plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
marthawhite/reverse-prediction-master
|
Experiments.m
|
.m
|
reverse-prediction-master/algs/competitors/MR/Experiments.m
| 6,532 |
utf_8
|
c85e0eefba2b31d72d55b85c86163f4d
|
function results=Experiments(dataset,NN,SIGMA,gamma_A,gamma_I,DEGREE,M)
% [err_svm,err_rlsc]=Experiments(dataset)
% dataset.mat should have matrices
% X (n x d training data matrix, n examples, d features)
% Xt (test data matrix) (if available)
% training labels Y
% test labels Yt (if available)
%
% NN: number of nearest neighbors for graph laplacian computation
% SIGMA: width of RBF kernel
% gamma_A,gamma_I: the extrinsic and intrinsic regularization parameters
% DEGREE: power of the graph Laplacian to use as the graph regularizer
% M: Precomputed grah regularizer if available (n x n matrix).
%
% This code generates the mean results training and testing on data
% splits.
%
% Data splits are specified as follows --
% folds: a n x R matrix with 0 or 1 values; each column indicates which
% examples are to be considered labeled (1) or unlabeled (0).
% Alternatively, one can specify by a collection of indices in R x l matrix
% idxLabs where each row gives the l indices for labeled examples.
%
% For experiments in the paper "Beyond the Point Cloud", run e.g.,
%
% Experiments('USPST'); % USPST.mat contains all the options
%
% Vikas Sindhwani ([email protected])
load(dataset);
C=unique(Y);
if length(C)==2
C=[1 -1]; nclassifiers=1;
else
nclassifiers=length(C);
end
% options contains the optimal parameter settings for the data
options=make_options;
options.NN=NN;
options.Kernel='rbf';
options.KernelParam=SIGMA;
options.gamma_A=gamma_A;
options.gamma_I=gamma_I;
options.GraphWeights='heat';
options.GraphWeightParam=SIGMA;
options.LaplacianDegree=DEGREE;
options
if ~exist('M','var')
M=laplacian(options,X);
end
M=M^options.LaplacianDegree;
tic;
% construct and deform the kernel
% K contains the gram matrix of the warped data-dependent semi-supervised kernel
G=calckernel(options,X);
r=options.gamma_I/options.gamma_A;
% the deformed kernel matrix evaluated over test data
fprintf(1,'Deforming Kernel\n');
if exist('Xt','var')
Gt=calckernel(options,X,Xt);
[K, Kt]=Deform(r,G,M,Gt);
else
K=Deform(r,G,M);
end
% run over the random splits
if exist('folds','var')
number_runs=size(folds,2);
else
number_runs=size(idxLabs,1);
end
for R=1:number_runs
if exist('folds','var')
L=find(folds(:,R));
else
L=idxLabs(R,:);
end
U=(1:size(K,1))';
U(L)=[];
data.K=K(L,L); data.X=X(L,:);
fsvm=[];
frlsc=[];
fsvm_t=[];
frlsc_t=[];
for c=1:nclassifiers
if nclassifiers>1
fprintf(1,'Class %d versus rest\n',C(c));
end
data.Y=(Y(L)==C(c))-(Y(L)~=C(c)); % labeled data
classifier_svm=svm(options,data);
classifier_rlsc=rlsc(options,data);
fsvm(:,c)=K(U,L(classifier_svm.svs))*classifier_svm.alpha-classifier_svm.b;
frlsc(:,c)=K(U,L(classifier_rlsc.svs))*classifier_rlsc.alpha-classifier_rlsc.b;
if exist('bias','var')
[fsvm(:,c),classifier_svm.b] = adjustbias(fsvm(:,c)+classifier_svm.b, bias);
[frlsc(:,c),classifier_rlsc.b] = adjustbias(frlsc(:,c)+classifier_rlsc.b,bias);
end
results(R).fsvm(:,c)=fsvm(:,c);
results(R).frlsc(:,c)=frlsc(:,c);
yu=(Y(U)==C(c))-(Y(U)~=C(c));
if exist('Xt','var')
fsvm_t(:,c)=Kt(:,L(classifier_svm.svs))*classifier_svm.alpha-classifier_svm.b;
frlsc_t(:,c)=Kt(:,L(classifier_rlsc.svs))*classifier_rlsc.alpha-classifier_rlsc.b;
results(R).fsvm_t(:,c)=fsvm_t(:,c);
results(R).frlsc_t(:,c)=frlsc_t(:,c);
yt=(Yt==C(c))-(Yt~=C(c));
end
end
if nclassifiers==1
fsvm=sign(results(R).fsvm);
frlsc=sign(results(R).frlsc);
if exist('Xt','var')
fsvm_t=sign(results(R).fsvm_t);
frlsc_t=sign(results(R).frlsc_t);
end
else
[e,fsvm]=max(results(R).fsvm,[],2); fsvm=C(fsvm);
[e,frlsc]=max(results(R).frlsc,[],2); frlsc=C(frlsc);
if exist('Xt','var')
[e,fsvm_t]=max(results(R).fsvm_t,[],2); fsvm_t=C(fsvm_t);
[e,frlsc_t]=max(results(R).frlsc_t,[],2); frlsc_t=C(frlsc_t);
end
end
cm=confusion(fsvm,Y(U)); results(R).cm_svm=cm;
results(R).err_svm=100*(1-sum(diag(cm))/sum(cm(:)));
cm=confusion(frlsc,Y(U)); results(R).cm_rlsc=cm;
results(R).err_rlsc=100*(1-sum(diag(cm))/sum(cm(:)));
if exist('Xt','var')
cm=confusion(fsvm_t,Yt); results(R).cm_svm_t=cm;
results(R).err_svm_t=100*(1-sum(diag(cm))/sum(cm(:)));
cm=confusion(frlsc_t,Yt); results(R).cm_rlsc_t=cm;
results(R).err_rlsc_t=100*(1-sum(diag(cm))/sum(cm(:)));
end
fprintf(1,'split=%d LapSVM (transduction) err = %f \n',R, results(R).err_svm);
fprintf(1,'split=%d LapRLS (transduction) err = %f \n',R, results(R).err_rlsc);
if exist('Xt','var')
fprintf(1,'split=%d LapSVM (out-of-sample) err = %f\n',R, results(R).err_svm_t);
fprintf(1,'split=%d LapRLS (out-of-sample) err = %f\n',R, results(R).err_rlsc_t);
end
end
fprintf(1,'\n\n');
disp('LapSVM (transduction) mean confusion matrix');
disp(round(mean(reshape(vertcat(results.cm_svm)',[size(results(1).cm_svm,1) size(results(1).cm_svm,1) length(results)]),3)));
disp('LapRLS (transduction) mean confusion matrix');
disp(round(mean(reshape(vertcat(results.cm_rlsc)',[size(results(1).cm_rlsc,1) size(results(1).cm_rlsc,1) length(results)]),3)));
fprintf(1,'LapSVM (transduction mean(std)) err = %f (%f) \n',mean(vertcat(results.err_svm)),std(vertcat(results.err_svm)));
fprintf(1,'LapRLS (transduction mean(std)) err = %f (%f) \n',mean(vertcat(results.err_rlsc)),std(vertcat(results.err_rlsc)));
if exist('Xt','var')
fprintf(1,'\n\n');
disp('LapSVM (out-of-sample) mean confusion matrix');
disp(round(mean(reshape(vertcat(results.cm_svm_t)',[size(results(1).cm_svm_t,1) size(results(1).cm_svm_t,1) length(results)]),3)));
disp('LapRLS (out-of-sample) mean confusion matrix');
disp(round(mean(reshape(vertcat(results.cm_rlsc_t)',[size(results(1).cm_rlsc_t,1) size(results(1).cm_rlsc_t,1) length(results)]),3)));
fprintf(1,'LapSVM (out-of-sample mean(std)) err = %f (%f)\n',mean(vertcat(results.err_svm_t)), std(vertcat(results.err_svm_t)));
fprintf(1,'LapRLS (out-of-sample mean(std)) err = %f (%f)\n',mean(vertcat(results.err_rlsc_t)),std(vertcat(results.err_rlsc_t)));
end
function [f1,b]=adjustbias(f,bias)
jj=ceil((1-bias)*length(f));
g=sort(f);
b=0.5*(g(jj)+g(jj+1));
f1=f-b;
|
github
|
marthawhite/reverse-prediction-master
|
classifier_evaluation.m
|
.m
|
reverse-prediction-master/algs/competitors/MR/classifier_evaluation.m
| 1,742 |
utf_8
|
1bb871f0399589f4ce43c27091513ad2
|
% Classifier Evaluation Routine
% This code provides different methods to evaluate binary classifiers.
%
% Basic Usage :
% [maxthreshold,maxobj,maxcm]=classifier_evaluation(outputs,labels,func)
% outputs is a vector of real-valued outputs on a test set
% labels are corresponding true labels
% func : function of the type func(totalpositive,totalnegative, falsepositive,falsenegative)
% func = f1 | r1 | acc (accuracy) | info (information)
% maxthreshold-- threshold point at which func maximizes
% maxobj - the maximum function value at this point
% maxcm - the confusion matrix at maxthreshold
%
% Written by Jason Rennie <[email protected]>
% Last modified: Thu Feb 19 13:19:32 2004
%
% Modified by Vikas Sindhwani
% 09/24/2004
%
%
function [maxthresh,maxobj,maxcm] = classifier_evaluation(outputs,labels,func)
n = length(outputs);
if n ~= length(labels)
error('length of outputs and labels must match')
end
np = sum(labels>0);
nn = sum(labels<0);
fp = nn;
fn = 0;
maxobj = feval(func,np,nn,fp,fn);
[tmp,idx] = sort(outputs);
so = outputs(idx);
sl = labels(idx);
maxthresh = so(1)-1;
maxcm=[np-fn fn; fp nn-fp];
for i=1:length(so)-1
if sl(i) < 0
fp = fp - 1;
else
fn = fn + 1;
end
if so(i) == so(i+1)
continue
end
obj = feval(func,np,nn,fp,fn);
if obj > maxobj
maxobj = obj;
maxthresh = (so(i)+so(i+1))/2;
maxcm=[np-fn fn; fp nn-fp];
end
end
if sl(n) < 0
fp = fp - 1;
else
fn = fn + 1;
end
obj = feval(func,np,nn,fp,fn);
if obj > maxobj
maxobj = obj;
maxthresh = so(n)+1;
maxcm=[np-fn fn; fp nn-fp];
end
function h=info(np,nn,fp,fn)
cm=[nn-fp fp; fn np-fn];
h=information(cm);
|
github
|
marthawhite/reverse-prediction-master
|
ExperimentsWebKB.m
|
.m
|
reverse-prediction-master/algs/competitors/MR/ExperimentsWebKB.m
| 2,244 |
utf_8
|
40e03bf590e307651ba73996f60b46b1
|
function [prbep_svm,prbep_rlsc]=ExperimentsWebKB(mode,joint)
%% For binary classification on LINK.mat PAGE.mat PAGE+LINK.mat
%% mode='link' | 'page' | 'page+link'
%% link=0 or 1. Put 1 if you want to use a
%% joint regularizer (multi-view learning). Otherwise ignore this argument or put joint=0.
%% e.g [prbep_svm,prbep_rlsc]=ExperimentsWebKB('link')
%% or [prbep_svm,prbep_rlsc]=ExperimentsWebKB('link',1)
%% options are in the mat file %%
%%
%% Returns the PRBEP performance over the 100 splits
%%
if ~exist('joint','var')
joint=0;
end
if joint==1
load LINK.mat; L1=laplacian(options,X);
load PAGE.mat; L2=laplacian(options,X);
load PAGELINK.mat; L3=laplacian(options,X);
options.gamma_A=0.01; options.gamma_I=0.1;
L=(L1+L2+L3)/3;
clear L1 L2 L3;
end
switch mode
case 'link'
load LINK.mat;
case 'page'
load PAGE.mat
case 'page+link'
load PAGELINK.mat
end
if joint==0
L=laplacian(options,X);
end
tic;
% construct the semi-supervised kernel by deforming a linear kernel with
% the graph regularizer
% K contains the gram matrix of the new data-dependent semi-supervised kernel
K=Deform(options.gamma_I/options.gamma_A,calckernel(options,X),L^options.LaplacianDegree);
% run over the random splits
for R=1:size(idxLabs,1)
L=idxLabs(R,:); U=1:size(K,1); U(L)=[];
data.K=K(L,L); data.X=X(L,:); data.Y=Y(L); % labeled data
classifier_svm=svm(options,data);
classifier_rlsc=rlsc(options,data);
testdata.K=K(U,L);
prbep_svm(R)=test_prbep(classifier_svm,testdata.K,Y(U));
prbep_rlsc(R)=test_prbep(classifier_rlsc,testdata.K,Y(U));
disp(['Laplacian SVM Performance on split ' num2str(R) ': ' num2str(prbep_svm(R))]);
disp(['Laplacian RLS Performance on split ' num2str(R) ': ' num2str(prbep_rlsc(R))]);
end
fprintf(1,'\n\n');
disp(['Mean (std dev) Laplacian SVM PRBEP : ' num2str(mean(prbep_svm)) ' ( ' num2str(std(prbep_svm)) ' )']);
disp(['Mean (std dev) Laplacian RLS PRBEP ' num2str(mean(prbep_rlsc)) ' ( ' num2str(std(prbep_rlsc)) ' )']);
function prbep=test_prbep(classifier,K,Y);
f=K(:,classifier.svs)*classifier.alpha-classifier.b;
[m,n,maxcm]=classifier_evaluation(f,Y,'pre_rec_equal');
prbep=100*(maxcm(1,1)/(maxcm(1,1)+maxcm(1,2)));
|
github
|
marthawhite/reverse-prediction-master
|
make_options.m
|
.m
|
reverse-prediction-master/algs/competitors/MR/make_options.m
| 6,396 |
utf_8
|
e86f6b554bd5088e376b275341142d5a
|
function options = make_options(varargin)
% ML_OPTIONS - Generate/alter options structure for training classifiers
% ----------------------------------------------------------------------------------------%
% options = ml_options('PARAM1',VALUE1,'PARAM2',VALUE2,...)
%
% Creates an options structure "options" in which the named parameters
% have the specified values. Any unspecified parameters are set to
% default values specified below.
% options = ml_options (with no input arguments) creates an options structure
% "options" where all the fields are set to default values specified below.
%
% Example:
% options=ml_options('Kernel','rbf','KernelParam',0.5,'NN',6);
%
% "options" structure is as follows:
%
% Field Name: Description : default
% -------------------------------------------------------------------------------------
% 'Kernel': 'linear' | 'rbf' | 'poly' : 'linear'
% 'KernelParam': -- | sigma | degree : 1
% 'NN': number of nearest neighbor : 6
%'GraphDistanceFuncion': distance function for graph: 'euclidean' | 'cosine' : 'euclidean'
% 'GraphWeights': 'binary' | 'distance' | 'heat' : 'binary'
% 'GraphWeightParam': e.g For heat kernel, width to use : 1
% 'GraphNormalize': Use normalized Graph laplacian (1) or not (0) : 1
% 'ClassEdges': Disconnect Edges across classes:yes(1) no (0) : 0
% 'gamma_A': RKHS norm regularization parameter (Ambient) : 1
% 'gamma_I': Manifold regularization parameter (Intrinsic) : 1
% mu': Class-based Fully Supervised Laplacian Parameter : 0.5
% 'LaplacianDegree' : Degree of Iterated Laplacian : 1
% k : Regularized Spectral Representation Paramter : 2
% -------------------------------------------------------------------------------------
%
% Acknowledgement: Adapted from Anton Schwaighofer's software:
% http://www.cis.tugraz.at/igi/aschwaig/software.html
%
% Author: Vikas Sindhwani ([email protected])
% June 2004
% ----------------------------------------------------------------------------------------%
% options default values
options = struct('Kernel','linear', ...
'KernelParam',1, ...
'NN',6,...
'k' , 2, ...
'GraphDistanceFunction','euclidean',...
'GraphWeights', 'binary', ...
'GraphWeightParam',1, ...
'GraphNormalize',1, ...
'ClassEdges',0,...
'LaplacianDegree',1, ...
'gamma_A',1.0,...
'gamma_I',1.0, ...
'mu',0.5);
numberargs = nargin;
if numberargs==0
return;
end
Names = fieldnames(options);
[m,n] = size(Names);
names = lower(Names);
i = 1;
while i <= numberargs
arg = varargin{i};
if isstr(arg)
break;
end
if ~isempty(arg)
if ~isa(arg,'struct')
error(sprintf('Expected argument %d to be a string parameter name or an options structure.', i));
end
for j = 1:m
if any(strcmp(fieldnames(arg),Names{j,:}))
val = getfield(arg, Names{j,:});
else
val = [];
end
if ~isempty(val)
[valid, errmsg] = checkfield(Names{j,:},val);
if valid
options = setfield(options, Names{j,:},val);
else
error(errmsg);
end
end
end
end
i = i + 1;
end
% A finite state machine to parse name-value pairs.
if rem(numberargs-i+1,2) ~= 0
error('Arguments must occur in name-value pairs.');
end
expectval = 0;
while i <= numberargs
arg = varargin{i};
if ~expectval
if ~isstr(arg)
error(sprintf('Expected argument %d to be a string parameter name.', i));
end
lowArg = lower(arg);
j = strmatch(lowArg,names);
if isempty(j)
error(sprintf('Unrecognized parameter name ''%s''.', arg));
elseif length(j) > 1
% Check for any exact matches (in case any names are subsets of others)
k = strmatch(lowArg,names,'exact');
if length(k) == 1
j = k;
else
msg = sprintf('Ambiguous parameter name ''%s'' ', arg);
msg = [msg '(' Names{j(1),:}];
for k = j(2:length(j))'
msg = [msg ', ' Names{k,:}];
end
msg = sprintf('%s).', msg);
error(msg);
end
end
expectval = 1;
else
[valid, errmsg] = checkfield(Names{j,:}, arg);
if valid
options = setfield(options, Names{j,:}, arg);
else
error(errmsg);
end
expectval = 0;
end
i = i + 1;
end
function [valid, errmsg] = checkfield(field,value)
% CHECKFIELD Check validity of structure field contents.
% [VALID, MSG] = CHECKFIELD('field',V) checks the contents of the specified
% value V to be valid for the field 'field'.
%
valid = 1;
errmsg = '';
if isempty(value)
return
end
isFloat = length(value==1) & isa(value, 'double');
isPositive = isFloat & (value>=0);
isString = isa(value, 'char');
range = [];
requireInt = 0;
switch field
case 'NN'
requireInt = 1;
range=[1 Inf];
case 'k'
requireInt=1;
range=[1 Inf];
case 'GraphNormalize'
requireInt = 1;
range=[0 1];
case 'LaplacianDegree'
requireInt = 1;
range=[1 Inf];
case 'ClassEdges'
requireInt = 1;
range=[0 1];
case {'Kernel', 'GraphWeights', 'GraphDistanceFunction'}
if ~isString,
valid = 0;
errmsg = sprintf('Invalid value for %s parameter: Must be a string', field);
end
case {'gamma_A', 'gamma_I','GraphWeightParam'}
range = [0 Inf];
case {'mu'}
range = [0 1];
case 'KernelParam'
valid = 1;
otherwise
valid = 0;
error('Unknown field name for Options structure.')
end
if ~isempty(range),
if (value<range(1)) | (value>range(2)),
valid = 0;
errmsg = sprintf('Invalid value for %s parameter: Must be scalar in the range [%g..%g]', ...
field, range(1), range(2));
end
end
if requireInt & ((value-round(value))~=0),
valid = 0;
errmsg = sprintf('Invalid value for %s parameter: Must be integer', ...
field);
end
|
github
|
marthawhite/reverse-prediction-master
|
Lfor_log.m
|
.m
|
reverse-prediction-master/loss/Lfor_log.m
| 1,069 |
utf_8
|
305b0fbfa01210acb7adbbd9a41331d2
|
function [f,g,log_constraint_opts] = Lfor_log(X,W,Y)
% assumes 0 <= X, because f^-1(YU) = exp(YU) = X
% f(z) = log(z), F(z) = [ln(z) - 1]^T z^T
% f = D_F(XW||f^*(Y)) = sum((ln(XW) - 1).*(XW)) - YW^T X^T)
% g = X^T(f(XW) - Y) = X^T(log(XW) - Y)
% NOTE: FUNCTION VALUES CAN BE LESS THAN ZERO BECAUSE WE ARE
% NOT WRITING DOWN THE ENTIRE D_F* (BECAUSE ARE ONLY MINIIZING PART
% WITH Y AND U)
if any(any(X <= 0))
X(X <= 0) = 1e-5;
end
t = size(Y,1);
Zhat = X*W;
Yhat = log(Zhat);
f = sum(sum((Yhat-Y-ones(size(Y))).*Zhat));
if nargout > 1
g = X'*(Yhat-Y);
end
%persistent log_constraint_opts;
log_constraint_opts = [];
%if isempty(log_constraint_opts)
% [log_constraint_opts.A, log_constraint_opts.b] = Lconst_log(X);
%end
% XW >= 0
% So need to put X on blkdiagonal since W will been linearized
% This constrant only needs to be computed once, so save as persistent variables
function [A,b] = Lconst_log(X)
Acell = [];
for i = 1:k
Acell = [Acell {X}];
end
A = blkdiag(Acell{:});
b = zeros(size(A,1),1);
end
end
|
github
|
zhujiagang/gating-ConvNet-code-master
|
classification_demo.m
|
.m
|
gating-ConvNet-code-master/caffe-action/matlab/demo/classification_demo.m
| 5,466 |
utf_8
|
45745fb7cfe37ef723c307dfa06f1b97
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to the Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
% and what versions are installed.
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab code for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to your Matlab search PATH in order to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
uncledickHe/EMBED-master
|
FISTA.m
|
.m
|
EMBED-master/src/FISTA.m
| 1,679 |
utf_8
|
cabc593990ccf7c5cf75d5d5b9048e57
|
function [x,info] = FISTA(fun, PSF, b, x0, maxit)
% FISTA FAST ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM
%
% Usage: [x,info] = FISTA(@fun, PSF, b, x0, maxit)
%
% Input:
% @fun: Function handle with objective function and gradient
% PSF: Point-spread function
% b : Beamformer map
% x0: Starting vector
% maxit: Maximum number of iterations
%
%
% Output:
% x: Source distribution for all iterations
% info: Struct with info about
% .obj: Objective function values as a function of iterations
% .time: Total time of algorithm
%
% Author: Oliver Lylloff
% Date: 25/9/14
% Latest revision: 25/9/14
%
%
% Reference:
% Beck, Amir, and Marc Teboulle. 2009.
% 'A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems.'
% SIAM Journal on Imaging Sciences 2 (1) (January): 183-202.
%
start_time = tic;
% Initialize variables
x = x0;
xold = x;
y = x;
t = 1;
% Precompute fft of PSF
Fps = fft2(PSF);
FpsT = fft2(rot90(PSF,2));
% Evaluate f(x0)
fgx = @(x) fun(PSF,b,x,Fps,FpsT);
% Compute Lipschitz constant
L = lipschitz(PSF,Fps);
% For n = 1
[fy,grady] = fgx(y);
info.obj(1) = fy;
% Start iteration
n = 0;
while n < maxit
n = n+1;
x = max(0,y - (1/L)*grady);
tnew = (1+sqrt(1+4*t*t))/2;
y = x + ((t-1)/tnew)*(x-xold);
[fy,grady] = fgx(y);
xold = x;
t = tnew;
info.obj(n+1) = fy;
end
info.time = toc(start_time);
end
function L = lipschitz(PSF,Fps)
% Estimate Lipschitz constant by power iteration
x = rand(size(PSF));
for k = 1:10
x = fftshift(ifft2(fft2(x).*Fps))/norm(x,'fro');
end
L = norm(x,'fro')^2; % lambda(A'A) Assuming a symmetric matric A
end
|
github
|
vildenst/3D-heart-models-master
|
meshIntersectImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Meshes/meshIntersectImage.m
| 3,242 |
utf_8
|
1f67da0fd88c98728ce085baf3a959e4
|
function flag = meshIntersectImage(meshIn, imageIn, varargin)
% returns true if the mesh and the image intersect at voxels where the
% image is nonzero
n=1/2;
dbg=false;
i=1;
while (i <= size(varargin,2))
if (strcmp( varargin{i} , 'debug'))
dbg= true;
elseif (strcmp( varargin{i} , 'thickness'))
n = varargin{i+1};
i=i+1;
end
i = i+1;
end
% build AABB tree
tree= AABB_tree(meshIn);
tree.BuildTree();
% input bounds
% For each leave of the tree, only if it its BB intersects with the BB of
% the input image, rasterize
flag = find_intersection(tree.rootNode, imageIn,n);
end
function flag = find_intersection(node, imageIn,n)
% This function iterated and does "something" for all the nodes
% of the other tree which lay inside the current tree
flag=0;
bb = imageIn.GetBounds();
bb=bb(:);
if (node.intersectBB(bb))
% current node intersects with image, continue in this branch
if (numel(node.leftNodes))
% if there are branches on the left
flag = find_intersection(node.leftNodes, imageIn,n);
if flag
return;
end
end
if (numel(node.rightNodes))
% if there are branches on the right
flag = find_intersection(node.rightNodes, imageIn,n);
if flag
return;
end
end
if (~numel(node.rightNodes) && ~numel(node.rightNodes))
% It is a leaf node: compute intersection
%intersection = obj.intersectNodeWithNode(obj.rootNode, otherNode);
flag = find_intersection_node(node, imageIn,n);
end
end
end
function flag = find_intersection_node(currentNode, imageIn,n)
flag = false;
ntriangles = currentNode.mesh.ntriangles;
if (ntriangles > 1)
disp('ERROR: at the end of the branch there should be only one triangle!')
return ;
end
if (currentNode.mesh.npoints < 3)
disp('ERROR: This triangle has less than 3 points!')
return ;
end
% Find coordinate system of the triangle
normal = currentNode.mesh.GetTriangleNormal(1);
[x y ] = vtkMathPerpendiculars(normal(:),pi/2);
M = [x y normal(:)];
% convert nonzero imagePoints to the trangle plane
nonzero_indices = find(abs(imageIn.data)>0);
if ~numel(nonzero_indices)
return ;
end
[x y z] = ind2sub(imageIn.size',nonzero_indices);
imagePoints = imageIn.GetPosition([x(:) y(:) z(:)]');
imagePoints_transformed = M \ imagePoints;
% see if the points are in the triangle
triangleCorners = currentNode.mesh.points(currentNode.mesh.triangles(1,:),:)';
triangleCorners_transformed = M \ triangleCorners;
fl = PointInTriangle(imagePoints_transformed(1:2,:) , triangleCorners_transformed(1:2,1),triangleCorners_transformed(1:2,2),triangleCorners_transformed(1:2,3),'maxChunkSize',150);
%pointsCloser = abs(imagePoints_transformed(3,:)-triangleCorners_transformed(3,1))<imageIn.spacing(3);
pointsCloser = abs(imagePoints_transformed(3,:)-triangleCorners_transformed(3,1))<n*norm(imageIn.spacing);
pointsInTriangle = fl & pointsCloser;
flag = numel(nonzeros(pointsInTriangle))>0;
end
|
github
|
vildenst/3D-heart-models-master
|
meshBinarize.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Meshes/meshBinarize.m
| 5,378 |
utf_8
|
68a9f0e757ca5428555ce4c31170603c
|
function imageOut = meshBinarize(meshIn, imageIn, varargin)
% converts a mesh into a binary image (rasterization), on the grid defined
%
% Options:
% 'thickness' , n -> n is the number of voxel sizes at each size of
% the mesh that will be painted (by default, n=1/2)
n=1/2;
dbg=false;
i=1;
enlarge=0;
MAX_CHUNK_SIZE = 50;
while (i <= size(varargin,2))
if (strcmp( varargin{i} , 'thickness'))
n= varargin{i+1};
i = i+1;
elseif (strcmp( varargin{i} , 'enlarge'))
enlarge= varargin{i+1};
i = i+1;
elseif(strcmp( varargin{i} , 'debug'))
dbg= true;
elseif (strcmp(varargin{i},'maxChunkSize'))
MAX_CHUNK_SIZE = varargin{i+1};
i=i+1;
end
i = i+1;
end
% build AABB tree
meshOut = MeshType(meshIn);
meshOut.triangles =meshIn.triangles;
imageOut = ImageType(imageIn);
if enlarge
centerpoint = mean(meshIn.points);
if enlarge <0
% this only works for planes! Compute intersection of bounding box
% and plane
plane.normal = meshIn.GetNormalAtFaces(1);
plane.origin = meshIn.points(meshIn.triangles(1),:);
% transform positions to align with normal
[x y] = vtkMathPerpendiculars(plane.normal',pi/2);
M = [x y plane.normal(:); 0 0 0];
M = [M [plane.origin(:) ; 1] ];
NCHUNKS = ceil(imageIn.size/MAX_CHUNK_SIZE);
chunked_size = ceil(imageIn.size./NCHUNKS)';
[ix iy iz]= ndgrid(0:NCHUNKS(1)-1,0:NCHUNKS(2)-1,0:NCHUNKS(3)-1);
intervals = [ix(:) iy(:) iz(:)];
clear ix iy iz;
for i=1:size(intervals,1)
ranges([1 3 5]) = intervals(i,:).*chunked_size+1;
ranges([2 4 6]) = min([(intervals(i,:)+[1 1 1]).*chunked_size ; imageIn.size']);
ranges_size = ranges([2 4 6])-ranges([1 3 5])+[1 1 1];
% generate all the indexes of the target image
[x y z] = ndgrid( ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6));
positions = imageIn.GetPosition([x(:) y(:) z(:)]');
clear x y z;
tx_positions = M \ [positions ; ones(1,size(positions,2)) ];
imageOut.data(ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6)) = reshape(abs(tx_positions(3,:)')<n,ranges_size);
end
return;
else
for i=1:meshIn.npoints
meshOut.points(i,:)=(meshIn.points(i,:)-centerpoint)*enlarge+ centerpoint;
end
end
else
meshOut.points=meshIn.points;
end
tree= AABB_tree(meshOut);
tree.BuildTree();
% input bounds
% For each leave of the tree, only if it its BB intersects with the BB of
% the input image, rasterize
imageOut = rasterize(tree.rootNode, imageOut,n);
end
function imageOut = rasterize(node, imageIn,n)
% This function iterated and does "something" for all the nodes
% of the other tree which lay inside the current tree
imageOut = ImageType(imageIn);
imageOut.data = imageIn.data;
bb = imageIn.GetBounds();
if (node.intersectBB(bb))
% current node intersects with image, continue in this branch
if (numel(node.leftNodes))
% if there are branches on the left
imageOut = rasterize(node.leftNodes, imageOut,n);
end
if (numel(node.rightNodes))
% if there are branches on the right
imageOut = rasterize(node.rightNodes, imageOut,n);
end
if (~numel(node.rightNodes) && ~numel(node.rightNodes))
% It is a leaf node: compute intersection
%intersection = obj.intersectNodeWithNode(obj.rootNode, otherNode);
imageOut = rasterizeNode(node, imageOut,n);
end
end
end
function imageOut = rasterizeNode(currentNode, imageIn,n)
% rasterize the current node into the image
imageOut = ImageType(imageIn);
imageOut.data = imageIn.data;
ntriangles = currentNode.mesh.ntriangles;
if (ntriangles > 1)
disp('ERROR: at the end of the branch there should be only one triangle!')
return ;
end
if (currentNode.mesh.npoints < 3)
disp('ERROR: This triangle has less than 3 points!')
return ;
end
% Find coordinate system of the triangle
normal = currentNode.mesh.GetTriangleNormal(1);
[x y ] = vtkMathPerpendiculars(normal(:),pi/2);
M = [x y normal(:)];
% convert imagePoints to the trangle plane
[x y z] = ndgrid(1:imageIn.size(1), 1:imageIn.size(2), 1:imageIn.size(3));
imagePoints = imageIn.GetPosition([x(:) y(:) z(:)]');
imagePoints_transformed = M \ imagePoints;
% see if the points are in the triangle
triangleCorners = currentNode.mesh.points(currentNode.mesh.triangles(1,:),:)';
triangleCorners_transformed = M \ triangleCorners;
flag = PointInTriangle(imagePoints_transformed(1:2,:) , triangleCorners_transformed(1:2,1),triangleCorners_transformed(1:2,2),triangleCorners_transformed(1:2,3),'maxChunkSize',150);
%pointsCloser = abs(imagePoints_transformed(3,:)-triangleCorners_transformed(3,1))<imageIn.spacing(3);
pointsCloser = abs(imagePoints_transformed(3,:)-triangleCorners_transformed(3,1))<n*norm(imageIn.spacing);
pointsInTriangle = flag & pointsCloser;
pointsInTriangle = reshape(pointsInTriangle, imageIn.size' );
imageOut.data(pointsInTriangle)=1;
end
|
github
|
vildenst/3D-heart-models-master
|
meshClip.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Meshes/meshClip.m
| 3,132 |
utf_8
|
3114d4f956c33fad0ccaee6c15e99104
|
function imageOut = meshClip(meshIn, meshStencil, varargin)
% Clips the input mesh, meshIn, using another mesh as a stencil
%
% Options:
% none
dbg=false;
i=1;
while (i <= size(varargin,2))
if (strcmp( varargin{i} , 'thickness'))
%n= varargin{i+2};
%i = i+1;
elseif(strcmp( varargin{i} , 'debug'))
dbg= true;
end
i = i+1;
end
% build AABB tree
tree= AABB_tree(meshIn);
tree.BuildTree();
% input bounds
inputBounds = imageIn.GetBounds();
imageOut = ImageType(imageIn);
% For each leave of the tree, only if it its BB intersects with the BB of
% the input image, rasterize
imageOut = rasterize(tree.rootNode, imageOut,n);
end
function imageOut = rasterize(node, imageIn,n)
% This function iterated and does "something" for all the nodes
% of the other tree which lay inside the current tree
imageOut = ImageType(imageIn);
imageOut.data = imageIn.data;
bb = imageIn.GetBounds();
if (node.intersectBB(bb))
% current node intersects with image, continue in this branch
if (numel(node.leftNodes))
% if there are branches on the left
imageOut = rasterize(node.leftNodes, imageOut,n);
end
if (numel(node.rightNodes))
% if there are branches on the right
imageOut = rasterize(node.rightNodes, imageOut,n);
end
if (~numel(node.rightNodes) && ~numel(node.rightNodes))
% It is a leaf node: compute intersection
%intersection = obj.intersectNodeWithNode(obj.rootNode, otherNode);
imageOut = rasterizeNode(node, imageOut,n);
end
end
end
function imageOut = rasterizeNode(currentNode, imageIn,n)
% rasterize the current node into the image
imageOut = ImageType(imageIn);
imageOut.data = imageIn.data;
ntriangles = currentNode.mesh.ntriangles;
if (ntriangles > 1)
disp('ERROR: at the end of the branch there should be only one triangle!')
return ;
end
% Find coordinate system of the triangle
normal = currentNode.mesh.GetTriangleNormal(1);
[x y ] = vtkMathPerpendiculars(normal,pi/2);
M = [x y normal(:)];
% convert imagePoints to the trangle plane
[x y z] = ndgrid(1:imageIn.size(1), 1:imageIn.size(2), 1:imageIn.size(3));
imagePoints = imageIn.GetPosition([x(:) y(:) z(:)]');
imagePoints_transformed = M \ imagePoints;
% see if the points are in the triangle
triangleCorners = currentNode.mesh.points(currentNode.mesh.triangles(1,:),:)';
triangleCorners_transformed = M \ triangleCorners;
flag = PointInTriangle(imagePoints_transformed(1:2,:) , triangleCorners_transformed(1:2,1),triangleCorners_transformed(1:2,2),triangleCorners_transformed(1:2,3));
%pointsCloser = abs(imagePoints_transformed(3,:)-triangleCorners_transformed(3,1))<imageIn.spacing(3);
pointsCloser = abs(imagePoints_transformed(3,:)-triangleCorners_transformed(3,1))<n*norm(imageIn.spacing);
pointsInTriangle = flag & pointsCloser;
pointsInTriangle = reshape(pointsInTriangle, imageIn.size' );
imageOut.data(pointsInTriangle)=1;
end
|
github
|
vildenst/3D-heart-models-master
|
PointInTriangle.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Geometry/PointInTriangle.m
| 1,429 |
utf_8
|
1e0294774d58c2ff4462665e17eee244
|
function flag = PointInTriangle(p, a,b,c,varargin)
% returns true if the point p is inside the triangle defined by a,b,c (in 2D)
% p, a b and c are column points
MAX_CHUNK_SIZE = 50;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'maxChunkSize'))
MAX_CHUNK_SIZE = varargin{i+1};
i=i+1;
end
end
NCHUNKS = ceil(size(p,2)/MAX_CHUNK_SIZE.^3);
chunked_size = ceil(size(p,2)./NCHUNKS);
intervals = 0:(NCHUNKS-1);
flag = zeros(1,size(p,2));
if norm(a-c)<1E-10 || norm(a-b)<1E-10
return;
end
for i=1:numel(intervals)
range(1) = intervals(i)*chunked_size+1;
range(2) = min([(intervals(i)+1)*chunked_size size(p,2)]);
flag(range(1):range(2)) = SameSide(p(:,range(1):range(2)),a, b,c) .* SameSide(p(:,range(1):range(2)),b, a,c) .* SameSide(p(:,range(1):range(2)),c, a,b);
end
end
function flag = SameSide(p1,p2, a,b)
% This function and the next one are taken from http://www.blackpawn.com/texts/pointinpoly/default.html
npts = size(p1,2);
p1 = [p1; zeros(1,npts)];
%p2Large = p2*ones(1,npts);
aLarge = [a; 0]*ones(1,npts);
bLarge = [b; 0]*ones(1,npts);
cp1 = cross(bLarge-aLarge, p1-aLarge,1);
cp2 = cross([b-a; 0], [p2; 0]-[a; 0],1);
cp2Large = cp2*ones(1,npts);
epsilon = 10^-10;
flag = dot(cp1,cp2Large,1) >= (0-epsilon);
end
|
github
|
vildenst/3D-heart-models-master
|
quatToRMat_igtl.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Geometry/quatToRMat_igtl.m
| 695 |
utf_8
|
9e936dfbc7128a6485d398ecf10859e1
|
% Converts a quaternion to a 3quat(1)3 rotation matriquat(1)
function RMat = quatToRMat_igtl(quat)
quat = quat / norm(quat);
q00 = quat(1) * quat(1)*2; % xx
q0x = quat(1) * quat(2)*2; % xy
q0y = quat(1) * quat(3)*2; % xz
q0z = quat(1) * quat(4)*2; % xw
qxx = quat(2) * quat(2)*2; % yy
qxy = quat(2) * quat(3)*2; % yz
qxz = quat(2) * quat(4)*2; % yw
qyy = quat(3) * quat(3)*2; % zz
qyz = quat(3) * quat(4)*2; % zw
qzz = quat(4) * quat(4)*2; % ww
RMat(1,1) = 1.0 - (qxx + qyy);
RMat(1,2) =q0x -qyz;
RMat(1,3) =q0y + qxz;
RMat(2,1) = q0x + qyz;
RMat(2,2) = 1.0 -(q00 +qyy);
RMat(2,3) = qxy - q0z;
RMat(3,1) = q0y - qxz;
RMat(3,2) = qxy + q0z;
RMat(3,3) = 1.0 -(q00 + qxx);
end
|
github
|
vildenst/3D-heart-models-master
|
quatToRMat.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Geometry/quatToRMat.m
| 663 |
utf_8
|
80939c0da0ee48fa73fe3cb23860ca2a
|
% Converts a quaternion to a 3x3 rotation matrix
function RMat = quatToRMat(quat)
quat = quat / norm(quat);
q00 = quat(1) * quat(1);
q0x = quat(1) * quat(2);
q0y = quat(1) * quat(3);
q0z = quat(1) * quat(4);
qxx = quat(2) * quat(2);
qxy = quat(2) * quat(3);
qxz = quat(2) * quat(4);
qyy = quat(3) * quat(3);
qyz = quat(3) * quat(4);
qzz = quat(4) * quat(4);
RMat = zeros(3,3);
RMat(1,1) = q00 + qxx - qyy - qzz;
RMat(1,2) = 2 * (qxy - q0z);
RMat(1,3) = 2 * (qxz + q0y);
RMat(2,1) = 2 * (qxy + q0z);
RMat(2,2) = q00 - qxx + qyy - qzz;
RMat(2,3) = 2 * (qyz - q0x);
RMat(3,1) = 2 * (qxz - q0y);
RMat(3,2) = 2 * (qyz + q0x);
RMat(3,3) = q00 - qxx - qyy + qzz;
end
|
github
|
vildenst/3D-heart-models-master
|
PointInFrustum.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Geometry/PointInFrustum.m
| 1,559 |
utf_8
|
c0f77e35cf25a5d0459538a974dc4342
|
function flag = PointInFrustum(p, frustum,varargin)
% returns true if the point p is inside the frustum (in 3D)
% p are column points
MAX_CHUNK_SIZE = 50;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'maxChunkSize'))
MAX_CHUNK_SIZE = varargin{i+1};
i=i+1;
end
end
NCHUNKS = ceil(size(p,2)/MAX_CHUNK_SIZE.^3);
chunked_size = ceil(size(p,2)./NCHUNKS);
intervals = 0:(NCHUNKS-1);
flag = zeros(1,size(p,2));
for i=1:numel(intervals)
range(1) = intervals(i)*chunked_size+1;
range(2) = min([(intervals(i)+1)*chunked_size size(p,2)]);
flag(range(1):range(2)) = isInside(p(:,range(1):range(2)),frustum) ;
end
end
function flag = isInside(p,frustum)
npts = size(p,2);
flag = ones(1,npts);
M = [frustum.directions frustum.centre(:) ; 0 0 0 1];
points_in_frustum_coordinates = M\p;
radiuses = norm(points_in_frustum_coordinates(1:3,:));
flag(radiuses<frustum.radiuses(1))=0;
flag(radiuses>frustum.radiuses(2))=0;
theta_frustum = [atan2(points_in_frustum_coordinates(1,:),points_in_frustum_coordinates(3,:))
atan2(points_in_frustum_coordinates(2,:),points_in_frustum_coordinates(3,:))]*180/pi; % first row: angle1, second row: angle2
a1 = angleInRange(theta_frustum(1,:),frustum.angles([1 2]),1E-03);
a2 = angleInRange(theta_frustum(2,:),frustum.angles([3 4]),1E-03);
inAngle = intersect(a1,a2);
outAngle = setdiff(1:npts,inAngle);
flag(outAngle)=0;
end
|
github
|
vildenst/3D-heart-models-master
|
PointInTriangle3D.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Geometry/PointInTriangle3D.m
| 773 |
utf_8
|
1efcaba15df43c2b2d0af1658acb24de
|
function flag = PointInTriangle3D(p, a,b,c)
% returns true if the point p is inside the triangle defined by a,b,c (in 3D)
% p, a b and c are column points
flag = SameSide(p,a, b,c) .* SameSide(p,b, a,c) .* SameSide(p,c, a,b);
end
function flag = SameSide(p1,p2, a,b)
% This function and the next one are taken from http://www.blackpawn.com/texts/pointinpoly/default.html
npts = size(p1,2);
p1 = [p1; zeros(1,npts)];
%p2Large = p2*ones(1,npts);
aLarge = [a; 0]*ones(1,npts);
bLarge = [b; 0]*ones(1,npts);
cp1 = cross(bLarge-aLarge, p1-aLarge,1);
cp2 = cross([b-a; 0], [p2; 0]-[a; 0],1);
cp2Large = cp2*ones(1,npts);
epsilon = 10^-10;
flag = dot(cp1,cp2Large,1) >= (0-epsilon);
end
|
github
|
vildenst/3D-heart-models-master
|
coneImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Sources/coneImage.m
| 1,756 |
utf_8
|
6b9f19b1dc5ee1977b18d4b71c43b972
|
% test_generateCone
function out = coneImage(points_axis, points_side, ref_im)
%% parameters
out = ImageType(ref_im);
th = sqrt(sum(ref_im.spacing.^2))/2;
%th=48;
npieces=1;
%% get the apex of the cone
Up = (points_axis(:,2)-points_axis(:,1))/norm(points_axis(:,2)-points_axis(:,1));
Uq = (points_side(:,2)-points_side(:,1))/norm(points_side(:,2)-points_side(:,1));
P0 = points_axis(:,1);
Q0 = points_side(:,1);
b = -1*[(P0-Q0)'*Up; (P0-Q0)'*Uq];
A = [ Up'*Up -Uq'*Up; Up'*Uq -Uq'*Uq];
lambda = A\b;
P1 = P0 + lambda(1)*Up;
%Q1 = Q0 + lambda(2)*Uq;
apex = P1;
%% Get distance to the cone
[ x y z] = ndgrid(1:ref_im.size(1), 1:ref_im.size(2), 1:ref_im.size(3));
positions = ref_im.GetPosition([x(:) y(:) z(:)]');
vectors = positions - apex*ones(1,size(positions,2));
vectors_norm = sqrt(vectors(1,:).^2+vectors(2,:).^2+vectors(3,:).^2);
vectors(1,:)=vectors(1,:)./vectors_norm;
vectors(2,:)=vectors(2,:)./vectors_norm;
vectors(3,:)=vectors(3,:)./vectors_norm;
angle_with_coneAxis = acos(abs(dot(vectors,(Up*ones(1,size(vectors,2))),1)));
cone_angle= acos(abs(dot(Uq,Up)));
distance_from_point_to_cone = vectors_norm .* sin(cone_angle*ones(1,size(angle_with_coneAxis,2)) -angle_with_coneAxis);
%distance_from_point_to_cone = abs(angle_with_coneAxis-cone_angle*ones(1,size(angle_with_coneAxis,2)));
%distance_from_point_to_cone(distance_from_point_to_cone<0)=0;
out.data = reshape(abs(distance_from_point_to_cone)<th,out.size');
%out.data = reshape(distance_from_point_to_cone,out.size');
%out.data = reshape(angle_with_coneAxis*180/pi,out.size');
% out2=VectorImageType(ref_im);
% out2.datax = reshape(vectors(1,:),out2.size');
% out2.datay = reshape(vectors(2,:),out2.size');
% out2.dataz = reshape(vectors(3,:),out2.size');
end
|
github
|
vildenst/3D-heart-models-master
|
prismImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Sources/prismImage.m
| 2,348 |
utf_8
|
eaaddbc7ba27025ae9971ac325dc7ba5
|
% test_generateCone
function out = prismImage(roi_file, ref_im,varargin)
% generate a prism from a roi, using the roi as base section and extruding
% along the normal to the roi plane
%% parameters
MAX_CHUNK_SIZE = 50;
MAX_CHUNK_SIZE = 50;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'debug'))
dbg = true;
elseif (strcmp(varargin{i},'maxChunkSize'))
MAX_CHUNK_SIZE = varargin{i+1};
i=i+1;
end
end
out = ImageType(ref_im);
th = sqrt(sum(ref_im.spacing.^2))/2;
npieces=1;
%% Read roi
% ------------------------------------------- read roi
[roinormal roiorigin points] = read_roi(roi_file);
roi.normal = roinormal;
roi.origin = roiorigin;
[x y]=vtkMathPerpendiculars(roi.normal,pi/2);
M=eye(4);
M(1:3,1:3) = [x(:) y(:) roi.normal(:)];
M(1:3,4) = roi.origin;
npoints = size(points,2);
%% The image will be filled in
NCHUNKS = ceil(ref_im.size/MAX_CHUNK_SIZE);
chunked_size = ceil(ref_im.size./NCHUNKS)';
[ix iy iz]= ndgrid(0:NCHUNKS(1)-1,0:NCHUNKS(2)-1,0:NCHUNKS(3)-1);
intervals = [ix(:) iy(:) iz(:)];
clear ix iy iz;
for i=1:size(intervals,1)
ranges([1 3 5]) = intervals(i,:).*chunked_size+1;
ranges([2 4 6]) = min([(intervals(i,:)+[1 1 1]).*chunked_size ; ref_im.size']);
ranges_size = ranges([2 4 6])-ranges([1 3 5])+[1 1 1];
% generate all the indexes of the target image
[x y z] = ndgrid( ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6));
ref_positions = ref_im.GetPosition([x(:) y(:) z(:)]');
clear x y z;
ref_positions_2D = M \ [ref_positions; ones(1,size(ref_positions,2))];
clear ref_positions;
% The origin of the system is the centroid of the points
centroid = mean(points,2);
% make the triangles
for j=1:npoints-1
% triangle i is defined by point i, point i+1 and centroid. Seee if the
% ref positions are inside it
A = points(1:2,j);
B = points(1:2,j+1);
pointsInside = PointInTriangle(ref_positions_2D(1:2,:), A,B,centroid(1:2));
pointsInside = reshape(pointsInside,ranges_size);
out.data(ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6)) = ...
double(out.data(ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6)) | pointsInside>0);
end
clear ref_positions_2D pointsInside ;
end
end
|
github
|
vildenst/3D-heart-models-master
|
ellipsoidMesh.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Sources/ellipsoidMesh.m
| 5,858 |
utf_8
|
40ad36dfde772dfe5cff5b18d784b22e
|
function m = ellipsoidMesh(c,r,varargin)
% m = ellipsoidMesh(c,r)
% m = ellipsoidMesh(c,r,options)
%
% creates a MeshType object of a sphere of radius r (vector) and center c
%
% options meaning default
% ------- ------- -------
%
% 'resolution' sphereRes 16
% 'theta' angle [-180 180]
% 'phi' angle [-90 90]
% 'rotatez' angle 0
% 'rotatey' angle 0
% 'rotatex' angle 0
% 'rotationOrder' int {0} = Rx - Ry - Rz
% 1 = Ry - Rx - Rz
global closed;
resolution = 8; % half resolution for phi than for theta
theta = [-180 180];
phi = [-90 90];
rotatez = 0;
rotatey = 0;
rotatex = 0;
rotationOrder=0;
nOptions = size(varargin,2);
% Argument reading
if (nOptions > 0)
if (rem(nOptions,2)~=0)
disp('Error in the arguments, please check the option list');
return;
end
i=1;
while(i<=nOptions)
if (strcmp(varargin{i},'resolution'))
resolution = varargin{i+1};
i = i+2;
elseif (strcmp(varargin{i},'theta'))
theta = varargin{i+1};
i = i+2;
elseif (strcmp(varargin{i},'phi'))
phi = varargin{i+1};
i = i+2;
elseif (strcmp(varargin{i},'rotatez'))
rotatez = varargin{i+1};
i = i+2;
elseif (strcmp(varargin{i},'rotatey'))
rotatey = varargin{i+1};
i = i+2;
elseif (strcmp(varargin{i},'rotatex'))
rotatex = varargin{i+1};
i = i+2;
elseif (strcmp(varargin{i},'rotationOrder'))
rotationOrder= varargin{i+1};
i = i+2;
end
end
end
phi(1)=max(phi(1),-90);
phi(2)=min(phi(2),90);
theta(1)=max(theta(1),-180);
theta(2)=min(theta(2),180);
%'theta',[-180 180],'phi',[-90 90]
closed = true;
if (theta(2)-360< theta(1))
closed = false;
end
% --------------------------
thetaResolution = resolution;
phiResolution = resolution;
numPts = phiResolution * resolution + 2; % phires * thetares +2
numPolys = phiResolution *2* resolution;
% Create sphere
deltaTheta = (theta(2)-theta(1))/thetaResolution;
deltaPhi = (phi(2)-phi(1))/phiResolution;
t = theta(1):deltaTheta:theta(2);
p = (phi(1):deltaPhi:phi(2))';
% Create conectivity
polygons = [];
points = [];
numpoles = 0;
poleNorthFound = false;
poleSouthFound = false;
for phi_=p';
for theta_=t;
% north pole
if (~poleNorthFound && ~phi_)
poleNorthFound = true;
numpoles = numpoles+1;
for i=1:thetaResolution
vertex1 = i+1;
vertex2 = cyclicNext((vertex1),[2 thetaResolution+numpoles]);
vertex3 = 1; % the pole
polygons = [polygons ; vertex1 vertex2 vertex3];
end
x = r(1)*cosd(phi_)*cosd(theta_);
y = r(2)*cosd(phi_)*sind(theta_);
z = r(3)*sind(phi_);
points = [points; [x y z]+c'];
end
% north pole
if (~poleSouthFound && phi_>=90)
poleSouthFound = true;
numpoles = numpoles+1;
for i=1:thetaResolution
vertex1 = size(points,1)-thetaResolution+i;
vertex2 = cyclicNext((vertex1),[size(points,1)+1-thetaResolution size(points,1)]);
vertex3 = size(points,1)+1; % the pole
polygons = [polygons ; vertex1 vertex2 vertex3];
end
x = r(1)*cosd(phi_)*cosd(theta_);
y = r(2)*cosd(phi_)*sind(theta_);
z = r(3)*sind(phi_);
points = [points; [x y z]+c'];
end
if (phi_ && phi_<90 && theta_ < t(end))
x = r(1)*cosd(phi_)*cosd(theta_);
y = r(2)*cosd(phi_)*sind(theta_);
z = r(3)*sind(phi_);
points = [points; [x y z]+c'];
end
end
end
% band conectivity
for i=2:(phiResolution-1);
for j=1:(thetaResolution)
% conectivity
vertex1 = (i-2)*thetaResolution+j+1;
vertex2 = cyclicNext(vertex1,[(i-2)*thetaResolution+2 (i-2)*thetaResolution+thetaResolution+1]);
vertex3 = cyclicNext(vertex1+thetaResolution-1,[(i-1)*thetaResolution+2 (i-1)*thetaResolution+thetaResolution+1]);
polygons = [polygons ; vertex1 vertex2 vertex3];
vertex1 = (i-2)*thetaResolution+j+1;
vertex3 = cyclicNext(vertex1+thetaResolution-1,[(i-1)*thetaResolution+2 (i-1)*thetaResolution+thetaResolution+1]);
vertex2 = cyclicPrevious(vertex3,[(i-1)*thetaResolution+2 (i-1)*thetaResolution+thetaResolution+1]);
polygons = [polygons ; vertex1 vertex2 vertex3];
end
end
Rx = eye(3);
Ry = eye(3);
Rz = eye(3);
if (rotatex~=0)
Rx = [1 0 0
0 cos(rotatex) -sin(rotatex)
0 sin(rotatex) cos(rotatex)];
end
if (rotatey~=0)
Ry = [cos(rotatey) 0 sin(rotatey)
0 1 0
-sin(rotatey) 0 cos(rotatey)];
end
if (rotatez~=0)
Rz = [cos(rotatez) -sin(rotatez) 0
sin(rotatez) cos(rotatez) 0
0 0 1];
end
switch (rotationOrder)
case 0
M = Rz * Ry * Rx;
case 1
M = Rz * Rx * Ry;
end
for i=1:size(points,1)
points(i,:) = (M * (points(i,:)'-c(:)) +c(:))';
end
% create mesh
m = MeshType(size(points,1),size(polygons,1));
m.points =points;
m.triangles = polygons;
% just for testing
end
function n = cyclicNext(a,b)
global closed;
% a index
% b=[b1 b2] min and max index
% if (a<b(1))
% a=b(1);
% end
n = a+1;
if (n>b(2))
if (closed)
n = b(1);
else
n=a;
end
end
end
function n = cyclicPrevious(a,b)
global closed;
% a index
n = a-1;
if (n<b(1))
if (closed)
n = b(2);
else
n=a;
end
end
end
|
github
|
vildenst/3D-heart-models-master
|
planeImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Sources/planeImage.m
| 1,886 |
utf_8
|
79304dd1339002b3779451aceb18423f
|
function out = planeImage(p, n, ref_im,varargin)
%lets say that the plane is defined by the point p and the
%normal vector n.
skeletonize_plane=false;
MAX_CHUNK_SIZE = 50;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'debug'))
dbg = true;
elseif (strcmp(varargin{i},'skeletonize'))
skeletonize_plane= true;
i=i+1;
elseif (strcmp(varargin{i},'maxChunkSize'))
MAX_CHUNK_SIZE = varargin{i+1};
i=i+1;
end
end
%% parameters
out = ImageType(ref_im);
th = sqrt(sum(ref_im.spacing.^2))/2;
NCHUNKS = ceil(out.size/MAX_CHUNK_SIZE);
chunked_size = ceil(out.size./NCHUNKS)';
[ix iy iz]= ndgrid(0:NCHUNKS(1)-1,0:NCHUNKS(2)-1,0:NCHUNKS(3)-1);
intervals = [ix(:) iy(:) iz(:)];
clear ix iy iz;
for i=1:size(intervals,1)
ranges([1 3 5]) = intervals(i,:).*chunked_size+1;
ranges([2 4 6]) = min([(intervals(i,:)+[1 1 1]).*chunked_size ; out.size']);
ranges_size = ranges([2 4 6])-ranges([1 3 5])+[1 1 1];
% generate all the indexes of the target image
[x y z] = ndgrid( ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6));
%[ x y z] = ndgrid(1:out.size(1), 1:out.size(2), 1:out.size(3));
positions = out.GetPosition([x(:) y(:) z(:)]');
clear x y z;
planeToPoint = p*ones(1,size(positions,2)) - positions;
clear positions;
distancesToPlane = abs(n'*planeToPoint);
clear planeToPoint;
distance_th = sqrt(sum(ref_im.spacing.^2))/2; % world coordinates
outputValues = double(distancesToPlane < distance_th );
clear distancesToPlane;
%out.data(distancesToPlane<distance_th)=1;
out.data(ranges(1):ranges(2),ranges(3):ranges(4),ranges(5):ranges(6)) = reshape(outputValues,ranges_size);
clear outputValues;
end
bounds = out.GetBounds(0.9,true);
out = cropImage(out,bounds);
if (skeletonize_plane)
out.data = skeletonize3D(out.data);
end
end
|
github
|
vildenst/3D-heart-models-master
|
cylinderImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Sources/cylinderImage.m
| 1,760 |
utf_8
|
68ba9dd0b57b2de7f1309fb205a41b9e
|
% test_generateCone
function out = cylinderImage(points_axis, points_side, ref_im)
%% parameters
out = ImageType(ref_im);
th = sqrt(sum(ref_im.spacing.^2))/2;
%th=48;
npieces=1;
%% get the apex of the cone
Up = (points_axis(:,2)-points_axis(:,1))/norm(points_axis(:,2)-points_axis(:,1));
Uq = (points_side(:,2)-points_side(:,1))/norm(points_side(:,2)-points_side(:,1));
P0 = points_axis(:,1);
Q0 = points_side(:,1);
b = -1*[(P0-Q0)'*Up; (P0-Q0)'*Uq];
A = [ Up'*Up -Uq'*Up; Up'*Uq -Uq'*Uq];
lambda = A\b;
P1 = P0 + lambda(1)*Up;
%Q1 = Q0 + lambda(2)*Uq;
apex = P1;
%% Get distance to the cone
[ x y z] = ndgrid(1:ref_im.size(1), 1:ref_im.size(2), 1:ref_im.size(3));
positions = ref_im.GetPosition([x(:) y(:) z(:)]');
vectors = positions - apex*ones(1,size(positions,2));
vectors_norm = sqrt(vectors(1,:).^2+vectors(2,:).^2+vectors(3,:).^2);
vectors(1,:)=vectors(1,:)./vectors_norm;
vectors(2,:)=vectors(2,:)./vectors_norm;
vectors(3,:)=vectors(3,:)./vectors_norm;
angle_with_coneAxis = acos(abs(dot(vectors,(Up*ones(1,size(vectors,2))),1)));
cone_angle= acos(abs(dot(Uq,Up)));
distance_from_point_to_cone = vectors_norm .* sin(cone_angle*ones(1,size(angle_with_coneAxis,2)) -angle_with_coneAxis);
%distance_from_point_to_cone = abs(angle_with_coneAxis-cone_angle*ones(1,size(angle_with_coneAxis,2)));
%distance_from_point_to_cone(distance_from_point_to_cone<0)=0;
out.data = reshape(abs(distance_from_point_to_cone)<th,out.size');
%out.data = reshape(distance_from_point_to_cone,out.size');
%out.data = reshape(angle_with_coneAxis*180/pi,out.size');
% out2=VectorImageType(ref_im);
% out2.datax = reshape(vectors(1,:),out2.size');
% out2.datay = reshape(vectors(2,:),out2.size');
% out2.dataz = reshape(vectors(3,:),out2.size');
end
|
github
|
vildenst/3D-heart-models-master
|
gradientBinaryImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Basic/gradientBinaryImage.m
| 2,165 |
utf_8
|
69f6baceb835769d25fc803e1dce1151
|
function out = gradientBinaryImage(im,varargin)
% out = gradientImage(im)
%
% Fast gradient of a binary image
% Works for ImageType
%
difforder = 1;
binary=false;
dbg=false;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'dbg'))
dbg=true;
elseif (strcmp(varargin{i},'order'))
difforder=varargin{1};
elseif (strcmp(varargin{i},'binary'))
binary=true;
end
end
%----------------------------
out=[];
% maybe something wrong: the transpose matlab shit
% Using the derivative of a Gaussian to guarantee smoothness
filter_size = 7;
sigma = 1.5; % in pixels
for d=1:im.ndimensions
[d_gaussian_kernel,d_gaussian_plain] = derivativeOfGaussian(filter_size, sigma, d, im.ndimensions, im.spacing);
%d_gaussian_kernel = d_gaussian_kernel/sum(abs(d_gaussian_kernel(:)));
d_gaussian_kernel = d_gaussian_kernel/sum(d_gaussian_plain(:).^2);
dx = convn(im.data,d_gaussian_kernel,'same');%/im.spacing(d);
out = cat(im.ndimensions+1,out,dx);
end
end
function [d_gaussian_kernel_derivative,d_gaussian_kernel] = derivativeOfGaussian(filter_size, sigma_, d, ndimensions, spacing)
% example of inputs:
%filter_size = 5;
%sigma = 3; % in pixels
% d=2 (direction along which we do the derivative)
filter_radius = floor(filter_size/2);
sigma = sigma_ * spacing(d);
% Below will give me the gaussian function along direction d. For example,
% for a 3D image and along direction y:
%d_gaussian_func_2 =@(x,y,z) exp(-(x.^2)/(2*sigma^2)).*-y/(sigma^2).*exp(-(y.^2)/(2*sigma^2)).*exp(-(z.^2)/(2*sigma^2));
str1='';
str2='';
str3 ='';
str4 = '';
for i=1:ndimensions
str2=[str2 'x' num2str(i) ','];
if i==d
str1 = [str1 '-x' num2str(i) '/(sigma^2).*exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
else
str1 = [str1 'exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
end
str3 = [str3 'exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
str4 = [str4 '(-filter_radius:filter_radius)*spacing(' num2str(i) '),'];
end
eval([ '[' str2(1:end-1) ']=ndgrid(' str4(1:end-1) ');']);
eval(['d_gaussian_kernel_derivative= ' str1(1:end-2) ';']);
eval(['d_gaussian_kernel= ' str3(1:end-2) ';']);
end
|
github
|
vildenst/3D-heart-models-master
|
gradientImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Basic/gradientImage.m
| 3,508 |
utf_8
|
e7bc4b29c506c5b31a86029b9080bd4b
|
function out = gradientImage(im,varargin)
% out = gradientImage(im)
%
% Fast gradient of an image
% Works for ImageType
%
difforder = 1;
binary=false;
dbg=false;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'dbg'))
dbg=true;
elseif (strcmp(varargin{i},'order'))
difforder=varargin{1};
elseif (strcmp(varargin{i},'binary'))
binary=true;
end
end
%----------------------------
out=[];
% maybe something wrong: the transpose matlab shit
% Using the derivative of a Gaussian to guarantee smoothness
filter_size = 7;
sigma = 1.5; % in pixels
for d=1:im.ndimensions
if binary
d_gaussian_kernel =derivativeKernel(filter_size, d, ndimensions);
else
[d_gaussian_kernel,d_gaussian_plain] = derivativeOfGaussian(filter_size, sigma, d, im.ndimensions, im.spacing);
%d_gaussian_kernel = d_gaussian_kernel/sum(abs(d_gaussian_kernel(:)));
d_gaussian_kernel = d_gaussian_kernel/sum(d_gaussian_plain(:).^2);
end
dx = convn(im.data,d_gaussian_kernel,'same');%/im.spacing(d);
out = cat(im.ndimensions+1,out,dx);
end
end
function [d_gaussian_kernel_derivative,d_gaussian_kernel] = derivativeOfGaussian(filter_size, sigma_, d, ndimensions, spacing)
% example of inputs:
%filter_size = 5;
%sigma = 3; % in pixels
% d=2 (direction along which we do the derivative)
filter_radius = floor(filter_size/2);
sigma = sigma_ * spacing(d);
% Below will give me the gaussian function along direction d. For example,
% for a 3D image and along direction y:
%d_gaussian_func_2 =@(x,y,z) exp(-(x.^2)/(2*sigma^2)).*-y/(sigma^2).*exp(-(y.^2)/(2*sigma^2)).*exp(-(z.^2)/(2*sigma^2));
str1='';
str2='';
str3 ='';
str4 = '';
for i=1:ndimensions
str2=[str2 'x' num2str(i) ','];
if i==d
str1 = [str1 '-x' num2str(i) '/(sigma^2).*exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
else
str1 = [str1 'exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
end
str3 = [str3 'exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
str4 = [str4 '(-filter_radius:filter_radius)*spacing(' num2str(i) '),'];
end
eval([ '[' str2(1:end-1) ']=ndgrid(' str4(1:end-1) ');']);
eval(['d_gaussian_kernel_derivative= ' str1(1:end-2) ';']);
eval(['d_gaussian_kernel= ' str3(1:end-2) ';']);
end
function d_derivative = derivativeKernel(filter_size, d, ndimensions)
% example of inputs:
%filter_size = 5;
% d=2 (direction along which we do the derivative)
filter_radius = floor(filter_size/2);
d_derivative = [1 0 -1]'*([1:filter_radius filter_radius+1 filter_radius:-1:1]);
d_derivative = repmat(d_derivative,1,1);
% Below will give me the gaussian function along direction d. For example,
% for a 3D image and along direction y:
%d_gaussian_func_2 =@(x,y,z) exp(-(x.^2)/(2*sigma^2)).*-y/(sigma^2).*exp(-(y.^2)/(2*sigma^2)).*exp(-(z.^2)/(2*sigma^2));
str1='';
str2='';
str3 ='';
str4 = '';
for i=1:ndimensions
str2=[str2 'x' num2str(i) ','];
if i==d
str1 = [str1 '-x' num2str(i) '/(sigma^2).*exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
else
str1 = [str1 'exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
end
str3 = [str3 'exp(-(x' num2str(i) '.^2)/(2*sigma^2)).*'];
str4 = [str4 '(-filter_radius:filter_radius)*spacing(' num2str(i) '),'];
end
eval([ '[' str2(1:end-1) ']=ndgrid(' str4(1:end-1) ');']);
eval(['d_gaussian_kernel_derivative= ' str1(1:end-2) ';']);
eval(['d_gaussian_kernel= ' str3(1:end-2) ';']);
end
|
github
|
vildenst/3D-heart-models-master
|
gaussianBlurImage.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/Basic/gaussianBlurImage.m
| 1,858 |
utf_8
|
e77041b544d680c3bd86e18ebf395faa
|
function out = gaussianBlurImage(im,varargin)
% out = gaussianBlurImage(im)
%
% Fast gaussian blur
% Works for ImageType
%
filter_size = 5;
sigma = 1.5;
dbg = false;
for i=1:size(varargin,2)
if (strcmp(varargin{i},'dbg'))
dbg=true;
elseif (strcmp(varargin{i},'kernelSize'))
filter_size=varargin{i+1};
elseif (strcmp(varargin{i},'kernelSigma'))
sigma=varargin{i+1};
end
end
%----------------------------
% maybe something wrong: the transpose matlab
% Using the derivative of a Gaussian to guarantee smoothness
d_gaussian_plain = kernelOfGaussian(filter_size, sigma, im.ndimensions, im.spacing);
%d_gaussian_kernel = d_gaussian_plain/sum(abs(d_gaussian_plain(:)));
d_gaussian_plain = d_gaussian_plain/sum(d_gaussian_plain(:).^2);
out = convn(im.data,d_gaussian_plain,'same');%/im.spacing(d);
end
function d_gaussian_kernel = kernelOfGaussian(filter_size, sigma_, ndimensions, spacing)
% example of inputs:
%filter_size = 5;
%sigma = 3; % in pixels
filter_radius = floor(filter_size/2);
sigma = sigma_;
if numel(filter_radius)==1
filter_radius = filter_radius*ones(ndimensions,1);
end
if numel(sigma)==1
sigma = sigma*ones(ndimensions,1);
end
% Below will give me the gaussian function along direction d. For example,
% for a 3D image and along direction y:
%d_gaussian_func_2 =@(x,y,z) exp(-(x.^2)/(2*sigma^2)).*-y/(sigma^2).*exp(-(y.^2)/(2*sigma^2)).*exp(-(z.^2)/(2*sigma^2));
str2='';
str3 ='';
str4 = '';
for i=1:ndimensions
str2=[str2 'x' num2str(i) ','];
str3 = [str3 'exp(-(x' num2str(i) '.^2)/(2*(sigma(' num2str(i) ')*spacing(' num2str(i) '))^2)).*'];
str4 = [str4 '(-filter_radius(' num2str(i) '):filter_radius(' num2str(i) '))*spacing(' num2str(i) '),'];
end
eval([ '[' str2(1:end-1) ']=ndgrid(' str4(1:end-1) ');']);
eval(['d_gaussian_kernel= ' str3(1:end-2) ';']);
end
|
github
|
vildenst/3D-heart-models-master
|
read_gipl2.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_gipl2.m
| 4,167 |
utf_8
|
cc6279c2867274e206d8a231128307b0
|
function [V, sizes, origin,scales] =read_gipl2(filename)
% function for reading header of Guys Image Processing Lab (Gipl) volume file
%
% [V, sizes, origin,scales] = gipl_read_header(filename);
%
%
% Copied from the package ReadData3D_version1h
fid=fopen(filename,'rb','ieee-be');
%fid=fopen(filename,'r','native');
if(fid<0)
fprintf('could not open file %s\n',filename);
return
end
trans_type{1}='binary'; trans_type{7}='char'; trans_type{8}='uchar';
trans_type{15}='short'; trans_type{16}='ushort'; trans_type{31}='uint';
trans_type{32}='int'; trans_type{64}='float';trans_type{65}='double';
trans_type{144}='C_short';trans_type{160}='C_int'; trans_type{192}='C_float';
trans_type{193}='C_double'; trans_type{200}='surface'; trans_type{201}='polygon';
trans_orien{0+1}='UNDEFINED'; trans_orien{1+1}='UNDEFINED_PROJECTION';
trans_orien{2+1}='AP_PROJECTION'; trans_orien{3+1}='LATERAL_PROJECTION';
trans_orien{4+1}='OBLIQUE_PROJECTION'; trans_orien{8+1}='UNDEFINED_TOMO';
trans_orien{9+1}='AXIAL'; trans_orien{10+1}='CORONAL';
trans_orien{11+1}='SAGITTAL'; trans_orien{12+1}='OBLIQUE_TOMO';
offset=256; % header size
%get the file size
fseek(fid,0,'eof');
fsize = ftell(fid);
fseek(fid,0,'bof');
sizes=fread(fid,4,'ushort')';
if(sizes(4)==1), maxdim=3; else maxdim=4; end
sizes=sizes(1:maxdim);
image_type=fread(fid,1,'ushort');
scales=fread(fid,4,'float')';
scales=scales(1:maxdim);
patient=fread(fid,80, 'uint8=>char')';
matrix=fread(fid,20,'float')';
orientation=fread(fid,1, 'uint8')';
par2=fread(fid,1, 'uint8')';
voxmin=fread(fid,1,'double');
voxmax=fread(fid,1,'double');
origin=fread(fid,4,'double')';
origin=origin(1:maxdim);
pixval_offset=fread(fid,1,'float');
pixval_cal=fread(fid,1,'float');
interslicegap=fread(fid,1,'float');
user_def2=fread(fid,1,'float');
magic_number= fread(fid,1,'uint32');
%if (magic_number~=4026526128), error('file corrupt - or not big endian'); end
fclose('all');
info.Filename=filename;
info.FileSize=fsize;
info.Dimensions=sizes;
info.PixelDimensions=scales;
info.ImageType=image_type;
info.Patient=patient;
info.Matrix=matrix;
info.Orientation=orientation;
info.VoxelMin=voxmin;
info.VoxelMax=voxmax;
info.Origing=origin;
info.PixValOffset=pixval_offset;
info.PixValCal=pixval_cal;
info.InterSliceGap=interslicegap;
info.UserDef2=user_def2;
info.Par2=par2;
info.Offset=offset;
V = gipl_read_volume(info);
end
function V = gipl_read_volume(info)
% function for reading volume of Guys Image Processing Lab (Gipl) volume file
%
% volume = gipl_read_volume(file-header)
%
% examples:
% 1: info = gipl_read_header()
% V = gipl_read_volume(info);
% imshow(squeeze(V(:,:,round(end/2))),[]);
%
% 2: V = gipl_read_volume('test.gipl');
if(~isstruct(info)) info=gipl_read_header(info); end
% Open gipl file
fid=fopen(info.Filename','rb','ieee-be');
% Seek volume data start
if(info.ImageType==1), voxelbits=1; end
if(info.ImageType==7||info.ImageType==8), voxelbits=8; end
if(info.ImageType==15||info.ImageType==16), voxelbits=16; end
if(info.ImageType==31||info.ImageType==32||info.ImageType==64), voxelbits=32; end
if(info.ImageType==65), voxelbits=64; end
datasize=prod(info.Dimensions)*(voxelbits/8);
fsize=info.FileSize;
fseek(fid,fsize-datasize,'bof');
% Read Volume data
volsize(1:3)=info.Dimensions;
if(info.ImageType==1), V = logical(fread(fid,datasize,'bit1')); end
if(info.ImageType==7), V = int8(fread(fid,datasize,'char')); end
if(info.ImageType==8), V = uint8(fread(fid,datasize,'uchar')); end
if(info.ImageType==15), V = int16(fread(fid,datasize,'short')); end
if(info.ImageType==16), V = uint16(fread(fid,datasize,'ushort')); end
if(info.ImageType==31), V = uint32(fread(fid,datasize,'uint')); end
if(info.ImageType==32), V = int32(fread(fid,datasize,'int')); end
if(info.ImageType==64), V = single(fread(fid,datasize,'float')); end
if(info.ImageType==65), V = double(fread(fid,datasize,'double')); end
fclose(fid);
% Reshape the volume data to the right dimensions
V = reshape(V,volsize);
end
|
github
|
vildenst/3D-heart-models-master
|
read_parrec2DFlow.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_parrec2DFlow.m
| 18,394 |
utf_8
|
cb03377888f70ad72f5bdb0b5da050ff
|
function [outphase, outanatomy, patientdata] = read_parrec2DFlow(filename)
par_survey = parread(filename );
rec_survey = readrec([filename(1:end-3) 'REC' ]);
% Split the 5D 2Dflow data
data_mag = rec_survey(:,:,:,1,1);
if ndims(rec_survey)>3 && size(rec_survey,4)>1
data_oth = rec_survey(:,:,:,2,1); % ?
else
data_oth =data_mag;
end
if ndims(rec_survey)>4 && size(rec_survey,5)>1
data_phs = rec_survey(:,:,:,2,2);
else
data_phs = data_mag;
end
% calculate velocity values
max_ph = max(data_phs(:));
p = nextpow2(max_ph);
venc = max(par_survey.PhaseEncodingVelocity);
data_phs = data_phs - (2^p)/2;
data_phs = data_phs./((2^p)/2);
data_phs = data_phs.*(venc); % (division by 100 because cm/s?)
% Orientantion
AFRtoLPS = [0 0 1; 1 0 0; 0 1 0];
magicmatrix = [-1 0 0; 0 0 1; 0 -1 0];
TRA = [0 1 0; -1 0 0; 0 0 -1];
SAG = [-1 0 0; 0 0 1; 0 -1 0];
COR = [0 1 0; 0 0 1; -1 0 0];
switch (par_survey.ImageInformation.SliceOrientation(1))
case 1
Torientation = TRA;
case 2
Torientation = SAG;
case 3
Torientation = COR;
otherwise
Torientation = eye(3);
end
ap = par_survey.AngulationMidslice(1)* pi / 180.0;
fh = par_survey.AngulationMidslice(2)* pi / 180.0;
rl = par_survey.AngulationMidslice(3)* pi / 180.0;
Tap = [1 0 0; 0 cos(ap) -sin(ap); 0 sin(ap) cos(ap)];
Tfh = [cos(fh) 0 sin(fh); 0 1 0; -sin(fh) 0 cos(fh)];
Trl = [cos(rl) -sin(rl) 0; sin(rl) cos(rl) 0; 0 0 1];
orientation_matrix = AFRtoLPS * Trl * Tap * Tfh * magicmatrix' * Torientation'; % c++ version
s = size(data_phs)';
s_ = [s(1:2) ;1 ;s(3)];
% ORIGIN ----------------------------------------------------
if par_survey.ImageInformation.CardiacFrequency(1)==0
tmax=1;
else
tmax = 60/par_survey.ImageInformation.CardiacFrequency(1);
end
%extent = AFRtoLPS * par_survey.FOV';
extent = abs(Torientation * magicmatrix * par_survey.FOV'); % I am not sure exactly why I have to use the abs
spacing = [extent ; tmax]./s_;
midoffset = spacing(1:3) .* (s(1:3)- ones(3,1)) ./2.0;
midoffset = orientation_matrix * midoffset;
origin = par_survey.OffCentreMidslice';
origin = AFRtoLPS * origin;
origin = origin - midoffset;
M = eye(4);
M(1:3,1:3)=orientation_matrix;
outphase = ImageType(s_,[origin ; 0],spacing,M);
outphase.data = reshape(data_phs, s_');
outanatomy = ImageType(s_,[origin ; 0],spacing,M);
outanatomy.data = reshape(data_mag, s_');
patientdata.type = '3DCDI';
%params.type = 'other';
patientdata.heart_rate = par_survey.ImageInformation.CardiacFrequency(1);
patientdata.frame_rate=s_(end)/(60/par_survey.ImageInformation.CardiacFrequency(1));
patientdata.trigger_delay = 0;
patientdata.venc = venc;
end
function values = parread(filename)
%PARREAD reads Philips .par file
% PARREAD(FILENAME) reads the .par file and returns a struct
% whose fields contain all parameters. PARREAD can handle all
% versions of .par files
%
% The field ImageInformation in the output struct is a struct
% itself and contains the parameters which correspond to the
% lower part of the .par file.
