plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
rossimattia/light-field-super-resolution-master
|
lc1c2.m
|
.m
|
light-field-super-resolution-master/lc1c2.m
| 2,809 |
utf_8
|
2cb0985cfde92e5980cbb393c8b8f752
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [ZB, lmin, lmax, c1min, c1max, c2min, c2max] = lc1c2(ZA, direction)
% LC1C2 converts the input light field from RGB to LC1C2 if direction is
% 'forward', and viceversa if direction is 'backward'.
%
% INPUT:
% ZA - the input light field.
% direction - a string specifing the conversion type.
%
% OUTPUT:
% ZB - the transformed light field.
% lmin - the minimum value of the L channel for R, G, and B, in [0,1].
% lmax - the maximun value of the L channel for R, G, and B, in [0,1].
% c1min - the minimum value of the C1 channel for R, G, and B, in [0,1].
% c1max - the maximun value of the C1 channel for R, G, and B, in [0,1].
% c2min - the minimum value of the C2 channel for R, G, and B, in [0,1].
% c2max - the maximun value of the C2 channel for R, G, and B, in [0,1].
% ==== Trasformation matrices =============================================
% From RGB to LC1C2.
MF = ...
[ ...
1/4 1/2 1/4; ...
-1/4 1/2 -1/4; ...
-1/4 0.0 1/4 ...
];
% From LC1C2 to RGB.
MB = ...
[ ...
1.0 -1.0 -2.0; ...
1.0 1.0 0.0; ...
1.0 -1.0 2.0 ...
];
% Set the boundary values.
lmin = 0;
lmax = 1;
c1min = -1/2;
c1max = 1/2;
c2min = -1/4;
c2max = 1/4;
% ==== Light field dimensions =============================================
% Angular resolution.
vRes = size(ZA, 1);
hRes = size(ZA, 2);
% Spatial resolution.
yRes = size(ZA{1, 1}, 1);
xRes = size(ZA{1, 1}, 2);
% Check that the input views have 3 channels.
if (size(ZA{1, 1}, 3) ~= 3)
error('Input views must have 3 channels !!!\n\n');
end
% Select the correct transformation matrix.
switch direction
case 'forward'
M = MF;
case 'backward'
M = MB;
otherwise
error('Bad input arguments !!!\n\n');
end
% Perform the transformation ...
% Vectorize ZA.
zA = lf2col(ZA);
% Store the 3 vectorized light fields as the 3 columns of aux.
aux = reshape(zA, [], 3);
% Transform the 3 columns of aux.
aux = aux * (M');
% Note that the previous line is equivalent to:
% aux = (M * (aux'))';
% Arrange the tranformed (and vectorized) light field into a 2D cell array of views.
ZB = col2lf( ...
aux(:), ...
vRes, hRes, ...
yRes, xRes, 3 ...
);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
psnrfr.m
|
.m
|
light-field-super-resolution-master/psnrfr.m
| 1,095 |
utf_8
|
63c482a4498723630c581c282420c089
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function P = psnrfr(A, B, peak, frame)
% PSNRFR computes the PSNR of image A with reference to image B, but it
% removes a frame around the image before the computation.
%
% INPUT:
% A - the image to evaluate,
% B - the reference image,
% peak - the maximum pixel value (e.g., 0 and 255),
% frame - the number of pixels to remove from the border.
%
% OUTPUT:
% P - the PSNR.
% =========================================================================
aux1 = A((1 + frame):(end - frame), (1 + frame):(end - frame), :);
aux2 = B((1 + frame):(end - frame), (1 + frame):(end - frame), :);
P = psnr(double(aux1), double(aux2), peak);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
lf2col.m
|
.m
|
light-field-super-resolution-master/lf2col.m
| 1,007 |
utf_8
|
4a7d4b7e99d8a0246e5ceb3d3cc1fca6
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function z = lf2col(Z)
% LF2COL vectorizes the input light field Z. The 2D cell array Z is scanned
% in column major order, and the same for its views Z{t,s}.
% If the light field views have more than one channel, then all the light
% fields (one for each channel) are vectorized separately, and then the
% vectorized light fields are stacked together.
%
% INPUT:
% Z - a light field.
%
% OUTPUT:
% z - the vectorized light field.
% =========================================================================
aux = cell2mat(Z(:)');
z = aux(:);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
blurmat.m
|
.m
|
light-field-super-resolution-master/blurmat.m
| 1,939 |
utf_8
|
c2a87fb10acdb46bebdd93ec0aeb8e13
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function B = blurmat(height, width, factor)
% BLURMAT builds a matrix that permits to implement image blurring as a
% matrix/vector multiplication. The blurring consists in a box kernel.
%
% INPUT:
% height - the image height.
% width - the image width.
% factor - the size of the (factor x factor) blurring kernel.
%
% OUTPUT:
% B - the blur matrix.
%
% The blurring of an image is defined as the convolution of the image with
% a 2D box kernel. Since 2D box kernels are separable, convolution of a
% (height x width) image X with a 2D box kernel can be implemented by first
% filtering the columns of X with a 1D box kernel, and then its rows with
% the same kernel.
%
% Let Bc be the filtering matrix for the columns, and let Br be the one for
% the rows. Then X can be filtered as follows:
% Y = (Br*(Bc*X)')' = (Br * X' * Bc')' = Bc * X * Br'
%
% In vectorized form we have Y(:) = kron(Br, Bc) * X(:), hence B = kron(Br, Bc).
%
% Note that the matrices Bc and Br may be different, despite implementing
% the same kernel, as image X may not be square.
% ==== Compute the blur matrix ============================================
% Compute Bc and Br.
Bc = avgmtx(height, factor);
Br = avgmtx(width, factor);
% Compute the blur matrix B.
B = kron(Br, Bc);
end
function mtx = avgmtx(n, factor)
kernel = zeros((2 * (factor - 1)) + 1, 1);
kernel(factor:end) = 1 / factor;
diags = -(factor - 1):1:(factor - 1);
D = repmat(kernel', [n, 1]);
mtx = spdiags(D, diags, n, n);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
psnrlf.m
|
.m
|
light-field-super-resolution-master/psnrlf.m
| 1,370 |
utf_8
|
4c46dc0d7cbf0d5675f32ad1da2dabc7
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function P = psnrlf(Z1, Z2, peak, frame)
% PSNRLF computes the PSNR of the light field V1 with reference to the light field V2.
%
% INPUT:
% Z1 - the light field to evaluate,
% Z2 - the reference light field,
% peak - the maximum pixel value (e.g., 0 and 255),
% frame - the number of pixels to remove from the border.
%
% OUTPUT:
% P - a 2D matrix with P(i,j) the PSNR of the view V1{i,j}.
% =========================================================================
% Angular resolution.
vRes = size(Z1, 1);
hRes = size(Z1, 2);
P = zeros(vRes, hRes);
for s = 1:1:hRes
for t = 1:1:vRes
% Remove the border.
aux1 = Z1{t, s}((1 + frame):(end - frame), (1 + frame):(end - frame), :);
aux2 = Z2{t, s}((1 + frame):(end - frame), (1 + frame):(end - frame), :);
% Compute the PSNR.
P(t, s) = psnr(double(aux1), double(aux2), peak);
end
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
crop.m
|
.m
|
light-field-super-resolution-master/crop.m
| 2,003 |
utf_8
|
5a3dcceb9cf126f648639bfb7e1f3e9b
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function ZCR = crop(Z, vRange, hRange, yRange, xRange)
% CROP reduces the angular and/or spatial resolution of the input light
% field by cropping the number of views (angular cropping) and/or the views
% area (spatial cropping).
%
% INPUT:
% Z - the light field to be cropped.
% vRange - a two element vector with the starting and ending vertical angular cropping indexes.
% hRange - a two element vector with the starting and ending horizontal angular cropping indexes.
% yRange - a two element vector with the starting and ending vertical spatial cropping indexes.
% xRange - a two element vector with the starting and ending horizontal spatial cropping indexes.
%
% OUTPUT:
% ZCR - the cropped light field.
% ==== Auxiliary variables ================================================
% Compute the (selection) vectors for angular cropping.
vSelec = vRange(1):1:vRange(2);
hSelec = hRange(1):1:hRange(2);
% Compute the (selection) vectors for spatial cropping.
ySelec = yRange(1):1:yRange(2);
xSelec = xRange(1):1:xRange(2);
% ==== Copy the input light field =========================================
ZCR = Z;
% ==== Perform the angular cropping =======================================
if ~(isempty(vSelec) || isempty(hSelec))
ZCR = ZCR(vSelec, hSelec);
end
% ==== Perform the spatial cropping =======================================
if ~(isempty(ySelec) || isempty(xSelec))
M = size(ZCR, 1) * size(ZCR, 2);
for u = 1:1:M
ZCR{u} = ZCR{u}(ySelec, xSelec, :);
end
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
split.m
|
.m
|
light-field-super-resolution-master/split.m
| 2,303 |
utf_8
|
600c57c8231202bf27c695576ba7b8e1
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [zSub, yCoord, xCoord] = split(Z, yResSub, xResSub, overlap)
% SPLIT divides the input light field into sub light fields.
%
% INPUT:
% Z - a light field.
% yResSub - the vertical spatial resolution of a sub light field.
% xResSub - the horizontal spatial resolution of a sub light field.
% overlap - the pixel overlap between sub light fields.
%
% OUTPUT:
% zSub - the sub light fields in vectorized form.
% yCoord - the vertical spatial coordinate of the top left pixel of each sub light field.
% xCoord - the horizontal spatial coordinate of the top left pixel of each sub light field.
% =========================================================================
% Light field Z angular resolution.
vRes = size(Z, 1);
hRes = size(Z, 2);
M = vRes * hRes;
% Light field Z spatial resolution.
yRes = size(Z{1, 1}, 1);
xRes = size(Z{1, 1}, 2);
% Compute the VERTICAL extraction coordinates for each view.
yStep = yResSub - overlap;
y = [(1:yStep:(yRes - yResSub)), (yRes - yResSub + 1)];
% Compute the HORIZONTAL extraction coordinates for each view.
xStep = xResSub - overlap;
x = [(1:xStep:(xRes - xResSub)), (xRes - xResSub + 1)];
% Compute ALL the sub light field coordinates (in a view).
[X, Y] = meshgrid(x, y);
yCoord = Y(:);
xCoord = X(:);
% Compute the number of sub light fields.
subNum = length(yCoord);
% Allocate the space for the (vectorized) sub light fields.
zSub = zeros(yResSub * xResSub * M, subNum);
% Stack all the views, proceding in column major order.
stack = cell2mat( reshape(Z, [1, 1, M]) );
% Extract the sub light fields.
ptr = 1;
aux = zeros(yResSub, xResSub, M);
for k = 1:1:subNum
aux(:, :, :) = stack( ...
yCoord(k):(yCoord(k) + yResSub - 1), ...
xCoord(k):(xCoord(k) + xResSub - 1), ...
:);
zSub(:, ptr) = aux(:);
ptr = ptr + 1;
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
decimat.m
|
.m
|
light-field-super-resolution-master/decimat.m
| 1,756 |
utf_8
|
26507b373b8ab7de4aa7de056b990ae0
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [D, newHeight, newWidth] = decimat(height, width, factor)
% DECIMAT builds a matrix that permits to implement image decimation as a
% matrix/vector multiplication.
%
% INPUT:
% height - the image height.
% width - the image width.
% factor - the decimation factor (sampling rate).
%
% OUTPUT:
% B - the decimation matrix.
%
% The decimation of an (height x width) image X can be carried out on the
% rows and the columns separately.
%
% Let Dc be the decimation matrix for the columns, and let Dr be the one
% for the rows. Then X can be decimated as follows:
% Y = (Dr*(Dc*X)')' = (Dr * X' * Dc')' = Dc * X * Dr'
%
% In vectorized form we have Y(:) = kron(Dr, Dc) * X(:), hence D = kron(Dr, Dc).
% ==== Compute the decimation matrix ======================================
% Compute Dc and Dr.
Dc = decimtx1D(height, factor);
Dr = decimtx1D(width, factor);
% Compute the decimation matrix D.
D = kron(Dr, Dc);
newHeight = size(Dc, 1);
newWidth= size(Dr, 1);
end
function mtx = decimtx1D(n, factor)
height = ceil(double(n) / factor);
width = n;
rows = zeros(height, 1);
cols = zeros(height, 1);
counter = 1;
for k = 1:1:height
rows(k) = k;
cols(k) = counter;
counter = counter + factor;
end
mtx = sparse(rows, cols, ones(height, 1), height, width);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
ppm.m
|
.m
|
light-field-super-resolution-master/ppm.m
| 2,856 |
utf_8
|
bf9675b230471590d35d0289073e95cb
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [x, history] = ppm(P, q, r, beta, iters, init)
% PPM solves the following problem using the Proximal Point Method:
%
% minimize_x (0.5 * x' * P * x) + (q' * x) + r
%
% INPUT:
% P - a nxn positive semi definite matrix (double).
% q - a nx1 vector (double).
% r - a scalar (double).
% beta - the proximal constant (double).
% iters - the desired number of iterations.
% init - the initial guess for the minimizer (double), or an empty array [].
%
% OUTPUT:
% x - the computed minimizer (a nx1 vector of doubles).
% history - a structure containing the objective value, and the residual
% norm of x at each iteration.
% =========================================================================
tStart = tic;
% ==== Global constants ===================================================
% QUIET = 1 suppresses any screen output.
QUIET = 1;
% Absolute tolerance.
EPS_ABS = 1e-4;
% ==== PPM solver =========================================================
% Size of P.
n = size(P, 1);
% Allocate the solver variables.
x = zeros(n, 1);
x_old = zeros(n, 1);
% Allocate the struct history.
history.objval = zeros(iters, 1);
history.r_norm = zeros(iters, 1);
if ~QUIET
fprintf('%3s\t%10s\t%10s\n', 'iter', 'r norm', 'objective');
end
% Compute the threshold for the stopping condition.
threshold = EPS_ABS * sqrt(n);
% Precompute the matrix P + ((1/beta) * I) with I the identity matrix.
A = P + ((1 / beta) * speye(n));
for k = 1:1:iters
% Updates x.
if (k == 1) && (~isempty(init))
x(:) = init;
else
[x(:), pcgFlag] = pcg(A, (x / beta) - q);
% if (pcgFlag ~= 0)
% error('ERROR: pcg did not converge !!!\n\n');
% end
end
% Check the objective function value.
history.objval(k) = objfun(P, q, r, x);
% Compute the residual.
history.r_norm(k) = norm(x - x_old);
if ~QUIET
fprintf('%3d\t%10.4f\t%10.2f\n', k, history.r_norm(k), history.objval(k));
end
% Evaluate the stopping criterion.
if (history.r_norm(k) < threshold)
break;
end
% Save the current value of x.
x_old(:) = x;
end
if ~QUIET
tElapsed = toc(tStart);
fprintf('\n>>> ppm <<< time: %f\n', tElapsed);
end
end
function val = objfun(P, q, r, x)
val = (0.5 * x' * P * x) + (q' * x) + r;
end
|
github
|
rossimattia/light-field-super-resolution-master
|
super.m
|
.m
|
light-field-super-resolution-master/super.m
| 8,367 |
utf_8
|
06b04661004034a0a1796a4c4826521f
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [ZInit, ZHR, ZInit_L, ZHR_L] = super( ...
ZLR, ...
factor, ...
yResSubLR, xResSubLR, ...
overlapLR, ...
patRad, intSigma, dispMax, ...
lambda0, lambda1, lambda2, ...
innerCycles, outerCycles, ...
warpMode, ...
guessFlag, ...
poolSize, ...
alpha ...
)
% SUPER super resolves the input light field. It divides the Low Resolution
% input light field into different sub light fields and super-resolves their
% luminances via GBSUPER. The super-resolved luminance of the different
% sub light fields are merged to produce the lumianance of the complete
% super-resolved light field. The chrominances of the input Low Resolution
% light field are simpy up-sampled via bilinear interpolation.
%
% INPUT:
% ZLR - the low resolution light field to super-resolve (double [0,1]).
% factor - the super-resolution factor (integer).
% yResSubLR - the vertical spatial resolution of a Low Resolution sub light field.
% xResSubLR - the horizontal spatial resolution of a Low Resolution sub light field.
% overlap - the pixel overlap between sub light fields.
% patRad - the size of the (patRad x patRad) patch used in the graph construction.
% intSigma - the standard deviation value used in the graph construction.
% dispMax - the maximum assumed disparity value.
% lambda0 - the weight of the data fidelity term.
% lambda1 - the weight of the warping term.
% lambda2 - the weight of the graph-based regularizer.
% innerCycles - the maximum number of iteration to be performed by the solver.
% outerCycles - the number of iterations of the GB super-resolution algorithm.
% warpMode - 0 for the Direct warping matrix construction, and 1 for the
% SQuare-constraint matrix construction.
% guessFlag - 0 to initialize the solver with a zero light field, and 1 to
% initialize the solver with ZInit.
% poolSize - the number of threads activated by PARFOR.
% alpha - the Tukey window parameter (the window is used in the merging phase).
%
% OUTPUT:
% ZInit - the RGB bilinear up-sampled version of ZLR (uint8 [0,255]).
% ZHR - the RGB Graph-Based super-resolved version of ZLR (uint8 [0,255]).
% ZInit_L - the luminance of ZInit (double [0,1]).
% ZHR_L - the luminance of ZHR (double [0,1]).
%
% Note that ZInit_L and ZHR_L are the light field luminances obtained from
% the up-sampling and super-resolution of ZLR, respectively. They are NOT
% extracted from ZInit and ZHR, as these two are in the uint8 data type,
% therefore they have undergone a quantization step.
%
% Note that this function assumes that the views in Z have dimensions which
% are multiple of the super-resolution factor.
% ==== Light field dimensions =============================================
% Angular resolution.
vRes = size(ZLR, 1);
hRes = size(ZLR, 2);
M = vRes * hRes;
% Spatial resolution (LR).
yResLR = size(ZLR{1, 1}, 1);
xResLR = size(ZLR{1, 1}, 2);
% Spatial resolution (HR).
yResHR = factor * yResLR;
xResHR = factor * xResLR;
% ==== RGB to LC1C2 =======================================================
% Turn ZLR from RGB to LC1C2.
[aux, lmin, lmax, c1min, c1max, c2min, c2max] = lc1c2(ZLR, 'forward');
% Separate the channels L, C1, and C2 ...
aux = reshape(lf2col(aux), [], 3);
ZLR_L = col2lf( ...
aux(:, 1), ...
vRes, hRes, ...
yResLR, xResLR, 1 ...
);
ZLR_C1 = col2lf( ...
aux(:, 2), ...
vRes, hRes, ...
yResLR, xResLR, 1 ...
);
ZLR_C2 = col2lf( ...
aux(:, 3), ...
vRes, hRes, ...
yResLR, xResLR, 1 ...
);
% ==== Compute an initial estimate of the HR light field ==================
% Perform interpolation of each view, separately.
aux = zeros(yResHR, xResHR);
ZInit_L = cell(vRes, hRes);
ZInit_C1 = cell(vRes, hRes);
ZInit_C2 = cell(vRes, hRes);
for u = 1:1:M
aux(:, :) = upsample(ZLR_L{u}, factor, 'linear');
aux(aux < lmin) = lmin;
aux(aux > lmax) = lmax;
ZInit_L{u} = aux;
aux(:, :) = upsample(ZLR_C1{u}, factor, 'linear');
aux(aux < c1min) = c1min;
aux(aux > c1max) = c1max;
ZInit_C1{u} = aux;
aux(:, :) = upsample(ZLR_C2{u}, factor, 'linear');
aux(aux < c2min) = c2min;
aux(aux > c2max) = c2max;
ZInit_C2{u} = aux;
end
% ==== Split ZLR_L into sub light fields ==================================
% Sub-light-field spatial resolution (HR).
yResSubHR = factor * yResSubLR;
xResSubHR = factor * xResSubLR;
overlapHR = factor * overlapLR;
% Split ZLR_L.
[zSubLR, ~, ~] = split(ZLR_L, yResSubLR, xResSubLR, overlapLR);
% Split the initial estimate ZInit_L.
[zSubInit, yCoord, xCoord] = ...
split(ZInit_L, yResSubHR, xResSubHR, overlapHR);
% Number of sub-light-fields.
subNum = size(zSubLR, 2);
fprintf('Number of SUB-LIGHT-FIELDS: %d\n', subNum);
% ==== Sub-light-field blur and decimation matrices =======================
% Blur.
auxB = blurmat(yResSubHR, xResSubHR, factor);
B = kron(speye(M, M), auxB);
% Decimation.
auxD = decimat(yResSubHR, xResSubHR, factor);
D = kron(speye(M, M), auxD);
% ==== Super-resolve ZLR_L ================================================
% Super-resolve each LR sub-light-field, separately.
aux = cell(subNum, 1);
if poolSize > 1
% PARALLEL COMPUTING ...
% Initialize the pool.
p = parpool(poolSize);
parfor k = 1:1:subNum
aux{k} = ...
gbsuper( ...
col2lf(zSubLR(:, k), vRes, hRes, yResSubLR, xResSubLR, 1), ...
col2lf(zSubInit(:, k), vRes, hRes, yResSubHR, xResSubHR, 1), ...
B, D, ...
patRad, intSigma, dispMax, ...
lambda0, lambda1, lambda2, ...
lmin, lmax, ...
innerCycles, outerCycles, ...
warpMode, ...
guessFlag);
end
% Terminate the pool.
delete(p);
else
% SEQUENTIAL COMPUTING ...
for k = 1:1:subNum
aux{k} = ...
gbsuper( ...
col2lf(zSubLR(:, k), vRes, hRes, yResSubLR, xResSubLR, 1), ...
col2lf(zSubInit(:, k), vRes, hRes, yResSubHR, xResSubHR, 1), ...
B, D, ...
patRad, intSigma, dispMax, ...
lambda0, lambda1, lambda2, ...
lmin, lmax, ...
innerCycles, outerCycles, ...
warpMode, ...
guessFlag);
end
end
% Vectorize all the super-resolved sub-light-fields.
zSubHR = zeros(size(zSubInit, 1), subNum);
for k = 1:1:subNum
zSubHR(:, k) = lf2col(aux{k});
end
% Merge the super-resolved sub-light-fields.
ZHR_L = merge( ...
zSubHR, ...
vRes, hRes, ...
yResHR, xResHR, ...
yResSubHR, xResSubHR, ...
yCoord, xCoord, ...
alpha ...
);
% ==== Upsamples ZLR_C1 and ZLR_C2 ====================================
% Perform interpolation of each view, separately.
aux = zeros(yResHR, xResHR);
ZHR_C1 = cell(vRes, hRes);
ZHR_C2 = cell(vRes, hRes);
for u = 1:1:M
aux(:, :) = upsample(ZLR_C1{u}, factor, 'cubic');
aux(aux < c1min) = c1min;
aux(aux > c1max) = c1max;
ZHR_C1{u} = aux;
aux(:, :) = upsample(ZLR_C2{u}, factor, 'cubic');
aux(aux < c2min) = c2min;
aux(aux > c2max) = c2max;
ZHR_C2{u} = aux;
end
% ==== LC1C2 to RGB =======================================================
% Process ZInit ...
% Organize the channels L, C1, and C2 of ZInit into a single light field.
ZInit = col2lf( ...
cat(1, lf2col(ZInit_L), lf2col(ZInit_C1), lf2col(ZInit_C2)), ...
vRes, hRes, ...
yResHR, xResHR, 3 ...
);
% Converts ZInit from LC1C2 to RGB.
ZInit = lc1c2(ZInit, 'backward');
% Process ZHR ...
% Organize channel L, C1, and C2 of ZHR into a single light field.
ZHR = col2lf( ...
cat(1, lf2col(ZHR_L), lf2col(ZHR_C1), lf2col(ZHR_C2)), ...
vRes, hRes, ...
yResHR, xResHR, 3 ...
);
% Convert ZHR from LC1C2 to RGB.
ZHR = lc1c2(ZHR, 'backward');
end
|
github
|
rossimattia/light-field-super-resolution-master
|
lf2grid.m
|
.m
|
light-field-super-resolution-master/lf2grid.m
| 1,186 |
utf_8
|
8df882ce23e800d6d040f671ccfde7ad
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [] = lf2grid(Z, path)
% LF2GRID receives a light field and saves it a set of PNG images named
% according to the reference system adopted in the HCI light field dataset.
%
% INPUT:
% Z - a light field.
% path - the destination path.
% =========================================================================
% Angular resolution.
vRes = size(Z, 1);
hRes = size(Z, 2);
% Create the output folder (in the case that it does not exist yet).
mkdir(path);
% Write each view to a PNG file, according to the HCI dataset convention.
for s = 1:1:hRes
for t = 1:1:vRes
name = sprintf([path, 'out_%02d_%02d.png'], s - 1, t - 1);
imwrite(Z{vRes - t + 1, hRes - s + 1}, name);
end
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
col2lf.m
|
.m
|
light-field-super-resolution-master/col2lf.m
| 1,406 |
utf_8
|
2effc6971bcd2d6e35de61e43fe313a0
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function Z = col2lf(z, vRes, hRes, yRes, xRes, channels)
% COL2LF reverts the operation performed by function LF2COL.
%
% INPUT:
% z - the vectorized light field.
% vRes - the light field vertical angular resolution.
% hRes - the light field horizontal angular resolution.
% yRes - the light field vertical spatial resolution.
% xRes - the light field horizontal spatial resolution.
% channels - the number of channels in each view.
%
% OUTPUT:
% Z - the input light field stored as a (vRes x hRes) cell array of
% (yRes x xRes x channels) views.
% =========================================================================
% Number of views.
M = vRes * hRes;
% Perform the reshaping.
aux = reshape(z, yRes, (length(z) / channels) / yRes, channels);
if (channels > 1)
aux = mat2cell(aux, yRes, ones(M, 1) * xRes, channels);
else
aux = mat2cell(aux, yRes, ones(M, 1) * xRes);
end
Z = reshape(aux, vRes, hRes);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
gbsuper.m
|
.m
|
light-field-super-resolution-master/gbsuper.m
| 5,376 |
utf_8
|
d3dd7a1f2be7dc9c83473e293bb4b220
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function ZEst = gbsuper( ...
ZLR, ZInit, ...
B, D, ...
patRad, intSigma, dispMax, ...
lambda0, lambda1, lambda2, ...
lb, ub, ...
innerCycles, outerCycles, ...
warpMode, ...
guessFlag)
% GBSUPER super-resolves the input low resolution light field.
%
% INPUT:
% ZLR - the low resolution light field to super-resolve (double [0,1]).
% ZInit - an initial guess on the high resolution light field (double [0,1]).
% B - the blur matrix.
% D - the decimation matrix.
% patRad - the size of the (patRad x patRad) patch used in the graph construction.
% intSigma - the standard deviation value used in the graph construction.
% dispMax - the maximum assumed disparity value.
% lambda0 - the weight of the data fidelity term.
% lambda1 - the weight of the warping term.
% lambda2 - the weight of the graph-based regularizer.
% lb - the pixel value lower bound used in the solver.
% ub - the pixel value upper bound used in the solver.
% innerCycles - the maximum number of iteration to be performed by the solver.
% outerCycles - the number of iterations of the GB super-resolution algorithm.
% warpMode - 0 for the Direct warping matrix construction, and 1 for
% the SQuare-constraint matrix construction.
% guessFlag - 0 to initialized the solver with a zero light field, and 1 to
% initialize the solver with ZInit.
%
% OUTPUT:
% ZEst - the super resolved light field (double [0,1]).
% ==== Solver's fixed parameters ==========================================
beta = 1.0;
% ==== Sub light field dimensions =========================================
% Angular resolution.
vRes = size(ZInit, 1);
hRes = size(ZInit, 2);
M = vRes * hRes;
% Spatial resolution (HR).
yRes = size(ZInit{1, 1}, 1);
xRes = size(ZInit{1, 1}, 2);
N = yRes * xRes;
% ==== Perform super resolution ===========================================
% Precompute the fixed problem terms.
zLR = lf2col(ZLR);
% Start the minimization.
zHist = zeros(N * M, outerCycles);
ZGuess = ZInit;
for k = 1:1:outerCycles
fprintf('ITER. %d\n', k);
% Compute the inter-views graph and the warping matrices.
fprintf('Computing inter-views graph, and warping ...\n');
[WA, WB] = intergraph(ZGuess, patRad, intSigma, dispMax);
% Make WA symmetric.
E = spones(WA);
mask = and(E, E');
WA = WA .* mask;
% Consider switching to "or".
% If the inter-views term is active, then compute L ...
if (lambda2 > 0)
L = stdlap(WA);
% otherwise, set L to zero.
else
L = sparse(M * N, M * N);
end
% Compute the objective function terms ...
A = D * B;
At = A';
AA = At * A;
sumHAFHAF = sparse(M * N, M * N);
sumHAFH = sparse(M * N, size(D, 1));
for u = 1:1:M
colSta = ((u - 1) * N) + 1;
colEnd = ((u - 1) * N) + N;
% Compute F, the portion of WB (or WA) responsible for the warping
% of the view Z{u} to all its (NON DIAGONAL) neighboring views.
switch warpMode
case 'SQ'
F = WB;
case 'DR'
F = WA;
otherwise
error('Invalid warping mode !!!\n\n');
end
F(:, 1:(colSta - 1)) = 0;
F(:, (colEnd + 1):end) = 0;
% Normalize F.
auxDiag = sum(F, 2);
mask = (auxDiag ~= 0);
auxDiag(mask) = 1 ./ auxDiag(mask); % warning: division by 0 leads to Inf values.
F = spdiags(auxDiag, 0, M * N, M * N) * F;
Ft = F';
H = warpmask(F, B, D, vRes, hRes);
H = blkdiag(H{:});
HH = H' * H;
sumHAFHAF = sumHAFHAF + (Ft * At * HH * A * F);
sumHAFH = sumHAFH + (Ft * At * HH);
end
P = 2 * (...
(lambda0 * AA) ...
+ (lambda1 * sumHAFHAF) ...
+ (lambda2 * L) ...
);
q = (- 2) * ( ...
(lambda0 * At) ...
+ (lambda1 * sumHAFH) ...
) * zLR;
r = 0;
% If guessFlag == true, initialize the solver with ZInit.
if guessFlag
zGuess = lf2col(ZGuess);
else
zGuess = [];
end
% Call the solver.
fprintf('Minimizing the objective function ...\n');
[aux, ~] = ppm(P, q, r, beta, innerCycles, zGuess);
% Project the estimated light field into [lb,ub]^(N*M).
aux(aux < lb) = lb;
aux(aux > ub) = ub;
% Save the estimated light field.
zHist(:, k) = aux;
% Update the estimate for the next iteration.
ZGuess = col2lf(zHist(:, k), vRes, hRes, yRes, xRes, 1);
end
% Arrange the light field in a (vRes x hRes) cell array.
ZEst = col2lf(zHist(:, end), vRes, hRes, yRes, xRes, 1);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
upsample.m
|
.m
|
light-field-super-resolution-master/upsample.m
| 1,929 |
utf_8
|
be135aad06ea8c8c8203a8c063d9879a
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function B = upsample(A, factor, method)
% UPSAMPLE up-samples the input image A by the value factor.
% The interpolation assumes that each input pixel has been obtained as the
% average of a (factor x factor) patch of pixels.
%
% INPUT:
% A - a gray scale image (double [0,1]).
% factor - the upsampling factor (integer),
% method - a string specifing the interpolation method to be used.
%
% OUTPUT:
% B - the up-sampled image.
% ==== Check input parameters =============================================
if (round(factor) - factor) ~= 0
error('The upsampling factor must be integer !!!\n\n');
end
% ==== Dimensions =========================================================
% Input image resolution.
yResLR = size(A, 1);
xResLR = size(A, 2);
% Output image resolution.
yResHR = yResLR * factor;
xResHR = xResLR * factor;
% ==== Perform the interpolation ==========================================
% Compute the query coordinates.
[Xq, Yq] = meshgrid(1:1:xResHR, 1:1:yResHR);
% Compute the coordinates of the available samples.
firstX = (1 + factor) / 2;
firstY = firstX;
lastX = firstX + (factor * (xResLR - 1));
lastY = firstY + (factor * (yResLR - 1));
[X, Y] = meshgrid( ...
(firstX - factor):factor:(lastX + factor), ...
(firstY - factor):factor:(lastY + factor) ...
);
% Create a 1 pixel frame around A.
aux = padarray(A, [1, 1], 'symmetric', 'both');
% Perform the interpolation.
B = interp2(X, Y, aux, Xq, Yq, method, 0);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
merge.m
|
.m
|
light-field-super-resolution-master/merge.m
| 3,178 |
utf_8
|
0992c1b1b7d2fd7580d346eea694798d
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function Z = merge(zSub, vRes, hRes, yRes, xRes, yResSub, xResSub, yCoord, xCoord, alpha)
% MERGE stiches all the input sub light fields into one single light field.
% Each sub light field view is weighted with a Tukey window and multiple
% estimates of the same pixel are average.
%
% INPUT:
% zSub - sub light fields in vectorized form.
% vRes - the vertical angular resolution of the full light field.
% hRes - the horizontal angular resolution of the full light field.
% yRes - the vertical spatial resolution of the full light field.
% xRes - the horizontal spatial resolution of the full light field.
% yResSub - the vertical spatial resolution of a sub light field.
% xResSub - the horizontal spatial resolution of a sub light field.
% yCoord - the vertical spatial coordinates of the sub light fields.
% xCoord - the horizontal spatial coordinates of the sub light fields.
% alpha - the Tukey window parameter.
%
% OUTPUT:
% Z - the full light field with spatial resolution (yRes x xRes).
% =========================================================================
% Number of views.
M = vRes * hRes;
% Number of sub light fields.
subNum = size(zSub, 2);
% Allocate a view stack and a normalization one, as some pixels may have
% multiple estimates due to the overlapping.
stack = zeros(yRes, xRes, M);
wei = zeros(yRes, xRes, M);
% Build the merging window.
% We build a window which is one pixel larger on each side, and then we
% crop it in order to have a (yRes x xRes) window with no zeros at the borders.
win = tukeywin(yResSub + 2, alpha) * tukeywin(xResSub + 2, alpha)';
win = win(2:(end - 1), 2:(end - 1));
% Filter each sub light fields with the merging window. This will limit
% the border effects when merging the different sub light fields.
aux = reshape(zSub, yResSub, xResSub, []);
aux = bsxfun(@times, aux, win);
% Merge the sub light fields, stored as a stack of view.
counter = 0;
for k = 1:1:subNum
stack( ...
yCoord(k):(yCoord(k) + yResSub - 1), ...
xCoord(k):(xCoord(k) + xResSub - 1), ...
:) = stack( ...
yCoord(k):(yCoord(k) + yResSub - 1), ...
xCoord(k):(xCoord(k) + xResSub - 1), ...
:) + aux(:, :, (counter + 1):(counter + M));
wei( ...
yCoord(k):(yCoord(k) + yResSub - 1), ...
xCoord(k):(xCoord(k) + xResSub - 1), ...
:) = ...
bsxfun( ...
@plus, ...
wei(yCoord(k):(yCoord(k) + yResSub - 1), xCoord(k):(xCoord(k) + xResSub - 1), :), ...
win);
counter = counter + M;
end
% Perform the normalization.
stack(:, :, :) = stack ./ wei;
% Arrange the light field in a "vRes x hRes" cell array.
Z = col2lf(stack(:), vRes, hRes, yRes, xRes, 1);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
plotlf.m
|
.m
|
light-field-super-resolution-master/plotlf.m
| 4,831 |
utf_8
|
3bc68461c55592b205c0193ab55ff25f
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [] = plotlf(varargin)
% PLOTLF arranges the input light field view in a single image and plots it.
% In addition, it can plot (over the light field) the weights of the edges
% from a given pixel (t,s,y,x) to its neighbors.
%
% INPUT:
% varargin{1} - a light field, either gray scale or RGB.
% varargin{2} - the maximum intensity value in the light field.
% varargin{3} - an adjacency matrix of a graph on the light field.
% varargin{4} - the vertical angular coordinate of the pixel of interest.
% varargin{5} - the horizontal angular coordinate of the pixel of interest.
% varargin{6} - the vertical spatial coordinate of the pixel of interest.
% varargin{7} - the horizontal spatial coordinate of the pixel of interest.
%
% The input light field can be in any format (e.g., double, uint8, uint16).
% It will be converted in double [0,1] and plotted.
% ==== Constants ==========================================================
LEVELS = 2000;
SPACE = 1;
% ==== Check the number of input arguments ================================
if (nargin ~= 2) && (nargin ~= 7)
error('Wrong input argument number !!!\n\n');
end
% ==== Read the input light field =========================================
% Read the light field and the peak value.
Z = varargin{1};
peak = varargin{2};
% Angular resolution.
vRes = size(Z, 1);
hRes = size(Z, 2);
% Spatial resolution.
yRes = size(Z{1, 1}, 1);
xRes = size(Z{1, 1}, 2);
N = yRes * xRes;
% Channels number (grays scale or RGB).
channels = size(Z{1, 1}, 3);
% ==== Processe the light field ===========================================
% Scale Z to [0,1] and extend it to RGB (if Z is gray scale).
Zrgb = cell(vRes, hRes);
if (channels == 1) || (channels == 3)
Zrgb(:, :, :) = col2lf( ...
repmat(double(lf2col(Z)) / peak, [4 - channels, 1]), ...
vRes, hRes, ...
yRes, xRes, 3 ...
);
else
error('Input light field in neither gray scale nor RGB !!!\n\m');
end
% ==== Processe the adjacency matrix ======================================
% If an adjacency matrix is provided too ...
if (nargin > 2)
% Read the adjacency matrix.
W = varargin{3};
% Read the nodes whose connections we want to plot.
t = varargin{4};
s = varargin{5};
y = varargin{6};
x = varargin{7};
% Compute the node linear index in the vectorised light field.
k = ...
N * ( sub2ind([vRes, hRes], t, s) - 1 ) + ...
sub2ind([yRes, xRes], y, x);
% Extract the "k"-th row of "W".
wei = full(W(k, :))';
% Define a colormap.
map = zeros(LEVELS, 3);
map(:, 1) = linspace(0, 1, LEVELS);
% Turn wei values into colormap indexes.
auxMax = max(wei);
if auxMax > 0
wei = round( ...
((LEVELS - 1) * (wei ./ auxMax)) + 1 ...
);
else
% Avoid division by zero in the case auxMax is zero.
wei = ones(length(wei));
end
% Convert wei from indexes of map rows to RGB values.
wei = ind2rgb(wei, map);
% Arrange wei RGB values into an RGB light field.
Wrgb = col2lf(wei(:), vRes, hRes, yRes, xRes, 3);
% Merges Zrgb and Wrgb ...
% Vectorizes Zrgb and Wrgb.
auxZ = lf2col(Zrgb);
auxW = lf2col(Wrgb);
% Detect those pixels that are connected (i.e., NON zero weight) to pixel k.
aux = reshape(auxW, [], 3);
aux = sum(aux, 2);
mask = (aux > 0);
% In Zrgb, replace the connected pixels with the corresponding weights of "Wrgb".
mask = repmat(mask, [3, 1]); % mask extension to the 3 color channels.
auxZ(mask) = auxW(mask);
% Rearrange auxZ as a light field.
Zrgb(:, :) = col2lf(auxZ, vRes, hRes, yRes, xRes, 3);
end
% ==== Stitche together all the views in Zrgb ============================
% Allocate the background.
I = zeros(vRes * (yRes + SPACE) + SPACE, hRes * (xRes + SPACE) + SPACE, 3);
% Place the views on the background I.
vOff = 1;
hOff = 1;
for s = 1:1:hRes
for t = 1:1:vRes
I((vOff + 1):(vOff + yRes), (hOff + 1):(hOff + xRes), :) = Zrgb{t, s};
vOff = vOff + yRes + SPACE;
end
vOff = SPACE;
hOff = hOff + xRes + SPACE;
end
% ==== Plot the stitched viwes ============================================
imshow(I);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
stdlap.m
|
.m
|
light-field-super-resolution-master/stdlap.m
| 999 |
utf_8
|
ddea561bef99c4f03a31a1c0b01c8f47
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function L = stdlap(W)
% STDLAP computes the combinatorial Laplacian associated to the input similarity matrix.
% The Laplacian is defined as L = D-W, with D the graph degree matrix.
% D is diagonal with D(i,i) equal to sum(W(i, :)).
%
% INPUT:
% W - a similarity matrix.
%
% OUTPUT:
% L - the Laplacian matrix.
% =========================================================================
% Compute the degree matrix "D".
diagonal = sum(W, 2);
n = length(diagonal);
D = spdiags(diagonal, 0, n, n);
% Compute the Laplacian.
L = D - W;
end
|
github
|
rossimattia/light-field-super-resolution-master
|
intergraph.m
|
.m
|
light-field-super-resolution-master/intergraph.m
| 12,278 |
utf_8
|
f784f75d4f1004b7a92cb4517939f219
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [WA, WB] = intergraph(V, patRad, intSigma, dispMax)
% INTERGRAPH computes the graph adjacency matrix used in the graph-based
% regularizer and a graph adjacency matrix containing the square-constraint
% warping matrices as sub matrices.
%
% INPUT:
% V - a light field.
% patRad - the size of the (patRad x patRad) patch to be used in both the
% graph and warping matrices construction.
% intSigma - the standard deviation value used in the graph construction.
% dispMax - the maximum assumed disparity value.
%
% OUTPUT:
% WA - the graph adjacency matrix associated to the regularizer.
% WB - the graph adjacency matrix associated to the square-constraint warping matrices.
%
% Neither WA nor WB is made symmetric.
% ==== Light field parameters =============================================
% Angular resolution.
vRes = size(V, 1);
hRes = size(V, 2);
M = vRes * hRes;
% Spatial resolution.
yRes = size(V{1, 1}, 1);
xRes = size(V{1, 1}, 2);
N = yRes * xRes;
% ==== Compute the weights ================================================
% We process the views in V sequentially. We center a 3x3 window on the
% central view, and we compute the weights between the central view and the
% other 8 views in the window (the neighboring views).
% Compute the coordinates for the views in the window, with the current
% view (the one that we are processing) in the middle, at (0,0).
