plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
linsysolvefun.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/linsysolvefun.m
| 1,276 |
utf_8
|
7ca4a2896ad33a210a95d53138f0676f
|
%%*************************************************************************
%% linsysolvefun: Solve H*x = b
%%
%% x = linsysolvefun(L,b)
%% where L contains the triangular factors of H.
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*************************************************************************
function x = linsysolvefun(L,b)
x = zeros(size(b));
for k=1:size(b,2)
if strcmp(L.matfct_options,'chol')
x(L.perm,k) = mextriang(L.R, mextriang(L.R,b(L.perm,k),2) ,1);
%% x(L.perm,k) = L.R \ (b(L.perm,k)' / L.R)';
elseif strcmp(L.matfct_options,'spchol')
x(L.perm,k) = mextriangsp(L.Rt,mextriangsp(L.R,b(L.perm,k),2),1);
elseif strcmp(L.matfct_options,'ldl')
x(L.p,k) = ((L.D\ (L.L \ b(L.p,k)))' / L.L)';
elseif strcmp(L.matfct_options,'spldl')
btmp = b(:,k).*L.s;
xtmp(L.p,1) = L.Lt\ (L.D\ (L.L \ btmp(L.p))); %#ok
x(:,k) = xtmp.*L.s;
elseif strcmp(L.matfct_options,'lu')
x(:,k) = L.U \ (L.L \ b(L.p,k));
elseif strcmp(L.matfct_options,'splu')
btmp = b(:,k)./L.s;
x(L.q,k) = L.U \ (L.L \ (btmp(L.p)));
end
end
%%*************************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
sqlpdemo.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlpdemo.m
| 6,011 |
utf_8
|
793deabad8688259781993ce346cea24
|
%%*****************************************************************
%% Examples of SQLP.
%%
%% this is an illustration on how to use our SQLP solvers
%% coded in sqlp.m
%%
%% feas = 1 if want feasible initial iterate
%% = 0 otherwise
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************
function sqlpdemo
randn('seed',0); rand('seed',0); %#ok
feas = input('using feasible starting point? [yes = 1, no = 0] ');
if (feas)
fprintf('\n using feasible starting point\n\n');
else
fprintf('\n using infeasible starting point\n\n');
end
pause(1);
ntrials = 1;
% iterm = zeros(2,6); infom = zeros(2,6); timem = zeros(2,6);
sqlparameters;
for trials = 1:ntrials
for eg = 1:6
if (eg == 1);
disp('******** random sdp **********')
n = 10; m = 10;
[blk,At,C,b,X0,y0,Z0] = randsdp(n,[],[],m,feas);
text = 'random SDP';
elseif (eg == 2);
disp('******** Norm minimization problem. **********')
n = 10; m = 5; B = [];
for k = 1:m+1; B{k} = randn(n); end; %#ok
[blk,At,C,b,X0,y0,Z0] = norm_min(B,feas);
text = 'Norm min. pbm';
elseif (eg == 3);
disp('******** Max-cut *********');
N = 10;
B = graph(N);
[blk,At,C,b,X0,y0,Z0] = maxcut(B,feas);
text = 'Maxcut';
elseif (eg == 4);
disp('********* ETP ***********')
N = 10;
B = randn(N); B = B*B';
[blk,At,C,b,X0,y0,Z0] = etp(B,feas);
text = 'ETP';
elseif (eg == 5);
disp('**** Lovasz theta function ****')
N = 10;
B = graph(N);
[blk,At,C,b,X0,y0,Z0] = thetaproblem(B,feas);
text = 'Lovasz theta fn.';
elseif (eg == 6);
disp('**** Logarithmic Chebyshev approx. pbm. ****')
N = 20; m = 5;
B = rand(N,m); f = rand(N,1);
[blk,At,C,b,X0,y0,Z0] = logcheby(B,f,feas);
text = 'Log. Chebyshev approx. pbm';
end;
%%
% m = length(b);
nn = 0;
for p = 1:size(blk,1),
nn = nn + sum(blk{p,2});
end
%%
Gap = []; Feas = []; legendtext = {};
for vers = [1 2];
OPTIONS.vers = vers;
[obj,X,y,Z,infoall,runhist] = ...
sqlp(blk,At,C,b,OPTIONS,X0,y0,Z0); %#ok
gaphist = runhist.gap;
infeashist = max([runhist.pinfeas; runhist.dinfeas]);
Gap(vers,1:length(gaphist)) = gaphist; %#ok
Feas(vers,1:length(infeashist)) = infeashist; %#ok
if (vers==1); legendtext{end+1} = 'HKM'; %#ok
elseif (vers==2); legendtext{end+1} = 'NT'; %#ok
end;
end;
h = plotgap(Gap,Feas);
xlabel(text);
legend(h(h~=0),legendtext{:});
fprintf('\n**** press enter to continue ****\n'); pause
end
end
%%
%%======================================================================
%% plotgap: plot the convergence curve of
%% duality gap and infeasibility measure.
%%
%% h = plotgap(Gap,Feas);
%%
%% Input: Gap = each row of Gap corresponds to a convergence curve
%% of the duality gap for an SDP.
%% Feas = each row of Feas corresponds to a convergence curve
%% of the infeasibility measure for an SDP.
%%
%% Output: h = figure handle.
%%
%% SDPT3: version 3.0
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last modified: 7 Jul 99
%%********************************************************************
function h = plotgap(Gap,Feas)
clf;
set(0,'defaultaxesfontsize',12);
set(0,'defaultlinemarkersize',2);
set(0,'defaulttextfontsize',12);
%%
%% get axis scale for plotting duality gap
%%
tmp = [];
for k = 1:size(Gap,1);
g = Gap(k,:);
if ~isempty(g);
g = g(g > 5*eps);
tmp = [tmp abs(g)]; %#ok
iter(k) = length(g); %#ok
else
iter(k) = 0; %#ok
end
end;
ymax = exp(log(10)*(round(log10(max(tmp)))+0.5));
ymin = exp(log(10)*min(floor(log10(tmp)))-0.5);
xmax = 5*ceil(max(iter)/5);
%%
%% plot duality gap
%%
color = '-r --b--m-c ';
if nargin == 2; subplot('position',[0.05 0.3 0.45 0.45]); end;
for k = 1:size(Gap,1);
g = Gap(k,:);
if ~isempty(g);
idx = find(g > 5*eps);
if ~isempty(idx); g = g(idx); len = length(g);
semilogy(len-1,g(len),'.b','markersize',12); hold on;
h(k) = semilogy(idx-1,g,color([3*(k-1)+1:3*k]),'linewidth',2); %#ok
end;
end;
end;
title('duality gap'); axis('square');
if nargin == 1; axis([0 xmax ymin ymax]); end;
hold off;
%%
%% get axis scale for plotting infeasibility
%%
if nargin == 2;
tmp = [];
for k = 1:size(Feas,1);
f = Feas(k,:);
if ~isempty(f);
f = f(f>0);
tmp = [tmp abs(f)]; %#ok
iter(k) = length(f); %#ok
else
iter(k) = 0; %#ok
end
end;
fymax = exp(log(10)*(round(log10(max(tmp)))+0.5));
fymin = exp(log(10)*(min(floor(log10(tmp)))-0.5));
ymax = max(ymax,fymax); ymin = min(ymin,fymin);
xmax = 5*ceil(max(iter)/5);
axis([0 xmax ymin ymax]);
%%
%% plot infeasibility
%%
subplot('position',[0.5 0.3 0.45 0.45]);
for k = 1:size(Feas,1);
f = Feas(k,:);
f(1) = max(f(1),eps);
if ~isempty(f);
idx = find(f > 1e-20);
if ~isempty(idx); f = f(idx); len = length(f);
semilogy(len-1,f(len),'.b','markersize',12); hold on;
h(k) = semilogy(idx-1,f,color([3*(k-1)+1:3*k]),'linewidth',2); %#ok
end;
end;
end;
title('infeasibility measure');
axis('square'); axis([0 xmax ymin max(1,ymax)]);
hold off;
end;
%%====================================================================
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
gpcomp.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/gpcomp.m
| 5,095 |
utf_8
|
7e23e98588f834156a9f13545f77cb3b
|
%%*********************************************************************
%% gpcomp: Compute tp=1/gp in Proposition 2 of the paper:
%%
%% R.M. Freund, F. Ordonez, and K.C. Toh,
%% Behavioral measures and their correlation with IPM iteration counts
%% on semi-definite programming problems,
%% Mathematical Programming, 109 (2007), pp. 445--475.
%%
%% [gp,info,Xfeas,blk2,At2,C2,b2] = gpcomp(blk,At,C,b,OPTIONS,solveyes);
%%
%% Xfeas = a feasible X for the primal problem if gp is finite.
%% That is,
%% norm(b-AXfun(blk,At,[],Xfeas))
%% should be small
%%*********************************************************************
function [gp,info,Xfeas,blk2,At2,C2,b2] = gpcomp(blk,At,C,b,OPTIONS,solveyes)
if (nargin < 6); solveyes = 1; end
if (nargin < 5)
OPTIONS = sqlparameters;
OPTIONS.vers = 1;
OPTIONS.gaptol = 1e-10;
OPTIONS.printlevel = 3;
end
if isempty(OPTIONS); OPTIONS = sqlparameters; end
if ~isfield(OPTIONS,'solver'); OPTIONS.solver = 'sqlp'; end
if ~isfield(OPTIONS,'printlevel'); OPTIONS.printlevel = 3; end
if ~iscell(C); tmp = C; clear C; C{1} = tmp; end
%%
%% convert ublk to lblk
%%
% exist_ublk = 0;
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'u');
% exist_ublk = 1;
fprintf('\n converting ublk into the difference of two non-negative vectors');
blk{p,1} = 'l'; blk{p,2} = 2*sum(blk{p,2});
At{p} = [At{p}; -At{p}];
C{p} = [C{p}; -C{p}];
end
end
%%
m = length(b);
blk2 = blk;
At2 = At;
C2 = cell(size(blk,1),1);
b2 = zeros(m,1);
%%
%%
%%
dd = ones(1,m);
ee = zeros(1,m); EE = cell(size(blk,1),1);
% exist_ublk = 0;
nn = zeros(size(blk,1),1);
for p = 1:size(blk,1)
pblk = blk(p,:);
n = sum(pblk{2});
if strcmp(pblk{1},'s')
ee = ee + svec(pblk,speye(n),1)'*At{p};
C2{p,1} = sparse(n,n);
EE{p} = speye(n);
nn(p) = n;
elseif strcmp(pblk{1},'q')
eq = zeros(n,1);
idx1 = 1+[0,cumsum(pblk{2})];
idx1 = idx1(1:length(idx1)-1);
eq(idx1) = ones(length(idx1),1);
ee = ee + 2*eq'*At{p};
C2{p,1} = zeros(n,1);
EE{p} = eq;
nn(p) = length(pblk{2});
elseif strcmp(pblk{1},'l')
ee = ee + ones(1,n)*At{p};
C2{p,1} = zeros(n,1);
EE{p} = ones(n,1);
nn(p) = n;
elseif strcmp(pblk{1},'u')
C2{p,1} = zeros(n,1);
% exist_ublk = 1;
EE{p} = sparse(n,1);
nn(p) = n;
end
dd = dd + sqrt(sum(At{p}.*At{p}));
end
dd = 1./min(1e4,max(1,dd));
ee = ee.*dd;
b = b.*dd';
%%
%% scale data
%%
D = spdiags(dd',0,m,m);
for p = 1:size(blk,1)
% pblk = blk(p,:);
At2{p} = At2{p}*D;
end
%%
%% New variables in primal problem:
%% [x; tt; theta].
%%
numblk = size(blk,1);
blk2{numblk+1,1} = 'l'; blk2{numblk+1,2} = 2;
At2{numblk+1,1} = [ee; -b'];
C2{numblk+1,1} = [-1; 0];
%%
%% 3 additional inequality constraints in primal problem.
%%
ss = 0;
for p = 1:size(blk,1)
pblk = blk(p,:);
n = sum(pblk{2});
if strcmp(pblk{1},'s')
n2 = sum(pblk{2}.*(pblk{2}+1))/2;
At2{p} = [At2{p}, svec(pblk,speye(n,n),1), sparse(n2,2)];
ss = ss + n;
elseif strcmp(pblk{1},'q')
eq = zeros(n,1);
idx1 = 1+[0,cumsum(pblk{2})];
idx1 = idx1(1:length(idx1)-1);
eq(idx1) = ones(length(idx1),1);
At2{p} = [At2{p}, sparse(eq), sparse(n,2)];
ss = ss + 2*length(pblk{2});
elseif strcmp(pblk{1},'l')
At2{p} = [At2{p}, sparse(ones(n,1)), sparse(n,2)];
ss = ss + n;
elseif strcmp(pblk{1},'u')
At2{p} = [At2{p}, sparse(n,3)];
end
end
At2{numblk+1} = sparse([At2{numblk+1}, [ss;0], [0;1], [1;-1]]);
b2 = [b2; 1; 1; 0];
%%
%% Add in the linear block corresponding to the 3 slack variables.
%%
blk2{numblk+2,1} = 'l'; blk2{numblk+2,2} = 3;
At2{numblk+2,1} = [sparse(3,m), speye(3,3)];
C2{numblk+2,1} = zeros(3,1);
%%
%% Solve SDP
%%
gp = []; info = []; Xfeas = [];
if (solveyes)
if strcmp(OPTIONS.solver,'sqlp')
[X0,y0,Z0] = infeaspt(blk2,At2,C2,b2,2,100);
[obj,X,y,Z,info] = sqlp(blk2,At2,C2,b2,OPTIONS,X0,y0,Z0); %#ok
elseif strcmp(OPTIONS.solver,'HSDsqlp')
[obj,X,y,Z,info] = HSDsqlp(blk2,At2,C2,b2,OPTIONS); %#ok
else
[obj,X,y,Z,info] = sdpt3(blk2,At2,C2,b2,OPTIONS); %#ok
end
obj = -obj;
tt = X{numblk+1}(1); theta = X{numblk+1}(2);
Xfeas = ops(ops(X(1:numblk),'+',EE(1:numblk),tt),'/',theta);
%%
if (obj(1) > 0) || (abs(obj(1)) < 1e-8)
gp = 1/abs(obj(1));
elseif (obj(2) > 0)
gp = 1/obj(2);
else
gp = 1/exp(mean(log(abs(obj))));
end
err = max(info.dimacs([1,3,6]));
if (OPTIONS.printlevel)
fprintf('\n ******** gp = %3.2e, err = %3.1e\n',gp,err);
if (err > 1e-6);
fprintf('\n----------------------------------------------------')
fprintf('\n gp problem is not solved to sufficient accuracy');
fprintf('\n----------------------------------------------------\n')
end
end
end
%%*********************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
sqlparameters.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlparameters.m
| 5,137 |
utf_8
|
76bbd09e284250f7770836baabcc95e5
|
%%*************************************************************************
%% parameters.m: set OPTIONS structure to specify default
%% parameters for sqlp.m
%%
%% OPTIONS.vers : version of direction to use.
%% 1 for HKM direction
%% 2 for NT direction
%% 0 for the default (which uses the HKM direction if
%% semidefinite blocks exist; and NT direction of SOCP problms)
%% OPTIONS.gam : step-length parameter,
%% OPTIONS.predcorr : whether to use Mehrotra predictor-corrector.
%% OPTIONS.expon : exponent in decrease of centering parameter sigma.
%% OPTIONS.gaptol : tolerance for duality gap as a fraction of the
%% value of the objective functions.
%% OPTIONS.inftol : tolerance for stopping due to suspicion of
%% infeasibility.
%% OPTIONS.steptol : toloerance for stopping due to small steps.
%% OPTIONS.maxit : maximum number of iteration allowed
%% OPTIONS.printlevel : 3, if want to display result in each iteration,
%% 2, if want to display only summary,
%% 1, if want to display warning message,
%% 0, no display at all.
%% OPTIONS.stoplevel : 2, if want to automatically detect termination;
%% 1, if want to automatically detect termination, but
%% restart automatically with a new iterate
%% when the algorithm stagnants because of tiny step-lengths.
%% 0, if want the algorithm to continue forever except for
%% successful completion, maximum number of iterations, or
%% numerical failures. Note, do not change this field unless
%% you very sure.
%% OPTIONS.scale_data : 1, if want to scale the data before solving the problem,
%% else = 0
%% OPTIONS.rmdepconstr : 1, if want to remove nearly dependent constraints,
%% else = 0.
%% OPTIONS.smallblkdim : block-size threshold determining what method to compute the
%% schur complement matrix corresponding to semidefintie block.
%% NOTE: this number should be small, say less than 20.
%% OPTIONS.parbarrier : parameter values of the log-barrier terms in the SQLP problem.
%% Default = [], meaning that the parameter values are all 0.
%% OPTIONS.schurfun : [], if no user supplied routine to compute the Schur matrix,
%% else, it is a cell array where each cell is either [],
%% or contains a string that is the file name where the Schur matrix
%% of the associated block data is computed.
%% For example, if the SQLP data has the block structure
%% blk{1,1} = '1'; blk{1,2} = 10;
%% blk{2,1} = 's'; blk{2,2} = 50;
%% and
%% OPTIONS.schurfun{1} = [];
%% OPTIONS.schurfun{2} = 'myownschur', where
%% 'myownschur' is a function with the calling sequence:
%% function schur = myownschur(X2,Z2inv,schurfun_par(2,:));
%% This means that for the first block, the Schur
%% matrix is computed by the default method in SDPT3,
%% and for the second block, the user supplies the
%% routine to compute the associated Schur matrix.
%% OPTIONS.schurfun_par: [], if no user supplied routine to compute the Schur matrix,
%% else, it is a cell array where the p-th row is either [],
%% or is a cell array containing the parameters needed in
%% the user supplied Schur routine OPTIONS.schurfun{p}.
%% For example, for the block structure described
%% above, we may have:
%% OPTIONS.schurfun_par{1} = [];
%% OPTIONS.schurfun_par{2,1} = par1;
%% OPTIONS.schurfun_par{2,2} = par2;
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*************************************************************************
function OPTIONS = sqlparameters
OPTIONS.vers = 0;
OPTIONS.gam = 0;
OPTIONS.predcorr = 1;
OPTIONS.expon = 1;
OPTIONS.gaptol = 1e-8;
OPTIONS.inftol = 1e-8;
OPTIONS.steptol = 1e-6;
OPTIONS.maxit = 100;
OPTIONS.printlevel = 3;
OPTIONS.stoplevel = 1; %% do not change this field unless you very sure.
OPTIONS.scale_data = 0;
OPTIONS.spdensity = 0.4;
OPTIONS.rmdepconstr = 0;
OPTIONS.smallblkdim = 50;
OPTIONS.parbarrier = [];
OPTIONS.schurfun = [];
OPTIONS.schurfun_par = [];
%%*************************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
convertcmpsdp.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/convertcmpsdp.m
| 3,465 |
utf_8
|
6bd9a62cfb0249da5d75665cfb26063b
|
%%*********************************************************
%% convertcmpsdp: convert SDP with complex data into one
%% with real data by converting
%%
%% C - sum_{k=1}^m yk*Ak psd
%% to
%% [CR,-CI] - sum ykR*[AkR,-AkI] psd
%% [CI, CR] [AkI, AkR]
%%
%% ykI = 0 for k = 1:m
%%
%% [bblk,AAt,CC,bb] = convertcmpsdp(blk,A,C,b);
%%
%%*********************************************************
function [bblk,AAt,CC,bb,iscmp] = convertcmpsdp(blk,A,C,b)
m = length(b);
pp = size(A,1);
if (pp ~= size(blk,1))
error('blk and A not compatible');
end
numblk = size(blk,1);
iscmp = zeros(numblk,m+1);
for p = 1:size(blk,1)
len = size(A(p),2);
for k = 1:len
if ~isempty(A{p,k})
iscmp(p,k) = 1-isreal(A{p,k});
end
end
iscmp(p,m+1) = 1-isreal(C{p});
end
iscmp = norm(iscmp,'fro');
%%
if (iscmp == 0)
%% data is real
bblk = blk; AAt = A; CC = C; bb = b;
return;
end
%%
bb = real(b);
bblk = cell(size(blk,1),2);
for p = 1:size(blk,1)
pblk = blk(p,:);
if (size(pblk{2},1) > size(pblk{2},2))
pblk{2} = pblk{2}';
end
if strcmp(pblk{1},'s')
ss = [0,cumsum(pblk{2})];
ss2 = [0,cumsum(2*pblk{2})];
n = sum(pblk{2});
n2 = sum(pblk{2}.*(pblk{2}+1))/2;
AR = cell(1,m); Ctmp = sparse(2*n,2*n);
if (size(A{p},1)==n2 && size(A{p},2)==m);
Atype = 1;
elseif (size(A(p),1)==1 && size(A(p),2)==1);
Atype = 2;
else
error('convertcmp: At is not properly coded');
end
for k = 0:m
if (k == 0)
Ak = C{p};
else
if (Atype == 1)
Ak = smat(pblk,A{p}(:,k),1);
elseif (Atype == 2)
Ak = A{p,k};
end
end
Atmp = sparse(2*n,2*n);
if (length(pblk{2}) == 1)
tmp = [real(Ak),-imag(Ak); imag(Ak), real(Ak)];
if (k==0)
Ctmp = tmp;
else
Atmp = tmp;
end
else
for j = 1:length(pblk{2})
idx = ss(j)+1: ss(j+1);
Akj = Ak(idx,idx);
tmp = [real(Akj),-imag(Akj); imag(Akj), real(Akj)];
idx2 = ss2(j)+1: ss2(j+1);
if (k==0)
Ctmp(idx2,idx2) = tmp; %#ok
else
Atmp(idx2,idx2) = tmp; %#ok
end
end
end
if (k==0);
CC{p,1} = Ctmp; %#ok
else
AR{k} = Atmp;
end
end
bblk{p,1} = 's'; bblk{p,2} = 2*pblk{2};
AAt(p,1) = svec(bblk(p,:),AR); %#ok
elseif strcmp(pblk{1},'q');
error('SOCP block with complex data is currently not allowed');
elseif strcmp(pblk{1},'l');
if isreal(A{p}) && isreal(C{p})
bblk(p,:) = blk(p,:);
AAt{p,1} = A{p}; CC{p,1} = C{p}; %#ok
else
error('data for linear block must be real');
end
elseif strcmp(pblk{1},'u');
if isreal(A{p}) && isreal(C{p})
bblk(p,:) = blk(p,:);
AAt{p,1} = A{p}; CC{p,1} = C{p}; %#ok
else
error('data for unrestricted block must be real');
end
end
end
%%*********************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
sqlpsummary.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlpsummary.m
| 4,047 |
utf_8
|
78361a4e3dfeaeb73a7102b08ad30733
|
%%*****************************************************************************
%% sqlpsummary: print summary
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************************
function sqlpsummary(info,ttime,infeas_org,printlevel)
iter = info.iter;
obj = info.obj;
gap = info.gap;
relgap = info.relgap;
prim_infeas = info.pinfeas;
dual_infeas = info.dinfeas;
termcode = info.termcode;
reldist = info.reldist;
resid = info.resid;
dimacs = info.dimacs;
totaltime = info.cputime;
%%
preproctime = ttime.preproc; pcholtime = ttime.pchol; dcholtime = ttime.dchol;
predtime = ttime.pred; pstep_predtime = ttime.pred_pstep; dstep_predtime = ttime.pred_pstep;
corrtime = ttime.corr; pstep_corrtime = ttime.corr_pstep; dstep_corrtime = ttime.corr_dstep;
misctime = ttime.misc;
%%
if (printlevel >= 2)
fprintf('\n------------------------------------------------');
fprintf('-------------------\n');
fprintf(' number of iterations = %2.0f\n',iter);
end
if (termcode <= 0)
if (printlevel >=2)
fprintf(' primal objective value = %- 9.8e\n',obj(1));
fprintf(' dual objective value = %- 9.8e\n',obj(2));
fprintf(' gap := trace(XZ) = %3.2e\n',gap);
fprintf(' relative gap = %3.2e\n',relgap);
fprintf(' actual relative gap = %3.2e\n',-diff(obj)/(1+sum(abs(obj))));
if ~isempty(infeas_org)
fprintf(' rel. primal infeas (scaled problem) = %3.2e\n',prim_infeas);
fprintf(' rel. dual " " " = %3.2e\n',dual_infeas);
fprintf(' rel. primal infeas (unscaled problem) = %3.2e\n',infeas_org(1));
fprintf(' rel. dual " " " = %3.2e\n',infeas_org(2));
else
fprintf(' rel. primal infeas = %3.2e\n',prim_infeas);
fprintf(' rel. dual infeas = %3.2e\n',dual_infeas);
end
fprintf(' norm(X), norm(y), norm(Z) = %3.1e, %3.1e, %3.1e\n',...
info.normX,info.normy,info.normZ);
fprintf(' norm(A), norm(b), norm(C) = %3.1e, %3.1e, %3.1e\n',...
info.normA,info.normb,info.normC);
end
elseif (termcode == 1)
if (printlevel >=2)
fprintf(' residual of primal infeasibility \n')
fprintf(' certificate (y,Z) = %3.2e\n',resid);
fprintf(' reldist to infeas. <= %3.2e\n',reldist);
end
elseif (termcode == 2)
if (printlevel >=2)
fprintf(' residual of dual infeasibility \n')
fprintf(' certificate X = %3.2e\n',resid);
fprintf(' reldist to infeas. <= %3.2e\n',reldist);
end
end
if (printlevel >=2)
fprintf(' Total CPU time (secs) = %3.2f \n',totaltime);
fprintf(' CPU time per iteration = %3.2f \n',totaltime/iter);
fprintf(' termination code = %2.0f\n',termcode);
fprintf(' DIMACS: %.1e %.1e %.1e %.1e %.1e %.1e\n',dimacs);
fprintf('------------------------------------------------');
fprintf('-------------------\n');
if (printlevel > 3)
fprintf(' Percentage of CPU time spent in various parts \n');
fprintf('------------------------------------------------');
fprintf('-------------------\n');
fprintf(' preproc Xchol Zchol pred pred_steplen corr corr_steplen misc\n')
tt = [preproctime, pcholtime, dcholtime, predtime, pstep_predtime, dstep_predtime];
tt = [tt, corrtime, pstep_corrtime, dstep_corrtime, misctime];
tt = tt/sum(tt)*100;
fprintf(' %3.1f %3.1f %3.1f %3.1f %3.1f %3.1f ',...
tt(1),tt(2),tt(3),tt(4),tt(5),tt(6));
fprintf(' %3.1f %3.1f %3.1f %3.1f\n',tt(7),tt(8),tt(9),tt(10));
fprintf('------------------------------------------------');
fprintf('-------------------\n');
end
end
%%*****************************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
checkdepconstr.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/checkdepconstr.m
| 6,926 |
utf_8
|
186362786fef9d7d3328ab9e5a9e117c
|
%%*****************************************************************************
%% checkdepconst: compute AAt to determine if the
%% constraint matrices Ak are linearly independent.
%%
%% [At,b,y,idxB,neardepconstr,feasible,AAt] = checkdepconstr(blk,At,b,y,rmdepconstr);
%%
%% rmdepconstr = 1, if want to remove dependent columns in At
%% = 0, otherwise.
%%
%% idxB = indices of linearly independent columns of original At.
%% neardepconstr = 1 if there is nearly dependent columns in At
%% = 0, otherwise.
%% Note: the definition of "nearly dependent" is dependent on the
%% threshold used to determine the small diagonal elements in
%% the LDLt factorization of A*At.
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************************
function [At,b,y,idxB,neardepconstr,feasible,AAt] = ...
checkdepconstr(blk,At,b,y,rmdepconstr)
global existlowrank printlevel
global nnzmatold
%%
%% compute AAt
%%
m = length(b);
AAt = sparse(m,m); numdencol = 0; UU = [];
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'s');
m1 = size(At{p,1},2); m2 = m - m1;
if (m2 > 0)
if (m2 > 0.3*m); AAt = full(AAt); end
dd = At{p,3};
lenn = size(dd,1);
idxD = [0; find(diff(dd(:,1))); lenn];
ss = [0, cumsum(pblk{3})];
if (existlowrank)
AAt(1:m1,1:m1) = AAt(1:m1,1:m1) + At{p,1}'*At{p,1}; %#ok
for k = 1:m2
idx = ss(k)+1 : ss(k+1);
idx2 = idxD(k)+1: idxD(k+1);
ii = dd(idx2,2)-ss(k); %% undo cumulative indexing
jj = dd(idx2,3)-ss(k);
len = pblk{3}(k);
Dk = spconvert([ii,jj,dd(idx2,4); len,len,0]);
tmp = svec(pblk,At{p,2}(:,idx)*Dk*At{p,2}(:,idx)');
tmp2 = AAt(1:m1,m1+k) + (tmp'*At{p,1})';
AAt(1:m1,m1+k) = tmp2; %#ok
AAt(m1+k,1:m1) = tmp2'; %#ok
end
end
DD = spconvert([dd(:,2:4); sum(pblk{3}),sum(pblk{3}),0]);
VtVD = (At{p,2}'*At{p,2})*DD;
VtVD2 = VtVD'.*VtVD;
for k = 1:m2
idx0 = ss(k)+1 : ss(k+1);
%%tmp = VtVD(idx0,:)' .* VtVD(:,idx0);
tmp = VtVD2(:,idx0);
tmp = tmp*ones(length(idx0),1);
tmp3 = AAt(m1+1:m1+m2,m1+k) + mexqops(pblk{3},tmp,ones(length(tmp),1),1);
AAt(m1+1:m1+m2,m1+k) = tmp3; %#ok
end
else
AAt = AAt + abs(At{p,1})'*abs(At{p,1});
end
else
decolidx = checkdense(At{p,1}');
if ~isempty(decolidx);
n2 = size(At{p,1},1);
dd = ones(n2,1);
len= length(decolidx);
dd(decolidx) = zeros(len,1);
AAt = AAt + (abs(At{p,1})' *spdiags(dd,0,n2,n2)) *abs(At{p,1});
tmp = At{p,1}(decolidx,:)';
UU = [UU, tmp]; %#ok
numdencol = numdencol + len;
else
AAt = AAt + abs(At{p,1})'*abs(At{p,1});
end
end
end
if (numdencol > 0) && (printlevel)
fprintf('\n number of dense column in A = %d',numdencol);
end
numdencol = size(UU,2);
%%
%%
%%
feasible = 1; neardepconstr = 0;
if ~issparse(AAt); AAt = sparse(AAt); end
nnzmatold = mexnnz(AAt);
rho = 1e-15;
diagAAt = diag(AAt);
mexschurfun(AAt,rho*max(diagAAt,1));
[L.R,indef,L.perm] = chol(AAt,'vector');
L.d = full(diag(L.R)).^2;
if (indef)
msg = 'AAt is not pos. def.';
idxB = 1:m;
neardepconstr = 1;
if (printlevel); fprintf('\n checkdepconstr: %s',msg); end
return;
end
%%
%% find independent rows of A
%%
dd = zeros(m,1);
idxB = (1:m)';
dd(L.perm) = abs(L.d);
idxN = find(dd < 1e-13*mean(L.d));
ddB = dd(setdiff(1:m,idxN));
ddN = dd(idxN);
if ~isempty(ddN) && ~isempty(ddB) && (min(ddB)/max(ddN) < 10)
%% no clear separation of elements in dd
%% do not label constraints as dependent
idxN = [];
end
if ~isempty(idxN)
neardepconstr = 1;
if (printlevel)
fprintf('\n number of nearly dependent constraints = %1.0d',length(idxN));
end
if (numdencol==0)
if (rmdepconstr)
idxB = setdiff((1:m)',idxN);
if (printlevel)
fprintf('\n checkdepconstr: removing dependent constraints...');
end
[W,resnorm] = findcoeffsub(blk,At,idxB,idxN);
tol = 1e-8;
if (resnorm > sqrt(tol))
idxB = (1:m)';
neardepconstr = 0;
if (printlevel)
fprintf('\n checkdepconstr: basis rows cannot be reliably identified,');
fprintf(' abort removing nearly dependent constraints');
end
return;
end
tmp = W'*b(idxB) - b(idxN);
nnorm = norm(tmp)/max(1,norm(b));
if (nnorm > tol)
feasible = 0;
if (printlevel)
fprintf('\n checkdepconstr: inconsistent constraints exist,');
fprintf(' problem is infeasible.');
end
else
feasible = 1;
for p = 1:size(blk,1)
At{p,1} = At{p,1}(:,idxB);
end
b = b(idxB);
y = y(idxB);
AAt = AAt(idxB,idxB);
end
else
if (printlevel)
fprintf('\n To remove these constraints,');
fprintf(' re-run sqlp.m with OPTIONS.rmdepconstr = 1.');
end
end
else
if (printlevel)
fprintf('\n warning: the sparse part of AAt may be nearly singular.');
end
end
end
%%*****************************************************************************
%% findcoeffsub:
%%
%% [W,resnorm] = findcoeffsub(blk,At,idXB,idXN);
%%
%% idXB = indices of independent columns of At.
%% idxN = indices of dependent columns of At.
%%
%% AB = At(:,idxB); AN = At(:,idxN) = AB*W
%%
%% SDPT3: version 3.0
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last modified: 2 Feb 01
%%*****************************************************************************
function [W,resnorm] = findcoeffsub(blk,At,idxB,idxN)
AB = []; AN = [];
for p = 1:size(blk,1)
AB = [AB; At{p,1}(:,idxB)]; %#ok
AN = [AN; At{p,1}(:,idxN)]; %#ok
end
n = size(AB,2);
%%
%%-----------------------------------------
%% find W so that AN = AB*W
%%-----------------------------------------
%%
[L,U,P,Q] = lu(sparse(AB));
rhs = P*AN;
Lhat = L(1:n,:);
W = Q*( U \ (Lhat \ rhs(1:n,:)));
resnorm = norm(AN-AB*W,'fro')/max(1,norm(AN,'fro'));
%%*****************************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
convertRcone.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/convertRcone.m
| 948 |
utf_8
|
afa3b210699dbf796a257cb53e92ef0d
|
%%***************************************************************
%% convertRcone: convert rotated cone to socp cone
%%
%% [blk,At,C,b,T] = convertRcone(blk,At,C,b);
%%
%%***************************************************************
function [blk,At,C,b,T] = convertRcone(blk,At,C,b)
T = cell(size(blk,1),1);
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'r')
if (min(pblk{2}) < 3)
error('rotated cones must be at least 3-dimensional');
end
n = sum(pblk{2}); len = length(pblk{2});
ss = [0,cumsum(pblk{2})];
idx = 1+ss(1:len)';
ir2 = 1/sqrt(2)*ones(len,1);
dd = [idx,idx,ir2-1; idx,idx+1,ir2;
idx+1,idx,ir2; idx+1,idx+1,-ir2-1];
T{p} = speye(n,n) + spconvert([dd; n,n,0]);
blk{p,1} = 'q';
At{p,1} = T{p}*At{p,1};
C{p,1} = T{p}*C{p,1};
end
end
%%***************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
qops.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/qops.m
| 1,421 |
utf_8
|
bddd4e93643ef0eb5b6868ef41d2bec7
|
%%********************************************************
%% qops: Fu = qops(pblk,w,f,options,u);
%%
%% options = 1, Fu(i) = <wi,fi>
%% = 2, Fu(i) = 2*wi(1)*fi(1)-<wi,fi>
%% = 3, Fui = w(i)*fi
%% = 4, Fui = w(i)*fi, Fui(1) = -Fui(1).
%% options = 5, Fu = w [ f'*u ; ub + fb*alp ], where
%% alp = (f'*u + u0)/(1+f0);
%% options = 6, compute Finv*u.
%%
%% Note F = w [f0 fb'; fb I+ fb*fb'/(1+f0) ], where
%% f0*f0 - fb*fb' = 1.
%% Finv = (1/w) [f0 -fb'; -fb I+ fb*fb'/(1+f0) ].
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%********************************************************
function Fu = qops(pblk,w,f,options,u)
if (options >= 1 && options <= 4)
Fu = mexqops(pblk{2},w,f,options);
elseif (options == 5)
s = 1 + [0 cumsum(pblk{2})];
idx1 = s(1:length(pblk{2}));
inprod = mexqops(pblk{2},f,u,1);
tmp = (u(idx1)+inprod)./(1+f(idx1));
Fu = u + mexqops(pblk{2},tmp,f,3);
Fu(idx1) = inprod;
Fu = mexqops(pblk{2},w,Fu,3);
elseif (options == 6)
s = 1 + [0 cumsum(pblk{2})];
idx1 = s(1:length(pblk{2}));
gamprod = mexqops(pblk{2},f,u,2);
tmp = (u(idx1)+gamprod)./(1+f(idx1));
Fu = u - mexqops(pblk{2},tmp,f,3);
Fu(idx1) = gamprod;
Fu = mexqops(pblk{2},1./w,Fu,3);
end
%%********************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
HKMdirfun.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/HKMdirfun.m
| 1,703 |
utf_8
|
2e90b8de8daed6f5a9a6894232dbff6a
|
%%*******************************************************************
%% HKMdirfun: compute (dX,dZ), given dy, for the HKM direction.
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*******************************************************************
function [dX,dy,dZ] = HKMdirfun(blk,At,par,Rd,EinvRc,X,xx,m)
global solve_ok
dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = [];
if (any(isnan(xx)) || any(isinf(xx)))
solve_ok = 0;
fprintf('\n linsysolve: solution contains NaN or inf');
return;
end
%%
dy = xx(1:m);
count = m;
%%
for p=1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'l')
%%dZ{p} = Rd{p} - At{p}*dy;
dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy));
dX{p} = EinvRc{p} - par.dd{p}.*dZ{p};
elseif strcmp(pblk{1},'q')
%%dZ{p} = Rd{p} - At{p}*dy;
dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy));
tmp = par.dd{p}.*dZ{p} ...
+ qops(pblk,qops(pblk,dZ{p},par.Zinv{p},1),X{p},3) ...
+ qops(pblk,qops(pblk,dZ{p},X{p},1),par.Zinv{p},3);
dX{p} = EinvRc{p} - tmp;
elseif strcmp(pblk{1},'s')
%%dZ{p} = Rd{p} -smat(pblk,At{p}*dy(par.permA(p,:)),par.isspAy(p));
dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy));
tmp = Prod3(pblk,X{p},dZ{p},par.Zinv{p},0);
tmp = 0.5*(tmp+tmp');
dX{p} = EinvRc{p}-tmp;
elseif strcmp(pblk{1},'u');
n = sum(pblk{2});
dZ{p} = zeros(n,1);
dX{p} = xx(count+1:count+n);
count = count + n;
end
end
%%*******************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
symqmr.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/symqmr.m
| 3,957 |
utf_8
|
bf28cb72305cb0378a7b572d42f39ff6
|
%%*************************************************************************
%% symqmr: symmetric QMR with left (symmetric) preconditioner.
%% The preconditioner used is based on the analytical
%% expression of inv(A).
%%
%% [x,resnrm,solve_ok] = symqmr(A,b,L,tol,maxit)
%%
%% child function: linsysolvefun.m
%%
%% A = [mat11 mat12; mat12' mat22].
%% b = rhs vector.
%% if matfct_options = 'chol' or 'spchol'
%% L = Cholesky factorization of (1,1) block.
%% M = Cholesky factorization of
%% Schur complement of A ( = mat12'*inv(mat11)*mat12-mat22).
%% else
%% L = triangular factors of A.
%% M = not relevant.
%% end
%% resnrm = norm of qmr-generated residual vector b-Ax.
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*************************************************************************
function [xx,resnrm,solve_ok] = symqmr(A,b,L,tol,maxit,printlevel)
N = length(b);
if (nargin < 6); printlevel = 1; end
if (nargin < 5) || isempty(maxit); maxit = max(30,length(A.mat22)); end;
if (nargin < 4) || isempty(tol); tol = 1e-10; end;
tolb = min(1e-4,tol*norm(b));
solve_ok = 1;
x = zeros(N,1);
if (norm(x))
if isstruct(A); Aq = matvec(A,x); else Aq=A*x; end;
r = b-Aq;
else
r = b;
end
err = norm(r); resnrm(1) = err; minres = err; xx = x;
if (err < 1e-3*tolb); return; end
q = precond(A,L,r);
tau_old = norm(q);
rho_old = r'*q;
theta_old = 0;
d = zeros(N,1);
res = r; Ad = zeros(N,1);
%%
%% main loop
%%
tiny = 1e-30;
for iter = 1:maxit
if isstruct(A); Aq = matvec(A,q); else Aq=A*q; end;
sigma = q'*Aq;
if (abs(sigma) < tiny)
solve_ok = 2;
if (printlevel); fprintf('*'); end;
break;
else
alpha = rho_old/sigma;
r = r - alpha*Aq;
end
u = precond(A,L,r);
theta = norm(u)/tau_old; c = 1/sqrt(1+theta^2);
tau = tau_old*theta*c;
gam = (c^2*theta_old^2); eta = (c^2*alpha);
d = gam*d + eta*q;
x = x + d;
%%
Ad = gam*Ad + eta*Aq;
res = res - Ad;
err = norm(res); resnrm(iter+1) = err; %#ok
if (err < minres); xx = x; minres = err; end
if (err < tolb); break; end
if (iter > 10)
if (err > 0.98*mean(resnrm(iter-10:iter)))
solve_ok = 0.5; break;
end
end
%%
if (abs(rho_old) < tiny)
solve_ok = 2;
if (printlevel); fprintf('*'); end;
break;
else
rho = r'*u;
beta = rho/rho_old;
q = u + beta*q;
end
rho_old = rho;
tau_old = tau;
theta_old = theta;
end
if (iter == maxit); solve_ok = 0.3; end;
%%
%%*************************************************************************
%% precond:
%%*************************************************************************
function Mx = precond(A,L,x)
m = L.matdim; m2 = length(x)-m;
Mx = zeros(length(x),1);
for iter = 1:1
if norm(Mx); r = full(x - matvec(A,Mx)); else r = full(x); end
r1 = r(1:m);
if (m2 > 0)
r2 = r(m+1:m+m2);
w = linsysolvefun(L,r1);
z = mexMatvec(A.mat12,w,1) - r2;
z = L.Mu \ (L.Ml \ (L.Mp*z));
r1 = r1 - mexMatvec(A.mat12,z);
end
d = linsysolvefun(L,r1);
if (m2 > 0)
d = [d; z]; %#ok
end
Mx = Mx + d;
end
%%*************************************************************************
%% matvec: matrix-vector multiply.
%% matrix = [A.mat11, A.mat12; A.mat12', A.mat22]
%%*************************************************************************
function Ax = matvec(A,x)
m = length(A.mat11); m2 = length(x)-m;
if issparse(x); x = full(x); end
if (m2 > 0)
x1 = x(1:m);
else
x1 = x;
end
Ax = mexMatvec(A.mat11,x1);
if (m2 > 0)
x2 = x(m+1:m+m2);
Ax = Ax + mexMatvec(A.mat12,x2);
Ax2 = mexMatvec(A.mat12,x1,1) + mexMatvec(A.mat22,x2);
Ax = [full(Ax); full(Ax2)];
end
%%*************************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
validate_startpoint.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/validate_startpoint.m
| 3,067 |
utf_8
|
572146bf8639c3d5066b6a790bca3ba8
|
%%***********************************************************************
%% validate_startpoint: validate_startpoint starting point X0,y0,Z0
%%
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%***********************************************************************
function [X0,Z0] = validate_startpoint(blk,X0,Z0,spdensity,iscmp)
if (nargin < 5); iscmp = 0; end
if (nargin < 4); spdensity = 0.4; end
%%
if ~iscell(X0) || ~iscell(Z0);
error('validate_startpoint: X0, Z0 must be cell arrays');
end
if (min(size(X0))~=1 || min(size(Z0))~=1);
error('validate_startpoint: cell array X, Z can only have 1 column or row');
end
if (size(X0,2) > size(X0,1)); X0 = X0'; end;
if (size(Z0,2) > size(Z0,1)); Z0 = Z0'; end;
for p = 1:size(blk,1)
pblk = blk(p,:);
n = sum(pblk{2});
n2 = sum(pblk{2}.*pblk{2});
numblk = length(pblk{2});
if strcmp(pblk{1},'s');
if (iscmp)
X0{p} = [real(X0{p}),-imag(X0{p}); imag(X0{p}), real(X0{p})];
Z0{p} = [real(Z0{p}),-imag(Z0{p}); imag(Z0{p}), real(Z0{p})];
end
if ~all(size(X0{p}) == n) || ~all(size(Z0{p}) == n);
error('validate_startpoint: blk and X0,Z0 are not compatible');
end
if (norm([X0{p}-X0{p}' Z0{p}-Z0{p}'],inf) > 2e-13);
error('validate_startpoint: X0,Z0 not symmetric');
end
if (nnz(X0{p}) < spdensity*n2) || (numblk > 1) ;
if ~issparse(X0{p}); X0{p} = sparse(X0{p}); end;
else
if issparse(X0{p}); X0{p} = full(X0{p}); end;
end
if (nnz(Z0{p}) < spdensity*n2) || (numblk > 1);
if ~issparse(Z0{p}); Z0{p} = sparse(Z0{p}); end;
else
if issparse(Z0{p}); Z0{p} = full(Z0{p}); end;
end
elseif strcmp(pblk{1},'q') || strcmp(pblk{1},'l') || strcmp(pblk{1},'u');
if ~all([size(X0{p},2) size(Z0{p},2)]==1);
error(['validate_startpoint: ',num2str(p),...
