plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
evanrussek/Predictive-Representations-PLOS-CB-2017-master
model_Vpunc.m
.m
Predictive-Representations-PLOS-CB-2017-master/agents/model_Vpunc.m
1,399
utf_8
b18ff9dc9193e5204a26ccfa219f13ab
function model = model_Vpunc() model.init = @modelinit; model.update = @modelupdate; model.eval = @modeleval; model.choose = @modelchoose; function model = modelinit(model,game, params_in) if nargin < 3 % parameters model.param.epsilon = .1; model.param.alpha = .25; model.param.discount = .9; else model.param = params_in; end % structures n_s = length(game.Rs)+1; V = zeros(n_s,1); model.V = V; % state/action index model.s = game.current_state; model.s_prime = 0; model.a = 0; model.a_prime = 0; model.r = 0; function model = modelupdate(model,game) % update M [model.V] = v_update(model.s,model.r,model.s_prime,model); function a = modelchoose(Qvals,game,epsilon) %epsilon = .1; action_prob = zeros(length(Qvals),1); [maxval, max_a] = max(Qvals); [bestA] = find(Qvals==maxval); action_prob(bestA) = (1 - epsilon)/length(bestA); action_prob = action_prob + epsilon/length(Qvals); a = find(rand < cumsum(action_prob),1); if isempty(a) keyboard end function [Q,model] = modeleval(model,game) next_state = game.nextState(game.current_state,:); next_state(next_state == 0) = []; Q = model.V(next_state); if any(isnan(Q)) keyboard end function V = v_update(s,r,s_prime,model) V = model.V; V(s) = model.V(s) + model.param.alpha*(r + model.param.discount*model.V(s_prime) - model.V(s)); if any(isnan(V)) keyboard end
github
evanrussek/Predictive-Representations-PLOS-CB-2017-master
makegame2.m
.m
Predictive-Representations-PLOS-CB-2017-master/environment functions/makegame2.m
4,424
utf_8
d7cabf9bf1513b3286d220f86592671f
function game = makegame2(locations,magnitude,wallloc, startpos) % setupmo rows = 10; cols = 10; nstates = rows*cols; nactions = 4; if nargin < 4 startpos = [8 1]; end % map y,x positions to number global yx_to_state yx_to_state_t = zeros(cols,rows); for c = 1:cols yx_to_state_t(c,:) = 1 + (c-1)*rows : rows*c; end yx_to_state = yx_to_state_t'; nwallstates = size(wallloc,1); wallstates = zeros(nwallstates,1); for i = 1:nwallstates wallstates(i) = yx_to_state(wallloc(i,1), wallloc(i,2)); end % [Rs, Rsa] = makeR(nstates,locations,magnitude); [T_init, nextstate_init] = makeT(rows,cols,nactions,locations); % put in barrier [newT newNextState] = addwall(T_init,nextstate_init, wallloc); [available_sa, sa_to_nextstate, nextState] = configSA(newNextState,locations); game.reward_states = []; for i = 1:size(locations,1) game.reward_states = [game.reward_states; yx_to_state(locations(i,1), locations(i,2))]; end game.rows = rows; game.cols = cols; game.T = newT; game.nextState = nextState; game.wallloc = wallloc; game.Rs = Rs; game.Rsa = Rsa; game.available_sa = available_sa; game.sa_to_nextstate = sa_to_nextstate; game.pos = startpos; game.start_state = yx_to_state(startpos(1),startpos(2)); game.current_state = game.start_state; game.wallstates = wallstates; game.locations = locations; game.magnitude = magnitude; function [Rs, Rsa] = makeR(nstates,locations,magnitude) % locations should be number of reward locations X 2 - y then x % magnitude should be number of reward locations X 1 - each value is size of reward % R is nstates X 1, - R(i) is reward value for entering state i global yx_to_state; nlocations = length(magnitude); Rs = zeros(nstates + nlocations,1); nlocations = length(magnitude); Rsa = zeros(400+nlocations+1,1); for i = 1:nlocations state_i = yx_to_state(locations(i,1), locations(i,2)); Rs(state_i) = magnitude(i); Rsa(400+i) = magnitude(i); end function [T , nextstate] = makeT(rows,cols,nactions,locations) % this function builds (nstatesxnactions) nextstate matrix % nextstate mtx takes in (state,action) and gives next state global yx_to_state; nrewardlocs = size(locations,1); nstates = rows*cols; T = zeros(nstates,nactions,nstates); newstate = zeros(1,nactions); nextstate = zeros(nstates,nactions); % want transition matrix for x = 1:cols for y = 1:rows currstate = yx_to_state(y,x); % position after action 1 (north) newpos(1,:) = [(y-1) x]; % position after action 2 (south) newpos(2,:) = [(y+1) x]; % position after action 3 (east) newpos(3,:) = [y (x + 1)]; % position after action 4 (west) newpos(4,:) = [y (x - 1)]; newpos(newpos>rows) = rows; newpos(newpos < 1) = 1; % for each action for a = 1:4 ns = yx_to_state(newpos(a,1),newpos(a,2)); newstate(a) = ns; T(currstate,a,ns) = 1; end nextstate(currstate,:) = newstate; end end function [newT newNextState] = addwall(oldT,oldNextState, wallloc) % updates T and newState so that state-action pairs which lead into wall, lead to state global yx_to_state; % at states where there is a wall, nwallstates = size(wallloc,1); newNextState = oldNextState; newT = oldT; for i = 1:nwallstates wallstate_i = yx_to_state(wallloc(i,1), wallloc(i,2)); % find s-a pairs that lead to that state [s,a] = ind2sub(size(oldNextState),find(oldNextState == wallstate_i)); for j = 1:length(s) % switch transition mtx so those states lead to themselves newNextState(s(j),a(j)) = s(j); newT(s(j),a(j), wallstate_i) = 0; newT(s(j),a(j), s(j)) = 1; end end function [available_sa, sa_to_nextstate, nextState] = configSA(nextState,locations) nlocations = size(locations,1); nstates = 100+nlocations+1; % available_sa available_sa = zeros(nstates,4); available_sa(1:100,:) = reshape(1:400,[100 4]); global yx_to_state for i = 1:nlocations thisloc = locations(i,:); this_state = yx_to_state(thisloc(1), thisloc(2)); available_sa(this_state,:) = [400+i, 0, 0, 0]; available_sa(100+i,:) = [400+nlocations+1,0,0,0]; end % sa_to_nextstate sa_to_nextstate = zeros(400+nlocations+1,1); for i = 1:nlocations thisloc = locations(i,:); this_state = yx_to_state(thisloc(1), thisloc(2)); nextState(this_state,:) = [100+i, 0 0 0]; nextState = [nextState; nstates, 0 , 0, 0]; end nextState = [nextState; 0 0 0 0]; for i = 1:400+nlocations+1 [row, col] = find(available_sa == i); if length(row) == 1 sa_to_nextstate(i) = nextState(row,col); end end
github
proteekroy/U-NSGA-III-master
nsga2_selection.m
.m
U-NSGA-III-master/nsga2_selection.m
3,756
utf_8
fe4f9081b3ddc830d7d2ef6508f14ffb
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. %This function applies NSGA-II selection for merged population function opt = nsga2_selection(opt) [n, ~] = size(opt.totalpopObj); opt.R = zeros(size(opt.totalpopObj,1),1); selectedPopIndex = []; index = opt.totalpopCV<=0; FeasiblePopIndex = find(index == 1); InfeasiblePopIndex = find(index == 0); %---------------Find Non-dominated Sorting of Feasible Solutions------- R = zeros(n,1); F = cell(n,1); opt.R = zeros(n,1); if ~isempty(FeasiblePopIndex) [R,~] = bos(opt.totalpopObj(FeasiblePopIndex,:)); for i=1:size(FeasiblePopIndex,1) F{R(i)} = horzcat(F{R(i)}, FeasiblePopIndex(i)); end %---------------Store Ranking of Feasible Solutions-------------------- opt.R(FeasiblePopIndex) = R; end %--------------Rank the Infeasible Solutions--------------------------- if ~isempty(InfeasiblePopIndex) CV = opt.totalpopCV(InfeasiblePopIndex); [~,index] = sort(CV,'ascend'); c = max(R) + 1; for i = 1: size(index,1) if i>1 && (CV(index(i))==CV(index(i-1)))%If both CV are same, they are in same front opt.R(InfeasiblePopIndex(index(i))) = opt.R(InfeasiblePopIndex(index(i-1))); b = opt.R(InfeasiblePopIndex(index(i))); F{b} = horzcat(F{b}, InfeasiblePopIndex(index(i))); else opt.R(InfeasiblePopIndex(index(i))) = c ; F{c} = horzcat(F{c}, InfeasiblePopIndex(index(i))); c = c + 1; end end end %----------------Select High Rank Solutions---------------------------- count = zeros(n,1); for i=1:n count(i) = size(F{i},2); end cd = cumsum(count); p1 = find(opt.N<cd); lastfront = p1(1); opt.pop = zeros(size(opt.pop)); for i=1:lastfront-1 selectedPopIndex = horzcat(selectedPopIndex, F{i}); end %------------CROWDING DISTANCE PART------------------------------------ opt.CD = zeros(size(opt.totalpopObj,1),1); for i=1:max(R) front = F{i}; front_cd = crowdingDistance(opt, front, opt.totalpopObj(front,:)); opt.CD(front) = front_cd; end if size(selectedPopIndex,2)<opt.N index = F{lastfront}; CDlastfront = opt.CD(index); [~,I] = sort(CDlastfront,'descend'); j = 1; for i = size(selectedPopIndex,2)+1: opt.N selectedPopIndex = horzcat(selectedPopIndex, index(I(j))); j = j + 1; end end %---------------Select for Next Generation----------------------------- opt.pop = opt.totalpop(selectedPopIndex,:); opt.popObj = opt.totalpopObj(selectedPopIndex,:); opt.popCV = opt.totalpopCV(selectedPopIndex,:); opt.popCons = opt.totalpopCons(selectedPopIndex,:); opt.CD = opt.CD(selectedPopIndex,:); end
github
proteekroy/U-NSGA-III-master
nsga2_basic_parameters.m
.m
U-NSGA-III-master/nsga2_basic_parameters.m
10,188
utf_8
a19d12c82ef480ac57e50f22f45f4857
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [opt] = nsga2_basic_parameters(opt) %-----OPTIMIZATION ALGORITHM PARAMETERS------------------------------- opt.eta_c = 15;%crossover index opt.eta_m = 20;%mutation index opt.G = 200;% Generations opt.N = 200;%population size in optimization algorithm opt.pcross = 0.9; % Crossover probability opt.nrealcross = 0;%number of crossover performed opt.nrealmut = 0;%number of mutation performed opt.gen = 1;%starting generation opt.pop = [];%initial population opt.popObj = []; opt.Epsilon = 1e-14;%numerical difference opt.Inf = 1e14;%maximum value opt.initpopsize = opt.N;%initial sample size for high fidelity computation opt.crossoverOption = 1;% 1 = simulated binary crossover opt.mutationOption = 1;% 1 = polynomial mutation opt.matingselectionOption = 1;%1 = binary constraint tournament selection opt.survivalselectionOption = 2;%1 = NSGA-II, 2 = NSGA-III opt.associationsReady = false; if opt.survivalselectionOption==1 opt.algorithm_name = 'nsga2'; else opt.algorithm_name = 'nsga3'; end opt.testfilename = strcat(opt.algorithm_name, '_', lower(opt.objfunction)); %filename where data will be saved opt.varfilename = strcat(opt.objfunction,'_var_',num2str(opt.r),'.txt');%save variables opt.objfilename = strcat(opt.objfunction,'_obj_',num2str(opt.r),'.txt');%save objective opt.cvfilename = strcat(opt.objfunction,'_cv_',num2str(opt.r),'.txt');%constraint violation %-----OBJECTIVE FUNCTION PARAMETERS------------------------------------ problem = lower(opt.objfunction); switch(problem) case {'zdt1','zdt2','zdt3','zdt4','zdt6'} opt.M = 2;%number of objectives opt.V = 30;%;10;%number of variables opt.C = 0;%number of constraints opt.utopian = [-0.05, -0.05];%ideal point, may not be used opt.min_val = [0 0];%minimum value for normalization, may not be used opt.max_val = [1 1];%maximum objective, may not be used if strcmp(opt.objfunction,'zdt6') opt.min_val = [0.25 0]; elseif strcmp(opt.objfunction,'zdt3') opt.utopian = [-0.05, -1.1]; opt.min_val = [0 -1]; opt.max_val = [1 1]; end case {'dtlz1', 'dtlz2', 'dtlz3','dtlz4', 'dtlz5', 'dtlz7'} opt.M = 2; opt.V = 11; opt.C = 0; opt.utopian = (-0.05).*ones(1, opt.M); opt.min_val = zeros(1, opt.M); opt.max_val = ones(1, opt.M); case {'wfg1', 'wfg2', 'wfg3','wfg4', 'wfg5', 'wfg6','wfg7','wfg8','wfg9'} opt.M = 3; opt.V = 8; opt.C = 0; opt.utopian = (-0.05).*ones(1, opt.M); opt.min_val = zeros(1, opt.M); opt.max_val = ones(1, opt.M); case {'uf1', 'uf2', 'uf3','uf4', 'uf5', 'uf6','uf7','uf8','uf9'} opt.M = 2; opt.V = 30; opt.C = 0; opt.utopian = (-0.05).*ones(1, opt.M); opt.min_val = zeros(1, opt.M); opt.max_val = ones(1, opt.M); case {'do2dk','do2dk1','deb2dk','deb2dk1'} opt.M = 2; opt.V = 30; opt.C = 0; opt.utopian = (-0.05).*ones(1, opt.M); opt.min_val = zeros(1, opt.M); opt.max_val = ones(1, opt.M); case {'deb3dk','deb3dk1'} opt.M = 3; opt.V = 30; opt.C = 0; opt.utopian = [-0.05, -0.05 -0.05]; opt.min_val = [0 0 0]; case {'c2dtlz2','c3dtlz2'} opt.M = 3; opt.V = 7; opt.utopian = [-0.05, -0.05 -0.05]; opt.min_val = [0 0 0]; if strcmp(opt.objfunction,'c2dtlz2') opt.C = 1; opt.max_val = [1 1 1]; else opt.C = 3; opt.max_val = [2.01 2.01 2.01]; end case 'bnh' opt.M = 2; opt.V = 2; opt.C = 2; opt.utopian = [-0.05, -0.05]; opt.min_val = [0 0]; opt.max_val = [140 55]; case 'osy' opt.M = 2; opt.V = 6; opt.C = 6; opt.utopian = [-300 0]; opt.min_val = [-274 4]; opt.max_val = [-42 76]; case 'srn' opt.M = 2; opt.V = 2; opt.C = 2; opt.utopian = [0 -300]; opt.min_val = [0 -250]; opt.max_val = [240 0]; case 'tnk' opt.M = 2; opt.V = 2; opt.C = 2; opt.utopian = [-0.001, -0.001]; opt.min_val = [0 0]; opt.max_val = [1.2 1.2]; case 'water' opt.M = 5; opt.V = 3; opt.C = 7; opt.utopian = (-0.05).*ones(1, opt.M); opt.min_val = [0.75 0 0 0 0]; opt.max_val = [0.95 0.9 1.0 1.6 3.2]; case 'carside' opt.M = 3; opt.V = 7; opt.C = 10; opt.utopian = [24.3180 3.5352 10.5610]; opt.min_val = [24.3680 3.5852 10.6110]; opt.max_val = [42.7620 4.0000 12.5210]; case 'welded' opt.M = 2; opt.V = 4; opt.C = 4; opt.utopian = [2.3316 -0.0496]; opt.min_val = [2.3816 0.0004]; opt.max_val = [36.4403 0.0157]; otherwise input('Function definition is not found'); end %--------LOWER AND UPPER BOUND OF DECISION VARIABLE-------------------- opt.bound = zeros(2,opt.V); opt.bound(2,:) = ones(1,opt.V); if(strcmpi(opt.objfunction,'zdt4')) opt.bound(1,2:end) = opt.bound(1,2:end)+(-5); opt.bound(2,2:end) = opt.bound(2,2:end)*5; elseif(strcmpi(opt.objfunction,'UF1') ||strcmpi(opt.objfunction,'UF2') || strcmpi(opt.objfunction,'UF5') || strcmpi(opt.objfunction,'UF6') || strcmpi(opt.objfunction,'UF7')) opt.bound(1,2:end) = opt.bound(1,2:end)+(-1); opt.bound(2,2:end) = opt.bound(2,2:end)*1; elseif(strcmpi(opt.objfunction,'UF4') ) opt.bound(1,2:end) = opt.bound(1,2:end)+(-2); opt.bound(2,2:end) = opt.bound(2,2:end)*2; elseif(strcmpi(opt.objfunction,'UF8') || strcmpi(opt.objfunction,'UF9')|| strcmpi(opt.objfunction,'UF10')) opt.bound(1,3:end) = opt.bound(1,3:end)+(-2); opt.bound(2,3:end) = opt.bound(2,3:end)*2; elseif(strcmpi(opt.objfunction,'BNH')) opt.bound(2,1)=5; opt.bound(2,2)=3; elseif(strcmpi(opt.objfunction,'OSY')) opt.bound(2,1)=10;%x1 opt.bound(2,2)=10; opt.bound(2,6)=10; opt.bound(1,3)=1; opt.bound(1,5)=1; opt.bound(2,3)=5; opt.bound(2,5)=5; opt.bound(2,4)=6; elseif(strcmpi(opt.objfunction,'SRN')) opt.bound(1,1:end) = opt.bound(1,1:end)+(-20); opt.bound(2,1:end) = opt.bound(2,1:end)*20; elseif(strcmpi(opt.objfunction,'TNK')) opt.bound(2,1:end) = opt.bound(2,1:end)*pi; elseif(strcmpi(opt.objfunction,'WATER')) opt.bound(1,1:end) = opt.bound(1,1:end)+0.01; opt.bound(2,1) = 0.45; opt.bound(2,2:end) = 0.10; elseif(strcmpi(opt.objfunction,'carside')) opt.bound(1,1:end) = [0.5 0.45 0.5 0.5 0.875 0.4 0.4]; opt.bound(2,1:end) = [1.5 1.35 1.5 1.5 2.625 1.2 1.2]; elseif(strcmpi(opt.objfunction,'welded')) opt.bound(1,1:end) = [0.125 0.1 0.1 0.125]; opt.bound(2,1:end) = [5 10 10 5]; elseif (strcmpi(opt.objfunction,'wfg1') || strcmpi(opt.objfunction,'wfg2') || strcmpi(opt.objfunction,'wfg3') ... || strcmpi(opt.objfunction,'wfg4') || strcmpi(opt.objfunction,'wfg5') || strcmpi(opt.objfunction,'wfg6')... || strcmpi(opt.objfunction,'wfg7') || strcmpi(opt.objfunction,'wfg8') || strcmpi(opt.objfunction,'wfg9')) opt.bound(1,:) = zeros(1,opt.V); opt.bound(2,:) = ones(1,opt.V); end %---------REFERENCE DIRECTION------------------------------------------ %% Haitham - Start dirCount = inf; tempN = opt.N; while dirCount > opt.N opt.dirs = initweight(opt.M, tempN)'; dirCount = size(opt.dirs, 1); tempN = tempN - 1; end % Haitham - End % %Three obj % if opt.M==5 % opt.dirs = initweight(5, 210)'; % elseif opt.M==3 %Three obj % opt.dirs = initweight(3, 91)'; % else % opt.dirs = initweight(2, 21)'; % end %initialization opt.numdir = size(opt.dirs,1);%number of reference directions opt.curdir = opt.dirs(1,:);%current direction opt.pmut = 1.0/opt.V; %Mutation probability opt.CD = zeros(opt.N,1);%initial crowding distance opt.PR = zeros(opt.N,1);%initial pagerank for PR opt.Color = {'k','b','r','g','y',[.5 .6 .7],[.8 .2 .6]}; %Colors. opt.totalFuncEval = opt.N * opt.G;%total number of function evaluation end %------------------------------END OF -FILE--------------------------------
github
proteekroy/U-NSGA-III-master
lhsamp_model.m
.m
U-NSGA-III-master/lhsamp_model.m
684
utf_8
b7f69e0e86d4ff88a19e401b51ad4f45
%LHSAMP Latin hypercube distributed random numbers % % Call: S = lhsamp % S = lhsamp(m) % S = lhsamp(m, n) % % m : number of sample points to generate, if unspecified m = 1 % n : number of dimensions, if unspecified n = m % % S : the generated n dimensional m sample points chosen from % uniform distributions on m subdivions of the interval (0.0, 1.0) function S = lhsamp_model(init_pop, opt) m = init_pop;%opt.initpopsize; n = opt.V; S = zeros(m,n); for i = 1 : n S(:, i) = (rand(1, m) + (randperm(m) - 1))' / m; end %generate each point for i=1:m S(i,:) = opt.bound(1,:) + (opt.bound(2,:)-opt.bound(1,:)).*S(i,:); %low + difference*rand(0,1) end
github
proteekroy/U-NSGA-III-master
initweight.m
.m
U-NSGA-III-master/initweight.m
1,058
utf_8
9514a2706de36304cb8ac18d16ab8e55
% This function is written by Dr. Aimin Zhou for generating any number of weight vectors function W = initweight(objDim, N) U = floor(N^(1/(objDim-1)))-2; M = 0; while M<N U = U+1; M = noweight(U, 0, objDim); end W = zeros(objDim, M); C = 0; V = zeros(objDim, 1); [W, C] = setweight(W, C, V, U, 0, objDim, objDim); W = W / (U + 0.0); pos = (W < 1.0E-5); W(pos) = 1.0E-5; end %% function M = noweight(unit, sum, dim) M = 0; if dim == 1 M = 1; return; end for i = 0 : 1 : (unit - sum) M = M + noweight(unit, sum + i, dim - 1); end end %% function [w, c] = setweight(w, c, v, unit, sum, objdim, dim) if dim == objdim v = zeros(objdim, 1); end if dim == 1 c = c + 1; v(1) = unit - sum; w(:, c) = v; return; end for i = 0 : 1 : (unit - sum) v(dim) = i; [w, c] = setweight(w, c, v, unit, sum + i, objdim, dim - 1); end end
github
proteekroy/U-NSGA-III-master
pol_mut.m
.m
U-NSGA-III-master/pol_mut.m
1,724
utf_8
f9fb82822294f15a5f9400264f983295
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. %This file implements polynomial mutation function [pop_mut, nrealmut] = pol_mut(pop_crossover, pmut, nrealmut, eta_m, Xmin, Xmax ) [N, nreal] = size( pop_crossover); % Population size & Number of variables pop_mut = pop_crossover;% Child before mutation for ind = 1:N for i = 1:nreal if rand <= pmut y = pop_mut(ind,i); yl = Xmin(i); yu = Xmax(i); delta1 = (y-yl) / (yu-yl); delta2 = (yu-y) / (yu-yl); rand_var = rand; mut_pow = 1.0/(eta_m+1.0); if rand_var <= 0.5 xy = 1.0 - delta1; val = 2.0*rand_var + (1.0 - 2.0*rand_var) * xy^(eta_m+1.0); deltaq = val^mut_pow - 1.0; else xy = 1.0 - delta2; val = 2.0*(1.0 - rand_var) + 2.0*(rand_var-0.5) * xy^(eta_m+1.0); deltaq = 1.0 - val^mut_pow; end y = y + deltaq*(yu - yl); if (y<yl), y = yl; end if (y>yu), y = yu; end pop_mut(ind,i) = y; nrealmut = nrealmut+1; end end end
github
proteekroy/U-NSGA-III-master
calculate_feasible_paretofront.m
.m
U-NSGA-III-master/calculate_feasible_paretofront.m
1,223
utf_8
82de86fb954b015d2d4683c41d21144e
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [FeasibleIndex, ParetoIndex] = calculate_feasible_paretofront(opt, pop, popObj, popCV) %-------------FIND FEASIBLE PARETO FRONT------------------------------- if opt.C>0 %Feasible Pareto front of Constraint Problems index = find(popCV<=0); else index = (1:size(pop,1))'; end FeasibleIndex = index; if size(index,1)>0 % there are some feasible solutions index2 = paretoFront(popObj(index,:)); ParetoIndex = index(index2)'; else % no feasible solution yet ParetoIndex = []; end end
github
proteekroy/U-NSGA-III-master
nsga2_main.m
.m
U-NSGA-III-master/nsga2_main.m
3,778
utf_8
414dd86ff659dd183e990134d31cb0ad
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. %This is main function that runs NSGA-II procedure function opt = nsga2_main(opt) %------------INITIALIZE------------------------------------------------ opt.pop = lhsamp_model(opt.N, opt);%LHS Sampling %------------EVALUATE-------------------------------------------------- [opt.popObj, opt.popCons] = evaluate_pop(opt, opt.pop); opt.popCV = evaluateCV(opt.popCons); opt.archiveObj = opt.popObj;%to save all objectives opt.archive = opt.pop; opt.archiveCV = opt.popCV; %-------------------PLOT INITIAL SOLUTIONS----------------------------- plot_population(opt, opt.popObj); if exist(opt.histfilename, 'file')==2 delete(opt.histfilename); end %--------------- OPTIMIZATION ----------------------------------------- funcEval = opt.N; while funcEval < opt.totalFuncEval % Generation # 1 to M1 = repmat(funcEval, opt.N, 1); M2 = opt.pop; M3 = opt.popObj; M4 = (-1)*opt.popCV; M = horzcat(M1, M2, M3, M4); dlmwrite(opt.histfilename, M, '-append', 'delimiter',' ','precision','%.10f');%history of run opt = mating_selection(opt);%--------Mating Parent Selection------- opt = crossover(opt);%-------------------Crossover----------------- opt = mutation(opt);%--------------------Mutation------------------ %---------------EVALUATION----------------------------------------- [opt.popChildObj, opt.popChildCons] = evaluate_pop(opt, opt.popChild); opt.popCV = evaluateCV(opt.popCons); opt.popChildCV = evaluateCV(opt.popChildCons); %---------------MERGE PARENT AND CHILDREN-------------------------- opt.totalpopObj = vertcat(opt.popChildObj, opt.popObj); opt.totalpop = vertcat(opt.popChild, opt.pop); opt.totalpopCV = vertcat(opt.popChildCV, opt.popCV); opt.totalpopCons = vertcat(opt.popChildCons, opt.popCons); %-----------------SURVIVAL SELECTION------------------------------- opt = survival_selection(opt); funcEval = funcEval + opt.N; opt.popCV = evaluateCV(opt.popCons); opt.archive = vertcat(opt.archive,opt.pop); opt.archiveObj = vertcat(opt.archiveObj,opt.popObj); opt.archiveCV = vertcat(opt.archiveCV,opt.popCV); %-------------------PLOT NEW SOLUTIONS----------------------------- if mod(funcEval,1000)==0 disp(funcEval); plot_population(opt, opt.popObj); end %[opt.FeasibleIndex, opt.ParetoIndex] = calculate_feasible_paretofront(opt, opt.archive, opt.archiveObj, opt.archiveCV); end M1 = repmat(funcEval, opt.N, 1); M2 = opt.pop; M3 = opt.popObj; M4 = (-1)*opt.popCV; M = horzcat(M1, M2, M3, M4); dlmwrite(opt.histfilename, M, '-append', 'delimiter',' ','precision','%.10f');%history of run end%end of function %------------------------------END OF -FILE--------------------------------
github
proteekroy/U-NSGA-III-master
crossover.m
.m
U-NSGA-III-master/crossover.m
1,060
utf_8
9fd9fdc06007fb5334b3806be4488984
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [opt] = crossover(opt) switch(opt.crossoverOption) case 1 [opt.popChild, opt.nrealcross] = sbx(opt.popChild, opt.pcross, opt.nrealcross, opt.eta_c, opt.bound(1,:), opt.bound(2,:), opt.Epsilon); otherwise [opt.popChild, opt.nrealcross] = sbx(opt.popChild, opt.pcross, opt.nrealcross, opt.eta_c, opt.bound(1,:), opt.bound(2,:), opt.Epsilon); end end
github
proteekroy/U-NSGA-III-master
sbx.m
.m
U-NSGA-III-master/sbx.m
3,387
utf_8
8016f8a750f4d50f32052960259732d9
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [pop_crossover, nrealcross] = sbx(pop_selection, p_cross, nrealcross, eta_c, Xmin, Xmax, epsilon) [N, nreal] = size(pop_selection); % Population size & Number of variables pop_crossover = zeros( size(pop_selection) );%Child population if mod(N,2) ~= 0 %check if N is odd pop_crossover(N,:) = pop_selection(randi(N),:);%pick a random element for last solution if N is odd N = N - 1; end p = randperm(N); for ind=1:2:N p1 = p(ind); p2 = p(ind+1); parent1 = pop_selection(p1,:); parent2 = pop_selection(p2,:); child1 = zeros(1, nreal); child2 = zeros(1, nreal); if rand <= p_cross nrealcross = nrealcross+1; for i=1:nreal if rand <= 0.5 if abs( parent1(i)-parent2(i) ) > epsilon if parent1(i) < parent2(i) y1 = parent1(i); y2 = parent2(i); else y1 = parent2(i); y2 = parent1(i); end yl = Xmin(i); yu = Xmax(i); beta = 1.0 + (2.0*(y1-yl)/(y2-y1)); alpha = 2.0 - beta^(-(eta_c+1.0)); rand_var = rand; if rand_var <= (1.0/alpha) betaq = (rand_var*alpha)^(1.0/(eta_c+1.0)); else betaq = (1.0/(2.0 - rand_var*alpha))^(1.0/(eta_c+1.0)); end c1 = 0.5*((y1+y2) - betaq*(y2-y1)); beta = 1.0 + (2.0*(yu-y2)/(y2-y1)); alpha = 2.0 - beta^(-(eta_c+1.0)); if rand_var <= (1.0/alpha) betaq = (rand_var*alpha)^(1.0/(eta_c+1.0)); else betaq = (1.0/(2.0 - rand_var*alpha))^(1.0/(eta_c+1.0)); end c2 = 0.5*((y1+y2)+betaq*(y2-y1)); if (c1 < yl), c1 = yl; end if (c2 < yl), c2 = yl; end if (c1 > yu), c1 = yu; end if (c2 > yu), c2 = yu; end if rand <= 0.5 child1(i) = c2; child2(i) = c1; else child1(i) = c1; child2(i) = c2; end else child1(i) = parent1(i); child2(i) = parent2(i); end else child1(i) = parent1(i); child2(i) = parent2(i); end end else child1 = parent1; child2 = parent2; end pop_crossover(ind,:) = child1; pop_crossover(ind+1,:) = child2; end
github
proteekroy/U-NSGA-III-master
mutation.m
.m
U-NSGA-III-master/mutation.m
1,043
utf_8
e894e51e73b91d9dae7c485dc2ebef95
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [opt] = mutation(opt) switch(opt.mutationOption) case 1 [opt.popChild, opt.nrealmut] = pol_mut(opt.popChild, opt.pmut, opt.nrealmut, opt.eta_m, opt.bound(1,:), opt.bound(2,:) ); otherwise [opt.popChild, opt.nrealmut] = pol_mut(opt.popChild, opt.pmut, opt.nrealmut, opt.eta_m, opt.bound(1,:), opt.bound(2,:) ); end end
github
proteekroy/U-NSGA-III-master
evaluate_pop.m
.m
U-NSGA-III-master/evaluate_pop.m
1,248
utf_8
4afe8b4282b9d56b9d1d8076c925da1f
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Proteek Chandan Roy, 2016 % Contact: [email protected], [email protected] %-------------HIGH FIDELITY EVALUATION OF POPULATION----------------------- function [popObj, popCons] = evaluate_pop(opt, pop) popObj = zeros(size(pop,1),opt.M); if opt.C>0 popCons = zeros(size(pop,1),opt.C); else popCons = zeros(size(pop,1), 1); end sz = size(pop,1); for i = 1:sz [f, g] = high_fidelity_evaluation(opt, pop(i,:)); popObj(i, 1:opt.M) = f; if opt.C>0 popCons(i,:) = g; else popCons(i,1) = 0; end end end
github
proteekroy/U-NSGA-III-master
plot_population.m
.m
U-NSGA-III-master/plot_population.m
1,196
utf_8
0e33d1ac9e0b53bd0f7ad8f3a5ed6700
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. %This function plots population of each generation with different color function plot_population(opt, popObj) figure(opt.fig); %hold all; if opt.M==2 plot(popObj(:,1),popObj(:,2),'o','MarkerEdgeColor',opt.Color{randi(size(opt.Color,2))},'MarkerFaceColor',opt.Color{randi(size(opt.Color,2))}); elseif opt.M==3 plot3(popObj(:,1),popObj(:,2),popObj(:,3),'o','MarkerEdgeColor',opt.Color{randi(size(opt.Color,2))},'MarkerFaceColor',opt.Color{randi(size(opt.Color,2))}); end %xlim([0 1]) %ylim([0 2]) drawnow; end
github
proteekroy/U-NSGA-III-master
constrained_tournament_selection.m
.m
U-NSGA-III-master/constrained_tournament_selection.m
3,148
utf_8
4432c055ad3ad0ec66c819e1963c8ee4
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % This file picks solution from tournament with this logic- % If both are feasible pick a) Pick the one which has lower (better) rank % b) Or If both are in same rank then pick the one with less crowding % distance % If one of them is feasible, pick the feasible one % If both are infeasible, then pick the one with less constraint violation % If CV values are same, then pick randomly function selected_pop = constrained_tournament_selection(opt, pop, popObj, popCV) N = opt.N;% pop size %----TOURNAMENT CANDIDATES------------------------------------------------- tour1 = randperm(N); tour2 = randperm(N); %----START TOURNAMENT SELECTION-------------------------------------------- selected_pop = zeros(N, opt.V); % Only the design variables of the selected members for i = 1:N p1 = tour1(i); p2 = tour2(i); if (popCV(p1)<=0 && popCV(p2)<=0)%both are feasible obj1 = popObj(p1,:); obj2 = popObj(p2,:); d = lex_dominate(obj1, obj2); if d == 1 %p1 dominates p2 selected_pop(i, :) = pop(p1,1:opt.V); elseif d == 3 % p2 dominates p1 selected_pop(i, :) = pop(p2,1:opt.V); else % d == 2 % check crowding distance if(opt.CD(p1)>opt.CD(p2)) selected_pop(i, :) = pop(p1,1:opt.V); elseif (opt.CD(p1)<opt.CD(p2)) selected_pop(i, :) = pop(p2,1:opt.V); else %randomly pick any solution if(rand <= 0.5) pick = p1; else pick = p2; end selected_pop(i, :) = pop(pick,1:opt.V); end end else if(popCV(p1) < popCV(p2)) %p1 less constraint violation selected_pop(i, :) = pop(p1,1:opt.V); else if (popCV(p2) < popCV(p1)) selected_pop(i, :) = pop(p2,1:opt.V); %p2 has less constraint violation else %randomly pick any solution if(rand <= 0.5) pick = p1; else pick = p2; end selected_pop(i, :) = pop(pick,1:opt.V);%initially p1 was randomly choosen end end end end end
github
proteekroy/U-NSGA-III-master
bos.m
.m
U-NSGA-III-master/bos.m
3,896
utf_8
09bb3c8d6145d4e68512b7d21eea72b4
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % This file implemented non-dominated sorting algorithm of the following paper % "Best Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-objective Optimization" % - Proteek Chandan Roy, Md. Monirul Islam and Kalyanmoy Deb, Michigan State University, East Lansing, MI, USA % https://github.com/Proteek/Best-Order-Sort % This software is protected under Apache License 2.0 which can be found in http://www.apache.org/licenses/LICENSE-2.0.txt % @author Proteek Chandan Roy, Department of CSE, Michigan State University, USA function [R,F] = bos(objective) if isempty(objective) R = []; F = []; return; elseif size(objective,1)==1 R = 1; F(1).f = 1; return; end %--------INITIALIZATION--------------- [n,m]= size(objective); R = ones(n,1); if(m<4) m1 = m; else m1 = floor(min(ceil(log2(n)),m)); end %---------SORTING PART----------------- Q = zeros(n, m1); lex_order = zeros(n,1); %--------FIND LEX ORDER---------------- [~,Q(:,1)] = sortrows(objective); for i = 1:n lex_order(Q(i,1)) = i; end for i = 2:m1 %H = horzcat(objective(:,i), lex_order);%in case of tie use lex order H = horzcat(objective(:,i), objective(:,1)); [~,Q(:,i)] = sortrows(H); end %-------RANKING PART------------------- done = zeros(n, 1); total = 0; totalfront = 1; L = cell(m1, n); for i = 1:n for j = 1:m1 s = Q(i,j); if done(s) == 1 L{j, R(s)} = horzcat(s, L{j, R(s)}); continue; end total = total + 1; done(s) = 1; for k = 1: totalfront %for all front d = 0; sz = size(L{j,k},2); for l = 1:sz % for all elements d = lex_dominate(objective(L{j,k}(l),:), objective(s,:)); if d == 1 break; end end if d == 0 %not dominates R(s) = k; L{j, k} = horzcat(s, L{j, k}); break; elseif d==1 && k==totalfront totalfront = totalfront + 1; R(s) = totalfront; L{j,totalfront} = horzcat(s, L{j,totalfront}); break; end end if total==n break; end end end F(n).f = []; for i=1:n F(R(i)).f = [F(R(i)).f i]; end end %checks lexicographical domination of two solutions function [d] = lex_dominate(obj1, obj2) equal = 1; d = 1; sz = size(obj1,2); for i = 1:sz if obj1(i) > obj2(i) d = 0; break; elseif(equal==1 && obj1(i) < obj2(i)) equal = 0; end end if d ==1 && equal==1 %check if both solutions are equal d = 0; end end
github
proteekroy/U-NSGA-III-master
survival_selection.m
.m
U-NSGA-III-master/survival_selection.m
1,103
utf_8
b2bd1a5c58c1263c4a65376474f0107f
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [opt] = survival_selection(opt) switch(opt.survivalselectionOption) case 1 %------------------NSGA-II---------------------------------- opt = nsga2_selection(opt); case 2 %------------------NSGA-III---------------------------------- opt = nsga3_selection(opt); otherwise disp('Survival Selection is not defined'); end end
github
proteekroy/U-NSGA-III-master
crowdingDistance.m
.m
U-NSGA-III-master/crowdingDistance.m
1,529
utf_8
d5106f814202596463a1dd74f6fb2050
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. %This function calculates crowding distance for front-f function [CDF] = crowdingDistance(opt, f, objective) if size(f,2)==1 CDF = opt.Inf; elseif size(f,2)==2 CDF(1) = opt.Inf; CDF(2) = opt.Inf; else [M1, I1] = min(objective); [M2, I2] = max(objective); I = horzcat(I1, I2); I = unique(I); CDF = zeros(size(f,2),1); for i = 1:size(objective,2) [~,index] = sort(objective(:,i)); for j = 2:size(index,1)-1 if (abs(M2(i)-M1(i)) > opt.Epsilon) CDF(index(j)) = CDF(index(j))+ ((objective(index(j+1),i)-objective(index(j-1),i))/(M2(i)-M1(i))) ; end end end CDF(2:end-1) = CDF(2:end-1)/ size(objective,2); CDF(I) = opt.Inf; end end
github
proteekroy/U-NSGA-III-master
lex_dominate.m
.m
U-NSGA-III-master/lex_dominate.m
1,117
utf_8
0ba44dfca024e0f3638f1de3cd8ae8d9
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [d] = lex_dominate(obj1, obj2) a_dom_b = 0; b_dom_a = 0; sz = size(obj1,2); for i = 1:sz if obj1(i) > obj2(i) b_dom_a = 1; elseif(obj1(i) < obj2(i)) a_dom_b = 1; end end if(a_dom_b==0 && b_dom_a==0) d = 2; elseif(a_dom_b==1 && b_dom_a==1) d = 2; else if a_dom_b==1 d = 1; else d = 3; end end end
github
proteekroy/U-NSGA-III-master
main.m
.m
U-NSGA-III-master/main.m
4,137
utf_8
d9abd04e8d176117a44808f970124307
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % This Software runs NSGA-II procedure for different testfunctions % You are free to change, modify, share and distribute this software % Please Acknowledge the author (if possible) for any use of this software % @author Proteek Chandan Roy, Department of CSE, Michigan State University, USA % email: [email protected] function main() test_function = ['zdt1 ';'zdt2 ';'zdt3 ';'zdt4 ';'zdt6 ';... 'dtlz1 ';'dtlz2 ';'dtlz3 ';'dtlz4 '; 'dtlz5 ';... 'dtlz7 ';'srn ';'bnh ';'osy ';'tnk ';... 'c2dtlz2'; 'DO2DK ';'DO2DK1 '; 'DEB2DK ';'DEB2DK1';... 'DEB3DK ';'DEB3DK1' ;'UF1 ']; %-------------------MAIN LOOP---------------------------------------------- run = 1;%number of runs for func_no = 16:1:16%:4%for all test functions for r = 1:1:run%number of runs opt.r = r;%run number disp(r); opt.objfunction = strtrim(test_function(func_no,:));%remove whitespaces %opt.func_no = func_no;%function number opt = nsga2_basic_parameters(opt);%basic parameters of evolutionary algorithm opt.pareto = load('Pareto Front/C2DTLZ2.3D.pf');%Pareto front %-----------PLOT PARETO FRONT---------------------------------- opt.fig = figure; plot_population(opt, opt.pareto); if r<10 opt.objfilename = strcat(opt.testfilename,'_00',num2str(r),'.obj'); opt.histfilename = strcat(opt.testfilename,'_00',num2str(r),'.hist'); elseif r<100 opt.objfilename = strcat(opt.testfilename,'_0',num2str(r),'.obj'); opt.histfilename = strcat(opt.testfilename,'_0',num2str(r),'.hist'); else opt.objfilename = strcat(opt.testfilename,'_',num2str(r),'.obj'); opt.histfilename = strcat(opt.testfilename,'_',num2str(r),'.hist'); end %---------------- OPTIMIZE ------------------------------------ opt = nsga2_main(opt); %----------------WRITE TO FILE--------------------------------- [~, ParetoIndex] = calculate_feasible_paretofront(opt, opt.pop, opt.popObj, opt.popCV); dlmwrite(opt.objfilename, opt.popObj(ParetoIndex,:), 'delimiter',' ','precision','%.10f');%feasible non-dominated front % dlmwrite(opt.varfilename, opt.pop, 'delimiter',' ','precision','%.10f');%'-apend' for apending % dlmwrite(opt.objfilename, opt.popObj, 'delimiter',' ','precision','%.10f'); % dlmwrite(opt.cvfilename, opt.popCV, 'delimiter', ' ','precision','%.10f'); % all_filename = strcat('all_fitness',num2str(r),'_nsga2.txt'); % dlmwrite(all_filename, opt.archiveObj, 'delimiter',' ','precision','%.10f'); %----------PLOT PARETO FRONT AND FINAL SOLUTION---------------- opt.fig = figure; hold all; plot_population(opt, opt.pareto); plot_population(opt, opt.popObj); end disp('END'); end end %------------------------------END OF -FILE--------------------------------
github
proteekroy/U-NSGA-III-master
evaluateCV.m
.m
U-NSGA-III-master/evaluateCV.m
964
utf_8
aba733d42645f2a8e801d363d3ce42e7
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. %This function evaluates constrain violation (positive if violated), zero %otherwise function cv = evaluateCV(pop_cons) g = pop_cons; for i=1:size(pop_cons,1) for j=1:size(pop_cons,2) if g(i,j)<0 g(i, j) = 0; end end end cv = sum(g, 2); end
github
proteekroy/U-NSGA-III-master
mating_selection.m
.m
U-NSGA-III-master/mating_selection.m
1,062
utf_8
9656a0552b11d50596840660516c1ffe
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. function [opt] = mating_selection(opt) switch(opt.survivalselectionOption) case 1 opt.popChild = constrained_tournament_selection(opt, opt.pop, opt.popObj, opt.popCV); case 2 opt.popChild = niching_based_tournament_selection(opt, opt.pop, opt.popObj, opt.popCV); otherwise opt.popChild = constrained_tournament_selection(opt, opt.pop, opt.popObj, opt.popCV); end end
github
proteekroy/U-NSGA-III-master
niching_based_tournament_selection.m
.m
U-NSGA-III-master/niching_based_tournament_selection.m
3,260
utf_8
96a57b89444c96de933fc0d85a2f884f
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % This file picks solution from tournament with this logic- % If both are feasible pick a) Pick the one which has lower (better) rank % b) Or If both are in same rank then pick the one with less crowding % distance % If one of them is feasible, pick the feasible one % If both are infeasible, then pick the one with less constraint violation % If CV values are same, then pick randomly function selected_pop = niching_based_tournament_selection(opt, pop, popObj, popCV) N = opt.N;% pop size %----TOURNAMENT CANDIDATES------------------------------------------------- tour1 = randperm(N); tour2 = randperm(N); %----START TOURNAMENT SELECTION-------------------------------------------- selected_pop = zeros(N, opt.V); % Only the design variables of the selected members for i = 1:N p1 = tour1(i); p2 = tour2(i); if (popCV(p1)<=0 && popCV(p2)<=0)%both are feasible if opt.associationsReady && opt.pop2Dir(p1) == opt.pop2Dir(p2) obj1 = popObj(p1,:); obj2 = popObj(p2,:); d = lex_dominate(obj1, obj2); if d == 1 %p1 dominates p2 selected_pop(i, :) = pop(p1, 1:opt.V); elseif d == 3 % p2 dominates p1 selected_pop(i, :) = pop(p2, 1:opt.V); else % d == 2 if opt.pop2DirDistances(p1) < opt.pop2DirDistances(p2) pick = p1; else pick = p2; end selected_pop(i, :) = pop(pick,1:opt.V); end else if(rand <= 0.5) pick = p1; else pick = p2; end selected_pop(i, :) = pop(pick,1:opt.V); %initially p1 was randomly choosen end else if(popCV(p1) < popCV(p2)) %p1 less constraint violation selected_pop(i, :) = pop(p1,1:opt.V); else if (popCV(p2) < popCV(p1)) selected_pop(i, :) = pop(p2,1:opt.V); %p2 has less constraint violation else %randomly pick any solution if(rand <= 0.5) pick = p1; else pick = p2; end selected_pop(i, :) = pop(pick,1:opt.V);%initially p1 was randomly choosen end end end end end
github
proteekroy/U-NSGA-III-master
high_fidelity_evaluation.m
.m
U-NSGA-III-master/high_fidelity_evaluation.m
14,903
utf_8
d1a6cd89d5aad2c6b492dc30ae0ac295