[S, T] = meshgrid((-1):1:1);
S = S(:);
T = T(:);
% Remove the coordinate (0,0).
mask = ((S == 0) & (T == 0));
S = S(~mask);
T = T(~mask);
% In the graph WA, each pixel in a view will have at most 2 connections to each
% one of the 4 horizontal/vertical neighboring views, and at most 4 connections
% to each one of the 4 diagonal neighboring views. At most 24 connections in total.
weiA = zeros(N * 24 * M, 3);
counterA = 0;
% In graph WB, each pixel in a view will have at most 2 adjacent connections
% to the 4 horizontal/vertical neighboring views, and the connections lie on
% a (virtual) square, ideally defined by disparity. At most 8 connections in total.
weiB = zeros(N * 8 * M, 3);
counterB = 0;
% Note that WB (like WA) is tiled with NxN matrices WBij that record the
% connections between a pixel in view i (the rows of WBij) and a pixel in
% view j (the columns of Wij). Normalizing the rows of matrix WBij, makes
% it a warping matrix from view j to view i.
% The total number of integer disparities.
dispNum = (2 * dispMax) + 1;
% dispScore(i,j) will contain the sum of the weights from the i-th pixel
% of V{t,s} to the pixels of the neighboring views in the square associated
% to disparity j.
dispScore = zeros(N, dispNum);
% dispScoreCounter(i,j) stores the number of weights that contributed to
% dispScore(i,j), for normalization purposes.
dispScoreCounter = zeros(N, dispNum);
% Auxiliary linear array.
auxLin = (1:1:N)';
% Start computing WA and WB ...
for u = 1:1:M
% The number of neighboring views.
neigNum = length(S);
% Initialize the cell array for the weights storage.
% >>> Consider initializing each cell with a fixed size vector, and a counter !!!
neigWei = cell(neigNum, 1);
% Compute the coordinates of the view we are processing.
[t, s] = ind2sub([vRes, hRes], u);
% Compute WA connections from V{t,s} to its neighborhood, and the
% square-constraint disparity ranges for the pixels in V{t,s}.
for k = 1:1:neigNum
% We want to compare views V{t,s} and V{tp,sp}.
tp = t + T(k);
sp = s + S(k);
% Note that (tp,sp) cannot be (t,s), cause the pair (T(k),S(k))
% equal to (0,0) has been removed.
% If (tp,sp) is a valid coordinate, then ...
if (tp >= 1) && (tp <= vRes) && (sp >= 1) && (sp <= hRes)
% Compute the linear coordinate of (tp,sp).
up = sub2ind([vRes, hRes], tp, sp);
% If V{tp,sp} is NOT a DIAGONAL neighboring view, then ...
if ((tp == t) || (sp == s))
% Compute the searching window: a (1 x dispNum) window
% for horizontal neighboring views, and (dispNum x 1) for
% vertical ones.
offset.X = (- sign(S(k))) * ((- dispMax):1:dispMax)';
offset.Y = (- sign(T(k))) * ((- dispMax):1:dispMax)';
% Note that a pixel of V{t,s} has a disparity d with reference
% to the left view, but -d with reference to the right one.
% Multiplication by -sign(S(k)) and -sign(T(k)) is made
% necessary by this fact.
% In WA each pixel has (at most) 2 connections to each
% horizontal/vertical neighboring views.
cntNum = 2;
% otherwise ...
else
% Create a mask to select diagonals -1, 0, and 1.
% mask = triu(ones(dispNum), -1) - triu(ones(dispNum), 2);
% mask = logical(mask);
mask = (ones(dispNum) ~= 0);
% Compute the searching window: a diagonal window with the
% shape defined by "mask".
[X, Y] = meshgrid((- dispMax):1:dispMax);
X = X(:);
Y = Y(:);
offset.X = (- sign(S(k))) * X(mask(:));
offset.Y = (- sign(T(k))) * Y(mask(:));
% In WA each pixel has 4 connections to each diagonal
% neighboring view.
cntNum = 4;
end
% Compute the weights between the two views.
neigWei{k} = nlm(V{t, s}, V{tp, sp}, patRad, intSigma, offset);
% Extract the cntNum best matches for each pixel in V{t,s} ...
auxMax = reshape(neigWei{k}(:, 3), N, []);
for z = 1:1:cntNum
% Find the best (highest weight) connection for each pixel.
[~, idx] = max(auxMax, [], 2);
% Set to zero the found connections, in order to make them
% no longer valid for selection at the next iteration.
auxMax(sub2ind(size(auxMax), auxLin, idx)) = 0;
% Extract the best connection for each pixel.
auxWei = ...
neigWei{k}( ...
((idx - 1) * N) + auxLin, ...
: ...
);
% Detect the non valid connections. These may be connections
% to pixels outside the view support, or connections already
% selected in a previous iteration.
mask = (auxWei(:, 3) ~= 0);
maskNum = sum(mask);
% Store the best (and valid) connections in weiA.
weiA((counterA + 1):(counterA + maskNum), :) = ...
cat(2, ...
((u - 1) * N) + auxWei(mask, 1), ...
((up - 1) * N) + auxWei(mask, 2), ...
auxWei(mask, 3) ...
);
counterA = counterA + maskNum;
end
% If V{tp,sp} is NOT a DIAGONAL neighboring view, then ...
if ((tp == t) || (sp == s))
% Update the square-constraint scores ...
auxWei = reshape(neigWei{k}(:, 3), N, []);
mask = (auxWei ~= 0);
dispScore(mask) = dispScore(mask) + auxWei(mask);
dispScoreCounter(mask) = dispScoreCounter(mask) + 1;
end
end
end
% Normalize the square-constraint scores.
mask = (dispScoreCounter ~= 0);
dispScore(mask) = dispScore(mask) ./ dispScoreCounter(mask);
% Compute the square-constraint disparity range at each pixel.
[idx1, idx2] = sqconstr(dispScore);
% Resets dispScore and dispScoreCounter, for the view V{t,s} to
% process at the next iteration.
dispScore = dispScore * 0;
dispScoreCounter = dispScoreCounter * 0;
% Compute the warping matrix from V{t,s} to each view in its neighborhood ...
for k = 1:1:neigNum
% We want to build the warping matrix from V{tp,sp} to V{t,s}.
tp = t + T(k);
sp = s + S(k);
% If view (tp,sp) is valid (hence neigWei{k} is not empty) and it
% is NOT a DIAGONAL view, then ...
if (~isempty(neigWei{k})) && ((tp == t) || (sp == s))
% Compute the linear coordinate of (tp,sp).
up = sub2ind([vRes, hRes], tp, sp);
% Extract the weights associated to idx1 for each pixel.
aux1 = neigWei{k}( ...
((idx1 - 1) * N) + auxLin, ...
: ...
);
% Extract the weights associated to idx2 for each pixel.
aux2 = neigWei{k}( ...
((idx2 - 1) * N) + auxLin, ...
: ...
);
% Normalize the (at most) 2 weights associated to each pixel.
% auxNorm = (aux1(:, 3) + aux2(:, 3));
% mask = (auxNorm ~= 0);
% aux1(mask, 3) = aux1(mask, 3) ./ auxNorm(mask);
% aux2(mask, 3) = aux2(mask, 3) ./ auxNorm(mask);
% Detect the non zero weights.
mask1 = (aux1(:, 3) ~= 0);
mask2 = (aux2(:, 3) ~= 0);
% Compute the number of nonzero weights for each pixel.
mask1Num = sum(mask1);
mask2Num = sum(mask2);
% Store the non zero weigths associated to idx1.
weiB((counterB + 1):(counterB + mask1Num), :) = ...
cat(2, ...
((u - 1) * N) + aux1(mask1, 1), ...
((up - 1) * N) + aux1(mask1, 2), ...
aux1(mask1, 3) ...
);
counterB = counterB + mask1Num;
% Store the non-zero weights associated to idx2.
weiB((counterB + 1):(counterB + mask2Num), :) = ...
cat(2, ...
((u - 1) * N) + aux2(mask2, 1), ...
((up - 1) * N) + aux2(mask2, 2), ...
aux2(mask2, 3) ...
);
counterB = counterB + mask2Num;
end
end
end
% Remove empty cells.
weiA(counterA:end, :) = [];
weiB(counterB:end, :) = [];
% Build WA.
WA = sparse( ...
weiA(:, 1), ...
weiA(:, 2), ...
weiA(:, 3), ...
M * N, M * N ...
);
% Build WB.
WB = sparse( ...
weiB(:, 1), ...
weiB(:, 2), ...
weiB(:, 3), ...
M * N, M * N ...
);
end
function [idx1, idx2] = sqconstr(dispScore)
dispNum = size(dispScore, 2);
% dispMax = (dispNum - 1) / 2;
[~, idx1] = max(dispScore, [], 2);
% disp1 = idx1 - (dispMax + 1);
idxLeft = max(1, idx1 - 1);
idxRight = min(dispNum, idx1 + 1);
maskLeft = (idxLeft == idx1);
maskRight = (idxRight == idx1);
auxLin = (1:1:length(idx1))';
left = sub2ind(size(dispScore), auxLin, idxLeft);
right = sub2ind(size(dispScore), auxLin, idxRight);
diff = dispScore(left) - dispScore(right);
mask = (diff > 0);
idx2 = zeros(size(idx1));
idx2(mask) = idxLeft(mask);
idx2(~mask) = idxRight(~mask);
idx2(maskLeft) = idxRight(maskLeft);
idx2(maskRight) = idxLeft(maskRight);
% disp2 = zeros(size(disp1));
% disp2(mask) = idxLeft(mask) - (dispMax + 1);
% disp2(~mask) = idxRight(mask) - (dispMax + 1);
% disp2(maskLeft) = idxRight(maskLeft) - (dispMax + 1);
% disp2(maskRight) = idxLeft(maskRight) - (dispMax + 1);
end
|
github
|
rossimattia/light-field-super-resolution-master
|
high2low.m
|
.m
|
light-field-super-resolution-master/high2low.m
| 3,181 |
utf_8
|
490ef4877ae6c00fe162f4635a9ebf22
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function [ZLR, ZHR] = high2low(Z, factor, sigmaNoise)
% HIGH2LOW down-samples the light field views in Z by factor and adds
% Gaussian random noise with standard deviation sigmaNoise.
%
% INPUT:
% Z - the light field to down-sample.
% factor - the down-sampling factor.
% sigmaNoise - the Gaussian noise standard deviation.
%
% OUTPUT:
% ZLR - the low resolution light field.
% ZHR - the high resolution light field cropped such that its spatial
% dimensions are multiple of the down-sampling factor.
%
% The output low resolution light field is to be considered the low resolution
% version of the OUTPUT high resolution light field, and NOT of the INPUT
% one, as only the output high resolution light field is properly cropped.
% ==== Check the input type ===============================================
if ~isa(lf2col(Z), 'uint8')
error('Input light field must have uint8 views !!!\n\n');
end
% ==== Ligth field parameters =============================================
% Angular resolution.
vRes = size(Z, 1);
hRes = size(Z, 2);
% Spatial resolution.
yRes = size(Z{1, 1}, 1);
xRes = size(Z{1, 1}, 2);
% Channels number (gray scale or RGB).
channels = size(Z{1, 1}, 3);
% ==== Crop Z =============================================================
% Each view of Z is cropped at the right and bottom sides, such that their
% dimensions are multiples of factor.
% Compute the LR dimensions of the views.
yResLR = floor(yRes / factor);
xResLR = floor(xRes / factor);
% New spatial resolution.
yResHR = factor * yResLR;
xResHR = factor * xResLR;
% Perform the cropping.
ZHR = cell(vRes, hRes);
for s = 1:1:hRes
for t = 1:1:vRes
ZHR{t, s} = Z{t, s}(1:yResHR, 1:xResHR, :);
end
end
% ==== Blur and Decimate "ZHR" ==========================================
% Blur matrix for a single view and channel.
B = blurmat(yResHR, xResHR, factor);
% Decimation matrix for a single view and channel.
D = decimat(yResHR, xResHR, factor);
% Blurring and decimation matrix for a single view and channel.
DB = D * B;
% Blurring and decimation matrix for a single view and ALL its channels.
DBch = kron(speye(channels), DB);
% ZLR will contain the Low Resolution (LR) views.
ZLR = cell(vRes, hRes);
% Number of pixels in each LR view.
n = yResLR * xResLR * channels;
% Blur, decimate, and add noise to each view, separately.
for s = 1:1:hRes
for t = 1:1:vRes
auxLR = (DBch * double(ZHR{t, s}(:))) + (sigmaNoise * 255 * randn(n, 1));
auxLR = uint8(round(auxLR));
ZLR{t, s} = reshape( ...
auxLR, ...
yResLR, ...
xResLR, ...
channels ...
);
end
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
readstf.m
|
.m
|
light-field-super-resolution-master/readstf.m
| 1,255 |
utf_8
|
424072ab3ada3cf18c345c9ac8d3ebbe
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function Z = readstf(path)
% READSTF reads the STANFORD light field specified in the input folder and
% it arranges it in a 2D cell array adopting the reference system described
% in the README.
%
% INPUT:
% path - the name of a folder containing the light field views.
%
% OUTPUT:
% Z - a light field in the format described in the README.
% =========================================================================
% Each STANFORD light field is a 16x16 grid of views.
vRes = 17;
hRes = 17;
% Parametrized name of a view.
str = [path, 'view_%02d_%02d.png'];
% Read the views paying attention to STANFORD reference system.
Z = cell(vRes, hRes);
for t = 1:1:vRes
for s = 1:1:hRes
name = sprintf(str, vRes - t, s - 1);
Z{t, s} = imread(name);
end
end
end
|
github
|
rossimattia/light-field-super-resolution-master
|
warpmask.m
|
.m
|
light-field-super-resolution-master/warpmask.m
| 1,956 |
utf_8
|
d39b7a20045286a76b0866fc01e260b1
|
% =========================================================================
% =========================================================================
%
% Author:
% Mattia Rossi ([email protected])
% Signal Processing Laboratory 4 (LTS4)
% Ecole Polytechnique Federale de Lausanne (Switzerland)
%
% =========================================================================
% =========================================================================
function H = warpmask(W, B, D, vRes, hRes)
% WARPMASK computes the visibility masks for the warping. Let us assume that
% the matrix W corresponds to the j-th view. Then W contains all the warping
% matrices Wij (warping from the j-th view to the i-th one) stacked along
% the second dimension, for all the views i in the light field. WARPMASK
% computes a mask for each Wij and stores it in H{i}. The masks handle
% exclusively the dis/occlusions caused by the view borders.
%
% INPUT:
% W - a matrix containing the warping matrices (stacked along the second dimension)
% from a given light field view to all the others.
% B - the blur matrix for the whole light field.
% D - the decimation matrix for the whole light field.
% vRes - the light field vertical angular resolution.
% hRes - the light field horizontal angular resolution.
%
% OUTPUT:
% H - a 1D cell array containing a mask matrix in each cell.
% =========================================================================
% Number of views.
M = vRes * hRes;
% Compute the warping mask (at Low Resolution) for all the warpings Wij.
% The computed masks are in vectorized form.
S = sum(W, 2);
S = spones(S);
S = D * B * S;
S(S < 1) = 0;
% Number of pixels at each LR view.
NLR = size(D, 1) / M;
% From the warping mask, create the corresponding diagonal matrices.
H = cell(M, 1);
for u = 1:1:M
H{u} = spdiags( ...
S((((u - 1) * NLR) + 1):(u * NLR)), ...
0, ...
NLR, NLR ...
);
end
end
|
github
|
Stanford-STAGES/sleep-staging-master
|
load_signal.m
|
.m
|
sleep-staging-master/matlab_training_data_scripts/load_signal.m
| 6,256 |
utf_8
|
640c59c8395b2817463097637c5ad833
|
function c_sig = load_signal(filepath,fs)
filepath
hdr = loadHDR(filepath);
ind = zeros(13,1);
for i=1:13
try
ind(i) = find(get_alternative_name(i,hdr.label));
end
end
test1 = (sum(ind([1 3]))==0 & (sum(ind([2 4]))==0 | sum(ind(9:10))==0));
test2 = (sum(ind([5 7]))==0 & (sum(ind([6 8]))==0 | sum(ind(9:10))==0));
test3 = prod(ind(11:13))==0;
if any([test1 test2 test3])
c_sig = [];
hdr.label
disp('Wrong channels')
return
end
loaded = ind~=0;
[~,rec] = loadEDF(filepath,ind(loaded));
%% Re-reference
if ind(2)~=0
if ind(9)~=0
rec{2-sum(~loaded(1:2-1))} = rec{2-sum(~loaded(1:2-1))} - rec{9-sum(~loaded(1:9-1))};
elseif ind(10) ~=0
rec{2-sum(~loaded(1:2-1))} = rec{2-sum(~loaded(1:2-1))} - rec{10-sum(~loaded(1:10-1))};
else
rec(2-sum(~loaded(1:2-1))) = [];
loaded(2) = 0;
end
end
if ind(4)~=0
if ind(10)~=0
rec{4-sum(~loaded(1:4-1))} = rec{4-sum(~loaded(1:4-1))} - rec{10-sum(~loaded(1:10-1))};
elseif ind(9) ~=0
rec{4-sum(~loaded(1:4-1))} = rec{4-sum(~loaded(1:4-1))} - rec{9-sum(~loaded(1:9-1))};
else
rec(4-sum(~loaded(1:4-1))) = [];
loaded(4) = 0;
end
end
if ind(6)~=0
if ind(9)~=0
rec{6-sum(~loaded(1:6-1))} = rec{6-sum(~loaded(1:6-1))} - rec{9-sum(~loaded(1:9-1))};
elseif ind(10) ~=0
rec{6-sum(~loaded(1:6-1))} = rec{6-sum(~loaded(1:6-1))} - rec{10-sum(~loaded(1:10-1))};
else
rec(6-sum(~loaded(1:6-1))) = [];
loaded(6) = 0;
end
end
if ind(8)~=0
if ind(10)~=0
rec{8-sum(~loaded(1:8-1))} = rec{8-sum(~loaded(1:8-1))} - rec{10-sum(~loaded(1:10-1))};
elseif ind(10) ~=0
rec{8-sum(~loaded(1:8-1))} = rec{8-sum(~loaded(1:8-1))} - rec{9-sum(~loaded(1:9-1))};
else
rec(8-sum(~loaded(1:8-1))) = [];
loaded(8) = 0;
end
end
if ind(9)~=0
rec{9-sum(~loaded(1:9-1))} = [];
end
if ind(10)~=0
rec{10-sum(~loaded(1:10-1))} = [];
end
rec(cellfun(@isempty,rec)) = [];
loaded(9:10) = 0;
%%
sig = cell(sum(loaded),1);
cFs = hdr.fs(ind(loaded));
for i = 1:length(rec)
ind = find(isnan(rec{i})|isinf(rec{i}));
rec{i}(ind) = 0;
SRC = dsp.SampleRateConverter('Bandwidth',50,'InputSampleRate',cFs(i),...
'OutputSampleRate',fs,'StopbandAttenuation',30);
sig{i} = SRC.step(rec{i});
sig{i} = sig{i}(1:length(sig{i})-rem(length(sig{i}),fs*30));
end
noise = get_noise(sig,fs,loaded);
c_noise = Inf(13,1);
c_noise(loaded) = noise;
c_sig = cell(13,1);
c_sig(loaded) = sig;
rem1 = 1:4;
[~,eegRem1] = min(c_noise(1:4));
rem1(eegRem1) = [];
rem2 = 5:8;
[~,eegRem2] = min(c_noise(5:8));
rem2(eegRem2) = [];
c_sig([rem1,rem2]) = [];
c_sig(3:4) = [];
end
function synonym = get_alternative_name(ch,labels)
dict{1} = {'C3M2','C3-M2','C3-A2','C3A1','C3A2','C3M','C3-A1','C3-M1',...
'EEG C3-A2','C3/A2','C3_A2','C3-x','C3x','C3'};
dict{2} = {'C3','EEG C3'};
dict{3} = {'C4M1','C4-M1','C4-A1','C4A1','C4M','C4-A2','C4-M1','EEG C4-A1','C4/A1','C4_A1','C4x','C4-x','C4'};
dict{4} = {'C4','EEG C4'};
dict{5} = {'O1M2','O1-M2','O1M2','O1-A2',...
'O1A2','O1M','O1A2','O1AVG','O1-M2','O1-A2','O1-M1','EEG O1-A2','O1/A2','O1_A2','O1-x','O1x','O1'};
dict{6} = {'O1','EEG O1'};
dict{7} = {'O2M1','O2-M1','O2M1','O2-A1',...
'O2A1','O2M','O2A1','O2AVG','O2-M1','O2-A2','O2-M2','EEG O2-A1','O2_A1','O2-x','O2x','O2'};
dict{8} = {'O2','EEG O2'};
dict{9} = {'A2','M2','EEG M2'};
dict{10} = {'A1','M1','EEG M1','A1/A2'};
dict{11} = {'LEOG','LEOG-M2','','LEOGx','LOCA2','LEOGM2','LEOC-x','LOC','LOC-A2',...
'L-EOG','EOG-L','EOG Left','Lt.','LOC-Cz','LOCA2','LEOG-x','Lt. Eye (E1)','EOG Au-hor-L','EOG Au-hor','EOG Au-li',...
'EOG EOG L','LOC-x','EOG_L'};
dict{12} = {'REOG','REOG-M1','REOGx','ROCA1','ROCM1','REOGM1','REOC-x','ROC-M1',...
'ROC','ROC-A1','R-EOG','EOG-R','EOG Right','Rt.','ROC-Cz','ROCA2','REOG-x','ROC-A2','Rt. Eye (E2)','EOG Au-hor-R',...
'Unspec Auhor','EOG Au_re','EOG EOG R','Unspec Au-hor#2','EOG Au-hor#2','ROC-x','EOG_R'};
dict{13} = {'Chin1Chin2','Chin1-Chin2','Chin EMG','Chin','CHIN EMG','Subm','Chin_L',...
'Chin_R','CHINEMG','ChinCtr','ChinL','ChinR','Chin2EMG','ChinEMG','Chin-L',...
'Chin-Ctr','Chin-R','EMG EMG Chin','EMG1-EMG2','EMG Ment1','EMG Ment2','EMG Ment3','Unspec subment',...
'EMG Chin1','EMG Chin2','EMG Chin3','EMG_SM'};
for d = dict{ch}
synonym = strcmp(d,labels);
if sum(synonym)>0
break
end
end
end
function hjorth = extract_hjort(fs,dim,slide,input)
%Length of first dimension
dim = dim*fs;
%Specify overlap of segments in samples
slide = slide*fs;
%Creates 2D array of overlapping segments
D = buffer(input,dim,dim-slide,'nodelay');
D(:,end) = [];
%Extract Hjorth for each segment
dD = diff(D,1);
ddD = diff(dD,1);
mD2 = mean(D.^2);
mdD2 = mean(dD.^2);
mddD2 = mean(ddD.^2);
top = sqrt(mddD2 ./ mdD2);
mobility = sqrt(mdD2 ./ mD2);
activity = mD2;
complexity = top./mobility;
hjorth = [activity;complexity;mobility];
[~,b] = find(isnan(hjorth));
hjorth(:,unique(b)) = 0;
hjorth = log(hjorth+eps);
end
function noise = get_noise(channels,fs,loaded)
load('noiseM.mat')
noise = zeros(length(channels),1);
dist = [1 1 1 1 2 2 2 2 0 0 3 4 5];
dist = dist(loaded);
for i=1:length(channels)
M = extract_hjort(fs,5*60,5*60,channels{i});
M = num2cell(M,1);
noise(i) = mean(cellfun(@(x) sqrt((x-noiseM.meanV{dist(i)})'*(noiseM.covM{dist(i)})^-1*(x-noiseM.meanV{dist(i)})),M));
end
end
|
github
|
iamsakil/BoundaryTrackingMATLAB-master
|
boundarytrack.m
|
.m
|
BoundaryTrackingMATLAB-master/boundarytrack.m
| 1,577 |
utf_8
|
c9d676fc728fd87e3a9580a25b5d30f5
|
% r,c = positions of boundary
% H,W = image height and width
% figN = figure number for result display (0 for no display)
% [tr,tc] = consecutive set of tracked boundary points
function [tr,tc] = boundarytrack(r,c,H,W,figN)
% next direction offsets
% 1 2 3
% 8 x 4
% 7 6 5
mr = [-1,-1,-1,0,1,1,1,0];
mc = [-1,0,1,1,1,0,-1,-1];
% set up visited array (keep track of where we have already tracked)
n = length(r);
visited=zeros(H,W);
for i = 1 : n
visited(r(i),c(i)) = 1;
end
% set up tracked output
tmpr = zeros(n,1);
tmpc = zeros(n,1);
count = 1;
tmpr(1) = r(1);
tmpc(1) = c(1);
visited(tmpr(count),tmpc(count)) = 0;
% find first connected point clockwise
lastdir = 1; % arbitrary start
notdone = 1;
while notdone
% find next untracked point
notdone = 0;
for i = 1 : 8 % try all 8 directions
nextdir = lastdir + 4 + i; % get next direction to try
while nextdir > 8
nextdir = nextdir - 8;
end
% see if nextdir is a boundary point
nr = tmpr(count)+mr(nextdir);
nc = tmpc(count)+mc(nextdir);
if visited(nr,nc) == 1
% it is a boundary point, so track to it
lastdir = nextdir;
notdone = 1;
count = count + 1;
tmpr(count) = nr;
tmpc(count) = nc;
visited(nr,nc) = 0;
break
end
end
end
tr = tmpr(1:count);
tc = tmpc(1:count);
% display result - ?
if figN > 0
figure(figN)
plot(tc,tr)
axis([0,W,0,H])
axis ij
end
|
github
|
teenagerold/FPGA_SDR-mars-board-master
|
mnco_model.m
|
.m
|
FPGA_SDR-mars-board-master/SDRrceeiver/mnco_model.m
| 1,345 |
utf_8
|
837483ceb2c31f737ddeeaae252ed98c
|
% Altera NCO version 13.1
% function [s,c] = mnco_model(phi_inc_i,phase_mod_i,freq_mod_i)
% input : phi_inc_i : phase increment input (required)
% phase_mod_i : phase modulation input(optional)
% freq_mod_i : frequency modulation input(optional)
% output : s : sine wave output
% c : cosine wave output
function [s,c] = mnco_model(phi_inc_i,phase_mod_i,freq_mod_i)
addpath d:/software/quartus/ip/altera/nco/lib/ip_toolbench/../;
if(nargin==0)
fprintf('Error using mnco_model : Not enough input arguments\n');
else
N=length(phi_inc_i);
end
if(nargin==1)
phase_mod_i=zeros(1,N);
freq_mod_i=zeros(1,N);
elseif(nargin==2)
if(length(phase_mod_i)~=N)
fprintf('Error using mnco_model : input vector length mismatch\n');
else
freq_mod_i=zeros(1,N);
end
elseif(nargin==3)
if((length(phase_mod_i)~=N)|length(freq_mod_i)~=N)
fprintf('Error using mnco_model : input vector length mismatch\n');
end
else
fprintf('Error using mnco_model : Incorrect number of input arguments\n');
end
N=length(phi_inc_i);
numch = 1.0;
apr = 32.0;
apri = 10.0;
mpr = 10.0;
aprp = 16.0;
aprf = 32.0;
dpri = 5.0;
arch = 3.0;
wantFmod = 0.0;
wantPmod = 0.0;
dual = 1.0;
[s,c] = Sncomodel(phi_inc_i,phase_mod_i,freq_mod_i,wantFmod,wantPmod,numch,apr,mpr,apri,aprp,aprf,dpri,arch,dual,N);
|
github
|
teenagerold/FPGA_SDR-mars-board-master
|
mcic_fir_comp_coeff.m
|
.m
|
FPGA_SDR-mars-board-master/SDRrceeiver/mcic_fir_comp_coeff.m
| 8,343 |
utf_8
|
b1c5d49a50e23e4a249456c06af998c4
|
%% ================================================================================
%% Legal Notice: Copyright (C) 1991-2008 Altera Corporation
%% Any megafunction design, and related net list (encrypted or decrypted),
%% support information, device programming or simulation file, and any other
%% associated documentation or information provided by Altera or a partner
%% under Altera's Megafunction Partnership Program may be used only to
%% program PLD devices (but not masked PLD devices) from Altera. Any other
%% use of such megafunction design, net list, support information, device
%% programming or simulation file, or any other related documentation or
%% information is prohibited for any other purpose, including, but not
%% limited to modification, reverse engineering, de-compiling, or use with
%% any other silicon devices, unless such use is explicitly licensed under
%% a separate agreement with Altera or a megafunction partner. Title to
%% the intellectual property, including patents, copyrights, trademarks,
%% trade secrets, or maskworks, embodied in any such megafunction design,
%% net list, support information, device programming or simulation file, or
%% any other related documentation or information provided by Altera or a
%% megafunction partner, remains with Altera, the megafunction partner, or
%% their respective licensors. No other licenses, including any licenses
%% needed under any third party's intellectual property, are provided herein.
%% ================================================================================
%%
%% Generated by: CIC 13.1 Build 162 October, 2013
%% Generated on: 2017-9-1 21:04:42
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% mcic_fir_comp_coeff genearats CIC compensation filter coefficients
% using frequency sampling method.
%
% mcic_fir_comp_coeff(L, Fs, Fc, plot, is_fxp, B) calculates compensation
% filter coefficients and saves the coefficients to a file.
%
% L - FIR filter length (= number of taps = number of coefficients)
% Fs - FIR filter sample rate in Hz before decimation
% Fc - FIR filter cutoff frequency in Hz
% plot - True or false to draw filter responses graphically
% is_fxp - Indicating if the coefficients should be saved as fixed point or floating point numbers
% B - Number of bits to represent the coefficients if is_fxp is true
%
% Examples:
% mcic_fir_comp_coeff(31,80e6,4e6,true,true,16);
% mcic_fir_comp_coeff(31,80e6,4e6,true,false)
function mcic_fir_comp_coeff(L, Fs, Fc, plot, is_fxp, B)
try
% Validate number of input arguments
error(nargchk(0, 6, nargin));
%%%%%% CIC filter parameters %%%%%%
R = 200; %% Decimation factor
M = 2; %% Differential Delay
N = 5; %% Number of Stages
%%%%%% User Parameters %%%%%%
% Check if Signal Processing Toolbox is in the Matlab installation
if (isempty(which('fir2')))
error('Matlab Signal Processing Toolbox isn''t installed on your machine. Please contact Altera for help.');
end
%% Get user parameters: B, L, Fs, Fc if they aren't passed as arguments.
if(nargin < 1)
%% Filter length: it must be an odd number, otherwise it'll be increased by 1.
L = input('Number of filter coefficients (31 as default): ');
if isempty(L)
L = 31;
end
end
if mod(L,2) == 0
fprintf('FIR filter length must be an odd number. %d is used instead.\n',L+1);
L = L+1;
end
if(nargin < 2)
%% FIR filter sample rate in Hz before decimation
Fs = input('FIR filter sample rate in Hz before decimation (80e6 as default): ');
if isempty(Fs)
Fs = 80e6;
end
end
if(nargin < 3)
%% FIR filter cutoff frequency in Hz
Fc = input('FIR filter cutoff frequency in Hz (4e6 as default): ');
if isempty(Fc)
Fc = 4e6;
end
end
if (nargin < 4)
plot_res = input('Do you want to plot filter responses? Y/N [N]:','s');
if isempty(plot_res)
plot_res = 'N';
end
if upper(plot_res) == 'Y'
plot = true;
else
plot = false;
end
end
if(nargin < 5)
fxp_coeff = input('Do you want to write out coefficients as fixed point numbers? Y/N [Y]:','s');
if isempty(fxp_coeff)
fxp_coeff = 'Y';
end
if upper(fxp_coeff) == 'Y'
is_fxp = true;
else
is_fxp = false;
end
end
if(is_fxp && nargin < 6)
%% Number of bits to represent fixed point filter coefficients
B = input('Number of bits to represent the filter coefficients (16 as default): ');
if isempty(B)
B = 16;
end
end
Fo = R*Fc/Fs; %% Normalized Cutoff freq; 0<Fo<=0.5/M;
%% Fo should be less than 1/(4M) for good performance
% Fo = 0.5/M; %% use Fo=0.5 if we don't care responses outside passband
%%%%%%% CIC Compensator Design using fir2.m %%%%%%
p = 2e3; %% Granulatiry
s = 0.25/p; %% Stepsize
fp = [0:s:Fo]; %% Passband frequency samples
fs = (Fo+s):s:0.5; %% Stopband frequency samples
f = [fp fs]*2; %% Noramlized frequency samples; 0<=f<=1;
Mp = ones(1,length(fp)); %% Passband response; Mp(1)=1
Mp(2:end) = abs( M*R*sin(pi*fp(2:end)/R)./sin(pi*M*fp(2:end))).^N; %% Inverse sinc
Mf = [Mp zeros(1,length(fs))];
f(end) = 1;
h = fir2(L-1,f,Mf); %% Filter order = filter length (L) - 1
h = h/max(h); %% Floating point coefficients, scaled it to 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Output filter coefficients to a file for Altera FIR Compiler %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
filename = 'mcic_fir_comp_coeff.txt';
fid = fopen(filename, 'wt');
if (fid == -1)
errMsg = sprintf('Can''t Open file %s for writing.\n', FileName);
error(errMsg);
end;
if (is_fxp) % coefficients are fixed point
hz = fix(h*(2^(B-1)-1)); %% Quantization of filter coefficients
fprintf(fid, '%d\n', hz); %% fixed point coeff
else
fprintf(fid, '%.6f\n',h); %% floating point
end
fclose(fid);
fprintf('The compensation filter coefficients have been saved to file ''%s''.\n',filename);
% Change the following variable to 1 if you would like to plot the filter responses
if (plot)
if (is_fxp)
plot_responses(R,M,N,hz,Fs,is_fxp);
else
plot_responses(R,M,N,h,Fs,is_fxp);
end
end;
catch
rethrow(lasterror);
end;
%% Function for ploting filter responses
function plot_responses(R,M,N,res,Fs,is_fxp)
try
%%%%%%% Full resolution CIC filter response %%%%%%%%
hrec = ones(1,R*M);
tmph = hrec;
for k=1:N-1
tmph = conv(hrec, tmph);
end;
hcic = tmph;
hcic = hcic/max(hcic);
%%%%%%% Total Response %%%%%%%%%%%%%%%
resp = upsample(res, R);
ht = conv(hcic, resp); %% Concatenation of CIC and fir2 FIR at high freqency
no_data_points = 4096; %% Number of data points to plot in the figure
[Hcic, wt] = freqz(hcic, 1, no_data_points, Fs); %% CIC Freq. Response
[Hciccomp, wt] = freqz(resp, 1, no_data_points, Fs); %% CIC Comp. response using fir2
[Ht, wt] = freqz(ht, 1, no_data_points, Fs); %% Total response for CIC + Compensation fir2
warning off all; %% Turn the 'Log by zero' warning off
Mcic = 20*log10(abs(Hcic)/(abs(Hcic(1)))); %% CIC Freq. Response
Mciccomp = 20*log10(abs(Hciccomp)/(abs(Hciccomp(1))));%% CIC Comp. response using fir2
Mt = 20*log10(abs(Ht)/(abs(Ht(1)))); %% Total response for CIC + Compensation fir2
warning on; %% Turn warnings on
figure;
plot(wt, Mcic, wt, Mciccomp, wt, Mt);
if (is_fxp) % coefficients are fixed point
legend('CIC','CIC Comp','Total Response (Fixed Point)');
else % floating point
legend('CIC','CIC Comp','Total Response (Floating Point)');
end
ymax = max(Mciccomp)+1;
ylim([-100 ymax]);
title('CIC and its Compensation Filter Responses');
grid;
xlabel('Frequency Hz');
ylabel('Filter Magnitude Response dB');
catch
rethrow(lasterror);
end;
|
github
|
matthewberger/tfgan-master
|
fast_tsne.m
|
.m
|
tfgan-master/renderer/bh_tsne/fast_tsne.m
| 4,820 |
utf_8
|
ea635b52c1f372c46c31b2b389a87b27
|
function mappedX = fast_tsne(X, no_dims, initial_dims, perplexity, theta)
%FAST_TSNE Runs the C++ implementation of Barnes-Hut t-SNE
%
% mappedX = fast_tsne(X, no_dims, initial_dims, perplexity, theta)
%
% Runs the C++ implementation of Barnes-Hut-SNE. The high-dimensional
% datapoints are specified in the NxD matrix X. The dimensionality of the
% datapoints is reduced to initial_dims dimensions using PCA (default = 50)
% before t-SNE is performed. Next, t-SNE reduces the points to no_dims
% dimensions. The perplexity of the input similarities may be specified
% through the perplexity variable (default = 30). The variable theta sets
% the trade-off parameter between speed and accuracy: theta = 0 corresponds
% to standard, slow t-SNE, while theta = 1 makes very crude approximations.
% Appropriate values for theta are between 0.1 and 0.7 (default = 0.5).
% The function returns the two-dimensional data points in mappedX.
%
% NOTE: The function is designed to run on large (N > 5000) data sets. It
% may give poor performance on very small data sets (it is better to use a
% standard t-SNE implementation on such data).
% Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% 1. Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% 2. Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% 3. All advertising materials mentioning features or use of this software
% must display the following acknowledgement:
% This product includes software developed by the Delft University of Technology.
% 4. Neither the name of the Delft University of Technology nor the names of
% its contributors may be used to endorse or promote products derived from
% this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
% OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
% OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
% EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
% BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
% IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
% OF SUCH DAMAGE.
if ~exist('no_dims', 'var') || isempty(no_dims)
no_dims = 2;
end
if ~exist('initial_dims', 'var') || isempty(initial_dims)
initial_dims = 50;
end
if ~exist('perplexity', 'var') || isempty(perplexity)
perplexity = 30;
end
if ~exist('theta', 'var') || isempty(theta)
theta = 0.5;
end
% Perform the initial dimensionality reduction using PCA
X = double(X);
X = bsxfun(@minus, X, mean(X, 1));
covX = X' * X;
[M, lambda] = eig(covX);
[~, ind] = sort(diag(lambda), 'descend');
if initial_dims > size(M, 2)
initial_dims = size(M, 2);
end
M = M(:,ind(1:initial_dims));
X = X * M;
clear covX M lambda
% Run the fast diffusion SNE implementation
write_data(X, no_dims, theta, perplexity);
tic, system('./bh_tsne'); toc
[mappedX, landmarks, costs] = read_data;
landmarks = landmarks + 1; % correct for Matlab indexing
delete('data.dat');
delete('result.dat');
end
% Writes the datafile for the fast t-SNE implementation
function write_data(X, no_dims, theta, perplexity)
[n, d] = size(X);
h = fopen('data.dat', 'wb');
fwrite(h, n, 'integer*4');
fwrite(h, d, 'integer*4');
fwrite(h, theta, 'double');
fwrite(h, perplexity, 'double');
fwrite(h, no_dims, 'integer*4');
fwrite(h, X', 'double');
fclose(h);
end
% Reads the result file from the fast t-SNE implementation
function [X, landmarks, costs] = read_data
h = fopen('result.dat', 'rb');
n = fread(h, 1, 'integer*4');
d = fread(h, 1, 'integer*4');
X = fread(h, n * d, 'double');
landmarks = fread(h, n, 'integer*4');
costs = fread(h, n, 'double'); % this vector contains only zeros
X = reshape(X, [d n])';
fclose(h);
end
|
github
|
frederikgeth/PowerModelsReliability.jl-master
|
case118_scopf.m
|
.m
|
PowerModelsReliability.jl-master/test/data/case118_scopf.m
| 58,773 |
utf_8
|
61213536e0c5fd662c0fc60e57414d54
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%%
%%%% NICTA Energy System Test Case Archive (NESTA) - v0.6.1 %%%%%
%%%% Optimal Power Flow - Typical Operation %%%%%
%%%% 26 - November - 2016 %%%%%
%%%% %%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Power flow data for IEEE 118 bus test case.
% Please see CASEFORMAT for details on the case file format.
% (ieee118cdf.txt) on 20-Sep-2004 by cdf2matp, rev. 1.11
%
% Converted from IEEE CDF file from:
% http://www.ee.washington.edu/research/pstca/
%
% With base_kV data take from the PSAP format file from the same site,
% added manually on 10-Mar-2006.
