plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
jacksky64/imageProcessing-master
load_signal.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/toolbox/load_signal.m
12,338
utf_8
b70e4cb57d6b467ae9c90d4b3310a81f
function y = load_signal(name, n, options) % load_signal - load a 1D signal % % y = load_signal(name, n, options); % % name is a string that can be : % 'regular' (options.alpha gives regularity) % 'step', 'rand', % 'gaussiannoise' (options.sigma gives width of filtering in pixels), % [natural signals] % 'tiger', 'bell', 'bird' % [WAVELAB signals] % 'HeaviSine', 'Bumps', 'Blocks', % 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', % 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', % 'MishMash', 'WernerSorrows' (Heisenberg), % 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), % 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' % 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' % 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) if nargin<2 n = 1024; end options.null = 0; if isfield(options, 'alpha') alpha = options.alpha; else alpha = 2; end options.rep = ''; switch lower(name) case 'regular' y = gen_signal(n,alpha); case 'step' y = linspace(0,1,n)>0.5; case 'stepregular' y = linspace(0,1,n)>0.5; y=y(:); a = gen_signal(n,2); a = a(:); a = rescale(a,-0.1,0.1); y = y+a; case 'gaussiannoise' % filtered gaussian noise y = randn(n,1); if isfield(options, 'sigma') sigma = options.sigma; % variance in number of pixels else sigma = 20; end m = min(n, 6*round(sigma/2)+1); h = compute_gaussian_filter(m,sigma/(4*n),n); options.bound = 'per'; y = perform_convolution(y,h, options); case 'rand' if isfield(options, 'p1') p1 = options.p1; else c = 10; p1 = 1:c; p1 = p1/sum(p1); end p1 = p1(:); c = length(p1); if isfield(options, 'p2') p2 = options.p2; else if isfield(options, 'evol') evol = options.evol; else evol = 0; end p2 = p1(:) + evol*(rand(c,1)-0.5); p2 = max(p2,0); p2 = p2/sum(p2); end y = zeros(n,1); for i=1:n a = (i-1)/(n-1); p = a*p1+(1-a)*p2; p = p/sum(p); y(i) = rand_discr(p, 1); end case 'bird' [y,fs] = load_sound([name '.wav'], n, options); case 'tiger' [y,fs] = load_sound([name '.au'], n, options); case 'bell' [y,fs] = load_sound([name '.wav'], n, options); otherwise y = MakeSignal(name,n); end y = y(:); function y = gen_signal(n,alpha) % gen_signal - generate a 1D C^\alpha signal of length n. % % y = gen_signal(n,alpha); % % The signal is scaled in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? if nargin<2 alpha = 2; end y = randn(n,1); fy = fft(y); fy = fftshift(fy); % filter with |omega|^{-\alpha} h = (-n/2+1):(n/2); h = (abs(h)+1).^(-alpha-0.5); fy = fy.*h'; fy = fftshift(fy); y = real( ifft(fy) ); y = (y-min(y))/(max(y)-min(y)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sig = MakeSignal(Name,n) % MakeSignal -- Make artificial signal % Usage % sig = MakeSignal(Name,n) % Inputs % Name string: 'HeaviSine', 'Bumps', 'Blocks', % 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', % 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', % 'MishMash', 'WernerSorrows' (Heisenberg), % 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), % 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' % 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' % 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) % n desired signal length % Outputs % sig 1-d signal % % References % Various articles of D.L. Donoho and I.M. Johnstone % if nargin > 1, t = (1:n) ./n; end Name = lower(Name); if strcmp(Name,'heavisine'), sig = 4.*sin(4*pi.*t); sig = sig - sign(t - .3) - sign(.72 - t); elseif strcmp(Name,'bumps'), pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2]; wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; sig = zeros(size(t)); for j =1:length(pos) sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4; end elseif strcmp(Name,'blocks'), pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-4.2)]; sig = zeros(size(t)); for j=1:length(pos) sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ; end elseif strcmp(Name,'doppler'), sig = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05)); elseif strcmp(Name,'ramp'), sig = t - (t >= .37); elseif strcmp(Name,'cusp'), sig = sqrt(abs(t - .37)); elseif strcmp(Name,'sing'), k = floor(n * .37); sig = 1 ./abs(t - (k+.5)/n); elseif strcmp(Name,'hisine'), sig = sin( pi * (n * .6902) .* t); elseif strcmp(Name,'losine'), sig = sin( pi * (n * .3333) .* t); elseif strcmp(Name,'linchirp'), sig = sin(pi .* t .* ((n .* .500) .* t)); elseif strcmp(Name,'twochirp'), sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n .* t)); elseif strcmp(Name,'quadchirp'), sig = sin( (pi/3) .* t .* (n .* t.^2)); elseif strcmp(Name,'mishmash'), % QuadChirp + LinChirp + HiSine sig = sin( (pi/3) .* t .* (n .* t.^2)) ; sig = sig + sin( pi * (n * .6902) .* t); sig = sig + sin(pi .* t .* (n .* .125 .* t)); elseif strcmp(Name,'wernersorrows'), sig = sin( pi .* t .* (n/2 .* t.^2)) ; sig = sig + sin( pi * (n * .6902) .* t); sig = sig + sin(pi .* t .* (n .* t)); pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2]; wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; for j =1:length(pos) sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4; end elseif strcmp(Name,'leopold'), sig = (t == floor(.37 * n)/n); % Kronecker elseif strcmp(Name,'riemann'), sqn = round(sqrt(n)); sig = t .* 0; % Riemann's Non-differentiable Function sig((1:sqn).^2) = 1. ./ (1:sqn); sig = real(ifft(sig)); elseif strcmp(Name,'hypchirps'), % Hyperbolic Chirps of Mallat's book alpha = 15*n*pi/1024; beta = 5*n*pi/1024; t = (1.001:1:n+.001)./n; f1 = zeros(1,n); f2 = zeros(1,n); f1 = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68); f2 = sin(beta./(.8-t)).*(0.1<t).*(t<0.75); M = round(0.65*n); P = floor(M/4); enveloppe = ones(1,M); % the rising cutoff function enveloppe(1:P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-1)*pi))/2; enveloppe(M-P+1:M) = reverse(enveloppe(1:P)); env = zeros(1,n); env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M); sig = (f1+f2).*env; elseif strcmp(Name,'linchirps'), % Linear Chirps of Mallat's book b = 100*n*pi/1024; a = 250*n*pi/1024; t = (1:n)./n; A1 = sqrt((t-1/n).*(1-t)); sig = A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2))); elseif strcmp(Name,'chirps'), % Mixture of Chirps of Mallat's book t = (1:n)./n.*10.*pi; f1 = cos(t.^2*n/1024); a = 30*n/1024; t = (1:n)./n.*pi; f2 = cos(a.*(t.^3)); f2 = reverse(f2); ix = (-n:n)./n.*20; g = exp(-ix.^2*4*n/1024); i1 = (n/2+1:n/2+n); i2 = (n/8+1:n/8+n); j = (1:n)/n; f3 = g(i1).*cos(50.*pi.*j*n/1024); f4 = g(i2).*cos(350.*pi.*j*n/1024); sig = f1+f2+f3+f4; enveloppe = ones(1,n); % the rising cutoff function enveloppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-ones(1,n/8))./(n/8-1)*pi))/2; enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8)); sig = sig.*enveloppe; elseif strcmp(Name,'gabor'), % two modulated Gabor functions in % Mallat's book N = 512; t = (-N:N)*5/N; j = (1:N)./N; g = exp(-t.^2*20); i1 = (2*N/4+1:2*N/4+N); i2 = (N/4+1:N/4+N); sig1 = 3*g(i1).*exp(i*N/16.*pi.*j); sig2 = 3*g(i2).*exp(i*N/4.*pi.*j); sig = sig1+sig2; elseif strcmp(Name,'sineoneoverx'), % sin(1/x) in Mallat's book N = 1024; a = (-N+1:N); a(N) = 1/100; a = a./(N-1); sig = sin(1.5./(i)); sig = sig(513:1536); elseif strcmp(Name,'cusp2'), N = 64; a = (1:N)./N; x = (1-sqrt(a)) + a/2 -.5; M = 8*N; sig = zeros(1,M); sig(M-1.5.*N+1:M-.5*N) = x; sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x); sig(3*N+1:3*N + N) = .5*ones(1,N); elseif strcmp(Name,'smoothcusp'), sig = MakeSignal('Cusp2'); N = 64; M = 8*N; t = (1:M)/M; sigma = 0.01; g = exp(-.5.*(abs(t-.5)./sigma).^2)./sigma./sqrt(2*pi); g = fftshift(g); sig2 = iconv(g',sig)'/M; elseif strcmp(Name,'piece-regular'), sig1=-15*MakeSignal('Bumps',n); t = (1:fix(n/12)) ./fix(n/12); sig2=-exp(4*t); t = (1:fix(n/7)) ./fix(n/7); sig5=exp(4*t)-exp(4); t = (1:fix(n/3)) ./fix(n/3); sigma=6/40; sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2)); sig(1:fix(n/7))= sig6(1:fix(n/7)); sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5)); sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3)); sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2)); sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2; sig((fix(n/2)+2*fix(n/12)):-1:(fix(n/2)+fix(n/12)+1))=sig2; sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))=... -ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25; k=fix(n/2)+2*fix(n/12)+3*fix(n/20); sig((k+1):(k+fix(n/7)))=sig5; diff=n-5*fix(n/5); sig(5*fix(n/5)+1:n)=sig(diff:-1:1); % zero-mean bias=sum(sig)/n; sig=bias-sig; elseif strcmp(Name,'piece-polynomial'), t = (1:fix(n/5)) ./fix(n/5); sig1=20*(t.^3+t.^2+4); sig3=40*(2.*t.^3+t) + 100; sig2=10.*t.^3 + 45; sig4=16*t.^2+8.*t+16; sig5=20*(t+4); sig6(1:fix(n/10))=ones(1,fix(n/10)); sig6=sig6*20; sig(1:fix(n/5))=sig1; sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2; sig((2*fix(n/5)+1):3*fix(n/5))=sig3; sig((3*fix(n/5)+1):4*fix(n/5))=sig4; sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1); diff=n-5*fix(n/5); sig(5*fix(n/5)+1:n)=sig(diff:-1:1); %sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=-ones(1,fix(n/10))*20; sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*10; sig((n-fix(n/10)+1):(n+fix(n/20)-fix(n/10)))=ones(1,fix(n/20))*150; % zero-mean bias=sum(sig)/n; sig=sig-bias; elseif strcmp(Name,'gaussian'), sig=GWN(n,beta); g=zeros(1,n); lim=alpha*n; mult=pi/(2*alpha*n); g(1:lim)=(cos(mult*(1:lim))).^2; g((n/2+1):n)=g((n/2):-1:1); g = rnshift(g,n/2); g=g/norm(g); sig=iconv(g,sig); else disp(sprintf('MakeSignal: I don*t recognize <<%s>>',Name)) disp('Allowable Names are:') disp('HeaviSine'), disp('Bumps'), disp('Blocks'), disp('Doppler'), disp('Ramp'), disp('Cusp'), disp('Crease'), disp('Sing'), disp('HiSine'), disp('LoSine'), disp('LinChirp'), disp('TwoChirp'), disp('QuadChirp'), disp('MishMash'), disp('WernerSorrows'), disp('Leopold'), disp('Sing'), disp('HiSine'), disp('LoSine'), disp('LinChirp'), disp('TwoChirp'), disp('QuadChirp'), disp('MishMash'), disp('WernerSorrows'), disp('Leopold'), disp('Riemann'), disp('HypChirps'), disp('LinChirps'), disp('Chirps'), disp('sineoneoverx'), disp('Cusp2'), disp('SmoothCusp'), disp('Gabor'), disp('Piece-Regular'); disp('Piece-Polynomial'); disp('Gaussian'); end % % Originally made by David L. Donoho. % Function has been enhanced. % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/toolbox/load_image.m
20,946
utf_8
f51ce8bb55fa19a67c87b6d1249cb2a5
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = getoptions(options, 'eta', .1); gamma = getoptions(options, 'gamma', 1/sqrt(2)); radius = getoptions(options, 'radius', 10); center = getoptions(options, 'center', [0 0]); center1 = getoptions(options, 'center1', [0 0]); w = getoptions(options, 'tube_width', 0.06); nb_points = getoptions(options, 'nb_points', 9); scaling = getoptions(options, 'scaling', 1); theta = getoptions(options, 'theta', 30 * 2*pi/360); eccentricity = getoptions(options, 'eccentricity', 1.3); sigma = getoptions(options, 'sigma', 0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end if strcmp(type(1:min(12,end)), 'square-tube-') k = str2double(type(13:end)); c1 = [.22 .5]; c2 = [1-c1(1) .5]; eta = 1.5; r1 = [c1 c1] + .21*[-1 -eta 1 eta]; r2 = [c2 c2] + .21*[-1 -eta 1 eta]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); if mod(k,2)==0 sel = n/2-k/2+1:n/2+k/2; else sel = n/2-(k-1)/2:n/2+(k-1)/2; end M( round(.25*n:.75*n), sel ) = 1; return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case 'constant' M = ones(n); case 'ramp' x = linspace(0,1,n); [Y,M] = meshgrid(x,x); case 'bump' s = getoptions(options, 'bump_size', .5); c = getoptions(options, 'center', [0 0]); if length(s)==1 s = [s s]; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); X = (X-c(1))/s(1); Y = (Y-c(2))/s(2); M = exp( -(X.^2+Y.^2)/2 ); case 'periodic' x = linspace(-pi,pi,n)/1.1; [Y,X] = meshgrid(x,x); f = getoptions(options, 'freq', 6); M = (1+cos(f*X)).*(1+cos(f*Y)); case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} M = create_letter(type(8), radius, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.im = 0.09; M = load_image('square-tube', n, options); case 'polygon' theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' options.radius = 0.45; options.center = [.5 .5]; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T-pi/2)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end f = getoptions(options, 'frequency', 30); eta = getoptions(options, 'width', .3); x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' width = getoptions(width, round(n/16) ); [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'geometrical' J = getoptions(options, 'Jgeometrical', 4); sgeom = 100*n/256; options.bound = 'per'; A = ones(n); for j=0:J-1 B = A; for k=1:2^j I = find(B==k); U = perform_blurring(randn(n),sgeom,options); s = median(U(I)); I1 = find( (B==k) & (U>s) ); I2 = find( (B==k) & (U<=s) ); A(I1) = 2*k-1; A(I2) = 2*k; end end M = A; case 'lic-texture' disp('Computing random tensor field.'); options.sigma_tensor = getoptions(options, 'lic_regularity', 50*n/256); T = compute_tensor_field_random(n,options); Flow = perform_tensor_decomp(T); % extract eigenfield. options.isoriented = 0; % no orientation in streamlines % initial texture lic_width = getoptions(options, 'lic_width', 0); M0 = perform_blurring(randn(n),lic_width); M0 = perform_histogram_equalization( M0, 'linear'); options.histogram = 'linear'; options.dt = 0.4; options.M0 = M0; options.verb = 1; options.flow_correction = 1; options.niter_lic = 3; w = 30; M = perform_lic(Flow, w, options); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'tv-image' M = rand(n); tau = compute_total_variation(M); options.niter = 400; [M,err_tv,err_l2] = perform_tv_projection(M,tau/1000,options); M = perform_histogram_equalization(M,'linear'); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); theta = getoptions(options, 'theta', .2); freq = getoptions(options, 'freq', .2); X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} alpha = getoptions(options, 'alpha', 1); M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian sigma = getoptions(options, 'sigma', 10); M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature c = getoptions(c, 'c', .1); % angle theta = getoptions(options, 'theta', pi/sqrt(2)); x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' nbr_periods = getoptions(options, 'nbr_periods', 8); theta = getoptions(options, 'theta', 1/sqrt(2)); skew = getoptions(options, 'skew', 1/sqrt(2) ); A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' sigma = getoptions(options, 'sigma', 1); M = randn(n) * sigma; case 'disk-corner' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); rho = .3; eta = .1; M1 = rho*X+eta<Y; c = [0 .2]; r = .85; d = (X-c(1)).^2 + (Y-c(2)).^2; M2 = d<r^2; M = M1.*M2; otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end if strcmp(type, 'peppers-bw') M(:,1) = M(:,2); M(1,:) = M(2,:); end if sigma>0 M = perform_blurring(M,sigma); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 M = perform_blurring(M,sigma); end M = rescale(M); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
jacksky64/imageProcessing-master
perform_thresholding.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/toolbox/perform_thresholding.m
2,482
utf_8
0f3a43687bf3809b0789cace4871a1e6
function y = perform_thresholding(x, t, type) % perform_thresholding - perform hard or soft thresholding % % y = perform_thresholding(x, t, type); % % type is either 'hard' or 'soft' or 'semisoft' % t is the threshold % % works also for complex data, and for cell arrays. % % if type is 'strict' then it keeps the t largest entry in each % column of x. % % Copyright (c) 2006 Gabriel Peyre if nargin<3 type = 'hard'; end if iscell(x) % for cell arrays for i=1:size(x,1) for j=1:size(x,2) y{i,j} = perform_thresholding(x{i,j},t, type); end end return; end switch lower(type) case {'hard', ''} y = perform_hard_thresholding(x,t); case 'soft' y = perform_soft_thresholding(x,t); case 'semisoft' y = perform_semisoft_thresholding(x,t); case 'strict' y = perform_strict_thresholding(x,t); otherwise error('Unkwnown thresholding type.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = perform_strict_thresholding(X,s) %% keep only the s largest coefficients in each column of X v = sort(abs(X)); v = v(end:-1:1,:); v = v(round(s),:); v = repmat(v, [size(X,1) 1]); X = X .* (abs(X)>=v); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_hard_thresholding(x,t) t = t(1); y = x .* (abs(x) > t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_soft_thresholding(x,t) if not(isreal(x)) % complex threshold d = abs(x); d(d<eps) = 1; x = x./d .* perform_soft_thresholding(d,t); end t = t(1); s = abs(x) - t; s = (s + abs(s))/2; y = sign(x).*s; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_semisoft_thresholding(x,t) if length(t)==1 t = [t 2*t]; end t = sort(t); y = x; y(abs(x)<t(1)) = 0; I = find(abs(x)>=t(1) & abs(x)<t(2)); y( I ) = sign(x(I)) .* t(2)/(t(2)-t(1)) .* (abs(x(I))-t(1));
github
jacksky64/imageProcessing-master
histo.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelets/toolbox/histo.m
1,835
utf_8
e76d8956cd1d59f518a8146dc5145f9b
% [N,X] = histo(MTX, nbinsOrBinsize, binCenter); % % Compute a histogram of (all) elements of MTX. N contains the histogram % counts, X is a vector containg the centers of the histogram bins. % % nbinsOrBinsize (optional, default = 101) specifies either % the number of histogram bins, or the negative of the binsize. % % binCenter (optional, default = mean2(MTX)) specifies a center position % for (any one of) the histogram bins. % % How does this differ from MatLab's HIST function? This function: % - allows uniformly spaced bins only. % +/- operates on all elements of MTX, instead of columnwise. % + is much faster (approximately a factor of 80 on my machine). % + allows specification of number of bins OR binsize. Default=101 bins. % + allows (optional) specification of binCenter. % Eero Simoncelli, 3/97. function [N, X] = histo(mtx, nbins, binCtr) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX version of "histo.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); mtx = mtx(:); %------------------------------------------------------------ %% OPTIONAL ARGS: [mn,mx] = range2(mtx); if (exist('binCtr') ~= 1) binCtr = mean(mtx); end if (exist('nbins') == 1) if (nbins < 0) binSize = -nbins; else binSize = ((mx-mn)/nbins); tmpNbins = round((mx-binCtr)/binSize) - round((mn-binCtr)/binSize); if (tmpNbins ~= nbins) warning('Using %d bins instead of requested number (%d)',tmpNbins,nbins); end end else binSize = ((mx-mn)/101); end firstBin = binCtr + binSize*round( (mn-binCtr)/binSize ); tmpNbins = round((mx-binCtr)/binSize) - round((mn-binCtr)/binSize); bins = firstBin + binSize*[0:tmpNbins]; [N, X] = hist(mtx, bins);
github
jacksky64/imageProcessing-master
ltsa.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_dimreduc/ltsa.m
2,653
utf_8
39339d59acc8335882d3bf9aeeed65f0
% ltsa - local tangent planes alignement % % [T,NI] = ltsa(X,d,K); % % X is the (d,n) n data points in R^d. % d is the output dimensionnality. % K is the number of nearest neighbors. % % Written by Zhenyue Zhang & Hongyuan Zha, 2004. % Reference: http://epubs.siam.org/sam-bin/dbq/article/41915 function [T,NI] = ltsa(X,d,K,NI) [m,N] = size(X); % m is the dimensionality of the input sample points. % Step 0: Neighborhood Index if nargin<4 if length(K)==1 K = repmat(K,[1,N]); end; NI = cell(1,N); if m>N if 0 a = sum(X.*X); dist2 = sqrt(repmat(a',[1 N]) + repmat(a,[N 1]) - 2*(X'*X)); for i=1:N % Determine ki nearest neighbors of x_j [dist_sort,J] = sort(dist2(:,i)); Ii = J(1:K(i)); NI{i} = Ii; end; else % use fast code options.exlude_self = 1; [D1,nn_list] = compute_nn_distance(X,K(1), options); for i=1:N NI{i} = nn_list(i,:); end end else if 0 for i=1:N % Determine ki nearest neighbors of x_j x = X(:,i); ki = K(i); dist2 = sum((X-repmat(x,[1 N])).^2,1); [dist_sort,J] = sort(dist2); Ii = J(1:ki); NI{i} = Ii; end; else % use fast code options.exlude_self = 1; [D1,nn_list] = compute_nn_distance(X,K(1), options); for i=1:N NI{i} = nn_list(i,:); end end end; else K = zeros(1,N); for i=1:N K(i) = length(NI{i}); end; end; % Step 1: local information BI = {}; Thera = {}; for i=1:N % Compute the d largest right singular eigenvectors of the centered matrix Ii = NI{i}; ki = K(i); Xi = X(:,Ii)-repmat(mean(X(:,Ii),2),[1,ki]); W = Xi'*Xi; W = (W+W')/2; [Vi,Si] = schur(W); [s,Ji] = sort(-diag(Si)); Vi = Vi(:,Ji(1:d)); % construct Gi Gi = [repmat(1/sqrt(ki),[ki,1]) Vi]; % compute the local orthogonal projection Bi = I-Gi*Gi' % that has the null space span([e,Theta_i^T]). BI{i} = eye(ki)-Gi*Gi'; end; B = speye(N); for i=1:N Ii = NI{i}; B(Ii,Ii) = B(Ii,Ii)+BI{i}; B(i,i) = B(i,i)-1; end; B = (B+B')/2; options.disp = 0; options.isreal = 1; options.issym = 1; [U,D] = eigs(B,d+2,0,options); lambda = diag(D); [lambda_s,J] = sort(abs(lambda)); U = U(:,J); lambda = lambda(J); T = U(:,2:d+1)';
github
jacksky64/imageProcessing-master
hlle.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_dimreduc/hlle.m
5,717
utf_8
c4f0f3986f804846fe8c8137aed78dd8
function [Y, mse] = HLLE(X,k,d) %HLLE Runs the standard Hessian LLE implementation of Hessian Eigenmaps % % X is the high-dimensional data to be processed % k is the number of nearest neighbor points to be used % if k is a scalar, same size used at all points. if k is a vector of % length N, neighborhood N(i) will be assigned k(i) nearest neighbors % % d is the number of dimensions to embed X in % % Y is the output embedded data % mse is the sum (at each neighborhood used) of the eigenvalues(d+2:end) % of the local coordinate representation. used for adaptive neighborhood % restructuring % Example: % N=1000; k=12; d=2; % tt = (3*pi/2)*(1+2*rand(1,N)); height = 21*rand(1,N); % X = [tt.*cos(tt); height; tt.*sin(tt)]; % [Y, mse] = HLLE(X,k,d); % C. Grimes and D. Donoho, March 2003 % Last Revision: % Version 1.0 %get data size N = size(X,2); %check for constant neighborhood size if max(size(k)) ==1 kvec = repmat(k,N,1); elseif max(size(k)) == N kvec=k; else error('Neighborhood Vector Size does not match data'); end; disp(['-->Running HLLE for ', num2str(N), ' points']); disp('-->Computing HLLE neighbors'); %Compute Nearest neighbors D1 = L2_distance(X,X,1); dim = size(X,1); nind = repmat(0, size(D1,1), size(D1,2)); %extra term count for quadratic form dp = d*(d+1)/2; W = repmat(0,dp*N,N); if(mean(k)>d) disp('[note: k>d; regularization will be used]'); tol=1e-3; % regularlizer in case constrained fits are ill conditioned else tol=0; end; for i=1:N tmp = D1(:,i); [ts, or] = sort(tmp); %take k nearest neighbors nind(or(2:kvec(i)+1),i) = 1; thisx = X(:,or(2:kvec(i)+1)); %center using the mean thisx = thisx - repmat(mean(thisx')',1,kvec(i)); %compute local coordinates [U,D,Vpr] = svd(thisx); V = Vpr(:,1:d); %Neighborhood diagnostics vals = diag(D); mse(i) = sum(vals(d+1:end)); %build Hessian estimator clear Yi; clear Pii; ct = 0; for mm=1:d startp = V(:,mm); for nn=1:length(mm:d) indles = mm:d; Yi(:,ct+nn) = startp.*(V(:,indles(nn))); end; ct = ct+length(mm:d); end; Yi = [repmat(1,kvec(i),1), V, Yi]; %orthogonalize linear and quadratic forms [Yt, Orig] = mgs(Yi); Pii = Yt(:,d+2:end)'; %double check weights sum to 1 for j=1:dp if sum(Pii(j,:)) >0.0001 tpp = Pii(j,:)./sum(Pii(j,:)); else tpp = Pii(j,:); end; %fill weight matrix W((i-1)*dp+j, or(2:kvec(i)+1)) = tpp; end; end; %%%%%%%%%%%%%%%%%%%%Compute eigenanalysis of W disp('-->Computing HLLE embedding'); G=W'*W; G = sparse(G); options.disp = 0; options.isreal = 1; options.issym = 1; %tol=1e-3; %sometimes useful for pathological fits tol=0; % [Yo,eigenvals] = eigs(G,d+1,tol,options); % old code [Yo,eigenvals] = eigs(G,d+1,'SM',options); Y = Yo(:,1:d)'*sqrt(N); % bottom evect is [1,1,1,1...] with eval 0 disp('-->Orienting Coordinates'); %compute final coordinate alignment R = Y'*Y; R2 = R^(-1/2); Y = Y*R2; function d = L2_distance(a,b,df) % L2_DISTANCE - computes Euclidean distance matrix % % E = L2_distance(A,B) % % A - (DxM) matrix % B - (DxN) matrix % df = 1, force diagonals to be zero; 0 (default), do not force % % Returns: % E - (MxN) Euclidean distances between vectors in A and B % % % Description : % This fully vectorized (VERY FAST!) m-file computes the % Euclidean distance between two vectors by: % % ||A-B|| = sqrt ( ||A||^2 + ||B||^2 - 2*A.B ) % % Example : % A = rand(400,100); B = rand(400,200); % d = distance(A,B); % Author : Roland Bunschoten % University of Amsterdam % Intelligent Autonomous Systems (IAS) group % Kruislaan 403 1098 SJ Amsterdam % tel.(+31)20-5257524 % [email protected] % Last Rev : Wed Oct 20 08:58:08 MET DST 1999 % Tested : PC Matlab v5.2 and Solaris Matlab v5.3 % Copyright notice: You are free to modify, extend and distribute % this code granted that the author of the original code is % mentioned as the original author of the code. % Fixed by JBT (3/18/00) to work for 1-dimensional vectors % and to warn for imaginary numbers. Also ensures that % output is all real, and allows the option of forcing diagonals to % be zero. if (nargin < 2) error('Not enough input arguments'); end if (nargin < 3) df = 0; % by default, do not force 0 on the diagonal end if (size(a,1) ~= size(b,1)) error('A and B should be of same dimensionality'); end if ~(isreal(a)*isreal(b)) disp('Warning: running distance.m with imaginary numbers. Results may be off.'); end if (size(a,1) == 1) a = [a; zeros(1,size(a,2))]; b = [b; zeros(1,size(b,2))]; end aa=sum(a.*a); bb=sum(b.*b); ab=a'*b; d = sqrt(repmat(aa',[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab); % make sure result is all real d = real(d); % force 0 on the diagonal? if (df==1) d = d.*(1-eye(size(d))); end function [Q, R] = mgs(A); % % modified Gram-Schmidt. this is a more stable way to compute a % qr factorization % [m, n] = size(A); % % we assume that m>= n. % V = A; R = zeros(n,n); for i=1:n R(i,i) = norm(V(:,i)); V(:,i) = V(:,i)/R(i,i); if (i < n) for j = i+1:n R(i,j) = V(:,i)' * V(:,j); V(:,j) = V(:,j) - R(i,j) * V(:,i); end end end Q = V;
github
jacksky64/imageProcessing-master
qslim.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/qslim.m
13,152
utf_8
2ab54ac7408e720642cbe21d8b6927bd
function [NFV,smf_fname] = qslim(FV,varargin); %QSLIM - Mesh simplification, wrapper function for Garland's QSLIM executable program % function [NFV,smf_fname] = qslim(FV,varargin); % varargin should be entered in pairs '<option>','<arg>'. % Valid pairs used in this wrapper are: % % '-t', <n> % % Specify the desired number of faces in the simplified model. You are not % guaranteed to get exactly the number you ask for, but it should generally % be within 1-2 faces of the target. % % '-q',[] % % Run quietly. QSlim will not output the usual status information. % % '-O', <n> (capital O, order) % % Specify the policy for selecting the target position for edge % contractions. The following levels of optimization are available: % % 3 -- Pick point which minimizes error [default]. % 2 -- Pick best point along edge. % 1 -- Pick best of endpoints or midpoint. % 0 -- Pick best of the two endpoints. % % '-m', <penalty> % % Set the penalty for bad meshes (default is 1) % % '-c', <ratio> % % Set the desired compactness ratio (default is 0) % % '-B', <weight> % % Specifies the weight assigned to boundary constraint planes. The default % value is currently 1000. Specify a weight of 0 to disable boundary % constraints entirely. % % '-W', <n> % % Select the quadric weighting policy. Available policies are: % % 0 -- Weight all quadrics uniformly % 1 -- Weight by area of contributing triangle [default] % 2 -- Weight by angle around vertex % % '-j',[] % % Only perform contractions that do not remove any faces. You can use this % feature in conjunction with custom edge sets (see below) to effect a form % of stitching. This is not terribly reliable, it's just an experimental % feature. % % '-F',[] % % This will cause the simplification algorithm to use iterative face % contraction rather than iterative edge contraction. Generally speaking, % this has the following effects: % % - Simplification is faster % - Less memory is consumed % - Geometric quality of the results is reduced % % '-o',<fname> % % The output simplified file, default is temp_qslim_out.smf. % % Wrapper option: % % If FV is a string, then that smf file is read, rather than writing out FV to % a file. Use the -save option below to write the structure FV to a file. % Saves execution time on subsequent passes % % '-save', <fname>, % % The filename to which to write the structure FV. Default is temp_qslim.smf. % % Defaults are set to -t, 2000, -m, 1000, -o temp_qslime_out.smf % % See http://graphics.cs.uiuc.edu/~garland/software/qslim.html % http://graphics.cs.uiuc.edu/~garland/research/thesis.html % for details on QSLIM and dissertation with technical details. % % Examples % % reduce to 2000 faces, with mesh penalty of 1000 % NFV = qslim(FV); % % write the FV to the brain.smf file, return 10,000 faces % NFV = qslim(FV,'-save','brain.smf','-t',10000); % % load the brain.smf file for the FV information, quiet mode, compactness ratio % of 1 % NFV = qslim('brain.smf','-q',[],'-c',1); % % % See also REDUCEPATCH %<autobegin> ---------------------- 27-Jun-2005 10:45:28 ----------------------- % ------ Automatically Generated Comments Block Using AUTO_COMMENTS_PRE7 ------- % % CATEGORY: Utility - General % % Alphabetical list of external functions (non-Matlab): % toolbox\load_smf.m % toolbox\save_smf.m % % At Check-in: $Author: Mosher $ $Revision: 7 $ $Date: 6/27/05 9:00a $ % % This software is part of BrainStorm Toolbox Version 27-June-2005 % % Principal Investigators and Developers: % ** Richard M. Leahy, PhD, Signal & Image Processing Institute, % University of Southern California, Los Angeles, CA % ** John C. Mosher, PhD, Biophysics Group, % Los Alamos National Laboratory, Los Alamos, NM % ** Sylvain Baillet, PhD, Cognitive Neuroscience & Brain Imaging Laboratory, % CNRS, Hopital de la Salpetriere, Paris, France % % See BrainStorm website at http://neuroimage.usc.edu for further information. % % Copyright (c) 2005 BrainStorm by the University of Southern California % This software distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html . % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. %<autoend> ------------------------ 27-Jun-2005 10:45:28 ----------------------- % QSLIM program by % % Michael Garland % Department of Computer Science % University of Illinois % 201 North Goodwin Avenue % Urbana, IL 61801-2302 % % Wrapper author: % John C. Mosher % ----------------------------- Script History --------------------------------- % JCM 24-May-2004 Creation % ----------------------------- Script History --------------------------------- DEFAULT_INPUT = 'temp_qslim.smf'; % unless the user specifies in FV if isstr(FV), % user specified an input file instead of a FV structure InputFile = FV; else InputFile = DEFAULT_INPUT; % default end if ~ispc, error(sprintf('Unable to run QSLIM from this %s computer.',computer)); end % where is the QSLIM on this computer QSLIM = which('qslim.exe'); if isempty(QSLIM), error(sprintf('Cannot find qslim.exe in the public toolbox')); end OPERATION = varargin(1:2:end); ARGUMENT = varargin(2:2:end); if strmatch('-q',OPERATION), VERBOSE = 0; % silent running requested else VERBOSE = 1; end % setup defaults OutputStr = struct('option',[],'arg',[]); OutputStr(1).option = '-t'; % wrapper argument OutputStr(1).arg = 2000; % number of triangles generated OutputStr(2).option = '-o'; % wrapper argument OutputStr(2).arg = 'temp_qslim_out.smf'; % default OutputStr(3).option = '-m'; OutputStr(3).arg = 1000; % helps prevent mesh badness for i = 1:length(OPERATION), % have we already set this output? ndx = strmatch(OPERATION{i},{OutputStr.option}); if isempty(ndx), % haven't defined % is it valid? switch OPERATION{i} case {'-O','-B','-W','-t','-F','-o','-I','-m','-c','-r','-M','-q','-j','-h'} % okay OutputStr(end + 1).option = OPERATION{i}; OutputStr(end).arg = ARGUMENT{i}; case '-save' InputFile = ARGUMENT{i}; % change the input file specification otherwise disp(sprintf('unknown qslim option %s',OPERATION{i})) end else % already defined, replace OutputStr(ndx).arg = ARGUMENT{i}; end end % now make command string commandstr = sprintf('"%s"',QSLIM); % initiate the start for i = 1:length(OutputStr), switch OutputStr(i).option case {'-o','-I'} % string arg commandstr = sprintf(' %s %s %s',commandstr,OutputStr(i).option,OutputStr(i).arg); case {'-q','-j','-F','-r','-h'} % empty argument commandstr = sprintf(' %s %s',commandstr,OutputStr(i).option); case {'-B','-W','-t','-m'} % assume integer argument commandstr = sprintf(' %s %s %.0f',commandstr,OutputStr(i).option,OutputStr(i).arg); case {'-c'} % floating point argument commandstr = sprintf(' %s %s %f',commandstr,OutputStr(i).option,OutputStr(i).arg); end end % where was the output? ndx = strmatch('-o',{OutputStr.option}); OutputFile = OutputStr(ndx).arg; commandstr = sprintf('%s %s',commandstr,InputFile); % the input file if ~isstr(FV), if VERBOSE disp(sprintf('Writing out FV to SMF file %s. ..',InputFile)) end save_smf(InputFile,FV); end if VERBOSE disp('Executing . . .') disp(commandstr) end dos(commandstr); drawnow if VERBOSE disp(sprintf('Reading results from %s . . .',OutputFile)) end NFV = load_smf(OutputFile); function FV = load_smf(fname); %LOAD_SMF - Load a simply written SMF file into the faces vertices structure % function FV = load_smf(fname); % % Each line is one of % # comment % f <i> <j> <k> % v <x> <y> <z> % otherwise the line is ignored % % See also LOAD_SMF %<autobegin> ---------------------- 27-Jun-2005 10:44:59 ----------------------- % ------ Automatically Generated Comments Block Using AUTO_COMMENTS_PRE7 ------- % % CATEGORY: Data Processing % % At Check-in: $Author: Mosher $ $Revision: 7 $ $Date: 6/27/05 9:00a $ % % This software is part of BrainStorm Toolbox Version 27-June-2005 % % Principal Investigators and Developers: % ** Richard M. Leahy, PhD, Signal & Image Processing Institute, % University of Southern California, Los Angeles, CA % ** John C. Mosher, PhD, Biophysics Group, % Los Alamos National Laboratory, Los Alamos, NM % ** Sylvain Baillet, PhD, Cognitive Neuroscience & Brain Imaging Laboratory, % CNRS, Hopital de la Salpetriere, Paris, France % % See BrainStorm website at http://neuroimage.usc.edu for further information. % % Copyright (c) 2005 BrainStorm by the University of Southern California % This software distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html . % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. %<autoend> ------------------------ 27-Jun-2005 10:44:59 ----------------------- % Author: John C. Mosher, Ph.D. % ----------------------------- Script History --------------------------------- % JCM 24-May-2004 Creation % ----------------------------- Script History --------------------------------- fid = fopen(fname,'rt'); % preallocate FV.faces = zeros(200000,3); FV.vertices = zeros(100000,3); iV = 0; % initialize vertices counter iF = 0; % faces counter while 1 tline = fgetl(fid); if ~ischar(tline), break end [OP,ARG] = strtok(tline); switch OP case {'begin','end'} % ignore case 'v' iV = iV + 1; FV.vertices(iV,:) = sscanf(ARG,'%g %g %g')'; case 'f' iF = iF + 1; FV.faces(iF,:) = sscanf(ARG,'%f %f %f')'; case '#' % comment line disp(tline); otherwise % do nothing end end fclose(fid); FV.vertices = FV.vertices(1:iV,:); FV.faces = FV.faces(1:iF,:); function save_smf(fname,FV); %SAVE_SMF - Save out a file in a simple form of the SMF format % function save_smf(fname,FV); % Writes out one line per vertex or face: % v <x> <y> <z> % f <i> <j> <k> % % See also LOAD_SMF %<autobegin> ---------------------- 27-Jun-2005 10:45:38 ----------------------- % ------ Automatically Generated Comments Block Using AUTO_COMMENTS_PRE7 ------- % % CATEGORY: Data Processing % % At Check-in: $Author: Mosher $ $Revision: 7 $ $Date: 6/27/05 9:00a $ % % This software is part of BrainStorm Toolbox Version 27-June-2005 % % Principal Investigators and Developers: % ** Richard M. Leahy, PhD, Signal & Image Processing Institute, % University of Southern California, Los Angeles, CA % ** John C. Mosher, PhD, Biophysics Group, % Los Alamos National Laboratory, Los Alamos, NM % ** Sylvain Baillet, PhD, Cognitive Neuroscience & Brain Imaging Laboratory, % CNRS, Hopital de la Salpetriere, Paris, France % % See BrainStorm website at http://neuroimage.usc.edu for further information. % % Copyright (c) 2005 BrainStorm by the University of Southern California % This software distributed under the terms of the GNU General Public License % as published by the Free Software Foundation. Further details on the GPL % license can be found at http://www.gnu.org/copyleft/gpl.html . % % FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE % UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY % WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF % MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY % LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE. %<autoend> ------------------------ 27-Jun-2005 10:45:38 ----------------------- % Author: John C. Mosher, Ph.D. % ----------------------------- Script History --------------------------------- % JCM 24-May-2004 Creation % ----------------------------- Script History --------------------------------- fid = fopen(fname,'wt'); for i = 1:size(FV.vertices,1), fprintf(fid,'v %.3f %.3f %.3f\n',FV.vertices(i,:)); end for i = 1:size(FV.faces,1), fprintf(fid,'f %.0f %.0f %.0f\n',FV.faces(i,:)); end fclose(fid);
github
jacksky64/imageProcessing-master
perform_point_picking.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/perform_point_picking.m
4,121
utf_8
9c43a474845c0bc92e5d215f6eda9a88
function perform_point_picking( PointCloud, face ) % function perform_point_picking( PointCloud, face ); % % This function shows a 3D point cloud or a mesh and lets the user click select one % of the points by clicking on it. The selected point will be highlighted % and its index in the point cloud will be printed. % % input: % PointCloud: should be a 3*N matrix representing N 3D points % (if it's M*N, M > 3, the higher dimensions are ignored) % % output: % none % % To test this function, run these lines: % % PointCloud = rand(3,100)*100; % perform_point_picking( PointCloud ); % % now rotate or move the point cloud and try it again. % (on the figure View menu, turn the Camera Toolbar on, ...) % % by Babak Taati % http://qlink.queensu.ca/~3bt1/ % Queen's University % May 4, 2005 (revised Oct 30, 2007) if nargin==2 clf; hold on; plot_mesh(PointCloud,face); end plot3(PointCloud(1,:), PointCloud(2,:), PointCloud(3,:), 'c.'); % visualize the point cloud hold on; % so we can highlight the clicked points without clearing the point cloud cameramenu; global PointCloudIndex; set(gcf,'WindowButtonDownFcn',{@callbackClickA3DPoint,PointCloud}); % set the callbak set(gcf,'WindowButtonUpFcn',{}); % set the callbak % callbackClickA3DPoint.m % by Babak Taati % http://qlink.queensu.ca/~3bt1/ % Queen's University % May 4, 2005 % % % this is the callback function for ClickA3DPoint % function callbackClickA3DPoint(src, eventdata, PointCloud); global PointCloudIndex; Point = get(gca,'CurrentPoint'); % get the mouse click position CamPos = get(gca,'CameraPosition'); % camera position CamTgt = get(gca,'CameraTarget'); % where the camera is pointing to CamDir = CamPos - CamTgt; % Camera direction CamUpVect = get(gca,'CameraUpVector'); % camera 'up' vector % build a orthonormal frame based on the viewing direction and the up vector (the "view frame") Z_axis = CamDir/norm(CamDir); UP_axis = CamUpVect/norm(CamUpVect); X_axis = cross(UP_axis,Z_axis); Y_axis = cross(Z_axis, X_axis); Rot = [ X_axis ; Y_axis ; Z_axis ]; % view rotation RotatedPointCloud = Rot * PointCloud; % the point cloud represented in the view frame RotatedPointFront = Rot * Point' ; % the clicked point represented in the view frame % --- find the nearest neighbour to the clicked point % % project the 3D point cloud onto a plane (i.e. ignore the z coordinate) % and find the point that is the closest to the clicked point in that 2D plane. diff = [ RotatedPointCloud(1,:) - RotatedPointFront(1) ; RotatedPointCloud(2,:) - RotatedPointFront(2) ]; % the difference of all the 2D points from the clicked point (2D) AllDistances = RowNorm(diff'); % the distance of all the 2D points from the clicked point (2D) [dist, PointCloudIndex] = min(AllDistances); % find the point that is closest to the clicked point (2D) % ---- delete the old nearest neighbour & display the new nearest neighbour h = findobj(gca,'Tag','pt'); % try to find the old point SelectedPoint = PointCloud(:,PointCloudIndex); if isempty(h) % Check if it's the first click (i.e. no need to delete the previous point) h = plot3(SelectedPoint(1,:), SelectedPoint(2,:), SelectedPoint(3,:), 'r.', 'MarkerSize', 20); % highlight the selected point set(h,'Tag','pt'); % set its Tag property for later use else % if Not the first click delete(h); % delete the previously selected point h = plot3(SelectedPoint(1,:), SelectedPoint(2,:), SelectedPoint(3,:), 'r.', 'MarkerSize', 20); % highlight the newly selected point set(h,'Tag','pt'); % set its Tag property for later use end fprintf('you clicked on point number %d\n', PointCloudIndex); % RowNorm.m % Babak taati % % function N = RowNorm(A); % % returns a matrix with same number of rows as A and one column % each element in N is the norm of the corresponding row in A % % input: A (an m*n matrix) % output: N (an m*1 vector) % function N = RowNorm(A); N = sqrt(sum(A.*A, 2));
github
jacksky64/imageProcessing-master
select3d.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/select3d.m
10,864
utf_8
64f6b58cf8db75c3508f68035be9892e
function [pout, vout, viout, facevout, faceiout] = select3d(obj) %SELECT3D(H) Determines the selected point in 3-D data space. % P = SELECT3D determines the point, P, in data space corresponding % to the current selection position. P is a point on the first % patch or surface face intersected along the selection ray. If no % face is encountered along the selection ray, P returns empty. % % P = SELECT3D(H) constrains selection to graphics handle H and, % if applicable, any of its children. H can be a figure, axes, % patch, or surface object. % % [P V] = SELECT3D(...), V is the closest face or line vertex % selected based on the figure's current object. % % [P V VI] = SELECT3D(...), VI is the index into the object's % x,y,zdata properties corresponding to V, the closest face vertex % selected. % % [P V VI FACEV] = SELECT3D(...), FACE is an array of vertices % corresponding to the face polygon containing P and V. % % [P V VI FACEV FACEI] = SELECT3D(...), FACEI is the row index into % the object's face array corresponding to FACE. For patch % objects, the face array can be obtained by doing % get(mypatch,'faces'). For surface objects, the face array % can be obtained from the output of SURF2PATCH (see % SURF2PATCH for more information). % % RESTRICTIONS: % SELECT3D supports surface, patch, or line object primitives. For surface % and patches, the algorithm assumes non-self-intersecting planar faces. % For line objects, the algorithm always returns P as empty, and V will % be the closest vertex relative to the selection point. % % Example: % % h = surf(peaks); % zoom(10); % disp('Click anywhere on the surface, then hit return') % pause % [p v vi face facei] = select3d; % marker1 = line('xdata',p(1),'ydata',p(2),'zdata',p(3),'marker','o',... % 'erasemode','xor','markerfacecolor','k'); % marker2 = line('xdata',v(1),'ydata',v(2),'zdata',v(3),'marker','o',... % 'erasemode','xor','markerfacecolor','k'); % marker2 = line('erasemode','xor','xdata',face(1,:),'ydata',face(2,:),... % 'zdata',face(3,:),'linewidth',10); % disp(sprintf('\nYou clicked at\nX: %.2f\nY: %.2f\nZ: %.2f',p(1),p(2),p(3)')) % disp(sprintf('\nThe nearest vertex is\nX: %.2f\nY: %.2f\nZ: %.2f',v(1),v(2),v(3)')) % % Version 1.3 11-11-04 % Copyright Joe Conti 2004 % Send comments to [email protected] % % See also GINPUT, GCO. % Output variables pout = []; vout = []; viout = []; facevout = []; faceiout = []; % other variables ERRMSG = 'Input argument must be a valid graphics handle'; isline = logical(0); isperspective = logical(0); % Parse input arguments if nargin<1 obj = gco; end if isempty(obj) | ~ishandle(obj) | length(obj)~=1 error(ERRMSG); end % if obj is a figure if strcmp(get(obj,'type'),'figure') fig = obj; ax = get(fig,'currentobject'); currobj = get(fig,'currentobject'); % bail out if not a child of the axes if ~strcmp(get(get(currobj,'parent'),'type'),'axes') return; end % if obj is an axes elseif strcmp(get(obj,'type'),'axes') ax = obj; fig = get(ax,'parent'); currobj = get(fig,'currentobject'); currax = get(currobj,'parent'); % Bail out if current object is under an unspecified axes if ~isequal(ax,currax) return; end % if obj is child of axes elseif strcmp(get(get(obj,'parent'),'type'),'axes') currobj = obj; ax = get(obj,'parent'); fig = get(ax,'parent'); % Bail out else return end axchild = currobj; obj_type = get(axchild,'type'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Get vertex, face, and current point data %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cp = get(ax,'currentpoint')'; % If surface object if strcmp(obj_type,'surface') % Get surface face and vertices fv = surf2patch(axchild); vert = fv.vertices; faces = fv.faces; % If patch object elseif strcmp(obj_type,'patch') vert = get(axchild,'vertices'); faces = get(axchild,'faces'); % If line object elseif strcmp(obj_type,'line') xdata = get(axchild,'xdata'); ydata = get(axchild,'ydata'); zdata = get(axchild,'zdata'); vert = [xdata', ydata',zdata']; faces = []; isline = logical(1); % Ignore all other objects else return; end % Add z if empty if size(vert,2)==2 vert(:,3) = zeros(size(vert(:,2))); if isline zdata = vert(:,3); end end % NaN and Inf check nan_inf_test1 = isnan(faces) | isinf(faces); nan_inf_test2 = isnan(vert) | isinf(vert); if any(nan_inf_test1(:)) | any(nan_inf_test2(:)) warning(sprintf('%s does not support NaNs or Infs in face/vertex data.',mfilename)); end % For debugging % if 0 % ax1 = getappdata(ax,'testselect3d'); % if isempty(ax1) | ~ishandle(ax1) % fig = figure; % ax1 = axes; % axis(ax1,'equal'); % setappdata(ax,'testselect3d',ax1); % end % cla(ax1); % patch('parent',ax1,'faces',faces,'vertices',xvert','facecolor','none','edgecolor','k'); % line('parent',ax1,'xdata',xcp(1,2),'ydata',xcp(2,2),'zdata',0,'marker','o','markerfacecolor','r','erasemode','xor'); % end % Transform vertices from data space to pixel space xvert = local_Data2PixelTransform(ax,vert)'; xcp = local_Data2PixelTransform(ax,cp')'; % Translate vertices so that the selection point is at the origin. xvert(1,:) = xvert(1,:) - xcp(1,2); xvert(2,:) = xvert(2,:) - xcp(2,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% simple algorithm (almost naive algorithm!) for line objects %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isline % Ignoring line width and marker attributes, find closest % vertex in 2-D view space. d = xvert(1,:).*xvert(1,:) + xvert(2,:).*xvert(2,:); [val i] = min(d); i = i(1); % enforce only one output % Assign output vout = [ xdata(i) ydata(i) zdata(i)]; viout = i; return % Bail out early end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Perform 2-D crossing test (Jordan Curve Theorem) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Find all vertices that have y components less than zero vert_with_negative_y = zeros(size(faces)); face_y_vert = xvert(2,faces); ind_vert_with_negative_y = find(face_y_vert<0); vert_with_negative_y(ind_vert_with_negative_y) = logical(1); % Find all the line segments that span the x axis is_line_segment_spanning_x = abs(diff([vert_with_negative_y, vert_with_negative_y(:,1)],1,2)); % Find all the faces that have line segments that span the x axis ind_is_face_spanning_x = find(any(is_line_segment_spanning_x,2)); % Ignore data that doesn't span the x axis candidate_faces = faces(ind_is_face_spanning_x,:); vert_with_negative_y = vert_with_negative_y(ind_is_face_spanning_x,:); is_line_segment_spanning_x = is_line_segment_spanning_x(ind_is_face_spanning_x,:); % Create line segment arrays pt1 = candidate_faces; pt2 = [candidate_faces(:,2:end), candidate_faces(:,1)]; % Point 1 x1 = reshape(xvert(1,pt1),size(pt1)); y1 = reshape(xvert(2,pt1),size(pt1)); % Point 2 x2 = reshape(xvert(1,pt2),size(pt2)); y2 = reshape(xvert(2,pt2),size(pt2)); % Cross product of vector to origin with line segment cross_product_test = -x1.*(y2-y1) > -y1.*(x2-x1); % Find all line segments that cross the positive x axis crossing_test = (cross_product_test==vert_with_negative_y) & is_line_segment_spanning_x; % If the number of line segments is odd, then we intersected the polygon s = sum(crossing_test,2); s = mod(s,2); ind_intersection_test = find(s~=0); % Bail out early if no faces were hit if isempty(ind_intersection_test) return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Plane/ray intersection test %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Perform plane/ray intersection with the faces that passed % the polygon intersection tests. Grab the only the first % three vertices since that is all we need to define a plane). % assuming planar polygons. candidate_faces = candidate_faces(ind_intersection_test,1:3); candidate_faces = reshape(candidate_faces',1,prod(size(candidate_faces))); vert = vert'; candidate_facev = vert(:,candidate_faces); candidate_facev = reshape(candidate_facev,3,3,length(ind_intersection_test)); % Get three contiguous vertices along polygon v1 = squeeze(candidate_facev(:,1,:)); v2 = squeeze(candidate_facev(:,2,:)); v3 = squeeze(candidate_facev(:,3,:)); % Get normal to face plane vec1 = [v2-v1]; vec2 = [v3-v2]; crs = cross(vec1,vec2); mag = sqrt(sum(crs.*crs)); nplane(1,:) = crs(1,:)./mag; nplane(2,:) = crs(2,:)./mag; nplane(3,:) = crs(3,:)./mag; % Compute intersection between plane and ray cp1 = cp(:,1); cp2 = cp(:,2); d = cp2-cp1; dp = dot(-nplane,v1); %A = dot(nplane,d); A(1,:) = nplane(1,:).*d(1); A(2,:) = nplane(2,:).*d(2); A(3,:) = nplane(3,:).*d(3); A = sum(A,1); %B = dot(nplane,pt1) B(1,:) = nplane(1,:).*cp1(1); B(2,:) = nplane(2,:).*cp1(2); B(3,:) = nplane(3,:).*cp1(3); B = sum(B,1); % Distance to intersection point t = (-dp-B)./A; % Find "best" distance (smallest) [tbest ind_best] = min(t); % Determine intersection point pout = cp1 + tbest .* d; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assign additional output variables %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargout>1 % Get face index and vertices faceiout = ind_is_face_spanning_x(ind_intersection_test(ind_best)); facevout = vert(:,faces(faceiout,:)); % Determine index of closest face vertex intersected facexv = xvert(:,faces(faceiout,:)); dist = sqrt(facexv(1,:).*facexv(1,:) + facexv(2,:).*facexv(2,:)); min_dist = min(dist); min_index = find(dist==min_dist); % Get closest vertex index and vertex viout = faces(faceiout,min_index); vout = vert(:,viout); end %--------------------------------------------------------% function [p] = local_Data2PixelTransform(ax,vert) % Transform vertices from data space to pixel space. % Get needed transforms xform = get(ax,'x_RenderTransform'); offset = get(ax,'x_RenderOffset'); scale = get(ax,'x_RenderScale'); % Equivalent: nvert = vert/scale - offset; nvert(:,1) = vert(:,1)./scale(1) - offset(1); nvert(:,2) = vert(:,2)./scale(2) - offset(2); nvert(:,3) = vert(:,3)./scale(3) - offset(3); % Equivalent xvert = xform*xvert; w = xform(4,1) * nvert(:,1) + xform(4,2) * nvert(:,2) + xform(4,3) * nvert(:,3) + xform(4,4); xvert(:,1) = xform(1,1) * nvert(:,1) + xform(1,2) * nvert(:,2) + xform(1,3) * nvert(:,3) + xform(1,4); xvert(:,2) = xform(2,1) * nvert(:,1) + xform(2,2) * nvert(:,2) + xform(2,3) * nvert(:,3) + xform(2,4); % w may be 0 for perspective plots ind = find(w==0); w(ind) = 1; % avoid divide by zero warning xvert(ind,:) = 0; % set pixel to 0 p(:,1) = xvert(:,1) ./ w; p(:,2) = xvert(:,2) ./ w;
