plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
songyouwei/coursera-machine-learning-assignments-master
loadubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
saveubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
songyouwei/coursera-machine-learning-assignments-master
submit.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex5/ex5/submit.m
1,765
utf_8
b1804fe5854d9744dca981d250eda251
function submit() addpath('./lib'); conf.assignmentSlug = 'regularized-linear-regression-and-bias-variance'; conf.itemName = 'Regularized Linear Regression and Bias/Variance'; conf.partArrays = { ... { ... '1', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Cost Function', ... }, ... { ... '2', ... { 'linearRegCostFunction.m' }, ... 'Regularized Linear Regression Gradient', ... }, ... { ... '3', ... { 'learningCurve.m' }, ... 'Learning Curve', ... }, ... { ... '4', ... { 'polyFeatures.m' }, ... 'Polynomial Feature Mapping', ... }, ... { ... '5', ... { 'validationCurve.m' }, ... 'Validation Curve', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases X = [ones(10,1) sin(1:1.5:15)' cos(1:1.5:15)']; y = sin(1:3:30)'; Xval = [ones(10,1) sin(0:1.5:14)' cos(0:1.5:14)']; yval = sin(1:10)'; if partId == '1' [J] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', J); elseif partId == '2' [J, grad] = linearRegCostFunction(X, y, [0.1 0.2 0.3]', 0.5); out = sprintf('%0.5f ', grad); elseif partId == '3' [error_train, error_val] = ... learningCurve(X, y, Xval, yval, 1); out = sprintf('%0.5f ', [error_train(:); error_val(:)]); elseif partId == '4' [X_poly] = polyFeatures(X(2,:)', 8); out = sprintf('%0.5f ', X_poly); elseif partId == '5' [lambda_vec, error_train, error_val] = ... validationCurve(X, y, Xval, yval); out = sprintf('%0.5f ', ... [lambda_vec(:); error_train(:); error_val(:)]); end end
github
songyouwei/coursera-machine-learning-assignments-master
submitWithConfiguration.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex5/ex5/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
songyouwei/coursera-machine-learning-assignments-master
savejson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex5/ex5/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
songyouwei/coursera-machine-learning-assignments-master
loadjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex5/ex5/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
loadubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex5/ex5/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
saveubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex5/ex5/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
songyouwei/coursera-machine-learning-assignments-master
submit.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex3/ex3/submit.m
1,567
utf_8
1dba733a05282b2db9f2284548483b81
function submit() addpath('./lib'); conf.assignmentSlug = 'multi-class-classification-and-neural-networks'; conf.itemName = 'Multi-class Classification and Neural Networks'; conf.partArrays = { ... { ... '1', ... { 'lrCostFunction.m' }, ... 'Regularized Logistic Regression', ... }, ... { ... '2', ... { 'oneVsAll.m' }, ... 'One-vs-All Classifier Training', ... }, ... { ... '3', ... { 'predictOneVsAll.m' }, ... 'One-vs-All Classifier Prediction', ... }, ... { ... '4', ... { 'predict.m' }, ... 'Neural Network Prediction Function' ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxdata) % Random Test Cases X = [ones(20,1) (exp(1) * sin(1:1:20))' (exp(0.5) * cos(1:1:20))']; y = sin(X(:,1) + X(:,2)) > 0; Xm = [ -1 -1 ; -1 -2 ; -2 -1 ; -2 -2 ; ... 1 1 ; 1 2 ; 2 1 ; 2 2 ; ... -1 1 ; -1 2 ; -2 1 ; -2 2 ; ... 1 -1 ; 1 -2 ; -2 -1 ; -2 -2 ]; ym = [ 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 ]'; t1 = sin(reshape(1:2:24, 4, 3)); t2 = cos(reshape(1:2:40, 4, 5)); if partId == '1' [J, grad] = lrCostFunction([0.25 0.5 -0.5]', X, y, 0.1); out = sprintf('%0.5f ', J); out = [out sprintf('%0.5f ', grad)]; elseif partId == '2' out = sprintf('%0.5f ', oneVsAll(Xm, ym, 4, 0.1)); elseif partId == '3' out = sprintf('%0.5f ', predictOneVsAll(t1, Xm)); elseif partId == '4' out = sprintf('%0.5f ', predict(t1, t2, Xm)); end end
github
songyouwei/coursera-machine-learning-assignments-master
submitWithConfiguration.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex3/ex3/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
songyouwei/coursera-machine-learning-assignments-master
savejson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex3/ex3/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
songyouwei/coursera-machine-learning-assignments-master
loadjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex3/ex3/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
loadubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex3/ex3/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
saveubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex3/ex3/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
songyouwei/coursera-machine-learning-assignments-master
submit.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex8/ex8/submit.m
2,135
utf_8
eebb8c0a1db5a4df20b4c858603efad6
function submit() addpath('./lib'); conf.assignmentSlug = 'anomaly-detection-and-recommender-systems'; conf.itemName = 'Anomaly Detection and Recommender Systems'; conf.partArrays = { ... { ... '1', ... { 'estimateGaussian.m' }, ... 'Estimate Gaussian Parameters', ... }, ... { ... '2', ... { 'selectThreshold.m' }, ... 'Select Threshold', ... }, ... { ... '3', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Cost', ... }, ... { ... '4', ... { 'cofiCostFunc.m' }, ... 'Collaborative Filtering Gradient', ... }, ... { ... '5', ... { 'cofiCostFunc.m' }, ... 'Regularized Cost', ... }, ... { ... '6', ... { 'cofiCostFunc.m' }, ... 'Regularized Gradient', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId, auxstring) % Random Test Cases n_u = 3; n_m = 4; n = 5; X = reshape(sin(1:n_m*n), n_m, n); Theta = reshape(cos(1:n_u*n), n_u, n); Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u); R = Y > 0.5; pval = [abs(Y(:)) ; 0.001; 1]; Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed yval = [R(:) ; 1; 0]; params = [X(:); Theta(:)]; if partId == '1' [mu sigma2] = estimateGaussian(X); out = sprintf('%0.5f ', [mu(:); sigma2(:)]); elseif partId == '2' [bestEpsilon bestF1] = selectThreshold(yval, pval); out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]); elseif partId == '3' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', J(:)); elseif partId == '4' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 0); out = sprintf('%0.5f ', grad(:)); elseif partId == '5' [J] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', J(:)); elseif partId == '6' [J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ... n, 1.5); out = sprintf('%0.5f ', grad(:)); end end
github
songyouwei/coursera-machine-learning-assignments-master
submitWithConfiguration.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex8/ex8/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
songyouwei/coursera-machine-learning-assignments-master
savejson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex8/ex8/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
songyouwei/coursera-machine-learning-assignments-master
loadjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex8/ex8/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
loadubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex8/ex8/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
saveubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex8/ex8/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
songyouwei/coursera-machine-learning-assignments-master
submit.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex1/ex1/submit.m
1,876
utf_8
8d1c467b830a89c187c05b121cb8fbfd
function submit() addpath('./lib'); conf.assignmentSlug = 'linear-regression'; conf.itemName = 'Linear Regression with Multiple Variables'; conf.partArrays = { ... { ... '1', ... { 'warmUpExercise.m' }, ... 'Warm-up Exercise', ... }, ... { ... '2', ... { 'computeCost.m' }, ... 'Computing Cost (for One Variable)', ... }, ... { ... '3', ... { 'gradientDescent.m' }, ... 'Gradient Descent (for One Variable)', ... }, ... { ... '4', ... { 'featureNormalize.m' }, ... 'Feature Normalization', ... }, ... { ... '5', ... { 'computeCostMulti.m' }, ... 'Computing Cost (for Multiple Variables)', ... }, ... { ... '6', ... { 'gradientDescentMulti.m' }, ... 'Gradient Descent (for Multiple Variables)', ... }, ... { ... '7', ... { 'normalEqn.m' }, ... 'Normal Equations', ... }, ... }; conf.output = @output; submitWithConfiguration(conf); end function out = output(partId) % Random Test Cases X1 = [ones(20,1) (exp(1) + exp(2) * (0.1:0.1:2))']; Y1 = X1(:,2) + sin(X1(:,1)) + cos(X1(:,2)); X2 = [X1 X1(:,2).^0.5 X1(:,2).^0.25]; Y2 = Y1.^0.5 + Y1; if partId == '1' out = sprintf('%0.5f ', warmUpExercise()); elseif partId == '2' out = sprintf('%0.5f ', computeCost(X1, Y1, [0.5 -0.5]')); elseif partId == '3' out = sprintf('%0.5f ', gradientDescent(X1, Y1, [0.5 -0.5]', 0.01, 10)); elseif partId == '4' out = sprintf('%0.5f ', featureNormalize(X2(:,2:4))); elseif partId == '5' out = sprintf('%0.5f ', computeCostMulti(X2, Y2, [0.1 0.2 0.3 0.4]')); elseif partId == '6' out = sprintf('%0.5f ', gradientDescentMulti(X2, Y2, [-0.1 -0.2 -0.3 -0.4]', 0.01, 10)); elseif partId == '7' out = sprintf('%0.5f ', normalEqn(X2, Y2)); end end
github
songyouwei/coursera-machine-learning-assignments-master
submitWithConfiguration.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex1/ex1/lib/submitWithConfiguration.m
5,562
utf_8
4ac719ea6570ac228ea6c7a9c919e3f5
function submitWithConfiguration(conf) addpath('./lib/jsonlab'); parts = parts(conf); fprintf('== Submitting solutions | %s...\n', conf.itemName); tokenFile = 'token.mat'; if exist(tokenFile, 'file') load(tokenFile); [email token] = promptToken(email, token, tokenFile); else [email token] = promptToken('', '', tokenFile); end if isempty(token) fprintf('!! Submission Cancelled\n'); return end try response = submitParts(conf, email, token, parts); catch e = lasterror(); fprintf('\n!! Submission failed: %s\n', e.message); fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ... e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line); fprintf('\nPlease correct your code and resubmit.\n'); return end if isfield(response, 'errorMessage') fprintf('!! Submission failed: %s\n', response.errorMessage); elseif isfield(response, 'errorCode') fprintf('!! Submission failed: %s\n', response.message); else showFeedback(parts, response); save(tokenFile, 'email', 'token'); end end function [email token] = promptToken(email, existingToken, tokenFile) if (~isempty(email) && ~isempty(existingToken)) prompt = sprintf( ... 'Use token from last successful submission (%s)? (Y/n): ', ... email); reenter = input(prompt, 's'); if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y') token = existingToken; return; else delete(tokenFile); end end email = input('Login (email address): ', 's'); token = input('Token: ', 's'); end function isValid = isValidPartOptionIndex(partOptions, i) isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions)); end function response = submitParts(conf, email, token, parts) body = makePostBody(conf, email, token, parts); submissionUrl = submissionUrl(); responseBody = getResponse(submissionUrl, body); jsonResponse = validateResponse(responseBody); response = loadjson(jsonResponse); end function body = makePostBody(conf, email, token, parts) bodyStruct.assignmentSlug = conf.assignmentSlug; bodyStruct.submitterEmail = email; bodyStruct.secret = token; bodyStruct.parts = makePartsStruct(conf, parts); opt.Compact = 1; body = savejson('', bodyStruct, opt); end function partsStruct = makePartsStruct(conf, parts) for part = parts partId = part{:}.id; fieldName = makeValidFieldName(partId); outputStruct.output = conf.output(partId); partsStruct.(fieldName) = outputStruct; end end function [parts] = parts(conf) parts = {}; for partArray = conf.partArrays part.id = partArray{:}{1}; part.sourceFiles = partArray{:}{2}; part.name = partArray{:}{3}; parts{end + 1} = part; end end function showFeedback(parts, response) fprintf('== \n'); fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback'); fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------'); for part = parts score = ''; partFeedback = ''; partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id)); partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id)); score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore); fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback); end evaluation = response.evaluation; totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore); fprintf('== --------------------------------\n'); fprintf('== %43s | %9s | %-s\n', '', totalScore, ''); fprintf('== \n'); end % use urlread or curl to send submit results to the grader and get a response function response = getResponse(url, body) % try using urlread() and a secure connection params = {'jsonBody', body}; [response, success] = urlread(url, 'post', params); if (success == 0) % urlread didn't work, try curl & the peer certificate patch if ispc % testing note: use 'jsonBody =' for a test case json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url); else % it's linux/OS X, so use the other form json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url); end % get the response body for the peer certificate patch method [code, response] = system(json_command); % test the success code if (code ~= 0) fprintf('[error] submission with curl() was not successful\n'); end end end % validate the grader's response function response = validateResponse(resp) % test if the response is json or an HTML page isJson = length(resp) > 0 && resp(1) == '{'; isHtml = findstr(lower(resp), '<html'); if (isJson) response = resp; elseif (isHtml) % the response is html, so it's probably an error message printHTMLContents(resp); error('Grader response is an HTML message'); else error('Grader sent no response'); end end % parse a HTML response and print it's contents function printHTMLContents(response) strippedResponse = regexprep(response, '<[^>]+>', ' '); strippedResponse = regexprep(strippedResponse, '[\t ]+', ' '); fprintf(strippedResponse); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Service configuration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function submissionUrl = submissionUrl() submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1'; end
github
songyouwei/coursera-machine-learning-assignments-master
savejson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex1/ex1/lib/jsonlab/savejson.m
17,462
utf_8
861b534fc35ffe982b53ca3ca83143bf
function json=savejson(rootname,obj,varargin) % % json=savejson(rootname,obj,filename) % or % json=savejson(rootname,obj,opt) % json=savejson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a JSON (JavaScript % Object Notation) string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09 % % $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array). % filename: a string for the file name to save the output JSON data. % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.FloatFormat ['%.10g'|string]: format to show each numeric element % of a 1D/2D array; % opt.ArrayIndent [1|0]: if 1, output explicit data array with % precedent indentation; if 0, no indentation % opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [0|1]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern % to represent +/-Inf. The matched pattern is '([-+]*)Inf' % and $1 represents the sign. For those who want to use % 1e999 to represent Inf, they can set opt.Inf to '$11e999' % opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern % to represent NaN % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSONP='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode. % opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs) % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a string in the JSON format (see http://json.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % savejson('jmesh',jsonmesh) % savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); if(jsonopt('Compact',0,opt)==1) whitespaces=struct('tab','','newline','','sep',','); end if(~isfield(opt,'whitespaces_')) opt.whitespaces_=whitespaces; end nl=whitespaces.newline; json=obj2json(rootname,obj,rootlevel,opt); if(rootisarray) json=sprintf('%s%s',json,nl); else json=sprintf('{%s%s%s}\n',nl,json,nl); end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=sprintf('%s(%s);%s',jsonp,json,nl); end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) if(jsonopt('SaveBinary',0,opt)==1) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); else fid = fopen(opt.FileName, 'wt'); fwrite(fid,json,'char'); end fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2json(name,item,level,varargin) if(iscell(item)) txt=cell2json(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2json(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2json(name,item,level,varargin{:}); else txt=mat2json(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2json(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); nl=ws.newline; if(len>1) if(~isempty(name)) txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name=''; else txt=sprintf('%s[%s',padding0,nl); end elseif(len==0) if(~isempty(name)) txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name=''; else txt=sprintf('%s[]',padding0); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:})); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end %if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=struct2json(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding0=repmat(ws.tab,1,level); padding2=repmat(ws.tab,1,level+1); padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1)); nl=ws.newline; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding0,nl); end end for j=1:dim(2) if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl); else txt=sprintf('%s%s{%s',txt,padding1,nl); end if(~isempty(names)) for e=1:length(names) txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})); if(e<length(names)) txt=sprintf('%s%s',txt,','); end txt=sprintf('%s%s',txt,nl); end end txt=sprintf('%s%s}',txt,padding1); if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end end if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end %%------------------------------------------------------------------------- function txt=str2json(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(~isempty(name)) if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end else if(len>1) txt=sprintf('%s[%s',padding1,nl); end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len if(isoct) val=regexprep(item(e,:),'\\','\\'); val=regexprep(val,'"','\"'); val=regexprep(val,'^"','\"'); else val=regexprep(item(e,:),'\\','\\\\'); val=regexprep(val,'"','\\"'); val=regexprep(val,'^"','\\"'); end val=escapejsonstring(val); if(len==1) obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"']; if(isempty(name)) obj=['"',val,'"']; end txt=sprintf('%s%s%s%s',txt,padding1,obj); else txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']); end if(e==len) sep=''; end txt=sprintf('%s%s',txt,sep); end if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end %%------------------------------------------------------------------------- function txt=mat2json(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); padding1=repmat(ws.tab,1,level); padding0=repmat(ws.tab,1,level+1); nl=ws.newline; sep=ws.sep; if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:})) if(isempty(name)) txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); else txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',... padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl); end else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0) numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']',''); else numtxt=matdata2json(item,level+1,varargin{:}); end if(isempty(name)) txt=sprintf('%s%s',padding1,numtxt); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); else txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt); end end return; end dataformat='%s%s%s%s%s'; if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); end txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep); if(size(item,1)==1) % Row vector, store only column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([iy(:),data'],level+2,varargin{:}), nl); elseif(size(item,2)==1) % Column vector, store only row indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,data],level+2,varargin{:}), nl); else % General case, store row and column indices. txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([ix,iy,data],level+2,varargin{:}), nl); end else if(isreal(item)) txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json(item(:)',level+2,varargin{:}), nl); else txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep); txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',... matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl); end end txt=sprintf('%s%s%s',txt,padding1,'}'); %%------------------------------------------------------------------------- function txt=matdata2json(mat,level,varargin) ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')); ws=jsonopt('whitespaces_',ws,varargin{:}); tab=ws.tab; nl=ws.newline; if(size(mat,1)==1) pre=''; post=''; level=level-1; else pre=sprintf('[%s',nl); post=sprintf('%s%s]',nl,repmat(tab,1,level-1)); end if(isempty(mat)) txt='null'; return; end floatformat=jsonopt('FloatFormat','%.10g',varargin{:}); %if(numel(mat)>1) formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]]; %else % formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]]; %end if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1) formatstr=[repmat(tab,1,level) formatstr]; end txt=sprintf(formatstr,mat'); txt(end-length(nl):end)=[]; if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1) txt=regexprep(txt,'1','true'); txt=regexprep(txt,'0','false'); end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],\n[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end txt=[pre txt post]; if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function newstr=escapejsonstring(str) newstr=str; isoct=exist('OCTAVE_VERSION','builtin'); if(isoct) vv=sscanf(OCTAVE_VERSION,'%f'); if(vv(1)>=3.8) isoct=0; end end if(isoct) escapechars={'\a','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},escapechars{i}); end else escapechars={'\a','\b','\f','\n','\r','\t','\v'}; for i=1:length(escapechars); newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\')); end end
github
songyouwei/coursera-machine-learning-assignments-master
loadjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex1/ex1/lib/jsonlab/loadjson.m
18,732
ibm852
ab98cf173af2d50bbe8da4d6db252a20
function data = loadjson(fname,varargin) % % data=loadjson(fname,opt) % or % data=loadjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2011/09/09, including previous works from % % Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713 % created on 2009/11/02 % François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393 % created on 2009/03/22 % Joel Feenstra: % http://www.mathworks.com/matlabcentral/fileexchange/20565 % created on 2008/07/03 % % $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a JSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.FastArrayParser [1|0 or integer]: if set to 1, use a % speed-optimized array parser when loading an % array object. The fast array parser may % collapse block arrays into a single large % array similar to rules defined in cell2mat; 0 to % use a legacy parser; if set to a larger-than-1 % value, this option will specify the minimum % dimension to enable the fast array parser. For % example, if the input is a 3D array, setting % FastArrayParser to 1 will return a 3D array; % setting to 2 will return a cell array of 2D % arrays; setting to 3 will return to a 2D cell % array of 1D vectors; setting to 4 will return a % 3D cell array. % opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}') % dat=loadjson(['examples' filesep 'example1.json']) % dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); if(jsonopt('ShowProgress',0,opt)==1) opt.progressbar_=waitbar(0,'loading ...'); end jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end if(isfield(opt,'progressbar_')) close(opt.progressbar_); end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=data(j).x0x5F_ArraySize_; if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; if next_char ~= '}' while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end parse_char(':'); val = parse_value(varargin{:}); eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' break; end parse_char(','); end end parse_char('}'); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim2=[]; arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:}); pbar=jsonopt('progressbar_',-1,varargin{:}); if next_char ~= ']' if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:})) [endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos); arraystr=['[' inStr(pos:endpos)]; arraystr=regexprep(arraystr,'"_NaN_"','NaN'); arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf'); arraystr(arraystr==sprintf('\n'))=[]; arraystr(arraystr==sprintf('\r'))=[]; %arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D astr=inStr((e1l+1):(e1r-1)); astr=regexprep(astr,'"_NaN_"','NaN'); astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf'); astr(astr==sprintf('\n'))=[]; astr(astr==sprintf('\r'))=[]; astr(astr==' ')=''; if(isempty(find(astr=='[', 1))) % array is 2D dim2=length(sscanf(astr,'%f,',[1 inf])); end else % array is 1D astr=arraystr(2:end-1); astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]); if(nextidx>=length(astr)-1) object=obj; pos=endpos; parse_char(']'); return; end end if(~isempty(dim2)) astr=arraystr; astr(astr=='[')=''; astr(astr==']')=''; astr(astr==' ')=''; [obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf); if(nextidx>=length(astr)-1) object=reshape(obj,dim2,numel(obj)/dim2)'; pos=endpos; parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end return; end end arraystr=regexprep(arraystr,'\]\s*,','];'); else arraystr='['; end try if(isoct && regexp(arraystr,'"','once')) error('Octave eval can produce empty cells for JSON-like input'); end object=eval(arraystr); pos=endpos; catch while 1 newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1); val = parse_value(newopt); object{end+1} = val; if next_char == ']' break; end parse_char(','); end end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end parse_char(']'); if(pbar>0) waitbar(pos/length(inStr),pbar,'loading ...'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr len esc index_esc len_esc % len, ns = length(inStr), keyboard if inStr(pos) ~= '"' error_pos('String starting with " expected at position %d'); else pos = pos + 1; end str = ''; while pos <= len while index_esc <= len_esc && esc(index_esc) < pos index_esc = index_esc + 1; end if index_esc > len_esc str = [str inStr(pos:len)]; pos = len + 1; break; else str = [str inStr(pos:esc(index_esc)-1)]; pos = esc(index_esc); end nstr = length(str); switch inStr(pos) case '"' pos = pos + 1; if(~isempty(str)) if(strcmp(str,'_Inf_')) str=Inf; elseif(strcmp(str,'-_Inf_')) str=-Inf; elseif(strcmp(str,'_NaN_')) str=NaN; end end return; case '\' if pos+1 > len error_pos('End of file reached right after escape character'); end pos = pos + 1; switch inStr(pos) case {'"' '\' '/'} str(nstr+1) = inStr(pos); pos = pos + 1; case {'b' 'f' 'n' 'r' 't'} str(nstr+1) = sprintf(['\' inStr(pos)]); pos = pos + 1; case 'u' if pos+4 > len error_pos('End of file reached in escaped unicode character'); end str(nstr+(1:6)) = inStr(pos-1:pos+4); pos = pos + 5; end otherwise % should never happen str(nstr+1) = inStr(pos), keyboard pos = pos + 1; end end error_pos('End of file while expecting end of inStr'); %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct currstr=inStr(pos:end); numstr=0; if(isoct~=0) numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end'); [num, one] = sscanf(currstr, '%f', 1); delta=numstr+1; else [num, one, err, delta] = sscanf(currstr, '%f', 1); if ~isempty(err) error_pos('Error reading number at position %d'); end end pos = pos + delta-1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; pbar=jsonopt('progressbar_',-1,varargin{:}); if(pbar>0) waitbar(pos/len,pbar,'loading ...'); end switch(inStr(pos)) case '"' val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'-','0','1','2','3','4','5','6','7','8','9'} val = parse_number(varargin{:}); return; case 't' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true') val = true; pos = pos + 4; return; end case 'f' if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false') val = false; pos = pos + 5; return; end case 'n' if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null') val = []; pos = pos + 4; return; end end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
loadubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex1/ex1/lib/jsonlab/loadubjson.m
15,574
utf_8
5974e78e71b81b1e0f76123784b951a4
function data = loadubjson(fname,varargin) % % data=loadubjson(fname,opt) % or % data=loadubjson(fname,'param1',value1,'param2',value2,...) % % parse a JSON (JavaScript Object Notation) file or string % % authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/01 % % $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % fname: input file name, if fname contains "{}" or "[]", fname % will be interpreted as a UBJSON string % opt: a struct to store parsing options, opt can be replaced by % a list of ('param',value) pairs - the param string is equivallent % to a field in opt. opt can have the following % fields (first in [.|.] is the default) % % opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat % for each element of the JSON data, and group % arrays based on the cell2mat rules. % opt.IntEndian [B|L]: specify the endianness of the integer fields % in the UBJSON input data. B - Big-Endian format for % integers (as required in the UBJSON specification); % L - input integer fields are in Little-Endian order. % % output: % dat: a cell array, where {...} blocks are converted into cell arrays, % and [...] are converted to arrays % % examples: % obj=struct('string','value','array',[1 2 3]); % ubjdata=saveubjson('obj',obj); % dat=loadubjson(ubjdata) % dat=loadubjson(['examples' filesep 'example1.ubj']) % dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1) % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian if(regexp(fname,'[\{\}\]\[]','once')) string=fname; elseif(exist(fname,'file')) fid = fopen(fname,'rb'); string = fread(fid,inf,'uint8=>char')'; fclose(fid); else error('input file does not exist'); end pos = 1; len = length(string); inStr = string; isoct=exist('OCTAVE_VERSION','builtin'); arraytoken=find(inStr=='[' | inStr==']' | inStr=='"'); jstr=regexprep(inStr,'\\\\',' '); escquote=regexp(jstr,'\\"'); arraytoken=sort([arraytoken escquote]); % String delimiters and escape chars identified to improve speed: esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]'); index_esc = 1; len_esc = length(esc); opt=varargin2struct(varargin{:}); fileendian=upper(jsonopt('IntEndian','B',opt)); [os,maxelem,systemendian]=computer; jsoncount=1; while pos <= len switch(next_char) case '{' data{jsoncount} = parse_object(opt); case '[' data{jsoncount} = parse_array(opt); otherwise error_pos('Outer level structure must be an object or an array'); end jsoncount=jsoncount+1; end % while jsoncount=length(data); if(jsoncount==1 && iscell(data)) data=data{1}; end if(~isempty(data)) if(isstruct(data)) % data can be a struct array data=jstruct2array(data); elseif(iscell(data)) data=jcell2array(data); end end %% function newdata=parse_collection(id,data,obj) if(jsoncount>0 && exist('data','var')) if(~iscell(data)) newdata=cell(1); newdata{1}=data; data=newdata; end end %% function newdata=jcell2array(data) len=length(data); newdata=data; for i=1:len if(isstruct(data{i})) newdata{i}=jstruct2array(data{i}); elseif(iscell(data{i})) newdata{i}=jcell2array(data{i}); end end %%------------------------------------------------------------------------- function newdata=jstruct2array(data) fn=fieldnames(data); newdata=data; len=length(data); for i=1:length(fn) % depth-first for j=1:len if(isstruct(getfield(data(j),fn{i}))) newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i}))); end end end if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn))) newdata=cell(len,1); for j=1:len ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_); iscpx=0; if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn))) if(data(j).x0x5F_ArrayIsComplex_) iscpx=1; end end if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn))) if(data(j).x0x5F_ArrayIsSparse_) if(~isempty(strmatch('x0x5F_ArraySize_',fn))) dim=double(data(j).x0x5F_ArraySize_); if(iscpx && size(ndata,2)==4-any(dim==1)) ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end)); end if isempty(ndata) % All-zeros sparse ndata=sparse(dim(1),prod(dim(2:end))); elseif dim(1)==1 % Sparse row vector ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end))); elseif dim(2)==1 % Sparse column vector ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end))); else % Generic sparse array. ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end))); end else if(iscpx && size(ndata,2)==4) ndata(:,3)=complex(ndata(:,3),ndata(:,4)); end ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3)); end end elseif(~isempty(strmatch('x0x5F_ArraySize_',fn))) if(iscpx && size(ndata,2)==2) ndata=complex(ndata(:,1),ndata(:,2)); end ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_); end newdata{j}=ndata; end if(len==1) newdata=newdata{1}; end end %%------------------------------------------------------------------------- function object = parse_object(varargin) parse_char('{'); object = []; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); % TODO pos=pos+2; end if(next_char == '#') pos=pos+1; count=double(parse_number()); end if next_char ~= '}' num=0; while 1 str = parseStr(varargin{:}); if isempty(str) error_pos('Name of value at position %d cannot be empty'); end %parse_char(':'); val = parse_value(varargin{:}); num=num+1; eval( sprintf( 'object.%s = val;', valid_field(str) ) ); if next_char == '}' || (count>=0 && num>=count) break; end %parse_char(','); end end if(count==-1) parse_char('}'); end %%------------------------------------------------------------------------- function [cid,len]=elem_info(type) id=strfind('iUIlLdD',type); dataclass={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; if(id>0) cid=dataclass{id}; len=bytelen(id); else error_pos('unsupported type at position %d'); end %%------------------------------------------------------------------------- function [data adv]=parse_block(type,count,varargin) global pos inStr isoct fileendian systemendian [cid,len]=elem_info(type); datastr=inStr(pos:pos+len*count-1); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end id=strfind('iUIlLdD',type); if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,cid)); end data=typecast(newdata,cid); adv=double(len*count); %%------------------------------------------------------------------------- function object = parse_array(varargin) % JSON array is written in row-major order global pos inStr isoct parse_char('['); object = cell(0, 1); dim=[]; type=''; count=-1; if(next_char == '$') type=inStr(pos+1); pos=pos+2; end if(next_char == '#') pos=pos+1; if(next_char=='[') dim=parse_array(varargin{:}); count=prod(double(dim)); else count=double(parse_number()); end end if(~isempty(type)) if(count>=0) [object adv]=parse_block(type,count,varargin{:}); if(~isempty(dim)) object=reshape(object,dim); end pos=pos+adv; return; else endpos=matching_bracket(inStr,pos); [cid,len]=elem_info(type); count=(endpos-pos)/len; [object adv]=parse_block(type,count,varargin{:}); pos=pos+adv; parse_char(']'); return; end end if next_char ~= ']' while 1 val = parse_value(varargin{:}); object{end+1} = val; if next_char == ']' break; end %parse_char(','); end end if(jsonopt('SimplifyCell',0,varargin{:})==1) try oldobj=object; object=cell2mat(object')'; if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0) object=oldobj; elseif(size(object,1)>1 && ndims(object)==2) object=object'; end catch end end if(count==-1) parse_char(']'); end %%------------------------------------------------------------------------- function parse_char(c) global pos inStr len skip_whitespace; if pos > len || inStr(pos) ~= c error_pos(sprintf('Expected %c at position %%d', c)); else pos = pos + 1; skip_whitespace; end %%------------------------------------------------------------------------- function c = next_char global pos inStr len skip_whitespace; if pos > len c = []; else c = inStr(pos); end %%------------------------------------------------------------------------- function skip_whitespace global pos inStr len while pos <= len && isspace(inStr(pos)) pos = pos + 1; end %%------------------------------------------------------------------------- function str = parseStr(varargin) global pos inStr esc index_esc len_esc % len, ns = length(inStr), keyboard type=inStr(pos); if type ~= 'S' && type ~= 'C' && type ~= 'H' error_pos('String starting with S expected at position %d'); else pos = pos + 1; end if(type == 'C') str=inStr(pos); pos=pos+1; return; end bytelen=double(parse_number()); if(length(inStr)>=pos+bytelen-1) str=inStr(pos:pos+bytelen-1); pos=pos+bytelen; else error_pos('End of file while expecting end of inStr'); end %%------------------------------------------------------------------------- function num = parse_number(varargin) global pos inStr len isoct fileendian systemendian id=strfind('iUIlLdD',inStr(pos)); if(isempty(id)) error_pos('expecting a number at position %d'); end type={'int8','uint8','int16','int32','int64','single','double'}; bytelen=[1,1,2,4,8,4,8]; datastr=inStr(pos+1:pos+bytelen(id)); if(isoct) newdata=int8(datastr); else newdata=uint8(datastr); end if(id<=5 && fileendian~=systemendian) newdata=swapbytes(typecast(newdata,type{id})); end num=typecast(newdata,type{id}); pos = pos + bytelen(id)+1; %%------------------------------------------------------------------------- function val = parse_value(varargin) global pos inStr len true = 1; false = 0; switch(inStr(pos)) case {'S','C','H'} val = parseStr(varargin{:}); return; case '[' val = parse_array(varargin{:}); return; case '{' val = parse_object(varargin{:}); if isstruct(val) if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact'))) val=jstruct2array(val); end elseif isempty(val) val = struct; end return; case {'i','U','I','l','L','d','D'} val = parse_number(varargin{:}); return; case 'T' val = true; pos = pos + 1; return; case 'F' val = false; pos = pos + 1; return; case {'Z','N'} val = []; pos = pos + 1; return; end error_pos('Value expected at position %d'); %%------------------------------------------------------------------------- function error_pos(msg) global pos inStr len poShow = max(min([pos-15 pos-1 pos pos+20],len),1); if poShow(3) == poShow(2) poShow(3:4) = poShow(2)+[0 -1]; % display nothing after end msg = [sprintf(msg, pos) ': ' ... inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ]; error( ['JSONparser:invalidFormat: ' msg] ); %%------------------------------------------------------------------------- function str = valid_field(str) global isoct % From MATLAB doc: field names must begin with a letter, which may be % followed by any combination of letters, digits, and underscores. % Invalid characters will be converted to underscores, and the prefix % "x0x[Hex code]_" will be added if the first character is not a letter. pos=regexp(str,'^[^A-Za-z]','once'); if(~isempty(pos)) if(~isoct) str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once'); else str=sprintf('x0x%X_%s',char(str(1)),str(2:end)); end end if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end if(~isoct) str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_'); else pos=regexp(str,'[^0-9A-Za-z_]'); if(isempty(pos)) return; end str0=str; pos0=[0 pos(:)' length(str)]; str=''; for i=1:length(pos) str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))]; end if(pos(end)~=length(str)) str=[str str0(pos0(end-1)+1:pos0(end))]; end end %str(~isletter(str) & ~('0' <= str & str <= '9')) = '_'; %%------------------------------------------------------------------------- function endpos = matching_quote(str,pos) len=length(str); while(pos<len) if(str(pos)=='"') if(~(pos>1 && str(pos-1)=='\')) endpos=pos; return; end end pos=pos+1; end error('unmatched quotation mark'); %%------------------------------------------------------------------------- function [endpos e1l e1r maxlevel] = matching_bracket(str,pos) global arraytoken level=1; maxlevel=level; endpos=0; bpos=arraytoken(arraytoken>=pos); tokens=str(bpos); len=length(tokens); pos=1; e1l=[]; e1r=[]; while(pos<=len) c=tokens(pos); if(c==']') level=level-1; if(isempty(e1r)) e1r=bpos(pos); end if(level==0) endpos=bpos(pos); return end end if(c=='[') if(isempty(e1l)) e1l=bpos(pos); end level=level+1; maxlevel=max(maxlevel,level); end if(c=='"') pos=matching_quote(tokens,pos+1); end pos=pos+1; end if(endpos==0) error('unmatched "]"'); end
github
songyouwei/coursera-machine-learning-assignments-master
saveubjson.m
.m
coursera-machine-learning-assignments-master/machine-learning-ex1/ex1/lib/jsonlab/saveubjson.m
16,123
utf_8
61d4f51010aedbf97753396f5d2d9ec0
