftshift(ifftn(A0)); Af(1,:)=Af(1,:)/2; Af(:,1)=Af(:,1)/2; Af(len1+1,1:len2)=Af(1,len2:-1:1); Af(1:len1,len2+1)=Af(len1:-1:1,1); Ai=zeros(2*len1,2*len2); Ai(len1-len1/2+1:len1+len1/2+1,len2-len2/2+1:len2+len2/2+1)=Af; Ai=fftn(ifftshift(Ai)); else Ai=interp2(A0,1,'nearest'); Ai(:,end+1)=Ai(:,end); Ai(end+1,:)=Ai(end,:); end; % recursion A1=Ai(1:len1,1:len2).*H(1:len1,1:len2)+Ai(len1+1:2*len1,1:len2).*H(len1+1:2*len1,1:len2)+Ai(1:len1,len2+1:2*len2).*H(1:len1,len2+1:2*len2)+Ai(len1+1:2*len1,len2+1:2*len2).*H(len1+1:2*len1,len2+1:2*len2); improvement=mean(abs(A1(:)-A0(:))); A0=A1; end; function y2=FFTquin2D_analysis(x,J,FA); % FFTQUIN2D_ANALYSIS Perform 2D quincunx wavelet analysis % y2 = FFTquin2D_analysis(x,J,FA) % % Input: % x = input data % J = number of iterations % FA = analysis filters % % Output: % y2 = result (folded) % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland % Dimensions of data [m,n]=size(x); % Dimensions of remaining folded lowpass subband cm=m; cn=n; % Check dimensions of input data for iter=1:2, tmp=size(x,iter)/2^floor((J+2-iter)/2); if round(tmp)~=tmp, disp(' ') disp('The size of the input signal must be a sufficient power of two!') disp(' ') y2=[]; return; end; end; % Analysis filters: % H1, G1 : filters for iterations with mod(j,2)=1 % H1D, G1D : filters for iterations with mod(j,2)=0 % (premultiply analysis filters by the downsampling factor; i.e., det(D)=2) H1=FA(:,:,1)/2; G1=FA(:,:,2)/2; H1D=FA(:,:,3)/2; G1D=FA(:,:,4)/2; % Compute the FFT of the input data X=fftn(x); clear x; % Initialize cube for folded wavelet coefficients y2=zeros(cm,cn); for j=1:J, mj=mod(j,2); % Select filter switch mj, case 1, H=H1; G=G1; case 0, H=H1D; G=G1D; end; % Filtering Y1=H(1:size(X,1),1:size(X,2)).*X; Y2=G(1:size(X,1),1:size(X,2)).*X; % Downsampling & upsampling switch mj, case 1, if j~=J, % This operates like: Y1=Y1+fftshift(Y1); Y1=Y1(1:cm,1:cn/2); Y1(1:cm/2,1:cn/2)=Y1(1:cm/2,1:cn/2)+Y1(cm/2+1:cm,cn/2+1:cn); Y1(cm/2+1:cm,1:cn/2)=Y1(cm/2+1:cm,1:cn/2)+Y1(1:cm/2,cn/2+1:cn); Y1=Y1(1:cm,1:cn/2); else Y1=Y1+fftshift(Y1); end; Y2=Y2 + fftshift(Y2); %! y2(1:cm,cn/2+1:cn)=fold2D(real(ifftn(Y2)),mj,m,n); y2(1:cm,cn/2+1:cn)=fold2D((ifftn(Y2)),mj,m,n); cn=cn/2; case 0, m2=m/2;n2=n/2; Y1=Y1(1:m2,1:n2)+Y1(m2+1:2*m2,1:n2); Y2=Y2(1:m2,1:n2)+Y2(m2+1:2*m2,1:n2); y2(cm/2+1:cm,1:cn)=real(ifftn(Y2)); cm=cm/2; % Preparing filters for next three iterations lm=1:2:m; ln=1:2:n; H1=H1(lm,ln); G1=G1(lm,ln); H1D=H1D(lm,ln); G1D=G1D(lm,ln); m=m2; n=n2; end; X=Y1; end; % Insert folded lowpass subband y2(1:cm,1:cn)=fold2D(real(ifftn(Y1)),mj,m,n); return; % ---------------------------------------------------------------------- % Fold 2D subband % ---------------------------------------------------------------------- function f=fold2D(u,j,m,n) switch j, case 0, f=u; case 1, f=u(:,1:2:n)+u(:,2:2:n); end; function x=FFTquin2D_synthesis(y2,J,FS); % FFTQUIN2D_SYNTHESIS Perform 2D quincunx wavelet synthesis % x = FFTquin2D_synthesis(y2,J,FS) % % Input: % y2 = data (folded) % J = number of interations % FS = synthesis filters % % Output: % x = result (unfolded) % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland % Dimensions of input data [m,n]=size(y2); % Synthesis filters: % H1, G1 : filters for iterations with mod(j,2)=1 % H1D, G1D : filters for iterations with mod(j,2)=0 H1=FS(:,:,1); G1=FS(:,:,2); H1D=FS(:,:,3); G1D=FS(:,:,4); % How many "double-iterations"? l=2^((J-mod(J,2))/2); M=m/l; N=n/l; % Dimensions of full data [M0,N0,P0]=size(H1); % Dimensions of folded lowpass subband cm=M0; cn=N0; cn=cn/2^floor((J+1)/2); cm=cm/2^floor((J)/2); % Extract folded lowpass subband and unfold y1=y2(1:cm,1:cn); y1=unfold2D(y1,mod(J,2),M,N); Y1=fftn(y1); clear y1; j=J; while j>0; mj=mod(j,2); % unfold highpass subband and select filters switch mj, case 1, f=unfold2D(y2(1:M,N/2+1:N),mj,M,N); H=H1(1:l:M0,1:l:N0); G=G1(1:l:M0,1:l:N0); case 0, f=unfold2D(y2(M+1:2*M,1:N),mj,M,N); l=l/2; Y1=[Y1 Y1;Y1 Y1]; H=H1D(1:l:M0,1:l:N0); G=G1D(1:l:M0,1:l:N0); end; Y2=fftn(f); clear f; if mj==0, Y2=[Y2 Y2;Y2 Y2]; M=2*M; N=2*N; end; % filter data Y1=Y1.