plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
kd383/GPML_SLD-master
|
priorSmoothBox1.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/prior/priorSmoothBox1.m
| 1,771 |
utf_8
|
4fc9d6491b923568cc0b19a1894509a5
|
function [lp,dlp] = priorSmoothBox1(a,b,eta,x)
% Univariate smoothed box prior distribution with linear decay in the log domain
% and infinite support over the whole real axis.
% Compute log-likelihood and its derivative or draw a random sample.
% The prior distribution is parameterized as:
%
% p(x) = 1/w*sigmoid(eta*(x-a))*(1-sigmoid(eta*(x-b))),
% where w = abs(b-a) and sigmoid(z) = 1/(1+exp(-z))
%
% a(1x1) is the lower bound parameter, b(1x1) is the upper bound parameter,
% eta(1x1)>0 is the slope parameter and x(1xN) contains query hyperparameters
% for prior evaluation. Larger values of eta make the distribution more
% box-like.
%
% The distribution p(x) has mean and variance given by:
% mu = (a+b)/2 and s2 = w^2/(1-exp(-2*g))*(1+(pi/g)^2)/12, g = eta*w/2.
%
% /------------\
% / \
% -------- | | --------> x
% a b
%
% For more help on design of priors, try "help priorDistributions".
%
% Copyright (c) by Jose Vallet and Hannes Nickisch, 2015-03-27.
%
% See also PRIORDISTRIBUTIONS.M.
if nargin<3, error('a, b and eta parameters need to be provided'), end
if b<=a, error('b must be greater than a.'), end
if ~(isscalar(a)&&isscalar(b)&&isscalar(eta))
error('a, b and eta parameters need to be scalar values')
end
if nargin<4 % inverse sampling
u = exp((b-a)*eta*rand());
lp = log((u-1)/(exp(-eta*a)-u*exp(-eta*b)))/eta;
return
end
[lpa,dlpa] = logr(eta*(x-a)); [lpb,dlpb] = logr(-eta*(x-b));
lp = lpa + lpb - log(b-a) + log(1-exp((a-b)*eta));
dlp = eta*(dlpa - dlpb);
% r(z) = 1/(1+exp(-z)), log(r(z)) = -log(1+exp(-z))
function [lr,dlr] = logr(z)
lr = z; ok = -35<z; lr(ok) = -log(1+exp(-z(ok)));
dlr = 1./(1+exp(z));
|
github
|
kd383/GPML_SLD-master
|
infFITC.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/infFITC.m
| 244 |
utf_8
|
5fdeba09c14e9397cb2b684c841f258a
|
% Wrapper to infGaussLik to remain backwards compatible.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-08-25.
function varargout = infFITC(varargin)
varargout = cell(nargout, 1); [varargout{:}] = infGaussLik(varargin{:});
|
github
|
kd383/GPML_SLD-master
|
logphi.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/logphi.m
| 2,261 |
utf_8
|
69fbcfc9d9913da15644d5f0a0368d5f
|
% Safe computation of logphi(z) = log(normcdf(z)) and its derivatives
% dlogphi(z) = normpdf(x)/normcdf(x).
% The function is based on index 5725 in Hart et al. and gsl_sf_log_erfc_e.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-11-13.
function [lp,dlp,d2lp,d3lp] = logphi(z)
z = real(z); % support for real arguments only
lp = zeros(size(z)); % allocate memory
id1 = z.*z<0.0492; % first case: close to zero
lp0 = -z(id1)/sqrt(2*pi);
c = [ 0.00048204; -0.00142906; 0.0013200243174; 0.0009461589032;
-0.0045563339802; 0.00556964649138; 0.00125993961762116;
-0.01621575378835404; 0.02629651521057465; -0.001829764677455021;
2*(1-pi/3); (4-pi)/3; 1; 1];
f = 0; for i=1:14, f = lp0.*(c(i)+f); end, lp(id1) = -2*f-log(2);
id2 = z<-11.3137; % second case: very small
r = [ 1.2753666447299659525; 5.019049726784267463450;
6.1602098531096305441; 7.409740605964741794425;
2.9788656263939928886 ];
q = [ 2.260528520767326969592; 9.3960340162350541504;
12.048951927855129036034; 17.081440747466004316;
9.608965327192787870698; 3.3690752069827527677 ];
num = 0.5641895835477550741; for i=1:5, num = -z(id2).*num/sqrt(2) + r(i); end
den = 1.0; for i=1:6, den = -z(id2).*den/sqrt(2) + q(i); end
e = num./den; lp(id2) = log(e/2) - z(id2).^2/2;
id3 = ~id2 & ~id1; lp(id3) = log(erfc(-z(id3)/sqrt(2))/2); % third case: rest
if nargout>1 % compute first derivative
dlp = zeros(size(z)); % allocate memory
dlp( id2) = abs(den./num) * sqrt(2/pi); % strictly positive first derivative
dlp(~id2) = exp(-z(~id2).*z(~id2)/2-lp(~id2))/sqrt(2*pi); % safe computation
if nargout>2 % compute second derivative
d2lp = -dlp.*abs(z+dlp); % strictly negative second derivative
if nargout>3 % compute third derivative
d3lp = -d2lp.*abs(z+2*dlp)-dlp; % strictly positive third derivative
end
end
end
|
github
|
kd383/GPML_SLD-master
|
gauher.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/gauher.m
| 2,245 |
utf_8
|
441ef6c145fe66f1b7ca9da6207f6003
|
% compute abscissas and weight factors for Gaussian-Hermite quadrature
%
% CALL: [x,w] = gauher(N)
%
% x = base points (abscissas)
% w = weight factors
% N = number of base points (abscissas) (integrates an up to (2N-1)th order
% polynomial exactly)
%
% p(x)=exp(-x^2/2)/sqrt(2*pi), a =-Inf, b = Inf
%
% The Gaussian Quadrature integrates a (2n-1)th order
% polynomial exactly and the integral is of the form
% b N
% Int ( p(x)* F(x) ) dx = Sum ( w_j* F( x_j ) )
% a j=1
%
% this procedure uses the coefficients a(j), b(j) of the
% recurrence relation
%
% b p (x) = (x - a ) p (x) - b p (x)
% j j j j-1 j-1 j-2
%
% for the various classical (normalized) orthogonal polynomials,
% and the zero-th moment
%
% 1 = integral w(x) dx
%
% of the given polynomial's weight function w(x). Since the
% polynomials are orthonormalized, the tridiagonal matrix is
% guaranteed to be symmetric.
function [x,w]=gauher(N)
if N==20 % return precalculated values
x=[ -7.619048541679757;-6.510590157013656;-5.578738805893203;
-4.734581334046057;-3.943967350657318;-3.18901481655339 ;
-2.458663611172367;-1.745247320814127;-1.042945348802751;
-0.346964157081356; 0.346964157081356; 1.042945348802751;
1.745247320814127; 2.458663611172367; 3.18901481655339 ;
3.943967350657316; 4.734581334046057; 5.578738805893202;
6.510590157013653; 7.619048541679757];
w=[ 0.000000000000126; 0.000000000248206; 0.000000061274903;
0.00000440212109 ; 0.000128826279962; 0.00183010313108 ;
0.013997837447101; 0.061506372063977; 0.161739333984 ;
0.260793063449555; 0.260793063449555; 0.161739333984 ;
0.061506372063977; 0.013997837447101; 0.00183010313108 ;
0.000128826279962; 0.00000440212109 ; 0.000000061274903;
0.000000000248206; 0.000000000000126 ];
else
b = sqrt( (1:N-1)/2 )';
[V,D] = eig( diag(b,1) + diag(b,-1) );
w = V(1,:)'.^2;
x = sqrt(2)*diag(D);
end
|
github
|
kd383/GPML_SLD-master
|
elsympol.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/elsympol.m
| 992 |
utf_8
|
5cc9210f574e7f44bea2f0619d1637aa
|
% Evaluate the order R elementary symmetric polynomials using Newton's identity,
% the Newton-Girard formulae: http://en.wikipedia.org/wiki/Newton's_identities
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2010-01-10.
% speedup contributed by Truong X. Nghiem, 2016-01-20.
function E = elsympol(Z,R)
sz = size(Z); % evaluate 'power sums' of the individual terms in Z
E = zeros([sz(1:2),R+1]); % E(:,:,r+1) yields polynomial r
% fast and efficient version of: for r=1:R, P(:,:,r) = sum(Z.^r,3); end
Zr = Z; P(:,:,1) = sum(Zr,3); for r=2:R, Zr = Zr.*Z; P(:,:,r) = sum(Zr,3); end
E(:,:,1) = ones(sz(1:2)); if R==0, return, end % init recursion
E(:,:,2) = P(:,:,1); if R==1, return, end % init recursion
for r=2:R
E(:,:,r+1) = P(:,:,1).*E(:,:,r)/r; % i=1 is simpler than the rest
for i=2:r
E(:,:,r+1) = E(:,:,r+1) + P(:,:,i).*E(:,:,r+1-i)*(-1)^(i-1)/r;
end
end
|
github
|
kd383/GPML_SLD-master
|
minimize.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minimize.m
| 11,190 |
utf_8
|
58c59070538bcf9d709052c85e4a9c2f
|
function [X, fX, i] = minimize(X, f, length, varargin)
% Minimize a differentiable multivariate function using conjugate gradients.
%
% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, ... )
%
% X initial guess; may be of any type, including struct and cell array
% f the name or pointer to the function to be minimized. The function
% f must return two arguments, the value of the function, and it's
% partial derivatives wrt the elements of X. The partial derivative
% must have the same type as X.
% length length of the run; if it is positive, it gives the maximum number of
% line searches, if negative its absolute gives the maximum allowed
% number of function evaluations. Optionally, length can have a second
% component, which will indicate the reduction in function value to be
% expected in the first line-search (defaults to 1.0).
% P1, P2, ... parameters are passed to the function f.
%
% X the returned solution
% fX vector of function values indicating progress made
% i number of iterations (line searches or function evaluations,
% depending on the sign of "length") used at termination.
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function).
%
% The Polack-Ribiere flavour of conjugate gradients is used to compute search
% directions, and a line search using quadratic and cubic polynomial
% approximations and the Wolfe-Powell stopping criteria is used together with
% the slope ratio method for guessing initial step sizes. Additionally a bunch
% of checks are made to make sure that exploration is taking place and that
% extrapolation will not be unboundedly large.
%
% See also: checkgrad
%
% Copyright (C) 2001 - 2010 by Carl Edward Rasmussen, 2010-01-03
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current step-size
MAX = 20; % max 20 function evaluations per line search
RATIO = 10; % maximum allowed slope ratio
SIG = 0.1; RHO = SIG/2; % SIG and RHO are the constants controlling the Wolfe-
% Powell conditions. SIG is the maximum allowed absolute ratio between
% previous and new slopes (derivatives in the search direction), thus setting
% SIG to low (positive) values forces higher precision in the line-searches.
% RHO is the minimum allowed fraction of the expected (from the slope at the
% initial point in the linesearch). Constants must satisfy 0 < RHO < SIG < 1.
% Tuning of SIG (depending on the nature of the function to be optimized) may
% speed up the minimization; it is probably not worth playing much with RHO.
% The code falls naturally into 3 parts, after the initial line search is
% started in the direction of steepest descent. 1) we first enter a while loop
% which uses point 1 (p1) and (p2) to compute an extrapolation (p3), until we
% have extrapolated far enough (Wolfe-Powell conditions). 2) if necessary, we
% enter the second loop which takes p2, p3 and p4 chooses the subinterval
% containing a (local) minimum, and interpolates it, unil an acceptable point
% is found (Wolfe-Powell conditions). Note, that points are always maintained
% in order p0 <= p1 <= p2 < p3 < p4. 3) compute a new search direction using
% conjugate gradients (Polack-Ribiere flavour), or revert to steepest if there
% was a problem in the previous line-search. Return the best value so far, if
% two consecutive line-searches fail, or whenever we run out of function
% evaluations or line-searches. During extrapolation, the "f" function may fail
% either with an error or returning Nan or Inf, and minimize should handle this
% gracefully.
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
if length>0, S='Linesearch'; else S='Function evaluation'; end
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
[f0 df0] = feval(f, X, varargin{:}); % get function value and gradient
Z = X; X = unwrap(X); df0 = unwrap(df0);
fprintf('%s %6i; Value %4.6e\r', S, i, f0);
if exist('fflush','builtin') fflush(stdout); end
fX = f0;
i = i + (length<0); % count epochs?!
s = -df0; d0 = -s'*s; % initial search direction (steepest) and slope
x3 = red/(1-d0); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; F0 = f0; dF0 = df0; % make a copy of current values
if length>0, M = MAX; else M = min(MAX, -length-i); end
while 1 % keep extrapolating as long as necessary
x2 = 0; f2 = f0; d2 = d0; f3 = f0; df3 = df0;
success = 0;
while ~success && M > 0
try
M = M - 1; i = i + (length<0); % count epochs?!
[f3 df3] = feval(f, rewrap(Z,X+x3*s), varargin{:});
df3 = unwrap(df3);
if isnan(f3) || isinf(f3) || any(isnan(df3)+isinf(df3)), error(' '),end
success = 1;
catch % catch any error which occured in f
x3 = (x2+x3)/2; % bisect and try again
end
end
if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end % keep best values
d3 = df3'*s; % new slope
if d3 > SIG*d0 || f3 > f0+x3*RHO*d0 || M == 0 % are we done extrapolating?
break
end
x1 = x2; f1 = f2; d1 = d2; % move point 2 to point 1
x2 = x3; f2 = f3; d2 = d3; % move point 3 to point 2
A = 6*(f1-f2)+3*(d2+d1)*(x2-x1); % make cubic extrapolation
B = 3*(f2-f1)-(2*d1+d2)*(x2-x1);
x3 = x1-d1*(x2-x1)^2/(B+sqrt(B*B-A*d1*(x2-x1))); % num. error possible, ok!
if ~isreal(x3) || isnan(x3) || isinf(x3) || x3 < 0 % num prob | wrong sign?
x3 = x2*EXT; % extrapolate maximum amount
elseif x3 > x2*EXT % new point beyond extrapolation limit?
x3 = x2*EXT; % extrapolate maximum amount
elseif x3 < x2+INT*(x2-x1) % new point too close to previous point?
x3 = x2+INT*(x2-x1);
end
end % end extrapolation
while (abs(d3) > -SIG*d0 || f3 > f0+x3*RHO*d0) && M > 0 % keep interpolating
if d3 > 0 || f3 > f0+x3*RHO*d0 % choose subinterval
x4 = x3; f4 = f3; d4 = d3; % move point 3 to point 4
else
x2 = x3; f2 = f3; d2 = d3; % move point 3 to point 2
end
if f4 > f0
x3 = x2-(0.5*d2*(x4-x2)^2)/(f4-f2-d2*(x4-x2)); % quadratic interpolation
else
A = 6*(f2-f4)/(x4-x2)+3*(d4+d2); % cubic interpolation
B = 3*(f4-f2)-(2*d2+d4)*(x4-x2);
x3 = x2+(sqrt(B*B-A*d2*(x4-x2)^2)-B)/A; % num. error possible, ok!
end
if isnan(x3) || isinf(x3)
x3 = (x2+x4)/2; % if we had a numerical problem then bisect
end
x3 = max(min(x3, x4-INT*(x4-x2)),x2+INT*(x4-x2)); % don't accept too close
[f3 df3] = feval(f, rewrap(Z,X+x3*s), varargin{:});
df3 = unwrap(df3);
if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end % keep best values
M = M - 1; i = i + (length<0); % count epochs?!
d3 = df3'*s; % new slope
end % end interpolation
if abs(d3) < -SIG*d0 && f3 < f0+x3*RHO*d0 % if line search succeeded
X = X+x3*s; f0 = f3; fX = [fX' f0]'; % update variables
fprintf('%s %6i; Value %4.6e\r', S, i, f0);
if exist('fflush','builtin') fflush(stdout); end
s = (df3'*df3-df0'*df3)/(df0'*df0)*s - df3; % Polack-Ribiere CG direction
df0 = df3; % swap derivatives
d3 = d0; d0 = df0'*s;
if d0 > 0 % new slope must be negative
s = -df0; d0 = -s'*s; % otherwise use steepest direction
end
x3 = x3 * min(RATIO, d3/(d0-realmin)); % slope ratio but max RATIO
ls_failed = 0; % this line search did not fail
else
X = X0; f0 = F0; df0 = dF0; % restore best point so far
if ls_failed || i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
s = -df0; d0 = -s'*s; % try steepest
x3 = 1/(1-d0);
ls_failed = 1; % this line search failed
end
end
X = rewrap(Z,X);
fprintf('\n'); if exist('fflush','builtin') fflush(stdout); end
function v = unwrap(s)
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
function [s v] = rewrap(s, v)
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
kd383/GPML_SLD-master
|
sq_dist.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/sq_dist.m
| 1,967 |
utf_8
|
75b906d47729b33d7567f1353ced2f83
|
% sq_dist - a function to compute a matrix of all pairwise squared distances
% between two sets of vectors, stored in the columns of the two matrices, a
% (of size D by n) and b (of size D by m). If only a single argument is given
% or the second matrix is empty, the missing matrix is taken to be identical
% to the first.
%
% Usage: C = sq_dist(a, b)
% or: C = sq_dist(a) or equiv.: C = sq_dist(a, [])
%
% Where a is of size Dxn, b is of size Dxm (or empty), C is of size nxm.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2010-12-13.
function C = sq_dist(a, b)
if nargin<1 || nargin>3 || nargout>1, error('Wrong number of arguments.'); end
bsx = exist('bsxfun','builtin'); % since Matlab R2007a 7.4.0 and Octave 3.0
if ~bsx, bsx = exist('bsxfun'); end % bsxfun is not yet "builtin" in Octave
[D, n] = size(a);
% Computation of a^2 - 2*a*b + b^2 is less stable than (a-b)^2 because numerical
% precision can be lost when both a and b have very large absolute value and the
% same sign. For that reason, we subtract the mean from the data beforehand to
% stabilise the computations. This is OK because the squared error is
% independent of the mean.
if nargin==1 % subtract mean
mu = mean(a,2);
if bsx
a = bsxfun(@minus,a,mu);
else
a = a - repmat(mu,1,size(a,2));
end
b = a; m = n;
else
[d, m] = size(b);
if d ~= D, error('Error: column lengths must agree.'); end
mu = (m/(n+m))*mean(b,2) + (n/(n+m))*mean(a,2);
if bsx
a = bsxfun(@minus,a,mu); b = bsxfun(@minus,b,mu);
else
a = a - repmat(mu,1,n); b = b - repmat(mu,1,m);
end
end
if bsx % compute squared distances
C = bsxfun(@plus,sum(a.*a,1)',bsxfun(@minus,sum(b.*b,1),2*a'*b));
else
C = repmat(sum(a.*a,1)',1,m) + repmat(sum(b.*b,1),n,1) - 2*a'*b;
end
C = max(C,0); % numerical noise can cause C to negative i.e. C > -1e-14
|
github
|
kd383/GPML_SLD-master
|
any2vec.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/any2vec.m
| 653 |
utf_8
|
d703596b446303a8c82e4de32786fad1
|
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse vec2any.m.
function v = any2vec(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = any2vec(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; any2vec(s{i})];
end
end % other types are ignored
|
github
|
kd383/GPML_SLD-master
|
glm_invlink_expexp.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/glm_invlink_expexp.m
| 423 |
utf_8
|
56f87c54a6964c850f79e867c5d4b291
|
% Compute the log intensity for the inverse link function g(f) = exp(-exp(-f)).
% Output range: 0 <= g(f) <= 1.
%
% The function can be used in GLM likelihoods such as likBeta.
%
% Copyright (c) by Hannes Nickisch, 2016-10-04.
function [lg,dlg,d2lg,d3lg] = glm_invlink_expexp(f)
lg = -exp(-f);
if nargout>1
dlg = -lg;
if nargout>2
d2lg = lg;
if nargout>2
d3lg = -lg;
end
end
end
|
github
|
kd383/GPML_SLD-master
|
covGrid.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/covGrid.m
| 312 |
utf_8
|
57193d84d2b7b76d5acaf055348cfa51
|
% Wrapper to apxGrid to remain backwards compatible.
%
% Note that covGrid is not a valid covariance function on its own right.
%
% Copyright (c) by Hannes Nickisch and Andrew Wilson 2016-08-25.
function varargout = covGrid(varargin)
varargout = cell(nargout, 1); [varargout{:}] = apxGrid(varargin{:});
|
github
|
kd383/GPML_SLD-master
|
glm_invlink_logistic.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/glm_invlink_logistic.m
| 709 |
utf_8
|
5b8da5da4ad55f7e13652c79e9ae2954
|
% Compute the log intensity for the inverse link function g(f) = log(1+exp(f))).
% Output range: 0 <= g(f).
%
% The function can be used in GLM likelihoods such as likPoisson, likGamma, and
% likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2016-10-04.
function [lg,dlg,d2lg,d3lg] = glm_invlink_logistic(f)
l1pef = max(0,f) + log(1+exp(-abs(f))); % safely compute log(1+exp(f))
lg = log(l1pef); id = f<-15; lg(id) = f(id); % fix log(log(1+exp(f))) limits
if nargout>1
sm = 1./(1+exp(-f));
dlg = sm./l1pef; dlg(f<-15) = 1;
if nargout>2
sp = 1./(1+exp(f));
d2lg = dlg.*(sp-dlg);
if nargout>2
d3lg = d2lg.*(sp-2*dlg) - dlg.*sp.*sm;
end
end
end
|
github
|
kd383/GPML_SLD-master
|
vec2any.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/vec2any.m
| 1,016 |
utf_8
|
917a9d3bb4112736eac9cbf3730f6f40
|
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also any2vec.m.
function [s v] = vec2any(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = vec2any(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = vec2any(s{i}, v);
end
end % other types are not processed
|
github
|
kd383/GPML_SLD-master
|
infFITC_EP.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/infFITC_EP.m
| 235 |
utf_8
|
47597e3d3b6166acd5d61066547317f3
|
% Wrapper to infEP to remain backwards compatible.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-12-14.
function varargout = infFITC_EP(varargin)
varargout = cell(nargout, 1); [varargout{:}] = infEP(varargin{:});
|
github
|
kd383/GPML_SLD-master
|
vfe_xu_opt.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/vfe_xu_opt.m
| 3,265 |
utf_8
|
2c1a9383671fb35ff92e5c18815df0b0
|
% Optimize inducing inputs for the VFE approximation (not FITC).
%
% One can perform a gradient-based optimisation of the inducing inputs xu by
% specifying them via hyp.xu rather than through {@apxSparse,cov,xu}.
%
% An alternative way of optimising xu (in order to overcome local minima) is
% to simply compute the expected change in marginal likelihood of a set of
% candidate inducing points z and performing replacing the least relevant
% inducing input in xu with the most promising candidate from z. Efficient
% candidate scoring is only possible for the VFE approximation i.e. we use
% opt = struct('s',0.0); and lik = @likGauss; in the following.
%
% The call
% [hyp,nlZ] = vfe_xu_opt(hyp,mean,cov,x,y, z,nswap);
% changes the inducing inputs in hyp.xu as to minimise nlZ. At most nswap
% swapping operations are performed between hyp.xu and the candidates in z.
% At the end the negative marginal likelihood nlZ is the same as obtained by
% [post nlZ] = infGaussLik(hyp, mean, cov, lik, x, y, opt)
% where opt = struct('s',0.0); and lik = @likGauss.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2017-02-17.
%
% See also apx.m, infGaussLik.m.
function [hyp,nlZ] = vfe_xu_opt(hyp,mean,cov,x,y, z,nswap)
nlZmin = inf; u = hyp.xu; cov = cov{2};
for i=1:nswap
[nlZ,du,dz] = vfe(hyp,mean,{'apxSparse',cov,u},x,y,z);
if nlZ<nlZmin
umin = u; nlZmin = nlZ;
[dum,iu] = min(du); [dzm,iz] = min(dz);
fprintf('%03d) nlZ=%1.4e -> %1.4e\n',i,nlZ,nlZ+dum+dzm)
ui = u(iu,:); u(iu,:) = z(iz,:); z(iz,:) = ui;
else
fprintf('%03d) nlZ=%1.4e ~< %1.4e\n',i,nlZmin,nlZ)
nlZ = nlZmin; u = umin; break
end
end
hyp.xu = u;
function [nlZ,du,dz] = vfe(hyp,mean,cov,x,y,z)
[n, D] = size(x); % dimensions
m = feval(mean{:}, hyp.mean, x); % evaluate mean vector
sn2 = exp(2*hyp.lik); % noise variance of likGauss
xu = cov{3}; nu = size(xu,1); % extract inducing points
k = @(x,z) feval(cov{2}{:},hyp.cov,x,z); % shortcut for covariance function
Kuu = k(xu,xu); Ku = k(xu,x); diagK = k(x,'diag'); % get the building blocks
snu2 = 1e-6*(trace(Kuu)/nu); % stabilise by 0.1% of signal std
Luu = chol(Kuu+snu2*eye(nu)); % Kuu + snu2*I = Luu'*Luu
dgiKuu = sum((Luu\eye(nu)).^2,2); % diag(inv(Kuu))
V = Luu'\Ku; Lu = chol(eye(nu) + V*V'/sn2); % V = inv(Luu')*Ku => V'*V = Q
r = y-m; R = Luu\V; B = Lu'\V; alpha = r/sn2 - (B'*(B*r))/(sn2*sn2);
t = max(diagK-sum(V.*V,1)',0)/sn2;
nlZ = r'*alpha/2 + sum(log(diag(Lu))) + sum(t)/2 + n*log(2*pi*sn2)/2;
if nargout>1
q = R/sn2 - (R*B')*B/(sn2*sn2);
du = (R*alpha).^2./(dgiKuu-sum(R.*q,2))/2 ... % aKa
+ log(1-sum(R.*q,2)./dgiKuu)/2 ... % logdet Lui
+ sum(R.*R,2)./dgiKuu/sn2/2; % dst2
end
if nargout>2
Kzu = k(z,xu); Kz = k(x,z); diagKz = k(z,'diag'); % query new cross-terms
R = Kzu*R-Kz'; q = R/sn2 - (R*B')*B/(sn2*sn2);
c = max(diagKz-sum((Kzu/Luu).^2,2),0);
dz = -(R*alpha).^2./(c+sum(R.*q,2))/2 ...
+ log(1+sum(R.*q,2)./c)/2 - sum(R.*R,2)./c/sn2/2;
end
|
github
|
kd383/GPML_SLD-master
|
infFITC_Laplace.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/infFITC_Laplace.m
| 250 |
utf_8
|
4ea7b03dd38fc20a2bcd4eef8f3237b5
|
% Wrapper to infLaplace to remain backwards compatible.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-10-13.
function varargout = infFITC_Laplace(varargin)
varargout = cell(nargout, 1); [varargout{:}] = infLaplace(varargin{:});
|
github
|
kd383/GPML_SLD-master
|
infExact.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/infExact.m
| 245 |
utf_8
|
b85c546a2f76f0535f4bc5c5cc03e804
|
% Wrapper to infGaussLik to remain backwards compatible.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-08-25.
function varargout = infExact(varargin)
varargout = cell(nargout, 1); [varargout{:}] = infGaussLik(varargin{:});
|
github
|
kd383/GPML_SLD-master
|
solve_chol.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/solve_chol.m
| 994 |
utf_8
|
f4d6cd4b9e7b0a955c2c8709a4894dd3
|
% solve_chol - solve linear equations from the Cholesky factorization.
% Solve A*X = B for X, where A is square, symmetric, positive definite. The
% input to the function is R the Cholesky decomposition of A and the matrix B.
% Example: X = solve_chol(chol(A),B);
%
% NOTE: The program code is written in the C language for efficiency and is
% contained in the file solve_chol.c, and should be compiled using matlabs mex
% facility. However, this file also contains a (less efficient) matlab
% implementation, supplied only as a help to people unfamiliar with mex. If
% the C code has been properly compiled and is available, it automatically
% takes precendence over the matlab code in this file.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2010-09-18.
function X = solve_chol(L, B)
if nargin ~= 2 || nargout > 1
error('Wrong number of arguments.');
end
if size(L,1) ~= size(L,2) || size(L,1) ~= size(B,1)
error('Wrong sizes of matrix arguments.');
end
X = L\(L'\B);
|
github
|
kd383/GPML_SLD-master
|
covFITC.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/covFITC.m
| 385 |
utf_8
|
d4456aefc33a8cdf1f555980e65abae9
|
% Wrapper to apxSparse to remain backwards compatible.
%
% Note that covFITC is not a valid covariance function on its own right.
%
% Copyright (c) by Ed Snelson, Carl Edward Rasmussen
% and Hannes Nickisch, 2016-08-25.
function varargout = covFITC(varargin)
varargout = cell(nargout, 1); [varargout{:}] = apxSparse(varargin{:});
|
github
|
kd383/GPML_SLD-master
|
glm_invlink_logit.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/glm_invlink_logit.m
| 835 |
utf_8
|
d5d14b52f5422b6f3497b6cc8a239f4e
|
% Compute the log intensity for the inverse link function g(f) = 1/(1+exp(-f)).
% Output range: 0 <= g(f) <= 1.
%
% The function can be used in GLM likelihoods such as likBeta.
%
% Copyright (c) by Hannes Nickisch, 2016-10-04.
function varargout = glm_invlink_logit(f)
varargout = cell(nargout, 1); % allocate the right number of output arguments
[varargout{:}] = glm_invlink_logistic(f);
if nargout>0
elg = exp(varargout{1});
varargout{1} = min(f-elg,0); % upper bound g by 1
if nargout>1
dlg = varargout{2};
varargout{2} = 1 - elg.*dlg;
if nargout>2
d2lg = varargout{3};
varargout{3} = -elg.*(dlg.^2+d2lg);
if nargout>3
d3lg = varargout{4};
varargout{4} = -elg.*(dlg.^3+3*d2lg.*dlg+d3lg);
end
end
end
end
|
github
|
kd383/GPML_SLD-master
|
minimize_lbfgsb_gradfun.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minimize_lbfgsb_gradfun.m
| 2,390 |
utf_8
|
0eca58fc12d068780d735fd5a83ebdfa
|
function G = minimize_lbfgsb_gradfun(X,varargin)
% extract input arguments
varargin = varargin{1}; strctX = varargin{2}; f = varargin{1};
% global variables serve as communication interface between calls
global minimize_lbfgsb_iteration_number
global minimize_lbfgsb_objective
global minimize_lbfgsb_gradient
global minimize_lbfgsb_X
if norm(unwrap(X)-unwrap(minimize_lbfgsb_X))>1e-10
[y,G] = feval(f,rewrap(strctX,X),varargin{3:end});
else
y = minimize_lbfgsb_objective(minimize_lbfgsb_iteration_number);
G = minimize_lbfgsb_gradient;
end
% memorise gradient and position
minimize_lbfgsb_gradient = G;
minimize_lbfgsb_X = X;
G = unwrap(G);
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
kd383/GPML_SLD-master
|
glm_invlink_logistic2.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/glm_invlink_logistic2.m
| 870 |
utf_8
|
1fd6d55db008cfb0517988106bc6b3e6
|
% Compute the log intensity for the inverse link function (twice logistic)
% g(f) = h(f*(1+a*h(f))), where is the logistic h(f) = log(1+exp(f))).
% Output range: 0 <= g(f).
%
% The function can be used in GLM likelihoods such as likPoisson, likGamma, and
% likInvGauss.
%
% See Seeger et al., Bayesian Intermittent Demand Forecasting for Large
% Inventories, NIPS, 2016.
%
% Copyright (c) by Hannes Nickisch, 2016-10-04.
function [lg,dlg,d2lg,d3lg] = glm_invlink_logistic2(a,f)
[lh,dlh,d2lh,d3lh] = glm_invlink_logistic(f); h = exp(lh);
ft = f + a*f.*h;
dft = 1 + a*h.*(1 + f.*dlh); w = a*h.*(dlh.^2 + d2lh);
d2ft = 2*a*h.*dlh + f.*w;
d3ft = 3*w + a*f.*h.*(dlh.^3+3*d2lh.*dlh+d3lh);
[lgt,dlgt,d2lgt,d3lgt] = glm_invlink_logistic(ft);
lg = lgt; dlg = dlgt.*dft;
d2lg = d2lgt.*dft.^2 + dlgt.*d2ft;
d3lg = d3lgt.*dft.^3 + 3*d2lgt.*dft.*d2ft + dlgt.*d3ft;
|
github
|
kd383/GPML_SLD-master
|
minimize_lbfgsb.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minimize_lbfgsb.m
| 4,476 |
utf_8
|
10c2d1fef0bdc071cd35d3904c88f0ed
|
function [X, fX, i] = minimize_lbfgsb(X, f, length, varargin)
% Minimize a differentiable multivariate function using quasi Newton.
%
% Usage: [X, fX, i] = minimize_lbfgsb(X, f, length, P1, P2, P3, ... )
%
% X initial guess; may be of any type, including struct and cell array
% f the name or pointer to the function to be minimized. The function
% f must return two arguments, the value of the function, and it's
% partial derivatives wrt the elements of X. The partial derivative
% must have the same type as X.
% length length of the run; if it is positive, it gives the maximum number of
% line searches, if negative its absolute gives the maximum allowed
% number of function evaluations. Optionally, length can have a second
% component, which will indicate the reduction in function value to be
% expected in the first line-search (defaults to 1.0).
% P1, P2 ... parameters are passed to the function f.
%
% X the returned solution
% fX vector of function values indicating progress made
% i number of iterations (line searches or function evaluations,
% depending on the sign of "length") used at termination.
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function).
%
% Copyright (C) 2010 by Hannes Nickisch, 2010-02-05
% global variables serve as communication interface between calls
global minimize_lbfgsb_iteration_number
global minimize_lbfgsb_objective
global minimize_lbfgsb_gradient
global minimize_lbfgsb_X
% init global variables
minimize_lbfgsb_iteration_number = 0;
minimize_lbfgsb_objective = Inf;
minimize_lbfgsb_gradient = 0*unwrap(X);
minimize_lbfgsb_X = X;
X0 = X;
lb = -Inf*ones(size(unwrap(X0)));
ub = Inf*ones(size(unwrap(X0)));
maxiter = abs(length); % max number of iterations
% no callback routine used so far
% m is the number of saved vectors used to estimate the Hessian
% factr is the precision 1e-12
X = lbfgsb( unwrap(X0), lb, ub, 'minimize_lbfgsb_objfun', ...
'minimize_lbfgsb_gradfun', ...
{f,X0,varargin{:}}, [], ...
'maxiter',maxiter, 'm',4, 'factr',1e-12, 'pgtol',1e-5);
i = minimize_lbfgsb_iteration_number;
fX = minimize_lbfgsb_objective;
X = rewrap(X0,X);
% clear global variables
clear minimize_lbfgsb_iteration_number
clear minimize_lbfgsb_objective
clear minimize_lbfgsb_gradient
clear minimize_lbfgsb_X
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
kd383/GPML_SLD-master
|
minimize_lbfgsb_objfun.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minimize_lbfgsb_objfun.m
| 2,695 |
utf_8
|
d9bbd3614b193a06603c12f33f877104
|
function y = minimize_lbfgsb_objfun(X,varargin)
% extract input arguments
varargin = varargin{1}; strctX = varargin{2}; f = varargin{1};
% global variables serve as communication interface between calls
global minimize_lbfgsb_iteration_number
global minimize_lbfgsb_objective
global minimize_lbfgsb_gradient
global minimize_lbfgsb_X
recompute = 0;
if minimize_lbfgsb_iteration_number==0
recompute = 1;
else
if norm(unwrap(X)-unwrap(minimize_lbfgsb_X))>1e-10
recompute = 1;
end
end
if recompute
[y,G] = feval(f,rewrap(strctX,X),varargin{3:end});
else
y = minimize_lbfgsb_objective(minimize_lbfgsb_iteration_number);
G = minimize_lbfgsb_gradient;
end
% increase global counter, memorise objective function, gradient and position
minimize_lbfgsb_iteration_number = minimize_lbfgsb_iteration_number+1;
minimize_lbfgsb_objective(minimize_lbfgsb_iteration_number,1) = y;
minimize_lbfgsb_gradient = G;
minimize_lbfgsb_X = X;
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
kd383/GPML_SLD-master
|
logsumexp2.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/logsumexp2.m
| 454 |
utf_8
|
aa7e4f12a67c8f2e12bc5d9113b9abd0
|
% Compute y = log( sum(exp(x),2) ), the softmax in a numerically safe way by
% subtracting the row maximum to avoid cancelation after taking the exp
% the sum is done along the rows.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function [y,x] = logsumexp2(logx)
N = size(logx,2); max_logx = max(logx,[],2);
% we have all values in the log domain, and want to calculate a sum
x = exp(logx-max_logx*ones(1,N));
y = log(sum(x,2)) + max_logx;
|
github
|
kd383/GPML_SLD-master
|
minimize_minfunc.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minimize_minfunc.m
| 5,472 |
utf_8
|
1f17d182bc7f64339c8eefbd76605d25
|
function [X, f, i, exitflag, output] = minimize_minfunc(X, f, options, varargin)
% Minimize a differentiable multivariate function using minFunc.
% (http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html)
% To be used with GPML toolbox.
%
% Usage: [X, f, i, exitflag, output] = ...
% minimize_minfunc(X, f, options/length, P1, P2, ... )
%
% X initial guess; may be of any type, including struct and cell array
% f the name or pointer to the function to be minimized. The function
% f must return two arguments, the value of the function, and it's
% partial derivatives wrt the elements of X. The partial derivative
% must have the same type as X.
% options options to be given to minFunc (see minFunc for details); or
% length length of the run; if it is positive, it gives the maximum number of
% line searches, if negative its absolute gives the maximum allowed
% number of function evaluations. Alternatively, the length of the
% run (and other options) can be specified by the option structure.
% P1, P2 ... parameters are passed to the function f.
%
% X the returned solution
% f function value at the returned solution
% i number of iterations (line searches or function evaluations,
% depending on the sign of "length") used at termination.
% exitflag returns an exit condition
% output returns a structure with other information
% Supported Output Options
% iterations - number of iterations taken
% funcCount - number of function evaluations
% algorithm - algorithm used
% firstorderopt - first-order optimality
% message - exit message
% trace.funccount - function evaluations after each iteration
% trace.fval - function value after each iteration
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function).
%
% Copyright (C) 2016 by Truong X. Nghiem, 2016-01-22
me = mfilename; % what is my filename?
mydir = which(me); mydir = mydir(1:end-2-numel(me)); % where am I located
addpath([mydir,'minfunc'],[mydir,'minfunc/compiled']) % add library
% Check the option
if isempty(options)
% Use default options
options = struct();
elseif isnumeric(options) && isscalar(options)
if options < 0
options = struct('MaxFunEvals', -options);
elseif options > 0
options = struct('MaxIter', options);
else
error('Run length must be non-zero.');
end
end
assert(isstruct(options), 'Invalid option / length argument.');
% Convert objective function to function_handle
if ischar(f) && ~isempty(f), f = str2func(f); end
assert(isa(f, 'function_handle'), 'Invalid objective function.');
% Remember that X and the derivative returned by f may not be vectors, so
% we must use rewrap and unwrap.
X0 = X; % Save the structure / type of X
fw = @(cur_x,varargin) wrapped_f(cur_x, f, X0, varargin{:});
[X, f, exitflag, output] = minFunc(fw, unwrap(X0), options,varargin{:});
i = output.funcCount;
% X is a vector, we may need to re-wrap it back to the given structure
X = rewrap(X0,X);
function [fval, dval] = wrapped_f(cur_x, f, X0, varargin)
% This function calls unwrap() and rewrap() before and after
% calling f
% cur_X is a vector; dval must be a vector
tmp = rewrap(X0, cur_x);
[fval, dstruct] = feval(f,tmp,varargin{:});
% dstruct can be a structure -> convert it to vector
dval = unwrap(dstruct);
function v = unwrap(s)
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
function [s v] = rewrap(s, v)
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
kd383/GPML_SLD-master
|
lik_epquad.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/lik_epquad.m
| 1,622 |
utf_8
|
9f92aef26b02e08fcee8f74617ebd05d
|
% Compute infEP part of a likelihood function based on the infLaplace part using
% Gaussian-Hermite quadrature.
%
% The function is used in GLM likelihoods such as likPoisson, likGamma, likBeta
% and likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function varargout = lik_epquad(lik,hyp,y,mu,s2)
n = max([length(y),length(mu),length(s2)]); on = ones(n,1);
N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w');
y = y(:).*on; mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only
[lpi,dlpi,d2lpi] = feval(lik{:},hyp,y*oN,sig*t'+mu*oN,[],'infLaplace');
lZ = s(lpi+lw);
dlZ = {}; d2lZ = {};
if nargout>1 % 1st derivative wrt mean
% Using p*dlp=dp, p=exp(lp), Z=sum_i wi*pi, dZ = sum_i wi*dpi we obtain
% dlZ = sum_i exp(lpi-lZ+lwi)*dlpi = sum_i ai*dlpi.
a = exp(lpi - lZ*oN + lw);
dlZ = sum(a.*dlpi,2);
if nargout>2 % 2nd derivative wrt mean
% Using d2lZ=(d2Z*Z-dZ^2)/Z^2 <=> d2Z=Z*(d2lZ+dlZ^2) and
% d2Z = sum_i wi*d2Zi, we get d2lZ = sum_i ai*(d2lpi+dlpi^2)-dlZ^2.
d2lZ = sum(a.*(d2lpi+dlpi.*dlpi),2) - dlZ.*dlZ;
end
end
varargout = {lZ,dlZ,d2lZ};
% computes y = log( sum(exp(x),2) ), the softmax in a numerically safe way by
% subtracting the row maximum to avoid cancelation after taking the exp
% the sum is done along the rows
function [y,x] = s(logx)
N = size(logx,2); max_logx = max(logx,[],2);
% we have all values in the log domain, and want to calculate a sum
x = exp(logx-max_logx*ones(1,N));
y = log(sum(x,2)) + max_logx;
|
github
|
kd383/GPML_SLD-master
|
glm_invlink_exp.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/glm_invlink_exp.m
| 466 |
utf_8
|
d88c5e637e5ed1f9db34a94bb0c3b81e
|
% Compute the log intensity for the inverse link function g(f) = exp(f).
% Output range: 0 <= g(f).
%
% The function can be used in GLM likelihoods such as likPoisson, likGamma, and
% likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2016-10-04.
function [lg,dlg,d2lg,d3lg] = glm_invlink_exp(f)
lg = f;
if nargout>1
dlg = ones(size(f));
if nargout>2
d2lg = zeros(size(f));
if nargout>2
d3lg = zeros(size(f));
end
end
end
|
github
|
kd383/GPML_SLD-master
|
WolfeLineSearch.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minfunc/WolfeLineSearch.m
| 10,590 |
utf_8
|
f962bc5ae0a1e9f80202a9aaab106dab
|
function [t,f_new,g_new,funEvals,H] = WolfeLineSearch(...
x,t,d,f,g,gtd,c1,c2,LS_interp,LS_multi,maxLS,progTol,debug,doPlot,saveHessianComp,funObj,varargin)
%
% Bracketing Line Search to Satisfy Wolfe Conditions
%
% Inputs:
% x: starting location
% t: initial step size
% d: descent direction
% f: function value at starting location
% g: gradient at starting location
% gtd: directional derivative at starting location
% c1: sufficient decrease parameter
% c2: curvature parameter
% debug: display debugging information
% LS_interp: type of interpolation
% maxLS: maximum number of iterations
% progTol: minimum allowable step length
% doPlot: do a graphical display of interpolation
% funObj: objective function
% varargin: parameters of objective function
%
% Outputs:
% t: step length
% f_new: function value at x+t*d
% g_new: gradient value at x+t*d
% funEvals: number function evaluations performed by line search
% H: Hessian at initial guess (only computed if requested
% Evaluate the Objective and Gradient at the Initial Step
if nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x+t*d,varargin{:});
end
funEvals = 1;
gtd_new = g_new'*d;
% Bracket an Interval containing a point satisfying the
% Wolfe criteria
LSiter = 0;
t_prev = 0;
f_prev = f;
g_prev = g;
gtd_prev = gtd;
nrmD = max(abs(d));
done = 0;
while LSiter < maxLS
%% Bracketing Phase
if ~isLegal(f_new) || ~isLegal(g_new)
if debug
fprintf('Extrapolated into illegal region, switching to Armijo line-search\n');
end
t = (t + t_prev)/2;
% Do Armijo
if nargout == 5
[t,x_new,f_new,g_new,armijoFunEvals,H] = ArmijoBacktrack(...
x,t,d,f,f,g,gtd,c1,LS_interp,LS_multi,progTol,debug,doPlot,saveHessianComp,...
funObj,varargin{:});
else
[t,x_new,f_new,g_new,armijoFunEvals] = ArmijoBacktrack(...
x,t,d,f,f,g,gtd,c1,LS_interp,LS_multi,progTol,debug,doPlot,saveHessianComp,...
funObj,varargin{:});
end
funEvals = funEvals + armijoFunEvals;
return;
end
if f_new > f + c1*t*gtd || (LSiter > 1 && f_new >= f_prev)
bracket = [t_prev t];
bracketFval = [f_prev f_new];
bracketGval = [g_prev g_new];
break;
elseif abs(gtd_new) <= -c2*gtd
bracket = t;
bracketFval = f_new;
bracketGval = g_new;
done = 1;
break;
elseif gtd_new >= 0
bracket = [t_prev t];
bracketFval = [f_prev f_new];
bracketGval = [g_prev g_new];
break;
end
temp = t_prev;
t_prev = t;
minStep = t + 0.01*(t-temp);
maxStep = t*10;
if LS_interp <= 1
if debug
fprintf('Extending Braket\n');
end
t = maxStep;
elseif LS_interp == 2
if debug
fprintf('Cubic Extrapolation\n');
end
t = polyinterp([temp f_prev gtd_prev; t f_new gtd_new],doPlot,minStep,maxStep);
elseif LS_interp == 3
t = mixedExtrap(temp,f_prev,gtd_prev,t,f_new,gtd_new,minStep,maxStep,debug,doPlot);
end
f_prev = f_new;
g_prev = g_new;
gtd_prev = gtd_new;
if ~saveHessianComp && nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x + t*d,varargin{:});
end
funEvals = funEvals + 1;
gtd_new = g_new'*d;
LSiter = LSiter+1;
end
if LSiter == maxLS
bracket = [0 t];
bracketFval = [f f_new];
bracketGval = [g g_new];
end
%% Zoom Phase
% We now either have a point satisfying the criteria, or a bracket
% surrounding a point satisfying the criteria
% Refine the bracket until we find a point satisfying the criteria
insufProgress = 0;
Tpos = 2;
LOposRemoved = 0;
while ~done && LSiter < maxLS
% Find High and Low Points in bracket
[f_LO LOpos] = min(bracketFval);
HIpos = -LOpos + 3;
% Compute new trial value
if LS_interp <= 1 || ~isLegal(bracketFval) || ~isLegal(bracketGval)
if debug
fprintf('Bisecting\n');
end
t = mean(bracket);
elseif LS_interp == 2
if debug
fprintf('Grad-Cubic Interpolation\n');
end
t = polyinterp([bracket(1) bracketFval(1) bracketGval(:,1)'*d
bracket(2) bracketFval(2) bracketGval(:,2)'*d],doPlot);
else
% Mixed Case %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nonTpos = -Tpos+3;
if LOposRemoved == 0
oldLOval = bracket(nonTpos);
oldLOFval = bracketFval(nonTpos);
oldLOGval = bracketGval(:,nonTpos);
end
t = mixedInterp(bracket,bracketFval,bracketGval,d,Tpos,oldLOval,oldLOFval,oldLOGval,debug,doPlot);
end
% Test that we are making sufficient progress
if min(max(bracket)-t,t-min(bracket))/(max(bracket)-min(bracket)) < 0.1
if debug
fprintf('Interpolation close to boundary');
end
if insufProgress || t>=max(bracket) || t <= min(bracket)
if debug
fprintf(', Evaluating at 0.1 away from boundary\n');
end
if abs(t-max(bracket)) < abs(t-min(bracket))
t = max(bracket)-0.1*(max(bracket)-min(bracket));
else
t = min(bracket)+0.1*(max(bracket)-min(bracket));
end
insufProgress = 0;
else
if debug
fprintf('\n');
end
insufProgress = 1;
end
else
insufProgress = 0;
end
% Evaluate new point
if ~saveHessianComp && nargout == 5
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
else
[f_new,g_new] = funObj(x + t*d,varargin{:});
end
funEvals = funEvals + 1;
gtd_new = g_new'*d;
LSiter = LSiter+1;
armijo = f_new < f + c1*t*gtd;
if ~armijo || f_new >= f_LO
% Armijo condition not satisfied or not lower than lowest
% point
bracket(HIpos) = t;
bracketFval(HIpos) = f_new;
bracketGval(:,HIpos) = g_new;
Tpos = HIpos;
else
if abs(gtd_new) <= - c2*gtd
% Wolfe conditions satisfied
done = 1;
elseif gtd_new*(bracket(HIpos)-bracket(LOpos)) >= 0
% Old HI becomes new LO
bracket(HIpos) = bracket(LOpos);
bracketFval(HIpos) = bracketFval(LOpos);
bracketGval(:,HIpos) = bracketGval(:,LOpos);
if LS_interp == 3
if debug
fprintf('LO Pos is being removed!\n');
end
LOposRemoved = 1;
oldLOval = bracket(LOpos);
oldLOFval = bracketFval(LOpos);
oldLOGval = bracketGval(:,LOpos);
end
end
% New point becomes new LO
bracket(LOpos) = t;
bracketFval(LOpos) = f_new;
bracketGval(:,LOpos) = g_new;
Tpos = LOpos;
end
if ~done && abs(bracket(1)-bracket(2))*nrmD < progTol
if debug
fprintf('Line-search bracket has been reduced below progTol\n');
end
break;
end
end
%%
if LSiter == maxLS
if debug
fprintf('Line Search Exceeded Maximum Line Search Iterations\n');
end
end
[f_LO LOpos] = min(bracketFval);
t = bracket(LOpos);
f_new = bracketFval(LOpos);
g_new = bracketGval(:,LOpos);
% Evaluate Hessian at new point
if nargout == 5 && funEvals > 1 && saveHessianComp
[f_new,g_new,H] = funObj(x + t*d,varargin{:});
funEvals = funEvals + 1;
end
end
%%
function [t] = mixedExtrap(x0,f0,g0,x1,f1,g1,minStep,maxStep,debug,doPlot);
alpha_c = polyinterp([x0 f0 g0; x1 f1 g1],doPlot,minStep,maxStep);
alpha_s = polyinterp([x0 f0 g0; x1 sqrt(-1) g1],doPlot,minStep,maxStep);
if alpha_c > minStep && abs(alpha_c - x1) < abs(alpha_s - x1)
if debug
fprintf('Cubic Extrapolation\n');
end
t = alpha_c;
else
if debug
fprintf('Secant Extrapolation\n');
end
t = alpha_s;
end
end
%%
function [t] = mixedInterp(bracket,bracketFval,bracketGval,d,Tpos,oldLOval,oldLOFval,oldLOGval,debug,doPlot);
% Mixed Case %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
nonTpos = -Tpos+3;
gtdT = bracketGval(:,Tpos)'*d;
gtdNonT = bracketGval(:,nonTpos)'*d;
oldLOgtd = oldLOGval'*d;
if bracketFval(Tpos) > oldLOFval
alpha_c = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],doPlot);
alpha_q = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) sqrt(-1)],doPlot);
if abs(alpha_c - oldLOval) < abs(alpha_q - oldLOval)
if debug
fprintf('Cubic Interpolation\n');
end
t = alpha_c;
else
if debug
fprintf('Mixed Quad/Cubic Interpolation\n');
end
t = (alpha_q + alpha_c)/2;
end
elseif gtdT'*oldLOgtd < 0
alpha_c = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],doPlot);
alpha_s = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) sqrt(-1) gtdT],doPlot);
if abs(alpha_c - bracket(Tpos)) >= abs(alpha_s - bracket(Tpos))
if debug
fprintf('Cubic Interpolation\n');
end
t = alpha_c;
else
if debug
fprintf('Quad Interpolation\n');
end
t = alpha_s;
end
elseif abs(gtdT) <= abs(oldLOgtd)
alpha_c = polyinterp([oldLOval oldLOFval oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],...
doPlot,min(bracket),max(bracket));
alpha_s = polyinterp([oldLOval sqrt(-1) oldLOgtd
bracket(Tpos) bracketFval(Tpos) gtdT],...
doPlot,min(bracket),max(bracket));
if alpha_c > min(bracket) && alpha_c < max(bracket)
if abs(alpha_c - bracket(Tpos)) < abs(alpha_s - bracket(Tpos))
if debug
fprintf('Bounded Cubic Extrapolation\n');
end
t = alpha_c;
else
if debug
fprintf('Bounded Secant Extrapolation\n');
end
t = alpha_s;
end
else
if debug
fprintf('Bounded Secant Extrapolation\n');
end
t = alpha_s;
end
if bracket(Tpos) > oldLOval
t = min(bracket(Tpos) + 0.66*(bracket(nonTpos) - bracket(Tpos)),t);
else
t = max(bracket(Tpos) + 0.66*(bracket(nonTpos) - bracket(Tpos)),t);
end
else
t = polyinterp([bracket(nonTpos) bracketFval(nonTpos) gtdNonT
bracket(Tpos) bracketFval(Tpos) gtdT],doPlot);
end
end
|
github
|
kd383/GPML_SLD-master
|
minFunc_processInputOptions.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minfunc/minFunc_processInputOptions.m
| 4,103 |
utf_8
|
8822581c3541eabe5ce7c7927a57c9ab
|
function [verbose,verboseI,debug,doPlot,maxFunEvals,maxIter,optTol,progTol,method,...
corrections,c1,c2,LS_init,cgSolve,qnUpdate,cgUpdate,initialHessType,...
HessianModify,Fref,useComplex,numDiff,LS_saveHessianComp,...
Damped,HvFunc,bbType,cycle,...
HessianIter,outputFcn,useMex,useNegCurv,precFunc,...
LS_type,LS_interp,LS_multi,DerivativeCheck] = ...
minFunc_processInputOptions(o)
% Constants
SD = 0;
CSD = 1;
BB = 2;
CG = 3;
PCG = 4;
LBFGS = 5;
QNEWTON = 6;
NEWTON0 = 7;
NEWTON = 8;
TENSOR = 9;
verbose = 1;
verboseI= 1;
debug = 0;
doPlot = 0;
method = LBFGS;
cgSolve = 0;
o = toUpper(o);
if isfield(o,'DISPLAY')
switch(upper(o.DISPLAY))
case 0
verbose = 0;
verboseI = 0;
case 'FINAL'
verboseI = 0;
case 'OFF'
verbose = 0;
verboseI = 0;
case 'NONE'
verbose = 0;
verboseI = 0;
case 'FULL'
debug = 1;
case 'EXCESSIVE'
debug = 1;
doPlot = 1;
end
end
DerivativeCheck = 0;
if isfield(o,'DERIVATIVECHECK')
switch(upper(o.DERIVATIVECHECK))
case 1
DerivativeCheck = 1;
case 'ON'
DerivativeCheck = 1;
end
end
LS_init = 0;
LS_type = 1;
LS_interp = 2;
LS_multi = 0;
Fref = 1;
Damped = 0;
HessianIter = 1;
c2 = 0.9;
if isfield(o,'METHOD')
m = upper(o.METHOD);
switch(m)
case 'TENSOR'
method = TENSOR;
case 'NEWTON'
method = NEWTON;
case 'MNEWTON'
method = NEWTON;
HessianIter = 5;
case 'PNEWTON0'
method = NEWTON0;
cgSolve = 1;
case 'NEWTON0'
method = NEWTON0;
case 'QNEWTON'
method = QNEWTON;
Damped = 1;
case 'LBFGS'
method = LBFGS;
case 'BB'
method = BB;
LS_type = 0;
Fref = 20;
case 'PCG'
method = PCG;
c2 = 0.2;
LS_init = 2;
case 'SCG'
method = CG;
c2 = 0.2;
LS_init = 4;
case 'CG'
method = CG;
c2 = 0.2;
LS_init = 2;
case 'CSD'
method = CSD;
c2 = 0.2;
Fref = 10;
LS_init = 2;
case 'SD'
method = SD;
LS_init = 2;
end
end
maxFunEvals = getOpt(o,'MAXFUNEVALS',1000);
maxIter = getOpt(o,'MAXITER',500);
optTol = getOpt(o,'OPTTOL',1e-5);
progTol = getOpt(o,'PROGTOL',1e-9);
corrections = getOpt(o,'CORRECTIONS',100);
corrections = getOpt(o,'CORR',corrections);
c1 = getOpt(o,'C1',1e-4);
c2 = getOpt(o,'C2',c2);
LS_init = getOpt(o,'LS_INIT',LS_init);
cgSolve = getOpt(o,'CGSOLVE',cgSolve);
qnUpdate = getOpt(o,'QNUPDATE',3);
cgUpdate = getOpt(o,'CGUPDATE',2);
initialHessType = getOpt(o,'INITIALHESSTYPE',1);
HessianModify = getOpt(o,'HESSIANMODIFY',0);
Fref = getOpt(o,'FREF',Fref);
useComplex = getOpt(o,'USECOMPLEX',0);
numDiff = getOpt(o,'NUMDIFF',0);
LS_saveHessianComp = getOpt(o,'LS_SAVEHESSIANCOMP',1);
Damped = getOpt(o,'DAMPED',Damped);
HvFunc = getOpt(o,'HVFUNC',[]);
bbType = getOpt(o,'BBTYPE',0);
cycle = getOpt(o,'CYCLE',3);
HessianIter = getOpt(o,'HESSIANITER',HessianIter);
outputFcn = getOpt(o,'OUTPUTFCN',[]);
useMex = getOpt(o,'USEMEX',1);
useNegCurv = getOpt(o,'USENEGCURV',1);
precFunc = getOpt(o,'PRECFUNC',[]);
LS_type = getOpt(o,'LS_type',LS_type);
LS_interp = getOpt(o,'LS_interp',LS_interp);
LS_multi = getOpt(o,'LS_multi',LS_multi);
end
function [v] = getOpt(options,opt,default)
if isfield(options,opt)
if ~isempty(getfield(options,opt))
v = getfield(options,opt);
else
v = default;
end
else
v = default;
end
end
function [o] = toUpper(o)
if ~isempty(o)
fn = fieldnames(o);
for i = 1:length(fn)
o = setfield(o,upper(fn{i}),getfield(o,fn{i}));
end
end
end
|
github
|
kd383/GPML_SLD-master
|
mexAll_octave.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/util/minfunc/mex/mexAll_octave.m
| 529 |
utf_8
|
71ee15c617dd2bfc3de849feaeeeadae
|
% minFunc
printf('Compiling minFunc files (octave version)...\n');
## working around the lack of an -outdir option in octave's mex
function mexme(fn)
cmd = sprintf("mkoctfile --mex --output ../compiled/%s.mex %s.c", fn, fn) ;
[ status output ] = system(cmd) ;
if status!=0
error("Executing command %s\n", cmd);
else
delete(sprintf("%s.o", fn));
printf("%s compiled\n", fn);
endif
endfunction
mexme("mcholC");
mexme("lbfgsC");
mexme("lbfgsAddC");
mexme("lbfgsProdC");
printf("Done.\n")
|
github
|
kd383/GPML_SLD-master
|
meanProd.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/mean/meanProd.m
| 1,637 |
utf_8
|
9ef1cd91495c7edf4cd263a7522833dc
|
function [m,dm] = meanProd(mean, hyp, x)
% meanProd - compose a mean function as the product of other mean functions.
% This function doesn't actually compute very much on its own, it merely does
% some bookkeeping, and calls other mean functions to do the actual work.
%
% m(x) = \prod_i m_i(x)
%
% Copyright (c) by Carl Edward Rasmussen & Hannes Nickisch 2016-04-15.
%
% See also MEANFUNCTIONS.M.
nm = numel(mean);
for ii = 1:nm % iterate over mean functions
f = mean(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
j(ii) = cellstr(feval(f{:})); % collect number hypers
end
if nargin<3 % report number of parameters
m = char(j(1)); for ii=2:nm, m = [m, '+', char(j(ii))]; end; return
end
[n,D] = size(x);
v = []; % v vector indicates to which mean parameters belong
for ii = 1:nm, v = [v repmat(ii, 1, eval(char(j(ii))))]; end
m = ones(n,1); mi = cell(nm,1); dmi = cell(nm,1); % allocate space
for ii = 1:nm % iteration over factor functions
f = mean(ii); if iscell(f{:}), f = f{:}; end % expand cell array if needed
[mi{ii},dmi{ii}] = feval(f{:}, hyp(v==ii), x);
m = m.*mi{ii}; % accumulate means
end
dm = @(q) dirder(q,mi,dmi,v,nm); % directional derivative
function dhyp = dirder(q,mi,dmi,v,nm)
dhyp = zeros(nm,1);
for ii = 1:nm
qi = q; for jj=1:nm, if ii~=jj, qi = qi .* mi{jj}; end, end % accumulate
dhyp(v==ii,1) = dmi{ii}(qi);
end
|
github
|
kd383/GPML_SLD-master
|
meanWSPC.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/mean/meanWSPC.m
| 1,155 |
utf_8
|
63678f0a2b4719e468e81085c69dd205
|
function [m,dm] = meanWSPC(d, hyp, x)
% Weighted Sum of Projected Cosines or Random Kitchen Sink features.
%
% This function represents the feature function of a zero mean GP with
% stationary covariance function. See the paper "Sparse spectrum GP regression"
% by Lazaro-Gredilla et al., JMLR, 2010 for details.
%
% m(x) = sqrt(2/d) sum_j=1..d a_j * cos(w_j'*x + b_j)
%
% The hyperparameter is:
% hyp = [w_1; b_1; a_1; ..; w_d; b_d; a_d]
%
% Copyright (c) by William Herlands and Hannes Nickisch, 2016-04-15.
%
% See also MEANFUNCTIONS.M.
if nargin<3, m = sprintf('(D+2)*%d',d); return; end % report number of hypers
[n,D] = size(x);
if any(length(hyp)~=eval(sprintf('(D+2)*%d',d)))
error('Incorrect number of hyperparameters for meanRKS.')
end
hyp = reshape(hyp,D+2,d);
w = hyp(1:D,:); b = hyp(D+1,:); a = hyp(D+2,:)'; % separate hyps into w, b, a
r = bsxfun(@plus,x*w,b); cr = cos(r); m = sqrt(2/d)*cr*a; % mean
dm = @(q) dirder(q,x,a,r,cr,d); % directional derivative
function dhyp = dirder(q,x,a,r,cr,d)
msr = -sin(r); dhyp = [x'*(msr.*(q*a')); (q'*msr).*a'; q'*cr];
dhyp = sqrt(2/d)*dhyp(:);
|
github
|
kd383/GPML_SLD-master
|
meanDiscrete.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/mean/meanDiscrete.m
| 938 |
utf_8
|
8cd9e4ccebb561316bcac3893f21bd4b
|
function [m,dm] = meanDiscrete(s, hyp, x)
% Mean function for discrete inputs x. Given a function defined on the
% integers 1,2,3,..,s, the mean function is parametrized as:
%
% m(x) = mu_x,
%
% where mu is a fixed vector of length s.
%
% This implementation assumes that the inputs x are given as integers
% between 1 and s, which simply index the provided vector.
%
% The hyperparameters are:
%
% hyp = [ mu_1
% mu_2
% ..
% mu_s ]
%
% Copyright (c) by Roman Garnett and Hannes Nickisch, 2016-04-16.
%
% See also COVDISCRETE.M, MEANFUNCTIONS.M.
if nargin==0, error('s must be specified.'), end % check for dimension
if nargin<=2, m = num2str(s); return; end % report number of hyperparameters
mu = hyp(:); m = mu(x(:)); % evaluate mean
dm = @(q) dirder(q,s,x);
function dmdhyp = dirder(q,s,x)
dmdhyp = zeros(s,1);
for i=1:s, dmdhyp(i) = sum(q(x==i)); end
|
github
|
kd383/GPML_SLD-master
|
meanGPexact.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/mean/meanGPexact.m
| 2,135 |
utf_8
|
ebac92262e0958da06afecabc8e8d265
|
function [m,dm] = meanGPexact(mean,cov,x,y, hypz,z)
% Mean function being the predictive mean of a GP model:
%
% mu(z) = posterior mean of GP at location z as given by
% mu(z) = gp(hyp,@infExact,mean,cov,@likGauss,x,y, z) where
% hyp.mean = hyp_mean; hyp.lik = log(sn); hyp.cov = hyp.cov;
%
% The hyperparameters are:
%
% hypz = [ hyp_cov
% log(sn)
% hyp_mean ]
%
% where hyp_cov are the covariance function hyperparameters, sn is the
% noise variance of the Gaussian likelihood and hyp_mean are the mean
% function hyperparameters.
%
% Copyright (c) by Hannes Nickisch, 2016-04-16.
%
% See also MEANFUNCTIONS.M and MEANGP.M.
if nargin<4, error('GP must be specified.'), end % check for dimension
if isempty(mean), mean = @meanZero; end % set default and make cell
if ~iscell(mean), mean = {mean}; end
if isempty(cov), cov = @covSEiso; end
if ~iscell(cov), cov = {cov}; end
nms = feval(mean{:}); ncs = feval(cov{:}); % number of hyperparameter string
if nargin<6, m = [ncs,'+1+',nms]; return, end % report number of hyperparameters
[nz,D] = size(z); n = size(x,1);
nc = eval(ncs); nm = eval(nms);
hyp = vec2any(struct('cov',zeros(nc,1),'lik',0,'mean',zeros(nm,1)),hypz);
[mu,dmu] = feval(mean{:},hyp.mean,x);
[muz,dmuz] = feval(mean{:},hyp.mean,z);
[K,dK] = feval(cov{:}, hyp.cov, x);
[kz,dkz] = feval(cov{:}, hyp.cov, x,z);
sn2 = exp(2*hyp.lik); % noise variance of likGauss
if sn2<1e-6 % very tiny sn2 can lead to numerical trouble
L = chol(K+sn2*eye(n)); sl = 1; % Cholesky factor of covariance with noise
else
L = chol(K/sn2+eye(n)); sl = sn2; % Cholesky factor of B
end
iKs = @(t) solve_chol(L,t)/sl; % iKs(t) = (K+sn2*eye(n))\t
alpha = iKs(y-mu);
m = muz+kz'*alpha; % eval posterior mean
dm = @(q) dirder(q,alpha,dmu,dmuz,kz,dkz,iKs,dK,sn2); % directional derivative
function dmdhyp = dirder(q,alpha,dmu,dmuz,kz,dkz,iKs,dK,sn2)
v = iKs(kz*q);
dmdhyp = [dkz(alpha*q')-dK(alpha*v'); -2*sn2*v'*alpha; dmuz(q)-dmu(v)];
|
github
|
kd383/GPML_SLD-master
|
meanPoly.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/mean/meanPoly.m
| 1,144 |
utf_8
|
37b5289c7c858a50ffa4834928ade29f
|
function [m,dm] = meanPoly(d, hyp, x)
% meanPoly - compose a mean function as a polynomial.
%
% The degree d has to be a strictly positive integer.
%
% m(x) = sum_i=1..D sum_j=1..d a_ij * x_i^j
%
% The hyperparameter is:
%
% hyp = [ a_11
% a_21
% ..
% a_D1
% a_12
% a_22
% ..
% a_Dd]
%
% This function doesn't actually compute very much on its own, it merely does
% some bookkeeping, and calls other mean function to do the actual work.
%
% Copyright (c) by Hannes Nickisch 2016-04-15.
%
% See also MEANFUNCTIONS.M.
d = max(abs(floor(d)),1); % positive integer degree
if nargin<3, m = ['D*',int2str(d)]; return; end % report number of hyperparams
[n,D] = size(x);
a = reshape(hyp,D,d);
m = zeros(n,1); % allocate memory
for j=1:d, m = m + (x.^j)*a(:,j); end % evaluate mean
dm = @(q) dirder(q,x,a); % directional derivative
function dhyp = dirder(q,x,a)
[D,d] = size(a);
dhyp = zeros(D*d,1); for j=1:d, dhyp((j-1)*D+(1:D)) = (x.^j)'*q(:); end
|
github
|
kd383/GPML_SLD-master
|
meanSum.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/mean/meanSum.m
| 1,536 |
utf_8
|
caf2e4aed8ec16eaca6eecb232e8a3d8
|
function [m,dm] = meanSum(mean, hyp, x)
% meanSum - compose a mean function as the sum of other mean functions.
% This function doesn't actually compute very much on its own, it merely does
% some bookkeeping, and calls other mean functions to do the actual work.
%
% m(x) = \sum_i m_i(x)
%
% Copyright (c) by Carl Edward Rasmussen & Hannes Nickisch 2016-04-15.
%
% See also MEANFUNCTIONS.M.
nm = numel(mean);
for ii = 1:nm % iterate over mean functions
f = mean(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
j(ii) = cellstr(feval(f{:})); % collect number hypers
end
if nargin<3 % report number of parameters
m = char(j(1)); for ii=2:nm, m = [m, '+', char(j(ii))]; end; return
end
[n,D] = size(x);
v = []; % v vector indicates to which mean parameters belong
for ii = 1:nm, v = [v repmat(ii, 1, eval(char(j(ii))))]; end
m = zeros(n,1); dmi = cell(nm,1); % allocate space
for ii = 1:nm % iteration over summand functions
f = mean(ii); if iscell(f{:}), f = f{:}; end % expand cell array if needed
[mi,dmi{ii}] = feval(f{:}, hyp(v==ii), x);
m = m+mi; % accumulate means
end
dm = @(q) dirder(q,dmi,v,nm); % directional derivative
function dhyp = dirder(q,dmi,v,nm)
dhyp = zeros(nm,1);
for ii = 1:nm, dhyp(v==ii,1) = dmi{ii}(q); end
|
github
|
kd383/GPML_SLD-master
|
covNNone.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covNNone.m
| 2,181 |
utf_8
|
d3739df4147646dd3127df49ceb631aa
|
function [K,dK] = covNNone(hyp, x, z)
% Neural network covariance function with a single parameter for the distance
% measure. The covariance function is parameterized as:
%
% k(x,z) = sf2 * asin(x'*P*z / sqrt[(1+x'*P*x)*(1+z'*P*z)])
%
% where the x and z vectors on the right hand side have an added extra bias
% entry with unit value. P is ell^-2 times the unit matrix and sf2 controls the
% signal variance. The hyperparameters are:
%
% hyp = [ log(ell)
% log(sqrt(sf2) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-04-23.
%
% See also COVFUNCTIONS.M.
if nargin<2, K = '2'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
ell2 = exp(2*hyp(1));
sf2 = exp(2*hyp(2));
sx = 1 + sum(x.*x,2);
if dg % vector kxx
A = sx./(sx+ell2); sz = sx;
else
if xeqz % symmetric matrix Kxx
S = 1 + x*x'; sz = sx;
A = S./(sqrt(ell2+sx)*sqrt(ell2+sx)');
else % cross covariances Kxz
S = 1 + x*z'; sz = 1 + sum(z.*z,2);
A = S./(sqrt(ell2+sx)*sqrt(ell2+sz)');
end
end
K = sf2*asin(A); % covariances
if nargout > 1
dK = @(Q) dirder(Q,K,A,sx,sz,ell2,sf2,x,z,dg,xeqz); % dir hyper derivative
end
function [dhyp,dx] = dirder(Q,K,A,sx,sz,ell2,sf2,x,z,dg,xeqz)
n = size(x,1);
if dg
V = A;
else
vx = sx./(ell2+sx);
if xeqz
V = repmat(vx/2,1,n) + repmat(vx'/2,n,1);
else
vz = sz./(ell2+sz); nz = size(z,1);
V = repmat(vx/2,1,nz) + repmat(vz'/2,n,1);
end
end
P = Q./sqrt(1-A.*A);
dhyp = [-2*sf2*sum(sum((A-A.*V).*P)); 2*Q(:)'*K(:)];
if nargout > 1
if dg
dx = zeros(size(x));
else
W = P./(sqrt(ell2+sx)*sqrt(ell2+sz)'); ssx = sqrt(ell2+sx);
if xeqz, W = W+W'; z = x; ssz = ssx; else ssz = sqrt(ell2+sz); end
dx = sf2*(W*z - bsxfun(@times,x,((W.*A)*ssz)./ssx));
end
end
|
github
|
kd383/GPML_SLD-master
|
covWarp.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covWarp.m
| 1,985 |
utf_8
|
edfc0bebca248cfb80e7f7fe6a53ba17
|
function [K,dK] = covWarp(cov, p, dp, Dp, hyp, x, z)
% Apply a covariance function to p(x) rather than x i.e. warp the inputs.
%
% This function doesn't actually compute very much on its own, it merely does
% some bookkeeping, and calls another covariance function to do the actual work.
%
% The function computes:
% k(x,z) = k0(p(x),p(z))
% Example:
% k0 = {@covSEiso};
% p = @(x) sum(2*x,2);
% dp = @(x) 2*x;
% Dp = 1;
% k = {@covWarp,p,dp,Dp};
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-11-14.