'-th block of X0,Z0 must be column vectors']);
end
if ~all([size(X0{p},1) size(Z0{p},1)]==n);
error('validate_startpoint: blk, and X0,Z0, are not compatible');
end
if (nnz(X0{p}) < spdensity*n);
if ~issparse(X0{p}); X0{p} = sparse(X0{p}); end;
else
if issparse(X0{p}); X0{p} = full(X0{p}); end;
end
if (nnz(Z0{p}) < spdensity*n);
if ~issparse(Z0{p}); Z0{p} = sparse(Z0{p}); end;
else
if issparse(Z0{p}); Z0{p} = full(Z0{p}); end;
end
if strcmp(pblk{1},'l') && (any(X0{p} < 1e-12) || any(Z0{p} < 1e-12))
error('X0 or Z0 is not in nonnegative cone');
end
if strcmp(pblk{1},'q');
s = 1+[0, cumsum(pblk{2})]; len = length(pblk{2});
if any(X0{p}(s(1:len)) < 1e-12) || any(Z0{p}(s(1:len)) < 1e-12)
error('X0 or Z0 is not in socp cone');
end
end
end
end
%%***********************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
Atyfun.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/Atyfun.m
| 1,471 |
utf_8
|
5af173811d5528ab49ca2a48bd4748ce
|
%%*********************************************************
%% Atyfun: compute sum_{k=1}^m yk*Ak.
%%
%% Q = Atyfun(blk,At,permA,isspAy,y);
%%
%% Note: permA and isspAy may be set to [].
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%**********************************************************
function Q = Atyfun(blk,At,permA,isspAy,y)
if isempty(permA); ismtpermA = 1; else ismtpermA = 0; end
Q = cell(size(blk,1),1);
if isempty(isspAy); isspAy = ones(size(blk,1),1); end
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'s')
n = sum(pblk{2});
m1 = size(At{p,1},2);
if (~isempty(At{p,1}))
if (ismtpermA)
tmp = At{p,1}*y(1:m1);
else
tmp = At{p,1}*y(permA(p,1:m1),1);
end
Q{p} = smat(pblk,tmp,isspAy(p));
else
Q{p} = sparse(n,n);
end
if (length(pblk) > 2) %% for low rank constraints
len = sum(pblk{3});
m2 = length(pblk{3});
y2 = y(m1+1:m1+m2);
dd = At{p,3};
idxD = [0; find(diff(dd(:,1))); size(dd,1)];
yy2 = mexexpand(diff(idxD),y2);
DD = spconvert([dd(:,2:3),dd(:,4).*yy2; len,len,0]);
Q{p} = Q{p} + At{p,2}*DD*At{p,2}';
end
else
Q{p} = At{p,1}*y;
end
end
%%*********************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
blkcholfun.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/blkcholfun.m
| 1,247 |
utf_8
|
6d78842d748fad818d79a003e1238916
|
%%******************************************************************
%% blkcholfun: compute Cholesky factorization of X.
%%
%% [Xchol,indef] = blkcholfun(blk,X,permX);
%%
%% X = Xchol'*Xchol;
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%******************************************************************
function [Xchol,indef] = blkcholfun(blk,X,permX)
if (nargin == 2); permX = []; end;
if ~iscell(X);
indef = 0;
if strcmp(blk{1},'s');
if isempty(permX) || ~issparse(X);
[Xchol,indef] = chol(X);
else
[tmp,indef] = chol(X(permX,permX));
Xchol(:,permX) = tmp;
end
elseif strcmp(blk{1},'q')
gamx = qops(blk,X,X,2);
if any(gamx <= 0)
indef = 1;
end
Xchol = [];
elseif strcmp(blk{1},'l');
if any(X <= 0)
indef = 1;
end
Xchol = [];
elseif strcmp(blk{1},'u')
Xchol = [];
end
else
Xchol = cell(size(X));
for p = 1:size(blk,1)
[Xchol{p},indef(p)] = blkcholfun(blk(p,:),X{p}); %#ok
end
indef = max(indef);
end
%%=================================================================
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
smat.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/smat.m
| 880 |
utf_8
|
184f4081013cebeae6150a22b224ebf9
|
%%*********************************************************
%% smat: compute the matrix smat(x).
%%
%% M = smat(blk,x,isspM);
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%**********************************************************
function M = smat(blk,xvec,isspM)
if (nargin < 3); isspM = zeros(size(blk,1),1); end
%%
if ~iscell(xvec)
if strcmp(blk{1},'s')
M = mexsmat(blk,xvec,isspM);
else
M = xvec;
end
else
M = cell(size(blk,1),1);
if (length(isspM)==1)
isspM = isspM*ones(size(blk,1),1);
end
for p=1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'s');
M{p} = mexsmat(pblk,xvec{p},isspM(p));
else
M{p} = xvec{p};
end
end
end
%%*********************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
sqlpcheckconvg.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/sqlpcheckconvg.m
| 8,298 |
utf_8
|
6acb41aefb05d5a53dbd501dabab2b33
|
%%*****************************************************************************
%% sqlpcheckconvg: check convergence.
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*****************************************************************************
function [param,breakyes,restart,msg] = sqlpcheckconvg(param,runhist)
termcode = param.termcode;
iter = param.iter;
obj = param.obj;
relgap = param.relgap;
gap = param.gap;
prim_infeas = param.prim_infeas;
dual_infeas = param.dual_infeas;
mu = param.mu;
% homrp = param.homrp;
% homRd = param.homRd;
prim_infeas_bad = param.prim_infeas_bad;
dual_infeas_bad = param.dual_infeas_bad;
if (iter > 15)
prim_infeas_min = min(param.prim_infeas_min, max(prim_infeas,1e-10));
dual_infeas_min = min(param.dual_infeas_min, max(dual_infeas,1e-10));
else
prim_infeas_min = inf;
dual_infeas_min = inf;
end
printlevel = param.printlevel;
stoplevel = param.stoplevel;
ublksize = param.ublksize;
use_LU = param.use_LU;
numpertdiagschur = param.numpertdiagschur;
infeas = max(prim_infeas,dual_infeas);
restart = 0;
breakyes = 0;
msg = [];
%%
if (param.normX > 1e15*param.normX0 || param.normZ > 1e15*param.normZ0)
termcode = 3;
breakyes = 1;
end
err = max(infeas,relgap);
idx = max(2,iter-9): iter+1;
pratio = (1-runhist.pinfeas(idx)./runhist.pinfeas(idx-1))./runhist.pstep(idx);
dratio = (1-runhist.dinfeas(idx)./runhist.dinfeas(idx-1))./runhist.dstep(idx);
if (param.homRd < 0.1*sqrt(err*max(param.inftol,1e-13))) ...
&& (iter > 30 || termcode==3) && (mean(abs(dratio-1)) > 0.5)
termcode = 1;
breakyes = 1;
end
if (param.homrp < 0.1*sqrt(err*max(param.inftol,1e-13))) ...
&& (iter > 30 || termcode==3) && (mean(abs(pratio-1)) > 0.5)
termcode = 2;
breakyes = 1;
end
if (stoplevel) && (iter > 2) && (~breakyes)
prim_infeas_bad = ...
+ (prim_infeas > max(1e-10,1e2*prim_infeas_min) && (prim_infeas_min < 1e-2)) ...
+ (prim_infeas > prod(1.5-runhist.step(iter+1:iter-1))*runhist.pinfeas(iter-2));
dual_infeas_bad = ...
+ (dual_infeas > max(1e-8,1e3*dual_infeas_min) && (dual_infeas_min < 1e-2));
if (mu < 1e-8) || (use_LU)
idx = max(1,iter-1): iter;
elseif (mu < 1e-4);
idx = max(1,iter-2): iter;
else
idx = max(1,iter-3): iter;
end
gap_progress_bad = (infeas < 1e-4) && (relgap < 5e-3) ...
&& (gap > 0.9*exp(mean(log(runhist.gap(idx)))));
gap_progress_bad2 = (infeas < 1e-4) && (relgap < 1) ...
&& (gap > 0.95*exp(mean(log(runhist.gap(idx)))));
gap_ratio = runhist.gap(idx+1)./runhist.gap(idx);
idxtmp = max(1,iter-4): iter;
gap_ratio_tmp = runhist.gap(idxtmp+1)./runhist.gap(idxtmp);
gap_slowrate = min(0.8,max(0.6,2*mean(gap_ratio_tmp)));
idx2 = max(1,iter-10): iter;
gap_ratio2 = runhist.gap(idx2+1)./runhist.gap(idx2);
gap_slow = all(gap_ratio > gap_slowrate);
gap_slow2 = all(gap_ratio2 > gap_slowrate);
if (iter > 20) && (infeas < 1e-4 || prim_infeas_bad) ...
&& (max(infeas,relgap) < 1) ...
&& ~(min(runhist.step(idx)) > 0.2 && ublksize)
if (gap_slow && prim_infeas_bad && (relgap < 1e-3)) ...
|| (gap_slow2 && prim_infeas_bad && ublksize && (runhist.step(iter+1) > 0.2))
msg = 'stop: progress is too slow';
if (printlevel); fprintf('\n %s',msg); end
termcode = -5;
breakyes = 1;
elseif (max(infeas,relgap) < 1e-2) && (prim_infeas_bad)
if (relgap < max(0.2*prim_infeas,1e-2*dual_infeas))
msg = 'stop: relative gap < infeasibility';
if (printlevel); fprintf('\n %s',msg); end
termcode = -1;
breakyes = 1;
end
end
end
if (iter > 20) && (gap_progress_bad) ...
&& (prim_infeas_bad || any(runhist.step(idx) > 0.5))
msg = 'stop: progress is bad';
if (printlevel); fprintf('\n %s',msg); end
termcode = -5;
breakyes = 1;
end
if (iter > 20) && (gap_progress_bad2) ...
&& (numpertdiagschur > 10);
msg = 'stop: progress is bad';
if (printlevel); fprintf('\n %s',msg); end
termcode = -5;
breakyes = 1;
end
if (iter > 30) && (prim_infeas_bad) && (gap_slow) && (relgap < 1e-3) ...
&& (dual_infeas < 1e-5) && ~(min(runhist.step(idx)) > 0.2 && ublksize)
msg = 'stop: progress is bad*';
if (printlevel); fprintf('\n %s',msg); end
termcode = -5;
breakyes = 1;
end
if (iter > 30) && (dual_infeas_bad) && (relgap < 1e-3) ...
&& (dual_infeas < 1e-5) ...
&& ~(min(runhist.step(idx)) > 0.2 && ublksize) %#ok
msg = 'stop: dual infeas has deteriorated too much';
if (printlevel); fprintf('\n %s',msg); end
termcode = -5;
breakyes = 1;
end
if (iter > 50) && (prim_infeas/runhist.pinfeas(1) < 1e-6) ...
&& (dual_infeas/runhist.dinfeas(1) > 1e-3) ...
&& (runhist.step(iter+1) > 0.2) && (relgap > 1e-3)
msg = 'stop: lack of progress in dual infeas';
if (printlevel); fprintf('\n %s, homrp=%2.1e',msg,param.homrp); end
termcode = -5;
breakyes = 1;
end
if (iter > 50) && (dual_infeas/runhist.dinfeas(1) < 1e-6) ...
&& (prim_infeas/runhist.pinfeas(1) > 1e-3) ...
&& (runhist.step(iter+1) > 0.2) && (relgap > 1e-3)
msg = 'stop: lack of progress in primal infeas';
if (printlevel); fprintf('\n %s, homRd=%2.1e',msg,param.homRd); end
termcode = -5;
breakyes = 1;
end
if (min(runhist.infeas) < 1e-4 || (prim_infeas_bad && iter > 10)) ...
&& (max(runhist.infeas) > 1e-5) || (iter > 20)
relgap2 = abs(diff(obj))/(1+sum(abs(obj)));
if (relgap2 < 1e-3);
step_short = all(runhist.step(iter:iter+1) < 0.05) ;
elseif (relgap2 < 1) || (use_LU)
idx = max(1,iter-3): iter+1;
step_short = all(runhist.step(idx) < 0.03);
else
step_short = 0;
end
if (step_short) && (relgap2 < 1e-2)
msg = 'stop: steps too short consecutively';
if (printlevel); fprintf('\n %s',msg); end
termcode = -5;
breakyes = 1;
end
end
if (iter > 3 && iter < 20) && (infeas > 1) ...
&& (min(param.homrp,param.homRd) > min(1e-8,param.inftol)) ...
&& (max(runhist.step(max(1,iter-3):iter+1)) < 1e-3)
if (stoplevel == 2)
msg = 'stop: steps too short consecutively*';
if (printlevel)
fprintf('\n *** Too many tiny steps, advisable to restart');
fprintf(' with the following iterate.')
fprintf('\n *** Suggestion: [X0,y0,Z0] = infeaspt(blk,At,C,b,2,1e5);');
fprintf('\n %s',msg);
end
termcode = -5;
breakyes = 1;
elseif (stoplevel == 3)
msg = 'stop: steps too short consecutively*';
if (printlevel)
fprintf('\n *** Too many tiny steps even')
fprintf(' after restarting');
fprintf('\n %s',msg);
end
termcode = -5;
breakyes = 1;
else
if (printlevel)
fprintf('\n *** Too many tiny steps:')
fprintf(' restarting with the following iterate.')
fprintf('\n *** [X,y,Z] = infeaspt(blk,At,C,b,2,1e5);');
end
prim_infeas_min = 1e20;
prim_infeas_bad = 0;
restart = 1;
end
end
end
if (max(relgap,infeas) < param.gaptol)
msg = sprintf('stop: max(relative gap, infeasibilities) < %3.2e',param.gaptol);
if (printlevel); fprintf('\n %s',msg); end
termcode = 0;
breakyes = 1;
end
%%
param.prim_infeas_bad = prim_infeas_bad;
param.prim_infeas_min = prim_infeas_min;
param.dual_infeas_bad = dual_infeas_bad;
param.dual_infeas_min = dual_infeas_min;
param.termcode = termcode;
%%**************************************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
SDPT3soln_SEDUMIsoln.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/SDPT3soln_SEDUMIsoln.m
| 2,743 |
utf_8
|
1f7236a38116d782e7084afc40e90a10
|
%%**********************************************************
%% SDPT3soln_SEDUMIsoln: convert SQLP solution in SDPT3 format to
%% SeDuMi format
%%
%% [xx,yy,zz] = SDPT3soln_SEDUMIsoln(blk,X,y,Z,perm);
%%
%% usage: load SEDUMI_data_file (containing say, A,b,c,K)
%% [blk,At,C,b,perm] = read_sedumi(A,b,c,K);
%% [obj,X,y,Z] = sdpt3(blk,At,C,b);
%% [xx,yy,zz] = SDPT3soln_SEDUMIsoln(blk,X,y,Z,perm);
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%**********************************************************
function [xx,yy,zz] = SDPT3soln_SEDUMIsoln(blk,X,y,Z,perm)
yy = y;
xx = []; zz = [];
%%
%% extract unrestricted blk
%%
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'u')
xx = [xx; X{p,1}]; %#ok
zz = [zz; Z{p,1}]; %#ok
end
end
%%
%% extract linear blk
%%
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'l')
xx = [xx; X{p,1}]; %#ok
zz = [zz; Z{p,1}]; %#ok
end
end
%%
%% extract second order cone blk
%%
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'q')
xx = [xx; X{p,1}]; %#ok
zz = [zz; Z{p,1}]; %#ok
end
end
%%
%% extract rotated cone blk
%%
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'r')
xx = [xx; X{p,1}]; %#ok
zz = [zz; Z{p,1}]; %#ok
end
end
%%
%% extract semidefinite cone blk
%%
per = [];
len = 0;
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'s')
sblk(p) = length(pblk{2}); %#ok
per = [per, perm{p}]; %#ok
len = len + sum(pblk{2}.*pblk{2});
end
end
sblk = sum(sblk);
cnt = 1;
Xsblk = cell(sblk,1); Zsblk = cell(sblk,1);
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'s')
ss = [0,cumsum(pblk{2})];
numblk = length(pblk{2});
Xp = X{p,1};
Zp = Z{p,1};
for tt = 1:numblk
if (numblk > 1)
idx = ss(tt)+1: ss(tt+1);
Xsblk{cnt} = full(Xp(idx,idx));
Zsblk{cnt} = full(Zp(idx,idx));
else
Xsblk{cnt} = Xp;
Zsblk{cnt} = Zp;
end
cnt = cnt + 1;
end
end
end
if ~isempty(per)
Xsblk(per) = Xsblk; Zsblk(per) = Zsblk;
xtmp = zeros(len,1); ztmp = zeros(len,1);
cnt = 0;
for p = 1:sblk
if strcmp(pblk{1},'s')
idx = 1:length(Xsblk{p})^2;
xtmp(cnt+idx) = Xsblk{p}(:);
ztmp(cnt+idx) = Zsblk{p}(:);
cnt = cnt + length(idx);
end
end
xx = [xx; xtmp];
zz = [zz; ztmp];
end
%%**********************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
detect_ublk.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/detect_ublk.m
| 2,815 |
utf_8
|
819f087d73a97e1717b952ca2f3a407d
|
%%*******************************************************************
%% detect_ublk: search for implied free variables in linear
%% block.
%% [blk2,At2,C2,ublkinfo] = detect_ublk(blk,At,C);
%%
%% i1,i2: indices corresponding to splitting of unrestricted varaibles
%% i3 : remaining indices in the linear block
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*******************************************************************
function [blk2,At2,C2,ublkinfo,parbarrier2,X2,Z2] = ...
detect_ublk(blk,At,C,parbarrier,X,Z,printlevel)
if (nargin < 7); printlevel = 1; end
blk2 = blk; At2 = At; C2 = C;
if (nargin >= 6)
parbarrier2 = parbarrier;
X2 = X; Z2 = Z;
else
X2 = []; Z2 = [];
end
numblk = size(blk,1);
ublkinfo = cell(size(blk,1),3);
tol = 1e-14;
%%
numblknew = numblk;
%%
for p = 1:numblk
pblk = blk(p,:);
m = size(At{p},2);
if strcmp(pblk{1},'l')
r = randmat(1,m,0,'n');
% stime = cputime;
Ap = At{p}'; Cp = C{p};
ApTr = (r*Ap)';
[sApTr,perm] = sort(abs(ApTr));
idx0 = find(abs(diff(sApTr)) < tol);
if ~isempty(idx0)
n = pblk{2};
i1 = perm(idx0); i2 = perm(idx0+1);
Api1 = Ap(:,i1);
Api2 = Ap(:,i2);
Cpi1 = Cp(i1)';
Cpi2 = Cp(i2)';
idxzr = abs(Cpi1+Cpi2) < tol & sum(abs(Api1+Api2),1) < tol;
if any(idxzr)
i1 = i1(idxzr');
i2 = i2(idxzr');
blk2{p,1} = 'u';
blk2{p,2} = length(i1);
At2{p} = Ap(:,i1)';
C2{p} = Cp(i1);
if (printlevel)
fprintf('\n %1.0d linear variables from unrestricted variable.\n',...
2*length(i1));
end
if (nargin >= 6)
parbarrier2{p} = parbarrier{p}(i1);
X2{p} = X{p}(i1)-X{p}(i2);
Z2{p} = zeros(length(i1),1);
end
i3 = setdiff(1:n,union(i1,i2));
if ~isempty(i3)
numblknew = numblknew + 1;
blk2{numblknew,1} = 'l';
blk2{numblknew,2} = length(i3);
At2{numblknew,1} = Ap(:,i3)';
C2{numblknew,1} = Cp(i3);
if (nargin >= 6)
parbarrier2{numblknew,1} = parbarrier{p}(i3);
X2{numblknew,1} = X{p}(i3); Z2{numblknew,1} = Z{p}(i3);
end
end
ublkinfo{p,1} = i1; ublkinfo{p,2} = i2; ublkinfo{p,3} = i3;
end
end
end
end
%%*******************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
combine_blk.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/combine_blk.m
| 2,358 |
utf_8
|
205279faec8f7b11c04bc75707a6eb77
|
%%*******************************************************************
%% combine_blk: combine small SDP blocks together,
%% combine all SOCP blocks together, etc
%%
%% [blk2,At2,C2,blkinfo] = combine_blk(blk,At,C);
%%
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*******************************************************************
function [blk2,At2,C2,blkinfo] = combine_blk(blk,At,C)
blkinfo = zeros(size(blk,1),1);
for p = 1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'s')
if (sum(pblk{2}) < 100)
blkinfo(p) = 1;
end
elseif strcmp(pblk{1},'q')
blkinfo(p) = 2;
elseif strcmp(pblk{1},'r')
blkinfo(p) = 3;
elseif strcmp(pblk{1},'l')
blkinfo(p) = 4;
elseif strcmp(pblk{1},'u')
blkinfo(p) = 5;
end
end
numblk0 = length(find(blkinfo == 0));
numblk = numblk0 + length(union(blkinfo(blkinfo > 0),[]));
blk2 = cell(numblk,2); At2 = cell(numblk,1); C2 = cell(numblk,1);
cnt = 0;
idx = find(blkinfo==0); %% larger SDP blocks
if ~isempty(idx)
len = length(idx);
blk2(1:len,:) = blk(idx,:);
At2(1:len) = At(idx); C2(1:len) = C(idx);
cnt = len;
end
idx = find(blkinfo==1); %% smaller SDP blocks
Ctmp = []; idxstart = 0;
if ~isempty(idx)
cnt = cnt + 1;
blk2{cnt,1} = 's'; blk2{cnt,2} = [];
len = length(idx);
for k = 1:len
blk2{cnt,2} = [blk2{cnt,2}, blk{idx(k),2}];
At2{cnt} = [At2{cnt}; At{idx(k)}];
[ii,jj,vv] = find(C{idx(k)});
Ctmp = [Ctmp; [idxstart+ii,idxstart+jj,vv]]; %#ok
idxstart = idxstart + sum(blk{idx(k),2});
end
end
n = sum(blk2{cnt,2});
C2{cnt} = spconvert([Ctmp; n,n,0]);
%%
for L = 2:5
idx = find(blkinfo==L);
if ~isempty(idx)
cnt = cnt + 1;
if (L==2)
blk2{cnt,1} = 'q';
elseif (L==3)
blk2{cnt,1} = 'r';
elseif (L==4)
blk2{cnt,1} = 'l';
elseif (L==5)
blk2{cnt,1} = 'u';
end
blk2{cnt,2} = [];
len = length(idx);
for k = 1:len
blk2{cnt,2} = [blk2{cnt,2}, blk{idx(k),2}];
At2{cnt} = [At2{cnt}; At{idx(k)}];
C2{cnt} = [C2{cnt}; C{idx(k)}];
end
end
end
%%*******************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
Prod2.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/Prod2.m
| 1,882 |
utf_8
|
b291dcf07608872ed75bd82e48ff0b54
|
%%*******************************************************************
%% Prod2: compute the block diagonal matrix A*B
%%
%% C = Prod2(blk,A,B,options);
%%
%% INPUT: blk = a cell array describing the block structure of A and B
%% A,B = square matrices or column vectors.
%%
%% options = 0 if no special structure
%% 1 if C is symmetric
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*******************************************************************
function C = Prod2(blk,A,B,options)
global spdensity
if (nargin == 3); options = 0; end;
iscellA = iscell(A); iscellB = iscell(B);
%%
if (~iscellA && ~iscellB)
if (size(blk,1) > 1);
error('Prod2: blk and A,B are not compatible');
end;
if strcmp(blk{1},'s')
numblk = length(blk{2});
isspA = issparse(A); isspB = issparse(B);
if (numblk > 1)
if ~isspA; A=sparse(A); isspA=1; end
if ~isspB; B=sparse(B); isspB=1; end
end
%%use_matlab = (options==0 && ~isspA && ~isspB) || (isspA && isspB);
use_matlab = (~isspA && ~isspB) || (isspA && isspB);
if (use_matlab)
C = A*B;
if (options==1); C = 0.5*(C+C'); end;
else
C = mexProd2(blk,A,B,options);
end
checksparse = (numblk==1) && (isspA || isspB);
if (checksparse)
n2 = sum(blk{2}.*blk{2});
if (mexnnz(C) <= spdensity*n2);
if ~issparse(C); C = sparse(C); end;
else
if issparse(C); C = full(C); end;
end
end
elseif (strcmp(blk{1},'q') || strcmp(blk{1},'l') || strcmp(blk{1},'u'))
C = A.*B;
end
else
error('Prod2: A,B must be matrices');
end
%%*******************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
NTdirfun.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sdpt3/Solver/NTdirfun.m
| 1,614 |
utf_8
|
a236e4d45e59db8824375b14ed6090a1
|
%%*******************************************************************
%% NTdirfun: compute (dX,dZ), given dy, for the NT direction.
%%
%% SDPT3: version 3.1
%% Copyright (c) 1997 by
%% K.C. Toh, M.J. Todd, R.H. Tutuncu
%% Last Modified: 16 Sep 2004
%%*******************************************************************
function [dX,dy,dZ] = NTdirfun(blk,At,par,Rd,EinvRc,xx,m)
global solve_ok
dX = cell(size(blk,1),1); dZ = cell(size(blk,1),1); dy = [];
if (any(isnan(xx)) || any(isinf(xx)))
solve_ok = 0;
fprintf('\n linsysolve: solution contains NaN or inf.');
return;
end
%%
dy = xx(1:m);
count = m;
%%
for p=1:size(blk,1)
pblk = blk(p,:);
if strcmp(pblk{1},'l')
%%dZ{p} = Rd{p} - At{p}*dy;
dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy));
tmp = par.dd{p}.*dZ{p};
dX{p} = EinvRc{p} - tmp;
elseif strcmp(pblk{1},'q')
%%dZ{p} = Rd{p} - At{p}*dy;
dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),[],[],dy));
tmp = par.dd{p}.*dZ{p} + qops(pblk,qops(pblk,dZ{p},par.ee{p},1),par.ee{p},3);
dX{p} = EinvRc{p} - tmp;
elseif strcmp(pblk{1},'s')
%%dZ{p} = Rd{p} - smat(pblk,At{p}*dy(par.permA(p,:)),par.isspAy(p));
dZ(p) = ops(Rd(p),'-',Atyfun(pblk,At(p,:),par.permA(p,:),par.isspAy(p),dy));
tmp = Prod3(pblk,par.W{p},dZ{p},par.W{p},1);
dX{p} = EinvRc{p}-tmp;
elseif strcmp(pblk{1},'u');
n = sum(pblk{2});
dZ{p} = zeros(n,1);
dX{p} = xx(count+1:count+n);
count = count + n;
end
end
%%*******************************************************************
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
make.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/make.m
| 23,079 |
utf_8
|
8b04233b872cb2ab50851644ae0e486a
|
function make( varargin )
%
% Determine the base path
%
odir = pwd;
base = mfilename('fullpath');
base = fileparts( base );
%
% Check the force and runonly flags
%
args = varargin;
is_octave = exist( 'OCTAVE_VERSION', 'builtin' );
if is_octave,
force = true;
runonly = true;
indexonly = false;
page_output_immediately(true);
else
temp = strcmp( args, '-force' );
force = any( temp );
if force, args(temp) = []; end
temp = strcmp( args, '-runonly' );
runonly = any( temp );
if runonly, args(temp) = []; end
temp = strcmp( args, '-indexonly' );
indexonly = any( temp );
if indexonly, args(temp) = []; end
if ~runonly,
close all;
fclose all;
end
end
if isempty( args ),
args = { base };
end
%
% Process the arguments
%
for k = 1 : length( args ),
file = args{k};
if any( file == '*' ),
files = dir( file );
files = { files.name };
else
files = { file };
end
for j = 1 : length( files );
%
% Check the validity of the file or directory
%
file = files{j};
switch exist( file, 'file' ),
case 0,
error( 'Cannot find file or directory: %s', file );
case 2,
file = which( file );
if isempty( file ),
file = files{j};
if file(1) ~= filesep,
file = [ base, filesep, file ];
end
end
[ mpath, file, ext ] = fileparts( file );
file = [ file, ext ];
if ~strcmp( ext, '.m' ),
error( 'Must be an m-file: %s' );
elseif strcmp( file, 'Contents.m' ) && length( files ) > 1,
continue;
elseif strcmp( file, 'make.m' ) && strcmp( mpath, base ),
continue;
end
case 7,
cd( file );
mpath = pwd;
cd( odir );
file = '';
otherwise,
error( 'Invalid file: %s', file );
end
if length( mpath ) < length( base ) || strncmpi( mpath, base, length( base ) ) == 0,
error( 'Not a valid a subdirectory of cvx/examples/: %s', mpath );
end
%
% Process the file or directory
%
if ~runonly && isempty( file ) && strcmp( mpath, base ),
[ fidr, message ] = fopen( 'index.html', 'r' );
if fidr < 0,
error( 'Cannot open index.html\n %s', message );
end
[ fidw, message ] = fopen( 'index.html.new', 'w+' );
if fidw < 0,
error( 'Cannot open index.html.new\n %s', message );
end
while ~feof( fidr ),
temp = fgetl( fidr );
fprintf( fidw, '%s\n', temp );
if strcmp(temp,'<ul class="mktree" id="tree1">'),
while ~feof( fidr ),
temp = fgetl( fidr );
if strcmp(temp,'</ul>'), break; end
end
break;
end
end
else
fidw = -1;
end
if isempty( file ),
generate_directory( mpath, '', force, runonly, indexonly, fidw, base, 0, is_octave );
else
cd( mpath );
generate_file( file, '', force, runonly, indexonly, is_octave );
end
cd( odir );
if fidw >= 0,
fprintf( fidw, '</ul>\n' );
while ~feof( fidr ),
fprintf( fidw, '%s\n', fgetl( fidr ) );
end
fclose( fidr );
fclose( fidw );
cd( mpath )
compare_and_replace( '', 'index.html' );
end
end
end
function [ title, files ] = generate_directory( mpath, prefix, force, runonly, indexonly, fidc, base, depth, is_octave )
fprintf( 1, '%sDirectory: %s\n', prefix, mpath );
prefix = [ prefix, ' ' ];
cd( mpath );
mpath = pwd;
%
% Open Contents.m file and retrieve title and comments
%
title = '';
if ~runonly,
comments = {};
fcomments = {};
[ fidr, message ] = fopen( 'Contents.m', 'r' );
if fidr >= 0,
temp = fgetl( fidr );
if length( temp ) > 2 && temp( 1 ) == '%' && temp( 2 ) == ' ' && temp( 3 ) ~= ' ',
title = temp( min( find( temp ~= '%' & temp ~= ' ' ) ) : end );
while ~feof( fidr ),
temp = fgetl( fidr );
if isempty(temp) || temp( 1 ) ~= '%' || ~any( temp ~= '%' & temp ~= ' ' ), break; end
temp = temp( min( find( temp ~= '%' & temp ~= ' ' ) ) : end );
if strcmp(title(end-2:end),'...'),
title = [ title(1:end-3), temp ];
else
if ~isempty(fcomments) && strcmp( fcomments{end}(end-2:end),'...' ),
fcomments{end} = [ fcomments{end}(1:end-3), temp ];
else
fcomments{end+1} = temp;
end
comments{end+1} = temp;
end
end
end
fclose( fidr );
elseif ~isempty( dir( 'Contents.m' ) ),
error( 'Cannot open Contents.m for reading\n %s', message );
end
end
if isempty(title),
title = '(no title)';
end
%
% Read the entries, and process the scripts and functions
%
dd = dir;
mlen = 0;
files = struct( 'name', {}, 'title', {}, 'type', {} );
for k = 1 : length( dd ),
name = dd(k).name;
if dd(k).isdir,
if name(1) == '.' || strcmp( name, 'eqs' ) || strcmp( name, 'html' ), continue; end
name(end+1) = '/';
files( end + 1 ) = struct( 'name', name, 'title', '', 'type', 'dir' );
elseif length( name ) > 2,
ndx = max(find(name=='.'));
if isempty( ndx ), continue; end
switch name(ndx+1:end),
case 'm',
if strcmp( name, 'Contents.m' ) || strcmp( name, 'make.m' ) || name(end-2) == '_', continue; end
[ temp, isfunc ] = generate_file( name, prefix, force, runonly, indexonly, is_octave );
if isfunc, type = 'func'; else type = 'script'; end
files( end + 1 ) = struct( 'name', name, 'title', temp, 'type', type );
case 'tex',
temp = generate_doc( name, prefix, force );
files( end + 1 ) = struct( 'name', name, 'title', temp, 'type', 'tex' );
case { 'pdf', 'ps' },
if any( strcmp( { dd.name }, [name(1:ndx+1),'tex'] ) ), continue; end
files( end + 1 ) = struct( 'name', name, 'title', '', 'type', 'doc' );
case { 'dat', 'mat', 'txt' },
if strcmp( name, 'index.dat' ), continue; end
files( end + 1 ) = struct( 'name', name, 'title', '', 'type', 'dat' );
otherwise,
continue;
end
end
mlen = max( mlen, length(name) );
end
%
% Sort the files
%
if ~isempty( files ),
[ fnames, ndxs ] = sort( { files.title } );
files = files(ndxs);
ftypes = { files.type };
tdir = strcmp( ftypes, 'dir' );
tfun = strcmp( ftypes, 'func' );
tdoc = strcmp( ftypes, 'doc' ) | strcmp( ftypes, 'tex' );
tdat = strcmp( ftypes, 'dat' );
tscr = ~( tdir | tfun | tdoc | tdat );
t1 = strncmp( fnames, 'Exercise', 8 ) & tscr;
t2 = strncmp( fnames, 'Example', 7 ) & tscr;
t3 = strncmp( fnames, 'Section', 7 ) & tscr;
t4 = strncmp( fnames, 'Figure', 6 ) & tscr;
t5 = ~( t1 | t2 | t3 | t4 ) & tscr;
tdir = find(tdir(:));
tscr = [ find(t3(:)); find(t4(:)); find(t2(:)); find(t5(:)); find(t1(:)); ];
tfun = find(tfun(:));
tdoc = find(tdoc(:));
tdat = find(tdat(:));
files = files( [ tdoc ; tdir ; tscr ; tfun ; tdat ] );
tdoc = [ 1, length(tdoc) ];
tdir = tdoc(end) + [ 1, length(tdir) ];
tscr = tdir(end) + [ 1, length(tscr) ];
tfun = tscr(end) + [ 1, length(tfun) ];
tdat = tfun(end) + [ 1, length(tdat) ];
end
%
% Fill out the index.jemdoc file
%
if fidc >= 0,
dots = sprintf('\t');
dots = dots(ones(1,depth+1));
dpath = mpath( length(base) + 2 : end );
dpath(dpath=='\') = '/';
if ~isempty(dpath), dpath(end+1) = '/'; end
% Directory title---skip for the top level
if depth,
title = regexprep(title,'</?b>','');
title = regexprep(title,' target="_blank"','');
title2 = regexprep(title,'<a ([^>]*>)','</b><a target="_blank" $1<b>');
title2 = regexprep(title2,'</a>','</b></a><b>');
title2 = regexprep(['<b>',title2,'</b>'],'<b></b>','');
fprintf( fidc, '%s<li>%s<ul>\n', dots(1:end-1), title2 );
end
if tdoc(2) >= tdoc(1) || ~isempty( fcomments ),
for k = tdoc(1) : tdoc(2),
name = files( k ).name;
if strcmp( files(k).type, 'tex' ),
name = [ name(1:end-4), 'pdf' ];
end
temp = files( k ).title;
if isempty( temp ),
fprintf( fidc, '%s<li>Reference: <a href="%s%s" target="_blank">%s</a></li>\n', dots, dpath, name, name );
else
fprintf( fidc, '%s<li>Reference: <a href="%s%s" target="_blank">%s (%s)</a></li>\n', dots, dpath, name, temp, name );
end
end
for k = 1 : length(fcomments),
fprintf( fidc, '%s<li>Reference: %s</li>\n', dots, regexprep(fcomments{k},'<a href=','<a target="_blank" href='));
end
end
for k = tdir(1) : tdir(2),
files(k).title = generate_directory( files(k).name(1:end-1), prefix, force, runonly, indexonly, fidc, base, depth+1, is_octave );
cd(mpath);
end
if tscr(2) >= tscr(1),
if ~depth,
fprintf( fidc, '%s<li><b>Miscellaneous examples</b>\n', dots );
dots(end+1) = dots(end);
fprintf( fidc, '%s<ul>\n', dots );
end
for k = tscr(1) : tscr(2),
name = files( k ).name;
temp = files( k ).title;
if isempty( temp ),
fprintf( fidc, '%s<li><a href="%s%s">%s</a></li>\n', dots, dpath, name, name );
else
fprintf( fidc, '%s<li><a href="%shtml/%shtml">%s</a> (<a href="%s%s">%s</a>)</li>\n', dots, dpath, name(1:end-1), temp, dpath, name, name );
end
end
if ~depth,
fprintf( fidc, '%s</ul>\n', dots );
dots(end) = [];
fprintf( fidc, '%s</li>\n', dots );
end
end
if tfun(2) >= tfun(1),
pref = 'Utility: ';
for k = tfun(1) : tfun(2),
name = files( k ).name;
temp = files( k ).title;
if isempty( temp ),
fprintf( fidc, '%s<li>Utility: <a href="%s%s">%s</a></li>\n', dots, dpath, name, name );
else
fprintf( fidc, '%s<li>Utility: <a href="%shtml/%shtml">%s</a> (<a href="%s%s">%s</a>)</li>\n', dots, dpath, name(1:end-1), temp, dpath, name, name );
end
end
end
if tdat(2) >= tdat(1),
pref = '- Data: ';
for k = tdat(1) : tdat(2),
name = files( k ).name;
temp = files( k ).title;
if isempty( temp ),
fprintf( fidc, '%s<li>Data: <a href="%s%s">%s</a></li>\n', dots, dpath, name, name );
else
fprintf( fidc, '%s<li>Data: <a href="%s%s">%s (%s)</a></li>\n', dots, dpath, name, temp, name );
end
end
end
if depth,
fprintf( fidc, '%s</ul></li>\n', dots(1:end-1) );
end
elseif any( tdir ),
for k = 1 : length( files ),
if strcmp( files(k).type, 'dir' ),
files(k).title = generate_directory( files(k).name(1:end-1), prefix, force, runonly, indexonly, fidc, base, depth+1, is_octave );
cd(mpath);
end
end
end
%
% Create Contents.m.new
%
if ~runonly,
[ fidw, message ] = fopen( 'Contents.m.new', 'w+' );
if fidw < 0,
if fidr >= 0, fclose( fidr ); end
error( 'Cannot open Contents.m.new\n %s', message );
elseif ~isempty( title ),
fprintf( fidw, '%% %s\n', title );
for k = 1 : length( comments ),
fprintf( fidw, '%% %s\n', comments{k} );
end
fprintf( fidw, '%%\n' );
end
for k = 1 : length( files ),
tfile = files(k);
tfile.name(end+1:mlen) = ' ';
if isempty( tfile.title ),
fprintf( fidw, '%% %s - (no title)\n', tfile.name );
else
fprintf( fidw, '%% %s - %s\n', tfile.name, tfile.title );
end
end
fprintf( fidw, 'help Contents\n' );
fclose( fidw );
else
fidw = -1;
end
%
% Compare Contents.m and Contents.m.new and update if necessary
%
cd( mpath )
if fidw >= 0,
compare_and_replace( prefix, 'Contents.m' );
end
function [ title, isfunc ] = generate_file( name, prefix, force, runonly, indexonly, is_octave )
if length( name ) < 2 || ~strcmp( name(end-1:end), '.m' ),
error( 'Not an m-file.' );
elseif strcmp( name, 'Contents.m' ),
error( 'To generate the Contents.m file, you must run this function on the entire directory.' );
else
fprintf( 1, '%s%s: ', prefix, name );
end
dd = dir( name );
ndate = date_convert( dd.date );
[ fidr, message ] = fopen( name, 'r' );
if fidr < 0,
error( 'Cannot open the source file\n %s', message );
end
title = '';
isfunc = false;
lasttitle = false;
founddata = false;
prefixes = {};
while ~feof( fidr ) && ( ~founddata || isempty( title ) || lasttitle ),
temp1 = fgetl( fidr );
if isempty( temp1 ),
if lasttitle, continue; end
else
temp2 = find( temp1 ~= ' ' );
if isempty( temp2 ),
if lasttitle, continue; end
elseif temp1(temp2(1)) == '%',
temp2 = temp1(temp2(1):temp2(end));
temp3 = find( temp2 ~= '%' );
if isempty( temp3 ),
if lasttitle, continue; end
else
temp3 = temp2( temp3(1) : end );
temp4 = find( temp3 ~= ' ' );
if isempty( temp4 ),
if lasttitle, continue; end
elseif isempty( title ),
title = temp3(temp4(1):temp4(end));
lasttitle = true;
continue;
else
lasttitle = false;
end
end
else
lasttitle = false;
founddata = true;
temp2 = temp1(temp2(1):temp2(end));
if strncmp( temp2, 'function', 8 ) && ( length( temp2 ) == 8 || ~isvarname( temp2( 1 : 9 ) ) ),
isfunc = true;
end
end
end
prefixes{end+1} = temp1;
end
if runonly,
fclose( fidr );
if isfunc, return; end
end
hfile = [ name(1:end-1), 'html' ];
odir = pwd;
hdir = 'html';
hdate = 0;
if exist( hdir, 'dir' ),
cd( hdir );
df = dir( hfile );
if length( df ) == 1,
hdate = date_convert( df.date );
end
cd( odir );
end
if indexonly,
fprintf( 1, 'done.\n' );
elseif force || hdate <= ndate,
if runonly,
fprintf( 1, 'running %s ...', name );
elseif hdate == 0,
fprintf( 1, 'creating %s ...', hfile );
else
fprintf( 1, 'updating %s ...', hfile );
end
name = name(1:end-2);
if ~runonly,
[ fidw, message ] = fopen( [ name, '_.m' ], 'w+' );
if fidw < 0,
error( 'Cannot open the temporary file\n %s', message );
end
if isempty( title ),
fprintf( fidw, '%%%% %s\n\n', name );
else
fprintf( fidw, '%%%% %s\n\n', title );
end
fprintf( fidw, '%s\n', prefixes{:} );
fwrite( fidw, fread( fidr, Inf, 'uint8' ), 'uint8' );
fclose( fidw );
fclose( fidr );
end
evalin( 'base', 'clear' );
cvx_clear;
cvx_quiet( false );
cvx_precision default;
success = true;
try
out___ = [];
if is_octave,
run_clean_octave( name );
elseif runonly,
out___ = run_clean( name );
fprintf( 1, ' done.\n' );
else
opts.format = 'html';
opts.useNewFigure = false;
opts.createThumbnail = false;
opts.evalCode = ~isfunc;
opts.showCode = true;
opts.catchError = false;
publish( [ name, '_' ], opts );
prefixes = { '<style', '<!--', '<p class="footer"', '<meta name=', '<link rel=' };
suffixes = { '</style>', '-->', '</p>', '>', '>' };
suffix = '';
f_in = fopen( [ 'html', filesep, name, '_.html' ], 'r' );
data = fread( f_in, Inf, 'uint8=>char' )';
fclose( f_in );
backpath = '';
for k = 1 : 10,
if exist( [ backpath, filesep, 'examples.css' ], 'file' ), break; end
backpath = [ '..', filesep, backpath ];
end
backpath = [ '..', filesep, backpath ];
canon = [regexprep(pwd,'.*/cvx/examples','http://cvxr.com/cvx/examples'),'/html/',hfile];
data = regexprep( data, '<!--.*?-->|<link rel=.*?>|<style.*?</style>|<meta name=.*?>|<p class="footer".*?</p>', '' );
data = regexprep( data, '</head>', sprintf( '\n<link rel="canonical" href="%s"/>\n<link rel="stylesheet" href="%sexamples.css" type="text/css"/>\n</head>', canon, backpath ) );
data = regexprep( data, '<div class="content"><h1>(.*?)</h1>','<div id="header">\n<h1>$1</h1>\n<!--control--></div><div id="content">' );
data = regexprep( data, '<pre class="codeinput">\n?', '\n<a id="source"></a><pre class="codeinput">\n' );
if ~isempty( regexp( data, '<pre class="codeoutput">' ) ),
control_o = '<a href="#output">Text output</a>\n';
data = regexprep( data, '<pre class="codeoutput">\n?', '\n<a id="output"></a><pre class="codeoutput">\n' );
else
control_o = 'Text output\n';
end
if ~isempty( regexp( data, '</pre>\s*<img', 'once' ) ),
control_p = '<a href="#plots">Plots</a>\n';
data = regexprep( data, '</pre>\s*<img', '</pre>\n<a id="plots"></a><div id="plotoutput">\n<img' );
data = regexprep( data, '</div>\s*</body>', '</div></div></body>' );
else
control_p = 'Plots\n';
end
control = sprintf( 'Jump to: \n<a href="#source">Source code</a> \n%s \n%s <a href="%sindex.html">Library index</a>', control_o, control_p, backpath );
data = regexprep( data, '<!--control-->', control );
data = regexprep( data, '<html>', '<html>\n' );
data = regexprep( data, '(<div|<pre|</div>|<body>|</body>|</html>)', '\n$1' );
data = regexprep( data, '^\s*<!DOCTYPE.*?>','<!DOCTYPE HTML>' );
data = regexprep( data, '<meta http-equiv.*?>', '<meta charset="UTF-8">' );
data = regexprep( data, '\s*((v|h)space=\S*)', '' );
data = regexprep( data, '\s*(<meta|<title)','\n$1' );
data = regexprep( data, '/>', '>' );
f_out = fopen( [ 'html', filesep, name, '.html' ], 'w' );
fwrite( f_out, data );
fclose( f_out );
delete( [ 'html', filesep, name, '_.html' ] );
fprintf( 1, ' done.\n' );
end
catch
err = lasterror;
fprintf( 1, ' aborted.\n' );
cd( odir );
fprintf( 1, '===> ERROR: %s\n', err.message );
success = false;
end
if runonly,
disp( out___ );
else
delete( [ name, '_.m' ] );
end
cd( odir );
if ~success && ~runonly && exist( hdir, 'dir' ),
cd( hdir );
df = dir( hfile );
if length( df ) == 1,
delete( hfile );
end
cd( odir );
end
close all
else
fprintf( 1, 'up to date.\n' );
end
function title = generate_doc( name, prefix, force )
if length( name ) < 5 || ~strcmp( name(end-3:end), '.tex' ),
error( 'Not an valid TeX file.' );
else
fprintf( 1, '%s%s: ', prefix, name );
end
dd = dir( name );
ndate = date_convert( dd.date );
[ fidr, message ] = fopen( name, 'r' );
if fidr < 0,
error( 'Cannot open the source file\n %s', message );
end
title = '';
while ~feof( fidr ),
temp = strtrim( fgetl( fidr ) );
kndx = strfind( temp, '\title{' );
if isempty( kndx ), continue; end
knd2 = strfind( temp(kndx(1):end), '}' );
if isempty( knd2 ), continue; end
title = strtrim(temp(kndx(1)+7:kndx(1)+kndx(2)-2));
break;
end
pdffile = [ name(1:end-3), 'pdf' ];
hdate = 0;
df = dir( pdffile );
if length( df ) == 1,
hdate = date_convert( df.date );
end
if force || hdate < ndate,
if hdate == 0,
fprintf( 1, 'creating %s:', hfile );
else
fprintf( 1, 'updating %s:', hfile );
end
name2 = name(1:end-4);
eval( sprintf( '!latex %s', name2 ) );
eval( sprintf( '!latex %s', name2 ) );
eval( sprintf( '!bibtex %s', name2 ) );
eval( sprintf( '!latex %s', name2 ) );
eval( sprintf( '!latex %s', name2 ) );
eval( sprintf( '!latex %s', name2 ) );
eval( sprintf( '!dvips %s', name2 ) );
eval( sprintf( '!ps2pdf %s.ps', name2 ) );
end
function dnum = date_convert( dstr )
persistent mstrs
if isempty( mstrs ),
mstrs = { 'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec' };
end
% DD-MMM-YY HH:MM:SS
S = sscanf( dstr, '%d-%3s-%d %d:%d:%d' );
S = [ S(5), find(strcmp(char(S(2:4)'),mstrs)), S(1), S(6), S(7), S(8) ];
dnum = S(6) + 100 * ( S(5) + 100 * ( S(4) + 100 * ( S(3) + 100 * ( S(2) + 100 * S(1) ) ) ) );
function compare_and_replace( prefix, oldname )
names = { oldname, [ oldname, '.new' ] };
fprintf( 1, '%s%s ... ', prefix, oldname );
fids = [];
c = {};
for k = 1 : 2,
[ fids(k), message ] = fopen( names{k}, 'r' );
if fids(k) < 0 && ~isempty( dir( names{k} ) ),
error( 'Cannot open file %s for reading:\n %s', names{k}, message );
end
c{k} = fread( fids(k), Inf, 'uint8' );
fclose( fids(k) );
end
if isempty( c{2} ),
if fids(k) >= 0,
fprintf( 1, ' removed.\n' );
delete( oldname );
end
delete( names{2} );
elseif length( c{1} ) ~= length( c{2} ) || any( c{1} ~= c{2} ),
[ success, message ] = movefile( names{2}, names{1}, 'f' );
if ~success,
error( 'Cannot move %s into place\n %s', names{2}, message );
delete( names{2} )
end
if ~isempty( c{1} ),
fprintf( 1, ' updated.\n' );
else
fprintf( 1, ' created.\n' );
end
else
delete( names{2} )
fprintf( 1, ' up to date.\n' );
end
function run_clean_octave( name )
feval( name );
function out___ = run_clean( name )
out___ = evalc( name );
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
cantilever_beam_plot.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/cvxbook/Ch04_cvx_opt_probs/cantilever_beam_plot.m
| 1,050 |
utf_8
|
e8c8c9e1b601e4102f96e0436649d132
|
% Plots a cantilever beam as a 3D figure.