%
% CDF Header:
% 08/25/93 UW ARCHIVE 100.0 1961 W IEEE 118 Bus Test Case
%
function mpc = case118_scopf
mpc.version = '2';
mpc.baseMVA = 100.0;
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [
1 2 51.0 27.0 0.0 0.0 1 1.03313 -32.79829 138.0 1 1.06000 0.94000;
2 1 20.0 9.0 0.0 0.0 1 1.04476 -31.43391 138.0 1 1.06000 0.94000;
3 1 39.0 10.0 0.0 0.0 1 1.03885 -32.29547 138.0 1 1.06000 0.94000;
4 2 39.0 12.0 0.0 0.0 1 1.05719 -30.64013 138.0 1 1.06000 0.94000;
5 1 0.0 0.0 0.0 -40.0 1 1.05562 -30.42957 138.0 1 1.06000 0.94000;
6 2 52.0 22.0 0.0 0.0 1 1.05524 -31.14479 138.0 1 1.06000 0.94000;
7 1 19.0 2.0 0.0 0.0 1 1.05615 -30.84911 138.0 1 1.06000 0.94000;
8 2 28.0 0.0 0.0 0.0 1 1.04474 -28.85812 345.0 1 1.06000 0.94000;
9 1 0.0 0.0 0.0 0.0 1 1.06000 -28.92750 345.0 1 1.06000 0.94000;
10 2 0.0 0.0 0.0 0.0 1 1.03529 -28.82050 345.0 1 1.06000 0.94000;
11 1 70.0 23.0 0.0 0.0 1 1.05162 -30.76612 138.0 1 1.06000 0.94000;
12 2 47.0 10.0 0.0 0.0 1 1.05999 -30.04186 138.0 1 1.06000 0.94000;
13 1 34.0 16.0 0.0 0.0 1 1.03910 -31.57015 138.0 1 1.06000 0.94000;
14 1 14.0 1.0 0.0 0.0 1 1.05645 -30.51913 138.0 1 1.06000 0.94000;
15 2 90.0 30.0 0.0 0.0 1 1.04944 -30.35121 138.0 1 1.06000 0.94000;
16 1 25.0 10.0 0.0 0.0 1 1.05302 -30.17322 138.0 1 1.06000 0.94000;
17 1 11.0 3.0 0.0 0.0 1 1.06000 -28.29202 138.0 1 1.06000 0.94000;
18 2 60.0 34.0 0.0 0.0 1 1.05264 -30.09584 138.0 1 1.06000 0.94000;
19 2 45.0 25.0 0.0 0.0 1 1.04789 -30.27721 138.0 1 1.06000 0.94000;
20 1 18.0 3.0 0.0 0.0 1 1.03471 -28.79835 138.0 1 1.06000 0.94000;
21 1 14.0 8.0 0.0 0.0 1 1.02936 -26.88590 138.0 1 1.06000 0.94000;
22 1 10.0 5.0 0.0 0.0 1 1.03326 -24.02807 138.0 1 1.06000 0.94000;
23 1 7.0 3.0 0.0 0.0 1 1.05205 -18.62826 138.0 1 1.06000 0.94000;
24 2 13.0 0.0 0.0 0.0 1 1.05682 -17.50102 138.0 1 1.06000 0.94000;
25 2 0.0 0.0 0.0 0.0 1 1.06000 -12.69922 138.0 1 1.06000 0.94000;
26 2 0.0 0.0 0.0 0.0 1 1.02524 -12.31737 345.0 1 1.06000 0.94000;
27 2 71.0 13.0 0.0 0.0 1 1.04142 -25.04041 138.0 1 1.06000 0.94000;
28 1 17.0 7.0 0.0 0.0 1 1.03325 -26.56574 138.0 1 1.06000 0.94000;
29 1 24.0 4.0 0.0 0.0 1 1.03199 -27.45759 138.0 1 1.06000 0.94000;
30 1 0.0 0.0 0.0 0.0 1 1.02883 -24.89177 345.0 1 1.06000 0.94000;
31 2 43.0 27.0 0.0 0.0 1 1.03444 -27.36116 138.0 1 1.06000 0.94000;
32 2 59.0 23.0 0.0 0.0 1 1.04234 -25.60297 138.0 1 1.06000 0.94000;
33 1 23.0 9.0 0.0 0.0 1 1.04644 -29.73962 138.0 1 1.06000 0.94000;
34 2 59.0 26.0 0.0 14.0 1 1.05777 -27.93122 138.0 1 1.06000 0.94000;
35 1 33.0 9.0 0.0 0.0 1 1.05520 -28.33563 138.0 1 1.06000 0.94000;
36 2 31.0 17.0 0.0 0.0 1 1.05573 -28.34858 138.0 1 1.06000 0.94000;
37 1 0.0 0.0 0.0 -25.0 1 1.06000 -27.47810 138.0 1 1.06000 0.94000;
38 1 0.0 0.0 0.0 0.0 1 1.00989 -23.11262 345.0 1 1.06000 0.94000;
39 1 27.0 11.0 0.0 0.0 1 1.03411 -29.53573 138.0 1 1.06000 0.94000;
40 2 66.0 23.0 0.0 0.0 1 1.02963 -29.95140 138.0 1 1.06000 0.94000;
41 1 37.0 10.0 0.0 0.0 1 1.01757 -29.83569 138.0 1 1.06000 0.94000;
42 2 96.0 23.0 0.0 0.0 1 1.01043 -26.88647 138.0 1 1.06000 0.94000;
43 1 18.0 7.0 0.0 0.0 1 1.02843 -26.31390 138.0 1 1.06000 0.94000;
44 1 16.0 8.0 0.0 10.0 1 1.00429 -21.41768 138.0 1 1.06000 0.94000;
45 1 53.0 22.0 0.0 10.0 1 0.99592 -18.65546 138.0 1 1.06000 0.94000;
46 2 28.0 10.0 0.0 10.0 1 1.01212 -15.50406 138.0 1 1.06000 0.94000;
47 1 34.0 0.0 0.0 0.0 1 1.01972 -11.98215 138.0 1 1.06000 0.94000;
48 1 20.0 11.0 0.0 15.0 1 1.02043 -13.08165 138.0 1 1.06000 0.94000;
49 2 87.0 30.0 0.0 0.0 1 1.02323 -11.80917 138.0 1 1.06000 0.94000;
50 1 17.0 4.0 0.0 0.0 1 1.01133 -15.01813 138.0 1 1.06000 0.94000;
51 1 17.0 8.0 0.0 0.0 1 0.99379 -19.02717 138.0 1 1.06000 0.94000;
52 1 18.0 5.0 0.0 0.0 1 0.98829 -20.33167 138.0 1 1.06000 0.94000;
53 1 23.0 11.0 0.0 0.0 1 0.99145 -22.26595 138.0 1 1.06000 0.94000;
54 2 113.0 32.0 0.0 0.0 1 1.01028 -22.16971 138.0 1 1.06000 0.94000;
55 2 63.0 22.0 0.0 0.0 1 1.01049 -22.53067 138.0 1 1.06000 0.94000;
56 2 84.0 18.0 0.0 0.0 1 1.00978 -22.23337 138.0 1 1.06000 0.94000;
57 1 12.0 3.0 0.0 0.0 1 1.00607 -19.58747 138.0 1 1.06000 0.94000;
58 1 12.0 3.0 0.0 0.0 1 0.99809 -20.68386 138.0 1 1.06000 0.94000;
59 2 277.0 113.0 0.0 0.0 1 1.04823 -20.01733 138.0 1 1.06000 0.94000;
60 1 78.0 3.0 0.0 0.0 1 1.05498 -15.19733 138.0 1 1.06000 0.94000;
61 2 0.0 0.0 0.0 0.0 1 1.06000 -14.58431 138.0 1 1.06000 0.94000;
62 2 77.0 14.0 0.0 0.0 1 1.04635 -13.62156 138.0 1 1.06000 0.94000;
63 1 0.0 0.0 0.0 0.0 1 1.01792 -15.38992 345.0 1 1.06000 0.94000;
64 1 0.0 0.0 0.0 0.0 1 1.02901 -12.87730 345.0 1 1.06000 0.94000;
65 2 0.0 0.0 0.0 0.0 1 1.02987 -6.98042 345.0 1 1.06000 0.94000;
66 2 39.0 18.0 0.0 0.0 1 1.06000 -2.98216 138.0 1 1.06000 0.94000;
67 1 28.0 7.0 0.0 0.0 1 1.04383 -8.66117 138.0 1 1.06000 0.94000;
68 1 0.0 0.0 0.0 0.0 1 1.02062 -5.69946 345.0 1 1.06000 0.94000;
69 3 0.0 0.0 0.0 0.0 1 1.06000 0.00000 138.0 1 1.06000 0.94000;
70 2 66.0 20.0 0.0 0.0 1 1.03170 -10.14942 138.0 1 1.06000 0.94000;
71 1 0.0 0.0 0.0 0.0 1 1.03547 -11.05503 138.0 1 1.06000 0.94000;
72 2 12.0 0.0 0.0 0.0 1 1.04425 -14.80433 138.0 1 1.06000 0.94000;
73 2 6.0 0.0 0.0 0.0 1 1.03745 -11.22651 138.0 1 1.06000 0.94000;
74 2 68.0 27.0 0.0 12.0 1 1.01048 -10.62644 138.0 1 1.06000 0.94000;
75 1 47.0 11.0 0.0 0.0 1 1.01395 -9.25550 138.0 1 1.06000 0.94000;
76 2 68.0 36.0 0.0 0.0 1 0.99960 -10.91934 138.0 1 1.06000 0.94000;
77 2 61.0 28.0 0.0 0.0 1 1.04410 -6.87285 138.0 1 1.06000 0.94000;
78 1 71.0 26.0 0.0 0.0 1 1.03970 -7.20945 138.0 1 1.06000 0.94000;
79 1 39.0 32.0 0.0 20.0 1 1.04174 -7.04886 138.0 1 1.06000 0.94000;
80 2 130.0 26.0 0.0 0.0 1 1.06000 -5.24129 138.0 1 1.06000 0.94000;
81 1 0.0 0.0 0.0 0.0 1 1.01451 -5.50728 345.0 1 1.06000 0.94000;
82 1 54.0 27.0 0.0 20.0 1 1.03483 -7.93386 138.0 1 1.06000 0.94000;
83 1 20.0 10.0 0.0 10.0 1 1.03737 -7.34853 138.0 1 1.06000 0.94000;
84 1 11.0 7.0 0.0 0.0 1 1.04085 -5.87420 138.0 1 1.06000 0.94000;
85 2 24.0 15.0 0.0 0.0 1 1.04907 -4.87492 138.0 1 1.06000 0.94000;
86 1 21.0 10.0 0.0 0.0 1 1.04208 -6.23523 138.0 1 1.06000 0.94000;
87 2 0.0 0.0 0.0 0.0 1 1.05481 -6.33068 161.0 1 1.06000 0.94000;
88 1 48.0 10.0 0.0 0.0 1 1.04735 -2.48518 138.0 1 1.06000 0.94000;
89 2 0.0 0.0 0.0 0.0 1 1.06000 0.87743 138.0 1 1.06000 0.94000;
90 2 163.0 42.0 0.0 0.0 1 1.05126 -4.87373 138.0 1 1.06000 0.94000;
91 2 10.0 0.0 0.0 0.0 1 1.04436 -4.73340 138.0 1 1.06000 0.94000;
92 2 65.0 10.0 0.0 0.0 1 1.04495 -3.97188 138.0 1 1.06000 0.94000;
93 1 12.0 7.0 0.0 0.0 1 1.03499 -6.20851 138.0 1 1.06000 0.94000;
94 1 30.0 16.0 0.0 0.0 1 1.03344 -7.74757 138.0 1 1.06000 0.94000;
95 1 42.0 31.0 0.0 0.0 1 1.02300 -8.24044 138.0 1 1.06000 0.94000;
96 1 38.0 15.0 0.0 0.0 1 1.03266 -7.88686 138.0 1 1.06000 0.94000;
97 1 15.0 9.0 0.0 0.0 1 1.04162 -6.91133 138.0 1 1.06000 0.94000;
98 1 34.0 8.0 0.0 0.0 1 1.04955 -7.70927 138.0 1 1.06000 0.94000;
99 2 42.0 0.0 0.0 0.0 1 1.05160 -9.04319 138.0 1 1.06000 0.94000;
100 2 37.0 18.0 0.0 0.0 1 1.05328 -8.74860 138.0 1 1.06000 0.94000;
101 1 22.0 15.0 0.0 0.0 1 1.03690 -7.50844 138.0 1 1.06000 0.94000;
102 1 5.0 3.0 0.0 0.0 1 1.04121 -5.23894 138.0 1 1.06000 0.94000;
103 2 23.0 16.0 0.0 0.0 1 1.05037 -11.59117 138.0 1 1.06000 0.94000;
104 2 38.0 25.0 0.0 0.0 1 1.03709 -14.87455 138.0 1 1.06000 0.94000;
105 2 31.0 26.0 0.0 20.0 1 1.03457 -16.04051 138.0 1 1.06000 0.94000;
106 1 43.0 16.0 0.0 0.0 1 1.02649 -16.17588 138.0 1 1.06000 0.94000;
107 2 50.0 12.0 0.0 6.0 1 1.02208 -18.68691 138.0 1 1.06000 0.94000;
108 1 2.0 1.0 0.0 0.0 1 1.02796 -17.58242 138.0 1 1.06000 0.94000;
109 1 8.0 3.0 0.0 0.0 1 1.02564 -18.18553 138.0 1 1.06000 0.94000;
110 2 39.0 30.0 0.0 6.0 1 1.02320 -19.47936 138.0 1 1.06000 0.94000;
111 2 0.0 0.0 0.0 0.0 1 1.02631 -19.53009 138.0 1 1.06000 0.94000;
112 2 68.0 13.0 0.0 0.0 1 1.00975 -21.98346 138.0 1 1.06000 0.94000;
113 2 6.0 0.0 0.0 0.0 1 1.05698 -28.02777 138.0 1 1.06000 0.94000;
114 1 8.0 3.0 0.0 0.0 1 1.03742 -25.85113 138.0 1 1.06000 0.94000;
115 1 22.0 7.0 0.0 0.0 1 1.03697 -25.85161 138.0 1 1.06000 0.94000;
116 2 184.0 0.0 0.0 0.0 1 1.01953 -6.10767 138.0 1 1.06000 0.94000;
117 1 20.0 8.0 0.0 0.0 1 1.04531 -31.38704 138.0 1 1.06000 0.94000;
118 1 33.0 15.0 0.0 0.0 1 1.00105 -10.44914 138.0 1 1.06000 0.94000;
];
%% load data
%column_names% load_bus pref qref status qmax qmin pmax pmin prated qrated voll
% mpc.load = [
% 1 51 27 1 27 0 51 0 51 27 5000;
% 2 20 9 1 9 0 20 0 20 9 5000;
% 3 39 10 1 10 0 39 0 39 10 5000;
% 4 39 12 1 12 0 39 0 39 12 5000;
% 5 0 0 1 0 0 0 0 0 0 5000;
% 6 52 22 1 22 0 52 0 52 22 5000;
% 7 19 2 1 2 0 19 0 19 2 5000;
% 8 28 0 1 0 0 28 0 28 0 5000;
% 9 0 0 1 0 0 0 0 0 0 5000;
% 10 0 0 1 0 0 0 0 0 0 5000;
% 11 70 23 1 23 0 70 0 70 23 5000;
% 12 47 10 1 10 0 47 0 47 10 5000;
% 13 34 16 1 16 0 34 0 34 16 5000;
% 14 14 1 1 1 0 14 0 14 1 5000;
% 15 90 30 1 30 0 90 0 90 30 5000;
% 16 25 10 1 10 0 25 0 25 10 5000;
% 17 11 3 1 3 0 11 0 11 3 5000;
% 18 60 34 1 34 0 60 0 60 34 5000;
% 19 45 25 1 25 0 45 0 45 25 5000;
% 20 18 3 1 3 0 18 0 18 3 5000;
% 21 14 8 1 8 0 14 0 14 8 5000;
% 22 10 5 1 5 0 10 0 10 5 5000;
% 23 7 3 1 3 0 7 0 7 3 5000;
% 24 13 0 1 0 0 13 0 13 0 5000;
% 25 0 0 1 0 0 0 0 0 0 5000;
% 26 0 0 1 0 0 0 0 0 0 5000;
% 27 71 13 1 13 0 71 0 71 13 5000;
% 28 17 7 1 7 0 17 0 17 7 5000;
% 29 24 4 1 4 0 24 0 24 4 5000;
% 30 0 0 1 0 0 0 0 0 0 5000;
% 31 43 27 1 27 0 43 0 43 27 5000;
% 32 59 23 1 23 0 59 0 59 23 5000;
% 33 23 9 1 9 0 23 0 23 9 5000;
% 34 59 26 1 26 0 59 0 59 26 5000;
% 35 33 9 1 9 0 33 0 33 9 5000;
% 36 31 17 1 17 0 31 0 31 17 5000;
% 37 0 0 1 0 0 0 0 0 0 5000;
% 38 0 0 1 0 0 0 0 0 0 5000;
% 39 27 11 1 11 0 27 0 27 11 5000;
% 40 66 23 1 23 0 66 0 66 23 5000;
% 41 37 10 1 10 0 37 0 37 10 5000;
% 42 96 23 1 23 0 96 0 96 23 5000;
% 43 18 7 1 7 0 18 0 18 7 5000;
% 44 16 8 1 8 0 16 0 16 8 5000;
% 45 53 22 1 22 0 53 0 53 22 5000;
% 46 28 10 1 10 0 28 0 28 10 5000;
% 47 34 0 1 0 0 34 0 34 0 5000;
% 48 20 11 1 11 0 20 0 20 11 5000;
% 49 87 30 1 30 0 87 0 87 30 5000;
% 50 17 4 1 4 0 17 0 17 4 5000;
% 51 17 8 1 8 0 17 0 17 8 5000;
% 52 18 5 1 5 0 18 0 18 5 5000;
% 53 23 11 1 11 0 23 0 23 11 5000;
% 54 113 32 1 32 0 113 0 113 32 5000;
% 55 63 22 1 22 0 63 0 63 22 5000;
% 56 84 18 1 18 0 84 0 84 18 5000;
% 57 12 3 1 3 0 12 0 12 3 5000;
% 58 12 3 1 3 0 12 0 12 3 5000;
% 59 277 113 1 113 0 277 0 277 113 5000;
% 60 78 3 1 3 0 78 0 78 3 5000;
% 61 0 0 1 0 0 0 0 0 0 5000;
% 62 77 14 1 14 0 77 0 77 14 5000;
% 63 0 0 1 0 0 0 0 0 0 5000;
% 64 0 0 1 0 0 0 0 0 0 5000;
% 65 0 0 1 0 0 0 0 0 0 5000;
% 66 39 18 1 18 0 39 0 39 18 5000;
% 67 28 7 1 7 0 28 0 28 7 5000;
% 68 0 0 1 0 0 0 0 0 0 5000;
% 69 0 0 1 0 0 0 0 0 0 5000;
% 70 66 20 1 20 0 66 0 66 20 5000;
% 71 0 0 1 0 0 0 0 0 0 5000;
% 72 12 0 1 0 0 12 0 12 0 5000;
% 73 6 0 1 0 0 6 0 6 0 5000;
% 74 68 27 1 27 0 68 0 68 27 5000;
% 75 47 11 1 11 0 47 0 47 11 5000;
% 76 68 36 1 36 0 68 0 68 36 5000;
% 77 61 28 1 28 0 61 0 61 28 5000;
% 78 71 26 1 26 0 71 0 71 26 5000;
% 79 39 32 1 32 0 39 0 39 32 5000;
% 80 130 26 1 26 0 130 0 130 26 5000;
% 81 0 0 1 0 0 0 0 0 0 5000;
% 82 54 27 1 27 0 54 0 54 27 5000;
% 83 20 10 1 10 0 20 0 20 10 5000;
% 84 11 7 1 7 0 11 0 11 7 5000;
% 85 24 15 1 15 0 24 0 24 15 5000;
% 86 21 10 1 10 0 21 0 21 10 5000;
% 87 0 0 1 0 0 0 0 0 0 5000;
% 88 48 10 1 10 0 48 0 48 10 5000;
% 89 0 0 1 0 0 0 0 0 0 5000;
% 90 163 42 1 42 0 163 0 163 42 5000;
% 91 10 0 1 0 0 10 0 10 0 5000;
% 92 65 10 1 10 0 65 0 65 10 5000;
% 93 12 7 1 7 0 12 0 12 7 5000;
% 94 30 16 1 16 0 30 0 30 16 5000;
% 95 42 31 1 31 0 42 0 42 31 5000;
% 96 38 15 1 15 0 38 0 38 15 5000;
% 97 15 9 1 9 0 15 0 15 9 5000;
% 98 34 8 1 8 0 34 0 34 8 5000;
% 99 42 0 1 0 0 42 0 42 0 5000;
% 100 37 18 1 18 0 37 0 37 18 5000;
% 101 22 15 1 15 0 22 0 22 15 5000;
% 102 5 3 1 3 0 5 0 5 3 5000;
% 103 23 16 1 16 0 23 0 23 16 5000;
% 104 38 25 1 25 0 38 0 38 25 5000;
% 105 31 26 1 26 0 31 0 31 26 5000;
% 106 43 16 1 16 0 43 0 43 16 5000;
% 107 50 12 1 12 0 50 0 50 12 5000;
% 108 2 1 1 1 0 2 0 2 1 5000;
% 109 8 3 1 3 0 8 0 8 3 5000;
% 110 39 30 1 30 0 39 0 39 30 5000;
% 111 0 0 1 0 0 0 0 0 0 5000;
% 112 68 13 1 13 0 68 0 68 13 5000;
% 113 6 0 1 0 0 6 0 6 0 5000;
% 114 8 3 1 3 0 8 0 8 3 5000;
% 115 22 7 1 7 0 22 0 22 7 5000;
% 116 184 0 1 0 0 184 0 184 0 5000;
% 117 20 8 1 8 0 20 0 20 8 5000;
% 118 33 15 1 15 0 33 0 33 15 5000;
% ];
%column_names% load_bus pref qref status qmax qmin pmax pmin prated qrated voll
mpc.load = [
1 51 27 1 27 0 51 51 51 27 5000;
2 20 9 1 9 0 20 20 20 9 5000;
3 39 10 1 10 0 39 39 39 10 5000;
4 39 12 1 12 0 39 39 39 12 5000;
5 0 0 1 0 0 0 0 0 0 5000;
6 52 22 1 22 0 52 52 52 22 5000;
7 19 2 1 2 0 19 19 19 2 5000;
8 28 0 1 0 0 28 28 28 0 5000;
9 0 0 1 0 0 0 0 0 0 5000;
10 0 0 1 0 0 0 0 0 0 5000;
11 70 23 1 23 0 70 70 70 23 5000;
12 47 10 1 10 0 47 47 47 10 5000;
13 34 16 1 16 0 34 34 34 16 5000;
14 14 1 1 1 0 14 14 14 1 5000;
15 90 30 1 30 0 90 90 90 30 5000;
16 25 10 1 10 0 25 25 25 10 5000;
17 11 3 1 3 0 11 11 11 3 5000;
18 60 34 1 34 0 60 60 60 34 5000;
19 45 25 1 25 0 45 45 45 25 5000;
20 18 3 1 3 0 18 18 18 3 5000;
21 14 8 1 8 0 14 14 14 8 5000;
22 10 5 1 5 0 10 10 10 5 5000;
23 7 3 1 3 0 7 7 7 3 5000;
24 13 0 1 0 0 13 13 13 0 5000;
25 0 0 1 0 0 0 0 0 0 5000;
26 0 0 1 0 0 0 0 0 0 5000;
27 71 13 1 13 0 71 71 71 13 5000;
28 17 7 1 7 0 17 17 17 7 5000;
29 24 4 1 4 0 24 24 24 4 5000;
30 0 0 1 0 0 0 0 0 0 5000;
31 43 27 1 27 0 43 43 43 27 5000;
32 59 23 1 23 0 59 59 59 23 5000;
33 23 9 1 9 0 23 23 23 9 5000;
34 59 26 1 26 0 59 59 59 26 5000;
35 33 9 1 9 0 33 33 33 9 5000;
36 31 17 1 17 0 31 31 31 17 5000;
37 0 0 1 0 0 0 0 0 0 5000;
38 0 0 1 0 0 0 0 0 0 5000;
39 27 11 1 11 0 27 27 27 11 5000;
40 66 23 1 23 0 66 66 66 23 5000;
41 37 10 1 10 0 37 37 37 10 5000;
42 96 23 1 23 0 96 96 96 23 5000;
43 18 7 1 7 0 18 18 18 7 5000;
44 16 8 1 8 0 16 16 16 8 5000;
45 53 22 1 22 0 53 53 53 22 5000;
46 28 10 1 10 0 28 28 28 10 5000;
47 34 0 1 0 0 34 34 34 0 5000;
48 20 11 1 11 0 20 20 20 11 5000;
49 87 30 1 30 0 87 87 87 30 5000;
50 17 4 1 4 0 17 17 17 4 5000;
51 17 8 1 8 0 17 17 17 8 5000;
52 18 5 1 5 0 18 18 18 5 5000;
53 23 11 1 11 0 23 23 23 11 5000;
54 113 32 1 32 0 113 113 113 32 5000;
55 63 22 1 22 0 63 63 63 22 5000;
56 84 18 1 18 0 84 84 84 18 5000;
57 12 3 1 3 0 12 12 12 3 5000;
58 12 3 1 3 0 12 12 12 3 5000;
59 277 113 1 113 0 277 277 277 113 5000;
60 78 3 1 3 0 78 78 78 3 5000;
61 0 0 1 0 0 0 0 0 0 5000;
62 77 14 1 14 0 77 77 77 14 5000;
63 0 0 1 0 0 0 0 0 0 5000;
64 0 0 1 0 0 0 0 0 0 5000;
65 0 0 1 0 0 0 0 0 0 5000;
66 39 18 1 18 0 39 39 39 18 5000;
67 28 7 1 7 0 28 28 28 7 5000;
68 0 0 1 0 0 0 0 0 0 5000;
69 0 0 1 0 0 0 0 0 0 5000;
70 66 20 1 20 0 66 66 66 20 5000;
71 0 0 1 0 0 0 0 0 0 5000;
72 12 0 1 0 0 12 12 12 0 5000;
73 6 0 1 0 0 6 6 6 0 5000;
74 68 27 1 27 0 68 68 68 27 5000;
75 47 11 1 11 0 47 47 47 11 5000;
76 68 36 1 36 0 68 68 68 36 5000;
77 61 28 1 28 0 61 61 61 28 5000;
78 71 26 1 26 0 71 71 71 26 5000;
79 39 32 1 32 0 39 39 39 32 5000;
80 130 26 1 26 0 130 130 130 26 5000;
81 0 0 1 0 0 0 0 0 0 5000;
82 54 27 1 27 0 54 54 54 27 5000;
83 20 10 1 10 0 20 20 20 10 5000;
84 11 7 1 7 0 11 11 11 7 5000;
85 24 15 1 15 0 24 24 24 15 5000;
86 21 10 1 10 0 21 21 21 10 5000;
87 0 0 1 0 0 0 0 0 0 5000;
88 48 10 1 10 0 48 48 48 10 5000;
89 0 0 1 0 0 0 0 0 0 5000;
90 163 42 1 42 0 163 163 163 42 5000;
91 10 0 1 0 0 10 10 10 0 5000;
92 65 10 1 10 0 65 65 65 10 5000;
93 12 7 1 7 0 12 12 12 7 5000;
94 30 16 1 16 0 30 30 30 16 5000;
95 42 31 1 31 0 42 42 42 31 5000;
96 38 15 1 15 0 38 38 38 15 5000;
97 15 9 1 9 0 15 15 15 9 5000;
98 34 8 1 8 0 34 34 34 8 5000;
99 42 0 1 0 0 42 42 42 0 5000;
100 37 18 1 18 0 37 37 37 18 5000;
101 22 15 1 15 0 22 22 22 15 5000;
102 5 3 1 3 0 5 5 5 3 5000;
103 23 16 1 16 0 23 23 23 16 5000;
104 38 25 1 25 0 38 38 38 25 5000;
105 31 26 1 26 0 31 31 31 26 5000;
106 43 16 1 16 0 43 43 43 16 5000;
107 50 12 1 12 0 50 50 50 12 5000;
108 2 1 1 1 0 2 2 2 1 5000;
109 8 3 1 3 0 8 8 8 3 5000;
110 39 30 1 30 0 39 39 39 30 5000;
111 0 0 1 0 0 0 0 0 0 5000;
112 68 13 1 13 0 68 68 68 13 5000;
113 6 0 1 0 0 6 6 6 0 5000;
114 8 3 1 3 0 8 8 8 3 5000;
115 22 7 1 7 0 22 22 22 7 5000;
116 184 0 1 0 0 184 184 184 0 5000;
117 20 8 1 8 0 20 20 20 8 5000;
118 33 15 1 15 0 33 33 33 15 5000;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 0 14.9997417255247 15 -5 1.03288369946984 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.24844800435941 0 0.00859136172144137 0;
4 0 48.0270218683761 300 -300 1.05695012382517 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.21793523850317 0 0 0;
6 0 27.1880857018100 50 -13 1.05499580425794 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.22335689938984 0 0 0;
8 0 -71.6682405352844 300 -300 1.04466682405503 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.21290118016473 0 0 0;
10 8.86071568344016e-06 -145.123394030959 200 -147 1.03536771828475 100 1 663 0 0 0 0 0 0 0 0 0 0 0 0 0 0.250612149624416 0 0;
12 286.999993156386 57.5003395511161 120 -35 1.05973944054506 100 1 287 0 0 0 0 0 0 0 0 0 0 0 0 0.323752692295418 0 0 0;
15 0 29.9942990485805 30 -10 1.04940836749001 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.23025666700981 0 0.00149476263972702 0;
18 0 43.4842966485054 50 -16 1.05267783100213 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.22514524876027 0 0 0;
19 0 23.9986608004092 24 -8 1.04788669601264 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.23087181065147 0 0.00221758848196707 0;
24 0 9.36215790837624 300 -300 1.05681894894829 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.12455966442146 0 0 0;
25 266.999987550377 -46.9997605040253 134 -47 1.05999996179115 100 1 267 0 0 0 0 0 0 0 0 0 0 0 0 0.178253297700177 0 0 0.00937191736763971;
26 286.792939498662 -25.0598375854770 226 -226 1.02523576433431 100 1 451 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
27 0 30.4924451513644 300 -300 1.04144000209556 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.19350168232165 0 0 0;
31 22.9999944080875 11.9994201377314 12 -12 1.03445766187313 100 1 23 0 0 0 0 0 0 0 0 0 0 0 0 0.397288046413249 0 0.00505725631804230 0;
32 0 35.9955105267097 42 -14 1.04236567171749 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.19733908170910 0 0 0;
34 0 23.9998142046791 24 -8 1.05774922366741 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.22060548968399 0 0.00943165250919168 0;
36 0 23.9998222354178 24 -8 1.05569982463604 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.22499774233106 0 0.00995128661362497 0;
40 0 49.9243479935188 300 -300 1.02959961799499 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.30163159775808 0 0 0;
42 0 26.3190858449638 300 -300 1.01040066581342 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.32237136628673 0 0 0;
46 1.05193460988788e-05 7.71995680986653 26 -26 1.01211143247386 100 1 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0.210557078358170 0 0;
49 231.999989293540 -11.0636550417525 116 -85 1.02322304072397 100 1 232 0 0 0 0 0 0 0 0 0 0 0 0 0.207413586808980 0 0 0;
54 3.97148408283752e-05 55.7905020286754 75 -75 1.01030823522666 100 1 150 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0556029515191602 0 0;
55 0 22.9977061881480 23 -8 1.01051257238627 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.26358026733824 0 0.00146380253230816 0;
56 0 14.9968467913789 15 -8 1.00980383652585 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.26631259273624 0 0 0;
59 7.24166752665161e-06 140.999716910516 141 -60 1.04824020941918 100 1 282 0 0 0 0 0 0 0 0 0 0 0 0 0 0.305881613671974 0.0104037889214038 0;
61 1.03062279179409e-05 124.391093326423 126 -100 1.05999985743989 100 1 251 0 0 0 0 0 0 0 0 0 0 0 0 0 0.214790885177788 0 0;
62 0 -19.7847244444268 20 -20 1.04639459108837 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.00974104885317 0 0 0;
65 295.353980426645 119.758384391229 200 -67 1.02986509519456 100 1 608 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
66 829.461138674558 -66.9999484333984 200 -67 1.05999997121113 100 1 865 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0439390963463592;
69 880.999995292750 -114.499398075079 300 -300 1.05999997725914 100 1 881 0 0 0 0 0 0 0 0 0 0 0 0 0.471400767471870 0 0 0;
70 0 31.9990449186736 32 -10 1.03170086765134 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.08539374844583 0 0.00246809807332319 0;
72 0 -1.83538915763558 100 -100 1.04424751090098 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.11286968972446 0 0 0
73 0 5.03658464452433 100 -100 1.03744707964232 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.09197021091226 0 0 0
74 0 8.99978993414160 9 -6 1.01047857270712 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.09560881366347 0 0.0106525627918897 0;
76 0 22.9998669140759 23 -8 0.999595939249165 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.09276177940132 0 0.0167449810075151 0;
77 0 69.9989828171801 70 -20 1.04410294711087 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.02952379781969 0 0.00218630408960811 0;
80 445.773015434727 -0.203740114231859 280 -165 1.05999986881372 100 1 739 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
85 0 22.9998696583627 23 -8 1.04906666850228 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.886497795718862 0 0.0169195006981392 0;
87 4.61026159022512e-06 3.99984435729711 4 -4 1.05481336448442 100 1 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0.481678177131928 0.0140780248285474 0;
89 568.006174778810 -31.5618896595727 300 -210 1.05999995920182 100 1 845 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;
90 0 76.2129632358894 300 -300 1.05125611369805 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.888889380549321 0 0 0;
91 0 -8.92468094997580 100 -100 1.04436121264209 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.957802785257935 0 0 0;
92 0 -2.99913339851926 9 -3 1.04495131124305 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.05654774525677 0 0 0.00252168234350669;
99 0 -0.197135510538153 100 -100 1.05160277956836 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.05987428624847 0 0 0;
100 186.388253896434 49.8154657011957 151 -50 1.05328008751790 100 1 301 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
103 97.9999945290567 29.9782682651573 40 -15 1.05037248550051 100 1 98 0 0 0 0 0 0 0 0 0 0 0 0 0.405745630001528 0 0 0;
104 0 22.9934955498827 23 -8 1.03707781338136 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.12873564924603 0 0.00139667325494156 0;
105 0 22.9553835237027 23 -8 1.03455274456496 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.14105132371377 0 0 0;
107 0 7.01988276955098 200 -200 1.02207426444085 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.17190932274677 0 0 0;
110 0 22.9986168840287 23 -8 1.02319321282162 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.17895861797322 0 0.00208936602433251 0;
111 9.81873410053662e-05 3.17606488116643 67 -67 1.02630415962014 100 1 133 0 0 0 0 0 0 0 0 0 0 0 0 0 0.0219266049270711 0 0;
112 0 16.4020683978294 1000 -100 1.00974179505731 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.21871290892915 0 0 0;
113 0 -3.79997987172122 200 -100 1.05702448475848 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.20326883287322 0 0 0;
116 0 -19.8802030330715 1000 -1000 1.01952244228330 100 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0.980488745738085 0 0 0;
];
%column_names% prated qrated pref qref
mpc.gen_rated = [
0 15 0 15;
0 300 0 48.4100000000000;
0 50 0 27.2540000000000;
0 300 0 -71.8670000000000;
663 200 0 -145.350000000000;
287 120 287 57.8300000000000;
0 30 0 30;
0 50 0 43.3310000000000;
0 24 0 24;
0 300 0 9.36500000000000;
267 134 267 -47;
451 226 286.801000000000 -25.0580000000000;
0 300 0 30.4800000000000;
23 12 23 12;
0 42 0 35.9790000000000;
0 24 0 24;
0 24 0 24;
0 300 0 49.9430000000000;
0 300 0 26.3210000000000;
51 26 0 7.72000000000000;
232 116 232 -11.0100000000000;
150 75 0 55.7060000000000;
0 23 0 23;
0 15 0 15;
282 141 0 141;
251 126 0 124.577000000000;
0 20 0 -19.9990000000000;
608 200 295.338000000000 119.802000000000;
865 200 829.470000000000 -67;
881 300 881 -114.523000000000;
0 32 0 32;
0 100 0 -1.83500000000000;
0 100 0 5.03600000000000;
0 9 0 9;
0 23 0 23;
0 70 0 70;
739 280 445.771000000000 -0.216000000000000;
0 23 0 23;
7 4 0 4;
845 300 568.006000000000 -31.5640000000000;
0 300 0 76.2140000000000;
0 100 0 -8.92300000000000;
0 9 0 -3;
0 100 0 -0.197000000000000;
301 151 186.388000000000 49.8030000000000;
98 40 98 29.9590000000000;
0 23 0 23;
0 23 0 23;
0 200 0 7.00500000000000;
0 23 0 23;
133 67 0 3.17300000000000;
0 1000 0 16.3990000000000;
0 200 0 -3.98400000000000;
0 1000 0 -19.8640000000000
];
%% generator cost data
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.463389 0.000000; % NG
2 0.0 0.0 3 0.000000 0.889054 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.929688 0.000000; % NG
2 0.0 0.0 3 0.000000 1.118121 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.814446 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.513792 0.000000; % NG
2 0.0 0.0 3 0.000000 1.071413 0.000000; % NG
2 0.0 0.0 3 0.000000 1.324712 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.426207 0.000000; % NG
2 0.0 0.0 3 0.000000 1.245208 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.969762 0.000000; % NG
2 0.0 0.0 3 0.000000 0.865713 0.000000; % COW
2 0.0 0.0 3 0.000000 0.518513 0.000000; % COW
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.006636 0.000000; % COW
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.381184 0.000000; % NG
2 0.0 0.0 3 0.000000 0.793496 0.000000; % COW
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.066562 0.000000; % NG
2 0.0 0.0 3 0.000000 0.691193 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 1.200887 0.000000; % NG
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
2 0.0 0.0 3 0.000000 0.000000 0.000000; % SYNC
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [
1 2 0.0303 0.0999 0.0254 151 151 151 0.0 0.0 1 -30.0 30.0;
1 3 0.0129 0.0424 0.01082 151 151 151 0.0 0.0 1 -30.0 30.0;
4 5 0.00176 0.00798 0.0021 176 176 176 0.0 0.0 1 -30.0 30.0;
3 5 0.0241 0.108 0.0284 175 175 175 0.0 0.0 1 -30.0 30.0;
5 6 0.0119 0.054 0.01426 176 176 176 0.0 0.0 1 -30.0 30.0;
6 7 0.00459 0.0208 0.0055 176 176 176 0.0 0.0 1 -30.0 30.0;
8 9 0.00244 0.0305 1.162 711 711 711 0.0 0.0 1 -30.0 30.0;
8 5 0.0 0.0267 0.0 1099 1099 1099 0.985 0.0 1 -30.0 30.0;
9 10 0.00258 0.0322 1.23 710 710 710 0.0 0.0 1 -30.0 30.0;
4 11 0.0209 0.0688 0.01748 151 151 151 0.0 0.0 1 -30.0 30.0;
5 11 0.0203 0.0682 0.01738 152 152 152 0.0 0.0 1 -30.0 30.0;
11 12 0.00595 0.0196 0.00502 151 151 151 0.0 0.0 1 -30.0 30.0;
2 12 0.0187 0.0616 0.01572 151 151 151 0.0 0.0 1 -30.0 30.0;
3 12 0.0484 0.16 0.0406 151 151 151 0.0 0.0 1 -30.0 30.0;
7 12 0.00862 0.034 0.00874 164 164 164 0.0 0.0 1 -30.0 30.0;
11 13 0.02225 0.0731 0.01876 151 151 151 0.0 0.0 1 -30.0 30.0;
12 14 0.0215 0.0707 0.01816 151 151 151 0.0 0.0 1 -30.0 30.0;
13 15 0.0744 0.2444 0.06268 115 115 115 0.0 0.0 1 -30.0 30.0;
14 15 0.0595 0.195 0.0502 144 144 144 0.0 0.0 1 -30.0 30.0;
12 16 0.0212 0.0834 0.0214 164 164 164 0.0 0.0 1 -30.0 30.0;
15 17 0.0132 0.0437 0.0444 151 151 151 0.0 0.0 1 -30.0 30.0;
16 17 0.0454 0.1801 0.0466 158 158 158 0.0 0.0 1 -30.0 30.0;
17 18 0.0123 0.0505 0.01298 167 167 167 0.0 0.0 1 -30.0 30.0;
18 19 0.01119 0.0493 0.01142 173 173 173 0.0 0.0 1 -30.0 30.0;
19 20 0.0252 0.117 0.0298 178 178 178 0.0 0.0 1 -30.0 30.0;
15 19 0.012 0.0394 0.0101 151 151 151 0.0 0.0 1 -30.0 30.0;
20 21 0.0183 0.0849 0.0216 177 177 177 0.0 0.0 1 -30.0 30.0;
21 22 0.0209 0.097 0.0246 178 178 178 0.0 0.0 1 -30.0 30.0;
22 23 0.0342 0.159 0.0404 178 178 178 0.0 0.0 1 -30.0 30.0;
23 24 0.0135 0.0492 0.0498 158 158 158 0.0 0.0 1 -30.0 30.0;
23 25 0.0156 0.08 0.0864 186 186 186 0.0 0.0 1 -30.0 30.0;
26 25 0.0 0.0382 0.0 768 768 768 0.96 0.0 1 -30.0 30.0;
25 27 0.0318 0.163 0.1764 177 177 177 0.0 0.0 1 -30.0 30.0;
27 28 0.01913 0.0855 0.0216 174 174 174 0.0 0.0 1 -30.0 30.0;
28 29 0.0237 0.0943 0.0238 165 165 165 0.0 0.0 1 -30.0 30.0;
30 17 0.0 0.0388 0.0 756 756 756 0.96 0.0 1 -30.0 30.0;
8 30 0.00431 0.0504 0.514 580 580 580 0.0 0.0 1 -30.0 30.0;
26 30 0.00799 0.086 0.908 340 340 340 0.0 0.0 1 -30.0 30.0;
17 31 0.0474 0.1563 0.0399 151 151 151 0.0 0.0 1 -30.0 30.0;
29 31 0.0108 0.0331 0.0083 146 146 146 0.0 0.0 1 -30.0 30.0;
23 32 0.0317 0.1153 0.1173 158 158 158 0.0 0.0 1 -30.0 30.0;
31 32 0.0298 0.0985 0.0251 151 151 151 0.0 0.0 1 -30.0 30.0;
27 32 0.0229 0.0755 0.01926 151 151 151 0.0 0.0 1 -30.0 30.0;
15 33 0.038 0.1244 0.03194 150 150 150 0.0 0.0 1 -30.0 30.0;
19 34 0.0752 0.247 0.0632 114 114 114 0.0 0.0 1 -30.0 30.0;
35 36 0.00224 0.0102 0.00268 176 176 176 0.0 0.0 1 -30.0 30.0;
35 37 0.011 0.0497 0.01318 175 175 175 0.0 0.0 1 -30.0 30.0;
33 37 0.0415 0.142 0.0366 154 154 154 0.0 0.0 1 -30.0 30.0;
34 36 0.00871 0.0268 0.00568 146 146 146 0.0 0.0 1 -30.0 30.0;
34 37 0.00256 0.0094 0.00984 159 159 159 0.0 0.0 1 -30.0 30.0;
38 37 0.0 0.0375 0.0 783 783 783 0.935 0.0 1 -30.0 30.0;
37 39 0.0321 0.106 0.027 151 151 151 0.0 0.0 1 -30.0 30.0;
37 40 0.0593 0.168 0.042 140 140 140 0.0 0.0 1 -30.0 30.0;
30 38 0.00464 0.054 0.422 542 542 542 0.0 0.0 1 -30.0 30.0;
39 40 0.0184 0.0605 0.01552 151 151 151 0.0 0.0 1 -30.0 30.0;
40 41 0.0145 0.0487 0.01222 152 152 152 0.0 0.0 1 -30.0 30.0;
40 42 0.0555 0.183 0.0466 151 151 151 0.0 0.0 1 -30.0 30.0;
41 42 0.041 0.135 0.0344 151 151 151 0.0 0.0 1 -30.0 30.0;
43 44 0.0608 0.2454 0.06068 117 117 117 0.0 0.0 1 -30.0 30.0;
34 43 0.0413 0.1681 0.04226 167 167 167 0.0 0.0 1 -30.0 30.0;