%
% The fields of the output struct can be accessed by a .
% Example:
% values = parread('My_Parfile')
% reads the .par file and returns the output struct
%
% values.RepetitionTime
% returns the repetition time
%
% values.ImageInformation.SliceNumber
% returns the slice order in the .rec file
fid = fopen(filename);
if fid == -1
filename = [filename(1:end-3),'par'];
fid = fopen(filename);
if fid == -1
filename = [filename(1:end-3),'PAR'];
fid = fopen(filename);
if fid == -1
error(['The .par file ',filename,' does not exist'])
return
end
end
end
values = read_upper_part(fid);
values = read_lower_part(fid, values);
fclose(fid);
end
%--------- function for reading the upper part of the .par file ----------
function values = read_upper_part(fid)
%-------------------------------------------------------------------------
parameters = read_parameters(fid);
struct_names = format_parameters(parameters);
no_parameters = size(parameters,1);
values = struct;
h = waitbar(0,'Read header I');
for i = 1:no_parameters
waitbar(i/no_parameters);
values_temp = [];
fseek(fid,0,-1);
while ~feof(fid)
s = fgetl(fid);
s_index = findstr(parameters{i},s);
if ~isempty(s_index)
s_index = findstr(':', s);
% s_index = s_index(1)+4;
s_index = s_index(1)+1;
if isempty(str2num(s(s_index:length(s))))
values_temp = s(s_index:length(s));
else
values_temp = str2num(s(s_index:length(s)));
end
values = setfield(values, struct_names{i},values_temp);
s_index=s_index+1;
end
end
end
close(h);
end
%--------- function for reading the lower part of the .par file ----------
function values = read_lower_part(fid, values)
%-------------------------------------------------------------------------
[image_information_legend,image_information_length] = read_image_information_parameters(fid);
if ~isempty(image_information_legend)
image_information_legend = format_parameters(image_information_legend);
fseek(fid,0,-1);
loop =1;
while ~feof(fid)
s = fgetl(fid);
s_index = strmatch('# === IMAGE INFORMATION ==',s);
if ~isempty(s_index)
fgetl(fid);
fgetl(fid);
while ~feof(fid)
s = fgetl(fid);
if length(str2num(s)) ~= 0
h(loop,:) = str2num(s);
end
loop = loop+1;
end
end
end
if ~isempty(s_index)
ImageInformation = struct;
k = 1;
for i = 1:length(image_information_legend)
ImageInformation = setfield(ImageInformation,image_information_legend{i},h(:,k:k+image_information_length(i)-1));
k = k+image_information_length(i);
end
values = setfield(values, 'ImageInformation',ImageInformation);
end
end
end
%-- Check which parameters are stored in the upper part of the .par file --
function parameters = read_parameters(fid);
%--------------------------------------------------------------------------
fseek(fid,0,-1);
loop = 1;
while ~feof(fid)
s = fgetl(fid);
s_index = strmatch('# === GENERAL INFORMATION',s);
if ~isempty(s_index)
fgetl(fid);
while ~feof(fid)
s = fgetl(fid);
if isempty(s) | ~strcmp(s(1),'.')
break
end
ind = findstr(s,':');
s = s(2:ind-1);
parameters{loop} = strtrim(s);
loop = loop +1;
end
end
end
parameters = parameters';
end
%-- Format parameter names such that they can be given as struct fields --
function struct_names = format_parameters(parameters)
%--------------------------------------------------------------------------
h = waitbar(0,'Read header II');
for i = 1:length(parameters)
waitbar(i/length(parameters));
s = parameters{i};
ind1 = strfind(s,'(');
ind2 = strfind(s,'[');
ind3 = strfind(s,'<');
ind = [ind1,ind2,ind3];
if ~isempty(ind)
ind = min(ind);
s = s(1:ind-1);
end
s = strrep(s,'.',' ');
s = strrep(s,'/',' ');
s = strrep(s,'_',' ');
s = strrep(s,'-',' ');
s = deblank(s);
ind = strfind(s,' ');
s(ind+1) = upper(s(ind+1));
s(1) = upper(s(1));
s(ind)=[];
struct_names{i} = s;
end
close(h);
struct_names = struct_names';
end
%-- Check which parameters are stored in the lower part of the .par file --
function [image_information_legend,image_information_length] = read_image_information_parameters(fid);
%--------------------------------------------------------------------------
fseek(fid,0,-1);
loop = 1;
image_information_legend = [];
image_information_length = [];
while ~feof(fid)
s = fgetl(fid);
s_index = strmatch('# === IMAGE INFORMATION DEFINITION',s);
if ~isempty(s_index)
fgetl(fid);
fgetl(fid);
while ~feof(fid)
s = fgetl(fid);
if length(s) < 5
break
end
ind = max(findstr(s,'('));
l = str2double(s(ind+1));
s = s(2:ind-1);
image_information_legend{loop} = strtrim(s);
if isnan(l) | imag(l)~=0
image_information_length(loop) = 1;
else
image_information_length(loop) = l;
end
loop = loop +1;
end
end
end
if ~isempty(image_information_legend)
image_information_legend = image_information_legend';
end
end
function data = readrec(fn, read_params, v)
%------------------------------------------------------
% fReadrec: reads a rec-file
%
% Input: fn name of the rec-file
% read_params optional input. Specifies the images to be
% read. read_params is a struct created
% by the function create_read_param_struct
% v Parameter struct created by parread
%
% Output: out_pics dataset as a 3D-matrix
%------------------------------------------------------
parfile = [fn(1:end-3),'PAR'];
if nargin == 1
[read_params, v, DataFormat] = ReadParameterFile(fn);
elseif nargin == 2
v = parread(parfile);
end
if isfield(v,'ReconResolution')
size1 = v.ReconResolution(1);
size2 = v.ReconResolution(2);
else
size1 = v.ImageInformation.ReconResolution(1);
size2 = v.ImageInformation.ReconResolution(2);
end
fid=fopen(fn,'r','l');
if (fid<0)
fid=fopen([fn(1:end-3) lower(fn(end-2:end))],'r','l');
end
% l means little ended
data = zeros(size1,size2,length(read_params.kz),length(read_params.echo),length(read_params.dyn),length(read_params.card),length(read_params.typ), length(read_params.mix),'single');
h = waitbar(0,'Read image data');
for sl = 1:length(read_params.kz)
waitbar(sl/length(read_params.kz));
for ec = 1:length(read_params.echo)
for dy = 1:length(read_params.dyn)
for ph = 1:length(read_params.card)
for ty = 1:length(read_params.typ)
for mi = 1:length(read_params.mix)
ind{1} = find(v.ImageInformation.SliceNumber == read_params.kz(sl));
ind{2} = find(v.ImageInformation.EchoNumber == read_params.echo(ec));
ind{3} = find(v.ImageInformation.DynamicScanNumber == read_params.dyn(dy));
ind{4} = find(v.ImageInformation.CardiacPhaseNumber == read_params.card(ph));
ind{5} = find(v.ImageInformation.ImageTypeMr == read_params.typ(ty));
ind{6} = find(v.ImageInformation.ScanningSequence == read_params.mix(mi));
im_ind = ind{1};
for i = 2:6
im_ind = intersect(im_ind,ind{i});
end
offset = v.ImageInformation.IndexInRECFile(im_ind)*size1*size2*2;
if isempty(offset)
continue
% error('Some parameters specified are not valid')
end
fseek(fid,offset,-1);
im = fread(fid,size1*size2,'uint16');
data(:,:,sl,ec,dy,ph,ty,mi) = reshape(im,size1,size2)';
end
end
end
end
end
end
close(h);
data = squeeze(data);
end
function [Parameter2read, Parameter, DataFormat, Filenames] = ReadParameterFile(file)
dotind = findstr(file,'.');
if ~isempty(dotind)
dotind = dotind(end);
ending = lower(file(dotind(end)+1:end));
else
ending = 'raw';
end
switch ending
case {'rec', 'par'}
parfile = [file(1:dotind),'par'];
Parameter = parread(parfile);
DataFormat = 'Rec';
Filenames.DataFile = [file(1:dotind),'rec'];
Filenames.ParameterFile = parfile;
Parameter2read.kz = unique(Parameter.ImageInformation.SliceNumber);
Parameter2read.echo = unique(Parameter.ImageInformation.EchoNumber);
Parameter2read.dyn = unique(Parameter.ImageInformation.DynamicScanNumber);
Parameter2read.card = unique(Parameter.ImageInformation.CardiacPhaseNumber);
Parameter2read.typ = unique(Parameter.ImageInformation.ImageTypeMr);
Parameter2read.mix = unique(Parameter.ImageInformation.ScanningSequence);
Parameter2read.aver = [];
Parameter2read.rtop = [];
Parameter2read.ky = [];
Parameter2read.loca = [];
Parameter2read.chan = [];
Parameter2read.extr1 = [];
Parameter2read.extr2 = [];
case 'cpx'
Parameter = read_cpx_header(file,'no');
DataFormat = 'Cpx';
Filenames.DataFile = file;
Filenames.ParameterFile = file;
Parameter2read.loca = unique(Parameter(:,1))+1;
Parameter2read.kz = unique(Parameter(:,2))+1;
Parameter2read.chan = unique(Parameter(:,3))+1;
Parameter2read.card = unique(Parameter(:,4))+1;
Parameter2read.echo = unique(Parameter(:,5))+1;
Parameter2read.dyn = unique(Parameter(:,6))+1;
Parameter2read.extr1 = unique(Parameter(:,7))+1;
Parameter2read.extr2 = unique(Parameter(:,18))+1;
Parameter2read.aver = [];
Parameter2read.rtop = [];
Parameter2read.typ = [];
Parameter2read.mix = [];
Parameter2read.ky = [];
case {'data', 'list'}
t = 'TEHROA';
DataFormat = 'ExportedRaw';
listfile = [file(1:dotind),'list'];
Parameter = listread(listfile);
Filenames.DataFile = [file(1:dotind),'data'];
Filenames.ParameterFile = listfile;
typ = unique(Parameter.Index.typ(:,2));
for i = 1:length(typ)
numtyp(i) = findstr(typ(i),t);
end
Parameter2read.typ = sort(numtyp);
Parameter2read.mix = unique(Parameter.Index.mix);
Parameter2read.dyn = unique(Parameter.Index.dyn);
Parameter2read.card = unique(Parameter.Index.card);
Parameter2read.echo = unique(Parameter.Index.echo);
Parameter2read.loca = unique(Parameter.Index.loca);
Parameter2read.chan = unique(Parameter.Index.chan);
Parameter2read.extr1 = unique(Parameter.Index.extr1);
Parameter2read.extr2 = unique(Parameter.Index.extr2);
Parameter2read.ky = unique(Parameter.Index.ky);
Parameter2read.kz = unique(Parameter.Index.kz);
Parameter2read.aver = unique(Parameter.Index.aver);
Parameter2read.rtop = unique(Parameter.Index.rtop);
case {'raw', 'lab'}
t = 'TEHROA';
DataFormat = 'Raw';
if isempty( dotind )
slash_ind = strfind( file, filesep )+1;
if isempty( slash_ind )
slash_ind = 1;
directory = '';
files = dir ;
else
directory = file( 1:slash_ind(end)-1 );
files = dir( directory ) ;
end
one_file = file( slash_ind(end):end );
ind_one_file = -1;
ind_other_file = -1;
for i = 1:size(files,1)
if strcmp( files(i).name , one_file )
ind_one_file = i;
end
if strfind( files(i).name, one_file( 1:17) ) & ...
isempty( strfind( files(i).name, '.' )) & ...
i ~= ind_one_file
ind_other_file = i;
end
end
if ind_one_file > 0 & ind_other_file > 0
if files(ind_one_file).bytes > files(ind_other_file).bytes
Filenames.DataFile = [directory, files(ind_one_file).name];
Filenames.ParameterFile = [directory, files(ind_other_file).name];
else
Filenames.DataFile = [directory,files(ind_other_file).name];
Filenames.ParameterFile = [directory,files(ind_one_file).name];
end
else
error('data/parameter-file pair not found');
end
dotind = length(Filenames.ParameterFile)+1;
dotind = dotind(end);
else
Filenames.DataFile = [file(1:dotind),'raw'];
Filenames.ParameterFile = [file(1:dotind),'lab'];
end
try_path = which( 'MRecon.m' );
try_path = try_path( 1:strfind( try_path, 'MRecon.m')-1);
if fopen( [try_path, 'recframe.exe'],'r') == -1
cmd_str = which( 'recframe.exe' );
else
cmd_str = [try_path, 'recframe.exe'];
end
if isempty( cmd_str )
error( 'recframe.exe not found. Please make sure that the location of recframe.exe is in the Matlab path');
end
cmd_str = ['"',cmd_str, '" "', Filenames.DataFile, '" "', Filenames.ParameterFile, '" /D'];
system( cmd_str );
listfile = [Filenames.ParameterFile(1:dotind-1),'.list'];
Parameter = listread(listfile);
typ = unique(Parameter.Index.typ(:,2));
for i = 1:length(typ)
numtyp(i) = findstr(typ(i),t);
end
Parameter2read.typ = sort(numtyp);
Parameter2read.mix = unique(Parameter.Index.mix);
Parameter2read.dyn = unique(Parameter.Index.dyn);
Parameter2read.card = unique(Parameter.Index.card);
Parameter2read.echo = unique(Parameter.Index.echo);
Parameter2read.loca = unique(Parameter.Index.loca);
Parameter2read.chan = unique(Parameter.Index.chan);
Parameter2read.extr1 = unique(Parameter.Index.extr1);
Parameter2read.extr2 = unique(Parameter.Index.extr2);
Parameter2read.ky = unique(Parameter.Index.ky);
Parameter2read.kz = unique(Parameter.Index.kz);
Parameter2read.aver = unique(Parameter.Index.aver);
Parameter2read.rtop = unique(Parameter.Index.rtop);
otherwise
Parameter2read = [];
Parameter = [];
DataFormat = [];
end
end
|
github
|
vildenst/3D-heart-models-master
|
read_mhd.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_mhd.m
| 10,497 |
utf_8
|
1e583e41a4ab0481210876d95b95b93b
|
function [img, info]=read_mhd(filename)
% This function is based upon "read_mhd" function from the package
% ReadData3D_version1 from the matlab exchange.
% Copyright (c) 2010, Dirk-Jan Kroon
% [image info ] = read_mhd(filename)
info = mhareadheader(filename);
[path, name, extension] = fileparts(filename);
if (isfield(info,'ElementNumberOfChannels'))
ndims = str2num(info.ElementNumberOfChannels);
else
ndims = 1;
end
img = ImageType();
if (ndims == 1)
data = read_raw([ path filesep info.DataFile ], info.Dimensions,info.DataType,'native',0,ndims, info);
if (data==-1)
data = read_raw([ info.DataFile ], info.Dimensions,info.DataType,'native',0,ndims);
end
img=ImageType(size(data),info.Offset',info.PixelDimensions',reshape(info.TransformMatrix,numel(info.PixelDimensions),numel(info.PixelDimensions)));
img.data = data;
elseif (ndims == 2)
clear img;
[datax datay] = read_raw([ path filesep info.DataFile], info.Dimensions,info.DataType,'native',0,ndims, info);
img = VectorImageType(size(datax),info.Offset',info.PixelDimensions',reshape(info.TransformMatrix,numel(info.PixelDimensions),numel(info.PixelDimensions)));
img.datax = datax; clear datax;
img.datay=datay; clear datay;
img.data = img.datax.^2+img.datay.^2;
elseif (ndims == 3)
clear img;
[datax datay dataz] = read_raw([ path filesep info.DataFile], info.Dimensions,info.DataType,'native',0,ndims, info);
img = VectorImageType(size(datax),info.Offset',info.PixelDimensions',reshape(info.TransformMatrix,numel(info.PixelDimensions),numel(info.PixelDimensions)));
img.datax = datax; clear datax;
img.datay=datay; clear datay;
img.dataz = dataz; clear dataz;
img.data = img.datax.^2+img.datay.^2+img.dataz.^2;
end
end
function [rawData, rdy, rdz] =read_raw(filename,imSize,type,endian,skip,ndims, info)
% Reads a raw file
% Inputs: filename, image size, image type, byte ordering, skip
% If you are using an offset to access another slice of the volume image
% be sure to multiply your skip value by the number of bytes of the
% type (ie. float is 4 bytes).
% Inputs: filename, image size, pixel type, endian, number of values to
% skip.
% Output: image
rdy=[];
rdz=[];
fid = fopen(filename,'rb',endian);
%type='uint8';
if (fid < 0)
display(['Filename ' filename ' does not exist']);
rawData = -1;
else
if (ndims == 1)
status = fseek(fid,skip,'bof');
if status == 0
rawData = fread(fid,prod(imSize),type);
if strcmp(filename(end-3:end),'zraw') || strcmp(lower(info.CompressedData),'true')
rawData =zlibdecode(uint8(rawData));
end
fclose(fid);
if prod(imSize)~=numel(rawData)
disp('ERROR: Wrong data size')
rawData = zeros(imSize);
else
rawData = reshape(rawData,imSize);
end
else
rawData = status;
end
else
%disp('Vector Image');
status = fseek(fid,skip,'bof');
if status == 0
r = fread(fid,prod(imSize)*3,type);
fclose(fid);
if length(imSize) == 2
im_size=[ 2 imSize([1 2]) ];
elseif length(imSize) == 3
im_size=[ 3 imSize([1 2 3]) ];
elseif length(imSize) == 4
im_size=[3 imSize([1 2 3 4]) ];
end
r = reshape(r,im_size);
else
r = status;
end
if length(imSize) == 2
rawData=squeeze(r(1,:,:,:));
rdy=squeeze(r(2,:,:,:));
rdz=rdy*0;
elseif length(imSize) == 3
rawData=squeeze(r(1,:,:,:));
rdy=squeeze(r(2,:,:,:));
rdz=squeeze(r(3,:,:,:));
elseif length(imSize) == 4
rawData=squeeze(r(1,:,:,:,:));
rdy=squeeze(r(2,:,:,:,:));
rdz=squeeze(r(3,:,:,:,:));
end
end
end
end
function info =mhareadheader(filename)
% Function for reading the header of a Insight Meta-Image (.mha,.mhd) file
%
% info = mha_read_header(filename);
%
% examples:
% 1, info=mha_read_header()
% 2, info=mha_read_header('volume.mha');
info = [];
if(exist('filename','var')==0)
[filename, pathname] = uigetfile('*.mha', 'Read mha-file');
filename = [pathname filename];
end
fid=fopen(filename,'rb');
if(fid<0)
fprintf('could not open file %s\n',filename);
return
end
info.Filename=filename;
info.Format='MHA';
info.CompressedData='false';
info.TransformMatrix = [];
info.CenterOfRotation=[];
readelementdatafile=false;
while(~readelementdatafile)
str=fgetl(fid);
if str==-1
readelementdatafile =true;
continue;
end
s=find(str=='=',1,'first');
if(~isempty(s))
type=str(1:s-1);
data=str(s+1:end);
while(type(end)==' '); type=type(1:end-1); end
while(data(1)==' '); data=data(2:end); end
else
if strcmp(str(1),'#')
if strcmp(str(2:5),'VENC')
type='venc';
data = str2num(str(6:end));
elseif strcmp(str(2:5),'TXFR')
type='txfr';
data = str2num(str(6:end));
elseif strcmp(str(2:6),'FORCE')
type='force';
data = str(7:end);
elseif strcmp(str(2:6),'ACQFR')
type='acqfr';
data = str2num(str(7:end));
elseif strcmp(str(2:9),'POSITION')
type='position';
data = str(10:end);
elseif strcmp(str(2:10),'HEARTRATE')
type='heartrate';
data = str2num(str(11:end));
elseif strcmp(str(2:11),'PERCEIVEDF')
type='perceivedf';
data = str(12:end);
elseif strcmp(str(2:14),'TRACKERMATRIX')
type='trackermatrix';
data = str(15:end);
elseif strcmp(str(2:12),'TOTALMATRIX')
type='totalmatrix';
data = str(13:end);
elseif numel(str) >= 26 && strcmp(str(2:26),'TIMESTAMP_DNLLAYERTIMELAG')
type='timestamp_dnllayertimelag';
data = str2num(str(27:end));
elseif strcmp(str(2:14),'TIMESTAMP_DNL')
type='timestamp_dnl';
data = str2num(str(15:end));
elseif strcmp(str(2:15),'REORIENTMATRIX')
type='reorientmatrix';
data = str(16:end);
elseif strcmp(str(2:16),'TIMESTAMP_LOCAL')
type='timestamp_local';
data = str2num(str(17:end));
elseif strcmp(str(2:17),'TRANSDUCERMATRIX')
type='transducermatrix';
data = str(18:end);
elseif strcmp(str(2:18),'TIMESTAMP_TRACKER')
type='timestamp_tracker';
data = str2num(str(19:end));
else
type=''; data=str;
end
end
end
switch(lower(type))
case 'ndims'
info.NumberOfDimensions=sscanf(data, '%d')';
case 'dimsize'
info.Dimensions=sscanf(data, '%d')';
case 'elementspacing'
info.PixelDimensions=sscanf(data, '%lf')';
case 'elementsize'
info.ElementSize=sscanf(data, '%lf')';
if(~isfield(info,'PixelDimensions'))
info.PixelDimensions=info.ElementSize;
end
case 'elementbyteordermsb'
info.ByteOrder=lower(data);
case 'anatomicalorientation'
info.AnatomicalOrientation=data;
case 'centerofrotation'
info.CenterOfRotation=sscanf(data, '%lf')';
case 'offset'
info.Offset=sscanf(data, '%lf')';
case 'binarydata'
info.BinaryData=lower(data);
case 'compresseddatasize'
info.CompressedDataSize=sscanf(data, '%d')';
case 'objecttype',
info.ObjectType=lower(data);
case 'transformmatrix'
info.TransformMatrix=sscanf(data, '%lf')';
case 'compresseddata';
info.CompressedData=lower(data);
case 'binarydatabyteordermsb'
info.ByteOrder=lower(data);
case 'elementdatafile'
info.DataFile=data;
%readelementdatafile=true;
case 'elementtype'
info.DataType=lower(data(5:end));
case 'headersize'
val=sscanf(data, '%d')';
if(val(1)>0), info.HeaderSize=val(1); end
% Custom fields
case 'force'
info.Force=sscanf(data, '%lf')';
case 'position'
info.Position=sscanf(data, '%lf')';
case 'reorientmatrix'
info.ReorientMatrix=sscanf(data, '%lf')';
info.ReorientMatrix = reshape(info.ReorientMatrix,4,4);
case 'transducermatrix'
info.Transducermatrix=sscanf(data, '%lf')';
info.Transducermatrix = reshape(info.Transducermatrix,4,4);
case 'trackermatrix'
info.TrackerMatrix=sscanf(data, '%lf')';
info.TrackerMatrix = reshape(info.TrackerMatrix,4,4);
case 'totalmatrix'
info.TotalMatrix=sscanf(data, '%lf')';
info.TotalMatrix = reshape(info.TotalMatrix,4,4);
case 'timestamp'
info.Timestamp=sscanf(data, '%lf')';
case 'perceivedf'
info.perceivedf=data;
case '#timestamp_dnl'
info.timestamp_dnl=str2num(data);
case '#timestamp_local'
info.timestamp_local=str2num(data);
case '#timestamp_tracker'
info.timestamp_tracker=str2num(data);
otherwise
info.(type)=data;
end
end
if ~numel(info.TransformMatrix)
info.TransformMatrix = reshape(eye(info.NumberOfDimensions), 1,info.NumberOfDimensions*info.NumberOfDimensions);
end
if ~numel(info.CenterOfRotation)
info.CenterOfRotation = zeros(1,info.NumberOfDimensions);
end
switch(info.DataType)
case 'char', info.BitDepth=8;
case 'uchar', info.BitDepth=8;
case 'short', info.BitDepth=16;
case 'ushort', info.BitDepth=16;
case 'int', info.BitDepth=32;
case 'uint', info.BitDepth=32;
case 'float', info.BitDepth=32;
case 'double', info.BitDepth=64;
otherwise, info.BitDepth=0;
end
if(~isfield(info,'HeaderSize'))
info.HeaderSize=ftell(fid);
end
fclose(fid);
end
|
github
|
vildenst/3D-heart-models-master
|
read_vtkSP.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_vtkSP.m
| 4,704 |
utf_8
|
20a96a39be48ddd9fdc98826bb15deef
|
function [img, info]=read_vtkSP(filename)
% This function is based upon "read_mhd" function from the package
% ReadData3D_version1 from the matlab exchange.
% Copyright (c) 2010, Dirk-Jan Kroon
% [image info ] = read_mhd(filename)
info = vtkSPreadheader(filename);
img = VectorImageType(info.Dimensions',info.Offset',info.PixelDimensions',reshape(info.TransformMatrix,numel(info.PixelDimensions),numel(info.PixelDimensions)));
img.datax(:) = info.field1(:,1);
img.datay(:) = info.field1(:,2);
img.dataz(:) = info.field1(:,3);
img.data = img.datax.^2+img.datay.^2+img.dataz.^2;
end
function info =vtkSPreadheader(filename)
% Function for reading the header of a VTK legacy (.vtk) image file
info = [];
if(exist('filename','var')==0)
[filename, pathname] = uigetfile('*.vtk', 'Read vtk-file');
filename = [pathname filename];
end
fid=fopen(filename,'rb');
if(fid<0)
fprintf('could not open file %s\n',filename);
return
end
info.Filename=filename;
info.Format='VTK';
info.CompressedData='false';
info.TransformMatrix = [];
info.CenterOfRotation=[];
readelementdatafile=false;
while(~readelementdatafile)
str=fgetl(fid);
if str==-1
readelementdatafile =true;
continue;
end
if numel(str)==0
readelementdatafile =true;
continue;
end
s=find(str==' ',1,'first');
if(~isempty(s))
type=str(1:s-1);
if isempty(type)
readelementdatafile =true;
continue;
end
data=str(s+1:end);
if isempty(data)
readelementdatafile =true;
continue;
end
while(type(end)==' '); type=type(1:end-1); end
while(data(1)==' '); data=data(2:end); end
else
if strcmp(str(1),'#')
if strcmp(str(2:6),'FORCE')
type='force';
data = str(7:end);
elseif strcmp(str(2:9),'POSITION')
type='position';
data = str(10:end);
elseif strcmp(str(2:10),'TIMESTAMP')
type='timestamp';
data = str(11:end);
elseif strcmp(str(2:11),'PERCEIVEDF')
type='perceivedf';
data = str(12:end);
else
type='comment'; data=str;
end
else
type=''; data=str;
end
end
if ~numel(type)
continue;
end
switch(lower(type))
case 'ndims'
info.NumberOfDimensions=sscanf(data, '%d')';
case 'dimensions'
info.Dimensions=sscanf(data, '%d')';
case 'spacing'
info.PixelDimensions=sscanf(data, '%lf')';
case 'elementbyteordermsb'
info.ByteOrder=lower(data);
case 'point_data'
info.npoints=sscanf(data, '%lf')';
case 'field'
info.fielddata=sscanf(data, '%s');
info.nfielddata=str2num(info.fielddata(end));
%for i=1:info.nfielddata
for i=1
str=fgetl(fid);
s=find(str==' ',3,'first');
if(~isempty(s))
type=str(1:s(1)-1);
ncomponents=str2num(str(s(1)+1:s(2)-1));
nvectors=str2num(str(s(2)+1:s(3)-1));
vectortype=str(s(3)+1:end);
info.DataType = vectortype;
else
continue;
end
%data_read = fread(fid, [nvectors*ncomponents ],vectortype)';
data_read = fscanf(fid, '%lf', [ncomponents nvectors ]);
info.(['field' num2str(i)]) = data_read';
end
case 'origin'
info.Offset=sscanf(data, '%lf')';
% Custom fields
case 'force'
info.Force=sscanf(data, '%lf')';
case 'position'
info.Position=sscanf(data, '%lf')';
case 'timestamp'
info.Timestamp=sscanf(data, '%lf')';
case '#'
info.comment = data;
case 'perceivedf'
info.perceivedf=data;
otherwise
info.(type)=data;
end
end
if ~numel(info.TransformMatrix)
info.TransformMatrix = reshape(eye(3), 1,3*3);
end
if ~numel(info.CenterOfRotation)
info.CenterOfRotation = zeros(1,3);
end
switch(info.DataType)
case 'char', info.BitDepth=8;
case 'uchar', info.BitDepth=8;
case 'short', info.BitDepth=16;
case 'ushort', info.BitDepth=16;
case 'int', info.BitDepth=32;
case 'uint', info.BitDepth=32;
case 'float', info.BitDepth=32;
case 'double', info.BitDepth=64;
otherwise, info.BitDepth=0;
end
if(~isfield(info,'HeaderSize'))
info.HeaderSize=ftell(fid);
end
fclose(fid);
end
|
github
|
vildenst/3D-heart-models-master
|
read_roi.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_roi.m
| 2,775 |
utf_8
|
68644e9d752ab5c4857ac0a482658adf
|
function [roinormal, roiorigin, points2D, points3D] = read_roi(roi_file)
% [roinormal, roiorigin, points2D, points3D] = read_roi(roi_file)
%roi_file must be an xml file
% points are wc in 2D of the roi vertices. This space can be achieved by
% the matrix defined by origin and normal
roi_file = char(roi_file);
idx = strfind(roi_file,'xml');
roiFileTxT = [ roi_file(1:idx-1) 'txt'];
planeData =dlmread(roiFileTxT);
roi.normal = planeData(1,:)';
roi.origin = planeData(2,:)';
roinormal = roi.normal;
roiorigin = roi.origin;
[x y]=vtkMathPerpendiculars(roi.normal,pi/2);
M=eye(4);
M(1:3,1:3) = [x(:) y(:) roi.normal(:)];
M(1:3,4) = roi.origin;
% --------------------------------
xDoc= xmlread(roi_file);
children = parseChildNodes(xDoc);
npoints=str2num(children.Children(2).Children(2).Attributes(2).Value);
points_string = children.Children(2).Children(2).Children(6).Children(2).Children.Data;
[token remain]=strtok(points_string,' ');
for i=1:npoints
for j=1:3
[token remain]=strtok(remain,' ');
points2D{i,j}=str2num(token);
end
end
points2D = cell2mat(points2D)';
points2D(3,:)=0.0;
points3D = M * [points2D ; ones(1,size(points2D,2))];
end
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes
childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);
children = struct( ...
'Name', allocCell, 'Attributes', allocCell, ...
'Data', allocCell, 'Children', allocCell);
for count = 1:numChildNodes
theChild = childNodes.item(count-1);
children(count) = makeStructFromNode(theChild);
end
end
end
% ----- Subfunction MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.
nodeStruct = struct( ...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));
if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);
else
nodeStruct.Data = '';
end
end
% ----- Subfunction PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.
attributes = [];
if theNode.hasAttributes
theAttributes = theNode.getAttributes;
numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...
allocCell);
for count = 1:numAttributes
attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);
end
end
end
|
github
|
vildenst/3D-heart-models-master
|
read_nifty.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_nifty.m
| 13,037 |
utf_8
|
fd40f3d530bce32b3eba55c19b8f5511
|
function [img, info]=read_nifty(filename)
% [image info ] = read_nifty(filename)
% Adapted from the code
% "Tools for NIfTI and ANALYZE image"
% by Jimmy Shen
% Available at http://www.mathworks.com/matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image
if ~exist('filename','var')
error('Usage: nii = load_nii(filename, [img_idx], [dim5_idx], [dim6_idx], [dim7_idx], [old_RGB], [tolerance], [preferredForm])');
end
if ~exist('img_idx','var') || isempty(img_idx)
img_idx = [];
end
if ~exist('dim5_idx','var') || isempty(dim5_idx)
dim5_idx = [];
end
if ~exist('dim6_idx','var') || isempty(dim6_idx)
dim6_idx = [];
end
if ~exist('dim7_idx','var') || isempty(dim7_idx)
dim7_idx = [];
end
if ~exist('old_RGB','var') || isempty(old_RGB)
old_RGB = 0;
end
if ~exist('tolerance','var') || isempty(tolerance)
tolerance = 0.1; % 10 percent
end
if ~exist('preferredForm','var') || isempty(preferredForm)
preferredForm= 's'; % Jeff
end
v = version;
% Check file extension. If .gz, unpack it into temp folder
%
if length(filename) > 2 && strcmp(filename(end-2:end), '.gz')
if ~strcmp(filename(end-6:end), '.img.gz') && ...
~strcmp(filename(end-6:end), '.hdr.gz') && ...
~strcmp(filename(end-6:end), '.nii.gz')
error('Please check filename.');
end
if str2num(v(1:3)) < 7.1 || ~usejava('jvm')
error('Please use MATLAB 7.1 (with java) and above, or run gunzip outside MATLAB.');
elseif strcmp(filename(end-6:end), '.img.gz')
filename1 = filename;
filename2 = filename;
filename2(end-6:end) = '';
filename2 = [filename2, '.hdr.gz'];
tmpDir = tempname;
mkdir(tmpDir);
gzFileName = filename;
filename1 = gunzip(filename1, tmpDir);
filename2 = gunzip(filename2, tmpDir);
filename = char(filename1); % convert from cell to string
elseif strcmp(filename(end-6:end), '.hdr.gz')
filename1 = filename;
filename2 = filename;
filename2(end-6:end) = '';
filename2 = [filename2, '.img.gz'];
tmpDir = tempname;
mkdir(tmpDir);
gzFileName = filename;
filename1 = gunzip(filename1, tmpDir);
filename2 = gunzip(filename2, tmpDir);
filename = char(filename1); % convert from cell to string
elseif strcmp(filename(end-6:end), '.nii.gz')
tmpDir = tempname;
mkdir(tmpDir);
gzFileName = filename;
filename = gunzip(filename, tmpDir);
filename = char(filename); % convert from cell to string
end
end
% Read the dataset header
%
[nii.hdr,nii.filetype,nii.fileprefix,nii.machine] = load_nii_hdr(filename);
% Read the header extension
%
% nii.ext = load_nii_ext(filename);
% Read the dataset body
%
[nii.img,nii.hdr] = load_nii_img(nii.hdr,nii.filetype,nii.fileprefix, ...
nii.machine,img_idx,dim5_idx,dim6_idx,dim7_idx,old_RGB);
% Perform some of sform/qform transform
%
nii = xform_nii(nii, tolerance, preferredForm);
% Clean up after gunzip
%
if exist('gzFileName', 'var')
% fix fileprefix so it doesn't point to temp location
%
nii.fileprefix = gzFileName(1:end-7);
rmdir(tmpDir,'s');
end
N = nii.hdr.dime.dim(1);
sz = nii.hdr.dime.dim(2:2+N-1)';
spc = nii.hdr.dime.pixdim(2:2+N-1)';
ori = nii.hdr.dime.pixdim((2:2+N-1)+1+N)';
ma = eye(N);
img = ImageType(sz, ori, spc, ma);
img.data = nii.img;
info = [];
end
% internal function
% - Jimmy Shen ([email protected])
function [hdr, filetype, fileprefix, machine] = load_nii_hdr(fileprefix)
if ~exist('fileprefix','var'),
error('Usage: [hdr, filetype, fileprefix, machine] = load_nii_hdr(filename)');
end
machine = 'ieee-le';
new_ext = 0;
if findstr('.nii',fileprefix) & strcmp(fileprefix(end-3:end), '.nii')
new_ext = 1;
fileprefix(end-3:end)='';
end
if findstr('.hdr',fileprefix) & strcmp(fileprefix(end-3:end), '.hdr')
fileprefix(end-3:end)='';
end
if findstr('.img',fileprefix) & strcmp(fileprefix(end-3:end), '.img')
fileprefix(end-3:end)='';
end
if new_ext
fn = sprintf('%s.nii',fileprefix);
if ~exist(fn)
msg = sprintf('Cannot find file "%s.nii".', fileprefix);
error(msg);
end
else
fn = sprintf('%s.hdr',fileprefix);
if ~exist(fn)
msg = sprintf('Cannot find file "%s.hdr".', fileprefix);
error(msg);
end
end
fid = fopen(fn,'r',machine);
if fid < 0,
msg = sprintf('Cannot open file %s.',fn);
error(msg);
else
fseek(fid,0,'bof');
if fread(fid,1,'int32') == 348
hdr = read_header(fid);
fclose(fid);
else
fclose(fid);
% first try reading the opposite endian to 'machine'
%
switch machine,
case 'ieee-le', machine = 'ieee-be';
case 'ieee-be', machine = 'ieee-le';
end
fid = fopen(fn,'r',machine);
if fid < 0,
msg = sprintf('Cannot open file %s.',fn);
error(msg);
else
fseek(fid,0,'bof');
if fread(fid,1,'int32') ~= 348
% Now throw an error
%
msg = sprintf('File "%s" is corrupted.',fn);
error(msg);
end
hdr = read_header(fid);
fclose(fid);
end
end
end
if strcmp(hdr.hist.magic, 'n+1')
filetype = 2;
elseif strcmp(hdr.hist.magic, 'ni1')
filetype = 1;
else
filetype = 0;
end
return % load_nii_hdr
end
%---------------------------------------------------------------------
function [ dsr ] = read_header(fid)
% Original header structures
% struct dsr
% {
% struct header_key hk; /* 0 + 40 */
% struct image_dimension dime; /* 40 + 108 */
% struct data_history hist; /* 148 + 200 */
% }; /* total= 348 bytes*/
dsr.hk = header_key(fid);
dsr.dime = image_dimension(fid);
dsr.hist = data_history(fid);
% For Analyze data format
%
if ~strcmp(dsr.hist.magic, 'n+1') & ~strcmp(dsr.hist.magic, 'ni1')
dsr.hist.qform_code = 0;
dsr.hist.sform_code = 0;
end
return % read_header
end
%---------------------------------------------------------------------
function [ hk ] = header_key(fid)
fseek(fid,0,'bof');
% Original header structures
% struct header_key /* header key */
% { /* off + size */
% int sizeof_hdr /* 0 + 4 */
% char data_type[10]; /* 4 + 10 */
% char db_name[18]; /* 14 + 18 */
% int extents; /* 32 + 4 */
% short int session_error; /* 36 + 2 */
% char regular; /* 38 + 1 */
% char dim_info; % char hkey_un0; /* 39 + 1 */
% }; /* total=40 bytes */
%
% int sizeof_header Should be 348.
% char regular Must be 'r' to indicate that all images and
% volumes are the same size.
v6 = version;
if str2num(v6(1))<6
directchar = '*char';
else
directchar = 'uchar=>char';
end
hk.sizeof_hdr = fread(fid, 1,'int32')'; % should be 348!
hk.data_type = deblank(fread(fid,10,directchar)');
hk.db_name = deblank(fread(fid,18,directchar)');
hk.extents = fread(fid, 1,'int32')';
hk.session_error = fread(fid, 1,'int16')';
hk.regular = fread(fid, 1,directchar)';
hk.dim_info = fread(fid, 1,'uchar')';
return % header_key
end
%---------------------------------------------------------------------
function [ dime ] = image_dimension(fid)
% Original header structures
% struct image_dimension
% { /* off + size */
% short int dim[8]; /* 0 + 16 */
% /*
% dim[0] Number of dimensions in database; usually 4.
% dim[1] Image X dimension; number of *pixels* in an image row.
% dim[2] Image Y dimension; number of *pixel rows* in slice.
% dim[3] Volume Z dimension; number of *slices* in a volume.
% dim[4] Time points; number of volumes in database
% */
% float intent_p1; % char vox_units[4]; /* 16 + 4 */
% float intent_p2; % char cal_units[8]; /* 20 + 4 */
% float intent_p3; % char cal_units[8]; /* 24 + 4 */
% short int intent_code; % short int unused1; /* 28 + 2 */
% short int datatype; /* 30 + 2 */
% short int bitpix; /* 32 + 2 */
% short int slice_start; % short int dim_un0; /* 34 + 2 */
% float pixdim[8]; /* 36 + 32 */
% /*
% pixdim[] specifies the voxel dimensions:
% pixdim[1] - voxel width, mm
% pixdim[2] - voxel height, mm
% pixdim[3] - slice thickness, mm
% pixdim[4] - volume timing, in msec
% ..etc
% */
% float vox_offset; /* 68 + 4 */
% float scl_slope; % float roi_scale; /* 72 + 4 */
% float scl_inter; % float funused1; /* 76 + 4 */
% short slice_end; % float funused2; /* 80 + 2 */
% char slice_code; % float funused2; /* 82 + 1 */
% char xyzt_units; % float funused2; /* 83 + 1 */
% float cal_max; /* 84 + 4 */
% float cal_min; /* 88 + 4 */
% float slice_duration; % int compressed; /* 92 + 4 */
% float toffset; % int verified; /* 96 + 4 */
% int glmax; /* 100 + 4 */
% int glmin; /* 104 + 4 */
% }; /* total=108 bytes */
dime.dim = fread(fid,8,'int16')';
dime.intent_p1 = fread(fid,1,'float32')';
dime.intent_p2 = fread(fid,1,'float32')';
dime.intent_p3 = fread(fid,1,'float32')';
dime.intent_code = fread(fid,1,'int16')';
dime.datatype = fread(fid,1,'int16')';
dime.bitpix = fread(fid,1,'int16')';
dime.slice_start = fread(fid,1,'int16')';
dime.pixdim = fread(fid,8,'float32')';
dime.vox_offset = fread(fid,1,'float32')';
dime.scl_slope = fread(fid,1,'float32')';
dime.scl_inter = fread(fid,1,'float32')';
dime.slice_end = fread(fid,1,'int16')';
dime.slice_code = fread(fid,1,'uchar')';
dime.xyzt_units = fread(fid,1,'uchar')';
dime.cal_max = fread(fid,1,'float32')';
dime.cal_min = fread(fid,1,'float32')';
dime.slice_duration = fread(fid,1,'float32')';
dime.toffset = fread(fid,1,'float32')';
dime.glmax = fread(fid,1,'int32')';
dime.glmin = fread(fid,1,'int32')';
return % image_dimension
end
%---------------------------------------------------------------------
function [ hist ] = data_history(fid)
% Original header structures
% struct data_history
% { /* off + size */
% char descrip[80]; /* 0 + 80 */
% char aux_file[24]; /* 80 + 24 */
% short int qform_code; /* 104 + 2 */
% short int sform_code; /* 106 + 2 */
% float quatern_b; /* 108 + 4 */
% float quatern_c; /* 112 + 4 */
% float quatern_d; /* 116 + 4 */
% float qoffset_x; /* 120 + 4 */
% float qoffset_y; /* 124 + 4 */
% float qoffset_z; /* 128 + 4 */
% float srow_x[4]; /* 132 + 16 */
% float srow_y[4]; /* 148 + 16 */
% float srow_z[4]; /* 164 + 16 */
% char intent_name[16]; /* 180 + 16 */
% char magic[4]; % int smin; /* 196 + 4 */
% }; /* total=200 bytes */
v6 = version;
if str2num(v6(1))<6
directchar = '*char';
else
directchar = 'uchar=>char';
end
hist.descrip = deblank(fread(fid,80,directchar)');
hist.aux_file = deblank(fread(fid,24,directchar)');
hist.qform_code = fread(fid,1,'int16')';
hist.sform_code = fread(fid,1,'int16')';
hist.quatern_b = fread(fid,1,'float32')';
hist.quatern_c = fread(fid,1,'float32')';
hist.quatern_d = fread(fid,1,'float32')';
hist.qoffset_x = fread(fid,1,'float32')';
hist.qoffset_y = fread(fid,1,'float32')';
hist.qoffset_z = fread(fid,1,'float32')';
hist.srow_x = fread(fid,4,'float32')';
hist.srow_y = fread(fid,4,'float32')';
hist.srow_z = fread(fid,4,'float32')';
hist.intent_name = deblank(fread(fid,16,directchar)');
hist.magic = deblank(fread(fid,4,directchar)');
fseek(fid,253,'bof');
hist.originator = fread(fid, 5,'int16')';
return % data_history
end
|
github
|
vildenst/3D-heart-models-master
|
read_meshMesh.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_meshMesh.m
| 2,725 |
utf_8
|
f44abbb2b7d5527f563591bcc2b210a5
|
function mesh =read_meshMesh(filename)
% Function for reading a mesh in a Visualization Toolkit (VTK) format
%
% mesh = read_vtkMesh(filename);
%
% examples:
% mesh=read_vtkMesh('volume.vtk');
% mesh would be of the class MeshType
%from vtkCellType.h
keywordList={'MeshVersionFormatted','Dimension','Vertices','Triangles','Quadrilaterals','Tetrahedra',...
'Hexahedra','Normals','Tangents','Corners','Edges','Ridges','End'};
if(exist('filename','var')==0)
[filename, pathname] = uigetfile('*.vtk', 'Read vtk-file');
filename = [pathname filename];
end
fid=fopen(filename,'rb');
if(fid<0)
fprintf('could not open file %s\n',filename);
return
end
mesh=MeshType();
isEnd=false;
dimension=-1;
nvertices=-1;
vertices=[];
ntriangles=-1;
triangles=[];
while ~isEnd
kw = nextKeyword(fid,keywordList);
switch kw{1}
case keywordList{1}
% This is currently ignored. states wether is float or double
case keywordList{2}
kw = nextKeyword(fid,keywordList);
dimension = str2num(kw{1});
case keywordList{3}
kw = nextKeyword(fid,keywordList);
nvertices= str2num(kw{1});
vertices=fscanf(fid,'%f %f %f %f',[dimension+1 nvertices ]);
vertices = vertices(1:3,:)';
mesh.npoints = nvertices;
mesh.points=vertices;
case keywordList{4}
kw = nextKeyword(fid,keywordList);
ntriangles= str2num(kw{1});
triangles=fscanf(fid,'%f %f %f %f',[dimension+1 ntriangles]);
triangles = triangles(1:3,:)';
mesh.ntriangles = ntriangles;
mesh.triangles=triangles;
case keywordList{5}
% quadrilaterals
kw = nextKeyword(fid,keywordList);
ntriangles= str2num(kw{1});
quadrilaterals=fscanf(fid,'%d %d %d %d %d',[dimension+2 ntriangles]);
quadrilaterals= quadrilaterals(1:4,:)';
% convert each cuadrilateral into 2 triangles
triangles = [quadrilaterals(:,1:3) ; quadrilaterals(:,[3 4 1])];
mesh.ntriangles = size(triangles,1);
mesh.triangles=triangles;
case keywordList{end}
%disp(['Finished '])
isEnd=true;
otherwise
%disp(['Unknown field ' kw{1}])
end
end
end
function kw = nextKeyword(fid,keywordList)
str = fgetl(fid);
if strcmp(str,keywordList{end})
kw=keywordList{end};
return;
end
[a1,a2]=strtok(str);
while strcmp(a1,'#')
str = fgetl(fid);
[a1,a2]=strtok(str);
end
kw{1}=a1;
kw{2}=a2;
end
|
github
|
vildenst/3D-heart-models-master
|
read_MITKPoints.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_MITKPoints.m
| 4,015 |
utf_8
|
e5e60717ca44a830094c042e96c77277
|
function out=read_MITKPoints(filename)
global bounds;
global points;
bounds = zeros(6,1);
points = [];
out = [];
try
tree = xmlread(filename);
catch
error('Failed to read XML file %s.',filename);
end
% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
try
theStruct = parseChildNodes(tree);
catch
error('Unable to parse XML file %s.',filename);
end
out.bounds = bounds;
out.points = points;
end
% ----- Local function PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
global bounds;
global points;
children = [];
if theNode.hasChildNodes
childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);
children = struct( ...
'Name', allocCell, 'Attributes', allocCell, ...
'Data', allocCell, 'Children', allocCell);
for count = 1:numChildNodes
theChild = childNodes.item(count-1);
children(count) = makeStructFromNode(theChild);
if strcmp( children(count).Name,'Bounds')
for i=1:numel(children(count).Children)
ch = children(count).Children(i);
if strcmp( ch.Name,'Min')
bounds(1) = str2num(ch.Attributes(2).Value);
bounds(3) = str2num(ch.Attributes(3).Value);
bounds(5) = str2num(ch.Attributes(4).Value);
elseif strcmp( ch.Name,'Max')
bounds(2) = str2num(ch.Attributes(2).Value);
bounds(4) = str2num(ch.Attributes(3).Value);
bounds(6) = str2num(ch.Attributes(4).Value);
end
end
elseif strcmp( children(count).Name,'point')
for i=1:numel(children(count).Children)
ch = children(count).Children(i);
if strcmp(ch.Name,'id')
chch = ch.Children;
id = str2num(chch.Data);
npts = numel(points);
points(npts+1).id = id;
elseif strcmp( ch.Name,'specification')
chch = ch.Children;
npts = numel(points);
points(npts).tag = chch.Data;
elseif strcmp( ch.Name,'x')
chch = ch.Children;
npts = numel(points);
points(npts).coordinates(1) = str2num(chch.Data);
elseif strcmp( ch.Name,'y')
chch = ch.Children;
npts = numel(points);
points(npts).coordinates(2) = str2num(chch.Data);
elseif strcmp( ch.Name,'z')
chch = ch.Children;
npts = numel(points);
points(npts).coordinates(3) = str2num(chch.Data);
end
end
end
end
end
end
% ----- Local function MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.
nodeStruct = struct( ...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));
if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);
else
nodeStruct.Data = '';
end
end
% ----- Local function PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.
attributes = [];
if theNode.hasAttributes
theAttributes = theNode.getAttributes;
numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...
allocCell);
for count = 1:numAttributes
attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);
end
end
end
|
github
|
vildenst/3D-heart-models-master
|
read_gipl.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/processing/IO/read_gipl.m
| 4,261 |
utf_8
|
b7e0a24be25a0a04a0c57e59ed2ca44f
|
function out =read_gipl(filename)
% function for reading header of Guys Image Processing Lab (Gipl) volume file
%
% out = gipl_read_header(filename);
%
% returns an ImageType
%
% Copied from the package ReadData3D_version1h
fid=fopen(filename,'rb','ieee-be');
%fid=fopen(filename,'r','native');
if(fid<0)
fprintf('could not open file %s\n',filename);
return
end
trans_type{1}='binary'; trans_type{7}='char'; trans_type{8}='uchar';
trans_type{15}='short'; trans_type{16}='ushort'; trans_type{31}='uint';
trans_type{32}='int'; trans_type{64}='float';trans_type{65}='double';
trans_type{144}='C_short';trans_type{160}='C_int'; trans_type{192}='C_float';
trans_type{193}='C_double'; trans_type{200}='surface'; trans_type{201}='polygon';
trans_orien{0+1}='UNDEFINED'; trans_orien{1+1}='UNDEFINED_PROJECTION';
trans_orien{2+1}='AP_PROJECTION'; trans_orien{3+1}='LATERAL_PROJECTION';
trans_orien{4+1}='OBLIQUE_PROJECTION'; trans_orien{8+1}='UNDEFINED_TOMO';
trans_orien{9+1}='AXIAL'; trans_orien{10+1}='CORONAL';
trans_orien{11+1}='SAGITTAL'; trans_orien{12+1}='OBLIQUE_TOMO';
offset=256; % header size
%get the file size
fseek(fid,0,'eof');
fsize = ftell(fid);
fseek(fid,0,'bof');
mn = 719555000;
sizes=fread(fid,4,'ushort')';
if(sizes(4)==1), maxdim=3; else maxdim=4; end
sizes=sizes(1:maxdim);
image_type=fread(fid,1,'ushort');
scales=fread(fid,4,'float')';
scales=scales(1:maxdim);
patient=fread(fid,80, 'uint8=>char')';
matrix=fread(fid,20,'float')';
orientation=fread(fid,1, 'uint8')';
par2=fread(fid,1, 'uint8')';
voxmin=fread(fid,1,'double');
voxmax=fread(fid,1,'double');
origin=fread(fid,4,'double')';
origin=origin(1:maxdim);
pixval_offset=fread(fid,1,'float');
pixval_cal=fread(fid,1,'float');
interslicegap=fread(fid,1,'float');
user_def2=fread(fid,1,'float');
magic_number= fread(fid,1,'uint32');
%if (magic_number~=4026526128), error('file corrupt - or not big endian'); end
fclose('all');
info.Filename=filename;
info.FileSize=fsize;
info.Dimensions=sizes;
info.PixelDimensions=scales;
info.ImageType=image_type;
info.Patient=patient;
info.Matrix=matrix;
info.Orientation=orientation;
info.VoxelMin=voxmin;
info.VoxelMax=voxmax;
info.Origing=origin;
info.PixValOffset=pixval_offset;
info.PixValCal=pixval_cal;
info.InterSliceGap=interslicegap;
info.UserDef2=user_def2;
info.Par2=par2;
info.Offset=offset;
out = ImageType(sizes(:), origin(:),scales(:),eye(numel(sizes)));
out.data = gipl_read_volume(info);
end
function V = gipl_read_volume(info)
% function for reading volume of Guys Image Processing Lab (Gipl) volume file
%
% volume = gipl_read_volume(file-header)
%
% examples:
% 1: info = gipl_read_header()
% V = gipl_read_volume(info);
% imshow(squeeze(V(:,:,round(end/2))),[]);
%
% 2: V = gipl_read_volume('test.gipl');
if(~isstruct(info)) info=gipl_read_header(info); end
% Open gipl file
fid=fopen(info.Filename','rb','ieee-be');
% Seek volume data start
if(info.ImageType==1), voxelbits=1; end
if(info.ImageType==7||info.ImageType==8), voxelbits=8; end
if(info.ImageType==15||info.ImageType==16), voxelbits=16; end
if(info.ImageType==31||info.ImageType==32||info.ImageType==64), voxelbits=32; end
if(info.ImageType==65), voxelbits=64; end
datasize=prod(info.Dimensions)*(voxelbits/8);
fsize=info.FileSize;
fseek(fid,fsize-datasize,'bof');
% Read Volume data
volsize(1:numel(info.Dimensions))=info.Dimensions;
if(info.ImageType==1), V = logical(fread(fid,datasize,'bit1')); end
if(info.ImageType==7), V = int8(fread(fid,datasize,'char')); end
if(info.ImageType==8), V = uint8(fread(fid,datasize,'uchar')); end
if(info.ImageType==15), V = int16(fread(fid,datasize,'short')); end
if(info.ImageType==16), V = uint16(fread(fid,datasize,'ushort')); end
if(info.ImageType==31), V = uint32(fread(fid,datasize,'uint')); end
if(info.ImageType==32), V = int32(fread(fid,datasize,'int')); end
if(info.ImageType==64), V = single(fread(fid,datasize,'float')); end
if(info.ImageType==65), V = double(fread(fid,datasize,'double')); end
fclose(fid);
% Reshape the volume data to the right dimensions
V = reshape(V,volsize);
end
|
github
|
vildenst/3D-heart-models-master
|
MeshType.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/class_mesh/MeshType.m
| 58,137 |
utf_8
|
42bb608b029763866937bbd8bd41223d
|
classdef MeshType < handle
% This class defines a trinagulated mesh
% by Alberto Gomez, 2011
%
properties(GetAccess = 'public', SetAccess = 'public')
npoints=0;
ntriangles=0;
points=[];% npointsx3 matrix
triangles=[];%ntrianglesx3 matrix
bounds = [0 0 0 0 0 0];
attributes = AttributeType(); % for labels, luts, etc
end
methods(Access = public)
%constructor
function obj = MeshType(npoints,ntriangles)
if(nargin > 0)
if(nargin ==1 )
% copy constructor
obj.npoints = npoints.npoints;
obj.ntriangles = npoints.ntriangles;
obj.points = npoints.points;
obj.triangles = npoints.triangles;
for i=1:numel(npoints.attributes)
obj.attributes(i)=AttributeType(npoints.attributes(i));
end
else
obj.npoints = npoints;
obj.ntriangles = ntriangles;
obj.points = zeros(npoints,3);
obj.triangles = zeros(ntriangles,3);
obj.attributes(1)=AttributeType(obj.npoints);
end
end
end
function b = ComputeBounds(obj)
b([1 3 5])=min(obj.points,[],1);
b([2 4 6])=max(obj.points,[],1);
obj.bounds = b;
end
function v = GetVolume(obj)
normals = obj.GetNormalAtFaces(1:obj.ntriangles);
[~,areas]= obj.GetTriangleNormal(1:obj.ntriangles);
p1 = obj.points(obj.triangles(:,1),:);
p2 = obj.points(obj.triangles(:,2),:);
p3 = obj.points(obj.triangles(:,3),:);
pts = cat(3,p1,p2,p3);
barycentres = mean(pts ,3);
v = nansum(dot(barycentres,normals,2).*areas)/3;
end
function P = GetVertexCoordinates(obj, index)
% get the position of a vertex at index "index", an integer
P = obj.points(index,:);
end
function P = GetTriangleVertices(obj, index)
% get the vertices composing the triangle at the index
P = obj.triangles(index,:);
end
function [P, area] = GetTriangleNormal(obj,index)
% get the normal to the surface of a triangle
triang = obj.triangles(index,:);
v1 = obj.points(triang(:,2),:) - obj.points(triang(:,1),:);
v2 = obj.points(triang(:,3),:) - obj.points(triang(:,1),:);
cp = cross(v1,v2);
area = sqrt(sum(cp.^2,2))/2;
P = cp./([area area area]*2);
%P = P(:)';
end
%%
function out = laplacianSmoothing(obj)
ignoreOrientation = true;
out = MeshType(obj);
h = waitbar(0,'Applying laplacian smooth');
for i =1:obj.npoints
nn = obj.GetVertexNeighbours(i);
positions = obj.points(nn,:);
out.points(i,:)=mean(positions);
waitbar(i/obj.npoints);
end
close(h);
end
function normal = GetNormalAtVertex(obj,index, varargin)
% get normal to a vertex
% normal is computed as linear combination of the normals to
% faces.
%
% the weigting factor for the average can be chosen by the
% user, Gouraud being default:
% options :
% mode = 'Gouraud' (w=1)
% 'area' (w=area)
index_of_att = obj.find_attribute('normalVectors');
if index_of_att >0
normal= obj.attributes(index_of_att).attribute_array(index,:);
return
end
normal = [0 0 0];
ignoreOrientation=false;
center=[]; % a point inside (convex geometry) to be able to define a positicve orientation
mode = 'Gouraud'; % w = 1
for i=1:size(varargin,2)
if (strcmp(varargin{i},'mode'))
mode =varargin{i+1};
elseif (strcmp(varargin{i},'ignoreOrientation'))
ignoreOrientation = varargin{i+1};
elseif (strcmp(varargin{i},'insidePoint'))
center= varargin{i+1};
end
end
nn = obj.GetVertexNeighboursSorted(index,ignoreOrientation);
w = ones(size(nn,1),1); % weightings
% compute normals to the neighbor faces
normals = zeros(length(nn),3);
areas = zeros(length(nn),1);
for i = 1:length(nn)
v1 = obj.points(nn(i),:)-obj.points(index,:);
v2 = obj.points(nn(cyclicNext(i,length(nn))),:)-obj.points(index,:);
areas(i)=norm(cross(v1,v2))/2;
normals(i,:) = cross(v1,v2)/areas(i)*2;
end
if (strcmp(mode,'Gouraud'))
% w is all ones
normal = sum((w*ones(1,3)).*normals,1)/sum(w);
normal = normal/norm(normal);
elseif (strcmp(mode,'area'))
normal = sum((areas*ones(1,3)).*normals,1)/sum(areas);
normal = normal/norm(normal);
else
normal = normals(1,:);
normal = normal/norm(normal);
%display('Using default mode: Gouraud');
end
if (numel(center))
vector = obj.points(index,:)-center;
if vector*normal'<0
normal=-1*normal;
end
end
end
%%
function normal = GetNormalAtFaces(obj,index)
% get normal to faces.
% get first edge
v1 = obj.points(obj.triangles(index,2),:)-obj.points(obj.triangles(index,1),:);
v2 = obj.points(obj.triangles(index,3),:)-obj.points(obj.triangles(index,1),:);
normal = cross(v1,v2,2);
% normalize result
magnitude = sqrt(normal(:,1).^2 + normal(:,2).^2 + normal(:,3).^2);
for i=1:3
normal(:,i) = normal(:,i)./magnitude;
end
end
%%
function P = GetForwardVertexNeighbours(obj, index)
% Returns neighbours as oriented subcession of 2 neighbours
[r, c]=find(obj.triangles==index);
extended_triangles = [obj.triangles(r,:) obj.triangles(r,:)];
P=[];
for i=1:numel(r)
c = find(extended_triangles(i,:)==index,1,'first');
P =[P; extended_triangles(i,(c+1):(c+2))];
end
end
%%
function P = GetBackwardVertexNeighbours(obj, index)
% Returns neighbours as oriented subcession of 2 neighbours
[r, c]=find(obj.triangles==index);
extended_triangles = [obj.triangles(r,:) obj.triangles(r,:)];
P=[];
for i=1:numel(r)
c = find(extended_triangles(i,:)==index,1,'last');
P =[P; extended_triangles(i,(c-1):(c-2))];
end
end
%%
function P = GetVertexNeighbours(obj,index)
% get a column vector with the neighbours to a vertex (excludes the vertex itself)
[r, c]=find(obj.triangles==index);
tri = obj.triangles(r,:);
tri_reshaped = unique(reshape(tri,3*size(r,1),1)); % remove repeated elements
P = zeros(length(tri_reshaped)-1,1);
i=1;
for j=1:length(tri_reshaped)
if (tri_reshaped(j)~=index)
P(i)=tri_reshaped(j);
i = i+1;
end
end
end
%%
function sorted_neighbours = GetVertexNeighboursSorted(obj,index, varargin)
% get a column vector with the neighbours to a vertex (excludes the vertex itself)
% the neighbours are given in couter-clockwise order
ignoreOrientation=false;
if (size(varargin,2)>0)
ignoreOrientation = varargin{1};
end
[r_, c_]=find(obj.triangles==index);
triangles = obj.triangles(r_,:);
trianglesExtended = [triangles triangles];
all_neighbours = unique(triangles);
all_neighbours(all_neighbours ==index)=[];
added_neighbours = 0;
current_neighbour = trianglesExtended(1,find(trianglesExtended(1,:)==index ,1,'first')+1); % we start courter clockwise
sorted_neighbours = zeros(numel(all_neighbours),1);
added_neighbours=added_neighbours+1;
sorted_neighbours(added_neighbours)=current_neighbour;
while(numel(nonzeros(sorted_neighbours))<numel(all_neighbours))
[r_, c_] = find(triangles==current_neighbour);
candidate_found=false;
for i = 1:numel(r_)
c_2 = find(trianglesExtended(r_(i),:)==current_neighbour,1,'first');
if (ignoreOrientation)
candidate = [ trianglesExtended(r_(i),c_2+1) trianglesExtended(r_(i),c_2+2)];
candidate(candidate==index)=[];
else
candidate = trianglesExtended(r_(i),c_2+1);
end
if numel(candidate) && ~numel(find(sorted_neighbours==candidate)) && candidate~=index
current_neighbour=candidate;
added_neighbours=added_neighbours+1;
sorted_neighbours(added_neighbours)=current_neighbour;
candidate_found=true;
break;
end
end
if ~candidate_found
disp('No candidate found. Check the surface orientation')
sorted_neighbours=[];
return
end
end
end
%%
function ring = Get1Ring(obj,i)
% i is the vertex index for which the ring is required
% If there is only one triangle, this is a corner point, return
% its triangle
[r_, c_]=find(obj.triangles==i);
if numel(r_)==1
ring =r_;
return;
end
% Now we assume the triangle is ordered
ring=r_(1);
r_(1)=[];
while(numel(r_))
vertices = obj.triangles(ring(end),[1 2 3 1 2]);
centre_idx=find(vertices==i,1,'first');
% Add next triangle
next_vertex=vertices(centre_idx+2);
triangles = obj.triangles(r_,:);
next_triangle = find(sum(triangles==i | triangles==next_vertex,2)==2,1,'first');
if numel(next_triangle)
ring = [ring r_(next_triangle)];
r_(next_triangle)=[];
end
% Add previous triangle
vertices = obj.triangles(ring(1),[1 2 3 1 2]);
centre_idx=find(vertices==i,1,'first');
prev_vertex=vertices(centre_idx+1);
triangles = obj.triangles(r_,:);
prev_triangle = find(sum(triangles==i | triangles==prev_vertex,2)==2,1,'first');
if numel(prev_triangle)
ring = [ r_(prev_triangle) ring];
r_(prev_triangle)=[];
end
end
end
%%
function e = edges(obj)
% This function returns a listof the edges
tmp = [obj.triangles(:,[1 2]) ; obj.triangles(:,[2 3]) ; obj.triangles(:,[3 1])];
% remove duplicates
e=unique(sort(tmp,2),'rows');
end
%%
function [ring,tri_sorted] = GetRingOrdered(obj,i)
% This function returns the one ring required by the paper:
% M. Desbrun, M. Meyer, and P. Alliez, "Intrinsic Parametrization of
% Surface Meshes", Eurographics 2002
% Arguments:
% i - central vertex
% The ring is ordered so that every triangle starts with the i
% vertex
% This function will also correct for the orientation
[r_, c_]=find(obj.triangles==i);
ring=r_(1);
r_(1)=[];
vertices = obj.triangles(ring(end),[1 2 3 1 2]);
tri_sorted = vertices([c_(1) c_(1)+1 c_(1)+2]);
c_(1)=[];
while(numel(r_))
vertices = obj.triangles(ring(end),[1 2 3 1 2]);
centre_idx=find(vertices==i,1,'first');
% Add next triangle
next_vertex=vertices(centre_idx+2);
added=0;
triangles = obj.triangles(r_,:);
next_triangle = find(sum(triangles==i | triangles==next_vertex,2)==2,1,'first');
if numel(next_triangle)
ring = [ring r_(next_triangle)];
vertices_ = obj.triangles(r_(next_triangle),[1 2 3 1 2]);
r_(next_triangle)=[];
tri_sorted = [tri_sorted ; vertices_([c_(next_triangle) c_(next_triangle)+1 c_(next_triangle)+2]) ];
c_(next_triangle)=[];
added=added+1;
end
% Add previous triangle
vertices = obj.triangles(ring(1),[1 2 3 1 2]);
centre_idx=find(vertices==i,1,'first');
prev_vertex=vertices(centre_idx+1);
triangles = obj.triangles(r_,:);
prev_triangle = find(sum(triangles==i | triangles==prev_vertex,2)==2,1,'first');
if numel(prev_triangle)
ring = [ r_(prev_triangle) ring];
vertices_ = obj.triangles(r_(prev_triangle),[1 2 3 1 2]);
r_(prev_triangle)=[];
tri_sorted = [ vertices_([c_(prev_triangle) c_(prev_triangle)+1 c_(prev_triangle)+2]) ; tri_sorted];
c_(prev_triangle)=[];
added=added+1;
end
if added==0
% one of the remaining triangles is badly ordered
disp(['WARNING: The input mesh does not have consistent orientation at node ' num2str(i) ])
elseif added==2
% Check that orientation is good
%disp(['WARNING: The input mesh does not have consistent orientation at node ' num2str(i) ])
if tri_sorted(1,3)~=tri_sorted(2,2)
tri_sorted(1,2)=tri_sorted(1,3);
tri_sorted(1,3)=tri_sorted(2,2);
obj.triangles(ring(1),:) = obj.triangles(ring(1),[1 3 2]);
end
if tri_sorted(end,2)~=tri_sorted(end-1,3)
tri_sorted(end,3)=tri_sorted(end,2);
tri_sorted(end,2)=tri_sorted(end-1,3);
obj.triangles(ring(end),:) = obj.triangles(ring(end),[1 3 2]);
end
end
end
end
%%
function out = GetValue(obj,attribute_name,positions)
% positions must be an array of row vectors
ind = obj.find_attribute(attribute_name);
if (ind <= 0)
disp([ 'Attribute ' attribute_name ' was not found '])
out=[];
return;
end
out = zeros(size(positions,1),1);
bt = obj.ComputeBounds();
extent = bt(2:2:end)-bt(1:2:end);
nodim = find(extent==0);
availabledims = setdiff(1:numel(extent),nodim);
DT= delaunayTriangulation(obj.points(:,availabledims));
triangle_idx = DT.pointLocation(positions);
valid_points = find(triangle_idx==triangle_idx);
invalues = obj.attributes(ind).attribute_array;
% out(valid_points) = invalues(valid_points); % this works fine!
bary_coords = DT.cartesianToBarycentric(triangle_idx(valid_points),positions(valid_points,:));
%vertices = obj.triangles(triangle_idx(valid_points),:);
vertices = DT.ConnectivityList(triangle_idx(valid_points),:);
values_at_vertices = invalues(vertices);
interpolated_values = sum(values_at_vertices.*bary_coords,2);
out(valid_points)=interpolated_values;
end
%%
function normals=ComputeNormals(obj,varargin)
% add normals as another attribute
ignoreOrientation=false;
center=[];
if (size(varargin,2)>0)
ignoreOrientation= varargin{1};
end
if (size(varargin,2)>1)
center= varargin{2};
end
n_attributes = numel(obj.attributes);
at = AttributeType();
at.attribute='normals';
at.name='normalVectors';
at.numComp=3; % between 1 and 4
at.type='float';
at.nelements=obj.npoints; %number of tuples
for i=1:at.nelements
at.attribute_array(i,:) = obj.GetNormalAtVertex(i,'ignoreOrientation', ignoreOrientation,'insidePoint',center);
end
ind = obj.find_attribute(at.name);
if (ind > 0)
obj.attributes(ind)=at;
else
n_attributes = numel(obj.attributes);
obj.attributes(n_attributes+1)=at;
end
normals = at.attribute_array;
end
function AddScalarAttributeToVertices(obj,arr,name)
at = AttributeType();
at.attribute='scalars';
at.name=name;
at.numComp=1; % between 1 and 4
at.type='float';
at.nelements=obj.npoints; %number of tuples
at.attribute_array = arr(:);
ind = obj.find_attribute(at.name);
if (ind > 0)
obj.attributes(ind)=at;
else
n_attributes = numel(obj.attributes);
obj.attributes(n_attributes+1)=at;
end
end
function ComputeNormalsToFaces(obj)
% add normals as another attribute
ind = obj.find_attribute('normalVectorsFaces');
if (ind > 0)
return;
end
at = AttributeType();
at.attribute='normals';
at.name='normalVectorsFaces';
at.numComp=3; % between 1 and 4
at.type='float';
at.nelements=obj.ntriangles; %number of tuples
for i=1:at.nelements
at.attribute_array(i,:) = obj.GetNormalAtFaces(i);
end
ind = obj.find_attribute(at.name);
if (ind > 0)
obj.attributes(ind)=at;
else
n_attributes = numel(obj.attributes);
obj.attributes(n_attributes+1)=at;
end
end
function Mesh = ExtractSurface(obj, n_attribute, value)
% This function returns a new mesh which corresponds to the
% sub-surface of vertex whos attribute #n_attribute have the
% value #value
% This function leaves the original points and attribute list
% unchanged
% 1. Check that there is the same number of points in the
% scalar field and in the mesh
scalar_array = obj.attributes(n_attribute).attribute_array;
if (size(scalar_array,1)~=size(obj.points,1))
disp('Error: associated field has too few points')
Mesh = [];
return;
end
index = find(scalar_array == value);
% remove all triangles which contain a triangle not in index
triangles_to_add=[];
for i=1:numel(index)
[x y]=find(obj.triangles==index(i));
triangles_to_add = [triangles_to_add; x];
end
triangles_to_add= unique(triangles_to_add);
tri= obj.triangles(triangles_to_add,:);
Mesh = MeshType();
Mesh.npoints = obj.npoints;
Mesh.points = obj.points;
Mesh.triangles = tri;
Mesh.ntriangles = size(tri,1);
Mesh.attributes= obj.attributes;
end
function closedMesh= closeMesh(obj)
% this function closes the mesh by adding 1 point.
% IMPORTANT: it will only work if there is 1 single hole
closedMesh = MeshType();
closedMesh.npoints = obj.npoints;
closedMesh.points = obj.points;
closedMesh.ntriangles = obj.ntriangles;
closedMesh.triangles = obj.triangles;
closedMesh.attributes = obj.attributes;
[borders,borderPaths]= obj.detectBorders();
nholes = numel(borderPaths);
for i=1:nholes
b=zeros(size(borders));
b(unique(borderPaths{i}(:))')=1;
bindex = find(b==1);
borderPoints = obj.points(b==1,:);
nborderPoints = size(borderPoints,1);
if (nborderPoints>0)
%add the centroid as a new point
centroid = sum(borderPoints)/nborderPoints;
closedMesh.npoints = closedMesh.npoints+1;
closedMesh.points(closedMesh.npoints,:)=centroid;
% Build new triangles
remainingPoints = bindex;
currentPoint = remainingPoints(1);
while (numel(remainingPoints)>1)
%try to look for the closest neighbor clockwise
minDistance = 999999999999999999; % very big number
for candidate=remainingPoints(:)'
if (currentPoint~=candidate)
vector = closedMesh.points(currentPoint,:)-closedMesh.points(candidate,:);
distance = norm(vector);
if (distance<minDistance )
minDistance = distance;
neighbor = candidate;
end
end
end
%remove the currentPoint from the list
indexOfCurrentPoint = find(remainingPoints==currentPoint);
if (indexOfCurrentPoint ==1)
remainingPoints = remainingPoints(2:end);
elseif (indexOfCurrentPoint ==numel(remainingPoints))
remainingPoints = remainingPoints(1:(end-1));
else
remainingPoints = remainingPoints([1:(indexOfCurrentPoint-1) (indexOfCurrentPoint+1):end]);
end
%build triangle
tri = [currentPoint neighbor closedMesh.npoints] ;
closedMesh.triangles = [closedMesh.triangles ; tri];
currentPoint = neighbor;
end
tri = [remainingPoints(1) bindex(1) closedMesh.npoints];
closedMesh.triangles = [closedMesh.triangles ; tri];
closedMesh.ntriangles = size(closedMesh.triangles,1);
end
end
end
function flag = addVertex(obj,pointIn)
% Adds a vertex (or vertices) to current mesh, updating the
% triangulations accordingly. If there is any problem returns
% an error code.
% TODO: test mesh
flag=1;
% 1. Find the closest triangle
indicesClosestTriangle = obj.findClosestTriangle(pointIn);
trianglePointIndices = [ obj.triangles(indicesClosestTriangle,:) ((obj.npoints+1):(obj.npoints+size(pointIn,1)))' ];
newTopology = [1 2 4 2 3 4 3 1 4]; % this will have to be reshaped
newTriangles = trianglePointIndices(:,newTopology);
% Now reshape 'newTriangles' so that from each row we get 3
% rows.
newTriangles = [newTriangles(:,1:3);newTriangles(:,4:6);newTriangles(:,7:9)];
% Remove old triangles and add new ones
obj.triangles(indicesClosestTriangle,:)=[];
obj.triangles = [obj.triangles; newTriangles];
obj.ntriangles = size(obj.triangles,1);
% add new points
obj.points = [ obj.points; pointIn];
obj.npoints = size(obj.points,1);
end
function outMesh = removeVertex(obj,index,varargin)
% Removes a vertex (or vertices) to current mesh, updating the
% triangulations accordingly.
%
% This code (still to be written) can be designed to do two
% things:
%
% a) Remove the point and all triangles where this point was
% (this will of course produce a hole) [default]
%
% b) Remove a point and re-triangulate neighbors. This will
% avoid holes (option 'noholes')
%
mode = 'holes'; % w = 1
if (size(varargin,2)>0)
mode = varargin{1};
end
outMesh = MeshType(obj);
outMesh.triangles = obj.triangles;
outMesh.points = obj.points;
if (strcmp('holes',mode))
pointsToRemove = index;
% remove all triangles containing any of the points to be
% removed
nPointsRemoved = 0;
trianglesRemoved=[];
while(numel(index)>0)
[r, c]= find(outMesh.triangles==index(1));
outMesh.triangles(r,:)=[];
trianglesRemoved = [trianglesRemoved; r];
% point per point, remove the index to the triangle list
outMesh.points(index(1),:)=[];
outMesh.triangles(outMesh.triangles>index(1))=outMesh.triangles(outMesh.triangles>index(1))-1;
nPointsRemoved = nPointsRemoved+1;
index = index-1;
index(1)=[];
end
% update attributes
for i=1:numel(obj.attributes)
if (numel(obj.attributes(i).attribute_array)==outMesh.npoints)
outMesh.attributes(i).attribute_array(pointsToRemove)=[];
elseif (numel(obj.attributes(i).attribute_array)==outMesh.ntriangles)
outMesh.attributes(i).attribute_array(trianglesRemoved)=[];
end
end
outMesh.npoints = size(outMesh.points,1);
outMesh.ntriangles = size(outMesh.triangles,1);
elseif (strcmp('noholes',mode))
disp(['Mode ' mode ' is not implemented yet']) ;
else
disp(['ERROR: ' mode ' is not a valid option']);
end
end
function outMesh = removeTriangle(obj,index,varargin)
% Removes a triangle (or triangles) to current mesh, updating the
% triangulations accordingly.