% This is a helper function for the optimal cantilever beam example.
%
% Inputs:
% values: an array of heights and widths of each segment
% [h1 h2 ... hN w1 w2 ... wN]
%
% Almir Mutapcic 01/25/06
function cantilever_beam_plot(values)
N = length(values)/2;
for k = 0:N-1
[X Y Z] = data_rect3(values(2*N-k),values(N-k),k);
plot3(X,Y,Z); hold on;
end
hold off;
xlabel('width')
ylabel('height')
zlabel('length')
return;
%****************************************************************
function [X, Y, Z] = data_rect3(w,h,d)
%****************************************************************
% back face
X = [-w/2 w/2 w/2 -w/2 -w/2];
Y = [-h/2 -h/2 h/2 h/2 -h/2];
Z = [d d d d d];
% side face
X = [X -w/2 -w/2 -w/2 -w/2 -w/2];
Y = [Y -h/2 -h/2 h/2 h/2 -h/2];
Z = [Z d d+1 d+1 d d];
% front face
X = [X -w/2 w/2 w/2 -w/2 -w/2];
Y = [Y -h/2 -h/2 h/2 h/2 -h/2];
Z = [Z d+1 d+1 d+1 d+1 d+1];
% back side face
X = [X w/2 w/2 w/2 w/2 w/2];
Y = [Y -h/2 h/2 h/2 -h/2 -h/2];
Z = [Z d+1 d+1 d d d+1];
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
simple_step.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/circuit_design/simple_step.m
| 235 |
utf_8
|
b8043326fe5966f9432b69b584891e0f
|
% Computes the step response of a linear system
function X = simple_step(A,B,DT,N)
n = size(A,1);
Ad = expm( full( A * DT ) );
Bd = ( Ad - eye(n) ) * B;
Bd = A \ Bd;
X = zeros(n,N);
for k = 2 : N,
X(:,k) = Ad*X(:,k-1)+Bd;
end
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
spectral_fact.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/filter_design/spectral_fact.m
| 1,292 |
utf_8
|
014eebfa2dfbbd038c1383ff2ef97b0e
|
% Spectral factorization using Kolmogorov 1939 approach.
% (code follows pp. 232-233, Signal Analysis, by A. Papoulis)
%
% Computes the minimum-phase impulse response which satisfies
% given auto-correlation.
%
% Input:
% r: top-half of the auto-correlation coefficients
% starts from 0th element to end of the auto-corelation
% should be passed in as a column vector
% Output
% h: impulse response that gives the desired auto-correlation
function h = spectral_fact(r)
% length of the impulse response sequence
n = length(r);
% over-sampling factor
mult_factor = 100; % should have mult_factor*(n) >> n
m = mult_factor*n;
% computation method:
% H(exp(jTw)) = alpha(w) + j*phi(w)
% where alpha(w) = 1/2*ln(R(w)) and phi(w) = Hilbert_trans(alpha(w))
% compute 1/2*ln(R(w))
w = 2*pi*[0:m-1]/m;
R = [ ones(m,1) 2*cos(kron(w',[1:n-1])) ]*r;
alpha = 1/2*log(R);
% find the Hilbert transform
alphatmp = fft(alpha);
alphatmp(floor(m/2)+1:m) = -alphatmp(floor(m/2)+1:m);
alphatmp(1) = 0;
alphatmp(floor(m/2)+1) = 0;
phi = real(ifft(j*alphatmp));
% now retrieve the original sampling
index = find(rem([0:m-1],mult_factor)==0);
alpha1 = alpha(index);
phi1 = phi(index);
% compute the impulse response (inverse Fourier transform)
h = real(ifft(exp(alpha1+j*phi1),n));
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
polar_plot_ant.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/antenna_array_design/polar_plot_ant.m
| 1,149 |
utf_8
|
34a08a3bc75c474d61e01ea58b16e54e
|
% Plot a polar plot of an antenna array sensitivity
% with lines denoting the target direction and beamwidth.
% This is a helper function used in the broadband antenna examples.
%
% Inputs:
% X: an array of abs(y(theta)) where y is the antenna array pattern
% theta0: target direction
% bw: total beamwidth
% label: a string displayed as the plot legend
%
% Original code by Lieven Vandenberghe
% Updated for CVX by Almir Mutapcic 02/17/06
function polar_plot_ant(X,theta0,bw,label)
% polar plot
numpoints = length(X);
thetas2 = linspace(1,360,numpoints)';
plot(X.*cos(pi*thetas2/180), X.*sin(pi*thetas2/180), '-');
plot(X.*cos(pi*thetas2/180), X.*sin(pi*thetas2/180), '-');
hold on;
axis('equal');
plot(cos(pi*[thetas2;1]/180), sin(pi*[thetas2;1]/180), '--');
text(1.1,0,'1');
plot([0 cos(pi*theta0/180)], [0 sin(pi*theta0/180)], '--');
sl1 = find(thetas2-theta0 > bw/2);
sl2 = find(thetas2-theta0 < -bw/2);
Gsl = max(max(X(sl1)), max(X(sl2)));
plot(Gsl*cos(pi*thetas2(sl1)/180), Gsl*sin(pi*thetas2(sl1)/180), '--');
plot(Gsl*cos(pi*thetas2(sl2)/180), Gsl*sin(pi*thetas2(sl2)/180), '--');
text(-1,1.1,label);
axis off;
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
spectral_fact.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/antenna_array_design/spectral_fact.m
| 1,385 |
utf_8
|
570e7ae2165d19abd477494c52e609f8
|
% Spectral factorization using Kolmogorov 1939 approach
% (code follows pp. 232-233, Signal Analysis, by A. Papoulis)
%
% Computes the minimum-phase impulse response which satisfies
% given auto-correlation.
%
% Input:
% r: top-half of the auto-correlation coefficients
% starts from 0th element to end of the auto-corelation
% should be passed in as a column vector
% Output
% h: impulse response that gives the desired auto-correlation
function h = spectral_fact(r)
% length of the impulse response sequence
nr = length(r);
n = (nr+1)/2;
% over-sampling factor
mult_factor = 30; % should have mult_factor*(n) >> n
m = mult_factor*n;
% computation method:
% H(exp(jTw)) = alpha(w) + j*phi(w)
% where alpha(w) = 1/2*ln(R(w)) and phi(w) = Hilbert_trans(alpha(w))
% compute 1/2*ln(R(w))
w = 2*pi*[0:m-1]/m;
R = exp( -j*kron(w',[-(n-1):n-1]) )*r;
R = abs(real(R)); % remove numerical noise from the imaginary part
figure; plot(20*log10(R));
alpha = 1/2*log(R);
% find the Hilbert transform
alphatmp = fft(alpha);
alphatmp(floor(m/2)+1:m) = -alphatmp(floor(m/2)+1:m);
alphatmp(1) = 0;
alphatmp(floor(m/2)+1) = 0;
phi = real(ifft(j*alphatmp));
% now retrieve the original sampling
index = find(rem([0:m-1],mult_factor)==0);
alpha1 = alpha(index);
phi1 = phi(index);
% compute the impulse response (inverse Fourier transform)
h = ifft(exp(alpha1+j*phi1),n);
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
plotgraph.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/examples/graph_laplacian/plotgraph.m
| 3,172 |
utf_8
|
a46b1d761798c492e96a5b9504aea9aa
|
function plotgraph(A,xy,weights)
% Plots a graph with each edge width proportional to its weight.
%
% Edges with positive weights are drawn in blue; negative weights in red.
%
% Input parameters:
% A --- incidence matrix of the graph (size is n x m)
% (n is the number of nodes and m is the number of edges)
% xy --- horizontal and vertical positions of the nodes (n x 2 matrix)
% weights --- m vector giving edge weights
%
% Original by Lin Xiao
% Modified by Almir Mutapcic
% graph size
[n,m]= size(A);
% set the graph scale and normalize the coordinates to lay in [-1,1] square
R = max(max(abs(xy))); % maximum abs value of the xy coordinates
x = xy(:,1)/R; y = xy(:,2)/R;
% normalize weight vector to range between +1 and -1
weights = weights/max(abs(weights));
% internal parameters (tune these parameters to make the plot look pretty)
% (note that the graph coordinates and the weights have been rescaled
% to a common unity scale)
%rNode = 0.005; % radius of the node circles
rNode = 0; % set the node radius to zero if you do not want the nodes
wNode = 2; % line width of the node circles
PWColor = [0 0 1]; % color of the edges with positive weights
NWColor = [1 0 0]; % color of the edges with negative weights
Wmin = 0.0001; % minimum weight value for which we draw an edge
max_width = 0.05; % drawn width of edge with maximum absolute weight
% first draw the edges with patch widths proportional to the weights
for i=1:m
if ( abs(weights(i)) > Wmin )
Isrc = find( sign(weights(i))*A(:,i)>0 );
Idst = find( sign(weights(i))*A(:,i)<0 );
else
Isrc = find( A(:,i)>0 );
Idst = find( A(:,i)<0 );
end
% obtain edge patch coordinates
xdelta = x(Idst) - x(Isrc); ydelta = y(Idst) - y(Isrc);
RotAgl = atan2( ydelta, xdelta );
xstart = x(Isrc) + rNode*cos(RotAgl); ystart = y(Isrc) + rNode*sin(RotAgl);
xend = x(Idst) - rNode*cos(RotAgl); yend = y(Idst) - rNode*sin(RotAgl);
L = sqrt( xdelta^2 + ydelta^2 ) - 2*rNode;
if ( weights(i) > Wmin )
W = abs(weights(i))*max_width;
drawedge(xstart, ystart, RotAgl, L, W, PWColor);
hold on;
elseif ( weights(i) < -Wmin )
W = abs(weights(i))*max_width;
drawedge(xstart, ystart, RotAgl, L, W, NWColor);
hold on;
else
plot([xstart xend],[ystart yend],'k:','LineWidth',2.5);
end
end
% the circle to draw around each node
angle = linspace(0,2*pi,100);
xbd = rNode*cos(angle);
ybd = rNode*sin(angle);
% draw the nodes
for i=1:n
plot( x(i)+xbd, y(i)+ybd, 'k', 'LineWidth', wNode );
end;
axis equal;
set(gca,'Visible','off');
hold off;
%********************************************************************
% helper function to draw edges in the graph
%********************************************************************
function drawedge( x0, y0, RotAngle, L, W, color )
xp = [ 0 L L L L L 0 0 ];
yp = [-0.5*W -0.5*W -0.5*W 0 0.5*W 0.5*W 0.5*W -0.5*W];
RotMat = [cos(RotAngle) -sin(RotAngle); sin(RotAngle) cos(RotAngle)];
DrawCoordinates = RotMat*[ xp; yp ];
xd = x0 + DrawCoordinates(1,:);
yd = y0 + DrawCoordinates(2,:);
% draw the edge
patch( xd, yd, color );
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
disp.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/lib/@cvxprob/disp.m
| 5,405 |
utf_8
|
c8f4506efcff564b81f1f3cc1dbb8a9c
|
function disp( prob, prefix )
if nargin < 2, prefix = ''; end
global cvx___
p = cvx___.problems( prob.index_ );
if isempty( p.variables ),
nvars = 0;
else
nvars = length( fieldnames( p.variables ) );
end
if isempty( p.duals ),
nduls = 0;
else
nduls = length( fieldnames( p.duals ) );
end
neqns = ( length( cvx___.equalities ) - p.n_equality ) + ...
( length( cvx___.linforms ) - p.n_linform ) + ...
( length( cvx___.uniforms ) - p.n_uniform );
nineqs = nnz( cvx___.needslack( p.n_equality + 1 : end ) ) + ...
nnz( cvx_vexity( cvx___.linrepls( p.n_linform + 1 : end ) ) ) + ...
nnz( cvx_vexity( cvx___.unirepls( p.n_uniform + 1 : end ) ) );
neqns = neqns - nineqs;
if isempty( p.name ) || strcmp( p.name, 'cvx_' ),
nm = '';
else
nm = [ p.name, ': ' ];
end
rsv = cvx___.reserved;
nt = length( rsv );
fv = length( p.t_variable );
qv = fv + 1 : nt;
tt = p.t_variable;
ni = nnz( tt ) - 1;
ndup = sum( rsv ) - nnz( rsv );
neqns = neqns + ndup;
nv = nt - fv + ni + ndup;
tt( qv ) = true;
gfound = nnz( cvx___.logarithm( tt ) );
cfound = false;
for k = 1 : length( cvx___.cones ),
if any( any( tt( cvx___.cones( k ).indices ) ) ),
cfound = true;
break;
end
end
if all( [ numel( p.objective ), nv, nvars, nduls, neqns, nineqs, cfound, gfound ] == 0 ),
disp( [ prefix, nm, 'cvx problem object' ] );
else
if ( p.gp ),
ptype =' geometric ';
elseif ( p.sdp ),
ptype = ' semidefinite ';
else
ptype = ' ';
end
if isempty( p.objective ),
tp = 'feasibility';
else
switch p.direction,
case 'minimize', tp = 'minimization';
case 'epigraph', tp = 'epigraph minimization';
case 'hypograph', tp = 'hypograph maximization';
case 'maximize', tp = 'maximization';
end
if numel( p.objective ) > 1,
sz = sprintf( '%dx', size( p.objective ) );
tp = [ sz(1:end-1), '-objective ', tp ];
end
end
disp( [ prefix, nm, 'cvx', ptype, tp, ' problem' ] );
if nvars > 0,
disp( [ prefix, 'variables: ' ] );
[ vnam, vsiz ] = dispvar( p.variables, '' );
vnam = strvcat( vnam ); %#ok
vsiz = strvcat( vsiz ); %#ok
for k = 1 : size( vnam ),
disp( [ prefix, ' ', vnam( k, : ), ' ', vsiz( k, : ) ] );
end
end
if nduls > 0,
disp( [ prefix, 'dual variables: ' ] );
[ vnam, vsiz ] = dispvar( p.duals, '' );
vnam = strvcat( vnam ); %#ok
vsiz = strvcat( vsiz ); %#ok
for k = 1 : size( vnam ),
disp( [ prefix, ' ', vnam( k, : ), ' ', vsiz( k, : ) ] );
end
end
if neqns > 0 || nineqs > 0,
disp( [ prefix, 'linear constraints:' ] );
if neqns > 0,
if neqns > 1, plural = 'ies'; else plural = 'y'; end
fprintf( 1, '%s %d equalit%s\n', prefix, neqns, plural );
end
if nineqs > 0,
if nineqs > 1, plural = 'ies'; else plural = 'y'; end
fprintf( 1, '%s %d inequalit%s\n', prefix, nineqs, plural );
end
end
if cfound || gfound,
disp( [ prefix, 'nonlinearities:' ] );
if gfound > 0,
if gfound > 1, plural = 's'; else plural = ''; end
fprintf( 1, '%s %d exponential pair%s\n', prefix, gfound, plural );
end
if cfound,
for k = 1 : length( cvx___.cones ),
ndxs = cvx___.cones( k ).indices;
ndxs = ndxs( :, any( reshape( tt( ndxs ), size( ndxs ) ), 1 ) );
if ~isempty( ndxs ),
if isequal( cvx___.cones( k ).type, 'nonnegative' ),
ncones = 1;
csize = numel( ndxs );
else
[ csize, ncones ] = size( ndxs );
end
if ncones == 1, plural = ''; else plural = 's'; end
fprintf( 1, '%s %d order-%d %s cone%s\n', prefix, ncones, csize, cvx___.cones( k ).type, plural );
end
end
end
end
end
function [ names, sizes ] = dispvar( v, name )
switch class( v ),
case 'struct',
fn = fieldnames( v );
if ~isempty( name ), name( end + 1 ) = '.'; end
names = {}; sizes = {};
for k = 1 : length( fn ),
[ name2, size2 ] = dispvar( subsref(v,struct('type','.','subs',fn{k})), [ name, fn{k} ] );
names( end + 1 : end + length( name2 ) ) = name2;
sizes( end + 1 : end + length( size2 ) ) = size2;
if k == 1 && ~isempty( name ), name( 1 : end - 1 ) = ' '; end
end
case 'cell',
names = {}; sizes = {};
for k = 1 : length( v ),
[ name2, size2 ] = dispvar( v{k}, sprintf( '%s{%d}', name, k ) );
names( end + 1 : end + length( name2 ) ) = name2;
sizes( end + 1 : end + length( size2 ) ) = size2;
if k == 1, name( 1 : end ) = ' '; end
end
case 'double',
names = { name };
sizes = { '(constant)' };
otherwise,
names = { name };
sizes = { [ '(', type( v, true ), ')' ] };
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
apply.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/lib/@cvxtuple/apply.m
| 505 |
utf_8
|
f59f25021974462a358e5189ea5415e8
|
function y = apply( func, x )
y = do_apply( func, x.value_ );
function y = do_apply( func, x )
switch class( x ),
case 'struct',
y = cell2struct( do_apply( func, struct2cell( x ) ), fieldnames( x ), 1 );
case 'cell',
y = cellfun( func, x, 'UniformOutput', false );
otherwise,
y = feval( func, x );
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
cvx_setdual.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/lib/@cvxtuple/cvx_setdual.m
| 954 |
utf_8
|
b6deb370985cc299023b091bbba5dfd6
|
function x = setdual( x, y )
x.dual_ = y;
x.value_ = do_setdual( x.value_, y );
function x = do_setdual( x, y )
switch class( x ),
case 'struct',
nx = numel( x );
if nx > 1,
error( 'Dual variables may not be attached to struct arrays.' );
end
f = fieldnames(x);
y(end+1).type = '{}';
for k = 1 : length(f),
y(end).subs = {1,k};
x.(f{k}) = do_setdual( x.(f{k}), y );
end
case 'cell',
y(end+1).type = '{}';
y(end+1).subs = cell(1,ndims(x));
for k = 1 : numel(nx),
[ y(end).subs{:} ] = { 1, k };
x{k} = do_setdual( x{k}, y );
end
case 'cvx',
x = setdual( x, y );
case 'double',
x = setdual( cvx( x ), y );
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
testall.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/lib/@cvxtuple/testall.m
| 452 |
utf_8
|
be9d0553e0e560f2c73fdb02a37b08b6
|
function y = testall( func, x )
y = do_test( func, x.value_ );
function y = do_test( func, x )
switch class( x ),
case 'struct',
y = do_test( func, struct2cell( x ) );
case 'cell',
y = all( cellfun( func, x ) );
otherwise,
y = feval( func, x );
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
disp.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/lib/@cvxtuple/disp.m
| 1,366 |
utf_8
|
ed9c53cbe23c1f5ab4440b5d9a10cbfd
|
function disp( x, prefix )
if nargin < 2,
prefix = '';
end
disp( [ prefix, 'cvx tuple object: ' ] );
prefix = [ prefix, ' ' ];
do_disp( x.value_, {}, prefix, prefix, '' );
if ~isempty( x.dual_ ),
dn = cvx_subs2str( x.dual_ );
disp( [ prefix, 'dual variable: ', dn(2:end) ] );
end
function do_disp( x, f, fprefix, prefix, suffix )
switch class( x ),
case 'struct',
do_disp( struct2cell(x), fieldnames(x), fprefix, prefix, suffix );
case 'cell',
fprefix = [ fprefix, '{ ' ];
prefix = [ prefix, ' ' ];
nsuffix = '';
kend = numel( x );
for k = 1 : kend,
if k == kend, nsuffix = [ ' }', suffix ]; end
if ~isempty( f ),
fprefix = sprintf( '%s%s: ', fprefix, f{k} );
end
do_disp( x{k}, {}, fprefix, prefix, nsuffix );
fprefix = prefix;
end
case 'cvx',
dual = cvx_getdual( x );
if ~isempty( dual ),
suffix = sprintf( ' (dual: %s)%s', dual, suffix );
end
disp( [ fprefix, cvx_class( x, true, true ), ' ', type( x ), suffix ] );
case 'double',
fprintf( 1, '%s%g%s\n', fprefix, x, suffix );
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
sparsify.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/lib/@cvx/sparsify.m
| 4,013 |
utf_8
|
2eda31274fafa84387d3aad5be748107
|
function x = sparsify( x, mode )
global cvx___
narginchk(2,2);
persistent remap
%
% Check mode argument
%
if ~ischar( mode ) || size( mode, 1 ) ~= 1,
error( 'Second arugment must be a string.' );
end
isobj = strcmp( mode, 'objective' );
pr = cvx___.problems( end );
touch( pr.self, x );
bz = x.basis_ ~= 0;
bs = sum( bz, 1 );
bc = bz( 1, : );
tt = bs > bc + 1;
at = any( tt );
if at,
%
% Replace posynomials with log-convex monomials --- that is, unless
% we are taking the exponential of one. (Not that I know why we
% would do that!) In that case, we should just use a standard
% linear replacement and leave it at that.
%
if ~isequal( mode, 'exponential' ),
if isempty( remap ),
remap = cvx_remap( 'posynomial' );
end
t2 = remap( cvx_classify( x ) );
if any( t2 ),
if all( t2 ),
x = exp( log( x ) );
else
x = cvx_subsasgn( x, t2, exp( log( cvx_subsref( x, t2 ) ) ) );
end
bc( t2 ) = 0;
tt = tt & ~t2;
at = any( tt );
end
end
%
% Replace other multivariable forms with single-variable forms
%
if at,
abc = any( bc( :, tt ) );
if abc,
xc = cvx_constant( x );
x = x - xc;
end
forms = cvx___.linforms;
repls = cvx___.linrepls;
[ x, forms, repls ] = replcols( x, tt, 'full', forms, repls, isobj );
cvx___.linforms = forms;
cvx___.linrepls = repls;
if abc,
x = x + xc;
end
end
end
%
% Arguments: no constraints on coefficients or constant values
% Objectives: all replaced with coefficient > 0, constant terms preserved
% Exponentiation: coefficient == 1, constant terms perserved
% Logarithm: coefficient > 0, constant terms eliminated
%
switch mode,
case { 'argument', 'constraint' },
tt = false;
case 'objective',
tt = ~tt | sum( x.basis_, 1 ) < x.basis_( 1, : );
usexc = true;
case 'logarithm',
tt = sum( x.basis_, 1 ) < x.basis_( 1, : );
usexc = false;
case 'exponential';
tt = sum( x.basis_, 1 ) ~= x.basis_( 1, : ) + 1;
usexc = true;
otherwise,
error( [ 'Invalid normalization mode: ', mode ] );
end
if any( tt ),
if usexc,
abc = any( bc );
if abc,
xc = cvx_constant( x );
x = x - xc;
end
else
abc = false;
end
forms = cvx___.uniforms;
repls = cvx___.unirepls;
[ x, forms, repls ] = replcols( x, tt, 'none', forms, repls, isobj );
cvx___.uniforms = forms;
cvx___.unirepls = repls;
if abc,
x = x + xc;
end
end
function [ x, forms, repls ] = replcols( x, tt, mode, forms, repls, isobj )
%
% Sift through the forms, removing duplicates
%
global cvx___
bN = vec( cvx_subsref( x, tt ) );
nO = length( forms );
nN = length( bN );
if nO ~= 0,
bN = [ forms ; bN ];
end
[ bNR, bN ] = bcompress( bN, mode, nO );
bNR = bNR( :, nO + 1 : end );
nB = length( bN ) - nO;
%
% Create the replacement variables
%
if nB ~= 0,
forms = bN;
bN = cvx_subsref( bN, nO + 1 : nO + nB, 1 );
newrepl = newvar( cvx___.problems( end ).self, '', nB );
[ ndxs, temp ] = find( newrepl.basis_ ); %#ok
repls = [ repls ; newrepl ];
bV = cvx_vexity( bN );
cvx___.vexity( ndxs ) = bV;
cvx___.readonly( ndxs ) = vec( cvx_readlevel( bN ) );
if ~isobj,
ss = bV == 0;
if any( ss ),
temp = cvx_basis( bN );
temp = any( temp( :, ss ), 2 );
temp( ndxs( ss ) ) = true;
cvx___.canslack( temp ) = false;
end
end
end
%
% Re-expand the structure
%
x = cvx_subsasgn( x, tt, buncompress( bNR, repls, nN ) );
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
prelp.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/prelp.m
| 3,887 |
utf_8
|
4d1e23d094e3f1b35ec666df11a34003
|
% PRELP Loads and preprocesses LP from an MPS file.
%
% > [A,b,c,lenx,lbounds] = PRELP('problemname')
% The above command results in an LP in standard form,
% - Instead of specifying the problemname, you can also use PRELP([]), to
% get the problem from the file /tmp/default.mat.
% - Also, you may type PRELP without any input arguments, and get prompted
% for a name.
%
% MINIMIZE c'*x SUCH THAT A*x = b AND x>= 0.
%
% So, you can solve it with SeDuMi:
% > [x,y,info] = SEDUMI(A,b,c);
%
% After solving, post-process it with
% > [x,objp] = POSTPROCESS(x(1:lenx),lbounds).
%
% REMARK x(lenx+1:length(x)) will contain upper-bound slacks.
%
% IMPORTANT works only if LIPSOL is installed on your system.
%
% See also sedumi, getproblem, postprocess (LIPSOL), frompack, lipsol.
function [A,b,c,lenx,lbounds,times] = prelp(pname)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA%
global OUTFID
global Ubounds_exist
if ~exist('loadata','file') || ~exist('preprocess','file')
if ~exist('loadata','file') | ~exist('preprocess','file')
error('To use PRELP, you need to have LIPSOL installed.')
end
%--------------------------------------------------
% LOAD LP PROBLEM INTO MEMORY
%--------------------------------------------------
if (nargin == 0)
pname = input('Enter problem name: ','s');
end
[A,b,c,lbounds,ubounds,BIG] = loadata(pname);
t0 = cputime;
[A,b,c,lbounds,ubounds,BIG,NAME] = loadata(pname);
times(1) = cputime - t0;
%--------------------------------------------------
% PREPROCESS LP PROBLEM
% NB: Y.Zhang's preprocess returns lbounds for post-
% processing; the pre-processed problem has x>=0.
%--------------------------------------------------
t0 = cputime;
[A,b,c,lbounds,ubounds,FEASIBLE] = ...
preprocess(A,b,c,lbounds,ubounds,BIG);
if ~FEASIBLE
fprintf('\n');
if isempty(OUTFID)
return;
end;
msginf = 'Infeasibility detected in preprocessing';
fprintf(OUTFID, [pname ' 0 ' msginf '\n']);
return;
end;
%[A,b,c,ubounds] = scaling(A,b,c,ubounds);
%--------------------------------------------------
% INSERT UBOUND- CONSTRAINTS IN THE A-MATRIX
%--------------------------------------------------
b = full(b); c = full(c);
[m,lenx] = size(A);
if Ubounds_exist
nub = nnz(ubounds);
A= [ A sparse(m,nub); sparse(1:nub,find(ubounds),1,nub,lenx) speye(nub) ];
b = [b; nonzeros(ubounds)];
c = [c; zeros(nub,1)];
else
ubounds = [];
end
%--------------------------------------------------
% LOCATE DENSE COLUMNS
%--------------------------------------------------
%checkdense(A);
times(2) = cputime - t0;
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
feasreal.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/feasreal.m
| 4,144 |
utf_8
|
454dcb6c42c0642ed5c5a524e84bec58
|
% FEASREAL Generates a random sparse optimization problem with
% linear, quadratic and semi-definite constraints. Output
% can be used by SEDUMI. All data will be real-valued.
%
% The following two lines are typical:
% > [AT,B,C,K] = FEASREAL;
% > [X,Y,INFO] = SEDUMI(AT,B,C,K);
%
% An extended version is:
% > [AT,B,C,K] = FEASREAL(m,lpN,lorL,rconeL,sdpL,denfac)
%
% SEE ALSO sedumi AND feascpx.
function [At,b,c,K] = feasreal(m,nLP,qL,rL,nL,denfac)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA%
if nargin < 6
denfac = 0.1;
if nargin < 5
nL = 1+ round(7*rand(1,5));
fprintf('Choosing random SDP-product cone K.s.\n')
if nargin < 4
rL = 3 + round(4*rand(1,5));
fprintf('Choosing random LORENTZ R-product cone K.r.\n')
if nargin < 3
qL = 3 + round(4*rand(1,5));
fprintf('Choosing random LORENTZ-product cone K.q.\n')
if(nargin < 2)
nLP = 10;
fprintf('Choosing default K.l=%3.0f.\n',nLP)
if nargin < 1
m=10;
fprintf('Choosing default m=%3.0f.\n',m)
end
end
end
end
end
end
if isempty(nLP)
nLP = 0;
end
nblk = length(nL) + length(rL) + length(qL) + nLP;
denfac = min(1, max(denfac,2/nblk));
fprintf('Choosing block density denfac=%6.4f per row\n',denfac)
Apattern=sparse(m,nblk);
for j=1:m
pati = sprandn(1,nblk,denfac);
Apattern(j,:) = (pati~= 0);
end
sumnLsqr = sum(nL.^2);
x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1);
x(1:nLP) = rand(nLP,1);
At = sparse(length(x),m);
At(1:nLP,:) = sprandn(Apattern(:,1:nLP)');
firstk = nLP+1;
%[nA, mA] = size(At);
% LORENTZ:
for k=1:length(qL)
nk = qL(k); lastk = firstk + nk - 1;
x(firstk) = rand;
for j=1:m
if Apattern(j,nLP+k)==1
At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk));
end
end
firstk = lastk + 1;
end
% RCONE (Rotated Lorentz):
for k=1:length(rL)
nk = rL(k); lastk = firstk + nk - 1;
x(firstk) = rand; x(firstk+1) = rand;
for j=1:m
if Apattern(j,nLP+length(qL)+k)==1
At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk));
end
end
firstk = lastk + 1;
end
% SDP:
for k=1:length(nL)
nk = nL(k); lastk = firstk + nk*nk - 1;
Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure
x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts.
for j=1:m
if Apattern(j,nLP+length(qL)+length(rL)+k)==1
Aik = sprandsym(nk,1/nk); %on average 1 nonzero per row
At(firstk:lastk,j) = vec( (Aik+Aik') );
end
end
firstk = lastk + 1;
end
b = full(At'*x);
y = rand(m,1)-0.5;
c = sparse(At*y)+x;
K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
sdpa2vec.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/sdpa2vec.m
| 2,352 |
utf_8
|
f055b4df357f6cf3b426ce27869bc738
|
% x = sdpavec(E,K)
% Takes an SDPA type sparse data description E, i.e.
% E(1,:) = block, E(2,:) = row, E(3,:) = column, E(4,:) = entry,
% and transforms it into a "long" vector, with vectorized matrices for
% each block stacked under each other. The size of each matrix block
% is given in the field K.s.
% ********** INTERNAL FUNCTION OF SEDUMI **********
function x = sdpa2vec(E,K,invperm)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA %
% ------------------------------------------------------------
% Split E into blocks E[1], E[2], ..., E[length(K.s)]
% ------------------------------------------------------------
[xir,xjc] = sdpasplit(E(1,:),length(K.s));
x = sparse([],[],[],0,0,2*size(E,2));
for knz = 1:length(xir)
permk = xir(knz);
k = invperm(permk);
if k > K.l
k = k - K.l; % matrix
nk = K.s(k);
Ek = E(2:4,xjc(knz):xjc(knz+1)-1);
Xk = sparse(Ek(1,:),Ek(2,:),Ek(3,:),nk,nk);
Xk = Xk + triu(Xk,1)';
x=[x;Xk(:)];
else
x=[x;E(4,xjc(knz))];
end
end
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
blk2vec.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/blk2vec.m
| 1,653 |
utf_8
|
0d48b96f66e746fce480e7a3e9c271a5
|
% x = blk2vec(X,nL)
%
% Converts a block diagonal matrix into a vector.
%
% ********** INTERNAL FUNCTION OF FROMPACK **********
function x = blk2vec(X,nL)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA %
nblk = length(nL);
sumnk = 0;
x = [];
for k = 1:nblk
nk = nL(k);
x = [x; vec(X(sumnk+1:sumnk + nk,sumnk+1:sumnk + nk))] ;
sumnk = sumnk + nk;
end
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
writesdp.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/writesdp.m
| 4,708 |
utf_8
|
31f196bca4c11b9610c98de8e4d7b107
|
% This function takes a problem in SeDuMi MATLAB format and writes it out
% in SDPpack format.
%
% Usage:
%
% writesdp(fname,A,b,c,K)
%
% fname Name of SDPpack file, in quotes
% A,b,c,K Problem in SeDuMi form
%
% Notes:
%
% Problems with complex data are not allowed.
%
% Rotated cone constraints are not supported.
%
% Nonsymmetric A.s and C.s matrices are symmetrized with A=(A+A')/2
% a warning is given when this happens.
%
% Floating point numbers are written out with 18 decimal digits for
% accuracy.
%
% Please contact the author (Brian Borchers, [email protected]) with any
% questions or bug reports.
%
function writesdp(fname,A,b,c,K)
%From: Brian Borchers[SMTP:[email protected]]
%Sent: Wednesday, December 08, 1999 12:33 PM
%To: [email protected]
%
%Here's a MATLAB routine that will take a problem in SeDuMi's MATLAB format
%and write it out in SDPpack format.
%
% First, check for complex numbers in A, b, or c.
%
if (isreal(A) ~= 1),
disp('A is not real!');
return;
end;
if (isreal(b) ~= 1),
disp('b is not real!');
return;
end;
if (isreal(c) ~= 1),
disp('c is not real!');
return;
end;
%
% Check for any rotated cone constraints.
%
if (isfield(K,'r') && (~isempty(K.r)) && (K.r ~= 0)),
disp('rotated cone constraints are not yet supported.');
return;
end;
%
% Get the size data.
%
if (isfield(K,'l')),
nlin=K.l;
sizelin=nlin;
if (isempty(sizelin)),
sizelin=0;
nlin=0;
end;
else
nlin=0;
sizelin=0;
end;
if (isfield(K,'s')),
nsdpblocks=length(K.s);
%sizesdp=sum((K.s).^2);
%if (isempty(sizesdp)),
%sizesdp=0;
%nsdpblocks=0;
%end;
else
%sizesdp=0;
nsdpblocks=0;
end;
if (isfield(K,'q')),
nqblocks=length(K.q);
sizeq=sum(K.q);
if (isempty(sizeq)),
sizeq=0;
nqblocks=0;
end;
else
nqblocks=0;
sizeq=0;
end;
m=length(b);
%
% Open up the file for writing.
%
fid=fopen(fname,'w');
%
% Print out m, the number of constraints.
%
fprintf(fid,'%d \n',m);
%
% Next, b, with one entry per line.
%
fprintf(fid,'%.18e\n',full(b));
%
% Next, the semidefinite part.
%
if (nsdpblocks == 0),
fprintf(fid,'0\n');
else
%
% Print out the number of semidefinite blocks.
%
fprintf(fid,'%d\n',nsdpblocks);
%
% For each block, print out its size.
%
fprintf(fid,'%d\n',full(K.s));
%
% Next, the cost matrix C.s.
%
%
% First, calculate where in c things start.
%
base=sizelin+sizeq+1;
%
% Next, work through the blocks.
%
for i=1:nsdpblocks,
fprintf(fid,'1\n');
work=c(base:base+K.s(i)^2-1);
if nnz(work ~= work'),
if (work ~= work'),
disp('Non symmetric C.s matrix!');
work=(work+work')/2;
end;
work=triu(work);
[II,JJ,V]=find(work);
cnt=length(II);
fprintf(fid,'%d\n',cnt);
if (cnt ~= 0),
fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]');
end;
%
% Next, update to the next base.
%
base=base+K.s(i)^2;
end;
%
% Now, loop through the constraints, one at a time.
%
for cn=1:m,
%
% Print out the SDP part of constraint cn.
%
base=sizelin+sizeq+1;
for i=1:nsdpblocks,
fprintf(fid,'1\n');
if nnz(work ~= work'),
work=reshape(work,K.s(i),K.s(i));
if (work ~= work'),
disp('Non symmetric A.s matrix!');
work=(work+work')/2;
end;
work=triu(work);
[II,JJ,V]=find(work);
cnt=length(II);
fprintf(fid,'%d\n',cnt);
if (cnt ~= 0),
fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]');
end;
%
% Next, update to the next base.
%
base=base+K.s(i)^2;
end;
%
% Done with constraint cn
%
end;
%
% Done with SDP part.
%
end;
%
% Next, handle the Quadratic part.
%
%
% Describe the Q blocks.
%
if (nqblocks == 0),
fprintf(fid,'0\n');
else
fprintf(fid,'%d\n',nqblocks);
fprintf(fid,'%d\n',full(K.q));
%
% Find C.q.
%
base=sizelin+1;
cq=c(base:base+sizeq-1);
%
% Print out the C.q coefficients.
%
fprintf(fid,'%.18e\n',full(cq));
%
% Next, the constraint matrix A.q.
%
Aq=A(:,base:base+sizeq-1);
%
% Print out the count of nonzeros.
%
[II,JJ,V]=find(Aq);
cnt=length(II);
fprintf(fid,'1\n');
fprintf(fid,'%d\n',cnt);
if (cnt ~= 0),
fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]');
end;
%
% End of handling quadratic part.
%
end;
%
%
% Finally, handle the linear part.
%
if (nlin == 0),
fprintf(fid,'0\n');
else
%
% Print out the number of linear variables.
%
fprintf(fid,'%d\n',nlin);
%
% Print out C.l
%
fprintf(fid,'%.18e\n',full(c(1:nlin)));
%
% Print out the A matrix.
%
Al=A(:,1:nlin);
[II,JJ,V]=find(Al);
cnt=length(II);
fprintf(fid,'1\n');
fprintf(fid,'%d\n',cnt);
if (cnt ~= 0),
fprintf(fid,'%d\n%d\n%.18e\n',[II JJ V]');
end;
end;
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
frompack.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/frompack.m
| 2,509 |
utf_8
|
a4730dcb4ec069944953dce753da973d
|
% FROMPACK Converts a cone problem in SDPPACK format to SEDUMI format.
%
% [At,c] = frompack(A,b,C,blk) Given a problem (A,b,C,blk) in the
% SDPPACK-0.9-beta format, this produces At and c for use with
% SeDuMi. This lets you execute
%
% [x,y,info] = SEDUMI(At,b,c,blk);
%
% IMPORTANT: this function assumes that the SDPPACK function `smat'
% exists in your search path.
%
% SEE ALSO sedumi.
function [At,c] = frompack(A,b,C,blk)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA%
m = length(b);
% ----------------------------------------
% In SDPPACK, 0s are sometimes used as emptyset and vice versa.
% ----------------------------------------
if blk.l == 0
A.l = []; C.l = [];
end
if isempty(blk.q)
A.q = []; C.q = [];
end
if isempty(blk.s)
A.s = []; C.s = [];
end
% ----------------------------------------
% SDP:
% ----------------------------------------
Asdp = [];
if sum(blk.s) == 0
csdp = [];
else
for i=1:m
Asdp = [Asdp blk2vec( smat(sparse(A.s(i,:)),blk.s), blk.s ) ];
end
csdp = blk2vec(C.s,blk.s);
end
% ----------------------------------------
% Assemble LP, LORENTZ and SDP.
%----------------------------------------
At = [A.l'; A.q'; Asdp];
c = [C.l; C.q; csdp];
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
feascpx.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/sedumi/conversion/feascpx.m
| 4,385 |
utf_8
|
c48c6cf336cdb94ad12b04e1efd2417b
|
% FEASCPX Generates a random sparse optimization problem with
% linear, quadratic and semi-definite constraints. Output
% can be used by SEDUMI. Includes complex-valued data.