% Copyright [2017] [Proteek Chandan Roy] % % Licensed under the Apache License, Version 2.0 (the "License"); % you may not use this file except in compliance with the License. % You may obtain a copy of the License at % % http://www.apache.org/licenses/LICENSE-2.0 % % Unless required by applicable law or agreed to in writing, software % distributed under the License is distributed on an "AS IS" BASIS, % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % See the License for the specific language governing permissions and % limitations under the License. % % Proteek Chandan Roy, 2017 % Contact: [email protected], [email protected] function [f,g] = high_fidelity_evaluation(opt,x) problem = lower(opt.objfunction); g = []; switch(problem) case 'zdt1' n=size(x,2); a(1)=x(1); b=9/(n-1); y=0; for i=2:n y=y+x(i); end b=b*y; a(2)=1+b; a(3)=1- sqrt(a(1)/a(2)); f(1)=a(1); f(2)=a(2)*a(3); case 'zdt2' n=size(x,2); a(1)=x(1); b=9/(n-1); y=0; for i=2:n y=y+x(i); end b=b*y; a(2)=1+b; a(3)=1- power(a(1)/a(2),2); f(1)=a(1); f(2)=a(2)*a(3); case 'zdt3' n=size(x,2); a(1)=x(1); b=9/(n-1); y=0; for i=2:n y=y+x(i); end b=b*y; a(2)=1+b; a(3)=1- sqrt(a(1)/a(2)) - (a(1)/a(2))*sin(10*pi*a(1)); f(1)=a(1); f(2)=a(2)*a(3); case 'zdt4' n=size(x,2); a(1)=x(1); y=0; for i=2:n y=y+power(x(i),2)-10*cos(4*pi*x(i)); end a(2)=1+10*(n-1)+y; a(3)=1- sqrt(a(1)/a(2)); f(1)=a(1); f(2)=a(2)*a(3); case 'zdt6' n=size(x,2); a(1)=1- exp(-4*x(1))*power(sin(6*pi*x(1)),6); y=0; for i=2:n y=y+x(i)/9; end b=9*power(y,0.25); a(2)=1+b; a(3)=1- power(a(1)/a(2),2); f(1)=a(1); f(2)=a(2)*a(3); case 'dtlz1' n=size(x,2); g = 0; nfunc = opt.M; k = n - nfunc + 1; for i = nfunc:n g = g + power(( x(i)-0.5),2) - cos(20 * 3.141592654 * ( x(i)-0.5)); end g = 100 * (k + g); for i = 1:nfunc fit = 0.5 * (1 + g); for j = nfunc - i:-1:1 fit = fit * x(j); end if i > 1 fit = fit * (1 - x(nfunc - i + 1)); end f(i) = fit; end case 'c1dtlz1' n=size(x,2); g = 0; nfunc = opt.M; k = n - nfunc + 1; for i = nfunc:n g = g + power(( x(i)-0.5),2) - cos(20 * 3.141592654 * ( x(i)-0.5)); end g = 100 * (k + g); for i = 1:nfunc fit = 0.5 * (1 + g); for j = nfunc - i:-1:1 fit = fit * x(j); end if i > 1 fit = fit * (1 - x(nfunc - i + 1)); end f(i) = fit; end %now calculate constraints c = 1.0 - f(nfunc) / 0.6; for i = 1: nfunc-1 c = c - f(i) / 0.5; end g = []; if(c>=0) g(1) = 0; else g(1) = c; end g(1) = -g(1); case 'dtlz2' n=size(x,2); nfunc = opt.M; k = n - nfunc + 1; g = 0; for i = nfunc:n g = g + power( x(i)-0.5,2); end f = zeros(1,nfunc); for i = 1:nfunc h = 1 + g; for j=1:nfunc - i h =h * cos( x(j) * 3.141592654 / 2); end if (i > 1) h = h*sin( x((nfunc - i + 1)) * 3.141592654 / 2); end f(i) = h; end case 'c2dtlz2' n=size(x,2); nfunc = opt.M; k = n - nfunc + 1; g = 0; for i = nfunc:n g = g + power( x(i)-0.5,2); end fit = zeros(1,nfunc); for i = 1:nfunc h = 1 + g; for j=1:nfunc - i h =h * cos( x(j) * 3.141592654 / 2); end if (i > 1) h = h*sin( x((nfunc - i + 1)) * 3.141592654 / 2); end fit(i) = h; end f(1) = fit(1); f(2) = fit(2); f(3) = fit(3); %now calculate constraints if(nfunc>3) r = 0.5; else r = 0.4; end v1 = realmax; v2 = 0.0; for i = 1: nfunc sum1 = power(f(i)-1.0, 2.0); for j = 1: nfunc if i ~= j sum1 = sum1 + power(f(j), 2.0); end end v1 = min(v1, sum1 - power(r, 2.0)); v2 = v2 + power(f(i) - (1.0 / sqrt(nfunc)), 2.0); end c = min(v1, v2 - power(r, 2.0)); g = []; if(c<=0) g(1) = c; else g(1) = c; end case 'c3dtlz2' n = length(x); xg=x(3:n); gx=sum((xg-0.5).^2); f(1)=(1+gx)*cos(x(1)*0.5*pi)*cos(x(2)*0.5*pi); f(2)=(1+gx)*cos(x(1)*0.5*pi)*sin(x(2)*0.5*pi); f(3)=(1+gx)*sin(x(1)*0.5*pi); g(1) = f(1)^2/4 + f(2)^2 + f(3)^2 - 1; g(2) = f(2)^2/4 + f(1)^2 + f(3)^2 - 1; g(3) = f(3)^2/4 + f(1)^2 + f(2)^2 - 1; case 'dtlz3' x = x'; k = 10; M = opt.M; % Error check: the number of dimensions must be M-1+k n = opt.V;%(M-1) + k; %this is the default if size(x,1) ~= n error(['Using k = 10, it is required that the number of dimensions be'... ' n = (M - 1) + k = %d in this case.'], n) end xm = x(n-k+1:end,:); %xm contains the last k variables g = 100*(k + sum((xm - 0.5).^2 - cos(20*pi*(xm - 0.5)),1)); % Computes the functions f(1,:) = (1 + g).*prod(cos(pi/2*x(1:M-1,:)),1); for ii = 2:M-1 f(ii,:) = (1 + g) .* prod(cos(pi/2*x(1:M-ii,:)),1) .* ... sin(pi/2*x(M-ii+1,:)); end f(M,:) = (1 + g).*sin(pi/2*x(1,:)); case 'dtlz4' n=size(x,2); nfunc = opt.M; k = n - nfunc + 1; g = 0; alpha = 100; for i = nfunc:n g = g + power( x(i)-0.5,2); end f = zeros(1,nfunc); for i = 1:nfunc h = 1 + g; for j=1:nfunc - i h = h * cos(power( x(j),alpha) * 3.141592654 / 2); end if (i > 1) h = h*sin(power( x((nfunc - i + 1)),alpha) * 3.141592654 / 2); end f(i) = h; end case 'dtlz5' n=size(x,2); nfunc = opt.M; g = 0; k = n - nfunc + 1; for i = nfunc:n g = g + power( x(i)-0.5,2); end t = 3.141592654 / (4 * (1 + g)); theta=[]; theta(1) = x(1) * 3.141592654 / 2; for i = 2: nfunc - 1 theta(i) = t * (1 + 2 * g * x(i)); end f = []; for i = 1:nfunc h = 1 + g; for j=1:nfunc - i h =h * cos(theta(j)); end if (i > 1) h = h*sin(theta((nfunc - i + 1))); end f(i) = h; end case 'dtlz7' n=size(x,2); nfunc = opt.M; k = n - nfunc + 1; g = sum(x(nfunc:n)); g = 1 + 9 * g / k; for i = 1:nfunc-1 f(i)=x(i); end h2=0; for j = 1:nfunc-1 h2 =h2 + x(j) / (1 + g) * (1 + sin(3 * 3.141592654 * x(j))); end h2 = nfunc - h2; f(nfunc) = (1 + g) * h2; case 'bnh' f(1) = 4*x(1)^2+4*x(2)^2; f(2) = (x(1)-5)^2+(x(2)-5)^2; g(1) = (1/25)*((x(1)-5)^2 + x(2)^2-25); g(2) = -1/7.7*((x(1)-8)^2 + (x(2)+3)^2-7.7); case 'osy' f(1) = -(25*(x(1)-2)^2+(x(2)-2)^2+(x(3)-1)^2+(x(4)-4)^2+(x(5)-1)^2); f(2) = x(1)^2+x(2)^2+x(3)^2+x(4)^2+x(5)^2+x(6)^2; g(1) = (-1/2)*(x(1)+x(2)-2); g(2) = (-1/6)*(6-x(1)-x(2)); g(3) = (-1/2)*(2-x(2)+x(1)); g(4) = (-1/2)*(2-x(1)+3*x(2)); g(5) = (-1/4)*(4-(x(3)-3)^2 -x(4)); g(6) = (-1/4)*((x(5)-3)^2+x(6)-4); case 'srn' f(1) = 2.0+(x(1)-2.0)^2+(x(2)-1.0)^2; f(2) = 9.0*x(1)-(x(2)-1)^2; g(1) = (1/225)*(x(1)^2+x(2)^2-225.0); g(2) = 0.1*(x(1)-3.0*x(2)+10.0); case 'tnk' f(1) = x(1); f(2) = x(2); g(1) = (-1)*(x(1)^2+x(2)^2-1.0-0.1*cos(16*atan(x(1)/x(2)))); g(2) = (1/0.5)*((x(1)-0.5)^2+(x(2)-0.5)^2-0.5); case 'water' f(1) = (106780.37 * (x(2) + x(3)) + 61704.67)/(8 * power(10, 4)); f(2) = (3000.0 * x(1))/1500; f(3) = ((305700 * 2289*x(2))/power(0.06 * 2289.0,0.65))/(3 * power(10, 6)); f(4) = (250.0 * 2289.0 * exp(-39.75*x(2) + 9.9*x(3) + 2.74))/(6*power(10, 6)); f(5) = (25.0*((1.39/(x(1)*x(2))) + 4940.0*x(3) - 80.0))/8000; g(1) = (0.00139/(x(1)*x(2)) + 4.94*x(3) - 0.08 - 1)/13.314; g(2) = (0.000306/(x(1)*x(2)) + 1.082*x(3) - 0.0986 - 1)/2.0696; g(3) = (12.307/(x(1)*x(2)) + 49408.24*x(3) + 4051.02 - 50000)/82061.844; g(4) = (2.098/(x(1)*x(2)) + 8046.33*x(3) - 696.71 - 16000)/5087.923; g(5) = (2.138/(x(1)*x(2)) + 7883.39*x(3) - 705.04 - 10000)/11463.299; g(6) = (0.417*(x(1)*x(2)) + 1721.26*x(3) - 136.54 - 2000)/1.0; %this is always feasible g(7) = (0.164/(x(1)*x(2)) + 631.13*x(3) - 54.48 - 550)/1098.633; case 'carside' g(1) = 1.16 - 0.3717 *x(2)*x(4)- 0.0092928 *x(3); g(2) = 0.261 - 0.0159 * x(1) *x(2)- 0.188 *x(1)* 0.345 - 0.019 *x(2)*x(7) + 0.0144*x(3)*x(5)+ 0.08045 *x(6)* 0.192; g(3) = 0.214 + 0.00817 *x(5)- 0.131 * x(1) * 0.345 - 0.0704 * x(1) * 0.192 + 0.03099*x(2)*x(6)- 0.018 *x(2)*x(7)+ 0.0208 *x(3)* 0.345 + 0.121 *x(3)* 0.192 - 0.00364*x(5)*x(6)- 0.018 *x(2)^2; g(4) = 0.74 - 0.61 *x(2) - 0.031296 *x(3)- 0.166 *x(7)* 0.192 + 0.227 *x(2)^2; g(5) = 28.98 + 3.818 *x(3)- 4.2 * x(1)*x(2)+ 6.63 *x(6)* 0.192 - 7.77 *x(7)* 0.345; g(6) = 33.86 + 2.95 *x(3)- 5.057 * x(1) *x(2)- 11 *x(2)* 0.345 - 9.98 *x(7)* 0.345 +22 * 0.345 * 0.192; g(7) = 46.36 - 9.9 *x(2)- 12.9 * x(1) * 0.345; g(8) = 4.72 - 0.5 *x(4)- 0.19 *x(2)*x(3); g(9) = 10.58 - 0.674 * x(1)*x(2)- 1.95 *x(2)* 0.345; g(10) = 16.45 - 0.489 *x(3)*x(7)- 0.843 *x(5)*x(6); f(1) = 1.98 + 4.9 *x(1)+ 6.67 *x(2)+ 6.98 *x(3)+ 4.01 *x(4) + 1.78 *x(5)+ 0.00001*x(6)+ 2.73 *x(7); f(2) = g(8); f(3) = (g(9) + g(10)) / 2.0; g(1)=- 1 + g(1) / 1.0; g(2)= -1 + g(2) / 0.32; g(3)= -1 + g(3) / 0.32; g(4)= -1 + g(4) / 0.32; g(5)= -1 + g(5) / 32.0; g(6)= -1 +g(6)/ 32.0; g(7)= -1 + g(7)/ 32.0; g(8)= -1 + g(8)/ 4.0; g(9)= -1 + g(9)/ 9.9; g(10)= -1 + g(10)/ 15.7; case 'welded' f(1) = 1.10471*x(1)^2*x(2)+0.04811*x(3)*x(4)*(14.0+x(2)); f(2) = 2.1952/(x(4)*x(3)^3); P = 6000; L = 14; t_max = 13600; s_max = 30000; R = sqrt(0.25*(x(2)^2+(x(1)+x(3))^2)); M = P*(L+x(2)/2); J = 2*sqrt(0.5)*x(1)*x(2)*(x(2)^2/12 +0.25*(x(1)+x(3))^2); t1 = P/(sqrt(2)*x(1)*x(2)); t2 = M*R/J; t = sqrt(t1^2+t2^2+t1*t2*x(2)/R); s = 6*P*L/(x(4)*x(3)^2); P_c = 64746.022*(1-0.0282346*x(3))* x(3)*x(4)^3; % Constraints g(1) = (1/t_max)*(t - t_max); g(2) = (1/s_max)*(s - s_max); g(3) = (1/(5-0.125))*(x(1)-x(4)); g(4) = (1/P)*(P-P_c); case 'do2dk' f = do2dk(x, opt.num_Knee, opt.knee_s); case 'do2dk1' f = do2dk1(x, opt.num_Knee, opt.knee_s); case 'deb2dk' f = deb2dk(x, opt.num_Knee); case 'deb2dk1' f = deb2dk1(x, opt.num_Knee); case 'deb3dk' f = deb3dk(x, opt.num_Knee); case 'deb3dk1' f = deb3dk1(x, opt.num_Knee); case 'uf1' f = UF1(x')'; case 'uf2' f = UF2(x')'; case 'uf3' f = UF3(x')'; case 'uf4' f = UF4(x')'; case 'uf5' f = UF5(x')'; case 'uf6' f = UF6(x')'; case 'uf7' f = UF7(x')'; case 'uf8' f = UF8(x')'; case 'uf9' f = UF9(x')'; otherwise input('Function defition is not found inside high fidelity evaluation'); end %for unconstraint problem if opt.C==0 g = []; end end
github
mehr-een/bemkl-rbps-master
civalue.m
.m
bemkl-rbps-master/BEMKL/civalue.m
698
utf_8
0948ed66c5f328a35546256d21c9b141
%Mehreen Ali %[email protected] function CIndex2 = civalue(y,yhat) ci = zeros(1,size(y,2)); for k= 1:size(y,2) % col s = 0; % score sum n = 0; % eligible pair of scores for i= 1:size(y,1) % row for j= i+1:size(y,1) % next row if (i < j) if(y(i,k) > y(j,k)) s = s + (yhat(i,k) > yhat(j,k)) + 0.5 * (yhat(i,k) == yhat(j,k)); n = n + 1; elseif (y(i,k) < y(j,k)) s = s + (yhat(i,k) < yhat(j,k)) + 0.5 * (yhat(i,k) == yhat(j,k)); n = n + 1; end end end end ci(k) = s / n; end CIndex2 = nanmean(ci);
github
mehr-een/bemkl-rbps-master
bemkl_loocv.m
.m
bemkl-rbps-master/BEMKL/bemkl_loocv.m
5,706
utf_8
04d503f48a3052ac41dba55272940d1c
%Mehreen Ali %[email protected] function [validation_response_CV,predicted_response_CV] = bemkl_loocv(drug_source, view_index) load 'DataViews.mat'; load 'ViewCombinations.mat'; % combos with mut_data %%%% selected views view_names = view_combinations{view_index,1}; view_kernels = view_combinations{view_index,2}; index_k = 1:1:58; num_drugs = size(drug_source,2); predicted_response_CV=zeros(58, num_drugs); P = length(view_names); standardize_response = 0; %0:false 1:true %%%% LOO-CV for k = 1:58 learning_indices = find(index_k ~= k); prediction_indices = k; Nlearning = length(learning_indices); Nprediction = length(prediction_indices); %%%% views dimensions learning.X = cell(1, P); prediction.X = cell(1, P); for m = 1:P learning.X{m} = eval(sprintf('%s(learning_indices, :)', view_names{m})); prediction.X{m} = eval(sprintf('%s(prediction_indices, :)', view_names{m})); end learning.Y = eval('drug_source(learning_indices, :)'); validation.Y = eval('drug_source(prediction_indices, :)'); Ndrug = size(learning.Y, 2); seed = 1606; rand('state', seed); %#ok<RAND> randn('state', seed); %#ok<RAND> %%%% view normalization for m = 1:P nan_indices_learning = isnan(learning.X{m}); nan_indices_prediction = isnan(prediction.X{m}); if strcmp(view_kernels{m}, 'jaccard') ~= 1 mas.mea = nanmean(learning.X{m}, 1); mas.std = nanstd(learning.X{m}, 0, 1); mas.std(mas.std == 0) = 1; learning.X{m} = bsxfun(@rdivide, bsxfun(@minus, learning.X{m}, mas.mea), mas.std); prediction.X{m} = bsxfun(@rdivide, bsxfun(@minus, prediction.X{m}, mas.mea), mas.std); end learning.X{m}(nan_indices_learning) = 0; prediction.X{m}(nan_indices_prediction) = 0; end %%%% drug response standardization if standardize_response == 0 mas.mea = nanmean(learning.Y, 1); learning.Y = bsxfun(@minus, learning.Y, mas.mea); validation.Y = bsxfun(@minus,validation.Y , mas.mea); else mas.mea = nanmean(learning.Y, 1); mas.std = nanstd(learning.Y, 0, 1); mas.std(mas.std == 0) = 1; learning.Y = bsxfun(@rdivide, bsxfun(@minus, learning.Y, mas.mea), mas.std); validation.Y = bsxfun(@rdivide, bsxfun(@minus, validation.Y, mas.mea), mas.std); end validation_response_CV(k,:) = validation.Y; %%%% kernels for views Kx_learning = zeros(Nlearning, Nlearning, P); Kx_prediction = zeros(Nlearning, Nprediction, P); for m = 1:P if strcmp(view_kernels{m}, 'gaussian') == 1 Kx_learning(:, :, m) = exp(-pdist2(learning.X{m}, learning.X{m}).^2 / size(learning.X{m}, 2) / 2); Kx_prediction(:, :, m) = exp(-pdist2(learning.X{m}, prediction.X{m}).^2 / size(learning.X{m}, 2) / 2); elseif strcmp(view_kernels{m}, 'exponential') == 1 Kx_learning(:, :, m) = exp(-pdist2(learning.X{m}, learning.X{m}) / sqrt(size(learning.X{m}, 2) )); Kx_prediction(:, :, m) = exp(-pdist2(learning.X{m}, prediction.X{m}) / sqrt(size(learning.X{m}, 2) )); elseif strcmp(view_kernels{m}, 'jaccard') == 1 J = 1 - pdist2(learning.X{m}, learning.X{m}, 'jaccard'); J(isnan(J)) = 0; for j = 1:size(J, 1) J(j, j) = 1; end Kx_learning(:, :, m) = J; J = 1 - pdist2(learning.X{m}, prediction.X{m}, 'jaccard'); J(isnan(J)) = 0; Kx_prediction(:, :, m) = J; end end %%%% NCI/DREAM7 parameters parameters.alpha_lambda = 1e-10; %positive parameters.beta_lambda = 1e-10; %positive parameters.alpha_upsilon = 1; %positive parameters.beta_upsilon = 1; %positive parameters.alpha_gamma = 1e-10; %positive parameters.beta_gamma = 1e-10; %positive parameters.alpha_omega = 1e-10; %positive parameters.beta_omega = 1e-10; %positive parameters.alpha_epsilon = 1; %positive parameters.beta_epsilon = 1; %positive parameters.iteration = 200; parameters.seed = 1606; %%%% combined kernel K_learning = cell(1, Ndrug); y_learning = cell(1, Ndrug); K_prediction = cell(1, Ndrug); for i = 1:Ndrug indices = find(isnan(learning.Y(:, i)) == 0); K_learning{i} = zeros(length(indices), length(indices), P); for m = 1:P K_learning{i}(:, :, m) = Kx_learning(indices, indices, m); end y_learning{i} = learning.Y(indices, i); K_prediction{i} = zeros(size(Kx_prediction, 2), length(indices), P); for m = 1:P K_prediction{i}(:, :, m) = Kx_prediction(indices, :, m)'; end end state = bemkl_supervised_multitask_regression_variational_train(K_learning, y_learning, parameters); output = bemkl_supervised_multitask_regression_variational_test(K_prediction, state); predicted_response=zeros(length(prediction_indices), Ndrug); for drug = 1:Ndrug predicted_response(:, drug) = output.f{drug}.mean; end predicted_response_CV(k,:) = predicted_response; end end
github
yanlirock/Multi-task_Survival_Analysis-master
example_cox_CMTL.m
.m
Multi-task_Survival_Analysis-master/example_cox_CMTL.m
1,706
utf_8
e4b3f847365c131b1c42bf66d36edfcd
%% file example_cox_CMTL.m % this file shows the usage of cox_CMTL.m function function example_cox_CMTL(floder, name_train,name_test,lam_iter,clus_num,Smallest_lambda_rate) current_path=cd; Num_lambda=str2num(lam_iter); smallest_rate=str2double(Smallest_lambda_rate); addpath(genpath([current_path '/functions/'])); % load function clus_num=str2num(clus_num); % tell the direction where it contains train/test data. dir=strcat(current_path,'/data/',floder); load(strcat(dir,name_train,'.mat')); % load training data. load(strcat(dir,name_test,'.mat')); % load testing data. task_num = size(train_cell,1); % total task number. opts.init = 0; % guess start point from data. opts.tFlag = 1; % terminate after relative objective value does not changes much. opts.tol = 10^-5; % tolerance. opts.maxIter = 1000; % maximum iteration number of optimization. epsilon=10^-5; rho_1 = 10; %rho_2 = 10^0; W_old = zeros((size(test_cell{1},2)-2),task_num); %kmCMTL_OrderedModel = zeros(size(W)); %OrderedTrueModel = zeros(size(W)); Cindex=zeros(Num_lambda,task_num); TYPE = zeros(task_num,Num_lambda); %% testing for ii=1:Num_lambda rho_2=rho_1^(9-ii); [W_learn, funcVal,funcVal_cox, M_learned]= cox_CMTL(train_cell, rho_1, rho_2, clus_num,W_old,opts); for jj =1:task_num predict=test_cell{jj}(:,3:end)*W_learn(:,jj); Cindex(ii,jj)=getcindex_cox(predict,test_cell{jj}(:,1),test_cell{jj}(:,2)); end W_old=W_learn; [U,S,V] = svd(M_learned); tS=S(1:clus_num,:); [M,I] = max(abs(tS*V)); TYPE(:,ii)=I'; end % shows the best possible Cindex with different parameter maxc=max(Cindex); disp(maxc); end
github
yanlirock/Multi-task_Survival_Analysis-master
multi_cox_prepare.m
.m
Multi-task_Survival_Analysis-master/multi_cox_prepare.m
4,835
utf_8
0fea2f9f280db4dc0227666bfb531de5
% This function is used to prapare the training and testing file for % multi_task survival analysis. Beside cross validation it will also % do preprocess for Cox model function multi_cox_prepare(folder, num_cv) % Detailed explanation goes here %clear all; n_num_cv=str2double(num_cv); current_path=cd; cd(strcat(current_path,folder)); %'/Noname_addone_miRNA_use/' dd=dir('*.csv'); fileNames = {dd.name}; ntask=numel(fileNames); data = cell(ntask,3); data(:,1) = regexprep(fileNames, '.csv',''); mkdir(strcat(cd,'/cv')) for ii = 1:ntask %disp(ii); data{ii,2} = dlmread(fileNames{ii}); cvf = crossvalind('Kfold',data{ii,2}(:,2),n_num_cv); % devide into train and test data{ii,3} = cvf; csvwrite(strcat(cd,'/cv/cv_',num2str(ii),'.csv'),cvf) end %% merge and cv for k =1:n_num_cv train_cell=cell(ntask,1); test_cell=cell(ntask,1); for j=1:ntask test = (data{j,3} == k); train = (data{j,3} ~= k); test_cell{j}=data{j,2}(test,:); train_cell{j}=cox_preprocess(data{j,2}(train,3:end),data{j,2}(train,1),'censoring',~(data{j,2}(train,2))); end save(strcat(cd,'/train_',num2str(k),'.mat'),'train_cell'); save(strcat(cd,'/test_',num2str(k),'.mat'),'test_cell'); end cd(current_path); %% cox_preprocess function [Processed] = cox_preprocess(X,y,varargin) % [...] = cox_preprocess(X,Y,'PARAM1',VALUE1,'PARAM2',VALUE2,...) specifies % additional parameter name/value pairs chosen from the following: % % Name Value % 'baseline' The X values at which the baseline hazard is to be % computed. Default is mean(X), so the hazard at X is % h(t)*exp((X-mean(X))*B). Enter 0 to compute the % baseline relative to 0, so the hazard at X is % h(t)*exp(X*B). % 'censoring' A boolean array of the same size as Y that is 1 for % observations that are right-censored and 0 for % observations that are observed exactly. Default is % all observations observed exactly. % 'frequency' An array of the same size as Y containing non-negative % integer counts. The jth element of this vector % gives the number of times the jth element of Y and % the jth row of X were observed. Default is 1 % observation per row of X and Y. % 'init' A vector containing initial values for the estimated % coefficients B. % 'options' A structure specifying control parameters for the % iterative algorithm used to estimate B. This argument % can be created by a call to STATSET. For parameter % names and default values, type STATSET('coxphfit'). narginchk(2,inf); % Check the required data arguments if ndims(X)>2 || ~isreal(X) error(message('stats:coxphfit:BadX')); end if ~isvector(y) || ~isreal(y) error(message('stats:coxphfit:BadY')); end % Process the optional arguments okargs = {'baseline' 'censoring' 'frequency' 'init' 'options'}; defaults = {[] [] [] [] []}; [baseX cens freq init options] = internal.stats.parseArgs(okargs,defaults,varargin{:}); if ~isempty(cens) && (~isvector(cens) || ~all(ismember(cens,0:1))) error(message('stats:coxphfit:BadCensoring')); end if ~isempty(freq) && (~isvector(freq) || ~isreal(freq) || any(freq<0)) error(message('stats:coxphfit:BadFrequency')); end if ~isempty(baseX) && ~(isnumeric(baseX) && (isscalar(baseX) || ... (isvector(baseX) && length(baseX)==size(X,2)))) error(message('stats:coxphfit:BadBaseline')); elseif isscalar(baseX) baseX = repmat(baseX,1,size(X,2)); end % Sort by increasing time [sorty,idx] = sort(y); X = X(idx,:); [n,p] = size(X); if isempty(cens) cens = false(n,1); else cens = cens(idx); end if isempty(freq) freq = ones(n,1); else freq = freq(idx); end % Determine the observations at risk at each time [~,atrisk] = ismember(sorty,flipud(sorty), 'legacy'); atrisk = length(sorty) + 1 - atrisk; % "atrisk" used in nested function tied = diff(sorty) == 0; tied = [false;tied] | [tied;false]; % "tied" used in nested function Processed = struct('X',X,'freq',freq,'cens',cens,'atrisk',atrisk); end end
github
yanlirock/Multi-task_Survival_Analysis-master
cox_L21.m
.m
Multi-task_Survival_Analysis-master/functions/cox_L21.m
5,214
utf_8
8688603ca548670a84a88f53d5e9e42a
%% FUNCTION Logistic_TGL % L21 Joint Feature Learning with Coxph Loss. %% Code starts here function [W, funcVal] = cox_L21(cox_processed, W0, rho1, opts) if nargin <3 error('\n Inputs: cox_processed, W0, rho1, should be specified!\n'); end if nargin <4 opts = []; end % initialize options. %opts=init_opts(opts); if isfield(opts, 'rho_L2') rho_L2 = opts.rho_L2; else rho_L2 = 0; end task_num = size(cox_processed,1); dimension = size(cox_processed{1}.X, 2); funcVal = []; bFlag=0; % this flag tests whether the gradient step only changes a little Wz= W0; Wz_old = W0; t = 1; t_old = 0; iter = 0; gamma = 1; gamma_inc = 2; while iter < opts.maxIter alpha = (t_old - 1) /t; Ws = (1 + alpha) * Wz - alpha * Wz_old; % compute function value and gradients of the search point [gWs, Fs] = gradVal_eval(Ws); while true Wzp = FGLasso_projection(Ws - gWs/gamma, rho1 / gamma); Fzp = funVal_eval (Wzp); delta_Wzp = Wzp - Ws; r_sum = norm(delta_Wzp, 'fro')^2; % Fzp_gamma = Fs + trace(delta_Wzp' * gWs)... % + gamma/2 * norm(delta_Wzp, 'fro')^2; Fzp_gamma = Fs + sum(sum(delta_Wzp.* gWs))... + gamma/2 * norm(delta_Wzp, 'fro')^2; if (r_sum <=1e-20) bFlag=1; % this shows that, the gradient step makes little improvement break; end if (Fzp <= Fzp_gamma) break; else gamma = gamma * gamma_inc; end end Wz_old = Wz; Wz = Wzp; funcVal = cat(1, funcVal, Fzp + nonsmooth_eval(Wz, rho1)); if (bFlag) % fprintf('\n The program terminates as the gradient step changes the solution very small.'); break; end % test stop condition. switch(opts.tFlag) case 0 if iter>=2 if (abs( funcVal(end) - funcVal(end-1) ) <= opts.tol) break; end end case 1 if iter>=2 if (abs( funcVal(end) - funcVal(end-1) ) <=... opts.tol* funcVal(end-1)) break; end end case 2 if ( funcVal(end)<= opts.tol) break; end case 3 if iter>=opts.maxIter break; end end iter = iter + 1; t_old = t; t = 0.5 * (1 + (1+ 4 * t^2)^0.5); end W = Wzp; % private functions function [Wp] = FGLasso_projection (W, lambda ) % solve it in row wise (L_{2,1} is row coupled). % for each row we need to solve the proximal opterator % argmin_w { 0.5 \|w - v\|_2^2 + lambda_3 * \|w\|_2 } nm=sqrt(sum(W.^2,2)); Wp = bsxfun(@times,max(nm-lambda,0)./nm,W); Wp(isnan(Wp))=0; end function [grad_W, funcVal] = gradVal_eval(W) grad_W = zeros(dimension, task_num); for i = 1:task_num [ grad_W(:, i)] = gradandorg_neglogparlike(W(:, i),cox_processed{i}); end grad_W = grad_W + rho_L2 * 2 * W; % here when computing function value we do not include % l1 norm. funcVal = 0; for i = 1: task_num funcVal = funcVal + neglogparlike(W(:, i),cox_processed{i}); end funcVal = funcVal + rho_L2 * norm(W,'fro')^2; end function [funcVal] = funVal_eval (W) funcVal = 0; for i = 1: task_num funcVal = funcVal + neglogparlike(W(:, i),cox_processed{i}); end % here when computing function value we do not include % l1 norm. funcVal = funcVal + rho_L2 * norm(W,'fro')^2; end function [non_smooth_value] = nonsmooth_eval(W, rho_1) non_smooth_value = 0; for i = 1 : size(W, 1) w = W(i, :); non_smooth_value = non_smooth_value ... + rho_1 * norm(w, 2); end end end function [L]=neglogparlike(b,cox_processed) % Compute log likelihood L X=cox_processed.X; freq=cox_processed.freq; cens=cox_processed.cens; atrisk=cox_processed.atrisk; obsfreq = freq .* ~cens; Xb = X*b; r = exp(Xb); risksum = flipud(cumsum(flipud(freq.*r))); risksum = risksum(atrisk); L = obsfreq'*(Xb - log(risksum)); L = -L; end function [dl]=gradandorg_neglogparlike(b,cox_processed) % Compute log likelihood L X=cox_processed.X; freq=cox_processed.freq; cens=cox_processed.cens; atrisk=cox_processed.atrisk; obsfreq = freq .* ~cens; Xb = X*b; r = exp(Xb); risksum = flipud(cumsum(flipud(freq.*r))); risksum = risksum(atrisk); [n,p] = size(X); Xr = X .* repmat(r.*freq,1,p); Xrsum = flipud(cumsum(flipud(Xr))); Xrsum = Xrsum(atrisk,:); A = Xrsum ./ repmat(risksum,1,p); dl = obsfreq' * (X-A); dl = -dl'; end
github
yanlirock/Multi-task_Survival_Analysis-master
Cox_Trace.m
.m
Multi-task_Survival_Analysis-master/functions/Cox_Trace.m
4,053
utf_8
63bc478fd7d3d32581dc386a1606cc38
%% FUNCTION Least_Trace % Trace-Norm Regularized Learning with Cox Loss. %% Code starts here function [W, funcVal] = Cox_Trace(cox_processed, W0, rho1, opts) if nargin <3 error('\n Inputs: cox_processed, W0, rho1, should be specified!\n'); end if nargin <4 opts = []; end % initialize options. %opts=init_opts(opts); if isfield(opts, 'rho_L2') rho_L2 = opts.rho_L2; else rho_L2 = 0; end task_num = size(cox_processed,1); dimension = size(cox_processed{1}.X, 2); funcVal = []; bFlag=0; % this flag tests whether the gradient step only changes a little Wz= W0; Wz_old = W0; t = 1; t_old = 0; iter = 0; gamma = 1; gamma_inc = 2; while iter < opts.maxIter alpha = (t_old - 1) /t; Ws = (1 + alpha) * Wz - alpha * Wz_old; % compute function value and gradients of the search point gWs = gradVal_eval(Ws); Fs = funVal_eval (Ws); while true [Wzp Wzp_tn] = trace_projection(Ws - gWs/gamma, 2 * rho1 / gamma); Fzp = funVal_eval (Wzp); delta_Wzp = Wzp - Ws; r_sum = norm(delta_Wzp, 'fro')^2; %Fzp_gamma = Fs + trace(delta_Wzp' * gWs) + gamma/2 * norm(delta_Wzp, 'fro')^2; Fzp_gamma = Fs + sum(sum(delta_Wzp .* gWs)) + gamma/2 * norm(delta_Wzp, 'fro')^2; if (r_sum <=1e-20) bFlag=1; % this shows that, the gradient step makes little improvement break; end if (Fzp <= Fzp_gamma) break; else gamma = gamma * gamma_inc; end end Wz_old = Wz; Wz = Wzp; %funcVal = cat(1, funcVal, Fzp + rho1 * sum( svd(Wzp, 0) )); funcVal = cat(1, funcVal, Fzp + rho1 * Wzp_tn); if (bFlag) % fprintf('\n The program terminates as the gradient step changes the solution very small.'); break; end % test stop condition. switch(opts.tFlag) case 0 if iter>=2 if (abs( funcVal(end) - funcVal(end-1) ) <= opts.tol) break; end end case 1 if iter>=2 if (abs( funcVal(end) - funcVal(end-1) ) <=... opts.tol* funcVal(end-1)) break; end end case 2 if ( funcVal(end)<= opts.tol) break; end case 3 if iter>=opts.maxIter break; end end iter = iter + 1; t_old = t; t = 0.5 * (1 + (1+ 4 * t^2)^0.5); end W = Wzp; % private functions function [grad_W] = gradVal_eval(W) grad_W = zeros(dimension, task_num); for i = 1:task_num [ grad_W(:, i)] = gradandorg_neglogparlike(W(:, i),cox_processed{i}); end grad_W = grad_W + rho_L2 * 2 * W; end function [funcVal] = funVal_eval (W) funcVal = 0; for i = 1: task_num funcVal = funcVal + neglogparlike(W(:, i),cox_processed{i}); end funcVal = funcVal + rho_L2 * norm(W, 'fro')^2; end end function [L]=neglogparlike(b,cox_processed) % Compute log likelihood L X=cox_processed.X; freq=cox_processed.freq; cens=cox_processed.cens; atrisk=cox_processed.atrisk; obsfreq = freq .* ~cens; Xb = X*b; r = exp(Xb); risksum = flipud(cumsum(flipud(freq.*r))); risksum = risksum(atrisk); L = obsfreq'*(Xb - log(risksum)); L = -L; end function [dl]=gradandorg_neglogparlike(b,cox_processed) % Compute log likelihood L X=cox_processed.X; freq=cox_processed.freq; cens=cox_processed.cens; atrisk=cox_processed.atrisk; obsfreq = freq .* ~cens; Xb = X*b; r = exp(Xb); risksum = flipud(cumsum(flipud(freq.*r))); risksum = risksum(atrisk); [n,p] = size(X); Xr = X .* repmat(r.*freq,1,p); Xrsum = flipud(cumsum(flipud(Xr))); Xrsum = Xrsum(atrisk,:); A = Xrsum ./ repmat(risksum,1,p); dl = obsfreq' * (X-A); dl = -dl'; end
github
yanlirock/Multi-task_Survival_Analysis-master
cox_CMTL.m
.m
Multi-task_Survival_Analysis-master/functions/cox_CMTL.m
6,675
utf_8
bdabaa2c5864cee534765bccb59aa949
%% FUNCTION cox_CMTL % Convex-relaxed Clustered Multi-Task Learning with Cox prprotional Loss. %% Code starts here function [W, funcVal,funcVal_cox, M] = cox_CMTL(cox_processed,rho1, rho2, k, W_old, opts) if nargin <4 error('\n Inputs: cox_processed,rho1, rho2,and k should be specified!\n'); end if nargin <5 opts = []; end if rho2<=0 || rho1<=0 error('rho1 and rho2 should both greater than zero.'); end % if exist('mosekopt','file')==0 % error('Mosek is not found. Please install Mosek first. \n') % end % initialize options. %opts=init_opts(opts); task_num = size(cox_processed,1); funcVal = []; funcVal_cox= []; eta = rho2 / rho1; c = rho1 * eta * (1 + eta); M0 = speye (task_num) * k / task_num; bFlag=0; % this flag tests whether the gradient step only changes a little Wz= W_old; Wz_old = W_old; Mz = M0; Mz_old = M0; t = 1; t_old = 0; iter = 0; gamma = 1; gamma_inc = 2; while iter < opts.maxIter alpha = (t_old - 1) /t; Ws = (1 + alpha) * Wz - alpha * Wz_old; Ms = (1 + alpha) * Mz - alpha * Mz_old; % compute function value and gradients of the search point %gWs = gradVal_eval(Ws, rho1); %Fs = funVal_eval (Ws, rho1); [gWs, gMs, Fs] = gradVal_eval (Ws, Ms); while true % [Wzp l1c_wzp] = l1_projection(Ws - gWs/gamma, 2 * rho2 / gamma); % Fzp = funVal_eval (Wzp, rho1); Wzp = Ws - gWs/gamma; [Mzp ,Mzp_Pz, Mzp_DiagSigz ] = singular_projection (Ms - gMs/gamma, k); [Fzp, F_cox] = funVal_eval (Wzp, Mzp_Pz, Mzp_DiagSigz); %Fzp_gamma = Fs + trace(delta_Wzp' * gWs) + gamma/2 * norm(delta_Wzp, 'fro')^2; delta_Wzs = Wzp - Ws; delta_Mzs = Mzp - Ms; r_sum = (norm(delta_Wzs, 'fro')^2 + norm(delta_Mzs, 'fro')^2)/2; % Fzp_gamma = Fs + trace( (delta_Wzs)' * gWs) ... % + trace( (delta_Mzs)' * gMs) ... % + gamma/2 * norm(delta_Wzs, 'fro')^2 ... % + gamma/2 * norm(delta_Mzs, 'fro')^2; Fzp_gamma = Fs + sum(sum( delta_Wzs .* gWs)) ... + sum(sum( delta_Mzs .* gMs)) ... + gamma/2 * norm(delta_Wzs, 'fro')^2 ... + gamma/2 * norm(delta_Mzs, 'fro')^2; if (r_sum <=eps) bFlag=1; % this shows that, the gradient step makes little improvement break; end if (Fzp <= Fzp_gamma) break; else gamma = gamma * gamma_inc; end end Wz_old = Wz; Wz = Wzp; Mz_old = Mz; Mz = Mzp; funcVal = cat(1, funcVal, Fzp); funcVal_cox = cat(1, funcVal_cox, F_cox); if (bFlag) % fprintf('\n The program terminates as the gradient step changes the solution very small.'); break; end % test stop condition. switch(opts.tFlag) case 0 if iter>=2 if (abs( funcVal(end) - funcVal(end-1) ) <= opts.tol) break; end end case 1 if iter>=2 if (abs( funcVal(end) - funcVal(end-1) ) <=... opts.tol* funcVal(end-1)) break; end end case 2 if ( funcVal(end)<= opts.tol) break; end case 3 if iter>=opts.maxIter break; end end iter = iter + 1; t_old = t; t = 0.5 * (1 + (1+ 4 * t^2)^0.5); end W = Wzp; M = Mzp; % private functions function [Mzp, Mzp_Pz, Mzp_DiagSigz ] = singular_projection (Msp, k) [EVector, EValue] = eig(Msp); Pz = real(EVector); diag_EValue = real(diag(EValue)); %DiagSigz = SingVal_Projection(diag_EValue, k); % use mosek DiagSigz = bsa_ihb(diag_EValue, ones(size(diag_EValue)), k, ones(size(diag_EValue))); Mzp = Pz * diag(DiagSigz) *Pz'; Mzp_Pz = Pz; Mzp_DiagSigz = DiagSigz; end % the negtive partial_likelihood of Cox model function [L]=neglogparlike(b,cox_processed) % Compute log likelihood L X=cox_processed.X; freq=cox_processed.freq; cens=cox_processed.cens; atrisk=cox_processed.atrisk; obsfreq = freq .* ~cens; Xb = X*b; r = exp(Xb); risksum = flipud(cumsum(flipud(freq.*r))); risksum = risksum(atrisk); L = obsfreq'*(Xb - log(risksum)); L = -L; end % the gradient of negtive partial_likelihood of Cox model function [dl]=gradandorg_neglogparlike(b,cox_processed) % Compute log likelihood L X=cox_processed.X; freq=cox_processed.freq; cens=cox_processed.cens; atrisk=cox_processed.atrisk; obsfreq = freq .* ~cens; Xb = X*b; r = exp(Xb); risksum = flipud(cumsum(flipud(freq.*r))); risksum = risksum(atrisk); [n,p] = size(X); Xr = X .* repmat(r.*freq,1,p); Xrsum = flipud(cumsum(flipud(Xr))); Xrsum = Xrsum(atrisk,:); A = Xrsum ./ repmat(risksum,1,p); dl = obsfreq' * (X-A); dl = -dl'; end function [grad_W, grad_M, funcVal] = gradVal_eval(W ,M) IM = (eta * speye(task_num) + M); invEtaMWt = IM\W'; grad_W = []; for t_ii = 1:task_num dl=gradandorg_neglogparlike(W(:,t_ii),cox_processed{t_ii}); grad_W = cat(2, grad_W, dl); end grad_W = grad_W + 2 * c * invEtaMWt'; %W component grad_M = - c * (W' * W / IM /IM ); %M component funcVal = 0; for iii = 1: task_num funcVal = funcVal+neglogparlike(W(:,iii),cox_processed{iii}); %funcVal = funcVal + 0.5 * norm (Y{i} - X{i}' * W(:, i))^2; end funcVal = funcVal + c * trace( W * invEtaMWt); end function [funcVal,funcValorg] = funVal_eval (W, M_Pz, M_DiagSigz) invIM = M_Pz * (diag( 1./(eta + M_DiagSigz))) * M_Pz'; invEtaMWt = invIM * W'; funcVal = 0; for i = 1: task_num funcVal = funcVal+neglogparlike(W(:,i),cox_processed{i}); %funcVal = funcVal + 0.5 * norm (Y{i} - X{i}' * W(:, i))^2; end funcValorg = funcVal ; funcVal = funcVal + c * trace( W * invEtaMWt); end end
github
yanlirock/Multi-task_Survival_Analysis-master
trace_projection.m
.m
Multi-task_Survival_Analysis-master/functions/trace_projection.m
845
utf_8
dd710458fa390abd7ddc25e47f8af341
%% FUNCTION trace_projection % solves the Trace-norm projection problem. % %% OBJECTIVE % argmin_X = 0.5 \|X - L\| + alpha/2 \|L\| % % %% RELATED PAPERS % [1] Cai et. al. A Singlar Value Thresholding Algorihtm for Matrix % Completion. function [L_hat L_tn] = trace_projection(L, alpha) [d1 d2] = size(L); if (d1 > d2) [U S V] = svd(L, 0); thresholded_value = diag(S) - alpha / 2; diag_S = thresholded_value .* ( thresholded_value > 0 ); L_hat = U * diag(diag_S) * V'; L_tn = sum(diag_S); else new_L = L'; [U S V] = svd(new_L, 0); thresholded_value = diag(S) - alpha / 2; diag_S = thresholded_value .* ( thresholded_value > 0 ); L_hat = U * diag(diag_S) * V'; L_hat = L_hat'; L_tn = sum(diag_S); end
github
yanlirock/Multi-task_Survival_Analysis-master
bsa_ihb.m
.m
Multi-task_Survival_Analysis-master/functions/bsa_ihb.m
1,215
utf_8
4fd0ebe89b57d6e51011d127f2f7b379
%% FUNCTION bsa_ihb % Singular Projection % %% OBJECTIVE % min 1/2*||x - a||_2^2 % s.t. b'*x = r, 0<= x <= u, b > 0 % % %% Related papers % % [1] KC. Kiwiel. On linear-time algorithms for the continuous % quadratic knapsack problem, Journal of Optimization Theory % and Applications, 2007 % function [x_star,t_star,iter] = bsa_ihb(a,b,r,u) % initilization break_flag = 0; t_l = a./b; t_u = (a - u)./b; T = [t_l;t_u]; t_L = -inf; t_U = inf; g_tL = 0; g_tU = 0; iter = 0; while ~isempty(T) iter = iter + 1; g_t = 0; t_hat = median(T); U = t_hat < t_u; M = (t_u <= t_hat) & (t_hat <= t_l); if sum(U) g_t = g_t + b(U)'*u(U); end if sum(M) g_t = g_t + sum(b(M).*(a(M) - t_hat*b(M))); end if g_t > r t_L = t_hat; T = T(T > t_hat); g_tL = g_t; elseif g_t < r t_U = t_hat; T = T(T < t_hat); g_tU = g_t; else t_star = t_hat; break_flag = 1; break; end end if ~break_flag t_star = t_L - (g_tL -r)*(t_U - t_L)/(g_tU - g_tL); end x_star = min(max(0,a - t_star*b),u); end
github
nappoo/contourlet-transform-master
wfb2rec.m
.m
contourlet-transform-master/wfb2rec.m
1,419
utf_8
a8eb98892d022925b472758e34d4640d
function x = wfb2rec(x_LL, x_LH, x_HL, x_HH, h, g) % WFB2REC 2-D Wavelet Filter Bank Decomposition % % x = wfb2rec(x_LL, x_LH, x_HL, x_HH, h, g) % % Input: % x_LL, x_LH, x_HL, x_HH: Four 2-D wavelet subbands % h, g: lowpass analysis and synthesis wavelet filters % % Output: % x: reconstructed image % Make sure filter in a row vector h = h(:)'; g = g(:)'; g0 = g; len_g0 = length(g0); ext_g0 = floor((len_g0 - 1) / 2); % Highpass synthesis filter: G1(z) = -z H0(-z) len_g1 = length(h); c = floor((len_g1 + 1) / 2); g1 = (-1) * h .* (-1) .^ ([1:len_g1] - c); ext_g1 = len_g1 - (c + 1); % Get the output image size [height, width] = size(x_LL); x_B = zeros(height * 2, width); x_B(1:2:end, :) = x_LL; % Column-wise filtering x_L = rowfiltering(x_B', g0, ext_g0)'; x_B(1:2:end, :) = x_LH; x_L = x_L + rowfiltering(x_B', g1, ext_g1)'; x_B(1:2:end, :) = x_HL; x_H = rowfiltering(x_B', g0, ext_g0)'; x_B(1:2:end, :) = x_HH; x_H = x_H + rowfiltering(x_B', g1, ext_g1)'; % Row-wise filtering x_B = zeros(2*height, 2*width); x_B(:, 1:2:end) = x_L; x = rowfiltering(x_B, g0, ext_g0); x_B(:, 1:2:end) = x_H; x = x + rowfiltering(x_B, g1, ext_g1); % Internal function: Row-wise filtering with border handling function y = rowfiltering(x, f, ext1) ext2 = length(f) - ext1 - 1; x = [x(:, end-ext1+1:end) x x(:, 1:ext2)]; y = conv2(x, f, 'valid');
github
nappoo/contourlet-transform-master
wfb2dec.m
.m
contourlet-transform-master/wfb2dec.m
1,359
utf_8
cf0a7abcc9abae631039550460b07a48
function [x_LL, x_LH, x_HL, x_HH] = wfb2dec(x, h, g) % WFB2DEC 2-D Wavelet Filter Bank Decomposition % % y = wfb2dec(x, h, g) % % Input: % x: input image % h, g: lowpass analysis and synthesis wavelet filters % % Output: % x_LL, x_LH, x_HL, x_HH: Four 2-D wavelet subbands % Make sure filter in a row vector h = h(:)'; g = g(:)'; h0 = h; len_h0 = length(h0); ext_h0 = floor(len_h0 / 2); % Highpass analysis filter: H1(z) = -z^(-1) G0(-z) len_h1 = length(g); c = floor((len_h1 + 1) / 2); % Shift the center of the filter by 1 if its length is even. if mod(len_h1, 2) == 0 c = c + 1; end h1 = - g .* (-1).^([1:len_h1] - c); ext_h1 = len_h1 - c + 1; % Row-wise filtering x_L = rowfiltering(x, h0, ext_h0); x_L = x_L(:, 1:2:end); x_H = rowfiltering(x, h1, ext_h1); x_H = x_H(:, 1:2:end); % Column-wise filtering x_LL = rowfiltering(x_L', h0, ext_h0)'; x_LL = x_LL(1:2:end, :); x_LH = rowfiltering(x_L', h1, ext_h1)'; x_LH = x_LH(1:2:end, :); x_HL = rowfiltering(x_H', h0, ext_h0)'; x_HL = x_HL(1:2:end, :); x_HH = rowfiltering(x_H', h1, ext_h1)'; x_HH = x_HH(1:2:end, :); % Internal function: Row-wise filtering with border handling function y = rowfiltering(x, f, ext1) ext2 = length(f) - ext1 - 1; x = [x(:, end-ext1+1:end) x x(:, 1:ext2)]; y = conv2(x, f, 'valid');
github
nappoo/contourlet-transform-master
extend2.m
.m
contourlet-transform-master/extend2.m
1,861
utf_8
40bc6d67909280efd214bb2536a4a46f
function y = extend2(x, ru, rd, cl, cr, extmod) % EXTEND2 2D extension % % y = extend2(x, ru, rd, cl, cr, extmod) % % Input: % x: input image % ru, rd: amount of extension, up and down, for rows % cl, cr: amount of extension, left and rigth, for column % extmod: extension mode. The valid modes are: % 'per': periodized extension (both direction) % 'qper_row': quincunx periodized extension in row % 'qper_col': quincunx periodized extension in column % % Output: % y: extended image % % Note: % Extension modes 'qper_row' and 'qper_col' are used multilevel % quincunx filter banks, assuming the original image is periodic in % both directions. For example: % [y0, y1] = fbdec(x, h0, h1, 'q', '1r', 'per'); % [y00, y01] = fbdec(y0, h0, h1, 'q', '2c', 'qper_col'); % [y10, y11] = fbdec(y1, h0, h1, 'q', '2c', 'qper_col'); % % See also: FBDEC [rx, cx] = size(x); switch extmod case 'per' I = getPerIndices(rx, ru, rd); y = x(I, :); I = getPerIndices(cx, cl, cr); y = y(:, I); case 'qper_row' rx2 = round(rx / 2); y = [[x(rx2+1:rx, cx-cl+1:cx); x(1:rx2, cx-cl+1:cx)], x, ... [x(rx2+1:rx, 1:cr); x(1:rx2, 1:cr)]]; I = getPerIndices(rx, ru, rd); y = y(I, :); case 'qper_col' cx2 = round(cx / 2); y = [x(rx-ru+1:rx, cx2+1:cx), x(rx-ru+1:rx, 1:cx2); x; ... x(1:rd, cx2+1:cx), x(1:rd, 1:cx2)]; I = getPerIndices(cx, cl, cr); y = y(:, I); otherwise error('Invalid input for EXTMOD') end %----------------------------------------------------------------------------% % Internal Function(s) %----------------------------------------------------------------------------% function I = getPerIndices(lx, lb, le) I = [lx-lb+1:lx , 1:lx , 1:le]; if (lx < lb) | (lx < le) I = mod(I, lx); I(I==0) = lx; end
github
spin0za/shadow-boundary-detection-master
buildFeatures.m
.m
shadow-boundary-detection-master/buildFeatures.m
3,852
utf_8
5104f9ea0ac10958a30e9938119e2117