github
jacksky64/imageProcessing-master
compute_parameterization.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/compute_parameterization.m
7,948
utf_8
ccbb3294b8723d824f8bfa35c4ea64dc
function vertex1 = compute_parameterization(vertex,face, options) % compute_parameterization - compute a planar parameterization % % vertex1 = compute_parameterization(vertex,face, options); % % options.method can be: % 'parameterization': solve classical parameterization, the boundary % is specified by options.boundary which is either 'circle', % 'square' or 'triangle'. The kind of laplacian used is specified % by options.laplacian which is either 'combinatorial' or 'conformal' % 'freeboundary': same be leave the boundary free. % 'flattening': solve spectral embedding using a laplacian % specified by options.laplacian. % 'isomap': use Isomap approach. % 'drawing': to draw a graph whose adjacency is options.A. % Then leave vertex and face empty. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; method = getoptions(options, 'method', 'parameterization'); laplacian = getoptions(options, 'laplacian', 'conformal'); boundary = getoptions(options, 'boundary', 'square'); ndim = getoptions(options, 'ndim', 2); [vertex,face] = check_face_vertex(vertex,face); options.symmetrize=1; options.normalize=0; switch lower(method) case 'parameterization' vertex1 = compute_parametrization_boundary(vertex,face,laplacian,boundary, options); case 'freeboundary' vertex1 = compute_parameterization_free(vertex,face, laplacian, options); case 'drawing' if isfield(options, 'A') A = options.A; else error('You must specify options.A.'); end L = compute_mesh_laplacian(vertex,face,'combinatorial',options); [U,S,V] = eigs(L, ndim+1, 'SM'); if abs(S(1))<eps vertex1 = U(:,end-ndim+1:end); elseif abs(S(ndim))<eps vertex1 = U(:,1:ndim); else error('Problem with Laplacian matrix'); end case 'flattening' L = compute_mesh_laplacian(vertex,face,laplacian,options); [U,S] = eig(full(L)); vertex1 = U(:,2:3); if 0 [U,S,V] = eigs(L, ndim+1, 'SM'); if abs(S(1))<1e-9 vertex1 = U(:,end-ndim+1:end); elseif abs(S(ndim))<eps vertex1 = U(:,1:ndim); else error('Problem with Laplacian matrix'); end end case 'isomap' A = triangulation2adjacency(face); % build distance graph D = build_euclidean_weight_matrix(A,vertex,Inf); vertex1 = isomap(D,ndim, options); otherwise error('Unknown method.'); end if size(vertex1,2)<size(vertex1,1) vertex1 = vertex1'; end if ndim==2 vertex1 = rectify_embedding(vertex(1:ndim,:),vertex1); end function xy_spec1 = rectify_embedding(xy,xy_spec) % rectify_embedding - try to match the embeding % with another one. % Use the Y coord to select 2 base points. % % xy_spec = rectify_embedding(xy,xy_spec); % % Copyright (c) 2003 Gabriel Peyr? I = find( xy(2,:)==max(xy(2,:)) ); n1 = I(1); I = find( xy(2,:)==min(xy(2,:)) ); n2 = I(1); v1 = xy(:,n1)-xy(:,n2); v2 = xy_spec(:,n1)-xy_spec(:,n2); theta = acos( dot(v1,v2)/sqrt(dot(v1,v1)*dot(v2,v2)) ); theta = theta * sign( det([v1 v2]) ); M = [cos(theta) sin(theta); -sin(theta) cos(theta)]; xy_spec1 = M*xy_spec; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xy = compute_parameterization_free(vertex,face, laplacian, options) n = size(vertex,2); % extract boundary boundary = compute_boundary(face,options); nbound = length(boundary); options.symmetrize=1; options.normalize=0; % compute Laplacian if ~isstr(laplacian) L = laplacian; laplacian = 'user'; else L = compute_mesh_laplacian(vertex,face,laplacian,options); end A = sparse(2*n,2*n); A(1:end/2,1:end/2) = L; A(end/2+1:end,end/2+1:end) = L; % set up boundary conditions for s = 1:nbound % neighboring values s1 = mod(s-2,nbound)+1; s2 = mod(s,nbound)+1; i = boundary(s); i1 = boundary(s1); i2 = boundary(s2); e = 1; A(i,i1+n) = +e; A(i,i2+n) = -e; A(i+n,i1) = -e; A(i+n,i2) = +e; end % set up pinned vertices i1 = boundary(1); i2 = boundary(round(end/2)); A(i1,:) = 0; A(i1+n,:) = 0; A(i1,i1) = 1; A(i1+n,i1+n) = 1; A(i2,:) = 0; A(i2+n,:) = 0; A(i2,i2) = 1; A(i2+n,i2+n) = 1; p1 = [0 0]; p2 = [1 0]; % position of pinned vertices y = zeros(2*n,1); y(i1) = p1(1); y(i1+n) = p1(2); y(i2) = p2(1); y(i2+n) = p2(2); % solve for the position xy = A\y; xy = reshape(xy, [n 2])'; function xy = compute_parametrization_boundary(vertex,face,laplacian,boundary_type,options) % compute_parametrization - compute a planar parameterization % of a given disk-like triangulated manifold. % % compute_parametrization(vertex,face,laplacian,boundary_type); % % 'laplacian' is either 'combinatorial', 'conformal' or 'authalic' % 'boundary_type' is either 'circle', 'square' or 'triangle' % % Copyright (c) 2004 Gabriel Peyr? if size(vertex,2)>size(vertex,1) vertex = vertex'; end if size(face,2)>size(face,1) face = face'; end nface = size(face,1); nvert = max(max(face)); options.symmetrize=1; options.normalize=0; if nargin<2 error('Not enough arguments.'); end if nargin<3 laplacian = 'conformal'; end if nargin<4 boundary_type = 'circle'; end if ~isstr(laplacian) L = laplacian; laplacian = 'user'; else % compute Laplacian L = compute_mesh_laplacian(vertex,face,laplacian,options); end % compute the boundary boundary = compute_boundary(face, options); % compute the position of the boundary vertex nbound = length(boundary); xy_boundary = zeros(nbound,2); % compute total length d = 0; ii = boundary(end); % last index for i=boundary d = d + norme( vertex(i,:)-vertex(ii,:) ); ii = i; end % vertices along the boundary vb = vertex(boundary,:); % compute the length of the boundary sel = [2:nbound 1]; D = cumsum( sqrt( sum( (vb(sel,:)-vb).^2, 2 ) ) ); d = D(end); % curvilinear abscice t = (D-D(1))/d; t = t(:); switch lower(boundary_type) case 'circle' xy_boundary = [cos(2*pi*t),sin(2*pi*t)]; case 'square' t = t*4; [tmp,I] = min(abs(t-1)); t(I) = 1; [tmp,I] = min(abs(t-2)); t(I) = 2; [tmp,I] = min(abs(t-3)); t(I) = 3; xy_boundary = []; I = find(t<1); nI = length(I); xy_boundary = [xy_boundary; [t(I),t(I)*0]]; I = find(t>=1 & t<2); nI = length(I); xy_boundary = [xy_boundary; [t(I)*0+1,t(I)-1]]; I = find(t>=2 & t<3); nI = length(I); xy_boundary = [xy_boundary; [3-t(I),t(I)*0+1]]; I = find(t>=3); nI = length(I); xy_boundary = [xy_boundary; [t(I)*0,4-t(I)]]; case 'triangle' t = t*3; [tmp,I] = min(abs(t-1)); t(I) = 1; [tmp,I] = min(abs(t-2)); t(I) = 2; xy_boundary = []; I = find(t<1); nI = length(I); xy_boundary = [xy_boundary; [t(I),t(I)*0]]; I = find(t>=1 & t<2); nI = length(I); xy_boundary = [xy_boundary; (t(I)-1)*[0.5,sqrt(2)/2] + (2-t(I))*[1,0] ]; I = find(t>=2 & t<3); nI = length(I); xy_boundary = [xy_boundary; (3-t(I))*[0.5,sqrt(2)/2] ]; end % set up the matrix M = L; for i=boundary M(i,:) = zeros(1,nvert); M(i,i) = 1; end % solve the system xy = zeros(nvert,2); for coord = 1:2 % compute right hand side x = zeros(nvert,1); x(boundary) = xy_boundary(:,coord); xy(:,coord) = M\x; end function y = norme( x ); y = sqrt( sum(x(:).^2) );
github
jacksky64/imageProcessing-master
perform_dijkstra_propagation_old.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/perform_dijkstra_propagation_old.m
5,116
utf_8
28fc1b6f28ff90c69f6e7c7330aaa33f
function D = perform_dijkstra_propagation_old( G , S ) % dijkstra - Find shortest paths in graphs % % D = dijkstra_fast( G , S ); % % use the full or sparse matrix G in which % an entry (i,j) represents the arc length between nodes i and j in a % graph. In a full matrix, the value INF represents the absence of an arc; % in a sparse matrix, no entry at (i,j) naturally represents no arc. % % S is the one-dimensional matrix of source nodes for which the shortest % to ALL other nodes in the graphs will be calculated. The output matrices % D and P contain the shortest distances and predecessor indices respectively. % An infinite distance is represented by INF. The predecessor indices contain % the node indices of the node along the shortest path before the destination % is reached. These indices are useful to construct the shortest path with the % function pred2path (by Michael G. Kay). % % This function was implemented in C++. The source code can be compiled to a % Matlab compatible mex file by the command "mex -O dijkstra.cpp" at the Matlab % prompt. In this package, we provide a compiled .dll version that is % compatible all Windows based machines. If you are not working on a % Windows platform, delete the .dll version provided and recompile from % the .cpp source file. If you do not have the Matlab compiler or a Windows % platform, delete the .dll version and dijkstra will then call the % Matlab function dijk.m (by Michael G. Kay). Note that this Matlab % code is several orders of magnitude slower than the C based mex file. % % code taken from : % Mark Steyvers, Stanford University, 12/19/00 N = size( G , 1 ); D = dijk( G , S , 1:N ); function D = dijk(A,s,t) % dijk - shortest paths from nodes 's' to nodes 't' using Dijkstra algorithm. % % D = dijk(A,s,t); % % A = n x n node-node weighted adjacency matrix of arc lengths % (Note: A(i,j) = 0 => Arc (i,j) does not exist; % A(i,j) = NaN => Arc (i,j) exists with 0 weight) % s = FROM node indices % = [] (default), paths from all nodes % t = TO node indices % = [] (default), paths to all nodes % D = |s| x |t| matrix of shortest path distances from 's' to 't' % = [D(i,j)], where D(i,j) = distance from node 'i' to node 'j' % % (If A is a triangular matrix, then computationally intensive node % selection step not needed since graph is acyclic (triangularity is a % sufficient, but not a necessary, condition for a graph to be acyclic) % and A can have non-negative elements) % % (If |s| >> |t|, then DIJK is faster if DIJK(A',t,s) used, where D is now % transposed and P now represents successor indices) % % (Based on Fig. 4.6 in Ahuja, Magnanti, and Orlin, Network Flows, % Prentice-Hall, 1993, p. 109.) % Copyright (c) 1998-2000 by Michael G. Kay % Matlog Version 1.3 29-Aug-2000 % % Modified by JBT, Dec 2000, to delete paths % Input Error Checking ****************************************************** error(nargchk(1,3,nargin)); [n,cA] = size(A); if nargin < 2 | isempty(s), s = (1:n)'; else s = s(:); end if nargin < 3 | isempty(t), t = (1:n)'; else t = t(:); end if ~any(any(tril(A) ~= 0)) % A is upper triangular isAcyclic = 1; elseif ~any(any(triu(A) ~= 0)) % A is lower triangular isAcyclic = 2; else % Graph may not be acyclic isAcyclic = 0; end if n ~= cA error('A must be a square matrix'); elseif ~isAcyclic & any(any(A < 0)) error('A must be non-negative'); elseif any(s < 1 | s > n) error(['''s'' must be an integer between 1 and ',num2str(n)]); elseif any(t < 1 | t > n) error(['''t'' must be an integer between 1 and ',num2str(n)]); end % End (Input Error Checking) ************************************************ A = A'; % Use transpose to speed-up FIND for sparse A D = zeros(length(s),length(t)); P = zeros(length(s),n); for i = 1:length(s) j = s(i); Di = Inf*ones(n,1); Di(j) = 0; isLab = logical(zeros(length(t),1)); if isAcyclic == 1 nLab = j - 1; elseif isAcyclic == 2 nLab = n - j; else nLab = 0; UnLab = 1:n; isUnLab = logical(ones(n,1)); end while nLab < n & ~all(isLab) if isAcyclic Dj = Di(j); else % Node selection [Dj,jj] = min(Di(isUnLab)); j = UnLab(jj); UnLab(jj) = []; isUnLab(j) = 0; end nLab = nLab + 1; if length(t) < n, isLab = isLab | (j == t); end [jA,kA,Aj] = find(A(:,j)); Aj(isnan(Aj)) = 0; if isempty(Aj), Dk = Inf; else Dk = Dj + Aj; end P(i,jA(Dk < Di(jA))) = j; Di(jA) = min(Di(jA),Dk); if isAcyclic == 1 % Increment node index for upper triangular A j = j + 1; elseif isAcyclic == 2 % Decrement node index for lower triangular A j = j - 1; end %disp( num2str( nLab )); end D(i,:) = Di(t)'; end
github
jacksky64/imageProcessing-master
compute_boundary.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/compute_boundary.m
1,951
utf_8
a1d4f16ccb164b5d4d3dded2507bbee2
function boundary=compute_boundary(face, options) % compute_boundary - compute the vertices on the boundary of a 3D mesh % % boundary=compute_boundary(face); % % Copyright (c) 2007 Gabriel Peyre options.null = 0; verb = getoptions(options, 'verb', 1); if size(face,1)<size(face,2) face=face'; end nvert=max(max(face)); nface=size(face,1); A=sparse(nvert,nvert); for i=1:nface if verb progressbar(i,nface); end f=face(i,:); A(f(1),f(2))=A(f(1),f(2))+1; A(f(1),f(3))=A(f(1),f(3))+1; A(f(3),f(2))=A(f(3),f(2))+1; end A=A+A'; for i=1:nvert u=find(A(i,:)==1); if ~isempty(u) boundary=[i u(1)]; break; end end s=boundary(2); i=2; while(i<=nvert) u=find(A(s,:)==1); if length(u)~=2 warning('problem in boundary'); end if u(1)==boundary(i-1) s=u(2); else s=u(1); end if s~=boundary(1) boundary=[boundary s]; else break; end i=i+1; end if i>nvert warning('problem in boundary'); end %%% OLD %%% function v = compute_boundary_old(faces) nvert = max(face(:)); ring = compute_vertex_ring( face ); % compute boundary v = -1; for i=1:nvert % first find a starting vertex f = ring{i}; if f(end)<0 v = i; break; end end if v<0 error('No boundary found.'); end boundary = [v]; prev = -1; while true f = ring{v}; if f(end)>=0 error('Problem in boundary'); end if f(1)~=prev prev = v; v = f(1); else prev = v; v = f(end-1); end if ~isempty( find(boundary==v) ) % we have reach the begining of the boundary if v~=boundary(1) warning('Begining and end of boundary doesn''t match.'); else break; end end boundary = [boundary,v]; end
github
jacksky64/imageProcessing-master
compute_geometric_laplacian.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/compute_geometric_laplacian.m
5,760
utf_8
b6c0f7f8acdbb0c203c5f1a297957760
function L = compute_geometric_laplacian(vertex,face,type) % compute_geometric_laplacian - return a laplacian % of a given triangulation (can be combinatorial or geometric). % % L = compute_geometric_laplacian(vertex,face,type); % % Type is either : % - 'combinatorial' : combinatorial laplacian, doesn't take into % acount geometry. % - 'conformal' : conformal (i.e. harmonic) weights, % - 'authalic' : area-preserving weights (not implemented yet). % - 'distance' : L(i,j) = 1/|xi-xj|^2 % % Reference: % M.S.Floater and K.Hormann % Recent Advances in Surface Parameterization % Multiresolution in geometric modelling % <http://vcg.isti.cnr.it/~hormann/papers/survey.pdf> % % Copyright (c) 2003 Gabriel Peyre error('Not used anymore'); [vertex,face] = check_face_vertex(vertex,face); nface = size(face,1); n = max(max(face)); if nargin<3 type = 'conformal'; end if strcmp(lower(type),'combinatorial') L = compute_combinatorial_laplacian( triangulation2adjacency(face) ); return; end if strcmp(lower(type),'distance') D = build_euclidean_weight_matrix(triangulation2adjacency(face),vertex,0); D(D>0) = 1/D(D>0).^2; L = diag( sum(D) ) - D; L = (L+L')/2; return; end if strcmp(lower(type),'authalic') error('Not implemented'); end if not(strcmp(lower(type),'conformal')) error('Unknown laplacian type.'); end % conformal laplacian L = sparse(n,n); ring = compute_vertex_face_ring(face); for i = 1:n for b = ring{i} % b is a face adjacent to a bf = face(:,b); % compute complementary vertices if bf(1)==i v = bf(2:3); elseif bf(2)==i v = bf([1 3]); elseif bf(3)==i v = bf(1:2); else error('Problem in face ring.'); end j = v(1); k = v(2); vi = vertex(:,i); vj = vertex(:,j); vk = vertex(:,k); % angles alpha = myangle(vk-vi,vk-vj); beta = myangle(vj-vi,vj-vk); % add weight L(i,j) = L(i,j) + cot( alpha ); L(i,k) = L(i,k) + cot( beta ); end end L = L - diag(sum(L,2)); return; %% old code if strcmp(lower(type),'combinatorial') L = compute_combinatorial_laplacian( triangulation2adjacency(face) ); elseif strcmp(lower(type),'conformal') || strcmp(lower(type),'authalic') if nargin<4 disp('--> Computing 1-ring.'); ring = compute_vertex_ring( face ); end disp('--> Computing laplacian.'); for i=1:n vi = vertex(i,:); r = ring{i}; if r(end)==-1 % no circularity s = length(r)-1; r = [r(1), r(1:(end-1)), r(end-1)]; else % circularity s = length(r); r = [r(end), r, r(1)]; end % circulate on the 1-ring for x = 2:(s+1) j = r(x); if L(i,j)==0 gche = r(x-1); drte = r(x+1); vj = vertex(j,:); v1 = vertex(gche,:); v2 = vertex(drte,:); % we use cot(acos(x))=x/sqrt(1-x^2) if strcmp(lower(type),'conformal') d1 = sqrt(dot(vi-v2,vi-v2)); d2 = sqrt(dot(vj-v2,vj-v2)); if d1>eps && d2>eps z = dot(vi-v2,vj-v2)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end d1 = sqrt(dot(vi-v1,vi-v1)); d2 = sqrt(dot(vj-v1,vj-v1)); if d1>eps && d2>eps z = dot(vi-v1,vj-v1)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end else d1 = sqrt(dot(vi-vj,vi-vj)); d2 = sqrt(dot(v2-vj,v2-vj)); if d1>eps && d2>eps z = dot(vi-vj,v2-vj)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end d1 = sqrt(dot(vi-vj,vi-vj)); d2 = sqrt(dot(v1-vj,v1-vj)); if d1>eps && d2>eps z = dot(vi-vj,v1-vj)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end if d1>eps L(i,j) = L(i,j) / (d1*d1); end end if 0 % uncomment for symmeterization if L(j,i)==0 L(j,i) = L(i,j); else L(j,i) = (L(j,i)+L(i,j))/2; end end end end end for i=1:n L(i,i) = -sum( L(i,:) ); end else error('Unknown type.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function beta = myangle(u,v); du = sqrt( sum(u.^2) ); dv = sqrt( sum(v.^2) ); du = max(du,eps); dv = max(dv,eps); beta = acos( sum(u.*v) / (du*dv) );
github
jacksky64/imageProcessing-master
check_face_vertex.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/check_face_vertex.m
646
utf_8
fe3c5da3b1ca8f15eb7eed61acfc2259
function [vertex,face] = check_face_vertex(vertex,face, options) % check_face_vertex - check that vertices and faces have the correct size % % [vertex,face] = check_face_vertex(vertex,face); % % Copyright (c) 2007 Gabriel Peyre vertex = check_size(vertex); face = check_size(face); %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = check_size(a) if isempty(a) return; end if size(a,1)>size(a,2) a = a'; end if size(a,1)<3 && size(a,2)==3 a = a'; end if size(a,1)<=3 && size(a,2)>=3 && sum(abs(a(:,3)))==0 % for flat triangles a = a'; end if size(a,1)~=3 && size(a,1)~=4 error('face or vertex is not of correct size'); end
github
jacksky64/imageProcessing-master
plot_graph.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/plot_graph.m
2,140
utf_8
337033b66fe405903639bcac59c2b34d
function h = plot_graph(A,xy, options) % plot_graph - display a 2D or 3D graph. % % plot_graph(A,xy, options); % % options.col set the display (e.g. 'k.-') % % Copyright (c) 2006 Gabriel Peyre if size(xy,1)>size(xy,2) xy = xy'; end if nargin<3 options.null = 0; end if not(isstruct(options)) col = options; clear options; options.null = 0; else if isfield(options, 'col') col = options.col; else col = 'k.-'; end end lw = getoptions(options, 'lw', 2); ps = getoptions(options, 'ps', 20); B = full(A); B = B(:); B = B( B~=0 ); isvarying = std(B)>0; if size(xy,1)==2 if ~isstr(col) col = []; end % 2D display h = gplotvarying(A,xy, col); % h = gplot(A,xy', col); axis tight; axis equal; axis off; elseif size(xy,1)==3 % 3D display if isstr(col) if ~isvarying h = gplot3(A,xy', col); else h = gplotvarying3(A,xy, col); end else hold on; if ~isvarying h = gplot3(A,xy', col); else h = gplotvarying3(A,xy, col); end plot_scattered(xy, col); hold off; view(3); end axis off; cameramenu; else error('Works only for 2D and 3D graphs'); end set(h, 'LineWidth', lw); set(h, 'MarkerSize', ps); function h = gplotvarying(A,xy,col) [i,j,s] = find(sparse(A)); I = find(i<=j); i = i(I); j = j(I); s = s(I); x = [xy(1,i);xy(1,j)]; y = [xy(2,i);xy(2,j)]; h = plot(x,y,col); function h = gplotvarying3(A,xy,col) [i,j,s] = find(sparse(A)); I = find(i<=j); i = i(I); j = j(I); s = s(I); x = [xy(1,i);xy(1,j)]; y = [xy(2,i);xy(2,j)]; y = [xy(3,i);xy(3,j)]; h = plot3(x,y,z,col); function h = gplot3(A,xy,lc) [i,j] = find(A); [ignore, p] = sort(max(i,j)); i = i(p); j = j(p); % Create a long, NaN-separated list of line segments, % rather than individual segments. X = [ xy(i,1) xy(j,1) repmat(NaN,size(i))]'; Y = [ xy(i,2) xy(j,2) repmat(NaN,size(i))]'; Z = [ xy(i,3) xy(j,3) repmat(NaN,size(i))]'; X = X(:); Y = Y(:); Z = Z(:); if nargin<3, h = plot3(X, Y, Z) else h = plot3(X, Y, Z, lc); end
github
jacksky64/imageProcessing-master
perform_faces_reorientation.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/perform_faces_reorientation.m
2,816
utf_8
2cf3d5c1ad6ea271b524352db5492c2c
function faces = perform_faces_reorientation(vertex,faces, options) % perform_faces_reorientation - reorient the faces with respect to the center of the mesh % % faces = perform_faces_reorientation(vertex,faces, options); % % try to find a consistant reorientation for faces of a mesh. % % if options.method = 'fast', then use a fast non accurate method % if options.method = 'slow', then use a slow exact method % % Copyright (c) 2007 Gabriel Peyre options.null = 0; method = getoptions(options, 'method', 'fast'); [vertex,faces] = check_face_vertex(vertex,faces); n = size(vertex,2); m = size(faces,2); if strcmp(method, 'fast') % compute the center of mass of the mesh G = mean(vertex,2); % center of faces Cf = (vertex(:,faces(1,:)) + vertex(:,faces(2,:)) + vertex(:,faces(3,:)))/3; Cf = Cf - repmat(G,[1 m]); % normal to the faces V1 = vertex(:,faces(2,:))-vertex(:,faces(1,:)); V2 = vertex(:,faces(3,:))-vertex(:,faces(1,:)); N = [V1(2,:).*V2(3,:) - V1(3,:).*V2(2,:) ; ... -V1(1,:).*V2(3,:) + V1(3,:).*V2(1,:) ; ... V1(1,:).*V2(2,:) - V1(2,:).*V2(1,:) ]; % dot product s = sign(sum(N.*Cf)); % reverse faces I = find(s>0); faces(:,I) = faces(3:-1:1,I); return end options.method = 'fast'; faces = perform_faces_reorientation(vertex,faces, options); fring = compute_face_ring(faces); tag = zeros(m,1)-1; heap = 1; for i=1:m if m>100 progressbar(i,m); end if isempty(heap) I = find(tag==-1); if isempty(I) error('Problem'); end heap = I(1); end f = heap(end); heap(end) = []; if tag(f)==1 warning('Problem'); end tag(f) = 1; % computed fr = fring{f}; fr = fr(tag(fr)==-1); tag(fr)=0; heap = [heap fr]; for k=fr(:)' % see if re-orientation is needed if check_orientation(faces(:,k), faces(:,f))==1 faces(1:2,k) = faces(2:-1:1,k); end end end if not(isempty(heap)) || not(isempty(find(tag<1))) warning('Problem'); end % try to see if face are facing in the correct direction [normal,normalf] = compute_normal(vertex,faces); a = mean(vertex,2); a = repmat(a, [1 n]); dp = sign(sum(normal.*a,1)); if sum(dp>0)<sum(dp<0) faces(1:2,:) = faces(2:-1:1,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function o = check_orientation(f1,f2) i1 = 0; j1 = 0; for i=1:3 for j=1:3 if f1(i)==f2(j) i1 = i; j1 = j; break; end end if i1~=0 break; end end if i1==0 error('Problem.'); end ia = mod(i1,3)+1; ja = mod(j1,3)+1; ib = mod(i1-2,3)+1; jb = mod(j1-2,3)+1; if f1(ia)==f2(ja) || f1(ib)==f2(jb) o=1; else o = -1; end
github
jacksky64/imageProcessing-master
plot_spherical_triangulation.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/plot_spherical_triangulation.m
1,397
utf_8
fde5d8ffb7898bb232257895ced3d53d
function plot_spherical_triangulation(svertex,face, options) % plot_spherical_triangulation - display a nice spherical triangulation % % plot_spherical_triangulation(svertex,face,options); % % Copyright (c) 2008 Gabriel Peyre options.null = 0; hold on; % draw a background sphere [X,Y,Z] = sphere(30); surf(X,Y,Z); shading interp; lighting gouraud camlight; f = getoptions(options, 'target_face', []); f = face(:,f); edges = compute_edges(face); ne = size(edges,2); npoints = getoptions(options, 'npoints', 30); % number of point on each arc lw = getoptions(options, 'lw', 3); for k=1:ne i = edges(1,k); j = edges(2,k); a = svertex(:,i); b = svertex(:,j); if not(ismember(i,f)) || not(ismember(j,f)) plot_arc(a, b, npoints, lw, 'b'); end end axis tight; axis equal; axis off; rho = 1.02; if not(isempty(f)) for i=1:3 j = mod(i,3)+1; c = svertex(:,f(i)); d = svertex(:,f(j)); h = plot3(c(1)*rho, c(2)*rho, c(3)*rho, '.g'); set(h, 'MarkerSize', 40); plot_arc(c, d, npoints, lw+1, 'r'); end end %% function plot_arc(a, b, npoints, lw, col) t = repmat(linspace(0,1,npoints), [3 1]); % arc curve c = t.*repmat(a, [1 npoints]) + (1-t).*repmat(b, [1 npoints]); % project on sphere d = sqrt(sum(c.^2)); d(d<1e-10) = 1; c = 1.005 * c./repmat(d, [3 1]); h = plot3(c(1,:), c(2,:), c(3,:), col); set(h, 'LineWidth', lw);
github
jacksky64/imageProcessing-master
compute_mesh_weight.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/compute_mesh_weight.m
2,783
utf_8
435dabe64ab50ca5bf2c467bcbad6ab8
function W = compute_mesh_weight(vertex,face,type,options) % compute_mesh_weight - compute a weight matrix % % W = compute_mesh_weight(vertex,face,type,options); % % W is sparse weight matrix and W(i,j)=0 is vertex i and vertex j are not % connected in the mesh. % % type is either % 'combinatorial': W(i,j)=1 is vertex i is conntected to vertex j. % 'distance': W(i,j) = 1/d_ij^2 where d_ij is distance between vertex % i and j. % 'conformal': W(i,j) = cot(alpha_ij)+cot(beta_ij) where alpha_ij and % beta_ij are the adjacent angle to edge (i,j) % % If options.normalize=1, the the rows of W are normalize to sum to 1. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; [vertex,face] = check_face_vertex(vertex,face); nface = size(face,1); n = max(max(face)); verb = getoptions(options, 'verb', n>5000); if nargin<3 type = 'conformal'; end switch lower(type) case 'combinatorial' W = triangulation2adjacency(face); case 'distance' W = my_euclidean_distance(triangulation2adjacency(face),vertex); W(W>0) = 1./W(W>0); W = (W+W')/2; case 'conformal' % conformal laplacian W = sparse(n,n); ring = compute_vertex_face_ring(face); for i = 1:n if verb progressbar(i,n); end for b = ring{i} % b is a face adjacent to a bf = face(:,b); % compute complementary vertices if bf(1)==i v = bf(2:3); elseif bf(2)==i v = bf([1 3]); elseif bf(3)==i v = bf(1:2); else error('Problem in face ring.'); end j = v(1); k = v(2); vi = vertex(:,i); vj = vertex(:,j); vk = vertex(:,k); % angles alpha = myangle(vk-vi,vk-vj); beta = myangle(vj-vi,vj-vk); % add weight W(i,j) = W(i,j) + cot( alpha ); W(i,k) = W(i,k) + cot( beta ); end end otherwise error('Unknown type.') end if isfield(options, 'normalize') && options.normalize==1 W = diag(sum(W,2).^(-1)) * W; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function beta = myangle(u,v); du = sqrt( sum(u.^2) ); dv = sqrt( sum(v.^2) ); du = max(du,eps); dv = max(dv,eps); beta = acos( sum(u.*v) / (du*dv) ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function W = my_euclidean_distance(A,vertex) if size(vertex,1)<size(vertex,2) vertex = vertex'; end [i,j,s] = find(sparse(A)); d = sum( (vertex(i,:) - vertex(j,:)).^2, 2); W = sparse(i,j,d);
github
jacksky64/imageProcessing-master
perform_analysis_regularization.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_graph/toolbox/perform_analysis_regularization.m
2,585
utf_8
c15e65a8b4b77823cd42e992ac708563
function [g,g_list,E] = perform_analysis_regularization(f, G, options) % perform_analysis_regularization - perform a sparse regularization % % [g,g_list,E] = perform_analysis_regularization(f, A, options); % % Method solves, given f of length n, for % min_g E(g) = 1/2*|f-g|^2 + lambda * |A*g|_1 % where A is an (m,n) operator and |x|_1=\sum_k |x(k)| % % A can be a (m,n) matrix or an operator % y = A(x,dir,options); % where dir=1 to computer y=A*x and y=A'*x when dir=-1. % % You have to set lambda in options.lambda. % The number of iteration is options.niter. % The regularization parameter is options.eta (should be small enough). % You can use an increasing lambda by setting options.lambda_min and % options.lambda_max. In that case, g_list contains the list of solutions % for increasing values of lambda. % % It uses the projection algorithm described in % A. Chambolle % "An algorithm for Total variation Minimization and applications" % Journal of Mathematical Imaging and Vision, 20(1), p. 89-97, 2004 % % Copyright (c) 2007 Gabriel Peyre options.null = 0; if isfield(options, 'niter') niter = options.niter; else niter = 100; end if isfield(options, 'eta') eta = options.eta; else eta = 0.1; end if isfield(options, 'g') h = options.h; else h = f*0; end if isfield(options, 'lambda') lambda = options.lambda; else lambda = .3; end if isfield(options, 'lambda_min') lambda_min = options.lambda_min; else lambda_min = lambda; end if isfield(options, 'lambda_max') lambda_max = options.lambda_max; else lambda_max = lambda; end if isfield(options, 'verb') verb = options.verb; else verb = 1; end lambda_list = linspace(lambda_min,lambda_max,niter); f = f(:); n = length(f); if nargout>2 g_list = zeros(n,niter); end E = []; p = appG(G,h,options); for i=1:niter if verb progressbar(i,niter); end lambda = lambda_list(i); h = lambda*appGT(G,p,options); pp = -1/lambda * appG(G,h-f,options); % update p = ( p+eta*pp )./( 1+eta*abs(pp) ); if nargout>2 g = f-h; pg = appG(G,g,options); E(end+1) = .5*norm(h, 'fro')^2 + lambda_max * sum( abs(pg(:)) ); end if nargout>1 g_list(:,i) = f - h; end end g = f - h; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=appG(G,x, options) if isnumeric(G) y = G*x; else y = feval( G,x, 1, options ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y=appGT(G,x, options) if isnumeric(G) y = G'*x; else y = feval( G,x, -1, options ); end
github
jacksky64/imageProcessing-master
perform_synthesis_quilting.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/perform_synthesis_quilting.m
7,651
utf_8
8c411ddc2b26690849941b7d95f0b8ac
function Y = perform_synthesis_quilting(X, tilesize, n, overlap, err) % perform_synthesis_quilting - perform image synthesis % % Y = perform_synthesis_quilting(X, tilesize, n, overlap, err); % % The method is described in % ``Image Quilting for Texture Synthesis and Transfer'' % Alexei A. Efros and William T. Freeman % Proceedings of SIGGRAPH '01, Los Angeles, California, August, 2001. % % The implementation is by Christopher DeCoro % http://www.cs.princeton.edu/~cdecoro/imagequilting/ % % X: The source image to be used in synthesis % tilesize: the dimensions of each square tile. Should divide size(X) evenly % n: The number of tiles to be placed in the output image, in each dimension % overlap: The amount of overlap to allow between pixels (def: 1/6 tilesize) % err: used when computing list of compatible tiles (def: 0.1) X = double(X); if( length(size(X)) == 2 ) X = repmat(X, [1 1 3]); elseif( length(size(X)) ~= 3 ) error('Input image must be 2 or 3 dimensional'); end simple = 0; if( nargin < 5 ) err = 0.002; end if( nargin < 4 ) overlap = round(tilesize / 6); end use_draw = 1; use_verb = 0; if( overlap >= tilesize ) error('Overlap must be less than tilesize'); end destsize = n * tilesize - (n-1) * overlap; Y = zeros(destsize, destsize, 3); for i=1:n, for j=1:n, progressbar(j+(i-1)*n, n^2); startI = (i-1)*tilesize - (i-1) * overlap + 1; startJ = (j-1)*tilesize - (j-1) * overlap + 1; endI = startI + tilesize -1 ; endJ = startJ + tilesize -1; %Determine the distances from each tile to the overlap region %This will eventually be replaced with convolutions distances = zeros( size(X,1)-tilesize, size(X,2)-tilesize ); useconv = 1; if( useconv == 0 ) %Compute the distances from the template to target for all i,j for a = 1:size(distances,1) v1 = Y(startI:endI, startJ:endJ, 1:3); for b = 1:size(distances,2), v2 = X(a:a+tilesize-1,b:b+tilesize-1, 1:3); distances(a,b) = myssd( double((v1(:) > 0)) .* (v1(:) - v2(:)) ); %distances(a,b) = D; end end else %Compute the distances from the source to the left overlap region if( j > 1 ) distances = ssd( X, Y(startI:endI, startJ:startJ+overlap-1, 1:3) ); distances = distances(1:end, 1:end-tilesize+overlap); end %Compute the distance from the source to top overlap region if( i > 1 ) Z = ssd( X, Y(startI:startI+overlap-1, startJ:endJ, 1:3) ); Z = Z(1:end-tilesize+overlap, 1:end); if( j > 1 ) distances = distances + Z; else distances = Z; end end %If both are greater, compute the distance of the overlap if( i > 1 && j > 1 ) Z = ssd( X, Y(startI:startI+overlap-1, startJ:startJ+overlap-1, 1:3) ); Z = Z(1:end-tilesize+overlap, 1:end-tilesize+overlap); distances = distances - Z; end end %Find the best candidates for the match best = max( min(distances(:)), 0 ); candidates = find(distances(:) <= (1+err)*best); idx = candidates(ceil(rand(1)*length(candidates))); [sub(1), sub(2)] = ind2sub(size(distances), idx); if use_verb fprintf( 'Picked tile (%d, %d) out of %d candidates. Best error=%.4f\n', sub(1), sub(2), length(candidates), best ); end %If we do the simple quilting (no cut), just copy image if( simple ) Y(startI:endI, startJ:endJ, 1:3) = X(sub(1):sub(1)+tilesize-1, sub(2):sub(2)+tilesize-1, 1:3); else %Initialize the mask to all ones M = ones(tilesize, tilesize); %We have a left overlap if( j > 1 ) %Compute the SSD in the border region E = ( X(sub(1):sub(1)+tilesize-1, sub(2):sub(2)+overlap-1) - Y(startI:endI, startJ:startJ+overlap-1) ).^2; %Compute the mincut array C = mincut(E, 0); %Compute the mask and write to the destination M(1:end, 1:overlap) = double(C >= 0); end %We have a top overlap if( i > 1 ) %Compute the SSD in the border region E = ( X(sub(1):sub(1)+overlap-1, sub(2):sub(2)+tilesize-1) - Y(startI:startI+overlap-1, startJ:endJ) ).^2; %Compute the mincut array C = mincut(E, 1); %Compute the mask and write to the destination M(1:overlap, 1:end) = M(1:overlap, 1:end) .* double(C >= 0); end if( i == 1 && j == 1 ) Y(startI:endI, startJ:endJ, 1:3) = X(sub(1):sub(1)+tilesize-1, sub(2):sub(2)+tilesize-1, 1:3); else %Write to the destination using the mask Y(startI:endI, startJ:endJ, :) = filtered_write(Y(startI:endI, startJ:endJ, :), ... X(sub(1):sub(1)+tilesize-1, sub(2):sub(2)+tilesize-1, :), M); end end if use_draw imageplot(Y); drawnow; end end end if use_draw imageplot(Y); drawnow; end function y = myssd( x ) y = sum( x.^2 ); function A = filtered_write(A, B, M) for i = 1:3, A(:, :, i) = A(:,:,i) .* (M == 0) + B(:,:,i) .* (M == 1); end %function Y = mincut(X,dir) %Computes the minimum cut from one edge of the matrix to the other % %Inputs: % X: Evalutations of 2d function to be cut along local minima % dir: 0 = vertical cut, 1 = horizontal cut % %Outputs: % C: Matrix containing entries indicating side % -1: left (or top) side of cut % 0: along the cut % 1: right (or bottom) side of cut function C = mincut(X,dir) if( nargin > 1 && dir == 1 ) X = X'; end %Allocate the current cost array, and set first row to first row of X E = zeros(size(X)); E(1:end,:) = X(1:end,:); %Starting with the second array, compute the path costs until the end for i=2:size(E,1), E(i,1) = X(i,1) + min( E(i-1,1), E(i-1,2) ); for j=2:size(E,2)-1, E(i,j) = X(i,j) + min( [E(i-1,j-1), E(i-1,j), E(i-1,j+1)] ); end E(i,end) = X(i,end) + min( E(i-1,end-1), E(i-1,end) ); end %Backtrace to find the cut C = zeros(size(X)); [cost, idx] = min(E(end, 1:end)); C(i, 1:idx-1) = -1; C(i, idx) = 0; C(i, idx+1:end) = +1; for i=size(E,1)-1:-1:1, for j=1:size(E,2), if( idx > 1 && E(i,idx-1) == min(E(i,idx-1:min(idx+1,size(E,2))) ) ) idx = idx-1; elseif( idx < size(E,2) && E(i,idx+1) == min(E(i,max(idx-1,1):idx+1)) ) idx = idx+1; end C(i, 1:idx-1) = -1; C(i, idx) = 0; C(i, idx+1:end) = +1; end end if( nargin > 1 && dir == 1 ) %E = E'; C = C'; end %function Z = ssd(X, Y) %Computes the sum of squared distances between X and Y for each possible % overlap of Y on X. Y is thus smaller than X % %Inputs: % X - larger image % Y - smaller image % %Outputs: % Each pixel of Z contains the ssd for Y overlaid on X at that pixel function Z = ssd(X, Y) K = ones(size(Y,1), size(Y,2)); for k=1:size(X,3), A = X(:,:,k); B = Y(:,:,k); a2 = filter2(K, A.^2, 'valid'); b2 = sum(sum(B.^2)); ab = filter2(B, A, 'valid').*2; if( k == 1 ) Z = ((a2 - ab) + b2); else Z = Z + ((a2 - ab) + b2); end end
github
jacksky64/imageProcessing-master
perform_wavelet_matching.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/perform_wavelet_matching.m
4,232
utf_8
c08affe005c098a67fc7fbda0a77237e
function [M1,MW,MW1] = perform_wavelet_matching(M1,M,options) % perform_wavelet_matching - match multiscale histograms % % M1 = perform_wavelet_matching(M1,M,options); % % M1 is the image to synthesize. % M is the exemplar image. % % This function match the histogram of the image and the histogram % of each sub-band of a wavelet-like pyramid. % % To do texture synthesis, one should apply several time this function. % You can do it by setting the value of options.niter_synthesis. % This leads to the synthesis as described in % % Pyramid-Based Texture Analysis/Synthesis % D. Heeger, J. Bergen, % Siggraph 1995 % % Copyright (c) 2007 Gabriel Peyre options.null = 0; niter_synthesis = getoptions(options, 'niter_synthesis', 1); if not(isfield(options, 'color_mode')) options.color_mode = 'pca'; end if isfield(options, 'color_mode') && strcmp(options.color_mode, 'pca') && ~isfield(options, 'ColorP') && size(M,3)==3 [tmp,options.ColorP] = change_color_mode(M,+1,options); end rgb_postmatching = getoptions(options, 'rgb_postmatching', 0); if size(M,3)==3 options.niter_synthesis = 1; for iter=1:niter_synthesis % color images M = change_color_mode(M, +1,options); M1 = change_color_mode(M1,+1,options); for i=1:size(M,3) M1(:,:,i) = perform_wavelet_matching(M1(:,:,i),M(:,:,i), options); end M = change_color_mode(M, -1,options); M1 = change_color_mode(M1,-1,options); if rgb_postmatching for i=1:size(M,3) M1(:,:,i) = perform_histogram_equalization(M1(:,:,i),M(:,:,i)); end end end return; end if size(M,3)>1 for i=1:size(M,3) [M1(:,:,i),MW,MW1] = perform_wavelet_matching(M1(:,:,i),M(:,:,i),options); end return; end n = size(M,1); n1 = size(M1,1); synthesis_method = getoptions(options, 'synthesis_method', 'steerable'); m = 2^( ceil(log2(n)) ); m1 = 2^( ceil(log2(n1)) ); M = perform_image_extension(M,m); M1 = perform_image_extension(M1,m1); % precompute input MW = my_transform(M, +1, options); for iter=1:niter_synthesis % spatial equalization M1 = my_equalization(M1,M); % forward transforms MW1 = my_transform(M1, +1, options); % wavelet domain equalization MW1 = my_equalization(MW1,MW); % backward transform M1 = my_transform(MW1, -1, options); % spatial equalization M1 = my_equalization(M1,M); end M1 = M1(1:n1,1:n1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = my_equalization(M,M0) options.absval = 0; options.rows = 0; options.cols = 0; options.dim3 = 1; if iscell(M) for i=1:min(length(M),length(M0)) M{i} = my_equalization(M{i},M0{i}); end return; end if size(M,3)>1 for i=1:min(size(M,3),size(M0,3)) M(:,:,i) = my_equalization(M(:,:,i),M0(:,:,i)); end return; end M = perform_histogram_equalization(M,M0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = my_transform(M, dir, options) n = size(M,1); deltaJ = 5; Jmax = log2(n)-1; Jmin = max(Jmax-deltaJ+1,3); synthesis_method = getoptions(options, 'synthesis_method', 'steerable'); % steerable options if not(isfield(options, 'nb_orientations')) options.nb_orientations = 4; end % wave ortho options options.wavelet_type = 'biorthogonal_swapped'; options.wavelet_vm = 4; switch synthesis_method case 'steerable' M = perform_steerable_transform(M, Jmin, options); case 'wavelets-ortho' if dir==-1 M = convert_wavelets2list(M, Jmin); end M = perform_wavelet_transform(M, Jmin, dir, options); if dir==1 M = convert_wavelets2list(M, Jmin); end case 'quincunx-ti' M = perform_quicunx_wavelet_transform_ti(M,Jmin,options); case 'wavelets-ti' options.wavelet_type = 'biorthogonal'; options.wavelet_vm = 3; M = perform_atrou_transform(M,Jmin,options); otherwise error('Unknown transform.'); end
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/load_image.m
12,502
utf_8
4d9dcb12e956804ea88dbe11fb8b6912
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'disk', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyr? if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = 0.1; % translation gamma = 1/sqrt(2); % slope if isfield( options, 'eta' ) eta = options.eta; end if isfield( options, 'gamma' ) eta = options.gamma; end if isfield( options, 'radius' ) radius = options.radius; end if isfield( options, 'center' ) center = options.center; end if isfield( options, 'center1' ) center1 = options.center1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for some blurring sigma = 0; if isfield(options, 'sigma') sigma = options.sigma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch type case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' if ~isfield( options, 'width' ) width = round(n/16); else width = options.width; end [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); if isfield(options, 'theta') theta = options.theta; else theta = 0.2; end if isfield(options, 'freq') freq = options.freq; else freq = 0.2; end X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} if isfield(options, 'alpha') alpha = options.alpha; else alpha = 1; end M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian if isfield(options, 'sigma') sigma = options.sigma; else sigma = 10; end M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature if isfield(options, 'c') c = options.c; else c = 0.1; end % angle if isfield(options, 'theta'); theta = options.theta; else theta = pi/sqrt(2); end x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' if isfield(options, 'nbr_periods') nbr_periods = options.nbr_periods; else nbr_periods = 8; end if isfield(options, 'theta') theta = options.theta; else theta = 1/sqrt(2); end if isfield(options, 'skew') skew = options.skew; else skew = 1/sqrt(2); end A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1; end M = randn(n); otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && n~=size(M, 1) && nargin>=2 M = image_resize(M,n,n); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 h = ones(sigma); h = conv2(h,h); h = h/sum(h(:)); M = conv2(M, h, 'same'); end M = rescale(M) * 256; function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic');
github
jacksky64/imageProcessing-master
perform_histogram_equalization.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/perform_histogram_equalization.m
7,968
utf_8
bcc84159668c38454a24a2574e13ac2b
function x = perform_histogram_equalization(x,y,options) % perform_histogram_equalization - perform histogram equalization % % x = perform_histogram_equalization(x,y,options); % % Change the values of x so that its ordered values match % the ordered values of y. % % You can set % options.cols=1 to operate along columns % options.rows=1 to operate along rows % options.absval to operate only on absolute values. % % Copyright (c) 2006 Gabriel Peyr? options.null = 0; if isfield(options ,'absval') absval = options.absval; else absval = 0; end if isfield(options ,'cols') cols = options.cols; else cols = 0; end if isfield(options ,'rows') rows = options.rows; else rows = 0; end if isfield(options, 'match_ycbcr') match_ycbcr = options.match_ycbcr; else match_ycbcr = 1; end % for color images if size(x,3)>1 if size(x,3)~=size(y,3) error('x and y images must have the same number of components.'); end if size(x,3)==3 && match_ycbcr x = rgb2ycbcr(x); y = rgb2ycbcr(y); end % match each color for i=1:3 x(:,:,i) = perform_histogram_equalization(x(:,:,i), y(:,:,i), options); end if size(x,3)==3 && match_ycbcr x = ycbcr2rgb(x); end return; end if cols && rows error('You cannote specify both cols and rows'); end if cols && size(x,2)>1 if not(size(x,2)==size(y,2)) error('x and y must have same number of columns'); end for i=1:size(x,2) x(:,i) = perform_histogram_equalization(x(:,i),y(:,i),options); end return; end if rows && size(x,1)>1 if not(size(x,1)==size(y,1)) error('x and y must have same number of rows'); end for i=1:size(x,1) x(i,:) = perform_histogram_equalization(x(i,:),y(i,:),options); end return; end sx = size(x); x = x(:); y = y(:); if absval s = sign(x); x = abs(x); y = abs(y); end [vx,Ix] = sort(x); [vy,Iy] = sort(y); nx = length(x); ny = length(y); ax = linspace(1,ny,nx); ay = 1:ny; vx = interp1(ay,vy,ax); x(Ix) = vx; if absval x = x .* s; end x = reshape(x,sx); function rgb = ycbcr2rgb(in) %YCBCR2RGB Convert YCbCr values to RGB color space. % RGBMAP = YCBCR2RGB(YCBCRMAP) converts the YCbCr values in the % colormap YCBCRMAP to the RGB color space. If YCBCRMAP is M-by-3 and % contains the YCbCr luminance (Y) and chrominance (Cb and Cr) color % values as columns, then RGBMAP is an M-by-3 matrix that contains % the red, green, and blue values equivalent to those colors. % % RGB = YCBCR2RGB(YCBCR) converts the YCbCr image to the equivalent % truecolor image RGB. % % Class Support % ------------- % If the input is a YCbCr image, it can be of class uint8, uint16, % or double; the output image is of the same class as the input % image. If the input is a colormap, the input and output % colormaps are both of class double. % % Example % ------- % Convert image from RGB space to YCbCr space and back. % % rgb = imread('board.tif'); % ycbcr = rgb2ycbcr(rgb); % rgb2 = ycbcr2rgb(ycbcr); % % See also NTSC2RGB, RGB2NTSC, RGB2YCBCR. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.15.4.2 $ $Date: 2003/08/23 05:54:51 $ % Reference: % Charles A. Poynton, "A Technical Introduction to Digital Video", % John Wiley & Sons, Inc., 1996 %initialize variables isColormap = false; classin = class(in); %must reshape colormap to be m x n x 3 for transformation if (ndims(in)==2) %colormap isColormap=true; colors = size(in,1); in = reshape(in, [colors 1 3]); end %initialize output rgb = in; % set up constants for transformation. T alone will transform YCBCR in [0,255] % to RGB in [0,1]. We must scale T and the offsets to get RGB in the appropriate % range for uint8 and for uint16 arrays. T = [65.481 128.553 24.966;... -37.797 -74.203 112; ... 112 -93.786 -18.214]; Tinv = T^-1; offset = [16;128;128]; Td = 255 * Tinv; offsetd = Tinv * offset; T8 = Td; offset8 = T8 * offset; T16 = (65535/257) * Tinv; offset16 = 65535 * Tinv * offset; switch classin case 'double' for p = 1:3 rgb(:,:,p) = Td(p,1) * in(:,:,1) + Td(p,2) * in(:,:,2) + ... Td(p,3) * in(:,:,3) - offsetd(p); end case 'uint8' for p = 1:3 rgb(:,:,p) = imlincomb(T8(p,1),in(:,:,1),T8(p,2),in(:,:,2), ... T8(p,3),in(:,:,3),-offset8(p)); end case 'uint16' for p = 1:3 rgb(:,:,p) = imlincomb(T16(p,1),in(:,:,1),T16(p,2),in(:,:,2), ... T16(p,3),in(:,:,3),-offset16(p)); end end if isColormap rgb = reshape(rgb, [colors 3 1]); end if isa(rgb,'double') rgb = min(max(rgb,0.0),1.0); end %%% %Parse Inputs %%% function X = parse_inputs(varargin) checknargin(1,1,nargin,mfilename); X = varargin{1}; if ndims(X)==2 checkinput(X,{'uint8','uint16','double'},'real nonempty',mfilename,'MAP',1); if (size(X,2) ~=3 || size(X,1) < 1) eid = sprintf('Images:%s:invalidSizeForColormap',mfilename); msg = 'MAP must be a m x 3 array.'; error(eid,'%s',msg); end elseif ndims(X)==3 checkinput(X,{'uint8','uint16','double'},'real',mfilename,'RGB',1); if (size(X,3) ~=3) eid = sprintf('Images:%s:invalidTruecolorImage',mfilename); msg = 'RGB must a m x n x 3 array.'; error(eid,'%s',msg); end else eid = sprintf('Images:%s:invalidInputSize',mfilename); msg = ['RGB2GRAY only accepts two-dimensional or three-dimensional ' ... 'inputs.']; error(eid,'%s',msg); end function out = rgb2ycbcr(in) %RGB2YCBCR Convert RGB values to YCBCR color space. % YCBCRMAP = RGB2YCBCR(MAP) converts the RGB values in MAP to % the YCBCR color space. YCBCRMAP is a M-by-3 matrix that contains % the YCBCR luminance (Y) and chrominance (Cb and Cr) color values as % columns. Each row represents the equivalent color to the % corresponding row in the RGB colormap. % % YCBCR = RGB2YCBCR(RGB) converts the truecolor image RGB to the % equivalent image in the YCBCR color space. % % Class Support % ------------- % If the input is an RGB image, it can be of class uint8, uint16, % or double; the output image is of the same class as the input % image. If the input is a colormap, the input and output colormaps % are both of class double. % % Examples % -------- % Convert RGB image to YCbCr. % % RGB = imread('board.tif'); % YCBCR = rgb2ycbcr(RGB); % % Convert RGB color space to YCbCr. % % map = jet(256); % newmap = rgb2ycbcr(map); % See also NTSC2RGB, RGB2NTSC, YCBCR2RGB. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.13.4.2 $ $Date: 2003/08/23 05:54:37 $ % Reference: % C.A. Poynton, "A Technical Introduction to Digital Video", John Wiley % & Sons, Inc., 1996, p. 175 %initialize variables isColormap = false; classin = class(in); %must reshape colormap to be m x n x 3 for transformation if (ndims(in)==2) %colormap isColormap=true; colors = size(in,1); in = reshape(in, [colors 1 3]); end % set up constants for transformation T = [65.481 128.553 24.966;... -37.797 -74.203 112; ... 112 -93.786 -18.214]; offset = [16;128;128]; offset16 = 257 * offset; fac8 = 1/255; fac16 = 257/65535; %initialize output out = in; % do transformation switch classin case 'uint8' for p=1:3 out(:,:,p) = imlincomb(T(p,1)*fac8,in(:,:,1),T(p,2)*fac8,in(:,:,2),... T(p,3)*fac8,in(:,:,3),offset(p)); end case 'uint16' for p=1:3 out(:,:,p) = imlincomb(T(p,1)*fac16,in(:,:,1),T(p,2)*fac16,in(:,:,2),... T(p,3)*fac16,in(:,:,3),offset16(p)); end case 'double' % These equations transform RGB in [0,1] to YCBCR in [0, 255] for p=1:3 out(:,:,p) = T(p,1) * in(:,:,1) + T(p,2) * in(:,:,2) + T(p,3) * ... in(:,:,3) + offset(p); end out = out / 255; end if isColormap out = reshape(out, [colors 3 1]); end