%
% The following two lines are typical:
% > [AT,B,C,K] = FEASCPX;
% > [X,Y,INFO] = SEDUMI(AT,B,C,K);
%
% An extended version is:
% > [AT,B,C,K] = FEASCPX(m,lpN,lorL,rconeL,sdpL,denfac)
%
% SEE ALSO sedumi AND feasreal.
function [At,b,c,K] = feascpx(m,nLP,qL,rL,nL,denfac)
%
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA%
if nargin < 6
denfac = 0.1;
if nargin < 5
nL = 1+ round(7*rand(1,5));
fprintf('Choosing random SDP-product cone K.s.\n')
if nargin < 4
rL = 3 + round(4*rand(1,5));
fprintf('Choosing random LORENTZ R-product cone K.r.\n')
if nargin < 3
qL = 3 + round(4*rand(1,5));
fprintf('Choosing random LORENTZ-product cone K.q.\n')
if(nargin < 2)
nLP = 10;
fprintf('Choosing default K.l=%3.0f.\n',nLP)
if nargin < 1
m=10;
fprintf('Choosing default m=%3.0f.\n',m)
end
end
end
end
end
end
if isempty(nLP)
nLP = 0;
end
nblk = length(nL) + length(rL) + length(qL) + nLP;
denfac = min(1, max(denfac,2/nblk));
fprintf('Choosing block density denfac=%6.4f per row\n',denfac)
Apattern=sparse(m,nblk);
for j=1:m
pati = sprandn(1,nblk,denfac);
Apattern(j,:) = (pati~= 0);
end
sumnLsqr = sum(nL.^2);
x = zeros(nLP+sum(qL)+sum(rL)+sumnLsqr,1);
x(1:nLP) = rand(nLP,1);
At = sparse(length(x),m);
At(1:nLP,:) = sprandn(Apattern(:,1:nLP)');
firstk = nLP+1;
%[nA, mA] = size(At);
% LORENTZ:
for k=1:length(qL)
nk = qL(k); lastk = firstk + nk - 1;
x(firstk) = rand;
for j=1:m
if Apattern(j,nLP+k)==1
At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ...
sparse([0;sprand(nk-1,1,1/sqrt(nk))]);
end
end
firstk = lastk + 1;
end
% RCONE (Rotated Lorentz):
for k=1:length(rL)
nk = rL(k); lastk = firstk + nk - 1;
x(firstk) = rand; x(firstk+1) = rand;
for j=1:m
if Apattern(j,nLP+length(qL)+k)==1
At(firstk:lastk,j) = sprand(nk,1,1/sqrt(nk)) + sqrt(-1) * ...
sparse([0;0;sprand(nk-2,1,1/sqrt(nk-1))]);
end
end
firstk = lastk + 1;
end
% SDP:
for k=1:length(nL)
nk = nL(k); lastk = firstk + nk*nk - 1;
Xk = diag(rand(nk,1)); % diagonal, to keep sparsity structure
x(firstk:lastk) = Xk; %although symmetric, store nk^2 elts.
for j=1:m
if Apattern(j,nLP+length(qL)+length(rL)+k)==1
rAik = sprandsym(nk,1/nk); %on average 1 nonzero per row
iAik = sprand(nk,nk,1/nk); %on average 1 nonzero per row
At(firstk:lastk,j) = vec(rAik + sqrt(-1)*(iAik-iAik'));
end
end
firstk = lastk + 1;
end
b = real(full(At'*x));
y = rand(m,1)-0.5;
c = sparse(At*y)+x;
K.l = nLP; K.q = qL; K.r = rL; K.s = nL;
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
cvx_glpk.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/shims/cvx_glpk.m
| 4,344 |
utf_8
|
fc695a24b6757c72ebcc0c9422e98dca
|
function shim = cvx_glpk( shim )
% CVX_SOLVER_SHIM GLPK interface for CVX.
% This procedure returns a 'shim': a structure containing the necessary
% information CVX needs to use this solver in its modeling framework.
if ~isempty( shim.solve ),
return
end
if isempty( shim.name ),
fname = 'glpk.m';
ps = pathsep;
shim.name = 'GLPK';
shim.dualize = true;
flen = length(fname);
fpaths = which( fname, '-all' );
if ~iscell(fpaths),
fpaths = { fpaths };
end
old_dir = pwd;
oshim = shim;
shim = [];
for k = 1 : length(fpaths),
fpath = fpaths{k};
if ~exist( fpath, 'file' ) || any( strcmp( fpath, fpaths(1:k-1) ) ),
continue
end
new_dir = fpath(1:end-flen-1);
cd( new_dir );
tshim = oshim;
tshim.fullpath = fpath;
tshim.version = 'unknown';
tshim.location = new_dir;
if isempty( tshim.error ),
tshim.check = @check;
tshim.solve = @solve;
tshim.eargs = {};
if k ~= 1,
tshim.path = [ new_dir, ps ];
end
end
shim = [ shim, tshim ]; %#ok
end
cd( old_dir );
if isempty( shim ),
shim = oshim;
shim.error = 'Could not find a GLPK installation.';
end
else
shim.check = @check;
shim.solve = @solve;
end
function found_bad = check( nonls ) %#ok
found_bad = false;
function [ x, status, tol, iters, y, z ] = solve( At, b, c, nonls, quiet, prec, settings )
n = length( c );
m = length( b );
lb = -Inf(n,1);
ub = +Inf(n,1);
vtype = 'C';
vtype = vtype(ones(n,1));
ctype = 'S';
ctype = ctype(ones(m,1));
rr = zeros(0,1);
cc = rr;
vv = rr;
zinv = rr;
is_ip = false;
for k = 1 : length( nonls ),
temp = nonls( k ).indices;
nn = size( temp, 1 );
nv = size( temp, 2 );
tt = nonls( k ).type;
if strncmp( tt, 'i_', 2 ),
is_ip = true;
vartype(temp) = 'I';
if strcmp(tt,'i_binary'),
lb(temp) = 0;
ub(temp) = 1;
end
elseif nn == 1 || isequal( tt, 'nonnegative' ),
lb(temp) = 0;
elseif isequal( tt, 'lorentz' ),
if nn == 2,
rr2 = [ temp ; temp ];
cc2 = reshape( floor( 1 : 0.5 : 2 * nv + 0.5 ), 4, nv );
vv2 = [1;1;-1;1]; vv = vv(:,ones(1,nv));
rr = [ rr ; rr(:) ];
cc = [ cc ; cc(:) ];
vv = [ vv ; vv(:) ];
zinv = [ zinv ; temp(:) ];
else
error('GLPK does not support nonlinear constraints.' );
end
else
error('GLPK does not support nonlinear constraints.' );
end
end
if ~isempty(rr),
znorm = [1:n]';
znorm(zinv) = [];
rr = [ rr ; znorm ];
cc = [ cc ; znorm ];
vv = [ vv ; ones(size(znorm)) ];
reord = sparse( rr, cc, vv, n, n );
At = reord' * At;
c = reord' * c;
end
if quiet,
param.msglev = 0;
else
param.msglev = 2;
end
param.scale = 128;
param.tolbnd = prec(1);
param.toldj = prec(1);
param.tolobj = prec(1);
[ xx, fmin, errnum, extra ] = cvx_run_solver( @glpk, c, At', b, lb, ub, ctype, vtype, 1, param, 'xx', 'fmin', 'errnum', 'extra', settings, 9 );
tol = [];
iters = [];
x = full( xx );
y = full( extra.lambda );
z = full( extra.redcosts );
if ~isempty( rr ),
x = reord * x;
z = reord * z;
z(zinv) = z(zinv) * 0.5;
end
status = 'Failed';
switch errnum,
case 0,
switch extra.status,
case 2,
if is_ip,
status = 'Suboptimal';
elseif errnumn == 0,
status = 'Solved';
else
status = 'Inaccurate/Solved';
end
case {3,4},
status = 'Infeasible';
case 5,
status = 'Solved';
case 6,
status = 'Unbounded';
end
case 10,
status = 'Infeasible';
case 11,
status = 'Unbounded';
case {5,17,15,19}
status = 'Failed';
case {6,7,8,9,13,14},
switch extra.status,
case {2,5}
if is_ip,
status = 'Suboptimal';
else
status = 'Inaccurate/Solved';
end
case { 3,4 },
status = 'Inaccurate/Infeasible';
case 6,
status = 'Inaccurate/Unbounded';
end
end
if strcmp(status,'Failed'),
tol = Inf;
elseif strncmp(status,'Inaccurate/',11),
tol = prec(3);
else
tol = prec(2);
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
cvx_sedumi.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/shims/cvx_sedumi.m
| 10,740 |
utf_8
|
42324556d877c6a43224d410f1a12290
|
function shim = cvx_sedumi( shim )
% CVX_SOLVER_SHIM SeDuMi interface for CVX.
% This procedure returns a 'shim': a structure containing the necessary
% information CVX needs to use this solver in its modeling framework.
global cvx___
if ~isempty( shim.solve ),
return
end
if isempty( shim.name ),
fname = 'sedumi.m';
fs = cvx___.fs;
ps = cvx___.ps;
int_path = [ cvx___.where, fs ];
int_plen = length( int_path );
shim.name = 'SeDuMi';
shim.dualize = true;
flen = length(fname);
fpaths = { [ int_path, 'sedumi', fs, fname ] };
fpaths = [ fpaths ; which( fname, '-all' ) ];
old_dir = pwd;
oshim = shim;
shim = [];
for k = 1 : length(fpaths),
fpath = fpaths{k};
if ~exist( fpath, 'file' ) || any( strcmp( fpath, fpaths(1:k-1) ) ),
continue
end
new_dir = fpath(1:end-flen-1);
cd( new_dir );
tshim = oshim;
tshim.fullpath = fpath;
tshim.version = 'unknown';
is_internal = strncmp( new_dir, int_path, int_plen );
if is_internal,
tshim.location = [ '{cvx}', new_dir(int_plen:end) ];
else
tshim.location = new_dir;
end
try
fid = fopen(fname);
otp = fread(fid,Inf,'uint8=>char')';
fclose(fid);
catch errmsg
tshim.error = sprintf( 'Unexpected error:\n%s\n', errmsg.message );
end
if isempty( tshim.error ),
otp = regexp( otp, 'SeDuMi \d\S+', 'match' );
if ~isempty(otp), tshim.version = otp{end}(8:end); end
vnum = str2double( tshim.version );
tshim.check = @check;
tshim.solve = @solve;
tshim.eargs = { vnum >= 1.3 && vnum < 1.32 };
if k ~= 2,
tshim.path = [ new_dir, ps ];
if ~isempty(cvx___.msub) && exist([new_dir,fs,cvx___.msub],'dir'),
tshim.path = [ new_dir, fs, cvx___.msub, ps, tshim.path ];
end
end
end
shim = [ shim, tshim ]; %#ok
end
cd( old_dir );
if isempty( shim ),
shim = oshim;
shim.error = 'Could not find a SeDuMi installation.';
end
else
shim.check = @check;
shim.solve = @solve;
vnum = str2double( shim.version );
shim.eargs = { vnum >= 1.3 && vnum < 1.32 };
end
function found_bad = check( nonls ) %#ok
found_bad = false;
function [ x, status, tol, iters, y, z ] = solve( At, b, c, nonls, quiet, prec, settings, nocplx )
n = length( c );
m = length( b );
K = struct( 'f', 0, 'l', 0, 'q', [], 'r', [], 's', [], 'scomplex', [], 'ycomplex', [] );
reord = struct( 'n', 0, 'r', [], 'c', [], 'v', [] );
reord = struct( 'f', reord, 'l', reord, 'a', reord, 'q', reord, 'r', reord, 's', reord, 'h', reord );
reord.f.n = n;
zinv = [];
for k = 1 : length( nonls ),
temp = nonls( k ).indices;
nn = size( temp, 1 );
nv = size( temp, 2 );
nnv = nn * nv;
tt = nonls( k ).type;
reord.f.n = reord.f.n - nnv;
if strncmp( tt, 'i_', 2 ),
error( 'SeDuMi does not support integer variables.' );
elseif nn == 1 || isequal( tt, 'nonnegative' ),
reord.l.r = [ reord.l.r ; temp(:) ];
reord.l.c = [ reord.l.c ; reord.l.n + ( 1 : nnv )' ];
reord.l.v = [ reord.l.v ; ones( nnv, 1 ) ];
reord.l.n = reord.l.n + nnv;
elseif isequal( tt, 'lorentz' ),
if nn == 2,
rr = [ temp ; temp ];
cc = reshape( floor( 1 : 0.5 : 2 * nv + 0.5 ), 4, nv );
vv = [1;1;-1;1]; vv = vv(:,ones(1,nv));
reord.a.r = [ reord.a.r ; rr(:) ];
reord.a.c = [ reord.a.c ; cc(:) + reord.a.n ];
reord.a.v = [ reord.a.v ; vv(:) ];
reord.a.n = reord.a.n + nnv;
zinv = [ zinv ; temp(:) ]; %#ok
else
temp = temp( [ end, 1 : end - 1 ], : );
reord.q.r = [ reord.q.r ; temp(:) ];
reord.q.c = [ reord.q.c ; reord.q.n + ( 1 : nnv )' ];
reord.q.v = [ reord.q.v ; ones(nnv,1) ];
reord.q.n = reord.q.n + nnv;
K.q = [ K.q, nn * ones( 1, nv ) ];
end
elseif isequal( tt, 'semidefinite' ),
if nn == 3,
temp = temp( [1,3,2], : );
tempv = [sqrt(2);sqrt(2);1] * ones(1,nv);
reord.r.r = [ reord.r.r ; temp(:) ];
reord.r.c = [ reord.r.c ; reord.r.n + ( 1 : nnv )' ];
reord.r.v = [ reord.r.v ; tempv(:) ];
reord.r.n = reord.r.n + nnv;
K.r = [ K.r, 3 * ones( 1, nv ) ];
temp = temp(1:2,:);
zinv = [ zinv ; temp(:) ]; %#ok
else
nn = 0.5 * ( sqrt( 8 * nn + 1 ) - 1 );
str = cvx_create_structure( [ nn, nn, nv ], 'symmetric' );
K.s = [ K.s, nn * ones( 1, nv ) ];
[ cc, rr, vv ] = find( cvx_invert_structure( str, 'compact' ) );
rr = temp( rr );
reord.s.r = [ reord.s.r; rr( : ) ];
reord.s.c = [ reord.s.c; cc( : ) + reord.s.n ];
reord.s.v = [ reord.s.v; vv( : ) ];
reord.s.n = reord.s.n + nn * nn * nv;
reord.s.z = reord.s.v;
end
elseif isequal( tt, 'hermitian-semidefinite' ),
if nn == 4,
temp = temp( [1,4,2,3], : );
tempv = [sqrt(2);sqrt(2);1;1] * ones(1,nv);
reord.r.r = [ reord.r.r ; temp(:) ];
reord.r.c = [ reord.r.c ; reord.r.n + ( 1 : nnv )' ];
reord.r.v = [ reord.r.v ; tempv(:) ];
reord.r.n = reord.r.n + nnv;
reord.r.z = reord.r.v;
K.r = [ K.r, 4 * ones( 1, nv ) ];
temp = temp(1:2,:);
zinv = [ zinv ; temp(:) ]; %#ok
elseif nocplx,
% SeDuMi's complex SDP support was broken with the 1.3 update. So
% we must use the following complex-to-real SDP conversion to work
% around it, at a modest cost of problem size.
% X >= 0 <==> exists [ Y1, Y2^T ; Y2, Y3 ] >= 0 s.t.
% Y1 + Y3 == real(X), Y2 - Y2^T == imag(X)
nsq = nn; nn = sqrt( nn );
str = cvx_create_structure( [ nn, nn, nv ], 'hermitian' );
[ cc, rr, vv ] = find( cvx_invert_structure( str, 'compact' ) );
cc = cc - 1;
mm = floor( cc / nsq );
cc = cc - mm * nsq;
jj = floor( cc / nn );
ii = cc - jj * nn + 1;
jj = jj + 1;
mm = mm + 1;
vr = real( vv );
vi = imag( vv );
ii = [ ii + nn * ~vr ; ii + nn * ~vi ];
jj = [ jj ; jj + nn ]; %#ok
vv = sqrt( 0.5 ) * [ vr + vi ; vr - vi ];
rr = [ rr ; rr ]; %#ok
mm = [ mm ; mm ]; %#ok
[ jj, ii ] = deal( min( ii, jj ), max( ii, jj ) );
cc = ii + ( jj - 1 ) * ( 2 * nn ) + ( mm - 1 ) * ( 4 * nsq );
K.s = [ K.s, 2 * nn * ones( 1, nv ) ];
rr = temp( rr );
reord.s.r = [ reord.s.r; rr( : ) ];
reord.s.c = [ reord.s.c; cc( : ) + reord.s.n ];
reord.s.v = [ reord.s.v; vv( : ) ];
reord.s.n = reord.s.n + 4 * nsq * nv;
reord.s.z = reord.s.v;
else
% SeDuMi's complex SDP support was restored in v1.33.
K.scomplex = [ K.scomplex, length( K.s ) + ( 1 : nv ) ];
nn = sqrt( nn );
str = cvx_create_structure( [ nn, nn, nv ], 'hermitian' );
K.s = [ K.s, nn * ones( 1, nv ) ];
stri = cvx_invert_structure( str, 'compact' )';
[ rr, cc, vv ] = find( stri );
rr = temp( rr );
reord.s.r = [ reord.s.r; rr( : ) ];
reord.s.c = [ reord.s.c; cc( : ) + reord.s.n ];
reord.s.v = [ reord.s.v; vv( : ) ];
reord.s.n = reord.s.n + size( stri, 2 );
reord.s.z = reord.s.v;
end
else
error( 'Unsupported nonlinearity: %s', tt );
end
end
if reord.f.n > 0,
reord.f.r = ( 1 : n )';
reord.f.r( [ reord.l.r ; reord.a.r ; reord.q.r ; reord.r.r ; reord.s.r ] ) = [];
reord.f.c = ( 1 : reord.f.n )';
reord.f.v = ones(reord.f.n,1);
end
n_d = max( m - n - reord.f.n + 1, isempty( At ) );
if n_d,
reord.l.n = reord.l.n + n_d;
end
K.f = reord.f.n;
K.l = reord.l.n + reord.a.n;
n_out = reord.f.n;
reord.l.c = reord.l.c + n_out; n_out = n_out + reord.l.n;
reord.a.c = reord.a.c + n_out; n_out = n_out + reord.a.n;
reord.q.c = reord.q.c + n_out; n_out = n_out + reord.q.n;
reord.r.c = reord.r.c + n_out; n_out = n_out + reord.r.n;
reord.s.c = reord.s.c + n_out; n_out = n_out + reord.s.n;
reord = sparse( ...
[ reord.f.r ; reord.l.r ; reord.a.r ; reord.q.r ; reord.r.r ; reord.s.r ], ...
[ reord.f.c ; reord.l.c ; reord.a.c ; reord.q.c ; reord.r.c ; reord.s.c ], ...
[ reord.f.v ; reord.l.v ; reord.a.v ; reord.q.v ; reord.r.v ; reord.s.v ], ...
n, n_out );
At = reord' * At;
c = reord' * c;
pars.free = K.f > 1 && nnz( K.q );
pars.eps = prec(1);
pars.bigeps = prec(3);
if quiet,
pars.fid = 0;
end
add_row = isempty( At );
if add_row,
K.f = K.f + 1;
At = sparse( 1, 1, 1, n_out + 1, 1 );
b = 1;
c = [ 0 ; c ];
end
[ xx, yy, info ] = cvx_run_solver( @sedumi, At, b, c, K, pars, 'xx', 'yy', 'info', settings, 5 );
if add_row,
xx = xx(2:end);
yy = zeros(0,1);
At = zeros(n_out,0);
% b = zeros(0,1);
c = c(2:end);
end
if ~isfield( info, 'r0' ) && info.pinf,
info.r0 = 0;
info.iter = 0;
info.numerr = 0;
end
tol = info.r0;
iters = info.iter;
xx = full( xx );
yy = full( yy );
status = '';
if info.pinf ~= 0,
status = 'Infeasible';
x = NaN * ones( n, 1 );
y = yy;
z = - real( reord * ( At * yy ) );
if add_row, y = zeros( 0, 1 ); end
elseif info.dinf ~= 0
status = 'Unbounded';
y = NaN * ones( m, 1 );
z = NaN * ones( n, 1 );
x = real( reord * xx );
else
x = real( reord * xx );
y = yy;
z = real( reord * ( c - At * yy ) );
if add_row, y = zeros( 0, 1 ); end
end
if ~isempty(zinv),
z(zinv) = z(zinv) * 0.5;
end
if info.numerr == 2,
status = 'Failed';
if any( K.q == 2 ),
warning( 'CVX:SeDuMi', cvx_error_format( 'This solver failure may possibly be due to a known bug in the SeDuMi solver. Try switching to SDPT3 by inserting "cvx_solver sdpt3" into your model.', ...
[66,75], false, '' ) );
end
else
if isempty( status ),
status = 'Solved';
end
if info.numerr == 1 && info.r0 > prec(2),
status = [ 'Inaccurate/', status ];
end
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
anantsrivastava30/SUVR-PET-ADNI-master
|
cvx_sdpt3.m
|
.m
|
SUVR-PET-ADNI-master/scripts/cvx/shims/cvx_sdpt3.m
| 12,657 |
utf_8
|
b42871a1a82cd274121bc52919caa778
|
function shim = cvx_sdpt3( shim )
% CVX_SOLVER_SHIM SDPT3 interface for CVX.
% This procedure returns a 'shim': a structure containing the necessary
% information CVX needs to use this solver in its modeling framework.
global cvx___
if ~isempty( shim.solve ),
return
end
if isempty( shim.name ),
fname = 'sdpt3.m';
ps = cvx___.ps;
fs = cvx___.fs;
int_path = [ cvx___.where, fs ];
int_plen = length( int_path );
shim.name = 'SDPT3';
shim.dualize = true;
flen = length(fname);
fpaths = { [ int_path, 'sdpt3', fs, fname ] };
fpaths = [ fpaths ; which( fname, '-all' ) ];
old_dir = pwd;
oshim = shim;
shim = [];
for k = 1 : length(fpaths),
fpath = fpaths{k};
if ~exist( fpath, 'file' ) || any( strcmp( fpath, fpaths(1:k-1) ) ),
continue
end
new_dir = fpath(1:end-flen-1);
cd( new_dir );
tshim = oshim;
tshim.fullpath = fpath;
tshim.version = 'unknown';
is_internal = strncmp( new_dir, int_path, int_plen );
if is_internal,
tshim.location = [ '{cvx}', new_dir(int_plen:end) ];
else
tshim.location = new_dir;
end
try
fid = fopen(fname);
otp = fread(fid,Inf,'uint8=>char')';
fclose(fid);
catch errmsg
tshim.error = sprintf( 'Unexpected error:\n%s\n', errmsg.message );
end
if isempty( tshim.error ),
otp = regexp( otp, 'SDPT3: version \d+\.\d+', 'match' );
if ~isempty(otp), tshim.version = otp{1}(16:end); end
if k ~= 2,
tpath = { new_dir, [ new_dir, fs, 'Solver' ], [ new_dir, fs, 'HSDSolver' ], [ new_dir, fs, 'Solver', fs, 'Mexfun' ] };
if ~isempty(cvx___.msub) && exist( [ tpath{end}, fs, cvx___.msub ], 'dir' ),
tpath{end} = [ tpath{end}, fs, cvx___.msub ];
end
tpath = sprintf( [ '%s', ps ], tpath{:} ) ;
tshim.path = tpath;
end
tshim.check = @check;
tshim.solve = @solve;
tshim.eargs = {};
end
shim = [ shim, tshim ]; %#ok
end
cd( old_dir );
if isempty( shim ),
shim = oshim;
shim.error = 'Could not find a SDPT3 installation.';
end
else
shim.check = @check;
shim.solve = @solve;
shim.eargs = {};
end
function found_bad = check( nonls ) %#ok
found_bad = false;
function [ x, status, tol, iters, y, z ] = solve( At, b, c, nonls, quiet, prec, settings )
[n,m] = size(At);
% SDPT3 cannot handle empty equality constraints or square systems. So
% add an extra row or column, as needed, to rectify this problem.
mzero = m == 0 | isempty( nonls ) | m == n;
if mzero,
n = n + 1;
c = [ c ; 0 ];
if m == 0,
azero = true;
At = sparse( n, 1, 1 );
b = 1;
m = 1;
elseif m + 1 < n,
azero = true;
At(end+1,end+1) = 1;
b(end+1) = 1;
m = m + 1;
else
At(end+1,end) = 0;
azero = false;
end
nonls(end+1).type = 'nonnegative';
nonls(end).indices = n;
else
azero = false;
end
types = { nonls.type };
indices = { nonls.indices };
found = false(1,length(types));
used = false(1,n);
blk = cell( 0, 2 );
Avec = cell( 0, 1 );
Cvec = cell( 0, 1 );
xvec = cell( 0, 1 );
tvec = cell( 0, 1 );
if nargout > 3,
need_z = true;
zvec = cell( 0, 1 );
else
need_z = false;
end
%
% Reject integer variables
%
if any( strncmp( types, 'i_', 2 ) ),
error( 'SDTP3 does not support integer variables.' );
end
%
% Nonnegative variables preserved as-is
%
tt = find( strcmp( types, 'nonnegative' ) );
if ~isempty( tt ),
for k = tt,
ti = indices{k};
indices{k} = reshape(ti,1,numel(ti));
end
ti = cat( 2, indices{tt} );
ni = length(ti);
blk {end+1,1} = 'l';
blk {end, 2} = ni;
Avec{end+1,1} = At(ti,:);
Cvec{end+1,1} = c(ti);
tvec{end+1,1} = ti;
xvec{end+1,1} = 1;
if need_z,
zvec{end+1,1} = 1;
end
found(tt) = true;
used(ti) = true;
end
%
% SDTP3 places the epigraph variable of an SOC { (x,y) | ||x||<=y }
% at the beginning of the vector; CVX places it at the end. So we must
% reverse our ordering here.
%
tt = find( strcmp( types, 'lorentz' ) );
if ~isempty( tt ),
blk{end+1,1} = 'q';
blk{end,2} = zeros(1,0);
for k = tt,
ti = indices{k};
ti = ti([end,1:end-1],:);
blk{end,2} = [ blk{end,2}, size(ti,1) * ones(1,size(ti,2)) ];
indices{k} = reshape(ti,1,numel(ti));
end
ti = cat( 2, indices{tt} );
Avec{end+1,1} = At(ti,:);
Cvec{end+1,1} = c(ti);
tvec{end+1,1} = ti;
xvec{end+1,1} = 1;
if need_z,
zvec{end+1,1} = 1;
end
found(tt) = true;
used(ti) = true;
end
tt = find( strcmp( types, 'semidefinite' ) | strcmp( types, 'hermitian-semidefinite' ) );
if ~isempty( tt ),
blk{end+1,1} = 's';
blk{end,2} = {};
Avec{end+1,1} = {};
Cvec{end+1,1} = {};
tvec{end+1,1} = {};
xvec{end+1,1} = {};
if need_z,
zvec{end+1,1} = {};
end
nnn = 0;
for k = tt,
ti = indices{k};
[nt,nv] = size(ti);
if types{k}(1) == 's',
nn = 0.5*(sqrt(8*nt+1)-1);
else
nn = 2*sqrt(nt);
end
nnn = nnn + nn*nv;
end
for k = tt,
ti = indices{k};
[nt,nv] = size(ti);
if types{k}(1) == 's',
nn = 0.5 * ( sqrt(8*nt+1) - 1 );
nt2 = nt;
n2 = nn;
else
nn = sqrt(nt);
n2 = 2 * nn;
nt2 = 0.5 * n2 * ( n2 + 1 );
end
blk{end,2}{end+1} = n2 * ones(1,nv);
tvec{end}{end+1} = ti(:);
if types{k}(1) == 's',
%
% CVX stores symmetric matrix variables in packed lower triangle
% form; and str_1 is the adjoint of the mapping from packed form to
% unpacked form. That is, if x is an n(n+1)/2 by 1 vector, then
% str_1' * x is the n x n symmetric matrix. To preserve inner
% products we need the inverse operator as well:
% <a,x> = <a,str_2'*str_1'*x> = <str_2*a,str_1'*x>
%
str_1 = cvx_create_structure( [nn,nn], 'symmetric' );
else
%
% SDPT3 does not do complex SDP natively. To convert to real SDPs
% there are two approaches;
% X >= 0 <==> [ real(X), -imag(X) ; imag(X), real(X) ] >= 0
% X >= 0 <==> exists [ Y1, Y2^T ; Y2, Y3 ] >= 0 s.t.
% Y1 + Y3 == real(X), Y2 - Y2^T == imag(X)
% For primal standard form, this second form is the best choice,
% and what we end up using here.
%
str_1 = cvx_create_structure( [nn,nn], 'hermitian' );
[rr,cr,vr] = find(real(str_1));
cr = cr + floor((cr-1)/nn)*nn;
[ri,ci,vi] = find(imag(str_1));
ci = ci + floor((ci-1)/nn)*nn;
str_1 = sparse( [rr;ri;ri;rr], [cr;ci+nn;ci+n2*nn;cr+nn*(n2+1)], [vr;vi;-vi;vr], nt, n2^2 );
end
str_2 = cvx_invert_structure( str_1 );
%
% SDPT3, on the other hand, stores symmetric matrix variables in
% packed upper triangle format, with off-diagonal elements scaled
% by sqrt(2) to preserve inner products. The operator is unitary:
% <str_2*a,str_1'*x> = <str_3*str_2*a,str_3*str_1'*x>
%
str_3 = sqrt(0.5) * ones(nt2,1); str_3(cumsum(1:n2)) = 1;
str_3 = spdiags( str_3, 0, nt2, nt2 ) * cvx_s_symmetric_ut( n2, n2, true );
Avec{end}{end+1} = reshape( ( str_3 * str_2 ) * reshape( At(ti,:), nt, nv * m ), nt2 * nv, m );
%
% SDPT3 expects C to be in the form of a symmetric matrix, so we
% only need to do half the work.
% <c,x> == <str_2*c,str_1'*x>
%
cc = reshape( str_2 * reshape( c(ti,:), nt, nv ), n2, n2 * nv );
if nv > 1,
% For multiple matrices, SDPT3 expects the blocks to be stacked
% along the diagonal, but our calculation above stacks them into
% a single row. A simple row offset fixes this.
[ rr, cc, vv ] = find( cc );
cc = sparse( rr + floor((cc-1)/n2)*n2, cc, vv, n2 * nv, n2 * nv );
end
Cvec{end}{end+1} = cc;
%
% SDPT3 presents X in symmetric form. We must extract the lower
% triangle for CVX. No scaling is needed. For multiple blocks we
% must add row offsets to handle the block diagonal form.
%
[ rr, cc, vv ] = find( str_2' );
cc = cc + floor((cc-1)/n2)*(nnn-n2);
if nv > 1,
ov = ones(1,nv); sv = 0:nv-1;
or = ones(length(rr),1);
rr = rr(:,ov) + or*(sv*nt);
cc = cc(:,ov) + or*(sv*(n2*(nnn+1)));
vv = vv(:,ov);
end
xvec{end}{end+1} = sparse( cc, rr, vv, n2*nv*(nnn+1), nt*nv );
if need_z,
[ rr, cc, vv ] = find( str_1 );
cc = cc + floor((cc-1)/n2)*(nnn-n2);
if nv > 1,
ov = ones(1,nv); sv = 0:nv-1;
or = ones(length(rr),1);
rr = rr(:,ov) + or*(sv*nt);
cc = cc(:,ov) + or*(sv*(n2*(nnn+1)));
vv = vv(:,ov);
end
zvec{end}{end+1} = sparse( cc, rr, vv, n2*nv*(nnn+1), nt*nv );
end
used(ti) = true;
end
blk{end,2} = horzcat( blk{end,2}{:} );
Avec{end} = vertcat( Avec{end}{:} );
Cvec{end} = cvx_blkdiag( Cvec{end}{:} );
tvec{end} = vertcat( tvec{end}{:} );
xvec{end} = cvx_blkdiag( xvec{end}{:} );
xvec{end}(nnn*nnn+1:end,:) = [];
if need_z,
zvec{end} = cvx_blkdiag( zvec{end}{:} );
zvec{end}(nnn*nnn+1:end,:) = [];
end
found(tt) = true;
end
ti = find(~found);
if ~isempty(ti),
types = unique( types(ti) );
types = sprintf( ' %s', types{:} );
error( 'One or more unsupported nonlinearities detected: %s', types );
end
ti = find(~used);
if ~isempty(ti),
ni = numel(ti);
ti = reshape( ti, 1, ni );
blk {end+1,1} = 'u';
blk {end, 2} = ni;
Avec{end+1,1} = At(ti,:);
Cvec{end+1,1} = c(ti);
tvec{end+1,1} = ti;
xvec{end+1,1} = 1;
if need_z,
zvec{end+1,1} = 1;
end
% found(tt) = true;
% used(ti) = true;
end
%
% Call SDPT3
%
b = full(b);
OPTIONS = sqlparameters;
OPTIONS.gaptol = prec(1);
OPTIONS.printlevel = 3 * ~quiet;
warn_save = warning;
[ obj, xx, y, zz, info ] = cvx_run_solver( @sqlp, blk, Avec, Cvec, b, OPTIONS, 'obj', 'x', 'y', 'z', 'info', settings, 5 ); %#ok
warning( warn_save );
tol = max( [ info.relgap, info.pinfeas, info.dinfeas ] );
if ~quiet, disp(' '); end
%
% Interpret status codes
%
x_good = true;
y_good = true;
switch info.termcode,
case 0,
status = 'Solved';
tol = min( prec(2), tol );
case 1,
status = 'Infeasible';
x_good = false;
tol = min( info.dinfeas, prec(2) );
case 2,
status = 'Unbounded';
y_good = false;
tol = min( info.pinfeas, prec(2) );
otherwise,
if isnan(tol),
tol = Inf;
status = 'Failed';
elseif tol > prec(3),
status = 'Failed';
elseif tol <= prec(2),
status = 'Solved';
info.termcode = 0;
else
status = 'Inaccurate/Solved';
info.termcode = 0;
end
end
% Primal point
if x_good,
x = zeros(1,n);
for k = 1 : length(xx),
x(1,tvec{k}) = x(1,tvec{k}) + xx{k}(:)' * xvec{k};
end
end
if x_good && all(isfinite(x)),
x = full( x )';
else
x = NaN * ones(n,1);
end
if mzero,
x(end) = [];
end
% Lagrange multipliers
if y_good,
y = full(y);
end
if ~y_good || ~all(isfinite(y)),
y = NaN * ones(m,1);
end
if azero,
y(end,:) = [];
end
% Iteration count
iters = info.iter;
% Dual cone
if need_z,
if y_good,
z = zeros(1,n);
for k = 1 : length(zz),
z(1,tvec{k}) = z(1,tvec{k}) + zz{k}(:)' * zvec{k};
end
end
if y_good && all(isfinite(z)),
z = full( z )';
else
z = NaN * ones(n,1);
end
if mzero,
z(end) = [];
end
end
% Copyright 2005-2016 CVX Research, Inc.
% See the file LICENSE.txt for full copyright information.
% The command 'cvx_where' will show where this file is located.
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
LoadData.m
|
.m
|
Feature-Selection-Hybrid-master/LoadData.m
| 226 |
utf_8
|
78032a391706c39e86c1fa384a530fe1
|
function data=LoadData()
dataset=load('bodyfat_data3');
data.x=dataset.input;
data.t=dataset.target;
data.nx=size(data.x,1);
data.nt=size(data.t,1);
data.nSample=size(data.x,2);
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
SinglePointCrossover.m
|
.m
|
Feature-Selection-Hybrid-master/SinglePointCrossover.m
| 179 |
utf_8
|
bd27bb61610d49f21b6958bf5537fc87
|
function [y1, y2]=SinglePointCrossover(x1,x2)
nVar=numel(x1);
c=randi([1 nVar-1]);
y1=[x1(1:c) x2(c+1:end)];
y2=[x2(1:c) x1(c+1:end)];
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
UniformCrossover.m
|
.m
|
Feature-Selection-Hybrid-master/UniformCrossover.m
| 164 |
utf_8
|
5bb55be5ce6a3ead7481905bc412d7b5
|
function [y1, y2]=UniformCrossover(x1,x2)
alpha=randi([0 1],size(x1));
y1=alpha.*x1+(1-alpha).*x2;
y2=alpha.*x2+(1-alpha).*x1;
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
Crossover.m
|
.m
|
Feature-Selection-Hybrid-master/Crossover.m
| 491 |
utf_8
|
b77ebcbddbbe391a41c9e2712e2b38c5
|
function [y1, y2]=Crossover(x1,x2)
pSinglePoint=0.1;
pDoublePoint=0.2;
pUniform=1-pSinglePoint-pDoublePoint;
METHOD=RouletteWheelSelection([pSinglePoint pDoublePoint pUniform]);
switch METHOD
case 1
[y1, y2]=SinglePointCrossover(x1,x2);
case 2
[y1, y2]=DoublePointCrossover(x1,x2);
case 3
[y1, y2]=UniformCrossover(x1,x2);
end
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
FeatureSelectionCost.m
|
.m
|
Feature-Selection-Hybrid-master/FeatureSelectionCost.m
| 1,054 |
utf_8
|
db056076415b1d99276adc81424f91fb
|
function [z, out]=FeatureSelectionCost(s,data)
% Read Data Elements
x=data.x;
t=data.t;
% Selected Features
S=find(s~=0);
% Number of Selected Features
nf=numel(S);
% Ratio of Selected Features
rf=nf/numel(s);
% Selecting Features
xs=x(S,:);
% Weights of Train and Test Errors
wTrain=0.8;
wTest=1-wTrain;
% Number of Runs
nRun=1;
EE=zeros(1,nRun);
for r=1:nRun
% Create and Train ANN
results=CreateAndTrainANN(xs,t);
% Calculate Overall Error
EE(r) = wTrain*results.TrainData.E + wTest*results.TestData.E;
end
E=mean(EE);
%if isinf(E)
% E=1e10;
%end
% Calculate Final Cost
beta=0.5;
z=E*(1+beta*rf);
% Set Outputs
out.S=S;
out.nf=nf;
out.rf=rf;
out.E=E;
out.z=z;
%out.net=results.net;
%out.Data=results.Data;
%out.TrainData=results.TrainData;
%out.TestData=results.TestData;
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
RouletteWheelSelection.m
|
.m
|
Feature-Selection-Hybrid-master/RouletteWheelSelection.m
| 121 |
utf_8
|
57f6bdead1494c070c43bc21d455f517
|
function i=RouletteWheelSelection(P)
r=rand;
c=cumsum(P);
i=find(r<=c,1,'first');
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
DoublePointCrossover.m
|
.m
|
Feature-Selection-Hybrid-master/DoublePointCrossover.m
| 245 |
utf_8
|
db8e17565fbfda7bc414bf2a0f3f8382
|
function [y1, y2]=DoublePointCrossover(x1,x2)
nVar=numel(x1);
cc=randsample(nVar-1,2);
c1=min(cc);
c2=max(cc);
y1=[x1(1:c1) x2(c1+1:c2) x1(c2+1:end)];
y2=[x2(1:c1) x1(c1+1:c2) x2(c2+1:end)];
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
Mutate.m
|
.m
|
Feature-Selection-Hybrid-master/Mutate.m
| 155 |
utf_8
|
c1f0095051ac33990eaad85e0ba0be8c
|
function y=Mutate(x,mu)
nVar=numel(x);
nmu=ceil(mu*nVar);
j=randsample(nVar,nmu);
y=x;
y(j)=1-x(j);
end
|
github
|
dipankarsk/Feature-Selection-Hybrid-master
|
CreateAndTrainANN.m
|
.m
|
Feature-Selection-Hybrid-master/CreateAndTrainANN.m
| 2,118 |
utf_8
|
068f56c52d912b04ba16da76e575b2bd
|
function results=CreateAndTrainANN(x,t)
if ~isempty(x)
hiddenLayerSize = 5;
net = fitnet(hiddenLayerSize,trainFcn);
net.input.processFcns = {'removeconstantrows','mapminmax'};
net.output.processFcns = {'removeconstantrows','mapminmax'};
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'sample'; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;
net.performFcn = 'mse'; % Mean squared error
net.plotFcns = {};
net.trainParam.showWindow=false;
net.trainParam.epochs=5;
% Train the Network
[net,tr] = train(net,x,t);
% Test the Network
y = net(x);
e = gsubtract(t,y);
E = perform(net,t,y);
else
y=inf(size(t));
e=inf(size(t));
E=inf;
tr.trainInd=[];
tr.valInd=[];
tr.testInd=[];
end
% All Data
Data.x=x;
Data.t=t;
Data.y=y;
Data.e=e;
Data.E=E;
% Train Data
TrainData.x=x(:,tr.trainInd);
TrainData.t=t(:,tr.trainInd);
TrainData.y=y(:,tr.trainInd);
TrainData.e=e(:,tr.trainInd);
if ~isempty(x)
TrainData.E=perform(net,TrainData.t,TrainData.y);
else
TrainData.E=inf;
end
% Validation and Test Data
TestData.x=x(:,[tr.testInd tr.valInd]);
TestData.t=t(:,[tr.testInd tr.valInd]);
TestData.y=y(:,[tr.testInd tr.valInd]);
TestData.e=e(:,[tr.testInd tr.valInd]);
if ~isempty(x)
TestData.E=perform(net,TestData.t,TestData.y);
else
TestData.E=inf;
end
% Export Results
if ~isempty(x)
results.net=net;
else
results.net=[];
end
results.Data=Data;
results.TrainData=TrainData;
% results.ValidationData=ValidationData;
results.TestData=TestData;
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
uniquepots.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/uniquepots.m
| 1,370 |
utf_8
|
01144806ae1fd2ada3aaeeaa4a6c90ad
|
function [newpot A] = uniquepots(pot,varargin)
%UNIQUEPOTS Eliminate redundant potentials (those contained wholly within another) by multiplying redundant potentials
% [newpot A]= uniquepots(pot,<tables>)
% if tables=0 then just merge the variables
% The matrix has A(j,i)=1 if pot(i) is contained within pot(j)
tables=1; if nargin==2; tables=varargin{1}; end
% Find a tree of cliques by identifying a single parent clique j that contains clique i.
C=length(pot); r=zeros(1,C);
for i=1:C; r(i)=isempty(pot(i).variables); end
pot=pot(~r);C=length(pot);
A=sparse(C,C);
for i=1:C
j=1;
while j<=C
A(j,i)=ischildpot(pot,i,j);
if A(j,i);break;end
j=j+1;
end
end
newpot=pot;
% Now merge from bottom up
[tree elimset sched]=istree(A);
remove=zeros(1,C);
if tables
for s=1:size(sched,1)
ch=sched(s,1); pa=sched(s,2);
if ch~=pa
newpot(pa)=multpots(newpot([pa ch]));
remove(ch)=1;
end
end
else
for s=1:size(sched,1)
ch=sched(s,2); pa=sched(s,1);
if ch~=pa
newpot(pa).variables=union(newpot(ch).variables,newpot(pa).variables);
remove(ch)=1;
end
end
end
newpot=newpot(remove==0);
function m = ischildpot(pot,i,j)
if i==j; m=0; return; end
m=all(ismember(pot(i).variables,pot(j).variables));
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
subsetsum.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/subsetsum.m
| 2,689 |
utf_8
|
f8d7d15173c2e31dec9a155c9cc80873
|
function [q st]=subsetsum(x)
%SUBSETSUM Solve the zero subset sum problem.
% Input: x - a vector of integers
% Outputs: q=1 if there is a binary 0/1 vector st such that
% sum_i x(i).*st(i) = =0
% The method used is either dynamic programming or explicit enumeration,
% depending on the number of variables and the precision of the integers.
% The wikipedia dynamic programming method has complexity O(n*(P-N)),
% where n is the number of variables, P the sum of positive x and N the sum of negative x.