%
% This code (still to be written) can be designed to do two
% things:
%
% a) Remove the triangle and leave a hole [default]
%
% b) Remove a triangle and re-triangulate neighbors. This will
% avoid holes (option 'noholes')
%
mode = 'holes'; % w = 1
if (size(varargin,2)>0)
mode = varargin{1};
end
outMesh = MeshType(obj);
outMesh.triangles = obj.triangles;
outMesh.points = obj.points;
if (strcmp('holes',mode))
outMesh.triangles(index,:)=[];
pointsToRemove = setdiff(unique(obj.triangles(:)),unique(outMesh.triangles(:)));
nPointsRemoved = 0;
while(numel(pointsToRemove )>0)
% point per point, remove the index to the triangle list
outMesh.points(pointsToRemove(1),:)=[];
outMesh.triangles(outMesh.triangles>pointsToRemove(1))=outMesh.triangles(outMesh.triangles>pointsToRemove(1))-1;
nPointsRemoved = nPointsRemoved+1;
pointsToRemove = pointsToRemove-1;
pointsToRemove(1)=[];
end
% update attributes
for i=1:numel(obj.attributes)
if (numel(obj.attributes(i).attribute_array)==outMesh.npoints)
outMesh.attributes(i).attribute_array(pointsToRemove)=[];
elseif (numel(obj.attributes(i).attribute_array)==outMesh.ntriangles)
if max(outMesh.triangles(:))>=numel(outMesh.points)
%outMesh.attributes(i).attribute_array(trianglesRemoved)=[];
disp('MeshType: this has to be implemented')
end
end
end
outMesh.npoints = size(outMesh.points,1);
outMesh.ntriangles = size(outMesh.triangles,1);
elseif (strcmp('noholes',mode))
disp(['Mode ' mode ' is not implemented yet']) ;
else
disp(['ERROR: ' mode ' is not a valid option']);
end
end
function invertOrientation(obj)
% This function inverts the orientation of all triangles in a
% mesh. This might be useful for example if the mesh is negative
% oriented and one wants it positive oriented and vv.
if size(obj.triangles,2)~=3
disp('MeshType::invertOrientation -- ERROR: this method only works on triangular meshes' );
return;
end
obj.triangles = obj.triangles(:,[1 3 2]);
end
%%
function n= GetTriangleNeighbours(obj,i)
% n gives the neighbours triangles
vertices = obj.triangles(i,:);
[r1,~]= find(obj.triangles==vertices(1));
[r2,~]= find(obj.triangles==vertices(2));
[r3,~]= find(obj.triangles==vertices(3));
isfound = zeros(obj.ntriangles,3);
isfound(r1,1)=1;
isfound(r2,2)=1;
isfound(r3,3)=1;
n = find(sum(isfound,2)==2);
end
%%
function imposeConsistentOrientation(obj)
% This funtion imposes the same orientation to all triangloes
% in a mesh. This orientation is the one of the first triangle,
% thus arbitrary, and not necessarily positive.
is_oriented = false(obj.ntriangles,1);
is_oriented(1)=true;
%set(0,'RecursionLimit',obj.ntriangles);
not_oriented = 2:obj.ntriangles;
already_oriented_fathers = [];
while numel(not_oriented)
oriented = find(is_oriented)';
oriented = setdiff(oriented,already_oriented_fathers);
if ~numel(oriented)
break;
end
for i = oriented
for j=obj.triangles(i,1)
is_oriented = obj.orientNeighbourTriangles(j,is_oriented);
end
already_oriented_fathers = [already_oriented_fathers i];
end
oriented = find(is_oriented);
not_oriented = setdiff(not_oriented,oriented);
disp([ 'There remain ' num2str(numel(not_oriented)) ])
end
end
function imposeConsistentOrientationFlatMesh(obj)
% This funtion imposes the same orientation to all triangles
% in a mesh. This orientation is the one of the first triangle,
% thus arbitrary, and not necessarily positive.
% The underlying work of this method is to reorient triangles
% with negative area.
side1 = obj.points(obj.triangles(:,1),:);
side2 = obj.points(obj.triangles(:,2),:);
side3 = obj.points(obj.triangles(:,3),:);
vector1 = side2-side1;
vector2 = side3-side1;
cp = cross(vector1,vector2);
%dt = dot(vector1,vector2,2);
%area = sum(cp.^2,2);
%ang = acos(dt);
not_oriented = find(cp(:,3)<0);
obj.triangles(not_oriented,:) = obj.triangles(not_oriented,[1 3 2]);
end
function is_oriented = orientNeighbourTriangles(obj,i,is_oriented)
% assuming the triangle i is oriented, set the same orientation
% in its neighbours and propagate
triangle_neighbours = obj.GetTriangleNeighbours(i); % triangles that share at least one edge
neighbours_not_oriented = ~is_oriented(triangle_neighbours);
remaining_neghbours = triangle_neighbours(neighbours_not_oriented);
if ~numel(remaining_neghbours )
return;
end
vertices = obj.triangles(i,[1 2 3 1 2]);
for r = remaining_neghbours(:)'
if is_oriented(r)
continue;
end
vertices_r = obj.triangles(r,[1 2 3]);
for common_vertex=1:2
idx = find(vertices==vertices_r(common_vertex),1,'first');
if ~numel(idx)
continue;
end
if vertices_r(common_vertex)==vertices(idx+1)
% realign it
obj.triangles(r,:)=obj.triangles(r,[1 3 2]);
end
break;
end
is_oriented(r)=true;
% is_oriented = obj.orientNeighbourTriangles(r,is_oriented);
end
end
%%
function nnonpos = imposePositiveOrientation(obj)
% This function reorganises topology do that every facet has a
% positive orientation. This orientation is required by many
% algorithms and is in general desirable.
% Functionning is only guaranteed if the gravity center of the
% shape lays inside the mesh
centre = mean(obj.points,1);
normals = obj.GetNormalAtFaces(1:obj.ntriangles);
inwardsVector = ones(obj.ntriangles,1)*centre - obj.points(obj.triangles(:,1),:);
isNotPositiveOriented = dot(normals,inwardsVector,2)>0;
% take the ones not positively oriented and reorder (it suffice to swa cols 2 and 3)
nnonpos = numel(nonzeros(isNotPositiveOriented));
obj.triangles(isNotPositiveOriented,[2 3]) = obj.triangles(isNotPositiveOriented,[3 2]);
end
function flag = isInside(obj,points)
% Returns a boolean indicating whether tha input point(s) is inside or outside the closed mesh
% points should be a N x 3 matrix.
tree = AABB_tree(obj);
tree.BuildTree();
obj.ComputeBounds();
n_points = size(points,1);
flag = zeros(n_points,1);
% do a quick bounds check
values_out = find( (points(:,1) < obj.bounds(1)) | (points(:,1) > obj.bounds(2)) |...
(points(:,2) < obj.bounds(3)) | (points(:,2) > obj.bounds(4)) |...
(points(:,3) < obj.bounds(5)) | (points(:,3) > obj.bounds(6)) );
values_in = setdiff(1:n_points,values_out);
% K = 2*norm(obj.bounds([2 4 6])-obj.bounds([1 3 5]));
direction = [0 -1 0]; % any random direction would do
tree.computedIntersections = zeros(numel(values_in),1);
tree.intersect_ray(tree.rootNode,points(values_in,:), direction);
nintersections1 = tree.computedIntersections==1; % only inside points intersect once
flag(values_in)=nintersections1(:)';
end
function [p indicesClosestTriangle] = findClosestSurfacePoint(obj, pointIn)
% Finds the closest point on the surface to a point (or points)
% which in general is not a vertex.
%1. Find closest triangle
% THIS HAS TO BE REDONE
disp('WARNING: findClosestSurfacePoint is inaccurate')
pointsOfTriangles = cat(3,obj.points(obj.triangles(:,1),:),obj.points(obj.triangles(:,2),:),obj.points(obj.triangles(:,3),:));
medicenters = mean(pointsOfTriangles,3);
errorx = medicenters(:,1)*ones(1,size(pointIn,1)) - ones(obj.ntriangles,1) * pointIn(:,1)';
errory = medicenters(:,2)*ones(1,size(pointIn,1)) - ones(obj.ntriangles,1) * pointIn(:,2)';
errorz = medicenters(:,3)*ones(1,size(pointIn,1)) - ones(obj.ntriangles,1) * pointIn(:,3)';
totalError = errorx.^2+errory.^2+errorz.^2;
[dummy indicesClosestTriangle] = min(totalError,[],1);
medicenters = medicenters(indicesClosestTriangle,:);
[indicesClosestTriangle pointInTriangle]= obj.findClosestTriangle(pointIn);
% get normals to faces
normals = obj.GetNormalAtFaces(indicesClosestTriangle);
p = pointIn + normals.*(dot(pointInTriangle-pointIn,normals,2) * ones(1,3));
end
function [indicesClosestTriangle medicenters]= findClosestTriangle(obj, pointIn)
% Find the closest triangle to a point (or points). This is
% usefull if for example the triangularization needs to be
% changed
% compute medicenters
pointsOfTriangles = cat(3,obj.points(obj.triangles(:,1),:),obj.points(obj.triangles(:,2),:),obj.points(obj.triangles(:,3),:));
medicenters = mean(pointsOfTriangles,3);
errorx = medicenters(:,1)*ones(1,size(pointIn,1)) - ones(obj.ntriangles,1) * pointIn(:,1)';
errory = medicenters(:,2)*ones(1,size(pointIn,1)) - ones(obj.ntriangles,1) * pointIn(:,2)';
errorz = medicenters(:,3)*ones(1,size(pointIn,1)) - ones(obj.ntriangles,1) * pointIn(:,3)';
totalError = errorx.^2+errory.^2+errorz.^2;
[dummy indicesClosestTriangle] = min(totalError,[],1);
medicenters = medicenters(indicesClosestTriangle,:);
end
function indicesNclosestPoints = findNClosestVertices(obj, pointIn,N)
% Finds the N closest vertices to a point (or points)
% PointIn has to be a N x 3 array of points
% Note that this does not necessarily give the three vertex of
% the closest triangle!
errorx = obj.points(:,1)*ones(1,size(pointIn,1)) - ones(obj.npoints,1) * pointIn(:,1)';
errory = obj.points(:,2)*ones(1,size(pointIn,1)) - ones(obj.npoints,1) * pointIn(:,2)';
errorz = obj.points(:,3)*ones(1,size(pointIn,1)) - ones(obj.npoints,1) * pointIn(:,3)';
totalError = errorx.^2+errory.^2+errorz.^2;
[totalErrorSorted IX] = sort(totalError,1);
indicesNclosestPoints = IX(1:N,:);
end
function [p distance] = findClosestVertex(obj, pointIn)
% Finds the closest vertex to a point (or points)
% PointIn has to be a N x 3 array of points
errorx = obj.points(:,1)*ones(1,size(pointIn,1)) - ones(obj.npoints,1) * pointIn(:,1)';
errory = obj.points(:,2)*ones(1,size(pointIn,1)) - ones(obj.npoints,1) * pointIn(:,2)';
errorz = obj.points(:,3)*ones(1,size(pointIn,1)) - ones(obj.npoints,1) * pointIn(:,3)';
totalError = errorx.^2+errory.^2+errorz.^2;
[distance p] = min(totalError);
end
function p = find_attribute(obj,at_name)
% returns the index of the attribute if found, -1 otherwise.
n_attributes = numel(obj.attributes);
p=-1;
for i=1:n_attributes
if (strcmp(at_name, obj.attributes(i).name))
p = i;
return;
end
end
end
function at = addVertexAttribute(obj, array,name)
at = AttributeType();
at.attribute='field';
at.name=name;
at.numComp=1; % between 1 and 4
at.type='float';
at.nelements=obj.npoints; %number of vertex
at.attribute_array = array;
% ovewrite if already exists
ind = obj.find_attribute(at.name);
if (ind > 0)
obj.attributes(ind)=at;
else
n_attributes = numel(obj.attributes);
obj.attributes(n_attributes+1)=at;
end
end
% Cleanup the points
function removeDuplicatedPoints(obj)
% This function removes duplicated points from the mesh and updates topology accordingly
[nodup_points, m, n] = unique(obj.points,'rows');
clear nodup_points;
m_sorted = sort(m);
obj.points = obj.points(m_sorted ,:);
old_m_sorted = 1:obj.npoints;
points_to_be_removed = setdiff(old_m_sorted , m_sorted');
replacements = m(n(points_to_be_removed))';
% Remove duplicated labels
for i=1:numel(obj.attributes)
if (size(obj.attributes(i).attribute_array,1)==obj.npoints)
obj.attributes(i).attribute_array =obj.attributes(i).attribute_array(m_sorted,:);
end
end
% Replace indices with duplicateds
for i=1:numel(points_to_be_removed)
obj.triangles(obj.triangles == points_to_be_removed(i))=replacements(i);
end
% remove points and update topology
while(numel(points_to_be_removed))
obj.triangles(obj.triangles>points_to_be_removed(1))=obj.triangles(obj.triangles>points_to_be_removed(1))-1;
points_to_be_removed(1)=[];
points_to_be_removed=points_to_be_removed-1;
end
obj.npoints = size(obj.points,1);
end
function propagateLabel(obj, ind, varargin)
% This function will need some morphomat operations on meshes.
% Then we will do a reconstruction. The seed for the
% reconstruction can be the first point inside the region. This
% should be easy to get since edges are oriented
% the neighbouring vertices. For this, only vertices which lie
% on the positive side of a labelled edge (edge containing two labelled
% vertices) are labelled. Positive means on the sense of the
% cross product of the oriented edge with the face normal.
%
% the label is supposed to be binary!
disp('ERRROR: STILL HAS TO BE IMPLEMENTED')
center= [];
for i=1:size(varargin,2)
if (strcmp(varargin{i},'insidePoint'))
center=varargin{i+1};
end
end
old_labelledVertices = find(obj.attributes(ind).attribute_array);
% figure; viewMesh(obj,'wireframeSurface','color',[0 0 1],'labelColor',2)
% hold on; plot3(obj.points(old_labelledVertices,1),obj.points(old_labelledVertices,2), obj.points(old_labelledVertices,3),'.g','MarkerSize',25 ); hold off
% hold on; text(obj.points(:,1),obj.points(:,2), obj.points(:,3),num2str((1:obj.npoints)'),'FontSize',15 ); hold off
for vert=old_labelledVertices'
% get labelled neighbours
neighbours = obj.GetForwardVertexNeighbours(vert); % this is already positively oriented
for n = 1:size(neighbours,1)
if obj.attributes(ind).attribute_array(neighbours(n,1))
obj.attributes(ind).attribute_array(neighbours(n,2))=1;
end
end
end
labelledVertices = find(obj.attributes(ind).attribute_array);
% figure; viewMesh(obj,'wireframeSurface','color',[0 0 1],'labelColor',2)
%hold on; plot3(obj.points(labelledVertices,1),obj.points(labelledVertices,2), obj.points(labelledVertices,3),'.g','MarkerSize',25 ); hold off
end
% function propagateLabel(obj, ind, varargin)
% % This function propagates the label indicated by ind towards
% % the neighbouring vertices. For this, only vertices which
% lie
% % on the positive side of a labelled edge (edge containing two labelled
% % vertices) are labelled. Positive means on the sense of the
% % cross product of the oriented edge with the face normal.
% %
% % the label is supposed to be binary!
%
%
% center= [];
%
% for i=1:size(varargin,2)
% if (strcmp(varargin{i},'insidePoint'))
% center=varargin{i+1};
% end
%
% end
%
% old_labelledVertices = find(obj.attributes(ind).attribute_array);
% figure; viewMesh(obj,'wireframeSurface','color',[0 0 1],'labelColor',2)
% hold on; plot3(obj.points(labelledVertices,1),obj.points(labelledVertices,2), obj.points(labelledVertices,3),'.g','MarkerSize',25 ); hold off
% hold on; text(obj.points(:,1),obj.points(:,2), obj.points(:,3),num2str((1:obj.npoints)'),'FontSize',15 ); hold off
% for vert=labelledVertices'
% % get labelled neighbours
% neighbours = obj.GetForwardVertexNeighbours(vert); % this is already positively oriented
% for n = 1:size(neighbours,1)
% if obj.attributes(ind).attribute_array(neighbours(n,1))
% obj.attributes(ind).attribute_array(neighbours(n,2))=1;
% end
% end
%
% end
% labelledVertices = find(obj.attributes(ind).attribute_array);
% figure; viewMesh(obj,'wireframeSurface','color',[0 0 1],'labelColor',2)
% hold on; plot3(obj.points(labelledVertices,1),obj.points(labelledVertices,2), obj.points(labelledVertices,3),'.g','MarkerSize',25 ); hold off
% end
%
function [isBorder,borderPaths] = detectBorders(obj)
% This function returns wether an vertex is a border or not
obj.removeDuplicatedPoints();
isBorder = zeros(obj.npoints,1);
borderPaths=[];
pointlist = reshape(obj.triangles,obj.ntriangles*3,1);
pointlist = unique(pointlist);
edges = [];
for i=pointlist(:)'
% get all triangles in which this point appears
[x, ~]=find(obj.triangles == i);
if numel(x>0)
neighbors = obj.triangles(x,:);
neighbors = neighbors(:)';
for j=unique(neighbors)
if nnz(neighbors==j)<2
isBorder(i,:)=1;
if i~=j
[f1,~] = find(edges==j);
[f2,~] = find(edges==i);
if ~numel(intersect(f1,f2))
edges = [edges; i j];
end
end
end
end
end
end
edges = unique(edges,'rows');
% add attribute
at = AttributeType();
at.attribute='field';
at.name='border';
at.numComp=1; % between 1 and 4
at.type='short';
at.nelements=obj.npoints; %number of tuples
for i=1:at.nelements
at.attribute_array(i,:) = isBorder(i);
end
ind = obj.find_attribute(at.name);
if (ind > 0)
obj.attributes(ind)=at;
else
n_attributes = numel(obj.attributes);
obj.attributes(n_attributes+1)=at;
end
% get the borderPaths
borderPoints = find(isBorder);
npaths = 0;
while numel(edges );
npaths = npaths+1;
borderPaths{npaths} = [];
currentIndex=1;
finish=false;
while ~finish
if ~numel(currentIndex)
finish=true;
continue;
end
current = edges(currentIndex,:);
edges(currentIndex,:)=[];
if numel(borderPaths{npaths}) && borderPaths{npaths}(end)==current(2)
current = current([2 1]);
end
extremum = current(2);
borderPaths{npaths} = [ borderPaths{npaths} ;current];
% find neighbours (border edges)
[tri,~]=find(edges==extremum);
if ~numel(tri)
% turn around starting from the other end
borderPaths{npaths}(:) = borderPaths{npaths}(end:-1:1);
current = borderPaths{npaths}(end,:);
[tri,~]=find(edges==current(2));
if ~numel(tri)
finish=true;
%npaths = npaths-1;
%borderPaths={borderPaths{1:npaths}};
continue;
end
end
% find the edge that follows
e = edges(tri,:);
% see if we have finished
if numel(borderPaths{npaths})>2 && current(1)~=borderPaths{npaths}(2) && nnz(e==borderPaths{npaths}(1))
finish=true;
if e(2)==borderPaths{npaths}(end) && e(1)==borderPaths{npaths}(1) || ...
e(1)==borderPaths{npaths}(end) && e(2)==borderPaths{npaths}(1)
% this is the connecting edge - just remove it
edges(tri,:)=[];
end
else
neighbour = setdiff(e(:) ,borderPaths{npaths}(:));
if numel(neighbour) > 1
disp('MeshType::ERROR: more than one neighbour');
return;
elseif numel(neighbour)<1
disp('MeshType::ERROR: less than one neighbour');
return;
end
[tri1,~]=find(edges==neighbour);
[tri2,~]=find(edges==current(2));
currentIndex = intersect(tri1,tri2);
end
end
end
% borderPoints = find(isBorder);
% npaths = 0;
% while numel(edges );
% npaths = npaths+1;
% borderPaths{npaths} = [];
%
% currentIndex=1;
% finish=false;
% while ~finish
% if ~numel(currentIndex)
% finish=true;
% continue;
% end
% current = edges(currentIndex,:);
% edges(currentIndex,:)=[];
% borderPaths{npaths} = [ borderPaths{npaths} ;current];
%
% % find neighbours (border edges)
% [tri,~]=find(edges==current(2));
% if ~numel(tri)
% finish=true;
% %npaths = npaths-1;
% %borderPaths={borderPaths{1:npaths}};
% continue;
% end
% % find the edge that follows
% e = edges(tri,:);
% % see if we have finished
% if numel(borderPaths{npaths})>2 && current(1)~=borderPaths{npaths}(2) && nnz(e==borderPaths{npaths}(1))
% finish=true;
% else
% neighbour = setdiff(e(:) ,borderPaths{npaths}(:));
% if numel(neighbour) > 1
% disp('MeshType::ERROR: more than one neighbour');
% return;
% elseif numel(neighbour)<1
% disp('MeshType::ERROR: less than one neighbour');
% return;
% end
%
% [tri1,~]=find(edges==neighbour);
% [tri2,~]=find(edges==current(2));
% currentIndex = intersect(tri1,tri2);
% end
% end
%
%
% end
end
end % methods
end
function n = cyclicNext(a,b)
n = a+1;
if (n>b)
n = 1;
end
end
|
github
|
vildenst/3D-heart-models-master
|
QuadMeshType.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/class_mesh/QuadMeshType.m
| 3,222 |
utf_8
|
9b6dfff51ad7cca91802f4c03b1ce3a5
|
classdef QuadMeshType < handle
% This class defines a trinagulated mesh
% by Alberto Gomez, 2011
%
properties(GetAccess = 'public', SetAccess = 'public')
end
methods(Access = public)
%constructor
function obj = QuadMeshType(npoints,ncells)
if(nargin > 0)
if(nargin ==1 )
% copy constructor
obj.npoints = npoints.npoints;
obj.ncells = npoints.ncells;
obj.points = npoints.points;
obj.cells = npoints.cells;
for i=1:numel(npoints.attributes)
obj.attributes(i)=AttributeType(npoints.attributes(i));
end
else
obj.npoints = npoints;
obj.ncells = ncells;
obj.points = zeros(npoints,3);
obj.cells = zeros(ncells,10); % this is quadratic meshes!
obj.attributes(1)=AttributeType(obj.npoints);
end
end
end
function p = find_attribute(obj,at_name)
% returns the index of the attribute if found, -1 otherwise.
n_attributes = numel(obj.attributes);
p=-1;
for i=1:n_attributes
if (strcmp(at_name, obj.attributes(i).name))
p = i;
return;
end
end
end
% Cleanup the points
function removeDuplicatedPoints(obj)
% This function removes duplicated points from the mesh and updates topology accordingly
[nodup_points, m, n] = unique(obj.points,'rows');
clear nodup_points;
m_sorted = sort(m);
obj.points = obj.points(m_sorted ,:);
old_m_sorted = 1:obj.npoints;
points_to_be_removed = setdiff(old_m_sorted , m_sorted');
replacements = m(n(points_to_be_removed))';
% Remove duplicated labels
for i=1:numel(obj.attributes)
if (size(obj.attributes(i).attribute_array,1)==obj.npoints)
obj.attributes(i).attribute_array =obj.attributes(i).attribute_array(m_sorted,:);
end
end
% Replace indices with duplicateds
for i=1:numel(points_to_be_removed)
obj.cells(obj.cells == points_to_be_removed(i))=replacements(i);
end
% remove points and update topology
while(numel(points_to_be_removed))
obj.cells(obj.cells>points_to_be_removed(1))=obj.cells(obj.cells>points_to_be_removed(1))-1;
points_to_be_removed(1)=[];
points_to_be_removed=points_to_be_removed-1;
end
obj.npoints = size(obj.points,1);
end
end % methods
end
function n = cyclicNext(a,b)
n = a+1;
if (n>b)
n = 1;
end
end
|
github
|
vildenst/3D-heart-models-master
|
QuadTetMeshType.m
|
.m
|
3D-heart-models-master/Medical_Image_Processing_Toolbox/code/MedicalImageProcessingToolbox/class_mesh/QuadTetMeshType.m
| 3,422 |
utf_8
|
75ac3909ac15eac80a176b58cdf3d2cf
|
classdef QuadTetMeshType < handle
% This class defines a trinagulated mesh
% by Alberto Gomez, 2011
%
properties(GetAccess = 'public', SetAccess = 'public')
npoints=0;
ncells=0;
points=[];% npointsx3 matrix
cells=[];%ntrianglesx3 matrix
bounds = [0 0 0 0 0 0];
attributes = AttributeType(); % for labels, luts, etc
end
methods(Access = public)
%constructor
function obj = QuadMeshType(npoints,ncells)
if(nargin > 0)
if(nargin ==1 )
% copy constructor
obj.npoints = npoints.npoints;
obj.ncells = npoints.ncells;
obj.points = npoints.points;
obj.cells = npoints.cells;
for i=1:numel(npoints.attributes)
obj.attributes(i)=AttributeType(npoints.attributes(i));
end
else
obj.npoints = npoints;
obj.ncells = ncells;
obj.points = zeros(npoints,3);
obj.cells = zeros(ncells,10); % this is quadratic meshes!
obj.attributes(1)=AttributeType(obj.npoints);
end
end
end
function p = find_attribute(obj,at_name)
% returns the index of the attribute if found, -1 otherwise.
n_attributes = numel(obj.attributes);
p=-1;
for i=1:n_attributes
if (strcmp(at_name, obj.attributes(i).name))
p = i;
return;
end
end
end
% Cleanup the points
function removeDuplicatedPoints(obj)
% This function removes duplicated points from the mesh and updates topology accordingly
[nodup_points, m, n] = unique(obj.points,'rows');
clear nodup_points;
m_sorted = sort(m);
obj.points = obj.points(m_sorted ,:);
old_m_sorted = 1:obj.npoints;
points_to_be_removed = setdiff(old_m_sorted , m_sorted');
replacements = m(n(points_to_be_removed))';
% Remove duplicated labels
for i=1:numel(obj.attributes)
if (size(obj.attributes(i).attribute_array,1)==obj.npoints)
obj.attributes(i).attribute_array =obj.attributes(i).attribute_array(m_sorted,:);
end
end
% Replace indices with duplicateds
for i=1:numel(points_to_be_removed)
obj.cells(obj.cells == points_to_be_removed(i))=replacements(i);
end
% remove points and update topology
while(numel(points_to_be_removed))
obj.cells(obj.cells>points_to_be_removed(1))=obj.cells(obj.cells>points_to_be_removed(1))-1;
points_to_be_removed(1)=[];
points_to_be_removed=points_to_be_removed-1;
end
obj.npoints = size(obj.points,1);
end
end % methods
end
function n = cyclicNext(a,b)
n = a+1;
if (n>b)
n = 1;
end
end
|
github
|
vildenst/3D-heart-models-master
|
gmsh2pdetoolbox.m
|
.m
|
3D-heart-models-master/gmsh/utils/converters/matlab/gmsh2pdetoolbox.m
| 9,118 |
utf_8
|
50a4231a31b359c82cee0ce1c21a5567
|
%GMSH2PDETOOLBOX Reads a mesh in msh format, version 1 or 2 and returns the
%arrays p, e and t according to the MATLAB pde toolbox syntax. Filename
%refers to the .msh file. Note that only triangular 2D mesh are processed
%since these are the only elements allowed in pde toolbox.
%
%SEE ALSO load_gmsh load_gmsh4 initmesh
%
% Copyright (C) 2014 Arthur Levy. https://github.com/arthurlevy/
%
% This fucntion uses the routine load_gmsh4 in load_gmsh2.m: Copyright (C)
% 2007 JP Moitinho de Almeida ([email protected]) and R
% Lorphevre(r(point)lorphevre(at)ulg(point)ac(point)be) It is based on
% load_gmsh.m supplied with gmsh-2.0
function [p, e, t] = gmsh2pdetoolbox(filename)
%loads the gmsh file using JP Moitinho de Almeida ([email protected])
% and R Lorphevre(r(point)lorphevre(at)ulg(point)ac(point)be) code.
mesh_structure = load_gmsh4(filename,-1);
%% NODES
%nodes positions
disp('importing nodes');
p = mesh_structure.POS(:,1:2)';
%% EDGES
disp('importing edges');
%find the edges (ie dimension 1)
is_edge = (mesh_structure.ELE_INFOS(:,2)==1);
%add edge data
e = mesh_structure.ELE_NODES(is_edge,1:2)';
e(3,:) = 0;
e(4,:) = 1;
%tag is important for applying boundary conditions
e(5,:) = mesh_structure.ELE_TAGS(is_edge,1)';
e(6,:) = 1;
e(7,:) = 0;
%% TRIANGLES
disp('importing triangles')
is_triangle = (mesh_structure.ELE_INFOS(:,2)==2);
t = mesh_structure.ELE_NODES(is_triangle,1:3)';
t(4,:) = 2;
function msh = load_gmsh4(filename, which)
%% Reads a mesh in msh format, version 1 or 2
%
% Usage:
% To define all variables m.LINES, M.TRIANGLES, etc
% (Warning: This creates a very large structure. Do you really need it?)
% m = load_gmsh4('a.msh')
%
% To define only certain variables (for example TETS and HEXS)
% m = load_gmsh4('a.msh', [ 5 6])
%
% To define no variables (i.e. if you prefer to use m.ELE_INFOS(i,2))
% m = load_gmsh4('a.msh', -1)
% m = load_gmsh4('a.msh', [])
%
% Copyright (C) 2007 JP Moitinho de Almeida ([email protected])
% and R Lorphevre(r(point)lorphevre(at)ulg(point)ac(point)be)
%
% based on load_gmsh.m supplied with gmsh-2.0
%
% Structure msh always has the following elements:
%
% msh.MIN, msh.MAX - Bounding box
% msh.nbNod - Number of nodes
% msh.nbElm - Total number of elements
% msh.nbType(i) - Number of elements of type i (i in 1:19)
% msh.POS(i,j) - j'th coordinate of node i (j in 1:3, i in 1:msh.nbNod)
% msh.ELE_INFOS(i,1) - id of element i (i in 1:msh.nbElm)
% msh.ELE_INFOS(i,2) - type of element i
% msh.ELE_INFOS(i,3) - number of tags for element i
% msh.ELE_INFOS(i,4) - Dimension (0D, 1D, 2D or 3D) of element i
% msh.ELE_TAGS(i,j) - Tags of element i (j in 1:msh.ELE_INFOS(i,3))
% msh.ELE_NODES(i,j) - Nodes of element i (j in 1:k, with
% k = msh.NODES_PER_TYPE_OF_ELEMENT(msh.ELE_INFOS(i,2)))
%
% These elements are created if requested:
%
% msh.nbLines - number of 2 node lines
% msh.LINES(i,1:2) - nodes of line i
% msh.LINES(i,3) - tag (WHICH ?????) of line i
%
% msh.nbTriangles - number of 2 node triangles
% msh.TRIANGLES(i,1:3) - nodes of triangle i
% msh.TRIANGLES(i,4) - tag (WHICH ?????) of triangle i
%
% Etc
% These definitions need to be updated when new elemens types are added to gmsh
%
% msh.Types{i}{1} Number of an element of type i
% msh.Types{i}{2} Dimension (0D, 1D, 2D or 3D) of element of type i
% msh.Types{i}{3} Name to add to the structure with elements of type i
% msh.Types{i}{4} Name to add to the structure with the number of elements of type i
%
nargchk(1, 2, nargin);
msh.Types = { ...
{ 2, 1, 'LINES', 'nbLines'}, ... % 1
{ 3, 2, 'TRIANGLES', 'nbTriangles'}, ...
{ 4, 2, 'QUADS', 'nbQuads'}, ...
{ 4, 3, 'TETS', 'nbTets'}, ...
{ 8, 3, 'HEXAS', 'nbHexas'}, ... %5
{ 6, 3, 'PRISMS', 'nbPrisms'}, ...
{ 5, 3, 'PYRAMIDS', 'nbPyramids'}, ...
{ 3, 1, 'LINES3', 'nbLines3'}, ...
{ 6, 2, 'TRIANGLES6', 'nbTriangles6'}, ...
{ 9, 2, 'QUADS9', 'nbQuads9'}, ... % 10
{ 10, 3, 'TETS10', 'nbTets10'}, ...
{ 27, 3, 'HEXAS27', 'nbHexas27'}, ...
{ 18, 3, 'PRISMS18', 'nbPrisms18'}, ...
{ 14, 3, 'PYRAMIDS14', 'nbPyramids14'}, ...
{ 1, 0, 'POINTS', 'nbPoints'}, ... % 15
{ 8, 3, 'QUADS8', 'nbQuads8'}, ...
{ 20, 3, 'HEXAS20', 'nbHexas20'}, ...
{ 15, 3, 'PRISMS15', 'nbPrisms15'}, ...
{ 13, 3, 'PYRAMIDS13', 'nbPyramids13'}, ...
};
ntypes = length(msh.Types);
if (nargin==1)
which = 1:ntypes;
else
if isscalar(which) && which == -1
which = [];
end
end
% Could check that "which" is properlly defined....
fid = fopen(filename, 'r');
fileformat = 0; % Assume wrong file
tline = fgetl(fid);
if (feof(fid))
disp (sprintf('Empty file: %s', filename));
msh = [];
return;
end
%% Read mesh type
if (strcmp(tline, '$NOD'))
fileformat = 1;
elseif (strcmp(tline, '$MeshFormat'))
fileformat = 2;
tline = fgetl(fid);
if (feof(fid))
disp (sprintf('Syntax error (no version) in: %s', filename));
fileformat = 0;
end
[ form ] = sscanf( tline, '%f %d %d');
% if (form(1) ~= 2)
% disp (sprintf('Unknown mesh format: %s', tline));
% fileformat = 0;
% end
if (form(2) ~= 0)
disp ('Sorry, this program can only read ASCII format');
fileformat = 0;
end
fgetl(fid); % this should be $EndMeshFormat
if (feof(fid))
disp (sprintf('Syntax error (no $EndMeshFormat) in: %s', filename));
fileformat = 0;
end
tline = fgetl(fid); % this should be $Nodes
if (feof(fid))
disp (sprintf('Syntax error (no $Nodes) in: %s', filename));
fileformat = 0;
end
end
if (~fileformat)
msh = [];
return
end
%% Read nodes
if strcmp(tline, '$NOD') || strcmp(tline, '$Nodes')
msh.nbNod = fscanf(fid, '%d', 1);
aux = fscanf(fid, '%g', [4 msh.nbNod]);
msh.POS = aux(2:4,:)';
numids = max(aux(1,:));
IDS = zeros(1, numids);
IDS(aux(1,:)) = 1:msh.nbNod; % This may not be an identity
msh.MAX = max(msh.POS);
msh.MIN = min(msh.POS);
fgetl(fid); % End previous line
fgetl(fid); % Has to be $ENDNOD $EndNodes
else
disp (sprintf('Syntax error (no $Nodes/$NOD) in: %s', filename));
fileformat = 0;
end
%% Read elements
tline = fgetl(fid);
if strcmp(tline,'$ELM') || strcmp(tline, '$Elements')
msh.nbElm = fscanf(fid, '%d', 1);
% read all info about elements into aux (it is faster!)
aux = fscanf(fid, '%g', inf);
start = 1;
msh.ELE_INFOS = zeros(msh.nbElm, 4); % 1 - id, 2 - type, 3 - ntags, 4 - Dimension
msh.ELE_NODES = zeros(msh.nbElm,6); % i - Element, j - ElNodes
if (fileformat == 1)
ntags = 2;
else
ntags = 3; % just a prediction
end
msh.ELE_TAGS = zeros(msh.nbElm, ntags); % format 1: 1 - physical number, 2 - geometrical number
% format 2: 1 - physical number, 2 - geometrical number, 3 - mesh partition number
msh.nbType = zeros(ntypes,1);
for I = 1:msh.nbElm
if (fileformat == 2)
finnish = start + 2;
msh.ELE_INFOS(I, 1:3) = aux(start:finnish);
ntags = aux(finnish);
start = finnish + 1;
finnish = start + ntags -1;
msh.ELE_TAGS(I, 1:ntags) = aux(start:finnish);
start = finnish + 1;
else
finnish = start + 1;
msh.ELE_INFOS(I, 1:2) = aux(start:finnish);
start = finnish + 1; % the third element is nnodes, which we get from the type
msh.ELE_INFOS(I, 3) = 2;
finnish = start + 1;
msh.ELE_TAGS(I, 1:2) = aux(start:finnish);
start = finnish + 2;
end
type = msh.ELE_INFOS(I, 2);
msh.nbType(type) = msh.nbType(type) + 1;
msh.ELE_INFOS(I, 4) = msh.Types{type}{2};
nnodes = msh.Types{type}{1};
finnish = start + nnodes - 1;
msh.ELE_NODES(I, 1:nnodes) = IDS(aux(start:finnish));
start=finnish + 1;
end
fgetl(fid); % Has to be $ENDELM or $EndElements
else
disp (sprintf('Syntax error (no $Elements/$ELM) in: %s', filename));
fileformat = 0;
end
if (fileformat == 0)
msh = [];
end
fclose(fid);
%% This is used to create the explicit lists for types of elements
for i = which
if (~isempty(msh.Types{i}{3}))
cmd = sprintf('msh.%s=msh.nbType(%d);', msh.Types{i}{4}, i);
eval(cmd);
% Dimension
cmd = sprintf('msh.%s=zeros(%d,%d);', msh.Types{i}{3}, msh.nbType(i), msh.Types{i}{1}+1);
eval(cmd);
% Clear nbType for counting, next loop will recompute it
msh.nbType(i) = 0;
end
end
for i = 1:msh.nbElm
type = msh.ELE_INFOS(i,2);
if (find(which == type))
if (~isempty(msh.Types{type}{3}))
msh.nbType(type) = msh.nbType(type)+1;
aux=[ msh.ELE_NODES(i,1:msh.Types{type}{1}), msh.ELE_TAGS(i,1) ];
cmd = sprintf('msh.%s(%d,:)=aux;', msh.Types{type}{3}, msh.nbType(type));
eval(cmd);
end
end
end
return;
|
github
|
vildenst/3D-heart-models-master
|
notSliceAlignment.m
|
.m
|
3D-heart-models-master/Matlab_Process/notSliceAlignment.m
| 10,794 |
utf_8
|
ea94293cc4ba8101a75f2addc6b53570
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% ALIGN SLICES %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find the center point of the point cloud representing the left or right
% ventricle
% Author - Eric Davenne and Kristin McLeod
% SIMULA Research Laboratory
% Contact - [email protected]
% October 2014
% This function aligns automatically segmentation contours. Takes a SEG
% structure as argument and returns a SEG structure with aligned slices.
% Alignement is performed using a linear least square estimation of the
% center of all slices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_shift = sliceAlignment(SEG,RVyes,IsFullTemporal)
% DO NOTHING, SLICES ARE ALREADY ALIGNED FOR THIS DATASET
sizen=size(SEG.EndoX);
K = sizen(1, 1);
N = sizen(1, 2);
S = sizen(1, 3);
sizenEpi=size(SEG.EpiX);
KEpi = sizenEpi(1, 1);
NEpi = sizenEpi(1, 2);
SEpi = sizenEpi(1, 3);
if RVyes==1
sizenRV=size(SEG.RVEndoX);
KRV = sizenRV(1, 1);
NRV = sizenRV(1, 2);
SRV = sizenRV(1, 3);
zRV = (1:SRV)*SEG.SliceThickness;
%XRV_avgs = mean(SEG.RVEndoX);
%YRV_avgs = mean(SEG.RVEndoY);
end
%
i = 1;
for s = 1:S
if s > 1
if ~isnan(endo(k,1))
i = i+1;
end
end
for k = 1:K
EndoX(:,:)=SEG.EndoX(:,1,s);
EndoY(:,:)=SEG.EndoY(:,1,s);
endo = sum(EndoX,2);
% Remove NaN values in the array
if ~isnan(endo(k,1))
tmp1(k,1) = EndoX(k,1);
tmp2(k,1) = EndoY(k,1);
EndoXnew(k,1,i) = tmp1(k,1);
EndoYnew(k,1,i) = tmp2(k,1);
end
end
end
i = 1;
for s = 1:SEpi
if s > 1
if ~isnan(epi(k,1))
i = i+1;
end
end
for k = 1:KEpi
EpiX(:,:)=SEG.EpiX(:,1,s);
EpiY(:,:)=SEG.EpiY(:,1,s);
epi = sum(EpiX,2);
% Remove NaN values in the array
if ~isnan(epi(k,1))
tmp1(k,1) = EpiX(k,1);
tmp2(k,1) = EpiY(k,1);
EpiXnew(k,1,i) = tmp1(k,1);
EpiYnew(k,1,i) = tmp2(k,1);
end
end
end
i = 1;
for s = 1:SRV
if s > 1
if ~isnan(rv(k,1))
i = i+1;
end
end
for k = 1:KRV
RVX(:,:)=SEG.RVEndoX(:,1,s);
RVY(:,:)=SEG.RVEndoY(:,1,s);
rv = sum(RVX,2);
% Remove NaN values in the array
if ~isnan(rv(k,1))
tmp1(k,1) = RVX(k,1);
tmp2(k,1) = RVY(k,1);
RVEndoXnew(k,1,i) = tmp1(k,1);
RVEndoYnew(k,1,i) = tmp2(k,1);
end
end
end
SEG_shift = SEG;
%clear SEG_shift.EndoX SEG_shift.EndoY SEG_shift.EpiX SEG_shift.EpiY SEG_shift.RVEndoX SEG_shift.RVEndoY
SEG_shift.EndoXnew = EndoXnew;
SEG_shift.EndoYnew = EndoYnew;
SEG_shift.EpiXnew = EpiXnew;
SEG_shift.EpiYnew = EpiYnew;
SEG_shift.RVEndoXnew = RVEndoXnew;
SEG_shift.RVEndoYnew = RVEndoYnew;
SEG_shift.isFullTemporal = IsFullTemporal;
%
% % X_avgs : array cointaining the barycenters of each slice and frame
% % X_avgs(1, frame, slice)
% % contour barycenters are computed as the mean of all LV contour points
% % in a slice
%
% for s = 1:S
% if ~isnan(SEG.EndoX(1,1,s))
% X_avgs = 0.5*mean(SEG.EpiX + SEG.EndoX);
% Y_avgs = 0.5*mean(SEG.EpiY + SEG.EndoY);
% else
% X_avgs = mean(SEG.EpiX);
% Y_avgs = mean(SEG.EpiY);
% end
% end
%
%
%
zEndo = (1:S)*SEG.SliceThickness;
zEpi = (1:SEpi)*SEG.SliceThickness;
%
% if IsFullTemporal == 1
% for n=1:N
%
% x = X_avgs(1, n, :);
% y = Y_avgs(1, n, :);
%
% % Computing least squares linear regression of barycenters for both
% % coordinates X and Y.
%
% lmX = LinearModel.fit(zEndo, x(:));
% lmY = LinearModel.fit(zEndo, y(:));
%
% % estX linear least squares estimation of barycenter X coordinate
%
% estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zEndo;
% estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zEndo;
%
% % Shifting each segment contour so that all barycenters are located
% % on the regression lines for both X and Y coordinates.
%
% for s=1:S
%
% shiftX = x(:) - estX(s);
% shiftY = y(:) - estY(s);
%
% SEG_shift.EndoX(:, n, s) = SEG.EndoX(:, n, s) - shiftX(s);
% SEG_shift.EndoY(:, n, s) = SEG.EndoY(:, n, s) - shiftY(s);
% end
% end
% for n = 1:N
% x = X_avgs(1, n, :);
% y = Y_avgs(1, n, :);
%
% % Computing least squares linear regression of barycenters for both
% % coordinates X and Y.
%
% lmX = LinearModel.fit(zEpi, x(:));
% lmY = LinearModel.fit(zEpi, y(:));
%
% % estX linear least squares estimation of barycenter X coordinate
%
% estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zEpi;
% estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zEpi;
%
% % Shifting each segment contour so that all barycenters are located
% % on the regression lines for both X and Y coordinates.
% for s=1:SEpi
%
% shiftX = x(:) - estX(s);
% shiftY = y(:) - estY(s);
%
% SEG_shift.EpiX(:, n, s) = SEG.EpiX(:, n, s) - shiftX(s);
% SEG_shift.EpiY(:, n, s) = SEG.EpiY(:, n, s) - shiftY(s);
% end
% end
% if RVyes == 1
% for n = 1:N
% %x = XRV_avgs(1, n, :);
% %y = YRV_avgs(1, n, :);
% x = X_avgs(1, n, :);
% y = Y_avgs(1, n, :);
%
% % Computing least squares linear regression of barycenters for both
% % coordinates X and Y.
%
% lmX = LinearModel.fit(zRV, x(:));
% lmY = LinearModel.fit(zRV, y(:));
%
% % estX linear least squares estimation of barycenter X coordinate
%
% estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zRV;
% estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zRV;
%
% % Shifting each segment contour so that all barycenters are located
% % on the regression lines for both X and Y coordinates.
% for s=1:SRV
%
% shiftX = x(:) - estX(s);
% shiftY = y(:) - estY(s);
%
% if SEG_shift.isFullTemporal == 1
% if n == SEG.EDT || n == SEG.EST
% SEG_shift.RVEndoX(:, n, s) = SEG.RVEndoX(:, n, s) - shiftX(s);
% SEG_shift.RVEndoY(:, n, s) = SEG.RVEndoY(:, n, s) - shiftY(s);
% end
% else
% SEG_shift.RVEndoX(:, n, s) = SEG.RVEndoX(:, n, s) - shiftX(s);
% SEG_shift.RVEndoY(:, n, s) = SEG.RVEndoY(:, n, s) - shiftY(s);
% end
% end
% end
% end
% else
for n=1
%x = X_avgs(1, n, :);
%y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
%lmX = LinearModel.fit(zEndo, x(:));
%lmY = LinearModel.fit(zEndo, y(:));
% estX linear least squares estimation of barycenter X coordinate
%estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zEndo;
%estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zEndo;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:S
%shiftX = x(:) - estX(s);
%shiftY = y(:) - estY(s);
SEG_shift.EndoX(:, n, s) = SEG.EndoX(:, n, s); %- shiftX(s);
SEG_shift.EndoY(:, n, s) = SEG.EndoY(:, n, s); %- shiftY(s);
end
end
for n = 1
%x = X_avgs(1, n, :);
%y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
%lmX = LinearModel.fit(zEpi, x(:));
%lmY = LinearModel.fit(zEpi, y(:));
% estX linear least squares estimation of barycenter X coordinate
%estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zEpi;
%estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zEpi;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:SEpi
%shiftX = x(:) - estX(s);
%shiftY = y(:) - estY(s);
SEG_shift.EpiX(:, n, s) = SEG.EpiX(:, n, s); % - shiftX(s);
SEG_shift.EpiY(:, n, s) = SEG.EpiY(:, n, s); % - shiftY(s);
end
end
if RVyes == 1
for n = 1
%x = XRV_avgs(1, n, :);
%y = YRV_avgs(1, n, :);
%x = X_avgs(1, n, :);
%y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
%lmX = LinearModel.fit(zRV, x(:));
%lmY = LinearModel.fit(zRV, y(:));
% estX linear least squares estimation of barycenter X coordinate
%estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zRV;
%estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zRV;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:SRV
%shiftX = x(:) - estX(s);
%shiftY = y(:) - estY(s);
if SEG_shift.isFullTemporal == 1
if n == SEG.EDT || n == SEG.EST
SEG_shift.RVEndoX(:, n, s) = SEG.RVEndoX(:, n, s); % - shiftX(s);
SEG_shift.RVEndoY(:, n, s) = SEG.RVEndoY(:, n, s); % - shiftY(s);
end
else
SEG_shift.RVEndoX(:, n, s) = SEG.RVEndoX(:, n, s); % - shiftX(s);
SEG_shift.RVEndoY(:, n, s) = SEG.RVEndoY(:, n, s); % - shiftY(s);
end
end
end
% end
end
|
github
|
vildenst/3D-heart-models-master
|
sliceAlignmentwithBivEpi.m
|
.m
|
3D-heart-models-master/Matlab_Process/sliceAlignmentwithBivEpi.m
| 10,222 |
utf_8
|
7472fc9053aa8e361502b124939956d6
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% ALIGN SLICES %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find the center point of the point cloud representing the left or right
% ventricle
% Author - Eric Davenne and Kristin McLeod
% SIMULA Research Laboratory
% Contact - [email protected]
% July 2016
% This function aligns automatically segmentation contours. Takes a SEG
% structure as argument and returns a SEG structure with aligned slices.
% Alignement is performed using a linear least square estimation of the
% center of all slices
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_shift = sliceAlignmentwithBivEpi(SEG,RVyes,IsFullTemporal)
sizen=size(SEG.EndoX);
K = sizen(1, 1);
N = sizen(1, 2);
S = sizen(1, 3);
zEndo = (1:S)*SEG.SliceThickness;
sizenEpi=size(SEG.EpiX);
KEpi = sizenEpi(1, 1);
NEpi = sizenEpi(1, 2);
SEpi = sizenEpi(1, 3);
zEpi = (1:SEpi)*SEG.SliceThickness;
if RVyes==1
sizenRV=size(SEG.RVEndoX);
KRV = sizenRV(1, 1);
NRV = sizenRV(1, 2);
SRV = sizenRV(1, 3);
zRV = (1:SRV)*SEG.SliceThickness;
sizenRVEpi=size(SEG.RVEpiX);
KRVEpi = sizenRVEpi(1, 1);
NRVEpi = sizenRVEpi(1, 2);
SRVEpi = sizenRVEpi(1, 3);
zRVEpi = (1:SRVEpi)*SEG.SliceThickness;
XRV_avgs = mean(SEG.RVEndoX);
YRV_avgs = mean(SEG.RVEndoY);
end
% X_avgs : array cointaining the barycenters of each slice and frame
% X_avgs(1, frame, slice)
% contour barycenters are computed as the mean of all LV contour points
% in a slice
for s = 1:S
if ~isnan(SEG.EndoX(1,1,s))
X_avgs = 0.5*mean(SEG.EpiX + SEG.EndoX);
Y_avgs = 0.5*mean(SEG.EpiY + SEG.EndoY);
else
X_avgs = mean(SEG.EpiX);
Y_avgs = mean(SEG.EpiY);
end
end
SEG_shift = SEG;
SEG_shift.isFullTemporal = 1;
for n=1:N
x = X_avgs(1, n, :);
y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
lmX = LinearModel.fit(zEndo, x(:));
lmY = LinearModel.fit(zEndo, y(:));
% estX linear least squares estimation of barycenter X coordinate
estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zEndo;
estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zEndo;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:S
shiftX = x(:) - estX(s);
shiftY = y(:) - estY(s);
SEG_shift.EndoX(:, n, s) = SEG.EndoX(:, n, s) - shiftX(s);
SEG_shift.EndoY(:, n, s) = SEG.EndoY(:, n, s) - shiftY(s);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Finding X and Y coordinates of pixels with scars
[X_scar, Y_scar] = find(SEG.Scar.Result(:, :, s));
% Scar pixels, if present in the slice, shall be shifted
if sum(size(X_scar)) > 1
% Calculating new scar pixels' positions
X_scar = abs(round(X_scar - shiftX(s)));
Y_scar = abs(round(Y_scar - shiftY(s)));
dims = size(SEG_shift.Scar.Result(:,:, s));
% Providing linear indices
ind = sub2ind(dims, X_scar, Y_scar);
U = zeros(dims);
% Creating new pixel matrix
U(ind) = 1;
SEG_shift.Scar.Result(:,:, s) = U;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
end
for n = 1:N
%x = X_avgs(1, n, :);
%y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
lmX = LinearModel.fit(zEpi, x(:));
lmY = LinearModel.fit(zEpi, y(:));
% estX linear least squares estimation of barycenter X coordinate
estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zEpi;
estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zEpi;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:SEpi
shiftX = x(:) - estX(s);
shiftY = y(:) - estY(s);
SEG_shift.EpiX(:, n, s) = SEG.EpiX(:, n, s) - shiftX(s);
SEG_shift.EpiY(:, n, s) = SEG.EpiY(:, n, s) - shiftY(s);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% RV calignment (if included)
if RVyes == 1
for n = 1:N
%??
%x = XRV_avgs(1, n, :);
%y = YRV_avgs(1, n, :);
% x = X_avgs(1, n, :);
% y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
lmX = LinearModel.fit(zRV, x(:));
lmY = LinearModel.fit(zRV, y(:));
% estX linear least squares estimation of barycenter X coordinate
estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zRV;
estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zRV;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:SRV
shiftX = x(:) - estX(s);
shiftY = y(:) - estY(s);
if SEG_shift.isFullTemporal == 1
if n == SEG.EDT || n == SEG.EST
SEG_shift.RVEndoX(:, n, s) = SEG.RVEndoX(:, n, s) - shiftX(s);
SEG_shift.RVEndoY(:, n, s) = SEG.RVEndoY(:, n, s) - shiftY(s);
end
else
SEG_shift.RVEndoX(:, n, s) = SEG.RVEndoX(:, n, s) - shiftX(s);
SEG_shift.RVEndoY(:, n, s) = SEG.RVEndoY(:, n, s) - shiftY(s);
end
end
end
for n = 1:N
%x = XRV_avgs(1, n, :);
%y = YRV_avgs(1, n, :);
% x = X_avgs(1, n, :);
% y = Y_avgs(1, n, :);
% Computing least squares linear regression of barycenters for both
% coordinates X and Y.
lmX = LinearModel.fit(zRVEpi, x(:));
lmY = LinearModel.fit(zRVEpi, y(:));
% estX linear least squares estimation of barycenter X coordinate
estX = lmX.Coefficients.Estimate(1) + lmX.Coefficients.Estimate(2)*zRVEpi;
estY = lmY.Coefficients.Estimate(1) + lmY.Coefficients.Estimate(2)*zRVEpi;
% Shifting each segment contour so that all barycenters are located
% on the regression lines for both X and Y coordinates.
for s=1:SRVEpi
shiftX = x(:) - estX(s);
shiftY = y(:) - estY(s);
if SEG_shift.isFullTemporal == 1
if n == SEG.EDT || n == SEG.EST
SEG_shift.RVEpiX(:, n, s) = SEG.RVEpiX(:, n, s) - shiftX(s);
SEG_shift.RVEpiY(:, n, s) = SEG.RVEpiY(:, n, s) - shiftY(s);
end
else
SEG_shift.RVEpiX(:, n, s) = SEG.RVEpiX(:, n, s) - shiftX(s);
SEG_shift.RVEpiY(:, n, s) = SEG.RVEpiY(:, n, s) - shiftY(s);
end
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Cleaning the data
i = 1;
for s = 1:S
if s > 1
if ~isnan(endo(k,1))
i = i+1;
end
end
for k = 1:K
EndoX(:,:)=SEG_shift.EndoX(:,:,s);
EndoY(:,:)=SEG_shift.EndoY(:,:,s);
endo = sum(EndoX,2);
% Remove NaN values in the array
if ~isnan(endo(k,1))
tmp1(k,:) = EndoX(k,:);
tmp2(k,:) = EndoY(k,:);
for n = 1:N
EndoXnew(k,n,i) = tmp1(k,n);
EndoYnew(k,n,i) = tmp2(k,n);
end
end
end
end
i = 1;
for s = 1:SEpi
if s > 1
if ~isnan(epi(k,1))
i = i+1;
end
end
for k = 1:KEpi
EpiX(:,:)=SEG_shift.EpiX(:,:,s);
EpiY(:,:)=SEG_shift.EpiY(:,:,s);
epi = sum(EpiX,2);
% Remove NaN values in the array
if ~isnan(epi(k,1))
tmp1(k,:) = EpiX(k,:);
tmp2(k,:) = EpiY(k,:);
for n = 1:NEpi
EpiXnew(k,n,i) = tmp1(k,n);
EpiYnew(k,n,i) = tmp2(k,n);
end
end
end
end
i = 1;
for s = 1:SRV
if s > 1
if ~isnan(rv(k,1))
i = i+1;
end
end
for k = 1:KRV
RVX(:,:)=SEG_shift.RVEndoX(:,1,s);
RVY(:,:)=SEG_shift.RVEndoY(:,1,s);
rv = sum(RVX,2);
% Remove NaN values in the array
if ~isnan(rv(k,1))
tmp1(k,:) = RVX(k,:);
tmp2(k,:) = RVY(k,:);
for n = 1:NRV
RVEndoXnew(k,n,i) = tmp1(k,n);
RVEndoYnew(k,n,i) = tmp2(k,n);
end
end
end
end
i = 1;
for s = 1:SRVEpi
if s > 1
if ~isnan(rv(k,1))
i = i+1;
end
end
for k = 1:KRVEpi
RVX(:,:)=SEG_shift.RVEpiX(:,1,s);
RVY(:,:)=SEG_shift.RVEpiY(:,1,s);
rv = sum(RVX,2);
% Remove NaN values in the array
if ~isnan(rv(k,1))
tmp1(k,:) = RVX(k,:);
tmp2(k,:) = RVY(k,:);
for n = 1:NRV
RVEpiXnew(k,n,i) = tmp1(k,n);
RVEpiYnew(k,n,i) = tmp2(k,n);
end
end
end
end
SEG_shift.EndoXnew = EndoXnew;
SEG_shift.EndoYnew = EndoYnew;
SEG_shift.EpiXnew = EpiXnew;
SEG_shift.EpiYnew = EpiYnew;
SEG_shift.RVEndoXnew = RVEndoXnew;
SEG_shift.RVEndoYnew = RVEndoYnew;
SEG_shift.RVEpiXnew = RVEpiXnew;
SEG_shift.RVEpiYnew = RVEpiYnew;
end
|
github
|
vildenst/3D-heart-models-master
|
pairwiseAlignmentwithBivEpi.m
|
.m
|
3D-heart-models-master/Matlab_Process/pairwiseAlignmentwithBivEpi.m
| 30,224 |
utf_8
|
8037aa97add81bb8bece5bc9457a8bd4
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% TRANSFORM MOVING SUBJECT TO REFERENCE %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find the center point of the point cloud representing the left or right
% ventricle
% Author - Kristin Mcleod
% SIMULA Research Laboratory
% Contact - [email protected]
% July 2016
% Takes as input the filenames of the reference subject and target subject
% which should be pre-aligned and temporally resampled first using
% autoAlign.m and temporalResample.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG2new = pairwiseAlignmentwithBivEpi(SEG_fixed,SEG_moving,IsFullTemporal)
%% Read data
% Read first filename to assign SEG1
SEG1 = SEG_fixed;
sizen1 = size(SEG1.EndoXnew);
sizen1epi = size(SEG1.EpiXnew);
sizenRV1 = size(SEG1.RVEndoXnew);
sizenRVEpi1 = size(SEG1.RVEpiXnew);
K1 = sizen1(1,1);
N1 = sizen1(1,2);
S1 = sizen1(1,3);
K1epi = sizen1epi(1,1);
N1epi = sizen1epi(1,2);
S1epi = sizen1epi(1,3);
KRV1 = sizenRV1(1,1);
NRV1 = sizenRV1(1,2);
SRV1 = sizenRV1(1,3);
KRVEpi1 = sizenRVEpi1(1,1);
NRVEpi1 = sizenRVEpi1(1,2);
SRVEpi1 = sizenRVEpi1(1,3);
EndoZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[K1 1]);
EpiZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[K1epi 1]);
RVEndoZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[KRV1 1]);
RVEpiZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[KRVEpi1 1]);
% Read second filename to assign SEG2
SEG2 = SEG_moving;
sizen2 = size(SEG2.EndoXnew);
sizen2epi = size(SEG2.EpiXnew);
sizenRV2 = size(SEG2.RVEndoXnew);
sizenRVEpi2 = size(SEG2.RVEpiXnew);
K2 = sizen2(1,1);
N2 = sizen2(1,2);
S2 = sizen2(1,3);
K2epi = sizen2epi(1,1);
N2epi = sizen2epi(1,2);
S2epi = sizen2epi(1,3);
KRV2 = sizenRV2(1,1);
NRV2 = sizenRV2(1,2);
SRV2 = sizenRV2(1,3);
KRVEpi2 = sizenRVEpi2(1,1);
NRVEpi2 = sizenRVEpi2(1,2);
SRVEpi2 = sizenRVEpi2(1,3);
EndoZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[K2 1]);
EpiZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[K2epi 1]);
RVEndoZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[KRV2 1]);
RVEpiZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[KRVEpi2 1]);
%% Create physical points from EndoX and EndoY for fixed patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
%%% WHAT IS THIS FOR? %%%
baryCentreLVold1(1,1) = mean(mean(SEG1.EndoXnew(:,1,:)));
baryCentreLVold1(1,2) = mean(mean(SEG1.EndoYnew(:,1,:)));
baryCentreRVold1(1,1) = mean(mean(SEG1.RVEndoXnew(:,1,:)));
baryCentreRVold1(1,2) = mean(mean(SEG1.RVEndoYnew(:,1,:)));
directionBefore1 = baryCentreLVold1 - baryCentreRVold1;
lengthDirectionBefore1 = sqrt(directionBefore1(1,1)^2 + directionBefore1(1,2)^2);
moveInDirection1 = SEG1.ResolutionX * lengthDirectionBefore1 - lengthDirectionBefore1;
%%% %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if IsFullTemporal == 1
for n = 1:N1
for s = 1:S1
for k = 1:K1
i = (s-1)*K1+k;
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.EndoXnew(k,n,s);']);
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.EndoYnew(k,n,s);']);
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,3) = EndoZ1(k,s);']);
end
end
end
% Same for Epi
for n = 1:N1epi
for s = 1:S1epi
for k = 1:K1epi
i = (s-1)*K1epi+k;
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.EpiXnew(k,n,s);']);
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.EpiYnew(k,n,s);']);
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,3) = EpiZ1(k,s);']);
end
end
end
%Same for RV endo
for n = 1:NRV1
for s = 1:SRV1
for k = 1:KRV1
i = (s-1)*KRV1+k;
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.RVEndoXnew(k,n,s);']);
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.RVEndoYnew(k,n,s);']);
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ1(k,s);']);
end
end
end
%Same for RV epi
for n = 1:NRVEpi1
for s = 1:SRVEpi1
for k = 1:KRVEpi1
i = (s-1)*KRVEpi1+k;
eval(['SEG1.RVEpiPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.RVEpiXnew(k,n,s);']);
eval(['SEG1.RVEpiPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.RVEpiYnew(k,n,s);']);
eval(['SEG1.RVEpiPoints.Frame' int2str(n) '(i,3) = RVEpiZ1(k,s);']);
end
end
end
%% Create physical points from EndoX and EndoY for moving patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
baryCentreLVold2(1,1) = mean(mean(SEG2.EndoXnew(:,1,:)));
baryCentreLVold2(1,2) = mean(mean(SEG2.EndoYnew(:,1,:)));
%baryCentreLVold(1,3) = mean(mean(SEG_shift_resampled.ResolutionX*EndoZ));
baryCentreRVold2(1,1) = mean(mean(SEG2.RVEndoXnew(:,1,:)));
baryCentreRVold2(1,2) = mean(mean(SEG2.RVEndoYnew(:,1,:)));
%baryCentreRVold(1,3) = mean(mean(SEG_shift_resampled.ResolutionX*RVEndoZ));
directionBefore2 = baryCentreLVold2 - baryCentreRVold2;
lengthDirectionBefore2 = sqrt(directionBefore2(1,1)^2 + directionBefore2(1,2)^2);
moveInDirection2 = SEG2.ResolutionX * lengthDirectionBefore2 - lengthDirectionBefore2;
for n = 1:N2
for s = 1:S2
for k = 1:K2
i = (s-1)*K2+k;
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.EndoXnew(k,n,s);']);
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.EndoYnew(k,n,s);']);
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,3) = EndoZ2(k,s);']);
end
end
end
% Same for Epi
for n = 1:N2epi
for s = 1:S2epi
for k = 1:K2epi
i = (s-1)*K2epi+k;
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.EpiXnew(k,n,s);']);
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.EpiYnew(k,n,s);']);
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,3) = EpiZ2(k,s);']);
end
end
end
% Same for RV Endo
for n = 1:NRV2
for s = 1:SRV2
for k = 1:KRV2
i = (s-1)*KRV2+k;
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.RVEndoXnew(k,n,s);']);
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.RVEndoYnew(k,n,s);']);
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ2(k,s);']);
end
end
end
% Same for RV Epi
for n = 1:NRVEpi2
for s = 1:SRVEpi2
for k = 1:KRVEpi2
i = (s-1)*KRVEpi2+k;
eval(['SEG2.RVEpiPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.RVEpiXnew(k,n,s);']);
eval(['SEG2.RVEpiPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.RVEpiYnew(k,n,s);']);
eval(['SEG2.RVEpiPoints.Frame' int2str(n) '(i,3) = RVEpiZ2(k,s);']);
end
end
end
%% Compute transformation components (scaling, translation, rotation)
% Compute barycentres (choose the 1st frame as the reference)
baryCentreLV1(1,1) = mean(SEG1.EndoPoints.Frame1(:,1));
baryCentreLV1(1,2) = mean(SEG1.EndoPoints.Frame1(:,2));
baryCentreLV1(1,3) = mean(SEG1.EndoPoints.Frame1(:,3));
baryCentreRV1(1,1) = mean(SEG1.RVEndoPoints.Frame1(:,1));
baryCentreRV1(1,2) = mean(SEG1.RVEndoPoints.Frame1(:,2));
baryCentreRV1(1,3) = mean(SEG1.RVEndoPoints.Frame1(:,3));
baryCentreLV2(1,1) = mean(SEG2.EndoPoints.Frame1(:,1));
baryCentreLV2(1,2) = mean(SEG2.EndoPoints.Frame1(:,2));
baryCentreLV2(1,3) = mean(SEG2.EndoPoints.Frame1(:,3));
baryCentreRV2(1,1) = mean(SEG2.RVEndoPoints.Frame1(:,1));
baryCentreRV2(1,2) = mean(SEG2.RVEndoPoints.Frame1(:,2));
baryCentreRV2(1,3) = mean(SEG2.RVEndoPoints.Frame1(:,3));
% Get length of line segments joining LV centre and RV centre
length1 = sqrt((abs(baryCentreLV1(1,1)-baryCentreRV1(1,1))^2 + ...
abs(baryCentreLV1(1,2) - baryCentreRV1(1,2))^2 + ...
abs(baryCentreLV1(1,3) - baryCentreRV1(1,3))^2));
length2 = sqrt((abs(baryCentreLV2(1,1)-baryCentreRV2(1,1))^2 + ...
abs(baryCentreLV2(1,2) - baryCentreRV2(1,2))^2 + ...
abs(baryCentreLV2(1,3) - baryCentreRV2(1,3))^2));
% Compute scaling factor between line segments
scale = length1 / length2;
% Compute translation (translate to match x-points)
translation = baryCentreLV2-baryCentreLV1;
%Copy to new struct
SEG2new = SEG2;
SEG1new = SEG1;
%% Translate main axis of moving patient back to the origin
for n = 1:N2
eval(['l = length(SEG2.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2.EndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for Epi
for n = 1:N2epi
eval(['l = length(SEG2.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2.EpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for RV Endo
for n = 1:NRV2
eval(['l = length(SEG2.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2.RVEndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for RV Epi
for n = 1:NRVEpi2
eval(['l = length(SEG2.RVEpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEpiPoints.Frame' int2str(n) '(i,:) = SEG2.RVEpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Do for fixed subject as well
for n = 1:N1
eval(['l = length(SEG1.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.EndoPoints.Frame' int2str(n) '(i,:) = SEG1.EndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for Epi
for n = 1:N1epi
eval(['l = length(SEG1.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.EpiPoints.Frame' int2str(n) '(i,:) = SEG1.EpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for RV Endo
for n = 1:NRV1
eval(['l = length(SEG1.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG1.RVEndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for RV Epi
for n = 1:NRVEpi1
eval(['l = length(SEG1.RVEpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.RVEpiPoints.Frame' int2str(n) '(i,:) = SEG1.RVEpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Rotate
baryCentreLV1new(1,1) = mean(SEG1new.EndoPoints.Frame1(1:80,1));
baryCentreLV1new(1,2) = mean(SEG1new.EndoPoints.Frame1(1:80,2));
baryCentreLV1new(1,3) = mean(SEG1new.EndoPoints.Frame1(1:80,3));
baryCentreRV1new(1,1) = mean(SEG1new.RVEndoPoints.Frame1(1:80,1));
baryCentreRV1new(1,2) = mean(SEG1new.RVEndoPoints.Frame1(1:80,2));
baryCentreRV1new(1,3) = mean(SEG1new.RVEndoPoints.Frame1(1:80,3));
baryCentreLV2new(1,1) = mean(SEG2new.EndoPoints.Frame1(1:80,1));
baryCentreLV2new(1,2) = mean(SEG2new.EndoPoints.Frame1(1:80,2));
baryCentreLV2new(1,3) = mean(SEG2new.EndoPoints.Frame1(1:80,3));
baryCentreRV2new(1,1) = mean(SEG2new.RVEndoPoints.Frame1(1:80,1));
baryCentreRV2new(1,2) = mean(SEG2new.RVEndoPoints.Frame1(1:80,2));
baryCentreRV2new(1,3) = mean(SEG2new.RVEndoPoints.Frame1(1:80,3));
baryCentreLV1normed = ((baryCentreRV1new-(baryCentreLV1new)));
baryCentreLV2normed = ((baryCentreRV2new-(baryCentreLV2new)));
% Compute angle of rotation between the line segments
rotationAngle = acos((baryCentreLV1normed(1,1) * baryCentreLV2normed(1,1) + ...
baryCentreLV1normed(1,2) * baryCentreLV2normed(1,2))/(...
sqrt(baryCentreLV1normed(1,1)^2 + baryCentreLV1normed(1,2)^2) * ...
sqrt(baryCentreLV2normed(1,1)^2 + baryCentreLV2normed(1,2)^2)));
%rotationAngle = rotationAngle*180/pi;
rotationMatrix = [cos(rotationAngle) sin(rotationAngle) 0; ...
-sin(rotationAngle) cos(rotationAngle) 0; ...
0 0 1];
for n = 1:N2
eval(['l = length(SEG2new.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2new.EndoPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for Epi
for n = 1:N2epi
eval(['l = length(SEG2new.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2new.EpiPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for RV Endo
for n = 1:NRV2
eval(['l = length(SEG2new.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for RV Epi
for n = 1:NRVEpi2
eval(['l = length(SEG2new.RVEpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEpiPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEpiPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
%% Translate to fit main axis of fixed patient
for n = 1:N2
eval(['l = length(SEG2new.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2new.EndoPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for Epi
for n = 1:N2epi
eval(['l = length(SEG2new.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2new.EpiPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for RV Endo
for n = 1:NRV2
eval(['l = length(SEG2new.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for RV Epi
for n = 1:NRVEpi2
eval(['l = length(SEG2new.RVEpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEpiPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEpiPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
else %if isFullTemporal
%% Create physical points from EndoX and EndoY for fixed patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
%%%%%%%%%%%%%
% LV Endo
for n = 1
for s = 1:S1
for k = 1:K1
i = (s-1)*K1+k;
SEG1.EndoPoints.Frame{n}(i,1) = SEG1.ResolutionX *...
SEG1.EndoXnew(k,n,s);
SEG1.EndoPoints.Frame{n}(i,2) = SEG1.ResolutionY *...
SEG1.EndoYnew(k,n,s);
SEG1.EndoPoints.Frame{n}(i,3) = EndoZ1(k,s);
end
end
end
%%%%%%%%%%%%%
% LV Epi
for n = 1
for s = 1:S1epi
for k = 1:K1epi
i = (s-1)*K1epi+k;
SEG1.EpiPoints.Frame{n}(i,1) = SEG1.ResolutionX *...
SEG1.EpiXnew(k,n,s);
SEG1.EpiPoints.Frame{n}(i,2) = SEG1.ResolutionY *...
SEG1.EpiYnew(k,n,s);
SEG1.EpiPoints.Frame{n}(i,3) = EpiZ1(k,s);
end
end
end
%%%%%%%%%%%%%
% RV endo
for n = 1
for s = 1:SRV1
for k = 1:KRV1
i = (s-1)*KRV1+k;
SEG1.RVEndoPoints.Frame{n}(i,1) = SEG1.ResolutionX *...
SEG1.RVEndoXnew(k,n,s);
SEG1.RVEndoPoints.Frame{n}(i,2) = SEG1.ResolutionY *...
SEG1.RVEndoYnew(k,n,s);
SEG1.RVEndoPoints.Frame{n}(i,3) = RVEndoZ1(k,s);
end
end
end
%%%%%%%%%%%%%
% RV epi
for n = 1
for s = 1:SRVEpi1
for k = 1:KRVEpi1
i = (s-1)*KRVEpi1+k;
SEG1.RVEpiPoints.Frame{n}(i,1) = SEG1.ResolutionX *...
SEG1.RVEpiXnew(k,n,s);
SEG1.RVEpiPoints.Frame{n}(i,2) = SEG1.ResolutionY *...
SEG1.RVEpiYnew(k,n,s);
SEG1.RVEpiPoints.Frame{n}(i,3) = RVEpiZ1(k,s);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Create physical points from EndoX and EndoY for moving patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
baryCentreLVold2(1,1) = mean(mean(SEG2.EndoXnew(:,1,:)));
baryCentreLVold2(1,2) = mean(mean(SEG2.EndoYnew(:,1,:)));
baryCentreRVold2(1,1) = mean(mean(SEG2.RVEndoXnew(:,1,:)));
baryCentreRVold2(1,2) = mean(mean(SEG2.RVEndoYnew(:,1,:)));
directionBefore2 = baryCentreLVold2 - baryCentreRVold2;
lengthDirectionBefore2 = sqrt(directionBefore2(1,1)^2 + ...
directionBefore2(1,2)^2);
moveInDirection2 = SEG2.ResolutionX * lengthDirectionBefore2 - ...
lengthDirectionBefore2;
%%%%%%%%%%%%%
% LV Endo
for n = 1
for s = 1:S2
for k = 1:K2
i = (s-1)*K2+k;
SEG2.EndoPoints.Frame{n}(i,1) = SEG2.ResolutionX *...
SEG2.EndoXnew(k,n,s);
SEG2.EndoPoints.Frame{n}(i,2) = SEG2.ResolutionY *...
SEG2.EndoYnew(k,n,s);
SEG2.EndoPoints.Frame{n}(i,3) = EndoZ2(k,s);
end
end
end
%%%%%%%%%%%%%
% LV Epi
for n = 1
for s = 1:S2epi
for k = 1:K2epi
i = (s-1)*K2epi+k;
SEG2.EpiPoints.Frame{n}(i,1) = SEG2.ResolutionX *...
SEG2.EpiXnew(k,n,s);
SEG2.EpiPoints.Frame{n}(i,2) = SEG2.ResolutionY *...
SEG2.EpiYnew(k,n,s);
SEG2.EpiPoints.Frame{n}(i,3) = EpiZ2(k,s);
end
end
end
%%%%%%%%%%%%%
% RV Endo
for n = 1
for s = 1:SRV2
for k = 1:KRV2
i = (s-1)*KRV2+k;
SEG2.RVEndoPoints.Frame{n}(i,1) = SEG2.ResolutionX *...
SEG2.RVEndoXnew(k,n,s);
SEG2.RVEndoPoints.Frame{n}(i,2) = SEG2.ResolutionY *...
SEG2.RVEndoYnew(k,n,s);
SEG2.RVEndoPoints.Frame{n}(i,3) = RVEndoZ2(k,s);
end
end
end
%%%%%%%%%%%%%
% RV Epi
for n = 1
for s = 1:SRVEpi2
for k = 1:KRVEpi2
i = (s-1)*KRVEpi2+k;
SEG2.RVEpiPoints.Frame{n}(i,1) = SEG2.ResolutionX *...
SEG2.RVEpiXnew(k,n,s);
SEG2.RVEpiPoints.Frame{n}(i,2) = SEG2.ResolutionY *...
SEG2.RVEpiYnew(k,n,s);
SEG2.RVEpiPoints.Frame{n}(i,3) = RVEpiZ2(k,s);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%% SCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Scarmhd = [];
% initZshift = SEG2.EndoPoints.Frame{1}(1,3);
for s = 1:S2
[X_scar, Y_scar] = find(SEG2.Scar.Result(:, :, s));
X_scar = SEG2.ResolutionX * X_scar;
Y_scar = SEG2.ResolutionY * Y_scar;
Z_scar = repmat(EndoZ2(1,s),[size(X_scar),1]);
% Z_scar = Z_scar + initZshift;
if sum(size(X_scar)) > 1
Scartmp = [X_scar, Y_scar, Z_scar];
Scarmhd = cat(1,Scarmhd,Scartmp);
end
SEG2.ScarMhd = Scarmhd;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Compute transformation components (scaling, translation, rotation)
% Compute barycentres (choose the 1st frame as the reference)
baryCentreLV1(1,1) = mean(SEG1.EndoPoints.Frame{1}(:,1));
baryCentreLV1(1,2) = mean(SEG1.EndoPoints.Frame{1}(:,2));
baryCentreLV1(1,3) = mean(SEG1.EndoPoints.Frame{1}(:,3));
baryCentreRV1(1,1) = mean(SEG1.RVEndoPoints.Frame{1}(:,1));
baryCentreRV1(1,2) = mean(SEG1.RVEndoPoints.Frame{1}(:,2));
baryCentreRV1(1,3) = mean(SEG1.RVEndoPoints.Frame{1}(:,3));
baryCentreLV2(1,1) = mean(SEG2.EndoPoints.Frame{1}(:,1));
baryCentreLV2(1,2) = mean(SEG2.EndoPoints.Frame{1}(:,2));
baryCentreLV2(1,3) = mean(SEG2.EndoPoints.Frame{1}(:,3));
baryCentreRV2(1,1) = mean(SEG2.RVEndoPoints.Frame{1}(:,1));
baryCentreRV2(1,2) = mean(SEG2.RVEndoPoints.Frame{1}(:,2));
baryCentreRV2(1,3) = mean(SEG2.RVEndoPoints.Frame{1}(:,3));
% Get length of line segments joining LV centre and RV centre
length1 = sqrt((abs(baryCentreLV1(1,1) - baryCentreRV1(1,1))^2 + ...
abs(baryCentreLV1(1,2) - baryCentreRV1(1,2))^2 + ...
abs(baryCentreLV1(1,3) - baryCentreRV1(1,3))^2));
length2 = sqrt((abs(baryCentreLV2(1,1) - baryCentreRV2(1,1))^2 + ...
abs(baryCentreLV2(1,2) - baryCentreRV2(1,2))^2 + ...
abs(baryCentreLV2(1,3) - baryCentreRV2(1,3))^2));
% Compute scaling factor between line segments
scale = length1 / length2;
% Compute translation (translate to match x-points)
translation = baryCentreLV2-baryCentreLV1;
%Copy to new struct
SEG2new = SEG2;
SEG1new = SEG1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Translate main axis of moving patient back to the origin
%%%%%%%%%%%%%
% LV Endo
for n = 1
l = length(SEG2.EndoPoints.Frame{n});
for i = 1:l
SEG2new.EndoPoints.Frame{n}(i,:) = SEG2.EndoPoints.Frame{n}(i,:)...