github
jacksky64/imageProcessing-master
perform_blsgsm_denoising.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/perform_blsgsm_denoising.m
41,741
utf_8
d7adcb441f0d91f470957d7d1083332f
function y = perform_blsgsm_denoising(x, options) % perform_blsgsm_denoising - denoise an image using BLS-GSM % % y = perform_blsgsm_denoising(x, options); % % BLS-GSM stands for "Bayesian Least Squares - Gaussian Scale Mixture". % % This function is a wrapper for the code of J.Portilla. % % You can change the following optional parameters % options.Nor: Number of orientations (for X-Y separable wavelets it can % only be 3) % options.repres1: Type of pyramid ('uw': shift-invariant version of an orthogonal wavelet, in this case) % options.repres2: Type of wavelet (daubechies wavelet, order 2N, for 'daubN'; in this case, 'Haar') % % Other parameter that should not be changed unless really needed. % options.blSize n x n coefficient neighborhood (n must be odd): % options.parent including or not (1/0) in the % neighborhood a coefficient from the same spatial location % options.boundary Boundary mirror extension, to avoid boundary artifacts % options.covariance Full covariance matrix (1) or only diagonal elements (0). % options.optim Bayes Least Squares solution (1), or MAP-Wiener solution in two steps (0) % % Default parameters favors speed. % To get the optimal results, one should use: % options.Nor = 8; 8 orientations % options.repres1 = 'fs'; Full Steerable Pyramid, 5 scales for 512x512 % options.repres2 = ''; Dummy parameter when using repres1 = 'fs' % options.parent = 1; Include a parent in the neighborhood % % J Portilla, V Strela, M Wainwright, E P Simoncelli, % "Image Denoising using Scale Mixtures of Gaussians in the Wavelet Domain," % IEEE Transactions on Image Processing. vol 12, no. 11, pp. 1338-1351, % November 2003 % % Javier Portilla, Universidad de Granada, Spain % Adapted by Gabriel Peyre in 2007 options.null = 0; if isfield(options, 'sigma') sig = options.sigma; else sig = perform_noise_estimation(x) end [Ny,Nx] = size(x); % Pyramidal representation parameters Nsc = ceil(log2(min(Ny,Nx)) - 4); % Number of scales (adapted to the image size) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters if isfield(options, 'Nor') Nor = options.Nor; else Nor = 3; % Number of orientations (for X-Y separable wavelets it can only be 3) end if isfield(options, 'repres1') repres1 = options.repres1; else repres1 = 'uw'; % Type of pyramid (shift-invariant version of an orthogonal wavelet, in this case) end if isfield(options, 'repres2') repres2 = options.repres2; else repres2 = 'daub1'; % Type of wavelet (daubechies wavelet, order 2N, for 'daubN'; in this case, 'Haar') end % Model parameters (optimized: do not change them unless you are an advanced user with a deep understanding of the theory) if isfield(options, 'blSize') blSize = options.blSize; else blSize = [3 3]; % n x n coefficient neighborhood of spatial neighbors within the same subband end if isfield(options, 'parent') parent = options.parent; else parent = 0; % including or not (1/0) in the neighborhood a coefficient from the same spatial location end if isfield(options, 'boundary') boundary = options.boundary; else boundary = 1; % Boundary mirror extension, to avoid boundary artifacts end if isfield(options, 'covariance') covariance = options.covariance; else covariance = 1; % Full covariance matrix (1) or only diagonal elements (0). end if isfield(options, 'optim') optim = options.optim; else optim = 1; % Bayes Least Squares solution (1), or MAP-Wiener solution in two steps (0) end PS = ones(size(x)); % power spectral density (in this case, flat, i.e., white noise) seed = 0; % Uncomment the following 4 code lines for reproducing the results of our IEEE Trans. on Im. Proc., Nov. 2003 paper % This configuration is slower than the previous one, but it gives slightly better results (SNR) % on average for the test images "lena", "barbara", and "boats" used in the % cited article. % Nor = 8; % 8 orientations % repres1 = 'fs'; % Full Steerable Pyramid, 5 scales for 512x512 % repres2 = ''; % Dummy parameter when using repres1 = 'fs' % parent = 1; % Include a parent in the neighborhood % Call the denoising function y = denoi_BLS_GSM(x, sig, PS, blSize, parent, boundary, Nsc, Nor, covariance, optim, repres1, repres2, seed); function im_d = denoi_BLS_GSM(im, sig, PS, blSize, parent, boundary, Nsc, Nor, covariance, optim, repres1, repres2, seed); % [im_d,im,SNR_N,SNR,PSNR] = denoi_BLS_GSM(im, sig, ft, PS, blSize, parent, boundary, Nsc, Nor, covariance, optim, repres1, repres2, seed); % % im: input noisy image % sig: standard deviation of noise % PS: Power Spectral Density of noise ( fft2(autocorrelation) ) % NOTE: scale factors do not matter. Default is white. % blSize: 2x1 or 1x2 vector indicating local neighborhood % ([sY sX], default is [3 3]) % parent: Use parent yes/no (1/0) % Nsc: Number of scales % Nor: Number of orientations. For separable wavelets this MUST be 3. % covariance: Include / Not Include covariance in the GSM model (1/0) % optim: BLS / MAP-Wiener(2-step) (1/0) % repres1: Possible choices for representation: % 'w': orthogonal wavelet % (uses buildWpyr, reconWpyr) % repres2 (optional): % haar: - Haar wavelet. % qmf8, qmf12, qmf16 - Symmetric Quadrature Mirror Filters [Johnston80] % daub2,daub3,daub4 - Daubechies wavelet [Daubechies88] (#coef = 2N, para daubN). % qmf5, qmf9, qmf13: - Symmetric Quadrature Mirror Filters [Simoncelli88,Simoncelli90] % 'uw': undecimated orthogonal wavelet, Daubechies, pyramidal version % (uses buildWUpyr, reconWUpyr). % repres2 (optional): 'daub<N>', where <N> is a positive integer (e.g., 2) % 's': steerable pyramid [Simoncelli&Freeman95]. % (uses buildSFpyr, reconSFpyr) % 'fs': full steerable pyramid [Portilla&Simoncelli02]. % (uses buildFullSFpyr2, reconsFullSFpyr2) % seed (optional): Seed used for generating the Gaussian noise (when ft == 0) % By default is 0. % % im_d: denoising result % Javier Portilla, Univ. de Granada, 5/02 % revision 31/03/2003 % revision 7/01/2004 % Last revision 15/11/2004 if ~exist('blSize'), blSzX = 3; % Block size blSzY = 3; else blSzY = blSize(1); blSzX = blSize(2); end if (blSzY/2==floor(blSzY/2))|(blSzX/2==floor(blSzX/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('PS'), no_white = 0; % Power spectral density of noise. Default is white noise else no_white = 1; end if ~exist('parent'), parent = 1; end if ~exist('boundary'), boundary = 1; end if ~exist('Nsc'), Nsc = 4; end if ~exist('Nor'), Nor = 8; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('repres1'), repres1 = 'fs'; end if ~exist('repres2'), repres2 = ''; end if (((repres1=='w') | (repres1=='uw')) & (Nor~=3)), warning('For X-Y separable representations Nor must be 3. Nor = 3 assumed.'); Nor = 3; end if ~exist('seed'), seed = 0; end [Ny Nx] = size(im); % We ensure that the processed image has dimensions that are integer % multiples of 2^(Nsc+1), so it will not crash when applying the % pyramidal representation. The idea is padding with mirror reflected % pixels (thanks to Jesus Malo for this idea). Npy = ceil(Ny/2^(Nsc+1))*2^(Nsc+1); Npx = ceil(Nx/2^(Nsc+1))*2^(Nsc+1); if Npy~=Ny | Npx~=Nx, Bpy = Npy-Ny; Bpx = Npx-Nx; im = bound_extension(im,Bpy,Bpx,'mirror'); im = im(Bpy+1:end,Bpx+1:end); % add stripes only up and right end % size of the extension for boundary handling if (repres1 == 's') | (repres1 == 'fs'), By = (blSzY-1)*2^(Nsc-2); Bx = (blSzX-1)*2^(Nsc-2); else By = (blSzY-1)*2^(Nsc-1); Bx = (blSzX-1)*2^(Nsc-1); end if ~no_white, % White noise PS = ones(size(im)); end % As the dimensions of the power spectral density (PS) support and that of the % image (im) do not need to be the same, we have to adapt the first to the % second (zero padding and/or cropping). PS = fftshift(PS); isoddPS_y = (size(PS,1)~=2*(floor(size(PS,1)/2))); isoddPS_x = (size(PS,2)~=2*(floor(size(PS,2)/2))); PS = PS(1:end-isoddPS_y, 1:end-isoddPS_x); % ensures even dimensions for the power spectrum PS = fftshift(PS); [Ndy,Ndx] = size(PS); % dimensions are even delta = real(ifft2(sqrt(PS))); delta = fftshift(delta); aux = delta; delta = zeros(Npy,Npx); if (Ndy<=Npy)&(Ndx<=Npx), delta(Npy/2+1-Ndy/2:Npy/2+Ndy/2,Npx/2+1-Ndx/2:Npx/2+Ndx/2) = aux; elseif (Ndy>Npy)&(Ndx>Npx), delta = aux(Ndy/2+1-Npy/2:Ndy/2+Npy/2,Ndx/2+1-Npx/2:Ndx/2+Npx/2); elseif (Ndy<=Npy)&(Ndx>Npx), delta(Npy/2+1-Ndy/2:Npy/2+1+Ndy/2-1,:) = aux(:,Ndx/2+1-Npx/2:Ndx/2+Npx/2); elseif (Ndy>Npy)&(Ndx<=Npx), delta(:,Npx/2+1-Ndx/2:Npx/2+1+Ndx/2-1) = aux(Ndy/2+1-Npy/2:Ndy/2+1+Npy/2-1,:); end if repres1 == 'w', PS = abs(fft2(delta)).^2; PS = fftshift(PS); % noise, to be used only with translation variant transforms (such as orthogonal wavelet) delta = real(ifft2(sqrt(PS).*exp(j*angle(fft2(randn(size(PS))))))); end %Boundary handling: it extends im and delta if boundary, im = bound_extension(im,By,Bx,'mirror'); if repres1 == 'w', delta = bound_extension(delta,By,Bx,'mirror'); else aux = delta; delta = zeros(Npy + 2*By, Npx + 2*Bx); delta(By+1:By+Npy,Bx+1:Bx+Npx) = aux; end else By=0;Bx=0; end delta = delta/sqrt(mean2(delta.^2)); % Normalize the energy (the noise variance is given by "sig") delta = sig*delta; % Impose the desired variance to the noise % main t1 = clock; if repres1 == 's', % standard steerable pyramid im_d = decomp_reconst(im, Nsc, Nor, [blSzX blSzY], delta, parent,covariance,optim,sig); elseif repres1 == 'fs', % full steerable pyramid im_d = decomp_reconst_full(im, Nsc, Nor, [blSzX blSzY], delta, parent, covariance, optim, sig); elseif repres1 == 'w', % orthogonal wavelet if ~exist('repres2'), repres2 = 'daub1'; end filter = repres2; im_d = decomp_reconst_W(im, Nsc, filter, [blSzX blSzY], delta, parent, covariance, optim, sig); elseif repres1 == 'uw', % undecimated daubechies wavelet if ~exist('repres2'), repres2 = 'daub1'; end if repres2(1:4) == 'haar', daub_order = 2; else daub_order = 2*str2num(repres2(5)); end im_d = decomp_reconst_WU(im, Nsc, daub_order, [blSzX blSzY], delta, parent, covariance, optim, sig); else error('Invalid representation parameter. See help info.'); end t2 = clock; elaps = t2 - t1; elaps(4)*3600+elaps(5)*60+elaps(6); % elapsed time, in seconds im_d = im_d(By+1:By+Npy,Bx+1:Bx+Npx); im_d = im_d(1:Ny,1:Nx); function fh = decomp_reconst_full(im,Nsc,Nor,block,noise,parent,covariance,optim,sig); % Decompose image into subbands, denoise, and recompose again. % fh = decomp_reconst(im,Nsc,Nor,block,noise,parent,covariance,optim,sig); % covariance: are we considering covariance or just variance? % optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) % sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) % Version using the Full steerable pyramid (2) (High pass residual % splitted into orientations). % JPM, Univ. de Granada, 5/02 % Last Revision: 11/04 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('sig'), sig = sqrt(mean(noise.^2)); end [pyr,pind] = buildFullSFpyr2(im,Nsc,Nor-1); [pyrN,pind] = buildFullSFpyr2(noise,Nsc,Nor-1); pyrh = real(pyr); Nband = size(pind,1)-1; for nband = 2:Nband, % everything except the low-pass residual fprintf('%d % ',round(100*(nband-1)/(Nband-1))) aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); [Nsy,Nsx] = size(aux); prnt = parent & (nband < Nband-Nor); % has the subband a parent? BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension if prnt, aux = pyrBand(pyr, pind, nband+Nor); auxn = pyrBand(pyrN, pind, nband+Nor); if nband>Nor+1, % resample 2x2 the parent if not in the high-pass oriented subbands. aux = real(expand(aux,2)); auxn = real(expand(auxn,2)); end BL(:,:,2) = aux; BLn(:,:,2) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconFullSFpyr2(pyrh,pind); function fh = decomp_reconst_W(im,Nsc,filter,block,noise,parent,covariance,optim,sig); % Decompose image into subbands, denoise using BLS-GSM method, and recompose again. % fh = decomp_reconst(im,Nsc,filter,block,noise,parent,covariance,optim,sig); % im: image % Nsc: number of scales % filter: type of filter used (see namedFilters) % block: 2x1 vector indicating the dimensions (rows and columns) of the spatial neighborhood % noise: signal with the same autocorrelation as the noise % parent: include (1) or not (0) a coefficient from the immediately coarser scale in the neighborhood % covariance: are we considering covariance or just variance? % optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) % sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) % Version using a critically sampled pyramid (orthogonal wavelet), as implemented in MatlabPyrTools (Eero). % JPM, Univ. de Granada, 3/03 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('sig'), sig = sqrt(mean(noise.^2)); end Nor = 3; % number of orientations: vertical, horizontal and mixed diagonals (for compatibility) [pyr,pind] = buildWpyr(im,Nsc,filter,'circular'); [pyrN,pind] = buildWpyr(noise,Nsc,filter,'circular'); pyrh = pyr; Nband = size(pind,1); for nband = 1:Nband-1, % everything except the low-pass residual fprintf('%d % ',round(100*(nband-1)/(Nband-1))) aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); prnt = parent & (nband < Nband-Nor); % has the subband a parent? BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn; if prnt, aux = pyrBand(pyr, pind, nband+Nor); auxn = pyrBand(pyrN, pind, nband+Nor); aux = real(expand(aux,2)); auxn = real(expand(auxn,2)); BL(:,:,2) = aux; BLn(:,:,2) = auxn; end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconWpyr(pyrh,pind,filter,'circular'); function fh = decomp_reconst_WU(im,Nsc,daub_order,block,noise,parent,covariance,optim,sig); % Decompose image into subbands (undecimated wavelet), denoise, and recompose again. % fh = decomp_reconst_wavelet(im,Nsc,daub_order,block,noise,parent,covariance,optim,sig); % im : image % Nsc: Number of scales % daub_order: Order of the daubechie fucntion used (must be even). % block: size of neighborhood within each undecimated subband. % noise: image having the same autocorrelation as the noise (e.g., a delta, for white noise) % parent: are we including the coefficient at the central location at the next coarser scale? % covariance: are we considering covariance or just variance? % optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) % sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) % Javier Portilla, Univ. de Granada, 3/03 % Revised: 11/04 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end if ~exist('sig'), sig = sqrt(mean(noise.^2)); end Nor = 3; % Number of orientations: vertical, horizontal and (mixed) diagonals. [pyr,pind] = buildWUpyr(im,Nsc,daub_order); [pyrN,pind] = buildWUpyr(noise,Nsc,daub_order); pyrh = real(pyr); Nband = size(pind,1)-1; for nband = 2:Nband, % everything except the low-pass residual % fprintf('%d % ',round(100*(nband-1)/(Nband-1))) progressbar(nband-1,Nband-1); aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); [Nsy, Nsx] = size(aux); prnt = parent & (nband < Nband-Nor); % has the subband a parent? BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension if prnt, aux = pyrBand(pyr, pind, nband+Nor); auxn = pyrBand(pyrN, pind, nband+Nor); if nband>Nor+1, % resample 2x2 the parent if not in the high-pass oriented subbands. aux = real(expand(aux,2)); auxn = real(expand(auxn,2)); end BL(:,:,2) = aux; BLn(:,:,2) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconWUpyr(pyrh,pind,daub_order); function fh = decomp_reconst(fn,Nsc,Nor,block,noise,parent,covariance,optim,sig); % Decompose image into subbands, denoise, and recompose again. % fh = decomp_reconst(fn,Nsc,Nor,block,noise,parent); % Javier Portilla, Univ. de Granada, 5/02 % Last revision: 11/04 if (block(1)/2==floor(block(1)/2))|(block(2)/2==floor(block(2)/2)), error('Spatial dimensions of neighborhood must be odd!'); end if ~exist('parent'), parent = 1; end if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end [pyr,pind] = buildSFpyr(fn,Nsc,Nor-1); [pyrN,pind] = buildSFpyr(noise,Nsc,Nor-1); pyrh = real(pyr); Nband = size(pind,1); for nband = 1:Nband -1, fprintf('%d % ',round(100*nband/(Nband-1))) aux = pyrBand(pyr, pind, nband); auxn = pyrBand(pyrN, pind, nband); [Nsy,Nsx] = size(aux); prnt = parent & (nband < Nband-1-Nor) & (nband>1); BL = zeros(size(aux,1),size(aux,2),1 + prnt); BLn = zeros(size(aux,1),size(aux,2),1 + prnt); BL(:,:,1) = aux; BLn(:,:,1) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension if prnt, aux = pyrBand(pyr, pind, nband+Nor); aux = real(expand(aux,2)); auxn = pyrBand(pyrN, pind, nband+Nor); auxn = real(expand(auxn,2)); BL(:,:,2) = aux; BLn(:,:,2) = auxn*sqrt(((Nsy-2)*(Nsx-2))/(Nsy*Nsx)); % because we are discarding 2 coefficients on every dimension end sy2 = mean2(BL(:,:,1).^2); sn2 = mean2(BLn(:,:,1).^2); if sy2>sn2, SNRin = 10*log10((sy2-sn2)/sn2); else disp('Signal is not detectable in noisy subband'); end % main BL = denoi_BLS_GSM_band(BL,block,BLn,prnt,covariance,optim,sig); pyrh(pyrBandIndices(pind,nband)) = BL(:)'; end fh = reconSFpyr(pyrh,pind); function x_hat = denoi_BLS_GSM_band(y,block,noise,prnt,covariance,optim,sig); % It solves for the BLS global optimum solution, using a flat (pseudo)prior for log(z) % x_hat = denoi_BLS_GSM_band(y,block,noise,prnt,covariance,optim,sig); % % prnt: Include/ Not Include parent (1/0) % covariance: Include / Not Include covariance in the GSM model (1/0) % optim: BLS / MAP-Wiener(2-step) (1/0) % JPM, Univ. de Granada, 5/02 % Last revision: JPM, 4/03 if ~exist('covariance'), covariance = 1; end if ~exist('optim'), optim = 1; end [nv,nh,nb] = size(y); nblv = nv-block(1)+1; % Discard the outer coefficients nblh = nh-block(2)+1; % for the reference (centrral) coefficients (to avoid boundary effects) nexp = nblv*nblh; % number of coefficients considered zM = zeros(nv,nh); % hidden variable z x_hat = zeros(nv,nh); % coefficient estimation N = prod(block) + prnt; % size of the neighborhood Ly = (block(1)-1)/2; % block(1) and block(2) must be odd! Lx = (block(2)-1)/2; if (Ly~=floor(Ly))|(Lx~=floor(Lx)), error('Spatial dimensions of neighborhood must be odd!'); end cent = floor((prod(block)+1)/2); % reference coefficient in the neighborhood % (central coef in the fine band) Y = zeros(nexp,N); % It will be the observed signal (rearranged in nexp neighborhoods) W = zeros(nexp,N); % It will be a signal with the same autocorrelation as the noise foo = zeros(nexp,N); % Compute covariance of noise from 'noise' n = 0; for ny = -Ly:Ly, % spatial neighbors for nx = -Lx:Lx, n = n + 1; foo = shift(noise(:,:,1),[ny nx]); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); W(:,n) = vector(foo); end end if prnt, % parent n = n + 1; foo = noise(:,:,2); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); W(:,n) = vector(foo); end C_w = innerProd(W)/nexp; sig2 = mean(diag(C_w(1:N-prnt,1:N-prnt))); % noise variance in the (fine) subband clear W; if ~covariance, if prnt, C_w = diag([sig2*ones(N-prnt,1);C_w(N,N)]); else C_w = diag(sig2*ones(N,1)); end end % Rearrange observed samples in 'nexp' neighborhoods n = 0; for ny=-Ly:Ly, % spatial neighbors for nx=-Lx:Lx, n = n + 1; foo = shift(y(:,:,1),[ny nx]); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); Y(:,n) = vector(foo); end end if prnt, % parent n = n + 1; foo = y(:,:,2); foo = foo(Ly+1:Ly+nblv,Lx+1:Lx+nblh); Y(:,n) = vector(foo); end clear foo % For modulating the local stdv of noise if exist('sig') & prod(size(sig))>1, sig = max(sig,sqrt(1/12)); % Minimum stdv in quantified (integer) pixels subSampleFactor = log2(sqrt(prod(size(sig))/(nv*nh))); zW = blurDn(reshape(sig, size(zM)*2^subSampleFactor)/2^subSampleFactor,subSampleFactor); zW = zW.^2; zW = zW/mean2(zW); % Expectation{zW} = 1 z_w = vector(zW(Ly+1:Ly+nblv,Lx+1:Lx+nblh)); end [S,dd] = eig(C_w); S = S*real(sqrt(dd)); % S*S' = C_w iS = pinv(S); clear noise C_y = innerProd(Y)/nexp; sy2 = mean(diag(C_y(1:N-prnt,1:N-prnt))); % observed (signal + noise) variance in the subband C_x = C_y - C_w; % as signal and noise are assumed to be independent [Q,L] = eig(C_x); % correct possible negative eigenvalues, without changing the overall variance L = diag(diag(L).*(diag(L)>0))*sum(diag(L))/(sum(diag(L).*(diag(L)>0))+(sum(diag(L).*(diag(L)>0))==0)); C_x = Q*L*Q'; sx2 = sy2 - sig2; % estimated signal variance in the subband sx2 = sx2.*(sx2>0); % + (sx2<=0); if ~covariance, if prnt, C_x = diag([sx2*ones(N-prnt,1);C_x(N,N)]); else C_x = diag(sx2*ones(N,1)); end end [Q,L] = eig(iS*C_x*iS'); % Double diagonalization of signal and noise la = diag(L); % eigenvalues: energy in the new represetnation. la = real(la).*(real(la)>0); % Linearly transform the observations, and keep the quadratic values (we do not model phase) V = Q'*iS*Y'; clear Y; V2 = (V.^2).'; M = S*Q; m = M(cent,:); % Compute p(Y|log(z)) if 1, % non-informative prior lzmin = -20.5; lzmax = 3.5; step = 2; else % gamma prior for 1/z lzmin = -6; lzmax = 4; step = 0.5; end lzi = lzmin:step:lzmax; nsamp_z = length(lzi); zi = exp(lzi); laz = la*zi; p_lz = zeros(nexp,nsamp_z); mu_x = zeros(nexp,nsamp_z); if ~exist('z_w'), % Spatially invariant noise pg1_lz = 1./sqrt(prod(1 + laz,1)); % normalization term (depends on z, but not on Y) aux = exp(-0.5*V2*(1./(1+laz))); p_lz = aux*diag(pg1_lz); % That gives us the conditional Gaussian density values % for the observed samples and the considered samples of z % Compute mu_x(z) = E{x|log(z),Y} aux = diag(m)*(laz./(1 + laz)); % Remember: laz = la*zi mu_x = V.'*aux; % Wiener estimation, for each considered sample of z else % Spatially variant noise rep_z_w = repmat(z_w, 1, N); for n_z = 1:nsamp_z, rep_laz = repmat(laz(:,n_z).',nexp,1); aux = rep_laz + rep_z_w; % lambda*z_u + z_w p_lz(:,n_z) = exp(-0.5*sum(V2./aux,2))./sqrt(prod(aux,2)); % Compute mu_x(z) = E{x|log(z),Y,z_w} aux = rep_laz./aux; mu_x(:,n_z) = (V.'.*aux)*m.'; end end [foo, ind] = max(p_lz.'); % We use ML estimation of z only for the boundaries. clear foo if prod(size(ind)) == 0, z = ones(1,size(ind,2)); else z = zi(ind).'; end clear V2 aux % For boundary handling uv=1+Ly; lh=1+Lx; dv=nblv+Ly; rh=nblh+Lx; ul1=ones(uv,lh); u1=ones(uv-1,1); l1=ones(1,lh-1); ur1=ul1; dl1=ul1; dr1=ul1; d1=u1; r1=l1; zM(uv:dv,lh:rh) = reshape(z,nblv,nblh); % Propagation of the ML-estimated z to the boundaries % a) Corners zM(1:uv,1:lh)=zM(uv,lh)*ul1; zM(1:uv,rh:nh)=zM(uv,rh)*ur1; zM(dv:nv,1:lh)=zM(dv,lh)*dl1; zM(dv:nv,rh:nh)=zM(dv,rh)*dr1; % b) Bands zM(1:uv-1,lh+1:rh-1)=u1*zM(uv,lh+1:rh-1); zM(dv+1:nv,lh+1:rh-1)=d1*zM(dv,lh+1:rh-1); zM(uv+1:dv-1,1:lh-1)=zM(uv+1:dv-1,lh)*l1; zM(uv+1:dv-1,rh+1:nh)=zM(uv+1:dv-1,rh)*r1; % We do scalar Wiener for the boundary coefficients if exist('z_w'), x_hat = y(:,:,1).*(sx2*zM)./(sx2*zM + sig2*zW); else x_hat = y(:,:,1).*(sx2*zM)./(sx2*zM + sig2); end % Prior for log(z) p_z = ones(nsamp_z,1); % Flat log-prior (non-informative for GSM) p_z = p_z/sum(p_z); % Compute p(log(z)|Y) from p(Y|log(z)) and p(log(z)) (Bayes Rule) p_lz_y = p_lz*diag(p_z); clear p_lz if ~optim, p_lz_y = (p_lz_y==max(p_lz_y')'*ones(1,size(p_lz_y,2))); % ML in log(z): it becomes a delta function % at the maximum end aux = sum(p_lz_y, 2); if any(aux==0), foo = aux==0; p_lz_y = repmat(~foo,1,nsamp_z).*p_lz_y./repmat(aux + foo,1,nsamp_z)... + repmat(foo,1,nsamp_z).*repmat(p_z',nexp,1); % Normalizing: p(log(z)|Y) else p_lz_y = p_lz_y./repmat(aux,1,nsamp_z); % Normalizing: p(log(z)|Y) end clear aux; % Compute E{x|Y} = int_log(z){ E{x|log(z),Y} p(log(z)|Y) d(log(z)) } aux = sum(mu_x.*p_lz_y, 2); x_hat(1+Ly:nblv+Ly,1+Lx:nblh+Lx) = reshape(aux,nblv,nblh); clear mu_x p_lz_y aux function im_ext = bound_extension(im,By,Bx,type); % im_ext = bound_extension(im,B,type); % % Extend an image for avoiding boundary artifacts, % % By, Bx: widths of the added stripes. % type: 'mirror' Mirror extension % 'mirror_nr': Mirror without repeating the last pixel % 'circular': fft2-like % 'zeros' % Javier Portilla, Universidad de Granada, Jan 2004 [Ny,Nx,Nc] = size(im); im_ext = zeros(Ny+2*By,Nx+2*Bx,Nc); im_ext(By+1:Ny+By,Bx+1:Nx+Bx,:) = im; if strcmp(type,'mirror'), im_ext(1:By,:,:) = im_ext(2*By:-1:By+1,:,:); im_ext(:,1:Bx,:) = im_ext(:,2*Bx:-1:Bx+1,:); im_ext(Ny+1+By:Ny+2*By,:,:) = im_ext(Ny+By:-1:Ny+1,:,:); im_ext(:,Nx+1+Bx:Nx+2*Bx,:) = im_ext(:,Nx+Bx:-1:Nx+1,:); im_ext(1:By,1:Bx,:) = im_ext(2*By:-1:By+1,2*Bx:-1:Bx+1,:); im_ext(Ny+1+By:Ny+2*By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(Ny+By:-1:Ny+1,Nx+Bx:-1:Nx+1,:); im_ext(1:By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(2*By:-1:By+1,Nx+Bx:-1:Nx+1,:); im_ext(Ny+1+By:Ny+2*By,1:Bx,:) = im_ext(Ny+By:-1:Ny+1,2*Bx:-1:Bx+1,:); elseif strcmp(type,'mirror_nr'), im_ext(1:By,:,:) = im_ext(2*By+1:-1:By+2,:,:); im_ext(:,1:Bx,:) = im_ext(:,2*Bx+1:-1:Bx+2,:); im_ext(Ny+1+By:Ny+2*By,:,:) = im_ext(Ny+By-1:-1:Ny,:,:); im_ext(:,Nx+1+Bx:Nx+2*Bx,:) = im_ext(:,Nx+Bx-1:-1:Nx,:); im_ext(1:By,1:Bx,:) = im_ext(2*By+1:-1:By+2,2*Bx+1:-1:Bx+2,:); im_ext(Ny+1+By:Ny+2*By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(Ny+By-1:-1:Ny,Nx+Bx-1:-1:Nx,:); im_ext(1:By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(2*By+1:-1:By+2,Nx+Bx-1:-1:Nx,:); im_ext(Ny+1+By:Ny+2*By,1:Bx,:) = im_ext(Ny+By-1:-1:Ny,2*Bx+1:-1:Bx+2,:); elseif strcmp(type,'circular'), im_ext(1:By,:,:) = im_ext(Ny+1:Ny+By,:,:); im_ext(:,1:Bx,:) = im_ext(:,Nx+1:Nx+Bx,:); im_ext(Ny+1+By:Ny+2*By,:,:) = im_ext(By+1:2*By,:,:); im_ext(:,Nx+1+Bx:Nx+2*Bx,:) = im_ext(:,Bx+1:2*Bx,:); im_ext(1:By,1:Bx,:) = im_ext(Ny+1:Ny+By,Nx+1:Nx+Bx,:); im_ext(Ny+1+By:Ny+2*By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(By+1:2*By,Bx+1:2*Bx,:); im_ext(1:By,Nx+1+Bx:Nx+2*Bx,:) = im_ext(Ny+1:Ny+By,Bx+1:2*Bx,:); im_ext(Ny+1+By:Ny+2*By,1:Bx,:) = im_ext(By+1:2*By,Nx+1:Nx+Bx,:); end % M = MEAN2(MTX) % % Sample mean of a matrix. function res = mean2(mtx) res = mean(mean(mtx)); function [pyr,pind] = buildWUpyr(im, Nsc, daub_order); % [PYR, INDICES] = buildWUpyr(IM, HEIGHT, DAUB_ORDER) % % Construct a separable undecimated orthonormal QMF/wavelet pyramid % on matrix (or vector) IM. % % HEIGHT specifies the number of pyramid levels to build. Default % is maxPyrHt(IM,FILT). You can also specify 'auto' to use this value. % % DAUB_ORDER: specifies the order of the daubechies wavelet filter used % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. % JPM, Univ. de Granada, 03/2003, based on Rice Wavelet Toolbox % function "mrdwt" and on Matlab Pyrtools from Eero Simoncelli. if Nsc < 1, display('Error: Number of scales must be >=1.'); else, Nor = 3; % fixed number of orientations; h = daubcqf(daub_order); [lpr,yh] = mrdwt(im, h, Nsc+1); % performs the decomposition [Ny,Nx] = size(im); % Reorganize the output, forcing the same format as with buildFullSFpyr2 pyr = []; pind = zeros((Nsc+1)*Nor+2,2); % Room for a "virtual" high pass residual, for compatibility nband = 1; for nsc = 1:Nsc+1, for nor = 1:Nor, nband = nband + 1; band = yh(:,(nband-2)*Nx+1:(nband-1)*Nx); sh = (daub_order/2 - 1)*2^nsc; % approximate phase compensation if nor == 1, % horizontal band = shift(band, [sh 2^(nsc-1)]); elseif nor == 2, % vertical band = shift(band, [2^(nsc-1) sh]); else band = shift(band, [sh sh]); % diagonal end if nsc>2, band = real(shrink(band,2^(nsc-2))); % The low freq. bands are shrunk in the freq. domain end pyr = [pyr; vector(band)]; pind(nband,:) = size(band); end end band = lpr; band = shrink(band,2^Nsc); pyr = [pyr; vector(band)]; pind(nband+1,:) = size(band); end function [h_0,h_1] = daubcqf(N,TYPE) % [h_0,h_1] = daubcqf(N,TYPE); % % Function computes the Daubechies' scaling and wavelet filters % (normalized to sqrt(2)). % % Input: % N : Length of filter (must be even) % TYPE : Optional parameter that distinguishes the minimum phase, % maximum phase and mid-phase solutions ('min', 'max', or % 'mid'). If no argument is specified, the minimum phase % solution is used. % % Output: % h_0 : Minimal phase Daubechies' scaling filter % h_1 : Minimal phase Daubechies' wavelet filter % % Example: % N = 4; % TYPE = 'min'; % [h_0,h_1] = daubcqf(N,TYPE) % h_0 = 0.4830 0.8365 0.2241 -0.1294 % h_1 = 0.1294 0.2241 -0.8365 0.4830 % % Reference: "Orthonormal Bases of Compactly Supported Wavelets", % CPAM, Oct.89 % %File Name: daubcqf.m %Last Modification Date: 01/02/96 15:12:57 %Current Version: daubcqf.m 2.4 %File Creation Date: 10/10/88 %Author: Ramesh Gopinath <[email protected]> % %Copyright (c) 2000 RICE UNIVERSITY. All rights reserved. %Created by Ramesh Gopinath, Department of ECE, Rice University. % %This software is distributed and licensed to you on a non-exclusive %basis, free-of-charge. Redistribution and use in source and binary forms, %with or without modification, are permitted provided that the following %conditions are met: % %1. Redistribution of source code must retain the above copyright notice, % this list of conditions and the following disclaimer. %2. Redistribution in binary form must reproduce the above copyright notice, % this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. %3. All advertising materials mentioning features or use of this software % must display the following acknowledgment: This product includes % software developed by Rice University, Houston, Texas and its contributors. %4. Neither the name of the University nor the names of its contributors % may be used to endorse or promote products derived from this software % without specific prior written permission. % %THIS SOFTWARE IS PROVIDED BY WILLIAM MARSH RICE UNIVERSITY, HOUSTON, TEXAS, %AND CONTRIBUTORS AS IS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, %BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS %FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RICE UNIVERSITY %OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, %EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, %PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; %OR BUSINESS INTERRUPTIONS) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, %WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR %OTHERWISE), PRODUCT LIABILITY, OR OTHERWISE ARISING IN ANY WAY OUT OF THE %USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % %For information on commercial licenses, contact Rice University's Office of %Technology Transfer at [email protected] or (713) 348-6173 if(nargin < 2), TYPE = 'min'; end; if(rem(N,2) ~= 0), error('No Daubechies filter exists for ODD length'); end; K = N/2; a = 1; p = 1; q = 1; h_0 = [1 1]; for j = 1:K-1, a = -a * 0.25 * (j + K - 1)/j; h_0 = [0 h_0] + [h_0 0]; p = [0 -p] + [p 0]; p = [0 -p] + [p 0]; q = [0 q 0] + a*p; end; q = sort(roots(q)); qt = q(1:K-1); if TYPE=='mid', if rem(K,2)==1, qt = q([1:4:N-2 2:4:N-2]); else qt = q([1 4:4:K-1 5:4:K-1 N-3:-4:K N-4:-4:K]); end; end; h_0 = conv(h_0,real(poly(qt))); h_0 = sqrt(2)*h_0/sum(h_0); %Normalize to sqrt(2); if(TYPE=='max'), h_0 = fliplr(h_0); end; if(abs(sum(h_0 .^ 2))-1 > 1e-4) error('Numerically unstable for this value of "N".'); end; h_1 = rot90(h_0,2); h_1(1:2:N)=-h_1(1:2:N); % [RES] = shift(MTX, OFFSET) % % Circular shift 2D matrix samples by OFFSET (a [Y,X] 2-vector), % such that RES(POS) = MTX(POS-OFFSET). function res = shift(mtx, offset) dims = size(mtx); offset = mod(-offset,dims); res = [ mtx(offset(1)+1:dims(1), offset(2)+1:dims(2)), ... mtx(offset(1)+1:dims(1), 1:offset(2)); ... mtx(1:offset(1), offset(2)+1:dims(2)), ... mtx(1:offset(1), 1:offset(2)) ]; % [VEC] = vector(MTX) % % Pack elements of MTX into a column vector. Same as VEC = MTX(:) % Previously named "vectorize" (changed to avoid overlap with Matlab's % "vectorize" function). function vec = vector(mtx) vec = mtx(:); function ts = shrink(t,f) % im_shr = shrink(im0, f) % % It shrinks (spatially) an image into a factor f % in each dimension. It does it by cropping the % Fourier transform of the image. % JPM, 5/1/95. % Revised so it can work also with exponents of 3 factors: JPM 5/2003 [my,mx] = size(t); T = fftshift(fft2(t))/f^2; Ts = zeros(my/f,mx/f); cy = ceil(my/2); cx = ceil(mx/2); evenmy = (my/2==floor(my/2)); evenmx = (mx/2==floor(mx/2)); y1 = cy + 2*evenmy - floor(my/(2*f)); y2 = cy + floor(my/(2*f)); x1 = cx + 2*evenmx - floor(mx/(2*f)); x2 = cx + floor(mx/(2*f)); Ts(1+evenmy:my/f,1+evenmx:mx/f)=T(y1:y2,x1:x2); if evenmy, Ts(1+evenmy:my/f,1)=(T(y1:y2,x1-1)+T(y1:y2,x2+1))/2; end if evenmx, Ts(1,1+evenmx:mx/f)=(T(y1-1,x1:x2)+T(y2+1,x1:x2))/2; end if evenmy & evenmx, Ts(1,1)=(T(y1-1,x1-1)+T(y1-1,x2+1)+T(y2+1,x1-1)+T(y2+1,x2+1))/4; end Ts = fftshift(Ts); Ts = shift(Ts, [1 1] - [evenmy evenmx]); ts = ifft2(Ts); % RES = pyrBand(PYR, INDICES, BAND_NUM) % % Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet, % or steerable). Subbands are numbered consecutively, from finest % (highest spatial frequency) to coarsest (lowest spatial frequency). % Eero Simoncelli, 6/96. function res = pyrBand(pyr, pind, band) res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) ); % RES = pyrBandIndices(INDICES, BAND_NUM) % % Return indices for accessing a subband from a pyramid % (gaussian, laplacian, QMF/wavelet, steerable). % Eero Simoncelli, 6/96. function indices = pyrBandIndices(pind,band) if ((band > size(pind,1)) | (band < 1)) error(sprintf('BAND_NUM must be between 1 and number of pyramid bands (%d).', ... size(pind,1))); end if (size(pind,2) ~= 2) error('INDICES must be an Nx2 matrix indicating the size of the pyramid subbands'); end ind = 1; for l=1:band-1 ind = ind + prod(pind(l,:)); end indices = ind:ind+prod(pind(band,:))-1; function res = reconWUpyr(pyr, pind, daub_order); % RES = reconWUpyr(PYR, INDICES, DAUB_ORDER) % Reconstruct image from its separable undecimated orthonormal QMF/wavelet pyramid % representation, as created by buildWUpyr. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. % % DAUB_ORDER: specifies the order of the daubechies wavelet filter used % JPM, Univ. de Granada, 03/2003, based on Rice Wavelet Toolbox % functions "mrdwt" and "mirdwt", and on Matlab Pyrtools from Eero Simoncelli. Nor = 3; Nsc = (size(pind,1)-2)/Nor-1; h = daubcqf(daub_order); yh = []; nband = 1; last = prod(pind(1,:)); % empty "high pass residual band" for compatibility with full steerpyr 2 for nsc = 1:Nsc+1, % The number of scales corresponds to the number of pyramid levels (also for compatibility) for nor = 1:Nor, nband = nband +1; first = last + 1; last = first + prod(pind(nband,:)) - 1; band = pyrBand(pyr,pind,nband); sh = (daub_order/2 - 1)*2^nsc; % approximate phase compensation if nsc > 2, band = expand(band, 2^(nsc-2)); end if nor == 1, % horizontal band = shift(band, [-sh -2^(nsc-1)]); elseif nor == 2, % vertical band = shift(band, [-2^(nsc-1) -sh]); else band = shift(band, [-sh -sh]); % diagonal end yh = [yh band]; end end nband = nband + 1; band = pyrBand(pyr,pind,nband); lpr = expand(band,2^Nsc); res= mirdwt(lpr,yh,h,Nsc+1); function te = expand(t,f) % im_exp = expand(im0, f) % % It expands (spatially) an image into a factor f % in each dimension. It does it filling in with zeros % the expanded Fourier domain. % JPM, 5/1/95. % Revised so it can work also with exponents of 3 factors: JPM 5/2003 [my mx] = size(t); my = f*my; mx = f*mx; Te = zeros(my,mx); T = f^2*fftshift(fft2(t)); cy = ceil(my/2); cx = ceil(mx/2); evenmy = (my/2==floor(my/2)); evenmx = (mx/2==floor(mx/2)); y1 = cy + 2*evenmy - floor(my/(2*f)); y2 = cy + floor(my/(2*f)); x1 = cx + 2*evenmx - floor(mx/(2*f)); x2 = cx + floor(mx/(2*f)); Te(y1:y2,x1:x2)=T(1+evenmy:my/f,1+evenmx:mx/f); if evenmy, Te(y1-1,x1:x2)=T(1,2:mx/f)/2; Te(y2+1,x1:x2)=((T(1,mx/f:-1:2)/2)').'; end if evenmx, Te(y1:y2,x1-1)=T(2:my/f,1)/2; Te(y1:y2,x2+1)=((T(my/f:-1:2,1)/2)').'; end if evenmx & evenmy, esq=T(1,1)/4; Te(y1-1,x1-1)=esq; Te(y1-1,x2+1)=esq; Te(y2+1,x1-1)=esq; Te(y2+1,x2+1)=esq; end Te=fftshift(Te); Te = shift(Te, [1 1] - [evenmy evenmx]); te=ifft2(Te); % RES = innerProd(MTX) % % Compute (MTX' * MTX) efficiently (i.e., without copying the matrix) function res = innerProd(mtx) %% NOTE: THIS CODE SHOULD NOT BE USED! (MEX FILE IS CALLED INSTEAD) % fprintf(1,'WARNING: You should compile the MEX version of "innerProd.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); res = mtx' * mtx;
github
jacksky64/imageProcessing-master
perform_wavelet_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/perform_wavelet_transform.m
61,619
utf_8
ff04288ce6da8a2b6a0d33e1c20c57b6
function y = perform_wavelet_transform(x, Jmin, dir, options) % perform_wavelet_transform - wrapper to wavelab Wavelet transform (1D/2D and orthogonal/biorthogonal). % % y = perform_wavelet_transform(x, Jmin, dir, options); % % 'x' is either a 1D or a 2D array. % 'Jmin' is the minimum scale (i.e. the coarse channel is of size 2^Jmin % in 1D). % 'dir' is +1 for fwd transform and -1 for bwd. % 'options.wavelet_vm' is the number of Vanishing moment (both for primal and dual). % 'options.wavelet_type' can be % 'daubechies', 'symmlet', 'battle', 'biorthogonal'. % % Typical use : % M = <load your image here>; % Jmin = 4; % options.wavelet_type = 'biorthogonal_swapped'; % options.wavelet_vm = 4; % MW = perform_wavelet_transform(M, Jmin, +1, options); % Mt = <perform some modification on MW> % M = perform_wavelet_transform(Mt, Jmin, -1, options); % % 'y' is an array of the same size as 'x'. This means that for the 2D % we are stuck to the wavelab coding style, i.e. the result % of each transform is an array organized using Mallat's ordering % (whereas Matlab official toolbox use a 1D ordering for the 2D transform). % % Here the transform automaticaly select symmetric boundary condition % if you use a symmetric filter. If your filter is not symmetric % (e.g. Dauechies filters) then as the output must have same length % as the input, the boundary condition are automatically set to periodic. % % You do not need Wavelab to use this function (the Wavelab .m file are % included in this script). However, for faster execution time, you % should install the mex file within the Wavelab distribution. % http://www-stat.stanford.edu/~wavelab/ % % Copyright (c) 2005 Gabriel Peyr? if nargin<3 dir = 1; end if nargin<2 Jmin = 3; end options.null = 0; if isfield(options, 'wavelet_type') wavelet_type = options.wavelet_type; else wavelet_type = 'daubechies'; end if isfield(options, 'wavelet_vm') VM = options.wavelet_vm; else VM = 4; end if isfield(options, 'ti') % for translation-invariant transform ti = options.ti; else ti = 0; end ndim = length(size(x)); if ndim==2 && ( size(x,2)==1 || size(x,1)==1 ) ndim=1; end % for color images if ndims(x)>2 y = x; for i=1:size(x,3) y(:,:,i) = perform_wavelet_transform(x(:,:,i), Jmin, dir, options); end return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % WAVELAB %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % generate filters switch lower(wavelet_type) case 'daubechies' qmf = MakeONFilter('Daubechies',VM*2); % in Wavelab, 2nd argument is VM*2 for Daubechies... no comment ... case 'haar' qmf = MakeONFilter('Haar'); % in Wavelab, 2nd argument is VM*2 for Daubechies... no comment ... case 'symmlet' qmf = MakeONFilter('Symmlet',VM); case 'battle' qmf = MakeONFilter('Battle',VM-1); dqmf = qmf; % we need dual filter case 'biorthogonal' [qmf,dqmf] = MakeBSFilter( 'CDF', [VM,VM] ); case 'biorthogonal_swapped' [dqmf,qmf] = MakeBSFilter( 'CDF', [VM,VM] ); otherwise error('Unknown transform.'); end % translation invariant transform if ti if ndim==2 && size(x,2)<50 ndim = 1; end if ndim==1 if dir==1 y = TI2Stat( FWT_TI(x,Jmin,qmf) ); else y = IWT_TI( Stat2TI(x),qmf); end elseif ndim==2 if dir==1 y = FWT2_TI(x,Jmin,qmf); else y = IWT2_TI(x,Jmin,qmf); end end return; end % perform transform if ~exist('dqmf') %%% ORTHOGONAL %%% if ndim==1 if dir==1 y = FWT_PO(x,Jmin,qmf); else y = IWT_PO(x,Jmin,qmf); end elseif ndim==2 if dir==1 y = FWT2_PO(x,Jmin,qmf); else y = IWT2_PO(x,Jmin,qmf); end end else %%% BI-ORTHOGONAL %%% if ndim==1 if dir==1 y = FWT_SBS(x,Jmin,qmf,dqmf); else y = IWT_SBS(x,Jmin,qmf,dqmf); end elseif ndim==2 if dir==1 y = FWT2_SBS(x,Jmin,qmf,dqmf); else y = IWT2_SBS(x,Jmin,qmf,dqmf); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % WAVELAB DISTRIBUTION -- http://www-stat.stanford.edu/~wavelab/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % WAVELAB DISTRIBUTION -- http://www-stat.stanford.edu/~wavelab/ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = MakeONFilter(Type,Par) % MakeONFilter -- Generate Orthonormal QMF Filter for Wavelet Transform % Usage % qmf = MakeONFilter(Type,Par) % Inputs % Type string, 'Haar', 'Beylkin', 'Coiflet', 'Daubechies', % 'Symmlet', 'Vaidyanathan','Battle' % Par integer, it is a parameter related to the support and vanishing % moments of the wavelets, explained below for each wavelet. % % Outputs % qmf quadrature mirror filter % % Description % The Haar filter (which could be considered a Daubechies-2) was the % first wavelet, though not called as such, and is discontinuous. % % The Beylkin filter places roots for the frequency response function % close to the Nyquist frequency on the real axis. % % The Coiflet filters are designed to give both the mother and father % wavelets 2*Par vanishing moments; here Par may be one of 1,2,3,4 or 5. % % The Daubechies filters are minimal phase filters that generate wavelets % which have a minimal support for a given number of vanishing moments. % They are indexed by their length, Par, which may be one of % 4,6,8,10,12,14,16,18 or 20. The number of vanishing moments is par/2. % % Symmlets are also wavelets within a minimum size support for a given % number of vanishing moments, but they are as symmetrical as possible, % as opposed to the Daubechies filters which are highly asymmetrical. % They are indexed by Par, which specifies the number of vanishing % moments and is equal to half the size of the support. It ranges % from 4 to 10. % % The Vaidyanathan filter gives an exact reconstruction, but does not % satisfy any moment condition. The filter has been optimized for % speech coding. % % The Battle-Lemarie filter generate spline orthogonal wavelet basis. % The parameter Par gives the degree of the spline. The number of % vanishing moments is Par+1. % % See Also % FWT_PO, IWT_PO, FWT2_PO, IWT2_PO, WPAnalysis % % References % The books by Daubechies and Wickerhauser. % if strcmp(Type,'Haar'), f = [1 1] ./ sqrt(2); end if strcmp(Type,'Beylkin'), f = [ .099305765374 .424215360813 .699825214057 ... .449718251149 -.110927598348 -.264497231446 ... .026900308804 .155538731877 -.017520746267 ... -.088543630623 .019679866044 .042916387274 ... -.017460408696 -.014365807969 .010040411845 ... .001484234782 -.002736031626 .000640485329 ]; end if strcmp(Type,'Coiflet'), if Par==1, f = [ .038580777748 -.126969125396 -.077161555496 ... .607491641386 .745687558934 .226584265197 ]; end if Par==2, f = [ .016387336463 -.041464936782 -.067372554722 ... .386110066823 .812723635450 .417005184424 ... -.076488599078 -.059434418646 .023680171947 ... .005611434819 -.001823208871 -.000720549445 ]; end if Par==3, f = [ -.003793512864 .007782596426 .023452696142 ... -.065771911281 -.061123390003 .405176902410 ... .793777222626 .428483476378 -.071799821619 ... -.082301927106 .034555027573 .015880544864 ... -.009007976137 -.002574517688 .001117518771 ... .000466216960 -.000070983303 -.000034599773 ]; end if Par==4, f = [ .000892313668 -.001629492013 -.007346166328 ... .016068943964 .026682300156 -.081266699680 ... -.056077313316 .415308407030 .782238930920 ... .434386056491 -.066627474263 -.096220442034 ... .039334427123 .025082261845 -.015211731527 ... -.005658286686 .003751436157 .001266561929 ... -.000589020757 -.000259974552 .000062339034 ... .000031229876 -.000003259680 -.000001784985 ]; end if Par==5, f = [ -.000212080863 .000358589677 .002178236305 ... -.004159358782 -.010131117538 .023408156762 ... .028168029062 -.091920010549 -.052043163216 ... .421566206729 .774289603740 .437991626228 ... -.062035963906 -.105574208706 .041289208741 ... .032683574283 -.019761779012 -.009164231153 ... .006764185419 .002433373209 -.001662863769 ... -.000638131296 .000302259520 .000140541149 ... -.000041340484 -.000021315014 .000003734597 ... .000002063806 -.000000167408 -.000000095158 ]; end end if strcmp(Type,'Daubechies'), if Par==4, f = [ .482962913145 .836516303738 ... .224143868042 -.129409522551 ]; end if Par==6, f = [ .332670552950 .806891509311 ... .459877502118 -.135011020010 ... -.085441273882 .035226291882 ]; end if Par==8, f = [ .230377813309 .714846570553 ... .630880767930 -.027983769417 ... -.187034811719 .030841381836 ... .032883011667 -.010597401785 ]; end if Par==10, f = [ .160102397974 .603829269797 .724308528438 ... .138428145901 -.242294887066 -.032244869585 ... .077571493840 -.006241490213 -.012580751999 ... .003335725285 ]; end if Par==12, f = [ .111540743350 .494623890398 .751133908021 ... .315250351709 -.226264693965 -.129766867567 ... .097501605587 .027522865530 -.031582039317 ... .000553842201 .004777257511 -.001077301085 ]; end if Par==14, f = [ .077852054085 .396539319482 .729132090846 ... .469782287405 -.143906003929 -.224036184994 ... .071309219267 .080612609151 -.038029936935 ... -.016574541631 .012550998556 .000429577973 ... -.001801640704 .000353713800 ]; end if Par==16, f = [ .054415842243 .312871590914 .675630736297 ... .585354683654 -.015829105256 -.284015542962 ... .000472484574 .128747426620 -.017369301002 ... -.044088253931 .013981027917 .008746094047 ... -.004870352993 -.000391740373 .000675449406 ... -.000117476784 ]; end if Par==18, f = [ .038077947364 .243834674613 .604823123690 ... .657288078051 .133197385825 -.293273783279 ... -.096840783223 .148540749338 .030725681479 ... -.067632829061 .000250947115 .022361662124 ... -.004723204758 -.004281503682 .001847646883 ... .000230385764 -.000251963189 .000039347320 ]; end if Par==20, f = [ .026670057901 .188176800078 .527201188932 ... .688459039454 .281172343661 -.249846424327 ... -.195946274377 .127369340336 .093057364604 ... -.071394147166 -.029457536822 .033212674059 ... .003606553567 -.010733175483 .001395351747 ... .001992405295 -.000685856695 -.000116466855 ... .000093588670 -.000013264203 ]; end end if strcmp(Type,'Symmlet'), if Par==4, f = [ -.107148901418 -.041910965125 .703739068656 ... 1.136658243408 .421234534204 -.140317624179 ... -.017824701442 .045570345896 ]; end if Par==5, f = [ .038654795955 .041746864422 -.055344186117 ... .281990696854 1.023052966894 .896581648380 ... .023478923136 -.247951362613 -.029842499869 ... .027632152958 ]; end if Par==6, f = [ .021784700327 .004936612372 -.166863215412 ... -.068323121587 .694457972958 1.113892783926 ... .477904371333 -.102724969862 -.029783751299 ... .063250562660 .002499922093 -.011031867509 ]; end if Par==7, f = [ .003792658534 -.001481225915 -.017870431651 ... .043155452582 .096014767936 -.070078291222 ... .024665659489 .758162601964 1.085782709814 ... .408183939725 -.198056706807 -.152463871896 ... .005671342686 .014521394762 ]; end if Par==8, f = [ .002672793393 -.000428394300 -.021145686528 ... .005386388754 .069490465911 -.038493521263 ... -.073462508761 .515398670374 1.099106630537 ... .680745347190 -.086653615406 -.202648655286 ... .010758611751 .044823623042 -.000766690896 ... -.004783458512 ]; end if Par==9, f = [ .001512487309 -.000669141509 -.014515578553 ... .012528896242 .087791251554 -.025786445930 ... -.270893783503 .049882830959 .873048407349 ... 1.015259790832 .337658923602 -.077172161097 ... .000825140929 .042744433602 -.016303351226 ... -.018769396836 .000876502539 .001981193736 ]; end if Par==10, f = [ .001089170447 .000135245020 -.012220642630 ... -.002072363923 .064950924579 .016418869426 ... -.225558972234 -.100240215031 .667071338154 ... 