*H + Y2.*G; j=j-1; end; x=real(ifftn(Y1)); return; % ---------------------------------------------------------------------- % Unfold 2D subband % ---------------------------------------------------------------------- function u=unfold2D(y,j,M,N) switch j, case 0, u=y; case 1, u=zeros(M,N); u(1:2:M,1:2:N)=y(1:2:M,:); u(2:2:M,2:2:N)=y(2:2:M,:); end; return; function [FA,FS]=FFTquincunxfilter2D(dim,alpha,type); % FFTQUINCUNXFILTER2D Supplies filters for the 2D quincunx transform. % [FFTanalysisfilters,FFTsynthesisfilters]=FFTquincunxfilter2D(dim,alpha,type) % computes the frequency response of low- and high-pass filters. % % Input: % dim = dimensions of the input signal % alpha = degree of the filters, any real number >=0 % type = % class I: McClellan-based filters % o = orthogonal; b = discrete linear B-spline (synthesis); d = dual % class II: Polyharmonic B-spline wavelets (Rabut-style localization) % Po = orthogonal; Pb = B-spline; Pd = dual % class III: Polyharmonic B-spline wavelets (isotropic-style % localization) % PO = orthogonal {=Po}; PB = B-spline; PD = dual % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland m=dim(1); n=dim(2); gamma=alpha+2; % Setup downsampling matrix D=[1 1; 1 -1]'; % Coordinates in the Fourier domain [xo,yo]=ndgrid(2*pi*([1:m]-1)/m,2*pi*([1:n]-1)/n); for iter=0:1, if iter==0, % First filter: no downsampling x=xo; y=yo; end; if iter>0, % Coordinates after downsampling x=D(1,1)*xo+D(1,2)*yo; y=D(2,1)*xo+D(2,2)*yo; % D=D*D; % prepare filter for next iteration end; if lower(type(1)) == 'p', % Isotropic polyharmonic splines if iter==0, [ac,acD,loc,B] = FFTquincunxpolyfilter(x,y,gamma,type(2)); else %ac = fftshift(interp2(xo,yo,ac,mod(x,2*pi),mod(y,2*pi),'*nearest'),1); %acD= fftshift(interp2(xo,yo,acD,mod(x,2*pi),mod(y,2*pi),'*nearest')); %loc= fftshift(interp2(xo,yo,loc,mod(x,2*pi),mod(y,2*pi),'*nearest'),1); %B = fftshift(interp2(xo,yo,B,mod(x,2*pi),mod(y,2*pi),'*nearest'),1); ac = interp2(xo,yo,ac0,mod(x,2*pi),mod(y,2*pi),'*nearest'); acD= interp2(xo,yo,acD0,mod(x,2*pi),mod(y,2*pi),'*nearest'); loc= interp2(xo,yo,loc0,mod(x,2*pi),mod(y,2*pi),'*nearest'); B = interp2(xo,yo,B0,mod(x,2*pi),mod(y,2*pi),'*nearest'); %[ac,acD,loc,B] = FFTquincunxpolyfilter(x,y,gamma,type(2)); end; ortho = acD./ac; else [ortho,B] = FFTquincunxmcclellan(x,y,alpha); end; % Lowpass filter [H,H1] = FFTquincunxfilter2D_lowpass(x,y,type,B,ortho); % Reversed filter B0 = B; if iter==0, B=fftshift(B); ortho=fftshift(ortho); else B=fftshift(B,1); ortho=fftshift(ortho,1); end; if lower(type(1)) == 'p', ac0=ac; acD0=acD; loc0=loc; if iter==0, ac=fftshift(ac); acD=fftshift(acD); loc=fftshift(loc); else ac=fftshift(ac,1); acD=fftshift(acD); loc=fftshift(loc,1); end; else ac=0; ac0=0; acD=0; acD0=0; loc=0; loc0=0; end; [Hd,H1d] = FFTquincunxfilter2D_highpass(x-pi,y-pi,type,B,ortho,ac,ac0,acD,acD0,loc,loc0); % Highpass filters: modulation G = exp(i*x).*H1d; G1 = exp(-i*x).*Hd; % Fill up array with analysis and synthesis filters FA(:,:,iter*2+1) = H1; FA(:,:,iter*2+2) = G1; FS(:,:,iter*2+1) = H; FS(:,:,iter*2+2) = G; end; function [H,H1]=FFTquincunxfilter2D_highpass(x,y,type,B,ortho,ac,ac0,acD,acD0,loc,loc0); % FFTQUINCUNXFILTER2D_HIGHPASS Supplies highpass filters for 2D quincunx transform. % [Hsynthesis,Hanalysis]=FFTquincunxfilter2D_highpass(x,y,alpha,type) % computes the frequency response of highpass filters. % % Input: % x,y = coordinates in the frequency domain % alpha = degree of the filters, any real number >=0 % type = type of filter (ortho, dual, bspline) % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland if lower(type(1))=='p', % Polyharmonic splines type = [ type(2:length(type)) ]; switch lower(type(1)), % Orthogonal filters case 'o', H = B*sqrt(2) ./ sqrt(ortho); H1 = conj(H); % Dual filters (B-spline at the analysis side) case 'd', H = sqrt(2)*conj(B).