function json=saveubjson(rootname,obj,varargin) % % json=saveubjson(rootname,obj,filename) % or % json=saveubjson(rootname,obj,opt) % json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...) % % convert a MATLAB object (cell, struct or array) into a Universal % Binary JSON (UBJSON) binary string % % author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu) % created on 2013/08/17 % % $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $ % % input: % rootname: the name of the root-object, when set to '', the root name % is ignored, however, when opt.ForceRootName is set to 1 (see below), % the MATLAB variable name will be used as the root name. % obj: a MATLAB object (array, cell, cell array, struct, struct array) % filename: a string for the file name to save the output UBJSON data % opt: a struct for additional options, ignore to use default values. % opt can have the following fields (first in [.|.] is the default) % % opt.FileName [''|string]: a file name to save the output JSON data % opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D % array in JSON array format; if sets to 1, an % array will be shown as a struct with fields % "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for % sparse arrays, the non-zero elements will be % saved to _ArrayData_ field in triplet-format i.e. % (ix,iy,val) and "_ArrayIsSparse_" will be added % with a value of 1; for a complex array, the % _ArrayData_ array will include two columns % (4 for sparse) to record the real and imaginary % parts, and also "_ArrayIsComplex_":1 is added. % opt.ParseLogical [1|0]: if this is set to 1, logical array elem % will use true/false rather than 1/0. % opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single % numerical element will be shown without a square % bracket, unless it is the root object; if 0, square % brackets are forced for any numerical arrays. % opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson % will use the name of the passed obj variable as the % root object name; if obj is an expression and % does not have a name, 'root' will be used; if this % is set to 0 and rootname is empty, the root level % will be merged down to the lower level. % opt.JSONP [''|string]: to generate a JSONP output (JSON with padding), % for example, if opt.JSON='foo', the JSON data is % wrapped inside a function call as 'foo(...);' % opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson % back to the string form % % opt can be replaced by a list of ('param',value) pairs. The param % string is equivallent to a field in opt and is case sensitive. % output: % json: a binary string in the UBJSON format (see http://ubjson.org) % % examples: % jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],... % 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],... % 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;... % 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],... % 'MeshCreator','FangQ','MeshTitle','T6 Cube',... % 'SpecialData',[nan, inf, -inf]); % saveubjson('jsonmesh',jsonmesh) % saveubjson('jsonmesh',jsonmesh,'meshdata.ubj') % % license: % BSD, see LICENSE_BSD.txt files for details % % -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab) % if(nargin==1) varname=inputname(1); obj=rootname; if(isempty(varname)) varname='root'; end rootname=varname; else varname=inputname(2); end if(length(varargin)==1 && ischar(varargin{1})) opt=struct('FileName',varargin{1}); else opt=varargin2struct(varargin{:}); end opt.IsOctave=exist('OCTAVE_VERSION','builtin'); rootisarray=0; rootlevel=1; forceroot=jsonopt('ForceRootName',0,opt); if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0) rootisarray=1; rootlevel=0; else if(isempty(rootname)) rootname=varname; end end if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot) rootname='root'; end json=obj2ubjson(rootname,obj,rootlevel,opt); if(~rootisarray) json=['{' json '}']; end jsonp=jsonopt('JSONP','',opt); if(~isempty(jsonp)) json=[jsonp '(' json ')']; end % save to a file if FileName is set, suggested by Patrick Rapin if(~isempty(jsonopt('FileName','',opt))) fid = fopen(opt.FileName, 'wb'); fwrite(fid,json); fclose(fid); end %%------------------------------------------------------------------------- function txt=obj2ubjson(name,item,level,varargin) if(iscell(item)) txt=cell2ubjson(name,item,level,varargin{:}); elseif(isstruct(item)) txt=struct2ubjson(name,item,level,varargin{:}); elseif(ischar(item)) txt=str2ubjson(name,item,level,varargin{:}); else txt=mat2ubjson(name,item,level,varargin{:}); end %%------------------------------------------------------------------------- function txt=cell2ubjson(name,item,level,varargin) txt=''; if(~iscell(item)) error('input is not a cell'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); % let's handle 1D cell first if(len>1) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) '[']; name=''; else txt='['; end elseif(len==0) if(~isempty(name)) txt=[S_(checkname(name,varargin{:})) 'Z']; name=''; else txt='Z'; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})]; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=struct2ubjson(name,item,level,varargin) txt=''; if(~isstruct(item)) error('input is not a struct'); end dim=size(item); if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now item=reshape(item,dim(1),numel(item)/dim(1)); dim=size(item); end len=numel(item); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end for j=1:dim(2) if(dim(1)>1) txt=[txt '[']; end for i=1:dim(1) names = fieldnames(item(i,j)); if(~isempty(name) && len==1) txt=[txt S_(checkname(name,varargin{:})) '{']; else txt=[txt '{']; end if(~isempty(names)) for e=1:length(names) txt=[txt obj2ubjson(names{e},getfield(item(i,j),... names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})]; end end txt=[txt '}']; end if(dim(1)>1) txt=[txt ']']; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=str2ubjson(name,item,level,varargin) txt=''; if(~ischar(item)) error('input is not a string'); end item=reshape(item, max(size(item),[1 0])); len=size(item,1); if(~isempty(name)) if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end else if(len>1) txt='['; end end isoct=jsonopt('IsOctave',0,varargin{:}); for e=1:len val=item(e,:); if(len==1) obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),'']; if(isempty(name)) obj=['',S_(val),'']; end txt=[txt,'',obj]; else txt=[txt,'',['',S_(val),'']]; end end if(len>1) txt=[txt ']']; end %%------------------------------------------------------------------------- function txt=mat2ubjson(name,item,level,varargin) if(~isnumeric(item) && ~islogical(item)) error('input is not an array'); end if(length(size(item))>2 || issparse(item) || ~isreal(item) || ... isempty(item) || jsonopt('ArrayToStruct',0,varargin{:})) cid=I_(uint32(max(size(item)))); if(isempty(name)) txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ]; else if(isempty(item)) txt=[S_(checkname(name,varargin{:})),'Z']; return; else txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))]; end end else if(isempty(name)) txt=matdata2ubjson(item,level+1,varargin{:}); else if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1) numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']',''); txt=[S_(checkname(name,varargin{:})) numtxt]; else txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})]; end end return; end if(issparse(item)) [ix,iy]=find(item); data=full(item(find(item))); if(~isreal(item)) data=[real(data(:)),imag(data(:))]; if(size(item,1)==1) % Kludge to have data's 'transposedness' match item's. % (Necessary for complex row vector handling below.) data=data'; end txt=[txt,S_('_ArrayIsComplex_'),'T']; end txt=[txt,S_('_ArrayIsSparse_'),'T']; if(size(item,1)==1) % Row vector, store only column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([iy(:),data'],level+2,varargin{:})]; elseif(size(item,2)==1) % Column vector, store only row indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,data],level+2,varargin{:})]; else % General case, store row and column indices. txt=[txt,S_('_ArrayData_'),... matdata2ubjson([ix,iy,data],level+2,varargin{:})]; end else if(isreal(item)) txt=[txt,S_('_ArrayData_'),... matdata2ubjson(item(:)',level+2,varargin{:})]; else txt=[txt,S_('_ArrayIsComplex_'),'T']; txt=[txt,S_('_ArrayData_'),... matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})]; end end txt=[txt,'}']; %%------------------------------------------------------------------------- function txt=matdata2ubjson(mat,level,varargin) if(isempty(mat)) txt='Z'; return; end if(size(mat,1)==1) level=level-1; end type=''; hasnegtive=(mat<0); if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0))) if(isempty(hasnegtive)) if(max(mat(:))<=2^8) type='U'; end end if(isempty(type)) % todo - need to consider negative ones separately id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]); if(isempty(find(id))) error('high-precision data is not yet supported'); end key='iIlL'; type=key(find(id)); end txt=[I_a(mat(:),type,size(mat))]; elseif(islogical(mat)) logicalval='FT'; if(numel(mat)==1) txt=logicalval(mat+1); else txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')]; end else if(numel(mat)==1) txt=['[' D_(mat) ']']; else txt=D_a(mat(:),'D',size(mat)); end end %txt=regexprep(mat2str(mat),'\s+',','); %txt=regexprep(txt,';',sprintf('],[')); % if(nargin>=2 && size(mat,1)>1) % txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']); % end if(any(isinf(mat(:)))) txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:})); end if(any(isnan(mat(:)))) txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:})); end %%------------------------------------------------------------------------- function newname=checkname(name,varargin) isunpack=jsonopt('UnpackHex',1,varargin{:}); newname=name; if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once'))) return end if(isunpack) isoct=jsonopt('IsOctave',0,varargin{:}); if(~isoct) newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}'); else pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start'); pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end'); if(isempty(pos)) return; end str0=name; pos0=[0 pend(:)' length(name)]; newname=''; for i=1:length(pos) newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))]; end if(pos(end)~=length(name)) newname=[newname str0(pos0(end-1)+1:pos0(end))]; end end end %%------------------------------------------------------------------------- function val=S_(str) if(length(str)==1) val=['C' str]; else val=['S' I_(int32(length(str))) str]; end %%------------------------------------------------------------------------- function val=I_(num) if(~isinteger(num)) error('input is not an integer'); end if(num>=0 && num<255) val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')]; return; end key='iIlL'; cid={'int8','int16','int32','int64'}; for i=1:4 if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1))) val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')]; return; end end error('unsupported integer'); %%------------------------------------------------------------------------- function val=D_(num) if(~isfloat(num)) error('input is not a float'); end if(isa(num,'single')) val=['d' data2byte(num,'uint8')]; else val=['D' data2byte(num,'uint8')]; end %%------------------------------------------------------------------------- function data=I_a(num,type,dim,format) id=find(ismember('iUIlL',type)); if(id==0) error('unsupported integer array'); end % based on UBJSON specs, all integer types are stored in big endian format if(id==1) data=data2byte(swapbytes(int8(num)),'uint8'); blen=1; elseif(id==2) data=data2byte(swapbytes(uint8(num)),'uint8'); blen=1; elseif(id==3) data=data2byte(swapbytes(int16(num)),'uint8'); blen=2; elseif(id==4) data=data2byte(swapbytes(int32(num)),'uint8'); blen=4; elseif(id==5) data=data2byte(swapbytes(int64(num)),'uint8'); blen=8; end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/blen)) data(:)']; end data=['[' data(:)']; else data=reshape(data,blen,numel(data)/blen); data(2:blen+1,:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function data=D_a(num,type,dim,format) id=find(ismember('dD',type)); if(id==0) error('unsupported float array'); end if(id==1) data=data2byte(single(num),'uint8'); elseif(id==2) data=data2byte(double(num),'uint8'); end if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2)) format='opt'; end if((nargin<4 || strcmp(format,'opt')) && numel(num)>1) if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2)))) cid=I_(uint32(max(dim))); data=['$' type '#' I_a(dim,cid(1)) data(:)']; else data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)']; end data=['[' data]; else data=reshape(data,(id*4),length(data)/(id*4)); data(2:(id*4+1),:)=data; data(1,:)=type; data=data(:)'; data=['[' data(:)' ']']; end %%------------------------------------------------------------------------- function bytes=data2byte(varargin) bytes=typecast(varargin{:}); bytes=bytes(:)';
github
yuanxy92/ConvexOptimization-master
l1_ls_nonneg.m
.m
ConvexOptimization-master/3rd/l1_ls_matlab/l1_ls_nonneg.m
7,985
utf_8
a65d1f604b6bb3e700f967b4eed0ba79
function [x,status,history] = l1_ls_nonneg(A,varargin) % % l1-Regularized Least Squares Problem Solver % % l1_ls solves problems of the following form: % % minimize ||A*x-y||^2 + lambda*sum(x_i), % subject to x_i >= 0, i=1,...,n % % where A and y are problem data and x is variable (described below). % % CALLING SEQUENCES % [x,status,history] = l1_ls_nonneg(A,y,lambda [,tar_gap[,quiet]]) % [x,status,history] = l1_ls_nonneg(A,At,m,n,y,lambda, [,tar_gap,[,quiet]])) % % if A is a matrix, either sequence can be used. % if A is an object (with overloaded operators), At, m, n must be % provided. % % INPUT % A : mxn matrix; input data. columns correspond to features. % % At : nxm matrix; transpose of A. % m : number of examples (rows) of A % n : number of features (column)s of A % % y : m vector; outcome. % lambda : positive scalar; regularization parameter % % tar_gap : relative target duality gap (default: 1e-3) % quiet : boolean; suppress printing message when true (default: false) % % (advanced arguments) % eta : scalar; parameter for PCG termination (default: 1e-3) % pcgmaxi : scalar; number of maximum PCG iterations (default: 5000) % % OUTPUT % x : n vector; classifier % status : string; 'Solved' or 'Failed' % % history : matrix of history data. columns represent (truncated) Newton % iterations; rows represent the following: % - 1st row) gap % - 2nd row) primal objective % - 3rd row) dual objective % - 4th row) step size % - 5th row) pcg iterations % - 6th row) pcg status flag % % USAGE EXAMPLES % [x,status] = l1_ls_nonneg(A,y,lambda); % [x,status] = l1_ls_nonneg(A,At,m,n,y,lambda,0.001); % % AUTHOR Kwangmoo Koh <[email protected]> % UPDATE Apr 10 2008 % % COPYRIGHT 2008 Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd %------------------------------------------------------------ % INITIALIZE %------------------------------------------------------------ % IPM PARAMETERS MU = 2; % updating parameter of t MAX_NT_ITER = 400; % maximum IPM (Newton) iteration % LINE SEARCH PARAMETERS ALPHA = 0.01; % minimum fraction of decrease in the objective BETA = 0.5; % stepsize decrease factor MAX_LS_ITER = 100; % maximum backtracking line search iteration % VARIABLE ARGUMENT HANDLING % if the second argument is a matrix or an operator, the calling sequence is % l1_ls(A,At,y,lambda,m,n [,tar_gap,[,quiet]])) % if the second argument is a vector, the calling sequence is % l1_ls(A,y,lambda [,tar_gap[,quiet]]) if ( (isobject(varargin{1}) || ~isvector(varargin{1})) && nargin >= 6) At = varargin{1}; m = varargin{2}; n = varargin{3}; y = varargin{4}; lambda = varargin{5}; varargin = varargin(6:end); elseif (nargin >= 3) At = A'; [m,n] = size(A); y = varargin{1}; lambda = varargin{2}; varargin = varargin(3:end); else if (~quiet) disp('Insufficient input arguments'); end x = []; status = 'Failed'; history = []; return; end % VARIABLE ARGUMENT HANDLING t0 = min(max(1,1/lambda),n/1e-3); defaults = {1e-3,false,1e-3,5000,ones(n,1),t0}; given_args = ~cellfun('isempty',varargin); defaults(given_args) = varargin(given_args); [reltol,quiet,eta,pcgmaxi,x,t] = deal(defaults{:}); f = -x; % RESULT/HISTORY VARIABLES pobjs = [] ; dobjs = [] ; sts = [] ; pitrs = []; pflgs = []; pobj = Inf; dobj =-Inf; s = Inf; pitr = 0 ; pflg = 0 ; ntiter = 0; lsiter = 0; zntiter = 0; zlsiter = 0; normg = 0; prelres = 0; dx = zeros(n,1); % diagxtx = diag(At*A); diagxtx = 2*ones(n,1); if (~quiet) disp(sprintf('\nSolving a problem of size (m=%d, n=%d), with lambda=%.5e',... m,n,lambda)); end if (~quiet) disp('-----------------------------------------------------------------------------');end if (~quiet) disp(sprintf('%5s %9s %15s %15s %13s %11s',... 'iter','gap','primobj','dualobj','step len','pcg iters')); end %------------------------------------------------------------ % MAIN LOOP %------------------------------------------------------------ for ntiter = 0:MAX_NT_ITER z = A*x-y; %------------------------------------------------------------ % CALCULATE DUALITY GAP %------------------------------------------------------------ nu = 2*z; minAnu = min(At*nu); if (minAnu < -lambda) nu = nu*lambda/(-minAnu); end pobj = z'*z+lambda*sum(x,1); dobj = max(-0.25*nu'*nu-nu'*y,dobj); gap = pobj - dobj; pobjs = [pobjs pobj]; dobjs = [dobjs dobj]; sts = [sts s]; pflgs = [pflgs pflg]; pitrs = [pitrs pitr]; %------------------------------------------------------------ % STOPPING CRITERION %------------------------------------------------------------ if (~quiet) disp(sprintf('%4d %12.2e %15.5e %15.5e %11.1e %8d',... ntiter, gap, pobj, dobj, s, pitr)); end if (gap/abs(dobj) < reltol) status = 'Solved'; history = [pobjs-dobjs; pobjs; dobjs; sts; pitrs; pflgs]; if (~quiet) disp('Absolute tolerance reached.'); end %disp(sprintf('total pcg iters = %d\n',sum(pitrs))); return; end %------------------------------------------------------------ % UPDATE t %------------------------------------------------------------ if (s >= 0.5) t = max(min(n*MU/gap, MU*t), t); end %------------------------------------------------------------ % CALCULATE NEWTON STEP %------------------------------------------------------------ d1 = (1/t)./(x.^2); % calculate gradient gradphi = [At*(z*2)+lambda-(1/t)./x]; % calculate vectors to be used in the preconditioner prb = diagxtx+d1; % set pcg tolerance (relative) normg = norm(gradphi); pcgtol = min(1e-1,eta*gap/min(1,normg)); if (ntiter ~= 0 && pitr == 0) pcgtol = pcgtol*0.1; end if 1 [dx,pflg,prelres,pitr,presvec] = ... pcg(@AXfunc_l1_ls,-gradphi,pcgtol,pcgmaxi,@Mfunc_l1_ls,... [],dx,A,At,d1,1./prb); end %dx = (2*A'*A+diag(d1))\(-gradphi); if (pflg == 1) pitr = pcgmaxi; end %------------------------------------------------------------ % BACKTRACKING LINE SEARCH %------------------------------------------------------------ phi = z'*z+lambda*sum(x)-sum(log(-f))/t; s = 1.0; gdx = gradphi'*dx; for lsiter = 1:MAX_LS_ITER newx = x+s*dx; newf = -newx; if (max(newf) < 0) newz = A*newx-y; newphi = newz'*newz+lambda*sum(newx)-sum(log(-newf))/t; if (newphi-phi <= ALPHA*s*gdx) break; end end s = BETA*s; end if (lsiter == MAX_LS_ITER) break; end % exit by BLS x = newx; f = newf; end %------------------------------------------------------------ % ABNORMAL TERMINATION (FALL THROUGH) %------------------------------------------------------------ if (lsiter == MAX_LS_ITER) % failed in backtracking linesearch. if (~quiet) disp('MAX_LS_ITER exceeded in BLS'); end status = 'Failed'; elseif (ntiter == MAX_NT_ITER) % fail to find the solution within MAX_NT_ITER if (~quiet) disp('MAX_NT_ITER exceeded.'); end status = 'Failed'; end history = [pobjs-dobjs; pobjs; dobjs; sts; pitrs; pflgs]; return; %------------------------------------------------------------ % COMPUTE AX (PCG) %------------------------------------------------------------ function [y] = AXfunc_l1_ls(x,A,At,d1,p1) y = (At*((A*x)*2))+d1.*x; %------------------------------------------------------------ % COMPUTE P^{-1}X (PCG) %------------------------------------------------------------ function [y] = Mfunc_l1_ls(x,A,At,d1,p1) y = p1.*x;
github
yuanxy92/ConvexOptimization-master
l1_ls.m
.m
ConvexOptimization-master/3rd/l1_ls_matlab/l1_ls.m
8,414
utf_8
592cd5d633c7f3e474bcad9309e4ea07
function [x,status,history] = l1_ls(A,varargin) % % l1-Regularized Least Squares Problem Solver % % l1_ls solves problems of the following form: % % minimize ||A*x-y||^2 + lambda*sum|x_i|, % % where A and y are problem data and x is variable (described below). % % CALLING SEQUENCES % [x,status,history] = l1_ls(A,y,lambda [,tar_gap[,quiet]]) % [x,status,history] = l1_ls(A,At,m,n,y,lambda, [,tar_gap,[,quiet]])) % % if A is a matrix, either sequence can be used. % if A is an object (with overloaded operators), At, m, n must be % provided. % % INPUT % A : mxn matrix; input data. columns correspond to features. % % At : nxm matrix; transpose of A. % m : number of examples (rows) of A % n : number of features (column)s of A % % y : m vector; outcome. % lambda : positive scalar; regularization parameter % % tar_gap : relative target duality gap (default: 1e-3) % quiet : boolean; suppress printing message when true (default: false) % % (advanced arguments) % eta : scalar; parameter for PCG termination (default: 1e-3) % pcgmaxi : scalar; number of maximum PCG iterations (default: 5000) % % OUTPUT % x : n vector; classifier % status : string; 'Solved' or 'Failed' % % history : matrix of history data. columns represent (truncated) Newton % iterations; rows represent the following: % - 1st row) gap % - 2nd row) primal objective % - 3rd row) dual objective % - 4th row) step size % - 5th row) pcg iterations % - 6th row) pcg status flag % % USAGE EXAMPLES % [x,status] = l1_ls(A,y,lambda); % [x,status] = l1_ls(A,At,m,n,y,lambda,0.001); % % AUTHOR Kwangmoo Koh <[email protected]> % UPDATE Apr 8 2007 % % COPYRIGHT 2008 Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd %------------------------------------------------------------ % INITIALIZE %------------------------------------------------------------ % IPM PARAMETERS MU = 2; % updating parameter of t MAX_NT_ITER = 400; % maximum IPM (Newton) iteration % LINE SEARCH PARAMETERS ALPHA = 0.01; % minimum fraction of decrease in the objective BETA = 0.5; % stepsize decrease factor MAX_LS_ITER = 100; % maximum backtracking line search iteration % VARIABLE ARGUMENT HANDLING % if the second argument is a matrix or an operator, the calling sequence is % l1_ls(A,At,y,lambda,m,n [,tar_gap,[,quiet]])) % if the second argument is a vector, the calling sequence is % l1_ls(A,y,lambda [,tar_gap[,quiet]]) if ( (isobject(varargin{1}) || ~isvector(varargin{1})) && nargin >= 6) At = varargin{1}; m = varargin{2}; n = varargin{3}; y = varargin{4}; lambda = varargin{5}; varargin = varargin(6:end); elseif (nargin >= 3) At = A'; [m,n] = size(A); y = varargin{1}; lambda = varargin{2}; varargin = varargin(3:end); else if (~quiet) disp('Insufficient input arguments'); end x = []; status = 'Failed'; history = []; return; end % VARIABLE ARGUMENT HANDLING t0 = min(max(1,1/lambda),2*n/1e-3); defaults = {1e-3,false,1e-3,5000,zeros(n,1),ones(n,1),t0}; given_args = ~cellfun('isempty',varargin); defaults(given_args) = varargin(given_args); [reltol,quiet,eta,pcgmaxi,x,u,t] = deal(defaults{:}); f = [x-u;-x-u]; % RESULT/HISTORY VARIABLES pobjs = [] ; dobjs = [] ; sts = [] ; pitrs = []; pflgs = []; pobj = Inf; dobj =-Inf; s = Inf; pitr = 0 ; pflg = 0 ; ntiter = 0; lsiter = 0; zntiter = 0; zlsiter = 0; normg = 0; prelres = 0; dxu = zeros(2*n,1); % diagxtx = diag(At*A); diagxtx = 2*ones(n,1); if (~quiet) disp(sprintf('\nSolving a problem of size (m=%d, n=%d), with lambda=%.5e',... m,n,lambda)); end if (~quiet) disp('-----------------------------------------------------------------------------');end if (~quiet) disp(sprintf('%5s %9s %15s %15s %13s %11s',... 'iter','gap','primobj','dualobj','step len','pcg iters')); end %------------------------------------------------------------ % MAIN LOOP %------------------------------------------------------------ for ntiter = 0:MAX_NT_ITER z = A*x-y; %------------------------------------------------------------ % CALCULATE DUALITY GAP %------------------------------------------------------------ nu = 2*z; maxAnu = norm(At*nu,inf); if (maxAnu > lambda) nu = nu*lambda/maxAnu; end pobj = z'*z+lambda*norm(x,1); dobj = max(-0.25*nu'*nu-nu'*y,dobj); gap = pobj - dobj; pobjs = [pobjs pobj]; dobjs = [dobjs dobj]; sts = [sts s]; pflgs = [pflgs pflg]; pitrs = [pitrs pitr]; %------------------------------------------------------------ % STOPPING CRITERION %------------------------------------------------------------ if (~quiet) disp(sprintf('%4d %12.2e %15.5e %15.5e %11.1e %8d',... ntiter, gap, pobj, dobj, s, pitr)); end if (gap/dobj < reltol) status = 'Solved'; history = [pobjs-dobjs; pobjs; dobjs; sts; pitrs; pflgs]; if (~quiet) disp('Absolute tolerance reached.'); end %disp(sprintf('total pcg iters = %d\n',sum(pitrs))); return; end %------------------------------------------------------------ % UPDATE t %------------------------------------------------------------ if (s >= 0.5) t = max(min(2*n*MU/gap, MU*t), t); end %------------------------------------------------------------ % CALCULATE NEWTON STEP %------------------------------------------------------------ q1 = 1./(u+x); q2 = 1./(u-x); d1 = (q1.^2+q2.^2)/t; d2 = (q1.^2-q2.^2)/t; % calculate gradient gradphi = [At*(z*2)-(q1-q2)/t; lambda*ones(n,1)-(q1+q2)/t]; % calculate vectors to be used in the preconditioner prb = diagxtx+d1; prs = prb.*d1-(d2.^2); % set pcg tolerance (relative) normg = norm(gradphi); pcgtol = min(1e-1,eta*gap/min(1,normg)); if (ntiter ~= 0 && pitr == 0) pcgtol = pcgtol*0.1; end [dxu,pflg,prelres,pitr,presvec] = ... pcg(@AXfunc_l1_ls,-gradphi,pcgtol,pcgmaxi,@Mfunc_l1_ls,... [],dxu,A,At,d1,d2,d1./prs,d2./prs,prb./prs); if (pflg == 1) pitr = pcgmaxi; end dx = dxu(1:n); du = dxu(n+1:end); %------------------------------------------------------------ % BACKTRACKING LINE SEARCH %------------------------------------------------------------ phi = z'*z+lambda*sum(u)-sum(log(-f))/t; s = 1.0; gdx = gradphi'*dxu; for lsiter = 1:MAX_LS_ITER newx = x+s*dx; newu = u+s*du; newf = [newx-newu;-newx-newu]; if (max(newf) < 0) newz = A*newx-y; newphi = newz'*newz+lambda*sum(newu)-sum(log(-newf))/t; if (newphi-phi <= ALPHA*s*gdx) break; end end s = BETA*s; end if (lsiter == MAX_LS_ITER) break; end % exit by BLS x = newx; u = newu; f = newf; end %------------------------------------------------------------ % ABNORMAL TERMINATION (FALL THROUGH) %------------------------------------------------------------ if (lsiter == MAX_LS_ITER) % failed in backtracking linesearch. if (~quiet) disp('MAX_LS_ITER exceeded in BLS'); end status = 'Failed'; elseif (ntiter == MAX_NT_ITER) % fail to find the solution within MAX_NT_ITER if (~quiet) disp('MAX_NT_ITER exceeded.'); end status = 'Failed'; end history = [pobjs-dobjs; pobjs; dobjs; sts; pitrs; pflgs]; return; %------------------------------------------------------------ % COMPUTE AX (PCG) %------------------------------------------------------------ function [y] = AXfunc_l1_ls(x,A,At,d1,d2,p1,p2,p3) % % y = hessphi*[x1;x2], % % where hessphi = [A'*A*2+D1 , D2; % D2 , D1]; n = length(x)/2; x1 = x(1:n); x2 = x(n+1:end); y = [(At*((A*x1)*2))+d1.*x1+d2.*x2; d2.*x1+d1.*x2]; %------------------------------------------------------------ % COMPUTE P^{-1}X (PCG) %------------------------------------------------------------ function [y] = Mfunc_l1_ls(x,A,At,d1,d2,p1,p2,p3) % % y = P^{-1}*x, % n = length(x)/2; x1 = x(1:n); x2 = x(n+1:end); y = [ p1.*x1-p2.*x2;... -p2.*x1+p3.*x2];
github
yuanxy92/ConvexOptimization-master
l1_norm_ls_solver_pcg.m
.m
ConvexOptimization-master/homework4/l1_norm_ls_solver_pcg.m
8,430
utf_8
1c703e1d55264ccf9dfc48e4cce34520
function [x,status,history] = l1_norm_ls_solver_pcg(A,varargin) % % l1-Regularized Least Squares Problem Solver % % l1_ls solves problems of the following form: % % minimize ||A*x-y||^2 + lambda*sum|x_i|, % % where A and y are problem data and x is variable (described below). % % CALLING SEQUENCES % [x,status,history] = l1_ls(A,y,lambda [,tar_gap[,quiet]]) % [x,status,history] = l1_ls(A,At,m,n,y,lambda, [,tar_gap,[,quiet]])) % % if A is a matrix, either sequence can be used. % if A is an object (with overloaded operators), At, m, n must be % provided. % % INPUT % A : mxn matrix; input data. columns correspond to features. % % At : nxm matrix; transpose of A. % m : number of examples (rows) of A % n : number of features (column)s of A % % y : m vector; outcome. % lambda : positive scalar; regularization parameter % % tar_gap : relative target duality gap (default: 1e-3) % quiet : boolean; suppress printing message when true (default: false) % % (advanced arguments) % eta : scalar; parameter for PCG termination (default: 1e-3) % pcgmaxi : scalar; number of maximum PCG iterations (default: 5000) % % OUTPUT % x : n vector; classifier % status : string; 'Solved' or 'Failed' % % history : matrix of history data. columns represent (truncated) Newton % iterations; rows represent the following: % - 1st row) gap % - 2nd row) primal objective % - 3rd row) dual objective % - 4th row) step size % - 5th row) pcg iterations % - 6th row) pcg status flag % % USAGE EXAMPLES % [x,status] = l1_ls(A,y,lambda); % [x,status] = l1_ls(A,At,m,n,y,lambda,0.001); % % AUTHOR Kwangmoo Koh <[email protected]> % UPDATE Apr 8 2007 % % COPYRIGHT 2008 Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd %------------------------------------------------------------ % INITIALIZE %------------------------------------------------------------ % IPM PARAMETERS MU = 2; % updating parameter of t MAX_NT_ITER = 400; % maximum IPM (Newton) iteration % LINE SEARCH PARAMETERS ALPHA = 0.01; % minimum fraction of decrease in the objective BETA = 0.5; % stepsize decrease factor MAX_LS_ITER = 100; % maximum backtracking line search iteration % VARIABLE ARGUMENT HANDLING % if the second argument is a matrix or an operator, the calling sequence is % l1_ls(A,At,y,lambda,m,n [,tar_gap,[,quiet]])) % if the second argument is a vector, the calling sequence is % l1_ls(A,y,lambda [,tar_gap[,quiet]]) if ( (isobject(varargin{1}) || ~isvector(varargin{1})) && nargin >= 6) At = varargin{1}; m = varargin{2}; n = varargin{3}; y = varargin{4}; lambda = varargin{5}; varargin = varargin(6:end); elseif (nargin >= 3) At = A'; [m,n] = size(A); y = varargin{1}; lambda = varargin{2}; varargin = varargin(3:end); else if (~quiet) disp('Insufficient input arguments'); end x = []; status = 'Failed'; history = []; return; end % VARIABLE ARGUMENT HANDLING t0 = min(max(1,1/lambda),2*n/1e-3); defaults = {1e-3,false,1e-3,5000,zeros(n,1),ones(n,1),t0}; given_args = ~cellfun('isempty',varargin); defaults(given_args) = varargin(given_args); [reltol,quiet,eta,pcgmaxi,x,u,t] = deal(defaults{:}); f = [x-u;-x-u]; % RESULT/HISTORY VARIABLES pobjs = [] ; dobjs = [] ; sts = [] ; pitrs = []; pflgs = []; pobj = Inf; dobj =-Inf; s = Inf; pitr = 0 ; pflg = 0 ; ntiter = 0; lsiter = 0; zntiter = 0; zlsiter = 0; normg = 0; prelres = 0; dxu = zeros(2*n,1); % diagxtx = diag(At*A); diagxtx = 2*ones(n,1); if (~quiet) disp(sprintf('\nSolving a problem of size (m=%d, n=%d), with lambda=%.5e',... m,n,lambda)); end if (~quiet) disp('-----------------------------------------------------------------------------');end if (~quiet) disp(sprintf('%5s %9s %15s %15s %13s %11s',... 'iter','gap','primobj','dualobj','step len','pcg iters')); end %------------------------------------------------------------ % MAIN LOOP %------------------------------------------------------------ for ntiter = 0:MAX_NT_ITER z = A*x-y; %------------------------------------------------------------ % CALCULATE DUALITY GAP %------------------------------------------------------------ nu = 2*z; maxAnu = norm(At*nu,inf); if (maxAnu > lambda) nu = nu*lambda/maxAnu; end pobj = z'*z+lambda*norm(x,1); dobj = max(-0.25*nu'*nu-nu'*y,dobj); gap = pobj - dobj; pobjs = [pobjs pobj]; dobjs = [dobjs dobj]; sts = [sts s]; pflgs = [pflgs pflg]; pitrs = [pitrs pitr]; %------------------------------------------------------------ % STOPPING CRITERION %------------------------------------------------------------ if (~quiet) disp(sprintf('%4d %12.2e %15.5e %15.5e %11.1e %8d',... ntiter, gap, pobj, dobj, s, pitr)); end if (gap/dobj < reltol) status = 'Solved'; history = [pobjs-dobjs; pobjs; dobjs; sts; pitrs; pflgs]; if (~quiet) disp('Absolute tolerance reached.'); end %disp(sprintf('total pcg iters = %d\n',sum(pitrs))); return; end %------------------------------------------------------------ % UPDATE t %------------------------------------------------------------ if (s >= 0.5) t = max(min(2*n*MU/gap, MU*t), t); end %------------------------------------------------------------ % CALCULATE NEWTON STEP %------------------------------------------------------------ q1 = 1./(u+x); q2 = 1./(u-x); d1 = (q1.^2+q2.^2)/t; d2 = (q1.^2-q2.^2)/t; % calculate gradient gradphi = [At*(z*2)-(q1-q2)/t; lambda*ones(n,1)-(q1+q2)/t]; % calculate vectors to be used in the preconditioner prb = diagxtx+d1; prs = prb.*d1-(d2.^2); % set pcg tolerance (relative) normg = norm(gradphi); pcgtol = min(1e-1,eta*gap/min(1,normg)); if (ntiter ~= 0 && pitr == 0) pcgtol = pcgtol*0.1; end [dxu,pflg,prelres,pitr,presvec] = ... pcg(@AXfunc_l1_ls,-gradphi,pcgtol,pcgmaxi,@Mfunc_l1_ls,... [],dxu,A,At,d1,d2,d1./prs,d2./prs,prb./prs); if (pflg == 1) pitr = pcgmaxi; end dx = dxu(1:n); du = dxu(n+1:end); %------------------------------------------------------------ % BACKTRACKING LINE SEARCH %------------------------------------------------------------ phi = z'*z+lambda*sum(u)-sum(log(-f))/t; s = 1.0; gdx = gradphi'*dxu; for lsiter = 1:MAX_LS_ITER newx = x+s*dx; newu = u+s*du; newf = [newx-newu;-newx-newu]; if (max(newf) < 0) newz = A*newx-y; newphi = newz'*newz+lambda*sum(newu)-sum(log(-newf))/t; if (newphi-phi <= ALPHA*s*gdx) break; end end s = BETA*s; end if (lsiter == MAX_LS_ITER) break; end % exit by BLS x = newx; u = newu; f = newf; end %------------------------------------------------------------ % ABNORMAL TERMINATION (FALL THROUGH) %------------------------------------------------------------ if (lsiter == MAX_LS_ITER) % failed in backtracking linesearch. if (~quiet) disp('MAX_LS_ITER exceeded in BLS'); end status = 'Failed'; elseif (ntiter == MAX_NT_ITER) % fail to find the solution within MAX_NT_ITER if (~quiet) disp('MAX_NT_ITER exceeded.'); end status = 'Failed'; end history = [pobjs-dobjs; pobjs; dobjs; sts; pitrs; pflgs]; return; %------------------------------------------------------------ % COMPUTE AX (PCG) %------------------------------------------------------------ function [y] = AXfunc_l1_ls(x,A,At,d1,d2,p1,p2,p3) % % y = hessphi*[x1;x2], % % where hessphi = [A'*A*2+D1 , D2; % D2 , D1]; n = length(x)/2; x1 = x(1:n); x2 = x(n+1:end); y = [(At*((A*x1)*2))+d1.*x1+d2.*x2; d2.*x1+d1.*x2]; %------------------------------------------------------------ % COMPUTE P^{-1}X (PCG) %------------------------------------------------------------ function [y] = Mfunc_l1_ls(x,A,At,d1,d2,p1,p2,p3) % % y = P^{-1}*x, % n = length(x)/2; x1 = x(1:n); x2 = x(n+1:end); y = [ p1.*x1-p2.*x2;... -p2.*x1+p3.*x2];
github
yuanxy92/ConvexOptimization-master
fast_deconv_bregman.m
.m
ConvexOptimization-master/MATLAB/blinddeconv/fast_deconv_bregman.m
3,048
utf_8
973e7fd7c8d796ae3710cba343daae82
function [g] = fast_deconv_bregman(f, k, lambda, alpha) % % fast solver for the non-blind deconvolution problem: min_g \lambda/2 |g \oplus k % - f|^2. We use a splitting trick as % follows: introduce a (vector) variable w, and rewrite the original % problem as: min_{g,w,b} \lambda/2 |g \oplus k - g|^2 + \beta/2 |w - % \nabla g - b|^2, and then we use alternations on g, w % and b to update each one in turn. b is the Bregman variable. beta is % fixed. An alternative is to use continuation but then we need to set a % beta regime. Based on the NIPS 2009 paper of Krishnan and Fergus "Fast % Image Deconvolution using Hyper-Laplacian Priors" % beta = 400; initer_max = 1; outiter_max = 20; [m n] = size(f); % initialize g = f; % make sure k is odd-sized if ((mod(size(k, 1), 2) ~= 1) | (mod(size(k, 2), 2) ~= 1)) fprintf('Error - blur kernel k must be odd-sized.\n'); return; end; ks = floor((size(k, 1)-1)/2); dx = [1 -1]; dy = dx'; dxt = fliplr(flipud(dx)); dyt = fliplr(flipud(dy)); [Ktf, KtK, DtD, Fdx, Fdy] = computeConstants(f, k, dx, dy); gx = conv2(g, dx, 'valid'); gy = conv2(g, dy, 'valid'); fx = conv2(f, dx, 'valid'); fy = conv2(f, dy, 'valid'); ks = size(k, 1); ks2 = floor(ks / 2); % store some of the statistics lcost = []; pcost = []; outiter = 0; bx = zeros(size(gx)); by = zeros(size(gy)); wx = gx; wy = gy; totiter = 1; gk = conv2(g, k, 'same'); lcost(totiter) = (lambda / 2) * norm(gk(:) - f(:))^2; pcost(totiter) = sum((abs(gx(:)) .^ alpha)); pcost(totiter) = pcost(totiter) + sum((abs(gy(:)) .^ alpha)); for outiter = 1:outiter_max fprintf('Outer iteration %d\n', outiter); initer = 0; for initer = 1:initer_max totiter = totiter + 1; if (alpha == 1) tmpx = beta * (gx + bx); betax = beta; tmpx = tmpx ./ betax; tmpy = beta * (gy + by); betay = beta; tmpy = tmpy ./ betay; betay = betay; wx = max(abs(tmpx) - 1 ./ betax, 0) .* sign(tmpx); wy = max(abs(tmpy) - 1 ./ betay, 0) .* sign(tmpy); else wx = solve_image_bregman(gx + bx, beta, alpha); wy = solve_image_bregman(gy + by, beta, alpha); end; bx = bx - wx + gx; by = by - wy + gy; wx1 = conv2(wx - bx, dxt, 'full'); wy1 = conv2(wy - by, dyt, 'full'); tmp = zeros(size(g)); gprev = g; gxprev = gx; gyprev = gy; num = lambda * Ktf + beta * fft2(wx1 + wy1); denom = lambda * KtK + beta * DtD; Fg = num ./ denom; g = real(ifft2(Fg)); gx = conv2(g, dx, 'valid'); gy = conv2(g, dy, 'valid'); gk = conv2(g, k, 'same'); lcost(totiter) = (lambda / 2) * norm(gk(:) - f(:))^2; pcost(totiter) = sum((abs(gx(:)) .^ alpha)); pcost(totiter) = pcost(totiter) + sum((abs(gy(:)) .^ alpha)); end; end; function [Ktf, KtK, DtD, Fdx, Fdy] = computeConstants(f, k, dx, dy) sizef = size(f); otfk = psf2otf(k, sizef); Ktf = conj(otfk) .* fft2(f); KtK = abs(otfk) .^ 2; Fdx = abs(psf2otf(dx, sizef)).^2; Fdy = abs(psf2otf(dy, sizef)).^2; DtD = Fdx + Fdy;
github
yuanxy92/ConvexOptimization-master
ms_blind_deconv.m
.m
ConvexOptimization-master/MATLAB/blinddeconv/ms_blind_deconv.m
5,929
utf_8
5c923da0f9819ccf3f8a120aed64b240
function [yorig, deblur, kernel, opts] = ms_blind_deconv(fn, opts) % % Do multi-scale blind deconvolution given input file name and options % structure opts. Returns a double deblurred image along with estimated % kernel. Following the kernel estimation, a non-blind deconvolution is run. % % Copyright (2011): Dilip Krishnan, Rob Fergus, New York University. % if (isempty(fn)) if (isempty(opts.blur)) fprintf('No image provided in fn or opts.blur!!!\n'); return; else y = opts.blur; end; else y = im2double(imread(fn)); end; % prescale the image if it's too big; kernel size is defined for the SCALED image for k = 1:size(y, 3) y1(:, :, k) = imresize(y(:, :, k), opts.prescale, 'bilinear'); end; y = y1; % save off for non-blind deconvolution yorig = y; % gamma correct y = y.^opts.gamma_correct; % use a window to estimate kernel if (~isempty(opts.kernel_est_win)) w = opts.kernel_est_win; if (size(y, 3) == 3) y = rgb2gray(y([w(1):w(3)], [w(2):w(4)], :)); end; else if (size(y, 3) == 3) y = rgb2gray(y); end; end; b = zeros(opts.kernel_size); bhs = floor(size(b, 1)/2); % set kernel size for coarsest level - must be odd minsize = max(3, 2*floor(((opts.kernel_size - 1)/16)) + 1); fprintf('Kernel size at coarsest level is %d\n', minsize); % derivative filters dx = [-1 1; 0 0]; dy = [-1 0; 1 0]; % l2 norm of gradient images l2norm = 6; resize_step = sqrt(2); % determine number of scales num_scales = 1; tmp = minsize; while(tmp < opts.kernel_size) ksize(num_scales) = tmp; num_scales = num_scales + 1; tmp = ceil(tmp * resize_step); if (mod(tmp, 2) == 0) tmp = tmp + 1; end; end; ksize(num_scales) = opts.kernel_size; % blind deconvolution - multiscale processing for s = 1:num_scales if (s == 1) % at coarsest level, initialize kernel ks{s} = init_kernel(ksize(1)); k1 = ksize(1); k2 = k1; % always square kernel assumed else % upsample kernel from previous level to next finer level k1 = ksize(s); k2 = k1; % always square kernel assumed % resize kernel from previous level tmp = ks{s-1}; tmp(tmp<0) = 0; tmp = tmp/sum(tmp(:)); ks{s} = imresize(tmp, [k1 k2], 'bilinear'); % bilinear interpolantion not guaranteed to sum to 1 - so renormalize ks{s}(ks{s} < 0) = 0; sumk = sum(ks{s}(:)); ks{s} = ks{s}./sumk; end; % image size at this level r = floor(size(y, 1) * k1 / size(b, 1)); c = floor(size(y, 2) * k2 / size(b, 2)); if (s == num_scales) r = size(y, 1); c = size(y, 2); end; fprintf('Processing scale %d/%d; kernel size %dx%d; image size %dx%d\n', ... s, num_scales, k1, k2, r, c); % resize y according to the ratio of filter sizes ys = imresize(y, [r c], 'bilinear'); yx = conv2(ys, dx, 'valid'); yy = conv2(ys, dy, 'valid'); c = min(size(yx, 2), size(yy, 2)); r = min(size(yx, 1), size(yy, 1)); g = [yx yy]; % normalize to have l2 norm of a certain size tmp1 = g(:, 1:c); tmp1 = tmp1*l2norm/norm(tmp1(:)); g(:, 1:c) = tmp1; tmp1 = g(:, c+1:end); tmp1 = tmp1*l2norm/norm(tmp1(:)); g(:, c+1:end) = tmp1; if (s == 1) ls{s} = g; else if (error_flag ~= 0) ls{s} = g; else % upscale the estimated derivative image from previous level c1 = (size(ls{s - 1}, 2)) / 2; tmp1 = ls{s - 1}(:, 1:c1); tmp1_up = imresize(tmp1, [r c], 'bilinear'); tmp2 = ls{s - 1}(:, c1 + 1 : end); tmp2_up = imresize(tmp2, [r c], 'bilinear'); ls{s} = [tmp1_up tmp2_up]; end; end; tmp1 = ls{s}(:, 1:c); tmp1 = tmp1*l2norm/norm(tmp1(:)); ls{s}(:, 1:c) = tmp1; tmp1 = ls{s}(:, c+1:end); tmp1 = tmp1*l2norm/norm(tmp1(:)); ls{s}(:, c+1:end) = tmp1; % call kernel estimation for this scale opts.lambda{s} = opts.min_lambda; [ls{s} ks{s} error_flag] = ss_blind_deconv(g, ls{s}, ks{s}, opts.lambda{s}, ... opts.delta, opts.x_in_iter, opts.x_out_iter, ... opts.xk_iter, opts.k_reg_wt); if (error_flag < 0) ks{s}(:) = 0; ks{s}(ceil(size(ks{s}, 1)/2), ceil(size(ks{s}, 2)/2)) = 1; fprintf('Bad error - just set output to delta kernel and return\n'); end; % center the kernel c1 = (size(ls{s}, 2)) / 2; tmp1 = ls{s}(:, 1:c1); tmp2 = ls{s}(:, c1 + 1 : end); [tmp1_shifted tmp2_shifted ks{s}] = center_kernel_separate(tmp1, tmp2, ks{s}); ls{s} = [tmp1_shifted tmp2_shifted]; % set elements below threshold to 0 if (s == num_scales) kernel = ks{s}; kernel(kernel(:) < opts.k_thresh * max(kernel(:))) = 0; kernel = kernel / sum(kernel(:)); end; end; padsize = bhs; dx = [1 -1]; dy = dx'; if (opts.use_ycbcr) if (size(yorig, 3) == 3) ycbcr = rgb2ycbcr(yorig); else ycbcr = yorig; end; opts.nb_alpha = 1; end; if (opts.use_ycbcr == 1) ypad = padarray(ycbcr(:,:,1), [padsize padsize], 'replicate', 'both'); for a = 1:4 ypad = edgetaper(ypad, kernel); end; tmp = fast_deconv_bregman(ypad, kernel, opts.nb_lambda, opts.nb_alpha); deblur(:, :, 1) = tmp(bhs + 1 : end - bhs, bhs + 1 : end - bhs); if (size(ycbcr, 3) == 3) deblur(:, :, 2:3) = ycbcr(:, :, 2:3); deblur = ycbcr2rgb(deblur); end; else for j = 1:3 ypad = padarray(yorig(:, :, j), [1 1] * bhs, 'replicate', 'both'); for a = 1:4 ypad = edgetaper(ypad, kernel); end; tmp = fast_deconv_bregman(ypad, kernel, opts.nb_lambda, opts.nb_alpha); deblur(:, :, j) = tmp(bhs + 1 : end - bhs, bhs + 1 : end - bhs); end; end; figure; imagesc([uint8(255*yorig) uint8(255*deblur)]); title(['Blurred/' ... 'deblurred']); figure; imagesc(kernel); colormap gray; title('Kernel'); function [k] = init_kernel(minsize) k = zeros(minsize, minsize); k((minsize - 1)/2, (minsize - 1)/2:(minsize - 1)/2+1) = 1/2;
github
yuanxy92/ConvexOptimization-master
solve_image_bregman.m
.m
ConvexOptimization-master/MATLAB/blinddeconv/solve_image_bregman.m
6,074
utf_8
53ce7248ff591aab751e8787cbd2cdb7
function [w] = solve_image_bregman(v, beta, alpha) % % solve the following component-wise separable problem % min maskk .* |w|^\alpha + \frac{\beta}{2} (w - v).^2 % % A LUT is used to solve the problem; when the function is first called % for a new value of beta or alpha, a LUT is built for that beta/alpha % combination and for a range of values of v. The LUT stays persistent % between calls to solve_image. It will be recomputed the first time this % function is called. % range of input data and step size; increasing the range of decreasing % the step size will increase accuracy but also increase the size of the % LUT range = 10; step = 0.0001; persistent lookup_v known_beta xx known_alpha ind = find(known_beta==beta & known_alpha==alpha); if isempty(known_beta | known_alpha) xx = [-range:step:range]; end if any(ind) fprintf('Reusing lookup table for beta %.3g and alpha %.3g\n', beta, alpha); %%% already computed if (exist('pointOp') == 3) % Use Eero Simoncelli's function to extrapolate w = pointOp(double(v),lookup_v(ind,:), -range, step, 0); else w = interp1(xx', lookup_v(ind,:)', v(:), 'linear', 'extrap'); w = reshape(w, size(v,1), size(v,2)); end; else %%% now go and recompute xx for new value of beta and alpha tmp = compute_w(xx, beta, alpha); lookup_v = [lookup_v; tmp(:)']; known_beta = [known_beta, beta]; known_alpha = [known_alpha, alpha]; %%% and lookup current v's in the new lookup table row. if (exist('pointOp') == 3) % Use Eero Simoncelli's function to extrapolate w = pointOp(double(v),lookup_v(end,:), -range, step, 0); else w = interp1(xx', lookup_v(end,:)', v(:), 'linear', 'extrap'); w = reshape(w, size(v,1), size(v,2)); end; fprintf('Recomputing lookup table for new value of beta %.3g and alpha %.3g\n', beta, alpha); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % call different functions to solve the minimization problem % min |w|^\alpha + \frac{\beta}{2} (w - v).^2 for a fixed beta and alpha % function w = compute_w(v, beta, alpha) if (abs(alpha - 1) < 1e-9) % assume alpha = 1.0 w = compute_w1(v, beta); return; end; if (abs(alpha - 2/3) < 1e-9) % assume alpha = 2/3 w = compute_w23(v, beta); return; end; if (abs(alpha - 1/2) < 1e-9) % assume alpha = 1/2 w = compute_w12(v, beta); return; end; % for any other value of alpha, plug in some other generic root-finder % here, we use Newton-Raphson w = newton_w(v, beta, alpha); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function w = compute_w23(v, beta) % solve a quartic equation % for alpha = 2/3 epsilon = 1e-6; %% tolerance on imag part of real root k = 8/(27*beta^3); m = ones(size(v))*k; % Now use formula from % http://en.wikipedia.org/wiki/Quartic_equation (Ferrari's method) % running our coefficients through Mathmetica (quartic_solution.nb) % optimized to use as few operations as possible... %%% precompute certain terms v2 = v .* v; v3 = v2 .* v; v4 = v3 .* v; m2 = m .* m; m3 = m2 .* m; %% Compute alpha & beta alpha = -1.125*v2; beta2 = 0.25*v3; %%% Compute p,q,r and u directly. q = -0.125*(m.*v2); r1 = -q/2 + sqrt(-m3/27 + (m2.*v4)/256); u = exp(log(r1)/3); y = 2*(-5/18*alpha + u + (m./(3*u))); W = sqrt(alpha./3 + y); %%% now form all 4 roots root = zeros(size(v,1),size(v,2),4); root(:,:,1) = 0.75.*v + 0.5.*(W + sqrt(-(alpha + y + beta2./W ))); root(:,:,2) = 0.75.*v + 0.5.*(W - sqrt(-(alpha + y + beta2./W ))); root(:,:,3) = 0.75.*v + 0.5.*(-W + sqrt(-(alpha + y - beta2./W ))); root(:,:,4) = 0.75.*v + 0.5.*(-W - sqrt(-(alpha + y - beta2./W ))); %%%%%% Now pick the correct root, including zero option. %%% Clever fast approach that avoids lookups v2 = repmat(v,[1 1 4]); sv2 = sign(v2); rsv2 = real(root).*sv2; %%% condensed fast version %%% take out imaginary roots above v/2 but below v root_flag3 = sort(((abs(imag(root))<epsilon) & ((rsv2)>(abs(v2)/2)) & ((rsv2)<(abs(v2)))).*rsv2,3,'descend').*sv2; %%% take best w=root_flag3(:,:,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function w = compute_w12(v, beta) % solve a cubic equation % for alpha = 1/2 epsilon = 1e-6; %% tolerance on imag part of real root k = -0.25/beta^2; m = ones(size(v))*k.*sign(v); %%%%%%%%%%%%%%%%%%%%%%%%%%% Compute the roots (all 3) t1 = (2/3)*v; v2 = v .* v; v3 = v2 .* v; %%% slow (50% of time), not clear how to speed up... t2 = exp(log(-27*m - 2*v3 + (3*sqrt(3))*sqrt(27*m.^2 + 4*m.*v3))/3); t3 = v2./t2; %%% find all 3 roots root = zeros(size(v,1),size(v,2),3); root(:,:,1) = t1 + (2^(1/3))/3*t3 + (t2/(3*2^(1/3))); root(:,:,2) = t1 - ((1+i*sqrt(3))/(3*2^(2/3)))*t3 - ((1-i*sqrt(3))/(6*2^(1/3)))*t2; root(:,:,3) = t1 - ((1-i*sqrt(3))/(3*2^(2/3)))*t3 - ((1+i*sqrt(3))/(6*2^(1/3)))*t2; root(find(isnan(root) | isinf(root))) = 0; %%% catch 0/0 case %%%%%%%%%%%%%%%%%%%%%%%%%%%% Pick the right root %%% Clever fast approach that avoids lookups v2 = repmat(v,[1 1 3]); sv2 = sign(v2); rsv2 = real(root).*sv2; root_flag3 = sort(((abs(imag(root))<epsilon) & ((rsv2)>(2*abs(v2)/3)) & ((rsv2)<(abs(v2)))).*rsv2,3,'descend').*sv2; %%% take best w=root_flag3(:,:,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function w = compute_w1(v, beta) % solve a simple max problem for alpha = 1 w = max(abs(v) - 1/beta, 0).*sign(v); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function w = newton_w(v, beta, alpha) % for a general alpha, use Newton-Raphson; more accurate root-finders may % be substituted here; we are finding the roots of the equation: % \alpha*|w|^{\alpha - 1} + \beta*(v - w) = 0 iterations = 4; x = v; for a=1:iterations fd = (alpha)*sign(x).*abs(x).^(alpha-1)+beta*(x-v); fdd = alpha*(alpha-1)*abs(x).^(alpha-2)+beta; x = x - fd./fdd; end; q = find(isnan(x)); x(q) = 0; % check whether the zero solution is the better one z = beta/2*v.^2; f = abs(x).^alpha + beta/2*(x-v).^2; w = (f<z).*x;