1.088251530500 .542813011213 -.050256540092 ... -.045240772218 .070703567550 .008152816799 ... -.028786231926 -.001137535314 .006495728375 ... .000080661204 -.000649589896 ]; end end if strcmp(Type,'Vaidyanathan'), f = [ -.000062906118 .000343631905 -.000453956620 ... -.000944897136 .002843834547 .000708137504 ... -.008839103409 .003153847056 .019687215010 ... -.014853448005 -.035470398607 .038742619293 ... .055892523691 -.077709750902 -.083928884366 ... .131971661417 .135084227129 -.194450471766 ... -.263494802488 .201612161775 .635601059872 ... .572797793211 .250184129505 .045799334111 ]; end if strcmp(Type,'Battle'), if Par == 1, g = [0.578163 0.280931 -0.0488618 -0.0367309 ... 0.012003 0.00706442 -0.00274588 -0.00155701 ... 0.000652922 0.000361781 -0.000158601 -0.0000867523 ]; end if Par == 3, g = [0.541736 0.30683 -0.035498 -0.0778079 ... 0.0226846 0.0297468 -0.0121455 -0.0127154 ... 0.00614143 0.00579932 -0.00307863 -0.00274529 ... 0.00154624 0.00133086 -0.000780468 -0.00065562 ... 0.000395946 0.000326749 -0.000201818 -0.000164264 ... 0.000103307 ]; end if Par == 5, g = [0.528374 0.312869 -0.0261771 -0.0914068 ... 0.0208414 0.0433544 -0.0148537 -0.0229951 ... 0.00990635 0.0128754 -0.00639886 -0.00746848 ... 0.00407882 0.00444002 -0.00258816 -0.00268646 ... 0.00164132 0.00164659 -0.00104207 -0.00101912 ... 0.000662836 0.000635563 -0.000422485 -0.000398759 ... 0.000269842 0.000251419 -0.000172685 -0.000159168 ... 0.000110709 0.000101113 ]; end l = length(g); f = zeros(1,2*l-1); f(l:2*l-1) = g; f(1:l-1) = reverse(g(2:l)); end f = f ./ norm(f); % % Copyright (c) 1993-5. Jonathan Buckheit and David Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wcoef = FWT_PO(x,L,qmf) % FWT_PO -- Forward Wavelet Transform (periodized, orthogonal) % Usage % wc = FWT_PO(x,L,qmf) % Inputs % x 1-d signal; length(x) = 2^J % L Coarsest Level of V_0; L << J % qmf quadrature mirror filter (orthonormal) % Outputs % wc 1-d wavelet transform of x. % % Description % 1. qmf filter may be obtained from MakeONFilter % 2. usually, length(qmf) < 2^(L+1) % 3. To reconstruct use IWT_PO % % See Also % IWT_PO, MakeONFilter % [n,J] = dyadlength(x) ; wcoef = zeros(1,n) ; beta = ShapeAsRow(x); %take samples at finest scale as beta-coeffts for j=J-1:-1:L alfa = DownDyadHi(beta,qmf); wcoef(dyad(j)) = alfa; beta = DownDyadLo(beta,qmf) ; end wcoef(1:(2^L)) = beta; wcoef = ShapeLike(wcoef,x); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [n,J] = dyadlength(x) % dyadlength -- Find length and dyadic length of array % Usage % [n,J] = dyadlength(x) % Inputs % x array of length n = 2^J (hopefully) % Outputs % n length(x) % J least power of two greater than n % % Side Effects % A warning is issued if n is not a power of 2. % % See Also % quadlength, dyad, dyad2ix % n = length(x) ; J = ceil(log(n)/log(2)); if 2^J ~= n , disp('Warning in dyadlength: n != 2^J') end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function row = ShapeAsRow(sig) % ShapeAsRow -- Make signal a row vector % Usage % row = ShapeAsRow(sig) % Inputs % sig a row or column vector % Outputs % row a row vector % % See Also % ShapeLike % row = sig(:)'; % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadHi(x,qmf) % DownDyadHi -- Hi-Pass Downsampling operator (periodized) % Usage % d = DownDyadHi(x,f) % Inputs % x 1-d signal at fine scale % f filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadLo, UpDyadHi, UpDyadLo, FWT_PO, iconv % d = iconv( MirrorFilt(qmf),lshift(x)); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = MirrorFilt(x) % MirrorFilt -- Apply (-1)^t modulation % Usage % h = MirrorFilt(l) % Inputs % l 1-d signal % Outputs % h 1-d signal with DC frequency content shifted % to Nyquist frequency % % Description % h(t) = (-1)^(t-1) * x(t), 1 <= t <= length(x) % % See Also % DyadDownHi % y = -( (-1).^(1:length(x)) ).*x; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = lshift(x) % lshift -- Circular left shift of 1-d signal % Usage % l = lshift(x) % Inputs % x 1-d signal % Outputs % l 1-d signal % l(i) = x(i+1) except l(n) = x(1) % y = [ x( 2:length(x) ) x(1) ]; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = iconv(f,x) % iconv -- Convolution Tool for Two-Scale Transform % Usage % y = iconv(f,x) % Inputs % f filter % x 1-d signal % Outputs % y filtered result % % Description % Filtering by periodic convolution of x with f % % See Also % aconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo % n = length(x); p = length(f); if p <= n, xpadded = [x((n+1-p):n) x]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(p*n -p + i-1,n); z(i) = x(imod); end xpadded = [z x]; end ypadded = filter(f,1,xpadded); y = ypadded((p+1):(n+p)); % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function i = dyad(j) % dyad -- Index entire j-th dyad of 1-d wavelet xform % Usage % ix = dyad(j); % Inputs % j integer % Outputs % ix list of all indices of wavelet coeffts at j-th level % i = (2^(j)+1):(2^(j+1)) ; % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadLo(x,qmf) % DownDyadLo -- Lo-Pass Downsampling operator (periodized) % Usage % d = DownDyadLo(x,f) % Inputs % x 1-d signal at fine scale % f filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadHi, UpDyadHi, UpDyadLo, FWT_PO, aconv % d = aconv(qmf,x); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = aconv(f,x) % aconv -- Convolution Tool for Two-Scale Transform % Usage % y = aconv(f,x) % Inputs % f filter % x 1-d signal % Outputs % y filtered result % % Description % Filtering by periodic convolution of x with the % time-reverse of f. % % See Also % iconv, UpDyadHi, UpDyadLo, DownDyadHi, DownDyadLo % n = length(x); p = length(f); if p < n, xpadded = [x x(1:p)]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(i-1,n); z(i) = x(imod); end xpadded = [x z]; end fflip = reverse(f); ypadded = filter(fflip,1,xpadded); y = ypadded(p:(n+p-1)); % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function vec = ShapeLike(sig,proto) % ShapeLike -- Make 1-d signal with given shape % Usage % vec = ShapeLike(sig,proto) % Inputs % sig a row or column vector % proto a prototype shape (row or column vector) % Outputs % vec a vector with contents taken from sig % and same shape as proto % % See Also % ShapeAsRow % sp = size(proto); ss = size(sig); if( sp(1)>1 & sp(2)>1 ) disp('Weird proto argument to ShapeLike') elseif ss(1)>1 & ss(2) > 1, disp('Weird sig argument to ShapeLike') else if(sp(1) > 1), if ss(1) > 1, vec = sig; else vec = sig(:); end else if ss(2) > 1, vec = sig; else vec = sig(:)'; end end end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT_PO(wc,L,qmf) % IWT_PO -- Inverse Wavelet Transform (periodized, orthogonal) % Usage % x = IWT_PO(wc,L,qmf) % Inputs % wc 1-d wavelet transform: length(wc) = 2^J. % L Coarsest scale (2^(-L) = scale of V_0); L << J; % qmf quadrature mirror filter % Outputs % x 1-d signal reconstructed from wc % % Description % Suppose wc = FWT_PO(x,L,qmf) where qmf is an orthonormal quad. mirror % filter, e.g. one made by MakeONFilter. Then x can be reconstructed by % x = IWT_PO(wc,L,qmf) % % See Also % FWT_PO, MakeONFilter % wcoef = ShapeAsRow(wc); x = wcoef(1:2^L); [n,J] = dyadlength(wcoef); for j=L:J-1 x = UpDyadLo(x,qmf) + UpDyadHi(wcoef(dyad(j)),qmf) ; end x = ShapeLike(x,wc); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadLo(x,qmf) % UpDyadLo -- Lo-Pass Upsampling operator; periodized % Usage % u = UpDyadLo(d,f) % Inputs % d 1-d signal at coarser scale % f filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo, DownDyadHi, UpDyadHi, IWT_PO, iconv % y = iconv(qmf, UpSample(x) ); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpSample(x,s) % UpSample -- Upsampling operator % Usage % u = UpSample(d[,s]) % Inputs % d 1-d signal, of length n % s upsampling scale, default = 2 % Outputs % u 1-d signal, of length s*n with zeros % interpolating alternate samples % u(s*i-1) = d(i), i=1,...,n % if nargin == 1, s = 2; end n = length(x)*s; y = zeros(1,n); y(1:s:(n-s+1) )=x; % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadHi(x,qmf) % UpDyadHi -- Hi-Pass Upsampling operator; periodized % Usage % u = UpDyadHi(d,f) % Inputs % d 1-d signal at coarser scale % f filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo, DownDyadHi, UpDyadLo, IWT_PO, aconv % y = aconv( MirrorFilt(qmf), rshift( UpSample(x) ) ); % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = rshift(x) % rshift -- Circular right shift of 1-d signal % Usage % r = rshift(x) % Inputs % x 1-d signal % Outputs % r 1-d signal % r(i) = x(i-1) except r(1) = x(n) % n = length(x); y = [ x(n) x( 1: (n-1) )]; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [qmf,dqmf] = MakeBSFilter(Type,Par) % MakeBSFilter -- Generate Biorthonormal QMF Filter Pairs % Usage % [qmf,dqmf] = MakeBSFilter(Type,Par) % Inputs % Type string, one of: % 'Triangle' % 'Interpolating' 'Deslauriers' (the two are same) % 'Average-Interpolating' % 'CDF' (spline biorthogonal filters in Daubechies's book) % 'Villasenor' (Villasenor's 5 best biorthogonal filters) % Par integer list, e.g. if Type ='Deslauriers', Par=3 specifies % Deslauriers-Dubuc filter, polynomial degree 3 % Outputs % qmf quadrature mirror filter (odd length, symmetric) % dqmf dual quadrature mirror filter (odd length, symmetric) % % See Also % FWT_PBS, IWT_PBS, FWT2_PBS, IWT2_PBS % % References % I. Daubechies, "Ten Lectures on Wavelets." % % G. Deslauriers and S. Dubuc, "Symmetric Iterative Interpolating Processes." % % D. Donoho, "Smooth Wavelet Decompositions with Blocky Coefficient Kernels." % % J. Villasenor, B. Belzer and J. Liao, "Wavelet Filter Evaluation for % Image Compression." % if nargin < 2, Par = 0; end sqr2 = sqrt(2); if strcmp(Type,'Triangle'), qmf = [0 1 0]; dqmf = [.5 1 .5]; elseif strcmp(Type,'Interpolating') | strcmp(Type,'Deslauriers'), qmf = [0 1 0]; dqmf = MakeDDFilter(Par)'; dqmf = dqmf(1:(length(dqmf)-1)); elseif strcmp(Type,'Average-Interpolating'), qmf = [0 .5 .5] ; dqmf = [0 ; MakeAIFilter(Par)]'; elseif strcmp(Type,'CDF'), if Par(1)==1, dqmf = [0 .5 .5] .* sqr2; if Par(2) == 1, qmf = [0 .5 .5] .* sqr2; elseif Par(2) == 3, qmf = [0 -1 1 8 8 1 -1] .* sqr2 / 16; elseif Par(2) == 5, qmf = [0 3 -3 -22 22 128 128 22 -22 -3 3].*sqr2/256; end elseif Par(1)==2, dqmf = [.25 .5 .25] .* sqr2; if Par(2)==2, qmf = [-.125 .25 .75 .25 -.125] .* sqr2; elseif Par(2)==4, qmf = [3 -6 -16 38 90 38 -16 -6 3] .* (sqr2/128); elseif Par(2)==6, qmf = [-5 10 34 -78 -123 324 700 324 -123 -78 34 10 -5 ] .* (sqr2/1024); elseif Par(2)==8, qmf = [35 -70 -300 670 1228 -3126 -3796 10718 22050 ... 10718 -3796 -3126 1228 670 -300 -70 35 ] .* (sqr2/32768); end elseif Par(1)==3, dqmf = [0 .125 .375 .375 .125] .* sqr2; if Par(2) == 1, qmf = [0 -.25 .75 .75 -.25] .* sqr2; elseif Par(2) == 3, qmf = [0 3 -9 -7 45 45 -7 -9 3] .* sqr2/64; elseif Par(2) == 5, qmf = [0 -5 15 19 -97 -26 350 350 -26 -97 19 15 -5] .* sqr2/512; elseif Par(2) == 7, qmf = [0 35 -105 -195 865 363 -3489 -307 11025 11025 -307 -3489 363 865 -195 -105 35] .* sqr2/16384; elseif Par(2) == 9, qmf = [0 -63 189 469 -1911 -1308 9188 1140 -29676 190 87318 87318 190 -29676 ... 1140 9188 -1308 -1911 469 189 -63] .* sqr2/131072; end elseif Par(1)==4, dqmf = [.026748757411 -.016864118443 -.078223266529 .266864118443 .602949018236 ... .266864118443 -.078223266529 -.016864118443 .026748757411] .*sqr2; if Par(2) == 4, qmf = [0 -.045635881557 -.028771763114 .295635881557 .557543526229 ... .295635881557 -.028771763114 -.045635881557 0] .*sqr2; end end elseif strcmp(Type,'Villasenor'), if Par == 1, % The "7-9 filters" qmf = [.037828455506995 -.023849465019380 -.11062440441842 .37740285561265]; qmf = [qmf .85269867900940 reverse(qmf)]; dqmf = [-.064538882628938 -.040689417609558 .41809227322221]; dqmf = [dqmf .78848561640566 reverse(dqmf)]; elseif Par == 2, qmf = [-.008473 .003759 .047282 -.033475 -.068867 .383269 .767245 .383269 -.068867... -.033475 .047282 .003759 -.008473]; dqmf = [0.014182 0.006292 -0.108737 -0.069163 0.448109 .832848 .448109 -.069163 -.108737 .006292 .014182]; elseif Par == 3, qmf = [0 -.129078 .047699 .788486 .788486 .047699 -.129078]; dqmf = [0 .018914 .006989 -.067237 .133389 .615051 .615051 .133389 -.067237 .006989 .018914]; elseif Par == 4, qmf = [-1 2 6 2 -1] / (4*sqr2); dqmf = [1 2 1] / (2*sqr2); elseif Par == 5, qmf = [0 1 1]/sqr2; dqmf = [0 -1 1 8 8 1 -1]/(8*sqr2); end end % % Copyright (c) 1995. Jonathan Buckheit, Shaobing Chen and David Donoho % % Modified by Maureen Clerc and Jerome Kalifa, 1997 % [email protected], [email protected] % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wcoef = FWT_SBS(x,L,qmf,dqmf) % FWT_SBS -- Forward Wavelet Transform (symmetric extension, biorthogonal, symmetric) % Usage % wc = FWT_SBS(x,L,qmf,dqmf) % Inputs % x 1-d signal; arbitrary length % L Coarsest Level of V_0; L << J % qmf quadrature mirror filter (symmetric) % dqmf quadrature mirror filter (symmetric, dual of qmf) % Outputs % wc 1-d wavelet transform of x. % % Description % 1. qmf filter may be obtained from MakePBSFilter % 2. usually, length(qmf) < 2^(L+1) % 3. To reconstruct use IWT_SBS % % See Also % IWT_SBS, MakePBSFilter % % References % Based on the algorithm developed by Christopher Brislawn. % See "Classification of Symmetric Wavelet Transforms" % [n,J] = dyadlength(x); wcoef = zeros(1,n); beta = ShapeAsRow(x); % take samples at finest scale as beta-coeffts dp = dyadpartition(n); for j=J-1:-1:L, [beta, alfa] = DownDyad_SBS(beta,qmf,dqmf); dyadj = (dp(j+1)+1):dp(j+2); wcoef(dyadj) = alfa; end wcoef(1:length(beta)) = beta; wcoef = ShapeLike(wcoef,x); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function dp = dyadpartition(n) % dyadpartition -- determine dyadic partition in wavelet transform of % nondyadic signals J = ceil(log2(n)); m = n; for j=J-1:-1:0; if rem(m,2)==0, dps(j+1) = m/2; m = m/2; else dps(j+1) = (m-1)/2; m = (m+1)/2; end end dp = cumsum([1 dps]); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [beta, alpha] = DownDyad_SBS(x,qmf,dqmf) % DownDyad_SBS -- Symmetric Downsampling operator % Usage % [beta,alpha] = DownDyad_SBS(x,qmf,dqmf) % Inputs % x 1-d signal at fine scale % qmf quadrature mirror filter % dqmf dual quadrature mirror filter % Outputs % beta coarse coefficients % alpha fine coefficients % See Also % FWT_SBS % % oddf = (rem(length(qmf),2)==1); oddf = ~(qmf(1)==0 & qmf(length(qmf))~=0); oddx = (rem(length(x),2)==1); % symmetric extension of x if oddf, ex = extend(x,1,1); else ex = extend(x,2,2); end % convolution ebeta = DownDyadLo_PBS(ex,qmf); ealpha = DownDyadHi_PBS(ex,dqmf); % project if oddx, beta = ebeta(1:(length(x)+1)/2); alpha = ealpha(1:(length(x)-1)/2); else beta = ebeta(1:length(x)/2); alpha = ealpha(1:length(x)/2); end % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = extend(x, par1, par2) % extend -- perform various kinds of symmetric extension % if par1==1 & par2==1, y = [x x((length(x)-1):-1:2)]; elseif par1==1 & par2==2, y = [x x((length(x)-1):-1:1)]; elseif par1==2 & par2==1, y = [x x(length(x):-1:2)]; elseif par1==2 & par2==2, y = [x reverse(x)]; end % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadLo_PBS(x,qmf) % DownDyadLo_PBS -- Lo-Pass Downsampling operator (periodized,symmetric) % Usage % d = DownDyadLo_PBS(x,sf) % Inputs % x 1-d signal at fine scale % sf symmetric filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadHi_PBS, UpDyadHi_PBS, UpDyadLo_PBS, FWT_PBSi, symm_aconv % d = symm_aconv(qmf,x); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = symm_aconv(sf,x) % symm_aconv -- Symmetric Convolution Tool for Two-Scale Transform % Usage % y = symm_aconv(sf,x) % Inputs % sf symmetric filter % x 1-d signal % Outputs % y filtered result % % Description % Filtering by periodic convolution of x with the % time-reverse of sf. % % See Also % symm_iconv, UpDyadHi_PBS, UpDyadLo_PBS, DownDyadHi_PBS, DownDyadLo_PBS % n = length(x); p = length(sf); if p < n, xpadded = [x x(1:p)]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(i-1,n); z(i) = x(imod); end xpadded = [x z]; end fflip = reverse(sf); ypadded = filter(fflip,1,xpadded); if p < n, y = [ypadded((n+1):(n+p)) ypadded((p+1):(n))]; else for i=1:n, imod = 1 + rem(p+i-1,n); y(imod) = ypadded(p+i); end end shift = (p-1)/ 2 ; shift = 1 + rem(shift-1, n); y = [y((1+shift):n) y(1:(shift))] ; % % Copyright (c) 1995. Shaobing Chen and David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function d = DownDyadHi_PBS(x,qmf) % DownDyadHi_PBS -- Hi-Pass Downsampling operator (periodized,symmetric) % Usage % d = DownDyadHi_PBS(x,sqmf) % Inputs % x 1-d signal at fine scale % sqmf symmetric filter % Outputs % y 1-d signal at coarse scale % % See Also % DownDyadLo_PBS, UpDyadHi_PBS, UpDyadLo_PBS, FWT_PBS, symm_iconv % d = symm_iconv( MirrorSymmFilt(qmf),lshift(x)); n = length(d); d = d(1:2:(n-1)); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = MirrorSymmFilt(x) % MirrorSymmFilt -- apply (-1)^t modulation to symmetric filter % Usage % h = MirrorSymmFilt(l) % Inputs % l symmetric filter % Outputs % h symmetric filter with DC frequency content shifted % to Nyquist frequency % % Description % h(t) = (-1)^t * x(t), -k <= t <= k ; length(x)=2k+1 % % See Also % DownDyadHi_PBS % k = (length(x)-1)/2; y = ( (-1).^((-k):k) ) .*x; % % Copyright (c) 1993. Iain M. Johnstone % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = symm_iconv(sf,x) % symm_iconv -- Symmetric Convolution Tool for Two-Scale Transform % Usage % y = iconv(sf,x) % Inputs % sf symmetric filter % x 1-d signal % Output % y filtered result % % Description % Filtering by periodic convolution of x with sf % % See Also % symm_aconv, UpDyadHi_PBS, UpDyadLo_PBS, DownDyadHi_PBS, DownDyadLo_PBS % n = length(x); p = length(sf); if p <= n, xpadded = [x((n+1-p):n) x]; else z = zeros(1,p); for i=1:p, imod = 1 + rem(p*n -p + i-1,n); z(i) = x(imod); end xpadded = [z x]; end ypadded = filter(sf,1,xpadded); y = ypadded((p+1):(n+p)); shift = (p+1)/2; shift = 1 + rem(shift-1, n); y = [y(shift:n) y(1:(shift-1))]; % % Copyright (c) 1995. Shaobing Chen and David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT_SBS(wc,L,qmf,dqmf) % iwt_po -- Inverse Wavelet Transform (symmetric extension, biorthogonal, symmetric) % Usage % x = IWT_SBS(wc,L,qmf,dqmf) % Inputs % wc 1-d wavelet transform: length(wc)= 2^J. % L Coarsest scale (2^(-L) = scale of V_0); L << J; % qmf quadrature mirror filter % dqmf dual quadrature mirror filter (symmetric, dual of qmf) % Outputs % x 1-d signal reconstructed from wc % Description % Suppose wc = FWT_SBS(x,L,qmf,dqmf) where qmf and dqmf are orthonormal % quad. mirror filters made by MakeBioFilter. Then x can be reconstructed % by % x = IWT_SBS(wc,L,qmf,dqmf) % See Also: % FWT_SBS, MakeBioFilter % wcoef = ShapeAsRow(wc); [n,J] = dyadlength(wcoef); dp = dyadpartition(n); x = wcoef(1:dp(L+1)); for j=L:J-1, dyadj = (dp(j+1)+1):dp(j+2); x = UpDyad_SBS(x, wcoef(dyadj), qmf, dqmf); end x = ShapeLike(x,wc); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = UpDyad_SBS(beta,alpha,qmf,dqmf) % UpDyad_SBS -- Symmetric Upsampling operator % Usage % x = UpDyad_SBS(beta,alpha,qmf,dqmf) % Inputs % beta coarse coefficients % alpha fine coefficients % qmf quadrature mirror filter % dqmf dual quadrature mirror filter % Outputs % x 1-d signal at fine scale % See Also % DownDyad_SBS, IWT_SBS % % oddf = (rem(length(qmf),2)==1); oddf = ~(qmf(1)==0 & qmf(length(qmf))~=0); oddx = (length(beta) ~= length(alpha)); L = length(beta)+length(alpha); if oddf, if oddx, ebeta = extend(beta,1,1); ealpha = extend(alpha,2,2); else ebeta = extend(beta,2,1); ealpha = extend(alpha,1,2); end else if oddx, ebeta = extend(beta,1,2); ealpha = [alpha 0 -reverse(alpha)]; else ebeta = extend(beta,2,2); ealpha = [alpha -reverse(alpha)]; end end coarse = UpDyadLo_PBS(ebeta,dqmf); fine = UpDyadHi_PBS(ealpha,qmf); x = coarse + fine; x = x(1:L); % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadLo_PBS(x,qmf) % UpDyadLo_PBS -- Lo-Pass Upsampling operator; periodized % Usage % u = UpDyadLo_PBS(d,sf) % Inputs % d 1-d signal at coarser scale % sf symmetric filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo_PBS , DownDyadHi_PBS , UpDyadHi_PBS, IWT_PBS, symm_iconv % y = symm_iconv(qmf, UpSample(x,2) ); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function y = UpDyadHi_PBS(x,qmf) % UpDyadHi_PBS -- Hi-Pass Upsampling operator; periodized % Usage % u = UpDyadHi_PBS(d,f) % Inputs % d 1-d signal at coarser scale % sf symmetric filter % Outputs % u 1-d signal at finer scale % % See Also % DownDyadLo_PBS, DownDyadHi_PBS, UpDyadLo_PBS, IWT_PBS, symm_aconv % y = symm_aconv( MirrorSymmFilt(qmf), rshift( UpSample(x,2) ) ); % % Copyright (c) 1995. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wc = FWT2_SBS(x,L,qmf,dqmf) % FWT2_SBS -- 2-dimensional wavelet transform % (symmetric extension, bi-orthogonal) % Usage % wc = FWT2_SBS(x,L,qmf,dqmf) % Inputs % x 2-d image (n by n array, n arbitrary) % L coarsest level % qmf low-pass quadrature mirror filter % dqmf high-pass dual quadrature mirror filter % Output % wc 2-d wavelet transform % Description % A two-dimensional Wavelet Transform is computed for the % matrix x. To reconstruct, use IWT2_SBS. % See Also % IWT2_SBS % [m,J] = dyadlength(x(:,1)); [n,K] = dyadlength(x(1,:)); wc = x; mc = m; nc = n; J = min([J,K]); for jscal=J-1:-1:L, if rem(mc,2)==0, top = (mc/2+1):mc; bot = 1:(mc/2); else top = ((mc+1)/2+1):mc; bot = 1:((mc+1)/2); end if rem(nc,2)==0, right = (nc/2+1):nc; left = 1:(nc/2); else right = ((nc+1)/2+1):nc; left = 1:((nc+1)/2); end for ix=1:mc, row = wc(ix,1:nc); [beta,alpha] = DownDyad_SBS(row,qmf,dqmf); wc(ix,left) = beta; wc(ix,right) = alpha; end for iy=1:nc, column = wc(1:mc,iy)'; [beta,alpha] = DownDyad_SBS(column,qmf,dqmf); wc(bot,iy) = beta'; wc(top,iy) = alpha'; end mc = bot(length(bot)); nc = left(length(left)); end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT2_SBS(wc,L,qmf,dqmf) % IWT2_SBS -- Inverse 2d Wavelet Transform % (symmetric extention, bi-orthogonal) % Usage % x = IWT2_SBS(wc,L,qmf,dqmf) % Inputs % wc 2-d wavelet transform [n by n array, n arbitrary] % L coarse level % qmf low-pass quadrature mirror filter % dqmf high-pas dual quadrature mirror filter % Outputs % x 2-d signal reconstructed from wc % Description % If wc is the result of a forward 2d wavelet transform, with % wc = FWT2_SBS(x,L,qmf,dqmf) % then x = IWT2_SBS(wc,L,qmf,dqmf) reconstructs x exactly if qmf is a nice % quadrature mirror filter, e.g. one made by MakeBioFilter % See Also: % FWT2_SBS, MakeBioFilter % [m,J] = dyadlength(wc(:,1)); [n,K] = dyadlength(wc(1,:)); % assume m==n, J==K x = wc; dpm = dyadpartition(m); for jscal=L:J-1, bot = 1:dpm(jscal+1); top = (dpm(jscal+1)+1):dpm(jscal+2); all = [bot top]; nc = length(all); for iy=1:nc, x(all,iy) = UpDyad_SBS(x(bot,iy)', x(top,iy)', qmf, dqmf)'; end for ix=1:nc, x(ix,all) = UpDyad_SBS(x(ix,bot), x(ix,top), qmf, dqmf); end end % % Copyright (c) 1996. Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wc = FWT2_PO(x,L,qmf) % FWT2_PO -- 2-d MRA wavelet transform (periodized, orthogonal) % Usage % wc = FWT2_PO(x,L,qmf) % Inputs % x 2-d image (n by n array, n dyadic) % L coarse level % qmf quadrature mirror filter % Outputs % wc 2-d wavelet transform % % Description % A two-dimensional Wavelet Transform is computed for the % array x. To reconstruct, use IWT2_PO. % % See Also % IWT2_PO, MakeONFilter % [n,J] = quadlength(x); wc = x; nc = n; for jscal=J-1:-1:L, top = (nc/2+1):nc; bot = 1:(nc/2); for ix=1:nc, row = wc(ix,1:nc); wc(ix,bot) = DownDyadLo(row,qmf); wc(ix,top) = DownDyadHi(row,qmf); end for iy=1:nc, row = wc(1:nc,iy)'; wc(top,iy) = DownDyadHi(row,qmf)'; wc(bot,iy) = DownDyadLo(row,qmf)'; end nc = nc/2; end % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT2_PO(wc,L,qmf) % IWT2_PO -- Inverse 2-d MRA wavelet transform (periodized, orthogonal) % Usage % x = IWT2_PO(wc,L,qmf) % Inputs % wc 2-d wavelet transform [n by n array, n dyadic] % L coarse level % qmf quadrature mirror filter % Outputs % x 2-d signal reconstructed from wc % % Description % If wc is the result of a forward 2d wavelet transform, with % wc = FWT2_PO(x,L,qmf), then x = IWT2_PO(wc,L,qmf) reconstructs x % exactly if qmf is a nice qmf, e.g. one made by MakeONFilter. % % See Also % FWT2_PO, MakeONFilter % [n,J] = quadlength(wc); x = wc; nc = 2^(L+1); for jscal=L:J-1, top = (nc/2+1):nc; bot = 1:(nc/2); all = 1:nc; for iy=1:nc, x(all,iy) = UpDyadLo(x(bot,iy)',qmf)' ... + UpDyadHi(x(top,iy)',qmf)'; end for ix=1:nc, x(ix,all) = UpDyadLo(x(ix,bot),qmf) ... + UpDyadHi(x(ix,top),qmf); end nc = 2*nc; end % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [n,J] = quadlength(x) % quadlength -- Find length and dyadic length of square matrix % Usage % [n,J] = quadlength(x) % Inputs % x 2-d image; size(n,n), n = 2^J (hopefully) % Outputs % n length(x) % J least power of two greater than n % % Side Effects % A warning message is issue if n is not a power of 2, % or if x is not a square matrix. % s = size(x); n = s(1); if s(2) ~= s(1), disp('Warning in quadlength: nr != nc') end k = 1 ; J = 0; while k < n , k=2*k; J = 1+J ; end ; if k ~= n , disp('Warning in quadlength: n != 2^J') end % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function wp = FWT_TI(x,L,qmf) % FWT_TI -- translation invariant forward wavelet transform % Usage % TIWT = FWT_TI(x,L,qmf) % Inputs % x array of dyadic length n=2^J % L degree of coarsest scale % qmf orthonormal quadrature mirror filter % Outputs % TIWT stationary wavelet transform table % formally same data structure as packet table % % See Also % IWT_TI % [n,J] = dyadlength(x); D = J-L; wp = zeros(n,D+1); x = ShapeAsRow(x); % wp(:,1) = x'; for d=0:(D-1), for b=0:(2^d-1), s = wp(packet(d,b,n),1)'; hsr = DownDyadHi(s,qmf); hsl = DownDyadHi(rshift(s),qmf); lsr = DownDyadLo(s,qmf); lsl = DownDyadLo(rshift(s),qmf); wp(packet(d+1,2*b ,n),d+2) = hsr'; wp(packet(d+1,2*b+1,n),d+2) = hsl'; wp(packet(d+1,2*b ,n),1 ) = lsr'; wp(packet(d+1,2*b+1,n),1 ) = lsl'; end end % % Copyright (c) 1994. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function tiwt = FWT2_TI(x,L,qmf) % FWT_TI -- 2-D translation invariant forward wavelet transform % Usage % TIWT = FWT2_TI(x,L,qmf) % Inputs % x 2-d image (n by n real array, n dyadic) % L degree of coarsest scale % qmf orthonormal quadrature mirror filter % Outputs % TIWT translation-invariant wavelet transform table, (3*(J-L)+1)*n by n % % See Also % IWT2_TI, IWT2_TIMedian % [n,J] = quadlength(x); D = J-L; tiwt = zeros((3*D+1)*n, n); lastx = (3*D*n+1):(3*D*n+n); lasty = 1:n; tiwt(lastx,lasty) = x; % for d=0:(D-1), l = J-d-1; ns = 2^(J-d); for b1=0:(2^d-1), for b2=0:(2^d-1), s = tiwt(3*D*n+packet(d,b1,n), packet(d,b2,n)); wc00 = FWT2_PO(s,l,qmf); wc01 = FWT2_PO(CircularShift(s,0,1),l,qmf); wc10 = FWT2_PO(CircularShift(s,1,0),l,qmf); wc11 = FWT2_PO(CircularShift(s,1,1),l,qmf); index10 = packet(d+1,2*b1,n); index20 = packet(d+1,2*b2,n); index11 = packet(d+1,2*b1+1,n); index21 = packet(d+1,2*b2+1,n); % horizontal stuff tiwt(3*d*n + index10 , index20) = wc00(1:(ns/2),(ns/2+1):ns); tiwt(3*d*n + index11, index20) = wc01(1:(ns/2),(ns/2+1):ns); tiwt(3*d*n + index10 , index21) = wc10(1:(ns/2),(ns/2+1):ns); tiwt(3*d*n + index11 , index21) = wc11(1:(ns/2),(ns/2+1):ns); % vertical stuff tiwt((3*d+1)*n + index10 , index20) = wc00((ns/2+1):ns,1:(ns/2)); tiwt((3*d+1)*n + index11, index20) = wc01((ns/2+1):ns,1:(ns/2)); tiwt((3*d+1)*n + index10 , index21) = wc10((ns/2+1):ns,1:(ns/2)); tiwt((3*d+1)*n + index11 , index21) = wc11((ns/2+1):ns,1:(ns/2)); % diagonal stuff tiwt((3*d+2)*n + index10 , index20) = wc00((ns/2+1):ns,(ns/2+1):ns); tiwt((3*d+2)*n + index11, index20) = wc01((ns/2+1):ns,(ns/2+1):ns); tiwt((3*d+2)*n + index10 , index21) = wc10((ns/2+1):ns,(ns/2+1):ns); tiwt((3*d+2)*n + index11 , index21) = wc11((ns/2+1):ns,(ns/2+1):ns); % low freq stuff tiwt(3*D*n + index10 , index20) = wc00(1:(ns/2),1:(ns/2)); tiwt(3*D*n + index11, index20) = wc01(1:(ns/2),1:(ns/2)); tiwt(3*D*n + index10 , index21) = wc10(1:(ns/2),1:(ns/2)); tiwt(3*D*n + index11 , index21) = wc11(1:(ns/2),1:(ns/2)); end, end end % % Copyright (c) 1995. David L. Donoho and Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function p=packet(d,b,n) % packet -- Packet table indexing % Usage % p = packet(d,b,n) % Inputs % d depth of splitting in packet decomposition % b block index among 2^d possibilities at depth d % n length of signal % Outputs % p linear indices of all coeff's in that block % npack = 2^d; p = ( (b * (n/npack) + 1) : ((b+1)*n/npack ) ) ; % % Copyright (c) 1993. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT_TI(pkt,qmf) % IWT_TI -- Invert translation invariant wavelet transform % Usage % x = IWT_TI(TIWT,qmf) % Inputs % TIWT translation-invariant wavelet transform table % qmf quadrature mirror filter % Outputs % x 1-d signal reconstructed from translation-invariant % transform TIWT % % See Also % FWT_TI % [n,D1] = size(pkt); D = D1-1; J = log2(n); L = J-D; % wp = pkt; % sig = wp(:,1)'; for d= D-1:-1:0, for b=0:(2^d-1) hsr = wp(packet(d+1,2*b ,n),d+2)'; hsl = wp(packet(d+1,2*b+1,n),d+2)'; lsr = sig(packet(d+1,2*b ,n) ); lsl = sig(packet(d+1,2*b+1,n) ); loterm = (UpDyadLo(lsr,qmf) + lshift(UpDyadLo(lsl,qmf)))/2; hiterm = (UpDyadHi(hsr,qmf) + lshift(UpDyadHi(hsl,qmf)))/2; sig(packet(d,b,n)) = loterm+hiterm; end end x = sig; % % Copyright (c) 1994. David L. Donoho % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function x = IWT2_TI(tiwt,L,qmf) % IWT2_TI -- Invert 2-d translation invariant wavelet transform % Usage % x = IWT2_TI(TIWT,qmf) % Inputs % TIWT translation-invariant wavelet transform table, (3*(J-L)+1)*n by n % L degree of coarsest scale % qmf quadrature mirror filter % Outputs % x 2-d image reconstructed from translation-invariant transform TIWT % % See Also % FWT2_TI, IWT2_TIMedian % [D1,n] = size(tiwt); J = log2(n); D = J-L; % lastx = (3*D*n+1):(3*D*n+n); lasty = 1:n; x = tiwt(lastx,lasty); for d=(D-1):-1:0, l = J-d-1; ns = 2^(J-d); for b1=0:(2^d-1), for b2=0:(2^d-1), index10 = packet(d+1,2*b1,n); index20 = packet(d+1,2*b2,n); index11 = packet(d+1,2*b1+1,n); index21 = packet(d+1,2*b2+1,n); wc00 = [x(index10,index20) tiwt(3*d*n+index10,index20) ; ... tiwt((3*d+1)*n+index10,index20) tiwt((3*d+2)*n+index10,index20)]; wc01 = [x(index11,index20) tiwt(3*d*n+index11,index20) ; ... tiwt((3*d+1)*n+index11,index20) tiwt((3*d+2)*n+index11,index20)]; wc10 = [x(index10,index21) tiwt(3*d*n+index10,index21) ; ... tiwt((3*d+1)*n+index10,index21) tiwt((3*d+2)*n+index10,index21)]; wc11 = [x(index11,index21) tiwt(3*d*n+index11,index21) ; ... tiwt((3*d+1)*n+index11,index21) tiwt((3*d+2)*n+index11,index21)]; x(packet(d,b1,n), packet(d,b2,n)) = ( IWT2_PO(wc00,l,qmf) + .... CircularShift(IWT2_PO(wc01,l,qmf),0,-1) + ... CircularShift(IWT2_PO(wc10,l,qmf),-1,0) + ... CircularShift(IWT2_PO(wc11,l,qmf),-1,-1) ) / 4; end, end end % % Copyright (c) 1995. David L. Donoho and Thomas P.Y. Yu % % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function result = CircularShift(matrix, colshift, rowshift) % CIRCULARSHIFT: Circular shifting of a matrix/image, i.e., pixels that get % shifted off one side of the image are put back on the other side. % % result = circularShift(matrix, colshift, rowshift) % % EPS, DJH '96 lastrow = size(matrix, 1); lastcol = size(matrix, 2); result = matrix; % Shift the cols if (colshift>0) result = [result(:,[lastcol-colshift+1:lastcol]) ... result(:,[1:lastcol-colshift])]; else colshift = -colshift; result = [result(:,[colshift+1:lastcol]) ... result(:,[1:colshift])]; end % Shift the rows if (rowshift>0) result = [result([lastrow-rowshift+1:lastrow],:) ; ... result([1:lastrow-rowshift],:)]; else rowshift = -rowshift; result = [result([rowshift+1:lastrow],:) ; ... result([1:rowshift],:)]; end function x = reverse(x) x = x(end:-1:1); function StatWT = TI2Stat(TIWT) % TI2Stat -- Convert Translation-Invariant Transform to Stationary Wavelet Transform % Usage % StatWT = TI2Stat(TIWT) % Inputs % TIWT translation invariant table from FWT_TI % Outputs % StatWT stationary wavelet transform table table as FWT_Stat % % See Also % Stat2TI, FWT_TI, FWT_Stat % StatWT = TIWT; [n,D1] = size(StatWT); D = D1-1; J = log2(n); L = J-D; % index = 1; for d=1:D, nb = 2^d; nk = n/nb; index = [ (index+nb/2); index]; index = index(:)'; for b= 0:(nb-1), StatWT(d*n + (index(b+1):nb:n)) = TIWT(d*n + packet(d,b,n)); end end for b= 0:(nb-1), StatWT((index(b+1):nb:n)) = TIWT(packet(d,b,n)); end % % Copyright (c) 1994. Shaobing Chen % function TIWT = Stat2TI(StatWT) % Stat2TI -- Convert Stationary Wavelet Transform to Translation-Invariant Transform % Usage % TIWT = Stat2TI(StatWT) % Inputs % StatWT stationary wavelet transform table as FWT_Stat % Outputs % TIWT translation-invariant transform table as FWT_TI % % See Also % Stat2TI, FWT_TI, FWT_Stat % TIWT = StatWT; [n,D1] = size(StatWT); D = D1-1; index = 1; for d=1:D, nb = 2^d; nk = n/nb; index = [ (index+nb/2); index]; index = index(:)'; for b= 0:(nb-1), TIWT(d*n + packet(d,b,n)) = StatWT(d*n + (index(b+1):nb:n)); end end for b= 0:(nb-1), TIWT(packet(d,b,n)) = StatWT((index(b+1):nb:n)); end % % Copyright (c) 1994. Shaobing Chen % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected]
github
jacksky64/imageProcessing-master
medfilt2.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/ordfilt2/medfilt2.m
4,441
utf_8
a78b7dbf3bc7c2a946de5e748467c722
function b = medfilt2(varargin) %MEDFILT2 Perform 2-D median filtering. % B = MEDFILT2(A,[M N]) performs median filtering of the matrix % A in two dimensions. Each output pixel contains the median % value in the M-by-N neighborhood around the corresponding % pixel in the input image. MEDFILT2 pads the image with zeros % on the edges, so the median values for the points within % [M N]/2 of the edges may appear distorted. % % B = MEDFILT2(A) performs median filtering of the matrix A % using the default 3-by-3 neighborhood. % % B = MEDFILT2(...,PADOPT) controls how the matrix boundaries % are padded. PADOPT may be 'zeros' (the default), % 'symmetric', or 'indexed'. If PADOPT is 'zeros', A is padded % with zeros at the boundaries. If PADOPT is 'symmetric', A is % symmetrically extended at the boundaries. If PADOPT is % 'indexed', A is padded with ones if it is double; otherwise % it is padded with zeros. % % Class Support % ------------- % The input image A can be logical or numeric (unless the % 'indexed' syntax is used, in which case A cannot be of class % uint16). The output image B is of the same class as A. % % Remarks % ------- % If the input image A is of integer class, all of the output % values are returned as integers. If the number of % pixels in the neighborhood (i.e., M*N) is even, some of the % median values may not be integers. In these cases, the % fractional parts are discarded. Logical input is treated % similarly. % % Example % ------- % I = imread('eight.tif'); % J = imnoise(I,'salt & pepper',0.02); % K = medfilt2(J); % imview(J), imview(K) % % See also FILTER2, ORDFILT2, WIENER2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.18.4.6 $ $Date: 2003/08/23 05:53:02 $ [a, mn, padopt] = parse_inputs(varargin{:}); domain = ones(mn); if (rem(prod(mn), 2) == 1) order = (prod(mn)+1)/2; b = ordfilt2(a, order, domain, padopt); else order1 = prod(mn)/2; order2 = order1+1; b = ordfilt2(a, order1, domain, padopt); b2 = ordfilt2(a, order2, domain, padopt); if islogical(b) b = b | b2; else b = imlincomb(0.5, b, 0.5, b2); end end %%% %%% Function parse_inputs %%% function [a, mn, padopt] = parse_inputs(varargin) % checknargin(1,4,nargin,mfilename); % There are several grandfathered syntaxes we have to catch % and parse successfully, so we're going to use a strategy % that's a little different that usual. % % First, scan the input argument list for strings. The % string 'indexed', 'zeros', or 'symmetric' can appear basically % anywhere after the first argument. % % Second, delete the strings from the argument list. % % The remaining argument list can be one of the following: % MEDFILT2(A) % MEDFILT2(A,[M N]) % MEDFILT2(A,[M N],[Mb Nb]) % % Any syntax in which 'indexed' is followed by other arguments % is grandfathered. Any syntax in which [Mb Nb] appears is % grandfathered. % % -sle, March 1998 a = varargin{1}; charLocation = []; for k = 2:nargin if (ischar(varargin{k})) charLocation = [charLocation k]; end end if (length(charLocation) > 1) % More than one string in input list eid = 'Images:medfilt2:tooManyStringInputs'; error(eid,'%s','Too many input string arguments.'); elseif isempty(charLocation) % No string specified padopt = 'zeros'; else options = {'indexed', 'zeros', 'symmetric'}; padopt = checkstrs(varargin{charLocation}, options, mfilename, ... 'PADOPT', charLocation); varargin(charLocation) = []; end if (strcmp(padopt, 'indexed')) if (isa(a,'double')) padopt = 'ones'; else padopt = 'zeros'; end end if length(varargin) == 1, mn = [3 3];% default elseif length(varargin) >= 2, mn = varargin{2}(:).'; if size(mn,2)~=2, msg = 'MEDFILT2(A,[M N]): Second argument must consist of two integers.'; eid = 'Images:medfilt2:secondArgMustConsistOfTwoInts'; error(eid, msg); elseif length(varargin) > 2, msg = ['MEDFILT2(A,[M N],[Mb Nb],...) is an obsolete syntax. [Mb Nb]' ... ' argument is ignored.']; wid = 'Images:medfilt2:obsoleteSyntax'; warning(wid, msg); end end % The grandfathered [Mb Nb] argument, if present, is ignored.
github
jacksky64/imageProcessing-master
padarray.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/ordfilt2/padarray.m
7,671
utf_8
489e5e1fb612ce595b1baac73abfb897
function b = padarray(varargin) %PADARRAY Pad an array. % B = PADARRAY(A,PADSIZE) pads array A with PADSIZE(k) number of zeros % along the k-th dimension of A. PADSIZE should be a vector of % positive integers. % % B = PADARRAY(A,PADSIZE,PADVAL) pads array A with PADVAL (a scalar) % instead of with zeros. % % B = PADARRAY(A,PADSIZE,PADVAL,DIRECTION) pads A in the direction % specified by the string DIRECTION. DIRECTION can be one of the % following strings. % % String values for DIRECTION % 'pre' Pads before the first array element along each % dimension . % 'post' Pads after the last array element along each % dimension. % 'both' Pads before the first array element and after the % last array element along each dimension. % % By default, DIRECTION is 'both'. % % B = PADARRAY(A,PADSIZE,METHOD,DIRECTION) pads array A using the % specified METHOD. METHOD can be one of these strings: % % String values for METHOD % 'circular' Pads with circular repetion of elements. % 'replicate' Repeats border elements of A. % 'symmetric' Pads array with mirror reflections of itself. % % Class Support % ------------- % When padding with a constant value, A can be numeric or logical. % When padding using the 'circular', 'replicate', or 'symmetric' % methods, A can be of any class. B is of the same class as A. % % Example % ------- % Add three elements of padding to the beginning of a vector. The % padding elements contain mirror copies of the array. % % b = padarray([1 2 3 4],3,'symmetric','pre') % % Add three elements of padding to the end of the first dimension of % the array and two elements of padding to the end of the second % dimension. Use the value of the last array element as the padding % value. % % B = padarray([1 2; 3 4],[3 2],'replicate','post') % % Add three elements of padding to each dimension of a % three-dimensional array. Each pad element contains the value 0. % % A = [1 2; 3 4]; % B = [5 6; 7 8]; % C = cat(3,A,B) % D = padarray(C,[3 3],0,'both') % % See also CIRCSHIFT, IMFILTER. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.11.4.3 $ $Date: 2003/08/23 05:53:08 $ [a, method, padSize, padVal, direction] = ParseInputs(varargin{:}); if isempty(a),% treat empty matrix similar for any method if strcmp(direction,'both') sizeB = size(a) + 2*padSize; else sizeB = size(a) + padSize; end b = mkconstarray(class(a), padVal, sizeB); else switch method case 'constant' b = ConstantPad(a, padSize, padVal, direction); case 'circular' b = CircularPad(a, padSize, direction); case 'symmetric' b = SymmetricPad(a, padSize, direction); case 'replicate' b = ReplicatePad(a, padSize, direction); end end if (islogical(a)) b = logical(b); end %%% %%% ConstantPad %%% function b = ConstantPad(a, padSize, padVal, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); sizeB = zeros(1,numDims); for k = 1:numDims M = size(a,k); switch direction case 'pre' idx{k} = (1:M) + padSize(k); sizeB(k) = M + padSize(k); case 'post' idx{k} = 1:M; sizeB(k) = M + padSize(k); case 'both' idx{k} = (1:M) + padSize(k); sizeB(k) = M + 2*padSize(k); end end % Initialize output array with the padding value. Make sure the % output array is the same type as the input. b = mkconstarray(class(a), padVal, sizeB); b(idx{:}) = a; %%% %%% CircularPad %%% function b = CircularPad(a, padSize, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); for k = 1:numDims M = size(a,k); dimNums = 1:M; p = padSize(k); switch direction case 'pre' idx{k} = dimNums(mod(-p:M-1, M) + 1); case 'post' idx{k} = dimNums(mod(0:M+p-1, M) + 1); case 'both' idx{k} = dimNums(mod(-p:M+p-1, M) + 1); end end b = a(idx{:}); %%% %%% SymmetricPad %%% function b = SymmetricPad(a, padSize, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); for k = 1:numDims M = size(a,k); dimNums = [1:M M:-1:1]; p = padSize(k); switch direction case 'pre' idx{k} = dimNums(mod(-p:M-1, 2*M) + 1); case 'post' idx{k} = dimNums(mod(0:M+p-1, 2*M) + 1); case 'both' idx{k} = dimNums(mod(-p:M+p-1, 2*M) + 1); end end b = a(idx{:}); %%% %%% ReplicatePad %%% function b = ReplicatePad(a, padSize, direction) numDims = numel(padSize); % Form index vectors to subsasgn input array into output array. % Also compute the size of the output array. idx = cell(1,numDims); for k = 1:numDims M = size(a,k); p = padSize(k); onesVector = ones(1,p); switch direction case 'pre' idx{k} = [onesVector 1:M]; case 'post' idx{k} = [1:M M*onesVector]; case 'both' idx{k} = [onesVector 1:M M*onesVector]; end end b = a(idx{:}); %%% %%% ParseInputs %%% function [a, method, padSize, padVal, direction] = ParseInputs(varargin) % default values a = []; method = 'constant'; padSize = []; padVal = 0; direction = 'both'; % checknargin(2,4,nargin,mfilename); a = varargin{1}; padSize = varargin{2}; % checkinput(padSize, {'double'}, {'real' 'vector' 'nonnan' 'nonnegative' ... % 'integer'}, mfilename, 'PADSIZE', 2); % Preprocess the padding size if (numel(padSize) < ndims(a)) padSize = padSize(:); padSize(ndims(a)) = 0; end if nargin > 2 firstStringToProcess = 3; if ~ischar(varargin{3}) % Third input must be pad value. padVal = varargin{3}; % checkinput(padVal, {'numeric' 'logical'}, {'scalar'}, ... % mfilename, 'PADVAL', 3); firstStringToProcess = 4; end for k = firstStringToProcess:nargin validStrings = {'circular' 'replicate' 'symmetric' 'pre' ... 'post' 'both'}; string = checkstrs(varargin{k}, validStrings, mfilename, ... 'METHOD or DIRECTION', k); switch string case {'circular' 'replicate' 'symmetric'} method = string; case {'pre' 'post' 'both'} direction = string; otherwise error('Images:padarray:unexpectedError', '%s', ... 'Unexpected logic error.') end end end % Check the input array type if strcmp(method,'constant') && ~(isnumeric(a) || islogical(a)) id = sprintf('Images:%s:badTypeForConstantPadding', mfilename); msg1 = sprintf('Function %s expected A (argument 1)',mfilename); msg2 = 'to be numeric or logical for constant padding.'; error(id,'%s\n%s',msg1,msg2); end
github
jacksky64/imageProcessing-master
checkstrs.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/ordfilt2/checkstrs.m
3,285
utf_8
ce89005e77c1e286eddbb59ed6c2d8b5
function out = checkstrs(in, valid_strings, function_name, ... variable_name, argument_position) %CHECKSTRS Check validity of option string. % OUT = CHECKSTRS(IN,VALID_STRINGS,FUNCTION_NAME,VARIABLE_NAME, ... % ARGUMENT_POSITION) checks the validity of the option string IN. It % returns the matching string in VALID_STRINGS in OUT. CHECKSTRS looks % for a case-insensitive nonambiguous match between IN and the strings % in VALID_STRINGS. % % VALID_STRINGS is a cell array containing strings. % % FUNCTION_NAME is a string containing the function name to be used in the % formatted error message. % % VARIABLE_NAME is a string containing the documented variable name to be % used in the formatted error message. % % ARGUMENT_POSITION is a positive integer indicating which input argument % is being checked; it is also used in the formatted error message. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.3.4.4 $ $Date: 2003/05/03 17:51:45 $ % Except for IN, input arguments are not checked for validity. % checkinput(in, 'char', 'row', function_name, variable_name, argument_position); start = regexpi(valid_strings, ['^' in]); if ~iscell(start) start = {start}; end matches = ~cellfun('isempty',start); idx = find(matches); num_matches = length(idx); if num_matches == 1 out = valid_strings{idx}; else out = substringMatch(valid_strings(idx)); if isempty(out) % Convert valid_strings to a single string containing a space-separated list % of valid strings. list = ''; for k = 1:length(valid_strings) list = [list ', ' valid_strings{k}]; end list(1:2) = []; msg1 = sprintf('Function %s expected its %s input argument, %s,', ... upper(function_name), num2ordinal(argument_position), ... variable_name); msg2 = 'to match one of these strings:'; if num_matches == 0 msg3 = sprintf('The input, ''%s'', did not match any of the valid strings.', in); id = sprintf('Images:%s:unrecognizedStringChoice', function_name); else msg3 = sprintf('The input, ''%s'', matched more than one valid string.', in); id = sprintf('Images:%s:ambiguousStringChoice', function_name); end error(id,'%s\n%s\n\n %s\n\n%s', msg1, msg2, list, msg3); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function str = substringMatch(strings) % STR = substringMatch(STRINGS) looks at STRINGS (a cell array of % strings) to see whether the shortest string is a proper substring of % all the other strings. If it is, then substringMatch returns the % shortest string; otherwise, it returns the empty string. if isempty(strings) str = ''; else len = cellfun('prodofsize',strings); [tmp,sortIdx] = sort(len); strings = strings(sortIdx); start = regexpi(strings(2:end), ['^' strings{1}]); if isempty(start) || (iscell(start) && any(cellfun('isempty',start))) str = ''; else str = strings{1}; end end
github
jacksky64/imageProcessing-master
ordfilt2.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_nlmeans/toolbox/ordfilt2/ordfilt2.m
4,253
utf_8
1ead5ab3bf1749efe031d260f06b3578
function B = ordfilt2(varargin) %ORDFILT2 Perform 2-D order-statistic filtering. % B=ORDFILT2(A,ORDER,DOMAIN) replaces each element in A by the % ORDER-th element in the sorted set of neighbors specified by % the nonzero elements in DOMAIN. % % B = ORDFILT2(A,ORDER,DOMAIN,S), where S is the same size as % DOMAIN, uses the values of S corresponding to the nonzero % values of DOMAIN as additive offsets. % % B = ORDFILT2(...,PADOPT) controls how the matrix boundaries % are padded. PADOPT may be 'zeros' (the default) or % 'symmetric'. If PADOPT is 'zeros', A is padded with zeros at % the boundaries. If PADOPT is 'symmetric', A is symmetrically % extended at the boundaries. % % Class Support % ------------- % The class of A may be numeric or logical. The class of B is % the same as the class of A, unless the additive offset form of % ORDFILT2 is used, in which case the class of B is double. % % Example % ------- % Use a maximum filter on snowflakes.png with a [5 5] neighborhood. This is % equivalent to imdilate(image,strel('square',5)). % % A = imread('snowflakes.png'); % B = ordfilt2(A,25,true(5)); % imview(A), imview(B) % % Remarks % ------- % DOMAIN is equivalent to the structuring element used for % binary image operations. It is a matrix containing only 1's % and 0's; the 1's define the neighborhood for the filtering % operation. % % For example, B=ORDFILT2(A,5,ONES(3,3)) implements a 3-by-3 % median filter; B=ORDFILT2(A,1,ONES(3,3)) implements a 3-by-3 % minimum filter; and B=ORDFILT2(A,9,ONES(3,3)) implements a % 3-by-3 maximum filter. B=ORDFILT2(A,4,[0 1 0; 1 0 1; 0 1 0]) % replaces each element in A by the maximum of its north, east, % south, and west neighbors. % % See also MEDFILT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.17.4.5 $ $Date: 2003/08/23 05:53:07 $ [A,order,domain,s,padopt,msg] = ParseInputs(varargin{:}); domainSize = size(domain); center = floor((domainSize + 1) / 2); [r,c] = find(domain); r = r - center(1); c = c - center(2); padSize = max(max(abs(r)), max(abs(c))); originalSize = size(A); if (strcmp(padopt, 'zeros')) A = padarray(A, padSize * [1 1], 0, 'both'); elseif (strcmp(padopt, 'ones')) % padopt of 'ones' is for support of medfilt2; it is % undocumented A = padarray(A, padSize * [1 1], 1, 'both'); else A = padarray(A, padSize * [1 1], 'symmetric', 'both'); end Ma = size(A,1); offsets = c*Ma + r; % make sure that offsets are valid if ~isreal(offsets) || any(floor(offsets) ~= offsets) || any(~isfinite(offsets)) %should never get here eid = sprintf('Images:%s:internalError', mfilename); msg = 'Internal error: bad OFFSETS.'; error(eid,'%s',msg); end if isempty(s) %ORDFILT2(A,ORDER,DOMAIN) B = ordf(A, order, offsets, [padSize padSize] + 1, ... originalSize, domainSize); else %ORDFILT2(A,ORDER,DOMAIN,S,PADOPT) B = ordf(A, order, offsets, [padSize padSize] + 1, ... originalSize, domainSize, s); end %%% %%% ParseInputs %%% function [A,order,domain,s,padopt,msg] = ParseInputs(varargin) A = []; order = []; domain = []; s = []; padopt = 'zeros'; msg = ''; % checknargin(3,5,nargin,mfilename); A = varargin{1}; order = varargin{2}; domain = varargin{3}; options = {'zeros', 'ones', 'symmetric'}; % padopt of 'ones' is for supporting medfilt2; it is undocumented. if (nargin == 4) if (ischar(varargin{4})) padopt = checkstrs(varargin{4},options,mfilename,'PADOPT',4); else s = varargin{4}; end elseif (nargin == 5) s = varargin{4}; padopt = checkstrs(varargin{5},options,mfilename,'PADOPT',5); end % make sure that arguments are valid % checkinput(order,'double',{'real','scalar','integer'},mfilename, ... % 'ORDER',2); if ~isempty(s) if (~isa(A, 'double')) A = double(A); end % checkinput(A, 'double', {'2d','real'}, mfilename, 'A', 1); s = s(find(domain)); % checkinput(s, 'double', 'real', mfilename, 'S', 4); else % checkinput(A, {'numeric','logical'}, {'2d','real'}, mfilename, 'A', 1); end