%
% See also COVFUNCTIONS.M, COVMASK.M.
nh_string = feval(cov{:}); % number of hyperparameters of the full covariance
D = Dp; % make variable available
if nargin<6, K = num2str(eval(nh_string)); return, end % number of parameters
if nargin<7, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
if numel(p) ==0, p = @(x) x; end % default is identity
if numel(dp)==0, dp = @(x) 1; end % default is one
if eval(nh_string)~=length(hyp) % check hyperparameters
error('number of hyperparameters does not match size of warped data')
end
px = p(x); if ~dg && ~xeqz, pz = p(z); else pz = z; end
if nargout>1
[K,dK] = feval(cov{:}, hyp, px, pz);
dK = @(Q) dirder(Q,dK,x,dp);
else
K = feval(cov{:}, hyp, px, pz);
end
function [dhyp,dx] = dirder(Q,dK,x,dp)
if nargout>1
[dhyp,dx] = dK(Q); Dp = size(dx,2); dpx = dp(x); % size(dx)=[n,Dp]
if ndims(dpx)<=2 % apply chain rule
dx = bsxfun(@times,dx,dpx); % size(dpx)=[1,1] or [n,1] or [n,D]
else
dx = sum(bsxfun(@times,reshape(dx,[],1,Dp),dpx),3); % size(dpx)=[n,D,Dp]
end % size(dx)=[n,D]
else
dhyp = dK(Q);
end
|
github
|
kd383/GPML_SLD-master
|
covZero.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covZero.m
| 1,116 |
utf_8
|
8e584fb7aaec194e49fd84eb2c8ade2b
|
function [K,dK] = covZero(hyp, x, z)
% Constant (degenerate) covariance function, with zero variance.
% The covariance function is specified as:
%
% k(x,z) = 0
%
% hyp = [ ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Hannes Nickisch, 2016-04-17.
%
% See also COVFUNCTIONS.M.
if nargin<2, K = '0'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
dg = strcmp(z,'diag'); % determine mode
n = size(x,1);
if dg % vector kxx
K = zeros(n,1);
else
if isempty(z) % symmetric matrix Kxx
K = zeros(n,n);
else % cross covariances Kxz
K = zeros(n,size(z,1));
end
end
if nargout > 1
dK = @(Q) dirder(Q,K,x); % directional hyper derivative
end
function [dhyp,dx] = dirder(Q,K,x)
dhyp = zeros(0,1); if nargout > 1, dx = zeros(size(x)); end
|
github
|
kd383/GPML_SLD-master
|
covOne.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covOne.m
| 1,112 |
utf_8
|
ad8b2c66ba87471c2aad1ef1da8b74e2
|
function [K,dK] = covOne(hyp, x, z)
% Constant (degenerate) covariance function, with unit variance.
% The covariance function is specified as:
%
% k(x,z) = 1
%
% hyp = [ ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Hannes Nickisch, 2016-04-17.
%
% See also COVFUNCTIONS.M.
if nargin<2, K = '0'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
dg = strcmp(z,'diag'); % determine mode
n = size(x,1);
if dg % vector kxx
K = ones(n,1);
else
if isempty(z) % symmetric matrix Kxx
K = ones(n,n);
else % cross covariances Kxz
K = ones(n,size(z,1));
end
end
if nargout > 1
dK = @(Q) dirder(Q,K,x); % directional hyper derivative
end
function [dhyp,dx] = dirder(Q,K,x)
dhyp = zeros(0,1); if nargout > 1, dx = zeros(size(x)); end
|
github
|
kd383/GPML_SLD-master
|
covRQard.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covRQard.m
| 1,319 |
utf_8
|
4a01d96fc2dfed96d4da74a33d401733
|
function varargout = covRQard(varargin)
% Wrapper for Rational Quadratic covariance function covRQ.m.
%
% Rational Quadratic covariance function with Automatic Relevance Determination
% (ARD) distance measure. The covariance function is parameterized as:
%
% k(x,z) = sf^2 * [1 + (x-z)'*inv(P)*(x-z)/(2*alpha)]^(-alpha)
%
% where the P matrix is diagonal with ARD parameters ell_1^2,...,ell_D^2, where
% D is the dimension of the input space, sf2 is the signal variance and alpha
% is the shape parameter for the RQ covariance. The hyperparameters are:
%
% hyp = [ log(ell_1)
% log(ell_2)
% ..
% log(ell_D)
% log(sf)
% log(alpha) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-10-01.
%
% See also covRQ.M.
varargout = cell(max(1,nargout),1);
if nargin>0 % restore old hyper parameter order
hyp = varargin{1};
if numel(hyp)>2, varargin{1} = hyp([1:end-2,end,end-1]); end
end
[varargout{:}] = covScale({'covRQ','ard',[]},varargin{:});
if nargout>1 % restore old hyper parameter order
o2 = varargout{2}; varargout{2} = @(Q) dirder(Q,o2);
end
function [dKdhyp,dKdx] = dirder(Q,dK)
if nargout>1, [dKdhyp,dKdx] = dK(Q); else dKdhyp = dK(Q); end
dKdhyp = dKdhyp([1:end-2,end,end-1]);
|
github
|
kd383/GPML_SLD-master
|
covW.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covW.m
| 4,023 |
utf_8
|
949b84c4ea6880c67f04e823beccebf8
|
function [K,dK] = covW(i, hyp, x, z)
% Wiener process covariance function, i times integrated.
%
% For i= 0, this is the Wiener process covariance,
% for i= 1, this is the integrated Wiener process covariance (velocity),
% for i= 2, this is the twice-integrated Wiener process covariance (accel.),
% for i= 3, this is the thrice-integrated Wiener process covariance.
% For i=-1, this is just the white noise covariance, see covNoise.
%
% If dw(x) is a Wiener process then dw(x+s^2)-dw(x) = N(0,s^2).
% The Wiener process is the integral of a white noise process, see covEye.
%
% The covariance function -- given that x,z>=0 -- is specified as:
%
% k(x,z) = sf^2 * ki(x,z), where ki(x,z) is given for
% different values of i by the following expressions
% i = -1, ki(x,z) = \delta(x,z)
% i >= 0, ki(x,z) = 1/ai*min(x,z)^(2*i+1) + bi*min(x,z)^(i+1) * |x-z| * ri(x,z),
% with the coefficients ai, bi and the residual ri(x,z) defined as follows:
% i = 0, ai = 1, bi = 0
% i = 1, ai = 3, bi = 1/ 2, ri(x,z) = 1
% i = 2, ai = 20, bi = 1/ 12, ri(x,z) = x+z-1/2*min(x,z)
% i = 3, ai = 252, bi = 1/720, ri(x,z) = 5*max(x,z)^2+2*x*z+3*min(x,z)^2
%
% See the paper Probabilistic ODE Solvers with Runge-Kutta Means by Schober,
% Duvenaud and Hennig, NIPS, 2014, for more details.
%
% The hyperparameters are:
%
% hyp = [ log(sf) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Hannes Nickisch, 2017-10-05.
%
% See also COVEYE.M, COVFUNCTIONS.M.
if nargin<3, K = '1'; return; end % report number of parameters
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x); ox = ones(n,1);
if D~=1, error('Covariance is defined for 1d data only.'), end
if any(x<0) || (~xeqz && any(z<0))
error('Covariance is defined for nonnegative data only.')
end
sf = exp(hyp(1));
if dg % vector kxx
Mn = x; Mx = x; I = ox; D = zeros(n,1); S = 2*x; P = x.*x;
else
if xeqz % symmetric matrix Kxx
I = bsxfun(@le,x,x'); Mn = ox*x'; T = x*ox'; P = x*x';
else % cross covariances Kxz
oz = ones(size(z)); I = bsxfun(@le,x,z'); Mn = ox*z'; T = x*oz'; P = x*z';
end
D = T-Mn; S = T+Mn; % D = x-z, S = x+z, P = x*z, I = x<=z
Mx = Mn; Mx(~I) = T(~I); Mn(I) = T(I); % Mn = min(x,z), Mx = max(x,z)
end
switch i
case -1, K = double(abs(D)<eps*eps);
case 0, K = Mn;
case 1, K = Mn.^3/ 3 + abs(D).*Mn.^2/ 2;
case 2, K = Mn.^5/ 20 + abs(D).*Mn.^3/ 12.*(S-Mn/2);
case 3, K = Mn.^7/252 + abs(D).*Mn.^4/720.*(5*Mx.^2+2*P+3*Mn.^2);
otherwise, error('unknown degree')
end
K = sf^2*K; % signal variance
if nargout > 1
dK = @(Q) dirder(Q,K,I,Mn,Mx,D,S,P,sf,i,dg,xeqz,x); % directional deriv
end
function [dhyp,dx] = dirder(Q,K,I,Mn,Mx,D,S,P,sf,i,dg,xeqz,x)
dhyp = 2*(Q(:)'*K(:)); % signal variance
switch i
case -1, dMn = 0; dD = 0; dS = 0;
case 0, dMn = 1; dD = 0; dS = 0;
case 1, dMn = Mn.^2+abs(D).*Mn; dD = Q.*sign(D).*Mn.^2/2; dS = 0;
case 2, dMn = Mn.^4/4 + abs(D).*Mn.^2.*(S/4-Mn/6);
dD = Q.*sign(D).*Mn.^3/12.*(S-Mn/2); dS = Q.*abs(D).*Mn.^3/12;
case 3, dMn = Mn.^6/36 + abs(D).*Mn.^3/180.*(5*Mx.^2+2*P+9/2*Mn.^2);
dD = Q.*sign(D).*Mn.^4/720.*(5*Mx.^2+2*P+3*Mn.^2);
dS = 0; % dMx and dP are assumend to be small
end
Q = Q.*dMn;
if nargout > 1
if dg
dx = zeros(size(x));
else
if xeqz
dx = sum(Q.*I,2)+sum(Q.*(1-I),1)'+sum(dD,2)-sum(dD,1)'+sum(dS+dS',2);
else
dx = sum(Q.*I,2)+sum(dD,2)+sum(dS,2);
end
end
dx = sf^2*dx; % signal variance
end
|
github
|
kd383/GPML_SLD-master
|
covPeriodicNoDC.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covPeriodicNoDC.m
| 4,121 |
utf_8
|
ddc552a3a497084564de2a890aac7bef
|
function [K,dK] = covPeriodicNoDC(hyp, x, z)
% Stationary covariance function for a smooth periodic function, with period p:
%
% k(x,z) = sf^2 * [k0(pi*(x-z)/p) - f(ell)] / [1 - f(ell)]
% with k0(t) = exp( -2*sin^2(t)/ell^2 ) and f(ell) = \int 0..pi k0(t) dt.
%
% The constant (DC component) has been removed and marginal variance is sf^2.
% The hyperparameters are:
%
% hyp = [ log(ell)
% log(p)
% log(sf) ]
%
% Note that covPeriodicNoDC converges to covCos as ell goes to infinity.
%
% Copyright (c) by James Robert Lloyd and Hannes Nickisch 2016-04-24.
%
% See also COVFUNCTIONS.M, COVCOS.M.
if nargin<2, K = '3'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = numel(z)==0; dg = strcmp(z,'diag') && numel(z)>0; % determine mode
[n,D] = size(x);
if D>1, error('Covariance is defined for 1d data only.'), end
ell = exp(hyp(1)); p = exp(hyp(2)); sf2 = exp(2*hyp(3)); % extract hyperparams
% precompute deviations and exploit symmetry of sin^2
if dg % vector txx
T = zeros(size(x,1),1);
else
if xeqz % symmetric matrix Txx
T = pi/p*bsxfun(@plus,x,-x');
else % cross covariances Txz
T = pi/p*bsxfun(@plus,x,-z');
end
end
K = covD(2*T,ell); K = sf2*K; % covariance
if nargout>1
ebi0 = embi0(1/ell^2); ebi1 = embi1(1/ell^2);
dK = @(Q) dirder(Q,K,T,ell,p,sf2,xeqz,x,z,ebi0,ebi1); % directional hyp deriv
end
function [dhyp,dx] = dirder(Q,K,T,ell,p,sf2,xeqz,x,z,ebi0,ebi1)
S2 = (sin(T)/ell).^2;
if ell>1e4 % limit for ell->infty
Z = zeros(size(T)); % no further progress in ell possible
elseif 1/ell^2<3.75
cK = cos(2*T); ecK = exp(cK/ell^2);
b0 = besseli(0,1/ell^2);
b1 = besseli(1,1/ell^2);
Z = 2*(exp(1/ell^2)-ecK )*b1 ...
- 2*(exp(1/ell^2)-ecK.*cK)*b0 ...
+ 4*exp(2*(cos(T)/ell).^2).*sin(T).^2;
Z = sf2/(ell*(exp(1/ell^2)-b0))^2 * Z;
else
cK = cos(2*T); ecK = exp((cK-1)/ell^2);
b0 = ebi0; b1 = ebi1;
Z = 2*(1-ecK)*b1 - 2*(1-ecK.*cK)*b0 ...
+ 4*exp(2*(cos(T).^2-1)/ell^2).*sin(T).^2;
Z = sf2/(ell*(1-b0))^2 * Z;
end
if ell>1e4 % limit for ell->infty
Y = 2*sf2* sin(2*T).*T;
a = 1;
elseif 1/ell^2<3.75
c = 1/(exp(1/ell^2)-b0)/ell^2;
Y = 2*c*sf2*exp( cos(2*T) /ell^2).*sin(2*T).*T;
a = 1/(1-b0*exp(-1/ell^2))/ell^2;
else
c = 1/(1-b0)/ell^2;
Y = 2*c*sf2*exp((cos(2*T)-1)/ell^2).*sin(2*T).*T;
a = c;
end
dhyp = [Z(:)'*Q(:); Y(:)'*Q(:); 2*(Q(:)'*K(:))];
if nargout > 1
Kdc = sf2*exp( -2*S2 ); % inkl. DC component
R = Kdc.*sin(2*T).*Q./T; R(T==0) = 0;
r2 = sum(R,2); r1 = sum(R,1)';
if xeqz
y = bsxfun(@times,r1+r2,x) - (R+R')*x;
else
Rz = R*z; y = bsxfun(@times,r2,x) - Rz;
end
dx = -2*a*pi^2/p^2 * y;
end
function K = covD(D,ell) % evaluate covariances from distances
if ell>1e4 % limit for ell->infty
K = cos(D);
elseif 1/ell^2<3.75
K = exp(cos(D)/ell^2);
b0 = besseli(0,1/ell^2);
K = (K-b0)/(exp(1/ell^2)-b0);
else
K = exp((cos(D)-1)/ell^2);
b0 = embi0(1/ell^2);
K = (K-b0)/(1-b0);
end
function y = embi0(x) % = exp(-x)*besseli(0,x) => 9.8.2 Abramowitz & Stegun
y = 3.75/x;
y = 0.39894228 + 0.01328592*y + 0.00225319*y^2 - 0.00157565*y^3 ...
+ 0.00916281*y^4 - 0.02057706*y^5 + 0.02635537*y^6 - 0.01647633*y^7 ...
+ 0.00392377*y^8;
y = y/sqrt(x);
function y = embi1(x) % = exp(-x)*besseli(1,x) => 9.8.4 Abramowitz & Stegun
y = 3.75/x;
y = 0.39894228 - 0.03988024*y - 0.00362018*y^2 + 0.00163801*y^3 ...
- 0.01031555*y^4 + 0.02282967*y^5 - 0.02895312*y^6 + 0.01787654*y^7 ...
- 0.00420059*y^8;
y = y/sqrt(x);
|
github
|
kd383/GPML_SLD-master
|
covPoly.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covPoly.m
| 1,728 |
utf_8
|
05dd966400369bbcb5c67bd873904ba1
|
function [K,dK] = covPoly(mode,par,d,hyp,x,z)
% Polynomial covariance function. The covariance function is parameterized as:
%
% k(x,z) = sf^2 * ( c + s )^d , where s = x*inv(P)*z is the dot product
%
% The hyperparameters are:
%
% hyp = [ hyp_dot
% log(c)
% log(sf) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2017-09-26.
%
% See also covDot.m.
if nargin<2, mode = 'eye'; par = []; end % default mode
if ~ischar(mode) % make compatible to old interface version
if nargin>3, z = hyp; end
if nargin>2, x = d; end
if nargin>1, hyp = par; end
if nargin>0, d = mode; end
mode = 'eye'; par = []; narg = nargin+2;
else
narg = nargin;
end
if narg<5, K = [covDot(mode,par),'+2']; return, end % report nr of parameters
if narg<6, z = []; end % make sure, z exists
[n,D] = size(x); % dimensions
ne = eval(covDot(mode,par));
c = exp(hyp(ne+1)); % inhomogeneous offset
sf2 = exp(2*hyp(ne+2)); % signal variance
if d~=max(1,fix(d)), error('only nonzero integers allowed for d'), end % degree
k = @(s) (c+s).^d; dk = @(s) d*(c+s).^(d-1);
if nargout > 1
[K,dK0] = covScale({'covDot',mode,par,k,dk},hyp([1:ne,ne+2]),x,z);
S = covDot(mode,par,@(s)s,[],hyp(1:ne),x,z);
dK = @(Q) dirder(Q,S,dK0,c,d,sf2,ne);
else
K = covScale({'covDot',mode,par,k,dk},hyp([1:ne,ne+2]),x,z);
end
function [dhyp,dx] = dirder(Q,S,dK0,c,d,sf2,ne)
if nargout > 1, [dhyp,dx] = dK0(Q); else dhyp = dK0(Q); end
dhyp = [dhyp(1:ne); c*d*sf2*(Q(:)'*(c+S(:)).^(d-1)); dhyp(ne+1)]; % insert c
|
github
|
kd383/GPML_SLD-master
|
covPP.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covPP.m
| 1,920 |
utf_8
|
316ff11a633a645667943d2e5b47cd44
|
function varargout = covPP(mode, par, v, hyp, x, varargin)
% Piecewise Polynomial covariance function with compact support, v = 0,1,2,3.
% The covariance functions are 2v times contin. diff'ble and the corresponding
% processes are hence v times mean-square diffble. The covariance function is:
%
% k(x,z) = max(1-r,0)^(j+v) * f(r,j) with j = floor(D/2)+v+1
%
% where r is the Mahalanobis distance sqrt(maha(x,z)). The hyperparameters are:
%
% hyp = [ hyp_maha ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-05-23.
%
% See also covMaha.m.
if nargin < 1, error('Mode cannot be empty.'); end % no default
if nargin < 2, par = []; end % default
varargout = cell(max(1, nargout), 1); % allocate mem for output
if nargin<5, varargout{1} = covMaha(mode,par); return, end
[n,D] = size(x);
if all(v~=[0,1,2,3]), error('only 0,1,2 and 3 allowed for v'), end % degree
j = floor(D/2)+v+1; % exponent
switch v
case 0, f = @(r,j) 1;
df = @(r,j) 0;
case 1, f = @(r,j) 1 + (j+1)*r;
df = @(r,j) (j+1);
case 2, f = @(r,j) 1 + (j+2)*r + ( j^2+ 4*j+ 3)/ 3*r.^2;
df = @(r,j) (j+2) + 2*( j^2+ 4*j+ 3)/ 3*r;
case 3, f = @(r,j) 1 + (j+3)*r + (6*j^2+36*j+45)/15*r.^2 ...
+ (j^3+9*j^2+23*j+15)/15*r.^3;
df = @(r,j) (j+3) + 2*(6*j^2+36*j+45)/15*r ...
+ (j^3+9*j^2+23*j+15)/ 5*r.^2;
end
cs = @(r,e) (r<1).*max(1-r,0).^e;
pp = @(r,j,v,f) cs(r,j+v ).* f(r,j);
dpp = @(r,j,v,f) r.*cs(r,j+v-1).*( f(r,j)*(j+v) - max(1-r,0).*df(r,j) );
k = @(d2) pp( sqrt(d2), j, v, f );
dk = @(d2,k) set_zero( -(1/2)*dpp( sqrt(d2), j, v, f )./d2 , d2==0);
[varargout{:}] = covMaha(mode, par, k, dk, hyp, x, varargin{:});
function A = set_zero(A,I), A(I) = 0;
|
github
|
kd383/GPML_SLD-master
|
covMaha.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covMaha.m
| 8,278 |
utf_8
|
0847696adc64057a0c27b85bb49a1ae8
|
function [K,dK,D2] = covMaha(mode, par, k, dk, hyp, x, z)
% Mahalanobis distance-based covariance function. The covariance function is
% parameterized as:
%
% k(x,z) = k(r^2), r^2 = maha(x,P,z) = (x-z)'*inv(P)*(x-z),
%
% where the matrix P is the metric.
%
% Parameters:
% 1) mode,par:
% We offer different modes (mode) with their respective parameters (par):
% mode = par = inv(P) = hyp =
% 'eye' [] eye(D) []
% 'iso' [] ell^2*eye(D) [log(ell)]
% 'ard' [] diag(ell.^2) [log(ell_1); ..; log(ell_D)]
% 'proj' d L'*L [L_11; L_21; ..; L_dD]
% 'fact' d L'*L + diag(f) [L_11; L_21; ..; L_dD; log(f_1); ..; log(f_D)]
% 'vlen' llen l(x,z)^2*eye(D) [hyp_llen]
% In the last mode, the covariance function is turned into a nonstationary
% covariance by a variable lengthscale l(x,z) = sqrt((len(x)^2+len(z)^2)/2),
% where len(x) = exp(llen(x)) and llen is provided as additional parameter
% in the form of a GPML mean function cell array. The final expression for the
% 'vlen' covariance is:
% k(x,z) = ( len(x)*len(z)/l(x,z)^2 )^(D/2) * k( (x-z)'*(x-z)/l(x,z)^2 ).
%
% 2) k,dk:
% The functional form of the covariance is governed by two functions:
% k: r^2 -> k(x,z), r^2 = maha(x,P,z) = (x-z)'*inv(P)*(x-z)
% dk: r^2,k(x,z) -> d k(x,z) / d r2
% For example, the squared exponential covariance uses
% k = @(r2) exp(-r2/2); dk = @(r2,k) (-1/2)*k;
% Note that not all functions k,dk give rise to a valid i.e. positive
% semidefinite covariance function k(x,z).
%
% 3) hyp,x,z:
% These input parameters follow the usual covariance function interface. For the
% composition of hyp, see 1).
%
% 4) K,dK:
% See the usual covariance function interface.
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2017-01-11.
%
% See also COVFUNCTIONS.M.
if nargin<1, mode = 'eye'; end, if nargin <2, par = []; end % default values
mode_list = '''eye'', ''iso'', ''ard'', ''proj'', ''fact'', or ''vlen''';
switch mode
case 'eye', ne = '0';
case 'iso', ne = '1';
case 'ard', ne = 'D';
case 'proj', ne = [num2str(par),'*D'];
case 'fact', ne = [num2str(par),'*D+D'];
case 'vlen', ne = feval(par{:});
otherwise, error('Parameter mode is either %s.',mode_list)
end
if nargin<6, K = ne; return; end % report number of parameters
if nargin<7, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % sort out different modes
[n,D] = size(x); ne = eval(ne); % dimensions
hyp = hyp(:); % make sure hyp is a column vector
if numel(hyp)~=ne, error('Wrong number of hyperparameters'), end
switch mode % mvm with metric A=inv(P)
case {'eye','vlen'}
A = @(x) x;
dAdhyp = @(dAdiag,dAmvm) zeros(0,1);
case 'iso', A = @(x) x*exp(-2*hyp);
dAdhyp = @(dAdiag,dAmvm) -2*sum(A(dAdiag'));
case 'ard', A = @(x) bsxfun(@times,x,exp(-2*hyp'));
dAdhyp = @(dAdiag,dAmvm) -2*A(dAdiag')';
case 'proj', d = par; L = reshape(hyp,d,D); A = @(x) (x*L')*L;
dAdhyp = @(dAdiag,dAmvm) 2*reshape(dAmvm(L')',d*D,1);
case 'fact', d = par; L = reshape(hyp(1:d*D),d,D); f = exp(hyp(d*D+1:end));
A = @(x) (x*L')*L + bsxfun(@times,x,f');
dAdhyp = @(dAdiag,dAmvm)[2*reshape(dAmvm(L')',d*D,1); f.*dAdiag];
end
[D2,dmaha] = maha(x,A,z); T = 1; L2 = 1; % compute Mahalanobis distance
if isequal(mode,'vlen') % evaluate variable lengthscales
lx = exp(feval(par{:},hyp,x)); % L2 = (lx^2+lz^2)/2, P = lx*lz
if dg
L2 = lx.*lx; P = L2;
else
if xeqz, lz = lx; else lz = exp(feval(par{:},hyp,z)); end
L2 = bsxfun(@plus,(lx.*lx)/2,(lz.*lz)'/2); P = lx*lz';
end
D2 = D2./L2; T = (P./L2).^(D/2); % non-stationary covariance
end
K = k(D2); % evaluate covariance
if nargout > 1 % directional derivative
dK = @(Q) dirder(Q,K,dk,T,D2,L2,dmaha,dAdhyp,mode,par,hyp,x,z,dg,xeqz);
end
if isequal(mode,'vlen'), K = K.*T; end
function [dhyp,dx] = dirder(Q,K,dk,T,D2,L2,dmaha,dAdhyp, mode,par,hyp,x,z,dg,xeqz)
R = T.*dk(D2,K).*Q;
switch mode
case 'eye', dx = dmaha(R); dhyp = zeros(0,1); % fast shortcut
case 'iso', dx = dmaha(R); dhyp = -2*R(:)'*D2(:); % fast shortcut
case 'vlen', dx = dmaha(R); lx2 = exp(-2*feval(par{:},hyp,x));
dx = bsxfun(@times,dx,lx2); D = size(x,2); % only correct for lx = const.
if dg
dhyp = zeros(size(hyp));
else
[llx,dllx] = feval(par{:},hyp,x); lx = exp(llx);
if xeqz, lz = lx; dllz = dllx;
else
[llz,dllz] = feval(par{:},hyp,z); lz = exp(llz);
end
A=(D/2)*Q.*K.*((lx*lz')./L2).^(D/2-1)./L2; B=(D2.*R+A.*(lx*lz'))./L2;
dhyp = dllx(lx.*(A*lz-sum(B,2).*lx)) + dllz(lz.*(A'*lx-sum(B,1)'.*lz));
end
otherwise, [dx,dAdiag,dAmvm] = dmaha(R); dhyp = dAdhyp(dAdiag,dAmvm);
end
% Mahalanobis squared distance function for A spd
% D2 = maha(x,A,z) = (x-z)'*A*(x-z)
% dx(Q) = d tr(Q'*D2) / d x
% dA(Q) = d tr(Q'*D2) / d A
function [D2,dmaha] = maha(x,A,z)
if nargin<2, A = @(x) x; end % make sure the metric exists
if nargin<3, z = []; end % make sure z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % sort out different modes
n = size(x,1); m = size(z,1); % dimensions
if dg % vector d2xx
D2 = zeros(n,1);
else
% Computation of a^2 - 2*a*b + b^2 is less stable than (a-b)^2 because
% numerical precision can be lost when both a and b have very large absolute
% value and the same sign. For that reason, we subtract the mean from the
% data beforehand to stabilise the computations. This is OK because the
% squared error is independent of the mean.
if xeqz
mu = mean(x,1);
else
mu = (m/(n+m))*mean(z,1) + (n/(n+m))*mean(x,1); z = bsxfun(@minus,z,mu);
end
x = bsxfun(@minus,x,mu);
Ax = A(x); sax = sum(x.*Ax,2);
if xeqz % symmetric matrix D2xx
Az = Ax; saz = sax;
else % cross terms D2xz
Az = A(z); saz = sum(z.*Az,2);
end % remove numerical noise at the end and ensure that D2>=0
D2 = max(bsxfun(@plus,sax,bsxfun(@minus,saz',2*x*Az')),0); % computation
end
if nargout>1, dmaha = @(Q) maha_dirder(Q,x,A,z); end
function [dx,dAdiag,dAmvm] = maha_dirder(Q,x,A,z) % directional derivative
if nargin<3, z = []; end
xeqz = isempty(z); dg = strcmp(z,'diag'); % sort out different modes
q2 = sum(Q,2); q1 = sum(Q,1)'; sym = @(X) (X+X')/2;
dAdense = size(x,2)<5; % estimated break-even between O(D*D*n) and O(4*D*n)
if dg
dx = zeros(size(x));
if nargout > 1
dAdiag = zeros(size(x,2),1);
dAmvm = @(r) zeros(size(r));
end
else
if xeqz
y = bsxfun(@times,q1+q2,x) - (Q+Q')*x;
if nargout > 1
if dAdense % construct a dense matrix dA of size DxD in O(D*D*n)
dA = sym(x'*y); dAdiag = diag(dA); dAmvm = @(r) dA*r;
else % just perform an MVM avoiding a DxD matrix dA in O(4*D*n)
dAdiag = sum(x.*y,1)'; dAmvm = @(r) (x'*(y*r) + y'*(x*r))/2;
end
end
else
Qz = Q*z; y = bsxfun(@times,q2,x) - Qz;
if nargout > 1
yz = y-Qz; qz = bsxfun(@times,q1,z);
if dAdense % construct a dense matrix dA of size DxD in O(D*D*n)
dA = sym(x'*yz + z'*qz);
dAdiag = diag(dA); dAmvm = @(r) dA*r;
else % just perform an MVM avoiding a DxD matrix in O(8*D*n)
dAdiag = sum(x.*yz,1)'+sum(z.*qz,1)';
dAmvm = @(r) (x'*(yz*r)+yz'*(x*r) + z'*(qz*r)+qz'*(z*r))/2;
end
end
end
dx = 2*A(y);
end
|
github
|
kd383/GPML_SLD-master
|
apx.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/apx.m
| 33,771 |
utf_8
|
2265d86ef1af3ba038046c64d460356a
|
function K = apx(hyp,cov,x,opt)
% (Approximate) linear algebra operations involving the covariance matrix K.
%
% A) Exact covariance computations.
% There are no parameters in this mode.
% Depending on the sign of W, we switch between
% - the symmetric Cholesky mode [1], where B = I + sqrt(W)*K*sqrt(W), and
% - the asymmetric LU mode [2], where B = I + K*W.
% Note that (1) is faster but it is only applicable if all W are positive.
%
% B) Sparse covariance approximations aka FITC [4], VFE [5] and SPEP [3].
% We have a parameter opt.s from [0,1], the power in sparse power EP [3]
% interpolating between the Fully Independent Training Conditionals (FITC)
% approach [4] and a Variational Free Energy (VFE) approximation [5].
% In particular:
% opt.s, default is 1.0 for FITC, opt.s = 0.0 corresponds to VFE.
% Please see cov/apxSparse.m for details.
%
% C) Grid-based covariance approximations aka KISS-GP [6].
% Please see cov/apxGrid.m for further details and more parameters.
% opt.cg_tol, default is 1e-6 as in Matlab's pcg function
% opt.cg_maxit, default is min(n,20) as in Matlab's pcg function
% The conjugate gradient-based linear system solver has two adjustable
% parameters, the relative residual threshold for convergence opt.cg_tol and
% the maximum number of MVMs opt.cg_maxit until the process stops.
% opt.deg, default is 3 degree of interpolation polynomial
% For equispaced axes, opt.deg sets the degree of the interpolation
% polynomial along each of the p axes. Here 0 means nearest neighbor,
% 1 means linear interpolation, and 3 uses a cubic.
% For non-equispaced axes, only linear interpolation with inverse distance
% weighting is offered and opt.deg is ignored.
%
% opt.ldB2_method string indicating the possible modes (details below)
% - 'scale' => (i) scaled eigenvalue approach followed by Fiedler bound
% - 'cheby' => (ii) stochastic estimation using Chebyshev polynomials
% - 'lancz' => (iii) stochastic estimation using Lanczos iterations
% (i) 'scale' the default method simply uses the eigenvalues of the
% covariance matrix of the complete grid and rescales the values by the
% ratio of number grid points N and number data points n; in case of
% non-Gaussian inference i.e. W not being isotropic, we apply and
% additional bounding step (Fiedler)
% (ii) 'cheby' employs Monte-Carlo trace estimation aka the Hutchinson method
% and Chebyshev polynomials to approximate the term log(det(B))/2
% stochastically, see [7]. The following parameters configure different
% aspects of the estimator and are only valid if opt.ldB2_method='cheby'
% opt.ldB2_hutch, default is 10, number of samples for the trace estim
% opt.ldB2_cheby_degree, default is 15, degree of Chebyshev approx polynomial
% opt.ldB2_maxit, default is 50, max # of MVMs to estimate max(eig(B))
% opt.ldB2_seed, default is [], random seed for the stoch trace estim
% (iii) 'lancz' employs Monte-Carlo trace estimation aka the Hutchinson method
% and Lanczos iterations with full Gram-Schmidt to approximate the
% term log(det(B))/2 stochastically.
% 'lancz-arpack' is the same as above only that the ARPACK reverse
% communication interface is used and partial orthogonalisation is used.
% The following parameters configure different aspects of the estimator
% and are only valid if opt.ldB2_method = 'lancz*'
% opt.ldB2_hutch, default is 10, number of samples for the trace estim
% opt.ldB2_maxit, default is 50, max # of MVMs per Lanczos run
% opt.ldB2_seed, default is [], random seed for the stoch trace estim
%
% opt.stat = true returns a little bit of output summarising the exploited
% structure of the covariance of the grid.
% The log-determinant approximation employs Fiedler's 1971 inequality and a
% rescaled version of the eigenspectrum of the covariance evaluated on the
% complete grid.
%
% The call K = apx(hyp,cov,x,opt) yields a structure K with a variety of
% fields.
% 1) Matrix-vector multiplication with covariance matrix
% K.mvm(x) = K*x
% 2) Projection and its transpose (unity except for mode B) Sparse approx.)
% post.alpha = K.P(solveKiW(f-m))
% post.L = L = @(r) -K.P(solveKiW(K.Pt(r)))
% 3) Linear algebra functions depending on W
% [ldB2,solveKiW,dW,dldB2,L,triB] = K.fun(W)
% a) Log-determinant (approximation), called f in the sequel
% ldB2 = log(det(B))/2
% b) Solution of linear systems
% solveKiW(r) = (K+inv(W)) \ r
% c) Log-determinant (approximation) derivative w.r.t. W
% dW = d f / d W, where f = ldB2(W), exact value dW = diag(inv(B)*K)/2
% d) Log-determinant (approximation) derivative w.r.t. hyperparameters
% dhyp = dldB2(alpha,a,b)
% Q = d f / d K, exact value would be Q = inv(K+inv(W))
% R = alpha*alpha' + 2*a*b'
% Here dhyp(i) = tr( (Q-R)'*dKi )/2, where dKi = d K / d hyp(i).
% e) Matrix (operator) to compute the predictive variance
% L = -K.P(solveKiW(K.Pt(r))) either as a dense matrix or function.
% See gp.m for details on post.L.
% f) triB = trace(inv(B))
%
% [1] Seeger, GPs for Machine Learning, sect. 4, TR, 2004.
% [2] Jylanki, Vanhatalo & Vehtari, Robust GPR with a Student's-t
% Likelihood, JMLR, 2011.
% [3] Bui, Yan & Turner, A Unifying Framework for Sparse GP Approximation
% using Power EP, 2016, https://arxiv.org/abs/1605.07066.
% [4] Snelson & Ghahramani, Sparse GPs using pseudo-inputs, NIPS, 2006.
% [5] Titsias, Var. Learning of Inducing Variables in Sparse GPs, AISTATS, 2009
% [6] Wilson & Nickisch, Kernel Interp. for Scalable Structured GPs, ICML, 2015
% [7] Han, Malioutov & Shin, Large-scale Log-det Computation through Stochastic
% Chebyshev Expansions, ICML, 2015.
%
% Copyright (c) by Carl Edward Rasmussen, Kun Dong, Insu Han and
% Hannes Nickisch 2017-05-05.
%
% See also apxSparse.m, apxGrid.m, gp.m.
if nargin<4, opt = []; end % make sure variable exists
if isnumeric(cov), c1 = 'numeric'; else c1 = cov{1}; end % detect matrix
if isa(c1, 'function_handle'), c1 = func2str(c1); end % turn into string
sparse = strcmp(c1,'apxSparse') || strcmp(c1,'covFITC');
grid = strcmp(c1,'apxGrid') || strcmp(c1,'covGrid');
exact = ~grid && ~sparse;
if exact % A) Exact computations using dense matrix operations
if strcmp(c1,'numeric'), K = cov; dK = []; % catch dense matrix case
else
[K,dK] = feval(cov{:},hyp.cov,x); % covariance matrix and dir derivative
end
K = struct('mvm',@(x)mvmK_exact(K,x), 'P',@(x)x, 'Pt',@(x)x,... % mvm and proj
'fun',@(W)ldB2_exact(W,K,dK));
elseif sparse % B) Sparse approximations
if isfield(opt,'s'), s = opt.s; else s = 1.0; end % default is FITC
xud = isfield(hyp,'xu'); % flag deciding whether to compute hyp.xu derivs
if xud, cov{3} = hyp.xu; end % hyp.xu provided, replace cov{3}
xu = cov{3}; nu = size(xu,1); % extract inducing points
[Kuu, dKuu] = feval(cov{2}{:}, hyp.cov, xu); % get the building blocks
[Ku, dKu] = feval(cov{2}{:}, hyp.cov, xu, x);
[diagK, ddiagK] = feval(cov{2}{:}, hyp.cov, x, 'diag');
snud = isfield(hyp,'snu'); % flag deciding whether to compute hyp.snu derivs
if snud, snu2 = exp(2*hyp.snu); % hyp.snu already provided
else snu2 = 1e-6*(trace(Kuu)/nu); % stabilise by 0.1% of signal std
end
Luu = chol(Kuu+diag(snu2.*ones(nu,1))); % Kuu + diag(snu2) = Luu'*Luu
V = Luu'\Ku; % V = inv(Luu')*Ku => V'*V = Q
g = max(diagK-sum(V.*V,1)',0); % g = diag(K) - diag(Q)
K.mvm = @(x) V'*(V*x) + bsxfun(@times,s*g,x); % efficient matrix-vector mult
K.P = @(x) Luu\(V*x); K.Pt = @(x) V'*(Luu'\x); % projection operations
K.fun = @(W) ldB2_sparse(W,V,g,Luu,dKuu,dKu,ddiagK,s,xud,snud,snu2);
elseif grid % C) Grid approximations
n = size(x,1);
if isfield(opt,'cg_tol'), cgtol = opt.cg_tol; % stop conjugate gradients
else cgtol = 1e-6; end % same as in pcg
if isfield(opt,'cg_maxit'), cgmit = opt.cg_maxit; % number of cg iterations
else cgmit = min(n,20); end % same as in pcg
if isfield(opt,'deg'), deg = opt.deg; else deg = 3; end % interpol. degree
if isfield(opt,'stat'), stat = opt.stat; else stat = false; end % show stat
cgpar = {cgtol,cgmit}; xg = cov{3}; p = numel(xg); % conjugate gradient, grid
if isfield(opt,'ldB2_method'), meth=opt.ldB2_method; else meth='scale'; end
m = 10; d = 15; mit = 50; sd = []; % set default parameters
if strncmpi(meth,'cheby',5) || strncmpi(meth,'lancz',5)
if isfield(opt,'ldB2_hutch'), m = opt.ldB2_hutch; end
if isfield(opt,'ldB2_cheby_degree'), d = opt.ldB2_cheby_degree; end
if isfield(opt,'ldB2_maxit'), mit = opt.ldB2_maxit; end
if isfield(opt,'ldB2_seed'), sd = opt.ldB2_seed; end
if stat
fprintf('Stochastic (%s) logdet estimation (%d,%d,[d=%d])\n',meth,m,mit,d)
end
else
if stat, fprintf('Scaled eigval logdet estimation\n'); end
end
ldpar = {meth,m,d,mit,[],sd}; % logdet parameters
[Kg,Mx] = feval(cov{:},hyp.cov,x,[],deg); % grid cov structure, interp matrix
if stat % show some information about the nature of the p Kronecker factors
fprintf(apxGrid('info',Kg,Mx,xg,deg));
end
K.mvm = @(x) Mx*Kg.mvm(Mx'*x); % mvm with covariance matrix
K.P = @(x)x; K.Pt = @(x)x; % projection operations
K.fun = @(W) ldB2_grid(W,K,Kg,xg,Mx,cgpar,ldpar); K.Mx = Mx;
end
%% A) Exact computations using dense matrix operations =========================
function [ldB2,solveKiW,dW,dldB2,L,triB] = ldB2_exact(W,K,dK)
isWneg = any(W<0); n = numel(W);
if isWneg % switch between Cholesky and LU decomposition mode
A = eye(n) + bsxfun(@times,K,W'); % asymmetric A = I+K*W
[L,U,P] = lu(A); u = diag(U); % compute LU decomposition, A = P'*L*U
signU = prod(sign(u)); % sign of U
detP = 1; % compute sign (and det) of the permutation matrix P
p = P*(1:n)';
for i=1:n % swap entries
if i~=p(i), detP = -detP; j = find(p==i); p([i,j]) = p([j,i]); end
end
if signU~=detP % log becomes complex for negative values, encoded by inf
ldB2 = Inf;
else % det(L) = 1 and U triangular => det(A) = det(P)*prod(diag(U))
ldB2 = sum(log(abs(u)))/2;
end % compute inverse if required
if nargout>1, Q = U\(L\P); solveKiW = @(r) bsxfun(@times,W,Q*r); end
if nargout>4, L = -diag(W)*Q; end % overwrite L
else % symmetric B = I+sW*K*sW
sW = sqrt(W); L = chol(eye(n)+sW*sW'.*K); % Cholesky factor of B
ldB2 = sum(log(diag(L))); % log(det(B))/2
solveKiW = @(r) bsxfun(@times,solve_chol(L,bsxfun(@times,r,sW)),sW);
if nargout>2, Q = bsxfun(@times,1./sW,solve_chol(L,diag(sW))); end
end
if nargout>2
dW = sum(Q.*K,2)/2; % d log(det(B))/2 / d W = diag(inv(inv(K)+W))
triB = trace(Q); % triB = trace(inv(B))
dldB2 = @(varargin) ldB2_deriv_exact(W,dK,Q, varargin{:}); % derivatives
end
function dhyp = ldB2_deriv_exact(W,dK,Q, alpha,a,b)
if nargin>3, R = alpha*alpha'; else R = 0; end
if nargin>5, R = R + 2*a*b'; end
dhyp.cov = dK( bsxfun(@times,Q,W) - R )/2;
function z = mvmK_exact(K,x)
if size(x,2)==size(x,1) && max(max( abs(x-eye(size(x))) ))<eps % x=eye(n)
z = K; % avoid O(n^3) operation as it is trivial
else
z = K*x;
end
%% B) Sparse approximations ====================================================
function [ldB2,solveKiW,dW,dldB2,L,triB] = ldB2_sparse(W,V,g,Luu,...
dKuu,dKu,ddiagK,s,xud,snud,snu2)
z = s*g.*W; t = 1/s*log(z+1); i = z<1e-4; % s=0: t = g*W, s=1: t = log(g*W+1)
t(i) = g(i).*W(i).*(1-z(i)/2+z(i).^2/3); % 2nd order Taylor for tiny z
dt = 1./(z+1); d = W.*dt; % evaluate derivatives
nu = size(Luu,1); Vd = bsxfun(@times,V,d');
Lu = chol(eye(nu) + V*Vd'); LuV = Lu'\V; % Lu'*Lu=I+V*diag(d)*V'
ldB2 = sum(log(diag(Lu))) + sum(t)/2; % s=1 => t=log(g.*W+1), s=0 => t=g.*W
md = @(r) bsxfun(@times,d,r); solveKiW = @(r) md(r) - md(LuV'*(LuV*md(r)));
if nargout>2 % dW = d log(det(B))/2 / d W = diag(inv(inv(K)+W))
dW = sum(LuV.*((LuV*Vd')*V),1)' + s*g.*d.*sum(LuV.*LuV,1)';
dW = dt.*(g+sum(V.*V,1)'-dW)/2; % add trace "correction" term
dldB2 = @(varargin) ldB2_deriv_sparse(V,Luu,d,LuV,dKuu,dKu,ddiagK,s,...
xud,snud,snu2,varargin{:});
if nargout>4
L = solve_chol(Lu*Luu,eye(nu))-solve_chol(Luu,eye(nu)); % Sigma-inv(Kuu)
end
if nargout>5
r = 1./(z+1); R = (eye(nu) + V*bsxfun(@times,V',r.*W))\V;
triB = r'*(1-W.*sum(V.*R)'.*r);
end
end
function dhyp = ldB2_deriv_sparse(V,Luu,d,LuV,dKuu,dKu,ddiagK,s,...
xud,snud,snu2,alpha,a,b)
% K + 1./W = V'*V + inv(D), D = diag(d)
% Q = inv(K+inv(W)) = inv(V'*V + diag(1./d)) = diag(d) - LuVd'*LuVd;
LuVd = bsxfun(@times,LuV,d'); diagQ = d - sum(LuVd.*LuVd,1)';
F = Luu\V; Qu = bsxfun(@times,F,d') - (F*LuVd')*LuVd;
if nargin>11, diagQ = diagQ-alpha.*alpha; Qu = Qu-(F*alpha)*alpha'; end
Quu = Qu*F';
if nargin>13
diagQ = diagQ-2*a.*b; Qu = Qu-(F*a)*b'-(F*b)*a'; Quu = Quu-2*(F*a)*(F*b)';
end
diagQ = s*diagQ + (1-s)*d; % take care of s parameter
Qu = Qu - bsxfun(@times,F,diagQ'); Quu = Quu - bsxfun(@times,F,diagQ')*F';
if snud % compute inducing noise derivative
dhyp.snu = -diag(Quu).*snu2; if numel(snu2)==1, dhyp.snu=sum(dhyp.snu); end
else nu = size(Quu,1); Quu = Quu + 1e-6*trace(Quu)/nu*eye(nu); % fixed noise
end
if xud
dhyp.cov = ddiagK(diagQ)/2; dhyp.xu = 0;
[dc,dx] = dKu(Qu); dhyp.cov = dhyp.cov + dc; dhyp.xu = dhyp.xu + dx;
[dc,dx] = dKuu(Quu); dhyp.cov = dhyp.cov - dc/2; dhyp.xu = dhyp.xu - dx/2;
else
dhyp.cov = ddiagK(diagQ)/2 + dKu(Qu) - dKuu(Quu)/2;
end
%% C) Grid approximations =====================================================
function [ldB2,solveKiW,dW,dldB2,L,triB] = ldB2_grid(W,K,Kg,xg,Mx,cgpar,ldpar)
if all(W>=0) % well-conditioned symmetric case
sW = sqrt(W); msW = @(x) bsxfun(@times,sW,x);
mvmB = @(x) msW(K.mvm(msW(x)))+x;
solveKiW = @(r) msW(linsolve(msW(r),mvmB,cgpar{:}));
else % less well-conditioned symmetric case if some negative W
mvmKiW = @(x) K.mvm(x)+bsxfun(@times,1./W,x);
solveKiW = @(r) linsolve(r,mvmKiW,cgpar{:});
end % K*v = Mx*Kg.mvm(Mx'*v)
dhyp.cov = []; % init
if strncmpi(ldpar{1},'cheby',5) % stochastic estim: logdet cheby/hutchinson
dK = @(a,b) apxGrid('dirder',Kg,xg,Mx,a,b);
if nargout<3 % save some computation depending on required output
ldB2 = ldB2_cheby(W,K.mvm,dK, ldpar{2:end});
else
[ldB2,dhyp.cov,dW] = ldB2_cheby(W,K.mvm,dK, ldpar{2:end});
end
elseif strncmpi(ldpar{1},'lancz',5)% stochastic estim: logdet lancz/hutchinson
% the sign of the maxit parameter encodes whether ARPACK is used or not
mv = ver('matlab'); % get Matlab version, ARPACK interface not in Octave
if numel(mv)==0
ldpar{4} = -abs(ldpar{4});
end
dK = @(a,b) apxGrid('dirder',Kg,xg,Mx,a,b);
if nargout<3 % save some computation depending on required output
ldB2 = ldB2_lanczos(W,K.mvm,dK, ldpar{[2,4,6]});
else
[ldB2,dhyp.cov,dW] = ldB2_lanczos(W,K.mvm,dK, ldpar{[2,4,6]});
end
else
s = 3; % Whittle embedding overlap factor
[V,ee,e] = apxGrid('eigkron',Kg,xg,s); % perform eigen-decomposition
[ldB2,de,dW] = logdet_fiedler(e,W); % Fiedler's upper bound, derivatives
de = de.*double(e>0); % chain rule of max(e,0) in eigkron, Q = V*diag(de)*V'
if nargout>3, dhyp.cov = ldB2_deriv_grid_fiedler(Kg,xg,V,ee,de,s); end
end
dldB2 = @(varargin) ldB2_deriv_grid(dhyp, Kg,xg,Mx, varargin{:});
if ~isreal(ldB2), error('Too many negative W detected.'), end
L = @(r) -K.P(solveKiW(K.Pt(r)));
if nargout>5, error('triB not implemented'), end
function dhyp = ldB2_deriv_grid_fiedler(Kg,xg,V,ee,de,s)
p = numel(Kg.kron); % number of Kronecker factors
ng = [apxGrid('size',xg)',1]; % grid dimension
dhyp = []; % dhyp(i) = trace( V*diag(de)*V'*dKi )
for i=1:p
z = reshape(de,ng); Vi = V{i};
for j=1:p, if i~=j, z = apxGrid('tmul',ee{j}(:)',z,j); end, end
if isnumeric(Vi)
Q = bsxfun(@times,Vi,z(:)')*Vi';
dhci = Kg.kron(i).dfactor(Q);
else
kii = Kg.kron(i).factor.kii;
[junk,ni] = apxGrid('expand',xg{i}); di = numel(ni);
xs = cell(di,1); % generic (Strang) circular embedding grid
for j=1:di, n2 = floor(ni(j)-1/2)+1; xs{j} = [1:n2,n2-2*ni(j)+2:0]'; end
Fz = real(fftn(reshape(z,[ni(:)',1]))); % imaginary part of deriv is zero
rep = 2*s*ones(1,di); if di==1, rep = [rep,1]; end % replication
Fzw = repmat(Fz,rep); % replicate i.e. perform transpose of circ operation
[junk,xw] = apxGrid('circ',kii,ni,s); % get Whittle circ embedding grid
[junk,dkwi] = kii(apxGrid('expand',xw)); % evaluate derivative
dhci = dkwi(Fzw(:));
end
dhyp = [dhyp; dhci];
end
function dhyp = ldB2_deriv_grid(dhyp, Kg,xg,Mx, alpha,a,b)
if nargin>4, dhyp.cov = dhyp.cov-apxGrid('dirder',Kg,xg,Mx,alpha,alpha)/2; end
if nargin>6, dhyp.cov = dhyp.cov-apxGrid('dirder',Kg,xg,Mx,a,b); end
function q = linsolve(p,mvm,varargin) % solve q = mvm(p) via conjugate gradients
[q,flag,relres,iter] = conjgrad(mvm,p,varargin{:}); % like pcg
if ~flag,error('Not converged after %d iterations, r=%1.2e\n',iter,relres),end
% Solve x=A*b with symmetric A(n,n), b(n,m), x(n,m) using conjugate gradients.
% The method is along the lines of PCG but suited for matrix inputs b.
function [x,flag,relres,iter,r] = conjgrad(A,b,tol,maxit)
if nargin<3, tol = 1e-10; end
if nargin<4, maxit = min(size(b,1),20); end
x0 = zeros(size(b)); x = x0;
if isnumeric(A), r = b-A*x; else r = b-A(x); end, r2 = sum(r.*r,1); r2new = r2;
nb = sqrt(sum(b.*b,1)); flag = 0; iter = 1;
relres = sqrt(r2)./nb; todo = relres>=tol; if ~any(todo), flag = 1; return, end
on = ones(size(b,1),1); r = r(:,todo); d = r;
for iter = 2:maxit
if isnumeric(A), z = A*d; else z = A(d); end
a = r2(todo)./sum(d.*z,1);
a = on*a;
x(:,todo) = x(:,todo) + a.*d;
r = r - a.*z;
r2new(todo) = sum(r.*r,1);
relres = sqrt(r2new)./nb; cnv = relres(todo)<tol; todo = relres>=tol;
d = d(:,~cnv); r = r(:,~cnv); % get rid of converged
if ~any(todo), flag = 1; return, end
b = r2new./r2; % Fletcher-Reeves
d = r + (on*b(todo)).*d;
r2 = r2new;
end
% Upper determinant bound on log |K*diag(W)+I| using Fiedler's 1971 inequality.
% K = kron( kron(...,K{2}), K{1} ), W = diag(w) both symmetric psd.
% The bound is exact for W = w*ones(N,1). Here, E = eig(K) are the
% eigenvalues of the matrix K.
% See also Prob.III.6.14 in Matrix Analysis, Bhatia 1997.
%
% Given nxn spd matrices C and D with ordered nx1 eigenvalues c, d
% then det(C+D) <= prod(c+flipud(d))=exp(ub).
function [ub,dE,dW,ie,iw] = logdet_fiedler(E,W)
[E,ie] = sort(E,'descend'); [W,iw] = sort(W,'descend'); % sort vectors
N = numel(E); n = numel(W); k = n/N*E; % dimensions, approximate spectrum of K
if n>N, k = [k;zeros(n-N,1)]; else k = k(1:n); end % extend/shrink to match W
kw1 = k.*W+1; ub = sum(log(kw1))/2; % evaluate upper bound
dW = zeros(n,1); dW(iw) = k./(2*kw1); m = min(n,N); % derivative w.r.t. W
dE = zeros(N,1); dE(ie(1:m)) = W(1:m)./(N*2/n*kw1(1:m)); % deriative w.r.t. E
% Approximate l = log(det(B))/2, where B = I + sqrt(W)*K*sqrt(W) and compute
% the derivatives d l / d hyp w.r.t. covariance hyperparameters and
% d l / d W the gradient w.r.t. the precision matrix W.
%
% Large-scale Log-det Computation through Stochastic Chebyshev Expansions
% Insu Han, Dmitry Malioutov, Jinwoo Shin, ICML, 2015.
%
% Chebyshev polynomials T[0],..,T[d], where T[0](x)=1, T[1](x)=x, and
% T[i+1](x)=2*x*T[i](x)-T[i-1](x).
% dT[0](x)=0, dT[1](x)=1, dT[i+1](x)=2*T[i](x)+2*x*dT[i](x)-dT[i-1](x)
%
% W is the (diagonal) precision matrix represented by an nx1 vector
% K is a function so that K(z) gives the mvm K*z
% dK is a function so that dK(u,v) yields d trace(u'*K*v) / d hyp (dmvm = 2)
% or so that dK(u) yields d K*u / d hyp (dmvm = 1)
%
% m is the number of random probe vectors, default values is 10
% d is the degree of the polynomial, default value is 15
%
% maxit is the maximum number of iterations for the largest eigenvalue,
% default value is 50
% emax is the maximum eigenvalue (in case it is known)
%
% seed is the seed for generating the random probe vectors
% dmvm indicates derivative type, default is 2
%
% Copyright (c) by Insu Han and Hannes Nickisch 2017-02-24.
function [ldB2,dhyp,dW] = ldB2_cheby(W,K,dK, m,d, maxit,emax, seed,dmvm)
sW = sqrt(W); n = numel(W);
B = @(x) x + bsxfun(@times,sW, K(bsxfun(@times,sW,x) ));%B=I+sqrt(W)*K*sqrt(W)
if nargin<6, maxit = 50; end, if nargin<9, dmvm = 2; end % set defaults
if nargin<5, d = 15; end, if nargin<4, m = 10; end
emaxconst = ~(nargin<7 || numel(emax)~=1); % given as a constant => no deriv
if ~emaxconst % evaluate upper eigenvalue bound
if n==1, emax = B(1); else
opt.maxit = maxit; % number of iterations to estimate the largest eigval
opt.issym = 1; opt.isreal = 1; % K is real symmetric and - of course - psd
cstr = 'eigs(B,n,1,''lm'',opt)'; % compute largest eigenvalue
if exist('evalc'), [txt,vmax,emax] = evalc(cstr);
else [vmax,emax] = eval(cstr); end
end
if nargout>1 % compute d n*log(1+emax)/2 / d {hyp,W}
r = sW.*vmax; dW = (K(r).*(r./W) + K(r).*(r./W))/2; % d emax / d W
if dmvm==1, dhyp = dK(r)'*r; else dhyp = dK(r,r); end % d emax / d hyp
dW = n/(2*(1+emax)) * dW; dhyp = n/(2*(1+emax)) * dhyp; % rescale
% for the second term in ldB2 coming from the Chebyshev polynomial, we
% ignore the dependency on the largest eigenvalue emax, which essentially
% renders the derivative slightly incorrect
end
else
dhyp = 0; dW = zeros(n,1); % init derivatives with zero
end
d = round(abs(d)); if d==0, error('We require d>0.'), end % emin = 1
a = 1+emax; del = 1-emax/a; ldB2 = n*log(a)/2; % scale eig(B) to [del,1-del]
if emax>1e5 % del=1/(1+emax)
fprintf('B has large condition number %1.2e\n',emax)
fprintf('log(det(B))/2 is most likely overestimated\n')
end
s = 2/(emax-1); % compute scaling factor, s = 2/a/(1-2*del)
A = @(x) s*B(x) - s*a/2*x; % apply scaling transform: [1,emax]->[-1,1]
xk = cos(pi*((0:d)'+0.5)/(d+1)); % zeros of Tn(x)
fk = log(((1-2*del)/2).*xk+0.5); % target function, [-1,1]->[del,1-del]
Tk = ones(d+1,d+1); Tk(:,2) = xk; % init recursion
for i=2:d, Tk(:,i+1) = 2*xk.*Tk(:,i) - Tk(:,i-1); end % evaluate polynomials
c = 2/(d+1)*(Tk'*fk); c(1) = c(1)/2; % compute Chebyshev coefficients
if nargin>7 && numel(seed)>0, randn('seed',seed), end % use seed
V = sign(randn(n,m)); % bulk draw Rademacher variables
p1 = [1; zeros(d,1)]; p2 = [0;1;zeros(d-1,1)]; % Chebyshev->usual coefficients
p = c(1)*p1 + c(2)*p2;
for i=2:d, p3 = [0;2*p2(1:d)]-p1; p = p + c(i+1)*p3; p1 = p2; p2 = p3; end
if nargout<2 % no derivs requested; use bulk MVMs with A, one for each j=1..d
% U = p(1)*V; AjV = V; for j=1:d, AjV = A(AjV); U = U + p(j+1)*AjV; end
U1 = V; U2 = A(V); U = c(1)*U1 + c(2)*U2; % numerically more robust
for i=2:d, U3 = 2*A(U2) - U1; U = U+c(i+1)*U3; U1 = U2; U2 = U3; end
ldB2 = ldB2 + sum(sum(V.*U))/(2*m); % sum_{j=0..d} p(j+1)*trace(V'*A^j*U)
elseif dmvm==1 % use MVM-based derivatives
dA = @(x) s*bsxfun(@times,sW, dK(bsxfun(@times,sW,x) )); % derivative MVM
if nargout>2
if norm(diff(W))>1e-12, error('Only isotropic dW supported.'), end
dA = @(x) [dA(x), s*K(x)]; % augment to get deriv w.r.t. W=w*eye(n)
end
U = p(1)*V; AjV = V; dU = 0;
for j=1:d
if j==1, dAjV = dA(AjV); else dAjV = dA(AjV) + A(dAjV); end
dU = dU + p(j+1)*dAjV; AjV = A(AjV); U = U + p(j+1)*AjV;
end
nh = size(dAjV,2)/size(AjV,2); dhyp = zeros(nh,1);
for j=1:nh, dhyp(j) = sum(sum(V.*dU(:,(j-1)*m+(1:m))))/(2*m); end
ldB2 = ldB2 + sum(sum(V.*U))/(2*m); % sum_{j=0..d} p(j+1)*trace(V'*B^j*U)
if nargout>2, dW = dW + dhyp(nh)/n; nh = nh-1; dhyp = dhyp(1:nh); end
else % deal with one random vector at a time
Av = zeros(n,d+1); % all powers Av(:,j) = (A^j)*v
for i=1:m
v = V(:,i); Av(:,1) = v;
for j=1:d, Av(:,j+1) = A(Av(:,j)); end
ldB2 = ldB2 + (v'*Av*p)/(2*m);
sWAv = bsxfun(@times,sW,Av);
for j=1:d % p(1)*I + p(2)*A + p(3)*A^2 + .. + p(d+1)*A^d
akj = s*p(j+1)/m;
% equivalent to: k = 1:j; dhyp = dhyp + akj*dK(sWAv(:,j-k+1),sWAv(:,k));
% exploiting symmetry dK(a,b)=dK(b,a) reduces the computation to half
k = 1:ceil((j-1)/2); dhyp = dhyp + akj *dK(sWAv(:,j-k+1),sWAv(:,k));
if mod(j,2)
k = ceil(j/2); dhyp = dhyp + akj/2*dK(sWAv(:,j-k+1),sWAv(:,k));
end
end
if nargout>2, u = bsxfun(@times,1./sW,Av); w = K(sWAv); % precompute
for j=1:d
dWj = sum( u(:,j:-1:1).*w(:,1:j) + w(:,j:-1:1).*u(:,1:j), 2 );
dW = dW + s*p(j+1)/(4*m) * dWj;
end
end
end
end
% Approximate l = log(det(B))/2, where B = I + sqrt(W)*K*sqrt(W) and
% the derivatives d l / d hyp w.r.t. covariance hyperparameters and
% d l / d W the gradient w.r.t. the (effective) precision matrix W.
%
% W is the (diagonal) precision matrix represented by an nx1 vector
% K is a function so that K(z) gives the mvm K*z
% dK is a function so that dK(u,v) yields d trace(u'*K*v) / d hyp (dmvm = 2)
% or so that dK(u) yields d K*u / d hyp (dmvm = 1)
%
% m is the number of random probe vectors, default values is 10
% maxit is the number of Lanczos vectors, default value is 15
%
% seed is the seed for generating the random probe vectors
% dmvm indicates derivative type, default is 2
%
% Copyright (c) by Kun Dong and Hannes Nickisch 2017-05-05.
function [ld,dhyp,dW] = ldB2_lanczos(W,K,dK, m,maxit, seed,dmvm)
n = numel(W); sW = sqrt(W); if nargin<6, seed = 42; end % massage parameters
if nargin<5, maxit = 15; end, if nargin<4, m = 10; end % set default values
arpack = maxit>0; maxit = abs(maxit); % sign encodes ARPACK versus plain
if size(m,2)>1, V = m(1:n,:); m = size(m,2); else V = sign(randn(n,m)); end
if nargin>5 && numel(seed)>0, randn('seed',seed), end % use seed
if nargin<7, dmvm = 2; end, ld = 0; dhyp = 0; dW = 0; % set defaults
sWm = @(v) bsxfun(@times,sW,v); % MVM with diag(sW)
B = @(v) v + sWm(K(sWm(v)));
if ~arpack
[Qm,Tm] = lanczos_fast(B,n,V,maxit);
end
for j = 1:m
if arpack
[Q,T] = lanczos_arpack(B,V(:,j),maxit); % perform Lanczos with ARPACK
else
Q = squeeze(Qm(:,j,:)); T = squeeze(Tm(:,:,j));
end
[Y,f] = eig(T); f = diag(f);
ld = ld + n/(2*m) * (Y(1,:).^2*log(f)); % evaluate Stieltjes integral
if nargout > 1 % go after derivatives
v0 = sW.*V(:,j)/norm(V(:,j)); % avoid call to normc
w0 = (Q*(T\[1; zeros(numel(f)-1,1)])).*sW;
if dmvm==1, dhypj = dK(v0)'*w0; else dhypj = dK(v0,w0); end
dhyp = dhyp + n/(2*m) * dhypj;
if nargout>2, dW = dW + n/(2*m)*(K(v0).*(w0./W) + K(w0).*(v0./W))/2; end
end
end
function [Q,T] = lanczos_full(B,v,d) % perform Lanczos with at most d MVMs
alpha = zeros(d,1); beta = zeros(d,1); % for T
v = v/norm(v,'fro'); n = numel(v);
u = zeros(n,1); k = 1; Q = zeros(n,d); % mem for alg and res
for k=1:d % do at most d iterations
[u,v,alpha(k),beta(k)] = lanczos_step(u,v,B,Q(:,1:k-1));
Q(:,k) = u; % store Lanczos vectors for later usage
if abs(beta(k))<1e-10, break, end % diagnose convergence
end
alpha = alpha(1:k); beta = beta(2:k); Q = Q(:,1:k); % truncate
T = diag(alpha) + diag(beta,1 )+ diag(beta,-1);
function [u,v,a,b] = lanczos_step(u,v,B,Q) % Lanczos step, $9.2.1 of Golub
b = norm(v,'fro'); t = u; u = v/b;
u = u - Q*(Q'*u); u = u/norm(u); % perform Gram-Schmidt
r = B(u)-b*t; a = real(u'*r); v = r-a*u;
function [Q,T] = lanczos_arpack(B,v,d) % perform Lanczos with at most d MVMs
mv = ver('matlab'); % get the Matlab version
if numel(mv)==0, error('No ARPACK reverse communication in Octave.'), end
mv = str2double(mv.Version); old = mv<8;% Matlab 7.14=R2012a has old interface
[junk,maxArraySize] = computer; m32 = maxArraySize==(2^31-1); % we have 32bit?
if m32, intstr = 'int32'; else intstr = 'uint64'; end % according data types
intconvert = @(x) feval(intstr,x); % init and allocate depending on # of bits
n = length(v);
v = bsxfun(@times,v,1./sqrt(sum(v.*v,1))); % avoid call to normc
ido = intconvert(0); nev = intconvert(ceil((d+1)/2)); ncv = intconvert(d+1);
ldv = intconvert(n); info = intconvert(1);
lworkl = intconvert(int32(ncv)*(int32(ncv)+8));
iparam = zeros(11,1,intstr); ipntr = zeros(15,1,intstr);
if exist('arpackc_reset'), arpackc_reset(); end
iparam([1,3,7]) = [1,300,1]; tol = 1e-10;
Q = zeros(n,ncv); workd = zeros(n,3); workl = zeros(lworkl,1); count = 0;
while ido~=99 && count<=d
count = count+1;
if old
arpackc('dsaupd',ido,'I',intconvert(n),'LM',nev,tol,v,...
ncv,Q,ldv,iparam,ipntr,workd,workl,lworkl,info);
else
[ido,info] = arpackc('dsaupd',ido,'I',intconvert(n),'LM',nev,tol,v,...
ncv,Q,ldv,iparam,ipntr,workd,workl,lworkl,info);
end
if info<0
error(message('ARPACKroutineError',aupdfun,full(double(info))));
end
if ido == 1, inds = double(ipntr(1:3));
else inds = double(ipntr(1:2)); end
rows = mod(inds-1,n)+1; cols = (inds-rows)/n+1; % referenced column of ipntr
if ~all(rows==1), error(message('ipntrMismatchWorkdColumn',n)); end
switch ido % reverse communication interface of ARPACK
case -1, workd(:,cols(2)) = B(workd(:,cols(1)));
case 1, workd(:,cols(3)) = workd(:,cols(1));
workd(:,cols(2)) = B(workd(:,cols(1)));
case 2, workd(:,cols(2)) = workd(:,cols(1));
case 99 % converged
otherwise, error(message('UnknownIdo'));
end
end
ncv = int32(ncv);
Q = Q(:,1:ncv-1); % extract results
T = diag(workl(ncv+1:2*ncv-1))+diag(workl(2:ncv-1),1)+diag(workl(2:ncv-1),-1);
function [Q,T] = lanczos_fast(Afun, n, Z, kmax)
if nargin < 4, kmax = 150; end
% initialization
nZ = size(Z, 2);
Q = zeros(n, nZ, kmax);
alpha = zeros(kmax, nZ);
beta = zeros(kmax, nZ);
k = 0;
qk = zeros(size(Z));
n1 = sqrt(sum(Z.^2));
r = bsxfun(@rdivide,Z,n1);
b = ones(1,nZ);
% Lanczos algorithm without reorthogonalization
while k < kmax
k = k+1;
qkm1 = qk;
qk = bsxfun(@rdivide,r,b);
Q(:,:,k) = qk;
Aqk = Afun(qk);
alpha(k,:) = sum(qk.*Aqk);
r = Aqk - bsxfun(@times,qk,alpha(k,:)) - bsxfun(@times,qkm1,b);
b = sqrt(sum(r.^2));
beta(k,:) = b;
end
T = zeros(kmax,kmax,nZ);
for j = 1:nZ
T(:,:,j) = diag(alpha(:,j)) + diag(beta(1:end-1,j),1) + diag(beta(1:end-1,j),-1);
end
|
github
|
kd383/GPML_SLD-master
|
covPER.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covPER.m
| 2,744 |
utf_8
|
1c61459cd15e6fc06d59b8e66bf447ac
|
function [K,dK] = covPER(mode, cov, hyp, x, z)
% Periodic covariance function from an arbitrary covariance function k0 via
% embedding IR^D into IC^D.
% The covariance function is parameterized as:
%
% k(x,z) = k0(u(x),u(z)), u(x) = [sin(pi*x/p); cos(pi*x/p)]
%
% where the period p belongs to covPER and hyp0 belongs to k0:
%
% hyp = [ hyp_p
% hyp0 ]
%
% We offer three different modes:
% 'eye': p = ones(D,1); hyp_p = [];
% 'iso': p = exp(hyp_p)*ones(D,1); hyp_p = [log(p)];
% 'ard': p = exp(hyp_p); hyp_p = [log(p_1); ..; log(p_D)];
%
% Note that for k0 = covSEiso and D = 1, a faster alternative is covPeriodic.
%
% Copyright (c) by Hannes Nickisch, 2016-04-25.
%
% See also COVFUNCTIONS.M.
if nargin<2, error('We require a mode and a base covariance k0.'), end
if isequal(mode,'ard'), ne = 'D';
elseif isequal(mode,'iso'), ne = '1';
elseif isequal(mode,'eye'), ne = '0';
else error('Parameter mode is either ''eye'', ''iso'' or ''ard''.'), end
if nargin<4 % report number of parameters
K = ['(',ne,'+',strrep(feval(cov{:}),'D','2*D'),')']; return
end
if nargin<5, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x); ne = eval(ne);
p = exp(hyp(1:ne)); if numel(p)==0, p = 1; end, p = p.*ones(D,1); % period par
ux = u(x,p); uz = u(z,p); % apply the embedding u:IR^D->IR^2*D
[K,dK0] = feval(cov{:},hyp(ne+1:end),ux,uz); % covariance function
if nargout > 1 % directional derivative
dK = @(Q) dirder(Q,dK0,p,mode,dg,xeqz,x,ux,z,uz,cov,hyp(ne+1:end));
end
function [dhyp,dx] = dirder(Q,dK0,p,mode,dg,xeqz,x,ux,z,uz,cov,hypc)
if dg % dx not required for dg so we assume zero
dhyp = dK0(Q); dux = zeros(size(ux)); % only correct for stationary
else
[dhyp,dux] = dK0(Q);
end
if isequal(mode,'eye')
dp = zeros(0,1); if nargout > 1, dx = duxdx(dux,ux,p); end
else
dx = duxdx(dux,ux,p); dp = -sum(dx.*x,1);
if ~xeqz && ~dg
[junk,dK0t] = feval(cov{:},hypc,uz,ux); [junk,duz] = dK0t(Q');
dp = dp - sum(duxdx(duz,uz,p).*z,1);
end
if isequal(mode,'iso'), dp = sum(dp); end
end
dhyp = [dp(:); dhyp];
function ux = u(x,p) % apply the embedding u:IR^D->IR^2*D
if numel(x)==0 || ischar(x)
ux = x;
else
ux = 2*pi*bsxfun(@times,x,1./p(:)'); ux = [sin(ux), cos(ux)];
end
function dx = duxdx(du,ux,p)
D = size(ux,2)/2;
dx = bsxfun(@times, du(:,1:D).*ux(:,D+1:2*D), 2*pi./p(:)') ...
-bsxfun(@times, du(:,D+1:2*D).*ux(:,1:D), 2*pi./p(:)');
|
github
|
kd383/GPML_SLD-master
|
covGE.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covGE.m
| 1,186 |
utf_8
|
0408e6341483b3f84ba8d55997213e13
|
function [K,dK] = covGE(mode, par, hyp, varargin)
% Gamma Exponential covariance function.
% The covariance function is parameterized as:
%
% k(x,z) = exp(-r^gamma), r = maha(x,z)
%
% where maha(x,z) is a Mahalanobis distance and gamma is the shape parameter
% for the GE covariance. The hyperparameters are:
%
% hyp = [ hyp_maha
% log(gamma/(2-gamma)) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-04-27.
%
% See also COVFUNCTIONS.M.
if nargin<1, mode = 'eye'; end, if nargin <2, par = []; end % default values
if nargin<4, K = [covMaha(mode,par),'+1']; return, end
gamma = 2/(1+exp(-hyp(end)));
k = @(d2) exp(-d2.^(gamma/2));
dk = @(d2,k) -gamma/2*set_zero(k.*d2.^(gamma/2-1),d2==0);
if nargout==2
[K,dKmaha,D2] = covMaha(mode,par,k,dk,hyp(1:end-1),varargin{:});
dK = @(Q) dirder(Q,K,D2,dKmaha,gamma);
else
K = covMaha(mode,par,k,dk,hyp(1:end-1),varargin{:});
end
function [dhyp,dx] = dirder(Q,K,D2,dKmaha,gamma)
if nargout==1
dhyp = dKmaha(Q);
else
[dhyp,dx] = dKmaha(Q);
end
Q = Q.*K; B = (gamma-2)*gamma/4 * D2.^(gamma/2) .* set_zero(log(D2),D2==0);
dhyp = [dhyp; Q(:)'*B(:)];
function A = set_zero(A,I), A(I) = 0;
|
github
|
kd383/GPML_SLD-master
|
covLINone.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covLINone.m
| 1,478 |
utf_8
|
b9498a31ed150ecc1639a5dcb13d180b
|
function [K,dK] = covLINone(hyp, x, z)
% Linear covariance function with a single hyperparameter. The covariance
% function is parameterized as:
%
% k(x,z) = (x'*z + 1)/t^2;
%
% where the P matrix is t2 times the unit matrix. The second term plays the
% role of the bias. The hyperparameter is:
%
% hyp = [ log(t) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-04-23.