% This algorithmn is therefore practical only when the precision (number of
% bits required to specify the elements of x is small. Otherwise, for small
% n, and larger precision, one can just enumerate all 2^n binary states,
% which would be more efficient.
n=length(x);
N=sum(x(x<0));
P=sum(x(x>0));
if n*log(2)> (log(n)+log(P-N)); do_dynamic_programming=1;
else
do_dynamic_programming=0;
end
if do_dynamic_programming
offset=-min(N-x)+1; % offset ensures no negative indices
Q=zeros(max(P-x+offset));
for s=N:P
Q(1,s+offset)= (x(1)==s);
end
for i=2:n
for s=N:P
Q(i,s+offset)=Q(i-1,s+offset)| (x(i)==s) | Q(i-1,s-x(i)+offset);
end
end
q=Q(n,0+offset); % q=1 if there is a solution
st=zeros(1,n); % initialise solution
if q % there is a solution, so find by backtracking:
% idea is to start from the last point x(n). If there is a solution in
% which the sum of a subset up to and including n-1 equals -x(n), then we
% can include x(n) in the solution. We then add x(n) to the total, and move
% on to x(n-1):
tot=0;
for i=n:-1:2
if tot+x(i)==0
st(i)=1;
break;
end
if Q(i-1,offset-tot-x(i))
st(i)=1;
tot=tot+x(i);
if tot==0; break; end
end
end
if sum(st(1:n).*x(1:n))~=0
st(1)=1;
end
end
else % explicit enumeration of all 2^n states:
st=ind2subv(2*ones(1,n),1:2^n)-1;
vals=st*x(:);
ind=find(vals==0);
if isempty(ind)
q=0; st=zeros(1,n);
else
q=1; st=vals(ind(1));
end
end
function out = ind2subv(siz,ndx)
% out = ind2subv(siz,ndx)
%
% index to state : return a state vector of the linear index ndx, based on an array of size siz
% For vector ndx, returns a matrix with each row containing the corresponding state vector
k = [1 cumprod(siz(1:end-1))];
for i = length(siz):-1:1; vi = rem(ndx-1, k(i)) + 1; vj = (ndx - vi)./k(i) + 1;out(:,i) = vj;ndx = vi; end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
cliquedecomp.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/cliquedecomp.m
| 4,181 |
utf_8
|
eb0a06cc65d47f1b7a21215da7603bc7
|
function[z zbest]=cliquedecomp(A,C,varargin)
%CLIQUEDECOMP Clique matrix decomposition
% A: adjacency matrix
% C: maximum number of clusters required
% opts.zloops: innerloop for a fixed number of cliques
% opts.aloops: outerloop to find optimal number of clusters
% opts.beta: inverse temperature
% opts.burnin: set to 1 to do some initial burn in
% opts.burninbeta: burn in beta value
% opts.a_beta: Beta distribution a parameter
% opts.b_beta: Beta distribution b parameter
% see demoCliqueDecomp.m and cliquedecomp.c
V=size(A,1); opts=[];
if nargin==3; opts=varargin{1}; end
opts=setfields(opts,'zloops',ceil(V/10),'aloops',5,'beta',10,'a_beta',1,'b_beta',10,'plotprogress',1,'burnin',0);% default options
beta=opts.beta; a_beta=opts.a_beta; b_beta=opts.b_beta;
A=A-diag(diag(A)); A=A+eye(size(A,1)); % include self connections
% Mean Field approximation of p(z_i=1|A)
zm=real(rand(V,C)>0.0); % random initialisation
ma=ones(1,C); zma=zm.*repmat(ma,V,1); errors=-1;
olderror=10e100; zold=zm; zbest=zm; besterror=olderror;
for loopa=1:opts.aloops
if opts.burnin & loopa==1
thisbeta=opts.burninbeta;
else
thisbeta=beta;
end
for loopz=1:opts.zloops
Mold = zma*zma';
for c=randperm(C)
zc=zma(:,c);
for k=randperm(V)
Mk = Mold(:,k)-zc(:)*zc(k)+zma(:,c)*zma(k,c);
logfn1=0;logfn0=0;
for j=1:V
mnfield0= Mk(j)-zma(j,c)*zma(k,c)-0.5; mnfield1= zma(j,c) + mnfield0;
mnfield0=thisbeta*mnfield0; mnfield1=thisbeta*mnfield1;
if A(j,k)
logfn1=logfn1 + logsigma(mnfield1); logfn0=logfn0 + logsigma(mnfield0);
else
logfn1=logfn1 + logsigma(-mnfield1); logfn0=logfn0 + logsigma(-mnfield0);
end % end if
end % end for j
zm(k,c) = 1/(1+exp(2*cap(logfn0-logfn1,100)));
zma(k,c)=zm(k,c)*ma(c);
end % end for k
Mold = Mold-zc*zc'+zma(:,c)*zma(:,c)';
end % end for c
z=zma>0.49; % threshold
dz=double(z); AA= (dz*dz' > 0); AA = AA-diag(diag(AA)); AA = AA+diag(ones(1,V));
newerror= 0.5*sum(sum(AA~=A));
if newerror<besterror
zbest=z; besterror=newerror;
else
z=zbest; newerror=besterror;
end
errors(loopz) = newerror;
fprintf(1,'number of cliques=%d (after %d updates) | vertex loop %d| errors %d| best error %d| beta %f\n',...
[C (loopa-1) loopz newerror besterror thisbeta]);
if opts.plotprogress
subplot(1,4,1);imagesc(A);colormap('bone');title('original');subplot(1,4,2);imagesc(AA);
colormap('bone');title('approx');subplot(1,4,3);
imagesc(z);colormap('bone');title('Z');subplot(1,4,4);plot(errors);drawnow;
end
end % end zloop
%sum(z)
%pause
% update the number of cliques:
if opts.aloops>1
zmatmp=zma;
for c=1:C
zmat=zmatmp; zmat(:,c)=zm(:,c);
loglik1=cliqueloglikfn(zmat,A,thisbeta);
zmat(:,c)=zeros(V,1);
loglik0=cliqueloglikfn(zmat,A,thisbeta);
atmp=ma; atmp(c)=1; T1=sum(atmp); T0=C-T1;
logprior1 = betalog(a_beta+T1,b_beta+T0);
atmp(c)=0; T1=sum(atmp); T0=C-T1;
logprior0 = betalog(a_beta+T1,b_beta+T0);
logpost1=logprior1+loglik1; logpost0=logprior0+loglik0;
ma(c)=1/(1+exp(logpost0-logpost1));
end % end aloop
zma=zma(:,ma>0.5); C=size(zma,2); % update the number of clusters
ma=ma(:,ma>0.5);
end
keyboard
end % end aloop
function loglik=cliqueloglikfn(z,A,beta)
V=size(A,1); loglik=0;
for i=1:V
for j=1:V
if A(i,j) % if connection between i and j
loglik=loglik+logsigma(beta*(sum(z(i,:).*z(j,:))-0.5));
else
loglik=loglik+logsigma(-beta*(sum(z(i,:).*z(j,:))-0.5));
end
end
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
hinton.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/hinton.m
| 1,287 |
utf_8
|
c2796065ccb0df313df10b48a18ce866
|
function hinton(M,varargin)
%HINTON Plot a Hinton diagram
% hinton(M,opts)
% Plot a Hinton diagram for matrix M. Positive is Green, and negative Red
% use hinton(M,1) to turn on the grid
% opts.grid = 1/0
% opts.coloursRGB: 2 x 4 matrix of RGB colours for the patches. First row is the RGB for
% the positive and the second row for the negative entries. Default is
% green and red.
opts=[];if nargin==2; opts=varargin{1}; end
opts=setfields(opts,'grid',1,'coloursRGB',[0 1 0; 1 0 0]);% default options
[x, y, col]=makepatch(flipud(M));
cla
for count=1:size(x,1);
if col(count)==1
c=opts.coloursRGB(1,:);
else
c=opts.coloursRGB(2,:);
end
patch(y(count,:),x(count,:),c);
end
[I J]=size(M);
set(gca,'xtick',[1:J])
set(gca,'xticklabel',[1:J])
set(gca,'ytick',[1:I])
set(gca,'yticklabel',[I:-1:1])
set(gca,'box','on')
axis([0 J+1 0 I+1]);
if opts.grid
grid on
else
grid off
end
function [x, y, col]=makepatch(M)
MM=max(max(abs(M)));
M2=M./MM;
M2=abs(M2);
count=0;
for i=1:size(M,1)
for j=1:size(M,2)
count=count+1;
xx = i + M2(i,j)*0.45*[-1 -1 1 1];
yy = j + M2(i,j)*0.45*[-1 1 1 -1];
x(count,:)=xx;
y(count,:)=yy;
col(count)=sign(M(i,j));
end
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
mix2mix.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/mix2mix.m
| 1,590 |
utf_8
|
366a4c119d7a19c2b93a6e136e5503c3
|
function [newcoeff, newmean, newcov] = mix2mix(coeff, mean, cov, I)
%MIX2MIX Fit a mixture of Gaussians with another mixture of Gaussians
% (but with a smaller number of components I) by retaining the
% I-1 most probable coeffs, and merging the rest.
%
% Inputs:
% coeff(:) : coefficients of the mixtures
% mean(:,coeff) : the corresponding means
% cov(:,:,coeff) : corresponding covariance matrices
% I : desired number of smaller mixtures
%
% Outputs:
% newcoeff(:) : new mixture coefficients
% newmean(:,:) : new means
% newcov(:,:,:) : new covariance matrices
% See also SLDSforward.m, SLDSbackward.m
newcoeff = coeff; newmean = mean; newcov = cov;
L = length(newcoeff);
if L > I
[val,ind] = sort(coeff);
tomerge = ind(1:L-I+1);
notmerged = setdiff(1:L,tomerge);
sump = sum(coeff(tomerge));
if sump ~= 0
condp = coeff(tomerge) ./ sump;
else
n = length(tomerge);
condp = ones(1,n) / n;
end
[mergedmean, mergedcov] = matmixtosingle(condp, mean(:,tomerge), cov(:,:,tomerge));
newcoeff(tomerge) = []; newmean(:,tomerge) = []; newcov(:,:,tomerge) = [];
newcoeff(I) = sump; newmean(:,I) = mergedmean; newcov(:,:,I) = mergedcov;
end
function [m, S] = matmixtosingle(coeff, means, cov)
% fit a mixture of Gaussians with a single Gaussian, so that the first and second moments
% of the fitted Gaussian match the mixture first and second moments.
n=size(means,2); m=zeros(size(means,1),1); S=zeros(size(means,1));
for i=1:n
m=m+coeff(i)*means(:,i); S=S+coeff(i)*(cov(:,:,i)+means(:,i)*means(:,i)');
end
S=S-m*m';
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
mygamrnd.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/mygamrnd.m
| 1,780 |
utf_8
|
a2f65264ce7e91b85cc3d4f99a8af08e
|
%
%
% Gamma random variate generator
% Simon Rogers, 30/01/2007
% --------------------------------------------
% function g = mygamrnd(k,theta,N,varargin)
% generates N random variates from a Gamma(k,theta) pdf
% defined as
% p(g|k,theta) = g^{k-1} \frac{e^{-g/theta}}{\theta^k \Gamma(k)}
%
% Uses an acceptance-rejection method as described at
% http://en.wikipedia.org/wiki/Gamma_distribution
%
% varargin holds extra options, currently limited to
% 'verbose' {0,1} - 0 is silent (default), 1 prints some diagnostics
% e.g. g = mygamrnd(1,1,10,'verbose',1)
% generates 10 variates from a Gamma(1,1) distribution and displays info
%
%
function g = mygamrnd(alpha,theta,N,varargin)
verbose = 0;
for i = 1:2:length(varargin)-1
switch lower(varargin{i})
case 'verbose'
verbose = varargin{i+1};
end
end
k = floor(alpha);
delta = alpha-k;
g = zeros(N,1);
left = repmat(1,N,1);
if verbose
fprintf('\n\nGamma Variate Generator');
fprintf('\nSee http://en.wikipedia.org/wiki/Gamma_distribution');
fprintf('\n[k]=%g, delta=%g, theta=%g, N=%g',k,delta,theta,N);
end
it = 0;
if delta>0
nu = exp(1)/(exp(1)+delta);
for n = 1:N
while 1
it = it + 1;
V = rand(1,2);
if V(1)<=nu
xi = (V(1)/nu)^(1/delta);
eta = V(2)*xi^(delta-1);
else
xi = 1 - log((V(1)-nu)/(1-nu));
eta = V(2)*exp(-xi);
end
if eta <= xi^(delta-1) * exp(-xi)
break
end
end
g(n) = xi;
end
end
un = rand(N,k);
g = (theta)*(g - sum(log(un),2));
if verbose
fprintf('\nFinished, avg number of its: %g\n\n',it/N);
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
singleparenttree.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/singleparenttree.m
| 1,274 |
utf_8
|
9880861b5dbb90b5d6b0d7017ad8724b
|
function [spTree elimseq]=singleparenttree(Atree,varargin)
%SINGLEPARENTTREE From an undirected tree, form a directed tree with at most one parent
%[spTree elimseq]=singleparenttree(Atree,<orient away from this node>)
% Get an elimination elimseq such that each eliminated node has at most 1 parent:
% By default consistently orients away from node 1.
Atree=(Atree+Atree')>0;
if isempty(varargin);
start=1; % orient edges away from node 1
else
start=varargin{1}; % orient away from specified node
end
comps=connectedComponents(Atree); Ncomps=max(comps); elimseq=[];
for c=1:Ncomps % loop over connected components
compvars=find(comps==c);
if start>length(compvars); compstart=1; else compstart=start; end
[spTree(compvars,compvars) compelimseq]=singleparentConnectedtree(Atree(compvars,compvars),compstart);
elimseq=[elimseq compvars(compelimseq)];
end
function [spTree elimseq]=singleparentConnectedtree(Atree,start)
elimseq=start;
N=size(Atree,1); spTree=Atree; v=zeros(N,1); v(start)=1; A=Atree+eye(N);
kids=children(spTree,elimseq); spTree(kids,elimseq)=0;
while prod(v)~=1
v=real((A*v)>0);
nodes=setdiff(find(v),elimseq); elimseq=[elimseq nodes(:)'];
kids=children(spTree,nodes); spTree(kids,nodes)=0;
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
SVMtrain.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/SVMtrain.m
| 2,022 |
utf_8
|
a7a5dadc2f12e2d3b37c2775d6a74631
|
function [A,G] = SVMtrain(Q,y,C)
%SVMTRAIN train a Support vector Machine
% compute the SMO decomposition algorithm from Fan et al JMLR 2005
%
% Inputs:
% Q_ij - y_i y_j K_ij (Where K is the kernel)
% y - labels
% C - C parameter
%
% Outputs:
% A - alpha values
% G - Gradient
% written by Zakria Hussain, UCL, Jul 2008
eps = 1e-3; tau = 1e-12;
len = length(y);
A = zeros(len,1); G = -ones(len,1);
while(1)
[i,j] = selectB(Q,G,A,y,C,tau,eps);
if j == -1; break; end
% working set is (i,j)
a = Q(i,i)+Q(j,j)-2*y(i)*y(j)*Q(i,j);
if a <= 0; a = tau; end
b = (-y(i)*G(i))+(y(j)*G(j));
% update alpha
oldAi = A(i); oldAj = A(j);
A(i) = A(i) + (y(i)*b/a);
A(j) = A(j) - (y(j)*b/a);
% project alpha back to the feasible region
sum = (y(i)*oldAi) + (y(j)*oldAj);
if A(i) > C; A(i) = C; end
if A(i) < 0; A(i) = 0; end
A(j) = y(j)*(sum-y(i)*A(i));
if A(j) > C; A(j) = C; end
if A(j) < 0; A(j) = 0; end
A(i) = y(i)*(sum-y(j)*A(j));
% update gradient
deltaAi = A(i) - oldAi; deltaAj = A(j) - oldAj;
G(:) = G(:) + (Q(:,i)*deltaAi) + (Q(:,j)*deltaAj);
end
function [i,j] = selectB(Q,G,A,y,C,tau,eps)
len = length(A);
i = -1; Gmax = -inf; Gmin = inf;
for t=1:len
if (y(t)==1 && A(t)<C) || (y(t)==-1 && A(t)>0)
if -y(t)*G(t) >= Gmax
i = t;
Gmax = -y(t)*G(t);
end
end
end
j = -1; obj_min = inf;
for t=1:len
if (y(t)==1 && A(t)>0) || (y(t)==-1 && A(t)<C)
b = Gmax + (y(t)*G(t));
if -y(t)*G(t) <= Gmin ; Gmin = -y(t)*G(t); end
if b>0
a = Q(i,i)+Q(t,t)-2*y(i)*y(t)*Q(i,t);
if a<=0; a = tau; end
if -(b*b)/a <= obj_min
j=t;
obj_min = -(b*b)/a;
end
end
end
end
if Gmax-Gmin < eps
i = -1; j = -1;
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
uniquepots.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/uniquepots.m
| 1,370 |
utf_8
|
01144806ae1fd2ada3aaeeaa4a6c90ad
|
function [newpot A] = uniquepots(pot,varargin)
%UNIQUEPOTS Eliminate redundant potentials (those contained wholly within another) by multiplying redundant potentials
% [newpot A]= uniquepots(pot,<tables>)
% if tables=0 then just merge the variables
% The matrix has A(j,i)=1 if pot(i) is contained within pot(j)
tables=1; if nargin==2; tables=varargin{1}; end
% Find a tree of cliques by identifying a single parent clique j that contains clique i.
C=length(pot); r=zeros(1,C);
for i=1:C; r(i)=isempty(pot(i).variables); end
pot=pot(~r);C=length(pot);
A=sparse(C,C);
for i=1:C
j=1;
while j<=C
A(j,i)=ischildpot(pot,i,j);
if A(j,i);break;end
j=j+1;
end
end
newpot=pot;
% Now merge from bottom up
[tree elimset sched]=istree(A);
remove=zeros(1,C);
if tables
for s=1:size(sched,1)
ch=sched(s,1); pa=sched(s,2);
if ch~=pa
newpot(pa)=multpots(newpot([pa ch]));
remove(ch)=1;
end
end
else
for s=1:size(sched,1)
ch=sched(s,2); pa=sched(s,1);
if ch~=pa
newpot(pa).variables=union(newpot(ch).variables,newpot(pa).variables);
remove(ch)=1;
end
end
end
newpot=newpot(remove==0);
function m = ischildpot(pot,i,j)
if i==j; m=0; return; end
m=all(ismember(pot(i).variables,pot(j).variables));
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
subsetsum.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/subsetsum.m
| 2,689 |
utf_8
|
f8d7d15173c2e31dec9a155c9cc80873
|
function [q st]=subsetsum(x)
%SUBSETSUM Solve the zero subset sum problem.
% Input: x - a vector of integers
% Outputs: q=1 if there is a binary 0/1 vector st such that
% sum_i x(i).*st(i) = =0
% The method used is either dynamic programming or explicit enumeration,
% depending on the number of variables and the precision of the integers.
% The wikipedia dynamic programming method has complexity O(n*(P-N)),
% where n is the number of variables, P the sum of positive x and N the sum of negative x.
% This algorithmn is therefore practical only when the precision (number of
% bits required to specify the elements of x is small. Otherwise, for small
% n, and larger precision, one can just enumerate all 2^n binary states,
% which would be more efficient.
n=length(x);
N=sum(x(x<0));
P=sum(x(x>0));
if n*log(2)> (log(n)+log(P-N)); do_dynamic_programming=1;
else
do_dynamic_programming=0;
end
if do_dynamic_programming
offset=-min(N-x)+1; % offset ensures no negative indices
Q=zeros(max(P-x+offset));
for s=N:P
Q(1,s+offset)= (x(1)==s);
end
for i=2:n
for s=N:P
Q(i,s+offset)=Q(i-1,s+offset)| (x(i)==s) | Q(i-1,s-x(i)+offset);
end
end
q=Q(n,0+offset); % q=1 if there is a solution
st=zeros(1,n); % initialise solution
if q % there is a solution, so find by backtracking:
% idea is to start from the last point x(n). If there is a solution in
% which the sum of a subset up to and including n-1 equals -x(n), then we
% can include x(n) in the solution. We then add x(n) to the total, and move
% on to x(n-1):
tot=0;
for i=n:-1:2
if tot+x(i)==0
st(i)=1;
break;
end
if Q(i-1,offset-tot-x(i))
st(i)=1;
tot=tot+x(i);
if tot==0; break; end
end
end
if sum(st(1:n).*x(1:n))~=0
st(1)=1;
end
end
else % explicit enumeration of all 2^n states:
st=ind2subv(2*ones(1,n),1:2^n)-1;
vals=st*x(:);
ind=find(vals==0);
if isempty(ind)
q=0; st=zeros(1,n);
else
q=1; st=vals(ind(1));
end
end
function out = ind2subv(siz,ndx)
% out = ind2subv(siz,ndx)
%
% index to state : return a state vector of the linear index ndx, based on an array of size siz
% For vector ndx, returns a matrix with each row containing the corresponding state vector
k = [1 cumprod(siz(1:end-1))];
for i = length(siz):-1:1; vi = rem(ndx-1, k(i)) + 1; vj = (ndx - vi)./k(i) + 1;out(:,i) = vj;ndx = vi; end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
cliquedecomp.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/cliquedecomp.m
| 4,181 |
utf_8
|
eb0a06cc65d47f1b7a21215da7603bc7
|
function[z zbest]=cliquedecomp(A,C,varargin)
%CLIQUEDECOMP Clique matrix decomposition
% A: adjacency matrix
% C: maximum number of clusters required
% opts.zloops: innerloop for a fixed number of cliques
% opts.aloops: outerloop to find optimal number of clusters
% opts.beta: inverse temperature
% opts.burnin: set to 1 to do some initial burn in
% opts.burninbeta: burn in beta value
% opts.a_beta: Beta distribution a parameter
% opts.b_beta: Beta distribution b parameter
% see demoCliqueDecomp.m and cliquedecomp.c
V=size(A,1); opts=[];
if nargin==3; opts=varargin{1}; end
opts=setfields(opts,'zloops',ceil(V/10),'aloops',5,'beta',10,'a_beta',1,'b_beta',10,'plotprogress',1,'burnin',0);% default options
beta=opts.beta; a_beta=opts.a_beta; b_beta=opts.b_beta;
A=A-diag(diag(A)); A=A+eye(size(A,1)); % include self connections
% Mean Field approximation of p(z_i=1|A)
zm=real(rand(V,C)>0.0); % random initialisation
ma=ones(1,C); zma=zm.*repmat(ma,V,1); errors=-1;
olderror=10e100; zold=zm; zbest=zm; besterror=olderror;
for loopa=1:opts.aloops
if opts.burnin & loopa==1
thisbeta=opts.burninbeta;
else
thisbeta=beta;
end
for loopz=1:opts.zloops
Mold = zma*zma';
for c=randperm(C)
zc=zma(:,c);
for k=randperm(V)
Mk = Mold(:,k)-zc(:)*zc(k)+zma(:,c)*zma(k,c);
logfn1=0;logfn0=0;
for j=1:V
mnfield0= Mk(j)-zma(j,c)*zma(k,c)-0.5; mnfield1= zma(j,c) + mnfield0;
mnfield0=thisbeta*mnfield0; mnfield1=thisbeta*mnfield1;
if A(j,k)
logfn1=logfn1 + logsigma(mnfield1); logfn0=logfn0 + logsigma(mnfield0);
else
logfn1=logfn1 + logsigma(-mnfield1); logfn0=logfn0 + logsigma(-mnfield0);
end % end if
end % end for j
zm(k,c) = 1/(1+exp(2*cap(logfn0-logfn1,100)));
zma(k,c)=zm(k,c)*ma(c);
end % end for k
Mold = Mold-zc*zc'+zma(:,c)*zma(:,c)';
end % end for c
z=zma>0.49; % threshold
dz=double(z); AA= (dz*dz' > 0); AA = AA-diag(diag(AA)); AA = AA+diag(ones(1,V));
newerror= 0.5*sum(sum(AA~=A));
if newerror<besterror
zbest=z; besterror=newerror;
else
z=zbest; newerror=besterror;
end
errors(loopz) = newerror;
fprintf(1,'number of cliques=%d (after %d updates) | vertex loop %d| errors %d| best error %d| beta %f\n',...
[C (loopa-1) loopz newerror besterror thisbeta]);
if opts.plotprogress
subplot(1,4,1);imagesc(A);colormap('bone');title('original');subplot(1,4,2);imagesc(AA);
colormap('bone');title('approx');subplot(1,4,3);
imagesc(z);colormap('bone');title('Z');subplot(1,4,4);plot(errors);drawnow;
end
end % end zloop
%sum(z)
%pause
% update the number of cliques:
if opts.aloops>1
zmatmp=zma;
for c=1:C
zmat=zmatmp; zmat(:,c)=zm(:,c);
loglik1=cliqueloglikfn(zmat,A,thisbeta);
zmat(:,c)=zeros(V,1);
loglik0=cliqueloglikfn(zmat,A,thisbeta);
atmp=ma; atmp(c)=1; T1=sum(atmp); T0=C-T1;
logprior1 = betalog(a_beta+T1,b_beta+T0);
atmp(c)=0; T1=sum(atmp); T0=C-T1;
logprior0 = betalog(a_beta+T1,b_beta+T0);
logpost1=logprior1+loglik1; logpost0=logprior0+loglik0;
ma(c)=1/(1+exp(logpost0-logpost1));
end % end aloop
zma=zma(:,ma>0.5); C=size(zma,2); % update the number of clusters
ma=ma(:,ma>0.5);
end
keyboard
end % end aloop
function loglik=cliqueloglikfn(z,A,beta)
V=size(A,1); loglik=0;
for i=1:V
for j=1:V
if A(i,j) % if connection between i and j
loglik=loglik+logsigma(beta*(sum(z(i,:).*z(j,:))-0.5));
else
loglik=loglik+logsigma(-beta*(sum(z(i,:).*z(j,:))-0.5));
end
end
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
hinton.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/hinton.m
| 1,287 |
utf_8
|
c2796065ccb0df313df10b48a18ce866
|
function hinton(M,varargin)
%HINTON Plot a Hinton diagram
% hinton(M,opts)
% Plot a Hinton diagram for matrix M. Positive is Green, and negative Red
% use hinton(M,1) to turn on the grid
% opts.grid = 1/0
% opts.coloursRGB: 2 x 4 matrix of RGB colours for the patches. First row is the RGB for
% the positive and the second row for the negative entries. Default is
% green and red.
opts=[];if nargin==2; opts=varargin{1}; end
opts=setfields(opts,'grid',1,'coloursRGB',[0 1 0; 1 0 0]);% default options
[x, y, col]=makepatch(flipud(M));
cla
for count=1:size(x,1);
if col(count)==1
c=opts.coloursRGB(1,:);
else
c=opts.coloursRGB(2,:);
end
patch(y(count,:),x(count,:),c);
end
[I J]=size(M);
set(gca,'xtick',[1:J])
set(gca,'xticklabel',[1:J])
set(gca,'ytick',[1:I])
set(gca,'yticklabel',[I:-1:1])
set(gca,'box','on')
axis([0 J+1 0 I+1]);
if opts.grid
grid on
else
grid off
end
function [x, y, col]=makepatch(M)
MM=max(max(abs(M)));
M2=M./MM;
M2=abs(M2);
count=0;
for i=1:size(M,1)
for j=1:size(M,2)
count=count+1;
xx = i + M2(i,j)*0.45*[-1 -1 1 1];
yy = j + M2(i,j)*0.45*[-1 1 1 -1];
x(count,:)=xx;
y(count,:)=yy;
col(count)=sign(M(i,j));
end
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
mix2mix.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/mix2mix.m
| 1,590 |
utf_8
|
366a4c119d7a19c2b93a6e136e5503c3
|
function [newcoeff, newmean, newcov] = mix2mix(coeff, mean, cov, I)
%MIX2MIX Fit a mixture of Gaussians with another mixture of Gaussians
% (but with a smaller number of components I) by retaining the
% I-1 most probable coeffs, and merging the rest.
%
% Inputs:
% coeff(:) : coefficients of the mixtures
% mean(:,coeff) : the corresponding means
% cov(:,:,coeff) : corresponding covariance matrices
% I : desired number of smaller mixtures
%
% Outputs:
% newcoeff(:) : new mixture coefficients
% newmean(:,:) : new means
% newcov(:,:,:) : new covariance matrices
% See also SLDSforward.m, SLDSbackward.m
newcoeff = coeff; newmean = mean; newcov = cov;
L = length(newcoeff);
if L > I
[val,ind] = sort(coeff);
tomerge = ind(1:L-I+1);
notmerged = setdiff(1:L,tomerge);
sump = sum(coeff(tomerge));
if sump ~= 0
condp = coeff(tomerge) ./ sump;
else
n = length(tomerge);
condp = ones(1,n) / n;
end
[mergedmean, mergedcov] = matmixtosingle(condp, mean(:,tomerge), cov(:,:,tomerge));
newcoeff(tomerge) = []; newmean(:,tomerge) = []; newcov(:,:,tomerge) = [];
newcoeff(I) = sump; newmean(:,I) = mergedmean; newcov(:,:,I) = mergedcov;
end
function [m, S] = matmixtosingle(coeff, means, cov)
% fit a mixture of Gaussians with a single Gaussian, so that the first and second moments
% of the fitted Gaussian match the mixture first and second moments.
n=size(means,2); m=zeros(size(means,1),1); S=zeros(size(means,1));
for i=1:n
m=m+coeff(i)*means(:,i); S=S+coeff(i)*(cov(:,:,i)+means(:,i)*means(:,i)');
end
S=S-m*m';
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
mygamrnd.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/mygamrnd.m
| 1,780 |
utf_8
|
a2f65264ce7e91b85cc3d4f99a8af08e
|
%
%
% Gamma random variate generator
% Simon Rogers, 30/01/2007
% --------------------------------------------
% function g = mygamrnd(k,theta,N,varargin)
% generates N random variates from a Gamma(k,theta) pdf
% defined as
% p(g|k,theta) = g^{k-1} \frac{e^{-g/theta}}{\theta^k \Gamma(k)}
%
% Uses an acceptance-rejection method as described at
% http://en.wikipedia.org/wiki/Gamma_distribution
%
% varargin holds extra options, currently limited to
% 'verbose' {0,1} - 0 is silent (default), 1 prints some diagnostics
% e.g. g = mygamrnd(1,1,10,'verbose',1)
% generates 10 variates from a Gamma(1,1) distribution and displays info
%
%
function g = mygamrnd(alpha,theta,N,varargin)
verbose = 0;
for i = 1:2:length(varargin)-1
switch lower(varargin{i})
case 'verbose'
verbose = varargin{i+1};
end
end
k = floor(alpha);
delta = alpha-k;
g = zeros(N,1);
left = repmat(1,N,1);
if verbose
fprintf('\n\nGamma Variate Generator');
fprintf('\nSee http://en.wikipedia.org/wiki/Gamma_distribution');
fprintf('\n[k]=%g, delta=%g, theta=%g, N=%g',k,delta,theta,N);
end
it = 0;
if delta>0
nu = exp(1)/(exp(1)+delta);
for n = 1:N
while 1
it = it + 1;
V = rand(1,2);
if V(1)<=nu
xi = (V(1)/nu)^(1/delta);
eta = V(2)*xi^(delta-1);
else
xi = 1 - log((V(1)-nu)/(1-nu));
eta = V(2)*exp(-xi);
end
if eta <= xi^(delta-1) * exp(-xi)
break
end
end
g(n) = xi;
end
end
un = rand(N,k);
g = (theta)*(g - sum(log(un),2));
if verbose
fprintf('\nFinished, avg number of its: %g\n\n',it/N);
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
singleparenttree.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/singleparenttree.m
| 1,274 |
utf_8
|
9880861b5dbb90b5d6b0d7017ad8724b
|
function [spTree elimseq]=singleparenttree(Atree,varargin)
%SINGLEPARENTTREE From an undirected tree, form a directed tree with at most one parent
%[spTree elimseq]=singleparenttree(Atree,<orient away from this node>)
% Get an elimination elimseq such that each eliminated node has at most 1 parent:
% By default consistently orients away from node 1.
Atree=(Atree+Atree')>0;
if isempty(varargin);
start=1; % orient edges away from node 1
else
start=varargin{1}; % orient away from specified node
end
comps=connectedComponents(Atree); Ncomps=max(comps); elimseq=[];
for c=1:Ncomps % loop over connected components
compvars=find(comps==c);
if start>length(compvars); compstart=1; else compstart=start; end
[spTree(compvars,compvars) compelimseq]=singleparentConnectedtree(Atree(compvars,compvars),compstart);
elimseq=[elimseq compvars(compelimseq)];
end
function [spTree elimseq]=singleparentConnectedtree(Atree,start)
elimseq=start;
N=size(Atree,1); spTree=Atree; v=zeros(N,1); v(start)=1; A=Atree+eye(N);
kids=children(spTree,elimseq); spTree(kids,elimseq)=0;
while prod(v)~=1
v=real((A*v)>0);
nodes=setdiff(find(v),elimseq); elimseq=[elimseq nodes(:)'];
kids=children(spTree,nodes); spTree(kids,nodes)=0;
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
SVMtrain.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/SVMtrain.m
| 2,022 |
utf_8
|
a7a5dadc2f12e2d3b37c2775d6a74631
|
function [A,G] = SVMtrain(Q,y,C)
%SVMTRAIN train a Support vector Machine
% compute the SMO decomposition algorithm from Fan et al JMLR 2005
%
% Inputs:
% Q_ij - y_i y_j K_ij (Where K is the kernel)
% y - labels
% C - C parameter
%
% Outputs:
% A - alpha values
% G - Gradient
% written by Zakria Hussain, UCL, Jul 2008
eps = 1e-3; tau = 1e-12;
len = length(y);
A = zeros(len,1); G = -ones(len,1);
while(1)
[i,j] = selectB(Q,G,A,y,C,tau,eps);
if j == -1; break; end
% working set is (i,j)
a = Q(i,i)+Q(j,j)-2*y(i)*y(j)*Q(i,j);
if a <= 0; a = tau; end
b = (-y(i)*G(i))+(y(j)*G(j));
% update alpha
oldAi = A(i); oldAj = A(j);
A(i) = A(i) + (y(i)*b/a);
A(j) = A(j) - (y(j)*b/a);
% project alpha back to the feasible region
sum = (y(i)*oldAi) + (y(j)*oldAj);
if A(i) > C; A(i) = C; end
if A(i) < 0; A(i) = 0; end
A(j) = y(j)*(sum-y(i)*A(i));
if A(j) > C; A(j) = C; end
if A(j) < 0; A(j) = 0; end
A(i) = y(i)*(sum-y(j)*A(j));
% update gradient
deltaAi = A(i) - oldAi; deltaAj = A(j) - oldAj;
G(:) = G(:) + (Q(:,i)*deltaAi) + (Q(:,j)*deltaAj);
end
function [i,j] = selectB(Q,G,A,y,C,tau,eps)
len = length(A);
i = -1; Gmax = -inf; Gmin = inf;
for t=1:len
if (y(t)==1 && A(t)<C) || (y(t)==-1 && A(t)>0)
if -y(t)*G(t) >= Gmax
i = t;
Gmax = -y(t)*G(t);
end
end
end
j = -1; obj_min = inf;
for t=1:len
if (y(t)==1 && A(t)>0) || (y(t)==-1 && A(t)<C)
b = Gmax + (y(t)*G(t));
if -y(t)*G(t) <= Gmin ; Gmin = -y(t)*G(t); end
if b>0
a = Q(i,i)+Q(t,t)-2*y(i)*y(t)*Q(i,t);
if a<=0; a = tau; end
if -(b*b)/a <= obj_min
j=t;
obj_min = -(b*b)/a;
end
end
end
end
if Gmax-Gmin < eps
i = -1; j = -1;
end
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
textoval.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/graphlayout/textoval.m
| 2,151 |
utf_8
|
654d6f5117ff68685aac2921423cb76d
|
function [t, wd] = textoval(x, y, str)
% TEXTOVAL Draws an oval around text objects
%
% [T, WIDTH] = TEXTOVAL(X, Y, STR)
% [..] = TEXTOVAL(STR) % Interactive
%
% Inputs :
% X, Y : Coordinates
% TXT : Strings
%
% Outputs :
% T : Object Handles
% WIDTH : x and y Width of ovals
%
% Usage Example : [t] = textoval('Visit to Asia?');
%
%
% Note :
% See also TEXTBOX
% Uses :
% Change History :
% Date Time Prog Note
% 15-Jun-1998 10:36 AM ATC Created under MATLAB 5.1.0.421
% ATC = Ali Taylan Cemgil,
% SNN - University of Nijmegen, Department of Medical Physics and Biophysics
% e-mail : [email protected]
temp = [];
switch nargin,
case 1,
str = x;
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
wd = zeros(N,2);
for i=1:N,
[x, y] = ginput(1);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_oval(tx, x, y);
wd(i,:) = [wx wy];
delete(tx);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp ; tx ptc];
end;
case 3,
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
wd = zeros(N,2);
for i=1:N,
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_oval(tx, x(i), y(i));
wd(i,:) = [wx wy];
delete(tx);
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp; tx ptc];
end;
otherwise,
end;
if nargout>0, t = temp; end;
function [ptc, wx, wy] = draw_oval(tx, x, y)
% Draws an oval box around a tex object
if isoctave
pos=get(gcf,'Position');
xl=pos(3);
yl=pos(4);
l = length(get(tx,'string')); % octave workaround: db
sz = [1 1 0.011*(4+l)*560/xl 0.012*(4)*420/yl];
else
sz = get(tx,'Extent'); % octave doesn't understand this
end
wy = sz(4);
wx = max(2/3*sz(3), wy);
ptc = ellipse(x, y, wx, wy);
set(ptc, 'FaceColor','w');
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
textbox.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/graphlayout/textbox.m
| 2,118 |
utf_8
|
f7750958b5bdcd1839e4800abdeb9c21
|
function [t, wd] = textbox(x,y,str)
% TEXTBOX Draws A Box around the text
%
% [T, WIDTH] = TEXTBOX(X, Y, STR)
% [..] = TEXTBOX(STR)
%
% Inputs :
% X, Y : Coordinates
% TXT : Strings
%
% Outputs :
% T : Object Handles
% WIDTH : x and y Width of boxes
%%
% Usage Example : t = textbox({'Ali','Veli','49','50'});
%
%
% Note :
% See also TEXTOVAL
% Uses :
% Change History :
% Date Time Prog Note
% 09-Jun-1998 11:43 AM ATC Created under MATLAB 5.1.0.421
% ATC = Ali Taylan Cemgil,
% SNN - University of Nijmegen, Department of Medical Physics and Biophysics
% e-mail : [email protected]
% See
temp = [];
switch nargin,
case 1,
str = x;
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
wd = zeros(N,2);
for i=1:N,
[x, y] = ginput(1);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_box(tx, x, y);
wd(i,:) = [wx wy];
delete(tx);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp; tx ptc];
end;
case 3,
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
for i=1:N,
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_box(tx, x(i), y(i));
wd(i,:) = [wx wy];
delete(tx);
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp; tx ptc];
end;
otherwise,
end;
if nargout>0, t = temp; end;
function [ptc, wx, wy] = draw_box(tx, x, y)
% Draws a box around a tex object
if isoctave
pos=get(gcf,'Position');
xl=pos(3); yl=pos(4);
l = length(get(tx,'string')); % octave workaround: db
sz = [1 1 0.01*(4+l)*560/xl 0.01*(4)*420/yl];
else
sz = get(tx,'Extent');
end
wy = 2/3*sz(4);
wx = max(2/3*sz(3), wy);
ptc = patch([x-wx x+wx x+wx x-wx], [y+wy y+wy y-wy y-wy],'w');
set(ptc, 'FaceColor','w');
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
arrow.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/graphlayout/private/arrow.m
| 56,774 |
utf_8
|
2dc514962f607a6855ee3f8bfbee74c4
|
function [h,yy,zz] = arrow(varargin)
% ARROW Draw a line with an arrowhead.
%
% ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points
% should be vectors of length 2 or 3, or matrices with 2 or 3
% columns), and returns the graphics handle of the arrow(s).
%
% ARROW uses the mouse (click-drag) to create an arrow.
%
% ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW.
%
% ARROW may be called with a normal argument list or a property-based list.
% ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is
% the full normal argument list, where all but the Start and Stop
% points are optional. If you need to specify a later argument (e.g.,
% Page) but want default values of earlier ones (e.g., TipAngle),
% pass an empty matrix for the earlier ones (e.g., TipAngle=[]).
%
% ARROW('Property1',PropVal1,'Property2',PropVal2,...) creates arrows with the
% given properties, using default values for any unspecified or given as
% 'default' or NaN. Some properties used for line and patch objects are
% used in a modified fashion, others are passed directly to LINE, PATCH,
% or SET. For a detailed properties explanation, call ARROW PROPERTIES.
%
% Start The starting points. B
% Stop The end points. /|\ ^
% Length Length of the arrowhead in pixels. /|||\ |
% BaseAngle Base angle in degrees (ADE). //|||\\ L|
% TipAngle Tip angle in degrees (ABC). ///|||\\\ e|
% Width Width of the base in pixels. ////|||\\\\ n|
% Page Use hardcopy proportions. /////|D|\\\\\ g|
% CrossDir Vector || to arrowhead plane. //// ||| \\\\ t|
% NormalDir Vector out of arrowhead plane. /// ||| \\\ h|
% Ends Which end has an arrowhead. //<----->|| \\ |
% ObjectHandles Vector of handles to update. / base ||| \ V
% E angle||<-------->C
% ARROW(H,'Prop1',PropVal1,...), where H is a |||tipangle
% vector of handles to previously-created arrows |||
% and/or line objects, will update the previously- |||
% created arrows according to the current view -->|A|<-- width
% and any specified properties, and will convert
% two-point line objects to corresponding arrows. ARROW(H) will update
% the arrows if the current view has changed. Root, figure, or axes
% handles included in H are replaced by all descendant Arrow objects.
%
% A property list can follow any specified normal argument list, e.g.,
% ARROW([1 2 3],[0 0 0],36,'BaseAngle',60) creates an arrow from (1,2,3) to
% the origin, with an arrowhead of length 36 pixels and 60-degree base angle.
%
% The basic arguments or properties can generally be vectorized to create
% multiple arrows with the same call. This is done by passing a property
% with one row per arrow, or, if all arrows are to have the same property
% value, just one row may be specified.
%
% You may want to execute AXIS(AXIS) before calling ARROW so it doesn't change
% the axes on you; ARROW determines the sizes of arrow components BEFORE the
% arrow is plotted, so if ARROW changes axis limits, arrows may be malformed.
%
% This version of ARROW uses features of MATLAB 6.x and is incompatible with
% earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately);
% some problems with perspective plots still exist.
% Copyright (c)1995-2009, Dr. Erik A. Johnson <[email protected]>, 5/20/2009
% http://www.usc.edu/civil_eng/johnsone/
% Revision history:
% 5/20/09 EAJ Fix view direction in (3D) demo.
% 6/26/08 EAJ Replace eval('trycmd','catchcmd') with try, trycmd; catch,
% catchcmd; end; -- break's MATLAB 5 compatibility.
% 8/26/03 EAJ Eliminate OpenGL attempted fix since it didn't fix anyway.
% 11/15/02 EAJ Accomodate how MATLAB 6.5 handles NaN and logicals
% 7/28/02 EAJ Tried (but failed) work-around for MATLAB 6.x / OpenGL bug
% if zero 'Width' or not double-ended
% 11/10/99 EAJ Add logical() to eliminate zero index problem in MATLAB 5.3.
% 11/10/99 EAJ Corrected warning if axis limits changed on multiple axes.
% 11/10/99 EAJ Update e-mail address.
% 2/10/99 EAJ Some documentation updating.
% 2/24/98 EAJ Fixed bug if Start~=Stop but both colinear with viewpoint.
% 8/14/97 EAJ Added workaround for MATLAB 5.1 scalar logical transpose bug.
% 7/21/97 EAJ Fixed a few misc bugs.
% 7/14/97 EAJ Make arrow([],'Prop',...) do nothing (no old handles)
% 6/23/97 EAJ MATLAB 5 compatible version, release.
% 5/27/97 EAJ Added Line Arrows back in. Corrected a few bugs.
% 5/26/97 EAJ Changed missing Start/Stop to mouse-selected arrows.
% 5/19/97 EAJ MATLAB 5 compatible version, beta.
% 4/13/97 EAJ MATLAB 5 compatible version, alpha.
% 1/31/97 EAJ Fixed bug with multiple arrows and unspecified Z coords.
% 12/05/96 EAJ Fixed one more bug with log plots and NormalDir specified
% 10/24/96 EAJ Fixed bug with log plots and NormalDir specified
% 11/13/95 EAJ Corrected handling for 'reverse' axis directions
% 10/06/95 EAJ Corrected occasional conflict with SUBPLOT
% 4/24/95 EAJ A major rewrite.
% Fall 94 EAJ Original code.
% Things to be done:
% - in the arrow_clicks section, prompt by printing to the screen so that
% the user knows what's going on; also make sure the figure is brought
% to the front.
% - segment parsing, computing, and plotting into separate subfunctions
% - change computing from Xform to Camera paradigms
% + this will help especially with 3-D perspective plots
% + if the WarpToFill section works right, remove warning code
% + when perpsective works properly, remove perspective warning code
% - add cell property values and struct property name/values (like get/set)
% - get rid of NaN as the "default" data label
% + perhaps change userdata to a struct and don't include (or leave
% empty) the values specified as default; or use a cell containing
% an empty matrix for a default value
% - add functionality of GET to retrieve current values of ARROW properties
% Many thanks to Keith Rogers <[email protected]> for his many excellent
% suggestions and beta testing. Check out his shareware package MATDRAW
% (at ftp://ftp.mathworks.com/pub/contrib/v5/graphics/matdraw/) -- he has
% permission to distribute ARROW with MATDRAW.
% Permission is granted to distribute ARROW with the toolboxes for the book
% "Solving Solid Mechanics Problems with MATLAB 5", by F. Golnaraghi et al.
% (Prentice Hall, 1999).