% Calculating features for all edge (candidate) pixels function features = buildFeatures(img, edgePixels, featNum) dim = 36; features = zeros(featNum, dim); % gradient threshold to determine edge width thresh = 0.1; % compute 1st feature: Gaussian filter size = 2*support+1 sigma = 1; support = 2; sizeFilter = 2*support+1; maxStep = 10; imHeight = size(img, 1)+2*maxStep; imWidth = size(img, 2)+2*maxStep; nChannel = size(img, 3); img = im2double(img); for sc = 0:2 imgCopy = img; if sc ~= 0 smoothGaussWidth = 6*sc+1; f = fspecial('gaussian', smoothGaussWidth, sc); for k = 1:nChannel img(:, :, k) = conv2(img(:, :, k), f, 'same'); end end % expand image to avoid pixels out of bounds Gmag = zeros(imHeight, imWidth, nChannel); Gdir = zeros(imHeight, imWidth, nChannel); imgNew = zeros(imHeight, imWidth, nChannel); for k = 1:nChannel imgNew(1:imHeight, 1:imWidth, k) = padarray(img(:, :, k), [maxStep, maxStep], 'replicate'); [Gmag(:, :, k), Gdir(:, :, k)] = imgradient(imgNew(:, :, k)); end img = imgNew; clear imgNew; % loop through all edge pixels for p = 1:featNum pixel = edgePixels(p, :); x = pixel(1)+maxStep; y = pixel(2)+maxStep; %% color gradient direction gamma(1:nChannel) = Gdir(y, x, :); gamma = gamma*pi/180; % 3rd feature gammaDiff = min([abs(gamma-gamma([2, 3, 1])); 2*pi-abs(gamma-gamma([2, 3, 1]))]); %% illumination ratio & color gradient magnitude % build oriented DoG filter [u, v] = meshgrid(-support:support, -support:support); theta = pi/2-gamma; % leave out the constant coefficient DoG = zeros(sizeFilter, sizeFilter, nChannel); meanLeft = zeros(1, nChannel); meanRight = zeros(1, nChannel); for k = 1:nChannel DoG(:, :, k) = -(u.*cos(theta(k))+v.*sin(theta(k))).*exp(-(u.^2+v.^2)/(2*sigma^2)); end DoG(DoG<0) = 0; for k = 1:nChannel DoG(:, :, k) = DoG(:, :, k)./sum(sum(DoG(:, :, k))); meanLeft(k) = sum(sum(DoG(sizeFilter:-1:1, sizeFilter:-1:1, k).*img(y-support:y+support, x-support:x+support, k))); % rotate 180 degrees and convolve meanRight(k) = sum(sum(DoG(:, :, k).*img(y-support:y+support, x-support:x+support, k))); end t = min([meanLeft; meanRight])./max([meanLeft; meanRight]); % disp(nChannel); % disp(meanLeft); % disp(meanRight); % 1st feature t = [sum(t)/3, t(1)/t(3), t(2)/t(3)]; % 2nd feature mag(1:nChannel) = Gmag(y, x, :); delta = mag./max([meanLeft; meanRight]); %% edge width % [stepX, stepY] step = [cos(gamma'), sin(gamma')]; w = zeros(1, nChannel); for k = 1:nChannel ridge = zeros(2, 2); for dir = 1:2 xk = uint32(x+(-1)^dir*(1:maxStep)*step(k, 1)); yk = uint32(y+(-1)^dir*(1:maxStep)*step(k, 2)); ridge(dir, :) = double([xk(maxStep), yk(maxStep)]); idk = (xk-1)*imHeight+yk; id = find(Gmag(idk+(k-1)*imHeight*imWidth) < thresh*Gmag(y, x, k), 1); id = idk(id); if ~isempty(id) ridge(dir, :) = double([ceil(id/imHeight), mod(id, imHeight)]); end end w(k) = norm(ridge(2, :)-ridge(1, :)); end % 4th feature w = [sum(w)/3, w(1)/w(2), w(1)/w(3)]; %% features(p, 12*sc+1:12*sc+3) = t; features(p, 12*sc+4:12*sc+6) = delta; features(p, 12*sc+7:12*sc+9) = gammaDiff; features(p, 12*sc+10:12*sc+12) = w; end img = imgCopy; end end
github
fstasel/fastBilateral3d-master
bf3.m
.m
fastBilateral3d-master/bf3.m
2,726
utf_8
d1c304ecce7898e6b3ba7e3eddbb0401
% Fast 3d bilateral filter for unit8 images % Coded by FST % % F. Porikli, “Constant time O (1) bilateral filtering,” Comput. Vis. % Pattern Recognition, 2008. CVPR 2008. IEEE Conf., no. 1, pp. 1–8, 2008. % % Usage: % Ibf = bf3(I, spatialSize, rangeSigma) % % I: input 3d image % % spatialSize: window size of spatial filtering % (in terms of pixels) % spatialSize can be very large % and does not effect computation time % % rangeSigma: sigma size of range filtering % (in terms of 0-255 gray values) % % Example: % Ibf = bf3(I,7,10); % function Ibf = bf3(I, spatialSize, rangeSigma) global BINS R; BINS = 16; R = 256 / BINS; [sz,sy,sx] = size(I); k = gkernel(rangeSigma); Iq = uint8(1 + floor(double(I) ./ R)); Ibins = zeros(BINS, sz, sy, sx); Ibins_int = zeros(BINS, sz+1, sy+1, sx+1); for b = 1:BINS Ibins(b,:,:,:) = (Iq(:,:,:) == b); Ibins_int(b,:,:,:) = integralImage3(squeeze(Ibins(b,:,:,:))); end hWindow = uint8(floor(spatialSize / 2)); Ibf = zeros(sz,sy,sx); for z = 1:sz eR = z + hWindow; sR = z - hWindow; if sR < 1 sR = 1; end if eR > sz eR = sz; end for y = 1:sy eC = y + hWindow; sC = y - hWindow; if sC < 1 sC = 1; end if eC > sy eC = sy; end for x = 1:sx eP = x + hWindow; sP = x - hWindow; if sP < 1 sP = 1; end if eP > sx eP = sx; end tw = 0; ws = 0; for b = 1:BINS d = 1 + abs(Iq(z,y,x) - b); s = Ibins_int(b,eR+1,eC+1,eP+1) ... - Ibins_int(b,eR+1,eC+1,sP) ... - Ibins_int(b,eR+1,sC,eP+1) ... - Ibins_int(b,sR,eC+1,eP+1) ... + Ibins_int(b,sR,sC,eP+1) ... + Ibins_int(b,sR,eC+1,sP) ... + Ibins_int(b,eR+1,sC,sP) ... - Ibins_int(b,sR,sC,sP); w = s * k(d); tw = tw + w; ws = ws + (b-1) * w; end ws = ws / (tw * (BINS - 1)); Ibf(z,y,x) = uint8(255 * ws); end end end end function h = gkernel(stdev) global BINS R; h=exp(-0.5 * R * ((0:BINS-1) / stdev).^2); h=h./sum(h); end
github
LLNL/psuade-master
lbfgsb.m
.m
psuade-master/External/L-BFGS-B-C/Matlab/lbfgsb.m
10,264
utf_8
cf0b737b65f70954855560be1aae6caf
function [x,f,info] = lbfgsb( fcn, l, u, opts ) % x = lbfgsb( fcn, l, u ) % uses the lbfgsb v.3.0 library (fortran files must be installed; % see compile_mex.m ) which is the L-BFGS-B algorithm. % The algorithm is similar to the L-BFGS quasi-Newton algorithm, % but also handles bound constraints via an active-set type iteration. % This version is based on the modified C code L-BFGS-B-C, and so has % a slightly different calling syntax than previous versions. % % The minimization problem that it solves is: % min_x f(x) subject to l <= x <= u % % 'fcn' is a function handle that accepts an input, 'x', % and returns two outputs, 'f' (function value), and 'g' (function gradient). % % 'l' and 'u' are column-vectors of constraints. Set their values to Inf % if you want to ignore them. (You can set some values to Inf, but keep % others enforced). % % The full format of the function is: % [x,f,info] = lbfgsb( fcn, l, u, opts ) % where the output 'f' has the value of the function f at the final iterate % and 'info' is a structure with useful information % (self-explanatory, except for info.err. The first column of info.err % is the history of the function values f, and the second column % is the history of norm( gradient, Inf ). ) % % The 'opts' structure allows you to pass further options. % Possible field name values: % % opts.x0 The starting value (default: all zeros) % opts.m Number of limited-memory vectors to use in the algorithm % Try 3 <= m <= 20. (default: 5 ) % opts.factr Tolerance setting (see this source code for more info) % (default: 1e7 ). This is later multiplied by machine epsilon % opts.pgtol Another tolerance setting, relating to norm(gradient,Inf) % (default: 1e-5) % opts.maxIts How many iterations to allow (default: 100) % opts.maxTotalIts How many iterations to allow, including linesearch iterations % (default: 5000) % opts.printEvery How often to display information (default: 1) % opts.errFcn A function handle (or cell array of several function handles) % that computes whatever you want. The output will be printed % to the screen every 'printEvery' iterations. (default: [] ) % Results saved in columns 3 and higher of info.err variable % % Stephen Becker, [email protected] % Feb 14, 2012 % Updated Feb 21 2015, Stephen Becker, [email protected] narginchk(3, 4) if nargin < 4, opts = struct([]); end % Matlab doesn't let you use the .name convention with structures % if they are empty, so in that case, make the structure non-empty: if isempty(opts), opts=struct('a',1) ; end function out = setOpts( field, default, mn, mx ) if ~isfield( opts, field ) opts.(field) = default; end out = opts.(field); if nargin >= 3 && ~isempty(mn) && any(out < mn), error('Value is too small'); end if nargin >= 4 && ~isempty(mx) && any(out > mx), error('Value is too large'); end opts = rmfield( opts, field ); % so we can do a check later end % [f,g] = callF( x ); if iscell(fcn) % the user has given us separate functions to compute % f (function) and g (gradient) callF = @(x) fminunc_wrapper(x,fcn{1},fcn{2} ); else callF = fcn; end n = length(l); if length(u) ~= length(l), error('l and u must be same length'); end x0 = setOpts( 'x0', zeros(n,1) ); x = x0 + 0; % important: we want Matlab to make a copy of this. % just in case 'x' will be modified in-place % (Feb 2015 version of code, it should not be modified, % but just-in-case, may as well leave this ) if size(x0,2) ~= 1, error('x0 must be a column vector'); end if size(l,2) ~= 1, error('l must be a column vector'); end if size(u,2) ~= 1, error('u must be a column vector'); end if size(x,1) ~= n, error('x0 and l have mismatchig sizes'); end if size(u,1) ~= n, error('u and l have mismatchig sizes'); end % Number of L-BFGS memory vectors % From the fortran driver file: % "Values of m < 3 are not recommended, and % large values of m can result in excessive computing time. % The range 3 <= m <= 20 is recommended. " m = setOpts( 'm', 5, 0 ); % 'nbd' is 0 if no bounds, 1 if lower bound only, % 2 if both upper and lower bounds, and 3 if upper bound only. % This .m file assumes l=-Inf and u=+Inf imply that there are no constraints. % So, convert this to the fortran convention: nbd = isfinite(l) + isfinite(u) + 2*isinf(l).*isfinite(u); if ispc nbd = int32(nbd); else nbd = int64(nbd); end % Some scalar settings, "factr" and "pgtol" % Their descriptions, from the fortran file: % factr is a DOUBLE PRECISION variable that must be set by the user. % It is a tolerance in the termination test for the algorithm. % The iteration will stop when % % (f^k - f^{k+1})/max{|f^k|,|f^{k+1}|,1} <= factr*epsmch % % where epsmch is the machine precision which is automatically % generated by the code. Typical values for factr on a computer % with 15 digits of accuracy in double precision are: % factr=1.d+12 for low accuracy; % 1.d+7 for moderate accuracy; % 1.d+1 for extremely high accuracy. % The user can suppress this termination test by setting factr=0. factr = setOpts( 'factr', 1e7, 0 ); % pgtol is a double precision variable. % On entry pgtol >= 0 is specified by the user. The iteration % will stop when % % max{|proj g_i | i = 1, ..., n} <= pgtol % % where pg_i is the ith component of the projected gradient. % The user can suppress this termination test by setting pgtol=0. pgtol = setOpts( 'pgtol', 1e-5, 0 ); % may crash if < 0 % Maximum number of outer iterations maxIts = setOpts( 'maxIts', 100, 1 ); % Maximum number of total iterations % (this includes the line search steps ) maxTotalIts = setOpts( 'maxTotalIts', 5e3 ); % Print out information this often (and set to Inf to suppress) printEvery = setOpts( 'printEvery', 1 ); errFcn = setOpts( 'errFcn', [] ); iprint = setOpts('verbose',-1); % <0 for no output, 0 for some, 1 for more, 99 for more, 100 for more % I recommend you set this -1 and use the Matlab print features % (e.g., set printEvery ) fcn_wrapper(); % initialized persistent variables callF_wrapped = @(x,varargin) fcn_wrapper( callF, errFcn, maxIts, ... printEvery, x, varargin{:} ); % callF_wrapped = @(x,varargin)callF(x); % also valid, but simpler % Call the mex file [f,x,taskInteger,outer_count, k] = lbfgsb_wrapper( m, x, l, u, nbd, ... callF_wrapped, factr, pgtol, ... iprint, maxIts, maxTotalIts); info.iterations = outer_count; info.totalIterations = k; info.lbfgs_message1 = findTaskString( taskInteger ); errHist = fcn_wrapper(); info.err = errHist; end % end of main function function [f,g] = fcn_wrapper( callF, errFcn, maxIts, printEvery, x, varargin ) persistent k history if isempty(k), k = 1; end if nargin==0 % reset persistent variables and return information if ~isempty(history) && ~isempty(k) printFcn(k,history); f = history(1:k,:); end history = []; k = []; return; end if isempty( history ) width = 0; if iscell( errFcn ), width = length(errFcn); elseif ~isempty(errFcn), width = 1; end width = width + 2; % include fcn and norm(grad) as well history = zeros( maxIts, width ); end % Find function value and gradient: [f,g] = callF(x); if nargin > 5 outerIter = varargin{1}+1; history(outerIter,1) = f; history(outerIter,2) = norm(g,Inf); % g is not projected if isa( errFcn, 'function_handle' ) history(outerIter,3) = errFcn(x); elseif iscell( errFcn ) for j = 1:length(errFcn) history(outer_count,j+2) = errFcn{j}(x); end end if outerIter > k % Display info from *previous* input % Since this may be called several times before outerIter % is actually updated % fprintf('At iterate %5d, f(x)= %.2e, ||grad||_infty = %.2e [MATLAB]\n',... % k,history(k,1),history(k,2) ); if ~isinf(printEvery) && ~mod(k,printEvery) printFcn(k,history); end k = outerIter; end end end function printFcn(k,history) fprintf('Iter %5d, f(x) = %2e, ||grad||_infty = %.2e', ... k, history(k,1), history(k,2) ); for col = 3:size(history,2) fprintf(', %.2e', history(k,col) ); end fprintf('\n'); end function [f,g] = fminunc_wrapper(x,F,G) % [f,g] = fminunc_wrapper( x, F, G ) % for use with Matlab's "fminunc" f = F(x); if nargin > 2 && nargout > 1 g = G(x); end end function str = findTaskString( taskInteger ) % See the #define statements in lbfgsb.h switch taskInteger case 209 str = 'ERROR: N .LE. 0'; case 210 str = 'ERROR: M .LE. 0'; case 211 str = 'ERROR: FACTR .LT. 0'; case 3 str = 'ABNORMAL_TERMINATION_IN_LNSRCH.'; case 4 str = 'RESTART_FROM_LNSRCH.'; case 21 str = 'CONVERGENCE: NORM_OF_PROJECTED_GRADIENT_<=_PGTOL.'; case 22 str = 'CONVERGENCE: REL_REDUCTION_OF_F_<=_FACTR*EPSMCH.'; case 31 str = 'STOP: CPU EXCEEDING THE TIME LIMIT.'; case 32 str = 'STOP: TOTAL NO. of f AND g EVALUATIONS EXCEEDS LIM.'; case 33 str = 'STOP: THE PROJECTED GRADIENT IS SUFFICIENTLY SMALL.'; case 101 str = 'WARNING: ROUNDING ERRORS PREVENT PROGRESS'; case 102 str = 'WARNING: XTOL TEST SATISIED'; case 103 str = 'WARNING: STP = STPMAX'; case 104 str = 'WARNING: STP = STPMIN'; case 201 str = 'ERROR: STP .LT. STPMIN'; case 202 str = 'ERROR: STP .GT. STPMAX'; case 203 str = 'ERROR: INITIAL G .GE. ZERO '; case 204 str = 'ERROR: FTOL .LT. ZERO'; case 205 str = 'ERROR: GTOL .LT. ZERO'; case 206 str = 'ERROR: XTOL .LT. ZERO'; case 207 str = 'ERROR: STPMIN .LT. ZERO'; case 208 str = 'ERROR: STPMAX .LT. STPMIN'; case 212 str = 'ERROR: INVALID NBD'; case 213 str = 'ERROR: NO FEASIBLE SOLUTION'; otherwise str = 'UNRECOGNIZED EXIT FLAG'; end end
github
anantsrivastava30/SUVR-PET-ADNI-master
cvx_version.m
.m
SUVR-PET-ADNI-master/scripts/cvx/cvx_version.m
14,459
utf_8
9f358480cc5d66caa274c9d5bd5ed0de
function varargout = cvx_version( varargin ) % CVX_VERSION Returns version and environment information for CVX. % % When called with no arguments, CVX_VERSION prints out version and % platform information that is needed when submitting CVX bug reports. % % This function is also used internally to return useful variables that % allows CVX to adjust its settings to the current environment. global cvx___ args = varargin; compile = false; quick = nargout > 0; if nargin if ~ischar( args{1} ), quick = true; else tt = strcmp( args, '-quick' ); quick = any( tt ); if quick, args(tt) = []; end tt = strcmp( args, '-compile' ); compile = any( tt ); if compile, quick = false; args(tt) = []; end end end if isfield( cvx___, 'loaded' ), if quick, return; end fs = cvx___.fs; mpath = cvx___.where; isoctave = cvx___.isoctave; else % Matlab / Octave flag isoctave = exist( 'OCTAVE_VERSION', 'builtin' ); % File and path separators, MEX extension if isoctave, comp = octave_config_info('canonical_host_type'); mext = 'mex'; izpc = false; izmac = false; if octave_config_info('mac'), msub = 'mac'; izmac = true; elseif octave_config_info('windows'), msub = 'win'; izpc = true; elseif octave_config_info('unix') && any(strfind(comp,'linux')), msub = 'lin'; else msub = 'unknown'; end if ~isempty( msub ), msub = [ 'o_', msub ]; if strncmp( comp, 'x86_64', 6 ), msub = [ msub, '64' ]; else msub = [ msub, '32' ]; end end else comp = computer; izpc = strncmp( comp, 'PC', 2 ); izmac = strncmp( comp, 'MAC', 3 ); mext = mexext; msub = ''; end if izpc, fs = '\'; fsre = '\\'; ps = ';'; cs = false; else fs = '/'; fsre = '/'; ps = ':'; cs = ~izmac; end % Install location mpath = mfilename('fullpath'); temp = strfind( mpath, fs ); mpath = mpath( 1 : temp(end) - 1 ); % Numeric version nver = version; nver(nver=='.') = ' '; nver = sscanf(nver,'%d'); nver = nver(1) + 0.01 * ( nver(2) + 0.01 * nver(3) ); if isoctave || ~usejava('jvm'), jver = 0; else jver = char(java.lang.System.getProperty('java.version')); try ndxs = strfind( jver, '.' ); jver = str2double( jver(1:ndxs(2)-1) ); catch jver = 0; end end cvx___.where = mpath; cvx___.isoctave = isoctave; cvx___.nver = nver; cvx___.jver = jver; cvx___.comp = comp; cvx___.mext = mext; cvx___.msub = msub; cvx___.fs = fs; cvx___.fsre = fsre; cvx___.ps = ps; cvx___.cs = cs; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Quick exit for non-verbose output % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if quick, if nargout, varargout = { fs, cvx___.ps, mpath, cvx___.mext }; end cvx_load_prefs( false ); cvx___.loaded = true; return end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Verbose output (cvx_setup, cvx_version plain) % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cvx_ver = '2.1'; cvx_bld = '1116'; cvx_bdate = 'Thu Mar 30 21:54:11 2017'; cvx_bcomm = 'd4cc5c5'; line = '---------------------------------------------------------------------------'; fprintf( '\n%s\n', line ); fprintf( 'CVX: Software for Disciplined Convex Programming (c)2014 CVX Research\n' ); fprintf( 'Version %3s, Build %4s (%7s)%42s\n', cvx_ver, cvx_bld, cvx_bcomm, cvx_bdate ); fprintf( '%s\n', line ); fprintf( 'Installation info:\n Path: %s\n', cvx___.where ); if isoctave, fprintf( ' GNU Octave %s on %s\n', version, cvx___.comp ); else verd = ver('MATLAB'); fprintf( ' MATLAB version: %s %s\n', verd.Version, verd.Release ); if usejava( 'jvm' ), os_name = char(java.lang.System.getProperty('os.name')); os_arch = char(java.lang.System.getProperty('os.arch')); os_version = char(java.lang.System.getProperty('os.version')); java_str = char(java.lang.System.getProperty('java.version')); fprintf(' OS: %s %s version %s\n', os_name, os_arch, os_version ); fprintf(' Java version: %s\n', java_str ); else fprintf( ' Architecture: %s\n', cvx___.comp ); fprintf( ' Java version: disabled\n' ); end end %%%%%%%%%%%%%%%%%%%%%%%%%%% % Check for valid version % %%%%%%%%%%%%%%%%%%%%%%%%%%% issue = false; isoctave = cvx___.isoctave; nver = cvx___.nver; if isoctave, if nver <= 3.08, fprintf( '%s\nCVX is not yet supported on Octave.\n(Please do not waste further time trying: changes to Octave are required.\nBut they are coming! Stay tuned.)\n%s\n', line, line ); issue = true; end elseif nver < 7.08 && strcmp( cvx___.comp(end-1:end), '64' ), fprintf( '%s\nCVX requires MATLAB 7.8 or later (7.5 or later on 32-bit platforms).\n' , line, line ); issue = true; elseif nver < 7.05, fprintf( '%s\nCVX requires MATLAB 7.5 or later (7.8 or later on 64-bit platforms).\n' , line, line ); issue = true; end %%%%%%%%%%%%%%%%%%%%%%%% % Verify file contents % %%%%%%%%%%%%%%%%%%%%%%%% fid = fopen( [ mpath, fs, 'MANIFEST' ], 'r' ); if fid > 0, fprintf( 'Verfying CVX directory contents:' ); manifest = textscan( fid, '%s' ); manifest = manifest{1}; fclose( fid ); newman = get_manifest( mpath, fs ); if ~isequal( manifest, newman ), missing = setdiff( manifest, newman ); additional = setdiff( newman, manifest ); if ~isempty( missing ) || ~isempty( additional ), if fs ~= '/', missing = strrep( missing, '/', fs ); additional = strrep( additional, '/', fs ); end if ~isempty( missing ), fprintf( '\n WARNING: The following files/directories are missing:\n' ); isdir = cellfun(@(x)x(end)==fs,missing); missing_d = missing(isdir); missing_f = missing(~isdir); while ~isempty( missing_d ), mdir = missing_d{1}; ss = strncmp( missing_d, mdir, length(mdir) ); tt = strncmp( missing_f, mdir, length(mdir) ); fprintf( ' %s%s%s + %d files, %d subdirectories\n', mpath, fs, mdir, nnz(tt), nnz(ss) - 1 ); missing_d(ss) = []; missing_f(tt) = []; end for k = 1 : min(length(missing_f),10), fprintf( ' %s%s%s\n', mpath, fs, missing_f{k} ); end if length(missing_f) > 10, fprintf( ' (and %d more files)\n', length(missing_f) - 10 ); end fprintf( ' These omissions may prevent CVX from operating properly.\n' ); end if ~isempty( additional ), if isempty( missing ), fprintf( '\n' ); end fprintf( ' WARNING: The following extra files/directories were found:\n' ); isdir = cellfun(@(x)x(end)==fs,additional); issedumi = cellfun(@any,regexp( additional, [ '^sedumi.*[.]', mexext, '$' ] )); additional_d = additional(isdir&~issedumi); additional_f = additional(~isdir&~issedumi); additional_s = additional(issedumi); while ~isempty( additional_d ), mdir = additional_d{1}; ss = strncmp( additional_d, mdir, length(mdir) ); tt = strncmp( additional_f, mdir, length(mdir) ); fprintf( ' %s%s%s + %d files, %d subdirectories\n', mpath, fs, mdir, nnz(tt), nnz(ss) - 1 ); additional_d(ss) = []; additional_f(tt) = []; end for k = 1 : min(length(additional_f),10), fprintf( ' %s%s%s\n', mpath, fs, additional_f{k} ); end if length(additional_f) > 10, fprintf( ' (and %d more files)\n', length(additional_f) - 10 ); end fprintf( ' These files may alter the behavior of CVX in unsupported ways.\n' ); if ~isempty( additional_s ), fprintf( ' ERROR: obsolete versions of SeDuMi MEX files were found:\n' ); for k = 1 : length(additional_s), fprintf( ' %s%s%s\n', mpath, fs, additional_f{k} ); end fprintf( ' These files are now obsolete, and must be removed to ensure\n' ); fprintf( ' that SeDuMi operates properly and produces sound results.\n' ); if ~issue, fprintf( ' Please remove these files and re-run CVX_SETUP.\n' ); issue = true; end end end else fprintf( '\n No missing files.\n' ); end else fprintf( '\n No missing files.\n' ); end else fprintf( 'Manifest missing; cannot verify file structure.\n' ) ; end if ~compile, mexpath = [ mpath, fs, 'lib', fs ]; mext = cvx___.mext; if ( ~exist( [ mexpath, 'cvx_eliminate_mex.', mext ], 'file' ) || ... ~exist( [ mexpath, 'cvx_bcompress_mex.', mext ], 'file' ) ) && ~issue, issue = true; if ~isempty( msub ), mexpath = [ mexpath, msub, fs ]; issue = ~exist( [ mexpath, 'cvx_eliminate_mex.mex' ], 'file' ) || ... ~exist( [ mexpath, 'cvx_bcompress_mex.mex' ], 'file' ); end if issue, fprintf( ' ERROR: one or more MEX files for this platform are missing.\n' ); fprintf( ' These files end in the suffix ".%s". CVX will not operate\n', mext ); fprintf( ' without these files. Please visit\n' ); fprintf( ' http://cvxr.com/cvx/download\n' ); fprintf( ' And download a distribution targeted for your platform.\n' ); end end end %%%%%%%%%%%%%%% % Preferences % %%%%%%%%%%%%%%% cvx_load_prefs( true ); %%%%%%%%%%%%%%%% % License file % %%%%%%%%%%%%%%%% if isoctave, if ~isempty( cvx___.license ), fprintf( 'CVX Professional is not supported with Octave.\n' ); end elseif cvx___.jver < 1.6, fprintf(' WARNING: full support for CVX Professional licenses\n' ); fprintf(' requres Java version 1.6.0 or later. Please upgrade.\n' ); elseif exist( 'cvx_license', 'file' ), cvx_license( args{:} ); end %%%%%%%%%%%%%%% % Wrapping up % %%%%%%%%%%%%%%% if ~issue, cvx___.loaded = true; end clear fs; fprintf( '%s\n', line ); if length(dbstack) <= 1, fprintf( '\n' ); end %%%%%%%%%%%%%%%%%%%%%% % Preference loading % %%%%%%%%%%%%%%%%%%%%%% function cvx_load_prefs( verbose ) global cvx___ fs = cvx___.fs; isoctave = cvx___.isoctave; errmsg = ''; if verbose, fprintf( 'Preferences: ' ); end if isoctave, pfile = [ prefdir, fs, '.cvx_prefs.mat' ]; else pfile = [ regexprep( prefdir(1), [ cvx___.fsre, 'R\d\d\d\d\w$' ], '' ), fs, 'cvx_prefs.mat' ]; end outp = []; try if exist( pfile, 'file' ) outp = load( pfile ); pfile2 = pfile; elseif ~isoctave, pfile2 = [ prefdir, fs, 'cvx_prefs.mat' ]; if exist( pfile2, 'file' ), outp = load( pfile2 ); end end catch errmsg errmsg = cvx_error( errmsg, 67, false, ' ' ); errmsg = sprintf( 'CVX encountered the following error attempting to load your preferences:\n%sPlease attempt to diagnose this error and try again.\nYou may need to re-run CVX_SETUP as well.\nIn the meanwhile, preferences will be set to their defaults.\n', errmsg ); end if ~isempty( outp ), try cvx___.expert = outp.expert; cvx___.precision = outp.precision; cvx___.precflag = outp.precflag; cvx___.rat_growth = outp.rat_growth; cvx___.path = outp.path; cvx___.solvers = outp.solvers; cvx___.license = outp.license; catch outp = []; errmsg = 'Your CVX preferences file seems out of date; default preferences will be used.'; end end if isempty( outp ), cvx___.expert = false; cvx___.precision = [eps^0.5,eps^0.5,eps^0.25]; cvx___.precflag = 'default'; cvx___.rat_growth = 10; cvx___.path = []; cvx___.solvers = []; cvx___.license = []; end cvx___.pfile = pfile; if verbose, if ~isempty( errmsg ), fprintf( 'error during load:\n%s', cvx_error( errmsg, 70, false, ' ' ) ); elseif isempty( cvx___.path ), fprintf( 'none found; defaults loaded.\n' ); else fprintf( '\n Path: %s\n', pfile2 ); end elseif ~isempty( errmsg ), warning( 'CVX:BadPrefsLoad', errmsg ); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Recursive manifest building function % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function newman = get_manifest( mpath, fs ) dirs = {}; files = {}; nfiles = dir( mpath ); ndir = ''; dndx = 0; pat2 = '^\.|~$|'; pat = '^\.|~$|^cvx_license.[md]at$|^doc$|^examples$'; while true, isdir = [ nfiles.isdir ]; nfiles = { nfiles.name }; tt = cellfun( @isempty, regexp( nfiles, pat ) ); pat = pat2; isdir = isdir(tt); nfiles = nfiles(tt); ndirs = nfiles(isdir); if ~isempty(ndirs), dirs = horzcat( dirs, strcat(strcat(ndir,ndirs), fs ) ); %#ok end nfiles = nfiles(~isdir); if ~isempty(nfiles), files = horzcat( files, strcat(ndir,nfiles) ); %#ok end if length( dirs ) == dndx, break; end dndx = dndx + 1; ndir = dirs{dndx}; nfiles = dir( [ mpath, fs, ndir ] ); end [tmp,ndxs1] = sort(upper(dirs)); %#ok [tmp,ndxs2] = sort(upper(files)); %#ok newman = horzcat( dirs(ndxs1), files(ndxs2) ); if fs ~= '/', newman = strrep( newman, fs, '/' ); end newman = newman(:); % Copyright 2005-2016 CVX Research, Inc. % See the file LICENSE.txt for full copyright information. % The command 'cvx_where' will show where this file is located.
github
anantsrivastava30/SUVR-PET-ADNI-master
cvx_grbgetkey.m
.m
SUVR-PET-ADNI-master/scripts/cvx/cvx_grbgetkey.m
19,096
utf_8
080162e4fd27b14ea8387362148db7d1
function success = cvx_grbgetkey( kcode, overwrite ) % CVX_GRBGETKEY Retrieves and saves a Gurobi/CVX license. % % This function is used to install Gurobi license keys for use in CVX. It % is called with your Gurobi license code as a string argument; e.g. % % cvx_grbgetkey xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx % cvx_grbgetkey( 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' ) % % If you have not yet obtained a Gurobi license code, please visit the page % % <a href="matlab: web('http://www.gurobi.com/documentation/5.5/quick-start-guide/node5','-browser');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a> % % for information on your various options (trial, academic, commercial). % Once you have received notice that your license has been created, visit % the Gurobi license page % % <a href="matlab: web('http://www.gurobi.com/download/licenses/current','-browser');">http://www.gurobi.com/download/licenses/current</a> % % to retrieve the 36-character license code. % % The retrieved Gurobi license will be stored in your MATLAB preferences % directory (see the PREFDIR command) on Mac and Linux, and your home % directory on Windows. If a license file already exists at this location, % and its expiration date has not yet passed, CVX_GRBGETKEY will refuse to % retrieve a new license. To override this behavior, call the function % with an -OVERWRITE argument: % % cvx_grbgetkey xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx -overwrite % cvx_grbgetkey( 'xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx', '-overwrite' ) % % Note that this utility is meant to retrieve licenses for the version of % Gurobi that is bundled with CVX. While it will retrieve full licenses as % well, it is strongly recommended that you move such licenses to one of the % standard Gurobi locations, discussed here: % % <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node8'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node8</a> % % Note that in order to use Gurobi with CVX, *both* a Gurobi license and a % CVX Professional license are required. if exist( 'OCTAVE_VERSION', 'builtin' ), error( 'CVX:NoOctave', 'CVX_GRBGETKEY cannot be used with Octave.' ); end fs = filesep; mpath = mfilename('fullpath'); temp = strfind( mpath, fs ); mpath = mpath( 1 : temp(end) - 1 ); mext = mexext; success = true; line = '---------------------------------------------------------------------------'; jprintf({ '' line 'CVX/Gurobi license key installer' line }); %%%%%%%%%%%%%%%%%%%%%%%%% % Process the arguments % %%%%%%%%%%%%%%%%%%%%%%%%% if nargin == 2 && ischar( kcode ) && size( kcode, 1 ) == 1 && kcode(1) == '-', tmp = kcode; kcode = overwrite; overwrite = tmp; end emsg = []; if nargin < 1, emsg = ''; elseif isempty( kcode ) || ~ischar( kcode ) || ndims( kcode ) > 2 || size( kcode, 1 ) ~= 1, %#ok emsg = 'Invalid license code: must be a string.'; elseif ~regexp( kcode, '^[0-9a-f]{8,8}-[0-9a-f]{4,4}-[0-9a-f]{4,4}-[0-9a-f]{4,4}-[0-9a-f]{12,12}$', 'once' ) emsg = sprintf( 'Invalid license code: %s', kcode ); elseif nargin < 2 || isempty( overwrite ), overwrite = false; elseif isequal( overwrite, '-overwrite' ), overwrite = true; elseif ischar( overwrite ) && size( overwrite, 1 ) == 1, emsg = sprintf( 'Invalid argument: %s', overwrite ); else emsg = 'Invalid second argument.'; end if ischar( emsg ), if ~isempty( emsg ), fprintf( '*** %s\n\n', emsg ); end jprintf({ 'This function is used to install Gurobi license keys for use in CVX. It' 'is called with your license code as an argument; e.g.' '' ' %s xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx' ' %s( ''xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx'' )' '' 'If you have not yet obtained a license code, please visit the page' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node5'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a>' '' 'for information on your various options (trial, academic, commercial). Once' 'a license has been created, you may retrieve its 36-character code by' 'logging into your Gurobi account and visiting the page' '' ' <a href="matlab: web(''http://www.gurobi.com/download/licenses/current'',''-browser'');">http://www.gurobi.com/download/licenses/current</a>' '' }, mfilename, mfilename ); success = false; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Check to see if Gurobi is present % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, if fs == '\', fsre = '\\'; else fsre = fs; end gname = [ mpath, fs, 'gurobi' ]; if ~exist( gname, 'dir' ), jprintf({ 'This function is meant to be used only with the version of Gurobi that is' 'bundled with CVX; but your CVX installation does not include Gurobi.' 'To rectify this, you may either download a CVX/Gurobi bundle from' '' ' <a href="matlab: web(''http://cvxr.com/cvx/download'',''-browser'');">http://cvxr.com/cvx/download</a>' '' 'or download the full Gurobi package from Gurobi directly:' '' ' <a href="matlab: web(''http://www.gurobi.com'',''-browser'');">http://www.gurobi.com</a>' '' 'In either case, you will need both a CVX Professional license and a Gurobi' 'license to proceed.' }); success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Ensure that this platform is compatible with the bundled Gurobi solver % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, gname = [ gname, fs, mext(4:end) ]; if ~exist( gname, 'dir' ), mismatch = false; switch mext, case 'mexmaci', pform = '32-bit OSX'; case 'glx', pform = '32-bit Linux'; case 'a64', pform = '64-bit Linux'; mismatch = true; case 'maci64', pform = '64-bit OSX'; mismatch = true; case 'w32', pform = '32-bit Windows'; mismatch = true; case 'w64', pform = '64-bit Windows'; mismatch = true; otherwise, pform = []; end if mismatch, jprintf({ 'The %s version of Gurobi is missing, perhaps because you downloaded a CVX' 'package for a different MATLAB platform. Please visit' '' ' <a href="matlab: web(''http://cvxr.com/cvx/download'',''-browser'');">http://cvxr.com/cvx/download</a>' '' 'and download and install the correct package.' }, pform ); elseif isempty( pform ), fprintf( 'CVX/Gurobi is not supported on the %s platform.\n', computer ); else fprintf( 'CVX/Gurobi is not supported on %s. Consider using the 64-bit version of MATLAB.\n', pform ); end success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Confirm the existence of the grbgetkey utility % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, gname = [ gname, fs, 'grbgetkey' ]; if fs == '\', gname = [ gname, '.exe' ]; end if ~exist( gname, 'file' ), jprintf({ 'Your CVX package is missing the file' '' ' %s' '' 'which is necessary to complete this task. Please reinstall CVX.' }, gname ); success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create the preferences directory, if necessary % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, fdir = regexprep( prefdir, [ fsre, 'R\d\d\d\d\w*$' ], '' ); if ~exist( fdir, 'dir' ), [success,msg] = mkdir( fdir ); if ~success, jprintf({ 'This function needs to write to the directory' '' ' %s' '' 'which does not exist. An attempt to create it resulted in this error:' '' ' %s' '' 'Please rectify this problem and try again.' }, fdir, msg ); success = false; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Guard against overwriting an existing license % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, % We actually use the parent directory of 'prefdir' if that directory has % the standard version format: e.g., if prefdir is ~/joe/.matlab/R2012b, % we store our data in ~/joe/.matlab, so that all versions of MATLAB can % see the same CVX data. fname = [ fdir, fs, 'cvx_gurobi.lic' ]; if exist( fname, 'file' ), if overwrite, msg = []; else msg = 'This license may or may not be current.'; fid = fopen( fname ); if fid ~= 0, fstr = fread( fid, Inf, 'uint8=>char' )'; fclose( fid ); matches = regexp( fstr, 'EXPIRATION=\d\d\d\d-\d\d-\d\d', 'once' ); if matches && floor(datenum(fstr(matches+11:matches+20),'yyyy-mm-dd'))<floor(datenum(clock)) msg = []; else msg = 'This license has not yet expired.'; end end end if ~isempty( msg ) jprintf({ 'An existing license file has been found at location:' '' ' %s' '' '%s If you wish to overwrite this file,' 'please re-run this function with an "-overwrite" argument: that is,' '' ' %s %s -overwrite' ' %s( ''%s'', ''-overwrite'' )' '' 'Otherwise, please move the existing license and try again.' }, fname, msg, mfilename, kcode, mfilename, kcode ); success = false; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create a temporary destination directory % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tdir = []; if success, for k = 1 : 10, tdir = tempname; if ~exist( tdir, 'file' ), break; end end [success,msg] = mkdir(tdir); if ~success, jprintf({ 'This function attempted to create the temporary directory' '' ' %s' '' 'but the following error occurred:' '' ' %s' '' 'Please rectify the problem and try again.'; }, tdir, msg ); success = false; tdir = []; end end %%%%%%%%%%%%%%%%%%%%%%%% % Download the license % %%%%%%%%%%%%%%%%%%%%%%%% if success fprintf( 'Contacting the Gurobi Optimization license server...' ); [status,result]=system( sprintf( '%s --path=%s %s', gname, tdir, kcode ) ); %#ok fprintf( 'done.\n' ); if any( strfind( result, 'Unable to determine hostname' ) ) || any( strfind( result, 'not recognized as belonging to an academic domain' ) ), jprintf({ 'The attempt to retrieve the license key failed with the following error' 'while trying to verify your academic license eligibility:' '' ' %s' 'For information about this error, please consult the Gurobi documentation' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node5'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a>' '' 'Once you have rectified the error, please try again.' }, regexprep(result,'.*---------------------\n+(.*?)\n+$','$1') ); success = false; elseif any( strfind( result, 'already issued for host' ) ) matches = regexp( fstr, 'already issued for host ''([^'']+)''', 'once' ); if ~isempty( matches ), matches = sprintf( ' (%s)', matches{1}{1} ); else matches = ''; end jprintf({ 'This license has already been issued for a different host%s.' 'Please acquire a new license for this host from Gurobi.' }, matches ); success = false; elseif ~any( strfind( result, 'License key saved to file' ) ), jprintf({ 'The attempt to retrieve the license key failed with the following error:' '' ' %s' 'For information about this error, please consult the Gurobi documentation' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node5'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node5</a>' '' 'Once you have rectified the error, please try again.' }, regexprep(result,'.*---------------------\n+(.*?)\n+$','$1') ); fprintf( '%s\n', line ); fprintf( result(1+(result(1)==10):end) ); success = false; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Read the license file to determine its expiration % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, tname = [ tdir, fs, 'gurobi.lic' ]; [fid,msg] = fopen( tname, 'r' ); if fid == 0, jprintf({ 'An unexpected error occured: the Gurobi license file could not be' 'opened. The file was expected to be in the temporary location' '' ' %s' '' 'but the attempt to read it resulted in the following error:' '' ' %s' '' 'Please attempt to rectify the problem and try again; if necessary,' 'please contact <a href="mailto:[email protected]">CVX support</a>.' }, tname, msg ); success = false; tdir = []; else fstr = fread( fid, Inf, 'uint8=>char' )'; fclose( fid ); matches = regexp( fstr, 'EXPIRATION=\d\d\d\d-\d\d-\d\d', 'once' ); if matches, if floor(datenum(fstr(matches+11:matches+20),'yyyy-mm-dd'))<floor(datenum(clock)) jprintf({ 'The license was successfully downloaded, but it expired on %s.' 'Please contact Gurobi for a new license.' }, fstr(matches+11:matches+20) ); success = false; else jprintf({ 'Download successful. The license can be found at' '' ' %s' '' 'The license will expire at the end of the day on %s.' }, fname, fstr(matches+11:matches+20) ); end end if success, matches = regexp( fstr, '\nAPPNAME=CVX\n', 'once' ); if ~any( matches ), [ matches, mends ] = regexp( fstr, '\nAPPNAME=\w+', 'start', 'end' ); if any( matches ), jprintf({ line 'ERROR: This license is reserved for the application "%s" and will' '*not* work with CVX. We strongly recommend that you move this license to' 'another location, in accordance with this documentation:' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node8'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node8</a>' '' 'To use Gurobi with CVX, you must either obtain a full Gurobi license or a' 'CVX specific license.' }, fstr(matches(1)+9:mends) ); success = false; else if ispc, cmd = ' movefile(''%s'',''%sgurobi.lic'')'; fdr = getenv('USERPROFILE'); if fdr(end) ~= '\', fdr(end+1) = '\'; end else cmd = ' movefile %s %sgurobi.lic'; fdr = '~/'; end jprintf({ line 'WARNING: This license is not a CVX-specific license. It will still work with' 'CVX; however, if you also wish to use it with other applications, then we' 'strongly recommend that you copy it to a standard Gurobi location. Consult' 'the following Gurobi documentation for more information:' '' ' <a href="matlab: web(''http://www.gurobi.com/documentation/5.5/quick-start-guide/node8'',''-browser'');">http://www.gurobi.com/documentation/5.5/quick-start-guide/node8</a>' '' 'For instance, to move this file to the standard home directory location,' 'copy and paste this command into your MATLAB command line:' '' cmd }, fname, fdr ); end end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Move the license to its proper location % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if success, [success,msg] = movefile( tname, fname, 'f' ); if ~success, jprintf({ 'The attempt to move the Gurobi license file from its temporary location' '' ' %s' '' 'to its final location' '' ' %s' '' 'resulted in the following error:' '' ' %s' '' 'Please rectify the problem and try again; or move the file manually. Once' 'the license is in place, please run CVX_SETUP to configure CVX to use the' 'Gurobi solver with the new license.' }, tname, fname, msg ); success = false; end end %%%%%%%%%%%% % Clean up % %%%%%%%%%%%% if ~isempty(tdir), [success,message] = rmdir( tdir, 's' ); %#ok end if success, jprintf({ line 'Now that the license has been retrieved, please run CVX_SETUP to configure' 'CVX to use the Gurobi solver with the new license.' }); end jprintf({ line '' }); if nargout == 0, clear success end function jprintf( strs, varargin ) strs = strs(:)'; [ strs{2,:} ] = deal( '\n' ); fprintf( cat(2,strs{:}), varargin{:} ); % Copyright 2014 CVX Research, Inc. % This file is governed by the terms of the CVX Professional license; % redistribution is *not* permitted. Please see the file LICENSE.txt for % full copyright information. % The command 'cvx_where' will show where this file is located.