github
yuanxy92/ConvexOptimization-master
pcg_kernel_irls_conv.m
.m
ConvexOptimization-master/MATLAB/blinddeconv/pcg_kernel_irls_conv.m
2,194
utf_8
69320b59f1de28b4f4213c839c8e8eea
function k_out = pcg_kernel_irls_conv(k_init, X, Y, opts) % % Use Iterative Re-weighted Least Squares to solve l_1 regularized kernel % update with sum to 1 and nonnegativity constraints. The problem that is % being minimized is: % % min 1/2\|Xk - Y\|^2 + \lambda \|k\|_1 % % Inputs: % k_init = initial kernel, or scalar specifying size % X = sharp image % Y = blurry image % opts = options (see below) % % Outputs: % k_out = output kernel % % This version of the function uses spatial convolutions. Everything is maintained as 2D arrays % % Defaults if nargin == 3 opts.lambda = 0; % PCG parameters opts.pcg_tol = 1e-8; opts.pcg_its = 100; fprintf('Input options not defined - really no reg/constraints on the kernel?\n'); end lambda = opts.lambda; pcg_tol = opts.pcg_tol; pcg_its = opts.pcg_its; if (length(k_init(:)) == 1) k_init = zeros(k_init,k_init); end; % assume square kernel ks = size(k_init,1); ks2 = floor(ks/2); % precompute RHS for i = 1:length(X) flipX{i} = fliplr(flipud(X{i})); % precompute X^T Y term on RHS (e = ks^2 length vector of all 1's) rhs{i} = conv2(flipX{i}, Y{i}, 'valid'); end; tmp = zeros(size(rhs{1})); for i = 1 : length(X) tmp = tmp + rhs{i}; end; rhs = tmp; k_out = k_init; % Set exponent for regularization exp_a = 1; % outer loop for iter = 1 : 1 k_prev = k_out; % compute diagonal weights for IRLS weights_l1 = lambda .* (max(abs(k_prev), 0.0001) .^ (exp_a - 2)); k_out = local_cg(k_prev, X, flipX, ks,weights_l1, rhs, pcg_tol, pcg_its); end; % local implementation of CG to solve the reweighted least squares problem function k = local_cg(k, X, flipX, ks, weights_l1, rhs, tol, max_its) Ak = pcg_kernel_core_irls_conv(k, X, flipX, ks,weights_l1); r = rhs - Ak; for iter = 1:max_its rho = (r(:)' * r(:)); if (iter > 1) beta = rho / rho_1; p = r + beta*p; else p = r; end Ap = pcg_kernel_core_irls_conv(p, X, flipX, ks, weights_l1); q = Ap; alpha = rho / (p(:)' * q(:) ); k = k + alpha * p; r = r - alpha*q; rho_1 = rho; if (rho < tol) break; end; end;
github
yuanxy92/ConvexOptimization-master
sparse_deblur.m
.m
ConvexOptimization-master/MATLAB/code/sparse_deblur.m
3,117
utf_8
749ef9a032978645f074cec67e368742
%% Motion Blurry Image Restoration using sparse image prior % This code is written for ELEC5470 convex optimization project Fall 2017-2018 % @author: Shane Yuan % @date: Dec 4, 2017 % I write this code basd on Jinshan Pan's open source code, which helps me % a lot. Thanks to Jinshan Pan % function [Latent, k] = sparse_deblur(opts) %% add path addpath(genpath('image')); addpath(genpath('utils')); %% set parameter opts.prescale = 1; opts.xk_iter = 5; %% max iterations % non-blind deblurring method, support % L0: L0 sparse image prior, use optimization proposed by Li Xu % http://www.cse.cuhk.edu.hk/~leojia/projects/l0deblur/ % L1: L1 sparse image prior, implemented by me % L0_IRL1: L0 sparse image prior, implemented by me, use iterative % reweighted L1 norm which discussed in class if ~(strcmp(opts.blind_method, 'L0')||strcmp(opts.blind_method, 'L1') ... ||strcmp(opts.blind_method, 'L0_IRL1')||strcmp(opts.blind_method, 'L0_MSF')) opts.blind_method = 'L0_IRL1'; end % non-blind deblurring method, support TV-L2 and hyper-laplacian (only windows % executable code is provided for hyper-laplacian method, thanks to Qi % Shan, Jiaya Jia and Aseem Agarwala % http://www.cse.cuhk.edu.hk/~leojia/programs/deconvolution/deconvolution.htm) if ~(strcmp(opts.nonblind_method, 'TV-L2')||strcmp(opts.nonblind_method, 'hyper')) opts.nonblind_method = 'hyper'; end y = imread(opts.filename); % make out dir mkdir(opts.outdir); if size(y,3) == 3 yg = im2double(rgb2gray(y)); else yg = im2double(y); end y = im2double(y); %% blind deblurring step tic; [kernel, interim_latent] = blind_deconv(yg, y, opts); toc %% non blind deblurring step % write k into file k = kernel ./ max(kernel(:)); imwrite(k, [opts.outdir, 'kernel.png']); if strcmp(opts.nonblind_method, 'TV-L2') % TV-L2 denoising method Latent = ringing_artifacts_removal(y, kernel, opts.lambda_tv, opts.lambda_l0, opts.weight_ring); if (strcmp(opts.outdir, '') ~= 0) imwrite(Latent, [opts.outdir, 'deblurred.png']); end else if strcmp(opts.nonblind_method, 'hyper') % only windows executable code is provided % hyper laplacian method kernelname = [opts.outdir, 'kernel.png']; blurname = 'temp.png'; imwrite(y, blurname); sharpname = [opts.outdir, 'deblurred.png']; command = sprintf('deconv.exe %s %s %s 3e-2 1 0.04 1', blurname, kernelname, sharpname); system(command); delete(blurname); Latent = im2double(imread(sharpname)); if (strcmp(opts.outdir, '') ~= 0) delete(sharpname); end else fprintf('Only hyper and TV-L2 are support for non blind deblur!'); exit(-1); end end if (opts.draw_inter == 1) figure(2); imshow(Latent); end end % imwrite(interim_latent, ['results\' filename(7:end-4) '_interim_result.png']);
github
yuanxy92/ConvexOptimization-master
deblurring_adm_aniso.m
.m
ConvexOptimization-master/MATLAB/code/deblurring_adm_aniso.m
2,406
utf_8
df3c7a21e133a0400474e324ac25aa1b
function [I] = deblurring_adm_aniso(B, k, lambda, alpha) % Solving TV-\ell^2 deblurring problem via ADM/Split Bregman method % % This reference of this code is :Fast Image Deconvolution using Hyper-Laplacian Priors % Original code is created by Dilip Krishnan % Finally modified by Jinshan Pan 2011/12/25 % Note: % In this model, aniso TV regularization method is adopted. % Thus, we do not use the Lookup table method proposed by Dilip Krishnan and Rob Fergus % Reference: Kernel Estimation from Salient Structure for Robust Motion % Deblurring %Last update: (2012/6/20) beta = 1/lambda; beta_rate = 2*sqrt(2); %beta_max = 5*2^10; beta_min = 0.001; [m n] = size(B); % initialize with input or passed in initialization I = B; % make sure k is a odd-sized if ((mod(size(k, 1), 2) ~= 1) | (mod(size(k, 2), 2) ~= 1)) fprintf('Error - blur kernel k must be odd-sized.\n'); return; end; [Nomin1, Denom1, Denom2] = computeDenominator(B, k); Ix = [diff(I, 1, 2), I(:,1) - I(:,n)]; Iy = [diff(I, 1, 1); I(1,:) - I(m,:)]; %% Main loop while beta > beta_min gamma = 1/(2*beta); Denom = Denom1 + gamma*Denom2; % subproblem for regularization term if alpha==1 Wx = max(abs(Ix) - beta*lambda, 0).*sign(Ix); Wy = max(abs(Iy) - beta*lambda, 0).*sign(Iy); %% else Wx = solve_image(Ix, 1/(beta*lambda), alpha); Wy = solve_image(Iy, 1/(beta*lambda), alpha); end Wxx = [Wx(:,n) - Wx(:, 1), -diff(Wx,1,2)]; Wxx = Wxx + [Wy(m,:) - Wy(1, :); -diff(Wy,1,1)]; Fyout = (Nomin1 + gamma*fft2(Wxx))./Denom; I = real(ifft2(Fyout)); % update the gradient terms with new solution Ix = [diff(I, 1, 2), I(:,1) - I(:,n)]; Iy = [diff(I, 1, 1); I(1,:) - I(m,:)]; beta = beta/2; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Nomin1, Denom1, Denom2] = computeDenominator(y, k) % % computes denominator and part of the numerator for Equation (3) of the % paper % % Inputs: % y: blurry and noisy input % k: convolution kernel % % Outputs: % Nomin1 -- F(K)'*F(y) % Denom1 -- |F(K)|.^2 % Denom2 -- |F(D^1)|.^2 + |F(D^2)|.^2 % sizey = size(y); otfk = psf2otf(k, sizey); Nomin1 = conj(otfk).*fft2(y); Denom1 = abs(otfk).^2; % if higher-order filters are used, they must be added here too Denom2 = abs(psf2otf([1,-1],sizey)).^2 + abs(psf2otf([1;-1],sizey)).^2;
github
yuanxy92/ConvexOptimization-master
SparseRestorationIRLS.m
.m
ConvexOptimization-master/MATLAB/code/SparseRestorationIRLS.m
5,712
utf_8
6ccd0743e5ae878824f45f1320a0ef2c
function S = SparseRestorationIRLS(Im, kernel, lambda, kappa, type) %% Image restoration with L1 prior without FFT % The objective function: % S^* = argmin ||I*k - B||^2 + lambda |\nabla I|_0 or % S^* = argmin ||I*k - B||^2 + lambda |\nabla I|_1 % This code is written for ELEC5470 convex optimization project Fall 2017-2018 % @author: Shane Yuan % @date: Dec 4, 2017 % I write this code basd on Jinshan Pan's open source code. Thanks to % Jinshan Pan % %% Input: % @Im: Blurred image % @kernel: blur kernel % @lambda: weight for the L1 prior % @kappa: Update ratio in the ADM %% Output: % @S: Latent image % % The Code is created based on the method described in the following paper % [1] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang, % Deblurring Text Images via L0-Regularized Intensity and Gradient % Prior, CVPR, 2014. % [2] Li Xu, Cewu Lu, Yi Xu, and Jiaya Jia. Image smoothing via l0 gradient minimization. % ACM Trans. Graph., 30(6):174, 2011. % % Author: Jinshan Pan ([email protected]) % Date : 05/18/2014 if ~exist('kappa','var') kappa = 2.0; end if (strcmp(type, 'L1')) lambda = 7.5 * lambda; end % pad image H = size(Im,1); W = size(Im,2); Im = wrap_boundary_liu(Im, opt_fft_size([H W]+size(kernel)-1)); % S = Im; betamax = 1e5; fx = [1, -1]; fy = [1; -1]; [N,M,D] = size(Im); sizeI2D = [N,M]; % otfFx = psf2otf(fx,sizeI2D); % otfFy = psf2otf(fy,sizeI2D); % % % KER = psf2otf(kernel,sizeI2D); % Den_KER = abs(KER).^2; % % % Denormin2 = abs(otfFx).^2 + abs(otfFy ).^2; % if D>1 % Denormin2 = repmat(Denormin2,[1,1,D]); % KER = repmat(KER,[1,1,D]); % Den_KER = repmat(Den_KER,[1,1,D]); % end % Normin1 = conj(KER).*fft2(S); % eps = 0.0001; beta = 2*lambda; while beta < betamax % Denormin = Den_KER + beta * Denormin2; h = [diff(S,1,2), S(:,1,:) - S(:,end,:)]; v = [diff(S,1,1); S(1,:,:) - S(end,:,:)]; % update g if (strcmp(type, 'L0')) if D==1 t = (h.^2+v.^2) < lambda / beta; else t = sum((h.^2+v.^2),3) < lambda / beta; t = repmat(t,[1,1,D]); end h(t)=0; v(t)=0; end if (strcmp(type, 'L1')) rho = lambda / beta; for i = 1:size(h, 1) for j = 1:size(h, 2) gh1 = (2 * h(i, j) - rho) / 2; gh2 = (2 * h(i, j) + rho) / 2; if (gh1 > 0) h(i, j) = gh1; else if (gh2 < 0) h(i, j) = gh2; else h(i, j) = 0; end end gv1 = (2 * v(i, j) - rho) / 2; gv2 = (2 * v(i, j) + rho) / 2; if (gv1 > 0) v(i, j) = gv1; else if (gv2 < 0) v(i, j) = gv2; else v(i, j) = 0; end end end end end if (strcmp(type, 'L0_IRL1')) rho = lambda/beta; for i = 1:size(h, 1) for j = 1:size(h, 2) gh1 = (2 * h(i, j) - 1 / (abs(h(i, j)) + eps) * rho) / 2; gh2 = (2 * h(i, j) + 1 / (abs(h(i, j)) + eps) * rho) / 2; if (gh1 > 0) h(i, j) = gh1; else if (gh2 < 0) h(i, j) = gh2; else h(i, j) = 0; end end gv1 = (2 * v(i, j) - 1 / (abs(v(i, j)) + eps) * rho) / 2; gv2 = (2 * v(i, j) + 1 / (abs(v(i, j)) + eps) * rho) / 2; if (gv1 > 0) v(i, j) = gv1; else if (gv2 < 0) v(i, j) = gv2; else v(i, j) = 0; end end end end end % conjugate gradient descent kernel = kernel ./ sum(kernel(:)); b = conv2(Im, kernel, 'same'); b = b + conv2(h, fx, 'same'); b = b + conv2(v, fy, 'same'); Ax = conv2(conv2(S, fliplr(flipud(kernel)), 'same'), kernel, 'same'); Ax = Ax + beta * conv2(conv2(S, fliplr(flipud(fx)), 'valid'), fx); Ax = Ax + beta * conv2(conv2(S, fliplr(flipud(fy)), 'valid'), fy); r = b - Ax; S = conj_grad(S, r, kernel, beta); beta = beta * kappa; end S = S(1:H, 1:W, :); end function S = conj_grad(S, r, kernel, beta_out) fx = [1, -1]; fy = [1; -1]; for iter = 1:30 rho = (r(:)'*r(:)); if ( iter > 1 ), % direction vector beta = rho / rho_1; p = r + beta * p; else p = r; end Ap = conv2(conv2(S, fliplr(flipud(kernel)), 'same'), kernel, 'same'); Ap = Ap + beta_out * conv2(conv2(S, fliplr(flipud(fx)), 'valid'), fx); Ap = Ap + beta_out * conv2(conv2(S, fliplr(flipud(fy)), 'valid'), fy); q = Ap; alpha = rho / (p(:)' * q(:) ); S = S + alpha * p; % update approximation vector r = r - alpha*q; % compute residual rho_1 = rho; fprintf('residual: %f\n', sum(r(:))); end end
github
yuanxy92/ConvexOptimization-master
aligned_psnr.m
.m
ConvexOptimization-master/MATLAB/code/aligned_psnr.m
1,277
utf_8
e5c2fc5be4e03efc123052b8409accf0
%% calculate aligned PSNR of two images % This code is written for ELEC5470 convex optimization project Fall 2017-2018 % @author: Shane Yuan % @date: Dec 4, 2017 % I write this code basd on Jinshan Pan's open source code, which helps me % a lot. Thanks to Jinshan Pan % function [psnr_result] = aligned_psnr(ground, image) [rows, cols, m] = size(ground); if m == 3 % Change the images to gray ground = rgb2gray(ground); end [~, ~, m] = size(image); if m == 3 % Change the images to gray image = rgb2gray(image); end % Get cutted groundtruth row_cutted = 10; col_cutted = 10; psnr_mat = zeros(2 * row_cutted, 2 * col_cutted); ground_cutted = ground((1 + row_cutted):(rows - row_cutted), (1 + col_cutted):(cols - col_cutted)); % Calculate rows_cutted = rows - row_cutted * 2; cols_cutted = cols - col_cutted * 2; for i = 1:1:(row_cutted * 2) for j = 1:1:(col_cutted * 2) image_cutted = image(i:(i + rows_cutted - 1), j:(j + cols_cutted - 1)); % % Calculate the mean square error % e = double(ground_cutted) - double(image_cutted); % [m, n] = size(e); % mse = sum(sum(e.^2))/(m*n); % % Calculate the PSNR psnr_mat(i, j) = psnr(ground_cutted, image_cutted); end end psnr_result = max(psnr_mat(:));
github
yuanxy92/ConvexOptimization-master
estimate_psf.m
.m
ConvexOptimization-master/MATLAB/code/estimate_psf.m
1,290
utf_8
f570f34e559fd6d11f20feb4f37963d9
function psf = estimate_psf(blurred_x, blurred_y, latent_x, latent_y, weight, psf_size) %---------------------------------------------------------------------- % these values can be pre-computed at the beginning of each level % blurred_f = fft2(blurred); % dx_f = psf2otf([1 -1 0], size(blurred)); % dy_f = psf2otf([1;-1;0], size(blurred)); % blurred_xf = dx_f .* blurred_f; %% FFT (Bx) % blurred_yf = dy_f .* blurred_f; %% FFT (By) latent_xf = fft2(latent_x); latent_yf = fft2(latent_y); blurred_xf = fft2(blurred_x); blurred_yf = fft2(blurred_y); % compute b = sum_i w_i latent_i * blurred_i b_f = conj(latent_xf) .* blurred_xf ... + conj(latent_yf) .* blurred_yf; b = real(otf2psf(b_f, psf_size)); p.m = conj(latent_xf) .* latent_xf ... + conj(latent_yf) .* latent_yf; %p.img_size = size(blurred); p.img_size = size(blurred_xf); p.psf_size = psf_size; p.lambda = weight; psf = ones(psf_size) / prod(psf_size); psf = conjgrad(psf, b, 20, 1e-5, @compute_Ax, p); psf(psf < max(psf(:))*0.05) = 0; psf = psf / sum(psf(:)); end function y = compute_Ax(x, p) x_f = psf2otf(x, p.img_size); y = otf2psf(p.m .* x_f, p.psf_size); y = y + p.lambda * x; end
github
yuanxy92/ConvexOptimization-master
blind_deconv.m
.m
ConvexOptimization-master/MATLAB/code/blind_deconv.m
5,338
utf_8
7bb1cdb0addad885af945341306304dd
function [kernel, interim_latent] = blind_deconv(y, y_color, opts) %% multiscale blind deblurring code % This code is written for ELEC5470 convex optimization project Fall 2017-2018 % @author: Shane Yuan % @date: Dec 4, 2017 % I write this code basd on Jinshan Pan's open source code. Thanks to % Jinshan Pan %% Input: % @y: input blurred image (grayscale); % @lambda_grad: the weight for the L0/L1 regularization on gradient % @opts: options %% Output: % @kernel: the estimated blur kernel % @interim_latent: intermediate latent image % % The Code is created based on the method described in the following paper % [1] Jinshan Pan, Deqing Sun, Hanspteter Pfister, and Ming-Hsuan Yang, % Blind Image Deblurring Using Dark Channel Prior, CVPR, 2016. % [2] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang, % Deblurring Text Images via L0-Regularized Intensity and Gradient % Prior, CVPR, 2014. % gamma correct if opts.gamma_correct~=1 y = y .^ opts.gamma_correct; y_color = y_color .^ opts.gamma_correct; end b = zeros(opts.kernel_size); %% ret = sqrt(0.5); %% maxitr = max(floor(log(5/min(opts.kernel_size))/log(ret)),0); num_scales = maxitr + 1; fprintf('Maximum iteration level is %d\n', num_scales); %% retv = ret .^ [0 : maxitr]; k1list = ceil(opts.kernel_size * retv); k1list = k1list+(mod(k1list, 2) == 0); k2list =ceil(opts.kernel_size * retv); k2list = k2list+(mod(k2list, 2) == 0); % derivative filters dx = [-1 1; 0 0]; dy = [-1 0; 1 0]; % blind deconvolution - multiscale processing for s = num_scales : (-1) : 1 if (s == num_scales) %% % at coarsest level, initialize kernel ks = init_kernel(k1list(s)); k1 = k1list(s); k2 = k1; % always square kernel assumed else % upsample kernel from previous level to next finer level k1 = k1list(s); k2 = k1; % always square kernel assumed % resize kernel from previous level ks = resizeKer(ks,1/ret,k1list(s),k2list(s)); end; % cret = retv(s); ys = downSmpImC(y, cret); y_colors = zeros(size(ys, 1), size(ys, 2), 3); for c = 1:3 y_colors(:, :, c) = downSmpImC(y_color(:, :, c), cret); end fprintf('Processing scale %d/%d; kernel size %dx%d; image size %dx%d\n', ... s, num_scales, k1, k2, size(ys,1), size(ys,2)); % optimization in this scale [ks, interim_latent, opts] = blind_deconv_main(ys, y_colors, ks,... opts); % center the kernel ks = adjust_psf_center(ks); ks(ks(:)<0) = 0; sumk = sum(ks(:)); ks = ks./sumk; % denoise kernel if (s == 1) kernel = ks; if opts.k_thresh > 0 kernel(kernel(:) < max(kernel(:))/opts.k_thresh) = 0; else kernel(kernel(:) < 0) = 0; end kernel = kernel / sum(kernel(:)); end % output intermediate if opts.output_intermediate == 1 imwrite(interim_latent, [opts.outdir, sprintf('inter_image_%2d.png', s)]); kw = ks ./ max(ks(:)); imwrite(kw, [opts.outdir, sprintf('inter_kernel_%2d.png', s)]); end end end %% kernel init funciton function [k] = init_kernel(minsize) k = zeros(minsize, minsize); k((minsize - 1)/2, (minsize - 1)/2:(minsize - 1)/2+1) = 1/2; end %% image downsample function function sI=downSmpImC(I,ret) % refer to Levin's code if (ret==1) sI=I; return end sig=1/pi*ret; g0=[-50:50]*2*pi; sf=exp(-0.5*g0.^2*sig^2); sf=sf/sum(sf); csf=cumsum(sf); csf=min(csf,csf(end:-1:1)); ii=find(csf>0.05); sf=sf(ii); sum(sf); I=conv2(sf,sf',I,'valid'); [gx,gy]=meshgrid([1:1/ret:size(I,2)],[1:1/ret:size(I,1)]); sI=interp2(I,gx,gy,'bilinear'); end %% kernel resize function function k=resizeKer(k,ret,k1,k2) % levin's code k=imresize(k,ret); k=max(k,0); k=fixsize(k,k1,k2); if max(k(:))>0 k=k/sum(k(:)); end end function nf = fixsize(f,nk1,nk2) [k1,k2]=size(f); while((k1 ~= nk1) || (k2 ~= nk2)) if (k1>nk1) s=sum(f,2); if (s(1)<s(end)) f=f(2:end,:); else f=f(1:end-1,:); end end if (k1<nk1) s=sum(f,2); if (s(1)<s(end)) tf=zeros(k1+1,size(f,2)); tf(1:k1,:)=f; f=tf; else tf=zeros(k1+1,size(f,2)); tf(2:k1+1,:)=f; f=tf; end end if (k2>nk2) s=sum(f,1); if (s(1)<s(end)) f=f(:,2:end); else f=f(:,1:end-1); end end if (k2<nk2) s=sum(f,1); if (s(1)<s(end)) tf=zeros(size(f,1),k2+1); tf(:,1:k2)=f; f=tf; else tf=zeros(size(f,1),k2+1); tf(:,2:k2+1)=f; f=tf; end end [k1,k2]=size(f); end nf=f; end
github
yuanxy92/ConvexOptimization-master
wrap_boundary_liu.m
.m
ConvexOptimization-master/MATLAB/code/utils/wrap_boundary_liu.m
3,568
utf_8
778eb4d6eeeb26991f536cb17154be69
function ret = wrap_boundary_liu(img, img_size) % wrap_boundary_liu.m % % pad image boundaries such that image boundaries are circularly smooth % % written by Sunghyun Cho ([email protected]) % % This is a variant of the method below: % Reducing boundary artifacts in image deconvolution % Renting Liu, Jiaya Jia % ICIP 2008 % [H, W, Ch] = size(img); H_w = img_size(1) - H; W_w = img_size(2) - W; ret = zeros(img_size(1), img_size(2), Ch); for ch = 1:Ch alpha = 1; HG = img(:,:,ch); r_A = zeros(alpha*2+H_w, W); r_A(1:alpha, :) = HG(end-alpha+1:end, :); r_A(end-alpha+1:end, :) = HG(1:alpha, :); a = ((1:H_w)-1)/(H_w-1); r_A(alpha+1:end-alpha, 1) = (1-a)*r_A(alpha,1) + a*r_A(end-alpha+1,1); r_A(alpha+1:end-alpha, end) = (1-a)*r_A(alpha,end) + a*r_A(end-alpha+1,end); A2 = solve_min_laplacian(r_A(alpha:end-alpha+1,:)); r_A(alpha:end-alpha+1,:) = A2; A = r_A; r_B = zeros(H, alpha*2+W_w); r_B(:, 1:alpha) = HG(:, end-alpha+1:end); r_B(:, end-alpha+1:end) = HG(:, 1:alpha); a = ((1:W_w)-1)/(W_w-1); r_B(1, alpha+1:end-alpha) = (1-a)*r_B(1,alpha) + a*r_B(1,end-alpha+1); r_B(end, alpha+1:end-alpha) = (1-a)*r_B(end,alpha) + a*r_B(end,end-alpha+1); B2 = solve_min_laplacian(r_B(:, alpha:end-alpha+1)); r_B(:,alpha:end-alpha+1,:) = B2; B = r_B; r_C = zeros(alpha*2+H_w, alpha*2+W_w); r_C(1:alpha, :) = B(end-alpha+1:end, :); r_C(end-alpha+1:end, :) = B(1:alpha, :); r_C(:, 1:alpha) = A(:, end-alpha+1:end); r_C(:, end-alpha+1:end) = A(:, 1:alpha); C2 = solve_min_laplacian(r_C(alpha:end-alpha+1, alpha:end-alpha+1)); r_C(alpha:end-alpha+1, alpha:end-alpha+1) = C2; C = r_C; A = A(alpha:end-alpha-1, :); B = B(:, alpha+1:end-alpha); C = C(alpha+1:end-alpha, alpha+1:end-alpha); ret(:,:,ch) = [img(:,:,ch) B; A C]; end end function [img_direct] = solve_min_laplacian(boundary_image) % function [img_direct] = poisson_solver_function(gx,gy,boundary_image) % Inputs; Gx and Gy -> Gradients % Boundary Image -> Boundary image intensities % Gx Gy and boundary image should be of same size [H,W] = size(boundary_image); % Laplacian f = zeros(H,W); clear j k % boundary image contains image intensities at boundaries boundary_image(2:end-1, 2:end-1) = 0; j = 2:H-1; k = 2:W-1; f_bp = zeros(H,W); f_bp(j,k) = -4*boundary_image(j,k) + boundary_image(j,k+1) + ... boundary_image(j,k-1) + boundary_image(j-1,k) + boundary_image(j+1,k); clear j k %f1 = f - reshape(f_bp,H,W); % subtract boundary points contribution f1 = f - f_bp; % subtract boundary points contribution clear f_bp f % DST Sine Transform algo starts here f2 = f1(2:end-1,2:end-1); clear f1 % compute sine tranform tt = dst(f2); f2sin = dst(tt')'; clear f2 % compute Eigen Values [x,y] = meshgrid(1:W-2, 1:H-2); denom = (2*cos(pi*x/(W-1))-2) + (2*cos(pi*y/(H-1)) - 2); % divide f3 = f2sin./denom; clear f2sin x y % compute Inverse Sine Transform tt = idst(f3); clear f3; img_tt = idst(tt')'; clear tt % put solution in inner points; outer points obtained from boundary image img_direct = boundary_image; img_direct(2:end-1,2:end-1) = 0; img_direct(2:end-1,2:end-1) = img_tt; end
github
yuanxy92/ConvexOptimization-master
adjust_psf_center.m
.m
ConvexOptimization-master/MATLAB/code/utils/adjust_psf_center.m
1,453
utf_8
ffd7dc5a8dc7589030f98a822f6b7c9a
function psf = adjust_psf_center(psf) [X Y] = meshgrid(1:size(psf,2), 1:size(psf,1)); xc1 = sum2(psf .* X); yc1 = sum2(psf .* Y); xc2 = (size(psf,2)+1) / 2; yc2 = (size(psf,1)+1) / 2; xshift = round(xc2 - xc1); yshift = round(yc2 - yc1); psf = warpimage(psf, [1 0 -xshift; 0 1 -yshift]); function val = sum2(arr) val = sum(arr(:)); %% % M should be an inverse transform! function warped = warpimage(img, M) if size(img,3) == 3 warped(:,:,1) = warpProjective2(img(:,:,1), M); warped(:,:,2) = warpProjective2(img(:,:,2), M); warped(:,:,3) = warpProjective2(img(:,:,3), M); warped(isnan(warped))=0; else warped = warpProjective2(img, M); warped(isnan(warped))=0; end %% function result = warpProjective2(im,A) % % function result = warpProjective2(im,A) % % im: input image % A: 2x3 affine transform matrix or a 3x3 matrix with [0 0 1] % for the last row. % if a transformed point is outside of the volume, NaN is used % % result: output image, same size as im % if (size(A,1)>2) A=A(1:2,:); end % Compute coordinates corresponding to input % and transformed coordinates for result [x,y]=meshgrid(1:size(im,2),1:size(im,1)); coords=[x(:)'; y(:)']; homogeneousCoords=[coords; ones(1,prod(size(im)))]; warpedCoords=A*homogeneousCoords; xprime=warpedCoords(1,:);%./warpedCoords(3,:); yprime=warpedCoords(2,:);%./warpedCoords(3,:); result = interp2(x,y,im,xprime,yprime, 'linear'); result = reshape(result,size(im)); return;
github
yuanxy92/ConvexOptimization-master
deblurring_adm_aniso.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/deblurring_adm_aniso.m
2,406
utf_8
df3c7a21e133a0400474e324ac25aa1b
function [I] = deblurring_adm_aniso(B, k, lambda, alpha) % Solving TV-\ell^2 deblurring problem via ADM/Split Bregman method % % This reference of this code is :Fast Image Deconvolution using Hyper-Laplacian Priors % Original code is created by Dilip Krishnan % Finally modified by Jinshan Pan 2011/12/25 % Note: % In this model, aniso TV regularization method is adopted. % Thus, we do not use the Lookup table method proposed by Dilip Krishnan and Rob Fergus % Reference: Kernel Estimation from Salient Structure for Robust Motion % Deblurring %Last update: (2012/6/20) beta = 1/lambda; beta_rate = 2*sqrt(2); %beta_max = 5*2^10; beta_min = 0.001; [m n] = size(B); % initialize with input or passed in initialization I = B; % make sure k is a odd-sized if ((mod(size(k, 1), 2) ~= 1) | (mod(size(k, 2), 2) ~= 1)) fprintf('Error - blur kernel k must be odd-sized.\n'); return; end; [Nomin1, Denom1, Denom2] = computeDenominator(B, k); Ix = [diff(I, 1, 2), I(:,1) - I(:,n)]; Iy = [diff(I, 1, 1); I(1,:) - I(m,:)]; %% Main loop while beta > beta_min gamma = 1/(2*beta); Denom = Denom1 + gamma*Denom2; % subproblem for regularization term if alpha==1 Wx = max(abs(Ix) - beta*lambda, 0).*sign(Ix); Wy = max(abs(Iy) - beta*lambda, 0).*sign(Iy); %% else Wx = solve_image(Ix, 1/(beta*lambda), alpha); Wy = solve_image(Iy, 1/(beta*lambda), alpha); end Wxx = [Wx(:,n) - Wx(:, 1), -diff(Wx,1,2)]; Wxx = Wxx + [Wy(m,:) - Wy(1, :); -diff(Wy,1,1)]; Fyout = (Nomin1 + gamma*fft2(Wxx))./Denom; I = real(ifft2(Fyout)); % update the gradient terms with new solution Ix = [diff(I, 1, 2), I(:,1) - I(:,n)]; Iy = [diff(I, 1, 1); I(1,:) - I(m,:)]; beta = beta/2; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Nomin1, Denom1, Denom2] = computeDenominator(y, k) % % computes denominator and part of the numerator for Equation (3) of the % paper % % Inputs: % y: blurry and noisy input % k: convolution kernel % % Outputs: % Nomin1 -- F(K)'*F(y) % Denom1 -- |F(K)|.^2 % Denom2 -- |F(D^1)|.^2 + |F(D^2)|.^2 % sizey = size(y); otfk = psf2otf(k, sizey); Nomin1 = conj(otfk).*fft2(y); Denom1 = abs(otfk).^2; % if higher-order filters are used, they must be added here too Denom2 = abs(psf2otf([1,-1],sizey)).^2 + abs(psf2otf([1;-1],sizey)).^2;
github
yuanxy92/ConvexOptimization-master
estimate_psf.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/estimate_psf.m
1,290
utf_8
f570f34e559fd6d11f20feb4f37963d9
function psf = estimate_psf(blurred_x, blurred_y, latent_x, latent_y, weight, psf_size) %---------------------------------------------------------------------- % these values can be pre-computed at the beginning of each level % blurred_f = fft2(blurred); % dx_f = psf2otf([1 -1 0], size(blurred)); % dy_f = psf2otf([1;-1;0], size(blurred)); % blurred_xf = dx_f .* blurred_f; %% FFT (Bx) % blurred_yf = dy_f .* blurred_f; %% FFT (By) latent_xf = fft2(latent_x); latent_yf = fft2(latent_y); blurred_xf = fft2(blurred_x); blurred_yf = fft2(blurred_y); % compute b = sum_i w_i latent_i * blurred_i b_f = conj(latent_xf) .* blurred_xf ... + conj(latent_yf) .* blurred_yf; b = real(otf2psf(b_f, psf_size)); p.m = conj(latent_xf) .* latent_xf ... + conj(latent_yf) .* latent_yf; %p.img_size = size(blurred); p.img_size = size(blurred_xf); p.psf_size = psf_size; p.lambda = weight; psf = ones(psf_size) / prod(psf_size); psf = conjgrad(psf, b, 20, 1e-5, @compute_Ax, p); psf(psf < max(psf(:))*0.05) = 0; psf = psf / sum(psf(:)); end function y = compute_Ax(x, p) x_f = psf2otf(x, p.img_size); y = otf2psf(p.m .* x_f, p.psf_size); y = y + p.lambda * x; end
github
yuanxy92/ConvexOptimization-master
blind_deconv.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/blind_deconv.m
4,951
utf_8
b9995e1e5c0666707be466fdb39c522a
function [kernel, interim_latent] = blind_deconv(y, lambda_dark, lambda_grad, opts) % % Do multi-scale blind deconvolution % %% Input: % @y : input blurred image (grayscale); % @lambda_dark: the weight for the L0 regularization on intensity % @lambda_grad: the weight for the L0 regularization on gradient % @opts: see the description in the file "demo_text_deblurring.m" %% Output: % @kernel: the estimated blur kernel % @interim_latent: intermediate latent image % % The Code is created based on the method described in the following paper % [1] Jinshan Pan, Deqing Sun, Hanspteter Pfister, and Ming-Hsuan Yang, % Blind Image Deblurring Using Dark Channel Prior, CVPR, 2016. % [2] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang, % Deblurring Text Images via L0-Regularized Intensity and Gradient % Prior, CVPR, 2014. % % Author: Jinshan Pan ([email protected]) % Date : 03/22/2016 % gamma correct if opts.gamma_correct~=1 y = y.^opts.gamma_correct; end b = zeros(opts.kernel_size); % set kernel size for coarsest level - must be odd %minsize = max(3, 2*floor(((opts.kernel_size - 1)/16)) + 1); %fprintf('Kernel size at coarsest level is %d\n', maxitr); %% ret = sqrt(0.5); %% maxitr=max(floor(log(5/min(opts.kernel_size))/log(ret)),0); num_scales = maxitr + 1; fprintf('Maximum iteration level is %d\n', num_scales); %% retv=ret.^[0:maxitr]; k1list=ceil(opts.kernel_size*retv); k1list=k1list+(mod(k1list,2)==0); k2list=ceil(opts.kernel_size*retv); k2list=k2list+(mod(k2list,2)==0); % derivative filters dx = [-1 1; 0 0]; dy = [-1 0; 1 0]; % blind deconvolution - multiscale processing for s = num_scales:-1:1 if (s == num_scales) %% % at coarsest level, initialize kernel ks = init_kernel(k1list(s)); k1 = k1list(s); k2 = k1; % always square kernel assumed else % upsample kernel from previous level to next finer level k1 = k1list(s); k2 = k1; % always square kernel assumed % resize kernel from previous level ks = resizeKer(ks,1/ret,k1list(s),k2list(s)); end; %%%%%%%%%%%%%%%%%%%%%%%%%%% cret=retv(s); ys=downSmpImC(y,cret); fprintf('Processing scale %d/%d; kernel size %dx%d; image size %dx%d\n', ... s, num_scales, k1, k2, size(ys,1), size(ys,2)); %-----------------------------------------------------------% %% Useless operation if (s == num_scales) [~, ~, threshold]= threshold_pxpy_v1(ys,max(size(ks))); %% Initialize the parameter: ??? % if threshold<lambda_grad/10&&threshold~=0; % lambda_grad = threshold; % %lambda_dark = threshold_image_v1(ys); % lambda_dark = lambda_grad; % end end %-----------------------------------------------------------% [ks, lambda_dark, lambda_grad, interim_latent] = blind_deconv_main(ys, ks, lambda_dark,... lambda_grad, threshold, opts); %% center the kernel ks = adjust_psf_center(ks); ks(ks(:)<0) = 0; sumk = sum(ks(:)); ks = ks./sumk; %% set elements below threshold to 0 if (s == 1) kernel = ks; if opts.k_thresh>0 kernel(kernel(:) < max(kernel(:))/opts.k_thresh) = 0; else kernel(kernel(:) < 0) = 0; end kernel = kernel / sum(kernel(:)); end; end; %% end kernel estimation end %% Sub-function function [k] = init_kernel(minsize) k = zeros(minsize, minsize); k((minsize - 1)/2, (minsize - 1)/2:(minsize - 1)/2+1) = 1/2; end %% function sI=downSmpImC(I,ret) %% refer to Levin's code if (ret==1) sI=I; return end %%%%%%%%%%%%%%%%%%% sig=1/pi*ret; g0=[-50:50]*2*pi; sf=exp(-0.5*g0.^2*sig^2); sf=sf/sum(sf); csf=cumsum(sf); csf=min(csf,csf(end:-1:1)); ii=find(csf>0.05); sf=sf(ii); sum(sf); I=conv2(sf,sf',I,'valid'); [gx,gy]=meshgrid([1:1/ret:size(I,2)],[1:1/ret:size(I,1)]); sI=interp2(I,gx,gy,'bilinear'); end %% function k=resizeKer(k,ret,k1,k2) %% % levin's code k=imresize(k,ret); k=max(k,0); k=fixsize(k,k1,k2); if max(k(:))>0 k=k/sum(k(:)); end end %% function nf=fixsize(f,nk1,nk2) [k1,k2]=size(f); while((k1~=nk1)|(k2~=nk2)) if (k1>nk1) s=sum(f,2); if (s(1)<s(end)) f=f(2:end,:); else f=f(1:end-1,:); end end if (k1<nk1) s=sum(f,2); if (s(1)<s(end)) tf=zeros(k1+1,size(f,2)); tf(1:k1,:)=f; f=tf; else tf=zeros(k1+1,size(f,2)); tf(2:k1+1,:)=f; f=tf; end end if (k2>nk2) s=sum(f,1); if (s(1)<s(end)) f=f(:,2:end); else f=f(:,1:end-1); end end if (k2<nk2) s=sum(f,1); if (s(1)<s(end)) tf=zeros(size(f,1),k2+1); tf(:,1:k2)=f; f=tf; else tf=zeros(size(f,1),k2+1); tf(:,2:k2+1)=f; f=tf; end end [k1,k2]=size(f); end nf=f; end %%
github
yuanxy92/ConvexOptimization-master
wrap_boundary_liu.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/cho_code/wrap_boundary_liu.m
3,568
utf_8
778eb4d6eeeb26991f536cb17154be69
function ret = wrap_boundary_liu(img, img_size) % wrap_boundary_liu.m % % pad image boundaries such that image boundaries are circularly smooth % % written by Sunghyun Cho ([email protected]) % % This is a variant of the method below: % Reducing boundary artifacts in image deconvolution % Renting Liu, Jiaya Jia % ICIP 2008 % [H, W, Ch] = size(img); H_w = img_size(1) - H; W_w = img_size(2) - W; ret = zeros(img_size(1), img_size(2), Ch); for ch = 1:Ch alpha = 1; HG = img(:,:,ch); r_A = zeros(alpha*2+H_w, W); r_A(1:alpha, :) = HG(end-alpha+1:end, :); r_A(end-alpha+1:end, :) = HG(1:alpha, :); a = ((1:H_w)-1)/(H_w-1); r_A(alpha+1:end-alpha, 1) = (1-a)*r_A(alpha,1) + a*r_A(end-alpha+1,1); r_A(alpha+1:end-alpha, end) = (1-a)*r_A(alpha,end) + a*r_A(end-alpha+1,end); A2 = solve_min_laplacian(r_A(alpha:end-alpha+1,:)); r_A(alpha:end-alpha+1,:) = A2; A = r_A; r_B = zeros(H, alpha*2+W_w); r_B(:, 1:alpha) = HG(:, end-alpha+1:end); r_B(:, end-alpha+1:end) = HG(:, 1:alpha); a = ((1:W_w)-1)/(W_w-1); r_B(1, alpha+1:end-alpha) = (1-a)*r_B(1,alpha) + a*r_B(1,end-alpha+1); r_B(end, alpha+1:end-alpha) = (1-a)*r_B(end,alpha) + a*r_B(end,end-alpha+1); B2 = solve_min_laplacian(r_B(:, alpha:end-alpha+1)); r_B(:,alpha:end-alpha+1,:) = B2; B = r_B; r_C = zeros(alpha*2+H_w, alpha*2+W_w); r_C(1:alpha, :) = B(end-alpha+1:end, :); r_C(end-alpha+1:end, :) = B(1:alpha, :); r_C(:, 1:alpha) = A(:, end-alpha+1:end); r_C(:, end-alpha+1:end) = A(:, 1:alpha); C2 = solve_min_laplacian(r_C(alpha:end-alpha+1, alpha:end-alpha+1)); r_C(alpha:end-alpha+1, alpha:end-alpha+1) = C2; C = r_C; A = A(alpha:end-alpha-1, :); B = B(:, alpha+1:end-alpha); C = C(alpha+1:end-alpha, alpha+1:end-alpha); ret(:,:,ch) = [img(:,:,ch) B; A C]; end end function [img_direct] = solve_min_laplacian(boundary_image) % function [img_direct] = poisson_solver_function(gx,gy,boundary_image) % Inputs; Gx and Gy -> Gradients % Boundary Image -> Boundary image intensities % Gx Gy and boundary image should be of same size [H,W] = size(boundary_image); % Laplacian f = zeros(H,W); clear j k % boundary image contains image intensities at boundaries boundary_image(2:end-1, 2:end-1) = 0; j = 2:H-1; k = 2:W-1; f_bp = zeros(H,W); f_bp(j,k) = -4*boundary_image(j,k) + boundary_image(j,k+1) + ... boundary_image(j,k-1) + boundary_image(j-1,k) + boundary_image(j+1,k); clear j k %f1 = f - reshape(f_bp,H,W); % subtract boundary points contribution f1 = f - f_bp; % subtract boundary points contribution clear f_bp f % DST Sine Transform algo starts here f2 = f1(2:end-1,2:end-1); clear f1 % compute sine tranform tt = dst(f2); f2sin = dst(tt')'; clear f2 % compute Eigen Values [x,y] = meshgrid(1:W-2, 1:H-2); denom = (2*cos(pi*x/(W-1))-2) + (2*cos(pi*y/(H-1)) - 2); % divide f3 = f2sin./denom; clear f2sin x y % compute Inverse Sine Transform tt = idst(f3); clear f3; img_tt = idst(tt')'; clear tt % put solution in inner points; outer points obtained from boundary image img_direct = boundary_image; img_direct(2:end-1,2:end-1) = 0; img_direct(2:end-1,2:end-1) = img_tt; end
github
yuanxy92/ConvexOptimization-master
adjust_psf_center.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/cho_code/adjust_psf_center.m
1,453
utf_8
ffd7dc5a8dc7589030f98a822f6b7c9a
function psf = adjust_psf_center(psf) [X Y] = meshgrid(1:size(psf,2), 1:size(psf,1)); xc1 = sum2(psf .* X); yc1 = sum2(psf .* Y); xc2 = (size(psf,2)+1) / 2; yc2 = (size(psf,1)+1) / 2; xshift = round(xc2 - xc1); yshift = round(yc2 - yc1); psf = warpimage(psf, [1 0 -xshift; 0 1 -yshift]); function val = sum2(arr) val = sum(arr(:)); %% % M should be an inverse transform! function warped = warpimage(img, M) if size(img,3) == 3 warped(:,:,1) = warpProjective2(img(:,:,1), M); warped(:,:,2) = warpProjective2(img(:,:,2), M); warped(:,:,3) = warpProjective2(img(:,:,3), M); warped(isnan(warped))=0; else warped = warpProjective2(img, M); warped(isnan(warped))=0; end %% function result = warpProjective2(im,A) % % function result = warpProjective2(im,A) % % im: input image % A: 2x3 affine transform matrix or a 3x3 matrix with [0 0 1] % for the last row. % if a transformed point is outside of the volume, NaN is used % % result: output image, same size as im % if (size(A,1)>2) A=A(1:2,:); end % Compute coordinates corresponding to input % and transformed coordinates for result [x,y]=meshgrid(1:size(im,2),1:size(im,1)); coords=[x(:)'; y(:)']; homogeneousCoords=[coords; ones(1,prod(size(im)))]; warpedCoords=A*homogeneousCoords; xprime=warpedCoords(1,:);%./warpedCoords(3,:); yprime=warpedCoords(2,:);%./warpedCoords(3,:); result = interp2(x,y,im,xprime,yprime, 'linear'); result = reshape(result,size(im)); return;
github
yuanxy92/ConvexOptimization-master
padImage.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/whyte_code/padImage.m
906
utf_8
cbc0cf68a7e2e260cfccc8d64309d87f
% imPadded = padImage(im, padsize, padval) % padsize = [top, bottom, left, right] % padval = valid arguments for padval to padarray. e.g. 'replicate', or 0 % % for negative padsize, undoes the padding % Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function imPadded = padImage(im, padsize, padval) if nargin < 3, padval = 0; end if any(padsize < 0) padsize = -padsize; imPadded = im(padsize(1)+1:end-padsize(2), padsize(3)+1:end-padsize(4), :); else imPadded = padarray( ... padarray(im, [padsize(1) padsize(3)],padval,'pre'), ... [padsize(2) padsize(4)],padval,'post'); end
github
yuanxy92/ConvexOptimization-master
calculatePadding.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/whyte_code/calculatePadding.m
2,718
utf_8
620880ec6310f544654fe052967f1fe8
% pad = calculatePadding(image_size,non_uniform = 0,kernel) % pad = calculatePadding(image_size,non_uniform = 1,theta_list,Kinternal) % where pad = [top, bottom, left, right] % Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function [pad_replicate,Kinternal] = calculatePadding(image_size,non_uniform,theta_list,Kinternal) h_sharp = image_size(1); w_sharp = image_size(2); if non_uniform % Calculate padding im_corners = [1, 1, w_sharp, w_sharp;... 1, h_sharp, h_sharp, 1;... 1, 1, 1, 1]; pad_replicate_t = 0; % top of image pad_replicate_b = 0; % bottom of image pad_replicate_l = 0; % left of image pad_replicate_r = 0; % right of image % for each non-zero in the kernel... for i=1:size(theta_list,2) % back proect corners of blurry image to see how far out we need to pad % H = Ksharp*expm(crossmatrix(-theta_list(:,i)))*inv(Kblurry); H = Kinternal*expm(crossmatrix(-theta_list(:,i)))*inv(Kinternal); projected_corners_sharp = hnormalise(H*im_corners); offsets = abs(projected_corners_sharp - im_corners); if offsets(1,1) > pad_replicate_l, pad_replicate_l = ceil(offsets(1,1)); end if offsets(1,2) > pad_replicate_l, pad_replicate_l = ceil(offsets(1,2)); end if offsets(1,3) > pad_replicate_r, pad_replicate_r = ceil(offsets(1,3)); end if offsets(1,4) > pad_replicate_r, pad_replicate_r = ceil(offsets(1,4)); end if offsets(2,1) > pad_replicate_t, pad_replicate_t = ceil(offsets(2,1)); end if offsets(2,2) > pad_replicate_b, pad_replicate_b = ceil(offsets(2,2)); end if offsets(2,3) > pad_replicate_t, pad_replicate_t = ceil(offsets(2,3)); end if offsets(2,4) > pad_replicate_b, pad_replicate_b = ceil(offsets(2,4)); end end % Adjust calibration matrices to take account padding Kinternal = htranslate([pad_replicate_l ; pad_replicate_t]) * Kinternal; else kernel = theta_list; pad_replicate_t = ceil((size(kernel,1)-1)/2); pad_replicate_b = floor((size(kernel,1)-1)/2); pad_replicate_l = ceil((size(kernel,2)-1)/2); pad_replicate_r = floor((size(kernel,2)-1)/2); Kinternal = []; end w_sharp = w_sharp + pad_replicate_l + pad_replicate_r; h_sharp = h_sharp + pad_replicate_t + pad_replicate_b; % top, bottom, left, right pad_replicate = [pad_replicate_t, pad_replicate_b, pad_replicate_l, pad_replicate_r];
github
yuanxy92/ConvexOptimization-master
deconvRL.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/whyte_code/deconvRL.m
7,302
utf_8
1bf68715ed3c044f344431243ff2b907