%
% See also COVFUNCTIONS.M.
if nargin<2, K = '1'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
it2 = exp(-2*hyp); % t2 inverse
% precompute inner products
if dg % vector kxx
K = sum(x.*x,2);
else
if xeqz % symmetric matrix Kxx
K = x*x';
else % cross covariances Kxz
K = x*z';
end
end
K = it2*(K+1); % covariances
if nargout > 1, dK = @(Q) dirder(Q,K,x,z,it2,xeqz,dg); end % dir derivative
function [dhyp,dx] = dirder(Q,K,x,z,it2,xeqz,dg)
dhyp = -2*Q(:)'*K(:);
if nargout>1
if dg
dx = zeros(size(x));
else
if xeqz
dx = it2*(Q*x+Q'*x);
else
dx = it2*Q*z;
end
end
end
|
github
|
kd383/GPML_SLD-master
|
covFBM.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covFBM.m
| 2,452 |
utf_8
|
557d97477e58c30d11b640492b88b785
|
function [K,dK] = covFBM(hyp, x, z)
% Fractional Brownian motion covariance function with Hurst index h from (0,1).
%
% For h=1/2, this is the Wiener covariance, for h>1/2, the increments are
% positively correlated and for h<1/2 the increments are negatively correlated.
%
% The covariance function -- given that x,z>=0 -- is specified as:
%
% k(x,z) = sf^2 / 2 * ( |x|^(2h) + |z|^(2h) - |x-z|^(2h) ), where
%
% sf^2 is the signal variance.
%
% The hyperparameters are:
%
% hyp = [ log(sf)
% -log(1/h-1) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Hannes Nickisch, 2017-01-27.
%
% See also COVW.M, COVFUNCTIONS.M.
if nargin<2, K = '2'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x); ox = ones(n,1);
if D~=1, error('Covariance is defined for 1d data only.'), end
if any(x<0) || (~xeqz && any(z<0))
error('Covariance is defined for nonnegative data only.')
end
sf = exp(hyp(1)); h = 1/(1+exp(-hyp(2)));
if dg % vector kxx
X = x; Z = x;
else
if xeqz % symmetric matrix Kxx
X = x*ox'; Z = X';
else % cross covariances Kxz
oz = ones(size(z,1),1);
X = x*oz'; Z = ox*z';
end
end
K = sf^2 * (abs(X).^(2*h) + abs(Z).^(2*h) - abs(X-Z).^(2*h))/2; % signal var
if nargout > 1
dK = @(Q) dirder(Q,K,X,Z,h,sf,dg,xeqz); % directional deriv
end
function [dhyp,dx] = dirder(Q,K,X,Z,h,sf,dg,xeqz)
Ax = abs(X); Az = abs(Z); Ad = abs(X-Z);
R = sf^2 * ( fixnan(log(Ax).*Ax.^(2*h)) + fixnan(log(Az).*Az.^(2*h)) ...
- fixnan(log(Ad).*Ad.^(2*h)) );
dhyp = [2*(Q(:)'*K(:)); (Q(:)'*R(:))*(h-h^2)]; % hyperparameters
if nargout > 1
if dg
dx = zeros(size(x));
else
if xeqz
R = sign(X).*Ax.^(2*h-1) - sign(X-Z).*Ad.^(2*h-1);
dx = 2*h*sum(R.*(Q+Q'),2);
else
R = sign(X).*Ax.^(2*h-1) - sign(X-Z).*Ad.^(2*h-1);
dx = 2*h*sum(R.*Q,2);
end
end
dx = sf^2*dx/2; % signal variance
end
function B = fixnan(A), B = A; B(isnan(B)) = 0; % replace NaN by 0
|
github
|
kd383/GPML_SLD-master
|
covADD.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covADD.m
| 4,141 |
utf_8
|
f58af163e496f6be948dbfc1d9118972
|
function [K,dK] = covADD(cov, hyp, x, z)
% Additive covariance function using 1d base covariance functions
% cov_d(x_d,z_d;hyp_d) with individual hyperparameters hyp_d, d=1..D.
%
% k (x,z) = \sum_{r \in R} sf^2_r k_r(x,z), where 1<=r<=D and
% k_r(x,z) = \sum_{|I|=r} \prod_{i \in I} cov_i(x_i,z_i;hyp_i)
%
% hyp = [ hyp_1
% hyp_2
% ...
% hyp_D
% log(sf_R(1))
% ...
% log(sf_R(end)) ]
%
% where hyp_d are the parameters of the 1d covariance function which are shared
% over the different values of r=R(1),..,R(end) where 1<=r<=D.
%
% Usage: covADD({[1,3,4],cov}, ...) or
% covADD({[1,3,4],cov_1,..,cov_D}, ...).
%
% Please see the paper "Additive Gaussian Processes" by Duvenaud, Nickisch and
% Rasmussen, NIPS, 2011 for details.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2017-02-21.
% multiple covariance support contributed by Truong X. Nghiem
%
% See also COVFUNCTIONS.M.
R = fix(cov{1}); % only positive integers are allowed
if min(R)<1, error('only positive R up to D allowed'), end
nr = numel(R); % number of different degrees of interaction
nc = numel(cov)-1; D = 1; % number of provided covariances, D for indiv.
for j=1:nc, if ~iscell(cov{j+1}), cov{j+1} = {cov{j+1}}; end, end
if nc==1, nh = eval(feval(cov{2}{:})); % no of hypers per individual covariance
else nh = zeros(nc,1); for j=1:nc, nh(j) = eval(feval(cov{j+1}{:})); end, end
if nargin<3 % report number of hyper parameters
if nc==1, K = ['D*', int2str(nh), '+', int2str(nr)];
else
K = ['(',int2str(nh(1))]; for ii=2:nc, K = [K,'+',int2str(nh(ii))]; end
K = [K, ')+', int2str(nr)];
end
return
end
if nargin<4, z = []; end % make sure, z exists
[n,D] = size(x); % dimensionality
if nc==1, nh = ones(D,1)*nh; cov = [cov(1),repmat(cov(2),1,D)]; end
nch = sum(nh); % total number of cov hypers
sf2 = exp( 2*hyp(nch+(1:nr)) ); % signal variances of individual degrees
[Kd,dKd] = Kdim(cov(2:end),nh,hyp(1:nch),x,z); % eval dimensionwise covariances
EE = elsympol(Kd,max(R)); % Rth elementary symmetric polynomials
K = 0; for ii=1:nr, K = K + sf2(ii)*EE(:,:,R(ii)+1); end % sf2 weighted sum
if nargout > 1
dK = @(Q) dirder(Q,Kd,dKd,EE,R,sf2);
end
function [dhyp,dx] = dirder(Q,Kd,dKd,EE,R,sf2)
D = numel(dKd); n = size(Q,1); nr = numel(R); dhyp = zeros(0,1);
if nargout > 1, dx = zeros(n,D); end % allocate if required
for j=1:D
% the final derivative is a sum of multilinear terms, so if only one term
% depends on the hyperparameter under consideration, we can factorise it
% out and compute the sum with one degree less, the j-th elementary
% covariance depends on the hyperparameter batch hyp(j) and inputs x(:,j)
E = elsympol(Kd(:,:,[1:j-1,j+1:D]),max(R)-1); % R-1th elementary sym polyn
Qj = 0; for ii=1:nr, Qj = Qj + sf2(ii)*E(:,:,R(ii)); end % sf2 weighted sum
if nargout > 1, [dhypj,dxj] = dKd{j}(Qj.*Q); dx(:,j) = dxj;
else dhypj = dKd{j}(Qj.*Q); end, dhyp = [dhyp; dhypj];
end
dhyp = [dhyp; 2*squeeze(sum(sum(bsxfun(@times,EE(:,:,R+1),Q),1),2)).*sf2];
% evaluate dimensionwise covariances K
function [K,dK] = Kdim(cov,nh,hyp,x,z)
[n,D] = size(x); % dimensionality
xeqz = numel(z)==0; dg = strcmp(z,'diag') && numel(z)>0; % determine mode
if dg % allocate memory
K = zeros(n,1,D);
else
if xeqz, K = zeros(n,n,D); else K = zeros(n,size(z,1),D); end
end
dK = cell(D,1);
for d=1:D
hyp_d = hyp(sum(nh(1:d-1))+(1:nh(d))); % hyperparamter of dimension d
if dg
[K(:,:,d),dK{d}] = feval(cov{d}{:},hyp_d,x(:,d),'diag');
else
if xeqz
[K(:,:,d),dK{d}] = feval(cov{d}{:},hyp_d,x(:,d));
else
[K(:,:,d),dK{d}] = feval(cov{d}{:},hyp_d,x(:,d),z(:,d));
end
end
end
|
github
|
kd383/GPML_SLD-master
|
covProd.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covProd.m
| 3,136 |
utf_8
|
1f0519c767c2410e29139c94fa58b031
|
function [K,dK] = covProd(cov, hyp, x, z)
% covProd - compose a covariance function as the product of other covariance
% functions. This function doesn't actually compute very much on its own, it
% merely does some bookkeeping, and calls other covariance functions to do the
% actual work.
%
% Note that cov = {cov1, cov2, .., false} turns of covariance matrix caching.
% This option slows down the computations but can help out if you products of
% many huge matrices lead to working memory shortage.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-04-18.
%
% See also COVFUNCTIONS.M.
if isempty(cov), error('We require at least one factor.'), end
if isnumeric(cov{end}) || islogical(cov{end}) % detect whether to cache
cache = ~isequal(0,cov{end}) && ~isequal(false,cov{end});
cov = cov(1:end-1); % chop off last element from cov
else
cache = true;
end
nc = numel(cov); % number of terms in covariance function
for ii = 1:nc % iterate over covariance functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
j(ii) = cellstr(feval(f{:})); % collect number hypers
end
if nargin<3 % report number of parameters
K = char(j(1)); for ii=2:nc, K = [K, '+', char(j(ii))]; end, return
end
if nargin<4, z = []; end % make sure, z exists
[n,D] = size(x); nh = numel(hyp); % number of hyperparameters
v = []; % v vector indicates to which covariance parameters belong
for ii = 1:nc, v = [v repmat(ii, 1, eval(char(j(ii))))]; end
K = 1; Ki = cell(nc,1); dKi = cell(nc,1); % init K
for ii = 1:nc % iteration over factor functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
if cache
if nargin>1
[Ki{ii},dKi{ii}] = feval(f{:}, hyp(v==ii), x, z); Kii = Ki{ii}; % track
else
Ki{ii} = feval(f{:}, hyp(v==ii), x, z); Kii = Ki{ii};
end
else
Kii = feval(f{:}, hyp(v==ii), x, z);
end
K = K .* Kii; % accumulate covariances
end
dK = @(Q) dirder(Q,Ki,dKi,v,nc,nh,cov,hyp,x,z,cache); % directional derivative
function [dhyp,dx] = dirder(Q,Ki,dKi,v,nc,nh,cov,hyp,x,z,cache)
dhyp = zeros(nh,1); dx = 0;
for ii = 1:nc
Qi = Q;
for jj=1:nc % accumulate
if ii~=jj
if cache
Qi = Qi .* Ki{jj};
else
f = cov(jj); if iscell(f{:}), f = f{:}; end % expand cell if necessary
Qi = Qi .* feval(f{:}, hyp(v==jj), x, z);
end
end
end
if cache
dKii = dKi{ii};
else
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell if necessary
[junk,dKii] = feval(f{:}, hyp(v==ii), x, z);
end
if nargout==1
dhyp(v==ii,1) = dKii(Qi);
else
[dhyp(v==ii,1),dxi] = dKii(Qi); dx = dx+dxi;
end
end
|
github
|
kd383/GPML_SLD-master
|
covRQiso.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covRQiso.m
| 1,165 |
utf_8
|
662fd9158e87d9e809e77de537bbaca9
|
function varargout = covRQiso(varargin)
% Wrapper for Rational Quadratic covariance function covRQ.m.
%
% Rational Quadratic covariance function with isotropic distance measure. The
% covariance function is parameterized as:
%
% k(x,z) = sf^2 * [1 + (x-z)'*inv(P)*(x-z)/(2*alpha)]^(-alpha)
%
% where the P matrix is ell^2 times the unit matrix, sf2 is the signal
% variance and alpha is the shape parameter for the RQ covariance. The
% hyperparameters are:
%
% hyp = [ log(ell)
% log(sf)
% log(alpha) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-10-01.
%
% See also covRQ.m.
varargout = cell(max(1,nargout),1);
if nargin>0 % restore old hyper parameter order
hyp = varargin{1};
if numel(hyp)>2, varargin{1} = hyp([1:end-2,end,end-1]); end
end
[varargout{:}] = covScale({'covRQ','iso',[]},varargin{:});
if nargout>1 % restore old hyper parameter order
o2 = varargout{2}; varargout{2} = @(Q) dirder(Q,o2);
end
function [dKdhyp,dKdx] = dirder(Q,dK)
if nargout>1, [dKdhyp,dKdx] = dK(Q); else dKdhyp = dK(Q); end
dKdhyp = dKdhyp([1:end-2,end,end-1]);
|
github
|
kd383/GPML_SLD-master
|
covMatern.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covMatern.m
| 3,060 |
utf_8
|
ca45c5dd70fb047a931ac0296b64ad16
|
function varargout = covMatern(mode, par, d, varargin)
% Matern covariance function with nu = d/2 and isotropic distance measure. For
% d=1 the function is also known as the exponential covariance function or the
% Ornstein-Uhlenbeck covariance in 1d. The covariance function is:
%
% k(x,z) = f( sqrt(d)*r ) * exp(-sqrt(d)*r)
%
% with f(t)=1 for d=1, f(t)=1+t for d=3, f(t)=1+t+t^2/3 for d=5 and
% f(t)=1+t+2*t^2/5+t^3/15 for d=7.
%
% The covariance function can also be expressed for non-integer d.
%
% k(x,z) = 2^(1-nu)/gamma(nu) * s^nu * besselk(nu,s), s = sqrt(2*nu)*r
%
% Note that for d->oo the covariance converges to the squared exponential.
%
% Here r is the Mahalanobis distance sqrt(maha(x,z)). The function takes a
% "mode" parameter, which specifies precisely the Mahalanobis distance used, see
% covMaha. The function returns either the number of hyperparameters (with less
% than 3 input arguments) or it returns a covariance matrix and (optionally) a
% derivative function.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-12-14.
%
% See also covSE.m, covMaha.m.
if nargin < 1, error('Mode cannot be empty.'); end % no default value
if nargin < 2, par = []; end % default
varargout = cell(max(1, nargout), 1); % allocate mem for output
if nargin < 5, varargout{1} = covMaha(mode,par); return, end
if any(d==[1,3,5,7])
switch d % df(t) = (f(t)-f'(t))/t
case 1, f = @(t) 1; df = @(t) 1./t;
case 3, f = @(t) 1+t; df = @(t) 1;
case 5, f = @(t) 1+t.*(1+t/3); df = @(t) (1+t)/3;
case 7, f = @(t) 1+t.*(1+t.*(6+t)/15); df = @(t) (1+t+t.^2/3)/5;
end
m = @(t,f) f(t).*exp(-t); dm = @(t,f) df(t).*exp(-t);
k = @(d2) m(sqrt(d*d2),f);
if d==1
dk = @(d2,k) set_zero( -dm(sqrt( d2),f)/2, d2==0 ); % fix limit case d2->0
else
dk = @(d2,k) -dm(sqrt(d*d2),f)*d/2;
end
else % use non-integer mode
k = @(d2) psi(d2,d/2); dk = @(d2,k) dpsi(d2,k,d/2);
end
[varargout{:}] = covMaha(mode, par, k, dk, varargin{:});
function A = set_zero(A,I), A(I) = 0;
function k = psi(d2,nu) % = 2^(1-nu)/gamma(nu) * r^nu*besselk(nu,r) book Eq 4.14
c = (1-nu)*log(2)-gammaln(nu); % evaluate 2^(1-nu)/gamma(nu) in log domain
r = sqrt(2*nu*d2); k = exp(c+nu*log(r)).*besselk(nu,r);
k(r<1e-7) = 1; % fix lim_r->0, see Abramowitz&Stegun 9.6.9
i = isnan(k) | isinf(k); % detect strange behavior
if any(i), k(i) = exp(-d2(i)/2); end % fix limit_nu->oo covSE
function dk = dpsi(d2,k,nu)
r = sqrt(2*nu*d2);
dk = -nu*0.5^nu/gamma(nu)*r.^(nu-2).*...
(r.*besselk(nu-1,r)-2*nu*besselk(nu,r)+r.*besselk(nu+1,r));
i = isnan(dk) | isinf(dk); % detect strange behavior
if any(i), dk(i) = (-1/2)*k(i); end % fix limit_nu->oo covSE
|
github
|
kd383/GPML_SLD-master
|
covRQ.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covRQ.m
| 1,181 |
utf_8
|
d112eee5d6ba568af6d5f1ee22849f3f
|
function [K,dK] = covRQ(mode, par, hyp, varargin)
% Rational Quadratic covariance function.
% The covariance function is parameterized as:
%
% k(x,z) = [1 + maha(x,z)/(2*alpha)]^(-alpha)
%
% where maha(x,z) is a Mahalanobis distance and alpha is the shape parameter
% for the RQ covariance. The hyperparameters are:
%
% hyp = [ hyp_maha
% log(alpha) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-05-23.
%
% See also COVFUNCTIONS.M.
if nargin < 1, error('Mode cannot be empty.'); end % no default
if nargin < 2, par = []; end % default
if nargin<4, K = [covMaha(mode,par),'+1']; return, end
alpha = exp(hyp(end));
k = @(d2) (1+0.5*d2/alpha).^(-alpha); dk = @(d2,k) -k./(2+d2/alpha);
if nargout==2
[K,dKmaha,D2] = covMaha(mode,par,k,dk,hyp(1:end-1),varargin{:});
dK = @(Q) dirder(Q,K,D2,dKmaha,alpha);
else
K = covMaha(mode,par,k,dk,hyp(1:end-1),varargin{:});
end
function [dhyp,dx] = dirder(Q,K,D2,dKmaha,alpha)
if nargout==1
dhyp = dKmaha(Q);
else
[dhyp,dx] = dKmaha(Q);
end
Q = Q.*K; B = 1+0.5*D2/alpha;
dhyp = [dhyp; sum(sum( Q.*(0.5*D2./B-alpha*log(B)) ))];
|
github
|
kd383/GPML_SLD-master
|
covDot.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covDot.m
| 4,125 |
utf_8
|
389b9cdeecc1b3bf4d9b780e011f1a92
|
function [K,dK,S] = covDot(mode, par, k, dk, hyp, x, z)
% Dot product-based covariance function. The covariance function is
% parameterized as:
%
% k(x,z) = k(s), s = dot(x,z) = x'*inv(P)*z
%
% where the matrix P is the metric.
%
% Parameters:
% 1) mode,par:
% We offer different modes (mode) with their respective parameters (par):
% mode = par = inv(P) = hyp =
% 'eye' [] eye(D) []
% 'iso' [] ell^2*eye(D) [log(ell)]
% 'ard' [] diag(ell.^2) [log(ell_1); ..; log(ell_D)]
% 'proj' d L'*L [L_11; L_21; ..; L_dD]
% 'fact' d L'*L + diag(f) [L_11; L_21; ..; L_dD; log(f_1); ..; log(f_D)]
%
% 2) k,dk:
% The functional form of the covariance is governed by two functions:
% k: s -> k(x,z), s = dot(x,z) = x'*inv(P)*z
% dk: s,k(x,z) -> d k(x,z) / d s
% For example, the linear covariance uses
% k = @(s) (c+s).^d; dk = @(s) d*(c+s).^(d-1);
% Note that not all functions k,dk give rise to a valid i.e. positive
% semidefinite covariance function k(x,z).
%
% 3) hyp,x,z:
% These input parameters follow the usual covariance function interface. For the
% composition of hyp, see 1).
%
% 4) K,dK:
% See the usual covariance function interface.
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2017-09-26.
%
% See also COVFUNCTIONS.M.
if nargin<1, mode = 'eye'; end, if nargin <2, par = []; end % default values
mode_list = '''eye'', ''iso'', ''ard'', ''proj'', or ''fact''.';
switch mode
case 'eye', ne = '0';
case 'iso', ne = '1';
case 'ard', ne = 'D';
case 'proj', ne = [num2str(par),'*D'];
case 'fact', ne = [num2str(par),'*D+D'];
otherwise, error('Parameter mode is either %s.',mode_list)
end
if nargin<6, K = ne; return; end % report number of parameters
if nargin<7, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % sort out different modes
[n,D] = size(x); ne = eval(ne); % dimensions
hyp = hyp(:); % make sure hyp is a column vector
if numel(hyp)~=ne, error('Wrong number of hyperparameters'), end
switch mode % mvm with metric A=inv(P)
case 'eye', A = @(x) x;
dAdhyp = @(T) zeros(0,1);
case 'iso', iell2 = exp(-2*hyp); A = @(x) x*iell2;
dAdhyp = @(T) -2*iell2*trace(T);
case 'ard', iell2 = exp(-2*hyp); A = @(x) bsxfun(@times,x,iell2');
dAdhyp = @(T) -2*iell2.*diag(T);
case 'proj', d = par; L = reshape(hyp,d,D); A = @(x) (x*L')*L;
dAdhyp = @(T) reshape(L*(T+T'),d*D,1);
case 'fact', d = par; L = reshape(hyp(1:d*D),d,D); f = exp(hyp(d*D+1:end));
A = @(x) (x*L')*L + bsxfun(@times,x,f');
dAdhyp = @(T)[reshape(L*(T+T'),d*D,1); f.*diag(T)];
end
% compute dot product
if dg % vector sxx
Az = A(x); z = x; S = sum(x.*Az,2);
else
if xeqz % symmetric matrix Sxx
Az = A(x); z = x;
else % cross terms Sxz
Az = A(z);
end
S = x*Az';
end
K = k(S); % covariance
if nargout > 1
dK = @(Q) dirder(Q,S,dk,x,Az,z,dg,xeqz,dAdhyp,mode); % dir hyper derivative
end
function [dhyp,dx] = dirder(Q,S,dk,x,Az,z,dg,xeqz,dAdhyp,mode)
R = dk(S).*Q;
switch mode
case 'eye', dhyp = zeros(0,1); % fast shortcuts
case 'iso', dhyp = -2*R(:)'*S(:);
case 'ard'
if dg
dhyp = -2*sum(x.*bsxfun(@times,R,Az),1)';
else
dhyp = -2*sum(x.*(R*Az),1)';
end
otherwise % generic computation
if dg, T = bsxfun(@times,R,z); else T = R*z; end, T = x'*T;
dhyp = dAdhyp(T);
end
if nargout > 1
if xeqz, dx = R*Az+R'*Az; else dx = R*Az; end
end
|
github
|
kd383/GPML_SLD-master
|
covGabor.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covGabor.m
| 2,950 |
utf_8
|
95522109b2cb6e8dc9f3f68134433e3a
|
function [K,dK] = covGabor(mode, hyp, x, z)
% Gabor covariance function with length scale ell and period p. The
% covariance function is parameterized as:
%
% k(x,z) = h(x-z), h(t) = exp(-sum(t.^2./(2*ell.^2)))*cos(2*pi*sum(t./p)).
%
% The hyperparameters are:
%
% hyp = [ hyp_ell
% hyp_p ]
%
% We offer three different modes:
% 'eye': ell = ones(D,1); p = ones(D,1);
% 'iso': ell = exp(hyp_ell)*ones(D,1); p = exp(hyp_p)*ones(D,1);
% 'ard': ell = exp(hyp_ell) ; p = exp(hyp_p) ;
%
% Note that covSM implements a weighted sum of Gabor covariance functions, but
% using an alternative (spectral) parameterization.
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Hannes Nickisch, 2016-05-03.
%
% See also COVFUNCTIONS.M, COVGABORARD.M, COVSM.M.
if nargin<1, error('We require a mode.'), end
if isequal(mode,'ard'), np = 'D';
elseif isequal(mode,'iso'), np = '1';
elseif isequal(mode,'eye'), np = '0';
else error('Parameter mode is either ''eye'', ''iso'' or ''ard''.'), end
if nargin<3, K = ['(2*',np,')']; return, end % report number of parameters
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x); np = eval(np); % dimensionality
p = exp(hyp(np+1:2*np)); if numel(p)==0, p = 1; end, p = p.*ones(D,1); % period
[Kse,dKse] = covSE(mode,[],hyp(1:np),x,z); % squared exponential base covariance
Dp = zeros(size(Kse)); % init sum(t)/p computation
if ~dg
if xeqz % symmetric matrix Kxx
for d=1:D, Dp = Dp + bsxfun(@minus,x(:,d),x(:,d)')/p(d); end
else % cross covariances Kxz
for d=1:D, Dp = Dp + bsxfun(@minus,x(:,d),z(:,d)')/p(d); end
end
end
C = cos(2*pi*Dp); K = Kse .* C; % covariance
if nargout > 1 % directional derivative
dK = @(Q) dirder(Q,C,Dp,Kse,dKse,np,dg,xeqz,x,z,D,p,mode);
end
function [dhyp,dx] = dirder(Q,C,Dp,Kse,dKse,np,dg,xeqz,x,z,D,p,mode)
dhyp = zeros(2*np,1); % allocate memory
if nargout > 1
[dhyp(1:np),dx] = dKse(Q.*C);
else
dhyp(1:np) = dKse(Q.*C);
end
if ~dg
Q = Q .* Kse .* -sin(2*pi*Dp)*2*pi;
if isequal(mode,'ard')
for d=1:D
if xeqz
Dd = bsxfun(@minus,x(:,d),x(:,d)');
else
Dd = bsxfun(@minus,x(:,d),z(:,d)');
end
dhyp(np+d) = -(Q(:)'*Dd(:))/p(d);
end
elseif isequal(mode,'iso')
dhyp(np+1) = -(Q(:)'*Dp(:));
end
if nargout > 1
if xeqz
dx = dx + (sum(Q,2)-sum(Q,1)')*(1./p)';
else
dx = dx + sum(Q,2)*(1./p)';
end
end
end
|
github
|
kd383/GPML_SLD-master
|
covMask.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covMask.m
| 2,077 |
utf_8
|
fbb73ed86a404c471718a7040f0d4ac6
|
function [K,dK] = covMask(cov, hyp, x, z)
% Apply a covariance function to a subset of the dimensions only. The subset can
% either be specified by a 0/1 mask by a boolean mask or by an index set.
%
% This function doesn't actually compute very much on its own, it merely does
% some bookkeeping, and calls another covariance function to do the actual work.
%
% The function computes:
% k(x,z) = k0(x(mask),z(mask))
% Example:
% k0 = {@covSEiso};
% msk = [1,3,7];
% k = {@covMask,{msk,k0{:}}};
%
% The function was suggested by Iain Murray, 2010-02-18 and is based on an
% earlier implementation of his dating back to 2009-06-16.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-11-14.
%
% See also COVFUNCTIONS.M.
mask = fix(cov{1}(:)); % either a binary mask or an index set
cov = cov(2); % covariance function to be masked
if iscell(cov{:}), cov = cov{:}; end % properly unwrap nested cell arrays
nh_string = feval(cov{:}); % number of hyperparameters of the full covariance
if max(mask)<2 && length(mask)>1, mask = find(mask); end % convert 1/0->index
D = length(mask); % masked dimension
if nargin<3, K = num2str(eval(nh_string)); return, end % number of parameters
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
if eval(nh_string)~=length(hyp) % check hyperparameters
error('number of hyperparameters does not match size of masked data')
end
xm = x(:,mask); if ~dg && ~xeqz, zm = z(:,mask); else zm = z; end
if nargout>1
[K,dK] = feval(cov{:}, hyp, xm, zm);
dK = @(Q) dirder(Q,dK,x,mask);
else
K = feval(cov{:}, hyp, xm, zm);
end
function [dhyp,dx] = dirder(Q,dK,x,mask)
if nargout>1
[dhyp,dxm] = dK(Q); n = size(x,1);
subs = [repmat((1:n)',length(mask),1), reshape(repmat(mask(:)',n,1),[],1)];
dx = accumarray(subs,dxm(:),size(x));
else
dhyp = dK(Q);
end
|
github
|
kd383/GPML_SLD-master
|
covSum.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covSum.m
| 2,619 |
utf_8
|
dd217e57b3859a67a2ed06b93ce7b5da
|
function [K,dK] = covSum(cov, hyp, x, z)
% covSum - compose a covariance function as the sum of other covariance
% functions. This function doesn't actually compute very much on its own, it
% merely does some bookkeeping, and calls other covariance functions to do the
% actual work.
%
% Note that cov = {cov1, cov2, .., false} turns of covariance matrix caching.
% This option slows down the computations but can help out if you sums of
% many huge matrices lead to working memory shortage.
%
% Copyright (c) by Carl Edward Rasmussen & Hannes Nickisch 2016-04-18.
%
% See also COVFUNCTIONS.M.
if isempty(cov), error('We require at least one summand.'), end
if isnumeric(cov{end}) || islogical(cov{end}) % detect whether to cache
cache = ~isequal(0,cov{end}) && ~isequal(false,cov{end});
cov = cov(1:end-1); % chop off last element from cov
else
cache = true;
end
nc = numel(cov); % number of terms in covariance function
for ii = 1:nc % iterate over covariance functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
j(ii) = cellstr(feval(f{:})); % collect number hypers
end
if nargin<3 % report number of parameters
K = char(j(1)); for ii=2:nc, K = [K, '+', char(j(ii))]; end, return
end
if nargin<4, z = []; end % make sure, z exists
[n,D] = size(x);
v = []; % v vector indicates to which covariance parameters belong
for ii = 1:nc, v = [v repmat(ii, 1, eval(char(j(ii))))]; end
K = 0; dKi = cell(nc,1); % init K
for ii = 1:nc % iteration over summand functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
if nargout>1 && cache
[Kii,dKi{ii}] = feval(f{:}, hyp(v==ii), x, z); % keep track
else
Kii = feval(f{:}, hyp(v==ii), x, z);
end
K = K + Kii; % accumulate covariances
end
dK = @(Q) dirder(Q,dKi,v,nc,cov,hyp,x,z,cache); % directional derivative
function [dhyp,dx] = dirder(Q,dKi,v,nc,cov,hyp,x,z,cache)
dhyp = zeros(size(v,2),1); dx = 0;
for ii = 1:nc
if cache
dKii = dKi{ii};
else
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell if necessary
[junk,dKii] = feval(f{:}, hyp(v==ii), x, z);
end
if nargout > 1
[dhyp(v==ii,1),dxi] = dKii(Q); dx = dx+dxi;
else
dhyp(v==ii,1) = dKii(Q);
end
end
|
github
|
kd383/GPML_SLD-master
|
covEye.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covEye.m
| 1,506 |
utf_8
|
74ff8cf22ddc7da30f6541ca77daebbd
|
function [K,dK] = covEye(hyp, x, z)
% Independent covariance function, i.e. "white noise", with unit variance.
% The covariance function is specified as:
%
% k(x^p,x^q) = \delta(p,q)
%
% \delta(p,q) is a Kronecker delta function which is 1 iff p=q and zero
% otherwise in mode 1).
% In cross covariance mode 2) two data points x_p and z_q are considered equal
% if their difference norm |x_p-z_q| is less than eps, the machine precision.
% The hyperparameters are:
%
% hyp = [ ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Hannes Nickisch, 2016-04-18.
%
% See also COVFUNCTIONS.M.
tol = eps; % threshold on the norm when two vectors are considered to be equal
if nargin<2, K = '0'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
dg = strcmp(z,'diag'); % determine mode
n = size(x,1);
if dg % vector kxx
K = ones(n,1);
else
if isempty(z) % symmetric matrix Kxx
K = eye(n);
else % cross covariances Kxz
K = double(sq_dist(x',z')<tol*tol);
end
end
if nargout > 1
dK = @(Q) dirder(Q,x); % directional hyper derivative
end
function [dhyp,dx] = dirder(Q,x)
dhyp = zeros(0,1); if nargout > 1, dx = zeros(size(x)); end
|
github
|
kd383/GPML_SLD-master
|
covCos.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covCos.m
| 1,642 |
utf_8
|
fffb37510851e1faf2c666ca437a6a7b
|
function [K,dK] = covCos(hyp, x, z)
% Stationary covariance function for a sinusoid with period p in 1d:
%
% k(x,z) = sf^2*cos(2*pi*(x-z)/p)
%
% where the hyperparameters are:
%
% hyp = [ log(p)
% log(sf) ]
%
% Note that covPeriodicNoDC converges to covCos as ell goes to infinity.
%
% Copyright (c) by James Robert Lloyd and Hannes Nickisch, 2016-11-05.
%
% See also COVFUNCTIONS.M, COVPERIODICNODC.M.
if nargin<2, K = '2'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x);
if D~=1, error('Covariance is defined for 1d data only.'), end
p = exp(hyp(1));
sf2 = exp(2*hyp(2));
% precompute deviations and exploit symmetry of cos
if dg % vector txx
T = zeros(size(x,1),1);
else
if xeqz % symmetric matrix Txx
T = 2*pi/p*bsxfun(@plus,x,-x');
else % cross covariances Txz
T = 2*pi/p*bsxfun(@plus,x,-z');
end
end
K = sf2*cos(T); % covariances
if nargout > 1
dK = @(Q) dirder(Q,K,T,x,p,sf2,dg,xeqz);
end
function [dhyp,dx] = dirder(Q,K,T,x,p,sf2,dg,xeqz)
dhyp = [sf2*(sin(T(:)).*T(:))'*Q(:); 2*Q(:)'*K(:)];
if nargout > 1
R = -sf2*pi/p * Q .* sin(T);
if dg
dx = zeros(size(x));
else
if xeqz
dx = 2*(sum(R,2)-sum(R,1)');
else
dx = 2*sum(R,2);
end
end
end
|
github
|
kd383/GPML_SLD-master
|
covDiscrete.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covDiscrete.m
| 2,444 |
utf_8
|
1a59b16bbcb28d2299847efdfd9f941b
|
function [K,dK] = covDiscrete(s, hyp, x, z)
% Covariance function for discrete inputs. Given a function defined on the
% integers 1,2,3,..,s, the covariance function is parameterized as:
%
% k(x,z) = K_{xz},
%
% where K is a matrix of size (s x s).
%
% This implementation assumes that the inputs x and z are given as integers
% between 1 and s, which simply index the matrix K.
%
% The hyperparameters specify the upper-triangular part of the Cholesky factor
% of K, where the (positive) diagonal elements are specified by their logarithm.
% If L = chol(K), so K = L'*L, then the hyperparameters are:
%
% hyp = [ log(L_11)
% L_21
% log(L_22)
% L_31
% L_32
% ..
% log(L_ss) ]
%
% The hyperparameters hyp can be generated from K using:
% L = chol(K); L(1:(s+1):end) = log(diag(L));
% hyp = L(triu(true(s)));
%
% The covariance matrix K is obtained from the hyperparameters hyp by:
% L = zeros(s); L(triu(true(s))) = hyp(:);
% L(1:(s+1):end) = exp(diag(L)); K = L'*L;
%
% This parametrization allows unconstrained optimization of K.
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Copyright (c) by Roman Garnett, 2016-04-18.
%
% See also MEANDISCRETE.M, COVFUNCTIONS.M.
if nargin==0, error('s must be specified.'), end % check for dimension
if nargin<3, K = num2str(s*(s+1)/2); return; end % report number of parameters
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
if xeqz, z = x; end % make sure we have a valid z
L = zeros(s); L(triu(true(s))) = hyp(:); % build Cholesky factor
L(1:(s+1):end) = exp(diag(L));
A = L'*L; % A is a placeholder for K to avoid a name clash with the return arg
if dg
K = A(sub2ind(size(A),fix(x),fix(x)));
else
K = A(fix(x),fix(z));
end
if nargout > 1
dK = @(Q) dirder(Q,s,L,x,z,dg); % directional hyper derivative
end
function [dhyp,dx] = dirder(Q,s,L,x,z,dg)
nx = numel(x); Ix = sparse(fix(x),1:nx,ones(nx,1),s,nx); % K==Ix'*L'*L*Iz
if dg
B = Ix*diag(Q)*Ix';
else
nz = numel(z); Iz = sparse(fix(z),1:nz,ones(nz,1),s,nz);
B = Iz*Q'*Ix';
end
B = L*(B+B'); B(1:(s+1):end) = diag(B).*diag(L); % fix exp on diagonal
dhyp = B(triu(true(s)));
if nargout > 1, dx = zeros(size(x)); end
|
github
|
kd383/GPML_SLD-master
|
covULL.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covULL.m
| 2,045 |
utf_8
|
cee0f7f68e01ba6bdef5fbb1755e674b
|
function [K,dK] = covULL(hyp, x, z)
% Stationary covariance function for an underdamped linear Langevin process
% as obtained by filtering white noise through an underdamped 2nd order system
% m * f''(x) + c * f'(x) + k * f(x) = N(0,sf^2).
%
% k(t) = a^2*exp(-mu*t) * ( sin(omega*t)/omega + cos(omega*t)/mu ),
% where t = abs(x-z), and
% mu = c/(2*m), omega = sqrt(k/m-mu^2), a = sf/(2*sqrt(m*k))
%
% See https://en.wikipedia.org/wiki/Harmonic_oscillator
%
% where the hyperparameters are:
%
% hyp = [ log(mu)
% log(omega)
% log(a) ]
%
% Copyright (c) by Robert MacKay, 2016-11-15.
%
% See also COVFUNCTIONS.M.
if nargin<2, K = '3'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x);
if D~=1, error('Covariance is defined for 1d data only.'), end
mu = exp(hyp(1));
omega = exp(hyp(2));
a2 = exp(2*hyp(3));
% precompute deviations
if dg % vector txx
T = zeros(n,1);
else
if xeqz % symmetric matrix Txx
T = bsxfun(@minus,x,x');
else % cross covariances Txz
T = bsxfun(@minus,x,z');
end
end
K = a2*exp(-mu*abs(T)) .* ( sin(omega*abs(T))/omega + cos(omega*T)/mu ); % cov
if nargout > 1
dK = @(Q) dirder(Q,K,T,mu,omega,a2,dg,xeqz);
end
function [dhyp,dx] = dirder(Q,K,T,mu,omega,a2,dg,xeqz)
A = mu*abs(T).*K + a2/mu*exp(-mu*abs(T)) .* cos(omega*T);
B = abs(T).*cos(omega*T) - sin(omega*abs(T))/omega - omega*T.*sin(omega*T)/mu;
B = a2*exp(-mu*abs(T)) .* B;
dhyp = [-A(:)'*Q(:); B(:)'*Q(:); 2*(K(:)'*Q(:))];
if nargout > 1
R = -a2*(mu/omega+omega/mu)*exp(-mu*abs(T)) .* sin(omega*T) .* Q;
if dg
dx = zeros(size(Q,1),1);
else
if xeqz
dx = sum(R,2)-sum(R,1)';
else
dx = sum(R,2);
end
end
end
|
github
|
kd383/GPML_SLD-master
|
covScale.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covScale.m
| 3,216 |
utf_8
|
afdaa196951547c5f3a67e635ae0d485
|
function [K,dK] = covScale(cov, lsf, hyp, x, z)
% covScale - compose a covariance function as a scaled version of another
% one to model functions of the form f(x) = sf(x) f0(x), where sf(x) is a
% scaling function determining the function's standard deviation given f0(x)
% is normalised.
%
% The covariance function is parameterized as:
% k(x,z) = sf(x) * k_0(x,z) * sf(z)
% with an important special case being
% k(x,z) = sf^2 * k_0(x,z).
%
% You can either use K = covScale(cov, lsf, hyp, x, z) where the log scaling
% function lsf is a GPML mean function with hyperparameters hyp_sf yielding
% hyp = [ hyp_cov
% hyp_lsf ]
% as hyperparameters
% or you can use covScale(cov, hyp, x, z) to perform
% rescaling by a scalar value sf specified as an additional variable yielding
% hyp = [ hyp_cov
% log(sf) ]
% as hyperparameters.
%
% Copyright (c) by Carl Edward Rasmussen, Hannes Nickisch & Roman Garnett
% 2016-04-26.
%
% See also COVFUNCTIONS.M.
if nargin==0, error('cov function must be specified'), end
if nargin<=1, lsf = []; end, narg = nargin; % set a default value
if isnumeric(lsf)&&~isempty(lsf) % shift parameters if sf contains actually hyp
if nargin>3, z = x; end
if nargin>2, x = hyp; end
if nargin>1, hyp = lsf; end
narg = nargin+1; lsf = [];
end
% below we us narg instead of nargin to be independent of the parameter shift
if isempty(lsf), ssf = '1'; else ssf = feval(lsf{:}); end % number of hypers
if narg<4, K = ['(',feval(cov{:}),'+',ssf,')']; return, end
if narg<5, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x); % dimension of input data
ncov = eval(feval(cov{:})); hyp_cov = hyp(1:ncov); % number of params, split hyp
nsf = eval(ssf); hyp_lsf = hyp(ncov+(1:nsf));
scalar = isempty(lsf); if scalar, sf = exp(hyp_lsf); end
if ncov+nsf~=numel(hyp), error('Wrong number of hyper parameters.'), end
if nargout > 1
[K0,dK0] = feval(cov{:},hyp_cov,x,z);
else
K0 = feval(cov{:},hyp_cov,x,z);
end
if scalar
sfx = sf; dsfx = @(q) sf*sum(q);
else
[lsfx,dlsfx] = feval(lsf{:},hyp_lsf,x);
sfx = exp(lsfx); dsfx = @(q) dlsfx(q.*sfx);
end
if dg
S = sfx.*sfx; sfz = sfx; dsfz = dsfx;
else
if xeqz
sfz = sfx; dsfz = dsfx;
else
if scalar
sfz = sf; dsfz = @(q) sf*sum(q);
else
[lsfz,dlsfz] = feval(lsf{:},hyp_lsf,z);
sfz = exp(lsfz); dsfz = @(q) dlsfz(q.*sfz);
end
end
S = sfx*sfz';
end
K = S.*K0; % covariance
if nargout > 1 % directional hyper derivative
dK = @(Q) dirder(Q,S,K0,dK0,sfx,dsfx,sfz,dsfz,dg);
end
function [dhyp,dx] = dirder(Q,S,K0,dK0,sfx,dsfx,sfz,dsfz,dg)
if nargout>1
[dhyp0,dx0] = dK0(Q.*S); dx = dx0; % sx contributions are missing
else
dhyp0 = dK0(Q.*S);
end
Q = Q.*K0;
if dg
qz = Q.*sfx; qx = Q.*sfz;
else
qz = sum(Q'*sfx,2); qx = sum(Q*sfz,2);
end
dhyp = [dhyp0; dsfx(qx)+dsfz(qz)];
|
github
|
kd383/GPML_SLD-master
|
covOU.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covOU.m
| 3,643 |
utf_8
|
02c3c9004d03310c02a3484a2c427480
|
function [K,dK] = covOU(i, hyp, x, z)
% Ornstein-Uhlenbeck process covariance function, i times integrated.
%
% For i=0, this considers the stochastic differential equation
%
% ell * f'(x) + f(x) = N(0,sf^2), f(0) = N(f0,sf0^2), x>=0
%
% where 1/ell>0 is the decay rate and sf, sf0 are noise levels.
% N(m,v) is a Gaussian random variable with mean m and variance v.
%
% For i=0, this is the Ornstein-Uhlenbeck process covariance, for i=1, and
% assuming sf=sf0, this is the integrated Ornstein-Uhlenbeck process.
%
% The covariance function -- given that x,z>=0 -- is specified as:
%
% i=0: k(x,z) = sf^2 * exp( -abs(x-z)/ell ) + (sf0^2-sf^2)*exp( -(x+z)/ell )
% i=1: k(x,z) = sf^2 * ell^2 * ( 2*min(x,z)/ell + r(x,z) ),
% where r(x,z) = exp(-x/ell) + exp(-z/ell) - exp(-abs(x-z)/ell) - 1
%
% The hyperparameters are:
%
% hyp = [ log(ell)
% log(sf)
% log(sf0) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% See 10.2 of "Statistical Analysis of Stochastic Processes in Time",
% by J. K. Lindsey, CUP 2004.
% See "A Stochastic Model for Analysis of Longitudinal AIDS Data",
% by Taylor, Cumberland and Sy, JASA 1994.
%
% Copyright (c) by Juan Pablo Carbajal and Hannes Nickisch, 2017-01-19.
%
% See also COVW.M, COVFUNCTIONS.M.
if nargin<3, K = '3'; return; end % report number of parameters
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x);
if D~=1, error('Covariance is defined for 1d data only.'), end
if any(x<0), error('Covariance is defined for nonnegative data only.'), end
ell = exp(hyp(1)); sf = exp(hyp(2)); sf0 = exp(hyp(3)); % obtain hyperparameters
ex = exp(-x/ell); ox = ones(size(x)); % precompute
if dg % vector kxx
M = x; G = 2-2*ex; dGa = -2*ex.*x/ell; E=[]; I=[]; ez=[]; oz=[];
D = zeros(n,1); S = 2*x;
else
if xeqz % symmetric matrix Kxx
ez = ex; oz = ox; z = x;
else % cross covariances Kxz
ez = exp(-z/ell); oz = ones(size(z));
end
D = bsxfun(@minus,x,z'); S = bsxfun(@plus,x,z'); M = ox*z'; T = x*oz';
I = bsxfun(@le,x,z'); M(I) = T(I); E = exp(-abs(D)/ell);
G = 1+E-ex*oz'-ox*ez';
dGa = (E.*abs(D)-(ex.*x)*oz'-ox*(ez.*z)')/ell;
end
if i==0
eD = exp(-abs(D)/ell); eS = exp(-S/ell); K = sf^2*eD + (sf0^2-sf^2)*eS;
dK = @(Q) dirder0(Q,D,S,eD,eS,ell,sf,sf0,dg,xeqz);
else
K = 2*ell*sf^2*( M - ell/2*G );
dK = @(Q) dirder1(Q,K,E,I,D,G,M,dGa,ex,ez,ox,oz,ell,sf,dg,xeqz);
end
function [dhyp,dx] = dirder0(Q,D,S,eD,eS,ell,sf,sf0,dg,xeqz)
qes = Q(:)'*eS(:); qed = Q(:)'*eD(:);
R = sf^2*eD.*abs(D) + (sf0^2-sf^2)*eS.*S;
dhyp = [Q(:)'*R(:)/ell; 2*sf^2*(qed-qes); 2*sf0^2*qes];
if nargout > 1
if dg, dx = zeros(size(dpx));
else dx = (sf^2-sf0^2)*sum(Q .*eS,2) - sf^2*sum(Q .*eD.*sign(D),2);
if xeqz
dx = dx + (sf^2-sf0^2)*sum(Q'.*eS,2) - sf^2*sum(Q'.*eD.*sign(D),2);
end
end
dx = dx/ell;
end
function [dhyp,dx] = dirder1(Q,K,E,I,D,G,M,dGa,ex,ez,ox,oz,a,sf,dg,xeqz)
R = 2*a*M - a^2*(2*G+dGa);
dhyp = [sf^2*(R(:)'*Q(:)); 2*(K(:)'*Q(:)); 0];
if dg
dx = zeros(size(ex));
else
dx = sum(Q.*I,2) + sum(Q.*(E.*sign(D)-ex*oz'),2)/2; % M+G
if xeqz
dx = dx + sum(Q.*(1-I),1)'; % M
dx = dx + sum(Q.*(E.*sign(-D)-ox*ez'),1)'/2; % G
end
dx = 2*a*sf^2 * dx;
end
|
github
|
kd383/GPML_SLD-master
|
covPeriodic.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covPeriodic.m
| 1,834 |
utf_8
|
fd8160a9f4eba0c658e2e84cf0077b87
|
function [K,dK] = covPeriodic(hyp, x, z)
% Stationary covariance function for a smooth periodic function, with period p
% in 1d (see covPERiso and covPERard for multivariate data):
%
% k(x,z) = sf^2 * exp( -2*sin^2( pi*(x-z)/p )/ell^2 )
%
% where the hyperparameters are:
%
% hyp = [ log(ell)
% log(p)
% log(sf) ]
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2016-04-24.
%
% See also COVFUNCTIONS.M.
if nargin<2, K = '3'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x);
if D>1, error('Covariance is defined for 1d data only.'), end
ell = exp(hyp(1)); p = exp(hyp(2)); sf2 = exp(2*hyp(3)); % extract hyperparams
% precompute deviations and exploit symmetry of sin^2
if dg % vector txx
T = zeros(size(x,1),1);
else
if xeqz % symmetric matrix Txx
T = pi/p*bsxfun(@plus,x,-x');
else % cross covariances Txz
T = pi/p*bsxfun(@plus,x,-z');
end
end
S2 = (sin(T)/ell).^2;
K = sf2*exp( -2*S2 ); % covariances
if nargout>1
dK = @(Q) dirder(Q,K,S2,T,ell,xeqz,x,z,p); % directional hyper derivative
end
function [dhyp,dx] = dirder(Q,K,S2,T,ell,xeqz,x,z,p)
Q = K.*Q; P = sin(2*T).*Q;
dhyp = [4*(S2(:)'*Q(:)); 2/ell^2*(P(:)'*T(:)); 2*sum(Q(:))];
if nargout > 1
R = P./T; R(T==0) = 0;
q2 = sum(R,2); q1 = sum(R,1)';
if xeqz
y = bsxfun(@times,q1+q2,x) - (R+R')*x;
else
Rz = R*z; y = bsxfun(@times,q2,x) - Rz;
end
dx = -2*pi^2/(ell*p)^2 * y;
end
|
github
|
kd383/GPML_SLD-master
|
covPref.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covPref.m
| 2,069 |
utf_8
|
7a68891ffcfb5214e9b185519e241b75
|
function [K,dK] = covPref(cov, hyp, x, z)
% covPref - covariance function for preference learning. The covariance
% function corresponds to a prior on f(x1) - f(x2).
%
% k(x,z) = k_0(x1,z1) + k_0(x2,z2) - k_0(x1,z2) - k_0(x2,z1).
%
% The hyperparameters are:
%
% hyp = [ hyp_k0 ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% See Collaborative Gaussian Processes for Preference Learning, NIPS 2014.
%
% Copyright (c) by Hannes Nickisch and Roman Garnett, 2016-04-17.
%
% See also COVFUNCTIONS.M.
if nargin<3, K = strrep(feval(cov{:}),'D','D/2'); return; end % no of params
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
x1 = x(:,1:end/2); x2 = x(:,1+end/2:end);
if dg || xeqz
z1 = x1; z2 = x2;
else
z1 = z(:,1:end/2); z2 = z(:,1+end/2:end);
end
if xeqz
[K11,dK11] = feval(cov{:},hyp,x1);
[K22,dK22] = feval(cov{:},hyp,x2);
else
if dg
[K11,dK11] = feval(cov{:},hyp,x1,'diag');
[K22,dK22] = feval(cov{:},hyp,x2,'diag');
else
[K11,dK11] = feval(cov{:},hyp,x1,z1);
[K22,dK22] = feval(cov{:},hyp,x2,z2);
end
end
[K12,dK12] = feval(cov{:},hyp,x1,z2);
[K21,dK21] = feval(cov{:},hyp,x2,z1);
if dg, K12 = diag(K12); K21 = diag(K21); end
K = K11 + K22 - K12 - K21;
dK = @(Q) dirder(Q,dK11,dK22,dK12,dK21,dg,xeqz);
function [dhyp,dx] = dirder(Q,dK11,dK22,dK12,dK21,dg,xeqz)
if nargout > 1
[dhyp11,dx11] = dK11(Q); [dhyp22,dx22] = dK22(Q);
if dg
[dhyp12,dx12] = dK12(diag(Q)); [dhyp21,dx21] = dK21(diag(Q));
else
[dhyp12,dx12] = dK12(Q); [dhyp21,dx21] = dK21(Q);
end
if xeqz
[junk,dx21t] = dK12(Q'); [junk,dx12t] = dK21(Q');
dx = [dx11-dx12-dx21t, dx22-dx21-dx12t];
else
dx = [dx11-dx12, dx22-dx21];
end
else
dhyp11 = dK11(Q); dhyp22 = dK22(Q);
if dg
dhyp12 = dK12(diag(Q)); dhyp21 = dK21(diag(Q));
else
dhyp12 = dK12(Q); dhyp21 = dK21(Q);
end
end
dhyp = dhyp11 + dhyp22 - dhyp12 - dhyp21;
|
github
|
kd383/GPML_SLD-master
|
covSM.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/covSM.m
| 6,966 |
utf_8
|
53a540d4830180d0289d0d1f9d049c03
|
function [K,dK] = covSM(Q, hyp, x, z)
% Gaussian Spectral Mixture covariance function. The covariance function
% parametrization depends on the sign of Q.
%
% Let t(Dx1) be an offset vector in dataspace e.g. t = x-z. Then w(DxP)
% are the weights and m(Dx|Q|) = 1/p, v(Dx|Q|) = (2*pi*ell)^-2 are spectral
% means (frequencies) and variances, where p is the period and ell the length
% scale of the Gabor function h(t2v,tm) given by the expression
% h(t2v,tm) = exp(-2*pi^2*t2v).*cos(2*pi*tm)
%
% Then, the two covariances are obtained as follows:
%
% SM, spectral mixture: Q>0 => P = 1
% k(x,z) = w'*h((t.*t)'*v,t'*m), t = x-z
%
% SMP, spectral mixture product: Q<0 => P = D
% k(x,z) = prod(w'*h(T*T*v,T*m)), T = diag(t), t = x-z
%
% Note that for D=1, the two modes +Q and -Q are exactly the same.
%
% The hyperparameters are:
%
% hyp = [ log(w(:))
% log(m(:))
% log(sqrt(v(:))) ]
%
% For more help on design of covariance functions, try "help covFunctions".
%
% Note that the spectral density H(s) = F[ h(t) ] of covGaboriso is given by
% H(s) = N(s|m,v)/2 + N(s|-m,v)/2 where m=1/p is the mean and v=(2*pi*ell)^-2
% is the variance of a symmetric Gaussian mixture. Hence the covGaboriso
% covariance forms a basis for the class of stationary covariances since a
% weighted sum of covGaboriso covariances corresponds to an isotropic
% location-scale mixture of a symmetric Gaussian mixture in the spectral domain.
%
% For more details, see
% [1] SM: Gaussian Process Kernels for Pattern Discovery and Extrapolation,
% ICML, 2013, by Andrew Gordon Wilson and Ryan Prescott Adams,
% [2] SMP: GPatt: Fast Multidimensional Pattern Extrapolation with GPs,
% arXiv 1310.5288, 2013, by Andrew Gordon Wilson, Elad Gilboa,
% Arye Nehorai and John P. Cunningham, and
% [3] Covariance kernels for fast automatic pattern discovery and extrapolation
% with Gaussian processes, Andrew Gordon Wilson, PhD Thesis, January 2014.
% http://www.cs.cmu.edu/~andrewgw/andrewgwthesis.pdf
% [4] http://www.cs.cmu.edu/~andrewgw/pattern/.
%
% For Q>0, covSM corresponds to Eq. 4.7 in Ref [3].
% For Q<0, covSM corresponds to Eq. 14 in Ref [2] and Eq. 5.3 in Ref [3] but our
% w here corresponds to w^2 in Eq. 14.
%
% Copyright (c) by Andrew Gordon Wilson and Hannes Nickisch, 2016-05-06.
%
% See also COVFUNCTIONS.M, COVGABORISO.M, COVGABORARD.M.
if nargin<1, error('You need to provide Q.'), end
smp = Q<0; Q = abs(Q); % switch between covSM and covSMP mode
if nargin<3 % report no of parameters
if smp, K = '3*D*'; else K = '(1+2*D)*'; end, K = [K,sprintf('%d',Q)]; return
end
if nargin<4, z = []; end % make sure, z exists
% Note that we have two implementations covSMgabor and covSMfast. The former
% constructs a weighted sum of products of covGabor covariances using covMask,
% covProd, covScale and covSum while the latter is a standalone direct
% implementation. The latter tends to be faster.
if nargout > 1
if smp
[K,dK] = covSMgabor(Q,hyp,x,z,smp);
else
[K,dK] = covSMfast(Q,hyp,x,z,smp); % faster direct alternative
end
else
K = covSMfast(Q,hyp,x,z,smp); % faster direct alternative
end
function [K,dK] = covSMgabor(Q,hyp,x,z,smp)
[n,D] = size(x); P = smp*D+(1-smp); % dimensionality, P=D or P=1
lw = reshape(hyp( 1:P*Q) ,P,Q); % log mixture weights
lm = reshape(hyp(P*Q+ (1:D*Q)),D,Q); % log spectral means
ls = reshape(hyp(P*Q+D*Q+(1:D*Q)),D,Q); % log spectral standard deviations
if smp % 1) the product of weighted sums of 1d covGabor functions or
fac = cell(1,D);
for d=1:D
add = cell(1,Q); % a) addends for weighted sum of 1d Gabor functions
for q=1:Q, add{q} = {'covScale',{'covMask',{d,{'covGaboriso'}}}}; end
fac{d} = {'covSum',add}; % b) combine addends into sum
end
fac{D+1} = 0; % disable cache to avoid memory problems
cov = {'covProd',fac}; % c) combine factors into product
else % 2) the weighted sum of multivariate covGaborard covariance functions.
% weighted sum of multivariate Gabor functions
add = cell(1,Q); for q=1:Q, add{q} = {'covScale',{'covGaborard'}}; end
cov = {'covSum',add}; % combine into sum
end
if smp % assemble hyp; covGabor is parametrised using -ls-log(2*pi) and -lm
hypgb = [-log(2*pi)-ls(:)'; -lm(:)'; lw(:)'/2];
else
hypgb = [-log(2*pi)-ls; -lm; lw/2 ];
end
if nargout>1
[K,dK] = feval(cov{:},hypgb(:),x,z);
dK = @(R) dirder_gabor(R,dK,Q,x,smp);
else
K = feval(cov{:},hypgb(:),x,z);
end
function [dhyp,dx] = dirder_gabor(R,dK,Q,x,smp)
if nargout > 1
[dhyp,dx] = dK(R);
else
dhyp = dK(R);
end
D = size(x,2);
if smp
dhyp = reshape(dhyp,3,D*Q);
dls = -dhyp(1,:); dlm = -dhyp(2,:); dlw = 0.5*dhyp(3,:);
else
dhyp = reshape(dhyp,2*D+1,Q);
dls = -dhyp(1:D,:); dlm = -dhyp(D+1:2*D,:); dlw = 0.5*dhyp(2*D+1,:);
end
dhyp = [dlw(:); dlm(:); dls(:)];
function [K,dK] = covSMfast(Q,hyp,x,z,smp)
xeqz = isempty(z); dg = strcmp(z,'diag'); % sort out different types
[n,D] = size(x); P = smp*D+(1-smp); % dimensionality, P=D or P=1
w = exp(reshape( hyp( 1:P*Q) ,P,Q)); % mixture weights
m = exp(reshape( hyp(P*Q+ (1:D*Q)),D,Q)); % spectral means
v = exp(reshape(2*hyp(P*Q+D*Q+(1:D*Q)),D,Q)); % spectral variances
if dg
T = zeros(n,1,D);
else
if xeqz
T = 2*pi*bsxfun(@minus,reshape(x,n,1,D),reshape(x,1,n,D));
else
T = 2*pi*bsxfun(@minus,reshape(x,n,1,D),reshape(z,1,[],D));
end
end, T = reshape(T,[],D);
if smp
h = @(t2v,tm) exp(-0.5*t2v).*cos(tm); % Gabor function
K = 1; w = reshape(w,Q,P)'; m = reshape(m,Q,D)'; v = reshape(v,Q,D)';
for d=1:D
K = K .* ( h( (T(:,d).*T(:,d))*v(d,:), T(:,d)*m(d,:) )*w(d,:)' );
end
K = reshape(K.*ones(size(T,1),1),n,[]);
else
E = exp(-0.5*(T.*T)*v); H = E.*cos(T*m);
K = reshape(H*w',n,[]);
if nargout>1
vec = @(x) x(:);
dKdhyp = @(R) [ (H'*R(:)).*w';
-vec( ((E.*sin(T*m).*(R(:)*w))'* T )'.*m );
-vec( ((H.* (R(:)*w))'*(T.*T))'.*v ) ];
dK = @(R) dirder_fast(R,E,T,H,dKdhyp,x,z, m,v,w);
end
end
function [dhyp,dx] = dirder_fast(R, E,T,H,dKdhyp,x,z, m,v,w)
dhyp = dKdhyp(R);
if nargout>1
xeqz = isempty(z); dg = strcmp(z,'diag'); [n,D] = size(x);
if dg
dx = zeros(size(x));
else
A = reshape( (R(:)*w).*E.*sin(T*m)*m' + (((R(:)*w).*H)*v').*T, n, [], D);
dx = -2*pi*squeeze(sum(A,2));
if xeqz, dx = dx + 2*pi*squeeze(sum(A,1)); end
end
end
|
github
|
kd383/GPML_SLD-master
|
apxGrid.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/cov/apxGrid.m
| 35,628 |
utf_8
|
f8130ac69ac6d56bec797472b95c15d0
|
function [K,Mx,xe] = apxGrid(cov, xg, hyp, x, z, b)
% apxGrid - Covariance function approximation based on an inducing point grid.
%
% A grid covariance function k(x,z) is composed as a product
% k(x,z) = k1(x(i1),z(i1)) * .. * kp(x(ip),z(ip)) of p covariance functions
% operating on mutually disjoint components of the data x,z.
% The resulting covariance matrix is given by the Kronecker product
% K = kron(kron(kron(...,K3),K2),K1) = K_p x .. x K_2 x K_1.
%
% The function is designed to be used with infGaussLik and infLaplace.
%
% The covariance function grid contains p grid factors xg = {x1,..,xp}
% so that for each of the factors xi a covariance function ki can be defined.
% A factor xi is of size (ni,di) so that the Kronecker grid g has size
% (n1,n2,..,np,D), where D=d1+d2+..+dp. Hence, the grid g contains N=n1*n2*..*np
% data points overall. Note that the factors xi do neither need to
% be sorted nor do they need to be 1d a priori. If a factor xi contains unevenly
% spaced values, we require di=1.
%
% A factor xi can contain:
% a) a univariate axis xi of size (ni,1),
% b) a multivariate axis xi of size (ni,di),
% where the values need to be equispaced, or
% c) a stationary equispaced subgrid composed of di univariate equispaced axes
% {xi_1,xi_2,xi_di}, where each axis xij is of size (nij,1) so that
% ni=ni_1*..*ni_di intended to be used with stationary covariance functions
% When a stationary equispaced subgrid is specified, we silently assume
% the covariance function to be stationary.
%
% For fast computations, we exploit two kinds of structure:
% 1) The Kronecker structure of the covariance matrix induced BY the p factors.
% Hence, for p=1, there is nothing to gain here.
% 2) The Toeplitz or BTTB (Block-Toeplitz with Toeplitz Blocks) WITHIN a factor
% if a grid factor xi is equispaced (or multivariate and equispaced).
% Note that empirically, only for matrices of sizes above 500x500, the
% FFT-based MVMs are faster than dense matrix operations.
%
% Some examples with sizes and domain:
% - a single factor with a univariate axis, case a)
% xg = { 5*rand(150,1) } => N = 150, D = 1, dom = [0,5]
% xg = { linspace(0,3,400)' } => N = 400, D = 1, dom = [0,3]
% - a single factor with a multivariate axis (equispaced is mandatory), case b)
% xg = { [linspace(0,3,100)',...
% linspace(1,4,100)'] } => N = 100, D = 2, dom = [0,3]x[1,4]
% - a single factor with a univariate equispaced&stationary subgrid, case c)
% where we assume a stationary covariance and exploit Toeplitz structure
% xg = { {linspace(0,10,175)'} } => N = 175, D = 1, dom = [0,10]
% - a single factor with a bivariate equispaced&stationary subgrid, case c)
% where we assume a stationary covariance and exploit BTTB structure
% xg = { {linspace(0,3,20)',...
% linspace(1,7,30)'} } => N = 600, D = 2, dom = [0,3]x[1,7]
% - a two-factor grid of 2 univariate axes, case a)
% xg = { 2*rand(40,1), 5*rand(20,1) } => N = 800, D = 2, dom = [0,2]x[0,5]
% - a two-factor grid of 2 univariate equispaced and stationary axes, case c)
% where we assume two stationary covariances and exploit Toeplitz structure
% in both factors
% xg = { {linspace(0,2,25)'}, ...
% {linspace(1,3,25)'} } => N = 625, D = 2, dom = [0,2]x[1,3]
% - a four-factor grid with a Toeplitz factor, two ordinary Kronecker
% factors and a 2d BTTB factor
% xg = { {linspace(0,1,50)'}, ... => N = 4e6, D = 5, dom = [0,1]^5
% rand(20,1), ...
% linspace(0,1,40)', ...
% {linspace(0,1,10)',linspace(0,1,10)'} }
%
% The apxGrid function can be used to expand the (nested) cell array xg into a
% multivariate grid xe of size (N,D) via:
% [xe,nx,Dx] = apxGrid('expand',xg); => mode 1)
% The operation can be reverted (if no subgrids are used) by:
% xg = apxGrid('factor',{xe,ng,Dg}); => mode 2)
%
% Given scattered data x of size (n,D), we can create a grid xg covering
% the support of x using:
% xg = apxGrid('create',x,eq,k); => mode 3)
% The flag eq (default value 1) can be used to enforce an equispaced
% grid. The integer k scalar or vector, indicates the number of grid points per
% dimension. If k is a real number from (0,1], then the number of grid points
% equals k*numel(unique(x(:,1))).
% We require at least two different components per dimension.
%
% The variables v={x,z} can either be a) grid indices or b) data points.
% a) The variable v has size (nv,1) and contains integers from [1,N]. Then
% the datapoints are obtained as g2 = reshape(g,N,D); v = g2(v,:).
% b) The variable v has size (nv,D) and directly represents the data points.
% The mechanism works for x and z separately.
%
% Given a grid xg, the grid size can be obtained by:
% [ng,Dg] = apxGrid('size',xg); => mode 4)
%
% An arbitrary data point x -- be it an index vector of size (n,1) or a data
% point of size (n,D) -- is converted into a regular data point xx of
% size (n,D) by:
% [xx,ng,Dg] = apxGrid('idx2dat',xg,x); => mode 5)
% If x is already of size (n,D), xx will simply equal x.
%
% Given a grid xg and given arbitrary data points x, the interpolation
% matrix Mx can directly be computed without computing cross-covariances via:
% [Mx,dMx] = apxGrid('interp',xg,x,deg); => mode 6)
% For equispaced grids, deg can be used to set the degree of the interpolation
% polynomial in all p axes. Here deg=0 means nearest neighbor, deg=1 means
% linear interpolation, and deg=3 uses a cubic.
% The cell array dMx contains the derivatives d Mx / d xi with respect to
% the i=1..p grid components.
%
% Given a nested grid xg, we can compute a flattened grid xf by:
% xf = apxGrid('flatten',xg); => mode 7)
% without nesting and containing p axis elements.
%
% Given a covariance K, and a grid xg, and an integer embedding factor s,
% we can compute the Kronecker eigen decomposition such that
% K = V*diag(e)*V', where e = kron(ee,..).
% [V,ee,e] = apxGrid('eigkron',K,xg,s); => mode 8)
% Note that this holds only approximately for Toeplitz/BTTB due to the
% circulant embedding. For details about s, see mode 9).
%
% Given a covariance function k where the call k(1:n) returns a vector of
% length, an interger length n and an integer embedding factor s, we
% construct a circulant embedding c (nx1).
% [c,xg] = apxGrid('circ',k,n,s); => mode 9)
% Here s is allowed to have the following values:
% s=0 No embedding c = k.
% s>0 Whittle embedding [1] as described by Guinness & Fuentes [2] in
% equation (5) with N = |s|.
% [1] Whittle, On stationary processes in the plane, Biometrika, 1954.
% [2] Guinness & Fuentes, Circulant embedding of approximate covariances for
% inference from Gaussian data on large lattices, 2014.
%
% Given a grid covariance K, a grid xg, an interpolation matrix Mx and
% two sets of column vectors a and b, we can compute the directional derivative
% d trace(a'*Mx*K*Mx'*b) / d hyp:
% dhyp = apxGrid('dirder',K,xg,Mx,a,b); => mode 10)
%
% Multiplication with a matrix/operator A along dimension dim of the tensor B.
% Note that tmul(A,B,1) = A*B if B is a matrix.
% C = apxGrid('tmul',A,B,dim); => mode 11)
%
% Test grid for being equispaced along an axis i
% eq = apxGrid('equi',xg,i); => mode 12)
%
% Return a descriptive string about the nature of Kg and Mx.
% s = apxGrid('info',Kg,Mx,xg,deg); => mode 13)
%
% The hyperparameters are:
% hyp = [ hyp_1
% hyp_2
% ..
% hyp_p ],
%
% Copyright (c) by Hannes Nickisch and Andrew Wilson 2017-01-07.
%
% See also COVFUNCTIONS.M, APX.M, INFLAPLACE.M, INFGAUSSLIK.M.
if nargin<2, error('Not enough parameters provided.'), end
dense_max = 0; % 500 if larger grid we use FFT-algebra rather than dense algebra
% mode 1) expand axes xg representation into full grid x
if strcmp(cov,'expand') % call: [xe,nx,Dx] = apxGrid('expand',xg);
[K,Mx,xe] = expandgrid(xg); return
% mode 2) factor full x grid into axes representation xg
elseif strcmp(cov,'factor') % call: xg = apxGrid('factor',{xe,ng,Dg});
K = factorgrid(xg{:}); return
% mode 3) create axes representation xg from scattered data
elseif strcmp(cov,'create') % call: xg = apxGrid('create',x,eq,k);
if nargin<3, eq = 1; else eq = hyp; end % set default values
if nargin<4, k = 1; else k = x; end, x = xg; % set input params
K = creategrid(x,eq,k); return
% mode 4) convert possible index vector into data space
elseif strcmp(cov,'size') % call: [ng,Dg] = apxGrid('size',xg);
[ng,Dg] = sizegrid(xg);
K = ng; Mx = Dg; return
% mode 5) convert possible index vector into data space
elseif strcmp(cov,'idx2dat') % call: [xx,ng,Dg] = apxGrid('idx2dat',xg,x);
[ng,Dg] = sizegrid(xg); N = prod(ng);
if isidx(hyp,N), xe = expandgrid(xg); K = xe(hyp,:); else K = hyp; end
Mx = ng; xe = Dg; return
% mode 6) compute interpolation matrix
elseif strcmp(cov,'interp') % call [Mx,dMx] = apxGrid('interp',xg,x,deg);
if nargout>1, [K,Mx]=interpgrid(xg,hyp,x); else K=interpgrid(xg,hyp,x); end
return
% mode 7) provide flattened interpolation grid without nesting
elseif strcmp(cov,'flatten') % call xf = apxGrid('flatten',xg);
K = flattengrid(xg); return
% mode 8) compute eigen-decomposition of Kronecker matrix
elseif strcmp(cov,'eigkron') % call [V,ee,e] = apxGrid('eigkron',K,xg,s);
[K,Mx,xe] = eigkron(xg,hyp,x); return
% mode 9) compute a circulant embedding
elseif strcmp(cov,'circ') % call [c,xg] = apxGrid('circ',k,n,s);
[K,Mx] = circ(xg,hyp,x); return
% mode 10) compute directional derivatives
elseif strcmp(cov,'dirder') % call dhyp = apxGrid('dirder',K,xg,Mx,a,b);
K = dirder(xg,hyp,x,z,b); return
% mode 11) matrix multiplication along a tensor
elseif strcmp(cov,'tmul') % call C = apxGrid('tmul',A,B,dim);
K = tmul(xg,hyp,x); return
% mode 12) test grid for being equispaced
elseif strcmp(cov,'equi') % call eq = apxGrid('equi',xg,i);
K = equi(xg,hyp); return
% mode 13) report a descriptive status
elseif strcmp(cov,'info') % call s = apxGrid('info',Kg,Mx,xg,deg);
K = info(xg,hyp,x,z); return
end
% mode 0) regular covariance function computations
p = numel(xg); [ng,Dg] = sizegrid(xg); % number of Kronecker factors
if numel(cov)~=p, error('We require p factors.'), end
for ii = 1:p % iterate over covariance functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
D = Dg(ii); j(ii) = cellstr(num2str(eval(feval(f{:})))); % collect nbr hypers
end
if nargin<4 % report number of parameters
K = char(j(1)); for ii=2:length(cov), K = [K, '+', char(j(ii))]; end, return
end
if nargin<5, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
v = []; % v vector indicates to which covariance parameters belong
for ii = 1:p, v = [v repmat(ii, 1, eval(char(j(ii))))]; end
N = prod(ng); n = size(x,1); D = sum(Dg); % expanded grid and data dimension
ix = isidx(x,N); % determine whether x is an index or a data array
if ~ix && size(x,2)~=D, error('Grid and data dimension are different.'), end
if nargout>1 || ~(dg||xeqz||ix) % off-grid interpolation
if nargin>5, Mx = interpgrid(xg,x,b); else Mx = interpgrid(xg,x); end
end
if dg % evaluate as full dense vector for diagonal covariance case
K = 1; % xg is not assumed to form a grid for z = 'diag'
for ii = 1:length(cov) % iteration over factor functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
d = sum(Dg(1:ii-1))+(1:Dg(ii)); % dimensions of interest
if ix, xii = xg{ii}; else xii = x(:,d); end % switch Kronecker/plain prod
Kj = feval(f{:}, hyp(v==ii), xii, z); % plain Kronecker factor
if ix, K = kron(K,Kj); else K = K.*Kj; end % switch Kronecker/plain prod
end
if ix, K = K(x); end, return
end
if isidx(z,N), iz = z; z = apxGrid('expand',xg); z = z(iz,:); end % expand z
K = cell(p,1); dK = cell(p,1); sz = [1,1]; % cov Kronecker factors total size
for ii = 1:p % iteration over factor functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
d = sum(Dg(1:ii-1))+(1:Dg(ii)); % dimensions of interest
if isnumeric(z) && ~isempty(z) % cross terms
zd = z(:,d);
elseif xeqz && iscell(xg{ii}) % Toeplitz/BTTB
zd = [];
else % symmetric matrix
zd = z;
end
xii = xg{ii}; % grid factor
if xeqz && iscell(xg{ii}) % Toeplitz/BTTB
di = numel(xii); ni = sizegrid(xii);
wi = zeros(di,1); for j=1:di, wi(j) = xii{j}(end)-xii{j}(1); end % width
eqstat = true; for j=1:di, eqstat = eqstat & equi(xii,j); end
if ~eqstat, error('Subgrid not equispaced.'), end % stop if problem
if prod(ni)>dense_max % empirical thresh: FFT-based MVM with 1 rhs faster
kii = @(n) feval(f{:},hyp(v==ii),(n-1)*diag(wi./(ni-1)), zeros(1,di));
xc = cell(di,1); % generic (Strang) circular embedding grid, kii = k(int)
for j=1:di, n2 = floor(ni(j)-1/2)+1; xc{j} = [1:n2,n2-2*ni(j)+2:0]'; end
ci = kii(apxGrid('expand',xc)); ci = reshape(ci,[2*ni(:)'-1,1]); dki = [];
fi = real(fftn(ci)); % precompute FFT for circular filter
mvmKi = @(x) bttbmvmsymfft(fi,x); % MVM with Toeplitz/BTTB matrix
if di==1, s = 'toep'; else s = ['bttb',num2str(di)]; end
ki = struct('descr',s, 'mvm',mvmKi, 'kii',kii, 'size',prod(ni)*[1,1]);
else % simply evaluate covariance matrix if prod(ni) too small
[ki,dki] = feval(f{:},hyp(v==ii),expandgrid(xii));
end
K{ii} = ki; dK{ii} = dki; sz = sz.*K{ii}.size;
else
if iscell(xii), xii = expandgrid(xii); end
[K{ii},dK{ii}] = feval(f{:}, hyp(v==ii), xii, zd); % plain Kronecker factor
sz = sz.*size(K{ii});
end
end
if xeqz % create mvm and rest
K = struct('mvm',@(a)kronmvm(K,a),'size',sz,'kronmvm',@kronmvm,...