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDNTcorr.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDNTcorr.m
1,001
utf_8
c42eba1c6bae660b88921b7c8747490e
%%************************************************************************ %% HSDNTcorr: corrector step for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************ function [par,dX,dy,dZ,resnrm] = HSDNTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global printlevel global solve_ok %% [rhs,EinvRc] = HSDNTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% solve_ok = 1; %#ok [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: iterative solver fails: %3.1f.',solve_ok); end if (par.printlevel>=3); fprintf(' %2.0f',length(resnrm)-1); end %% [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx); %%************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDHKMdirfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDHKMdirfun.m
1,551
utf_8
1034e25e48a42d2fa143f93f47961fe9
%%******************************************************************* %% HSDHKMdirfun: compute (dX,dZ), given dy, for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ] = HSDHKMdirfun(blk,At,par,Rd,EinvRc,X,xx) global solve_ok dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = []; if (any(isnan(xx)) || any(isinf(xx))) solve_ok = 0; fprintf('\n HSDHKMdirfun: solution contains NaN or inf.'); return; end %% m = par.m; dy2 = xx(1:m+2); %% for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); dX{p} = EinvRc{p} - par.dd{p}.*dZ{p}; elseif strcmp(pblk{1},'q') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); tmp = par.dd{p}.*dZ{p} ... + qops(pblk,qops(pblk,dZ{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,dZ{p},X{p},1),par.Zinv{p},3); dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'s') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy2)); tmp = Prod3(pblk,X{p},dZ{p},par.Zinv{p},0); tmp = 0.5*(tmp+tmp'); dX{p} = EinvRc{p}-tmp; end end dy = dy2(1:m); par.dtau = dy2(m+1); par.dtheta = dy2(m+2); par.dkap = (par.mu./par.tau - par.kap) - par.kap*(par.dtau/par.tau); %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDsqlp.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDsqlp.m
11,860
utf_8
00b8311a8efbee36662ca9288870a1cd
%%***************************************************************************** %% HSDsqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method on the homogeneous self-dual model. %% %% [obj,X,y,Z,info,runhist] = %% HSDsqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %% %% Input: blk: a cell array describing the block diagonal structure of SQL data. %% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C: data for the SQL instance. %% OPTIONS: a structure that specifies parameters required in HSDsqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% %% Output: obj = [<C,X> <b,y>]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of <X,Z>. %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel ... %% (all have default values set in sqlparameters.m). %% %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = ... HSDsqlp(blk,At,C,b,OPTIONS,X0,y0,Z0,kap0,tau0,theta0) if (nargin < 5); OPTIONS = []; end isemptyAtb = 0; if isempty(At) && isempty(b); %% Add redundant constraint: <-I,X> <= 0 b = 0; At = ops(ops(blk,'identity'),'*',-1); numblk = size(blk,1); blk{numblk+1,1} = 'l'; blk{numblk+1,2} = 1; At{numblk+1,1} = 1; C{numblk+1,1} = 0; isemptyAtb = 1; end %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% % warning off; matlabversion = sscanf(version,'%f'); if strcmp(computer,'PCWIN64') || strcmp(computer,'GLNXA64') par.computer = 64; else par.computer = 32; end par.matlabversion = matlabversion(1); par.vers = 0; par.predcorr = 1; par.gam = 0; par.expon = 1; par.gaptol = 1e-8; par.inftol = 1e-8; par.steptol = 1e-6; par.maxit = 100; par.printlevel = 3; par.stoplevel = 1; par.scale_data = 0; par.spdensity = 0.4; par.rmdepconstr = 0; par.smallblkdim = 50; par.schurfun = cell(size(blk,1),1); par.schurfun_par = cell(size(blk,1),1); %% parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') || strcmp(pblk{1},'q') parbarrier{p} = zeros(1,length(pblk{2})); elseif strcmp(pblk{1},'l') || strcmp(pblk{1},'u' ) parbarrier{p} = zeros(1,sum(pblk{2})); end end parbarrier_0 = parbarrier; %% if nargin > 4, if isfield(OPTIONS,'vers'); par.vers = OPTIONS.vers; end if isfield(OPTIONS,'predcorr'); par.predcorr = OPTIONS.predcorr; end if isfield(OPTIONS,'gam'); par.gam = OPTIONS.gam; end if isfield(OPTIONS,'expon'); par.expon = OPTIONS.expon; end if isfield(OPTIONS,'gaptol'); par.gaptol = OPTIONS.gaptol; end if isfield(OPTIONS,'inftol'); par.inftol = OPTIONS.inftol; end if isfield(OPTIONS,'steptol'); par.steptol = OPTIONS.steptol; end if isfield(OPTIONS,'maxit'); par.maxit = OPTIONS.maxit; end if isfield(OPTIONS,'printlevel'); par.printlevel = OPTIONS.printlevel; end if isfield(OPTIONS,'stoplevel'); par.stoplevel = OPTIONS.stoplevel; end if isfield(OPTIONS,'scale_data'); par.scale_data = OPTIONS.scale_data; end if isfield(OPTIONS,'spdensity'); par.spdensity = OPTIONS.spdensity; end if isfield(OPTIONS,'rmdepconstr'); par.rmdepconstr = OPTIONS.rmdepconstr; end if isfield(OPTIONS,'smallblkdim'); par.smallblkdim = OPTIONS.smallblkdim; end if isfield(OPTIONS,'parbarrier'); parbarrier = OPTIONS.parbarrier; if isempty(parbarrier); parbarrier = parbarrier_0; end if ~iscell(parbarrier); tmp = parbarrier; clear parbarrier; parbarrier{1} = tmp; end if (length(parbarrier) < size(blk,1)) len = length(parbarrier); parbarrier(len+1:size(blk,1)) = parbarrier_0(len+1:size(blk,1)); end end if isfield(OPTIONS,'schurfun'); par.schurfun = OPTIONS.schurfun; if ~isempty(par.schurfun); par.scale_data = 0; end end if isfield(OPTIONS,'schurfun_par'); par.schurfun_par = OPTIONS.schurfun_par; end if isempty(par.schurfun); par.schurfun = cell(size(blk,1),1); end if isempty(par.schurfun_par); par.schurfun_par = cell(size(blk,1),1); end end if (size(blk,2) > 2); par.smallblkdim = 0; end %% %%----------------------------------------- %% convert matrices to cell arrays. %%----------------------------------------- %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; if all(size(At) == [size(blk,1), length(b)]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) if (par.printlevel); fprintf('\n sqlp: converting At into required format'); end At = svec(blk,At,ones(size(blk,1),1)); end end %% %%----------------------------------------- %% validate SQLP data. %%----------------------------------------- %% % tstart = cputime; [blk,At,C,b,blkdim,numblk] = validate(blk,At,C,b,par); [blk,At,C,b,iscmp] = convertcmpsdp(blk,At,C,b); if (iscmp) && (par.printlevel>=2) fprintf('\n SQLP has complex data'); end if (nargin <= 5) || (isempty(X0) || isempty(y0) || isempty(Z0)); if (max([ops(At,'norm'),ops(C,'norm'),norm(b)]) > 1e2) [X0,y0,Z0] = infeaspt(blk,At,C,b,1); else [X0,y0,Z0] = infeaspt(blk,At,C,b,2,1); end end if ~iscell(X0); X0 = {X0}; end; if ~iscell(Z0); Z0 = {Z0}; end; if (length(y0) ~= length(b)) error('HSDsqlp: length of b and y0 not compatible'); end [X0,Z0] = validate_startpoint(blk,X0,Z0,par.spdensity); %% if (nargin <= 8) || (isempty(kap0) || isempty(tau0) || isempty(theta0)) if (max([ops(At,'norm'),ops(C,'norm'),norm(b)]) > 1e6) kap0 = 10*blktrace(blk,X0,Z0); else kap0 = blktrace(blk,X0,Z0); end tau0 = 1; theta0 = 1; end %% if (par.printlevel>=2) fprintf('\n num. of constraints = %2.0d',length(b)); if blkdim(1); fprintf('\n dim. of sdp var = %2.0d,',blkdim(1)); fprintf(' num. of sdp blk = %2.0d',numblk(1)); end if blkdim(2); fprintf('\n dim. of socp var = %2.0d,',blkdim(2)); fprintf(' num. of socp blk = %2.0d',numblk(2)); end if blkdim(3); fprintf('\n dim. of linear var = %2.0d',blkdim(3)); end if blkdim(4); fprintf('\n dim. of free var = %2.0d',blkdim(4)); end end %% %%----------------------------------------- %% detect unrestricted blocks in linear blocks %%----------------------------------------- %% user_supplied_schurfun = 0; for p = 1:size(blk,1) if ~isempty(par.schurfun{p}); user_supplied_schurfun = 1; end end if (user_supplied_schurfun == 0) [blk2,At2,C2,ublkinfo,parbarrier2,X02,Z02] = ... detect_ublk(blk,At,C,parbarrier,X0,Z0,par.printlevel); else blk2 = blk; At2 = At; C2 = C; parbarrier2 = parbarrier; X02 = X0; Z02 = Z0; ublkinfo = cell(size(blk2,1),1); end ublksize = blkdim(4); for p = 1:size(ublkinfo,1) ublksize = ublksize + length(ublkinfo{p}); end %% %%----------------------------------------- %% detect diagonal blocks in semidefinite blocks %%----------------------------------------- %% if (user_supplied_schurfun==0) [blk3,At3,C3,diagblkinfo,diagblkchange,parbarrier3,X03,Z03] = ... detect_lblk(blk2,At2,C2,b,parbarrier2,X02,Z02,par.printlevel); %#ok else blk3 = blk2; At3 = At2; C3 = C2; % parbarrier3 = parbarrier2; X03 = X02; Z03 = Z02; diagblkchange = 0; diagblkinfo = cell(size(blk3,1),1); end %% %%----------------------------------------- %% main solver %%----------------------------------------- %% %exist_analytic_term = 0; %for p = 1:size(blk3,1); % idx = find(parbarrier3{p} > 0); % if ~isempty(idx); exist_analytic_term = 1; end %end %% if (par.vers == 0); if blkdim(1); par.vers = 1; else par.vers = 2; end end par.blkdim = blkdim; par.ublksize = ublksize; [obj,X3,y,Z3,info,runhist] = ... HSDsqlpmain(blk3,At3,C3,b,par,X03,y0,Z03,kap0,tau0,theta0); %% %%----------------------------------------- %% recover semidefinite blocks from linear blocks %%----------------------------------------- %% if any(diagblkchange) X2 = cell(size(blk2,1),1); Z2 = cell(size(blk2,1),1); count = 0; for p = 1:size(blk2,1) pblk = blk2(p,:); n = sum(pblk{2}); blkno = diagblkinfo{p,1}; idxdiag = diagblkinfo{p,2}; idxnondiag = diagblkinfo{p,3}; if ~isempty(idxdiag) len = length(idxdiag); Xtmp = [idxdiag,idxdiag,X3{end}(count+1:count+len); n, n, 0]; Ztmp = [idxdiag,idxdiag,Z3{end}(count+1:count+len); n, n, 0]; if ~isempty(idxnondiag) [ii,jj,vv] = find(X3{blkno}); Xtmp = [Xtmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok [ii,jj,vv] = find(Z3{blkno}); Ztmp = [Ztmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok end X2{p} = spconvert(Xtmp); Z2{p} = spconvert(Ztmp); count = count + len; else X2(p) = X3(blkno); Z2(p) = Z3(blkno); end end else X2 = X3; Z2 = Z3; end %% %%----------------------------------------- %% recover linear block from unrestricted block %%----------------------------------------- %% numblk = size(blk,1); numblknew = numblk; X = cell(numblk,1); Z = cell(numblk,1); for p = 1:numblk n = blk{p,2}; if isempty(ublkinfo{p,1}) X{p} = X2{p}; Z{p} = Z2{p}; else Xtmp = zeros(n,1); Ztmp = zeros(n,1); Xtmp(ublkinfo{p,1}) = max(0,X2{p}); Xtmp(ublkinfo{p,2}) = max(0,-X2{p}); Ztmp(ublkinfo{p,1}) = max(0,Z2{p}); Ztmp(ublkinfo{p,2}) = max(0,-Z2{p}); if ~isempty(ublkinfo{p,3}) numblknew = numblknew + 1; Xtmp(ublkinfo{p,3}) = X2{numblknew}; Ztmp(ublkinfo{p,3}) = Z2{numblknew}; end X{p} = Xtmp; Z{p} = Ztmp; end end %% %%----------------------------------------- %% recover complex solution %%----------------------------------------- %% if (iscmp) for p = 1:numblk pblk = blk(p,:); n = sum(pblk{2})/2; if strcmp(pblk{1},'s'); X{p} = X{p}(1:n,1:n) + sqrt(-1)*X{p}(n+1:2*n,1:n); Z{p} = Z{p}(1:n,1:n) + sqrt(-1)*Z{p}(n+1:2*n,1:n); X{p} = 0.5*(X{p}+X{p}'); Z{p} = 0.5*(Z{p}+Z{p}'); end end end if (isemptyAtb) X = X(1:end-1); Z = Z(1:end-1); end %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDsortA.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDsortA.m
2,577
utf_8
0a74ddbb8a0c79bf22592d780d865e06
%%********************************************************************* %% sortA: sort columns of At{p} in ascending order according to the %% number of nonzero elements. %% %% [At,C,b,X0,Z0,permA,permZ] = sortA(blk,At,C,b,X0,Z0); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************* function [At,C,Cnew,X0,Z0,permA,invpermA,permZ] = HSDsortA(blk,At,C,Cnew,b,X0,Z0) global spdensity smallblkdim %% numblk = size(blk,1); m = length(b); nnzA = zeros(numblk,m); permA = kron(ones(numblk,1),1:m); invpermA = kron(ones(numblk,1),1:m); permZ = cell(size(blk,1),1); %% for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') && (max(pblk{2}) > smallblkdim) n22 = sum(pblk{2}.*(pblk{2}+1))/2; m1 = size(At{p,1},2); if (length(pblk{2}) == 1) tmp = abs(C{p}) + abs(Z0{p}); if (~isempty(At{p,1})) tmp = tmp + smat(blk(p,:),abs(At{p,1})*ones(m1,1),1); end if (nnz(tmp) < spdensity*n22); per = symamd(tmp); invper = zeros(n,1); invper(per) = 1:n; permZ{p} = invper; if (~isempty(At{p,1})) isspAt = issparse(At{p,1}); for k = 1:m1 Ak = smat(pblk,At{p,1}(:,k),1); At{p,1}(:,k) = svec(pblk,Ak(per,per),isspAt); end end C{p} = C{p}(per,per); Z0{p} = Z0{p}(per,per); X0{p} = X0{p}(per,per); Cnew{p} = Cnew{p}(per,per); else per = []; end if (length(pblk) > 2) && (~isempty(per)) P = spconvert([(1:n)', per', ones(n,1)]); At{p,2} = P*At{p,2}; end end if ~isempty(At{p,1}) && (mexnnz(At{p,1}) < m*n22/2) for k = 1:m1 Ak = At{p,1}(:,k); nnzA(p,k) = length(find(abs(Ak) > eps)); end [dummy,permAp] = sort(nnzA(p,1:m1)); %#ok At{p,1} = At{p,1}(:,permAp); permA(p,1:m1) = permAp; invpermA(p,permAp) = 1:m1; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end end end %%*********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDHKMrhsfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDHKMrhsfun.m
2,666
utf_8
16409ae4672f80ef54a33c31ef30000f
%%******************************************************************* %% HSDHKMrhsfun: compute the right-hand side vector of the %% Schur complement equation for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = HSDHKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) m = par.m; if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m+2,1); end hEinvRc = zeros(m+2,1); EinvRc = cell(size(blk,1),1); if length(sigmu)==1; sigmu = sigmu*ones(1,size(blk,1)); end %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'l') if (corrector) Rq = dX{p}.*dZ{p}; else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)./Z{p}-X{p} -Rq./Z{p}; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') if (corrector) ff{p} = qops(pblk,1./par.gamz{p},Z{p},3); %#ok hdx = qops(pblk,par.gamz{p},ff{p},5,dX{p}); hdz = qops(pblk,par.gamz{p},ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); Rq = qops(pblk,par.gamz{p},ff{p},6,hdxdz); else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p} ... + qops(pblk,qops(pblk,Rd{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,Rd{p},X{p},1),par.Zinv{p},3); tmp2 = mexMatvec(At{p,1},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)*par.Zinv{p}-X{p} -Rq; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') if (corrector) Rq = Prod3(pblk,dX{p},dZ{p},par.Zinv{p},0); Rq = 0.5*(Rq+Rq'); else Rq = sparse(n,n); tmp = Prod3(pblk,X{p},Rd{p},par.Zinv{p},0,par.nzlistAy{p}); EinvRc{p} = 0.5*(tmp+tmp'); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)*par.Zinv{p}-X{p}- Rq; tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; end end %% rhs = rp + hRd - hEinvRc; rhs(m+1) = rhs(m+1) + (par.mu/par.tau - par.kap); if (corrector) rhs(m+1) = rhs(m+1) - par.dtau*par.dkap/par.tau; end %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDsqlpcheckconvg.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDsqlpcheckconvg.m
6,249
utf_8
a579e4972fd77d5cc3e11b72bf56d3a9
%%***************************************************************************** %% HSDsqlpcheckconvg: check convergence. %% %% ZpATynorm, AX, normX, normZ are with respect to the %% original variables, not the HSD variables. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************************** function [param,breakyes,use_olditer,msg] = HSDsqlpcheckconvg(param,runhist) termcode = param.termcode; iter = param.iter; obj = param.obj; relgap = param.relgap; gap = param.gap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; mu = param.mu; prim_infeas_bad = param.prim_infeas_bad; dual_infeas_bad = param.dual_infeas_bad; printlevel = param.printlevel; stoplevel = param.stoplevel; inftol = param.inftol; gaptol = param.gaptol; kap = param.kap; tau = param.tau; theta = param.theta; breakyes = 0; use_olditer = 0; msg = []; infeas = max(prim_infeas,dual_infeas); prim_infeas_min = min(param.prim_infeas_min, max(prim_infeas,1e-10)); dual_infeas_min = min(param.dual_infeas_min, max(dual_infeas,1e-10)); %% err = max(infeas,relgap); if (obj(2) > 0); homRd = param.ZpATynorm/obj(2); else homRd = inf; end if (obj(1) < 0); homrp = norm(param.AX)/(-obj(1)); else homrp = inf; end if (param.normX > 1e15*param.normX0 || param.normZ > 1e15*param.normZ0) termcode = 3; breakyes = 1; end if (homRd < min(1e-6,1e-2*sqrt(err*inftol)) && tau < 1e-4 ... && prim_infeas > 0.5*runhist.pinfeas(iter)) ... || (homRd < 10*tau && tau < 1e-7) termcode = 1; breakyes = 1; end if (homrp < min(1e-6,1e-2*sqrt(err*inftol)) && tau < 1e-4 ... && dual_infeas > 0.5*runhist.dinfeas(iter)) ... || (homrp < 10*tau && tau < 1e-7) termcode = 2; breakyes = 1; end if (err < gaptol) msg = sprintf('Stop: max(relative gap,infeasibilities) < %3.2e',gaptol); if (printlevel); fprintf('\n %s',msg); end termcode = 0; breakyes = 1; end min_prim_infeas = min(runhist.pinfeas(1:iter)); prim_infeas_bad = prim_infeas_bad + (prim_infeas > ... max(1e-10,5*min_prim_infeas) && (min_prim_infeas < 1e-2)); if (mu < 1e-6) idx = max(1,iter-1): iter; elseif (mu < 1e-3); idx = max(1,iter-2): iter; else idx = max(1,iter-3): iter; end idx2 = max(1,iter-4): iter; gap_ratio2 = runhist.gap(idx2+1)./runhist.gap(idx2); gap_slowrate = min(0.8,max(0.6,2*mean(gap_ratio2))); gap_ratio = runhist.gap(idx+1)./runhist.gap(idx); pstep = runhist.step(iter+1); if (infeas < 1e-4 || prim_infeas_bad) && (relgap < 1e-3) ... && (iter > 5) && (prim_infeas > (1-pstep/2)*runhist.pinfeas(iter)) gap_slow = all(gap_ratio > gap_slowrate) && (relgap < 1e-3); min_pinfeas = min(runhist.pinfeas); if (relgap < 0.1*infeas) ... && ((runhist.step(iter+1) < 0.5) || (min_pinfeas < min(1e-6,0.1*prim_infeas))) ... && (dual_infeas > 0.9*runhist.dinfeas(iter) || (dual_infeas < 1e-2*gaptol)) msg = 'Stop: relative gap < infeasibility'; if (printlevel); fprintf('\n %s',msg); end termcode = -1; breakyes = 1; elseif (gap_slow) && (infeas > 0.9*runhist.infeas(iter)) ... && (theta < 1e-8) msg = 'Stop: progress is too slow'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end elseif (prim_infeas_bad) && (iter >50) && all(gap_ratio > gap_slowrate) msg = 'Stop: progress is bad'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; elseif (infeas < 1e-8) && (gap > 1.2*mean(runhist.gap(idx))) msg = 'Stop: progress is bad*'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (err < 1e-3) && (iter > 10) ... && (runhist.pinfeas(iter+1) > 0.9*runhist.pinfeas(max(1,iter-5))) ... && (runhist.dinfeas(iter+1) > 0.9*runhist.dinfeas(max(1,iter-5))) ... && (runhist.relgap(iter+1) > 0.1*runhist.relgap(max(1,iter-5))); msg = 'Stop: progress is bad**'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end if (infeas > 100*max(1e-12,min(runhist.infeas)) && relgap < 1e-4) msg = 'Stop: infeas has deteriorated too much'; if (printlevel); fprintf('\n %s, %3.1e',msg,infeas); end use_olditer = 1; termcode = -7; breakyes = 1; end if (min(runhist.infeas) < 1e-4 || prim_infeas_bad) ... && (max(runhist.infeas) > 1e-4) && (iter > 5) relgap2 = abs(diff(obj))/(1+mean(abs(obj))); if (relgap2 < 1e-3); step_short = all(runhist.step(iter:iter+1) < 0.1) ; elseif (relgap2 < 1) idx = max(1,iter-3): iter+1; step_short = all(runhist.step(idx) < 0.05); else step_short = 0; end if (step_short) msg = 'Stop: steps too short consecutively'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end end if (iter > 3 && iter < 20) && (max(runhist.step(max(1,iter-3):iter+1)) < 1e-3) ... && (infeas > 1) && (min(homrp,homRd) > 1000*inftol) if (stoplevel >= 2) msg = 'Stop: steps too short consecutively'; if (printlevel); fprintf('\n %s',msg); end termcode = -5; breakyes = 1; end end if (pstep < 1e-4) && (err > 1.1*max(runhist.relgap(iter),runhist.infeas(iter))) msg = 'Stop: steps are too short'; if (printlevel); fprintf('\n %s',msg); end use_olditer = 1; termcode = -5; breakyes = 1; end if (iter == param.maxit) termcode = -6; msg = 'Stop: maximum number of iterations reached'; if (printlevel); fprintf('\n %s',msg); end end if (infeas < 1e-8 && relgap < 1e-10 && kap < 1e-13 && theta < 1e-15) msg = 'Stop: obtained accurate solution'; if (printlevel); fprintf('\n %s',msg); end termcode = 0; breakyes = 1; end param.prim_infeas_bad = prim_infeas_bad; param.prim_infeas_min = prim_infeas_min; param.dual_infeas_bad = dual_infeas_bad; param.dual_infeas_min = dual_infeas_min; param.termcode = termcode; %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDNTdirfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDNTdirfun.m
1,459
utf_8
a045827a3ca1adcf8806cfd8234ad5e4
%%******************************************************************* %% HSDNTdirfun: compute (dX,dZ), given dy, for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx) global solve_ok dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = []; if (any(isnan(xx)) || any(isinf(xx))) solve_ok = 0; fprintf('\n HSDNTdirfun: solution contains NaN or inf.'); return; end %% m = par.m; dy2 = xx(1:m+2); %% for p=1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); tmp = par.dd{p}.*dZ{p}; dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'q') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy2)); tmp = par.dd{p}.*dZ{p} + qops(pblk,qops(pblk,dZ{p},par.ee{p},1),par.ee{p},3); dX{p} = EinvRc{p} - tmp; elseif strcmp(pblk{1},'s') dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy2)); tmp = Prod3(pblk,par.W{p},dZ{p},par.W{p},1); dX{p} = EinvRc{p}-tmp; end end dy = dy2(1:m); par.dtau = dy2(m+1); par.dtheta = dy2(m+2); par.dkap = (par.mu./par.tau - par.kap) - par.kap*(par.dtau/par.tau); %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDNTrhsfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDNTrhsfun.m
3,424
utf_8
02348c55d691a53b023639b8103757be
%%******************************************************************* %% HSDNTrhsfun: compute the right-hand side vector of the %% Schur complement equation for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = HSDNTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) global spdensity m = par.m; if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m+2,1); end hEinvRc = zeros(m+2,1); EinvRc = cell(size(blk,1),1); if length(sigmu)==1; sigmu = sigmu*ones(1,size(blk,1)); end %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') if (corrector) Rq = dX{p}.*dZ{p}; else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = sigmu(p)./Z{p}-X{p} -Rq./Z{p}; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') w = sqrt(par.gamz{p}./par.gamx{p}); if (corrector) hdx = qops(pblk,w,par.ff{p},5,dX{p}); hdz = qops(pblk,w,par.ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); vv = qops(pblk,w,par.ff{p},5,X{p}); Vihdxdz = Arrow(pblk,vv,hdxdz,1); Rq = qops(pblk,w,par.ff{p},6,Vihdxdz); else Rq = sparse(n,1); tmp = par.dd{p}.*Rd{p} + qops(pblk,qops(pblk,Rd{p},par.ee{p},1),par.ee{p},3); tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = qops(pblk,-sigmu(p)./(par.gamz{p}.*par.gamz{p}),Z{p},4)-X{p}-Rq; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') n2 = pblk{2}.*(pblk{2}+1)/2; if (corrector) hdZ = Prod3(pblk,par.G{p},dZ{p},par.G{p}',1); hdX = spdiags(-par.sv{p},0,n,n)-hdZ; tmp = Prod2(pblk,hdX,hdZ,0); tmp = 0.5*(tmp+tmp'); if (numblk == 1) d = par.sv{p}; e = ones(pblk{2},1); Rq = 2*tmp./(d*e'+e*d'); if (nnz(Rq) <= spdensity*n2); Rq = sparse(Rq); end else Rq = sparse(n,n); s = [0, cumsum(pblk{2})]; for i = 1:numblk pos = s(i)+1 : s(i+1); d = par.sv{p}(pos); e = ones(length(pos),1); Rq(pos,pos) = 2*tmp(pos,pos)./(d*e' + e*d'); %#ok end end else Rq = sparse(n,n); EinvRc{p} = Prod3(pblk,par.W{p},Rd{p},par.W{p},1,par.nzlistAy{p}); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hRd = hRd + tmp2; end tmp = spdiags(sigmu(p)./par.sv{p} -par.sv{p},0,n,n); EinvRc{p} = Prod3(pblk,par.G{p}',tmp-Rq,par.G{p},1); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; end end %% rhs = rp + hRd - hEinvRc; rhs(m+1) = rhs(m+1) + (par.mu/par.tau - par.kap); if (corrector) rhs(m+1) = rhs(m+1) - par.dtau*par.dkap/par.tau; end %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDHKMpred.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDHKMpred.m
2,644
utf_8
81b89c36e0d0bad30836c551264a6a05
%%******************************************************************* %% HSDHKMpred: Compute (dX,dy,dZ) for the H..K..M direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ,coeff,L,hRd] = ... HSDHKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol) global schurfun schurfun_par %% %% compute HKM scaling %% Zinv = cell(size(blk,1),1); dd = cell(size(blk,1),1); gamx = cell(size(blk,1),1); gamz = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') Zinv{p} = 1./Z{p}; dd{p} = X{p}./Z{p}; elseif strcmp(pblk{1},'q') gaptmp = qops(pblk,X{p},Z{p},1); gamz2 = qops(pblk,Z{p},Z{p},2); gamz{p} = sqrt(gamz2); Zinv{p} = qops(pblk,-1./gamz2,Z{p},4); dd{p} = qops(pblk,gaptmp./gamz2,ones(n,1),4); elseif strcmp(pblk{1},'s') if (numblk == 1) Zinv{p} = Prod2(pblk,full(invZchol{p}),invZchol{p}',1); else Zinv{p} = Prod2(pblk,invZchol{p},invZchol{p}',1); end end end par.Zinv = Zinv; par.gamx = gamx; par.gamz = gamz; par.dd = dd; %% %% compute schur matrix %% m = par.m; schur = sparse(m+2,m+2); UU = []; EE = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.Zinv,X); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,X,par.Zinv); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Zpinv = Zinv{p}(par.permZ{p},par.permZ{p}); Xp = X{p}(par.permZ{p},par.permZ{p}); else Xp = X{p}; Zpinv = Zinv{p}; end schurtmp = feval( schurfun{p}, Xp,Zpinv,schurfun_par(p,:)); schur = schur + schurtmp; end end end %% %% compute rhs %% [rhs,EinvRc,hRd] = HSDHKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% par.addschur = par.kap/par.tau; schur(m+1,m+1) = schur(m+1,m+1) + par.kap/par.tau; schur(m+2,m+2) = schur(m+2,m+2) + par.addschur; [xx,coeff,L] = HSDlinsysolve(par,schur,UU,EE,par.Umat,rhs); %% %% compute (dX,dZ) %% [par,dX,dy,dZ] = HSDHKMdirfun(blk,At,par,Rd,EinvRc,X,xx); %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDsqlpmain.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDsqlpmain.m
28,301
utf_8
df880652075e1e6d94eefd6ddfe38c64
%%***************************************************************************** %% HSDsqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method on the homogeneous self-dual model. %% %% [obj,X,y,Z,info,runhist] = %% HSDsqlp(blk,At,C,b,OPTIONS,X0,y0,Z0,kap0,tau0,theta0); %% %% Input: %% blk : a cell array describing the block diagonal structure of SQL data. %% At : a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C : data for the SQL instance. %% OPTIONS: a structure that specifies parameters required in HSDsqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% (kap0,tau0,theta0): initial parameters (if not given, the default is used). %% %% Output: obj = [<C,X> <b,y>]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of <X,Z>. %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel ... %% (all have default values set in sqlparameters.m). %% %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = ... HSDsqlpmain(blk,At,C,b,par,X0,y0,Z0,kap0,tau0,theta0) %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% global spdensity smallblkdim solve_ok use_LU global schurfun schurfun_par % matlabversion = par.matlabversion; isoctave = exist( 'OCTAVE_VERSION', 'builtin' ); if isoctave, w1 = warning('off','Octave:nearly-singular-matrix'); else w1 = warning('off','MATLAB:nearlySingularMatrix'); w2 = warning('off','MATLAB:singularMatrix'); end vers = par.vers; predcorr = par.predcorr; gam = par.gam; expon = par.expon; gaptol = par.gaptol; inftol = par.inftol; steptol = par.steptol; maxit = par.maxit; printlevel = par.printlevel; stoplevel = par.stoplevel; % scale_data = par.scale_data; spdensity = par.spdensity; rmdepconstr = par.rmdepconstr; smallblkdim = par.smallblkdim; schurfun = par.schurfun; schurfun_par = par.schurfun_par; % ublksize = par.ublksize; %% tstart = clock; X = X0; y = y0; Z = Z0; for p = 1:size(blk,1) if strcmp(blk{p,1},'u'); Z{p} = zeros(blk{p,2},1); end end %% %%----------------------------------------- %% convert unrestricted blk to linear blk. %%----------------------------------------- %% ublkidx = zeros(size(blk,1),1); Cpert = zeros(size(blk,1),1); Cnew = C; perturb_C = 1; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); tmp = max(1,norm(C{p},'fro'))/sqrt(n); if strcmp(pblk{1},'s') if (perturb_C); Cpert(p) = 1e-3*tmp; end Cnew{p} = C{p} + Cpert(p)*speye(n); elseif strcmp(pblk{1},'q') if (perturb_C); Cpert(p) = 0*tmp; end; %% old: 1e-3 s = 1+[0, cumsum(pblk{2})]; tmp2 = zeros(n,1); len = length(pblk{2}); tmp2(s(1:len)) = ones(len,1); Cnew{p} = C{p} + Cpert(p)*tmp2; elseif strcmp(pblk{1},'l') if (perturb_C); Cpert(p) = 1e-4*tmp; end; %% old: 1e-3 Cnew{p} = C{p} + Cpert(p)*ones(n,1); elseif strcmp(pblk{1},'u') msg = sprintf('convert ublk to linear blk'); if (printlevel); fprintf('\n *** %s',msg); end ublkidx(p) = 1; n = 2*pblk{2}; blk{p,1} = 'l'; blk{p,2} = n; if (perturb_C); Cpert(p) = 1e-2*tmp; end C{p} = [C{p}; -C{p}]; At{p} = [At{p}; -At{p}]; Cnew{p} = C{p} + Cpert(p)*ones(n,1); X{p} = 1+randmat(n,1,0,'u'); Z{p} = 1+randmat(n,1,0,'u'); end end %% %%----------------------------------------- %% check if the matrices Ak are %% linearly independent. %%----------------------------------------- %% m0 = length(b); [At,b,y,indeprows,depconstr,feasible,AAt] = ... checkdepconstr(blk,At,b,y,rmdepconstr); if (~feasible) msg = 'SQLP is not feasible'; if (printlevel); fprintf('\n %s',msg); end return; end par.depconstr = depconstr; %% normb = 1+max(abs(b)); normC = zeros(length(C),1); for p = 1:length(C); normC(p) = max(max(abs(C{p}))); end normC = 1+max(normC); nn = ops(C,'getM'); m = length(b); if (nargin <= 8) || (isempty(kap0) || isempty(tau0) || isempty(theta0)) if (max([ops(At,'norm'),ops(C,'norm'),norm(b)]) > 1e6) kap0 = 10*blktrace(blk,X,Z); else kap0 = blktrace(blk,X,Z); end tau0 = 1; theta0 = 1; end kap = kap0; tau = tau0; theta = theta0; %% normX0 = ops(X0,'norm')/tau; normZ0 = ops(Z0,'norm')/tau; bbar = (tau*b-AXfun(blk,At,[],X))/theta; ZpATy = ops(Z,'+',Atyfun(blk,At,[],[],y)); Cbar = ops(ops(ops(tau,'*',C),'-',ZpATy),'/',theta); gbar = (blktrace(blk,C,X)-b'*y+kap)/theta; abar = (blktrace(blk,X,Z)+tau*kap)/theta; for p = 1:size(blk,1); pblk = blk(p,:); if strcmp(pblk{1},'s') At{p} = [At{p}, -svec(pblk,Cnew{p},1), svec(pblk,Cbar{p},1)]; else At{p} = [At{p}, -Cnew{p}, Cbar{p}]; end end Bmat = [sparse(m,m), -b, bbar; b', 0, gbar; -bbar', -gbar, 0]; em1 = zeros(m+2,1); em1(m+1) = 1; em2 = zeros(m+2,1); em2(m+2) = 1; par.Umat = [[b;0;0], [bbar;gbar;0], em1, em2]; par.m = m; par.diagAAt = [full(diag(AAt)); 1; 1]; %% %%----------------------------------------- %% find the combined list of non-zero %% elements of Aj, j = 1:k, for each k. %%----------------------------------------- %% par.numcolAt = length(b)+2; [At,C,Cnew,X,Z,par.permA,par.invpermA,par.permZ] = ... HSDsortA(blk,At,C,Cnew,[b;0;0],X,Z); %#ok [par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = ... nzlist(blk,At,par); %% %%----------------------------------------- %% initialization %%----------------------------------------- %% y2 = [y; tau; theta]; AX = AXfun(blk,At,par.permA,X); rp = [zeros(m,1); kap; -abar] - AX - Bmat*y2; % Rd = ops(Atyfun(blk,At,par.permA,par.isspAy,-y2),'-',Z); trXZ = blktrace(blk,X,Z); mu = (trXZ+kap*tau)/(nn+1); obj = [blktrace(blk,C,X), b'*y]/tau; gap = trXZ/tau^2; relgap = gap/(1+mean(abs(obj))); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,[y;0;0])); ZpATynorm = ops(ZpATy,'norm'); prim_infeas = norm(b - AX(1:m)/tau)/normb; dual_infeas = ops(ops(C,'-',ops(ZpATy,'/',tau)),'norm')/normC; infeas = max(prim_infeas,dual_infeas); %% termcode = 0; pstep = 1; dstep = 1; pred_convg_rate = 1; corr_convg_rate = 1; besttol = max( relgap, infeas ); % homRd = inf; homrp = inf; dy = zeros(length(b),1); msg = []; msg2 = []; runhist.pobj = obj(1); runhist.dobj = obj(2); runhist.gap = gap; runhist.relgap = relgap; runhist.pinfeas = prim_infeas; runhist.dinfeas = dual_infeas; runhist.infeas = infeas; runhist.cputime = etime(clock,tstart); runhist.step = 0; runhist.kappa = kap; runhist.tau = tau; runhist.theta = theta; runhist.useLU = 0; ttime.preproc = runhist.cputime; ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0; ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0; ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0; %% %%----------------------------------------- %% display parameters, and initial info %%----------------------------------------- %% if (printlevel >= 2) fprintf('\n********************************************'); fprintf('************************************************\n'); fprintf(' SDPT3: homogeneous self-dual path-following algorithms'); fprintf('\n********************************************'); fprintf('************************************************\n'); [hh,mm,ss] = mytime(ttime.preproc); if (printlevel>=3) fprintf(' version predcorr gam expon\n'); if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end fprintf(' %1.0f %4.3f %1.0f\n',predcorr,gam,expon); fprintf('it pstep dstep pinfeas dinfeas gap') fprintf(' mean(obj) cputime kap tau theta\n'); fprintf('------------------------------------------------'); fprintf('--------------------------------------------\n'); fprintf('%2.0f|%4.3f|%4.3f|%2.1e|%2.1e|',0,0,0,prim_infeas,dual_infeas); fprintf('%2.1e|%- 7.6e| %s:%s:%s|',gap,mean(obj),hh,mm,ss); fprintf('%2.1e|%2.1e|%2.1e|',kap,tau,theta); end end %% %%--------------------------------------------------------------- %% start main loop %%--------------------------------------------------------------- %% EE = ops(blk,'identity'); normE = ops(EE,'norm'); Zpertold = 1; [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef) msg = 'stop: X, Z are not both positive definite'; if (printlevel); fprintf('\n %s\n',msg); end info.termcode = -3; info.msg1 = msg; return; end %% param.termcode = termcode; param.iter = 0; param.normX0 = normX0; param.normZ0 = normZ0; param.m0 = m0; param.indeprows = indeprows; param.prim_infeas_bad = 0; param.dual_infeas_bad = 0; param.prim_infeas_min = prim_infeas; param.dual_infeas_min = dual_infeas; param.gaptol = gaptol; param.inftol = inftol; param.maxit = maxit; param.printlevel = printlevel; param.stoplevel = stoplevel; breakyes = 0; dy = zeros(length(b),1); dtau = 0; dtheta = 0; Xbest = X; ybest = y; Zbest = Z; % kapbest = kap; taubest = tau; thetabest = theta; %% for iter = 1:maxit; update_iter = 0; pred_slow = 0; corr_slow = 0; % step_short = 0; tstart = clock; timeold = tstart; par.kap = kap; par.tau = tau; par.theta = theta; par.mu = mu; par.iter = iter; par.y = y; par.dy2 = [dy; dtau; dtheta]; par.rp = rp; par.ZpATynorm = ZpATynorm; %% %%-------------------------------------------------- %% perturb C %%-------------------------------------------------- %% if (perturb_C) [At,Cpert] = HSDsqlpCpert(blk,At,par,C,X,Cpert,runhist); maxCpert(iter) = max(Cpert); %#ok %%fprintf(' %2.1e',max(Cpert)); if (iter > 10 && norm(diff(maxCpert([iter-3,iter]))) < 1e-13) Cpert = 0.5*Cpert; maxCpert(iter) = max(Cpert); %#ok end AX = AXfun(blk,At,par.permA,X); rp = [zeros(m,1); kap; -abar] - AX - Bmat*y2; Rd = ops(Atyfun(blk,At,par.permA,par.isspAy,-y2),'-',Z); end %%--------------------------------------------------------------- %% predictor step. %%--------------------------------------------------------------- %% if (predcorr) sigma = 0; else sigma = 1-0.9*min(pstep,dstep); if (iter == 1); sigma = 0.5; end; end sigmu = sigma*mu; invXchol = cell(size(blk,1),1); invZchol = ops(Zchol,'inv'); if (vers == 1); [par,dX,dy,dZ,coeff,L,hRd] = ... HSDHKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol); elseif (vers == 2); [par,dX,dy,dZ,coeff,L,hRd] = ... HSDNTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol); end if (solve_ok <= 0) msg = 'stop: difficulty in computing predictor directions'; if (printlevel); fprintf('\n %s',msg); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; end timenew = clock; ttime.pred = ttime.pred + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------------- %% step-lengths for predictor step %%----------------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end kapstep = max( (par.dkap<0)*(-kap/(par.dkap-eps)), (par.dkap>=0)*1e6 ); taustep = max( (par.dtau<0)*(-tau/(par.dtau-eps)), (par.dtau>=0)*1e6 ); [Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol); timenew = clock; ttime.pred_pstep = ttime.pred_pstep + etime(timenew,timeold); timeold=timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); pstep = min(1,gamused*min([Xstep,Zstep,kapstep,taustep])); dstep = pstep; kappred = kap + pstep*par.dkap; taupred = tau + pstep*par.dtau; trXZpred = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ) ... + pstep*dstep*blktrace(blk,dX,dZ); mupred = (trXZpred + kappred*taupred)/(nn+1); mupredhist(iter) = mupred; %#ok timenew = clock; ttime.pred_dstep = ttime.pred_dstep + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------------- %% stopping criteria for predictor step. %%----------------------------------------- %% if (min(pstep,dstep) < steptol) && (stoplevel) msg = 'stop: steps in predictor too short'; if (printlevel) fprintf('\n %s',msg); fprintf(': pstep = %3.2e, dstep = %3.2e',pstep,dstep); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; end if (iter >= 2) idx = max(2,iter-2) : iter; pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4); idx = max(2,iter-5) : iter; pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1)); pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate); end if (~predcorr) if (max(mu,infeas) < 1e-6) && (pred_slow) && (stoplevel) msg = 'stop: lack of progress in predictor'; if (printlevel) fprintf('\n %s',msg); fprintf(': mupred/mu = %3.2f, pred_convg_rate = %3.2f.',... mupred/mu,pred_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %% %%--------------------------------------------------------------- %% corrector step. %%--------------------------------------------------------------- %% if (predcorr) && (~breakyes) step_pred = min(pstep,dstep); if (mu > 1e-6) if (step_pred < 1/sqrt(3)); expon_used = 1; else expon_used = max(expon,3*step_pred^2); end else expon_used = max(1,min(expon,3*step_pred^2)); end sigma = min( 1, (mupred/mu)^expon_used ); sigmu = sigma*mu; %% if (vers == 1) [par,dX,dy,dZ] = HSDHKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); elseif (vers == 2) [par,dX,dy,dZ] = HSDNTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); end if (solve_ok <= 0) msg = 'stop: difficulty in computing corrector directions'; if (printlevel); fprintf('\n %s',msg); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; end timenew = clock; ttime.corr = ttime.corr + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------- %% step-lengths for corrector step %%----------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end kapstep = max( (par.dkap<0)*(-kap/(par.dkap-eps)), (par.dkap>=0)*1e6 ); taustep = max( (par.dtau<0)*(-tau/(par.dtau-eps)), (par.dtau>=0)*1e6 ); Xstep = steplength(blk,X,dX,Xchol,invXchol); timenew = clock; ttime.corr_pstep = ttime.corr_pstep + etime(timenew,timeold); timeold=timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); timenew = clock; pstep = min(1,gamused*min([Xstep,Zstep,kapstep,taustep])); dstep = pstep; kapcorr = kap + pstep*par.dkap; taucorr = tau + pstep*par.dtau; trXZcorr = trXZ + pstep*blktrace(blk,dX,Z) + dstep*blktrace(blk,X,dZ)... + pstep*dstep*blktrace(blk,dX,dZ); mucorr = (trXZcorr+kapcorr*taucorr)/(nn+1); ttime.corr_dstep = ttime.corr_dstep + etime(timenew,timeold); timeold=timenew; %% %%----------------------------------------- %% stopping criteria for corrector step %%----------------------------------------- %% if (iter >= 2) idx = max(2,iter-2) : iter; corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8); idx = max(2,iter-5) : iter; corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1)); corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8)); end if (max(mu,infeas) < 1e-6) && (iter > 10) && (stoplevel) ... && (corr_slow && mucorr/mu > 1.0) msg = 'stop: lack of progress in corrector'; if (printlevel) fprintf('\n %s',msg); fprintf(': mucorr/mu = %3.2f, corr_convg_rate = %3.2f',... mucorr/mu,corr_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %% %%--------------------------------------------------------------- %% udpate iterate %%--------------------------------------------------------------- %% indef = [1 1]; if (update_iter) for t = 1:5 [Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep)); timenew = clock; ttime.pchol = ttime.pchol + etime(timenew,timeold); timeold = timenew; if (indef(1)); pstep = 0.8*pstep; else break; end end if (t > 1); pstep = gamused*pstep; end for t = 1:5 [Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep)); timenew = clock; ttime.dchol = ttime.dchol + etime(timenew,timeold); timeold = timenew; if (indef(2)); dstep = 0.8*dstep; else break; end end if (t > 1); dstep = gamused*dstep; end AdX = AXfun(blk,At,par.permA,dX); AXtmp = AX(1:m) + pstep*AdX(1:m); tautmp = par.tau+pstep*par.dtau; prim_infeasnew = norm(b-AXtmp/tautmp)/normb; pinfeas_bad(1) = (prim_infeasnew > max([1e-8,relgap,10*infeas])); pinfeas_bad(2) = (prim_infeasnew > max([1e-4,20*prim_infeas]) ... && (infeas < 1e-2)); pinfeas_bad(3) = (max([relgap,dual_infeas]) < 1e-4) ... && (prim_infeasnew > max([2*prim_infeas,10*dual_infeas,1e-7])); if any(indef) msg = 'stop: X, Z not both positive definite'; if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; elseif any(pinfeas_bad) if (stoplevel) && (max(pstep,dstep)<=1) && (kap < 1e-3) ... && (prim_infeasnew > dual_infeas); msg = 'stop: primal infeas has deteriorated too much'; if (printlevel); fprintf('\n %s, %2.1e',msg,prim_infeasnew); fprintf(' %2.1d,%2.1d,%2.1d',... pinfeas_bad(1),pinfeas_bad(2),pinfeas_bad(3)); end termcode = -7; breakyes = 1; end end if (~breakyes) X = ops(X,'+',dX,pstep); y = y + dstep*dy; Z = ops(Z,'+',dZ,dstep); theta = max(0, theta + pstep*par.dtheta); kap = kap + pstep*par.dkap; if (tau + pstep*par.dtau > theta); tau = tau + pstep*par.dtau; end end end %% %%-------------------------------------------------- %% perturb Z: do this step before checking for break %%-------------------------------------------------- perturb_Z = 1; if (~breakyes) && (perturb_Z) trXZtmp = blktrace(blk,X,Z); trXE = blktrace(blk,X,EE); Zpert = max(1e-12,0.2*min(relgap,prim_infeas)).