- baryCentreLV2;
end
end
%%%%%%%%%%%%%%%% SCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:length(SEG2.ScarMhd)
SEG2new.ScarMhd(i,:) = SEG2.ScarMhd(i,:) - baryCentreLV2;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%
% LV Epi
for n = 1
l = length(SEG2.EpiPoints.Frame{n});
for i = 1:l
SEG2new.EpiPoints.Frame{n}(i,:) = SEG2.EpiPoints.Frame{n}(i,:)...
- baryCentreLV2;
end
end
%%%%%%%%%%%%%
% RV Endo
for n = 1
l = length(SEG2.RVEndoPoints.Frame{n});
for i = 1:l
SEG2new.RVEndoPoints.Frame{n}(i,:) = SEG2.RVEndoPoints.Frame{n}(i,:)...
- baryCentreLV2;
end
end
%%%%%%%%%%%%%
% RV Epi
for n = 1
l = length(SEG2.RVEpiPoints.Frame{n});
for i = 1:l
SEG2new.RVEpiPoints.Frame{n}(i,:) = SEG2.RVEpiPoints.Frame{n}(i,:)...
- baryCentreLV2;
end
end
%
%%% Do for fixed subject as well
%
%%%%%%%%%%%%%
% LV Endo
for n = 1
l = length(SEG1.EndoPoints.Frame{n});
for i = 1:l
SEG1new.EndoPoints.Frame{n}(i,:) = SEG1.EndoPoints.Frame{n}(i,:)...
- baryCentreLV1;
end
end
%%%%%%%%%%%%%
% LV Epi
for n = 1
l = length(SEG1.EpiPoints.Frame{n});
for i = 1:l
SEG1new.EpiPoints.Frame{n}(i,:) = SEG1.EpiPoints.Frame{n}(i,:)...
- baryCentreLV1;
end
end
%%%%%%%%%%%%%
% RV Endo
for n = 1
l = length(SEG1.RVEndoPoints.Frame{n});
for i = 1:l
SEG1new.RVEndoPoints.Frame{n}(i,:) = SEG1.RVEndoPoints.Frame{n}(i,:)...
- baryCentreLV1;
end
end
%%%%%%%%%%%%%
% RV Epi
for n = 1
l = length(SEG1.RVEpiPoints.Frame{n});
for i = 1:l
SEG1new.RVEpiPoints.Frame{n}(i,:) = SEG1.RVEpiPoints.Frame{n}(i,:)...
- baryCentreLV1;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Rotate
baryCentreLV1new(1,1) = mean(SEG1new.EndoPoints.Frame{1}(:,1));
baryCentreLV1new(1,2) = mean(SEG1new.EndoPoints.Frame{1}(:,2));
baryCentreLV1new(1,3) = mean(SEG1new.EndoPoints.Frame{1}(:,3));
baryCentreRV1new(1,1) = mean(SEG1new.RVEndoPoints.Frame{1}(:,1));
baryCentreRV1new(1,2) = mean(SEG1new.RVEndoPoints.Frame{1}(:,2));
baryCentreRV1new(1,3) = mean(SEG1new.RVEndoPoints.Frame{1}(:,3));
baryCentreLV2new(1,1) = mean(SEG2new.EndoPoints.Frame{1}(:,1));
baryCentreLV2new(1,2) = mean(SEG2new.EndoPoints.Frame{1}(:,2));
baryCentreLV2new(1,3) = mean(SEG2new.EndoPoints.Frame{1}(:,3));
baryCentreRV2new(1,1) = mean(SEG2new.RVEndoPoints.Frame{1}(:,1));
baryCentreRV2new(1,2) = mean(SEG2new.RVEndoPoints.Frame{1}(:,2));
baryCentreRV2new(1,3) = mean(SEG2new.RVEndoPoints.Frame{1}(:,3));
baryCentreLV1normed = ((baryCentreRV1new-(baryCentreLV1new)));
baryCentreLV2normed = ((baryCentreRV2new-(baryCentreLV2new)));
%Compute angle of rotation between the line segments
% rotationAngle = acos((baryCentreLV1normed(1,1) * baryCentreLV2normed(1,1) + ...
% baryCentreLV1normed(1,2) * baryCentreLV2normed(1,2))/(...
% sqrt(baryCentreLV1normed(1,1)^2 + baryCentreLV1normed(1,2)^2) * ...
% sqrt(baryCentreLV2normed(1,1)^2 + baryCentreLV2normed(1,2)^2)));
rotationAngle = atan2(baryCentreLV2normed(1,2), baryCentreLV2normed(1,1)) -...
atan2(baryCentreLV1normed(1,2), baryCentreLV1normed(1,1));
%rotationAngle = rotationAngle*180/pi;
rotationMatrix = [cos(rotationAngle) -sin(rotationAngle) 0; ...
sin(rotationAngle) cos(rotationAngle) 0; ...
0 0 1];
%%%%%%%%%%%%%
% LV Endo
for n = 1
l = length(SEG2new.EndoPoints.Frame{n});
for i = 1:l
SEG2new.EndoPoints.Frame{n}(i,:) = SEG2new.EndoPoints.Frame{n}(i,:)...
* rotationMatrix;
end
end
%%%%%%%%%%%%%%%% SCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:length(SEG2.ScarMhd)
SEG2new.ScarMhd(i,:) = SEG2new.ScarMhd(i,:) * rotationMatrix;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%
% LV Epi
for n = 1
l = length(SEG2new.EpiPoints.Frame{n});
for i = 1:l
SEG2new.EpiPoints.Frame{n}(i,:) = SEG2new.EpiPoints.Frame{n}(i,:)...
* rotationMatrix;
end
end
%%%%%%%%%%%%%
% RV Endo
for n = 1
l = length(SEG2new.RVEndoPoints.Frame{n});
for i = 1:l
SEG2new.RVEndoPoints.Frame{n}(i,:) = SEG2new.RVEndoPoints.Frame{n}(i,:)...
* rotationMatrix;
end
end
disp(['Difference:', int2str(mean(SEG1new.RVEndoPoints.Frame{1}(1:160,1)) - ...
mean(SEG2new.RVEndoPoints.Frame{1}(:,1)))]);
%%%%%%%%%%%%%
% RV Epi
for n = 1
l = length(SEG2new.RVEpiPoints.Frame{n});
for i = 1:l
SEG2new.RVEpiPoints.Frame{n}(i,:) = SEG2new.RVEpiPoints.Frame{n}(i,:)...
* rotationMatrix;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Translate to fit main axis of fixed patient
%%%%%%%%%%%%%
% LV Endo
for n = 1
l = length(SEG2new.EndoPoints.Frame{n});
for i = 1:l
SEG2new.EndoPoints.Frame{n}(i,:) = SEG2new.EndoPoints.Frame{n}(i,:)...
+ baryCentreLV1;
end
end
%%%%%%%%%%%%%%%% SCAR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:length(SEG2.ScarMhd)
SEG2new.ScarMhd(i,:) = SEG2new.ScarMhd(i,:) + baryCentreLV1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%
% LV Epi
for n = 1
l = length(SEG2new.EpiPoints.Frame{n});
for i = 1:l
SEG2new.EpiPoints.Frame{n}(i,:) = SEG2new.EpiPoints.Frame{n}(i,:)...
+ baryCentreLV1;
end
end
%%%%%%%%%%%%%
% RV Endo
for n = 1
l = length(SEG2new.RVEndoPoints.Frame{n});
for i = 1:l
SEG2new.RVEndoPoints.Frame{n}(i,:) = SEG2new.RVEndoPoints.Frame{n}(i,:)...
+ baryCentreLV1;
end
end
%%%%%%%%%%%%%
% RV Endo
for n = 1
l = length(SEG2new.RVEpiPoints.Frame{n});
for i = 1:l
SEG2new.RVEpiPoints.Frame{n}(i,:) = SEG2new.RVEpiPoints.Frame{n}(i,:)...
+ baryCentreLV1;
end
end
end % if isFullTemporal
end
|
github
|
vildenst/3D-heart-models-master
|
ChangeReswithBivEpi.m
|
.m
|
3D-heart-models-master/Matlab_Process/ChangeReswithBivEpi.m
| 4,216 |
utf_8
|
3f0d69d6a6e13c8e079b28012d7909ce
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%% Change Resolution
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_NewRes = ChangeReswithBivEpi(SEG)
%% Account for voxel size for SEG1
% Account for voxel size
SEG.EndoXold = SEG.EndoXnew;
SEG.EndoYold = SEG.EndoYnew;
SEG.EpiXold = SEG.EpiXnew;
SEG.EpiYold = SEG.EpiYnew;
SEG.RVEndoXold = SEG.RVEndoXnew;
SEG.RVEndoYold = SEG.RVEndoYnew;
SEG.RVEpiXold = SEG.RVEpiXnew;
SEG.RVEpiYold = SEG.RVEpiYnew;
%% Move EndoLV points
%
sizenEndo=size(SEG.EndoXnew);
KEndo = sizenEndo(1, 1); %No. of points (default 80)
NEndo = sizenEndo(1, 2); %No. of time frames
SEndo = sizenEndo(1, 3); %No. of slices
EndoZ = repmat((1-(1:SEG.ZSize))*(SEG.SliceThickness+SEG.SliceGap),...
[KEndo 1]);
% Create physical points for the fixed reference
for n = 1:NEndo
for s = 1:SEndo
for k = 1:KEndo
i = (s-1)*KEndo+k;
SEG.EndoPoints.Frame{n}(i,1) = SEG.ResolutionX *...
SEG.EndoXnew(k,n,s);
SEG.EndoPoints.Frame{n}(i,2) = SEG.ResolutionY *...
SEG.EndoYnew(k,n,s);
SEG.EndoPoints.Frame{n}(i,3) = EndoZ(k,s);
end
end
end
sizenEpi=size(SEG.EpiXnew);
KEpi = sizenEpi(1, 1); %No. of points (default 80)
NEpi = sizenEpi(1, 2); %No. of time frames
SEpi = sizenEpi(1, 3); %No. of slices
EpiZ = repmat((1-(1:SEG.ZSize))*(SEG.SliceThickness+SEG.SliceGap),...
[KEpi 1]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Move EpiLV points
for n = 1:NEpi
for s = 1:SEpi
for k = 1:KEpi
i = (s-1)*KEpi+k;
SEG.EpiPoints.Frame{n}(i,1) = SEG.ResolutionX *...
SEG.EpiXnew(k,n,s);
SEG.EpiPoints.Frame{n}(i,2) = SEG.ResolutionY *...
SEG.EpiYnew(k,n,s);
SEG.EpiPoints.Frame{n}(i,3) = EpiZ(k,s);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Move EndoRV points
sizenRV=size(SEG.RVEndoXnew);
KRV = sizenRV(1, 1); %No. of points (default 80)
NRV = sizenRV(1, 2); %No. of time frames
SRV = sizenRV(1, 3); %No. of slices
RVEndoZ = repmat((1-(1:SEG.ZSize))*(SEG.SliceThickness+SEG.SliceGap),...
[KRV 1]);
for n = 1:NRV
for s = 1:SRV
for k = 1:KRV
i = (s-1)*KRV+k;
SEG.RVEndoPoints.Frame{n}(i,1) = SEG.ResolutionX *...
SEG.RVEndoXnew(k,n,s);
SEG.RVEndoPoints.Frame{n}(i,2) = SEG.ResolutionY *...
SEG.RVEndoYnew(k,n,s);
SEG.RVEndoPoints.Frame{n}(i,3) = RVEndoZ(k,s);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Move EpiRV points
sizenRVEpi=size(SEG.RVEpiXnew);
KRVEpi = sizenRVEpi(1, 1); %No. of points (default 80)
NRVEpi = sizenRVEpi(1, 2); %No. of time frames
SRVEpi = sizenRVEpi(1, 3); %No. of slices
RVEpiZ = repmat((1-(1:SEG.ZSize))*(SEG.SliceThickness+SEG.SliceGap),...
[KRVEpi 1]);
for n = 1:NRVEpi
for s = 1:SRVEpi
for k = 1:KRVEpi
i = (s-1)*KRVEpi+k;
SEG.RVEpiPoints.Frame{n}(i,1) = SEG.ResolutionX *...
SEG.RVEpiXnew(k,n,s);
SEG.RVEpiPoints.Frame{n}(i,2) = SEG.ResolutionY *...
SEG.RVEpiYnew(k,n,s);
SEG.RVEpiPoints.Frame{n}(i,3) = RVEpiZ(k,s);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Change Res for scar
Scarmhd = [];
initZshift = SEG.EndoPoints.Frame{1}(1,3);
for s = 1:SEndo
[X_scar, Y_scar] = find(SEG.Scar.Result(:, :, s));
X_scar = SEG.ResolutionX * X_scar;
Y_scar = SEG.ResolutionY * Y_scar;
Z_scar = repmat(EndoZ(1,s),[size(X_scar),1]);
Z_scar = Z_scar + initZshift;
if sum(size(X_scar)) > 1
Scartmp = [X_scar, Y_scar, Z_scar];
Scarmhd = cat(1,Scarmhd,Scartmp);
end
SEG.ScarMhd = Scarmhd;
end
SEG_NewRes = SEG;
|
github
|
vildenst/3D-heart-models-master
|
SaveMhd.m
|
.m
|
3D-heart-models-master/Matlab_Process/SaveMhd.m
| 1,925 |
utf_8
|
50fa3ebe9a24a82d93a42d24d4e56a4e
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
%%% SAVE .MHD FILE IN PROPER FORMAT %%%
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SIMULA Research Laboratory
% For TOF and MI patients at ED only (bi-ventricle)
% Contact - [email protected], [email protected]
% July 2016
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SaveMhd(subjNo, filen)
global SEG % Comes from global workspace
localSEG = SEG{subjNo};
% For further processing purposes, values are changed to maximum 8-bit value
% Preparing binary array
% resVector = [localSEG.ResolutionX localSEG.ResolutionY 1];
pixSize = int16([localSEG.XSize, localSEG.YSize, localSEG.ZSize]);%.*resVector);
pix=zeros(pixSize);
%Finding slices with scar pixels
temp=round(localSEG.ScarMhd/[localSEG.ResolutionX 0 0; 0 localSEG.ResolutionY 0;...
0 0 1]);
temp(:)=temp(:);
z=max(temp(:,3));
for i=1:localSEG.ZSize
temp1=find(temp(:,3)==z);
[c,~]=size(temp1);
for j=1:c
x=temp(temp1(j),1);
y=temp(temp1(j),2);
pix(x,y,i)=255;
end
z = z-localSEG.SliceThickness;
end
% Information for .mhd file.
pixImage(:,:,1,:) = uint8(pix);
orig = [0 0 -localSEG.EndoPoints.Frame{1}(1,3);]';
sp = [localSEG.ResolutionX localSEG.ResolutionY localSEG.SliceGap+...
localSEG.SliceThickness]';
orient = eye(3);
image = ImageType(size(squeeze(pixImage))', orig, sp, orient);
image.data = squeeze(pixImage);
% Saving image
[~,name,~] = fileparts(filen);
fileName=['Data/ScarImages/MetaImages/' name '.mhd'];
write_mhd(fileName, image, 'elementtype', 'uint8');
|
github
|
vildenst/3D-heart-models-master
|
notTemporalResampleAlignmentwithBivEpi.m
|
.m
|
3D-heart-models-master/Matlab_Process/notTemporalResampleAlignmentwithBivEpi.m
| 3,955 |
utf_8
|
c5714f1fe5c3d01c8d180ae4fa8d5133
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% TEMPORAL RESAMPLING OF POINT CLOUD WITH TEMPORAL ALIGNMENT TO ES PHASE %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resample point cloud to have 30 frames using interpolation between points
% Author - Kristin Mcleod
% SIMULA Research Laboratory
% Contact - [email protected], [email protected]
% July 2016
% Takes as input SEG_shift from sliceAlignment.m, and the number of desired
% time points N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_shift_resampled = notTemporalResampleAlignment(SEG_shift_clean,RVyes)
SEG_shift_resampled = SEG_shift_clean; % Pre-assign output
SEG_shift = SEG_shift_clean;
SEG_shift_resampled.EndoXnew = [];
SEG_shift_resampled.EndoYnew = [];
SEG_shift_resampled.EpiXnew = [];
SEG_shift_resampled.EpiYnew = [];
sizen=size(SEG_shift.EndoXnew);
K = sizen(1, 1); %No. of points (default 80)
S = sizen(1, 3); %No. of slices
sizenEpi=size(SEG_shift.EpiXnew);
KEpi = sizenEpi(1, 1); %No. of points (default 80)
SEpi = sizenEpi(1, 3); %No. of slices
if RVyes == 1
SEG_shift_resampled.RVEndoXnew = [];
SEG_shift_resampled.RVEndoYnew = [];
SEG_shift_resampled.RVEpiXnew = [];
SEG_shift_resampled.RVEpiYnew = [];
sizenRV=size(SEG_shift.RVEndoXnew);
KRV = sizenRV(1, 1); %No. of points (default 80)
SRV = sizenRV(1, 3); %No. of slices
sizenRVEpi=size(SEG_shift.RVEpiXnew);
KRVEpi = sizenRVEpi(1, 1); %No. of points (default 80)
SRVEpi = sizenRVEpi(1, 3); %No. of slices
end
for s = 1:S
for k = 1:K
EndoX(:,:)=SEG_shift.EndoXnew(:,:,s);
EndoY(:,:)=SEG_shift.EndoYnew(:,:,s);
endo = sum(EndoX,2);
% Remove NaN values in the array
if ~isnan(endo(k,1))
tmp1(k,:) = EndoX(k,:);
tmp2(k,:) = EndoY(k,:);
for n = 1
SEG_shift_resampled.EndoXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.EndoYnew(k,n,s) = tmp2(k,n);
end
end
end
end
for s = 1:SEpi
for k = 1:KEpi
EpiX(:,:)=SEG_shift.EpiXnew(:,:,s);
EpiY(:,:)=SEG_shift.EpiYnew(:,:,s);
epi = sum(EpiX,2);
% Remove NaN values in the array
if ~isnan(epi(k,1))
tmp1(k,:) = EpiX(k,:);
tmp2(k,:) = EpiY(k,:);
for n = 1
SEG_shift_resampled.EpiXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.EpiYnew(k,n,s) = tmp2(k,n);
end
end
end
end
if RVyes == 1
for s = 1:SRV
for k = 1:KRV
RVEndoX(:,:)=SEG_shift.RVEndoXnew(:,:,s);
RVEndoY(:,:)=SEG_shift.RVEndoYnew(:,:,s);
rv = sum(RVEndoX,2);
% Remove NaN values in the array
if ~isnan(rv(k,1))
tmp1(k,:) = RVEndoX(k,:);
tmp2(k,:) = RVEndoY(k,:);
for n = 1
SEG_shift_resampled.RVEndoXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.RVEndoYnew(k,n,s) = tmp2(k,n);
end
end
end
end
for s = 1:SRVEpi
for k = 1:KRVEpi
RVEpiX(:,:)=SEG_shift.RVEpiXnew(:,:,s);
RVEpiY(:,:)=SEG_shift.RVEpiYnew(:,:,s);
rv = sum(RVEpiX,2);
% Remove NaN values in the array
if ~isnan(rv(k,1))
tmp1(k,:) = RVEpiX(k,:);
tmp2(k,:) = RVEpiY(k,:);
for n = 1
SEG_shift_resampled.RVEpiXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.RVEpiYnew(k,n,s) = tmp2(k,n);
end
end
end
end
end
clear EndoX EndoY EpiX EpiY RVEndoX RVEndoY RVEpiX RVEpiY tmp1 tmp2
end
|
github
|
vildenst/3D-heart-models-master
|
pairwiseAlignment.m
|
.m
|
3D-heart-models-master/Matlab_Process/pairwiseAlignment.m
| 23,419 |
utf_8
|
de84214a29b38cb85a4942827379071f
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% TRANSFORM MOVING SUBJECT TO REFERENCE %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Find the center point of the point cloud representing the left or right
% ventricle
% Author - Kristin Mcleod
% SIMULA Research Laboratory
% Contact - [email protected]
% May 2016
% Takes as input the filenames of the reference subject and target subject
% which should be pre-aligned and temporally resampled first using
% autoAlign.m and temporalResample.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG2new = pairwiseAlignment1(SEG_fixed,SEG_moving,IsFullTemporal)
%% Read data
% Read first filename to assign SEG1
SEG1 = SEG_fixed;
sizen1 = size(SEG1.EndoXnew);
sizen1epi = size(SEG1.EpiXnew);
sizenRV1 = size(SEG1.RVEndoXnew);
K1 = sizen1(1,1);
N1 = sizen1(1,2);
S1 = sizen1(1,3);
K1epi = sizen1epi(1,1);
N1epi = sizen1epi(1,2);
S1epi = sizen1epi(1,3);
KRV1 = sizenRV1(1,1);
NRV1 = sizenRV1(1,2);
SRV1 = sizenRV1(1,3);
EndoZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[K1 1]);
EpiZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[K1epi 1]);
RVEndoZ1 = repmat((1-(1:SEG1.ZSize))*(SEG1.SliceThickness+SEG1.SliceGap),...
[KRV1 1]);
% Read second filename to assign SEG2
SEG2 = SEG_moving;
sizen2 = size(SEG2.EndoXnew);
sizen2epi = size(SEG2.EpiXnew);
sizenRV2 = size(SEG2.RVEndoXnew);
K2 = sizen2(1,1);
N2 = sizen2(1,2);
S2 = sizen2(1,3);
K2epi = sizen2epi(1,1);
N2epi = sizen2epi(1,2);
S2epi = sizen2epi(1,3);
KRV2 = sizenRV2(1,1);
NRV2 = sizenRV2(1,2);
SRV2 = sizenRV2(1,3);
EndoZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[K2 1]);
EpiZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[K2epi 1]);
RVEndoZ2 = repmat((1-(1:SEG2.ZSize))*(SEG2.SliceThickness+SEG2.SliceGap),...
[KRV2 1]);
%% Create physical points from EndoX and EndoY for fixed patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
baryCentreLVold1(1,1) = mean(mean(SEG1.EndoXnew(:,1,:)));
baryCentreLVold1(1,2) = mean(mean(SEG1.EndoYnew(:,1,:)));
baryCentreRVold1(1,1) = mean(mean(SEG1.RVEndoXnew(:,1,:)));
directionBefore1 = baryCentreLVold1 - baryCentreRVold1;
lengthDirectionBefore1 = sqrt(directionBefore1(1,1)^2 + directionBefore1(1,2)^2);
moveInDirection1 = SEG1.ResolutionX * lengthDirectionBefore1 - lengthDirectionBefore1;
if IsFullTemporal == 1
for n = 1:N1
for s = 1:S1
for k = 1:K1
i = (s-1)*K1+k;
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.EndoXnew(k,n,s);']);
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.EndoYnew(k,n,s);']);
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,3) = EndoZ1(k,s);']);
end
end
end
% Same for Epi
for n = 1:N1epi
for s = 1:S1epi
for k = 1:K1epi
i = (s-1)*K1epi+k;
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.EpiXnew(k,n,s);']);
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.EpiYnew(k,n,s);']);
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,3) = EpiZ1(k,s);']);
end
end
end
%Same for RV endo
for n = 1:NRV1
for s = 1:SRV1
for k = 1:KRV1
i = (s-1)*KRV1+k;
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.RVEndoXnew(k,n,s);']);
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.RVEndoYnew(k,n,s);']);
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ1(k,s);']);
end
end
end
%% Create physical points from EndoX and EndoY for moving patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
baryCentreLVold2(1,1) = mean(mean(SEG2.EndoXnew(:,1,:)));
baryCentreLVold2(1,2) = mean(mean(SEG2.EndoYnew(:,1,:)));
%baryCentreLVold(1,3) = mean(mean(SEG_shift_resampled.ResolutionX*EndoZ));
baryCentreRVold2(1,1) = mean(mean(SEG2.RVEndoXnew(:,1,:)));
baryCentreRVold2(1,2) = mean(mean(SEG2.RVEndoYnew(:,1,:)));
%baryCentreRVold(1,3) = mean(mean(SEG_shift_resampled.ResolutionX*RVEndoZ));
directionBefore2 = baryCentreLVold2 - baryCentreRVold2;
lengthDirectionBefore2 = sqrt(directionBefore2(1,1)^2 + directionBefore2(1,2)^2);
moveInDirection2 = SEG2.ResolutionX * lengthDirectionBefore2 - lengthDirectionBefore2;
for n = 1:N2
for s = 1:S2
for k = 1:K2
i = (s-1)*K2+k;
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.EndoXnew(k,n,s);']);
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.EndoYnew(k,n,s);']);
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,3) = EndoZ2(k,s);']);
end
end
end
% Same for Epi
for n = 1:N2epi
for s = 1:S2epi
for k = 1:K2epi
i = (s-1)*K2epi+k;
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.EpiXnew(k,n,s);']);
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.EpiYnew(k,n,s);']);
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,3) = EpiZ2(k,s);']);
end
end
end
% Same for RV Endo
for n = 1:NRV2
for s = 1:SRV2
for k = 1:KRV2
i = (s-1)*KRV2+k;
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.RVEndoXnew(k,n,s);']);
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.RVEndoYnew(k,n,s);']);
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ2(k,s);']);
end
end
end
%% Compute transformation components (scaling, translation, rotation)
% Compute barycentres (choose the 1st frame as the reference)
baryCentreLV1(1,1) = mean(SEG1.EndoPoints.Frame1(:,1));
baryCentreLV1(1,2) = mean(SEG1.EndoPoints.Frame1(:,2));
baryCentreLV1(1,3) = mean(SEG1.EndoPoints.Frame1(:,3));
baryCentreRV1(1,1) = mean(SEG1.RVEndoPoints.Frame1(:,1));
baryCentreRV1(1,2) = mean(SEG1.RVEndoPoints.Frame1(:,2));
baryCentreRV1(1,3) = mean(SEG1.RVEndoPoints.Frame1(:,3));
baryCentreLV2(1,1) = mean(SEG2.EndoPoints.Frame1(:,1));
baryCentreLV2(1,2) = mean(SEG2.EndoPoints.Frame1(:,2));
baryCentreLV2(1,3) = mean(SEG2.EndoPoints.Frame1(:,3));
baryCentreRV2(1,1) = mean(SEG2.RVEndoPoints.Frame1(:,1));
baryCentreRV2(1,2) = mean(SEG2.RVEndoPoints.Frame1(:,2));
baryCentreRV2(1,3) = mean(SEG2.RVEndoPoints.Frame1(:,3));
% Get length of line segments joining LV centre and RV centre
length1 = sqrt((abs(baryCentreLV1(1,1)-baryCentreRV1(1,1))^2 + ...
abs(baryCentreLV1(1,2) - baryCentreRV1(1,2))^2 + ...
abs(baryCentreLV1(1,3) - baryCentreRV1(1,3))^2));
length2 = sqrt((abs(baryCentreLV2(1,1)-baryCentreRV2(1,1))^2 + ...
abs(baryCentreLV2(1,2) - baryCentreRV2(1,2))^2 + ...
abs(baryCentreLV2(1,3) - baryCentreRV2(1,3))^2));
% Compute scaling factor between line segments
scale = length1 / length2;
% Compute translation (translate to match x-points)
translation = baryCentreLV2-baryCentreLV1;
%Copy to new struct
SEG2new = SEG2;
SEG1new = SEG1;
%% Translate main axis of moving patient back to the origin
for n = 1:N2
eval(['l = length(SEG2.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2.EndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for Epi
for n = 1:N2epi
eval(['l = length(SEG2.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2.EpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for RV Endo
for n = 1:NRV2
eval(['l = length(SEG2.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2.RVEndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Do for fixed subject as well
for n = 1:N1
eval(['l = length(SEG1.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.EndoPoints.Frame' int2str(n) '(i,:) = SEG1.EndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for Epi
for n = 1:N1epi
eval(['l = length(SEG1.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.EpiPoints.Frame' int2str(n) '(i,:) = SEG1.EpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for RV Endo
for n = 1:NRV1
eval(['l = length(SEG1.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG1.RVEndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
%% Rotate
baryCentreLV1new(1,1) = mean(SEG1new.EndoPoints.Frame1(1:80,1));
baryCentreLV1new(1,2) = mean(SEG1new.EndoPoints.Frame1(1:80,2));
baryCentreLV1new(1,3) = mean(SEG1new.EndoPoints.Frame1(1:80,3));
baryCentreRV1new(1,1) = mean(SEG1new.RVEndoPoints.Frame1(1:80,1));
baryCentreRV1new(1,2) = mean(SEG1new.RVEndoPoints.Frame1(1:80,2));
baryCentreRV1new(1,3) = mean(SEG1new.RVEndoPoints.Frame1(1:80,3));
baryCentreLV2new(1,1) = mean(SEG2new.EndoPoints.Frame1(1:80,1));
baryCentreLV2new(1,2) = mean(SEG2new.EndoPoints.Frame1(1:80,2));
baryCentreLV2new(1,3) = mean(SEG2new.EndoPoints.Frame1(1:80,3));
baryCentreRV2new(1,1) = mean(SEG2new.RVEndoPoints.Frame1(1:80,1));
baryCentreRV2new(1,2) = mean(SEG2new.RVEndoPoints.Frame1(1:80,2));
baryCentreRV2new(1,3) = mean(SEG2new.RVEndoPoints.Frame1(1:80,3));
baryCentreLV1normed = ((baryCentreRV1new-(baryCentreLV1new)));
baryCentreLV2normed = ((baryCentreRV2new-(baryCentreLV2new)));
% Compute angle of rotation between the line segments
rotationAngle = acos((baryCentreLV1normed(1,1) * baryCentreLV2normed(1,1) + ...
baryCentreLV1normed(1,2) * baryCentreLV2normed(1,2))/(...
sqrt(baryCentreLV1normed(1,1)^2 + baryCentreLV1normed(1,2)^2) * ...
sqrt(baryCentreLV2normed(1,1)^2 + baryCentreLV2normed(1,2)^2)));
%rotationAngle = rotationAngle*180/pi;
rotationMatrix = [cos(rotationAngle) sin(rotationAngle) 0; ...
-sin(rotationAngle) cos(rotationAngle) 0; ...
0 0 1];
for n = 1:N2
eval(['l = length(SEG2new.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2new.EndoPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for Epi
for n = 1:N2epi
eval(['l = length(SEG2new.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2new.EpiPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for RV Endo
for n = 1:NRV2
eval(['l = length(SEG2new.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
%% Translate to fit main axis of fixed patient
for n = 1:N2
eval(['l = length(SEG2new.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2new.EndoPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for Epi
for n = 1:N2epi
eval(['l = length(SEG2new.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2new.EpiPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for RV Endo
for n = 1:NRV2
eval(['l = length(SEG2new.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
else
for n = 1
for s = 1:S1
for k = 1:K1
i = (s-1)*K1+k;
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.EndoXnew(k,n,s);']);
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.EndoYnew(k,n,s);']);
eval(['SEG1.EndoPoints.Frame' int2str(n) '(i,3) = EndoZ1(k,s);']);
end
end
end
% Same for Epi
for n = 1
for s = 1:S1epi
for k = 1:K1epi
i = (s-1)*K1epi+k;
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.EpiXnew(k,n,s);']);
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.EpiYnew(k,n,s);']);
eval(['SEG1.EpiPoints.Frame' int2str(n) '(i,3) = EpiZ1(k,s);']);
end
end
end
%Same for RV endo
for n = 1
for s = 1:SRV1
for k = 1:KRV1
i = (s-1)*KRV1+k;
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG1.ResolutionX*SEG1.RVEndoXnew(k,n,s);']);
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG1.ResolutionY*SEG1.RVEndoYnew(k,n,s);']);
eval(['SEG1.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ1(k,s);']);
end
end
end
%% Create physical points from EndoX and EndoY for moving patient
% Move RV after voxel-size adjustment (so that LV and RV don't overlap)
baryCentreLVold2(1,1) = mean(mean(SEG2.EndoXnew(:,1,:)));
baryCentreLVold2(1,2) = mean(mean(SEG2.EndoYnew(:,1,:)));
baryCentreRVold2(1,1) = mean(mean(SEG2.RVEndoXnew(:,1,:)));
baryCentreRVold2(1,2) = mean(mean(SEG2.RVEndoYnew(:,1,:)));
directionBefore2 = baryCentreLVold2 - baryCentreRVold2;
lengthDirectionBefore2 = sqrt(directionBefore2(1,1)^2 + directionBefore2(1,2)^2);
moveInDirection2 = SEG2.ResolutionX * lengthDirectionBefore2 - lengthDirectionBefore2;
for n = 1
for s = 1:S2
for k = 1:K2
i = (s-1)*K2+k;
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.EndoXnew(k,n,s);']);
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.EndoYnew(k,n,s);']);
eval(['SEG2.EndoPoints.Frame' int2str(n) '(i,3) = EndoZ2(k,s);']);
end
end
end
% Same for Epi
for n = 1
for s = 1:S2epi
for k = 1:K2epi
i = (s-1)*K2epi+k;
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.EpiXnew(k,n,s);']);
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.EpiYnew(k,n,s);']);
eval(['SEG2.EpiPoints.Frame' int2str(n) '(i,3) = EpiZ2(k,s);']);
end
end
end
% Same for RV Endo
for n = 1
for s = 1:SRV2
for k = 1:KRV2
i = (s-1)*KRV2+k;
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG2.ResolutionX*SEG2.RVEndoXnew(k,n,s);']);
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG2.ResolutionY*SEG2.RVEndoYnew(k,n,s);']);
eval(['SEG2.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ2(k,s);']);
end
end
end
%% Compute transformation components (scaling, translation, rotation)
% Compute barycentres (choose the 1st frame as the reference)
baryCentreLV1(1,1) = mean(SEG1.EndoPoints.Frame1(:,1));
baryCentreLV1(1,2) = mean(SEG1.EndoPoints.Frame1(:,2));
baryCentreLV1(1,3) = mean(SEG1.EndoPoints.Frame1(:,3));
baryCentreRV1(1,1) = mean(SEG1.RVEndoPoints.Frame1(:,1));
baryCentreRV1(1,2) = mean(SEG1.RVEndoPoints.Frame1(:,2));
baryCentreRV1(1,3) = mean(SEG1.RVEndoPoints.Frame1(:,3));
baryCentreLV2(1,1) = mean(SEG2.EndoPoints.Frame1(:,1));
baryCentreLV2(1,2) = mean(SEG2.EndoPoints.Frame1(:,2));
baryCentreLV2(1,3) = mean(SEG2.EndoPoints.Frame1(:,3));
baryCentreRV2(1,1) = mean(SEG2.RVEndoPoints.Frame1(:,1));
baryCentreRV2(1,2) = mean(SEG2.RVEndoPoints.Frame1(:,2));
baryCentreRV2(1,3) = mean(SEG2.RVEndoPoints.Frame1(:,3));
% Get length of line segments joining LV centre and RV centre
length1 = sqrt((abs(baryCentreLV1(1,1)-baryCentreRV1(1,1))^2 + ...
abs(baryCentreLV1(1,2) - baryCentreRV1(1,2))^2 + ...
abs(baryCentreLV1(1,3) - baryCentreRV1(1,3))^2));
length2 = sqrt((abs(baryCentreLV2(1,1)-baryCentreRV2(1,1))^2 + ...
abs(baryCentreLV2(1,2) - baryCentreRV2(1,2))^2 + ...
abs(baryCentreLV2(1,3) - baryCentreRV2(1,3))^2));
% Compute scaling factor between line segments
scale = length1 / length2;
% Compute translation (translate to match x-points)
translation = baryCentreLV2-baryCentreLV1;
%Copy to new struct
SEG2new = SEG2;
SEG1new = SEG1;
%% Translate main axis of moving patient back to the origin
for n = 1
eval(['l = length(SEG2.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2.EndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for Epi
for n = 1
eval(['l = length(SEG2.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2.EpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Same for RV Endo
for n = 1
eval(['l = length(SEG2.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2.RVEndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV2;']);
end
end
% Do for fixed subject as well
for n = 1
eval(['l = length(SEG1.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.EndoPoints.Frame' int2str(n) '(i,:) = SEG1.EndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for Epi
for n = 1
eval(['l = length(SEG1.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.EpiPoints.Frame' int2str(n) '(i,:) = SEG1.EpiPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
% Same for RV Endo
for n = 1
eval(['l = length(SEG1.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG1new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG1.RVEndoPoints.Frame' int2str(n) '(i,:) - baryCentreLV1;']);
end
end
%% Rotate
baryCentreLV1new(1,1) = mean(SEG1new.EndoPoints.Frame1(1:80,1));
baryCentreLV1new(1,2) = mean(SEG1new.EndoPoints.Frame1(1:80,2));
baryCentreLV1new(1,3) = mean(SEG1new.EndoPoints.Frame1(1:80,3));
baryCentreRV1new(1,1) = mean(SEG1new.RVEndoPoints.Frame1(1:80,1));
baryCentreRV1new(1,2) = mean(SEG1new.RVEndoPoints.Frame1(1:80,2));
baryCentreRV1new(1,3) = mean(SEG1new.RVEndoPoints.Frame1(1:80,3));
baryCentreLV2new(1,1) = mean(SEG2new.EndoPoints.Frame1(1:80,1));
baryCentreLV2new(1,2) = mean(SEG2new.EndoPoints.Frame1(1:80,2));
baryCentreLV2new(1,3) = mean(SEG2new.EndoPoints.Frame1(1:80,3));
baryCentreRV2new(1,1) = mean(SEG2new.RVEndoPoints.Frame1(1:80,1));
baryCentreRV2new(1,2) = mean(SEG2new.RVEndoPoints.Frame1(1:80,2));
baryCentreRV2new(1,3) = mean(SEG2new.RVEndoPoints.Frame1(1:80,3));
baryCentreLV1normed = ((baryCentreRV1new-(baryCentreLV1new)));
baryCentreLV2normed = ((baryCentreRV2new-(baryCentreLV2new)));
% Compute angle of rotation between the line segments
rotationAngle = acos((baryCentreLV1normed(1,1) * baryCentreLV2normed(1,1) + ...
baryCentreLV1normed(1,2) * baryCentreLV2normed(1,2))/(...
sqrt(baryCentreLV1normed(1,1)^2 + baryCentreLV1normed(1,2)^2) * ...
sqrt(baryCentreLV2normed(1,1)^2 + baryCentreLV2normed(1,2)^2)));
%rotationAngle = rotationAngle*180/pi;
rotationMatrix = [cos(rotationAngle) sin(rotationAngle) 0; ...
-sin(rotationAngle) cos(rotationAngle) 0; ...
0 0 1];
for n = 1
eval(['l = length(SEG2new.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2new.EndoPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for Epi
for n = 1
eval(['l = length(SEG2new.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2new.EpiPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
% Same for RV Endo
for n = 1
eval(['l = length(SEG2new.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) * rotationMatrix;']);
end
end
%% Translate to fit main axis of fixed patient
for n = 1
eval(['l = length(SEG2new.EndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EndoPoints.Frame' int2str(n) '(i,:) = SEG2new.EndoPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for Epi
for n = 1
eval(['l = length(SEG2new.EpiPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.EpiPoints.Frame' int2str(n) '(i,:) = SEG2new.EpiPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
% Same for RV Endo
for n = 1
eval(['l = length(SEG2new.RVEndoPoints.Frame' int2str(n) ');']);
for i = 1:l
eval(['SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) = SEG2new.RVEndoPoints.Frame' int2str(n) '(i,:) + baryCentreLV1;']);
end
end
end
end
|
github
|
vildenst/3D-heart-models-master
|
cleanPointIndices.m
|
.m
|
3D-heart-models-master/Matlab_Process/cleanPointIndices.m
| 15,343 |
utf_8
|
c948ac7359010a8aadb16886e9176014
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% CLEAN POINT INDEXING %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clean point indexing to make nicer meshes
% Author - Kristin Mcleod (following from Eric Davennes work)
% SIMULA Research Laboratory
% Contact - [email protected]
% October 2014
% Takes as input SEG_shift_resampled from temporalResample.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_shift_clean = cleanPointIndices(SEG_shift,RVyes,IsFullTemporal)
%% Get size info
SEG_shift_clean = SEG_shift;
sizen = size(SEG_shift.EndoXnew);
K = sizen(1,1); %number of points in a segment contour
N = sizen(1,2); %number of frames
S = sizen(1,3); %number of slices
sizenEpi = size(SEG_shift.EpiXnew);
KEpi = sizenEpi(1,1); %number of points in a segment contour
NEpi = sizenEpi(1,2); %number of frames
SEpi = sizenEpi(1,3); %number of slices
LVdist21Endo = zeros(1,K);
LVdist21Epi = zeros(1,KEpi);
if RVyes == 1
sizenRV = size(SEG_shift.RVEndoXnew);
KRV = sizenRV(1,1); %number of points in a segment contour
NRV = sizenRV(1,2);
SRV = sizenRV(1,3); %number of slices
RVEndoZ = repmat((1-(1:SRV))*(SEG_shift.SliceThickness+SEG_shift.SliceGap),...
[KRV 1]);
RVdist21Endo = zeros(1,KRV);
end
% SEG_shift_clean.EndoXnew = SEG_shift.EndoXnew;
% SEG_shift_clean.EndoYnew = SEG_shift.EndoYnew;
% SEG_shift_clean.EpiXnew = SEG_shift.EpiX;
% SEG_shift_clean.EpiYnew = SEG_shift.EpiY;
%% Compute squared distances and rearrange points
%if IsFullTemporal == 1
refEndo = 1;
% LV Endo
for n=1:N
% if n>1
% for j = 1:K
% TestIndPrevFrameEndo(j) = (SEG_shift.EndoX(j, n, s) - SEG_shift.EndoX(refEndo, n-1, s))^2 + (SEG_shift.EndoY(j, n, s) - SEG_shift.EndoY(refEndo, n-1, s))^2;
% end
% [YTestEndo , indTestEndo] = min(TestIndPrevFrameEndo);
% refEndo = indTestEndo;
% end
for s=S:-1:2
for k=1:K
LVdist21Endo(k) = (SEG_shift.EndoXnew(refEndo, n, s) - SEG_shift.EndoXnew(k, n, s - 1))^2 + (SEG_shift.EndoYnew(refEndo, n, s) - SEG_shift.EndoYnew(k, n, s - 1))^2;
end
[YEndo , indEndo] = min(LVdist21Endo);
indexEndo = indEndo;
refEndo = indEndo;
for l=1:K
indexEndo = mod(indexEndo, K) + 1;
SEG_shift_clean.EndoXnew(l, n, s-1) = SEG_shift.EndoXnew(indexEndo, n, s-1);
SEG_shift_clean.EndoYnew(l, n, s-1) = SEG_shift.EndoYnew(indexEndo, n, s-1);
end
end
end
% LV Epi
refEpi = 1;
for n=1:NEpi
% if n>1
% for j = 1:K
% TestIndPrevFrameEpi(j) = (SEG_shift.EpiX(j, n, s) - SEG_shift.EpiX(refEpi, n-1, s))^2 + (SEG_shift.EpiY(j, n, s) - SEG_shift.EpiY(refEpi, n-1, s))^2;
% end
% [YTestEpi , indTestEpi] = min(TestIndPrevFrameEpi);
% refEpi = indTestEpi;
% end
for s=SEpi:-1:2
for k=1:KEpi
LVdist21Epi(k) = (SEG_shift.EpiXnew(refEpi, n, s) - SEG_shift.EpiXnew(k, n, s - 1))^2 + (SEG_shift.EpiYnew(refEpi, n, s) - SEG_shift.EpiYnew(k, n, s - 1))^2;
end
[YEpi , indEpi] = min(LVdist21Epi);
indexEpi = indEpi;
refEpi = indEpi;
for l=1:KEpi
indexEpi = mod(indexEpi, K) + 1;
SEG_shift_clean.EpiXnew(l, n, s-1) = SEG_shift.EpiXnew(indexEpi, n, s-1);
SEG_shift_clean.EpiYnew(l, n, s-1) = SEG_shift.EpiYnew(indexEpi, n, s-1);
end
end
end
% % To account for the irregular shape of the RV, start the cleaning from the
% % centre and adjust indexing above then below
% halfSliceRVED = round(SRV/2);
% %RV ED
% refRVED = 1;
% for s=halfSliceRVED:-1:2
% for k=1:KRV
% RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s-1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s-1))^2;
% end
% [YRVED , indRVED] = min(RVdist21EndoED);
% indexRVED = indRVED;
% refRVED = indRVED;
% for l=1:KRV
% SEG_shift_clean.RVEndoXED(l, s-1) = SEG_shift_resampled.RVEndoXED(indexRVED, s-1);
% SEG_shift_clean.RVEndoYED(l, s-1) = SEG_shift_resampled.RVEndoYED(indexRVED, s-1);
% indexRVED = mod(indexRVED,KRV) + 1;
% end
% end
% refRVED = 1;
% for s=halfSliceRVED:SRV-1
% for k=1:KRV
% RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s+1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s+1))^2;
% end
% [YRVED , indRVED] = min(RVdist21EndoED);
% indexRVED = indRVED;
% refRVED = indRVED;
% for l=1:KRV
% SEG_shift_clean.RVEndoXED(l, s+1) = SEG_shift_resampled.RVEndoXED(indexRVED, s+1);
% SEG_shift_clean.RVEndoYED(l, s+1) = SEG_shift_resampled.RVEndoYED(indexRVED, s+1);
% indexRVED = mod(indexRVED,KRV) + 1;
% end
% end
%RV
if RVyes ==1
refRV = 1;
for n = 1:NRV
% if n>1
% for j = 1:K
% TestIndPrevFrameRV(j) = (SEG_shift.RVEndoX(j, n, s) - SEG_shift.RVEndoX(refRV, n-1, s))^2 + (SEG_shift.RVEndoY(j, n, s) - SEG_shift.RVEndoY(refRV, n-1, s))^2;
% end
% [YTestRV , indTestRV] = min(TestIndPrevFrameRV);
% refRV = indTestRV;
% end
for s=SRV:-1:2
for k=1:KRV
RVdist21Endo(k) = (SEG_shift.RVEndoXnew(refRV, n, s) - SEG_shift.RVEndoXnew(k, n, s-1))^2 + (SEG_shift.RVEndoYnew(refRV, n, s) - SEG_shift.RVEndoYnew(k, n, s-1))^2;
end
[YRV , indRV] = min(RVdist21Endo);
indexRV = indRV;
refRV = indRV;
for l=1:KRV
SEG_shift_clean.RVEndoXnew(l, n, s-1) = SEG_shift.RVEndoXnew(indexRV, n, s-1);
SEG_shift_clean.RVEndoYnew(l, n, s-1) = SEG_shift.RVEndoYnew(indexRV, n, s-1);
indexRV = mod(indexRV,KRV) + 1;
end
end
end
end
% %RV ES
% refRVES = 1;
% for s=SRVES:-1:2
% for k=1:KRVES
% RVdist21EndoES(k) = (SEG_shift_resampled.RVEndoXES(refRVES, s) - SEG_shift_resampled.RVEndoXES(k, s-1))^2 + (SEG_shift_resampled.RVEndoYES(refRVES, s) - SEG_shift_resampled.RVEndoYES(k, s-1))^2;
% end
% [YRVES , indRVES] = min(RVdist21EndoES);
% indexRVES = indRVES;
% refRVES = indRVES;
% for l=1:KRVES
% SEG_shift_clean.RVEndoXES(l, s-1) = SEG_shift_resampled.RVEndoXES(indexRVES, s-1);
% SEG_shift_clean.RVEndoYES(l, s-1) = SEG_shift_resampled.RVEndoYES(indexRVES, s-1);
% indexRVES = mod(indexRVES,KRVES) + 1;
% end
% end
% n = SEG_shift_clean.EDT;
% for s = 1:SRV
% for k = 1:KRV
% i = (s-1)*KRV+k;
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXED(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYED(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ(k,s);']);
% end
% end
% n = SEG_shift_clean.EST;
% for s = 1:SRV
% for k = 1:KRV
% i = (s-1)*KRV+k;
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXES(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYES(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZES(k,s);']);
% end
% end
% else
% refEndo = 1;
% % LV Endo
% for n=1
% % if n>1
% % for j = 1:K
% % TestIndPrevFrameEndo(j) = (SEG_shift.EndoX(j, n, s) - SEG_shift.EndoX(refEndo, n-1, s))^2 + (SEG_shift.EndoY(j, n, s) - SEG_shift.EndoY(refEndo, n-1, s))^2;
% % end
% % [YTestEndo , indTestEndo] = min(TestIndPrevFrameEndo);
% % refEndo = indTestEndo;
% % end
% for s=S:-1:2
% for k=1:K
% LVdist21Endo(k) = (SEG_shift.EndoX(refEndo, n, s) - SEG_shift.EndoX(k, n, s - 1))^2 + (SEG_shift.EndoY(refEndo, n, s) - SEG_shift.EndoY(k, n, s - 1))^2;
% end
% [YEndo , indEndo] = min(LVdist21Endo);
% indexEndo = indEndo;
% refEndo = indEndo;
% for l=1:K
% indexEndo = mod(indexEndo, K) + 1;
% SEG_shift_clean.EndoXnew(l, n, s-1) = SEG_shift.EndoX(indexEndo, n, s-1);
% SEG_shift_clean.EndoYnew(l, n, s-1) = SEG_shift.EndoY(indexEndo, n, s-1);
% end
% end
% end
%
% % LV Epi
% refEpi = 1;
% for n=1
% % if n>1
% % for j = 1:K
% % TestIndPrevFrameEpi(j) = (SEG_shift.EpiX(j, n, s) - SEG_shift.EpiX(refEpi, n-1, s))^2 + (SEG_shift.EpiY(j, n, s) - SEG_shift.EpiY(refEpi, n-1, s))^2;
% % end
% % [YTestEpi , indTestEpi] = min(TestIndPrevFrameEpi);
% % refEpi = indTestEpi;
% % end
% for s=SEpi:-1:2
% for k=1:KEpi
% LVdist21Epi(k) = (SEG_shift.EpiX(refEpi, n, s) - SEG_shift.EpiX(k, n, s - 1))^2 + (SEG_shift.EpiY(refEpi, n, s) - SEG_shift.EpiY(k, n, s - 1))^2;
% end
% [YEpi , indEpi] = min(LVdist21Epi);
% indexEpi = indEpi;
% refEpi = indEpi;
% for l=1:KEpi
% indexEpi = mod(indexEpi, K) + 1;
% SEG_shift_clean.EpiXnew(l, n, s-1) = SEG_shift.EpiX(indexEpi, n, s-1);
% SEG_shift_clean.EpiYnew(l, n, s-1) = SEG_shift.EpiY(indexEpi, n, s-1);
% end
% end
% end
%
% % % To account for the irregular shape of the RV, start the cleaning from the
% % % centre and adjust indexing above then below
% % halfSliceRVED = round(SRV/2);
% % %RV ED
% % refRVED = 1;
% % for s=halfSliceRVED:-1:2
% % for k=1:KRV
% % RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s-1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s-1))^2;
% % end
% % [YRVED , indRVED] = min(RVdist21EndoED);
% % indexRVED = indRVED;
% % refRVED = indRVED;
% % for l=1:KRV
% % SEG_shift_clean.RVEndoXED(l, s-1) = SEG_shift_resampled.RVEndoXED(indexRVED, s-1);
% % SEG_shift_clean.RVEndoYED(l, s-1) = SEG_shift_resampled.RVEndoYED(indexRVED, s-1);
% % indexRVED = mod(indexRVED,KRV) + 1;
% % end
% % end
% % refRVED = 1;
% % for s=halfSliceRVED:SRV-1
% % for k=1:KRV
% % RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s+1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s+1))^2;
% % end
% % [YRVED , indRVED] = min(RVdist21EndoED);
% % indexRVED = indRVED;
% % refRVED = indRVED;
% % for l=1:KRV
% % SEG_shift_clean.RVEndoXED(l, s+1) = SEG_shift_resampled.RVEndoXED(indexRVED, s+1);
% % SEG_shift_clean.RVEndoYED(l, s+1) = SEG_shift_resampled.RVEndoYED(indexRVED, s+1);
% % indexRVED = mod(indexRVED,KRV) + 1;
% % end
% % end
%
% %RV
% if RVyes ==1
% refRV = 1;
% for n = 1
% % if n>1
% % for j = 1:K
% % TestIndPrevFrameRV(j) = (SEG_shift.RVEndoX(j, n, s) - SEG_shift.RVEndoX(refRV, n-1, s))^2 + (SEG_shift.RVEndoY(j, n, s) - SEG_shift.RVEndoY(refRV, n-1, s))^2;
% % end
% % [YTestRV , indTestRV] = min(TestIndPrevFrameRV);
% % refRV = indTestRV;
% % end
% for s=SRV:-1:2
% for k=1:KRV
% RVdist21Endo(k) = (SEG_shift.RVEndoX(refRV, n, s) - SEG_shift.RVEndoX(k, n, s-1))^2 + (SEG_shift.RVEndoY(refRV, n, s) - SEG_shift.RVEndoY(k, n, s-1))^2;
% end
% [YRV , indRV] = min(RVdist21Endo);
% indexRV = indRV;
% refRV = indRV;
% for l=1:KRV
% SEG_shift_clean.RVEndoXnew(l, n, s-1) = SEG_shift.RVEndoX(indexRV, n, s-1);
% SEG_shift_clean.RVEndoYnew(l, n, s-1) = SEG_shift.RVEndoY(indexRV, n, s-1);
% indexRV = mod(indexRV,KRV) + 1;
% end
% end
% end
% end
% % %RV ES
% % refRVES = 1;
% % for s=SRVES:-1:2
% % for k=1:KRVES
% % RVdist21EndoES(k) = (SEG_shift_resampled.RVEndoXES(refRVES, s) - SEG_shift_resampled.RVEndoXES(k, s-1))^2 + (SEG_shift_resampled.RVEndoYES(refRVES, s) - SEG_shift_resampled.RVEndoYES(k, s-1))^2;
% % end
% % [YRVES , indRVES] = min(RVdist21EndoES);
% % indexRVES = indRVES;
% % refRVES = indRVES;
% % for l=1:KRVES
% % SEG_shift_clean.RVEndoXES(l, s-1) = SEG_shift_resampled.RVEndoXES(indexRVES, s-1);
% % SEG_shift_clean.RVEndoYES(l, s-1) = SEG_shift_resampled.RVEndoYES(indexRVES, s-1);
% % indexRVES = mod(indexRVES,KRVES) + 1;
% % end
% % end
%
% % n = SEG_shift_clean.EDT;
% % for s = 1:SRV
% % for k = 1:KRV
% % i = (s-1)*KRV+k;
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXED(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYED(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ(k,s);']);
% % end
% % end
% % n = SEG_shift_clean.EST;
% % for s = 1:SRV
% % for k = 1:KRV
% % i = (s-1)*KRV+k;
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXES(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYES(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZES(k,s);']);
% % end
% % end
%end
clear n s k j i N S K NEpi SEpi KEpi SRV KRV SRVES KRVES YRV YEpi YEndo YTestEpi YTestEndo YTestRV
end
|
github
|
vildenst/3D-heart-models-master
|
notTemporalResampleAlignment.m
|
.m
|
3D-heart-models-master/Matlab_Process/notTemporalResampleAlignment.m
| 3,203 |
utf_8
|
fe8bca106d0f1d6f62541ffb47586dc0
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% TEMPORAL RESAMPLING OF POINT CLOUD WITH TEMPORAL ALIGNMENT TO ES PHASE %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resample point cloud to have 30 frames using interpolation between points
% Author - Kristin Mcleod
% SIMULA Research Laboratory
% Contact - [email protected]
% October 2014
% Takes as input SEG_shift from sliceAlignment.m, and the number of desired
% time points N
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_shift_resampled = notTemporalResampleAlignment(SEG_shift_clean,RVyes)
SEG_shift_resampled = SEG_shift_clean; % Pre-assign output
SEG_shift = SEG_shift_clean;
SEG_shift_resampled.EndoXnew = []; SEG_shift_resampled.EndoYnew = [];
SEG_shift_resampled.EpiXnew = []; SEG_shift_resampled.EpiYnew = [];
if RVyes == 1
SEG_shift_resampled.RVEndoXnew = []; SEG_shift_resampled.RVEndoYnew = [];
sizenRV=size(SEG_shift.RVEndoXnew);
KRV = sizenRV(1, 1); %No. of points (default 80)
SRV = sizenRV(1, 3); %No. of slices
end
sizen=size(SEG_shift.EndoXnew);
K = sizen(1, 1); %No. of points (default 80)
S = sizen(1, 3); %No. of slices
sizenEpi=size(SEG_shift.EpiXnew);
KEpi = sizenEpi(1, 1); %No. of points (default 80)
SEpi = sizenEpi(1, 3); %No. of slices
for s = 1:S
for k = 1:K
EndoX(:,:)=SEG_shift.EndoXnew(:,:,s);
EndoY(:,:)=SEG_shift.EndoYnew(:,:,s);
endo = sum(EndoX,2);
% Remove NaN values in the array
if ~isnan(endo(k,1))
tmp1(k,:) = EndoX(k,:);
tmp2(k,:) = EndoY(k,:);
for n = 1
SEG_shift_resampled.EndoXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.EndoYnew(k,n,s) = tmp2(k,n);
end
end
end
end
for s = 1:SEpi
for k = 1:KEpi
EpiX(:,:)=SEG_shift.EpiXnew(:,:,s);
EpiY(:,:)=SEG_shift.EpiYnew(:,:,s);
epi = sum(EpiX,2);
% Remove NaN values in the array
if ~isnan(epi(k,1))
tmp1(k,:) = EpiX(k,:);
tmp2(k,:) = EpiY(k,:);
for n = 1
SEG_shift_resampled.EpiXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.EpiYnew(k,n,s) = tmp2(k,n);
end
end
end
end
if RVyes == 1
for s = 1:SRV
for k = 1:KRV
RVEndoX(:,:)=SEG_shift.RVEndoXnew(:,:,s);
RVEndoY(:,:)=SEG_shift.RVEndoYnew(:,:,s);
rv = sum(RVEndoX,2);
% Remove NaN values in the array
if ~isnan(rv(k,1))
tmp1(k,:) = RVEndoX(k,:);
tmp2(k,:) = RVEndoY(k,:);
for n = 1
SEG_shift_resampled.RVEndoXnew(k,n,s) = tmp1(k,n);
SEG_shift_resampled.RVEndoYnew(k,n,s) = tmp2(k,n);
end
end
end
end
end
clear EndoX EndoY EpiX EpiY RVEndoX RVEndoY tmp1 tmp2
end
|
github
|
vildenst/3D-heart-models-master
|
cleanPointIndiceswithBivEpi.m
|
.m
|
3D-heart-models-master/Matlab_Process/cleanPointIndiceswithBivEpi.m
| 17,540 |
utf_8
|
0b35d1c10b75c3d2ecd05bcb56ca1db5
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% CLEAN POINT INDEXING %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Clean point indexing to make nicer meshes
% Author - Kristin Mcleod (following from Eric Davennes work)
% SIMULA Research Laboratory
% Contact - [email protected], [email protected]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SEG_shift_clean = cleanPointIndiceswithBivEpi(SEG_shift,RVyes,IsFullTemporal)
%% Get size info
SEG_shift_clean = SEG_shift;
sizen = size(SEG_shift.EndoXnew);
K = sizen(1,1); %number of points in a segment contour
N = sizen(1,2); %number of frames
S = sizen(1,3); %number of slices
sizenEpi = size(SEG_shift.EpiXnew);
KEpi = sizenEpi(1,1); %number of points in a segment contour
NEpi = sizenEpi(1,2); %number of frames
SEpi = sizenEpi(1,3); %number of slices
LVdist21Endo = zeros(1,K);
LVdist21Epi = zeros(1,KEpi);
if RVyes == 1
sizenRV = size(SEG_shift.RVEndoXnew);
KRV = sizenRV(1,1); %number of points in a segment contour
NRV = sizenRV(1,2);
SRV = sizenRV(1,3); %number of slices
sizenRVEpi = size(SEG_shift.RVEpiXnew);
KRVEpi = sizenRVEpi(1,1); %number of points in a segment contour
NRVEpi = sizenRVEpi(1,2);
SRVEpi = sizenRVEpi(1,3); %number of slices
RVdist21Endo = zeros(1,KRV);
RVdist21Epi = zeros(1,KRVEpi);
% RVEndoZ = repmat((1-(1:SRV))*(SEG_shift.SliceThickness+SEG_shift.SliceGap),...
% [KRV 1]);
% RVEpiZ = repmat((1-(1:SRVEpi))*(SEG_shift.SliceThickness+SEG_shift.SliceGap),...
% [KRVEpi 1]);
end
% SEG_shift_clean.EndoXnew = SEG_shift.EndoXnew;
% SEG_shift_clean.EndoYnew = SEG_shift.EndoYnew;
% SEG_shift_clean.EpiXnew = SEG_shift.EpiX;
% SEG_shift_clean.EpiYnew = SEG_shift.EpiY;
%% Compute squared distances and rearrange points
%if IsFullTemporal == 1
% EndoLV
refEndo = 1;
for n=1:N
% if n>1
% for j = 1:K
% TestIndPrevFrameEndo(j) = (SEG_shift.EndoX(j, n, s) - SEG_shift.EndoX(refEndo, n-1, s))^2 + (SEG_shift.EndoY(j, n, s) - SEG_shift.EndoY(refEndo, n-1, s))^2;
% end
% [YTestEndo , indTestEndo] = min(TestIndPrevFrameEndo);
% refEndo = indTestEndo;
% end
for s=S:-1:2
for k=1:K
LVdist21Endo(k) = (SEG_shift.EndoXnew(refEndo, n, s) - ...
SEG_shift.EndoXnew(k, n, s - 1))^2 + ...
(SEG_shift.EndoYnew(refEndo, n, s) - ...
SEG_shift.EndoYnew(k, n, s - 1))^2;
end
[~, indEndo] = min(LVdist21Endo);
indexEndo = indEndo;
refEndo = indEndo;
for l=1:K
indexEndo = mod(indexEndo, K) + 1;
SEG_shift_clean.EndoXnew(l, n, s-1) = ...
SEG_shift.EndoXnew(indexEndo, n, s-1);
SEG_shift_clean.EndoYnew(l, n, s-1) = ...
SEG_shift.EndoYnew(indexEndo, n, s-1);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EpiLV
refEpi = 1;
for n=1:NEpi
% if n>1
% for j = 1:K
% TestIndPrevFrameEpi(j) = (SEG_shift.EpiX(j, n, s) - SEG_shift.EpiX(refEpi, n-1, s))^2 + (SEG_shift.EpiY(j, n, s) - SEG_shift.EpiY(refEpi, n-1, s))^2;
% end
% [YTestEpi , indTestEpi] = min(TestIndPrevFrameEpi);
% refEpi = indTestEpi;
% end
for s=SEpi:-1:2
for k=1:KEpi
LVdist21Epi(k) = (SEG_shift.EpiXnew(refEpi, n, s) -...
SEG_shift.EpiXnew(k, n, s - 1))^2 + ...
(SEG_shift.EpiYnew(refEpi, n, s) - ...
SEG_shift.EpiYnew(k, n, s - 1))^2;
end
[~, indEpi] = min(LVdist21Epi);
indexEpi = indEpi;
refEpi = indEpi;
for l=1:KEpi
indexEpi = mod(indexEpi, K) + 1;
SEG_shift_clean.EpiXnew(l, n, s-1) = ...
SEG_shift.EpiXnew(indexEpi, n, s-1);
SEG_shift_clean.EpiYnew(l, n, s-1) = ...
SEG_shift.EpiYnew(indexEpi, n, s-1);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % To account for the irregular shape of the RV, start the cleaning from the
% % centre and adjust indexing above then below
% halfSliceRVED = round(SRV/2);
% %RV ED
% refRVED = 1;
% for s=halfSliceRVED:-1:2
% for k=1:KRV
% RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s-1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s-1))^2;
% end
% [YRVED , indRVED] = min(RVdist21EndoED);
% indexRVED = indRVED;
% refRVED = indRVED;
% for l=1:KRV
% SEG_shift_clean.RVEndoXED(l, s-1) = SEG_shift_resampled.RVEndoXED(indexRVED, s-1);
% SEG_shift_clean.RVEndoYED(l, s-1) = SEG_shift_resampled.RVEndoYED(indexRVED, s-1);
% indexRVED = mod(indexRVED,KRV) + 1;
% end
% end
% refRVED = 1;
% for s=halfSliceRVED:SRV-1
% for k=1:KRV
% RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s+1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s+1))^2;
% end
% [YRVED , indRVED] = min(RVdist21EndoED);
% indexRVED = indRVED;
% refRVED = indRVED;
% for l=1:KRV
% SEG_shift_clean.RVEndoXED(l, s+1) = SEG_shift_resampled.RVEndoXED(indexRVED, s+1);
% SEG_shift_clean.RVEndoYED(l, s+1) = SEG_shift_resampled.RVEndoYED(indexRVED, s+1);
% indexRVED = mod(indexRVED,KRV) + 1;
% end
% end
% EndoRV
if RVyes ==1
refRV = 1;
for n = 1:NRV
% if n>1
% for j = 1:K
% TestIndPrevFrameRV(j) = (SEG_shift.RVEndoX(j, n, s) - SEG_shift.RVEndoX(refRV, n-1, s))^2 + (SEG_shift.RVEndoY(j, n, s) - SEG_shift.RVEndoY(refRV, n-1, s))^2;
% end
% [YTestRV , indTestRV] = min(TestIndPrevFrameRV);
% refRV = indTestRV;
% end
for s=SRV:-1:2
for k=1:KRV
RVdist21Endo(k) = (SEG_shift.RVEndoXnew(refRV, n, s) - ...
SEG_shift.RVEndoXnew(k, n, s-1))^2 + ...
(SEG_shift.RVEndoYnew(refRV, n, s) - ...
SEG_shift.RVEndoYnew(k, n, s-1))^2;
end
[~, indRV] = min(RVdist21Endo);
indexRV = indRV;
refRV = indRV;
for l=1:KRV
SEG_shift_clean.RVEndoXnew(l, n, s-1) = ...
SEG_shift.RVEndoXnew(indexRV, n, s-1);
SEG_shift_clean.RVEndoYnew(l, n, s-1) = ...
SEG_shift.RVEndoYnew(indexRV, n, s-1);
indexRV = mod(indexRV,KRV) + 1;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% EpiRV
refRVEpi = 1;
for n = 1:NRVEpi
% if n>1
% for j = 1:K
% TestIndPrevFrameRV(j) = (SEG_shift.RVEndoX(j, n, s) - SEG_shift.RVEndoX(refRV, n-1, s))^2 + (SEG_shift.RVEndoY(j, n, s) - SEG_shift.RVEndoY(refRV, n-1, s))^2;
% end
% [YTestRV , indTestRV] = min(TestIndPrevFrameRV);
% refRV = indTestRV;
% end
for s=SRVEpi:-1:2
for k=1:KRVEpi
RVdist21Epi(k) = (SEG_shift.RVEpiXnew(refRVEpi, n, s) - ...
SEG_shift.RVEpiXnew(k, n, s-1))^2 + ...
(SEG_shift.RVEpiYnew(refRVEpi, n, s) - ...
SEG_shift.RVEpiYnew(k, n, s-1))^2;
end
[~, indRVEpi] = min(RVdist21Epi);
indexRVEpi = indRVEpi;
refRVEpi = indRVEpi;
for l=1:KRVEpi
SEG_shift_clean.RVEpiXnew(l, n, s-1) = ...
SEG_shift.RVEpiXnew(indexRVEpi, n, s-1);
SEG_shift_clean.RVEpiYnew(l, n, s-1) = ...
SEG_shift.RVEpiYnew(indexRVEpi, n, s-1);
indexRVEpi = mod(indexRVEpi,KRVEpi) + 1;
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
% %RV ES
% refRVES = 1;
% for s=SRVES:-1:2
% for k=1:KRVES
% RVdist21EndoES(k) = (SEG_shift_resampled.RVEndoXES(refRVES, s) - SEG_shift_resampled.RVEndoXES(k, s-1))^2 + (SEG_shift_resampled.RVEndoYES(refRVES, s) - SEG_shift_resampled.RVEndoYES(k, s-1))^2;
% end
% [YRVES , indRVES] = min(RVdist21EndoES);
% indexRVES = indRVES;
% refRVES = indRVES;
% for l=1:KRVES
% SEG_shift_clean.RVEndoXES(l, s-1) = SEG_shift_resampled.RVEndoXES(indexRVES, s-1);
% SEG_shift_clean.RVEndoYES(l, s-1) = SEG_shift_resampled.RVEndoYES(indexRVES, s-1);
% indexRVES = mod(indexRVES,KRVES) + 1;
% end
% end
% n = SEG_shift_clean.EDT;
% for s = 1:SRV
% for k = 1:KRV
% i = (s-1)*KRV+k;
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXED(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYED(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ(k,s);']);
% end
% end
% n = SEG_shift_clean.EST;
% for s = 1:SRV
% for k = 1:KRV
% i = (s-1)*KRV+k;
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXES(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYES(k,s);']);
% eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZES(k,s);']);
% end
% end
% else
% refEndo = 1;
% % LV Endo
% for n=1
% % if n>1
% % for j = 1:K
% % TestIndPrevFrameEndo(j) = (SEG_shift.EndoX(j, n, s) - SEG_shift.EndoX(refEndo, n-1, s))^2 + (SEG_shift.EndoY(j, n, s) - SEG_shift.EndoY(refEndo, n-1, s))^2;
% % end
% % [YTestEndo , indTestEndo] = min(TestIndPrevFrameEndo);
% % refEndo = indTestEndo;
% % end
% for s=S:-1:2
% for k=1:K
% LVdist21Endo(k) = (SEG_shift.EndoX(refEndo, n, s) - SEG_shift.EndoX(k, n, s - 1))^2 + (SEG_shift.EndoY(refEndo, n, s) - SEG_shift.EndoY(k, n, s - 1))^2;
% end
% [YEndo , indEndo] = min(LVdist21Endo);
% indexEndo = indEndo;
% refEndo = indEndo;
% for l=1:K
% indexEndo = mod(indexEndo, K) + 1;
% SEG_shift_clean.EndoXnew(l, n, s-1) = SEG_shift.EndoX(indexEndo, n, s-1);
% SEG_shift_clean.EndoYnew(l, n, s-1) = SEG_shift.EndoY(indexEndo, n, s-1);
% end
% end
% end
%
% % LV Epi
% refEpi = 1;
% for n=1
% % if n>1
% % for j = 1:K
% % TestIndPrevFrameEpi(j) = (SEG_shift.EpiX(j, n, s) - SEG_shift.EpiX(refEpi, n-1, s))^2 + (SEG_shift.EpiY(j, n, s) - SEG_shift.EpiY(refEpi, n-1, s))^2;
% % end
% % [YTestEpi , indTestEpi] = min(TestIndPrevFrameEpi);
% % refEpi = indTestEpi;
% % end
% for s=SEpi:-1:2
% for k=1:KEpi
% LVdist21Epi(k) = (SEG_shift.EpiX(refEpi, n, s) - SEG_shift.EpiX(k, n, s - 1))^2 + (SEG_shift.EpiY(refEpi, n, s) - SEG_shift.EpiY(k, n, s - 1))^2;
% end
% [YEpi , indEpi] = min(LVdist21Epi);
% indexEpi = indEpi;
% refEpi = indEpi;
% for l=1:KEpi
% indexEpi = mod(indexEpi, K) + 1;
% SEG_shift_clean.EpiXnew(l, n, s-1) = SEG_shift.EpiX(indexEpi, n, s-1);
% SEG_shift_clean.EpiYnew(l, n, s-1) = SEG_shift.EpiY(indexEpi, n, s-1);
% end
% end
% end
%
% % % To account for the irregular shape of the RV, start the cleaning from the
% % % centre and adjust indexing above then below
% % halfSliceRVED = round(SRV/2);
% % %RV ED
% % refRVED = 1;
% % for s=halfSliceRVED:-1:2
% % for k=1:KRV
% % RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s-1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s-1))^2;
% % end
% % [YRVED , indRVED] = min(RVdist21EndoED);
% % indexRVED = indRVED;
% % refRVED = indRVED;
% % for l=1:KRV
% % SEG_shift_clean.RVEndoXED(l, s-1) = SEG_shift_resampled.RVEndoXED(indexRVED, s-1);
% % SEG_shift_clean.RVEndoYED(l, s-1) = SEG_shift_resampled.RVEndoYED(indexRVED, s-1);
% % indexRVED = mod(indexRVED,KRV) + 1;
% % end
% % end
% % refRVED = 1;
% % for s=halfSliceRVED:SRV-1
% % for k=1:KRV
% % RVdist21EndoED(k) = (SEG_shift_resampled.RVEndoXED(refRVED, s) - SEG_shift_resampled.RVEndoXED(k, s+1))^2 + (SEG_shift_resampled.RVEndoYED(refRVED, s) - SEG_shift_resampled.RVEndoYED(k, s+1))^2;
% % end
% % [YRVED , indRVED] = min(RVdist21EndoED);
% % indexRVED = indRVED;
% % refRVED = indRVED;
% % for l=1:KRV
% % SEG_shift_clean.RVEndoXED(l, s+1) = SEG_shift_resampled.RVEndoXED(indexRVED, s+1);
% % SEG_shift_clean.RVEndoYED(l, s+1) = SEG_shift_resampled.RVEndoYED(indexRVED, s+1);
% % indexRVED = mod(indexRVED,KRV) + 1;
% % end
% % end
%
% %RV
% if RVyes ==1
% refRV = 1;
% for n = 1
% % if n>1
% % for j = 1:K
% % TestIndPrevFrameRV(j) = (SEG_shift.RVEndoX(j, n, s) - SEG_shift.RVEndoX(refRV, n-1, s))^2 + (SEG_shift.RVEndoY(j, n, s) - SEG_shift.RVEndoY(refRV, n-1, s))^2;
% % end
% % [YTestRV , indTestRV] = min(TestIndPrevFrameRV);
% % refRV = indTestRV;
% % end
% for s=SRV:-1:2
% for k=1:KRV
% RVdist21Endo(k) = (SEG_shift.RVEndoX(refRV, n, s) - SEG_shift.RVEndoX(k, n, s-1))^2 + (SEG_shift.RVEndoY(refRV, n, s) - SEG_shift.RVEndoY(k, n, s-1))^2;
% end
% [YRV , indRV] = min(RVdist21Endo);
% indexRV = indRV;
% refRV = indRV;
% for l=1:KRV
% SEG_shift_clean.RVEndoXnew(l, n, s-1) = SEG_shift.RVEndoX(indexRV, n, s-1);
% SEG_shift_clean.RVEndoYnew(l, n, s-1) = SEG_shift.RVEndoY(indexRV, n, s-1);
% indexRV = mod(indexRV,KRV) + 1;
% end
% end
% end
% end
% % %RV ES
% % refRVES = 1;
% % for s=SRVES:-1:2
% % for k=1:KRVES
% % RVdist21EndoES(k) = (SEG_shift_resampled.RVEndoXES(refRVES, s) - SEG_shift_resampled.RVEndoXES(k, s-1))^2 + (SEG_shift_resampled.RVEndoYES(refRVES, s) - SEG_shift_resampled.RVEndoYES(k, s-1))^2;
% % end
% % [YRVES , indRVES] = min(RVdist21EndoES);
% % indexRVES = indRVES;
% % refRVES = indRVES;
% % for l=1:KRVES
% % SEG_shift_clean.RVEndoXES(l, s-1) = SEG_shift_resampled.RVEndoXES(indexRVES, s-1);
% % SEG_shift_clean.RVEndoYES(l, s-1) = SEG_shift_resampled.RVEndoYES(indexRVES, s-1);
% % indexRVES = mod(indexRVES,KRVES) + 1;
% % end
% % end
%
% % n = SEG_shift_clean.EDT;
% % for s = 1:SRV
% % for k = 1:KRV
% % i = (s-1)*KRV+k;
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXED(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYED(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZ(k,s);']);
% % end
% % end
% % n = SEG_shift_clean.EST;
% % for s = 1:SRV
% % for k = 1:KRV
% % i = (s-1)*KRV+k;
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,1) = SEG_shift_clean.RVEndoXES(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,2) = SEG_shift_clean.RVEndoYES(k,s);']);
% % eval(['SEG_shift_clean.RVEndoPoints.Frame' int2str(n) '(i,3) = RVEndoZES(k,s);']);
% % end
% % end
%end
clear n s k j i N S K NEpi SEpi KEpi SRV KRV SRVES KRVES YRV YEpi YEndo...
YTestEpi YTestEndo YTestRV
end
|
github
|
vildenst/3D-heart-models-master
|
fillWedge.m
|
.m
|
3D-heart-models-master/Matlab_Process/Bullseye/fillWedge.m
| 1,991 |
utf_8
|
151b6cdd2780385e92dc40c7409c490d
|
% PATCHCHIDLREN = FILLWEDGE(vec,rho1,rho2,theta1,theta2) creates a
% wedge "patch" using xdata/ydata from a polar plot. The color of the patch
% is determined scaled by the value of the vector. To be used with
% createBullseye. In order to not have the vector automatically scaled, the
% max of the vector should not be larger than 1.
%
% -vec: 1XN vector corresponding to the color of the patch
% -rho1/2: Inner/outer radius of the wedge, respectively
% -theta1/theta2: Start/end angle of wedge, in degrees
%
% The maximum wedge size is 359.99 degrees.