'kron',struct('factor',K,'dfactor',dK));
else % expand cross terms
Ks = K; K = Ks{1}; for ii = 2:p, K = kron1(Ks{ii},K); end
if ix, if numel(x)~=N || max(abs(x-(1:N)'))>0, K = K(x,:); end
else K = Mx*K;
end
end
if nargout>2, xe = apxGrid('expand',xg); end
% Perform a matrix vector multiplication b = A*x with a matrix A being a
% Kronecker product given by A = kron( kron(...,As{2}), As{1} ).
function b = kronmvm(As,x,transp)
if nargin>2 && ~isempty(transp) && transp % transposition by transposing parts
for i=1:numel(As)
if isnumeric(As{i})
As{i} = As{i}';
else
As{i}.mvm = As{i}.mvmt;
As{i}.size = [As{i}.size(2),As{i}.size(1)];
end
end
end
m = zeros(numel(As),1); n = zeros(numel(As),1); % extract sizes
for i=1:numel(n)
if isnumeric(As{i})
[m(i),n(i)] = size(As{i});
else
m(i) = As{i}.size(1); n(i) = As{i}.size(2);
end
end
d = size(x,2);
b = x;
for i=1:numel(n) % apply As{i} to the 2nd dimension
sa = [prod(m(1:i-1)), n(i), prod(n(i+1:end))*d]; % size
a = reshape(permute(reshape(full(b),sa),[2,1,3]),n(i),[]);
if isnumeric(As{i}), b = As{i}*a; else b = As{i}.mvm(a); end % do batch MVM
b = permute(reshape(b,m(i),sa(1),sa(3)),[2,1,3]);
end
b = reshape(b,prod(m),d); % bring result in correct shape
% Perform MVM b = T*a with a of size (n,m) with a BTTB (Block-Toeplitz with
% Toeplitz-blocks) matrix T of size (n,n) by pointwise multiplication with the
% Fourier-transformed filter f. All variables are assumed real valued.
% Needs O(3*m*n*log(n)) time and O(n*m) space.
function b = bttbmvmsymfft(f,a)
ng = (size(f)+1)/2; p = numel(ng); Ng = prod(ng); % extract sizes
if p==2 && ng(2)==1, p = 1; ng = ng(1); end % detect 1d and reduce p
m = numel(a)/Ng; b = reshape(a,[ng,m]);
for i=1:p, b = fft(b,2*ng(i)-1,i); end % emulate fftn with new shape
b = bsxfun(@times,f,b); % pointwise multiplication
for i=1:p, b = ifft(b,[],i); end % emulate ifft
for i=1:p % only keep the relevant part of the result
b = reshape(b,prod(ng(1:i-1)),2*ng(i)-1,prod(2*ng(i+1:p)-1)*m);
b = b(:,1:ng(i),:);
end
b = real(reshape(b,[],m));
% perform kron along first dimension only
% the code is equivalent to the following loop
% z = zeros(size(x,1)*size(y,1),size(x,2));
% for i=1:size(z,2), z(:,i) = kron(x(:,i),y(:,i)); end
function z = kron1(x,y)
nx = size(x,1); ny = size(y,1);
z = repmat(reshape(x,1,nx,[]),[ny,1,1]).*repmat(reshape(y,ny,1,[]),[1,nx,1]);
z = reshape(z,nx*ny,[]);
function r = isidx(i,N) % check whether i represents an integer index vector
r = false;
if numel(i)>0 && ~strcmp(i,'diag') && size(i,2)==1 && ndims(i)==2
if max(abs(i-floor(i)))<1e-13
if 0<min(i) && max(i)<=N, r = true; end
end
end
% mode 1 (expand)
function [x,ng,Dg] = expandgrid(xg) % expand a Kronecker grid
[ng,Dg] = sizegrid(xg); % original size
if ~iscell(xg), x = xg; return, end % catch trivial case
xg = flattengrid(xg); % remove nestedness
p = numel(xg); x = xg{1}; % expanded grid data
ngf = zeros(p,1); Dgf = zeros(p,1); [ngf(1),Dgf(1)] = size(xg{1});
for i=2:p
szx = size(x); [ngf(i),Dgf(i)] = size(xg{i});
xold = repmat(reshape(x,[],1,szx(end)),[1,ngf(i),1]);
xnew = repmat(reshape(xg{i},[1,ngf(i),Dgf(i)]),[size(xold,1),1,1]);
x = reshape(cat(3,xold,xnew),[szx(1:end-1),ngf(i),szx(end)+Dgf(i)]);
end
x = reshape(x,[],size(x,ndims(x)));
% mode 2 (factor)
function xg = factorgrid(x,ng,Dg) % factor a Kronecker grid
p = numel(ng); xg = cell(p,1); % extract individual grid components xg
for i=1:p
x = reshape(x,[prod(ng(1:i-1)), ng(i), prod(ng(i+1:end)), sum(Dg)]);
xg{i} = reshape(x(1,:,1,sum(Dg(1:i-1))+(1:Dg(i))), ng(i), Dg(i));
end
% mode 3 (create)
function xg = creategrid(x,eq,k)
if nargin<2, eq = 1; end % set default values
if nargin<3, k = 1; end % set input params
p = size(x,2); xg = cell(p,1); % allocate result
if numel(k)>0, k = ones(p,1).*k(:); end % enforce vector-valued k
for j=1:p % iterate over dimensions
u = sort(unique(x(:,j))); if numel(u)<2, error('Two few unique points.'),end
if isempty(k) % determine number of grid points
if eq
ngj = ceil( (u(end)-u(1))/min(abs(diff(u))) ); % use minimum spacing
else
ngj = numel(u);
end
elseif 0<=k(j) && k(j)<=1
ngj = ceil(k(j)*numel(u));
else
ngj = k(j);
end
du = (u(end)-u(1))/ngj; bu = [u(1)-5*du, u(end)+5*du];
if eq % equispaced grid
xg{j} = linspace(bu(1),bu(2),max(ngj,5))'; % at least 5 grid points
else % non-equispaced grid
[idx,xgj] = kmeans(u,min(numel(u),ngj-2)); xgj = sort(xgj(:))'; % cluster
nb = ngj-numel(xgj); nb1 = floor(nb/2); nb2 = nb - nb1; % size of boundary
xg1 = linspace(bu(1),xgj(1),nb1+1); xg2 = linspace(xgj(end),bu(2),nb2+1);
xg{j} = [xg1(1:nb1), xgj, xg2(1+(1:nb2))]';
end
end
% mode 4 (size)
function [ng,Dg] = sizegrid(xg) % report the size of the p grid factors
if ~iscell(xg), [ng,Dg] = size(xg); return, end % catch trivial case
p = numel(xg); ng = zeros(p,1); Dg = zeros(p,1); % number of grid factors
for i=1:p % iterate over grid factors
x = xg{i};
if iscell(x) % stationary and equispace grid
for j=1:numel(x)
if j==1
[ng(i),Dg(i)] = size(x{j});
else
ng(i) = ng(i)*size(x{j},1);
Dg(i) = Dg(i)+size(x{j},2);
end
end
else % arbitrary grid
[ng(i),Dg(i)] = size(x);
end
end
% mode 6 (interp)
% deg, degree of equispaced interpolation polynomial, 0:nn, 1:lin, 3:cub
function [Mx,dMx] = interpgrid(xg,x,deg)
xg = flattengrid(xg); % remove nestedness
p = numel(xg); Dg = zeros(p,1); ng = zeros(p,1); n = size(x,1); % dims ..
for i=1:p, [ng(i),Dg(i)] = size(xg{i}); end, N = prod(ng); %.. and sizes
ix = isidx(x,N); % determine whether x is an index or a data array
if ix
Mx = sparse(1:n,x,1,n,N); if nargout>1, dMx = repmat({sparse(n,N)},p,1); end
else
if nargin<3, deg = 3; end, deg = deg(:).*ones(p,1); % cubic is default
s = 1; % initial stride
for i=1:p % iterate over Toeplitz components
d = sum(Dg(1:i-1))+(1:Dg(i)); % dimensions of interest
xt = xg{i}; it = find(abs(xt(2,:)-xt(1,:))); % grid nonzero inc idx
if equi(xg,i) % compute interpolation coefficients
if nargout>1 % equispaced grid pts
[Ji,Ci,dCi] = eqinterp(xt(:,it),x(:,d(it)),deg(i));
else
[Ji,Ci] = eqinterp(xt(:,it),x(:,d(it)),deg(i));
end
else
if nargout>1 % non-equispaced grid pts, lin interp, inv dist weighting
[Ji,Ci,dCi] = neqinterp(xt(:,it),x(:,d(it)));
else
[Ji,Ci] = neqinterp(xt(:,it),x(:,d(it)));
end
end
nc = size(Ci,2); % number of interpolation coefficients along dimension
if i==1
C = Ci; J = ones(n,1);
if nargout>1, dC = repmat({Ci},p,1); dC{1} = dCi; end
else
C = repmat(C,[1,1,nc]) .* repmat(reshape(Ci,n,1,nc),[1,size(C,2),1]);
C = reshape(C,n,[]);
if nargout>1
for j=1:p
if i==j, dCij = dCi; else dCij = Ci; end
dC{j} = repmat(dC{j},[1,1,nc]) .* ...
repmat(reshape(dCij,n,1,nc),[1,size(dC{j},2),1]);
dC{j} = reshape(dC{j},n,[]);
end
end
end
J = repmat(J(:),[1,nc]) + s*repmat(Ji-1,[size(C,2)/nc,1]); % blow 2nd idx
s = s*ng(i); % update stride
end
I = repmat((1:n)',[1,size(C,2)]); id = 0<J&J<=N;% first index and valid flag
Mx = sparse(I(id),J(id),C(id),n,N);
if nargout>1
dMx = cell(p,1); for i=1:p,dMx{i} = sparse(I(id),J(id),dC{i}(id),n,N); end
end
end
% Compute interpolation coefficients C (nt,nc) and interpolation coefficient
% indices J (nt,nc) from a source grid s (ns,1) to a target array t (nt,1).
% The coefficient matrix C has rows summing up to 1.
function [J,C,dC] = eqinterp(s,t,d)
gp = false;
switch d
case 0, k = @(x) -0.5<x & x<=0.5; it=-1:0; dk = @(x) 0*x;
case 1, k = @(x) max(1-abs(x),0); it=-1:0; dk = @(x) -(abs(x)<=1).*sign(x);
case 3, k = @kcub; it=-2:1; dk = @dkcub;
otherwise, ell = d/5; gp = true; % GP interpolation
k = @(x) exp(-x.*x/(2*ell^2)); it=(0:d-1)-floor(d/2);
dk = @(x) -k(x).*x/(ell^2);
end
ds = s(2)-s(1); ns = numel(s); nt = numel(t); nc = numel(it);
if size(s,2)*size(t,2)~=1, error('Interpolation only possible for d==1.'), end
if ns<nc, error('Interpolation only possible for ns>%d.',nc-1), end
j = floor((t-s(1))/ds)+1; % index of closest smaller grid point
w = (t-s(1))/ds-j+1; % relative distance to closest smaller grid point [0,1]
j = j-it(nc); C = zeros(nt,nc); dC = zeros(nt,nc);
for i=1:nc
C(:,i) = k(w+it(nc+1-i)); if nargout>2, dC(:,i)=dk(w+it(nc+1-i))*(ns-1); end
end
if gp, kn = k(sqrt(sq_dist(1:d))); C = C/kn; dC = dC/kn; end
v = 1; id = find(j<nc+it(1)); C(id,:) = 0; dC(id,:) = 0; % fix lower boundary
D = abs(repmat(s(1:nc)',numel(id),1)-repmat(t(id),[1,nc]));
[junk,jid] = min(D,[],2); % index of closest index in boundary region
for i=1:numel(id), C(id(i),jid(i)) = 1; dC(id(i),jid(i)) = 0; end, j(id) = v;
v = ns-nc+1; id = find(j>v); C(id,:) = 0; dC(id,:) = 0; % fix upper boundary
D = abs(repmat(s(ns-nc+1:ns)',numel(id),1)-repmat(t(id),[1,nc]));
[junk,jid] = min(D,[],2); % index of closest index in boundary region
for i=1:numel(id), C(id(i),jid(i)) = 1; dC(id(i),jid(i)) = 0; end, j(id) = v;
J = zeros(nt,nc); for i=1:nc, J(:,i) = j+i-1; end % construct index array J
% Robert G. Keys, Cubic Convolution Interpolation for Digital Image Processing,
% IEEE ASSP, 29:6, December 1981, p. 1153-1160.
function y = kcub(x)
y = zeros(size(x)); x = abs(x);
q = x<=1; % Coefficients: 1.5, -2.5, 0, 1
y(q) = (( 1.5 * x(q) - 2.5) .* x(q) ) .* x(q) + 1;
q = 1<x & x<=2; % Coefficients: -0.5, 2.5, -4, 2
y(q) = ((-0.5 * x(q) + 2.5) .* x(q) - 4) .* x(q) + 2;
function y = dkcub(x)
y = sign(x); x = abs(x);
q = x<=1; % Coefficients: 1.5, -2.5, 0, 1
y(q) = y(q) .* ( 4.5 * x(q) - 5.0) .* x(q);
q = 1<x & x<=2; % Coefficients: -0.5, 2.5, -4, 2
y(q) = y(q) .* ((-1.5 * x(q) + 5.0) .* x(q) - 4.0);
y(x>2) = 0;
% Perform piecewise linear interpolation using inverse distance weighting.
% s (ns,1) source nodes, need neither be sorted nor equispaced
% t (nt,1) target nodes
% M (nt,ns) interpolation matrix, M = sparse((1:N)'*[1,1],J,C,nt,ns);
%
% z = M*y where y (ns,1) are source values and z (nt,1) are target values
function [J,C,dC] = neqinterp(s,t)
ns = size(s,1); nc = 2; % get dimensions
if size(s,2)*size(t,2)~=1, error('Interpolation only possible for d==1.'), end
if ns<nc, error('Interpolation only possible for ns>=nc.'), end
[s,ord] = sort(s); ds = diff(s);
if min(ds)<1e-10, error('Some source points are equal.'), end
[junk,ii] = histc(t(:),[-inf;s(2:end-1);inf]);
d0 = t(:)-s(ii); d1 = s(ii+1)-t(:); d0n = d0<0; d1n = d1<0;
d0(d0n) = 0; d1(d1n) = 0; % boundary conditions
J = [ord(ii),ord(ii+1)]; C = [d1./(d1+d0),d0./(d1+d0)];
nz = 1-(d1n|d0n); if nargout>2, dC = [-nz./(d1+d0),nz./(d1+d0)]; end
% mode 7 (flatten)
function xf = flattengrid(xg) % convert nested grid into flat grid
if ~iscell(xg), xf = xg; return, end % catch trivial case
xf = cell(1,0);
for i=1:numel(xg)
x = xg{i}; if iscell(x), xf = [xf,x]; else xf = [xf,{x}]; end
end
% mode 8 (eigkron)
% Eigendecomposition of a Kronecker matrix K with dense, Toeplitz or BTTB
% factors so that K = V*diag(e)*V', where e = kron(ee,..). Note that this holds
% only approximately for Toeplitz/BTTB due to the circulant embedding.
function [V,ee,e] = eigkron(K,xg,s)
isbttb = @(Ki) isstruct(Ki) && (strcmp (Ki.descr,'toep') ...
|| strncmp(Ki.descr,'bttb',4)); % BTTB covariance
p = numel(K.kron); V = cell(p,1); ee = cell(p,1); % sizes and allocate memory
for j=1:p % compute eigenvalue diagonal matrix
if isbttb(K.kron(j).factor)
[xj,nj] = apxGrid('expand',xg{j}); % extract subgrid size
ej = fftn(circ(K.kron(j).factor.kii,nj,s)); % circ embedded cov mat
V{j}.mvm = @(v) Fmvm( v,nj); % V{j}' is Fourier matrix
V{j}.mvmt = @(v) Fmvmt(v,nj); V{j}.size = numel(ej)*[1,1];
else
Kj = K.kron(j).factor; Kj = (Kj+Kj')/2; % enforce symmetry
[V{j},ej] = eig(Kj); % compute eigenvalues of non-Toeplitz matrix
ej = diag(ej); V{j} = real(V{j}); % cosmetics
end
ee{j} = max(real(ej),0); % thresholding to ensure pd approximation
end
if nargout>2, e = 1; for j=1:p, e = kron(ee{j}(:),e); end, end
function a = Fmvmt(b,nj) % fast Fourier transform transpose for multiple rhs
Nj = prod(nj); sNj = sqrt(Nj); % scaling factor to make FFTN orthonormal
nr = numel(b)/Nj; % number of right-hand-side arguments
b = reshape(b,[nj(:)',nr]);
for i=1:numel(nj), b = fft(b,[],i); end % emulate fftn
a = reshape(b,Nj,[])/sNj; % perform rescaling
function b = Fmvm(a,nj) % fast Fourier transform for multiple rhs
Nj = prod(nj); sNj = sqrt(Nj); % scaling factor to make FFTN orthonormal
nr = numel(a)/Nj; % number of right-hand-side arguments
b = a; b = reshape(b,[nj(:)',nr]); % accumarray and target shape
for i=1:numel(nj), b = ifft(b,[],i); end % emulate ifftn
b = reshape(b,Nj,nr)*sNj; % perform rescaling
% mode 9 (circ)
% Construct a circular embedding c(nx1) from a covariance function k.
% - k is a function and the call k(1:n) returns a vector of length n
% - s is the setting for the embedding with values s={0,1,2,..}.
%
% s=0 No embedding c = k.
% s>0 Whittle embedding [1] as described by Guinness & Fuentes [2] in
% equation (5) with N = |s|.
%
% [1] Whittle, On stationary processes in the plane, Biometrika, 1954, 41(3/4).
% [2] Guinness & Fuentes, Circulant embedding of approximate covariances for
% inference from Gaussian data on large lattices, 2014, preprint,
% http://www4.stat.ncsu.edu/~guinness/circembed.html.
function [c,xg] = circ(k,n,s)
p = numel(n); n = n(:)'; % dimensions and row vector
if nargin<3, s = 2; end % default value
if s==0 % no embedding at all
xg = cell(p,1); for i=1:p, xg{i} = (1:n(i))'; end % standard grid
c = reshape(k(apxGrid('expand',xg)),[n,1]);
elseif s>0 % Whittle/Guinness aliasing
xg = cell(p,1); for i=1:p, xg{i} = (1-s*n(i):s*n(i))'; end
sz = [n; 2*s*ones(1,p)]; c = reshape(k(apxGrid('expand',xg)), sz(:)');
for i=1:p, c = sum(c,2*i); end, c = squeeze(c);
end
% mode 10 (dirder)
% d trace(a'*Mx*Kg*Mx'*b) / d hyp
function dhyp = dirder(Kg,xg,Mx,a,b)
a = reshape(a,size(Mx,1),[]); % turn into column vectors
if nargin<5, b = a; end % default input if b is missing
b = reshape(b,size(Mx,1),[]); % turn into column vectors
p = numel(Kg.kron); na = size(a,2); % number of Kronecker factors, vectors
ng = [apxGrid('size',xg)',na]; % grid dimension
Mta = Mx'*a; Mtb = Mx'*b; dhyp = []; % dhyp(i) = trace(a'*dKi*b)
for i=1:p
sz = [prod(ng(1:i-1)),ng(i),prod(ng(i+1:p)),na]; % bring arrays in vec shape
shp = @(x) reshape(permute(reshape(x,sz),[2,1,3,4]),ng(i),[]);
v = reshape(Mta,ng);
for j=1:p, if i~=j, v = tmul(Kg.kron(j).factor,v,j); end, end
if isnumeric(Kg.kron(i).factor)
dhci = Kg.kron(i).dfactor( shp(v)*shp(Mtb)' );
else
kii = Kg.kron(i).factor.kii;
[junk,ni] = apxGrid('expand',xg{i}); di = numel(ni);
xs = cell(di,1); % generic (Strang) circular embedding grid
for j=1:di, n2 = floor(ni(j)-1/2)+1; xs{j} = [1:n2,n2-2*ni(j)+2:0]'; end
[junk,dksi] = kii(apxGrid('expand',xs));
Fvb = fftn(sum(fftn2(shp(v),ni',1).*fftn2(shp(Mtb), ni'),di+1));
dhci = real(dksi(Fvb(:)));
end
dhyp = [dhyp; dhci(:)];
end
function y = fftn2(x,n,t) % fftn on trailing dimensions with padding
if nargin<3, t = 0; end % set a default value
nx = numel(x)/prod(n); y = reshape(x,[n(:)',nx]); % #instances
if t
for i=1:numel(n), y = fft(y,2*n(i)-1,i); end % fftn on relevant dimensions
else
for i=1:numel(n), y = ifft(y,2*n(i)-1,i); end % ifftn on relevant dimensions
end
% mode 11 (tmul)
% Multiplication with matrix/operator A along dimension dim of the tensor B.
% Note that tmul(A,B,1) = A*B if B is a matrix.
function C = tmul(A,B,dim)
if isnumeric(A), sa = size(A); else sa = A.size; end
sb = size(B); nb = ndims(B);
assert(dim>0 && floor(dim)==dim && dim<=nb)
assert(numel(sa)==2 && sb(dim)==sa(2))
if isnumeric(A), mvmA = @(x) A*x; else mvmA = A.mvm; end
if dim==1 % along first dimension (save on permute)
C = reshape(mvmA(reshape(B,sa(2),[])),[sa(1),sb(2:nb)]);
elseif dim==nb % along last dimension (save on permute)
C = reshape(mvmA(reshape(B,[],sa(2))')',[sb(1:nb-1),sa(1)]);
else
sb3 = [prod(sb(1:dim-1)),sa(2),prod(sb(dim+1:end))];
C = permute(reshape(B,sb3),[2,3,1]);
C = reshape(mvmA(reshape(C,sa(2),[])),[sa(1),sb3(3),sb3(1)]);
C = reshape(permute(C,[3,1,2]),[sb(1:dim-1),sa(1),sb(dim+1:end)]);
end
% mode 12 (equi)
function eq = equi(xg,i) % grid along dim i is equispaced
xi = xg{i};
if iscell(xi)
eq = true; for j=1:numel(xi), eq = eq && equi(xi,j); end
else
ni = size(xi,1);
if ni>1 % diagnose if data is linearly increasing
dev = abs(diff(xi)-ones(ni-1,1)*(xi(2,:)-xi(1,:)));
eq = max(dev(:))<1e-9;
else
eq = true;
end
end
% mode 13 (info)
function s = info(Kg,Mx,xg,deg)
sk = 'K ='; Ks = Kg.kron; sk = [sk,' kron[ ']; p = numel(xg);
for i=1:p
if isnumeric(Ks(i).factor)
si = sprintf('mat(%d)',size(Ks(i).factor,1));
else
sz = num2str(size(xg{i}{1},1));
for j=2:numel(xg{i}), sz = [sz,'x',num2str(size(xg{i}{j},1))]; end
si = sprintf('%s(%s)',Ks(i).factor.descr(1:4),sz);
end
if i<p, si = [si,' x ']; end
sk = sprintf('%s%s',sk,si);
end
sk = sprintf('%s ]\n',sk);
sm = 'M = ';
xf = apxGrid('flatten',xg); deg = deg(:).*ones(numel(xf),1); id = 1;
for i=1:p
if apxGrid('equi',xg,i)
si = sprintf('eq(d=%d',deg(id)); id = id+1;
if iscell(xg{i})
for j=2:numel(xg{i}), si=sprintf('%s,d=%d',si,deg(id)); id = id+1; end
end
si = [si,')'];
else
si = 'neq(d=1)'; id = id+1;
end
if i<p, si = [si,' x ']; end
sm = sprintf('%s%s',sm,si);
end
sm = sprintf('%s, nnz=%d\n',sm,nnz(Mx));
s = [sk,sm];
|
github
|
kd383/GPML_SLD-master
|
infMCMC.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/inf/infMCMC.m
| 11,425 |
utf_8
|
b9d0ffd6b56ddf12e1a81986654bca19
|
function [post nlZ dnlZ] = infMCMC(hyp, mean, cov, lik, x, y, par)
% Markov Chain Monte Carlo (MCMC) sampling from posterior and
% Annealed Importance Sampling (AIS) for marginal likelihood estimation.
%
% The algorithms are not to be used as a black box, since the acceptance rate
% of the samplers need to be carefully monitored. Also, there are no derivatives
% of the marginal likelihood available.
%
% There are additional parameters:
% - par.sampler switch between the samplers 'hmc' or 'ess'
% - par.Nsample num of samples
% - par.Nskip num of steps out of which one sample kept
% - par.Nburnin num of burn in samples (corresponds to Nskip*Nburning steps)
% - par.Nais num of AIS runs to remove finite temperature bias
% - par.st spherical Gaussian width of the posterior KDE
% Default values are sampler=hmc, Nsample=200, Nskip=40, Nburnin=10, Nais=3,
% st=0.001*sqrt(sum(diag(K))/n).
%
% The Hybrid Monte Carlo Sampler (HMC) is implemented as described in the
% technical report: Probabilistic Inference using MCMC Methods by Radford Neal,
% CRG-TR-93-1, 1993.
%
% Instead of sampling from f ~ 1/Zf * N(f|m,K) P(y|f), we use a
% parametrisation in terms of alpha = inv(K)*(f-m) and sample from
% alpha ~ P(a) = 1/Za * N(a|0,inv(K)) P(y|K*a+m) to increase numerical
% stability since log P(a) = -(a'*K*a)/2 + log P(y|K*a+m) + C and its
% gradient can be computed safely.
%
% The leapfrog stepsize as a time discretisation stepsize comes with a
% tradeoff:
% - too small: frequently accept, slow exploration, accurate dynamics
% - too large: seldomly reject, fast exploration, inaccurate dynamics
% In order to balance between the two extremes, we adaptively adjust the
% stepsize in order to keep the acceptance rate close to a target acceptance
% rate. Taken from http://deeplearning.net/tutorial/hmc.html.
%
% The code issues a warning in case the overall acceptance rate did deviate
% strongly from the target. This can indicate problems with the sampler.
%
% The Elliptical Slice Sampler (ESS) is a straight implementation that is
% inspired by the code shipped with the paper: Elliptical slice sampling by
% Iain Murray, Ryan Prescott Adams and David J.C. MacKay, AISTATS 2010.
%
% Annealed Importance Sampling (AIS) to determine the marginal likelihood is
% described in the technical report: AIS, Radford Neal, 1998.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-05-09.
%
% See also INFMETHODS.M.
if nargin<7, par = []; end % analyse parameter structure
if isfield(par,'sampler'), alg=par.sampler; else alg='hmc'; end
if isfield(par,'Nsample'), N =par.Nsample; else N =200; end
if isfield(par,'Nskip'), Ns =par.Nskip; else Ns = 40; end
if isfield(par,'Nburnin'), Nb =par.Nburnin; else Nb = 10; end
if isfield(par,'Nais'), R =par.Nais; else R = 3; end
K = feval(cov{:}, hyp.cov, x); % evaluate the covariance matrix
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
n = size(K,1); st_def = 0.001*sqrt(sum(diag(K))/n); % default value
if isfield(par,'st'), st =par.st; else st = st_def; end
[cK,fail] = chol(K+st^2*eye(n)); % try an ordinary Cholesky decomposition
if fail, error('Try increasing the par.st variable.'), end
T = (N+Nb)*Ns; % overall number of steps
[alpha,Na] = sample(K,cK,m,y,lik,hyp.lik, N,Nb,Ns, alg); % sample w/o annealing
post.alpha = alpha; al = sum(alpha,2)/N;
post.L = -(cK\(cK'\eye(n)) + al*al' - alpha*alpha'/N); % inv(K) - cov(alpha)
post.sW = [];
post.acceptance_rate_MCMC = Na/T; % additional output parameter
if nargout>1 % annealed importance sampling
% discrete time t from 1 to T and temperature tau from tau(1)=0 to tau(T)=1
taus = [zeros(1,Nb),linspace(0,1,N)].^4; % annealing schedule, effort at start
% the fourth power idea is taken from the Kuss&Rasmussen paper, 2005 JMLR
% Z(t) := \int N(f|m,K) lik(f)^taus(t) df hence Z(1) = 1 and Z(T) = Z
% Z = Z(T)/Z(1) = prod_t Z(t)/Z(t-1);
% ln Z(t)/Z(t-1) = ( tau(t)-tau(t-1) ) * loglik(f_t)
lZ = zeros(R,1); dtaus = diff(taus(Nb+(1:N))); % we have: sum(dtaus)==1
for r=1:R
[A,Na] = sample(K,cK,m,y,lik,hyp.lik, N,Nb,Ns, alg, taus); % AIS
for t=2:N % evaluate the likelihood sample-wise
lp = feval(lik{:},hyp.lik,y,K*A(:,t)+m,[],'infLaplace');
lZ(r) = lZ(r)+dtaus(t-1)*sum(lp);
end
post.acceptance_rate_AIS(r) = Na/T; % additional output parameters
end
nlZ = log(R)-logsumexp(lZ); % remove finite temperature bias, softmax average
if nargout>2 % marginal likelihood derivatives are not computed
dnlZ = struct('cov',0*hyp.cov, 'mean',0*hyp.mean, 'lik',0*hyp.lik);
end
end
%% choose between HMC and ESS depending on the alg string
function [alpha,Na] = sample(K,cK,m,y,lik,hyp, N,Nb,Ns, alg, varargin)
if strcmp(lik,'likGauss')
[alpha,Na] = sample_gauss(K, m,y,hyp, N,Nb,Ns, varargin{:});
else
if strcmpi(alg,'hmc')
[alpha,Na] = sample_hmc(K, m,y,lik,hyp, N,Nb,Ns, varargin{:});
else
[alpha,Na] = sample_ess(cK,m,y,lik,hyp, N,Nb,Ns, varargin{:});
end
end
%% sample from Gaussian posterior
function [alpha,Na] = sample_gauss(K, m,y,hyp, N,Nb,Ns, taus)
Na = (N+Nb)*Ns; sn2 = exp(2*hyp); n = size(K,1);
if nargin<8
S = K + K*K/sn2; alpha = chol(S)\randn(n,N) + repmat(S\(K*(y-m)/sn2),1,N);
else
alpha = zeros(n,N);
for t=1:N
St = K + K*K*(taus(Nb+t)/sn2);
alpha(:,t) = chol(St)\randn(n,1) + St\(K*(y-m)*taus(Nb+t)/sn2);
end
end
%% sample using elliptical slices
function [alpha,T] = sample_ess(cK,m,y,lik,hyp, N,Nb,Ns, taus)
if nargin>=9, tau = taus(1); else tau = 1; end % default is no annealing
T = (N+Nb)*Ns; % overall number of steps
F = zeros(size(m,1),N);
for t=1:T
if nargin>=9, tau = taus(1+floor((t-1)/Ns)); end % parameter from schedule
if t==1, f=0*m; l=sum(feval(lik{:},hyp,y,f+m)); end % init sample f & lik l
r = cK'*randn(size(m)); % random sample from N(0,K)
[f,l] = sample_ess_step(f,l,r,m,y,lik,hyp,tau);
if mod(t,Ns)==0 % keep one state out of Ns
if t/Ns>Nb, F(:,t/Ns-Nb) = f; end % wait for Nb burn-in steps
end
end
alpha = cK\(cK'\F);
%% elliptical slice sampling: one step
function [f,l] = sample_ess_step(f,l,r,m,y,lik,hyp,tau)
if nargin<8, tau=1; end, if tau>1, tau=1; end, if tau<0, tau=0; end
h = log(rand) + tau*l; % acceptance threshold
a = rand*2*pi; amin = a-2*pi; amax = a; % bracket whole ellipse
k = 0; % emergency break
while true % slice sampling loop; f for proposed angle diff; check if on slice
fp = f*cos(a) + r*sin(a); % move on ellipsis defined by r
l = sum(feval(lik{:},hyp,y,fp+m));
if tau*l>h || k>20, break, end % exit if new point is on slice or exhausted
if a>0, amax=a; elseif a<0, amin=a; end % shrink slice to rejected point
a = rand*(amax-amin) + amin; k = k+1; % propose new angle difference; break
end
f = fp; % accept
%% sample using Hamiltonian dynamics as proposal algorithm
function [alpha,Na] = sample_hmc(K,m,y,lik,hyp, N,Nb,Ns, taus)
% use adaptive stepsize rule to enforce a specific acceptance rate
epmin = 1e-6; % minimum leapfrog stepsize
epmax = 9e-1; % maximum leapfrog stepsize
ep = 1e-2; % initial leapfrog stepsize
acc_t = 0.9; % target acceptance rate
acc = 0; % current acceptance rate
epinc = 1.02; % increase factor of stepsize if acceptance rate is below target
epdec = 0.98; % decrease factor of stepsize if acceptance rate is above target
lam = 0.01; % exponential moving average computation of the acceptance rate
% 2/(3*lam) steps half height; lam/nstep = 0.02/33, 0.01/66, 0.005/133
l = 20; % number of leapfrog steps to perform for one step
n = size(K,1);
T = (N+Nb)*Ns; % overall number of steps
alpha = zeros(n,N); % sample points
al = zeros(n,1); % current position
if nargin>=9, tau = taus(1); else tau = 1; end % default is no annealing
[gold,eold] = E(al,K,m,y,lik,hyp,tau); % initial energy, gradient
Na = 0; % number of accepted points
for t=1:T
if nargin>=9, tau = taus(1+floor((t-1)/Ns)); end % parameter from schedule
p = randn(n,1); % random initial momentum
q = al;
g = gold;
Hold = (p'*p)/2 + eold; % H = Ekin + Epot => Hamiltonian
for ll=1:l % leapfrog discretization steps, Euler like
p = p - (ep/2)*g; % half step in momentum p
q = q + ep*p; % full step in position q
g = E(q,K,m,y,lik,hyp,tau); % compute new gradient g
p = p - (ep/2)*g; % half step in momentum p
end
[g,e] = E(q,K,m,y,lik,hyp,tau);
H = (p'*p)/2 + e; % recompute Hamiltonian
acc = (1-lam)*acc; % decay current acceptance rate
if log(rand) < Hold-H % accept with p = min(1,exp(Hold-H))
al = q; % keep new state,
gold = g; % gradient
eold = e; % and potential energy
acc = acc + lam; % increase rate due to acceptance
Na = Na+1; % increase number accepted steps
end
if acc>acc_t % too large acceptance rate => increase leapfrog stepsize
ep = epinc*ep;
else % too small acceptance rate => decrease leapfrog stepsize
ep = epdec*ep;
end
if ep<epmin, ep = epmin; end % clip stepsize ep to [epmin,epmax]
if ep>epmax, ep = epmax; end
if mod(t,Ns)==0 % keep one state out of Ns
if t/Ns>Nb, alpha(:,t/Ns-Nb) = al; end % wait for Nb burn-in steps
end
end
if Na/T<acc_t*0.9 || 1.07*acc_t<Na/T % Acceptance rate in the right ballpark?
fprintf('The acceptance rate %1.2f%% is not within',100*Na/T)
fprintf(' [%1.1f, %1.1f]%%\n', 100*acc_t*0.9, 100*acc_t*1.07)
if nargin<9
warning('Bad (HMC) acceptance rate')
else
warning('Bad (AIS) acceptance rate')
end
end
%% potential energy function value and its gradient
function [g,e] = E(al,K,m,y,lik,hyp,tau)
% E(f) = E(al) = al'*K*al/2 - tau*loglik(f), f = K*al+m
% g(f) = g(al) = al - tau*dloglik(f) => dE/dal = K*( al-dloglik(f) )
if nargin<7, tau=1; end, if tau>1, tau=1; end, if tau<0, tau=0; end
Kal = K*al;
[lp,dlp] = feval(lik{:},hyp,y,Kal+m,[],'infLaplace');
g = Kal-K*(tau*dlp);
if nargout>1, e = (al'*Kal)/2 - tau*sum(lp); end
%% y = logsumexp(x) = log(sum(exp(x(:))) avoiding overflow
function y=logsumexp(x)
mx = max(x(:));
y = log(sum(exp(x(:)-mx)))+mx;
|
github
|
kd383/GPML_SLD-master
|
infGrid.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/inf/infGrid.m
| 9,908 |
utf_8
|
4d801508da434be163f9b59d8cbbf94d
|
function [post nlZ dnlZ] = infGrid(hyp, mean, cov, lik, x, y, opt)
% Inference for a GP with grid-based approximate covariance.
%
% The (Kronecker) covariance matrix used is given by:
% K = kron( kron(...,K{2}), K{1} ) = K_p x .. x K_2 x K_1.
%
% Compute a parametrization of the posterior, the negative log marginal
% likelihood and its derivatives w.r.t. the hyperparameters.
% The result is exact for complete grids, otherwise results are approximate.
% See also "help infMethods".
%
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m and in conjunction with covGrid* and likGauss.
%
% In case of equispaced data points, we use Toeplitz/BTTB algebra. We use a
% circulant embedding approach to approximate the log determinant of the
% covariance matrix. If any of the factors K_i, i=1..p has Toeplitz or more
% general BTTB structure (which is indicated by K.kron.factor(i).descr being
% equal to 'toep', 'bttb2', 'bttb3', etc.), we automatically use the circulant
% determinant approximation. The grid specification needs to reflect this.
% There are some examples to illustrate the doubly nested curly bracket
% formalism. See also "help covGrid".
%
% There are a set of options available:
% opt.pred_var, minimum value is 20 as suggested in the Papandreou paper
% Instead of the data x, we can tell the engine to use x*hyp.P' to make grid
% methods available to higher dimensional data. We offer two ways of
% restricting the projection matrix hyp.P to either orthonormal matrices,
% where hyp.P*hyp.P'=I or normalised projections diag(hyp.P*hyp.P')=1.
% opt.proj = 'orth'; enforce orthonormal projections by working with
% sqrtm(hyp.P*hyp.P')\hyp.P instead of hyp.P
% opt.proj = 'norm'; enforce normal projections by working with
% diag(1./sqrt(diag(hyp.P*hyp.P')))*hyp.P instead of hyp.P
%
% There are a number of options inherited from apx.m
% The conjugate gradient-based linear system solver has two adjustable
% parameters, the relative residual threshold for convergence opt.cg_tol and
% the maximum number of MVMs opt.cg_maxit until the process stops.
% opt.cg_tol, default is 1e-6 as in Matlab's pcg function
% opt.cg_maxit, default is min(n,20) as in Matlab's pcg function
% We can tell the inference engine to make functions post.fs2 and post.ys2
% available in order to compute the latent and predictive variance of an
% unknown test data point. Precomputations for Perturb-and-MAP sampling are
% required for these functions.
% opt.stat = true returns a little bit of output summarising the exploited
% structure of the covariance of the grid.
% Please see cov/apxGrid.m for details.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-10-14.
if nargin<7, opt = []; end % make sure parameter exists
xg = cov{3}; p = numel(xg); % extract underlying grid parameters
[ng,Dg] = apxGrid('size',xg); N = prod(ng); D = sum(Dg); % dimensionality
if isfield(opt,'proj'), proj = opt.proj; else proj = 'none'; end % projection
hP = 1; % no projection at all
if isfield(hyp,'proj') % apply transformation matrix if provided
hP = hyp.proj;
if strncmpi(proj,'orth',4)
hP = sqrtm(hP*hP'+eps*eye(D))\hP; % orthonormal projector
elseif strncmpi(proj,'norm',4)
hP = diag(1./sqrt(diag(hP*hP')+eps))*hP; % normal projector
end
end
if isfield(opt,'deg'), deg = opt.deg; else deg = 3; end % interpol. degree
% no of samples for covariance hyperparameter sampling approximation,
% see Po-Ru Loh et.al.: "Contrasting regional architectures of schizophrenia and
% other complex diseases using fast variance components analysis, biorxiv.org
if isfield(opt,'ndcovs'), ndcovs = max(opt.ndcovs,20);
else ndcovs = 0; end
[K,M] = feval(cov{:}, hyp.cov, x*hP'); % evaluate covariance mat constituents
m = feval(mean{:}, hyp.mean, x*hP'); % evaluate mean vector
if iscell(lik), lstr = lik{1}; else lstr = lik; end
if isa(lstr,'function_handle'), lstr = func2str(lstr); end
if isequal(lstr,'likGauss'), inf = @infGaussLik; else inf = @infLaplace; end
if nargout>0
if nargout<3
[post nlZ] = inf(hyp, mean, cov, lik, x*hP', y, opt);
else
[post nlZ dnlZ] = inf(hyp, mean, cov, lik, x*hP', y, opt);
if isfield(hyp,'proj')
dnlZ.proj=deriv_proj(post.alpha,hP,K,covGrid('flatten',xg),m,mean,hyp,x);
if strncmpi(proj,'orth',4), dnlZ.proj=chain_orth(hyp.proj,dnlZ.proj);
elseif strncmpi(proj,'norm',4), dnlZ.proj=chain_norm(hyp.proj,dnlZ.proj);
end
end
end
else return, end
% no of samples for perturb-and-MAP, see George Papandreou and Alan L. Yuille:
% "Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing"
ns = 0; % do nothing per default, 20 is suggested in paper
if isfield(opt,'pred_var'), ns = max(ceil(abs(opt.pred_var)),20); end
if ndcovs>0 && nargout>2, ns = max(ns,ndcovs); end % possibly draw more samples
Mtal = M'*post.alpha; % blow up alpha vector from n to N
kronmvm = K.kronmvm;
if ns>0
s = 3; % Whittle embedding overlap factor
[V,ee,e] = apxGrid('eigkron',K,xg,s); % perform eigen-decomposition
% explained variance on the grid vg=diag(Ku*M'*inv(C)*M*Ku), C=M*Ku*M'+inv(W)
% relative accuracy r = std(vg_est)/vg_exact = sqrt(2/ns)
A = sample(V,e,M,post.sW,ns,kronmvm); A = post.L(A); % a~N(0,inv(C))
z = K.mvm(M'*A); vg = sum(z.*z,2)/ns; % z ~ N(0,Ku*M'*inv(C)*M*Ku)
if ndcovs>0
dnlZ.covs = - apxGrid('dirder',K,xg,M,post.alpha,post.alpha)/2;
na = size(A,2);
for i=1:na % compute (E[a'*dK*a] - a'*dK*a)/2
dnlZ.covs = dnlZ.covs + apxGrid('dirder',K,xg,M,A(:,i),A(:,i))/(2*na);
end
if isfield(hyp,'proj') % data projection matrix
dPs = zeros(size(hyp.proj)); % allocate memory for result
KMtal = K.mvm(Mtal); [M,dM]=covGrid('interp',xg,x*hP'); % precompute
for i = 1:size(dPs,1)
if equi(xg,i), wi = max(xg{i})-min(xg{i}); else wi = 1; end % scaling
for j = 1:size(dPs,2)
dMtal = dM{i}'*(x(:,j).*post.alpha/wi);
dMtA = dM{i}'*(repmat(x(:,j),1,na).*A/wi);
dPs(i,j) = sum(sum(dMtA.*z))/ndcovs - dMtal'*KMtal;
end
end
if strncmpi(proj,'orth',4),dnlZ.projs = chain_orth(hyp.proj,dPs);
elseif strncmpi(proj,'norm',4),dnlZ.projs = chain_norm(hyp.proj,dPs);
else dnlZ.projs = dPs; end
end
end
else
vg = zeros(N,1); % no variance explained
end
% add fast predictions to post structure, f|y,mu|s2
post.predict = @(xs) predict(xs*hP',xg,K.mvm(Mtal),vg,hyp,mean,cov,lik,deg);
% global mem, S = whos(); mem=0; for i=1:numel(S), mem=mem+S(i).bytes/1e6; end
% Compute latent and predictive means and variances by grid interpolation.
function [fmu,fs2,ymu,ys2] = predict(xs,xg,Kalpha,vg,hyp,mean,cov,lik,deg)
Ms = apxGrid('interp',xg,xs,deg); % obtain interpolation matrix
xs = apxGrid('idx2dat',xg,xs,deg); % deal with index vector
ms = feval(mean{:},hyp.mean,xs); % evaluate prior mean
fmu = ms + Ms*Kalpha; % combine and perform grid interpolation
if nargout>1
if norm(vg,1)>1e-10, ve = Ms*vg; else ve = 0; end % interp grid var expl.
ks = feval(cov{:},hyp.cov,xs,'diag'); % evaluate prior variance
fs2 = max(ks-ve,0); % combine, perform grid interpolation, clip
if nargout>2, [lp, ymu, ys2] = feval(lik{:},hyp.lik,[],fmu,fs2); end
end
% sample a~N(0,C), C = M*Ku*M'+inv(W), W=sW^2
function A = sample(V,e,M,sW,ns,kronmvm)
[n,N] = size(M);
A = randn(N,ns); % a~N(0,I)
A = kronmvm(V,repmat(sqrt(e),1,ns).*kronmvm(V,A,1)); % a~N(0,Ku)
A = M*A + bsxfun(@times,1./sW,randn(n,ns));
% compute derivative of neg log marginal likelihood w.r.t. projection matrix P
function dP = deriv_proj(alpha,P,K,xg,m,mean,hyp,x)
xP = x*P'; [M,dM] = covGrid('interp',xg,xP); % grid interp derivative matrices
beta = K.mvm(M'*alpha); % dP(i,j) = -alpha'*dMij*beta
dP = zeros(size(P)); h = 1e-4; % allocate result, num deriv step
for i=1:size(P,1)
if equi(xg,i), wi = max(xg{i})-min(xg{i}); else wi = 1; end % scaling factor
xP(:,i) = xP(:,i)+h; % perturb ith component of projection matrix
dmi = (feval(mean{:},hyp.mean,xP)-m)/h; % numerically estimate dm/dP(:,i)
xP(:,i) = xP(:,i)-h; % undo perturbation
betai = dmi + dM{i}*beta/wi;
for j=1:size(P,2), dP(i,j) = -alpha'*(x(:,j).*betai); end
end
function eq = equi(xg,i) % grid along dim i is equispaced
ni = size(xg{i},1);
if ni>1 % diagnose if data is linearly increasing
dev = abs(diff(xg{i})-ones(ni-1,1)*(xg{i}(2,:)-xg{i}(1,:)));
eq = max(dev(:))<1e-9;
else
eq = true;
end
% chain rule for the function Q = sqrtm(P*P')\P; for d sqrtm(X) see the website
function dQ = chain_orth(P,dP) % http://math.stackexchange.com/questions/540361
[V,F] = eig(P*P'); sf = sqrt(diag(F)); S = V*diag(sf)*V'; % eig-decomp
H = dP'/S; G = H'*(P'/S); o = ones(size(dP,1),1); % chain rule
dQ = (H - P'*V*((V'*(G+G')*V)./(sf*o'+o*sf'))*V')';
% chain rule for the function Q = diag(1./sqrt(diag(P*P')))*P;
function dQ = chain_norm(P,dP)
p = 1./sqrt(diag(P*P'));
dQ = diag(p)*dP - diag(diag(dP*P').*p.^3)*P;
|
github
|
kd383/GPML_SLD-master
|
infEP.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/inf/infEP.m
| 16,241 |
utf_8
|
ab38eadd10971c020f090bf044c20e7c
|
function [post nlZ dnlZ] = infEP(hyp, mean, cov, lik, x, y, opt)
% Expectation Propagation approximation to the posterior Gaussian Process.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m. In the EP algorithm, the sites are
% updated in random order, for better performance when cases are ordered
% according to the targets.
%
% Functions for apx.m
% ep_init_{sp,ex}
% ep_up_{sp,ex}
% ep_marg_{sp,ex}
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-12-20.
%
% See also INFMETHODS.M.
persistent last_ttau last_tnu % keep tilde parameters between calls
tol = 1e-4; max_sweep = 10; min_sweep = 2; % tolerance to stop EP iterations
if nargin<=6, opt = []; end % make opt variable available
if isfield(opt,'s'), s = opt.s; else s = 1.0; end % default is EP
inf = 'infEP';
n = size(x,1);
if isstruct(cov), K = cov; % use provided covariance structure
else K = apx(hyp,cov,x,opt); end % set up covariance approximation
if isnumeric(mean), m = mean; % use provided mean vector
else [m,dm] = feval(mean{:}, hyp.mean, x); end % mean vector and deriv
% init and update drivers for Gaussian posterior approximation
c1 = cov{1}; if isa(c1, 'function_handle'), c1 = func2str(c1); end
sparse = strcmp(c1,'apxSparse') || strcmp(c1,'covFITC');
grid = strcmp(c1,'apxGrid') || strcmp(c1,'covGrid');
exact = ~grid && ~sparse;
if s~=0 && s~=1, error('Only opt.s=1 (EP) and opt.s=0 (KL) are possible.'),end
if exact
ep_up = @ep_up_ex; ep_init = @ep_init_ex; ep_marg = @ep_marg_ex;%O(n ^{2,3,0})
elseif sparse
ep_up = @ep_up_sp; ep_init = @ep_init_sp; ep_marg = @ep_marg_sp;%O(nu^{2,3,2})
elseif grid
error('EP not implemented for grid covariances.')
end
% A note on naming: variables are given short but descriptive names in
% accordance with Rasmussen & Williams "GPs for Machine Learning" (2006): mu
% and s2 are mean and variance, nu and tau are natural parameters. A leading t
% means tilde, a subscript _ni means "not i" (for cavity parameters), or _n
% for a vector of cavity parameters. N(f|mu,Sigma) is the posterior.
ttau = zeros(n,1); tnu = zeros(n,1); % init to zero if no better guess
[nlZ,post] = ep_init(K,y,ttau,tnu,lik,hyp,m,inf,s,cov,x); % init post approx
if all(size(last_ttau)==[n,1]) % try the tilde values from previous call
[last_nlZ,last_post] = ep_init(K,y,last_ttau,last_tnu,lik,hyp,m,inf,s,cov,x);
if nlZ > last_nlZ % previous is better
nlZ = last_nlZ; post = last_post; ttau = last_ttau; tnu = last_tnu;
end
end
nlZ_old = Inf; sweep = 0; % converged, max. sweeps or min. sweeps?
while (abs(nlZ-nlZ_old) > tol && sweep < max_sweep) || sweep<min_sweep
nlZ_old = nlZ; sweep = sweep+1;
for i = randperm(n) % iterate EP updates (in random order) over examples
[mui,sii] = ep_marg(post,i); % obtain marginal moments
tau_ni = 1/sii-ttau(i); % first find the cavity distribution ..
nu_ni = mui/sii-tnu(i); % .. params tau_ni and nu_ni
if s==1
% compute the desired derivatives of the indivdual log partition function
[lZ, dlZ, d2lZ] = feval(lik{:},hyp.lik,y(i),nu_ni/tau_ni,1/tau_ni,inf);
ttaui = -d2lZ /(1+d2lZ/tau_ni); % new tilde params
ttaui = max(ttaui,0); % enforce positivity i.e. lower bound ttau by zero
tnui = ( dlZ - nu_ni/tau_ni*d2lZ )/(1+d2lZ/tau_ni);
elseif s==0
[mi,svi] = klmin(lik, hyp.lik, y(i), nu_ni,tau_ni); % KL projection
ttaui = 1/svi^2-tau_ni; % new tilde params
ttaui = max(ttaui,0); % enforce positivity i.e. lower bound ttau by zero
tnui = mi/svi^2-nu_ni;
end
post = ep_up(post, ttau(i),tnu(i),i,ttaui-ttau(i),tnui-tnu(i));% update post
ttau(i) = ttaui; tnu(i) = tnui; % update the tilde parameters
end
% recompute since repeated rank-one updates can destroy numerical precision
[nlZ,post,alpha,tau_n,nu_n,solveKiW,dhyp] = ...
ep_init(K,y,ttau,tnu,lik,hyp,m,inf,s,cov,x);
post.L = @(r)-K.P(solveKiW(K.Pt(r))); post.alpha = K.P(alpha);
end
if sweep == max_sweep && abs(nlZ-nlZ_old) > tol
error('Maximum number of sweeps exceeded in function infEP.')
end
last_ttau = ttau; last_tnu = tnu; % remember for next call
if nargout>2 % do we want derivatives?
if s==1
dnlZ = dhyp(alpha); % covariance-related hypers
for i = 1:numel(hyp.lik) % likelihood hypers
dlik = feval(lik{:},hyp.lik,y,nu_n./tau_n,1./tau_n,inf,i);
dnlZ.lik(i) = -sum(dlik);
end
[junk,dlZ] = feval(lik{:},hyp.lik,y,nu_n./tau_n,1./tau_n,inf); % mean hypers
dnlZ.mean = -dm(dlZ);
elseif s==0
dnlZ = dhyp(alpha); v = post.diagSigma; % covariance-related hypers
dv = -ttau/2; % at convergence we have df = alpha and dv = -W/2 = -ttau/2
[junk,dK] = feval(cov{:}, hyp.cov, x); A = post.A; % not (yet) scalable
dnlZ.cov = dnlZ.cov - dK( diag(dv)*A'*(A-A') );
for i = 1:numel(hyp.lik) % likelihood hypers
dnlZ.lik(i) = -sum( likKL(v,lik,hyp.lik,y,K.mvm(post.alpha)+m,[],[],i) );
end
dnlZ.mean = -dm(alpha); % mean hypers
end
end
post = struct('alpha',post.alpha, 'L',post.L, 'sW',sqrt(ttau));% clean posterior
function [post,alpha,tau_n,nu_n,ldB2,solveKiW,varargout] = ...
ep_cavity(K,m,ttau,tnu,post)
varargout = cell(nargout-6,1); % return as much as required
[ldB2,solveKiW,dW,varargout{:}] = K.fun(ttau); % functions depending on W
post.diagSigma = 2*dW;
alpha = tnu-solveKiW(K.mvm(tnu)+m); post.mu = K.mvm(alpha)+m;
tau_n = 1./post.diagSigma-ttau; nu_n = post.mu./post.diagSigma-tnu; % cavities
function nlZ = ep_Z(post,alpha,tau_n,nu_n,ldB2,solveKiW,triB,...
K,m,y,ttau,tnu,lik,hyp,s)
if s==1
lZ = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, 'infEP');
p = tnu-m.*ttau; q = nu_n-m.*tau_n; r = K.mvm(p); % auxiliary vectors
nlZ = ldB2-sum(lZ)-p'*r/2 +r'*solveKiW(r)/2 +(post.diagSigma'*p.^2)/2 ...
-q'*((ttau./tau_n.*q-2*p).*post.diagSigma)/2-sum(log(1+ttau./tau_n))/2;
else
lp = likKL(post.diagSigma,lik,hyp.lik,y,post.mu); % evaluate likelihood
nlZ = ldB2 -sum(lp) + (alpha'*(post.mu-m)+triB-numel(m))/2; % upper bound
end
% refresh the representation of the posterior from initial and site parameters
% to prevent possible loss of numerical precision after many updates
% effort is O(n*nu^2) provided that nu<n
function [nlZ,post,alpha,tau_n,nu_n,solveKiW,dhyp] = ...
ep_init_sp(K,y,ttau,tnu,lik,hyp,m,inf,s,cov,x)
xu = cov{3}; nu = size(xu,1);
chol_inv = @(A) rot90(rot90(chol(rot90(rot90(A)))'))\eye(nu); % chol(inv(A))
Kuu = feval(cov{2}{:}, hyp.cov, xu); % get the building blocks
Ku = feval(cov{2}{:}, hyp.cov, xu, x);
diagK = feval(cov{2}{:}, hyp.cov, x, 'diag');
snu2 = 1e-6*(trace(Kuu)/nu); % stabilise by 0.1% of signal std
R0 = chol_inv(Kuu+snu2*eye(nu)); % initial R, used for refresh O(nu^3)
V = R0*Ku; d0 = diagK-sum(V.*V,1)'; % initial d, needed for refresh O(n*nu^2)
post.m = m; post.d0 = d0; post.Ku = Ku; post.R0 = R0;
if max(norm(tnu),norm(ttau))<1e-10 && nargout<3
post.diagSigma = diagK;
nlZ = -sum(feval(lik{:}, hyp.lik, y, m, post.diagSigma, inf));
else
[post,alpha,tau_n,nu_n,ldB2,solveKiW,dhyp,L,triB] = ...
ep_cavity(K,m,ttau,tnu,post);
nlZ = ep_Z(post,alpha,tau_n,nu_n,ldB2,solveKiW,triB,...
K,m,y,ttau,tnu,lik,hyp,s);
end
if nargout>1
t = 1./(1+d0.*ttau); % temporary variable O(n)
d = d0.*t; % O(n)
P = repmat(t',nu,1).*Ku; % O(n*nu)
T = repmat((ttau.*t)',nu,1).*V; % temporary variable O(n*nu^2)
R = chol_inv(eye(nu)+V*T'); % O(n*nu^3)
nn = d.*tnu; % O(n)
gg = R0'*(R'*(R*(V*(t.*tnu)))); % O(n*nu)
post.d = d; post.P = P; post.R = R; post.nn = nn; post.gg = gg;
end
% update the representation of the posterior to reflect modification of the site
% parameters, effort is O(nu^2)
% old site parameters for site i=1..n: ttaui, tnui
% new site parameters for site i=1..n: ttaui+dttaui, tnui+dtnui
function post = ep_up_sp(post, ttaui,tnui,i,dttaui,dtnui)
hi = post.nn(i)+post.m(i) + post.P(:,i)'*post.gg; % post mean of site i O(nu)
t = 1+dttaui*post.d(i);
post.d(i) = post.d(i)/t; % O(1)
post.nn(i) = post.d(i)*(tnui+dtnui); % O(1)
r = 1+post.d0(i)*ttaui;
r = r*r/dttaui + r*post.d0(i);
v = post.R*(post.R0*post.Ku(:,i));
r = 1/(r+v'*v);
if r>0
post.R = cholupdate(post.R,sqrt( r)*post.R'*v,'-');
else
post.R = cholupdate(post.R,sqrt(-r)*post.R'*v,'+');
end
T = post.R0'*(post.R'*(post.R*(post.R0*post.P(:,i))));
post.gg = post.gg + ((dtnui-dttaui*(hi-post.m(i)))/t)*T; % O(nu^2)
post.P(:,i) = post.P(:,i)/t; % O(nu)
% O(nu^2) function to compute marginal i of the Gaussian posterior
function [mui,sii] = ep_marg_sp(post,i)
pi = post.P(:,i); t = post.R*(post.R0*pi); % temporary variables
sii = post.d(i) + t'*t; mui = post.nn(i) + pi'*post.gg; % posterior moments
% O(n^3) function to compute the parameters of the Gaussian posterior
% approximation, Sigma and mu, and the negative log marginal likelihood, nlZ,
% from the current site parameters, ttau and tnu.
function [nlZ,post,alpha,tau_n,nu_n,solveKiW,dhyp] = ...
ep_init_ex(K,y,ttau,tnu,lik,hyp,m,inf,s,cov,x)
n = numel(y); post = []; % number of inputs
if max(norm(tnu),norm(ttau))<1e-10 && nargout<3
post.mu = m; post.Sigma = K.mvm(eye(n)); post.diagSigma = diag(post.Sigma);
nlZ = -sum(feval(lik{:}, hyp.lik, y, m, post.diagSigma, inf));
else
[post,alpha,tau_n,nu_n,ldB2,solveKiW,dhyp,L,triB] = ...
ep_cavity(K,m,ttau,tnu,post);
nlZ = ep_Z(post,alpha,tau_n,nu_n,ldB2,solveKiW,triB,...
K,m,y,ttau,tnu,lik,hyp,s);
Kd = K.mvm(eye(n)); post.A = eye(n)-solveKiW(Kd); post.Sigma = Kd*post.A;
end
% O(n^2) function to compute the parameters of the Gaussian posterior
% approximation, Sigma and mu, from the current site parameters,
% old site parameters for site i=1..n: ttaui, tnui
% new site parameters for site i=1..n: ttaui+dttaui, tnui+dtnui
function post = ep_up_ex(post, ttaui,tnui,i,dttaui,dtnui)
si = post.Sigma(:,i); sii = si(i); ci = dttaui/(1+dttaui*sii);
mui = post.mu(i);
post.Sigma = post.Sigma - ci*(si*si'); % rank-1 update Sigma takes O(n^2)
post.mu = post.mu - (ci*(mui+sii*dtnui)-dtnui)*si; % .. and recompute mu
% O(1) function to obtain the marginal i of the Gaussian posterior
function [mui,sii] = ep_marg_ex(post,i)
sii = post.Sigma(i,i); mui = post.mu(i);
% We compute the Gaussian Q(f)=N(f|m,s^2) minimising the KL divergence
% KL(Q||P) where P is the product of the cavity distribution q_n(f) and the
% likelihood p(y|f) such that P(f) = 1/Z * q_n(f)*p(y|f).
% The cavity distribution q_n(f) is an unnormalised Gaussian with precision
% parameter tau_n and location parameter nu_n, hence the cavity can be written
% as q_n(f) = exp(nu_n*f-tau_n/2*f^2).
% The minimisation is convex iff. the likelihood p(y|f) is log-concave. The
% optimisation is performed using Newton descent with backtracking line search.
function [m,s,kl] = klmin(lik, hyp, y, nu_n, tau_n)
ep = 1e-9; % tiny Hessian ridge for stability
gthresh = 1e-8; % gradient convergence threshold
lik_str = lik{1}; if ~ischar(lik_str), lik_str = func2str(lik_str); end
if strcmp(lik_str,'likGauss') % likGauss can be done analytically
sn2 = exp(2*hyp);
s = 1/sqrt(1/sn2+tau_n); m = s^2*(nu_n+y/sn2); % init variables to minimum
else
s = 1/sqrt(tau_n); m = nu_n/tau_n; % init variables to cavity distribution
end
ll = likKL(s^2,lik,hyp,y,m); % evaluate likelihood
kl = (s^2+m^2)*tau_n/2 - log(s) - nu_n*m - ll; % init the KL div up to a const
for i=1:20
[ll,dm,d2m,dv,d2v,dmdv] = likKL(s^2,lik,hyp,y,m); % evaluate likelihood
klold = kl; mold = m; sold = s; % remember last value
kl = (s^2+m^2)*tau_n/2 - log(s) - nu_n*m - ll; % KL-divergence up to const
dm = tau_n*m-nu_n-dm; d2m = tau_n-d2m; % compute kl derivatives
ds = s*tau_n-1/s-2*s*dv; d2s = tau_n+1/s^2-2*dv-(2*s)^2*d2v; dmds=-2*s*dmdv;
detH = ((d2m+ep)*(d2s+ep)-dmds^2); % Hessian determinant
m = m-(dm*(d2s+ep)-ds*dmds)/detH; s = s-(ds*(d2m+ep)-dm*dmds)/detH; % Newton
for j=1:10 % backtracking line search
if klold>kl, break, end % we did descend so no need to step back
m = (m+mold)/2; s = (s+sold)/2;
kl = (s^2+m^2)*tau_n/2 - log(s) - nu_n*m - likKL(s^2,lik,hyp,y,m);
end
d = abs(dm)+abs(dv); % overall gradient
if j==10, m = mold; s = sold; d = 0; end
if d<gthresh, break, end
end
% Gaussian smoothed likelihood function; instead of p(y|f)=lik(..,f,..) compute
% log likKL(f) = int log lik(..,t,..) N(f|t,v) dt, where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that feval(lik{:},varargin{:}) yields a result.
% All return values are separately integrated using Gaussian-Hermite quadrature.
function [ll,df,d2f,dv,d2v,dfdv] = likKL(v, lik, varargin)
f = varargin{3}; % obtain location of evaluation
sv = sqrt(v); % smoothing width
lik_str = lik{1}; if ~ischar(lik_str), lik_str = func2str(lik_str); end
if strcmp(lik_str,'likLaplace') % likLaplace can be done analytically
b = exp(varargin{1})/sqrt(2); y = varargin{2};
mu = (f-y)/b; z = (f-y)./sv;
Nz = exp(-z.^2/2)/sqrt(2*pi);
Cz = (1+erf(z/sqrt(2)))/2;
ll = (1-2*Cz).*mu - 2/b*sv.*Nz - log(2*b);
df = (1-2*Cz)/b;
d2f = -2*Nz./(b*(sv+eps));
dv = d2f/2;
d2v = (z.*z-1)./(v+eps).*d2f/4;
dfdv = -z.*d2f./(2*sv+eps);
else
N = 20; % number of quadrature points
[t,w] = gauher(N); % location and weights for Gaussian-Hermite quadrature
ll = 0; df = 0; d2f = 0; dv = 0; d2v = 0; dfdv = 0; % init return arguments
for i=1:N % use Gaussian quadrature
varargin{3} = f + sv*t(i); % coordinate transform of the quadrature points
[lp,dlp,d2lp]=feval(lik{:},varargin{1:3},[],'infLaplace',varargin{6:end});
ll = ll + w(i)*lp; % value of the integral
df = df + w(i)*dlp; % derivative wrt. mean
d2f = d2f + w(i)*d2lp; % 2nd derivative wrt. mean
ai = t(i)./(2*sv+eps); dvi = dlp.*ai; dv = dv+w(i)*dvi; % deriv wrt. var
d2v = d2v + w(i)*(d2lp.*(t(i)^2/2)-dvi)./(v+eps)/2; % 2nd deriv wrt. var
dfdv = dfdv + w(i)*(ai.*d2lp); % mixed second derivatives
end
end
|
github
|
kd383/GPML_SLD-master
|
infVB.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/inf/infVB.m
| 5,862 |
utf_8
|
2ce41c3e62d67935a0e8f13ae909137b
|
function [post, nlZ, dnlZ] = infVB(hyp, mean, cov, lik, x, y, opt)
% Variational approximation to the posterior Gaussian process.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m.
%
% Minimisation of an upper bound on the negative marginal likelihood using a
% sequence of infLaplace calls where the smoothed likelihood
% likVB(f) = lik(..,g,..) * exp(b*(f-g)), g = sign(f-z)*sqrt((f-z)^2+v)+z, where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that p(y|f)=lik(..,f,..).
%
% The problem is convex whenever the likelihood is log-concave. At the end, the
% optimal width W is obtained analytically.
%
% Copyright (c) by Hannes Nickisch 2016-10-21.
%
% See also INFMETHODS.M.
n = size(x,1);
if nargin<=6, opt = []; end % make opt variable available
if isstruct(cov), K = cov; % use provided covariance structure
else K = apx(hyp,cov,x,opt); end % set up covariance approximation
if isnumeric(mean), m = mean; % use provided mean vector
else [m,dm] = feval(mean{:}, hyp.mean, x); end % mean vector and deriv
if iscell(lik), likstr = lik{1}; else likstr = lik; end
if ~ischar(likstr), likstr = func2str(likstr); end
if nargin<=6, opt = []; end % make opt variable available
if ~isfield(opt,'postL'), opt.postL = false; end % not compute L in infLaplace
if isfield(opt,'out_nmax'), out_nmax = opt.out_nmax; % maximal no of outer loops
else out_nmax = 15; end % default value
if isfield(opt,'out_tol'), out_tol = opt.out_tol; % outer loop convergence
else out_tol = 1e-5; end % default value
sW = ones(n,1); % init with some reasonable value
opt.postL = false; % avoid computation of L inside infLaplace
for i=1:out_nmax
[junk,junk,dW] = K.fun(sW.*sW); v = 2*dW;
[post,junk,junk,alpha] = infLaplace(hyp, mean, K, {@likVB,v,lik}, x, y, opt);
% post.sW is very different from the optimal sW for non Gaussian likelihoods
sW_old = sW; f = K.mvm(alpha)+m; % posterior mean
[lp,junk,junk,sW,b,z] = feval(@likVB,v,lik,hyp.lik,y,f);
if max(abs(sW-sW_old))<out_tol, break, end % diagnose convergence
end
post.sW = sW; % posterior parameters
[ldB2,solveKiW,dW,dhyp] = K.fun(sW.*sW); post.L = @(r) -K.P(solveKiW(K.Pt(r)));
ga = 1./(sW.*sW); be = b+z./ga; % variance, lower bound offset from likVB
h = f.*(2*be-f./ga) - 2*lp - v./ga; % h(ga) = s*(2*b-f/ga)+ h*(s) - v*(1/ga)
t = b.*ga+z-m; nlZ = ldB2 + (sum(h)+t'*solveKiW(t)-(be.*be)'*ga )/2; % var bound
if nargout>2 % do we want derivatives?
dnlZ = dhyp(alpha); % covariance hypers
dnlZ.lik = zeros(size(hyp.lik)); % allocate memory
if ~strcmp(likstr,'likGauss') % likelihood hypers
for j=1:length(hyp.lik)
sign_fmz = 2*(f-z>=0)-1; % strict sign mapping; sign(0) = 1
g = sign_fmz.*sqrt((f-z).^2 + v) + z;
dhhyp = -2*feval(lik{:},hyp.lik,y,g,[],'infLaplace',j);
dnlZ.lik(j) = sum(dhhyp)/2;
end
else % special treatment for the Gaussian case
sn2 = exp(2*hyp.lik); dnlZ.lik = -sn2*(alpha'*alpha) - 2*sum(dW)/sn2 + n;
end
dnlZ.mean = -dm(alpha); % mean hypers
end
% Smoothed likelihood function; instead of p(y|f)=lik(..,f,..) compute
% likVB(f) = lik(..,g,..)*exp(b*(f-g)), g = sign(f-z)*sqrt((f-z)^2+v)+z, where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that feval(lik{:},varargin{:}) yields a result.
% The smoothing results from a lower bound on the likelihood:
% p(y|f) \ge exp( (b+z/ga)*f - f.^2/(2*ga) - h(ga)/2 )
function [varargout] = likVB(v, lik, varargin)
[b,z] = feval(lik{:},varargin{1:2},[],zeros(size(v)),'infVB');
f = varargin{3}; % obtain location of evaluation
sign_fmz = 2*(f-z>=0)-1; % strict sign mapping; sign(0) = 1
g = sign_fmz.*sqrt((f-z).^2 + v) + z;
varargin{3} = g;
id = v==0 | abs(f./sqrt(v+eps))>1e10; % correct asymptotics of f -> +/-Inf
varargout = cell(nargout,1); % allocate output, eval lik(..,g,..)