*normC./normE; Zpert = min(Zpert,0.1*trXZtmp./trXE); Zpert = min([1,Zpert,1.5*Zpertold]); if (infeas < 1e-2) Z = ops(Z,'+',EE,Zpert); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef(2)) msg = 'stop: Z not positive definite'; if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; end end Zpertold = Zpert; end %% %%--------------------------------------------------------------- %% compute rp, Rd, infeasibities, etc. %%--------------------------------------------------------------- %% y2 = [y; tau; theta]; AX = AXfun(blk,At,par.permA,X); rp = [zeros(m,1); kap; -abar] - AX - Bmat*y2; % Rd = ops(Atyfun(blk,At,par.permA,par.isspAy,-y2),'-',Z); trXZ = blktrace(blk,X,Z); mu = (trXZ+kap*tau)/(nn+1); obj = [blktrace(blk,C,X), b'*y]/tau; gap = trXZ/tau^2; relgap = gap/(1+mean(abs(obj))); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,[y;0;0])); ZpATynorm = ops(ZpATy,'norm'); prim_infeas = norm(b-AX(1:m)/tau)/normb; dual_infeas = ops(ops(C,'-',ops(ZpATy,'/',tau)),'norm')/normC; infeas = max(prim_infeas,dual_infeas); runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; runhist.cputime(iter+1) = etime(clock,tstart); runhist.step(iter+1) = min(pstep,dstep); runhist.kappa(iter+1) = kap; runhist.tau(iter+1) = tau; runhist.theta(iter+1) = theta; runhist.useLU(iter+1) = use_LU; timenew = clock; ttime.misc = ttime.misc + etime(timenew,timeold); % timeold = timenew; [hh,mm,ss] = mytime(sum(runhist.cputime)); if (printlevel>=3) fprintf('\n%2.0f|%4.3f|%4.3f|',iter,pstep,dstep); fprintf('%2.1e|%2.1e|%2.1e|',prim_infeas,dual_infeas,gap); fprintf('%- 7.6e| %s:%s:%s|',mean(obj),hh,mm,ss); fprintf('%2.1e|%2.1e|%2.1e|',kap,tau,theta); end %% %%-------------------------------------------------- %% check convergence. %%-------------------------------------------------- param.termcode = termcode; param.kap = kap; param.tau = tau; param.theta = theta; param.iter = iter; param.obj = obj; param.gap = gap; param.relgap = relgap; param.mu = mu; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.AX = AX(1:m)/tau; param.ZpATynorm = ZpATynorm/tau; param.normX = ops(X,'norm')/tau; param.normZ = ops(Z,'norm')/tau; if (~breakyes) [param,breakyes,use_olditer,msg] = HSDsqlpcheckconvg(param,runhist); termcode = param.termcode; %% important if (use_olditer) X = ops(X,'-',dX,pstep); y = y - dstep*dy; Z = ops(Z,'-',dZ,dstep); kap = kap - pstep*par.dkap; tau = tau - pstep*par.dtau; theta = theta - pstep*par.dtheta; prim_infeas = runhist.pinfeas(iter); dual_infeas = runhist.dinfeas(iter); gap = runhist.gap(iter); relgap = runhist.relgap(iter); obj = [runhist.pobj(iter), runhist.dobj(iter)]; end end %%-------------------------------------------------- %% check for break %%-------------------------------------------------- newtol = max(relgap,infeas); update_best(iter+1) = ~( newtol >= besttol ); %#ok if update_best(iter+1), Xbest = X; ybest = y; Zbest = Z; besttol = newtol; end if besttol < 1e-4 && ~any(update_best(max(1,iter-1):iter+1)) msg = 'lack of progess in infeas'; if (printlevel); fprintf('\n %s',msg); end termcode = -9; breakyes = 1; end if besttol < 1e-3 && newtol > 1.2*besttol && theta < 1e-10 && kap < 1e-6 msg = 'lack of progress in infeas'; if (printlevel); fprintf('\n %s',msg); end termcode = -9; breakyes = 1; end if (breakyes > 0.5); break; end end %%--------------------------------------------------------------- %% end of main loop %%--------------------------------------------------------------- %% use_bestiter = 1; if (use_bestiter) && (param.termcode <= 0) X = Xbest; y = ybest; Z = Zbest; % kap = kapbest; tau = taubest; theta = thetabest; trXZ = blktrace(blk,X,Z); obj = [blktrace(blk,C,X), b'*y]/tau; gap = trXZ/tau^2; relgap = gap/(1+mean(abs(obj))); AX = AXfun(blk,At,par.permA,X); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,[y;0;0])); ZpATynorm = ops(ZpATy,'norm'); prim_infeas = norm(b-AX(1:m)/tau)/normb; dual_infeas = ops(ops(C,'-',ops(ZpATy,'/',tau)),'norm')/normC; infeas = max(prim_infeas,dual_infeas); runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; end %%--------------------------------------------------------------- %% produce infeasibility certificates if appropriate %%--------------------------------------------------------------- %% X = ops(X,'/',tau); y = y/tau; Z = ops(Z,'/',tau); if (iter >= 1) param.termcode = termcode; param.obj = obj; param.relgap = relgap; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.AX = AX(1:m)/tau; param.ZpATynorm = ZpATynorm/tau; [X,y,Z,resid,reldist,param,msg2] = ... HSDsqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param); termcode = param.termcode; end %% %%--------------------------------------------------------------- %% recover unrestricted blk from linear blk %%--------------------------------------------------------------- %% for p = 1:size(blk,1) if (ublkidx(p) == 1) n = blk{p,2}/2; X{p} = X{p}(1:n)-X{p}(n+1:2*n); Z{p} = Z{p}(1:n); end end %% %%--------------------------------------------------------------- %% print summary %%--------------------------------------------------------------- %% dimacs = [prim_infeas; 0; dual_infeas; 0]; dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))]; info.dimacs = dimacs; info.termcode = termcode; info.iter = iter; info.obj = obj; info.gap = gap; info.relgap = relgap; info.pinfeas = prim_infeas; info.dinfeas = dual_infeas; info.cputime = sum(runhist.cputime); info.time = ttime; info.resid = resid; info.reldist = reldist; info.normX = ops(X,'norm'); info.normy = norm(y); info.normZ = ops(Z,'norm'); info.normA = ops(At,'norm'); info.normb = norm(b); info.normC = ops(C,'norm'); info.msg1 = msg; info.msg2 = msg2; %% if isoctave, warning(w1.state,w1.identifier); else warning(w2.state,w2.identifier); warning(w1.state,w1.identifier); end sqlpsummary(info,ttime,[],printlevel); %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDlinsysolve.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDlinsysolve.m
6,495
utf_8
0644ae75443d221edcf585f5a5736fe5
%%*************************************************************** %% linsysolve: solve linear system to get dy, and direction %% corresponding to unrestricted variables. %% %% [xx,coeff,L,resnrm] = linsysolve(schur,UU,EE,Bmat,rhs); %% %% child functions: mybicgstable.m %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************** function [xx,coeff,L,resnrm] = HSDlinsysolve(par,schur,UU,EE,Bmat,rhs) global solve_ok msg global nnzmat nnzmatold matfct_options matfct_options_old use_LU spdensity = par.spdensity; printlevel = par.printlevel; iter = par.iter; m = length(schur); if (iter==1); use_LU = 0; matfct_options_old = ''; end %#ok if isempty(nnzmatold); nnzmatold = 0; end %#ok %% %% diagonal perturbation %% old: pertdiag = 1e-15*max(1,diagschur); %% diagschur = abs(full(diag(schur))); const = 1e-2/max(1,norm(par.dy2)); alpha = max(1e-14,min(1e-10,const*norm(par.rp))/(1+norm(diagschur.*par.dy2))); pertdiag = alpha*max(1e-8,diagschur); %% Note: alpha is close to 1e-15. mexschurfun(schur,pertdiag); %%if (printlevel); fprintf(' %3.1e ',alpha); end if (par.depconstr) || (min(diagschur) < min([1e-20*max(diagschur), 1e-4])) lambda = 0.1*min(1e-14,const*norm(par.rp)/(1+norm(par.diagAAt.*par.dy2))); mexschurfun(schur,lambda*par.diagAAt); %%if (printlevel); fprintf('*'); end end if (max(diagschur)/min(diagschur) > 1e14) && (par.blkdim(2) == 0) ... && (iter > 10) tol = 1e-6; idx = find(diagschur < tol); len = length(idx); pertdiagschur = zeros(m,1); if (len > 0 && len < 5) && (norm(rhs(idx)) < tol) pertdiagschur(idx) = 1*ones(length(idx),1); mexschurfun(schur,pertdiagschur); if (printlevel); fprintf('#'); end end end %% %% %% UU = [UU, Bmat]; if ~isempty(EE) len = max(max(EE(:,1)),max(EE(:,2))); else len = 0; end tmp = [len+1,len+3,-1; len+2,len+4,1; len+3,len+1,1; len+4,len+2,-1; len+2,len+2,par.addschur]; %% this is the -inverse EE = [EE; tmp]; ncolU = size(UU,2); %% %% assemble coefficient matrix %% if isempty(EE) coeff.mat22 = []; else coeff.mat22 = spconvert(EE); end coeff.mat12 = UU; coeff.mat11 = schur; %% important to use perturbed schur matrix %% %% pad rhs with zero vector %% decide which solution methods to use %% rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; if (ncolU > 300); use_LU = 1; end %% %% Cholesky factorization %% L = []; resnrm = []; xx = inf*ones(m,1); if (~use_LU) nnzmat = mexnnz(coeff.mat11); % nnzmatdiff = (nnzmat ~= nnzmatold); solve_ok = 1; solvesys = 1; if (nnzmat > spdensity*m^2) || (m < 500) matfct_options = 'chol'; else matfct_options = 'spchol'; end if (printlevel > 2); fprintf(' %s',matfct_options); end L.matdim = length(schur); if strcmp(matfct_options,'chol') if issparse(schur); schur = full(schur); end; if (iter<=5); %%--- to fix strange anonmaly in Matlab mexschurfun(schur,1e-20,2); end L.matfct_options = 'chol'; [L.R,indef] = chol(schur); L.perm = 1:m; elseif strcmp(matfct_options,'spchol') if ~issparse(schur); schur = sparse(schur); end; L.matfct_options = 'spchol'; [L.R,indef,L.perm] = chol(schur,'vector'); L.Rt = L.R'; end if (indef) solve_ok = -2; solvesys = 0; msg = 'HSDlinsysolve: Schur complement matrix not positive definite'; if (printlevel); fprintf('\n %s',msg); end end if (solvesys) if (ncolU) tmp = coeff.mat12'*linsysolvefun(L,coeff.mat12)-coeff.mat22; if issparse(tmp); tmp = full(tmp); end [L.Ml,L.Mu,L.Mp] = lu(tmp); tol = 1e-16; condest = max(abs(diag(L.Mu)))/min(abs(diag(L.Mu))); if any(abs(diag(L.Mu)) < tol) || (condest > 1e50*sqrt(norm(par.diagAAt))); %% old: 1e30 solvesys = 0; solve_ok = -4; use_LU = 1; msg = 'SMW too ill-conditioned, switch to LU factor'; if (printlevel); fprintf('\n %s, %2.1e.',msg,condest); end end end if (solvesys) [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: HSDbicgstab fails: %3.1f.',solve_ok); end end end if (solve_ok < 0) if (m < 6000 && strcmp(matfct_options,'chol')) || ... (m < 1e5 && strcmp(matfct_options,'spchol')) use_LU = 1; if (printlevel); fprintf('\n switch to LU factor'); end end end end %% %% LU factorization %% if (use_LU) nnzmat = mexnnz(coeff.mat11)+mexnnz(coeff.mat12); % nnzmatdiff = (nnzmat ~= nnzmatold); solve_ok = 1; %#ok if ~isempty(coeff.mat22) raugmat = [coeff.mat11, coeff.mat12; coeff.mat12', coeff.mat22]; else raugmat = coeff.mat11; end if (nnzmat > spdensity*m^2) || (m+ncolU < 500) matfct_options = 'lu'; else matfct_options = 'splu'; end if (printlevel > 2); fprintf(' %s ',matfct_options); end L.matdim = length(raugmat); if strcmp(matfct_options,'lu') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'lu'; [L.L,L.U,L.p] = lu(raugmat,'vector'); elseif strcmp(matfct_options,'splu') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'splu'; [L.L,L.U,L.p,L.q,L.s] = lu(raugmat,'vector'); L.s = full(diag(L.s)); elseif strcmp(matfct_options,'ldl') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'ldl'; [L.L,L.D,L.p] = ldl(raugmat,'vector'); L.D = sparse(L.D); elseif strcmp(matfct_options,'spldl') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'spldl'; [L.L,L.D,L.p,L.s] = ldl(raugmat,'vector'); L.s = full(diag(L.s)); L.Lt = L.L'; end [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: HSDbicgstab fails: %3.1f,',solve_ok); end end if (printlevel>=3); fprintf('%2.0f ',length(resnrm)-1); end %% nnzmatold = nnzmat; matfct_options_old = matfct_options; %%***************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDsqlpmisc.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDsqlpmisc.m
3,299
utf_8
f36316ddff8099a74241fa1590fc584a
%%***************************************************************************** %% HSDsqlpmisc: %% produce infeasibility certificates if appropriate %% %% Input: X,y,Z are the original variables, not the HSD variables. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004. %%***************************************************************************** function [X,y,Z,resid,reldist,param,msg] = HSDsqlpmisc(blk,At,C,b,X,y,Z,permZ,param) obj = param.obj; relgap = param.relgap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; ZpATynorm = param.ZpATynorm; inftol = param.inftol; m0 = param.m0; indeprows = param.indeprows; termcode = param.termcode; AX = param.AX; normX0 = param.normX0; normZ0 = param.normZ0; printlevel = param.printlevel; %% resid = []; reldist = []; msg = []; Anorm = ops(At,'norm'); xnorm = ops(X,'norm'); ynorm = norm(y); %% if (termcode <= 0) %% %% To detect near-infeasibility when the algorithm provides %% a "better" certificate of infeasibility than of optimality. %% err = max([prim_infeas,dual_infeas,relgap]); % iflag = 0; if (obj(2) > 0) homRd = ZpATynorm/obj(2); if (homRd < 1e-2*sqrt(err*inftol)) % iflag = 1; termcode = 1; param.termcode = 1; end elseif (obj(1) < 0) homrp = norm(AX)/(-obj(1)); if (homrp < 1e-2*sqrt(err*inftol)) % iflag = 1; termcode = 2; param.termcode = 2; end end end if (termcode == 1) rby = 1/(b'*y); y = rby*y; Z = ops(Z,'*',rby); resid = ZpATynorm * rby; reldist = ZpATynorm/(Anorm*ynorm); msg = 'Stop: primal problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end end if (termcode == 2) tCX = blktrace(blk,C,X); X = ops(X,'*',1/(-tCX)); resid = norm(AX) /(-tCX); reldist = norm(AX)/(Anorm*xnorm); msg = 'Stop: dual problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end end if (termcode == 3) maxblowup = max(ops(X,'norm')/normX0,ops(Z,'norm')/normZ0); msg = sprintf('Stop: primal or dual is diverging, %3.1e',maxblowup); if (printlevel); fprintf('\n %s',msg); end end [X,Z] = unperm(blk,permZ,X,Z); if ~isempty(indeprows) ytmp = zeros(m0,1); ytmp(indeprows) = y; y = ytmp; end %%***************************************************************************** %% unperm: undo the permutations applied in validate. %% %% [X,Z,Xiter,Ziter] = unperm(blk,permZ,X,Z,Xiter,Ziter); %% %% undoes the permutation introduced in validate. %% can also be called if Xiter and Ziter have not been set as %% %% [X,Z] = unperm(blk,permZ,X,Z); %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%***************************************************************************** function [X,Z] = unperm(blk,permZ,X,Z) %% for p = 1:size(blk,1) if (strcmp(blk{p,1},'s') && ~isempty(permZ{p})) per = permZ{p}; X{p} = X{p}(per,per); Z{p} = Z{p}(per,per); end end %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDbicgstab.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDbicgstab.m
3,084
utf_8
96ee9f939e0b2527113539aa0b633ffc
%%************************************************************************* %% HSDbicgstab %% %% [xx,resnrm,flag] = HSDbicgstab(A,b,M1,tol,maxit) %% %% iterate on bb - (M1)*AA*x %% %% r = b-A*xtrue; %% %%************************************************************************* function [xx,resnrm,flag] = HSDbicgstab(A,b,M1,tol,maxit,printlevel) N = length(b); if (nargin < 6); printlevel = 1; end if (nargin < 5) || isempty(maxit); maxit = max(20,length(A.mat22)); end; if (nargin < 4) || isempty(tol); tol = 1e-8; end; tolb = min(1e-4,tol*norm(b)); flag = 1; x = zeros(N,1); if isstruct(A); r = b-matvec(A,x); else r = b-mexMatvec(A,x); end; err = norm(r); resnrm(1) = err; minresnrm = err; xx = x; %%if (err < tolb); return; end omega = 1.0; r_tld = r; %% %% %% smtol = 1e-40; for iter = 1:maxit, rho = (r_tld'*r); if (abs(rho) < smtol) flag = 2; if (printlevel); fprintf('*'); end; break; end if (iter > 1) beta = (rho/rho_1)* (alp/omega); p = r + beta*(p - omega*v); else p = r; end p_hat = precond(A,M1,p); if isstruct(A); v = matvec(A,p_hat); else v = mexMatvec(A,p_hat); end; alp = rho / (r_tld'*v); s = r - alp*v; %% s_hat = precond(A,M1,s); if isstruct(A); t = matvec(A,s_hat); else t = mexMatvec(A,s_hat); end; omega = (t'*s) / (t'*t); x = x + alp*p_hat + omega*s_hat; r = s - omega*t; rho_1 = rho; %% %% check convergence %% err = norm(r); resnrm(iter+1) = err; %#ok if (err < minresnrm); xx = x; minresnrm = err; end if (err < tolb) break; end if (err > 10*minresnrm) if (printlevel); fprintf('^'); end break; end if (abs(omega) < smtol) flag = 2; if (printlevel); fprintf('*'); end; break; end end %% %%************************************************************************* %%************************************************************************* %% matvec: matrix-vector multiply. %% matrix = [A.mat11, A.mat12; A.mat12', A.mat22] %%************************************************************************* function Ax = matvec(A,x) m = length(A.mat11); m2 = length(x)-m; if (m2 > 0) x1 = full(x(1:m)); else x1 = full(x); end Ax = mexMatvec(A.mat11,x1); if (m2 > 0) x2 = full(x(m+1:m+m2)); Ax = Ax + mexMatvec(A.mat12,x2); Ax2 = mexMatvec(A.mat12,x1,1) + mexMatvec(A.mat22,x2); Ax = [Ax; Ax2]; end %%************************************************************************* %% precond: %%************************************************************************* function Mx = precond(A,L,x) m = L.matdim; m2 = length(x)-m; if (m2 > 0) x1 = full(x(1:m)); else x1 = full(x); end if (m2 > 0) x2 = x(m+1:m+m2); w = linsysolvefun(L,x1); z = mexMatvec(A.mat12,w,1) -x2; z = L.Mu \ (L.Ml \ (L.Mp*z)); x1 = x1 - mexMatvec(A.mat12,z); end %% Mx = linsysolvefun(L,x1); %% if (m2 > 0) Mx = [Mx; z]; end %%*************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDHKMcorr.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDHKMcorr.m
985
utf_8
1e1983a66956f1d3e4e8e279b1dbe2d0
%%***************************************************************** %% HSDHKMcorr: corrector step for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function [par,dX,dy,dZ,resnrm] = HSDHKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global printlevel global solve_ok %% [rhs,EinvRc] = HSDHKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% solve_ok = 1; %#ok [xx,resnrm,solve_ok] = HSDbicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: iterative solver fails: %3.1f.',solve_ok); end if (par.printlevel>=3); fprintf('%2.0f ',length(resnrm)-1); end %% [par,dX,dy,dZ] = HSDHKMdirfun(blk,At,par,Rd,EinvRc,X,xx); %%*****************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDNTpred.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDNTpred.m
2,034
utf_8
e194daf53d375b24154b1caf94b7646d
%%********************************************************************** %% HSDNTpred: Compute (dX,dy,dZ) for NT direction. %% %% compute SVD of Xchol*Zchol via eigenvalue decompostion of %% Zchol * X * Zchol' = V * diag(sv2) * V'. %% compute W satisfying W*Z*W = X. %% W = G'*G, where G = diag(sqrt(sv)) * (invZchol*V)' %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function [par,dX,dy,dZ,coeff,L,hRd] = ... HSDNTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol) global schurfun schurfun_par %% %% compute NT scaling matrix %% [par.W,par.G,par.sv,par.gamx,par.gamz,par.dd,par.ee,par.ff] = ... NTscaling(blk,X,Z,Zchol,invZchol); %% %% compute schur matrix %% m = par.m; schur = sparse(m+2,m+2); UU = []; EE = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.ee); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,par.W); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Wp = par.W{p}(par.permZ{p},par.permZ{p}); else Wp = par.W{p}; end schurtmp = feval(schurfun{p},Wp,Wp,schurfun_par(p,:)); schur = schur + schurtmp; end end end %% %% compute rhs %% [rhs,EinvRc,hRd] = HSDNTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% par.addschur = par.kap/par.tau; schur(m+1,m+1) = schur(m+1,m+1) + par.kap/par.tau; schur(m+2,m+2) = schur(m+2,m+2) + par.addschur; [xx,coeff,L] = HSDlinsysolve(par,schur,UU,EE,par.Umat,rhs); %% %% compute (dX,dZ) %% [par,dX,dy,dZ] = HSDNTdirfun(blk,At,par,Rd,EinvRc,xx); %%**********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HSDsqlpCpert.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/HSDSolver/HSDsqlpCpert.m
2,263
utf_8
326ec0065ebb155fab5ee8b4670ec0db
%%***************************************************************************** %% HSDsqlpCpert: perturb C. %% %%***************************************************************************** function [At,Cpert] = HSDsqlpCpert(blk,At,par,C,X,Cpert,runhist) iter = length(runhist.pinfeas); prim_infeas = runhist.pinfeas(iter); dual_infeas = runhist.dinfeas(iter); relgap = runhist.relgap(iter); infeas = runhist.infeas(iter); theta = runhist.theta(iter); %% Cpertold = Cpert; err = max(relgap,infeas); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); tmp = max(1,norm(C{p},'fro'))/sqrt(n); if (err < 1e-6) if (norm(X{p},'fro') < 1e2); const=0.2; else const=0.3; end Cpert(p) = max(const*Cpert(p),1e-10*tmp); elseif (err < 1e-2) if (norm(X{p},'fro') < 1e2); const=0.4; else const=0.5; end Cpert(p) = max(const*Cpert(p),1e-8*tmp); else Cpert(p) = max(0.9*Cpert(p),1e-6*tmp); end Cpert = min(Cpert,Cpertold); if (prim_infeas < min([0.1*dual_infeas, 1e-7*runhist.pinfeas(1)])) ... && (iter > 1 && dual_infeas > 0.8*runhist.dinfeas(iter-1) && relgap < 1e-4) Cpert(p) = 0.5*Cpert(p); elseif (dual_infeas < min([0.1*prim_infeas, 1e-7*runhist.dinfeas(1)])) ... && (iter > 1 && prim_infeas > 0.8*runhist.pinfeas(iter-1) && relgap < 1e-4) Cpert(p) = 0.5*Cpert(p); elseif (max(relgap,1e-2*infeas) < 1e-6 && relgap < 0.1*infeas) Cpert(p) = 0.5*Cpert(p); end if (prim_infeas < min([1e-4*dual_infeas,1e-7]) && theta < 1e-6) ... || (prim_infeas < 1e-4 && theta < 1e-10) Cpert(p) = 0.1*Cpert(p); elseif (dual_infeas < min([1e-4*prim_infeas,1e-7]) && theta < 1e-6) ... || (dual_infeas < 1e-4 && theta < 1e-10) Cpert(p) = 0.1*Cpert(p); elseif (iter > 1 && theta > 0.9*runhist.theta(iter-1) && infeas < 1e-3) Cpert(p) = 0.1*Cpert(p); end if strcmp(pblk{1},'s') Cnew = C{p} + Cpert(p)*speye(n); At{p}(:,par.invpermA(p,end-1)) = -svec(pblk,Cnew,1); else Cnew = C{p} + Cpert(p)*ones(n,1); At{p}(:,par.invpermA(p,end-1)) = -Cnew; end end %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
cheby0.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Examples/cheby0.m
2,576
utf_8
a31e95ee5e80694cd1c3f2ceb594d369
%%********************************************************** %% cheby0: %% %% minimize || p(d) ||_infty %% p = polynomial of degree <= m such that p(0) = 1. %% %% Here d = n-vector %%---------------------------------------------------------- %% [blk,Avec,C,b,X0,y0,Z0,objval,p] = cheby0(d,m,solve); %% %% d = a vector. %% m = degree of polynomial. %% feas = 1 if want feasible starting point %% = 0 if otherwise. %% solve = 0 if just want initialization %% = 1 if want to solve the problem %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%********************************************************** function [blk,Avec,C,b,X0,y0,Z0,objval,p] = cheby0(d,m,solve); if nargin <= 2; solve = 0; end; if (size(d,1) < size(d,2)); d = d.'; end; cmp = 1-isreal(d); tstart=cputime; n = length(d); e = ones(n,1); V(1:n,1) = e/norm(e); R(1,1) = 1/norm(e); for i =1:m v = d.*V(:,i); for j = 1:i %% Arnoldi iterations: H(j,i) = (V(:,j))'*v; %% constructing upper-Hessenberg matrix. v = v - H(j,i)*V(:,j); %% orthonormaliztion of Krylov basis. end; H(i+1,i) = norm(v); V(:,i+1) = v/H(i+1,i); R(1:i+1,i+1) = (1/H(i+1,i))*([0; R(1:i,i)] - [R(1:i,1:i)*H(1:i,i); 0]); end if (cmp) blk{1,1} = 'q'; blk{1,2} = 3*ones(1,n); C = zeros(3*n,1); C(2:3:3*n) = ones(n,1); b = [zeros(2*m,1); -1]; Atmp = []; II = [0:3:3*n-3]'; ee = ones(n,1); for k=1:m dVk = d.*V(:,k); Atmp = [Atmp; [2+II, k*ee, real(dVk)]; [3+II, k*ee, imag(dVk)]]; Atmp = [Atmp; [2+II, (m+k)*ee, -imag(dVk)]; [3+II, (m+k)*ee, real(dVk)]]; end Atmp = [Atmp; [1+II, (2*m+1)*ee, -ones(n,1)]]; else blk{1,1} = 'l'; blk{1,2} = 2*ones(1,n); b = [zeros(m,1); -1]; C = [ones(n,1); -ones(n,1)]; Atmp = []; II = [1:n]'; ee = ones(n,1); for k=1:m dVk = d.*V(:,k); Atmp = [Atmp; [II, k*ee, dVk]; [n+II, k*ee, -dVk]]; end Atmp = [Atmp; [II, (m+1)*ee, -ee]; [n+II, (m+1)*ee, -ee]]; end Avec = spconvert(Atmp); [X0,y0,Z0] = infeaspt(blk,Avec,C,b); %% if (solve) [obj,X,y,Z] = sqlp(blk,Avec,C,b,[],X0,y0,Z0); if (cmp) y = y(1:m) + sqrt(-1)*y(m+1:2*m); else y = y(1:m); end x1 = R(1:m,1:m)*y(1:m); p = [-x1(m:-1:1); 1]; objval = -mean(obj); else objval = []; p = []; end %%**********************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
randmat.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/randmat.m
782
utf_8
44e2c609bf458ffd5a37d9f816a0ea1b
%%****************************************************** %% randmat: generate an mxn matrix using matlab's %% rand or randn functions using state = k. %% %%****************************************************** function v = randmat(m,n,k,randtype) try s = rng; rng(k); if strcmp(randtype,'n') v = randn(m,n); elseif strcmp(randtype,'u') v = rand(m,n); end rng(s); catch if strcmp(randtype,'n') s = randn('state'); %#ok randn('state',k); %#ok v = randn(m,n); randn('state',s); %#ok elseif strcmp(randtype,'u') s = rand('state'); %#ok rand('state',k); %#ok v = rand(m,n); rand('state',s); %#ok end end %%******************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
skron.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/skron.m
1,389
utf_8
3aba6bed9dc50b45f766b4a8620c4ac3
%%*********************************************************************** %% skron: Find the matrix presentation of %% symmetric kronecker product skron(A,B), where %% A,B are symmetric. %% %% Important: A,B are assumed to be symmetric. %% %% K = skron(blk,A,B); %% %% blk: a cell array specifying the block diagonal structure of A,B. %% %% (ij)-column of K = 0.5*svec(AUB + BUA), where %% U = xij*(ei*ej' + ej*ei') %% xij = 1/2 if i=j %% = 1/sqrt(2) otherwise. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function K = skron(blk,A,B) if iscell(A) && ~ iscell(B) error('skron: A,B must be both matrices or both cell arrays') end if iscell(A) K = cell(size(blk,1),1); for p = 1:size(blk,1) if (norm(A{p}-B{p},'fro') < 1e-13) sym = 1; else sym = 0; end if strcmp(blk{p,1},'s') K{p} = mexskron(blk(p,:),A{p},B{p},sym); end end else if (norm(A-B,'fro') < 1e-13) sym = 1; else sym = 0; end if strcmp(blk{1,1},'s') K = mexskron(blk,A,B,sym); end end %%***********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
NTcorr.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/NTcorr.m
1,315
utf_8
458c52ec6bf00d3507df137889a53c7e
%%************************************************************************ %% NTcorr: corrector step for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************ function [dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global matfct_options solve_ok printlevel = par.printlevel; %% [rhs,EinvRc] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% if strcmp(matfct_options,'chol') || strcmp(matfct_options,'spchol') ... || strcmp(matfct_options,'ldl') || strcmp(matfct_options,'spldl') [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: symqmr fails: %3.1f.',solve_ok); end else [xx,resnrm,solve_ok] = mybicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: bicgstab fails: %3.1f.',solve_ok); end end if (printlevel>=3); fprintf('%2.0d ',length(resnrm)-1); end %% [dX,dy,dZ] = NTdirfun(blk,At,par,Rd,EinvRc,xx,m); %%************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HKMcorr.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/HKMcorr.m
1,313
utf_8
ff69a87fe927bf7f964fd55cbf7ec718
%%***************************************************************** %% HKMcorr: corrector step for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%***************************************************************** function [dX,dy,dZ,resnrm,EinvRc] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z) global matfct_options solve_ok printlevel = par.printlevel; %% [rhs,EinvRc] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ); m = length(rp); ncolU = size(coeff.mat12,2); rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; %% if strcmp(matfct_options,'chol') || strcmp(matfct_options,'spchol') ... || strcmp(matfct_options,'ldl') || strcmp(matfct_options,'spldl') [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: symqmr fails: %3.1f.',solve_ok); end else [xx,resnrm,solve_ok] = mybicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: bicgstab fails: %3.1f.',solve_ok); end end if (printlevel>=3); fprintf('%2.0d ',length(resnrm)-1); end %% [dX,dy,dZ] = HKMdirfun(blk,At,par,Rd,EinvRc,X,xx,m); %%*****************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
steplength.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/steplength.m
5,590
utf_8
2b52f7d5b9712cf17885f9ca3eaeb666
%%*************************************************************************** %% steplength: compute xstep such that X + xstep*dX >= 0. %% %% [xstep] = steplength(blk,X,dX,Xchol,invXchol); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************************** function [xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol) %% for p = 1:size(blk,1) pblk = blk(p,:); numblk = length(pblk{2}); pblksize = sum(pblk{2}); if nnz(isnan(dX{p})) || nnz(isinf(dX{p})) xstep = 0; break; end if strcmp(pblk{1},'s') if (max(pblk{2}) >= 200) use_lanczos = 1; else use_lanczos = 0; end if (use_lanczos) tol = 1e-3; maxit = max(min(pblksize,30),round(sqrt(pblksize))); [lam,delta] = lanczosfun(Xchol{p},-dX{p},maxit,tol); %% %% Note: lam <= actual largest eigenvalue <= lam + delta. %% d = lam+delta; else if isempty(invXchol{p}); invXchol{p} = inv(Xchol{p}); end tmp = Prod2(pblk,dX{p},invXchol{p},0); M = Prod2(pblk,invXchol{p}',tmp,1); d = blkeig(pblk,-M); end tmp = max(d) + 1e-15*max(abs(d)); if (tmp > 0); xstep(p) = 1/max(tmp); %#ok else xstep(p) = 1e12; %#ok end elseif strcmp(pblk{1},'q') aa = qops(pblk,dX{p},dX{p},2); bb = qops(pblk,dX{p},X{p},2); cc = qops(pblk,X{p},X{p},2); dd = bb.*bb - aa.*cc; tmp = min(aa,bb); idx = dd > 0 & tmp < 0; steptmp = 1e12*ones(numblk,1); if any(idx) steptmp(idx) = -(bb(idx)+sqrt(dd(idx)))./aa(idx); end idx = abs(aa) < eps & bb < 0; if any(idx) steptmp(idx) = -cc(idx)./(2*bb(idx)); end %% %% also need first component to be non-negative %% ss = 1 + [0, cumsum(pblk{2})]; ss = ss(1:length(pblk{2})); dX0 = dX{p}(ss); X0 = X{p}(ss); idx = dX0 < 0 & X0 > 0; if any(idx) steptmp(idx) = min(steptmp(idx),-X0(idx)./dX0(idx)); end xstep(p) = min(steptmp); %#ok elseif strcmp(pblk{1},'l') idx = dX{p} < 0; if any(idx) xstep(p) = min(-X{p}(idx)./dX{p}(idx)); %#ok else xstep(p) = 1e12; %#ok end elseif strcmp(pblk{1},'u') xstep(p) = 1e12; %#ok end end xstep = min(xstep); %%*************************************************************************** %%*************************************************************************** %% lanczos: find the largest eigenvalue of %% invXchol'*dX*invXchol via the lanczos iteration. %% %% [lam,delta] = lanczosfun(Xchol,dX,maxit,tol,v) %% %% lam: an estimate of the largest eigenvalue. %% lam2: an estimate of the second largest eigenvalue. %% res: residual norm of the largest eigen-pair. %% res2: residual norm of the second largest eigen-pair. %%*************************************************************************** function [lam,delta,res] = lanczosfun(Xchol,dX,maxit,tol,v) if (norm(dX,'fro') < 1e-13) lam = 0; delta = 0; res = 0; return; end n = length(dX); if (nargin < 5); v = randmat(n,1,0,'n'); end if (nargin < 4); tol = 1e-3; end if (nargin < 3); maxit = 30; end V = zeros(n,maxit+1); H = zeros(maxit+1,maxit); v = v/norm(v); V(:,1) = v; if issparse(Xchol); Xcholtransp = Xchol'; end %% %% lanczos iteration. %% for k = 1:maxit if issparse(Xchol) w = dX*mextriangsp(Xcholtransp,v,1); w = mextriangsp(Xchol,w,2); else w = dX*mextriang(Xchol,v,1); w = mextriang(Xchol,w,2); end wold = w; if (k > 1); w = w - H(k,k-1)*V(:,k-1); end; alp = w'*V(:,k); w = w - alp*V(:,k); H(k,k) = alp; %% %% one step of iterative refinement if necessary. %% if (norm(w) <= 0.8*norm(wold)); s = (w'*V(:,1:k))'; w = w - V(:,1:k)*s; H(1:k,k) = H(1:k,k) + s; end; nrm = norm(w); v = w/nrm; V(:,k+1) = v; H(k+1,k) = nrm; H(k,k+1) = nrm; %% %% compute ritz pairs and test for convergence %% if (rem(k,5) == 0) || (k == maxit); Hk = H(1:k,1:k); Hk = 0.5*(Hk+Hk'); [Y,D] = eig(Hk); eigH = real(diag(D)); [dummy,idx] = sort(eigH); %#ok res_est = abs(H(k+1,k)*Y(k,idx(k))); if (res_est <= 0.1*tol) || (k == maxit); lam = eigH(idx(k)); lam2 = eigH(idx(k-1)); z = V(:,1:k)*Y(:,idx(k)); z2 = V(:,1:k)*Y(:,idx(k-1)); if issparse(Xchol) tmp = dX*mextriangsp(Xcholtransp,z,1); res = norm(mextriangsp(Xchol,tmp,2) -lam*z); tmp = dX*mextriangsp(Xcholtransp,z2,1); res2 = norm(mextriangsp(Xchol,tmp,2) -lam*z2); else tmp = dX*mextriang(Xchol,z,1); res = norm(mextriang(Xchol,tmp,2) -lam*z); tmp = dX*mextriang(Xchol,z2,1); res2 = norm(mextriang(Xchol,tmp,2) -lam*z2); end tmp = lam-lam2 -res2; if (tmp > 0); beta = tmp; else beta = eps; end; delta = min(res,res^2/beta); if (delta <= tol); break; end; end end end %%***************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
SDPT3data_SEDUMIdata.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/SDPT3data_SEDUMIdata.m
3,843
utf_8
26106829dfa4c0fbb1ca8c4aa9839fa8
%%********************************************************** %% SDPT3data_SEDUMIdata: convert SQLP data in SDPT3 format to %% SeDuMi format %% %% [At,b,c,K] = SDPT3data_SEDUMIdata(blk,AAt,CC,bb); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function [At,b,c,K] = SDPT3data_SEDUMIdata(blk,AAt,CC,bb) c = []; At = []; b = bb; mm = length(bb); %% if (~iscell(CC)) Ctmp = CC; clear CC; CC{1} = Ctmp; end %% %% extract unrestricted blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.f = []; end if strcmp(pblk{1},'u') K.f = [K.f, pblk{2}]; At = [At; AAt{p}]; %#ok c = [c; CC{p}]; %#ok end end K.f = sum(K.f); %% %% extract linear blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.l = []; end if strcmp(pblk{1},'l') K.l = [K.l, pblk{2}]; At = [At; AAt{p,1}]; %#ok c = [c; CC{p,1}]; %#ok end end K.l = sum(K.l); %% %% extract second order cone blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.q = []; end if strcmp(pblk{1},'q') K.q = [K.q, pblk{2}]; At = [At; AAt{p,1}]; %#ok c = [c; CC{p,1}]; %#ok end end %% %% extract rotated cone blk %% for p = 1:size(blk,1) pblk = blk(p,:); if (p==1); K.r = []; end if strcmp(pblk{1},'r') K.r = [K.r, pblk{2}]; At = [At; AAt{p,1}]; %#ok c = [c; CC{p,1}]; %#ok end end %% %% extract semidefinite cone blk %% for p = 1:size(blk,1) if (p==1); K.s = []; end pblk = blk(p,:); if strcmp(pblk{1},'s') K.s = [K.s, pblk{2}]; ss = [0,cumsum(pblk{2})]; idxstart = [0,cumsum(pblk{2}.*pblk{2})]; numblk = length(pblk{2}); nnzA = nnz(AAt{p,1}); II = zeros(2*nnzA,1); JJ = zeros(2*nnzA,1); VV = zeros(2*nnzA,1); m2 = size(AAt{p,1},2); if (length(pblk) > 2) rr = [0, cumsum(pblk{3})]; dd = AAt{p,3}; idxD = [0; find(diff(dd(:,1))); size(dd,1)]; end count = 0; for k = 1:mm if (k<= m2); Ak = smat(pblk,AAt{p,1}(:,k),1); else idx = rr(k)+1 : rr(k+1); Vk = AAt{p,2}(:,idx); len = pblk{3}(k); if (size(dd,2) == 4) idx2 = idxD(k)+1:idxD(k+1); Dk = spconvert([dd(idx2,2:4); len,len,0]); elseif (size(dd,2) == 1); Dk = spdiags(dd(idx),0,len,len); end Ak = Vk*Dk*Vk'; end for tt = 1:numblk if (numblk > 1) idx = ss(tt)+1: ss(tt+1); Aksub = full(Ak(idx,idx)); else Aksub = Ak; end tmp = Aksub(:); nzidx = find(tmp); len = length(nzidx); II(count+1:count+len,1) = idxstart(tt)+nzidx; JJ(count+1:count+len,1) = k*ones(length(nzidx),1); VV(count+1:count+len,1) = tmp(nzidx); count = count + len; end end II = II(1:count); JJ = JJ(1:count); VV = VV(1:count); At = [At; spconvert([II,JJ,VV; sum(pblk{2}.*pblk{2}), mm, 0])]; %#ok Cp = CC{p}; ctmp = []; for tt = 1:numblk if (numblk > 1) idx = ss(tt)+1: ss(tt+1); Csub = full(Cp(idx,idx)); else Csub = Cp; end ctmp = [ctmp; Csub(:)]; %#ok end c = [c; ctmp]; %#ok end end %%**********************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
schurmat_sblk.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/schurmat_sblk.m
4,549
utf_8
f992891144a934ab4edffde2a692e435
%%******************************************************************* %% schurmat_sblk: compute Schur complement matrix corresponding to %% SDP blocks. %% %% symm = 0, HKM %% = 1, NT %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function schur = schurmat_sblk(blk,At,par,schur,p,X,Y) global nnzschur nzlistschur iter = par.iter; smallblkdim = par.smallblkdim; if isempty(smallblkdim); smallblkdim = 50; end if (nargin == 7); symm = 0; else symm = 1; Y = X; end; m = length(schur); pblk = blk(p,:); if (iter == 1) nnzschur(size(blk,1),1) = m*m; nzlistschur = cell(size(blk,1),1); end %% if (max(pblk{2}) > smallblkdim) || (length(pblk{2}) <= 10) %% %% compute schur for matrices that are very sparse. %% m1 = size(At{p,1},2); if issparse(schur); schur = full(schur); end; J = min(m1, find(par.nzlistA{p,1} < inf,1,'last')-1); if (J > 0) if issparse(X{p}) && ~issparse(Y{p}); X{p} = full(X{p}); end if ~issparse(X{p}) && issparse(Y{p}); Y{p} = full(Y{p}); end if (iter <= 3) [nnzschur(p),nzlisttmp] = mexschur(pblk,At{p,1},par.nzlistA{p,1},... par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,schur); if (nnzschur(p) == mexnnz(nzlisttmp)) nzlistschur{p} = nzlisttmp; else nzlistschur{p} = []; end else if isempty(nzlistschur{p}) mexschur(pblk,At{p,1},par.nzlistA{p,1},... par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,schur); else mexschur(pblk,At{p,1},par.nzlistA{p,1},... par.nzlistA{p,2},par.permA(p,:),Y{p},X{p},J,symm,schur,nzlistschur{p}); end end end %% %% compute schur for matrices that are not so sparse or dense. %% if (m1 < m) %% for low rank constraints ss = [0, cumsum(pblk{3})]; len = sum(pblk{3}); dd = At{p,3}; DD = spconvert([dd(:,2:4); len,len,0]); XVD = X{p}*At{p,2}*DD; YVD = Y{p}*At{p,2}*DD; end L = find(par.nzlistAsum{p,1} < inf,1,'last') -1; if (J < L) len = par.nzlistAsum{p,1}(J+1); list = par.nzlistAsum{p,2}(1:len,:); end if (m1 > 0) for k = J+1:m if (k<=m1) isspAk = par.isspA(p,k); Ak = mexsmat(blk,At,isspAk,p,k); if (k <= L) idx1 = par.nzlistAsum{p,1}(k)+1; idx2 = par.nzlistAsum{p,1}(k+1); list = [list; par.nzlistAsum{p,2}(idx1:idx2,:)]; %#ok list = sortrows(list,[2 1]); tmp = Prod3(pblk,X{p},Ak,Y{p},symm,list); else tmp = Prod3(pblk,X{p},Ak,Y{p},symm); end else %%--- for low rank constraints idx = ss(k-m1)+1 :ss(k-m1+1); tmp = XVD(:,idx)* (Y{p}*At{p,2}(:,idx))'; end if (~symm) tmp = 0.5*(mexsvec(pblk,tmp) + mexsvec(pblk,tmp')); else tmp = mexsvec(pblk,tmp); end permk = par.permA(p,k); idx = par.permA(p,1:min(k,m1)); tmp2 = schur(idx,permk) + mexinprod(blk,At,tmp,min(k,m1),p); schur(idx,permk) = tmp2; schur(permk,idx) = tmp2'; end end if (m1 < m) %% for low rank constraints m2 = m - m1; XVtmp = XVD'*At{p,2}; YVtmp = At{p,2}'*YVD; for k = 1:m2 idx0 = ss(k)+1 : ss(k+1); tmp = XVtmp(:,idx0) .* YVtmp(:,idx0); tmp = tmp*ones(length(idx0),1); tmp3 = schur(m1+1:m1+m2,m1+k) + mexqops(pblk{3},tmp,ones(length(tmp),1),1); schur(m1+1:m1+m2,m1+k) = tmp3; end end else %%--- for SDP block where each sub-block is small dimensional if issparse(X{p}) && ~issparse(Y{p}); Y{p} = sparse(Y{p}); end if ~issparse(X{p}) && issparse(Y{p}); X{p} = sparse(X{p}); end tmp = mexskron(pblk,X{p},Y{p}); schurtmp = At{p,1}'*tmp*At{p,1}; %% schurtmp = 0.5*(schurtmp + schurtmp'); if (norm(par.permA(p,:)-(1:m)) > 0) Perm = spconvert([(1:m)', par.permA(p,:)', ones(m,1)]); schur = schur + Perm'*schurtmp*Perm; else schur = schur + schurtmp; end end %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
blktrace.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/blktrace.m
2,084
utf_8
6a5c3d9ff74073a8e864c246727eaa86
%%********************************************************************** %% blktrace: compute <X1,Z1> + ... + <Xp,Zp> %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function trXZ = blktrace(blk,X,Z,parbarrier) if (nargin == 3) trXZ = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') if (length(pblk{2}) == 1) trXZ = trXZ + sum(sum(X{p}.*Z{p})); else xx = mexsvec(pblk,X{p},0); zz = mexsvec(pblk,Z{p}); trXZ = trXZ + xx'*zz; end else trXZ = trXZ + sum(X{p}.*Z{p}); end end elseif (nargin == 4) trXZ = 0; for p = 1:size(blk,1) pblk = blk(p,:); if (norm(parbarrier{p}) == 0) if strcmp(pblk{1},'s') if (length(pblk{2}) == 1) trXZ = trXZ + sum(sum(X{p}.*Z{p})); else xx = mexsvec(pblk,X{p},0); zz = mexsvec(pblk,Z{p}); trXZ = trXZ + xx'*zz; end else trXZ = trXZ + sum(X{p}.*Z{p}); end else idx = find(parbarrier{p} == 0); if ~isempty(idx) if strcmp(pblk{1},'s') sumXZ = sum(X{p}.*Z{p}); ss = [0,cumsum(pblk{2})]; for k = 1:length(idx) idxtmp = ss(idx(k))+1:ss(idx(k)+1); trXZ = trXZ + sum(sumXZ(idxtmp)); end elseif strcmp(pblk{1},'q') tmp = qops(pblk,X{p},Z{p},1); trXZ = trXZ + sum(tmp(idx)); elseif strcmp(pblk{1},'l') trXZ = trXZ + sum(X{p}(idx).*Z{p}(idx)); end end end end end %%**********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
sqlpu2lblk.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlpu2lblk.m
3,099
utf_8
1a67e45c349d19614e890521aed11db5