% Permission is granted to Dr. Josef Bigun to distribute ARROW with his
% software to reproduce the figures in his image analysis text.
if isoctave
myarrow(varargin{1},varargin{2}); return
end
% global variable initialization
global ARROW_PERSP_WARN ARROW_STRETCH_WARN ARROW_AXLIMITS
if isempty(ARROW_PERSP_WARN ), ARROW_PERSP_WARN =1; end;
if isempty(ARROW_STRETCH_WARN), ARROW_STRETCH_WARN=1; end;
% Handle callbacks
if (nargin>0 & isstr(varargin{1}) & strcmp(lower(varargin{1}),'callback')),
arrow_callback(varargin{2:end}); return;
end;
% Are we doing the demo?
c = sprintf('\n');
if (nargin==1 & isstr(varargin{1})),
arg1 = lower(varargin{1});
if strncmp(arg1,'prop',4), arrow_props;
elseif strncmp(arg1,'demo',4)
clf reset
demo_info = arrow_demo;
if ~strncmp(arg1,'demo2',5),
hh=arrow_demo3(demo_info);
else,
hh=arrow_demo2(demo_info);
end;
if (nargout>=1), h=hh; end;
elseif strncmp(arg1,'fixlimits',3),
arrow_fixlimits(ARROW_AXLIMITS);
ARROW_AXLIMITS=[];
elseif strncmp(arg1,'help',4),
disp(help(mfilename));
else,
error([upper(mfilename) ' got an unknown single-argument string ''' deblank(arg1) '''.']);
end;
return;
end;
% Check # of arguments
if (nargout>3), error([upper(mfilename) ' produces at most 3 output arguments.']); end;
% find first property number
firstprop = nargin+1;
for k=1:length(varargin), if ~isnumeric(varargin{k}), firstprop=k; break; end; end;
lastnumeric = firstprop-1;
% check property list
if (firstprop<=nargin),
for k=firstprop:2:nargin,
curarg = varargin{k};
if ~isstr(curarg) | sum(size(curarg)>1)>1,
error([upper(mfilename) ' requires that a property name be a single string.']);
end;
end;
if (rem(nargin-firstprop,2)~=1),
error([upper(mfilename) ' requires that the property ''' ...
varargin{nargin} ''' be paired with a property value.']);
end;
end;
% default output
if (nargout>0), h=[]; end;
if (nargout>1), yy=[]; end;
if (nargout>2), zz=[]; end;
% set values to empty matrices
start = [];
stop = [];
len = [];
baseangle = [];
tipangle = [];
wid = [];
page = [];
crossdir = [];
ends = [];
ax = [];
oldh = [];
ispatch = [];
defstart = [NaN NaN NaN];
defstop = [NaN NaN NaN];
deflen = 16;
defbaseangle = 90;
deftipangle = 16;
defwid = 0;
defpage = 0;
defcrossdir = [NaN NaN NaN];
defends = 1;
defoldh = [];
defispatch = 1;
% The 'Tag' we'll put on our arrows
ArrowTag = 'Arrow';
% check for oldstyle arguments
if (firstprop==2),
% assume arg1 is a set of handles
oldh = varargin{1}(:);
if isempty(oldh), return; end;
elseif (firstprop>9),
error([upper(mfilename) ' takes at most 8 non-property arguments.']);
elseif (firstprop>2),
{start,stop,len,baseangle,tipangle,wid,page,crossdir};
args = [varargin(1:firstprop-1) cell(1,length(ans)-(firstprop-1))];
[start,stop,len,baseangle,tipangle,wid,page,crossdir] = deal(args{:});
end;
% parse property pairs
extraprops={};
for k=firstprop:2:nargin,
prop = varargin{k};
val = varargin{k+1};
prop = [lower(prop(:)') ' '];
if strncmp(prop,'start' ,5), start = val;
elseif strncmp(prop,'stop' ,4), stop = val;
elseif strncmp(prop,'len' ,3), len = val(:);
elseif strncmp(prop,'base' ,4), baseangle = val(:);
elseif strncmp(prop,'tip' ,3), tipangle = val(:);
elseif strncmp(prop,'wid' ,3), wid = val(:);
elseif strncmp(prop,'page' ,4), page = val;
elseif strncmp(prop,'cross' ,5), crossdir = val;
elseif strncmp(prop,'norm' ,4), if (isstr(val)), crossdir=val; else, crossdir=val*sqrt(-1); end;
elseif strncmp(prop,'end' ,3), ends = val;
elseif strncmp(prop,'object',6), oldh = val(:);
elseif strncmp(prop,'handle',6), oldh = val(:);
elseif strncmp(prop,'type' ,4), ispatch = val;
elseif strncmp(prop,'userd' ,5), %ignore it
else,
% make sure it is a valid patch or line property
try
get(0,['DefaultPatch' varargin{k}]);
catch
errstr = lasterr;
try
get(0,['DefaultLine' varargin{k}]);
catch
errstr(1:max(find(errstr==char(13)|errstr==char(10)))) = '';
error([upper(mfilename) ' got ' errstr]);
end
end;
extraprops={extraprops{:},varargin{k},val};
end;
end;
% Check if we got 'default' values
start = arrow_defcheck(start ,defstart ,'Start' );
stop = arrow_defcheck(stop ,defstop ,'Stop' );
len = arrow_defcheck(len ,deflen ,'Length' );
baseangle = arrow_defcheck(baseangle,defbaseangle,'BaseAngle' );
tipangle = arrow_defcheck(tipangle ,deftipangle ,'TipAngle' );
wid = arrow_defcheck(wid ,defwid ,'Width' );
crossdir = arrow_defcheck(crossdir ,defcrossdir ,'CrossDir' );
page = arrow_defcheck(page ,defpage ,'Page' );
ends = arrow_defcheck(ends ,defends ,'' );
oldh = arrow_defcheck(oldh ,[] ,'ObjectHandles');
ispatch = arrow_defcheck(ispatch ,defispatch ,'' );
% check transpose on arguments
[m,n]=size(start ); if any(m==[2 3])&(n==1|n>3), start = start'; end;
[m,n]=size(stop ); if any(m==[2 3])&(n==1|n>3), stop = stop'; end;
[m,n]=size(crossdir); if any(m==[2 3])&(n==1|n>3), crossdir = crossdir'; end;
% convert strings to numbers
if ~isempty(ends) & isstr(ends),
endsorig = ends;
[m,n] = size(ends);
col = lower([ends(:,1:min(3,n)) ones(m,max(0,3-n))*' ']);
ends = NaN*ones(m,1);
oo = ones(1,m);
ii=find(all(col'==['non']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*0; end;
ii=find(all(col'==['sto']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*1; end;
ii=find(all(col'==['sta']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*2; end;
ii=find(all(col'==['bot']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*3; end;
if any(isnan(ends)),
ii = min(find(isnan(ends)));
error([upper(mfilename) ' does not recognize ''' deblank(endsorig(ii,:)) ''' as a valid ''Ends'' value.']);
end;
else,
ends = ends(:);
end;
if ~isempty(ispatch) & isstr(ispatch),
col = lower(ispatch(:,1));
patchchar='p'; linechar='l'; defchar=' ';
mask = col~=patchchar & col~=linechar & col~=defchar;
if any(mask),
error([upper(mfilename) ' does not recognize ''' deblank(ispatch(min(find(mask)),:)) ''' as a valid ''Type'' value.']);
end;
ispatch = (col==patchchar)*1 + (col==linechar)*0 + (col==defchar)*defispatch;
else,
ispatch = ispatch(:);
end;
oldh = oldh(:);
% check object handles
if ~all(ishandle(oldh)), error([upper(mfilename) ' got invalid object handles.']); end;
% expand root, figure, and axes handles
if ~isempty(oldh),
ohtype = get(oldh,'Type');
mask = strcmp(ohtype,'root') | strcmp(ohtype,'figure') | strcmp(ohtype,'axes');
if any(mask),
oldh = num2cell(oldh);
for ii=find(mask)',
oldh(ii) = {findobj(oldh{ii},'Tag',ArrowTag)};
end;
oldh = cat(1,oldh{:});
if isempty(oldh), return; end; % no arrows to modify, so just leave
end;
end;
% largest argument length
[mstart,junk]=size(start); [mstop,junk]=size(stop); [mcrossdir,junk]=size(crossdir);
argsizes = [length(oldh) mstart mstop ...
length(len) length(baseangle) length(tipangle) ...
length(wid) length(page) mcrossdir length(ends) ];
args=['length(ObjectHandle) '; ...
'#rows(Start) '; ...
'#rows(Stop) '; ...
'length(Length) '; ...
'length(BaseAngle) '; ...
'length(TipAngle) '; ...
'length(Width) '; ...
'length(Page) '; ...
'#rows(CrossDir) '; ...
'#rows(Ends) '];
if (any(imag(crossdir(:))~=0)),
args(9,:) = '#rows(NormalDir) ';
end;
if isempty(oldh),
narrows = max(argsizes);
else,
narrows = length(oldh);
end;
if (narrows<=0), narrows=1; end;
% Check size of arguments
ii = find((argsizes~=0)&(argsizes~=1)&(argsizes~=narrows));
if ~isempty(ii),
s = args(ii',:);
while ((size(s,2)>1)&((abs(s(:,size(s,2)))==0)|(abs(s(:,size(s,2)))==abs(' ')))),
s = s(:,1:size(s,2)-1);
end;
s = [ones(length(ii),1)*[upper(mfilename) ' requires that '] s ...
ones(length(ii),1)*[' equal the # of arrows (' num2str(narrows) ').' c]];
s = s';
s = s(:)';
s = s(1:length(s)-1);
error(setstr(s));
end;
% check element length in Start, Stop, and CrossDir
if ~isempty(start),
[m,n] = size(start);
if (n==2),
start = [start NaN*ones(m,1)];
elseif (n~=3),
error([upper(mfilename) ' requires 2- or 3-element Start points.']);
end;
end;
if ~isempty(stop),
[m,n] = size(stop);
if (n==2),
stop = [stop NaN*ones(m,1)];
elseif (n~=3),
error([upper(mfilename) ' requires 2- or 3-element Stop points.']);
end;
end;
if ~isempty(crossdir),
[m,n] = size(crossdir);
if (n<3),
crossdir = [crossdir NaN*ones(m,3-n)];
elseif (n~=3),
if (all(imag(crossdir(:))==0)),
error([upper(mfilename) ' requires 2- or 3-element CrossDir vectors.']);
else,
error([upper(mfilename) ' requires 2- or 3-element NormalDir vectors.']);
end;
end;
end;
% fill empty arguments
if isempty(start ), start = [Inf Inf Inf]; end;
if isempty(stop ), stop = [Inf Inf Inf]; end;
if isempty(len ), len = Inf; end;
if isempty(baseangle ), baseangle = Inf; end;
if isempty(tipangle ), tipangle = Inf; end;
if isempty(wid ), wid = Inf; end;
if isempty(page ), page = Inf; end;
if isempty(crossdir ), crossdir = [Inf Inf Inf]; end;
if isempty(ends ), ends = Inf; end;
if isempty(ispatch ), ispatch = Inf; end;
% expand single-column arguments
o = ones(narrows,1);
if (size(start ,1)==1), start = o * start ; end;
if (size(stop ,1)==1), stop = o * stop ; end;
if (length(len )==1), len = o * len ; end;
if (length(baseangle )==1), baseangle = o * baseangle ; end;
if (length(tipangle )==1), tipangle = o * tipangle ; end;
if (length(wid )==1), wid = o * wid ; end;
if (length(page )==1), page = o * page ; end;
if (size(crossdir ,1)==1), crossdir = o * crossdir ; end;
if (length(ends )==1), ends = o * ends ; end;
if (length(ispatch )==1), ispatch = o * ispatch ; end;
ax = o * gca;
% if we've got handles, get the defaults from the handles
if ~isempty(oldh),
for k=1:narrows,
oh = oldh(k);
ud = get(oh,'UserData');
ax(k) = get(oh,'Parent');
ohtype = get(oh,'Type');
if strcmp(get(oh,'Tag'),ArrowTag), % if it's an arrow already
if isinf(ispatch(k)), ispatch(k)=strcmp(ohtype,'patch'); end;
% arrow UserData format: [start' stop' len base tip wid page crossdir' ends]
start0 = ud(1:3);
stop0 = ud(4:6);
if (isinf(len(k))), len(k) = ud( 7); end;
if (isinf(baseangle(k))), baseangle(k) = ud( 8); end;
if (isinf(tipangle(k))), tipangle(k) = ud( 9); end;
if (isinf(wid(k))), wid(k) = ud(10); end;
if (isinf(page(k))), page(k) = ud(11); end;
if (isinf(crossdir(k,1))), crossdir(k,1) = ud(12); end;
if (isinf(crossdir(k,2))), crossdir(k,2) = ud(13); end;
if (isinf(crossdir(k,3))), crossdir(k,3) = ud(14); end;
if (isinf(ends(k))), ends(k) = ud(15); end;
elseif strcmp(ohtype,'line')|strcmp(ohtype,'patch'), % it's a non-arrow line or patch
convLineToPatch = 1; %set to make arrow patches when converting from lines.
if isinf(ispatch(k)), ispatch(k)=convLineToPatch|strcmp(ohtype,'patch'); end;
x=get(oh,'XData'); x=x(~isnan(x(:))); if isempty(x), x=NaN; end;
y=get(oh,'YData'); y=y(~isnan(y(:))); if isempty(y), y=NaN; end;
z=get(oh,'ZData'); z=z(~isnan(z(:))); if isempty(z), z=NaN; end;
start0 = [x(1) y(1) z(1) ];
stop0 = [x(end) y(end) z(end)];
else,
error([upper(mfilename) ' cannot convert ' ohtype ' objects.']);
end;
ii=find(isinf(start(k,:))); if ~isempty(ii), start(k,ii)=start0(ii); end;
ii=find(isinf(stop( k,:))); if ~isempty(ii), stop( k,ii)=stop0( ii); end;
end;
end;
% convert Inf's to NaN's
start( isinf(start )) = NaN;
stop( isinf(stop )) = NaN;
len( isinf(len )) = NaN;
baseangle( isinf(baseangle)) = NaN;
tipangle( isinf(tipangle )) = NaN;
wid( isinf(wid )) = NaN;
page( isinf(page )) = NaN;
crossdir( isinf(crossdir )) = NaN;
ends( isinf(ends )) = NaN;
ispatch( isinf(ispatch )) = NaN;
% set up the UserData data (here so not corrupted by log10's and such)
ud = [start stop len baseangle tipangle wid page crossdir ends];
% Set Page defaults
page = ~isnan(page) & trueornan(page);
% Get axes limits, range, min; correct for aspect ratio and log scale
axm = zeros(3,narrows);
axr = zeros(3,narrows);
axrev = zeros(3,narrows);
ap = zeros(2,narrows);
xyzlog = zeros(3,narrows);
limmin = zeros(2,narrows);
limrange = zeros(2,narrows);
oldaxlims = zeros(narrows,7);
oneax = all(ax==ax(1));
if (oneax),
T = zeros(4,4);
invT = zeros(4,4);
else,
T = zeros(16,narrows);
invT = zeros(16,narrows);
end;
axnotdone = logical(ones(size(ax)));
while (any(axnotdone)),
ii = min(find(axnotdone));
curax = ax(ii);
curpage = page(ii);
% get axes limits and aspect ratio
axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')];
oldaxlims(min(find(oldaxlims(:,1)==0)),:) = [curax reshape(axl',1,6)];
% get axes size in pixels (points)
u = get(curax,'Units');
axposoldunits = get(curax,'Position');
really_curpage = curpage & strcmp(u,'normalized');
if (really_curpage),
curfig = get(curax,'Parent');
pu = get(curfig,'PaperUnits');
set(curfig,'PaperUnits','points');
pp = get(curfig,'PaperPosition');
set(curfig,'PaperUnits',pu);
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
set(curax,'Units','normalized');
curap = pp.*get(curax,'Position');
else,
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
curap = curapscreen;
end;
set(curax,'Units',u);
set(curax,'Position',axposoldunits);
% handle non-stretched axes position
str_stretch = { 'DataAspectRatioMode' ; ...
'PlotBoxAspectRatioMode' ; ...
'CameraViewAngleMode' };
str_camera = { 'CameraPositionMode' ; ...
'CameraTargetMode' ; ...
'CameraViewAngleMode' ; ...
'CameraUpVectorMode' };
notstretched = strcmp(get(curax,str_stretch),'manual');
manualcamera = strcmp(get(curax,str_camera),'manual');
if ~arrow_WarpToFill(notstretched,manualcamera,curax),
% give a warning that this has not been thoroughly tested
if 0 & ARROW_STRETCH_WARN,
ARROW_STRETCH_WARN = 0;
strs = {str_stretch{1:2},str_camera{:}};
strs = [char(ones(length(strs),1)*sprintf('\n ')) char(strs)]';
warning([upper(mfilename) ' may not yet work quite right ' ...
'if any of the following are ''manual'':' strs(:).']);
end;
% find the true pixel size of the actual axes
texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ...
axl(2,[1 1 2 2 1 1 2 2]), ...
axl(3,[1 1 1 1 2 2 2 2]),'');
set(texttmp,'Units','points');
textpos = get(texttmp,'Position');
delete(texttmp);
textpos = cat(1,textpos{:});
textpos = max(textpos(:,1:2)) - min(textpos(:,1:2));
% adjust the axes position
if (really_curpage),
% adjust to printed size
textpos = textpos * min(curap(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
else,
% adjust for pixel roundoff
textpos = textpos * min(curapscreen(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
end;
end;
if ARROW_PERSP_WARN & ~strcmp(get(curax,'Projection'),'orthographic'),
ARROW_PERSP_WARN = 0;
warning([upper(mfilename) ' does not yet work right for 3-D perspective projection.']);
end;
% adjust limits for log scale on axes
curxyzlog = [strcmp(get(curax,'XScale'),'log'); ...
strcmp(get(curax,'YScale'),'log'); ...
strcmp(get(curax,'ZScale'),'log')];
if (any(curxyzlog)),
ii = find([curxyzlog;curxyzlog]);
if (any(axl(ii)<=0)),
error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']);
else,
axl(ii) = log10(axl(ii));
end;
end;
% correct for 'reverse' direction on axes;
curreverse = [strcmp(get(curax,'XDir'),'reverse'); ...
strcmp(get(curax,'YDir'),'reverse'); ...
strcmp(get(curax,'ZDir'),'reverse')];
ii = find(curreverse);
if ~isempty(ii),
axl(ii,[1 2])=-axl(ii,[2 1]);
end;
% compute the range of 2-D values
curT = get(curax,'Xform');
lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1];
lim = lim(1:2,:)./([1;1]*lim(4,:));
curlimmin = min(lim')';
curlimrange = max(lim')' - curlimmin;
curinvT = inv(curT);
if (~oneax),
curT = curT.';
curinvT = curinvT.';
curT = curT(:);
curinvT = curinvT(:);
end;
% check which arrows to which cur corresponds
ii = find((ax==curax)&(page==curpage));
oo = ones(1,length(ii));
axr(:,ii) = diff(axl')' * oo;
axm(:,ii) = axl(:,1) * oo;
axrev(:,ii) = curreverse * oo;
ap(:,ii) = curap(3:4)' * oo;
xyzlog(:,ii) = curxyzlog * oo;
limmin(:,ii) = curlimmin * oo;
limrange(:,ii) = curlimrange * oo;
if (oneax),
T = curT;
invT = curinvT;
else,
T(:,ii) = curT * oo;
invT(:,ii) = curinvT * oo;
end;
axnotdone(ii) = zeros(1,length(ii));
end;
oldaxlims(oldaxlims(:,1)==0,:)=[];
% correct for log scales
curxyzlog = xyzlog.';
ii = find(curxyzlog(:));
if ~isempty(ii),
start( ii) = real(log10(start( ii)));
stop( ii) = real(log10(stop( ii)));
if (all(imag(crossdir)==0)), % pulled (ii) subscript on crossdir, 12/5/96 eaj
crossdir(ii) = real(log10(crossdir(ii)));
end;
end;
% correct for reverse directions
ii = find(axrev.');
if ~isempty(ii),
start( ii) = -start( ii);
stop( ii) = -stop( ii);
crossdir(ii) = -crossdir(ii);
end;
% transpose start/stop values
start = start.';
stop = stop.';
% take care of defaults, page was done above
ii=find(isnan(start(:) )); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end;
ii=find(isnan(stop(:) )); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end;
ii=find(isnan(crossdir(:) )); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end;
ii=find(isnan(len )); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end;
ii=find(isnan(baseangle )); if ~isempty(ii), baseangle(ii) = ones(length(ii),1)*defbaseangle; end;
ii=find(isnan(tipangle )); if ~isempty(ii), tipangle(ii) = ones(length(ii),1)*deftipangle; end;
ii=find(isnan(wid )); if ~isempty(ii), wid(ii) = ones(length(ii),1)*defwid; end;
ii=find(isnan(ends )); if ~isempty(ii), ends(ii) = ones(length(ii),1)*defends; end;
% transpose rest of values
len = len.';
baseangle = baseangle.';
tipangle = tipangle.';
wid = wid.';
page = page.';
crossdir = crossdir.';
ends = ends.';
ax = ax.';
% given x, a 3xN matrix of points in 3-space;
% want to convert to X, the corresponding 4xN 2-space matrix
%
% tmp1=[(x-axm)./axr; ones(1,size(x,1))];
% if (oneax), X=T*tmp1;
% else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
% tmp2=zeros(4,4*N); tmp2(:)=tmp1(:);
% X=zeros(4,N); X(:)=sum(tmp2)'; end;
% X = X ./ (ones(4,1)*X(4,:));
% for all points with start==stop, start=stop-(verysmallvalue)*(up-direction);
ii = find(all(start==stop));
if ~isempty(ii),
% find an arrowdir vertical on screen and perpendicular to viewer
% transform to 2-D
tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))];
if (oneax), twoD=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)'; end;
twoD=twoD./(ones(4,1)*twoD(4,:));
% move the start point down just slightly
tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii));
% transform back to 3-D
if (oneax), threeD=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)'; end;
start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii);
end;
% compute along-arrow points
% transform Start points
tmp1=[(start-axm)./axr;ones(1,narrows)];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
X0=zeros(4,narrows); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% transform Stop points
tmp1=[(stop-axm)./axr;ones(1,narrows)];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
Xf=zeros(4,narrows); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute pixel distance between points
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2));
D = D + (D==0); %eaj new 2/24/98
% compute and modify along-arrow distances
len1 = len;
len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi);
slen0 = zeros(1,narrows);
slen1 = len1 .* ((ends==2)|(ends==3));
slen2 = len2 .* ((ends==2)|(ends==3));
len0 = zeros(1,narrows);
len1 = len1 .* ((ends==1)|(ends==3));
len2 = len2 .* ((ends==1)|(ends==3));
% for no start arrowhead
ii=find((ends==1)&(D<len2));
if ~isempty(ii),
slen0(ii) = D(ii)-len2(ii);
end;
% for no end arrowhead
ii=find((ends==2)&(D<slen2));
if ~isempty(ii),
len0(ii) = D(ii)-slen2(ii);
end;
len1 = len1 + len0;
len2 = len2 + len0;
slen1 = slen1 + slen0;
slen2 = slen2 + slen0;
% note: the division by D below will probably not be accurate if both
% of the following are true:
% 1. the ratio of the line length to the arrowhead
% length is large
% 2. the view is highly perspective.
% compute stoppoints
tmp1=X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute tippoints
tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute basepoints
tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute startpoints
tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute stippoints
tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute sbasepoints
tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute cross-arrow directions for arrows with NormalDir specified
if (any(imag(crossdir(:))~=0)),
ii = find(any(imag(crossdir)~=0));
crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ...
imag(crossdir(:,ii))).*axr(:,ii);
end;
% compute cross-arrow directions
basecross = crossdir + basepoint;
tipcross = crossdir + tippoint;
sbasecross = crossdir + sbasepoint;
stipcross = crossdir + stippoint;
ii = find(all(crossdir==0)|any(isnan(crossdir)));
if ~isempty(ii),
numii = length(ii);
% transform start points
tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)];
tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]);
tmp1 = [tmp1; ones(1,4*numii)];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
X0=zeros(4,4*numii); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% transform stop points
tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)];
tmp1 = [tmp1 tmp1 tmp1 tmp1];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute perpendicular directions
pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2;
pixfact = [pixfact pixfact pixfact pixfact];
pixfact = [pixfact;1./pixfact];
[dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:)));
jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj);
jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj));
jj3 = jj1(1:2,:);
Xf(jj1)=Xf(jj1)+(Xf(jj1)-X0(jj1)==0); %eaj new 2/24/98
Xp = X0;
Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1);
Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3);
% inverse transform the cross points
if (oneax), Xp=invT*Xp;
else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end;
Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]);
basecross(:,ii) = Xp(:,0*numii+(1:numii));
tipcross(:,ii) = Xp(:,1*numii+(1:numii));
sbasecross(:,ii) = Xp(:,2*numii+(1:numii));
stipcross(:,ii) = Xp(:,3*numii+(1:numii));
end;
% compute all points
% compute start points
axm11 = [axm axm axm axm axm axm axm axm axm axm axm];
axr11 = [axr axr axr axr axr axr axr axr axr axr axr];
st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint];
tmp1 = (st - axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
X0=zeros(4,11*narrows); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% compute stop points
tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ...
- axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
Xf=zeros(4,11*narrows); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute lengths
len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi);
slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi);
le = [zeros(1,narrows) len0 wid/2 wid/2 slen0 zeros(1,narrows) -slen0 -wid/2 -wid/2 -len0 zeros(1,narrows)];
aprange = ap./limrange;
aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange];
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2));
Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end; %should fix DivideByZero warnings
tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D));
% inverse transform
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,11*narrows); tmp3(:)=sum(tmp2)'; end;
pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11;
% correct for ones where the crossdir was specified
ii = find(~(all(crossdir==0)|any(isnan(crossdir))));
if ~isempty(ii),
D1 = [pts(:,1*narrows+ii)-pts(:,9*narrows+ii) ...
pts(:,2*narrows+ii)-pts(:,8*narrows+ii) ...
pts(:,3*narrows+ii)-pts(:,7*narrows+ii) ...
pts(:,4*narrows+ii)-pts(:,6*narrows+ii) ...
pts(:,6*narrows+ii)-pts(:,4*narrows+ii) ...
pts(:,7*narrows+ii)-pts(:,3*narrows+ii) ...
pts(:,8*narrows+ii)-pts(:,2*narrows+ii) ...
pts(:,9*narrows+ii)-pts(:,1*narrows+ii)]/2;
ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]*narrows;
ii = ii(:)';
pts(:,ii) = st(:,ii) + D1;
end;
% readjust for reverse directions
iicols=(1:narrows)'; iicols=iicols(:,ones(1,11)); iicols=iicols(:).';
tmp1=axrev(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end;
% readjust for log scale on axes
tmp1=xyzlog(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end;
% compute the x,y,z coordinates of the patches;
ii = narrows*(0:10)'*ones(1,narrows) + ones(11,1)*(1:narrows);
ii = ii(:)';
x = zeros(11,narrows);
y = zeros(11,narrows);
z = zeros(11,narrows);
x(:) = pts(1,ii)';
y(:) = pts(2,ii)';
z(:) = pts(3,ii)';
% do the output
if (nargout<=1),
% % create or modify the patches
newpatch = trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'patch'));
newline = ~trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'line'));
if isempty(oldh), H=zeros(narrows,1); else, H=oldh; end;
% % make or modify the arrows
for k=1:narrows,
if all(isnan(ud(k,[3 6])))&arrow_is2DXY(ax(k)), zz=[]; else, zz=z(:,k); end;
xx=x(:,k); yy=y(:,k);
if (0), % this fix didn't work, so let's not use it -- 8/26/03
% try to work around a MATLAB 6.x OpenGL bug -- 7/28/02
mask=any([ones(1,2+size(zz,2));diff([xx yy zz],[],1)],2);
xx=xx(mask); yy=yy(mask); if ~isempty(zz), zz=zz(mask); end;
end;
% plot the patch or line
xyz = {'XData',xx,'YData',yy,'ZData',zz,'Tag',ArrowTag};
if newpatch(k)|newline(k),
if newpatch(k),
H(k) = patch(xyz{:});
else,
H(k) = line(xyz{:});
end;
if ~isempty(oldh), arrow_copyprops(oldh(k),H(k)); end;
else,
if ispatch(k), xyz={xyz{:},'CData',[]}; end;
set(H(k),xyz{:});
end;
end;
if ~isempty(oldh), delete(oldh(oldh~=H)); end;
% % additional properties
set(H,'Clipping','off');
set(H,{'UserData'},num2cell(ud,2));
if (length(extraprops)>0), set(H,extraprops{:}); end;
% handle choosing arrow Start and/or Stop locations if unspecified
[H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims);
if ~isempty(errstr), error([upper(mfilename) ' got ' errstr]); end;
% set the output
if (nargout>0), h=H; end;
% make sure the axis limits did not change
if isempty(oldaxlims),
ARROW_AXLIMITS = [];
else,
lims = get(oldaxlims(:,1),{'XLim','YLim','ZLim'})';
lims = reshape(cat(2,lims{:}),6,size(lims,2));
mask = arrow_is2DXY(oldaxlims(:,1));
oldaxlims(mask,6:7) = lims(5:6,mask)';
ARROW_AXLIMITS = oldaxlims(find(any(oldaxlims(:,2:7)'~=lims)),:);
if ~isempty(ARROW_AXLIMITS),
warning(arrow_warnlimits(ARROW_AXLIMITS,narrows));
end;
end;
else,
% don't create the patch, just return the data
h=x;
yy=y;
zz=z;
end;
function out = arrow_defcheck(in,def,prop)
% check if we got 'default' values
out = in;
if ~isstr(in), return; end;
if size(in,1)==1 & strncmp(lower(in),'def',3),
out = def;
elseif ~isempty(prop),
error([upper(mfilename) ' does not recognize ''' in(:)' ''' as a valid ''' prop ''' string.']);
end;
function [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims)
% handle choosing arrow Start and/or Stop locations if necessary
errstr = '';
if isempty(H)|isempty(ud)|isempty(x), return; end;
% determine which (if any) need Start and/or Stop
needStart = all(isnan(ud(:,1:3)'))';
needStop = all(isnan(ud(:,4:6)'))';
mask = any(needStart|needStop);
if ~any(mask), return; end;
ud(~mask,:)=[]; ax(:,~mask)=[];
x(:,~mask)=[]; y(:,~mask)=[]; z(:,~mask)=[];
% make them invisible for the time being
set(H,'Visible','off');
% save the current axes and limits modes; set to manual for the time being
oldAx = gca;
limModes=get(ax(:),{'XLimMode','YLimMode','ZLimMode'});
set(ax(:),{'XLimMode','YLimMode','ZLimMode'},{'manual','manual','manual'});
% loop over each arrow that requires attention
jj = find(mask);
for ii=1:length(jj),
h = H(jj(ii));
axes(ax(ii));
% figure out correct call
if needStart(ii), prop='Start'; else, prop='Stop'; end;
[wasInterrupted,errstr] = arrow_click(needStart(ii)&needStop(ii),h,prop,ax(ii));
% handle errors and control-C
if wasInterrupted,
delete(H(jj(ii:end)));
H(jj(ii:end))=[];
oldaxlims(jj(ii:end),:)=[];
break;
end;
end;
% restore the axes and limit modes
axes(oldAx);
set(ax(:),{'XLimMode','YLimMode','ZLimMode'},limModes);
function [wasInterrupted,errstr] = arrow_click(lockStart,H,prop,ax)
% handle the clicks for one arrow
fig = get(ax,'Parent');
% save some things
oldFigProps = {'Pointer','WindowButtonMotionFcn','WindowButtonUpFcn'};
oldFigValue = get(fig,oldFigProps);
oldArrowProps = {'EraseMode'};
oldArrowValue = get(H,oldArrowProps);
set(H,'EraseMode','background'); %because 'xor' makes shaft invisible unless Width>1
global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z
ARROW_CLICK_H=H; ARROW_CLICK_PROP=prop; ARROW_CLICK_AX=ax;
ARROW_CLICK_USE_Z=~arrow_is2DXY(ax)|~arrow_planarkids(ax);
set(fig,'Pointer','crosshair');
% set up the WindowButtonMotion so we can see the arrow while moving around
set(fig,'WindowButtonUpFcn','set(gcf,''WindowButtonUpFcn'','''')', ...
'WindowButtonMotionFcn','');
if ~lockStart,
set(H,'Visible','on');
set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']);
end;
% wait for the button to be pressed
[wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig);
% if we wanted to click-drag, set the Start point
if lockStart & ~wasInterrupted,
pt = arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z);
feval(mfilename,H,'Start',pt,'Stop',pt);
set(H,'Visible','on');
ARROW_CLICK_PROP='Stop';
set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']);
% wait for the mouse button to be released
try
waitfor(fig,'WindowButtonUpFcn','');
catch
errstr = lasterr;
wasInterrupted = 1;
end;
end;
if ~wasInterrupted, feval(mfilename,'callback','motion'); end;
% restore some things
set(gcf,oldFigProps,oldFigValue);
set(H,oldArrowProps,oldArrowValue);
function arrow_callback(varargin)
% handle redrawing callbacks
if nargin==0, return; end;
str = varargin{1};
if ~isstr(str), error([upper(mfilename) ' got an invalid Callback command.']); end;
s = lower(str);
if strcmp(s,'motion'),
% motion callback
global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z
feval(mfilename,ARROW_CLICK_H,ARROW_CLICK_PROP,arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z));
drawnow;
else,
error([upper(mfilename) ' does not recognize ''' str(:).' ''' as a valid Callback option.']);
end;
function out = arrow_point(ax,use_z)
% return the point on the given axes
if nargin==0, ax=gca; end;
if nargin<2, use_z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); end;
out = get(ax,'CurrentPoint');
out = out(1,:);
if ~use_z, out=out(1:2); end;
function [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig)
% wait for button down ignoring object ButtonDownFcn's
if nargin==0, fig=gcf; end;
errstr = '';
% save ButtonDownFcn values
objs = findobj(fig);
buttonDownFcns = get(objs,'ButtonDownFcn');
mask=~strcmp(buttonDownFcns,''); objs=objs(mask); buttonDownFcns=buttonDownFcns(mask);
set(objs,'ButtonDownFcn','');
% save other figure values
figProps = {'KeyPressFcn','WindowButtonDownFcn'};
figValue = get(fig,figProps);
% do the real work
set(fig,'KeyPressFcn','set(gcf,''KeyPressFcn'','''',''WindowButtonDownFcn'','''');', ...
'WindowButtonDownFcn','set(gcf,''WindowButtonDownFcn'','''')');
lasterr('');
try
waitfor(fig,'WindowButtonDownFcn','');
wasInterrupted = 0;
catch
wasInterrupted = 1;
end
wasKeyPress = ~wasInterrupted & strcmp(get(fig,'KeyPressFcn'),'');
if wasInterrupted, errstr=lasterr; end;
% restore ButtonDownFcn and other figure values
set(objs,'ButtonDownFcn',buttonDownFcns);
set(fig,figProps,figValue);
function [out,is2D] = arrow_is2DXY(ax)
% check if axes are 2-D X-Y plots
% may not work for modified camera angles, etc.
out = logical(zeros(size(ax))); % 2-D X-Y plots
is2D = out; % any 2-D plots
views = get(ax(:),{'View'});
views = cat(1,views{:});
out(:) = abs(views(:,2))==90;
is2D(:) = out(:) | all(rem(views',90)==0)';
function out = arrow_planarkids(ax)
% check if axes descendents all have empty ZData (lines,patches,surfaces)
out = logical(ones(size(ax)));
allkids = get(ax(:),{'Children'});
for k=1:length(allkids),
kids = get([findobj(allkids{k},'flat','Type','line')
findobj(allkids{k},'flat','Type','patch')
findobj(allkids{k},'flat','Type','surface')],{'ZData'});
for j=1:length(kids),
if ~isempty(kids{j}), out(k)=logical(0); break; end;
end;
end;
function arrow_fixlimits(axlimits)
% reset the axis limits as necessary
if isempty(axlimits), disp([upper(mfilename) ' does not remember any axis limits to reset.']); end;
for k=1:size(axlimits,1),
if any(get(axlimits(k,1),'XLim')~=axlimits(k,2:3)), set(axlimits(k,1),'XLim',axlimits(k,2:3)); end;
if any(get(axlimits(k,1),'YLim')~=axlimits(k,4:5)), set(axlimits(k,1),'YLim',axlimits(k,4:5)); end;
if any(get(axlimits(k,1),'ZLim')~=axlimits(k,6:7)), set(axlimits(k,1),'ZLim',axlimits(k,6:7)); end;
end;
function out = arrow_WarpToFill(notstretched,manualcamera,curax)
% check if we are in "WarpToFill" mode.
out = strcmp(get(curax,'WarpToFill'),'on');
% 'WarpToFill' is undocumented, so may need to replace this by
% out = ~( any(notstretched) & any(manualcamera) );
function out = arrow_warnlimits(axlimits,narrows)
% create a warning message if we've changed the axis limits
msg = '';
switch (size(axlimits,1))
case 1, msg='';
case 2, msg='on two axes ';
otherwise, msg='on several axes ';
end;
msg = [upper(mfilename) ' changed the axis limits ' msg ...
'when adding the arrow'];
if (narrows>1), msg=[msg 's']; end;
out = [msg '.' sprintf('\n') ' Call ' upper(mfilename) ...
' FIXLIMITS to reset them now.'];
function arrow_copyprops(fm,to)
% copy line properties to patches
props = {'EraseMode','LineStyle','LineWidth','Marker','MarkerSize',...
'MarkerEdgeColor','MarkerFaceColor','ButtonDownFcn', ...
'Clipping','DeleteFcn','BusyAction','HandleVisibility', ...
'Selected','SelectionHighlight','Visible'};
lineprops = {'Color', props{:}};
patchprops = {'EdgeColor',props{:}};
patch2props = {'FaceColor',patchprops{:}};
fmpatch = strcmp(get(fm,'Type'),'patch');
topatch = strcmp(get(to,'Type'),'patch');
set(to( fmpatch& topatch),patch2props,get(fm( fmpatch& topatch),patch2props)); %p->p
set(to(~fmpatch&~topatch),lineprops, get(fm(~fmpatch&~topatch),lineprops )); %l->l
set(to( fmpatch&~topatch),lineprops, get(fm( fmpatch&~topatch),patchprops )); %p->l
set(to(~fmpatch& topatch),patchprops, get(fm(~fmpatch& topatch),lineprops) ,'FaceColor','none'); %l->p
function arrow_props
% display further help info about ARROW properties
c = sprintf('\n');
disp([c ...
'ARROW Properties: Default values are given in [square brackets], and other' c ...
' acceptable equivalent property names are in (parenthesis).' c c ...
' Start The starting points. For N arrows, B' c ...
' this should be a Nx2 or Nx3 matrix. /|\ ^' c ...
' Stop The end points. For N arrows, this /|||\ |' c ...
' should be a Nx2 or Nx3 matrix. //|||\\ L|' c ...
' Length Length of the arrowhead (in pixels on ///|||\\\ e|' c ...
' screen, points on a page). [16] (Len) ////|||\\\\ n|' c ...
' BaseAngle Angle (degrees) of the base angle /////|D|\\\\\ g|' c ...
' ADE. For a simple stick arrow, use //// ||| \\\\ t|' c ...
' BaseAngle=TipAngle. [90] (Base) /// ||| \\\ h|' c ...
' TipAngle Angle (degrees) of tip angle ABC. //<----->|| \\ |' c ...
' [16] (Tip) / base ||| \ V' c ...
' Width Width of the base in pixels. Not E angle ||<-------->C' c ...
' the ''LineWidth'' prop. [0] (Wid) |||tipangle' c ...
' Page If provided, non-empty, and not NaN, |||' c ...
' this causes ARROW to use hardcopy |||' c ...
' rather than onscreen proportions. A' c ...
' This is important if screen aspect --> <-- width' c ...
' ratio and hardcopy aspect ratio are ----CrossDir---->' c ...
' vastly different. []' c...
' CrossDir A vector giving the direction towards which the fletches' c ...
' on the arrow should go. [computed such that it is perpen-' c ...
' dicular to both the arrow direction and the view direction' c ...
' (i.e., as if it was pasted on a normal 2-D graph)] (Note' c ...
' that CrossDir is a vector. Also note that if an axis is' c ...
' plotted on a log scale, then the corresponding component' c ...
' of CrossDir must also be set appropriately, i.e., to 1 for' c ...
' no change in that direction, >1 for a positive change, >0' c ...
' and <1 for negative change.)' c ...
' NormalDir A vector normal to the fletch direction (CrossDir is then' c ...
' computed by the vector cross product [Line]x[NormalDir]). []' c ...
' (Note that NormalDir is a vector. Unlike CrossDir,' c ...
' NormalDir is used as is regardless of log-scaled axes.)' c ...
' Ends Set which end has an arrowhead. Valid values are ''none'',' c ...
' ''stop'', ''start'', and ''both''. [''stop''] (End)' c...
' ObjectHandles Vector of handles to previously-created arrows to be' c ...
' updated or line objects to be converted to arrows.' c ...
' [] (Object,Handle)' c ]);
function out = arrow_demo
% demo
% create the data
[x,y,z] = peaks;
[ddd,out.iii]=max(z(:));
out.axlim = [min(x(:)) max(x(:)) min(y(:)) max(y(:)) min(z(:)) max(z(:))];
% modify it by inserting some NaN's
[m,n] = size(z);
m = floor(m/2);
n = floor(n/2);
z(1:m,1:n) = NaN*ones(m,n);
% graph it
clf('reset');
out.hs=surf(x,y,z);
out.x=x; out.y=y; out.z=z;
xlabel('x'); ylabel('y');
function h = arrow_demo3(in)
% set the view
axlim = in.axlim;
axis(axlim);
zlabel('z');
%set(in.hs,'FaceColor','interp');
view(3); % view(viewmtx(-37.5,30,20));
title(['Demo of the capabilities of the ARROW function in 3-D']);
% Normal blue arrow
h1 = feval(mfilename,[axlim(1) axlim(4) 4],[-.8 1.2 4], ...
'EdgeColor','b','FaceColor','b');
% Normal white arrow, clipped by the surface
h2 = feval(mfilename,axlim([1 4 6]),[0 2 4]);
t=text(-2.4,2.7,7.7,'arrow clipped by surf');
% Baseangle<90
h3 = feval(mfilename,[3 .125 3.5],[1.375 0.125 3.5],30,50);
t2=text(3.1,.125,3.5,'local maximum');
% Baseangle<90, fill and edge colors different
h4 = feval(mfilename,axlim(1:2:5)*.5,[0 0 0],36,60,25, ...
'EdgeColor','b','FaceColor','c');
t3=text(axlim(1)*.5,axlim(3)*.5,axlim(5)*.5-.75,'origin');
set(t3,'HorizontalAlignment','center');
% Baseangle>90, black fill
h5 = feval(mfilename,[-2.9 2.9 3],[-1.3 .4 3.2],30,120,[],6, ...
'EdgeColor','r','FaceColor','k','LineWidth',2);
% Baseangle>90, no fill
h6 = feval(mfilename,[-2.9 2.9 1.3],[-1.3 .4 1.5],30,120,[],6, ...
'EdgeColor','r','FaceColor','none','LineWidth',2);
% Stick arrow
h7 = feval(mfilename,[-1.6 -1.65 -6.5],[0 -1.65 -6.5],[],16,16);
t4=text(-1.5,-1.65,-7.25,'global mininum');
set(t4,'HorizontalAlignment','center');
% Normal, black fill
h8 = feval(mfilename,[-1.4 0 -7.2],[-1.4 0 -3],'FaceColor','k');
t5=text(-1.5,0,-7.75,'local minimum');
set(t5,'HorizontalAlignment','center');
% Gray fill, crossdir specified, 'LineStyle' --
h9 = feval(mfilename,[-3 2.2 -6],[-3 2.2 -.05],36,[],27,6,[],[0 -1 0], ...
'EdgeColor','k','FaceColor',.75*[1 1 1],'LineStyle','--');
% a series of normal arrows, linearly spaced, crossdir specified
h10y=(0:4)'/3;
h10 = feval(mfilename,[-3*ones(size(h10y)) h10y -6.5*ones(size(h10y))], ...
[-3*ones(size(h10y)) h10y -.05*ones(size(h10y))], ...
12,[],[],[],[],[0 -1 0]);
% a series of normal arrows, linearly spaced
h11x=(1:.33:2.8)';
h11 = feval(mfilename,[h11x -3*ones(size(h11x)) 6.5*ones(size(h11x))], ...
[h11x -3*ones(size(h11x)) -.05*ones(size(h11x))]);
% series of magenta arrows, radially oriented, crossdir specified
h12x=2; h12y=-3; h12z=axlim(5)/2; h12xr=1; h12zr=h12z; ir=.15;or=.81;
h12t=(0:11)'/6*pi;
h12 = feval(mfilename, ...
[h12x+h12xr*cos(h12t)*ir h12y*ones(size(h12t)) ...
h12z+h12zr*sin(h12t)*ir],[h12x+h12xr*cos(h12t)*or ...
h12y*ones(size(h12t)) h12z+h12zr*sin(h12t)*or], ...
10,[],[],[],[], ...
[-h12xr*sin(h12t) zeros(size(h12t)) h12zr*cos(h12t)],...
'FaceColor','none','EdgeColor','m');
% series of normal arrows, tangentially oriented, crossdir specified
or13=.91; h13t=(0:.5:12)'/6*pi;
locs = [h12x+h12xr*cos(h13t)*or13 h12y*ones(size(h13t)) h12z+h12zr*sin(h13t)*or13];
h13 = feval(mfilename,locs(1:end-1,:),locs(2:end,:),6);
% arrow with no line ==> oriented downwards
h14 = feval(mfilename,[3 3 .100001],[3 3 .1],30);
t6=text(3,3,3.6,'no line'); set(t6,'HorizontalAlignment','center');
% arrow with arrowheads at both ends
h15 = feval(mfilename,[-.5 -3 -3],[1 -3 -3],'Ends','both','FaceColor','g', ...