[varargout{1:min(nargout,3)}] = feval(lik{:},varargin{1:3},[],'infLaplace');
if nargout>0
lp = varargout{1};
varargout{1} = lp + b.*(f-g);
varargout{1}(id) = lp(id); % correct asymptotics of f -> +/-Inf
if nargout>1 % first derivative
dg_df = (abs(f-z)+eps)./(abs(g-z)+eps); % stabilised dg/df for v=0, f=0
dlp = varargout{2};
varargout{2} = dlp.*dg_df + b.*(1-dg_df);
varargout{2}(id) = dlp(id); % correct asymptotics of f -> +/-Inf
if nargout>2 % second derivative
d2lp = varargout{3};
g_e = g-z + sign_fmz*eps;
v_g3 = v./(g_e.*g_e.*g_e); % stabilised v./g.^3 to cover v=0 and f=0
varargout{3} = (dlp-b).*v_g3 + d2lp.*dg_df.*dg_df;
varargout{3}(id) = d2lp(id); % correct asymptotics of f -> +/-Inf
if nargout>3
W = abs( (b-dlp)./(g-z+sign_fmz/1.5e8) ); % optimal sW value
varargout{4} = sqrt(W);
if nargout>4
varargout{5} = b;
if nargout>5
varargout{6} = z;
end
end
end
end
end
end
|
github
|
kd383/GPML_SLD-master
|
infLaplace.m
|
.m
|
GPML_SLD-master/gpml-matlab-v4.1-2017-10-19/inf/infLaplace.m
| 5,348 |
utf_8
|
472d96f52dc0997f6629ce9ae7ae5c5b
|
function [post nlZ dnlZ alpha] = infLaplace(hyp, mean, cov, lik, x, y, opt)
% Laplace approximation to the posterior Gaussian process.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2016-10-21.
%
% See also INFMETHODS.M.
persistent last_alpha % copy of the last alpha
if any(isnan(last_alpha)), last_alpha = zeros(size(last_alpha)); end % prevent
if nargin<=6, opt = []; end % make opt variable available
inf = 'infLaplace';
n = size(x,1);
if isstruct(cov), K = cov; % use provided covariance structure
else K = apx(hyp,cov,x,opt); end % set up covariance approximation
if isnumeric(mean), m = mean; % use provided mean vector
else [m,dm] = feval(mean{:}, hyp.mean, x); end % mean vector and deriv
likfun = @(f) feval(lik{:},hyp.lik,y,f,[],inf); % log likelihood function
if any(size(last_alpha)~=[n,1]) % find a good starting point for alpha and f
alpha = zeros(n,1); % start at mean if sizes do not match
else
alpha = last_alpha; % try last one
if Psi(alpha,m,K.mvm,likfun) > -sum(likfun(m)) % default f==m better => use it
alpha = zeros(n,1);
end
end
% switch between optimisation methods
alpha = irls(alpha, m,K,likfun, opt); % run optimisation
f = K.mvm(alpha)+m; % compute latent function values
last_alpha = alpha; % remember for next call
[lp,dlp,d2lp,d3lp] = likfun(f); W = -d2lp;
[ldB2,solveKiW,dW,dhyp] = K.fun(W); % obtain functionality depending on W
post.alpha = K.P(alpha); % return the posterior parameters
post.sW = sqrt(abs(W)).*sign(W); % preserve sign in case of negative
post.L = @(r) -K.P(solveKiW(K.Pt(r)));
% diagnose optimality
err = @(x,y) norm(x-y)/max([norm(x),norm(y),1]); % we need to have alpha = dlp
% dev = err(alpha,dlp); if dev>1e-4, warning('Not at optimum %1.2e.',dev), end
nlZ = alpha'*(f-m)/2 - sum(lp) + ldB2; % compute marginal likelihood
if nargout>2 % do we want derivatives?
dfhat = dW.*d3lp; % deriv. of nlZ wrt. fhat: dfhat=diag(inv(inv(K)+W)).*d3lp/2
dahat = dfhat - solveKiW(K.mvm(dfhat)); dnlZ = dhyp(alpha,dlp,dahat);
dnlZ.lik = zeros(size(hyp.lik)); % allocate memory
for i=1:length(hyp.lik) % likelihood hypers
[lp_dhyp,dlp_dhyp,d2lp_dhyp] = feval(lik{:},hyp.lik,y,f,[],inf,i);
dnlZ.lik(i) = -dW'*d2lp_dhyp - sum(lp_dhyp); % explicit part
b = K.mvm(dlp_dhyp); % b-K*(Z*b) = inv(eye(n)+K*diag(W))*b
dnlZ.lik(i) = dnlZ.lik(i) - dfhat'*( b-K.mvm(solveKiW(b)) ); % implicit
end
dnlZ.mean = -dm(alpha+dahat); % explicit + implicit part
end
% Evaluate criterion Psi(alpha) = alpha'*K*alpha + likfun(f), where
% f = K*alpha+m, and likfun(f) = feval(lik{:},hyp.lik,y, f, [],inf).
function [psi,dpsi,f,alpha,dlp,W] = Psi(alpha,m,mvmK,likfun)
f = mvmK(alpha)+m;
[lp,dlp,d2lp] = likfun(f); W = -d2lp;
psi = alpha'*(f-m)/2 - sum(lp);
if nargout>1, dpsi = mvmK(alpha-dlp); end
% Run IRLS Newton algorithm to optimise Psi(alpha).
function alpha = irls(alpha, m,K,likfun, opt)
if isfield(opt,'irls_maxit'), maxit = opt.irls_maxit; % max no of Newton steps
else maxit = 20; end % default value
if isfield(opt,'irls_Wmin'), Wmin = opt.irls_Wmin; % min likelihood curvature
else Wmin = 0.0; end % default value
if isfield(opt,'irls_tol'), tol = opt.irls_tol; % stop Newton iterations
else tol = 1e-6; end % default value
smin_line = 0; smax_line = 2; % min/max line search steps size range
nmax_line = 10; % maximum number of line search steps
thr_line = 1e-4; % line search threshold
Psi_line = @(s,alpha,dalpha) Psi(alpha+s*dalpha, m,K.mvm,likfun);% line search
pars_line = {smin_line,smax_line,nmax_line,thr_line}; % line seach parameters
search_line = @(alpha,dalpha) brentmin(pars_line{:},Psi_line,5,alpha,dalpha);
f = K.mvm(alpha)+m; [lp,dlp,d2lp] = likfun(f); W = -d2lp; n = size(K,1);
Psi_new = Psi(alpha,m,K.mvm,likfun);
Psi_old = Inf; % make sure while loop starts by the largest old objective val
it = 0; % this happens for the Student's t likelihood
while Psi_old - Psi_new > tol && it<maxit % begin Newton
Psi_old = Psi_new; it = it+1;
% limit stepsize
W = max(W,Wmin); % reduce step size by increasing curvature of problematic W
[ldB2,solveKiW] = K.fun(W); b = W.*(f-m) + dlp;
dalpha = b - solveKiW(K.mvm(b)) - alpha; % Newton direction + line search
[s_line,Psi_new,n_line,dPsi_new,f,alpha,dlp,W] = search_line(alpha,dalpha);
end % end Newton's iterations
|
github
|
kd383/GPML_SLD-master
|
demo_sound.m
|
.m
|
GPML_SLD-master/demo/sound/demo_sound.m
| 3,971 |
utf_8
|
d2532d9afe9491656859f693775ca427
|
function demo_sound(method, ninterp, hyp)
%
% Natural Sound Recovery Experiment
% Recover contiguous missing region in a waveform using different
% Training points: 59306, Testing points: 691
%
% method: Logdet Approximation Methods, {'Lanczos', 'Cheby', 'SKI', 'FITC'}
% ninterp: Number of interpolation points, default: 3000
%
if nargin < 1 || isempty(method), method = 'lancz'; end % Default method: Lanczos
if nargin < 2 || isempty(ninterp), ninterp = 3000; end % Default Gridpts: 3000
% Loading Sound Data
fprintf('---------Loading Data----------\n');
testVars = {'xfull','xtrain','ytrain','xtest','ytest','hypc'};
load('audio_data.mat',testVars{:});
Ntrain = length(xtrain);
Nrun = numel(ninterp);
% Initialize Error/Time
MAE = zeros(Nrun,1);
SMAE = zeros(Nrun,1);
RMSE = zeros(Nrun,1);
TRIVMAE = zeros(Nrun,1);
TRECOVER = zeros(Nrun,1);
TINFER = zeros(Nrun,1);
TPRED = zeros(Nrun,1);
meanfunc = {@meanZero};
fprintf('Using Method: %s\n\n', method);
for i = 1:Nrun
xg = covGrid('create',xfull,1,ninterp(i)); % Create grid points
[inf, covg, opt] = build_inf(method, xg, Ntrain); % Load options based on method
if strcmp(method, 'FITC'), hyp = hypc; end % No recovery using FITC
if isempty(hyp)
fprintf('----------Start Recovery----------\n');
tic;
hyp = minimize(hypc,@gp,-50,inf,meanfunc,covg,'likGauss',...
xtrain,ytrain); % Recover hyper-params
fprintf('The recovered hyper-parameters are:\n');
fprintf('ell = %.4f,\t sf = %.4f,\t sigma = %.4f\n',...
[exp(hyp.cov)',exp(hyp.lik)]);
TRECOVER(i) = toc;
fprintf('The recovered time is: %.4f [s]\n\n', TRECOVER(i));
end
fprintf('----------Start Inference----------\n');
tic;
if strcmp(method, 'FITC')
[post, nlZ, dnlZ] = infFITC(hyp,meanfunc,covg,'likGauss',...
xtrain,ytrain,opt);
else
[post, nlZ, dnlZ] = infGrid(hyp,meanfunc,covg,'likGauss',...
xtrain,ytrain,opt);
end
TINFER(i) = toc;
fprintf('The inference time is: %.4f [s]\n\n', TINFER(i));
fprintf('----------Start Prediction----------\n');
post.L = @(x) 0*x; % Fast prediction
tic;
ymug = gp(hyp,inf,meanfunc,covg,[],xtrain,post,xtest);
TPRED(i) = toc;
MAE(i) = sum(abs(ytest-ymug))/numel(ytest);
RMSE(i) = sqrt(sum((ytest-ymug).^2)/numel(ytest));
TRIVMAE(i) = sum(abs(ytest-zeros(numel(ytest),1)))/numel(ytest);
SMAE(i) = MAE(i)./TRIVMAE(i);
fprintf(['MAE = %5.3e, TRIVMAE = %5.3e, SMAE = %5.3e,\n', ...
'RMSE = %5.3e, time = %5.3f [s]\n\n'], MAE(i), TRIVMAE(i), ...
SMAE(i), RMSE(i), TPRED(i));
end
end
% Loading options into inference and covariance function
function [inf, covg, opt] = build_inf(method, xg, Ntrain)
opt.cg_maxit = 1e4; opt.cg_tol = 1e-2; % CG solver options
switch method
case 'lancz'
opt.ldB2_method = 'lancz';
opt.ldB2_maxit = -25; % Lanczos steps
opt.ldB2_hutch = sign(randn(Ntrain,5)); % Number of probe vectors
inf = @(varargin) infGrid(varargin{:},opt);
covg = {@covGrid,{@covSEiso},xg};
case 'cheby'
opt.ldB2_method = 'cheby';
opt.ldB2_hutch = 5; % Number of probe vectors
opt.ldB2_maxit = 1e3; % Number of iterations for eigs
opt.ldB2_cheby_degree = 100; % Degree of Cheby polynomial
inf = @(varargin) infGrid(varargin{:},opt);
covg = {@covGrid,{@covSEiso},xg};
case 'ski'
inf = @(varargin) infGrid(varargin{:},opt);
covg = {@covGrid,{@covSEiso},xg};
case 'fitc'
inf = @infFITC;
covg = {@covFITC,{@covSEiso},xg{1}};
end
end
|
github
|
kd383/GPML_SLD-master
|
spatiotemporal_spectral_init_poisson.m
|
.m
|
GPML_SLD-master/demo/crime/auxiliary/spatiotemporal_spectral_init_poisson.m
| 4,088 |
utf_8
|
9fa01d473f355c69b9c4fbd1df01811d
|
% Function to initialise SM kernel hyperparameters
% If varargin{1} is specified, it is the number of optimisation iterations
% to run for each random restart. Otherwise, we will just have
% initialisations and no optimisation.
% stdy should be on the log-scale
function hyp = spatiotemporal_spectral_init(inf_method,hyp,meanf,lik,cov,covg,x,y,stdy,idx,nrestarts,varargin)
% start with user inputed hypers
hyp_best = hyp;
try
% compute nlml for user specified hyp
bestlik = Inf; %gp(hyp, inf_method, meanf, covg, lik, idx, y);
catch
disp('Error with user specified hypers.');
disp('Attempting to proceed with automatic initialisation.');
bestlik = Inf;
end
disp(sprintf('Initialisation nlml 0: %.02f',bestlik));
if isnan(bestlik)
bestlik = Inf;
end
% try 'nrestarts' number of initialisations
for ri=1:nrestarts
hyp.cov = []; % shouldn't overwrite yet
for i=1:numel(cov)
% call the initialisation script for two 1D spectral mixture
% kernels
% alert!: This assumes each
% separable component has
% the same Q!
if strcmp(func2str(cov{i}{1}),'covSum')
hyp.cov = [hyp.cov; hypinit1D(func2str(cov{i}{2}{2}{1}), cov{i}{2}{2}, x(:,i) ,stdy, covg{3}{i}(2) - covg{3}{i}(1))]; % want the true inputs x here
else
hyp.cov = [hyp.cov; hypinit1D(func2str(cov{i}{1}), cov{i}, x(:,i) ,stdy, covg{3}{i}(2) - covg{3}{i}(1))]; % want the true inputs x here
end
end
hyp.cov = log(hyp.cov);
% if desired, try iter_run optimization iterations for each initialisation
if(~isempty(varargin))
iter_run = varargin{1};
hyp = minimize(hyp,@gp,-iter_run,inf_method,meanf,covg,lik,idx,y);
end
% see if nlml of new initialisation is better
try
l = gp(hyp, inf_method, meanf, covg, lik, idx, y);
disp(sprintf('nlml %d: %.02f', ri, l))
if l < bestlik
bestlik = l;
hyp_best = hyp;
save('best.mat')
end
catch
disp('Error trying initialisation');
end
end
hyp = hyp_best;
disp(sprintf('best likelihood found: %f', bestlik))
% initialise a 1D spectral mixture kernel
function [hypout] = hypinit1D(covtype,cov,x,stdy,Fs)
hypout = [];
switch(covtype)
case 'covSM'
Q = cov{2};
% NOTE TO USER: SET FS= 1/[MIN GRID SPACING] FOR YOUR APPLICATION
% Fs is the sampling rate
% Fs = 1; % 1/[grid spacing].
% Deterministic weights (fraction of variance)
% Set so that k(0,0) is close to the empirical variance of the data.
wm = stdy;
w0 = 1/sqrt(Q)*ones(Q,1);
w0 = w0.^2; % parametrization for covSMfast
hypout = [w0];
% Uniform random frequencies
% Fs/2 will typically be the Nyquist frequency
% mu = max(Fs/2*rand(Q,1),1e-8);
mu = abs(Fs/2/4*randn(Q,1));
hypout = [hypout; mu];
% Truncated Gaussian for length-scales (1/Sigma)
maxlen = max(x) - min(x); % max. distance between any two points in input dimension
% was maxlen = length(unique(x))
sigmean = maxlen*sqrt(2*pi)/2; %
hypout = [hypout; 1./(abs(maxlen*randn(Q,1)))];
case 'covMaterniso'
%hypout = exp(randn(2,1));
maxlen = max(x) - min(x); % max. distance between any two points in input dimension
% was maxlen=length(unique(x)
a = sqrt(maxlen)*sqrt(pi/2);
hypout = [abs(a*randn);stdy];
case 'covSEiso'
%hypout = exp(randn(2,1));
maxlen = max(x) - min(x); % max. distance between any two points in input dimension
% was maxlen=length(unique(x)
a = sqrt(naxlen)*sqrt(pi/2);
hypout = [abs(a*randn);stdy];
case 'covConstant'
hypout = [];
end
% Todo: Add SE and MA kernels.
|
github
|
neurogeometry/BoutonAnalyzer-master
|
Optimize_Trace.m
|
.m
|
BoutonAnalyzer-master/Optimize_Trace.m
| 5,971 |
utf_8
|
7a405cf45f27f2b1d38acf3e566b401b
|
% This function works with AM, AMlbl for branches, or AMlbl for trees.
% Trees are optimized separately.
% Branch positions (r) are optimized, but calibers (R) remain fixed
% Branch and end points can be fixed or optimized:
% Optimize_bps = 1,0 optimize branch points.
% Optimize_tps = 1,0 optimize terminal (start, end) points.
% AMlbl in the output is labled for trees
% This version of the code is normalized for pointsperpixel as in the paper
function [AMlbl,r,I_F,count]=Optimize_Trace(Orig,AMlbl,r,Rtypical,Optimize_bps,Optimize_tps,pointsperum,MaxIterations,alpha_r,betta_r,adjustPPM,output)
epsilon=1; % added for stability
MinChange_I=10^-6;
MinChange_L=betta_r*10^-6;
% adjust vertex density
if adjustPPM==1
[AM,r,~] = AdjustPPM(AMlbl,r,ones(size(r,1),1),pointsperum);
AM=spones(AM);
else
AM=spones(AMlbl);
end
if output==1
disp('F1 trace optimization started.')
format short g
display([' Iteration ', 'I-cost ', ' L-cost ', ' Total Fitness'])
end
[it,jt]=find(triu(AM,1));
N=length(AM);
B=sparse(diag(sum(AM,2))-AM);
B3=2.*pointsperum.*blkdiag(alpha_r.*B,alpha_r.*B,alpha_r.*B);
W=ceil(2.5*Rtypical)*2+1;
NW=(W+1)/2;
[xtemp,ytemp,ztemp]=ndgrid(-(NW-1):(NW-1),-(NW-1):(NW-1),-(NW-1):(NW-1));
sizeIm=size(Orig);
if length(sizeIm)==2
sizeIm(3)=1;
end
Orig=double(Orig(:));
Orig=Orig./max(Orig);
M=mean(Orig);
tps=(sum(AM)==1);
bps=(sum(AM)>2);
move=true(N,1);
if Optimize_tps==0
move(tps)=false;
end
if Optimize_bps==0
move(bps)=false;
end
neighb1=nan(N,1);
neighb1(it)=jt;
neighb1(isnan(neighb1))=find(isnan(neighb1));
neighb1(bps)=NaN;
neighb2=nan(N,1);
neighb2(jt)=it;
neighb2(isnan(neighb2))=find(isnan(neighb2));
neighb2(bps)=NaN;
del_r=zeros(size(r));
I_Q=zeros(N,1); I_Qx=zeros(N,1); I_Qy=zeros(N,1); I_Qz=zeros(N,1);
I_Pxx=zeros(N,1); I_Pxy=zeros(N,1); I_Pxz=zeros(N,1); I_Pyy=zeros(N,1); I_Pyz=zeros(N,1); I_Pzz=zeros(N,1);
I_F=zeros(N,1);
temp3=1/(Rtypical^3*pi^1.5*pointsperum);
temp4=1/(Rtypical^4*pi^1.5*pointsperum);
temp5=1/(Rtypical^5*pi^1.5*pointsperum);
count=1;
exitflag=0;
stepback=0;
while exitflag==0 && count<=MaxIterations
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Intensity cost, LoG filter
for i=1:N
xtemp1=xtemp(:)+round(r(i,1));
ytemp1=ytemp(:)+round(r(i,2));
ztemp1=ztemp(:)+round(r(i,3));
temp_ind=(xtemp1>=1 & xtemp1<=sizeIm(1) & ytemp1>=1 & ytemp1<=sizeIm(2) & ztemp1>=1 & ztemp1<=sizeIm(3));
indIm=xtemp1(temp_ind)+(ytemp1(temp_ind)-1).*sizeIm(1)+(ztemp1(temp_ind)-1).*(sizeIm(1)*sizeIm(2));
Itemp=ones(size(xtemp1)).*M;
Itemp(temp_ind)=Orig(indIm);
xR=(r(i,1)-xtemp1)./Rtypical;
yR=(r(i,2)-ytemp1)./Rtypical;
zR=(r(i,3)-ztemp1)./Rtypical;
r2R2=(xR.^2+yR.^2+zR.^2);
EXP=exp(-r2R2).*Itemp;
Q=EXP.*(-10/3+(4/3).*r2R2);
P=EXP.*(28/3-(8/3).*r2R2);
I_Q(i)=sum(Q).*temp5;
I_Qx(i)=sum(Q.*xR).*temp4;
I_Qy(i)=sum(Q.*yR).*temp4;
I_Qz(i)=sum(Q.*zR).*temp4;
Px=P.*xR;
Py=P.*yR;
Pz=P.*zR;
I_Pxx(i)=sum(Px.*xR).*temp5;
I_Pxy(i)=sum(Px.*yR).*temp5;
I_Pxz(i)=sum(Px.*zR).*temp5;
I_Pyy(i)=sum(Py.*yR).*temp5;
I_Pyz(i)=sum(Py.*zR).*temp5;
I_Pzz(i)=sum(Pz.*zR).*temp5;
I_F(i)=sum(EXP.*(1-(2/3).*r2R2))*temp3;
end
dFcostdrR=[I_Qx;I_Qy;I_Qz]-B3*r(:);
d2IcostdRr2=[diag(sparse(I_Pxx+I_Q)),diag(sparse(I_Pxy)),diag(sparse(I_Pxz));
diag(sparse(I_Pxy)),diag(sparse(I_Pyy+I_Q)),diag(sparse(I_Pyz));
diag(sparse(I_Pxz)),diag(sparse(I_Pyz)),diag(sparse(I_Pzz+I_Q))]-B3-epsilon.*diag(sparse(ones(3*N,1)));
Icost=sum(I_F);
Lcost=sum(sum((r(it,:)-r(jt,:)).^2,2))*pointsperum;
Fitness=Icost-alpha_r.*Lcost;
if count>1 && stepback==0
ChangeIcost=abs((Icost-oldIcost)/oldIcost);
ChangeLcost=abs((Lcost-oldLcost)/oldLcost);
exitflag=~(ChangeIcost>MinChange_I || ChangeLcost>MinChange_L);
if ChangeIcost>0.5 || ChangeLcost>0.5
warning('Trace may be unstable. Decrease Optimization Step Size and/or increase Trace Stiffness parameter.')
end
end
if exitflag==0
if output==1
disp(full([count, Icost, Lcost, Fitness]))
end
count=count+1;
stepback=0;
oldIcost=Icost;
oldLcost=Lcost;
r_old=r;
del_rR=d2IcostdRr2\dFcostdrR;
del_r(:)=del_rR(1:3*N);
l=r(neighb1,:)-r(neighb2,:);
l=l./(sum(l.^2,2).^0.5*ones(1,3));
l(isnan(l))=0;
del_r=del_r-(sum(del_r.*l,2)*ones(1,3)).*l;
abs_del_r=sum(del_r.^2,2).^0.5;
inst_ind=abs_del_r>0.1;
del_r(inst_ind,:)=del_r(inst_ind,:)./(abs_del_r(inst_ind)*ones(1,3)).*0.1;
r(move,:)=r(move,:)-betta_r.*del_r(move,:);
% r ranges from 0.5 to sizeIm+0.5 in Matlab and [0 sizeIm] in Java and SWC
r(r(:,1)<0.5,1)=0.5; r(r(:,1)>sizeIm(1)+0.5,1)=sizeIm(1)+0.5;
r(r(:,2)<0.5,2)=0.5; r(r(:,2)>sizeIm(2)+0.5,2)=sizeIm(2)+0.5;
r(r(:,3)<0.5,3)=0.5; r(r(:,3)>sizeIm(3)+0.5,3)=sizeIm(3)+0.5;
else
r=r_old;
betta_r=betta_r./1.1;
count=count-1;
stepback=1;
end
end
r=r_old;
AMlbl = LabelTreesAM(AM);
if output==1
disp('F1 trace optimization is complete.')
if ChangeIcost>MinChange_I || ChangeLcost>MinChange_L
disp('The algorithm did not converge to solution with default precision.')
disp('Consider increasing Optimization Step Size and/or Maximum Number of Iterations.')
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
plotAM.m
|
.m
|
BoutonAnalyzer-master/plotAM.m
| 643 |
utf_8
|
ef459959fe9a0c21691aa0c19012211e
|
% This function plots the tree structure contained in AM.
% The function works with labeled or not labeled AM.
% AM can be directed or undirected.
% The labels don't have to be consecutive.
function h=plotAM(AM,r,col)
if size(r,2)==2
r=[r,zeros(size(r,1),1)];
end
AM = max(AM,AM');
AM = triu(AM);
Labels=full(AM(AM(:)>0));
Labels=unique(Labels);
L=numel(Labels);
if isempty(col)
cc=lines(L);
else
cc=col;
end
h=hggroup;
for f=1:L
[i,j]=find(AM==Labels(f));
X=[r(i,1),r(j,1)]';
Y=[r(i,2),r(j,2)]';
Z=[r(i,3),r(j,3)]';
line(Y,X,Z,'Color',cc(L,:),'LineWidth',1,'Parent',h);
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
FastMarchingTube.m
|
.m
|
BoutonAnalyzer-master/FastMarchingTube.m
| 4,471 |
utf_8
|
5d4a3e0287fa79356f6c02a4dc0be28c
|
% This function the Eikonal equation by using the Fast Marching algorithm
% of Sethian. T and D are the arival time and distance maps.
% Max_Known_Dist is the distance at which re-initialization is performed
% SVr contains positions of the seeds
% unisotropy is the wave speed unisotropy in a uniform intensity image
% Output is Logical KT==1;
function [KT]=FastMarchingTube(sizeIM,SVr,Max_Known_Dist,unisotropy)
output=false;
pad=2;
Max_Known_Time=inf;
unisotropy(unisotropy<0)=0;
if sum(unisotropy)==0
unisotropy=[1,1,1];
end
unisotropy=unisotropy./sum(unisotropy.^2)^0.5;
h2=[unisotropy(1),unisotropy(1),unisotropy(2),unisotropy(2),unisotropy(3),unisotropy(3)].^2;
Orig=ones(sizeIM);
sizeOrig=size(Orig);
if length(sizeOrig)==2
sizeOrig=[sizeOrig,1];
end
Im=zeros(sizeOrig+2*pad);
Im(1+pad:end-pad,1+pad:end-pad,1+pad:end-pad)=Orig;
clear Orig
sizeIm=sizeOrig+2*pad;
SVr=round(SVr);%Matlab IM pixel goes from 0.5 to 1.5 etc.
SVr=SVr+pad;
StartVoxel=sub2ind_ASfast(sizeIm,SVr(:,1),SVr(:,2),SVr(:,3));
StartVoxel=unique(StartVoxel);
N6_ind=[-1;+1;-sizeIm(1);+sizeIm(1);-sizeIm(1)*sizeIm(2);+sizeIm(1)*sizeIm(2)];
T=inf(sizeIm,'single'); T(StartVoxel)=0;
D=inf(sizeIm,'single'); D(StartVoxel)=0;
KT=zeros(sizeIm,'uint8'); KT(StartVoxel)=1; % Known=1, Trial=2
KnownPoints=StartVoxel;
NHood=[KnownPoints+N6_ind(1);KnownPoints+N6_ind(2);KnownPoints+N6_ind(3); ...
KnownPoints+N6_ind(4);KnownPoints+N6_ind(5);KnownPoints+N6_ind(6)];
NHood(KT(NHood)==1)=[];
NHood(Im(NHood)==0)=[]; %For padding
NHood=unique(NHood);
TrialPoints=NHood(~isinf(T(NHood)));
T_TrialPoints=T(TrialPoints);
stop_cond=true;
if isempty(NHood)
stop_cond=false;
exit_flag='end';
end
NewKnownPoint=[];
iter=0;
while stop_cond
iter=iter+1;
if mod(iter,1000)==0 && output
display(['Current distance: ', num2str(D(NewKnownPoint))]);
end
if ~isempty(NHood)
ind=[NHood+N6_ind(1),NHood+N6_ind(2),NHood+N6_ind(3),NHood+N6_ind(4),NHood+N6_ind(5),NHood+N6_ind(6)];
KT_1=(KT(ind)~=1);
Tpm_xyz=T(ind);
Tpm_xyz(KT_1)=inf;
[Tpm_xyz,IX]=sort(Tpm_xyz,2);
Dpm_xyz=D(ind);
Dpm_xyz(KT_1)=inf;
Dpm_xyz=sort(Dpm_xyz,2);
%Calculate arrival time, T, and distance, D, for the trial
%points------------------------------------------------------------
H=h2(IX);
H_cum=cumsum(H,2);
ct=1./Im(NHood).^2;
Tpm_xyz_cum=cumsum(Tpm_xyz.*H,2);
Tpm_xyz2_cum=cumsum(Tpm_xyz.^2.*H,2);
nt=sum(((Tpm_xyz2_cum-Tpm_xyz_cum.^2./H_cum)<=ct*ones(1,size(Tpm_xyz,2))),2);
if sum(h2==0)>0
nt(nt==0)=1;
end
ind_nt=(1:size(Tpm_xyz,1))'+(nt-1).*size(Tpm_xyz,1);
ntH=H_cum(ind_nt);
temp=Tpm_xyz_cum(ind_nt);
T(NHood)=(temp+(ct.*ntH-(Tpm_xyz2_cum(ind_nt).*ntH-temp.^2)).^0.5)./ntH;
N=ones(size(Tpm_xyz,1),1)*(1:size(Tpm_xyz,2));
Dpm_xyz_cum=cumsum(Dpm_xyz,2);
Dpm_xyz2_cum=cumsum(Dpm_xyz.^2,2);
nd=sum(((Dpm_xyz2_cum-Dpm_xyz_cum.^2./N)<=ones(size(Dpm_xyz))),2);
ind_nd=(1:size(Dpm_xyz,1))'+(nd-1).*size(Dpm_xyz,1);
temp=Dpm_xyz_cum(ind_nd);
D(NHood)=(temp+(nd-(Dpm_xyz2_cum(ind_nd).*nd-temp.^2)).^0.5)./nd;
%------------------------------------------------------------------
keep=NHood(KT(NHood)==0 & ~isinf(T(NHood)));
KT(keep)=2;
TrialPoints=[TrialPoints;keep];
T_TrialPoints=[T_TrialPoints;T(keep)];
end
[min_T,min_ind]=min(T_TrialPoints);
NewKnownPoint=TrialPoints(min_ind);
if ~isempty(NewKnownPoint) && ~isinf(min_T)
KT(NewKnownPoint)=1;
T_TrialPoints(min_ind)=inf;
NHood=NewKnownPoint+N6_ind;
KnownPoints=[KnownPoints;NewKnownPoint];
NHood(KT(NHood)==1)=[];
NHood(Im(NHood)==0)=[]; %Remove points in padding
if T(NewKnownPoint)>=Max_Known_Time
stop_cond=false;
exit_flag='time'; % maximum time reached
end
if D(NewKnownPoint)>=Max_Known_Dist;
stop_cond=false;
exit_flag='dist'; % maximum distance reached
end
else
stop_cond=false;
exit_flag='end'; % No place to propagate.
end
end
KT=KT(1+pad:end-pad,1+pad:end-pad,1+pad:end-pad);
KT=(KT==1);
% D=D(1+pad:end-pad,1+pad:end-pad,1+pad:end-pad);
% D(KT==0)=max(D(KT));
% D=double((max(D(:))-D)./max(D(:)));
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
profilefilters.m
|
.m
|
BoutonAnalyzer-master/profilefilters.m
| 4,319 |
utf_8
|
dc109b321906ffba43afbcb7c0059c56
|
function [II, RR]= profilefilters (r,IM,filtertype,params)
if strcmp(filtertype,'LoGxy')
%LoGxy filter options
LoGxy_R_min=params.filt.LoGxy_R_min;
LoGxy_R_step=params.filt.LoGxy_R_step;
LoGxy_R_max=params.filt.LoGxy_R_max;
LoGxy_Rz=params.filt.LoGxy_Rz;
[II,RR] = LoG_Filt_xy(IM,r,LoGxy_R_min,LoGxy_R_step,LoGxy_R_max,LoGxy_Rz);
elseif strcmp(filtertype,'Gauss')
%Gaussian filter
Gauss_R=params.filt.Gauss_R;
[II,RR]=Gauss_Filt(IM,r,Gauss_R,1,Gauss_R);
else
display('Filter ',filtertype, ' not found');
end
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
function [I,Rxy] = LoG_Filt_xy(Orig,r,Rxy_min,Rxy_step,Rxy_max,Rz)
if Rxy_min<0.1
Rxy_min=0.1;
end
s=(Rxy_min:Rxy_step:Rxy_max)';
if isempty(s)
Rxy=zeros(size(r(:,1)));
I=zeros(size(r(:,1)))';
else
r=round(r);
del=0.01*Rxy_min;
N=size(r,1);
sizeIm=size(Orig);
if length(sizeIm)==2
sizeIm=[sizeIm,1];
end
W=ceil(2*max([Rxy_max,Rz]))*2+1;
HW=(W-1)/2;
S=[W,W,W];
[xtemp,ytemp,ztemp]=ind2sub(S,1:prod(S));
Itemp=zeros(prod(S),N);
for i=1:N,
xtemp1=xtemp+r(i,1)-HW-1;
ytemp1=ytemp+r(i,2)-HW-1;
ztemp1=ztemp+r(i,3)-HW-1;
temp_ind=(xtemp1>=1 & xtemp1<=sizeIm(1) & ytemp1>=1 & ytemp1<=sizeIm(2) & ztemp1>=1 & ztemp1<=sizeIm(3));
indIm=sub2ind_ASfast(sizeIm,xtemp1(temp_ind),ytemp1(temp_ind),ztemp1(temp_ind));
Im_S=zeros(S);
Im_S(temp_ind)=double(Orig(indIm));
Itemp(:,i)=Im_S(:);
end
xy2=(HW+1-xtemp).^2+(HW+1-ytemp).^2;
Gxym=exp(-(1./(s-del).^2)*xy2).*((1./(s-del).^2)*ones(1,prod(S)));
Gxym=Gxym./(sum(Gxym,2)*ones(1,prod(S)));
Gxyp=exp(-(1./(s+del).^2)*xy2).*((1./(s+del).^2)*ones(1,prod(S)));
Gxyp=Gxyp./(sum(Gxyp,2)*ones(1,prod(S)));
z2=(HW+1-ztemp).^2;
Gz=exp(-(1./Rz.^2)*z2)./Rz;
Gz=Gz./sum(Gz,2);
LoG=(Gxym-Gxyp)./(2*del).*(s*ones(1,prod(S))).*(ones(length(s),1)*Gz); %correct up to a numerical factor
I_LoG=LoG*Itemp;
if length(s)>1
[I,ind]=max(I_LoG);
Rxy=s(ind);
else
I=I_LoG;
Rxy=s.*ones(size(r(:,1)));
end
end
I=I(:);
Rxy=Rxy(:);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [I,R] = Gauss_Filt(Orig,r,R_min,R_step,R_max)
if R_min<0.1
R_min=0.1;
end
s=(R_min:R_step:R_max)';
if isempty(s)
R=zeros(size(r(:,1)));
I=zeros(size(r(:,1)))';
else
r=round(r);
N=size(r,1);
sizeIm=size(Orig);
if length(sizeIm)==2
sizeIm=[sizeIm,1];
end
W=ceil(2*max(s))*2+1;
HW=(W-1)/2;
S=[W,W,W];
[xtemp,ytemp,ztemp]=ind2sub(S,1:prod(S));
Itemp=zeros(prod(S),N);
for i=1:N,
xtemp1=xtemp+r(i,1)-HW-1;
ytemp1=ytemp+r(i,2)-HW-1;
ztemp1=ztemp+r(i,3)-HW-1;
temp_ind=(xtemp1>=1 & xtemp1<=sizeIm(1) & ytemp1>=1 & ytemp1<=sizeIm(2) & ztemp1>=1 & ztemp1<=sizeIm(3));
indIm=sub2ind_ASfast(sizeIm,xtemp1(temp_ind),ytemp1(temp_ind),ztemp1(temp_ind));
Im_S=zeros(S);
Im_S(temp_ind)=double(Orig(indIm));
Itemp(:,i)=Im_S(:);
end
r2=(HW+1-xtemp).^2+(HW+1-ytemp).^2+(HW+1-ztemp).^2;
Gp=exp(-(1./(s).^2)*r2).*((1./(s).^3)*ones(1,prod(S)));
Gp=Gp./(sum(Gp,2)*ones(1,prod(S)));
I_Gauss=Gp*Itemp;
if length(s)>1
[I,ind]=max(I_Gauss);
R=s(ind);
else
I=I_Gauss;
R=s.*ones(size(r(:,1)));
end
end
I=I(:);
R=R(:);
end
%--------------------------------------------------------------------------
function [I_mean,I_median] = Simple_Filts(Orig,r,filt_size)
r=round(r);
sizeIM=size(Orig);
HW=(filt_size-1);
minx=round(max(1,(r(:,1)-round(HW(1)/2))));
maxx=round(min((r(:,1)+round(HW(1)/2)),sizeIM(1)));
miny=round(max(1,(r(:,2)-round(HW(2)/2))));
maxy=round(min((r(:,2)+round(HW(2)/2)),sizeIM(2)));
minz=round(max(1,(r(:,3)-round(HW(3)/2))));
maxz=round(min((r(:,3)+round(HW(3)/2)),sizeIM(3)));
I_mean=nan(size(r,1),1);
I_median=nan(size(r,1),1);
for i=1:size(r,1)
IMval=Orig(minx(i):maxx(i),miny(i):maxy(i),minz(i):maxz(i));
I_mean(i)=mean(IMval(:));
I_median(i)=median(IMval(:));
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
AM2swc.m
|
.m
|
BoutonAnalyzer-master/AM2swc.m
| 3,317 |
utf_8
|
964b9a6ab8a971b47d17295439d0695f
|
% This function converts AMlbl r R format to swc. Reduction done during image
% loading is inverted. AMlbl must not contain loops.
function swc_all = AM2swc(AMlbl,r,R,reduction_x,reduction_y,reduction_z)
rem_ind=(sum(AMlbl)==0);
AMlbl(rem_ind,:)=[];
AMlbl(:,rem_ind)=[];
r(rem_ind,:)=[];
R(rem_ind)=[];
if isempty(AMlbl)
swc_all=0;
else
swc_all=AM2swc_temp(AMlbl,r,R,reduction_x,reduction_y,reduction_z);
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
function swc = AM2swc_temp(AMlbl,r,R,reduction_x,reduction_y,reduction_z)
r=r-0.5; % r ranges from 0.5 to sizeIm+0.5 in Matlab and [0 sizeIm] in Java and SWC
L=unique(AMlbl(AMlbl>0));
swc=zeros(sum(AMlbl(:)>0)/2+length(L),7);
swc(:,1)=(1:length(swc(:,1)));
swc(:,2)=10;
Current_id=1;
for i=1:length(L)
AMtree=(AMlbl==L(i));
Current_vertex=find(sum(AMtree,1)==1,1);
if ~isempty(Current_vertex)
swc(Current_id,7)=-1;
swc(Current_id,3:5)=r(Current_vertex,:);
swc(Current_id,6)=R(Current_vertex);
Active_Roots=[];
Active_Roots_pid=[];
while nnz(AMtree)>0 || ~isempty(Active_Roots)
Current_id=Current_id+1;
Next_verts=(AMtree(Current_vertex,:));
Neighb=sum(Next_verts);
if Neighb==0
if ~isempty(Active_Roots)
Next_vertex=Active_Roots(1);
Current_vertex=Next_vertex;
swc(Current_id,7)=Active_Roots_pid(1);
swc(Current_id,3:5)=r(Current_vertex,:);
swc(Current_id,6)=R(Current_vertex);
Active_Roots(1)=[];
Active_Roots_pid(1)=[];
else
Current_vertex=find(sum(AMtree,1)==1,1);
swc(Current_id,7)=-1;
swc(Current_id,3:5)=r(Current_vertex,:);
swc(Current_id,6)=R(Current_vertex);
end
elseif Neighb==1
Next_vertex=find(Next_verts,1);
AMtree(Current_vertex,Next_vertex)=0;
AMtree(Next_vertex,Current_vertex)=0;
Current_vertex=Next_vertex;
swc(Current_id,7)=Current_id-1;
swc(Current_id,3:5)=r(Current_vertex,:);
swc(Current_id,6)=R(Current_vertex);
else
Next_vertex=find(Next_verts,1);
AMtree(Current_vertex,Next_verts)=0;
AMtree(Next_verts,Current_vertex)=0;
Active_Roots=[Active_Roots,find(Next_verts,Neighb-1,'last')];
Active_Roots_pid=[Active_Roots_pid,(Current_id-1).*ones(1,Neighb-1)];
Current_vertex=Next_vertex;
swc(Current_id,7)=Current_id-1;
swc(Current_id,3:5)=r(Current_vertex,:);
swc(Current_id,6)=R(Current_vertex);
end
end
Current_id=Current_id+1;
end
end
swc(:,3:4)=[swc(:,4),swc(:,3)];
swc(:,3)=swc(:,3).*reduction_y;
swc(:,4)=swc(:,4).*reduction_y;
swc(:,5)=swc(:,5).*reduction_z;
swc(:,6)=swc(:,6).*(reduction_x*reduction_y*reduction_z).^(1/3);
|
github
|
neurogeometry/BoutonAnalyzer-master
|
updateProfile.m
|
.m
|
BoutonAnalyzer-master/updateProfile.m
| 3,418 |
utf_8
|
f56672094ce0bb36d08e9dde37ea8e44
|
function updateProfile(hf)
%This function ensures that assigned fg.id are in a sorted order based on
%distance along the trace. In addition, removal of peaks can require
%re-labeling of existing matches, which is accomplished by the call to
%addrempeaklbl
UserData=hf.UserData;hf.UserData=[];%For speed reasons
channel=UserData.inform.channel{1};
current_fgid=[];
relbl_fgid=[];
match_id=[];
Time=cell(numel(UserData.Profile),1);
for ti=1:numel(UserData.Profile)
Time{ti}.fg_id=UserData.Profile{ti}.fit.(channel).LoGxy.fg.id;
Time{ti}.fg_manid=UserData.Profile{ti}.fit.(channel).LoGxy.fg.manid;
Time{ti}.fg_ind=UserData.Profile{ti}.fit.(channel).LoGxy.fg.ind;
end
for ti=1:numel(UserData.Profile)
current_fgid=cat(1,current_fgid,Time{ti}.fg_id(:));
match_id=cat(1,match_id,Time{ti}.fg_manid(:));
[~,si]=sort(Time{ti}.fg_ind(:));%Index, not id
temp=nan(size(Time{ti}.fg_id(:)));
temp(si)=min(Time{ti}.fg_id)+(1:numel(Time{ti}.fg_id(:)))-1;
relbl_fgid=cat(1,relbl_fgid,temp(:));
end
[~,new_match_id] = addrempeaklblAM (relbl_fgid,match_id);
for ti=1:length(Time)
[lia,~]=ismember(current_fgid,Time{ti}.fg_id);
in_ti=find(lia);
mu=nan(size(in_ti));
amp=nan(size(in_ti));
sig=nan(size(in_ti));
flg=nan(size(in_ti));
fgid=relbl_fgid(in_ti);
old_fgid=current_fgid(in_ti);
manid=new_match_id(in_ti);
autoid=nan(size(in_ti));
ind=Time{ti}.fg_ind(:);
for inlist=1:numel(fgid)
inorig=find(UserData.Profile{ti}.fit.(channel).LoGxy.fg.id==old_fgid(inlist));
if ~isempty(inorig)
mu(inlist)=UserData.Profile{ti}.fit.(channel).LoGxy.fg.mu(inorig);
amp(inlist)=UserData.Profile{ti}.fit.(channel).LoGxy.fg.amp(inorig);
sig(inlist)=UserData.Profile{ti}.fit.(channel).LoGxy.fg.sig(inorig);
flg(inlist)=UserData.Profile{ti}.fit.(channel).LoGxy.fg.flag(inorig);
end
end
UserData.Profile{ti}.fit.(channel).LoGxy.fg.ind=ind;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.mu=mu;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.sig=sig;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.amp=amp;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.id=fgid;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.manid=manid;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.autoid=autoid;
UserData.Profile{ti}.fit.(channel).LoGxy.fg.flag=flg;
[~,si]=sort(UserData.Profile{ti}.fit.(channel).LoGxy.fg.ind);
fn=fieldnames(UserData.Profile{ti}.fit.(channel).LoGxy.fg);
for f=1:numel(fn)
UserData.Profile{ti}.fit.(channel).LoGxy.fg.(fn{f})=UserData.Profile{ti}.fit.(channel).LoGxy.fg.(fn{f})(si);
end
end
hf.UserData=UserData;
end
%--------------------------------------------------------------------------
function [AM,matchidnew] = addrempeaklblAM (origid,matchid)
%This function takes a list of unique bouton id and matched bouton id
%to create an adjacency matrix. matchid is updated to reflect AM. This will
%be used to ensure consistency after changing bouton labels.
AM=zeros(size(origid,1));
matchidnew=nan(size(origid,1),1);
mid=unique(matchid(~isnan(matchid)));
for m=1:numel(mid)
conid=sort(origid(matchid==mid(m)));
matchidnew(matchid==mid(m))=conid(1);
[~,AMind] = ismember(conid,origid);
for i=1:(numel(AMind)-1)
AM(AMind(i),AMind(i+1))=conid(1);
AM(AMind(i+1),AMind(i))=conid(1);
end
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
ImportStackJ.m
|
.m
|
BoutonAnalyzer-master/ImportStackJ.m
| 1,791 |
utf_8
|
066057b9ee6616481e3155413ab88b5c
|
% This function imports images into MatLab. RGB images are converted to
% grayscale. Data format of Orig is preserved (uint8, uint16, etc).
function [Orig,sizeOrig,classOrig]=ImportStackJ(pth,file_list)
Orig=[];
sizeOrig=[];
classOrig=[];
N=length(file_list);
info = imfinfo([pth,file_list{1}]);
Npl=length(info);
if N==0
disp('There are no images which pass the file selection criteria.')
return
elseif N==1 && Npl>1 %import a virtual stack (tif or LSM)
temp = imread([pth,file_list{1}],'Index',1);
classOrig=class(temp);
formatOrig=size(temp,3);
sizeOrig=fix([size(temp,1),size(temp,2),Npl]);
Orig=zeros(sizeOrig,classOrig);
for i=1:Npl
temp = imread([pth,file_list{1}],'Index',i);
if formatOrig==3
temp=rgb2gray(temp);
end
Orig(:,:,i) = temp;
end
elseif N>1 || (N==1 && Npl==1) %import a set of regular images
if Npl>1
disp('Unable to load multiple virtual stacks.')
return
end
temp = imread([pth,file_list{1}]);
for i=2:N
info = imfinfo([pth,file_list{i}]);
if length(info)>1
disp('Unable to load multiple virtual stacks.')
return
end
if info.Height~=size(temp,1) || info.Width~=size(temp,2)
disp('Unable to load. Images have different dimensions.')
return
end
end
classOrig=class(temp);
formatOrig=size(temp,3);
sizeOrig=fix([size(temp,1),size(temp,2),N]);
Orig=zeros(sizeOrig,classOrig);
for i=1:N
temp = imread([pth,file_list{i}]);
if formatOrig==3
temp=rgb2gray(temp);
end
Orig(:,:,i) = temp;
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
LabelBranchesAM.m
|
.m
|
BoutonAnalyzer-master/LabelBranchesAM.m
| 1,097 |
utf_8
|
ea1bc5783fe1d5a6940da903652809ec
|
% This function labels individual branches in AM by using Depth First Search.
% The function works even when there are several disconnected trees in the AM
function AMlbl = LabelBranchesAM(AM)
AM=spones(AM+AM');
AM=AM-diag(diag(AM));
Remaining=find(sum(AM,1)==1 | sum(AM,1)>2);
AMlbl=AM;
AMlbl(AMlbl==1)=NaN;
CurrentLabel=1;
while sum(isnan(AMlbl(:)))>0
if isempty(Remaining)
Remaining=find(isnan(sum(AMlbl,1)),1);
end
BegVert=Remaining(1);
NeighVert=find(isnan(AMlbl(BegVert,:)),1);
AMlbl(BegVert,NeighVert)=CurrentLabel;
AMlbl(NeighVert,BegVert)=CurrentLabel;
if sum(isnan(AMlbl(Remaining(1),:)))==0
Remaining(1)=[];
end
while sum(AM(NeighVert,:))==2 && isnan(sum(AMlbl(NeighVert,:)))
BegVert=NeighVert;
NeighVert=find(isnan(AMlbl(BegVert,:)),1);
AMlbl(BegVert,NeighVert)=CurrentLabel;
AMlbl(NeighVert,BegVert)=CurrentLabel;
end
if sum(isnan(AMlbl(NeighVert,:)))==0
Remaining(Remaining==NeighVert)=[];
end
CurrentLabel=CurrentLabel+1;
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
BoutonAnalyzer.m
|
.m
|
BoutonAnalyzer-master/BoutonAnalyzer.m
| 6,273 |
utf_8
|
87972725983ca960cac7bc42612f1e9e
|
function BoutonAnalyzer()
temp=get(0);
fi.H=400;
fi.W=600;
fi.L=temp.ScreenSize(3)/2-fi.W/2;
fi.B=temp.ScreenSize(4)/2-fi.H/2;
hf=figure;
hf.Position=[fi.L,fi.B,fi.W,fi.H];
hf.MenuBar='none';
hf.NumberTitle='off';
hf.Name='Bouton Analyzer';
workingdir=pwd;
cbfcn=['open(''',workingdir,filesep,'User Manual.pdf'')'];
hfmenu=uimenu('Label','Help','Parent',hf);
uimenu(hfmenu,'Label','User Manual','Callback',cbfcn);
uimenu(hfmenu,'Label','Website','Callback','web(''http://www.northeastern.edu/neurogeometry/resources/bouton-analyzer/'')');
ha=axes('Parent',hf);
%Initialize axis
ha.Units='Normalized';ha.Position=[0 0.65 1 0.3];
ha.Color=[0.94 0.94 0.94];box(ha,'off');
ha.NextPlot='add';
%Plot projection
[im,~,alpha] = imread('Icon.png');
f=imshow(im,'Parent',ha);
set(f,'AlphaData',alpha);
axis(ha,'off');
pathlist;
h_viewpanel=uipanel('Parent',hf);h_viewpanel.Tag='Paths';
h_viewpanel.Units='pixels';h_viewpanel.Position=[10 100 580 160];
h_viewpanel.Title='Paths';
hf.UserData.Im=im_pth;
hf.UserData.Trace=man_pth;
hf.UserData.Profile=profile_pth;
hf.UserData.Results=proc_pth;
%Images--------------------------------------------------------------------
uicontrol('Style', 'text','Parent',h_viewpanel,...
'Units','normalized','Position', [0.02 0.7 0.15 0.15],...
'String','Images: ');
him=uicontrol('Style','edit','Parent',h_viewpanel,'Tag','Impthtxt',...
'Units','normalized','Position',[0.20 0.7 0.6 0.15],...
'String',hf.UserData.Im,'Callback',@chkpth,'Enable','on');
uicontrol('Style','pushbutton','Parent',h_viewpanel,'Tag','Impthbtn',...
'Units','normalized','Position',[0.82 0.7 0.1 0.15],...
'String','Choose',...
'Callback',{@setpth,him});
%Traces--------------------------------------------------------------------
uicontrol('Style', 'text','Parent',h_viewpanel,...
'Units','normalized','Position', [0.02 0.5 0.15 0.15],...
'String','Traces: ');
htr=uicontrol('Style','edit','Parent',h_viewpanel,'Tag','Tracepthtxt',...
'Units','normalized','Position',[0.20 0.5 0.6 0.15],...
'String',hf.UserData.Trace,'Callback',@chkpth,'Enable','on');
uicontrol('Style','pushbutton','Parent',h_viewpanel,'Tag','Tracepthbtn',...
'Units','normalized','Position',[0.82 0.5 0.1 0.15],...
'String','Choose',...
'Callback',{@setpth,htr});
%Profiles------------------------------------------------------------------
uicontrol('Style','text','Parent',h_viewpanel,...
'Units','normalized','Position', [0.02 0.3 0.15 0.15],...
'String','Profiles: ');
hpr=uicontrol('Style','edit','Parent',h_viewpanel,'Tag','Profilepthtxt',...
'Units','normalized','Position',[0.20 0.3 0.6 0.15],...
'String',hf.UserData.Profile,'Callback',@chkpth,'Enable','on');
uicontrol('Style','pushbutton','Parent',h_viewpanel,'Tag','Profilepthbtn',...
'Units','normalized','Position',[0.82 0.3 0.1 0.15],...
'String','Choose',...
'Callback',{@setpth,hpr});
%Proc------------------------------------------------------------------
uicontrol('Style','text','Parent',h_viewpanel,...
'Units','normalized','Position', [0.02 0.1 0.15 0.15],...
'String','Results: ');
hprc=uicontrol('Style','edit','Parent',h_viewpanel,'Tag','Procpthtxt',...
'Units','normalized','Position',[0.20 0.1 0.6 0.15],...
'String',hf.UserData.Results,'Callback',@chkpth,'Enable','on');
uicontrol('Style','pushbutton','Parent',h_viewpanel,'Tag','Procpthbtn',...
'Units','normalized','Position',[0.82 0.1 0.1 0.15],...
'String','Choose',...
'Callback',{@setpth,hprc});
%Launch GUi panel----------------------------------------------------------
h_viewpanel=uipanel('Parent',hf);h_viewpanel.Tag='Launch';
h_viewpanel.Units='pixels';h_viewpanel.Position=[10 10 580 80];
h_viewpanel.Title='Launch GUI';
uicontrol('Style','pushbutton','Parent',h_viewpanel,'Tag','Tracepthbtn',...
'Units','normalized','Position',[0.30 0.55 0.4 0.4],...
'String','Optimize Trace & Generate Profile',...
'Callback',{@launchgui,1});
uicontrol('Style','pushbutton','Parent',h_viewpanel,'Tag','Tracepthbtn',...
'Units','normalized','Position',[0.30 0.1 0.4 0.4],...
'String','Detect & Track Boutons',...
'Callback',{@launchgui,2});
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
function []=setpth(src,~,h)
histfile=[pwd,filesep,'tmp',filesep,'paths.mat'];
maindir=fileparts(pwd);
temp=uigetdir(maindir);
if temp %uigetdir returns 0 when cancelled
h.String=[temp,filesep];%Update the text field
if exist(histfile,'file')
custompth=load(histfile);
end
end
ht=findobj(src.Parent,'Tag','Impthtxt');
custompth.im_pth=ht.String;
ht=findobj(src.Parent,'Tag','Tracepthtxt');
custompth.man_pth=ht.String;
ht=findobj(src.Parent,'Tag','Profilepthtxt');
custompth.profile_pth=ht.String;
ht=findobj(src.Parent,'Tag','Procpthtxt');
custompth.proc_pth=ht.String;
save(histfile,'-struct','custompth');
end
function []=launchgui(~,~,h)
if h==1
gui_optimization(gcbf);
elseif h==2
gui_alignment(gcbf);
end
end
function []=chkpth(src,~)
histfile=[pwd,filesep,'tmp',filesep,'paths.mat'];
if exist(src.String,'dir')
if ~strcmp(src.String(end),filesep)
src.String=[src.String,filesep];
end
if exist(histfile,'file')
custompth=load(histfile);
end
disp(['Path set: ',src.String]);
ht=findobj(src.Parent,'Tag','Impthtxt');
custompth.im_pth=ht.String;
ht=findobj(src.Parent,'Tag','Tracepthtxt');
custompth.man_pth=ht.String;
ht=findobj(src.Parent,'Tag','Profilepthtxt');
custompth.profile_pth=ht.String;
ht=findobj(src.Parent,'Tag','Procpthtxt');
custompth.proc_pth=ht.String;
save(histfile,'-struct','custompth');
else
disp('Directory does not exist.');
pathlist;
switch src.Tag
case 'Impthtxt'
src.String=im_pth;
case 'Tracepthtxt'
src.String=man_pth;
case 'Profilepthtxt'
src.String=profile_pth;
case 'Procpthtxt'
src.String=proc_pth;
end
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
gui_alignment_defineframe.m
|
.m
|
BoutonAnalyzer-master/gui_alignment_defineframe.m
| 5,391 |
utf_8
|
347c2a1194dd679b003548d3c7a6c8e4
|
function [] = gui_alignment_defineframe(hf)
gui_alignment_layout;
%------------------------------Operation Panel-----------------------------
h_operation=uipanel('Parent',hf);h_operation.Tag='Operation';
h_operation.Units='pixels';h_operation.Position=[panel_l,operationpanel_b,panel_w,operationpanel_h];
h_operation.Title='';
%Mode select
h_mode = uibuttongroup('Tag','Mode','Parent',h_operation,...
'Units','pixels','Position',[0,operationpanel_mode_b,panel_w,operationpanel_mode_h],...
'SelectionChangedFcn',{@operationPanelController,hf},...
'Title','','BorderType','none');
modechoices={'Align Traces','Annotate Traces','Detect Peaks'};
nbtn=3;
for n=1:nbtn
mode_rb=uicontrol('Style','radiobutton','Parent',h_mode);
mode_rb.Units='pixels';mode_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+stdbuff_h+1, element_w, rbtn_h];
mode_rb.String=modechoices{n};
mode_rb.Enable='off';
end
%Object select
h_object = uibuttongroup('Tag','Object','Parent',h_operation,...
'Units','pixels','Position',[0,operationpanel_object_b,panel_w,operationpanel_object_h],...
'SelectionChangedFcn',{@operationPanelController,hf},...
'Title','');%,'BorderType','none');
objectchoices={'Edit Peaks','Match Peaks'};
nbtn=numel(objectchoices);
for n=1:nbtn
obj_rb=uicontrol('Style','radiobutton','Parent',h_object);
obj_rb.Units='pixels';obj_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+stdbuff_h+1, element_w, rbtn_h];
obj_rb.String=objectchoices{n};
obj_rb.Enable='off';
end
%Save profile button
uicontrol('Style', 'pushbutton','Tag','SaveProfile','Parent',h_operation,...
'Units','pixels','Position',[stdbuff_w, savebutton_b+1, element_w, pushbutton_h],...
'String', 'Save','Callback',{@saveProfile,hf},'Enable','off');
%New Axon button
uicontrol('Style', 'pushbutton','Tag','LoadNextAxon','Parent',h_operation,...
'Units','pixels','Position',[stdbuff_w, newaxonbtn_b+1 element_w, pushbutton_h],...
'String', 'Load Next','Callback',{@loadnext,hf},'Enable','on');
%------------------------------View Panel----------------------------------
h_viewpanel=uipanel('Parent',hf);h_viewpanel.Tag='ViewPanel';
h_viewpanel.Units='pixels';h_viewpanel.Position=[panel_l,viewpanel_b,panel_w,viewpanel_h];
h_viewpanel.Title='View Options';
%Contrast setting
uicontrol('Style', 'text','Parent',h_viewpanel,...
'Units','pixels','Position', [stdbuff_w, view_intrange_b+txtbx_h+minbuff_h, element_w, txt_h],...
'String','Intensity range');
uicontrol('Style','edit','Parent',h_viewpanel,'Tag','ContrastValue',...
'Units','pixels','Position',[stdbuff_w,view_intrange_b, element_w, txtbx_h],...
'Callback',{@viewPanelController,hf},...
'ToolTipString','e.g. 0, 100');
%Position setting
uicontrol('Style', 'text','Parent',h_viewpanel,...
'Units','pixels','Position', [stdbuff_w, view_shift_b+txtbx_h+minbuff_h, element_w, txt_h],...
'String',sprintf('Shift: down, right (px)'));
uicontrol('Style','edit','Tag','ShiftValue','Parent',h_viewpanel,...
'Units','pixels','Position',[stdbuff_w, view_shift_b, element_w, txtbx_h],...
'Callback',{@viewPanelController,hf},...
'ToolTipString','e.g. -10, 15');
%Toggle channel
sel_ch = uibuttongroup('Tag','Channel','Parent',h_viewpanel,...
'Units','pixels','Position',[0, view_chnrb_b, panel_w, view_chnrb_h],...
'SelectionChangedFcn',{@viewPanelController,hf},...
'Title','Channel','BorderType','none');
nbtn=3;
channel=fieldnames(hf.UserData.Profile{1}.proj);
for n=1:nbtn
ch_rb=uicontrol('Style','radiobutton','Parent',sel_ch);
ch_rb.Units='pixels';ch_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+minbuff_h, element_w, rbtn_h];
if n<=numel(channel)
ch_rb.String=channel{n};
ch_rb.Enable='on';
else
ch_rb.String='-NA-';
ch_rb.Enable='off';
end
end
sel_ch.SelectedObject=findobj(sel_ch,'String',hf.UserData.inform.channel{1});
%Toggle normalized
h_norm = uibuttongroup('Tag','RelativeIntensity','Parent',h_viewpanel,...
'Units','pixels','Position',[0,stdbuff_h,panel_w,view_relintrb_h],...
'SelectionChangedFcn',{@viewPanelController,hf},...
'Title','Image intensity','BorderType','none');
normchoices={'Raw','Normalized'};
nbtn=numel(normchoices);
for n=1:nbtn
norm_rb=uicontrol('Style','radiobutton','Parent',h_norm);
norm_rb.Units='pixels';norm_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+minbuff_h, element_w, rbtn_h];
norm_rb.String=normchoices{n};
norm_rb.Enable='on';
end
h_norm.SelectedObject=findobj(h_norm,'String','Raw');
%----------------------------Initialize axis-------------------------------
h_axis=axes('Parent',hf);h_axis.Tag='Axis';
h_axis.Units='pixels';h_axis.Position=[2*buff.w+panel_w+buff.h,buff.h,xyaxis_w,xyaxis_w];
h_axis.YLabel.String='X axis, [pixels]';h_axis.XLabel.String='Y axis, [pixels]';
h_axis.XLim=[0 1000];h_axis.YLim=[0 1000];
h_axis.Color=[0.4 0.4 0.4];box(h_axis,'on');
h_axis.NextPlot='add';
%Initialize selected vertices group
h_sv=hggroup('Parent',h_axis);
h_sv.Tag='SelVerts';
end
function [] = loadnext(~,~,hf)
close(hf);
if ~isvalid(hf)
gui_alignment([]);
else
disp('Current axon was retained. Load new axon operation terminated.')
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
gui_alignment.m
|
.m
|
BoutonAnalyzer-master/gui_alignment.m
| 8,260 |
utf_8
|
89f47bb5669ce220107bc3f6689b9190
|
function gui_alignment(src)
%Function allows
%1. view projections of all traces simultaneously and align traces
%2. annotate traces to exclude cross-overs etc
%3. editing and matching of peaks (putative boutons)
close(src);
temp=get(0);
fi.H=max([700,temp.ScreenSize(4)*0.8]);
fi.W=max([875,fi.H*5/4]);
fi.L=(fi.W.*0.1);
fi.B=(fi.H.*0.1);
hf=figure('Visible','off');clf(hf);
hf.Name='BoutonAnalyzer: Detection & Tracking';hf.NumberTitle='off';hf.Tag='Main';
hf.Position=[fi.L,fi.B,fi.W,fi.H];
set(hf,'KeyPressFcn',@hotkeys);
set(hf,'WindowScrollWheelFcn',@scroll2zoom);
customizeMenus(hf);
%Set data
[~,Profile,~,inform,exitstatus] = gui_loaddata(0,1,0,'gui_alignment');
if exitstatus==1
set(hf,'CloseRequestFcn',@closereqf)
hf.UserData.profilefig=figure('Visible','off');
set(hf,'DeleteFcn',{@closeProfileFig,hf});
hf.UserData.Profile=Profile;clear Profile;
hf.UserData.inform=inform;
%Set GUI related parameters
hf.UserData.AnalysisStatus=1;
hf.UserData.AlignVerts.ind=[];
hf.UserData.AlignVerts.t=[];
hf.UserData.relshiftx=[];
hf.UserData.relshifty=[];
hf.UserData.normfactor=[];
%Define the GUI frame with all buttons and axes
gui_alignment_defineframe(hf);
%Set initial state and clean profiles:
getViewPanelProp(hf);
[~,hf.UserData.AnalysisStatus]=setAnalysisStatus(hf.UserData);
setGUIstate(hf);
setinitGUIstate(hf);
hf.UserData=cleanupProfiles(hf.UserData);
updatePlots(hf,2);
setViewPanelProp(hf);
hf.Visible='on';
else
close(hf);
end
end
%This function adds nodes to an active list when an edge is selected
function hotkeys(src,ed)
%All the keyboard shortcuts are defined here
hf=src;
h_axis=findobj(hf.Children,'-depth',0,'Tag','Axis');
h_operationpanel=findobj(hf.Children,'flat','Tag','Operation');
h_mode=findobj(h_operationpanel.Children,'flat','Tag','Mode');
h_object=findobj(h_operationpanel.Children,'flat','Tag','Object');
h_sv=findobj(h_axis.Children,'-depth',0,'Tag','SelVerts');
panfact=0.03;
if strcmp(ed.Key,'comma') || strcmp(ed.Key,'period')
if ~isempty(h_sv)
h_active=findobj(h_sv.Children,'-depth',0,'Tag','Active');
if ~isempty(h_active) && strcmp(h_active.UserData.type,'Trace')
vert.t=h_active.UserData.t;
vert.ind=h_active.UserData.ind;
vert.type=h_active.UserData.type;
if strcmp(ed.Key,'comma')
vert.ind=min(vert.ind+1,numel(hf.UserData.Profile{vert.t}.d.optim));
elseif strcmp(ed.Key,'period')
vert.ind=max(vert.ind-1,1);
end
xdat=hf.UserData.Profile{vert.t}.r.optim(vert.ind,1)+hf.UserData.shiftx(vert.t);
ydat=hf.UserData.Profile{vert.t}.r.optim(vert.ind,2)+hf.UserData.shifty(vert.t);
%Update active vertex
h_active.XData=ydat;
h_active.YData=xdat;
set(h_active,'UserData',vert)
end
%If in edit & match mode, with trace object selected
if strcmp(h_mode.SelectedObject.String,'Detect Peaks') && strcmp(h_object.SelectedObject.String,'Edit Peaks')
drawProfile([],[],hf);
end
end
elseif strcmp(ed.Key,'equal')
h_axis=findobj(hf.Children,'flat','Tag','Axis');
h_axis.CLim(2)=h_axis.CLim(2)*0.9;
setViewPanelProp(hf);%Update display
getViewPanelProp(hf);%Update internal state using display
elseif strcmp(ed.Key,'hyphen')
h_axis=findobj(hf.Children,'flat','Tag','Axis');
h_axis.CLim(2)=h_axis.CLim(2)*1.1;
setViewPanelProp(hf);
getViewPanelProp(hf);
elseif strcmp(ed.Key,'d')
deselectVert([],[],hf);
elseif strcmp(ed.Key,'z')
%Activates zoom with a context menu to disable zoom mode
hCMZ = uicontextmenu;
uimenu('Parent',hCMZ,'Label','Switch to pan mode',...
'Callback','pan(gcbf,''on'')');
uimenu('Parent',hCMZ,'Label','Exit zoom mode',...
'Callback','zoom(gcbf,''off'')');
hZoom = zoom(gcbf);
hZoom.UIContextMenu = hCMZ;
zoom('on');
elseif strcmp(ed.Key,'x')
%Activates pan with a context menu to disable pan mode
hPanMZ = uicontextmenu;
uimenu('Parent',hPanMZ,'Label','Switch to zoom mode',...
'Callback','zoom(gcbf,''on'')');
uimenu('Parent',hPanMZ,'Label','Exit pan mode',...
'Callback','pan(gcbf,''off'')');
hPan = pan(gcbf);
hPan.UIContextMenu = hPanMZ;
pan('on');
elseif strcmp(ed.Key,'a') || strcmp(ed.Key,'r') || strcmp(ed.Key,'f')
h_operationpanel=findobj(hf.Children,'flat','Tag','Operation');
h_mode=findobj(h_operationpanel.Children,'flat','Tag','Mode');
h_object=findobj(h_operationpanel.Children,'flat','Tag','Object');
if strcmp(h_mode.SelectedObject.String,'Align Traces')
h_axis=findobj(hf.Children,'flat','Tag','Axis');
h_sv=findobj(h_axis.Children,'flat','Tag','SelVerts');
if ~isempty(h_sv.Children) && strcmp(ed.Key,'a')
addLandmark([],[],hf);
end
elseif strcmp(h_mode.SelectedObject.String,'Detect Peaks') && ...
strcmp(h_object.SelectedObject.String,'Edit Peaks')
h_axis=findobj(hf.Children,'flat','Tag','Axis');
h_sv=findobj(h_axis.Children,'flat','Tag','SelVerts');
if ~isempty(h_sv.Children) && strcmp(ed.Key,'a')
addPeak([],[],hf);
elseif ~isempty(h_sv.Children) && strcmp(ed.Key,'r')
remPeak([],[],hf);
end
elseif strcmp(h_mode.SelectedObject.String,'Detect Peaks') && ...
strcmp(h_object.SelectedObject.String,'Match Peaks')
h_sv=findobj(h_axis.Children,'flat','Tag','SelVerts');
if numel(h_sv.Children)>1 && strcmp(ed.Key,'a')
addEdges([],[],hf);
elseif numel(h_sv.Children)>0 && strcmp(ed.Key,'f')
editFlag([],[],hf);
end
end
elseif strcmp(ed.Key,'v')
h_elements=findobj(h_axis.Children,'flat','-not','Tag','Image','-not','Tag','SelVerts');
stateval=h_elements(1).Visible;
if strcmp(stateval,'on')
stateval='off';
else
stateval='on';
end
set(h_elements,'Visible',stateval);
elseif strcmp(ed.Key,'z')
%Activates zoom with a context menu to disable zoom mode
switch2zoom([],[],hf);
elseif strcmp(ed.Key,'x')
%Activates pan with a context menu to disable pan mode
switch2pan([],[],hf);
elseif strcmp(ed.Key,'uparrow')%up
h_axis.YLim=h_axis.YLim-cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.XLim=h_axis.XLim-sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'downarrow')%down
h_axis.YLim=h_axis.YLim+cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.XLim=h_axis.XLim+sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'leftarrow')%left
h_axis.XLim=h_axis.XLim-cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.YLim=h_axis.YLim+sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'rightarrow')%right
h_axis.XLim=h_axis.XLim+cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.YLim=h_axis.YLim-sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
end
end
function scroll2zoom(~,ed)
%Callback for zooming in and out using scroll
%h_axis=findobj(src.Children,'flat','Tag','Axis');
if ed.VerticalScrollCount<0
zoom(1.2);
else
zoom(1/1.2);
end
end
function closereqf(~,~)
% Close request function
% to display a question dialog box
selection = questdlg('All unsaved changes will be lost. Continue?',...
'Warning',...
'Yes','No','No');
switch selection
case 'Yes'
delete(gcbf)
case 'No'
return
end
end
function switch2zoom(~,~,hf)
hCMZ = uicontextmenu;
uimenu('Parent',hCMZ,'Label','Switch to pan mode',...
'Callback',{@switch2pan,hf});
uimenu('Parent',hCMZ,'Label','Exit zoom mode',...
'Callback','zoom(gcbf,''off'')');
hZoom = zoom(hf);
hZoom.UIContextMenu = hCMZ;
zoom('on');
end
function switch2pan(~,~,hf)
hPanMZ = uicontextmenu;
uimenu('Parent',hPanMZ,'Label','Switch to zoom mode',...
'Callback',{@switch2zoom,hf});
uimenu('Parent',hPanMZ,'Label','Exit pan mode',...