%
% =========================================================================
% Adrian Lam Oshinski Lab
% August 4 2014
% =========================================================================
function patchChildren = fillWedge(vec,theta1,theta2,rho1,rho2)
if length(vec) > 1
dtheta = (theta2 - theta1)/(length(vec));
else
dtheta = (theta2 - theta1);
end
scale = 1;
for i = 1:length(vec)
if dtheta == 360
if rho1 == 0
t = 0:0.01:2*pi;
x = sin(t) * rho2;
y = cos(t) * rho2;
else
t = 0:0.01:2*pi;
x = [ sin(t) * rho1 sin(t) * rho2 0 ];
y = [ cos(t) * rho1 cos(t) * rho2 0 ];
end
else
theta1 + dtheta*(i-1);
[theta,rho] = getWedgeBorder(theta1 + dtheta*(i-1), ...
theta1 + dtheta*i,rho1,rho2);
[x,y] = pol2cart(theta,rho);
end
p = patch(x,y,[vec(i)]/scale);
set( p,'EdgeAlpha',0);
end
tmp = findall(gca,'Type','patch');
patchChildren = tmp(1:length(vec));
end
|
github
|
vildenst/3D-heart-models-master
|
createBullseye.m
|
.m
|
3D-heart-models-master/Matlab_Process/Bullseye/createBullseye.m
| 2,354 |
utf_8
|
28986c77cb08e385bce379f26f906fa6
|
function bullseyeChild = createBullseye(data)
% CREATEBULLSEYE creates a bullseye, with the main function of creating
% an AHA 17 segment bullseye. Each row in "data" should have the
% following structure:
%
% [rho1, rho2, nSegs, thetaStart]
%
% where
% -rho1 is the inner radius
% -rho2 is the outer radius
% -nSegs is the number of segments desired per ring
% -thetaStart is the starting angle of a segment (in degrees)
%
% Example: createBullseye([0 0.5 1 0; 0.5 1 4 45; ...
% 1 1.5 6 0; 1.5 2 6 0]);
% This creates the AHA 17-segment bullseye.
%
% =========================================================================
% Adrian Lam Oshinski Lab
% August 4 2014
% =========================================================================
sz = size(data);
ax = gca;
hold(ax,'on');
count = 0;
for i = 1:sz(1)
% min number of segments must be at least 1
if data(i,3) == 0
data(i,3) = 1;
end
for j = 1:data(i,3)
wedgeSize = 360/data(i,3);
createWedge(j*wedgeSize + data(i,4), ...
(j+1)*wedgeSize + data(i,4), ...
data(i,1),data(i,2));
count = count+1;
end
end
set(ax,'YTick',[],'XTick',[], ...
'XLim',[-max(data(:,2))-1 max(data(:,2))+1], ...
'YLim',[-max(data(:,2))-1 max(data(:,2))+1] ) ;
tmp = findall(gca,'Type','line');
bullseyeChild = tmp(1:count);
set(bullseyeChild,'Color','y');
end
function [wedgeHandle,XData,YData] = createWedge(theta1,theta2,rho1,rho2)
% CREATEWEDGE creates an unfilled wedge on the polar graph where:
% -theta1 is the starting angle of the wedge
% -theta2 is the final angle of the wedge
% -rho1 is the inner angle of the wedge
% -rho2 is the outer angle of the wedge
%
% Example: createWedge(45,135,3,3.5);
%
[theta,rho] = getWedgeBorder(theta1,theta2,rho1,rho2);
wedgeHandle = polar(gca,theta,rho);
XData = get(wedgeHandle,'XData');
YData = get(wedgeHandle,'YData');
end
|
github
|
EthanZhu90/MultilayerBSMC_ICCV17-master
|
bsmc_loadDataset.m
|
.m
|
MultilayerBSMC_ICCV17-master/Code/BSMC/bsmc_loadDataset.m
| 1,635 |
utf_8
|
606df2888d974332a6fe830fc76e72c3
|
function [img_template, start_frame, last_frame, options, datapath] = bsmc_loadDataset(dataset)
% global mTracksAll;
% global mLabelAll;
basedir = strrep(fileparts(mfilename('fullpath')),'\','/');
options.lookahead = 5;
options.smoothSize = 5;
res = 3;
datapath = [ basedir, '/../../Data/moseg_dataset/', dataset];
img_template = [datapath, '/', dataset, '_%02d.ppm'];
%[start_frame, last_frame] = getFrameNums(datapath, 'jpg', [dataset, '_%02d.jpg']);
[start_frame, last_frame] = getFrameNums(datapath, 'ppm', [dataset,'_%02d.ppm']);
options.addNew = 1;
options.sigma_traj = 10;
options.description = 'Bg+Fg modelling, Window size = 7, window gaussian propability based on motion, post GC';
options.method = 'kde';
options.submethod = 'bg+fg';
options.kde_n = 10;
options.kde_thresh = 5e-7; % For people 1 sequence it seems we need to increase this threshold from 1e-9 to say 2e-9 or 1e-8 otherwise we loose most of the legs
options.kde_start_eval = 5;
options.win_size = 7;
options.colorspace = 'rgs';
options.postGC = 1;
options.borderInitNeighbor = 0;
options.label_prior = 0;
options.motion_window = 1;
% Example lookahed = 3 maximum smooth size 4
% or minimum lookahead is smooth size - 1
assert(options.smoothSize <= (options.lookahead+1));
end
function [start_frame, last_frame] = getFrameNums(datapath, extension, fileTemplate)
% Find the number of frame automaticaly
files = dir([datapath '/*.' extension]);
last_frame = 0;
start_frame = 1000000;
for i=1:length(files)
frameNo = sscanf(files(i).name, fileTemplate);
last_frame = max(last_frame, frameNo);
start_frame = min(start_frame, frameNo);
end
end
|
github
|
EthanZhu90/MultilayerBSMC_ICCV17-master
|
bsmc_computeSegKDE.m
|
.m
|
MultilayerBSMC_ICCV17-master/Code/BSMC/bsmc_computeSegKDE.m
| 20,682 |
utf_8
|
77f76f706e03ffe72fcddadc5b904ce0
|
function [state] = bsmc_computeSegKDE(state, options)
debug_info = struct;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Initialize with Maximum Liklihood segmentation using graph cut.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
layer_num = length(state.layers);
label_mask = bsmc_computeGCInitSeg_multilabels(state, options, options.lambda_gc);
%%% this counts is only for segmentation. final count is update later,
%%% not this one.
app_addCurr_count = cell(1, layer_num);
for i = 1: layer_num
app_addCurr_count{i} = state.layers(i).app_model.counts + double(label_mask == state.layers(i).label);
end
[nrow, ncol] = size(label_mask);
debug_info.InitSegIm = label_mask;
app_counts = cell(1,layer_num);
app_invalid_LsPixel = cell(1, layer_num); %% for part that 0 < app count < options.kde_start_eval 0 -6
app_invalid_NoPixel = cell(1, layer_num);
for i = 1:layer_num
app_counts{i} = min(state.layers(i).app_model.counts, options.kde_n); %10
app_invalid_NoPixel{i} = app_addCurr_count{i} == 0 ; %5
app_invalid_LsPixel{i} = (app_addCurr_count{i} > 0) & (app_addCurr_count{i} < options.kde_start_eval+1);
end
debug_info.app_invalid_NoPixel = app_invalid_NoPixel;
debug_info.app_invalid_LsPixel = app_invalid_LsPixel;
% given the predicted label prior and appearance models, a MAP
% estimate of the labels is inferred.
for i = 1:layer_num
state.layers(i).prob_model.post = bsmc_evalKDE_padded(state.layers(i).app_model.x, state.layers(i).app_model.counts,...
state.obs, state.layers(i).motion_model.var, options);
state.layers(i).prob_model.post(app_invalid_NoPixel{i}) = options.kde_thresh; %%% reset prob: step 1
end
%%%%%%%% add equal prob mask %%%%% reset prob: step 2
zeroMask = zeros(nrow, ncol);
for i = 1:layer_num
zeroMask = zeroMask | app_invalid_LsPixel{i};
end
for i = 1:layer_num
state.layers(i).prob_model.post(zeroMask) = 1;
end
debug_info.app_invalid_LsPixel_Com = zeroMask;
%%%%% reset prob: step 3: protect the new layers
idx = find([state.layers.nframe] < (options.kde_start_eval+1));
if(~isempty(idx))
newlayer_mask = zeros(nrow,ncol);
for i = idx
newlayer_mask = newlayer_mask | (label_mask == state.layers(i).label);
end
debug_info.newlayer_mask = newlayer_mask;
oneMask = ones(nrow, ncol);
for i = 1:layer_num
state.layers(i).prob_model.post((label_mask == state.layers(i).label) & newlayer_mask) =...
(options.kde_thresh + options.kde_shift).*oneMask((label_mask == state.layers(i).label) & newlayer_mask);
state.layers(i).prob_model.post((label_mask ~= state.layers(i).label) & newlayer_mask) =...
(options.kde_thresh - options.kde_shift).*oneMask((label_mask ~= state.layers(i).label) & newlayer_mask);
end
end
for i = 1:layer_num
if i == 1
post_norm_scale = state.layers(1).prob_model.post;
else
post_norm_scale = post_norm_scale + state.layers(i).prob_model.post;
end
end
if (options.label_prior == 0)
for i = 1:layer_num
state.layers(i).prob_model.post = state.layers(i).prob_model.post ./ post_norm_scale;
end
else
bgprior = (1-state.model.fgprior);
fgprior = state.model.fgprior;
bgpost = (bgprior .* bgprob) ./ (bgprior .* bgprob + fgprior .* fgprob);
% For places where we have only one appearance model, likelihood
% can be very large which gives us one or zeros
% This prevents the code from recovering at a later iteration.
% Scale the values to an acceptable range, say between 0.05 and
% 0.95. Basically here we decide how much temporal smoothing do we
% want, beside of course the place where we predict the labels.
bgpost2 = bgprob ./ ( bgprob + fgprob );
bgpost2 = 0.05 + 0.5 .* bgpost2;
fgpost2 = 1 - bgpost2;
bgpost3 = (bgprior .* bgpost2) ./ (bgprior .* bgpost2 + fgprior .* fgpost2);
a = xor(fginvalid,bginvalid);
bgpost(a == 1) = bgpost3(a==1);
end
[m,n,~] = size(state.frame);
post_matrix = zeros(m,n,layer_num);
for i = 1:layer_num
post_matrix(:,:,i) = state.layers(i).prob_model.post;
end
[~, mask] = max(post_matrix,[],3); % find the max along dim 3
% replace mask with cluster label
lmask = zeros(size(mask));
for i = 1:layer_num
lmask(mask==i) = state.layers(i).label;
end
state.beforeGC = lmask;
if (options.postGC == 1)
state = computePostGraphCutSegmentation_multilabels(state, lmask, options); %%% label as the data cost
end
%figure(2)
%imshow(mask{1});
if (options.postGC == 2)
state = computePostGraphCutSegmentationProb_multilabels(state, options); %%% prob as the data cost
end
%figure(3)
%imshow(mask{1});
state.debug_info = debug_info;
end
function [state] = computePostGraphCutSegmentationProb_multilabels(state, options) %by ethan
dframe = double(state.frame);
[m n ~] = size(dframe);
layer_num = length(state.layers);
%idx = find([state.layers.label] == bgClust); % it's bg.
initial_labels =randi([1, layer_num],1,m*n); % for CLASS
%initial_labels = reshape(mask, [1,m*n]); % for CLASS
initial_labels = initial_labels -1; % became 0,1,2
%%%%%%%% prepare the data cost (UNARY)
layer_num = length(state.layers);
datacost = [];
for i = 1:layer_num
post = 1 - state.layers(i).prob_model.post;
post = reshape(post, 1, m*n);
datacost = [datacost; post];
end
%%% no need to normal;
% norm_scale = sum(datacost,1);
% norm_scale = repmat(norm_scale, layer_num, 1);
% datacost= datacost./norm_scale; %%% normalization
%%%%%%%% prepare label cost (LABELCOST)
labelcost = ones(layer_num);
for i = 1:layer_num
labelcost(i, i) = 0;
end
%%%%%%%% prepare edge weigh cost (PAIRWISE)
hDiff = [dframe(:,1:n-1,:) - dframe(:,2:n,:), zeros(m,1,3)];
vDiff = [dframe(1:m-1,:,:) - dframe(2:m,:,:); zeros(1,n,3)];
seDiff = [dframe(1:m-1,1:n-1,:) - dframe(2:m,2:n,:) zeros(m-1,1,3); zeros(1,n,3)];
neDiff = [zeros(1,n,3); dframe(2:m,1:n-1,:) - dframe(1:m-1,2:n,:) zeros(m-1,1,3)];
halfInvSig = (1/(options.sigma_app)) * eye(3);
hZ = halfInvSig * reshape(permute(hDiff, [3 1 2]), 3, m*n);
vZ = halfInvSig * reshape(permute(vDiff, [3 1 2]), 3, m*n);
seZ = halfInvSig * reshape(permute(seDiff, [3 1 2]), 3, m*n);
neZ = halfInvSig * reshape(permute(neDiff, [3 1 2]), 3, m*n);
hCue = reshape(exp(-0.5 * sum(hZ .* hZ)), m, n);
vCue = reshape(exp(-0.5 * sum(vZ .* vZ)), m, n);
seCue = reshape(exp(-0.5 * sum(seZ .* seZ)), m,n);
neCue = reshape(exp(-0.5 * sum(neZ .* neZ)), m,n);
rows_store = [];
cols_store = [];
v_store = [];
% prepare pairwise for hCue data
hCue = hCue(:, 1:n-1);% m * n-1
i = 1:m;
i = repmat(i, n-1, 1);
i = reshape(i, [1, (n-1)*m]);
j = (1:n-1)';
j = repmat(j, 1, m);
j = reshape(j, [1, (n-1)*m]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i, j+1);
v = reshape(hCue', [1, m*(n-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
% prepare pairwise for vCue data
vCue = vCue(1:m-1, :); % m-1 * n
i = 1:m-1;
i = repmat(i, n, 1);
i = reshape(i, [1, n*(m-1)]);
j = (1:n)';
j= repmat(j, 1, m-1);
j = reshape(j, [1, n*(m-1)]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i+1, j);
v = reshape(vCue', [1, n*(m-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
% prepare pairwise for seCue data
seCue = seCue(1:m-1, 1:n-1); % m-1 * n-1
i = 1:m-1;
i = repmat(i, n-1, 1);
i = reshape(i, [1, (n-1)*(m-1)]);
j = (1:n-1)';
j= repmat(j, 1, m-1);
j = reshape(j, [1, (n-1)*(m-1)]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i+1, j+1);
v = reshape(seCue', [1, (n-1)*(m-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
% prepare pairwise for seCue data
neCue = neCue(2:m, 1:n-1); % m-1 * n-1
i = 2:m;
i = repmat(i, n-1, 1);
i = reshape(i, [1, (n-1)*(m-1)]);
j = (1:n-1)';
j= repmat(j, 1, m-1);
j = reshape(j, [1, (n-1)*(m-1)]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i-1, j+1);
v = reshape(neCue', [1, (n-1)*(m-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
sMatrix = sparse(rows_store, cols_store, v_store, m*n, m*n); % N X N sparse matrix
%EXPANSION = 0; % 0 == swap(2 lablels), 1 == expansion
if(layer_num > 2)
EXPANSION = 1; % 0 == swap(2 lablels), 1 == expansion
else
EXPANSION = 0;
end
dinitial_labels = double(initial_labels);
sdatacost = single(datacost);
slabelcost = single(labelcost);
% use graph cut with multiple labels
[labels energy energy_after] = GCMex(dinitial_labels, options.datacost_lambda *sdatacost, ...
options.pairwise_lambda * sMatrix, options.labelcost_lambda * slabelcost, EXPANSION);
mask = reshape(labels, [m , n]);
mask = mask + 1;
label_mask = zeros(size(mask));
for i = 1: layer_num
%mask_term = zeros(size(mask));
%mask_term(mask==i) = 1;
%state.layers(i).mask = mask_term;
label_mask(mask==i) = state.layers(i).label;
end
state.lmask = label_mask;
end
function [state] = computePostGraphCutSegmentation_multilabels(state, lmask, options) %by ethan
dframe = double(state.frame);
[m n ~] = size(dframe);
layer_num = length(state.layers);
%idx = find([state.layers.label] == bgClust); % it's bg.
initial_labels =randi([1, layer_num],1,m*n); % for CLASS
%initial_labels = reshape(mask, [1,m*n]); % for CLASS
initial_labels = initial_labels -1; % became 0,1,2
%%%%%%%% prepare the data cost (UNARY)
bmask = zeros(size(lmask));
layer_num = length(state.layers);
for i = 1:layer_num
bmask(lmask==state.layers(i).label) = i;
end
bmask = reshape(bmask, [1,m*n]);
datacost = []; % (C X N) (1,0,1)
for i = 1: layer_num
datacost_term = 0.5 * ones(1, m*n);
datacost_term(bmask == i) = 0.0001;
datacost = [datacost; datacost_term];
end
norm_scale = sum(datacost,1);
norm_scale = repmat(norm_scale, layer_num, 1);
datacost= datacost./norm_scale; %%% normalization
%%%%%%%% prepare label cost (LABELCOST)
labelcost = ones(layer_num);
for i = 1:layer_num
labelcost(i, i) = 0;
end
%%%%%%%% prepare edge weigh cost (PAIRWISE)
hDiff = [dframe(:,1:n-1,:) - dframe(:,2:n,:), zeros(m,1,3)];
vDiff = [dframe(1:m-1,:,:) - dframe(2:m,:,:); zeros(1,n,3)];
seDiff = [dframe(1:m-1,1:n-1,:) - dframe(2:m,2:n,:) zeros(m-1,1,3); zeros(1,n,3)];
neDiff = [zeros(1,n,3); dframe(2:m,1:n-1,:) - dframe(1:m-1,2:n,:) zeros(m-1,1,3)];
halfInvSig = (1/(options.sigma_app)) * eye(3);
hZ = halfInvSig * reshape(permute(hDiff, [3 1 2]), 3, m*n);
vZ = halfInvSig * reshape(permute(vDiff, [3 1 2]), 3, m*n);
seZ = halfInvSig * reshape(permute(seDiff, [3 1 2]), 3, m*n);
neZ = halfInvSig * reshape(permute(neDiff, [3 1 2]), 3, m*n);
hCue = reshape(exp(-0.5 * sum(hZ .* hZ)), m, n);
vCue = reshape(exp(-0.5 * sum(vZ .* vZ)), m, n);
seCue = reshape(exp(-0.5 * sum(seZ .* seZ)), m,n);
neCue = reshape(exp(-0.5 * sum(neZ .* neZ)), m,n);
rows_store = [];
cols_store = [];
v_store = [];
% prepare pairwise for hCue data
hCue = hCue(:, 1:n-1);% m * n-1
i = 1:m;
i = repmat(i, n-1, 1);
i = reshape(i, [1, (n-1)*m]);
j = (1:n-1)';
j = repmat(j, 1, m);
j = reshape(j, [1, (n-1)*m]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i, j+1);
v = reshape(hCue', [1, m*(n-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
% prepare pairwise for vCue data
vCue = vCue(1:m-1, :); % m-1 * n
i = 1:m-1;
i = repmat(i, n, 1);
i = reshape(i, [1, n*(m-1)]);
j = (1:n)';
j= repmat(j, 1, m-1);
j = reshape(j, [1, n*(m-1)]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i+1, j);
v = reshape(vCue', [1, n*(m-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
% prepare pairwise for seCue data
seCue = seCue(1:m-1, 1:n-1); % m-1 * n-1
i = 1:m-1;
i = repmat(i, n-1, 1);
i = reshape(i, [1, (n-1)*(m-1)]);
j = (1:n-1)';
j= repmat(j, 1, m-1);
j = reshape(j, [1, (n-1)*(m-1)]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i+1, j+1);
v = reshape(seCue', [1, (n-1)*(m-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
% prepare pairwise for seCue data
neCue = neCue(2:m, 1:n-1); % m-1 * n-1
i = 2:m;
i = repmat(i, n-1, 1);
i = reshape(i, [1, (n-1)*(m-1)]);
j = (1:n-1)';
j= repmat(j, 1, m-1);
j = reshape(j, [1, (n-1)*(m-1)]);
rows = sub2ind([m,n], i, j);
cols = sub2ind([m,n], i-1, j+1);
v = reshape(neCue', [1, (n-1)*(m-1)]);
rows_store = [rows_store, rows];
cols_store = [cols_store, cols];
v_store = [v_store, v];
rows_store = [rows_store, cols];
cols_store = [cols_store, rows];
v_store = [v_store, v];
sMatrix = sparse(rows_store, cols_store, v_store, m*n, m*n); % N X N sparse matrix
%EXPANSION = 0; % 0 == swap(2 lablels), 1 == expansion
if(layer_num > 2)
EXPANSION = 1; % 0 == swap(2 lablels), 1 == expansion
else
EXPANSION = 0;
end
dinitial_labels = double(initial_labels);
sdatacost = single(datacost);
slabelcost = single(labelcost);
% use graph cut with multiple labels
[labels energy energy_after] = GCMex(dinitial_labels, options.datacost_lambda *sdatacost, ...
options.pairwise_lambda * sMatrix, options.labelcost_lambda * slabelcost, EXPANSION);
mask = reshape(labels, [m , n]);
mask = mask + 1;
label_mask = zeros(size(mask));
for i = 1: layer_num
%mask_term = zeros(size(mask));
%mask_term(mask==i) = 1;
%state.layers(i).mask = mask_term;
label_mask(mask==i) = state.layers(i).label;
end
state.lmask = label_mask;
end
function mask = computePostGraphCutSegmentationProb(state, bgpost, options)
dframe = double(state.frame);
[m n ~] = size(dframe);
hDiff = [dframe(:,1:n-1,:) - dframe(:,2:n,:) zeros(m,1,3)];
vDiff = [dframe(1:m-1,:,:) - dframe(2:m,:,:); zeros(1,n,3)];
seDiff = [dframe(1:m-1,1:n-1,:) - dframe(2:m,2:n,:) zeros(m-1,1,3); zeros(1,n,3)];
neDiff = [zeros(1,n,3); dframe(2:m,1:n-1,:) - dframe(1:m-1,2:n,:) zeros(m-1,1,3)];
halfInvSig = (1/(options.sigma_app)) * eye(3);
hZ = halfInvSig * reshape(permute(hDiff, [3 1 2]), 3, m*n);
vZ = halfInvSig * reshape(permute(vDiff, [3 1 2]), 3, m*n);
neZ = halfInvSig * reshape(permute(neDiff, [3 1 2]), 3, m*n);
seZ = halfInvSig * reshape(permute(seDiff, [3 1 2]), 3, m*n);
hCue = reshape(exp(-0.5 * sum(hZ .* hZ)), m, n);
vCue = reshape(exp(-0.5 * sum(vZ .* vZ)), m, n);
neCue = reshape(exp(-0.5 * sum(neZ .* neZ)), m,n);
seCue = reshape(exp(-0.5 * sum(seZ .* seZ)), m,n);
dataCost(:,:,1) = 1-bgpost;
dataCost(:,:,2) = bgpost;
mask = bsmc_gridCut(2 * dataCost, 8 * hCue, 8 *vCue, 8 *seCue, 8 *neCue);
end
function mask = computePostGraphCutSegmentation(state, mask, options)
dframe = double(state.frame);
[m n ~] = size(dframe);
hDiff = [dframe(:,1:n-1,:) - dframe(:,2:n,:) zeros(m,1,3)];
vDiff = [dframe(1:m-1,:,:) - dframe(2:m,:,:); zeros(1,n,3)];
seDiff = [dframe(1:m-1,1:n-1,:) - dframe(2:m,2:n,:) zeros(m-1,1,3); zeros(1,n,3)];
neDiff = [zeros(1,n,3); dframe(2:m,1:n-1,:) - dframe(1:m-1,2:n,:) zeros(m-1,1,3)];
halfInvSig = (1/(options.sigma_app)) * eye(3);
hZ = halfInvSig * reshape(permute(hDiff, [3 1 2]), 3, m*n);
vZ = halfInvSig * reshape(permute(vDiff, [3 1 2]), 3, m*n);
neZ = halfInvSig * reshape(permute(neDiff, [3 1 2]), 3, m*n);
seZ = halfInvSig * reshape(permute(seDiff, [3 1 2]), 3, m*n);
hCue = reshape(exp(-0.5 * sum(hZ .* hZ)), m, n);
vCue = reshape(exp(-0.5 * sum(vZ .* vZ)), m, n);
neCue = reshape(exp(-0.5 * sum(neZ .* neZ)), m,n);
seCue = reshape(exp(-0.5 * sum(seZ .* seZ)), m,n);
sparse_fgll_noapp = 0.5 * ones(size(state.frame,1), size(state.frame,2));
sparse_bgll_noapp = 0.5 * ones(size(state.frame,1), size(state.frame,2));
sparse_fgll_noapp(mask) = options.lrgNum;
sparse_bgll_noapp(~mask) = options.lrgNum;
norm_factor = sparse_fgll_noapp + sparse_bgll_noapp;
sparse_fgll_noapp = sparse_fgll_noapp ./ norm_factor;
sparse_bgll_noapp = sparse_bgll_noapp ./ norm_factor;
dataCost(:,:,1) = sparse_fgll_noapp;
dataCost(:,:,2) = sparse_bgll_noapp;
mask = bsmc_gridCut(2 * dataCost, 8 * hCue, 8 *vCue, 8 *seCue, 8 *neCue);
end
function mask = computeGraphCutSegmentation(state,options)
dframe = double(state.frame);
[m n ~] = size(dframe);
hDiff = [dframe(:,1:n-1,:) - dframe(:,2:n,:) zeros(m,1,3)];
vDiff = [dframe(1:m-1,:,:) - dframe(2:m,:,:); zeros(1,n,3)];
seDiff = [dframe(1:m-1,1:n-1,:) - dframe(2:m,2:n,:) zeros(m-1,1,3); zeros(1,n,3)];
neDiff = [zeros(1,n,3); dframe(2:m,1:n-1,:) - dframe(1:m-1,2:n,:) zeros(m-1,1,3)];
halfInvSig = (1/(options.sigma_app)) * eye(3);
hZ = halfInvSig * reshape(permute(hDiff, [3 1 2]), 3, m*n);
vZ = halfInvSig * reshape(permute(vDiff, [3 1 2]), 3, m*n);
neZ = halfInvSig * reshape(permute(neDiff, [3 1 2]), 3, m*n);
seZ = halfInvSig * reshape(permute(seDiff, [3 1 2]), 3, m*n);
hCue = reshape(exp(-0.5 * sum(hZ .* hZ)), m, n);
vCue = reshape(exp(-0.5 * sum(vZ .* vZ)), m, n);
neCue = reshape(exp(-0.5 * sum(neZ .* neZ)), m,n);
seCue = reshape(exp(-0.5 * sum(seZ .* seZ)), m,n);
% [~, ia,ib] = intersect(state.memTrajIds, state.trajIds);
% sparse_fgpoints = round(state.points(1:2, ib(state.clust.lbls(ia) == state.clust.fgClust)));
% sparse_bgpoints = round(state.points(1:2, ib(state.clust.lbls(ia) ~= state.clust.fgClust)));
sparse_fgpoints = state.sparse_fgpoints;
sparse_bgpoints = state.sparse_bgpoints;
sparse_fgll_noapp = 0.5 * ones(size(state.frame,1), size(state.frame,2));
sparse_bgll_noapp = 0.5 * ones(size(state.frame,1), size(state.frame,2));
sparse_fgll_noapp(sub2ind(size(sparse_fgll_noapp), sparse_fgpoints(2,:), sparse_fgpoints(1,:))) = options.lrgNum;
sparse_bgll_noapp(sub2ind(size(sparse_bgll_noapp), sparse_bgpoints(2,:), sparse_bgpoints(1,:))) = options.lrgNum;
norm_factor = sparse_fgll_noapp + sparse_bgll_noapp;
seg.sparse_fgll_noapp = sparse_fgll_noapp ./ norm_factor;
seg.sparse_bgll_noapp = sparse_bgll_noapp ./ norm_factor;
dataCost(:,:,1) = seg.sparse_fgll_noapp;
dataCost(:,:,2) = seg.sparse_bgll_noapp;
mask = bsmc_gridCut(4 * dataCost, 8 * hCue, 8 *vCue, 8 *seCue, 8 *neCue);
end
|
github
|
EthanZhu90/MultilayerBSMC_ICCV17-master
|
bsmc_predictModelKDE.m
|
.m
|
MultilayerBSMC_ICCV17-master/Code/BSMC/bsmc_predictModelKDE.m
| 6,735 |
utf_8
|
7d66ba64d2f1803f04be114e616f1f52
|
function [state] = bsmc_predictModelKDE(prevState, state, options)
% addpath('/home/elqursh/Projects/Research/Libraries/Belief Propagation/gabp-src/');
if (~isfield(prevState,'layers'))
% Initialize appearance model
%fprintf('\nInitializing appearance models\n');
layer_num = length(state.layers);
for i = 1: layer_num
app_x = zeros(size(state.obs,1), size(state.obs,2), options.kde_n * size(state.obs,3));
app_counts = zeros(size(state.obs,1), size(state.obs,2));
%app_labels = 0.5 .* ones(size(state.obs,1), size(state.obs,2)); %% what's this?
state.layers(i).app_model = struct('x',app_x, 'counts',app_counts);
prob_prior = (1/layer_num) * ones(size(state.obs,1), size(state.obs,2)); %% need to change
state.layers(i).prob_model = struct('prior', prob_prior, 'post', -1 ); % post is for later
end
return;
end
% Predict change to appearance model from previous frame to current
% frame.
%idx = find([traj_store.label] == bgClust); % if it's fg.
layer_num = length(state.layers);
for i = 1: layer_num
A = computeA(state.layers(i).motion_model, options); % as far,for me, A is just a shift matrix.
mlabel = state.layers(i).label;
idx = find([prevState.layers.label] == mlabel); % find the corresponding app model
%%% if you can't find the app of this new cluster, we create a new element in app struct.
if(isempty(idx))
app_x = zeros(size(state.obs,1), size(state.obs,2), options.kde_n * size(state.obs,3));
app_counts = zeros(size(state.obs,1), size(state.obs,2));
%app_labels = 0.5 .* ones(size(state.obs,1), size(state.obs,2)); %% what's this?
prev_app = struct('x',app_x, 'counts',app_counts);
state.layers(i).app_model = predictState(A, prev_app, options);
else
state.layers(i).app_model = predictState(A, prevState.layers(idx).app_model, options);
end
end
%%% generate the prob_models
%%% it seems like prob_prior is not used later
if (options.label_prior ==1)
error('do not set label_prior to 1');
fgprior = predictFGSig(A2, 1-prevState.model.bgpost, state.motion_models{2}.var, options);
else
for i = 1: layer_num
mlabel = state.layers(i).label;
idx = find([prevState.layers.label] == mlabel); % find the corresponding app model
if(isempty(idx)) % new cluster
prob_prior = (1/layer_num) * ones(size(state.obs,1), size(state.obs,2));
state.layers(i).prob_model = struct('prior', prob_prior, 'post',-1 ); % post is for later
else
prob_prior = predictFG(A, prevState.layers(idx).prob_model.post); % eq(10) fg prob shift to current frame.
state.layers(i).prob_model = struct('prior', prob_prior, 'post',-1 ); % post is for later
end
end
end
end
function fgprediction = predictFG(A, prev_fgpost)
[m,n] = size(prev_fgpost);
% Apply the mean motion (encapsulated in A) to the prev_fgpost, such
% that we now get 0 mean distributions.
fgprediction = reshape(A * reshape(prev_fgpost, m*n,1),m,n);
end
function proball = predictFGSig(A, prev_fgpost, sig2, options)
[m n] = size(prev_fgpost);
fgprediction = reshape(A * reshape(prev_fgpost, m*n,1),m,n);
proball = bsmc_adapGridKDE(fgprediction, sig2, options.win_size2);
end
function app = predictState(A, prev_bgapp, options)
[m n c] = size(prev_bgapp.x);
app_x = zeros(m,n,c);
for i=1:c
app_x(:,:,i) = reshape(A * reshape(prev_bgapp.x(:,:,i),m*n,1),m,n);
end
app_counts = reshape(A * reshape(prev_bgapp.counts,m*n,1),m,n);
app = struct('x',app_x, 'counts',app_counts);
end
function A = computeA(motionModel, options)
% Here we assume motion model is accurate.
[m n ~] = size(motionModel.mean);
[x,y] = meshgrid((1:n),(1:m));
if (~isfield(options,'motion_subpixel') || options.motion_subpixel == 0)
shifts_x = round(motionModel.mean(:,:,1)) + x;
shifts_y = round(motionModel.mean(:,:,2)) + y;
outofbounds = shifts_x < 1 | shifts_x > n | shifts_y < 1 | shifts_y > m;
shifts_x = max(min(shifts_x, n),1);
shifts_y = max(min(shifts_y, m),1);
vals = ones(m,n);
if (options.borderInitNeighbor == 0)
vals(outofbounds) = 0;
end
idx = sub2ind([m n], shifts_y(:), shifts_x(:));
is = (1:m*n);
A = sparse(is, idx, vals(:),m*n,m*n);
else
% Each pixel comes from 4 other pixels
xx = motionModel.mean(:,:,1); xx = xx(:);
yy = motionModel.mean(:,:,2); yy = yy(:);
xx_floor = floor(xx); xx_ceil = ceil(xx);
yy_floor = floor(yy); yy_ceil = ceil(yy);
vec_ff = [ xx - xx_floor yy - yy_floor ]';
vec_fc = [ xx - xx_floor yy_ceil - yy ]';
vec_cf = [ xx_ceil - xx yy - yy_floor ]';
vec_cc = [ xx_ceil - xx yy_ceil - yy ]';
dist_ff = sqrt(sum(vec_ff.^2));
dist_fc = sqrt(sum(vec_fc.^2));
dist_cf = sqrt(sum(vec_cf.^2));
dist_cc = sqrt(sum(vec_cc.^2));
sum_dist = dist_ff + dist_fc + dist_cf + dist_cc;
weight_ff = dist_ff ./ sum_dist;
weight_fc = dist_fc ./ sum_dist;
weight_cf = dist_cf ./ sum_dist;
weight_cc = dist_cc ./ sum_dist;
shifts_x_f = max(min(xx_floor + x(:), n),1);
shifts_y_f = max(min(yy_floor + y(:), m),1);
shifts_x_c = max(min(xx_ceil + x(:), n),1);
shifts_y_c = max(min(yy_ceil + y(:), m),1);
same_x = shifts_x_f == shifts_x_c;
same_y = shifts_y_f == shifts_y_c;
weight_ff(same_x) = weight_ff(same_x) + weight_cf(same_x); weight_cf(same_x) = 0;
weight_fc(same_x) = weight_fc(same_x) + weight_cc(same_x); weight_cc(same_x) = 0;
weight_ff(same_y) = weight_ff(same_y) + weight_fc(same_y); weight_fc(same_y) = 0;
weight_cf(same_y) = weight_cf(same_y) + weight_cc(same_y); weight_cc(same_y) = 0;
js_ff = sub2ind([m n], shifts_y_f, shifts_x_f);
js_fc = sub2ind([m n], shifts_y_c, shifts_x_f);
js_cf = sub2ind([m n], shifts_y_f, shifts_x_c);
js_cc = sub2ind([m n], shifts_y_c, shifts_x_c);
is = (1:m*n);
A = sparse(repmat(is,1,4), ...
[js_ff; js_fc; js_cf; js_cc]', ...
[weight_ff weight_fc weight_cf weight_cc],m*n,m*n);
assert(all((sum(A,2) -1) <= 20*eps));
end
end
|
github
|
EthanZhu90/MultilayerBSMC_ICCV17-master
|
bsmc_inferM.m
|
.m
|
MultilayerBSMC_ICCV17-master/Code/BSMC/bsmc_inferM.m
| 3,154 |
utf_8
|
6e643c4c758b092955aedcc4b4db0354
|
function state = bsmc_inferM(state, options)
% Given the motion vectors for the background objects, infer the optical
% flow field. Use gaussian belief propagation GaBP.
% Compute Vxx
h = size(state.frame,1);
w = size(state.frame,2);
% n = w * h;
Vxx = bsmc_computeVxx(w,h);
Vxx = Vxx ./ (options.sig_edge^2);
layer_num = length(state.layers);
layers = state.layers;
for i = 1: layer_num
sparse_points_m = layers(i).traj_store.sparse_points_m;
if(layers(i).label == state.bgClust) % if it's background.
% Background is pretty rigidm no need to compute var
[M_b, sig2_b] = computeFlow(Vxx, [h w], sparse_points_m, options, false);
layers(i).motion_model = struct('mean', M_b, 'var',sig2_b);
else
if (isempty(sparse_points_m))
M_f = zeros(h,w,2);
sig2_f = 3^2 * ones(h,w);
else
[M_f,sig2_f] = computeFlow(Vxx, [h w], sparse_points_m, options, false); % original true
end
layers(i).motion_model = struct('mean', M_f, 'var',sig2_f);
end
end
state.layers = layers;
end
function [flow, sig2] = computeFlow(Vxx_in, sz, points, options, compute_sig2)
%%% compute_sig2: true, compute var otherwise not
is = sub2ind(sz, points(2,:), points(1,:));
n = prod(sz);
m = size(points,2);
h = sz(1);
w = sz(2);
% Update Vxx
Vxx = Vxx_in;
VxxDiff = sparse(is,is,repmat((1/(options.sig_motion^2)), length(is),1),n,n);
%Vxx(sub2ind([n n], is,is)) = Vxx(sub2ind([n n], is, is)) + (1/(options.sig_motion^2));
Vxx = Vxx + VxxDiff;
% Compute Vxy
Vxy = sparse(n,m);
Vxy(sub2ind([n m], is, 1:m)) = -(1/(options.sig_motion^2));
% Now add labeled information.
% Find motion vectors
y1 = (points(3,:) - points(1,:))';
y2 = (points(4,:) - points(2,:))';
flow1 = Vxx\(-Vxy * y1);
flow2 = Vxx\(-Vxy * y2);
flow(:,:,1) = reshape(full(flow1),h,w);
flow(:,:,2) = reshape(full(flow2),h,w);
if (~compute_sig2)
sig2 = ones(h,w);
else
% Down scale input 8 times
h = sz(1);
w = sz(2);
if (mod(h,8) == 0 && mod(w,8) == 0)
r = 8;
else
if (mod(h,5) == 0 && mod(h,5) == 0)
r = 5;
else
disp('Cannot find a suitable down-scale for the image');
sig2 = 1*ones(h,w);
return;
end
end
sig_edge = options.sig_edge * r;
points = ceil(points/r);
w = w/r; h = h/r;
sz = [h w];
% Compute sig2
Vxx = bsmc_computeVxx(w,h);
Vxx = Vxx ./ (sig_edge^2);
is = sub2ind(sz, points(2,:), points(1,:));
n = prod(sz);
VxxDiff = sparse(is,is,repmat((1/(options.sig_motion^2)), length(is),1),n,n);
Vxx = Vxx + VxxDiff;
invVxx = inv(Vxx);
sig2_downsampled = reshape(full(diag(invVxx)),h,w);
[x,y ] = meshgrid(1:r*w,1:r*h);
x = ceil(x/r);
y = ceil(y/r);
sig2 = sig2_downsampled(sub2ind(size(sig2_downsampled), y(:),x(:)));
sig2 = reshape(sig2, r*h,r*w);
end
end
|
github
|
EthanZhu90/MultilayerBSMC_ICCV17-master
|
munkres.m
|
.m
|
MultilayerBSMC_ICCV17-master/Code/BSMC/munkres.m
| 7,171 |
utf_8
|
b44ad4f1a20fc5d03db019c44a65bac3
|
function [assignment,cost] = munkres(costMat)
% MUNKRES Munkres (Hungarian) Algorithm for Linear Assignment Problem.
%
% [ASSIGN,COST] = munkres(COSTMAT) returns the optimal column indices,
% ASSIGN assigned to each row and the minimum COST based on the assignment
% problem represented by the COSTMAT, where the (i,j)th element represents the cost to assign the jth
% job to the ith worker.
%
% Partial assignment: This code can identify a partial assignment is a full
% assignment is not feasible. For a partial assignment, there are some
% zero elements in the returning assignment vector, which indicate
% un-assigned tasks. The cost returned only contains the cost of partially
% assigned tasks.
% This is vectorized implementation of the algorithm. It is the fastest
% among all Matlab implementations of the algorithm.
% Examples
% Example 1: a 5 x 5 example
%{
[assignment,cost] = munkres(magic(5));
disp(assignment); % 3 2 1 5 4
disp(cost); %15
%}
% Example 2: 400 x 400 random data
%{
n=400;
A=rand(n);
tic
[a,b]=munkres(A);
toc % about 2 seconds
%}
% Example 3: rectangular assignment with inf costs
%{
A=rand(10,7);
A(A>0.7)=Inf;
[a,b]=munkres(A);
%}
% Example 4: an example of partial assignment
%{
A = [1 3 Inf; Inf Inf 5; Inf Inf 0.5];
[a,b]=munkres(A)
%}
% a = [1 0 3]
% b = 1.5
% Reference:
% "Munkres' Assignment Algorithm, Modified for Rectangular Matrices",
% http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html
% version 2.3 by Yi Cao at Cranfield University on 11th September 2011
assignment = zeros(1,size(costMat,1));
cost = 0;
validMat = costMat == costMat & costMat < Inf;
bigM = 10^(ceil(log10(sum(costMat(validMat))))+1);
costMat(~validMat) = bigM;
% costMat(costMat~=costMat)=Inf;
% validMat = costMat<Inf;
validCol = any(validMat,1);
validRow = any(validMat,2);
nRows = sum(validRow);
nCols = sum(validCol);
n = max(nRows,nCols);
if ~n
return
end
maxv=10*max(costMat(validMat));
dMat = zeros(n) + maxv;
dMat(1:nRows,1:nCols) = costMat(validRow,validCol);
%*************************************************
% Munkres' Assignment Algorithm starts here
%*************************************************
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% STEP 1: Subtract the row minimum from each row.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
minR = min(dMat,[],2);
minC = min(bsxfun(@minus, dMat, minR));
%**************************************************************************
% STEP 2: Find a zero of dMat. If there are no starred zeros in its
% column or row start the zero. Repeat for each zero
%**************************************************************************
zP = dMat == bsxfun(@plus, minC, minR);
starZ = zeros(n,1);
while any(zP(:))
[r,c]=find(zP,1);
starZ(r)=c;
zP(r,:)=false;
zP(:,c)=false;
end
while 1
%**************************************************************************
% STEP 3: Cover each column with a starred zero. If all the columns are
% covered then the matching is maximum
%**************************************************************************
if all(starZ>0)
break
end
coverColumn = false(1,n);
coverColumn(starZ(starZ>0))=true;
coverRow = false(n,1);
primeZ = zeros(n,1);
[rIdx, cIdx] = find(dMat(~coverRow,~coverColumn)==bsxfun(@plus,minR(~coverRow),minC(~coverColumn)));
while 1
%**************************************************************************
% STEP 4: Find a noncovered zero and prime it. If there is no starred
% zero in the row containing this primed zero, Go to Step 5.
% Otherwise, cover this row and uncover the column containing
% the starred zero. Continue in this manner until there are no
% uncovered zeros left. Save the smallest uncovered value and
% Go to Step 6.
%**************************************************************************
cR = find(~coverRow);
cC = find(~coverColumn);
rIdx = cR(rIdx);
cIdx = cC(cIdx);
Step = 6;
while ~isempty(cIdx)
uZr = rIdx(1);
uZc = cIdx(1);
primeZ(uZr) = uZc;
stz = starZ(uZr);
if ~stz
Step = 5;
break;
end
coverRow(uZr) = true;
coverColumn(stz) = false;
z = rIdx==uZr;
rIdx(z) = [];
cIdx(z) = [];
cR = find(~coverRow);
z = dMat(~coverRow,stz) == minR(~coverRow) + minC(stz);
rIdx = [rIdx(:);cR(z)];
cIdx = [cIdx(:);stz(ones(sum(z),1))];
end
if Step == 6
% *************************************************************************
% STEP 6: Add the minimum uncovered value to every element of each covered
% row, and subtract it from every element of each uncovered column.
% Return to Step 4 without altering any stars, primes, or covered lines.
%**************************************************************************
[minval,rIdx,cIdx]=outerplus(dMat(~coverRow,~coverColumn),minR(~coverRow),minC(~coverColumn));
minC(~coverColumn) = minC(~coverColumn) + minval;
minR(coverRow) = minR(coverRow) - minval;
else
break
end
end
%**************************************************************************
% STEP 5:
% Construct a series of alternating primed and starred zeros as
% follows:
% Let Z0 represent the uncovered primed zero found in Step 4.
% Let Z1 denote the starred zero in the column of Z0 (if any).
% Let Z2 denote the primed zero in the row of Z1 (there will always
% be one). Continue until the series terminates at a primed zero
% that has no starred zero in its column. Unstar each starred
% zero of the series, star each primed zero of the series, erase
% all primes and uncover every line in the matrix. Return to Step 3.
%**************************************************************************
rowZ1 = find(starZ==uZc);
starZ(uZr)=uZc;
while rowZ1>0
starZ(rowZ1)=0;
uZc = primeZ(rowZ1);
uZr = rowZ1;
rowZ1 = find(starZ==uZc);
starZ(uZr)=uZc;
end
end
% Cost of assignment
rowIdx = find(validRow);
colIdx = find(validCol);
starZ = starZ(1:nRows);
vIdx = starZ <= nCols;
assignment(rowIdx(vIdx)) = colIdx(starZ(vIdx));
pass = assignment(assignment>0);
pass(~diag(validMat(assignment>0,pass))) = 0;
assignment(assignment>0) = pass;
cost = trace(costMat(assignment>0,assignment(assignment>0)));
function [minval,rIdx,cIdx]=outerplus(M,x,y)
ny=size(M,2);
minval=inf;
for c=1:ny
M(:,c)=M(:,c)-(x+y(c));
minval = min(minval,min(M(:,c)));
end
[rIdx,cIdx]=find(M==minval);
|
github
|
bobbielf2/BIE2D-master
|
fig_lapconvK1.m
|
.m
|
BIE2D-master/doublyperiodic/fig_lapconvK1.m
| 11,601 |
utf_8
|
c2453cbaaf467699775bd8ef1b668792
|
function fig_lapconvK1
% Laplace Neu periodic BVP, convergence and soln plots. Single inclusion (K=1).
% All dense matrices, native quadr for solve, close eval for plot.
% Barnett, cleaned up from perineu2dnei1.m 5/11/16.
% Small codes broken out 6/12/16 (no longer self-contained); BIE2D 6/29/16
% X,y,r notation & non-random r, 8/17/16. 5x5 known src 8/23/16.
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square (LU much worse),
% ...and much faster than the following backward-stable SVD solve:
%[UE,S,V] = svd(E,'econ'); Sr = max(diag(S),1e-14); co = V*((UE'*rhs)./Sr);
format long g
jumps = [1 0]; %[0 1]; % potential jumps across R-L and T-B (not for known sol)
U.e1 = 1; U.e2 = 1i; % unit cell lattice vectors and src direct sum list...
U.nei = 1; [tx ty] = meshgrid(-U.nei:U.nei); U.trlist = tx(:)+1i*ty(:); % 3x3
m = 22; [U L R B T] = doublywalls(U,m);
proxyrep = @LapSLP; % sets proxy pt type via a kernel function call
Rp = 1.4; M = 70; % proxy params
p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
a = 0.7; b = 0.15; % worm params, spills horizontally out of any unit cell
uexdiff = 0.11101745840635; flux1ex = 0.5568613934999; % 1e-12 err, a=.7,b=.15
% known soln dipole location: must be deep inside Omega (careful)
src.x = 0.42+.23i; src.w = 1; src.nx = 1+0i; src.nei = 5; % creates 5x5 grid
% -------------------------- single soln and plot
N = 140; s = wormcurve(a,b,N);
rhs = [0*s.x; jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; % driving
tic
E = ELSmatrix(s,p,proxyrep,U); % fill
co = linsolve(E,rhs,lso); % direct bkw stable solve
toc
fprintf('resid norm = %.3g\n',norm(E*co - rhs))
sig = co(1:N); psi = co(N+1:end);
fprintf('density norm = %.3g, proxy norm = %.3g\n',norm(sig), norm(psi))
fprintf('density integral = %.3g\n',s.w'*sig)
z = (.1+.4i)*[-1;1]; % pot difference btw 2 pts (invariant to const shift)...
u = evalsol(s,p,proxyrep,U,z,co);
fprintf('u diff btw two pts = %.16g \t(est abs err: %.3g)\n',u(2)-u(1), abs(u(2)-u(1)-uexdiff))
tic; J = evalfluxes(s,p,proxyrep,U,co); toc
fprintf('fluxes (%.16g,%.16g) (est abs err: %.3g)\n',J(1),J(2),J(1)-flux1ex)
if 0 % soln potential figure
utyp = mean(u);
nx = 300; gx = ((1:nx)/nx*2-1)*Rp; % eval grid
gy = gx; [xx yy] = meshgrid(gx,gy); zz = (xx(:)+1i*yy(:)); clear xx yy;
u = evalsol(s,p,proxyrep,U,zz,co);
for i=-2:2, for j=-2:2, u(s.inside(zz+U.e1*i+U.e2*j)) = nan; end, end % tidy
u(abs(zz)>Rp) = nan; % exclude stuff outside proxy
u = reshape(u,[nx nx]) - utyp; % subtract typical value
figure; contourf(gx,gy,u,[-1.8:.1:1.8]); colormap(jet(256));
hold on; showsegment(s);
n=2; for i=-n:n, for j=-n:n, plot([s.x;s.x(1)]+j+1i*i,'-'); end,end
showsegment({L R T B}); axis equal off; axis([-Rp real(src.x+U.e1) -Rp Rp]);
plot(z,'k.'); plot(p.x,'r.');
plot(src.x+U.trlist,'k*');
text(-.45,0,'L');text(0.55,0,'R'); text(0,-.42,'D');text(0,0.58,'U');
text(0,0,'$\Omega$','interpreter','latex');
text(-1.2,1.3,'(a)'); %,'fontsize',14);
%set(gcf,'paperposition',[0 0 4 4]); print -depsc2 figs/lapsolK1.eps
end
if 1, Ns = 30:10:230; % ------------------------ N-convergence
us = nan*Ns; res = us; rest = us; ust = us; es = us;
Js = nan(2,numel(Ns)); Jst = Js;
uek = knownsol(U,z,src); % known dipole grid soln, fixed, ignores jumps
%v = [0*L.w';1+0*L.w';0*B.w';1+0*B.w']; % obsolete
r = ones(M,1)/M; % scaled Sifuentes 1s-vector
for i=1:numel(Ns)
s = wormcurve(a,b,Ns(i));
g = [jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; rhs = [0*s.x; g]; %driving
[E,A,Bm,C,Q] = ELSmatrix(s,p,proxyrep,U);
co = linsolve(E,rhs,lso);
res(i) = norm(E*co - rhs);
u = evalsol(s,p,proxyrep,U,z,co);
us(i) = u(2)-u(1);
Js(:,i) = evalfluxes(s,p,proxyrep,U,co);
H = ones(Ns(i),1); v = C*H; % Gary's non-const v, overwrites above
Qtilde = Q + v*r'; % Schur stuff... (soln u given suffix "t")
%if i==1, norm(Q), norm(v*d'), svd(Q), svd(Qtilde), end % sim size norms?
X = linsolve(Qtilde,C,lso); y = linsolve(Qtilde,g,lso);
%Qtdag = pinv(Qtilde); X = Qtdag*C; y = Qtdag*g; % bad, loses 7 digits
%Bm = Bm + (A*H)*d'; % Gary version of my B corr; makes nullity(Aper)=1 again
taut = gmres(@(x) A*x - Bm*(X*x), -Bm*y, [], 1e-14, Ns(i));
%taut = linsolve(A - Bm*X,-Bm*y,lso); % direct soln
%cond(A - Bm*X) % 8.3
xit = y - X*taut;
% note no taut correction for Gary since d'*xit = 0...
cot = [taut;xit]; % build full soln vector
%norm(r'*xit) % check what we know from theory, should be zero
rest(i) = norm(E*cot - rhs); % residual back in ELS
u = evalsol(s,p,proxyrep,U,z,cot);
ust(i) = u(2)-u(1);
Jst(:,i) = evalfluxes(s,p,proxyrep,U,cot); % Schur flux
rhsk = knownrhs(src,s,U); % set up RHS for known 3x3 unit source soln...
cok = linsolve(E,rhsk,lso); % coeffs for approx to known soln
%norm(E*cok - rhsk) % resid for known soln - plot?
uk = evalsol(s,p,proxyrep,U,z,cok); % eval this approx
es(i) = uk(2)-uk(1)-(uek(2)-uek(1)); % err vs known diff btw test pts
end
% [U S V] = svd(E); V(:,end) % show that Nul E = [0;stuff], ie tau unique
fprintf('norm X=Qt\\C is %.3g\n',norm(X))
disp('pot diff N-convergence for ELS, Schur, their diff:')
[us',ust',us'-ust']
disp('flux J1 N-convergence for ELS, Schur, their diff:')
[Js(1,:)',Jst(1,:)',Js(1,:)'-Jst(1,:)']
disp('flux J2 N-convergence for ELS, Schur, their diff:')
[Js(2,:)',Jst(2,:)',Js(2,:)'-Jst(2,:)']
figure; %semilogy(Ns,res,'ro-'); % why is resid always around 1e-14?
semilogy(Ns,abs(us-us(i)),'+-'); hold on;
plot(Ns,abs(Js(1,:)-Js(1,end)),'go-');
plot(Ns,abs(ust-ust(i)),'+--');
plot(Ns,abs(Jst(1,:)-Jst(1,end)),'go--');
%plot(Ns,rest,'rd-');
plot(Ns,abs(es),'ks-');
%legend('u convergence','J_1 convergence','u err vs known');
legend('u conv ELS','J_1 conv ELS','u conv Schur','J_1 conv Schur','u err vs known');
xlabel('N'); text(40,1e-4,'(c)');
text(140,1e-8, sprintf('$M=%d$, $m=%d$',M,m),'interpreter','latex');
axis([Ns(1) Ns(end-1) 1e-15 1e-3]);
%set(gcf,'paperposition',[0 0 3.5 3.5]); print -depsc2 figs/lapconvK1.eps
end
if 1, Ms = 10:5:120; % -------------------- M convergence (not incl Schur)
N = 100; s = wormcurve(a,b,N); % fixed
rhs = [0*s.x; jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; % driving
Js = nan(2,numel(Ms)); nrms = nan*Ms;
nsings = 6; sings = nan(numel(Ms),nsings); % save some sing vals
for i=1:numel(Ms)
p.x = Rp * exp(1i*(1:Ms(i))'/Ms(i)*2*pi); p = setupquad(p); % reset proxy pts
E = ELSmatrix(s,p,proxyrep,U);
S = svd(E);
sings(i,1) = max(S); sings(i,2:nsings) = S(end-nsings+2:end); % 1st & last few
co = linsolve(E,rhs,lso);
nrms(i) = norm(co);
Js(:,i) = evalfluxes(s,p,proxyrep,U,co);
end
disp('flux J1 M-convergence for ELS:')
Js(1,:)'
figure; semilogy(Ms,abs(Js(1,:)-Js(1,end)),'b+-'); hold on;
h = load('/home/alex/physics/shravan/dpls/Fig22eData.mat'); % K=1e2 M-conv
plot(h.M,abs(h.J-h.J(end)),'bs-');
semilogy(Ms,nrms,'b.-');
semilogy(Ms,sings(:,2:end),'-','color',.5*[1 1 1]);
legend('J_1 conv, Ex.1', 'J_1 conv, Ex.2','soln norm, Ex.1','sing vals, Ex.1','location','east');
text(15,max(nrms)/10,'(e)');
%text(60,max(nrms)/10,sprintf('$N=%d, m=%d$',N,m),'interpreter','latex');
xlabel('M'); axis([Ms(1) Ms(end-1) 1e-17 max(nrms)]);
%set(gcf,'paperposition',[0 0 3.5 3.5]); print -depsc2 figs/lapMconv.eps
end
if 0 % --------- old Schur tests warm-up (see above for their convergence)
N = 140; s = wormcurve(a,b,N); % reset curve
M = 40; p.x = Rp * exp(1i*(1:M)'/M*2*pi); p = setupquad(p); % reset proxy pts
rhs = [0*s.x; jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; % driving
[E,~,~,C,Q] = ELSmatrix(s,p,proxyrep,U);
w = [0*L.w';L.w';0*B.w';B.w']; % consistency vector in Nul Q^T
fprintf('norm w^T Q = %.3g\n',norm(w'*Q))
fprintf('norm Q\\C = %.3g\n',norm(Q\C))
%svd(Q\C) % just one huge sing val, then gap to a decaying sequence.
%[U S V] = svd(Q); S = diag(S); r = numel(S); figure; plot(U(:,r),'+-');
end
%keyboard
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = evalsol(s,p,proxyrep,U,z,co)
% z = list of targets as C values. p = proxy struct, s = source curve struct
% co = full coeff vec, U = unit cell struct. Does potential value only.
N = numel(s.x);
sig = co(1:N); psi = co(N+1:end); % split up solution coeffs (psi=proxy)
u = proxyrep(struct('x',z), p, psi); % init u w/ proxies eval
for i=1:numel(U.trlist) % sum potentials faster than srcsum matrices
u = u + srcsum(@LapSLP, U.trlist(i),[], struct('x',z), s, sig); % pot of SLP
end
function J = evalfluxes(s,p,proxyrep,U,co)
% inputs as in evalsol. Uses Gary-inspired bdry of 3x3 block far-field method
if U.nei~=1, warning('U.neu must equal 1'); end
w = U.L.w; if norm(w-U.B.w)>1e-14, error('L and B must have same weights'); end
m = numel(w);
N = numel(s.x); sig = co(1:N); psi = co(N+1:end);
t.x = [U.L.x;U.B.x]; t.nx = [U.L.nx;U.B.nx]; % 2-wall target
[~,Tn] = proxyrep(t, p); u = Tn * psi; % proxy contrib to un only
J = sum(reshape(u,[m 2])'.*([1;1]*w),2); % .... do its quadr on L,B
for i=-1:1 % set up big loop of 12 walls, just their nodes
x{i+2} = U.L.x - U.e1 +i*U.e2; x{i+5} = x{i+2} + 3*U.e1;
x{i+8} = U.B.x +i*U.e1 -U.e2; x{i+11} = x{i+8} + 3*U.e2;
end
t.x = vertcat(x{:}); t.nx = [repmat(U.L.nx,[6 1]); repmat(U.B.nx,[6 1])];
[~,un] = LapSLP(t, s, sig); % central density only, many target walls
amts = [0 0 0 3 3 3 -1 -2 -3 1 2 3; -1 -2 -3 1 2 3 0 0 0 3 3 3]; % wall wgts
J = J + sum(repmat(un',[2 1]).*kron(amts,w),2); % weight each wall
function [E A B C Q] = ELSmatrix(s,p,proxyrep,U)
% builds matrix blocks for extended linear system.
[~,A] = srcsum(@LapSLP, U.trlist,[], s,s); % directly summed self-int matrix
N = numel(s.x); A = A - eye(N)/2; % Neumann exterior jump relation
[~,B] = proxyrep(s,p); % Neu data from proxies
C = Cblock(s,U,@LapSLP);
[QL QLn] = proxyrep(U.L,p); [QR QRn] = proxyrep(U.R,p);
[QB QBn] = proxyrep(U.B,p); [QT QTn] = proxyrep(U.T,p);
Q = [QR-QL; QRn-QLn; QT-QB; QTn-QBn];
E = [A B; C Q];
function C = Cblock(s,U,densrep) % fill C from source curve s to U walls
% densrep is handle to LapSLPmat/LapDLPmat depending on density type on curve s
nei = U.nei; N = numel(s.x); m = numel(U.L.x);
[CL CLn] = srcsum(densrep,nei*U.e1 + (-nei:nei)*U.e2,[], U.L,s);
[CR CRn] = srcsum(densrep,-nei*U.e1 + (-nei:nei)*U.e2,[], U.R,s);
[CB CBn] = srcsum(densrep,(-nei:nei)*U.e1 + nei*U.e2,[], U.B,s);
[CT CTn] = srcsum(densrep,(-nei:nei)*U.e1 - nei*U.e2,[], U.T,s);
C = [CR-CL; CRn-CLn; CT-CB; CTn-CBn];
function u = knownsol(U,z,src)
% z = targets. U = unit cell struct, src = 1-pt struct, with src.nei for grid.
% Potential only. Note use of dipole (monopole ok, but dipole closer to appl)
[tx ty] = meshgrid(-src.nei:src.nei); trk = tx(:)+1i*ty(:); % src grid
u = srcsum(@LapDLP, trk, [], struct('x',z), src); % pot due to DLP
function rhs = knownrhs(src,s,U)
% src is a 1-pt struct with x, w, nx; it will be summed over (2*src.nei+1)^2
% grid, w/ unit mag. s is usual target curve (needs normals).
% The rhs will always be consistent, with f and g nonconstant. Matches knownsol.
[tx ty] = meshgrid(-src.nei:src.nei); trk = tx(:)+1i*ty(:); % src grid
[~,f] = srcsum(@LapDLP,trk,[],s,src); % direct Neu data sum to curve
U.nei = src.nei; % sets up C correct for src grid
g = Cblock(src,U,@LapDLP); % only works if u_ex = (2*U.neu+1)^2 src grid.
rhs = [f;g];
|
github
|
bobbielf2/BIE2D-master
|
discarray_effcond.m
|
.m
|
BIE2D-master/doublyperiodic/discarray_effcond.m
| 6,827 |
utf_8
|
0cd727ae0e5af132cf84c4aaab8f83c8
|
function discarray_effcond
% Effective conductivity (kappa) of infinite disc array.
% Laplace BVP, single inclusion (K=1), native quad for matrix fill, ELS.
% Adapted from fig_discarray_drag. Uses helsingeffcond.m
% Barnett 9/27/17. Fixed close and reparam 9/28/17
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square, more stable
jumps = [1 0]; % pressure driving (jumps) across R-L and T-B
schur = 1; % 0 for rect ELS direct solve; 1 for Schur iterative solve
verbhel = 0; % print helsing ref soln info
U.e1 = 1; U.e2 = 1i; % unit cell; nei=1 for 3x3 scheme
U.nei = 1; [tx ty] = meshgrid(-U.nei:U.nei); U.trlist = tx(:)+1i*ty(:);
m = 22; [U L R B T] = doublywalls(U,m);
proxyrep = @LapSLP; % sets proxy pt type via a kernel function call
Rp = 1.4; M = 80; % proxy params
p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
%cs = 2; sigs = 10; Ns = 120; close=0; % geom and conductivity params
%cs = 10; sigs = 10; Ns = 240; close=1; % geom and conductivity params
%cs = 5; sigs = 10; Ns = 900; close=0; % geom and conductivity params
%cs = 10; sigs = 10; Ns = 800; reparam=1; close=0; % geom, conductivity params
cs = 100; sigs = 100; Ns = 200; reparam=1; close=1; % geom, conductivity params
%cs = 1000; sigs = 1000; Ns = 240; reparam=1; close=1; % geom, conductivity params
%cs = 10; sigs = 10; Ns = 200; close=1; % geom and conductivity params, fails
% reparam: 0: plain trap rule; 1 reparam bunching near touching pts
% close: if 0, plain Nystrom for Aelse; if 1, close-eval (slow)
chkconv = 0; % if true, check each ans vs bumped-up N
if chkconv, cs=kron(cs,[1 1]); sigs=kron(sigs,[1 1]); Ns = kron(Ns,[1 1]) + kron(1+0*Ns,[0 400]); end
ts = 0*cs; effconds = 0*cs; % what we compute
for i=1:numel(cs) % -------------------- loop over filling fractions
N = Ns(i); r0 = 0.5*sqrt(1-1/cs(i)^2); % disc radius
h=2*pi*r0/N; delta=(1-2*r0)/h; % quadr spacing h; h-scaled closeness measure
lam = (sigs(i)-1)/(sigs(i)+1); % lambda contrast param
s = wobblycurve(r0,0,1,N); s.a = 0; % interior pt needed for close only
if reparam
be = .7*log(cs(i))/log(2); s = reparam_bunched(s,be); s.cur = (1/r0)*ones(N,1);
end, %figure; showsegment(s); % check bunching
g = [jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; rhs = [0*s.x; g]; %driving
tic
[E,A,Bm,C,Q] = ELSmatrix(s,p,proxyrep,U,lam,close); % fill (w/ close option)
if ~schur
co = linsolve(E,rhs,lso); % ..... direct bkw stable solve of ELS
iter=[0 0]; resvec = 0; % dummies
tau = co(1:N); psi = co(N+1:end);
else % ..... schur, square well-cond solve
R = ones(M,1)/M; H = ones(N,1); % 1s vectors
Qtilde = Q + (C*H)*R'; % Gary version of Schur
X = linsolve(Qtilde,C,lso); y = linsolve(Qtilde,g,lso);
[tau,flag,relres,iter,resvec] = gmres(@(x) A*x - Bm*(X*x), -Bm*y, [], 1e-15, N); % note iter has 2 elements: 2nd is what want
xi = y - X*tau;
co = [tau;xi]; % build full soln vector
end
ts(i) = toc;
%fprintf('resid norm = %.3g\n',norm(E*co - rhs))
%fprintf('density norm = %.3g, proxy norm = %.3g\n',norm(tau), norm(psi))
J = evalfluxes(s,p,proxyrep,U,co);
%fprintf('fluxes (%.16g,%.16g)\n',J(1),J(2))
effconds(i) = J(1);
effcondse(i) = helsingeffcond(cs(i),sigs(i),[],verbhel); % reference soln
fprintf('c=%g r=%.3g\tN=%d (%.2gh)\t%.3gs\t%d its %.3g\tkap=%.14e\n',cs(i),r0,N,delta,ts(i),iter(2),resvec(end),effconds(i))
fprintf('\t\t\t\trel err from helsing ref = %.3g\n',abs((effconds(i)-effcondse(i))/effcondse(i)))
if chkconv & mod(i,2)==0, fprintf('\t\t\t\test rel err = %.3g\n',abs((effconds(i)-effconds(i-1))/effconds(i))), end
end % ---------------------
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = evalsol(s,p,proxyrep,U,z,co)
% z = list of targets as C values. p = proxy struct, s = source curve struct
% co = full coeff vec, U = unit cell struct. Does potential value only.
N = numel(s.x);
tau = co(1:N); psi = co(N+1:end); % split up solution coeffs (psi=proxy)
u = proxyrep(struct('x',z), p, psi); % init u w/ proxies eval
for i=1:numel(U.trlist) % sum potentials faster than srcsum matrices
u = u + srcsum(@LapSLP, U.trlist(i),[], struct('x',z), s, tau); % pot of SLP
end
function J = evalfluxes(s,p,proxyrep,U,co)
% inputs as in evalsol. Uses Gary-inspired bdry of 3x3 block far-field method
if U.nei~=1, warning('U.neu must equal 1'); end
w = U.L.w; if norm(w-U.B.w)>1e-14, error('L and B must have same weights'); end
m = numel(w);
N = numel(s.x); tau = co(1:N); psi = co(N+1:end);
t.x = [U.L.x;U.B.x]; t.nx = [U.L.nx;U.B.nx]; % 2-wall target
[~,Tn] = proxyrep(t, p); u = Tn * psi; % proxy contrib to un only
J = sum(reshape(u,[m 2])'.*([1;1]*w),2); % .... do its quadr on L,B
for i=-1:1 % set up big loop of 12 walls, just their nodes
x{i+2} = U.L.x - U.e1 +i*U.e2; x{i+5} = x{i+2} + 3*U.e1;
x{i+8} = U.B.x +i*U.e1 -U.e2; x{i+11} = x{i+8} + 3*U.e2;
end
t.x = vertcat(x{:}); t.nx = [repmat(U.L.nx,[6 1]); repmat(U.B.nx,[6 1])];
[~,un] = LapSLP(t, s, tau); % central density only, many target walls
amts = [0 0 0 3 3 3 -1 -2 -3 1 2 3; -1 -2 -3 1 2 3 0 0 0 3 3 3]; % wall wgts
J = J + sum(repmat(un',[2 1]).*kron(amts,w),2); % weight each wall
function [E A B C Q] = ELSmatrix(s,p,proxyrep,U,lam,close)
% builds matrix blocks for extended linear system, SLP rep on curve, w/ close
% as option, and lambda conductivity param.
N = numel(s.x)
if ~close % plain Nystrom for nei interactions...
[~,A] = srcsum(@LapSLP, U.trlist,[], s,s); % directly summed self-int matrix
else
[~,A] = LapSLP(s,s);
notself = U.trlist(U.trlist~=0);
[~,Ans] = srcsum2(@LapSLP_closeglobal, notself,[],s,s, [],'e'); % dens=[], 'e' exterior
A = A + Ans;
end
A = A + eye(N)/(2*lam); % lambda-modified Neumann exterior jump relation
[~,B] = proxyrep(s,p); % Neu data from proxies
C = Cblock(s,U,@LapSLP);
[QL QLn] = proxyrep(U.L,p); [QR QRn] = proxyrep(U.R,p);
[QB QBn] = proxyrep(U.B,p); [QT QTn] = proxyrep(U.T,p);
Q = [QR-QL; QRn-QLn; QT-QB; QTn-QBn];
E = [A B; C Q];
function C = Cblock(s,U,densrep) % fill C from source curve s to U walls
% densrep is handle to LapSLPmat/LapDLPmat depending on density type on curve s
nei = U.nei; N = numel(s.x); m = numel(U.L.x);
[CL CLn] = srcsum(densrep,nei*U.e1 + (-nei:nei)*U.e2,[], U.L,s);
[CR CRn] = srcsum(densrep,-nei*U.e1 + (-nei:nei)*U.e2,[], U.R,s);
[CB CBn] = srcsum(densrep,(-nei:nei)*U.e1 + nei*U.e2,[], U.B,s);
[CT CTn] = srcsum(densrep,(-nei:nei)*U.e1 - nei*U.e2,[], U.T,s);
C = [CR-CL; CRn-CLn; CT-CB; CTn-CBn];
|
github
|
bobbielf2/BIE2D-master
|
tbl_discarray_effcond.m
|
.m
|
BIE2D-master/doublyperiodic/tbl_discarray_effcond.m
| 6,764 |
utf_8
|
b925bed5cfcbc409931d694fb40dae0c
|
function tbl_discarray_effcond
% Make table of effective conductivity (kappa) of infinite disc array, to match
% some of Table 2 of J. Helsing, Proc Roy Lond Soc A, 1994.
% Laplace BVP, single inclusion (K=1), native quad for matrix fill, ELS.
% Adapted from fig_discarray_drag. Uses helsingeffcond.m
% Barnett 9/27/17. Fixed close and reparam 9/28/17
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square, more stable
jumps = [1 0]; % pressure driving (jumps) across R-L and T-B
schur = 1; % 0 for rect ELS direct solve; 1 for Schur iterative solve
verbhel = 0; % 1: print helsing ref soln info, 0: don't.
U.e1 = 1; U.e2 = 1i; % unit cell; nei=1 for 3x3 scheme
U.nei = 1; [tx ty] = meshgrid(-U.nei:U.nei); U.trlist = tx(:)+1i*ty(:);
m = 22; [U L R B T] = doublywalls(U,m);
proxyrep = @LapSLP; % sets proxy pt type via a kernel function call
Rp = 1.4; M = 80; % proxy params
p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
cs = [100 100 1000 1000]; % geom and conductivity params
sigs = [100 1000 100 1000]; % Hel17 ref val for last: 243.00597813292
Ns = [200 200 200 300];
%cs = 1e3; sigs=1e3; Ns=300;
reparam = 1; % 0: plain trap rule; 1 reparam bunching near touching pts
close = 1; % 0: plain Nystrom for A. 1: close-eval (slow)
chkconv = 1; % if true, check each ans vs bumped-up N
if chkconv, cs=kron(cs,[1 1]); sigs=kron(sigs,[1 1]); Ns = kron(Ns,[1 1]) + kron(1+0*Ns,[0 50]); end
ts = 0*cs; effconds = 0*cs; % what we compute
for i=1:numel(cs) % -------------------- loop over filling fractions
N = Ns(i); r0 = 0.5*sqrt(1-1/cs(i)^2); mindist = 1-2*r0; % disc radius
lam = (sigs(i)-1)/(sigs(i)+1); % lambda contrast param
s = wobblycurve(r0,0,1,N); s.a = 0; % interior pt needed for close only
if reparam
be = -0.5*log(mindist); s = reparam_bunched(s,be); s.cur = (1/r0)*ones(N,1);
end
h = min(abs(diff(s.x))); delta=mindist/h; % min quadr spacing; h-scaled closeness measure
g = [jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; rhs = [0*s.x; g]; %driving
tic
[E,A,Bm,C,Q] = ELSmatrix(s,p,proxyrep,U,lam,close); % fill (w/ close option)
if ~schur
co = linsolve(E,rhs,lso); % ..... direct bkw stable solve of ELS
tau = co(1:N); psi = co(N+1:end);
iter(2)=nan; resvec = nan; % dummies
else % ..... schur, square well-cond solve
R = ones(M,1)/M; H = ones(N,1); % 1s vectors
Qtilde = Q + (C*H)*R'; % Gary version of Schur
X = linsolve(Qtilde,C,lso); y = linsolve(Qtilde,g,lso);
%W = diag(sqrt(abs(s.xp))); % expt left precond
[tau,flag,relres,iter,resvec] = gmres(@(x) A*x - Bm*(X*x), -Bm*y, [], 1e-14, N); % note iter has 2 elements: 2nd is what want
%cond(A-Bm*X) % is bad for c,sig large
xi = y - X*tau;
co = [tau;xi]; % build full soln vector
end
ts(i) = toc;
%fprintf('resid norm = %.3g\n',norm(E*co - rhs))
%fprintf('density norm = %.3g, proxy norm = %.3g\n',norm(tau), norm(psi))
J = evalfluxes(s,p,proxyrep,U,co);
%fprintf('fluxes (%.16g,%.16g)\n',J(1),J(2))
effconds(i) = J(1);
effcondse(i) = helsingeffcond(cs(i),sigs(i),[],verbhel); % reference soln
fprintf('c=%g r=%.3g\tN=%d (%.2gh)\t%.3gs\t%d its %.3g\tkap=%.14e\n',cs(i),r0,N,delta,ts(i),iter(2),resvec(end),effconds(i))
fprintf('\t\t\t\trel err from helsing ref (%.15g) = %.3g\n',effcondse(i),abs((effconds(i)-effcondse(i))/effcondse(i)))
if chkconv & mod(i,2)==0, fprintf('\t\t\t\test rel err = %.3g\n',abs((effconds(i)-effconds(i-1))/effconds(i))), end
end % ---------------------
%figure; showsegment(s); ss=s; ss.x=ss.x+1; showsegment(ss); % view quadr
%keyboard
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = evalsol(s,p,proxyrep,U,z,co)
% z = list of targets as C values. p = proxy struct, s = source curve struct
% co = full coeff vec, U = unit cell struct. Does potential value only.
N = numel(s.x);
tau = co(1:N); psi = co(N+1:end); % split up solution coeffs (psi=proxy)
u = proxyrep(struct('x',z), p, psi); % init u w/ proxies eval
for i=1:numel(U.trlist) % sum potentials faster than srcsum matrices
u = u + srcsum(@LapSLP, U.trlist(i),[], struct('x',z), s, tau); % pot of SLP
end
function J = evalfluxes(s,p,proxyrep,U,co)
% inputs as in evalsol. Uses Gary-inspired bdry of 3x3 block far-field method
if U.nei~=1, warning('U.neu must equal 1'); end
w = U.L.w; if norm(w-U.B.w)>1e-14, error('L and B must have same weights'); end
m = numel(w);
N = numel(s.x); tau = co(1:N); psi = co(N+1:end);
t.x = [U.L.x;U.B.x]; t.nx = [U.L.nx;U.B.nx]; % 2-wall target
[~,Tn] = proxyrep(t, p); u = Tn * psi; % proxy contrib to un only
J = sum(reshape(u,[m 2])'.*([1;1]*w),2); % .... do its quadr on L,B
for i=-1:1 % set up big loop of 12 walls, just their nodes
x{i+2} = U.L.x - U.e1 +i*U.e2; x{i+5} = x{i+2} + 3*U.e1;
x{i+8} = U.B.x +i*U.e1 -U.e2; x{i+11} = x{i+8} + 3*U.e2;
end
t.x = vertcat(x{:}); t.nx = [repmat(U.L.nx,[6 1]); repmat(U.B.nx,[6 1])];
[~,un] = LapSLP(t, s, tau); % central density only, many target walls
amts = [0 0 0 3 3 3 -1 -2 -3 1 2 3; -1 -2 -3 1 2 3 0 0 0 3 3 3]; % wall wgts
J = J + sum(repmat(un',[2 1]).*kron(amts,w),2); % weight each wall
function [E A B C Q] = ELSmatrix(s,p,proxyrep,U,lam,close)
% builds matrix blocks for extended linear system, SLP rep on curve, w/ close
% as option, and lambda conductivity param.
N = numel(s.x)
if ~close % plain Nystrom for nei interactions...