github
jacksky64/imageProcessing-master
compute_butterfly_neighbors.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelet_meshes/compute_butterfly_neighbors.m
1,398
utf_8
0a690efe10cc4cbba37565df43f15a2f
function [e,v,g] = compute_butterfly_neighbors(k, nj) % compute_butterfly_neighbors - compute local neighbors of a vertex % % [e,v,g] = compute_butterfly_neighbors(k, nj); % % This is for internal use. % % e are the 2 direct edge neighbors % v are the 2 indirect neighbors % g are the fare neighbors % % You need to provide: % for e: vring, e2f % for v: fring % for g: facej % % Copyright (c) 2007 Gabriel Peyre global vring e2f fring facej; % find the 2 edges in the fine subdivition vr = vring{k}; I = find(vr<=nj); e = vr(I); % find the coarse faces associated to the edge e f = [e2f(e(1),e(2)) e2f(e(2),e(1))]; % symmetrize for boundary faces ... f(f==-1) = f(3 - find(f==-1)); if nargout>1 F1 = mysetdiff(fring{f(1)}, f(2)); F2 = mysetdiff(fring{f(2)}, f(1)); % symmetrize for boundary faces F1 = [F1 repmat(f(1), 1, 3-length(F1))]; F2 = [F2 repmat(f(2), 1, 3-length(F2))]; v = [ mysetdiff( facej(:,f(1)), e ) mysetdiff( facej(:,f(2)), e ) ]; if nargout>2 d = [v, e]; g = [setdiff( facej(:,F1(1)),d ), ... mysetdiff( facej(:,F1(2)),d ), ... mysetdiff( facej(:,F2(1)),d ), ... mysetdiff( facej(:,F2(2)),d ) ]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = mysetdiff(a,b) % removed in a entries equal to entries in b for s=b a(a==s) = []; end
github
jacksky64/imageProcessing-master
load_spherical_function.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelet_meshes/load_spherical_function.m
1,810
utf_8
1999ea966df43f6770f67d42cee2a6f7
function f = load_spherical_function(name, pos, options) % load_spherical_function - load a function on the sphere % % f = load_spherical_function(name, pos, options); % % Copyright (c) 2007 Gabriel Peyre if iscell(pos) pos = pos{end}; end if size(pos,1)>size(pos,2) pos = pos'; end x = pos(1,:); x = x(:); switch name case 'linear' f = x; case 'cos' f = cos(6*pi*x); case 'singular' f = abs(x).^.4; case 'image' name = getoptions(options, 'image_name', 'lena'); M = load_image(name); q = size(M,1); q = min(q,512); M = crop(M,q); M = perform_blurring(M,4); f = perform_spherical_interpolation(pos,M); case 'etopo' resol = 15; fname = ['ETOPO' num2str(resol)]; fid = fopen(fname, 'rb'); if fid<0 error('Unable to read ETOPO file'); end s = [360*(60/resol), 180*(60/resol)]; M = fread(fid, Inf, 'short'); M = reshape(M, s(1),s(2) ); fclose(fid); f = perform_spherical_interpolation(pos,M, 0); case 'earth' filename = 'earth-bw'; M = double( load_image(filename) ); M = perform_blurring(M,4); f = perform_spherical_interpolation(pos,M,0); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = perform_spherical_interpolation(pos,M,center) if nargin<3 center = 1; end qx = size(M,1); qy = size(M,2); Y = atan2(pos(2,:),pos(1,:))/(2*pi) + 1/2; if center X = acos(pos(3,:))/(2*pi) + 1/4; else X = acos(pos(3,:))/(pi); end x = linspace(0,1,qx); y = linspace(0,1,qy); f = interp2( y,x,M, Y(:),X(:) );
github
jacksky64/imageProcessing-master
perform_spherial_planar_sampling.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelet_meshes/perform_spherial_planar_sampling.m
2,972
utf_8
76d71d45fe348bef0c0f7dd26434dc52
function posw = perform_spherial_planar_sampling(pos_sphere, sampling_type) % perform_spherial_planar_sampling - project sampling location from sphere to a square % % posw = perform_spherial_planar_sampling(pos_sphere, type) % % 'type' can be 'area' or 'gnomonic'. % % This is used to produced spherical geometry images. % The sampling is first projected onto an octahedron and then unfolded on % a square. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 sampling_type = 'area'; end % all 3-tuple of {-1,1} a = [-1 1]; [X,Y,Z] = meshgrid(a,a,a); anchor_2d = {}; anchor_3d = {}; for i=1:8 x = X(i); y = Y(i); z = Z(i); a2d = []; a3d = []; if z>0 a2d = [a2d, [0;0]]; else a2d = [a2d, [x;y]]; end a2d = [a2d, [x;0]]; a2d = [a2d, [0;y]]; anchor_2d{i} = a2d; a3d = [a3d, [0;0;z]]; a3d = [a3d, [x;0;0]]; a3d = [a3d, [0;y;0]]; anchor_3d{i} = a3d; end pos = pos_sphere; n = size(pos, 2); posw = zeros(2,n); for s = 1:8 x = X(s); y = Y(s); z = Z(s); anc2d = anchor_2d{s}; anc3d = anchor_3d{s}; I = find( signe(pos(1,:))==x & signe(pos(2,:))==y & signe(pos(3,:))==z ); posI = pos(:,I); nI = length(I); if strcmp(sampling_type, 'area') % find the area of the 3 small triangles p1 = repmat(anc3d(:,1), 1, nI); p2 = repmat(anc3d(:,2), 1, nI); p3 = repmat(anc3d(:,3), 1, nI); a1 = compute_spherical_area( posI, p2, p3 ); a2 = compute_spherical_area( posI, p1, p3 ); a3 = compute_spherical_area( posI, p1, p2 ); % barycentric coordinates a = a1+a2+a3; % aa = compute_spherical_area( p1, p2, p3 ); a1 = a1./a; a2 = a2./a; a3 = a3./a; elseif strcmp(sampling_type, 'gnomonic') % we are searching for a point y=b*x (projection on the triangle) % such that : a1*anc3d(:,1)+a2*anc3d(:,2)+a3*anc3d(:,3)-b*x=0 % a1+a2+a3=1 a1 = zeros(1,nI); a2 = a1; a3 = a1; for i=1:nI x = posI(:,i); M = [1 1 1 0; anc3d(:,1), anc3d(:,2), anc3d(:,3), x]; a = M\[1;0;0;0]; a1(i) = a(1); a2(i) = a(2); a3(i) = a(3); end else error('Unknown projection method.'); end posw(:,I) = anc2d(:,1)*a1 + anc2d(:,2)*a2 + anc2d(:,3)*a3; end function y = signe(x) y = double(x>=0)*2-1; function A = compute_spherical_area( p1, p2, p3 ) % length of the sides of the triangles : % cos(a)=p1*p2 a = acos( dotp(p2,p3) ); b = acos( dotp(p1,p3) ); c = acos( dotp(p1,p2) ); s = (a+b+c)/2; % use L'Huilier's Theorem % tand(E/4)^2 = tan(s/2).*tan( (s-a)/2 ).*tan( (s-b)/2 ).*tan( (s-c)/2 ) E = tan(s/2).*tan( (s-a)/2 ).*tan( (s-b)/2 ).*tan( (s-c)/2 ); A = 4*atan( sqrt( E ) ); A = real(A); function d = dotp(x,y) d = x(1,:).*y(1,:) + x(2,:).*y(2,:) + x(3,:).*y(3,:);
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelet_meshes/toolbox/load_image.m
19,503
utf_8
16a3a912ce98f3734882ac9fe80494c2
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = 0.1; % translation gamma = 1/sqrt(2); % slope if isfield( options, 'eta' ) eta = options.eta; end if isfield( options, 'gamma' ) eta = options.gamma; end if isfield( options, 'radius' ) radius = options.radius; end if isfield( options, 'center' ) center = options.center; end if isfield( options, 'center1' ) center1 = options.center1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for some blurring sigma = 0; if isfield(options, 'sigma') sigma = options.sigma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} if isfield(options, 'radius') r = options.radius; else r = 10; end M = create_letter(type(8), r, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; if isfield(options, 'eccentricity') eccentricity = options.eccentricity; else eccentricity = 1.3; end x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' if isfield(options, 'tube_width') w = options.tube_width; else w = 0.06; end c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.tube_width = 0.09; M = load_image('square-tube', n, options); case 'polygon' if isfield(options, 'nb_points') nb_points = options.nb_points; else nb_points = 9; end if isfield(options, 'scaling') scaling = options.scaling; else scaling = 1; end theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' if isfield(options, 'theta') theta = options.theta; else theta = 30 * 2*pi/360; end options.radius = 0.45; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end if isfield(options, 'frequency') f = options.frequency; else f = 30; end if isfield(options, 'width') eta = options.width; else eta = 0.3; end x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' if ~isfield( options, 'width' ) width = round(n/16); else width = options.width; end [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); if isfield(options, 'theta') theta = options.theta; else theta = 0.2; end if isfield(options, 'freq') freq = options.freq; else freq = 0.2; end X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} if isfield(options, 'alpha') alpha = options.alpha; else alpha = 1; end M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian if isfield(options, 'sigma') sigma = options.sigma; else sigma = 10; end M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature if isfield(options, 'c') c = options.c; else c = 0.1; end % angle if isfield(options, 'theta'); theta = options.theta; else theta = pi/sqrt(2); end x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' if isfield(options, 'nbr_periods') nbr_periods = options.nbr_periods; else nbr_periods = 8; end if isfield(options, 'theta') theta = options.theta; else theta = 1/sqrt(2); end if isfield(options, 'skew') skew = options.skew; else skew = 1/sqrt(2); end A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1; end M = randn(n); otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]); M = perform_convolution(M,h); end M = rescale(M) * 256; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
jacksky64/imageProcessing-master
check_face_vertex.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelet_meshes/toolbox/check_face_vertex.m
646
utf_8
fe3c5da3b1ca8f15eb7eed61acfc2259
function [vertex,face] = check_face_vertex(vertex,face, options) % check_face_vertex - check that vertices and faces have the correct size % % [vertex,face] = check_face_vertex(vertex,face); % % Copyright (c) 2007 Gabriel Peyre vertex = check_size(vertex); face = check_size(face); %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = check_size(a) if isempty(a) return; end if size(a,1)>size(a,2) a = a'; end if size(a,1)<3 && size(a,2)==3 a = a'; end if size(a,1)<=3 && size(a,2)>=3 && sum(abs(a(:,3)))==0 % for flat triangles a = a'; end if size(a,1)~=3 && size(a,1)~=4 error('face or vertex is not of correct size'); end
github
jacksky64/imageProcessing-master
compute_mesh_weight.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_wavelet_meshes/toolbox/compute_mesh_weight.m
2,820
utf_8
c90377b7ee516f5f952ce8c31dcfd43b
function W = compute_mesh_weight(vertex,face,type,options) % compute_mesh_weight - compute a weight matrix % % W = compute_mesh_weight(vertex,face,type,options); % % W is sparse weight matrix and W(i,j)=0 is vertex i and vertex j are not % connected in the mesh. % % type is either % 'combinatorial': W(i,j)=1 is vertex i is conntected to vertex j. % 'distance': W(i,j) = 1/d_ij^2 where d_ij is distance between vertex % i and j. % 'conformal': W(i,j) = cot(alpha_ij)+cot(beta_ij) where alpha_ij and % beta_ij are the adjacent angle to edge (i,j) % % If options.normalize=1, the the rows of W are normalize to sum to 1. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; [vertex,face] = check_face_vertex(vertex,face); nface = size(face,1); n = max(max(face)); if isfield(options, 'verb') verb = options.verb; else verb = n>5000; end if nargin<3 type = 'conformal'; end switch lower(type) case 'combinatorial' W = triangulation2adjacency(face); case 'distance' W = my_euclidean_distance(triangulation2adjacency(face),vertex); W(W>0) = 1./W(W>0); W = (W+W')/2; case 'conformal' % conformal laplacian W = sparse(n,n); ring = compute_vertex_face_ring(face); for i = 1:n if verb progressbar(i,n); end for b = ring{i} % b is a face adjacent to a bf = face(:,b); % compute complementary vertices if bf(1)==i v = bf(2:3); elseif bf(2)==i v = bf([1 3]); elseif bf(3)==i v = bf(1:2); else error('Problem in face ring.'); end j = v(1); k = v(2); vi = vertex(:,i); vj = vertex(:,j); vk = vertex(:,k); % angles alpha = myangle(vk-vi,vk-vj); beta = myangle(vj-vi,vj-vk); % add weight W(i,j) = W(i,j) + cot( alpha ); W(i,k) = W(i,k) + cot( beta ); end end otherwise error('Unknown type.') end if isfield(options, 'normalize') && options.normalize==1 W = diag(sum(W,2).^(-1)) * W; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function beta = myangle(u,v); du = sqrt( sum(u.^2) ); dv = sqrt( sum(v.^2) ); du = max(du,eps); dv = max(dv,eps); beta = acos( sum(u.*v) / (du*dv) ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function W = my_euclidean_distance(A,vertex) if size(vertex,1)<size(vertex,2) vertex = vertex'; end [i,j,s] = find(sparse(A)); d = sum( (vertex(i,:) - vertex(j,:)).^2, 2); W = sparse(i,j,d);
github
jacksky64/imageProcessing-master
plot_tensor_field.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_diffc/plot_tensor_field.m
5,736
utf_8
8e241783316bc4c13529031d81db17d4
function h = plot_tensor_field(H, M, options) % plot_tensor_field - display a tensor field % % h = plot_tensor_field(H, M, options); % % options.sub controls sub-sampling % options.color controls color % % Copyright (c) 2006 Gabriel Peyre if nargin<3 options.null = 0; end if not( isstruct(options) ) sub = options; clear options; options.sub = sub; end % sub = getoptions(options, 'sub', 1); sub = getoptions(options, 'sub', round(size(H,1)/30) ); color = getoptions(options, 'color', 'r'); if nargin<2 M = []; end if not(isempty(M)) && size(M,3)==1 M = repmat(M, [1 1 3]); % ensure B&W image end if size(H,3)==3 && size(H,4)==1 H = cat(3, H(:,:,1), H(:,:,3), H(:,:,3), H(:,:,2) ); H = reshape(H, size(H,1), size(H,2), 2, 2); if 0 % flip the main eigen-axes [e1,e2,l1,l2] = perform_tensor_decomp(H); H = perform_tensor_recomp(e2,e1,l1,l2); end h = plot_tensor_field(H, M, sub); return; end % swap X and Y axis %%% TODO a = H(:,:,2,2); H(:,:,2,2) = H(:,:,1,1); H(:,:,1,1) = a; hold on; if ~isempty(M) imagesc(rescale(M)); drawnow; end h = fn_tensordisplay(H(:,:,1,1),H(:,:,1,2), H(:,:,2,2), 'sub', sub, 'color', color); axis image; axis off; colormap jet(256); % hold off; function h = fn_tensordisplay(varargin) % function h = fn_tensordisplay([X,Y,]Txx,Txy,Tyy[,'sigma',sigma][,'sub',sub][,color][,patch options...]]) % function h = fn_tensordisplay([X,Y,]e[,'sigma',sigma][,'sub',sub][,color][,patch options...]]) % X,Y,Txx,Txy,Tyy if isstruct(varargin{1}) || isstruct(varargin{3}) if isstruct(varargin{1}), nextarg=1; else nextarg=3; end e = varargin{nextarg}; Txx = e.ytyt; Txy = -e.ytyx; Tyy = e.yxyx; if nextarg==1 [nj ni] = size(Txx); [X Y] = meshgrid(1:ni,1:nj); else [X Y] = deal(varargin{1:2}); end nextarg = nextarg+1; else [nj ni] = size(varargin{3}); if nargin<5 || ischar(varargin{4}) || ischar(varargin{5}) || any(size(varargin{5})~=[nj ni]) [X Y] = meshgrid(1:ni,1:nj); nextarg = 1; else [X Y] = deal(varargin{1:2}); nextarg = 3; end [Txx Txy Tyy] = deal(varargin{nextarg:nextarg+2}); nextarg = nextarg+3; end if any(size(X)==1), [X Y] = meshgrid(X,Y); end [nj,ni] = size(X); if any(size(Y)~=[nj ni]) || ... any(size(Txx)~=[nj ni]) || any(size(Txy)~=[nj ni]) || any(size(Tyy)~=[nj ni]) error('Matrices must be same size') end % sigma, sub, color color = 'r'; while nextarg<=nargin flag = varargin{nextarg}; nextarg=nextarg+1; if ~ischar(flag), color = flag; continue, end switch lower(flag) case 'sigma' sigma = varargin{nextarg}; nextarg = nextarg+1; switch length(sigma) case 1 sigmax = sigma; sigmay = sigma; case 2 sigmax = sigma(1); sigmay = sigma(2); otherwise error('sigma definition should entail two values'); end h = fspecial('gaussian',[ceil(2*sigmay) 1],sigmay)*fspecial('gaussian',[1 ceil(2*sigmax)],sigmax); Txx = imfilter(Txx,h,'replicate'); Txy = imfilter(Txy,h,'replicate'); Tyy = imfilter(Tyy,h,'replicate'); case 'sub' sub = varargin{nextarg}; nextarg = nextarg+1; switch length(sub) case 1 [x y] = meshgrid(1:sub:ni,1:sub:nj); sub = y+nj*(x-1); case 2 [x y] = meshgrid(1:sub(1):ni,1:sub(2):nj); sub = y+nj*(x-1); end X = X(sub); Y = Y(sub); Txx = Txx(sub); Txy = Txy(sub); Tyy = Tyy(sub); [nj ni] = size(sub); case 'color' color = varargin{nextarg}; nextarg = nextarg+1; otherwise break end end % options options = {varargin{nextarg:end}}; npoints = 50; theta = (0:npoints-1)*(2*pi/npoints); circle = [cos(theta) ; sin(theta)]; Tensor = cat(3,Txx,Txy,Txy,Tyy); % jdisplay x idisplay x tensor Tensor = reshape(Tensor,2*nj*ni,2); % (display x 1tensor) x 2tensor Ellipse = Tensor * circle; % (display x uv) x npoints Ellipse = reshape(Ellipse,nj*ni,2,npoints); % display x uv x npoints XX = repmat(X(:),1,npoints); % display x npoints YY = repmat(Y(:),1,npoints); % display x npoints U = reshape(Ellipse(:,1,:),nj*ni,npoints); % display x npoints V = reshape(Ellipse(:,2,:),nj*ni,npoints); % display x npoints umax = max(U')'; vmax = max(V')'; umax(umax==0)=1; vmax(vmax==0)=1; if ni==1, dx=1; else dx = X(1,2)-X(1,1); end if nj==1, dy=1; else dy = Y(2,1)-Y(1,1); end fact = min(dx./umax,dy./vmax)*.35; fact = repmat(fact,1,npoints); U = XX + fact.*U; V = YY + fact.*V; %----------- MM = mmax(Txx+Tyy); mm = mmin(Txx+Tyy); [S1, S2] = size(U); Colormap = zeros(S2, S1, 3); Map = colormap(jet(256)); for k =1:npoints Colormap(k,:,1) = Map(floor(255*(Txx(:)+Tyy(:)-mm)/(MM-mm)) + 1, 1); Colormap(k,:,2) = Map(floor(255*(Txx(:)+Tyy(:)-mm)/(MM-mm)) + 1, 2); Colormap(k,:,3) = Map(floor(255*(Txx(:)+Tyy(:)-mm)/(MM-mm)) + 1, 3); end %----------- %h = fill(U',V',color,'EdgeColor',color,options{:}); h = fill(U',V',Colormap,'EdgeColor', 'interp'); axis ij; if nargout==0, clear h, end function a=mmax(a) a = max(a(:)); function a=mmin(a) a = min(a(:));
github
jacksky64/imageProcessing-master
compute_structure_tensor.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_diffc/compute_structure_tensor.m
5,058
utf_8
606bd8981d5d25ac5b04496f5007d00b
function H = compute_structure_tensor(M,sigma1,sigma2, options) % compute_structure_tensor - compute the structure tensor % % T = compute_structure_tensor(M,sigma1,sigma2); % % sigma1 is pre smoothing width (in pixels). % sigma2 is post smoothing width (in pixels). % % Follows the ideas of % U. K?the, "Edge and Junction Detection with an Improved Structure Tensor", % Proc. of 25th DAGM Symposium, Magdeburg 2003, % Lecture Notes in Computer Science 2781, pp. 25-32, Berlin: Springer, 2003 % % You can set: % - options.sub=2 [default=2] to perform x2 interpolation of the % gradient to avoid aliasing. % - options.use_renormalization=1 [detault=0] to compute the tensor % using unit norm gradient vectors. % - options.use_anisotropic=1 [detaul=0] to perform anisotropic % smoothing using a hour-glass shaped gaussian kernel. % This better capture edges anisotropy. % % Copyright (c) 2006 Gabriel Peyre n = size(M,1); if nargin<2 sigma1 = 1; end if nargin<3 sigma2 = 3; end options.null = 0; sub = getoptions(options, 'sub', 2); use_anisotropic = getoptions(options, 'use_anisotropic', 0); use_grad_renormalization = getoptions(options, 'use_grad_renormalization', 0); use_tensor_renormalization = getoptions(options, 'use_tensor_renormalization', 0); m_theta = getoptions(options, 'm_theta', 16); sigmat = getoptions(options, 'sigmat', .4); lambda = 3; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % pre smoothing m = round( sigma1 )*2+1; m = max(m,7); h = compute_gaussian_filter([m m],sigma1/(lambda*n),[n n]); M = perform_convolution(M,h); % compute gradient [gx,gy] = compute_grad(M); % take the vector orthogonal to the gradient tmp = gx; gx = gy; gy = -tmp; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % interpolates if sub>1 meth = 'cubic'; [X,Y] = meshgrid(1:n,1:n); [XI,YI] = meshgrid(1:1/2:n+1/2,1:1/2:n+1/2); XI(:,end) = n; YI(end,:) = n; gx = interp2(X,Y,gx,XI,YI); gy = interp2(X,Y,gy,XI,YI); end if use_grad_renormalization d = sqrt( gx.^2 + gy.^2 ); d(d<eps) = 1; gx = gx./d; gy = gy./d; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % compute tensors T = zeros(n,n,2,2); gx2 = gx.^2; gy2 = gy.^2; gxy = gx.*gy; H = zeros(n*sub,n*sub,2,2); H(:,:,1,1) = gx2; H(:,:,2,2) = gy2; H(:,:,1,2) = gxy; H(:,:,2,1) = gxy; if use_tensor_renormalization sigma0 = 16; % initial isotropy eta0 = 12; % intial anisotropy [e1,e2,l1,l2] = perform_tensor_decomp(H); l1 = l1*0 + sqrt(sigma0*eta0); l2 = l2*0 + sqrt(sigma0/eta0); H = perform_tensor_recomp(e1,e2,l1,l2); end gx2 = H(:,:,1,1); gy2 = H(:,:,2,2); gxy = H(:,:,1,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % smooth if ~use_anisotropic m = round( sub*sigma2*1.2 )*2+1; m = min(m, round(n/2)*2+1); % perform isotropic smoothing h = compute_gaussian_filter([m m],sub*sigma2/(lambda*n),[n n]); gx2 = perform_convolution(gx2,h); gy2 = perform_convolution(gy2,h); gxy = perform_convolution(gxy,h); else % perform anisotropic hour-glass smoothing theta = linspace(0,pi,m_theta+1); theta(end) = []; for i=1:m_theta h = compute_hour_glass_filters( m*sub, sub*sigma2/(lambda*n), sigmat, n, theta(i) ); Gx2(:,:,i) = perform_convolution(gx2,h); Gy2(:,:,i) = perform_convolution(gy2,h); Gxy(:,:,i) = perform_convolution(gxy,h); end % select correct location Theta = repmat( mod(atan2(gy,gx),pi), [1 1 m_theta] ); theta = repmat( reshape(theta(:),[1 1 m_theta]), [sub*n sub*n 1] ); [tmp,I] = min( abs(Theta-theta),[],3 ); I = reshape( (1:(sub*n)^2)' + (I(:)-1)*(sub*n)^2, sub*n,sub*n ); gx2 = Gx2(I); gy2 = Gy2(I); gxy = Gxy(I); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % assemble tensor H = zeros(n,n,2,2); H(:,:,1,1) = gx2(1:sub:end,1:sub:end); H(:,:,2,2) = gy2(1:sub:end,1:sub:end); H(:,:,1,2) = gxy(1:sub:end,1:sub:end); H(:,:,2,1) = H(:,:,1,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = compute_hour_glass_filters( n, sigmar, sigmat, N, theta ) % sigmar is variance in radial direction (in pixels, so sigmar=4 is a good % choice) % sigmat is variance in angular direction (in radian, so sigmar=0.4 is a good % choice) if length(theta)>1 for i=1:length(theta) h(:,:,i) = compute_hour_glass_filters( n, sigma, N, theta(i) ); end return; end x = ( (0:n-1)-(n-1)/2 )/(N-1); [Y,X] = meshgrid(x,x); r = sqrt(X.^2 + Y.^2); phi = atan2(Y,X); f = exp( - r.^2 / (2*sigmar^2) ); f = f .* exp( - tan(phi-theta).^2 / (2*sigmat^2) ); f = f / sum(f(:));
github
jacksky64/imageProcessing-master
plot_tensor_field_nb.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_diffc/plot_tensor_field_nb.m
5,107
utf_8
5f6826cefc68c6e07eaf23afe0858e50
function h = plot_tensor_field(H, M, options) % plot_tensor_field - display a tensor field % % h = plot_tensor_field(H, M, options); % % options.sub controls sub-sampling % options.color controls color % % Copyright (c) 2006 Gabriel Peyre if nargin<3 options.null = 0; end if not( isstruct(options) ) sub = options; clear options; options.sub = sub; end sub = getoptions(options, 'sub', round(size(H,1)/30) ); color = getoptions(options, 'color', 'r'); if nargin<2 M = []; end if size(H,3)==3 && size(H,4)==1 H = cat(3, H(:,:,1), H(:,:,3), H(:,:,3), H(:,:,2) ); H = reshape(H, size(H,1), size(H,2), 2, 2); if 0 % flip the main eigen-axes [e1,e2,l1,l2] = perform_tensor_decomp(H); H = perform_tensor_recomp(e2,e1,l1,l2); end h = plot_tensor_field(H, M, sub); return; end % swap X and Y axis a = H(:,:,2,2); H(:,:,2,2) = H(:,:,1,1); H(:,:,1,1) = a; hold on; if ~isempty(M) imagesc(rescale(M)); end h = fn_tensordisplay(H(:,:,1,1),H(:,:,1,2), H(:,:,2,2), 'sub', sub, 'color', color); axis image; axis off; if ~isempty(M) && size(M,3)==1 colormap gray(256); end % hold off; function h = fn_tensordisplay(varargin) % function h = fn_tensordisplay([X,Y,]Txx,Txy,Tyy[,'sigma',sigma][,'sub',sub][,color][,patch options...]]) % function h = fn_tensordisplay([X,Y,]e[,'sigma',sigma][,'sub',sub][,color][,patch options...]]) % X,Y,Txx,Txy,Tyy if isstruct(varargin{1}) || isstruct(varargin{3}) if isstruct(varargin{1}), nextarg=1; else nextarg=3; end e = varargin{nextarg}; Txx = e.ytyt; Txy = -e.ytyx; Tyy = e.yxyx; if nextarg==1 [nj ni] = size(Txx); [X Y] = meshgrid(1:ni,1:nj); else [X Y] = deal(varargin{1:2}); end nextarg = nextarg+1; else [nj ni] = size(varargin{3}); if nargin<5 || ischar(varargin{4}) || ischar(varargin{5}) || any(size(varargin{5})~=[nj ni]) [X Y] = meshgrid(1:ni,1:nj); nextarg = 1; else [X Y] = deal(varargin{1:2}); nextarg = 3; end [Txx Txy Tyy] = deal(varargin{nextarg:nextarg+2}); nextarg = nextarg+3; end if any(size(X)==1), [X Y] = meshgrid(X,Y); end [nj,ni] = size(X); if any(size(Y)~=[nj ni]) || ... any(size(Txx)~=[nj ni]) || any(size(Txy)~=[nj ni]) || any(size(Tyy)~=[nj ni]) error('Matrices must be same size') end % sigma, sub, color color = 'r'; while nextarg<=nargin flag = varargin{nextarg}; nextarg=nextarg+1; if ~ischar(flag), color = flag; continue, end switch lower(flag) case 'sigma' sigma = varargin{nextarg}; nextarg = nextarg+1; switch length(sigma) case 1 sigmax = sigma; sigmay = sigma; case 2 sigmax = sigma(1); sigmay = sigma(2); otherwise error('sigma definition should entail two values'); end h = fspecial('gaussian',[ceil(2*sigmay) 1],sigmay)*fspecial('gaussian',[1 ceil(2*sigmax)],sigmax); Txx = imfilter(Txx,h,'replicate'); Txy = imfilter(Txy,h,'replicate'); Tyy = imfilter(Tyy,h,'replicate'); case 'sub' sub = varargin{nextarg}; nextarg = nextarg+1; switch length(sub) case 1 [x y] = meshgrid(1:sub:ni,1:sub:nj); sub = y+nj*(x-1); case 2 [x y] = meshgrid(1:sub(1):ni,1:sub(2):nj); sub = y+nj*(x-1); end X = X(sub); Y = Y(sub); Txx = Txx(sub); Txy = Txy(sub); Tyy = Tyy(sub); [nj ni] = size(sub); case 'color' color = varargin{nextarg}; nextarg = nextarg+1; otherwise break end end % options options = {varargin{nextarg:end}}; npoints = 50; theta = (0:npoints-1)*(2*pi/npoints); circle = [cos(theta) ; sin(theta)]; Tensor = cat(3,Txx,Txy,Txy,Tyy); % jdisplay x idisplay x tensor Tensor = reshape(Tensor,2*nj*ni,2); % (display x 1tensor) x 2tensor Ellipse = Tensor * circle; % (display x uv) x npoints Ellipse = reshape(Ellipse,nj*ni,2,npoints); % display x uv x npoints XX = repmat(X(:),1,npoints); % display x npoints YY = repmat(Y(:),1,npoints); % display x npoints U = reshape(Ellipse(:,1,:),nj*ni,npoints); % display x npoints V = reshape(Ellipse(:,2,:),nj*ni,npoints); % display x npoints umax = max(U')'; vmax = max(V')'; umax(umax==0)=1; vmax(vmax==0)=1; if ni==1, dx=1; else dx = X(1,2)-X(1,1); end if nj==1, dy=1; else dy = Y(2,1)-Y(1,1); end fact = min(dx./umax,dy./vmax)*.35; fact = repmat(fact,1,npoints); U = XX + fact.*U; V = YY + fact.*V; h = fill(U',V',color,'EdgeColor',color,options{:}); axis ij; if nargout==0, clear h, end
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_diffc/toolbox/load_image.m
20,485
utf_8
59636d167046aad9d9e169c474427ee1
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = getoptions(options, 'eta', .1); gamma = getoptions(options, 'gamma', 1/sqrt(2)); radius = getoptions(options, 'radius', 10); center = getoptions(options, 'center', [0 0]); center1 = getoptions(options, 'center1', [0 0]); w = getoptions(options, 'tube_width', 0.06); nb_points = getoptions(options, 'nb_points', 9); scaling = getoptions(options, 'scaling', 1); theta = getoptions(options, 'theta', 30 * 2*pi/360); eccentricity = getoptions(options, 'eccentricity', 1.3); sigma = getoptions(options, 'sigma', 0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end if strcmp(type(1:min(12,end)), 'square-tube-') k = str2double(type(13:end)); c1 = [.22 .5]; c2 = [1-c1(1) .5]; eta = 1.5; r1 = [c1 c1] + .21*[-1 -eta 1 eta]; r2 = [c2 c2] + .21*[-1 -eta 1 eta]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); if mod(k,2)==0 sel = n/2-k/2+1:n/2+k/2; else sel = n/2-(k-1)/2:n/2+(k-1)/2; end M( round(.25*n:.75*n), sel ) = 1; return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case 'constant' M = ones(n); case 'ramp' x = linspace(0,1,n); [Y,M] = meshgrid(x,x); case 'bump' s = getoptions(options, 'bump_size', .5); c = getoptions(options, 'center', [0 0]); if length(s)==1 s = [s s]; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); X = (X-c(1))/s(1); Y = (Y-c(2))/s(2); M = exp( -(X.^2+Y.^2)/2 ); case 'periodic' x = linspace(-pi,pi,n)/1.1; [Y,X] = meshgrid(x,x); f = getoptions(options, 'freq', 6); M = (1+cos(f*X)).*(1+cos(f*Y)); case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} M = create_letter(type(8), radius, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.im = 0.09; M = load_image('square-tube', n, options); case 'polygon' theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' options.radius = 0.45; options.center = [.5 .5]; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T-pi/2)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end f = getoptions(options, 'frequency', 30); eta = getoptions(options, 'width', .3); x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' width = getoptions(width, round(n/16) ); [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'geometrical' J = getoptions(options, 'Jgeometrical', 4); sgeom = 100*n/256; options.bound = 'per'; A = ones(n); for j=0:J-1 B = A; for k=1:2^j I = find(B==k); U = perform_blurring(randn(n),sgeom,options); s = median(U(I)); I1 = find( (B==k) & (U>s) ); I2 = find( (B==k) & (U<=s) ); A(I1) = 2*k-1; A(I2) = 2*k; end end M = A; case 'lic-texture' disp('Computing random tensor field.'); options.sigma_tensor = getoptions(options, 'lic_regularity', 50*n/256); T = compute_tensor_field_random(n,options); Flow = perform_tensor_decomp(T); % extract eigenfield. options.isoriented = 0; % no orientation in streamlines % initial texture lic_width = getoptions(options, 'lic_width', 0); M0 = perform_blurring(randn(n),lic_width); M0 = perform_histogram_equalization( M0, 'linear'); options.histogram = 'linear'; options.dt = 0.4; options.M0 = M0; options.verb = 1; options.flow_correction = 1; options.niter_lic = 3; w = 30; M = perform_lic(Flow, w, options); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'tv-image' M = rand(n); tau = compute_total_variation(M); options.niter = 400; [M,err_tv,err_l2] = perform_tv_projection(M,tau/1000,options); M = perform_histogram_equalization(M,'linear'); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); theta = getoptions(options, 'theta', .2); freq = getoptions(options, 'freq', .2); X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} alpha = getoptions(options, 'alpha', 1); M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian sigma = getoptions(options, 'sigma', 10); M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature c = getoptions(c, 'c', .1); % angle theta = getoptions(options, 'theta', pi/sqrt(2)); x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' nbr_periods = getoptions(options, 'nbr_periods', 8); theta = getoptions(options, 'theta', 1/sqrt(2)); skew = getoptions(options, 'skew', 1/sqrt(2) ); A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' sigma = getoptions(options, 'sigma', 1); M = randn(n) * sigma; otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end M = perform_blurring(M,sigma); return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 M = perform_blurring(M,sigma); end M = rescale(M); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
jacksky64/imageProcessing-master
compute_periodic_poisson.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_diffc/toolbox/compute_periodic_poisson.m
855
utf_8
52f67b893134bee2f5ec735f55733e1f
function G = compute_periodic_poisson(d, symmetrize) % compute_periodic_poisson - solve poisson equation % % G = compute_periodic_poisson(d,symmetrize); % % Solve % Delta(G) = d % with periodic boundary condition. % G has zero mean. % % Set symmetrize=1 (default 0) if the data divergence d is not periodic. % This will double the size and consider symmetric extension. % % Copyright (c) 2007 Gabriel Peyre n = size(d,1); if nargin==2 && symmetrize d = perform_size_doubling(d); G = compute_periodic_poisson(d); G = G(1:n,1:n); return; end % solve for laplacian [Y,X] = meshgrid(0:n-1,0:n-1); mu = sin(X*pi/n).^2; mu = -4*( mu+mu' ); mu(1) = 1; % avoid division by 0 G = fft2(d) ./ mu; G(1) = 0; G = real( ifft2( G ) ); %% function g = perform_size_doubling(g) g = [g;g(end:-1:1,:,:)]; g = [g,g(:,end:-1:1,:)];
github
jacksky64/imageProcessing-master
perform_windowed_fourier_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/perform_windowed_fourier_transform.m
5,038
utf_8
96c27071ef4e8304b6051ed54d7ad8b8
function y = perform_windowed_fourier_transform(x,w,q,n, options) % perform_windowed_fourier_transform - compute a local Fourier transform % % Forward transform: % MF = perform_windowed_fourier_transform(M,w,q,n, options); % Backward transform: % M = perform_windowed_fourier_transform(MF,w,q,n, options); % % w is the width of the window used to perform local computation. % q is the spacing betwen each window. % % MF(:,:,,i,j) contains the spectrum around point ((i-1)*q,(j-1)*q)+1. % % A typical use, for an redundancy of 2x2 could be w=2*q+1 % % options.bound can be either 'per' or 'sym' % % options.normalization can be set to % 'tightframe': tight frame transform, with energy conservation. % 'unit': unit norm basis vectors, usefull to do thresholding % % Copyright (c) 2006 Gabriel Peyre options.null = 0; if size(x,3)>1 dir = -1; if nargin<4 % assume power of 2 size n = q*size(x,3); n = 2^floor(log2(n)); end else dir = 1; n = size(x,1); end if isfield(options, 'bound') bound = options.bound; else bound = 'sym'; bound = 'per'; end if isfield(options, 'transform_type') transform_type = options.transform_type; else transform_type = 'fourier'; end if isfield(options, 'normalization') normalization = options.normalization; else normalization = 'tightframe'; end % perform sampling t = 1:q:n+1; [Y,X] = meshgrid(t,t); p = size(X,1); if mod(w,2)==1 % w = ceil((w-1)/2)*2+1; w1 = (w-1)/2; t = -w1:w1; else t = -w/2+1:w/2; end [dY,dX] = meshgrid(t,t); X = reshape(X,[1 1 p p]); Y = reshape(Y,[1 1 p p]); X = repmat( X, [w w 1 1] ); Y = repmat( Y, [w w 1 1] ); dX = repmat( dX, [1 1 p p] ); dY = repmat( dY, [1 1 p p] ); X1 = X+dX; Y1 = Y+dY; switch lower(bound) case 'sym' X1(X1<1) = 1-X1(X1<1); X1(X1>n) = 2*n+1-X1(X1>n); Y1(Y1<1) = 1-Y1(Y1<1); Y1(Y1>n) = 2*n+1-Y1(Y1>n); case 'per' X1 = mod(X1-1,n)+1; Y1 = mod(Y1-1,n)+1; end % build a weight function if isfield(options, 'window_type') window_type = options.window_type; else window_type = 'sin'; end if isfield(options, 'eta') eta = options.eta; else eta = 1; end if strcmp(window_type, 'sin') t = linspace(0,1,w); W = sin(t(:)*pi).^2; W = W * W'; elseif strcmp(window_type, 'constant') W = ones(w); else error('Unkwnown winow.'); end I = X1 + (Y1-1)*n; %% renormalize the windows weight = zeros(n); for i=1:p for j=1:p weight(I(:,:,i,j)) = weight(I(:,:,i,j)) + W.^2; end end weight = sqrt(weight); Weight = repmat(W, [1 1 p p]); for i=1:p for j=1:p Weight(:,:,i,j) = Weight(:,:,i,j) ./ weight(I(:,:,i,j)); end end if strcmp(normalization, 'unit') if strcmp(transform_type, 'fourier') % for Fourier it is easy Renorm = sqrt( sum( sum( Weight.^2, 1 ), 2 ) )/w; else % for DCT it is less easy ... % take a typical window in the middle of the image weight = Weight(:,:,round(end/2),round(end/2)); % compute diracs [X,Y,fX,fY] = ndgrid(0:w-1,0:w-1,0:w-1,0:w-1); A = 2 * cos( pi/w * ( X+1/2 ).*fX ) .* cos( pi/w * ( Y+1/2 ).*fY ) / w; A(:,:,1,:) = A(:,:,1,:) / sqrt(2); % scale zero frequency A(:,:,:,1) = A(:,:,:,1) / sqrt(2); A = A .* repmat( weight, [1 1 w w] ); Renorm = sqrt( sum( sum( abs(A).^2, 1 ),2 ) ); end Renorm = reshape( Renorm, w,w ); end %% compute the transform if dir==1 y = zeros(eta*w,eta*w,p,p); if mod(w,2)==1 m = (eta*w+1)/2; w1 = (w-1)/2; sel = m-w1:m+w1; else m = (eta*w)/2+1; w1 = w/2; sel = m-w1:m+w1-1; end y(sel,sel,:,:) = x(I) .* Weight; % perform the transform y = my_transform( y, +1, transform_type ); % renormalize if necessary if strcmp(normalization, 'unit') y = y ./ repmat( Renorm, [1 1 p p] ); end else if strcmp(normalization, 'unit') x = x .* repmat( Renorm, [1 1 p p] ); end x = my_transform( x, -1, transform_type ); x = real( x.*Weight ); y = zeros(n); for i=1:p for j=1:p y(I(:,:,i,j)) = y(I(:,:,i,j)) + x(:,:,i,j); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = my_transform(x,dir,transform_type) % my_transform - perform either FFT or DCT with energy conservation. % Works on array of size (w,w,a,b) on the 2 first dimensions. w = size(x,1); if strcmp(transform_type, 'fourier') % normalize for energy conservation if dir==1 y = fftshift( fft2(x) ) / w; else y = ifft2( ifftshift(x*w) ); end elseif strcmp(transform_type, 'dct') for i=1:size(x,3) for j=1:size(x,4) y(:,:,i,j) = perform_dct_transform(x(:,:,i,j),dir); end end else error('Unknown transform'); end
github
jacksky64/imageProcessing-master
load_hdr.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/load_hdr.m
4,928
utf_8
cdf17b3681f4c6902ed0f7de2ad31f7d
function [img, fileinfo] = read_hdr(filename) % load_hdr - loading a radiance RBGE file. % % [img, fileinfo] = read_rle_rgbe(filename); % % Written by Lawrence A. Taplin ([email protected]) % % Based loosely on the c-code RGBE implementation written by Bruce Walters % http://www.graphics.cornell.edu/~bjw/rgbe.html % % function to read a run length encoded RGBE picture file and header. This does % not work if the image is not RLE!!! do_rescale = 0; % check if the image is in classical image (eg. TIFF) format if ~strcmp(filename(end-2:end), 'hdr') img = double(imread(filename)); if do_rescale img = rescale(img); end fileinfo = []; return; end tic %open the file fid = fopen(filename,'r'); if fid<0 error(['File not found:' filename '.']); end %read the magic number tline = fgetl(fid); if length(tline)<3 | tline(1:2) ~= '#?' error('invalid header'); end fileinfo.identifier = tline(3:end); %read the header variables into a structure tline = fgetl(fid); while ~isempty(tline) %find and set the variable name n = strfind(tline,'='); if ~isempty(n) % skip stuff I don't understand vname = lower(tline(1:n(1)-1)); vval = tline(n+1:end); fileinfo = setfield(fileinfo,vname,tline(n+1:end)); fprintf('Variable = %s, Value = %s\n',vname, vval); end %read the next line tline = fgetl(fid); end %set the resolution variables tline = fgetl(fid); fileinfo.Ysign = tline(1); [fileinfo.height,count,errmsg,nextindex] = sscanf(tline(4:end),'%d',1); fileinfo.Xsign = tline(nextindex+4); [fileinfo.width,count,errmsg,nextindex] = sscanf(tline(nextindex+7:end),'%d',1); fprintf('resolution: %s\n',tline); %allocate space for the scan line data img = zeros(fileinfo.height, fileinfo.width, 3); %read the scanline data if fileinfo.format == '32-bit_rle_rgbe'; fprintf('Decoding RLE Data stream\n'); end %read the remaining data [data, count] = fread(fid,inf,'uint8'); fclose(fid); scanline_width = fileinfo.width; num_scanlines = fileinfo.height; if ((scanline_width < 8)|(scanline_width > 32767)) % run length encoding is not allowed so read flat img = rgbe2float(reshape(data,fileinfo.width,fileinfo.height,4)); return; end scanline_buffer = repmat(uint8(0),scanline_width,4); dp = 1; %set the data pointer to the begining of the read data % read in each successive scanline */ for scanline=1:num_scanlines % if mod(scanline,fix(num_scanlines/100))==0 % fprintf('scanline = %d\n',scanline); % end % if (data(dp) ~= 2) | (data(dp+1) ~= 2)% | (bitget(data(dp+2),8)~=1) error('this file is not run length encoded'); end if (bitshift(data(dp+2),8)+data(dp+3))~=scanline_width % -128 error('wrong scanline width'); end dp = dp+4; % read each of the four channels read the scanline into the buffer for i=1:4 ptr = 1; while(ptr <= scanline_width) if (data(dp) > 128) % a run of the same value count = data(dp)-128; if ((count == 0)|(count-1 > scanline_width - ptr)) warning('bad scanline data'); end scanline_buffer(ptr:ptr+count-1,i) = data(dp+1); dp = dp+2; ptr = ptr+count; else % a non-run count = data(dp); dp = dp+1; if ((count == 0)|(count-1 > scanline_width - ptr)) warning('bad scanline data'); end scanline_buffer(ptr:ptr+count-1,i) = data(dp:dp+count-1); ptr = ptr+count; dp = dp+count; end end end % now convert data from buffer into floats img(scanline,:,:) = rgbe2float(scanline_buffer); end toc % rescale to 0-1 if do_rescale a = min(img(:)); b = max(img(:)); img = (img-a)/(b-a); end % standard conversion from float pixels to rgbe pixels % the last dimension is assumed to be color function [rgbe] = float2rgbe(rgb) s = size(rgb); rgb = reshape(rgb,prod(s)/3,3); rgbe = reshape(repmat(uint8(0),[s(1:end-1),4]),prod(s)/3,4); v = max(rgb,[],2); %find max rgb l = find(v>1e-32); %find non zero pixel list rgbe(l,4) = uint8(round(128.5+log(v)/log(2))); %find E rgbe(l,1:3) = uint8(rgb(l,1:3)./repmat(2.^(double(rgbe(l,4))-128-8),1,3)); %find rgb multiplier reshape(rgbe,[s(1:end-1),4]); %reshape back to original dimensions % standard conversion from rgbe to float pixels */ % note: Ward uses ldexp(col+0.5,exp-(128+8)). However we wanted pixels */ % in the range [0,1] to map back into the range [0,1]. */ function [rgb] = rgbe2float(rgbe) s = size(rgbe); rgbe = reshape(rgbe,prod(s)/4,4); rgb = zeros(prod(s)/4,3); l = find(rgbe(:,4)>0); %nonzero pixel list rgb(l,:) = double(rgbe(l,1:3)).*repmat(2.^(double(rgbe(l,4))-128-8),1,3); rgb = reshape(rgb,[s(1:end-1),3]);
github
jacksky64/imageProcessing-master
load_image.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/load_image.m
21,410
utf_8
a83de39372a6892ac46820c6bea2e094
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; if iscell(type) for i=1:length(type) M{i} = load_image(type{i},n,options); end return; end type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = getoptions(options, 'eta', .1); gamma = getoptions(options, 'gamma', 1/sqrt(2)); radius = getoptions(options, 'radius', 10); center = getoptions(options, 'center', [0 0]); center1 = getoptions(options, 'center1', [0 0]); w = getoptions(options, 'tube_width', 0.06); nb_points = getoptions(options, 'nb_points', 9); scaling = getoptions(options, 'scaling', 1); theta = getoptions(options, 'theta', 30 * 2*pi/360); eccentricity = getoptions(options, 'eccentricity', 1.3); sigma = getoptions(options, 'sigma', 0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end if strcmp(type(1:min(12,end)), 'square-tube-') k = str2double(type(13:end)); c1 = [.22 .5]; c2 = [1-c1(1) .5]; eta = 1.5; r1 = [c1 c1] + .21*[-1 -eta 1 eta]; r2 = [c2 c2] + .21*[-1 -eta 1 eta]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); if mod(k,2)==0 sel = n/2-k/2+1:n/2+k/2; else sel = n/2-(k-1)/2:n/2+(k-1)/2; end M( round(.25*n:.75*n), sel ) = 1; return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case 'constant' M = ones(n); case 'ramp' x = linspace(0,1,n); [Y,M] = meshgrid(x,x); case 'bump' s = getoptions(options, 'bump_size', .5); c = getoptions(options, 'center', [0 0]); if length(s)==1 s = [s s]; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); X = (X-c(1))/s(1); Y = (Y-c(2))/s(2); M = exp( -(X.^2+Y.^2)/2 ); case 'periodic' x = linspace(-pi,pi,n)/1.1; [Y,X] = meshgrid(x,x); f = getoptions(options, 'freq', 6); M = (1+cos(f*X)).*(1+cos(f*Y)); case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} M = create_letter(type(8), radius, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.im = 0.09; M = load_image('square-tube', n, options); case 'polygon' theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' options.radius = 0.45; options.center = [.5 .5]; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T-pi/2)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end f = getoptions(options, 'frequency', 30); eta = getoptions(options, 'width', .3); x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' width = getoptions(options, 'width', round(n/16) ); [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'geometrical' J = getoptions(options, 'Jgeometrical', 4); sgeom = 100*n/256; options.bound = 'per'; A = ones(n); for j=0:J-1 B = A; for k=1:2^j I = find(B==k); U = perform_blurring(randn(n),sgeom,options); s = median(U(I)); I1 = find( (B==k) & (U>s) ); I2 = find( (B==k) & (U<=s) ); A(I1) = 2*k-1; A(I2) = 2*k; end end M = A; case 'lic-texture' disp('Computing random tensor field.'); options.sigma_tensor = getoptions(options, 'lic_regularity', 50*n/256); T = compute_tensor_field_random(n,options); Flow = perform_tensor_decomp(T); % extract eigenfield. options.isoriented = 0; % no orientation in streamlines % initial texture lic_width = getoptions(options, 'lic_width', 0); M0 = perform_blurring(randn(n),lic_width); M0 = perform_histogram_equalization( M0, 'linear'); options.histogram = 'linear'; options.dt = 0.4; options.M0 = M0; options.verb = 1; options.flow_correction = 1; options.niter_lic = 3; w = 30; M = perform_lic(Flow, w, options); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'tv-image' M = rand(n); tau = compute_total_variation(M); options.niter = 400; [M,err_tv,err_l2] = perform_tv_projection(M,tau/1000,options); M = perform_histogram_equalization(M,'linear'); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'line-windowed' x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); eta = .3; gamma = getoptions(options, 'gamma', pi/10); parabola = getoptions(options, 'parabola', 0); M = (X-eta) - gamma*Y - parabola*Y.^2 < 0; f = sin( pi*x ).^2; M = M .* ( f'*f ); case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); theta = getoptions(options, 'theta', .2); freq = getoptions(options, 'freq', .2); X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} alpha = getoptions(options, 'alpha', 1); M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian sigma = getoptions(options, 'sigma', 10); M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature c = getoptions(c, 'c', .1); % angle theta = getoptions(options, 'theta', pi/sqrt(2)); x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' nbr_periods = getoptions(options, 'nbr_periods', 8); theta = getoptions(options, 'theta', 1/sqrt(2)); skew = getoptions(options, 'skew', 1/sqrt(2) ); A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' sigma = getoptions(options, 'sigma', 1); M = randn(n) * sigma; case 'disk-corner' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); rho = .3; eta = .1; M1 = rho*X+eta<Y; c = [0 .2]; r = .85; d = (X-c(1)).^2 + (Y-c(2)).^2; M2 = d<r^2; M = M1.*M2; otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'tif', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end if strcmp(type, 'peppers-bw') M(:,1) = M(:,2); M(1,:) = M(2,:); end if sigma>0 M = perform_blurring(M,sigma); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 M = perform_blurring(M,sigma); end M = rescale(M); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
jacksky64/imageProcessing-master
grab_inpainting_mask.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/grab_inpainting_mask.m
3,717
utf_8
c160d95ddbbe80a15f290993fd6bac1a
function [U,point_list] = grab_inpainting_mask(M, options) % grab_inpainting_mask - create a mask from user input % % U = grab_inpainting_mask(M, options); % % Select set of point in an image (useful to select a region for % inpainting). The set of point is U==Inf. % % options.r is the radius for selection (default r=5). % % Selection stops with right click. % % Set options.mode='points' to gather disconnected points. % Set options.mode='line' to gather connected lines. % % Copyright (c) 2006 Gabriel Peyre if nargin==3 && method==1 U = grab_inpainting_mask_old(M, options); return; end options.null = 0; r = getoptions(options, 'r', 5); method = getoptions(options, 'mode', 'points'); if strcmp(method, 'line') if not(isfield(options, 'point_list')) [V,point_list] = pick_polygons(rescale(sum(M,3)),r); else point_list = options.point_list; V = draw_polygons(rescale(sum(M,3)),r,point_list); end U = M; U(V==1) = Inf; return; end m = size(M,1); n = size(M,2); s = size(M,3); U = sum(M,3)/3; b = 1; [Y,X] = meshgrid(1:n,1:m); point_list = []; while b==1 clf; hold on; imagesc(rescale(M)); axis image; axis off; colormap gray(256); [y,x,b] = ginput(1); point_list(:,end+1) = [x;y]; I = find((X-x).^2 + (Y-y).^2 <= r^2 ); U(I) = Inf; for k=1:s Ma = M(:,:,k); Ma(I) = 0; M(:,:,k) = Ma; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end function [sk,point_list] = pick_polygons(mask,r) % pick_polygons - ask for the user to build a set of curves % % sk = pick_polygons(mask,r); % % mask is a background image (should be in [0,1] approx). % % The user right-click on a set of point which create a curve. % Left click stop a curve. % Another left click stop the process. % % Copyright (c) 2007 Gabriel Peyre n = size(mask,1); sk = zeros(n); point_list = {}; b = 1; while b(end)==1 % draw a line clf; imagesc(mask+sk); axis image; axis off; colormap gray(256); [y1,x1,b] = ginput(1); pl = [x1;y1]; while b==1 clf; imagesc(mask+sk); axis image; axis off; [y2,x2,c] = ginput(1); if c~=1 if length(pl)>1 point_list{end+1} = pl; end break; end pl(:,end+1) = [x2;y2]; sk = draw_line(sk,x1,y1,x2,y2,r); x1 = x2; y1 = y2; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 80; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function U = grab_inpainting_mask_old(M, r) % grab_inpainting_mask - create a mask from user input % % U = grab_inpainting_mask(M, r); % % r is the radius for selection (default r=5). % % Selection stops with right click. % % Copyright (c) 2006 Gabriel Peyr? if nargin<2 r = 5; end m = size(M,1); n = size(M,2); s = size(M,3); U = sum(M,3)/3; b = 1; [Y,X] = meshgrid(1:n,1:m); while b==1 clf; hold on; imagesc(rescale(M)); axis image; axis off; colormap gray(256); [y,x,b] = ginput(1); I = find((X-x).^2 + (Y-y).^2 <= r^2 ); U(I) = Inf; for k=1:s Ma = M(:,:,k); Ma(I) = 0; M(:,:,k) = Ma; end end