'Callback','pan(gcbf,''off'')');
hPan = pan(hf);
hPan.UIContextMenu = hPanMZ;
pan('on');
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
LabelTreesAM.m
|
.m
|
BoutonAnalyzer-master/LabelTreesAM.m
| 723 |
utf_8
|
3b17984d93020bca4d75064e73a9e1af
|
% This function finds trees in a directed or undirected AM and returns a
% labeled AMlbl.
function AMlbl = LabelTreesAM(AM)
AM = spones(AM+AM');
AMlbl=double(AM);
AV = find(sum(AM));
if ~isempty(AV)
startV=AV(1);
TreeLabel=1;
end
while ~isempty(AV)
startVnew=find(sum(AM(startV,:),1));
if ~isempty(startVnew)
AMlbl(startV,startVnew)=AM(startV,startVnew).*TreeLabel;
AMlbl(startVnew,startV)=AM(startVnew,startV).*TreeLabel;
AM(startV,startVnew)=0;
AM(startVnew,startV)=0;
startV=startVnew;
else
AV=find(sum(AM));
if ~isempty(AV)
startV=AV(1);
TreeLabel=TreeLabel+1;
end
end
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
gui_optimization.m
|
.m
|
BoutonAnalyzer-master/gui_optimization.m
| 21,412 |
utf_8
|
700e399f68aa0ec77f44b54100f76dc5
|
function gui_optimization(src)
close(src);
%This section has sizes derived from screen resolution---------------------
temp=get(0);
fi.H=max([700,temp.ScreenSize(4)*0.8]);
fi.W=max([875,fi.H*5/4]);
fi.L=(fi.W.*0.1);
fi.B=(fi.H.*0.1);
%--------------------------------------------------------------------------
hf=figure;clf(hf);hf.Visible='off';
hf.Name='BoutonAnalyzer: Optimize Trace & Generate Profile';hf.NumberTitle='off';
hf.Position=[fi.L,fi.B,fi.W,fi.H];
set(hf,'KeyPressFcn',@hotkeys);
set(hf,'WindowScrollWheelFcn',@scroll2zoom);
customizeMenus(hf);
[hf.UserData.Im,Profile,Trace,hf.UserData.inform,exitstat]=gui_loaddata(1,1,1,'gui_optimization');
if exitstat==1
%All channels are assumed to have same dimensions, Trace and Profile are
%cells;
hf.UserData.Profile=Profile{1};
hf.CloseRequestFcn=@closereq;
%Order trace for faster plotting:
startt=find(sum(Trace{1}.AM,1)==1);startt=startt(1);
[Trace{1}.AM,Trace{1}.r,~] = orderprofile(Trace{1}.AM,Trace{1}.r,false(size(Trace{1}.r,1),1),startt);
hf.UserData.Trace=Trace{1};
clear Profile Trace;
%Initialize profile if no trace in profile
channel=hf.UserData.inform.channel;
if ~isfield(hf.UserData.Profile,'AM')
hf.UserData.Profile.AM.optim=[];
hf.UserData.Profile.r.optim=[];
hf.UserData.Profile.annotate.ignore=[];
for ch=1:numel(channel)
hf.UserData.Profile.proj.(channel{ch}).xy.full=max(permute(hf.UserData.Im.(channel{ch}),[1,2,3]),[],3);
hf.UserData.Profile.proj.(channel{ch}).zy.full=max(permute(hf.UserData.Im.(channel{ch}),[3,2,1]),[],3);
hf.UserData.Profile.proj.(channel{ch}).xz.full=max(permute(hf.UserData.Im.(channel{ch}),[1,3,2]),[],3);
hf.UserData.Profile.proj.(channel{ch}).xy.ax=[];
hf.UserData.Profile.proj.(channel{ch}).zy.ax=[];
hf.UserData.Profile.proj.(channel{ch}).xz.ax=[];
end
hf.UserData.Opt.r=hf.UserData.Trace.r;
hf.UserData.Opt.AM=hf.UserData.Trace.AM;
hf.UserData.Opt.R=hf.UserData.Trace.R;
else
hf.UserData.Opt.r=hf.UserData.Profile.r.optim;
hf.UserData.Opt.AM=hf.UserData.Profile.AM.optim;
hf.UserData.Opt.R=zeros(size(hf.UserData.Profile.r.optim,1),1);
end
%Generate projections
genproj(hf);
gui_optimization_layout;
%Initialize axis
ha_xy=axes;ha_xy.Tag='ha_xy';ha_xy.Parent=hf;
ha_xy.Units='pixels';ha_xy.Position=[panel_l+panel_w+buff.h+(1/3)*xyaxis_w+buff.h, buff.h, xyaxis_w, xyaxis_w];
ha_xy.YLabel.String='X axis, [pixels]';ha_xy.XLabel.String='Y axis, [pixels]';
ha_xy.XLim=[0 900];ha_xy.YLim=[0 900];
ha_xy.Color=[0.4 0.4 0.4];box(ha_xy,'on');
ha_xy.NextPlot='add';
%Plot projection
hi_xy=imshow(hf.UserData.Profile.proj.(channel{1}).xy.full,[],'Parent',ha_xy);hold on;
ha_xy.CLim=[0,mean(hf.UserData.Profile.proj.(channel{1}).xy.full(:))+5*std(hf.UserData.Profile.proj.(channel{1}).xy.full(:))];
hi_xy.Tag='hi_xy_full';
axis(ha_xy,'on');
%Initialize axis
ha_zy=axes;ha_zy.Tag='ha_zy';ha_zy.Parent=hf;
ha_zy.Units='pixels';ha_zy.Position=[panel_l+panel_w+buff.h+(1/3)*xyaxis_w+buff.h,xyaxis_w+2*buff.h,xyaxis_w,(1/3)*xyaxis_w];
ha_zy.YLabel.String='Z axis, [pixels]';ha_zy.XLabel.String='Y axis, [pixels]';
ha_zy.XLim=[0 900];ha_zy.YLim=[0 300];
ha_zy.Color=[0.4 0.4 0.4];box(ha_zy,'on');
ha_zy.NextPlot='add';
%Plot projection
hi_zy=imshow(hf.UserData.Profile.proj.(channel{1}).zy.full,[],'Parent',ha_zy);hold on;
ha_zy.CLim=ha_xy.CLim;
hi_zy.Tag='hi_zy_full';
axis(ha_zy,'on');
%Initialize axis
ha_xz=axes;
ha_xz.Tag='ha_xz';ha_xz.Parent=hf;
ha_xz.Units='pixels';ha_xz.Position=[panel_l+panel_w+buff.h, buff.h, (1/3)*xyaxis_w, xyaxis_w];
ha_xz.XLabel.String='Z axis, [pixels]';ha_xz.YLabel.String='X axis, [pixels]';
ha_xz.XLim=[0 300];ha_xz.YLim=[0 900];
ha_xz.Color=[0.4 0.4 0.4];box(ha_xz,'on');
ha_xz.NextPlot='add';
%Plot projection
hi_xz=imshow(hf.UserData.Profile.proj.(channel{1}).xz.full,[],'Parent',ha_xz);hold on;
hi_xz.Tag='hi_xz_full';
ha_xz.CLim=ha_xy.CLim;
axis(ha_xz,'on');
%Initialize view panel-------------------------------------------------
hv=uipanel('Parent',hf);
hv.Units='pixels';hv.Position=[panel_l, buff.h, panel_w, viewpanel_h];
hv.Title='View Options';
hv.Tag='ViewControl';
%Intensity range setting
uicontrol('Style', 'text','Parent',hv,...
'Units','pixels','Position', [stdbuff_w, view_intrange_b+txtbx_h+minbuff_h, element_w, txt_h],...
'String','Intensity range','Tag','IntensityRange');
uicontrol('Style','edit','Parent',hv,'Tag','IntensityRangeBox',...
'Units','pixels','Position',[stdbuff_w, view_intrange_b, element_w, txtbx_h],...
'Callback',@setintensityrange,...
'String',sprintf('%0.0f,%0.0f',ha_xz.CLim(1),ha_xz.CLim(2)),...
'ToolTipString','e.g. 0, 500');
%Toggle channel
sel_ch = uibuttongroup('Tag','Channels','Parent',hv,...
'Units','pixels','Position',[0, view_chnrb_b, panel_w, view_chnrb_h],...
'SelectionChangedFcn',@drawim,...
'Title','Channel','BorderType','none');
nbtn=3;
for n=1:nbtn
ch_rb=uicontrol('Style','radiobutton','Parent',sel_ch);
ch_rb.Units='pixels';ch_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+minbuff_h, element_w, rbtn_h];
if n<=numel(channel)
ch_rb.String=channel{n};
else
ch_rb.String='-NA-';
ch_rb.Enable='off';
end
end
sel_ch.SelectedObject=findobj(sel_ch,'String',channel{1});
%Toggle trace
sel_tr = uibuttongroup('Title','Trace','Tag','Trace','Parent',hv,...
'Units','pixels','Position',[0, view_tracerb_b, panel_w, view_tracerb_h],...
'SelectionChangedFcn',{@drawtrace,hf},'BorderType','none');
nbtn=3;
txtlist={'None','Initial','Optimized'};
if isempty(hf.UserData.Profile.AM.optim)
choice.NewValue.String='Initial';
else
choice.NewValue.String='Optimized';
end
for n=1:nbtn
tr_rb=uicontrol('Style','radiobutton','Parent',sel_tr);
tr_rb.Units='pixels';tr_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+minbuff_h, element_w, rbtn_h];
tr_rb.String=txtlist{n};
if strcmp(txtlist{n},'Optimized') && isempty(hf.UserData.Profile.AM.optim)
tr_rb.Enable='off';
end
tr_rb.HandleVisibility='on';
end
sel_tr.SelectedObject=findobj(sel_tr,'String',choice.NewValue.String);
drawtrace([],choice,hf);
%Toggle tube
sel_tube = uibuttongroup('Title','Projection','Tag','Projection','Parent',hv,...
'Units','pixels','Position',[0, view_tuberb_b, panel_w, view_tuberb_h],...
'SelectionChangedFcn',@drawim,'BorderType','none');
nbtn=2;
txtlist={'Full','Tube'};
for n=1:nbtn
tube_rb=uicontrol('Style','radiobutton','Parent',sel_tube);
tube_rb.Units='pixels';tube_rb.Position=[stdbuff_w,(nbtn-n)*(rbtn_h+minbuff_h)+minbuff_h, element_w, rbtn_h];
tube_rb.String=txtlist{n};
end
sel_tube.SelectedObject=findobj(sel_tube,'String','Full');
%Operation panel-------------------------------------------------------
hopt=uipanel('Parent',hf,'Tag','OptControl',...
'Units','pixels','Position',[panel_l,operationpanel_b,panel_w,operationpanel_h],...
'Title','','BorderType','none');
%Optimize push buttons
uicontrol('Style', 'pushbutton','Tag','IsOptPresent','Parent',hopt,...
'Units','pixels','Position',[stdbuff_w, stdbuff_h+2*(pushbutton_h+minbuff_h), element_w, pushbutton_h],...
'String','Optimize Trace','Callback',@optim);
uicontrol('Style', 'pushbutton','Tag','SaveProfile','Parent',hopt,...
'Units','pixels','Position',[stdbuff_w, stdbuff_h+pushbutton_h+minbuff_h, element_w, pushbutton_h],...
'String', 'Generate Profile & Save','Callback',@saveprofile,'Enable','on');
uicontrol('Style', 'pushbutton','Tag','NewAxon','Parent',hopt,...
'Units','pixels','Position',[stdbuff_w, stdbuff_h, element_w, pushbutton_h],...
'String', 'Load Next','Callback',@loadnew,'Enable','on');
hf.Visible='on';
else
disp('Data files could not be loaded. Exiting GUI.')
end
end
%-----------------------Functions------------------------------------------
%--------------------------------------------------------------------------
%-----------------------Create projections---------------------------------
function genproj(hf)
UserData=hf.UserData;
channel=fieldnames(UserData.Im);
sizeIm=size(UserData.Im.(channel{1}));%Size of all channels is the same.
pad=20;
minr=min(UserData.Opt.r,[],1);
maxr=max(UserData.Opt.r,[],1);
minx=round(max(minr(1)-pad,1));maxx=round(min(maxr(1)+pad,sizeIm(1)));
miny=round(max(minr(2)-pad,1));maxy=round(min(maxr(2)+pad,sizeIm(2)));
minz=round(max(minr(3)-pad,1));maxz=round(min(maxr(3)+pad,sizeIm(3)));
[~,SVr,~]=AdjustPPM(UserData.Opt.AM,UserData.Opt.r,UserData.Opt.R,1);
disp('Updating projections...');
%Perform fast marching on restricted volume:
paramset;%Parameters for FastMarching
[KT]=FastMarchingTube([maxx-minx+1,maxy-miny+1,maxz-minz+1],[SVr(:,1)-minx+1,SVr(:,2)-miny+1,SVr(:,3)-minz+1],params.proj.fm_dist,[1 1 1]);
Filter=false(sizeIm);
Filter(minx:maxx,miny:maxy,minz:maxz)=KT;
for ch=1:numel(fieldnames(UserData.Im))
Im_ax=zeros(size(UserData.Im.(channel{ch})));
Im_ax(Filter)=UserData.Im.(channel{ch})(Filter);
UserData.Profile.proj.(channel{ch}).xy.ax=squeeze(max(Im_ax,[],3));
UserData.Profile.proj.(channel{ch}).zy.ax=squeeze(max(Im_ax,[],1))';
UserData.Profile.proj.(channel{ch}).xz.ax=squeeze(max(Im_ax,[],2));
end
hf.UserData=[];
hf.UserData=UserData;
disp('Projections updated.');
end
%-----------------------Update traces--------------------------------------
function drawtrace(~,ed,hf)
ht=findobj(hf,'-depth',3,'-regexp','Tag','(ht)*');
ha_xy=findobj(hf,'-depth',2,'Tag','ha_xy');
ha_zy=findobj(hf,'-depth',2,'Tag','ha_zy');
ha_xz=findobj(hf,'-depth',2,'Tag','ha_xz');
if ~isempty(ht)
delete(ht);
end
switch ed.NewValue.String
case 'None'
%Do nothing
case 'Initial'
plot(hf.UserData.Trace.r(:,2),hf.UserData.Trace.r(:,1),'-','Color',[0.8 0 0],'Parent',ha_xy,'Tag','ht_xy_Manual');
plot(hf.UserData.Trace.r(:,2),hf.UserData.Trace.r(:,3),'-','Color',[0.8 0 0],'Parent',ha_zy,'Tag','ht_zy_Manual');
plot(hf.UserData.Trace.r(:,3),hf.UserData.Trace.r(:,1),'-','Color',[0.8 0 0],'Parent',ha_xz,'Tag','ht_xz_Manual');
case 'Optimized'
if ~isempty(hf.UserData.Profile.AM.optim)
plot(hf.UserData.Profile.r.optim(:,2),hf.UserData.Profile.r.optim(:,1),'-','Color',[0.1 0.7 0],'Parent',ha_xy,'Tag','ht_xy_Optimized');
plot(hf.UserData.Profile.r.optim(:,2),hf.UserData.Profile.r.optim(:,3),'-','Color',[0.1 0.7 0],'Parent',ha_zy,'Tag','ht_zy_Optimized');
plot(hf.UserData.Profile.r.optim(:,3),hf.UserData.Profile.r.optim(:,1),'-','Color',[0.1 0.7 0],'Parent',ha_xz,'Tag','ht_xz_Optimized');
else
disp('No optimized trace present!')
end
end
end
%---------------Update projection on all plots-----------------------------
function drawim(~,~)
%drawim is called by two buttons, and within optimization code. Hence gcbf
%always returns the correct figure
hf=gcbf;
h_dispcontrol=findobj(hf,'-depth',2,'Tag','ViewControl');
h_ch=findobj(h_dispcontrol,'-depth',2,'Tag','Projection');
if strcmp(h_ch.SelectedObject.String,'Full')
projtype='full';
elseif strcmp(h_ch.SelectedObject.String,'Tube')
projtype='ax';
end
h_ch=findobj(h_dispcontrol,'-depth',2,'Tag','Channels');
channel=h_ch.SelectedObject.String;
hi_xy=findobj(hf, '-depth',2,'-regexp','Tag','(hi_xy)*');
hi_zy=findobj(hf, '-depth',2,'-regexp','Tag','(hi_zy)*');
hi_xz=findobj(hf, '-depth',2,'-regexp','Tag','(hi_xz)*');
hi_xy.CData=hf.UserData.Profile.proj.(channel).xy.(projtype);
hi_zy.CData=hf.UserData.Profile.proj.(channel).zy.(projtype);
hi_xz.CData=hf.UserData.Profile.proj.(channel).xz.(projtype);
end
%-----------------------Perform optimization-------------------------------
function optim(varargin)
hf=gcbf;
h_msg=msgbox('Please wait until optimization is completed. This may take a minute...','Trace Optimization');
UserData=hf.UserData;
%hf.UserData=[];
channel=UserData.inform.channel{1};
paramset;
[UserData.Profile.AM.optim,UserData.Profile.r.optim,~,~]=...
Optimize_Trace(UserData.Im.(channel),UserData.Trace.AM,UserData.Trace.r,...
params.opt.Rtypical,params.opt.Optimize_bps,params.opt.Optimize_tps,params.opt.pointspervoxel,params.opt.MaxIterations, ...
params.opt.alpha_r,params.opt.betta_r,params.opt.isadjustpointdensity,params.opt.output);
close(h_msg);
%Subdividing trace
[UserData.Profile.AM.optim,UserData.Profile.r.optim,~]=...
AdjustPPM(UserData.Profile.AM.optim,UserData.Profile.r.optim,zeros(size(UserData.Profile.r.optim,1),1),params.profile.pointspervoxel);
%Order trace for faster plotting:
startt=find(sum(UserData.Profile.AM.optim,1)==1);startt=startt(1);
[UserData.Profile.AM.optim,UserData.Profile.r.optim,~] = orderprofile(UserData.Profile.AM.optim,UserData.Profile.r.optim,false(size(UserData.Profile.r.optim,1),1),startt);
%Replace the trace with which tube is calculated
UserData.Opt.r=UserData.Profile.r.optim;
UserData.Opt.AM=UserData.Profile.AM.optim;
UserData.Opt.R=zeros(size(UserData.Profile.r.optim,1),1);
hf.UserData=[];
hf.UserData=UserData;
h_tr=findobj(hf,'-depth',2,'Tag','ViewControl');
h_tr=findobj(h_tr,'String','Optimized');
h_tr.Enable='on';
%Switch displayed trace to optimized trace
sel_tr=h_tr.Parent;
sel_tr.SelectedObject=h_tr;
choice.NewValue.String=h_tr.String;
drawtrace([],choice,hf);
%Generate new projections
genproj(hf);
%Update projections and refresh trace
disp('Updating plots...');
drawim([],[]);
%Refresh trace
h_tr=findobj(hf,'-depth',2,'Tag','ViewControl');
h_tr=findobj(h_tr,'Tag','Trace');
choice.NewValue.String=h_tr.SelectedObject.String;
drawtrace([],choice,hf);
disp('Updating plots completed.');
end
%-----------------------Update contrast on all axes------------------------
function setintensityrange(~,~,~)
hf=gcbf;
ha_xy=findobj(hf,'-depth',2,'Tag','ha_xy');
ha_zy=findobj(hf,'-depth',2,'Tag','ha_zy');
ha_xz=findobj(hf,'-depth',2,'Tag','ha_xz');
hv=findobj(hf.Children,'flat','Tag','ViewControl');
hir=findobj(hv.Children,'Tag','IntensityRangeBox');
change=false;
Cval=regexp(hir.String,',','split');
if numel(Cval)==2
CVal=[str2double(Cval{1}),str2double(Cval{2})];
if ~any(isnan(CVal))
ha_xy.CLim=CVal;
ha_zy.CLim=CVal;
ha_xz.CLim=CVal;
change=true;
end
end
if ~change
CVal=ha_xy.CLim;
hir.String=[num2str(CVal(1)),' , ',num2str(CVal(2))];
disp('Intensity range must be specified as comma separated numbers.')
end
end
%-----------------------Generating profile---------------------------------
function genprofile(varargin)
hf=gcbf;
an=1;se=1;
ax=1;ti=1;
pathlist;
Profile=hf.UserData.Profile;
paramset;
if isempty(Profile.r.optim)
disp('Warning: Trace is not optimized. Profile generated using loaded trace.')
Profile.AM.optim=hf.UserData.Trace.AM;
Profile.r.optim=hf.UserData.Trace.r;
%Subdividing trace
[Profile.AM.optim,Profile.r.optim,~]=...
AdjustPPM(Profile.AM.optim,Profile.r.optim,zeros(size(Profile.r.optim,1),1),params.profile.pointspervoxel);
end
%Re-order AM and r
Profile.annotate.ignore=false(size(Profile.r.optim,1),1);
startt=find(sum(Profile.AM.optim,1)==1);
startt=startt(1);
[Profile.AM.optim,Profile.r.optim,Profile.annotate.ignore]=...
orderprofile(Profile.AM.optim,Profile.r.optim,Profile.annotate.ignore,startt);
%Calculating path distance and filter intensity
[Profile.d.optim]=vx2um(Profile.r.optim);
Profile.d.aligned=Profile.d.optim;
Profile.d.alignedxy=px2um(Profile.r.optim);
channel=hf.UserData.inform.channel;
for ch=1:numel(channel)
for fi=1:numel(params.filt.types)
[temp.I,temp.R]=profilefilters(Profile.r.optim,hf.UserData.Im.(channel{ch}),params.filt.types{fi},params);
Profile.I.(channel{ch}).(params.filt.types{fi}).raw=temp.I;
Profile.I.(channel{ch}).(params.filt.types{fi}).caliber=temp.R;
Profile.I.(channel{ch}).(params.filt.types{fi}).norm=temp.I./mean(temp.I(~Profile.annotate.ignore));
disp([params.filt.types{fi},' profile generated for ',channel{ch},' Channel.']);
end
end
%Create fit and id fields
for ch=1:numel(channel)
Profile.fit.(channel{ch})=struct();
end
stack_id=[hf.UserData.inform.animal{an},hf.UserData.inform.timepoint{ti},hf.UserData.inform.section{se}];
Profile.id=[stack_id,'-',hf.UserData.inform.axon{ax}];
Profile=orderfields(Profile,{'AM','r','d','I','annotate','fit','proj','id'});
hf.UserData.Profile=Profile;
end
%-----------------------Saving profile-------------------------------------
function saveprofile(varargin)
hf=gcbf;
an=1;se=1;
ax=1;ti=1;
pathlist;
genprofile();
Profile=hf.UserData.Profile;
if ~isempty(Profile)
profile_id=hf.UserData.inform.axon{ax};
stack_id=[hf.UserData.inform.animal{an},hf.UserData.inform.timepoint{ti},hf.UserData.inform.section{se}];
fname=isunixispc([profile_pth,stack_id,filesep,profile_id,'.mat']);
%Check directory
if ~exist(isunixispc([profile_pth,stack_id]),'dir')
mkdir(isunixispc(profile_pth),stack_id);
display(['Creating directory: ', isunixispc([profile_pth,stack_id])]);
end
save(fname,'-struct','Profile');
disp(['Saved profile in ',fname]);
else
disp('No profile found. Generate profile before saving.');
end
end
%-----------------------Shortcuts profile----------------------------------
function hotkeys(src,ed)
%All the keyboard shortcuts are defined here
hf=src;
h_axis=gca;
panfact=0.03;
if strcmp(ed.Key,'uparrow')%up
h_axis.YLim=h_axis.YLim-cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.XLim=h_axis.XLim-sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'downarrow')%down
h_axis.YLim=h_axis.YLim+cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.XLim=h_axis.XLim+sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'leftarrow')%left
h_axis.XLim=h_axis.XLim-cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.YLim=h_axis.YLim+sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'rightarrow')%right
h_axis.XLim=h_axis.XLim+cosd(h_axis.View(1))*diff(h_axis.XLim)*panfact;
h_axis.YLim=h_axis.YLim-sind(h_axis.View(1))*diff(h_axis.YLim)*panfact;
elseif strcmp(ed.Key,'equal')
hv=findobj(hf.Children,'flat','Tag','ViewControl');
hir=findobj(hv.Children,'Tag','IntensityRangeBox');
CVal=h_axis.CLim;
CVal(2)=CVal(2)*0.9;
hir.String=[num2str(CVal(1)),' , ',num2str(CVal(2))];
setintensityrange([],[],[]);
elseif strcmp(ed.Key,'hyphen')
hv=findobj(hf.Children,'flat','Tag','ViewControl');
hir=findobj(hv.Children,'Tag','IntensityRangeBox');
CVal=h_axis.CLim;
CVal(2)=CVal(2)*1.1;
hir.String=[num2str(CVal(1)),' , ',num2str(CVal(2))];
setintensityrange([],[],[]);
elseif strcmp(ed.Key,'z')
%Activates zoom with a context menu to disable zoom mode
switch2zoom([],[],hf);
elseif strcmp(ed.Key,'x')
%Activates pan with a context menu to disable pan mode
switch2pan([],[],hf);
end
end
function scroll2zoom(~,ed)
%Callback for zooming in and out using scroll
%h_axis=findobj(src.Children,'flat','Tag','Axis');
gca;
if ed.VerticalScrollCount<0
zoom(1.2);
else
zoom(1/1.2);
end
end
function closereq(~,~)
% Close request function
% to display a question dialog box
selection = questdlg('All unsaved changes will be lost. Continue?',...
'Warning',...
'Yes','No','No');
switch selection
case 'Yes'
delete(gcbf)
case 'No'
return
end
end
function loadnew(~,~)
hf=gcbf;
close(hf);
if ~isvalid(hf)
gui_optimization([]);
else
disp('Current axon was retained. Load new axon operation terminated.')
end
end
function switch2zoom(~,~,hf)
hCMZ = uicontextmenu;
uimenu('Parent',hCMZ,'Label','Switch to pan mode',...
'Callback',{@switch2pan,hf});
uimenu('Parent',hCMZ,'Label','Exit zoom mode',...
'Callback','zoom(gcbf,''off'')');
hZoom = zoom(hf);
hZoom.UIContextMenu = hCMZ;
zoom('on');
end
function switch2pan(~,~,hf)
hPanMZ = uicontextmenu;
uimenu('Parent',hPanMZ,'Label','Switch to zoom mode',...
'Callback',{@switch2zoom,hf});
uimenu('Parent',hPanMZ,'Label','Exit pan mode',...
'Callback','pan(gcbf,''off'')');
hPan = pan(hf);
hPan.UIContextMenu = hPanMZ;
pan('on');
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
analysis_getmat.m
|
.m
|
BoutonAnalyzer-master/analysis_getmat.m
| 8,683 |
utf_8
|
e5d2bfae9a58fae36c925993965f1573
|
function [AxonMat] = analysis_getmat(An)
%This function creates matrices for analysis from registered data. Input is
%obtained from BoutonAnalyzer via saveProfile.m
channel=fieldnames(An{1}.fit);
remchannelind=false(numel(channel),1);
for i=1:numel(channel)
remchannelind(i)=isempty(fieldnames(An{1}.fit.(channel{i})));
end
channel(remchannelind)=[];
fitshape='G'; %This should be the same as used in fitLoGxy.m and fitGauss.m
if strcmp(fitshape,'G')
Ff = @(x,A,mu,sigma) (ones(size(x))*A).*exp(-(x*ones(size(A))-ones(size(x))*mu).^2./(ones(size(x))*sigma.^2)./2);
elseif strcmp(fitshape,'L')
Ff = @(x,A,mu,sigma) (ones(size(x))*A)./((x*ones(size(A))-ones(size(x))*mu).^2./(ones(size(x))*sigma.^2)+1);
end
for ch=1:numel(channel)
%1. Initializing matrices----------------------------------------------
n_times=numel(An);
max_nbtns=0;
for ti=1:n_times
max_nbtns=max_nbtns+numel(An{ti}.fit.(channel{ch}).LoGxy.fg.ind);
end
AxonMat.btn_id=nan(1,max_nbtns); %(1 x btn)This is bouton lbl assigned during registration
AxonMat.flag=nan(n_times,max_nbtns); %(time x btn) Flags are assigned during registration
AxonMat.ind=nan(n_times,max_nbtns); %(time x btn) Index along corresponding profile
AxonMat.d=nan(1,max_nbtns); %(1 x btn) 1d position along the aligned profile
AxonMat.dorig=nan(n_times,max_nbtns); %(time x btn) 1d position along the original profile
AxonMat.blen=nan(n_times,max_nbtns); %(time x btn) length associated with bouton
AxonMat.rx=nan(n_times,max_nbtns); %(time x btn) 3d x-position of peak in each time point
AxonMat.ry=nan(n_times,max_nbtns); %(time x btn) 3d y-position of peak in each time point
AxonMat.rz=nan(n_times,max_nbtns); %(time x btn) 3d z-position of peak in each time point
AxonMat.Iraw=nan(n_times,max_nbtns); %Non-normalized intensity at location on profile.
AxonMat.Inorm=nan(n_times,max_nbtns); %Intensity at location on profile. Inorm is roughly Ifg+Ibg
AxonMat.Ibg=nan(n_times,max_nbtns); %Intensity of background at given foreground peak location
AxonMat.sig=nan(n_times,max_nbtns); %Peak width for every detected peak. nan otherwise
AxonMat.amp=nan(n_times,max_nbtns); %Intensity of fitted foreground peak. nan otherwise
AxonMat.w=nan(n_times,max_nbtns); %Normalized bouton weight
AxonMat.P=nan(n_times,max_nbtns); %Probability using noise model
%2. Populating matrices------------------------------------------------
dmin=-inf;dmax=inf;
Ibg=cell(n_times,1);
for ti=1:n_times
Axon=An{ti};
dmin=max([(Axon.fit.(channel{ch}).LoGxy.d.man(1)),dmin]);
dmax=min([(Axon.fit.(channel{ch}).LoGxy.d.man(end)),dmax]);
nanind=isnan(Axon.fit.(channel{ch}).LoGxy.fg.manid);
%Boutons not matched are assigned manid=fg.id.
Axon.fit.(channel{ch}).LoGxy.fg.manid(nanind)=Axon.fit.(channel{ch}).LoGxy.fg.id(nanind);
[~,matind]=ismember(Axon.fit.(channel{ch}).LoGxy.fg.manid,AxonMat.btn_id);
startind=find(isnan(AxonMat.btn_id),1,'first');
endind=startind+sum(matind==0)-1;
matind(matind==0)=startind:endind;
AxonMat.btn_id(1,matind)=Axon.fit.(channel{ch}).LoGxy.fg.manid;
AxonMat.flag(ti,matind)=Axon.fit.(channel{ch}).LoGxy.fg.flag;
AxonMat.ind(ti,matind)=Axon.fit.(channel{ch}).LoGxy.fg.ind;
AxonMat.d(1,matind)=Axon.fit.(channel{ch}).LoGxy.d.man(Axon.fit.(channel{ch}).LoGxy.fg.ind);
AxonMat.dorig(ti,matind)=Axon.d.optim(Axon.fit.(channel{ch}).LoGxy.fg.ind);
%Extra peaks are assumed as removed from dataset.
temp=diff([dmin,AxonMat.d(1,matind),dmax]);
blen=(temp(1:end-1)+temp(2:end))./2;
blen(1)=blen(1)+temp(1)/2;
blen(end)=blen(end)+temp(end)/2;
AxonMat.blen(ti,matind)=blen;
AxonMat.rx(ti,matind)=Axon.r.optim(Axon.fit.(channel{ch}).LoGxy.fg.ind,1);
AxonMat.ry(ti,matind)=Axon.r.optim(Axon.fit.(channel{ch}).LoGxy.fg.ind,2);
AxonMat.rz(ti,matind)=Axon.r.optim(Axon.fit.(channel{ch}).LoGxy.fg.ind,3);
AxonMat.Iraw(ti,matind)=Axon.I.(channel{ch}).LoGxy.raw(Axon.fit.(channel{ch}).LoGxy.fg.ind);
AxonMat.Inorm(ti,matind)=Axon.I.(channel{ch}).LoGxy.norm(Axon.fit.(channel{ch}).LoGxy.fg.ind);
%If peaks were added manually, their intensity is nan after
%operations by gui_alignment. Here those intensities are
%replaced with intensity at the aligned profile location
man_addedpeaks=find(isnan(Axon.fit.(channel{ch}).LoGxy.fg.amp));
if numel(man_addedpeaks)>0
Axon.fit.(channel{ch}).LoGxy.fg.amp(man_addedpeaks)=...
Axon.I.(channel{ch}).LoGxy.norm(Axon.fit.(channel{ch}).LoGxy.fg.ind(man_addedpeaks));
end
AxonMat.amp(ti,matind)=Axon.fit.(channel{ch}).LoGxy.fg.amp;
AxonMat.sig(ti,matind)=Axon.fit.(channel{ch}).LoGxy.fg.sig;
Ibg{ti}=zeros(size(Axon.d.optim));
for p=1:numel(Axon.fit.(channel{ch}).LoGxy.bg.ind)
Ibg{ti}=Ibg{ti}+Ff(Axon.d.optim,Axon.fit.(channel{ch}).LoGxy.bg.amp(p),...
Axon.fit.(channel{ch}).LoGxy.bg.mu(p),...
Axon.fit.(channel{ch}).LoGxy.bg.sig(p));
end
AxonMat.Ibg(ti,matind)=Ibg{ti}(Axon.fit.(channel{ch}).LoGxy.fg.ind);
end
%3. Removing boutons based on flag & overlap---------------------------
fldnm=fieldnames(AxonMat);
%Remove extra columns from initialization
remind=find(sum(isnan(AxonMat.ind),1)==size(AxonMat.ind,1));
remind=unique(remind);
for f=1:numel(fldnm)
AxonMat.(fldnm{f})(:,remind)=[];
end
%Assign distances to each peak before removing based on
%flags or non-overlapping axon region.
%Convention for flags:
%{
'0: No match provided (default)
'1: Confirmed no match
'2: Ignore, noisy intensity
'3: Ignore, terminal bouton intensity
'4: Ignore, cross-over
%}
temp=AxonMat.flag;
temp(isnan(temp))=0;%because nan~=0 returns true;
temp=temp~=0 & temp~=1;
[~,remind1]=find(temp);
remind2=find(AxonMat.d<dmin | AxonMat.d>dmax);
remind=unique([remind1(:);remind2(:)]);
for f=1:numel(fldnm)
AxonMat.(fldnm{f})(:,remind)=[];
end
%Sortind boutons in every axon by distance
[~,sortind]=sort(AxonMat.d);
for f=1:numel(fldnm)
AxonMat.(fldnm{f})=AxonMat.(fldnm{f})(:,sortind);
end
%4. Replace nans with corresponding value on profile-------------------
for ti=1:n_times
Axon=An{ti};
nanind=find(isnan(AxonMat.ind(ti,:)));
nanind=nanind(:)';
[~,minind]=min(abs(bsxfun(@minus,AxonMat.d(nanind),Axon.fit.(channel{ch}).LoGxy.d.man(:))),[],1);
AxonMat.ind(ti,nanind)=minind;
AxonMat.dorig(ti,nanind)=Axon.d.optim(minind);
AxonMat.rx(ti,nanind)=Axon.r.optim(minind,1);
AxonMat.ry(ti,nanind)=Axon.r.optim(minind,2);
AxonMat.rz(ti,nanind)=Axon.r.optim(minind,3);
AxonMat.Iraw(ti,nanind)=Axon.I.(channel{ch}).LoGxy.raw(minind);
AxonMat.Inorm(ti,nanind)=Axon.I.(channel{ch}).LoGxy.norm(minind);
AxonMat.Ibg(ti,nanind)=Ibg{ti}(minind);
end
%Related to normalization
Norm=nan(n_times,1);
for ti=1:n_times
%Calculate normalization only based on current time:
Gauss_bg=zeros(size(An{ti}.d.optim));
for i=1:numel(An{ti}.fit.(channel{ch}).Gauss.bg.ind)
Gauss_bg=Gauss_bg+Ff(An{ti}.d.optim,...
An{ti}.fit.(channel{ch}).Gauss.bg.amp(i),...
An{ti}.fit.(channel{ch}).Gauss.bg.mu(i),...
An{ti}.fit.(channel{ch}).Gauss.bg.sig(i));
end
Norm(ti)=mean(Gauss_bg(~An{ti}.annotate.ignore));
end
Norm=mean(Norm);
AxonMat.w=AxonMat.amp;
AxonMat.w(isnan(AxonMat.w))=AxonMat.Inorm(isnan(AxonMat.w));
AxonMat.w=AxonMat.w./Norm;
AxonMat.w(AxonMat.w<0)=0;
AxonMat.P=fP(AxonMat.w);
end
end
function P=fP(varargin)
alpha=0.2389;
wthr=2;
w=varargin{1};
if nargin==2
thr=varargin{2};
else
thr=wthr;
end
P=nan(size(w));
w(w<eps)=abs(eps);
P(:)=0.5*(1+erf((w(:)-thr)./((alpha*w(:)).^0.5)));
end
|
github
|
neurogeometry/BoutonAnalyzer-master
|
AdjustPPM.m
|
.m
|
BoutonAnalyzer-master/AdjustPPM.m
| 4,361 |
utf_8
|
6916b925eb85d858d3b11a7f31944fe0
|
% This function adjusts the number of points per micrometer of the trace (ppm).
% Input can be in the form of AM, AMlbl for branches, or AMlbl for trees
% The output is always in the form of AMlbl for trees
function [AMlbl,r,R] = AdjustPPM(AM,r,R,ppm)
AM=spones(AM+AM');
AMlbl = LabelBranchesAM(AM);
leng=size(AMlbl,1);
L=unique(AMlbl(AMlbl>0));
Nvert=zeros(1,length(L));
for i=1:length(L)
[e1,e2]=find(AMlbl==L(i));
lll=sum((r(e1,:)-r(e2,:)).^2,2).^0.5;
Nvert(i)=ceil(sum(lll)/2*ppm)+1;
end
degree=sum(AM,1);
N_new=sum(Nvert)-sum((degree-1).*(degree>2));
N_new_interm=N_new-sum(degree==1)-sum(degree>2);
AMlbl(end+N_new_interm,end+N_new_interm)=0;
r=[r;zeros(N_new_interm,3)];
R=[R;zeros(N_new_interm,1)];
for i=1:length(L)
[e1, ~]=find(AMlbl==L(i));
if ~isempty(e1)
e1=unique(e1);
endp=e1(sum(AM(:,e1))==1 | sum(AM(:,e1))>=3);
if isempty(endp) % isolated loop
endp=e1(1);
r_branch=zeros(length(e1)+1,3);
r_branch(1,:)=r(endp(1),:);
r_branch(end,:)=r(endp(1),:);
R_branch=zeros(length(e1)+1,1);
R_branch(1)=R(endp(1));
R_branch(end)=R(endp(1));
elseif length(endp)==1 % terminal loop
r_branch=zeros(length(e1)+1,3);
r_branch(1,:)=r(endp(1),:);
r_branch(end,:)=r(endp(1),:);
R_branch=zeros(length(e1)+1,1);
R_branch(1)=R(endp(1));
R_branch(end)=R(endp(1));
else
r_branch=zeros(length(e1),3);
r_branch(1,:)=r(endp(1),:);
r_branch(end,:)=r(endp(2),:);
R_branch=zeros(length(e1),1);
R_branch(1)=R(endp(1));
R_branch(end)=R(endp(2));
end
startp=endp(1);
if length(e1)>2
for j=2:length(e1)-length(endp)+1
nextp=find(AMlbl(startp,:)==L(i),1,'first');
r_branch(j,:)=r(nextp,:);
R_branch(j)=R(nextp);
AMlbl(nextp,startp)=0;
AMlbl(startp,nextp)=0;
startp=nextp;
end
if length(endp)==1 % terminal loop
AMlbl(endp(1),startp)=0;
AMlbl(startp,endp(1))=0;
else
AMlbl(endp(2),startp)=0;
AMlbl(startp,endp(2))=0;
end
elseif length(e1)==2
AMlbl(endp(2),endp(1))=0;
AMlbl(endp(1),endp(2))=0;
end
lll=sum((r_branch(2:end,:)-r_branch(1:end-1,:)).^2,2).^0.5;
cumlll=cumsum(lll);
N_interm=ceil(sum(lll)*ppm)-1;
if N_interm==0 && length(endp)>1 % not a terminal or isolated loop
AMlbl(endp(2),endp(1))=L(i);
AMlbl(endp(1),endp(2))=L(i);
elseif N_interm>=1
r_interm=zeros(N_interm,3);
R_interm=zeros(N_interm,1);
for j=1:N_interm
temp_ind=find(cumlll>sum(lll)/(N_interm+1)*j,1,'first');
r_interm(j,:)=r_branch(temp_ind,:)+(r_branch(temp_ind+1,:)-r_branch(temp_ind,:)).*(1-(cumlll(temp_ind)-sum(lll)/(N_interm+1)*j)./lll(temp_ind));
R_interm(j)=R_branch(temp_ind)+(R_branch(temp_ind+1)-R_branch(temp_ind)).*(1-(cumlll(temp_ind)-sum(lll)/(N_interm+1)*j)./lll(temp_ind));
end
if leng+N_interm>size(AMlbl,1)
AMlbl(leng+N_interm,leng+N_interm)=0;
end
AMlbl=AMlbl+sparse(leng+[1:N_interm-1,2:N_interm],leng+[2:N_interm,1:N_interm-1],L(i),size(AMlbl,1),size(AMlbl,2));
AMlbl(leng+1,endp(1))=L(i);
AMlbl(endp(1),leng+1)=L(i);
if length(endp)==1 % terminal loop
AMlbl(leng+N_interm,endp(1))=L(i);
AMlbl(endp(1),leng+N_interm)=L(i);
else
AMlbl(leng+N_interm,endp(2))=L(i);
AMlbl(endp(2),leng+N_interm)=L(i);
end
r(leng+1:leng+N_interm,:)=r_interm;
R(leng+1:leng+N_interm)=R_interm;
leng=leng+N_interm;
end
end
end
rem=(sum(AMlbl,1)==0);
AMlbl(rem,:)=[];
AMlbl(:,rem)=[];
r(rem,:)=[];
R(rem)=[];
AMlbl=LabelTreesAM(AMlbl);
%disp('Point density is adjusted.')
|
github
|
Hui-Ling/BeamformerSourceImaging-master
|
process_beamformer_con_speedup.m
|
.m
|
BeamformerSourceImaging-master/process_beamformer_con_speedup.m
| 84,804 |
utf_8
|
61b790c40d1f3c4f0a06d22c6268f587
|
function varargout = process_beamformer_con_speedup( varargin )
% PROCESS_BEAMFORMER_TEST:
% @=============================================================================
% This software is part of the Brainstorm software:
% http://neuroimage.usc.edu/brainstorm
%
% Copyright (c)2000-2013 Brainstorm by the University of Southern California
% This software is distributed under the terms of the GNU General Public License
% as published by the Free Software Foundation. Further details on the GPL
% license can be found at http://www.gnu.org/copyleft/gpl.html.
%
% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE
% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY
% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY
% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.
%
% For more information type "brainstorm license" at command prompt.
% =============================================================================@
%
% Authors:
eval(macro_method)
%macro_methodcall;
end
%% ===== GET DESCRIPTION =====
function sProcess = GetDescription() %#ok<DEFNU>
% Description the process
sProcess.Comment = 'Beamformer-based connectivity imaging';
sProcess.FileTag = '';
sProcess.Category = 'Custom';
sProcess.SubGroup = 'Connectivity';
sProcess.Index = 3005;
% Definition of the input accepted by this process
sProcess.InputTypes = {'data','matrix'};
sProcess.OutputTypes = {'results','results'};
sProcess.nInputs = 2;
sProcess.nMinFiles = 1;
%sProcess.options.sep.Type = 'label';
% % Definition of the options
% sProcess.options.oriconstraint.Comment = {'Unconstrained', 'Cortical Constrained'};
% sProcess.options.oriconstraint.Type = 'radio';
% sProcess.options.oriconstraint.Value = 1;
sProcess.options.result_comm.Comment = 'Comment: ';
sProcess.options.result_comm.Type = 'text';
sProcess.options.result_comm.Value = '';
% === MEASURE ===
sProcess.options.measure.Comment = {'SILSC (Corr)', 'BIPAC (ESC)', 'Methods (Measures):'};
sProcess.options.measure.Type = 'radio_line';
sProcess.options.measure.Value = 1;
% Options: Time-freq
sProcess.options.labelC.Comment = '<HTML><B><U>Options for BIPAC (ESC)</U></B>:';
sProcess.options.labelC.Type = 'label';
% === NESTING FREQ
sProcess.options.nesting.Comment = 'Nesting frequency band (low, data, Files A):';
sProcess.options.nesting.Type = 'range';
sProcess.options.nesting.Value = {[2, 30], 'Hz', 2};
% === NESTED FREQ
sProcess.options.nested.Comment = 'Nested frequency band (high, ref, Files B):';
sProcess.options.nested.Type = 'range';
sProcess.options.nested.Value = {[40, 150], 'Hz', 2};
% Options: number of randomization test
sProcess.options.nRand.Comment = 'Number of randomization (very time consuming)';
sProcess.options.nRand.Type = 'value';
sProcess.options.nRand.Value = {0, '', 0};
sProcess.options.nRand.Hidden = 1;
% sProcess.options.ref_replicate_num.Comment = 'Number to replicate reference signals:';
% sProcess.options.ref_replicate_num.Type = 'value';
% sProcess.options.ref_replicate_num.Value = {1,'times',0};
%
% sProcess.options.ref_replicate_interval.Comment = 'Interval of replicated reference signals:';
% sProcess.options.ref_replicate_interval.Type = 'value';
% sProcess.options.ref_replicate_interval.Value = {0.01,'ms',1};
% Separator
sProcess.options.sep2.Type = 'separator';
sProcess.options.sep2.Comment = ' ';
sProcess.options.labelB.Comment = '<HTML><B><U>Estimation options (Files A)</U></B>:';
sProcess.options.labelB.Type = 'label';
% sProcess.options.beamformertype.Comment = {'Vector-type beamformer', 'Scalar-type beamformer'};
% sProcess.options.beamformertype.Type = 'radio';
% sProcess.options.beamformertype.Value = 1;
% === MINIMUM VARIANCE
sProcess.options.minvar_time.Comment = 'Minimum variance time window: ';
sProcess.options.minvar_time.Type = 'timewindow';
sProcess.options.minvar_time.Value = [];
% === ACTIVE TIME RANGE
sProcess.options.corr_range.Comment = 'Time range of interest: ';
sProcess.options.corr_range.Type = 'timewindow';
sProcess.options.corr_range.Value = [];
% === ACTIVE TIME WINDOW SIZE
sProcess.options.active_window_size.Comment = 'Sliding window size: ';
sProcess.options.active_window_size.Type = 'value';
sProcess.options.active_window_size.Value = {0.1, 'ms', 1};
% === ACTIVE TEMPORAL RESOLUTION
sProcess.options.corr_tresolution.Comment = 'Temporal resolution: ';
sProcess.options.corr_tresolution.Type = 'value';
sProcess.options.corr_tresolution.Value = {0.01, 'ms', 1};
% === REGULARIZATION
sProcess.options.reg.Comment = 'Regularization parameter: ';
sProcess.options.reg.Type = 'value';
sProcess.options.reg.Value = {0.1, '%', 4};
% === Sensor types
sProcess.options.sensortypes.Comment = 'Sensor types or names (empty=all): ';
sProcess.options.sensortypes.Type = 'text';
sProcess.options.sensortypes.Value = 'MEG, EEG';
% Separator
sProcess.options.sep.Type = 'separator';
sProcess.options.sep.Comment = ' ';
sProcess.options.labelA.Comment = '<HTML><B><U>Reference signal options (Files B)</U></B>:';
sProcess.options.labelA.Type = 'label';
% === REF TIME TYPE ===
sProcess.options.ref_range_type.Comment = {'Fixed time range (Absolute)', 'Range of time delay (Relative)', 'Time range type:'};
sProcess.options.ref_range_type.Type = 'radio_line';
sProcess.options.ref_range_type.Value = 1;
% === TIME WINDOW ===
sProcess.options.ref_range.Comment = 'Time range to extract ref signal: ';
sProcess.options.ref_range.Type = 'timewindow';
sProcess.options.ref_range.Value = [];
sProcess.options.ref_replicate_tresolution.Comment = 'Temporal resolution to extract ref signal: ';
sProcess.options.ref_replicate_tresolution.Type = 'value';
sProcess.options.ref_replicate_tresolution.Value = {0.01, 'ms', 1};
% === BASELINE TIME RANGE FOR Z STATISTICS CALCULATION
sProcess.options.baseline_time.Comment = 'Baseline: ';
sProcess.options.baseline_time.Type = 'baseline';
sProcess.options.baseline_time.Value = [];
% Options: Hanning window
sProcess.options.isHann.Comment = 'Apply hanning window';
sProcess.options.isHann.Type = 'checkbox';
sProcess.options.isHann.Value = 0;
%sProcess.options.sep2.Type = 'label';
% % Options: Mirror
% sProcess.options.mirror.Comment = 'Estimating in frequency domain';
% sProcess.options.mirror.Type = 'checkbox';
% sProcess.options.mirror.Value = 0;
% sProcess.options.mirror.InputTypes = {'data'};
% % === Low bound
% sProcess.options.highpassA.Comment = 'Lower cutoff frequency (Data):';
% sProcess.options.highpassA.Type = 'value';
% sProcess.options.highpassA.Value = {15,'Hz ',2};
% sProcess.options.highpassA.InputTypes = {'data'};
% % === High bound
% sProcess.options.lowpassA.Comment = 'Upper cutoff frequency (Data):';
% sProcess.options.lowpassA.Type = 'value';
% sProcess.options.lowpassA.Value = {29,'Hz ',2};
% sProcess.options.lowpassA.InputTypes = {'data'};
% % === Low bound
% sProcess.options.highpassB.Comment = 'Lower cutoff frequency (Ref):';
% sProcess.options.highpassB.Type = 'value';
% sProcess.options.highpassB.Value = {0,'Hz ',2};
% sProcess.options.highpassB.InputTypes = {'data'};
% % === High bound
% sProcess.options.lowpassB.Comment = 'Upper cutoff frequency (Ref):';
% sProcess.options.lowpassB.Type = 'value';
% sProcess.options.lowpassB.Value = {0,'Hz ',2};
% sProcess.options.lowpassB.InputTypes = {'data'};
% % === TF METHOD ===
% sProcess.options.tfmethod.Comment = {'Hilbert', 'Wavelet', 'STFT', 'TF method:'};
% sProcess.options.tfmethod.Type = 'radio_line';
% sProcess.options.tfmethod.Value = 1;
% % === Width
% sProcess.options.width.Comment = 'Cycles of wavelet:';
% sProcess.options.width.Type = 'value';
% sProcess.options.width.Value = {7, 'Cycles', 0};
% % === WINDOW LENGTH
% sProcess.options.winlength.Comment = 'Estimator window length: ';
% sProcess.options.winlength.Type = 'value';
% sProcess.options.winlength.Value = {0.128, 'ms ', 1};
% sProcess.options.winlength.InputTypes = {'data'};
% % === Low bound
% sProcess.options.winoverlap.Comment = 'Overlap percentage: ';
% sProcess.options.winoverlap.Type = 'value';
% sProcess.options.winoverlap.Value = {0.75, '% ', 1};
% sProcess.options.winoverlap.InputTypes = {'data'};
% % === Freq band
% sProcess.options.freqband.Comment = 'Frequency band of interested:';
% sProcess.options.freqband.Type = 'text';
% sProcess.options.freqband.Value = 'beta';
% sProcess.options.freqband.InputTypes = {'timefreq'};
% % === SCOUTS ===
% sProcess.options.scouts.Comment = 'Use scouts';
% sProcess.options.scouts.Type = 'scout';
% sProcess.options.scouts.Value = [];
% % === Freq band
% sProcess.options.DICStest.Comment = 'DICS test';
% sProcess.options.DICStest.Type = 'text';
% sProcess.options.DICStest.Value = '1';
% === CONNECT INPUT
%sProcess = process_corr1n('DefineConnectOptions', sProcess, 1);
end
%% ===== DEFINE SCOUT OPTIONS =====
function sProcess = DefineConnectOptions(sProcess, isConnNN) %#ok<DEFNU>
% === TIME WINDOW ===
sProcess.options.label1.Comment = '<HTML><B><U>Input options</U></B>:';
sProcess.options.label1.Type = 'label';
sProcess.options.timewindow.Comment = 'Time window:';
sProcess.options.timewindow.Type = 'timewindow';
sProcess.options.timewindow.Value = [];
% === FROM: CONNECTIVITY [1xN] ===
if ~isConnNN
% === FROM: REFERENCE CHANNELS ===
sProcess.options.src_channel.Comment = 'Source channel: ';
sProcess.options.src_channel.Type = 'channelname';
sProcess.options.src_channel.Value = 'name';
sProcess.options.src_channel.InputTypes = {'data'};
% === FROM: ROW NAME ===
sProcess.options.src_rowname.Comment = 'Source rows (names or indices): ';
sProcess.options.src_rowname.Type = 'text';
sProcess.options.src_rowname.Value = '';
sProcess.options.src_rowname.InputTypes = {'timefreq', 'matrix'};
end
% === TO: SENSOR SELECTION ===
sProcess.options.dest_sensors.Comment = 'Sensor types or names (empty=all): ';
sProcess.options.dest_sensors.Type = 'text';
sProcess.options.dest_sensors.Value = 'MEG, EEG';
sProcess.options.dest_sensors.InputTypes = {'data'};
% === SCOUTS ===
sProcess.options.scouts.Comment = 'Use scouts';
if isConnNN
sProcess.options.scouts.Type = 'scout_confirm';
else
sProcess.options.scouts.Type = 'scout';
end
sProcess.options.scouts.Value = [];
sProcess.options.scouts.InputTypes = {'results'};
% Atlas: surface/volume
sProcess.options.isvolume.Comment = '';
sProcess.options.isvolume.Type = 'checkbox';
sProcess.options.isvolume.Value = 0;
sProcess.options.isvolume.Hidden = 1;
% === SCOUT FUNCTION ===
sProcess.options.scoutfunc.Comment = {'Mean', 'Max', 'PCA', 'Std', 'All', 'Scout function:'};
sProcess.options.scoutfunc.Type = 'radio_line';
sProcess.options.scoutfunc.Value = 2;
sProcess.options.scoutfunc.InputTypes = {'results'};
% === SCOUT TIME ===
sProcess.options.scouttime.Comment = {'Before', 'After', 'When to apply the scout function:'};
sProcess.options.scouttime.Type = 'radio_line';
sProcess.options.scouttime.Value = 2;
sProcess.options.scouttime.InputTypes = {'results'};
end
%% ===== FORMAT COMMENT =====
function Comment = FormatComment(sProcess) %#ok<DEFNU>
Comment = sProcess.Comment;
end
%% ===== RUN =====
function OutputFiles = Run(sProcess, sInputsA, sInputsB) %#ok<DEFNU>
% Initialize returned list of files
OutputFiles = {};
if isempty(sInputsA) || isempty(sInputsB)
bst_report('Error', sProcess, sInputsA, 'No inputs');
return;
end
InputsData = sInputsA ;
InputsRef = sInputsB ;
% Get option values
%isFreq = sProcess.options.mirror.Value;
OPTIONS.isHann = sProcess.options.isHann.Value;
OPTIONS.BeamformerType = 2;%sProcess.options.beamformertype.Value;
%ActiveTime = sProcess.options.active_time.Value{1};
% Get option values
OPTIONS.BaselineTime = sProcess.options.baseline_time.Value{1};
OPTIONS.MinVarTime = sProcess.options.minvar_time.Value{1};
%OPTIONS.RefTime = sProcess.options.ref_range.Value{1};
OPTIONS.CORRrange = sProcess.options.corr_range.Value{1};
OPTIONS.Reg = sProcess.options.reg.Value{1};
OPTIONS.SensorTypes = sProcess.options.sensortypes.Value;
OPTIONS.CORRTResolu = sProcess.options.corr_tresolution.Value{1};
OPTIONS.WinSize = sProcess.options.active_window_size.Value{1};
% OPTIONS.BandBoundsData = sProcess.options.nesting.Value;
% OPTIONS.BandBoundsRef = sProcess.options.nested.Value;
% OPTIONS.WinOverlap = sProcess.options.winoverlap.Value{1};
% OPTIONS.SegmentLength = sProcess.options.winlength.Value{1};
% OPTIONS.Width = sProcess.options.width.Value{1};
% Get and check frequencies
OPTIONS.BandBoundsData = sProcess.options.nesting.Value{1};
OPTIONS.BandBoundsRef = sProcess.options.nested.Value{1};
OPTIONS.RefRangeType = sProcess.options.ref_range_type.Value;
OPTIONS.Width = 256;
%OPTIONS.Target = sProcess.options.scouts.Value;
OPTIONS.nRand = sProcess.options.nRand.Value{1};
OPTIONS.TFmethod = 'hilbert';
% switch (sProcess.options.tfmethod.Value)
% case 1, OPTIONS.TFmethod = 'hilbert';
% case 2, OPTIONS.TFmethod = 'wavelet';
% case 3, OPTIONS.TFmethod = 'stft';
% end
switch (sProcess.options.measure.Value)
case 1, OPTIONS.measure = 'cor'; OPTIONS.method = 'SILSC';
case 2, OPTIONS.measure = 'esc'; OPTIONS.method = 'BIPAC';
end
if strcmp(OPTIONS.measure,'esc') || strcmp(OPTIONS.measure,'cfc')
if (min(OPTIONS.BandBoundsData) < 0)
bst_report('Error', sProcess, [], 'This function cannot be used to estimate PAC for nesting frequencies below 0 Hz.');
return;
end
if (max(OPTIONS.BandBoundsData) > min(OPTIONS.BandBoundsRef)) && min(OPTIONS.BandBoundsRef)~=0 && max(OPTIONS.BandBoundsRef)~=0
bst_report('Error', sProcess, [], 'The low and high frequency band cannot overlap.');
return;
end
end
OPTIONS.RepRefNum = 0;%sProcess.options.ref_replicate_num.Value{1};
OPTIONS.RepRefInterval = 0;%sProcess.options.ref_replicate_interval.Value{1};
OPTIONS.RefDelayInterval = sProcess.options.ref_replicate_tresolution.Value{1};
OPTIONS.RefDelayRange = sProcess.options.ref_range.Value{1};
result_comment = sProcess.options.result_comm.Value;
if ~isempty(result_comment)
result_comment = [result_comment ': '];
end
% MinVarTime = OPTIONS.CORRrange;
% ===== LOAD THE REFRENCE DATA =====
% Read the first file in the list, to initialize the loop
RefMat = in_bst(InputsRef(1).FileName, [], 0);
%nRefTrials = size(RefMat.Value,1);
RefFs = 1/(RefMat.Time(2)-RefMat.Time(1));
% if RefMat.Time(1) > OPTIONS.RefTime(1)
% bst_report('Warning', sProcess, InputsData, 'The start for time range of reference signal is reset to the first time point of data');
% OPTIONS.RefTime(1) = RefMat.Time(1);
% end
% if RefMat.Time(end) < OPTIONS.RefTime(2)
% bst_report('Warning', sProcess, InputsData, 'The end for time range of reference signal is reset to the last time point of data');
% OPTIONS.RefTime(2) = RefMat.Time(end);
% end
% RefTimePoints= panel_time('GetTimeIndices', RefMat.Time, [OPTIONS.RefTime(1) OPTIONS.RefTime(2)]);
% RefLength = length(RefTimePoints);
% ===== LOAD THE DATA =====
% Read the first file in the list, to initialize the loop
DataMat = in_bst(InputsData(1).FileName, [], 0);
if strcmpi(InputsData(1).FileType,'data')
nChannels = size(DataMat.F,1);
else
nChannels = size(DataMat.TF,1);
end
Time = DataMat.Time;
nTime = length(Time);
DataFs = 1/(DataMat.Time(2)-DataMat.Time(1));
CorrWindowSize = OPTIONS.WinSize;%.RefTime(end)-OPTIONS.RefTime(1);%RefLength;
if CorrWindowSize <= 0 || OPTIONS.CORRTResolu <= 0
CorrWindowSize = OPTIONS.CORRrange(2)-OPTIONS.CORRrange(1);
OPTIONS.CORRTResolu = 0;
end
if OPTIONS.RepRefNum > 0 && OPTIONS.RepRefInterval > 0
CorrWindowSize = CorrWindowSize + (OPTIONS.RepRefNum-1)*OPTIONS.RepRefInterval;
end
HalfCorrWindowSize = CorrWindowSize/2;
% ===== PROCESS THE TIME WINDOWS =====
if round(RefFs) ~= round(DataFs)
bst_report('Error', sProcess, InputsData, 'The sampling rates of FileA and FileB are different.');
else
Fs = RefFs;
end
if OPTIONS.CORRrange(1) > OPTIONS.CORRrange(2)
bst_report('Error', sProcess, InputsData, 'The setting of time range of interest is incorrect.');
end
if OPTIONS.CORRrange(1) < Time(1)
bst_report('Warning', sProcess, InputsData, 'The start for time range of interest is reset to the first time point of data');
OPTIONS.CORRrange(1) = Time(1);
end
if OPTIONS.CORRrange(2) > Time(end)
bst_report('Warning', sProcess, InputsData, 'The end for time range of interest is reset to the end point of data');
OPTIONS.CORRrange(2) = Time(end);
end
if (OPTIONS.CORRrange(1)+CorrWindowSize) > OPTIONS.CORRrange(2) || OPTIONS.CORRTResolu <= 0;
bst_report('Warning', sProcess, InputsData, 'The active window size is reset to the same as the time range of interest.');
CorrWindowSize = OPTIONS.CORRrange(2) - OPTIONS.CORRrange(1);
OPTIONS.CORRTResolu = 0;
end
CorrRangePoints = panel_time('GetTimeIndices', Time, [OPTIONS.CORRrange(1)+CorrWindowSize OPTIONS.CORRrange(2)]);
if length(CorrRangePoints)<=1
nCORR = 1;
else
nCORR = length((OPTIONS.CORRrange(1)+CorrWindowSize):OPTIONS.CORRTResolu:OPTIONS.CORRrange(2));
if nCORR == 0
bst_report('Error', sProcess, InputsData, 'No correlation windows.');
end
end
CorrTimeList= zeros(nCORR,2);
for i=1:nCORR
CorrTimeList(i,:) = OPTIONS.CORRrange(1) + OPTIONS.CORRTResolu*(i-1) + [0 CorrWindowSize] ;
end
MinVarRangePoint = panel_time('GetTimeIndices', Time, [OPTIONS.MinVarTime(1) OPTIONS.MinVarTime(2)]);
% ===== LOAD CHANNEL FILE =====
% Load channel file
ChannelMat = in_bst_channel(InputsData(1).ChannelFile);
% Find the MEG channels
iChannels = channel_find(ChannelMat.Channel, OPTIONS.SensorTypes);
% ===== LOAD HEAD MODEL =====
% Get channel study
[sChannelStudy, iChannelStudy] = bst_get('ChannelFile', InputsData(1).ChannelFile);
% Load the default head model
HeadModelFile = sChannelStudy.HeadModel(sChannelStudy.iHeadModel).FileName;
sHeadModel = load(file_fullpath(HeadModelFile));
nCorrWindowPoints = length(panel_time('GetTimeIndices', Time, CorrTimeList(1,:)));
for i=2:nCORR
nCorrWindowPoints = min(nCorrWindowPoints,length(panel_time('GetTimeIndices', Time, CorrTimeList(i,:))));
end
iCorrWindowTime = zeros(nCORR, nCorrWindowPoints);
for i = 1:nCORR
if CorrTimeList(i,1) < Time(1) || CorrTimeList(i,2) > Time(end)
% Add an error message to the report
bst_report('Error', sProcess, sInputsA, 'One correlation time window is not within the data time range.');
% Stop the process
return;
end
single_iCorrWindow = panel_time('GetTimeIndices', Time, CorrTimeList(i,:));
if length(single_iCorrWindow) < nCorrWindowPoints
bst_report('Error', sProcess, sInputsA, 'Wrong time range');
% Stop the process
return;
end
iCorrWindowTime(i,:) = single_iCorrWindow(1:nCorrWindowPoints);
end
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Loading reference...', 0, length(InputsRef));
nRef = 0; nOriRef = 0;
nTrials = length(InputsData);
AllRefData = cell(nCORR,1);
RowName = {};
if OPTIONS.RefRangeType == 1
DelayList = ((OPTIONS.RefDelayRange(1)+CorrWindowSize):OPTIONS.RefDelayInterval:OPTIONS.RefDelayRange(2))-HalfCorrWindowSize;
nDelay = length(DelayList);
if nDelay==0;
nDelay=1;
DelayList=0;
end
elseif OPTIONS.RefRangeType == 2
DelayList = OPTIONS.RefDelayRange(1):OPTIONS.RefDelayInterval:OPTIONS.RefDelayRange(2);
nDelay = length(DelayList);
if nDelay==0;
nDelay=1;
DelayList=0;
end
end
RefLength = nCorrWindowPoints;
TargetList = {};
%AllRefData = zeros(nTrials, RefLength,length(InputsRef));
% Reading all the input files in a big matrix
for i = 1:length(InputsRef)
% Read the file #i
RefMat = in_bst(InputsRef(i).FileName, [], 0);
% Check the dimensions of the recordings matrix in this file
if mod(size(RefMat.Value,1), nTrials)~=0
% Add an error message to the report
bst_report('Error', sProcess, InputsData, 'One reference file has a different number of trials.');
% Stop the process
return;
else
nRefSingleFile = (size(RefMat.Value,1) / nTrials);
refData = RefMat.Value;
end
hw = hann(double(nCorrWindowPoints));
for j = 1:nRefSingleFile
fileRefData = refData(j:nRefSingleFile:end,:);
sRate = 1 / (RefMat.Time(2) - RefMat.Time(1));
if strcmp(OPTIONS.measure,'esc') || strcmp(OPTIONS.measure,'cfc')
fileRefData = amp_vec(fileRefData,OPTIONS.BandBoundsRef,sRate,OPTIONS.Width,OPTIONS.TFmethod);
if strcmp(OPTIONS.measure, 'cfc')
fileRefData = (fileRefData / sRate).^2;
end
end
for m=1:nDelay
if strcmpi(InputsRef(i).FileType,'timefreq')
RowName{nRef+m} = [RefMat.RowNames{j} ' (' DelayList(m) 'ms)'];
else
RowName{nRef+m} = [RefMat.Description{j} ' (' DelayList(m) 'ms)'];
end
end
if isfield(RefMat,'Atlas')
if ~isempty(RefMat.Atlas)
TargetList{nOriRef+j}=RefMat.Atlas.Scouts(j);
end
end
if OPTIONS.RefRangeType == 1
for m=1:nDelay
refTime = OPTIONS.RefDelayRange(1) + OPTIONS.RefDelayInterval*(m-1) + [0 CorrWindowSize];
if (RefMat.Time(1) > refTime(1)) || (RefMat.Time(end) < refTime(2))
% Add an error message to the report
bst_report('Error', sProcess, InputsData, 'The selected range for extracting reference signal is out of range.');
% Stop the process
return;
end
iRefWindow = panel_time('GetTimeIndices', Time, refTime);
iRefWindow = iRefWindow(1:nCorrWindowPoints);
cRefData = fileRefData(:,iRefWindow);
if OPTIONS.isHann
for n = 1:nTrials
cRefData(n,:) = cRefData(n,:).*hw';
end
end
%else
% RefMat.Value = RefMat.Value(j:nRefSingleFile:end,RefTimePoints);
% RefMatAvg = mean(RefMat.Value, 2);
% fileRefData = bst_bsxfun(@minus, RefMat.Value, RefMatAvg);
%end
AllRefData{1} = cat(3,AllRefData{1}, cRefData);
end
elseif OPTIONS.RefRangeType == 2
for k=1:nCORR
for m=1:nDelay
refTime = CorrTimeList(k,:) + DelayList(m);
if (RefMat.Time(1) > refTime(1)) || (RefMat.Time(end) < refTime(2))
% Add an error message to the report
bst_report('Error', sProcess, InputsData, 'The selected range for extracting reference signal is out of range.');
% Stop the process
return;
end
iRefWindow = panel_time('GetTimeIndices', Time, refTime);
iRefWindow = iRefWindow(1:nCorrWindowPoints);
cRefData = fileRefData(:,iRefWindow);
if OPTIONS.isHann
for n = 1:nTrials
cRefData(n,:) = cRefData(n,:).*hw';
end
end
%else
% RefMat.Value = RefMat.Value(j:nRefSingleFile:end,RefTimePoints);
% RefMatAvg = mean(RefMat.Value, 2);
% fileRefData = bst_bsxfun(@minus, RefMat.Value, RefMatAvg);
%end
AllRefData{k} = cat(3,AllRefData{k}, cRefData);
end
end
end
end
nRef = nRef + nRefSingleFile*nDelay;
nOriRef = nOriRef + nRefSingleFile;
bst_progress('inc',1);
end
RepRefIntervalPoints = round(OPTIONS.RepRefInterval / (Time(2) - Time(1)));
if OPTIONS.RepRefNum > 0 && RepRefIntervalPoints > 0
for k=1:nCORR
% nRefTrials, RefLength, nRef
RepRefData = zeros(nTrials,RefLength + (OPTIONS.RepRefNum-1)*RepRefIntervalPoints,nRef*OPTIONS.RepRefNum);
% Relicate Reference Signal
for i = 1:OPTIONS.RepRefNum
RepRefData(:,(i-1)*RepRefIntervalPoints + (1:RefLength),(i-1)*nRef + (1:nRef)) = AllRefData{k};
end
nRef = nRef*OPTIONS.RepRefNum;
AllRefData{k} = RepRefData;
end
else
OPTIONS.RepRefNum = 1;
end
for i=1:nCORR
AllRefData{i} = permute(AllRefData{i},[2 3 1]); %RefLength, nRef, nRefTrials
end
AllCovRef = cell(nCORR,1);
AllRefDataCell = AllRefData;
AllRefDataCellorig = AllRefDataCell;
clear AllRefData;
for m=1:nCORR
if OPTIONS.RefRangeType == 1 && m > 1
if nRef > 1
AllCovRef{m}.origcov = AllCovRef{1}.origcov;
AllCovRef{m}.originv_cov=AllCovRef{1}.originv_cov;
end
AllCovRef{m}.cov = AllCovRef{1}.cov;
AllCovRef{m}.inv_cov = AllCovRef{1}.inv_cov;
AllRefDataCellorig{m} = AllRefDataCellorig{1};
AllRefDataCell{m} = AllRefDataCell{1};
continue;
end
AllRefData = AllRefDataCell{m};
covRef = zeros(nRef,nRef);
for i = 1:nTrials
singleRefTrial = squeeze(AllRefData(:,:,i))';
singleRefTrialAvg = mean(singleRefTrial, 2);
AllRefData(:,:,i) = bst_bsxfun(@minus, singleRefTrial, singleRefTrialAvg)';
covRef = covRef + AllRefData(:,:,i)'*AllRefData(:,:,i);
end
AllRefDataCellorig{m}=AllRefData;
if nRef > 1
origAllRefData = AllRefDataCell{m};
covRef = covRef/(nTrials*RefLength-1);
[v,d]=eig(covRef);
C=v*diag(diag(d).^(-0.5));
origcovRef = covRef;
for i = 1:nTrials
singleRefTrial = C'*squeeze(origAllRefData(:,:,i))';
singleRefTrialAvg = mean(singleRefTrial, 2);
AllRefData(:,:,i) = bst_bsxfun(@minus, singleRefTrial, singleRefTrialAvg)';
covRef = covRef + AllRefData(:,:,i)'*AllRefData(:,:,i);
end
AllRefDataCell{m} = AllRefData;
% figure;
% subplot(2,1,1);
% imagesc(origcovRef);colorbar;
% subplot(2,1,2);
% imagesc(covRef/(nTrials*RefLength-1));colorbar;
AllCovRef{m}.origcov=origcovRef;
% Calculate the inverse of covRef
AllCovRef{m}.originv_cov=inv(AllCovRef{m}.origcov);
end
covRef = covRef / (nTrials*RefLength-1);
AllCovRef{m}.cov=covRef;
% Calculate the inverse of covRef
AllCovRef{m}.inv_cov=inv(covRef);
end
% if nRef == 1
% covRef_inv = inv(covRef);
% else
% [U,S,V] = svd(covRef);
% S = diag(S); % Covariance = Cm = U*S*U'
% Si = diag(1 ./ (S + S(1) * Reg / 100)); % 1/(S^2 + lambda I)
% covRef_inv = V*Si*U'; % U * 1/(S^2 + lambda I) * U' = Cm^(-1)
% end
% Find the indices for covariance calculation
%iMinVarTime = panel_time('GetTimeIndices', Time, MinVarTime);
% Initialize the covariance matrices
MinVarCov = zeros(nChannels, nChannels);
CorrCovOfNumerator = zeros(nChannels, nRef ,nCORR);
CorrCovOfDenominator = zeros(nChannels, nChannels, nCORR);
CorrCovOfNumeratorOrig = zeros(nChannels, nRef ,nCORR);
nTotalMinVar = zeros(nChannels, nChannels, nCORR);
nTotalCorrCovOfNumerator = zeros(nChannels, nRef, nCORR);
nTotalCorrCovOfDenominator = zeros(nChannels, nChannels, nCORR);
nTotalCorrCovOfNumeratorOrig = zeros(nChannels, nRef, nCORR);
% Extract the covariance matrix of the used channels
NoiseCovMat = load(file_fullpath(sChannelStudy.NoiseCov.FileName));
NoiseCov = NoiseCovMat.NoiseCov(iChannels,iChannels);
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Calculating covariance matrices...', 0, length(InputsData)*nCORR);
if OPTIONS.BaselineTime(1)==OPTIONS.BaselineTime(2)
iBaselineTime = [];
else
iBaselineTime = panel_time('GetTimeIndices', Time, OPTIONS.BaselineTime);
end
% Reading all the input files in a big matrix
for i = 1:nTrials
% Read the file #i
DataMat = in_bst(InputsData(i).FileName, [], 0);
% Check the dimensions of the recordings matrix in this file
if (size(DataMat.F,1) ~= nChannels) || (size(DataMat.F,2) ~= nTime)
% Add an error message to the report
bst_report('Error', sProcess, InputsData, 'One file has a different number of channels or a different number of time samples.');
% Stop the process
return;
end
if strcmp(OPTIONS.measure,'esc') && OPTIONS.BandBoundsData(1)~=0 && OPTIONS.BandBoundsData(2)~=0
DataMat.F = bp_vec(DataMat.F,OPTIONS.BandBoundsData,sRate,OPTIONS.Width,OPTIONS.TFmethod);
end
% Get good channels
iGoodChan = find(DataMat.ChannelFlag == 1);
%for j = 1:nCORR
% j=1;
if ~isempty(iBaselineTime)
% Remove average
FavgActive = mean(DataMat.F(iGoodChan,iBaselineTime), 2);
DataMinVar = bst_bsxfun(@minus, DataMat.F(iGoodChan,MinVarRangePoint), FavgActive);
else
DataMinVar = DataMat.F(iGoodChan,MinVarRangePoint);
end
% % Average baseline values
% FavgMinVar = mean(DataMat.F(iGoodChan,MinVarRangePoint), 2);
% % Remove average
% DataMinVar = bst_bsxfun(@minus, DataMat.F(iGoodChan,MinVarRangePoint), FavgMinVar);
% Compute covariance for this file
fileMinVarCov = DataMat.nAvg .* (DataMinVar * DataMinVar');
MinVarCov(iGoodChan,iGoodChan,j) = bst_bsxfun(@plus,MinVarCov(iGoodChan,iGoodChan), fileMinVarCov);
nTotalMinVar(iGoodChan,iGoodChan,j) = nTotalMinVar(iGoodChan,iGoodChan) + RefLength*DataMat.nAvg;
%end
% end
% if ~isFreq
% % Average baseline values
% FavgMinVar = mean(DataMat.F(iGoodChan,iMinVarTime), 2);
% % Remove average
% DataMinVar = bst_bsxfun(@minus, DataMat.F(iGoodChan,iMinVarTime), FavgMinVar);
% % Compute covariance for this file
% fileMinVarCov = DataMat.nAvg .* (DataMinVar * DataMinVar');
% else
% [Cxy,freq] = crossSpectrum(DataMat.F(iGoodChan,iMinVarTime), DataMat.F(iGoodChan,iMinVarTime), Fs, SegmentLength, []);
% fileMinVarCov = zeros(size(Cxy,1),size(Cxy,2));
% nCxy = 0;
% for f = 1:length(freq)
% if (freq(f) <= BandBounds(2)) && (freq(f) >= BandBounds(1))
% fileMinVarCov = fileMinVarCov + Cxy(:,:,f);
% nCxy = nCxy + 1;
% end
% end
% if nCxy > 0
% fileMinVarCov = DataMat.nAvg * fileMinVarCov / nCxy;
% end
% end
%
% %fileMinVarCov = DataMinVar * DataMinVar';
% % Add file covariance to accumulator
% MinVarCov(iGoodChan,iGoodChan) = MinVarCov(iGoodChan,iGoodChan) + fileMinVarCov;
% nTotalMinVar(iGoodChan,iGoodChan) = nTotalMinVar(iGoodChan,iGoodChan) + length(iMinVarTime)*DataMat.nAvg;
for j = 1:nCORR
AllRefData = AllRefDataCell{j};
if strcmp(OPTIONS.measure,'cfc') || strcmp(OPTIONS.measure,'coh')
%if ~isCrossFreq
[Cxy,freq,Cxx] = crossSpectrum(DataMat.F(iGoodChan,iCorrWindowTime(j,:)), AllRefData(:,:,i)', Fs, OPTIONS.SegmentLength, [], OPTIONS.WinOverlap);
%else
% [Cxy,freq,Cxx] = crossSpectrumCrossFreq(DataMat.F(iGoodChan,iCorrWindowTime(j,:)), AllRefData(:,:,i)', Fs, BandBoundsRef, SegmentLength, [], WinOverlapLength);
%end
fileDataInCorrWindowCovD = zeros(size(Cxx,1),size(Cxx,2));
fileDataInCorrWindowCovN = zeros(size(Cxy,1),size(Cxy,2));
nCxy = 0;
for f = 1:length(freq)
if (freq(f) <= OPTIONS.BandBoundsData(2)) && (freq(f) >= OPTIONS.BandBoundsData(1))
fileDataInCorrWindowCovD = fileDataInCorrWindowCovD + Cxx(:,:,f);
fileDataInCorrWindowCovN = fileDataInCorrWindowCovN + Cxy(:,:,f);
nCxy = nCxy + 1;
end
end
if nCxy > 0
fileDataInCorrWindowCovN = fileDataInCorrWindowCovN / nCxy;
fileDataInCorrWindowCovD = fileDataInCorrWindowCovD / nCxy;
else
bst_report('Error', sProcess, InputsData, 'Cannot find signal within this frequency range.');
end
else
% Average baseline values
DataAvg = mean(DataMat.F(iGoodChan,iCorrWindowTime(j,:)), 2);
% Remove average
DataInCorrWindow = bst_bsxfun(@minus, DataMat.F(iGoodChan,iCorrWindowTime(j,:)), DataAvg);
% Compute covariance for this file
fileDataInCorrWindowCovN = (DataInCorrWindow * AllRefData(:,:,i));
fileDataInCorrWindowCovD = (DataInCorrWindow * DataInCorrWindow');
end
if nRef > 1
fileDataInCorrWindowCovNorig = (DataInCorrWindow * AllRefDataCellorig{j}(:,:,i));
% Add file covariance to accumulator
CorrCovOfNumeratorOrig(iGoodChan,:,j) = bst_bsxfun(@plus,CorrCovOfNumeratorOrig(iGoodChan,:,j), fileDataInCorrWindowCovNorig);
nTotalCorrCovOfNumeratorOrig(iGoodChan,:,j) = nTotalCorrCovOfNumeratorOrig(iGoodChan,:,j) + RefLength;
end
% Add file covariance to accumulator
CorrCovOfNumerator(iGoodChan,:,j) = bst_bsxfun(@plus, CorrCovOfNumerator(iGoodChan,:,j), fileDataInCorrWindowCovN);
nTotalCorrCovOfNumerator(iGoodChan,:,j) = nTotalCorrCovOfNumerator(iGoodChan,:,j) + RefLength;
% Add file covariance to accumulator
CorrCovOfDenominator(iGoodChan,iGoodChan,j) = bst_bsxfun(@plus, CorrCovOfDenominator(iGoodChan,iGoodChan,j), fileDataInCorrWindowCovD);
nTotalCorrCovOfDenominator(iGoodChan,iGoodChan,j) = nTotalCorrCovOfDenominator(iGoodChan,iGoodChan,j) + RefLength;
bst_progress('inc',1);
end
end
% Remove zeros from N matrix
nTotalMinVar(nTotalMinVar <= 1) = 2;
nTotalCorrCovOfNumerator(nTotalCorrCovOfNumerator <= 1) = 2;
nTotalCorrCovOfDenominator(nTotalCorrCovOfDenominator <=1 ) = 2;
nTotalCorrCovOfNumeratorOrig(nTotalCorrCovOfNumeratorOrig <= 1) = 2;
% Divide final matrix by number of samples
MinVarCov = MinVarCov ./ (nTotalMinVar-1);
CorrCovOfNumerator = CorrCovOfNumerator ./ (nTotalCorrCovOfNumerator-1);
CorrCovOfDenominator = CorrCovOfDenominator ./ (nTotalCorrCovOfDenominator-1);
CorrCovOfNumeratorOrig = CorrCovOfNumeratorOrig ./ (nTotalCorrCovOfNumeratorOrig-1);
CovCovOfNumerator = zeros(nChannels,nChannels,nCORR);
for j = 1:nCORR
CovCovOfNumerator(:,:,j) = CorrCovOfNumerator(:,:,j)*AllCovRef{j}.inv_cov*CorrCovOfNumerator(:,:,j)';
end
% ===== PROCESS =====
% Processing iChannels
%%%% TO EDIT %%%%%
% Get Study
% Extract the covariance matrix of the used channels
%ActiveCov = ActiveCov(iChannels,iChannels);
%NoiseCovMat = load(file_fullpath(sChannelStudy.NoiseCov.FileName));
%NoiseCov = NoiseCovMat.NoiseCov(iChannels,iChannels);
MinVarCov = MinVarCov(iChannels,iChannels,:);
CovCovOfNumerator = CovCovOfNumerator(iChannels,iChannels,:);
CorrCovOfNumerator = CorrCovOfNumerator(iChannels,:,:);
CorrCovOfDenominator = CorrCovOfDenominator(iChannels,iChannels,:);