44 45 0.0224 0.0901 0.0224 166 166 166 0.0 0.0 1 -30.0 30.0;
45 46 0.04 0.1356 0.0332 153 153 153 0.0 0.0 1 -30.0 30.0;
46 47 0.038 0.127 0.0316 152 152 152 0.0 0.0 1 -30.0 30.0;
46 48 0.0601 0.189 0.0472 148 148 148 0.0 0.0 1 -30.0 30.0;
47 49 0.0191 0.0625 0.01604 150 150 150 0.0 0.0 1 -30.0 30.0;
42 49 0.0715 0.323 0.086 89 89 89 0.0 0.0 1 -30.0 30.0;
42 49 0.0715 0.323 0.086 89 89 89 0.0 0.0 1 -30.0 30.0;
45 49 0.0684 0.186 0.0444 138 138 138 0.0 0.0 1 -30.0 30.0;
48 49 0.0179 0.0505 0.01258 140 140 140 0.0 0.0 1 -30.0 30.0;
49 50 0.0267 0.0752 0.01874 140 140 140 0.0 0.0 1 -30.0 30.0;
49 51 0.0486 0.137 0.0342 140 140 140 0.0 0.0 1 -30.0 30.0;
51 52 0.0203 0.0588 0.01396 142 142 142 0.0 0.0 1 -30.0 30.0;
52 53 0.0405 0.1635 0.04058 166 166 166 0.0 0.0 1 -30.0 30.0;
53 54 0.0263 0.122 0.031 177 177 177 0.0 0.0 1 -30.0 30.0;
49 54 0.073 0.289 0.0738 99 99 99 0.0 0.0 1 -30.0 30.0;
49 54 0.0869 0.291 0.073 97 97 97 0.0 0.0 1 -30.0 30.0;
54 55 0.0169 0.0707 0.0202 169 169 169 0.0 0.0 1 -30.0 30.0;
54 56 0.00275 0.00955 0.00732 155 155 155 0.0 0.0 1 -30.0 30.0;
55 56 0.00488 0.0151 0.00374 146 146 146 0.0 0.0 1 -30.0 30.0;
56 57 0.0343 0.0966 0.0242 140 140 140 0.0 0.0 1 -30.0 30.0;
50 57 0.0474 0.134 0.0332 140 140 140 0.0 0.0 1 -30.0 30.0;
56 58 0.0343 0.0966 0.0242 140 140 140 0.0 0.0 1 -30.0 30.0;
51 58 0.0255 0.0719 0.01788 140 140 140 0.0 0.0 1 -30.0 30.0;
54 59 0.0503 0.2293 0.0598 125 125 125 0.0 0.0 1 -30.0 30.0;
56 59 0.0825 0.251 0.0569 112 112 112 0.0 0.0 1 -30.0 30.0;
56 59 0.0803 0.239 0.0536 117 117 117 0.0 0.0 1 -30.0 30.0;
55 59 0.04739 0.2158 0.05646 133 133 133 0.0 0.0 1 -30.0 30.0;
59 60 0.0317 0.145 0.0376 176 176 176 0.0 0.0 1 -30.0 30.0;
59 61 0.0328 0.15 0.0388 176 176 176 0.0 0.0 1 -30.0 30.0;
60 61 0.00264 0.0135 0.01456 186 186 186 0.0 0.0 1 -30.0 30.0;
60 62 0.0123 0.0561 0.01468 176 176 176 0.0 0.0 1 -30.0 30.0;
61 62 0.00824 0.0376 0.0098 176 176 176 0.0 0.0 1 -30.0 30.0;
63 59 0.0 0.0386 0.0 760 760 760 0.96 0.0 1 -30.0 30.0;
63 64 0.00172 0.02 0.216 687 687 687 0.0 0.0 1 -30.0 30.0;
64 61 0.0 0.0268 0.0 1095 1095 1095 0.985 0.0 1 -30.0 30.0;
38 65 0.00901 0.0986 1.046 297 297 297 0.0 0.0 1 -30.0 30.0;
64 65 0.00269 0.0302 0.38 675 675 675 0.0 0.0 1 -30.0 30.0;
49 66 0.018 0.0919 0.0248 186 186 186 0.0 0.0 1 -30.0 30.0;
49 66 0.018 0.0919 0.0248 186 186 186 0.0 0.0 1 -30.0 30.0;
62 66 0.0482 0.218 0.0578 132 132 132 0.0 0.0 1 -30.0 30.0;
62 67 0.0258 0.117 0.031 176 176 176 0.0 0.0 1 -30.0 30.0;
65 66 0.0 0.037 0.0 793 793 793 0.935 0.0 1 -30.0 30.0;
66 67 0.0224 0.1015 0.02682 176 176 176 0.0 0.0 1 -30.0 30.0;
65 68 0.00138 0.016 0.638 686 686 686 0.0 0.0 1 -30.0 30.0;
47 69 0.0844 0.2778 0.07092 102 102 102 0.0 0.0 1 -30.0 30.0;
49 69 0.0985 0.324 0.0828 87 87 87 0.0 0.0 1 -30.0 30.0;
68 69 0.0 0.037 0.0 793 793 793 0.935 0.0 1 -30.0 30.0;
69 70 0.03 0.127 0.122 170 170 170 0.0 0.0 1 -30.0 30.0;
24 70 0.00221 0.4115 0.10198 72 72 72 0.0 0.0 1 -30.0 30.0;
70 71 0.00882 0.0355 0.00878 166 166 166 0.0 0.0 1 -30.0 30.0;
24 72 0.0488 0.196 0.0488 146 146 146 0.0 0.0 1 -30.0 30.0;
71 72 0.0446 0.18 0.04444 159 159 159 0.0 0.0 1 -30.0 30.0;
71 73 0.00866 0.0454 0.01178 188 188 188 0.0 0.0 1 -30.0 30.0;
70 74 0.0401 0.1323 0.03368 151 151 151 0.0 0.0 1 -30.0 30.0;
70 75 0.0428 0.141 0.036 151 151 151 0.0 0.0 1 -30.0 30.0;
69 75 0.0405 0.122 0.124 145 145 145 0.0 0.0 1 -30.0 30.0;
74 75 0.0123 0.0406 0.01034 151 151 151 0.0 0.0 1 -30.0 30.0;
76 77 0.0444 0.148 0.0368 152 152 152 0.0 0.0 1 -30.0 30.0;
69 77 0.0309 0.101 0.1038 150 150 150 0.0 0.0 1 -30.0 30.0;
75 77 0.0601 0.1999 0.04978 141 141 141 0.0 0.0 1 -30.0 30.0;
77 78 0.00376 0.0124 0.01264 151 151 151 0.0 0.0 1 -30.0 30.0;
78 79 0.00546 0.0244 0.00648 174 174 174 0.0 0.0 1 -30.0 30.0;
77 80 0.017 0.0485 0.0472 141 141 141 0.0 0.0 1 -30.0 30.0;
77 80 0.0294 0.105 0.0228 157 157 157 0.0 0.0 1 -30.0 30.0;
79 80 0.0156 0.0704 0.0187 175 175 175 0.0 0.0 1 -30.0 30.0;
68 81 0.00175 0.0202 0.808 684 684 684 0.0 0.0 1 -30.0 30.0;
81 80 0.0 0.037 0.0 793 793 793 0.935 0.0 1 -30.0 30.0;
77 82 0.0298 0.0853 0.08174 141 141 141 0.0 0.0 1 -30.0 30.0;
82 83 0.0112 0.03665 0.03796 150 150 150 0.0 0.0 1 -30.0 30.0;
83 84 0.0625 0.132 0.0258 122 122 122 0.0 0.0 1 -30.0 30.0;
83 85 0.043 0.148 0.0348 154 154 154 0.0 0.0 1 -30.0 30.0;
84 85 0.0302 0.0641 0.01234 122 122 122 0.0 0.0 1 -30.0 30.0;
85 86 0.035 0.123 0.0276 156 156 156 0.0 0.0 1 -30.0 30.0;
86 87 0.02828 0.2074 0.0445 141 141 141 0.0 0.0 1 -30.0 30.0;
85 88 0.02 0.102 0.0276 186 186 186 0.0 0.0 1 -30.0 30.0;
85 89 0.0239 0.173 0.047 168 168 168 0.0 0.0 1 -30.0 30.0;
88 89 0.0139 0.0712 0.01934 186 186 186 0.0 0.0 1 -30.0 30.0;
89 90 0.0518 0.188 0.0528 151 151 151 0.0 0.0 1 -30.0 30.0;
89 90 0.0238 0.0997 0.106 169 169 169 0.0 0.0 1 -30.0 30.0;
90 91 0.0254 0.0836 0.0214 151 151 151 0.0 0.0 1 -30.0 30.0;
89 92 0.0099 0.0505 0.0548 186 186 186 0.0 0.0 1 -30.0 30.0;
89 92 0.0393 0.1581 0.0414 166 166 166 0.0 0.0 1 -30.0 30.0;
91 92 0.0387 0.1272 0.03268 151 151 151 0.0 0.0 1 -30.0 30.0;
92 93 0.0258 0.0848 0.0218 151 151 151 0.0 0.0 1 -30.0 30.0;
92 94 0.0481 0.158 0.0406 151 151 151 0.0 0.0 1 -30.0 30.0;
93 94 0.0223 0.0732 0.01876 151 151 151 0.0 0.0 1 -30.0 30.0;
94 95 0.0132 0.0434 0.0111 151 151 151 0.0 0.0 1 -30.0 30.0;
80 96 0.0356 0.182 0.0494 159 159 159 0.0 0.0 1 -30.0 30.0;
82 96 0.0162 0.053 0.0544 150 150 150 0.0 0.0 1 -30.0 30.0;
94 96 0.0269 0.0869 0.023 149 149 149 0.0 0.0 1 -30.0 30.0;
80 97 0.0183 0.0934 0.0254 186 186 186 0.0 0.0 1 -30.0 30.0;
80 98 0.0238 0.108 0.0286 176 176 176 0.0 0.0 1 -30.0 30.0;
80 99 0.0454 0.206 0.0546 140 140 140 0.0 0.0 1 -30.0 30.0;
92 100 0.0648 0.295 0.0472 98 98 98 0.0 0.0 1 -30.0 30.0;
94 100 0.0178 0.058 0.0604 150 150 150 0.0 0.0 1 -30.0 30.0;
95 96 0.0171 0.0547 0.01474 149 149 149 0.0 0.0 1 -30.0 30.0;
96 97 0.0173 0.0885 0.024 186 186 186 0.0 0.0 1 -30.0 30.0;
98 100 0.0397 0.179 0.0476 160 160 160 0.0 0.0 1 -30.0 30.0;
99 100 0.018 0.0813 0.0216 175 175 175 0.0 0.0 1 -30.0 30.0;
100 101 0.0277 0.1262 0.0328 176 176 176 0.0 0.0 1 -30.0 30.0;
92 102 0.0123 0.0559 0.01464 176 176 176 0.0 0.0 1 -30.0 30.0;
101 102 0.0246 0.112 0.0294 176 176 176 0.0 0.0 1 -30.0 30.0;
100 103 0.016 0.0525 0.0536 151 151 151 0.0 0.0 1 -30.0 30.0;
100 104 0.0451 0.204 0.0541 141 141 141 0.0 0.0 1 -30.0 30.0;
103 104 0.0466 0.1584 0.0407 153 153 153 0.0 0.0 1 -30.0 30.0;
103 105 0.0535 0.1625 0.0408 145 145 145 0.0 0.0 1 -30.0 30.0;
100 106 0.0605 0.229 0.062 124 124 124 0.0 0.0 1 -30.0 30.0;
104 105 0.00994 0.0378 0.00986 161 161 161 0.0 0.0 1 -30.0 30.0;
105 106 0.014 0.0547 0.01434 164 164 164 0.0 0.0 1 -30.0 30.0;
105 107 0.053 0.183 0.0472 154 154 154 0.0 0.0 1 -30.0 30.0;
105 108 0.0261 0.0703 0.01844 137 137 137 0.0 0.0 1 -30.0 30.0;
106 107 0.053 0.183 0.0472 154 154 154 0.0 0.0 1 -30.0 30.0;
108 109 0.0105 0.0288 0.0076 138 138 138 0.0 0.0 1 -30.0 30.0;
103 110 0.03906 0.1813 0.0461 159 159 159 0.0 0.0 1 -30.0 30.0;
109 110 0.0278 0.0762 0.0202 138 138 138 0.0 0.0 1 -30.0 30.0;
110 111 0.022 0.0755 0.02 154 154 154 0.0 0.0 1 -30.0 30.0;
110 112 0.0247 0.064 0.062 135 135 135 0.0 0.0 1 -30.0 30.0;
17 113 0.00913 0.0301 0.00768 151 151 151 0.0 0.0 1 -30.0 30.0;
32 113 0.0615 0.203 0.0518 139 139 139 0.0 0.0 1 -30.0 30.0;
32 114 0.0135 0.0612 0.01628 176 176 176 0.0 0.0 1 -30.0 30.0;
27 115 0.0164 0.0741 0.01972 175 175 175 0.0 0.0 1 -30.0 30.0;
114 115 0.0023 0.0104 0.00276 175 175 175 0.0 0.0 1 -30.0 30.0;
68 116 0.00034 0.00405 0.164 7218 7218 7218 0.0 0.0 1 -30.0 30.0;
12 117 0.0329 0.14 0.0358 170 170 170 0.0 0.0 1 -30.0 30.0;
75 118 0.0145 0.0481 0.01198 151 151 151 0.0 0.0 1 -30.0 30.0;
76 118 0.0164 0.0544 0.01356 151 151 151 0.0 0.0 1 -30.0 30.0;
];
%column_names% g_shunt shiftable shift_fr shift_to shift_fr_max shift_fr_min shift_to_max shift_to_min tappable tap_fr tap_to tap_fr_max tap_fr_min tap_to_max tap_to_min
mpc.branch_variable_transformer = [
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
];
%column_names% prob branch_id1 branch_id2 branch_id3 gen_id1 gen_id2 gen_id3
mpc.contingencies = [
0.980000000000000 0 0 0 0 0 0;
0.000107526881720430 1 0 0 0 0 0;
0.000107526881720430 2 0 0 0 0 0;
0.000107526881720430 3 0 0 0 0 0;
0.000107526881720430 4 0 0 0 0 0;
0.000107526881720430 5 0 0 0 0 0;
0.000107526881720430 6 0 0 0 0 0;
0.000107526881720430 7 0 0 0 0 0;
0.000107526881720430 8 0 0 0 0 0;
0.000107526881720430 9 0 0 0 0 0;
0.000107526881720430 10 0 0 0 0 0;
0.000107526881720430 11 0 0 0 0 0;
0.000107526881720430 12 0 0 0 0 0;
0.000107526881720430 13 0 0 0 0 0;
0.000107526881720430 14 0 0 0 0 0;
0.000107526881720430 15 0 0 0 0 0;
0.000107526881720430 16 0 0 0 0 0;
0.000107526881720430 17 0 0 0 0 0;
0.000107526881720430 18 0 0 0 0 0;
0.000107526881720430 19 0 0 0 0 0;
0.000107526881720430 20 0 0 0 0 0;
0.000107526881720430 21 0 0 0 0 0;
0.000107526881720430 22 0 0 0 0 0;
0.000107526881720430 23 0 0 0 0 0;
0.000107526881720430 24 0 0 0 0 0;
0.000107526881720430 25 0 0 0 0 0;
0.000107526881720430 26 0 0 0 0 0;
0.000107526881720430 27 0 0 0 0 0;
0.000107526881720430 28 0 0 0 0 0;
0.000107526881720430 29 0 0 0 0 0;
0.000107526881720430 30 0 0 0 0 0;
0.000107526881720430 31 0 0 0 0 0;
0.000107526881720430 32 0 0 0 0 0;
0.000107526881720430 33 0 0 0 0 0;
0.000107526881720430 34 0 0 0 0 0;
0.000107526881720430 35 0 0 0 0 0;
0.000107526881720430 36 0 0 0 0 0;
0.000107526881720430 37 0 0 0 0 0;
0.000107526881720430 38 0 0 0 0 0;
0.000107526881720430 39 0 0 0 0 0;
0.000107526881720430 40 0 0 0 0 0;
0.000107526881720430 41 0 0 0 0 0;
0.000107526881720430 42 0 0 0 0 0;
0.000107526881720430 43 0 0 0 0 0;
0.000107526881720430 44 0 0 0 0 0;
0.000107526881720430 45 0 0 0 0 0;
0.000107526881720430 46 0 0 0 0 0;
0.000107526881720430 47 0 0 0 0 0;
0.000107526881720430 48 0 0 0 0 0;
0.000107526881720430 49 0 0 0 0 0;
0.000107526881720430 50 0 0 0 0 0;
0.000107526881720430 51 0 0 0 0 0;
0.000107526881720430 52 0 0 0 0 0;
0.000107526881720430 53 0 0 0 0 0;
0.000107526881720430 54 0 0 0 0 0;
0.000107526881720430 55 0 0 0 0 0;
0.000107526881720430 56 0 0 0 0 0;
0.000107526881720430 57 0 0 0 0 0;
0.000107526881720430 58 0 0 0 0 0;
0.000107526881720430 59 0 0 0 0 0;
0.000107526881720430 60 0 0 0 0 0;
0.000107526881720430 61 0 0 0 0 0;
0.000107526881720430 62 0 0 0 0 0;
0.000107526881720430 63 0 0 0 0 0;
0.000107526881720430 64 0 0 0 0 0;
0.000107526881720430 65 0 0 0 0 0;
0.000107526881720430 66 0 0 0 0 0;
0.000107526881720430 67 0 0 0 0 0;
0.000107526881720430 68 0 0 0 0 0;
0.000107526881720430 69 0 0 0 0 0;
0.000107526881720430 70 0 0 0 0 0;
0.000107526881720430 71 0 0 0 0 0;
0.000107526881720430 72 0 0 0 0 0;
0.000107526881720430 73 0 0 0 0 0;
0.000107526881720430 74 0 0 0 0 0;
0.000107526881720430 75 0 0 0 0 0;
0.000107526881720430 76 0 0 0 0 0;
0.000107526881720430 77 0 0 0 0 0;
0.000107526881720430 78 0 0 0 0 0;
0.000107526881720430 79 0 0 0 0 0;
0.000107526881720430 80 0 0 0 0 0;
0.000107526881720430 81 0 0 0 0 0;
0.000107526881720430 82 0 0 0 0 0;
0.000107526881720430 83 0 0 0 0 0;
0.000107526881720430 84 0 0 0 0 0;
0.000107526881720430 85 0 0 0 0 0;
0.000107526881720430 86 0 0 0 0 0;
0.000107526881720430 87 0 0 0 0 0;
0.000107526881720430 88 0 0 0 0 0;
0.000107526881720430 89 0 0 0 0 0;
0.000107526881720430 90 0 0 0 0 0;
0.000107526881720430 91 0 0 0 0 0;
0.000107526881720430 92 0 0 0 0 0;
0.000107526881720430 93 0 0 0 0 0;
0.000107526881720430 94 0 0 0 0 0;
0.000107526881720430 95 0 0 0 0 0;
0.000107526881720430 96 0 0 0 0 0;
0.000107526881720430 97 0 0 0 0 0;
0.000107526881720430 98 0 0 0 0 0;
0.000107526881720430 99 0 0 0 0 0;
0.000107526881720430 100 0 0 0 0 0;
0.000107526881720430 101 0 0 0 0 0;
0.000107526881720430 102 0 0 0 0 0;
0.000107526881720430 103 0 0 0 0 0;
0.000107526881720430 104 0 0 0 0 0;
0.000107526881720430 105 0 0 0 0 0;
0.000107526881720430 106 0 0 0 0 0;
0.000107526881720430 107 0 0 0 0 0;
0.000107526881720430 108 0 0 0 0 0;
0.000107526881720430 109 0 0 0 0 0;
0.000107526881720430 110 0 0 0 0 0;
0.000107526881720430 111 0 0 0 0 0;
0.000107526881720430 112 0 0 0 0 0;
0.000107526881720430 114 0 0 0 0 0;
0.000107526881720430 115 0 0 0 0 0;
0.000107526881720430 116 0 0 0 0 0;
0.000107526881720430 117 0 0 0 0 0;
0.000107526881720430 118 0 0 0 0 0;
0.000107526881720430 119 0 0 0 0 0;
0.000107526881720430 120 0 0 0 0 0;
0.000107526881720430 121 0 0 0 0 0;
0.000107526881720430 122 0 0 0 0 0;
0.000107526881720430 123 0 0 0 0 0;
0.000107526881720430 124 0 0 0 0 0;
0.000107526881720430 125 0 0 0 0 0;
0.000107526881720430 126 0 0 0 0 0;
0.000107526881720430 127 0 0 0 0 0;
0.000107526881720430 128 0 0 0 0 0;
0.000107526881720430 129 0 0 0 0 0;
0.000107526881720430 130 0 0 0 0 0;
0.000107526881720430 131 0 0 0 0 0;
0.000107526881720430 132 0 0 0 0 0;
0.000107526881720430 134 0 0 0 0 0;
0.000107526881720430 135 0 0 0 0 0;
0.000107526881720430 136 0 0 0 0 0;
0.000107526881720430 137 0 0 0 0 0;
0.000107526881720430 138 0 0 0 0 0;
0.000107526881720430 139 0 0 0 0 0;
0.000107526881720430 140 0 0 0 0 0;
0.000107526881720430 141 0 0 0 0 0;
0.000107526881720430 142 0 0 0 0 0;
0.000107526881720430 143 0 0 0 0 0;
0.000107526881720430 144 0 0 0 0 0;
0.000107526881720430 145 0 0 0 0 0;
0.000107526881720430 146 0 0 0 0 0;
0.000107526881720430 147 0 0 0 0 0;
0.000107526881720430 148 0 0 0 0 0;
0.000107526881720430 149 0 0 0 0 0;
0.000107526881720430 150 0 0 0 0 0;
0.000107526881720430 151 0 0 0 0 0;
0.000107526881720430 152 0 0 0 0 0;
0.000107526881720430 153 0 0 0 0 0;
0.000107526881720430 154 0 0 0 0 0;
0.000107526881720430 155 0 0 0 0 0;
0.000107526881720430 156 0 0 0 0 0;
0.000107526881720430 157 0 0 0 0 0;
0.000107526881720430 158 0 0 0 0 0;
0.000107526881720430 159 0 0 0 0 0;
0.000107526881720430 160 0 0 0 0 0;
0.000107526881720430 161 0 0 0 0 0;
0.000107526881720430 162 0 0 0 0 0;
0.000107526881720430 163 0 0 0 0 0;
0.000107526881720430 164 0 0 0 0 0;
0.000107526881720430 165 0 0 0 0 0;
0.000107526881720430 166 0 0 0 0 0;
0.000107526881720430 167 0 0 0 0 0;
0.000107526881720430 168 0 0 0 0 0;
0.000107526881720430 169 0 0 0 0 0;
0.000107526881720430 170 0 0 0 0 0;
0.000107526881720430 171 0 0 0 0 0;
0.000107526881720430 172 0 0 0 0 0;
0.000107526881720430 173 0 0 0 0 0;
0.000107526881720430 174 0 0 0 0 0;
0.000107526881720430 175 0 0 0 0 0;
0.000107526881720430 176 0 0 0 0 0;
0.000107526881720430 178 0 0 0 0 0;
0.000107526881720430 179 0 0 0 0 0;
0.000107526881720430 180 0 0 0 0 0;
0.000107526881720430 181 0 0 0 0 0;
0.000107526881720430 182 0 0 0 0 0;
0.000107526881720430 185 0 0 0 0 0;
0.000107526881720430 186 0 0 0 0 0;
];
% 0.000107526881720430 113 0 0 0 0 0;
% 0.000107526881720430 133 0 0 0 0 0;
% 0.000107526881720430 177 0 0 0 0 0;
% 0.000107526881720430 183 0 0 0 0 0;
% 0.000107526881720430 184 0 0 0 0 0;
% mpc.contingencies = [
% 0.98 0 0 0 0 0 0;
% 0.005 2 0 0 0 0 0;
% 0.005 0 0 0 1 0 0;
% 0.0025 1 0 0 1 0 0;
% 0.0025 3 0 0 1 0 0;
% ];
|
github
|
frederikgeth/PowerModelsReliability.jl-master
|
case5_tf.m
|
.m
|
PowerModelsReliability.jl-master/test/data/case5_tf.m
| 3,500 |
utf_8
|
12aaf471416cd06ee299b8ae433511cb
|
% NESTA v0.6.0
function mpc = nesta_case5_pjm
mpc.version = '2';
mpc.baseMVA = 100.0;
%% area data
% area refbus
mpc.areas = [
1 4;
];
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [
1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000;
2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000;
3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000;
4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000;
5 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
5 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
];
%column_names% prated qrated pref qref
mpc.gen_rated = [
40.0 30.0 40.0 30.0
170.0 127.5 170.0 127.5
520.0 390.0 324.498 390.0
200.0 150.0 0.0 -10.802
600.0 450.0 470.694 -165.039
];
%% load data
%column_names% load_bus pref qref status qmax qmin pmax pmin prated qrated voll
mpc.tf_load = [
1 0.0 0.0 1 0 0 0 0.0 0.0 0.0 5000.0;
2 300.0 98.61 1 98.61 0 300.0 0.0 300.0 98.61 5000.0;
3 300.0 98.61 1 98.61 0 300.0 0.0 300.0 98.61 5000.0;
4 400.0 131.47 1 131.47 0 400.0 0.0 400.0 131.47 5000.0;
5 0.0 0.0 1 0 0 0.0 0.0 0.0 0.0 5000.0;
];
%% generator cost data
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0.0 0.0 3 0.000000 14.000000 0.000000;
2 0.0 0.0 3 0.000000 15.000000 0.000000;
2 0.0 0.0 3 0.000000 30.000000 0.000000;
2 0.0 0.0 3 0.000000 40.000000 0.000000;
2 0.0 0.0 3 0.000000 10.000000 0.000000;
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [
1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0;
1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0;
1 5 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0;
2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0;
3 4 0.00297 0.0297 0.00674 426 426 426 0.0 0.0 1 -30.0 30.0;
4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0;
];
%column_names% g_shunt shiftable shift_fr shift_to shift_fr_max shift_fr_min shift_to_max shift_to_min tappable tap_fr tap_to tap_fr_max tap_fr_min tap_to_max tap_to_min
mpc.branch_variable_transformer = [
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1.1 0.9 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
];
|
github
|
frederikgeth/PowerModelsReliability.jl-master
|
case5_scopf.m
|
.m
|
PowerModelsReliability.jl-master/test/data/case5_scopf.m
| 3,745 |
utf_8
|
d440a3c168c5c7b48b400da449938110
|
% NESTA v0.6.0
function mpc = nesta_case5_pjm
mpc.version = '2';
mpc.baseMVA = 100.0;
%% area data
% area refbus
mpc.areas = [
1 4;
];
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [
1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000;
2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000;
3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000;
4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000;
5 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
5 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
];
%column_names% prated qrated pref qref
mpc.gen_rated = [
40.0 30.0 40.0 30.0
170.0 127.5 170.0 127.5
520.0 390.0 324.498 390.0
200.0 150.0 0.0 -10.802
600.0 450.0 470.694 -165.039
];
%% load data
%column_names% load_bus pref qref status qmax qmin pmax pmin prated qrated voll load_idx
mpc.sc_load = [
1 0.0 0.0 1 0 0 0 0.0 0.0 0.0 5000.0 1;
2 300.0 98.61 1 98.61 0 300.0 0.0 300.0 98.61 5000.0 2;
3 300.0 98.61 1 98.61 0 300.0 0.0 300.0 98.61 5000.0 4;
4 400.0 131.47 1 131.47 0 400.0 0.0 400.0 131.47 5000.0 6;
5 0.0 0.0 1 0 0 0.0 0.0 0.0 0.0 5000.0 7;
];
%% generator cost data
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0.0 0.0 3 0.000000 14.000000 0.000000;
2 0.0 0.0 3 0.000000 15.000000 0.000000;
2 0.0 0.0 3 0.000000 30.000000 0.000000;
2 0.0 0.0 3 0.000000 40.000000 0.000000;
2 0.0 0.0 3 0.000000 10.000000 0.000000;
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [
1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0;
1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0;
1 5 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0;
2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0;
3 4 0.00297 0.0297 0.00674 426 426 426 0.0 0.0 1 -30.0 30.0;
4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0;
];
%column_names% g_shunt shiftable shift_fr shift_to shift_fr_max shift_fr_min shift_to_max shift_to_min tappable tap_fr tap_to tap_fr_max tap_fr_min tap_to_max tap_to_min
mpc.branch_variable_transformer = [
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1.1 0.9 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
];
%column_names% prob branch_id1 branch_id2 branch_id3 gen_id1 gen_id2 gen_id3
mpc.contingencies = [
0.98 0 0 0 0 0 0;
0.005 2 0 0 0 0 0;
0.005 0 0 0 1 0 0;
0.0025 1 0 0 1 0 0;
0.0025 3 0 0 1 0 0;
];
|
github
|
frederikgeth/PowerModelsReliability.jl-master
|
case5_scopf_load.m
|
.m
|
PowerModelsReliability.jl-master/test/data/case5_scopf_load.m
| 3,816 |
utf_8
|
b0fe0f418987daec60be5f36b88bb4ab
|
% NESTA v0.6.0
function mpc = nesta_case5_pjm
mpc.version = '2';
mpc.baseMVA = 100.0;
%% area data
% area refbus
mpc.areas = [
1 4;
];
%% bus data
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone Vmax Vmin
mpc.bus = [
1 2 0.0 0.0 0.0 0.0 1 1.07762 2.80377 230.0 1 1.10000 0.90000;
2 1 300.0 98.61 0.0 0.0 1 1.08407 -0.73465 230.0 1 1.10000 0.90000;
3 2 300.0 98.61 0.0 0.0 1 1.10000 -0.55972 230.0 1 1.10000 0.90000;
4 3 400.0 131.47 0.0 0.0 1 1.06414 0.00000 230.0 1 1.10000 0.90000;
5 2 0.0 0.0 0.0 0.0 1 1.06907 3.59033 230.0 1 1.10000 0.90000;
];
%% generator data
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc ramp_10 ramp_30 ramp_q apf
mpc.gen = [
1 40.0 30.0 30.0 -30.0 1.07762 100.0 1 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
1 170.0 127.5 127.5 -127.5 1.07762 100.0 1 170.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
3 324.498 390.0 390.0 -390.0 1.1 100.0 1 520.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
4 0.0 -10.802 150.0 -150.0 1.06414 100.0 1 200.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
5 470.694 -165.039 450.0 -450.0 1.06907 100.0 1 600.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0;
];
%column_names% prated qrated pref qref
mpc.gen_rated = [
40.0 30.0 40.0 30.0
170.0 127.5 170.0 127.5
520.0 390.0 324.498 390.0
200.0 150.0 0.0 -10.802
600.0 450.0 470.694 -165.039
];
%% load data
%column_names% load_bus pref qref status qmax qmin pmax pmin prated qrated voll load_idx
mpc.sc_load = [
1 0.0 0.0 1 0 0 0 0.0 0.0 0.0 5000.0 1;
2 150.0 49.0 1 49.0 0 150.0 0.0 150.0 49.0 5000.0 2;
2 150.0 49.0 1 49.0 0 150.0 0.0 150.0 49.0 10000.0 3;
3 300.0 98.61 1 98.61 0 300.0 0.0 300.0 98.61 5000.0 4;
4 400.0 131.47 1 131.47 0 400.0 0.0 400.0 131.47 5000.0 6;
5 0.0 0.0 1 0 0 0.0 0.0 0.0 0.0 5000.0 7;
];
%% generator cost data
% 2 startup shutdown n c(n-1) ... c0
mpc.gencost = [
2 0.0 0.0 3 0.000000 14.000000 0.000000;
2 0.0 0.0 3 0.000000 15.000000 0.000000;
2 0.0 0.0 3 0.000000 30.000000 0.000000;
2 0.0 0.0 3 0.000000 40.000000 0.000000;
2 0.0 0.0 3 0.000000 10.000000 0.000000;
];
%% branch data
% fbus tbus r x b rateA rateB rateC ratio angle status angmin angmax
mpc.branch = [
1 2 0.00281 0.0281 0.00712 400.0 400.0 400.0 0.0 0.0 1 -30.0 30.0;
1 4 0.00304 0.0304 0.00658 426 426 426 0.0 0.0 1 -30.0 30.0;
1 5 0.00064 0.0064 0.03126 426 426 426 0.0 0.0 1 -30.0 30.0;
2 3 0.00108 0.0108 0.01852 426 426 426 0.0 0.0 1 -30.0 30.0;
3 4 0.00297 0.0297 0.00674 426 426 426 0.0 0.0 1 -30.0 30.0;
4 5 0.00297 0.0297 0.00674 240.0 240.0 240.0 0.0 0.0 1 -30.0 30.0;
];
%column_names% g_shunt shiftable shift_fr shift_to shift_fr_max shift_fr_min shift_to_max shift_to_min tappable tap_fr tap_to tap_fr_max tap_fr_min tap_to_max tap_to_min
mpc.branch_variable_transformer = [
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
0 0 0 0 30 -30 0 0 0 1 1 1 1 1 1;
0 0 0 0 0 0 0 0 0 1 1 1.1 0.9 1 1;
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1;
];
%column_names% prob branch_id1 branch_id2 branch_id3 gen_id1 gen_id2 gen_id3
mpc.contingencies = [
0.98 0 0 0 0 0 0;
0.005 2 0 0 0 0 0;
0.005 0 0 0 1 0 0;
0.0025 1 0 0 1 0 0;
0.0025 3 0 0 1 0 0;
];
|
github
|
zhichaowang/kaldi-master
|
Generate_mcTrainData_cut.m
|
.m
|
kaldi-master/egs/reverb/s5/local/Generate_mcTrainData_cut.m
| 7,311 |
utf_8
|
f59dd892f0f8da04a515a2c58ff50a69
|
function Generate_mcTrainData_cut(WSJ_dir_name, save_dir)
%
% Input variables:
% WSJ_dir_name: string name of user's clean wsjcam0 corpus directory
% (*Directory structure for wsjcam0 corpushas to be kept as it is after obtaining it from LDC.
% Otherwise this script does not work.)
%
% This function generates multi-condition traiing data
% based on the following items:
% 1. wsjcam0 corpus (distributed from the LDC)
% 2. room impulse responses (ones under ./RIR/)
% 3. noise (ones under ./NOISE/).
% Generated data has the same directory structure as original wsjcam0 corpus.
%
if nargin<2
error('Usage: Generate_mcTrainData(WSJCAM0_data_path, save_dir) *Note that the input variable WSJCAM0_data_path should indicate the directory name of your clean WSJCAM0 corpus. ');
end
if exist([WSJ_dir_name,'/data/'])==0
error(['Could not find wsjcam0 corpus : Please confirm if ',WSJ_dir_name,' is a correct path to your clean WSJCAM0 corpus']);
end
if ~exist('save_dir', 'var')
error('You have to set the save_dir variable in the code before running this script!')
end
display(['Name of directory for original wsjcam0: ',WSJ_dir_name])
display(['Name of directory to save generated multi-condition training data: ',save_dir])
unix(['chmod u+x sphere_to_wave.csh']);
unix(['chmod u+x bin/*']);
% Parameters related to acoustic conditions
SNRdB=20;
% List of WSJ speech data
flist1='etc/audio_si_tr.lst';
%
% List of RIRs
%
num_RIRvar=24;
RIR_sim1='./RIR/RIR_SmallRoom1_near_AnglA.wav';
RIR_sim2='./RIR/RIR_SmallRoom1_near_AnglB.wav';
RIR_sim3='./RIR/RIR_SmallRoom1_far_AnglA.wav';
RIR_sim4='./RIR/RIR_SmallRoom1_far_AnglB.wav';
RIR_sim5='./RIR/RIR_MediumRoom1_near_AnglA.wav';
RIR_sim6='./RIR/RIR_MediumRoom1_near_AnglB.wav';
RIR_sim7='./RIR/RIR_MediumRoom1_far_AnglA.wav';
RIR_sim8='./RIR/RIR_MediumRoom1_far_AnglB.wav';
RIR_sim9='./RIR/RIR_LargeRoom1_near_AnglA.wav';
RIR_sim10='./RIR/RIR_LargeRoom1_near_AnglB.wav';
RIR_sim11='./RIR/RIR_LargeRoom1_far_AnglA.wav';
RIR_sim12='./RIR/RIR_LargeRoom1_far_AnglB.wav';
RIR_sim13='./RIR/RIR_SmallRoom2_near_AnglA.wav';
RIR_sim14='./RIR/RIR_SmallRoom2_near_AnglB.wav';
RIR_sim15='./RIR/RIR_SmallRoom2_far_AnglA.wav';
RIR_sim16='./RIR/RIR_SmallRoom2_far_AnglB.wav';
RIR_sim17='./RIR/RIR_MediumRoom2_near_AnglA.wav';
RIR_sim18='./RIR/RIR_MediumRoom2_near_AnglB.wav';
RIR_sim19='./RIR/RIR_MediumRoom2_far_AnglA.wav';
RIR_sim20='./RIR/RIR_MediumRoom2_far_AnglB.wav';
RIR_sim21='./RIR/RIR_LargeRoom2_near_AnglA.wav';
RIR_sim22='./RIR/RIR_LargeRoom2_near_AnglB.wav';
RIR_sim23='./RIR/RIR_LargeRoom2_far_AnglA.wav';
RIR_sim24='./RIR/RIR_LargeRoom2_far_AnglB.wav';
%
% List of noise
%
num_NOISEvar=6;
noise_sim1='./NOISE/Noise_SmallRoom1';
noise_sim2='./NOISE/Noise_MediumRoom1';
noise_sim3='./NOISE/Noise_LargeRoom1';
noise_sim4='./NOISE/Noise_SmallRoom2';
noise_sim5='./NOISE/Noise_MediumRoom2';
noise_sim6='./NOISE/Noise_LargeRoom2';
%
% Start generating noisy reverberant data with creating new directories
%
fcount=1;
rcount=1;
ncount=1;
if save_dir(end)=='/';
save_dir_tr=[save_dir,'data/mc_train/'];
else
save_dir_tr=[save_dir,'/data/mc_train/'];
end
mkdir([save_dir_tr]);
%mkdir([save_dir,'/taskfiles/'])
mic_idx=['A';'B';'C';'D';'E';'F';'G';'H'];
prev_fname='dummy';
for nlist=1:1
% Open file list
eval(['fid=fopen(flist',num2str(nlist),',''r'');']);
while 1
% Set data file name
fname=fgetl(fid);
if ~ischar(fname);
break;
end
idx1=find(fname=='/');
% Make directory if there isn't any
if ~strcmp(prev_fname,fname(1:idx1(end)))
mkdir([save_dir_tr fname(1:idx1(end))])
end
prev_fname=fname(1:idx1(end));
% load (sphere format) speech signal
x=read_sphere([WSJ_dir_name,'/data/', fname]);
x=x/(2^15); % conversion from short-int to float
% load RIR and noise for "THIS" utterance
eval(['RIR=wavread(RIR_sim',num2str(rcount),');']);
eval(['NOISE=wavread([noise_sim',num2str(ceil(rcount/4)),',''_',num2str(ncount),'.wav'']);']);
% Generate 8ch noisy reverberant data
y=gen_obs(x,RIR,NOISE,SNRdB);
% cut to length of original signal
y = y(1:size(x,2),:);
% rotine to cyclicly switch RIRs and noise, utterance by utterance
rcount=rcount+1;
if rcount>num_RIRvar;rcount=1;ncount=ncount+1;end
if ncount>10;ncount=1;end
% save the data
y=y/4; % common normalization to all the data to prevent clipping
% denominator was decided experimentally
for ch=1:8
eval(['wavwrite(y(:,',num2str(ch),'),16000,''',save_dir_tr fname,'_ch',num2str(ch),'.wav'');']);
end
display(['sentence ',num2str(fcount),' (out of 7861) finished! (Multi-condition training data)'])
fcount=fcount+1;
end
end
%%%%
function [y]=gen_obs(x,RIR,NOISE,SNRdB)
% function to generate noisy reverberant data
x=x';
% calculate direct+early reflection signal for calculating SNR
[val,delay]=max(RIR(:,1));
before_impulse=floor(16000*0.001);
after_impulse=floor(16000*0.05);
RIR_direct=RIR(delay-before_impulse:delay+after_impulse,1);
direct_signal=fconv(x,RIR_direct);
% obtain reverberant speech
for ch=1:8
rev_y(:,ch)=fconv(x,RIR(:,ch));
end
% normalize noise data according to the prefixed SNR value
NOISE=NOISE(1:size(rev_y,1),:);
NOISE_ref=NOISE(:,1);
iPn = diag(1./mean(NOISE_ref.^2,1));
Px = diag(mean(direct_signal.^2,1));
Msnr = sqrt(10^(-SNRdB/10)*iPn*Px);
scaled_NOISE = NOISE*Msnr;
y = rev_y + scaled_NOISE;
y = y(delay:end,:);
%%%%
function [y]=fconv(x, h)
%FCONV Fast Convolution
% [y] = FCONV(x, h) convolves x and h, and normalizes the output
% to +-1.
%
% x = input vector
% h = input vector
%
% See also CONV
%
% NOTES:
%
% 1) I have a short article explaining what a convolution is. It
% is available at http://stevem.us/fconv.html.
%
%
%Version 1.0
%Coded by: Stephen G. McGovern, 2003-2004.
%
%Copyright (c) 2003, Stephen McGovern
%All rights reserved.
%
%THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
%AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
%IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
%ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
%LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
%CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
%SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
%INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
%CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
%ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
%POSSIBILITY OF SUCH DAMAGE.