% i_rl = deconvRL(imblur, kernel, non_uniform, ...) % for uniform blur, with non_uniform = 0 % % i_rl = deconvRL(imblur, kernel, non_uniform, theta_list, Kblurry, ...) % for non-uniform blur, with non_uniform = 1 % % Additional arguments, in any order: % ... , 'forward_saturation', ... use forward model for saturation % ... , 'prevent_ringing', ... split and re-combine updates to reduce ringing % ... , 'sat_thresh', T, ... clipping level for forward model of saturation (default is 1.0) % ... , 'sat_smooth', a, ... smoothness parameter for forward model (default is 50) % ... , 'num_iters', n, ... number of iterations (default is 50) % ... , 'init', im_init, ... initial estimate of deblurred image (default is blurry image) % ... , 'mask', mask, ... binary mask of blurry pixels to use -- 1=use, 0=discard -- (default is all blurry pixels, ie. 1 everywhere) % Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function i_rl = deconvRL(imblur,kernel,non_uniform,varargin) if nargin < 3, non_uniform = 0; end % Discard small kernel elements for speed kernel(kernel < max(kernel(:))/100) = 0; kernel = kernel / sum(kernel(:)); % Parse varargin if non_uniform theta_list = varargin{1}; Kblurry = varargin{2}; varargin = varargin(3:end); % Remove the zero elements of kernel use_rotations = kernel(:) ~= 0; kernel = kernel(use_rotations); theta_list = theta_list(:,use_rotations); end params = parseArgs(varargin); % Get image size [h,w,channels] = size(imblur); % Calculate padding based on blur kernel size if non_uniform [pad, Kblurry] = calculatePadding([h,w],non_uniform,theta_list,Kblurry); else pad = calculatePadding([h,w],non_uniform,kernel); end % Pad blurry image by replication to handle edge effects imblur = padImage(imblur, pad, 'replicate'); % Get new image size [h,w,channels] = size(imblur); % Define blur functions depending on blur type if non_uniform Ksharp = Kblurry; blurfn = @(im) apply_blur_kernel_mex(double(im),[h,w],Ksharp,Kblurry,-theta_list,kernel,0,non_uniform); conjfn = @(im) apply_blur_kernel_mex(double(im),[h,w],Kblurry,Ksharp, theta_list,kernel,0,non_uniform); dilatefn = @(im) min(apply_blur_kernel_mex(double(im),[h,w],Ksharp,Kblurry,-theta_list,ones(size(kernel)),0,non_uniform), 1); else % blurfn = @(im) imfilter(im,kernel,'conv'); % conjfn = @(im) imfilter(im,kernel,'corr'); % dilatefn = @(im) min(imfilter(im,double(kernel~=0),'conv'), 1); kfft = psf2otf(kernel,[h w]); k1fft = psf2otf(double(kernel~=0),[h w]); blurfn = @(im) ifft2(bsxfun(@times,fft2(im),kfft),'symmetric'); conjfn = @(im) ifft2(bsxfun(@times,fft2(im),conj(kfft)),'symmetric'); dilatefn = @(im) min(ifft2(bsxfun(@times,fft2(im),k1fft),'symmetric'), 1); end % Mask of "good" blurry pixels mask = zeros(h,w,channels); mask(pad(1)+1:h-pad(2),pad(3)+1:w-pad(4),:) = params.mask; % Initialise sharp image if isfield(params,'init') i_rl = padImage(double(params.init),pad,'replicate'); else i_rl = imblur; end fprintf('%d iterations: ',params.num_iters); % Some fixed filters for dilation and smoothing dilate_radius = 3; dilate_filter = bsxfun(@plus,(-dilate_radius:dilate_radius).^2,(-dilate_radius:dilate_radius)'.^2) <= eps+dilate_radius.^2; smooth_filter = fspecial('gaussian',[21 21],3); % Main algorithm loop for iter = 1:params.num_iters % Apply the linear forward model first (ie. compute A*f) val_linear = max(blurfn(i_rl),0); % Apply non-linear response if required if params.forward_saturation [val_nonlin,grad_nonlin] = saturate(val_linear,params.sat_thresh,params.sat_smooth); else val_nonlin = val_linear; grad_nonlin = 1; end % Compute the raw error ratio for the current estimate of the sharp image error_ratio = imblur ./ max(val_nonlin,eps); error_ratio_masked_nonlin = (error_ratio - 1).*mask.*grad_nonlin; if params.prevent_ringing % Find hard-to-estimate pixels in sharp image (set S in paper) S_mask = double(imdilate(i_rl >= 0.9, dilate_filter)); % Find the blurry pixels NOT influenced by pixels in S (set V in paper) V_mask = 1 - dilatefn(S_mask); % Apply conjugate blur function (ie. multiply by A') update_ratio_U = conjfn(error_ratio_masked_nonlin.*V_mask) + 1; % update U using only data from V update_ratio_S = conjfn(error_ratio_masked_nonlin) + 1; % update S using all data % Blur the mask of hard-to-estimate pixels for recombining without artefacts weights = imfilter(S_mask, smooth_filter); % Combine updates for the two sets into a single update % update_ratio = update_ratio_S.*weights + update_ratio_U.*(1-weights); update_ratio = update_ratio_U + (update_ratio_S - update_ratio_U).*weights; else % Apply conjugate blur function (ie. multiply by A') update_ratio = conjfn(error_ratio_masked_nonlin) + 1; end % Avoid negative updates, which cause trouble update_ratio = max(update_ratio,0); if any(isnan(update_ratio(:))), error('NaNs in update ratio'); end % Apply update ratio i_rl = update_ratio .* i_rl; fprintf('%d ',iter); end fprintf('\n'); % Remove padding on output image i_rl = padImage(i_rl, -pad); end % ===================================================================================== function params = parseArgs(args,params) if nargin < 2 params = struct('num_iters',50,'forward_saturation',false,'prevent_ringing',false,'sat_thresh',1,'sat_smooth',50,'mask',1); end if ~isempty(args) switch args{1} case 'num_iters' params.num_iters = args{2}; args = args(3:end); case 'sat_thresh' params.sat_thresh = args{2}; args = args(3:end); case 'sat_smooth' params.sat_smooth = args{2}; args = args(3:end); case 'forward_saturation' params.forward_saturation = true; args = args(2:end); case 'prevent_ringing' params.prevent_ringing = true; args = args(2:end); case 'init' params.init = args{2}; args = args(3:end); case 'mask' params.mask = args{2}; args = args(3:end); otherwise error('Invalid argument'); end % Recursively parse remaining arguments params = parseArgs(args,params); end end % ============================================================================ function [val,grad] = saturate(x,t,a) if a==inf [val,grad] = sharpsaturate(x, t); else % Adapted from: C. Chen and O. L. Mangasarian. ``A Class of Smoothing Functions % for Nonlinear and Mixed Complementarity Problems''. % Computational Optimization and Applications, 1996. one_p_exp = 1 + exp(-a*(t-x)); val = x - 1/a * log(one_p_exp); grad = 1 ./ one_p_exp; end end % ============================================================================ function [val,grad] = sharpsaturate(x,t) val = x; grad = ones(size(x)); mask = x>t; val(mask) = t; grad(mask) = 0; end
github
yuanxy92/ConvexOptimization-master
crossmatrix.m
.m
ConvexOptimization-master/MATLAB/cvpr16_deblurring_code_v1/whyte_code/crossmatrix.m
417
utf_8
cac6f7c9c7414f240720e5a918c7c776
% Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function vx = crossmatrix(v) vx = [ 0, -v(3), v(2);... v(3), 0, -v(1);... -v(2), v(1), 0];
github
yuanxy92/ConvexOptimization-master
deblurring_adm_aniso.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/deblurring_adm_aniso.m
2,406
utf_8
df3c7a21e133a0400474e324ac25aa1b
function [I] = deblurring_adm_aniso(B, k, lambda, alpha) % Solving TV-\ell^2 deblurring problem via ADM/Split Bregman method % % This reference of this code is :Fast Image Deconvolution using Hyper-Laplacian Priors % Original code is created by Dilip Krishnan % Finally modified by Jinshan Pan 2011/12/25 % Note: % In this model, aniso TV regularization method is adopted. % Thus, we do not use the Lookup table method proposed by Dilip Krishnan and Rob Fergus % Reference: Kernel Estimation from Salient Structure for Robust Motion % Deblurring %Last update: (2012/6/20) beta = 1/lambda; beta_rate = 2*sqrt(2); %beta_max = 5*2^10; beta_min = 0.001; [m n] = size(B); % initialize with input or passed in initialization I = B; % make sure k is a odd-sized if ((mod(size(k, 1), 2) ~= 1) | (mod(size(k, 2), 2) ~= 1)) fprintf('Error - blur kernel k must be odd-sized.\n'); return; end; [Nomin1, Denom1, Denom2] = computeDenominator(B, k); Ix = [diff(I, 1, 2), I(:,1) - I(:,n)]; Iy = [diff(I, 1, 1); I(1,:) - I(m,:)]; %% Main loop while beta > beta_min gamma = 1/(2*beta); Denom = Denom1 + gamma*Denom2; % subproblem for regularization term if alpha==1 Wx = max(abs(Ix) - beta*lambda, 0).*sign(Ix); Wy = max(abs(Iy) - beta*lambda, 0).*sign(Iy); %% else Wx = solve_image(Ix, 1/(beta*lambda), alpha); Wy = solve_image(Iy, 1/(beta*lambda), alpha); end Wxx = [Wx(:,n) - Wx(:, 1), -diff(Wx,1,2)]; Wxx = Wxx + [Wy(m,:) - Wy(1, :); -diff(Wy,1,1)]; Fyout = (Nomin1 + gamma*fft2(Wxx))./Denom; I = real(ifft2(Fyout)); % update the gradient terms with new solution Ix = [diff(I, 1, 2), I(:,1) - I(:,n)]; Iy = [diff(I, 1, 1); I(1,:) - I(m,:)]; beta = beta/2; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Nomin1, Denom1, Denom2] = computeDenominator(y, k) % % computes denominator and part of the numerator for Equation (3) of the % paper % % Inputs: % y: blurry and noisy input % k: convolution kernel % % Outputs: % Nomin1 -- F(K)'*F(y) % Denom1 -- |F(K)|.^2 % Denom2 -- |F(D^1)|.^2 + |F(D^2)|.^2 % sizey = size(y); otfk = psf2otf(k, sizey); Nomin1 = conj(otfk).*fft2(y); Denom1 = abs(otfk).^2; % if higher-order filters are used, they must be added here too Denom2 = abs(psf2otf([1,-1],sizey)).^2 + abs(psf2otf([1;-1],sizey)).^2;
github
yuanxy92/ConvexOptimization-master
estimate_psf.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/estimate_psf.m
1,290
utf_8
f570f34e559fd6d11f20feb4f37963d9
function psf = estimate_psf(blurred_x, blurred_y, latent_x, latent_y, weight, psf_size) %---------------------------------------------------------------------- % these values can be pre-computed at the beginning of each level % blurred_f = fft2(blurred); % dx_f = psf2otf([1 -1 0], size(blurred)); % dy_f = psf2otf([1;-1;0], size(blurred)); % blurred_xf = dx_f .* blurred_f; %% FFT (Bx) % blurred_yf = dy_f .* blurred_f; %% FFT (By) latent_xf = fft2(latent_x); latent_yf = fft2(latent_y); blurred_xf = fft2(blurred_x); blurred_yf = fft2(blurred_y); % compute b = sum_i w_i latent_i * blurred_i b_f = conj(latent_xf) .* blurred_xf ... + conj(latent_yf) .* blurred_yf; b = real(otf2psf(b_f, psf_size)); p.m = conj(latent_xf) .* latent_xf ... + conj(latent_yf) .* latent_yf; %p.img_size = size(blurred); p.img_size = size(blurred_xf); p.psf_size = psf_size; p.lambda = weight; psf = ones(psf_size) / prod(psf_size); psf = conjgrad(psf, b, 20, 1e-5, @compute_Ax, p); psf(psf < max(psf(:))*0.05) = 0; psf = psf / sum(psf(:)); end function y = compute_Ax(x, p) x_f = psf2otf(x, p.img_size); y = otf2psf(p.m .* x_f, p.psf_size); y = y + p.lambda * x; end
github
yuanxy92/ConvexOptimization-master
blind_deconv.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/blind_deconv.m
4,802
utf_8
3f6f793caaf4b9bb62ab9c91970af2ea
function [kernel, interim_latent] = blind_deconv(y, lambda_pixel, lambda_grad, opts) % % Do multi-scale blind deconvolution % %% Input: % @y : input blurred image (grayscale); % @lambda_pixel: the weight for the L0 regularization on intensity % @lambda_grad: the weight for the L0 regularization on gradient % @opts: see the description in the file "demo_text_deblurring.m" %% Output: % @kernel: the estimated blur kernel % @interim_latent: intermediate latent image % % The Code is created based on the method described in the following paper % Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang, % Deblurring Text Images via L0-Regularized Intensity and Gradient % Prior, CVPR, 2014. % Author: Jinshan Pan ([email protected]) % Date : 05/18/2014 % gamma correct if opts.gamma_correct~=1 y = y.^opts.gamma_correct; end b = zeros(opts.kernel_size); % set kernel size for coarsest level - must be odd %minsize = max(3, 2*floor(((opts.kernel_size - 1)/16)) + 1); %fprintf('Kernel size at coarsest level is %d\n', maxitr); %% ret = sqrt(0.5); %% maxitr=max(floor(log(5/min(opts.kernel_size))/log(ret)),0); num_scales = maxitr + 1; fprintf('Maximum iteration level is %d\n', num_scales); %% retv=ret.^[0:maxitr]; k1list=ceil(opts.kernel_size*retv); k1list=k1list+(mod(k1list,2)==0); k2list=ceil(opts.kernel_size*retv); k2list=k2list+(mod(k2list,2)==0); % derivative filters dx = [-1 1; 0 0]; dy = [-1 0; 1 0]; % blind deconvolution - multiscale processing for s = num_scales:-1:1 if (s == num_scales) %% % at coarsest level, initialize kernel ks = init_kernel(k1list(s)); k1 = k1list(s); k2 = k1; % always square kernel assumed else % upsample kernel from previous level to next finer level k1 = k1list(s); k2 = k1; % always square kernel assumed % resize kernel from previous level ks = resizeKer(ks,1/ret,k1list(s),k2list(s)); end; %%%%%%%%%%%%%%%%%%%%%%%%%%% cret=retv(s); ys=downSmpImC(y,cret); fprintf('Processing scale %d/%d; kernel size %dx%d; image size %dx%d\n', ... s, num_scales, k1, k2, size(ys,1), size(ys,2)); %-----------------------------------------------------------% %% Useless operation if (s == num_scales) [~, ~, threshold]= threshold_pxpy_v1(ys,max(size(ks))); %% Initialize the parameter: ??? if threshold<lambda_grad/10&&threshold~=0; lambda_grad = threshold; %lambda_pixel = threshold_image_v1(ys); lambda_pixel = lambda_grad; end end %-----------------------------------------------------------% [ks, lambda_pixel, lambda_grad, interim_latent] = blind_deconv_main(ys, ks, lambda_pixel,... lambda_grad, threshold, opts); %% center the kernel ks = adjust_psf_center(ks); ks(ks(:)<0) = 0; sumk = sum(ks(:)); ks = ks./sumk; %% set elements below threshold to 0 if (s == 1) kernel = ks; if opts.k_thresh>0 kernel(kernel(:) < max(kernel(:))/opts.k_thresh) = 0; else kernel(kernel(:) < 0) = 0; end kernel = kernel / sum(kernel(:)); end; end; %% end kernel estimation end %% Sub-function function [k] = init_kernel(minsize) k = zeros(minsize, minsize); k((minsize - 1)/2, (minsize - 1)/2:(minsize - 1)/2+1) = 1/2; end %% function sI=downSmpImC(I,ret) %% refer to Levin's code if (ret==1) sI=I; return end %%%%%%%%%%%%%%%%%%% sig=1/pi*ret; g0=[-50:50]*2*pi; sf=exp(-0.5*g0.^2*sig^2); sf=sf/sum(sf); csf=cumsum(sf); csf=min(csf,csf(end:-1:1)); ii=find(csf>0.05); sf=sf(ii); sum(sf); I=conv2(sf,sf',I,'valid'); [gx,gy]=meshgrid([1:1/ret:size(I,2)],[1:1/ret:size(I,1)]); sI=interp2(I,gx,gy,'bilinear'); end %% function k=resizeKer(k,ret,k1,k2) %% % levin's code k=imresize(k,ret); k=max(k,0); k=fixsize(k,k1,k2); if max(k(:))>0 k=k/sum(k(:)); end end %% function nf=fixsize(f,nk1,nk2) [k1,k2]=size(f); while((k1~=nk1)|(k2~=nk2)) if (k1>nk1) s=sum(f,2); if (s(1)<s(end)) f=f(2:end,:); else f=f(1:end-1,:); end end if (k1<nk1) s=sum(f,2); if (s(1)<s(end)) tf=zeros(k1+1,size(f,2)); tf(1:k1,:)=f; f=tf; else tf=zeros(k1+1,size(f,2)); tf(2:k1+1,:)=f; f=tf; end end if (k2>nk2) s=sum(f,1); if (s(1)<s(end)) f=f(:,2:end); else f=f(:,1:end-1); end end if (k2<nk2) s=sum(f,1); if (s(1)<s(end)) tf=zeros(size(f,1),k2+1); tf(:,1:k2)=f; f=tf; else tf=zeros(size(f,1),k2+1); tf(:,2:k2+1)=f; f=tf; end end [k1,k2]=size(f); end nf=f; end %%
github
yuanxy92/ConvexOptimization-master
wrap_boundary_liu.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/cho_code/wrap_boundary_liu.m
3,568
utf_8
778eb4d6eeeb26991f536cb17154be69
function ret = wrap_boundary_liu(img, img_size) % wrap_boundary_liu.m % % pad image boundaries such that image boundaries are circularly smooth % % written by Sunghyun Cho ([email protected]) % % This is a variant of the method below: % Reducing boundary artifacts in image deconvolution % Renting Liu, Jiaya Jia % ICIP 2008 % [H, W, Ch] = size(img); H_w = img_size(1) - H; W_w = img_size(2) - W; ret = zeros(img_size(1), img_size(2), Ch); for ch = 1:Ch alpha = 1; HG = img(:,:,ch); r_A = zeros(alpha*2+H_w, W); r_A(1:alpha, :) = HG(end-alpha+1:end, :); r_A(end-alpha+1:end, :) = HG(1:alpha, :); a = ((1:H_w)-1)/(H_w-1); r_A(alpha+1:end-alpha, 1) = (1-a)*r_A(alpha,1) + a*r_A(end-alpha+1,1); r_A(alpha+1:end-alpha, end) = (1-a)*r_A(alpha,end) + a*r_A(end-alpha+1,end); A2 = solve_min_laplacian(r_A(alpha:end-alpha+1,:)); r_A(alpha:end-alpha+1,:) = A2; A = r_A; r_B = zeros(H, alpha*2+W_w); r_B(:, 1:alpha) = HG(:, end-alpha+1:end); r_B(:, end-alpha+1:end) = HG(:, 1:alpha); a = ((1:W_w)-1)/(W_w-1); r_B(1, alpha+1:end-alpha) = (1-a)*r_B(1,alpha) + a*r_B(1,end-alpha+1); r_B(end, alpha+1:end-alpha) = (1-a)*r_B(end,alpha) + a*r_B(end,end-alpha+1); B2 = solve_min_laplacian(r_B(:, alpha:end-alpha+1)); r_B(:,alpha:end-alpha+1,:) = B2; B = r_B; r_C = zeros(alpha*2+H_w, alpha*2+W_w); r_C(1:alpha, :) = B(end-alpha+1:end, :); r_C(end-alpha+1:end, :) = B(1:alpha, :); r_C(:, 1:alpha) = A(:, end-alpha+1:end); r_C(:, end-alpha+1:end) = A(:, 1:alpha); C2 = solve_min_laplacian(r_C(alpha:end-alpha+1, alpha:end-alpha+1)); r_C(alpha:end-alpha+1, alpha:end-alpha+1) = C2; C = r_C; A = A(alpha:end-alpha-1, :); B = B(:, alpha+1:end-alpha); C = C(alpha+1:end-alpha, alpha+1:end-alpha); ret(:,:,ch) = [img(:,:,ch) B; A C]; end end function [img_direct] = solve_min_laplacian(boundary_image) % function [img_direct] = poisson_solver_function(gx,gy,boundary_image) % Inputs; Gx and Gy -> Gradients % Boundary Image -> Boundary image intensities % Gx Gy and boundary image should be of same size [H,W] = size(boundary_image); % Laplacian f = zeros(H,W); clear j k % boundary image contains image intensities at boundaries boundary_image(2:end-1, 2:end-1) = 0; j = 2:H-1; k = 2:W-1; f_bp = zeros(H,W); f_bp(j,k) = -4*boundary_image(j,k) + boundary_image(j,k+1) + ... boundary_image(j,k-1) + boundary_image(j-1,k) + boundary_image(j+1,k); clear j k %f1 = f - reshape(f_bp,H,W); % subtract boundary points contribution f1 = f - f_bp; % subtract boundary points contribution clear f_bp f % DST Sine Transform algo starts here f2 = f1(2:end-1,2:end-1); clear f1 % compute sine tranform tt = dst(f2); f2sin = dst(tt')'; clear f2 % compute Eigen Values [x,y] = meshgrid(1:W-2, 1:H-2); denom = (2*cos(pi*x/(W-1))-2) + (2*cos(pi*y/(H-1)) - 2); % divide f3 = f2sin./denom; clear f2sin x y % compute Inverse Sine Transform tt = idst(f3); clear f3; img_tt = idst(tt')'; clear tt % put solution in inner points; outer points obtained from boundary image img_direct = boundary_image; img_direct(2:end-1,2:end-1) = 0; img_direct(2:end-1,2:end-1) = img_tt; end
github
yuanxy92/ConvexOptimization-master
adjust_psf_center.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/cho_code/adjust_psf_center.m
1,453
utf_8
ffd7dc5a8dc7589030f98a822f6b7c9a
function psf = adjust_psf_center(psf) [X Y] = meshgrid(1:size(psf,2), 1:size(psf,1)); xc1 = sum2(psf .* X); yc1 = sum2(psf .* Y); xc2 = (size(psf,2)+1) / 2; yc2 = (size(psf,1)+1) / 2; xshift = round(xc2 - xc1); yshift = round(yc2 - yc1); psf = warpimage(psf, [1 0 -xshift; 0 1 -yshift]); function val = sum2(arr) val = sum(arr(:)); %% % M should be an inverse transform! function warped = warpimage(img, M) if size(img,3) == 3 warped(:,:,1) = warpProjective2(img(:,:,1), M); warped(:,:,2) = warpProjective2(img(:,:,2), M); warped(:,:,3) = warpProjective2(img(:,:,3), M); warped(isnan(warped))=0; else warped = warpProjective2(img, M); warped(isnan(warped))=0; end %% function result = warpProjective2(im,A) % % function result = warpProjective2(im,A) % % im: input image % A: 2x3 affine transform matrix or a 3x3 matrix with [0 0 1] % for the last row. % if a transformed point is outside of the volume, NaN is used % % result: output image, same size as im % if (size(A,1)>2) A=A(1:2,:); end % Compute coordinates corresponding to input % and transformed coordinates for result [x,y]=meshgrid(1:size(im,2),1:size(im,1)); coords=[x(:)'; y(:)']; homogeneousCoords=[coords; ones(1,prod(size(im)))]; warpedCoords=A*homogeneousCoords; xprime=warpedCoords(1,:);%./warpedCoords(3,:); yprime=warpedCoords(2,:);%./warpedCoords(3,:); result = interp2(x,y,im,xprime,yprime, 'linear'); result = reshape(result,size(im)); return;
github
yuanxy92/ConvexOptimization-master
padImage.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/whyte_code/padImage.m
906
utf_8
cbc0cf68a7e2e260cfccc8d64309d87f
% imPadded = padImage(im, padsize, padval) % padsize = [top, bottom, left, right] % padval = valid arguments for padval to padarray. e.g. 'replicate', or 0 % % for negative padsize, undoes the padding % Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function imPadded = padImage(im, padsize, padval) if nargin < 3, padval = 0; end if any(padsize < 0) padsize = -padsize; imPadded = im(padsize(1)+1:end-padsize(2), padsize(3)+1:end-padsize(4), :); else imPadded = padarray( ... padarray(im, [padsize(1) padsize(3)],padval,'pre'), ... [padsize(2) padsize(4)],padval,'post'); end
github
yuanxy92/ConvexOptimization-master
calculatePadding.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/whyte_code/calculatePadding.m
2,718
utf_8
620880ec6310f544654fe052967f1fe8
% pad = calculatePadding(image_size,non_uniform = 0,kernel) % pad = calculatePadding(image_size,non_uniform = 1,theta_list,Kinternal) % where pad = [top, bottom, left, right] % Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function [pad_replicate,Kinternal] = calculatePadding(image_size,non_uniform,theta_list,Kinternal) h_sharp = image_size(1); w_sharp = image_size(2); if non_uniform % Calculate padding im_corners = [1, 1, w_sharp, w_sharp;... 1, h_sharp, h_sharp, 1;... 1, 1, 1, 1]; pad_replicate_t = 0; % top of image pad_replicate_b = 0; % bottom of image pad_replicate_l = 0; % left of image pad_replicate_r = 0; % right of image % for each non-zero in the kernel... for i=1:size(theta_list,2) % back proect corners of blurry image to see how far out we need to pad % H = Ksharp*expm(crossmatrix(-theta_list(:,i)))*inv(Kblurry); H = Kinternal*expm(crossmatrix(-theta_list(:,i)))*inv(Kinternal); projected_corners_sharp = hnormalise(H*im_corners); offsets = abs(projected_corners_sharp - im_corners); if offsets(1,1) > pad_replicate_l, pad_replicate_l = ceil(offsets(1,1)); end if offsets(1,2) > pad_replicate_l, pad_replicate_l = ceil(offsets(1,2)); end if offsets(1,3) > pad_replicate_r, pad_replicate_r = ceil(offsets(1,3)); end if offsets(1,4) > pad_replicate_r, pad_replicate_r = ceil(offsets(1,4)); end if offsets(2,1) > pad_replicate_t, pad_replicate_t = ceil(offsets(2,1)); end if offsets(2,2) > pad_replicate_b, pad_replicate_b = ceil(offsets(2,2)); end if offsets(2,3) > pad_replicate_t, pad_replicate_t = ceil(offsets(2,3)); end if offsets(2,4) > pad_replicate_b, pad_replicate_b = ceil(offsets(2,4)); end end % Adjust calibration matrices to take account padding Kinternal = htranslate([pad_replicate_l ; pad_replicate_t]) * Kinternal; else kernel = theta_list; pad_replicate_t = ceil((size(kernel,1)-1)/2); pad_replicate_b = floor((size(kernel,1)-1)/2); pad_replicate_l = ceil((size(kernel,2)-1)/2); pad_replicate_r = floor((size(kernel,2)-1)/2); Kinternal = []; end w_sharp = w_sharp + pad_replicate_l + pad_replicate_r; h_sharp = h_sharp + pad_replicate_t + pad_replicate_b; % top, bottom, left, right pad_replicate = [pad_replicate_t, pad_replicate_b, pad_replicate_l, pad_replicate_r];
github
yuanxy92/ConvexOptimization-master
deconvRL.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/whyte_code/deconvRL.m
7,302
utf_8
1bf68715ed3c044f344431243ff2b907
% i_rl = deconvRL(imblur, kernel, non_uniform, ...) % for uniform blur, with non_uniform = 0 % % i_rl = deconvRL(imblur, kernel, non_uniform, theta_list, Kblurry, ...) % for non-uniform blur, with non_uniform = 1 % % Additional arguments, in any order: % ... , 'forward_saturation', ... use forward model for saturation % ... , 'prevent_ringing', ... split and re-combine updates to reduce ringing % ... , 'sat_thresh', T, ... clipping level for forward model of saturation (default is 1.0) % ... , 'sat_smooth', a, ... smoothness parameter for forward model (default is 50) % ... , 'num_iters', n, ... number of iterations (default is 50) % ... , 'init', im_init, ... initial estimate of deblurred image (default is blurry image) % ... , 'mask', mask, ... binary mask of blurry pixels to use -- 1=use, 0=discard -- (default is all blurry pixels, ie. 1 everywhere) % Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function i_rl = deconvRL(imblur,kernel,non_uniform,varargin) if nargin < 3, non_uniform = 0; end % Discard small kernel elements for speed kernel(kernel < max(kernel(:))/100) = 0; kernel = kernel / sum(kernel(:)); % Parse varargin if non_uniform theta_list = varargin{1}; Kblurry = varargin{2}; varargin = varargin(3:end); % Remove the zero elements of kernel use_rotations = kernel(:) ~= 0; kernel = kernel(use_rotations); theta_list = theta_list(:,use_rotations); end params = parseArgs(varargin); % Get image size [h,w,channels] = size(imblur); % Calculate padding based on blur kernel size if non_uniform [pad, Kblurry] = calculatePadding([h,w],non_uniform,theta_list,Kblurry); else pad = calculatePadding([h,w],non_uniform,kernel); end % Pad blurry image by replication to handle edge effects imblur = padImage(imblur, pad, 'replicate'); % Get new image size [h,w,channels] = size(imblur); % Define blur functions depending on blur type if non_uniform Ksharp = Kblurry; blurfn = @(im) apply_blur_kernel_mex(double(im),[h,w],Ksharp,Kblurry,-theta_list,kernel,0,non_uniform); conjfn = @(im) apply_blur_kernel_mex(double(im),[h,w],Kblurry,Ksharp, theta_list,kernel,0,non_uniform); dilatefn = @(im) min(apply_blur_kernel_mex(double(im),[h,w],Ksharp,Kblurry,-theta_list,ones(size(kernel)),0,non_uniform), 1); else % blurfn = @(im) imfilter(im,kernel,'conv'); % conjfn = @(im) imfilter(im,kernel,'corr'); % dilatefn = @(im) min(imfilter(im,double(kernel~=0),'conv'), 1); kfft = psf2otf(kernel,[h w]); k1fft = psf2otf(double(kernel~=0),[h w]); blurfn = @(im) ifft2(bsxfun(@times,fft2(im),kfft),'symmetric'); conjfn = @(im) ifft2(bsxfun(@times,fft2(im),conj(kfft)),'symmetric'); dilatefn = @(im) min(ifft2(bsxfun(@times,fft2(im),k1fft),'symmetric'), 1); end % Mask of "good" blurry pixels mask = zeros(h,w,channels); mask(pad(1)+1:h-pad(2),pad(3)+1:w-pad(4),:) = params.mask; % Initialise sharp image if isfield(params,'init') i_rl = padImage(double(params.init),pad,'replicate'); else i_rl = imblur; end fprintf('%d iterations: ',params.num_iters); % Some fixed filters for dilation and smoothing dilate_radius = 3; dilate_filter = bsxfun(@plus,(-dilate_radius:dilate_radius).^2,(-dilate_radius:dilate_radius)'.^2) <= eps+dilate_radius.^2; smooth_filter = fspecial('gaussian',[21 21],3); % Main algorithm loop for iter = 1:params.num_iters % Apply the linear forward model first (ie. compute A*f) val_linear = max(blurfn(i_rl),0); % Apply non-linear response if required if params.forward_saturation [val_nonlin,grad_nonlin] = saturate(val_linear,params.sat_thresh,params.sat_smooth); else val_nonlin = val_linear; grad_nonlin = 1; end % Compute the raw error ratio for the current estimate of the sharp image error_ratio = imblur ./ max(val_nonlin,eps); error_ratio_masked_nonlin = (error_ratio - 1).*mask.*grad_nonlin; if params.prevent_ringing % Find hard-to-estimate pixels in sharp image (set S in paper) S_mask = double(imdilate(i_rl >= 0.9, dilate_filter)); % Find the blurry pixels NOT influenced by pixels in S (set V in paper) V_mask = 1 - dilatefn(S_mask); % Apply conjugate blur function (ie. multiply by A') update_ratio_U = conjfn(error_ratio_masked_nonlin.*V_mask) + 1; % update U using only data from V update_ratio_S = conjfn(error_ratio_masked_nonlin) + 1; % update S using all data % Blur the mask of hard-to-estimate pixels for recombining without artefacts weights = imfilter(S_mask, smooth_filter); % Combine updates for the two sets into a single update % update_ratio = update_ratio_S.*weights + update_ratio_U.*(1-weights); update_ratio = update_ratio_U + (update_ratio_S - update_ratio_U).*weights; else % Apply conjugate blur function (ie. multiply by A') update_ratio = conjfn(error_ratio_masked_nonlin) + 1; end % Avoid negative updates, which cause trouble update_ratio = max(update_ratio,0); if any(isnan(update_ratio(:))), error('NaNs in update ratio'); end % Apply update ratio i_rl = update_ratio .* i_rl; fprintf('%d ',iter); end fprintf('\n'); % Remove padding on output image i_rl = padImage(i_rl, -pad); end % ===================================================================================== function params = parseArgs(args,params) if nargin < 2 params = struct('num_iters',50,'forward_saturation',false,'prevent_ringing',false,'sat_thresh',1,'sat_smooth',50,'mask',1); end if ~isempty(args) switch args{1} case 'num_iters' params.num_iters = args{2}; args = args(3:end); case 'sat_thresh' params.sat_thresh = args{2}; args = args(3:end); case 'sat_smooth' params.sat_smooth = args{2}; args = args(3:end); case 'forward_saturation' params.forward_saturation = true; args = args(2:end); case 'prevent_ringing' params.prevent_ringing = true; args = args(2:end); case 'init' params.init = args{2}; args = args(3:end); case 'mask' params.mask = args{2}; args = args(3:end); otherwise error('Invalid argument'); end % Recursively parse remaining arguments params = parseArgs(args,params); end end % ============================================================================ function [val,grad] = saturate(x,t,a) if a==inf [val,grad] = sharpsaturate(x, t); else % Adapted from: C. Chen and O. L. Mangasarian. ``A Class of Smoothing Functions % for Nonlinear and Mixed Complementarity Problems''. % Computational Optimization and Applications, 1996. one_p_exp = 1 + exp(-a*(t-x)); val = x - 1/a * log(one_p_exp); grad = 1 ./ one_p_exp; end end % ============================================================================ function [val,grad] = sharpsaturate(x,t) val = x; grad = ones(size(x)); mask = x>t; val(mask) = t; grad(mask) = 0; end
github
yuanxy92/ConvexOptimization-master
crossmatrix.m
.m
ConvexOptimization-master/MATLAB/text_deblurring_code/whyte_code/crossmatrix.m
417
utf_8
cac6f7c9c7414f240720e5a918c7c776
% Author: Oliver Whyte <[email protected]> % Date: November 2011 % Copyright: 2011, Oliver Whyte % Reference: O. Whyte, J. Sivic and A. Zisserman. "Deblurring Shaken and Partially Saturated Images". In Proc. CPCV Workshop at ICCV, 2011. % URL: http://www.di.ens.fr/willow/research/saturation/ function vx = crossmatrix(v) vx = [ 0, -v(3), v(2);... v(3), 0, -v(1);... -v(2), v(1), 0];
github
nqanh/affordance-net-master
voc_eval.m
.m
affordance-net-master/lib/datasets/VOCdevkit-matlab-wrapper/voc_eval.m
1,332
utf_8
3ee1d5373b091ae4ab79d26ab657c962
function res = voc_eval(path, comp_id, test_set, output_dir) VOCopts = get_voc_opts(path); VOCopts.testset = test_set; for i = 1:length(VOCopts.classes) cls = VOCopts.classes{i}; res(i) = voc_eval_cls(cls, VOCopts, comp_id, output_dir); end fprintf('\n~~~~~~~~~~~~~~~~~~~~\n'); fprintf('Results:\n'); aps = [res(:).ap]'; fprintf('%.1f\n', aps * 100); fprintf('%.1f\n', mean(aps) * 100); fprintf('~~~~~~~~~~~~~~~~~~~~\n'); function res = voc_eval_cls(cls, VOCopts, comp_id, output_dir) test_set = VOCopts.testset; year = VOCopts.dataset(4:end); addpath(fullfile(VOCopts.datadir, 'VOCcode')); res_fn = sprintf(VOCopts.detrespath, comp_id, cls); recall = []; prec = []; ap = 0; ap_auc = 0; do_eval = (str2num(year) <= 2007) | ~strcmp(test_set, 'test'); if do_eval % Bug in VOCevaldet requires that tic has been called first tic; [recall, prec, ap] = VOCevaldet(VOCopts, comp_id, cls, true); ap_auc = xVOCap(recall, prec); % force plot limits ylim([0 1]); xlim([0 1]); print(gcf, '-djpeg', '-r0', ... [output_dir '/' cls '_pr.jpg']); end fprintf('!!! %s : %.4f %.4f\n', cls, ap, ap_auc); res.recall = recall; res.prec = prec; res.ap = ap; res.ap_auc = ap_auc; save([output_dir '/' cls '_pr.mat'], ... 'res', 'recall', 'prec', 'ap', 'ap_auc'); rmpath(fullfile(VOCopts.datadir, 'VOCcode'));
github
nqanh/affordance-net-master
classification_demo.m
.m
affordance-net-master/caffe-affordance-net/matlab/demo/classification_demo.m
5,412
utf_8
8f46deabe6cde287c4759f3bc8b7f819
function [scores, maxlabel] = classification_demo(im, use_gpu) % [scores, maxlabel] = classification_demo(im, use_gpu) % % Image classification demo using BVLC CaffeNet. % % IMPORTANT: before you run this demo, you should download BVLC CaffeNet % from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html) % % **************************************************************************** % For detailed documentation and usage on Caffe's Matlab interface, please % refer to Caffe Interface Tutorial at % http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab % **************************************************************************** % % input % im color image as uint8 HxWx3 % use_gpu 1 to use the GPU, 0 to use the CPU % % output % scores 1000-dimensional ILSVRC score vector % maxlabel the label of the highest score % % You may need to do the following before you start matlab: % $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64 % $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6 % Or the equivalent based on where things are installed on your system % % Usage: % im = imread('../../examples/images/cat.jpg'); % scores = classification_demo(im, 1); % [score, class] = max(scores); % Five things to be aware of: % caffe uses row-major order % matlab uses column-major order % caffe uses BGR color channel order % matlab uses RGB color channel order % images need to have the data mean subtracted % Data coming in from matlab needs to be in the order % [width, height, channels, images] % where width is the fastest dimension. % Here is the rough matlab for putting image data into the correct % format in W x H x C with BGR channels: % % permute channels from RGB to BGR % im_data = im(:, :, [3, 2, 1]); % % flip width and height to make width the fastest dimension % im_data = permute(im_data, [2, 1, 3]); % % convert from uint8 to single % im_data = single(im_data); % % reshape to a fixed size (e.g., 227x227). % im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % % subtract mean_data (already in W x H x C with BGR channels) % im_data = im_data - mean_data; % If you have multiple images, cat them with cat(4, ...) % Add caffe/matlab to you Matlab search PATH to use matcaffe if exist('../+caffe', 'dir') addpath('..'); else error('Please run this demo from caffe/matlab/demo'); end % Set caffe mode if exist('use_gpu', 'var') && use_gpu caffe.set_mode_gpu(); gpu_id = 0; % we will use the first gpu in this demo caffe.set_device(gpu_id); else caffe.set_mode_cpu(); end % Initialize the network using BVLC CaffeNet for image classification % Weights (parameter) file needs to be downloaded from Model Zoo. model_dir = '../../models/bvlc_reference_caffenet/'; net_model = [model_dir 'deploy.prototxt']; net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel']; phase = 'test'; % run with phase test (so that dropout isn't applied) if ~exist(net_weights, 'file') error('Please download CaffeNet from Model Zoo before you run this demo'); end % Initialize a network net = caffe.Net(net_model, net_weights, phase); if nargin < 1 % For demo purposes we will use the cat image fprintf('using caffe/examples/images/cat.jpg as input image\n'); im = imread('../../examples/images/cat.jpg'); end % prepare oversampled input % input_data is Height x Width x Channel x Num tic; input_data = {prepare_image(im)}; toc; % do forward pass to get scores % scores are now Channels x Num, where Channels == 1000 tic; % The net forward function. It takes in a cell array of N-D arrays % (where N == 4 here) containing data of input blob(s) and outputs a cell % array containing data from output blob(s) scores = net.forward(input_data); toc; scores = scores{1}; scores = mean(scores, 2); % take average scores over 10 crops [~, maxlabel] = max(scores); % call caffe.reset_all() to reset caffe caffe.reset_all(); % ------------------------------------------------------------------------ function crops_data = prepare_image(im) % ------------------------------------------------------------------------ % caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that % is already in W x H x C with BGR channels d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat'); mean_data = d.mean_data; IMAGE_DIM = 256; CROPPED_DIM = 227; % Convert an image returned by Matlab's imread to im_data in caffe's data % format: W x H x C with BGR channels im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR im_data = permute(im_data, [2, 1, 3]); % flip width and height im_data = single(im_data); % convert from uint8 to single im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR) % oversample (4 corners, center, and their x-axis flips) crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single'); indices = [0 IMAGE_DIM-CROPPED_DIM] + 1; n = 1; for i = indices for j = indices crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :); crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n); n = n + 1; end end center = floor(indices(2) / 2) + 1; crops_data(:,:,:,5) = ... im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:); crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
github
lipan00123/InHclustering-master
missclassf.m
.m
InHclustering-master/motionsegmentation/missclassf.m
252
utf_8
7cb914bb3bf5de5f05e90eb0e3d2887b
function [err,assignment]=missclassf(estlabel,label) c = max(label); cost = zeros(c,c); for i = 1:c, for j = 1:c, cost(i,j)=sum(estlabel(find(label==i))~=j); end end [assignment,err] = munkres(cost); end
github
lipan00123/InHclustering-master
munkres.m
.m
InHclustering-master/motionsegmentation/munkres.m
7,171
utf_8
b44ad4f1a20fc5d03db019c44a65bac3
function [assignment,cost] = munkres(costMat) % MUNKRES Munkres (Hungarian) Algorithm for Linear Assignment Problem. % % [ASSIGN,COST] = munkres(COSTMAT) returns the optimal column indices, % ASSIGN assigned to each row and the minimum COST based on the assignment % problem represented by the COSTMAT, where the (i,j)th element represents the cost to assign the jth % job to the ith worker. % % Partial assignment: This code can identify a partial assignment is a full % assignment is not feasible. For a partial assignment, there are some % zero elements in the returning assignment vector, which indicate % un-assigned tasks. The cost returned only contains the cost of partially % assigned tasks. % This is vectorized implementation of the algorithm. It is the fastest % among all Matlab implementations of the algorithm. % Examples % Example 1: a 5 x 5 example %{ [assignment,cost] = munkres(magic(5)); disp(assignment); % 3 2 1 5 4 disp(cost); %15 %} % Example 2: 400 x 400 random data %{ n=400; A=rand(n); tic [a,b]=munkres(A); toc % about 2 seconds %} % Example 3: rectangular assignment with inf costs %{ A=rand(10,7); A(A>0.7)=Inf; [a,b]=munkres(A); %} % Example 4: an example of partial assignment %{ A = [1 3 Inf; Inf Inf 5; Inf Inf 0.5]; [a,b]=munkres(A) %} % a = [1 0 3] % b = 1.5 % Reference: % "Munkres' Assignment Algorithm, Modified for Rectangular Matrices", % http://csclab.murraystate.edu/bob.pilgrim/445/munkres.html % version 2.3 by Yi Cao at Cranfield University on 11th September 2011 assignment = zeros(1,size(costMat,1)); cost = 0; validMat = costMat == costMat & costMat < Inf; bigM = 10^(ceil(log10(sum(costMat(validMat))))+1); costMat(~validMat) = bigM; % costMat(costMat~=costMat)=Inf; % validMat = costMat<Inf; validCol = any(validMat,1); validRow = any(validMat,2); nRows = sum(validRow); nCols = sum(validCol); n = max(nRows,nCols); if ~n return end maxv=10*max(costMat(validMat)); dMat = zeros(n) + maxv; dMat(1:nRows,1:nCols) = costMat(validRow,validCol); %************************************************* % Munkres' Assignment Algorithm starts here %************************************************* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % STEP 1: Subtract the row minimum from each row. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% minR = min(dMat,[],2); minC = min(bsxfun(@minus, dMat, minR)); %************************************************************************** % STEP 2: Find a zero of dMat. If there are no starred zeros in its % column or row start the zero. Repeat for each zero %************************************************************************** zP = dMat == bsxfun(@plus, minC, minR); starZ = zeros(n,1); while any(zP(:)) [r,c]=find(zP,1); starZ(r)=c; zP(r,:)=false; zP(:,c)=false; end while 1 %************************************************************************** % STEP 3: Cover each column with a starred zero. If all the columns are % covered then the matching is maximum %************************************************************************** if all(starZ>0) break end coverColumn = false(1,n); coverColumn(starZ(starZ>0))=true; coverRow = false(n,1); primeZ = zeros(n,1); [rIdx, cIdx] = find(dMat(~coverRow,~coverColumn)==bsxfun(@plus,minR(~coverRow),minC(~coverColumn))); while 1 %************************************************************************** % STEP 4: Find a noncovered zero and prime it. If there is no starred % zero in the row containing this primed zero, Go to Step 5. % Otherwise, cover this row and uncover the column containing % the starred zero. Continue in this manner until there are no % uncovered zeros left. Save the smallest uncovered value and % Go to Step 6. %************************************************************************** cR = find(~coverRow); cC = find(~coverColumn); rIdx = cR(rIdx); cIdx = cC(cIdx); Step = 6; while ~isempty(cIdx) uZr = rIdx(1); uZc = cIdx(1); primeZ(uZr) = uZc; stz = starZ(uZr); if ~stz Step = 5; break; end coverRow(uZr) = true; coverColumn(stz) = false; z = rIdx==uZr; rIdx(z) = []; cIdx(z) = []; cR = find(~coverRow); z = dMat(~coverRow,stz) == minR(~coverRow) + minC(stz); rIdx = [rIdx(:);cR(z)]; cIdx = [cIdx(:);stz(ones(sum(z),1))]; end if Step == 6 % ************************************************************************* % STEP 6: Add the minimum uncovered value to every element of each covered % row, and subtract it from every element of each uncovered column. % Return to Step 4 without altering any stars, primes, or covered lines. %************************************************************************** [minval,rIdx,cIdx]=outerplus(dMat(~coverRow,~coverColumn),minR(~coverRow),minC(~coverColumn)); minC(~coverColumn) = minC(~coverColumn) + minval; minR(coverRow) = minR(coverRow) - minval; else break end end %************************************************************************** % STEP 5: % Construct a series of alternating primed and starred zeros as % follows: % Let Z0 represent the uncovered primed zero found in Step 4. % Let Z1 denote the starred zero in the column of Z0 (if any). % Let Z2 denote the primed zero in the row of Z1 (there will always % be one). Continue until the series terminates at a primed zero % that has no starred zero in its column. Unstar each starred % zero of the series, star each primed zero of the series, erase % all primes and uncover every line in the matrix. Return to Step 3. %************************************************************************** rowZ1 = find(starZ==uZc); starZ(uZr)=uZc; while rowZ1>0 starZ(rowZ1)=0; uZc = primeZ(rowZ1); uZr = rowZ1; rowZ1 = find(starZ==uZc); starZ(uZr)=uZc; end end % Cost of assignment rowIdx = find(validRow); colIdx = find(validCol); starZ = starZ(1:nRows); vIdx = starZ <= nCols; assignment(rowIdx(vIdx)) = colIdx(starZ(vIdx)); pass = assignment(assignment>0); pass(~diag(validMat(assignment>0,pass))) = 0; assignment(assignment>0) = pass; cost = trace(costMat(assignment>0,assignment(assignment>0))); function [minval,rIdx,cIdx]=outerplus(M,x,y) ny=size(M,2); minval=inf; for c=1:ny M(:,c)=M(:,c)-(x+y(c)); minval = min(minval,min(M(:,c))); end [rIdx,cIdx]=find(M==minval);
github
lijunzh/fd_elastic-master
guiSurvey.m
.m
fd_elastic-master/gui/guiSurvey.m
64,340
utf_8
eef780e9025802e1419a3e9d0b8ca138