'Length',20,'Width',3,'CrossDir',[0 0 1],'TipAngle',25);
h=[h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15];
function h = arrow_demo2(in)
axlim = in.axlim;
dolog = 1;
if (dolog), set(in.hs,'YData',10.^get(in.hs,'YData')); end;
shading('interp');
view(2);
title(['Demo of the capabilities of the ARROW function in 2-D']);
hold on; [C,H]=contour(in.x,in.y,in.z,20,'-'); hold off;
for k=H',
set(k,'ZData',(axlim(6)+1)*ones(size(get(k,'XData'))),'Color','k');
if (dolog), set(k,'YData',10.^get(k,'YData')); end;
end;
if (dolog), axis([axlim(1:2) 10.^axlim(3:4)]); set(gca,'YScale','log');
else, axis(axlim(1:4)); end;
% Normal blue arrow
start = [axlim(1) axlim(4) axlim(6)+2];
stop = [in.x(in.iii) in.y(in.iii) axlim(6)+2];
if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end;
h1 = feval(mfilename,start,stop,'EdgeColor','b','FaceColor','b');
% three arrows with varying fill, width, and baseangle
start = [-3 -3 10; -3 -1.5 10; -1.5 -3 10];
stop = [-.03 -.03 10; -.03 -1.5 10; -1.5 -.03 10];
if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end;
h2 = feval(mfilename,start,stop,24,[90;60;120],[],[0;0;4],'Ends',str2mat('both','stop','stop'));
set(h2(2),'EdgeColor',[0 .35 0],'FaceColor',[0 .85 .85]);
set(h2(3),'EdgeColor','r','FaceColor',[1 .5 1]);
h=[h1;h2];
function out = trueornan(x)
if isempty(x),
out=x;
else,
out = isnan(x);
out(~out) = x(~out);
end;
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
demoBayesErrorAnalysis.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/BRMLtoolkit/DemosExercises/demoBayesErrorAnalysis.m
| 1,860 |
utf_8
|
2cd17f883c53fbb75be770a1da1a00a3
|
function demoBayesErrorAnalysis
%DEMOBAYESERRORANALYSIS demo of Bayesian error analysis
N = 20; % number of datapoints
Q = 3; % number of error types
% make some errors for the two classifers :
errtype={'IndepSameErrorGenerator','IndepDiffErrorGenerator','DepErrorGenerator'};
GenerateError=errtype{randgen(1:3)}
switch GenerateError
case 'IndepDiffErrorGenerator' % independent different error generator:
ra = rand(Q,1); rb = rand(Q,1);
rab = ra*rb';
relprobC = vec(rab);
case 'IndepSameErrorGenerator'% independent same error generator:
ra = rand(Q,1); rb = ra;
rab = ra*rb';
relprobC = vec(rab);
case 'DepErrorGenerator'% dependent error generator:
relprobC = vec(rand(Q,Q));
end
errors = randgen(relprobC,1,N); % sample the errors
% form the count matrices and vectors:
vec_errorAB=zeros(1,Q*Q);
for i=1:N
vec_errorAB(errors(i))= vec_errorAB(errors(i))+1;
end
C = vec2mat(vec_errorAB) % count matrix of errors
ca = sum(C,1); cb = sum(C,2)';
% Simple Bayesian analysis of the error counts based on Dirichlet
% prior and multinomial error distribution:
u =ones(1,Q); % uniform prior distribution
lb = logZ(u+ca)+logZ(u+cb) - logZ(u)- logZ(u+ca+cb);
disp(['p(classifiers are indep and different)/p(classifiers are independent and same)=',num2str(exp(lb))]);
U=ones(Q,Q); % uniform prior
lb = logZ(u+ca)+logZ(u+cb)+logZ(vec(U))-2*logZ(u)-logZ(vec(U+C));
disp(['p(classifiers are indep and different)/p(classifiers are dependent)=',num2str(exp(lb))])
% test Hsame/Hdep
lb = logZ(u+ca+cb)+logZ(vec(U))-logZ(u)-logZ(vec(U+C));
disp(['p(classifiers are indep and same)/p(classifiers are dependent)=',num2str(exp(lb))]);
function v = vec(C)
tmp=C'; v=tmp(:);
function C=vec2mat(v)
Q = sqrt(length(v)); C= reshape(v,Q,Q)';
function lz=logZ(u)
lz = sum(gammaln(u))- gammaln(sum(u));
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
textoval.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/graphlayout/textoval.m
| 2,151 |
utf_8
|
654d6f5117ff68685aac2921423cb76d
|
function [t, wd] = textoval(x, y, str)
% TEXTOVAL Draws an oval around text objects
%
% [T, WIDTH] = TEXTOVAL(X, Y, STR)
% [..] = TEXTOVAL(STR) % Interactive
%
% Inputs :
% X, Y : Coordinates
% TXT : Strings
%
% Outputs :
% T : Object Handles
% WIDTH : x and y Width of ovals
%
% Usage Example : [t] = textoval('Visit to Asia?');
%
%
% Note :
% See also TEXTBOX
% Uses :
% Change History :
% Date Time Prog Note
% 15-Jun-1998 10:36 AM ATC Created under MATLAB 5.1.0.421
% ATC = Ali Taylan Cemgil,
% SNN - University of Nijmegen, Department of Medical Physics and Biophysics
% e-mail : [email protected]
temp = [];
switch nargin,
case 1,
str = x;
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
wd = zeros(N,2);
for i=1:N,
[x, y] = ginput(1);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_oval(tx, x, y);
wd(i,:) = [wx wy];
delete(tx);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp ; tx ptc];
end;
case 3,
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
wd = zeros(N,2);
for i=1:N,
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_oval(tx, x(i), y(i));
wd(i,:) = [wx wy];
delete(tx);
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp; tx ptc];
end;
otherwise,
end;
if nargout>0, t = temp; end;
function [ptc, wx, wy] = draw_oval(tx, x, y)
% Draws an oval box around a tex object
if isoctave
pos=get(gcf,'Position');
xl=pos(3);
yl=pos(4);
l = length(get(tx,'string')); % octave workaround: db
sz = [1 1 0.011*(4+l)*560/xl 0.012*(4)*420/yl];
else
sz = get(tx,'Extent'); % octave doesn't understand this
end
wy = sz(4);
wx = max(2/3*sz(3), wy);
ptc = ellipse(x, y, wx, wy);
set(ptc, 'FaceColor','w');
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
textbox.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/graphlayout/textbox.m
| 2,118 |
utf_8
|
f7750958b5bdcd1839e4800abdeb9c21
|
function [t, wd] = textbox(x,y,str)
% TEXTBOX Draws A Box around the text
%
% [T, WIDTH] = TEXTBOX(X, Y, STR)
% [..] = TEXTBOX(STR)
%
% Inputs :
% X, Y : Coordinates
% TXT : Strings
%
% Outputs :
% T : Object Handles
% WIDTH : x and y Width of boxes
%%
% Usage Example : t = textbox({'Ali','Veli','49','50'});
%
%
% Note :
% See also TEXTOVAL
% Uses :
% Change History :
% Date Time Prog Note
% 09-Jun-1998 11:43 AM ATC Created under MATLAB 5.1.0.421
% ATC = Ali Taylan Cemgil,
% SNN - University of Nijmegen, Department of Medical Physics and Biophysics
% e-mail : [email protected]
% See
temp = [];
switch nargin,
case 1,
str = x;
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
wd = zeros(N,2);
for i=1:N,
[x, y] = ginput(1);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_box(tx, x, y);
wd(i,:) = [wx wy];
delete(tx);
tx = text(x,y,str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp; tx ptc];
end;
case 3,
if ~isa(str,'cell') str=cellstr(str); end;
N = length(str);
for i=1:N,
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
[ptc wx wy] = draw_box(tx, x(i), y(i));
wd(i,:) = [wx wy];
delete(tx);
tx = text(x(i),y(i),str{i},'HorizontalAlignment','center','VerticalAlignment','middle');
temp = [temp; tx ptc];
end;
otherwise,
end;
if nargout>0, t = temp; end;
function [ptc, wx, wy] = draw_box(tx, x, y)
% Draws a box around a tex object
if isoctave
pos=get(gcf,'Position');
xl=pos(3); yl=pos(4);
l = length(get(tx,'string')); % octave workaround: db
sz = [1 1 0.01*(4+l)*560/xl 0.01*(4)*420/yl];
else
sz = get(tx,'Extent');
end
wy = 2/3*sz(4);
wx = max(2/3*sz(3), wy);
ptc = patch([x-wx x+wx x+wx x-wx], [y+wy y+wy y-wy y-wy],'w');
set(ptc, 'FaceColor','w');
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
arrow.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/graphlayout/private/arrow.m
| 56,774 |
utf_8
|
2dc514962f607a6855ee3f8bfbee74c4
|
function [h,yy,zz] = arrow(varargin)
% ARROW Draw a line with an arrowhead.
%
% ARROW(Start,Stop) draws a line with an arrow from Start to Stop (points
% should be vectors of length 2 or 3, or matrices with 2 or 3
% columns), and returns the graphics handle of the arrow(s).
%
% ARROW uses the mouse (click-drag) to create an arrow.
%
% ARROW DEMO & ARROW DEMO2 show 3-D & 2-D demos of the capabilities of ARROW.
%
% ARROW may be called with a normal argument list or a property-based list.
% ARROW(Start,Stop,Length,BaseAngle,TipAngle,Width,Page,CrossDir) is
% the full normal argument list, where all but the Start and Stop
% points are optional. If you need to specify a later argument (e.g.,
% Page) but want default values of earlier ones (e.g., TipAngle),
% pass an empty matrix for the earlier ones (e.g., TipAngle=[]).
%
% ARROW('Property1',PropVal1,'Property2',PropVal2,...) creates arrows with the
% given properties, using default values for any unspecified or given as
% 'default' or NaN. Some properties used for line and patch objects are
% used in a modified fashion, others are passed directly to LINE, PATCH,
% or SET. For a detailed properties explanation, call ARROW PROPERTIES.
%
% Start The starting points. B
% Stop The end points. /|\ ^
% Length Length of the arrowhead in pixels. /|||\ |
% BaseAngle Base angle in degrees (ADE). //|||\\ L|
% TipAngle Tip angle in degrees (ABC). ///|||\\\ e|
% Width Width of the base in pixels. ////|||\\\\ n|
% Page Use hardcopy proportions. /////|D|\\\\\ g|
% CrossDir Vector || to arrowhead plane. //// ||| \\\\ t|
% NormalDir Vector out of arrowhead plane. /// ||| \\\ h|
% Ends Which end has an arrowhead. //<----->|| \\ |
% ObjectHandles Vector of handles to update. / base ||| \ V
% E angle||<-------->C
% ARROW(H,'Prop1',PropVal1,...), where H is a |||tipangle
% vector of handles to previously-created arrows |||
% and/or line objects, will update the previously- |||
% created arrows according to the current view -->|A|<-- width
% and any specified properties, and will convert
% two-point line objects to corresponding arrows. ARROW(H) will update
% the arrows if the current view has changed. Root, figure, or axes
% handles included in H are replaced by all descendant Arrow objects.
%
% A property list can follow any specified normal argument list, e.g.,
% ARROW([1 2 3],[0 0 0],36,'BaseAngle',60) creates an arrow from (1,2,3) to
% the origin, with an arrowhead of length 36 pixels and 60-degree base angle.
%
% The basic arguments or properties can generally be vectorized to create
% multiple arrows with the same call. This is done by passing a property
% with one row per arrow, or, if all arrows are to have the same property
% value, just one row may be specified.
%
% You may want to execute AXIS(AXIS) before calling ARROW so it doesn't change
% the axes on you; ARROW determines the sizes of arrow components BEFORE the
% arrow is plotted, so if ARROW changes axis limits, arrows may be malformed.
%
% This version of ARROW uses features of MATLAB 6.x and is incompatible with
% earlier MATLAB versions (ARROW for MATLAB 4.2c is available separately);
% some problems with perspective plots still exist.
% Copyright (c)1995-2009, Dr. Erik A. Johnson <[email protected]>, 5/20/2009
% http://www.usc.edu/civil_eng/johnsone/
% Revision history:
% 5/20/09 EAJ Fix view direction in (3D) demo.
% 6/26/08 EAJ Replace eval('trycmd','catchcmd') with try, trycmd; catch,
% catchcmd; end; -- break's MATLAB 5 compatibility.
% 8/26/03 EAJ Eliminate OpenGL attempted fix since it didn't fix anyway.
% 11/15/02 EAJ Accomodate how MATLAB 6.5 handles NaN and logicals
% 7/28/02 EAJ Tried (but failed) work-around for MATLAB 6.x / OpenGL bug
% if zero 'Width' or not double-ended
% 11/10/99 EAJ Add logical() to eliminate zero index problem in MATLAB 5.3.
% 11/10/99 EAJ Corrected warning if axis limits changed on multiple axes.
% 11/10/99 EAJ Update e-mail address.
% 2/10/99 EAJ Some documentation updating.
% 2/24/98 EAJ Fixed bug if Start~=Stop but both colinear with viewpoint.
% 8/14/97 EAJ Added workaround for MATLAB 5.1 scalar logical transpose bug.
% 7/21/97 EAJ Fixed a few misc bugs.
% 7/14/97 EAJ Make arrow([],'Prop',...) do nothing (no old handles)
% 6/23/97 EAJ MATLAB 5 compatible version, release.
% 5/27/97 EAJ Added Line Arrows back in. Corrected a few bugs.
% 5/26/97 EAJ Changed missing Start/Stop to mouse-selected arrows.
% 5/19/97 EAJ MATLAB 5 compatible version, beta.
% 4/13/97 EAJ MATLAB 5 compatible version, alpha.
% 1/31/97 EAJ Fixed bug with multiple arrows and unspecified Z coords.
% 12/05/96 EAJ Fixed one more bug with log plots and NormalDir specified
% 10/24/96 EAJ Fixed bug with log plots and NormalDir specified
% 11/13/95 EAJ Corrected handling for 'reverse' axis directions
% 10/06/95 EAJ Corrected occasional conflict with SUBPLOT
% 4/24/95 EAJ A major rewrite.
% Fall 94 EAJ Original code.
% Things to be done:
% - in the arrow_clicks section, prompt by printing to the screen so that
% the user knows what's going on; also make sure the figure is brought
% to the front.
% - segment parsing, computing, and plotting into separate subfunctions
% - change computing from Xform to Camera paradigms
% + this will help especially with 3-D perspective plots
% + if the WarpToFill section works right, remove warning code
% + when perpsective works properly, remove perspective warning code
% - add cell property values and struct property name/values (like get/set)
% - get rid of NaN as the "default" data label
% + perhaps change userdata to a struct and don't include (or leave
% empty) the values specified as default; or use a cell containing
% an empty matrix for a default value
% - add functionality of GET to retrieve current values of ARROW properties
% Many thanks to Keith Rogers <[email protected]> for his many excellent
% suggestions and beta testing. Check out his shareware package MATDRAW
% (at ftp://ftp.mathworks.com/pub/contrib/v5/graphics/matdraw/) -- he has
% permission to distribute ARROW with MATDRAW.
% Permission is granted to distribute ARROW with the toolboxes for the book
% "Solving Solid Mechanics Problems with MATLAB 5", by F. Golnaraghi et al.
% (Prentice Hall, 1999).
% Permission is granted to Dr. Josef Bigun to distribute ARROW with his
% software to reproduce the figures in his image analysis text.
if isoctave
myarrow(varargin{1},varargin{2}); return
end
% global variable initialization
global ARROW_PERSP_WARN ARROW_STRETCH_WARN ARROW_AXLIMITS
if isempty(ARROW_PERSP_WARN ), ARROW_PERSP_WARN =1; end;
if isempty(ARROW_STRETCH_WARN), ARROW_STRETCH_WARN=1; end;
% Handle callbacks
if (nargin>0 & isstr(varargin{1}) & strcmp(lower(varargin{1}),'callback')),
arrow_callback(varargin{2:end}); return;
end;
% Are we doing the demo?
c = sprintf('\n');
if (nargin==1 & isstr(varargin{1})),
arg1 = lower(varargin{1});
if strncmp(arg1,'prop',4), arrow_props;
elseif strncmp(arg1,'demo',4)
clf reset
demo_info = arrow_demo;
if ~strncmp(arg1,'demo2',5),
hh=arrow_demo3(demo_info);
else,
hh=arrow_demo2(demo_info);
end;
if (nargout>=1), h=hh; end;
elseif strncmp(arg1,'fixlimits',3),
arrow_fixlimits(ARROW_AXLIMITS);
ARROW_AXLIMITS=[];
elseif strncmp(arg1,'help',4),
disp(help(mfilename));
else,
error([upper(mfilename) ' got an unknown single-argument string ''' deblank(arg1) '''.']);
end;
return;
end;
% Check # of arguments
if (nargout>3), error([upper(mfilename) ' produces at most 3 output arguments.']); end;
% find first property number
firstprop = nargin+1;
for k=1:length(varargin), if ~isnumeric(varargin{k}), firstprop=k; break; end; end;
lastnumeric = firstprop-1;
% check property list
if (firstprop<=nargin),
for k=firstprop:2:nargin,
curarg = varargin{k};
if ~isstr(curarg) | sum(size(curarg)>1)>1,
error([upper(mfilename) ' requires that a property name be a single string.']);
end;
end;
if (rem(nargin-firstprop,2)~=1),
error([upper(mfilename) ' requires that the property ''' ...
varargin{nargin} ''' be paired with a property value.']);
end;
end;
% default output
if (nargout>0), h=[]; end;
if (nargout>1), yy=[]; end;
if (nargout>2), zz=[]; end;
% set values to empty matrices
start = [];
stop = [];
len = [];
baseangle = [];
tipangle = [];
wid = [];
page = [];
crossdir = [];
ends = [];
ax = [];
oldh = [];
ispatch = [];
defstart = [NaN NaN NaN];
defstop = [NaN NaN NaN];
deflen = 16;
defbaseangle = 90;
deftipangle = 16;
defwid = 0;
defpage = 0;
defcrossdir = [NaN NaN NaN];
defends = 1;
defoldh = [];
defispatch = 1;
% The 'Tag' we'll put on our arrows
ArrowTag = 'Arrow';
% check for oldstyle arguments
if (firstprop==2),
% assume arg1 is a set of handles
oldh = varargin{1}(:);
if isempty(oldh), return; end;
elseif (firstprop>9),
error([upper(mfilename) ' takes at most 8 non-property arguments.']);
elseif (firstprop>2),
{start,stop,len,baseangle,tipangle,wid,page,crossdir};
args = [varargin(1:firstprop-1) cell(1,length(ans)-(firstprop-1))];
[start,stop,len,baseangle,tipangle,wid,page,crossdir] = deal(args{:});
end;
% parse property pairs
extraprops={};
for k=firstprop:2:nargin,
prop = varargin{k};
val = varargin{k+1};
prop = [lower(prop(:)') ' '];
if strncmp(prop,'start' ,5), start = val;
elseif strncmp(prop,'stop' ,4), stop = val;
elseif strncmp(prop,'len' ,3), len = val(:);
elseif strncmp(prop,'base' ,4), baseangle = val(:);
elseif strncmp(prop,'tip' ,3), tipangle = val(:);
elseif strncmp(prop,'wid' ,3), wid = val(:);
elseif strncmp(prop,'page' ,4), page = val;
elseif strncmp(prop,'cross' ,5), crossdir = val;
elseif strncmp(prop,'norm' ,4), if (isstr(val)), crossdir=val; else, crossdir=val*sqrt(-1); end;
elseif strncmp(prop,'end' ,3), ends = val;
elseif strncmp(prop,'object',6), oldh = val(:);
elseif strncmp(prop,'handle',6), oldh = val(:);
elseif strncmp(prop,'type' ,4), ispatch = val;
elseif strncmp(prop,'userd' ,5), %ignore it
else,
% make sure it is a valid patch or line property
try
get(0,['DefaultPatch' varargin{k}]);
catch
errstr = lasterr;
try
get(0,['DefaultLine' varargin{k}]);
catch
errstr(1:max(find(errstr==char(13)|errstr==char(10)))) = '';
error([upper(mfilename) ' got ' errstr]);
end
end;
extraprops={extraprops{:},varargin{k},val};
end;
end;
% Check if we got 'default' values
start = arrow_defcheck(start ,defstart ,'Start' );
stop = arrow_defcheck(stop ,defstop ,'Stop' );
len = arrow_defcheck(len ,deflen ,'Length' );
baseangle = arrow_defcheck(baseangle,defbaseangle,'BaseAngle' );
tipangle = arrow_defcheck(tipangle ,deftipangle ,'TipAngle' );
wid = arrow_defcheck(wid ,defwid ,'Width' );
crossdir = arrow_defcheck(crossdir ,defcrossdir ,'CrossDir' );
page = arrow_defcheck(page ,defpage ,'Page' );
ends = arrow_defcheck(ends ,defends ,'' );
oldh = arrow_defcheck(oldh ,[] ,'ObjectHandles');
ispatch = arrow_defcheck(ispatch ,defispatch ,'' );
% check transpose on arguments
[m,n]=size(start ); if any(m==[2 3])&(n==1|n>3), start = start'; end;
[m,n]=size(stop ); if any(m==[2 3])&(n==1|n>3), stop = stop'; end;
[m,n]=size(crossdir); if any(m==[2 3])&(n==1|n>3), crossdir = crossdir'; end;
% convert strings to numbers
if ~isempty(ends) & isstr(ends),
endsorig = ends;
[m,n] = size(ends);
col = lower([ends(:,1:min(3,n)) ones(m,max(0,3-n))*' ']);
ends = NaN*ones(m,1);
oo = ones(1,m);
ii=find(all(col'==['non']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*0; end;
ii=find(all(col'==['sto']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*1; end;
ii=find(all(col'==['sta']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*2; end;
ii=find(all(col'==['bot']'*oo)'); if ~isempty(ii), ends(ii)=ones(length(ii),1)*3; end;
if any(isnan(ends)),
ii = min(find(isnan(ends)));
error([upper(mfilename) ' does not recognize ''' deblank(endsorig(ii,:)) ''' as a valid ''Ends'' value.']);
end;
else,
ends = ends(:);
end;
if ~isempty(ispatch) & isstr(ispatch),
col = lower(ispatch(:,1));
patchchar='p'; linechar='l'; defchar=' ';
mask = col~=patchchar & col~=linechar & col~=defchar;
if any(mask),
error([upper(mfilename) ' does not recognize ''' deblank(ispatch(min(find(mask)),:)) ''' as a valid ''Type'' value.']);
end;
ispatch = (col==patchchar)*1 + (col==linechar)*0 + (col==defchar)*defispatch;
else,
ispatch = ispatch(:);
end;
oldh = oldh(:);
% check object handles
if ~all(ishandle(oldh)), error([upper(mfilename) ' got invalid object handles.']); end;
% expand root, figure, and axes handles
if ~isempty(oldh),
ohtype = get(oldh,'Type');
mask = strcmp(ohtype,'root') | strcmp(ohtype,'figure') | strcmp(ohtype,'axes');
if any(mask),
oldh = num2cell(oldh);
for ii=find(mask)',
oldh(ii) = {findobj(oldh{ii},'Tag',ArrowTag)};
end;
oldh = cat(1,oldh{:});
if isempty(oldh), return; end; % no arrows to modify, so just leave
end;
end;
% largest argument length
[mstart,junk]=size(start); [mstop,junk]=size(stop); [mcrossdir,junk]=size(crossdir);
argsizes = [length(oldh) mstart mstop ...
length(len) length(baseangle) length(tipangle) ...
length(wid) length(page) mcrossdir length(ends) ];
args=['length(ObjectHandle) '; ...
'#rows(Start) '; ...
'#rows(Stop) '; ...
'length(Length) '; ...
'length(BaseAngle) '; ...
'length(TipAngle) '; ...
'length(Width) '; ...
'length(Page) '; ...
'#rows(CrossDir) '; ...
'#rows(Ends) '];
if (any(imag(crossdir(:))~=0)),
args(9,:) = '#rows(NormalDir) ';
end;
if isempty(oldh),
narrows = max(argsizes);
else,
narrows = length(oldh);
end;
if (narrows<=0), narrows=1; end;
% Check size of arguments
ii = find((argsizes~=0)&(argsizes~=1)&(argsizes~=narrows));
if ~isempty(ii),
s = args(ii',:);
while ((size(s,2)>1)&((abs(s(:,size(s,2)))==0)|(abs(s(:,size(s,2)))==abs(' ')))),
s = s(:,1:size(s,2)-1);
end;
s = [ones(length(ii),1)*[upper(mfilename) ' requires that '] s ...
ones(length(ii),1)*[' equal the # of arrows (' num2str(narrows) ').' c]];
s = s';
s = s(:)';
s = s(1:length(s)-1);
error(setstr(s));
end;
% check element length in Start, Stop, and CrossDir
if ~isempty(start),
[m,n] = size(start);
if (n==2),
start = [start NaN*ones(m,1)];
elseif (n~=3),
error([upper(mfilename) ' requires 2- or 3-element Start points.']);
end;
end;
if ~isempty(stop),
[m,n] = size(stop);
if (n==2),
stop = [stop NaN*ones(m,1)];
elseif (n~=3),
error([upper(mfilename) ' requires 2- or 3-element Stop points.']);
end;
end;
if ~isempty(crossdir),
[m,n] = size(crossdir);
if (n<3),
crossdir = [crossdir NaN*ones(m,3-n)];
elseif (n~=3),
if (all(imag(crossdir(:))==0)),
error([upper(mfilename) ' requires 2- or 3-element CrossDir vectors.']);
else,
error([upper(mfilename) ' requires 2- or 3-element NormalDir vectors.']);
end;
end;
end;
% fill empty arguments
if isempty(start ), start = [Inf Inf Inf]; end;
if isempty(stop ), stop = [Inf Inf Inf]; end;
if isempty(len ), len = Inf; end;
if isempty(baseangle ), baseangle = Inf; end;
if isempty(tipangle ), tipangle = Inf; end;
if isempty(wid ), wid = Inf; end;
if isempty(page ), page = Inf; end;
if isempty(crossdir ), crossdir = [Inf Inf Inf]; end;
if isempty(ends ), ends = Inf; end;
if isempty(ispatch ), ispatch = Inf; end;
% expand single-column arguments
o = ones(narrows,1);
if (size(start ,1)==1), start = o * start ; end;
if (size(stop ,1)==1), stop = o * stop ; end;
if (length(len )==1), len = o * len ; end;
if (length(baseangle )==1), baseangle = o * baseangle ; end;
if (length(tipangle )==1), tipangle = o * tipangle ; end;
if (length(wid )==1), wid = o * wid ; end;
if (length(page )==1), page = o * page ; end;
if (size(crossdir ,1)==1), crossdir = o * crossdir ; end;
if (length(ends )==1), ends = o * ends ; end;
if (length(ispatch )==1), ispatch = o * ispatch ; end;
ax = o * gca;
% if we've got handles, get the defaults from the handles
if ~isempty(oldh),
for k=1:narrows,
oh = oldh(k);
ud = get(oh,'UserData');
ax(k) = get(oh,'Parent');
ohtype = get(oh,'Type');
if strcmp(get(oh,'Tag'),ArrowTag), % if it's an arrow already
if isinf(ispatch(k)), ispatch(k)=strcmp(ohtype,'patch'); end;
% arrow UserData format: [start' stop' len base tip wid page crossdir' ends]
start0 = ud(1:3);
stop0 = ud(4:6);
if (isinf(len(k))), len(k) = ud( 7); end;
if (isinf(baseangle(k))), baseangle(k) = ud( 8); end;
if (isinf(tipangle(k))), tipangle(k) = ud( 9); end;
if (isinf(wid(k))), wid(k) = ud(10); end;
if (isinf(page(k))), page(k) = ud(11); end;
if (isinf(crossdir(k,1))), crossdir(k,1) = ud(12); end;
if (isinf(crossdir(k,2))), crossdir(k,2) = ud(13); end;
if (isinf(crossdir(k,3))), crossdir(k,3) = ud(14); end;
if (isinf(ends(k))), ends(k) = ud(15); end;
elseif strcmp(ohtype,'line')|strcmp(ohtype,'patch'), % it's a non-arrow line or patch
convLineToPatch = 1; %set to make arrow patches when converting from lines.
if isinf(ispatch(k)), ispatch(k)=convLineToPatch|strcmp(ohtype,'patch'); end;
x=get(oh,'XData'); x=x(~isnan(x(:))); if isempty(x), x=NaN; end;
y=get(oh,'YData'); y=y(~isnan(y(:))); if isempty(y), y=NaN; end;
z=get(oh,'ZData'); z=z(~isnan(z(:))); if isempty(z), z=NaN; end;
start0 = [x(1) y(1) z(1) ];
stop0 = [x(end) y(end) z(end)];
else,
error([upper(mfilename) ' cannot convert ' ohtype ' objects.']);
end;
ii=find(isinf(start(k,:))); if ~isempty(ii), start(k,ii)=start0(ii); end;
ii=find(isinf(stop( k,:))); if ~isempty(ii), stop( k,ii)=stop0( ii); end;
end;
end;
% convert Inf's to NaN's
start( isinf(start )) = NaN;
stop( isinf(stop )) = NaN;
len( isinf(len )) = NaN;
baseangle( isinf(baseangle)) = NaN;
tipangle( isinf(tipangle )) = NaN;
wid( isinf(wid )) = NaN;
page( isinf(page )) = NaN;
crossdir( isinf(crossdir )) = NaN;
ends( isinf(ends )) = NaN;
ispatch( isinf(ispatch )) = NaN;
% set up the UserData data (here so not corrupted by log10's and such)
ud = [start stop len baseangle tipangle wid page crossdir ends];
% Set Page defaults
page = ~isnan(page) & trueornan(page);
% Get axes limits, range, min; correct for aspect ratio and log scale
axm = zeros(3,narrows);
axr = zeros(3,narrows);
axrev = zeros(3,narrows);
ap = zeros(2,narrows);
xyzlog = zeros(3,narrows);
limmin = zeros(2,narrows);
limrange = zeros(2,narrows);
oldaxlims = zeros(narrows,7);
oneax = all(ax==ax(1));
if (oneax),
T = zeros(4,4);
invT = zeros(4,4);
else,
T = zeros(16,narrows);
invT = zeros(16,narrows);
end;
axnotdone = logical(ones(size(ax)));
while (any(axnotdone)),
ii = min(find(axnotdone));
curax = ax(ii);
curpage = page(ii);
% get axes limits and aspect ratio
axl = [get(curax,'XLim'); get(curax,'YLim'); get(curax,'ZLim')];
oldaxlims(min(find(oldaxlims(:,1)==0)),:) = [curax reshape(axl',1,6)];
% get axes size in pixels (points)
u = get(curax,'Units');
axposoldunits = get(curax,'Position');
really_curpage = curpage & strcmp(u,'normalized');
if (really_curpage),
curfig = get(curax,'Parent');
pu = get(curfig,'PaperUnits');
set(curfig,'PaperUnits','points');
pp = get(curfig,'PaperPosition');
set(curfig,'PaperUnits',pu);
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
set(curax,'Units','normalized');
curap = pp.*get(curax,'Position');
else,
set(curax,'Units','pixels');
curapscreen = get(curax,'Position');
curap = curapscreen;
end;
set(curax,'Units',u);
set(curax,'Position',axposoldunits);
% handle non-stretched axes position
str_stretch = { 'DataAspectRatioMode' ; ...
'PlotBoxAspectRatioMode' ; ...
'CameraViewAngleMode' };
str_camera = { 'CameraPositionMode' ; ...
'CameraTargetMode' ; ...
'CameraViewAngleMode' ; ...
'CameraUpVectorMode' };
notstretched = strcmp(get(curax,str_stretch),'manual');
manualcamera = strcmp(get(curax,str_camera),'manual');
if ~arrow_WarpToFill(notstretched,manualcamera,curax),
% give a warning that this has not been thoroughly tested
if 0 & ARROW_STRETCH_WARN,
ARROW_STRETCH_WARN = 0;
strs = {str_stretch{1:2},str_camera{:}};
strs = [char(ones(length(strs),1)*sprintf('\n ')) char(strs)]';
warning([upper(mfilename) ' may not yet work quite right ' ...
'if any of the following are ''manual'':' strs(:).']);
end;
% find the true pixel size of the actual axes
texttmp = text(axl(1,[1 2 2 1 1 2 2 1]), ...
axl(2,[1 1 2 2 1 1 2 2]), ...
axl(3,[1 1 1 1 2 2 2 2]),'');
set(texttmp,'Units','points');
textpos = get(texttmp,'Position');
delete(texttmp);
textpos = cat(1,textpos{:});
textpos = max(textpos(:,1:2)) - min(textpos(:,1:2));
% adjust the axes position
if (really_curpage),
% adjust to printed size
textpos = textpos * min(curap(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
else,
% adjust for pixel roundoff
textpos = textpos * min(curapscreen(3:4)./textpos);
curap = [curap(1:2)+(curap(3:4)-textpos)/2 textpos];
end;
end;
if ARROW_PERSP_WARN & ~strcmp(get(curax,'Projection'),'orthographic'),
ARROW_PERSP_WARN = 0;
warning([upper(mfilename) ' does not yet work right for 3-D perspective projection.']);
end;
% adjust limits for log scale on axes
curxyzlog = [strcmp(get(curax,'XScale'),'log'); ...
strcmp(get(curax,'YScale'),'log'); ...
strcmp(get(curax,'ZScale'),'log')];
if (any(curxyzlog)),
ii = find([curxyzlog;curxyzlog]);
if (any(axl(ii)<=0)),
error([upper(mfilename) ' does not support non-positive limits on log-scaled axes.']);
else,
axl(ii) = log10(axl(ii));
end;
end;
% correct for 'reverse' direction on axes;
curreverse = [strcmp(get(curax,'XDir'),'reverse'); ...
strcmp(get(curax,'YDir'),'reverse'); ...
strcmp(get(curax,'ZDir'),'reverse')];
ii = find(curreverse);
if ~isempty(ii),
axl(ii,[1 2])=-axl(ii,[2 1]);
end;
% compute the range of 2-D values
curT = get(curax,'Xform');
lim = curT*[0 1 0 1 0 1 0 1;0 0 1 1 0 0 1 1;0 0 0 0 1 1 1 1;1 1 1 1 1 1 1 1];
lim = lim(1:2,:)./([1;1]*lim(4,:));
curlimmin = min(lim')';
curlimrange = max(lim')' - curlimmin;
curinvT = inv(curT);
if (~oneax),
curT = curT.';
curinvT = curinvT.';
curT = curT(:);
curinvT = curinvT(:);
end;
% check which arrows to which cur corresponds
ii = find((ax==curax)&(page==curpage));
oo = ones(1,length(ii));
axr(:,ii) = diff(axl')' * oo;
axm(:,ii) = axl(:,1) * oo;
axrev(:,ii) = curreverse * oo;
ap(:,ii) = curap(3:4)' * oo;
xyzlog(:,ii) = curxyzlog * oo;
limmin(:,ii) = curlimmin * oo;
limrange(:,ii) = curlimrange * oo;
if (oneax),
T = curT;
invT = curinvT;
else,
T(:,ii) = curT * oo;
invT(:,ii) = curinvT * oo;
end;
axnotdone(ii) = zeros(1,length(ii));
end;
oldaxlims(oldaxlims(:,1)==0,:)=[];
% correct for log scales
curxyzlog = xyzlog.';
ii = find(curxyzlog(:));
if ~isempty(ii),
start( ii) = real(log10(start( ii)));
stop( ii) = real(log10(stop( ii)));
if (all(imag(crossdir)==0)), % pulled (ii) subscript on crossdir, 12/5/96 eaj
crossdir(ii) = real(log10(crossdir(ii)));
end;
end;
% correct for reverse directions
ii = find(axrev.');
if ~isempty(ii),
start( ii) = -start( ii);
stop( ii) = -stop( ii);
crossdir(ii) = -crossdir(ii);
end;
% transpose start/stop values
start = start.';
stop = stop.';
% take care of defaults, page was done above
ii=find(isnan(start(:) )); if ~isempty(ii), start(ii) = axm(ii)+axr(ii)/2; end;
ii=find(isnan(stop(:) )); if ~isempty(ii), stop(ii) = axm(ii)+axr(ii)/2; end;
ii=find(isnan(crossdir(:) )); if ~isempty(ii), crossdir(ii) = zeros(length(ii),1); end;
ii=find(isnan(len )); if ~isempty(ii), len(ii) = ones(length(ii),1)*deflen; end;
ii=find(isnan(baseangle )); if ~isempty(ii), baseangle(ii) = ones(length(ii),1)*defbaseangle; end;
ii=find(isnan(tipangle )); if ~isempty(ii), tipangle(ii) = ones(length(ii),1)*deftipangle; end;
ii=find(isnan(wid )); if ~isempty(ii), wid(ii) = ones(length(ii),1)*defwid; end;
ii=find(isnan(ends )); if ~isempty(ii), ends(ii) = ones(length(ii),1)*defends; end;
% transpose rest of values
len = len.';
baseangle = baseangle.';
tipangle = tipangle.';
wid = wid.';
page = page.';
crossdir = crossdir.';
ends = ends.';
ax = ax.';
% given x, a 3xN matrix of points in 3-space;
% want to convert to X, the corresponding 4xN 2-space matrix
%
% tmp1=[(x-axm)./axr; ones(1,size(x,1))];
% if (oneax), X=T*tmp1;
% else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
% tmp2=zeros(4,4*N); tmp2(:)=tmp1(:);
% X=zeros(4,N); X(:)=sum(tmp2)'; end;
% X = X ./ (ones(4,1)*X(4,:));
% for all points with start==stop, start=stop-(verysmallvalue)*(up-direction);
ii = find(all(start==stop));
if ~isempty(ii),
% find an arrowdir vertical on screen and perpendicular to viewer
% transform to 2-D
tmp1 = [(stop(:,ii)-axm(:,ii))./axr(:,ii);ones(1,length(ii))];
if (oneax), twoD=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
twoD=zeros(4,length(ii)); twoD(:)=sum(tmp2)'; end;
twoD=twoD./(ones(4,1)*twoD(4,:));
% move the start point down just slightly
tmp1 = twoD + [0;-1/1000;0;0]*(limrange(2,ii)./ap(2,ii));
% transform back to 3-D
if (oneax), threeD=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT(:,ii).*tmp1;
tmp2=zeros(4,4*length(ii)); tmp2(:)=tmp1(:);
threeD=zeros(4,length(ii)); threeD(:)=sum(tmp2)'; end;
start(:,ii) = (threeD(1:3,:)./(ones(3,1)*threeD(4,:))).*axr(:,ii)+axm(:,ii);
end;
% compute along-arrow points
% transform Start points
tmp1=[(start-axm)./axr;ones(1,narrows)];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
X0=zeros(4,narrows); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% transform Stop points
tmp1=[(stop-axm)./axr;ones(1,narrows)];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
Xf=zeros(4,narrows); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute pixel distance between points
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*(ap./limrange)).^2));
D = D + (D==0); %eaj new 2/24/98
% compute and modify along-arrow distances
len1 = len;
len2 = len - (len.*tan(tipangle/180*pi)-wid/2).*tan((90-baseangle)/180*pi);
slen0 = zeros(1,narrows);
slen1 = len1 .* ((ends==2)|(ends==3));
slen2 = len2 .* ((ends==2)|(ends==3));
len0 = zeros(1,narrows);
len1 = len1 .* ((ends==1)|(ends==3));
len2 = len2 .* ((ends==1)|(ends==3));
% for no start arrowhead
ii=find((ends==1)&(D<len2));
if ~isempty(ii),
slen0(ii) = D(ii)-len2(ii);
end;
% for no end arrowhead
ii=find((ends==2)&(D<slen2));
if ~isempty(ii),
len0(ii) = D(ii)-slen2(ii);
end;
len1 = len1 + len0;
len2 = len2 + len0;
slen1 = slen1 + slen0;
slen2 = slen2 + slen0;
% note: the division by D below will probably not be accurate if both
% of the following are true:
% 1. the ratio of the line length to the arrowhead
% length is large
% 2. the view is highly perspective.
% compute stoppoints
tmp1=X0.*(ones(4,1)*(len0./D))+Xf.*(ones(4,1)*(1-len0./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
stoppoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute tippoints
tmp1=X0.*(ones(4,1)*(len1./D))+Xf.*(ones(4,1)*(1-len1./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
tippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute basepoints
tmp1=X0.*(ones(4,1)*(len2./D))+Xf.*(ones(4,1)*(1-len2./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
basepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute startpoints
tmp1=X0.*(ones(4,1)*(1-slen0./D))+Xf.*(ones(4,1)*(slen0./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
startpoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute stippoints
tmp1=X0.*(ones(4,1)*(1-slen1./D))+Xf.*(ones(4,1)*(slen1./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
stippoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute sbasepoints
tmp1=X0.*(ones(4,1)*(1-slen2./D))+Xf.*(ones(4,1)*(slen2./D));
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=invT.*tmp1;
tmp2=zeros(4,4*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,narrows); tmp3(:)=sum(tmp2)'; end;
sbasepoint = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)).*axr+axm;
% compute cross-arrow directions for arrows with NormalDir specified
if (any(imag(crossdir(:))~=0)),
ii = find(any(imag(crossdir)~=0));
crossdir(:,ii) = cross((stop(:,ii)-start(:,ii))./axr(:,ii), ...
imag(crossdir(:,ii))).*axr(:,ii);
end;
% compute cross-arrow directions
basecross = crossdir + basepoint;
tipcross = crossdir + tippoint;
sbasecross = crossdir + sbasepoint;
stipcross = crossdir + stippoint;
ii = find(all(crossdir==0)|any(isnan(crossdir)));
if ~isempty(ii),
numii = length(ii);
% transform start points
tmp1 = [basepoint(:,ii) tippoint(:,ii) sbasepoint(:,ii) stippoint(:,ii)];
tmp1 = (tmp1-axm(:,[ii ii ii ii])) ./ axr(:,[ii ii ii ii]);
tmp1 = [tmp1; ones(1,4*numii)];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
X0=zeros(4,4*numii); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% transform stop points
tmp1 = [(2*stop(:,ii)-start(:,ii)-axm(:,ii))./axr(:,ii);ones(1,numii)];
tmp1 = [tmp1 tmp1 tmp1 tmp1];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=T(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xf=zeros(4,4*numii); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute perpendicular directions
pixfact = ((limrange(1,ii)./limrange(2,ii)).*(ap(2,ii)./ap(1,ii))).^2;
pixfact = [pixfact pixfact pixfact pixfact];
pixfact = [pixfact;1./pixfact];
[dummyval,jj] = max(abs(Xf(1:2,:)-X0(1:2,:)));
jj1 = ((1:4)'*ones(1,length(jj))==ones(4,1)*jj);
jj2 = ((1:4)'*ones(1,length(jj))==ones(4,1)*(3-jj));
jj3 = jj1(1:2,:);
Xf(jj1)=Xf(jj1)+(Xf(jj1)-X0(jj1)==0); %eaj new 2/24/98
Xp = X0;
Xp(jj2) = X0(jj2) + ones(sum(jj2(:)),1);
Xp(jj1) = X0(jj1) - (Xf(jj2)-X0(jj2))./(Xf(jj1)-X0(jj1)) .* pixfact(jj3);
% inverse transform the cross points
if (oneax), Xp=invT*Xp;
else, tmp1=[Xp;Xp;Xp;Xp]; tmp1=invT(:,[ii ii ii ii]).*tmp1;
tmp2=zeros(4,16*numii); tmp2(:)=tmp1(:);
Xp=zeros(4,4*numii); Xp(:)=sum(tmp2)'; end;
Xp=(Xp(1:3,:)./(ones(3,1)*Xp(4,:))).*axr(:,[ii ii ii ii])+axm(:,[ii ii ii ii]);
basecross(:,ii) = Xp(:,0*numii+(1:numii));
tipcross(:,ii) = Xp(:,1*numii+(1:numii));
sbasecross(:,ii) = Xp(:,2*numii+(1:numii));
stipcross(:,ii) = Xp(:,3*numii+(1:numii));
end;
% compute all points
% compute start points
axm11 = [axm axm axm axm axm axm axm axm axm axm axm];
axr11 = [axr axr axr axr axr axr axr axr axr axr axr];
st = [stoppoint tippoint basepoint sbasepoint stippoint startpoint stippoint sbasepoint basepoint tippoint stoppoint];
tmp1 = (st - axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), X0=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
X0=zeros(4,11*narrows); X0(:)=sum(tmp2)'; end;
X0=X0./(ones(4,1)*X0(4,:));
% compute stop points
tmp1 = ([start tipcross basecross sbasecross stipcross stop stipcross sbasecross basecross tipcross start] ...