[~,A] = srcsum(@LapSLP, U.trlist,[], s,s); % directly summed self-int matrix
else
[~,A] = LapSLP(s,s);
notself = U.trlist(U.trlist~=0);
[~,Ans] = srcsum2(@LapSLP_closeglobal, notself,[],s,s, [],'e'); % dens=[], 'e' exterior
A = A + Ans;
end
A = A + eye(N)/(2*lam); % lambda-modified Neumann exterior jump relation
[~,B] = proxyrep(s,p); % Neu data from proxies
C = Cblock(s,U,@LapSLP);
[QL QLn] = proxyrep(U.L,p); [QR QRn] = proxyrep(U.R,p);
[QB QBn] = proxyrep(U.B,p); [QT QTn] = proxyrep(U.T,p);
Q = [QR-QL; QRn-QLn; QT-QB; QTn-QBn];
E = [A B; C Q];
function C = Cblock(s,U,densrep) % fill C from source curve s to U walls
% densrep is handle to LapSLPmat/LapDLPmat depending on density type on curve s
nei = U.nei; N = numel(s.x); m = numel(U.L.x);
[CL CLn] = srcsum(densrep,nei*U.e1 + (-nei:nei)*U.e2,[], U.L,s);
[CR CRn] = srcsum(densrep,-nei*U.e1 + (-nei:nei)*U.e2,[], U.R,s);
[CB CBn] = srcsum(densrep,(-nei:nei)*U.e1 + nei*U.e2,[], U.B,s);
[CT CTn] = srcsum(densrep,(-nei:nei)*U.e1 - nei*U.e2,[], U.T,s);
C = [CR-CL; CRn-CLn; CT-CB; CTn-CBn];
|
github
|
bobbielf2/BIE2D-master
|
fig_lapQconv.m
|
.m
|
BIE2D-master/doublyperiodic/fig_lapQconv.m
| 4,226 |
utf_8
|
53cb37327b9b69b670d62166e6490497
|
function fig_lapQconv
% make figs for doubly periodic empty BVP convergence, Laplace case.
% All matrix-filling, native quadr.
% Barnett 5/9/16, adapted from perineu2dnei1.m. bie2d 6/29/16
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square (LU much worse)
rho=1.5; z0 = rho * exp(0.7i); % singularity in v exact soln
ve = @(z) log(abs(z-z0)); % exact soln and its partials...
vex = @(z) real(z-z0)./abs(z-z0).^2; vey = @(z) imag(z-z0)./abs(z-z0).^2;
disp('test partials of known exact v:'); testpartials(ve,vex,vey)
U.e1 = 1; U.e2 = 1i; % unit cell lattice vectors
Rp = 1.4; % proxy radius
M = 100; p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
proxyrep = @LapSLP; % sets proxy pt type via a kernel function call
nt = 100; t.x = rand(nt,1)-0.5 + 1i*(rand(nt,1)-0.5); % rand test pts in UC
%[xx yy] = meshgrid(linspace(-.5,.5,10)); t.x = xx(:)+1i*yy(:); % tp grid in UC
Atest = proxyrep(t,p); % evaluation matrix, only changes when M does
% m-conv plot (# wall pts)
ms = 2:2:24; verrs = nan*ms;
for i=1:numel(ms)
[U L R B T] = doublywalls(U,ms(i));
Q = Qmat(p,L,R,B,T,proxyrep);
g = discrep(L,R,B,T,ve,vex,vey);
xi = linsolve(Q,g,lso); %norm(xi)
verr = Atest*xi - ve(t.x); % err at all test pts
verr = verr-verr(1); % fix the offset using the first test pt
verrs(i) = max(abs(verr));
end
%figure; showsegment({p L R T B}); hold on; plot(z0,'*');
figure; semilogy(ms,verrs,'+-'); xlabel('m'); ylabel('max abs error in v');
axis([min(ms) max(ms) 1e-16 1]);
text(4,1e-1,'(a)','fontsize',12);
text(15,1e-1,sprintf('$M=%d$',M),'interpreter','latex','fontsize',12);
set(gcf,'paperposition',[0 0 3 3]);
%print -depsc2 figs/lapQmconv.eps
m = 22; [U L R B T] = doublywalls(U,m); g = discrep(L,R,B,T,ve,vex,vey); % fix
w = [0*L.w L.w 0*B.w B.w]'; % supposed left null-vector (note v will not be)
nsings = 6; % how many singular values to keep and show
Ms = 10:5:120;
verrs = nan*Ms'; sings = nan(numel(Ms),nsings); nrms = verrs; nwtqs = verrs;
for i=1:numel(Ms), M = Ms(i); % # proxy pts conv
p.x = Rp * exp(1i*(1:M)'/M*2*pi); p = setupquad(p); % proxy pts
Atest = proxyrep(t,p); % evaluation matrix
Q = Qmat(p,L,R,B,T,proxyrep);
nwtqs(i) = norm(w'*Q); % check left null vector
S = svd(Q);
% nkeep = min(numel(S),nsings); sings(i,1:nkeep) = S(end-nkeep+1:end);
sings(i,1) = max(S); sings(i,2:nsings) = S(end-nsings+2:end); % 1st & last few
xi = linsolve(Q,g,lso); nrms(i) = norm(xi);
verr = Atest*xi - ve(t.x); % err at all test pts
verr = verr-verr(1); % fix the offset using the first test pt
verrs(i) = max(abs(verr));
%if M==40, [U S V] = svd(Q); V(:,end), Atest*V(:,end), end % sing vec is approx constant, and generates consts to high acc
end
figure; semilogy(Ms,[verrs],'+-'); hold on;
semilogy(Ms,sings(:,2:end),'-','color',.5*[1 1 1]);
semilogy(Ms,nrms,'go-');
% semilogy(Ms,nwtqs,'rs-'); % boring, always zero
rB = sqrt(0.5); semilogy(Ms,0.05*(rho/rB).^(-Ms/2),'r--'); % conv rate!
xlabel('M');
%ylabel('max abs error in v');
axis([min(Ms) max(Ms) 1e-17 max(nrms)]);
text(15,max(nrms)/10,'(b)','fontsize',12);
text(90,max(nrms)/10,sprintf('$m=%d$',m),'interpreter','latex','fontsize',12);
set(gcf,'paperposition',[0 0 3 3]);
set(gca,'ytickmode','manual', 'ytick',[1e-15 1e-10 1e-5 1 1e5]);
%print -depsc2 figs/lapQMconv.eps
%%%%%%%%%%%%%%%%%
function testpartials(v,vx,vy) % finite differencing test of analytic partials
eps = 1e-5;
z = 1-0.5i;
vx(z) - (v(z+eps)-v(z-eps))/(2*eps) % should be around 1e-10
vy(z) - (v(z+1i*eps)-v(z-1i*eps))/(2*eps) % "
function Q = Qmat(p,L,R,B,T,proxyrep) % matrix Q given proxy and colloc pts
[QL QLn] = proxyrep(L,p); [QR QRn] = proxyrep(R,p);
[QB QBn] = proxyrep(B,p); [QT QTn] = proxyrep(T,p);
Q = [QR-QL; QRn-QLn; QT-QB; QTn-QBn];
function g = discrep(L,R,B,T,v,vx,vy) % discrepancy of known solution
% v, vx, vy are funcs from C to R. Output is 4m col vec
g1 = v(R.x)-v(L.x);
g2 = vx(R.x)-vx(L.x); % assumes vert
g3 = v(T.x)-v(B.x);
g4 = vy(T.x)-vy(B.x); % assumes horiz
g = [g1;g2;g3;g4];
|
github
|
bobbielf2/BIE2D-master
|
fig_stoconvK1.m
|
.m
|
BIE2D-master/doublyperiodic/fig_stoconvK1.m
| 14,350 |
utf_8
|
a14b0223bf06c064ce2f6832f4f9e102
|
function fig_stoconvK1
% make Stokes no-slip periodic convergence and soln plots.
% Single inclusion (K=1), native quad for matrix fill, close eval for soln.
% Adapted from fig_lapconvK1.m
% Barnett 6/7/16. 6/30/16 brought into BIE2D.
% X,y,R,H notation, Gary's V=CH, Alex's nullspace fix, nonrandom. 8/17/16
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square
mu = 0.7; % overall viscosity const for Stokes PDE
sd = [1 1]; % layer potential representation prefactors for SLP & DLP resp.
jumps = [1 0]; %[0 1]; % pressure jumps across R-L and T-B (not for known soln)
U.e1 = 1; U.e2 = 1i; % unit cell; nei=1 for 3x3 scheme
U.nei = 1; [tx ty] = meshgrid(-U.nei:U.nei); U.trlist = tx(:)+1i*ty(:);
m = 22; [U L R B T] = doublywalls(U,m);
proxyrep = @StoSLP; % sets proxy pt type via a kernel function call
Rp = 1.4; M = 70; % proxy params - 80 is 1-2 digits worse than 70 or 120 - why?
p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
a = 0.7; b = 0.15; % worm params, spills horizontally out of any unit cell
uex = [0.016778793238;0.005152952237]; flux1ex = 0.008234042360; % a=.7,b=.15
% known soln stokeslet location & force: must be deep inside Omega (careful)
src.x = 0.42+.23i; src.w = 1; src.nx = 1+0i; fsrc = [0.8;0.6]; src.nei = 5;
% -------------------------- single soln and plot
N = 150; s = wormcurve(a,b,N); s.a = mean(s.x); % a needed for p ext close
%s.x = s.x + 0.1i; % check translational invariance of flux
% obstacle no-slip & pressure-drop driving...
rhs = [zeros(2*N,1); zeros(2*m,1);jumps(1)+0*L.x;zeros(4*m,1);jumps(2)+0*B.x];
tic
E = ELSmatrix(s,p,proxyrep,mu,sd,U); % fill
co = linsolve(E,rhs,lso); % direct bkw stable solve
toc
%S = svd(E); disp('last few sing vals of E:'), S(end-5:end) % dim Nul E = 1
fprintf('resid norm = %.3g\n',norm(E*co - rhs))
sig = co(1:2*N); psi = co(N+1:end);
fprintf('density norm = %.3g, proxy norm = %.3g\n',norm(sig), norm(psi))
fprintf('body force + jumps = (%.3g,%.3g) should vanish\n',s.w'*sig(1:N)+abs(U.e1)*jumps(1),s.w'*sig(N+1:end)+abs(U.e2)*jumps(2))
z = .1+.4i; % test pt
[u p0] = evalsol(s,p,proxyrep,mu,sd,U,z,co); % native quad (far) test
fprintf('u at pt = (%.16g,%.16g) \t(est abs err: %.3g)\n',u(1),u(2),norm(u-uex))
tic; J = evalfluxes(s,p,proxyrep,mu,sd,U,co); toc
fprintf('fluxes (%.16g,%.16g) (est abs err: %.3g)\n',J(1),J(2),abs(J(1)-flux1ex))
if 0 % soln flow figure
nx = 201; gx = 0.5*((0:nx-1)/(nx-1)*2-1); ng = nx^2; % fine pres eval grid
gy = gx; [zz ii] = extgrid(gx,gy,s,U);
pg = nan(ng,1); % pressure on fine grid
tic; [~,pg(ii)] = evalsol(s,p,proxyrep,mu,sd,U,zz(ii),co,1); toc
pg = reshape(pg,[nx nx]) - p0; % shift to pres=0 at test pt
figure; contourf(gx,gy,pg,[-.6:.1:.6]); colormap(jet(256)); hold on;
nx = 26; gx = 0.5*((0:nx-1)/(nx-1)*2-1); ng = nx^2; % coarse vel eval grid
gy = gx; [zz ii] = extgrid(gx,gy,s,U);
ug = nan(2*ng,1);
tic; ug([ii;ii]) = evalsol(s,p,proxyrep,mu,sd,U,zz(ii),co,1); toc
u1 = reshape(ug(1:ng),[nx nx]); u2 = reshape(ug(ng+1:end),[nx nx]); % u cmpts
% the following sends only the non-nan parts of grid since otherwise get dots:
quiver(real(zz(ii)),imag(zz(ii)),u1(ii),u2(ii),2.0,'k-'); % show vec field
n=1; for i=-n:n, for j=-n:n, plot([s.x;s.x(1)]+j+1i*i,'-'); end,end % curves
plot([L.x;R.x;T.x;B.x],'b.'); % wall nodes
axis xy equal off; plot(z,'k.'); axis([0 1 0 1]-0.5);
%for i=-1:1, for j=-1:1, plot(src.x+U.e1*i+U.e2*j,'k*'); end, end % known
text(0,0,'$\Omega$','interpreter','latex','fontsize',14);
text(-.58,.45,'(a)'); %,'fontsize',14);
drawnow; %set(gcf,'paperposition',[0 0 4 4]); print -depsc2 figs/stosolK1.eps
end
if 1, Ns = 30:10:230; % ------------------------ N-convergence
us = nan(2,numel(Ns)); ust = us; Js = us; Jst = Js;
es = nan(1,numel(Ns)); res = es; rest = es;
uek = knownsol(U,z,src,fsrc,mu); % known stokeslet 3x3 grid soln, fixed
%v = zeros(8*m,3); % obsolete Sifuentes vector
%v(2*m+1:3*m,1) = -1; v(7*m+1:8*m,2) = -1; % x,y force balance (g_3,g_4)
%v(1:m,3) = 1; v(5*m+1:6*m,3) = 1; % mass cons (g_1 + g_2)
%R = randn(2*M,3)/M; % randomized version
R = [[ones(M,1);zeros(M,1)],[zeros(M,1);ones(M,1)],[real(p.x);imag(p.x)]]/M;
for i=1:numel(Ns), N = Ns(i);
s = wormcurve(a,b,Ns(i));
g = [zeros(2*m,1);jumps(1)+0*L.x;zeros(4*m,1);jumps(2)+0*B.x]; % pres driving
rhs = [zeros(2*N,1); g]; % driving
[E,A,Bm,C,Q] = ELSmatrix(s,p,proxyrep,mu,sd,U);
co = linsolve(E,rhs,lso);
res(i) = norm(E*co - rhs);
us(:,i) = evalsol(s,p,proxyrep,mu,sd,U,z,co); % both cmpts of vel
Js(:,i) = evalfluxes(s,p,proxyrep,mu,sd,U,co);
% three non-consistent vectors of inclusion density (Gary)...
H = [ones(1,N) zeros(1,N);zeros(1,N) ones(1,N);real(s.nx)' imag(s.nx)']';
%H = randn(2*N,3); % randomized version
Qtilde = Q + (C*H)*R'; % Gary version of Schur
%if i==1, norm(Q), norm(C*H*R'), svd(Q), svd(Qtilde), end % sim size norms?
X = linsolve(Qtilde,C,lso); y = linsolve(Qtilde,g,lso);
%Bm = Bm + (A*H)*R'; % Gary version of my B corr, preserves nullity 1
Bm = Bm + (A*H(:,1:2))*R(:,1:2)'; % Alex
taut = gmres(@(x) A*x - Bm*(X*x), -Bm*y, [], 1e-14, Ns(i));
%cond(A - Bm*X) % 82.7
xit = y - X*taut;
taut = taut + H*(R'*xit); % Gary correction
cot = [taut;xit]; % build full soln vector pair
rest(i) = norm(E*cot - rhs); % residual back in ELS
ust(:,i) = evalsol(s,p,proxyrep,mu,sd,U,z,cot);
Jst(:,i) = evalfluxes(s,p,proxyrep,mu,sd,U,cot); % Schur flux
rhsk = knownrhs(src,fsrc,mu,s,U); % RHS for known 3x3 stokeslet soln...
cok = linsolve(E,rhsk,lso); % coeffs for approx to known soln
%norm(E*cok - rhsk) % resid for known soln - plot?
uk = evalsol(s,p,proxyrep,mu,sd,U,z,cok); % eval this approx
es(i) = norm(uk-uek); % err in known case vs exact
end
fprintf('norm X=Qt\\C is %.3g\n',norm(X))
%[U S V] = svd(E); V(:,end) % show that Nul E = [0;stuff], ie tau unique
disp('u1 N-convergence for ELS, Schur, their diff:')
[us(1,:)',ust(1,:)',us(1,:)'-ust(1,:)'] % 1st cmpt: u is ELS, ut is Schur
disp('J1 N-convergence for ELS, Schur, their diff:')
[Js(1,:)',Jst(1,:)',Js(1,:)'-Jst(1,:)']
%[Js(2,:)',Jst(2,:)',Js(2,:)'-Jst(2,:)']
figure; %semilogy(Ns,res,'ro-'); % why is resid always around 1e-14?
uerr = sqrt(sum((us-repmat(us(:,end),[1 numel(Ns)])).^2,1)); % 2-norm u errs
semilogy(Ns,uerr,'+-'); hold on;
plot(Ns,abs(Js(1,:)-Js(1,end)),'go-');
uerrt = sqrt(sum((ust-repmat(ust(:,end),[1 numel(Ns)])).^2,1)); % 2-norm ut errs
plot(Ns,uerrt,'+--');
plot(Ns,abs(Jst(1,:)-Jst(1,end)),'go--');
%plot(Ns,res,'r*-'); plot(Ns,rest,'rd-');
plot(Ns,es,'ks-');
legend('u conv ELS','J_1 conv ELS','u conv Schur','J_1 conv Schur','u err vs known');
%legend('u conv ELS','J_1 conv ELS','u conv Schur','J_1 conv Schur','resid ELS','resid Schur','u err vs known');
xlabel('N'); text(70,1e-4,'(c)');
text(140,1e-8, sprintf('$M=%d$, $m=%d$',M,m),'interpreter','latex');
axis([Ns(1) Ns(end-1) 1e-15 1e-3]);
%set(gcf,'paperposition',[0 0 3.5 3.5]); print -depsc2 figs/stoconvK1.eps
end
if 0, Ms = 10:5:120; % -------------------- M convergence (not incl Schur)
N = 100; s = wormcurve(a,b,N); % fixed
g = [zeros(2*m,1);jumps(1)+0*L.x;zeros(4*m,1);jumps(2)+0*B.x]; % pres driving
rhs = [zeros(2*N,1); g]; % driving
Js = nan(2,numel(Ms)); nrms = nan*Ms;
nsings = 6; sings = nan(numel(Ms),nsings); % save some sing vals
for i=1:numel(Ms)
p.x = Rp * exp(1i*(1:Ms(i))'/Ms(i)*2*pi); p = setupquad(p); % reset proxy pts
E = ELSmatrix(s,p,proxyrep,mu,sd,U);
S = svd(E);
sings(i,1) = max(S); sings(i,2:nsings) = S(end-nsings+2:end); % 1st & last few
co = linsolve(E,rhs,lso);
nrms(i) = norm(co);
Js(:,i) = evalfluxes(s,p,proxyrep,mu,sd,U,co);
end
Js(1,:)'
figure; semilogy(Ms,abs(Js(1,:)-Js(1,end)),'b+-'); hold on;
semilogy(Ms,sings(:,2:end),'-','color',.5*[1 1 1]);
semilogy(Ms,nrms,'b.-');
% *** TODO: bring in K=1e3 M-conv data and add to plot as squares
text(15,max(nrms)/10,'(e)');
text(60,max(nrms)/10,sprintf('$N=%d, m=%d$',N,m),'interpreter','latex');
xlabel('M'); axis([Ms(1) Ms(end-1) 1e-17 max(nrms)]);
%set(gcf,'paperposition',[0 0 3 3]); print -depsc2 figs/stoMconv.eps
end
if 0 % ------------ Schur tests warm-up (see above for convergence)
N = 140; s = wormshape(a,b,N); % reset curve
M = 40; p.x = Rp * exp(1i*(1:M)'/M*2*pi); p = quadr(p); % reset proxy pts
rhs = [0*s.x; jumps(1)+0*L.x; 0*L.x; jumps(2)+0*B.x; 0*B.x]; % driving
[E,~,~,C,Q] = ELSmatrix(s,p,proxyrep,U);
w = [0*L.w';L.w';0*B.w';B.w']; % consistency vector in Nul Q^T
fprintf('norm w^T Q = %.3g\n',norm(w'*Q))
fprintf('norm Q\\C = %.3g\n',norm(Q\C))
%svd(Q\C) % just one huge sing val, then gap to a decaying sequence.
%[U S V] = svd(Q); S = diag(S); r = numel(S); figure; plot(U(:,r),'+-');
end
%keyboard
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [u p] = evalsol(s,pr,proxyrep,mu,sd,U,z,co,close) % eval soln rep u,p
% z = list of targets as C values. pr = proxy struct, s = source curve struct
% co = full coeff vec, U = unit cell struct, mu = viscosity
% sd = prefactors for source rep, close enables special close quadr.
% Note: not for self-eval since srcsum2 used, 6/30/16
if nargin<9, close=0; end % default is plain native quadr
z = struct('x',z); % make targets z a segment struct
N = numel(s.x);
sig = co(1:2*N); psi = co(2*N+1:end); % split into sig (density) & psi (proxy)
if close, S = @(t,s,mu,dens) StoSLP_closeglobal(t,s,mu,dens,'e'); % exterior
D = @(t,s,mu,dens) StoDLP_closeglobal(t,s,mu,dens,'e');
else, S = @StoSLP; D = @StoDLP; end % NB now native & close have same 4 args
if nargout==1 % don't want pressure output
u = proxyrep(z,pr,mu,psi); % init sol w/ proxies (always far)
u = u + sd(1)*srcsum2(S,U.trlist,[],z,s,mu,sig) + sd(2)*srcsum2(D,U.trlist,[],z,s,mu,sig);
else
[u p] = proxyrep(z,pr,mu,psi); % init sol w/ proxies (always far)
[uS pS] = srcsum2(S,U.trlist,[],z,s,mu,sig);
[uD pD] = srcsum2(D,U.trlist,[],z,s,mu,sig);
u = u + sd(1)*uS + sd(2)*uD;
p = p + sd(1)*pS + sd(2)*pD;
end
function J = evalfluxes(s,p,proxyrep,mu,sd,U,co)
% inputs as in evalsol. Uses Gary-inspired bdry of 3x3 block far-field method
if U.nei~=1, warning('U.neu must equal 1'); end
w = U.L.w; if norm(w-U.B.w)>1e-14, error('L and B must have same weights'); end
m = numel(w);
N = numel(s.x); sig = co(1:2*N); psi = co(2*N+1:end);
t.x = [U.L.x;U.B.x]; t.nx = [U.L.nx;U.B.nx]; % 2-wall target
v = proxyrep(t, p, mu, psi); % flow vel on L+B
u = v(1:2*m).*real(t.nx) + v(2*m+1:end).*imag(t.nx); % proxy contrib to u = v.n
J = sum(reshape(u,[m 2])'.*([1;1]*w),2); % .... do its quadr on L,B
for i=-1:1 % set up big loop of 12 walls, just their nodes
x{i+2} = U.L.x - U.e1 +i*U.e2; x{i+5} = x{i+2} + 3*U.e1;
x{i+8} = U.B.x +i*U.e1 -U.e2; x{i+11} = x{i+8} + 3*U.e2;
end
t.x = vertcat(x{:}); t.nx = [repmat(U.L.nx,[6 1]); repmat(U.B.nx,[6 1])];
v = sd(1)*StoSLP(t,s,mu,sig) + sd(2)*StoDLP(t,s,mu,sig); % ctr copy only
u = v(1:12*m).*real(t.nx) + v(12*m+1:end).*imag(t.nx); % v.n, as col vec
amts = [0 0 0 3 3 3 -1 -2 -3 1 2 3; -1 -2 -3 1 2 3 0 0 0 3 3 3]; % wall wgts
J = J + sum(repmat(u',[2 1]).*kron(amts,w),2); % weight each wall
function [E A B C Q] = ELSmatrix(s,p,proxyrep,mu,sd,U)
% builds matrix blocks for Stokes extended linear system, S+D rep w/ Kress self
N = numel(s.x);
A = sd(1)*srcsum(@StoSLP,U.trlist,[],s,s,mu) + sd(2)*(eye(2*N)/2 + srcsum(@StoDLP,U.trlist,[],s,s,mu)); % notes: DLP gives exterior JR term; srcsum self is ok
B = proxyrep(s,p,mu); % map from proxy density to vel on curve
C = Cblock(s,U,mu,sd);
[QL,~,QLt] = proxyrep(U.L,p,mu); [QR,~,QRt] = proxyrep(U.R,p,mu); % vel, tract
[QB,~,QBt] = proxyrep(U.B,p,mu); [QT,~,QTt] = proxyrep(U.T,p,mu);
Q = [QR-QL; QRt-QLt; QT-QB; QTt-QBt];
E = [A B; C Q];
function C = Cblock(s,U,mu,sd) % fill C from source curve s to U walls
% sd controls prefactors on SLP & DLP for Stokes rep on the obstacle curve
n = U.nei; e1 = U.e1; e2 = U.e2; S = @StoSLP; D = @StoDLP; % abbrevs
trlist = n*e1 + (-n:n)*e2;
[CLS,~,TLS] = srcsum(S,trlist,[],U.L,s,mu);
[CLD,~,TLD] = srcsum(D,trlist,[],U.L,s,mu);
trlist = -n*e1 + (-n:n)*e2;
[CRS,~,TRS] = srcsum(S,trlist,[],U.R,s,mu);
[CRD,~,TRD] = srcsum(D,trlist,[],U.R,s,mu);
trlist = (-n:n)*e1 + n*e2;
[CBS,~,TBS] = srcsum(S,trlist,[],U.B,s,mu);
[CBD,~,TBD] = srcsum(D,trlist,[],U.B,s,mu);
trlist = (-n:n)*e1 - n*e2;
[CTS,~,TTS] = srcsum(S,trlist,[],U.T,s,mu);
[CTD,~,TTD] = srcsum(D,trlist,[],U.T,s,mu);
C = sd(1)*[CRS-CLS; TRS-TLS; CTS-CBS; TTS-TBS] +...
sd(2)*[CRD-CLD; TRD-TLD; CTD-CBD; TTD-TBD];
function u = knownsol(U,z,src,fsrc,mu)
% z = targets. U = unit cell struct, src = 1-pt struct, fsrc = source force vec.
% src.nei sets the src grid. output vel only
[tx ty] = meshgrid(-src.nei:src.nei); trk = tx(:)+1i*ty(:); % grid
u = srcsum(@StoSLP, trk, [], struct('x',z), src, mu, fsrc); % dens=fsrc
function rhs = knownrhs(src,fsrc,mu,s,U)
% src is a 1-pt struct with x, w, nx; it will be summed over sec.nei grid,
% unit mag. s is usual target curve (needs normals). fsrc = source force vec.
% The rhs will always be consistent, with f and g nonconstant. Matches knownsol.
[tx ty] = meshgrid(-src.nei:src.nei); trk = tx(:)+1i*ty(:); % src grid
f = srcsum(@StoSLP,trk,[],s,src,mu, fsrc); % direct vel data sum to curve
U.nei = src.nei; % sets up C correct for src grid
g = Cblock(src,U,mu,[1 0]) * fsrc; % sd sets SLP only
rhs = [f;g];
function [zz ii] = extgrid(gx,gy,s,U) % grid points and indices outside Omegas
% given gx,gy 1d x,y grids, s=curve segment, U = unit cell struct, return
% zz = col list of grid pts as C-#s, and ii = logical index array if outside
% Omega and all images
[xx yy] = meshgrid(gx,gy); zz = (xx(:)+1i*yy(:)); clear xx yy;
ii = true(size(zz)); % indices outside Omega or its copies
for i=-1:1, for j=-1:1, si = s.inside(zz+U.e1*i+U.e2*j); ii(si)=false; end, end
|
github
|
bobbielf2/BIE2D-master
|
tbl_discarray_drag.m
|
.m
|
BIE2D-master/doublyperiodic/tbl_discarray_drag.m
| 7,934 |
utf_8
|
d8f267701cfcdf9fb46e2a2508f94771
|
function tbl_discarray_drag
% Generate table of dimensionless drag of regular array of discs, to match
% Table 1 of Greengard-Kropinski, J. Engs. Math. 48: 157–170, 2004.
% Single inclusion (K=1), native quad for matrix fill, ELS.
% Adapted from fig_stoconvK1.m
% Barnett 8/2/16, graded parameterization 10/7/17
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square, more stable
mu = 0.8; % overall viscosity const for Stokes PDE, can be anything positive
sd = [1 1]; % layer potential representation prefactors for SLP & DLP resp.
jumps = [1 0]; % pressure jumps across R-L and T-B
schur = 1; % 0 for rect ELS direct solve; 1 for Schur iterative solve
% Note: schur loses the last around 1 digit when close.
U.e1 = 1; U.e2 = 1i; % unit cell; nei=1 for 3x3 scheme
U.nei = 1; [tx ty] = meshgrid(-U.nei:U.nei); U.trlist = tx(:)+1i*ty(:);
m = 22; [U L R B T] = doublywalls(U,m);
proxyrep = @StoSLP; % sets proxy pt type via a kernel function call
Rp = 1.4; M = 80; % proxy params
p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
convstudy = 0;
if convstudy % set up a convergence study at a single c param...
cs = 0.77;
% close: if 0, plain Nystrom for Aelse; if 1, close-eval (slow 10s @ N=200!) :
close = 0; Ns = 400:40:1000; % gets 5e-9 rel err, by N=650 (~6h).
%close = 1; Ns = 50:20:200; % gets slightly worse than 1e-8 rel err, by N=90
reparam = 1; % 0: plain trap rule; 1 reparam bunching near touching pts
cs = cs*ones(size(Ns)); chkconv=0; % set up for the conv study
else % generate the table (with error estimation for each)
close=0; reparam=1;
% vol fracs, from G-K 04 paper, plus one more...
cs = [0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.76 0.77 0.78];
Ns = [60 60 60 100 150 150 300 400 500 600 700 1300];
%cs=0.78; Ns=1300; close = 0; % for fun
%cs=0.78; Ns=200; close = 1; % for fun, tiny N, but loses a digit
chkconv = 1; % 1: check each ans vs bumped-up N's (~3x time)
if chkconv, cs=kron(cs,[1 1 1 1]); Ns = kron(Ns,[1 1 1 1]) + kron(1+0*Ns,[0 100 200 300]); end % use three higher N values to estimate error
end
ts = 0*cs; Dcalcs = 0*cs; % what we compute
% "ones vectors" for schur:
R = [[ones(M,1);zeros(M,1)],[zeros(M,1);ones(M,1)],[real(p.x);imag(p.x)]]/M;
for i=1:numel(cs) % -------------------- loop over filling fractions
N = Ns(i); r0 = sqrt(cs(i)/pi); mindist = 1-2*r0;
s = wobblycurve(r0,0,1,N); s.a=0;
if reparam
be = -0.5*log(mindist); s = reparam_bunched(s,be); s.cur = (1/r0)*ones(N,1);
end
h = min(abs(diff(s.x))); delta=mindist/h; % min quadr spacing; h-scaled closeness measure
% obstacle no-slip & pressure-drop driving...
g = [zeros(2*m,1);jumps(1)+0*L.x;zeros(4*m,1);jumps(2)+0*B.x]; % pres driving
rhs = [zeros(2*N,1); g];
tic
[E,A,Bm,C,Q] = ELSmatrix(s,p,proxyrep,mu,sd,U,close); % fill (w/ close option)
if ~schur
co = linsolve(E,rhs,lso); % ..... direct bkw stable solve of ELS
sig = co(1:2*N); psi = co(N+1:end);
iter(2)=nan; resvec=nan; % dummies
else % ..... schur, square well-cond solve
H = [ones(1,N) zeros(1,N);zeros(1,N) ones(1,N);real(s.nx)' imag(s.nx)']';
Qtilde = Q + (C*H)*R'; % Gary version of Schur
X = linsolve(Qtilde,C,lso); y = linsolve(Qtilde,g,lso);
Bm = Bm + (A*H(:,1:2))*R(:,1:2)'; % Alex
%tauhat = linsolve(A-Bm*X,-Bm*y,lso); iter(2)=nan; resvec=nan; % dummies
[tauhat,flag,relres,iter,resvec] = gmres(@(x) A*x - Bm*(X*x), -Bm*y, [], 1e-14, Ns(i)); % note iter has 2 elements, 2nd is what want
%if i==21, S = svd(A - Bm*X), keyboard, end % cond only 2e3
%fprintf('cond of gmres lin sys = %.3g\n',cond(A-Bm*X))
xi = y - X*tauhat;
tau = tauhat + H*(R'*xi); % Gary correction
co = [tau;xi]; % build full soln vector
end
ts(i) = toc;
%fprintf('resid norm = %.3g\n',norm(E*co - rhs))
%fprintf('density norm = %.3g, proxy norm = %.3g\n',norm(sig), norm(psi))
J = evalfluxes(s,p,proxyrep,mu,sd,U,co);
%fprintf('fluxes (%.16g,%.16g)\n',J(1),J(2))
Dcalcs(i) = 1/(J(1)*mu); % dimless drag; note force = 1
fprintf('c=%g r=%.3g\tN=%d (%.2gh)\t%.3gs\t%d its %.3g\tD=%.14e\n',cs(i),r0,N,delta,ts(i),iter(2),resvec(end),Dcalcs(i))
if chkconv & mod(i,4)==0, fprintf('\t\t est rel err = %.3g\n',max(abs(Dcalcs(i)-Dcalcs(i-3:i-1)))/Dcalcs(i)), end
end % ---------------------
Dcalcs
if convstudy, figure; semilogy(Ns,abs(Dcalcs-Dcalcs(end))/abs(Dcalcs(end)),'+-'); xlabel('N'); ylabel('rel err'); title('tbl discarray drag: conv study'); end
%figure; showsegment(s); ss=s; ss.x=ss.x+1; showsegment(ss); % view quadr
%keyboard
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function J = evalfluxes(s,p,proxyrep,mu,sd,U,co)
% inputs as in evalsol. Uses Gary-inspired bdry of 3x3 block far-field method
if U.nei~=1, warning('U.neu must equal 1'); end
w = U.L.w; if norm(w-U.B.w)>1e-14, error('L and B must have same weights'); end
m = numel(w);
N = numel(s.x); sig = co(1:2*N); psi = co(2*N+1:end);
t.x = [U.L.x;U.B.x]; t.nx = [U.L.nx;U.B.nx]; % 2-wall target
v = proxyrep(t, p, mu, psi); % flow vel on L+B
u = v(1:2*m).*real(t.nx) + v(2*m+1:end).*imag(t.nx); % proxy contrib to u = v.n
J = sum(reshape(u,[m 2])'.*([1;1]*w),2); % .... do its quadr on L,B
for i=-1:1 % set up big loop of 12 walls, just their nodes
x{i+2} = U.L.x - U.e1 +i*U.e2; x{i+5} = x{i+2} + 3*U.e1;
x{i+8} = U.B.x +i*U.e1 -U.e2; x{i+11} = x{i+8} + 3*U.e2;
end
t.x = vertcat(x{:}); t.nx = [repmat(U.L.nx,[6 1]); repmat(U.B.nx,[6 1])];
v = sd(1)*StoSLP(t,s,mu,sig) + sd(2)*StoDLP(t,s,mu,sig); % ctr copy only
u = v(1:12*m).*real(t.nx) + v(12*m+1:end).*imag(t.nx); % v.n, as col vec
amts = [0 0 0 3 3 3 -1 -2 -3 1 2 3; -1 -2 -3 1 2 3 0 0 0 3 3 3]; % wall wgts
J = J + sum(repmat(u',[2 1]).*kron(amts,w),2); % weight each wall
function [E A B C Q] = ELSmatrix(s,p,proxyrep,mu,sd,U,close)
% builds matrix blocks for Stokes extended linear system, S+D rep w/ Kress self
% & with close option for A block 3x3 neighbors. Barnett 8/2/16
N = numel(s.x);
if ~close % plain Nystrom for nei interactions...
A = sd(1)*srcsum(@StoSLP,U.trlist,[],s,s,mu) + sd(2)*(eye(2*N)/2 + srcsum(@StoDLP,U.trlist,[],s,s,mu)); % notes: DLP gives ext JR term; srcsum self is ok
else % Nystrom self & close-eval for nei interactions...
A = sd(1)*StoSLP(s,s,mu) + sd(2)*(eye(2*N)/2 + StoDLP(s,s,mu)); % self w/ JR
notself = U.trlist(U.trlist~=0);
A = A + sd(1)*srcsum2(@StoSLP_closeglobal,notself,[],s,s,mu,[],'e') + sd(2)*srcsum2(@StoDLP_closeglobal,notself,[],s,s,mu,[],'e'); % dens=[], 'e' exterior
end
B = proxyrep(s,p,mu); % map from proxy density to vel on curve
C = Cblock(s,U,mu,sd);
[QL,~,QLt] = proxyrep(U.L,p,mu); [QR,~,QRt] = proxyrep(U.R,p,mu); % vel, tract
[QB,~,QBt] = proxyrep(U.B,p,mu); [QT,~,QTt] = proxyrep(U.T,p,mu);
Q = [QR-QL; QRt-QLt; QT-QB; QTt-QBt];
E = [A B; C Q];
function C = Cblock(s,U,mu,sd) % fill C from source curve s to U walls
% sd controls prefactors on SLP & DLP for Stokes rep on the obstacle curve
n = U.nei; e1 = U.e1; e2 = U.e2; S = @StoSLP; D = @StoDLP; % abbrevs
trlist = n*e1 + (-n:n)*e2;
[CLS,~,TLS] = srcsum(S,trlist,[],U.L,s,mu);
[CLD,~,TLD] = srcsum(D,trlist,[],U.L,s,mu);
trlist = -n*e1 + (-n:n)*e2;
[CRS,~,TRS] = srcsum(S,trlist,[],U.R,s,mu);
[CRD,~,TRD] = srcsum(D,trlist,[],U.R,s,mu);
trlist = (-n:n)*e1 + n*e2;
[CBS,~,TBS] = srcsum(S,trlist,[],U.B,s,mu);
[CBD,~,TBD] = srcsum(D,trlist,[],U.B,s,mu);
trlist = (-n:n)*e1 - n*e2;
[CTS,~,TTS] = srcsum(S,trlist,[],U.T,s,mu);
[CTD,~,TTD] = srcsum(D,trlist,[],U.T,s,mu);
C = sd(1)*[CRS-CLS; TRS-TLS; CTS-CBS; TTS-TBS] +...
sd(2)*[CRD-CLD; TRD-TLD; CTD-CBD; TTD-TBD];
|
github
|
bobbielf2/BIE2D-master
|
fig_stoQconv.m
|
.m
|
BIE2D-master/doublyperiodic/fig_stoQconv.m
| 3,497 |
utf_8
|
838064073588a49d7f6071d4c69954d6
|
function fig_stoQconv
% Makes figs for doubly-periodic empty BVP convergence, Stokes.
% Barnett 5/28/16. Adapted from fig_lapQconv.m. BIE2D 6/29/16
warning('off','MATLAB:nearlySingularMatrix') % backward-stable ill-cond is ok!
warning('off','MATLAB:rankDeficientMatrix')
lso.RECT = true; % linsolve opts, forces QR even when square (LU much worse)
mu = 0.7; % overall viscosity const for Stokes PDE
rho = 1.5; z0 = rho*exp(0.7i); f0 = [0.3;-0.6]; % known Stokeslet loc & force
U.e1 = 1; U.e2 = 1i; % unit cell lattice vectors
Rp = 1.4; % proxy radius
M = 100; p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
proxyrep = @StoSLP; % set proxy type via a kernel function
nt = 100; t.x = rand(nt,1)-0.5 + 1i*(rand(nt,1)-0.5); % rand test pts in UC
%[xx yy] = meshgrid(linspace(-.5,.5,10)); t.x = xx(:)+1i*yy(:); % tp grid in UC
Atest = proxyrep(t,p,mu); % evaluation matrix, only changes when M does
m = 22; [U L R B T] = doublywalls(U,m);
g = discrep(L,R,B,T,@(t) vTknown(t,z0,f0,mu));
w = [0*L.w 0*L.w L.w 0*L.w 0*B.w 0*B.w 0*B.w B.w]'; % 8m-cpt left null-vector?
nsings = 6; % how many singular values to keep and show
Ms = 10:5:120;
verrs = nan*Ms'; sings = nan(numel(Ms),nsings); nrms = verrs; nwtqs = verrs;
for i=1:numel(Ms), M = Ms(i); % ------ convergence in M (# proxy pts)
p.x = Rp * exp(1i*(0:M-1)'/M*2*pi); p = setupquad(p); % proxy pts
Atest = proxyrep(t,p,mu); % vel evaluation matrix
Q = Qmat(p,L,R,B,T,proxyrep,mu);
nwtqs(i) = norm(w'*Q); % check presumptive left null vector
S = svd(Q);
sings(i,1) = max(S); sings(i,2:nsings) = S(end-nsings+2:end); % 1st & last few
xi = linsolve(Q,g,lso); nrms(i) = norm(xi);
verr = Atest*xi - vTknown(t,z0,f0,mu); % vel err at all test pts
verr(1:nt) = verr(1:nt)-verr(1); % fix offset in x cpt from 1st test pt
verr(nt+1:end) = verr(nt+1:end)-verr(1+nt); % ..and y cpt
verrs(i) = max(abs(verr));
%if M==40, [U S V] = svd(Q); V(:,end), Atest*V(:,end), end % sing vec is approx constant, and generates consts to high acc
end % -------
figure; semilogy(Ms,[verrs],'+-'); hold on;
semilogy(Ms,sings(:,2:end),'-','color',.5*[1 1 1]);
semilogy(Ms,nrms,'go-');
% semilogy(Ms,nwtqs,'rs-'); % boring, always zero
rB = sqrt(0.5); semilogy(Ms,0.05*(rho/rB).^(-Ms/2),'r--'); % conv rate!
xlabel('M');
axis([min(Ms) max(Ms) 1e-17 max(nrms)]);
text(15,max(nrms)/10,'(c)','fontsize',12);
text(90,max(nrms)/10,sprintf('$m=%d$',m),'interpreter','latex','fontsize',12);
set(gcf,'paperposition',[0 0 3 3]);
set(gca,'ytickmode','manual', 'ytick',[1e-15 1e-10 1e-5 1 1e5]);
%print -depsc2 figs/stoQMconv.eps
%%%%%%%%%%%%%%%%%
function Q = Qmat(p,L,R,B,T,proxyrep,mu) % matrix Q given proxy and colloc pts
[QL,~,QLn] = proxyrep(L,p,mu); [QR,~,QRn] = proxyrep(R,p,mu); % vel & trac, no p
[QB,~,QBn] = proxyrep(B,p,mu); [QT,~,QTn] = proxyrep(T,p,mu);
Q = [QR-QL; QRn-QLn; QT-QB; QTn-QBn];
function [ve Te] = vTknown(t,z0,f0,mu) % known vel, trac on t, targ seg
if nargout==1, ve = StoSLP(t,struct('x',z0,'w',1),mu,f0);
else, [ve,~,Te] = StoSLP(t,struct('x',z0,'w',1),mu,f0);
end
function g = discrep(L,R,B,T,vTfun) % discrepancy of given solution
% vTfun should have interface [velvec, tractionvec] = vTfun(targetsegment)
% Other inputs: LRBT are walls. Outputs: g is 8m col vec
[vR,tR] = vTfun(R); [vL,tL] = vTfun(L);
[vT,tT] = vTfun(T); [vB,tB] = vTfun(B);
g = [vR-vL; tR-tL; vT-vB; tT-tB];
|
github
|
bobbielf2/BIE2D-master
|
perispecint.m
|
.m
|
BIE2D-master/utils/perispecint.m
| 1,392 |
utf_8
|
87d49dc8e157443f20a2f45659b2f554
|
function g = perispecint(f)
% PERISPECINT - use FFT to take periodic spectral antiderivative of vector
%
% g = perispecint(f) returns g an antiderivative of the spectral interpolant
% of f, which is assumed to be the values of a smooth 2pi-periodic function
% at the N gridpoints 2.pi.j/N, for j=1,..,N (or any translation of such
% points). Can be row or col vec, and output is same shape.
% If sum(f)=0 then g is smoothly periodic; otherwise, there is a sawtooth
% jump in g. The offset of g is arbitrary.
%
% Without arguments, does a self-test.
%
% Also see: PERISPECDIFF
% Barnett 9/28/17
if nargin==0, test_perispecint; return; end
N = numel(f);
fbar = mean(f); f = f-fbar;
if mod(N,2)==0 % even
g = ifft(fft(f(:)).*[0 1./(1i*(1:N/2-1)) 0 1./(1i*(-N/2+1:-1))].');
else
g = ifft(fft(f(:)).*[0 1./(1i*(1:(N-1)/2)) 1./(1i*((1-N)/2:-1))].');
end
g = g + (1:N)'*(fbar*2*pi/N); % add a sawtooth (could add arbitrary offset too)
g = reshape(g,size(f));
%%%%%%
function test_perispecint
N = 50; tj = 2*pi/N*(1:N)';
f = sin(3*tj); fp = 3*cos(3*tj); % trial periodic function & its deriv
% since offset arbitrary, must measure and subtract...
F = perispecint(fp); off = F(1)-f(1); norm(F-off-f) % zero-mean case for fp
f = sin(3*tj)+tj; fp = 3*cos(3*tj)+1; % trial periodic function & its deriv
F = perispecint(fp); off = F(1)-f(1); norm(F-off-f) % nonzero-mean case for fp
|
github
|
bobbielf2/BIE2D-master
|
showsegment.m
|
.m
|
BIE2D-master/utils/showsegment.m
| 1,213 |
utf_8
|
3672151c11b3e1fd043630c3b5e1bb20
|
function h = showsegment(s, trlist)
% SHOWSEGMENT plot segment(s) & possibly translated copies
%
% h = showsegment(s) where s is segment struct with s.x nodes, optionally s.nx
% normal vectors, adds to the current axes a plot of the segment.
% If s is a cell array of segment structs, it plots all of them.
%
% h = showsegment(s, trlist) also plots translated copies given by list of
% complex numbers in trlist.
%
% No arguments does a self-test.
% Based on variants of showseg. Barnett 6/12/16
if nargin<1, test_showsegment; return; end
if nargin<2, trlist = 0; end
if iscell(s), for i=1:numel(s), showsegment(s{i},trlist); end, return, end
hold on
for i=1:numel(trlist)
plot(s.x+trlist(i), 'b.-');
if isfield(s,'nx')
l=0.05; plot([s.x, s.x+l*s.nx].'+trlist(i), 'k-');
end
end
axis equal xy
%%%%%%%
function test_showsegment
N = 100; s.x = exp(2i*pi*(1:N)/N);
figure; showsegment(s); % plain, no normals
s = setupquad(s); % adds normals
[xx yy] = meshgrid([-3 0 3]);
trlist = xx(:)+1i*yy(:);
figure; showsegment(s,trlist); % check translation copies
s2 = s; s2.x = s.x*0.5; % smaller circles
figure; showsegment({s s2},trlist); % check cell array
|
github
|
bobbielf2/BIE2D-master
|
gauss.m
|
.m
|
BIE2D-master/utils/gauss.m
| 287 |
utf_8
|
cc60b6c98d11c710bbcbce2f5a42802b
|
% GAUSS nodes x (Legendre points) and weights w
% for Gauss quadrature on [-1,1], for N small (<100). Trefethen book.
function [x,w] = gauss(N)
beta = .5./sqrt(1-(2*(1:N-1)).^(-2));
T = diag(beta,1) + diag(beta,-1);
[V,D] = eig(T);
x = diag(D); [x,i] = sort(x);
w = 2*V(1,i).^2;
|
github
|
bobbielf2/BIE2D-master
|
perispecinterp.m
|
.m
|
BIE2D-master/utils/perispecinterp.m
| 1,118 |
utf_8
|
3612c6bd058b5d08dd68ee217dfb9a24
|
function g = perispecinterp(f,N)
% PERISPECINTERP resample periodically sampled function on finer uniform grid.
%
% g = perispecinterp(f,N)
% inputs: f - (row or column) vector length n (must be even) of samples
% N - desired output number of samples, must be >= n and even
% outputs: g - vector length N of interpolant, (row or col as f was)
%
% Note on phasing: the output and input grid first entry align (ie, as if they
% are both 0-indexed; note this matches setupquad)
% Barnett 6/27/16 renaming fftinterp from 9/5/14
% todo: * downsample case N<n. * odd cases.
if nargin==0, test_perispecinterp; return; end
n = numel(f);
if N==n, g = f; return; end
if mod(N,2)~=0 || mod(n,2)~=0, warning('N and n must be even, sorry'); end
F = fft(f(:).'); % row vector
g = ifft([F(1:n/2) F(n/2+1)/2 zeros(1,N-n-1) F(n/2+1)/2 F(n/2+2:end)]);
g = g*(N/n); % factor from the ifft
if size(f,1)>size(f,2), g = g(:); end % make col vector
%%%%%%
function test_perispecinterp
n = 50;
N = 100;
x = 2*pi*(0:n-1)/n;
f = @(x) exp(sin(x));
g = perispecinterp(f(x),N);
ge = f(2*pi*(0:N-1)/N);
% g ./ ge
norm(g - ge)
|
github
|
bobbielf2/BIE2D-master
|
reparam_bunched.m
|
.m
|
BIE2D-master/utils/reparam_bunched.m
| 1,412 |
utf_8
|
e7ff2d7e6e384306d05b7a1cafdbd40a
|
function s = reparam_bunched(s,be)
% REPARAM_BUNCHED Reparameterize a segment slowing down at 0,pi/2,pi,3pi/2.
%
% s = reparam_bunched(s,be) takes a segment struct s and returns another,
% where be is the beta parameter giving the angular range devoted to the
% central. The bunching factor is of order exp(be), or bunching region
% of order exp(-be).
%
% Note: s.cur may be inaccurate. The user should consider replacing with
% analytic values
%
% Without arguments, does self-test
%
% Barnett 9/28/17
if nargin==0, test_reparam_bunched; return; end
% set up reparam func on grid in [0,2pi)
t = s.t; N = numel(t); %(1:N)/N * 2*pi;
h = 2*pi/N;
yp = cosh(be*sin(2*t));
I = sum(yp)*h;
al = 2*pi/I;
yp = yp*al; % make yp integrate to 2*pi
y = perispecint(yp);
y = y-y(1); % start at t=0
s.x = s.Z(y); % new nodes and their derivs, exactly
s.xp = yp.*s.Zp(y);
% (here could replace s.xpp analytically)
scopy = s;
s = rmfield(s,{'Z','Zp','Zpp'}); % kill otherwise get used
s = setupquad(s); % regenerate all from from s.x and s.xp
%s.t = y; % in case user needs...
%s.Z = scopy.Z;
%s.Zp = scopy.Zp;
%s.Zpp = scopy.Zpp;
%%%%%%%%
function test_reparam_bunched
N=200;
figure; % animate...
for be=1:0.5:8
s = wobblycurve(0.5,0,1,N);
s = reparam_bunched(s,be);
clf; showsegment(s); title(sprintf('\\beta = %.3f\n',be)); drawnow
end
%s.cur % round-off deviates from 2 by up to 1e-7
|
github
|
bobbielf2/BIE2D-master
|
setupquad.m
|
.m
|
BIE2D-master/utils/setupquad.m
| 4,215 |
utf_8
|
0774317ae402c3f279b63eec2b2179dd
|
function s = setupquad(s, N)
% SETUPQUAD Set up periodic trapezoid quadrature & geom for smooth closed curve
%
% s = setupquad(s,N) where s is a struct containing a parametrization of the
% curve in the form of function s.Z from [0,2pi) to the complex plane, uses
% this to build the set of nodes, weights, speeds, curvatures, etc, using the
% N-node PTR on [0,2pi).
%
% s = setupquad(s) where s contains at least the field s.x (column vector of
% N node locations) generates all other fields by spectral differentiation.
%
% If s.Zp is present it is used as the function Z'; likewise s.Zpp is used for
% Z''. The point of using these is that slightly more accurate normals and
% curvatures may result compared to differentiation. On the other hand, Zp and
% Zpp are not checked for plausibility, and are often complicated to code.
%
% Note: curves go counter-clockwise. Node j is at Z(2pi.(j-1)/N), ie 0-indexed.
% FFT is used so is O(N log N), or O(N) if Z, Zp and Zpp available.
%
% Run without arguments, a self-test is done.
%
% Inputs:
% s : struct containing either the field s.Z, a mapping from [0,2pi) to
% the complex plane, which must be able to accept vectorized inputs,
% or the field s.x containing column vector of the nodes.
% N : number of nodes (not needed if s.x is present; however, if s.Z is also
% present, N overrides the number of nodes in s.x).
% Outputs:
% s : same struct with added column vector fields (nodes, weights, velocities,
% curvatures, etc) needed for quadrature and Nystrom methods. Namely,
% s.x nodes in complex plane, Z(s_j)
% s.xp velocities Z'(s_j)
% s.xp accelerations Z''(s_j)
% s.t parameter values s_j for trapezoid rule, 2pi.(j-1)/N, j=1,...,N
% s.nx outward unit normals
% s.tang forward unit tangential vectors
% s.sp speeds |Z'(s_j)|
% s.w "speed weights" (2pi/N)*s.sp
% s.cw velocity weights (ie complex speed)
% s.cur curvatures kappa(s_j) (inverse bending radius)
%
% Example usage:
%
% s.Z = @(s) (1+0.3*cos(5*s).*exp(1i*s); % starfish param
% s = setupquad(s,100);
% figure; plot(s.x,'k.'); hold on; plot([s.x, s.x+0.2*s.nx].', 'b-'); axis equal
%
% Now check that normals from spectral differentiation are accurate:
%
% s.Zp = @(s) -1.5*sin(5*s).*exp(1i*s) + 1i*s.Z(s); % Z' formula
% t = setupquad(s,100); norm(t.nx-s.nx) % should be small
%
% Also see: PERISPECDIFF.
% (c) Alex Barnett 10/8/14, name changed to avoid conflict w/ mpspack 6/12/16.
% 0-indexed to match interp, 6/29/16
if nargin==0, test_setupquad; return; end
if nargin>1 % use N from args
s.t = (0:N-1)'*(2*pi/N);
if isfield(s,'Z'), s.x = s.Z(s.t); end % use formula
if N~=length(s.x), error('N differs from length of s.x; that sucks!'); end
elseif isfield(s,'x')
s.x = s.x(:); % ensure col vec
N = length(s.x);
s.t = (0:N-1)'*(2*pi/N); % we don't know the actual params, but choose this
else
error('Need to provide at least s.Z and N, or s.x. Neither found!');
end
if isfield(s,'Zp'), s.xp = s.Zp(s.t); else, s.xp = perispecdiff(s.x); end
if isfield(s,'Zpp'), s.xpp = s.Zpp(s.t); else, s.xpp = perispecdiff(s.xp); end
% Now local stuff that derives from x, xp, xpp at each node...
s.sp = abs(s.xp);
s.tang = s.xp./s.sp;
s.nx = -1i*s.tang;
s.cur = -real(conj(s.xpp).*s.nx)./s.sp.^2; % recall real(conj(a)*b) = "a dot b"
s.w = (2*pi/N)*s.sp;
s.cw = (2*pi/N)*s.xp; % complex weights (incl complex speed)
%%%%%%%%%%%%%%%%%%%%%%%%%
function test_setupquad % not very extensive! Barnett 10/8/14
Z = @(s) (1+0.3*cos(5*s)).*exp(1i*s); % starfish param
s.Z = Z;
n = 100;
s = setupquad(s,n);
s = []; s.x = Z((0:n-1)/n*2*pi); s = setupquad(s); % testing s.x input only
figure; plot(s.x,'k.'); hold on; plot([s.x, s.x+0.2*s.nx].', 'b-'); axis equal
% Now check that normals from spectral differentiation are accurate:
Zp = @(s) -1.5*sin(5*s).*exp(1i*s) + 1i*Z(s); % Z' formula
s.Zp = Zp;
t = setupquad(s); norm(t.nx-s.nx) % should be small
s = []; s.x = 3; s.Z = Z; s = setupquad(s,100); % N should override s.x
%s = []; s.x = Z((1:50)'/50*2*pi); s=setupquad(s,100); should fail
|
github
|
bobbielf2/BIE2D-master
|
wobblycurve.m
|
.m
|
BIE2D-master/utils/wobblycurve.m
| 1,160 |
utf_8
|
0dba00c5a6771d86bd120c42bdf738bc
|
function s = wobblycurve(r0,a,w,N)
% WOBBLYCURVE Set up a wobbly smooth closed curve ("starfish")
%
% s = wobblycurve(r0,a,w) where r0 is the mean radius (eg 1), a is amplitude of
% wobble (eg 0.3) and w is the frequency (eg 5), returns a segment struct of
% the form as in setupquad, but with s.inside being a handle to Boolean test
% whether a point is inside the curve. Parametrization uniform in theta.
%
% Without arguments, does self-test of analytic 1st and 2nd derivatives
% Barnett repackaged 6/12/16, generic angle offset 6/29/16, r0 8/2/16
if nargin==0, test_wobblycurve; return; end
th = 0.2; % generic rotation. todo: make an opt
% since analytic derivs not too messy, use them...
R = @(t) r0 + a*cos(w*(t-th));
Rp = @(t) -w*a*sin(w*(t-th));
Rpp = @(t) -w*w*a*cos(w*(t-th));
s.Z = @(t) R(t).*exp(1i*t);
s.Zp = @(t) (Rp(t) + 1i*R(t)).*exp(1i*t);
s.Zpp = @(t) (Rpp(t) + 2i*Rp(t) - R(t)).*exp(1i*t);
s = setupquad(s,N);
s.inside = @(z) abs(z)<R(angle(z));
%%%%%%%
function test_wobblycurve
s = wobblycurve(0.9,0.3,5,150);
max(abs(s.xp - perispecdiff(s.x))) % make sure analytic close to numerical
max(abs(s.xpp - perispecdiff(s.xp)))
|
github
|
bobbielf2/BIE2D-master
|
perispecdiff.m
|
.m
|
BIE2D-master/utils/perispecdiff.m
| 853 |
utf_8
|
083247f836d7df429d48963ea3567cdb
|
function g = perispecdiff(f)
% PERISPECDIFF - use FFT to take periodic spectral differentiation of vector
%
% g = perispecdiff(f) returns g the derivative of the spectral interpolant
% of f, which is assumed to be the values of a smooth 2pi-periodic function
% at the N gridpoints 2.pi.j/N, for j=1,..,N (or any translation of such
% points). Can be row or col vec, and output is same shape.
%
% Without arguments, does a self-test.
% Barnett 2/18/14
if nargin==0, test_perispecdiff; return; end
N = numel(f);
if mod(N,2)==0 % even
g = ifft(fft(f(:)).*[0 1i*(1:N/2-1) 0 1i*(-N/2+1:-1)].');
else
g = ifft(fft(f(:)).*[0 1i*(1:(N-1)/2) 1i*((1-N)/2:-1)].');
end
g = reshape(g,size(f));
%%%%%%
function test_perispecdiff
N = 50; tj = 2*pi/N*(1:N)';
f = sin(3*tj); fp = 3*cos(3*tj); % trial periodic function & its deriv
norm(fp-perispecdiff(f))
|
github
|
bobbielf2/BIE2D-master
|
StoDLP_closeglobal.m
|
.m
|
BIE2D-master/kernels/StoDLP_closeglobal.m
| 5,987 |
utf_8
|
f3e6f06539c4ac195862d0e1d38f6a75
|
function [u p] = StoDLP_closeglobal(t, s, mu, sigma, side)
% STODLP_CLOSEGLOBAL - close-eval velocity Stokes DLP w/ global quadr curve
%
% u = StoDLP_closeglobal(t,s,mu,dens,side) returns velocities at targets t.x
% due to double-layer potential with real-valued density dens sampled on the
% nodes s.x of a smooth global quadrature rule on the curve s, either inside
% or outside the curve.
% The DLP velocity is broken down into 5 Laplace DLP-like (2 are Cauchy)
% potential calls, each of which are evaluated with the globally-compensated
% scheme. See [lsc2d] for details.
% The pressure uses the gradient of a single Laplace DLP call.
%
% [u p] = StoDLP_closeglobal(t,s,mu,dens,side) also returns pressure at targets
%
% Inputs:
% t = target struct with t.x = M-by-1 list of targets in complex plane
% s = curve struct containing N-by-1 vector s.x of source nodes (as complex
% numbers), and all other fields in s which are generated by quadr(), and
% s.a one interior point far from bdry (mean(s.x) used if not provided).
% mu = viscosity in Stokes equations (real positive number); has no effect on
% DLP but is part of the standard interface.
% dens = double-layer density values (2N-by-1) at nodes, with real values
% (1-cpts followed by 2-cpts).
% If dens is empty, output u is the full 2M-by-2N evaluation matrix.
% side = 'i','e' to indicate targets are all interior or exterior to curve.
%
% Outputs:
% u = velocity values at targets (2M-by-1): all 1- then all 2-cmpts.
% Or, if 2M-by-2N velocity evaluation matrix (if dens=[])
% p = pressure values at targets (M-by-1), or M-by-2N evaluation matrix.
%
% Called without arguments, a self-test (far eval & mat vs StoDLP) is done.
%
% Also see: STODLP, SETUPQUAD, STOINTDIRBVP
% Bowei Wu, Sept 2014; Barnett 10/8/14 tweaks, repackage 6/13/16.
% viscosity input (doesn't affect result) 6/27/16. pressure 6/29/16.
% todo: * speed up matrix filling exploiting incoming 0s, do mult of Nf*Nf
% efficiently-filled LapDLP_closeglobal, against the Nf*N dense interp mat,
% will be O(MN^2) but fast.
if nargin==0, test_StoDLP_closeglobal; return; end
N=size(s.x,1); M=size(t.x,1); % # srcs, # targs
mat = isempty(sigma);
if mat, sigma=eye(2*N); end % case of dense matrix
sigma = sigma(1:N,:)+1i*sigma(N+1:end,:); % put into complex notation
Nc = size(sigma,2); % # density vecs (cols)
% find I_1:
% Bowei's version with "illegal" complex tau, with interp to fine nodes
beta = 2.2; % >=1: how many times more dense to make fine nodes, for I_1
Nf = ceil(beta*numel(s.x)/2)*2; % nearest even # fine nodes
sf.x = perispecinterp(s.x,Nf); sf = setupquad(sf); % build fine nodes
sigf=zeros(Nf,Nc);
for k=1:Nc
sigf(:,k) = perispecinterp(sigma(:,k),Nf); % fine Stokes density
end
% feed complex tau to Laplace close eval - careful:
tauf = bsxfun(@times, sigf, real(sf.nx)./sf.nx); % undo n_y rotation
I1x1 = LapDLP_closeglobal(t, sf, tauf, side);
tauf = bsxfun(@times, sigf, imag(sf.nx)./sf.nx); % undo n_y rotation
I1x2 = LapDLP_closeglobal(t, sf, tauf, side);
% Note: for mat fill the above would be faster done by mat-mat prod
I1 = I1x1+1i*I1x2;
% find I_2
tau = real(bsxfun(@times,s.x,conj(sigma)));
[~, I2x1, I2x2] = LapDLP_closeglobal(t, s, tau, side);
I2 = I2x1+1i*I2x2;
% find I_3 and I_4
if ~mat
[~, I3x1, I3x2] = LapDLP_closeglobal(t, s, real(sigma), side);
I3 = bsxfun(@times, real(t.x), I3x1+1i*I3x2);
[~, I4x1, I4x2] = LapDLP_closeglobal(t, s, imag(sigma), side);
I4 = bsxfun(@times, imag(t.x), I4x1+1i*I4x2);
else % *** specific to the matrix case, not arb Nc...
[~, L1, L2] = LapDLP_closeglobal(t, s, eye(N), side); % only need 1 call
I4x1=[zeros(M,N),L1]; % could be tidied up, but not a bottleneck...
I4x2=[zeros(M,N),L2];
I3x1=[L1,zeros(M,N)];
I3x2=[L2,zeros(M,N)];
I3 = bsxfun(@times,real(t.x),I3x1+1i*I3x2);
I4 = bsxfun(@times,imag(t.x),I4x1+1i*I4x2);
end
u = I1+I2-I3-I4;
u=[real(u);imag(u)]; % back to real notation, always stack [u1;u2]
% test which is causing slow convergence at nearby pt (side='e', vary N):
% jj= find(abs(x - (0.7-0.9i))<1e-12); I1(jj), I2(jj), I3(jj)+I4(jj)
% ans: it's I1, of course. (Alex, 2013)
if nargout>1 % ----------- want pressure, do its extension (not in [lsc2c])
if ~mat
p = -2*mu*(I3x1 + I4x2); % already computed for u, turns out easy
else
p = -2*mu*[L1,L2]; % "
end
end
%%%%%%%%%%%%%%%%%%%%
function test_StoDLP_closeglobal % adapted from Lap tests
fprintf('check Stokes DLP close-eval quadr match native rule in far field...\n')
verb = 0; % to visualize
s = wobblycurve(1,0.3,5,280); s.a = mean(s.x); if verb,figure;showsegment(s);end
mu = 0.9; % viscosity (real, pos)
tau = [0.7+sin(3*s.t); -0.4+cos(2*s.t)]; % pick smooth density w/ nonzero mean
nt = 100; t.nx = exp(2i*pi*rand(nt,1)); % target normals
%profile clear; profile on;
for side = 'ie'
if side=='e', t.x = 1.5+1i+rand(nt,1)+1i*rand(nt,1); % distant targs
else, t.x = 0.6*(rand(nt,1)+1i*rand(nt,1)-(0.5+0.5i)); end % targs far inside
if verb, plot(t.x,'.'); end
fprintf('\nside = %s:\n',side)
[u p] = StoSLP(t,s,mu,tau); % eval given density cases...
tic, [uc pc] = StoSLP_closeglobal(t,s,mu,tau,side);
fprintf('Sto DLP density eval (%.3g sec), max abs err in u cmpts, p:\n',toc)
disp([max(abs(u-uc)), max(abs(p-pc))])
tic, [Ac Pc] = StoSLP_closeglobal(t,s,mu,[],side); % fill 20x slower than apply
fprintf('matrix fill (%.3g sec) & apply, max abs err in u cmpts, p:\n',toc)
disp([max(abs(u-Ac*tau)), max(abs(p-Pc*tau))])
[A P] = StoSLP(t,s,mu); % compare matrix els...
fprintf('matrix fill, max abs matrix element diffs for u, p (more stringent, not needed):\n')
disp([max(abs(A(:)-Ac(:))), max(abs(P(:)-Pc(:)))])
end
%profile off; profile viewer
|
github
|
bobbielf2/BIE2D-master
|
StoSLP.m
|
.m
|
BIE2D-master/kernels/StoSLP.m
| 4,799 |
utf_8
|
25b27eac66dc0b0b2ba3174216d67926
|
function [u,p,T] = StoSLP(t,s,mu,dens)
% STOSLP Evaluate 2D Stokes single-layer velocity, pressure, and traction.
%
% [A,P,T] = StoSLP(t,s,mu) returns dense matrices taking single-layer
% density values on the nodes of a source curve to velocity, pressure, and
% traction on the nodes of a target curve. Native quadrature is used, apart
% from if target=source when A and T are the Nystrom matrices filled using
% spectrally-accurate quadratures (log-singular for A; smooth diagonal limit
% for T, ie transpose of DLP).
%
% [u,p,T] = StoSLP(t,s,mu,dens) evaluates the single-layer density dens,
% returning flow velocity u, pressure p, and target-normal traction T.
%
% The normalization is as in Sec 2.3 of [HW], and [Mar15]; notably there is a
% prefactor 1/(4.pi.mu) for velocity.
%
% References:
% [HW] "Boundary Integral Equations", G. C. Hsiao and W. L. Wendland
% (Springer, 2008).
%
% [Mar15] "A fast algorithm for simulating multiphase flows through periodic
% geometries of arbitrary shape," G. Marple, A. H. Barnett,
% A. Gillman, and S. Veerapaneni, in press, SIAM J. Sci. Comput.
% https://arXiv.org/abs/1510.05616
%
% Inputs: (see setupquad for source & target struct definitions)
% s = source segment struct with s.x nodes, s.w weights on [0,2pi),
% s.sp speed function |Z'| at the nodes, and s.tang tangent angles.
% t = target segment struct with t.x nodes, and t.nx normals if traction needed
% mu = viscosity
%
% Outputs: (matrix case)
% A = 2M-by-2N matrix taking density (force vector) to velocity on the
% target curve. As always for Stokes, ordering is nodes fast,
% components (1,2) slow, so that A has 4 large blocks A_11, A_12, etc.
% P = M-by-2N matrix taking density to pressure (scalar) on target nodes.
% T = 2M-by-2N matrix taking density to normal traction on target nodes.
% Outputs: (density case) all are col vecs (as if N=1).
%
% Notes: 1) Uses whatever self-interaction quadrature Laplace SLP uses
%
% To test use STOINTDIRBVP
%
% See also: SETUPQUAD, LAPSLP.
% Barnett 6/12/16; T diag limit as in Bowei code SLPmatrixp 6/13/16. 6/27/16
% todo: doc formulae.
if numel(mu)~=1, error('mu must be a scalar'); end
if nargout==1
u = StoSLPmat(t,s,mu);
if nargin>3 && ~isempty(dens)
u = u * dens;
end
elseif nargout==2
[u p] = StoSLPmat(t,s,mu);
if nargin>3 && ~isempty(dens)
u = u * dens;
p = p * dens;
end
else
[u p T] = StoSLPmat(t,s,mu);
if nargin>3 && ~isempty(dens)
u = u * dens;
p = p * dens;
T = T * dens;
end
end
%%%%%%
function [A,P,T] = StoSLPmat(t,s,mu)
% Returns native quadrature matrices, or self-evaluation matrices.
self = sameseg(t,s);
N = numel(s.x); M = numel(t.x);
r = bsxfun(@minus, t.x, s.x.'); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/r^2, used in all cases below
d1 = real(r); d2 = imag(r); % worth storing I think
c = 1/(4*pi*mu); % factor from Hsiao-Wendland book, Ladyzhenskaya
if self
S = LapSLP(s,s); % note includes speed weights
A = kron((1/2/mu)*eye(2),S); % prefactor & diagonal log-part blocks
t1 = real(s.tang); t2 = imag(s.tang); % now add r tensor r part, 4 blocks
A11 = d1.^2.*irr; A11(diagind(A11)) = t1.^2; % diagonal limits
A12 = d1.*d2.*irr; A12(diagind(A12)) = t1.*t2;
A22 = d2.^2.*irr; A22(diagind(A22)) = t2.^2;
A = A + bsxfun(@times, [A11 A12; A12 A22], c*[s.w(:)' s.w(:)']); % pref & wei
else % distinct src and targ
logir = -log(abs(r)); % log(1/r) diag block
A12 = d1.*d2.*irr; % off diag vel block
A = c*[logir + d1.^2.*irr, A12; % u_x
A12, logir + d2.^2.*irr]; % u_y
A = bsxfun(@times, A, [s.w(:)' s.w(:)']); % quadr wei
end
if nargout>1 % pressure (no self-eval)
P = [d1.*irr, d2.*irr];
P = bsxfun(@times, P, (1/2/pi)*[s.w(:)' s.w(:)']); % quadr wei
end
if nargout>2 % traction (negative of DLP vel matrix w/ nx,ny swapped)
rdotn = bsxfun(@times, d1, real(t.nx)) + bsxfun(@times, d2, imag(t.nx));
rdotnir4 = rdotn.*(irr.*irr); clear rdotn
A12 = (-1/pi)*d1.*d2.*rdotnir4;
T = [(-1/pi)*d1.^2.*rdotnir4, A12; % own derivation
A12, (-1/pi)*d2.^2.*rdotnir4];
if self
c = -s.cur/2/pi; % diagonal limit of Laplace DLP
tx = 1i*s.nx; t1=real(tx); t2=imag(tx); % tangent vectors on the curve
T(sub2ind(size(T),1:N,1:N)) = c.*t1.^2; % overwrite diags of 4 blocks
T(sub2ind(size(T),1+N:2*N,1:N)) = c.*t1.*t2;
T(sub2ind(size(T),1:N,1+N:2*N)) = c.*t1.*t2;
T(sub2ind(size(T),1+N:2*N,1+N:2*N)) = c.*t2.^2;
end
T = bsxfun(@times, T, [s.w(:)' s.w(:)']); % quadr wei
end
|
github
|
bobbielf2/BIE2D-master
|
StoSLP_closeglobal.m
|
.m
|
BIE2D-master/kernels/StoSLP_closeglobal.m
| 5,682 |
utf_8
|
94e1275fce7eed65d38ab3422727bae9
|
function [u p] = StoSLP_closeglobal(t, s, mu, sigma, side)
% STOSLP_CLOSEGLOBAL - close-eval velocity Stokes SLP w/ global quadr curve
%
% u = StoSLP_closeglobal(t,s,mu,dens,side) returns velocities at targets t.x
% due to single-layer potential with real-valued density dens sampled on the
% nodes s.x of a smooth global quadrature rule on the curve s, either inside
% or outside the curve.
% The SLP for velocity is broken down into 3 Laplace SLP potential calls,
% each of which are evaluated with the globally-compensated scheme.
% See [lsc2d] for details (except we include viscosity prefactor).
% The pressure uses a single Laplace DLP call, using the complex density
% tau = sigma_1 + i.sigma_2.
%
% [u p] = StoSLP_closeglobal(t,s,mu,dens,side) also returns pressure at targets
%
% Inputs:
% t = target struct with t.x = M-by-1 list of targets in complex plane
% s = curve struct containing N-by-1 vector s.x of source nodes (as complex
% numbers), and all other fields in s which are generated by quadr(), and
% for the 'e' case, s.a one interior point far from bdry.
% mu = viscosity in Stokes equations (real positive number).
% dens = single-layer density values (2N-by-1) at nodes, with real values
% (1-cpts followed by 2-cpts).
% If dens is empty, output u is the full 2M-by-2N evaluation matrix.
% side = 'i','e' to indicate targets are all interior or exterior to curve.
%
% Outputs:
% u = velocity values at targets (2M-by-1): all 1- then all 2-cmpts.
% Or, if 2M-by-2N velocity evaluation matrix (if dens=[])
% p = pressure values at targets (M-by-1), or M-by-2N evaluation matrix.
%
% Called without arguments, a self-test (far eval & mat vs StoSLP) is done.
%
% Also see: STOSLP, SETUPQUAD, STOINTDIRBVP
% Bowei Wu, Sept 2014; Barnett 10/8/14 tweaks, repackage 6/13/16, 6/27/16
% viscosity scaling & debug 6/28/16.
% todo: * speed up matrix filling exploiting incoming 0s & dgemm on Lap mats
if nargin==0, test_StoSLP_closeglobal; return; end
N=size(s.x,1); M=size(t.x,1); % # srcs, # targs
mat = isempty(sigma);
if mat, sigma=eye(2*N); end % case of dense matrix fill, slow
sigma = sigma(1:N,:)+1i*sigma(N+1:end,:); % work in complex notation
Nc = size(sigma,2); % # density vecs (cols), either 1 or 2N
% find I_1
if ~mat % eval from single density col vec
[I1x1, I3x1, I3x2] = LapSLP_closeglobal(t, s, real(sigma), side);
[I1x2, I4x1, I4x2] = LapSLP_closeglobal(t, s, imag(sigma), side);
else % *** specific to the matrix fill case, not arb Nc
[I1x1, I3x1, I3x2] = LapSLP_closeglobal(t, s, eye(N), side);
I1x2=[zeros(M,N),I1x1];
I4x1=[zeros(M,N),I3x1];
I4x2=[zeros(M,N),I3x2];
I1x1=[I1x1,zeros(M,N)];
I3x1=[I3x1,zeros(M,N)];
I3x2=[I3x2,zeros(M,N)];
end
I1 = (I1x1+1i*I1x2)/2;
% find I_2
tau = real(bsxfun(@times, s.x, conj(sigma))); % careful, does y dot sigma
[~, I2x1, I2x2] = LapSLP_closeglobal(t, s, tau, side);
I2 = (I2x1+1i*I2x2)/2;
% find I_3
I3 = bsxfun(@times, real(t.x)/2, I3x1+1i*I3x2);
% find I_4
I4 = bsxfun(@times, imag(t.x)/2, I4x1+1i*I4x2);
% Stokes SLP (with viscosity prefactor)
u = (1/mu)*(I1+I2-I3-I4);
u=[real(u);imag(u)]; % back to real notation, always stack [u1;u2]
if nargout>1 % -------- want pressure, do its extension by rotating n_y to sigma
% & since this rotation makes more osc funcs, must resample to fine grid
% as in the DLP u. (This pressure extension not in [lsc2d].)
beta = 1.5; % >=1: how many times more dense to make fine nodes. Seems enough
Nf = ceil(beta*numel(s.x)/2)*2; % nearest even # fine nodes
sf.x = perispecinterp(s.x,Nf); sf = setupquad(sf); % build fine nodes
%sf = setupquad(s,Nf); % uncomment to elim err due to geom interp if have s.Z
sigf = zeros(Nf,Nc);
for k=1:Nc
sigf(:,k) = perispecinterp(sigma(:,k),Nf); % fine Stokes density
end
tauf = bsxfun(@times, sigf, 1./sf.nx); % 2 complex cmpts
p = LapDLP_closeglobal(t, sf, tauf, side); % slow, resampled cols of eye
% (todo: replace by BLAS3 mat-mat prod, faster)
p = real(p);
end
%%%%%%%%%%%%%%%%%%%%
function test_StoSLP_closeglobal % adapted from Lap tests
fprintf('check Stokes SLP close-eval quadr match native rule in far field...\n')
verb = 0; % to visualize
s = wobblycurve(1,0.3,5,280); s.a = mean(s.x)+0.4+0.2i; % can't be near bdry
if verb, figure; showsegment(s); plot(s.a,'+'); end
mu = 0.9; % viscosity (real, pos)
tau = [0.7+sin(3*s.t); -0.4+cos(2*s.t)]; % pick smooth density w/ nonzero mean
nt = 100; t.nx = exp(2i*pi*rand(nt,1)); % target normals
%profile clear; profile on;
for side = 'ie'
if side=='e', t.x = 1.5+1i+rand(nt,1)+1i*rand(nt,1); % distant targs
else, t.x = 0.6*(rand(nt,1)+1i*rand(nt,1)-(0.5+0.5i)); end % targs far inside
if verb, plot(t.x,'.'); end
fprintf('\nside = %s:\n',side)
[u p] = StoSLP(t,s,mu,tau); % eval given density cases...
tic, [uc pc] = StoSLP_closeglobal(t,s,mu,tau,side);
fprintf('Sto SLP density eval (%.3g sec), max abs err in u cmpts, p:\n',toc)
disp([max(abs(u-uc)), max(abs(p-pc))])
tic, [Ac Pc] = StoSLP_closeglobal(t,s,mu,[],side); % fill 20x slower than apply
fprintf('matrix fill (%.3g sec) & apply, max abs err in u cmpts, p:\n',toc)
disp([max(abs(u-Ac*tau)), max(abs(p-Pc*tau))])
[A P] = StoSLP(t,s,mu); % compare matrix els...
fprintf('matrix fill, max abs matrix element diffs for u, p (more stringent, not needed):\n')
disp([max(abs(A(:)-Ac(:))), max(abs(P(:)-Pc(:)))])
end
%profile off; profile viewer
|
github
|
bobbielf2/BIE2D-master
|
LapSLP_closeglobal.m
|
.m
|
BIE2D-master/kernels/LapSLP_closeglobal.m
| 8,255 |
utf_8
|
e2057039f30f6ba95db0e0a61eeea742
|
function [u ux uy info] = LapSLP_closeglobal(t, s, tau, side)
% LAPSLP_CLOSEGLOBAL - Laplace SLP potential & deriv w/ global close-eval quad
%
% u = LapSLP_closeglobal(t,s,dens,side) returns potentials at targets t.x
% due to single-layer potential with real-valued density dens sampled on the
% nodes s.x of a smooth global quadrature rule on the curve s, either inside
% outside the curve. The new global scheme of [lsc2d] based on barycentric
% Cauchy close-evaluation (see reference in Cau_closeglobal.m) is used.