%%*************************************************************************** %% sqlpu2lblk: decide whether to convert ublk to lblk %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 10 Jul 2007 %%*************************************************************************** function [blk,At,C,X,Z,ublk2lblk,ublkidx] = sqlpu2lblk(blk,At,C,X,Z,par,convertlen) %% ublk2lblk = zeros(size(blk,1),1); ublkidx = cell(size(blk,1),2); for p = 1:size(blk,1) pblk = blk(p,:); n0 = sum(pblk{2}); if strcmp(pblk{1},'u') && (pblk{2} > 0) ublk2lblk(p) = 1; if (pblk{2} > convertlen); return; end AAt = At{p}*At{p}'; mexschurfun(AAt,1e-15*max(1,diag(AAt))); % indef = 0; [L.R,indef,L.perm] = chol(AAt,'vector'); L.d = full(diag(L.R)).^2; if (~indef) && (max(L.d)/min(L.d) < 1e6) ublk2lblk(p) = 0; msg = '*** no conversion for ublk'; if (par.printlevel); fprintf(' %s',msg); end else dd(L.perm,1) = abs(L.d); %#ok idxN = find(dd < 1e-11*mean(L.d)); idxB = setdiff((1:n0)',idxN); ddB = dd(idxB); ddN = dd(idxN); if ~isempty(ddN) && ~isempty(ddB) && (min(ddB)/max(ddN) < 10) idxN = []; idxB = (1:n0)'; end ublkidx{p,1} = n0; ublkidx{p,2} = idxN; if ~isempty(idxN) restol = 1e-8; [W,resnorm] = findcoeff(At{p}',idxB,idxN); resnorm(2) = norm(C{p}(idxN) - W'*C{p}(idxB)); if (max(resnorm) < restol) % feasible = 1; blk{p,2} = length(idxB); Atmp = At{p}'; At{p} = Atmp(:,idxB)'; C{p} = C{p}(idxB); X{p} = X{p}(idxB); Z{p} = Z{p}(idxB); msg = 'removed dependent columns in constraint matrix for ublk'; if (par.printlevel); fprintf('\n %s\n',msg); end end end end end end %%*************************************************************************** %%*************************************************************************** %% findcoeff: %% %% [W,resnorm] = findcoeff(A,idXB,idXN); %% %% idXB = indices of independent columns of A. %% idxN = indices of dependent columns of A. %% %% AB = A(:,idxB); AN = A(:,idxN) = AB*W %% %% SDPT3: version 3.0 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last modified: 2 Feb 01 %%*************************************************************************** function [W,resnorm] = findcoeff(A,idxB,idxN) AB = A(:,idxB); AN = A(:,idxN); n = size(AB,2); %% %%----------------------------------------- %% find W so that AN = AB*W %%----------------------------------------- %% [L,U,P,Q] = lu(sparse(AB)); rhs = P*AN; Lhat = L(1:n,:); W = Q*( U \ (Lhat \ rhs(1:n,:))); resnorm = norm(AN-AB*W,'fro')/max(1,norm(AN,'fro')); %%***************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
Prod3.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/Prod3.m
1,677
utf_8
2ee9f0d732e5ea1f326bfcf275b0da3c
%%************************************************************ %% Prod3: compute the entries of Q = A*B*C specified in %% nzlistQ. %% %% Q = Prod3(blk,A,B,C,sym,nzlistQ) %% Important: (a) A is assumed to be symmetric if nzlistQ %% has 2 columns (since mexProd2nz computes A'*B). %% (b) The 2nd column of nzlistQ must be sorted in %% ascending order. %% %% (optional) sym = 1, if Q is symmetric. %% = 0, otherwise. %% (optional) nzlistQ = list of non-zero elements of Q to be %% computed. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************ function Q = Prod3(blk,A,B,C,sym,nzlistQ) if (nargin<5); sym = 0; end; checkcell = [iscell(A) iscell(B) iscell(C)]; if (nargin==6) checkcell(1,4) = iscell(nzlistQ); else nzlistQ = inf; end %% if any(checkcell-1) if (size(blk,1) > 1) error('Prod3: blk and A,B,C are not compatible'); end if strcmp(blk{1},'s') [len,len2] = size(nzlistQ); if (len == 0); nzlistQ = inf; len2 = 1; end; if (len2 == 1) && (nzlistQ == inf) tmp = Prod2(blk,A,B,0); Q = Prod2(blk,tmp,C,sym); else tmp = Prod2(blk,B,C,0); Q = mexProd2nz(blk,A,tmp,nzlistQ); if sym; Q = 0.5*(Q+Q'); end; end elseif strcmp(blk{1},'q') || strcmp(blk{1},'l') || strcmp(blk{1},'u') Q = A.*B.*C; end else error('Prod3: A,B,C,nzlistQ must all be matrices'); end %%************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
sqlptermcode.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlptermcode.m
1,230
utf_8
40b494719c3c614b6196dd9846778c4c
%%************************************************************************* %% sqlptermcode.m: explains the termination code in sqlp.m %% %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function sqlptermcode fprintf('\n 3: norm(X) or norm(Z) diverging'); fprintf('\n 2: dual problem is suspected to be infeasible') fprintf('\n 1: primal problem is suspected to be infeasible') fprintf('\n 0: max(relative gap,infeasibility) < gaptol'); fprintf('\n -1: relative gap < infeasibility'); fprintf('\n -2: lack of progress in predictor or corrector'); fprintf('\n -3: X or Z not positive definite'); fprintf('\n -4: difficulty in computing predictor or corrector direction'); fprintf('\n -5: progress in relative gap or infeasibility is bad'); fprintf('\n -6: maximum number of iterations reached'); fprintf('\n -7: primal infeasibility has deteriorated too much'); fprintf('\n -8: progress in relative gap has deteriorated'); fprintf('\n -9: lack of progress in infeasibility'); fprintf('\n') %%*************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
AXfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/AXfun.m
1,869
utf_8
e816cba65d629a72167375f9a7697b2f
%%************************************************************************* %% AXfun: compute AX(k) = <Ak,X>, k = 1:m %% %% AX = AXfun(blk,At,permA,X); %% %% Note: permA may be set to [] if no permutation is neccessary. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function AX = AXfun(blk,At,permA,X) if isempty(permA); ismtpermA = 1; else ismtpermA = 0; end for p = 1:size(blk,1); pblk = blk(p,:); if strcmp(pblk{1},'s') m1 = size(At{p,1},2); if (p==1) if (length(pblk) > 2); m2 = length(pblk{3}); else m2 = 0; end m = m1 + m2; AX = zeros(m,1); tmp = zeros(m,1); end if (~isempty(At{p,1})) if (ismtpermA) tmp = (svec(pblk,X{p})'*At{p,1})'; %%tmp = mexinprod(blk,At,svec(pblk,X{p}),m1,p); else tmp(permA(p,1:m1),1) = (svec(pblk,X{p})'*At{p,1})'; %%tmp(permA(p,1:m1),1) = mexinprod(blk,At,svec(pblk,X{p}),m1,p); end end if (length(pblk) > 2) %% for low rank constraints m2 = length(pblk{3}); dd = At{p,3}; len = sum(pblk{3}); DD = spconvert([dd(:,2:4); len,len,0]); XVD = X{p}*At{p,2}*DD; if (length(X{p}) > 1) tmp2 = sum(At{p,2}.*XVD)'; else tmp2 = (At{p,2}.*XVD)'; end tmp(m1+1:m1+m2) = mexqops(pblk{3},tmp2,ones(length(tmp2),1),1); end AX = AX + tmp; else if (p==1); m = size(At{p,1},2); AX = zeros(m,1); tmp = zeros(m,1); end AX = AX + (X{p}'*At{p,1})'; end end %%*************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
NTpred.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/NTpred.m
1,963
utf_8
3a2374e8ffa4806b637e50e551b9c17c
%%********************************************************************** %% NTpred: Compute (dX,dy,dZ) for NT direction. %% %% compute SVD of Xchol*Zchol via eigenvalue decompostion of %% Zchol * X * Zchol' = V * diag(sv2) * V'. %% compute W satisfying W*Z*W = X. %% W = G'*G, where G = diag(sqrt(sv)) * (invZchol*V)' %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function [par,dX,dy,dZ,coeff,L,hRd] = ... NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol) global schurfun schurfun_par %% %% compute NT scaling matrix %% [par.W,par.G,par.sv,par.gamx,par.gamz,par.dd,par.ee,par.ff] = ... NTscaling(blk,X,Z,Zchol,invZchol); %% %% compute schur matrix %% m = length(rp); schur = sparse(m,m); UU = []; EE = []; Afree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.ee); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,par.W); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Wp = par.W{p}(par.permZ{p},par.permZ{p}); else Wp = par.W{p}; end schurtmp = feval(schurfun{p},Wp,Wp,schurfun_par(p,:)); schur = schur + schurtmp; end elseif strcmp(pblk{1},'u') Afree = [Afree, At{p}']; %#ok end end %% %% compute rhs %% [rhs,EinvRc,hRd] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% [xx,coeff,L] = linsysolve(par,schur,UU,Afree,EE,rhs); %% %% compute (dX,dZ) %% [dX,dy,dZ] = NTdirfun(blk,At,par,Rd,EinvRc,xx,m); %%**********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
sqlp.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlp.m
11,506
utf_8
d4acdbc7a5a1c0fd270f5d3de302c545
%%***************************************************************************** %% sqlp: solve an semidefinite-quadratic-linear program %% by infeasible path-following method. %% %% [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %% %% Input: blk: a cell array describing the block diagonal structure of SQL data. %% At: a cell array with At{p} = [svec(Ap1) ... svec(Apm)] %% b,C: data for the SQL instance. %% (X0,y0,Z0): an initial iterate (if it is not given, the default is used). %% OPTIONS: a structure that specifies parameters required in sqlp.m, %% (if it is not given, the default in sqlparameters.m is used). %% %% Output: obj = [<C,X> <b,y>]. %% (X,y,Z): an approximately optimal solution or a primal or dual %% infeasibility certificate. %% info.termcode = termination-code %% info.iter = number of iterations %% info.obj = [primal-obj, dual-obj] %% info.cputime = total-time %% info.gap = gap %% info.pinfeas = primal_infeas %% info.dinfeas = dual_infeas %% runhist.pobj = history of primal objective value. %% runhist.dobj = history of dual objective value. %% runhist.gap = history of <X,Z>. %% runhist.pinfeas = history of primal infeasibility. %% runhist.dinfeas = history of dual infeasibility. %% runhist.cputime = history of cputime spent. %%---------------------------------------------------------------------------- %% The OPTIONS structure specifies the required parameters: %% vers gam predcorr expon gaptol inftol steptol %% maxit printlevel scale_data ... %% (all have default values set in sqlparameters.m). %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0) if (nargin < 5); OPTIONS = []; end isemptyAtb = 0; if isempty(At) && isempty(b); %% Add redundant constraint: <-I,X> <= 0 b = 0; At = ops(ops(blk,'identity'),'*',-1); numblk = size(blk,1); blk{numblk+1,1} = 'l'; blk{numblk+1,2} = 1; At{numblk+1,1} = 1; C{numblk+1,1} = 0; isemptyAtb = 1; end %% %%----------------------------------------- %% get parameters from the OPTIONS structure. %%----------------------------------------- %% matlabversion = sscanf(version,'%f'); if strcmp(computer,'PCWIN64') || strcmp(computer,'GLNXA64') par.computer = 64; else par.computer = 32; end par.matlabversion = matlabversion(1); par.vers = 0; par.predcorr = 1; par.gam = 0; par.expon = 1; par.gaptol = 1e-8; par.inftol = 1e-8; par.steptol = 1e-6; par.maxit = 100; par.printlevel = 3; par.stoplevel = 1; par.scale_data = 0; par.spdensity = 0.4; par.rmdepconstr = 0; par.smallblkdim = 50; par.schurfun = cell(size(blk,1),1); par.schurfun_par = cell(size(blk,1),1); %% parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') || strcmp(pblk{1},'q') parbarrier{p} = zeros(1,length(pblk{2})); elseif strcmp(pblk{1},'l') || strcmp(pblk{1},'u' ) parbarrier{p} = zeros(1,sum(pblk{2})); end end parbarrier_0 = parbarrier; %% if nargin > 4, if isfield(OPTIONS,'vers'); par.vers = OPTIONS.vers; end if isfield(OPTIONS,'predcorr'); par.predcorr = OPTIONS.predcorr; end if isfield(OPTIONS,'gam'); par.gam = OPTIONS.gam; end if isfield(OPTIONS,'expon'); par.expon = OPTIONS.expon; end if isfield(OPTIONS,'gaptol'); par.gaptol = OPTIONS.gaptol; end if isfield(OPTIONS,'inftol'); par.inftol = OPTIONS.inftol; end if isfield(OPTIONS,'steptol'); par.steptol = OPTIONS.steptol; end if isfield(OPTIONS,'maxit'); par.maxit = OPTIONS.maxit; end if isfield(OPTIONS,'printlevel'); par.printlevel = OPTIONS.printlevel; end if isfield(OPTIONS,'stoplevel'); par.stoplevel = OPTIONS.stoplevel; end if isfield(OPTIONS,'scale_data'); par.scale_data = OPTIONS.scale_data; end if isfield(OPTIONS,'spdensity'); par.spdensity = OPTIONS.spdensity; end if isfield(OPTIONS,'rmdepconstr'); par.rmdepconstr = OPTIONS.rmdepconstr; end if isfield(OPTIONS,'smallblkdim'); par.smallblkdim = OPTIONS.smallblkdim; end if isfield(OPTIONS,'parbarrier'); parbarrier = OPTIONS.parbarrier; if isempty(parbarrier); parbarrier = parbarrier_0; end if ~iscell(parbarrier); tmp = parbarrier; clear parbarrier; parbarrier{1} = tmp; end if (length(parbarrier) < size(blk,1)) len = length(parbarrier); parbarrier(len+1:size(blk,1)) = parbarrier_0(len+1:size(blk,1)); end end if isfield(OPTIONS,'schurfun'); par.schurfun = OPTIONS.schurfun; if ~isempty(par.schurfun); par.scale_data = 0; end end if isfield(OPTIONS,'schurfun_par'); par.schurfun_par = OPTIONS.schurfun_par; end if isempty(par.schurfun); par.schurfun = cell(size(blk,1),1); end if isempty(par.schurfun_par); par.schurfun_par = cell(size(blk,1),1); end end if (size(blk,2) > 2); par.smallblkdim = 0; end %% %%----------------------------------------- %% convert matrices to cell arrays. %%----------------------------------------- %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; if all(size(At) == [size(blk,1), length(b)]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) if (par.printlevel); fprintf('\n sqlp: converting At into required format'); end At = svec(blk,At,ones(size(blk,1),1)); end end %% %%----------------------------------------- %% validate SQLP data. %%----------------------------------------- %% % tstart = cputime; [blk,At,C,b,blkdim,numblk,parbarrier] = validate(blk,At,C,b,par,parbarrier); [blk,At,C,b,iscmp] = convertcmpsdp(blk,At,C,b); if (iscmp) && (par.printlevel>=2); fprintf('\n SQLP has complex data'); end if (nargin <= 5) || (isempty(X0) || isempty(y0) || isempty(Z0)); par.startpoint = 1; [X0,y0,Z0] = infeaspt(blk,At,C,b); else par.startpoint = 2; if ~iscell(X0); X0 = {X0}; end; if ~iscell(Z0); Z0 = {Z0}; end; y0 = real(y0); if (length(y0) ~= length(b)); error('sqlp: length of b and y0 not compatible'); end [X0,Z0] = validate_startpoint(blk,X0,Z0,par.spdensity,iscmp); end if (par.printlevel>=2) fprintf('\n num. of constraints = %2.0d',length(b)); if blkdim(1); fprintf('\n dim. of sdp var = %2.0d,',blkdim(1)); fprintf(' num. of sdp blk = %2.0d',numblk(1)); end if blkdim(2); fprintf('\n dim. of socp var = %2.0d,',blkdim(2)); fprintf(' num. of socp blk = %2.0d',numblk(2)); end if blkdim(3); fprintf('\n dim. of linear var = %2.0d',blkdim(3)); end if blkdim(4); fprintf('\n dim. of free var = %2.0d',blkdim(4)); end end %% %%----------------------------------------- %% detect unrestricted blocks in linear blocks %%----------------------------------------- %% user_supplied_schurfun = 0; for p = 1:size(blk,1) if ~isempty(par.schurfun{p}); user_supplied_schurfun = 1; end end if (user_supplied_schurfun == 0) [blk2,At2,C2,ublkinfo,parbarrier2,X02,Z02] = ... detect_ublk(blk,At,C,parbarrier,X0,Z0,par.printlevel); else blk2 = blk; At2 = At; C2 = C; parbarrier2 = parbarrier; X02 = X0; Z02 = Z0; ublkinfo = cell(size(blk2,1),1); end ublksize = blkdim(4); for p = 1:size(ublkinfo,1) ublksize = ublksize + length(ublkinfo{p}); end %% %%----------------------------------------- %% detect diagonal blocks in semidefinite blocks %%----------------------------------------- %% if (user_supplied_schurfun==0) [blk3,At3,C3,diagblkinfo,diagblkchange,parbarrier3,X03,Z03] = ... detect_lblk(blk2,At2,C2,b,parbarrier2,X02,Z02,par.printlevel); else blk3 = blk2; At3 = At2; C3 = C2; parbarrier3 = parbarrier2; X03 = X02; Z03 = Z02; diagblkchange = 0; diagblkinfo = cell(size(blk3,1),1); end %% %%----------------------------------------- %% main solver %%----------------------------------------- %% % exist_analytic_term = 0; % for p = 1:size(blk3,1); % idx = find(parbarrier3{p} > 0); % if ~isempty(idx); exist_analytic_term = 1; end % end % if (par.vers == 0); if blkdim(1); par.vers = 1; else par.vers = 2; end end par.blkdim = blkdim; par.ublksize = ublksize; [obj,X3,y,Z3,info,runhist] = ... sqlpmain(blk3,At3,C3,b,par,parbarrier3,X03,y0,Z03); %% %%----------------------------------------- %% recover semidefinite blocks from linear blocks %%----------------------------------------- %% if any(diagblkchange) X2 = cell(size(blk2,1),1); Z2 = cell(size(blk2,1),1); count = 0; for p = 1:size(blk2,1) pblk = blk2(p,:); n = sum(pblk{2}); blkno = diagblkinfo{p,1}; idxdiag = diagblkinfo{p,2}; idxnondiag = diagblkinfo{p,3}; if ~isempty(idxdiag) len = length(idxdiag); Xtmp = [idxdiag,idxdiag,X3{end}(count+1:count+len); n, n, 0]; Ztmp = [idxdiag,idxdiag,Z3{end}(count+1:count+len); n, n, 0]; if ~isempty(idxnondiag) [ii,jj,vv] = find(X3{blkno}); Xtmp = [Xtmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok [ii,jj,vv] = find(Z3{blkno}); Ztmp = [Ztmp; idxnondiag(ii),idxnondiag(jj),vv]; %#ok end X2{p} = spconvert(Xtmp); Z2{p} = spconvert(Ztmp); count = count + len; else X2(p) = X3(blkno); Z2(p) = Z3(blkno); end end else X2 = X3; Z2 = Z3; end %% %%----------------------------------------- %% recover linear block from unrestricted block %%----------------------------------------- %% numblk = size(blk,1); numblknew = numblk; X = cell(numblk,1); Z = cell(numblk,1); for p = 1:numblk n = blk{p,2}; if isempty(ublkinfo{p,1}) X{p} = X2{p}; Z{p} = Z2{p}; else Xtmp = zeros(n,1); Ztmp = zeros(n,1); Xtmp(ublkinfo{p,1}) = max(0,X2{p}); Xtmp(ublkinfo{p,2}) = max(0,-X2{p}); Ztmp(ublkinfo{p,1}) = max(0,Z2{p}); Ztmp(ublkinfo{p,2}) = max(0,-Z2{p}); if ~isempty(ublkinfo{p,3}) numblknew = numblknew + 1; Xtmp(ublkinfo{p,3}) = X2{numblknew}; Ztmp(ublkinfo{p,3}) = Z2{numblknew}; end X{p} = Xtmp; Z{p} = Ztmp; end end %% %%----------------------------------------- %% recover complex solution %%----------------------------------------- %% if (iscmp) for p = 1:numblk pblk = blk(p,:); n = sum(pblk{2})/2; if strcmp(pblk{1},'s'); X{p} = X{p}(1:n,1:n) + sqrt(-1)*X{p}(n+1:2*n,1:n); Z{p} = Z{p}(1:n,1:n) + sqrt(-1)*Z{p}(n+1:2*n,1:n); X{p} = 0.5*(X{p}+X{p}'); Z{p} = 0.5*(Z{p}+Z{p}'); end end end if (isemptyAtb) X = X(1:end-1); Z = Z(1:end-1); end %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
infeaspt.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/infeaspt.m
5,422
utf_8
ed7ce61d1094307a576ad8ddfd42bd30
%%******************************************************************** %% infeaspt: generate an initial point for sdp.m %% %% [X0,y0,Z0] = infeaspt(blk,At,C,b,options,scalefac); %% %% options = 1 if want X0,Z0 to be scaled identity matrices %% = 2 if want X0,Z0 to be scalefac*(identity matrices). %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************** function [X0,y0,Z0] = infeaspt(blk,At,C,b,options,scalefac) %% if (nargin < 5); options = 1; end; if (options == 1); scalefac = []; end; if (options == 2) && (nargin < 6); scalefac = 1000; end; if (scalefac <= 0); error('scalefac must a positive number'); end; %% if ~iscell(At); At = {At}; end; if ~iscell(C); C = {C}; end; m = length(b); if all(size(At) == [size(blk,1) m]); convertyes = zeros(size(blk,1),1); for p = 1:size(blk,1) if strcmp(blk{p,1},'s') && all(size(At{p,1}) == sum(blk{p,2})) convertyes(p) = 1; end end if any(convertyes) At = svec(blk,At,ones(size(blk,1),1)); end end; %% %%[blk,At,C,b] = validate(blk,At,C,b); %% X0 = cell(size(C)); Z0 = cell(size(C)); m = length(b); for p = 1:size(blk,1); pblk = blk(p,:); blktmp = pblk{2}; n = length(C{p}); y0 = zeros(m,1); b2 = 1 + abs(b'); if (options == 1); if strcmp(pblk{1},'s'); normAni = []; X0{p} = sparse(n,n); Z0{p} = sparse(n,n); ss = [0, cumsum(blktmp)]; tt = [0, cumsum(blktmp.*(blktmp+1)/2)]; for i = 1:length(pblk{2}) if ~isempty(At{p,1}) pos = tt(i)+1 : tt(i+1); Ai = At{p,1}(pos,:); normAni = 1+sqrt(sum(Ai.*Ai)); end if (length(At(p,:)) >= 2) %% for low rank constraints dd = At{p,3}; qq = [0, cumsum(pblk{3})]; normtmp = ones(1,length(pblk{3})); idxD = [0; find(diff(dd(:,1))); size(dd,1)]; for k = 1:length(pblk{3}) idx = qq(k)+1 : qq(k+1); idx2 = idxD(k)+1: idxD(k+1); Ak = At{p,2}(:,idx); ii = dd(idx2,2)-qq(k); %% undo cumulative indexing jj = dd(idx2,3)-qq(k); len = pblk{3}(k); Dk = spconvert([ii,jj,dd(idx2,4); len,len,0]); tmp = Ak'*Ak*Dk; normtmp(1,k) = 1+sqrt(sum(sum(tmp.*tmp'))); end normAni = [normAni, normtmp]; %#ok end pos = ss(i)+1 : ss(i+1); ni = length(pos); tmp = C{p}(pos,pos); normCni = 1+sqrt(sum(sum(tmp.*tmp))); const = 10; %%--- old: const = 1; constX = max([const,sqrt(ni),ni*(b2./normAni)]); constZ = max([const,sqrt(ni),normAni,normCni]); X0{p}(pos,pos) = constX*spdiags(1+1e-10*randmat(ni,1,0,'u'),0,ni,ni); Z0{p}(pos,pos) = constZ*spdiags(1+1e-10*randmat(ni,1,0,'u'),0,ni,ni); end elseif strcmp(pblk{1},'q'); s = 1+[0, cumsum(blktmp)]; len = length(blktmp); normC = 1+norm(C{p}); normA = 1+sqrt(sum(At{p,1}.*At{p,1})); idenqX = zeros(sum(blktmp),1); idenqZ = zeros(sum(blktmp),1); idenqX(s(1:len)) = max([1,b2./normA])*sqrt(blktmp') ; idenqZ(s(1:len)) = max([sqrt(blktmp); max([normA,normC])*ones(1,len)])'; idenqX(s(1:len)) = idenqX(s(1:len)).*(1+1e-10*randmat(len,1,0,'u')); idenqZ(s(1:len)) = idenqZ(s(1:len)).*(1+1e-10*randmat(len,1,0,'u')); X0{p} = idenqX; Z0{p} = idenqZ; elseif strcmp(pblk{1},'l'); normC = 1+norm(C{p}); normA = 1+sqrt(sum(At{p,1}.*At{p,1})); const = 10; %%--- old: const =1; constX = max([const,sqrt(n),sqrt(n)*b2./normA]); constZ = max([const,sqrt(n),normA,normC]); X0{p} = constX*(1+1e-10*randmat(n,1,0,'u')); Z0{p} = constZ*(1+1e-10*randmat(n,1,0,'u')); elseif strcmp(pblk{1},'u'); X0{p} = sparse(n,1); Z0{p} = sparse(n,1); else error(' blk: some fields not specified correctly'); end; elseif (options == 2); if strcmp(pblk{1},'s'); n = sum(blktmp); X0{p} = scalefac*spdiags(1+1e-10*randmat(n,1,0,'u'),0,n,n); Z0{p} = scalefac*spdiags(1+1e-10*randmat(n,1,0,'u'),0,n,n); elseif strcmp(pblk{1},'q'); s = 1+[0, cumsum(blktmp)]; len = length(blktmp); idenq = zeros(sum(blktmp),1); idenq(s(1:len)) = 1+1e-10*randmat(len,1,0,'u'); X0{p} = scalefac*idenq; Z0{p} = scalefac*idenq; elseif strcmp(pblk{1},'l'); X0{p} = scalefac*(1+1e-10*randmat(n,1,0,'u')); Z0{p} = scalefac*(1+1e-10*randmat(n,1,0,'u')); elseif strcmp(pblk{1},'u'); X0{p} = sparse(n,1); Z0{p} = sparse(n,1); else error(' blk: some fields not specified correctly'); end end end %%********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
Arrow.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/Arrow.m
933
utf_8
4a1803a8a960eba5462879d0ae4cbb78
%%******************************************************** %% Arrow: %% %% Fx = Arrow(pblk,f,x,options); %% %% if options == 0; %% Fx = Arr(F)*x %% if options == 1; %% Fx = Arr(F)^{-1}*x %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************** function Fx = Arrow(pblk,f,x,options) if nargin == 3; options = 0; end; s = 1 + [0, cumsum(pblk{2})]; idx1 = s(1:length(pblk{2})); if options == 0 inprod = mexqops(pblk{2},f,x,1); Fx = mexqops(pblk{2},f(idx1),x,3) + mexqops(pblk{2},x(idx1),f,3); Fx(idx1) = inprod; else gamf2 = mexqops(pblk{2},f,f,2); gamprod = mexqops(pblk{2},f,x,2); alpha = gamprod./gamf2; Fx = mexqops(pblk{2},1./f(idx1),x,3) - mexqops(pblk{2},alpha./f(idx1),f,3); Fx(idx1) = alpha; end %% %%********************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
mybicgstab.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/mybicgstab.m
3,536
utf_8
7ae20f5d14c6533fd9a50b23a1e5c8b3
%%************************************************************************* %% mybicgstab %% %% [xx,resnrm,flag] = mybicgstab(A,b,M1,tol,maxit) %% %% iterate on bb - (M1)*AA*x %% %% r = b-A*xtrue; %% %%************************************************************************* function [xx,resnrm,flag] = mybicgstab(A,b,M1,tol,maxit,printlevel) N = length(b); if (nargin < 6); printlevel = 1; end if (nargin < 5) || isempty(maxit); maxit = max(30,length(A.mat22)); end; if (nargin < 4) || isempty(tol); tol = 1e-10; end; tolb = min(1e-4,tol*norm(b)); flag = 1; x = zeros(N,1); if (norm(x)) if isstruct(A); r = b-matvec(A,x); else r = b-mexMatvec(A,x); end; else r =b; end err = norm(r); resnrm(1) = err; minresnrm = err; xx = x; %%if (err < 1e-3*tolb); return; end omega = 1.0; r_tld = r; %% %% %% breakyes = 0; smtol = 1e-40; for iter = 1:maxit, rho = (r_tld'*r); if (abs(rho) < smtol) flag = 2; if (printlevel); fprintf('*'); end; breakyes = 1; break; end if (iter > 1) beta = (rho/rho_1)* (alp/omega); p = r + beta*(p - omega*v); else p = r; end p_hat = precond(A,M1,p); if isstruct(A); v = matvec(A,p_hat); else v = mexMatvec(A,p_hat); end; alp = rho / (r_tld'*v); s = r - alp*v; %% s_hat = precond(A,M1,s); if isstruct(A); t = matvec(A,s_hat); else t = mexMatvec(A,s_hat); end; omega = (t'*s) / (t'*t); x = x + alp*p_hat + omega*s_hat; r = s - omega*t; rho_1 = rho; %% %% check convergence %% err = norm(r); resnrm(iter+1) = err; %#ok if (err < minresnrm); xx = x; minresnrm = err; end if (err < tolb) break; end if (err > 10*minresnrm) if (printlevel); fprintf('^'); end breakyes = 2; break; end if (abs(omega) < smtol) flag = 2; if (printlevel); fprintf('*'); end breakyes = 1; break; end end if (~breakyes) && (printlevel >=3); fprintf(' '); end %% %%************************************************************************* %%************************************************************************* %% precond: %%************************************************************************* function Mx = precond(A,L,x) m = L.matdim; m2 = length(x)-m; Mx = zeros(length(x),1); for iter = 1 if norm(Mx); r = x - matvec(A,Mx); else r = x; end if (m2 > 0) r1 = full(r(1:m)); else r1 = full(r); end if (m2 > 0) r2 = r(m+1:m+m2); w = linsysolvefun(L,r1); z = mexMatvec(A.mat12,w,1) - r2; z = L.Mu \ (L.Ml \ (L.Mp*z)); r1 = r1 - mexMatvec(A.mat12,z); end d = linsysolvefun(L,r1); if (m2 > 0) d = [d; z]; %#ok end Mx = Mx + d; end %%************************************************************************* %%************************************************************************* %% matvec: matrix-vector multiply. %% matrix = [A.mat11, A.mat12; A.mat12', A.mat22] %%************************************************************************* function Ax = matvec(A,x) m = length(A.mat11); m2 = length(x)-m; if issparse(x); x = full(x); end if (m2 > 0) x1 = x(1:m); else x1 = x; end Ax = mexMatvec(A.mat11,x1); if (m2 > 0) x2 = x(m+1:m+m2); Ax = Ax + mexMatvec(A.mat12,x2); Ax2 = mexMatvec(A.mat12,x1,1) + mexMatvec(A.mat22,x2); Ax = [full(Ax); full(Ax2)]; end %%*************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
degeneracy.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/degeneracy.m
5,175
utf_8
52287ec83b17f60c33554d7a25764672
%%*************************************************************** %% degeneracy: determine if an SDP problem is non-degenerate. %% %% [ddx,ddz,B1,B2,sig1,sig12] = degeneracy(blk,At,X,y,Z); %% %% Assume that strict complementarity holds: %% for primal non-degeneracy, we need rank([B1 B2]) = m %% for dual non-degeneracy, we need B1 to have full column rank. %% %%*************************************************************** function [ddx,ddz,XB1,XB2,ZB1,sig1,sig12] = degeneracy(blk,At,X,y,Z) if ~iscell(X); tmp = X; clear X; X{1} = tmp; end; if ~iscell(Z); tmp = Z; clear Z; Z{1} = tmp; end; m = length(y); XB1 = []; XB2 = []; ZB1 = []; numblk = size(blk,1); %% %% %% for p = 1:size(blk,1) n = length(X{p}); if strcmp(blk{p,1},'s') % mu = sum(sum(X{p}.*Z{p}))/n; [Qx,Dx] = eig(full(X{p})); [dx,idx] = sort(diag(Dx)); Qx = Qx(:,idx(n:-1:1)); dx = dx(n:-1:1); dx = dx + max(dx)*eps; % Dx = diag(dx); [Qz,Dz] = eig(full(Z{p})); [dz,idx] = sort(diag(Dz)); Qz = Qz(:,idx); dz = dz + max(dz)*eps; % Dz = diag(dz); sep_option = 1; if (sep_option==1) tolx(p) = mean(sqrt(dx.*dz)); %#ok tolz(p) = tolx(p); %#ok elseif (sep_option==2) ddtmp = dx./dz; idxtmp = find(ddtmp<1e12); len = max(3,min(idxtmp)); ddratio = ddtmp(len:n-1)./ddtmp(len+1:n); [dummy,idxmax] = max(ddratio); %#ok idxmax2 = idxtmp(idxtmp==len+idxmax-1); tmptolx = mean(dx(idxmax2:idxmax2+1)); tmptolz = mean(dz(idxmax2:idxmax2+1)); tolx(p) = exp(mean(log([tmptolx tmptolz]))); %#ok tolz(p) = tolx(p); %#ok end idxr = find(dx > tolx(p)); rp = length(idxr); idxs = find(dz > tolz(p)); sp = length(idxs); r(p) = rp; s(p) = sp; %#ok prim_rank(p) = n*(n+1)/2 - (n-rp)*(n-rp+1)/2; %#ok dual_rank(p) = (n-sp)*(n-sp+1)/2; %#ok strict_comp(p) = (r(p)+s(p) == n); %#ok if (nargout > 2) Q1 = Qx(:,idxr); Q2 = Qx(:,setdiff(1:n,idxr)); B11 = zeros(m,rp*(rp+1)/2); B22 = zeros(m,rp*(n-rp)); for k = 1:m Ak = smat(blk(p,:),At{p}(:,k)); tmp = Q1'*Ak*Q2; B22(k,:) = tmp(:)'; tmp = Q1'*Ak*Q1; B11(k,:) = svec(blk(p,:),tmp)'; end XB1 = [XB1, B11]; %#ok XB2 = [XB2, sqrt(2)*B22]; %#ok Qz1 = Qz(:,setdiff(1:n,idxs)); ZB11 = zeros(m,(n-sp)*(n-sp+1)/2); for k = 1:m Ak = smat(blk(p,:),At{p}(:,k)); tmp = Qz1'*Ak*Qz1; ZB11(k,:) = svec(blk(p,:),tmp)'; end ZB1 = [ZB1, ZB11]; %#ok end elseif strcmp(blk{p,1},'q') error('qblk is not allowed at the moment.'); elseif strcmp(blk{p,1},'l') % mu = X{p}'*Z{p}/n; dx = sort(X{p}); dx = dx(n:-1:1); dz = sort(Z{p}); tolx(p) = mean(sqrt(dx.*dz)); %#ok tolz(p) = tolx(p); %#ok idxr = find(dx > tolx(p)); rp = length(idxr); idxs = find(dz > tolz(p)); sp = length(idxs); r(p) = rp; s(p) = sp; %#ok prim_rank(p) = rp; %#ok dual_rank(p) = n-sp; %#ok strict_comp(p) = (r(p)+s(p) == n); %#ok if (nargout > 2) idx = X{p} > tolx(p); XB1 = [XB1, full(At{p}(idx,:))']; %#ok zidx = Z{p} < tolz(p); ZB1 = [ZB1, full(At{p}(zidx,:))']; %#ok end end ddx{p} = dx; ddz{p} = dz; %#ok fprintf('\n blkno = %1.0d, tol = %3.1e,%3.1e, m = %2.0d',... p,tolx(p),tolz(p),m); fprintf('\n n= %2.0d, r= %2.0d, s= %2.0d',n,r(p),s(p)); fprintf('\n n2-(n-r)2 = %2.0d',prim_rank(p)); fprintf('\n (n-s)2 = %2.0d',dual_rank(p)); fprintf('\n complemen = %2.1e %2.1e\n',max(dx+dz),min(dx+dz)); subplot(121) color = (1-p/numblk)*[0 0 1] + (p/numblk)*[1 0 0]; semilogy(dx,'+','color',color); hold on; semilogy(dz,'o','color',color); semilogy([1 n],tolx(p)*[1 1],'color',color); semilogy([1 n],tolz(p)*[1 1],'--','color',color); title('eig(X) and eig(Z)'); subplot(122) semilogy(dx+dz,'*','color',color); hold on; title('dx+dz') end %% %% %% subplot(121); hold off; subplot(122); hold off; prim_non_degen = (sum(prim_rank) >= m); dual_non_degen = (sum(dual_rank) <= m); fprintf('\n sum(n2-(n-r)2) = %2.0d (>=m)',sum(prim_rank)); fprintf('\n sum((n-s)2) = %2.0d (<=m)',sum(dual_rank)); fprintf('\n nec. cond. prim_non_degen = %1d',prim_non_degen); fprintf('\n nec. cond. dual_non_degen = %1d',dual_non_degen); fprintf('\n strict_comp = %1d\n',all(strict_comp)); sig1 = svd(ZB1); sig12 = svd([XB1, XB2]'); fprintf('\n svd(ZB1): max, min = %2.1e %2.1e, cond = %2.1e\n',... max(sig1),min(sig1),max(sig1)/min(sig1)); fprintf(' svd([XB1, XB2]^T): max, min = %2.1e %2.1e, cond = %2.1e\n',... max(sig12),min(sig12),max(sig12)/min(sig12)); %%***************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
mytime.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/mytime.m
557
utf_8
2d076b8ed1091521bbe986194c6e2b84
%%********************************************* %% mytime: %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************* function [hh,mm,ss] = mytime(t) t = round(t); h = floor(t/3600); m = floor(rem(t,3600)/60); s = rem(rem(t,60),60); hh = num2str(h); if (h > 0) && (m < 10) mm = ['0',num2str(m)]; else mm = num2str(m); end if (s < 10) ss = ['0',num2str(s)]; else ss = num2str(s); end %%**********************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
validate.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/validate.m
7,427
utf_8
60774ce6b3bd16bde97e4078d89db39b
%%*********************************************************************** %% validate: validate data %% %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function [blk,At,C,b,dim,nnblk,parbarrier] = ... validate(blk,At,C,b,par,parbarrier) if (nargin >= 5) spdensity = par.spdensity; else spdensity = 0.4; end %% if ~iscell(blk); error('validate: blk must be a cell array'); end; if (size(blk,2) < 2) error('validate: blk must be a cell array with at least 2 columns'); end if ~iscell(At) || ~iscell(C); error('validate: At, C must be cell arrays'); end if (size(At,1) ~= size(blk,1)) if (size(At,2) == size(blk,1)); At = At'; else error('validate: size of At is not compatible with blk'); end end if (size(C,1) ~= size(blk,1)) if (size(C,2) == size(blk,1)) C = C'; else error('validate: size of C is not compatible with blk'); end end if (min(size(b)) > 1); error('validate: b must be a vector'); end if (size(b,1) < size(b,2)); b = b'; end m = length(b); %% %%----------------------------------------- %% validate blk, At, C %%----------------------------------------- %% for p = 1:size(blk,1) if (size(blk{p,2},1) > size(blk{p,2},2)) blk{p,2} = blk{p,2}'; end pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'s'); m1 = size(At{p,1},2); n2 = sum(pblk{2}.*pblk{2}); n22 = sum(pblk{2}.*(pblk{2}+1))/2; ntotal(p) = n22; %#ok if ~all(size(C{p}) == n) error('validate: blk and C are not compatible'); end if (norm(C{p}-C{p}',inf) > 1e-13*norm(C{p},inf)); error('validate: C is not symmetric'); end if all(size(At{p,1})==[m1, n22]) && m1~=n22 At{p,1} = At{p,1}'; end if (~isempty(At{p,1})) && (size(At{p,1},1) ~= n22) error('validate: blk and At not compatible'); end if (nnz(At{p,1}) < spdensity*n22*m1) if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end end if (length(pblk) > 2) %% for low rank constraints len = sum(pblk{3}); if (size(pblk{1,3},2) < size(pblk{1,3},1)) blk{p,3} = blk{p,3}'; end if any(size(At{p,2})- [n,len]) error(' low rank structure specified in blk and At not compatible') end if (length(At(p,:)) > 2) && ~isempty(At{p,3}) if all(size(At{p,3},2)-[1,4]) error(' low rank structure in At{p,3} not specified correctly') end if (size(At{p,3},2) == 1) if (size(At{p,3},1) < size(At{p,3},2)); At{p,3} = At{p,3}'; end lenn = length(At{p,3}); constrnum = mexexpand(pblk{3},(1:length(pblk{3}))'); At{p,3} = [constrnum, (1:lenn)', (1:lenn)', At{p,3}]; elseif (size(At{p,3},2) == 4) dd = At{p,3}; [dummy,idxsort] = sort(dd(:,1)); %#ok dd = dd(idxsort,:); lenn = size(dd,1); idxD = [0; find(diff(dd(:,1))); lenn]; ii = zeros(lenn,1); jj = zeros(lenn,1); ss = [0,cumsum(pblk{3})]; for k = 1:length(pblk{3}) idx = idxD(k)+1 : idxD(k+1); ii(idx) = dd(idx,2)+ss(k); %% convert to cumulative indexing jj(idx) = dd(idx,3)+ss(k); end At{p,3} = [dd(:,1),ii,jj,dd(:,4)]; end else constrnum = mexexpand(pblk{3},(1:length(pblk{3}))'); At{p,3} = [constrnum, (1:len)', (1:len)', ones(len,1)]; end end if (nnz(C{p}) < spdensity*n2) || (numblk > 1); if ~issparse(C{p}); C{p} = sparse(C{p}); end; else if issparse(C{p}); C{p} = full(C{p}); end; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); ntotal(p) = n; %#ok if (min(size(C{p})) ~= 1 || max(size(C{p})) ~= n); error('validate: blk and C are not compatible'); end; if (size(C{p},1) < size(C{p},2)); C{p} = C{p}'; end if all(size(At{p,1}) == [m, n]) && m~=n; At{p,1} = At{p,1}'; end if ~all(size(At{p,1}) == [n,m]); error('validate: blk and At not compatible'); end if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end if (nnz(C{p}) < spdensity*n); if ~issparse(C{p}); C{p} = sparse(C{p}); end; else if issparse(C{p}); C{p} = full(C{p}); end; end; else error(' blk: some fields are not specified correctly'); end end if (sum(ntotal) < m) error(' total dimension of C should be > length(b)'); end %% %%----------------------------------------- %% problem dimension %%----------------------------------------- %% dim = zeros(1,4); nnblk = zeros(1,2); nn = zeros(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') dim(1) = dim(1) + sum(pblk{2}); nnblk(1) = nnblk(1) + length(pblk{2}); nn(p) = sum(pblk{2}); elseif strcmp(pblk{1},'q') dim(2) = dim(2) + sum(pblk{2}); nnblk(2) = nnblk(2) + length(pblk{2}); nn(p) = length(pblk{2}); elseif strcmp(pblk{1},'l') dim(3) = dim(3) + sum(pblk{2}); nn(p) = sum(pblk{2}); elseif strcmp(pblk{1},'u') dim(4) = dim(4) + sum(pblk{2}); nn(p) = sum(pblk{2}); end end %% %%----------------------------------------- %% validate parbarrier %%----------------------------------------- %% if (nargin == 6) if ~iscell(parbarrier); if (length(parbarrier) == size(blk,1)) tmp = parbarrier; clear parbarrier; parbarrier = cell(size(blk,1),1); for p = 1:size(blk,1) parbarrier{p} = tmp(p); end end end if (size(parbarrier,2) > size(parbarrier,1)) parbarrier = parbarrier'; end for p = 1:size(blk,1) pblk = blk(p,:); if (size(parbarrier{p},1) > size(parbarrier{p},2)) parbarrier{p} = parbarrier{p}'; end len = length(parbarrier{p}); if strcmp(pblk{1},'s') || strcmp(pblk{1},'q') if (len == 1) parbarrier{p} = parbarrier{p}*ones(1,length(pblk{2})); elseif (len == 0) parbarrier{p} = zeros(1,length(pblk{2})); elseif (len ~= length(pblk{2})) error('blk and parbarrier not compatible'); end elseif strcmp(pblk{1},'l') if (len == 1) parbarrier{p} = parbarrier{p}*ones(1,sum(pblk{2})); elseif (len == 0) parbarrier{p} = zeros(1,sum(pblk{2})); elseif (len ~= sum(pblk{2})) error('blk and parbarrier not compatible'); end elseif strcmp(pblk{1},'u') parbarrier{p}= zeros(1,sum(pblk{2})); end end end %%***********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
svec.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/svec.m
2,027
utf_8
43bbe7c274d2d1bfb1014fc2000f47e3
%********************************************************* %% svec: compute the vector svec(M), %% %% x = svec(blk,M,isspx); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************** function x = svec(blk,M,isspx) if iscell(M) if (size(blk,1) ~= size(M,1)) error('svec: number of rows in blk and M not equal'); end if (nargin == 2) %%if (size(M,2) == 1) %% isspx = zeros(size(blk,1),1); %%else %% isspx = ones(size(blk,1),1); %%end isspx = ones(size(blk,1),1); else if (length(isspx) < size(blk,1)) isspx = ones(size(blk,1),1); end end x = cell(size(blk,1),1); for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); m = size(M,2); if strcmp(pblk{1},'s') n2 = sum(pblk{2}.*(pblk{2}+1))/2; if (isspx(p)); x{p} = sparse(n2,m); else x{p} = zeros(n2,m); end numblk = length(pblk{2}); if (pblk{2} > 0) for k = 1:m if (numblk > 1) && ~issparse(M{p,k}); x{p}(:,k) = mexsvec(pblk,sparse(M{p,k}),isspx(p)); else x{p}(:,k) = mexsvec(pblk,M{p,k},isspx(p)); end end end else if (isspx(p)) x{p} = sparse(n,m); else x{p} = zeros(n,m); end for k = 1:m x{p}(:,k) = M{p,k}; end end end else if strcmp(blk{1},'s') numblk = length(blk{2}); if (numblk > 1) && ~issparse(M); x = mexsvec(blk,sparse(M),1); else x = mexsvec(blk,sparse(M)); end else x = M; end end %%**********************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
read_sedumi.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/read_sedumi.m
7,265
utf_8
2035885c053fc9de89cf19fa667603d2
%%******************************************************************* %% Read in a problem in SeDuMi format. %% %% [blk,A,C,b,perm] = read_sedumi(fname,b,c,K) %% %% Input: fname.mat = name of the file containing SDP data in %% SeDuMi format. %% %% Important note: Sedumi's notation for free variables "K.f" %% is coded in SDPT3 as blk{p,1} = 'u', where %% "u" is used for unrestricted variables. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [blk,Avec,C,b,perm] = read_sedumi(fname,b,c,K,smallblkdim) if (nargin < 5) smallblkdim = 50; end A = 0; At = 0; if ischar(fname) %% %% load the matlab file containing At, c, b, and K %% K.f = []; K.l = []; K.q = []; compressed = 0; if exist([fname,'.mat.gz'],'file'); compressed = 1; unix(['gunzip ', fname,'.mat.gz']); elseif exist([fname,'.gz'],'file'); compressed = 2; unix(['gunzip ', fname,'.gz']); elseif exist([fname,'.mat.Z'],'file'); compressed = 3; unix(['uncompress ', fname,'.mat.Z'],'file'); elseif exist([fname,'.Z'],'file'); compressed = 4; unix(['uncompress ', fname,'.Z']); end if exist([fname,'.mat'],'file') || exist(fname,'file') eval(['load ', fname]); else fprintf('*** Problem not found, please specify the correct path or problem. \n'); blk = []; Avec = []; C = []; b = []; return; end if (compressed == 1) unix(['gzip ', fname,'.mat']); elseif (compressed == 2) unix(['gzip ', fname]); elseif (compressed == 3) unix(['compress ', fname,'.mat']); elseif (compressed == 4) unix(['compress ', fname]); end elseif (nargin < 4) error('read_sedumi: need 4 input '); else A = fname; end %% if exist('c','var') if (size(c,1) == 1), c = c'; end; end if exist('C','var') c = C; %#ok if (size(c,1) == 1), c = c'; end; end if (size(b,1) == 1), b = b'; end; if (norm(A,'fro') > 0) && (size(A,2) == length(b)); At = A; end %% if (norm(At,'fro')==0), At = A'; end; nn = size(At,1); if (max(size(c)) == 1); c = c*ones(nn,1); end; if ~isfield(K,'f'); K.f = 0; end if ~isfield(K,'l'); K.l = 0; end if ~isfield(K,'q'); K.q = 0; end if ~isfield(K,'s'); K.s = 0; end if (K.f == 0) || isempty(K.f); K.f = 0; end; if (K.l == 0) || isempty(K.l); K.l = 0; end; if (sum(K.q) == 0) || isempty(K.q); K.q = 0; end if (sum(K.s) == 0) || isempty(K.s); K.s = 0; end %% %% %% % m = length(b); rowidx = 0; idxblk = 0; if ~(K.f == 0) len = K.f; idxblk = idxblk + 1; blk{idxblk,1} = 'u'; blk{idxblk,2} = K.f; Atmp = At(rowidx+1:rowidx+len,:); Avec{idxblk,1} = Atmp; C{idxblk,1} = c(rowidx+1:rowidx+len); perm{idxblk} = []; rowidx = rowidx + len; end if ~(K.l == 0) len = K.l; idxblk = idxblk + 1; blk{idxblk,1} = 'l'; blk{idxblk,2} = K.l; Atmp = At(rowidx+1:rowidx+len,:); Avec{idxblk,1} = Atmp; C{idxblk,1} = c(rowidx+1:rowidx+len); perm{idxblk} = []; rowidx = rowidx + len; end if ~(K.q == 0) len = sum(K.q); idxblk = idxblk + 1; blk{idxblk,1} = 'q'; if size(K.q,1) <= size(K.q,2); blk{idxblk,2} = K.q; else blk{idxblk,2} = K.q'; end Atmp = At(rowidx+1:rowidx+len,:); Avec{idxblk,1} = Atmp; C{idxblk,1} = c(rowidx+1:rowidx+len); perm{idxblk} = []; rowidx = rowidx + len; end if ~(K.s == 0) blksize = K.s; if (size(blksize,2) == 1); blksize = blksize'; end blknnz = [0, cumsum(blksize.*blksize)]; deblkidx = find(blksize > smallblkdim); if ~isempty(deblkidx) for p = 1:length(deblkidx) idxblk = idxblk + 1; n = blksize(deblkidx(p)); pblk{1,1} = 's'; pblk{1,2} = n; blk(idxblk,:) = pblk; Atmp = At(rowidx+blknnz(deblkidx(p))+(1:n*n),:); %% %% column-wise positions of upper triangular part %% tmp = triu(ones(n)); tmp = tmp(:); idxtriu = find(tmp); %% %% row-wise positions of lower triangular part %% tmp = tril(reshape(1:n*n,n,n)); tmp = tmp(:); idxtmp = find(tmp); [dummy,idxsub] = sort(rem(tmp(idxtmp),n)); %#ok idxtril = [idxtmp(idxsub(n+1:end));idxtmp(idxsub(1:n))]; %% tmp2 = sqrt(2)*triu(ones(n),1) + speye(n,n); tmp2 = tmp2(:); dd = tmp2(tmp2~=0); n2 = n*(n+1)/2; Atmptriu = Atmp(idxtriu,:); %#ok Atmptril = Atmp(idxtril,:); if (norm(Atmptriu-Atmptril,'fro') > 1e-13) fprintf('\n warning: constraint matrices not symmetric.'); fprintf('\n matrices are symmetrized.\n'); Atmptriu = 0.5*(Atmptriu+Atmptril); end Avec{idxblk,1} = spdiags(dd,0,n2,n2)*Atmptriu; Ctmp = c(rowidx+blknnz(deblkidx(p))+(1:n*n)); Ctmp = mexmat(pblk,Ctmp,1); C{idxblk,1} = 0.5*(Ctmp+Ctmp'); %#ok perm{idxblk,1} = deblkidx(p); end end spblkidx = find(blksize <= smallblkdim); if ~isempty(spblkidx) cnt = 0; cnt2 = 0; spblksize = blksize(spblkidx); nn = sum(spblksize.*spblksize); nn2 = sum(spblksize.*(spblksize+1)/2); pos = zeros(nn,1); dd = zeros(nn2,1); idxtriu = zeros(nn2,1); idxtril = zeros(nn2,1); for p = 1:length(spblkidx) n = blksize(spblkidx(p)); n2 = n*(n+1)/2; pos(cnt+1:cnt+n*n) = rowidx+blknnz(spblkidx(p))+(1:n*n); %% %% column-wise positions of upper triangular part %% tmp = triu(ones(n)); tmp = tmp(:); idxtriu(cnt2+1:cnt2+n2) = cnt+find(tmp); %% %% row-wise positions of lower triangular part %% tmp = tril(reshape(1:n*n,n,n)); tmp = tmp(:); idxtmp = find(tmp); [dummy,idxsub] = sort(rem(tmp(idxtmp),n)); %#ok idxtril(cnt2+1:cnt2+n2) = cnt+[idxtmp(idxsub(n+1:end));idxtmp(idxsub(1:n))]; %% tmp2 = sqrt(2)*triu(ones(n),1) + speye(n,n); tmp2 = tmp2(:); dd(cnt2+1:cnt2+n2) = tmp2(tmp2~=0); cnt = cnt + n*n; cnt2 = cnt2 + n2; end idxblk = idxblk + 1; blk{idxblk,1} = 's'; blk{idxblk,2} = blksize(spblkidx); Atmp = At(pos,:); Atmptriu = Atmp(idxtriu,:); Atmptril = Atmp(idxtril,:); if (norm(Atmptriu-Atmptril,'fro') > 1e-13) fprintf('\n warning: constraint matrices not symmetric.'); fprintf('\n matrices are symmetrized.\n'); Atmptriu = 0.5*(Atmptriu+Atmptril); end Avec{idxblk,1} = spdiags(dd,0,length(dd),length(dd))*Atmptriu; Ctmp = c(pos); Ctmp = mexmat(blk(idxblk,:),Ctmp,1); C{idxblk,1} = 0.5*(Ctmp+Ctmp'); perm{idxblk,1} = spblkidx; end end %% %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