Ly=length(x)+length(h)-1; %
Ly2=pow2(nextpow2(Ly)); % Find smallest power of 2 that is > Ly
X=fft(x, Ly2); % Fast Fourier transform
H=fft(h, Ly2); % Fast Fourier transform
Y=X.*H; %
y=real(ifft(Y, Ly2)); % Inverse fast Fourier transform
y=y(1:1:Ly); % Take just the first N elements
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
montage_new.m
|
.m
|
reconstructing-pascal-voc-master/external_src/montage_new.m
| 12,139 |
utf_8
|
0bbddfdad558a03de80a4e5889f64ca9
|
function handles = montage_new(I, titles, varargin)
%MONTAGE Display multiple images as a montage of subplots
% Changed by Joao Carreira to be able to include titles (cell array of
% strings)
%
% Examples:
% montage
% montage(I)
% montage(I, map)
% montage(..., param1, value1, param2, value2, ...)
%
% This function displays multiple images, in a stack or cell array or
% defined by filenames in a cell array or simply in the current directory,
% in a grid of subplots in the current figure.
%
% The size of grid is calculated or user defined. Images not fitting in the
% grid can be scrolled through using the scroll keys. This allows fast
% scrolling through a movie or image stack, e.g.
% montage(imstack, 'Size', 1)
% creates a single frame montage with images scrolled through using arrow
% keys.
%
% This function is designed to replace the MONTAGE function provided with
% the Image Processing Toolbox (IPT). It is syntax compatible, but operates
% differently, and while results are generally comparable given identical
% syntaxes, this is not guaranteed.
%
% Differences from the IPT version are:
% - The IPT is not required!
% - Images are placed in subplots, so can be zoomed separately.
% - Small images are properly enlarged on screen.
% - Gaps can be placed between images.
% - Images can be viewed on a grid smaller than the number of images.
% - Surplus images can be viewed by scrolling through pages.
% - A directory of images can be viewed easily.
% - It cannot return an image handle (as there are multiple images)
%
% Keys:
% Up - Back a row.
% Down - Forward a row.
% Left - Back a page (or column if there is only one row).
% Right - Forward a page (or column if there is only one row).
% Shift - 2 x speed.
% Ctrl - 4 x speed.
% Shift + Ctrl - 8 x speed.
%
% IN:
% I - MxNxCxP array of images, or 1xP cell array. C is 1 for indexed
% images or 3 for RGB images. P is the number of images. If I is a
% cell array then each cell must contain an image or image filename.
% If I is empty then all the images in the current directory are
% used. Default: [].
% map - Kx3 colormap to be used with indexed images. Default: gray(256).
% Optional parameters - name, value parameter pairs for the following:
% 'Size' - [H W] size of grid to display image on. If only H is given
% then W = H. If either H or W is NaN then the number of rows
% or columns is chosen such that all images fit. If both H
% and W are NaN or the array is empty then the size of grid
% is chosen to fit all images in as large as possible.
% Default: [].
% 'Indices' - 1xL list of indices of images to display. Default: 1:P.
% 'Border' - [B R] borders to give each image top and bottom (B) and
% left and right (R), to space out images. Borders are
% normalized to the subplot size, i.e. B = 0.01 gives a border
% 1% of the height of each subplot. If only B is given, R =
% B. Default: 0.01.
% 'DisplayRange' - [LOW HIGH] display range for indexed images.
% Default: [min(I(:)) max(I(:))].
% 'Map' - Kx3 colormap or (additionally from above) name of MATLAB
% colormap, for use with indexed images. Default: gray(256).
% $Id: montage.m,v 1.7 2009/02/25 16:39:01 ojw Exp $
% Parse inputs
[map layout gap indices lims] = parse_inputs(varargin);
if nargin == 0 || isempty(I)
% Read in all the images in the directory
I = get_im_names;
if isempty(I)
% No images found
return
end
end
if isnumeric(I)
[y x c n] = size(I);
if isempty(lims)
lims = [min(reshape(I, numel(I), 1)) max(reshape(I, numel(I), 1))];
elseif isequal(0, lims)
lims = default_limits(I);
end
if isfloat(I) && c == 3
I = uint8(I * 256 - 0.5);
lims = round(lims * 256 - 0.5);
end
I = squeeze(num2cell(I, [1 2 3]));
elseif iscell(I)
A = I{1};
if ischar(A)
A = imread_rgb(A);
I{1} = A;
end
n = numel(I);
% Assume all images are the same size and type as the first
[y x c] = size(A);
if isempty(lims) || isequal(0, lims)
lims = default_limits(A);
end
else
error('I not of recognized type.');
end
% Select indexed images
if ~isequal(indices, -1)
I = I(indices);
n = numel(I);
end
% Compute a good layout
layout = choose_layout(n, y, x, layout);
% Create a data structure to store the data in
num = prod(layout);
state.n = num * ceil(n / num);
state.h = zeros(layout);
I = [I(:); cell(state.n-n, 1)];
% Get and clear the figure
fig = gcf;
clf(fig);
% Set the figure size well
MonSz = get(0, 'ScreenSize');
MaxSz = MonSz(3:4) - [20 120];
%MaxSz = MonSz(3:4) + 10*[20 120];
ImSz = layout([2 1]) .* [x y] ./ (1 - 2 * gap([end 1]));
RescaleFactor = min(MaxSz ./ ImSz);
if RescaleFactor > 1
% Integer scale for enlarging, but don't make too big
MaxSz = min(MaxSz, [1000 680]);
RescaleFactor = max(floor(min(MaxSz ./ ImSz)), 1);
end
figPosNew = ceil(ImSz * RescaleFactor);
% Don't move the figure if the size isn't changing
figPosCur = get(fig, 'Position');
if ~isequal(figPosCur(3:4), figPosNew)
% Keep the centre of the figure stationary
figPosNew = [max(1, floor(figPosCur(1:2)+(figPosCur(3:4)-figPosNew)/2)) figPosNew];
% Ensure the figure bar is in bounds
figPosNew(1:2) = min(figPosNew(1:2), MonSz(1:2)+MonSz(3:4)-[6 101]-figPosNew(3:4));
set(fig, 'Position', figPosNew);
end
% Set the colourmap
colormap(map);
% Set the first lot of images
index = mod(0:num-1, state.n) + 1;
hw = 1 ./ layout;
gap = gap ./ layout;
dims = hw - 2 * gap;
dims = dims([2 1]);
counter = 1;
for a = 1:layout(1)
for b = 1:layout(2)
c(counter) = index(b + (layout(1) - a) * layout(2));
A = I{c(counter)};
if ischar(A)
A = imread_rgb(A);
I{c} = A;
end
handles(counter)= subplot('Position', [(b-1)*hw(2)+gap(2) (a-1)*hw(1)+gap(1) dims]);
counter = counter + 1;
if isempty(A)
state.h(a,b) = imagesc(zeros(1, 1, 3), lims);
axis image off;
set(state.h(a,b), 'CData', []);
handles(counter-1) = [];
c(counter-1) = [];
counter = counter - 1;
else
state.h(a,b) = imagesc(A, lims);
axis image off;
if(nargin>=2 && ~isempty(titles))
title(titles{c(end)}, 'FontSize', 15);
set(get(handles(b), 'Title'), 'VerticalAlignment', 'baseline');
set(get(handles(b), 'XLabel'), 'VerticalAlignment', 'baseline');
end
end
end
end
[s_c, ids] = sort(c);
handles = handles(ids);
drawnow;
figure(fig); % Bring the montage into view
% Check if we need to be able to scroll through images
if n > num
% Intialize rest of data structure
state.index = 1;
state.layout = layout;
state.I = I;
% Set the callback for image navigation, and save the image data in the figure
set(fig, 'KeyPressFcn', @keypress_callback, 'Interruptible', 'off', 'UserData', state);
end
return
%% Keypress callback
% The function which does all the display stuff
function keypress_callback(fig, event_data)
% Check what key was pressed and update the image index as necessary
switch event_data.Character
case 28 % Left
up = -1; % Back a page
case 29 % Right
up = 1; % Forward a page
case 30 % Up
up = -0.1; % Back a row
case 31 % Down
up = 0.1; % Forward a row
otherwise
% Another key was pressed - ignore it
return
end
% Use control and shift for faster scrolling
if ~isempty(event_data.Modifier)
up = up * (2 ^ (strcmpi(event_data.Modifier, {'shift', 'control'}) * [1; 2]));
end
% Get the state data, if not given
state = get(fig, 'UserData');
% Get the current index
index = state.index;
% Get number of images
n = prod(state.layout);
% Generate 12 valid indices
if abs(up) < 1
% Increment by row
index = index + state.layout(2) * (up * 10) - 1;
else
if state.layout(1) == 1
% Increment by column
index = index + up - 1;
else
% Increment by page
index = index + n * up - 1;
end
end
index = mod(index:index+n, state.n) + 1;
% Plot the images
figure(fig);
for a = 1:state.layout(1)
for b = 1:state.layout(2)
c = index(b + (state.layout(1) - a) * state.layout(2));
A = state.I{c};
if ischar(A)
A = imread_rgb(A);
state.I{c} = A;
end
set(state.h(a,b), 'CData', A);
end
end
drawnow;
% Save the current index
state.index = index(1);
set(fig, 'UserData', state);
return
%% Choose a good layout for the images
function layout = choose_layout(n, y, x, layout)
layout = reshape(layout, 1, min(numel(layout), 2));
v = numel(layout);
N = isnan(layout);
if v == 0 || all(N)
sz = get(0, 'ScreenSize');
sz = sz(3:4) ./ [x y];
layout = ceil(sz([2 1]) ./ sqrt(prod(sz) / n));
switch ([prod(layout - [1 0]) prod(layout - [0 1])] >= n) * [2; 1]
case 0
case 1
layout = layout - [0 1];
case 2
layout = layout - [1 0];
case 3
if min(sz .* (layout - [0 1])) > min(sz .* (layout - [1 0]))
layout = layout - [0 1];
else
layout = layout - [1 0];
end
end
elseif v == 1
layout = layout([1 1]);
elseif any(N)
layout(N) = ceil(n / layout(~N));
end
return
%% Read image to uint8 rgb array
function A = imread_rgb(name)
try
[A map] = imread(name);
catch
% Format not recognized by imread, so create a red cross (along diagonals)
A = eye(101) | diag(ones(100, 1), 1) | diag(ones(100, 1), -1);
A = uint8(255 * (1 - (A | flipud(A))));
A = cat(3, zeros(size(A), 'uint8')+uint8(255), A, A);
return
end
if ~isempty(map)
map = uint8(map * 256 - 0.5);
A = reshape(map(A,:), [size(A) size(map, 2)]);
elseif size(A, 3) == 4
ll = lower(name(end));
if ll == 'f'
% TIFF in CMYK colourspace - convert to RGB
error('CMYK image files not yet supported - please fix.');
elseif ll == 's'
% RAS in RGBA colourspace - convert to RGB
error('RGBA image files not yet supported - please fix.');
end
end
return
%% Get the names of all images in a directory
function L = get_im_names
D = dir;
n = 0;
L = cell(size(D));
% Go through the directory list
for a = 1:numel(D)
% Check if file is a supported image type
if numel(D(a).name) > 4 && ~D(a).isdir && (any(strcmpi(D(a).name(end-3:end), {'.png', '.tif', '.jpg', '.bmp', '.ppm', '.pgm', '.pbm', '.gif', '.ras'})) || any(strcmpi(D(a).name(end-4:end), {'.tiff', '.jpeg'})))
n = n + 1;
L{n} = D(a).name;
end
end
L = L(1:n);
return
%% Parse inputs
function [map layout gap indices lims] = parse_inputs(inputs)
% Set defaults
map = gray(256);
layout = [];
gap = 0.01;
indices = -1;
lims = 0;
% Check for map
if numel(inputs) && isnumeric(inputs{1}) && size(inputs{1}, 2) == 3
map = inputs{1};
inputs = inputs(2:end);
end
% Go through option pairs
for a = 1:2:numel(inputs)
switch lower(inputs{a})
case 'map'
map = inputs{a+1};
if ischar(map)
map = eval([map '(256)']);
end
case {'size', 'grid'}
layout = inputs{a+1};
case {'gap', 'border'}
gap = inputs{a+1};
case 'indices'
indices = inputs{a+1};
case {'lims', 'displayrange'}
lims = inputs{a+1};
otherwise
error('Input option %s not recognized', inputs{a});
end
end
return
%% Return default limits for the image type
function lims = default_limits(A)
if size(A, 3) == 1
lims = [min(reshape(A, numel(A), 1)) max(reshape(A, numel(A), 1))];
else
lims = [0 1];
if ~isfloat(A)
lims = lims * double(intmax(class(A)));
end
end
return
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
parseXML.m
|
.m
|
reconstructing-pascal-voc-master/external_src/parseXML.m
| 2,107 |
utf_8
|
ecc51819782827aa19e181f13cc7a1cc
|
function theStruct = parseXML(filename)
% PARSEXML Convert XML file to a MATLAB structure.
try
tree = xmlread(filename);
catch
error('Failed to read XML file %s.',filename);
end
% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
try
theStruct = parseChildNodes(tree);
catch
error('Unable to parse XML file %s.',filename);
end
% ----- Subfunction PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes
childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);
children = struct( ...
'Name', allocCell, 'Attributes', allocCell, ...
'Data', allocCell, 'Children', allocCell);
for count = 1:numChildNodes
theChild = childNodes.item(count-1);
children(count) = makeStructFromNode(theChild);
end
%to_remove = arrayfun(@(a) strcmp(a.Name, '#text'), children);
%children(to_remove) = [];
end
% ----- Subfunction MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.
nodeStruct = struct( ...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));
if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);
else
nodeStruct.Data = '';
end
% ----- Subfunction PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.
attributes = [];
if theNode.hasAttributes
theAttributes = theNode.getAttributes;
numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...
allocCell);
for count = 1:numAttributes
attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);
end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
SvmSegm_show_best_segments.m
|
.m
|
reconstructing-pascal-voc-master/external_src/SvmSegm_show_best_segments.m
| 825 |
utf_8
|
e486320500066ff0bb4543e0fef15585
|
%function SvmSegm_show_best_segments(I, Q, masks)
% I is the image
% Q is the qualities of each segment (find the file in SegmentEval folder)
% masks are the computed segments
function [best, max_score, best_seg_id] = SvmSegm_show_best_segments(I, Q, masks, n)
DefaultVal('*n', '1');
if(iscell(Q))
Q = Q{1};
end
for i=1:numel(Q)
if(n~=1)
[max_score{i}, best_seg_id{i}] = sort(Q(i).q, 'descend');
best_seg_id{i} = best_seg_id{i}(1:n);
tit = [];
else
[max_score(i), best_seg_id(i)] = max(Q(i).q);
tit{i} = sprintf('%f', Q(i).q(best_seg_id(i)));
end
end
if(iscell(best_seg_id))
best_seg_id = cell2mat(best_seg_id);
max_score = cell2mat(max_score);
end
best = subplot_auto_transparent(masks(:,:,best_seg_id), I, tit);
%figure;
%sc(seg, 'rand')
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
myCalcCandScoreFigureGroundAll.m
|
.m
|
reconstructing-pascal-voc-master/external_src/myCalcCandScoreFigureGroundAll.m
| 4,625 |
utf_8
|
7c7df819fd640b0633d87d97561e43e1
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the F-score of the evaluated method %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% best_s is the filename of the best figure-ground segmentation (needs to
% be binary!!!) Only considers the segment with label 0
%%% P and R are ignored, the score is in F
function [P R F]=myCalcCandScoreFigureGroundAll(Segmaps,HumanSeg, type, care)
Fmax=0;
F = zeros(size(Segmaps,3),1);
P = F;
R = F;
if(strcmp(type, 'overlap_and_bbox_edges') || strcmp(type, 'overlap_action'))
% do a priori computation
bb_human = compute_bbox(HumanSeg)';
bb_segms = zeros(size(Segmaps,3),4);
for i=1:size(Segmaps,3)
bbox = compute_bbox(Segmaps(:,:,i))';
if(~isempty(bbox))
bb_segms(i,:) = bbox;
else
bb_segms(i,:) = [-1 -1 1 1];
end
end
end
gt_img_fraction = sum(sum(HumanSeg)) /numel(HumanSeg);
for i=1:size(Segmaps,3)
FragMap = Segmaps(:,:,i);
if(strcmp(type, 'fmeasure'))
[p r f]=CalcPRPixel(HumanSeg,FragMap, care);%Calculate the F-score
elseif(strcmp(type, 'overlap'))
[p r f]=CalcOverlap(HumanSeg,FragMap, care);%Calculate the overlap, puts it in f
elseif(strcmp(type, 'intersection'))
[p r f]=CalcIntersection(HumanSeg,FragMap, care);%Calculate the overlap, puts it in f
elseif(strcmp(type, 'inter_over_area'))
[p r f]=CalcIntersectionOverArea(HumanSeg,FragMap, care);%Calculate the overlap, puts it in f
elseif(strcmp(type, 'overlap_and_bbox_edges') || strcmp(type, 'overlap_action'))
[p r f] = CalcOverlapBBoxEdges(HumanSeg, FragMap, bb_human, bb_segms(i,:), care);
elseif(strcmp(type, 'overlap_times_area_fraction'))
[p r f]=CalcOverlap(HumanSeg,FragMap, care);%Calculate the overlap, puts it in f
% now multiple by area fraction
f = f*gt_img_fraction;
end
F(i)=f;
P(i)=p;
R(i)=r;
end;%Go over all segmentations in the Dir
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% (ADAPTED FROM WEIZMANN DATABASE CODE) Calculate the F-score %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [p r f]=CalcPRPixel(GT,mask, care)
if(exist('care', 'var'))
error('not ready yet, code this!');
end
% CARREIRA if
if(size(GT,3) == 3)
GT = GT(:,:,1);
end
sum_GT_and_mask = sum(GT(:)&mask(:));
if (sum_GT_and_mask==0)
p=0;r=0;f=0;
return;
end;
r=sum_GT_and_mask./sum(GT(:));
c=sum(mask(:))-sum_GT_and_mask;
p=sum_GT_and_mask./(sum_GT_and_mask+c);
f=(r*p)/(0.5*(r+p));
end
%%%%%%%%%%%%%%%%%%%%%%%%%% Overlap %%%%%%%%%%%%%%%%%%%%%%%
function [p, r, f] = CalcIntersection(GT, mask, care)
p = -1;
r = -1;
f = sum(sum(GT & mask & care));
end
function [p, r, f] = CalcIntersectionOverArea(GT, mask, care)
p = -1;
r = -1;
f = sum(sum(GT & mask & care)) / sum(mask(:));
end
function [p, r, f] = CalcOverlap(GT, mask, care)
p = -1;
r = -1;
f = sum(sum(GT & mask & care)) / sum(sum((GT | mask) & care));
end
function [p, r, f] = CalcOverlapBBoxEdges(GT, mask, bb_gt, bb_mask, care)
p = -1;
r = -1;
if(~isempty(bb_gt))
width_gt = bb_gt(3);
height_gt = bb_gt(4);
inters = rectint(bb_gt, bb_mask);
else
width_gt = 0;
height_gt = 0;
inters = 0;
end
width_mask = bb_mask(3);
height_mask = bb_mask(4);
area_bb_gt = width_gt*height_gt;
area_mask = width_mask*height_mask;
reun = (area_bb_gt+area_mask - inters);
f = inters/reun;
% min_x_gt = bb_gt(1);
% max_x_gt = bb_gt(1)+bb_gt(3);
% min_y_gt = bb_gt(2);
% max_y_gt = bb_gt(2) + bb_gt(4);
%
%
% min_x_mask = bb_mask(1);
% max_x_mask = bb_mask(1) + bb_mask(3);
% min_y_mask = bb_mask(2);
% max_y_mask = bb_mask(2) + bb_mask(4);
%
% diffs(1) = abs(min_x_mask - min_x_gt) / width_mask;
% diffs(2) = abs(max_x_mask - max_x_gt ) / width_mask;
% diffs(3) = abs(min_y_mask - min_y_gt ) / height_mask;
% diffs(4) = abs(max_y_mask - max_y_gt ) / height_mask;
%
% f = mean(diffs);
%%% visualization %%%
%showboxes(GT*255, [bb_gt(1) bb_gt(2) bb_gt(1) + bb_gt(3) bb_gt(2) + bb_gt(4)])
%showboxes(mask(:,:,1)*255, [bb_mask(1,1) bb_mask(1, 2) bb_mask(1,1) + bb_mask(1,3) bb_mask(1,2) + bb_mask(1,4)])
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
DefaultVal.m
|
.m
|
reconstructing-pascal-voc-master/external_src/DefaultVal.m
| 1,258 |
utf_8
|
518947d797d61092d4e16bd1b3ba1e27
|
% Function written by Dr. Adrian Ion
%
% This code is part of the extended implementation of the paper:
%
% J. Carreira, C. Sminchisescu, Constrained Parametric Min-Cuts for Automatic Object Segmentation, IEEE CVPR 2010
%
function DefaultVal(varargin)
% assign default values to variables if they do not exist or are empty
%
% use string pairs 'var', 'value'
% preceede the variable name with a '*' to set also it empty
%
%
% e.g. DefaultVal('p1', '1', '*p2', '2');
%
% will create p1 = 1 if it does not exist in the current scope
% will create or set p2 = 2 if it does not exist, or it is empty
assert(mod(nargin,2) == 0);
for i=1:2:nargin
if ~ischar(varargin{i}) || length(varargin{i})<1 || ~ischar(varargin{i+1}) length(varargin{i+1})<1
error('Bad parameters passed to function. See function help.');
end
if (varargin{i}(1)=='*')
cmd = sprintf('if ~exist(''%s'',''var'') || isempty(%s) %s = %s; end', varargin{i}(2:end), varargin{i}(2:end), varargin{i}(2:end), varargin{i+1});
else
cmd = sprintf('if ~exist(''%s'',''var'') %s = %s; end', varargin{i}, varargin{i}, varargin{i+1});
end
evalin('caller', cmd, 'error(''Requires and even number of (string names of possibly missing) variables & values'')') ;
end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
VOCevalseg.m
|
.m
|
reconstructing-pascal-voc-master/external_src/VOCcode/VOCevalseg.m
| 3,238 |
utf_8
|
454757a787993ac892eb5dc277abc04d
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = VOCevalseg(VOCopts,id)
% image test set
[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
[resim,map] = imread(resfile);
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Percentage correct labels measure is no longer being used. Uncomment if
% you wish to see it anyway
%overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
%fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
accuracies(j)=100*gtjresj/(gtj+resj-gtjresj);
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
accuracies = accuracies(1:end);
avacc = mean(accuracies);
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
VOClabelcolormap.m
|
.m
|
reconstructing-pascal-voc-master/external_src/VOCcode/VOClabelcolormap.m
| 669 |
utf_8
|
565f5eb4134900aa85056d6becc880f5
|
% VOCLABELCOLORMAP Creates a label color map such that adjacent indices have different
% colors. Useful for reading and writing index images which contain large indices,
% by encoding them as RGB images.
%
% CMAP = VOCLABELCOLORMAP(N) creates a label color map with N entries.
function cmap = labelcolormap(N)
if nargin==0
N=256
end
cmap = zeros(N,3);
for i=1:N
id = i-1; r=0;g=0;b=0;
for j=0:7
r = bitor(r, bitshift(bitget(id,1),7 - j));
g = bitor(g, bitshift(bitget(id,2),7 - j));
b = bitor(b, bitshift(bitget(id,3),7 - j));
id = bitshift(id,-3);
end
cmap(i,1)=r; cmap(i,2)=g; cmap(i,3)=b;
end
cmap = cmap / 255;
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
VOCwritexml.m
|
.m
|
reconstructing-pascal-voc-master/external_src/VOCcode/VOCwritexml.m
| 1,126 |
utf_8
|
d7749b6f4def796021e352fcf987fae6
|
function VOCwritexml(rec, path)
fid=fopen(path,'w');
writexml(fid,rec,0);
fclose(fid);
function xml = writexml(fid,rec,depth)
fn=fieldnames(rec);
for i=1:length(fn)
f=rec.(fn{i});
if ~isempty(f)
if isstruct(f)
for j=1:length(f)
fprintf(fid,'%s',repmat(char(9),1,depth));
fprintf(fid,'<%s>\n',fn{i});
writexml(fid,rec.(fn{i})(j),depth+1);
fprintf(fid,'%s',repmat(char(9),1,depth));
fprintf(fid,'</%s>\n',fn{i});
end
else
if ~iscell(f)
f={f};
end
for j=1:length(f)
fprintf(fid,'%s',repmat(char(9),1,depth));
fprintf(fid,'<%s>',fn{i});
if ischar(f{j})
fprintf(fid,'%s',f{j});
elseif isnumeric(f{j})&&numel(f{j})==1
fprintf(fid,'%s',num2str(f{j}));
else
error('unsupported type');
end
fprintf(fid,'</%s>\n',fn{i});
end
end
end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
VOCreadrecxml.m
|
.m
|
reconstructing-pascal-voc-master/external_src/VOCcode/VOCreadrecxml.m
| 2,158 |
utf_8
|
e48003524ee25fff35c9a76c8e9044fa
|
function rec = VOCreadrecxml(path)
x=VOCreadxml(path);
x=x.annotation;
rec.folder=x.folder;
rec.filename=x.filename;
rec.source.database=x.source.database;
rec.source.annotation=x.source.annotation;
rec.source.image=x.source.image;
rec.size.width=str2double(x.size.width);
rec.size.height=str2double(x.size.height);
rec.size.depth=str2double(x.size.depth);
rec.segmented=strcmp(x.segmented,'1');
rec.imgname=[x.folder '/JPEGImages/' x.filename];
rec.imgsize=str2double({x.size.width x.size.height x.size.depth});
rec.database=rec.source.database;
for i=1:length(x.object)
rec.objects(i)=xmlobjtopas(x.object(i));
end
function p = xmlobjtopas(o)
p.class=o.name;
if isfield(o,'pose')
if strcmp(o.pose,'Unspecified')
p.view='';
else
p.view=o.pose;
end
else
p.view='';
end
if isfield(o,'truncated')
p.truncated=strcmp(o.truncated,'1');
else
p.truncated=false;
end
if isfield(o,'occluded')
p.occluded=strcmp(o.occluded,'1');
else
p.occluded=false;
end
if isfield(o,'difficult')
p.difficult=strcmp(o.difficult,'1');
else
p.difficult=false;
end
p.label=['PAS' p.class p.view];
if p.truncated
p.label=[p.label 'Trunc'];
end
if p.occluded
p.label=[p.label 'Occ'];
end
if p.difficult
p.label=[p.label 'Diff'];
end
p.orglabel=p.label;
p.bbox=str2double({o.bndbox.xmin o.bndbox.ymin o.bndbox.xmax o.bndbox.ymax});
p.bndbox.xmin=str2double(o.bndbox.xmin);
p.bndbox.ymin=str2double(o.bndbox.ymin);
p.bndbox.xmax=str2double(o.bndbox.xmax);
p.bndbox.ymax=str2double(o.bndbox.ymax);
if isfield(o,'polygon')
warning('polygon unimplemented');
p.polygon=[];
else
p.polygon=[];
end
if isfield(o,'mask')
warning('mask unimplemented');
p.mask=[];
else
p.mask=[];
end
if isfield(o,'part')&&~isempty(o.part)
p.hasparts=true;
for i=1:length(o.part)
p.part(i)=xmlobjtopas(o.part(i));
end
else
p.hasparts=false;
p.part=[];
end
if isfield(o,'actions')
p.hasactions=true;
fn=fieldnames(o.actions);
for i=1:numel(fn)
p.actions.(fn{i})=strcmp(o.actions.(fn{i}),'1');
end
else
p.hasactions=false;
p.actions=[];
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
VOCxml2struct.m
|
.m
|
reconstructing-pascal-voc-master/external_src/VOCcode/VOCxml2struct.m
| 1,830 |
utf_8
|
86b8ceeb5ce8c143aa78e2e805fef5d6
|
function res = VOCxml2struct(xml)
xml(xml==9|xml==10|xml==13)=[];
[res,xml]=parse(xml,1,[]);
function [res,ind]=parse(xml,ind,parent)
res=[];
if ~isempty(parent)&&xml(ind)~='<'
i=findchar(xml,ind,'<');
res=trim(xml(ind:i-1));
ind=i;
[tag,ind]=gettag(xml,i);
if ~strcmp(tag,['/' parent])
error('<%s> closed with <%s>',parent,tag);
end
else
while ind<=length(xml)
[tag,ind]=gettag(xml,ind);
if strcmp(tag,['/' parent])
return
else
[sub,ind]=parse(xml,ind,tag);
if isstruct(sub)
if isfield(res,tag)
n=length(res.(tag));
fn=fieldnames(sub);
for f=1:length(fn)
res.(tag)(n+1).(fn{f})=sub.(fn{f});
end
else
res.(tag)=sub;
end
else
if isfield(res,tag)
if ~iscell(res.(tag))
res.(tag)={res.(tag)};
end
res.(tag){end+1}=sub;
else
res.(tag)=sub;
end
end
end
end
end
function i = findchar(str,ind,chr)
i=[];
while ind<=length(str)
if str(ind)==chr
i=ind;
break
else
ind=ind+1;
end
end
function [tag,ind]=gettag(xml,ind)
if ind>length(xml)
tag=[];
elseif xml(ind)=='<'
i=findchar(xml,ind,'>');
if isempty(i)
error('incomplete tag');
end
tag=xml(ind+1:i-1);
ind=i+1;
else
error('expected tag');
end
function s = trim(s)
for i=1:numel(s)
if ~isspace(s(i))
s=s(i:end);
break
end
end
for i=numel(s):-1:1
if ~isspace(s(i))
s=s(1:i);
break
end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
PASreadrectxt.m
|
.m
|
reconstructing-pascal-voc-master/external_src/VOCcode/PASreadrectxt.m
| 3,179 |
utf_8
|
3b0bdbeb488c8292a1744dace066bb73
|
function record=PASreadrectxt(filename)
[fd,syserrmsg]=fopen(filename,'rt');
if (fd==-1),
PASmsg=sprintf('Could not open %s for reading',filename);
PASerrmsg(PASmsg,syserrmsg);
end;
matchstrs=initstrings;
record=PASemptyrecord;
notEOF=1;
while (notEOF),
line=fgetl(fd);
notEOF=ischar(line);
if (notEOF),
matchnum=match(line,matchstrs);
switch matchnum,
case 1, [imgname]=strread(line,matchstrs(matchnum).str);
record.imgname=char(imgname);
case 2, [x,y,c]=strread(line,matchstrs(matchnum).str);
record.imgsize=[x y c];
case 3, [database]=strread(line,matchstrs(matchnum).str);
record.database=char(database);
case 4, [obj,lbl,xmin,ymin,xmax,ymax]=strread(line,matchstrs(matchnum).str);
record.objects(obj).label=char(lbl);
record.objects(obj).bbox=[min(xmin,xmax),min(ymin,ymax),max(xmin,xmax),max(ymin,ymax)];
case 5, tmp=findstr(line,' : ');
[obj,lbl]=strread(line(1:tmp),matchstrs(matchnum).str);
record.objects(obj).label=char(lbl);
record.objects(obj).polygon=sscanf(line(tmp+3:end),'(%d, %d) ')';
case 6, [obj,lbl,mask]=strread(line,matchstrs(matchnum).str);
record.objects(obj).label=char(lbl);
record.objects(obj).mask=char(mask);
case 7, [obj,lbl,orglbl]=strread(line,matchstrs(matchnum).str);
lbl=char(lbl);
record.objects(obj).label=lbl;
record.objects(obj).orglabel=char(orglbl);
if strcmp(lbl(max(end-8,1):end),'Difficult')
record.objects(obj).difficult=true;
lbl(end-8:end)=[];
else
record.objects(obj).difficult=false;
end
if strcmp(lbl(max(end-4,1):end),'Trunc')
record.objects(obj).truncated=true;
lbl(end-4:end)=[];
else
record.objects(obj).truncated=false;
end
t=find(lbl>='A'&lbl<='Z');
t=t(t>=4);
if ~isempty(t)
record.objects(obj).view=lbl(t(1):end);
lbl(t(1):end)=[];
else
record.objects(obj).view='';
end
record.objects(obj).class=lbl(4:end);
otherwise, %fprintf('Skipping: %s\n',line);
end;
end;
end;
fclose(fd);
return
function matchnum=match(line,matchstrs)
for i=1:length(matchstrs),
matched(i)=strncmp(line,matchstrs(i).str,matchstrs(i).matchlen);
end;
matchnum=find(matched);
if isempty(matchnum), matchnum=0; end;
if (length(matchnum)~=1),
PASerrmsg('Multiple matches while parsing','');
end;
return
function s=initstrings
s(1).matchlen=14;
s(1).str='Image filename : %q';
s(2).matchlen=10;
s(2).str='Image size (X x Y x C) : %d x %d x %d';
s(3).matchlen=8;
s(3).str='Database : %q';
s(4).matchlen=8;
s(4).str='Bounding box for object %d %q (Xmin, Ymin) - (Xmax, Ymax) : (%d, %d) - (%d, %d)';
s(5).matchlen=7;
s(5).str='Polygon for object %d %q (X, Y)';
s(6).matchlen=5;
s(6).str='Pixel mask for object %d %q : %q';
s(7).matchlen=8;
s(7).str='Original label for object %d %q : %q';
return
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
icp.m
|
.m
|
reconstructing-pascal-voc-master/external_src/icp/icp.m
| 18,342 |
utf_8
|
283054154b9888ad4a7e24be82f8851c
|
function [TR, TT, ER, t] = icp(q,p,varargin)
% Perform the Iterative Closest Point algorithm on three dimensional point
% clouds.
%
% [TR, TT] = icp(q,p) returns the rotation matrix TR and translation
% vector TT that minimizes the distances from (TR * p + TT) to q.
% p is a 3xm matrix and q is a 3xn matrix.
%
% [TR, TT] = icp(q,p,k) forces the algorithm to make k iterations
% exactly. The default is 10 iterations.
%
% [TR, TT, ER] = icp(q,p,k) also returns the RMS of errors for k
% iterations in a (k+1)x1 vector. ER(0) is the initial error.
%
% [TR, TT, ER, t] = icp(q,p,k) also returns the calculation times per
% iteration in a (k+1)x1 vector. t(0) is the time consumed for preprocessing.
%
% Additional settings may be provided in a parameter list:
%
% Boundary
% {[]} | 1x? vector
% If EdgeRejection is set, a vector can be provided that indexes into
% q and specifies which points of q are on the boundary.
%
% EdgeRejection
% {false} | true
% If EdgeRejection is true, point matches to edge vertices of q are
% ignored. Requires that boundary points of q are specified using
% Boundary or that a triangulation matrix for q is provided.
%
% Extrapolation
% {false} | true
% If Extrapolation is true, the iteration direction will be evaluated
% and extrapolated if possible using the method outlined by
% Besl and McKay 1992.
%
% Matching
% {bruteForce} | Delaunay | kDtree
% Specifies how point matching should be done.
% bruteForce is usually the slowest and kDtree is the fastest.
% Note that the kDtree option is depends on the Statistics Toolbox
% v. 7.3 or higher.
%
% Minimize
% {point} | plane | lmaPoint
% Defines whether point to point or point to plane minimization
% should be performed. point is based on the SVD approach and is
% usually the fastest. plane will often yield higher accuracy. It
% uses linearized angles and requires surface normals for all points
% in q. Calculation of surface normals requires substantial pre
% proccessing.
% The option lmaPoint does point to point minimization using the non
% linear least squares Levenberg Marquardt algorithm. Results are
% generally the same as in points, but computation time may differ.
%
% Normals
% {[]} | n x 3 matrix
% A matrix of normals for the n points in q might be provided.
% Normals of q are used for point to plane minimization.
% Else normals will be found through a PCA of the 4 nearest
% neighbors.
%
% ReturnAll
% {false} | true
% Determines whether R and T should be returned for all iterations
% or only for the last one. If this option is set to true, R will be
% a 3x3x(k+1) matrix and T will be a 3x1x(k+1) matrix.
%
% Triangulation
% {[]} | ? x 3 matrix
% A triangulation matrix for the points in q can be provided,
% enabling EdgeRejection. The elements should index into q, defining
% point triples that act together as triangles.
%
% Verbose
% {false} | true
% Enables extrapolation output in the Command Window.
%
% Weight
% {@(match)ones(1,m)} | Function handle
% For point or plane minimization, a function handle to a weighting
% function can be provided. The weighting function will be called
% with one argument, a 1xm vector that specifies point pairs by
% indexing into q. The weighting function should return a 1xm vector
% of weights for every point pair.
%
% WorstRejection
% {0} | scalar in ]0; 1[
% Reject a given percentage of the worst point pairs, based on their
% Euclidean distance.
%
% Martin Kjer and Jakob Wilm, Technical University of Denmark, 2012
% Use the inputParser class to validate input arguments.
inp = inputParser;
inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3);
inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3);
inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5);
inp.addParamValue('Boundary', [], @(x)size(x,1) == 1);
inp.addParamValue('EdgeRejection', false, @(x)islogical(x));
inp.addParamValue('Extrapolation', false, @(x)islogical(x));
validMatching = {'bruteForce','Delaunay','kDtree'};
inp.addParamValue('Matching', 'bruteForce', @(x)any(strcmpi(x,validMatching)));
validMinimize = {'point','plane','lmapoint'};
inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize)));
inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3);
inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3);
inp.addParamValue('ReturnAll', false, @(x)islogical(x));
inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3);
inp.addParamValue('Verbose', false, @(x)islogical(x));
inp.addParamValue('Weight', @(x)ones(1,length(x)), @(x)isa(x,'function_handle'));
inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1);
inp.parse(q,p,varargin{:});
arg = inp.Results;
clear('inp');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Actual implementation
% Allocate vector for RMS of errors in every iteration.
t = zeros(arg.iter+1,1);
% Start timer
tic;
Np = size(p,2);
% Transformed data point cloud
pt = p;
% Allocate vector for RMS of errors in every iteration.
ER = zeros(arg.iter+1,1);
% Initialize temporary transform vector and matrix.
T = zeros(3,1);
R = eye(3,3);
% Initialize total transform vector(s) and rotation matric(es).
TT = zeros(3,1, arg.iter+1);
TR = repmat(eye(3,3), [1,1, arg.iter+1]);
% If Minimize == 'plane', normals are needed
if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals))
arg.Normals = lsqnormest(q,4);
end
% If Matching == 'Delaunay', a triangulation is needed
if strcmp(arg.Matching, 'Delaunay')
DT = DelaunayTri(transpose(q));
end
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
if strcmp(arg.Matching, 'kDtree')
kdOBJ = KDTreeSearcher(transpose(q));
end
% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection
if isempty(arg.Boundary)
bdr = find_bound(q, arg.Triangulation);
else
bdr = arg.Boundary;
end
end
if arg.Extrapolation
% Initialize total transform vector (quaternion ; translation vec.)
qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];
% Allocate vector for direction change and change angle.
dq = zeros(7,arg.iter+1);
theta = zeros(1,arg.iter+1);
end
t(1) = toc;
% Go into main iteration loop
for k=1:arg.iter
% Do matching
switch arg.Matching
case 'bruteForce'
[match mindist] = match_bruteForce(q,pt);
case 'Delaunay'
[match mindist] = match_Delaunay(q,pt,DT);
case 'kDtree'
[match mindist] = match_kDtree(q,pt,kdOBJ);
end
% If matches to edge vertices should be rejected
if arg.EdgeRejection
p_idx = not(ismember(match, bdr));
q_idx = match(p_idx);
mindist = mindist(p_idx);
else
p_idx = true(1, Np);
q_idx = match;
end
% If worst matches should be rejected
if arg.WorstRejection
edge = round((1-arg.WorstRejection)*sum(p_idx));
pairs = find(p_idx);
[~, idx] = sort(mindist);
p_idx(pairs(idx(edge:end))) = false;
q_idx = match(p_idx);
mindist = mindist(p_idx);
end
if k == 1
ER(k) = sqrt(sum(mindist.^2)/length(mindist));
end
switch arg.Minimize
case 'point'
% Determine weight vector
weights = arg.Weight(match);
[R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx));
case 'plane'
weights = arg.Weight(match);
[R,T] = eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx));
case 'lmaPoint'
[R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx));
end
% Add to the total transformation
TR(:,:,k+1) = R*TR(:,:,k);
TT(:,:,k+1) = R*TT(:,:,k)+T;
% Apply last transformation
pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
% Root mean of objective function
ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx));
% If Extrapolation, we might be able to move quicker
if arg.Extrapolation
qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)];
dq(:,k+1) = qq(:,k+1) - qq(:,k);
theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1))));
if arg.Verbose
disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]);
end
if k>2 && theta(k+1) < 10 && theta(k) < 10
d = [ER(k+1), ER(k), ER(k-1)];
v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))];
vmax = 25 * norm(dq(:,k+1));
dv = extrapolate(v,d,vmax);
if dv ~= 0
q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1));
q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4));
qq(:,k+1) = q_mark;
TR(:,:,k+1) = quat2rmat(qq(1:4,k+1));
TT(:,:,k+1) = qq(5:7,k+1);
% Reapply total transformation
pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
% Recalculate root mean of objective function
% Note this is costly and only for fun!
switch arg.Matching
case 'bruteForce'
[~, mindist] = match_bruteForce(q,pt);
case 'Delaunay'
[~, mindist] = match_Delaunay(q,pt,DT);
case 'kDtree'
[~, mindist] = match_kDtree(q,pt,kdOBJ);
end
ER(k+1) = sqrt(sum(mindist.^2)/length(mindist));
end
end
end
t(k+1) = toc;
end
if not(arg.ReturnAll)
TR = TR(:,:,end);
TT = TT(:,:,end);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_bruteForce(q, p)
m = size(p,2);
n = size(q,2);
match = zeros(1,m);
mindist = zeros(1,m);
for ki=1:m
d=zeros(1,n);
for ti=1:3
d=d+(q(ti,:)-p(ti,ki)).^2;
end
[mindist(ki),match(ki)]=min(d);
end
mindist = sqrt(mindist);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_Delaunay(q, p, DT)
match = transpose(nearestNeighbor(DT, transpose(p)));
mindist = sqrt(sum((p-q(:,match)).^2,1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_kDtree(~, p, kdOBJ)
[match mindist] = knnsearch(kdOBJ,transpose(p));
match = transpose(match);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_point(q,p,weights)
m = size(p,2);
n = size(q,2);
% normalize weights
weights = weights ./ sum(weights);
% find data centroid and deviations from centroid
q_bar = q * transpose(weights);
q_mark = q - repmat(q_bar, 1, n);
% Apply weights
q_mark = q_mark .* repmat(weights, 3, 1);
% find data centroid and deviations from centroid
p_bar = p * transpose(weights);
p_mark = p - repmat(p_bar, 1, m);
% Apply weights
%p_mark = p_mark .* repmat(weights, 3, 1);
N = p_mark*transpose(q_mark); % taking points of q in matched order
[U,~,V] = svd(N); % singular value decomposition
R = V*diag([1 1 det(U*V')])*transpose(U);
T = q_bar - R*p_bar;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_plane(q,p,n,weights)
n = n .* repmat(weights,3,1);
c = cross(p,n);
cn = vertcat(c,n);
C = cn*transpose(cn);
b = - [sum(sum((p-q).*repmat(cn(1,:),3,1).*n));
sum(sum((p-q).*repmat(cn(2,:),3,1).*n));
sum(sum((p-q).*repmat(cn(3,:),3,1).*n));
sum(sum((p-q).*repmat(cn(4,:),3,1).*n));
sum(sum((p-q).*repmat(cn(5,:),3,1).*n));
sum(sum((p-q).*repmat(cn(6,:),3,1).*n))];
X = C\b;
cx = cos(X(1)); cy = cos(X(2)); cz = cos(X(3));
sx = sin(X(1)); sy = sin(X(2)); sz = sin(X(3));
R = [cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz;
cy*sz cx*cz+sx*sy*sz cx*sy*sz-cz*sx;
-sy cy*sx cx*cy];
T = X(4:6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_lmaPoint(q,p)
Rx = @(a)[1 0 0;
0 cos(a) -sin(a);
0 sin(a) cos(a)];
Ry = @(b)[cos(b) 0 sin(b);
0 1 0;
-sin(b) 0 cos(b)];
Rz = @(g)[cos(g) -sin(g) 0;
sin(g) cos(g) 0;
0 0 1];
Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3));
myfun = @(x,xdata)Rot(x(1:3))*xdata+repmat(x(4:6),1,length(xdata));
options = optimset('Algorithm', 'levenberg-marquardt');
x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options);
R = Rot(x(1:3));
T = x(4:6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extrapolation in quaternion space. Details are found in:
%
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, 239?256.
function [dv] = extrapolate(v,d,vmax)
p1 = polyfit(v,d,1); % linear fit
p2 = polyfit(v,d,2); % parabolic fit
v1 = -p1(2)/p1(1); % linear zero crossing
v2 = -p2(2)/(2*p2(1)); % polynomial top point
if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1])
disp('Parabolic update!');
dv = v2;
elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])...
|| (v2 < 0 && issorted([0 v1 vmax]))
disp('Line based update!');
dv = v1;
elseif v1 > vmax && v2 > vmax
disp('Maximum update!');
dv = vmax;
else
disp('No extrapolation!');
dv = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine the RMS error between two point equally sized point clouds with
% point correspondance.
% ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices.
function ER = rms_error(p1,p2)
dsq = sum(power(p1 - p2, 2),1);
ER = sqrt(mean(dsq));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Converts (orthogonal) rotation matrices R to (unit) quaternion
% representations
%
% Input: A 3x3xn matrix of rotation matrices
% Output: A 4xn matrix of n corresponding quaternions
%
% http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
function quaternion = rmat2quat(R)
Qxx = R(1,1,:);
Qxy = R(1,2,:);
Qxz = R(1,3,:);
Qyx = R(2,1,:);
Qyy = R(2,2,:);
Qyz = R(2,3,:);
Qzx = R(3,1,:);
Qzy = R(3,2,:);
Qzz = R(3,3,:);
w = 0.5 * sqrt(1+Qxx+Qyy+Qzz);
x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz);
y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz);
z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz);
quaternion = reshape([w;x;y;z],4,[]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Converts (unit) quaternion representations to (orthogonal) rotation matrices R
%
% Input: A 4xn matrix of n quaternions
% Output: A 3x3xn matrix of corresponding rotation matrices
%
% http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix
function R = quat2rmat(quaternion)
q0(1,1,:) = quaternion(1,:);
qx(1,1,:) = quaternion(2,:);
qy(1,1,:) = quaternion(3,:);
qz(1,1,:) = quaternion(4,:);
R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy;
2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx;
2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Least squares normal estimation from point clouds using PCA
%
% H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
% Surface reconstruction from unorganized points.
% In Proceedings of ACM Siggraph, pages 71:78, 1992.
%
% p should be a matrix containing the horizontally concatenated column
% vectors with points. k is a scalar indicating how many neighbors the
% normal estimation is based upon.
%
% Note that for large point sets, the function performs significantly
% faster if Statistics Toolbox >= v. 7.3 is installed.
%
% Jakob Wilm 2010
function n = lsqnormest(p, k)
m = size(p,2);
n = zeros(3,m);
v = ver('stats');
if str2double(v.Version) >= 7.5
neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1));
else
neighbors = k_nearest_neighbors(p, p, k+1);
end
for i = 1:m
x = p(:,neighbors(2:end, i));
p_bar = 1/k * sum(x,2);
P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P
%P = 2*cov(x);
[V,D] = eig(P);
[~, idx] = min(diag(D)); % choses the smallest eigenvalue
n(:,i) = V(:,idx); % returns the corresponding eigenvector
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Program to find the k - nearest neighbors (kNN) within a set of points.
% Distance metric used: Euclidean distance
%
% Note that this function makes repetitive use of min(), which seems to be
% more efficient than sort() for k < 30.
function [neighborIds neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k)
numDataPoints = size(dataMatrix,2);
numQueryPoints = size(queryMatrix,2);
neighborIds = zeros(k,numQueryPoints);
neighborDistances = zeros(k,numQueryPoints);
D = size(dataMatrix, 1); %dimensionality of points
for i=1:numQueryPoints
d=zeros(1,numDataPoints);
for t=1:D % this is to avoid slow repmat()
d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2;
end
for j=1:k
[s,t] = min(d);
neighborIds(j,i)=t;
neighborDistances(j,i)=sqrt(s);
d(t) = NaN; % remove found number from d
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Boundary point determination. Given a set of 3D points and a
% corresponding triangle representation, returns those point indices that
% define the border/edge of the surface.
function bound = find_bound(pts, poly)
%Correcting polygon indices and converting datatype
poly = double(poly);
pts = double(pts);
%Calculating freeboundary points:
TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)');
FF = freeBoundary(TR);
%Output
bound = FF(:,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
factorization.m
|
.m
|
reconstructing-pascal-voc-master/external_src/marques_costeira/factorization.m
| 3,358 |
utf_8
|
70c3edcecdca748814f20a5eba52ed7a
|
% [Motion, Shape, T] = factorization(Wo, iterMax1, iterMax2)
%
% This function computes the 3D object shape from missing and degenerate data.
%
%
% Input arguments:
%
% Wo - The data matrix is defined as:
% Wo = [ u_1^1 ... u_P^1
% v_1^1 ... v_P^1
% . . .
% . . .
% . . .
% u_1^F ... u_P^F
% v_1^F ... v_P^F ]
% The missing data entries must be identified with NaN.
%
% iterMax1 [Typical values: 3000-15000] - Maximum number of iterations for
% the missing data algorithm
% iterMax2 [100-500] - Maximum number of iterations for Rigid Factorization
% stopError1 [10^(-4) - 10^(-7)] - The missing data algorithm stops if the
% error between two consecutive iterations
% is lower than this threshold
% stopError2 [10^(-1) - 10^(-3)] - Rigid Factorization algorithm stops if
% the error between two consecutive iterations
% is lower than this threshold
%
% Note that Rigid Factorization is one step of the global missing data algorithm.
%
%
% Output arguments:
%
% Motion - The motion matrix stacks the camera matrices in all frames. The
% camera matrix in frame f is a Stiefel matrix and is composed by lines
% 2*f-1 and 2*f.
% Shape - 3D object shape
% T - Translation vector
%
%
% For details, see:
%
% Marques, M., and Costeira, J.. "Estimating 3D shape from degenerate sequences with missing data",
% Computer Vision and Image Understanding, 113(2):261-272, February 2009.
function [Motion, Shape, T] = factorization(Wo, iterMax1, iterMax2, stopError1, stopError2)
WW = Wo;
M = not(isnan(Wo));
unknowns = sum(sum(not(M)));
Wo(find(M == 0)) = 0;
Wo = (sum(Wo,2)./sum(M,2)*ones(1,size(Wo,2))).*not(M) + Wo.*M;
W = Wo;
nImgs = floor(size(W,1)/2);
iter1 = 0;
diagError = [];
ind = find(sum(M,1) == 2*nImgs);
if length(ind) > 0
T = Wo(:,ind(1));
else
T = mean(W,2);
end
[o1,e,o2]=svd(W);
E=e(1:3,1:3);
O1=o1(:,1:3);
O2=o2(:,1:3);
R=O1*sqrtm(E);
S=sqrtm(E)*O2';
try,
while iter1 < iterMax1
iter1
W = W - T*ones(1,size(W,2));
Woit = Wo - T*ones(1,size(W,2));
Rprev = R;
Wprev = W;
iterAux = 0;
t = tic();
while iterAux < iterMax2
Motion = [];
for i = 1:nImgs
A_f = projStiefel(R(2*i-1:2*i,:)');
Motion = [Motion; A_f'];
end
Shape = pinv(Motion)*W;
R = W*pinv(Shape);
Rprev = R;
iterAux = iterAux + 1;
end
toc(t)
W = Motion*Shape + T*ones(1,size(W,2));
W = Motion*Shape.*not(M) + Woit.*M + T*ones(1,size(W,2));
iter1 = iter1 + 1;
if length(ind) > 0
T = Wo(:,ind(1));
else
T = mean(W,2);
Motionret=Motion;
Tret=T;
Shaperet=Shape;
end
end
catch,
Motion=Motioneret;
T=Tret;
Shape=Shaperet;
end
% Motion = R;
function W = projStiefel(Wo)
[U,D,V] = svd(Wo,'econ');
c = mean(diag(D));
W = c*U*V';
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
factorization_plane.m
|
.m
|
reconstructing-pascal-voc-master/external_src/marques_costeira/factorization_plane.m
| 5,238 |
utf_8
|
56df592f3605e585151493ee02875a01
|
% [Motion, Shape, T] = factorization(Wo, iterMax1, iterMax2)
%
% This function computes the 3D object shape from missing and degenerate data.
%
%
% Input arguments:
%
% Wo - The data matrix is defined as:
% Wo = [ u_1^1 ... u_P^1
% v_1^1 ... v_P^1
% . . .
% . . .
% . . .
% u_1^F ... u_P^F
% v_1^F ... v_P^F ]
% The missing data entries must be identified with NaN.
%
% iterMax1 [Typical values: 3000-15000] - Maximum number of iterations for
% the missing data algorithm
% iterMax2 [100-500] - Maximum number of iterations for Rigid Factorization
% stopError1 [10^(-4) - 10^(-7)] - The missing data algorithm stops if the
% error between two consecutive iterations
% is lower than this threshold
% stopError2 [10^(-1) - 10^(-3)] - Rigid Factorization algorithm stops if
% the error between two consecutive iterations
% is lower than this threshold
%
% Note that Rigid Factorization is one step of the global missing data algorithm.
%
%
% Output arguments:
%
% Motion - The motion matrix stacks the camera matrices in all frames. The
% camera matrix in frame f is a Stiefel matrix and is composed by lines
% 2*f-1 and 2*f.
% Shape - 3D object shape
% T - Translation vector
%
%
% For details, see:
%
% Marques, M., and Costeira, J.. "Estimating 3D shape from degenerate sequences with missing data",
% Computer Vision and Image Understanding, 113(2):261-272, February 2009.
% NOTE: adapted for planar case, for the Reconstructing PASCAL VOC paper.
function [Motion, Shape, T, errors] = factorization_plane(Wo, iterMax1, iterMax2)
be_silent = true;
having_no_kp = find(all(isnan(Wo)'));
having_kps = setdiff(1:size(Wo,1), having_no_kp);
Wo(having_no_kp,:) = [];
WW = Wo;
M = not(isnan(Wo));
unknowns = sum(sum(not(M)));
Wo(find(M == 0)) = 0;
Wo = (sum(Wo,2)./sum(M,2)*ones(1,size(Wo,2))).*not(M) + Wo.*M;
W = Wo;
nImgs = floor(size(W,1)/2);
iter1 = 0;
diagError = [];
ind = find(sum(M,1) == 2*nImgs);
if length(ind) > 0
T = Wo(:,ind(1));
else
T = mean(W,2);
end
[o1,e,o2]=svd(W);
E=e(1:3,1:3);
O1=o1(:,1:3);
O2=o2(:,1:3);
R=O1*sqrtm(E);
S=sqrtm(E)*O2';
try,
while iter1 < iterMax1
if ~be_silent
t = tic();
iter1
end
W_prev_J = W;
W = W - T*ones(1,size(W,2));
Woit = Wo - T*ones(1,size(W,2));
Rprev = R;
Wprev = W;
iterAux = 0;
Motion = zeros(size(Wo,1)+3, 3);
Motion(end-2:end,:) = 5000*eye(3);
while iterAux < iterMax2
%Motion = cell(nImgs,1);
%parfor i = 1:nImgs
for i=1:nImgs
range = 2*i-1:2*i;
%%%% orig
%A_f = projStiefel(R(2*i-1:2*i,:)');
%%%% faster version
[U,D,V] = svd(R(range,:)','econ');
c = min(0.5*(D(1,1) + D(2,2)),100);
A_f = c*U*V';
%Motion{i} = A_f';
Motion(range,:) = A_f';
end
%Motion = cell2mat(Motion);
W_ext = [W; zeros(3,size(W,2))];
Shape = pinv(Motion)*W_ext;
R = W_ext*pinv(Shape);
Rprev = R;
iterAux = iterAux + 1;
end
Motion = Motion(1:end-3,:);
W = Motion*Shape + T*ones(1,size(W,2));
error1 = norm(W(M) - WW(M));
change = norm(W(:) - W_prev_J(:));
if ~be_silent
fprintf('Projection error: %f, solution change: %f', error1, change);
end
W = Motion*Shape.*not(M) + Woit.*M + T*ones(1,size(Wo,2));
iter1 = iter1 + 1;
if ~isempty(ind)
T = Wo(:,ind(1));
else
T = mean(W,2);
Motionret=Motion;
Tret=T;
Shaperet=Shape;
end
if ~be_silent
toc(t)
end
end
catch,
Motion=Motioneret;
T=Tret;
Shape=Shaperet;
end
duh = Motion*Shape + T*ones(1,size(W,2));
counter = 1;
errors = zeros(((size(M,1)/2)),1);
for i=1:((size(M,1)/2))
range = (2*(i-1) + 1):(2*i);
this_duh = duh(range,:);
this_duh = this_duh(M(range,:));
this_WW = WW(range,:);
this_WW = this_WW(M(range,:));
% errors(counter) = norm(this_duh - this_WW);
[sc1, scaling1] = scale_data(this_WW(1:2:end)', 'zscore');
[sc2, scaling2] = scale_data(this_WW(2:2:end)', 'zscore');
this_sc1 = scale_data(this_duh(1:2:end)', 'zscore', scaling1);
this_sc2 = scale_data(this_duh(2:2:end)', 'zscore', scaling2);
errors(counter) = norm([sc1; sc2] - [this_sc1; this_sc2]);
counter = counter + 1;
end
newMotion = zeros(numel(having_kps) + numel(having_no_kp), 3);
newMotion(having_kps,:) = Motion;
newT = zeros(numel(having_kps ) + numel(having_no_kp),1);
newT(having_kps) = T;
Motion = newMotion;
T = newT;
function W = projStiefel(Wo)
[U,D,V] = svd(Wo,'econ');
c = mean(diag(D));
c = min(c,100);
W = c*U*V';
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
factorization_custom.m
|
.m
|
reconstructing-pascal-voc-master/external_src/marques_costeira/factorization_custom.m
| 5,143 |
utf_8
|
e0d3459a70acb2997412cb6f0b92272f
|
% [Motion, Shape, T] = factorization(Wo, iterMax1, iterMax2)
%
% This function computes the 3D object shape from missing and degenerate data.
%
%
% Input arguments:
%
% Wo - The data matrix is defined as:
% Wo = [ u_1^1 ... u_P^1
% v_1^1 ... v_P^1
% . . .
% . . .
% . . .
% u_1^F ... u_P^F
% v_1^F ... v_P^F ]
% The missing data entries must be identified with NaN.
%
% iterMax1 [Typical values: 3000-15000] - Maximum number of iterations for
% the missing data algorithm
% iterMax2 [100-500] - Maximum number of iterations for Rigid Factorization
% stopError1 [10^(-4) - 10^(-7)] - The missing data algorithm stops if the
% error between two consecutive iterations
% is lower than this threshold
% stopError2 [10^(-1) - 10^(-3)] - Rigid Factorization algorithm stops if
% the error between two consecutive iterations
% is lower than this threshold
%
% Note that Rigid Factorization is one step of the global missing data algorithm.
%
%
% Output arguments:
%
% Motion - The motion matrix stacks the camera matrices in all frames. The
% camera matrix in frame f is a Stiefel matrix and is composed by lines
% 2*f-1 and 2*f.
% Shape - 3D object shape
% T - Translation vector
%
%
% For details, see:
%
% Marques, M., and Costeira, J.. "Estimating 3D shape from degenerate sequences with missing data",
% Computer Vision and Image Understanding, 113(2):261-272, February 2009.
% NOTE: It has been optimized somewhat for the Reconstructing PASCAL VOC paper.
function [Motion, Shape, T, errors] = factorization_custom(Wo, iterMax1, iterMax2)
be_silent = true;
having_no_kp = find(all(isnan(Wo)'));
having_kps = setdiff(1:size(Wo,1), having_no_kp);
Wo(having_no_kp,:) = [];
WW = Wo;
M = not(isnan(Wo));
unknowns = sum(sum(not(M)));
Wo(find(M == 0)) = 0;
Wo = (sum(Wo,2)./sum(M,2)*ones(1,size(Wo,2))).*not(M) + Wo.*M;
W = Wo;
nImgs = floor(size(W,1)/2);
iter1 = 0;
diagError = [];
ind = find(sum(M,1) == 2*nImgs);
if length(ind) > 0
T = Wo(:,ind(1));
else
T = mean(W,2);
end
[o1,e,o2]=svd(W);
E=e(1:3,1:3);
O1=o1(:,1:3);
O2=o2(:,1:3);
R=O1*sqrtm(E);
S=sqrtm(E)*O2';
try,
while iter1 < iterMax1
if ~be_silent
t = tic();
iter1
end
W_prev_J = W;
W = W - T*ones(1,size(W,2));
Woit = Wo - T*ones(1,size(W,2));
Rprev = R;
Wprev = W;
iterAux = 0;
Motion = zeros(size(Wo,1), 3);
while iterAux < iterMax2
%Motion = cell(nImgs,1);
%parfor i = 1:nImgs
for i=1:nImgs
range = 2*i-1:2*i;
%%%% orig
%A_f = projStiefel(R(2*i-1:2*i,:)');
%%%% faster version
[U,D,V] = svd(R(range,:)','econ');
c = 0.5*(D(1,1) + D(2,2));
A_f = c*U*V';
%Motion{i} = A_f';
Motion(range,:) = A_f';
end
%Motion = cell2mat(Motion);
Shape = pinv(Motion)*W;
R = W*pinv(Shape);
Rprev = R;
iterAux = iterAux + 1;
end
W = Motion*Shape + T*ones(1,size(W,2));
error1 = norm(W(M) - WW(M));
change = norm(W(:) - W_prev_J(:));
if ~be_silent
fprintf('Projection error: %f, solution change: %f', error1, change);
end
W = Motion*Shape.*not(M) + Woit.*M + T*ones(1,size(Wo,2));
iter1 = iter1 + 1;
if ~isempty(ind)
T = Wo(:,ind(1));
else
T = mean(W,2);
Motionret=Motion;
Tret=T;
Shaperet=Shape;
end
if ~be_silent
toc(t)
end
end
catch,
Motion=Motioneret;
T=Tret;
Shape=Shaperet;
end
duh = Motion*Shape + T*ones(1,size(W,2));
counter = 1;
errors = zeros(((size(M,1)/2)),1);
for i=1:((size(M,1)/2))
range = (2*(i-1) + 1):(2*i);
this_duh = duh(range,:);
this_duh = this_duh(M(range,:));
this_WW = WW(range,:);
this_WW = this_WW(M(range,:));
% errors(counter) = norm(this_duh - this_WW);
[sc1, scaling1] = scale_data(this_WW(1:2:end)', 'zscore');
[sc2, scaling2] = scale_data(this_WW(2:2:end)', 'zscore');
this_sc1 = scale_data(this_duh(1:2:end)', 'zscore', scaling1);
this_sc2 = scale_data(this_duh(2:2:end)', 'zscore', scaling2);
% this is a custom error function, not the one that is optimized
errors(counter) = norm([sc1; sc2] - [this_sc1; this_sc2]);
counter = counter + 1;
end
newMotion = zeros(numel(having_kps) + numel(having_no_kp), 3);
newMotion(having_kps,:) = Motion;
newT = zeros(numel(having_kps ) + numel(having_no_kp),1);
newT(having_kps) = T;
Motion = newMotion;
T = newT;
function W = projStiefel(Wo)
[U,D,V] = svd(Wo,'econ');
c = mean(diag(D));
W = c*U*V';
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
collect_imgset_keypoints_mirror.m
|
.m
|
reconstructing-pascal-voc-master/src/collect_imgset_keypoints_mirror.m
| 4,414 |
utf_8
|
fb223ff8fd94d952935a3918e7973298
|
function collect_imgset_keypoints_mirror(exp_dir, imgset, imgset_mirror)
dest_dir = [exp_dir 'merged_Correspondences_GT_BRKL/'];
load('./voc_kp_metadata.mat', 'metadata');
if(~exist(dest_dir, 'dir'))
mkdir(dest_dir);
end
total_n_objects = 0 ;
assert(iscell(imgset));
assert(numel(imgset) == numel(imgset_mirror));
for h=1:numel(imgset_mirror)
sb = SegmBrowser(exp_dir, 'ground_truth', imgset{h});
y = sb.get_overlaps_wholes(1:numel(sb.whole_2_img_ids));
[q, classes] = max(y, [], 2);
classes = mat2cell(classes, cellfun(@numel, sb.img_2_whole_ids));
img_names = sb.img_names;
counter = 1;
obj_keypoints = {};
all_rec = [];
for i=1:numel(img_names)
i
var = load([dest_dir img_names{i} '.mat'], 'rec');
if 0
% debugging
VOCinit();
GT_rec = PASreadrecord(sprintf(VOCopts.annopath,img_names{i}));
GT_rec_ours = load([exp_dir 'SegmentEval/ground_truth/overlap/' img_names{i} '.mat']);
GT_rec_ours = GT_rec_ours.Quality{1};
assert(numel(var.rec.objects) == numel(GT_rec_ours));
total_n_objects = total_n_objects + numel(GT_rec_ours);
end
GT_rec_ours = load([exp_dir 'SegmentEval/ground_truth/overlap/' img_names{i} '.mat']);
GT_rec_ours = GT_rec_ours.Quality{1};
if(numel(var.rec.objects) ~= numel(GT_rec_ours))
% here we fix the dessynchronization between PASrecords and our Quality files (see your research notes)!!!
var.rec.objects = var.rec.objects(1:numel(GT_rec_ours));
end
if 0 % debug
I = imread([exp_dir 'JPEGImages/' img_names{i} '.jpg']);
imshow(I); hold on;
%Iobj = imread([exp_dir 'SegmentationObject/' img_names{i} '.png']);
cmap = VOClabelcolormap(256);
%imshow(Iobj, cmap); hold on;
for j=1:numel(var.rec.objects)
if(isempty(var.rec.objects(j).keypoints))
continue;
end
plot(var.rec.objects(j).keypoints(:,1), var.rec.objects(j).keypoints(:,2), 'o', 'LineWidth', 5, 'Color', cmap(j+1,:));
if 0
% fix object annotation
end
end
end
I = imread([exp_dir 'JPEGImages/' img_names{i} '.jpg']);
img_size = [size(I,2) size(I,1)];
for j=1:numel(var.rec.objects)
if(isempty(var.rec.objects(j).keypoints))
continue;
end
non_null = (sum(var.rec.objects(j).keypoints,2) ~= 0);
var.rec.objects(j).keypoints(non_null, 1) = img_size(1) - var.rec.objects(j).keypoints(non_null,1) + 1;
map = metadata.sym_corresp{classes{i}(j)}{1};
var.rec.objects(j).keypoints(:, 1) = swap(var.rec.objects(j).keypoints(:, 1) , map(1,:), map(2,:));
var.rec.objects(j).keypoints(:, 2) = swap(var.rec.objects(j).keypoints(:, 2) , map(1,:), map(2,:));
% swap left-right symmetric dimensions
end
all_rec= [all_rec var.rec];
%all_rec(i) = var.rec;
for j=1:numel(all_rec(i).objects)
if(isfield(all_rec(i).objects(j), 'keypoints'))
obj_keypoints{counter} = all_rec(i).objects(j).keypoints;
else
obj_keypoints{counter} = [];
end
counter = counter + 1;
end
end
rec = all_rec;
save([dest_dir imgset_mirror{h} '.mat'], 'rec', 'obj_keypoints', '-V6');
end
end
function vector = swap(vector, dims1, dims2)
vec2 = vector;
vec2(dims1) = vector(dims2);
vec2(dims2) = vector(dims1);
vector = vec2;
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
regionprops_BB_mine.m
|
.m
|
reconstructing-pascal-voc-master/src/regionprops_BB_mine.m
| 791 |
utf_8
|
920c4ed1dd131ce13583e1e7ab4c931a
|
% returns bounding box even is mask is composed of multiple connected
% components
function rp_bbox = regionprops_BB_mine(mask, slack)
DefaultVal('*slack', '0');
[c_x, c_y] = find(mask);
if(isempty(c_x)) % robust to masks with zero pixels.
rp_bbox = [1 1 1 1];
else
rp_bbox(1) = min(c_y);
rp_bbox(2) = min(c_x);
rp_bbox(3) = max(c_y) - rp_bbox(1) + 1;
rp_bbox(4) = max(c_x) - rp_bbox(2) + 1;
if(slack~=0)
rp_bbox(1) = max(1, rp_bbox(1)-slack);
rp_bbox(2) = max(1, rp_bbox(2)-slack);
rp_bbox(3) = min(size(mask,2)-rp_bbox(1), rp_bbox(3)+2*slack);
rp_bbox(4) = min(size(mask,1)-rp_bbox(2), rp_bbox(4)+2*slack);
end
% showboxes(mask,[rp_bbox(1) rp_bbox(2) rp_bbox(1)+rp_bbox(3) rp_bbox(2)+rp_bbox(4)])
end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
gen_all_gt_segm_kp_imgset.m
|
.m
|
reconstructing-pascal-voc-master/src/gen_all_gt_segm_kp_imgset.m
| 3,912 |
utf_8
|
9a92930b19d9c7f7819f21f949741570
|
% generate imgset containing only those images where all objects have
% keypoints and segmentations and where there's no obvious problem
% with the keypoints (eg. keypoints missing on one object, repeated for another)
function filename = gen_all_gt_segm_kp_imgset()
exp_dir = add_all_paths();
mask_type = 'ground_truth';
base_imgset = 'all_gt_segm';
sb = SegmBrowser(exp_dir, mask_type, base_imgset);
corr = CorrespBRKL(exp_dir, base_imgset, sb);
n_with_annot = zeros(numel(sb.img_names),1);
n_obj = zeros(numel(sb.img_names),1);
n_gt_segm = n_obj;
selected = false(numel(sb.img_names),1);
for i=1:numel(sb.img_names)
i
%I = sb.get_Imgs(i);
%I = I{1};
count_with_kp = arrayfun(@(a) numel(a.keypoints), corr.img_ann(i).objects);
n_with_annot(i) = sum(count_with_kp ~= 0);
n_obj(i) = numel(count_with_kp);
n_gt_segm(i) = numel(sb.img_2_whole_ids{i});
%[F, D] = pooling_local_feats_mask_sift_kp(I, masks, kp, pars)
selected(i) = false;
if sum(n_with_annot(i)==n_obj(i))
% do more expensive test
if(1)
masks = sb.get_img_masks(i);
this_dist = zeros(numel(corr.img_ann(i).objects),1);
for j=1:numel(corr.img_ann(i).objects)
kp = ceil(corr.img_ann(i).objects(j).keypoints);
visib = logical(corr.img_ann(i).objects(j).visib);
kp_ids = find(kp(:,1)~=0.0 | kp(:,2)~=0.0);
assert(numel(corr.img_ann(i).objects(j).visib) == numel(kp_ids));
kp_visib = kp(kp_ids(visib),:);
kp_visib(kp_visib(:,1) == 0 | kp_visib(:,2) == 0, :) = [];
dist = bwdist(masks(:,:,j));
try
%MERCIFULNESS = 0;
%kp_visib(kp_visib<0 & kp_visib >-MERCIFULNESS) = 1;
%kp_visib(kp_visib(:,1) > (size(masks,2)+MERCIFULNESS),1) = size(masks,2);
%kp_visib(kp_visib(:,2) > (size(masks,1)+MERCIFULNESS),1) = size(masks,1);
dists = dist(sub2ind([size(masks,1) size(masks,2)], kp_visib(:,2), kp_visib(:,1)));
this_dist(j) = mean(dists);
catch
this_dist(j) = inf;
end
end
THRESH = 15;
if(max(this_dist)<THRESH)
selected(i) = true;
end
if(~selected(i) && 0)
% visualize
close all;
corr.show_wholes_and_keypoints(sb.img_2_whole_ids{i});
disp('oh oh');
figure;
I = imread([exp_dir 'JPEGImages/' sb.img_names{i} '.jpg']);
imshow(I); hold on;
for j=1:numel(corr.img_ann(i).objects)
kp = corr.img_ann(i).objects(j).keypoints;
kp(kp(:,1) == 0 & kp(:,2) == 0,:) = [];
plot(kp(:,1), kp(:,2), 'o', 'LineWidth', 15, 'Color', cmap(j+1,:));
axis image;
end
end
end
end
end
missing_ann_objs = sum(n_obj) - sum(n_with_annot)
%ratio_without_kp = sum(n_no_annot)/sum(n_obj)
ratio_zero_kp_img = sum(n_with_annot==n_obj)/numel(n_obj)
sel_imgs = sb.img_names(selected);
assert(all(n_obj(n_with_annot==n_obj) == n_gt_segm(n_with_annot==n_obj)))
if 1
filename = [base_imgset '_kp.txt'];
f = fopen([exp_dir 'ImageSets/Segmentation/' filename], 'w');
for i=1:numel(sel_imgs)
fprintf(f, '%s\n', sel_imgs{i});
end
fclose(f);
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
reconstruct_GT_puff_baseline_pascal.m
|
.m
|
reconstructing-pascal-voc-master/src/reconstruct_GT_puff_baseline_pascal.m
| 4,817 |
utf_8
|
323f0943ea99fc1f3ae34ec276a39de7
|
function reconstruct_GT_puff_baseline_pascal(sel_class)
OFFICE = true;
exp_dir = add_all_paths(OFFICE);
DefaultVal('*sel_class', '1');
mask_type = 'ground_truth';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% Get data of images having ground truth meshes %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
imgset_all = 'all_gt_segm_kp';
pascal_mask = 'ground_truth';
sb_pascal = SegmBrowser(exp_dir, pascal_mask, imgset_all);
y = sb_pascal.get_overlaps_wholes(1:numel(sb_pascal.whole_2_img_ids));
[q, class] = max(y, [], 2);
in_class = find(class == sel_class);
masks = sb_pascal.get_masks(in_class);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Reconstruct object instances %%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%all_reconstr = repmat(struct('vertices', single(0), 'faces', int32(0),'dt', single(0)), size(in_class,1), 1);
t_total = tic();
out_folder = ['SFM_models/Reconstructions_pascal_Puff_Baseline/' sb_pascal.categories{sel_class} '/'];
mkdir(out_folder);
save([out_folder 'reconstruction_data'], 'in_class', 'imgset_all','-v7.3');
parfor i=1:numel(masks)
tic
disp(i);
file_name = [out_folder int2str(i) '.mat'];
if(exist(file_name,'file'));
continue
end
reconstructions = [];
[reconstructions.faces, reconstructions.vertices] = puffball(masks{i});
reconstructions.vertices = reconstructions.vertices';
reconstructions.score = 1;
reconstructions.triples = i;
if 0
I = sb_pascal.get_Imgs(sb_pascal.whole_2_img_ids(in_class));
I = I{1};
% visualize reconstruction
sc(I); hold on;
trisurf(reconstructions.faces, reconstructions.vertices(1,:), ...
reconstructions.vertices(2,:), reconstructions.vertices(3,:), 'FaceColor', 'red');
axis equal;
set(gca,'zdir','reverse');
close all;
end
mysave(file_name, 'reconstructions', reconstructions);
toc
end
time = toc(t_total)
save([out_folder 'reconstruction_data'], 'in_class', 'imgset_all', 'time','-v7.3');
end
function [Xvol, Yvol, Zvol, dt] = precompute_data(R, T, Shape, really_all_masks, step, border, faster)
%TODO: this should probably be adjusted depending on the class, to ensure
%that the volumetric representation covers all the volume it needs.
mi = floor(min(Shape,[],2)) -border;
ma = ceil(max(Shape,[],2)) + border;
[Xvol,Yvol,Zvol] = meshgrid(mi(1):step:ma(1),mi(2):step:ma(2),mi(3):step:ma(3));
vol = [Xvol(:)'; Yvol(:)'; Zvol(:)'];
dt = zeros(size(vol,2),size(R,3));
%parfor h=1:size(R,3)
for h=1:size(R,3)
thisR = R(:,:,h);
thisT = T(:,h);
mask = really_all_masks{h};
rotVol = thisR*vol;
rotVol = bsxfun(@plus,rotVol,thisT);
dt(:,h) = distance_from_mask(mask,rotVol,faster);
end
end
function dt = distance_from_mask(mask,rotVol,faster)
% Returns a negative value for voxels in the volume and positive value
% outside.
[M,N] = size(mask);
minX = floor(min(rotVol(1,:))-2);
minY = floor(min(rotVol(2,:))-2);
maxX = ceil(max(rotVol(1,:))+2);
maxY = ceil(max(rotVol(2,:))+2);
cX = max(0,-minX+1);
cY = max(0,-minY+1);
aux_mask = false(cY + max(maxY,M),cX + max(maxX,N));
aux_mask(cY+1:cY+M, cX+1:cX+N) = mask;
rotVol(1,:) = rotVol(1,:) + cX;
rotVol(2,:) = rotVol(2,:) + cY;
ind = sub2ind(size(aux_mask),round(rotVol(2,:)),round(rotVol(1,:)));
if(faster)
dt = -2*double(aux_mask(ind))' + 1;
else
dt = zeros(size(rotVol,2),1);
[x,y] = getXYfromMask(aux_mask);
%Discrete approximation of distance, it simply takes the closest point in
%terms of the 2D distance transform, and then refines that distance.
[~,IDX] = bwdist(aux_mask);
sel_points = IDX(ind);
d = sqrt((x(sel_points)-rotVol(1,:)').^2 + (y(sel_points)-rotVol(2,:)').^2);
dt(~aux_mask(ind)) = d(~aux_mask(ind));
[~,IDX] = bwdist(~aux_mask);
sel_points = IDX(ind);
d = sqrt((x(sel_points)-rotVol(1,:)').^2 + (y(sel_points)-rotVol(2,:)').^2);
dt(aux_mask(ind)) = -d(aux_mask(ind));
end
end
function [x,y,m] = getXYfromMask(mask)
[x,y] = meshgrid(1:size(mask,2),1:size(mask,1));
x = x(:);
y = y(:);
m = mask(:);
end
function out = assig2cell(assig)
un = unique(assig);
n = numel(un);
out = cell(n,1);
for i=1:n
out{i} = find(assig==un(i));
end
out(isempty(out)) = [];
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
evaluate_reconstruction_ranking.m
|
.m
|
reconstructing-pascal-voc-master/src/evaluate_reconstruction_ranking.m
| 7,355 |
utf_8
|
5f45c481f720bdbb739c988b2063f828
|
% sometimes this crashes, (something related to parfor and writing and reading to files)
% just remove any .off files and rerun and it should be fine.
function evaluate_reconstruction_ranking(exp_dir,reconstr_name,withICP)
if(nargin<3)
withICP = 0;
end
for i=1:20
classes{i} = VOC09_id_to_classname(i);
end
all_errors = cell(numel(classes),1);
all_errors_upperbound = [];
for i=1:20
filename = ['./Results/ranking_errors_' classes{i} '_' reconstr_name '.mat'];
if exist(filename, 'file')
continue;
end
i
in_class = [];
base_dir = ['./Results/' reconstr_name '/' classes{i} '/'];
load([base_dir 'reconstruction_data.mat']);
sb = SegmBrowser(exp_dir, 'ground_truth', imgset_all);
files = dir([base_dir '*.mat']);
files(arrayfun(@(a) strcmp(a.name, 'reconstruction_data.mat'), files)) = [];
t_class = tic();
scores = [];
class_errors = cell(numel(files),1);
class_errors_ICP = class_errors;
scores = class_errors;
for j=1:numel(files)
j
gt_mesh = [];
% load reconstructed mesh
reconstructions = myload([base_dir files(j).name], 'reconstructions');
img_name = sb.img_names{sb.whole_2_img_ids(in_class(reconstructions(1).triples(1)))};
scores{j} = [reconstructions(:).score];
% load ground truth synthetic mesh
if 1
load([exp_dir 'MyMeshes/ground_truth/' img_name '.mat'], 'tri', 'vertices');
else
tri = myload([exp_dir 'MyMeshes/ground_truth/' img_name '.mat'], 'tri'); % was trying to use parfor but couldn't
vertices = myload([exp_dir 'MyMeshes/ground_truth/' img_name '.mat'], 'vertices');
end
gt_mesh.faces = tri';
gt_mesh.vertices = vertices;
errors = zeros(numel(reconstructions),1);
errors_ICP = errors;
parfor k=1:numel(reconstructions)
if(numel(reconstructions(k).faces)<2)
errors(k) = inf;
else
if(withICP)
[icpR,icpT] = icp(gt_mesh.vertices,reconstructions(k).vertices,'Matching','kDtree');
icpCorrected = bsxfun(@plus,icpR*reconstructions(k).vertices,icpT);
errors_ICP(k) = hausdorff_surface_error_mex(icpCorrected, reconstructions(k).faces, gt_mesh.vertices, gt_mesh.faces);
end
errors(k) = hausdorff_surface_error_mex(reconstructions(k).vertices, reconstructions(k).faces, gt_mesh.vertices, gt_mesh.faces);
end
end
class_errors{j} = errors;
class_errors_ICP{j} = errors_ICP;
end
time_per_class = toc(t_class)
errors = class_errors;
if(withICP)
errors_ICP = class_errors_ICP;
save(filename, 'errors','errors_ICP','scores');
else
save(filename, 'errors','scores');
end
end
RANDOM_SCORE = [false true];
%plotStyle = {'b', 'g', 'r', 'c', 'm', 'y', 'k', 'b--', 'g--', 'r--', 'c--', 'm--', 'y--', 'k--', 'b:', 'g:', 'r:', 'c:', 'm:', 'y:'};
plotStyle = {'b', 'g', 'r', 'c', 'm', 'b', 'g', 'r', 'c', 'm', 'b', 'g', 'r', 'c', 'm', 'b', 'g', 'r', 'c', 'm'};
all_errors_first = cell(2,20);
n_samples = [];
for i=1:20
subplot(4,5,i);
for k=1:numel(RANDOM_SCORE)
filename = ['./Results/ranking_errors_' classes{i} '_' reconstr_name '.mat'];
var = load(filename);
scores = var.scores;
errors = var.errors;
%errors = var.errors_ICP;
n_samples = [n_samples; cellfun(@numel, scores)];
% fill in any missing values
n_proposals = max(cellfun(@numel, scores));
for l=1:numel(scores)
if(numel(scores{l}) ~= n_proposals)
scores{l} = [scores{l} -inf(1, n_proposals - numel(scores{l}))];
errors{l} = [errors{l}; max(errors{l})*ones(n_proposals - numel(errors{l}),1)];
end
end
scores = cell2mat(scores)';
errors = cell2mat(errors');
errors(errors==inf) = 100;
if RANDOM_SCORE(k)
scores = rand(size(scores));
end
if(size(errors,1)>1)
[~, ids_srt] = sort(scores, 'descend');
for j=1:size(errors,2)
errors(:,j) = errors(ids_srt(:,j),j);
end
end
% get min of avg error per rank
min_avg = [];
%if(fix_me)
% errors = errors(1,:);
%end
for j=1:size(errors,1)
if(size(errors,1)>1)
min_avg(j) = mean(min(errors(1:j,:),[],1));
else
min_avg(j) = mean(errors);
end
if j==1
all_errors_first{k,i} = min(errors(1:j,:),[],1);
end
end
if(size(errors,1)>1)
all_errors_upperbound{i} = min(errors);
else
all_errors_upperbound{i} = errors;
end
if RANDOM_SCORE(k)
h(i) = plot(1:numel(min_avg), min_avg, [plotStyle{i} 'o'], 'LineWidth', 3); hold on;
else
h(i) = plot(1:numel(min_avg), min_avg, plotStyle{i}, 'LineWidth', 5); hold on;
end
end
legend({[classes{i} ' - predicted'], [classes{i} ' - random']});
end
figure;
cmap = VOClabelcolormap(256);
for i=1:20
plot(i, mean(all_errors_first{2,i}), 'x', 'MarkerSize', 15, 'LineWidth', 5, 'Color', cmap(i+1,:)); hold on;
plot(i, mean(all_errors_first{1,i}), 'o', 'MarkerSize', 15, 'LineWidth', 5, 'Color', cmap(i+1,:)); hold on;
plot(i, mean(all_errors_upperbound{i}), 's', 'MarkerSize', 15, 'LineWidth', 5, 'Color', cmap(i+1,:)); hold on;
fprintf('%s:\t\t %f \t %f \t %f\n', classes{i}, mean(all_errors_first{1,i}), mean(all_errors_upperbound{i}), mean(all_errors_first{2,i}));
classes{i} = VOC09_id_to_classname(i);
end
set(gca, 'Xlim', [0 21]);
xticklabel_rotate(1:20, 45, classes, 'FontSize', 15)
set(gca,'FontSize',15);
legend('Random', 'Top-ranked', 'Best available');
all_errors_upperbound = cell2mat(all_errors_upperbound);
fprintf('\n\n');
mean_error_pred = mean(cell2mat(all_errors_first(1,:))');
mean_error_rand = mean(cell2mat(all_errors_first(2,:))');
mean_error_upperbound = mean(all_errors_upperbound);
fprintf('Mean error using predicted: %f\nMean error with random selection: %f\n', mean_error_pred, mean_error_rand);
fprintf('Lower bound on error of a selection function: %f\n', mean_error_upperbound);
fprintf('Average number of proposals per image: %f\n', mean(n_samples));
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
cam_refinement.m
|
.m
|
reconstructing-pascal-voc-master/src/cam_refinement.m
| 4,387 |
utf_8
|
08acc8f4e9ed942cc7b81d9b99f095ec
|
function [R,T,best_en] = cam_refinement(Rot,Tr,Shape,mask,projections,use_dt)
% Refines the camera position based on the mask, so that all points
% reproject inside the mask
% minimizes:
%weigths.proj*(keypoints - (rot*shape+tr))^2 + weights.dt*dist_mask(rot*shape +tr);
if(use_dt)
weights.proj = 1;
weights.dt = 1;
else
weights.proj = 1;
weights.dt = 0;
end
r = Rot(1:2,:);
t = Tr(1:2);
dt = get_distance_transform(mask,weights);
%Precompute part of the gradient
n_points = size(Shape,2);
grad_t1 = [ones(n_points,1); zeros(n_points,1)];
grad_t2 = [zeros(n_points,1); ones(n_points,1)];
grad_r1 = [Shape(1,:) zeros(1,n_points)]';
grad_r2 = [Shape(2,:) zeros(1,n_points)]';
grad_r3 = [Shape(3,:) zeros(1,n_points)]';
grad_r4 = [zeros(1,n_points) Shape(1,:)]';
grad_r5 = [zeros(1,n_points) Shape(2,:)]';
grad_r6 = [zeros(1,n_points) Shape(3,:)]';
projections = projections(:);
nan_proj = isnan(projections);
step = 10^-4;
n_iter=20000;
coord = bsxfun(@plus,r*Shape,t);
coord = coord';
best_en=get_energy(coord,projections,dt,weights);
en = best_en+1;
dt_fx = zeros(n_points, 1);
dt_fy = dt_fx;
for k =1:n_iter
coord = bsxfun(@plus,r*Shape,t);
coord = coord';
if(weights.dt~=0)
[dt_fx,dt_fy] = get_dt_gradient(dt,coord);
end
repr = weights.proj*2*(coord(:) - projections);
repr(nan_proj) = 0;
grad = [dt_fx;dt_fy] + repr;
grad_r = [sum(grad.*grad_r1) sum(grad.*grad_r2) sum(grad.*grad_r3);...