github
jacksky64/imageProcessing-master
change_color_mode.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/change_color_mode.m
7,483
utf_8
184fcadc594ac09e3b2a2086820890bb
function [M,ColorP] = change_color_mode(M,dir,options) % change_color_mode - change of color representation % % M = change_color_mode(M,dir,options); % % switch between RGB and another color mode. % % options.color_mode can be: % 'rgb' (no change), 'hsv', 'ycbcr', 'pca' % % For PCA you should proceed like this: % [Mg,options.ColorP] = change_color_mode(M0,+1,options); % M1 = change_color_mode(Mg,-1,options); % % Copyright (c) 2007 Gabriel Peyre options.null = 0; color_mode = getoptions(options, 'color_mode', 'hsv'); if strcmp(color_mode,'rgb') return; end n = size(M,1); if size(M,3)~=3 error('Works only for color images'); end if strcmp(color_mode, 'pca') nsamples = min(8000,n^2); if not(isfield(options, 'ColorP')) if dir==-1 error('You must provide options.ColorP'); end if nargout==1 error('Output argument ColorP Missing'); end % compute PCA components Ma = reshape(M,n^2,3); sel = randperm(n^2); sel = sel(1:nsamples); [Y,X1,v,Psi] = pca( Ma(sel,:)',3); ColorP = cat(2, Y, Psi(:)); else ColorP = options.ColorP; end if dir==1 M = reshape(M,n^2,3)'; M = ColorP(:,1:3)'*(M - repmat(ColorP(:,4), 1,n^2)); M = reshape(M',n,n,3); else M = reshape(M,n^2,3)'; M = ColorP(:,1:3)*M + repmat(ColorP(:,4), 1,n^2); M = reshape(M',n,n,3); end return; end warning off; if dir==1 M = feval( ['rgb2' color_mode], M); end if strcmp(color_mode, 'hsv') M = M(:,:,3:-1:1); end if dir==-1 M = feval( [color_mode '2rgb'], M); end warning on; function out = rgb2ycbcr(in) %RGB2YCBCR Convert RGB values to YCBCR color space. % YCBCRMAP = RGB2YCBCR(MAP) converts the RGB values in MAP to % the YCBCR color space. YCBCRMAP is a M-by-3 matrix that contains % the YCBCR luminance (Y) and chrominance (Cb and Cr) color values as % columns. Each row represents the equivalent color to the % corresponding row in the RGB colormap. % % YCBCR = RGB2YCBCR(RGB) converts the truecolor image RGB to the % equivalent image in the YCBCR color space. % % Class Support % ------------- % If the input is an RGB image, it can be of class uint8, uint16, % or double; the output image is of the same class as the input % image. If the input is a colormap, the input and output colormaps % are both of class double. % % Examples % -------- % Convert RGB image to YCbCr. % % RGB = imread('board.tif'); % YCBCR = rgb2ycbcr(RGB); % % Convert RGB color space to YCbCr. % % map = jet(256); % newmap = rgb2ycbcr(map); % See also NTSC2RGB, RGB2NTSC, YCBCR2RGB. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.13.4.2 $ $Date: 2003/08/23 05:54:37 $ % Reference: % C.A. Poynton, "A Technical Introduction to Digital Video", John Wiley % & Sons, Inc., 1996, p. 175 %initialize variables isColormap = false; classin = class(in); %must reshape colormap to be m x n x 3 for transformation if (ndims(in)==2) %colormap isColormap=true; colors = size(in,1); in = reshape(in, [colors 1 3]); end % set up constants for transformation T = [65.481 128.553 24.966;... -37.797 -74.203 112; ... 112 -93.786 -18.214]; offset = [16;128;128]; offset16 = 257 * offset; fac8 = 1/255; fac16 = 257/65535; %initialize output out = in; % do transformation switch classin case 'uint8' for p=1:3 out(:,:,p) = imlincomb(T(p,1)*fac8,in(:,:,1),T(p,2)*fac8,in(:,:,2),... T(p,3)*fac8,in(:,:,3),offset(p)); end case 'uint16' for p=1:3 out(:,:,p) = imlincomb(T(p,1)*fac16,in(:,:,1),T(p,2)*fac16,in(:,:,2),... T(p,3)*fac16,in(:,:,3),offset16(p)); end case 'double' % These equations transform RGB in [0,1] to YCBCR in [0, 255] for p=1:3 out(:,:,p) = T(p,1) * in(:,:,1) + T(p,2) * in(:,:,2) + T(p,3) * ... in(:,:,3) + offset(p); end out = out / 255; end if isColormap out = reshape(out, [colors 3 1]); end function rgb = ycbcr2rgb(in) %YCBCR2RGB Convert YCbCr values to RGB color space. % RGBMAP = YCBCR2RGB(YCBCRMAP) converts the YCbCr values in the % colormap YCBCRMAP to the RGB color space. If YCBCRMAP is M-by-3 and % contains the YCbCr luminance (Y) and chrominance (Cb and Cr) color % values as columns, then RGBMAP is an M-by-3 matrix that contains % the red, green, and blue values equivalent to those colors. % % RGB = YCBCR2RGB(YCBCR) converts the YCbCr image to the equivalent % truecolor image RGB. % % Class Support % ------------- % If the input is a YCbCr image, it can be of class uint8, uint16, % or double; the output image is of the same class as the input % image. If the input is a colormap, the input and output % colormaps are both of class double. % % Example % ------- % Convert image from RGB space to YCbCr space and back. % % rgb = imread('board.tif'); % ycbcr = rgb2ycbcr(rgb); % rgb2 = ycbcr2rgb(ycbcr); % % See also NTSC2RGB, RGB2NTSC, RGB2YCBCR. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.15.4.2 $ $Date: 2003/08/23 05:54:51 $ % Reference: % Charles A. Poynton, "A Technical Introduction to Digital Video", % John Wiley & Sons, Inc., 1996 %initialize variables isColormap = false; classin = class(in); %must reshape colormap to be m x n x 3 for transformation if (ndims(in)==2) %colormap isColormap=true; colors = size(in,1); in = reshape(in, [colors 1 3]); end %initialize output rgb = in; % set up constants for transformation. T alone will transform YCBCR in [0,255] % to RGB in [0,1]. We must scale T and the offsets to get RGB in the appropriate % range for uint8 and for uint16 arrays. T = [65.481 128.553 24.966;... -37.797 -74.203 112; ... 112 -93.786 -18.214]; Tinv = T^-1; offset = [16;128;128]; Td = 255 * Tinv; offsetd = Tinv * offset; T8 = Td; offset8 = T8 * offset; T16 = (65535/257) * Tinv; offset16 = 65535 * Tinv * offset; switch classin case 'double' for p = 1:3 rgb(:,:,p) = Td(p,1) * in(:,:,1) + Td(p,2) * in(:,:,2) + ... Td(p,3) * in(:,:,3) - offsetd(p); end case 'uint8' for p = 1:3 rgb(:,:,p) = imlincomb(T8(p,1),in(:,:,1),T8(p,2),in(:,:,2), ... T8(p,3),in(:,:,3),-offset8(p)); end case 'uint16' for p = 1:3 rgb(:,:,p) = imlincomb(T16(p,1),in(:,:,1),T16(p,2),in(:,:,2), ... T16(p,3),in(:,:,3),-offset16(p)); end end if isColormap rgb = reshape(rgb, [colors 3 1]); end if isa(rgb,'double') rgb = min(max(rgb,0.0),1.0); end %%% %Parse Inputs %%% function X = parse_inputs(varargin) checknargin(1,1,nargin,mfilename); X = varargin{1}; if ndims(X)==2 checkinput(X,{'uint8','uint16','double'},'real nonempty',mfilename,'MAP',1); if (size(X,2) ~=3 || size(X,1) < 1) eid = sprintf('Images:%s:invalidSizeForColormap',mfilename); msg = 'MAP must be a m x 3 array.'; error(eid,'%s',msg); end elseif ndims(X)==3 checkinput(X,{'uint8','uint16','double'},'real',mfilename,'RGB',1); if (size(X,3) ~=3) eid = sprintf('Images:%s:invalidTruecolorImage',mfilename); msg = 'RGB must a m x n x 3 array.'; error(eid,'%s',msg); end else eid = sprintf('Images:%s:invalidInputSize',mfilename); msg = ['RGB2GRAY only accepts two-dimensional or three-dimensional ' ... 'inputs.']; error(eid,'%s',msg); end
github
jacksky64/imageProcessing-master
compute_ssim_index.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/compute_ssim_index.m
19,068
utf_8
5e9683c1871d1245fa1be59a084a9927
function [mssim, ssim_map] = compute_ssim_index(img1, img2, K, window, L) %======================================================================== %SSIM Index, Version 1.0 %Copyright(c) 2003 Zhou Wang %All Rights Reserved. % %The author is with Howard Hughes Medical Institute, and Laboratory %for Computational Vision at Center for Neural Science and Courant %Institute of Mathematical Sciences, New York University. % %---------------------------------------------------------------------- %Permission to use, copy, or modify this software and its documentation %for educational and research purposes only and without fee is hereby %granted, provided that this copyright notice and the original authors' %names appear on all copies and supporting documentation. This program %shall not be used, rewritten, or adapted as the basis of a commercial %software or hardware product without first obtaining permission of the %authors. The authors make no representations about the suitability of %this software for any purpose. It is provided "as is" without express %or implied warranty. %---------------------------------------------------------------------- % %This is an implementation of the algorithm for calculating the %Structural SIMilarity (SSIM) index between two images. Please refer %to the following paper: % %Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image %quality assessment: From error visibility to structural similarity" %IEEE Transactios on Image Processing, vol. 13, no. 4, pp.600-612, %Apr. 2004. % %Kindly report any suggestions or corrections to [email protected] % %---------------------------------------------------------------------- % %Input : (1) img1: the first image being compared % (2) img2: the second image being compared % (3) K: constants in the SSIM index formula (see the above % reference). defualt value: K = [0.01 0.03] % (4) window: local window for statistics (see the above % reference). default widnow is Gaussian given by % window = fspecial('gaussian', 11, 1.5); % (5) L: dynamic range of the images. default: L = 255 % %Output: (1) mssim: the mean SSIM index value between 2 images. % If one of the images being compared is regarded as % perfect quality, then mssim can be considered as the % quality measure of the other image. % If img1 = img2, then mssim = 1. % (2) ssim_map: the SSIM index map of the test image. The map % has a smaller size than the input images. The actual size: % size(img1) - size(window) + 1. % %Default Usage: % Given 2 test images img1 and img2, whose dynamic range is 0-255 % % [mssim ssim_map] = ssim_index(img1, img2); % %Advanced Usage: % User defined parameters. For example % % K = [0.05 0.05]; % window = ones(8); % L = 100; % [mssim ssim_map] = ssim_index(img1, img2, K, window, L); % %See the results: % % mssim %Gives the mssim value % imshow(max(0, ssim_map).^4) %Shows the SSIM index map % %======================================================================== Lmax = 1; if (nargin < 2 | nargin > 5) ssim_index = -Inf; ssim_map = -Inf; return; end if (size(img1) ~= size(img2)) ssim_index = -Inf; ssim_map = -Inf; return; end [M N] = size(img1); if (nargin == 2) if ((M < 11) | (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); % K(1) = 0.01; % default settings K(2) = 0.03; % L = Lmax; % end if (nargin == 3) if ((M < 11) | (N < 11)) ssim_index = -Inf; ssim_map = -Inf; return end window = fspecial('gaussian', 11, 1.5); L = Lmax; if (length(K) == 2) if (K(1) < 0 | K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 4) [H W] = size(window); if ((H*W) < 4 | (H > M) | (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end L = Lmax; if (length(K) == 2) if (K(1) < 0 | K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end if (nargin == 5) [H W] = size(window); if ((H*W) < 4 | (H > M) | (W > N)) ssim_index = -Inf; ssim_map = -Inf; return end if (length(K) == 2) if (K(1) < 0 | K(2) < 0) ssim_index = -Inf; ssim_map = -Inf; return; end else ssim_index = -Inf; ssim_map = -Inf; return; end end C1 = (K(1)*L)^2; C2 = (K(2)*L)^2; window = window/sum(sum(window)); img1 = double(img1); img2 = double(img2); mu1 = filter2(window, img1, 'valid'); mu2 = filter2(window, img2, 'valid'); mu1_sq = mu1.*mu1; mu2_sq = mu2.*mu2; mu1_mu2 = mu1.*mu2; sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq; sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq; sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2; if (C1 > 0 & C2 > 0) ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2)); else numerator1 = 2*mu1_mu2 + C1; numerator2 = 2*sigma12 + C2; denominator1 = mu1_sq + mu2_sq + C1; denominator2 = sigma1_sq + sigma2_sq + C2; ssim_map = ones(size(mu1)); index = (denominator1.*denominator2 > 0); ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index)); index = (denominator1 ~= 0) & (denominator2 == 0); ssim_map(index) = numerator1(index)./denominator1(index); end mssim = mean(ssim_map(:)); return function h = fspecial(varargin) %FSPECIAL Create 2-D special filters. % H = FSPECIAL(TYPE) creates a two-dimensional filter H of the % specified type. Possible values for TYPE are: % % 'average' averaging filter % 'disk' circular averaging filter % 'gaussian' Gaussian lowpass filter % 'laplacian' filter approximating the 2-D Laplacian operator % 'log' Laplacian of Gaussian filter % 'motion' motion filter % 'prewitt' Prewitt horizontal edge-emphasizing filter % 'sobel' Sobel horizontal edge-emphasizing filter % 'unsharp' unsharp contrast enhancement filter % % Depending on TYPE, FSPECIAL may take additional parameters % which you can supply. These parameters all have default % values. % % H = FSPECIAL('average',HSIZE) returns an averaging filter H of size % HSIZE. HSIZE can be a vector specifying the number of rows and columns in % H or a scalar, in which case H is a square matrix. % The default HSIZE is [3 3]. % % H = FSPECIAL('disk',RADIUS) returns a circular averaging filter % (pillbox) within the square matrix of side 2*RADIUS+1. % The default RADIUS is 5. % % H = FSPECIAL('gaussian',HSIZE,SIGMA) returns a rotationally % symmetric Gaussian lowpass filter of size HSIZE with standard % deviation SIGMA (positive). HSIZE can be a vector specifying the % number of rows and columns in H or a scalar, in which case H is a % square matrix. % The default HSIZE is [3 3], the default SIGMA is 0.5. % % H = FSPECIAL('laplacian',ALPHA) returns a 3-by-3 filter % approximating the shape of the two-dimensional Laplacian % operator. The parameter ALPHA controls the shape of the % Laplacian and must be in the range 0.0 to 1.0. % The default ALPHA is 0.2. % % H = FSPECIAL('log',HSIZE,SIGMA) returns a rotationally symmetric % Laplacian of Gaussian filter of size HSIZE with standard deviation % SIGMA (positive). HSIZE can be a vector specifying the number of rows % and columns in H or a scalar, in which case H is a square matrix. % The default HSIZE is [5 5], the default SIGMA is 0.5. % % H = FSPECIAL('motion',LEN,THETA) returns a filter to approximate, once % convolved with an image, the linear motion of a camera by LEN pixels, % with an angle of THETA degrees in a counter-clockwise direction. The % filter becomes a vector for horizontal and vertical motions. The % default LEN is 9, the default THETA is 0, which corresponds to a % horizontal motion of 9 pixels. % % H = FSPECIAL('prewitt') returns 3-by-3 filter that emphasizes % horizontal edges by approximating a vertical gradient. If you need to % emphasize vertical edges, transpose the filter H: H'. % % [1 1 1;0 0 0;-1 -1 -1]. % % H = FSPECIAL('sobel') returns 3-by-3 filter that emphasizes % horizontal edges utilizing the smoothing effect by approximating a % vertical gradient. If you need to emphasize vertical edges, transpose % the filter H: H'. % % [1 2 1;0 0 0;-1 -2 -1]. % % H = FSPECIAL('unsharp',ALPHA) returns a 3-by-3 unsharp contrast % enhancement filter. FSPECIAL creates the unsharp filter from the % negative of the Laplacian filter with parameter ALPHA. ALPHA controls % the shape of the Laplacian and must be in the range 0.0 to 1.0. % The default ALPHA is 0.2. % % Class Support % ------------- % H is of class double. % % Example % ------- % I = imread('cameraman.tif'); % subplot(2,2,1);imshow(I);title('Original Image'); % H = fspecial('motion',20,45); % MotionBlur = imfilter(I,H,'replicate'); % subplot(2,2,2);imshow(MotionBlur);title('Motion Blurred Image'); % H = fspecial('disk',10); % blurred = imfilter(I,H,'replicate'); % subplot(2,2,3);imshow(blurred);title('Blurred Image'); % H = fspecial('unsharp'); % sharpened = imfilter(I,H,'replicate'); % subplot(2,2,4);imshow(sharpened);title('Sharpened Image'); % % See also CONV2, EDGE, FILTER2, FSAMP2, FWIND1, FWIND2, IMFILTER. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.28.4.2 $ $Date: 2003/01/26 05:55:24 $ [type, p2, p3] = ParseInputs(varargin{:}); switch type case 'average' % Smoothing filter siz = p2; h = ones(siz)/prod(siz); case 'disk' % Disk filter rad = p2; crad = ceil(rad-0.5); [x,y] = meshgrid(-crad:crad,-crad:crad); maxxy = max(abs(x),abs(y)); minxy = min(abs(x),abs(y)); m1 = (rad^2 < (maxxy+0.5).^2 + (minxy-0.5).^2).*(minxy-0.5) + ... (rad^2 >= (maxxy+0.5).^2 + (minxy-0.5).^2).* ... sqrt(rad^2 - (maxxy + 0.5).^2); m2 = (rad^2 > (maxxy-0.5).^2 + (minxy+0.5).^2).*(minxy+0.5) + ... (rad^2 <= (maxxy-0.5).^2 + (minxy+0.5).^2).* ... sqrt(rad^2 - (maxxy - 0.5).^2); sgrid = (rad^2*(0.5*(asin(m2/rad) - asin(m1/rad)) + ... 0.25*(sin(2*asin(m2/rad)) - sin(2*asin(m1/rad)))) - ... (maxxy-0.5).*(m2-m1) + (m1-minxy+0.5)) ... .*((((rad^2 < (maxxy+0.5).^2 + (minxy+0.5).^2) & ... (rad^2 > (maxxy-0.5).^2 + (minxy-0.5).^2)) | ... ((minxy==0)&(maxxy-0.5 < rad)&(maxxy+0.5>=rad)))); sgrid = sgrid + ((maxxy+0.5).^2 + (minxy+0.5).^2 < rad^2); sgrid(crad+1,crad+1) = min(pi*rad^2,pi/2); if ((crad>0) & (rad > crad-0.5) & (rad^2 < (crad-0.5)^2+0.25)) m1 = sqrt(rad^2 - (crad - 0.5).^2); m1n = m1/rad; sg0 = 2*(rad^2*(0.5*asin(m1n) + 0.25*sin(2*asin(m1n)))-m1*(crad-0.5)); sgrid(2*crad+1,crad+1) = sg0; sgrid(crad+1,2*crad+1) = sg0; sgrid(crad+1,1) = sg0; sgrid(1,crad+1) = sg0; sgrid(2*crad,crad+1) = sgrid(2*crad,crad+1) - sg0; sgrid(crad+1,2*crad) = sgrid(crad+1,2*crad) - sg0; sgrid(crad+1,2) = sgrid(crad+1,2) - sg0; sgrid(2,crad+1) = sgrid(2,crad+1) - sg0; end sgrid(crad+1,crad+1) = min(sgrid(crad+1,crad+1),1); h = sgrid/sum(sgrid(:)); case 'gaussian' % Gaussian filter siz = (p2-1)/2; std = p3; [x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1)); arg = -(x.*x + y.*y)/(2*std*std); h = exp(arg); h(h<eps*max(h(:))) = 0; sumh = sum(h(:)); if sumh ~= 0, h = h/sumh; end; case 'laplacian' % Laplacian filter alpha = p2; alpha = max(0,min(alpha,1)); h1 = alpha/(alpha+1); h2 = (1-alpha)/(alpha+1); h = [h1 h2 h1;h2 -4/(alpha+1) h2;h1 h2 h1]; case 'log' % Laplacian of Gaussian % first calculate Gaussian siz = (p2-1)/2; std2 = p3^2; [x,y] = meshgrid(-siz(2):siz(2),-siz(1):siz(1)); arg = -(x.*x + y.*y)/(2*std2); h = exp(arg); h(h<eps*max(h(:))) = 0; sumh = sum(h(:)); if sumh ~= 0, h = h/sumh; end; % now calculate Laplacian h1 = h.*(x.*x + y.*y - 2*std2)/(std2^2); h = h1 - sum(h1(:))/prod(p2); % make the filter sum to zero case 'motion' % Motion filter uses bilinear interpolation len = max(1,p2); half = (len-1)/2;% rotate half length around center phi = mod(p3,180)/180*pi; cosphi = cos(phi); sinphi = sin(phi); xsign = sign(cosphi); linewdt = 1; % define mesh for the half matrix, eps takes care of the right size % for 0 & 90 rotation sx = fix(half*cosphi + linewdt*xsign - len*eps); sy = fix(half*sinphi + linewdt - len*eps); [x y] = meshgrid([0:xsign:sx],[0:sy]); % define shortest distance from a pixel to the rotated line dist2line = (y*cosphi-x*sinphi);% distance perpendicular to the line rad = sqrt(x.^2 + y.^2); % find points beyond the line's end-point but within the line width lastpix = find((rad >= half)&(abs(dist2line)<=linewdt)); %distance to the line's end-point parallel to the line x2lastpix = half - abs((x(lastpix) + dist2line(lastpix)*sinphi)/cosphi); dist2line(lastpix) = sqrt(dist2line(lastpix).^2 + x2lastpix.^2); dist2line = linewdt + eps - abs(dist2line); dist2line(dist2line<0) = 0;% zero out anything beyond line width % unfold half-matrix to the full size h = rot90(dist2line,2); h(end+[1:end]-1,end+[1:end]-1) = dist2line; h = h./(sum(h(:)) + eps*len*len); if cosphi>0, h = flipud(h); end case 'prewitt' % Prewitt filter h = [1 1 1;0 0 0;-1 -1 -1]; case 'sobel' % Sobel filter h = [1 2 1;0 0 0;-1 -2 -1]; case 'unsharp' % Unsharp filter alpha = p2; h = [0 0 0;0 1 0;0 0 0] - fspecial('laplacian',alpha); end %%% %%% ParseInputs %%% function [type, p2, p3] = ParseInputs(varargin) % default values type = ''; p2 = []; p3 = []; % Check the number of input arguments. % checknargin(1,3,nargin,mfilename); % Determine filter type from the user supplied string. type = varargin{1}; % type = checkstrs(type,{'gaussian','sobel','prewitt','laplacian','log',... % 'average','unsharp','disk','motion'},mfilename,'TYPE',1); % default values switch type case 'average' p2 = [3 3]; % siz case 'disk' p2 = 5; % rad case 'gaussian' p2 = [3 3]; % siz p3 = 0.5; % std case {'laplacian', 'unsharp'} p2 = 1/5; % alpha case 'log' p2 = [5 5]; % siz p3 = 0.5; % std case 'motion' p2 = 9; % len p3 = 0; % theta end switch nargin case 1 % FSPECIAL('average') % FSPECIAL('disk') % FSPECIAL('gaussian') % FSPECIAL('laplacian') % FSPECIAL('log') % FSPECIAL('motion') % FSPECIAL('prewitt') % FSPECIAL('sobel') % FSPECIAL('unsharp') % Nothing to do here; the default values have % already been assigned. case 2 % FSPECIAL('average',N) % FSPECIAL('disk',RADIUS) % FSPECIAL('gaussian',N) % FSPECIAL('laplacian',ALPHA) % FSPECIAL('log',N) % FSPECIAL('motion',LEN) % FSPECIAL('unsharp',ALPHA) p2 = varargin{2}; switch type case {'sobel','prewitt'} msg = sprintf('%s: Too many arguments for this type of filter.', upper(mfilename)); eid = sprintf('Images:%s:tooManyArgsForThisFilter', mfilename); error(eid,msg); case {'laplacian','unsharp'} checkinput(p2,{'double'},{'nonnegative','real',... 'nonempty','finite','scalar'},... mfilename,'ALPHA',2); if p2 > 1 msg = sprintf('%s: ALPHA should be less than or equal 1 and greater than 0.', upper(mfilename)); eid = sprintf('Images:%s:outOfRangeAlpha', mfilename); error(eid,msg); end case {'disk','motion'} checkinput(p2,{'double'},{'positive','finite','real','nonempty','scalar'},mfilename,'RADIUS or LEN',2); case {'gaussian','log','average'} checkinput(p2,{'double'},{'positive','finite','real','nonempty','integer'},mfilename,'HSIZE',2); if prod(size(p2)) > 2 msg = 'HSIZE should have 1 or 2 elements.'; eid = sprintf('Images:%s:wrongSizeN', mfilename); error(eid,msg); elseif (prod(size(p2))==1) p2 = [p2 p2]; end end case 3 % FSPECIAL('gaussian',N,SIGMA) % FSPECIAL('log',N,SIGMA) % FSPECIAL('motion',LEN,THETA) p2 = varargin{2}; p3 = varargin{3}; switch type case 'motion' % checkinput(p2,{'double'},{'positive','finite','real','nonempty','scalar'},mfilename,'LEN',2); % checkinput(p3,{'double'},{'real','nonempty','finite','scalar'},mfilename,'THETA',3); case {'gaussian','log'} % checkinput(p2,{'double'},{'positive','finite','real','nonempty','integer'},mfilename,'N',2); % checkinput(p3,{'double'},{'positive','finite','real','nonempty','scalar'},mfilename,'SIGMA',3); if prod(size(p2)) > 2 msg = sprintf('%s: size(N) should be less than or equal 2.', upper(mfilename)); eid = sprintf('Images:%s:wrongSizeN', mfilename); error(eid,msg); elseif (prod(size(p2))==1) p2 = [p2 p2]; end otherwise msg = sprintf('%s: Too many arguments for this type of filter.', upper(mfilename)); eid = sprintf('Images:%s:tooManyArgsForThisFilter', mfilename); error(eid,msg); end end
github
jacksky64/imageProcessing-master
perform_tv_hilbert_projection.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/perform_tv_hilbert_projection.m
3,727
utf_8
f96d06428439140dc4dc1f0182805595
function [u,v,px,py] = perform_tv_hilbert_projection(f,kernel,lam,options) % Aujol & Chambolle projection for solving TV-K regularization % % [u,v,px,py] = perform_tv_hilbert_projection(f,kernel,lam,options); % % Solve the image separation problem : % u = argmin_u |f-u|_K^2 + lam*|u|_TV % % f = u+v % u is the cartoon part. % v is the texture part. % % where |.|_K is an hilber space norm defined by some operator K % <f,g>_K = <f,K*g> % |f|_K^2 = <f,f>_K % % f is the input image. % kernel is a callback function of the kernel operator, should be like % f = kernel(f, options); % % Set options.use_gabor==1 to setup the Gabor Kernel automatically % and options.use_gabor==-1 to set up the L2 identity kernel. % % Original code by Guy Gilboa, modified by Gabriel Peyre % % Copyright (c) 2006 Gabriel Peyre [ny,nx]=size(f); options.null = 0; if isfield(options, 'niter') niter = options.niter; else niter = 30; end if isfield(options, 'dt') dt = options.dt; else dt = 0.01; end if isfield(options, 'p0x') && ~isempty(options.p0x) p0x = options.p0x; else p0x=zeros(ny,nx); end if isfield(options, 'p0y') && ~isempty(options.p0y) p0y = options.p0y; else p0y=p0x; end use_gabor = 1; if isfield(options, 'use_gabor') use_gabor = options.use_gabor; end px=p0x; py=p0y; lami=1/lam; % here the algorithm works with inverse of lambda if use_gabor==1 sig_k=1; freq=0.25; bias=0; n=11; %kernel size x=ones(n,1)*(-(n-1)/2:(n-1)/2); y=x'; gs=exp(-((x/sig_k).^2+(y/sig_k).^2)/2); % 2D gaussian gs=gs/sum(sum(gs)); % normalize r=sqrt(x.^2+y.^2); cs=cos(2*pi*r*freq); %radially symmetric iKx = cs.*gs; %% "Gabor filter" for inverse K iKx=iKx-mean(mean(iKx)); % zero mean filter cp=(n+1)/2; % center of kernel iKx(cp,cp) = iKx(cp,cp)-bias; elseif use_gabor==-1 iKx = 1; end %% perform iterations if use_gabor~=0 for i=1:niter, %% do niterations progressbar(i,niter); %% compute projection km1div = filter2(iKx,div(px,py))-f*lam; %[Gx,Gy] = grad(km1div); Gx=gradx(km1div); Gy=grady(km1div); aG = sqrt(Gx.^2+Gy.^2); %abs(G) px = (px + dt*Gx)./(1+dt*aG); py = (py + dt*Gy)./(1+dt*aG); end % for i v = filter2(iKx,div(px,py))/lam; else for i=1:niter, %% do niterations progressbar(i,niter); % compute projection km1div = feval( kernel, div(px,py), options ) - f*lam; % compute gradient Gx=gradx(km1div); Gy=grady(km1div); % [Gx,Gy] = grad(km1div); aG = sqrt(Gx.^2+Gy.^2); %abs(G) px = (px + dt*Gx)./(1+dt*aG); py = (py + dt*Gy)./(1+dt*aG); end % for i v = lami*feval( kernel, div(px,py), options ); end u=f-v; %% additional functions %%%%%%%%%%%%%%%%%%%%%%%%%%% Gradient (forward difference) function [fx,fy] = grad(P) error('Should not be used.'); fx = P(:,[2:end end])-P; fy = P([2:end end],:)-P; %%%%%%%%%%%%%%%%%%%%%%%%%%% Divergence (backward difference) function M=div(px,py) [m,n]=size(px); M=zeros(m,n); Mx=M; My=M; Mx(2:m-1,1:n)=px(2:m-1,1:n)-px(1:m-2,1:n); Mx(1,:)=px(1,:); Mx(m,:)=-px(m-1,:); My(1:m,2:n-1)=py(1:m,2:n-1)-py(1:m,1:n-2); My(:,1)=py(:,1); My(:,n)=-py(:,n-1); M=Mx+My; %%%%%%%%%%%%%%%%%%%%%%%%%%% Laplacian (central difference) function fl = lap(P) [gx,gy]=grad(P); fl=div(gx,gy); %%%%%%%%%%%%%%%%%%%%%%%%%%% Gradient on X (forward difference) function M=gradx(I) [m,n]=size(I); M=zeros(m,n); M(1:m-1,1:n)=-I(1:m-1,:)+I(2:m,:); M(m,1:n)=zeros(1,n); %%%%%%%%%%%%%%%%%%%%%%%%%%% Gradient on Y (forward difference) function M=grady(I) [m,n]=size(I); M=zeros(m,n); M(1:m,1:n-1)=-I(:,1:n-1)+I(:,2:n); M(1:m,n)=zeros(m,1);
github
jacksky64/imageProcessing-master
perform_tv_correction.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/perform_tv_correction.m
985
utf_8
e9637dd038c9c859b0c6dedd242fecae
function y = perform_tv_correction(x,T) % perform_tv_correction - perform correction of the image to that it minimizes the TV norm. % % y = perform_tv_correction(x,T); % % Perform correction using thresholding of haar wavelet coefficients on 1 % scale. % % Copyright (c) 2006 Gabriel Peyre n = size(x,1); Jmin = log2(n)-1; % do haar transform options.wavelet_type = 'daubechies'; options.wavelet_vm = 1; y = perform_atrou_transform(x,Jmin,options); % perform soft thesholding y = perform_soft_tresholding(y,T); % do reconstruction y = perform_atrou_transform(y,Jmin,options); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_soft_tresholding(x,t) if iscell(x) for i=1:length(x) y{i} = perform_soft_tresholding(x{i},t); end return; end s = abs(x) - t; s = (s + abs(s))/2; y = sign(x).*s;
github
jacksky64/imageProcessing-master
compute_periodic_poisson.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/compute_periodic_poisson.m
855
utf_8
52f67b893134bee2f5ec735f55733e1f
function G = compute_periodic_poisson(d, symmetrize) % compute_periodic_poisson - solve poisson equation % % G = compute_periodic_poisson(d,symmetrize); % % Solve % Delta(G) = d % with periodic boundary condition. % G has zero mean. % % Set symmetrize=1 (default 0) if the data divergence d is not periodic. % This will double the size and consider symmetric extension. % % Copyright (c) 2007 Gabriel Peyre n = size(d,1); if nargin==2 && symmetrize d = perform_size_doubling(d); G = compute_periodic_poisson(d); G = G(1:n,1:n); return; end % solve for laplacian [Y,X] = meshgrid(0:n-1,0:n-1); mu = sin(X*pi/n).^2; mu = -4*( mu+mu' ); mu(1) = 1; % avoid division by 0 G = fft2(d) ./ mu; G(1) = 0; G = real( ifft2( G ) ); %% function g = perform_size_doubling(g) g = [g;g(end:-1:1,:,:)]; g = [g,g(:,end:-1:1,:)];
github
jacksky64/imageProcessing-master
perform_quincunx_interpolation.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/perform_quincunx_interpolation.m
1,537
utf_8
6d747ffd41f26abbb6804e53fb57335d
function Mi = perform_quincunx_interpolation(M,vm) % perform_quincunx_interpolation - interpolate data on a quincunx grid % % Mi = perform_quincunx_interpolation(M,vm); % % M is a 2D image where only pixels M(i+j,i-j) are available % (checkboard subsampling) % % vm is 2, 4 or 6 % % Copyright (c) 2008 Gabriel Peyre if nargin<2 vm = 2; end n = size(M,1); %% compute mask qsub = 2; x = floor(0:1/(qsub-1):n); x= x(1:n); [Y,X] = meshgrid(x,x); mask = mod( X+Y,2 )==0; %% compute filters [dx,dy,w] = get_quincunx_filter(vm); %% do averaging [Y,X] = meshgrid(1:n,1:n); Mi = zeros(n); [Y,X] = meshgrid(1:n,1:n); for i=1:length(dx) Xi = X+dx(i); Xi(Xi<1) = 2 - Xi(Xi<1); Xi(Xi>n) = 2*n - Xi(Xi>n); Yi = Y+dy(i); Yi(Yi<1) = 2 - Yi(Yi<1); Yi(Yi>n) = 2*n - Yi(Yi>n); Mi = Mi + w(i) * M(Xi+(Yi-1)*n); end Mi(mask==0) = M(mask==0); %% function [dX,dY,w] = get_quincunx_filter(vm) switch vm case 2 dX = [0 0 1 -1]; dY = [1 -1 0 0]; w = [1 1 1 1]; case 4 dX = [0 0 1 -1 2 2 -2 -2 1 -1 1 -1]; dY = [1 -1 0 0 1 -1 1 -1 2 2 -2 -2]; w = [10 10 10 10 -1 -1 -1 -1 -1 -1 -1 -1]; case 6 dX = [0 0 1 -1 2 2 -2 -2 1 -1 1 -1 0 0 3 -3 ... 3 3 -3 -3 2 2 -2 -2]; dY = [1 -1 0 0 1 -1 1 -1 2 2 -2 -2 3 -3 0 0 ... 2 -2 2 -2 3 -3 3 -3]; w = [174*ones(1,4) -27*ones(1,8) 2*ones(1,4) 3*ones(1,8)]; otherwise error('Only 2/4/6 vanishing moments are supported.'); end w = w/sum(w);
github
jacksky64/imageProcessing-master
perform_windowed_dct_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/perform_windowed_dct_transform.m
2,282
utf_8
9c456075e56465427a4442c1e5c9afc8
function y = perform_windowed_dct_transform(x,w,q,n, options) % perform_windowed_dct_transform - compute a local DCT transform % % Forward transform: % MF = perform_windowed_dct_transform(M,w,q,n, options); % Backward transform: % M = perform_windowed_dct_transform(MF,w,q,n, options); % % w is the width of the window used to perform local computation. % q is the spacing betwen each window. % % MF(:,:,,i,j) contains the transform around point ((i-1)*q,(j-1)*q)+1. % % A typical use, for an redundancy of 2x2 could be w=2*q % % Copyright (c) 2007 Gabriel Peyre options.transform_type = 'dct'; y = perform_windowed_fourier_transform(x,w,q,n, options); return; %%%%%%%%%%% OLD CODE %%%%%%%%%%%% options.null = 0; if size(x,3)>1 dir = -1; if nargin<4 % assume power of 2 size n = q*size(x,3); n = 2^floor(log2(n)); end else dir = 1; n = size(x,1); end % perform sampling t = 1:q:n-w+1; [Y,X] = meshgrid(t,t); p = size(X,1); w = ceil(w/2)*2; w1 = w/2; t = 0:w-1; [dY,dX] = meshgrid(t,t); X = reshape(X,[1 1 p p]); Y = reshape(Y,[1 1 p p]); X = repmat( X, [w w 1 1] ); Y = repmat( Y, [w w 1 1] ); dX = repmat( dX, [1 1 p p] ); dY = repmat( dY, [1 1 p p] ); X1 = X+dX; Y1 = Y+dY; if 0 I = find(X1<1); X1(I) = 1-X1(I); I = find(X1>n); X1(I) = 2*n+1-X1(I); I = find(Y1<1); Y1(I) = 1-Y1(I); I = find(Y1>n); Y1(I) = 2*n+1-Y1(I); end % build a weight function if isfield(options, 'window_type') window_type = options.window_type; else window_type = 'constant'; end if strcmp(window_type, 'sin') || strcmp(window_type, 'sine') t = linspace(0,1,w); W = sin(t(:)*pi).^2; W = W * W'; elseif strcmp(window_type, 'constant') W = ones(w); else error('Unkwnown winow.'); end I = X1 + (Y1-1)*n; if dir==1 y = x(I) .* repmat( W, [1 1 p p] ); y = my_dct_transform( y, +1 ); else x = my_dct_transform( x, -1 ); weight = zeros(n); y = zeros(n); for i=1:p for j=1:p y(I(:,:,i,j)) = y(I(:,:,i,j)) + x(:,:,i,j); weight(I(:,:,i,j)) = weight(I(:,:,i,j)) + W; end end y = real( y./weight ); end function y = my_dct_transform(x,dir) for i=1:size(x,3) for j=1:size(x,4) y(:,:,i,j) = perform_dct_transform(x(:,:,i,j),dir); end end
github
jacksky64/imageProcessing-master
perform_windowed_dct4_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/perform_windowed_dct4_transform.m
14,528
utf_8
14fb4b703d9af03093b3a48e38dceded
function y = perform_windowed_dct4_transform(x, w, dir, options) % perform_windowed_dct4_transform - orthogonal local DCT % % y = perform_windowed_dct4_transform(x, w, dir, options); % % This is an orthogonal transform, with x2 overlap, % note that the low frequencies are removes if options.remove_lowfreq = 1. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; window_type = getoptions(options, 'window_type', 'Sine'); remove_lowfreq = getoptions(options, 'remove_lowfreq', 1); if dir==1 y = FastLDCT2ivAnalysis(x,window_type,w); y = y(2).coeff; else c(1).coeff = zeros( size(x)/w ); c(2).coeff = x; c(1).winwidth = w; c(2).winwidth = w; y = FastLDCT2ivSynthesis(c,window_type,w,remove_lowfreq); end function img = FastLDCT2ivSynthesis(coef,bellname,w,remove_low_freq) % pars3) % FastLDCT2Synthesis -- 2D Local inverse DCT iv transform % Usage % img = FastLDCT2Synthesis(ldct,w) % Inputs % coef 2D Local DCT structure array % w width of window % bellname name of bell to use, defaults to 'Sine' % Outputs % img 2D reconstructed n by n image % Description % The matrix img contains image reconstructed from the Local DCT Decomposition. % See Also % FastLDCT2Analysis, idct2 % if nargin < 3 | bellname==0, bellname = 'Sine'; end [n,J] = quadlength(coef(2).coeff); if coef(2).winwidth ~= w error('Window width is different from given argument.'); return; end img = zeros(n,n); % nbox = floor(n/w); lfign=0.25; if remove_low_freq for boxcnt1=0:nbox-1 for boxcnt2=0:nbox-1 coef(2).coeff(boxcnt1*w+1:boxcnt1*w+1+floor(w*lfign),boxcnt2*w+1:boxcnt2*w+1+floor(w*lfign)) = 0; end end end for ncol=1:n ldct = [struct('winwidth', w, 'coeff', 0) ... struct('winwidth', w, 'coeff', coef(2).coeff(:,ncol))]; x = FastLDCTivSynthesis(ldct,bellname,w); img(:,ncol) = x; end for nrow=1:n ldct = [struct('winwidth', w, 'coeff', 0) ... struct('winwidth', w, 'coeff', img(nrow,:))]; x = FastLDCTivSynthesis(ldct,bellname,w); img(nrow,:) = x'; end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function sig = FastLDCTivSynthesis(ldct,bellname,w,par3) % FastLDCTivSynthesis -- Synthesize signal from local DCT iv coefficients (orthogonal fixed folding) % Usage % sig = FastLDCTivSynthesis(ldct,bellname,w) % Inputs % ldct local DCT iv coefficients (structure array) % w width of window % bell name of bell to use, defaults to 'Sine' % Outputs % sig signal whose orthonormal local DCT iv coeff's are ldct % % See Also % FastLDCTivAnalysis, CPAnalysis, FCPSynthesis, fold, unfold, dct_iv, packet % [n,J] = dyadlength(ldct(2).coeff); d = floor(log2(n/w)); % % Create Bell % if nargin < 3, bellname = 'Sine'; end m = n / 2^d /2; [bp,bm] = MakeONBell(bellname,m); % % % x = zeros(1,n); for b=0:(2^d-1), c = ldct(2).coeff(packet(d,b,n)); y = dct_iv(c); [xc,xl,xr] = unfold(y,bp,bm); x(packet(d,b,n)) = x(packet(d,b,n)) + xc; if b>0, x(packet(d,b-1,n)) = x(packet(d,b-1,n)) + xl; else x(packet(d,0,n)) = x(packet(d,0,n)) + edgeunfold('left',xc,bp,bm); end if b < 2^d-1, x(packet(d,b+1,n)) = x(packet(d,b+1,n)) + xr; else x(packet(d,b,n)) = x(packet(d,b,n)) + edgeunfold('right',xc,bp,bm); end end sig = ShapeAsRow(x)'; % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function coef = FastLDCT2ivAnalysis(img,bellname,w,pars3) % FastLDCT2ivAnalysis -- Analyze image into 2-d cosine packet coefficients at a given depth (window width) % Usage % coef = FastLDCT2ivAnalysis(img,w) % Inputs % img 2-d image to be transformed into basis % w width of window % bellname name of bell to use, defaults to 'Sine' % Outputs % coef 2-d Local DCT iv coeffts % % Description % Once a cosine packet basis has been selected (at a given depth), % this function may be used to expand a given % image in that basis. % if nargin < 3 | bellname==0, bellname = 'Sine'; end [n,J] = quadlength(img); d = floor(log2(n/w)); % % CP image at depth d % coef = [struct('winwidth', w, 'coeff', zeros(floor(n/w),floor(n/w))) ... struct('winwidth', w, 'coeff', zeros(n,n))]; % for nrow=1:n ldct = FastLDCTivAnalysis(img(nrow,:),bellname,w); coef(2).coeff(nrow,:) = ldct(2).coeff; end for ncol=1:n ldct = FastLDCTivAnalysis(coef(2).coeff(:,ncol),bellname,w); coef(2).coeff(:,ncol) = ldct(2).coeff; end function ldct = FastLDCTivAnalysis(x,bellname,w,par3) % FastLDCTivAnalysis -- Local DCT iv transform (orthogonal fixed folding) % Usage % ldct = FastLDCTivAnalysis(x,bell,w) % Inputs % x 1-d signal: length(x)=2^J % w width of window % bell name of bell to use, defaults to 'Sine' % Outputs % ldct 1-d Local DCT iv coefficients (structure array) % Description % The vector ldct contains coefficients of the Local DCT Decomposition. % See Also % FastLDCTivSynthesis, CPAnalysis, FCPSynthesis, fold, unfold, dct_iv, packet % if nargin < 3, bellname = 'Sine'; end [n,J] = dyadlength(x); d = floor(log2(n/w)); % % taper window % m = n / 2^d /2; [bp,bm] = MakeONBell(bellname,m); % % packet table % n = length(x); ldct = [struct('winwidth', w, 'coeff', zeros(floor(n/w),1)) ... struct('winwidth', w, 'coeff', zeros(n,1))]; x = ShapeAsRow(x); % nbox = 2^d; for b=0:(nbox-1) if(b == 0) , % gather packet and xc = x(packet(d,b,n)); % left, right neighbors xl = edgefold('left',xc,bp,bm); % taking care of edge effects else xl = xc; xc = xr; end if (b+1 < nbox) xr = x(packet(d,b+1,n)); else xr = edgefold('right',xc,bp,bm); end y = fold(xc,xl,xr,bp,bm); % folding projection c = dct_iv(y); % DCT-IV ldct(2).coeff(packet(d,b,n)) = c'; % store end % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function c = dct_iv(x) % dct_iv -- Type (IV) Discrete Cosine Xform % Usage % c = dct_iv(x) % Inputs % x 1-d signal, length(x) = 2^J % Outputs % c 1-d cosine transform, length(x)=2^J % % Description % The form c = dct_iv(x) computes c defined by % c_m = sqrt(2/N) * sum_n x(n) cos( pi * (m-.5) * (n-.5) / N ) % where % 1 <= m,n <= N, N = length(x) = length(c) % % To reconstruct, use the same function: % x = dct_iv(c) % % See Also % CPAnalysis, CPSynthesis % n2 = 2*length(x); y = zeros(1, 4*n2); y(2:2:n2) = x(:); z = fft(y); c = sqrt(4/n2) .* real(z(2:2:n2)); % % Copyright (c) 1993. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function [n,J] = dyadlength(x) % dyadlength -- Find length and dyadic length of array % Usage % [n,J] = dyadlength(x) % Inputs % x array of length n = 2^J (hopefully) % Outputs % n length(x) % J least power of two greater than n % % Side Effects % A warning is issued if n is not a power of 2. % % See Also % quadlength, dyad, dyad2ix % n = length(x) ; J = ceil(log(n)/log(2)); if 2^J ~= n , disp('Warning in dyadlength: n != 2^J') end % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function [bp,bm] = MakeONBell(Name,m) % MakeONBell -- Make Bell for Orthonormal Local Cosine Analysis % Usage % [bp,bm] = MakeONBell(bell,m) % Inputs % bell bellname, currently 'Trivial','Sine' % m length of bell % Outputs % bp part of bell interior to domain % bm part of bell exterior to domain % % See Also % CPAnalysis, CPSynthesis, MakeCosinePacket % Name = lower(Name); xi = (1 + (.5:(m-.5))./m)./2; if strcmp(Name,'trivial') || strcmp(Name,'constant') bp = sqrt(xi); elseif strcmp(Name,'sine') || strcmp(Name,'sin') bp = sin( pi/2 .* xi ); else error('Unknown bell shape.'); end bm = sqrt(1 - bp .^2); % % Copyright (c) 1993. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function row = ShapeAsRow(sig) % ShapeAsRow -- Make signal a row vector % Usage % row = ShapeAsRow(sig) % Inputs % sig a row or column vector % Outputs % row a row vector % % See Also % ShapeLike % row = sig(:)'; % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:43 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function p = packet(d,b,n) % packet -- Packet table indexing % Usage % p = packet(d,b,n) % Inputs % d depth of splitting in packet decomposition % b block index among 2^d possibilities at depth d % n length of signal % Outputs % p linear indices of all coeff's in that block % npack = 2^d; p = ( (b * (n/npack) + 1) : ((b+1)*n/npack ) ) ; % % Copyright (c) 1993. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function extra = edgefold(which,xc,bp,bm) % edgefold -- Perform folding projection with (+,-) polarity at EDGES % Usage % extra = edgefold(which,xc,bp,bm) % Inputs % which string, 'left'/'right', indicating which edge we are at % xc unfolded data, center window % bp interior of window % bm exterior of window % Outputs % extra pseudo-left/right packet % % Description % The result should be used as either left or right packet in % fold to ensure exact reconstruction at edges. % % See Also % fold, unfold, CPSynthesis, CPImpulse % n = length(xc); m = length(bp); back = n:-1:(n-m+1); front = 1:m; extra = xc.*0; % if strcmp(which,'left'), extra(back) = xc(front) .* (1-bp)./bm; else extra(front) = -xc(back) .* (1-bp)./bm; end % % Copyright (c) 1994. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function y = fold(xc,xl,xr,bp,bm) % fold -- Folding projection with (+,-) polarity % Usage % y = fold(xc,xl,xr,bp,bm) % Inputs % xc,xl,xr 1-d signals: center, left, and right packets % bp,bm interior and exterior of taper window % Outputs % y the folded series, whose DCT gives the LCT coeffs % % See Also % CPAnalysis % % References % H. Malvar, IEEE ASSP, 1990. % % Auscher, Weiss and Wickerhauser, in ``Wavelets: A Tutorial in % Theory and Applications,'' C. Chui, ed., Academic Press, 1992. % m = length(bp); n = length(xc); front = 1:m; back = n:-1:(n+1-m); y = xc; y(front) = bp .* y(front) + bm .* xl(back ); y(back ) = bp .* y(back ) - bm .* xr(front); % % Copyright (c) 1993. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function [xc,xl,xr] = unfold(y,bp,bm) % unfold -- Undo folding projection with (+,-) polarity % Usage % [xc,xl,xr] = unfold(y,bp,bm) % Inputs % y folded series % bp interior of window % bm exterior of window % Outputs % xc unfolded central packet % xl contribution of unfolding to left packet % xr contribution of unfolding to right packet % % See Also % fold, CPAnalysis, CPSynthesis, CPImpulse % n = length(y); m = length(bp); xc = y; xl = 0 .*y; xr = 0 .*y; front = 1:m; back = n:-1:(n+1-m); xc(front) = bp .* y(front); xc(back) = bp .* y(back ); xl(back) = bm .* y(front); xr(front) = (-1) .* bm .* y(back); % % Copyright (c) 1993. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function extra = edgeunfold(which,xc,bp,bm) % edgeunfold -- Undo folding projection with (+,-) polarity at EDGES % Usage % extra = endfold(which,xc,bp,bm) % Inputs % which string, 'left'/'right', indicating which edge we are at % xc unfolded data, center window, produced by unfold % bp interior of window % bm exterior of window % Outputs % extra extra contribution to central packet % % Description % The result should be added to the central packet to % ensure exact reconstruction at edges. % % See Also % unfold, CPSynthesis, CPImpulse % n = length(xc); m = length(bp); extra = xc.*0; % if strcmp(which,'left'), front = 1:m; extra(front) = xc(front) .* (1-bp)./bp; else back = n:-1:(n+1-m); extra(back) = xc(back) .* (1-bp)./bp; end % % Copyright (c) 1994. David L. Donoho % % % Part of Wavelab Version 850 % Built Tue Jan 3 13:20:40 EST 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] function [n,J] = quadlength(x) % quadlength -- Find length and dyadic length of square matrix % Usage % [n,J] = quadlength(x) % Inputs % x 2-d image; size(n,n), n = 2^J (hopefully) % Outputs % n length(x) % J least power of two greater than n % % Side Effects % A warning message is issue if n is not a power of 2, % or if x is not a square matrix. % s = size(x); n = s(1); if s(2) ~= s(1), disp('Warning in quadlength: nr != nc') end k = 1 ; J = 0; while k < n , k=2*k; J = 1+J ; end ; if k ~= n , disp('Warning in quadlength: n != 2^J') end % % Copyright (c) 1993. David L. Donoho %
github
jacksky64/imageProcessing-master
perform_dct_transform.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_image/toolbox/perform_dct_transform.m
7,750
utf_8
07f7ce84cf4f6dfc91ad645a17eab05c
function y = perform_dct_transform(x,dir) % perform_dct_transform - discrete cosine transform % % y = perform_dct_transform(x,dir); % % Copyright (c) 2006 Gabriel Peyre if size(x,1)==1 || size(x,2)==1 % 1D transform if dir==1 y = dct(x); else y = idct(x); end else if dir==1 y = dct2(x); % y = perform_dct2_transform(x); else y = idct2(x); end end function b=dct(a,n) %DCT Discrete cosine transform. % % Y = DCT(X) returns the discrete cosine transform of X. % The vector Y is the same size as X and contains the % discrete cosine transform coefficients. % % Y = DCT(X,N) pads or truncates the vector X to length N % before transforming. % % If X is a matrix, the DCT operation is applied to each % column. This transform can be inverted using IDCT. % % See also FFT, IFFT, IDCT. % Author(s): C. Thompson, 2-12-93 % S. Eddins, 10-26-94, revised % Copyright 1988-2002 The MathWorks, Inc. % $Revision: 1.7 $ $Date: 2002/04/15 01:10:40 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. if nargin == 0, error('Not enough input arguments.'); end if isempty(a) b = []; return end % If input is a vector, make it a column: do_trans = (size(a,1) == 1); if do_trans, a = a(:); end if nargin==1, n = size(a,1); end m = size(a,2); % Pad or truncate input if necessary if size(a,1)<n, aa = zeros(n,m); aa(1:size(a,1),:) = a; else aa = a(1:n,:); end % Compute weights to multiply DFT coefficients ww = (exp(-i*(0:n-1)*pi/(2*n))/sqrt(2*n)).'; ww(1) = ww(1) / sqrt(2); if rem(n,2)==1 | ~isreal(a), % odd case % Form intermediate even-symmetric matrix y = zeros(2*n,m); y(1:n,:) = aa; y(n+1:2*n,:) = flipud(aa); % Compute the FFT and keep the appropriate portion: yy = fft(y); yy = yy(1:n,:); else % even case % Re-order the elements of the columns of x y = [ aa(1:2:n,:); aa(n:-2:2,:) ]; yy = fft(y); ww = 2*ww; % Double the weights for even-length case end % Multiply FFT by weights: b = ww(:,ones(1,m)) .* yy; if isreal(a), b = real(b); end if do_trans, b = b.'; end function b=dct2(arg1,mrows,ncols) %DCT2 Compute 2-D discrete cosine transform. % B = DCT2(A) returns the discrete cosine transform of A. % The matrix B is the same size as A and contains the % discrete cosine transform coefficients. % % B = DCT2(A,[M N]) or B = DCT2(A,M,N) pads the matrix A with % zeros to size M-by-N before transforming. If M or N is % smaller than the corresponding dimension of A, DCT2 truncates % A. % % This transform can be inverted using IDCT2. % % Class Support % ------------- % A can be numeric or logical. The returned matrix B is of % class double. % % Example % ------- % RGB = imread('autumn.tif'); % I = rgb2gray(RGB); % J = dct2(I); % imshow(log(abs(J)),[]), colormap(jet), colorbar % % The commands below set values less than magnitude 10 in the % DCT matrix to zero, then reconstruct the image using the % inverse DCT function IDCT2. % % J(abs(J)<10) = 0; % K = idct2(J); % imview(I) % imview(K,[0 255]) % % See also FFT2, IDCT2, IFFT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.22.4.2 $ $Date: 2003/05/03 17:50:23 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. [m, n] = size(arg1); % Basic algorithm. if (nargin == 1), if (m > 1) & (n > 1), b = dct(dct(arg1).').'; return; else mrows = m; ncols = n; end end % Padding for vector input. a = arg1; if nargin==2, ncols = mrows(2); mrows = mrows(1); end mpad = mrows; npad = ncols; if m == 1 & mpad > m, a(2, 1) = 0; m = 2; end if n == 1 & npad > n, a(1, 2) = 0; n = 2; end if m == 1, mpad = npad; npad = 1; end % For row vector. % Transform. b = dct(a, mpad); if m > 1 & n > 1, b = dct(b.', npad).'; end function a = idct(b,n) %IDCT Inverse discrete cosine transform. % % X = IDCT(Y) inverts the DCT transform, returning the original % vector if Y was obtained using Y = DCT(X). % % X = IDCT(Y,N) pads or truncates the vector Y to length N % before transforming. % % If Y is a matrix, the IDCT operation is applied to each % column. % % See also FFT,IFFT,DCT. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.12.4.1 $ $Date: 2003/01/26 05:59:37 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. % checknargin(1,2,nargin,mfilename); if ~isa(b, 'double') b = double(b); end if min(size(b))==1 if size(b,2)>1 do_trans = 1; else do_trans = 0; end b = b(:); else do_trans = 0; end if nargin==1, n = size(b,1); end m = size(b,2); % Pad or truncate b if necessary if size(b,1)<n, bb = zeros(n,m); bb(1:size(b,1),:) = b; else bb = b(1:n,:); end if rem(n,2)==1 | ~isreal(b), % odd case % Form intermediate even-symmetric matrix. ww = sqrt(2*n) * exp(j*(0:n-1)*pi/(2*n)).'; ww(1) = ww(1) * sqrt(2); W = ww(:,ones(1,m)); yy = zeros(2*n,m); yy(1:n,:) = W.*bb; yy(n+2:n+n,:) = -j*W(2:n,:).*flipud(bb(2:n,:)); y = ifft(yy); % Extract inverse DCT a = y(1:n,:); else % even case % Compute precorrection factor ww = sqrt(2*n) * exp(j*pi*(0:n-1)/(2*n)).'; ww(1) = ww(1)/sqrt(2); W = ww(:,ones(1,m)); % Compute x tilde using equation (5.93) in Jain y = ifft(W.*bb); % Re-order elements of each column according to equations (5.93) and % (5.94) in Jain a = zeros(n,m); a(1:2:n,:) = y(1:n/2,:); a(2:2:n,:) = y(n:-1:n/2+1,:); end if isreal(b), a = real(a); end if do_trans, a = a.'; end function a = idct2(arg1,mrows,ncols) %IDCT2 Compute 2-D inverse discrete cosine transform. % B = IDCT2(A) returns the two-dimensional inverse discrete % cosine transform of A. % % B = IDCT2(A,[M N]) or B = IDCT2(A,M,N) pads A with zeros (or % truncates A) to create a matrix of size M-by-N before % transforming. % % For any A, IDCT2(DCT2(A)) equals A to within roundoff error. % % The discrete cosine transform is often used for image % compression applications. % % Class Support % ------------- % The input matrix A can be of class double or of any % numeric class. The output matrix B is of class double. % % See also DCT2, DCTMTX, FFT2, IFFT2. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 5.17.4.1 $ $Date: 2003/01/26 05:55:39 $ % References: % 1) A. K. Jain, "Fundamentals of Digital Image % Processing", pp. 150-153. % 2) Wallace, "The JPEG Still Picture Compression Standard", % Communications of the ACM, April 1991. % checknargin(1,3,nargin,mfilename); [m, n] = size(arg1); % Basic algorithm. if (nargin == 1), if (m > 1) & (n > 1), a = idct(idct(arg1).').'; return; else mrows = m; ncols = n; end end % Padding for vector input. b = arg1; if nargin==2, ncols = mrows(2); mrows = mrows(1); end mpad = mrows; npad = ncols; if m == 1 & mpad > m, b(2, 1) = 0; m = 2; end if n == 1 & npad > n, b(1, 2) = 0; n = 2; end if m == 1, mpad = npad; npad = 1; end % For row vector. % Transform. a = idct(b, mpad); if m > 1 & n > 1, a = idct(a.', npad).'; end