function varargout = guiSurvey(varargin) % GUISURVEY MATLAB code for guiSurvey.fig % GUISURVEY, by itself, creates a new GUISURVEY or raises the existing % singleton*. % % H = GUISURVEY returns the handle to a new GUISURVEY or the handle to % the existing singleton*. % % GUISURVEY('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUISURVEY.M with the given input arguments. % % GUISURVEY('Property','Value',...) creates a new GUISURVEY or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before guiSurvey_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to guiSurvey_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help guiSurvey % Last Modified by GUIDE v2.5 27-Apr-2015 22:52:24 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @guiSurvey_OpeningFcn, ... 'gui_OutputFcn', @guiSurvey_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % only add the directory into path when it is not in the path to load GUI % faster pathCell = regexp(path, pathsep, 'split'); if ~any(strcmpi('../src', pathCell)) addpath(genpath('../src')); end % --- Executes just before guiSurvey is made visible. function guiSurvey_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to guiSurvey (see VARARGIN) % Choose default command line output for guiSurvey handles.output = hObject; % Update handles structure guidata(hObject, handles); % UIWAIT makes guiSurvey wait for user response (see UIRESUME) % uiwait(handles.figureMain); % --- Outputs from this function are returned to the command line. function varargout = guiSurvey_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % -------------------------------------------------- % begin of self-defined functions % set up objects after loading velocity model for either P-wave or S-wave function loadVModel(v, handles) Ndims = ndims(v); vmin = min(v(:)); vmax = max(v(:)); %% prepare objects % enable objects set(handles.edit_dx, 'Enable', 'on'); set(handles.edit_dz, 'Enable', 'on'); set(handles.edit_dt, 'Enable', 'on'); set(handles.edit_nt, 'Enable', 'on'); set(handles.edit_boundary, 'Enable', 'on'); set(handles.pmenu_approxOrder, 'Enable', 'on'); set(handles.edit_centerFreq, 'Enable', 'on'); set(handles.pmenu_sweepAll, 'Enable', 'on'); set(handles.edit_sx, 'Enable', 'on'); set(handles.edit_sz, 'Enable', 'on'); set(handles.pmenu_receiveAll, 'Enable', 'on'); set(handles.btn_shot, 'Enable', 'on'); % disable objects set(handles.edit_dy, 'Enable', 'off'); set(handles.edit_sy, 'Enable', 'off'); set(handles.edit_rx, 'Enable', 'off'); set(handles.edit_ry, 'Enable', 'off'); set(handles.edit_rz, 'Enable', 'off'); %% set finite difference setting values dx = 10; dz = 10; dt = 0.5*(min([dx, dz])/vmax/sqrt(2)); % times 0.5 to reduce the possibility of instability [nz, nx, ~] = size(v); nt = round((sqrt((dx*nx)^2 + (dz*nz)^2)*2/vmin/dt + 1)); x = (1:nx) * dx; z = (1:nz) * dz; nBoundary = 20; nDiffOrder = 3; f = 20; sx = round(nx / 2); sz = 1; str_rx = sprintf('1:%d', nx); str_rz = sprintf('%d', 1); %% set default values in edit texts set(handles.edit_dx, 'String', num2str(dx)); set(handles.edit_dz, 'String', num2str(dz)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_nx, 'String', num2str(nx)); set(handles.edit_nz, 'String', num2str(nz)); set(handles.edit_nt, 'String', num2str(nt)); set(handles.edit_boundary, 'String', num2str(nBoundary)); set(handles.pmenu_approxOrder, 'Value', nDiffOrder); set(handles.edit_centerFreq, 'String', num2str(f)); set(handles.pmenu_sweepAll, 'Value', 2); % default is no set(handles.edit_sx, 'String', num2str(sx)); set(handles.edit_sy, 'String', ''); set(handles.edit_sz, 'String', num2str(sz)); set(handles.pmenu_receiveAll, 'Value', 1); % default is yes set(handles.edit_rx, 'String', str_rx); set(handles.edit_ry, 'String', ''); set(handles.edit_rz, 'String', str_rz); % 3D case if (Ndims > 2) % enable edit texts for y-axis set(handles.edit_dy, 'Enable', 'on'); set(handles.edit_sy, 'Enable', 'on'); % set finite difference setting values dy = 10; dt = 0.5*(min([dx, dy, dz])/vmax/sqrt(3)); [~, ~, ny] = size(v); nt = round((sqrt((dx*nx)^2 + (dy*ny)^2 + (dz*nz)^2)*2/vmin/dt + 1)); y = (1:ny) * dy; sy = round(ny / 2); str_ry = sprintf('1:%d', ny); % set values in edit texts for y-axis set(handles.edit_dy, 'String', num2str(dy)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_ny, 'String', num2str(ny)); set(handles.edit_nt, 'String', num2str(nt)); set(handles.edit_sy, 'String', num2str(sy)); set(handles.edit_ry, 'String', str_ry); end %% plot velocity model if (Ndims <= 2) % 2D case imagesc(x, z, v, 'Parent', handles.axes_velocityModel); xlabel(handles.axes_velocityModel, 'Distance (m)'); ylabel(handles.axes_velocityModel, 'Depth (m)'); title(handles.axes_velocityModel, 'Velocity Model'); colormap(handles.axes_velocityModel, seismic); else % 3D case slice(handles.axes_velocityModel, x, y, z, permute(v, [3, 2, 1]), ... round(linspace(x(2), x(end-1), 5)), ... round(linspace(y(2), y(end-1), 5)), ... round(linspace(z(2), z(end-1), 10))); xlabel(handles.axes_velocityModel, 'X - Easting (m)'); ylabel(handles.axes_velocityModel, 'Y - Northing (m)'); zlabel(handles.axes_velocityModel, 'Z - Depth (m)'); title(handles.axes_velocityModel, 'Velocity Model'); set(handles.axes_velocityModel, 'ZDir', 'reverse'); shading(handles.axes_velocityModel, 'interp'); colormap(handles.axes_velocityModel, seismic); end % clear other axes & set them invisible cla(handles.axes_sourceTime, 'reset'); cla(handles.axes_out1, 'reset'); cla(handles.axes_out2, 'reset'); cla(handles.axes_out3, 'reset'); cla(handles.axes_out4, 'reset'); cla(handles.axes_out5, 'reset'); cla(handles.axes_out6, 'reset'); set(handles.axes_sourceTime, 'Visible', 'off'); set(handles.axes_out1, 'Visible', 'off'); set(handles.axes_out2, 'Visible', 'off'); set(handles.axes_out3, 'Visible', 'off'); set(handles.axes_out4, 'Visible', 'off'); set(handles.axes_out5, 'Visible', 'off'); set(handles.axes_out6, 'Visible', 'off'); % end of self-defined functions % -------------------------------------------------- % -------------------------------------------------------------------- function menu_file_Callback(hObject, eventdata, handles) % hObject handle to menu_file (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menu_loadPWaveVModel_Callback(hObject, eventdata, handles) % hObject handle to menu_loadPWaveVModel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% load P-wave velocity model [file, path] = uigetfile('*.mat', 'Select a velocity model for P-wave'); if (~any([file, path])) % user pressed cancel button return; end load(fullfile(path, file)); if (~exist('velocityModel', 'var')) errordlg('This is not a valid velocity model!', 'File Error'); return; end vp = velocityModel; % dimension check data = guidata(hObject); if (isfield(data, 'vs')) if (ndims(vp) ~= ndims(data.vs)) errordlg('Dimension of P-wave and S-wave velocity models are not the same!', 'Model Error'); return; end if (any(size(vp) ~= size(data.vs))) errordlg('Dimension of P-wave and S-wave velocity models are not the same!', 'Model Error'); return; end end %% load velocity model loadVModel(vp, handles); loadPFlag = true; %% update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = sprintf('Loaded P-wave Velocity Model: %s', fullfile(path, file)); set(handles.edit_status, 'String', str_status); %% share variables among callback functions data = guidata(hObject); data.loadPFlag = loadPFlag; data.vp = vp; guidata(hObject, data); % hObject can be any object contained in the figure, including push button, edit text, popup menu, etc. % -------------------------------------------------------------------- function menu_loadSWaveVModel_Callback(hObject, eventdata, handles) % hObject handle to menu_loadSWaveVModel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% load S-wave velocity model [file, path] = uigetfile('*.mat', 'Select a velocity model for S-wave'); if (~any([file, path])) % user pressed cancel button return; end load(fullfile(path, file)); if (~exist('velocityModel', 'var')) errordlg('This is not a valid velocity model!', 'File Error'); return; end vs = velocityModel; data = guidata(hObject); if (isfield(data, 'vp')) if (ndims(vs) ~= ndims(data.vp)) errordlg('Dimension of P-wave and S-wave velocity models are not the same!', 'Model Error'); return; end if (any(size(vs) ~= size(data.vp))) errordlg('Dimension of P-wave and S-wave velocity models are not the same!', 'Model Error'); return; end end %% load velocity model loadVModel(vs, handles); loadSFlag = true; %% update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = sprintf('Loaded S-wave Velocity Model: %s', fullfile(path, file)); set(handles.edit_status, 'String', str_status); %% share variables among callback functions data = guidata(hObject); data.loadSFlag = loadSFlag; data.vs = vs; guidata(hObject, data); % -------------------------------------------------------------------- function menu_clearVModel_Callback(hObject, eventdata, handles) % hObject handle to menu_clearVModel (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% clear object contents set(handles.edit_dx, 'String', ''); set(handles.edit_dy, 'String', ''); set(handles.edit_dz, 'String', ''); set(handles.edit_dt, 'String', ''); set(handles.edit_nx, 'String', ''); set(handles.edit_ny, 'String', ''); set(handles.edit_nz, 'String', ''); set(handles.edit_nt, 'String', ''); set(handles.edit_boundary, 'String', ''); set(handles.pmenu_approxOrder, 'Value', 1); set(handles.edit_centerFreq, 'String', ''); set(handles.pmenu_sweepAll, 'Value', 2); % default is no set(handles.edit_sx, 'String', ''); set(handles.edit_sy, 'String', ''); set(handles.edit_sz, 'String', ''); set(handles.pmenu_receiveAll, 'Value', 1); % default is yes set(handles.edit_rx, 'String', ''); set(handles.edit_ry, 'String', ''); set(handles.edit_rz, 'String', ''); set(handles.edit_status, 'String', ''); %% disable objects set(handles.edit_dx, 'Enable', 'off'); set(handles.edit_dy, 'Enable', 'off'); set(handles.edit_dz, 'Enable', 'off'); set(handles.edit_dt, 'Enable', 'off'); set(handles.edit_nx, 'Enable', 'off'); set(handles.edit_ny, 'Enable', 'off'); set(handles.edit_nz, 'Enable', 'off'); set(handles.edit_nt, 'Enable', 'off'); set(handles.edit_boundary, 'Enable', 'off'); set(handles.pmenu_approxOrder, 'Enable', 'off'); set(handles.edit_centerFreq, 'Enable', 'off'); set(handles.pmenu_sweepAll, 'Enable', 'off'); set(handles.edit_sx, 'Enable', 'off'); set(handles.edit_sy, 'Enable', 'off'); set(handles.edit_sz, 'Enable', 'off'); set(handles.pmenu_receiveAll, 'Enable', 'off'); set(handles.edit_rx, 'Enable', 'off'); set(handles.edit_ry, 'Enable', 'off'); set(handles.edit_rz, 'Enable', 'off'); % set(handles.edit_status, 'Enable', 'off'); set(handles.btn_shot, 'Enable', 'off'); set(handles.btn_stop, 'Enable', 'off'); set(handles.btn_saveData, 'Enable', 'off'); %% clear other axes & set them invisible cla(handles.axes_velocityModel, 'reset'); cla(handles.axes_sourceTime, 'reset'); cla(handles.axes_out1, 'reset'); cla(handles.axes_out2, 'reset'); cla(handles.axes_out3, 'reset'); cla(handles.axes_out4, 'reset'); cla(handles.axes_out5, 'reset'); cla(handles.axes_out6, 'reset'); set(handles.axes_velocityModel, 'Visible', 'off'); set(handles.axes_sourceTime, 'Visible', 'off'); set(handles.axes_out1, 'Visible', 'off'); set(handles.axes_out2, 'Visible', 'off'); set(handles.axes_out3, 'Visible', 'off'); set(handles.axes_out4, 'Visible', 'off'); set(handles.axes_out5, 'Visible', 'off'); set(handles.axes_out6, 'Visible', 'off'); %% share variables among callback functions data = guidata(hObject); if (isfield(data, 'vp')) data = rmfield(data, 'vp'); end if (isfield(data, 'vs')) data = rmfield(data, 'vs'); end if (isfield(data, 'loadPFlag')) data = rmfield(data, 'loadPFlag'); end if (isfield(data, 'vp')) data = rmfield(data, 'vp'); end if (isfield(data, 'loadSFlag')) data = rmfield(data, 'loadSFlag'); end if (isfield(data, 'vs')) data = rmfield(data, 'vs'); end if (isfield(data, 'stopFlag')) data = rmfield(data, 'stopFlag'); end if (isfield(data, 'dataP')) data = rmfield(data, 'dataP'); end if (isfield(data, 'dataVxp')) data = rmfield(data, 'dataVxp'); end if (isfield(data, 'dataVyp')) data = rmfield(data, 'dataVyp'); end if (isfield(data, 'dataVzp')) data = rmfield(data, 'dataVzp'); end if (isfield(data, 'dataVxs')) data = rmfield(data, 'dataVxs'); end if (isfield(data, 'dataVys')) data = rmfield(data, 'dataVys'); end if (isfield(data, 'dataVzs')) data = rmfield(data, 'dataVzs'); end guidata(hObject, data); % hObject can be any object contained in the figure, including push button, edit text, popup menu, etc. % --- Executes on button press in btn_shot. function btn_shot_Callback(hObject, eventdata, handles) % hObject handle to btn_shot (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% enable / disable objects set(handles.btn_shot, 'Enable', 'off'); set(handles.btn_stop, 'Enable', 'on'); set(handles.btn_saveData, 'Enable', 'off'); %% share variables among callback functions data = guidata(hObject); data.stopFlag = false; if (isfield(data, 'loadPFlag')) data.loadPFlag = false; end if (isfield(data, 'loadSFlag')) data.loadSFlag = false; end guidata(hObject, data); %% load parameter data = guidata(hObject); if (isfield(data, 'vp')) % P-wave velocity model has been loaded vp = data.vp; if (isfield(data, 'vs')) % both P-wave and S-wave velocity model have been loaded vs = data.vs; end else % only S-wave velocity model has been loaded, treat as only P-wave % velocity model has been loaded warndlg('Only S-wave velocity model has been loaded, treat as only P-wave velocity model has been loaded!', 'Warning'); vp = data.vs; end Ndims = ndims(vp); [nz, nx, ~] = size(vp); dx = str2double(get(handles.edit_dx, 'String')); dz = str2double(get(handles.edit_dz, 'String')); dt = str2double(get(handles.edit_dt, 'String')); nt = str2double(get(handles.edit_nt, 'String')); x = (1:nx) * dx; z = (1:nz) * dz; t = (0:nt-1) * dt; nBoundary = str2double(get(handles.edit_boundary, 'String')); nDiffOrder = get(handles.pmenu_approxOrder, 'Value'); f = str2double(get(handles.edit_centerFreq, 'String')); sx = eval(sprintf('[%s]', get(handles.edit_sx, 'String'))); sz = eval(sprintf('[%s]', get(handles.edit_sz, 'String'))); [szMesh, sxMesh] = meshgrid(sz, sx); sMesh = [szMesh(:), sxMesh(:)]; nShots = size(sMesh, 1); rx = eval(sprintf('[%s]', get(handles.edit_rx, 'String'))); rz = eval(sprintf('[%s]', get(handles.edit_rz, 'String'))); % 3D case if (Ndims > 2) [~, ~, ny] = size(vp); dy = str2double(get(handles.edit_dy, 'String')); y = (1:ny) * dy; sy = eval(sprintf('[%s]', get(handles.edit_sy, 'String'))); [szMesh, sxMesh, syMesh] = meshgrid(sz, sx, sy); sMesh = [szMesh(:), sxMesh(:), syMesh(:)]; nShots = size(sMesh, 1); ry = eval(sprintf('[%s]', get(handles.edit_ry, 'String'))); end %% check the condition of stability if (Ndims <= 2) if (dt > min([dx, dz])/(norm(dCoef(nDiffOrder, 's'), 1) * sqrt(2) * max(vp(:)))) errordlg('The temporal discretization does not satisfy the Courant-Friedrichs-Lewy sampling criterion to ensure the stability of the finite difference method!'); end else if (dt > min([dx, dy, dz])/(norm(dCoef(nDiffOrder, 's'), 1) * sqrt(3) * max(vp(:)))) errordlg('The temporal discretization does not satisfy the Courant-Friedrichs-Lewy sampling criterion to ensure the stability of the finite difference method!'); end end %% add region around model for applying absorbing boundary conditions VP = extBoundary(vp, nBoundary, Ndims); if (exist('vs', 'var')) if (Ndims <= 2) VS = extBoundary(vs, nBoundary, 2); else VS = extBoundary(vs, nBoundary, 3); end end %% shot through all source positions for ixs = 1:nShots %% locating current source cur_sz = sMesh(ixs, 1); cur_sx = sMesh(ixs, 2); %% generate shot source field and shot record using FDTD sourceTime = zeros([size(VP), nt]); wave1dTime = ricker(f, nt, dt); if (Ndims <= 2) % 2D case % plot velocity model and shot position imagesc(x, z, vp, 'Parent', handles.axes_velocityModel); xlabel(handles.axes_velocityModel, 'Distance (m)'); ylabel(handles.axes_velocityModel, 'Depth (m)'); title(handles.axes_velocityModel, 'Velocity Model'); colormap(handles.axes_velocityModel, seismic); hold(handles.axes_velocityModel, 'on'); plot(handles.axes_velocityModel, cur_sx * dx, cur_sz * dz, 'w*'); hold(handles.axes_velocityModel, 'off'); % shot sourceTime(cur_sz, cur_sx+nBoundary, :) = reshape(wave1dTime, 1, 1, nt); if (exist('vs', 'var')) % elastic wave shot [snapshotVzp, snapshotVxp, snapshotVzs, snapshotVxs] = fwdTimeSpmlFor2dEw(VP, VS, sourceTime, nDiffOrder, nBoundary, dz, dx, dt); % share variables among callback functions data = guidata(hObject); if (isfield(data, 'dataVyp')) data = rmfield(data, 'dataVyp'); end if (isfield(data, 'dataVys')) data = rmfield(data, 'dataVys'); end data.dataVzp = squeeze(snapshotVzp(1, rx+nBoundary, :)).'; data.dataVxp = squeeze(snapshotVxp(1, rx+nBoundary, :)).'; data.dataVzs = squeeze(snapshotVzs(1, rx+nBoundary, :)).'; data.dataVxs = squeeze(snapshotVxs(1, rx+nBoundary, :)).'; guidata(hObject, data); else % acoustic wave shot [dataP, snapshotTrue] = fwdTimeCpmlFor2dAw(VP, sourceTime, nDiffOrder, nBoundary, dz, dx, dt); % share variables among callback functions data = guidata(hObject); data.dataP = dataP(rx+nBoundary, :).'; guidata(hObject, data); end % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = sprintf('Shot at x = %dm, z = %dm', cur_sx * dx, cur_sz * dz); set(handles.edit_status, 'String', str_status); else % 3D case slice(handles.axes_velocityModel, x, y, z, permute(vp, [3, 2, 1]), ... round(linspace(x(2), x(end-1), 5)), ... round(linspace(y(2), y(end-1), 5)), ... round(linspace(z(2), z(end-1), 10))); xlabel(handles.axes_velocityModel, 'X - Easting (m)'); ylabel(handles.axes_velocityModel, 'Y - Northing (m)'); zlabel(handles.axes_velocityModel, 'Z - Depth (m)'); title(handles.axes_velocityModel, 'Velocity Model'); set(handles.axes_velocityModel, 'ZDir', 'reverse'); shading(handles.axes_velocityModel, 'interp'); colormap(handles.axes_velocityModel, seismic); cur_sy = sMesh(ixs, 3); hold(handles.axes_velocityModel, 'on'); plot3(handles.axes_velocityModel, cur_sx * dx, cur_sy * dy, cur_sz * dz, 'w*'); hold(handles.axes_velocityModel, 'off'); % shot sourceTime(cur_sz, cur_sx+nBoundary, cur_sy+nBoundary, :) = reshape(wave1dTime, 1, 1, 1, nt); if (exist('vs', 'var')) % elastic wave shot [snapshotVzp, snapshotVxp, snapshotVyp, snapshotVzs, snapshotVxs, snapshotVys] = fwdTimeSpmlFor3dEw(VP, VS, sourceTime, sourceTime, sourceTime, nDiffOrder, nBoundary, dz, dx, dy, dt); % share variables among callback functions data = guidata(hObject); data.dataVzp = permute(squeeze(snapshotVzp(1, rx+nBoundary, ry+nBoundary, :)), [3, 1, 2]); data.dataVxp = permute(squeeze(snapshotVxp(1, rx+nBoundary, ry+nBoundary, :)), [3, 1, 2]); data.dataVyp = permute(squeeze(snapshotVyp(1, rx+nBoundary, ry+nBoundary, :)), [3, 1, 2]); data.dataVzs = permute(squeeze(snapshotVzs(1, rx+nBoundary, ry+nBoundary, :)), [3, 1, 2]); data.dataVxs = permute(squeeze(snapshotVxs(1, rx+nBoundary, ry+nBoundary, :)), [3, 1, 2]); data.dataVys = permute(squeeze(snapshotVys(1, rx+nBoundary, ry+nBoundary, :)), [3, 1, 2]); guidata(hObject, data); else % acoustic wave shot [dataP, snapshotTrue] = fwdTimeCpmlFor3dAw(VP, sourceTime, nDiffOrder, nBoundary, dz, dx, dy, dt); % share variables among callback functions data = guidata(hObject); data.dataP = permute(dataP(rx+nBoundary, ry+nBoundary, :), [3, 1, 2]); guidata(hObject, data); end % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = sprintf('Shot at x = %dm, y = %dm, z = %dm', cur_sx * dx, cur_sy * dy, cur_sz * dz); set(handles.edit_status, 'String', str_status); slice_x = median(x); slice_y = median(y); slice_z = median(z); end %% plot figures into axes for it = 1:nt % stop plotting when hObject becomes invalid (due to its deletion) if (~ishandle(hObject)) return; end data = guidata(hObject); % stop plotting when stop button has been pushed if (data.stopFlag) return; end % stop plotting when another new velocity model has been loaded if ( (~isfield(data, 'loadSFlag') && data.loadPFlag) ... || (~isfield(data, 'loadPFlag') && data.loadSFlag) ... || (isfield(data, 'loadPFlag') && isfield(data, 'loadSFlag') && (data.loadPFlag || data.loadSFlag)) ) return; end % plot source function in time domain plot(handles.axes_sourceTime, t, wave1dTime); hold(handles.axes_sourceTime, 'on'); plot(handles.axes_sourceTime, t(it), wave1dTime(it), 'r*'); hold(handles.axes_sourceTime, 'off'); xlim(handles.axes_sourceTime, [t(1), t(end)]); xlabel(handles.axes_sourceTime, 'Time (s)'); ylabel(handles.axes_sourceTime, 'Amplitude'); colormap(handles.axes_sourceTime, seismic); if (Ndims <= 2) % 2D case % source function title title(handles.axes_sourceTime, sprintf('Shot at x = %dm', cur_sx * dx)); if (exist('vs', 'var')) % display elastic wavefields imagesc(x, z, snapshotVxp(1:end-nBoundary, nBoundary+1:end-nBoundary, it), 'Parent', handles.axes_out1); xlabel(handles.axes_out1, 'Distance (m)'); ylabel(handles.axes_out1, 'Depth (m)'); title(handles.axes_out1, sprintf('P-wave (x-axis component) t = %.3fs', t(it))); caxis(handles.axes_out1, [-2e-5, 1e-4]); imagesc(x, z, snapshotVzp(1:end-nBoundary, nBoundary+1:end-nBoundary, it), 'Parent', handles.axes_out2); xlabel(handles.axes_out2, 'Distance (m)'); ylabel(handles.axes_out2, 'Depth (m)'); title(handles.axes_out2, sprintf('P-wave (z-axis component) t = %.3fs', t(it))); caxis(handles.axes_out2, [-2e-5, 1e-4]); imagesc(x, z, snapshotVxs(1:end-nBoundary, nBoundary+1:end-nBoundary, it), 'Parent', handles.axes_out4); xlabel(handles.axes_out4, 'Distance (m)'); ylabel(handles.axes_out4, 'Depth (m)'); title(handles.axes_out4, sprintf('S-wave (x-axis component) t = %.3fs', t(it))); caxis(handles.axes_out4, [-2e-5, 1e-4]); imagesc(x, z, snapshotVzs(1:end-nBoundary, nBoundary+1:end-nBoundary, it), 'Parent', handles.axes_out5); xlabel(handles.axes_out5, 'Distance (m)'); ylabel(handles.axes_out5, 'Depth (m)'); title(handles.axes_out5, sprintf('S-wave (z-axis component) t = %.3fs', t(it))); caxis(handles.axes_out5, [-2e-5, 1e-4]); else % display acoustic wavefields % plot received data traces dataDisplay = zeros(nt, nx); dataDisplay(1:it, rx) = dataP(rx+nBoundary, 1:it).'; imagesc(x, t, dataDisplay, 'Parent', handles.axes_out1); xlabel(handles.axes_out1, 'Distance (m)'); ylabel(handles.axes_out1, 'Time (s)'); title(handles.axes_out1, 'Shot Record'); caxis(handles.axes_out1, [-0.1 0.1]); % plot wave propagation snapshots imagesc(x, z, snapshotTrue(1:end-nBoundary, nBoundary+1:end-nBoundary, it), 'Parent', handles.axes_out2); xlabel(handles.axes_out2, 'Distance (m)'); ylabel(handles.axes_out2, 'Depth (m)'); title(handles.axes_out2, sprintf('Wave Propagation t = %.3fs', t(it))); caxis(handles.axes_out2, [-0.15, 1]); end else % 3D case % source function title title(handles.axes_sourceTime, sprintf('Shot at x = %dm, y = %dm', cur_sx * dx, cur_sy * dy)); if (exist('vs', 'var')) % display elastic wavefields slice(handles.axes_out1, x, y, z, permute(snapshotVzp(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out1, 'X - Easting (m)'); ylabel(handles.axes_out1, 'Y - Northing (m)'); zlabel(handles.axes_out1, 'Z - Depth (m)'); title(handles.axes_out1, sprintf('P-wave (z-axis component), t = %.3fs', t(it))); set(handles.axes_out1, 'ZDir', 'reverse'); shading(handles.axes_out1, 'interp'); caxis(handles.axes_out1, [-2e-5, 1e-4]); slice(handles.axes_out2, x, y, z, permute(snapshotVxp(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out2, 'X - Easting (m)'); ylabel(handles.axes_out2, 'Y - Northing (m)'); zlabel(handles.axes_out2, 'Z - Depth (m)'); title(handles.axes_out2, sprintf('P-wave (x-axis component), t = %.3fs', t(it))); set(handles.axes_out2, 'ZDir', 'reverse'); shading(handles.axes_out2, 'interp'); caxis(handles.axes_out2, [-2e-5, 1e-4]); slice(handles.axes_out3, x, y, z, permute(snapshotVyp(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out3, 'X - Easting (m)'); ylabel(handles.axes_out3, 'Y - Northing (m)'); zlabel(handles.axes_out3, 'Z - Depth (m)'); title(handles.axes_out3, sprintf('P-wave (y-axis component), t = %.3fs', t(it))); set(handles.axes_out3, 'ZDir', 'reverse'); shading(handles.axes_out3, 'interp'); caxis(handles.axes_out3, [-2e-5, 1e-4]); slice(handles.axes_out4, x, y, z, permute(snapshotVzs(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out4, 'X - Easting (m)'); ylabel(handles.axes_out4, 'Y - Northing (m)'); zlabel(handles.axes_out4, 'Z - Depth (m)'); title(handles.axes_out4, sprintf('S-wave (z-axis component), t = %.3fs', t(it))); set(handles.axes_out4, 'ZDir', 'reverse'); shading(handles.axes_out4, 'interp'); caxis(handles.axes_out4, [-2e-5, 1e-4]); slice(handles.axes_out5, x, y, z, permute(snapshotVxs(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out5, 'X - Easting (m)'); ylabel(handles.axes_out5, 'Y - Northing (m)'); zlabel(handles.axes_out5, 'Z - Depth (m)'); title(handles.axes_out5, sprintf('S-wave (x-axis component), t = %.3fs', t(it))); set(handles.axes_out5, 'ZDir', 'reverse'); shading(handles.axes_out5, 'interp'); caxis(handles.axes_out5, [-2e-5, 1e-4]); slice(handles.axes_out6, x, y, z, permute(snapshotVys(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out6, 'X - Easting (m)'); ylabel(handles.axes_out6, 'Y - Northing (m)'); zlabel(handles.axes_out6, 'Z - Depth (m)'); title(handles.axes_out6, sprintf('S-wave (y-axis component), t = %.3fs', t(it))); set(handles.axes_out6, 'ZDir', 'reverse'); shading(handles.axes_out6, 'interp'); caxis(handles.axes_out6, [-2e-5, 1e-4]); else % display acoustic wavefields % plot received data traces dataDisplay = zeros(nx, ny, nt); dataDisplay(rx, ry, 1:it) = dataP(rx+nBoundary, ry+nBoundary, 1:it); slice(handles.axes_out1, x, y, t, permute(dataDisplay, [2, 1, 3]), ... round(linspace(x(2), x(end-1), 5)), ... round(linspace(y(2), y(end-1), 5)), ... t); xlabel(handles.axes_out1, 'X - Easting (m)'); ylabel(handles.axes_out1, 'Y - Northing (m)'); zlabel(handles.axes_out1, 'Time (s)'); title(handles.axes_out1, 'Shot Record'); set(handles.axes_out1, 'ZDir', 'reverse'); shading(handles.axes_out1, 'interp'); caxis(handles.axes_out1, [-0.1 0.1]); % plot wave propagation snapshots slice(handles.axes_out2, x, y, z, permute(snapshotTrue(1:end-nBoundary, nBoundary+1:end-nBoundary, nBoundary+1:end-nBoundary, it), [3, 2, 1]), ... slice_x, slice_y, slice_z); xlabel(handles.axes_out2, 'X - Easting (m)'); ylabel(handles.axes_out2, 'Y - Northing (m)'); zlabel(handles.axes_out2, 'Z - Depth (m)'); title(handles.axes_out2, sprintf('Wave Propagation t = %.3fs', t(it))); set(handles.axes_out2, 'ZDir', 'reverse'); shading(handles.axes_out2, 'interp'); caxis(handles.axes_out2, [-0.15, 1]); end end drawnow; end end %% enable / disable objects set(handles.btn_shot, 'Enable', 'on'); set(handles.btn_stop, 'Enable', 'off'); set(handles.btn_saveData, 'Enable', 'on'); % data has already been ready after plotting % --- Executes on button press in btn_stop. function btn_stop_Callback(hObject, eventdata, handles) % hObject handle to btn_stop (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) %% enable / disable objects set(handles.btn_shot, 'Enable', 'on'); set(handles.btn_stop, 'Enable', 'off'); set(handles.btn_saveData, 'Enable', 'on'); % data has already been ready when the stop button can be pushed %% update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = 'Stopped'; set(handles.edit_status, 'String', str_status); %% share variables among callback functions data = guidata(hObject); data.stopFlag = true; guidata(hObject, data); % --- Executes on button press in btn_savedata. function btn_saveData_Callback(hObject, eventdata, handles) % hObject handle to btn_savedata (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) data = guidata(hObject); Ndims = ndims(data.vp); if (Ndims <= 2) % 2D case if (isfield(data, 'vs')) % elastic wave % save X-axis particle velocity data [file, path] = uiputfile('*.mat', 'Save X-axis 2D particle velocity data as'); dataVx = data.dataVxp + data.dataVxs; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataVx', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['X-axis 2D particle velocity data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end % save Z-axis particle velocity data [file, path] = uiputfile('*.mat', 'Save Z-axis 2D particle velocity data as'); dataVz = data.dataVzp + data.dataVzs; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataVz', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['Z-axis 2D particle velocity data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end else % acoustic wave % save acoustic pressure data [file, path] = uiputfile('*.mat', 'Save 2D acoustic pressure data as'); dataP = data.dataP; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataP', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['2D Acoustic pressure data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end end else % 3D case if (isfield(data, 'vs')) % elastic wave % save X-axis particle velocity data [file, path] = uiputfile('*.mat', 'Save X-axis 3D particle velocity data as'); dataVx = data.dataVxp + data.dataVxs; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataVx', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['X-axis 3D particle velocity data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end % save Y-axis particle velocity data [file, path] = uiputfile('*.mat', 'Save Y-axis 3D particle velocity data as'); dataVy = data.dataVyp + data.dataVys; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataVy', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['Y-axis 3D particle velocity data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end % save Z-axis particle velocity data [file, path] = uiputfile('*.mat', 'Save Z-axis 3D particle velocity data as'); dataVz = data.dataVzp + data.dataVzs; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataVz', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['Z-axis 3D particle velocity data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end else % acoustic wave % save acoustic pressure data [file, path] = uiputfile('*.mat', 'Save 3D acoustic pressure data as'); dataP = data.dataP; if (~(isequal(file, 0) || isequal(path, 0))) % user does not press the cancel button save(fullfile(path, file), 'dataP', '-v7.3'); % update status str_status = get(handles.edit_status, 'String'); str_status{end+1} = ['3D Acoustic pressure data has been saved in ', fullfile(path, file)]; set(handles.edit_status, 'String', str_status); end end end function edit_dx_Callback(hObject, eventdata, handles) % hObject handle to edit_dx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_dx as text % str2double(get(hObject,'String')) returns contents of edit_dx as a double data = guidata(hObject); if (isfield(data, 'vp')) vp = data.vp; if (isfield(data, 'vs')) vs = data.vs; end else % i.e., isfield(data, 'vs') == true % only S-wave velocity model has been loaded, treat it as P-wave % velocity model vp = data.vs; end Ndims = ndims(vp); vpmin = min(vp(:)); vpmax = max(vp(:)); dx = str2double(get(handles.edit_dx, 'String')); dz = str2double(get(handles.edit_dz, 'String')); dt = 0.5*(min([dx, dz])/vpmax/sqrt(2)); [nz, nx, ~] = size(vp); nt = round((sqrt((dx*nx)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_nt, 'String', num2str(nt)); % 3D case if (Ndims > 2) dy = str2double(get(handles.edit_dy, 'String')); dt = 0.5*(min([dx, dy, dz])/vpmax/sqrt(3)); [~, ~, ny] = size(vp); nt = round((sqrt((dx*nx)^2 + (dy*ny)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_nt, 'String', num2str(nt)); end % --- Executes during object creation, after setting all properties. function edit_dx_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_dx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_dy_Callback(hObject, eventdata, handles) % hObject handle to edit_dy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_dy as text % str2double(get(hObject,'String')) returns contents of edit_dy as a double % only happen in 3D case data = guidata(hObject); if (isfield(data, 'vp')) vp = data.vp; if (isfield(data, 'vs')) vs = data.vs; end else % i.e., isfield(data, 'vs') == true % only S-wave velocity model has been loaded, treat it as P-wave % velocity model vp = data.vs; end vpmin = min(vp(:)); vpmax = max(vp(:)); dx = str2double(get(handles.edit_dx, 'String')); dy = str2double(get(handles.edit_dy, 'String')); dz = str2double(get(handles.edit_dz, 'String')); dt = 0.5*(min([dx, dy, dz])/vpmax/sqrt(3)); [nz, nx, ny] = size(vp); nt = round((sqrt((dx*nx)^2 + (dy*ny)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_nt, 'String', num2str(nt)); % --- Executes during object creation, after setting all properties. function edit_dy_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_dy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_dz_Callback(hObject, eventdata, handles) % hObject handle to edit_dz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_dz as text % str2double(get(hObject,'String')) returns contents of edit_dz as a double data = guidata(hObject); if (isfield(data, 'vp')) vp = data.vp; if (isfield(data, 'vs')) vs = data.vs; end else % i.e., isfield(data, 'vs') == true % only S-wave velocity model has been loaded, treat it as P-wave % velocity model vp = data.vs; end Ndims = ndims(vp); vpmin = min(vp(:)); vpmax = max(vp(:)); dx = str2double(get(handles.edit_dx, 'String')); dz = str2double(get(handles.edit_dz, 'String')); dt = 0.5*(min([dx, dz])/vpmax/sqrt(2)); [nz, nx, ~] = size(vp); nt = round((sqrt((dx*nx)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_nt, 'String', num2str(nt)); % 3D case if (Ndims > 2) dy = str2double(get(handles.edit_dy, 'String')); dt = 0.5*(min([dx, dy, dz])/vpmax/sqrt(3)); [~, ~, ny] = size(vp); nt = round((sqrt((dx*nx)^2 + (dy*ny)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_dt, 'String', num2str(dt)); set(handles.edit_nt, 'String', num2str(nt)); end % --- Executes during object creation, after setting all properties. function edit_dz_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_dz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_dt_Callback(hObject, eventdata, handles) % hObject handle to edit_dt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_dt as text % str2double(get(hObject,'String')) returns contents of edit_dt as a double data = guidata(hObject); if (isfield(data, 'vp')) vp = data.vp; if (isfield(data, 'vs')) vs = data.vs; end else % i.e., isfield(data, 'vs') == true % only S-wave velocity model has been loaded, treat it as P-wave % velocity model vp = data.vs; end Ndims = ndims(vp); vpmin = min(vp(:)); vpmax = max(vp(:)); dx = str2double(get(handles.edit_dx, 'String')); dz = str2double(get(handles.edit_dz, 'String')); dt = str2double(get(handles.edit_dt, 'String')); [nz, nx, ~] = size(vp); nt = round((sqrt((dx*nx)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_nt, 'String', num2str(nt)); % 3D case if (Ndims > 2) dy = str2double(get(handles.edit_dy, 'String')); dt = str2double(get(handles.edit_dt, 'String')); [~, ~, ny] = size(vp); nt = round((sqrt((dx*nx)^2 + (dy*ny)^2 + (dz*nz)^2)*2/vpmin/dt + 1)); set(handles.edit_nt, 'String', num2str(nt)); end % --- Executes during object creation, after setting all properties. function edit_dt_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_dt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_nx_Callback(hObject, eventdata, handles) % hObject handle to edit_nx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_nx as text % str2double(get(hObject,'String')) returns contents of edit_nx as a double % --- Executes during object creation, after setting all properties. function edit_nx_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_nx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_ny_Callback(hObject, eventdata, handles) % hObject handle to edit_ny (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_ny as text % str2double(get(hObject,'String')) returns contents of edit_ny as a double % --- Executes during object creation, after setting all properties. function edit_ny_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_ny (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_nz_Callback(hObject, eventdata, handles) % hObject handle to edit_nz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_nz as text % str2double(get(hObject,'String')) returns contents of edit_nz as a double % --- Executes during object creation, after setting all properties. function edit_nz_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_nz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_nt_Callback(hObject, eventdata, handles) % hObject handle to edit_nt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_nt as text % str2double(get(hObject,'String')) returns contents of edit_nt as a double % --- Executes during object creation, after setting all properties. function edit_nt_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_nt (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % -------------------------------------------------------------------- function menuHelp_Callback(hObject, eventdata, handles) % hObject handle to menuHelp (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % -------------------------------------------------------------------- function menuHelpAbout_Callback(hObject, eventdata, handles) % hObject handle to menuHelpAbout (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) guiAbout; function edit_boundary_Callback(hObject, eventdata, handles) % hObject handle to edit_boundary (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_boundary as text % str2double(get(hObject,'String')) returns contents of edit_boundary as a double % --- Executes during object creation, after setting all properties. function edit_boundary_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_boundary (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in pmenu_approxOrder. function pmenu_approxOrder_Callback(hObject, eventdata, handles) % hObject handle to pmenu_approxOrder (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns pmenu_approxOrder contents as cell array % contents{get(hObject,'Value')} returns selected item from pmenu_approxOrder % --- Executes during object creation, after setting all properties. function pmenu_approxOrder_CreateFcn(hObject, eventdata, handles) % hObject handle to pmenu_approxOrder (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_centerFreq_Callback(hObject, eventdata, handles) % hObject handle to edit_centerFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_centerFreq as text % str2double(get(hObject,'String')) returns contents of edit_centerFreq as a double % --- Executes during object creation, after setting all properties. function edit_centerFreq_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_centerFreq (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_sx_Callback(hObject, eventdata, handles) % hObject handle to edit_sx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_sx as text % str2double(get(hObject,'String')) returns contents of edit_sx as a double % --- Executes during object creation, after setting all properties. function edit_sx_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_sx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_sy_Callback(hObject, eventdata, handles) % hObject handle to edit_sy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_sy as text % str2double(get(hObject,'String')) returns contents of edit_sy as a double % --- Executes during object creation, after setting all properties. function edit_sy_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_sy (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_sz_Callback(hObject, eventdata, handles) % hObject handle to edit_sz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_sz as text % str2double(get(hObject,'String')) returns contents of edit_sz as a double % --- Executes during object creation, after setting all properties. function edit_sz_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_sz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in pmenu_sweepAll. function pmenu_sweepAll_Callback(hObject, eventdata, handles) % hObject handle to pmenu_sweepAll (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns pmenu_sweepAll contents as cell array % contents{get(hObject,'Value')} returns selected item from pmenu_sweepAll data = guidata(hObject); if (isfield(data, 'vp')) vp = data.vp; if (isfield(data, 'vs')) vs = data.vs; end else % i.e., isfield(data, 'vs') == true % only S-wave velocity model has been loaded, treat it as P-wave % velocity model vp = data.vs; end Ndims = ndims(vp); [nz, nx, ~] = size(vp); isSweepAll = get(hObject, 'Value'); if (isSweepAll == 1) % Yes str_sx = sprintf('1:%d', nx); set(handles.edit_sx, 'String', str_sx); set(handles.edit_sx, 'Enable', 'off'); set(handles.edit_sz, 'Enable', 'off'); end if (isSweepAll == 2) % No set(handles.edit_sx, 'Enable', 'on'); set(handles.edit_sz, 'Enable', 'on'); end % 3D case if (Ndims > 2) [~, ~, ny] = size(vp); if (isSweepAll == 1) % Yes str_sy = sprintf('1:%d', ny); set(handles.edit_sy, 'String', str_sy); set(handles.edit_sy, 'Enable', 'off'); end if (isSweepAll == 2) % No set(handles.edit_sy, 'Enable', 'on'); end end % --- Executes during object creation, after setting all properties. function pmenu_sweepAll_CreateFcn(hObject, eventdata, handles) % hObject handle to pmenu_sweepAll (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes on selection change in pmenu_receiveAll. function pmenu_receiveAll_Callback(hObject, eventdata, handles) % hObject handle to pmenu_receiveAll (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: contents = cellstr(get(hObject,'String')) returns pmenu_receiveAll contents as cell array % contents{get(hObject,'Value')} returns selected item from pmenu_receiveAll data = guidata(hObject); if (isfield(data, 'vp')) vp = data.vp; if (isfield(data, 'vs')) vs = data.vs; end else % i.e., isfield(data, 'vs') == true % only S-wave velocity model has been loaded, treat it as P-wave % velocity model vp = data.vs; end Ndims = ndims(vp); isReceiveAll = get(hObject, 'Value'); if (isReceiveAll == 1) % Yes set(handles.edit_rx, 'Enable', 'off'); end if (isReceiveAll == 2) % No set(handles.edit_rx, 'Enable', 'on'); end % 3D case if (Ndims > 2) [~, ~, ny] = size(vp); if (isReceiveAll == 1) % Yes set(handles.edit_ry, 'Enable', 'off'); end if (isReceiveAll == 2) % No set(handles.edit_ry, 'Enable', 'on'); str_ry = sprintf('1:%d', ny); set(handles.edit_ry, 'String', str_ry); end end % --- Executes during object creation, after setting all properties. function pmenu_receiveAll_CreateFcn(hObject, eventdata, handles) % hObject handle to pmenu_receiveAll (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: popupmenu controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_rx_Callback(hObject, eventdata, handles) % hObject handle to edit_rx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_rx as text % str2double(get(hObject,'String')) returns contents of edit_rx as a double % --- Executes during object creation, after setting all properties. function edit_rx_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_rx (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_ry_Callback(hObject, eventdata, handles) % hObject handle to edit_ry (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_ry as text % str2double(get(hObject,'String')) returns contents of edit_ry as a double % --- Executes during object creation, after setting all properties. function edit_ry_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_ry (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end function edit_rz_Callback(hObject, eventdata, handles) % hObject handle to edit_rz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_rz as text % str2double(get(hObject,'String')) returns contents of edit_rz as a double % --- Executes during object creation, after setting all properties. function edit_rz_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_rz (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end % --- Executes when user attempts to close figureMain. function figureMain_CloseRequestFcn(hObject, eventdata, handles) % hObject handle to figureMain (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hint: delete(hObject) closes the figure delete(hObject); function edit_status_Callback(hObject, eventdata, handles) % hObject handle to edit_status (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Hints: get(hObject,'String') returns contents of edit_status as text % str2double(get(hObject,'String')) returns contents of edit_status as a double % --- Executes during object creation, after setting all properties. function edit_status_CreateFcn(hObject, eventdata, handles) % hObject handle to edit_status (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles empty - handles not created until after all CreateFcns called % Hint: edit controls usually have a white background on Windows. % See ISPC and COMPUTER. if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) set(hObject,'BackgroundColor','white'); end
github
lijunzh/fd_elastic-master
guiAbout.m
.m
fd_elastic-master/gui/guiAbout.m
3,151
utf_8
bb20ce2f08ae9a9280a307509fe67ae0
function varargout = guiAbout(varargin) % GUIABOUT MATLAB code for guiAbout.fig % GUIABOUT, by itself, creates a new GUIABOUT or raises the existing % singleton*. % % H = GUIABOUT returns the handle to a new GUIABOUT or the handle to % the existing singleton*. % % GUIABOUT('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in GUIABOUT.M with the given input arguments. % % GUIABOUT('Property','Value',...) creates a new GUIABOUT or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before guiAbout_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to guiAbout_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help guiAbout % Last Modified by GUIDE v2.5 09-Nov-2014 00:18:26 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @guiAbout_OpeningFcn, ... 'gui_OutputFcn', @guiAbout_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); else gui_mainfcn(gui_State, varargin{:}); end % End initialization code - DO NOT EDIT % --- Executes just before guiAbout is made visible. function guiAbout_OpeningFcn(hObject, eventdata, handles, varargin) % This function has no output args, see OutputFcn. % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % varargin command line arguments to guiAbout (see VARARGIN) % Choose default command line output for guiAbout handles.output = hObject; % Update handles structure guidata(hObject, handles); % display logos imshow('logo_csip.jpg', 'Parent', handles.axes_logo1); imshow('logo_cegp.jpg', 'Parent', handles.axes_logo2); % UIWAIT makes guiAbout wait for user response (see UIRESUME) % uiwait(handles.figureMain); % --- Outputs from this function are returned to the command line. function varargout = guiAbout_OutputFcn(hObject, eventdata, handles) % varargout cell array for returning output args (see VARARGOUT); % hObject handle to figure % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) % Get default command line output from handles structure varargout{1} = handles.output; % --- Executes on button press in btnOK. function btnOK_Callback(hObject, eventdata, handles) % hObject handle to btnOK (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) close(handles.figureMain);
github
lijunzh/fd_elastic-master
plotTrace.m
.m
fd_elastic-master/src/plotTrace.m
2,573
utf_8
b553ce3346283fa24804133d6d91d982