qprod.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/qprod.m
655
utf_8
2d6550b139b2dfcf3d134f61deec3686
%%*************************************************** %% qprod: %% %% Input: A = [A1 A2 ... An] %% x = [x1; x2; ...; xn] %% Output: [A1*x1 A2*x2 ... An*xn] %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************** function Ax = qprod(pblk,A,x) if (size(pblk,1) > 1) error('qprod: pblk can only have 1 row'); end if issparse(x); x = full(x); end; %% for spconvert n = length(x); ii = (1:n)'; jj = mexexpand(pblk{2},(1:length(pblk{2}))'); X = spconvert([ii, jj, x]); Ax = A*X; %%***************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
nzlist.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/nzlist.m
5,014
utf_8
1225b63fe9e00df09546243f60599dc2
%%*********************************************************************** %% nzlist: find the combined list of non-zero elements %% of Aj, j = 1:k, for each k, %% assuming that the Aj's are permuted such that %% A1 has the fewest nonzero elements, followed by A2, and so on. %% %% [isspA,nzlistA,nzlistAsum,isspAy,nzlistAy] = nzlist(blk,At,par) %% %% isspA(p,k) = 1 if Apk is sparse, 0 if it is dense. %% nzlistA = px2 cell array. %% nzlistA{p,1}(k) is the starting row index (in C convention) %% in the 2-column matrix nzlistA{p,2} that %% stores the row and column index of the nonzero elements %% of Apk. %% nzlistA{p,1}(k) = inf if nnz(Apk) exceeds given threshold. %% nzlistAsum = px2 cell array. %% nzlistA{p,1}(k) is the starting row index (in C convention) %% in the 2-column matrix nzlistA{p,2} that %% stores the row and column index of the nonzero elements %% of Apk that are not already present %% in the combined list from Ap1+...Ap,k-1. %% nzlistAy = px1 cell array. %% nzlistAy{p} is a 2-column matrix that stores the %% row and column index of the nonzero elements of %% Ap,1+.... Ap,m. %% nzlistAy{p} = inf if the number of nonzero elements %% exceeds a given threshold. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*********************************************************************** function [isspA,nzlistA,nzlistAsum,isspAy,nzlistAy] = nzlist(blk,At,par) spdensity = par.spdensity; smallblkdim = par.smallblkdim; m = par.numcolAt; %% numblk = size(blk,1); isspA = zeros(numblk,m); nzlistA = cell(numblk,2); nzlistAsum = cell(numblk,2); isspAy = zeros(numblk,1); nzlistAy = cell(numblk,1); %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') && ((max(pblk{2}) > smallblkdim) || (length(pblk{2}) <= 10)) numblk = length(pblk{2}); n = sum(pblk{2}); n2 = sum(pblk{2}.*pblk{2}); if (numblk == 1) nztol = spdensity*n; nztol2 = spdensity*n2/2; else nztol = spdensity*n/2; nztol2 = spdensity*n2/4; end nzlist1 = zeros(1,m+1); nzlist2 = []; nzlist3 = zeros(1,m+1); nzlist4 = []; breakyes = zeros(1,2); Asum = sparse(n,n); %% m1 = size(At{p,1},2); for k = 1:m1 Ak = mexsmat(blk,At,1,p,k); nnzAk = nnz(Ak); isspA(p,k) = (nnzAk < spdensity*n2) || (numblk > 1); if ~all(breakyes) [I,J] = find(abs(Ak) > 0); %% %% nonzero elements of Ak. %% if (breakyes(1) == 0); if (nnzAk <= nztol) idx = find(I<=J); nzlist1(k+1) = nzlist1(k)+length(idx); nzlist2 = [nzlist2; [I(idx), J(idx)] ]; %#ok else nzlist1(k+1:m+1) = inf*ones(1,m-k+1); breakyes(1) = 1; end end %% %% nonzero elements of ||A1||+...+||Ak||. %% if (breakyes(2) == 0) nztmp = zeros(length(I),1); for t = 1:length(I); i=I(t); j=J(t); nztmp(t)=Asum(i,j); end %% find new nonzero positions when Ak is added to Asum. idx = find(nztmp == 0); nzlist3(k+1) = nzlist3(k) + length(idx); if (nzlist3(k+1) < nztol2); nzlist4 = [ nzlist4; [I(idx), J(idx)] ]; %#ok else nzlist3(k+1:m+1) = inf*ones(1,m-k+1); breakyes(2) = 1; end Asum = Asum+abs(Ak); end end end if (numblk == 1) isspAy(p,1) = (nzlist1(m+1) < inf) || (nzlist3(m+1) < inf); else isspAy(p,1) = 1; end nzlistA{p,1} = nzlist1; nzlistA{p,2} = nzlist2; nzlistAsum{p,1} = nzlist3; nzlistAsum{p,2} = nzlist4; %% %% nonzero elements of (A1*y1+...Am*ym). %% if (nzlist3(m+1) < inf); if (length(pblk) > 2) % m2 = length(pblk{3}); len = sum(pblk{3}); DD = spconvert([At{p,3}(:,2:4); len, len, 0]); Asum = Asum + abs(At{p,2}*DD*At{p,2}'); end [I,J] = find(Asum > 0); if (length(I) < nztol2) nzlistAy{p} = [I, J]; else nzlistAy{p} = inf; end else nzlistAy{p} = inf; end end end %%***********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
detect_lblk.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/detect_lblk.m
4,228
utf_8
a69e3486a171d0169d9b62b749ed6cd8
%%******************************************************************* %% detect_lblk: detect diagonal blocks in the SDP data. %% %% [blk,At,C,diagblkinfo,blockchange,parbarrier,X,Z] = ... %% detect_lblk(blk,At,C,b,parbarrier,X,Z); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [blk,At,C,diagblkinfo,blockchange,parbarrier,X,Z] = ... detect_lblk(blk,At,C,b,parbarrier,X,Z,printlevel) if (nargin < 8); printlevel = 1; end %% %% Acum = abs(C) + sum_{k=1}^m abs(Ak) %% but with diagonal elements removed. %% blkold = blk; m = length(b); ee = ones(m,1); numdiagelt = 0; numblknew = 0; blockchange = zeros(size(blk,1),1); Acum = cell(size(blk,1),1); diagblkinfo = cell(size(blk,1),3); for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') && (length(pblk{2}) == 1) && (size(At{p,1},2)==m) Acumtmp = smat(blk(p,:),abs(At{p})*ee,1) + abs(C{p}); Acum{p} = Acumtmp - spdiags(diag(Acumtmp),0,n,n); rownorm = sqrt(sum(Acum{p}.*Acum{p}))'; idxdiag = find(rownorm < 1e-15); if ~isempty(idxdiag) blockchange(p) = 1; numdiagelt = numdiagelt + length(idxdiag); idxnondiag = setdiff((1:n)',idxdiag); diagblkinfo{p,2} = idxdiag; diagblkinfo{p,3} = idxnondiag(:); if ~isempty(idxnondiag) numblknew = numblknew + 1; diagblkinfo{p,1} = numblknew; end else numblknew = numblknew + 1; diagblkinfo{p,1} = numblknew; end else numblknew = numblknew + 1; diagblkinfo{p,1} = numblknew; end end %% %% extract diagonal sub-blocks in nondiagonal blocks %% into a single linear block %% if any(blockchange) numblk = size(blkold,1); idx_keepblk = []; Atmp = cell(1,m); Adiag = cell(1,m); C(numblk+1,1) = cell(1,1); Cdiag = []; Xdiag = []; Zdiag = []; parbarrierdiag = []; for p = 1:numblk % n = sum(blkold{p,2}); if (blockchange(p)==1) idxdiag = diagblkinfo{p,2}; idxnondiag = diagblkinfo{p,3}; if ~isempty(idxdiag); blk{p,2} = length(idxnondiag); len = length(idxdiag); for k = 1:m; Ak = mexsmat(blkold,At,1,p,k); tmp = diag(Ak); Atmp{k} = Ak(idxnondiag,idxnondiag); Adiag{k} = [Adiag{k}; tmp(idxdiag)]; end tmp = diag(C{p,1}); Cdiag = [Cdiag; tmp(idxdiag)]; %#ok C{p,1} = C{p,1}(idxnondiag,idxnondiag); At(p) = svec(blk(p,:),Atmp,1); if (nargin >= 7) parbarrierdiag = [parbarrierdiag, parbarrier{p}*ones(1,len)]; %#ok tmp = diag(X{p,1}); Xdiag = [Xdiag; tmp(idxdiag)]; %#ok tmp = diag(Z{p,1}); Zdiag = [Zdiag; tmp(idxdiag)]; %#ok X{p,1} = X{p,1}(idxnondiag,idxnondiag); Z{p,1} = Z{p,1}(idxnondiag,idxnondiag); end end if ~isempty(idxnondiag) idx_keepblk = [idx_keepblk, p]; %#ok else if (printlevel) fprintf(' %2.0dth semidefinite block is actually diagonal\n',p); end end else idx_keepblk = [idx_keepblk, p]; %#ok end end blk{numblk+1,1} = 'l'; blk{numblk+1,2} = numdiagelt; C{numblk+1,1} = Cdiag; At(numblk+1,1) = svec(blk(numblk+1,:),Adiag,1); idx_keepblk = [idx_keepblk, numblk+1]; blk = blk(idx_keepblk,:); C = C(idx_keepblk,:); At = At(idx_keepblk,:); if (nargin >= 7) parbarrier{numblk+1,1} = parbarrierdiag; X{numblk+1,1} = Xdiag; Z{numblk+1,1} = Zdiag; parbarrier = parbarrier(idx_keepblk); X = X(idx_keepblk); Z = Z(idx_keepblk); end end %%******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
gdcomp.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/gdcomp.m
4,877
utf_8
edb240000afc00b0bd8d14fdc4ab944c
%%********************************************************************* %% gdcomp: Compute gd = 1/td in Equation (15) of the paper: %% %% R.M. Freund, F. Ordonez, and K.C. Toh, %% Behavioral measures and their correlation with IPM iteration counts %% on semi-definite programming problems, %% Mathematical Programming, 109 (2007), pp. 445--475. %% %% [gd,info,yfeas,Zfeas,blk2,At2,C2,b2] = gdcomp(blk,At,C,b,OPTIONS,solveyes); %% %% yfeas,Zfeas: a dual feasible pair when gd is finite. %% That is, if %% Aty = Atyfun(blk,At,[],[],yfeas); %% Rd = ops(C,'-',ops(Zfeas,'+',Aty)); %% then %% ops(Rd,'norm') should be small. %% %%********************************************************************* function [gd,info,yfeas,Zfeas,blk2,At2,C2,b2] = gdcomp(blk,At,C,b,OPTIONS,solveyes) if (nargin < 6); solveyes = 1; end if (nargin < 5) OPTIONS = sqlparameters; OPTIONS.vers = 1; OPTIONS.gaptol = 1e-10; OPTIONS.printlevel = 3; end if isempty(OPTIONS); OPTIONS = sqlparameters; end if ~isfield(OPTIONS,'solver'); OPTIONS.solver = 'HSDsqlp'; end if ~isfield(OPTIONS,'printlevel'); OPTIONS.printlevel = 3; end if ~iscell(C); tmp = C; clear C; C{1} = tmp; end %% %% convert ublk to lblk %% % exist_ublk = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'u'); % exist_ublk = 1; fprintf('\n converting ublk into the difference of two non-negative vectors'); blk{p,1} = 'l'; blk{p,2} = 2*sum(blk{p,2}); At{p} = [At{p}; -At{p}]; C{p} = [C{p}; -C{p}]; end end %% m = length(b); blk2 = blk; At2 = cell(size(blk,1),1); C2 = cell(size(blk,1),1); EE = cell(size(blk,1),1); %% %% %% dd = zeros(1,m); alp = 0; beta = 0; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') C2{p,1} = sparse(n,n); else C2{p,1} = zeros(n,1); end dd = dd + sqrt(sum(At{p}.*At{p})); beta = beta + norm(C{p},'fro'); alp = alp + sqrt(n); end alp = 1./max(1,alp); beta = 1./max(1,beta); dd = 1./max(1,dd); %% %% New multipliers in dual problem: %% [v; tt; theta]. %% D = spdiags(dd',0,m,m); ss = 0; cc = 0; aa = zeros(1,m); % exist_ublk = 0; for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') At2{p} = [At{p}*D, svec(pblk,alp*speye(n,n),1), -svec(pblk,beta*C{p},1)]; ss = ss + n; cc = cc + trace(C{p}); aa = aa + svec(pblk,speye(n),1)'*At{p}; EE{p} = speye(n,n); elseif strcmp(pblk{1},'q') eq = zeros(n,1); idx1 = 1+[0,cumsum(pblk{2})]; idx1 = idx1(1:length(idx1)-1); eq(idx1) = ones(length(idx1),1); At2{p} = [At{p}*D, 2*sparse(alp*eq), -sparse(beta*C{p})]; ss = ss + 2*length(pblk{2}); cc = cc + sum(C{p}(idx1)); aa = aa + eq'*At{p}; EE{p} = eq; elseif strcmp(pblk{1},'l') el = ones(n,1); At2{p} = [At{p}*D, sparse(alp*el), -sparse(beta*C{p})]; ss = ss + n; cc = cc + el'*C{p}; aa = aa + el'*At{p}; EE{p} = el; elseif strcmp(pblk{1},'u') At2{p} = [At{p}*D, sparse(n,1), -sparse(beta*C{p})]; % exist_ublk = 1; EE{p} = sparse(n,1); end end aa = aa.*dd; cc = cc*beta; %% %% 4 additional inequality constraints in dual problem. %% numblk = size(blk,1); blk2{numblk+1,1} = 'l'; blk2{numblk+1,2} = 4; C2{numblk+1,1} = [1; 1; 0; 0]; At2{numblk+1,1} = [-aa, 0, cc; zeros(1,m), 0, beta; zeros(1,m), alp, -beta zeros(1,m), -alp, 0]; At2{numblk+1} = sparse(At2{numblk+1}); b2 = [zeros(m,1); alp; 0]; %% %% Solve SDP %% gd = []; info = []; yfeas = []; Zfeas = []; if (solveyes) if strcmp(OPTIONS.solver,'sqlp') [X0,y0,Z0] = infeaspt(blk2,At2,C2,b2,2,100); [obj,X,y,Z,info] = sqlp(blk2,At2,C2,b2,OPTIONS,X0,y0,Z0); %#ok elseif strcmp(OPTIONS.solver,'HSDsqlp'); [obj,X,y,Z,info] = HSDsqlp(blk2,At2,C2,b2,OPTIONS); %#ok else [obj,X,y,Z,info] = sdpt3(blk2,At2,C2,b2,OPTIONS); %#ok end tt = alp*abs(y(m+1)); theta = beta*abs(y(m+2)); yfeas = D*y(1:m)/theta; Zfeas = ops(ops(Z(1:numblk),'+',EE,tt),'/',theta); %% if (obj(2) > 0) || (abs(obj(2)) < 1e-8) gd = 1/abs(obj(2)); elseif (obj(1) > 0) gd = 1/obj(1); else gd = 1/exp(mean(log(abs(obj)))); end err = max(info.dimacs([1,3,6])); if (OPTIONS.printlevel) fprintf('\n ******** gd = %3.2e, err = %3.1e\n',gd,err); if (err > 1e-6); fprintf('\n----------------------------------------------------') fprintf('\n gd problem is not solved to sufficient accuracy'); fprintf('\n----------------------------------------------------\n') end end end %%*********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
blkbarrier.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/blkbarrier.m
1,795
utf_8
77a6eb1f1708aa69217000d27735efa0
%%******************************************************************** %% blkbarrier: calculate %% [-v(p)*logdet(X{p}), v(p)*logdet(Z{p}) + n*v(p)*(1-log(v(p)))] %% [-v(p)*log(gam(X{p})), v(p)*log(gam(Z{p})) + v(p)] %% [-v(p)*log(X{p}), v(p)*log(Z{p}) + n*v(p)*(1-log(v(p)))] %%******************************************************************** function objadd = blkbarrier(blk,X,Z,Xchol,Zchol,v) objadd = zeros(1,2); tmp = zeros(1,2); for p = 1:size(blk,1) pblk = blk(p,:); vp = v{p}; idx = find(vp > 0); if ~isempty(idx) vpsub = vp(idx); if size(vpsub,1) < size(vpsub,2); vpsub = vpsub'; end if strcmp(pblk{1},'s') ss = [0, cumsum(pblk{2})]; logdetX = 2*log(diag(Xchol{p})); logdetZ = 2*log(diag(Zchol{p})); logdetXsub = zeros(length(idx),1); logdetZsub = zeros(length(idx),1); for k = 1:length(idx) idxtmp = ss(idx(k))+1:ss(idx(k)+1); logdetXsub(k) = sum(logdetX(idxtmp)); logdetZsub(k) = sum(logdetZ(idxtmp)); end tmp(1) = -sum(vpsub.*logdetXsub); tmp(2) = sum(vpsub.*logdetZsub + (pblk{2}(idx)').*vpsub.*(1-log(vpsub))); elseif strcmp(pblk{1},'q') gamX = sqrt(qops(pblk,X{p},X{p},2)); gamZ = sqrt(qops(pblk,Z{p},Z{p},2)); tmp(1) = -sum(vpsub.*log(gamX(idx))); tmp(2) = sum(vpsub.*log(gamZ(idx)) + vpsub); elseif strcmp(pblk{1},'l') logX = log(X{p}); logZ = log(Z{p}); tmp(1) = -sum(vpsub.*logX(idx)); tmp(2) = sum(vpsub.*logZ(idx) + vpsub.*(1-log(vpsub))); end objadd = objadd + tmp; end end %%********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
sqlpmain.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlpmain.m
29,812
utf_8
97c549fe923480dc73e59887089d5656
%%************************************************************************* %% sqlp: main solver %% %%************************************************************************* %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%************************************************************************* function [obj,X,y,Z,info,runhist] = sqlpmain(blk,At,C,b,par,parbarrier,X0,y0,Z0) global spdensity smallblkdim printlevel msg global solve_ok use_LU exist_analytic_term numpertdiagschur global schurfun schurfun_par %% % matlabversion = par.matlabversion; isoctave = exist( 'OCTAVE_VERSION', 'builtin' ); if isoctave, w1 = warning('off','Octave:nearly-singular-matrix'); else w1 = warning('off','MATLAB:nearlySingularMatrix'); w2 = warning('off','MATLAB:singularMatrix'); end vers = par.vers; predcorr = par.predcorr; gam = par.gam; expon = par.expon; gaptol = par.gaptol + ( par.gaptol == 0 ); steptol = par.steptol; maxit = par.maxit; printlevel = par.printlevel; stoplevel = par.stoplevel; scale_data = par.scale_data; spdensity = par.spdensity; rmdepconstr = par.rmdepconstr; smallblkdim = par.smallblkdim; schurfun = par.schurfun; schurfun_par = par.schurfun_par; ublksize = par.ublksize; %% tstart = clock; X = X0; y = y0; Z = Z0; for p = 1:size(blk,1) if strcmp(blk{p,1},'u'); Z{p} = zeros(blk{p,2},1); end end %% %%----------------------------------------- %% convert unrestricted blk to linear blk. %%----------------------------------------- %% convertlen = 0; [blk,At,C,X,Z,u2lblk,ublkidx] = sqlpu2lblk(blk,At,C,X,Z,par,convertlen); for p = 1:size(blk,1) % pblk = blk(p,:); if (u2lblk(p) == 1) n = 2*blk{p,2}; blk{p,1} = 'l'; blk{p,2} = n; parbarrier{p} = zeros(1,n); At{p} = [At{p}; -At{p}]; % tau = max(1,norm(C{p})); C{p} = [C{p}; -C{p}]; msg = 'convert ublk to lblk'; if (printlevel); fprintf(' *** %s',msg); end b2 = 1 + abs(b'); normCtmp = 1+norm(C{p}); normAtmp = 1+sqrt(sum(At{p}.*At{p})); if (n > 1000) const = sqrt(n); else const = n; end if (par.startpoint == 1) X{p} = const* max([1,b2./normAtmp]) *ones(n,1); Z{p} = const* max([1,normAtmp/sqrt(n),normCtmp/sqrt(n)]) *ones(n,1); X{p} = X{p}.*(1+1e-10*randmat(n,1,0,'u')); Z{p} = Z{p}.*(1+1e-10*randmat(n,1,0,'u')); else const = max(abs(X{p})) + 100; X{p} = [X{p}+const; const*ones(n/2,1)]; %%old: const = 100; Z{p} = [const*ones(n/2,1); const*ones(n/2,1)]; Z{p} = [abs(Z0{p}); abs(Z0{p})] + 1e-4; end end end %%----------------------------------------- %% check whether {A1,...,Am} is %% linearly independent. %%----------------------------------------- %% m0 = length(b); [At,b,y,indeprows,par.depconstr,feasible,par.AAt] = ... checkdepconstr(blk,At,b,y,rmdepconstr); if (~feasible) obj = []; X = cell(size(blk,1),1); y = []; Z = cell(size(blk,1),1); runhist = []; msg = 'SQLP is not feasible'; if (printlevel); fprintf('\n %s \n',msg); end return; end par.normAAt = norm(par.AAt,'fro'); %% %%----------------------------------------- %% scale SQLP data. Note: must be done only %% after checkdepconstr %%----------------------------------------- %% normA2 = 1+ops(At,'norm'); normb2 = 1+norm(b); normC2 = 1+ops(C,'norm'); normX0 = 1+ops(X0,'norm'); normZ0 = 1+ops(Z0,'norm'); if (scale_data) [At,C,b,normA,normC,normb,X,y,Z] = scaling(blk,At,C,b,X,y,Z); else normA = 1; normC = 1; normb = 1; end %% %%----------------------------------------- %% find the combined list of non-zero %% elements of Aj, j = 1:k, for each k. %% IMPORTANT NOTE: Ak, C are permuted. %%----------------------------------------- %% par.numcolAt = length(b); [At,C,X,Z,par.permA,par.permZ] = sortA(blk,At,C,b,X,Z); [par.isspA,par.nzlistA,par.nzlistAsum,par.isspAy,par.nzlistAy] = nzlist(blk,At,par); %% %%----------------------------------------- %% create an artifical non-negative block %% for a purely log-barrier problem %%----------------------------------------- %% numblkold = size(blk,1); nn = 0; for p = 1:size(blk,1); pblk = blk(p,:); idx = find(parbarrier{p}==0); if ~isempty(idx); if strcmp(pblk{1},'l') nn = nn + length(idx); elseif strcmp(pblk{1},'q') nn = nn + sum(pblk{2}(idx)); elseif strcmp(pblk{1},'s') nn = nn + sum(pblk{2}(idx)); end end end if (nn==0) analytic_prob = 1; numblk = size(blk,1)+1; blk{numblk,1} = 'l'; blk{numblk,2} = 1; At{numblk,1} = sparse(1,length(b)); C{numblk,1} = 1; X{numblk,1} = 1e3; Z{numblk,1} = 1e3; parbarrier{numblk,1} = 0; u2lblk(numblk,1) = 0; nn = nn + 1; else analytic_prob = 0; end %% exist_analytic_term = 0; for p = 1:size(blk,1); if any(parbarrier{p} > 0), exist_analytic_term = 1; end end %%----------------------------------------- %% initialization %%----------------------------------------- %% EE = ops(blk,'identity'); normE2 = ops(EE,'norm'); Zpertold = 1; for p = 1:size(blk,1) % normCC(p) = 1+ops(C(p),'norm'); normEE(p) = 1+ops(EE(p),'norm'); %#ok end [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef) msg = 'stop: X or Z not positive definite'; if (printlevel); fprintf('\n %s\n',msg); end info.termcode = -3; info.msg1 = msg; obj = []; X = cell(size(blk,1),1); y = []; Z = cell(size(blk,1),1); runhist = []; return; end AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); ZpATynorm = ops(ZpATy,'norm'); Rd = ops(C,'-',ZpATy); objadd0 = 0; if (scale_data) for p = 1:size(blk,1) pblk = blk(p,:); objadd0 = objadd0 + sum(parbarrier{p}.*pblk{2})*log(normA{p}); end end objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); relgap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); if (scale_data) infeas_org(1) = prim_infeas*normb; infeas_org(2) = dual_infeas*normC; else infeas_org = [0,0]; end trXZ = blktrace(blk,X,Z,parbarrier); if (nn > 0); mu = trXZ/nn; else mu = gap/ops(X,'getM'); end normX = ops(X,'norm'); %% termcode = 0; restart = 0; pstep = 1; dstep = 1; pred_convg_rate = 1; corr_convg_rate = 1; besttol = max( relgap, infeas ); homRd = inf; homrp = inf; dy = zeros(length(b),1); msg = []; msg2 = []; msg3 = []; runhist.pobj = obj(1); runhist.dobj = obj(2); runhist.gap = gap; runhist.relgap = relgap; runhist.pinfeas = prim_infeas; runhist.dinfeas = dual_infeas; runhist.infeas = infeas; runhist.pstep = 0; runhist.dstep = 0; runhist.step = 0; runhist.normX = normX; runhist.cputime = etime(clock,tstart); ttime.preproc = runhist.cputime; ttime.pred = 0; ttime.pred_pstep = 0; ttime.pred_dstep = 0; ttime.corr = 0; ttime.corr_pstep = 0; ttime.corr_dstep = 0; ttime.pchol = 0; ttime.dchol = 0; ttime.misc = 0; %% %%----------------------------------------- %% display parameters and initial info %%----------------------------------------- %% if (printlevel >= 2) fprintf('\n********************************************'); fprintf('***********************\n'); fprintf(' SDPT3: Infeasible path-following algorithms'); fprintf('\n********************************************'); fprintf('***********************\n'); [hh,mm,ss] = mytime(ttime.preproc); if (printlevel>=3) fprintf(' version predcorr gam expon scale_data\n'); if (vers == 1); fprintf(' HKM '); elseif (vers == 2); fprintf(' NT '); end fprintf(' %1.0f %4.3f',predcorr,gam); fprintf(' %1.0f %1.0f %1.0f\n',expon,scale_data); fprintf('\nit pstep dstep pinfeas dinfeas gap') fprintf(' prim-obj dual-obj cputime\n'); fprintf('------------------------------------------------'); fprintf('-------------------\n'); fprintf('%2.0f|%4.3f|%4.3f|%2.1e|%2.1e|',0,0,0,prim_infeas,dual_infeas); fprintf('%2.1e|%- 7.6e %- 7.6e| %s:%s:%s|',gap,obj(1),obj(2),hh,mm,ss); end end %% %%--------------------------------------------------------------- %% start main loop %%--------------------------------------------------------------- %% param.termcode = termcode; param.iter = 0; param.obj = obj; param.relgap = relgap; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.homRd = homRd; param.homrp = homrp; param.AX = AX; param.ZpATynorm = ZpATynorm; param.normA = normA; param.normb = normb; param.normC = normC; param.normX0 = normX0; param.normZ0 = normZ0; param.m0 = m0; param.indeprows = indeprows; param.prim_infeas_bad = 0; param.dual_infeas_bad = 0; param.prim_infeas_min = prim_infeas; param.dual_infeas_min = dual_infeas; param.gaptol = par.gaptol; param.inftol = par.inftol; param.maxit = maxit; param.scale_data = scale_data; param.printlevel = printlevel; param.ublksize = ublksize; Xbest = X; ybest = y; Zbest = Z; %% for iter = 1:maxit; tstart = clock; timeold = tstart; update_iter = 0; breakyes = 0; pred_slow = 0; corr_slow = 0; % step_short = 0; par.parbarrier = parbarrier; par.iter = iter; par.obj = obj; par.relgap = relgap; par.pinfeas = prim_infeas; par.dinfeas = dual_infeas; par.rp = rp; par.y = y; par.dy = dy; par.normX = normX; par.ZpATynorm = ZpATynorm; %%if (printlevel > 2); fprintf(' %2.1e',par.normX); end if (iter == 1 || restart); Cpert = min(1,normC2/ops(EE,'norm')); end if (runhist.dinfeas(1) > 1e-3) && (~exist_analytic_term) ... && (relgap > 1e-4) if (par.normX > 5e3 && iter < 20) Cpert = Cpert*0.5; elseif (par.normX > 5e2 && iter < 20); Cpert = Cpert*0.3; else Cpert = Cpert*0.1; end Rd = ops(Rd,'+',EE,Cpert); %%if (printlevel > 2); fprintf('|%2.1e',Cpert); end end %%--------------------------------------------------------------- %% predictor step. %%--------------------------------------------------------------- %% if (predcorr) sigma = 0; else sigma = 1-0.9*min(pstep,dstep); if (iter == 1); sigma = 0.5; end; end sigmu = cell(size(blk,1),1); for p = 1:size(blk,1) sigmu{p} = max(sigma*mu, parbarrier{p}'); end invXchol = cell(size(blk,1),1); invZchol = ops(Zchol,'inv'); if (vers == 1); [par,dX,dy,dZ,coeff,L,hRd] = ... HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol); elseif (vers == 2); [par,dX,dy,dZ,coeff,L,hRd] = ... NTpred(blk,At,par,rp,Rd,sigmu,X,Z,Zchol,invZchol); end if (solve_ok <= 0) msg = 'stop: difficulty in computing predictor directions'; if (printlevel); fprintf('\n %s',msg); end runhist.pinfeas(iter+1) = runhist.pinfeas(iter); runhist.dinfeas(iter+1) = runhist.dinfeas(iter); runhist.relgap(iter+1) = runhist.relgap(iter); runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; %% do not ues breakyes = 1 end timenew = clock; ttime.pred = ttime.pred + etime(timenew,timeold); timeold = timenew; %% %%----------------------------------------- %% step-lengths for predictor step %%----------------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end [Xstep,invXchol] = steplength(blk,X,dX,Xchol,invXchol); pstep = min(1,gamused*full(Xstep)); timenew = clock; ttime.pred_pstep = ttime.pred_pstep + etime(timenew,timeold); timeold = timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); dstep = min(1,gamused*full(Zstep)); trXZnew = trXZ + pstep*blktrace(blk,dX,Z,parbarrier) ... + dstep*blktrace(blk,X,dZ,parbarrier) ... + pstep*dstep*blktrace(blk,dX,dZ,parbarrier); if (nn > 0); mupred = trXZnew/nn; else mupred = 1e-16; end mupredhist(iter) = mupred; %#ok timenew = clock; ttime.pred_dstep = ttime.pred_dstep + etime(timenew,timeold); timeold = timenew; %% %%----------------------------------------- %% stopping criteria for predictor step. %%----------------------------------------- %% if (min(pstep,dstep) < steptol) && (stoplevel) && (iter > 10) msg = 'stop: steps in predictor too short'; if (printlevel) fprintf('\n %s',msg); fprintf(': pstep = %3.2e, dstep = %3.2e\n',pstep,dstep); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; end if (~predcorr) if (iter >= 2) idx = max(2,iter-2) : iter; pred_slow = all(mupredhist(idx)./mupredhist(idx-1) > 0.4); idx = max(2,iter-5) : iter; pred_convg_rate = mean(mupredhist(idx)./mupredhist(idx-1)); pred_slow = pred_slow + (mupred/mu > 5*pred_convg_rate); end if (max(mu,infeas) < 1e-6) && (pred_slow) && (stoplevel) msg = 'stop: lack of progress in predictor'; if (printlevel) fprintf('\n %s',msg); fprintf(': mupred/mu = %3.2f, pred_convg_rate = %3.2f.',... mupred/mu,pred_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %%--------------------------------------------------------------- %% corrector step. %%--------------------------------------------------------------- %% if (predcorr) && (~breakyes) step_pred = min(pstep,dstep); if (mu > 1e-6) if (step_pred < 1/sqrt(3)); expon_used = 1; else expon_used = max(expon,3*step_pred^2); end else expon_used = max(1,min(expon,3*step_pred^2)); end if (nn==0) sigma = 0.2; elseif (mupred < 0) sigma = 0.8; else sigma = min(1, (mupred/mu)^expon_used); end sigmu = cell(size(blk,1),1); for p = 1:size(blk,1) sigmu{p} = max(sigma*mu, parbarrier{p}'); end if (vers == 1) [dX,dy,dZ] = HKMcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); elseif (vers == 2) [dX,dy,dZ] = NTcorr(blk,At,par,rp,Rd,sigmu,hRd,... dX,dZ,coeff,L,X,Z); end if (solve_ok <= 0) msg = 'stop: difficulty in computing corrector directions'; if (printlevel); fprintf('\n %s',msg); end runhist.pinfeas(iter+1) = runhist.pinfeas(iter); runhist.dinfeas(iter+1) = runhist.dinfeas(iter); runhist.relgap(iter+1) = runhist.relgap(iter); runhist.cputime(iter+1) = etime(clock,tstart); termcode = -4; break; %% do not ues breakyes = 1 end timenew = clock; ttime.corr = ttime.corr + etime(timenew,timeold); timeold = timenew; %% %%----------------------------------- %% step-lengths for corrector step %%----------------------------------- %% if (gam == 0) gamused = 0.9 + 0.09*min(pstep,dstep); else gamused = gam; end Xstep = steplength(blk,X,dX,Xchol,invXchol); pstep = min(1,gamused*full(Xstep)); timenew = clock; ttime.corr_pstep = ttime.corr_pstep+etime(timenew,timeold); timeold = timenew; Zstep = steplength(blk,Z,dZ,Zchol,invZchol); dstep = min(1,gamused*full(Zstep)); trXZnew = trXZ + pstep*blktrace(blk,dX,Z,parbarrier) ... + dstep*blktrace(blk,X,dZ,parbarrier)... + pstep*dstep*blktrace(blk,dX,dZ,parbarrier); if (nn > 0); mucorr = trXZnew/nn; else mucorr = 1e-16; end timenew = clock; ttime.corr_dstep = ttime.corr_dstep+etime(timenew,timeold); timeold = timenew; %% %%----------------------------------------- %% stopping criteria for corrector step %%----------------------------------------- if (iter >= 2) idx = max(2,iter-2) : iter; corr_slow = all(runhist.gap(idx)./runhist.gap(idx-1) > 0.8); idx = max(2,iter-5) : iter; corr_convg_rate = mean(runhist.gap(idx)./runhist.gap(idx-1)); corr_slow = corr_slow + (mucorr/mu > max(min(1,5*corr_convg_rate),0.8)); end if (max(relgap,infeas) < 1e-6) && (iter > 20) ... && (corr_slow > 1) && (stoplevel) msg = 'stop: lack of progress in corrector'; if (printlevel) fprintf('\n %s',msg); fprintf(': mucorr/mu = %3.2f, corr_convg_rate = %3.2f',... mucorr/mu,corr_convg_rate); end runhist.cputime(iter+1) = etime(clock,tstart); termcode = -2; breakyes = 1; else update_iter = 1; end end %%--------------------------------------------------------------- %% udpate iterate %%--------------------------------------------------------------- indef = [1,1]; if (update_iter) for t = 1:5 [Xchol,indef(1)] = blkcholfun(blk,ops(X,'+',dX,pstep)); timenew = clock; ttime.pchol = ttime.pchol + etime(timenew,timeold); timeold = timenew; if (indef(1)); pstep = 0.8*pstep; else break; end end if (t > 1); pstep = gamused*pstep; end for t = 1:5 [Zchol,indef(2)] = blkcholfun(blk,ops(Z,'+',dZ,dstep)); timenew = clock; ttime.dchol = ttime.dchol + etime(timenew,timeold); timeold = timenew; if (indef(2)); dstep = 0.8*dstep; else break; end end if (t > 1); dstep = gamused*dstep; end %%------------------------------------------- AXtmp = AX + pstep*AXfun(blk,At,par.permA,dX); prim_infeasnew = norm(b-AXtmp)/normb2; if (relgap < 5*infeas); alpha = 1e2; else alpha = 1e3; end if any(indef) if indef(1); msg = 'stop: X not positive definite'; end if indef(2); msg = 'stop: Z not positive definite'; end if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; elseif (prim_infeasnew > max([1e-8,relgap,20*prim_infeas]) && iter > 10) ... || (prim_infeasnew > max([1e-7,1e3*prim_infeas,0.1*relgap]) && relgap < 1e-2) ... || (prim_infeasnew > alpha*max([1e-9,param.prim_infeas_min]) ... && (prim_infeasnew > max([3*prim_infeas,0.1*relgap])) ... && (iter > 25) && (dual_infeas < 1e-6) && (relgap < 0.1)) ... || ((prim_infeasnew > 1e3*prim_infeas && prim_infeasnew > 1e-12) ... && (max(relgap,dual_infeas) < 1e-8)) if (stoplevel) msg = 'stop: primal infeas has deteriorated too much'; if (printlevel); fprintf('\n %s, %2.1e',msg,prim_infeasnew); end termcode = -7; breakyes = 1; end elseif (trXZnew > 1.05*runhist.gap(iter)) && (~exist_analytic_term) ... && ((infeas < 1e-5) && (relgap < 1e-4) && (iter > 20) ... || (max(infeas,relgap) < 1e-7) && (iter > 10)) if (stoplevel) msg = 'stop: progress in duality gap has deteriorated'; if (printlevel); fprintf('\n %s, %2.1e',msg,trXZnew); end termcode = -8; breakyes = 1; end else X = ops(X,'+',dX,pstep); y = y + dstep*dy; Z = ops(Z,'+',dZ,dstep); end end %%--------------------------------------------------------------- %% adjust linear blk arising from unrestricted blk %%--------------------------------------------------------------- if (~breakyes) for p = 1:size(blk,1) if (u2lblk(p) == 1) len = blk{p,2}/2; xtmp = min(X{p}(1:len),X{p}(len+1:2*len)); alpha = 0.8; X{p}(1:len) = X{p}(1:len) - alpha*xtmp; X{p}(len+1:2*len) = X{p}(len+1:2*len) - alpha*xtmp; if (mu < 1e-4) %% old: (mu < 1e-7) Z{p} = 0.5*mu./max(1,X{p}); %% good to keep this step else ztmp = min(1,max(Z{p}(1:len),Z{p}(len+1:2*len))); if (dual_infeas > 1e-4 && dstep < 0.2) beta = 0.3; else beta = 0.0; end %% important to set beta = 0 at later stage. Z{p}(1:len) = Z{p}(1:len) + beta*ztmp; Z{p}(len+1:2*len) = Z{p}(len+1:2*len) + beta*ztmp; end end end end %%-------------------------------------------------- %% perturb Z: do this step before checking for break %%-------------------------------------------------- if (~breakyes) && (~exist_analytic_term) trXZtmp = blktrace(blk,X,Z); trXE = blktrace(blk,X,EE); Zpert = max(1e-12,0.2*min(relgap,prim_infeas)).*normC2./normE2; Zpert = min(Zpert,0.1*trXZtmp./trXE); Zpert = min([1,Zpert,1.5*Zpertold]); if (infeas < 0.1) Z = ops(Z,'+',EE,Zpert); [Zchol,indef(2)] = blkcholfun(blk,Z); if any(indef(2)) msg = 'stop: Z not positive definite'; if (printlevel); fprintf('\n %s',msg); end termcode = -3; breakyes = 1; end %%if (printlevel > 2); fprintf(' %2.1e',Zpert); end end Zpertold = Zpert; end %%--------------------------------------------------------------- %% compute rp, Rd, infeasibities, etc %%--------------------------------------------------------------- %% AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); ZpATynorm = ops(ZpATy,'norm'); Rd = ops(C,'-',ZpATy); objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); relgap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); if (scale_data) infeas_org(1) = prim_infeas*normb; infeas_org(2) = dual_infeas*normC; end homRd = inf; homrp = inf; if (ops(parbarrier,'norm') == 0) if (obj(2) > 0); homRd = ZpATynorm/(obj(2)); end if (obj(1) < 0); homrp = norm(AX)/(-obj(1))/(normC); end end trXZ = blktrace(blk,X,Z,parbarrier); if (nn > 0); mu = trXZ/nn; else mu = gap/ops(X,'getM'); end normX = ops(X,'norm'); %% runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; runhist.pstep(iter+1) = pstep; runhist.dstep(iter+1) = dstep; runhist.step(iter+1) = min(pstep,dstep); runhist.normX(iter+1) = normX; runhist.cputime(iter+1) = etime(clock,tstart); timenew = clock; ttime.misc = ttime.misc + etime(timenew,timeold); % timeold = timenew; [hh,mm,ss] = mytime(sum(runhist.cputime)); if (printlevel>=3) fprintf('\n%2.0f|%4.3f|%4.3f',iter,pstep,dstep); fprintf('|%2.1e|%2.1e|%2.1e|',prim_infeas,dual_infeas,gap); fprintf('%- 7.6e %- 7.6e| %s:%s:%s|',obj(1),obj(2),hh,mm,ss); end %%-------------------------------------------------- %% check convergence %%-------------------------------------------------- param.use_LU = use_LU; param.stoplevel = stoplevel; param.termcode = termcode; param.iter = iter; param.obj = obj; param.gap = gap; param.relgap = relgap; param.prim_infeas = prim_infeas; param.dual_infeas = dual_infeas; param.mu = mu; param.homRd = homRd; param.homrp = homrp; param.AX = AX; param.ZpATynorm = ZpATynorm; param.normX = ops(X,'norm'); param.normZ = ops(Z,'norm'); param.numpertdiagschur = numpertdiagschur; if (~breakyes) [param,breakyes,restart,msg2] = sqlpcheckconvg(param,runhist); end if (restart) [X,y,Z] = infeaspt(blk,At,C,b,2,1e5); rp = b-AXfun(blk,At,par.permA,X); ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); Rd = ops(C,'-',ZpATy); trXZ = blktrace(blk,X,Z,parbarrier); mu = trXZ/nn; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); [Xchol,indef(1)] = blkcholfun(blk,X); [Zchol,indef(2)] = blkcholfun(blk,Z); %#ok stoplevel = 3; end %%-------------------------------------------------- %% check for break %%-------------------------------------------------- newtol = max(relgap,infeas); update_best(iter+1) = ~( newtol >= besttol ); %#ok if update_best(iter+1), Xbest = X; ybest = y; Zbest = Z; besttol = newtol; end if besttol < 1e-4 && ~any(update_best(max(1,iter-1):iter+1)) msg = 'lack of progress in infeas'; if (printlevel); fprintf('\n %s',msg); end termcode = -9; breakyes = 1; end if (breakyes); break; end end %%--------------------------------------------------------------- %% end of main loop %%--------------------------------------------------------------- %% use_bestiter = 1; if (use_bestiter) && (param.termcode <= 0) X = Xbest; y = ybest; Z = Zbest; Xchol = blkcholfun(blk,X); Zchol = blkcholfun(blk,Z); AX = AXfun(blk,At,par.permA,X); rp = b-AX; ZpATy = ops(Z,'+',Atyfun(blk,At,par.permA,par.isspAy,y)); Rd = ops(C,'-',ZpATy); objadd = blkbarrier(blk,X,Z,Xchol,Zchol,parbarrier) + objadd0; obj = (normb*normC)*[blktrace(blk,C,X), b'*y] + objadd; gap = (normb*normC)*blktrace(blk,X,Z) - diff(objadd); relgap = gap/(1+sum(abs(obj))); prim_infeas = norm(rp)/normb2; dual_infeas = ops(Rd,'norm')/normC2; infeas = max(prim_infeas,dual_infeas); runhist.pobj(iter+1) = obj(1); runhist.dobj(iter+1) = obj(2); runhist.gap(iter+1) = gap; runhist.relgap(iter+1) = relgap; runhist.pinfeas(iter+1) = prim_infeas; runhist.dinfeas(iter+1) = dual_infeas; runhist.infeas(iter+1) = infeas; end %%--------------------------------------------------------------- %% unscale and produce infeasibility certificates if appropriate %%--------------------------------------------------------------- if (iter >= 1) [X,y,Z,termcode,resid,reldist,msg3] = ... sqlpmisc(blk,At,C,b,X,y,Z,par.permZ,param); end %%--------------------------------------------------------------- %% recover unrestricted blk from linear blk %%--------------------------------------------------------------- %% for p = 1:size(blk,1) if (u2lblk(p) == 1) n = blk{p,2}/2; X{p} = X{p}(1:n)-X{p}(n+1:2*n); Z{p} = Z{p}(1:n); end end for p = 1:size(ublkidx,1) if ~isempty(ublkidx{p,2}) n0 = ublkidx{p,1}; idxB = setdiff((1:n0)',ublkidx{p,2}); tmp = zeros(n0,1); tmp(idxB) = X{p}; X{p} = tmp; tmp = zeros(n0,1); tmp(idxB) = Z{p}; Z{p} = tmp; end end if (analytic_prob) X = X(1:numblkold); Z = Z(1:numblkold); end %%--------------------------------------------------------------- %% print summary %%--------------------------------------------------------------- %% maxC = 1+ops(ops(C,'abs'),'max'); maxb = 1+max(abs(b)); if (scale_data) dimacs = [infeas_org(1)*normb2/maxb; 0; infeas_org(2)*normC2/maxC; 0]; else dimacs = [prim_infeas*normb2/maxb; 0; dual_infeas*normC2/maxC; 0]; end dimacs = [dimacs; [-diff(obj); gap]/(1+sum(abs(obj)))]; info.dimacs = dimacs; info.termcode = termcode; info.iter = iter; info.obj = obj; info.gap = gap; info.relgap = relgap; info.pinfeas = prim_infeas; info.dinfeas = dual_infeas; info.cputime = sum(runhist.cputime); info.time = ttime; info.resid = resid; info.reldist = reldist; info.normX = ops(X,'norm'); info.normy = norm(y); info.normZ = ops(Z,'norm'); info.normb = normb2; info.maxb = maxb; info.normC = normC2; info.maxC = maxC; info.normA = normA2; info.msg1 = msg; info.msg2 = msg2; info.msg3 = msg3; sqlpsummary(info,ttime,infeas_org,printlevel); if isoctave, warning(w1.state,w1.identifier); else warning(w2.state,w2.identifier); warning(w1.state,w1.identifier); end %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HKMpred.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/HKMpred.m
2,818
utf_8
da0e8d9efacd9a7cebaae5ea2ad63de9
%%******************************************************************* %% HKMpred: Compute (dX,dy,dZ) for the H..K..M direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [par,dX,dy,dZ,coeff,L,hRd] = ... HKMpred(blk,At,par,rp,Rd,sigmu,X,Z,invZchol) global schurfun schurfun_par %% %% compute HKM scaling %% Zinv = cell(size(blk,1),1); dd = cell(size(blk,1),1); gamx = cell(size(blk,1),1); gamz = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') Zinv{p} = 1./Z{p}; dd{p} = X{p}./Z{p}; %% do not add perturbation, it badly affects cre-a elseif strcmp(pblk{1},'q') gaptmp = qops(pblk,X{p},Z{p},1); gamz2 = qops(pblk,Z{p},Z{p},2); gamz{p} = sqrt(gamz2); Zinv{p} = qops(pblk,-1./gamz2,Z{p},4); dd{p} = qops(pblk,gaptmp./gamz2,ones(n,1),4); elseif strcmp(pblk{1},'s') if (numblk == 1) Zinv{p} = Prod2(pblk,full(invZchol{p}),invZchol{p}',1); %% to fix the anonmaly when Zinv has very small elements if (par.iter==2 || par.iter==3) && ~issparse(Zinv{p}); Zinv{p} = Zinv{p} + 1e-16; end else Zinv{p} = Prod2(pblk,invZchol{p},invZchol{p}',1); end end end par.Zinv = Zinv; par.gamx = gamx; par.gamz = gamz; par.dd = dd; %% %% compute schur matrix %% m = length(rp); schur = sparse(m,m); UU = []; EE = []; Afree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'l') [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,par.dd); elseif strcmp(pblk{1},'q'); [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,par.dd,par.Zinv,X); elseif strcmp(pblk{1},'s') if isempty(schurfun{p}) schur = schurmat_sblk(blk,At,par,schur,p,X,par.Zinv); elseif ischar(schurfun{p}) if ~isempty(par.permZ{p}) Zpinv = Zinv{p}(par.permZ{p},par.permZ{p}); Xp = X{p}(par.permZ{p},par.permZ{p}); else Xp = X{p}; Zpinv = Zinv{p}; end schurtmp = feval(schurfun{p},Xp,Zpinv,schurfun_par(p,:)); schur = schur + schurtmp; end elseif strcmp(pblk{1},'u') Afree = [Afree, At{p}']; %#ok end end %% %% compute rhs %% [rhs,EinvRc,hRd] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu); %% %% solve linear system %% [xx,coeff,L] = linsysolve(par,schur,UU,Afree,EE,rhs); %% %% compute (dX,dZ) %% [dX,dy,dZ] = HKMdirfun(blk,At,par,Rd,EinvRc,X,xx,m); %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