*ac; H1 = sqrt(2)*B./acD; % B-spline filters (B-spline at the synthesis side) case 'b', H1 = sqrt(2)*conj(B).*ac; H = sqrt(2)*B./acD; case 'i', H = sqrt(2)*loc0./ac0; H1 = sqrt(2)*(B.^2).*ac./acD.*ac0./loc0; H1(find(isinf(H1)))=0; end; else % Simple fractional iterate with McClellan transform [H,H1]=FFTquincunxfilter2D_lowpass(x,y,type,B,ortho); end; function [H,H1]=FFTquincunxfilter2D_lowpass(x,y,type,B,ortho); % FFTQUINCUNXFILTER2D_LOWPASS Supplies lowpass filters for 2D quincunx transform. % [Hsynthesis,Hanalysis]=FFTquincunxfilter2D_lowpass(x,y,alpha,type) % computes the frequency response of lowpass filters. % % Input: % x,y = coordinates in the frequency domain % alpha = degree of the filters, any real number >=0 % type = type of filter (ortho, dual, bspline) % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland H=B; if lower(type(1)) == 'p', type = [ type(2:length(type)) ]; end; switch lower(type(1)), % Orthogonal filters case 'o', H = H*sqrt(2) ./ sqrt(ortho); H1 = conj(H); % Dual filters (B-spline at the analysis side) case 'd', H1 = sqrt(2)*conj(H); H = conj(H1./(ortho)); % B-spline filters (B-spline at the synthesis side) case 'b', H = sqrt(2)*H; H1 = conj(H./(ortho)); % Isotropic wavelet filter case 'i', H1 = sqrt(2)*conj(H); H = conj(H1./(ortho)); end; function [ortho,H] = FFTquincunxmcclellan(x,y,alpha) % FFTQUINCUNXMCCLELLAN Supplies orthonormalizing part of the 2D McClellan % filters for 2D quincunx transform. % % v=FFTquincunmcclellan(x,y,alpha) % % Input: % x,y = coordinates in the frequency domain % alpha = degree of the filters, any real number >=1 % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland % McClellan transform filters H = (2*ones(size(x)) + (cos(x) + cos(y))).^((alpha+1)/2); H = H/4^((alpha+1)/2); Hc = (2*ones(size(x)) - (cos(x) + cos(y))).^((alpha+1)/2); Hc = Hc/4^((alpha+1)/2); % Orthonormalizing denominator (l_2 dual) ortho = H.*conj(H) + Hc.*conj(Hc); function [ac,acD,loc,B] = FFTquincunxpolyfilter(x,y,gamma,type) % FFTQUINCUNXPOLYFILTER Supplies orthonormalizing part of the 2D polyharmonic % spline filters for 2D quincunx transform. % % v=FFTquincunxpolyfilter(x,y,gamma,type) % % Input: % x,y = coordinates in the frequency domain % gamma = order of the filters, any real number >=0 % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland % Get dimensions [m n]=size(x); m=2*m; n=2*n; % Construct fine grid [0,2pi[ x [0,2pi[ [xo,yo]=ndgrid(2*pi*([1:m]-1)/m,2*pi*([1:n]-1)/n); warning off MATLAB:divideByZero; % Refinement filter for [2 0; 0 2] if upper(type(1)) == type(1), loc = 8/3*(sin(xo/2).^2+sin(yo/2).^2)+2/3*(sin((xo+yo)/2).^2+sin((xo-yo)/2).^2); H = 2^(-gamma)*((8/3*(sin(xo).^2+sin(yo).^2)+2/3*(sin(xo+yo).^2+sin(xo-yo).^2))./loc).^(gamma/2); else loc = sin(xo/2).^2+sin(yo/2).^2; H = 2^(-gamma)*((sin(xo).^2+sin(yo).^2)./loc).^(gamma/2); end; H(find(isnan(H))) = 1; % Autocorrelation function ac = autocorr2d(H.^2); % Construct fine grid [0,2pi] x [0,2pi] [xo2,yo2]=ndgrid(2*pi*([1:m/2+1]-1)/(m/2),2*pi*([1:n/2+1]-1)/(n/2)); % Extend autocorrelation function ac(m/2+1,:)=ac(1,:); ac(:,n/2+1)=ac(:,1); % Compute autocorrelation function on subsampled grid; D=[1 1; 1 -1] x2=mod(xo2+yo2,2*pi); y2=mod(xo2-yo2,2*pi); % Compute values on grid (x,y) %------------------------------ % Autocorrelation filter acD= interp2(xo2,yo2,ac,mod(x+y,2*pi),mod(x-y,2*pi),'*nearest'); ac = interp2(xo2,yo2,ac,mod(x,2*pi),mod(y,2*pi),'*nearest'); % Localization operator loc = interp2(xo,yo,loc,mod(x,2*pi),mod(y,2*pi),'*nearest'); loc = loc.^(gamma/2); % Scaling filter for quincunx lattice if upper(type(1)) == type(1), B = 2^(-gamma/2)*((8/3*(sin((x+y)/2).