github
jacksky64/imageProcessing-master
dump_struct.m
.m
imageProcessing-master/Matlab imaging/Matlab toolbox/toolbox_misc/dump_struct.m
1,389
utf_8
746b6d65b8fc8c67e8cb806c235f5e6a
function fid = dump_struct(s,fid,header) % dump_struct - dump the content of a struct to a file % % dump_struct(s,fid, header); % % Copyright (c) 2008 Gabriel Peyre if nargin<3 header = ''; end if isstr(fid) fid = fopen(fid, 'a'); if fid<=0 error(['File ' fid ' does not exist.']); end end if not(isempty(header)) fprintf(fid, '%s\n', header ); end % central line (position of ':') cl = 15; if iscell(s) for i=1:length(s) fprintf(fid, '%s\n', convert_string(s{i},0) ); end elseif isstruct(s) s = orderfields(s); f = fieldnames(s); for i=1:length(f) v = getfield(s,f{i}); fprintf(fid, '%s: %s\n', convert_string(f{i},cl), convert_string(v,0) ); end else error('Unknown type.'); end if nargout==0 fclose(fid); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = convert_string(v,cl) if nargin<2 cl = 15; end nmax = 10; % maximum of dumped string results if isa(v, 'numeric') % v = v(1); s = []; for i = 1:min(length(v(:)), nmax) if mod(v,1)==0 s = [s int2str(v(i)) ' ']; else s = [s num2str(v(i)) ' ']; end end if length(v(:))>nmax s = [s '...']; end elseif isstr(v) s = v; else s = '-'; end % try to align on central line d = cl - length(s); if d>0 s = [repmat(' ',[1 d]) s]; end
github
jacksky64/imageProcessing-master
pad.m
.m
imageProcessing-master/Matlab imaging/Extra/pad.m
2,742
utf_8
9bf9d823661a04611d1004e631e3b34c
function Y=pad(varargin) % PAD Pads matrix. % % Y = PAD(X,[Mi]) creates the matrix Y by expanding X and and % padding the new elements with zeros. X will be expanded Mi % elements in the directions -i and +i so that: % size(Y) = size(X) + 2*[Mi] % % If Mi is scalar the same value will be used in all directions. % % Y = PAD(...,'e',E) will pad X with element E instead of zero. % % Y = PAD(X,[Mi],'a') performs an assimetric padding. If Mi is % even assimetric padding will be the same as simmetric padding, % except that the expansion in assim. mode will be half the one % in simmetric mode. If Mi is odd, X will be expanded floor(Mi/2) % elements in direction -i and ceil(Mi/2) elements in direction % i. The size of Y in the assimetric mode will then be: % size(Y) = size(X) + [Mi] % % Y = PAD(X,[Mi],[Ni]) will pad the matrix with Mi elements in % direction i and with Ni elements in direction -i. % % Y = PAD(X,[Si], 'size') will pad X so that size(Y) = [Si]. % It`s necessary that [Si] > size(Y). % [X,M,N,E] = parse_inputs(varargin{:}); Y = E*ones(size(X)+M+N); for i = 1 : length(M) ind{i} = N(i)+1:N(i)+size(X,i); end Y(ind{:}) = X; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X,M,N,E,S] = parse_inputs(varargin) if nargin==0 error('Too few inputs!') end E = 0; X = varargin{1}; if nargin > 1 M = varargin{2}; else M = 1; end N = M; flagN = 0; flagA = 0; Epos = -1; for i = 3 : nargin flag = 0; if i == Epos flag = 1; elseif strcmp(varargin{i},'a') if flagN error('Assimetric mode cannot be used together with [Mi] and [Ni].') end M = ceil(M/2); N = floor(N/2); flag = 1; flagA = 1; elseif strcmp(varargin{i},'e') E = varargin{i+1}; flag = 1; Epos = i+1; elseif strcmp(varargin{i},'size') M = ceil( (varargin{2}-size(X))/2 ); N = floor( (varargin{2}-size(X))/2 ); if any(M<0) | any(N<0) error('Cannot specify a size smaller than size(X).') end flag = 1; flagN = 1; if flagA error('Cannot use assimetric mode and fix size.') end elseif flag == 0 & flagN == 0 N = varargin{i}; flagN = 1; else error('Too many inputs.') end end if length(M)==1 M = M*ones(1,ndims(X)); end if length(N)==1 N = N*ones(1,ndims(X)); end if length(M)~=ndims(X) | length(N)~=ndims(X) error('[Mi],[Ni] and [Si] must have length equal to ndims(X).') end if length(E)~=1 error('`E` must be a number.') end
github
jacksky64/imageProcessing-master
roll.m
.m
imageProcessing-master/Matlab imaging/Extra/roll.m
2,119
utf_8
ae0c1da9cb4a28bee3b76a6360a1646a
function Y = roll(varargin) % ROLL Rolls matrix elements. % y = ROLL(x,[Ri]) rolls matrix x Ri elements in dimension i. % The rolled matrix y is the same size as x. The last element % in each dimension is repeated to fill blank places % % Example: ROLL([1 2 3 4],1) = [1 1 2 3] % ROLL([1 2 3 4], -1) = [2 3 4 4] % ROLL([1 2 3 4] [1 1 2 3] % [5 6 7 8] = [1 1 2 3] % [9 10 11 12],[1 1]) [5 5 6 7] % % If ndims(x)>1, ROLL(x,N) == ROLL(x,N*ones(1,ndims(x))) % % ROLL(x,[Ri],'rot') rotates the elements instead of % discarding them. % Example: ROLL([1 2 3 4],1,'rot') = [4 1 2 3] % [X,R,ROT] = parse_inputs(varargin{:}); Y = zeros(size(X)); ind = cell(length(R),1); if ROT == 1 % rotate elements R = mod(abs(R),size(X)).*sign(R); % Eliminates complete rotations for i = 1 : length(R) if R(i) >= 0 ind{i} = [size(X,i)-R(i)+1:size(X,i) 1:size(X,i)-R(i)]; else ind{i} = [1-R(i):size(X,i) 1:-R(i)]; end end else %% if ROT == 0 for i = 1 : length(R) if R(i) >= 0 ind{i} = [repmat(1,[1 R(i)]) 1:size(X,i)-R(i)]; else ind{i} = [1-R(i):size(X,i) repmat(size(X,i),[1 -R(i)])]; end end end Y = X(ind{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X,R,ROT] = parse_inputs(varargin) ROT = 0; switch nargin case 0 error('Too few arguments') case 1 X = varargin{1}; R = 1; case 2 X = varargin{1}; R = varargin{2}; case 3 X = varargin{1}; R = varargin{2}; if strcmp(lower(varargin{3}),'rot') ROT = 1; else error('Unknown parameter.') end case 4 error('Too many parameters') end if length(R)==1 R = R*ones(1,ndims(X)); if sum(size(X)>1)==1 % X is vector R(size(X)==1) = 0; end end if ndims(X) ~= length(R) error('Incompatible dimensions!') end if any((size(X)-abs(R)-1)<0) & ROT == 0 error('Rolling bigger the matrix size') return end
github
jacksky64/imageProcessing-master
scale.m
.m
imageProcessing-master/Matlab imaging/Extra/scale.m
790
utf_8
ebfcd3e0683fa90f71268707ae2275e8
function y = scale(varargin) % SCALE Scales matrix elements to a new range. % % y = SCALE(x,[min max]) scales the elements of matrix x to a new range % defined by [min, max]. % % y = SCALE(x) uses the default range = [0 1] % [x,Imin,Imax] = parse_inputs(varargin{:}); x = double(x); M = max(x(:)); m = min(x(:)); y = ( (x-m)/(M-m) * (Imax-Imin) ) + Imin; function [x,Imin,Imax] = parse_inputs(varargin) switch nargin case 0 error('Missing variable or function') case 1 x = varargin{1}; Imax = 1; Imin = 0; case 2 x = varargin{1}; I = varargin{2}; if size(I,1) ~= 2 & size(I,2) ~= 2 error('Range must be a 1x2 vector') end Imin = I(1); Imax = I(2); case 3 error('Too many inputs') end
github
jacksky64/imageProcessing-master
nfft.m
.m
imageProcessing-master/Matlab imaging/Extra/nfft.m
2,978
utf_8
1ebdbe2e01ff9f619d743df60c2b62b6
function y = nfft(varargin) % NFFT Discrete Fourier transform. % Y = NFFT(X) returns the Fourier transform of matrix X % performing the visualization correction. % % Y = NFFT(X,MROWS) pads matrix X with zeros to size MROWS before transforming. % % Y = NFFT(X,MROWS,type) plots single sided(type='s') or double sided(type='d') % frequency responce graphic (default = 's' - single sided) % % Y = NFFT(X,MROWS,type,'normalize') normalizes the magnitude of 'Y'. % % See also FFT, IFFT, FFT2, IFFT2, FFT, FFTSHIFT. [X, MROWS, tipo, normalize] = parse_inputs(varargin{:}); R2 = floor(MROWS/2); temp = fft(X, MROWS); temp = temp(1:R2); if tipo ==1 y= zeros(1,R2); y=temp; w1 = linspace(0,1,length(y)); else y = zeros(1,2*R2); y(R2+1:2*R2) = temp; y(1:R2) = fliplr(temp); w1 = linspace(-1,1,length(y)); end abs_y = abs(y); if normalize == 1 plot(w1,abs_y/max(abs_y)); ylabel('Normed Magnitude') else plot(w1,abs_y); ylabel('Magnitude') end xlabel('Wn') %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X, MROWS, tipo, normalize] = parse_inputs(varargin) switch nargin case 0 error('Missing variable or function') case 1 X = varargin{1}; MROWS = max(size(X,2),size(X,1)); tipo = 1; normalize = 0; case 2 X = varargin{1}; if strcmp(varargin{2},'normalize') normalize = 1; MROWS = max(size(X,2),size(X,1)); tipo = 1; elseif strcmp(varargin{2},'s') normalize = 0; MROWS = max(size(X,2),size(X,1)); tipo = 1; elseif strcmp(varargin{2},'d') normalize = 0; MROWS = max(size(X,2),size(X,1)); tipo = 0; else MROWS = varargin{2}; normalize = 0; tipo = 1; end case 3 X = varargin{1}; flag=[0 0 0]; %[MROWS tipo normalize] for ct = 2 : 3 if strcmp(varargin{ct},'normalize') normalize = 1; flag(3) = 1; elseif strcmp(varargin{ct},'s') tipo = 1; flag(2) = 1; elseif strcmp(varargin{ct},'d') tipo = 0; flag(2) = 1; else if flag(1) == 1; error('Unknown parameter.') return elseif flag(1) == 0 flag(1) = 1; end MROWS = varargin{ct}; end if flag(1) == 0 MROWS = max(size(X,2),size(X,1)); end if flag(2) == 0 tipo = 1; end if flag(3) == 0 normalize = 0; end end case 4 X = varargin{1}; MROWS = varargin{2}; if strcmp(varargin{3},'s') tipo = 1; elseif strcmp(varargin{3},'d') tipo = 0; else error('Unknown parameter.') return end if strcmp(varargin{4},'normalize') normalize = 1; else error('Unknown parameter.') return end case 5 error('Too many inputs') end
github
jacksky64/imageProcessing-master
resize.m
.m
imageProcessing-master/Matlab imaging/Extra/resize.m
1,810
utf_8
219f27dea979cbaf2d6f9a7720824227
function Y = resize(varargin) % RESIZE Resizes an matrix. % % Y = RESIZE(X,[R1 R2 ... Rn]) creates the matrix Y containing the elements of X % which are at indexes m*Ri+1 (m = 0,1,2,..) at dimension i. % Y = RESIZE(X, R) is the same as Y = RESIZE(X,[R R ... R]). % % Y = RESIZE(X,[L1 L2 ... Ln],'size') creates the image Y with Li elements on % dimension i. % % ATENTION : No interpolation is done by this function. It only works with % the matrix indexes. % % See also : RESIZE, RESIZE2 [X, R, FIXSIZE] = parse_inputs(varargin{:}); % Creates indexes list if FIXSIZE for dim = 1 : length(R) ind{dim} = round( linspace(1,size(X,dim),R(dim)) ); end else for dim = 1 : length(R) ind{dim} = round(1 : R(dim) : size(X,dim)); end end Y = X(ind{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X, R, FIXSIZE] = parse_inputs(varargin) if nargin < 2 error('Too few inputs.') elseif nargin == 2 X = varargin{1}; R = varargin{2}; FIXSIZE = 0; elseif nargin == 3; X = varargin{1}; R = varargin{2}; FIXSIZE = 0; if strcmp(varargin{3},'size') FIXSIZE = 1; else error('Unknown parameter.') end else error('Too many inputs.') end if length(R) == 1 & ndims(X) > 2 R(2:ndims(X)) = R(1); end if length(R)==1 & ndims(X)==2 if size(X,1)==1 & size(X,2)~=1 R = [1 R]; elseif size(X,1)~=1 & size(X,2)==1 R = [R 1]; else R(2:ndims(X)) = R(1); end end if ndims(X) > length(R) error('Use length(R)=1 or length(R)>=ndims(X).') end if FIXSIZE == 1 if any(mod(R,1)) error('L must contain only integers.') end end
github
jacksky64/imageProcessing-master
vanherk.m
.m
imageProcessing-master/Matlab imaging/Extra/vanherk.m
4,841
utf_8
5b0cf60c12e2432af9a978d4bad7ff3b
function Y = vanherk(X,N,TYPE,varargin) % VANHERK Fast max/min 1D filter % % Y = VANHERK(X,N,TYPE) performs the 1D max/min filtering of the row % vector X using a N-length filter. % The filtering type is defined by TYPE = 'max' or 'min'. This function % uses the van Herk algorithm for min/max filters that demands only 3 % min/max calculations per element, independently of the filter size. % % If X is a 2D matrix, each row will be filtered separately. % % Y = VANHERK(...,'col') performs the filtering on the columns of X. % % Y = VANHERK(...,'shape') returns the subset of the filtering specified % by 'shape' : % 'full' - Returns the full filtering result, % 'same' - (default) Returns the central filter area that is the % same size as X, % 'valid' - Returns only the area where no filter elements are outside % the image. % % X can be uint8 or double. If X is uint8 the processing is quite faster, so % dont't use X as double, unless it is really necessary. % % Initialization [direc, shape] = parse_inputs(varargin{:}); if strcmp(direc,'col') X = X'; end if strcmp(TYPE,'max') maxfilt = 1; elseif strcmp(TYPE,'min') maxfilt = 0; else error([ 'TYPE must be ' char(39) 'max' char(39) ' or ' char(39) 'min' char(39) '.']) end % Correcting X size fixsize = 0; addel = 0; if mod(size(X,2),N) ~= 0 fixsize = 1; addel = N-mod(size(X,2),N); if maxfilt f = [ X zeros(size(X,1), addel) ]; else f = [X repmat(X(:,end),1,addel)]; end else f = X; end lf = size(f,2); lx = size(X,2); clear X % Declaring aux. mat. g = f; h = g; % Filling g & h (aux. mat.) ig = 1:N:size(f,2); ih = ig + N - 1; g(:,ig) = f(:,ig); h(:,ih) = f(:,ih); if maxfilt for i = 2 : N igold = ig; ihold = ih; ig = ig + 1; ih = ih - 1; g(:,ig) = max(f(:,ig),g(:,igold)); h(:,ih) = max(f(:,ih),h(:,ihold)); end else for i = 2 : N igold = ig; ihold = ih; ig = ig + 1; ih = ih - 1; g(:,ig) = min(f(:,ig),g(:,igold)); h(:,ih) = min(f(:,ih),h(:,ihold)); end end clear f % Comparing g & h if strcmp(shape,'full') ig = [ N : 1 : lf ]; ih = [ 1 : 1 : lf-N+1 ]; if fixsize if maxfilt Y = [ g(:,1:N-1) max(g(:,ig), h(:,ih)) h(:,end-N+2:end-addel) ]; else Y = [ g(:,1:N-1) min(g(:,ig), h(:,ih)) h(:,end-N+2:end-addel) ]; end else if maxfilt Y = [ g(:,1:N-1) max(g(:,ig), h(:,ih)) h(:,end-N+2:end) ]; else Y = [ g(:,1:N-1) min(g(:,ig), h(:,ih)) h(:,end-N+2:end) ]; end end elseif strcmp(shape,'same') if fixsize if addel > (N-1)/2 disp('hoi') ig = [ N : 1 : lf - addel + floor((N-1)/2) ]; ih = [ 1 : 1 : lf-N+1 - addel + floor((N-1)/2)]; if maxfilt Y = [ g(:,1+ceil((N-1)/2):N-1) max(g(:,ig), h(:,ih)) ]; else Y = [ g(:,1+ceil((N-1)/2):N-1) min(g(:,ig), h(:,ih)) ]; end else ig = [ N : 1 : lf ]; ih = [ 1 : 1 : lf-N+1 ]; if maxfilt Y = [ g(:,1+ceil((N-1)/2):N-1) max(g(:,ig), h(:,ih)) h(:,lf-N+2:lf-N+1+floor((N-1)/2)-addel) ]; else Y = [ g(:,1+ceil((N-1)/2):N-1) min(g(:,ig), h(:,ih)) h(:,lf-N+2:lf-N+1+floor((N-1)/2)-addel) ]; end end else % not fixsize (addel=0, lf=lx) ig = [ N : 1 : lx ]; ih = [ 1 : 1 : lx-N+1 ]; if maxfilt Y = [ g(:,N-ceil((N-1)/2):N-1) max( g(:,ig), h(:,ih) ) h(:,lx-N+2:lx-N+1+floor((N-1)/2)) ]; else Y = [ g(:,N-ceil((N-1)/2):N-1) min( g(:,ig), h(:,ih) ) h(:,lx-N+2:lx-N+1+floor((N-1)/2)) ]; end end elseif strcmp(shape,'valid') ig = [ N : 1 : lx]; ih = [ 1 : 1: lx-N+1]; if maxfilt Y = [ max( g(:,ig), h(:,ih) ) ]; else Y = [ min( g(:,ig), h(:,ih) ) ]; end end if strcmp(direc,'col') Y = Y'; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [direc, shape] = parse_inputs(varargin) direc = 'lin'; shape = 'same'; flag = [0 0]; % [dir shape] for i = 1 : nargin t = varargin{i}; if strcmp(t,'col') & flag(1) == 0 direc = 'col'; flag(1) = 1; elseif strcmp(t,'full') & flag(2) == 0 shape = 'full'; flag(2) = 1; elseif strcmp(t,'same') & flag(2) == 0 shape = 'same'; flag(2) = 1; elseif strcmp(t,'valid') & flag(2) == 0 shape = 'valid'; flag(2) = 1; else error(['Too many / Unkown parameter : ' t ]) end end
github
jacksky64/imageProcessing-master
grow.m
.m
imageProcessing-master/Matlab imaging/Extra/grow.m
2,699
utf_8
98b0c97617d00069de86838244622d83
function Y = grow(varargin) % % GROW Expands a matrix. % % Y = GROW(X,[M1 M2 ... Mn]) creates a matrix 'Y' by the expansion % of the matrix 'x' of Mi elements on directions i e -i. The size % of the new matrix 'Y' will be: % size(Y) = size(x) + 2*[M] % % Example: X = [ 1 2 3; 4 5 6; 7 8 9] % Y = GROW(X,[1 0]) % Y = [1 2 3; 1 2 3; 4 5 6; 7 8 9; 7 8 9] % % Y = GROW(X,[1 1]) % Y = [1 1 2 3 3; 1 1 2 3 3; 4 4 5 6 6; 7 7 8 9 9; 7 7 8 9 9] % % Y = GROW(X) uses as standard Mi = 1. % % If DIM(X)>1, GROW(X,N) = GROW(X,N*ones(DIM(x))) % % Y = GROW(X,[M], 'a') performs assimetric expansion. If Mi is even % assimetric expansion is the same as simmetric expansion, execpt that % the expansion in the assimetric mode will be half of the one in the % simmetric mode. If Mi is odd, the matrix will be expanded ceil(Mi/2) % elements in the -i direction and floor(Mi/2) in the i. The size of % the expanded matrix will be: % size(y) = size(X) + [M] % % [M] can contain negative integers. In this case, the outer elements % of X will be discarded. % % See also ROLL, PAD, PADC, SHRINK. % [X, M, assimetric] = parse_inputs(varargin{:}); ind = cell(length(M),1); if assimetric == 0 for i = 1 : length(M) if M(i) >= 0 ind{i} = [repmat(1,[1 M(i)]) 1:size(X,i) repmat(size(X,i),[1 M(i)]) ]; else ind{i} = 1+(-M(i)) : size(X,i)-(-M(i)); % using -M(i) to change sign end end else % if not assimetric for i = 1 : length(M) if M(i) >= 0 ind{i} = [repmat(1,[1 ceil(M(i)/2)]) 1:size(X,i) repmat(size(X,i),[1 floor(M(i)/2)]) ]; else ind{i} = 1+ceil(-M(i)/2) : size(X,i) - floor(-M(i)/2); end end end Y = X(ind{:}); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X,M,assimetric] = parse_inputs(varargin) assimetric = 0; switch nargin case 0 error('Too few inputs!') return case 1 X = varargin{1}; M = ones(1,ndims(X)); case 2 X = varargin{1}; M = varargin{2}; if strcmp(M,'a') M = ones(1,ndims(X)); assimetric = 1; end case 3 X = varargin{1}; M = varargin{2}; if ~strcmp('a', lower(varargin{3})) error('Unknown parameter.'); end assimetric = 1; case 4 error('Too many inputs!') return end if length(M)==1 if sum(size(X)>1)>1 M = M*ones(1,ndims(X)); elseif ndims(X)==2 & size(X,1)==1 & size(X,2)>1 M = [0 M]; elseif ndims(X)==2 & size(X,1)>1 & size(X,2)==1 M = [M 0]; end end if length(M)~=ndims(X) error('Invalid dimensions') end
github
jacksky64/imageProcessing-master
posterize.m
.m
imageProcessing-master/Matlab imaging/Extra/posterize.m
2,427
utf_8
a008b17a4f649fdcad5fbbd48d8dabde
function Y = posterize(varargin) % % POSTERIZE Reduces number of colors in an image. % % Y = POSTERIZE(X,N) creates the image Y by reduncing the number % of different colors of X to N. The N color values of Y are evenly % spaced in the same range as the values of X, however Y has only N % different values. The values of X are rounded to the closet allowed % values of Y. % % Y = POSTERIZE(X,N,[MIN MAX]) scales the N allowed values of Y so % that they have the new [MIN MAX] range. % % Y = POSTERIZE(X,N,'noint') allows non integer values on Y. By default, % the allowed values of Y are rounded to the closest integer so that they % are evenly spaced. If using the 'noint' parameter this rounding is not % performed. % % Y = POSTERIZE(X,N,'img') uses [MIN MAX] = [0 255], do not allow non % integer values on Y and returns Y as UINT8. % % Y = POSTERIZE(x) uses N=64 and the 'img' parameter. % [x,N,I,frac] = parse_inputs(varargin{:}); if ~isa(x,'double') x = double(x); end M = max(x(:)); m = min(x(:)); Y = round((x-m)/(M-m) * (N-1)); % Separetes in N levels from 0 toa N-1 Y = Y/(N-1); % Scales to 0 - 1 Y = Y*(I(2)-I(1))+I(1); % Scale to MIN, MAX if frac==0 Y = round(Y); % Rounds end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [x,N,I,frac] = parse_inputs(varargin) switch nargin case 0 error('Too few inputs!') return case 1 x = varargin{1}; I = [0 255]; frac = 0; N=64; case 2 x = varargin{1}; if strcmp(varargin{2},'img') I = [0 255]; frac = 0; N=64; else N = varargin{2}; I = [min(x(:)) max(x(:))]; % ??? round ??? frac = 0; end case 3 x = varargin{1}; N = varargin{2}; if strcmp(varargin{3},'noint') frac = 1; I = [min(x(:)) max(x(:))]; elseif strcmp(varargin{3},'img') I = [0 255]; frac = 0; else I = varargin{3}; frac = 0; end case 4 x = varargin{1}; N = varargin{2}; if strcmp(varargin{3},'noint') frac = 1; I = varargin{4}; else if strcmp(varargin{4},'noint') frac = 1; I = varargin{3}; else error('Invalid parameter!') return end end case 5 error('Too many inputs!') return end
github
jacksky64/imageProcessing-master
maxfilt2.m
.m
imageProcessing-master/Matlab imaging/Extra/maxfilt2.m
1,849
utf_8
45cc67fb2afee0dc77cfc7798629574f
function Y = maxfilt2(X,varargin) % MAXFILT2 Two-dimensional max filter % % Y = MAXFILT2(X,[M N]) performs two-dimensional maximum % filtering on the image X using an M-by-N window. The result % Y contains the maximun value in the M-by-N neighborhood around % each pixel in the original image. % This function uses the van Herk algorithm for max filters. % % Y = MAXFILT2(X,M) is the same as Y = MAXFILT2(X,[M M]) % % Y = MAXFILT2(X) uses a 3-by-3 neighborhood. % % Y = MAXFILT2(..., 'shape') returns a subsection of the 2D % filtering specified by 'shape' : % 'full' - Returns the full filtering result, % 'same' - (default) Returns the central filter area that is the % same size as X, % 'valid' - Returns only the area where no filter elements are outside % the image. % % See also : MINFILT2, VANHERK % % Initialization [S, shape] = parse_inputs(varargin{:}); % filtering Y = vanherk(X,S(1),'max',shape); Y = vanherk(Y,S(2),'max','col',shape); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [S, shape] = parse_inputs(varargin) shape = 'same'; flag = [0 0]; % size shape for i = 1 : nargin t = varargin{i}; if strcmp(t,'full') & flag(2) == 0 shape = 'full'; flag(2) = 1; elseif strcmp(t,'same') & flag(2) == 0 shape = 'same'; flag(2) = 1; elseif strcmp(t,'valid') & flag(2) == 0 shape = 'valid'; flag(2) = 1; elseif flag(1) == 0 S = t; flag(1) = 1; else error(['Too many / Unkown parameter : ' t ]) end end if flag(1) == 0 S = [3 3]; end if length(S) == 1; S(2) = S(1); end if length(S) ~= 2 error('Wrong window size parameter.') end
github
jacksky64/imageProcessing-master
minfilt2.m
.m
imageProcessing-master/Matlab imaging/Extra/minfilt2.m
1,849
utf_8
99705de3e51cb81a30a34c274cf65366
function Y = minfilt2(X,varargin) % MINFILT2 Two-dimensional min filter % % Y = MINFILT2(X,[M N]) performs two-dimensional minimum % filtering on the image X using an M-by-N window. The result % Y contains the minimun value in the M-by-N neighborhood around % each pixel in the original image. % This function uses the van Herk algorithm for min filters. % % Y = MINFILT2(X,M) is the same as Y = MINFILT2(X,[M M]) % % Y = MINFILT2(X) uses a 3-by-3 neighborhood. % % Y = MINFILT2(..., 'shape') returns a subsection of the 2D % filtering specified by 'shape' : % 'full' - Returns the full filtering result, % 'same' - (default) Returns the central filter area that is the % same size as X, % 'valid' - Returns only the area where no filter elements are outside % the image. % % See also : MAXFILT2, VANHERK % % Initialization [S, shape] = parse_inputs(varargin{:}); % filtering Y = vanherk(X,S(1),'min',shape); Y = vanherk(Y,S(2),'min','col',shape); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [S, shape] = parse_inputs(varargin) shape = 'same'; flag = [0 0]; % size shape for i = 1 : nargin t = varargin{i}; if strcmp(t,'full') & flag(2) == 0 shape = 'full'; flag(2) = 1; elseif strcmp(t,'same') & flag(2) == 0 shape = 'same'; flag(2) = 1; elseif strcmp(t,'valid') & flag(2) == 0 shape = 'valid'; flag(2) = 1; elseif flag(1) == 0 S = t; flag(1) = 1; else error(['Too many / Unkown parameter : ' t ]) end end if flag(1) == 0 S = [3 3]; end if length(S) == 1; S(2) = S(1); end if length(S) ~= 2 error('Wrong window size parameter.') end
github
jacksky64/imageProcessing-master
plotline.m
.m
imageProcessing-master/Matlab imaging/Extra/plotline.m
1,778
utf_8
44ac4c98d32432076d5d7b9c745300e3
function y = plotline(x,d,varargin) % PLOTLINE Plots a vertical or horizontal line % % PLOTLINE(x,dir) plots a horizontal (dir='h') or vertical (dir='v') % dotted line at position x on the current figure. % % PLOTLINE(x,dir,S) uses plots the line using the specified color and % linestyle. S is a string containing one element from any or all the % columns bellow (just like in the plot command). % % Colors: Styles: % y yellow - solid % m magenta : dotted % c cyan -. dashdot % r red -- dashed % g green % b blue % w white % k black % % PLOTLINE(...,'label') plots the value label x next to the line. % [S,lab] = parse_inputs(varargin{:}); h = ishold; ax = axis; hold on; if strcmp(d,'h') for i = 1 : length(x) plot([ax(1) ax(2)], [x(i) x(i)], S) if lab text( (ax(1)+ax(2))/2, x(i), num2str(x(i))) end end elseif strcmp(d,'v') for i = 1 : length(x) plot([x(i) x(i)], [ax(3) ax(4)], S) if lab text( x(i), (ax(3)+ax(4))/2, num2str(x(i))) end end else error('Unknow direction.') end if h hold on; else hold off end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [S,lab] = parse_inputs(varargin) S = []; lab = -1; for i = 1 : nargin if strcmp('label',varargin{i}) & lab==-1 lab = 1; elseif isempty(S) S = varargin{i}; else error('Too many parameters.') end end if lab==-1 lab=0; end if isempty(S) S='k:'; end
github
jacksky64/imageProcessing-master
nfft2.m
.m
imageProcessing-master/Matlab imaging/Extra/nfft2.m
2,714
utf_8
246579cf697dfb614364498b06c06386
function [varargout] = nfft2(varargin) % % NFFT2 Two-dimensional discrete Fourier Transform. % % Y = NFFT2(X) returns the two-dimensional Fourier transform of matrix X % performing the visualization correction. % % Y = NFFT2(X,MROWS,NCOLS) pads matrix X with zeros to size MROWS-by-NCOLS % before transforming. % % [Y,W1,W2] = NFFT2(X) returns also the normalized frequencies W1 and W2. % % NFFT2(X) makes the surf plot of NFFT2(X). % % Y = NFFT2(X,...,'normalize') normalizes the transform [0 - 1]. % % See also FFT2, IFFT2, FFT, FFTSHIFT. % [X, MROWS, NCOLS, normalize] = parse_inputs(varargin{:}); R2 = floor(MROWS/2); C2 = floor(NCOLS/2); temp = fft2(X, MROWS, NCOLS); %r = floor(size(X,1)/2); %c = floor(size(X,2)/2); %X = X(1:r, 1:c); %Y = zeros(2*r, 2*c); %Y(r+1:2*r, c+1:2*c) = X; %Y(1:r, c+1:2*c) = flipud(X); %Y(1:r, 1:c) = fliplr(Y(1:r,c+1:2*c)); %Y(r+1:2*r, 1:c) = fliplr(X); Y = fft2fix(temp); clear temp abs_Y = abs(Y); max_abs_Y = max(max(abs_Y)); if normalize == 1; Y = Y/max_abs_Y; end switch nargout case 0 [W1,W2]=freqspace(size(Y),'meshgrid'); if normalize == 0 surf(W1,W2,abs_Y) zlabel('Magnitude'); else surf(W1,W2,abs_Y/max_abs_Y) zlabel('Normed Magnitude'); end if prod(size(Y)) > 7500 shading interp end xlabel('Wn1'); ylabel('Wn2'); case 1 varargout(1) = {Y}; case 2 varargout(1) = {Y}; varargout(2) = {W1}; case 3 varargout(1) = {Y}; varargout(2) = {W1}; varargout(3) = {W2}; case 4 error('Incorrect number of output parameters!') return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X, MROWS, NCOLS, normalize] = parse_inputs(varargin) switch nargin case 0 error('Missing variable or function') case 1 X = varargin{1}; MROWS = size(X,1); NCOLS = size(X,2); normalize = 0; case 2 X = varargin{1}; if strcmp(varargin{2},'normalize') MROWS = size(X,1); normalize = 1; else MROWS = varargin{2}; normalize = 0; end NCOLS = size(X,2); case 3 X = varargin{1}; MROWS = varargin{2}; if strcmp(varargin{3},'normalize') NCOLS = size(X,2); normalize = 1; else NCOLS = varargin{2}; normalize = 0; end case 4 X = varargin{1}; MROWS = varargin{2}; NCOLS = varargin{3}; if strcmp('normalize', varargin{4}) normalize = 1; else error('Unknown parameter.') return end case 5 error('Too many inputs') end
github
jacksky64/imageProcessing-master
thomas.m
.m
imageProcessing-master/Matlab imaging/Extra/thomas.m
3,148
utf_8
4b9db75fb4b91a56471d767ec26e0adb
function x = thomas(varargin) % THOMAS Solves a tridiagonal linear system % % x = THOMAS(A,d) solves a tridiagonal linear system using the very efficient % Thomas Algorith. The vector x is the returned answer. % % A*x = d; / a1 b1 0 0 0 ... 0 \ / x1 \ / d1 \ % | c1 a2 b2 0 0 ... 0 | | x2 | | d2 | % | 0 c2 a3 b3 0 ... 0 | x | x3 | = | d3 | % | : : : : : : : | | x4 | | d4 | % | 0 0 0 0 cn-2 an-1 bn-1 | | : | | : | % \ 0 0 0 0 0 cn-1 an / \ xn / \ dn / % % - The matrix A must be strictly diagonally dominant for a stable solution. % - This algorithm solves this system on (5n-4) multiplications/divisions and % (3n-3) subtractions. % % x = THOMAS(a,b,c,d) where a is the diagonal, b is the upper diagonal, and c is % the lower diagonal of A also solves A*x = d for x. Note that a is size n % while b and c is size n-1. % If size(a)=size(d)=[L C] and size(b)=size(c)=[L-1 C], THOMAS solves the C % independent systems simultaneously. % % % ATTENTION : No verification is done in order to assure that A is a tridiagonal matrix. % If this function is used with a non tridiagonal matrix it will produce wrong results. % [a,b,c,d] = parse_inputs(varargin{:}); % Initialization m = zeros(size(a)); l = zeros(size(c)); y = zeros(size(d)); n = size(a,1); %1. LU decomposition ________________________________________________________________________________ % % L = / 1 \ U = / m1 r1 \ % | l1 1 | | m2 r2 | % | l2 1 | | m3 r3 | % | : : : | | : : : | % \ ln-1 1 / \ mn / % % ri = bi -> not necessary m(1,:) = a(1,:); y(1,:) = d(1,:); %2. Forward substitution (L*y=d, for y) ____________________________ for i = 2 : n i_1 = i-1; l(i_1,:) = c(i_1,:)./m(i_1,:); m(i,:) = a(i,:) - l(i_1,:).*b(i_1,:); y(i,:) = d(i,:) - l(i_1,:).*y(i_1,:); %2. Forward substitution (L*y=d, for y) ____________________________ end %2. Forward substitution (L*y=d, for y) ______________________________________________________________ %y(1) = d(1); %for i = 2 : n % y(i,:) = d(i,:) - l(i-1,:).*y(i-1,:); %end %3. Backward substitutions (U*x=y, for x) ____________________________________________________________ x(n,:) = y(n,:)./m(n,:); for i = n-1 : -1 : 1 x(i,:) = (y(i,:) - b(i,:).*x(i+1,:))./m(i,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [a,b,c,d] = parse_inputs(varargin) if nargin == 4 a = varargin{1}; b = varargin{2}; c = varargin{3}; d = varargin{4}; elseif nargin == 2 A = sparse(varargin{1}); a = diag(A); b = diag(A,1); c = diag(A,-1); d = varargin{2}; else error('Incorrect number of inputs.') end
github
jacksky64/imageProcessing-master
toggle.m
.m
imageProcessing-master/Matlab imaging/Extra/toggle.m
2,005
utf_8
96627feed2dcff5c420f0cdec2df8801
function Y = toggle(varargin) % TOGGLE Matrix elements classification. % % Y = TOGGLE(X,X1,X2) generates the binary matrix Y by comparing % each element of the matrix X with X1 and X2. If the element of % X is closer to the element of X1, the corresponding element of % Y will be zero. Otherwise if the element of X is closer to the % one in X2, the corresponding Y element will be 1. % % Y = TOGGLE(X,X1,X2,'s') substitutes the output zeros for the % coresponding elements of X1 and the output ones for the % correspondig elements of X2. % % X1 and X2 must be the same size as X or scalars. % If X, X1 and X2 are uint8, Y is uint8. Otherwise Y is double. % [X,X1,X2,S] = parse_inputs(varargin{:}); flag = 0; if ~isa(X1,'double') X1 = double(X1); flag = flag + 1; end if ~isa(X2,'double') X2 = double(X2); flag = flag + 1; end Y = zeros(size(X)); d = abs(X-X1) > abs(X-X2); if S==0 Y(d) = 1; else Y(d) = X2(d); Y(~d) = X1(~d); end if flag==0 Y = uint8(Y); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X,X1,X2,S] = parse_inputs(varargin) switch nargin case {0,1,2} error('Too few inputs') %case 1 % error('Missing variable or function') %case 2 % error('Missing variable or function') case 3 X = varargin{1}; X1 = varargin{2}; X2 = varargin{3}; S = 0; case 4 X = varargin{1}; X1 = varargin{2}; X2 = varargin{3}; if strcmp('s',varargin{4}) S = 1; else error('Unknown parameter') end case 5 error('Too many inputs') end if size(X) ~= size(X1) if length(X1)==1 X1 = X1*ones(size(X)); else error('X1 must be the same size as X, or scalar'); end end if size(X) ~= size(X2) if length(X2)==1 X2 = X2*ones(size(X)); else error('X2 must be the same size as X, or scalar'); end end
github
jacksky64/imageProcessing-master
colormapc.m
.m
imageProcessing-master/Matlab imaging/Extra/colormapc.m
1,625
utf_8
bf7ec4fa92fbcd4ccc19569cee309220
function Y = colormapc(varargin) % COLORMAPC Circular colormap % % Y = COLORMAPC(T) creates a circular colormap type T. Circular colormaps % are build so that the first and last colors are the same. This kind of % colormap is useful for ploting angle images which have a circular behavior % (0 = 2*pi). % % Y = COLORMAPC(T,N) creates the circular colormap T with size N. % % T = 1 -> blk, yel, red, gre, blk T = 2 -> cya, blu, mag, cya (cool) % T = 3 -> blu, cya, gre, yel, blu T = 4 -> blk, red, yel, blk (hot) % switch nargin case 0 T = 1; N = 256; case 1 T = varargin{1}; N = 256; case 2 T = varargin{1}; N = varargin{2}; otherwise error('Too many parameters.') end Y = zeros(N,3); switch T case 1 Y = cmapc(N,[0 0 0],[1 0 0],[1 1 0],[0 1 0]); case 2 Y = cmapc(N,[0 1 1],[0 0 1],[1 0 1]); case 3 Y = cmapc(N,[0 0 1],[0 1 1],[0 1 0],[1 1 0]); case 4 Y = cmapc(N,[0 0 0],[1 0 0],[1 1 0]); otherwise error('Unknown colormap type.') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Y = cmapc(varargin) %if nargin < 3 % error('Too few inputs.') %end N = varargin{1}; C = zeros(nargin,3); C = cat(1,varargin{2:end},varargin{2}); Y = zeros(N,3); ls = 1; r = N/(size(C,1)-1); % Length of each color transition. for i = 1 : size(C,1)-1 li = ls; ls = round(i*r); d = ls - li + 1; Y(li:ls,:) = [linspace(C(i,1),C(i+1,1),d); linspace(C(i,2),C(i+1,2),d); linspace(C(i,3),C(i+1,3),d)]'; end
github
jacksky64/imageProcessing-master
noise.m
.m
imageProcessing-master/Matlab imaging/Extra/noise.m
4,300
utf_8
462689c50cc2ff1e7f79053cede6d16b
function y = noise(varargin) % NOISE Adds noise to an image. % % NOISE creates a new image by adding noise to the original image. % NOISE can be used to any matrix (1D, 2D, 3D, nD) % % Noisetypes are: % 'ag' : additive gaussian (default) 'au' : additive uniform % 'mg' : multiplicative gaussian 'mu' : multiplicative uniform % 'sp' : salt and pepper % % Additive noise sums an random value to the image value at each pixel, % Multiplicative noise replaces a pixel value with an random value, % Salt and Pepper noise replaces a pixel value with the maximum or minimum possible values. % % For 'ag' noisetype use: y = NOISE(x,'ag', variance, [incidence]) % where 'variance' is the variance of the gaussian noise added and the optional parameter % 'incidence' is the percetual of pixels affected be the noise (default for additive noise=1). % For a 50% incidence use 'incidence' = .5 and so on. % % For 'au' noisetype use : y = NOISE(x,'au', maximum, [incidence]) % where 'maximum' is the maximum value the uniform noise can achieve % % For 'mg' noisetype use : y = NOISE(x,'mg', incidence) % For 'mu' noisetype use : y = NOISE(x,'mu', incidence) % Multiplicative noisetypes require that the 'incidence' parameter. For this kind of noise % the variance or the maximum (respectivelly for gaussian and uniform noisetypes) are allways % set to the maximum image value. % % For 'sp' noisetype use : y = NOISE(x,'sp', incidence) % % The 'maximum' and 'variance' parameters can be set as percentual of the maximum - minimum image % values by using these values as strings containg the percentual rate followed by the percent symbol. % The 'incidence' can also be expressed as a pecentual in this same way % % Example: y = NOISE(x,'ag', '25%') % y = NOISE(x,'mu', 10, .5) -> same as y = NOISE(x,'mu',10, '50%') % [u, noisetype, scale, incid] = parse_inputs(varargin{:}); if ~isa(u,'double') u = double(u); end y = u; n = zeros(size(u)); if incid == 1 m_incid = logical(ones(size(u))); else m_incid = rand(size(u)); m_incid = find(m_incid <= incid); end if strcmp(noisetype, 'ag') n(m_incid) = scale*randn(size(m_incid)); y = u + n; elseif strcmp(noisetype, 'au') n(m_incid) = scale*rand(size(m_incid)); y = u + n; elseif strcmp(noisetype, 'mg') n(m_incid) = scale*randn(size(m_incid)); y(m_incid) = n(m_incid); elseif strcmp(noisetype, 'mu') n(m_incid) = scale*rand(size(m_incid)); y(m_incid) = n(m_incid); elseif strcmp(noisetype, 'sp') n(m_incid) = sign(randn(size(m_incid))); umax = max(u(:)); umin = min(u(:)); salt = find(n==-1); pepper = find(n==1); y(salt) = umax; y(pepper) = umin; end function [u, noisetype, scale, incid] = parse_inputs(varargin) switch nargin case 0 error('Too few inputs') case 1 u = varargin{1}; noisetype = 'ag'; scale = double(max(u(:))); incid = 1; case 2 u = varargin{1}; if strmatch(varargin{2},['ag';'au']) noisetype = varargin{2}; scale = double(max(u(:))); incid = 1; elseif strmatch(varargin{2},['mg'; 'mu'; 'sp']) error('Incidence missing'); else noisetype = 'ag'; scale = varargin{2}; incid = 1; end case 3 u = varargin{1}; if strmatch(varargin{2},['ag';'au']) noisetype = varargin{2}; scale = varargin{3}; incid = 1; elseif strmatch(varargin{2},['mg'; 'mu'; 'sp']) noisetype = varargin{2}; scale = double(max(u(:))); incid = varargin{3}; else noisetype = 'ag'; scale = varargin{2}; incid = varargin{3}; end case 4 u = varargin{1}; if strmatch(varargin{2},['ag';'au']) noisetype = varargin{2}; scale = varargin{3}; incid = varargin{4}; else error('Too many parameters') end otherwise error('Too many parameters') end if findstr(scale,'%') scale = ( double(max(u(:))) - double(min(u(:))) )*str2num(scale(1:end-1))/100; end if findstr(incid,'%') incid = str2num(incid(1:end-1))/100; end
github
jacksky64/imageProcessing-master
imagem.m
.m
imageProcessing-master/Matlab imaging/Extra/imagem.m
3,626
utf_8
1780eff1083db2a93964e4dc0cb295ca
function varargout = imagem(varargin) % IMAGEM Displays image and marker. % % IMAGEM(X,M) displays the grayscale or RGB image X and superimposes the % b/w image M to it. The image M is intended to be a marker image of % some characteristics of X. X and M must have the same size. % % IMAGEM(X,M1,M2,..,Mn) superimposes each new image at a different color. % % IMAGEM(X,M1,M2,..,Mn,'color',C1,C2,..,Cn) uses the colors specified as % a RGB color vector. Alternativelly its possible to pass colors as strings. % The following color strings are accepted: % % 'r':red, 'g':green, 'b':blue, 'y':yellow, % 'm':magenta, 'c':cyan, 'w':white, 'k':black % % Y = IMAGEM(...) returns the new superimposed image as an RGB image. % if nargout > 1 error('Too many outputs.') end [X, MARK, COLOR] = parse_inputs(varargin{:}); if isempty(MARK) image(X) if nargout == 1 varargout{1} = X; end return end if size(X,3) == 1 % normalizing image xmax = max(X(:)); xmin = min(X(:)); if ~(isa(X,'uint8') | (xmax<=1 & xmin>=1)) X = (X-xmin)./(xmax-xmin); end X = repmat(X,[1 1 3]); end Y = mountim(X,MARK,COLOR); % Creates mounted image if nargout == 1 varargout{1} = Y; elseif nargout == 0 image(Y); figure(gcf) else error('Too many outputs.') end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [X, MARK, COLOR] = parse_inputs(varargin) if nargin==0 error('Too few inputs') elseif nargin==1 X = varargin{1}; MARK = []; COLOR = []; else X = varargin{1}; flag = 0; for i = 2 : nargin if strcmp(varargin{i},'color') MARK = varargin(2:i-1); COLOR = varargin(i+1:end); flag = 1; break end end if flag == 0 MARK = varargin(2:end); COLOR = []; end sizechk(X,MARK{:}); % Checks if all images have the same size if length(COLOR)~=length(MARK) & ~isempty(COLOR) error('Number of image markers and colors must be equal.') end MARK = cat(3,MARK{:}); % Convert mark from cell to matrix MARK = logical(uint8(MARK~=0)); COLOR = convcolor(COLOR); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sizechk(X,varargin) S = size(X(:,:,1)); for i = 1 : nargin-1 if size(varargin{i},3) > 1 error('Marker images must be bidimensional.') end if size(varargin{i}) ~= S error('All images must have the same size.') end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Y = mountim(X,MARK,COLOR) if isempty(COLOR) COLOR = [1 0 0;0 1 0;0 0 1; 1 1 0;1 0 1;0 1 1; .75 .25 0; .75 0 .25;.25 .75 0; .25 0 .75]; if isa(X,'uint8') COLOR = 255*COLOR; end end r = X(:,:,1); g = X(:,:,2); b = X(:,:,3); for i = 1 : size(MARK,3) j = mod(i-1,length(COLOR))+1; r(MARK(:,:,i)) = COLOR(j,1); g(MARK(:,:,i)) = COLOR(j,2); b(MARK(:,:,i)) = COLOR(j,3); end Y = X; Y(:,:,1) = r; Y(:,:,2) = g; Y(:,:,3) = b; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function Y = convcolor(X) COLOR = [1 0 0; 0 1 0; 0 0 1; 1 1 0; 1 0 1; 0 1 1; 1 1 1; 0 0 0]; Y = zeros(length(X),3); for i = 1 : length(X) if ischar(X{i}) k = findstr('rgbymcwk', X{i}); Y(i,:) = COLOR(k,:); else Y(i,:) = X{i}; end end
github
jacksky64/imageProcessing-master
sp3Filters.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/sp3Filters.m
17,188
utf_8
a3514d77e5a92b96d96197ebad343395
% Steerable pyramid filters. Transform described in: % % @INPROCEEDINGS{Simoncelli95b, % TITLE = "The Steerable Pyramid: A Flexible Architecture for % Multi-Scale Derivative Computation", % AUTHOR = "E P Simoncelli and W T Freeman", % BOOKTITLE = "Second Int'l Conf on Image Processing", % ADDRESS = "Washington, DC", MONTH = "October", YEAR = 1995 } % % Filter kernel design described in: % %@INPROCEEDINGS{Karasaridis96, % TITLE = "A Filter Design Technique for % Steerable Pyramid Image Transforms", % AUTHOR = "A Karasaridis and E P Simoncelli", % BOOKTITLE = "ICASSP", ADDRESS = "Atlanta, GA", % MONTH = "May", YEAR = 1996 } % Eero Simoncelli, 6/96. function [lo0filt,hi0filt,lofilt,bfilts,mtx,harmonics] = sp3Filters(); harmonics = [1 3]; mtx = [ ... 0.5000 0.3536 0 -0.3536 -0.0000 0.3536 0.5000 0.3536 0.5000 -0.3536 0 0.3536 -0.0000 0.3536 -0.5000 0.3536]; hi0filt = [ -4.0483998600E-4 -6.2596000498E-4 -3.7829999201E-5 8.8387000142E-4 1.5450799838E-3 1.9235999789E-3 2.0687500946E-3 2.0898699295E-3 2.0687500946E-3 1.9235999789E-3 1.5450799838E-3 8.8387000142E-4 -3.7829999201E-5 -6.2596000498E-4 -4.0483998600E-4 -6.2596000498E-4 -3.2734998967E-4 7.7435001731E-4 1.5874400269E-3 2.1750701126E-3 2.5626500137E-3 2.2892199922E-3 1.9755100366E-3 2.2892199922E-3 2.5626500137E-3 2.1750701126E-3 1.5874400269E-3 7.7435001731E-4 -3.2734998967E-4 -6.2596000498E-4 -3.7829999201E-5 7.7435001731E-4 1.1793200392E-3 1.4050999889E-3 2.2253401112E-3 2.1145299543E-3 3.3578000148E-4 -8.3368999185E-4 3.3578000148E-4 2.1145299543E-3 2.2253401112E-3 1.4050999889E-3 1.1793200392E-3 7.7435001731E-4 -3.7829999201E-5 8.8387000142E-4 1.5874400269E-3 1.4050999889E-3 1.2960999738E-3 -4.9274001503E-4 -3.1295299996E-3 -4.5751798898E-3 -5.1014497876E-3 -4.5751798898E-3 -3.1295299996E-3 -4.9274001503E-4 1.2960999738E-3 1.4050999889E-3 1.5874400269E-3 8.8387000142E-4 1.5450799838E-3 2.1750701126E-3 2.2253401112E-3 -4.9274001503E-4 -6.3222697936E-3 -2.7556000277E-3 5.3632198833E-3 7.3032598011E-3 5.3632198833E-3 -2.7556000277E-3 -6.3222697936E-3 -4.9274001503E-4 2.2253401112E-3 2.1750701126E-3 1.5450799838E-3 1.9235999789E-3 2.5626500137E-3 2.1145299543E-3 -3.1295299996E-3 -2.7556000277E-3 1.3962360099E-2 7.8046298586E-3 -9.3812197447E-3 7.8046298586E-3 1.3962360099E-2 -2.7556000277E-3 -3.1295299996E-3 2.1145299543E-3 2.5626500137E-3 1.9235999789E-3 2.0687500946E-3 2.2892199922E-3 3.3578000148E-4 -4.5751798898E-3 5.3632198833E-3 7.8046298586E-3 -7.9501636326E-2 -0.1554141641 -7.9501636326E-2 7.8046298586E-3 5.3632198833E-3 -4.5751798898E-3 3.3578000148E-4 2.2892199922E-3 2.0687500946E-3 2.0898699295E-3 1.9755100366E-3 -8.3368999185E-4 -5.1014497876E-3 7.3032598011E-3 -9.3812197447E-3 -0.1554141641 0.7303866148 -0.1554141641 -9.3812197447E-3 7.3032598011E-3 -5.1014497876E-3 -8.3368999185E-4 1.9755100366E-3 2.0898699295E-3 2.0687500946E-3 2.2892199922E-3 3.3578000148E-4 -4.5751798898E-3 5.3632198833E-3 7.8046298586E-3 -7.9501636326E-2 -0.1554141641 -7.9501636326E-2 7.8046298586E-3 5.3632198833E-3 -4.5751798898E-3 3.3578000148E-4 2.2892199922E-3 2.0687500946E-3 1.9235999789E-3 2.5626500137E-3 2.1145299543E-3 -3.1295299996E-3 -2.7556000277E-3 1.3962360099E-2 7.8046298586E-3 -9.3812197447E-3 7.8046298586E-3 1.3962360099E-2 -2.7556000277E-3 -3.1295299996E-3 2.1145299543E-3 2.5626500137E-3 1.9235999789E-3 1.5450799838E-3 2.1750701126E-3 2.2253401112E-3 -4.9274001503E-4 -6.3222697936E-3 -2.7556000277E-3 5.3632198833E-3 7.3032598011E-3 5.3632198833E-3 -2.7556000277E-3 -6.3222697936E-3 -4.9274001503E-4 2.2253401112E-3 2.1750701126E-3 1.5450799838E-3 8.8387000142E-4 1.5874400269E-3 1.4050999889E-3 1.2960999738E-3 -4.9274001503E-4 -3.1295299996E-3 -4.5751798898E-3 -5.1014497876E-3 -4.5751798898E-3 -3.1295299996E-3 -4.9274001503E-4 1.2960999738E-3 1.4050999889E-3 1.5874400269E-3 8.8387000142E-4 -3.7829999201E-5 7.7435001731E-4 1.1793200392E-3 1.4050999889E-3 2.2253401112E-3 2.1145299543E-3 3.3578000148E-4 -8.3368999185E-4 3.3578000148E-4 2.1145299543E-3 2.2253401112E-3 1.4050999889E-3 1.1793200392E-3 7.7435001731E-4 -3.7829999201E-5 -6.2596000498E-4 -3.2734998967E-4 7.7435001731E-4 1.5874400269E-3 2.1750701126E-3 2.5626500137E-3 2.2892199922E-3 1.9755100366E-3 2.2892199922E-3 2.5626500137E-3 2.1750701126E-3 1.5874400269E-3 7.7435001731E-4 -3.2734998967E-4 -6.2596000498E-4 -4.0483998600E-4 -6.2596000498E-4 -3.7829999201E-5 8.8387000142E-4 1.5450799838E-3 1.9235999789E-3 2.0687500946E-3 2.0898699295E-3 2.0687500946E-3 1.9235999789E-3 1.5450799838E-3 8.8387000142E-4 -3.7829999201E-5 -6.2596000498E-4 -4.0483998600E-4 ]; lo0filt = [ -8.7009997515E-5 -1.3542800443E-3 -1.6012600390E-3 -5.0337001448E-4 2.5240099058E-3 -5.0337001448E-4 -1.6012600390E-3 -1.3542800443E-3 -8.7009997515E-5 -1.3542800443E-3 2.9215801042E-3 7.5227199122E-3 8.2244202495E-3 1.1076199589E-3 8.2244202495E-3 7.5227199122E-3 2.9215801042E-3 -1.3542800443E-3 -1.6012600390E-3 7.5227199122E-3 -7.0612900890E-3 -3.7694871426E-2 -3.2971370965E-2 -3.7694871426E-2 -7.0612900890E-3 7.5227199122E-3 -1.6012600390E-3 -5.0337001448E-4 8.2244202495E-3 -3.7694871426E-2 4.3813198805E-2 0.1811603010 4.3813198805E-2 -3.7694871426E-2 8.2244202495E-3 -5.0337001448E-4 2.5240099058E-3 1.1076199589E-3 -3.2971370965E-2 0.1811603010 0.4376249909 0.1811603010 -3.2971370965E-2 1.1076199589E-3 2.5240099058E-3 -5.0337001448E-4 8.2244202495E-3 -3.7694871426E-2 4.3813198805E-2 0.1811603010 4.3813198805E-2 -3.7694871426E-2 8.2244202495E-3 -5.0337001448E-4 -1.6012600390E-3 7.5227199122E-3 -7.0612900890E-3 -3.7694871426E-2 -3.2971370965E-2 -3.7694871426E-2 -7.0612900890E-3 7.5227199122E-3 -1.6012600390E-3 -1.3542800443E-3 2.9215801042E-3 7.5227199122E-3 8.2244202495E-3 1.1076199589E-3 8.2244202495E-3 7.5227199122E-3 2.9215801042E-3 -1.3542800443E-3 -8.7009997515E-5 -1.3542800443E-3 -1.6012600390E-3 -5.0337001448E-4 2.5240099058E-3 -5.0337001448E-4 -1.6012600390E-3 -1.3542800443E-3 -8.7009997515E-5 ]; lofilt = [ -4.3500000174E-5 1.2078000145E-4 -6.7714002216E-4 -1.2434000382E-4 -8.0063997302E-4 -1.5970399836E-3 -2.5168000138E-4 -4.2019999819E-4 1.2619999470E-3 -4.2019999819E-4 -2.5168000138E-4 -1.5970399836E-3 -8.0063997302E-4 -1.2434000382E-4 -6.7714002216E-4 1.2078000145E-4 -4.3500000174E-5 1.2078000145E-4 4.4606000301E-4 -5.8146001538E-4 5.6215998484E-4 -1.3688000035E-4 2.3255399428E-3 2.8898599558E-3 4.2872801423E-3 5.5893999524E-3 4.2872801423E-3 2.8898599558E-3 2.3255399428E-3 -1.3688000035E-4 5.6215998484E-4 -5.8146001538E-4 4.4606000301E-4 1.2078000145E-4 -6.7714002216E-4 -5.8146001538E-4 1.4607800404E-3 2.1605400834E-3 3.7613599561E-3 3.0809799209E-3 4.1121998802E-3 2.2212199401E-3 5.5381999118E-4 2.2212199401E-3 4.1121998802E-3 3.0809799209E-3 3.7613599561E-3 2.1605400834E-3 1.4607800404E-3 -5.8146001538E-4 -6.7714002216E-4 -1.2434000382E-4 5.6215998484E-4 2.1605400834E-3 3.1757799443E-3 3.1846798956E-3 -1.7774800071E-3 -7.4316998944E-3 -9.0569201857E-3 -9.6372198313E-3 -9.0569201857E-3 -7.4316998944E-3 -1.7774800071E-3 3.1846798956E-3 3.1757799443E-3 2.1605400834E-3 5.6215998484E-4 -1.2434000382E-4 -8.0063997302E-4 -1.3688000035E-4 3.7613599561E-3 3.1846798956E-3 -3.5306399222E-3 -1.2604200281E-2 -1.8847439438E-2 -1.7508180812E-2 -1.6485679895E-2 -1.7508180812E-2 -1.8847439438E-2 -1.2604200281E-2 -3.5306399222E-3 3.1846798956E-3 3.7613599561E-3 -1.3688000035E-4 -8.0063997302E-4 -1.5970399836E-3 2.3255399428E-3 3.0809799209E-3 -1.7774800071E-3 -1.2604200281E-2 -2.0229380578E-2 -1.1091699824E-2 3.9556599222E-3 1.4385120012E-2 3.9556599222E-3 -1.1091699824E-2 -2.0229380578E-2 -1.2604200281E-2 -1.7774800071E-3 3.0809799209E-3 2.3255399428E-3 -1.5970399836E-3 -2.5168000138E-4 2.8898599558E-3 4.1121998802E-3 -7.4316998944E-3 -1.8847439438E-2 -1.1091699824E-2 2.1906599402E-2 6.8065837026E-2 9.0580143034E-2 6.8065837026E-2 2.1906599402E-2 -1.1091699824E-2 -1.8847439438E-2 -7.4316998944E-3 4.1121998802E-3 2.8898599558E-3 -2.5168000138E-4 -4.2019999819E-4 4.2872801423E-3 2.2212199401E-3 -9.0569201857E-3 -1.7508180812E-2 3.9556599222E-3 6.8065837026E-2 0.1445499808 0.1773651242 0.1445499808 6.8065837026E-2 3.9556599222E-3 -1.7508180812E-2 -9.0569201857E-3 2.2212199401E-3 4.2872801423E-3 -4.2019999819E-4 1.2619999470E-3 5.5893999524E-3 5.5381999118E-4 -9.6372198313E-3 -1.6485679895E-2 1.4385120012E-2 9.0580143034E-2 0.1773651242 0.2120374441 0.1773651242 9.0580143034E-2 1.4385120012E-2 -1.6485679895E-2 -9.6372198313E-3 5.5381999118E-4 5.5893999524E-3 1.2619999470E-3 -4.2019999819E-4 4.2872801423E-3 2.2212199401E-3 -9.0569201857E-3 -1.7508180812E-2 3.9556599222E-3 6.8065837026E-2 0.1445499808 0.1773651242 0.1445499808 6.8065837026E-2 3.9556599222E-3 -1.7508180812E-2 -9.0569201857E-3 2.2212199401E-3 4.2872801423E-3 -4.2019999819E-4 -2.5168000138E-4 2.8898599558E-3 4.1121998802E-3 -7.4316998944E-3 -1.8847439438E-2 -1.1091699824E-2 2.1906599402E-2 6.8065837026E-2 9.0580143034E-2 6.8065837026E-2 2.1906599402E-2 -1.1091699824E-2 -1.8847439438E-2 -7.4316998944E-3 4.1121998802E-3 2.8898599558E-3 -2.5168000138E-4 -1.5970399836E-3 2.3255399428E-3 3.0809799209E-3 -1.7774800071E-3 -1.2604200281E-2 -2.0229380578E-2 -1.1091699824E-2 3.9556599222E-3 1.4385120012E-2 3.9556599222E-3 -1.1091699824E-2 -2.0229380578E-2 -1.2604200281E-2 -1.7774800071E-3 3.0809799209E-3 2.3255399428E-3 -1.5970399836E-3 -8.0063997302E-4 -1.3688000035E-4 3.7613599561E-3 3.1846798956E-3 -3.5306399222E-3 -1.2604200281E-2 -1.8847439438E-2 -1.7508180812E-2 -1.6485679895E-2 -1.7508180812E-2 -1.8847439438E-2 -1.2604200281E-2 -3.5306399222E-3 3.1846798956E-3 3.7613599561E-3 -1.3688000035E-4 -8.0063997302E-4 -1.2434000382E-4 5.6215998484E-4 2.1605400834E-3 3.1757799443E-3 3.1846798956E-3 -1.7774800071E-3 -7.4316998944E-3 -9.0569201857E-3 -9.6372198313E-3 -9.0569201857E-3 -7.4316998944E-3 -1.7774800071E-3 3.1846798956E-3 3.1757799443E-3 2.1605400834E-3 5.6215998484E-4 -1.2434000382E-4 -6.7714002216E-4 -5.8146001538E-4 1.4607800404E-3 2.1605400834E-3 3.7613599561E-3 3.0809799209E-3 4.1121998802E-3 2.2212199401E-3 5.5381999118E-4 2.2212199401E-3 4.1121998802E-3 3.0809799209E-3 3.7613599561E-3 2.1605400834E-3 1.4607800404E-3 -5.8146001538E-4 -6.7714002216E-4 1.2078000145E-4 4.4606000301E-4 -5.8146001538E-4 5.6215998484E-4 -1.3688000035E-4 2.3255399428E-3 2.8898599558E-3 4.2872801423E-3 5.5893999524E-3 4.2872801423E-3 2.8898599558E-3 2.3255399428E-3 -1.3688000035E-4 5.6215998484E-4 -5.8146001538E-4 4.4606000301E-4 1.2078000145E-4 -4.3500000174E-5 1.2078000145E-4 -6.7714002216E-4 -1.2434000382E-4 -8.0063997302E-4 -1.5970399836E-3 -2.5168000138E-4 -4.2019999819E-4 1.2619999470E-3 -4.2019999819E-4 -2.5168000138E-4 -1.5970399836E-3 -8.0063997302E-4 -1.2434000382E-4 -6.7714002216E-4 1.2078000145E-4 -4.3500000174E-5 ]; bfilts = [... -8.1125000725E-4 4.4451598078E-3 1.2316980399E-2 1.3955879956E-2 1.4179450460E-2 1.3955879956E-2 1.2316980399E-2 4.4451598078E-3 -8.1125000725E-4 ... 