function plotTrace(data) % PLOTTRACE plot seismic data traces % % % This matlab source file is free for use in academic research. % All rights reserved. % % Written by Lingchen Zhu ([email protected]) % Center for Signal and Information Processing, Center for Energy & Geo Processing % Georgia Institute of Technology [nSamples, nTraces] = size(data); if (nSamples * nTraces == 0) fprintf('No traces to plot\n'); return; end if (nSamples <= 1) fprintf('Only one sample per trace. Data set is not going to plot.\n'); return; end times = (1:nSamples).'; location = 1:nTraces; deflection = 1.25; %% scale data dx = (max(location)-min(location)) / (nTraces-1); trace_max = max(abs(data)); scale = dx * deflection / (max(trace_max) + eps); data = scale * data; %% a figure window in portrait mode hFig = figure; set(hFig, 'Position', [288, 80, 900, 810], 'PaperPosition', [0.8, 0.5, 6.5, 8.0], ... 'PaperOrientation', 'portrait', 'Color', 'w', 'InvertHardcopy', 'off'); figure(hFig) set(gca, 'Position', [0.14, 0.085, 0.75, 0.79]); set(hFig, 'Color', 'w'); axis([min(location)-deflection, max(location) + deflection, 1, nSamples]); hold on; hCurAx = get(gcf, 'CurrentAxes'); set(hCurAx, 'ydir','reverse') set(hCurAx, 'XAxisLocation','top'); %% plot data ue_seismic_plot(times, data, location); xlabel('Trace Number'); ylabel('Samples'); set(gca, 'XTick', location, 'XTickLabel', location); grid on; set(hCurAx, 'gridlinestyle', '-', 'box', 'on', 'xgrid', 'off'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Function plot seismic traces at horizontal locations controlled by location function ue_seismic_plot(times, trace, location) peak_fill = 'k'; trough_fill = ''; for ii = 1:size(trace, 2) y = trace(:, ii); chg = find(y(1:end-1).*y(2:end) < 0); x_zero = abs(y(chg) ./ (y(chg+1)-y(chg))) + times(chg); [x_data, idx] = sort([times(1); times; x_zero; times(end)]); y_data = [0; y; zeros(length(x_zero)+1, 1)]; y_data = y_data(idx); h1 = fill(y_data(y_data >= 0) + location(ii), x_data(y_data >= 0), peak_fill); set(h1, 'EdgeColor', 'none'); if ~isempty(trough_fill); h1 = fill(y_data(y_data <= 0) + location(ii), x_data(y_data <= 0), trough_fill); set(h1, 'EdgeColor', 'none'); end plot([location(ii), location(ii)], [times(2), times(end)], 'w-') line(y_data(2:end-1) + location(ii), x_data(2:end-1), 'Color', 'k', ... 'EraseMode', 'none', 'LineWidth', 0.5); end
github
lijunzh/fd_elastic-master
createSampler.m
.m
fd_elastic-master/src/createSampler.m
1,662
utf_8
0c0ef6672c2fefa3f2dadab892a78123
% createSampler % create sampler matrix for each branch in parallel structured sampler % Author: Lingchen Zhu % Creation Date: 11/07/2013 function Phi = createSampler(N, M, method, repeat, seed) if (nargin < 4) repeat = false; end if (nargin < 5) seed = 0; end if (repeat) rng(seed); end switch lower(method) case 'rand' Phi = sqrt(1/M) * randn(M, N); case 'uniform' Phi = zeros(M, N); R = floor(N / M); Phi(:, 1:R:N) = eye(M, M); case {'rdemod', 'aic'} R = N / M; vec = binornd(1, 0.5, [1, N]); vec(vec == 0) = -1; D = diag(vec); if (mod(N, M)) % R is not integer, maybe need more debugging [N0, M0] = rat(R); H0 = zeros(M0, N0); jjtmp = 1; for ii = 1:M0 Rtmp = R; if (ii > 1) H0(ii, jjtmp) = 1 - H0(ii-1, jjtmp); else H0(ii, jjtmp) = 1; end Rtmp = Rtmp - H0(ii, jjtmp); for jj = jjtmp+1:N0 if (Rtmp > 1) H0(ii, jj) = 1; elseif (Rtmp > 0) H0(ii, jj) = Rtmp; else jjtmp = jj-1; break; end Rtmp = Rtmp - H0(ii, jj); end end H = kron(eye(M/M0, N/N0), H0); else % R is an integer H = kron(eye(M, M), ones(1, R)); end Phi = H * D; otherwise error('Unknown compressive sensing based sampler'); end
github
lijunzh/fd_elastic-master
wiggle.m
.m
fd_elastic-master/src/wiggle.m
17,037
utf_8
f32a3676d5f7f98124d16c4873f0a96a
%WIGGLE Display data as wiggles. % WIGGLE(C) displays matrix C as wiggles plus filled lobes, which is a % common display for seismic data or any oscillatory data. A WIGGLE % display is similar to WATERFALL, except that the Z heights are % projected onto the horizontal plane, meaning that a WIGGLE display is % actually a 2D display. % % WIGGLE(C) plots each column of C as curves vertically. How much the % deviation is from the jth vertical is given by ith row. It C(i,j) is % positive then the curve bends to the right, otherwise it bends to the % left. Best visual effect is achieved when each column has no DC % component, i.e., when its sum is zero, or at least close to it. % % WIGGLE(X,Y,C), where X and Y are vectors, rescale the axes to match X % and Y values. When WIGGLE has one or three input, its usage is very % similar to IMAGE or IMAGESC, except for WIGGLE's properties, described % below. % % WIGGLE(...,S) allows some control of wiggles properties, in which S is % a string with up to six characters, each one setting up a property, % which can be Extrusion, Polarity, Direction, Wiggle Color and Lobes % Color. % % Extrusion: '0', '1', ..., '9' % It is how much a wiggle overlaps its neighbor. The default, '0', % means there is no overlap. For instance, E='1' means that a % wiggle overlaps only one neighbor and so on. Observe that only % positve numbers are allowed. % % Polarity: '+' or '-' % It defines which side of the wiggle is going to be filled. % Polarity '+' (default) means that the positive lobes are filled, % while '-' means that the negative lobes are filled. % % Wiggles Direction: 'v' or ' h' % It specifies if the wiggles are vertical ('v'), which is the default, % or horizontal ('h'). % % Wiggles Color: 'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w' or 'i' % It defines the wiggle color. This property uses the same color key % as in function PLOT. The default is black, i.e., 'k'. In order to % suppress the wiggle, the character 'o' must be used. Options 'i', % invisible, means that no wiggle is displayed. % % Lobes color: 'B', 'G', 'R', 'C', 'M', 'Y', 'K', 'W', 'X', '*' or 'I' % It defines filling color for the right and left lobes. This property % uses mostly the same color key as used in command PLOT, but in % uppercase. % The order of preference is right before left lobes, meaning that if % only one character is given, the right lobes are painted with the % corresponding color and the left lobes are invisible. In this way, % the default is left lobes invisible and right lobes in black, i.e., % the string contains 'K' or 'IK'. Notice that a single 'I' implies % that both lobes are invisible, because by default the left lobes are % already invisible. If two capital characters are given, the first % one defines the color of the left lobes and the second one of the % right lobes. % There are still two special coloring options which use the current % figure colormap: '*' means that the lobes ares filled with a variable % color that is horizontally layered and 'X' means that the lobes are % filled with a variable color that is vertically layered. % % Note that the characters that build string S can be given in any % order, but respecting the range and precedence of each propetry: % % Extrusion Polarity Direction Color % Wiggles Lobes % 0 - (default) + - right lobe v - vertical b blue B % 1 - - left lobe h - horizontal g green G % 2 r red R % ... c cyan C % m magenta M % y yellow Y % k black K % w white W % i invisible I % colormap_h X % colormap_v * % % Examples % C = 2*rand(200,20) - 1; % D = filter([1,1,1],1,C); % figure(1); clf % subplot(131); wiggle(D); title('default: right lobes in black') % subplot(132); wiggle(D, '-'); title('left lobes in black') % subplot(133); wiggle(D, 'yBR'); title('magenta lines, blue and red lobes') % figure(2); clf % subplot(311); wiggle(D', 'h'); title('Horizontal wiggles') % subplot(312); wiggle(D', 'hB'); title('Horizontal wiggles with blue lobes') % subplot(313); wiggle(D', 'hbMR'); title('Hor. wiggles, blue lines with magenta and red lobes') % figure(3); clf % subplot(131); wiggle(D, 'BR'); title('Blue and red lobes') % subplot(132); wiggle(D, 'XX'); title('Horizontally filled colormapped lobes') % subplot(133); wiggle(D, '1.5**'); title('Vertically filled colormapped lobes with 1.5 of extrusion') % % See also IMAGESC, IMAGE, WATERFALL, PLOT, LINESPEC % by Rodrigo S. Portugal ([email protected]) % last revision: 18/10/2012 % TODO: % 1) Implement the invisible option (DONE) % 2) Implement the variable color option (DONE) % 3) Implement wiggles overlaid imagesc (DONE) % 3) Pair-wise options for fine tuning of properties (NOT YET) % 3) Inspect the code (DONE) % 4) Optimize (+/-) % 5) Test examples (DONE) function wiggle(varargin) switch (nargin) case 0 error('Too few input arguments.'); % Only data case 1 data = check_data(varargin{1}); [nr,nc] = size(data); xr = 1:nr; xc = 1:nc; prop = ''; % Data and properties case 2 data = check_data(varargin{1}); [nr,nc] = size(data); xr = 1:nr; xc = 1:nc; prop = check_properties(varargin{2}); % Domain vectors and data case 3 xr = check_data(varargin{1}); xc = check_data(varargin{2}); data = check_data(varargin{3}); prop = ''; % Domain vectors, data and properties case 4 xr = check_data(varargin{1}); xc = check_data(varargin{2}); data = check_data(varargin{3}); prop = check_properties(varargin{4}); otherwise error('Too many input arguments.'); end [extr, pol, dir, wcol, vcoll, vcolr] = extract_properties(prop); wiggleplot(data, xr, xc, extr, wcol, vcoll, vcolr, dir, pol) end %-------------------------------------------------------------------------- function data = check_data(v) if isnumeric(v), data = v; else error('Wiggle: value must be numeric'); end end %-------------------------------------------------------------------------- function prop = check_properties(v) if ischar(v) prop = v; else error('Wiggle: properties must be a string.'); end end %-------------------------------------------------------------------------- function check_rgb(color) if any(isnan(color)) || any(color > 1) || ... size(color,1) ~= 1 || size(color,2) ~= 3 error(['Wiggle: color must be a numeric 1 x 3 matrix, '... 'following RGB system']) end end %-------------------------------------------------------------------------- function [extr, pol, dir, wcol, vcoll, vcolr] = extract_properties(prop) wcol = 'k'; vcol = 'k'; dir = 0; pol = 1; extr = extractfloat(prop); if isnan(extr), extr = 1.0; end indv = 1; for ip = 1:length(prop) p = prop(ip); if p == '+' || p == '-' if p == '+' pol = 1; else pol = -1; end continue end if p == 'h' || p == 'v' || p == 'H' || p == 'V' if p == 'v' || p == 'V', dir = 0; else dir = 1; end continue end if p == 'b' || p == 'g' || p == 'r' || p == 'c' || p == 'm' || ... p == 'y' || p == 'k' || p == 'w' || p == 'i' wcol = p; continue end if p == 'B' || p == 'G' || p == 'R' || p == 'C' || p == 'M' || ... p == 'Y' || p == 'K' || p == 'W' || p == 'I' || p == 'X' || p == '*' vcol(indv) = lower(p); indv = 2; continue end end wcol = str2rgb(wcol); if length(vcol) == 2 vcoll = str2rgb(vcol(1)); vcolr = str2rgb(vcol(2)); else vcoll = NaN; vcolr = str2rgb(vcol(1)); end end %-------------------------------------------------------------------------- function f = extractfloat(str) fs = blanks(length(str)); foundpoint = false; count = 1; for i = 1: length(str) cs = str(i); if cs == '.' && ~foundpoint fs(count) = cs; count = count + 1; foundpoint = true; continue end c = str2double(cs); if ~isnan(c) && isreal(c) fs(count) = cs; count = count + 1; end end f = str2double(fs); end %-------------------------------------------------------------------------- function rgb = str2rgb(s) switch s case 'r' rgb = [1, 0, 0]; case 'g' rgb = [0, 1, 0]; case 'b' rgb = [0, 0, 1]; case 'c' rgb = [0, 1, 1]; case 'm' rgb = [1, 0, 1]; case 'y' rgb = [1, 1, 0]; case 'k' rgb = [0, 0, 0]; case 'w' rgb = [1, 1, 1]; case 'i' rgb = NaN; case 'x' rgb = 1; case '*' rgb = 2; otherwise rgb = NaN; end end %-------------------------------------------------------------------------- % WIGGLEPLOT plots seismic data as wiggles and variable area % WIGGLEPLOT(data, y, x, k, wc, vcl, vcr, d, p) % INPUT DESCRIPTION TYPE SIZE % data oscilatory data matrix (nx x nt) % y vertical coordinates vector ( 1 x ny) % x horizontal coordinates vector ( 1 x nx) % k extrusion scalar ( 1 x 1 ) % wc wiggle color matrix ( 1 x 3 ) % wc=0 supress the wiggle % vcl variable area color (left lobe) matrix ( 1 x 3 ) % vcl=0 or NaN suppress the left variable area % vcr variable area color matrix ( 1 x 3 ) % vcr=0 or NaN suppress the right variable area % d wiggle direction scalar ( 1 x 1 ) % d=0 for vertical % d=1 for horizontal % p polarity scalar ( 1 x 1 ) % p=1 (SEG convention) positive area % p=-1 (EAGE convention) negative area % % See also IMAGESC, IMAGE function wiggleplot(data, xr, xc, extr, wcol, vcoll, vcolr, dir, pol) [nrows,ncols] = size(data); if ncols ~= length(xc) || nrows ~= length(xr) error('Input data must have compatible dimensions'); end if dir == 1 data = data'; extr = -extr; aux = xc; xc = xr; xr = aux; end nxr = length(xr); nxc = length(xc); if nxc > 1, dx = xc(2)-xc(1); else dx = 1; end % ir = nxr-1:-1:2; plot_var = true; plot_val = true; if length(vcoll) == 1 if isnan(vcoll) || vcoll == 0 plot_val = false; elseif vcoll ~= 1 && vcoll ~= 2 error('wiggleplot: color not recognized.') end else check_rgb(vcoll) end if length(vcolr) == 1 if isnan(vcolr) || vcolr == 0 plot_var = false; elseif vcolr ~= 1 && vcolr ~= 2 error('wiggleplot: color not recognized.') end else check_rgb(vcolr) end plot_w = true; if length(wcol) == 1 if isnan(wcol) || wcol == 0 plot_w = false; else error('wiggleplot: color not recognized.') end else check_rgb(wcol) end if pol == -1, data = -data; end count = make_counter(nxc, dir); [plotdir, patchdirl, patchdirr] = select_functions(dir, plot_w, plot_val, plot_var); scale = pol * extr * dx / (max(data(:))+eps); hold on xwig = zeros(nxc,2*nxr+1); ywig = zeros(nxc,2*nxr+1); if vcoll == 2 chunk = zeros(nxc,4*nxr+3); else chunk = zeros(nxc,2*nxr+2); end xval = chunk; yval = chunk; %cval = chunk; xvar = chunk; yvar = chunk; %cvar = chunk; for ic = count(1):count(2):count(3) [xr1, d, sl1, sr1, ~, ~] = make_lines(xr, data(:,ic)'); xr2 = xr1; sr2 = sr1; sl2 = sl1; if vcolr == 1 colr = [0, d, 0]; elseif vcolr == 2 colr = [0, d, 0, fliplr(d), 0]; xr2 = [xr1, fliplr(xr1(1:end-1))]; sr2 = [sr1, zeros(1,length(sr1)-1)]; else colr = vcolr; end xvar(ic,:) = xc(ic) + scale * sr2; yvar(ic,:) = xr2; cvar(ic,:) = colr; if vcoll == 1 coll = [0, d, 0]; elseif vcoll == 2 coll = [0, d, 0, fliplr(d), 0]; xr2 = [xr1, fliplr(xr1(1:end-1))]; sl2 = [sl1, zeros(1,length(sl1)-1)]; else coll = vcoll; end xval(ic,:) = xc(ic) + scale * sl2; yval(ic,:) = xr2; cval(ic,:) = coll; xwig(ic,:) = [xc(ic) + scale * d, NaN]; ywig(ic,:) = [xr1(2:end-1), NaN]; end patchdirl(xval', yval', cval'); patchdirr(xvar', yvar', cvar'); plotdir(xwig,ywig,wcol); hold off if dir == 1, axis([min(xr), max(xr), min(xc) - extr * dx, max(xc) + extr * dx]) else axis([min(xc) - extr * dx, max(xc) + extr * dx, min(xr), max(xr)]) end set(gca,'NextPlot','replace', 'XDir','normal','YDir','reverse') end %-------------------------------------------------------------------------- function counter = make_counter(nxc, dir) if dir == 1, ic_first = 1; ic_last = nxc; ic_step = 1; else ic_first = nxc; ic_last = 1; ic_step = -1; end counter = [ic_first, ic_step, ic_last]; end %-------------------------------------------------------------------------- function [fw, fval, fvar] = select_functions(dir, plot_w, plot_val, plot_var) fw = @plot_vert; fval = @patch_vert; fvar = @patch_vert; if dir == 1, fw = @plot_hor; fval = @patch_hor; fvar = @patch_hor; end if plot_w == false fw = @donothing; end if plot_val == false fval = @donothing; end if plot_var == false fvar = @donothing; end if (plot_val == false) && (plot_var == false) && (plot_w == false), disp('wiggle warning: neither variable area and wiggles are displayed'); end end %-------------------------------------------------------------------------- function [t1, d, sl, sr, ul, ur] = make_lines(t, s) nt = length(t); dt = t(2) - t(1); ds = s(2:nt)-s(1:nt-1); r = ((s(2:nt)<0) .* (s(1:nt-1)>0)) + ((s(2:nt)>0) .* (s(1:nt-1)<0)); a = r .* s(2:nt)./(ds+eps) + (1-r).*0.5; tc(1:2:2*nt-1) = t; tc(2:2:2*nt-2) = t(2:nt) - dt * a; sc(1:2:2*nt-1) = s; sc(2:2:2*nt-2) = 0.5*(s(1:nt-1)+ s(2:nt)).*(1-r); t1 = [t(1), tc, t(nt), t(nt)]; d0 = [0, sc, s(nt), 0]; dr = [max(sc), sc, s(nt), max(sc)]; dl = [min(sc), sc, s(nt), min(sc)]; sl = min(0,d0); sr = max(0,d0); ul = min(0,dl); ur = max(0,dr); d = d0(2:end-1); end %-------------------------------------------------------------------------- function donothing(~,~,~) end %-------------------------------------------------------------------------- function ph = plot_vert(x,y,col) x = reshape(x',1,numel(x)); y = reshape(y',1,numel(y)); ph = line(x,y,'linewidth',0.25,'color', col); end %-------------------------------------------------------------------------- function ph = plot_hor(x,y,col) x = reshape(x',1,numel(x)); y = reshape(y',1,numel(y)); ph = line(y,x,'linewidth',0.25,'color', col); end %-------------------------------------------------------------------------- function fh = patch_vert(x,y,col) if size(col,1) == 3, col = col(:,1)'; end fh = patch(x,y,col,'edgecolor','none'); hold on end %-------------------------------------------------------------------------- function fh = patch_hor(x,y,col) if size(col,1) == 3, col = col(:,1)'; end fh = patch(y,x,col,'edgecolor','none'); hold on end
github
lijunzh/fd_elastic-master
lbfgs.m
.m
fd_elastic-master/src/lbfgs.m
3,948
utf_8
4fafb45e1f656cdb02aa7dc9fc971fe2
function [x, f] = lbfgs(fh,x0,options) % Simple L-BFGS method with Wolfe linesearch % % use: % [xn,info] = lbfgs(fh,x0,options) % % input: % fh - function handle to misfit of the form [f,g] = fh(x) % where f is the function value, g is the gradient of the same size % as the input vector x. % x0 - initial guess % % options.itermax - max iterations [default 10] % options.tol - tolerance on 2-norm of gradient [default 1e-6] % options.M - history size [default 5] % options.fid - file id for output [default 1] % % output: % xn - final estimate % % % Author: Tristan van Leeuwen % Seismic Laboratory for Imaging and Modeling % Department of Earch & Ocean Sciences % The University of British Columbia % % Date: February, 2012 % % You may use this code only under the conditions and terms of the % license contained in the file LICENSE provided with this source % code. If you do not agree to these terms you may not use this % software. if nargin<3 options = []; end % various parameters M = 5; fid = 1; itermax = 10; tol = 1e-6; if isfield(options,'itermax') itermax = options.itermax; end if isfield(options,'M'); M = options.M; end if isfield(options,'fid') fid = options.fid; end if isfield(options,'tol') tol = options.tol; end % initialization n = length(x0); converged = 0; iter = 0; x = x0; S = zeros(n,0); Y = zeros(n,0); % initial evaluation [f,g] = fh(x); nfeval = 1; fprintf(fid,'# iter, # eval, stepsize, f(x) , ||g(x)||_2\n'); fprintf(fid,'%6d, %6d, %1.2e, %1.5e, %1.5e\n',iter,nfeval,1,f,norm(g)); % main loop while ~converged % compute search direction s = B(-g,S,Y); p = -(s'*g)/(g'*g); if (p < 0) fprintf(fid,'Loss of descent, reset history\n'); S = zeros(n,0); Y = zeros(n,0); s = B(-g,S,Y); end % linesearch [ft,gt,lambda,lsiter] = wWolfeLS(fh,x,f,g,s); nfeval = nfeval + lsiter; % update xt = x + lambda*s; S = [S xt - x]; Y = [Y gt - g]; if size(S,2)>M S = S(:,end-M+1:end); Y = Y(:,end-M+1:end); end f = ft; g = gt; x = xt; iter = iter + 1; fprintf(fid,'%6d, %6d, %1.2e, %1.5e, %1.5e\n',iter,nfeval,lambda,f,norm(g)); % check convergence converged = (iter>itermax)||(norm(g)<tol)||(lambda<tol); end end function z = B(x,S,Y) % apply lbfgs inverse Hessian to vector % % Tristan van Leeuwen, 2011 % [email protected] % % use: % z = B(x,S,Y,b0,Binit) % % input: % x - vector of length n % S - history of steps in n x M matrix % Y - history of gradient differences in n x M matrix % % output % z - vector of length n % M = size(S,2); alpha = zeros(M,1); rho = zeros(M,1); for k = 1:M rho(k) = 1/(Y(:,k)'*S(:,k)); end q = x; % first recursion for k = M:-1:1 alpha(k) = rho(k)*S(:,k)'*q; q = q - alpha(k)*Y(:,k); end % apply `initial' Hessian if M>0 a = (Y(:,end)'*S(:,end)/(Y(:,end)'*Y(:,end))); else a = 1/norm(x,1); end z = a*q; % second recursion for k = 1:M beta = rho(k)*Y(:,k)'*z; z = z + (alpha(k) - beta)*S(:,k); end end function [ft,gt,lambda,lsiter] = wWolfeLS(fh,x0,f0,g0,s0) % Simple Wolfe linesearch, adapted from % (http://cs.nyu.edu/overton/mstheses/skajaa/msthesis.pdf, algorihtm 3). % % lsiter = 0; c1 = 1e-2; c2 = 0.9; done = 0; mu = 0; nu = inf; lambda = .5; while ~done if nu < inf lambda = (nu + mu)/2; else lambda = 2*lambda; end if lsiter < 50 [ft,gt] = fh(x0 + lambda*s0); lsiter = lsiter + 1; else % lambda = 0; break; end fprintf(1,' >%d, %1.5e, %1.5e, %1.5e\n',lsiter, lambda, ft, gt'*s0); if ft > f0 + c1*lambda*g0'*s0 nu = lambda; elseif gt'*s0 < c2*g0'*s0 mu = lambda; else done = 1; end end end
github
lijunzh/fd_elastic-master
fdct_wrapping_dispcoef.m
.m
fd_elastic-master/src/CurveLab-2.1.3/fdct_wrapping_matlab/fdct_wrapping_dispcoef.m
1,919
utf_8
2af5a55f76ce583e6879244514db1b37
function img = fdct_wrapping_dispcoef(C) % fdct_wrapping_dispcoef - returns an image containing all the curvelet coefficients % % Inputs % C Curvelet coefficients % % Outputs % img Image containing all the curvelet coefficients. The coefficents are rescaled so that % the largest coefficent in each subband has unit norm. % [m,n] = size(C{end}{1}); nbscales = floor(log2(min(m,n)))-3; img = C{1}{1}; img = img/max(max(abs(img))); %normalize for sc=2:nbscales-1 nd = length(C{sc})/4; wcnt = 0; ONE = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd ONE = [ONE, fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w})]; end wcnt = wcnt+nd; TWO = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd TWO = [TWO; fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w})]; end wcnt = wcnt+nd; THREE = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd THREE = [fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w}), THREE]; end wcnt = wcnt+nd; FOUR = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd FOUR = [fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w}); FOUR]; end wcnt = wcnt+nd; [p,q] = size(img); [a,b] = size(ONE); [g,h] = size(TWO); m = 2*a+g; n = 2*h+b; %size of new image scale = max(max( max(max(abs(ONE))),max(max(abs(TWO))) ), max(max(max(abs(THREE))), max(max(abs(FOUR))) )); %scaling factor new = 0.5 * ones(m,n);%background value new(a+1:a+g,1:h) = FOUR/scale; new(a+g+1:2*a+g,h+1:h+b) = THREE/scale; new(a+1:a+g,h+b+1:2*h+b) = TWO/scale; new(1:a,h+1:h+b) = ONE/scale;%normalize dx = floor((g-p)/2); dy = floor((b-q)/2); new(a+1+dx:a+p+dx,h+1+dy:h+q+dy) = img; img = new; end function A = fdct_wrapping_dispcoef_expand(u,v,B) A = zeros(u,v); [p,q] = size(B); A(1:p,1:q) = B;
github
lijunzh/fd_elastic-master
spgdemo.m
.m
fd_elastic-master/src/spgl1-1.8/spgdemo.m
16,195
utf_8
629972a6bc0f55788ac56dda78d403a2
function spgdemo(interactive) %DEMO Demonstrates the use of the SPGL1 solver % % See also SPGL1. % demo.m % $Id: spgdemo.m 1079 2008-08-20 21:34:15Z ewout78 $ % % ---------------------------------------------------------------------- % This file is part of SPGL1 (Spectral Projected Gradient for L1). % % Copyright (C) 2007 Ewout van den Berg and Michael P. Friedlander, % Department of Computer Science, University of British Columbia, Canada. % All rights reserved. E-mail: <{ewout78,mpf}@cs.ubc.ca>. % % SPGL1 is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation; either version 2.1 of the % License, or (at your option) any later version. % % SPGL1 is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General % Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with SPGL1; if not, write to the Free Software % Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 % USA % ---------------------------------------------------------------------- if nargin < 1 || isempty(interactive), interactive = true; end % Initialize random number generators rand('state',0); randn('state',0); % Create random m-by-n encoding matrix and sparse vector m = 50; n = 128; k = 14; [A,Rtmp] = qr(randn(n,m),0); A = A'; p = randperm(n); p = p(1:k); x0 = zeros(n,1); x0(p) = randn(k,1); % ----------------------------------------------------------- % Solve the underdetermined LASSO problem for ||x||_1 <= pi: % % minimize ||Ax-b||_2 subject to ||x||_1 <= 3.14159... % % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve the underdetermined LASSO problem for \n'); fprintf('%% \n'); fprintf('%% minimize ||Ax-b||_2 subject to ||x||_1 <= 3.14159...\n'); fprintf('%% \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Set up vector b, and run solver b = A * x0; tau = pi; x = spg_lasso(A, b, tau); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf(['nonzeros(x) = %i, ' ... '||x||_1 = %12.6e, ' ... '||x||_1 - pi = %13.6e\n'], ... length(find(abs(x)>1e-5)), norm(x,1), norm(x,1)-pi); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Solve the basis pursuit (BP) problem: % % minimize ||x||_1 subject to Ax = b % % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve the basis pursuit (BP) problem:\n'); fprintf('%% \n'); fprintf('%% minimize ||x||_1 subject to Ax = b \n'); fprintf('%% \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Set up vector b, and run solver b = A * x0; % Signal opts = spgSetParms('verbosity',1); x = spg_bp(A, b, opts); figure(1); subplot(2,4,1); plot(1:n,x,'b', 1:n,x0,'ro'); legend('Recovered coefficients','Original coefficients'); title('(a) Basis Pursuit'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(a).\n'); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Solve the basis pursuit denoise (BPDN) problem: % % minimize ||x||_1 subject to ||Ax - b||_2 <= 0.1 % % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve the basis pursuit denoise (BPDN) problem: \n'); fprintf('%% \n'); fprintf('%% minimize ||x||_1 subject to ||Ax - b||_2 <= 0.1\n'); fprintf('%% \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Set up vector b, and run solver b = A * x0 + randn(m,1) * 0.075; sigma = 0.10; % Desired ||Ax - b||_2 opts = spgSetParms('verbosity',1); x = spg_bpdn(A, b, sigma, opts); figure(1); subplot(2,4,2); plot(1:n,x,'b', 1:n,x0,'ro'); legend('Recovered coefficients','Original coefficients'); title('(b) Basis Pursuit Denoise'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(b).\n'); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Solve the basis pursuit (BP) problem in COMPLEX variables: % % minimize ||z||_1 subject to Az = b % % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve the basis pursuit (BP) problem in COMPLEX variables:\n'); fprintf('%% \n'); fprintf('%% minimize ||z||_1 subject to Az = b \n'); fprintf('%% \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Create partial Fourier operator with rows idx idx = randperm(n); idx = idx(1:m); opA = @(x,mode) partialFourier(idx,n,x,mode); % Create sparse coefficients and b = 'A' * z0; z0 = zeros(n,1); z0(p) = randn(k,1) + sqrt(-1) * randn(k,1); b = opA(z0,1); opts = spgSetParms('verbosity',1); z = spg_bp(opA,b,opts); figure(1); subplot(2,4,3); plot(1:n,real(z),'b+',1:n,real(z0),'bo', ... 1:n,imag(z),'r+',1:n,imag(z0),'ro'); legend('Recovered (real)', 'Original (real)', ... 'Recovered (imag)', 'Original (imag)'); title('(c) Complex Basis Pursuit'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(c).\n'); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Sample the Pareto frontier at 100 points: % % phi(tau) = minimize ||Ax-b||_2 subject to ||x|| <= tau % % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Sample the Pareto frontier at 100 points:\n'); fprintf('%% \n'); fprintf('%% phi(tau) = minimize ||Ax-b||_2 subject to ||x|| <= tau\n'); fprintf('%% \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end fprintf('\nComputing sample'); % Set up vector b, and run solver b = A*x0; x = zeros(n,1); tau = linspace(0,1.05 * norm(x0,1),100); phi = zeros(size(tau)); opts = spgSetParms('iterations',1000,'verbosity',0); for i=1:length(tau) [x,r] = spgl1(A,b,tau(i),[],x,opts); phi(i) = norm(r); if ~mod(i,10), fprintf('...%i',i); end end fprintf('\n'); figure(1); subplot(2,4,4); plot(tau,phi); title('(d) Pareto frontier'); xlabel('||x||_1'); ylabel('||Ax-b||_2'); fprintf('\n'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(d).\n'); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Solve % % minimize ||y||_1 subject to AW^{-1}y = b % % and the weighted basis pursuit (BP) problem: % % minimize ||Wx||_1 subject to Ax = b % % followed by setting y = Wx. % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve \n'); fprintf('%% \n'); fprintf('%% (1) minimize ||y||_1 subject to AW^{-1}y = b \n'); fprintf('%% \n'); fprintf('%% and the weighted basis pursuit (BP) problem: \n'); fprintf('%% \n'); fprintf('%% (2) minimize ||Wx||_1 subject to Ax = b \n'); fprintf('%% \n'); fprintf('%% followed by setting y = Wx. \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Sparsify vector x0 a bit more to get exact recovery k = 9; x0 = zeros(n,1); x0(p(1:k)) = randn(k,1); % Set up weights w and vector b w = rand(n,1) + 0.1; % Weights b = A * (x0 ./ w); % Signal % Run solver for both variants opts = spgSetParms('iterations',1000,'verbosity',1); AW = A * spdiags(1./w,0,n,n); x = spg_bp(AW, b, opts); x1 = x; % Reconstruct solution, no weighting opts = spgSetParms('iterations',1000,'verbosity',1,'weights',w); x = spg_bp(A, b, opts); x2 = x .* w; % Reconstructed solution, with weighting figure(1); subplot(2,4,5); plot(1:n,x1,'m*',1:n,x2,'b', 1:n,x0,'ro'); legend('Coefficients (1)','Coefficients (2)','Original coefficients'); title('(e) Weighted Basis Pursuit'); fprintf('\n'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(e).\n'); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Solve the multiple measurement vector (MMV) problem % % minimize ||Y||_1,2 subject to AW^{-1}Y = B % % and the weighted MMV problem (weights on the rows of X): % % minimize ||WX||_1,2 subject to AX = B % % followed by setting Y = WX. % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve the multiple measurement vector (MMV) problem \n'); fprintf('%% \n'); fprintf('%% (1) minimize ||Y||_1,2 subject to AW^{-1}Y = B \n'); fprintf('%% \n'); fprintf('%% and the weighted MMV problem (weights on the rows of X): \n'); fprintf('%% \n'); fprintf('%% (2) minimize ||WX||_1,2 subject to AX = B \n'); fprintf('%% \n'); fprintf('%% followed by setting Y = WX. \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Initialize random number generator randn('state',0); rand('state',0); % Create problem m = 100; n = 150; k = 12; l = 6; A = randn(m,n); p = randperm(n); p = p(1:k); X0= zeros(n,l); X0(p,:) = randn(k,l); weights = 3 * rand(n,1) + 0.1; W = spdiags(1./weights,0,n,n); B = A*W*X0; % Solve unweighted version opts = spgSetParms('verbosity',1); x = spg_mmv(A*W,B,0,opts); x1 = x; % Solve weighted version opts = spgSetParms('verbosity',1,'weights',weights); x = spg_mmv(A,B,0,opts); x2 = spdiags(weights,0,n,n) * x; % Plot results figure(1); subplot(2,4,6); plot(x1(:,1),'b-'); hold on; plot(x2(:,1),'b.'); plot(X0,'ro'); plot(x1(:,2:end),'-'); plot(x2(:,2:end),'b.'); legend('Coefficients (1)','Coefficients (2)','Original coefficients'); title('(f) Weighted Basis Pursuit with Multiple Measurement Vectors'); fprintf('\n'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(f).\n'); fprintf([repmat('-',1,80), '\n']); fprintf('\n\n'); % ----------------------------------------------------------- % Solve the group-sparse Basis Pursuit problem % % minimize sum_i ||y(group == i)||_2 % subject to AW^{-1}y = b, % % with W(i,i) = w(group(i)), and the weighted group-sparse % problem % % minimize sum_i w(i)*||x(group == i)||_2 % subject to Ax = b, % % followed by setting y = Wx. % ----------------------------------------------------------- fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('%% Solve the group-sparse Basis Pursuit problem \n'); fprintf('%% \n'); fprintf('%% (1) minimize sum_i ||y(group == i)||_2 \n'); fprintf('%% subject to AW^{-1}y = b, \n'); fprintf('%% \n'); fprintf('%% with W(i,i) = w(group(i)), and the weighted group-sparse\n'); fprintf('%% problem \n'); fprintf('%% \n'); fprintf('%% (2) minimize sum_i w(i)*||x(group == i)||_2 \n'); fprintf('%% subject to Ax = b, \n'); fprintf('%% \n'); fprintf('%% followed by setting y = Wx. \n'); fprintf(['%% ', repmat('-',1,78), '\n']); fprintf('\nPress <return> to continue ... \n'); if interactive, pause; end % Initialize random number generator randn('state',0); rand('state',2); % 2 % Set problem size and number of groups m = 100; n = 150; nGroups = 25; groups = []; % Generate groups with desired number of unique groups while (length(unique(groups)) ~= nGroups) groups = sort(ceil(rand(n,1) * nGroups)); % Sort for display purpose end % Determine weight for each group weights = 3*rand(nGroups,1) + 0.1; W = spdiags(1./weights(groups),0,n,n); % Create sparse vector x0 and observation vector b p = randperm(nGroups); p = p(1:3); idx = ismember(groups,p); x0 = zeros(n,1); x0(idx) = randn(sum(idx),1); b = A*W*x0; % Solve unweighted version opts = spgSetParms('verbosity',1); x = spg_group(A*W,b,groups,0,opts); x1 = x; % Solve weighted version opts = spgSetParms('verbosity',1,'weights',weights); x = spg_group(A,b,groups,0,opts); x2 = spdiags(weights(groups),0,n,n) * x; % Plot results figure(1); subplot(2,4,7); plot(x1); hold on; plot(x2,'b+'); plot(x0,'ro'); hold off; legend('Coefficients (1)','Coefficients (2)','Original coefficients'); title('(g) Weighted Group-sparse Basis Pursuit'); fprintf('\n'); fprintf([repmat('-',1,35), ' Solution ', repmat('-',1,35), '\n']); fprintf('See figure 1(g).\n'); fprintf([repmat('-',1,80), '\n']); end % function demo function y = partialFourier(idx,n,x,mode) if mode==1 % y = P(idx) * FFT(x) z = fft(x) / sqrt(n); y = z(idx); else z = zeros(n,1); z(idx) = x; y = ifft(z) * sqrt(n); end end % function partialFourier
github
lijunzh/fd_elastic-master
spg_mmv.m
.m
fd_elastic-master/src/spgl1-1.8/spg_mmv.m
2,853
utf_8
d6de8533593624586e911b8b26de8f3b
function [x,r,g,info] = spg_mmv( A, B, sigma, options ) %SPG_MMV Solve multi-measurement basis pursuit denoise (BPDN) % % SPG_MMV is designed to solve the basis pursuit denoise problem % % (BPDN) minimize ||X||_1,2 subject to ||A X - B||_2,2 <= SIGMA, % % where A is an M-by-N matrix, B is an M-by-G matrix, and SIGMA is a % nonnegative scalar. In all cases below, A can be an explicit M-by-N % matrix or matrix-like object for which the operations A*x and A'*y % are defined (i.e., matrix-vector multiplication with A and its % adjoint.) % % Also, A can be a function handle that points to a function with the % signature % % v = A(w,mode) which returns v = A *w if mode == 1; % v = A'*w if mode == 2. % % X = SPG_MMV(A,B,SIGMA) solves the BPDN problem. If SIGMA=0 or % SIGMA=[], then the basis pursuit (BP) problem is solved; i.e., the % constraints in the BPDN problem are taken as AX=B. % % X = SPG_MMV(A,B,SIGMA,OPTIONS) specifies options that are set using % SPGSETPARMS. % % [X,R,G,INFO] = SPG_BPDN(A,B,SIGMA,OPTIONS) additionally returns the % residual R = B - A*X, the objective gradient G = A'*R, and an INFO % structure. (See SPGL1 for a description of this last output argument.) % % See also spgl1, spgSetParms, spg_bp, spg_lasso. % Copyright 2008, Ewout van den Berg and Michael P. Friedlander % http://www.cs.ubc.ca/labs/scl/spgl1 % $Id$ if ~exist('options','var'), options = []; end if ~exist('sigma','var'), sigma = 0; end if ~exist('B','var') || isempty(B) error('Second argument cannot be empty.'); end if ~exist('A','var') || isempty(A) error('First argument cannot be empty.'); end groups = size(B,2); if isa(A,'function_handle') y = A(B(:,1),2); m = size(B,1); n = length(y); A = @(x,mode) blockDiagonalImplicit(A,m,n,groups,x,mode); else m = size(A,1); n = size(A,2); A = @(x,mode) blockDiagonalExplicit(A,m,n,groups,x,mode); end % Set projection specific functions options.project = @(x,weight,tau) NormL12_project(groups,x,weight,tau); options.primal_norm = @(x,weight ) NormL12_primal(groups,x,weight); options.dual_norm = @(x,weight ) NormL12_dual(groups,x,weight); tau = 0; x0 = []; [x,r,g,info] = spgl1(A,B(:),tau,sigma,x0,options); n = round(length(x) / groups); m = size(B,1); x = reshape(x,n,groups); y = reshape(r,m,groups); g = reshape(g,n,groups); function y = blockDiagonalImplicit(A,m,n,g,x,mode) if mode == 1 y = zeros(m*g,1); for i=1:g y(1+(i-1)*m:i*m) = A(x(1+(i-1)*n:i*n),mode); end else y = zeros(n*g,1); for i=1:g y(1+(i-1)*n:i*n) = A(x(1+(i-1)*m:i*m),mode); end end function y = blockDiagonalExplicit(A,m,n,g,x,mode) if mode == 1 y = A * reshape(x,n,g); y = y(:); else x = reshape(x,m,g); y = (x' * A)'; y = y(:); end
github
lijunzh/fd_elastic-master
spgl1.m
.m
fd_elastic-master/src/spgl1-1.8/spgl1.m
31,061
utf_8
ba9dfd0ef199543c9289ed4fd0d301bd
function [x,r,g,info] = spgl1( A, b, tau, sigma, x, options ) %SPGL1 Solve basis pursuit, basis pursuit denoise, and LASSO % % [x, r, g, info] = spgl1(A, b, tau, sigma, x0, options) % % --------------------------------------------------------------------- % Solve the basis pursuit denoise (BPDN) problem % % (BPDN) minimize ||x||_1 subj to ||Ax-b||_2 <= sigma, % % or the l1-regularized least-squares problem % % (LASSO) minimize ||Ax-b||_2 subj to ||x||_1 <= tau. % --------------------------------------------------------------------- % % INPUTS % ====== % A is an m-by-n matrix, explicit or an operator. % If A is a function, then it must have the signature % % y = A(x,mode) if mode == 1 then y = A x (y is m-by-1); % if mode == 2 then y = A'x (y is n-by-1). % % b is an m-vector. % tau is a nonnegative scalar; see (LASSO). % sigma if sigma != inf or != [], then spgl1 will launch into a % root-finding mode to find the tau above that solves (BPDN). % In this case, it's STRONGLY recommended that tau = 0. % x0 is an n-vector estimate of the solution (possibly all % zeros). If x0 = [], then SPGL1 determines the length n via % n = length( A'b ) and sets x0 = zeros(n,1). % options is a structure of options from spgSetParms. Any unset options % are set to their default value; set options=[] to use all % default values. % % OUTPUTS % ======= % x is a solution of the problem % r is the residual, r = b - Ax % g is the gradient, g = -A'r % info is a structure with the following information: % .tau final value of tau (see sigma above) % .rNorm two-norm of the optimal residual % .rGap relative duality gap (an optimality measure) % .gNorm Lagrange multiplier of (LASSO) % .stat = 1 found a BPDN solution % = 2 found a BP sol'n; exit based on small gradient % = 3 found a BP sol'n; exit based on small residual % = 4 found a LASSO solution % = 5 error: too many iterations % = 6 error: linesearch failed % = 7 error: found suboptimal BP solution % = 8 error: too many matrix-vector products % .time total solution time (seconds) % .nProdA number of multiplications with A % .nProdAt number of multiplications with A' % % OPTIONS % ======= % Use the options structure to control various aspects of the algorithm: % % options.fid File ID to direct log output % .verbosity 0=quiet, 1=some output, 2=more output. % .iterations Max. number of iterations (default if 10*m). % .bpTol Tolerance for identifying a basis pursuit solution. % .optTol Optimality tolerance (default is 1e-4). % .decTol Larger decTol means more frequent Newton updates. % .subspaceMin 0=no subspace minimization, 1=subspace minimization. % % EXAMPLE % ======= % m = 120; n = 512; k = 20; % m rows, n cols, k nonzeros. % p = randperm(n); x0 = zeros(n,1); x0(p(1:k)) = sign(randn(k,1)); % A = randn(m,n); [Q,R] = qr(A',0); A = Q'; % b = A*x0 + 0.005 * randn(m,1); % opts = spgSetParms('optTol',1e-4); % [x,r,g,info] = spgl1(A, b, 0, 1e-3, [], opts); % Find BP sol'n. % % AUTHORS % ======= % Ewout van den Berg ([email protected]) % Michael P. Friedlander ([email protected]) % Scientific Computing Laboratory (SCL) % University of British Columbia, Canada. % % BUGS % ==== % Please send bug reports or comments to % Michael P. Friedlander ([email protected]) % Ewout van den Berg ([email protected]) % 15 Apr 07: First version derived from spg.m. % Michael P. Friedlander ([email protected]). % Ewout van den Berg ([email protected]). % 17 Apr 07: Added root-finding code. % 18 Apr 07: sigma was being compared to 1/2 r'r, rather than % norm(r), as advertised. Now immediately change sigma to % (1/2)sigma^2, and changed log output accordingly. % 24 Apr 07: Added quadratic root-finding code as an option. % 24 Apr 07: Exit conditions need to guard against small ||r|| % (ie, a BP solution). Added test1,test2,test3 below. % 15 May 07: Trigger to update tau is now based on relative difference % in objective between consecutive iterations. % 15 Jul 07: Added code to allow a limited number of line-search % errors. % 23 Feb 08: Fixed bug in one-norm projection using weights. Thanks % to Xiangrui Meng for reporting this bug. % 26 May 08: The simple call spgl1(A,b) now solves (BPDN) with sigma=0. % 18 Mar 13: Reset f = fOld if curvilinear line-search fails. % Avoid computing the Barzilai-Borwein scaling parameter % when both line-search algorithms failed. % ---------------------------------------------------------------------- % This file is part of SPGL1 (Spectral Projected-Gradient for L1). % % Copyright (C) 2007 Ewout van den Berg and Michael P. Friedlander, % Department of Computer Science, University of British Columbia, Canada. % All rights reserved. E-mail: <{ewout78,mpf}@cs.ubc.ca>. % % SPGL1 is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation; either version 2.1 of the % License, or (at your option) any later version. % % SPGL1 is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General % Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with SPGL1; if not, write to the Free Software % Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 % USA % ---------------------------------------------------------------------- REVISION = '$Revision: 1017 $'; DATE = '$Date: 2008-06-16 22:43:07 -0700 (Mon, 16 Jun 2008) $'; REVISION = REVISION(11:end-1); DATE = DATE(35:50); tic; % Start your watches! m = length(b); %---------------------------------------------------------------------- % Check arguments. %---------------------------------------------------------------------- if ~exist('options','var'), options = []; end if ~exist('x','var'), x = []; end if ~exist('sigma','var'), sigma = []; end if ~exist('tau','var'), tau = []; end if nargin < 2 || isempty(b) || isempty(A) error('At least two arguments are required'); elseif isempty(tau) && isempty(sigma) tau = 0; sigma = 0; singleTau = false; elseif isempty(sigma) % && ~isempty(tau) <-- implied singleTau = true; else if isempty(tau) tau = 0; end singleTau = false; end %---------------------------------------------------------------------- % Grab input options and set defaults where needed. %---------------------------------------------------------------------- defaultopts = spgSetParms(... 'fid' , 1 , ... % File ID for output 'verbosity' , 2 , ... % Verbosity level 'iterations' , 10*m , ... % Max number of iterations 'nPrevVals' , 3 , ... % Number previous func values for linesearch 'bpTol' , 1e-06 , ... % Tolerance for basis pursuit solution 'lsTol' , 1e-06 , ... % Least-squares optimality tolerance 'optTol' , 1e-04 , ... % Optimality tolerance 'decTol' , 1e-04 , ... % Req'd rel. change in primal obj. for Newton 'stepMin' , 1e-16 , ... % Minimum spectral step 'stepMax' , 1e+05 , ... % Maximum spectral step 'rootMethod' , 2 , ... % Root finding method: 2=quad,1=linear (not used). 'activeSetIt', Inf , ... % Exit with EXIT_ACTIVE_SET if nnz same for # its. 'subspaceMin', 0 , ... % Use subspace minimization 'iscomplex' , NaN , ... % Flag set to indicate complex problem 'maxMatvec' , Inf , ... % Maximum matrix-vector multiplies allowed 'weights' , 1 , ... % Weights W in ||Wx||_1 'project' , @NormL1_project , ... 'primal_norm', @NormL1_primal , ... 