^2+sin((x-y)/2).^2)+2/3*(sin(x).^2+sin(y).^2))./(8/3*(sin(x/2).^2+sin(y/2).^2)+2/3*(sin((x+y)/2).^2+sin((x-y)/2).^2))).^(gamma/2); else B = 2^(-gamma/2)*((sin((x+y)/2).^2+sin((x-y)/2).^2)./(sin(x/2).^2+sin(y/2).^2)).^(gamma/2); end; B(find(isnan(B))) = 1; function [v,fv] = poly(alpha,type) % POLY - compute the polyharmonic B-spline % % Input: % alpha = degree of the polyharmonic spline % type = type of B-spline (b,d,o,B,D,O) % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland warning off MATLAB:divideByZero; N=16; % spatial support: [-N/4:N/4[ Z=16; % spatial zoom factor %N=64; %Z=2; step=2*pi/N; [x,y]=meshgrid(-Z*pi:step:Z*pi-step); w1=x; w2=y; % compute frequency response gamma=alpha+2; x = x/2; y = y/2; loc = sin(x).^2+sin(y).^2; % alternative localization if upper(type(1)) == type(1), loc = ( 8/3*loc + 2/3*(sin(x+y).^2+sin(x-y).^2) ) / 4; end; pow=(x.^2+y.^2); loc=loc.^(gamma/2); pow=pow.^(gamma/2); fv = ( loc ./ pow ); fv(find(isnan(fv))) = 1; % autocorrelation function [xo,yo]=meshgrid(0:step/2:2*pi-step/2); % refinement filter for [2 0; 0 2] if upper(type(1)) == type(1), H = 2^(-gamma)*((8/3*(sin(xo).^2+sin(yo).^2)+2/3*(sin(xo+yo).^2+sin(xo-yo).^2))./(8/3*(sin(xo/2).^2+sin(yo/2).^2)+2/3*(sin((xo+yo)/2).^2+sin((xo-yo)/2).^2))).^(gamma/2); else H = 2^(-gamma)*((sin(xo).^2+sin(yo).^2)./(sin(xo/2).^2+sin(yo/2).^2)).^(gamma/2); end; H(find(isnan(H))) = 1; % autocorrelation function ac0 = autocorr2d(H.^2); sx = size(ac0,1); sy = size(ac0,2); ac = zeros(size(fv)); for iterx=1:Z, for itery=1:Z, bx=(iterx-1)*sx+1; by=(itery-1)*sy+1; ac(bx:bx+sx-1,by:by+sy-1)=ac0; end; end; ac = fftshift(ac); if lower(type(1)) == 'o', fv = fv ./ sqrt(ac); end; if lower(type(1)) == 'd', fv = fv ./ ac; end; % compute spatial version fv = ifftshift(fv); % shift to [0:2pi[ v = real((ifft2(fv)))*Z^2; % compensate for zooming % only keep the half [-N/4:N/4[ instead of [-N/2:N/2[ (to avoid aliasing) [x,y]=meshgrid(-N/4:1/Z:N/4-1/Z); v=fftshift(v); v=v((N*Z)/4:(N*Z)*3/4-1,(N*Z)/4:(N*Z)*3/4-1); v=ifftshift(v); % optional: normalize energy (for movies) if length(type)>1 & type(2) == 'n', s=sum(v(:).^2)/(Z*Z); v=v*sqrt(1/s); end; % surface plot with lighting surfl(x,y,fftshift(v)); shading flat; view(-26,44); xlabel('x_1'); ylabel('x_2'); function [v,fv] = polyw(alpha,type) % POLYW - polyharmonic B-spline wavelet % % Input: % % type % lowercase - Rabut style % uppercase - isotropic brand % % alpha = degree of the polyharmonic spline % % Dimitri Van De Ville % Biomedical Imaging Group, BIO-E/STI % Swiss Federal Institute of Technology Lausanne % CH-1015 Lausanne EPFL, Switzerland gamma=alpha+2; warning off MATLAB:divideByZero; N=16; Z=16; step=2*pi/N; [w1,w2]=meshgrid(-Z*pi:step:Z*pi-step); % downsampled grid w1D=(w1+w2)/2; w2D=(w1-w2)/2; % scaling function w1D = w1D/2; w2D = w2D/2; loc = 4*sin(w1D).^2+4*sin(w2D).^2; if upper(type(1)) == type(1), loc = loc - 8/3*sin(w1D).^2.*sin(w2D).^2; end; pow = (2*w1D).^2+(2*w2D).^2; loc=loc.^(gamma/2); pow=pow.^(gamma/2); fv1 = loc ./ pow; fv1(find(isnan(fv1))) = 1; w1D = 2*w1D; w2D = 2*w2D; % autocorrelation function [w1o,w2o]=meshgrid(0:step/4:2*pi-step/4); % refinement filter for [2 0; 0 2] if upper(type(1)) == type(1), H = 2^(-gamma)*((8/3*(sin(w1o).^2+sin(w2o).^2)+2/3*(sin(w1o+w2o).^2+sin(w1o-w2o).^2))./(8/3*(sin(w1o/2).^2+sin(w2o/2).^2)+2/3*(sin((w1o+w2o)/2).^2+sin((w1o-w2o)/2).^2))).^(gamma/2); else H = 2^(-gamma)*((sin(w1o).^2+sin(w2o).^2)./(sin(w1o/2).^2+sin(w2o/2).^2)).^(gamma/2); end; H(find(isnan(H))) = 1; % autocorrelation function ac0 = autocorr2d(H.^2); ac0(size(ac0,1)+1,:)=ac0(1,:); ac0(:,size(ac0,2)+1)=ac0(:,1); [w1o,w2o]=meshgrid(0:step/2:2*pi); ac = interp2(w1o,w2o,ac0,mod(w1D,2*pi),mod(w2D,2*pi),'*linear'); if lower(type(1)) == 'o' || lower(type(1)) == 'j', fv1 = fv1 ./ sqrt(ac); end; if lower(type(1)) == 'd', fv1 = fv1 ./ ac; end; % wavelet filter w1D = -w1D-pi; w2D = -w2D-pi; acD = interp2(w1o,w2o,ac0,mod(w1D,2*pi),mod(w2D,2*pi),'*linear'); w1D = w1D/2; w2D = w2D/2; % Quincunx scaling filter if upper(type(1)) == type(1), t1 = 8/3*(sin(w1D+w2D).