3.9103501476E-3 4.4565401040E-3 -5.8724298142E-3 -2.8760801069E-3 8.5267601535E-3 -2.8760801069E-3 -5.8724298142E-3 4.4565401040E-3 3.9103501476E-3 ... 1.3462699717E-3 -3.7740699481E-3 8.2581602037E-3 3.9442278445E-2 5.3605638444E-2 3.9442278445E-2 8.2581602037E-3 -3.7740699481E-3 1.3462699717E-3 ... 7.4700999539E-4 -3.6522001028E-4 -2.2522680461E-2 -0.1105690673 -0.1768419296 -0.1105690673 -2.2522680461E-2 -3.6522001028E-4 7.4700999539E-4 ... 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 ... -7.4700999539E-4 3.6522001028E-4 2.2522680461E-2 0.1105690673 0.1768419296 0.1105690673 2.2522680461E-2 3.6522001028E-4 -7.4700999539E-4 ... -1.3462699717E-3 3.7740699481E-3 -8.2581602037E-3 -3.9442278445E-2 -5.3605638444E-2 -3.9442278445E-2 -8.2581602037E-3 3.7740699481E-3 -1.3462699717E-3 ... -3.9103501476E-3 -4.4565401040E-3 5.8724298142E-3 2.8760801069E-3 -8.5267601535E-3 2.8760801069E-3 5.8724298142E-3 -4.4565401040E-3 -3.9103501476E-3 ... 8.1125000725E-4 -4.4451598078E-3 -1.2316980399E-2 -1.3955879956E-2 -1.4179450460E-2 -1.3955879956E-2 -1.2316980399E-2 -4.4451598078E-3 8.1125000725E-4; ... ... 0.0000000000 -8.2846998703E-4 -5.7109999034E-5 4.0110000555E-5 4.6670897864E-3 8.0871898681E-3 1.4807609841E-2 8.6204400286E-3 -3.1221499667E-3 ... 8.2846998703E-4 0.0000000000 -9.7479997203E-4 -6.9718998857E-3 -2.0865600090E-3 2.3298799060E-3 -4.4814897701E-3 1.4917500317E-2 8.6204400286E-3 ... 5.7109999034E-5 9.7479997203E-4 0.0000000000 -1.2145539746E-2 -2.4427289143E-2 5.0797060132E-2 3.2785870135E-2 -4.4814897701E-3 1.4807609841E-2 ... -4.0110000555E-5 6.9718998857E-3 1.2145539746E-2 0.0000000000 -0.1510555595 -8.2495503128E-2 5.0797060132E-2 2.3298799060E-3 8.0871898681E-3 ... -4.6670897864E-3 2.0865600090E-3 2.4427289143E-2 0.1510555595 0.0000000000 -0.1510555595 -2.4427289143E-2 -2.0865600090E-3 4.6670897864E-3 ... -8.0871898681E-3 -2.3298799060E-3 -5.0797060132E-2 8.2495503128E-2 0.1510555595 0.0000000000 -1.2145539746E-2 -6.9718998857E-3 4.0110000555E-5 ... -1.4807609841E-2 4.4814897701E-3 -3.2785870135E-2 -5.0797060132E-2 2.4427289143E-2 1.2145539746E-2 0.0000000000 -9.7479997203E-4 -5.7109999034E-5 ... -8.6204400286E-3 -1.4917500317E-2 4.4814897701E-3 -2.3298799060E-3 2.0865600090E-3 6.9718998857E-3 9.7479997203E-4 0.0000000000 -8.2846998703E-4 ... 3.1221499667E-3 -8.6204400286E-3 -1.4807609841E-2 -8.0871898681E-3 -4.6670897864E-3 -4.0110000555E-5 5.7109999034E-5 8.2846998703E-4 0.0000000000; ... ... 8.1125000725E-4 -3.9103501476E-3 -1.3462699717E-3 -7.4700999539E-4 0.0000000000 7.4700999539E-4 1.3462699717E-3 3.9103501476E-3 -8.1125000725E-4 ... -4.4451598078E-3 -4.4565401040E-3 3.7740699481E-3 3.6522001028E-4 0.0000000000 -3.6522001028E-4 -3.7740699481E-3 4.4565401040E-3 4.4451598078E-3 ... -1.2316980399E-2 5.8724298142E-3 -8.2581602037E-3 2.2522680461E-2 0.0000000000 -2.2522680461E-2 8.2581602037E-3 -5.8724298142E-3 1.2316980399E-2 ... -1.3955879956E-2 2.8760801069E-3 -3.9442278445E-2 0.1105690673 0.0000000000 -0.1105690673 3.9442278445E-2 -2.8760801069E-3 1.3955879956E-2 ... -1.4179450460E-2 -8.5267601535E-3 -5.3605638444E-2 0.1768419296 0.0000000000 -0.1768419296 5.3605638444E-2 8.5267601535E-3 1.4179450460E-2 ... -1.3955879956E-2 2.8760801069E-3 -3.9442278445E-2 0.1105690673 0.0000000000 -0.1105690673 3.9442278445E-2 -2.8760801069E-3 1.3955879956E-2 ... -1.2316980399E-2 5.8724298142E-3 -8.2581602037E-3 2.2522680461E-2 0.0000000000 -2.2522680461E-2 8.2581602037E-3 -5.8724298142E-3 1.2316980399E-2 ... -4.4451598078E-3 -4.4565401040E-3 3.7740699481E-3 3.6522001028E-4 0.0000000000 -3.6522001028E-4 -3.7740699481E-3 4.4565401040E-3 4.4451598078E-3 ... 8.1125000725E-4 -3.9103501476E-3 -1.3462699717E-3 -7.4700999539E-4 0.0000000000 7.4700999539E-4 1.3462699717E-3 3.9103501476E-3 -8.1125000725E-4; ... ... 3.1221499667E-3 -8.6204400286E-3 -1.4807609841E-2 -8.0871898681E-3 -4.6670897864E-3 -4.0110000555E-5 5.7109999034E-5 8.2846998703E-4 0.0000000000 ... -8.6204400286E-3 -1.4917500317E-2 4.4814897701E-3 -2.3298799060E-3 2.0865600090E-3 6.9718998857E-3 9.7479997203E-4 -0.0000000000 -8.2846998703E-4 ... -1.4807609841E-2 4.4814897701E-3 -3.2785870135E-2 -5.0797060132E-2 2.4427289143E-2 1.2145539746E-2 0.0000000000 -9.7479997203E-4 -5.7109999034E-5 ... -8.0871898681E-3 -2.3298799060E-3 -5.0797060132E-2 8.2495503128E-2 0.1510555595 -0.0000000000 -1.2145539746E-2 -6.9718998857E-3 4.0110000555E-5 ... -4.6670897864E-3 2.0865600090E-3 2.4427289143E-2 0.1510555595 0.0000000000 -0.1510555595 -2.4427289143E-2 -2.0865600090E-3 4.6670897864E-3 ... -4.0110000555E-5 6.9718998857E-3 1.2145539746E-2 0.0000000000 -0.1510555595 -8.2495503128E-2 5.0797060132E-2 2.3298799060E-3 8.0871898681E-3 ... 5.7109999034E-5 9.7479997203E-4 -0.0000000000 -1.2145539746E-2 -2.4427289143E-2 5.0797060132E-2 3.2785870135E-2 -4.4814897701E-3 1.4807609841E-2 ... 8.2846998703E-4 -0.0000000000 -9.7479997203E-4 -6.9718998857E-3 -2.0865600090E-3 2.3298799060E-3 -4.4814897701E-3 1.4917500317E-2 8.6204400286E-3 ... 0.0000000000 -8.2846998703E-4 -5.7109999034E-5 4.0110000555E-5 4.6670897864E-3 8.0871898681E-3 1.4807609841E-2 8.6204400286E-3 -3.1221499667E-3 ... ]';
github
jacksky64/imageProcessing-master
buildWpyr.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/buildWpyr.m
2,644
utf_8
e741b2037d9a1358d4de94580ebcc4bf
% [PYR, INDICES] = buildWpyr(IM, HEIGHT, FILT, EDGES) % % Construct a separable orthonormal QMF/wavelet pyramid on matrix (or vector) IM. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(IM,FILT). You can also specify 'auto' to use this value. % % FILT (optional) can be a string naming a standard filter (see % namedFilter), or a vector which will be used for (separable) % convolution. Filter can be of even or odd length, but should be symmetric. % Default = 'qmf9'. EDGES specifies edge-handling, and % defaults to 'reflect1' (see corrDn). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % Eero Simoncelli, 6/96, based on original lisp code from 1987. function [pyr,pind] = buildWpyr(im, ht, filt, edges) if (nargin < 1) error('First argument (IM) is required'); end %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('filt') ~= 1) filt = 'qmf9'; end if (exist('edges') ~= 1) edges= 'reflect1'; end if isstr(filt) filt = namedFilter(filt); end if ( (size(filt,1) > 1) & (size(filt,2) > 1) ) error('FILT should be a 1D filter (i.e., a vector)'); else filt = filt(:); end hfilt = modulateFlip(filt); % Stagger sampling if filter is odd-length: if (mod(size(filt,1),2) == 0) stag = 2; else stag = 1; end im_sz = size(im); max_ht = maxPyrHt(im_sz, size(filt,1)); if ( (exist('ht') ~= 1) | (ht == 'auto') ) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (ht <= 0) pyr = im(:); pind = im_sz; else if (im_sz(2) == 1) lolo = corrDn(im, filt, edges, [2 1], [stag 1]); hihi = corrDn(im, hfilt, edges, [2 1], [2 1]); elseif (im_sz(1) == 1) lolo = corrDn(im, filt', edges, [1 2], [1 stag]); hihi = corrDn(im, hfilt', edges, [1 2], [1 2]); else lo = corrDn(im, filt, edges, [2 1], [stag 1]); hi = corrDn(im, hfilt, edges, [2 1], [2 1]); lolo = corrDn(lo, filt', edges, [1 2], [1 stag]); lohi = corrDn(hi, filt', edges, [1 2], [1 stag]); % horizontal hilo = corrDn(lo, hfilt', edges, [1 2], [1 2]); % vertical hihi = corrDn(hi, hfilt', edges, [1 2], [1 2]); % diagonal end [npyr,nind] = buildWpyr(lolo, ht-1, filt, edges); if ((im_sz(1) == 1) | (im_sz(2) == 1)) pyr = [hihi(:); npyr]; pind = [size(hihi); nind]; else pyr = [lohi(:); hilo(:); hihi(:); npyr]; pind = [size(lohi); size(hilo); size(hihi); nind]; end end
github
jacksky64/imageProcessing-master
reconLpyr.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/reconLpyr.m
2,049
utf_8
657b8012a1ed06b6573496855309b2ae
% RES = reconLpyr(PYR, INDICES, LEVS, FILT2, EDGES) % % Reconstruct image from Laplacian pyramid, as created by buildLpyr. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % % LEVS (optional) should be a list of levels to include, or the string % 'all' (default). The finest scale is number 1. The lowpass band % corresponds to lpyrHt(INDICES)+1. % % FILT2 (optional) can be a string naming a standard filter (see % namedFilter), or a vector which will be used for (separable) % convolution. Default = 'binom5'. EDGES specifies edge-handling, % and defaults to 'reflect1' (see corrDn). % Eero Simoncelli, 6/96 function res = reconLpyr(pyr, ind, levs, filt2, edges) if (nargin < 2) error('First two arguments (PYR, INDICES) are required'); end %%------------------------------------------------------------ %% DEFAULTS: if (exist('levs') ~= 1) levs = 'all'; end if (exist('filt2') ~= 1) filt2 = 'binom5'; end if (exist('edges') ~= 1) edges= 'reflect1'; end %%------------------------------------------------------------ maxLev = 1+lpyrHt(ind); if strcmp(levs,'all') levs = [1:maxLev]'; else if (any(levs > maxLev)) error(sprintf('Level numbers must be in the range [1, %d].', maxLev)); end levs = levs(:); end if isstr(filt2) filt2 = namedFilter(filt2); end filt2 = filt2(:); res_sz = ind(1,:); if any(levs > 1) int_sz = [ind(1,1), ind(2,2)]; nres = reconLpyr( pyr(prod(res_sz)+1:size(pyr,1)), ... ind(2:size(ind,1),:), levs-1, filt2, edges); if (res_sz(1) == 1) res = upConv(nres, filt2', edges, [1 2], [1 1], res_sz); elseif (res_sz(2) == 1) res = upConv(nres, filt2, edges, [2 1], [1 1], res_sz); else hi = upConv(nres, filt2, edges, [2 1], [1 1], int_sz); res = upConv(hi, filt2', edges, [1 2], [1 1], res_sz); end else res = zeros(res_sz); end if any(levs == 1) res = res + pyrBand(pyr,ind,1); end
github
jacksky64/imageProcessing-master
mkDisc.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/mkDisc.m
1,428
utf_8
c6acae0ac1aa738b7ef094eb2ac60f52
% IM = mkDisc(SIZE, RADIUS, ORIGIN, TWIDTH, VALS) % % Make a "disk" image. SIZE specifies the matrix size, as for % zeros(). RADIUS (default = min(size)/4) specifies the radius of % the disk. ORIGIN (default = (size+1)/2) specifies the % location of the disk center. TWIDTH (in pixels, default = 2) % specifies the width over which a soft threshold transition is made. % VALS (default = [0,1]) should be a 2-vector containing the % intensity value inside and outside the disk. % Eero Simoncelli, 6/96. function [res] = mkDisc(sz, rad, origin, twidth, vals) if (nargin < 1) error('Must pass at least a size argument'); end sz = sz(:); if (size(sz,1) == 1) sz = [sz sz]; end %------------------------------------------------------------ % OPTIONAL ARGS: if (exist('rad') ~= 1) rad = min(sz(1),sz(2))/4; end if (exist('origin') ~= 1) origin = (sz+1)./2; end if (exist('twidth') ~= 1) twidth = 2; end if (exist('vals') ~= 1) vals = [1,0]; end %------------------------------------------------------------ res = mkR(sz,1,origin); if (abs(twidth) < realmin) res = vals(2) + (vals(1) - vals(2)) * (res <= rad); else [Xtbl,Ytbl] = rcosFn(twidth, rad, [vals(1), vals(2)]); res = pointOp(res, Ytbl, Xtbl(1), Xtbl(2)-Xtbl(1), 0); % % OLD interp1 VERSION: % res = res(:); % Xtbl(1) = min(res); % Xtbl(size(Xtbl,2)) = max(res); % res = reshape(interp1(Xtbl,Ytbl,res), sz(1), sz(2)); % end
github
jacksky64/imageProcessing-master
spyrHigh.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/spyrHigh.m
189
utf_8
3132a747e0c7bf1879bb32e4d5fda257
% RES = spyrHigh(PYR, INDICES) % % Access the highpass residual band from a steerable pyramid. % Eero Simoncelli, 6/96. function res = spyrHigh(pyr,pind) res = pyrBand(pyr, pind, 1);
github
jacksky64/imageProcessing-master
mkImpulse.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/mkImpulse.m
529
utf_8
cf6f3809cb123791501bb0e92845a0c6
% IM = mkImpulse(SIZE, ORIGIN, AMPLITUDE) % % Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar) % containing a single non-zero entry, at position ORIGIN (defaults to % ceil(size/2)), of value AMPLITUDE (defaults to 1). % Eero Simoncelli, 6/96. function [res] = mkImpulse(sz, origin, amplitude) sz = sz(:)'; if (size(sz,2) == 1) sz = [sz sz]; end if (exist('origin') ~= 1) origin = ceil(sz/2); end if (exist('amplitude') ~= 1) amplitude = 1; end res = zeros(sz); res(origin(1),origin(2)) = amplitude;
github
jacksky64/imageProcessing-master
rconv2.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/rconv2.m
1,435
utf_8
da3a54d6c7b1ac17c78eab0a4a7648d9
% RES = RCONV2(MTX1, MTX2, CTR) % % Convolution of two matrices, with boundaries handled via reflection % about the edge pixels. Result will be of size of LARGER matrix. % % The origin of the smaller matrix is assumed to be its center. % For even dimensions, the origin is determined by the CTR (optional) % argument: % CTR origin % 0 DIM/2 (default) % 1 (DIM/2)+1 % Eero Simoncelli, 6/96. function c = rconv2(a,b,ctr) if (exist('ctr') ~= 1) ctr = 0; end if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) )) large = a; small = b; elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) )) large = b; small = a; else error('one arg must be larger than the other in both dimensions!'); end ly = size(large,1); lx = size(large,2); sy = size(small,1); sx = size(small,2); %% These values are one less than the index of the small mtx that falls on %% the border pixel of the large matrix when computing the first %% convolution response sample: sy2 = floor((sy+ctr-1)/2); sx2 = floor((sx+ctr-1)/2); % pad with reflected copies clarge = [ large(sy-sy2:-1:2,sx-sx2:-1:2), large(sy-sy2:-1:2,:), ... large(sy-sy2:-1:2,lx-1:-1:lx-sx2); ... large(:,sx-sx2:-1:2), large, large(:,lx-1:-1:lx-sx2); ... large(ly-1:-1:ly-sy2,sx-sx2:-1:2), ... large(ly-1:-1:ly-sy2,:), ... large(ly-1:-1:ly-sy2,lx-1:-1:lx-sx2) ]; c = conv2(clarge,small,'valid');
github
jacksky64/imageProcessing-master
mkR.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/mkR.m
775
utf_8
504bc90f67c72730edc4a9d86630bdf2
% IM = mkR(SIZE, EXPT, ORIGIN) % % Compute a matrix of dimension SIZE (a [Y X] 2-vector, or a scalar) % containing samples of a radial ramp function, raised to power EXPT % (default = 1), with given ORIGIN (default = (size+1)/2, [1 1] = % upper left). All but the first argument are optional. % Eero Simoncelli, 6/96. function [res] = mkR(sz, expt, origin) sz = sz(:); if (size(sz,1) == 1) sz = [sz,sz]; end % ----------------------------------------------------------------- % OPTIONAL args: if (exist('expt') ~= 1) expt = 1; end if (exist('origin') ~= 1) origin = (sz+1)/2; end % ----------------------------------------------------------------- [xramp,yramp] = meshgrid( [1:sz(2)]-origin(2), [1:sz(1)]-origin(1) ); res = (xramp.^2 + yramp.^2).^(expt/2);
github
jacksky64/imageProcessing-master
blur.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/blur.m
1,731
utf_8
a2dc57fdfe85f98549b2f7ddf721c298
% RES = blur(IM, LEVELS, FILT) % % Blur an image, by filtering and downsampling LEVELS times % (default=1), followed by upsampling and filtering LEVELS times. The % blurring is done with filter kernel specified by FILT (default = % 'binom5'), which can be a string (to be passed to namedFilter), a % vector (applied separably as a 1D convolution kernel in X and Y), or % a matrix (applied as a 2D convolution kernel). The downsampling is % always by 2 in each direction. % Eero Simoncelli, 3/04. function res = blur(im, nlevs, filt) %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('nlevs') ~= 1) nlevs = 1; end if (exist('filt') ~= 1) filt = 'binom5'; end %------------------------------------------------------------ if isstr(filt) filt = namedFilter(filt); end filt = filt/sum(filt(:)); if nlevs > 0 if (any(size(im)==1)) if (~any(size(filt)==1)) error('Cant apply 2D filter to 1D signal'); end if (size(im,2)==1) filt = filt(:); else filt = filt(:)'; end in = corrDn(im,filt,'reflect1',(size(im)~=1)+1); out = blur(in, nlevs-1, filt); res = upConv(out, filt, 'reflect1', (size(im)~=1)+1, [1 1], size(im)); elseif (any(size(filt)==1)) filt = filt(:); in = corrDn(im,filt,'reflect1',[2 1]); in = corrDn(in,filt','reflect1',[1 2]); out = blur(in, nlevs-1, filt); res = upConv(out, filt', 'reflect1', [1 2], [1 1], [size(out,1),size(im,2)]); res = upConv(res, filt, 'reflect1', [2 1], [1 1], size(im)); else in = corrDn(im,filt,'reflect1',[2 2]); out = blur(in, nlevs-1, filt); res = upConv(out, filt, 'reflect1', [2 2], [1 1], size(im)); end else res = im; end
github
jacksky64/imageProcessing-master
pyrBand.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/pyrBand.m
395
utf_8
39c1e3772426a1362119d302d9767a24
% RES = pyrBand(PYR, INDICES, BAND_NUM) % % Access a subband from a pyramid (gaussian, laplacian, QMF/wavelet, % or steerable). Subbands are numbered consecutively, from finest % (highest spatial frequency) to coarsest (lowest spatial frequency). % Eero Simoncelli, 6/96. function res = pyrBand(pyr, pind, band) res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) );
github
jacksky64/imageProcessing-master
kurt2.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/kurt2.m
551
utf_8
cd20c1a5155cba8de454011552ec4f2a
% K = KURT2(MTX,MEAN,VAR) % % Sample kurtosis (fourth moment divided by squared variance) % of a matrix. Kurtosis of a Gaussian distribution is 3. % MEAN (optional) and VAR (optional) make the computation faster. % Eero Simoncelli, 6/96. function res = kurt2(mtx, mn, v) if (exist('mn') ~= 1) mn = mean(mean(mtx)); end if (exist('v') ~= 1) v = var2(mtx,mn); end if (isreal(mtx)) res = mean(mean(abs(mtx-mn).^4)) / (v^2); else res = mean(mean(real(mtx-mn).^4)) / (real(v)^2) + ... i*mean(mean(imag(mtx-mn).^4)) / (imag(v)^2); end
github
jacksky64/imageProcessing-master
buildSpyr.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/buildSpyr.m
2,064
utf_8
b0caf60e63a52aa734956dd74ea39f95
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSpyr(IM, HEIGHT, FILTFILE, EDGES) % % Construct a steerable pyramid on matrix IM. Convolutions are % done with spatial filters. % % HEIGHT (optional) specifies the number of pyramid levels to build. Default % is maxPyrHt(size(IM),size(FILT)). % You can also specify 'auto' to use this value. % % FILTFILE (optional) should be a string referring to an m-file that % returns the rfilters. (examples: 'sp0Filters', 'sp1Filters', % 'sp3Filters','sp5Filters'. default = 'sp1Filters'). EDGES specifies % edge-handling, and defaults to 'reflect1' (see corrDn). % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % See the function STEER for a description of STEERMTX and HARMONICS. % Eero Simoncelli, 6/96. % See http://www.cis.upenn.edu/~eero/steerpyr.html for more % information about the Steerable Pyramid image decomposition. function [pyr,pind,steermtx,harmonics] = buildSpyr(im, ht, filtfile, edges) %----------------------------------------------------------------- %% DEFAULTS: if (exist('filtfile') ~= 1) filtfile = 'sp1Filters'; end if (exist('edges') ~= 1) edges= 'reflect1'; end if (isstr(filtfile) & (exist(filtfile) == 2)) [lo0filt,hi0filt,lofilt,bfilts,steermtx,harmonics] = eval(filtfile); else fprintf(1,'\nUse buildSFpyr for pyramids with arbitrary numbers of orientation bands.\n'); error('FILTFILE argument must be the name of an M-file containing SPYR filters.'); end max_ht = maxPyrHt(size(im), size(lofilt,1)); if ( (exist('ht') ~= 1) | (ht == 'auto') ) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end %----------------------------------------------------------------- hi0 = corrDn(im, hi0filt, edges); lo0 = corrDn(im, lo0filt, edges); [pyr,pind] = buildSpyrLevs(lo0, ht, lofilt, bfilts, edges); pyr = [hi0(:) ; pyr]; pind = [size(hi0); pind];
github
jacksky64/imageProcessing-master
setPyrBand.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/setPyrBand.m
1,049
utf_8
76554eb735e969097a4723a508facd37
% NEWPYR = setPyrBand(PYR, INDICES, NEWBAND, BAND_NUM) % % Insert an image (BAND) into a pyramid (gaussian, laplacian, QMF/wavelet, % or steerable). Subbands are numbered consecutively, from finest % (highest spatial frequency) to coarsest (lowest spatial frequency). % Eero Simoncelli, 1/03. function pyr = setPyrBand(pyr, pind, band, bandNum) %% Check: PIND a valid index matrix? if ( ~(ndims(pind) == 2) | ~(size(pind,2) == 2) | ~all(pind==round(pind)) ) pind error('pyrTools:badArg',... 'PIND argument is not an Nbands X 2 matrix of integers'); end %% Check: PIND consistent with size of PYR? if ( length(pyr) ~= sum(prod(pind,2)) ) error('pyrTools:badPyr',... 'Pyramid data vector length is inconsistent with index matrix PIND'); end %% Check: size of BAND consistent with desired BANDNUM? if (~all(size(band) == pind(bandNum,:))) size(band) pind(bandNum,:) error('pyrTools:badArg',... 'size of BAND to be inserted is inconsistent with BAND_NUM'); end pyr(pyrBandIndices(pind,bandNum)) = vectify(band);
github
jacksky64/imageProcessing-master
var2.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/var2.m
390
utf_8
de26727e055081aa670024c273f0e885
% V = VAR2(MTX,MEAN) % % Sample variance of a matrix. % Passing MEAN (optional) makes the calculation faster. function res = var2(mtx, mn) if (exist('mn') ~= 1) mn = mean2(mtx); end if (isreal(mtx)) res = sum(sum(abs(mtx-mn).^2)) / max((prod(size(mtx)) - 1),1); else res = sum(sum(real(mtx-mn).^2)) + i*sum(sum(imag(mtx-mn).^2)); res = res / max((prod(size(mtx)) - 1),1); end
github
jacksky64/imageProcessing-master
reconSFpyrLevs.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/reconSFpyrLevs.m
2,016
utf_8
ff83a4f3d2f0927dcaa8851535e6b20a
% RESDFT = reconSFpyrLevs(PYR,INDICES,LOGRAD,XRCOS,YRCOS,ANGLE,NBANDS,LEVS,BANDS) % % Recursive function for reconstructing levels of a steerable pyramid % representation. This is called by reconSFpyr, and is not usually % called directly. % Eero Simoncelli, 5/97. function resdft = reconSFpyrLevs(pyr,pind,log_rad,Xrcos,Yrcos,angle,nbands,levs,bands); lo_ind = nbands+1; dims = pind(1,:); ctr = ceil((dims+0.5)/2); % log_rad = log_rad + 1; Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave. if any(levs > 1) lodims = ceil((dims-0.5)/2); loctr = ceil((lodims+0.5)/2); lostart = ctr-loctr+1; loend = lostart+lodims-1; nlog_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2)); nangle = angle(lostart(1):loend(1),lostart(2):loend(2)); if (size(pind,1) > lo_ind) nresdft = reconSFpyrLevs( pyr(1+sum(prod(pind(1:lo_ind-1,:)')):size(pyr,1)),... pind(lo_ind:size(pind,1),:), ... nlog_rad, Xrcos, Yrcos, nangle, nbands,levs-1, bands); else nresdft = fftshift(fft2(pyrBand(pyr,pind,lo_ind))); end YIrcos = sqrt(abs(1.0 - Yrcos.^2)); lomask = pointOp(nlog_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); resdft = zeros(dims); resdft(lostart(1):loend(1),lostart(2):loend(2)) = nresdft .* lomask; else resdft = zeros(dims); end if any(levs == 1) lutsize = 1024; Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] order = nbands-1; %% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) ) const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); Ycosn = sqrt(const) * (cos(Xcosn)).^order; himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1),0); ind = 1; for b = 1:nbands if any(bands == b) anglemask = pointOp(angle,Ycosn,Xcosn(1)+pi*(b-1)/nbands,Xcosn(2)-Xcosn(1)); band = reshape(pyr(ind:ind+prod(dims)-1), dims(1), dims(2)); banddft = fftshift(fft2(band)); resdft = resdft + (sqrt(-1))^(nbands-1) * banddft.*anglemask.*himask; end ind = ind + prod(dims); end end
github
jacksky64/imageProcessing-master
rcosFn.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/rcosFn.m
1,122
utf_8
36283e0a34f1baf7ea2c5e6cb23aab89
% [X, Y] = rcosFn(WIDTH, POSITION, VALUES) % % Return a lookup table (suitable for use by INTERP1) % containing a "raised cosine" soft threshold function: % % Y = VALUES(1) + (VALUES(2)-VALUES(1)) * % cos^2( PI/2 * (X - POSITION + WIDTH)/WIDTH ) % % WIDTH is the width of the region over which the transition occurs % (default = 1). POSITION is the location of the center of the % threshold (default = 0). VALUES (default = [0,1]) specifies the % values to the left and right of the transition. % Eero Simoncelli, 7/96. function [X, Y] = rcosFn(width,position,values) %------------------------------------------------------------ % OPTIONAL ARGS: if (exist('width') ~= 1) width = 1; end if (exist('position') ~= 1) position = 0; end if (exist('values') ~= 1) values = [0,1]; end %------------------------------------------------------------ sz = 256; %% arbitrary! X = pi * [-sz-1:1] / (2*sz); Y = values(1) + (values(2)-values(1)) * cos(X).^2; % Make sure end values are repeated, for extrapolation... Y(1) = Y(2); Y(sz+3) = Y(sz+2); X = position + (2*width/pi) * (X + pi/4);
github
jacksky64/imageProcessing-master
wpyrLev.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/wpyrLev.m
729
utf_8
77f309b76f98f3421e786fde4fe2d429
% [LEV,IND] = wpyrLev(PYR,INDICES,LEVEL) % % Access a level from a separable QMF/wavelet pyramid. % Return as an SxB matrix, B = number of bands, S = total size of a band. % Also returns an Bx2 matrix containing dimensions of the subbands. % Eero Simoncelli, 6/96. function [lev,ind] = wpyrLev(pyr,pind,level) if ((pind(1,1) == 1) | (pind(1,2) ==1)) nbands = 1; else nbands = 3; end if ((level > wpyrHt(pind)) | (level < 1)) error(sprintf('Level number must be in the range [1, %d].', wpyrHt(pind))); end firstband = 1 + nbands*(level-1) firstind = 1; for l=1:firstband-1 firstind = firstind + prod(pind(l,:)); end ind = pind(firstband:firstband+nbands-1,:); lev = pyr(firstind:firstind+sum(prod(ind'))-1);
github
jacksky64/imageProcessing-master
binomialFilter.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/binomialFilter.m
309
utf_8
47b67219b2519bd65a435f3df318d41a
% KERNEL = binomialFilter(size) % % Returns a vector of binomial coefficients of order (size-1) . % Eero Simoncelli, 2/97. function [kernel] = binomialFilter(sz) if (sz < 2) error('size argument must be larger than 1'); end kernel = [0.5 0.5]'; for n=1:sz-2 kernel = conv([0.5 0.5]', kernel); end
github
jacksky64/imageProcessing-master
cconv2.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/cconv2.m
1,325
utf_8
8e564b623ba5cebd51e585eac6c66ba8
% RES = CCONV2(MTX1, MTX2, CTR) % % Circular convolution of two matrices. Result will be of size of % LARGER vector. % % The origin of the smaller matrix is assumed to be its center. % For even dimensions, the origin is determined by the CTR (optional) % argument: % CTR origin % 0 DIM/2 (default) % 1 (DIM/2)+1 % Eero Simoncelli, 6/96. Modified 2/97. function c = cconv2(a,b,ctr) if (exist('ctr') ~= 1) ctr = 0; end if (( size(a,1) >= size(b,1) ) & ( size(a,2) >= size(b,2) )) large = a; small = b; elseif (( size(a,1) <= size(b,1) ) & ( size(a,2) <= size(b,2) )) large = b; small = a; else error('one arg must be larger than the other in both dimensions!'); end ly = size(large,1); lx = size(large,2); sy = size(small,1); sx = size(small,2); %% These values are the index of the small mtx that falls on the %% border pixel of the large matrix when computing the first %% convolution response sample: sy2 = floor((sy+ctr+1)/2); sx2 = floor((sx+ctr+1)/2); % pad: clarge = [ ... large(ly-sy+sy2+1:ly,lx-sx+sx2+1:lx), large(ly-sy+sy2+1:ly,:), ... large(ly-sy+sy2+1:ly,1:sx2-1); ... large(:,lx-sx+sx2+1:lx), large, large(:,1:sx2-1); ... large(1:sy2-1,lx-sx+sx2+1:lx), ... large(1:sy2-1,:), ... large(1:sy2-1,1:sx2-1) ]; c = conv2(clarge,small,'valid');
github
jacksky64/imageProcessing-master
reconSCFpyr.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/reconSCFpyr.m
4,475
utf_8
a0a6a06af4b5c9f7aa195bb8188fc754
% RES = reconSCFpyr(PYR, INDICES, LEVS, BANDS, TWIDTH) % % The inverse of buildSCFpyr: Reconstruct image from its complex steerable pyramid representation, % in the Fourier domain. % % The image is reconstructed by forcing the complex subbands to be analytic % (zero on half of the 2D Fourier plane, as they are supossed to be unless % they have being modified), and reconstructing from the real part of those % analytic subbands. That is equivalent to compute the Hilbert transforms of % the imaginary parts of the subbands, average them with their real % counterparts, and then reconstructing from the resulting real subbands. % % PYR is a vector containing the N pyramid subbands, ordered from fine % to coarse. INDICES is an Nx2 matrix containing the sizes of % each subband. This is compatible with the MatLab Wavelet toolbox. % % LEVS (optional) should be a list of levels to include, or the string % 'all' (default). 0 corresonds to the residual highpass subband. % 1 corresponds to the finest oriented scale. The lowpass band % corresponds to number spyrHt(INDICES)+1. % % BANDS (optional) should be a list of bands to include, or the string % 'all' (default). 1 = vertical, rest proceeding anti-clockwise. % % TWIDTH is the width of the transition region of the radial lowpass % function, in octaves (default = 1, which gives a raised cosine for % the bandpass filters). % Javier Portilla, 7/04, basing on Eero Simoncelli's Matlab Pyrtools code % and our common code on texture synthesis (textureSynthesis.m). function res = reconSCFpyr(pyr, indices, levs, bands, twidth) %%------------------------------------------------------------ %% DEFAULTS: if ~exist('levs'), levs = 'all'; end if ~exist('bands') bands = 'all'; end if ~exist('twidth'), twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %%------------------------------------------------------------ pind = indices; Nsc = log2(pind(1,1)/pind(end,1)); Nor = (size(pind,1)-2)/Nsc; for nsc = 1:Nsc, firstBnum = (nsc-1)*Nor+2; %% Re-create analytic subbands dims = pind(firstBnum,:); ctr = ceil((dims+0.5)/2); ang = mkAngle(dims, 0, ctr); ang(ctr(1),ctr(2)) = -pi/2; for nor = 1:Nor, nband = (nsc-1)*Nor+nor+1; ind = pyrBandIndices(pind,nband); ch = pyrBand(pyr, pind, nband); ang0 = pi*(nor-1)/Nor; xang = mod(ang-ang0+pi, 2*pi) - pi; amask = 2*(abs(xang) < pi/2) + (abs(xang) == pi/2); amask(ctr(1),ctr(2)) = 1; amask(:,1) = 1; amask(1,:) = 1; amask = fftshift(amask); ch = ifft2(amask.*fft2(ch)); % "Analytic" version %f = 1.000008; % With this factor the reconstruction SNR goes up around 6 dB! f = 1; ch = f*0.5*real(ch); % real part pyr(ind) = ch; end % nor end % nsc res = reconSFpyr(pyr, indices, levs, bands, twidth);
github
jacksky64/imageProcessing-master
buildSCFpyr.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/buildSCFpyr.m
2,713
utf_8
d94b4004138b50b6651511e8ba6ccb93
% [PYR, INDICES, STEERMTX, HARMONICS] = buildSCFpyr(IM, HEIGHT, ORDER, TWIDTH) % % This is a modified version of buildSFpyr, that constructs a % complex-valued steerable pyramid using Hilbert-transform pairs % of filters. Note that the imaginary parts will *not* be steerable. % % To reconstruct from this representation, either call reconSFpyr % on the real part of the pyramid, *or* call reconSCFpyr which will % use both real and imaginary parts (forcing analyticity). % % Description of this transform appears in: Portilla & Simoncelli, % Int'l Journal of Computer Vision, 40(1):49-71, Oct 2000. % Further information: http://www.cns.nyu.edu/~eero/STEERPYR/ % Original code: Eero Simoncelli, 5/97. % Modified by Javier Portilla to return complex (quadrature pair) channels, % 9/97. function [pyr,pind,steermtx,harmonics] = buildSCFpyr(im, ht, order, twidth) %----------------------------------------------------------------- %% DEFAULTS: max_ht = floor(log2(min(size(im)))) - 2; if (exist('ht') ~= 1) ht = max_ht; else if (ht > max_ht) error(sprintf('Cannot build pyramid higher than %d levels.',max_ht)); end end if (exist('order') ~= 1) order = 3; elseif ((order > 15) | (order < 0)) fprintf(1,'Warning: ORDER must be an integer in the range [0,15]. Truncating.\n'); order = min(max(order,0),15); else order = round(order); end nbands = order+1; if (exist('twidth') ~= 1) twidth = 1; elseif (twidth <= 0) fprintf(1,'Warning: TWIDTH must be positive. Setting to 1.\n'); twidth = 1; end %----------------------------------------------------------------- %% Steering stuff: if (mod((nbands),2) == 0) harmonics = [0:(nbands/2)-1]'*2 + 1; else harmonics = [0:(nbands-1)/2]'*2; end steermtx = steer2HarmMtx(harmonics, pi*[0:nbands-1]/nbands, 'even'); %----------------------------------------------------------------- dims = size(im); ctr = ceil((dims+0.5)/2); [xramp,yramp] = meshgrid( ([1:dims(2)]-ctr(2))./(dims(2)/2), ... ([1:dims(1)]-ctr(1))./(dims(1)/2) ); angle = atan2(yramp,xramp); log_rad = sqrt(xramp.^2 + yramp.^2); log_rad(ctr(1),ctr(2)) = log_rad(ctr(1),ctr(2)-1); log_rad = log2(log_rad); %% Radial transition function (a raised cosine in log-frequency): [Xrcos,Yrcos] = rcosFn(twidth,(-twidth/2),[0 1]); Yrcos = sqrt(Yrcos); YIrcos = sqrt(1.0 - Yrcos.^2); lo0mask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); imdft = fftshift(fft2(im)); lo0dft = imdft .* lo0mask; [pyr,pind] = buildSCFpyrLevs(lo0dft, log_rad, Xrcos, Yrcos, angle, ht, nbands); hi0mask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); hi0dft = imdft .* hi0mask; hi0 = ifft2(ifftshift(hi0dft)); pyr = [real(hi0(:)) ; pyr]; pind = [size(hi0); pind];
github
jacksky64/imageProcessing-master
showIm.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/showIm.m
6,111
utf_8
15fbbf55e2fd54e3f48ca936e23c3f32
% RANGE = showIm (MATRIX, RANGE, ZOOM, LABEL, NSHADES ) % % Display a MatLab MATRIX as a grayscale image in the current figure, % inside the current axes. If MATRIX is complex, the real and imaginary % parts are shown side-by-side, with the same grayscale mapping. % % If MATRIX is a string, it should be the name of a variable bound to a % MATRIX in the base (global) environment. This matrix is displayed as an % image, with the title set to the string. % % RANGE (optional) is a 2-vector specifying the values that map to % black and white, respectively. Passing a value of 'auto' (default) % sets RANGE=[min,max] (as in MatLab's imagesc). 'auto2' sets % RANGE=[mean-2*stdev, mean+2*stdev]. 'auto3' sets % RANGE=[p1-(p2-p1)/8, p2+(p2-p1)/8], where p1 is the 10th percentile % value of the sorted MATRIX samples, and p2 is the 90th percentile % value. % % ZOOM specifies the number of matrix samples per screen pixel. It % will be rounded to an integer, or 1 divided by an integer. A value % of 'same' or 'auto' (default) causes the zoom value to be chosen % automatically to fit the image into the current axes. A value of % 'full' fills the axis region (leaving no room for labels). See % pixelAxes.m. % % If LABEL (optional, default = 1, unless zoom='full') is non-zero, the range % of values that are mapped into the gray colormap and the dimensions % (size) of the matrix and zoom factor are printed below the image. If label % is a string, it is used as a title. % % NSHADES (optional) specifies the number of gray shades, and defaults % to the size of the current colormap. % Eero Simoncelli, 6/96. %%TODO: should use "newplot" function range = showIm( im, range, zoom, label, nshades ); %------------------------------------------------------------ %% OPTIONAL ARGS: if (nargin < 1) error('Requires at least one input argument.'); end MLv = version; if isstr(im) if (strcmp(MLv(1),'4')) error('Cannot pass string arg for MATRIX in MatLab version 4.x'); end label = im; im = evalin('base',im); end if (exist('range') ~= 1) range = 'auto1'; end if (exist('nshades') ~= 1) nshades = size(colormap,1); end nshades = max( nshades, 2 ); if (exist('zoom') ~= 1) zoom = 'auto'; end if (exist('label') ~= 1) if strcmp(zoom,'full') label = 0; % no labeling else label = 1; % just print grayrange & dims end end %------------------------------------------------------------ %% Automatic range calculation: if (strcmp(range,'auto1') | strcmp(range,'auto')) if isreal(im) [mn,mx] = range2(im); else [mn1,mx1] = range2(real(im)); [mn2,mx2] = range2(imag(im)); mn = min(mn1,mn2); mx = max(mx1,mx2); end if any(size(im)==1) pad = (mx-mn)/12; % MAGIC NUMBER: graph padding range = [mn-pad, mx+pad]; else range = [mn,mx]; end elseif strcmp(range,'auto2') if isreal(im) stdev = sqrt(var2(im)); av = mean2(im); else stdev = sqrt((var2(real(im)) + var2(imag(im)))/2); av = (mean2(real(im)) + mean2(imag(im)))/2; end range = [av-2*stdev,av+2*stdev]; % MAGIC NUMBER: 2 stdevs elseif strcmp(range, 'auto3') percentile = 0.1; % MAGIC NUMBER: 0<p<0.5 [N,X] = histo(im); binsz = X(2)-X(1); N = N+1e-10; % Ensure cumsum will be monotonic for call to interp1 cumN = [0, cumsum(N)]/sum(N); cumX = [X(1)-binsz, X] + (binsz/2); ctrRange = interp1(cumN,cumX, [percentile, 1-percentile]); range = mean(ctrRange) + (ctrRange-mean(ctrRange))/(1-2*percentile); elseif isstr(range) error(sprintf('Bad RANGE argument: %s',range)) end if ((range(2) - range(1)) <= eps) range(1) = range(1) - 0.5; range(2) = range(2) + 0.5; end if isreal(im) factor=1; else factor = 1+sqrt(-1); end xlbl_offset = 0; % default value if (~any(size(im)==1)) %% MatLab's "image" rounds when mapping to the colormap, so we compute %% (im-r1)*(nshades-1)/(r2-r1) + 1.5 mult = ((nshades-1) / (range(2)-range(1))); d_im = (mult * im) + factor*(1.5 - range(1)*mult); end if isreal(im) if (any(size(im)==1)) hh = plot( im); axis([1, prod(size(im)), range]); else hh = image( d_im ); axis('off'); zoom = pixelAxes(size(d_im),zoom); end else if (any(size(im)==1)) subplot(2,1,1); hh = plot(real(im)); axis([1, prod(size(im)), range]); subplot(2,1,2); hh = plot(imag(im)); axis([1, prod(size(im)), range]); else subplot(1,2,1); hh = image(real(d_im)); axis('off'); zoom = pixelAxes(size(d_im),zoom); ax = gca; orig_units = get(ax,'Units'); set(ax,'Units','points'); pos1 = get(ax,'Position'); set(ax,'Units',orig_units); subplot(1,2,2); hh = image(imag(d_im)); axis('off'); zoom = pixelAxes(size(d_im),zoom); ax = gca; orig_units = get(ax,'Units'); set(ax,'Units','points'); pos2 = get(ax,'Position'); set(ax,'Units',orig_units); xlbl_offset = (pos1(1)-pos2(1))/2; end end if ~any(size(im)==1) colormap(gray(nshades)); end if ((label ~= 0)) if isstr(label) title(label); h = get(gca,'Title'); orig_units = get(h,'Units'); set(h,'Units','points'); pos = get(h,'Position'); pos(1:2) = pos(1:2) + [xlbl_offset, -3]; % MAGIC NUMBER: y pixel offset set(h,'Position',pos); set(h,'Units',orig_units); end if (~any(size(im)==1)) if (zoom > 1) zformat = sprintf('* %d',round(zoom)); else zformat = sprintf('/ %d',round(1/zoom)); end if isreal(im) format=[' Range: [%.3g, %.3g] \n Dims: [%d, %d] ', zformat]; else format=['Range: [%.3g, %.3g] ---- Dims: [%d, %d]', zformat]; end xlabel(sprintf(format, range(1), range(2), size(im,1), size(im,2))); h = get(gca,'Xlabel'); set(h,'FontSize', 9); % MAGIC NUMBER: font size!!! orig_units = get(h,'Units'); set(h,'Units','points'); pos = get(h,'Position'); pos(1:2) = pos(1:2) + [xlbl_offset, 10]; % MAGIC NUMBER: y offset in points set(h,'Position',pos); set(h,'Units',orig_units); set(h,'Visible','on'); % axis('image') turned the xlabel off... end end return;
github
jacksky64/imageProcessing-master
pyrLow.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/pyrLow.m
287
utf_8
b3514ec06e2e106d7b61e534cac20a8e
% RES = pyrLow(PYR, INDICES) % % Access the lowpass subband from a pyramid % (gaussian, laplacian, QMF/wavelet, steerable). % Eero Simoncelli, 6/96. function res = pyrLow(pyr,pind) band = size(pind,1); res = reshape( pyr(pyrBandIndices(pind,band)), pind(band,1), pind(band,2) );
github
jacksky64/imageProcessing-master
pgmRead.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/pgmRead.m
1,259
utf_8
6f07c13cf0f5d8930a46ac0d778bf86f
% IM = pgmRead( FILENAME ) % % Load a pgm image into a MatLab matrix. % This format is accessible from the XV image browsing utility. % Only works for 8bit gray images (raw or ascii) % Hany Farid, Spring '96. Modified by Eero Simoncelli, 6/96. function im = pgmRead( fname ); [fid,msg] = fopen( fname, 'r' ); if (fid == -1) error(msg); end %%% First line contains ID string: %%% "P1" = ascii bitmap, "P2" = ascii greymap, %%% "P3" = ascii pixmap, "P4" = raw bitmap, %%% "P5" = raw greymap, "P6" = raw pixmap TheLine = fgetl(fid); format = TheLine; if ~((format(1:2) == 'P2') | (format(1:2) == 'P5')) error('PGM file must be of type P2 or P5'); end %%% Any number of comment lines TheLine = fgetl(fid); while TheLine(1) == '#' TheLine = fgetl(fid); end %%% dimensions sz = sscanf(TheLine,'%d',2); xdim = sz(1); ydim = sz(2); sz = xdim * ydim; %%% Maximum pixel value TheLine = fgetl(fid); maxval = sscanf(TheLine, '%d',1); %%im = zeros(dim,1); if (format(2) == '2') [im,count] = fscanf(fid,'%d',sz); else [im,count] = fread(fid,sz,'uchar'); end fclose(fid); if (count == sz) im = reshape( im, xdim, ydim )'; else fprintf(1,'Warning: File ended early!'); im = reshape( [im ; zeros(sz-count,1)], xdim, ydim)'; end
github
jacksky64/imageProcessing-master
upConv.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/upConv.m
2,779
utf_8
34137e966f38700416bfb0ebb72663ee
% RES = upConv(IM, FILT, EDGES, STEP, START, STOP, RES) % % Upsample matrix IM, followed by convolution with matrix FILT. These % arguments should be 1D or 2D matrices, and IM must be larger (in % both dimensions) than FILT. The origin of filt % is assumed to be floor(size(filt)/2)+1. % % EDGES is a string determining boundary handling: % 'circular' - Circular convolution % 'reflect1' - Reflect about the edge pixels % 'reflect2' - Reflect, doubling the edge pixels % 'repeat' - Repeat the edge pixels % 'zero' - Assume values of zero outside image boundary % 'extend' - Reflect and invert % 'dont-compute' - Zero output when filter overhangs OUTPUT boundaries % % Upsampling factors are determined by STEP (optional, default=[1 1]), % a 2-vector [y,x]. % % The window over which the convolution occurs is specfied by START % (optional, default=[1,1], and STOP (optional, default = % step .* (size(IM) + floor((start-1)./step))). % % RES is an optional result matrix. The convolution result will be % destructively added into this matrix. If this argument is passed, the % result matrix will not be returned. DO NOT USE THIS ARGUMENT IF % YOU DO NOT UNDERSTAND WHAT THIS MEANS!! % % NOTE: this operation corresponds to multiplication of a signal % vector by a matrix whose columns contain copies of the time-reversed % (or space-reversed) FILT shifted by multiples of STEP. See corrDn.m % for the operation corresponding to the transpose of this matrix. % Eero Simoncelli, 6/96. revised 2/97. function result = upConv(im,filt,edges,step,start,stop,res) %% THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX version of "upConv.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster, and provides more boundary-handling options.\n'); %------------------------------------------------------------ %% OPTIONAL ARGS: if (exist('edges') == 1) if (strcmp(edges,'reflect1') ~= 1) warning('Using REFLECT1 edge-handling (use MEX code for other options).'); end end if (exist('step') ~= 1) step = [1,1]; end if (exist('start') ~= 1) start = [1,1]; end % A multiple of step if (exist('stop') ~= 1) stop = step .* (floor((start-ones(size(start)))./step)+size(im)) end if ( ceil((stop(1)+1-start(1)) / step(1)) ~= size(im,1) ) error('Bad Y result dimension'); end if ( ceil((stop(2)+1-start(2)) / step(2)) ~= size(im,2) ) error('Bad X result dimension'); end if (exist('res') ~= 1) res = zeros(stop-start+1); end %------------------------------------------------------------ tmp = zeros(size(res)); tmp(start(1):step(1):stop(1),start(2):step(2):stop(2)) = im; result = rconv2(tmp,filt) + res;
github
jacksky64/imageProcessing-master
mean2.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/mean2.m
97
utf_8
cacc007ef6e32ba40a1e0da3b3d80a0e
% M = MEAN2(MTX) % % Sample mean of a matrix. function res = mean2(mtx) res = mean(mean(mtx));
github
jacksky64/imageProcessing-master
range2.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/range2.m
523
utf_8
b9f23c3a4f73bf568a1b5793f516aa80
% [MIN, MAX] = range2(MTX) % % Compute minimum and maximum values of MTX, returning them as a 2-vector. % Eero Simoncelli, 3/97. function [mn, mx] = range2(mtx) %% NOTE: THIS CODE IS NOT ACTUALLY USED! (MEX FILE IS CALLED INSTEAD) fprintf(1,'WARNING: You should compile the MEX version of "range2.c",\n found in the MEX subdirectory of matlabPyrTools, and put it in your matlab path. It is MUCH faster.\n'); if (~isreal(mtx)) error('MTX must be real-valued'); end mn = min(min(mtx)); mx = max(max(mtx));
github
jacksky64/imageProcessing-master
buildSCFpyrLevs.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/buildSCFpyrLevs.m
2,187
utf_8
26747285064a0eaa2f3db75013e80849
% [PYR, INDICES] = buildSCFpyrLevs(LODFT, LOGRAD, XRCOS, YRCOS, ANGLE, HEIGHT, NBANDS) % % Recursive function for constructing levels of a steerable pyramid. This % is called by buildSCFpyr, and is not usually called directly. % Original code: Eero Simoncelli, 5/97. % Modified by Javier Portilla to generate complex bands in 9/97. function [pyr,pind] = buildSCFpyrLevs(lodft,log_rad,Xrcos,Yrcos,angle,ht,nbands); if (ht <= 0) lo0 = ifft2(ifftshift(lodft)); pyr = real(lo0(:)); pind = size(lo0); else bands = zeros(prod(size(lodft)), nbands); bind = zeros(nbands,2); % log_rad = log_rad + 1; Xrcos = Xrcos - log2(2); % shift origin of lut by 1 octave. lutsize = 1024; Xcosn = pi*[-(2*lutsize+1):(lutsize+1)]/lutsize; % [-2*pi:pi] order = nbands-1; %% divide by sqrt(sum_(n=0)^(N-1) cos(pi*n/N)^(2(N-1)) ) %% Thanks to Patrick Teo for writing this out :) const = (2^(2*order))*(factorial(order)^2)/(nbands*factorial(2*order)); % % Ycosn = sqrt(const) * (cos(Xcosn)).^order; % % analityc version: only take one lobe alfa= mod(pi+Xcosn,2*pi)-pi; Ycosn = 2*sqrt(const) * (cos(Xcosn).^order) .* (abs(alfa)<pi/2); himask = pointOp(log_rad, Yrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); for b = 1:nbands anglemask = pointOp(angle, Ycosn, Xcosn(1)+pi*(b-1)/nbands, Xcosn(2)-Xcosn(1)); banddft = ((-i)^(nbands-1)) .* lodft .* anglemask .* himask; band = ifft2(ifftshift(banddft)); % bands(:,b) = real(band(:)); % analytic version: full complex value bands(:,b)=band(:); bind(b,:) = size(band); end dims = size(lodft); ctr = ceil((dims+0.5)/2); lodims = ceil((dims-0.5)/2); loctr = ceil((lodims+0.5)/2); lostart = ctr-loctr+1; loend = lostart+lodims-1; log_rad = log_rad(lostart(1):loend(1),lostart(2):loend(2)); angle = angle(lostart(1):loend(1),lostart(2):loend(2)); lodft = lodft(lostart(1):loend(1),lostart(2):loend(2)); YIrcos = abs(sqrt(1.0 - Yrcos.^2)); lomask = pointOp(log_rad, YIrcos, Xrcos(1), Xrcos(2)-Xrcos(1), 0); lodft = lomask .* lodft; [npyr,nind] = buildSCFpyrLevs(lodft, log_rad, Xrcos, Yrcos, angle, ht-1, nbands); pyr = [bands(:); npyr]; pind = [bind; nind]; end
github
jacksky64/imageProcessing-master
clip.m
.m
imageProcessing-master/Matlab imaging/matlabPyrTools/clip.m
814
utf_8
13c82937ba69d5bc8c94b2ccca783e1b
% [RES] = clip(IM, MINVALorRANGE, MAXVAL) % % Clip values of matrix IM to lie between minVal and maxVal: % RES = max(min(IM,MAXVAL),MINVAL) % The first argument can also specify both min and max, as a 2-vector. % If only one argument is passed, the range defaults to [0,1]. function res = clip(im, minValOrRange, maxVal) if (exist('minValOrRange') ~= 1) minVal = 0; maxVal = 1; elseif (length(minValOrRange) == 2) minVal = minValOrRange(1); maxVal = minValOrRange(2); elseif (length(minValOrRange) == 1) minVal = minValOrRange; if (exist('maxVal') ~= 1) maxVal=minVal+1; end else error('MINVAL must be a scalar or a 2-vector'); end if ( maxVal < minVal ) error('MAXVAL should be less than MINVAL'); end res = im; res(find(im < minVal)) = minVal; res(find(im > maxVal)) = maxVal;