sum(grad.*grad_r4) sum(grad.*grad_r5) sum(grad.*grad_r6)];
grad_t = [sum(grad.*grad_t1); sum(grad.*grad_t2)];
while(en>best_en)
if(step < 10^-7)
if(any(grad_r(:)~=0))
step = 10^-2;
grad_r(:) = 0;
else
break
end
end
r1 = r-step*grad_r;
r1 = projStiefel(r1);
t1 = t-step*grad_t;
c = bsxfun(@plus,r1*Shape,t1)';
en=get_energy(c,projections,dt,weights);
if(isnan(en)); en = best_en+1; end
step = step/2;
end
if(en>best_en && step < 10^-7 && all(grad_r(:)==0))
break;
end
step = step*4;
r = r1;
t = t1;
best_en = en;
if(best_en==0)
break;
end
en = best_en+1;
end
scale = norm(r(1,:));
R_3 = cross((1/scale)*r(1,:), (1/scale)*r(2,:));
R = [r; scale*R_3];
T =[t;0];
end
function en=get_energy(coord,projections,dt,weights)
en = (coord(:) - projections).^2;
en = weights.proj*sum(en(~isnan(en)));
if(weights.dt ~=0)
coord(:,2) = round(coord(:,2))+floor(dt.tolerance/2)*dt.M;
coord(:,1) = round(coord(:,1))+floor(dt.tolerance/2)*dt.N;
if(any(coord(:,1)<1) || any(coord(:,1)>size(dt.function,2)) || any(coord(:,2)>size(dt.function,1)) || any(coord(:,2)<1))
en = nan;
return;
end
a = dt.function(sub2ind(size(dt.function),coord(:,2),coord(:,1)));
en = en + sum(a);
end
end
function r = projStiefel(r)
[U,D,V] = svd(r,'econ');
c = (D(1,1) + D(2,2))/2;
%c = mean(diag(D));
r = c*U*V';
end
function [dt_fx,dt_fy] = get_dt_gradient(dt,coord)
ind = sub2ind(size(dt.function),round(coord(:,2))+floor(dt.tolerance/2)*dt.M,round(coord(:,1))+floor(dt.tolerance/2)*dt.N);
dt_fx = dt.fx(ind);
dt_fy = dt.fy(ind);
end
function distance_transform = get_distance_transform(mask,weights)
tol = 3;
distance_transform.tolerance = tol;
[M,N] = size(mask);
distance_transform.M = M;
distance_transform.N = N;
aux = zeros(tol*M,tol*N);
aux(floor(tol/2)*M+1:ceil(tol/2)*M,floor(tol/2)*N+1:ceil(tol/2)*N) = mask;
distance_transform.function = weights.dt*double(bwdist(aux)).^2;
[distance_transform.x,distance_transform.y] = meshgrid(1:tol*N,1:tol*M);
distance_transform.x = distance_transform.x - floor(tol/2)*N;
distance_transform.y = distance_transform.y - floor(tol/2)*M;
[distance_transform.fx,distance_transform.fy] = gradient(distance_transform.function);
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
normalize.m
|
.m
|
reconstructing-pascal-voc-master/src/normalize.m
| 1,601 |
utf_8
|
688deea9c3947acdbcc4ae85e6551565
|
% Copyright (C) 2010 Joao Carreira
%
% This code is part of the extended implementation of the paper:
%
% J. Carreira, C. Sminchisescu, Constrained Parametric Min-Cuts for Automatic Object Segmentation, IEEE CVPR 2010
%
function [Feats] = normalize(Feats, scaling)
if(iscell(Feats))
scaling.to_subtract = double(scaling.to_subtract);
scaling.to_divide = double(scaling.to_divide);
for i=1:length(Feats)
Feats{i} = double(Feats{i});
Feats{i} = single(full(spdiags(scaling.to_divide',0,size( Feats{i},1),size( Feats{i},1))*( Feats{i} - repmat(scaling.to_subtract,1,size( Feats{i},2)))));
end
else
% break Feats into 1000 vectors chunks to save memory
MAX_CHUNK_SIZE = 30000;
n_chunks = ceil(size(Feats,2)/MAX_CHUNK_SIZE);
chunk_size = repmat(MAX_CHUNK_SIZE,n_chunks,1);
the_mod = mod(size(Feats,2),MAX_CHUNK_SIZE);
if(the_mod)
chunk_size(end) = the_mod;
end
previous_id = 0;
for i=1:n_chunks
interval = previous_id+1:previous_id + chunk_size(i);
FeatsChunk = double(Feats(:,interval));
scaling.to_divide = double(scaling.to_divide);
scaling.to_subtract = double(scaling.to_subtract);
Feats(:,interval) = single(full(spdiags(scaling.to_divide',0,size(FeatsChunk,1),size(FeatsChunk,1))*(FeatsChunk - repmat(scaling.to_subtract,1,size(FeatsChunk,2)))));
previous_id = previous_id + chunk_size(i);
end
Feats(isnan(Feats)) = 0; % when a feature is constant in all training examples it gets NaN here
end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
reconstruct_pascal_getall.m
|
.m
|
reconstructing-pascal-voc-master/src/reconstruct_pascal_getall.m
| 10,752 |
utf_8
|
034311e75946795443f89c7cd9ec4006
|
function reconstruct_pascal_getall(sel_class, n_iter_1, n_iter_2, N_SAMPLES_PER_OBJ, MAX_DEV, name, refinement, imprinting)
DefaultVal('*refinement', 'true');
DefaultVal('*imprinting', 'true');
exp_dir = add_all_paths();
mask_type = 'ground_truth';
imgset_pascal = 'all_gt_segm_kp';
imgset_pascal_mirror = 'all_gt_segm_mirror_kp';
imgset_all = imgset_pascal;
imgset_all_mirror = imgset_pascal_mirror;
load('voc_kp_metadata.mat');
kp_names = metadata.kp_names{sel_class};
sb_all = SegmBrowser(exp_dir, mask_type, imgset_all);
sb_all_mirror = SegmBrowser(exp_dir, mask_type, imgset_all_mirror);
sfm_folder = ['./Results/'];
if(metadata.articulated(sel_class))
largest_rigid = true;
else
largest_rigid = false;
end
[in_class, filename_sfm, filename_ref, sel_kp_ids] = compute_and_cache_sfm_model(exp_dir, sfm_folder, sel_class, n_iter_1, n_iter_2, largest_rigid, imgset_all);
load([filename_sfm '.mat']);
if(refinement)
var = load([filename_ref '.mat'], 'R', 'T');
R = var.R;
T = var.T;
end
[Shape, R, k] = postprocess_sfm(Shape, R);
if 0
show_3d_model(Shape, kp_names(sel_kp_ids), 'convex_hull'); axis equal;
end
if 0
% visualize some cameras to see if it's ok
figure;
viz_ids = 1:20;
Is = sb_all.get_Imgs(sb_all.whole_2_img_ids(in_class(viz_ids)));
the_masks = sb_all.get_masks(in_class(viz_ids));
show_cameras_sv(Shape, kp_names(sel_kp_ids), R(:,:,viz_ids), T(:,viz_ids), Is, the_masks);
end
corr = CorrespBRKL(exp_dir, imgset_all, sb_all);
corr_mirror = CorrespBRKL(exp_dir, imgset_all_mirror, sb_all_mirror);
kp_obj = corr.obj_keypoints(in_class);
kp_obj = cellfun(@(a) a(:,1:2), kp_obj, 'UniformOutput', false);
kp_obj_mirror = corr_mirror.obj_keypoints(in_class);
kp_obj_mirror = cellfun(@(a) a(:,1:2), kp_obj_mirror, 'UniformOutput', false);
all_kp = [kp_obj kp_obj_mirror];
for i=1:numel(all_kp)
all_kp{i}(isnan(all_kp{i})) = 0;
end
n_kp = cellfun(@(a) sum(a(:,1)~=0 | a(:,2) ~= 0), kp_obj)';
% collect masks, should perhaps fill any holes
all_masks = sb_all.get_masks(in_class);
all_sym_masks = sb_all_mirror.get_masks(in_class);
really_all_masks = [all_masks; all_sym_masks];
if 0
areas = compute_mask_areas(sb_all);
areas = areas(in_class);
end
max_angle_deviations = [MAX_DEV MAX_DEV MAX_DEV];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% Get data of images having ground truth meshes %%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
test_mask = 'ground_truth';
sb_test = SegmBrowser(exp_dir, test_mask, imgset_pascal);
corr_test = CorrespBRKL(exp_dir, imgset_pascal, sb_test);
y = sb_test.get_overlaps_wholes(1:numel(sb_test.whole_2_img_ids));
[q, class] = max(y, [], 2);
in_class_test = find(class == sel_class);
sb_test_mirror = SegmBrowser(exp_dir, test_mask, imgset_pascal_mirror);
corr_test_mirror = CorrespBRKL(exp_dir, imgset_pascal_mirror, sb_test_mirror);
kp_test = corr_test.obj_keypoints(in_class_test);
kp_test = cellfun(@(a) a(:,1:2), kp_test, 'UniformOutput', false);
kp_test_mirror = corr_test_mirror.obj_keypoints(in_class_test);
kp_test_mirror = cellfun(@(a) a(:,1:2), kp_test_mirror, 'UniformOutput', false);
all_kp_test = [kp_test kp_test_mirror];
masks_test = sb_test.get_masks(in_class_test);
masks_test_mirror = sb_test_mirror.get_masks(in_class_test);
all_masks_test = [masks_test; masks_test_mirror];
% gets ids of gt within the pascal+gt set
ids_all = sb_all.whole_2_img_ids(in_class);
test_ids = [ids_all; ids_all+(size(R,3)/2)];
pascal_ids = test_ids;
R_test = R;
T_test = T;
R_pascal = R;
T_pascal = T;
kp_pascal = kp_obj;
kp_pascal_mirror = kp_obj_mirror;
all_kp_pascal = [kp_pascal kp_pascal_mirror];
masks_pascal = sb_all.get_masks(in_class);
masks_pascal_mirror = sb_all_mirror.get_masks(in_class);
all_masks_pascal = [masks_pascal; masks_pascal_mirror];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%% Sample triplets of object images %%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Reconstruct object using a single view from the test
% object and 2 others from a pool of examples of the same category from
% the pascal voc data
[test_ids_sel, pascal_ids_sel, axs] = view_comb_sampling_general(R_test, R_pascal, N_SAMPLES_PER_OBJ, max_angle_deviations);
axis_masks = get_average_mask(axs, R, T, really_all_masks);
ids = [test_ids_sel pascal_ids_sel];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%% Reconstruct object instances %%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N_VOXELS = 60;
if largest_rigid
filename_precomp = ['./SFM_models/precomp_dt_' sb_all.categories{sel_class} '_' imgset_all '_largest_rigid.mat'];
else
filename_precomp = ['./SFM_models/precomp_dt_' sb_all.categories{sel_class} '_' imgset_all '.mat'];
end
t_total = tic();
flags.is_articulated = metadata.articulated(sel_class);
flags.rot_symmetry = metadata.view_based(sel_class);
flags.imprinted = imprinting;
if(flags.rot_symmetry)
flags.rot_axis = get_rot_axis(Shape,metadata.bottom_top{sel_class});
end
flags.angle_step = pi/2;
out_folder = ['SFM_models/' name '/' sb_all.categories{sel_class} '/'];
mkdir(out_folder);
save([out_folder 'reconstruction_data'], 'in_class', 'imgset_all', 'ids', 'N_VOXELS', 'max_angle_deviations','-v7.3');
obj_ids = unique(test_ids_sel);
for i=1:numel(obj_ids)
tic
disp(i);
file_name = [out_folder int2str(i) '.mat'];
if(exist(file_name,'file'));
continue
end
ids_sel = ids(ids(:,1)==obj_ids(i),:);
ids_sel = unique(ids_sel, 'rows');
reconstructions = sel_best_reconstruction_getall(ids_sel,R,T,all_kp,really_all_masks, N_VOXELS,axis_masks,flags);
if 0
t = reconstructions.triples(1:end/2);
t(t==0) = [];
the_masks = [all_masks(t); all_sym_masks(t)];
figure;
Is = [sb_all.get_Imgs(sb_all.whole_2_img_ids(in_class(t)));sb_all_mirror.get_Imgs(sb_all_mirror.whole_2_img_ids(in_class(t)))];
subplot_auto_transparent_multiple_imgs(the_masks, Is);
end
if(numel(reconstructions) == 1 && isempty(reconstructions.triples))
theR = [];
theT = [];
else
allids = arrayfun(@(a) a.triples(1), reconstructions);
assert(numel(unique(allids))==1);
theR = R(:,:,allids(1));
theT = T(:,allids(1));
for j=1:numel(reconstructions)
reconstructions(j).vertices = bsxfun(@plus,theR*reconstructions(j).vertices',theT);
end
end
if 0
I = sb_all.get_Imgs(sb_all.whole_2_img_ids(in_class(ids_sel(1,1))));
I = I{1};
% visualize reconstruction
sc(I); hold on;
rec_id = 10;
trisurf(reconstructions(rec_id).faces, reconstructions(rec_id).vertices(1,:), ...
reconstructions(rec_id).vertices(2,:), reconstructions(rec_id).vertices(3,:), 'FaceColor', 'blue');
axis equal;
set(gca,'zdir','reverse');
end
save(file_name, 'reconstructions','ids_sel', 'theR', 'theT', '-v7.3');
toc
close all;
end
time = toc(t_total)
save([out_folder 'reconstruction_data'], 'in_class', 'imgset_all', 'N_VOXELS', 'max_angle_deviations','time','flags', 'Shape', 'axis_masks', '-v7.3');
end
function [Xvol, Yvol, Zvol, dt] = precompute_data(R, T, Shape, really_all_masks, step, border, faster)
%TODO: this should probably be adjusted depending on the class, to ensure
%that the volumetric representation covers all the volume it needs.
mi = floor(min(Shape,[],2)) -border;
ma = ceil(max(Shape,[],2)) + border;
[Xvol,Yvol,Zvol] = meshgrid(mi(1):step:ma(1),mi(2):step:ma(2),mi(3):step:ma(3));
vol = [Xvol(:)'; Yvol(:)'; Zvol(:)'];
dt = zeros(size(vol,2),size(R,3));
%parfor h=1:size(R,3)
for h=1:size(R,3)
thisR = R(:,:,h);
thisT = T(:,h);
mask = really_all_masks{h};
rotVol = thisR*vol;
rotVol = bsxfun(@plus,rotVol,thisT);
dt(:,h) = distance_from_mask(mask,rotVol,faster);
end
end
function dt = distance_from_mask(mask,rotVol,faster)
% Returns a negative value for voxels in the volume and positive value
% outside.
[M,N] = size(mask);
minX = floor(min(rotVol(1,:))-2);
minY = floor(min(rotVol(2,:))-2);
maxX = ceil(max(rotVol(1,:))+2);
maxY = ceil(max(rotVol(2,:))+2);
cX = max(0,-minX+1);
cY = max(0,-minY+1);
aux_mask = false(cY + max(maxY,M),cX + max(maxX,N));
aux_mask(cY+1:cY+M, cX+1:cX+N) = mask;
rotVol(1,:) = rotVol(1,:) + cX;
rotVol(2,:) = rotVol(2,:) + cY;
ind = sub2ind(size(aux_mask),round(rotVol(2,:)),round(rotVol(1,:)));
if(faster)
dt = -2*double(aux_mask(ind))' + 1;
else
dt = zeros(size(rotVol,2),1);
[x,y] = getXYfromMask(aux_mask);
%Discrete approximation of distance, it simply takes the closest point in
%terms of the 2D distance transform, and then refines that distance.
[~,IDX] = bwdist(aux_mask);
sel_points = IDX(ind);
d = sqrt((x(sel_points)-rotVol(1,:)').^2 + (y(sel_points)-rotVol(2,:)').^2);
dt(~aux_mask(ind)) = d(~aux_mask(ind));
[~,IDX] = bwdist(~aux_mask);
sel_points = IDX(ind);
d = sqrt((x(sel_points)-rotVol(1,:)').^2 + (y(sel_points)-rotVol(2,:)').^2);
dt(aux_mask(ind)) = -d(aux_mask(ind));
end
end
function [x,y,m] = getXYfromMask(mask)
[x,y] = meshgrid(1:size(mask,2),1:size(mask,1));
x = x(:);
y = y(:);
m = mask(:);
end
function out = assig2cell(assig)
un = unique(assig);
n = numel(un);
out = cell(n,1);
for i=1:n
out{i} = find(assig==un(i));
end
out(isempty(out)) = [];
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
puffball.m
|
.m
|
reconstructing-pascal-voc-master/src/puffball.m
| 2,705 |
utf_8
|
0a191a968a1f9911e80ae2417db3f7c1
|
function [tri, coord] = puffball(mask)
%Weighted skeleton, where each non-zero value corresponds to the maximum
%size of a sphere that can be centered there.
wSkel = get_SkelRadius(mask);
heightFunction = puffbalIInflation(mask,wSkel);
[tri,coord] = mesh_from_height(mask, heightFunction);
end
function [tri, coord] = mesh_from_height(mask, rec)
[M,N] = size(mask);
[x,y] = meshgrid(1:N,1:M);
tri = delaunay(x,y);
ind_tri = mask(tri);
ind_tri = ind_tri(:,1) | ind_tri(:,2) | ind_tri(:,3);
tri = tri(ind_tri,:);
aux = unique(tri);
boundary = setdiff(aux, find(mask));
points=zeros(M*N,1);
nPoints = length(aux);
points(aux) = 1:nPoints;
tri = points(tri);
boundary = points(boundary);
x = x(aux);
y = y(aux);
z = rec(aux);
for k =1:length(boundary)
pBound = boundary(k);
sel = sum(tri==pBound,2)>0;
selPoints = setdiff(unique(tri(sel,:)),pBound);
x1 = median(x(selPoints));
y1 = median(y(selPoints));
x(pBound) = x1;
y(pBound) = y1;
end
points = zeros(nPoints,1);
points(boundary) = boundary;
points(points==0) = nPoints + (1:(nPoints-length(boundary)));
reflected_tri = points(tri);
tri = [tri; reflected_tri];
x = [x;x];
y = [y;y];
z = [z; -z];
x(boundary + nPoints) = [];
y(boundary + nPoints) = [];
z(boundary + nPoints) = [];
coord = [x y z];
%figure; trisurf(tri,x,y,z,'FaceColor','r');
%axis equal
%set(gca,'YDir','rev');
end
function [ h ] = puffbalIInflation( mask,wSkel )
% TAKE THE UNION (SOFT-MAX) OF MAXIMAL SPHERES %
[Y, X] = meshgrid(1:size(mask,2),1:size(mask,1));
h = ones(size(mask));
[y,x] = find(wSkel);
k = 1;
for i = 1:length(x)
r = wSkel(y(i),x(i))^2 - (X-y(i)).^2 - (Y-x(i)).^2;
h(r>0) = h(r>0)+exp(k*sqrt(r(r>0)));
end
h = log(h)/k;
end
function [wSkel, allRadius] = get_SkelRadius(mask)
%Weighted skeleton, where each non-zero value corresponds to the maximum
%size of a sphere that can be centered there.
% CALCULATE GRASSFIRE HEIGHT FUNCTION %
% A 3x3-tap filter to smoothly erode an anti-aliased edge
fil = [0.1218 0.4123 0.1218; 0.4123 0.9750 0.4123; ...
0.1218 0.4123 0.1218]/1.2404;
nmask = double(mask);
allRadius = zeros(size(mask));
while ~isempty(find(nmask,1))
allRadius = allRadius+nmask/1.67; % Each iteration erodes the edge .6 pixels
nmaskpad = padarray(nmask,[1 1],'replicate');
nmaskpad = conv2(nmaskpad,fil,'same')-1.4241;
nmask = max(min(nmaskpad(2:end-1,2:end-1),1),0);
end
% LOCATE THE MEDIAL AXIS %
[dx, dy] = gradient(allRadius);
dsurf = sqrt(dx.^2+dy.^2);
% Medial axis points have a grassfire gradient measurably less than 1
radThreshold = min(max(allRadius(:)),2);
wSkel = bwmorph(dsurf<0.958&allRadius>=radThreshold,'skel',Inf).*allRadius;
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
sel_best_reconstruction_getall.m
|
.m
|
reconstructing-pascal-voc-master/src/sel_best_reconstruction_getall.m
| 9,550 |
utf_8
|
d5c6f71127bf609e4861602155ba9ac1
|
function [fv2,statistics] = sel_best_reconstruction_getall(all_triples,R,T,kp,really_all_masks, N_VOXELS,axis_masks,flags)
%flags is a structure with the following fields:
%
%flags.is_articulated
%flags.rot_symmetry
%flags.rot_axis (only important if rot_symmetry == 1)
%flags.angle_step (only important if rot_symmetry == 1)
if(sum(abs(R(:,:,all_triples(1,1)))) == 0)
% If the rotation wasn't estimated.
fv2.vertices = [];
fv2.faces = [];
fv2.triples = [];
return
end
n_images = size(R,3)/2;
if ~flags.is_articulated
all_triples = [all_triples all_triples+n_images];
end
thisR = R(:,:,all_triples(1,1));
thisT = T(:,all_triples(1,1));
mask = really_all_masks{all_triples(1,1)};
thisKP = kp{all_triples(1,1)};
old_triples = all_triples;
if flags.rot_symmetry
selR = thisR;
old_triples = old_triples(1);
ref_id = 1;
if(isfield(flags,'angle_step'))
angle_step = flags.angle_step;
else
angle_step = pi/4;
end
for th = angle_step:angle_step:(2*pi - angle_step);
switch flags.rot_axis
case 'x'
r1 = [1 0 0;0 cos(th) -sin(th); 0 sin(th) cos(th)];
case 'y'
r1 = [cos(th) 0 sin(th);0 1 0; -sin(th) 0 cos(th) ];
case 'z'
r1 = [cos(th) -sin(th) 0 ; sin(th) cos(th) 0; 0 0 1];
end
r1 = thisR*r1;
selR = cat(3,selR,r1);
end
selT = repmat(thisT, [1 size(selR,3)]);
all_triples = 1:size(selR,3);
selMasks = cell(size(all_triples));
for k =1:size(selR,3)
selMasks{k} = mask;
end
[Xvol, Yvol, Zvol, dt,vol] = precompute_data(selR,selT, selMasks , N_VOXELS, ref_id);
else
un_ids = unique(all_triples(:));
un_ids(un_ids==0) = [];
ind = zeros(max(un_ids),1);
ind(un_ids) = 1:length(un_ids);
all_triples(all_triples~=0) = ind(all_triples(all_triples~=0));
ref_id = all_triples(1);
[Xvol, Yvol, Zvol, dt,vol] = precompute_data(R(:,:,un_ids), T(:,un_ids), really_all_masks(un_ids), N_VOXELS,ref_id);
end
dt = single(dt);
siz = size(Xvol);
n_triples = size(all_triples,1);
not_projected = ones(n_triples,1)*size(thisKP,1);
dist_proj = 10*ones(n_triples,1);
area_beforeFilling = zeros(n_triples,1);
all_reconstr = repmat(struct('vertices', single(0), 'faces', int32(0)), n_triples, 1);
voxel_bondary = true(siz);
voxel_bondary(2:end-1,2:end-1,2:end-1) = false;
%set to 1 to plot all of the reconstructions.
plot_debug = 0;
if(plot_debug)
scrsz = get(0,'ScreenSize');
h = figure(100);
set(h,'Position',[1 1 scrsz(3) scrsz(4)]);
end
all_dt_models = single(zeros(size(dt,1),size(all_triples,1)));
for k =1:size(all_triples,1)
ids_sel = all_triples(k,:);
ids_sel(ids_sel == 0) = [];
volRec = max(dt(:,ids_sel),[],2);
if(flags.imprinted)
[volRec,area_beforeFilling(k)] = imprinted_VisualHull(vol,volRec,mask,thisR,thisT,siz);
end
volRec = 1-(2*(volRec<0));
volRec = reshape(volRec,siz);
volRec(voxel_bondary) = abs(volRec(voxel_bondary));
all_dt_models(:,k) = volRec(:);
fv2 = isosurface(Xvol,Yvol,Zvol,volRec,0);
if(isempty(fv2.faces))
disp('empty volume!')
continue;
end
new_vertices = bsxfun(@plus,thisR*(fv2.vertices)',thisT)';
not_projected(k) = get_points_reprojection(fv2.faces,new_vertices,thisKP);
dist_proj(k) = main_projections(fv2.faces,fv2.vertices,axis_masks);
all_reconstr(k).vertices = single(fv2.vertices);
all_reconstr(k).faces = int32(fv2.faces);
if(plot_debug)
%Plotting stuff
figure(100);
subplot(4,5,k);
hold all;
trisurf(fv2.faces,new_vertices(:,1),new_vertices(:,2),new_vertices(:,3),'FaceColor','red');
axis equal;
axis tight;
view([0 0 1])
set(gca,'ydir','rev');
set(gca,'zdir','rev');
title(num2str(k));
axis off;
end
end
fv2 = all_reconstr;
[scores] = get_ranking(not_projected, dist_proj);
statistics.not_projected = not_projected;
statistics.dist_proj = dist_proj;
statistics.scores = scores;
statistics.area_beforeFilling = area_beforeFilling;
for i=1:numel(fv2)
fv2(i).score = scores(i);
fv2(i).dt = all_dt_models(:,i);
fv2(i).triples = old_triples(i,:);
end
end
function [volRec,area_beforeFilling] = imprinted_VisualHull(vol,volRec,mask,thisR,thisT,siz)
vol = bsxfun(@plus,thisR*vol,thisT);
[M,N] = size(mask);
x = vol(1,:);
y = vol(2,:);
ma = false(size(x));
sel_ind = x >0.5 & x<N & y>0.5 & y<M;
ind = sub2ind(size(mask),round(y(sel_ind)),round(x(sel_ind)));
ma(sel_ind) = mask(ind);
volRec = reshape(volRec,siz);
min_voxel = repmat(min(volRec,[],3),[1 1 size(volRec,3)]);
ma = ma(:)';
ma = reshape(ma,siz);
area_beforeFilling = sum(sum(ma(:,:,1) & min_voxel(:,:,1)<0))/sum(sum(ma(:,:,1)));
volRec(ma & min_voxel>0 ) = volRec(ma & min_voxel>0) - (min_voxel(ma & min_voxel>0) + 0.0001);
volRec = volRec(:);
end
function dist_main = main_projections(tri,coord,axis_masks)
% returns the distance between the projections into the planes aligned with the main axis and the
% average mask for those planes
m = axis_masks.size;
edge = zeros(2,0,'uint32');
coord = coord*axis_masks.scale;
coord = coord + m/2;
projections = zeros(m,m,3);
P = [ 0 0 1 0; 0 1 0 0 ; 0 0 0 1];
projections(:,:,1) = RenderTriMex(P, m, m, coord', edge, uint32(tri-1)')>0;
P = [ 0 0 1 0;1 0 0 0 ; 0 0 0 1];
projections(:,:,2) = RenderTriMex(P, m, m, coord', edge, uint32(tri-1)')>0;
P = [ 0 1 0 0; 1 0 0 0; 0 0 0 1];
projections(:,:,3) = RenderTriMex(P, m, m, coord', edge, uint32(tri-1)')>0;
dist_main = 0;
for k =1:3
if(axis_masks.exemplars(k)~=0);
dist_main = dist_main + sum(sum(abs(projections(:,:,k) - axis_masks.masks(:,:,k))));
end
end
dist_main = dist_main/(m*m);
end
function [not_projected,thisKP_3D] = get_points_reprojection(tri,rot_vertices,thisKP)
%Returns the number of points that does not reproject inside the shape
TR2D = TriRep(tri,rot_vertices(:,1:2));
TR3D = TriRep(tri,rot_vertices);
n_tri = size(tri,1);
not_projected = 0;
thisKP_3D = zeros(size(thisKP,1),3);
for p = 1:size(thisKP,1)
if(thisKP(p,1)==0 && thisKP(p,2)==0); continue; end;
B = cartToBary(TR2D,(1:n_tri)',repmat(thisKP(p,:),[n_tri 1]));
sel_triangles = B>=0 & B<=1;
sel_triangles = find(sum(sel_triangles,2) == 3);
if(~isempty(sel_triangles))
PC = baryToCart(TR3D,sel_triangles,B(sel_triangles,:));
[a,b] = min(PC(:,3));
thisKP_3D(p,:) = PC(b,:);
else
not_projected = not_projected+1;
end
end
end
function [Xvol, Yvol, Zvol, dt, vol] = precompute_data(R, T, really_all_masks, n_voxels,ref_id)
lim = get_vol_limits(really_all_masks, R, T,ref_id);
for i=1:3
step(i) = (lim(i,2) - lim(i,1)) / n_voxels;
end
[Xvol,Yvol,Zvol] = meshgrid(lim(1,1):step(1):lim(1,2),lim(2,1):step(2):lim(2,2),lim(3,1):step(3):lim(3,2));
sz = size(Xvol);
vol = [Xvol(:)'; Yvol(:)'; Zvol(:)'];
refR = R(:,:,ref_id);
refT = T(:,ref_id);
vol = refR\bsxfun(@minus,vol, refT);
Xvol = reshape(vol(1,:)',sz);
Yvol = reshape(vol(2,:)',sz);
Zvol = reshape(vol(3,:)',sz);
dt = zeros(size(vol,2),size(R,3));
for h=1:size(R,3)
thisR = R(:,:,h);
thisT = T(:,h);
mask = really_all_masks{h};
rotVol = thisR*vol;
rotVol = bsxfun(@plus,rotVol,thisT);
dt(:,h) = distance_from_mask(mask,rotVol);
end
end
function dt = distance_from_mask(mask,rotVol)
% Returns a negative value for voxels in the volume and positive value
% outside.