'dual_norm' , @NormL1_dual ... ); options = spgSetParms(defaultopts, options); fid = options.fid; logLevel = options.verbosity; maxIts = options.iterations; nPrevVals = options.nPrevVals; bpTol = options.bpTol; lsTol = options.lsTol; optTol = options.optTol; decTol = options.decTol; stepMin = options.stepMin; stepMax = options.stepMax; activeSetIt = options.activeSetIt; subspaceMin = options.subspaceMin; maxMatvec = max(3,options.maxMatvec); weights = options.weights; maxLineErrors = 10; % Maximum number of line-search failures. pivTol = 1e-12; % Threshold for significant Newton step. %---------------------------------------------------------------------- % Initialize local variables. %---------------------------------------------------------------------- iter = 0; itnTotLSQR = 0; % Total SPGL1 and LSQR iterations. nProdA = 0; nProdAt = 0; lastFv = -inf(nPrevVals,1); % Last m function values. nLineTot = 0; % Total no. of linesearch steps. printTau = false; nNewton = 0; bNorm = norm(b,2); stat = false; timeProject = 0; timeMatProd = 0; nnzIter = 0; % No. of its with fixed pattern. nnzIdx = []; % Active-set indicator. subspace = false; % Flag if did subspace min in current itn. stepG = 1; % Step length for projected gradient. testUpdateTau = 0; % Previous step did not update tau % Determine initial x, vector length n, and see if problem is complex explicit = ~(isa(A,'function_handle')); if isempty(x) if isnumeric(A) n = size(A,2); realx = isreal(A) && isreal(b); else x = Aprod(b,2); n = length(x); realx = isreal(x) && isreal(b); end x = zeros(n,1); else n = length(x); realx = isreal(x) && isreal(b); end if isnumeric(A), realx = realx && isreal(A); end; % Override options when options.iscomplex flag is set if (~isnan(options.iscomplex)), realx = (options.iscomplex == 0); end % Check if all weights (if any) are strictly positive. In previous % versions we also checked if the number of weights was equal to % n. In the case of multiple measurement vectors, this no longer % needs to apply, so the check was removed. if ~isempty(weights) if any(~isfinite(weights)) error('Entries in options.weights must be finite'); end if any(weights <= 0) error('Entries in options.weights must be strictly positive'); end else weights = 1; end % Quick exit if sigma >= ||b||. Set tau = 0 to short-circuit the loop. if bNorm <= sigma printf('W: sigma >= ||b||. Exact solution is x = 0.\n'); tau = 0; singleTau = true; end % Don't do subspace minimization if x is complex. if ~realx && subspaceMin printf('W: Subspace minimization disabled when variables are complex.\n'); subspaceMin = false; end % Pre-allocate iteration info vectors xNorm1 = zeros(min(maxIts,10000),1); rNorm2 = zeros(min(maxIts,10000),1); lambda = zeros(min(maxIts,10000),1); % Exit conditions (constants). EXIT_ROOT_FOUND = 1; EXIT_BPSOL_FOUND = 2; EXIT_LEAST_SQUARES = 3; EXIT_OPTIMAL = 4; EXIT_ITERATIONS = 5; EXIT_LINE_ERROR = 6; EXIT_SUBOPTIMAL_BP = 7; EXIT_MATVEC_LIMIT = 8; EXIT_ACTIVE_SET = 9; % [sic] %---------------------------------------------------------------------- % Log header. %---------------------------------------------------------------------- printf('\n'); printf(' %s\n',repmat('=',1,80)); printf(' SPGL1 v.%s (%s)\n', REVISION, DATE); printf(' %s\n',repmat('=',1,80)); printf(' %-22s: %8i %4s' ,'No. rows' ,m ,''); printf(' %-22s: %8i\n' ,'No. columns' ,n ); printf(' %-22s: %8.2e %4s' ,'Initial tau' ,tau ,''); printf(' %-22s: %8.2e\n' ,'Two-norm of b' ,bNorm ); printf(' %-22s: %8.2e %4s' ,'Optimality tol' ,optTol ,''); if singleTau printf(' %-22s: %8.2e\n' ,'Target one-norm of x' ,tau ); else printf(' %-22s: %8.2e\n','Target objective' ,sigma ); end printf(' %-22s: %8.2e %4s' ,'Basis pursuit tol' ,bpTol ,''); printf(' %-22s: %8i\n' ,'Maximum iterations',maxIts ); printf('\n'); if singleTau logB = ' %5i %13.7e %13.7e %9.2e %6.1f %6i %6i'; logH = ' %5s %13s %13s %9s %6s %6s %6s\n'; printf(logH,'Iter','Objective','Relative Gap','gNorm','stepG','nnzX','nnzG'); else logB = ' %5i %13.7e %13.7e %9.2e %9.3e %6.1f %6i %6i'; logH = ' %5s %13s %13s %9s %9s %6s %6s %6s %13s\n'; printf(logH,'Iter','Objective','Relative Gap','Rel Error',... 'gNorm','stepG','nnzX','nnzG','tau'); end % Project the starting point and evaluate function and gradient. x = project(x,tau); r = b - Aprod(x,1); % r = b - Ax g = - Aprod(r,2); % g = -A'r f = r'*r / 2; % Required for nonmonotone strategy. lastFv(1) = f; fBest = f; xBest = x; fOld = f; % Compute projected gradient direction and initial steplength. dx = project(x - g, tau) - x; dxNorm = norm(dx,inf); if dxNorm < (1 / stepMax) gStep = stepMax; else gStep = min( stepMax, max(stepMin, 1/dxNorm) ); end %---------------------------------------------------------------------- % MAIN LOOP. %---------------------------------------------------------------------- while 1 %------------------------------------------------------------------ % Test exit conditions. %------------------------------------------------------------------ % Compute quantities needed for log and exit conditions. gNorm = options.dual_norm(-g,weights); rNorm = norm(r, 2); gap = r'*(r-b) + tau*gNorm; rGap = abs(gap) / max(1,f); aError1 = rNorm - sigma; aError2 = f - sigma^2 / 2; rError1 = abs(aError1) / max(1,rNorm); rError2 = abs(aError2) / max(1,f); % Count number of consecutive iterations with identical support. nnzOld = nnzIdx; [nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g,nnzIdx,options); if nnzDiff nnzIter = 0; else nnzIter = nnzIter + 1; if nnzIter >= activeSetIt, stat=EXIT_ACTIVE_SET; end end % Single tau: Check if we're optimal. % The 2nd condition is there to guard against large tau. if singleTau if rGap <= optTol || rNorm < optTol*bNorm stat = EXIT_OPTIMAL; end % Multiple tau: Check if found root and/or if tau needs updating. else % Test if a least-squares solution has been found if gNorm <= lsTol * rNorm stat = EXIT_LEAST_SQUARES; end if rGap <= max(optTol, rError2) || rError1 <= optTol % The problem is nearly optimal for the current tau. % Check optimality of the current root. test1 = rNorm <= bpTol * bNorm; % test2 = gNorm <= bpTol * rNorm; test3 = rError1 <= optTol; test4 = rNorm <= sigma; if test4, stat=EXIT_SUBOPTIMAL_BP;end % Found suboptimal BP sol. if test3, stat=EXIT_ROOT_FOUND; end % Found approx root. if test1, stat=EXIT_BPSOL_FOUND; end % Resid minim'zd -> BP sol. % 30 Jun 09: Large tau could mean large rGap even near LS sol. % Move LS check out of this if statement. % if test2, stat=EXIT_LEAST_SQUARES; end % Gradient zero -> BP sol. end testRelChange1 = (abs(f - fOld) <= decTol * f); testRelChange2 = (abs(f - fOld) <= 1e-1 * f * (abs(rNorm - sigma))); testUpdateTau = ((testRelChange1 && rNorm > 2 * sigma) || ... (testRelChange2 && rNorm <= 2 * sigma)) && ... ~stat && ~testUpdateTau; if testUpdateTau % Update tau. tauOld = tau; tau = max(0,tau + (rNorm * aError1) / gNorm); nNewton = nNewton + 1; printTau = abs(tauOld - tau) >= 1e-6 * tau; % For log only. if tau < tauOld % The one-norm ball has decreased. Need to make sure that the % next iterate if feasible, which we do by projecting it. x = project(x,tau); end end end % Too many its and not converged. if ~stat && iter >= maxIts stat = EXIT_ITERATIONS; end %------------------------------------------------------------------ % Print log, update history and act on exit conditions. %------------------------------------------------------------------ if logLevel >= 2 || singleTau || printTau || iter == 0 || stat tauFlag = ' '; subFlag = ''; if printTau, tauFlag = sprintf(' %13.7e',tau); end if subspace, subFlag = sprintf(' S %2i',itnLSQR); end if singleTau printf(logB,iter,rNorm,rGap,gNorm,log10(stepG),nnzX,nnzG); if subspace printf(' %s',subFlag); end else printf(logB,iter,rNorm,rGap,rError1,gNorm,log10(stepG),nnzX,nnzG); if printTau || subspace printf(' %s',[tauFlag subFlag]); end end printf('\n'); end printTau = false; subspace = false; % Update history info xNorm1(iter+1) = options.primal_norm(x,weights); rNorm2(iter+1) = rNorm; lambda(iter+1) = gNorm; if stat, break; end % Act on exit conditions. %================================================================== % Iterations begin here. %================================================================== iter = iter + 1; xOld = x; fOld = f; gOld = g; rOld = r; try %--------------------------------------------------------------- % Projected gradient step and linesearch. %--------------------------------------------------------------- [f,x,r,nLine,stepG,lnErr] = ... spgLineCurvy(x,gStep*g,max(lastFv),@Aprod,b,@project,tau); nLineTot = nLineTot + nLine; if lnErr % Projected backtrack failed. Retry with feasible dir'n linesearch. x = xOld; f = fOld; dx = project(x - gStep*g, tau) - x; gtd = g'*dx; [f,x,r,nLine,lnErr] = spgLine(f,x,dx,gtd,max(lastFv),@Aprod,b); nLineTot = nLineTot + nLine; end if lnErr % Failed again. Revert to previous iterates and damp max BB step. x = xOld; f = fOld; if maxLineErrors <= 0 stat = EXIT_LINE_ERROR; else stepMax = stepMax / 10; printf(['W: Linesearch failed with error %i. '... 'Damping max BB scaling to %6.1e.\n'],lnErr,stepMax); maxLineErrors = maxLineErrors - 1; end end %--------------------------------------------------------------- % Subspace minimization (only if active-set change is small). %--------------------------------------------------------------- doSubspaceMin = false; if subspaceMin g = - Aprod(r,2); [nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g,nnzOld,options); if ~nnzDiff if nnzX == nnzG, itnMaxLSQR = 20; else itnMaxLSQR = 5; end nnzIdx = abs(x) >= optTol; doSubspaceMin = true; end end if doSubspaceMin % LSQR parameters damp = 1e-5; aTol = 1e-1; bTol = 1e-1; conLim = 1e12; showLSQR = 0; ebar = sign(x(nnzIdx)); nebar = length(ebar); Sprod = @(y,mode)LSQRprod(@Aprod,nnzIdx,ebar,n,y,mode); [dxbar, istop, itnLSQR] = ... lsqr(m,nebar,Sprod,r,damp,aTol,bTol,conLim,itnMaxLSQR,showLSQR); itnTotLSQR = itnTotLSQR + itnLSQR; if istop ~= 4 % LSQR iterations successful. Take the subspace step. % Push dx back into full space: dx = Z dx. dx = zeros(n,1); dx(nnzIdx) = dxbar - (1/nebar)*(ebar'*dxbar)*dxbar; % Find largest step to a change in sign. block1 = nnzIdx & x < 0 & dx > +pivTol; block2 = nnzIdx & x > 0 & dx < -pivTol; alpha1 = Inf; alpha2 = Inf; if any(block1), alpha1 = min(-x(block1) ./ dx(block1)); end if any(block2), alpha2 = min(-x(block2) ./ dx(block2)); end alpha = min([1 alpha1 alpha2]); ensure(alpha >= 0); ensure(ebar'*dx(nnzIdx) <= optTol); % Update variables. x = x + alpha*dx; r = b - Aprod(x,1); f = r'*r / 2; subspace = true; end end ensure(options.primal_norm(x,weights) <= tau+optTol); %--------------------------------------------------------------- % Update gradient and compute new Barzilai-Borwein scaling. %--------------------------------------------------------------- if (~lnErr) g = - Aprod(r,2); s = x - xOld; y = g - gOld; sts = s'*s; sty = s'*y; if sty <= 0, gStep = stepMax; else gStep = min( stepMax, max(stepMin, sts/sty) ); end else gStep = min( stepMax, gStep ); end catch err % Detect matrix-vector multiply limit error if strcmp(err.identifier,'SPGL1:MaximumMatvec') stat = EXIT_MATVEC_LIMIT; iter = iter - 1; x = xOld; f = fOld; g = gOld; r = rOld; break; else rethrow(err); end end %------------------------------------------------------------------ % Update function history. %------------------------------------------------------------------ if singleTau || f > sigma^2 / 2 % Don't update if superoptimal. lastFv(mod(iter,nPrevVals)+1) = f; if fBest > f fBest = f; xBest = x; end end end % while 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Restore best solution (only if solving single problem). if singleTau && f > fBest rNorm = sqrt(2*fBest); printf('\n Restoring best iterate to objective %13.7e\n',rNorm); x = xBest; r = b - Aprod(x,1); g = - Aprod(r,2); gNorm = options.dual_norm(g,weights); rNorm = norm(r, 2); end % Final cleanup before exit. info.tau = tau; info.rNorm = rNorm; info.rGap = rGap; info.gNorm = gNorm; info.rGap = rGap; info.stat = stat; info.iter = iter; info.nProdA = nProdA; info.nProdAt = nProdAt; info.nNewton = nNewton; info.timeProject = timeProject; info.timeMatProd = timeMatProd; info.itnLSQR = itnTotLSQR; info.options = options; info.timeTotal = toc; info.xNorm1 = xNorm1(1:iter); info.rNorm2 = rNorm2(1:iter); info.lambda = lambda(1:iter); % Print final output. switch (stat) case EXIT_OPTIMAL printf('\n EXIT -- Optimal solution found\n') case EXIT_ITERATIONS printf('\n ERROR EXIT -- Too many iterations\n'); case EXIT_ROOT_FOUND printf('\n EXIT -- Found a root\n'); case {EXIT_BPSOL_FOUND} printf('\n EXIT -- Found a BP solution\n'); case {EXIT_LEAST_SQUARES} printf('\n EXIT -- Found a least-squares solution\n'); case EXIT_LINE_ERROR printf('\n ERROR EXIT -- Linesearch error (%i)\n',lnErr); case EXIT_SUBOPTIMAL_BP printf('\n EXIT -- Found a suboptimal BP solution\n'); case EXIT_MATVEC_LIMIT printf('\n EXIT -- Maximum matrix-vector operations reached\n'); case EXIT_ACTIVE_SET printf('\n EXIT -- Found a possible active set\n'); otherwise error('Unknown termination condition\n'); end printf('\n'); printf(' %-20s: %6i %6s %-20s: %6.1f\n',... 'Products with A',nProdA,'','Total time (secs)',info.timeTotal); printf(' %-20s: %6i %6s %-20s: %6.1f\n',... 'Products with A''',nProdAt,'','Project time (secs)',timeProject); printf(' %-20s: %6i %6s %-20s: %6.1f\n',... 'Newton iterations',nNewton,'','Mat-vec time (secs)',timeMatProd); printf(' %-20s: %6i %6s %-20s: %6i\n', ... 'Line search its',nLineTot,'','Subspace iterations',itnTotLSQR); printf('\n'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % NESTED FUNCTIONS. These share some vars with workspace above. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z = Aprod(x,mode) if (nProdA + nProdAt >= maxMatvec) error('SPGL1:MaximumMatvec',''); end tStart = toc; if mode == 1 nProdA = nProdA + 1; if explicit, z = A*x; else z = A(x,1); end elseif mode == 2 nProdAt = nProdAt + 1; if explicit, z = A'*x; else z = A(x,2); end else error('Wrong mode!'); end timeMatProd = timeMatProd + (toc - tStart); end % function Aprod %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function printf(varargin) if logLevel > 0 fprintf(fid,varargin{:}); end end % function printf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = project(x, tau) tStart = toc; x = options.project(x,weights,tau); timeProject = timeProject + (toc - tStart); end % function project %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % End of nested functions. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end % function spg %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % PRIVATE FUNCTIONS. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [nnzX,nnzG,nnzIdx,nnzDiff] = activeVars(x,g,nnzIdx,options) % Find the current active set. % nnzX is the number of nonzero x. % nnzG is the number of elements in nnzIdx. % nnzIdx is a vector of primal/dual indicators. % nnzDiff is the no. of elements that changed in the support. xTol = min(.1,10*options.optTol); gTol = min(.1,10*options.optTol); gNorm = options.dual_norm(g,options.weights); nnzOld = nnzIdx; % Reduced costs for postive & negative parts of x. z1 = gNorm + g; z2 = gNorm - g; % Primal/dual based indicators. xPos = x > xTol & z1 < gTol; %g < gTol;% xNeg = x < -xTol & z2 < gTol; %g > gTol;% nnzIdx = xPos | xNeg; % Count is based on simple primal indicator. nnzX = sum(abs(x) >= xTol); nnzG = sum(nnzIdx); if isempty(nnzOld) nnzDiff = inf; else nnzDiff = sum(nnzIdx ~= nnzOld); end end % function spgActiveVars %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z = LSQRprod(Aprod,nnzIdx,ebar,n,dx,mode) % Matrix multiplication for subspace minimization. % Only called by LSQR. nbar = length(ebar); if mode == 1 y = zeros(n,1); y(nnzIdx) = dx - (1/nbar)*(ebar'*dx)*ebar; % y(nnzIdx) = Z*dx z = Aprod(y,1); % z = S Z dx else y = Aprod(dx,2); z = y(nnzIdx) - (1/nbar)*(ebar'*y(nnzIdx))*ebar; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fNew,xNew,rNew,iter,err] = spgLine(f,x,d,gtd,fMax,Aprod,b) % Nonmonotone linesearch. EXIT_CONVERGED = 0; EXIT_ITERATIONS = 1; maxIts = 10; step = 1; iter = 0; gamma = 1e-4; gtd = -abs(gtd); % 03 Aug 07: If gtd is complex, % then should be looking at -abs(gtd). while 1 % Evaluate trial point and function value. xNew = x + step*d; rNew = b - Aprod(xNew,1); fNew = rNew'*rNew / 2; % Check exit conditions. if fNew < fMax + gamma*step*gtd % Sufficient descent condition. err = EXIT_CONVERGED; break elseif iter >= maxIts % Too many linesearch iterations. err = EXIT_ITERATIONS; break end % New linesearch iteration. iter = iter + 1; % Safeguarded quadratic interpolation. if step <= 0.1 step = step / 2; else tmp = (-gtd*step^2) / (2*(fNew-f-step*gtd)); if tmp < 0.1 || tmp > 0.9*step || isnan(tmp) tmp = step / 2; end step = tmp; end end % while 1 end % function spgLine %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fNew,xNew,rNew,iter,step,err] = ... spgLineCurvy(x,g,fMax,Aprod,b,project,tau) % Projected backtracking linesearch. % On entry, % g is the (possibly scaled) steepest descent direction. EXIT_CONVERGED = 0; EXIT_ITERATIONS = 1; EXIT_NODESCENT = 2; gamma = 1e-4; maxIts = 10; step = 1; sNorm = 0; scale = 1; % Safeguard scaling. (See below.) nSafe = 0; % No. of safeguarding steps. iter = 0; debug = false; % Set to true to enable log. n = length(x); if debug fprintf(' %5s %13s %13s %13s %8s\n',... 'LSits','fNew','step','gts','scale'); end while 1 % Evaluate trial point and function value. xNew = project(x - step*scale*g, tau); rNew = b - Aprod(xNew,1); fNew = rNew'*rNew / 2; s = xNew - x; gts = scale * real(g' * s); % gts = scale * (g' * s); if gts >= 0 err = EXIT_NODESCENT; break end if debug fprintf(' LS %2i %13.7e %13.7e %13.6e %8.1e\n',... iter,fNew,step,gts,scale); end % 03 Aug 07: If gts is complex, then should be looking at -abs(gts). % 13 Jul 11: It's enough to use real part of g's (see above). if fNew < fMax + gamma*step*gts % if fNew < fMax - gamma*step*abs(gts) % Sufficient descent condition. err = EXIT_CONVERGED; break elseif iter >= maxIts % Too many linesearch iterations. err = EXIT_ITERATIONS; break end % New linesearch iteration. iter = iter + 1; step = step / 2; % Safeguard: If stepMax is huge, then even damped search % directions can give exactly the same point after projection. If % we observe this in adjacent iterations, we drastically damp the % next search direction. % 31 May 07: Damp consecutive safeguarding steps. sNormOld = sNorm; sNorm = norm(s) / sqrt(n); % if sNorm >= sNormOld if abs(sNorm - sNormOld) <= 1e-6 * sNorm gNorm = norm(g) / sqrt(n); scale = sNorm / gNorm / (2^nSafe); nSafe = nSafe + 1; end end % while 1 end % function spgLineCurvy
github
lijunzh/fd_elastic-master
oneProjectorMex.m
.m
fd_elastic-master/src/spgl1-1.8/private/oneProjectorMex.m
3,797
utf_8
df5afe507062bc6b713674d862bf73cd
function [x, itn] = oneProjectorMex(b,d,tau) % [x, itn] = oneProjectorMex(b,d,tau) % Return the orthogonal projection of the vector b >=0 onto the % (weighted) L1 ball. In case vector d is specified, matrix D is % defined as diag(d), otherwise the identity matrix is used. % % On exit, % x solves minimize ||b-x||_2 st ||Dx||_1 <= tau. % itn is the number of elements of b that were thresholded. % % See also spgl1, oneProjector. % oneProjectorMex.m % $Id: oneProjectorMex.m 1200 2008-11-21 19:58:28Z mpf $ % % ---------------------------------------------------------------------- % This file is part of SPGL1 (Spectral Projected Gradient for L1). % % Copyright (C) 2007 Ewout van den Berg and Michael P. Friedlander, % Department of Computer Science, University of British Columbia, Canada. % All rights reserved. E-mail: <{ewout78,mpf}@cs.ubc.ca>. % % SPGL1 is free software; you can redistribute it and/or modify it % under the terms of the GNU Lesser General Public License as % published by the Free Software Foundation; either version 2.1 of the % License, or (at your option) any later version. % % SPGL1 is distributed in the hope that it will be useful, but WITHOUT % ANY WARRANTY; without even the implied warranty of MERCHANTABILITY % or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General % Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with SPGL1; if not, write to the Free Software % Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 % USA % ---------------------------------------------------------------------- if nargin < 3 tau = d; d = 1; end if isscalar(d) [x,itn] = oneProjectorMex_I(b,tau/abs(d)); else [x,itn] = oneProjectorMex_D(b,d,tau); end end % function oneProjectorMex % ---------------------------------------------------------------------- function [x,itn] = oneProjectorMex_I(b,tau) % ---------------------------------------------------------------------- % Initialization n = length(b); x = zeros(n,1); bNorm = norm(b,1); % Check for quick exit. if (tau >= bNorm), x = b; itn = 0; return; end if (tau < eps ), itn = 0; return; end % Preprocessing (b is assumed to be >= 0) [b,idx] = sort(b,'descend'); % Descending. csb = -tau; alphaPrev = 0; for j= 1:n csb = csb + b(j); alpha = csb / j; % We are done as soon as the constraint can be satisfied % without exceeding the current minimum value of b if alpha >= b(j) break; end alphaPrev = alpha; end % Set the solution by applying soft-thresholding with % the previous value of alpha x(idx) = max(0,b - alphaPrev); % Set number of iterations itn = j; end % ---------------------------------------------------------------------- function [x,itn] = oneProjectorMex_D(b,d,tau) % ---------------------------------------------------------------------- % Initialization n = length(b); x = zeros(n,1); % Check for quick exit. if (tau >= norm(d.*b,1)), x = b; itn = 0; return; end if (tau < eps ), itn = 0; return; end % Preprocessing (b is assumed to be >= 0) [bd,idx] = sort(b ./ d,'descend'); % Descending. b = b(idx); d = d(idx); % Optimize csdb = 0; csd2 = 0; soft = 0; alpha1 = 0; i = 1; while (i <= n) csdb = csdb + d(i).*b(i); csd2 = csd2 + d(i).*d(i); alpha1 = (csdb - tau) / csd2; alpha2 = bd(i); if alpha1 >= alpha2 break; end soft = alpha1; i = i + 1; end x(idx(1:i-1)) = b(1:i-1) - d(1:i-1) * max(0,soft); % Set number of iterations itn = i; end
github
lijunzh/fd_elastic-master
lsqr.m
.m
fd_elastic-master/src/spgl1-1.8/private/lsqr.m
11,849
utf_8
b60925c5944249161e00049c67d30868
function [ x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var ]... = lsqr( m, n, A, b, damp, atol, btol, conlim, itnlim, show ) % % [ x, istop, itn, r1norm, r2norm, anorm, acond, arnorm, xnorm, var ]... % = lsqr( m, n, A, b, damp, atol, btol, conlim, itnlim, show ); % % LSQR solves Ax = b or min ||b - Ax||_2 if damp = 0, % or min || (b) - ( A )x || otherwise. % || (0) (damp I) ||2 % A is an m by n matrix defined or a function handle of aprod( mode,x ), % that performs the matrix-vector operations. % If mode = 1, aprod must return y = Ax without altering x. % If mode = 2, aprod must return y = A'x without altering x. %----------------------------------------------------------------------- % LSQR uses an iterative (conjugate-gradient-like) method. % For further information, see % 1. C. C. Paige and M. A. Saunders (1982a). % LSQR: An algorithm for sparse linear equations and sparse least squares, % ACM TOMS 8(1), 43-71. % 2. C. C. Paige and M. A. Saunders (1982b). % Algorithm 583. LSQR: Sparse linear equations and least squares problems, % ACM TOMS 8(2), 195-209. % 3. M. A. Saunders (1995). Solution of sparse rectangular systems using % LSQR and CRAIG, BIT 35, 588-604. % % Input parameters: % atol, btol are stopping tolerances. If both are 1.0e-9 (say), % the final residual norm should be accurate to about 9 digits. % (The final x will usually have fewer correct digits, % depending on cond(A) and the size of damp.) % conlim is also a stopping tolerance. lsqr terminates if an estimate % of cond(A) exceeds conlim. For compatible systems Ax = b, % conlim could be as large as 1.0e+12 (say). For least-squares % problems, conlim should be less than 1.0e+8. % Maximum precision can be obtained by setting % atol = btol = conlim = zero, but the number of iterations % may then be excessive. % itnlim is an explicit limit on iterations (for safety). % show = 1 gives an iteration log, % show = 0 suppresses output. % % Output parameters: % x is the final solution. % istop gives the reason for termination. % istop = 1 means x is an approximate solution to Ax = b. % = 2 means x approximately solves the least-squares problem. % r1norm = norm(r), where r = b - Ax. % r2norm = sqrt( norm(r)^2 + damp^2 * norm(x)^2 ) % = r1norm if damp = 0. % anorm = estimate of Frobenius norm of Abar = [ A ]. % [damp*I] % acond = estimate of cond(Abar). % arnorm = estimate of norm(A'*r - damp^2*x). % xnorm = norm(x). % var (if present) estimates all diagonals of (A'A)^{-1} (if damp=0) % or more generally (A'A + damp^2*I)^{-1}. % This is well defined if A has full column rank or damp > 0. % (Not sure what var means if rank(A) < n and damp = 0.) % % % 1990: Derived from Fortran 77 version of LSQR. % 22 May 1992: bbnorm was used incorrectly. Replaced by anorm. % 26 Oct 1992: More input and output parameters added. % 01 Sep 1994: Matrix-vector routine is now a parameter 'aprodname'. % Print log reformatted. % 14 Jun 1997: show added to allow printing or not. % 30 Jun 1997: var added as an optional output parameter. % 07 Aug 2002: Output parameter rnorm replaced by r1norm and r2norm. % Michael Saunders, Systems Optimization Laboratory, % Dept of MS&E, Stanford University. % 03 Jul 2007: Modified 'aprodname' to A, which can either be an m by n % matrix, or a function handle. % Ewout van den Berg, University of British Columbia % 03 Jul 2007: Modified 'test2' condition, omitted 'test1'. % Ewout van den Berg, University of British Columbia %----------------------------------------------------------------------- % Initialize. msg=['The exact solution is x = 0 ' 'Ax - b is small enough, given atol, btol ' 'The least-squares solution is good enough, given atol ' 'The estimate of cond(Abar) has exceeded conlim ' 'Ax - b is small enough for this machine ' 'The least-squares solution is good enough for this machine' 'Cond(Abar) seems to be too large for this machine ' 'The iteration limit has been reached ']; wantvar= nargout >= 6; if wantvar, var = zeros(n,1); end if show disp(' ') disp('LSQR Least-squares solution of Ax = b') str1 = sprintf('The matrix A has %8g rows and %8g cols', m, n); str2 = sprintf('damp = %20.14e wantvar = %8g', damp,wantvar); str3 = sprintf('atol = %8.2e conlim = %8.2e', atol, conlim); str4 = sprintf('btol = %8.2e itnlim = %8g' , btol, itnlim); disp(str1); disp(str2); disp(str3); disp(str4); end itn = 0; istop = 0; nstop = 0; ctol = 0; if conlim > 0, ctol = 1/conlim; end; anorm = 0; acond = 0; dampsq = damp^2; ddnorm = 0; res2 = 0; xnorm = 0; xxnorm = 0; z = 0; cs2 = -1; sn2 = 0; % Set up the first vectors u and v for the bidiagonalization. % These satisfy beta*u = b, alfa*v = A'u. u = b(1:m); x = zeros(n,1); alfa = 0; beta = norm( u ); if beta > 0 u = (1/beta) * u; v = Aprod(u,2); alfa = norm( v ); end if alfa > 0 v = (1/alfa) * v; w = v; end arnorm = alfa * beta; if arnorm == 0 if show, disp(msg(1,:)); end return end arnorm0= arnorm; rhobar = alfa; phibar = beta; bnorm = beta; rnorm = beta; r1norm = rnorm; r2norm = rnorm; head1 = ' Itn x(1) r1norm r2norm '; head2 = ' Compatible LS Norm A Cond A'; if show disp(' ') disp([head1 head2]) test1 = 1; test2 = alfa / beta; str1 = sprintf( '%6g %12.5e', itn, x(1) ); str2 = sprintf( ' %10.3e %10.3e', r1norm, r2norm ); str3 = sprintf( ' %8.1e %8.1e', test1, test2 ); disp([str1 str2 str3]) end %------------------------------------------------------------------ % Main iteration loop. %------------------------------------------------------------------ while itn < itnlim itn = itn + 1; % Perform the next step of the bidiagonalization to obtain the % next beta, u, alfa, v. These satisfy the relations % beta*u = a*v - alfa*u, % alfa*v = A'*u - beta*v. u = Aprod(v,1) - alfa*u; beta = norm( u ); if beta > 0 u = (1/beta) * u; anorm = norm([anorm alfa beta damp]); v = Aprod(u, 2) - beta*v; alfa = norm( v ); if alfa > 0, v = (1/alfa) * v; end end % Use a plane rotation to eliminate the damping parameter. % This alters the diagonal (rhobar) of the lower-bidiagonal matrix. rhobar1 = norm([rhobar damp]); cs1 = rhobar / rhobar1; sn1 = damp / rhobar1; psi = sn1 * phibar; phibar = cs1 * phibar; % Use a plane rotation to eliminate the subdiagonal element (beta) % of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix. rho = norm([rhobar1 beta]); cs = rhobar1/ rho; sn = beta / rho; theta = sn * alfa; rhobar = - cs * alfa; phi = cs * phibar; phibar = sn * phibar; tau = sn * phi; % Update x and w. t1 = phi /rho; t2 = - theta/rho; dk = (1/rho)*w; x = x + t1*w; w = v + t2*w; ddnorm = ddnorm + norm(dk)^2; if wantvar, var = var + dk.*dk; end % Use a plane rotation on the right to eliminate the % super-diagonal element (theta) of the upper-bidiagonal matrix. % Then use the result to estimate norm(x). delta = sn2 * rho; gambar = - cs2 * rho; rhs = phi - delta * z; zbar = rhs / gambar; xnorm = sqrt(xxnorm + zbar^2); gamma = norm([gambar theta]); cs2 = gambar / gamma; sn2 = theta / gamma; z = rhs / gamma; xxnorm = xxnorm + z^2; % Test for convergence. % First, estimate the condition of the matrix Abar, % and the norms of rbar and Abar'rbar. acond = anorm * sqrt( ddnorm ); res1 = phibar^2; res2 = res2 + psi^2; rnorm = sqrt( res1 + res2 ); arnorm = alfa * abs( tau ); % 07 Aug 2002: % Distinguish between % r1norm = ||b - Ax|| and % r2norm = rnorm in current code % = sqrt(r1norm^2 + damp^2*||x||^2). % Estimate r1norm from % r1norm = sqrt(r2norm^2 - damp^2*||x||^2). % Although there is cancellation, it might be accurate enough. r1sq = rnorm^2 - dampsq * xxnorm; r1norm = sqrt( abs(r1sq) ); if r1sq < 0, r1norm = - r1norm; end r2norm = rnorm; % Now use these norms to estimate certain other quantities, % some of which will be small near a solution. test1 = rnorm / bnorm; test2 = arnorm / arnorm0; % test2 = arnorm/( anorm * rnorm ); test3 = 1 / acond; t1 = test1 / (1 + anorm * xnorm / bnorm); rtol = btol + atol * anorm * xnorm / bnorm; % The following tests guard against extremely small values of % atol, btol or ctol. (The user may have set any or all of % the parameters atol, btol, conlim to 0.) % The effect is equivalent to the normal tests using % atol = eps, btol = eps, conlim = 1/eps. if itn >= itnlim, istop = 7; end if 1 + test3 <= 1, istop = 6; end if 1 + test2 <= 1, istop = 5; end if 1 + t1 <= 1, istop = 4; end % Allow for tolerances set by the user. if test3 <= ctol, istop = 3; end if test2 <= atol, istop = 2; end % if test1 <= rtol, istop = 1; end % See if it is time to print something. prnt = 0; if n <= 40 , prnt = 1; end if itn <= 10 , prnt = 1; end if itn >= itnlim-10, prnt = 1; end if rem(itn,10) == 0 , prnt = 1; end if test3 <= 2*ctol , prnt = 1; end if test2 <= 10*atol , prnt = 1; end % if test1 <= 10*rtol , prnt = 1; end if istop ~= 0 , prnt = 1; end if prnt == 1 if show str1 = sprintf( '%6g %12.5e', itn, x(1) ); str2 = sprintf( ' %10.3e %10.3e', r1norm, r2norm ); str3 = sprintf( ' %8.1e %8.1e', test1, test2 ); str4 = sprintf( ' %8.1e %8.1e', anorm, acond ); disp([str1 str2 str3 str4]) end end if istop > 0, break, end end % End of iteration loop. % Print the stopping condition. if show disp(' ') disp('LSQR finished') disp(msg(istop+1,:)) disp(' ') str1 = sprintf( 'istop =%8g r1norm =%8.1e', istop, r1norm ); str2 = sprintf( 'anorm =%8.1e arnorm =%8.1e', anorm, arnorm ); str3 = sprintf( 'itn =%8g r2norm =%8.1e', itn, r2norm ); str4 = sprintf( 'acond =%8.1e xnorm =%8.1e', acond, xnorm ); disp([str1 ' ' str2]) disp([str3 ' ' str4]) disp(' ') end %----------------------------------------------------------------------- % End of lsqr.m %----------------------------------------------------------------------- function z = Aprod(x,mode) if mode == 1 if isnumeric(A), z = A*x; else z = A(x,1); end else if isnumeric(A), z = (x'*A)'; else z = A(x,2); end end end % function Aprod end
github
lijunzh/fd_elastic-master
wfb2rec.m
.m
fd_elastic-master/src/contourlet_toolbox/wfb2rec.m
1,419
utf_8
a8eb98892d022925b472758e34d4640d
function x = wfb2rec(x_LL, x_LH, x_HL, x_HH, h, g) % WFB2REC 2-D Wavelet Filter Bank Decomposition % % x = wfb2rec(x_LL, x_LH, x_HL, x_HH, h, g) % % Input: % x_LL, x_LH, x_HL, x_HH: Four 2-D wavelet subbands % h, g: lowpass analysis and synthesis wavelet filters % % Output: % x: reconstructed image % Make sure filter in a row vector h = h(:)'; g = g(:)'; g0 = g; len_g0 = length(g0); ext_g0 = floor((len_g0 - 1) / 2); % Highpass synthesis filter: G1(z) = -z H0(-z) len_g1 = length(h); c = floor((len_g1 + 1) / 2); g1 = (-1) * h .* (-1) .^ ([1:len_g1] - c); ext_g1 = len_g1 - (c + 1); % Get the output image size [height, width] = size(x_LL); x_B = zeros(height * 2, width); x_B(1:2:end, :) = x_LL; % Column-wise filtering x_L = rowfiltering(x_B', g0, ext_g0)'; x_B(1:2:end, :) = x_LH; x_L = x_L + rowfiltering(x_B', g1, ext_g1)'; x_B(1:2:end, :) = x_HL; x_H = rowfiltering(x_B', g0, ext_g0)'; x_B(1:2:end, :) = x_HH; x_H = x_H + rowfiltering(x_B', g1, ext_g1)'; % Row-wise filtering x_B = zeros(2*height, 2*width); x_B(:, 1:2:end) = x_L; x = rowfiltering(x_B, g0, ext_g0); x_B(:, 1:2:end) = x_H; x = x + rowfiltering(x_B, g1, ext_g1); % Internal function: Row-wise filtering with border handling function y = rowfiltering(x, f, ext1) ext2 = length(f) - ext1 - 1; x = [x(:, end-ext1+1:end) x x(:, 1:ext2)]; y = conv2(x, f, 'valid');
github
lijunzh/fd_elastic-master
wfb2dec.m
.m
fd_elastic-master/src/contourlet_toolbox/wfb2dec.m
1,359
utf_8
cf0a7abcc9abae631039550460b07a48
function [x_LL, x_LH, x_HL, x_HH] = wfb2dec(x, h, g) % WFB2DEC 2-D Wavelet Filter Bank Decomposition % % y = wfb2dec(x, h, g) % % Input: % x: input image % h, g: lowpass analysis and synthesis wavelet filters % % Output: % x_LL, x_LH, x_HL, x_HH: Four 2-D wavelet subbands % Make sure filter in a row vector h = h(:)'; g = g(:)'; h0 = h; len_h0 = length(h0); ext_h0 = floor(len_h0 / 2); % Highpass analysis filter: H1(z) = -z^(-1) G0(-z) len_h1 = length(g); c = floor((len_h1 + 1) / 2); % Shift the center of the filter by 1 if its length is even. if mod(len_h1, 2) == 0 c = c + 1; end h1 = - g .* (-1).^([1:len_h1] - c); ext_h1 = len_h1 - c + 1; % Row-wise filtering x_L = rowfiltering(x, h0, ext_h0); x_L = x_L(:, 1:2:end); x_H = rowfiltering(x, h1, ext_h1); x_H = x_H(:, 1:2:end); % Column-wise filtering x_LL = rowfiltering(x_L', h0, ext_h0)'; x_LL = x_LL(1:2:end, :); x_LH = rowfiltering(x_L', h1, ext_h1)'; x_LH = x_LH(1:2:end, :); x_HL = rowfiltering(x_H', h0, ext_h0)'; x_HL = x_HL(1:2:end, :); x_HH = rowfiltering(x_H', h1, ext_h1)'; x_HH = x_HH(1:2:end, :); % Internal function: Row-wise filtering with border handling function y = rowfiltering(x, f, ext1) ext2 = length(f) - ext1 - 1; x = [x(:, end-ext1+1:end) x x(:, 1:ext2)]; y = conv2(x, f, 'valid');
github
lijunzh/fd_elastic-master
extend2.m
.m
fd_elastic-master/src/contourlet_toolbox/extend2.m
1,861
utf_8
40bc6d67909280efd214bb2536a4a46f
function y = extend2(x, ru, rd, cl, cr, extmod) % EXTEND2 2D extension % % y = extend2(x, ru, rd, cl, cr, extmod) % % Input: % x: input image % ru, rd: amount of extension, up and down, for rows % cl, cr: amount of extension, left and rigth, for column % extmod: extension mode. The valid modes are: % 'per': periodized extension (both direction) % 'qper_row': quincunx periodized extension in row % 'qper_col': quincunx periodized extension in column % % Output: % y: extended image % % Note: % Extension modes 'qper_row' and 'qper_col' are used multilevel % quincunx filter banks, assuming the original image is periodic in % both directions. For example: % [y0, y1] = fbdec(x, h0, h1, 'q', '1r', 'per'); % [y00, y01] = fbdec(y0, h0, h1, 'q', '2c', 'qper_col'); % [y10, y11] = fbdec(y1, h0, h1, 'q', '2c', 'qper_col'); % % See also: FBDEC [rx, cx] = size(x); switch extmod case 'per' I = getPerIndices(rx, ru, rd); y = x(I, :); I = getPerIndices(cx, cl, cr); y = y(:, I); case 'qper_row' rx2 = round(rx / 2); y = [[x(rx2+1:rx, cx-cl+1:cx); x(1:rx2, cx-cl+1:cx)], x, ... [x(rx2+1:rx, 1:cr); x(1:rx2, 1:cr)]]; I = getPerIndices(rx, ru, rd); y = y(I, :); case 'qper_col' cx2 = round(cx / 2); y = [x(rx-ru+1:rx, cx2+1:cx), x(rx-ru+1:rx, 1:cx2); x; ... x(1:rd, cx2+1:cx), x(1:rd, 1:cx2)]; I = getPerIndices(cx, cl, cr); y = y(:, I); otherwise error('Invalid input for EXTMOD') end %----------------------------------------------------------------------------% % Internal Function(s) %----------------------------------------------------------------------------% function I = getPerIndices(lx, lb, le) I = [lx-lb+1:lx , 1:lx , 1:le]; if (lx < lb) | (lx < le) I = mod(I, lx); I(I==0) = lx; end
github
lijunzh/fd_elastic-master
Meyer_sf_vkbook.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/Meyer_sf_vkbook.m
664
utf_8
c34c2143df4bcd9c3d5d9f2588e4550d
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Meyer_sf_vkbook.m % % First Created: 08-26-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function theta = Meyer_sf_vkbook(x) % The smooth passband function for constructing Meyer filters % See the following book for details: % M. Vetterli and J. Kovacevic, Wavelets and Subband Coding, Prentice % Hall, 1995. theta = 3 * x .^ 2 - 2 * x .^ 3; theta(x <= 0) = 0; theta(x >= 1) = 1;
github
lijunzh/fd_elastic-master
rcos.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/rcos.m
476
utf_8
e62db4d444bbc10be5c8478b7b671042
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % rcos.m % % First Created: 08-26-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function theta = rcos(x) % The raised cosine function theta = 0.5 * (1 - cos(pi*x)); theta(x <= 0) = 0; theta(x >= 1) = 1;
github
lijunzh/fd_elastic-master
PyrNDDec_mm.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/PyrNDDec_mm.m
3,663
utf_8
2f1cda7f9c0e6816ff309802f6040e9e
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PyrNDDec_mm.m % % First Created: 10-11-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function subs = PyrNDDec_mm(X, OutD, L, Pyr_mode, smooth_func) % N-dimensional multiscale pyramid decomposition - with multiple modes % % INPUT: % % X: input signal in the spatial domain % % OutD: "S", then the output subbands are given in the spatial domain. % "F", then the output subbands are given in the frequency domain. % This option can be used to get rid of the unnecessary (and % time-consuming) "ifftn-fftn" operations in the middle steps. % L: level of decomposition % % Pyr_mode: Decomposition modes, including the following options. % 1: do not downsample the lowpass subband at the first level % of decomposition % 1.5: downsampling the first lowpass subbabnd by a factor of % 1.5 along each dimension % 2: use a lowpass filter with 1/3 pi cutoff frequency at the % first level of decomposition. % % smooth_func: function handle to generate the filter for the pyramid % decomposition % % OUTPUT: % % subs: an L+1 by 1 cell array storing subbands from the coarsest (i.e. % lowpass) to the finest scales. % % See also: % % PyrNDRec_mm.m OutD = upper(OutD); % The dimensionality of the input signal N = ndims(X); switch Pyr_mode case {1} % the cutoff frequencies at each scale w_array = [0.25 * ones(1, L - 1) 0.5]; % the transition bandwidths at each scale tbw_array = [1/12 * ones(1, L - 1) 1/6]; % the downsampling factor at each scale % no downsampling at the finest scale D_array = [2 * ones(1, L - 1) 1]; case {1.5} % the cutoff frequencies at each scale w_array = [3/8 * ones(1, L - 1) 0.5]; % the transition bandwidths at each scale tbw_array = [1/9 * ones(1, L - 1) 1/7]; % the downsampling factor at each scale % the lowpass channel at the first level of decomposition is % downsampled by a factor of 1.5 along each dimension. D_array = [2 * ones(1, L - 1) 1.5]; case {2} % the cutoff frequencies at each scale w_array = 1 / 3 * ones(1, L); % the transition bandwidths at each scale tbw_array = 1 / 7 * ones(1, L); % the downsampling factor at each scale D_array = 2 * ones(1, L); otherwise error('Unsupported Pyr mode.'); end X = fftn(X); % We assume real-valued input signal X. Half of its Fourier % coefficients can be removed due to conjugate symmetry. X = ccsym(X, N, 'c'); subs = cell(L+1, 1); for n = L : -1: 1 % One level of the pyramid decomposition [Lp, Hp] = PrySDdec_onestep(X, w_array(n), tbw_array(n), D_array(n), smooth_func); X = Lp; Hp = ccsym(Hp, N, 'e'); if OutD == 'S' % Go back to the spatial domain subs{n+1} = real(ifftn(Hp)); else % Retain the frequency domain results subs{n+1} = Hp; end clear Lp Hp; end X = ccsym(X, N, 'e'); if OutD == 'S' subs{1} = real(ifftn(X)); else subs{1} = X; end
github
lijunzh/fd_elastic-master
PyrNDRec_mm.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/PyrNDRec_mm.m
3,341
utf_8
626e7e143d4a6d7138676e79f47b8b04
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PyrNDRec_mm.m % % First Created: 10-11-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function rec = PyrNDRec_mm(subs, InD, Pyr_mode, smooth_func) % N-dimensional multiscale pyramid reconstruction - with multiple modes % % INPUT: % % subs: an L+1 by 1 cell array storing subbands from the coarsest scale % to the coarsest scale. subs{1} contains the lowpass subband. % % InD: "S", then the output subbands are given in the spatial domain. % "F", then the output subbands are given in the frequency domain. % This option can be used to get rid of the unnecessary (and % time-consuming) "ifftn-fftn" operations in the middle steps. % % Pyr_mode: Decomposition modes, including the following options. % 1: do not downsample the lowpass subband at the first level % of decomposition % 1.5: downsampling the first lowpass subbabnd by a factor of % 1.5 along each dimension % 2: use a lowpass filter with 1/3 pi cutoff frequency at the % first level of decomposition. % % smooth_func: function handle to generate the filter for the pyramid % decomposition % % OUTPUT: % % rec: the reconstructed signal in the spatial domain % % See also: % % PyrNDRec_mm.m InD = upper(InD); N = ndims(subs{1}); L = length(subs) - 1; switch Pyr_mode case {1} % the cutoff frequencies at each scale w_array = [0.25 * ones(1, L - 1) 0.5]; % the transition bandwidths at each scale tbw_array = [1/12 * ones(1, L - 1) 1/6]; % the downsampling factor at each scale % no downsampling at the finest scale D_array = [2 * ones(1, L - 1) 1]; case {1.5} % the cutoff frequencies at each scale w_array = [3/8 * ones(1, L - 1) 0.5]; % the transition bandwidths at each scale tbw_array = [1/9 * ones(1, L - 1) 1/7]; % the downsampling factor at each scale % the lowpass channel at the first level of decomposition is % downsampled by a factor of 1.5 along each dimension. D_array = [2 * ones(1, L - 1) 1.5]; case {2} % the cutoff frequencies at each scale w_array = 1 / 3 * ones(1, L); % the transition bandwidths at each scale tbw_array = 1 / 7 * ones(1, L); % the downsampling factor at each scale D_array = 2 * ones(1, L); otherwise error('Unsupported Pyr mode.'); end Lp = subs{1}; subs{1} = []; if InD == 'S' Lp = fftn(Lp); end Lp = ccsym(Lp, N, 'c'); for n = 1 : L Hp = subs{n+1}; subs{n+1} = []; if InD == 'S' Hp = fftn(Hp); end Hp = ccsym(Hp, N, 'c'); Lp = PrySDrec_onestep(Lp, Hp, w_array(n), tbw_array(n), D_array(n), smooth_func); end clear Hp Lp = ccsym(Lp, N, 'e'); rec = real(ifftn(Lp));
github
lijunzh/fd_elastic-master
PSNR.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/PSNR.m
448
utf_8
e453f5dc8f9837e471e9bcab2c65c239
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PSNR.m % % First Created: 09-23-06 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function PSNRdb = PSNR(x, y) err = x - y; err = err(:); PSNRdb = 20 * log10(255/sqrt(mean(err .^2)));
github
lijunzh/fd_elastic-master
ccsym.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/ccsym.m
1,229
utf_8
466eff5ba10dd1882486bc8bb8b773fc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ccsym.m % % First created: 08-14-05 % Last modified: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = ccsym(x, k, type) % Exploit the complex conjugate symmetry in the fourier transform of % real-valued signals % % INPUT % % x: the input signal % % type: 'c' compaction 'e' expansion % % k: along which dimension % % OUTPUT % % y: the compacted (or expanded) signal in the frequency domain % Dimensions of the problem N = ndims(x); szX = size(x); if type == 'c' % initialize the subscript array sub_array = repmat({':'}, [N, 1]); sub_array{k} = 1 : szX(k) / 2 + 1; y = x(sub_array{:}); else % subscript mapping for complex conjugate symmetric signal recovery szX(k) = (szX(k)-1) * 2; sub_conj = cell(N, 1); for m = 1 : N sub_conj{m} = [1 szX(m):-1:2]; end sub_conj{k} = [szX(k)/2 : -1 : 2]; % recover the full signal y = cat(k, x, conj(x(sub_conj{:}))); end
github
lijunzh/fd_elastic-master
ContourletSDDec.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/ContourletSDDec.m
2,103
utf_8
ca02dc7beab42188367dfff90105a5fe