CorrCovOfNumeratorOrig = CorrCovOfNumeratorOrig(iChannels,:,:);
% Normalize the regularization parameter
% eigValues = eig(MinVarCov);
% Reg_alpha = Reg * max(eigValues);
% Calculate the inverse of (Cm+alpha*I)
% if isFreq
% if strcmpi(InputsData(1).FileType,'data')
% MinVarCov = CorrCovOfDenominator;
% MinVarCov_inv = CorrCovOfDenominator;
% end
% for j=1:nCORR
MinVarCov_inv(:,:,1) = pInv(MinVarCov(:,:,1), OPTIONS.Reg);
% end
% else
% tmp = pInv(MinVarCov, Reg);
% MinVarCov_inv = zeros(length(iChannels),length(iChannels),nCORR);
% for j=1:nCORR
% MinVarCov_inv(:,:,j) = tmp;
% end
% end
% Get forward field
Kernel = sHeadModel.Gain(iChannels,:);
%Kernel(abs(Kernel(:)) < eps) = eps; % Set zero elements to strictly non-zero
[nChannels ,nSources] = size(Kernel); % size of Gain Matrix
% ===== CALCULATE NEURAL ACTIVITY INDEX AND FILTERS =====
CorrMaps = zeros(nSources/3,nCORR);
AmpMaps = zeros(nSources/3,nCORR);
Ori = zeros(3,nSources/3,nCORR);
spatialFilter = zeros(nSources/3, nChannels,nCORR); % calculate filter for outputs
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Calculating spatial filters...', 0, nCORR*nSources/3);
%testNum = str2double(sProcess.options.DICStest.Value);
if OPTIONS.BeamformerType == 1
for r = 1:3:nSources % calculate noise power for index
r2 = (r+2)/3;
Gr = Kernel(:,r:r+2);
for j=1:nCORR
W = pinv(Gr' * MinVarCov_inv * Gr)* Gr' * MinVarCov_inv;
% [u,s,v] = svd(real(W * MinVarCov(:,:,j) * W'));
[u,s,v] = svd( real(W * CovCovOfNumerator(:,:,j)* W'));
if s(1) > 100*s(2)
csd = s(1,1);
%w = u(:,1);
else
csd = trace(s);
%w = [1 1 1]/sqrt(3);
end
[u,s,v] = svd( real(W * CorrCovOfDenominator(:,:,j)* W'));
if s(1) > 100*s(2)
pow = s(1,1);
else
pow = trace(s);
end
%CorrMaps(r2,j) = sqrt((w*CovCovOfNumerator(:,:,j)*w')/(w*CorrCovOfDenominator(:,:,j)*w'));
CorrMaps(r2,j) = sqrt(csd/pow);
spatialFilter(r2,:,j) = w;
bst_progress('inc',1);
end
end
else
usedKernel = mat2cell(Kernel,nChannels,3*ones(1,nSources/3));
Cmat = cellfun(@(x)MinVarCov_inv*x, usedKernel, 'UniformOutput', false);
Dmat = cellfun(@(x,y)x'*y, usedKernel, Cmat, 'UniformOutput', false);
for j=1:nCORR
Pmat = cellfun(@(x) x'*CovCovOfNumerator(:,:,j)*x, Cmat, 'UniformOutput', false);
Qmat = cellfun(@(x) x'*CorrCovOfDenominator(:,:,j)*x, Cmat, 'UniformOutput', false);
invQmat = cellfun(@(x)pInv(x,0.0000000001),Qmat, 'UniformOutput', false);
invQPmat = cellfun(@mtimes, invQmat, Pmat, 'UniformOutput', false);
[eigVecmat, eigValmat] = cellfun(@eig, invQPmat, 'UniformOutput', false);
if min(size(eigValmat{1,1}))>1
eigValmat = cellfun(@diag, eigValmat, 'UniformOutput', false);
end
[~, imaxmat] = cellfun(@max, eigValmat, 'UniformOutput', false);
Orimat = cellfun(@(x,y)x(:,y), eigVecmat, imaxmat, 'UniformOutput', false);
Ori(:,:,j) = cell2mat(Orimat);
bst_progress('inc',nSources/6);
tmpMat = cellfun(@(x,y)x'*y*x, Orimat, Dmat, 'UniformOutput', false);
tmpMat2 = cellfun(@mtimes, Cmat, Orimat, 'UniformOutput', false);
sfmat = cellfun(@mrdivide, tmpMat2, tmpMat, 'UniformOutput', false);
vcMat = cellfun(@(x)x'*NoiseCov*x, sfmat,'UniformOutput', false);
tmpMat = cellfun(@(x)x'*CovCovOfNumerator(:,:,j)*x, sfmat);
tmpMat2 = cellfun(@(x)x'*CorrCovOfDenominator(:,:,j)*x, sfmat);
CorrMat = bsxfun(@rdivide, tmpMat, tmpMat2);
CorrMaps(:,j) = arrayfun(@sqrt, CorrMat);
tmpMat = cell2mat(vcMat);
AmpMat =bsxfun(@rdivide, tmpMat2, tmpMat);
AmpMaps(:,j) = AmpMat;%arrayfun(@sqrt, AmpMat);
vcMat = cellfun(@sqrt, vcMat, 'UniformOutput', false);
ImagingKernel = cellfun(@mrdivide, sfmat, vcMat, 'UniformOutput', false);
spatialFilter(:,:,j) = cell2mat(ImagingKernel)';
bst_progress('inc',nSources/6);
end
% Cr = MinVarCov_inv * Gr;
% Dr = Gr' * Cr;
%
% Pr = Cr' * CovCovOfNumerator(:,:,j)* Cr;
% Qr = Cr' * CorrCovOfDenominator(:,:,j)* Cr;
% %Qr = Cr' * NoiseCov* Cr;
%
% % Regularize the matrix Q to avoid singular problem
% invQr = pInv(Qr,0.0000000001);
%
% % Compute the dipole orientation
% % (the eigenvector corresponding to maximum eigenvalue of inv(Q)*P)
% [eigVectors,eigValues] = eig(invQr*Pr);
% % check whether eigValues are saved as matrix or vector
% if min(size(eigValues))==1
% [tmp, imax] = max(eigValues);
% else
% [tmp, imax] = max(diag(eigValues));
% end
% DipoleOri = eigVectors(:,imax);
%
% Ori(:,r2,j) = DipoleOri;
% w = Cr*DipoleOri/(DipoleOri'*Dr*DipoleOri);
% spatialFilter(r2,:,j) = w';
% CorrMaps(r2,j) = sqrt((w'*CovCovOfNumerator(:,:,j)*w)/(w'*CorrCovOfDenominator(:,:,j)*w));
% AmpMaps(r2,j)=sqrt((w'*CorrCovOfDenominator(:,:,j)*w)/(w'*NoiseCov*w));
% % if imag(CorrMaps(r2,j))~=0
% % disp('ERROR');
% % end
%
% bst_progress('inc',1);
end
nSources = nSources/3 ;
nRand = 0;%OPTIONS.nRand;
%% Correction
if nRand > 0
% Generate simulation sources
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Calculating Spurious Corr...', 0, nCORR*nSources);
totalTimePoints = size(DataMat.F,2);
simuSignalRef = randn(totalTimePoints,nRef/nDelay,nTrials);
simuSignalTarget = randn(totalTimePoints,nTrials,nRand);
CorrMapsRand = zeros(nSources,nRand,nCORR);
for j=1:nCORR
simuMeasurementsRef = zeros(nChannels,totalTimePoints,nTrials);
for iRef = 1:nOriRef
r = TargetList{iRef}.Seed;
Gr = Kernel(:,(r-1)*3+(1:3))*Ori(:,r,j);
w = squeeze(spatialFilter(r,:,j));
amps = sqrt(w*CorrCovOfDenominator(:,:,j)*w');
for i=1:nTrials
powMat = repmat(amps*simuSignalRef(:,iRef,i)',nChannels,1);
simuMeasurementsRef(:,:,i) = simuMeasurementsRef(:,:,i) + powMat.*repmat(Gr,1,totalTimePoints);
end
end
for r=1:nSources
Gr = Kernel(:,(r-1)*3+(1:3))*Ori(:,r,j);
wr = squeeze(spatialFilter(r,:,j));
amps = sqrt(wr*CorrCovOfDenominator(:,:,j)*wr');
for n=1:nRand
Cba = zeros(nRef,1);
Cbb = zeros(nRef,nRef);
Caa = 0;
for i=1:nTrials
powMat = repmat(amps*simuSignalTarget(:,i,n)',nChannels,1);
simuMeasurementsAll = simuMeasurementsRef(:,:,i) + powMat.*repmat(Gr,1,totalTimePoints);
ind = 1;
refSignals = zeros(nRef,nCorrWindowPoints);
for iRef = 1:nOriRef
w = squeeze(spatialFilter(TargetList{iRef}.Seed,:,j));
tmp=w*simuMeasurementsAll;
for m=1:nDelay
refTime = CorrTimeList(j,:) + DelayList(m);
iRefWindow = panel_time('GetTimeIndices', Time, refTime);
refSignals(ind,:) = tmp(iRefWindow(1:nCorrWindowPoints));
ind = ind+1;
if OPTIONS.isHann
refSignals(ind,:) = refSignals(ind,:).*hw';
end
end
end
tmp = wr*simuMeasurementsAll(:,iCorrWindowTime(j,:));
Cba = Cba + refSignals*tmp';
Cbb = Cbb + refSignals*refSignals';
Caa = Caa + tmp*tmp';
end
Cba = Cba / (nTrials*nCorrWindowPoints-1);
Cbb = Cbb / (nTrials*nCorrWindowPoints-1);
Caa = Caa / (nTrials*nCorrWindowPoints-1);
CorrMapsRand(r,n,j) = sqrt(Cba'*inv(Cbb)*Cba/Caa);
end
bst_progress('inc',1);
end
end
end
%% ===== Calculate weights =====
if nDelay > 1
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Calculating weights ...', 0, nSources);
CorrWeight = zeros(nSources,nCORR,nDelay,nRef/nDelay);
CorrWeight2 = zeros(nSources,nCORR,nDelay,nRef/nDelay);
for r = 1:1:nSources
for j=1:nCORR
w = squeeze(spatialFilter(r,:,j));
Cab = w*CorrCovOfNumeratorOrig(:,:,j);
for k = 1:nRef
f(k) = (w*squeeze(CorrCovOfNumeratorOrig(:,k,j)))/(sqrt(w*CorrCovOfDenominator(:,:,j)*w')*sqrt(AllCovRef{j}.origcov(k,k)));
end
f2 = Cab*AllCovRef{j}.originv_cov;
f2 = f2/norm(f2)*CorrMaps(r,j);
ind = 0;
for k = 1:nDelay
for i = 1:nRef/nDelay
ind = ind + 1;
CorrWeight(r,j,k,i) = f(ind);
CorrWeight2(r,j,k,i) = f2(ind);
%f(ind) = Cab(ind)/AllCovRef{j}.origcov(ind,ind);
end
end
end
bst_progress('inc',1);
end
%CorrWeight = CorrWeight/max(abs(CorrWeight(:)));
end
%% ===== ASSIGN MAPS AND KERNELS =====
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Saving results...', 0, 3+nCORR*3);
timestring = sprintf('%d_%d',round(OPTIONS.CORRrange(1)*1000),round(OPTIONS.CORRrange(2)*1000));
% == Save the spatial filter as ImagingKernel ==
% for i=1:nCORR
% sp_window_time_string = sprintf('%.1f-%.1f', CorrTimeList(i,1)*1000, CorrTimeList(i,2)*1000);
% sp_window_time_string = [];
saveSF = 1;
if saveSF == 1
% Create a new data file structure
ResultsMat2 = db_template('resultsmat');
if nCORR > 1
[Cval,Ind]=max(CorrMaps');
clear Cval;
for i=1:nSources
spatialFilter(i,:,1) = spatialFilter(i,:,Ind(i));
Ori(:,i,1) = Ori(:,i,Ind(i));
end
spatialFilter = squeeze(spatialFilter(:,:,1));
Ori = squeeze(Ori(:,:,1));
end
ResultsMat2.ImagingKernel = spatialFilter;
ResultsMat2.ImageGridAmp = [];
ResultsMat2.EstimatedGridOrient = Ori';
ResultsMat2.nComponents = 1;
if strcmp(OPTIONS.measure,'cfc') || strcmp(OPTIONS.measure,'coh')
if ~isCrossFreq
if BeamformerType == 1
ResultsMat2.Comment = [result_comment OPTIONS.method ': spatial filter |' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) 'Hz)' ];
else
ResultsMat2.Comment = [result_comment OPTIONS.method ': spatial filter |' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) 'Hz)' ];
end
else
if BeamformerType == 1
ResultsMat2.Comment = [result_comment OPTIONS.method ': spatial filter |' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) ',' num2str(BandBoundsRef(1)) '-' num2str(BandBoundsRef(2)) 'Hz)' ];
else
ResultsMat2.Comment = [result_comment OPTIONS.method ': spatial filter |' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) ',' num2str(BandBoundsRef(1)) '-' num2str(BandBoundsRef(2)) 'Hz)' ];
end
end
else
if OPTIONS.BeamformerType == 1
ResultsMat2.Comment = [result_comment OPTIONS.method ': spatial filter |' timestring 'ms' ];
else
ResultsMat2.Comment = [result_comment OPTIONS.method ': spatial filter |' timestring 'ms' ];
end
end
ResultsMat2.Function = 'SILSCspatialfilter';
ResultsMat2.Time = []; % Leave it empty if using ImagingKernel
ResultsMat2.DataFile = [];
ResultsMat2.HeadModelFile = HeadModelFile;
ResultsMat2.HeadModelType = sHeadModel.HeadModelType;
ResultsMat2.ChannelFlag = [];
ResultsMat2.GoodChannel = iChannels;
if strcmp(sHeadModel.HeadModelType,'volume')
ResultsMat2.GridLoc = sHeadModel.GridLoc;
ResultsMat2.SurfaceFile = sHeadModel.SurfaceFile;
else
ResultsMat2.SurfaceFile = sHeadModel.SurfaceFile;
end
%ResultsMat2.GridLoc = [];%sHeadModel.GridLoc;
% === SHARED ==
% Get the output study (pick the one from the first file)
iStudy = iChannelStudy;
%nOutputFiles = length(OutputFiles);
% Create a default output filename
Outs = bst_process('GetNewFilename', fileparts(InputsData(1).ChannelFile), 'results_beam_KERNEL');
% Save on disk
save(Outs, '-struct', 'ResultsMat2');
% bst_save(OutputFiles{nOutputFiles+1}, ResultsMat2,'v6');
% Register in database
db_add_data(iStudy, Outs, ResultsMat2);
bst_progress('inc',1);
end
% end
if nCORR == 1
% CORRRangePoints = panel_time('GetTimeIndices', Time, CORRrange);
% bst_progress('start', 'Applying process: SISSC', 'Interpolating correlation dynamics...', 0, length(CORRRangePoints));
% ImageGridAmp = zeros(nSources,nTime);
%
% for i = CORRRangePoints(1):CORRRangePoints(end)
% ImageGridAmp(:,i) = CorrMaps(:,1);
% bst_progress('inc',1);
% end
TFMat = db_template('timefreqmat');
% timestring2 = sprintf('(ws:%d%s)',round(CorrWindowSize*1000),'ms');
TFMat.Time = [OPTIONS.CORRrange(1), OPTIONS.CORRrange(end)];
%TFMat.TimeBands = {'corr',[num2str(CORRrange(1)) ',' num2str(CORRrange(end))], 'mean'}; % Leave it empty if using ImagingKernel
TFMat.TF = [CorrMaps CorrMaps];
[mv, mr] = max(CorrMaps);
sSubject = bst_get('Subject', 0);
sMRI = load(file_fullpath(sSubject.Anatomy.FileName));
lc = cs_convert(sMRI, 'scs', 'mni', sHeadModel.GridLoc(mr,:))*1000;
disp(['BIPAC> Maximum Peak Location: ' num2str(round(lc)) ]);
disp(['BIPAC> Maximum Peak Value: ' num2str(mv) ]);
else % Interpolate the correlation maps to have the same temporal resolution as the data
bst_progress('start', ['Applying process: ' OPTIONS.method], ['Interpolating ' OPTIONS.measure ' dynamics...'], 0, nCORR+1);
ImageGridAmpOriginal = CorrMaps;
ImageGridAmp = zeros(nSources,nTime);
for i=1:(nCORR-1)
InterpolateTimeWindow = OPTIONS.CORRrange(1)+HalfCorrWindowSize+[(i-1)*OPTIONS.CORRTResolu i*OPTIONS.CORRTResolu];
iInterpolateTime = panel_time('GetTimeIndices', Time, InterpolateTimeWindow);
nInterpolateTime = length(iInterpolateTime);
ImageGridAmp(:,iInterpolateTime(1)) = ImageGridAmpOriginal(:,i);
ImageGridAmp(:,iInterpolateTime(end)) = ImageGridAmpOriginal(:,i+1);
for j=2:(nInterpolateTime-1)
InterpolatePercentage = (j-1)/(nInterpolateTime-1);
ImageGridAmp(:,iInterpolateTime(j)) = ImageGridAmpOriginal(:,i+1)*InterpolatePercentage + ImageGridAmpOriginal(:,i)*(1-InterpolatePercentage);
end
bst_progress('inc',1);
end
TFMat = db_template('timefreqmat');
% timestring2 = sprintf('(ws:%d%s,tr:%.1f%s)',round(CorrWindowSize*1000),'ms',OPTIONS.CORRTResolu*1000,'ms');
TFMat.Time = Time;%((OPTIONS.CORRrange(1)+HalfCorrWindowSize):OPTIONS.CORRTResolu:(OPTIONS.CORRrange(end)-HalfCorrWindowSize))-(OPTIONS.RefDelayRange(1)+HalfCorrWindowSize);
%TFMat.Time = CorrTimeList(:,1);
TFMat.TimeBands = {};
TFMat.TF = ImageGridAmp;
[mv, mr] = max(max(ImageGridAmp'));
[~, mt] = max(max(ImageGridAmp));
sSubject = bst_get('Subject', 0);
sMRI = load(file_fullpath(sSubject.Anatomy.FileName));
lc = cs_convert(sMRI, 'scs', 'mni', sHeadModel.GridLoc(mr,:))*1000;
disp(['BIPAC> Maximum Peak Location: ' num2str(round(lc)) ]);
disp(['BIPAC> Maximum Peak Value: ' num2str(mv) ]);
disp(['BIPAC> Maximum Peak Time: ' num2str(TFMat.Time(mt)) ]);
end
% if isFreq
% if ~isCrossFreq
% TFMat.Method = 'cohere';
% TFMat.Freqs = {'custum',[num2str(OPTIONS.BandBoundsData(1)) ',' num2str(OPTIONS.BandBoundsData(2))],'mean'};
% if BeamformerType == 1
% TFMat.Comment = [result_comment 'DICS: cohere|' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) 'Hz)' timestring2];
% else
% TFMat.Comment = [result_comment 'SILSC: cohere|' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) 'Hz)' timestring2];
% end
% else
% TFMat.Method = 'crossfreq coupling';
% TFMat.Freqs = {'custum',[num2str(BandBoundsData(1)) ',' num2str(BandBoundsData(2))],'mean'};
% if BeamformerType == 1
% TFMat.Comment = [result_comment 'DICS: crxfreqcoup|' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) ',' num2str(BandBoundsRef(1)) '-' num2str(BandBoundsRef(2)) 'Hz)' timestring2];
% else
% TFMat.Comment = [result_comment 'SILSC: crxfreqcoup|' timestring 'ms(' num2str(BandBoundsData(1)) '-' num2str(BandBoundsData(2)) ',' num2str(BandBoundsRef(1)) '-' num2str(BandBoundsRef(2)) 'Hz)' timestring2];
% end
% end
% else
%
% TFMat.Freqs = 0;
% end
TFMat.OPTIONS = OPTIONS;
TFMat.Method = 'corr';
TFMat.TFMethod = OPTIONS.TFmethod;
TFMat.Comment = [result_comment OPTIONS.method ': ' upper(OPTIONS.measure) '(' timestring 'ms)'];
% TFMat.TF = CorrMaps;
TFMat.DataFile = [];
TFMat.DataType = 'results';
TFMat.Measure = 'other';
TFMat.RefRowNames = RowName;
TFMat.RowNames = 1:nSources;
% Leave it empty if using ImagingKernel
TFMat.nAvg = length(InputsData);
if strcmp(sHeadModel.HeadModelType,'volume')
TFMat.GridLoc = sHeadModel.GridLoc;
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
else
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
end
% TFMat.OPTIONS.EstimatedOri = Ori';
TFMat.OPTIONS.SpatialFilterFileName = Outs;
TFMat.HeadModelFile = HeadModelFile;
TFMat.HeadModelType = sHeadModel.HeadModelType;
% === NOT SHARED ===
% Get the output study (pick the one from the first file)
[StudyContent,iStudy]=bst_get('StudyWithCondition',fileparts(InputsData(1).FileName));
% Create a default output filename
OutputFiles{1} = bst_process('GetNewFilename', fileparts(InputsData(1).FileName), 'timefreq_connect1_beam');
% Save on disk
bst_save(OutputFiles{1}, TFMat,'v6');
% Register in database
db_add_data(iStudy, OutputFiles{1}, TFMat);
bst_progress('inc',1);
clear TFMat;
% == Save the baseline corr
if nRand > 1
for i=1:nCORR
timestring = sprintf('%d_%d',round(CorrTimeList(i,1)*1000),round(CorrTimeList(i,2)*1000));
TFMat = db_template('timefreqmat');
TFMat.Time = 1:nRand;
TFMat.TF = CorrMapsRand(:,:,i);
TFMat.OPTIONS = OPTIONS;
TFMat.Method = OPTIONS.measure;
TFMat.TFMethod = OPTIONS.TFmethod;
TFMat.Comment = [result_comment OPTIONS.method ': ' upper(OPTIONS.measure) '(rand, ' timestring 'ms)'];
TFMat.DataFile = [];
TFMat.DataType = 'results';
TFMat.Measure = 'other';
TFMat.RefRowNames = RowName;
TFMat.RowNames = 1:nSources;
% Leave it empty if using ImagingKernel
TFMat.nAvg = length(InputsData);
if strcmp(sHeadModel.HeadModelType,'volume')
TFMat.GridLoc = sHeadModel.GridLoc;
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
else
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
end
% === NOT SHARED ===
% Get the output study (pick the one from the first file)
[StudyContent,iStudy]=bst_get('StudyWithCondition',fileparts(sInputsData(1).FileName));
% Create a default output filename
OutputFiles{i+1} = bst_process('GetNewFilename', fileparts(InputsData(1).FileName), 'timefreq_connect1_beam');
% Save on disk
bst_save(OutputFiles{i+1}, TFMat,'v6');
% Register in database
db_add_data(iStudy, OutputFiles{i+1}, TFMat);
bst_progress('inc',1);
clear TFMat
end
end
% == Save the contrast
timestring = sprintf('%d_%d',round(OPTIONS.CORRrange(1)*1000),round(OPTIONS.CORRrange(2)*1000));
if nCORR == 1
% CORRRangePoints = panel_time('GetTimeIndices', Time, CORRrange);
% bst_progress('start', 'Applying process: SISSC', 'Interpolating correlation dynamics...', 0, length(CORRRangePoints));
% ImageGridAmp = zeros(nSources,nTime);
%
% for i = CORRRangePoints(1):CORRRangePoints(end)
% ImageGridAmp(:,i) = CorrMaps(:,1);
% bst_progress('inc',1);
% end
% ===== SAVE THE RESULTS =====
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Saving results...', 0, 2);
TFMat = db_template('timefreqmat');
% timestring2 = sprintf('(ws:%d%s)',round(CorrWindowSize*1000),'ms');
TFMat.Time = [OPTIONS.CORRrange(1), OPTIONS.CORRrange(end)];
%TFMat.TimeBands = {'corr',[num2str(CORRrange(1)) ',' num2str(CORRrange(end))], 'mean'}; % Leave it empty if using ImagingKernel
TFMat.TF = AmpMaps;
else % Interpolate the correlation maps to have the same temporal resolution as the data
bst_progress('inc',1);
% Create a new data file structure
bst_progress('start', ['Applying process: ' OPTIONS.method], 'Saving results...', 0, 2);
ImageGridAmpOriginal = AmpMaps;
ImageGridAmp = zeros(nSources,nTime);
for i=1:(nCORR-1)
InterpolateTimeWindow = OPTIONS.CORRrange(1)+HalfCorrWindowSize+[(i-1)*OPTIONS.CORRTResolu i*OPTIONS.CORRTResolu];
iInterpolateTime = panel_time('GetTimeIndices', Time, InterpolateTimeWindow);
nInterpolateTime = length(iInterpolateTime);
ImageGridAmp(:,iInterpolateTime(1)) = ImageGridAmpOriginal(:,i);
ImageGridAmp(:,iInterpolateTime(end)) = ImageGridAmpOriginal(:,i+1);
for j=2:(nInterpolateTime-1)
InterpolatePercentage = (j-1)/(nInterpolateTime-1);
ImageGridAmp(:,iInterpolateTime(j)) = ImageGridAmpOriginal(:,i+1)*InterpolatePercentage + ImageGridAmpOriginal(:,i)*(1-InterpolatePercentage);
end
bst_progress('inc',1);
end
TFMat = db_template('timefreqmat');
% timestring2 = sprintf('(ws:%d%s,tr:%.1f%s)',round(CorrWindowSize*1000),'ms',OPTIONS.CORRTResolu*1000,'ms');
TFMat.Time = Time;%((OPTIONS.CORRrange(1)+HalfCorrWindowSize):OPTIONS.CORRTResolu:(OPTIONS.CORRrange(end)-HalfCorrWindowSize))-(OPTIONS.RefDelayRange(1)+HalfCorrWindowSize);
TFMat.TimeBands = {};
TFMat.TF = ImageGridAmp;
end
%TFMat.TF = AmpMaps;
TFMat.OPTIONS = OPTIONS;
TFMat.Method = OPTIONS.measure;
TFMat.TFMethod = OPTIONS.TFmethod;
TFMat.Comment = [result_comment OPTIONS.method ': Fmap(' timestring 'ms)'];
TFMat.DataFile = [];
TFMat.DataType = 'results';
TFMat.Measure = 'other';
TFMat.RefRowNames = RowName;
TFMat.RowNames = 1:nSources;
% Leave it empty if using ImagingKernel
TFMat.nAvg = length(InputsData);
if strcmp(sHeadModel.HeadModelType,'volume')
TFMat.GridLoc = sHeadModel.GridLoc;
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
else
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
end
TFMat.HeadModelFile = HeadModelFile;
TFMat.HeadModelType = sHeadModel.HeadModelType;
% === NOT SHARED ===
% Get the output study (pick the one from the first file)
nOutputFiles = length(OutputFiles);
% Create a default output filename
OutputFiles{nOutputFiles+1} = bst_process('GetNewFilename', fileparts(InputsData(1).FileName), 'timefreq_connect1_beam');
% Save on disk
bst_save(OutputFiles{nOutputFiles+1}, TFMat,'v6');
% Register in database
db_add_data(iStudy, OutputFiles{nOutputFiles+1}, TFMat);
bst_progress('inc',1);
clear TFMat;
%=== save weight===
if nDelay > 1
cwcomment = 'weight';
for cw = 1:2
if cw==2
CorrWeight = CorrWeight2;
cwcomment = 'normalizedweight';
end
CorrWeight = permute(CorrWeight,[1 3 2 4]);
nOutputFiles = length(OutputFiles);
for k = 1:nCORR%nDelay
timestring = sprintf('%d_%d',round(CorrTimeList(k,1)*1000),round(CorrTimeList(k,2)*1000));
SingleCorrWeight = CorrWeight(:,:,k,1);
% TFMat.Time = DelayList;
%timestring = sprintf('%d_%d',round(OPTIONS.CORRrange(1)*1000),round(OPTIONS.CORRrange(2)*1000));
% if nDelay == 1
% ===== SAVE THE RESULTS =====
bst_progress('start', ['Applying process: ' OPTIONS.method ], 'Saving results...', 0, 2);
TFMat = db_template('timefreqmat');
% timestring2 = sprintf('(ws:%d%s)',round(CorrWindowSize*1000),'ms');
% TFMat.Time = [OPTIONS.CORRrange(1), OPTIONS.CORRrange(end)];
%TFMat.TimeBands = {'corr',[num2str(CORRrange(1)) ',' num2str(CORRrange(end))], 'mean'}; % Leave it empty if using ImagingKernel
% else % Interpolate the correlation maps to have the same temporal resolution as the data
% bst_progress('start', ['Applying process: ' OPTIONS.method ], 'Interpolating correlation dynamics...', 0, nCORR+1);
% bst_progress('inc',1);
% % Create a new data file structure
% bst_progress('start', ['Applying process: ' OPTIONS.method ], 'Saving weights...', 0, 2);
%
% TFMat = db_template('timefreqmat');
% % timestring2 = sprintf('(ws:%d%s,tr:%.1f%s)',round(CorrWindowSize*1000),'ms',CORRTResolu*1000,'ms');
% % TFMat.Time = (OPTIONS.CORRrange(1)+HalfCorrWindowSize):CORRTResolu:(OPTIONS.CORRrange(end)-HalfCorrWindowSize);
% end
TFMat.Time = DelayList;
if strcmp(OPTIONS.measure,'cfc') || strcmp(OPTIONS.measure,'coh')
% TFMat.Freqs = 1:nDelay
TFMat.Comment = [result_comment OPTIONS.method ':' cwcomment ' (' timestring 'ms,' num2str(BandBounds(1)) '-' num2str(BandBounds(2)) 'Hz)' ];
else
TFMat.Comment = [result_comment OPTIONS.method ':' cwcomment ' (' timestring 'ms)' ];
end
TFMat.TF = SingleCorrWeight;
TFMat.DataFile = [];
TFMat.Method = 'corr';
TFMat.DataType = 'results';
TFMat.Measure = 'other';
TFMat.RefRowNames = RowName;
TFMat.RowNames = 1:nSources;
% Leave it empty if using ImagingKernel
TFMat.nAvg = length(InputsData);
if strcmp(sHeadModel.HeadModelType,'volume')
TFMat.GridLoc = sHeadModel.GridLoc;
else
TFMat.SurfaceFile = sHeadModel.SurfaceFile;
end
% === NOT SHARED ===
% Get the output study (pick the one from the first file)
[StudyContent,iStudy]=bst_get('StudyWithCondition',fileparts(InputsData(1).FileName));
% Create a default output filename
OutputFiles{nOutputFiles+k} = bst_process('GetNewFilename', fileparts(InputsData(1).FileName), 'timefreq_connect1_BeamWeight');
% Save on disk
bst_save(OutputFiles{nOutputFiles+k}, TFMat,'v6');
% Register in database
db_add_data(iStudy, OutputFiles{nOutputFiles+k}, TFMat);
bst_progress('inc',1);
clear TFMat
end
end
end
bst_progress('stop');
end
%% ===== TRUNCATED PSEUDO-INVERSE =====
function X = pInv(A,Reg)
% Inverse of 3x3 GCG' in unconstrained beamformers.
% Since most head models have rank 2 at each vertex, we cut all the fat and
% just take a rank 2 inverse of all the 3x3 matrices
% [U,S,V] = svd(A);
% Si = diag(1 ./ (S + S(1) * Reg / 100)); % 1/(S^2 + lambda I)
% X = V*diag(Si)*U';
eigValues = eig(A);
Reg_alpha = Reg / 100 * max(eigValues);
X = inv(A+Reg_alpha*eye(size(A,1)));
end
function TF = hilberData(F,BandBounds)
% Band-pass filter in one frequency band
Fband = process_bandpass('Compute', F, Fs, BandBounds(1), BandBounds(2), [], 1);
% Apply Hilbert transform
TF = abs(hilbert(Fband')');
end
function [spectra,freq,spectraX] = crossSpectrum(X, Y, Fs, segmentLengthTime, MaxFreqRes, WinOverlap)
% Default options
if (nargin < 5) || isempty(MaxFreqRes)
MaxFreqRes = 1;
end
if (nargin < 4) || isempty(segmentLengthTime)
segmentLengthTime = 128;
end
segmentLength = floor(segmentLengthTime * Fs);
overlap = floor(WinOverlap * segmentLength);
% Signal properties
nX = size(X, 1);
nY = size(Y, 1);
nTimes = size(X, 2);
% Segment indices - discard final timepoints
overlapLength = floor(overlap * segmentLength);
nSegments = floor((nTimes-overlapLength) / (segmentLength-overlapLength));
partialLength = segmentLength - overlapLength;
segmentStart = partialLength * (0:(nSegments-1)) + 1;
segmentEnd = segmentStart + (segmentLength-1);
if (segmentEnd(end) > nTimes)
segmentStart(end) = [];
segmentEnd(end) = [];
end
segmentIndices = [segmentStart; segmentEnd];
% Maximum default resolution: 1 Hz
if ~isempty(MaxFreqRes) && (nTimes > round(Fs / MaxFreqRes))
nFFT = 2^nextpow2( round(Fs / MaxFreqRes) );
% Use the default for FFT
else
nFFT = 2^nextpow2( nTimes );
end
% Output frequencies
freq = Fs/2*linspace(0, 1, nFFT/2 + 1)';
freq(end) = [];
% Frequency smoother (represented as time-domain multiplication)
smoother = window('parzenwin', segmentLength) .* tukeywin(segmentLength, 0);
smoother = smoother / sqrt(sum(smoother.^2));
%% ===== VERSION 1: for loops, full matrix =====
isCalcAuto = isequal(X,Y);
% Initialize variables
spectra = zeros(nX, nY, length(freq));
% Cross-spectrum
if ~isCalcAuto
spectraX = zeros(nX, nX, length(freq));
% spectraY = zeros(nY, nY, length(freq));
for iSeg = 1:nSegments
% Get time indices for this segment
iTime = segmentIndices(1,iSeg):segmentIndices(2,iSeg);
% Frequency domain spectrum after smoothing and tapering
fourierX = abs(fft(bst_bsxfun(@times, X(:,iTime), smoother'), nFFT, 2));
fourierY = abs(fft(bst_bsxfun(@times, Y(:,iTime), smoother'), nFFT, 2));
% Calculate for each frequency: fourierX * fourierY'
for f = 1:length(freq)
spectra(:,:,f) = spectra(:,:,f) + fourierX(:,f) * fourierY(:,f)';
spectraX(:,:,f) = spectraX(:,:,f) + fourierX(:,f) * fourierX(:,f)';
% spectraY(:,:,f) = spectraY(:,:,f) + fourierY(:,f) * fourierY(:,f)';
end
end
spectraX = spectraX / (nSegments * Fs);
else
for iSeg = 1:nSegments
% Get time indices for this segment
iTime = segmentIndices(1,iSeg):segmentIndices(2,iSeg);
% Frequency domain spectrum after smoothing and tapering
fourierX = fft(bst_bsxfun(@times, X(:,iTime), smoother'), nFFT, 2);
% Calculate for each frequency: fourierX * fourierY'
for f = 1:length(freq)
spectra(:,:,f) = spectra(:,:,f) + fourierX(:,f) * fourierX(:,f)';
end
end
end
% Normalize for segments and sampling rate
spectra = spectra / (nSegments * Fs);
% [NxN]: Auto spectrum for X is contained within cross-spectral estimation
% bst_progress('set', round(waitStart + 0.9 * waitMax));
end
function [spectra,freq,spectraX] = crossSpectrumCrossFreq(X, Y, Fs, BandBoundsY, segmentLengthTime, MaxFreqRes, WinOverlapLength)
% Default options
if (nargin < 6) || isempty(MaxFreqRes)
MaxFreqRes = 1;
end
if (nargin < 5) || isempty(segmentLengthTime)
segmentLengthTime = 128;
end
segmentLength = floor(segmentLengthTime * Fs);
%overlapLength = floor(WinOverlapLengthTime * Fs);
overlap = WinOverlapLength;
% Signal properties
nX = size(X, 1);
nY = size(Y, 1);
nTimes = size(X, 2);
% Segment indices - discard final timepoints
overlapLength = floor(overlap * segmentLength);
nSegments = floor((nTimes-overlapLength) / (segmentLength-overlapLength));
partialLength = segmentLength - overlapLength;
segmentStart = partialLength * (0:(nSegments-1)) + 1;
segmentEnd = segmentStart + (segmentLength-1);
if (segmentEnd(end) > nTimes)
segmentStart(end) = [];
segmentEnd(end) = [];
end
segmentIndices = [segmentStart; segmentEnd];
% Maximum default resolution: 1 Hz
if ~isempty(MaxFreqRes) && (nTimes > round(Fs / MaxFreqRes))
nFFT = 2^nextpow2( round(Fs / MaxFreqRes) );
% Use the default for FFT
else
nFFT = 2^nextpow2( nTimes );
end
% Output frequencies
freq = Fs/2*linspace(0, 1, nFFT/2 + 1)';
freq(end) = [];
% Frequency smoother (represented as time-domain multiplication)
smoother = window('parzenwin', segmentLength) .* tukeywin(segmentLength, 0);
smoother = smoother / sqrt(sum(smoother.^2));
%% ===== VERSION 1: for loops, full matrix =====
isCalcAuto = isequal(X,Y);
% Initialize variables
spectra = zeros(nX, nY, length(freq));
% Cross-spectrum
if ~isCalcAuto
spectraX = zeros(nX, nX, length(freq));
%spectraY = zeros(nY, nY, length(freq));
for iSeg = 1:nSegments
% Get time indices for this segment
iTime = segmentIndices(1,iSeg):segmentIndices(2,iSeg);
% Frequency domain spectrum after smoothing and tapering
fourierX = fft(bst_bsxfun(@times, X(:,iTime), smoother'), nFFT, 2);
fourierY = fft(bst_bsxfun(@times, Y(:,iTime), smoother'), nFFT, 2);
% Calculate for each frequency: fourierX * fourierY'
for f = 1:length(freq)
spectraOne = zeros(nX, nY);
nF = 0;
for f1 = 1:length(freq)
if freq(f1) >= BandBoundsY(1) && freq(f1) <= BandBoundsY(2)
spectraOne = spectraOne + fourierX(:,f) * fourierY(:,f1)';
nF = nF + 1;
end
end
if nF > 0
spectra(:,:,f) = spectra(:,:,f) + spectraOne / nF;
end
spectraX(:,:,f) = spectraX(:,:,f) + fourierX(:,f) * fourierX(:,f)';
%spectraY(:,:,f) = spectraY(:,:,f) + fourierY(:,f) * fourierY(:,f)';
end
end
spectraX = spectraX / (nSegments * Fs);
%spectraY = spectraY / (nSegments * Fs);
else
for iSeg = 1:nSegments
% Get time indices for this segment
iTime = segmentIndices(1,iSeg):segmentIndices(2,iSeg);
% Frequency domain spectrum after smoothing and tapering
fourierX = fft(bst_bsxfun(@times, X(:,iTime), smoother'), nFFT, 2);
% Calculate for each frequency: fourierX * fourierY'
for f = 1:length(freq)
spectra(:,:,f) = spectra(:,:,f) + fourierX(:,f) * fourierX(:,f)';
end
end
end
% Normalize for segments and sampling rate
spectra = spectra / (nSegments * Fs);
% [NxN]: Auto spectrum for X is contained within cross-spectral estimation
% bst_progress('set', round(waitStart + 0.9 * waitMax));
end
% function TF = amp_vec(F,BandBounds,Fs,width)
% lower_bin = BandBounds(1);
% upper_bin = BandBounds(2);
% N = size(F,1);
% TF = [];
% for i = 1:N
% F1 = ampvec((lower_bin + floor((upper_bin- lower_bin)/2)),F(i,:)', Fs, width);
% if isempty(TF)
% TF = zeros(N,length(F1));
% end
% TF(i,:) = F1';
% end
% % % Band-pass filter in one frequency band
% % Fband = process_bandpass('Compute', F, BandBounds(1), BandBounds(2), [], 1);
% % % Apply Hilbert transform
% % TF = abs(hilbert(Fband')');
% end
% function TF = bp_vec(F,BandBounds,Fs,width)
% lower_bin = BandBounds(1);
% upper_bin = BandBounds(2);
% N = size(F,1);
% TF = [];
% for i = 1:N
% F1 = bpvec((lower_bin + floor((upper_bin- lower_bin)/2)),F(i,:)', Fs, width);
% if isempty(TF)
% TF = zeros(N,length(F1));
% end
% TF(i,:) = F1';
% end
% % % Band-pass filter in one frequency band
% % Fband = process_bandpass('Compute', F, BandBounds(1), BandBounds(2), [], 1);
%
% end
% function TF = ph_vec(F,BandBounds,Fs,width)
% lower_bin = BandBounds(1);
% upper_bin = BandBounds(2);
% N = size(F,1);
% TF = [];
% for i = 1:N
% F1 = phasevec((lower_bin + floor((upper_bin- lower_bin)/2)),F(i,:)', Fs, width);
% if isempty(TF)
% TF = zeros(N,length(F1));
% end
% TF(i,:) = F1';
% end
% % % Band-pass filter in one frequency band
% % Fband = process_bandpass('Compute', F, BandBounds(1), BandBounds(2), [], 1);
% % % Apply Hilbert transform
% % TF = angle(hilbert(Fband')');
% end
function TF = ana_vec(F,BandBounds,Fs,width,SegmentOverlap)
lower_bin = BandBounds(1);
upper_bin = BandBounds(2);
N = size(F,1);
TF = [];
w = floor(width*Fs*(1/lower_bin));
ow = floor(w*SegmentOverlap);
nF = length(lower_bin:upper_bin);
for i = 1:N
[S,fvec,tvec]=spectrogram([F(i,end:-1:1) F(i,:) F(i,end:-1:1)],w,ow,lower_bin:upper_bin,Fs);
ind = (tvec > length(F)/Fs) & (tvec <= 2*length(F)/Fs);
S = S(:,ind);
if isempty(TF)
TF = zeros(sum(ind),length(fvec),N);
end
TF(:,:,i) = S';
end
end
function TF = amp_vec(F,BandBounds,Fs,width,TFmethod)
lower_bin = BandBounds(1);
upper_bin = BandBounds(2);
N = size(F,1);
T = size(F,2);
TF = [];
cf = (lower_bin + floor((upper_bin- lower_bin)/2));
w = floor(width*Fs*(1/lower_bin));
for i = 1:N
if strcmp(TFmethod,'wavelet')
F1 = ampvec(cf, F(i,:)', Fs, width)';
elseif strcmp(TFmethod,'hilbert')
% Band-pass filter in one frequency band
if lower_bin ~= 0 && upper_bin ~= 0
Fband = process_bandpass('Compute', F(i,:), Fs, lower_bin, upper_bin, [], 1);
else
Fband = F(i,:);
end
% Fband = F(i,:);
%Fband = Fband(T+(1:T));
% Apply Hilbert transform
F1 = abs(hilbert(Fband')');
% F1 = F1(ceil(0.1*T)+(1:floor(0.8*T))-1);
elseif strcmp(TFmethod,'stft')
[S,fvec,tvec]=spectrogram([F(i,end:-1:1) F(i,:) F(i,end:-1:1)],w,w-1,lower_bin:upper_bin,Fs);
ind = (tvec > length(F)/Fs) & (tvec <= 2*length(F)/Fs);
F1 = mean(abs(S(:,ind)));
end
if isempty(TF)
TF = zeros(N,length(F1));
end
TF(i,:) = F1;
end
end
function TF = bp_vec(F,BandBounds,Fs,width,TFmethod)
% N = size(F,1);
% T = size(F,2);
% TF = [];
lower_bin = BandBounds(1);
upper_bin = BandBounds(2);
Fcell = num2cell(F,2);
% if N>1
if lower_bin ==0 && upper_bin==0
TF = F;
else
TFcell = cellfun(@(x)process_bandpass('Compute', x, Fs, lower_bin, upper_bin, [], 1), Fcell,'UniformOutput',false);
TF = cell2mat(TFcell);
end
% else
% for i = 1:N
% if strcmp(TFmethod,'wavelet')
% F1 = bpvec((lower_bin + floor((upper_bin- lower_bin)/2)),F(i,:)', Fs, width);
%
% elseif strcmp(TFmethod,'hilbert') || strcmp(TFmethod,'stft')
%
% F1 = process_bandpass('Compute', F(i,:), Fs, lower_bin, upper_bin, [], 1)';
% % if strcmp(TFmethod,'hilbert')
% % F1 = F1(ceil(0.1*T)+(1:floor(0.8*T))-1);
% % end
% end
% if isempty(TF)
% TF = zeros(N,length(F1));
% end
% TF(i,:) = F1';
%
% end
% end
end
% function TF = bp_vec(F,BandBounds,Fs,width,TFmethod)
% N = size(F,1);
% T = size(F,2);
% TF = [];
% lower_bin = BandBounds(1);
% upper_bin = BandBounds(2);
%
% for i = 1:N
% if strcmp(TFmethod,'wavelet')
% F1 = bpvec((lower_bin + floor((upper_bin- lower_bin)/2)),F(i,:)', Fs, width);
%
% elseif strcmp(TFmethod,'hilbert') || strcmp(TFmethod,'stft')
% F1 = process_bandpass('Compute', F(i,:), Fs, lower_bin, upper_bin, [], 1)';
% % if strcmp(TFmethod,'hilbert')
% % F1 = F1(ceil(0.1*T)+(1:floor(0.8*T))-1);
% % end
% end
% if isempty(TF)
% TF = zeros(N,length(F1));
% end
% TF(i,:) = F1';
%
% end
%
% end
function TF = ph_vec(F,BandBounds,Fs,width,TFmethod)
lower_bin = BandBounds(1);
upper_bin = BandBounds(2);
N = size(F,1);
T = size(F,2);
TF = [];
cf = (lower_bin + floor((upper_bin- lower_bin)/2));
w = floor(width*Fs*(1/lower_bin));
for i = 1:N
if strcmp(TFmethod,'wavelet')
F1 = phasevec(cf, F(i,:)', Fs, width)';
elseif strcmp(TFmethod,'hilbert')
% Band-pass filter in one frequency band
Fband = process_bandpass('Compute', F(i,:), Fs, lower_bin, upper_bin, [], 1);
% Apply Hilbert transform
F1 = angle(hilbert(Fband')');
% F1 = F1(ceil(0.1*T)+(1:floor(0.8*T))-1);
elseif strcmp(TFmethod,'stft')
[S,fvec,tvec]=spectrogram([F(i,end:-1:1) F(i,:) F(i,end:-1:1)],w,w-1,lower_bin:upper_bin,Fs);
ind = (tvec > length(F)/Fs) & (tvec <= 2*length(F)/Fs);
F1 = mean(angle(S(:,ind)));
end
if isempty(TF)
TF = zeros(N,length(F1));
end
TF(i,:) = F1;
end
end
|
github
|
Hui-Ling/BeamformerSourceImaging-master
|
process_beamformer_mcb_speedup.m
|
.m
|
BeamformerSourceImaging-master/process_beamformer_mcb_speedup.m
| 39,513 |
utf_8
|
9ce8310d95f5258ce3de7e5363f7b2ce
|
function varargout = process_beamformer_mcb_speedup( varargin )
% PROCESS_BEAMFORMER_MCB (2017.01.16):
% USAGE: sInput = process_beamformer_mcb_speedup('GetDescription')
% sOutput = process_beamformer_mcb_speedup('Run', sProcess, sInput, method=[])
% INPUT:
% - Options
% |- result_comm : The comment of output files
% |- oriconstraint: If 1, unconstrained beamformer, if 0 uses normal to cortex as dipole orientation
% |- minvar_range : [tStart, tStop]; range of time values used to compute minimum variance criteria
% |- fmaps_range : [tStart, tStop]; range of time values used to compute f maps
% |- fmap_size: length of sliding window for computing fmap
% |- fmaps_tresolution : Step between each fmap
% |- reg : regularization parameter
% |- sensortypes: MEG, EEG, MEG GRAD, MEG MAG
% |- savefilter : If 1, saves the result spatial filter, if 0 only saves f maps
% @=============================================================================
% This software is part of the Brainstorm software:
% http://neuroimage.usc.edu/brainstorm
%
% Copyright (c)2000-2014 University of Southern California & McGill University
% This software is distributed under the terms of the GNU General Public License
% as published by the Free Software Foundation. Further details on the GPL
% license can be found at http://www.gnu.org/copyleft/gpl.html.
%
% FOR RESEARCH PURPOSES ONLY. THE SOFTWARE IS PROVIDED "AS IS," AND THE
% UNIVERSITY OF SOUTHERN CALIFORNIA AND ITS COLLABORATORS DO NOT MAKE ANY
% WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
% MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, NOR DO THEY ASSUME ANY
% LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.
%
% For more information type "brainstorm license" at command prompt.
% =============================================================================@
% Authors: Hui-Ling Chan, Francois Tadel, Sylvain Baillet, 2014-2015
eval(macro_method);
%macro_methodcall;
end
%% ===== GET DESCRIPTION =====
function sProcess = GetDescription() %#ok<DEFNU>
% Description the process
sProcess.Comment = 'Beamformer: Maximum Contrast (speedup)';
sProcess.FileTag = '';
sProcess.Category = 'Custom';
sProcess.SubGroup = 'Sources';
sProcess.Index = 330;
% Definition of the input accepted by this process
sProcess.InputTypes = {'data'};
sProcess.OutputTypes = {'results'};
sProcess.nInputs = 1;
sProcess.nMinFiles = 1;
sProcess.isSeparator = 1;
% Definition of the options
sProcess.options.result_comm.Comment = 'Comment: ';
sProcess.options.result_comm.Type = 'text';
sProcess.options.result_comm.Value = '';
% === SENSOR TYPES
sProcess.options.sensortypes.Comment = 'Sensor types or names (empty=all): ';
sProcess.options.sensortypes.Type = 'text';
sProcess.options.sensortypes.Value = 'MEG GRAD';
% === CORTICAL CONSTRAINED ORIENTATION
sProcess.options.label_o.Comment = '<HTML><BR><b><u>Options: Dipole orietation</u></b>';
sProcess.options.label_o.Type = 'label';
sProcess.options.oriconstraint.Comment = {'Unconstrained <FONT color="#777777"><I>(maximum contrast of active/noise) </I></FONT>', 'Constrained <FONT color="#777777"><I>(normal to cortex)</I></FONT>'};
sProcess.options.oriconstraint.Type = 'radio';
sProcess.options.oriconstraint.Value = 1;
sProcess.options.ori_range.Comment = 'Time range (only for unconstr): ';
sProcess.options.ori_range.Type = 'poststim';
sProcess.options.ori_range.Value = [];
% % === BASELINE TIME RANGE
% sProcess.options.baseline_time.Comment = 'Baseline (Set [0,0] if no baseline correction): ';
% sProcess.options.baseline_time.Type = 'baseline';
% sProcess.options.baseline_time.Value = [];
sProcess.options.label_sf.Comment = '<HTML><BR><b><u>Options: Spatial filter</u></b>';
sProcess.options.label_sf.Type = 'label';
% === SPATIAL FILTER TIME RANGE
sProcess.options.minvar_range.Comment = 'Time range (for minimum variance): ';
sProcess.options.minvar_range.Type = 'poststim';
sProcess.options.minvar_range.Value = [];
% === REGULARIZATION
sProcess.options.reg.Comment = 'Regularization parameter: ';
sProcess.options.reg.Type = 'value';
sProcess.options.reg.Value = {0.3, '%', 4};
% === SAVE SPATIAL FILTER
sProcess.options.savefilter.Comment = 'Save spatial filters';
sProcess.options.savefilter.Type = 'checkbox';
sProcess.options.savefilter.Value = 1;
sProcess.options.label_f.Comment = '<HTML><BR><b><u>Options: Active state (for f-statistic map)</u></b>';
sProcess.options.label_f.Type = 'label';
% === F-MAP TIME RANGE
sProcess.options.fmaps_range.Comment = 'Duration of interests (DOI): ';
sProcess.options.fmaps_range.Type = 'poststim';
sProcess.options.fmaps_range.Value = [];
% === F-MAP TIME WINDOW SIZE
sProcess.options.fmap_size.Comment = 'Size of sliding window (0=whole DOI): ';
sProcess.options.fmap_size.Type = 'value';
sProcess.options.fmap_size.Value = {0, 'ms', 1};
% === F-MAP TEMPORAL RESOLUTION
sProcess.options.fmaps_tresolution.Comment = 'Step for sliding window: ';
sProcess.options.fmaps_tresolution.Type = 'value';
sProcess.options.fmaps_tresolution.Value = {0, 'ms', 1};
sProcess.options.label_s.Comment = '<HTML><BR><b><u>Options: Scouts</u></b>';
sProcess.options.label_s.Type = 'label';
% === OPTIONS: COMPUTE IN SELECT SCOUTS
sProcess.options.usescouts.Comment = 'Compute sources in scouts (uncheck=whole brain)';
sProcess.options.usescouts.Type = 'checkbox';
sProcess.options.usescouts.Value = 0;
% === OPTIONS: SELECTED SCOUTS
sProcess.options.scouts.Comment = 'Use scouts (no selection=all):';
sProcess.options.scouts.Type = 'scout';
sProcess.options.scouts.Value = [];
end
%% ===== FORMAT COMMENT =====
function Comment = FormatComment(sProcess) %#ok<DEFNU>
Comment = sProcess.Comment;
end
%% ===== RUN =====
function OutputFiles = Run(sProcess, sInputs) %#ok<DEFNU>
% Initialize returned list of files
OutputFiles = {};
% Selected scouts
sScouts = sProcess.options.scouts.Value;
% Get option values
BaselineTime = [0,0];%sProcess.options.baseline_time.Value{1};
FmapRange = sProcess.options.fmaps_range.Value{1};
Reg = sProcess.options.reg.Value{1};
SensorTypes = sProcess.options.sensortypes.Value;
FmapSize = sProcess.options.fmap_size.Value{1};
FmapTResolu = sProcess.options.fmaps_tresolution.Value{1};
isSaveFilter = sProcess.options.savefilter.Value;
%SFcriteriaType = sProcess.options.sfcriteria.Value;
MinVarRange = sProcess.options.minvar_range.Value{1};
OriRange = sProcess.options.ori_range.Value{1};
isScout = sProcess.options.usescouts.Value;
result_comment = sProcess.options.result_comm.Value;
if ~isempty(result_comment)
result_comment = [result_comment];
end
% ===== LOAD THE DATA =====
% Read the first file in the list, to initialize the loop
DataMat = in_bst(sInputs(1).FileName, [], 0);
nChannels = size(DataMat.F,1);
nTime = size(DataMat.F,2);
Time = DataMat.Time;
% ===== PROCESS THE TIME WINDOWS =====
if FmapRange(1) > FmapRange(2)
bst_report('Error', sProcess, sInputs, 'The setting of time range of active state is incorrect.');
end
if FmapRange(1) < Time(1)
bst_report('Warning', sProcess, sInputs, 'The start for time range of active state is reset to the first time point of data');
FmapRange(1) = Time(1);
end
if FmapRange(2) > Time(end)
bst_report('Warning', sProcess, sInputs, 'The end for time range of active state is reset to the end point of data');
FmapRange(2) = Time(end);
end
if (FmapRange(1)+FmapSize) > FmapRange(2)
bst_report('Warning', sProcess, sInputs, 'The F statistic window size is too large and reset to the same as the time range of active state.');
FmapSize = FmapRange(2) - FmapRange(1);
end
MinVarTime = MinVarRange;
ActiveTime = OriRange;
%MinVarPoints = panel_time('GetTimeIndices', Time, MinVarRange);
if FmapTResolu == 0
nFmaps = 1;
FmapTResolu = 1;
FmapSize = FmapRange(2) - FmapRange(1);
if FmapRange(1)+FmapSize ~= FmapRange(2)
bst_report('Warning', sProcess, sInputs, 'Temporal resolution should not be 0 ms. The F statistic window size is reset to the same as the time range of interest.');
end
end
FmapPoints = panel_time('GetTimeIndices', Time, [FmapRange(1)+FmapSize FmapRange(2)]);
if length(FmapPoints)<=1
nFmaps = 1;
else
nFmaps = length((FmapRange(1)+FmapSize):FmapTResolu:FmapRange(2));
end
HalfFmapSize= FmapSize/2;
FmapTimeList= zeros(nFmaps,2);
for i=1:nFmaps
FmapTimeList(i,:) = FmapRange(1) + FmapTResolu*(i-1) + [0 FmapSize] ;
end
% ===== LOAD CHANNEL FILE =====
% Load channel file
ChannelMat = in_bst_channel(sInputs(1).ChannelFile);
% Find the MEG channels
% iMEG = good_channel(ChannelMat.Channel, [], 'MEG');
% iEEG = good_channel(ChannelMat.Channel, [], 'EEG');
% iSEEG = good_channel(ChannelMat.Channel, [], 'SEEG');
% iECOG = good_channel(ChannelMat.Channel, [], 'ECOG');
iChannels = channel_find(ChannelMat.Channel, SensorTypes);
% ===== LOAD HEAD MODEL =====
% Get channel study
[sChannelStudy, iChannelStudy] = bst_get('ChannelFile', sInputs(1).ChannelFile);
% Load the default head model
HeadModelFile = sChannelStudy.HeadModel(sChannelStudy.iHeadModel).FileName;
sHeadModel = load(file_fullpath(HeadModelFile));
% Get number of sources
nSources = size(sHeadModel.GridLoc,1);
if (sProcess.options.oriconstraint.Value == 2) && (isequal(sHeadModel.HeadModelType,'volume') || isempty(sHeadModel.GridOrient))
bst_report('Error', sProcess, sInputs, 'No dipole orientation for cortical constrained beamformer estimation.');
% Stop the process
return;
end
% ===== LOAD SCOUTS =====
if isempty(sScouts) || (isScout==0) %isequal(sHeadModel.HeadModelType,'volume') ||
isScout = 0;
nScoutVertex = nSources;
sScoutVerticesList = 1:nSources;
else
isScout = 1;
end
if isScout
sScoutsInfo = process_extract_scout('GetScoutsInfo', '@ Beamformer:MCB', [], sHeadModel.SurfaceFile, sScouts);
sScoutVerticesList = unique([sScoutsInfo.Vertices]);
nScoutVertex = length(sScoutVerticesList);
if isequal(sHeadModel.HeadModelType,'volume')
% sSurface = load(file_fullpath(sHeadModel.SurfaceFile));
% vSurf = sSurface.Vertices(sScoutVerticesList,:);
newScoutVerticesList = [];
for ns = 1:nScoutVertex
SCS = sHeadModel.GridLoc(sScoutVerticesList(ns),:);
dist = (sHeadModel.GridLoc(:,1) - SCS(1)) .^ 2 + (sHeadModel.GridLoc(:,2) - SCS(2)) .^ 2 + (sHeadModel.GridLoc(:,3) - SCS(3)) .^ 2;
iVertex = find(sqrt(dist) < 0.01);
% [~, iVertex] = min(dist);
newScoutVerticesList = [newScoutVerticesList iVertex];
% sScoutVerticesList(ns) = iVertex;
end
sScoutVerticesList = unique(newScoutVerticesList);
nScoutVertex = length(sScoutVerticesList);
% iAtlas = find(arrayfun(@(x)strcmp(x.Name(1:6),'Volume'),sSurface.Atlas));
% for ns = 1:length(sScoutsInfo)
% iScouts(ns) = find(arrayfun(@(x)strcmp(x.Label, sScoutsInfo(ns).Label),sSurface.Atlas(iAtlas).Scouts));
% end
% GridAtlas = sSurface.Atlas(iAtlas);
% GridAtlas.Scouts = GridAtlas.Scouts(unique(iScouts));
%
% GridAtlas.Vert2Grid = cellfun(@(x)min_dist_index(x,sHeadModel.GridLoc),mat2cell(sSurface.Vertices,ones(size(sSurface.Vertices,1),1), 3));
% GridAtlas.Grid2Source = 1:nSources;
% for ns = 1:length(GridAtlas.Scouts)
% GridAtlas.Scouts(ns).Region(2) ='V';
% GridAtlas.Scouts(ns).Region(3) ='C';
% GridAtlas.Scouts(ns).GridRows = GridAtlas.Vert2Grid(GridAtlas.Scouts(ns).Seed);
% end
% % Remove the vertices that are outside the list of vertices in Vert2Grid
% iVertices(iVertices > size(GridAtlas.Vert2Grid,2)) = [];
% % Surface.Vertices => Results.GridLoc
% iVertices = find(any(GridAtlas.Vert2Grid(:,iVertices), 2))';
%
% % Get indices in the ImageGridAmp/ImagingKernel matrix
% iSourceRows = find(any(GridAtlas.Grid2Source(:,iVertices), 2))';
% % Find over which regions this vertex selection spans
% if (nargout >= 2)
% iRegionScouts = find(~cellfun(@(c)isempty(intersect(c,iVertices)), {GridAtlas.Scouts.GridRows}));
% end
end
end
% ===== LOAD THE DATA =====
% Find the indices for covariance calculation
iMinVarTime = panel_time('GetTimeIndices', Time, MinVarRange);
iActiveTime = panel_time('GetTimeIndices', Time, OriRange);
if BaselineTime(1)==BaselineTime(2)
iBaselineTime = [];
else
iBaselineTime = panel_time('GetTimeIndices', Time, BaselineTime);
end
% Initialize the covariance matrices
ActiveCov = zeros(nChannels, nChannels);
nTotalActive = zeros(nChannels, nChannels);
MinVarCov = zeros(nChannels, nChannels);
nTotalMinVar = zeros(nChannels, nChannels);
nFmapPoints = length(panel_time('GetTimeIndices', Time, FmapTimeList(1,:)));
iFmapTime = zeros(nFmaps, nFmapPoints);
for i = 1:nFmaps
if FmapTimeList(i,1) < Time(1) || FmapTimeList(i,2) > Time(end)
% Add an error message to the report
bst_report('Error', sProcess, sInputs, 'One fmap time window is not within the data time range.');
% Stop the process
return;
end
single_iFmap = panel_time('GetTimeIndices', Time, FmapTimeList(i,:));
% detect the round error caused by the non-interger sampling rate
% -- added in 20141026
if nFmapPoints - length(single_iFmap) == 1
single_iFmap(nFmapPoints) = single_iFmap(end) + 1;
end
%%%%%%%%
iFmapTime(i,:) = single_iFmap(1:nFmapPoints);
end
% Initialize the covariance matrices
FmapActiveCov = zeros(nChannels, nChannels, nFmaps);
nTotalFmapActive = zeros(nChannels, nChannels, nFmaps);
bst_progress('start', 'Applying process: MCB', 'Calulating covariance matrix...', 0, length(sInputs)*nFmaps*4+2);
AllData = [];
% Reading all the input files in a big matrix
for i = 1:length(sInputs)
% Read the file #i
DataMat = in_bst(sInputs(i).FileName, [], 0);
% Check the dimensions of the recordings matrix in this file
if (size(DataMat.F,1) ~= nChannels) || (size(DataMat.F,2) ~= nTime)
% Add an error message to the report
bst_report('Error', sProcess, sInputs, 'One file has a different number of channels or a different number of time samples.');
% Stop the process
return;
end
% Get good channels
iGoodChan = find(DataMat.ChannelFlag == 1);
if ~isempty(iBaselineTime)
% Average baseline values
FavgActive = mean(DataMat.F(iGoodChan,iBaselineTime), 2);
% Remove average
DataActive = bst_bsxfun(@minus, DataMat.F(iGoodChan,iActiveTime), FavgActive);
else
DataActive = DataMat.F(iGoodChan,iActiveTime);
end
% Compute covariance for this file
fileActiveCov = DataMat.nAvg .* (DataActive * DataActive');
% Add file covariance to accumulator
ActiveCov(iGoodChan,iGoodChan) = ActiveCov(iGoodChan,iGoodChan) + fileActiveCov;
nTotalActive(iGoodChan,iGoodChan) = nTotalActive(iGoodChan,iGoodChan) + length(iActiveTime);
if ~isempty(iBaselineTime)
% Remove average
DataMinVar = bst_bsxfun(@minus, DataMat.F(iGoodChan,iMinVarTime), FavgActive);
else
DataMinVar = DataMat.F(iGoodChan,iMinVarTime);
end
% Compute covariance for this file
fileMinVarCov = DataMat.nAvg .* (DataMinVar * DataMinVar');
% Add file covariance to accumulator
MinVarCov(iGoodChan,iGoodChan) = MinVarCov(iGoodChan,iGoodChan) + fileMinVarCov;
nTotalMinVar(iGoodChan,iGoodChan) = nTotalMinVar(iGoodChan,iGoodChan) + length(iMinVarTime);
for j = 1:nFmaps
% Average baseline values
if isempty(iBaselineTime)
FavgFmapActive = 0;
else
FavgFmapActive = mean(DataMat.F(iGoodChan,iBaselineTime), 2);
end
% Remove average
DataFmapActive = bst_bsxfun(@minus, DataMat.F(iGoodChan,iFmapTime(j,:)), FavgFmapActive);
%DataFmapActive = sym(DataFmapActive);
%DataMatnAvgSym = sym(DataMat.nAvg);
bst_progress('inc',1);
% Compute covariance for this file
fileFmapActiveCov = DataMat.nAvg .* (DataFmapActive * DataFmapActive');
bst_progress('inc',1);
% Add file covariance to accumulator
FmapActiveCov(iGoodChan,iGoodChan,j) = FmapActiveCov(iGoodChan,iGoodChan,j) + fileFmapActiveCov;
%FmapActiveCov(iGoodChan,iGoodChan,j) = FmapActiveCov(iGoodChan,iGoodChan,j) + fileFmapActiveCov;
bst_progress('inc',1);
nTotalFmapActive(iGoodChan,iGoodChan,j) = nTotalFmapActive(iGoodChan,iGoodChan,j) + nFmapPoints;
bst_progress('inc',1);
end
if isempty(AllData)
AllData = zeros(nChannels, length(DataMat.Time), length(sInputs));
end
AllData(:,:,i)=DataMat.F;
end
clear DataMat;
% Remove bad channels - Added by Hui-Ling 20170113 - start
iUnusedChannel = find(nTotalActive(1,:) < 1);
if ~isempty(iUnusedChannel)
for i=1:length(iUnusedChannel)
iChannels(iChannels == iUnusedChannel(i)) = [];
end
end
% Remove bad channels - Added by Hui-Ling 20170113 - end
% Remove zeros from N matrix
if sProcess.options.oriconstraint.Value == 1,
nTotalActive(nTotalActive <= 1) = 2;
nTotalMinVar(nTotalMinVar <= 1) = 2;
end
nTotalFmapActive(nTotalFmapActive <= 1) = 2;
bst_progress('inc',1);
% Divide final matrix by number of samples
if sProcess.options.oriconstraint.Value == 1,
ActiveCov = ActiveCov ./ (nTotalActive - 1);
MinVarCov = MinVarCov ./ (nTotalMinVar - 1);
end
FmapActiveCov = FmapActiveCov ./ (nTotalFmapActive - 1);
bst_progress('inc',1);
bst_progress('stop');
% ===== PROCESS =====
% Number of channels used to compute sources
nUsedChannels = length(iChannels);
% Extract the covariance matrix of the used channels
ActiveCov = ActiveCov(iChannels,iChannels);
NoiseCovMat = load(file_fullpath(sChannelStudy.NoiseCov(1).FileName));
if isempty(NoiseCovMat)
bst_report('Error', sProcess, sInputs, 'Cannot find noise covariance matrix.');
% Stop the process
return;
end
NoiseCov = NoiseCovMat.NoiseCov(iChannels,iChannels);
MinVarCov = MinVarCov(iChannels,iChannels);
FmapActiveCov = FmapActiveCov(iChannels,iChannels,:);
AllData = AllData(iChannels,:,:);
%% Calculate the inverse of (C+alpha*I)
% eigValues = eig(MinVarCov);
% Reg_alpha = Reg / 100 * max(eigValues);
% invMinVarCovI = inv(MinVarCov+Reg_alpha*eye(nUsedChannels));
[U,S,V] = svd(MinVarCov);
S = diag(S); % Covariance = Cm = U*S*U'
Si = diag(1 ./ (S + S(1) * Reg / 100)); % 1/(S + lambda I)
invMinVarCovI = V*Si*U'; % V * 1/(S + lambda I) * U' = Cm^(-1)
% Initilize the ImagingKernel (spatial filter) and ImageGridAmp (f value)
ImagingKernel = zeros(nSources, nUsedChannels);
ImageGridAmp = zeros(nSources, nFmaps);
ImagingGridOri = zeros(nSources, 3);
% Set the dipole positions for the computation of sources
Loc = sHeadModel.GridLoc;
% Get forward field
if sProcess.options.oriconstraint.Value == 2; % anatomically constrained beamformer
Kernel = bst_gain_orient(sHeadModel.Gain(iChannels,:), sHeadModel.GridOrient);
% Loc = sHeadModel.GridLoc;
else
Kernel = sHeadModel.Gain(iChannels,:);
% Loc = sHeadModel.GridLoc;
end
%Kernel(abs(Kernel(:)) < eps) = eps; % Set zero elements to strictly non-zero
bst_progress('start', 'Applying process: MCB', 'Calculating spatial filters and f-statistic maps...', 0, 16+nFmaps);
%% Compute the spatial filter and f value for each position
if sProcess.options.oriconstraint.Value == 1;
% Obtain gain matrix
usedKernel = arrayfun(@(x)Kernel(:,[1 2 3]+3*(x-1)),sScoutVerticesList,'UniformOutput', false);
% Compute A = inv(C+alpha*I)*Lr
Amat = cellfun(@(x)invMinVarCovI*x, usedKernel, 'UniformOutput', false);
bst_progress('inc',1);
% == Compute orientation using maxium constrast criterion ==
% Compute P = A'*Ca*A
Pmat = cellfun(@(x) x'*ActiveCov*x, Amat, 'UniformOutput', false);
bst_progress('inc',1);
% Compute Q = A'*Cc*A
Qmat = cellfun(@(x) x'*NoiseCov*x, Amat, 'UniformOutput', false);
bst_progress('inc',1);
% Regularize the matrix Q to avoid singular problem
invQmat = cellfun(@(x)pInv(x,0.0000000001),Qmat, 'UniformOutput', false);
bst_progress('inc',1);
invQPmat = cellfun(@mtimes, invQmat, Pmat, 'UniformOutput', false);
bst_progress('inc',1);
% Compute the dipole orientation
% (the eigenvector corresponding to maximum eigenvalue of inv(Q)*P)
[eigVecmat, eigValmat] = cellfun(@eig, invQPmat, 'UniformOutput', false);
bst_progress('inc',1);
% check whether eigValues are saved as matrix or vector
if min(size(eigValmat{1,1}))>1
eigValmat = cellfun(@diag, eigValmat, 'UniformOutput', false);
end
[~, imaxmat] = cellfun(@max, eigValmat, 'UniformOutput', false);
bst_progress('inc',1);
Orimat = cellfun(@(x,y)x(:,y), eigVecmat, imaxmat, 'UniformOutput', false);
bst_progress('inc',1);
% Compute B = Lr'*A
Bmat = cellfun(@(x,y)x'*y, usedKernel, Amat, 'UniformOutput', false);
bst_progress('inc',1);
% Compute the spatial filter
tmpMat = cellfun(@(x,y)x'*y*x, Orimat, Bmat, 'UniformOutput', false);
bst_progress('inc',1);
tmpMat2 = cellfun(@mtimes, Amat, Orimat, 'UniformOutput', false);
bst_progress('inc',1);
sfmat = cellfun(@mrdivide, tmpMat2, tmpMat, 'UniformOutput', false);
bst_progress('inc',1);
% Compute the source power during control state
vcMat = cellfun(@(x)x'*NoiseCov*x, sfmat,'UniformOutput', false);
bst_progress('inc',1);
for j = 1:nFmaps
% Compute the source power during active state
vaMat = cellfun(@(x)x'*FmapActiveCov(:,:,j)*x, sfmat,'UniformOutput', false);
% Compute the f-statistic value by contrasting the power
% during active and control states
ImageGridAmp(sScoutVerticesList,j) = cellfun(@rdivide,vaMat,vcMat);
bst_progress('inc',1);
end
% Normalize spatial filter using the amplitude of control state
vcMat = cellfun(@sqrt, vcMat, 'UniformOutput', false);
bst_progress('inc',1);
tmp = cellfun(@mrdivide, sfmat, vcMat, 'UniformOutput', false);
bst_progress('inc',1);
if size(tmp{1},2) == 1
tmp = cellfun(@(x)x', tmp, 'UniformOutput', false);
end
if size(tmp,1) == 1
tmp = tmp';
end
% Save the normalized spatial filter
ImagingKernel(sScoutVerticesList,:) = cell2mat(tmp);
ImagingGridOri(sScoutVerticesList,:) = cell2mat(Orimat)';
bst_progress('inc',1);
% for iScoutVertex = 1:nScoutVertex
%
% i = sScoutVerticesList(iScoutVertex);
% iGain = [1 2 3] + 3*(i-1);
% if Loc(i,1) < 0.01 && Loc(i,1) > -0.01 && Loc(i,2) < 0.01 && Loc(i,2) > -0.01 && Loc(i,3) < 0.01 && Loc(i,3) > -0.01
% bst_progress('inc',2);
%
% continue;
% else
% % Compute A = inv(C+alpha*I)*Lr
% A = invMinVarCovI * Kernel(:,iGain);
%
% % Compute B = Lr'*A
% B = Kernel(:,iGain)' * A;
%
%
% % == Compute orientation using maxium constrast criterion ==
% % Compute P = A'*Ca*A
% P = A' * ActiveCov * A;
% % Compute Q = A'*Cc*A
% Q = A' * NoiseCov * A;
%
% % Regularize the matrix Q to avoid singular problem
% [U,S,V] = svd(Q);
% S = diag(S); % Covariance = Cm = V*S*U'
% Si = diag(1 ./ (S + S(1) * 0.0000000001)); % 1/(S + lambda I)
% invQ = V*Si*U'; % V * 1/(S + lambda I) * U' = Cm^(-1)
%
% % Compute the dipole orientation
% % (the eigenvector corresponding to maximum eigenvalue of inv(Q)*P)
% [eigVectors,eigValues] = eig(invQ*P);
% % check whether eigValues are saved as matrix or vector
% if(min(size(eigValues))==1)
% [tmp, imax] = max(eigValues);
% else
% [tmp, imax] = max(diag(eigValues));
% end
% DipoleOri = eigVectors(:,imax);
%
% % Compute the spatial filter
% SpatialFilter = (A * DipoleOri) / (DipoleOri' * B * DipoleOri);
%
% varControl = SpatialFilter'* NoiseCov * SpatialFilter;
% bst_progress('inc',1);
%
%
%
% for j = 1:nFmaps
% % Compute the contrast of source power during active state and control state
% varActive = SpatialFilter'*FmapActiveCov(:,:,j)*SpatialFilter;
% % varActive = 0;
% % for k = 1:length(sInputs)
% % varActive = varActive + sum((SpatialFilter' * AllData(:,iFmapTime(j,:),k)).^2);
% % end
% % varActive = varActive / (length(sInputs)*nFmapPoints);
% %varActive = mean((SpatialFilter' * AllData).^2);
% ImageGridAmp(i,j) = varActive / varControl;
%
% bst_progress('inc',1);
% end
% % Save teh result
% ImagingKernel(i,:) = SpatialFilter / sqrt(varControl);
%
% end
%
% end
else
for iScoutVertex = 1:nScoutVertex
i = sScoutVerticesList(iScoutVertex);
%iGain = [1 2 3] + 3*(i-1);
if Loc(i,1) < 0.01 && Loc(i,1) > -0.01 && Loc(i,2) < 0.01 && Loc(i,2) > -0.01 && Loc(i,3) < 0.01 && Loc(i,3) > -0.01
bst_progress('inc',2);
continue;
end
% Compute the spatial filter with cortical constrained dipole orientation
% Compute A = inv(C+alpha*I)*Lr
A = invMinVarCovI * Kernel(:,i);
% Compute B = Lr'*A
B = Kernel(:,i)'*A;
% Compute the spatial filter
SpatialFilter = A / B;
% compute the variance of control state
varControl = SpatialFilter'* NoiseCov * SpatialFilter;
bst_progress('inc',1);
for j = 1:nFmaps
% Compute the contrast of source power during active state and control state
varActive = SpatialFilter'*FmapActiveCov(:,:,j)*SpatialFilter;
ImageGridAmp(i,j) = varActive / varControl;
%ImageGridAmp(i,j) = Fvalue;
bst_progress('inc',1);
end
% Save teh result
ImagingKernel(i,:) = SpatialFilter / sqrt(varControl);
end
end
bst_progress('stop');
bst_progress('start', 'Applying process: MCB', 'Interpolating results...', 0, 1);
%bst_progress('text', ['Applying process: ' sProcess.Comment ' [Interpolating results]']);
if nFmaps == 1
%%%%%%%%% ADDED BY HUI-LING May 10, 2016 -- start
[mv, mr] = max(ImageGridAmp);
% sSubject = bst_get('Subject', 0);
[~, iSubject] = bst_get('SurfaceFile', sHeadModel.SurfaceFile);
sMRI = bst_memory('LoadMri', iSubject);
% sMRI = load(file_fullpath(sSubject.Anatomy.FileName));
lc = cs_convert(sMRI, 'scs', 'mni', Loc(mr,:))*1000;
disp(['MCB> Maximum Peak Location (MNI coordinates): ' num2str(round(lc)) ]);
disp(['MCB> Maximum Peak Value (f-statistic): ' num2str(mv) ]);
%%%%%%%%% ADDED BY HUI-LING May 10, 2016 -- end
FmapRangePoints = panel_time('GetTimeIndices', Time, FmapRange);
ImageGridAmpOriginal = ImageGridAmp;
ImageGridAmp = [ImageGridAmpOriginal, ImageGridAmpOriginal];
TimeIndex = [Time(1), Time(end)];
else % Interpolate the f maps to have the same temporal resolution as the data
ImageGridAmpOriginal = ImageGridAmp;
ImageGridAmp = zeros(nSources,nTime);
for i=1:(nFmaps-1)
InterpolateTimeWindow = FmapRange(1)+HalfFmapSize+[(i-1)*FmapTResolu i*FmapTResolu];
iInterpolateTime = panel_time('GetTimeIndices', Time, InterpolateTimeWindow);
nInterpolateTime = length(iInterpolateTime);
ImageGridAmp(:,iInterpolateTime(1)) = ImageGridAmpOriginal(:,i);
ImageGridAmp(:,iInterpolateTime(end)) = ImageGridAmpOriginal(:,i+1);
for j=2:(nInterpolateTime-1)
InterpolatePercentage = (j-1)/(nInterpolateTime-1);
ImageGridAmp(:,iInterpolateTime(j)) = ImageGridAmpOriginal(:,i+1)*InterpolatePercentage + ImageGridAmpOriginal(:,i)*(1-InterpolatePercentage);
end
end
%%%%%%%%%%%%
% InterpolateTimeWindow = FmapRange(1)+ [0 HalfFmapSize];
% iInterpolateTime = panel_time('GetTimeIndices', Time, InterpolateTimeWindow);
% nInterpolateTime = length(iInterpolateTime);
%
% for j=1:(nInterpolateTime-1)
% ImageGridAmp(:,iInterpolateTime(j)) = ImageGridAmpOriginal(:,1);
% end
%
% InterpolateTimeWindow = FmapRange(1)+HalfFmapSize+(nFmaps-1)*FmapTResolu+[0 HalfFmapSize];
% iInterpolateTime = panel_time('GetTimeIndices', Time, InterpolateTimeWindow);
% nInterpolateTime = length(iInterpolateTime);
%
% for j=2:nInterpolateTime
% ImageGridAmp(:,iInterpolateTime(j)) = ImageGridAmpOriginal(:,end);
% end
%
[mv, mr] = max(max(ImageGridAmp'));
[~, mt] = max(max(ImageGridAmp));
sSubject = bst_get('Subject', 0);
sMRI = load(file_fullpath(sSubject.Anatomy.FileName));
lc = cs_convert(sMRI, 'scs', 'mni', Loc(mr,:)*1000);
disp(['MCB> Maximum Peak Location (MNI coordinates): ' num2str(round(lc)) ]);
disp(['MCB> Maximum Peak Value (f-statistic): ' num2str(mv) ]);
disp(['MCB> Maximum Peak Time: ' num2str(Time(mt)) ' seconds']);
TimeIndex = Time;
end
bst_progress('inc',1);
bst_progress('stop');
%bst_progress('text', ['Applying process: ' sProcess.Comment ' [Saving results]']);
% ===== SAVE THE RESULTS =====
% Create a new data file structure
ResultsMat = db_template('resultsmat');
ResultsMat.ImagingKernel = [];
ResultsMat.ImageGridAmp = ImageGridAmp;
% ResultsMat.nComponents = 1; % 1 or 3
if strcmp(sHeadModel.HeadModelType,'volume')
ResultsMat.nComponents = 1;
else
ResultsMat.nComponents = 1; % 1 or 3
end
% Comment
Comment = [];
if ~isempty(result_comment)
Comment = [result_comment ': '];
end
if ~isempty(iBaselineTime)
strContrastType = 'bl';
else
strContrastType = 'no bl';
end
if sProcess.options.oriconstraint.Value == 1;
ostr = 'Unconstr';
else
ostr = 'Constr';
end
if FmapRange(1) > 5 || FmapRange(2) > 5 || FmapSize > 5
timescale = 1;
strTimeUnit = 's';
else
timescale = 1000;
strTimeUnit = 'ms';
end
if (nFmaps == 1)
Comment1 = sprintf('%sMCB/fmap (%s, %s, %d-%d%s)', Comment, ostr, strContrastType, round(FmapRange(1)*timescale), round(FmapRange(2)*timescale),strTimeUnit);
else
Comment1 = sprintf('%sMCB/fmap (%s, %s , %d-%d%s, ws:%d%s, tr:%d%s)', Comment, ostr, strContrastType, round((FmapRange(1)+FmapSize/2)*timescale), ...