read_sdpa.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/read_sdpa.m
7,591
utf_8
211ea10474df1ffe50a0c5456e1cbe41
%%******************************************************************* %% Read in a problem in SDPA sparse format. %% %% [blk,At,C,b] = read_sdpa(fname) %% %% Input: fname = name of the file containing SDP data in %% SDPA foramt. %% Important: the data is assumed to contain only %% semidefinite and linear blocks. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function [blk,At,C,b] = read_sdpa(fname) %% %% Open the file for input %% compressed = 0; if exist(fname,'file') fid = fopen(fname,'r'); elseif exist([fname,'.Z'],'file'); compressed = 1; unix(['uncompress ',fname,'.Z']); fid = fopen(fname,'r'); elseif exist([fname,'.gz'],'file'); compressed = 2; unix(['gunzip ',fname,'.gz']); fid = fopen(fname,'r'); else fprintf('*** Problem not found, please specify the correct path or problem name. \n'); blk = []; At = []; C = []; b = []; return; end %% %% Clean up special characters and comments from the file %% [datavec,count] = fscanf(fid,'%c'); %#ok linefeeds = strfind(datavec,char(10)); comment_chars = '*"='; cumidx = []; for i=1:length(comment_chars) idx = strfind(datavec,comment_chars(i)); cumidx = [cumidx,idx]; %#ok end for j=length(cumidx):-1:1 if (cumidx(j)==1) || (strcmp(datavec(cumidx(j)-1),char(10))) datavec(cumidx(j):linefeeds(find(cumidx(j)<linefeeds,1,'first')))=''; else datavec(cumidx(j):linefeeds(find(cumidx(j)<linefeeds,1,'first'))-1)=''; end end special_chars = ',{}()'; cumidx=[]; for i=1:length(special_chars) idx = strfind(datavec,special_chars(i)); cumidx = [cumidx,idx]; %#ok end datavec(cumidx) = blanks(length(cumidx)); clear linefeeds; %% %% Close the file %% fclose(fid); if compressed==1; unix(['compress ',fname]); end; if compressed==2; unix(['gzip ',fname]); end; %% %% Next, read in basic problem size parameters. %% datavec = sscanf(datavec,'%f'); if size(datavec,1) < size(datavec,2); datavec = datavec'; end; m = datavec(1); numblk = datavec(2); blksize = datavec(3:numblk+2); if size(blksize,1) > size(blksize,2); blksize = blksize'; end %% %% Get input b. %% idxstrt = 2+numblk; b = datavec(idxstrt+1:idxstrt+m); idxstrt = idxstrt+m; b = -b; %% %% Construct blk %% deblksize = 100; spblkidxtmp = find( (blksize>1) & (blksize < deblksize) ); spblkidxtmp = sort(spblkidxtmp); deblkidx = find( (blksize<=1) | (blksize >= deblksize) ); denumblk = length(deblkidx); linblkidx = zeros(1,denumblk); for p = 1:denumblk n = blksize(deblkidx(p)); if (n > 1); blk{p,1} = 's'; blk{p,2} = n; %#ok n2 = n*(n+1)/2; At{p,1} = sparse(n2,m); %#ok C{p,1} = sparse(n,n); %#ok else linblkidx(p) = p; blk{p,1} = 'l'; blk{p,2} = abs(n); %#ok At{p,1} = sparse(abs(n),m); %#ok C{p,1} = sparse(abs(n),1); %#ok end end if ~isempty(spblkidxtmp) maxnumblk = 200; spnumblk = ceil(length(spblkidxtmp)/maxnumblk); for q = 1:spnumblk if (q < spnumblk) spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: q*maxnumblk]); %#ok else spblkidxall{q} = spblkidxtmp([(q-1)*maxnumblk+1: length(spblkidxtmp)]); %#ok end tmp = blksize(spblkidxall{q}); blk{denumblk+q,1} = 's'; %#ok blk{denumblk+q,2} = tmp; %#ok n2 = sum(tmp.*(tmp+1))/2; At{denumblk+q,1} = sparse(n2,m); %#ok C{denumblk+q,1} = sparse(sum(tmp),sum(tmp)); %#ok end else spnumblk = 0; end linblkidx(denumblk+1:denumblk+spnumblk) = 0; %% %% Construct single blocks of A,C %% len = length(datavec); Y = reshape(datavec(idxstrt+1:len),5,(len-idxstrt)/5)'; clear datavec; Y = sortrows(Y,[1 2]); matidx = [0; find(diff(Y(:,1)) ~= 0); size(Y,1)]; %% for k = 1:length(matidx)-1 idx = matidx(k)+1 : matidx(k+1); Ytmp = Y(idx,1:5); matno = Ytmp(1,1); Ytmp2 = Ytmp(:,2); for p = 1:denumblk n = blksize(deblkidx(p)); idx = find(Ytmp2 == deblkidx(p)); ii = Ytmp(idx,3); jj = Ytmp(idx,4); vv =Ytmp(idx,5); len = length(idx); if (n > 1) idxtmp = find(ii > jj); if ~isempty(idxtmp); tmp = jj(idxtmp); jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; end tmp = -sparse(ii,jj,vv,n,n); tmp = tmp + triu(tmp,1)'; else tmp = -sparse(ii,ones(len,1),vv,abs(n),1); end if (matno == 0) C{p,1} = tmp; %#ok else if (n > 1) At{p,1}(:,matno) = svec(blk(p,:),tmp,1); %#ok else At{p,1}(:,matno) = tmp; %#ok end end end end %% %% Construct big sparse block of A,C %% if (spnumblk > 0) Y1 = Y(:,1); diffY1 = find(diff([-1; Y1; inf])); for kk = 1:length(diffY1)-1 idx = diffY1(kk) : diffY1(kk+1)-1; matno = Y1(diffY1(kk)); Ytmp = Y(idx,1:5); Ytmp2 = Ytmp(:,2); maxYtmp2 = Ytmp2(length(Ytmp2)); minYtmp2 = Ytmp2(1); diffYtmp2 = Ytmp2(diff([-1; Ytmp2])~=0); for q = 1:spnumblk spblkidx = spblkidxall{q}; maxspblkidx = spblkidx(length(spblkidx)); minspblkidx = spblkidx(1); count = 0; if (minYtmp2 <= maxspblkidx) && (maxYtmp2 >= minspblkidx) tmpblksize = blksize(spblkidx); n = sum(tmpblksize); cumspblksize = [0 cumsum(tmpblksize)]; n2 = sum(tmpblksize.*(tmpblksize+1))/2; idx = zeros(n2,1); offset = zeros(n2,1); for t = 1:length(diffYtmp2) p = find(spblkidx == diffYtmp2(t)); if ~isempty(p) idxtmp = find(Ytmp2 == spblkidx(p)); len = length(idxtmp); idx(count+1:count+len) = idxtmp; offset(count+1:count+len) = cumspblksize(p); count = count + len; end end idx = idx(1:count); offset = offset(1:count); ii = Ytmp(idx,3)+offset; jj = Ytmp(idx,4)+offset; vv = Ytmp(idx,5); idxtmp = find(ii > jj); if ~isempty(idxtmp); tmp = jj(idxtmp); jj(idxtmp) = ii(idxtmp); ii(idxtmp) = tmp; end idxeq = find(ii==jj); tmp = spconvert([ii jj -vv; jj ii -vv; n n 0]) ... + spconvert([ii(idxeq) jj(idxeq) vv(idxeq); n n 0]); if (matno == 0) C{denumblk+q,1} = tmp; %#ok else At{denumblk+q,1}(:,matno) = svec(blk(denumblk+q,:),tmp,1); %#ok end end end end end %% %% put all linear blocks together as a single linear block %% idx = find(linblkidx); if (length(idx) > 1) sdpidx = find(linblkidx==0); blktmp = 0; Atmp = []; Ctmp = []; for k = 1:length(idx) tmp = linblkidx(idx(k)); blktmp = blktmp+blk{tmp,2}; Atmp = [Atmp; At{tmp}]; %#ok Ctmp = [Ctmp; C{tmp}]; %#ok end At = At(sdpidx); C = C(sdpidx); blk = blk(sdpidx,:); len = length(sdpidx); blk(2:len+1,:) = blk; blk{1,1} = 'l'; blk{1,2} = blktmp; At(2:len+1,1) = At; C(2:len+1,1) = C; At{1,1} = Atmp; C{1,1} = Ctmp; end %%******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
sortA.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sortA.m
2,639
utf_8
c998ea7df87432b78f6c001d0bbc5318
%%********************************************************************* %% sortA: sort columns of At{p} in ascending order according to the %% number of nonzero elements. %% %% [At,C,b,X0,Z0,permA,permZ] = sortA(blk,At,C,b,X0,Z0); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************* function [At,C,X0,Z0,permA,permZ] = sortA(blk,At,C,b,X0,Z0) global spdensity smallblkdim %% if isempty(spdensity); spdensity = 0.4; end if isempty(smallblkdim); smallblkdim = 50; end %% numblk = size(blk,1); m = length(b); nnzA = zeros(numblk,m); permA = kron(ones(numblk,1),1:m); permZ = cell(size(blk,1),1); %% for p=1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); % numblk = length(pblk{2}); if strcmp(pblk{1},'s') && (max(pblk{2}) > smallblkdim) % n2 = sum(pblk{2}.*pblk{2}); n22 = sum(pblk{2}.*(pblk{2}+1))/2; m1 = size(At{p,1},2); if (length(pblk{2}) == 1) tmp = abs(C{p}) + abs(Z0{p}); if (~isempty(At{p,1})) tmp = tmp + smat(blk(p,:),abs(At{p,1})*ones(m1,1),1); end if (nnz(tmp) < spdensity*n22); per = symamd(tmp); invper = zeros(n,1); invper(per) = 1:n; permZ{p} = invper; if (~isempty(At{p,1})) isspAt = issparse(At{p,1}); for k = 1:m1 Ak = smat(pblk,At{p,1}(:,k),1); At{p,1}(:,k) = svec(pblk,Ak(per,per),isspAt); end end C{p} = C{p}(per,per); Z0{p} = Z0{p}(per,per); X0{p} = X0{p}(per,per); else per = []; end if (length(pblk) > 2) && (~isempty(per)) % m2 = length(pblk{3}); P = spconvert([(1:n)', per', ones(n,1)]); At{p,2} = P*At{p,2}; end end if ~isempty(At{p,1}) && (mexnnz(At{p,1}) < m*n22/2) for k = 1:m1 Ak = At{p,1}(:,k); nnzA(p,k) = length(find(abs(Ak) > eps)); end [dummy,permAp] = sort(nnzA(p,1:m1)); %#ok At{p,1} = At{p,1}(:,permAp); permA(p,1:m1) = permAp; end elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u'); if ~issparse(At{p,1}); At{p,1} = sparse(At{p,1}); end end end %%*********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
blkeig.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/blkeig.m
2,412
utf_8
97da97f8165585de45eae52a86e0f127
%%*************************************************************************** %% blkeig: compute eigenvalue decomposition of a cell array %% whose contents are square matrices or the diagonal %% of a diagonal matrix. %% %% [d,V] = blkeig(blk,X); %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************************** function [d,V] = blkeig(blk,X) spdensity = 0.5; if ~iscell(X); if strcmp(blk{1},'s'); blktmp = blk{2}; if (length(blktmp) == 1); if (nargout == 1); d = eig(full(X)); elseif (nargout == 2); [V,d] = eig(full(X)); d = diag(d); end else if (nargout == 2); V = sparse(length(X),length(X)); end d = zeros(sum(blktmp),1); xx = mexsvec(blk,X,0); blktmp2 = blktmp.*(blktmp+1)/2; s2 = [0, cumsum(blktmp2)]; blksub{1,1} = 's'; blksub{1,2} = 0; s = [0, cumsum(blktmp)]; for i = 1:length(blktmp) pos = s(i)+1 : s(i+1); blksub{2} = blktmp(i); Xsub = mexsmat(blksub,xx(s2(i)+1:s2(i+1)),0); if (nargout == 1); lam = eig(Xsub); elseif (nargout == 2); [evec,lam] = eig(Xsub); lam = diag(lam); V(pos,pos) = sparse(evec); %#ok end d(pos,1) = lam; end end n2 = sum(blktmp.*blktmp); if (nargout == 2); if (nnz(V) <= spdensity*n2); V = sparse(V); else V = full(V); end end elseif strcmp(blk{1},'l'); if (nargout == 2); V = ones(size(X)); d = X; elseif (nargout == 1); d = X; end end else if (nargout == 2); V = cell(size(X)); d = cell(size(X)); for p = 1:size(blk,1); [d{p},V{p}] = blkeig(blk(p,:),X{p}); end elseif (nargout == 1); d = cell(size(X)); for p = 1:size(blk,1); d{p} = blkeig(blk(p,:),X{p}); end end end %%***************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
HKMrhsfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/HKMrhsfun.m
3,358
utf_8
b1e6a8305128af799634b9ef7324cfeb
%%******************************************************************* %% HKMrhsfun: compute the right-hand side vector of the %% Schur complement equation for the HKM direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = HKMrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) m = length(rp); if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m,1); end hEinvRc = zeros(m,1); EinvRc = cell(size(blk,1),1); rhsfree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'l') if iscell(sigmu) EinvRc{p} = sigmu{p}./Z{p} -X{p}; else EinvRc{p} = sigmu./Z{p} -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) Rq = dX{p}.*dZ{p}./Z{p}; else tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') if iscell(sigmu) EinvRc{p} = qops(pblk,sigmu{p},par.Zinv{p},3) -X{p}; else EinvRc{p} = sigmu*par.Zinv{p} -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) ff{p} = qops(pblk,1./par.gamz{p},Z{p},3); %#ok hdx = qops(pblk,par.gamz{p},ff{p},5,dX{p}); hdz = qops(pblk,par.gamz{p},ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); Rq = qops(pblk,par.gamz{p},ff{p},6,hdxdz); else tmp = par.dd{p}.*Rd{p} ... + qops(pblk,qops(pblk,Rd{p},par.Zinv{p},1),X{p},3) ... + qops(pblk,qops(pblk,Rd{p},X{p},1),par.Zinv{p},3); tmp2 = mexMatvec(At{p,1},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p,1},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') if iscell(sigmu) %%ss = [0,cumsum(pblk{2})]; %%sigmuvec = zeros(n,1); %%for k = 1:length(pblk{2}); %% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1); %%end sigmuvec = mexexpand(pblk{2},sigmu{p}); EinvRc{p} = par.Zinv{p}*spdiags(sigmuvec,0,n,n) -X{p}; else EinvRc{p} = sigmu*par.Zinv{p} -X{p}; end Rq = sparse(n,n); if (corrector) && (norm(par.parbarrier{p})==0) Rq = Prod3(pblk,dX{p},dZ{p},par.Zinv{p},0); Rq = 0.5*(Rq+Rq'); else tmp = Prod3(pblk,X{p},Rd{p},par.Zinv{p},0,par.nzlistAy{p}); tmp = 0.5*(tmp+tmp'); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp}); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'u') rhsfree = [rhsfree; Rd{p}]; %#ok end end %% rhs = rp + hRd - hEinvRc; rhs = full([rhs; rhsfree]); %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
linsysolve.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/linsysolve.m
7,741
utf_8
2091e9d1c0858acfd5c4e07842ed787d
%%*************************************************************** %% linsysolve: solve linear system to get dy, and direction %% corresponding to unrestricted variables. %% %% [xx,coeff,L,resnrm] = linsysolve(schur,UU,Afree,EE,rhs); %% %% child functions: symqmr.m, mybicgstable.m, linsysolvefun.m %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%*************************************************************** function [xx,coeff,L,resnrm] = linsysolve(par,schur,UU,Afree,EE,rhs) global solve_ok exist_analytic_term global nnzmat nnzmatold matfct_options matfct_options_old use_LU global msg diagR diagRold numpertdiagschur spdensity = par.spdensity; printlevel = par.printlevel; iter = par.iter; if isfield(par,'relgap') && isfield(par,'pinfeas') && isfield(par,'dinfeas') err = max([par.relgap,par.pinfeas,par.dinfeas]); else err = inf; end %% m = length(schur); if (iter==1); use_LU = 0; matfct_options_old = ''; %#ok diagR = ones(m,1); numpertdiagschur = 0; end if isempty(nnzmatold) nnzmatold = 0; %#ok end diagRold = diagR; %% %% schur = schur + rho*diagschur + lam*AAt %% diagschur = abs(full(diag(schur))); if (par.ublksize) minrho(1) = 1e-15; else minrho(1) = 1e-17; end minrho(1) = max(minrho(1), 1e-6/3.0^iter); %% old: 1e-6/3.0^iter minrho(2) = max(1e-04, 0.7^iter); minlam = max(1e-10, 1e-4/2.0^iter); rho = min(minrho(1), minrho(2)*(1+norm(rhs))/(1+norm(diagschur.*par.y))); lam = min(minlam, 0.1*rho*norm(diagschur)/par.normAAt); if (exist_analytic_term); rho = 0; end; %% important ratio = max(diagR)/min(diagR); if (par.depconstr) || (ratio > 1e10) || (iter < 5) %% important: do not perturb beyond certain threshold %% since it will adversely affect prim_infeas of fp43 %% pertdiagschur = min(rho*diagschur,1e-4./max(1,abs(par.dy))); mexschurfun(schur,full(pertdiagschur)); %%if (printlevel>2); fprintf(' %2.1e',rho); end end if (par.depconstr) || (par.ZpATynorm > 1e10) || (par.ublksize) || (iter < 10) %% Note: do not add this perturbation even if ratio is large. %% It adversely affects hinf15. %% lam = min(lam,1e-4/max(1,norm(par.AAt*par.dy))); if (exist_analytic_term); lam = 0; end mexschurfun(schur,lam*par.AAt); %%if (printlevel>2); fprintf('*'); end end if (max(diagschur)/min(diagschur) > 1e14) && (par.blkdim(2) == 0) ... && (iter > 10) tol = 1e-8; idx = find(diagschur < tol); len = length(idx); pertdiagschur = zeros(m,1); if (len > 0 && len < 5) && (norm(rhs(idx)) < tol) pertdiagschur(idx) = 1*ones(length(idx),1); mexschurfun(schur,pertdiagschur); numpertdiagschur = numpertdiagschur + 1; if (printlevel>2); fprintf('#'); end end end %% %% assemble coefficient matrix %% len = size(Afree,2); if ~isempty(EE) EE(:,[1 2]) = len + EE(:,[1 2]); %% adjust for ublk end EE = [(1:len)' (1:len)' zeros(len,1); EE]; if isempty(EE) coeff.mat22 = []; else coeff.mat22 = spconvert(EE); end if (size(Afree,2) || size(UU,2)) coeff.mat12 = [Afree, UU]; else coeff.mat12 = []; end coeff.mat11 = schur; %% important to use perturbed schur matrix ncolU = size(coeff.mat12,2); %% %% pad rhs with zero vector %% decide which solution methods to use %% rhs = [rhs; zeros(m+ncolU-length(rhs),1)]; if (ncolU > 300); use_LU = 1; end %% %% Cholesky factorization %% L = []; resnrm = norm(rhs); xx = inf*ones(m,1); if (~use_LU) solve_ok = 1; solvesys = 1; nnzmat = mexnnz(coeff.mat11); % nnzmatdiff = (nnzmat ~= nnzmatold); if (nnzmat > spdensity*m^2) || (m < 500) matfct_options = 'chol'; else matfct_options = 'spchol'; end if (printlevel>2); fprintf(' %s ',matfct_options); end L.matdim = length(schur); if strcmp(matfct_options,'chol') if issparse(schur); schur = full(schur); end; if (iter<=5); %%--- to fix strange anonmaly in Matlab mexschurfun(schur,1e-20,2); end L.matfct_options = 'chol'; [L.R,indef] = chol(schur); L.perm = 1:m; diagR = diag(L.R).^2; elseif strcmp(matfct_options,'spchol') if ~issparse(schur); schur = sparse(schur); end; L.matfct_options = 'spchol'; [L.R,indef,L.perm] = chol(schur,'vector'); L.Rt = L.R'; diagR = full(diag(L.R)).^2; end if (indef) diagR = diagRold; solve_ok = -2; solvesys = 0; msg = 'linsysolve: Schur complement matrix not positive definite'; if (printlevel); fprintf('\n %s',msg); end end if (solvesys) if (ncolU) tmp = coeff.mat12'*linsysolvefun(L,coeff.mat12)-coeff.mat22; if issparse(tmp); tmp = full(tmp); end tmp = 0.5*(tmp + tmp'); [L.Ml,L.Mu,L.Mp] = lu(tmp); tol = 1e-16; condest = max(abs(diag(L.Mu)))/min(abs(diag(L.Mu))); if any(abs(diag(L.Mu)) < tol) || (condest > 1e30); %%old: 1e18 solvesys = 0; %#ok solve_ok = -4; %#ok use_LU = 1; msg = 'SMW too ill-conditioned, switch to LU factor'; if (printlevel); fprintf('\n %s, %2.1e.',msg,condest); end end end [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); if (solve_ok <= 0.3) && (printlevel) fprintf('\n warning: symqmr failed: %3.1f ',solve_ok); end end if (solve_ok <= 0.3) tol = 1e-10; if (m < 1e4 && strcmp(matfct_options,'chol') && (err > tol)) ... || (m < 2e5 && strcmp(matfct_options,'spchol') && (err > tol)) use_LU = 1; if (printlevel); fprintf('\n switch to LU factor.'); end end end end %% %% LU factorization %% if (use_LU) nnzmat = mexnnz(coeff.mat11)+mexnnz(coeff.mat12); % nnzmatdiff = (nnzmat ~= nnzmatold); solve_ok = 1; solvesys = 1; %#ok if ~isempty(coeff.mat22) raugmat = [coeff.mat11, coeff.mat12; coeff.mat12', coeff.mat22]; else raugmat = coeff.mat11; end if (nnzmat > spdensity*m^2) || (m+ncolU < 500) matfct_options = 'lu'; %% lu is better than ldl else matfct_options = 'splu'; %% faster than spldl end if (printlevel>2); fprintf(' %s ',matfct_options); end L.matdim = length(raugmat); if strcmp(matfct_options,'lu') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'lu'; [L.L,L.U,L.p] = lu(raugmat,'vector'); elseif strcmp(matfct_options,'splu') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'splu'; [L.L,L.U,L.p,L.q,L.s] = lu(raugmat,'vector'); L.s = full(diag(L.s)); elseif strcmp(matfct_options,'ldl') if issparse(raugmat); raugmat = full(raugmat); end L.matfct_options = 'ldl'; [L.L,L.D,L.p] = ldl(raugmat,'vector'); L.D = sparse(L.D); elseif strcmp(matfct_options,'spldl') if ~issparse(raugmat); raugmat = sparse(raugmat); end L.matfct_options = 'spldl'; [L.L,L.D,L.p,L.s] = ldl(raugmat,'vector'); L.s = full(diag(L.s)); L.Lt = L.L'; end if (solvesys) [xx,resnrm,solve_ok] = symqmr(coeff,rhs,L,[],[],printlevel); %%[xx,resnrm,solve_ok] = mybicgstab(coeff,rhs,L,[],[],printlevel); if (solve_ok<=0) && (printlevel) fprintf('\n warning: bicgstab fails: %3.1f,',solve_ok); end end end if (printlevel>2); fprintf('%2.0d ',length(resnrm)-1); end %% nnzmatold = nnzmat; matfct_options_old = matfct_options; %%***************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
schurmat_qblk.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/schurmat_qblk.m
3,205
utf_8
d154ddca57828c83c43efd37fbe64829
%%******************************************************************* %% schurmat_qblk: compute schur matrix corresponding to SOCP blocks. %% %% HKM direction: output = schur + Ax*Ae' + Ae*Ax' - Ad*Ad' %% NT direction: output = schur + Ae*Ae' - Ad*Ad' %% %% where schur = A*D*A', and Ad is the modification to ADA' %% so that the latter is positive definite. %% %% [schur,UU,EE] = schurmat_qblk(blk,At,schur,UU,EE,p,dd,ee,xx); %% %% UU: stores the dense columns of Ax, Ae, Ad, and possibly %% those of A*D^{1/2}. It has the form UU = [Ax Ae Ad]. %% EE: stores the assocaited (2,2) block matrix when the %% output matrix is expressed as an augmented matrix. %% It has the form EE = [0 -lam 0; -lam 0 0; 0 0 I]. %% %% options = 0, HKM %% = 1, NT %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [schur,UU,EE] = schurmat_qblk(blk,At,par,schur,UU,EE,p,dd,ee,xx) global idxdenAq % nnzschur_qblk if (nargin == 10); options = 0; else options = 1; end; iter = par.iter; if isempty(EE) count = 0; else count = max(max(EE(:,2)),max(EE(:,1))); end pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); %% Ae = qprod(pblk,At{p}',ee{p}); if (options == 0) Ax = qprod(pblk,At{p}',xx{p}); end idxden = checkdense(Ae); ddsch = dd{p}; if ~isempty(idxden); spcolidx = setdiff(1:numblk,idxden); s = 1 + [0, cumsum(pblk{2})]; idx = s(idxden); tmp = zeros(n,1); tmp(idx) = sqrt(2*abs(ddsch(idx))); Ad = qprod(pblk,At{p}',tmp); ddsch(idx) = abs(ddsch(idx)); if (options == 0) len = length(idxden); gamzsub = par.gamz{p}(idxden); lam = gamzsub.*gamzsub; UU = [UU, Ax(:,idxden), Ae(:,idxden)*spdiags(lam,0,len,len), Ad(:,idxden)]; tmp = (count+1:count+len)'; EE = [EE; [tmp, len+tmp, -lam; len+tmp, tmp, -lam; ... 2*len+tmp, 2*len+tmp, ones(len,1)] ]; count = count+3*len; Ax = Ax(:,spcolidx); Ae = Ae(:,spcolidx); tmp = Ax*Ae'; schur = schur + (tmp + tmp'); else len = length(idxden); w2 = par.gamz{p}./par.gamx{p}; lam = w2(idxden); UU = [UU, Ae(:,idxden)*spdiags(sqrt(lam),0,len,len), Ad(:,idxden)]; tmp = (count+1:count+len)'; EE = [EE; [tmp, tmp, -lam; len+tmp, len+tmp, ones(len,1)] ]; count = count + 2*len; Ae = Ae(:,spcolidx); schur = schur + Ae*Ae'; end else if (options == 0) tmp = Ax*Ae'; schur = schur + (tmp+tmp'); else tmp = Ae*Ae'; schur = schur + tmp; end end if (iter==1) idxdenAq{p} = checkdense(At{p}'); end if ~isempty(idxdenAq{p}); idxden = idxdenAq{p}; len = length(idxden); Ad = At{p}(idxden,:)'*spdiags(sqrt(abs(ddsch(idxden))),0,len,len); UU = [UU, Ad]; tmp = (count+1:count+len)'; EE = [EE; [tmp, tmp, -sign(ddsch(idxden))]]; % count = count + len; ddsch(idxden) = zeros(len,1); end schurtmp = At{p}' *spdiags(ddsch,0,n,n) *At{p}; schur = schur + schurtmp; %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
ops.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/ops.m
11,548
utf_8
0931c97ce9eb7f01a28fac581153ca1c
%%****************************************************************** %% ops: %% %% Z = ops(X,operand,Y,alpha); %% %% INPUT: X = a matrix or a scalar %% or a CELL ARRAY consisting only of matrices %% operand = sym, transpose, triu, tril, %% real, imag, sqrt, abs, max, min, nnz, %% spdiags, ones, zeros, norm, sum, row-norm, blk-norm %% rank1, rank1inv, inv %% +, -, *, .*, ./, .^ %% Y (optional) = a matrix or a scalar %% or a CELL ARRAY consisting only of matrices %% alpha (optional) = a scalar %% or the variable blk. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%****************************************************************** function Z = ops(X,operand,Y,alpha) spdensity = 0.4; if (nargin == 2) if strcmp(operand,'sym'); if ~iscell(X); [m,n] = size(X); if (m == n); Z = (X+X')/2; elseif (n == 1); Z = X; else error('X must be square matrix or a column vector'); end; else Z = cell(size(X)); for p = 1:length(X); [m,n] = size(X{p}); if (m == n); Z{p} = (X{p}+X{p}')/2; elseif (n == 1); Z{p} = X{p}; else error('X{p} must be square matrix or a column vector'); end; end; end; elseif strcmp(operand,'sqrt') || strcmp(operand,'abs') || ... strcmp(operand,'real') || strcmp(operand,'imag'); if ~iscell(X); eval(['Z = ',operand,'(X);']); else Z = cell(size(X)); for p = 1:length(X); eval(['Z{p} = ',operand,'(X{p});']); end; end; elseif strcmp(operand,'max') || strcmp(operand,'min') || ... strcmp(operand,'sum'); if ~iscell(X); eval(['Z = ',operand,'(X);']); else Z = []; for p = 1:length(X); eval(['Z = [Z ',operand,'(X{p})',' ];']); end; end; eval(['Z = ',operand,'(Z);']); elseif strcmp(operand,'transpose') || strcmp(operand,'triu') || ... strcmp(operand,'tril'); if ~iscell(X); if (size(X,1) == size(X,2)); Z = feval(operand,X); elseif (size(X,2) == 1); Z = X; else error('X must be square matrix or a column vector'); end; else Z = cell(size(X)); for p = 1:length(X); if (size(X{p},1) == size(X{p},2)); Z{p} = feval(operand,X{p}); elseif (size(X{p},2) == 1); Z{p} = X{p}; else error('X{p} must be square matrix or a column vector'); end; end; end; elseif strcmp(operand,'norm'); if ~iscell(X); Z = full(sqrt(sum(sum(X.*X)))); else Z = 0; for p = 1:length(X); Z = Z + sum(sum(X{p}.*X{p})); end; Z = sqrt(Z); end; elseif strcmp(operand,'blk-norm'); if ~iscell(X); Z = full(sqrt(sum(sum(X.*X)))); else Z = zeros(length(X),1); for p = 1:length(X); Z(p) = sum(sum(X{p}.*X{p})); end; Z = sqrt(Z); end; elseif strcmp(operand,'inv'); if ~iscell(X); [m,n] = size(X); n2 = n*n; if (m==n) Z = inv(X); if (nnz(Z) > spdensity*n2) Z = full(Z); else Z = sparse(Z); end elseif (m > 1 && n == 1); Z = 1./X; if (nnz(Z) > spdensity*n) Z = full(Z); else Z = sparse(Z); end end else Z = cell(size(X)); for p = 1:length(X); [m,n] = size(X{p}); n2 = n*n; if (m==n) Z{p} = inv(X{p}); if (nnz(Z{p}) > spdensity*n2) Z{p} = full(Z{p}); else Z{p} = sparse(Z{p}); end elseif (m > 1 && n == 1); Z{p} = 1./X{p}; if (nnz(Z{p}) > spdensity*n) Z{p} = full(Z{p}); else Z{p} = sparse(Z{p}); end end end end elseif strcmp(operand,'getM'); if ~iscell(X); Z = size(X,1); else for p = 1:length(X); Z(p) = size(X{p},1); end; %#ok Z = sum(Z); end; elseif strcmp(operand,'nnz'); if ~iscell(X); Z = nnz(X); else for p = 1:length(X); Z(p) = nnz(X{p}); %#ok end; Z = sum(Z); end; elseif strcmp(operand,'ones'); if ~iscell(X); Z = ones(size(X)); else Z = cell(size(X)); for p = 1:length(X); Z{p} = ones(size(X{p})); end end elseif strcmp(operand,'zeros'); if ~iscell(X); [m,n] = size(X); Z = sparse(m,n); else Z = cell(size(X)); for p = 1:length(X); [m,n] = size(X{p}); Z{p} = sparse(m,n); end end elseif strcmp(operand,'identity'); blk = X; Z = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'s') Z{p} = speye(n,n); elseif strcmp(pblk{1},'q') s = 1+[0, cumsum(pblk{2})]; len = length(pblk{2}); Z{p} = zeros(n,1); Z{p}(s(1:len)) = ones(len,1); elseif strcmp(pblk{1},'l') Z{p} = ones(n,1); elseif strcmp(pblk{1},'u') Z{p} = zeros(n,1); end end elseif strcmp(operand,'row-norm'); if ~iscell(X); if (size(X,2) == size(X,1)); Z = sqrt(sum((X.*conj(X))'))'; %#ok elseif (size(X,2) == 1); Z = abs(X); end else Z = cell(size(X)); for p = 1:length(X); if (size(X{p},2) == size(X{p},1)); Z{p} = sqrt(sum((X{p}.*conj(X{p}))'))'; %#ok elseif (size(X{p},2) == 1); Z{p} = abs(X{p}); end end end end end %% if (nargin == 3) if strcmp(operand,'spdiags'); if ~iscell(Y); [m,n] = size(Y); if (m == n); Z = spdiags(X,0,m,n); else Z = X; end else Z = cell(size(Y)); for p = 1:length(Y); [m,n] = size(Y{p}); if (m == n); Z{p} = spdiags(X{p},0,m,n); else Z{p} = X{p}; end end end elseif strcmp(operand,'inprod') if ~iscell(X) && ~iscell(Y) Z = (Y'*X)'; elseif iscell(X) && iscell(Y) Z = zeros(size(X{1},2),1); for p=1:length(X) Z = Z + (Y{p}'*X{p})'; end end elseif strcmp(operand,'+') || strcmp(operand,'-') || ... strcmp(operand,'/') || strcmp(operand,'./') || ... strcmp(operand,'*') || strcmp(operand,'.*') || ... strcmp(operand,'.^'); if (~iscell(X) && ~iscell(Y)); eval(['Z = X',operand,'Y;']); elseif (iscell(X) && iscell(Y)) Z = cell(size(X)); for p = 1:length(X); if (size(X{p},2) == 1) && (size(Y{p},2) == 1) && ... (strcmp(operand,'*') || strcmp(operand,'/')); eval(['Z{p} = X{p}.',operand,'Y{p};']); else eval(['Z{p} = X{p} ',operand,'Y{p};']); end end elseif (iscell(X) && ~iscell(Y)); if (length(Y) == 1); Y = Y*ones(length(X),1); end Z = cell(size(X)); for p = 1:length(X); eval(['Z{p} = X{p}',operand,'Y(p);']); end elseif (~iscell(X) && iscell(Y)); Z = cell(size(Y)); if (length(X) == 1); X = X*ones(length(Y),1); end for p = 1:length(Y); eval(['Z{p} = X(p)',operand,'Y{p};']); end end else error([operand,' is not available, check input arguments']); end end %% if (nargin == 4) if strcmp(operand,'rank1') || strcmp(operand,'rank1inv'); Z = cell(size(alpha,1),1); for p = 1:size(alpha,1); if ~strcmp(alpha{p,1},'diag'); blktmp = alpha{p,2}; if (length(blktmp) == 1); if strcmp(operand,'rank1'); Z{p} = (X{p}*Y{p}' + Y{p}*X{p}')/2; else Z{p} = 2./(X{p}*Y{p}' + Y{p}*X{p}'); end else Xp = X{p}; Yp = Y{p}; n = sum(blktmp); Zp = sparse(n,n); s = [0 cumsum(blktmp)]; if strcmp(operand,'rank1'); for i = 1:length(blktmp) pos = s(i)+1 : s(i+1); x = Xp(pos); y = Yp(pos); Zp(pos,pos) = sparse((x*y' + y*x')/2); %#ok end; Z{p} = Zp; else for i = 1:length(blktmp) pos = s(i)+1 : s(i+1); x = Xp(pos); y = Yp(pos); Zp(pos,pos) = sparse(2./(x*y' + y*x')); %#ok end Z{p} = Zp; end end elseif strcmp(alpha{p,1},'diag'); if strcmp(operand,'rank1'); Z{p} = X{p}.*Y{p}; else Z{p} = 1./(X{p}.*Y{p}); end end end elseif strcmp(operand,'+') || strcmp(operand,'-'); if ~iscell(X) && ~iscell(Y); eval(['Z = X',operand,'alpha*Y;']); elseif (iscell(X) && iscell(Y)); Z = cell(size(X)); if (length(alpha) == 1); alpha = alpha*ones(length(X),1); end if strcmp(operand,'+'), for p = 1:length(X) Z{p} = X{p} + alpha(p) * Y{p}; end else for p = 1:length(X); Z{p} = X{p} - alpha(p) * Y{p}; end end else error('X, Y are different objects'); end else error([operand,' is not available']); end end %%============================================================
github
anantsrivastava30/SUVR-PET-ADNI-master
schurmat_lblk.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/schurmat_lblk.m
1,010
utf_8
11b66919604e457c631f5ed67225fc45
%%******************************************************************* %% schurmat_lblk: compute A*D*A' %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [schur,UU,EE] = schurmat_lblk(blk,At,par,schur,UU,EE,p,dd) global idxdenAl iter = par.iter; n = sum(blk{p,2}); if (iter==1) idxdenAl{p} = checkdense(At{p}'); end ddsch = dd{p}; if ~isempty(idxdenAl{p}); idxden = idxdenAl{p}; len = length(idxden); Ad = At{p}(idxden,:)' *spdiags(sqrt(ddsch(idxden)),0,len,len); UU = [UU, Ad]; if isempty(EE) count = 0; else count = max(max(EE(:,1)),max(EE(:,2))); end tmp = (count + 1: count+len)'; EE = [EE; [tmp, tmp, -ones(len,1)] ]; ddsch(idxden) = zeros(len,1); end schurtmp = At{p}' *spdiags(ddsch,0,n,n) *At{p}; schur = schur + schurtmp; %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
sqlpmisc.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlpmisc.m
4,078
utf_8
1dc032b6e1fd72eb26f2f3e519a746dd
%%***************************************************************************** %% sqlpmisc: %% unscale and produce infeasibility certificates if appropriate %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004. %%***************************************************************************** function [X,y,Z,termcode,resid,reldist,msg] = sqlpmisc(blk,At,C,b,X,y,Z,permZ,param) termcode = param.termcode; iter = param.iter; obj = param.obj; relgap = param.relgap; prim_infeas = param.prim_infeas; dual_infeas = param.dual_infeas; homRd = param.homRd; homrp = param.homrp; AX = param.AX; ZpATynorm = param.ZpATynorm; m0 = param.m0; indeprows = param.indeprows; normX0 = param.normX0; normZ0 = param.normZ0; inftol = param.inftol; maxit = param.maxit; scale_data = param.scale_data; printlevel = param.printlevel; %% resid = []; reldist = []; msg = []; if (scale_data) normA = param.normA; normC = param.normC; normb = param.normb; else normA = 1; normC = 1; normb = 1; end Anorm = ops(At,'norm'); xnorm = ops(X,'norm'); ynorm = norm(y); infeas = max(prim_infeas,dual_infeas); %% if (iter >= maxit) termcode = -6; msg = 'sqlp stop: maximum number of iterations reached'; if (printlevel); fprintf('\n %s',msg); end end if (termcode <= 0) %% %% To detect near-infeasibility when the algorithm provides %% a "better" certificate of infeasibility than of optimality. %% err = max(infeas,relgap); iflag = 0; if (obj(2) > 0) if (homRd < 0.1*sqrt(err*inftol)) iflag = 1; msg = sprintf('prim_inf,dual_inf,relgap = %3.2e, %3.2e, %3.2e',... prim_infeas,dual_infeas,relgap); if (printlevel); fprintf('\n %s',msg); end termcode = 1; end end if (obj(1) < 0) if (homrp < 0.1*sqrt(err*inftol)) iflag = 1; msg = sprintf('prim_inf,dual_inf,relgap = %3.2e, %3.2e, %3.2e',... prim_infeas,dual_infeas,relgap); if (printlevel); fprintf('\n %s',msg); end termcode = 2; end end if (iflag == 0) if (scale_data == 1) X = ops(ops(X,'./',normA),'*',normb); y = y*normC; Z = ops(ops(Z,'.*',normA),'*',normC); end end end if (termcode == 1) && (iter > 3) msg = 'sqlp stop: primal problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end if (scale_data == 1) X = ops(X,'./',normA); b = b*normb; end rby = 1/(b'*y); y = rby*y; Z = ops(Z,'*',rby); resid = ZpATynorm * rby; reldist = ZpATynorm/(Anorm*ynorm); end if (termcode == 2) && (iter > 3) msg = 'sqlp stop: dual problem is suspected of being infeasible'; if (printlevel); fprintf('\n %s',msg); end if (scale_data == 1) C = ops(C,'.*',normC); Z = ops(Z,'.*',normA); end tCX = blktrace(blk,C,X); X = ops(X,'*',1/(-tCX)); resid = norm(AX)/(-tCX); reldist = norm(AX)/(Anorm*xnorm); end if (termcode == 3) maxblowup = max(ops(X,'norm')/normX0,ops(Z,'norm')/normZ0); msg = sprintf('sqlp stop: primal or dual is diverging, %3.1e',maxblowup); if (printlevel); fprintf('\n %s',msg); end end [X,Z] = unperm(blk,permZ,X,Z); if ~isempty(indeprows) ytmp = zeros(m0,1); ytmp(indeprows) = y; y = ytmp; end %%***************************************************************************** %% unperm: undo the permutations applied in validate. %% %% [X,Z] = unperm(blk,permZ,X,Z); %% %% undoes the permutation introduced in validate. %%***************************************************************************** function [X,Z] = unperm(blk,permZ,X,Z) %% for p = 1:size(blk,1) if (strcmp(blk{p,1},'s') && ~isempty(permZ{p})) per = permZ{p}; X{p} = X{p}(per,per); Z{p} = Z{p}(per,per); end end %%*****************************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
checkdense.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/checkdense.m
730
utf_8
6d44b41643ef16f78b42927e1fc03dd8
%%******************************************************************** %% checkdense : identify the dense columns of a matrix %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************** function idxden = checkdense(A) [m,n] = size(A); idxden = []; nzratio = 1; if (m > 1000); nzratio = 0.20; end; if (m > 2000); nzratio = 0.10; end; if (m > 5000); nzratio = 0.05; end; if (nzratio < 1) nzcolA = sum(spones(A)); idxden = find(nzcolA > nzratio*m); if (length(idxden) > max(200,0.1*n)) idxden = []; end end %%********************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
NTrhsfun.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/NTrhsfun.m
4,253
utf_8
51c74223afc232c456def8488b51aa3f
%%******************************************************************* %% NTrhsfun: compute the right-hand side vector of the %% Schur complement equation for the NT direction. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%******************************************************************* function [rhs,EinvRc,hRd] = NTrhsfun(blk,At,par,X,Z,rp,Rd,sigmu,hRd,dX,dZ) spdensity = par.spdensity; m = length(rp); if (nargin > 8) corrector = 1; else corrector = 0; hRd = zeros(m,1); end hEinvRc = zeros(m,1); EinvRc = cell(size(blk,1),1); rhsfree = []; %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); numblk = length(pblk{2}); if strcmp(pblk{1},'l') if iscell(sigmu) EinvRc{p} = sigmu{p}./Z{p} -X{p}; else EinvRc{p} = sigmu./Z{p} -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) Rq = dX{p}.*dZ{p}./Z{p}; else tmp = par.dd{p}.*Rd{p}; tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'q') if iscell(sigmu) EinvRc{p} = qops(pblk,-sigmu{p}./(par.gamz{p}.*par.gamz{p}),Z{p},4) -X{p}; else EinvRc{p} = qops(pblk,-sigmu./(par.gamz{p}.*par.gamz{p}),Z{p},4) -X{p}; end Rq = sparse(n,1); if (corrector) && (norm(par.parbarrier{p})==0) w = sqrt(par.gamz{p}./par.gamx{p}); hdx = qops(pblk,w,par.ff{p},5,dX{p}); hdz = qops(pblk,w,par.ff{p},6,dZ{p}); hdxdz = Arrow(pblk,hdx,hdz); vv = qops(pblk,w,par.ff{p},5,X{p}); Vihdxdz = Arrow(pblk,vv,hdxdz,1); Rq = qops(pblk,w,par.ff{p},6,Vihdxdz); else tmp = par.dd{p}.*Rd{p} + qops(pblk,qops(pblk,Rd{p},par.ee{p},1),par.ee{p},3); tmp2 = mexMatvec(At{p},tmp,1); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = mexMatvec(At{p},EinvRc{p},1); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'s') n2 = pblk{2}.*(pblk{2}+1)/2; if iscell(sigmu) %%ss = [0,cumsum(pblk{2})]; %%sigmuvec = zeros(n,1); %%for k = 1:length(pblk{2}); %% sigmuvec(ss(k)+1:ss(k+1)) = sigmu{p}(k)*ones(pblk{2}(k),1); %%end sigmuvec = mexexpand(pblk{2},sigmu{p}); tmp = spdiags(sigmuvec./par.sv{p} -par.sv{p},0,n,n); else tmp = spdiags(sigmu./par.sv{p} -par.sv{p},0,n,n); end EinvRc{p} = Prod3(pblk,par.G{p}',tmp,par.G{p},1); Rq = sparse(n,n); if (corrector) && (norm(par.parbarrier{p})==0) hdZ = Prod3(pblk,par.G{p},dZ{p},par.G{p}',1); hdX = spdiags(qops(pblk,par.parbarrier{p}',1./par.sv{p},3)-par.sv{p},0,n,n)-hdZ; tmp = Prod2(pblk,hdX,hdZ,0); tmp = 0.5*(tmp+tmp'); if (numblk == 1) d = par.sv{p}; e = ones(pblk{2},1); Rq = 2*tmp./(d*e'+e*d'); if (nnz(Rq) <= spdensity*n2); Rq = sparse(Rq); end else Rq = sparse(n,n); ss = [0, cumsum(pblk{2})]; for i = 1:numblk pos = ss(i)+1 : ss(i+1); d = par.sv{p}(pos); e = ones(length(pos),1); Rq(pos,pos) = 2*tmp(pos,pos)./(d*e' + e*d'); %#ok end end Rq = Prod3(pblk,par.G{p}',Rq,par.G{p},1); else tmp = Prod3(pblk,par.W{p},Rd{p},par.W{p},1,par.nzlistAy{p}); tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),{tmp}); hRd = hRd + tmp2; end EinvRc{p} = EinvRc{p} - Rq; tmp2 = AXfun(pblk,At(p,:),par.permA(p,:),EinvRc(p)); hEinvRc = hEinvRc + tmp2; elseif strcmp(pblk{1},'u') rhsfree = [rhsfree; Rd{p}]; %#ok end end %% rhs = rp + hRd - hEinvRc; rhs = full([rhs; rhsfree]); %%*******************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
SDPvalBounds.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/SDPvalBounds.m
1,843
utf_8
fa3af856805cc15685c38e69218a8ffb
%%***************************************************************** %% compute lower and upper bounds for the exact primal %% optimal value. %% %% LB <= true optimal dual value = true optimal primal value <= UB. %% %%***************************************************************** function [LB,UB] = SDPvalBounds(blk,At,C,b,X,y,mu) if (nargin < 7); mu = 1.1; end Aty = Atyfun(blk,At,[],[],y); Znew = ops(C,'-',Aty); %% eigX = cell(size(blk,1),1); for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') eigX{p} = eig(full(X{p})); elseif strcmp(pblk{1},'l') eigX{p} = X{p}; end end %% %% compute lower bound %% pert = 0; for p = 1:size(blk,1) pblk = blk(p,:); if strcmp(pblk{1},'s') eigtmp = eig(full(Znew{p})); idx = find(eigtmp < 0); Xbar = mu*max(eigX{p}); elseif strcmp(pblk{1},'l') eigtmp = Znew{p}; idx = find(eigtmp < 0); Xbar = mu*max(eigX{p}); end numneg = length(idx); if (numneg) %%mineig = min(eigtmp(idx)); pert = pert + Xbar*sum(eigtmp(idx)); %%fprintf('\n numneg = %3.0d, mineigZnew = %- 3.2e',numneg,mineig); end end LB0 = b'*y; LB = b'*y + pert; fprintf('\n <b,y> = %-10.9e, LB = %-10.9e\n',LB0,LB); %% %% compute upper bound %% Xbar = X; %% construct Xbar that is positive semidefinite for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); eigXp = eigX{p}; if strcmp(pblk{1},'s') Xbar{p} = Xbar{p} - min(eigXp)*speye(n,n); elseif strcmp(pblk{1},'l') Xbar{p} = Xbar{p} - min(eigXp)*ones(n,1); end end Rp = b-AXfun(blk,At,[],Xbar); UB = blktrace(blk,C,Xbar) + mu*abs(y)'*abs(Rp); UB0 = blktrace(blk,C,X); fprintf('\n <C,X> = %-10.9e, UB = %-10.9e\n',UB0,UB); %%*****************************************************************
github
anantsrivastava30/SUVR-PET-ADNI-master
NTscaling.m
.m
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/NTscaling.m
1,847
utf_8
82a266e8bf9cf33993f0bff10650c15c
%%********************************************************************** %% NTscaling: Compute NT scaling matrix %% %% compute SVD of Xchol*Zchol via eigenvalue decompostion of %% Zchol * X * Zchol' = V * diag(sv2) * V'. %% compute W satisfying W*Z*W = X. %% W = G'*G, where G = diag(sqrt(sv)) * (invZchol*V)' %% important to keep W symmertic. %% %% SDPT3: version 3.1 %% Copyright (c) 1997 by %% K.C. Toh, M.J. Todd, R.H. Tutuncu %% Last Modified: 16 Sep 2004 %%********************************************************************** function [W,G,sv,gamx,gamz,dd,ee,ff] = ... NTscaling(blk,X,Z,Zchol,invZchol) numblk = size(blk,1); W = cell(numblk,1); G = cell(numblk,1); sv = cell(numblk,1); gamx = cell(numblk,1); gamz = cell(numblk,1); dd = cell(numblk,1); ee = cell(numblk,1); ff = cell(numblk,1); %% for p = 1:size(blk,1) pblk = blk(p,:); n = sum(pblk{2}); if strcmp(pblk{1},'l') dd{p} = X{p}./Z{p}; %% do not add perturbation, it badly affects cre-a elseif strcmp(pblk{1},'q'); gamx{p} = sqrt(qops(pblk,X{p},X{p},2)); gamz{p} = sqrt(qops(pblk,Z{p},Z{p},2)); w2 = gamz{p}./gamx{p}; w = sqrt(w2); dd{p} = qops(pblk,1./w2,ones(n,1),4); tt = qops(pblk,1./w,Z{p},3) - qops(pblk,w,X{p},4); gamtt = sqrt(qops(pblk,tt,tt,2)); ff{p} = qops(pblk,1./gamtt,tt,3); ee{p} = qops(pblk,sqrt(2)./w,ff{p},4); elseif strcmp(pblk{1},'s') tmp = Prod2(pblk,Zchol{p},X{p},0); tmp = Prod2(pblk,tmp,Zchol{p}',1); [sv2,V] = blkeig(pblk,tmp); sv2 = max(1e-20,sv2); sv{p} = sqrt(sv2); tmp = Prod2(pblk,invZchol{p},V); G{p} = Prod2(pblk,spdiags(sqrt(sv{p}),0,n,n),tmp'); W{p} = Prod2(pblk,G{p}',G{p},1); end end %%**********************************************************************