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ContourletSDDec.m % % First Created: 10-13-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = ContourletSDDec(x, nlevs, Pyr_mode, smooth_func, dfilt) % ContourletSD Decomposition % % INPUT % % x: the input image. % % nlevs: vector of numbers of directional filter bank decomposition % levels at each pyramidal level (from coarse to fine scale). % % Pyr_mode: Decomposition modes, including the following options. % 1: do not downsample the lowpass subband at the first level % of decomposition % 1.5: downsampling the first lowpass subbabnd by a factor of % 1.5 along each dimension % 2: use a lowpass filter with 1/3 pi cutoff frequency at the % first level of decomposition. % % smooth_func: function handle to generate the filter for the pyramid % decomposition % % dfilt: filter name for the directional decomposition step % % OUTPUT % % y: a cell vector of length length(nlevs) + 1, where except y{1} is % the lowpass subband, each cell corresponds to one pyramidal % level and is a cell vector that contains bandpass directional % subbands from the DFB at that level. % % See also: % % ContourletSDRec.m L = length(nlevs); y = PyrNDDec_mm(x, 'S', L, Pyr_mode, smooth_func); for k = 2 : L+1 % DFB on the bandpass image switch dfilt % Decide the method based on the filter name case {'pkva6', 'pkva8', 'pkva12', 'pkva'} % Use the ladder structure (whihc is much more efficient) y{k} = dfbdec_l(y{k}, dfilt, nlevs(k-1)); otherwise % General case y{k} = dfbdec(y{k}, dfilt, nlevs(k-1)); end end
github
lijunzh/fd_elastic-master
PrySDdec_onestep.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/PrySDdec_onestep.m
3,399
utf_8
6c4ba7db35e6e5fc98bf07e16f46ddb7
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PrySDdec_onestep.m % % First Created: 10-11-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [Lp, Hp] = PrySDdec_onestep(X, w, tbw, D, smooth_func) % N-dimensional multiscale pyramid decomposition - One Step % % INPUT: % % X: input signal in the Fourier domain. Note: Since the signal is % real-vaued in the spatial domain, we remove the symmetric part of % X along the last dimension to save computation time. This is % important when X is a large 3-D array. See ccsym.m for details. % % w: The ideal cutoff frequency of the lowpass subband. w is specified % as a fraction of PI, e.g. 0.5, 1/3, .... % % tbw: Width of the transition band, specified as a fraction of PI. % % D: downsampling factor. For example, 1, 1.5, 2, ...... % Note: D should divide the size of the FFT array. % % smooth_func: function handle to generate the smooth passband theta % function % % OUTPUT: % % Lp: the lowpass subband in the Fourier domain with the symmetric part % removed along the last dimension. % % Hp: the highpass subband in the Fourier domain with the symmetric part % removed along the last dimension. % % See also: % % PyrSDrec_onestep.m, PyrNDDec_mm.m, PyrNDRec_mm.m %% The dimension of the problem N = ndims(X); szX = size(X); %% the original full size szF = szX; szF(end) = (szX(end) - 1) * 2; %% Passband index arrays pbd_array = cell(N, 1); %% Lowpass filter (nonzero part) szLf = 2 * ceil(szF / 2 * (w + tbw)) + 1; szLf(end) = (szLf(end) + 1) / 2; Lf = ones(szLf); szR = ones(1, N); % for resizing for n = 1 : N %% current Fourier domain resolution nr = szF(n); szR(n) = szLf(n); %% passband pbd = [0 : ceil(nr / 2 * (w + tbw))] .'; %% passband value pbd_value = realsqrt(smooth_func((pbd(end) - pbd) ./ (ceil(nr / 2 * (w + tbw)) ... - floor(nr / 2 * (w - tbw))))); %% See if we need to consider the symmetric part if n ~= N pbd = [pbd ; [nr - pbd(end) : nr - 1].']; pbd_value = [pbd_value ; flipud(pbd_value(2:end))]; end pbd_array{n} = pbd + 1; pbd_value = reshape(pbd_value, szR); Lf = Lf .* repmat(pbd_value, szLf ./ szR); szR(n) = 1; end %% Get the lowpass subband szLp = szF ./ D; if any(fix(szLp) ~= szLp) error('The downsampling factor must be able to divide the size of the FFT matrix!'); end szLp(end) = szLp(end) / 2 + 1; pbd_array_sml = pbd_array; for n = 1 : N - 1 pbd = pbd_array{n}; pbd((length(pbd) + 3) / 2 : end) = pbd((length(pbd) + 3) / 2 : end) ... + szLp(n) - szX(n); pbd_array_sml{n} = pbd; end Lp = repmat(complex(0), szLp); Lp(pbd_array_sml{:}) = (Lf ./ D^(N/2)) .* X(pbd_array{:}); %% Get the highpass subband Hp = X; Hp(pbd_array{:}) = realsqrt(1 - realpow(Lf, 2)) .* X(pbd_array{:}); % Lf = ccsym(Lf, N, 'e'); % a = sum(realpow(Lf(:), 2)); % Lp = Lp ./ sqrt(a * prod(szF) / prod(szF./D)^2) * D^(N/2); % Hp = Hp ./ sqrt(1 - a/prod(szF));
github
lijunzh/fd_elastic-master
ContourletSDRec.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/ContourletSDRec.m
1,936
utf_8
dff2ea8a87a784ea1c51d735fd9d59ab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ContourletSDRec.m % % First Created: 10-13-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = ContourletSDRec(y, Pyr_mode, smooth_func, dfilt) % ContourletSD Reconstruction % % INPUT % % y: a cell vector of length length(nlevs) + 1, where except y{1} is % the lowpass subband, each cell corresponds to one pyramidal % level and is a cell vector that contains bandpass directional % subbands from the DFB at that level. % % Pyr_mode: Decomposition modes, including the following options. % 1: do not downsample the lowpass subband at the first level % of decomposition % 1.5: downsampling the first lowpass subbabnd by a factor of % 1.5 along each dimension % 2: use a lowpass filter with 1/3 pi cutoff frequency at the % first level of decomposition. % % smooth_func: function handle to generate the filter for the pyramid % decomposition % % dfilt: filter name for the directional decomposition step % % OUTPUT % % x: the reconstructed image % % See also: % % ContourletSDDec.m L = length(y) - 1; for k = 2 : L+1 % Reconstruct the bandpass image from DFB % Decide the method based on the filter name switch dfilt case {'pkva6', 'pkva8', 'pkva12', 'pkva'} % Use the ladder structure (much more efficient) y{k} = dfbrec_l(y{k}, dfilt); otherwise % General case y{k} = dfbrec(y{k}, dfilt); end end x = PyrNDRec_mm(y, 'S', Pyr_mode, smooth_func);
github
lijunzh/fd_elastic-master
PrySDrec_onestep.m
.m
fd_elastic-master/src/contourlet_toolbox/contourlet_sfl/PrySDrec_onestep.m
3,291
utf_8
177fd547ae5154f355724cff80c2656a
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Yue M. Lu and Minh N. Do % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PrySDrec_onestep.m % % First Created: 10-11-05 % Last Revision: 07-13-09 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function rec = PrySDrec_onestep(Lp, Hp, w, tbw, D, smooth_func) % N-dimensional multiscale pyramid reconstruction - One Step % % INPUT: % % Lp: the lowpass subband in the Fourier domain with the symmetric part % removed along the last dimension. % % Hp: the highpass subband in the Fourier domain with the symmetric part % removed along the last dimension. % % w: The ideal cutoff frequency of the lowpass subband. w is specified as a % fraction of PI, e.g. 0.5, 1/3, .... % % tbw: Width of the transition band, specified as a fraction of PI. % % D: downsampling factor. For example, 1, 1.5, 2, ...... % Note: D should divide the size of the FFT array. % % smooth_func: function handle to generate the smooth passband theta % function % % OUTPUT: % % rec: the reconstructed signal in the Fourier domain. Note: Since the % signal is real-vaued in the spatial domain, we remove the % symmetric part of rec along the last dimension to save % computation time. This is important when rec is a large 3-D % array. See ccsym.m for details. % % See also: % % PyrSDdec_onestep.m, PyrNDDec_mm.m, PyrNDRec_mm.m %% The dimension of the problem N = ndims(Hp); szX = size(Hp); %% the original full size szF = szX; szF(end) = (szX(end) - 1) * 2; %% Passband index arrays pbd_array = cell(N, 1); %% Lowpass filter (nonzero part) szLf = 2 * ceil(szF / 2 * (w + tbw)) + 1; szLf(end) = (szLf(end) + 1) / 2; Lf = ones(szLf); szR = ones(1, N); %% for resizing for n = 1 : N %% current Fourier domain resolution nr = szF(n); szR(n) = szLf(n); %% passband pbd = [0 : ceil(nr / 2 * (w + tbw))] .'; %% passband value pbd_value = realsqrt(smooth_func((pbd(end) - pbd) ./ (ceil(nr / 2 * (w + tbw)) ... - floor(nr / 2 * (w - tbw))))); %% See if we need to consider the symmetric part if n ~= N pbd = [pbd ; [nr - pbd(end) : nr - 1].']; pbd_value = [pbd_value ; flipud(pbd_value(2:end))]; end pbd_array{n} = pbd + 1; pbd_value = reshape(pbd_value, szR); Lf = Lf .* repmat(pbd_value, szLf ./ szR); szR(n) = 1; end %% Get the reconstruction rec = Hp; clear Hp; rec(pbd_array{:}) = realsqrt(1 - realpow(Lf, 2)) .* rec(pbd_array{:}); %% Get the lowpass subband szLp = szF ./ D; if any(fix(szLp ~= szLp)) error('The downsampling factor must be able to divide the size of the FFT matrix!'); end szLp(end) = szLp(end) / 2 + 1; pbd_array_sml = pbd_array; for n = 1 : N - 1 pbd = pbd_array{n}; pbd((length(pbd) + 3) / 2 : end) = pbd((length(pbd) + 3) / 2 : end) ... + szLp(n) - szX(n); pbd_array_sml{n} = pbd; end rec(pbd_array{:}) = rec(pbd_array{:}) + Lp(pbd_array_sml{:}) .* (Lf .* D^(N/2));
github
lijunzh/fd_elastic-master
dynamicimage.m
.m
fd_elastic-master/src/deblocking_filter/dynamicimage.m
3,024
utf_8
f1ac482da624a445cd56661d94ef410f
function ttbin=dynamicimage(stackeddataM2int,nrpixels,imag_col) if nargin==1 %nrpixels=16; nrpixels=30; %nrpixels = 64; %nrpixels=128; %imag_col=255; imag_col = 255; end if nargin==2 imag_col=64; end sc=size(stackeddataM2int,2); begin_im=zeros(1,sc);end_im=zeros(1,sc); for s=1:sc begin_im(s)=find(isnan(stackeddataM2int(:,s))==0,1,'first'); end_im(s)=find(isnan(stackeddataM2int(:,s))==0,1,'last'); end if isempty(begin_im);startdepthbin=1;end if isempty(end_im);enddepthbin=size(stackeddataM2int,1);end startdepthbin=min(begin_im); enddepthbin=max(end_im); W=nrpixels; Ltot=enddepthbin-startdepthbin+1; j=0;clear lvlsM2 pixnr;pixnr=zeros(1,floor(Ltot/W-1)); for i=startdepthbin:W:enddepthbin j=j+1;E=min(i+W-1,enddepthbin);pixnr(j)=round(i+W/2); lvlsM2dyn(1:imag_col,j)=colorbinlevels(stackeddataM2int(i:E,1:sc),imag_col,sc); end y=zeros(imag_col,length(stackeddataM2int)); for i=1:imag_col y(i,1:pixnr(1))=lvlsM2dyn(i,1); y(i,pixnr(end):enddepthbin)=lvlsM2dyn(i,end); if length(pixnr)>1 y(i,pixnr(1):pixnr(end))=interp1(pixnr,lvlsM2dyn(i,:),pixnr(1):pixnr(end),'linear'); end end x=stackeddataM2int; clrs=y; % %%%%%%%%%%%%%%make 64 step histogram data for coloring startdpt=1; [enddpt dummy]=size(x); [nrclrs dummy]=size(clrs); ttbin=zeros(enddpt-startdpt+1,sc,'int16'); for i=1:sc for j=startdpt:enddpt for k=nrclrs-1:-1:1 if x(j,i)>clrs(k,j) %-1e-3 %if I use x=>clrs, it does not work properly ttbin(j,i)=k; break end end end end [a b]=find(x==Inf); for i=1:length(a);ttbin(a(i),b(i))=nrclrs;end %[a b]=find(x==0); %for i=1:length(a);ttbin(a(i),b(i))=nrclrs;end [a2 b2]=find(isnan(x)); for i=1:length(a2);ttbin(a2(i),b2(i))=nrclrs;end %if length(a)==0 & length(a2)==0;ttbin(end,end)=nrclrs;end end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ttbinlevels=colorbinlevels(x,ncolors,sc) % %%%%%%%%%%%%%%make step histogram data for coloring startdpt=1; [enddpt dummy]=size(x); dptlong=zeros(sc*(enddpt-startdpt+1)-length(find(x==Inf))-length(find(isnan(x)))-length(find(x==0)),1); m=0; % drop all zeros and Nan and Inf's from the array for i=1:sc for j=startdpt:enddpt if x(j,i)~=Inf & isnan(x(j,i))~=1 & x(j,i)~=0; m=m+1; dptlong(m)=x(j,i); end end end sizel=m; i=m; remove_val=zeros(1,m);l=0; while i>1 if dptlong(i-1)==dptlong(i) l=l+1; remove_val(l)=i; end i=i-1; end remove_val(l+1:end)=[]; dptlong(remove_val)=[]; sizel=length(dptlong); %sort the resulting values and find the values where the color needs to %change % if sizel~=0 if sizel>ncolors sortdptlong=sortrows(dptlong,1); for i=1:ncolors clrs(i)=sortdptlong(round(i*sizel/ncolors)); end ttbinlevels=clrs; else ttbinlevels(1:ncolors)=-1; end end % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
lijunzh/fd_elastic-master
example_PQN_Lasso_Complex.m
.m
fd_elastic-master/src/PQN/example_PQN_Lasso_Complex.m
1,568
utf_8
e16a33e8a000fd7b25dbc0b78fce3c6d
function example_PQN_Lasso_Complex % solve min_x ||R*fft(x)-b||^2 s.t. ||x||_1 <= tau close all; clear; clc; addpath(genpath('./')); m = 128; n = 512; R = randn(m, n) + 1j * randn(m, n); R = R / sqrt(m); x = 10 * randn(n,1).*(rand(n,1) > 0.9); X = 1/sqrt(n) * fft(x, n); F = 1/sqrt(n) * fft(eye(n, n)); b = R * X; tau = norm(x, 1); %% SPGL1 xL1_spgLasso = spg_lasso(R * F, b, tau); %% minConF options.verbose = 2; options.optTol = 1e-8; options.SPGoptTol = 1e-25; options.adjustStep = 1; options.bbInit = 1; options.maxIter = 2000; func = @(zRealImag) misfitFunc([real(R) -imag(R); imag(R) real(R)], zRealImag, [real(b); imag(b)]); % L2-norm minimization with L1-norm regularization, i.e., LASSO tau = norm(x, 1); funProj = @(zRealImag) complexProject(zRealImag, tau); % % L2-norm minimization without L1-norm regularization % funProj = @(x) boundProject(x, [-inf(2*n, 1)], [inf(2*n, 1)]); xL1_pqnRealImag = minConF_PQN_new(func, [zeros(n, 1); zeros(n, 1)], funProj, options); xL1_pqn = xL1_pqnRealImag(1:n) + 1j*xL1_pqnRealImag(n+1:2*n); end function [value, grad] = misfitFunc(R, x, b) n = length(x); Xreal = 1/sqrt(n/2) * ( real(fft(x(1:n/2), n/2)) - imag(fft(x(n/2+1:n), n/2)) ); Ximag = 1/sqrt(n/2) * ( imag(fft(x(1:n/2), n/2)) + real(fft(x(n/2+1:n), n/2)) ); X = [Xreal; Ximag]; value = 1/2 * sum((R*X-b).^2); grad = R'*(R*X-b); gradReal = sqrt(n/2) * ( real(ifft(grad(1:n/2), n/2)) - imag(ifft(grad(n/2+1:n), n/2)) ); gradImag = sqrt(n/2) * ( imag(ifft(grad(1:n/2), n/2)) + real(ifft(grad(n/2+1:n), n/2)) ); grad = [gradReal; gradImag]; end
github
lijunzh/fd_elastic-master
prettyPlot.m
.m
fd_elastic-master/src/PQN/misc/prettyPlot.m
4,994
utf_8
b170f4e05629a1115ee65f9f364039b1
function [] = prettyPlot(xData,yData,legendStr,plotTitle,plotXlabel,plotYlabel,type,style,errors) % prettyPlot(xData,yData,legendStr,plotTitle,plotXlabel,plotYlabel,type,style,errors) % % type 0: plot % type 1: semilogx % % style -1: matlab style % style 0: use line styles % style 1: use markers % % Save as image: % set(gcf, 'PaperPositionMode', 'auto'); % print -depsc2 finalPlot1.eps if nargin < 7 type = 0; end if nargin < 8 style = 0; end if nargin < 9 errors = []; end if style == -1 % Matlab style doLineStyle = 0; doMarker = 0; lineWidth = 1.5; colors = getColorsRGB; elseif style == 0 % Paper style (line styles) doLineStyle = 1; doMarker = 0; lineWidth = 3; colors = [.5 0 0 0 .5 0 0 0 .5 0 .5 .5 .5 .5 0]; else % Paper style (markers) doLineStyle = 0; doMarker = 1; lineWidth = 3; colors = [.5 0 0 0 .5 0 0 0 .5 0 .5 .5 .5 .5 0]; end if type == 1 plotFunc = @semilogx; else plotFunc = @plot; end if isempty(xData) for i = 1:length(yData) h(i) = plotFunc(1:length(yData{i}),yData{i}); applyStyle(h(i),i,colors,doLineStyle,doMarker,lineWidth) hold on; end elseif iscell(xData) for i = 1:length(yData) h(i) = plotFunc(xData{i}-xData{i}(1),yData{i}); applyStyle(h(i),i,colors,doLineStyle,doMarker,lineWidth) hold on; end elseif iscell(yData) for i = 1:length(yData) if length(yData{i}) >= length(xData) h(i) = plotFunc(xData,yData{i}(1:length(xData))); else if isscalar(yData{i}) h(i) = hline(yData{i},'-'); else h(i) = plotFunc(xData(1:length(yData{i})),yData{i}); end end applyStyle(h(i),i,colors,doLineStyle,doMarker,lineWidth) hold on; end else for i = 1:size(yData,2) h(i) = plotFunc(xData,yData(:,i)); applyStyle(h(i),i,colors,doLineStyle,doMarker,lineWidth) hold on; end end set(gca,'FontName','AvantGarde','FontWeight','normal','FontSize',12); if ~isempty(legendStr) h = legend(h,legendStr); set(h,'FontSize',10,'FontWeight','normal'); set(h,'Location','NorthEast'); end h = title(plotTitle); set(h,'FontName','AvantGarde','FontSize',10,'FontWeight','bold'); h1 = xlabel(plotXlabel); h2 = ylabel(plotYlabel); set([h1 h2],'FontName','AvantGarde','FontSize',14,'FontWeight','normal'); set(gca, ... 'Box' , 'on' , ... 'TickDir' , 'out' , ... 'TickLength' , [.02 .02] , ... 'XMinorTick' , 'off' , ... 'YMinorTick' , 'off' , ... 'LineWidth' , 1 ); % 'YGrid' , 'on' , ... % 'XColor' , [.3 .3 .3], ... % 'YColor' , [.3 .3 .3], ... if ~isempty(errors) for i = 1:length(yData) if isscalar(yData{i}) hE1 = hline(yData{i}+errors{i}); hE2 = hline(yData{i}-errors{i}); else if length(yData{i}) >= length(xData) if type == 1 hE1 = plotFunc(xData,yData{i}(1:length(xData))+errors{i}(1:length(xData))); hE2 = plotFunc(xData,yData{i}(1:length(xData))-errors{i}(1:length(xData))); end end end set(hE1,'Color',min(1,colors(i,:)+.75),'LineWidth',1); set(hE2,'Color',min(1,colors(i,:)+.75),'LineWidth',1); if 0 switch i case 2 set(hE1,'LineStyle','--'); set(hE2,'LineStyle','--'); case 3 set(hE1,'LineStyle','-.'); set(hE2,'LineStyle','-.'); case 4 set(hE1,'LineStyle',':'); set(hE2,'LineStyle',':'); end else set(hE1,'LineStyle','-'); set(hE2,'LineStyle','-'); end pause; end end set(gcf, 'PaperPositionMode', 'auto'); print -depsc2 finalPlot1.eps end function [] = applyStyle(h,i,colors,doLineStyle,doMarker,lineWidth) set(h,'Color',colors(i,:),'LineWidth',lineWidth); if doLineStyle switch i case 2 set(h,'LineStyle','--'); case 3 set(h,'LineStyle','-.'); case 4 set(h,'LineStyle',':'); end end if doMarker % MarkerFaceColor % MarkerSize % MarkerEdgeColor switch i case 1 set(h,'Marker','o'); case 2 set(h,'Marker','s'); case 3 set(h,'Marker','d'); case 4 %set(h,'LineStyle','--'); set(h,'Marker','v'); end set(h,'MarkerSize',10); set(h,'MarkerFaceColor',[1 1 .9]); %set(h,'MarkerFaceColor',min(colors(i,:)+.75,1)); end end
github
lijunzh/fd_elastic-master
myProcessOptions.m
.m
fd_elastic-master/src/PQN/misc/myProcessOptions.m
674
utf_8
b94d252a960faa95a3074129247619e6
function [varargout] = myProcessOptions(options,varargin) % Similar to processOptions, but case insensitive and % using a struct instead of a variable length list options = toUpper(options); for i = 1:2:length(varargin) if isfield(options,upper(varargin{i})) v = getfield(options,upper(varargin{i})); if isempty(v) varargout{(i+1)/2}=varargin{i+1}; else varargout{(i+1)/2}=v; end else varargout{(i+1)/2}=varargin{i+1}; end end end function [o] = toUpper(o) if ~isempty(o) fn = fieldnames(o); for i = 1:length(fn) o = setfield(o,upper(fn{i}),getfield(o,fn{i})); end end end
github
lijunzh/fd_elastic-master
auxGroupLinfProject.m
.m
fd_elastic-master/src/PQN/project/auxGroupLinfProject.m
1,001
utf_8
beb66218882b76d74e58a8e4e86a0591
function w = groupLinfProject(w,p,groupStart,groupPtr) alpha = w(p+1:end); w = w(1:p); for i = 1:length(groupStart)-1 groupInd = groupPtr(groupStart(i):groupStart(i+1)-1); [w(groupInd) alpha(i)] = projectAuxSort(w(groupInd),alpha(i)); end w = [w;alpha]; end %% Function to solve the projection for a single group function [w,alpha] = projectAuxSort(w,alpha) if ~all(abs(w) <= alpha) sorted = [sort(abs(w),'descend');0]; s = 0; for k = 1:length(sorted) % Compute Projection with k largest elements s = s + sorted(k); projPoint = (s+alpha)/(k+1); if projPoint > 0 && projPoint > sorted(k+1) w(abs(w) >= sorted(k)) = sign(w(abs(w) >= sorted(k)))*projPoint; alpha = projPoint; break; end if k == length(sorted) % alpha is too negative, optimal answer is 0 w = zeros(size(w)); alpha = 0; end end end end
github
lijunzh/fd_elastic-master
Algorithm3BlockMatrix.m
.m
fd_elastic-master/src/PQN/DuchiEtAl_UAI2008/Algorithm3BlockMatrix.m
2,981
utf_8
abb9e934001a060787e9cd1c805a7a70
function [K,W,f] = Algorithm3(Sigma, groups, lambda,normtype) % normtype = {2,Inf} % Groups is a vector containing the group numbers for each row % construct cell-array with indices for faster projection groups = groups(:); nGroups = max(groups); indices = cell(nGroups,1); for i=1:nGroups indices{i} = find(groups == i); end % ASSUMPTION: indices are contiguous! nIndices = zeros(size(indices)); for i=1:nGroups nIndices(i) = length(indices{i}); end % Get problem size n = size(Sigma,1); % Setup projection function if normtype == 2 % funProj = @projectLinf2BlockMatrix; funProj = @(a,b,c) projectLinf2BlockFast(a,nIndices,c); % (W, nIndices, lambda) else %funProj = @projectLinf1BlockMatrix; funProj = @(a,b,c) projectLinf1BlockFast(a,nIndices,c); % (W, nIndices, lambda) end % Find initial W, using lemma 1 and diag(W) = lambda W = initialW(Sigma,lambda(groups+nGroups*(groups-1))); W = projectLinf1BlockMatrix(W,indices,lambda); K = inv(Sigma + W); % Print header fprintf('%4s %11s %9s %9s\n','Iter','Objective','Gap','Step'); % Main loop i = 0; maxiter = 500; epsilon = 1e-4; alpha = 1e-3; beta = 0.5; t = 1; f = logdet(Sigma + W,-Inf); while (1) % Compute unconstrained gradient G = K; % Compute direction of step D = funProj(W+t*G,indices,lambda); % Compute initial and next objective values f0 = f; ft = logdet(Sigma + D,-Inf); % Perform backtracking line search while ft < f0 + alpha * traceMatProd(D-W,G) % Exit with alpha is too small if (t < 1e-6), break; end; % Decrease t, recalculate direction and objective t = beta * t; D = funProj(W + t*G,indices,lambda); ft = logdet(Sigma + D,-Inf); end f = ft; % Update W and K W = D; K = inv(Sigma + W); % Compute duality gap eta = traceMatProd(Sigma,K) - n; for j=1:nGroups for l=1:nGroups if j==l y = K(indices{j},indices{l}); mak = sum(sum(abs(y))); else y = K(indices{j},indices{l}); y = y(:); mak = norm(y,normtype); end if ~isempty(mak) eta = eta + lambda(j+nGroups*(l-1)) * mak; end end end % Increment iteration i = i + 1; % Print progress fprintf('%4d %11.4e %9.2e %9.2e\n',i,f,eta,t); % Check stopping criterion if (eta < epsilon) fprintf('Exit: Optimal solution\n'); break; elseif (i >= maxiter) fprintf('Exit: Maximum number of iterations reached\n'); break; elseif (t < 1e-6) fprintf('Exit: Linesearch error\n'); break; end % Increase t slightly t = t / beta; end end function l = logdet(M,errorDet) [R,p] = chol(M); if p ~= 0 l = errorDet; else l = 2*sum(log(diag(R))); end global trace if trace == 1 global fValues fValues(end+1,1) = l; drawnow end end
github
lijunzh/fd_elastic-master
Algorithm1.m
.m
fd_elastic-master/src/PQN/DuchiEtAl_UAI2008/Algorithm1.m
2,282
utf_8
c242f4201c7825c86e7951b13c83425a
function [K,W] = Algorithm1(Sigma, lambda) % Get problem size n = size(Sigma,1); % Find initial W, using lemma 1 and diag(W) = lambda W = initialW(Sigma,diag(lambda)); K = inv(Sigma + W); % Print header fprintf('%4s %11s %9s %9s\n','Iter','Objective','Gap','Step'); % Main loop i = 0; maxiter = 1200; epsilon = 1e-4; f = logdet(Sigma+W,-Inf); while (1) % Compute unconstrained gradient G = K; % Zero components of gradient which would result in constrain violation G((1:n) + (0:n-1)*n) = 0; % Gii = 0 G((W == lambda) & (G > 0)) = 0; G((W ==-lambda) & (G < 0)) = 0; % Perform line search and obtain new W [t,f,W] = Algorithm2(Sigma,W,K,G,lambda,f); % Update K K = inv(Sigma + W); % Compute duality gap eta = trace(Sigma * K) + sum(sum(lambda.*abs(K))) - n; % Increment iteration i = i + 1; % Print progress fprintf('%4d %11.4e %9.2e %9.2e\n',i,f,eta,t); % Check stopping criterion if (eta < epsilon) fprintf('Exit: Optimal solution\n'); break; elseif (i >= maxiter) fprintf('Exit: Maximum number of iterations reached\n'); break; elseif (t < 1e-6) fprintf('Exit: Linesearch error\n'); break; end end end function [t,f,W] = Algorithm2(Sigma,W0,K,G,lambda,f0) KG = K*G; t = trace(KG) / traceMatProd(KG,KG); while(1) % Trial solution projected onto feasible box W = W0 + t*G; idx = W > lambda; W(idx) = lambda(idx); % Project - Positive part idx = W <-lambda; W(idx) = -lambda(idx); % Project - Negative part % Compute new objective f = logdet(Sigma + W,-Inf); fHat = f; % D = W - W0; % KD = K * D; % fHat = f0 + trace(KD) - traceMatProd(KD,KD) / 2; % Test exit conditions if fHat >= f0, break; end; if t < 1e-6, break; end; % Reduce step length t = t / 2; end % Following is needed when using the approximate evaluation %f = logdet(Sigma+W); end function l = logdet(M,errorDet) [R,p] = chol(M); if p ~= 0 l = errorDet; else l = 2*sum(log(diag(R))); end; global trace if trace == 1 global fValues fValues(end+1,1) = l; drawnow end end
github
lijunzh/fd_elastic-master
minConF_PQN.m
.m
fd_elastic-master/src/PQN/minConF/minConF_PQN.m
8,435
utf_8
9af951891988336bc11af977e11f33f2
function [x,f,funEvals] = minConF_PQN(funObj,x,funProj,options) % function [x,f] = minConF_PQN(funObj,funProj,x,options) % % Function for using a limited-memory projected quasi-Newton to solve problems of the form % min funObj(x) s.t. x in C % % The projected quasi-Newton sub-problems are solved the spectral projected % gradient algorithm % % @funObj(x): function to minimize (returns gradient as second argument) % @funProj(x): function that returns projection of x onto C % % options: % verbose: level of verbosity (0: no output, 1: final, 2: iter (default), 3: % debug) % optTol: tolerance used to check for progress (default: 1e-6) % maxIter: maximum number of calls to funObj (default: 500) % maxProject: maximum number of calls to funProj (default: 100000) % numDiff: compute derivatives numerically (0: use user-supplied % derivatives (default), 1: use finite differences, 2: use complex % differentials) % suffDec: sufficient decrease parameter in Armijo condition (default: 1e-4) % corrections: number of lbfgs corrections to store (default: 10) % adjustStep: use quadratic initialization of line search (default: 0) % bbInit: initialize sub-problem with Barzilai-Borwein step (default: 1) % SPGoptTol: optimality tolerance for SPG direction finding (default: 1e-6) % SPGiters: maximum number of iterations for SPG direction finding (default:10) nVars = length(x); % Set Parameters if nargin < 4 options = []; end [verbose,numDiff,optTol,maxIter,maxProject,suffDec,corrections,adjustStep,bbInit,SPGoptTol,SPGiters,SPGtestOpt] = ... myProcessOptions(... options,'verbose',2,'numDiff',0,'optTol',1e-6,'maxIter',500,'maxProject',100000,'suffDec',1e-4,... 'corrections',10,'adjustStep',0,'bbInit',0,'SPGoptTol',1e-6,'SPGiters',10,'SPGtestOpt',0); % Output Parameter Settings if verbose >= 3 fprintf('Running PQN...\n'); fprintf('Number of L-BFGS Corrections to store: %d\n',corrections); fprintf('Spectral initialization of SPG: %d\n',bbInit); fprintf('Maximum number of SPG iterations: %d\n',SPGiters); fprintf('SPG optimality tolerance: %.2e\n',SPGoptTol); fprintf('PQN optimality tolerance: %.2e\n',optTol); fprintf('Quadratic initialization of line search: %d\n',adjustStep); fprintf('Maximum number of function evaluations: %d\n',maxIter); fprintf('Maximum number of projections: %d\n',maxProject); end % Output Log if verbose >= 2 fprintf('%10s %10s %10s %15s %15s %15s\n','Iteration','FunEvals','Projections','Step Length','Function Val','Opt Cond'); end % Make objective function (if using numerical derivatives) funEvalMultiplier = 1; if numDiff if numDiff == 2 useComplex = 1; else useComplex = 0; end funObj = @(x)autoGrad(x,useComplex,funObj); funEvalMultiplier = nVars+1-useComplex; end % Project initial parameter vector x = funProj(x); projects = 1; % Evaluate initial parameters [f,g] = funObj(x); funEvals = 1; % Check Optimality of Initial Point projects = projects+1; if sum(abs(funProj(x-g)-x)) < optTol if verbose >= 1 fprintf('First-Order Optimality Conditions Below optTol at Initial Point\n'); end return; end i = 1; while funEvals <= maxIter % Compute Step Direction if i == 1 p = funProj(x-g); projects = projects+1; S = zeros(nVars,0); Y = zeros(nVars,0); Hdiag = 1; else y = g-g_old; s = x-x_old; [S,Y,Hdiag] = lbfgsUpdate(y,s,corrections,verbose==3,S,Y,Hdiag); % Make Compact Representation k = size(Y,2); L = zeros(k); for j = 1:k L(j+1:k,j) = S(:,j+1:k)'*Y(:,j); end N = [S/Hdiag Y]; M = [S'*S/Hdiag L;L' -diag(diag(S'*Y))]; HvFunc = @(v)lbfgsHvFunc2(v,Hdiag,N,M); if bbInit % Use Barzilai-Borwein step to initialize sub-problem alpha = (s'*s)/(s'*y); if alpha <= 1e-10 || alpha > 1e10 alpha = 1/norm(g); end % Solve Sub-problem xSubInit = x-alpha*g; feasibleInit = 0; else xSubInit = x; feasibleInit = 1; end % Solve Sub-problem [p,subProjects] = solveSubProblem(x,g,HvFunc,funProj,SPGoptTol,SPGiters,SPGtestOpt,feasibleInit,x); projects = projects+subProjects; end d = p-x; g_old = g; x_old = x; % Check that Progress can be made along the direction gtd = g'*d; if gtd > -optTol if verbose >= 1 fprintf('Directional Derivative below optTol\n'); end break; end % Select Initial Guess to step length if i == 1 || adjustStep == 0 t = 1; else t = min(1,2*(f-f_old)/gtd); end % Bound Step length on first iteration if i == 1 t = min(1,1/sum(abs(g))); end % Evaluate the Objective and Gradient at the Initial Step x_new = x + t*d; [f_new,g_new] = funObj(x_new); funEvals = funEvals+1; % Backtracking Line Search f_old = f; while f_new > f + suffDec*t*gtd || ~isLegal(f_new) temp = t; % Backtrack to next trial value if ~isLegal(f_new) || ~isLegal(g_new) if verbose == 3 fprintf('Halving Step Size\n'); end t = t/2; else if verbose == 3 fprintf('Cubic Backtracking\n'); end t = polyinterp([0 f gtd; t f_new g_new'*d]); end % Adjust if change is too small/large if t < temp*1e-3 if verbose == 3 fprintf('Interpolated value too small, Adjusting\n'); end t = temp*1e-3; elseif t > temp*0.6 if verbose == 3 fprintf('Interpolated value too large, Adjusting\n'); end t = temp*0.6; end % Check whether step has become too small if sum(abs(t*d)) < optTol || t == 0 if verbose == 3 fprintf('Line Search failed\n'); end t = 0; f_new = f; g_new = g; break; end % Evaluate New Point f_prev = f_new; t_prev = temp; x_new = x + t*d; [f_new,g_new] = funObj(x_new); funEvals = funEvals+1; end % Take Step x = x_new; f = f_new; g = g_new; optCond = sum(abs(funProj(x-g)-x)); projects = projects+1; % Output Log if verbose >= 2 fprintf('%10d %10d %10d %15.5e %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,projects,t,f,optCond); end % Check optimality if optCond < optTol fprintf('First-Order Optimality Conditions Below optTol\n'); break; end if sum(abs(t*d)) < optTol if verbose >= 1 fprintf('Step size below optTol\n'); end break; end if abs(f-f_old) < optTol if verbose >= 1 fprintf('Function value changing by less than optTol\n'); end break; end if funEvals*funEvalMultiplier > maxIter if verbose >= 1 fprintf('Function Evaluations exceeds maxIter\n'); end break; end if projects > maxProject if verbose >= 1 fprintf('Number of projections exceeds maxProject\n'); end break; end i = i + 1; end end function [p,subProjects] = solveSubProblem(x,g,H,funProj,optTol,maxIter,testOpt,feasibleInit,x_init) % Uses SPG to solve for projected quasi-Newton direction options.verbose = 0; options.optTol = optTol; options.maxIter = maxIter; options.testOpt = testOpt; options.feasibleInit = feasibleInit; funObj = @(p)subHv(p,x,g,H); [p,f,funEvals,subProjects] = minConF_SPG(funObj,x_init,funProj,options); end function [f,g] = subHv(p,x,g,HvFunc) d = p-x; Hd = HvFunc(d); f = g'*d + (1/2)*d'*Hd; g = g + Hd; end
github
lijunzh/fd_elastic-master
minConF_PQN_new.m
.m
fd_elastic-master/src/PQN/minConF/minConF_PQN_new.m
9,327
utf_8
9a3b5e452f461865773d72fe89f5373f
function [x,f,funEvals] = minConF_PQN_new(funObj,x,funProj,options) % function [x,f] = minConF_PQN(funObj,funProj,x,options) % % Function for using a limited-memory projected quasi-Newton to solve problems of the form % min funObj(x) s.t. x in C % % The projected quasi-Newton sub-problems are solved the spectral projected % gradient algorithm % % @funObj(x): function to minimize (returns gradient as second argument) % @funProj(x): function that returns projection of x onto C % % options: % verbose: level of verbosity (0: no output, 1: final, 2: iter (default), 3: % debug) % optTol: tolerance used to check for progress (default: 1e-6) % maxIter: maximum number of calls to funObj (default: 500) % maxProject: maximum number of calls to funProj (default: 100000) % numDiff: compute derivatives numerically (0: use user-supplied % derivatives (default), 1: use finite differences, 2: use complex % differentials) % suffDec: sufficient decrease parameter in Armijo condition (default: 1e-4) % corrections: number of lbfgs corrections to store (default: 10) % adjustStep: use quadratic initialization of line search (default: 0) % testOpt: test optimality condition (default: 1) % bbInit: initialize sub-problem with Barzilai-Borwein step (default: 1) % SPGoptTol: optimality tolerance for SPG direction finding (default: 1e-6) % SPGiters: maximum number of iterations for SPG direction finding (default:10) % SPGtestOpt: test optimality condition for sub-problems to be solved by SPG (default: 0) nVars = length(x); % Set Parameters if nargin < 4 options = []; end [verbose,numDiff,optTol,maxIter,maxProject,suffDec,corrections,adjustStep,testOpt,bbInit,SPGoptTol,SPGiters,SPGtestOpt] = ... myProcessOptions(... options,'verbose',2,'numDiff',0,'optTol',1e-6,'maxIter',500,'maxProject',1e6,'suffDec',1e-4,... 'corrections',10,'adjustStep',0,'testOpt',1,'bbInit',0,'SPGoptTol',1e-6,'SPGiters',10,'SPGtestOpt',0); % Output Parameter Settings if verbose >= 3 fprintf('Running PQN...\n'); fprintf('Number of L-BFGS Corrections to store: %d\n',corrections); fprintf('Spectral initialization of SPG: %d\n',bbInit); fprintf('Maximum number of SPG iterations: %d\n',SPGiters); fprintf('SPG optimality tolerance: %.2e\n',SPGoptTol); fprintf('PQN optimality tolerance: %.2e\n',optTol); fprintf('Quadratic initialization of line search: %d\n',adjustStep); fprintf('Maximum number of function evaluations: %d\n',maxIter); fprintf('Maximum number of projections: %d\n',maxProject); end % Output Log if verbose >= 2 if testOpt fprintf('%10s %10s %10s %15s %15s %15s\n','Iteration','FunEvals','Projections','Step Length','Function Val','Opt Cond'); else fprintf('%10s %10s %10s %15s %15s\n','Iteration','FunEvals','Projections','Step Length','Function Val'); end end % Make objective function (if using numerical derivatives) funEvalMultiplier = 1; if numDiff if numDiff == 2 useComplex = 1; else useComplex = 0; end funObj = @(x)autoGrad(x,useComplex,funObj); funEvalMultiplier = nVars+1-useComplex; end % Project initial parameter vector x = funProj(x); projects = 1; % Evaluate initial parameters [f,g] = funObj(x); funEvals = 1; % Optionally check Optimality of Initial Point if testOpt projects = projects+1; if sum(abs(funProj(x-g)-x)) < optTol if verbose >= 1 fprintf('First-Order Optimality Conditions Below optTol at Initial Point\n'); end return; end end i = 1; while funEvals <= maxIter % Compute Step Direction if i == 1 p = x-g; % funProj(x-g); % projects = projects+1; S = zeros(nVars,0); Y = zeros(nVars,0); Hdiag = 1; else y = g-g_old; s = x-x_old; [S,Y,Hdiag] = lbfgsUpdate(y,s,corrections,verbose==3,S,Y,Hdiag); % Make Compact Representation k = size(Y,2); L = zeros(k); for j = 1:k L(j+1:k,j) = S(:,j+1:k)'*Y(:,j); end N = [S/Hdiag Y]; M = [S'*S/Hdiag L;L' -diag(diag(S'*Y))]; HvFunc = @(v)lbfgsHvFunc2(v,Hdiag,N,M); if bbInit % Use Barzilai-Borwein step to initialize sub-problem alpha = (s'*s)/(s'*y); if alpha <= 1e-20 || alpha > 1e20 % if (alpha <= 1e-10 || alpha > 1e10) alpha = 1/norm(g); end % Solve Sub-problem xSubInit = x-alpha*g; feasibleInit = 0; else xSubInit = x; feasibleInit = 1; end % Solve Sub-problem [p,subProjects] = solveSubProblem(x,g,HvFunc,funProj,SPGoptTol,SPGiters,SPGtestOpt,feasibleInit,xSubInit); projects = projects+subProjects; end d = p-x; g_old = g; x_old = x; % Check that Progress can be made along the direction gtd = g'*d; if gtd > -optTol if verbose >= 1 fprintf('Directional Derivative below optTol\n'); end break; end % Select Initial Guess to step length if i == 1 || adjustStep == 0 t = 1; else t = min(1,2*(f-f_old)/gtd); end % Bound Step length on first iteration if i == 1 t = min(1,1/sum(abs(g))); end % Evaluate the Objective and Gradient at the Initial Step % x_new = x + t*d; x_new = funProj(x + t*d); projects = projects+1; [f_new,g_new] = funObj(x_new); funEvals = funEvals+1; % Backtracking Line Search f_old = f; while f_new > f + suffDec*t*gtd || ~isLegal(f_new) temp = t; % Backtrack to next trial value if ~isLegal(f_new) || ~isLegal(g_new) if verbose == 3 fprintf('Halving Step Size\n'); end t = t/2; else if verbose == 3 fprintf('Cubic Backtracking\n'); end t = polyinterp([0 f gtd; t f_new g_new'*d]); end % Adjust if change is too small/large if t < temp*1e-3 if verbose == 3 fprintf('Interpolated value too small, Adjusting\n'); end t = temp*1e-3; elseif t > temp*0.6 if verbose == 3 fprintf('Interpolated value too large, Adjusting\n'); end t = temp*0.6; end % Check whether step has become too small if sum(abs(t*d)) < optTol || t == 0 if verbose == 3 fprintf('Line Search failed\n'); end t = 0; f_new = f; g_new = g; break; end % Evaluate New Point f_prev = f_new; t_prev = temp; % x_new = x + t*d; x_new = funProj(x + t*d); projects = projects+1; [f_new,g_new] = funObj(x_new); funEvals = funEvals+1; end % Take Step x = x_new; f = f_new; g = g_new; if testOpt optCond = sum(abs(funProj(x-g)-x)); projects = projects+1; end % Output Log if verbose >= 2 if testOpt fprintf('%10d %10d %10d %15.5e %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,projects,t,f,optCond); else fprintf('%10d %10d %10d %15.5e %15.5e\n',i,funEvals*funEvalMultiplier,projects,t,f); end end % Check optimality if testOpt if optCond < optTol if verbose >= 1 fprintf('First-Order Optimality Conditions Below optTol\n'); end break; end end if sum(abs(t*d)) < optTol if verbose >= 1 fprintf('Step size below optTol\n'); end break; end if abs(f-f_old) < optTol if verbose >= 1 fprintf('Function value changing by less than optTol\n'); end break; end if funEvals*funEvalMultiplier > maxIter if verbose >= 1 fprintf('Function Evaluations exceeds maxIter\n'); end break; end if projects > maxProject if verbose >= 1 fprintf('Number of projections exceeds maxProject\n'); end break; end i = i + 1; end end function [p,subProjects] = solveSubProblem(x,g,H,funProj,optTol,maxIter,testOpt,feasibleInit,x_init) % Uses SPG to solve for projected quasi-Newton direction options.verbose = 2; % 0; options.optTol = optTol; options.maxIter = maxIter; options.testOpt = testOpt; options.curvilinear = 1; options.feasibleInit = feasibleInit; funObj = @(p)subHv(p,x,g,H); [p,f,funEvals,subProjects] = minConF_SPG_new(funObj,x_init,funProj,options); end function [f,g] = subHv(p,x,g,HvFunc) d = p-x; Hd = HvFunc(d); f = g'*d + (1/2)*d'*Hd; g = g + Hd; end
github
lijunzh/fd_elastic-master
L1groupGraft.m
.m
fd_elastic-master/src/PQN/groupL1/L1groupGraft.m
2,228
utf_8
8ea295e38bf112e79fe77edecfb68dac
function [w] = L1groupGraft(funObj,w,groups,lambda,options) if nargin < 5 options = []; end [maxIter,optTol] = myProcessOptions(options,'maxIter',500,'optTol',1e-6); nVars = length(w); nGroups = max(groups); reg = sqrt(accumarray(groups(groups~=0),w(groups~=0).^2)); % Compute Initial Free Variables free = ones(nVars,1); for s = 1:nGroups if reg(s) == 0 free(groups==s) = 0; end end % Optimize Initial Free Variables subOptions = options; subOptions.TolFun = 1e-16; subOptions.TolX = 1e-16; subOptions.Display = 'none'; if any(free == 1) [w(free==1) f junk2 output] = minFunc(@subGradient,w(free==1),subOptions,free,funObj,groups,lambda); fEvals = output.funcCount; end i = 1; maxViolGroup = -2; old_maxViolGroup = -1; while fEvals < maxIter reg = sqrt(accumarray(groups(groups~=0),w(groups~=0).^2)); [f,g] = subGradient(w,ones(nVars,1),funObj,groups,lambda); fprintf('%5d %5d %15.5f %15.5e %5d\n',i,fEvals,f,sum(abs(g)),sum(reg > 0)); if sum(abs(g)) < optTol fprintf('Solution Found\n'); break; end if all(free==1) fprintf('Stuck\n'); end % Compute Free Variables free = ones(nVars,1); for s = 1:nGroups if reg(s) == 0 free(groups==s) = 0; end end % Add Group with biggest sub-gradient gradReg = sqrt(accumarray(groups(groups~=0),g(groups~=0).^2)); [maxViol maxViolGroup] = max(gradReg); free(groups==maxViolGroup) = 1; if maxViolGroup == old_maxViolGroup fprintf('Stuck (optTol = %15.5e)\n',sum(abs(g))); break; end old_maxViolGroup = maxViolGroup; % Optimize Free Variables if any(free == 1) [w(free==1) f junk2 output] = minFunc(@subGradient,w(free==1),subOptions,free,funObj,groups,lambda); fEvals = fEvals+output.funcCount; end i = i + 1; end end function [f,g] = subGradient(wSub,free,funObj,groups,lambda) w = zeros(size(free)); w(free==1) = wSub; [f,g] = funObj(w); f = f + lambda*sum(sqrt(accumarray(groups(groups~=0),w(groups~=0).^2))); g = getGroupSlope(w,lambda,g,groups,1e-4); g = g(free==1); end
github
lijunzh/fd_elastic-master
L1groupMinConF.m
.m
fd_elastic-master/src/PQN/groupL1/L1groupMinConF.m
4,352
utf_8
6a8c330fabfaf0dae63c047818b43b5c
function [w,f] = L1groupMinConF(funObj,w,groups,lambda,options) % [w] = L1groupMinConF(funObj,w,groups,lambda,options) if nargin < 5 options = []; end [normType,mode,optTol] = myProcessOptions(options,'normType',2,'mode','spg','optTol',1e-6); nVars = length(w); nGroups = max(groups); % Make initial values for auxiliary variables wAlpha = [w;zeros(nGroups,1)]; for g = 1:nGroups if normType == 2 wAlpha(nVars+g) = norm(w(groups==g)); else if any(groups==g) wAlpha(nVars+g) = max(abs(w(groups==g))); end end end % Make Objective Function wrapFunObj = @(w)auxGroupLoss(w,groups,lambda,funObj); if normType == 2 switch mode case 'barrier' wAlpha(nVars+1:end) = wAlpha(nVars+1:end)+1e-2; funCon = @(w)groupL2Barrier(w,groups); [wAlpha,f,fEvals] = minConF_LB(wrapFunObj,wAlpha,funCon,options); case 'penalty' % Doesn't work funCon = @(w)groupL2Penalty(w,groups); [wAlpha,f,fEvals] = minConF_Pen(wrapFunObj,wAlpha,funCon,options); case 'spg' [groupStart,groupPtr] = groupl1_makeGroupPointers(groups); funProj = @(w)auxGroupL2Project(w,nVars,groupStart,groupPtr); %funProj = @(w)auxGroupL2Proj(w,groups); wAlpha = minConF_SPG(wrapFunObj,wAlpha,funProj,options); case 'sop' [groupStart,groupPtr] = groupl1_makeGroupPointers(groups); funProj = @(w)auxGroupL2Project(w,nVars,groupStart,groupPtr); options.bbInit = 0; options.SPGoptTol = 1e-6; options.SPGiters = 500; options.maxProject = inf; options.SPGtestOpt = 1; [wAlpha,f] = minConF_PQN(wrapFunObj,wAlpha,funProj,options); case 'interior' wAlpha(nVars+1:end) = wAlpha(nVars+1:end)+1e-2; funCon = @(w,lambda)groupL2Residuals(w,lambda,groups); wAlpha = minConF_IP2(wrapFunObj,wAlpha,funCon,options); case 'sep' funObj1 = @(w)funObj(w); funObj2 = @(w)groupL1regularizer(w,lambda,groups); funProj = @(w,stepSize)groupSoftThreshold(w,stepSize,lambda,groups); wAlpha = minConF_Sep(funObj1,funObj2,w,funProj,options); end else switch mode case 'barrier' [A,b] = makeL1LinfConstraints(groups); wAlpha(nVars+1:end) = wAlpha(nVars+1:end)+1e-2; funCon = @(w)linearBarrier(w,A,b); [wAlpha,f,fEvals] = minConF_LB(wrapFunObj,wAlpha,funCon,options); case 'penalty' [A,b] = makeL1LinfConstraints(groups); funCon = @(w)linearInequalityPenalty(w,A,b); [wAlpha,f,fEvals] = minConF_Pen(wrapFunObj,wAlpha,funCon,options); case 'spg' funProj = @(w)auxGroupLinfProj(w,groups); wAlpha = minConF_SPG(wrapFunObj,wAlpha,funProj,options); case 'sop' funProj = @(w)auxGroupLinfProj(w,groups); funSOP = @(w,g,H)SOP_SPG(w,g,H,funProj); wAlpha = minConF_SOP(wrapFunObj,wAlpha,funProj,funSOP,options); case 'active' % Doesn't work (constraints are degenerate) [A,b] = makeL1LinfConstraints(groups); wAlpha = minConF_AS(wrapFunObj,wAlpha,A,b,options); case 'interior' [A,b] = makeL1LinfConstraints(groups); wAlpha(nVars+1:end) = wAlpha(nVars+1:end)+1e-2; wAlpha = minConF_IP(wrapFunObj,wAlpha,-A,b,options); end end w = wAlpha(1:nVars); end function [A,b] = makeL1LinfConstraints(groups) nVars = length(groups); nGroups = max(groups); A = zeros(0,nVars+nGroups); j = 1; for i = 1:nVars if groups(i) ~= 0 A(j,i) = 1; A(j,nVars+groups(i)) = 1; A(j+1,i) = -1; A(j+1,nVars+groups(i)) = 1; j = j+2; end end b = zeros(size(A,1),1); end function [f] = groupL1regularizer(w,lambda,groups) f = lambda*sum(sqrt(accumarray(groups(groups~=0),w(groups~=0).^2))); end function [w] = groupSoftThreshold(w,alpha,lambda,groups) nGroups = max(groups); reg = sqrt(accumarray(groups(groups~=0),w(groups~=0).^2)); for g = 1:nGroups w(groups==g) = (w(groups==g)/reg(g))*max(0,reg(g)-lambda*alpha); end end
github
lijunzh/fd_elastic-master
auxGroupL2Project.m
.m
fd_elastic-master/src/PQN/groupL1/auxGroupL2Project.m
605
utf_8
9c39c0d039de49b67d1d078c6467f3e3
function w = groupL2Proj(w,p,groupStart,groupPtr) alpha = w(p+1:end); w = w(1:p); for i = 1:length(groupStart)-1 groupInd = groupPtr(groupStart(i):groupStart(i+1)-1); [w(groupInd) alpha(i)] = projectAux(w(groupInd),alpha(i)); end w = [w;alpha]; end %% Function to solve the projection for a single group function [w,alpha] = projectAux(w,alpha) p = length(w); nw = norm(w); if nw > alpha avg = (nw+alpha)/2; if avg < 0 w(:) = 0; alpha = 0; else w = w*avg/nw; alpha = avg; end end end