^2 + sin(w1D-w2D).^2) + 2/3*(sin(2*w1D).^2 + sin(2*w2D).^2); t2 = 8/3*(sin(w1D).^2 + sin(w2D).^2) + 2/3*(sin(w1D+w2D).^2 + sin(w1D-w2D).^2); else t1 = sin(w1D+w2D).^2 + sin(w1D-w2D).^2; t2 = sin(w1D).^2 + sin(w2D).^2; end; % Dyadic scaling filter if length(type)>1 & type(2)=='D', t1 = sin(2*w1D).^2 + sin(2*w2D).^2; t2 = sin(w1D).^2 + sin(w2D).^2; end; t=( 0.5 * t1./t2 ).^(gamma/2); fv2 = conj(t); fv2(find(isnan(fv2))) = 1; w1D = 2*w1D; w2D = 2*w2D; w1D = -w1D-pi; w2D = -w2D-pi; if lower(type(1)) == 'i', fv2 = loc; end; if lower(type(1)) == 'j', fv2 = loc; % fv2(find(isinf(abs(fv2)))) = 0; end; % shift fv2 = fv2 .* exp(-i*w1D); acD2 = interp2(w1o,w2o,ac0,mod(w1,2*pi),mod(w2,2*pi),'*linear'); if lower(type(1)) == 'o', fv3 = sqrt(acD./acD2); end; if lower(type(1)) == 'b', fv3 = acD; end; if lower(type(1)) == 'd', fv3 = 1./acD2; end; if lower(type(1)) == 'i', fv3 = 1./ac; end; % scale relation fv = 2^(gamma/2-1)*fv1.*fv2.*fv3; %fv=fv1; fv = ifftshift(fv); % compute spatial version v = ifft2(fv)*Z^2; [x1,x2]=meshgrid(-N/4:1/Z:N/4-1/Z); v=fftshift(v); v=v((N*Z)/4:(N*Z)*3/4-1,(N*Z)/4:(N*Z)*3/4-1); v=ifftshift(v); surfl(x1,x2,fftshift(real(v))); shading flat; view(-26,44); xlabel('x_1'); ylabel('x_2');
github
jacksky64/imageProcessing-master
perform_waveatoms_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/perform_waveatoms_transform.m
24,620
utf_8
a14b7c361a63a2e3e55c96f6fbb09d09
function y = perform_waveatoms_transform(x,dir, options) % perform_waveatoms_transform - interface to WaveAtom transform % % y = perform_waveatoms_transform(x,dir, options); % % The waveatom toolbox can be downloaded from % http://www.waveatom.org/ % % Copyright (c) 2007 Gabriel Peyre options.null = 0; issym = getoptions(options, 'issym', 0); force_real = getoptions(options, 'force_real', 1); if dir==1 d = nb_dims(x); else if iscell(x) d = nb_dims(x{1}); else d = nb_dims(x); end end pat = 'p'; tp = 'ortho'; if d==1 if dir==1 if issym y = fatom1sym(x,pat,[1 1]); else y = fwa1(x,pat,tp); end else if issym y = iatom1sym(x,pat,[1 1]); else y = iwa1(x,pat,tp); end end else if dir==1 if issym y = fwa2sym(x,pat,[1 1]); else y = fwa2(x,pat,tp); end else if issym y = iwa2sym(x,pat,[1 1]); else y = iwa2(x,pat,tp); end end end if force_real && dir==-1 y = real(y); end function c = fwa2(x,pat,tp) % fwa2 - 2D forward wave atom transform % ----------------- % INPUT % -- % x is a real N-by-N matrix. N is a power of 2. % -- % pat specifies the type of frequency partition which satsifies % parabolic scaling relationship. pat can either be 'p' or 'q'. % -- % tp is the type of tranform. % 'ortho': orthobasis % 'directional': real-valued frame with single oscillation direction % 'complex': complex-valued frame % ----------------- % OUTPUT % -- % c is a cell array which contains the wave atom coefficients. If % tp=='ortho', then c{j}{m1,m2}(n1,n2) is the coefficient at scale j, % frequency index (m1,m2) and spatial index (n1,n2). If % tp=='directional', then c{j,d}{m1,m2}(n1,n2) with d=1,2 are the % coefficients at scale j, frequency index (m1,m2) and spatial index % (n1,n2). If tp=='complex', then c{j,d}{m1,m2)(n1,n2) with d=1,2,3,4 % are the coefficients at scale j, frequency index (m1,m2) and spatial % index (n1,n2). % ----------------- % Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end if(strcmp(tp, 'ortho')==1) %--------------------------------------------------------- N = size(x,1); H = N/2; lst = freq_pat(H,pat); %------------------ f = fft2(x) / sqrt(prod(size(x))); A = N; c = cell(length(lst),1); %------------------ for s=1:length(lst) nw = length(lst{s}); c{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c{s}{I+1,J+1} = []; else