%
% Our definition of the SLP on curve Gamma is
%
% u(x) = (1/2pi) int_Gamma log(1/|r|) tau(y) ds_y, where r:=x-y, x,y in R2
%
% Inputs:
% t = target struct containing
% t.x = M-by-1 list of targets, as points in complex plane
% (optionally also t.nx target normals as unit complex numbers)
% s = curve struct containing N-by-1 vector s.x of source nodes (as complex
% numbers), and other fields as generated by setupquad.
% Also needed (for side='e'): s.a, a point interior to the curve.
% dens = single-layer density values at nodes. Note, must be real-valued to
% evaluate Laplace layer potentials (note Stokes feeds it complex dens).
% If dens has multiple columns, the evaluation is done for each.
% If dens is empty, outputs are matrices mapping density to values, etc.
% side = 'i','e' to indicate targets are interior or exterior to the curve.
%
% Outputs:
% u = column vector of M potential values where M = numel(t.x), or if
% dens has n columns, the n column vector outputs are stacked (M-by-n).
% [u un] = LapSLPeval_closeglobal(t,s,dens,side) also returns target-normal
% derivatives (M-by-n) using t.nx
% [u ux uy] = LapSLPeval_closeglobal(t,s,dens,side) instead returns x- and y-
% partials of u at the targets (ignores t.nx)
% [u ux uy info] = LapSLPeval_closeglobal(t,s,dens,side) also gives diagnostic:
% info.vb = vector of v boundary values (M-by-n)
% info.imv = imag part of v at targets (M-by-n)
%
% References:
%
% [lsc2d] Spectrally-accurate quadratures for evaluation of layer potentials
% close to the boundary for the 2D Stokes and Laplace equations,
% A. H. Barnett, B. Wu, and S. Veerapaneni, SIAM J. Sci. Comput.,
% 37(4), B519-B542 (2015) https://arxiv.org/abs/1410.2187
%
% See also: LAPSLP, SETUPQUAD, CAU_CLOSEGLOBAL, LAPINTDIRBVP
%
% complexity O(N^2) for evaluation of v^+ or v^-, plus O(NM) for globally
% compensated quadrature to targets
% Barnett 2013; multiple-column generalization by Gary Marple, 2014.
% Repackaged Barnett 6/12/16, 6/27/16 col vec outputs, 6/28/16 vp 'e' corrected
% todo: * efficient special case of matrix filling, join Steps 1 & 2 with dgemm.
if nargin==0
%testCSLPselfmatrix;
test_LapSLP_closeglobal; return; end
N = numel(s.x); M = numel(t.x); % # source, target nodes
if isempty(tau), tau = eye(N); end % case of filling matrices
n = size(tau,2); % # density columns
% Step 1: eval v^+ or v^- = cmplx SLP(tau):
vb = CSLPselfmatrix(s,side) * tau;
if side=='e'
sawlog = s.t/1i + log(s.a - s.x); % sawtooth with jump cancelled by log
for i=1:numel(sawlog)-1, p = imag(sawlog(i+1)-sawlog(i)); % remove phase jumps
sawlog(i+1) = sawlog(i+1) - 2i*pi*round(p/(2*pi)); end
totchgp = sum((s.w*ones(1,n)).*tau,1)/(2*pi); % total charge due to SLP, over 2pi (suffix p is for n-cmpt row vec)
vb = vb + sawlog*totchgp; % is now r
cw = 1i*s.nx.*s.w; % complex speed weights for native quadr...
vinf = sum(bsxfun(@times, vb, cw./(s.x-s.a)),1) / (2i*pi); % interior Cauchy gets v_infty
vb = vb - ones(size(vb,1),1)*vinf; % kill off v_infty so that v is in exterior Hardy space
end
info.vb = vb; % save for diagnostics (if totchg=0 it's useful)
% Step 2: compensated close-evaluation of v & v', followed by take Re:
if nargout>1 % want derivatives
[v vp] = Cau_closeglobal(t.x,s,vb,side); % does Sec. 3 of [lsc2d]
ux = real(vp); uy = -imag(vp); % col vecs, leave as partials...
if nargout==2 % or dot w/ targ nor...
ux = bsxfun(@times,ux,real(t.nx)) + bsxfun(@times,uy,imag(t.nx));
end
else
v = Cau_closeglobal(t.x,s,vb,side); % does Sec. 3 of [lsc2d]
end
u = real(v);
if side=='e' % add real part of log and of v_infty back in...
u = u - log(abs(s.a - t.x))*totchgp + ones(M,1)*real(vinf); % Re v_infty = 0 anyway
if nargout==2 % don't forget to correct the derivs too!
ux = ux + real(t.nx./(s.a - t.x))*totchgp;
elseif nargout==3
ux = ux + real(1./(s.a - t.x))*totchgp;
uy = uy - imag(1./(s.a - t.x))*totchgp;
end
end
%%%%%%
function S = CSLPselfmatrix(s,side) % complex SLP Kress-split Nystrom matrix
% s = src seg, even # nodes. side = 'i'/'e' int/ext case. Barnett 10/18/13.
% only correct for zero-mean densities.
N = numel(s.x);
d = s.x*ones(1,N) - ones(N,1)*s.x.'; % C-# displacements mat, t-s
x = exp(1i*s.t); % unit circle nodes relative to which angles measured.
S = -log(d) + log(x*ones(1,N) - ones(N,1)*x.'); % NB circ angles
S(diagind(S)) = log(1i*x./s.xp); % complex diagonal limit
% O(N^2) hack to remove 2pi phase jumps in S (assumes enough nodes for smooth):
for i=1:numel(S)-1, p = imag(S(i+1)-S(i)); % phase jump between pixels
S(i+1) = S(i+1) - 2i*pi*round(p/(2*pi)); end % (NB access matrix as 1d array!)
%figure; imagesc(real(S)); figure; imagesc(imag(S)); stop % check S mat smooth
m = 1:N/2-1; if side=='e', Rjn = ifft([0 1./m 1/N 0*m]); % imag sign dep on side
else, Rjn = ifft([0 0*m 1/N 1./m(end:-1:1)]); end % cmplx Kress Rj(N/2)/4pi
%m = 1:N/2-1; Rjn = ifft([0 0*m 1/N 1./m(end:-1:1)]); Rjn = [Rjn(1) Rjn(end:-1:2)]; % flips order
S = S/N + circulant(Rjn); % incl 1/2pi SLP prefac. drops const part in imag
S = bsxfun(@times, S, s.sp.'); % include speed (2pi/N weights already in)
%%%%%%%%%%%%%%%%%%%
function testCSLPselfmatrix % test spectral conv of complex SLP self-int Nystrom
% Barnett 10/18/13, repackaged 6/27/16
s = wobblycurve(1,0.3,5,200);
fprintf('CSLP self matrix test, check digits freeze:\n')
for N=40:40:500 % convergence study of Re v, Im v...
s = setupquad(s,N); sig = cos(3*s.t + 1); % zero-mean real SLP density func
v = CSLPselfmatrix(s,'i') * sig; % holomorphic potential bdry value
fprintf('N=%d:\tu(s=0) = %.15g Im[v(s=0)-v(s=pi)] = %.15g\n',N,real(v(end)),imag(v(end)-v(end/2))); % note overall const for Im not high-order convergence
end % NB needs N=320 for 13 digits in Re, but 480 for Im part (why slower?)
%figure; plot(s.t, [real(v) imag(v)], '+-'); title('Re and Im of v=S\sigma');
%%%%%%%%%%%%%%%%%%%%
function test_LapSLP_closeglobal
fprintf('check Laplace SLP close-eval quadr match native rule in far field...\n')
verb = 1; % to visualize
s = wobblycurve(1,0.3,5,200); s.a = mean(s.x)+0.4+0.2i; % can't be near bdry
if verb, figure; showsegment(s); plot(s.a,'+'); end
tau = -0.7+exp(sin(3*s.t)); % pick smooth density w/ nonzero mean
nt = 100; t.nx = exp(2i*pi*rand(nt,1)); % target normals
for side = 'ie'
if side=='e', t.x = 1.5+1i+rand(nt,1)+1i*rand(nt,1); % distant targs
else, t.x = 0.6*(rand(nt,1)+1i*rand(nt,1)-(0.5+0.5i)); end % targs far inside
if verb, plot(t.x,'.'); end
fprintf('\nside = %s:\n',side)
[u un] = LapSLP(t,s,tau); % eval given density cases...
[uc unc] = LapSLP_closeglobal(t,s,tau,side);
tic, [uc uxc uyc] = LapSLP_closeglobal(t,s,tau,side);
fprintf('Lap SLP density eval (%.3g sec), max abs err in u, un, and [ux,uy]...\n',toc)
disp([max(abs(u-uc)), max(abs(un-unc)), max(abs(un - (uxc.*real(t.nx)+uyc.*imag(t.nx))))])
[uc unc] = LapSLP_closeglobal(t,s,[],side);
tic, [uc uxc uyc] = LapSLP_closeglobal(t,s,[],side);
fprintf('matrix fill (%.3g sec) & apply, max abs err in u, un, and [ux,uy]...:\n',toc)
disp([max(abs(u-uc*tau)), max(abs(un-unc*tau)), max(abs(un - ((uxc*tau).*real(t.nx)+(uyc*tau).*imag(t.nx))))])
[u un] = LapSLP(t,s); % compare matrix els....
fprintf('matrix fill, max abs matrix element diffs in u, un, and [ux,uy]...\n')
disp([max(abs(u(:)-uc(:))), max(abs(un(:)-unc(:))), max(max(abs(un - (bsxfun(@times,uxc,real(t.nx))+bsxfun(@times,uyc,imag(t.nx))))))])
end
|
github
|
bobbielf2/BIE2D-master
|
LapDLP.m
|
.m
|
BIE2D-master/kernels/LapDLP.m
| 2,338 |
utf_8
|
af3c40315b00f14da317ca4ed61de17a
|
function [u un] = LapDLP(t,s,dens)
% LAPDLP Evaluate Laplace double-layer potential from curve to targets
%
% This evaluates the 2D Laplace double-layer potential for the density tau,
%
% u(x) = (1/2pi) int_gamma (n_y.(x-y))/r^2 tau(y) ds_y,
% where r:=x-y, x,y in R2,
%
% using the native quadrature rule on the source segment, where point
% values of tau are given.
%
% [u un] = LapDLP(t,s,dens) evaluates potential and its target-normal
% derviative.
%
% [A An] = LapDLP(t,s) or LapDLP(t,s,[]) returns matrix which maps a
% density vector to the vector of potentials (A) and target-normal derivatives
% (An).
%
% Tested by: LAPINTDIRBVP
% Crude native quadr and O(NM) RAM for now. Obviously C/Fortran would not
% form matrices for the density eval case, rather direct sum w/o/ wasting RAM.
% todo: make O(N+M) & incorporate Gary's scf
% Barnett 6/12/16. Interface change 6/27/16.
if nargout==1
u = LapDLPmat(t,s); % local matrix filler
if nargin>2 && ~isempty(dens)
u = u * dens;
end
else
[u un] = LapDLPmat(t,s);
if nargin>2 && ~isempty(dens)
u = u * dens;
un = un * dens;
end
end
%%%%%%
function [A An] = LapDLPmat(t,s)
% [A An] = LapDLPmat(t,s)
% plain double-layer kernel matrix & targ n-deriv
% t = target seg (x,nx cols), s = src seg.
% No jump included on self-interaction (ie principal-value integral).
% Self-evaluation for the hypersingular An currently gives inf.
% Barnett 6/12/16 from stuff since 2008. speed repmat->bsxfun 6/28/16
N = numel(s.x);
d = bsxfun(@minus,t.x,s.x.'); % C-# displacements mat
% mult by identical rows given by source normals...
A = real(bsxfun(@rdivide,(1/2/pi)*s.nx.',d)); % complex form of dipole
if sameseg(t,s) % self?
A(diagind(A)) = -s.cur*(1/4/pi); end % diagonal term for Laplace
A = bsxfun(@times, A, s.w(:)');
if nargout>1 % deriv of double-layer. Not correct for self-interaction.
csry = bsxfun(@times, conj(s.nx.'), d); % (cos phi + i sin phi).r
% identical cols given by target normals...
csrx = bsxfun(@times, conj(t.nx), d); % (cos th + i sin th).r
r = abs(d); % dist matrix R^{MxN}
An = -real(csry.*csrx)./((r.^2).^2); % divide is faster than bxsfun here
An = bsxfun(@times, An, (1/2/pi)*s.w(:)'); % prefac & quadr wei
end
|
github
|
bobbielf2/BIE2D-master
|
LapSLP.m
|
.m
|
BIE2D-master/kernels/LapSLP.m
| 2,194 |
utf_8
|
a059bb7d72b5cea17a636e72f1f03b63
|
function [u un] = LapSLP(t,s,dens)
% LAPSLP Evaluate Laplace single-layer potential from curve to targets
%
% This evaluates the 2D Laplace single-layer potential for the density tau,
%
% u(x) = (1/2pi) int_gamma log(1/r) tau(y) ds_y, where r:=x-y, x,y in R2,
%
% using the native quadrature rule on the source segment gamma, where point
% values of tau are given.
%
% [u un] = LapSLP(t,s,dens) evaluates potential and its target-normal
% derviative.
%
% [A An] = LapSLP(t,s) or LapSLP(t,s,[]) returns matrix which maps a
% density vector to the vector of potentials (A) and target-normal derivatives
% (An).
%
% Tested by: LAPINTDIRBVP
%
% Crude native quadr and O(NM) RAM for now
% todo: make O(N+M) & incorporate Gary's scf
% Barnett 6/27/16
if nargout==1
u = LapSLPmat(t,s);
if nargin>2 && ~isempty(dens)
u = u * dens;
end
else
[u un] = LapSLPmat(t,s);
if nargin>2 && ~isempty(dens)
u = u * dens;
un = un * dens;
end
end
%%%%%%
function [A An] = LapSLPmat(t,s)
% [A An] = LapSLPmat(t,s)
% plain single-layer kernel matrix & targ n-deriv
% t = target seg (x,nx cols), s = src seg.
% Kress quadrature used for self-interaction (assumes global quad).
% No jump included on self-interaction of derivative (ie PV integral).
% Barnett 6/12/16 from stuff since 2008; bsxfun speedups 6/28/16
N = numel(s.x);
d = bsxfun(@minus,t.x,s.x.'); % C-# displacements mat
ss = sameseg(t,s);
if ss
A = -log(abs(d)) + circulant(0.5*log(4*sin(pi*(0:N-1)/N).^2)); % peri log
A(diagind(A)) = -log(s.sp); % diagonal limit
m = 1:N/2-1; Rjn = ifft([0 1./m 2/N 1./m(end:-1:1)])/2; % Kress Rj(N/2)/4pi
A = A/N + circulant(Rjn); % includes SLP prefac 1/2pi. Kress peri log matrix L
A = bsxfun(@times, A, s.sp.'); % do speed factors (2pi/N weights already)
else
A = bsxfun(@times, log(abs(d)), -(1/2/pi)*s.w(:)'); % prefactor & wei
end
if nargout==2 % apply D^T (flips sign and src deriv)
An = real(bsxfun(@rdivide,(1/2/pi)*(-t.nx),d)); % complex form of dipole
if ss
An(diagind(An)) = -s.cur*(1/4/pi); % self? diagonal term for Laplace
end
An = bsxfun(@times, An, s.w(:)'); % quadr wei
end
|
github
|
bobbielf2/BIE2D-master
|
LapDLP_closeglobal.m
|
.m
|
BIE2D-master/kernels/LapDLP_closeglobal.m
| 5,939 |
utf_8
|
6a45d8371c9f21057986fe1eef5807ba
|
function [u ux uy info] = LapDLP_closeglobal(t, s, tau, side)
% LAPDLP_CLOSEGLOBAL - Laplace DLP potential & deriv w/ global close-eval quad
%
% u = LapDLP_closeglobal(t,s,dens,side) returns potentials at targets t.x
% due to double-layer potential with real-valued density dens sampled on the
% nodes s.x of a smooth global quadrature rule on the curve s, either inside
% outside the curve. The global scheme of [hel08] based on barycentric Cauchy
% close-evaluation (see references in Cau_closeglobal.m) is used.
%
% Our definition of the DLP on curve \Gamma is, associating R^2 with the complex
% plane, with x = (x_1,x_2) a point in the complex plane,
%
% u(x) = Re (1/2\pi i) \int_\Gamma \tau(y) / (x-y) dy
%
% Inputs:
% t = target struct containing
% t.x = M-by-1 list of targets, as points in complex plane
% (optionally also t.nx target normals as unit complex numbers)
% s = curve struct containing N-by-1 vector s.x of source nodes (as complex
% numbers), and other fields as generated by setupquad.
% dens = double-layer density values at nodes. Note, must be real-valued to
% evaluate Laplace layer potentials (note Stokes feeds it complex dens).
% If dens has multiple columns, the evaluation is done for each.
% If dens is empty, outputs are matrices mapping density to values, etc.
% side = 'i','e' to indicate targets are interior or exterior to the curve.
%
% Outputs:
% u = column vector of M potential values where M = numel(t.x), or if
% dens has n columns, the n column vector outputs are stacked (M-by-n).
% [u un] = LapDLPeval_closeglobal(t,s,dens,side) also returns target-normal
% derivatives (M-by-n) using t.nx
% [u ux uy] = LapDLPeval_closeglobal(t,s,dens,side) instead returns x- and y-
% partials of u at the targets (ignores t.nx)
% [u ux uy info] = LapDLPeval_closeglobal(t,s,dens,side) also gives diagnostic:
% info.vb = vector of v boundary values (M-by-n)
% info.imv = imag part of v at targets (M-by-n)
%
% References:
%
% [hel08] J. Helsing and R. Ojala, On the evaluation of layer potentials close
% to their sources, J. Comput. Phys., 227 (2008), pp. 2899–292
%
% [lsc2d] Spectrally-accurate quadratures for evaluation of layer potentials
% close to the boundary for the 2D Stokes and Laplace equations,
% A. H. Barnett, B. Wu, and S. Veerapaneni, SIAM J. Sci. Comput.,
% 37(4), B519-B542 (2015) https://arxiv.org/abs/1410.2187
%
% See also: LAPDLP, SETUPQUAD, CAU_CLOSEGLOBAL, LAPINTDIRBVP
%
% complexity O(N^2) for evaluation of v^+ or v^-, plus O(NM) for globally
% compensated quadrature to targets
% Barnett 2013; multiple-column Gary Marple, 2014.
% Repackaged Barnett 6/12/16, 6/27/16 col vec outputs. 6/29/16 bsxfun faster
if nargin==0, test_LapDLP_closeglobal; return; end
N = numel(s.x); M = numel(t.x); % # source, target nodes
if isempty(tau), tau = eye(N); end % case of filling matrices
n = size(tau,2); % # density columns
% Helsing step 1: eval bdry limits at nodes of v = complex DLP(tau)...
% (note to future fortran/C versions: this also needs to be able to handle
% complex input, real output, since the Stokes DLP feeds that in)
vb = zeros(N,n); % alloc v^+ or v^- bdry data of holom func
taup = zeros(N,n); % alloc tau'
for k=1:n
taup(:,k) = perispecdiff(tau(:,k)); % numerical deriv of each dens
end
for i=1:N, j = [1:i-1, i+1:N]; % skip pt i. Eqn (4.2) in [lsc2d]
vb(i,:) = sum(bsxfun(@times,bsxfun(@minus,tau(j,:),tau(i,:)),s.cw(j)./(s.x(j)-s.x(i))),1) + taup(i,:)*s.w(i)/s.sp(i); % vectorized over cols (ahb)
end
vb = vb*(1/(-2i*pi)); % prefactor
if side=='i', vb = vb - tau; end % JR's add for v^-, cancel for v^+ (Eqn 4.3)
info.vb = vb; % diagnostics
% Helsing step 2: compensated close-evaluation of v & v', followed by take Re:
if nargout>1 % want derivatives
[v vp] = Cau_closeglobal(t.x,s,vb,side); % does Sec. 3 of [lsc2d]
ux = real(vp); uy = -imag(vp); % col vecs, leave as partials...
if nargout==2 % or dot w/ targ nor...
ux = bsxfun(@times,ux,real(t.nx)) + bsxfun(@times,uy,imag(t.nx));
end
else
v = Cau_closeglobal(t.x,s,vb,side); % does Sec. 3 of [lsc2d]
end
u = real(v); info.imv = imag(v);
%%%%%%%%%%%%%%%%%%%
function test_LapDLP_closeglobal
fprintf('check Laplace DLP close-eval quadr match native rule in far field...\n')
verb = 0; % to visualize
s = wobblycurve(1,0.3,5,200); s.a = mean(s.x); if verb,figure;showsegment(s);end
tau = -0.7+exp(sin(3*s.t)); % pick smooth density w/ nonzero mean
nt = 100; t.nx = exp(2i*pi*rand(nt,1)); % target normals
for side = 'ie'
if side=='e', t.x = 1.5+1i+rand(nt,1)+1i*rand(nt,1); % distant targs
else, t.x = 0.6*(rand(nt,1)+1i*rand(nt,1)-(0.5+0.5i)); end % targs far inside
if verb, plot(t.x,'.'); end
fprintf('\nside = %s:\n',side)
[u un] = LapSLP(t,s,tau); % eval given density cases...
[uc unc] = LapSLP_closeglobal(t,s,tau,side);
tic, [uc uxc uyc] = LapSLP_closeglobal(t,s,tau,side);
fprintf('Lap DLP density eval (%.3g sec), max abs err in u, un, and [ux,uy]...\n',toc)
disp([max(abs(u-uc)), max(abs(un-unc)), max(abs(un - (uxc.*real(t.nx)+uyc.*imag(t.nx))))])
[uc unc] = LapSLP_closeglobal(t,s,[],side);
tic, [uc uxc uyc] = LapSLP_closeglobal(t,s,[],side);
fprintf('matrix fill (%.3g sec) & apply, max abs err in u, un, and [ux,uy]...:\n',toc)
disp([max(abs(u-uc*tau)), max(abs(un-unc*tau)), max(abs(un - ((uxc*tau).*real(t.nx)+(uyc*tau).*imag(t.nx))))])
[u un] = LapSLP(t,s); % compare matrix els....
fprintf('matrix fill, max abs matrix element diffs in u, un, and [ux,uy]...\n')
disp([max(abs(u(:)-uc(:))), max(abs(un(:)-unc(:))), max(max(abs(un - (bsxfun(@times,uxc,real(t.nx))+bsxfun(@times,uyc,imag(t.nx))))))])
end
|
github
|
bobbielf2/BIE2D-master
|
srcsum2.m
|
.m
|
BIE2D-master/kernels/srcsum2.m
| 3,784 |
utf_8
|
813262bbeb3de8223b1dd07456429793
|
function [A B C] = srcsum2(kernel, trlist, phlist, t, s, varargin)
% SRCSUM2 Sum a kernel eval or matrix over source translations via single call
%
% This is a variant of srcsum that sums over targets in a single kernel call,
% instead of summing over sources with multiple calls. This is useful for
% periodized close evaluation. NOTE: it cannot be used for self-interactions!
%
% [A B ...] = srcsum2(kernel, trlist, phlist, t, s)
% [A B ...] = srcsum2(kernel, trlist, phlist, t, s, param)
%
% Inputs:
% kernel : function of form A = kernel(t,s,...) or [A B] = kernel(t,s,...)
% trlist : list of complex numbers giving source translations
% phlist : list of complex numbers giving source phase factors (1 if empty)
% t : target segment struct
% s : source segment struct
% Outputs:
% A (& optionally B, C): outputs as from kernel but summed over the source
%
% Example usage:
% s = wobblycurve(.3,5,100); t = wobblycurve(.3,5,50); t.x = t.x/2; % t neq s
% tau = sin(4*s.t); % pick a density
% u = srcsum2(@LapDLP,[-2 0 2], [], s,s, tau); % do it
% ss = s; v = LapDLP(s,ss,tau); % check matches direct sum
% ss.x = s.x-2; v = v + LapDLP(s,ss,tau);
% ss.x = s.x+2; v = v + LapDLP(s,ss,tau);
% norm(u-v)
%
% Also see: SRCSUM
% Barnett 6/30/16 when realized close eval prefers more targs but single src.
% 9/28/17 fixed tt.nx omission.
if nargin==0, test_srcsum2; return; end
if isempty(phlist), phlist = 0*trlist+1.0; end
M = numel(t.x); n = numel(trlist);
tt.x = []; % will store all targets with copies
for i=1:n, tt.x = [tt.x; t.x - trlist(i)]; end % all transl trgs, by invariance
if isfield(t,'nx'), tt.nx = repmat(t.nx,[n 1]); end % all trg normals
% (we assumed x and nx are only fields relevant for targets)
if nargout==1
At = kernel(tt,s,varargin{:});
A = sumblk(At,M,phlist);
elseif nargout==2
[At Bt] = kernel(tt,s,varargin{:});
A = sumblk(At,M,phlist); B = sumblk(Bt,M,phlist);
elseif nargout==3
[At Bt Ct] = kernel(tt,s,varargin{:});
A = sumblk(At,M,phlist); B = sumblk(Bt,M,phlist); C = sumblk(Ct,M,phlist);
else
error('srcsum2 cannot handle >3 output args');
end
function A = sumblk(At,M,phlist) % crush At along target image sum
n = numel(phlist);
% d will be how many vector components per targ pt (presumably 1 or 2)...
d = size(At,1)/M/n; if d~=1 && d~=2, error('sumblk cant handle # rows At'); end
A = zeros(M*d,size(At,2));
if d==1, ii = 1:M; else, ii = [1:M,n*M+(1:M)]; end % only handles d=1,2
for i=1:n, A = A + phlist(i)*At(ii+(i-1)*M,:); end
%%%%%%%%%%%%%%%%
function test_srcsum2 % tests non-self interactions only
% density case...
s = wobblycurve(1,.3,5,100); t = wobblycurve(1,.3,5,50); t.x = t.x/2; % t neq s
tau = sin(4*s.t); % pick a density
u = srcsum2(@LapDLP,[0 2], [1 3], t,s, tau); % do it (include "phase")
ss = s; v = LapDLP(t,ss,tau); % check matches direct sum
ss.x = s.x+2; v = v + 3*LapDLP(t,ss,tau); % note phase
norm(u-v)
% matrix case...
u = srcsum2(@LapDLP,[0 2], [1 3], t,s); % do it (include phase)
ss = s; v = LapDLP(t,ss); % check matches direct sum
ss.x = s.x+2; v = v + 3*LapDLP(t,ss); % note phase
norm(u-v)
% 2-cmpt output matrix case...
mu = 0.6;
u = srcsum2(@StoDLP,[0 2], [1 3], t,s,mu); % do it (include phase)
ss = s; v = StoDLP(t,ss,mu); % check matches direct sum
ss.x = s.x+2; v = v + 3*StoDLP(t,ss,mu); % note phase
norm(u-v)
% 2-cmpt multi-output matrix case...
[u p] = srcsum2(@StoDLP,[0 2], [1 3],t,s,mu); % do it (include phase)
ss = s; [v q] = StoDLP(t,ss,mu); % check matches direct sum
ss.x = s.x+2; [v2 q2] = StoDLP(t,ss,mu);
v = v + 3*v2; q = q + 3*q2;
norm(u-v)
|
github
|
bobbielf2/BIE2D-master
|
Cau_closeglobal.m
|
.m
|
BIE2D-master/kernels/Cau_closeglobal.m
| 21,333 |
utf_8
|
4dd051a07dc6fea05de5cbef9eb8e089
|
function [vc vcp] = Cau_closeglobal(x,s,vb,side,o)
% CAU_CLOSEGLOBAL. Globally compensated barycentric int/ext Cauchy integral
%
% This is a spectrally-accurate close-evaluation scheme for Cauchy integrals.
% It returns approximate values (and possibly first derivatives) of a function
% either holomorphic inside of, or holomorphic and decaying outside of, a
% closed curve, given a set of its values on nodes of a smooth global
% quadrature rule for the curve (such as the periodic trapezoid rule).
% This is done by approximating the Cauchy integral
%
% v(x) = +- (1/(2i.pi)) integral_Gamma v(y) / (x-y) dy,
%
% where Gamma is the curve, the sign is + (for x interior) or - (exterior),
% using special barycentric-type formulae which are accurate arbitrarily close
% to the curve.
%
% By default, for the value these formulae are (23) for interior and (27) for
% exterior, from [hel08], before taking the real part. The interior case
% is originally due to [ioak]. For the derivative, the Schneider-Werner formula
% (Prop 11 in [sw86]; see [berrut]) is used to get v' at the nodes, then since
% v' is also holomorphic, it is evaluated using the same scheme as v. This
% "interpolate the derivative" suggestion of Trefethen (personal communication,
% 2014) contrasts [lsc2d] which "differentes the interpolant". The former gives
% around 15 digits for values v, 14 digits for interior derivatives v', but
% only 13 digits for exterior v'. (The other [lsc2d] scheme gives 14 digits
% in the last case; see options below). The paper [lsc2d] has key background,
% and is helpful to understand [hel08] and [sw86]. This code replaces code
% referred to in [lsc2d].
%
% The routine can (when vb is empty) instead return the full M-by-N dense
% matrices mapping v at the nodes to values (and derivatives) at targets.
%
% Basic use: v = Cau_closeglobal(x,s,vb,side)
% [v vp] = Cau_closeglobal(x,s,vb,side)
%
% Inputs:
% x = row or col vec of M target points in complex plane
% s = closed curve struct containing a set of vectors with N items each:
% s.x = smooth quadrature nodes on curve, points in complex plane
% s.w = smooth weights for arc-length integrals (scalar "speed weights")
% s.nx = unit normals at nodes (unit magnitude complex numbers)
% vb = col vec (or stack of such) of N boundary values of holomorphic function
% v. If empty, causes outputs to be the dense matrix/matrices.
% side = 'i' or 'e' specifies if all targets interior or exterior to curve.
%
% Outputs:
% v = col vec (or stack of such) approximating the homolorphic function v
% at the M targets
% vp = col vec (or stack of such) approximating the complex first derivative
% v' at the M targets
%
% Without input arguments, a self-test is done outputting errors at various
% distances from the curve for a fixed N. (Needs setupquad.m)
%
% Notes:
% 1) For accuracy, the smooth quadrature must be accurate for the boundary data
% vb, and it must come from a holomorphic function (be in the right Hardy
% space).
% 2) For the exterior case, v must vanish at infinity.
% 3) The algorithm is O(NM) in time. In order to vectorize in both sources and
% targets, it is also O(NM) in memory - using loops this could of course be
% reduced to O(N+M). If RAM is a limitation, targets should be blocked into
% reasonable numbers and a separate call done for each).
%
% If vb is empty, the outputs v and vp are instead the dense evaluation
% matrices, and the time cost is O(N^2M) --- this should be rewritten.
%
% Advanced use: [vc vcp] = Cau_closeglobal(x,s,vb,side,opts) allows control of
% options such as
% opts.delta : switches to a different [lsc2d] scheme for v', which is
% non-barycentric for distances beyond delta, but O(N) slower
% for distances closer than delta. This achieves around 1 extra
% digit for v' in the exterior case. I recommend delta=1e-2.
% For this scheme, s must have the following extra field:
% s.a = a point in the "deep" interior of curve (far from
% the boundary)
% delta=0 never uses the barycentric form for v', loses digits
% in v' as target approaches source.
%
% References:
%
% [sw86] C. Schneider and W. Werner, Some new aspects of rational
% interpolation, Math. Comp., 47 (1986), pp. 285–299
%
% [ioak] N. I. Ioakimidis, K. E. Papadakis, and E. A. Perdios, Numerical
% evaluation of analytic functions by Cauchy’s theorem, BIT Numer.
% Math., 31 (1991), pp. 276–285
%
% [berrut] J.-P. Berrut and L. N. Trefethen, Barycentric Lagrange
% interpolation, SIAM Review, 46 (2004), pp. 501-517
%
% [hel08] J. Helsing and R. Ojala, On the evaluation of layer potentials close
% to their sources, J. Comput. Phys., 227 (2008), pp. 2899–292
%
% [lsc2d] Spectrally-accurate quadratures for evaluation of layer potentials
% close to the boundary for the 2D Stokes and Laplace equations,
% A. H. Barnett, B. Wu, and S. Veerapaneni, SIAM J. Sci. Comput.,
% 37(4), B519-B542 (2015) https://arxiv.org/abs/1410.2187
%
% See also: test/FIG_CAU_CLOSEGLOBAL, SETUPQUAD.
%
% Todo: * allow mixed interior/exterior targets, and/or auto-detect this.
% * O(N) faster matrix filling version!
% * Think about if interface should be t.x.
% Note in/output format changed to col vecs, 6/27/16
% (c) Alex Barnett, June 2016, based on code from 10/22/13. Blocked 8/2/16
if nargin<1, test_Cau_closeglobal; return; end
if nargin<5, o = []; end
N = numel(s.x);
%'size vb = ', size(vb)
if isempty(vb) % do matrix filling version (N data col vecs)
if nargout==1, vc = Cau_closeglobal(x,s,eye(N),side,o); % THIS IS MN^2 SLOW!
else, [vc vcp] = Cau_closeglobal(x,s,eye(N),side,o); end
return
end
if isfield(o,'delta')
if ~isfield(s,'a'), error('s.a interior pt needed to use lsc2d version'); end
if nargout==1, vc = cauchycompeval_lsc2d(x,s,vb,side,o);
else, [vc vcp] = cauchycompeval_lsc2d(x,s,vb,side,o); end
return
end
M = numel(x); Nc = size(vb,2); % # targets, input col vecs
cw = s.cw; % complex speed weights, col vec
if Nc==1 % ---------------------------- original single-vector version -----
% Do bary interp for value outputs. note sum along 1-axis faster than 2-axis
comp = repmat(cw, [1 M]) ./ (repmat(s.x,[1 M]) - repmat(x(:).',[N 1]));
I0 = sum(repmat(vb,[1 M]).*comp); J0 = sum(comp); % Ioakimidis notation
if side=='e', J0 = J0-2i*pi; end % Helsing exterior form
vc = (I0./J0).'; % bary form (col vec)
[jj ii] = ind2sub(size(comp),find(~isfinite(comp))); % node-targ coincidences
for l=1:numel(jj), vc(ii(l)) = vb(jj(l)); end % replace each hit w/ corresp vb
if nargout>1 % 1st deriv also wanted... Trefethen idea first get v' @ nodes
vbp = 0*vb; % prealloc v' @ nodes
if side=='i'
for j=1:N
notj = [1:j-1, j+1:N]; % std Schneider-Werner form for deriv @ node...
vbp(j) = -sum(cw(notj).*(vb(j)-vb(notj))./(s.x(j)-s.x(notj)))/cw(j);
end
else
for j=1:N
notj = [1:j-1, j+1:N]; % ext version of S-W form derived 6/12/16...
vbp(j) = (-sum(cw(notj).*(vb(j)-vb(notj))./(s.x(j)-s.x(notj)))-2i*pi*vb(j))/cw(j);
%abs(vbp(j) / (2i*pi*vb(j)/cw(j))) % shows 2.5 digits of cancel, bad!
end
end
% now again do bary interp of v' using its value vbp at nodes...
I0 = sum(repmat(vbp,[1 M]).*comp); J0 = sum(comp);
if side=='e', J0 = J0-2i*pi; end % Helsing exterior form
vcp = (I0./J0).'; % bary form (col vec)
for l=1:numel(jj), vcp(ii(l)) = vbp(jj(l)); end % replace each hit w/ vbp
end
else % ------------------------------ multi-vector version ---------------
% Note: this is non-optimal as method for matrix filling, due to incoming 0s.
% Do bary interp for value outputs:
% Precompute weights in O(NM)... note sum along 1-axis faster than 2-axis...
comp = repmat(cw, [1 M]) ./ (repmat(s.x,[1 M]) - repmat(x(:).',[N 1]));
% mult input vec version (transp of Wu/Marple): comp size N*M, I0 size M*Nc
I0 = blockedinterp(vb,comp); % local func, directly below
J0 = sum(comp).'; % size N*1, Ioakimidis notation
if side=='e', J0 = J0-2i*pi; end % Helsing exterior form
vc = I0./(J0*ones(1,Nc)); % bary form (multi-vec), size M*Nc
[jj ii] = ind2sub(size(comp),find(~isfinite(comp))); % node-targ coincidences
for l=1:numel(jj), vc(ii(l),:) = vb(jj(l),:); end % replace each hit w/ corresp vb
if nargout>1 % 1st deriv also wanted... Trefethen idea first get v' @ nodes
vbp = 0*vb; % prealloc v' @ nodes (size N*Nc)
if side=='i'
for j=1:N
notj = [1:j-1, j+1:N]; % std Schneider-Werner form for deriv @ node...
% Note repmat or ones (Wu/Marple) changed to bsxfun, faster:
vbp(j,:) = -sum(bsxfun(@times, bsxfun(@times,cw(notj),bsxfun(@minus,vb(j,:),vb(notj,:))), 1./(s.x(j)-s.x(notj))),1)/cw(j); % fast but unreadable
end
else
for j=1:N
notj = [1:j-1, j+1:N]; % ext version of S-W form derived 6/12/16...
% Note repmat or ones (Wu/Marple) changed to bsxfun, faster:
vbp(j,:) = (-sum(bsxfun(@times, bsxfun(@times,cw(notj),bsxfun(@minus,vb(j,:),vb(notj,:))), 1./(s.x(j)-s.x(notj))),1) -2i*pi*vb(j,:) )/cw(j); % fast but unreadable
end
end
% now again do bary interp of v' using its value vbp at nodes...
I0 = blockedinterp(vbp,comp);
J0 = sum(comp).';
if side=='e', J0 = J0-2i*pi; end % Helsing exterior form
vcp = I0./(J0*ones(1,Nc)); % bary form
for l=1:numel(jj), vcp(ii(l),:) = vbp(jj(l),:); end % replace hits w/ vbp
end
end
%%%%%
function I0 = blockedinterp(vb,comp) % ....................................
% perform barycentric interpolation using precomputed comp wei mat, used in
% multi-density vec version above, in a RAM-efficient way (the naive approach
% is O(M.N.Nc); here we limit RAM by blocking. Output: I0 (size M*Nc).
% Barnett 8/2/16
[N M] = size(comp); [N Nc] = size(vb);
I0 = nan(M,Nc);
blk = 1e7; % user param: how many doubles you want to handle in RAM
Ncstep = min(Nc,ceil(blk/(M*N))); % how many col vecs from vb in each chunk
for i=1:Ncstep:Nc % do blocking, still vectorized efficient
ii = i+(0:Ncstep-1); ii = ii(ii<=Nc); Nci = numel(ii); % don't overrun array
vbi = vb(:,ii); % just the block of density vectors
I0(:,ii) = permute(sum(repmat(permute(vbi,[1 3 2]),[1 M 1]).*repmat(comp,[1 1 Nci]),1),[2 3 1]);
end % ...................................
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [vc, vcp] = cauchycompeval_lsc2d(x,s,vb,side,o)
% Variant of the above, used in the [lsc2d] paper.
%
% The only new input needed is s.a, an interior point far from the boundary.
%
% The algorithm is that of Ioakimidis et al BIT 1991 for interior, and,
% for the exterior, a modified version using 1/(z-a) in place of the function 1.
% For the derivative, the formula is mathematically the derivative of the
% barycentric formula of Schneider-Werner 1986 described in Berrut et al 2005,
% but using the complex quadrature weights instead of the barycentric weights.
% However, since this derivative is not itself a true barycentric form, a hack
% is needed to compute the difference v_j-v(x) in a form where roundoff error
% cancels correctly. The exterior case is slightly more intricate. When
% a target coincides with a node j, the true value v_j (or Schneider-Werner
% formula for v'(x_j)) is used.
%
% Alex Barnett 10/22/13 based on cauchycompevalint, pole code in lapDevalclose.m
% 10/23/13 node-targ coincidences fixed, exterior true barycentric discovered.
% todo: check v' ext at the node (S-W form), seems to be wrong.
if nargin<5, o = []; end
if size(vb,2)>1 % matrix versions
if nargout==1, vc = cauchycompmat_lsc2d(x,s,vb,side,o);
else, [vc vcp] = cauchycompmat_lsc2d(x,s,vb,side,o); end
return
end
if ~isfield(o,'delta'), o.delta = 1e-2; end % currently won't ever be run.
% delta = dist param where $O(N^2.M) deriv bary form switched on.
% Roughly deriv errors are then limited to emach/mindist
% The only reason to decrease mindist is if lots of v close
% nodes on the curve with lots of close target points.
cw = s.cw; % complex speed weights
N = numel(s.x); M = numel(x);
if nargout==1 % no deriv wanted... (note sum along 1-axis faster than 2-axis)
comp = repmat(cw(:), [1 M]) ./ (repmat(s.x(:),[1 M]) - repmat(x(:).',[N 1]));
if side=='e', pcomp = comp .* repmat(1./(s.x(:)-s.a), [1 M]);
else pcomp = comp; end % pcomp are weights and bary poles appearing in J0
I0 = sum(repmat(vb(:),[1 M]).*comp); J0 = sum(pcomp); % Ioakimidis notation
vc = I0./J0; % bary form
if side=='e', vc = vc./(x(:).'-s.a); end % correct w/ pole
[jj ii] = ind2sub(size(comp),find(~isfinite(comp))); % node-targ coincidences
for l=1:numel(jj), vc(ii(l)) = vb(jj(l)); end % replace each hit w/ corresp vb
else % 1st deriv wanted...
invd = 1./(repmat(s.x(:),[1 M]) - repmat(x(:).',[N 1])); % 1/displacement mat
comp = repmat(cw(:), [1 M]) .* invd;
if side=='e', pcomp = comp .* repmat(1./(s.x(:)-s.a), [1 M]);
else pcomp = comp; end % pcomp are weights and bary poles appearing in J0
I0 = sum(repmat(vb(:),[1 M]).*comp); J0 = sum(pcomp);
if side=='e', prefac = 1./(x(:).'- s.a); else prefac = 1; end
vc = prefac .* I0./J0; % bary form (poss overall pole)
dv = repmat(vb(:),[1 M]) - repmat(vc(:).',[N 1]); % v value diff mat
[jj ii] = ind2sub(size(invd),find(abs(invd) > 1/o.delta)); % bad pairs indices
if side=='e' % exterior:
for l=1:numel(jj), j=jj(l); i=ii(l); % loop over node-targ pairs too close
p = sum(comp(:,i).*(vb(j)./(s.x(:)-s.a)-vb(:)./(s.x(j)-s.a))) / sum(pcomp(:,i)); % p is v_j - (x-a)/(yj-a)*v(x) for x=i'th target
dv(j,i) = prefac(i) * ((s.x(j)-s.a)*p + (x(i)-s.x(j))*vb(j));
end % pole-corrected for dv, gives bary stability for close node-targ pairs
else % interior:
for l=1:numel(jj), j=jj(l); i=ii(l); % loop over node-targ pairs too close
dv(j,i) = sum(comp(:,i).*(vb(j)-vb(:))) / sum(pcomp(:,i));
end % bary for dv, gives bary stability for close node-targ pairs
end
vcp = prefac .* sum(dv.*comp.*invd) ./ J0; % bary form for deriv
[jj ii] = ind2sub(size(comp),find(~isfinite(comp))); % node-targ coincidences
for l=1:numel(jj), j=jj(l); i=ii(l); % loop over hitting node-targ pairs
vc(i) = vb(j); % replace each hit w/ corresp vb
notj = [1:j-1, j+1:N]; % Schneider-Werner form for deriv @ node:
vcp(i) = -sum(cw(notj).*(vb(j)-vb(notj))./(s.x(j)-s.x(notj)))/cw(j);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [vc vcp] = cauchycompmat_lsc2d(x,s,vb,side,o)
% Multiple vb-vector version of cauchycompeval_lsc2d, written by Gary Marple
% and Bowei Wu, 2014-2015. This can be called with eye(N) to fill the evaluation
% matrix (note that each column is not a holomorphic function, but by linearity
% when summed they give the right answer). When sent a single column vector
% for vb, this duplicates the action of cauchycompeval_lsc2d.
% Undocumented; notes by Barnett 6/12/16
% todo: check v' ext at the node (S-W form), seems to be wrong.
if nargin<5, o = []; end
if ~isfield(o,'delta'), o.delta = 1e-2; end
% dist param where $O(N^2.M) deriv bary form switched on.
% Roughly deriv errors are then limited to emach/mindist
% The only reason to decrease mindist is if lots of v close
% nodes on the curve with lots of close target points.
cw = s.cw; % complex speed weights
N = numel(s.x); M = numel(x);
n=size(vb,2); % # vb vectors
if nargout==1 % no deriv wanted... (note sum along 1-axis faster than 2-axis)
comp = repmat(cw(:), [1 M]) ./ (repmat(s.x(:),[1 M]) - repmat(x(:).',[N 1]));
if side=='e', pcomp = comp .* repmat(1./(s.x(:)-s.a), [1 M]);
else pcomp = comp; end % pcomp are weights and bary poles appearing in J0
%I0 = sum(repmat(vb(:),[1 M]).*comp);
I0 = permute(sum(repmat(permute(vb,[1 3 2]),[1 M 1]).*repmat(comp,[1 1 n]),1),[3 2 1]);
J0 = sum(pcomp); % Ioakimidis notation
vc = I0./(ones(n,1)*J0); % bary form
if side=='e', vc = vc./(ones(n,1)*(x(:).'-s.a)); end % correct w/ pole
[jj ii] = ind2sub(size(comp),find(~isfinite(comp))); % node-targ coincidences
for l=1:numel(jj), vc(:,ii(l)) = vb(jj(l),:).'; end % replace each hit w/ corresp vb
else % 1st deriv wanted...
invd = 1./(repmat(s.x(:),[1 M]) - repmat(x(:).',[N 1])); % 1/displacement mat
comp = repmat(cw(:), [1 M]) .* invd;
if side=='e', pcomp = comp .* repmat(1./(s.x(:)-s.a), [1 M]);
else pcomp = comp; end % pcomp are weights and bary poles appearing in J0
%I0 = sum(repmat(vb(:),[1 M]).*comp);
I0 = permute(sum(repmat(permute(vb,[1 3 2]),[1 M 1]).*repmat(comp,[1 1 n]),1),[3 2 1]);
J0 = sum(pcomp);
if side=='e', prefac = 1./(x(:).'- s.a); else prefac = ones(1,M); end
vc = (ones(n,1)*prefac) .* I0./(ones(n,1)*J0); % bary form (poss overall pole)
%dv = repmat(vb(:),[1 M]) - repmat(vc(:).',[N 1]); % v value diff mat
dv = repmat(permute(vb,[1 3 2]),[1 M 1]) - repmat(permute(vc,[3 2 1]),[N 1 1]); % v value diff mat
[jj ii] = ind2sub(size(invd),find(abs(invd) > 1/o.delta)); % bad pairs indices
if side=='e' % exterior:
for l=1:numel(jj), j=jj(l); i=ii(l); % loop over node-targ pairs too close
p = sum((comp(:,i)*ones(1,n)).*((ones(N,1)*vb(j,:))./(s.x(:)*ones(1,n)-s.a)-vb/(s.x(j)-s.a)),1) / sum(pcomp(:,i)); % p is v_j - (x-a)/(yj-a)*v(x) for x=i'th target
dv(j,i,:) = prefac(i) * ((s.x(j)-s.a)*p + (x(i)-s.x(j))*vb(j,:));
end % pole-corrected for dv, gives bary stability for close node-targ pairs
else % interior:
for l=1:numel(jj), j=jj(l); i=ii(l); % loop over node-targ pairs too close
dv(j,i,:) = sum((comp(:,i)*ones(1,n)).*(ones(size(vb,1),1)*vb(j,:)-vb),1) / sum(pcomp(:,i));
end % bary for dv, gives bary stability for close node-targ pairs
end
% This is faster, but gives rounding errors when compared to the original
% cauchycompeval.
vcp = (ones(n,1)*(prefac./ J0)).* permute(sum(dv.*repmat(comp.*invd,[1 1 n]),1),[3 2 1]) ; % bary form for deriv
% This vectorized form is slower, but does not give rounding errors.
%vcp = (ones(n,1)*prefac).* permute(sum(dv.*repmat(comp,[1 1 n]).*repmat(invd,[1 1 n]),1),[3 2 1])./(ones(n,1)*J0) ; % bary form for deriv
[jj ii] = ind2sub(size(comp),find(~isfinite(comp))); % node-targ coincidences
for l=1:numel(jj), j=jj(l); i=ii(l); % loop over hitting node-targ pairs
vc(:,i) = vb(j,:).'; % replace each hit w/ corresp vb
notj = [1:j-1, j+1:N]; % Schneider-Werner form for deriv @ node:
vcp(i,:) = -sum((cw(notj)*ones(1,n)).*((ones(N-1,1)*vb(j,:))-vb(notj,:))./((s.x(j)-s.x(notj))*ones(1,n)),1)/cw(j);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%
function test_Cau_closeglobal % test self-reproducing of Cauchy integrals
N = 200, s = wobblycurve(1,0.3,5,N); % smooth wobbly radial shape params
tic; %profile clear; profile on;
format short g
for side = 'ie' % test Cauchy formula for holomorphic funcs in and out...
a = 1.1+1i; if side=='e', a = .1+.5i; end % pole, dist 0.5 from G, .33 for ext
v = @(z) 1./(z-a); vp = @(z) -1./(z-a).^2; % used in paper
z0 = s.x(floor(N/4));
ds = logspace(0,-18,10).'*(.1-1i); % displacements (col vec)
if side=='e', ds = -ds; end % flip to outside
z = z0 + ds; z(end) = z0; % ray of pts heading to a node, w/ last hit exactly
vz = v(z); vpz = vp(z); M = numel(z);
%d = repmat(s.x(:),[1 M])-repmat(z(:).',[N 1]); % displ mat for...
%vc = sum(repmat(v(s.x).*s.cw,[1 M])./d,1)/(2i*pi); % naive Cauchy (so bad!)
[vc vcp] = Cau_closeglobal(z,s,v(s.x),side); % current version
%s.a=0; [vc vcp] = Cau_closeglobal(z,s,v(s.x),side,struct('delta',.01)); % oldbary alg, 0.5-1 digit better for v' ext, except at the node itself, where wrong.
err = abs(vc - vz); errp = abs(vcp - vpz);
disp(['side ' side ': dist v err v'' err'])
[abs(imag(ds)) err errp]
% test multi-col-vec inputs & mat filling:
[vcm vcpm] = Cau_closeglobal(z,s,[v(s.x),0.5*v(s.x)],side); % basic Nc=2 case
fprintf(' multi-col test: %.3g %.3g\n',max(abs(vcm(:,1)-vc)), max(abs(vcpm(:,1)-vcp)))
[A Ap] = Cau_closeglobal(z,s,[],side); % matrix fill case
fprintf(' mat fill test: %.3g %.3g\n',max(abs(A*v(s.x)-vc)), max(abs(Ap*v(s.x)-vcp)))
[A Ap] = Cau_closeglobal(s.x,s,[],side); % test N*N self matrix version
fprintf(' self-eval value ||A-I|| (should be 0): %.3g\n', norm(A-eye(N)))
fprintf(' self-eval deriv mat apply err (tests S-W form): %.3g\n',max(abs(Ap*v(s.x)-vp(s.x))))
end
toc, %profile off; profile viewer
%figure; plot(s.x,'k.-'); hold on; plot(z,'+-'); axis equal
|
github
|
bobbielf2/BIE2D-master
|
srcsum.m
|
.m
|
BIE2D-master/kernels/srcsum.m
| 3,271 |
utf_8
|
02e5ed4b7254f5901fc6b48d2c328a98
|
function [A B C] = srcsum(kernel, trlist, phlist, t, s, varargin)
% SRCSUM Sum any kernel evaluation or matrix over a set of source translations
%
% Note, unlike srcsum2 this handles self-interactions correctly
%
% [A B ...] = srcsum(kernel, trlist, phlist, t, s)
% [A B ...] = srcsum(kernel, trlist, phlist, t, s, param)
%
% Inputs:
% kernel : function of form A = kernel(t,s,...) or [A B] = kernel(t,s,...)
% trlist : list of complex numbers giving source translations
% phlist : list of complex numbers giving source phase factors (1 if empty)
% t : target segment struct
% s : source segment struct
% Outputs:
% A (& optionally B, C): outputs as from kernel but summed over the source
%
% Example usage:
% s = wobblycurve(.3,5,100);
% tau = sin(4*s.t); % pick a density
% u = srcsum(@LapDLP,[-2 0 2], [], s,s, tau); % do it (incl a self-int)
% ss = s; v = LapDLP(s,ss,tau); % check matches direct sum
% ss.x = s.x-2; v = v + LapDLP(s,ss,tau);
% ss.x = s.x+2; v = v + LapDLP(s,ss,tau);
% norm(u-v)
%
% Also see: SRCSUM2
% Barnett 6/12/16, 6/29/16 phlist, self-demo. 6/30/16 "a" field for ext close.
if nargin==0, test_srcsum; return; end
afield = isfield(s,'a');
if isempty(phlist), phlist = 0*trlist+1.0; end
xo = s.x; s.x = xo + trlist(1); if afield, ao = s.a; s.a = ao + trlist(1); end
if nargout==1
A = kernel(t,s,varargin{:}); % since we don't know the size can't prealloc
for i=2:numel(trlist)
s.x = xo + trlist(i); if afield, s.a = ao + trlist(i); end
A = A + phlist(i)*kernel(t,s,varargin{:});
end
elseif nargout==2
[A B] = kernel(t,s,varargin{:});
for i=2:numel(trlist)
s.x = xo + trlist(i); if afield, s.a = ao + trlist(i); end
[Ai Bi] = kernel(t,s,varargin{:});
A = A + phlist(i)*Ai; B = B + phlist(i)*Bi;
end
elseif nargout==3
[A B C] = kernel(t,s,varargin{:});
for i=2:numel(trlist)
s.x = xo + trlist(i); if afield, s.a = ao + trlist(i); end
[Ai Bi Ci] = kernel(t,s,varargin{:});
A = A + phlist(i)*Ai; B = B + phlist(i)*Bi; C = C + phlist(i)*Ci;
end
else, error('srcsum cannot handle >3 output args');
end
%%%%%%%%%%%%%%%%
function test_srcsum % includes self-interactions
% density case...
s = wobblycurve(1,.3,5,100);
tau = sin(4*s.t); % pick a density
u = srcsum(@LapDLP,[0 2], [1 3], s,s, tau); % do it (include "phase")
ss = s; v = LapDLP(s,ss,tau); % check matches direct sum
ss.x = s.x+2; v = v + 3*LapDLP(s,ss,tau); % note phase
norm(u-v)
% matrix case...
u = srcsum(@LapDLP,[0 2], [1 3], s,s); % do it (include phase)
ss = s; v = LapDLP(s,ss); % check matches direct sum
ss.x = s.x+2; v = v + 3*LapDLP(s,ss); % note phase
norm(u-v)
% 2-cmpt output matrix case...
mu = 0.6;
u = srcsum(@StoDLP,[0 2], [1 3], s,s,mu); % do it (include phase)
ss = s; v = StoDLP(s,ss,mu); % check matches direct sum
ss.x = s.x+2; v = v + 3*StoDLP(s,ss,mu); % note phase
norm(u-v)
% 2-cmpt multi-output matrix case...
[u p] = srcsum(@StoDLP,[0 2], [1 3], s,s,mu); % do it (include phase)
ss = s; [v q] = StoDLP(s,ss,mu); % check matches direct sum
ss.x = s.x+2; [v2 q2] = StoDLP(s,ss,mu);
v = v + 3*v2; q = q + 3*q2;
norm(u-v)
|
github
|
bobbielf2/BIE2D-master
|
StoDLP.m
|
.m
|
BIE2D-master/kernels/StoDLP.m
| 4,661 |
utf_8
|
d031357a91adbb7c5de42d4cad0c7c0e
|
function [u,p,T] = StoDLP(t,s,mu,dens)
% STODLP Evaluate 2D Stokes single-layer velocity, pressure, and traction.
%
% [A,P,T] = StoDLP(t,s,mu) returns dense matrices taking double-layer
% density values on the nodes of a source curve to velocity, pressure, and
% traction on the nodes of a target curve. Native quadrature is used, apart
% from when target=source when A is the self-interaction Nystrom matrix using
% the smooth diagonal-limit formula for DLP.
%
% [u,p,T] = StoDLP(t,s,mu,dens) evaluates the double-layer density dens,
% returning flow velocity u, pressure p, and target-normal traction T.
%
% The normalization is as in Sec 2.3 of [HW], and [Mar15].
%
% References:
% [HW] "Boundary Integral Equations", G. C. Hsiao and W. L. Wendland
% (Springer, 2008).
%
% [Mar15] "A fast algorithm for simulating multiphase flows through periodic
% geometries of arbitrary shape," G. Marple, A. H. Barnett,
% A. Gillman, and S. Veerapaneni, in press, SIAM J. Sci. Comput.
% https://arXiv.org/abs/1510.05616
%
% Inputs: (see setupquad for source & target struct definitions)
% s = source segment struct with s.x nodes, s.w weights on [0,2pi),
% s.sp speed function |Z'| at the nodes, and s.tang tangent angles.
% t = target segment struct with t.x nodes, and t.nx normals if traction needed
% mu = viscosity
%
% Outputs: (matrix case)
% A = 2M-by-2N matrix taking density (force vector) to velocity on the
% target curve. As always for Stokes, ordering is nodes fast,
% components (1,2) slow, so that A has 4 large blocks A_11, A_12, etc.
% P = M-by-2N matrix taking density to pressure (scalar) on target nodes.
% T = 2M-by-2N matrix taking density to normal traction on target nodes.
%
% Notes: 1) no self-evaluation for P or T.
%
% To test use STOINTDIRBVP
%
% See also: SETUPQUAD
% Barnett 6/13/16, 6/27/16
if numel(mu)~=1, error('mu must be a scalar'); end
if nargout==1
u = StoDLPmat(t,s,mu);
if nargin>3 && ~isempty(dens)
u = u * dens;
end
elseif nargout==2
[u p] = StoDLPmat(t,s,mu);
if nargin>3 && ~isempty(dens)
u = u * dens;
p = p * dens;
end
else
[u p T] = StoDLPmat(t,s,mu);
if nargin>3 && ~isempty(dens)
u = u * dens;
p = p * dens;
T = T * dens;
end
end
%%%%%%
function [A,P,T] = StoDLPmat(t,s,mu)
% Returns native quadrature matrices, or self-evaluation matrices.
% some repmat->bsxfun 6/28/16
N = numel(s.x); M = numel(t.x);
r = bsxfun(@minus,t.x,s.x.'); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/r^2, used in all cases below
d1 = real(r); d2 = imag(r);
%rdotny = d1.*repmat(real(s.nx)', [M 1]) + d2.*repmat(imag(s.nx)', [M 1]);
rdotny = bsxfun(@times, d1, real(s.nx)') + bsxfun(@times, d2, imag(s.nx)');
rdotnir4 = rdotny.*(irr.*irr); if nargout==1, clear rdotny; end
A12 = (1/pi)*d1.*d2.*rdotnir4; % off diag vel block
A = [(1/pi)*d1.^2.*rdotnir4, A12; % Ladyzhenskaya
A12, (1/pi)*d2.^2.*rdotnir4];
if sameseg(t,s) % self-int DLP velocity diagonal correction
c = -s.cur/2/pi; % diagonal limit of Laplace DLP
tx = 1i*s.nx; t1=real(tx); t2=imag(tx); % tangent vectors on the curve
A(sub2ind(size(A),1:N,1:N)) = c.*t1.^2; % overwrite diags of 4 blocks
A(sub2ind(size(A),1+N:2*N,1:N)) = c.*t1.*t2;
A(sub2ind(size(A),1:N,1+N:2*N)) = c.*t1.*t2;
A(sub2ind(size(A),1+N:2*N,1+N:2*N)) = c.*t2.^2;
end
A = bsxfun(@times, A, [s.w(:)' s.w(:)']); % quadr wei
if nargout>1 % pressure of DLP (no self-int)
% P = [(mu/pi)*(-repmat(real(s.nx)', [M 1]).*irr + 2*rdotnir4.*d1), ...
% (mu/pi)*(-repmat(imag(s.nx)', [M 1]).*irr + 2*rdotnir4.*d2) ];
P = [bsxfun(@times, real(-s.nx)',irr) + 2*rdotnir4.*d1, ...
bsxfun(@times, imag(-s.nx)',irr) + 2*rdotnir4.*d2 ];
P = bsxfun(@times, P, (mu/pi)*[s.w(:)' s.w(:)']); % quadr wei
end
if nargout>2 % traction, my derivation of formula (no self-int)
nx1 = repmat(real(t.nx), [1 N]); nx2 = repmat(imag(t.nx), [1 N]);
rdotnx = d1.*nx1 + d2.*nx2;
ny1 = repmat(real(s.nx)', [M 1]); ny2 = repmat(imag(s.nx)', [M 1]);
dx = rdotnx.*irr; dy = rdotny.*irr; dxdy = dx.*dy;
R12 = d1.*d2.*irr; R = [d1.^2.*irr, R12; R12, d2.^2.*irr];
nydotnx = nx1.*ny1 + nx2.*ny2;
T = R.*kron(ones(2), nydotnx.*irr - 8*dxdy) + kron(eye(2), dxdy);
T = T + [nx1.*ny1.*irr, nx1.*ny2.*irr; nx2.*ny1.*irr, nx2.*ny2.*irr] + ...
kron(ones(2),dx.*irr) .* [ny1.*d1, ny1.*d2; ny2.*d1, ny2.*d2] + ...
kron(ones(2),dy.*irr) .* [d1.*nx1, d1.*nx2; d2.*nx1, d2.*nx2];
T = bsxfun(@times, T, (mu/pi)*[s.w(:)' s.w(:)']); % prefac & quadr wei
end
|
github
|
bobbielf2/BIE2D-master
|
perivelpipe_gmres.m
|
.m
|
BIE2D-master/singlyperiodic/perivelpipe_gmres.m
| 13,644 |
utf_8
|
a0298df440e4fe5136d64642b3649cc2
|
function perivelpipe_gmres
% Longitudinal periodize 2D velocity-BC Stokes "pipe" geom w/ press drop (pgro)
% using circle of SLP proxy sources. Barnett, for Veerapaneni & Gillman 3/11/14
% Playing w/ GMRES and Schur options 3/17/15
clear; v=1; expt='t'; % verbosity=0,1,2. expt='t' test, 'd' driven no-slip demo
makefigs = 0; % whether to write to EPS files for writeup
uc.d = 2*pi; % unitcell, d=period in space
N = 80; % pts per top and bottom wall (enough for 1e-15 in this case)
U.Z = @(t) t + 1i*(1.5+sin(t)); U.Zp = @(t) 1 + 1i*cos(t);
U.Zpp = @(t) -1i*sin(t); U = quadr(U,N); % t=0 is left end, t=2pi right end
D.Z = @(t) t + 1i*(-1.5+cos(2*t)); D.Zp = @(t) 1 - 2i*sin(2*t);
D.Zpp = @(t) - 4i*cos(2*t); D = quadr(D,N); % same direction (left to right)
U.nx = -U.nx; U.cur = -U.cur; % correct for sense of U, opp from periodicdirpipe
% normals on pipe walls point outwards
inside = @(z) imag(z-D.Z(real(z)))>0 & imag(z-U.Z(real(z)))<0; % ok U,D graphs
mu = 0.7; % viscosity
if expt=='t' % Exact soln: either periodic or plus fixed pressure drop / period:
%ue = @(x) [1+0*x; -2+0*x]; pe = @(x) 0*x; % the exact soln: uniform rigid flow, constant pressure everywhere (no drop)
h=.2; ue = @(x) h*[imag(x).^2;0*x]; pe = @(x) h*2*mu*real(x); % horiz Poisseuil flow (pres drop)
rhs = [ue(U.x); ue(D.x)]; % Driving: U,D bdry vels, each stacked as [u_1;u_2]
pgro = pe(uc.d)-pe(0); % known pressure growth across one period (a number)
elseif expt=='d'
rhs = zeros(4*N,1); % no-slip BCs, ie homog vel data on U,D
pgro = -1; % given pressure driving, for flow +x (a number)
end
uc.nei = 1; % how many nei copies either side (use eg 1e3 to test A w/o AP)
n = 30; % pts per side
[x w] = gauss(n); x = (1+x)/2; w = w'/2; % quadr on [0,1]
H = U.Z(0)-D.Z(0); L.x = D.Z(0) + H*x; L.nx = 0*L.x+1; L.w = H*w; % left side
R = L; R.x = L.x+uc.d; % right side
M = 50; % # proxy pts in periodizing basis (2 force comps per pt, so 2M dofs)
b.x = pi + 1.1*2*pi*exp(2i*pi*(1:M)'/M); % the proxy pts
%b.nx = exp(2i*pi*(1:M)'/M); % only needed if DLP proxy basis
b.w = 1+0*b.x; % unit quadr weights (dummy)
nx = 60; gx = 2*pi*((1:nx)-0.5)/nx; ny = nx; gy = gx - pi; % plotting grid
[xx yy] = meshgrid(gx,gy); t.x = xx(:)+1i*yy(:); Mt = numel(t.x);
di = reshape(inside(t.x),size(xx)); % boolean if inside domain
if expt=='t', ueg = ue(t.x); % evaluate exact soln on grid
ue1 = reshape(ueg(1:Mt),size(xx)); ue2 = reshape(ueg(Mt+(1:Mt)),size(xx));
peg = reshape(pe(t.x),size(xx));
if v, figure; imagesc(gx,gy, peg); colormap(jet(256)); colorbar;
hold on; quiver(gx,gy, ue1,ue2, 10); end
else, figure; end
if v, showseg(U,uc); hold on; showseg(D,uc); showseg(L); showseg(R);
vline([0 uc.d]); axis xy equal tight;
text(-.5,0,'L');text(2*pi+.5,0,'R');text(4,-1,'D');text(pi,0.5,'U');
plot(b.x, 'r.'); title('geom');
if expt=='t',title('geom and (u,p) known soln'); end
if makefigs, axis([-4 10 -7 7]); print -depsc2 geom.eps, end
end
% fill system matrices A B C Q (subblock ordering always U then D), same
A = -eye(4*N)/2; % A's jump relation part. A maps density to vel vec, on U,D
for i=-uc.nei:uc.nei, a = i*uc.d;
A = A + [DLPmatrix(U,U,mu,a) DLPmatrix(U,D,mu,a); DLPmatrix(D,U,mu,a) DLPmatrix(D,D,mu,a)]; end %figure; imagesc(A); colorbar; title('A');
% single layer (monopoles) on proxy points:
B = [SLPmatrix(U,b,mu); SLPmatrix(D,b,mu)]; % maps 2M peri dofs to vels on U,D
a=uc.nei*uc.d; [RU RUn] = DLPmatrix(R,U,mu,-a); [LU LUn] = DLPmatrix(L,U,mu,a);
[RD RDn] = DLPmatrix(R,D,mu,-a); [LD LDn] = DLPmatrix(L,D,mu,a);
C = [RU-LU, RD-LD; RUn-LUn, RDn-LDn]; % maps cancelled densities to discrepancy
[Rb Rbn] = SLPmatrix(R,b,mu); [Lb Lbn] = SLPmatrix(L,b,mu);
Q = [Rb-Lb; Rbn-Lbn]; % maps periodizing dofs to discrepancy
% Schur...
QdagC = Q\C; % backwards stable least-sq solve
fprintf('norm QdagC = %.3g\n',norm(QdagC)) % should be O(1)
AP = A - B*QdagC; % system mat maps periodized density on U,D to vels on U,D
if v>1, figure; imagesc(AP); colorbar; title('A_P'); end
%figure; plot(eig(AP),'+'); axis equal;
Tgro = -pgro * [real(R.nx);imag(R.nx)]; % traction driving growth (vector func)
Qdagg = Q\[zeros(2*n,1); Tgro]; % no vel growth; here []=g is rhs for peri rows
rhsgro = -B*Qdagg; % change in rhs due to peri (along-pipe) driving
rhs = rhs + rhsgro;
if 1 % GMRES
%matvec = @(x) AP*x; % is fine
% matvec = @(x) A*x - B*(Q\(C*x)); % fast form, indeed stagnates, why?
matvec = @(x) A*x - B*(QdagC*x); % fast form, Gary's choice, works
% matvec = @(x) A*x - (B*QdagC)*x; % same, dense form, works of course
%[UQ S V] = svd(Q,0); QbC = V*(diag(min(1e14,1./diag(S)))*(UQ'*C)); % alt
%matvec = @(x) A*x - B*(QbC*x); % resid
%x = randn(4*N,1); norm(matvec(x) - AP*x) % QdagC and QbC not the same! why
% matvec = @(x) A*x - B*(V*Sdag*UU')*(C*x)));
%matvec = @(x) A*x - B*(V*(Sdag*UU'*(C*x)));
% matvec = @(x) A*x - B*((V*Sdag)*(UU'*(C*x)));
tau = gmres(matvec,rhs,size(AP,1),1e-14,size(AP,1));
%[tau,iters] = gmres_helsing(@(x) matvec(x)-x,rhs,size(AP,1),size(AP,1),1e-12); iters % doesn't help
fprintf('resid norm = %.3g\n',norm(AP*tau - rhs))
%fprintf('matvec resid norm = %.3g\n',norm(matvec(tau) - rhs))
else % dense solve, note nullity(AP)=1 corresp to unknown pres const, but consistent:
tau = AP\rhs; % tau is DLP "vector density" (ie bdry force dipole)
end
c = -QdagC*tau + Qdagg; % get periodizing dofs (incl peri driving part)
if v, figure; plot([tau;c],'+-'); legend('[\tau;c]'); title('soln density and periodizing dofs'); end
if expt=='t', z = []; z.x = 2+1i; % pointwise test u soln (target object z)
u = SLPmatrix(z,b,mu) * c; % eval @ test pt: first do MFS (proxy) contrib
for i=-uc.nei:uc.nei, a = i*uc.d; % add in 3 copies of LPs on U,D...
u = u + [DLPmatrix(z,U,mu,a) DLPmatrix(z,D,mu,a)] * tau;
end
fprintf('u error at pt = %.3g, ||tau||=%.3g\n', norm(u-ue(z.x)),norm(tau))
end
ug = SLPmatrix(t,b,mu) * c; % eval on grid: MFS (proxy) contrib
pg = SLPpresmatrix(t,b,mu) * c; % (vel and pres parts separate matrices)
for i=-uc.nei:uc.nei, a = i*uc.d; % add in 3 copies of LPs on U,D...
ug = ug + [DLPmatrix(t,U,mu,a) DLPmatrix(t,D,mu,a)] * tau; % uses RAM
pg = pg + [DLPpresmatrix(t,U,mu,a) DLPpresmatrix(t,D,mu,a)] * tau;
end
u1 = reshape(ug(1:Mt),size(xx)); u2 = reshape(ug(Mt+(1:Mt)),size(xx));
p = reshape(pg,size(xx));
if expt=='t' % show errors vs known soln...
i=ceil(ny/2); j=ceil(nx/4); % index interior pt to get pres const
p = p - p(i,j) + peg(i,j); % shift const in pres to match known
eg2 = sum([u1(:)-ue1(:),u2(:)-ue2(:)].^2,2); % squared ptwise vector L2 errs
if v, figure; subplot(1,2,1); imagesc(gx,gy,log10(reshape(eg2,size(xx)))/2);
axis xy equal tight; caxis([-16 0]); colorbar; hold on; plot(U.x,'k.-');
plot(D.x,'k.-'); title('peri vel Stokes BVP: log_{10} u err')
subplot(1,2,2); imagesc(gx,gy,log10(abs(p-reshape(peg,size(xx)))));
axis xy equal tight; caxis([-16 0]); colorbar; hold on;
plot(U.x,'k.-'); plot(D.x,'k.-'); title('log_{10} p err (up to const)'); end
else % just show (velocity,pressure) soln...
if v, figure; p0 = p(35,1); % pressure const
contourf(gx,gy,p.*di, p0+pgro*(0:0.05:1)); hold on;
u0 = 0.1; u1c = min(max(u1,-u0),u0); u2c = min(max(u2,-u0),u0); % clip vel
colorbar; axis xy equal; quiver(gx,gy, u1c.*di,u2c.*di, 3);
plot(U.x,'k.-'); plot(D.x,'k.-'); axis([0 uc.d -pi pi]);
title('peri no-slip p-driven Stokes BVP: (u,p)'), end
end
%keyboard % don't forget to use dbquit to finish otherwise trapped in debug mode
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = quadr(s, N) % set up periodic trapezoid quadrature on a segment
% Note sign change in normal vs periodicdirpipe.m.
% Barnett 4/21/13 from testlapSDevalclose.m
t = (1:N)'/N*2*pi; s.x = s.Z(t); s.sp = abs(s.Zp(t)); s.nx = -1i*s.Zp(t)./s.sp;
s.cur = -real(conj(s.Zpp(t)).*s.nx)./s.sp.^2; s.w = 2*pi/N*s.sp; % speed weights
s.t = t; s.cw = 1i*s.nx.*s.w; % complex weights (incl complex speed)
function h = showseg(s, uc) % plot a segment & possibly its nei copies
if nargin<2, uc.nei = 0; uc.d = 0; end % dummy uc
if uc.nei>0, uc.nei = 1; end % don't plot a ridiculous # of copies
for i=-uc.nei:uc.nei
plot(s.x+uc.d*i, 'b.-'); axis equal xy;
l=0.3; hold on; plot([s.x+uc.d*i, s.x+l*s.nx+uc.d*i].', 'k-');
end
% Following kernel matrix fillers are taken from (debugged in) testkernels.m:
function [A T] = SLPmatrix(t,s,mu,a) % single-layer 2D Stokes kernel vel matrix
% Returns 2N-by-2N matrix from src force vector to 2 flow component
% t = target seg (x cols), s = src seg, a = optional translation of src seg
% No option for self-int, gives Inf on diag. 3/2/14
% 2nd output is traction matrix, needs t.nx normal (C-#); no self-int either.
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/r^2
d1 = real(r); d2 = imag(r);
Ilogr = -log(abs(r)); % log(1/r) diag block
c = 1/(4*pi*mu); % factor from Hsiao-Wendland book, Ladyzhenskaya
A12 = c*d1.*d2.*irr; % off diag vel block
A = [c*(Ilogr + d1.^2.*irr), A12; % u_x
A12, c*(Ilogr + d2.^2.*irr)]; % u_y
A = A .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
if nargout>1 % traction (negative of DLP vel matrix w/ nx,ny swapped)
rdotn = d1.*repmat(real(t.nx), [1 N]) + d2.*repmat(imag(t.nx), [1 N]);
rdotnir4 = rdotn.*(irr.*irr); clear rdotn
A12 = -(1/pi)*d1.*d2.*rdotnir4;
T = [-(1/pi)*d1.^2.*rdotnir4, A12; % own derivation
A12, -(1/pi)*d2.^2.*rdotnir4];
T = T .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
end
function A = SLPpresmatrix(t,s,mu,a) % single-layer 2D Stokes kernel press mat
% Returns N-by-2N matrix from src force vector to pressure value, no self-int.
% t = target seg (x cols), s = src seg, a = optional transl of src seg. 2/1/14
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/r^2
d1 = real(r); d2 = imag(r);
A = [d1.*irr/(2*pi), d2.*irr/(2*pi)]; % pressure
A = A .* repmat([s.w(:)' s.w(:)'], [M 1]); % quadr wei
function [A T] = DLPmatrix(t,s,mu,a) % double-layer 2D Stokes vel kernel matrix
% Returns 2N-by-2N matrix from src force vector to 2 flow components
% If detects self-int, does correct diagonal limit, no jump condition (PV int).
% t = target seg (x cols), s = src seg, a = optional transl of src seg.