[M,N] = size(mask);
minX = floor(min(rotVol(1,:))-2);
minY = floor(min(rotVol(2,:))-2);
maxX = ceil(max(rotVol(1,:))+2);
maxY = ceil(max(rotVol(2,:))+2);
cX = max(0,-minX+1);
cY = max(0,-minY+1);
aux_mask = false(cY + max(maxY,M),cX + max(maxX,N));
aux_mask(cY+1:cY+M, cX+1:cX+N) = mask;
rotVol(1,:) = rotVol(1,:) + cX;
rotVol(2,:) = rotVol(2,:) + cY;
ind = sub2ind(size(aux_mask),round(rotVol(2,:)),round(rotVol(1,:)));
dt = zeros(size(rotVol,2),1);
[x,y] = getXYfromMask(aux_mask);
[~,IDX] = bwdist(aux_mask);
sel_points = IDX(ind);
d = sqrt((x(sel_points)-rotVol(1,:)').^2 + (y(sel_points)-rotVol(2,:)').^2);
dt(~aux_mask(ind)) = d(~aux_mask(ind));
[~,IDX] = bwdist(~aux_mask);
sel_points = IDX(ind);
d = sqrt((x(sel_points)-rotVol(1,:)').^2 + (y(sel_points)-rotVol(2,:)').^2);
dt(aux_mask(ind)) = -d(aux_mask(ind));
end
function [x,y,m] = getXYfromMask(mask)
[x,y] = meshgrid(1:size(mask,2),1:size(mask,1));
x = x(:);
y = y(:);
m = mask(:);
end
function [limits] = get_vol_limits(masks, R, T,ref_id)
refR = R(:,:,ref_id);
refT = T(:,ref_id);
min_x = inf;
min_y = min_x;
min_z = min_x;
max_x = -inf;
max_y = max_x;
max_z = max_x;
for h=1:size(R,3)
% get edgels
bw = bwboundaries(masks{h});
bw = bw{1};
x = bw(:,2);
y = bw(:,1);
z = zeros(size(bw,1),1);
coord = [x'; y';z'];
thisR = R(:,:,h);
thisT = T(:,h);
coord = thisR\(bsxfun(@minus, coord, thisT));
coord = bsxfun(@plus, refR*coord, refT);
min_x = min([min_x coord(1,:)]);
max_x = max([max_x coord(1,:)]);
min_y = min([min_y coord(2,:)]);
max_y = max([max_y coord(2,:)]);
min_z = min([min_z coord(3,:)]);
max_z = max([max_z coord(3,:)]);
end
limits = [min_x max_x; min_y max_y; min_z max_z];
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
subplot_auto_transparent.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/subplot_auto_transparent.m
| 2,761 |
utf_8
|
188f00f27307f9049757d2bfe1176afa
|
% Copyright (C) 2010 Joao Carreira
%
% This code is part of the extended implementation of the paper:
%
% J. Carreira, C. Sminchisescu, Constrained Parametric Min-Cuts for Automatic Object Segmentation, IEEE CVPR 2010
%
%function h = subplot_auto_transparent(segments, I, titles)
function [Imgs] = subplot_auto_transparent(segments, I, titles, voc_cmap_ids, grid_type)
segments(segments==inf) = 10000;
border_side = 0.05;
border_top = 0.05;
if(length(size(I))==2)
I = repmat(I, [1 1 3]);
end
if(issparse(segments))
segments = full(segments);
end
if(size(segments,1) ~= size(I,1))
n_imgs = size(segments,2);
else
n_imgs = size(segments,3);
segments = reshape(segments, size(segments,1) * size(segments,2), n_imgs);
end
n_rows = round(sqrt(n_imgs));
n_cols = ceil(n_imgs/n_rows);
assert(n_cols*n_rows >= n_imgs);
counter = 1;
if(exist('voc_cmap_ids', 'var') && ~isempty(voc_cmap_ids))
cmap = VOClabelcolormap();
assert(size(segments,2) == numel(voc_cmap_ids));
for i=1:size(segments,2)
bground{i} = zeros(size(I,1),size(I,2),3);
bground{i}(:,:,1) = cmap(voc_cmap_ids(i),1);
bground{i}(:,:,2) = cmap(voc_cmap_ids(i),2);
bground{i}(:,:,3) = cmap(voc_cmap_ids(i),3);
bground{i} = uint8(255*bground{i});
end
else
bground = zeros(size(I,1),size(I,2),3);
bground(:,:,2) = 255;
end
Imgs = cell(n_imgs,1);
for i=1:n_imgs
if(size(segments,1) ~= size(I,1))
alpha_chann = reshape(segments(:,i), size(I,1), size(I,2))*0.5;
else
alpha_chann = segments(:,:,i)*0.5;
end
%sc(sc(I).*sc(alpha_chann))
if(exist('voc_cmap_ids', 'var') && ~isempty(voc_cmap_ids))
Imgs{i} = immerge(I, bground{i}, alpha_chann);
else
Imgs{i} = immerge(I, bground, alpha_chann);
end
counter = counter + 1;
end
%montage_new(Imgs, titles, 'Size', [n_rows n_cols], 'Border', 0.1);
if(~exist('grid_type', 'var'))
grid_type = [];
end
if(exist('titles', 'var') && ~isempty(titles))
if(~iscell(titles)) % if not a cell assumes they're numbers
for i=1:length(titles)
new_titles{i} = sprintf('%f', titles(i));
end
titles = new_titles;
end
if(~exist('grid_type', 'var'))
montage_new(Imgs, titles, 'Border', [border_top border_side]);
else
montage_new(Imgs, titles, 'Border', [border_top border_side], 'Size', grid_type);
end
else
montage_new(Imgs, [], 'Border', [border_top border_side], 'Size', grid_type);
end
% hold on;
% for i=1:n_imgs
% if(nargin==3)
% h(counter) = subplot(n_rows,n_cols,i); title(titles{i});
% end
% end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
create_transparent_multiple_colors.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/create_transparent_multiple_colors.m
| 3,650 |
utf_8
|
684d20c449e8916275aac6ee636b84e1
|
%function I = create_transparent_multiple_colors(segments, I, titles)
function merged_Img = create_transparent_multiple_colors(segments, I, use_voc_colors, labels, transparency, intensities)
DefaultVal('*use_voc_colors', 'false');
DefaultVal('*transparency', '0.8');
DefaultVal('*intensities', '[]');
if(isempty(intensities))
intensities = 0.5*ones(size(segments,3),1);
end
% if(size(segments,3) == 1 && numel(unique(segments)) > 1)
% segments = labels2binary(segments);
% segments(:,1) = []; % remove 0 label
% end
if(length(size(I))==2)
I = repmat(I, [1 1 3]);
end
if(issparse(segments))
segments = full(segments);
end
if(size(I,1) == size(segments,1))
segments = double(reshape(segments, [size(segments,1)*size(segments,2)], size(segments,3)));
end
n_segms = size(segments,2);
merged_Img = I;
bground = zeros(size(merged_Img,1), size(merged_Img,2), size(merged_Img,3));
assert(size(segments,2) == numel(intensities));
for i=1:n_segms
if(use_voc_colors)
if(exist('labels', 'var') && ~isempty(labels))
if(labels(i) == 21) % background
bground = get_new_bg_voc(bground, segments(:,i), 0);
else
bground = get_new_bg_voc(bground, segments(:,i), labels(i));
end
else
bground = get_new_bg_voc(bground, segments(:,i), i);
end
else
bground = get_new_bg_intensities(bground, segments(:,i), intensities(i));
end
alpha_chann = double(reshape(segments(:,i), size(I,1), size(I,2)))*transparency;
merged_Img = immerge(merged_Img, bground, alpha_chann);
end
end
function bground = get_new_bg_voc(previous_bg, mask, i)
bground = zeros(size(previous_bg));
cmap = VOClabelcolormap(256);
bground(:,:,1) = cmap(i+1,1)*255;
bground(:,:,2) = cmap(i+1,2)*255;
bground(:,:,3) = cmap(i+1,3)*255;
mask_rs = repmat(reshape(mask,size(bground,1), size(bground,2)),[1 1 3]);
bground = bground.*mask_rs;
bground = previous_bg + bground;
end
function bground = get_new_bg_intensities(previous_bg, mask, intensity)
cmap = colormap('jet');
intensity = max(1, round((intensity*size(cmap,1))));
intensity = max(0, intensity);
%end
%max_intens = max(intensities);
bground = zeros(size(previous_bg));
bground(:,:,1) = cmap(intensity,1);
bground(:,:,2) = cmap(intensity,2);
bground(:,:,3) = cmap(intensity,3);
bground = 255*bground;
mask_rs = repmat(reshape(mask,size(bground,1), size(bground,2)),[1 1 3]);
bground = bground.*mask_rs;
bground = previous_bg + bground;
end
function bground = get_new_bg(previous_bg, mask, i)
bground = zeros(size(previous_bg));
if(i==1)
bground(:,:,2) = 255;
elseif(i==2)
bground(:,:,1) = 255;
elseif(i==3)
bground(:,:,3) = 255;
elseif(i==4)
bground(:,:,1) = 255;
bground(:,:,2) = 255;
elseif(i==5)
bground(:,:,1) = 255;
bground(:,:,3) = 255;
elseif(i==6)
bground(:,:,2) = 255;
bground(:,:,3) = 255;
elseif(i==7)
bground(:,:,1) = 125;
bground(:,:,2) = 255;
elseif(i==7)
bground(:,:,1) = 125;
bground(:,:,3) = 255;
elseif(i==8)
bground(:,:,2) = 125;
bground(:,:,3) = 255;
elseif(i>=9)
bground(:,:,1) = rand()*255;
bground(:,:,2) = rand()*255;
bground(:,:,3) = rand()*255;
end
mask_rs = repmat(reshape(mask,size(bground,1), size(bground,2)),[1 1 3]);
bground = bground.*mask_rs;
bground = previous_bg + bground;
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
subplot_auto_transparent_parts.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/subplot_auto_transparent_parts.m
| 2,461 |
utf_8
|
91078f7661ffb5b11fda99cc06c46ce6
|
%function h = subplot_auto_transparent(segments, I, titles)
function [Imgs] = subplot_auto_transparent_parts(whole_segment, part_segments, I, titles, grid_type)
if(isempty(part_segments))
Imgs = [];
return;
end
part_segments(part_segments==inf) = 10000;
border_side = 0.05;
border_top = 0.05;
if(length(size(I))==2)
I = repmat(I, [1 1 3]);
end
if(issparse(part_segments))
part_segments = full(part_segments);
end
if(size(part_segments,1) ~= size(I,1))
n_imgs = size(part_segments,2);
else
n_imgs = size(part_segments,3);
part_segments = reshape(part_segments, size(part_segments,1) * size(part_segments,2), n_imgs);
end
n_rows = round(sqrt(n_imgs));
n_cols = ceil(n_imgs/n_rows);
assert(n_cols*n_rows >= n_imgs);
counter = 1;
% sets the color of the whole
bground = zeros(size(I,1),size(I,2),3);
bground(:,:,3) = 255;
% sets the color of the parts
bground_parts = zeros(size(I,1),size(I,2),3);
bground_parts(:,:,1) = 255;
bground_parts(:,:,2) = 255;
Imgs = cell(n_imgs,1);
if(size(part_segments,1) ~= size(I,1))
alpha_chann_whole = reshape(whole_segment, size(I,1), size(I,2))*0.5;
else
alpha_chann_whole = whole_segment*0.5;
end
for i=1:n_imgs
if(size(part_segments,1) ~= size(I,1))
alpha_chann_part = reshape(part_segments(:,i), size(I,1), size(I,2))*0.5;
else
alpha_chann_part = part_segments(:,:,i)*0.5;
end
Imgs{i} = immerge(I, bground, alpha_chann_whole);
Imgs{i} = immerge(Imgs{i}, bground_parts, alpha_chann_part);
counter = counter + 1;
end
%montage_new(Imgs, titles, 'Size', [n_rows n_cols], 'Border', 0.1);
if(~exist('grid_type', 'var'))
grid_type = [];
end
if(exist('titles', 'var') && ~isempty(titles))
if(~iscell(titles)) % if not a cell assumes they're numbers
for i=1:length(titles)
new_titles{i} = sprintf('%f', titles(i));
end
titles = new_titles;
end
if(~exist('grid_type', 'var'))
montage_new(Imgs, titles, 'Border', [border_top border_side]);
else
montage_new(Imgs, titles, 'Border', [border_top border_side], 'Size', grid_type);
end
else
montage_new(Imgs, [], 'Border', [border_top border_side], 'Size', grid_type);
end
% hold on;
% for i=1:n_imgs
% if(nargin==3)
% h(counter) = subplot(n_rows,n_cols,i); title(titles{i});
% end
% end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
SvmSegm_study_segment_quality.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/SvmSegm_study_segment_quality.m
| 9,068 |
utf_8
|
21b9677e95348739b7b27093457cfe01
|
%function SvmSegm_study_segment_quality(exp_dir, segm_name, the_imgset, segm_quality_type)
function SvmSegm_study_segment_quality(exp_dir, segm_name, the_imgset, segm_quality_type, class_label)
DefaultVal('class_label', '[]');
if(~iscell(segm_name))
segm_name = {segm_name};
end
% can write segment statistics into [exp MyStatistics]
% one file per segmentation algorithm
%statistics_dir = [exp_dir 'MyStatistics/'];
%if(~exist(statistics_dir, 'dir'))
% mkdir(statistics_dir);
%end
if(~iscell(the_imgset))
img_names =textread([exp_dir '/ImageSets/Segmentation/' the_imgset '.txt'], '%s');
else
if(5 > numel(the_imgset))
error('if it''s a imgset, don''t pass as cell!');
end
img_names = the_imgset;
end
segm_eval_dir = [exp_dir 'SegmentEval/'];
Q = {};
for i=1:numel(segm_name)
mask_type = segm_name;
direct = [segm_eval_dir mask_type{i} '/' segm_quality_type '/' ];
if(~exist(direct, 'dir'))
error('directory doesn''t exist');
end
thisQ = cell(numel(img_names),1);
for j=1:numel(img_names)
if(exist([direct img_names{j} '.mat'], 'file'))
Quality = myload([direct img_names{j} '.mat'], 'Quality');
if(~iscell(Quality)) % for backward data compatibility
Quality = {Quality};
end
thisQ{j} = Quality;
else
disp('didnt find a file');
[direct img_names{j} '.mat']
end
end
if(isempty(Q))
Q = thisQ;
else
for j=1:numel(thisQ)
for k = 1:numel(thisQ{j})
for l=1:numel(thisQ{j}{k})
Q{j}{k}(l).q = [Q{j}{k}(l).q; thisQ{j}{k}(l).q];
Q{j}{k}(l).sz = [Q{j}{k}(l).sz; thisQ{j}{k}(l).sz];
end
end
end
end
%Q = cellfun(@conc, Q, thisQ, 'UniformOutput', false);
end
counter = 1;
if(~isempty(class_label))
cells_to_remove = false(numel(Q),1);
for j=1:numel(Q) % iterate over images
to_remove = ([Q{j}{1}(:).class] ~= class_label);
Q{j}{1}(to_remove) = [];
if(isempty(Q{j}{1}))
cells_to_remove(j) = true;
end
end
Q(cells_to_remove) = [];
end
avg_img_overlap = zeros(numel(Q),1);
for i=1:numel(Q) % iterate over images
avg_gt_overlap = zeros(numel(Q{i}),1);
for j=1:numel(Q{i}) % iterate over gt segmentations
max_gt_overlaps = zeros(numel(Q{i}{j}),1);
mean_gt_overlaps = max_gt_overlaps;
for k=1:numel(Q{i}{j}) % iterate over regions in the gt segmentation
if(Q{i}{j}(k).class<255)
if(~isempty(Q{i}{j}(k).q))
m(counter) = max(Q{i}{j}(k).q);
avg(counter) = mean(Q{i}{j}(k).q);
mean_gt_overlaps(k) = mean(Q{i}{j}(k).q);
else
m(counter) = 0;
avg(counter) = 0;
mean_gt_overlaps(k) = 0;
end
max_gt_overlaps(k) = m(counter);
counter = counter + 1;
end
end
avg_gt_overlap(j) = mean(max_gt_overlaps);
end
avg_img_overlap(i) = mean(avg_gt_overlap);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp(['Dataset Avg Best ' segm_quality_type ':']);
avg_best = mean(m)
std_dev = std(m)
avg_avg = mean(avg)
avg_img_overlap(isnan(avg_img_overlap)) = [];
disp(['Img Avg Best' segm_quality_type ':']);
avg_best = mean(avg_img_overlap)
std_dev = std(avg_img_overlap)
disp(['Img Best Segmentation Covering with ' segm_quality_type ' score (avg over multiple GT):']);
best_single_coverage = zeros(numel(Q), 1);
best_single_coverage_best_GT = zeros(numel(Q), 1);
for i=1:numel(Q) % iterate over images
this_image_best_single_coverage = zeros(numel(Q{i}),1);
for j=1:numel(Q{i}) % iterate over gt segmentations
max_val = [];
n_pixels_in_segments = [];
total_n_pixels_gt = 0;
the_k= [];
for k=1:numel(Q{i}{j}) % iterate over regions in the image
if(Q{i}{j}(k).class >= 255)
continue;
end
if(~isempty(Q{i}{j}(k).q))
[max_val(k), id] = max(Q{i}{j}(k).q);
n_pixels_in_segments(k) = Q{i}{j}(k).sz(id);
else
max_val(k) = 0;
n_pixels_in_segments(k) = 0;
end
total_n_pixels_gt= total_n_pixels_gt + Q{i}{j}(k).object_sz;
the_k = [the_k k];
end
max_val = max_val';
if(~isempty(the_k))
this_image_best_single_coverage(j) = (1/total_n_pixels_gt) * ([Q{i}{j}(the_k).object_sz]*max_val);
else
this_image_best_single_coverage(j) = -1;
end
end
best_single_coverage(i) = mean(this_image_best_single_coverage); % average over humans
if(isempty(this_image_best_single_coverage))
this_image_best_single_coverage = -1;
end
best_single_coverage_best_GT(i) = max(this_image_best_single_coverage); % best over humans
end
% remove the ones we haven't computed
best_single_coverage_best_GT(best_single_coverage_best_GT == -1) = [];
best_single_coverage(best_single_coverage==-1) = [];
best_single_coverage(isnan(best_single_coverage)) = [];
avg_best_covering = mean(best_single_coverage)
std_dev_covering = std(best_single_coverage)
disp(['Img Best Segmentation Covering with ' segm_quality_type ' score (best over multiple GT) :']);
avg_best_single_covering = mean(best_single_coverage_best_GT)
std_dev_single_covering = mean(best_single_coverage_best_GT)
n_segms = 0;
num_Q = 0;
for i=1:numel(Q) % count the number of segments we've got
if(~isempty(Q{i}))
n_segms = n_segms + numel(Q{i}{1}(1).sz);
num_Q = num_Q + 1;
end
end
avg_num_segments = sum(n_segms) / num_Q
%visualize_bad_examples(exp_dir, segm_name{1}, img_names, best_single_coverage)
%save([statistics_dir cell2mat(mask_type) '.mat'], 'avg_best', 'std_dev', 'avg_best_covering', 'std_dev_covering', ...
% 'avg_num_segments');
end
function visualize_bad_examples(exp_dir, segm_name, img_names, best_single_coverage_best_GT, overlap_type)
[sorted_vals, ids] = sort(best_single_coverage_best_GT, 'descend');
%[sorted_vals, ids] = sort(best_single_coverage_best_GT);
for i=1:numel(ids)
I = imread([exp_dir 'JPEGImages/' img_names{ids(i)} '.jpg']);
Quality = myload([exp_dir 'SegmentEval/' segm_name '/' overlap_type '/' img_names{ids(i)} '.mat'], 'Quality');
if(~iscell(Quality)) % for backward data compatibility
Quality = {Quality};
end
% load segments
sorted_vals(i)
load([exp_dir 'MySegmentsMat/' segm_name '/' img_names{ids(i)} '.mat']);
SvmSegm_show_best_segments(I,Quality, masks); figure;
%subplot_auto_transparent(masks, I);
% load all ground truth segmentations
files = dir([exp_dir 'SegmentationObject/' img_names{ids(i)} '*']);
%files = dir([exp_dir 'SegmentationSurfaces/' img_names{ids(i)} '*']);
for j=1:numel(files)
%filenames{j} = [exp_dir 'SegmentationSurfaces/' files(j).name];
filenames{j} = [exp_dir 'SegmentationObject/' files(j).name];
%gt{j} = imread([exp_dir 'SegmentationObject/' files(i).name]);
end
map = VOClabelcolormap(256);
subplot(1,2,1), montage(filenames, map);
subplot(1,2,2), sc(I);
pause;
close all;
end
end
function res = conc(old,new)
res = old;
if(isfield(old, 'q'))
for i=1:numel(new)
res(i).q = [old(i).q; new(i).q];
res(i).sz = [old(i).sz; new(i).sz];
end
else
res = new;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% histogram gt segments with respect to their size, then see avg quality per bin
% disp(['Segment Quality with gt segment size']);
% duh = [Q{:}];
% gt_sizes = [duh(:).object_sz];
% [pos, sz] = hist(log10(gt_sizes), 30)
% [pos, bin] = histc(log10(gt_sizes), [0 sz inf]);
%
% 10.^sz
% for i=1:30
% qual_hist(i) = sum(m(bin==i))/sum(bin==i);
% end
% qual_hist
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
subplot_auto_transparent_multiple_imgs.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/subplot_auto_transparent_multiple_imgs.m
| 2,014 |
utf_8
|
d81c1bc1a30614034d8e3c52877170bd
|
%function h = subplot_auto_transparent(segments, I, titles)
function [Imgs, handles] = subplot_auto_transparent_multiple_imgs(segments, I, titles, voc_cmap_ids, grid_type)
border_side = 0.05;
border_top = 0.05;
for i=1:numel(I)
if(length(size(I{i}))==2)
I{i} = repmat(I{i}, [1 1 3]);
end
counter = 1;
if(exist('voc_cmap_ids', 'var') && ~isempty(voc_cmap_ids))
cmap = VOClabelcolormap();
assert(size(segments,2) == numel(voc_cmap_ids));
bground{i} = zeros(size(I,1),size(I,2),3);
bground{i}(:,:,1) = cmap(voc_cmap_ids(i),1);
bground{i}(:,:,2) = cmap(voc_cmap_ids(i),2);
bground{i}(:,:,3) = cmap(voc_cmap_ids(i),3);
bground{i} = uint8(255*bground{i});
else
bground{i} = zeros(size(I{i},1),size(I{i},2),3);
bground{i}(:,:,2) = 255;
end
end
Imgs = I;
n_imgs = numel(Imgs);
for i=1:n_imgs
alpha_chann = segments{i}*0.5;
%sc(sc(I).*sc(alpha_chann))
Imgs{i} = immerge(Imgs{i}, bground{i}, alpha_chann);
counter = counter + 1;
end
%montage_new(Imgs, titles, 'Size', [n_rows n_cols], 'Border', 0.1);
if(~exist('grid_type', 'var'))
grid_type = [];
end
if(exist('titles', 'var') && ~isempty(titles))
if(~iscell(titles)) % if not a cell assumes they're numbers
for i=1:length(titles)
new_titles{i} = sprintf('%f', titles(i));
end
titles = new_titles;
end
if(~exist('grid_type', 'var'))
handles = montage_new(Imgs, titles, 'Border', [border_top border_side]);
else
handles = montage_new(Imgs, titles, 'Border', [border_top border_side], 'Size', grid_type);
end
else
handles = montage_new(Imgs, [], 'Border', [border_top border_side], 'Size', grid_type);
end
% hold on;
% for i=1:n_imgs
% if(nargin==3)
% h(counter) = subplot(n_rows,n_cols,i); title(titles{i});
% end
% end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
test_SegmBrowser.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/test_SegmBrowser.m
| 1,945 |
utf_8
|
6f119003d6ae9e17e0586114c290e539
|
% Joao Carreira September 2012
% Run this in debug mode and do step by step for checking the outputs it gives
function test_SegmBrowser()
% run this after setting up the VOC dataset (see in VOC_experiment
% folder)
exp_dir = '../../VOC_experiment/VOC/';
mask_type = 'CPMC_segms_150_sp_approx';
imgset = 'train11';
overlap_type = 'overlap';
addpath('../');
addpath('../../external_src/');
addpath('../../external_src/immerge/');
% first time it runs it may take a few seconds, then it caches everything
% it needs
b = SegmBrowser(exp_dir, mask_type, imgset, overlap_type);
%
% Images, objects and segments have numerical identifiers that apply
% given the imgset
%
% If you want to get features for both ThreeAmigos and GroundTruth masks,
% I suggest you create two SegmBrowser objects, one for each type.
%
imgname = '2007_000032';
% get id of the image
img_id = b.img_names_to_ids(imgname);
% show image
b.show_imgs(img_id);
if 1
% get segment (whole) ids for that image
segment_ids = b.img_2_whole_ids(img_id);
% show first 50 segments for image
b.show_wholes(segment_ids{1}(1:50))
% show best segments for that image
b.show_best_masks(imgname);
% get overlaps for image
overlap_img = b.get_overlaps_img(b.img_names{img_id});
end
if 1
% get labels for all segments (by finding max overlap)
[labels] = b.get_labels_wholes();
% get img object ids and overlaps for a particular class, one cell for
% each image
[img_ids, obj_ids, Q] = b.collect_category_imgs(1)
% show objects in first image of this category
b.show_objects(obj_ids{1});
% get overlap for all segments of class 1
[overlap_class] = b.get_overlap_wholes_objclass(1);
end
% to get all best masks for cow, not sure if useful
categ_masks = b.collect_all_category_best_masks('cow');
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
subplot_auto_transparent_parts_multiple_imgs.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/subplot_auto_transparent_parts_multiple_imgs.m
| 1,518 |
utf_8
|
b998d26146d60227cdfe498683e72ebe
|
%function h = subplot_auto_transparent(segments, I, titles)
function [Imgs] = subplot_auto_transparent_parts_multiple_imgs(whole_segments, part_segments, I, titles)
border_side = 0.05;
border_top = 0.05;
Imgs = I;
for i=1:numel(I)
if(length(size(I{i}))==2)
I{i} = repmat(I{i}, [1 1 3]);
end
% sets the color of the whole
bground = zeros(size(I{i},1),size(I{i},2),3);
bground(:,:,3) = 255;
% sets the color of the parts
bground_parts = zeros(size(I{i},1),size(I{i},2),3);
bground_parts(:,:,1) = 255;
bground_parts(:,:,2) = 255;
alpha_chann_whole = reshape(whole_segments{i}, size(I{i},1), size(I{i},2))*0.5;
alpha_chann_part = part_segments{i}*0.5;
Imgs{i} = immerge(I{i}, bground, alpha_chann_whole);
Imgs{i} = immerge(Imgs{i}, bground_parts, alpha_chann_part);
end
if(exist('titles', 'var') && ~isempty(titles))
if(~iscell(titles)) % if not a cell assumes they're numbers
for i=1:length(titles)
new_titles{i} = sprintf('%f', titles(i));
end
titles = new_titles;
end
if(~exist('grid_type', 'var'))
montage_new(Imgs, titles, 'Border', [border_top border_side]);
end
else
montage_new(Imgs, [], 'Border', [border_top border_side]);
end
% hold on;
% for i=1:n_imgs
% if(nargin==3)
% h(counter) = subplot(n_rows,n_cols,i); title(titles{i});
% end
% end
end
|
github
|
yihui-he/reconstructing-pascal-voc-master
|
subplot_auto_transparent_parts_noov.m
|
.m
|
reconstructing-pascal-voc-master/src/SegmBrowser/subplot_auto_transparent_parts_noov.m
| 2,811 |
utf_8
|
a7b44e92af8526f4c46cc3a01df16eb6
|
%function h = subplot_auto_transparent(segments, I, titles)
function [Imgs] = subplot_auto_transparent_parts_noov(whole_segment, part_segments, I, voc_color_ids, titles, grid_type)
DefaultVal('*voc_color_ids', '[]');
if(isempty(part_segments))
Imgs = [];
return;
end
if(~iscell(whole_segment))
whole_segment = {whole_segment};
part_segments = {part_segments};
I = {I};
else
assert(iscell(part_segments));
assert(iscell(I));
end
border_side = 0.05;
border_top = 0.05;
n_rows = 1;
n_cols = numel(I);
counter = 1;
cmap = VOClabelcolormap(256);
n_imgs = numel(I);
Imgs = cell(n_imgs,1);
for h=1:n_imgs
if(length(size(I{h}))==2)
I{h} = repmat(I{h}, [1 1 3]);
end
if(issparse(part_segments{h}))
part_segments{h} = full(part_segments{h});
end
if(size(part_segments,1) ~= size(I,1))
alpha_chann_whole = reshape(whole_segment{h}, size(I{h},1), size(I{h},2))*0.5;
else
alpha_chann_whole = whole_segment{h}*0.5;
end
Imgs{h} = I{h};
bground = zeros(size(I{h},1),size(I{h},2),3);
bground(:,:,3) = 255;
if(isempty(part_segments{h}))
Imgs{h} = immerge(Imgs{h}, bground, alpha_chann_whole);
else
for i=1:size(part_segments{h},3)
alpha_chann_part = part_segments{h}(:,:,i)*0.7;
if(~isempty(voc_color_ids))
c_id = voc_color_ids{h}(i);
else
c_id = i;
end
bground_parts = zeros(size(I{h},1),size(I{h},2),3);
bground_parts(:,:,1) = cmap(c_id, 1)*255;
bground_parts(:,:,2) = cmap(c_id, 2)*255;
bground_parts(:,:,3) = cmap(c_id, 3)*255;
Imgs{h} = immerge(Imgs{h}, bground_parts, alpha_chann_part); %
counter = counter + 1;
end
end
end
%montage_new(Imgs, titles, 'Size', [n_rows n_cols], 'Border', 0.1);
if(~exist('grid_type', 'var'))
grid_type = [];
end
if(exist('titles', 'var') && ~isempty(titles))
if(~iscell(titles)) % if not a cell assumes they're numbers
for i=1:length(titles)
new_titles{i} = sprintf('%f', titles(i));
end
titles = new_titles;
end
if(~exist('grid_type', 'var'))
montage_new(Imgs, titles, 'Border', [border_top border_side]);
else
montage_new(Imgs, titles, 'Border', [border_top border_side], 'Size', grid_type);
end
else
montage_new(Imgs, [], 'Border', [border_top border_side], 'Size', grid_type);
end
% hold on;
% for i=1:n_imgs
% if(nargin==3)
% h(counter) = subplot(n_rows,n_cols,i); title(titles{i});
% end
% end
|
github
|
zzlyw/machine-learning-exercises-master
|
submit.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex2/ex2/submit.m
| 1,605 |
utf_8
|
9b63d386e9bd7bcca66b1a3d2fa37579
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'logistic-regression';
conf.itemName = 'Logistic Regression';
conf.partArrays = { ...
{ ...
'1', ...
{ 'sigmoid.m' }, ...
'Sigmoid Function', ...
}, ...
{ ...
'2', ...
{ 'costFunction.m' }, ...
'Logistic Regression Cost', ...
}, ...
{ ...
'3', ...
{ 'costFunction.m' }, ...
'Logistic Regression Gradient', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Predict', ...
}, ...
{ ...
'5', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Cost', ...
}, ...
{ ...
'6', ...
{ 'costFunctionReg.m' }, ...
'Regularized Logistic Regression Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
if partId == '1'
out = sprintf('%0.5f ', sigmoid(X));
elseif partId == '2'
out = sprintf('%0.5f ', costFunction([0.25 0.5 -0.5]', X, y));
elseif partId == '3'
[cost, grad] = costFunction([0.25 0.5 -0.5]', X, y);
out = sprintf('%0.5f ', grad);
elseif partId == '4'
out = sprintf('%0.5f ', predict([0.25 0.5 -0.5]', X));
elseif partId == '5'
out = sprintf('%0.5f ', costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1));
elseif partId == '6'
[cost, grad] = costFunctionReg([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', grad);
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex2/ex2/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
zzlyw/machine-learning-exercises-master
|
savejson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex2/ex2/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex2/ex2/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex2/ex2/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
saveubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex2/ex2/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
zzlyw/machine-learning-exercises-master
|
submit.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex4/ex4/submit.m
| 1,635 |
utf_8
|
ae9c236c78f9b5b09db8fbc2052990fc
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'neural-network-learning';
conf.itemName = 'Neural Networks Learning';
conf.partArrays = { ...
{ ...
'1', ...
{ 'nnCostFunction.m' }, ...
'Feedforward and Cost Function', ...
}, ...
{ ...
'2', ...
{ 'nnCostFunction.m' }, ...
'Regularized Cost Function', ...
}, ...
{ ...
'3', ...
{ 'sigmoidGradient.m' }, ...
'Sigmoid Gradient', ...
}, ...
{ ...
'4', ...
{ 'nnCostFunction.m' }, ...
'Neural Network Gradient (Backpropagation)', ...
}, ...
{ ...
'5', ...
{ 'nnCostFunction.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(3 * sin(1:1:30), 3, 10);
Xm = reshape(sin(1:32), 16, 2) / 5;
ym = 1 + mod(1:16,4)';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
t = [t1(:) ; t2(:)];
if partId == '1'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
elseif partId == '3'
out = sprintf('%0.5f ', sigmoidGradient(X));
elseif partId == '4'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 0);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '5'
[J, grad] = nnCostFunction(t, 2, 4, 4, Xm, ym, 1.5);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex4/ex4/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
zzlyw/machine-learning-exercises-master
|
savejson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex4/ex4/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex4/ex4/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex4/ex4/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
saveubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex4/ex4/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
zzlyw/machine-learning-exercises-master
|
submit.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/submit.m
| 1,318 |
utf_8
|
bfa0b4ffb8a7854d8e84276e91818107
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'support-vector-machines';
conf.itemName = 'Support Vector Machines';
conf.partArrays = { ...
{ ...
'1', ...
{ 'gaussianKernel.m' }, ...
'Gaussian Kernel', ...
}, ...
{ ...
'2', ...
{ 'dataset3Params.m' }, ...
'Parameters (C, sigma) for Dataset 3', ...
}, ...
{ ...
'3', ...
{ 'processEmail.m' }, ...
'Email Preprocessing', ...
}, ...
{ ...
'4', ...
{ 'emailFeatures.m' }, ...
'Email Feature Extraction', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
x1 = sin(1:10)';
x2 = cos(1:10)';
ec = 'the quick brown fox jumped over the lazy dog';
wi = 1 + abs(round(x1 * 1863));
wi = [wi ; wi];
if partId == '1'
sim = gaussianKernel(x1, x2, 2);
out = sprintf('%0.5f ', sim);
elseif partId == '2'
load('ex6data3.mat');
[C, sigma] = dataset3Params(X, y, Xval, yval);
out = sprintf('%0.5f ', C);
out = [out sprintf('%0.5f ', sigma)];
elseif partId == '3'
word_indices = processEmail(ec);
out = sprintf('%d ', word_indices);
elseif partId == '4'
x = emailFeatures(wi);
out = sprintf('%d ', x);
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
porterStemmer.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/porterStemmer.m
| 9,902 |
utf_8
|
7ed5acd925808fde342fc72bd62ebc4d
|
function stem = porterStemmer(inString)
% Applies the Porter Stemming algorithm as presented in the following
% paper:
% Porter, 1980, An algorithm for suffix stripping, Program, Vol. 14,
% no. 3, pp 130-137
% Original code modeled after the C version provided at:
% http://www.tartarus.org/~martin/PorterStemmer/c.txt
% The main part of the stemming algorithm starts here. b is an array of
% characters, holding the word to be stemmed. The letters are in b[k0],
% b[k0+1] ending at b[k]. In fact k0 = 1 in this demo program (since
% matlab begins indexing by 1 instead of 0). k is readjusted downwards as
% the stemming progresses. Zero termination is not in fact used in the
% algorithm.
% To call this function, use the string to be stemmed as the input
% argument. This function returns the stemmed word as a string.
% Lower-case string
inString = lower(inString);
global j;
b = inString;
k = length(b);
k0 = 1;
j = k;
% With this if statement, strings of length 1 or 2 don't go through the
% stemming process. Remove this conditional to match the published
% algorithm.
stem = b;
if k > 2
% Output displays per step are commented out.
%disp(sprintf('Word to stem: %s', b));
x = step1ab(b, k, k0);
%disp(sprintf('Steps 1A and B yield: %s', x{1}));
x = step1c(x{1}, x{2}, k0);
%disp(sprintf('Step 1C yields: %s', x{1}));
x = step2(x{1}, x{2}, k0);
%disp(sprintf('Step 2 yields: %s', x{1}));
x = step3(x{1}, x{2}, k0);
%disp(sprintf('Step 3 yields: %s', x{1}));
x = step4(x{1}, x{2}, k0);
%disp(sprintf('Step 4 yields: %s', x{1}));
x = step5(x{1}, x{2}, k0);
%disp(sprintf('Step 5 yields: %s', x{1}));
stem = x{1};
end
% cons(j) is TRUE <=> b[j] is a consonant.
function c = cons(i, b, k0)
c = true;
switch(b(i))
case {'a', 'e', 'i', 'o', 'u'}
c = false;
case 'y'
if i == k0
c = true;
else
c = ~cons(i - 1, b, k0);
end
end
% mseq() measures the number of consonant sequences between k0 and j. If
% c is a consonant sequence and v a vowel sequence, and <..> indicates
% arbitrary presence,
% <c><v> gives 0
% <c>vc<v> gives 1
% <c>vcvc<v> gives 2
% <c>vcvcvc<v> gives 3
% ....
function n = measure(b, k0)
global j;
n = 0;
i = k0;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
while true
while true
if i > j
return
end
if cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
n = n + 1;
while true
if i > j
return
end
if ~cons(i, b, k0)
break;
end
i = i + 1;
end
i = i + 1;
end
% vowelinstem() is TRUE <=> k0,...j contains a vowel
function vis = vowelinstem(b, k0)
global j;
for i = k0:j,
if ~cons(i, b, k0)
vis = true;
return
end
end
vis = false;
%doublec(i) is TRUE <=> i,(i-1) contain a double consonant.
function dc = doublec(i, b, k0)
if i < k0+1
dc = false;
return
end
if b(i) ~= b(i-1)
dc = false;
return
end
dc = cons(i, b, k0);
% cvc(j) is TRUE <=> j-2,j-1,j has the form consonant - vowel - consonant
% and also if the second c is not w,x or y. this is used when trying to
% restore an e at the end of a short word. e.g.
%
% cav(e), lov(e), hop(e), crim(e), but
% snow, box, tray.
function c1 = cvc(i, b, k0)
if ((i < (k0+2)) || ~cons(i, b, k0) || cons(i-1, b, k0) || ~cons(i-2, b, k0))
c1 = false;
else
if (b(i) == 'w' || b(i) == 'x' || b(i) == 'y')
c1 = false;
return
end
c1 = true;
end
% ends(s) is TRUE <=> k0,...k ends with the string s.
function s = ends(str, b, k)
global j;
if (str(length(str)) ~= b(k))
s = false;
return
end % tiny speed-up
if (length(str) > k)
s = false;
return
end
if strcmp(b(k-length(str)+1:k), str)
s = true;
j = k - length(str);
return
else
s = false;
end
% setto(s) sets (j+1),...k to the characters in the string s, readjusting
% k accordingly.
function so = setto(s, b, k)
global j;
for i = j+1:(j+length(s))
b(i) = s(i-j);
end
if k > j+length(s)
b((j+length(s)+1):k) = '';
end
k = length(b);
so = {b, k};
% rs(s) is used further down.
% [Note: possible null/value for r if rs is called]
function r = rs(str, b, k, k0)
r = {b, k};
if measure(b, k0) > 0
r = setto(str, b, k);
end
% step1ab() gets rid of plurals and -ed or -ing. e.g.
% caresses -> caress
% ponies -> poni
% ties -> ti
% caress -> caress
% cats -> cat
% feed -> feed
% agreed -> agree
% disabled -> disable
% matting -> mat
% mating -> mate
% meeting -> meet
% milling -> mill
% messing -> mess
% meetings -> meet
function s1ab = step1ab(b, k, k0)
global j;
if b(k) == 's'
if ends('sses', b, k)
k = k-2;
elseif ends('ies', b, k)
retVal = setto('i', b, k);
b = retVal{1};
k = retVal{2};
elseif (b(k-1) ~= 's')
k = k-1;
end
end
if ends('eed', b, k)
if measure(b, k0) > 0;
k = k-1;
end
elseif (ends('ed', b, k) || ends('ing', b, k)) && vowelinstem(b, k0)
k = j;
retVal = {b, k};
if ends('at', b, k)
retVal = setto('ate', b(k0:k), k);
elseif ends('bl', b, k)
retVal = setto('ble', b(k0:k), k);
elseif ends('iz', b, k)
retVal = setto('ize', b(k0:k), k);
elseif doublec(k, b, k0)
retVal = {b, k-1};
if b(retVal{2}) == 'l' || b(retVal{2}) == 's' || ...
b(retVal{2}) == 'z'
retVal = {retVal{1}, retVal{2}+1};
end
elseif measure(b, k0) == 1 && cvc(k, b, k0)
retVal = setto('e', b(k0:k), k);
end
k = retVal{2};
b = retVal{1}(k0:k);
end
j = k;
s1ab = {b(k0:k), k};
% step1c() turns terminal y to i when there is another vowel in the stem.
function s1c = step1c(b, k, k0)
global j;
if ends('y', b, k) && vowelinstem(b, k0)
b(k) = 'i';
end
j = k;
s1c = {b, k};
% step2() maps double suffices to single ones. so -ization ( = -ize plus
% -ation) maps to -ize etc. note that the string before the suffix must give
% m() > 0.
function s2 = step2(b, k, k0)
global j;
s2 = {b, k};
switch b(k-1)
case {'a'}
if ends('ational', b, k) s2 = rs('ate', b, k, k0);
elseif ends('tional', b, k) s2 = rs('tion', b, k, k0); end;
case {'c'}
if ends('enci', b, k) s2 = rs('ence', b, k, k0);
elseif ends('anci', b, k) s2 = rs('ance', b, k, k0); end;
case {'e'}
if ends('izer', b, k) s2 = rs('ize', b, k, k0); end;
case {'l'}
if ends('bli', b, k) s2 = rs('ble', b, k, k0);
elseif ends('alli', b, k) s2 = rs('al', b, k, k0);
elseif ends('entli', b, k) s2 = rs('ent', b, k, k0);
elseif ends('eli', b, k) s2 = rs('e', b, k, k0);
elseif ends('ousli', b, k) s2 = rs('ous', b, k, k0); end;
case {'o'}
if ends('ization', b, k) s2 = rs('ize', b, k, k0);
elseif ends('ation', b, k) s2 = rs('ate', b, k, k0);
elseif ends('ator', b, k) s2 = rs('ate', b, k, k0); end;
case {'s'}
if ends('alism', b, k) s2 = rs('al', b, k, k0);
elseif ends('iveness', b, k) s2 = rs('ive', b, k, k0);
elseif ends('fulness', b, k) s2 = rs('ful', b, k, k0);
elseif ends('ousness', b, k) s2 = rs('ous', b, k, k0); end;
case {'t'}
if ends('aliti', b, k) s2 = rs('al', b, k, k0);
elseif ends('iviti', b, k) s2 = rs('ive', b, k, k0);
elseif ends('biliti', b, k) s2 = rs('ble', b, k, k0); end;
case {'g'}
if ends('logi', b, k) s2 = rs('log', b, k, k0); end;
end
j = s2{2};
% step3() deals with -ic-, -full, -ness etc. similar strategy to step2.
function s3 = step3(b, k, k0)
global j;
s3 = {b, k};
switch b(k)
case {'e'}
if ends('icate', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ative', b, k) s3 = rs('', b, k, k0);
elseif ends('alize', b, k) s3 = rs('al', b, k, k0); end;
case {'i'}
if ends('iciti', b, k) s3 = rs('ic', b, k, k0); end;
case {'l'}
if ends('ical', b, k) s3 = rs('ic', b, k, k0);
elseif ends('ful', b, k) s3 = rs('', b, k, k0); end;
case {'s'}
if ends('ness', b, k) s3 = rs('', b, k, k0); end;
end
j = s3{2};
% step4() takes off -ant, -ence etc., in context <c>vcvc<v>.
function s4 = step4(b, k, k0)
global j;
switch b(k-1)
case {'a'}
if ends('al', b, k) end;
case {'c'}
if ends('ance', b, k)
elseif ends('ence', b, k) end;
case {'e'}
if ends('er', b, k) end;
case {'i'}
if ends('ic', b, k) end;
case {'l'}
if ends('able', b, k)
elseif ends('ible', b, k) end;
case {'n'}
if ends('ant', b, k)
elseif ends('ement', b, k)
elseif ends('ment', b, k)
elseif ends('ent', b, k) end;
case {'o'}
if ends('ion', b, k)
if j == 0
elseif ~(strcmp(b(j),'s') || strcmp(b(j),'t'))
j = k;
end
elseif ends('ou', b, k) end;
case {'s'}
if ends('ism', b, k) end;
case {'t'}
if ends('ate', b, k)
elseif ends('iti', b, k) end;
case {'u'}
if ends('ous', b, k) end;
case {'v'}
if ends('ive', b, k) end;
case {'z'}
if ends('ize', b, k) end;
end
if measure(b, k0) > 1
s4 = {b(k0:j), j};
else
s4 = {b(k0:k), k};
end
% step5() removes a final -e if m() > 1, and changes -ll to -l if m() > 1.
function s5 = step5(b, k, k0)
global j;
j = k;
if b(k) == 'e'
a = measure(b, k0);
if (a > 1) || ((a == 1) && ~cvc(k-1, b, k0))
k = k-1;
end
end
if (b(k) == 'l') && doublec(k, b, k0) && (measure(b, k0) > 1)
k = k-1;
end
s5 = {b(k0:k), k};
|
github
|
zzlyw/machine-learning-exercises-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
zzlyw/machine-learning-exercises-master
|
savejson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
saveubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex6/ex6/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
zzlyw/machine-learning-exercises-master
|
submit.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex7/ex7/submit.m
| 1,438 |
utf_8
|
665ea5906aad3ccfd94e33a40c58e2ce
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'k-means-clustering-and-pca';
conf.itemName = 'K-Means Clustering and PCA';
conf.partArrays = { ...
{ ...
'1', ...
{ 'findClosestCentroids.m' }, ...
'Find Closest Centroids (k-Means)', ...
}, ...
{ ...
'2', ...
{ 'computeCentroids.m' }, ...
'Compute Centroid Means (k-Means)', ...
}, ...
{ ...
'3', ...
{ 'pca.m' }, ...
'PCA', ...
}, ...
{ ...
'4', ...
{ 'projectData.m' }, ...
'Project Data (PCA)', ...
}, ...
{ ...
'5', ...
{ 'recoverData.m' }, ...
'Recover Data (PCA)', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(sin(1:165), 15, 11);
Z = reshape(cos(1:121), 11, 11);
C = Z(1:5, :);
idx = (1 + mod(1:15, 3))';
if partId == '1'
idx = findClosestCentroids(X, C);
out = sprintf('%0.5f ', idx(:));
elseif partId == '2'
centroids = computeCentroids(X, idx, 3);
out = sprintf('%0.5f ', centroids(:));
elseif partId == '3'
[U, S] = pca(X);
out = sprintf('%0.5f ', abs([U(:); S(:)]));
elseif partId == '4'
X_proj = projectData(X, Z, 5);
out = sprintf('%0.5f ', X_proj(:));
elseif partId == '5'
X_rec = recoverData(X(:,1:5), Z, 5);
out = sprintf('%0.5f ', X_rec(:));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex7/ex7/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
zzlyw/machine-learning-exercises-master
|
savejson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex7/ex7/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex7/ex7/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
saveubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
zzlyw/machine-learning-exercises-master
|
submit.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex5/ex5/submit.m
| 1,765 |
utf_8
|
b1804fe5854d9744dca981d250eda251
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance';
conf.itemName = 'Regularized Linear Regression and Bias/Variance';
conf.partArrays = { ...
{ ...
'1', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Cost Function', ...
}, ...
{ ...
'2', ...
{ 'linearRegCostFunction.m' }, ...
'Regularized Linear Regression Gradient', ...
}, ...
{ ...
'3', ...
{ 'learningCurve.m' }, ...
'Learning Curve', ...
}, ...
{ ...
'4', ...
{ 'polyFeatures.m' }, ...
'Polynomial Feature Mapping', ...
}, ...
{ ...
'5', ...
{ 'validationCurve.m' }, ...
'Validation Curve', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)'];
y = sin(1:3:30)';
Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)'];
yval = sin(1:10)';
if partId == '1'
[J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', J);
elseif partId == '2'
[J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5);
out = sprintf('%0.5f ', grad);
elseif partId == '3'
[error_train, error_val] = ...
learningCurve(X, y, Xval, yval, 1);
out = sprintf('%0.5f ', [error_train(:); error_val(:)]);
elseif partId == '4'
[X_poly] = polyFeatures(X(2,:)', 8);
out = sprintf('%0.5f ', X_poly);
elseif partId == '5'
[lambda_vec, error_train, error_val] = ...
validationCurve(X, y, Xval, yval);
out = sprintf('%0.5f ', ...
[lambda_vec(:); error_train(:); error_val(:)]);
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex5/ex5/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
zzlyw/machine-learning-exercises-master
|
savejson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex5/ex5/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex5/ex5/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex5/ex5/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
saveubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex5/ex5/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
zzlyw/machine-learning-exercises-master
|
submit.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex3/ex3/submit.m
| 1,567 |
utf_8
|
1dba733a05282b2db9f2284548483b81
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'multi-class-classification-and-neural-networks';
conf.itemName = 'Multi-class Classification and Neural Networks';
conf.partArrays = { ...
{ ...
'1', ...
{ 'lrCostFunction.m' }, ...
'Regularized Logistic Regression', ...
}, ...
{ ...
'2', ...
{ 'oneVsAll.m' }, ...
'One-vs-All Classifier Training', ...
}, ...
{ ...
'3', ...
{ 'predictOneVsAll.m' }, ...
'One-vs-All Classifier Prediction', ...
}, ...
{ ...
'4', ...
{ 'predict.m' }, ...
'Neural Network Prediction Function' ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxdata)
% Random Test Cases
X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))'];
y = sin(X(:,1) + X(:,2)) > 0;
Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ...
1 1 ; 1 2 ; 2 1 ; 2 2 ; ...
-1 1 ; -1 2 ; -2 1 ; -2 2 ; ...
1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ];
ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]';
t1 = sin(reshape(1:2:24, 4, 3));
t2 = cos(reshape(1:2:40, 4, 5));
if partId == '1'
[J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1);
out = sprintf('%0.5f ', J);
out = [out sprintf('%0.5f ', grad)];
elseif partId == '2'
out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1));
elseif partId == '3'
out = sprintf('%0.5f ', predictOneVsAll(t1, Xm));
elseif partId == '4'
out = sprintf('%0.5f ', predict(t1, t2, Xm));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
submitWithConfiguration.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
zzlyw/machine-learning-exercises-master
|
savejson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
zzlyw/machine-learning-exercises-master
|
loadubjson.m
|
.m
|
machine-learning-exercises-master/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.