B = 2^(s-1); D = 2*B; Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = zeros(D,D); for id=0:1 if(id==0) Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); else Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); end for jd=0:1 if(jd==0) Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); else Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); end res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); end end c{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); end end end end elseif(strcmp(tp, 'directional')==1) %--------------------------------------------------------- N = size(x,1); H = N/2; lst = freq_pat(H,pat); %------------------ f = fft2(x) / sqrt(prod(size(x))); A = N; c1 = cell(length(lst),1); c2 = cell(length(lst),1); %------------------ for s=1:length(lst) nw = length(lst{s}); c1{s} = cell(nw,nw); c2{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c1{s}{I+1,J+1} = []; c2{s}{I+1,J+1} = []; else B = 2^(s-1); D = 2*B; res = zeros(D,D); Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c1{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c2{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); end end end end c = [c1 c2]; elseif(strcmp(tp, 'complex')==1) %--------------------------------------------------------- N = size(x,1); H = N/2; lst = freq_pat(H,pat); %------------------ f = fft2(x) / sqrt(prod(size(x))); A = N; c1 = cell(length(lst),1); c2 = cell(length(lst),1); c3 = cell(length(lst),1); c4 = cell(length(lst),1); %------------------ for s=1:length(lst) nw = length(lst{s}); c1{s} = cell(nw,nw); c2{s} = cell(nw,nw); c3{s} = cell(nw,nw); c4{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c1{s}{I+1,J+1} = []; c2{s}{I+1,J+1} = []; c3{s}{I+1,J+1} = []; c4{s}{I+1,J+1} = []; else B = 2^(s-1); D = 2*B; res = zeros(D,D); Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c1{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c2{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c3{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); res = zeros(D,D); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); res(mod(Idx,D)+1,mod(Jdx,D)+1) = res(mod(Idx,D)+1,mod(Jdx,D)+1) + conj( Icf.'*Jcf ) .* f(mod(Idx,A)+1,mod(Jdx,A)+1); c4{s}{I+1,J+1} = ifft2(res) * sqrt(prod(size(res))); end end end end c = [c1 c2 c3 c4]; end function x = iwa2(c,pat,tp) % iwa2 - 2D inverse wave atom transform % ----------------- % INPUT % -- % c is a cell array which contains the wave atom coefficients. If % tp=='ortho', then c{j}{m1,m2}(n1,n2) is the coefficient at scale j, % frequency index (m1,m2) and spatial index (n1,n2). If % tp=='directional', then c{j,d}{m1,m2}(n1,n2) with d=1,2 are the % coefficients at scale j, frequency index (m1,m2) and spatial index % (n1,n2). If tp=='complex', then c{j,d}{m1,m2)(n1,n2) with d=1,2,3,4 % are the coefficients at scale j, frequency index (m1,m2) and spatial % index (n1,n2). % -- % pat specifies the type of frequency partition which satsifies % parabolic scaling relationship. pat can either be 'p' or 'q'. % -- % tp is the type of tranform. % 'ortho': orthobasis % 'directional': real-valued frame with single oscillation direction % 'complex': complex-valued frame % ----------------- % OUTPUT % -- % x is a real N-by-N matrix. N is a power of 2. % ----------------- % Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end if(strcmp(tp, 'ortho')==1) %--------------------------------------------------------- T = 0; for s=1:length(c) nw = length(c{s}); for I=1:nw for J=1:nw T = T + prod(size(c{s}{I,J})); end end end N = sqrt(T); H = N/2; lst = freq_pat(H,pat); A = N; f = zeros(A,A); %------------------ for s=1:length(lst) nw = length(lst{s}); for I=0:nw-1 for J=0:nw-1 if(~isempty(c{s}{I+1,J+1})) B = 2^(s-1); D = 2*B; Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = fft2(c{s}{I+1,J+1}) / sqrt(prod(size(c{s}{I+1,J+1}))); %res = zeros(D,D); for id=0:1 if(id==0) Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); else Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); end for jd=0:1 if(jd==0) Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); else Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); end f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); end end end end end end %------------------ x = ifft2(f) * sqrt(prod(size(f))); elseif(strcmp(tp, 'directional')==1) %--------------------------------------------------------- c1 = c(:,1); c2 = c(:,2); T = 0; for s=1:length(c1) nw = length(c1{s}); for I=1:nw for J=1:nw T = T + prod(size(c1{s}{I,J})); end end end N = sqrt(T); H = N/2; lst = freq_pat(H,pat); A = N; f = zeros(A,A); %------------------ for s=1:length(lst) nw = length(lst{s}); for I=0:nw-1 for J=0:nw-1 if(~isempty(c1{s}{I+1,J+1})) B = 2^(s-1); D = 2*B; Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = fft2(c1{s}{I+1,J+1}) / sqrt(prod(size(c1{s}{I+1,J+1}))); %res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); res = fft2(c2{s}{I+1,J+1}) / sqrt(prod(size(c2{s}{I+1,J+1}))); %res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); end end end end x = ifft2(f) * sqrt(prod(size(f))); elseif(strcmp(tp, 'complex')==1) %--------------------------------------------------------- c1 = c(:,1); c2 = c(:,2); c3 = c(:,3); c4 = c(:,4); T = 0; for s=1:length(c1) nw = length(c1{s}); for I=1:nw for J=1:nw T = T + prod(size(c1{s}{I,J})); end end end N = sqrt(T); H = N/2; lst = freq_pat(H,pat); A = N; f = zeros(A,A); %------------------ for s=1:length(lst) nw = length(lst{s}); for I=0:nw-1 for J=0:nw-1 if(~isempty(c1{s}{I+1,J+1})) B = 2^(s-1); D = 2*B; Ict = I*B; Jct = J*B; %starting position in freq if(mod(I,2)==0) Ifm = Ict-2/3*B; Ito = Ict+4/3*B; else Ifm = Ict-1/3*B; Ito = Ict+5/3*B; end if(mod(J,2)==0) Jfm = Jct-2/3*B; Jto = Jct+4/3*B; else Jfm = Jct-1/3*B; Jto = Jct+5/3*B; end res = fft2(c1{s}{I+1,J+1}) / sqrt(prod(size(c1{s}{I+1,J+1}))); %res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); res = fft2(c2{s}{I+1,J+1}) / sqrt(prod(size(c2{s}{I+1,J+1}))); %res = zeros(D,D); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); res = fft2(c3{s}{I+1,J+1}) / sqrt(prod(size(c3{s}{I+1,J+1}))); %res = zeros(D,D); Idx = [ceil(Ifm):floor(Ito)]; Icf = kf_rt(Idx/B*pi, I); Jdx = [ceil(-Jto):floor(-Jfm)]; Jcf = kf_lf(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); res = fft2(c4{s}{I+1,J+1}) / sqrt(prod(size(c4{s}{I+1,J+1}))); %res = zeros(D,D); Idx = [ceil(-Ito):floor(-Ifm)]; Icf = kf_lf(Idx/B*pi, I); Jdx = [ceil(Jfm):floor(Jto)]; Jcf = kf_rt(Jdx/B*pi, J); f(mod(Idx,A)+1,mod(Jdx,A)+1) = f(mod(Idx,A)+1,mod(Jdx,A)+1) + ( Icf.'*Jcf ) .* res(mod(Idx,D)+1,mod(Jdx,D)+1); end end end end x = ifft2(f) * sqrt(prod(size(f))); end function lst = freq_pat(H,pat) % freq_pat.m - generate frequency partition % % input: % H: half length of the frequency span, H needs to be greater than 16 % pat: type of frequency partition which satsifies parabolic scaling relationship % equal to 'p' or 'q' % % output: % lst: data representing the partition of frequency % % Written by Lexing Ying and Laurent Demanet, 2006 if(H<16) error('H needs to be at least 16'); end if( pat=='p') %parabolic scaling by lexing len = ceil(log2(H)/2)+1; lst = cell(len,1); lst{1} = [1 1]; lst{2} = [0 1]; lst{3} = [0 1 1 1]; cnt = 16; idx = 3; rad = 4; while(cnt<H) old = cnt; lst{idx} = [lst{idx} 1 1]; cnt = cnt + 2*rad; idx = idx+1; rad = 2*rad; trg = min(4*old,H); lst{idx} = [zeros(1,cnt/rad), ones(1,(trg-cnt)/rad)]; cnt = trg; end elseif(pat=='q') %parabolic scaling by laurent len = floor(log2(H)/2)+1; lst = cell(len,1); lst{1} = [1 1]; lst{2} = [0 1 1 1]; cnt = 8; idx = 2; rad = 2; while(cnt<H) old = cnt; lst{idx} = [lst{idx} 1 1]; cnt = cnt + 2*rad; idx = idx+1; rad = 2*rad; trg = min(4*old,H); lst{idx} = [zeros(1,cnt/rad), ones(1,(trg-cnt)/rad)]; cnt = trg; end elseif(pat=='u') len = ceil(log2(H)/2)+1; %uniform partitioning lst = cell(len,1); B = 2^(len-1); lst{end} = ones(1,H/B); else error('wrong pat'); end function r = kf_rt(w,n) % kf_rt.m - right bump % % Written by Lexing Ying and Laurent Demanet, 2006 r = zeros(size(w)); an = pi/2*(n+1/2); en = (-1)^n; en1 = (-1)^(n+1); r = exp(-i*w/2) .