round((FmapRange(1) + FmapSize/2 + (nFmaps-1)*FmapTResolu)*timescale), strTimeUnit, round(FmapSize*timescale), strTimeUnit, round(FmapTResolu*timescale),strTimeUnit);
end
ResultsMat.Function = 'MaximumContrastBeamformerResult';
ResultsMat.Comment = Comment1;
ResultsMat.Time = TimeIndex; % Leave it empty if using ImagingKernel
ResultsMat.DataFile = [];
ResultsMat.HeadModelFile = HeadModelFile;
ResultsMat.HeadModelType = sHeadModel.HeadModelType;
ResultsMat.ChannelFlag = [];
ResultsMat.GoodChannel = iChannels;
ResultsMat.SurfaceFile = sHeadModel.SurfaceFile;
if strcmp(sHeadModel.HeadModelType,'volume')
ResultsMat.GridLoc = Loc;
% ResultsMat.GridAtlas = GridAtlas;
end
% === NOT SHARED ===
% Get the output study (pick the one from the first file)
iStudy = sInputs(1).iStudy;
% Create a default output filename
OutputFiles{1} = bst_process('GetNewFilename', fileparts(sInputs(1).FileName), 'results_MCB_amp');
% Save on disk
save(OutputFiles{1}, '-struct', 'ResultsMat');
% Register in database
db_add_data(iStudy, OutputFiles{1}, ResultsMat);
% ===== SPATIAL FILTER: SAVE FILE =====
if isSaveFilter
% == Save the spatial filter as ImagingKernel ==
% Create a new data file structure
ResultsMat2 = db_template('resultsmat');
ResultsMat2.ImagingKernel = ImagingKernel;
ResultsMat2.ImageGridAmp = [];
if strcmp(sHeadModel.HeadModelType,'volume')
ResultsMat2.nComponents = 1;
else
ResultsMat2.nComponents = 1; % 1 or 3
end
timestring = sprintf('%d_%d%s',round(ActiveTime(1)*timescale),round(ActiveTime(2)*timescale),strTimeUnit);
if ~isempty(iBaselineTime)
ResultsMat2.Comment = [Comment 'MCB/filter (' ostr ', bl, ' timestring ')'];
else
ResultsMat2.Comment = [Comment 'MCB/filter (' ostr ', no bl, ' timestring ')'];
end
ResultsMat2.Function = 'MaximumContrastBeamformerFilter';
ResultsMat2.Time = []; % Leave it empty if using ImagingKernel
ResultsMat2.DataFile = [];
ResultsMat2.HeadModelFile = HeadModelFile;
ResultsMat2.HeadModelType = sHeadModel.HeadModelType;
ResultsMat2.ChannelFlag = [];
ResultsMat2.GoodChannel = iChannels;
ResultsMat2.SurfaceFile = sHeadModel.SurfaceFile;
if strcmp(sHeadModel.HeadModelType,'volume')
ResultsMat2.GridLoc = Loc;
% ResultsMat2.GridAtlas = GridAtlas;
end
if sProcess.options.oriconstraint.Value == 1
ResultsMat2.EstimatedGridOrient = ImagingGridOri;
end
% === SHARED ==
% Get the output study (pick the one from the first file)
iStudy = iChannelStudy;
% Create a default output filename
OutputFiles{2} = bst_process('GetNewFilename', fileparts(sInputs(1).ChannelFile), 'results_MCB_KERNEL');
% Save on disk
save(OutputFiles{2}, '-struct', 'ResultsMat2');
% Register in database
db_add_data(iStudy, OutputFiles{2}, ResultsMat2);
%%===========
end
%
% if (sProcess.options.oriconstraint.Value == 1) && (isempty(sHeadModel.GridOrient)==0)
% % ===== SAVE THE RESULTS =====
% % Create a new data file structure
% ResultsMat3 = db_template('resultsmat');
% ResultsMat3.ImagingKernel = [];
% ResultsMat3.ImageGridAmp = [OriDifference OriDifference];
% ResultsMat3.nComponents = 1; % 1 or 3
% ResultsMat3.Comment = 'MCB: Orientation Difference(Unconstr)';
% ResultsMat3.Function = 'MaximumContrastBeamformerOriDiff';
% ResultsMat3.Time = [1 1]; % Leave it empty if using ImagingKernel
% ResultsMat3.DataFile = [];
% ResultsMat3.HeadModelFile = HeadModelFile;
% ResultsMat3.HeadModelType = sHeadModel.HeadModelType;
% ResultsMat3.ChannelFlag = [];
% ResultsMat3.GoodChannel = iChannels;
% ResultsMat3.SurfaceFile = sHeadModel.SurfaceFile;
% ResultsMat3.GridLoc = GridLoc;
%
% % === NOT SHARED ===
% % Get the output study (pick the one from the first file)
% iStudy = sInputs(1).iStudy;
% % Create a default output filename
% OutputFiles{3} = bst_process('GetNewFilename', fileparts(sInputs(1).FileName), 'results_MCB_oriDiff');
% % Save on disk
% save(OutputFiles{3}, '-struct', 'ResultsMat3');
% % Register in database
% db_add_data(iStudy, OutputFiles{3}, ResultsMat3);
% end
end
function ind = min_dist_index(source,target)
dist = (source(:,1) - target(1)) .^ 2 + (source(:,2) - target(2)) .^ 2 + (source(:,3) - target(3)) .^ 2;
[~,ind] = min(dist);
end
function X = pInv(A,Reg)
% Inverse of 3x3 GCG' in unconstrained beamformers.
% Since most head models have rank 2 at each vertex, we cut all the fat and
% just take a rank 2 inverse of all the 3x3 matrices
% [U,S,V] = svd(A);
% Si = diag(1 ./ (S + S(1) * Reg / 100)); % 1/(S^2 + lambda I)
% X = V*diag(Si)*U';
eigValues = eig(A);
Reg_alpha = Reg / 100 * max(eigValues);
X = inv(A+Reg_alpha*eye(size(A,1)));
end
|
github
|
harig00/MVHSlepian-master
|
slept2residBAD.m
|
.m
|
MVHSlepian-master/Fall17/slept2residBAD.m
| 21,124 |
utf_8
|
047d48a22b5d0885965d42125828a8f3
|
function varargout=slept2resid(slept,thedates,fitwhat,givenerrors,specialterms,CC,TH,N)
% [ESTsignal,ESTresid,ftests,extravalues,total,alphavarall,totalparams,
% totalparamerrors,totalfit,functionintegrals,alphavar]
% =SLEPT2RESID(slept,thedates,fitwhat,givenerrors,specialterms,CC,TH)
%
% Takes a time series of Slepian coefficients and fits a desired
% combination of functions (e.g. secular, annual, semiannual, etc.) to
% each coefficient in order to separate "signal" from residual.
%
% You can choose to fit either a mean, linear, quadratic, or cubic fuction
% as your "base" function to each Slepian coefficient, by using "fitwhat".
% In these cases of higher functions, they are only used if they pass an
% F-test for variance reduction. For example, a cubic term is only used if
% it is significantly better than a quadratic function.
%
% If you also provide the Slepian functions (CC) and region (TH) for this
% localization, then we assume that you want the fitting to the integrated
% functions. i.e. If you have surface density, then using the integrated
% Slepian function would give you total mass change in a region. In
% addition, there will be a fitting of the combination (total) of the Slepian
% functions up to the Shannon number for this localization.
%
% INPUT:
%
% slept The time series of Slepian coefficients. This
% should be a two dimensional matrix (not a cell array),
% where the first dimension is time, and the second dimension
% are Slepian coefficients sorted by global eigenvalue.
% thedates An array of dates corresponding to the slept timeseries. These
% should be in Matlab's date format. (see DATENUM in units
% of decimal days)
% ***It is assumed that 'thedates' matches 'slept'. If 'thedates'
% is longer than 'slept' then it is assumed that these are
% extra dates that you would like ESTsignal to be evaluated at.
% This is useful if you want to interpolate to one of the
% GRACE missing months that is important, such as Jan 2011.
% fitwhat The functions that you would like to fit to the time series
% data. The format of this array is as follows:
% [order periodic1 periodic2 periodic3 etc...] where
% - order is either 0/1/2/3 to fit UP TO either a
% mean/linear/quadratic/cubic function (if increasing
% the power of the function reduces variance enough)
% - periodic1 is the period in days of a function (i.e. 365.0)
% Any # of desired periodic functions [days] can be included.
% givenerrors These are given errors, if you have them. In this case a
% weighted inversion is performed. givenerrors should be the
% same dimensions of slept.
% specialterms A cell array such as {2 'periodic' 1460}. At the moment
% this is pretty specific to our needs, but could be
% expanded later.
% CC A cell array of the localization Slepian functions
% TH The region (proper string or XY coordinates) that you did the
% localization on (so we can integrate)
% N The number of functions
%
% OUTPUT:
%
% ESTsignal The least-squares fitted function for each Slepian
% coefficient evaluated at those months in the same format
% ESTresid Residual time series for each Slepian coefficients, ordered
% as they were given, presumably by eigenvalue
% [nmonths x (Lwindow+1)^2]
% ftests An matrix, such as [0 1 1] for each Slepian coefficient,
% on whether the fits you
% requested passed an F-test for significance.
% extravalues These are the values of ESTsignal evaluated at your extra
% dates which were tacked onto 'thedates'
% total The time series of the combined mass change from N Slepian
% functions (i.e. the combined data points)
% alphavarall The time averaged variance on each data point (from error
% propogation from each individual function). These values
% are the same for every point.
%
% totalparams The parameters of the fits to the total. This is a 4-by-j
% matrix where j are the fits you wanted. Zeros fill out
% the unused parameters. For example, if
% you want just a 2nd order polynomial, you will get
% [intercept intercept; slope slope; 0 quadratic; 0 0]
% totalparamerrors The 95% confidence value on this slope. This is computed
% using the critical value for a t-distribution
% At the moment, totalparams and totalparamerrors and just
% the values for a linear fit. Sometime later maybe change
% this to be potentially a quadratic fit as well.
%
% totalfit Datapoints for the best fit line, so you can plot it, and
% datapoints for the confidence intervals of this linear fit,
% so you can plot them. NOTE: To plot these you should use
% totalfit(:,2)+totalfit(:,3) and totalfit(:,2)-totalfit(:,3)
%
% functionintegrals This is a vector of the integrals of the Slepian
% functions, up to the Shannon number. With this we
% can multiply by the data or ESTSignal to get the
% changes in total mass over time for each function.
% This also has the conversion from kg to Gt already
% in it, so don't do that again.
%
% alphavar The variances on the individual alpha function time series (INTEGRALS).
% This is calculated by making a covariance matrix from
% ESTresid and then doing the matrix multiplication with the
% eigenfunction integrals.
%
% SEE ALSO:
%
% Last modified by charig-at-princeton.edu 6/26/2012
defval('xver',0)
%defval('specialterms',{2 'periodic' 1728.1});
defval('specialterms',{NaN});
defval('slept','grace2slept(''CSR'',''greenland'',0.5,60,[],[],[],[],''SD'')')
defval('extravalues',[]);
if isstr(slept)
% Evaluate the specified expression
[slept,~,thedates,TH,G,CC,V] = eval(slept);
end
% Initialize/Preallocate
defval('givenerrors',ones(size(slept)));
defval('fitwhat',[3 365.0])
% Handle the dates
if length(thedates)==size(slept,1)
% Do nothing
extradates = []; moredates=0;
elseif length(thedates) > size(slept,1)
% There are extra dates, pull them off
extradates = thedates((size(slept,1)+1):end);
thedates = thedates(1:size(slept,1));
moredates=1;
else
error('Is thedates shorter than slept?')
end
% How many data?
nmonths=length(thedates);
% We will do a scaling to improve the solution
mu1 = mean(thedates); % mean
mu2 = std(thedates); % standard deviation
% Make a new x-vector with this information
xprime = (thedates - mu1)/mu2;
extradatesprime = (extradates - mu1)/mu2;
% The frequencies being fitted in [1/days]
omega = 1./[fitwhat(2:end)];
% Rescale these to our new xprime
omega = omega*mu2;
[i,j] = size(slept);
% Initialize the residuals
ESTresid =zeros(size(slept));
% Initialize the evaluated fitted function set
ESTsignal=zeros(size(slept));
% Figure out the orders and degrees of this setup
% BUT orders and degrees have lost their meaning since slept should
% be ordered by eigenvalue
Ldata=addmoff(j,'r');
[dems,dels]=addmout(Ldata);
% How many periodic components?
lomega=length(omega);
%%%
% G matrix assembly
%%%
% We will have the same number of G matrices as order of polynomial fit.
% These matrices are smallish, so make all 3 regardless of whether you want
% them all.
G1 = []; % For line fits
G2 = []; % For quadratic fits
G3 = []; % For cubic fits
% Mean term
if fitwhat(1) >= 0
G1 = [G1 ones(size(xprime'))];
G2 = [G2 ones(size(xprime'))];
G3 = [G3 ones(size(xprime'))];
end
% Secular term
if fitwhat(1) >= 1
G1 = [G1 (xprime)'];
G2 = [G2 (xprime)'];
G3 = [G3 (xprime)'];
end
% Quadratic term
if fitwhat(1) >= 2
G2 = [G2 (xprime)'.^2];
G3 = [G3 (xprime)'.^2];
end
% Cubic term
if fitwhat(1) == 3
G3 = [G3 (xprime)'.^3];
end
% Periodic terms
if ~isempty(omega)
% Angular frequency in radians/(rescaled day) of the periodic terms
th_o= repmat(omega,nmonths,1)*2*pi.*repmat((xprime)',1,lomega);
G1 = [G1 cos(th_o) sin(th_o)];
G2 = [G2 cos(th_o) sin(th_o)];
G3 = [G3 cos(th_o) sin(th_o)];
% Create our specialterms G if we have it. At the moment this is just
% an additional periodic function, but in the future we could add something
% else.
if ~isnan(specialterms{1})
% Strip off the previous periodic terms here and REPLACE with omegaspec
omegaspec = [omega mu2/specialterms{3}];
thspec= repmat(omegaspec,nmonths,1)*2*pi.*repmat((xprime)',1,length(omegaspec));
Gspec1 = [G1(:,1:end-2*lomega) cos(thspec) sin(thspec)];
Gspec2 = [G2(:,1:end-2*lomega) cos(thspec) sin(thspec)];
Gspec3 = [G3(:,1:end-2*lomega) cos(thspec) sin(thspec)];
end
end % end periodic
% Initilization Complete
%%%
% Solving
%%%
% Since each Slepian coefficient has different errors, each will have a
% different weighting matrix. Thus we loop over the coefficients.
for index=1:j
% If we have a priori error information, create a weighting matrix, and
% change the G and d matrices to reflect this. Since each coefficient
% has its own weighting, we have to invert them separately.
W = diag([1./givenerrors(:,index)]);
d = slept(:,index);
G1w = W*G1;
G2w = W*G2;
G3w = W*G3;
dw = W*d;
% This is in case you request a single special term to be looked at
% in a special way
if index == specialterms{1}
Gspec1w = W*Gspec1;
Gspec2w = W*Gspec2;
Gspec3w = W*Gspec3;
lomega = length(omegaspec);
th=thspec;
myomega=omegaspec;
else
lomega = length(omega);
myomega=omega;
th=th_o;
end
%%%
% First order polynomial
%%%
% Do the fitting by minimizing least squares
% First, the linear fit with periodics
mL2_1 = (G1w'*G1w)\(G1w'*dw) ;
% That was regular, but if there was a special one, substitute
if index == specialterms{1}
mL2_1 = (Gspec1w'*Gspec1w)\(Gspec1w'*dw) ;
end
% Use the model parameters to make the periodic amplitude in time
startP = length(mL2_1) - 2*lomega + 1;
amp1 = [mL2_1(startP:(startP+lomega-1)) mL2_1((startP+lomega):end)];
amp1 = sqrt(amp1(:,1).^2 + amp1(:,2).^2);
% Use the model parameters to make the periodic phase in time
phase1 = [mL2_1(startP:(startP+lomega-1)) mL2_1((startP+lomega):end)];
phase1 = atan2(phase1(:,1),phase1(:,2));
% Assemble the estimated signal function, evaluated at 'thedates'
% Start adding things
fitfn1 = mL2_1(1) + mL2_1(2)*(xprime);
% Add the sum over all the periodic components periodics
fitfn1 = fitfn1 + ...
sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% For the special time when you want the periodic stuff taken out
% fitfn1_nosine = mL2_1(1) + mL2_1(2)*(xprime);
% resid1_nosine = d'-sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% Compute the residual time series for this coefficient
resid1 = d - fitfn1';
% Here's the definition of the residual at lm vs time
ESTresid(:,index) = resid1;
% Here's the definition of the signal at lm vs time
ESTsignal(:,index) = fitfn1';
% Do extra dates if you have them
if moredates
th_extras= repmat(myomega,length(extradatesprime),1)...
*2*pi.*repmat((extradatesprime)',1,lomega);
% Evaluate at the missing dates
extravaluesfn1 = mL2_1(1) + mL2_1(2)*(extradatesprime) + ...
sum(repmat(amp1,1,1).*sin(th_extras'+repmat(phase1,1,1)),1);
extravalues(:,index) = extravaluesfn1';
end
% Get the residual sum of squares for later F tests
rss1 = sum(resid1.^2);
%%%
% Second order polynomial
%%%
% Now repeat that all again with second order polynomial, if we want
P2ftest = 0;
if fitwhat(1) >= 2
mL2_2 = (G2w'*G2w)\(G2w'*dw) ;
if index == specialterms{1}
mL2_2 = (Gspec2w'*Gspec2w)\(Gspec2w'*dw) ;
end
startP = length(mL2_2) - 2*lomega + 1;
amp2 = [mL2_2(startP:(startP+lomega-1)) mL2_2((startP+lomega):end)];
amp2 = sqrt(amp2(:,1).^2 + amp2(:,2).^2);
phase2 = [mL2_2(startP:(startP+lomega-1)) mL2_2((startP+lomega):end)];
phase2 = atan2(phase2(:,1),phase2(:,2));
fitfn2 = mL2_2(1) + mL2_2(2)*(xprime) + mL2_2(3)*(xprime).^2;
fitfn2 = fitfn2 + ...
sum(repmat(amp2,1,nmonths).*sin(th'+repmat(phase2,1,nmonths)),1);
% For the special time when you want the periodic stuff taken out
% fitfn2_nosine = mL2_1(1) + mL2_1(2)*(xprime) + mL2_2(3)*(xprime).^2;
% resid2_nosine = d'-sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% Compute the residual time series for this coefficient
resid2 = d - fitfn2';
% Do extra dates if you have them
if moredates
th_extras= repmat(myomega,length(extradatesprime),1)...
*2*pi.*repmat((extradatesprime)',1,lomega);
extravaluesfn2 = mL2_2(1) + mL2_2(2)*(extradatesprime) +...
mL2_2(3)*(extradatesprime).^2 +...
sum(repmat(amp1,1,1).*sin(th_extras'+repmat(phase1,1,1)),1);
end
% Get the residual sum of squares
rss2 = sum(resid2.^2);
% Calculate an F-score for this new fit
fratioP2 = (rss1 - rss2)/1/(rss2/(length(slept(:,index))-length(mL2_2)));
fscore = finv(.95,1,length(slept(:,index))-length(mL2_2));
if fratioP2 > fscore
P2ftest = 1;
% We pass, so update the signal and residuals with this new fit
ESTresid(:,index) = resid2;
ESTsignal(:,index) = fitfn2';
if moredates; extravalues(:,index) = extravaluesfn2'; end
end
end
%%%
% Third order polynomial
%%%
% Now repeat that all again with third order polynomial, if we want
P3ftest=0;
if fitwhat(1) >= 3
mL2_3 = (G3w'*G3w)\(G3w'*dw) ;
if index == specialterms{1}
mL2_3 = (Gspec3w'*Gspec3w)\(Gspec3w'*dw) ;
end
startP = length(mL2_3) - 2*lomega + 1;
amp3 = [mL2_3(startP:(startP+lomega-1)) mL2_3((startP+lomega):end)];
amp3 = sqrt(amp3(:,1).^2 + amp3(:,2).^2);
phase3 = [mL2_3(startP:(startP+lomega-1)) mL2_3((startP+lomega):end)];
phase3 = atan2(phase3(:,1),phase3(:,2));
fitfn3 = mL2_3(1) + mL2_3(2)*(xprime) ...
+ mL2_3(3)*(xprime).^2 + mL2_3(4)*(xprime).^3;
fitfn3 = fitfn3 + ...
sum(repmat(amp3,1,nmonths).*sin(th'+repmat(phase3,1,nmonths)),1);
resid3 = d - fitfn3';
% For the special time when you want the periodic stuff taken out
% fitfn3_nosine = mL2_1(1) + mL2_1(2)*(xprime) +...
% mL2_2(3)*(xprime).^2 + mL2_3(4)*(xprime).^3;
% resid3_nosine = d'-sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% Do extra dates if you have them
if moredates
th_extras= repmat(myomega,length(extradatesprime),1)...
*2*pi.*repmat((extradatesprime)',1,lomega);
extravaluesfn3 = mL2_3(1) + mL2_3(2)*(extradatesprime) +...
mL2_3(3)*(extradatesprime).^2 + mL2_3(4)*(extradatesprime).^3 +...
sum(repmat(amp1,1,1).*sin(th_extras'+repmat(phase1,1,1)),1);
end
% Get the residual sum of squares
rss3 = sum(resid3.^2);
% Calculate an F-score for this new fit
fratioP3 = (rss1 - rss3)/2/(rss3/(length(slept(:,index))-length(mL2_3)));
fscore = finv(.95,1,length(slept(:,index))-length(mL2_3));
if fratioP3 > fscore
P3ftest = 1;
% We pass, so update the signal and residuals with this new fit
ESTresid(:,index) = resid3;
ESTsignal(:,index) = fitfn3';
if moredates; extravalues(:,index) = extravaluesfn3'; end
end
end
% Some extra plotting for excessive verification
if xver==1 && index <= 30
% clf
% subplot(211)
% plot(thedates,d,'+')
% hold on
% plot(thedates,fitfn,'r');
% errorbar(thedates,d,givenerrors(:,1),'b-')
%
% axis tight
% datetick('x',28)
% title(sprintf('components at alpha = %i',index))
% legend('Data with given errors','Fitted signal')
%
% subplot(212)
% DY=sqrt(mean(ESTresid(:,1).^2))*ones(size(fitfn))';
% fill([thedates' ; flipud(thedates')],...
% [ESTresid(:,1)+DY ; flipud(ESTresid(:,1)-DY)],...
% [0.7 0.7 0.7]);
% %errorfill(thedates,ESTresid(:,1),sqrt(mean(ESTresid(:,1).^2))*ones(size(fitfn)))
% %errorbar(thedates,ESTresid(:,1),sqrt(mean(ESTresid(:,1).^2))*ones(size(fitfn)),'r-')
% hold on
% DY=givenerrors(:,1);
% fill([thedates' ; flipud(thedates')],...
% [ESTresid(:,1)+DY ; flipud(ESTresid(:,1)-DY)],...
% [0.9 0.9 0.9]);
% %errorbar(thedates,ESTresid(:,1),givenerrors(:,1),'b-')
% title(sprintf('Residuals with error bands at alpha = %i',index))
% legend('Estimated errors','Given errors')
% axis tight
% datetick('x',28)
clf
plot(thedates,d,'b-')
hold on
plot(thedates,ESTsignal(:,index),'r-')
datetick('x',28)
title(sprintf('alpha = %i',index))
keyboard
end
% Make the matrix ftests
ftests(index,:) = [0 P2ftest P3ftest];
end
% Collect output
varns={ESTsignal,ESTresid,ftests,extravalues};
%%%
% TOTAL COMBINED FITTING
%%%
% If we have the parameters for this localization, and we requested the
% total fit, then let's do that.
if nargout >= 5 && exist('CC') && exist('TH')
% Get the residual covariance
[Cab] = slepresid2cov(ESTresid);
% Calculate the bandwdith for this basis
L = sqrt(size(slept,2)) - 1;
% This should be an integer
if (floor(L)~=L);
error('Something fishy about your L');
end
if iscell(TH)
% Something like {'greenland' 0.5}
XY=eval(sprintf('%s(%i,%f)',TH{1},10,TH{2}));
else
% Coordinates or a string, either works
XY=TH;
end
% Calculate the Shannon number for this basis
% N=round((L+1)^2*spharea(XY)); <----------------------------------
defval('N',round((L+1)^2*spharea(XY)));
% Make the coefficients with reference to some mean
% If they already are, then this won't matter
sleptdelta = slept(1:nmonths,:) - repmat(mean(slept(1:nmonths,:),1),nmonths,1);
% COMBINE
% We want to take the Slepian functions and combine them to get total mass.
% For signal, this means integrating the functions and adding them. For
% the error, this means using the error propogation equation, where we
% compute (int)*(covar)*(int)'. Since the slepcoffs are constants that
% just come forward, we can do the integration of the eigenfunctions
% first (and once for each function), then multiply by slepcoffs to
% get the monthly values. This is much faster.
[eigfunINT] = integratebasis(CC,TH,N);
% Since Int should have units of (fn * m^2), need to go from fractional
% sphere area to real area. If the fn is surface density, this output is
% in kilograms. Then change the units from kg to Gt in METRIC tons
eigfunINT = eigfunINT*4*pi*6370000^2/10^3/10^9;
functionintegrals = eigfunINT;
% Now multiply by the appropriate slepcoffs to get the months
% This becomes alpha by months
%functimeseries=repmat(eigfunINT',1,nmonths).*sleptdelta(:,1:N)';
%functimeseries = sleptdelta(:,1:N)';
% Here do the total sum of the data
total=eigfunINT*sleptdelta(:,1:N)';
% Get the error
thevars = diag(Cab(1:N,1:N))';
alphavar = eigfunINT.^2.*thevars;
% Now the combined error with covariance
alphavarall = eigfunINT*Cab(1:N,1:N)*eigfunINT';
% FITTING
% We have uniform estimated error, which will be different than the polyfit
% estimated residuals because ours account for sinusoidal signals. So
% pass the new error to our function for replacement, so
% that the fitting confidence intervals reflect that
[fit,delta,params,paramerrors] = timeseriesfit([thedates' total'],alphavarall,1,1);
% Make a matrix for the line, and 95% confidence in the fit
totalfit = [thedates' fit delta];
% Make the parameters and error valid for a year
totalparams = params(2)*365;
totalparamerrors = paramerrors*365;
% Collect the expanded output
varns={ESTsignal,ESTresid,ftests,extravalues,...
total,alphavarall,totalparams,totalparamerrors,totalfit,...
functionintegrals,alphavar};
end
varargout=varns(1:nargout);
|
github
|
harig00/MVHSlepian-master
|
slept2resid.m
|
.m
|
MVHSlepian-master/Fall17/slept2resid.m
| 21,225 |
utf_8
|
0aa4fba4615ad4ae371dd2bec3a23cc1
|
function varargout=slept2resid(slept,thedates,fitwhat,givenerrors,specialterms,CC,TH,N)
% [ESTsignal,ESTresid,ftests,extravalues,total,alphavarall,totalparams,
% totalparamerrors,totalfit,functionintegrals,alphavar]
% =SLEPT2RESID(slept,thedates,fitwhat,givenerrors,specialterms,CC,TH)
%
% Takes a time series of Slepian coefficients and fits a desired
% combination of functions (e.g. secular, annual, semiannual, etc.) to
% each coefficient in order to separate "signal" from residual.
%
% You can choose to fit either a mean, linear, quadratic, or cubic fuction
% as your "base" function to each Slepian coefficient, by using "fitwhat".
% In these cases of higher functions, they are only used if they pass an
% F-test for variance reduction. For example, a cubic term is only used if
% it is significantly better than a quadratic function.
%
% If you also provide the Slepian functions (CC) and region (TH) for this
% localization, then we assume that you want the fitting to the integrated
% functions. i.e. If you have surface density, then using the integrated
% Slepian function would give you total mass change in a region. In
% addition, there will be a fitting of the combination (total) of the Slepian
% functions up to the Shannon number for this localization.
%
% INPUT:
%
% slept The time series of Slepian coefficients. This
% should be a two dimensional matrix (not a cell array),
% where the first dimension is time, and the second dimension
% are Slepian coefficients sorted by global eigenvalue.
% thedates An array of dates corresponding to the slept timeseries. These
% should be in Matlab's date format. (see DATENUM in units
% of decimal days)
% ***It is assumed that 'thedates' matches 'slept'. If 'thedates'
% is longer than 'slept' then it is assumed that these are
% extra dates that you would like ESTsignal to be evaluated at.
% This is useful if you want to interpolate to one of the
% GRACE missing months that is important, such as Jan 2011.
% fitwhat The functions that you would like to fit to the time series
% data. The format of this array is as follows:
% [order periodic1 periodic2 periodic3 etc...] where
% - order is either 0/1/2/3 to fit UP TO either a
% mean/linear/quadratic/cubic function (if increasing
% the power of the function reduces variance enough)
% - periodic1 is the period in days of a function (i.e. 365.0)
% Any # of desired periodic functions [days] can be included.
% givenerrors These are given errors, if you have them. In this case a
% weighted inversion is performed. givenerrors should be the
% same dimensions of slept.
% specialterms A cell array such as {2 'periodic' 1460}. At the moment
% this is pretty specific to our needs, but could be
% expanded later.
% CC A cell array of the localization Slepian functions
% TH The region (proper string or XY coordinates) that you did the
% localization on (so we can integrate)
% N Number of largest eigenfunctions in which to expand. By default
% rounds to the Shannon number.
%
% OUTPUT:
%
% ESTsignal The least-squares fitted function for each Slepian
% coefficient evaluated at those months in the same format
% ESTresid Residual time series for each Slepian coefficients, ordered
% as they were given, presumably by eigenvalue
% [nmonths x (Lwindow+1)^2]
% ftests An matrix, such as [0 1 1] for each Slepian coefficient,
% on whether the fits you
% requested passed an F-test for significance.
% extravalues These are the values of ESTsignal evaluated at your extra
% dates which were tacked onto 'thedates'
% total The time series of the combined mass change from N Slepian
% functions (i.e. the combined data points)
% alphavarall The time averaged variance on each data point (from error
% propogation from each individual function). These values
% are the same for every point.
%
% totalparams The parameters of the fits to the total. This is a 4-by-j
% matrix where j are the fits you wanted. Zeros fill out
% the unused parameters. For example, if
% you want just a 2nd order polynomial, you will get
% [intercept intercept; slope slope; 0 quadratic; 0 0]
% totalparamerrors The 95% confidence value on this slope. This is computed
% using the critical value for a t-distribution
% At the moment, totalparams and totalparamerrors and just
% the values for a linear fit. Sometime later maybe change
% this to be potentially a quadratic fit as well.
%
% totalfit Datapoints for the best fit line, so you can plot it, and
% datapoints for the confidence intervals of this linear fit,
% so you can plot them. NOTE: To plot these you should use
% totalfit(:,2)+totalfit(:,3) and totalfit(:,2)-totalfit(:,3)
%
% functionintegrals This is a vector of the integrals of the Slepian
% functions, up to the Shannon number. With this we
% can multiply by the data or ESTSignal to get the
% changes in total mass over time for each function.
% This also has the conversion from kg to Gt already
% in it, so don't do that again.
%
% alphavar The variances on the individual alpha function time series (INTEGRALS).
% This is calculated by making a covariance matrix from
% ESTresid and then doing the matrix multiplication with the
% eigenfunction integrals.
%
% SEE ALSO:
%
% Last modified by charig-at-princeton.edu 6/26/2012
defval('xver',0)
%defval('specialterms',{2 'periodic' 1728.1});
defval('specialterms',{NaN});
defval('slept','grace2slept(''CSR'',''greenland'',0.5,60,[],[],[],[],''SD'')')
defval('extravalues',[]);
if isstr(slept)
% Evaluate the specified expression
[slept,~,thedates,TH,G,CC,V] = eval(slept);
end
% Initialize/Preallocate
defval('givenerrors',ones(size(slept)));
defval('fitwhat',[1 365.0]);
defval('P2ftest',0);
defval('P3ftest',0);
% Handle the dates
if length(thedates)==size(slept,1)
% Do nothing
extradates = []; moredates=0;
elseif length(thedates) > size(slept,1)
% There are extra dates, pull them off
extradates = thedates((size(slept,1)+1):end);
thedates = thedates(1:size(slept,1));
moredates=1;
else
error('Is thedates shorter than slept?')
end
% How many data?
nmonths=length(thedates);
% We will do a scaling to improve the solution
mu1 = mean(thedates); % mean
mu2 = std(thedates); % standard deviation
% Make a new x-vector with this information
xprime = (thedates - mu1)/mu2;
extradatesprime = (extradates - mu1)/mu2;
% The frequencies being fitted in [1/days]
omega = 1./[fitwhat(2:end)];
% Rescale these to our new xprime
omega = omega*mu2;
[i,j] = size(slept);
% Initialize the residuals
ESTresid =zeros(size(slept));
% Initialize the evaluated fitted function set
ESTsignal=zeros(size(slept));
% Figure out the orders and degrees of this setup
% BUT orders and degrees have lost their meaning since slept should
% be ordered by eigenvalue
Ldata=addmoff(j,'r');
[dems,dels]=addmout(Ldata);
% How many periodic components?
lomega=length(omega);
%%%
% G matrix assembly
%%%
% We will have the same number of G matrices as order of polynomial fit.
% These matrices are smallish, so make all 3 regardless of whether you want
% them all.
G1 = []; % For line fits
G2 = []; % For quadratic fits
G3 = []; % For cubic fits
% Mean term
if fitwhat(1) >= 0
G1 = [G1 ones(size(xprime'))];
G2 = [G2 ones(size(xprime'))];
G3 = [G3 ones(size(xprime'))];
end
% Secular term
if fitwhat(1) >= 1
G1 = [G1 (xprime)'];
G2 = [G2 (xprime)'];
G3 = [G3 (xprime)'];
end
% Quadratic term
if fitwhat(1) >= 2
G2 = [G2 (xprime)'.^2];
G3 = [G3 (xprime)'.^2];
end
% Cubic term
if fitwhat(1) == 3
G3 = [G3 (xprime)'.^3];
end
% Periodic terms
if ~isempty(omega)
% Angular frequency in radians/(rescaled day) of the periodic terms
th_o= repmat(omega,nmonths,1)*2*pi.*repmat((xprime)',1,lomega);
G1 = [G1 cos(th_o) sin(th_o)];
G2 = [G2 cos(th_o) sin(th_o)];
G3 = [G3 cos(th_o) sin(th_o)];
% Create our specialterms G if we have it. At the moment this is just
% an additional periodic function, but in the future we could add something
% else.
if ~isnan(specialterms{1})
% Strip off the previous periodic terms here and REPLACE with omegaspec
omegaspec = [omega mu2/specialterms{3}];
thspec= repmat(omegaspec,nmonths,1)*2*pi.*repmat((xprime)',1,length(omegaspec));
Gspec1 = [G1(:,1:end-2*lomega) cos(thspec) sin(thspec)];
Gspec2 = [G2(:,1:end-2*lomega) cos(thspec) sin(thspec)];
Gspec3 = [G3(:,1:end-2*lomega) cos(thspec) sin(thspec)];
end
end % end periodic
% Initilization Complete
%%%
% Solving
%%%
% Since each Slepian coefficient has different errors, each will have a
% different weighting matrix. Thus we loop over the coefficients.
for index=1:j
% If we have a priori error information, create a weighting matrix, and
% change the G and d matrices to reflect this. Since each coefficient
% has its own weighting, we have to invert them separately.
W = diag([1./givenerrors(:,index)]);
d = slept(:,index);
G1w = W*G1;
G2w = W*G2;
G3w = W*G3;
dw = W*d;
% This is in case you request a single special term to be looked at
% in a special way
if index == specialterms{1}
Gspec1w = W*Gspec1;
Gspec2w = W*Gspec2;
Gspec3w = W*Gspec3;
lomega = length(omegaspec);
th=thspec;
myomega=omegaspec;
else
lomega = length(omega);
myomega=omega;
th=th_o;
end
%%%
% First order polynomial
%%%
% Do the fitting by minimizing least squares
% First, the linear fit with periodics
mL2_1 = (G1w'*G1w)\(G1w'*dw) ;
% That was regular, but if there was a special one, substitute
if index == specialterms{1}
mL2_1 = (Gspec1w'*Gspec1w)\(Gspec1w'*dw) ;
end
% Use the model parameters to make the periodic amplitude in time
startP = length(mL2_1) - 2*lomega + 1;
amp1 = [mL2_1(startP:(startP+lomega-1)) mL2_1((startP+lomega):end)];
amp1 = sqrt(amp1(:,1).^2 + amp1(:,2).^2);
% Use the model parameters to make the periodic phase in time
phase1 = [mL2_1(startP:(startP+lomega-1)) mL2_1((startP+lomega):end)];
phase1 = atan2(phase1(:,1),phase1(:,2));
% Assemble the estimated signal function, evaluated at 'thedates'
% Start adding things
fitfn1 = mL2_1(1) + mL2_1(2)*(xprime);
% Add the sum over all the periodic components periodics
fitfn1 = fitfn1 + ...
sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% For the special time when you want the periodic stuff taken out
% fitfn1_nosine = mL2_1(1) + mL2_1(2)*(xprime);
% resid1_nosine = d'-sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% Compute the residual time series for this coefficient
resid1 = d - fitfn1';
% Here's the definition of the residual at lm vs time
ESTresid(:,index) = resid1;
% Here's the definition of the signal at lm vs time
ESTsignal(:,index) = fitfn1';
% Do extra dates if you have them
if moredates
th_extras= repmat(myomega,length(extradatesprime),1)...
*2*pi.*repmat((extradatesprime)',1,lomega);
% Evaluate at the missing dates
extravaluesfn1 = mL2_1(1) + mL2_1(2)*(extradatesprime) + ...
sum(repmat(amp1,1,1).*sin(th_extras'+repmat(phase1,1,1)),1);
extravalues(:,index) = extravaluesfn1';
end
% Get the residual sum of squares for later F tests
rss1 = sum(resid1.^2);
%%%
% Second order polynomial
%%%
% Now repeat that all again with second order polynomial, if we want
if fitwhat(1) >= 2
mL2_2 = (G2w'*G2w)\(G2w'*dw) ;
if index == specialterms{1}
mL2_2 = (Gspec2w'*Gspec2w)\(Gspec2w'*dw) ;
end
startP = length(mL2_2) - 2*lomega + 1;
amp2 = [mL2_2(startP:(startP+lomega-1)) mL2_2((startP+lomega):end)];
amp2 = sqrt(amp2(:,1).^2 + amp2(:,2).^2);
phase2 = [mL2_2(startP:(startP+lomega-1)) mL2_2((startP+lomega):end)];
phase2 = atan2(phase2(:,1),phase2(:,2));
fitfn2 = mL2_2(1) + mL2_2(2)*(xprime) + mL2_2(3)*(xprime).^2;
fitfn2 = fitfn2 + ...
sum(repmat(amp2,1,nmonths).*sin(th'+repmat(phase2,1,nmonths)),1);
% For the special time when you want the periodic stuff taken out
% fitfn2_nosine = mL2_1(1) + mL2_1(2)*(xprime) + mL2_2(3)*(xprime).^2;
% resid2_nosine = d'-sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% Compute the residual time series for this coefficient
resid2 = d - fitfn2';
% Do extra dates if you have them
if moredates
th_extras= repmat(myomega,length(extradatesprime),1)...
*2*pi.*repmat((extradatesprime)',1,lomega);
extravaluesfn2 = mL2_2(1) + mL2_2(2)*(extradatesprime) +...
mL2_2(3)*(extradatesprime).^2 +...
sum(repmat(amp1,1,1).*sin(th_extras'+repmat(phase1,1,1)),1);
end
% Get the residual sum of squares
rss2 = sum(resid2.^2);
% Calculate an F-score for this new fit
fratioP2 = (rss1 - rss2)/1/(rss2/(length(slept(:,index))-length(mL2_2)));
fscore = finv(.95,1,length(slept(:,index))-length(mL2_2));
if fratioP2 > fscore
P2ftest = 1;
% We pass, so update the signal and residuals with this new fit
ESTresid(:,index) = resid2;
ESTsignal(:,index) = fitfn2';
if moredates; extravalues(:,index) = extravaluesfn2'; end
else
P2ftest = 0;
end
end
%%%
% Third order polynomial
%%%
% Now repeat that all again with third order polynomial, if we want
if fitwhat(1) >= 3
mL2_3 = (G3w'*G3w)\(G3w'*dw) ;
if index == specialterms{1}
mL2_3 = (Gspec3w'*Gspec3w)\(Gspec3w'*dw) ;
end
startP = length(mL2_3) - 2*lomega + 1;
amp3 = [mL2_3(startP:(startP+lomega-1)) mL2_3((startP+lomega):end)];
amp3 = sqrt(amp3(:,1).^2 + amp3(:,2).^2);
phase3 = [mL2_3(startP:(startP+lomega-1)) mL2_3((startP+lomega):end)];
phase3 = atan2(phase3(:,1),phase3(:,2));
fitfn3 = mL2_3(1) + mL2_3(2)*(xprime) ...
+ mL2_3(3)*(xprime).^2 + mL2_3(4)*(xprime).^3;
fitfn3 = fitfn3 + ...
sum(repmat(amp3,1,nmonths).*sin(th'+repmat(phase3,1,nmonths)),1);
resid3 = d - fitfn3';
% For the special time when you want the periodic stuff taken out
% fitfn3_nosine = mL2_1(1) + mL2_1(2)*(xprime) +...
% mL2_2(3)*(xprime).^2 + mL2_3(4)*(xprime).^3;
% resid3_nosine = d'-sum(repmat(amp1,1,nmonths).*sin(th'+repmat(phase1,1,nmonths)),1);
% Do extra dates if you have them
if moredates
th_extras= repmat(myomega,length(extradatesprime),1)...
*2*pi.*repmat((extradatesprime)',1,lomega);
extravaluesfn3 = mL2_3(1) + mL2_3(2)*(extradatesprime) +...
mL2_3(3)*(extradatesprime).^2 + mL2_3(4)*(extradatesprime).^3 +...
sum(repmat(amp1,1,1).*sin(th_extras'+repmat(phase1,1,1)),1);
end
% Get the residual sum of squares
rss3 = sum(resid3.^2);
% Calculate an F-score for this new fit
fratioP3 = (rss1 - rss3)/2/(rss3/(length(slept(:,index))-length(mL2_3)));
fscore = finv(.95,1,length(slept(:,index))-length(mL2_3));
if fratioP3 > fscore
P3ftest = 1;
% We pass, so update the signal and residuals with this new fit
ESTresid(:,index) = resid3;
ESTsignal(:,index) = fitfn3';
if moredates; extravalues(:,index) = extravaluesfn3'; end
else
P3ftest = 0;
end
end
% Some extra plotting for excessive verification
if xver==1 && index <= 30
% clf
% subplot(211)
% plot(thedates,d,'+')
% hold on
% plot(thedates,fitfn,'r');
% errorbar(thedates,d,givenerrors(:,1),'b-')
%
% axis tight
% datetick('x',28)
% title(sprintf('components at alpha = %i',index))
% legend('Data with given errors','Fitted signal')
%
% subplot(212)
% DY=sqrt(mean(ESTresid(:,1).^2))*ones(size(fitfn))';
% fill([thedates' ; flipud(thedates')],...
% [ESTresid(:,1)+DY ; flipud(ESTresid(:,1)-DY)],...
% [0.7 0.7 0.7]);
% %errorfill(thedates,ESTresid(:,1),sqrt(mean(ESTresid(:,1).^2))*ones(size(fitfn)))
% %errorbar(thedates,ESTresid(:,1),sqrt(mean(ESTresid(:,1).^2))*ones(size(fitfn)),'r-')
% hold on
% DY=givenerrors(:,1);
% fill([thedates' ; flipud(thedates')],...
% [ESTresid(:,1)+DY ; flipud(ESTresid(:,1)-DY)],...
% [0.9 0.9 0.9]);
% %errorbar(thedates,ESTresid(:,1),givenerrors(:,1),'b-')
% title(sprintf('Residuals with error bands at alpha = %i',index))
% legend('Estimated errors','Given errors')
% axis tight
% datetick('x',28)
clf
plot(thedates,d,'b-')
hold on
plot(thedates,ESTsignal(:,index),'r-')
datetick('x',28)
title(sprintf('alpha = %i',index))
end
% Make the matrix ftests
ftests(index,:) = [0 P2ftest P3ftest];
end
% Collect output
varns={ESTsignal,ESTresid,ftests,extravalues};
%%%
% TOTAL COMBINED FITTING
%%%
% If we have the parameters for this localization, and we requested the
% total fit, then let's do that.
if nargout >= 5 && exist('CC') && exist('TH')
% Get the residual covariance
[Cab] = slepresid2cov(ESTresid);
% Calculate the bandwdith for this basis
L = sqrt(size(slept,2)) - 1;
% This should be an integer
if (floor(L)~=L);
error('Something fishy about your L');
end
if iscell(TH)
% Something like {'greenland' 0.5}
XY=eval(sprintf('%s(%i,%f)',TH{1},10,TH{2}));
else
% Coordinates or a string, either works
XY=TH;
end
% Calculate the Shannon number for this basis
defval('N',round((L+1)^2*spharea(XY)));
% Make the coefficients with reference to some mean
% If they already are, then this won't matter
sleptdelta = slept(1:nmonths,:) - repmat(mean(slept(1:nmonths,:),1),nmonths,1);
% COMBINE
% We want to take the Slepian functions and combine them to get total mass.
% For signal, this means integrating the functions and adding them. For
% the error, this means using the error propogation equation, where we
% compute (int)*(covar)*(int)'. Since the slepcoffs are constants that
% just come forward, we can do the integration of the eigenfunctions
% first (and once for each function), then multiply by slepcoffs to
% get the monthly values. This is much faster.
[eigfunINT] = integratebasis(CC,TH,N);
% Since Int should have units of (fn * m^2), need to go from fractional
% sphere area to real area. If the fn is surface density, this output is
% in kilograms. Then change the units from kg to Gt in METRIC tons
eigfunINT = eigfunINT*4*pi*6370000^2/10^3/10^9;
functionintegrals = eigfunINT;
% Now multiply by the appropriate slepcoffs to get the months
% This becomes alpha by months
%functimeseries=repmat(eigfunINT',1,nmonths).*sleptdelta(:,1:N)';
%functimeseries = sleptdelta(:,1:N)';
% Here do the total sum of the data
total=eigfunINT*sleptdelta(:,1:N)';
% Get the error
thevars = diag(Cab(1:N,1:N))';
alphavar = eigfunINT.^2.*thevars;
% Now the combined error with covariance
alphavarall = eigfunINT*Cab(1:N,1:N)*eigfunINT';
% FITTING
% We have uniform estimated error, which will be different than the polyfit
% estimated residuals because ours account for sinusoidal signals. So
% pass the new error to our function for replacement, so
% that the fitting confidence intervals reflect that
[fit,delta,totalparams,paramerrors] = timeseriesfit([thedates' total'],alphavarall,1,fitwhat(1));
% [fit,delta,params,paramerrors] = timeseriesfit([thedates' total'],alphavarall,1,1);
% Make a matrix for the line, and 95% confidence in the fit
totalfit = [thedates' fit delta];
totalparamerrors = paramerrors*365;
% Collect the expanded output
varns={ESTsignal,ESTresid,ftests,extravalues,...
total,alphavarall,totalparams,totalparamerrors,totalfit,...
functionintegrals,alphavar};
end
varargout=varns(1:nargout);
|
github
|
harig00/MVHSlepian-master
|
intersection_reduce.m
|
.m
|
MVHSlepian-master/Spring18/utils/intersection_reduce.m
| 1,009 |
utf_8
|
11161e9a8e01992a62f4609a7efc9d1f
|
% Some code I'm working on to take as input a list of regions and return
% a new list wherein all intersecting/overlapping regions from the original
% have been unioned together.
% Not currently working, or done.
function [ reduced ] = intersectReduce(polys)
% Any intersecting polys get unioned
numPolys=numel(polys);
for a=1:numPolys
polyA=polys(a);
evaldPolyA=eval(sprintf('%s(%i,%f)',polyA,res,b));
% Cast to euclidean in case we contain a pole
[latfA,lonfA]=flatearthpoly(evaldPolyA);
% Check for intersections
for b=a+1:numPolys
polyB=polys(b);
evaldPolyB=eval(sprintf('%s(%i,%f)',polyB,res,b));
[latfB,lonfB]=flatearthpoly(evaldPolyB);
[xi,yi]=polyxpoly(latfA,lonfA,latfB,lonfB);
if numel([xi yi])~=0
% Union the two polys
[xu,yu]=polybool('union',evaldPolyA,evaldPolyB);
% Remove polyB
newPolys=zeros(numel(polys)-1);
% Replace polyA
% Recurse!
end
end
end
reduced=polys;
end
|
github
|
rossimattia/light-field-super-resolution-master
|
nlm.m
|
.m
|
light-field-super-resolution-master/nlm.m
| 5,739 |
utf_8
|
2dfeb4c385a2f7cb353ba02583afbe08
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function wei = nlm(A, B, patRad, intSigma, offset)
% NLM computes the similarity weights between the pixels of an image A and
% those of an image B. In graph terms, it computes the edge weights of a
% graph were edges go from the pixels of image A to those of image B. The
% weights are stored in a vector wei with three columns: the weight of the
% edge from pixel wei(k,1) of image A to the pixel wei(k,2) of image B is
% wei(k,3), with wei(k,1) and wei(k,2) linear coordinates.
%
% INPUT:
% A - a gray scale image (double [0,1]).
% B - a gray scale image (double [0,1]).
% patRad - the size of the (patRad x patRad) patch used in the similarity computation.
% intSigma - the standard deviation used in the similarity computation.
% offSet - a struct defining the searching window (see below).
%
% OUTPUT:
% wei - the similarity weights (aka the graph weights).
%
% Each pixel A(y,x) is compared with all the pixels B(y + offSet.Y(k),x + offSet.X(k))
% where k = 1, 2, ... , length(offSet.X). The comparison is carried out
% between the (patRad x patRad) patches centered at the two considered pixels.
%
% For a matter of computational efficiency, some rows of wei are computed
% but NOT valid. These rows are not valid because either wei(k,1) or wei(k,2)
% does not correspond to a real pixel coordinate in A or B, respectively.
% These rows are the only ones having wei(k,3) equal to ZERO, therefore
% they can be easily recognized.
% =========================================================================
tStart = tic;
% ==== Global constants ===================================================
QUIET = 1;
% ==== Extract the images dimensions ======================================
height = size(A, 1);
width = size(A, 2);
N = height * width;
% ==== Compute the weights ================================================
% Extract the comparison offsets.
Y = offset.Y;
X = offset.X;
offsetsNum = length(X);
% Compute the radius of the smallest window that contains the offsets.
% The window will be ((2 * winRad + 1) x (2 * winRad + 1)) pixels.
winRad = max( max(abs(Y)), max(abs(X)) );
% Pad images A and B.
Apad = padarray(A, [patRad, patRad], 0.5, 'both');
Bpad = padarray(B, [winRad + patRad, winRad + patRad], 0.5, 'both');
% Allocate auxiliary variables.
D = zeros(patRad + height + patRad, patRad + width + patRad);
Dint = zeros(1 + size(D, 1), 1 + size(D, 2));
weiAux = zeros(N, 3);
weiNum = N * length(X);
wei = zeros(weiNum, 3);
% Bpad(rows, cols) is Bpad without the winRad pixel frame.
rows = (winRad + 1):(winRad + patRad + height + patRad);
cols = (winRad + 1):(winRad + patRad + width + patRad);
% Compute the linear coordinates of all the pixels in a image.
z = (1:1:N)';
% Initialize the 1st column of "weiAux" with "z".
weiAux(:, 1) = z;
% Compute the (row,col) coordinates of all the pixels in "z".
[y, x] = ind2sub([height, width], z);
% Auxiliary indexes.
rowSelect1 = (1 + patRad + (1 + patRad)):(1 + patRad + (height + patRad));
colSelect1 = (1 + patRad + (1 + patRad)):(1 + patRad + (width + patRad));
rowSelect2 = (1 + patRad + (1 + patRad)):(1 + patRad + (height + patRad));
colSelect2 = (1 + patRad + (1 - patRad - 1)):(1 + patRad + (width - patRad - 1));
rowSelect3 = (1 + patRad + (1 - patRad - 1)):(1 + patRad + (height - patRad - 1));
colSelect3 = (1 + patRad + (1 + patRad)):(1 + patRad + (width + patRad));
rowSelect4 = (1 + patRad + (1 - patRad - 1)):(1 + patRad + (height - patRad - 1));
colSelect4 = (1 + patRad + (1 - patRad - 1)):(1 + patRad + (width - patRad - 1));
% Each row of "wei" will contain, from left to right:
% - the linear coordinate of a 1st pixel,
% - the linear coordinate of a 2nd pixel,
% - the energy of the difference between the two patches centered on the
% 1st and 2nd pixel, respectively.
for k = 1:1:offsetsNum
% We want to compare the patch centered on pixels (y,x) with that at pixel (yp,xp).
yp = y + Y(k);
xp = x + X(k);
% Compute the squared difference between Apad and the shifted Bpad.
D(:, :) = ( Apad - Bpad(rows + Y(k), cols + X(k)) ).^2;
% Compute the integral image of D.
Dint(:, :) = integralImage(D, 'upright');
% V(y,x) will contain the weight between pixels (y,x) and (yp,xp).
V = ...
Dint(rowSelect1, colSelect1) ...
- Dint(rowSelect2, colSelect2) ...
- Dint(rowSelect3, colSelect3) ...
+ Dint(rowSelect4, colSelect4);
% Detect those comparisons with pixels (yp,xp) outside image B.
mask = (yp >= 1) & (yp <= height) & (xp >= 1) & (xp <= width);
% Store the valid pixels (yp,xp) in linear form.
weiAux(mask, 2) = sub2ind([height, width], yp(mask), xp(mask));
% Compute and store the Gaussian weights.
weiAux(:, 3) = exp( - V(:) / (intSigma ^2) );
% Remove the non valid weights, i.e. those associated to pixels (yp,xp) outside B.
weiAux(~mask, 3) = 0;
% Add the weigths assocaited to the offset (Y(k),X(k)).
wei( (((k - 1) * N) + 1):(k * N), : ) = weiAux;
% Clean weiAux for the next iteration.
weiAux(:, 2:3) = 0;
end
% =========================================================================
if ~QUIET
tElapsed = toc(tStart);
fprintf('\n>>> nlm <<< time: %f\n', tElapsed);
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
tukeywin.m
|
.m
|
light-field-super-resolution-master/tukeywin.m
| 1,096 |
utf_8
|
49da297950887fc13409ec7ed2385fff
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function W = tukeywin(N, alpha)
% TUKEYWIN builds a 1D Tukey window.
%
% INPUT:
% N - the window length.
% alpha - the window parameter.
%
% OUTPUT:
% W - the window.
% =========================================================================
n = 0:1:(N-1);
W = zeros(N, 1);
mask = (n < ceil(alpha * (N-1) / 2));
W(mask) = (1/2) * ( 1 + cos( pi * ( ( (2 * n(mask)) / (alpha * (N-1)) ) - 1 ) ) );
mask = (n >= ceil(alpha * (N-1) / 2)) & (n <= floor((N-1) * (1 - (alpha/2))));
W(mask) = 1;
mask = (n > floor((N-1) * (1 - (alpha/2))));
W(mask) = (1/2) * ( 1 + cos( pi * ( ( (2 * n(mask)) / (alpha * (N-1)) ) - (2/alpha) + 1 ) ) );
end
|
github
|
rossimattia/light-field-super-resolution-master
|
readhci.m
|
.m
|
light-field-super-resolution-master/readhci.m
| 2,868 |
utf_8
|
e577d16ba369b9221d054cfa67220b05
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function lf = readhci(filename)
% READHCI stores the data inside the HDF5 file at the input into a struct
% with the same fields. Views are arranged in a 2D cell array adopting the
% reference system described in the README.
%
% INPUT:
% filename - an HDF5 file name.
%
% OUTPUT:
% lf - a struct with:
% - the same fields of the HDF5 file,
% - a 2D cell array storing the light field,
% - a 2D cell array storing the light field depth maps.
% ==== Extract the light field parameters =================================
lf.yRes = h5readatt(filename, '/', 'yRes');
lf.xRes = h5readatt(filename, '/', 'xRes');
lf.vRes = h5readatt(filename, '/', 'vRes');
lf.hRes = h5readatt(filename, '/', 'hRes');
lf.channels = h5readatt(filename, '/', 'channels');
lf.vSampling = h5readatt(filename, '/', 'vSampling');
lf.hSampling = h5readatt(filename, '/', 'hSampling');
lf.focalLength = h5readatt(filename, '/', 'focalLength');
lf.dV = h5readatt(filename, '/', 'dV');
lf.dH = h5readatt(filename, '/', 'dH');
lf.shift = h5readatt(filename, '/', 'shift');
% ==== Check the input light field ========================================
if (lf.channels ~= 3)
error('Input views must be RGB !!!');
end
% ==== Read the light field views =========================================
% Dataset '/LF' is a 5D array of size (channels x xRes x yRes x hRes x vRes).
% Read the light field views.
dataZ = h5read(filename, '/LF');
% Order dataLF as (yRes x xRes x channels x vRes x hRes).
dataZ = permute(dataZ, [3 2 1 5 4]);
% ==== Read the light field depth maps ====================================
% '/GT_DEPTH' is a 4D array of size (xRes x yRes x hRes x vRes).
% Read the light field depth maps.
dataW = h5read(filename, '/GT_DEPTH');
% Order dataW as (yRes x xRes x vRes x hRes).
dataW = permute(dataW, [2 1 4 3]);
% ==== Organize the views and depth maps into 2D cell arrays ==============
% Allocate a 2D cell array for the light field views.
lf.view = cell(lf.vRes, lf.hRes);
% Allocate a 2D cell array for the light field depth maps.
lf.depth = cell(lf.vRes, lf.hRes);
for s = 1:1:lf.hRes
for t = 1:1:lf.vRes
% Extract view (t,s) and its depth map.
auxZ = dataZ(:, :, :, t, lf.hRes - s + 1);
auxW = dataW(:, :, t, lf.hRes - s + 1);
% Store the view and its depth map.
lf.view{t, s} = auxZ;
lf.depth{t, s} = auxW;
end
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.