% 2nd output is optional traction matrix, without self-eval. 2/1/14, 3/2/14
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/R^2
d1 = real(r); d2 = imag(r);
rdotny = d1.*repmat(real(s.nx)', [M 1]) + d2.*repmat(imag(s.nx)', [M 1]);
rdotnir4 = rdotny.*(irr.*irr); if nargout<=1, clear rdotny; end
A12 = (1/pi)*d1.*d2.*rdotnir4; % off diag vel block
A = [(1/pi)*d1.^2.*rdotnir4, A12; % Ladyzhenzkaya
A12, (1/pi)*d2.^2.*rdotnir4];
if numel(s.x)==numel(t.x) & max(abs(s.x+a-t.x))<1e-14
c = -s.cur/2/pi; % diagonal limit of Laplace DLP
tx = 1i*s.nx; t1=real(tx); t2=imag(tx); % tangent vectors on src curve
A(sub2ind(size(A),1:N,1:N)) = c.*t1.^2; % overwrite diags of 4 blocks:
A(sub2ind(size(A),1+N:2*N,1:N)) = c.*t1.*t2;
A(sub2ind(size(A),1:N,1+N:2*N)) = c.*t1.*t2;
A(sub2ind(size(A),1+N:2*N,1+N:2*N)) = c.*t2.^2;
end
A = A .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
if nargout>1 % traction, my formula
nx1 = repmat(real(t.nx), [1 N]); nx2 = repmat(imag(t.nx), [1 N]);
rdotnx = d1.*nx1 + d2.*nx2;
ny1 = repmat(real(s.nx)', [M 1]); ny2 = repmat(imag(s.nx)', [M 1]);
dx = rdotnx.*irr; dy = rdotny.*irr; dxdy = dx.*dy;
R12 = d1.*d2.*irr; R = [d1.^2.*irr, R12; R12, d2.^2.*irr];
nydotnx = nx1.*ny1 + nx2.*ny2;
T = R.*kron(ones(2), nydotnx.*irr - 8*dxdy) + kron(eye(2), dxdy);
T = T + [nx1.*ny1.*irr, nx1.*ny2.*irr; nx2.*ny1.*irr, nx2.*ny2.*irr] + ...
kron(ones(2),dx.*irr) .* [ny1.*d1, ny1.*d2; ny2.*d1, ny2.*d2] + ...
kron(ones(2),dy.*irr) .* [d1.*nx1, d1.*nx2; d2.*nx1, d2.*nx2];
T = (mu/pi) * T; % prefac
T = T .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
end
function A = DLPpresmatrix(t,s,mu,a) % double-layer 2D Stokes kernel press mat
% Returns N-by-2N matrix from src force vector to pressure values, no self-int
% t = target seg (x cols), s = src seg, a = optional transl of src seg. 2/1/14
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/R^2
d1 = real(r); d2 = imag(r);
rdotn = d1.*repmat(real(s.nx)', [M 1]) + d2.*repmat(imag(s.nx)', [M 1]);
rdotnir4 = rdotn.*(irr.*irr); clear rdotn
A = [(mu/pi)*(-repmat(real(s.nx)', [M 1]).*irr + 2*rdotnir4.*d1), ...
(mu/pi)*(-repmat(imag(s.nx)', [M 1]).*irr + 2*rdotnir4.*d2) ];
A = A .* repmat([s.w(:)' s.w(:)'], [M 1]); % quadr wei
function i = diagind(A,s) %return indices of (shifted) diagonal of square matrix
if nargin<2, s=0; end % if present, s shifts diagonal cyclicly
N = size(A,1); i = sub2ind(size(A), 1:N, mod(s+(0:N-1),N)+1);
|
github
|
bobbielf2/BIE2D-master
|
perivelpipe.m
|
.m
|
BIE2D-master/singlyperiodic/perivelpipe.m
| 12,601 |
utf_8
|
685092c15e0d7d2584349abcd2fafbfd
|
function perivelpipe
% Longitudinal periodize 2D velocity-BC Stokes "pipe" geom w/ press drop (pgro)
% using circle of SLP proxy sources. Barnett, for Veerapaneni & Gillman 3/11/14
clear; v=2; expt='t'; % verbosity=0,1,2. expt='t' test, 'd' driven no-slip demo
makefigs = 0; % whether to write to EPS files for writeup
uc.d = 2*pi; % unitcell, d=period in space
N = 100; %80; % pts per top and bottom wall (enough for 1e-15 in this case)
U.Z = @(t) t + 1i*(1.5+sin(t)); U.Zp = @(t) 1 + 1i*cos(t);
U.Zpp = @(t) -1i*sin(t); U = quadr(U,N); % t=0 is left end, t=2pi right end
D.Z = @(t) t + 1i*(-1.5+cos(2*t)); D.Zp = @(t) 1 - 2i*sin(2*t);
D.Zpp = @(t) - 4i*cos(2*t); D = quadr(D,N); % same direction (left to right)
U.nx = -U.nx; U.cur = -U.cur; % correct for sense of U, opp from periodicdirpipe
% normals on pipe walls point outwards
inside = @(z) imag(z-D.Z(real(z)))>0 & imag(z-U.Z(real(z)))<0; % ok U,D graphs
mu = 0.7; % viscosity
if expt=='t' % Exact soln: either periodic or plus fixed pressure drop / period:
%ue = @(x) [1+0*x; -2+0*x]; pe = @(x) 0*x; % the exact soln: uniform rigid flow, constant pressure everywhere (no drop)
h=.2; ue = @(x) h*[imag(x).^2;0*x]; pe = @(x) h*2*mu*real(x); % horiz Poisseuil flow (pres drop)
rhs = [ue(U.x); ue(D.x)]; % Driving: U,D bdry vels, each stacked as [u_1;u_2]
pgro = pe(uc.d)-pe(0); % known pressure growth across one period (a number)
elseif expt=='d'
rhs = zeros(4*N,1); % no-slip BCs, ie homog vel data on U,D
pgro = -1; % given pressure driving, for flow +x (a number)
end
uc.nei = 1; % how many nei copies either side (use eg 1e3 to test A w/o AP)
n = 30; % pts per side
[x w] = gauss(n); x = (1+x)/2; w = w'/2; % quadr on [0,1]
H = U.Z(0)-D.Z(0); L.x = D.Z(0) + H*x; L.nx = 0*L.x+1; L.w = H*w; % left side
R = L; R.x = L.x+uc.d; % right side
M = 50; % # proxy pts in periodizing basis (2 force comps per pt, so 2M dofs)
b.x = pi + 1.1*2*pi*exp(2i*pi*(1:M)'/M); % the proxy pts
%b.nx = exp(2i*pi*(1:M)'/M); % only needed if DLP proxy basis
b.w = 1+0*b.x; % unit quadr weights (dummy)
nx = 60; gx = 2*pi*((1:nx)-0.5)/nx; ny = nx; gy = gx - pi; % plotting grid
[xx yy] = meshgrid(gx,gy); t.x = xx(:)+1i*yy(:); Mt = numel(t.x);
di = reshape(inside(t.x),size(xx)); % boolean if inside domain
if expt=='t', ueg = ue(t.x); % evaluate exact soln on grid
ue1 = reshape(ueg(1:Mt),size(xx)); ue2 = reshape(ueg(Mt+(1:Mt)),size(xx));
peg = reshape(pe(t.x),size(xx));
if v, figure; imagesc(gx,gy, peg); colormap(jet(256)); colorbar;
hold on; quiver(gx,gy, ue1,ue2, 10); end
else, figure; end
if v, showseg(U,uc); hold on; showseg(D,uc); showseg(L); showseg(R);
vline([0 uc.d]); axis xy equal tight;
text(-.5,0,'L');text(2*pi+.5,0,'R');text(4,-1,'D');text(pi,0.5,'U');
plot(b.x, 'r.'); title('geom');
if expt=='t',title('geom and (u,p) known soln'); end
if makefigs, axis([-4 10 -7 7]); print -depsc2 geom.eps, end
end
% fill system matrices A B C Q (subblock ordering always U then D), same
A = -eye(4*N)/2; % A's jump relation part. A maps density to vel vec, on U,D
for i=-uc.nei:uc.nei, a = i*uc.d;
A = A + [DLPmatrix(U,U,mu,a) DLPmatrix(U,D,mu,a); DLPmatrix(D,U,mu,a) DLPmatrix(D,D,mu,a)]; end %figure; imagesc(A); colorbar; title('A');
% single layer (monopoles) on proxy points:
B = [SLPmatrix(U,b,mu); SLPmatrix(D,b,mu)]; % maps 2M peri dofs to vels on U,D
a=uc.nei*uc.d; [RU RUn] = DLPmatrix(R,U,mu,-a); [LU LUn] = DLPmatrix(L,U,mu,a);
[RD RDn] = DLPmatrix(R,D,mu,-a); [LD LDn] = DLPmatrix(L,D,mu,a);
C = [RU-LU, RD-LD; RUn-LUn, RDn-LDn]; % maps cancelled densities to discrepancy
[Rb Rbn] = SLPmatrix(R,b,mu); [Lb Lbn] = SLPmatrix(L,b,mu);
Q = [Rb-Lb; Rbn-Lbn]; % maps periodizing dofs to discrepancy
QdagC = Q\C; % backwards stable least-sq solve
AP = A - B*QdagC; % system mat maps periodized density on U,D to vels on U,D
if v>1, figure; imagesc(AP); colorbar; title('A_P'); end
Tgro = -pgro * [real(R.nx);imag(R.nx)]; % traction driving growth (vector func)
Qdagg = Q\[zeros(2*n,1); Tgro]; % no vel growth; here []=g is rhs for peri rows
rhsgro = -B*Qdagg; % change in rhs due to peri (along-pipe) driving
rhs = rhs + rhsgro;
% dense solve, note nullity(AP)=1 corresp to unknown pres const, but consistent:
tau = AP\rhs; % tau is DLP "vector density" (ie bdry force dipole)
c = -QdagC*tau + Qdagg; % get periodizing dofs (incl peri driving part)
if v, figure; plot([tau;c],'+-'); legend('[\tau;c]'); title('soln density and periodizing dofs'); end
if expt=='t', z = []; z.x = 2+1i; % pointwise test u soln (target object z)
u = SLPmatrix(z,b,mu) * c; % eval @ test pt: first do MFS (proxy) contrib
for i=-uc.nei:uc.nei, a = i*uc.d; % add in 3 copies of LPs on U,D...
u = u + [DLPmatrix(z,U,mu,a) DLPmatrix(z,D,mu,a)] * tau;
end
fprintf('u error at pt = %.3g, ||tau||=%.3g\n', norm(u-ue(z.x)),norm(tau))
end
ug = SLPmatrix(t,b,mu) * c; % eval on grid: MFS (proxy) contrib
pg = SLPpresmatrix(t,b,mu) * c; % (vel and pres parts separate matrices)
for i=-uc.nei:uc.nei, a = i*uc.d; % add in 3 copies of LPs on U,D...
ug = ug + [DLPmatrix(t,U,mu,a) DLPmatrix(t,D,mu,a)] * tau; % uses RAM
pg = pg + [DLPpresmatrix(t,U,mu,a) DLPpresmatrix(t,D,mu,a)] * tau;
end
u1 = reshape(ug(1:Mt),size(xx)); u2 = reshape(ug(Mt+(1:Mt)),size(xx));
p = reshape(pg,size(xx));
if expt=='t' % show errors vs known soln...
i=ceil(ny/2); j=ceil(nx/4); % index interior pt to get pres const
p = p - p(i,j) + peg(i,j); % shift const in pres to match known
eg2 = sum([u1(:)-ue1(:),u2(:)-ue2(:)].^2,2); % squared ptwise vector L2 errs
if v, figure; subplot(1,2,1); imagesc(gx,gy,log10(reshape(eg2,size(xx)))/2);
axis xy equal tight; caxis([-16 0]); colorbar; hold on; plot(U.x,'k.-');
plot(D.x,'k.-'); title('peri vel Stokes BVP: log_{10} u err')
subplot(1,2,2); imagesc(gx,gy,log10(abs(p-reshape(peg,size(xx)))));
axis xy equal tight; caxis([-16 0]); colorbar; hold on;
plot(U.x,'k.-'); plot(D.x,'k.-'); title('log_{10} p err (up to const)'); end
else % just show (velocity,pressure) soln...
if v, figure; p0 = p(35,1); % pressure const
contourf(gx,gy,p.*di, p0+pgro*(0:0.05:1)); hold on;
u0 = 0.1; u1c = min(max(u1,-u0),u0); u2c = min(max(u2,-u0),u0); % clip vel
colorbar; axis xy equal; quiver(gx,gy, u1c.*di,u2c.*di, 3);
plot(U.x,'k.-'); plot(D.x,'k.-'); axis([0 uc.d -pi pi]);
title('peri no-slip p-driven Stokes BVP: (u,p)'), end
end
%keyboard % don't forget to use dbquit to finish otherwise trapped in debug mode
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s = quadr(s, N) % set up periodic trapezoid quadrature on a segment
% Note sign change in normal vs periodicdirpipe.m.
% Barnett 4/21/13 from testlapSDevalclose.m
t = (1:N)'/N*2*pi; s.x = s.Z(t); s.sp = abs(s.Zp(t)); s.nx = -1i*s.Zp(t)./s.sp;
s.cur = -real(conj(s.Zpp(t)).*s.nx)./s.sp.^2; s.w = 2*pi/N*s.sp; % speed weights
s.t = t; s.cw = 1i*s.nx.*s.w; % complex weights (incl complex speed)
function h = showseg(s, uc) % plot a segment & possibly its nei copies
if nargin<2, uc.nei = 0; uc.d = 0; end % dummy uc
if uc.nei>0, uc.nei = 1; end % don't plot a ridiculous # of copies
for i=-uc.nei:uc.nei
plot(s.x+uc.d*i, 'b.-'); axis equal xy;
l=0.3; hold on; plot([s.x+uc.d*i, s.x+l*s.nx+uc.d*i].', 'k-');
end
% Following kernel matrix fillers are taken from (debugged in) testkernels.m:
function [A T] = SLPmatrix(t,s,mu,a) % single-layer 2D Stokes kernel vel matrix
% Returns 2N-by-2N matrix from src force vector to 2 flow component
% t = target seg (x cols), s = src seg, a = optional translation of src seg
% No option for self-int, gives Inf on diag. 3/2/14
% 2nd output is traction matrix, needs t.nx normal (C-#); no self-int either.
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/r^2
d1 = real(r); d2 = imag(r);
Ilogr = -log(abs(r)); % log(1/r) diag block
c = 1/(4*pi*mu); % factor from Hsiao-Wendland book, Ladyzhenskaya
A12 = c*d1.*d2.*irr; % off diag vel block
A = [c*(Ilogr + d1.^2.*irr), A12; % u_x
A12, c*(Ilogr + d2.^2.*irr)]; % u_y
A = A .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
if nargout>1 % traction (negative of DLP vel matrix w/ nx,ny swapped)
rdotn = d1.*repmat(real(t.nx), [1 N]) + d2.*repmat(imag(t.nx), [1 N]);
rdotnir4 = rdotn.*(irr.*irr); clear rdotn
A12 = -(1/pi)*d1.*d2.*rdotnir4;
T = [-(1/pi)*d1.^2.*rdotnir4, A12; % own derivation
A12, -(1/pi)*d2.^2.*rdotnir4];
T = T .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
end
function A = SLPpresmatrix(t,s,mu,a) % single-layer 2D Stokes kernel press mat
% Returns N-by-2N matrix from src force vector to pressure value, no self-int.
% t = target seg (x cols), s = src seg, a = optional transl of src seg. 2/1/14
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/r^2
d1 = real(r); d2 = imag(r);
A = [d1.*irr/(2*pi), d2.*irr/(2*pi)]; % pressure
A = A .* repmat([s.w(:)' s.w(:)'], [M 1]); % quadr wei
function [A T] = DLPmatrix(t,s,mu,a) % double-layer 2D Stokes vel kernel matrix
% Returns 2N-by-2N matrix from src force vector to 2 flow components
% If detects self-int, does correct diagonal limit, no jump condition (PV int).
% t = target seg (x cols), s = src seg, a = optional transl of src seg.
% 2nd output is optional traction matrix, without self-eval. 2/1/14, 3/2/14
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/R^2
d1 = real(r); d2 = imag(r);
rdotny = d1.*repmat(real(s.nx)', [M 1]) + d2.*repmat(imag(s.nx)', [M 1]);
rdotnir4 = rdotny.*(irr.*irr); if nargout<=1, clear rdotny; end
A12 = (1/pi)*d1.*d2.*rdotnir4; % off diag vel block
A = [(1/pi)*d1.^2.*rdotnir4, A12; % Ladyzhenzkaya
A12, (1/pi)*d2.^2.*rdotnir4];
if numel(s.x)==numel(t.x) & max(abs(s.x+a-t.x))<1e-14
c = -s.cur/2/pi; % diagonal limit of Laplace DLP
tx = 1i*s.nx; t1=real(tx); t2=imag(tx); % tangent vectors on src curve
A(sub2ind(size(A),1:N,1:N)) = c.*t1.^2; % overwrite diags of 4 blocks:
A(sub2ind(size(A),1+N:2*N,1:N)) = c.*t1.*t2;
A(sub2ind(size(A),1:N,1+N:2*N)) = c.*t1.*t2;
A(sub2ind(size(A),1+N:2*N,1+N:2*N)) = c.*t2.^2;
end
A = A .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
if nargout>1 % traction, my formula
nx1 = repmat(real(t.nx), [1 N]); nx2 = repmat(imag(t.nx), [1 N]);
rdotnx = d1.*nx1 + d2.*nx2;
ny1 = repmat(real(s.nx)', [M 1]); ny2 = repmat(imag(s.nx)', [M 1]);
dx = rdotnx.*irr; dy = rdotny.*irr; dxdy = dx.*dy;
R12 = d1.*d2.*irr; R = [d1.^2.*irr, R12; R12, d2.^2.*irr];
nydotnx = nx1.*ny1 + nx2.*ny2;
T = R.*kron(ones(2), nydotnx.*irr - 8*dxdy) + kron(eye(2), dxdy);
T = T + [nx1.*ny1.*irr, nx1.*ny2.*irr; nx2.*ny1.*irr, nx2.*ny2.*irr] + ...
kron(ones(2),dx.*irr) .* [ny1.*d1, ny1.*d2; ny2.*d1, ny2.*d2] + ...
kron(ones(2),dy.*irr) .* [d1.*nx1, d1.*nx2; d2.*nx1, d2.*nx2];
T = (mu/pi) * T; % prefac
T = T .* repmat([s.w(:)' s.w(:)'], [2*M 1]); % quadr wei
end
function A = DLPpresmatrix(t,s,mu,a) % double-layer 2D Stokes kernel press mat
% Returns N-by-2N matrix from src force vector to pressure values, no self-int
% t = target seg (x cols), s = src seg, a = optional transl of src seg. 2/1/14
if nargin<4, a = 0; end
N = numel(s.x); M = numel(t.x);
r = repmat(t.x, [1 N]) - repmat(s.x.' + a, [M 1]); % C-# displacements mat
irr = 1./(conj(r).*r); % 1/R^2
d1 = real(r); d2 = imag(r);
rdotn = d1.*repmat(real(s.nx)', [M 1]) + d2.*repmat(imag(s.nx)', [M 1]);
rdotnir4 = rdotn.*(irr.*irr); clear rdotn
A = [(mu/pi)*(-repmat(real(s.nx)', [M 1]).*irr + 2*rdotnir4.*d1), ...
(mu/pi)*(-repmat(imag(s.nx)', [M 1]).*irr + 2*rdotnir4.*d2) ];
A = A .* repmat([s.w(:)' s.w(:)'], [M 1]); % quadr wei
function i = diagind(A,s) %return indices of (shifted) diagonal of square matrix
if nargin<2, s=0; end % if present, s shifts diagonal cyclicly
N = size(A,1); i = sub2ind(size(A), 1:N, mod(s+(0:N-1),N)+1);
|
github
|
bobbielf2/BIE2D-master
|
testStokernels.m
|
.m
|
BIE2D-master/test/testStokernels.m
| 5,133 |
utf_8
|
bcde9edae25a2ce341ecc155327ee854
|
function testStokernels
% TESTSTOKERNELS plot and test properties of Stokes kernels.
%
% Plot and test 2D Stokes kernels, both velocity and pressure bits,
% check satisfies Stokes PDE, traction is correct, and
% net outflow and force on wall integrated over enclosing circle,
% Barnett 6/27/16 cleaned up from testkernels of 1/29/14-2/11/16.
s.x = 1 + 1.5i; % src pt, C-#
s.nx = exp(1i*pi/5); % surface normal (for DLP only), C-#
s.w = 1; % src pt quadr wei (dummy for now)
th = pi/6; force = [cos(th);sin(th)]; % src force vector @ angle th
fprintf('src normal (%g,%g), force (%g,%g)\n',...
real(s.nx),imag(s.nx),force(1),force(2))
fprintf('src normal dot force = %g\n',force(1)*real(s.nx)+force(2)*imag(s.nx))
mu = 0.3; % viscosity, some random positive value
disp('test (u,p) pairs satisfy Stokes and their traction correct, using finite diff approx at one pt (expect around 9 digits)...')
t.x = 3+2i; t.nx = exp(1i*pi/3); % target pt and normal for traction eval
fprintf('SLP:'); testPDE(@StoSLP,t,s,force,mu)
fprintf('DLP:'); testPDE(@StoDLP,t,s,force,mu)
if 1 % vector flow and pressure color plot...
n = 50; gx = 2*pi*((1:n)-0.5)/n; gy = gx; % target plotting grid
[xx yy] = meshgrid(gx,gy); clear t; t.x = xx(:)+1i*yy(:); clear xx yy
Mt = numel(t.x);
% SLP........ swirling due to pushing a force at src pt, mass is conserved
[u p] = StoSLP(t,s,mu,force);
u1=reshape(u(1:n*n),[n n]); u2=reshape(u(n*n+1:end),[n n]); p=reshape(p,[n n]);
figure; imagesc(gx,gy, p); caxis([-1 1]); hold on; axis xy equal tight;
plot(s.x, 'r*');
sc = 50; quiver(gx,gy, u1,u2, sc./norm([u1(:);u2(:)])); title('Stokes SLP')
% DLP......... note flow is purely radial, but with angular size variation
figure; %for n = exp(1i*2*pi*(1:100)/100), %v = [real(n);imag(n)]; % anim loop
[u p] = StoDLP(t,s,mu,force);
u1=reshape(u(1:n*n),[n n]); u2=reshape(u(n*n+1:end),[n n]); p=reshape(p,[n n]);
imagesc(gx,gy, p); caxis([-1 1]); hold on; axis xy equal tight;
plot(s.x, 'r*');
sc = 200; quiver(gx,gy, u1,u2, sc./norm([u1(:);u2(:)])); title('Stokes DLP')
%hold off; drawnow; end % end anim
end
% Integrate over an enclosing circle...
N=100; R=0.7; t.x = s.x + R*exp(2i*pi*(1:N)'/N); t.nx = exp(2i*pi*(1:N)'/N);
t.w = ones(1,N)*2*pi*R/N; % targ quadr wei
[u,~,T] = StoSLP(t,s,mu,force); Mt = numel(t.x);
u1 = u(1:Mt); u2 = u(Mt+(1:Mt)); % vel
f1 = -T(1:Mt); f2 = -T(Mt+(1:Mt)); % force (-traction dot target nx)
outfl = t.w*(u1.*real(t.nx) + u2.*imag(t.nx));
fprintf('SLP: net outflow %g, \t net force (%g,%g)\n',outfl,t.w*f1,t.w*f2)
[u,~,T] = StoDLP(t,s,mu,force); Mt = numel(t.x);
u1 = u(1:Mt); u2 = u(Mt+(1:Mt)); % vel
f1 = -T(1:Mt); f2 = -T(Mt+(1:Mt)); % force (-traction dot target nx)
outfl = t.w*(u1.*real(t.nx) + u2.*imag(t.nx));
fprintf('DLP: net outflow %g, \t net force (%g,%g)\n',outfl,t.w*f1,t.w*f2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end main %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function up = velpres(kernel, xtarg, s, mu, dens)
% wrapper to stack vel and pres of a given kernel, at target xtarg. Ie [u1;u2;p]
[u p] = kernel(struct('x',xtarg),s,mu,dens); % works for Sto{S,D}LP
up = [u;p];
function testPDE(kernel,t,s,v,mu)
% uses src s w/ force v and targ t to test SLP or DLP satisfies mu-Stokes PDE,
% and traction correct.
eps = 1e-4; % finite difference stencil size
rhs = applyStokesPDEs(@(x) velpres(kernel,x,s,mu,v),t.x,mu,eps);
fprintf('\tforce equation err = %g, incompressibility err = %g\n',...
norm(rhs(1:2)),abs(rhs(3)))
% finite-diff approx to traction @ x,nx...
T = traction(@(x) velpres(kernel,x,s,mu,v),t.x,t.nx,mu,eps); % send in targ
[~,~,Te] = kernel(t,s,mu,v); % supposedly exact traction eval
fprintf('\ttraction err = %g\n',norm(T - Te))
function rhs = applyStokesPDEs(f,x,mu,eps)
% check if func f (returning 3 components: u_1, u_2, and p, given C-# loc x)
% obeys mu-Stokes PDE. Outputs the RHS (3 components: f_1, f_2, and rho)
up = nan(3,5); % three rows are u1,u2,p at each of 5 stencil pts
up(:,1) = f(x); up(:,2) = f(x-eps); up(:,3) = f(x+eps);
up(:,4) = f(x-1i*eps); up(:,5) = f(x+1i*eps); % do 5-pt stencil evals
gradp = [up(3,3)-up(3,2); up(3,5)-up(3,4)]/(2*eps);
stencil = [-4 1 1 1 1]'/eps^2;
lapu = up(1:2,:)*stencil;
divu = (up(1,3)-up(1,2) + up(2,5)-up(2,4))/(2*eps);
rhs(1:2) = -mu*lapu + gradp; % Stokes PDE pair
rhs(3) = divu;
function T = traction(f,x,nx,mu,eps)
% approx traction vec T of Stokes pair (u_vec, p) given by func f (returning 3
% components: u_x, u_y, and p, given C-# loc x). Barnett 3/2/14
if numel(nx)==1, n=[real(nx); imag(nx)]; % get target normal as 2-by-1
elseif numel(nx)==2, n = nx(:);
else error('nx must be one C# or 2-component vector'); end
up = nan(3,5); % three rows are u1,u2,p at each of 5 stencil pts
up(:,1) = f(x); up(:,2) = f(x-eps); up(:,3) = f(x+eps);
up(:,4) = f(x-1i*eps); up(:,5) = f(x+1i*eps); % do evals
p = up(3,1); % pressure
stress = [up(1:2,3)-up(1:2,2), up(1:2,5)-up(1:2,4)]/(2*eps); % 2-by-2 d_j u_i
stress = stress + stress'; % d_i u_j + d_j u_i
T = -p*n + mu*stress*n; % std formula
|
github
|
SenticNet/one-class-svm-master
|
mog_threshold.m
|
.m
|
one-class-svm-master/dd_tools/mog_threshold.m
| 1,645 |
utf_8
|
52fd54f310b2cbf05db73c6e39b92de8
|
%MOG_THRESHOLD Set threshold of a MoG
%
% W = MOG_THRESHOLD(W,X,FRACREJ)
%
% INPUT
% W One-class MoG mapping
% X One-class dataset
% FRACREJ Error on the target class
%
% OUTPUT
% W Updated MoG mapping
%
% DESCRIPTION
% Set the threshold of the Mixture of Gaussians mapping W. The threshold
% is set such that a pre-specified fraction FRACREJ of the target data X
% is rejected.
%
% I still have problems to be sure when the obtained decision boundary
% is closed around the target class...
%
% SEE ALSO
% mog_init, mog_update, mog_P, mogEMupdate, mogEMextend
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function w = mog_threshold(w,x,fracrej)
% setup the basic parameters:
dat = w.data;
x = +target_class(x);
n = size(x,1);
% target class distribution:
Pt = sum(mog_P(x,dat.covtype,dat.mt,dat.ict,dat.pt),2);
f = Pt;
% outlier class distribution
if isfield(dat,'mo')
Po = mog_P(x,dat.covtype,dat.mo,dat.ico,dat.po) + 10*eps;
s = warning('off');
f = f./sum(Po,2);
warning(s);
end
% see if we only have to adapt the first threshold:
q = dd_threshold(f,fracrej);
if isfield(dat,'mo') & (q<1) & (1==0)
% then we have a problem, i.e. the decision boundary is not closed
% around the target class and we have to adapt beta
warning('dd_tools:OpenBoundary','No closed boundary around the target class.');
% % base cluster:
Pb = Po(:,1);
% % extra specialization outlier clusters
Pf = sum(Po(:,2:end),2);
% [f Pt Pb Pf]
end
% store the results again:
dat.threshold = q;
w.data = dat;
return
|
github
|
SenticNet/one-class-svm-master
|
svdd.m
|
.m
|
one-class-svm-master/dd_tools/svdd.m
| 4,393 |
utf_8
|
7d15dceb9662d7101722079a0313fd3a
|
%SVDD Support Vector Data Description
%
% W = SVDD(A,FRACREJ,SIGMA)
% W = A*SVDD([],FRACREJ,SIGMA)
% W = A*SVDD(FRACREJ,SIGMA)
%
% INPUT
% A One-class dataset
% FRACREJ Error on the target class (default = 0.1)
% SIGMA Width parameter in the RBF kernel (default = 5)
%
% OUTPUT
% W Support vector data description
%
% DESCRIPTION
% Optimizes a support vector data description for the dataset A by
% quadratic programming. The data description uses the Gaussian kernel
% by default. FRACREJ gives the fraction of the target set which will
% be rejected, when supplied FRACERR gives (an upper bound) for the
% fraction of data which is completely outside the description.
%
% Note: this version of the SVDD is not compatible with older dd_tools
% versions. This is to make the use of consistent_occ.m possible.
%
% Further note: this classifier is one of the few which can actually
% deal with example outlier objects!
%
% REFERENCE
%@article{Tax1999c,
% author = {Tax, D.M.J. and Duin, R.P.W},
% title = {Support vector domain description},
% journal = {Pattern Recognition Letters},
% year = {1999},volume = {20},
% number = {11-13},pages = {1191-1199}
%}
%
% SEE ALSO
% incsvdd, svdd_optrbf, dd_roc.
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
%function W = svdd(a,fracrej,sigma)
function W = svdd(varargin)
argin = shiftargin(varargin,'scalar');
argin = setdefaults(argin,[],0.1,5);
if mapping_task(argin,'definition')
W = define_mapping(argin,'untrained','SVDD');
elseif mapping_task(argin,'training')
[a,fracrej,sigma] = deal(argin{:});
if isempty(sigma)
error('This versions needs a sigma.');
end
% introduce outlier label for outlier class if it is available.
if isocset(a)
signlab = getoclab(a);
if all(signlab<0), error('SVDD needs target objects!'); end
else
%error('SVDD needs a one-class dataset.');
% Noo, be nice, everything is target:
signlab = ones(size(a,1),1);
%a = target_class(+a);
end
% check the rejection rates
if (length(fracrej)>2) % if no bound on the outlier error is given, we
if length(fracrej)~=length(signlab)
error('The length of C is not fitting.');
end
C = fracrej;
else
if (length(fracrej)<2) % if no bound on the outlier error is given, we
% do not care
fracrej(2) = 1;
end
if (fracrej(1)>1)
warning('dd_tools:AllReject',...
'Fracrej > 1? I cannot reject more than all my target data!');
end
% Setup the appropriate C's
if (fracrej(1)<0) %DXD: tricky trick....
C(1) = -fracrej(1);
C(2) = -fracrej(2);
else
nrtar = length(find(signlab==1));
nrout = length(find(signlab==-1));
% we could get divide by zero, but that is ok.
%warning off MATLAB:divideByZero;
C(1) = 1/(nrtar*fracrej(1));
C(2) = 1/(nrout*fracrej(2));
%warning on MATLAB:divideByZero;
end
end
% Find the alpha's
% Standard optimization procedure:
[alf,R2,Dx,J] = svdd_optrbf(sigma,+a,signlab,C);
SVx = +a(J,:);
alf = alf(J);
% Compute the offset (not important, but now gives the possibility to
% interpret the output as the distance to the center of the sphere)
offs = 1 + sum(sum((alf*alf').*exp(-sqeucldistm(SVx,SVx)/(sigma*sigma)),2));
% store the results
W.s = sigma;
W.a = alf;
W.threshold = offs+R2;
W.sv = SVx;
W.offs = offs;
W = prmapping(mfilename,'trained',W,char('target','outlier'),size(a,2),2);
W = setname(W,'SVDD');
elseif mapping_task(argin,'trained execution') %testing
[a,fracrej] = deal(argin{1:2});
W = getdata(fracrej);
m = size(a,1);
% check if alpha's are OK
if isempty(W.a)
warning('dd_tools:OptimFailed','The SVDD is empty or not well defined');
out = zeros(m,1);
else
% and here we go:
K = exp(-sqeucldistm(+a,W.sv)/(W.s*W.s));
out = W.offs - 2*sum( repmat(W.a',m,1).* K, 2);
end
newout = [out repmat(W.threshold,m,1)];
% Store the distance as output:
W = setdat(a,-newout,fracrej);
W = setfeatdom(W,{[-inf 0; -inf 0] [-inf 0; -inf 0]});
else
error('Illegal call to SVDD.');
end
return
|
github
|
SenticNet/one-class-svm-master
|
gendatoc.m
|
.m
|
one-class-svm-master/dd_tools/gendatoc.m
| 1,832 |
utf_8
|
2af0f2804f3cc1065009f1ed7e03a85d
|
%GENDATOC Generate a one-class dataset
%
% X = GENDATOC(Xt,Xo)
%
% INPUT
% Xt Data matrix
% Xo Data matrix
%
% OUTPUT
% X One-class dataset
%
% DESCRIPTION
% Generate the one-class dataset X from the two datasets Xt and Xo. Dataset
% Xt will be labelled 'target', and Xo will be labelled 'outlier'. It is
% possible to have Xt or Xo an empty dataset [], but not both at the same
% time, of course.
% Thus, X = GENDATOC([],X) will make X a dataset with only outlier objects.
%
% Note that X = GENDATOC(X) does the same as X = TARGET_CLASS(X) when X is
% a data matrix.
%
% SEE ALSO
% relabel, find_target, target_class
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function x = gendatoc(x_t,x_o)
if nargin < 2, x_o = []; end
[n_t,d1] = size(x_t);
[n_o,d2] = size(x_o);
% Because x_t or x_o can be empty, things become slightly complicated.
% Furthermore, take care for the feature labels...
if isempty(x_t) % we should get featlab from x_o
if isempty(x_o)
error('I need data to make a OC dataset');
end
if isdataset(x_o)
featlab = getfeatlab(x_o);
else
featlab = (1:d2)';
end
else % get the featlab from x_t, and check the dims.
if (~isempty(x_o)) && (d1 ~= d2)
error('Dimensionality of x_t and x_o do not match.');
end
if isdataset(x_t)
featlab = getfeatlab(x_t);
else
featlab = (1:d1)';
end
end
% Create the labels and finally the dataset itself
lab = [ones(n_t,1); repmat(2,n_o,1)];
lablist = ['target ';'outlier'];
x = prdataset([+x_t;+x_o],lablist(lab,:),'featlab',featlab);
x = setprior(x,getprior(x,0)); % is this good enough?
%DXD A thing still to consider is: what name should be given to the
%dataset?
return
|
github
|
SenticNet/one-class-svm-master
|
dd_f1.m
|
.m
|
one-class-svm-master/dd_tools/dd_f1.m
| 1,328 |
utf_8
|
a6ab3a364d8d2f70825d318cfd6ba1d6
|
%DD_F1 compute the F1 score
%
% E = DD_F1(X,W)
% E = DD_F1(X*W)
% E = X*W*DD_F1
%
% INPUT
% X One-class dataset
% W One-class classifier
%
% OUTPUT
% E F1 performance
%
% DESCRIPTION
% Compute the F1 score of a dataset, defined as:
% 2*precision*recall
% F1 = ------------------
% precision + recall
%
% SEE ALSO
% dd_error, dd_roc
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function e = dd_f1(x,w)
% Do it the same as testc:
% When no input arguments are given, we just return an empty mapping:
if nargin==0
e = prmapping(mfilename,'fixed');
e = setname(e,'F1');
return
elseif nargin == 1
% Now we are doing the actual work, our input is a mapped dataset:
% get the precision and recall:
[dummy,f] = dd_error(x);
% do some checks:
if ~isfinite(f(1))
warning('dd_tools:NonfiniteOutputs',...
'The precision is not finite (all data is classified as outlier)');
e = nan;
return;
end
if ~isfinite(f(2))
warning('dd_tools:NonfiniteOutputs',...
'The recall is not finite (no target data present?)');
e = nan;
return
end
% and compute F1:
e = (2*f(1)*f(2))/(f(1)+f(2));
else
ismapping(w);
istrained(w);
e = feval(mfilename,x*w);
end
return
|
github
|
SenticNet/one-class-svm-master
|
inckernel.m
|
.m
|
one-class-svm-master/dd_tools/inckernel.m
| 1,254 |
utf_8
|
8a1f1cc91511a0d84ee9919363086593
|
%INCKERNEL Kernel definition for incsvdd/incsvc
%
% K = INCKERNEL(PAR,I,J);
%
% INPUT
% PAR structure defining kernel type and parameters
% I,J index (i,j) in kernel
%
% OUTPUT
% K kernel value K(i,j)
%
% DESCRIPTION
% Computation of the kernel function for the incremental SVDD. It is
% assumed that there is a global variable X_incremental, containing the
% objects. This is to avoid unnecessary overhead for very large
% datasets. Therefore we will also not use the 'standard' ways to comute
% the kernel (i.e. proxm).
%
% For the definition of the kernel types, see dd_kernel.
%
% The index vectors I and J indicate between which objects in
% X_incremental the kernel should be computed.
%
% SEE ALSO
% dd_kernel, incsvdd, dd_proxm, Wstartup, Wadd
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function K = inckernel(par,I,J);
global X_incremental;
if isempty(X_incremental)
error('No data matrix X_incremental defined');
end
if isdataset(X_incremental);
error('Please make X_incremental a normal matlab array');
end
A = X_incremental(I,:);
B = X_incremental(J,:);
K = dd_kernel(A,B,par.type,par.s);
return
|
github
|
SenticNet/one-class-svm-master
|
unrandomize.m
|
.m
|
one-class-svm-master/dd_tools/unrandomize.m
| 1,011 |
utf_8
|
135113edf3db5e4d8cfb2c60a065157d
|
%UNRANDOMIZE 'Unrandomize' a dataset
%
% B = UNRANDOMIZE(A);
%
% INPUT
% A Dataset
%
% OUTPUT
% B Dataset
%
% DESCRIPTION
% Reorder the objects in dataset A such that objects of the two classes
% appear uniformly in the whole dataset. This is needed for the
% incremental SVC to avoid that first the SVC gets all objects of class
% +1, and after that all objects of class -1. The optimization becomes
% very tough and numerically instable by that.
%
% SEE ALSO
% incsvdd
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function a= unrandomize(a);
[n,k,c]=getsize(a);
if c~=2
error('Unrandomize requires just 2 classes.');
end
nlab = getnlab(a);
I1 = find(nlab==1);
I2 = find(nlab==2);
if length(I1)<length(I2)
cmin = length(I1);
else
cmin = length(I2);
tmpI = I1;
I1 = I2;
I2 = tmpI;
end
J=[];
J(1:2:2*cmin) = I1;
J(2:2:2*cmin) = I2(1:cmin);
J = [J,I2((cmin+1):end)'];
a = a(J,:);
return
|
github
|
SenticNet/one-class-svm-master
|
rankboostc.m
|
.m
|
one-class-svm-master/dd_tools/rankboostc.m
| 4,578 |
utf_8
|
aec9a75320d6a824b1e620eeb2ea839f
|
%RANKBOOSTC Binary rankboost
%
% W = RANKBOOSTC(A,FRACREJ,T)
% W = A*RANKBOOSTC([],FRACREJ,T)
% W = A*RANKBOOSTC(FRACREJ,T)
%
% INPUT
% A One-class dataset
% FRACREJ Error on the target class (default = 0.1)
% T Number of weak classifiers (default = 10)
%
% OUTPUT
% W Rankboost
%
% DESCRIPTION
% Train a simple binary version of rankboost containing T weak
% classifiers. The base (weak) classifiers only threshold a single
% feature.
%
% SEE ALSO
% dd_auc, auclpm
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
%function W = rankboostc(a,fracrej,T)
function W = rankboostc(varargin)
argin = shiftargin(varargin,'scalar');
argin = setdefaults(argin,[],0.1,10);
if mapping_task(argin,'definition')
[a,fracrej,T] = deal(argin{:});
W = define_mapping(argin,'untrained','Rankboost (T=%d)',T);
elseif mapping_task(argin,'training')
[a,fracrej,T] = deal(argin{:});
is_ocset(a)
%some other magic parameter: reduce the maximum weight to:
maxW = 1e6;
[m,k] = size(a);
y = 2*getnlab(a)-3;
Ipos = find(y==+1); % target
Ineg = find(y==-1); % outlier
Npos = length(Ipos);
Nneg = length(Ineg);
%the weights per pair can be decomposed by an outer product on
%vectors nu:
nu(Ipos,1) = 1/Npos;
nu(Ineg,1) = 1/Nneg;
% some warning, we will get confused by zero-variance directions:
% then we might suddenly get a good score, just by the fact that the
% original objects were well ordered in the dataset
Izerovariance = find(var(a)<=eps);
if ~isempty(Izerovariance)
warning(dd_tools:zeroVarianceFeatures,...
'Some features have zero variance; they will be ignored.');
end
%now train T weak rankers:
for i=1:T
% recompute the weights per pair
D = repmat(nu(Ipos),1,Nneg).*repmat(nu(Ineg)',Npos,1);
% train the weak ranker
w(i) = weakrank(a,D,Izerovariance);
% find its weight
if abs(w(i).r)<1
w(i).alf = 0.5*log(1+w(i).r) - 0.5*log(1-w(i).r+10*eps);
if w(i).alf > maxW, w(i).alf=maxW; end
if w(i).alf <-maxW, w(i).alf=-maxW; end
else
if w(i).r==1 % perfect solution, good order:
w(i).alf = +maxW;
else %w(i).r==-1, perfecto solution, negative order:
w(i).alf = -maxW;
end
end
% find the classifier output
h = (+a(:,w(i).featnr)>w(i).threshold);
% update the weights
n1 = nu(Ipos).*exp(-w(i).alf*h(Ipos));
nu(Ipos) = n1/sum(n1);
n2 = nu(Ineg).*exp(+w(i).alf*h(Ineg));
nu(Ineg) = n2/sum(n2);
% If it is perfectly separable, in principle we should stop, It
% think. But I am lazy and I just restart it:
if w(i).r==1
%disp('reset');
nu(Ipos) = 1/Npos;
nu(Ineg) = 1/Nneg;
end
end
% now evaluate the training set for the threshold:
out = zeros(Npos,1);
for i=1:length(w)
out = out + w(i).alf*(+a(Ipos,w(i).featnr)>w(i).threshold);
end
thr = dd_threshold(out,fracrej);
% store the results
W.w = w;
W.threshold = thr;
W = prmapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);
W = setname(W,'Rankboost (T=%d)',T);
elseif mapping_task(argin,'trained execution') %testing
[a,fracrej,T] = deal(argin{:});
% Unpack the mapping and dataset:
W = getdata(fracrej);
[m,k] = size(a);
% the boosting is a sum over simple feature-threshold classifiers:
out = zeros(m,1);
for i=1:length(W.w)
out = out + W.w(i).alf*(+a(:,W.w(i).featnr)>W.w(i).threshold);
end
% store the outcome, and pack it nicely:
out = [out repmat(W.threshold,m,1)];
W = setdat(a,out,fracrej);
W = setfeatdom(W,{[0 inf; 0 inf] [0 inf;0 inf]});
else
error('Illegal call to rankboostc.');
end
return
function w = weakrank(a,D,Izerovariance)
% W = WEAKRANK(A,D)
%
% Weak ranker, it only thresholds a single feature from dataset A.
% Matrix D contains the weights for each point-pair.
if nargin<3
Izerovariance = [];
end
[nra,n] = size(a);
y = getoclab(a);
Ipos = find(y==+1); % target
Ineg = find(y==-1); % outlier
% the weights pi:
p(Ipos) = -sum(D,2);
p(Ineg) = sum(D,1)';
% possible thresholds:first sort the data
[sa,I] = sort(+a,1);
% then re-sort also the pi:
pI = p(I);
% find the r,
r = cumsum(pI);
% suppress the features with zero variance:
if ~isempty(Izerovariance)
r(:,Izerovariance) = 0;
end
% find the best feature and threshold
[mxr,J] = max(abs(r));
% j is the feature number
[Rmax,j] = max(mxr);
% J is the threshold number
J = J(j);
% find the fitting threshold
if J>=nra
thr = sa(nra,j);
else
thr = (sa(J,j)+sa(J+1,j))/2;
end
% store it
w.featnr = j;
w.threshold = thr;
w.r = r(J,j);
w.alf = 0;
return
|
github
|
SenticNet/one-class-svm-master
|
incsvdd.m
|
.m
|
one-class-svm-master/dd_tools/incsvdd.m
| 3,343 |
utf_8
|
cfa3e2c2bd9db67acfae61bb61eed739
|
%INCSVDD Incremental Support Vector Data Description
%
% W = INCSVDD(A,FRACREJ,KTPYE,KPAR)
% W = A*INCSVDD([],FRACREJ,KTPYE,KPAR)
% W = A*INCSVDD(FRACREJ,KTPYE,KPAR)
%
% INPUT
% A One-class dataset
% FRACREJ Error on target class (default = 0.1)
% KTYPE Kernel type (default = 'p')
% KPAR Kernel parameter (default = 1)
%
% OUTPUT
% W Incremental SVDD
%
% DESCRIPTION
% Train an incremental support vector data description on dataset A.
% The C-parameter is set such that FRACREJ of the target points is
% rejected, using the formula:
% C = 1/(N*FRACREJ)
% The kernel (and its parameters) are defined by kernel type KTYPE and
% parameter(s) KPAR. For possible definitions of the kernel, see DD_KERNEL.
%
% REFERENCE
%@article{Tax1999c,
% author = {Tax, D.M.J. and Duin, R.P.W},
% title = {Support vector domain description},
% journal = {Pattern Recognition Letters},
% year = {1999},
% volume = {20},
% number = {11-13},
% pages = {1191-1199},
%}
% SEE ALSO
% dd_kernel, inc_add, inc_setup, inc_store
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
%function W = incsvdd(a,fracrej,ktype,kpar)
function W = incsvdd(varargin)
argin = shiftargin(varargin,'scalar');
argin = setdefaults(argin,[],0.1,'p',1);
if mapping_task(argin,'definition')
[a,fracrej,ktype,kpar]=deal(argin{:});
W = define_mapping(argin,'untrained','IncSVDD (%s)',...
getname(dd_proxm([],ktype,kpar)));
elseif mapping_task(argin,'training')
[a,fracrej,ktype,kpar]=deal(argin{:});
% be resistent against flipping of the third and forth input
% parameter (which may be used in consistent_occ.m
if isa(ktype,'double')
if (nargin<4)||~isa(kpar,'char'), kpar = 'r'; end
tmp = kpar;
kpar = ktype;
ktype = tmp;
end
% remove double objects... (should I give a warning??)
[B,I] = unique(+a,'rows');
if length(I)~=size(a,1),
a = a(I,:);
warning('dd_tools:incsvdd:RemoveDoubleObjects',...
'Some double objects in dataset are removed.');
end
dim = size(a,2);
%define C:
[It,Io] = find_target(a);
if length(fracrej)==1 % only error on the target class
if fracrej<0 % trick to define C directly
C = -fracrej;
else
C = 1/(length(It)*fracrej);
end
C = [C C];
else % use two different Cs for target and outlier class
if fracrej(1)<0,
C(1) = fracrej(1);
else
C(1) = 1/(length(It)*fracrej(1));
end
if fracrej(2)<0,
C(2) = fracrej(2);
else
C(2) = 1/(length(Io)*fracrej(2));
end
end
% do the adding:
W = inc_setup('svdd',ktype,kpar,C,+a,getoclab(a));
% store:
w = inc_store(W);
W = setname(w,'IncSVDD (%s)',getname(dd_proxm([],ktype,kpar)));
elseif mapping_task(argin,'trained execution')
[a,fracrej] = deal(argin{1:2});
% Now evaluate new objects:
W = getdata(fracrej); % unpack
[n,dim] = size(a);
out = repmat(W.offs,n,1);
for i=1:n
wa = dd_kernel(+a(i,:),W.sv,W.ktype,W.kpar);
out(i) = out(i) - 2*wa*W.alf + ...
dd_kernel(+a(i,:),+a(i,:),W.ktype,W.kpar);
end
if (W.threshold<0)
W.threshold = -W.threshold; % ...DXD hmmm
end
newout = [out repmat(W.threshold,n,1)];
% store:
W = setdat(a,-newout,fracrej);
W = setfeatdom(W,{[-inf 0;-inf 0] [-inf 0;-inf 0]});
else
error('Illegal call to incsvdd.');
end
|
github
|
SenticNet/one-class-svm-master
|
isocset.m
|
.m
|
one-class-svm-master/dd_tools/isocset.m
| 544 |
utf_8
|
f9bb86dbf1ced69b0754506c8769c1b2
|
%ISOCSET True for one-class datasets
%
% N = ISOCSET(A)
%
% INPUT
% A Dataset
%
% OUTPUT
% N 0/1 if A isn't/is a one-class dataset
%
% DESCRIPTION
% Exactly the same as IS_OCSET, so that you can use it with or without
% underscore in the name.
%
% SEE ALSO
% is_ocset
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function out = isocset(a)
if nargout>0
out = is_ocset(a);
else
is_ocset(a);
end
|
github
|
SenticNet/one-class-svm-master
|
dlpdda.m
|
.m
|
one-class-svm-master/dd_tools/dlpdda.m
| 4,805 |
utf_8
|
872c864b7b8f3ea5cad4550e3904156e
|
%DLPDDA Distance Linear Programming Data Description attracted by the Average distance
%
% W = DLPDDA(D,NU)
% W = D*DLPDDA([],NU)
% W = D*DLPDDA(NU)
%
% INPUT
% D Dissimilarity dataset
% NU Error fraction on target class (default = 0.1)
%
% OUTPUT
% W Distance LPDD
%
% DESCRIPTION
% This one-class classifier works directly on the distance (dissimilarity)
% matrix D(X,R). Every entry of D is a dissimilarity between an object from
% X and an object from R. X consists either of target examples or of both
% target and outlier examples. The same holds for R, however, for logical
% reasons, it might be better if R contains the targets only.
% The distance matrix D does not need to be square. The distance itself
% does not need to be metric.
%
% The DLPDDA is constructed as a hyperplane in the so-called dissimilarity
% space D(X,R), such that it is attracted towards the average dissimilarity
% output of the hyperplane. The data are still suppressed from above by
% this hyperplane. This one-class classifier is inspired by the Campbell
% and Bennett paper below. The setup of DLPDDA is similar to DLPDD, explained
% in our reference paper.
%
% The NU parameter gives the fraction of error on the target set.
% If NU = 0 and D is a square target distance matrix, then DLPDD and DLPDDA
% tend to give the same results.
%
% Although it is more or less assumed that the data is in the positive quadrant,
% you can put other data in as well and see how it may or may not work.
%
% EXAMPLE:
% X = OC_SET(GENDATB([40 20]),'1');
% I = FIND_TARGET(X);
% D = SQRT(DISTM(X,X(I,:))); % R <-- X(I,:), D is now 60 x 40
% W = DLPDDA(D,0.05);
%
% REFERENCES
%@inproceedings{Campbell2000,
% author = {Campbell, C. and Bennett, K.P.},
% title = {A Linear Programming Approach to Novelty Detection},
% year = {2000},
% pages = {395-401},
% booktitle = {Advances in Neural Information Processing Systems}
% publisher = {MIT Press: Cambridge, MA}
%}
% @inproceedings{Pekalska2002,
% author = {Pekalska, E. and Tax, D.M.J. and Duin, R.P.W.},
% title = {One-class {LP} classifier for dissimilarity representations},
% booktitle = {Advances in Neural Information Processing Systems},
% year = {2003},
% pages = {761-768},
% editor = {S.~Becker and S.~Thrun and K.~Obermayer},
% volume = {15},
% publisher = {MIT Press: Cambridge, MA}
%}
% SEE ALSO:
% LPDD, DD_EX5, DLPDD
% Copyright: E. Pekalska, D. Tax, [email protected]
% Faculty of Applied Physics, Delft University of Technology
% P.O. Box 5046, 2600 GA Delft, The Netherlands
%function W = dlpdda(x,nu,usematlab)
function W = dlpdda(varargin)
argin = shiftargin(varargin,'scalar');
argin = setdefaults(argin,[],0.1,0);
if mapping_task(argin,'definition')
W = define_mapping(argin,'untrained','DLPDDA');
elseif mapping_task(argin,'training')
[x,nu,usematlab] = deal(argin{:});
% work directly on the distance matrix
[n,d] = size(x);
% maybe we have example outliers...
if isocset(x)
labx = getoclab(x);
else
labx = ones(n,1);
end
x = +x; % no dataset please.
% set up the LP problem:
if nu > 0 & nu <= 1,
C = 1./(n*nu);
f = [1 -1 -sum(x,1)/d repmat(C,1,n)]';
A = [-labx labx repmat(labx,1,d).*x -eye(n)];
b = zeros(n,1);
Aeq = [0 0 ones(1,d) zeros(1,n)];
beq = 1;
N = n + d + 2;
lb = zeros(N,1);
ub = repmat(inf,N,1);
elseif nu == 0,
f = [1 -1 -sum(x,1)/d]';
A = [-labx labx repmat(labx,1,d).*x];
b = zeros(n,1);
Aeq = [0 0 ones(1,d)];
beq = 1;
N = d + 2;
lb = zeros(N,1);
ub = repmat(inf,N,1);
else
error ('Wrong nu.');
end
% optimize::
if (exist('lp_solve')>0) & (usematlab==0)
if ~exist('cplex_init')
% we can have the lp optimizer:
e = [0; -ones(d,1)];
[v,alf] = lp_solve(-f,sparse([Aeq;A]),[beq;b],e,lb,ub);
else
% the cplex optimizer:
lpenv=cplex_init;
disp = 0;
[alf,y_upd_,how_upd_,p_lp]=...
lp_solve(lpenv, f, sparse([Aeq;A]), [beq;b], lb, ub, 1, disp);
end
else
% or the good old Matlab optimizer:
opts = optimset('linprog');
opts.Display = 'off';
alf = linprog(f,A,b,Aeq,beq,lb,ub,[],opts);
end
% store the results
paramalf = alf(3:2+d);
W.I = find(paramalf>1e-8);
W.w = paramalf(W.I);
W.threshold = alf(1)-alf(2)+1e-12;
W = prmapping(mfilename,'trained',W,str2mat('target','outlier'),d,2);
W = setname(W,'DLPDDA');
elseif mapping_task(argin,'trained execution') %testing
[x,nu] = deal(argin{1:2});
% get the data:
W = getdata(nu);
m = size(x,1);
% and here we go:
D = +x(:,W.I);
% annoying prtools:
newout = [D*W.w repmat(W.threshold,m,1)];
% Store the distance as output:
W = setdat(x,-newout,fracrej);
W = setfeatdom(W,{[-inf 0;-inf 0] [-inf 0;-inf 0]});
else
error('Illegal call to DLPDDA');
end
return
|
github
|
SenticNet/one-class-svm-master
|
plotroc_update.m
|
.m
|
one-class-svm-master/dd_tools/plotroc_update.m
| 4,003 |
utf_8
|
d8ed5dd7ae04ed502abf5bc2ff4b8cea
|
% PLOTROC_UPDATE(W,A)
%
% Auxiliary function containing the callbacks for the plotroc.m.
%
% SEE ALSO
% plotroc
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function plotroc_update(w,a)
if isocc(w)
if ~isocset(a)
error('setthres: I should have a OC-dataset to set the threshold');
end
% Get the ROC data:
H = gcf;
% Prepare the figure for interaction:
% Store the old settings and setup the new ones:
UD = get(H,'userdata');
UD.units = get(H,'units');
set(H,'units','pixels')
h_ax = get(H,'children');
UD.ax_units = get(h_ax,'units');
set(h_ax,'units','pixels')
UD.sz = get(h_ax,'position');
UD.pointer = get(H,'pointer');
set(H,'pointer','crosshair')
UD.olddown = get(H,'Windowbuttondownfcn');
set(H,'Windowbuttondownfcn','plotroc_update(''keydown'')');
UD.oldmove = get(H,'Windowbuttonmotionfcn');
set(H,'Windowbuttonmotionfcn','plotroc_update(''keymove'')');
UD.w = w;
set(H,'userdata',UD);
% and some speedups?
set(H,'busyaction','cancel','DoubleBuffer','off');
else
if ~ischar(w)
error('I am expecting a string input');
end
switch(w)
case 'fix'
% Restore to original situation:
UD = get(gcbf,'userdata');
set(gcbf,'units',UD.units);
set(gcbf,'pointer',UD.pointer);
set(gcbf,'windowbuttondownfcn',UD.olddown);
set(gcbf,'windowbuttonmotionfcn',UD.oldmove);
h_ax = get(gcbf,'children');
set(h_ax,'units',UD.ax_units);
case 'keydown'
% When a mouse button is clicked, retrieve the operating point,
% update the classifier and return the classifier.
% Get the position of the temporary operating point:
htmp = findobj('tag','currpoint');
currx = get(htmp,'xdata');
curry = get(htmp,'ydata');
% Set the position of the operating point:
h = findobj('tag','OP');
set(h,'xdata',currx);
set(h,'ydata',curry);
% Find the position in the coordinate list:
UD = get(gcbf,'userdata');
%Ix = find(currx==UD.coords(:,1));
%Iy = find(curry==UD.coords(:,2));
%J = intersect(Ix,Iy);
% sometimes we didn't have a perfect match, use the closest
% object:
[minD,J] = min(sqeucldistm([currx curry],UD.coords));
if isempty(J)
error('I cannot recover the operating point');
end
if length(J)>1
error('Too many candidates');
end
% update the stored classifier:
W = UD.w; dat = W.data;
%DXD this is a hack!! But I don't feel like checking again if this
%classifier is distance based or density based
%oldt = dat.threshold
%newt = abs(UD.thresholds(J))
dat.threshold = abs(UD.thresholds(J));
ww = setdata(W,dat);
UD.w = ww;
set(gcbf,'userdata',UD);
%update the title
set(UD.h_title,'string','Set classifier to this operating point');
case 'keymove'
% When moving the cursor, the temporary operating point should
% move position:
% find the possible coordinates for the OP:
UD = get(gcbf,'userdata');
roc_x = UD.coords(:,1);
roc_y = UD.coords(:,2);
% Now find where the cursor is:
%h = get(0,'PointerWindow');
pos = get(0,'PointerLocation');
loc = get(gcbf,'position');
pos_x = (pos(1)-loc(1)-UD.sz(1))/UD.sz(3);
pos_y = (pos(2)-loc(2)-UD.sz(2))/UD.sz(4);
% and find the closest object on the curve (in terms of the
% x-feature):
dff = abs(roc_x-pos_x);
minD = min(dff);
J = find(dff==minD);
% if there are several points with minimum distance, take also the
% y-coordinate into account):
if length(J)>1
dff = abs(roc_y(J)-pos_y);
[minD,Jy] = min(dff);
J = J(Jy);
end
% Update the operating point:
h = findobj('tag','currpoint');
set(h,'visible','off');
set(h,'xdata',roc_x(J));
set(h,'ydata',roc_y(J));
set(h,'visible','on');
% Update the title
str = sprintf('(%5.3f, %5.3f)',roc_x(J),roc_y(J));
if pos_x>=0 && pos_x<=1 && pos_y>=0 && pos_y<=1
set(UD.h_title,'string',str);
set(UD.h_title,'color',[1 0 0]);
else
set(UD.h_title,'string','');
end
otherwise
error('Unknown type in imroc');
end
end
return
|
github
|
SenticNet/one-class-svm-master
|
autoenc_dd.m
|
.m
|
one-class-svm-master/dd_tools/autoenc_dd.m
| 2,643 |
utf_8
|
c7e0eb588df89acaff5800fe9c6fa31a
|
%AUTOENC_DD Auto-Encoder data description.
%
% W = AUTOENC_DD(A,FRACREJ,N)
% W = A*AUTOENC_DD([],FRACREJ,N)
% W = A*AUTOENC_DD(FRACREJ,N)
%
% INPUT
% A Dataset
% FRACREJ Fraction of target objects rejected (default = 0.1)
% N Number of hidden units (default = 5)
%
% OUTPUT
% W AutoEncoder network
%
% DESCRIPTION
% Train an Auto-Encoder network with N hidden units. The network should
% recover the original data A at its output. The difference between the
% network output and the original pattern (in MSE sense) is used as a
% charaterization of the class. The threshold on this measure is optimized
% such that FRACREJ of the training objects are rejected.
%
% REFERENCE
%@phdthesis{Tax2001a,
% author = {Tax, D.M.J.},
% title = {One-class classification},
% school = {Delft University of Technology},
% year = {2001},
% address = {http://www.ph.tn.tudelft.nl/\~{}davidt/thesis.pdf},
% month = {June}}
%
% SEE ALSO
% datasets, mappings, dd_roc
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
%function W = autoenc_dd(a,fracrej,N)
function W = autoenc_dd(varargin)
argin = shiftargin(varargin,'scalar');
argin = setdefaults(argin,[],0.1,5);
if mapping_task(argin,'definition') % empty mapping
W = define_mapping(argin,'untrained','Auto-encoder');
elseif mapping_task(argin,'training')
[a,fracrej,N] = deal(argin{:});
a = +target_class(a); % make sure a is an OC dataset
[nrx,dim] = size(a);
% set up the parameters for the network:
% old neural network toolbox settings:
% minmax = [min(a)' max(a)'];
% net = newff(minmax,[N dim],{'tansig','purelin'},'trainlm');
net = newff(a',a',N,{'tansig','purelin'},'trainbfg');
net = init(net);
net.trainParam.show = inf;
net.trainParam.showWindow = false;
net.trainParam.lr = 0.01;
net.trainParam.goal = 1e-5;
net = train(net,a',a');
% obtain the threshold:
aout = sim(net,a');
d = sum((a-aout').^2,2);
W.threshold = dd_threshold(d,1-fracrej);
%and save all useful data:
W.net = net;
W.scale = mean(d);
W = prmapping(mfilename,'trained',W,str2mat('target','outlier'),dim,2);
W = setname(W,'Auto-encoder (N=%d)',N);
elseif mapping_task(argin,'trained execution') %testing
[a,fracrej] = deal(argin{1:2});
W = getdata(fracrej); % unpack
m = size(a,1);
%compute distance:
out = sim(W.net,+a')';
out = [sum((a-out).^2,2) repmat(W.threshold,m,1)];
%store the distance as output:
W = setdat(a,-out,fracrej);
W = setfeatdom(W,{[-inf 0; -inf 0] [-inf 0; -inf 0]});
else
error('Illegal call to autoenc_dd.');
end
|
github
|
SenticNet/one-class-svm-master
|
mog_update.m
|
.m
|
one-class-svm-master/dd_tools/mog_update.m
| 970 |
utf_8
|
d06184a26ce64866f68d4388065a7cfc
|
%MOG_UPDATE Train a MoG
%
% W = MOG_UPDATE(W,X,MAXITER)
%
% INPUT
% W MoG mapping
% X One-class dataset
% MAXITER Number of EM iterations
%
% OUTPUT
% W Updated MoG mapping
%
% DESCRIPTION
% Fit a Mixture of Gaussians model W to data X, for MAXITER number of EM
% steps.
%
% SEE ALSO
% mog_dd, mog_init, mog_P, mog_extend, mogEMupdate
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function w = mog_update(w,x,maxiter)
% unpack it:
dat = w.data;
[xt,xo] = target_class(x);
% update the target class clusters:
[dat.mt,dat.ict,dat.pt] = mogEMupdate(+xt,dat.covtype,...
dat.mt,dat.ict,dat.pt,maxiter,0,dat.reg);
% update the outlier class clusters:
if isfield(dat,'mo') && ~isempty(xo)
[dat.mo,dat.ico,dat.po] = mogEMupdate(+xo,dat.covtype,...
dat.mo,dat.ico,dat.po,maxiter,1,dat.reg);
end
% pack it and return:
w.data = dat;
return
|
github
|
SenticNet/one-class-svm-master
|
roc2hit.m
|
.m
|
one-class-svm-master/dd_tools/roc2hit.m
| 1,142 |
utf_8
|
3dd784d876857cb48245e1a7a420c8f3
|
%ROC2HIT Conversion ROC to hit-rate/false-alarm curve
%
% P = ROC2HIT(R,N)
%
% INPUT
% R ROC curve
% N Number of target and outlier objects
%
% OUTPUT
% P Hit-rate/false-alarm curve
%
% DESCRIPTION
% Convert ROC curve R into a Hit-Rate/false-alarm graph P.
% This is only possible when you supply the number of positive and
% negative objects in N:
% N(1): number of positive/target objects
% N(2): number of negative/outier objects
%
% SEE ALSO
% roc2prc, dd_roc, dd_prc, plotroc
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function rnew = roc2hit(r,n)
if nargin<2
if isfield(r,'N')
n = r.N;
else
error('N is not defined.');
end
else
if length(n)~=2
error('N should contain a number for each class.');
end
end
% compute the hit rate:
hitrate = 1-r.err(:,1);
% and the false alarm rate:
FArate = r.N(2)*r.err(:,2)./(r.N(2)*r.err(:,2)+r.N(1)*hitrate);
% store it in a new curve:
rnew.type = 'hit';
rnew.op = [];
rnew.err = [hitrate FArate];
rnew.thrcoords = [];
rnew.thresholds = [];
|
github
|
SenticNet/one-class-svm-master
|
svddpath_opt.m
|
.m
|
one-class-svm-master/dd_tools/svddpath_opt.m
| 4,332 |
utf_8
|
42c11eaca25dae5460fadc4c5aaa0c9c
|
%SVDDPATH_OPT SVDD path of C
%
% [LAMBDA,ALF,B,O] = SVDDPATH_OPT(K,ENDLAMBDA)
%
% This is the optimization function for the weights in the SVDD by
% varying the lambda (C) parameter. Lambda is changed from the maximum
% (= the number of training objects) to the minimum, given by the user
% in ENDLAMBDA. The solution for the last Lambda is returned. ALF
% contains all the weights, B and O the indices of the objects that are
% on the boundary (B) or outside (O) the SVDD.
function [lambda,alf,B,O] = svddpath_opt(K,endLambda,ub)
if nargin<3
ub = [];
end
if nargin<2
endLambda = 0;
end
% initialize
tol = 1e-9;
m = size(K,1);
if isempty(ub)
ub = ones(m,1);
else
ub(ub<=0) = tol; % stability later...
ub = m*ub/sum(ub); %normalize
end
% all objects in O:
alf = ub;
lambda = sum(ub);
O = (1:m)';
% the rest is empty:
B = [];
I = [];
lastsituation = 0;
% save for inspection reasons:
ll = lambda;
% GO!
while (lambda>0)
if isempty(B)
% No support objects on the boundary, take the first one from O:
nrO = length(O);
f_cand = diag(K(O,O)) - 2*K(O,:)*alf/lambda...
+ sum(sum((alf*alf').*K))/(lambda*lambda);
[fmin,obj] = min(f_cand);
% move it in B:
B = O(obj);
O(obj) = [];
%message(3,'EMPTY B, exceptional situation 3: move %d from O to B.\n', obj);
end
% Compute the 'sensitivities':
k = B(1);
Bmink = B(2:end);
Y = K - repmat(K(k,:),m,1);
y = diag(K) - K(k,k);
Z = eye(m);
%Z(Bmink,Bmink) = Y(Bmink,Bmink); % wrong!
Z(B,B) = Y(B,B);
Z(k,:) = ones(1,m);
z = zeros(m,1);
z(Bmink) = y(Bmink);
z(k) = 2;
W = zeros(m,m);
W(Bmink,O) = -Y(Bmink,O);
W(O,O) = eye(size(O,1));
% here the expensive part:
iZ = inv(Z);
p = iZ*z/2;
q = iZ*W*ub;
% consistency check:
if max(abs(sum(alf)*p+q-alf))>tol
disp('p and q do not reproduce the orig. solution!');
keyboard
end
% situation 1, B to I, alf becomes 0:
lambda1 = -q(B)./p(B);
lambda1(lambda1>lambda) = -inf;
% okok, check if we are not inversing the last thing we did:
if (lastsituation==4)
obj=find(B==lastobj);
lambda1(obj) = -inf;
end
[lambda1,obj1] = max(lambda1);
% situation 2, B to O, alf becomes upper bounded:
lambda2 = (ub(B)-q(B))./p(B);
% we are a bit more strict here: we don't want to move an object from
% B to O:
lambda2(lambda2>=lambda) = -inf;
% okok, check if we are not inversing the last thing we did:
if (lastsituation==3)
obj=find(B==lastobj);
lambda2(obj) = -inf;
end
[lambda2,obj2] = max(lambda2);
% situation 3, O to B, from bounded to unbounded SV:
if ~isempty(O)
lambda3 = (2*Y(O,:)*q)./(y(O) - 2*Y(O,:)*p);
lambda3(lambda3>lambda) = -inf;
% okok, check if we are not inversing the last thing we did:
if (lastsituation==2)
obj=find(O==lastobj);
lambda3(obj) = -inf;
end
[lambda3,obj3] = max(lambda3);
else
lambda3 = -inf;
end
% situation 4, I to B, from rest to unbounded SV:
if ~isempty(I)
lambda4 = (2*Y(I,:)*q)./(y(I) - 2*Y(I,:)*p);
lambda4(lambda4>lambda) = -inf;
% okok, check if we are not inversing the last thing we did:
if (lastsituation==1)
obj=find(I==lastobj);
lambda4(obj) = -inf;
end
[lambda4,obj4] = max(lambda4);
else
lambda4 = -inf;
end
% which is the most pressing object?
%oldlambda = lambda;
%oldI = I; oldB = B; oldO = O; oldalf = alf;
[lambda,situation] = max([lambda1 lambda2 lambda3 lambda4]);
%message(3,'situation %d\n',situation);
% maybe we already obtained lambda=0?
if lambda<=endLambda
%disp('End!');
break;
end
ll = [ll;lambda];
% update the weights:
alf = lambda*p + q;
if any(alf<-tol)
disp('Some alphas became <0.');
keyboard;
end
if any(alf>ub+tol)
disp('Some alphas became > upper bound.');
keyboard;
end
% and move the object:
switch situation
case 1
lastsituation = 1; lastobj = B(obj1);
I = [I; B(obj1)];
B(obj1) = [];
case 2
lastsituation = 2; lastobj = B(obj2);
O = [O; B(obj2)];
B(obj2) = [];
case 3
lastsituation = 3; lastobj = O(obj3);
B = [B; O(obj3)];
O(obj3) = [];
case 4
lastsituation = 4; lastobj = I(obj4);
B = [B; I(obj4)];
I(obj4) = [];
end
% what about 'cleaning' the weights, to avoid numerical
% instabilities?
%sum1=sum(alf);
if ~isempty(O)
alf(O) = ub(O);
end
if ~isempty(I)
alf(I) = 0;
end
lambda = sum(alf);
%message(4,'Cleaning weights, change=%e\n',abs(lambda-sum1));
end
lambda = ll;
return
|
github
|
SenticNet/one-class-svm-master
|
nparzen_dd.m
|
.m
|
one-class-svm-master/dd_tools/nparzen_dd.m
| 3,087 |
utf_8
|
8a29fdf04e296ad525f206c3e41a0b05
|
%NPARZEN_DD Naive Parzen data description.
%
% W = NPARZEN_DD(A,FRACREJ,H)
% W = A*NPARZEN_DD([],FRACREJ,H)
% W = A*NPARZEN_DD(FRACREJ,H)
%
% INPUT
% A One-class dataset
% FRACREJ Error on the target class (default = 0.1)
% H Width parameter (default = [])
%
% OUTPUT
% W Naive Parzen model
%
% DESCRIPTION
% Fit a Parzen density on each individual feature in dataset A and
% multiply the results for the final density estimate. This is similar
% to the Naive Bayes approach used for classification.
% The threshold is put such that FRACREJ of the target objects is
% rejected.
%
% If the width parameter is known, it can be given as third parameter,
% otherwise it is optimized using parzenml.
%
% SEE ALSO
% parzen_dd, dd_roc
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
%function W = nparzen_dd(a,fracrej,h)
function W = nparzen_dd(varargin)
argin = shiftargin(varargin,'scalar');
argin = setdefaults(argin,[],0.1,[]);
if mapping_task(argin,'definition') % Define mapping
W = define_mapping(argin,'untrained','Naive Parzen');
elseif mapping_task(argin,'training') % Train a mapping.
[a,fracrej,h] = deal(argin{:});
% Make sure a is an OC dataset:
a = target_class(a);
k = size(a,2);
% Train it:
if isempty(h)
for i=1:k
h(i) = parzenml(+a(:,i));
%DXD BAD patch!!
% When the dataset contains identical objects, or when it
% contains discrete features, the optimization of h using LOO
% will fail. h -> NaN. If that is the case, I patch it and
% replace h(i) by a small value
% Actually, in the future I should implement that the features
% are discrete (so, define it in the dataset) and use a
% discrete probability density here.
if ~isfinite(h(i))
h(i) = 1e-12;
end
end
end
% check if h is not the correct size:
if length(h)~=k
error('NParzen_dd expects k smoothing parameters');
end
% Get the mappings:
w = {};
for i=1:k
w{i} = prmapping('parzen_map','trained',{a(:,i), h(i)}, 'target',1,1);
end
% Map the training data and obtain the threshold:
d = zeros(size(a));
for i=1:k
d(:,i) = +(a(:,i)*w{i});
end
s = warning('off'); % these annoying 0 densities...
p = sum(log(d),2);
warning(s);
thr = dd_threshold(p,fracrej);
%and save all useful data:
W.w = w;
W.h = h;
W.threshold = thr;
W = prmapping(mfilename,'trained',W,str2mat('target','outlier'),k,2);
W = setname(W,'NaiveParzen');
elseif mapping_task(argin,'trained execution') %testing
[a,fracrej] = deal(argin{1:2});
W = getdata(fracrej); % unpack
[m,k] = size(a);
%compute:
d = zeros(size(a));
for i=1:k
d(:,i) = +(a(:,i)*W.w{i});
end
s = warning('off'); % these annoying 0 densities...
out = sum(log(d),2);
warning(s);
newout = [out, repmat(W.threshold,m,1)];
newout=exp(newout);
% Store the density:
W = setdat(a,newout,fracrej);
W = setfeatdom(W,{[0 inf; 0 inf] [0 inf; 0 inf]});
else
error('Illegal call to nparzen_dd.');
end
return
|
github
|
SenticNet/one-class-svm-master
|
find_target.m
|
.m
|
one-class-svm-master/dd_tools/find_target.m
| 1,047 |
utf_8
|
1e480b414b57be9001a0b3d74f77d256
|
%FIND_TARGET extract the indices of the target and outlier objects
%
% [It,Io] = FIND_TARGET(A)
% [It,Io] = FIND_TARGET(LAB)
%
% INPUT
% A One-class dataset
% LAB A label vector with 'target' and/or 'outlier'
%
% OUTPUT
% It Indices of target objects
% Io Indices of outlier objects
%
% DESCRIPTION
% Return the indices of the objects from dataset A which are labeled
% 'target' and 'outlier' in the index vectors It and Io respectively. A
% warning is given when no target objects can be found.
%
% It also works when no dataset but a label matrix LAB is given.
%
% SEE ALSO
% istarget, isocset, gendatoc, oc_set
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [I1,I2] = find_target(a)
% first find the logical vector of target objects:
I = istarget(a);
% extract the indices:
I1 = find(I);
% if requested, also find the outliers:
if (nargout>1)
I2 = find(~I);
end
return
|
github
|
SenticNet/one-class-svm-master
|
simpleprc.m
|
.m
|
one-class-svm-master/dd_tools/simpleprc.m
| 2,772 |
utf_8
|
8c28a91db8df0af5a61a8d015a454821
|
%SIMPLEPRC Basic precision-recall characteristic curve
%
% F = SIMPLEPRC(PRED,TRUELAB)
%
% INPUT
% PRED Prediction of a classifier
% TRUELAB True labels
%
% OUTPUT
% F Precision-recall graph
%
% DESCRIPTION
% Compute the PR curve for the network output PRED, given the true
% labels TRUELAB. TRUELAB should contain 0-1 values. When TRUELAB=0,
% then we should have (PRED<some_threshold) , and when TRUELAB=1, we
% should get (PRED>some_threshold). Output F contains [Prec Rec].
%
% This version returns a vector of the same length as PRED and
% TRUELAB. Maybe this will be shortened/subsampled in the future.
%
% Some speedups and improvements by G. Bombara <[email protected]>
%
% SEE ALSO
% simpleroc, dd_prc, plotroc
% Copyright: D.M.J. Tax, [email protected]
% Faculty EWI, Delft University of Technology
% P.O. Box 5031, 2600 GA Delft, The Netherlands
function [f,thr] = simpleprc(netout,truelab)
% Check the size of the netout vector
if size(netout,2)~=1
netout = netout';
if size(netout,2)~=1
error('Please make netout a column vector.');
end
end
% Collect all sizes:
n = size(netout,1);
n_t = sum(truelab);
% Sort the netout:
[sout,I] = sort(-netout);
% and therefore also reorder the true labels accordingly
slab = truelab(I);
% Make the index arrays for the target and outlier objects:
slabt = slab;
slabo = ~slab;
% Check if there are identical outputs, and ...
[uout,~,J] = unique(sout);
% Change the slab such that the identical values are on top of each other
if size(uout,1)<n
%warning('dd_tools:NoUniqueROC',...
% 'There are identical values in NETOUT, the ROC is not uniquely defined.');
n = size(uout,1);
slabt2 = zeros(n,1);
slabo2 = zeros(n,1);
Sidx=1;
J = [J; -1];
for j=1:n % count how many of each of the values occur, and store
% the approprate number in slabt2 and slabo2:
Ji=Sidx;
i = Sidx+1;
while J(i)==j;
Ji(end+1) = i;
i = i+1;
end
Sidx=i;
slabt2(j) = sum(slabt(Ji));
slabo2(j) = sum(slabo(Ji));
end
slabt = slabt2;
slabo = slabo2;
end
%slabt 1110011101 0001001000000
%slabo 0001100010 1110110111111
% + <-----------+-------------
%TP= 111 111 1
%FP= 11 1
%FN= 1 1
%
% precision = TP/(TP+FP)
% recall = TP/(TP+FN)
cslabt = cumsum(slabt);
cslabo = cumsum(slabo);
prec = cslabt./(cslabt+cslabo);
rec = cslabt/n_t;
f = [prec rec];
% fix beginning of the curve
uout = [uout(1)-10*eps(uout(1)); uout];
f = [NaN 0 ; f];
% reorder and flip sign of vectors to have a consistent output with simpleroc
f = flipud(f);
uout = flipud(-uout);
% On request, also the thresholds are returned:
if nargout>1
thr = uout;
end
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.