* ( exp(i*an)*g(en*(w-pi*(n+1/2))) ); function r = g(w) % g.m - 'g' function Villemoes's construction % % Written by Lexing Ying and Laurent Demanet, 2006 r = zeros(size(w)); gd = w<5*pi/6 & w>-7*pi/6; r(gd) = abs(sf(w(gd)-3*pi/2)); %---------------------------------------------------------------------- function r = sf(w) r = zeros(size(w)); aw = abs(w); r(aw<=2*pi/3) = 0; gd = aw>=2*pi/3 & aw<=4*pi/3; r(gd) = 1/sqrt(2) * hf(w(gd)/2+pi); gd = aw>=4*pi/3 & aw<=8*pi/3; r(gd) = 1/sqrt(2) * hf(w(gd)/4); r(aw>8*pi/2) = 0; function r = hf(w) w = mod(w+pi,2*pi) - pi; r = zeros(size(w)); w = abs(w); r = sqrt(2) * cos(pi/2 * beta(3*w/pi-1)); r(w<=pi/3) = sqrt(2); r(w>=2*pi/3) = 0; function r = beta(x) r = x.^4 .*(35-84*x + 70*x.^2 -20*x.^3); function r = kf_lf(w,n) % kf_lf.m - left bump % % Written by Lexing Ying and Laurent Demanet, 2006 r = zeros(size(w)); an = pi/2*(n+1/2); en = (-1)^n; en1 = (-1)^(n+1); r = exp(-i*w/2) .* ( exp(-i*an)*g(en1*(w+pi*(n+1/2))) ); function res = fwa2sym(x,pat,tp) % fwa2sym - 2D forward wave atom transform (symmetric version) % ----------------- % INPUT % -- % x is a real N-by-N matrix. N is a power of 2. % -- % pat specifies the type of frequency partition which satsifies % parabolic scaling relationship. pat can either be 'p' or 'q'. % -- % tp is the type of tranform. % 'ortho': orthobasis % 'directional': real-valued frame with single oscillation direction % 'complex': complex-valued frame % ----------------- % OUTPUT % -- % res is an array containing all the wave atom coefficients. If % tp=='ortho', then res is of size N-by-N. If tp==' % If tp=='directional', then res is of size N-by-N-by-2. If tp=='complex', % then res is of size N-by-N-by-4. % ----------------- % Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end call = fwa2(x,pat,tp); N = size(x,1); res = zeros(N,N,size(call,2)); for i=1:size(call,2) c = call(:,i); y = zeros(N,N); for s=1:length(c) D = 2^s; nw = length(c{s}); for I=0:nw-1 for J=0:nw-1 if(~isempty(c{s}{I+1,J+1})) y( I*D+[1:D], J*D+[1:D] ) = c{s}{I+1,J+1}; end end end end res(:,:,i) = y; end function x = iwa2sym(res,pat,tp) % iwa2sym - 2D inverse wave atom transform (symmetric version) % ----------------- % INPUT % -- % res is an array containing all the wave atom coefficients. If % tp=='ortho', then res is of size N-by-N. If tp==' % If tp=='directional', then res is of size N-by-N-by-2. If tp=='complex', % then res is of size N-by-N-by-4. % -- % pat specifies the type of frequency partition which satsifies % parabolic scaling relationship. pat can either be 'p' or 'q'. % -- % tp is the type of tranform. % 'ortho': orthobasis % 'directional': real-valued frame with single oscillation direction % 'complex': complex-valued frame % ----------------- % OUTPUT % -- % x is a real N-by-N matrix. N is a power of 2. % ----------------- % Written by Lexing Ying and Laurent Demanet, 2007 if( ismember(tp, {'ortho','directional','complex'})==0 | ismember(pat, {'p','q','u'})==0 ) error('wrong'); end N = size(res,1); H = N/2; lst = freq_pat(H,pat); red = size(res,3); call = cell(length(lst),red); for i=1:red y = res(:,:,i); c = cell(length(lst),1); for s=1:length(lst) B = 2^(s-1); D = 2*B; nw = length(lst{s}); c{s} = cell(nw,nw); for I=0:nw-1 for J=0:nw-1 if(lst{s}(I+1)==0 & lst{s}(J+1)==0) c{s}{I+1,J+1} = []; else c{s}{I+1,J+1} = y( I*D+[1:D], J*D+[1:D] ); end end end end call(:,i) = c; end x = iwa2(call,pat,tp);