- axm11) ./ axr11;
tmp1 = [tmp1; ones(1,size(tmp1,2))];
if (oneax), Xf=T*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[T T T T T T T T T T T].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
Xf=zeros(4,11*narrows); Xf(:)=sum(tmp2)'; end;
Xf=Xf./(ones(4,1)*Xf(4,:));
% compute lengths
len0 = len.*((ends==1)|(ends==3)).*tan(tipangle/180*pi);
slen0 = len.*((ends==2)|(ends==3)).*tan(tipangle/180*pi);
le = [zeros(1,narrows) len0 wid/2 wid/2 slen0 zeros(1,narrows) -slen0 -wid/2 -wid/2 -len0 zeros(1,narrows)];
aprange = ap./limrange;
aprange = [aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange aprange];
D = sqrt(sum(((Xf(1:2,:)-X0(1:2,:)).*aprange).^2));
Dii=find(D==0); if ~isempty(Dii), D=D+(D==0); le(Dii)=zeros(1,length(Dii)); end; %should fix DivideByZero warnings
tmp1 = X0.*(ones(4,1)*(1-le./D)) + Xf.*(ones(4,1)*(le./D));
% inverse transform
if (oneax), tmp3=invT*tmp1;
else, tmp1=[tmp1;tmp1;tmp1;tmp1]; tmp1=[invT invT invT invT invT invT invT invT invT invT invT].*tmp1;
tmp2=zeros(4,44*narrows); tmp2(:)=tmp1(:);
tmp3=zeros(4,11*narrows); tmp3(:)=sum(tmp2)'; end;
pts = tmp3(1:3,:)./(ones(3,1)*tmp3(4,:)) .* axr11 + axm11;
% correct for ones where the crossdir was specified
ii = find(~(all(crossdir==0)|any(isnan(crossdir))));
if ~isempty(ii),
D1 = [pts(:,1*narrows+ii)-pts(:,9*narrows+ii) ...
pts(:,2*narrows+ii)-pts(:,8*narrows+ii) ...
pts(:,3*narrows+ii)-pts(:,7*narrows+ii) ...
pts(:,4*narrows+ii)-pts(:,6*narrows+ii) ...
pts(:,6*narrows+ii)-pts(:,4*narrows+ii) ...
pts(:,7*narrows+ii)-pts(:,3*narrows+ii) ...
pts(:,8*narrows+ii)-pts(:,2*narrows+ii) ...
pts(:,9*narrows+ii)-pts(:,1*narrows+ii)]/2;
ii = ii'*ones(1,8) + ones(length(ii),1)*[1:4 6:9]*narrows;
ii = ii(:)';
pts(:,ii) = st(:,ii) + D1;
end;
% readjust for reverse directions
iicols=(1:narrows)'; iicols=iicols(:,ones(1,11)); iicols=iicols(:).';
tmp1=axrev(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=-pts(ii); end;
% readjust for log scale on axes
tmp1=xyzlog(:,iicols);
ii = find(tmp1(:)); if ~isempty(ii), pts(ii)=10.^pts(ii); end;
% compute the x,y,z coordinates of the patches;
ii = narrows*(0:10)'*ones(1,narrows) + ones(11,1)*(1:narrows);
ii = ii(:)';
x = zeros(11,narrows);
y = zeros(11,narrows);
z = zeros(11,narrows);
x(:) = pts(1,ii)';
y(:) = pts(2,ii)';
z(:) = pts(3,ii)';
% do the output
if (nargout<=1),
% % create or modify the patches
newpatch = trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'patch'));
newline = ~trueornan(ispatch) & (isempty(oldh)|~strcmp(get(oldh,'Type'),'line'));
if isempty(oldh), H=zeros(narrows,1); else, H=oldh; end;
% % make or modify the arrows
for k=1:narrows,
if all(isnan(ud(k,[3 6])))&arrow_is2DXY(ax(k)), zz=[]; else, zz=z(:,k); end;
xx=x(:,k); yy=y(:,k);
if (0), % this fix didn't work, so let's not use it -- 8/26/03
% try to work around a MATLAB 6.x OpenGL bug -- 7/28/02
mask=any([ones(1,2+size(zz,2));diff([xx yy zz],[],1)],2);
xx=xx(mask); yy=yy(mask); if ~isempty(zz), zz=zz(mask); end;
end;
% plot the patch or line
xyz = {'XData',xx,'YData',yy,'ZData',zz,'Tag',ArrowTag};
if newpatch(k)|newline(k),
if newpatch(k),
H(k) = patch(xyz{:});
else,
H(k) = line(xyz{:});
end;
if ~isempty(oldh), arrow_copyprops(oldh(k),H(k)); end;
else,
if ispatch(k), xyz={xyz{:},'CData',[]}; end;
set(H(k),xyz{:});
end;
end;
if ~isempty(oldh), delete(oldh(oldh~=H)); end;
% % additional properties
set(H,'Clipping','off');
set(H,{'UserData'},num2cell(ud,2));
if (length(extraprops)>0), set(H,extraprops{:}); end;
% handle choosing arrow Start and/or Stop locations if unspecified
[H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims);
if ~isempty(errstr), error([upper(mfilename) ' got ' errstr]); end;
% set the output
if (nargout>0), h=H; end;
% make sure the axis limits did not change
if isempty(oldaxlims),
ARROW_AXLIMITS = [];
else,
lims = get(oldaxlims(:,1),{'XLim','YLim','ZLim'})';
lims = reshape(cat(2,lims{:}),6,size(lims,2));
mask = arrow_is2DXY(oldaxlims(:,1));
oldaxlims(mask,6:7) = lims(5:6,mask)';
ARROW_AXLIMITS = oldaxlims(find(any(oldaxlims(:,2:7)'~=lims)),:);
if ~isempty(ARROW_AXLIMITS),
warning(arrow_warnlimits(ARROW_AXLIMITS,narrows));
end;
end;
else,
% don't create the patch, just return the data
h=x;
yy=y;
zz=z;
end;
function out = arrow_defcheck(in,def,prop)
% check if we got 'default' values
out = in;
if ~isstr(in), return; end;
if size(in,1)==1 & strncmp(lower(in),'def',3),
out = def;
elseif ~isempty(prop),
error([upper(mfilename) ' does not recognize ''' in(:)' ''' as a valid ''' prop ''' string.']);
end;
function [H,oldaxlims,errstr] = arrow_clicks(H,ud,x,y,z,ax,oldaxlims)
% handle choosing arrow Start and/or Stop locations if necessary
errstr = '';
if isempty(H)|isempty(ud)|isempty(x), return; end;
% determine which (if any) need Start and/or Stop
needStart = all(isnan(ud(:,1:3)'))';
needStop = all(isnan(ud(:,4:6)'))';
mask = any(needStart|needStop);
if ~any(mask), return; end;
ud(~mask,:)=[]; ax(:,~mask)=[];
x(:,~mask)=[]; y(:,~mask)=[]; z(:,~mask)=[];
% make them invisible for the time being
set(H,'Visible','off');
% save the current axes and limits modes; set to manual for the time being
oldAx = gca;
limModes=get(ax(:),{'XLimMode','YLimMode','ZLimMode'});
set(ax(:),{'XLimMode','YLimMode','ZLimMode'},{'manual','manual','manual'});
% loop over each arrow that requires attention
jj = find(mask);
for ii=1:length(jj),
h = H(jj(ii));
axes(ax(ii));
% figure out correct call
if needStart(ii), prop='Start'; else, prop='Stop'; end;
[wasInterrupted,errstr] = arrow_click(needStart(ii)&needStop(ii),h,prop,ax(ii));
% handle errors and control-C
if wasInterrupted,
delete(H(jj(ii:end)));
H(jj(ii:end))=[];
oldaxlims(jj(ii:end),:)=[];
break;
end;
end;
% restore the axes and limit modes
axes(oldAx);
set(ax(:),{'XLimMode','YLimMode','ZLimMode'},limModes);
function [wasInterrupted,errstr] = arrow_click(lockStart,H,prop,ax)
% handle the clicks for one arrow
fig = get(ax,'Parent');
% save some things
oldFigProps = {'Pointer','WindowButtonMotionFcn','WindowButtonUpFcn'};
oldFigValue = get(fig,oldFigProps);
oldArrowProps = {'EraseMode'};
oldArrowValue = get(H,oldArrowProps);
set(H,'EraseMode','background'); %because 'xor' makes shaft invisible unless Width>1
global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z
ARROW_CLICK_H=H; ARROW_CLICK_PROP=prop; ARROW_CLICK_AX=ax;
ARROW_CLICK_USE_Z=~arrow_is2DXY(ax)|~arrow_planarkids(ax);
set(fig,'Pointer','crosshair');
% set up the WindowButtonMotion so we can see the arrow while moving around
set(fig,'WindowButtonUpFcn','set(gcf,''WindowButtonUpFcn'','''')', ...
'WindowButtonMotionFcn','');
if ~lockStart,
set(H,'Visible','on');
set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']);
end;
% wait for the button to be pressed
[wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig);
% if we wanted to click-drag, set the Start point
if lockStart & ~wasInterrupted,
pt = arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z);
feval(mfilename,H,'Start',pt,'Stop',pt);
set(H,'Visible','on');
ARROW_CLICK_PROP='Stop';
set(fig,'WindowButtonMotionFcn',[mfilename '(''callback'',''motion'');']);
% wait for the mouse button to be released
try
waitfor(fig,'WindowButtonUpFcn','');
catch
errstr = lasterr;
wasInterrupted = 1;
end;
end;
if ~wasInterrupted, feval(mfilename,'callback','motion'); end;
% restore some things
set(gcf,oldFigProps,oldFigValue);
set(H,oldArrowProps,oldArrowValue);
function arrow_callback(varargin)
% handle redrawing callbacks
if nargin==0, return; end;
str = varargin{1};
if ~isstr(str), error([upper(mfilename) ' got an invalid Callback command.']); end;
s = lower(str);
if strcmp(s,'motion'),
% motion callback
global ARROW_CLICK_H ARROW_CLICK_PROP ARROW_CLICK_AX ARROW_CLICK_USE_Z
feval(mfilename,ARROW_CLICK_H,ARROW_CLICK_PROP,arrow_point(ARROW_CLICK_AX,ARROW_CLICK_USE_Z));
drawnow;
else,
error([upper(mfilename) ' does not recognize ''' str(:).' ''' as a valid Callback option.']);
end;
function out = arrow_point(ax,use_z)
% return the point on the given axes
if nargin==0, ax=gca; end;
if nargin<2, use_z=~arrow_is2DXY(ax)|~arrow_planarkids(ax); end;
out = get(ax,'CurrentPoint');
out = out(1,:);
if ~use_z, out=out(1:2); end;
function [wasKeyPress,wasInterrupted,errstr] = arrow_wfbdown(fig)
% wait for button down ignoring object ButtonDownFcn's
if nargin==0, fig=gcf; end;
errstr = '';
% save ButtonDownFcn values
objs = findobj(fig);
buttonDownFcns = get(objs,'ButtonDownFcn');
mask=~strcmp(buttonDownFcns,''); objs=objs(mask); buttonDownFcns=buttonDownFcns(mask);
set(objs,'ButtonDownFcn','');
% save other figure values
figProps = {'KeyPressFcn','WindowButtonDownFcn'};
figValue = get(fig,figProps);
% do the real work
set(fig,'KeyPressFcn','set(gcf,''KeyPressFcn'','''',''WindowButtonDownFcn'','''');', ...
'WindowButtonDownFcn','set(gcf,''WindowButtonDownFcn'','''')');
lasterr('');
try
waitfor(fig,'WindowButtonDownFcn','');
wasInterrupted = 0;
catch
wasInterrupted = 1;
end
wasKeyPress = ~wasInterrupted & strcmp(get(fig,'KeyPressFcn'),'');
if wasInterrupted, errstr=lasterr; end;
% restore ButtonDownFcn and other figure values
set(objs,'ButtonDownFcn',buttonDownFcns);
set(fig,figProps,figValue);
function [out,is2D] = arrow_is2DXY(ax)
% check if axes are 2-D X-Y plots
% may not work for modified camera angles, etc.
out = logical(zeros(size(ax))); % 2-D X-Y plots
is2D = out; % any 2-D plots
views = get(ax(:),{'View'});
views = cat(1,views{:});
out(:) = abs(views(:,2))==90;
is2D(:) = out(:) | all(rem(views',90)==0)';
function out = arrow_planarkids(ax)
% check if axes descendents all have empty ZData (lines,patches,surfaces)
out = logical(ones(size(ax)));
allkids = get(ax(:),{'Children'});
for k=1:length(allkids),
kids = get([findobj(allkids{k},'flat','Type','line')
findobj(allkids{k},'flat','Type','patch')
findobj(allkids{k},'flat','Type','surface')],{'ZData'});
for j=1:length(kids),
if ~isempty(kids{j}), out(k)=logical(0); break; end;
end;
end;
function arrow_fixlimits(axlimits)
% reset the axis limits as necessary
if isempty(axlimits), disp([upper(mfilename) ' does not remember any axis limits to reset.']); end;
for k=1:size(axlimits,1),
if any(get(axlimits(k,1),'XLim')~=axlimits(k,2:3)), set(axlimits(k,1),'XLim',axlimits(k,2:3)); end;
if any(get(axlimits(k,1),'YLim')~=axlimits(k,4:5)), set(axlimits(k,1),'YLim',axlimits(k,4:5)); end;
if any(get(axlimits(k,1),'ZLim')~=axlimits(k,6:7)), set(axlimits(k,1),'ZLim',axlimits(k,6:7)); end;
end;
function out = arrow_WarpToFill(notstretched,manualcamera,curax)
% check if we are in "WarpToFill" mode.
out = strcmp(get(curax,'WarpToFill'),'on');
% 'WarpToFill' is undocumented, so may need to replace this by
% out = ~( any(notstretched) & any(manualcamera) );
function out = arrow_warnlimits(axlimits,narrows)
% create a warning message if we've changed the axis limits
msg = '';
switch (size(axlimits,1))
case 1, msg='';
case 2, msg='on two axes ';
otherwise, msg='on several axes ';
end;
msg = [upper(mfilename) ' changed the axis limits ' msg ...
'when adding the arrow'];
if (narrows>1), msg=[msg 's']; end;
out = [msg '.' sprintf('\n') ' Call ' upper(mfilename) ...
' FIXLIMITS to reset them now.'];
function arrow_copyprops(fm,to)
% copy line properties to patches
props = {'EraseMode','LineStyle','LineWidth','Marker','MarkerSize',...
'MarkerEdgeColor','MarkerFaceColor','ButtonDownFcn', ...
'Clipping','DeleteFcn','BusyAction','HandleVisibility', ...
'Selected','SelectionHighlight','Visible'};
lineprops = {'Color', props{:}};
patchprops = {'EdgeColor',props{:}};
patch2props = {'FaceColor',patchprops{:}};
fmpatch = strcmp(get(fm,'Type'),'patch');
topatch = strcmp(get(to,'Type'),'patch');
set(to( fmpatch& topatch),patch2props,get(fm( fmpatch& topatch),patch2props)); %p->p
set(to(~fmpatch&~topatch),lineprops, get(fm(~fmpatch&~topatch),lineprops )); %l->l
set(to( fmpatch&~topatch),lineprops, get(fm( fmpatch&~topatch),patchprops )); %p->l
set(to(~fmpatch& topatch),patchprops, get(fm(~fmpatch& topatch),lineprops) ,'FaceColor','none'); %l->p
function arrow_props
% display further help info about ARROW properties
c = sprintf('\n');
disp([c ...
'ARROW Properties: Default values are given in [square brackets], and other' c ...
' acceptable equivalent property names are in (parenthesis).' c c ...
' Start The starting points. For N arrows, B' c ...
' this should be a Nx2 or Nx3 matrix. /|\ ^' c ...
' Stop The end points. For N arrows, this /|||\ |' c ...
' should be a Nx2 or Nx3 matrix. //|||\\ L|' c ...
' Length Length of the arrowhead (in pixels on ///|||\\\ e|' c ...
' screen, points on a page). [16] (Len) ////|||\\\\ n|' c ...
' BaseAngle Angle (degrees) of the base angle /////|D|\\\\\ g|' c ...
' ADE. For a simple stick arrow, use //// ||| \\\\ t|' c ...
' BaseAngle=TipAngle. [90] (Base) /// ||| \\\ h|' c ...
' TipAngle Angle (degrees) of tip angle ABC. //<----->|| \\ |' c ...
' [16] (Tip) / base ||| \ V' c ...
' Width Width of the base in pixels. Not E angle ||<-------->C' c ...
' the ''LineWidth'' prop. [0] (Wid) |||tipangle' c ...
' Page If provided, non-empty, and not NaN, |||' c ...
' this causes ARROW to use hardcopy |||' c ...
' rather than onscreen proportions. A' c ...
' This is important if screen aspect --> <-- width' c ...
' ratio and hardcopy aspect ratio are ----CrossDir---->' c ...
' vastly different. []' c...
' CrossDir A vector giving the direction towards which the fletches' c ...
' on the arrow should go. [computed such that it is perpen-' c ...
' dicular to both the arrow direction and the view direction' c ...
' (i.e., as if it was pasted on a normal 2-D graph)] (Note' c ...
' that CrossDir is a vector. Also note that if an axis is' c ...
' plotted on a log scale, then the corresponding component' c ...
' of CrossDir must also be set appropriately, i.e., to 1 for' c ...
' no change in that direction, >1 for a positive change, >0' c ...
' and <1 for negative change.)' c ...
' NormalDir A vector normal to the fletch direction (CrossDir is then' c ...
' computed by the vector cross product [Line]x[NormalDir]). []' c ...
' (Note that NormalDir is a vector. Unlike CrossDir,' c ...
' NormalDir is used as is regardless of log-scaled axes.)' c ...
' Ends Set which end has an arrowhead. Valid values are ''none'',' c ...
' ''stop'', ''start'', and ''both''. [''stop''] (End)' c...
' ObjectHandles Vector of handles to previously-created arrows to be' c ...
' updated or line objects to be converted to arrows.' c ...
' [] (Object,Handle)' c ]);
function out = arrow_demo
% demo
% create the data
[x,y,z] = peaks;
[ddd,out.iii]=max(z(:));
out.axlim = [min(x(:)) max(x(:)) min(y(:)) max(y(:)) min(z(:)) max(z(:))];
% modify it by inserting some NaN's
[m,n] = size(z);
m = floor(m/2);
n = floor(n/2);
z(1:m,1:n) = NaN*ones(m,n);
% graph it
clf('reset');
out.hs=surf(x,y,z);
out.x=x; out.y=y; out.z=z;
xlabel('x'); ylabel('y');
function h = arrow_demo3(in)
% set the view
axlim = in.axlim;
axis(axlim);
zlabel('z');
%set(in.hs,'FaceColor','interp');
view(3); % view(viewmtx(-37.5,30,20));
title(['Demo of the capabilities of the ARROW function in 3-D']);
% Normal blue arrow
h1 = feval(mfilename,[axlim(1) axlim(4) 4],[-.8 1.2 4], ...
'EdgeColor','b','FaceColor','b');
% Normal white arrow, clipped by the surface
h2 = feval(mfilename,axlim([1 4 6]),[0 2 4]);
t=text(-2.4,2.7,7.7,'arrow clipped by surf');
% Baseangle<90
h3 = feval(mfilename,[3 .125 3.5],[1.375 0.125 3.5],30,50);
t2=text(3.1,.125,3.5,'local maximum');
% Baseangle<90, fill and edge colors different
h4 = feval(mfilename,axlim(1:2:5)*.5,[0 0 0],36,60,25, ...
'EdgeColor','b','FaceColor','c');
t3=text(axlim(1)*.5,axlim(3)*.5,axlim(5)*.5-.75,'origin');
set(t3,'HorizontalAlignment','center');
% Baseangle>90, black fill
h5 = feval(mfilename,[-2.9 2.9 3],[-1.3 .4 3.2],30,120,[],6, ...
'EdgeColor','r','FaceColor','k','LineWidth',2);
% Baseangle>90, no fill
h6 = feval(mfilename,[-2.9 2.9 1.3],[-1.3 .4 1.5],30,120,[],6, ...
'EdgeColor','r','FaceColor','none','LineWidth',2);
% Stick arrow
h7 = feval(mfilename,[-1.6 -1.65 -6.5],[0 -1.65 -6.5],[],16,16);
t4=text(-1.5,-1.65,-7.25,'global mininum');
set(t4,'HorizontalAlignment','center');
% Normal, black fill
h8 = feval(mfilename,[-1.4 0 -7.2],[-1.4 0 -3],'FaceColor','k');
t5=text(-1.5,0,-7.75,'local minimum');
set(t5,'HorizontalAlignment','center');
% Gray fill, crossdir specified, 'LineStyle' --
h9 = feval(mfilename,[-3 2.2 -6],[-3 2.2 -.05],36,[],27,6,[],[0 -1 0], ...
'EdgeColor','k','FaceColor',.75*[1 1 1],'LineStyle','--');
% a series of normal arrows, linearly spaced, crossdir specified
h10y=(0:4)'/3;
h10 = feval(mfilename,[-3*ones(size(h10y)) h10y -6.5*ones(size(h10y))], ...
[-3*ones(size(h10y)) h10y -.05*ones(size(h10y))], ...
12,[],[],[],[],[0 -1 0]);
% a series of normal arrows, linearly spaced
h11x=(1:.33:2.8)';
h11 = feval(mfilename,[h11x -3*ones(size(h11x)) 6.5*ones(size(h11x))], ...
[h11x -3*ones(size(h11x)) -.05*ones(size(h11x))]);
% series of magenta arrows, radially oriented, crossdir specified
h12x=2; h12y=-3; h12z=axlim(5)/2; h12xr=1; h12zr=h12z; ir=.15;or=.81;
h12t=(0:11)'/6*pi;
h12 = feval(mfilename, ...
[h12x+h12xr*cos(h12t)*ir h12y*ones(size(h12t)) ...
h12z+h12zr*sin(h12t)*ir],[h12x+h12xr*cos(h12t)*or ...
h12y*ones(size(h12t)) h12z+h12zr*sin(h12t)*or], ...
10,[],[],[],[], ...
[-h12xr*sin(h12t) zeros(size(h12t)) h12zr*cos(h12t)],...
'FaceColor','none','EdgeColor','m');
% series of normal arrows, tangentially oriented, crossdir specified
or13=.91; h13t=(0:.5:12)'/6*pi;
locs = [h12x+h12xr*cos(h13t)*or13 h12y*ones(size(h13t)) h12z+h12zr*sin(h13t)*or13];
h13 = feval(mfilename,locs(1:end-1,:),locs(2:end,:),6);
% arrow with no line ==> oriented downwards
h14 = feval(mfilename,[3 3 .100001],[3 3 .1],30);
t6=text(3,3,3.6,'no line'); set(t6,'HorizontalAlignment','center');
% arrow with arrowheads at both ends
h15 = feval(mfilename,[-.5 -3 -3],[1 -3 -3],'Ends','both','FaceColor','g', ...
'Length',20,'Width',3,'CrossDir',[0 0 1],'TipAngle',25);
h=[h1;h2;h3;h4;h5;h6;h7;h8;h9;h10;h11;h12;h13;h14;h15];
function h = arrow_demo2(in)
axlim = in.axlim;
dolog = 1;
if (dolog), set(in.hs,'YData',10.^get(in.hs,'YData')); end;
shading('interp');
view(2);
title(['Demo of the capabilities of the ARROW function in 2-D']);
hold on; [C,H]=contour(in.x,in.y,in.z,20,'-'); hold off;
for k=H',
set(k,'ZData',(axlim(6)+1)*ones(size(get(k,'XData'))),'Color','k');
if (dolog), set(k,'YData',10.^get(k,'YData')); end;
end;
if (dolog), axis([axlim(1:2) 10.^axlim(3:4)]); set(gca,'YScale','log');
else, axis(axlim(1:4)); end;
% Normal blue arrow
start = [axlim(1) axlim(4) axlim(6)+2];
stop = [in.x(in.iii) in.y(in.iii) axlim(6)+2];
if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end;
h1 = feval(mfilename,start,stop,'EdgeColor','b','FaceColor','b');
% three arrows with varying fill, width, and baseangle
start = [-3 -3 10; -3 -1.5 10; -1.5 -3 10];
stop = [-.03 -.03 10; -.03 -1.5 10; -1.5 -.03 10];
if (dolog), start(:,2)=10.^start(:,2); stop(:,2)=10.^stop(:,2); end;
h2 = feval(mfilename,start,stop,24,[90;60;120],[],[0;0;4],'Ends',str2mat('both','stop','stop'));
set(h2(2),'EdgeColor',[0 .35 0],'FaceColor',[0 .85 .85]);
set(h2(3),'EdgeColor','r','FaceColor',[1 .5 1]);
h=[h1;h2];
function out = trueornan(x)
if isempty(x),
out=x;
else,
out = isnan(x);
out(~out) = x(~out);
end;
|
github
|
cosmicBboy/bayesian-reasoning-machine-learning-master
|
demoBayesErrorAnalysis.m
|
.m
|
bayesian-reasoning-machine-learning-master/src/DemosExercises/demoBayesErrorAnalysis.m
| 1,860 |
utf_8
|
2cd17f883c53fbb75be770a1da1a00a3
|
function demoBayesErrorAnalysis
%DEMOBAYESERRORANALYSIS demo of Bayesian error analysis
N = 20; % number of datapoints
Q = 3; % number of error types
% make some errors for the two classifers :
errtype={'IndepSameErrorGenerator','IndepDiffErrorGenerator','DepErrorGenerator'};
GenerateError=errtype{randgen(1:3)}
switch GenerateError
case 'IndepDiffErrorGenerator' % independent different error generator:
ra = rand(Q,1); rb = rand(Q,1);
rab = ra*rb';
relprobC = vec(rab);
case 'IndepSameErrorGenerator'% independent same error generator:
ra = rand(Q,1); rb = ra;
rab = ra*rb';
relprobC = vec(rab);
case 'DepErrorGenerator'% dependent error generator:
relprobC = vec(rand(Q,Q));
end
errors = randgen(relprobC,1,N); % sample the errors
% form the count matrices and vectors:
vec_errorAB=zeros(1,Q*Q);
for i=1:N
vec_errorAB(errors(i))= vec_errorAB(errors(i))+1;
end
C = vec2mat(vec_errorAB) % count matrix of errors
ca = sum(C,1); cb = sum(C,2)';
% Simple Bayesian analysis of the error counts based on Dirichlet
% prior and multinomial error distribution:
u =ones(1,Q); % uniform prior distribution
lb = logZ(u+ca)+logZ(u+cb) - logZ(u)- logZ(u+ca+cb);
disp(['p(classifiers are indep and different)/p(classifiers are independent and same)=',num2str(exp(lb))]);
U=ones(Q,Q); % uniform prior
lb = logZ(u+ca)+logZ(u+cb)+logZ(vec(U))-2*logZ(u)-logZ(vec(U+C));
disp(['p(classifiers are indep and different)/p(classifiers are dependent)=',num2str(exp(lb))])
% test Hsame/Hdep
lb = logZ(u+ca+cb)+logZ(vec(U))-logZ(u)-logZ(vec(U+C));
disp(['p(classifiers are indep and same)/p(classifiers are dependent)=',num2str(exp(lb))]);
function v = vec(C)
tmp=C'; v=tmp(:);
function C=vec2mat(v)
Q = sqrt(length(v)); C= reshape(v,Q,Q)';
function lz=logZ(u)
lz = sum(gammaln(u))- gammaln(sum(u));
|
github
|
smilingmaria/speech2vec-master
|
generalized_MLPG_ver2.m
|
.m
|
speech2vec-master/fbank_matlab/generalized_MLPG_ver2.m
| 4,240 |
utf_8
|
adbbb93fe0898f8cf875a705feac00c3
|
% 2015.2.26 constructed by Hwang, Hsin-Te
% 2016.1.26 modified by Wu, Ted
% 1.This function performs Maximum likelihood parameter generation (MLPG) algorithm to
% smooth ANN-mapping's output
function [converted_seq_mlpg]=generalized_MLPG_ver2(Input_seq,Cov,dynamic_flag,featureDIM)
converted_seq = zeros(featureDIM/(dynamic_flag+1),size(Input_seq,2));
parfor i=1:(featureDIM/(dynamic_flag+1))
Cov_new = zeros(3,3);
Input_seq_new = zeros(3,size(Input_seq,2));
Input_seq_new(1,:) = Input_seq(i,:);
Input_seq_new(2,:) = Input_seq(i+(featureDIM/(dynamic_flag+1)),:);
Input_seq_new(3,:) = Input_seq(i+(featureDIM/(dynamic_flag+1))*2,:);
Cov_new(1,1) = Cov(i,i);
Cov_new(2,2) = Cov(i+(featureDIM/(dynamic_flag+1)),...
i+(featureDIM/(dynamic_flag+1)));
Cov_new(3,3) = Cov(i+(featureDIM/(dynamic_flag+1))*2,...
i+(featureDIM/(dynamic_flag+1))*2);
[converted_seq(i,:)] = generalized_MLPG_ver1(Input_seq_new,Cov_new,dynamic_flag); % mcc_dim by lenght, using dynamic features
end
converted_seq_mlpg=converted_seq;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output_sequence]=generalized_MLPG_ver1(Input_seq,Cov,dynamic_flag)
%% Input parameters:
% Input_seq: Input sequence obtained by ANN-mapping,
% e.g., 3D-by-T -> ( Input_seq = (static+delta+delta^2) by T ), where D = dimension of static/delta/delta^2, T is total
% number of input frames.
% Cov: A single Gaussian estimated covariance matrix, e.g., 3D by 3D
% dynamic_flag: 1 -> using delta, 2-> using delta^2;
%% Output parameter:
% output_sequence: Generating smoothed output sequence
%% 1. Intial values setup for MLPG algorithm
sequence_length = size(Input_seq,2);
front_term=0;
back_term=0;
if dynamic_flag ==1
static_dim=size(Input_seq,1)/2;
w=[[0*eye(static_dim) 1*eye(static_dim) 0*eye(static_dim)];[-0.5*eye(static_dim) 0*eye(static_dim) 0.5*eye(static_dim)]]; % delta
else % dynamic_flag == 2
static_dim=size(Input_seq,1)/3;
w=[[0*eye(static_dim) 1*eye(static_dim) 0*eye(static_dim)];[-0.5*eye(static_dim) 0*eye(static_dim) 0.5*eye(static_dim)];[1*eye(static_dim) -2*eye(static_dim) 1*eye(static_dim)]]; %delta^2
end
w=sparse(w);
CCov_seq = zeros(size(Input_seq,1),size(Input_seq,1),sequence_length); % covariance sequence
for i = 1:sequence_length
CCov_seq(:,:,i) = Cov(:,:);
end
%% 2. MLPG algorithm
for j=1:sequence_length
if j==1
if dynamic_flag==1
W=[w(:,static_dim+1:end),zeros(2*static_dim,(sequence_length-2)*static_dim)]; % delta
elseif dynamic_flag==2
W=[w(:,static_dim+1:end),zeros(3*static_dim,(sequence_length-2)*static_dim)]; % delta^2
else
W=[w(:,static_dim+1:end),zeros(2*static_dim,(sequence_length-2)*static_dim)]; % delta
end
elseif j==sequence_length
if dynamic_flag==1
W=[zeros(2*static_dim,(sequence_length-2)*static_dim),w(:,1:2*static_dim)]; % delta
elseif dynamic_flag==2
W=[zeros(3*static_dim,(sequence_length-2)*static_dim),w(:,1:2*static_dim)]; % delta^2
else
W=[zeros(2*static_dim,(sequence_length-2)*static_dim),w(:,1:2*static_dim)]; % delta
end
else
if dynamic_flag==1
W=[zeros(2*static_dim,(j-2)*static_dim),w,zeros(2*static_dim,(sequence_length-3-j+2)*static_dim)]; % delta
elseif dynamic_flag==2
W=[zeros(3*static_dim,(j-2)*static_dim),w,zeros(3*static_dim,(sequence_length-3-j+2)*static_dim)]; % delta^2
else
W=[zeros(2*static_dim,(j-2)*static_dim),w,zeros(2*static_dim,(sequence_length-3-j+2)*static_dim)]; % delta
end
end
E=Input_seq(:,j);
D=CCov_seq(:,:,j);
D=sparse(D);
Q=W'*(D^-1);
front_term=sparse(front_term)+Q*W;
back_term=sparse(back_term)+Q*E;
end
est_t=front_term\back_term;
output_sequence=full(reshape(est_t,static_dim,sequence_length));
|
github
|
smilingmaria/speech2vec-master
|
dynamic_feature_ver1.m
|
.m
|
speech2vec-master/fbank_matlab/dynamic_feature_ver1.m
| 1,358 |
utf_8
|
7610f02fbfe4fe6461f77397b724202e
|
% 2013.11.25 constructed by Hwang, Hsin-Te:
% 2013.11.25 modified by Hwang, Hsin-Te
% Computing static and dynamic features
function output_sequence=dynamic_feature_ver1(static_feature_seq,dynamic_flag)
% static_feature_seq: static feature sequence
% dynamic_flag: 1=>delta, 2=> delta^2
% output_sequence: joint static and dynamic feature sequence
output_sequence=[];
[mcc_dim seq_length]=size(static_feature_seq);
if dynamic_flag==1
w=[[0*eye(mcc_dim) 1*eye(mcc_dim) 0*eye(mcc_dim)];[-0.5*eye(mcc_dim) 0*eye(mcc_dim) 0.5*eye(mcc_dim)]];
elseif dynamic_flag==2
w=[[0*eye(mcc_dim) 1*eye(mcc_dim) 0*eye(mcc_dim)];[-0.5*eye(mcc_dim) 0*eye(mcc_dim) 0.5*eye(mcc_dim)];[1*eye(mcc_dim) -2*eye(mcc_dim) 1*eye(mcc_dim)]];
else
exit(1);
end
for i=1:seq_length
if i==1
static=zeros(mcc_dim,3);
static(:,2)=static_feature_seq(:,i);
static(:,3)=static_feature_seq(:,i+1);
elseif i==size(static_feature_seq,2)
static=zeros(mcc_dim,3);
static(:,1)=static_feature_seq(:,i-1);
static(:,2)=static_feature_seq(:,i);
else
static=static_feature_seq(:,i-1:i+1);
end
len=size(static,2);
y=reshape(static,mcc_dim*len,1);
dynamic_feature_vector=w*y;
output_sequence=[output_sequence,dynamic_feature_vector];
end
|
github
|
smilingmaria/speech2vec-master
|
fft2melmx.m
|
.m
|
speech2vec-master/fbank_matlab/fft2melmx.m
| 5,099 |
utf_8
|
bc5ec77cf66dbf11ed4f40f366c81a85
|
function [wts,binfrqs] = fft2melmx(nfft, sr, nfilts, width, minfrq, maxfrq, htkmel, constamp)
% wts = fft2melmx(nfft, sr, nfilts, width, minfrq, maxfrq, htkmel, constamp)
% Generate a matrix of weights to combine FFT bins into Mel
% bins. nfft defines the source FFT size at sampling rate sr.
% Optional nfilts specifies the number of output bands required
% (else one per bark), and width is the constant width of each
% band relative to standard Mel (default 1).
% While wts has nfft columns, the second half are all zero.
% Hence, Mel spectrum is fft2melmx(nfft,sr)*abs(fft(xincols,nfft));
% minfrq is the frequency (in Hz) of the lowest band edge;
% default is 0, but 133.33 is a common standard (to skip LF).
% maxfrq is frequency in Hz of upper edge; default sr/2.
% You can exactly duplicate the mel matrix in Slaney's mfcc.m
% as fft2melmx(512, 8000, 40, 1, 133.33, 6855.5, 0);
% htkmel=1 means use HTK's version of the mel curve, not Slaney's.
% constamp=1 means make integration windows peak at 1, not sum to 1.
% 2004-09-05 [email protected] based on fft2barkmx
if nargin < 2; sr = 8000; end
if nargin < 3; nfilts = 40; end
if nargin < 4; width = 1.0; end
if nargin < 5; minfrq = 0; end % default bottom edge at 0
if nargin < 6; maxfrq = sr/2; end % default top edge at nyquist
if nargin < 7; htkmel = 0; end
if nargin < 8; constamp = 0; end
wts = zeros(nfilts, nfft);
% Center freqs of each FFT bin
fftfrqs = [0:nfft-1]/nfft*sr;
% 'Center freqs' of mel bands - uniformly spaced between limits
minmel = hz2mel(minfrq, htkmel);
maxmel = hz2mel(maxfrq, htkmel);
binfrqs = mel2hz(minmel+[0:(nfilts+1)]/(nfilts+1)*(maxmel-minmel), htkmel);
%%%%%Add new bandwidth
% load BandWeight;
% BandWidth=1./Aver.*1;
% binfreqs=cumsum(BandWidth);
% my_x=linspace(1,60,62);
% binfreqs=spline(1:60,binfreqs,my_x);
% binfrqs=binfreqs./max(binfreqs)*8000;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
binbin = round(binfrqs/sr*(nfft-1));
for i = 1:nfilts
% fs = mel2hz(i + [-1 0 1], htkmel);
fs = binfrqs(i+[0 1 2]);
% scale by width
fs = fs(2)+width*(fs - fs(2));
% lower and upper slopes for all bins
loslope = (fftfrqs - fs(1))/(fs(2) - fs(1));
hislope = (fs(3) - fftfrqs)/(fs(3) - fs(2));
% .. then intersect them with each other and zero
% wts(i,:) = 2/(fs(3)-fs(1))*max(0,min(loslope, hislope));
wts(i,:) = max(0,min(loslope, hislope));
% actual algo and weighting in feacalc (more or less)
% wts(i,:) = 0;
% ww = binbin(i+2)-binbin(i);
% usl = binbin(i+1)-binbin(i);
% wts(i,1+binbin(i)+[1:usl]) = 2/ww * [1:usl]/usl;
% dsl = binbin(i+2)-binbin(i+1);
% wts(i,1+binbin(i+1)+[1:(dsl-1)]) = 2/ww * [(dsl-1):-1:1]/dsl;
% need to disable weighting below if you use this one
end
if (constamp == 0)
% Slaney-style mel is scaled to be approx constant E per channel
wts = diag(2./(binfrqs(2+[1:nfilts])-binfrqs(1:nfilts)))*wts;
end
% Make sure 2nd half of FFT is zero
wts(:,(nfft/2+1):nfft) = 0;
% seems like a good idea to avoid aliasing
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function f = mel2hz(z, htk)
% f = mel2hz(z, htk)
% Convert 'mel scale' frequencies into Hz
% Optional htk = 1 means use the HTK formula
% else use the formula from Slaney's mfcc.m
% 2005-04-19 [email protected]
if nargin < 2
htk = 0;
end
if htk == 1
f = 700*(10.^(z/2595)-1);
else
f_0 = 0; % 133.33333;
f_sp = 200/3; % 66.66667;
brkfrq = 1000;
brkpt = (brkfrq - f_0)/f_sp; % starting mel value for log region
logstep = exp(log(6.4)/27); % the magic 1.0711703 which is the ratio needed to get from 1000 Hz to 6400 Hz in 27 steps, and is *almost* the ratio between 1000 Hz and the preceding linear filter center at 933.33333 Hz (actually 1000/933.33333 = 1.07142857142857 and exp(log(6.4)/27) = 1.07117028749447)
linpts = (z < brkpt);
f = 0*z;
% fill in parts separately
f(linpts) = f_0 + f_sp*z(linpts);
f(~linpts) = brkfrq*exp(log(logstep)*(z(~linpts)-brkpt));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function z = hz2mel(f,htk)
% z = hz2mel(f,htk)
% Convert frequencies f (in Hz) to mel 'scale'.
% Optional htk = 1 uses the mel axis defined in the HTKBook
% otherwise use Slaney's formula
% 2005-04-19 [email protected]
if nargin < 2
htk = 0;
end
if htk == 1
z = 2595 * log10(1+f/700);
else
% Mel fn to match Slaney's Auditory Toolbox mfcc.m
f_0 = 0; % 133.33333;
f_sp = 200/3; % 66.66667;
brkfrq = 1000;
brkpt = (brkfrq - f_0)/f_sp; % starting mel value for log region
logstep = exp(log(6.4)/27); % the magic 1.0711703 which is the ratio needed to get from 1000 Hz to 6400 Hz in 27 steps, and is *almost* the ratio between 1000 Hz and the preceding linear filter center at 933.33333 Hz (actually 1000/933.33333 = 1.07142857142857 and exp(log(6.4)/27) = 1.07117028749447)
linpts = (f < brkfrq);
z = 0*f;
% fill in parts separately
z(linpts) = (f(linpts) - f_0)/f_sp;
z(~linpts) = brkpt+(log(f(~linpts)/brkfrq))./log(logstep);
end
|
github
|
Ewenwan/MVision-master
|
resampindex.m
|
.m
|
MVision-master/3D_Object_Detection/Object_Tracking/pf_socker/resampindex.m
| 616 |
utf_8
|
17caee9b7bd62253da8e82b86d55eead
|
function indices = resampindex(weights)
weights = max(0,weights);
weights = weights/sum(weights);
N = length(weights);
cumprob=[0 cumsum(weights)];
indices = zeros(1,N);
if (0)
%usual version where each sample drawn randomly
uni=rand(1,N);
for j=1:N
ind=find((uni>cumprob(j)) & (uni<=cumprob(j+1)));
indices(ind)=j;
end
return
end
%more efficient version where one random sample seeds
%a deterministically methodical sampling by 1/N
i=1;
u1 = rand(1)/N;
for j=1:N
uj = u1 + (j-1)/N;
while (uj > cumprob(i))
i=i+1;
end
indices(j) = (i-1);
end
return
|
github
|
Ewenwan/MVision-master
|
genfilename.m
|
.m
|
MVision-master/3D_Object_Detection/Object_Tracking/pf_socker/genfilename.m
| 301 |
utf_8
|
ce642ba63a549af477c6165624c061ec
|
%function fname = genfilename(sequencestruct, framenumber)
function fname = genfilename(sequencestruct, framenumber)
digstr = sprintf('%%0%dd',sequencestruct.digits);
filstr = sprintf('%%s%s%%s',digstr);
fname = sprintf(filstr,sequencestruct.prefix,framenumber,sequencestruct.postfix);
return
|
github
|
OliverKohlDSc/x11-novnc-docker-master
|
lorenz.m
|
.m
|
x11-novnc-docker-master/octave_scr/lorenz.m
| 464 |
utf_8
|
b641d130b724a86bacead286119a74bf
|
% "Visualizing the Lorenz Strange Attractor with Octave"
% http://www.ibm.com/developerworks/library/l-datavistools/ (Listing 4)
%
% Big Thanks to Douglas (http://lists.gnu.org/archive/html/help-octave/2015-07/msg00159.html)
% Usage:
% x = lsode("lorenz", [3;15;1], (0:0.01:25)');
% plot3(x(:,1),x(:,2),x(:,3))
% plot3(x(:,001),x(:,3),x(:,2))
function y = lorenz( x, t )
y = [10 * (x(2) - x(1));
x(1) * (28 - x(3));
x(1) * x(2) - 8/3 * x(3)];
endfunction
|
github
|
NeuBtracker/acquisition-master
|
fmeasure.m
|
.m
|
acquisition-master/03_Util/external/fmeasure.m
| 9,062 |
utf_8
|
ddd88bb978206f149aff0960807c38e2
|
function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of
%an image. It may be invoked as:
%
% FM = fmeasure(IMAGE, METHOD, ROI)
%
%Where
% IMAGE, is a grayscale image and FM is the computed
% focus value.
% METHOD, is the focus measure algorithm as a string.
% see 'operators.txt' for a list of focus
% measure methods.
% ROI, Image ROI as a rectangle [xo yo width heigth].
% if an empty argument is passed, the whole
% image is processed.
%
% Said Pertuz
% Jan/2016
if nargin>2 && ~isempty(ROI)
Image = imcrop(Image, ROI);
end
WSize = 15; % Size of local window (only some operators)
switch upper(Measure)
case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
if ~isinteger(Image), Image = im2uint8(Image);
end
FM = AcMomentum(Image);
case 'BREN' % Brenner's (Santos97)
[M, N] = size(Image);
DH = zeros(M, N);
DV = zeros(M, N);
DV(1:M-2,:) = Image(3:end,:)-Image(1:end-2,:);
DH(:,1:N-2) = Image(:,3:end)-Image(:,1:end-2);
FM = max(DH, DV);
FM = FM.^2;
FM = mean2(FM);
case 'CONT' % Image contrast (Nanda2001)
ImContrast = @(x) sum(abs(x(:)-x(5)));
FM = nlfilter(Image, [3 3], ImContrast);
FM = mean2(FM);
case 'CURV' % Image Curvature (Helmli2001)
if ~isinteger(Image), Image = im2uint8(Image);
end
M1 = [-1 0 1;-1 0 1;-1 0 1];
M2 = [1 0 1;1 0 1;1 0 1];
P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
-imfilter(Image, M2', 'replicate', 'conv')/5;
P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
+3*imfilter(Image, M2, 'replicate', 'conv')/10;
FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
FM = mean2(FM);
case 'DCTE' % DCT energy ratio (Shen2006)
FM = nlfilter(Image, [8 8], @DctRatio);
FM = mean2(FM);
case 'DCTR' % DCT reduced energy ratio (Lee2009)
FM = nlfilter(Image, [8 8], @ReRatio);
FM = mean2(FM);
case 'GDER' % Gaussian derivative (Geusebroek2000)
N = floor(WSize/2);
sig = N/2.5;
[x,y] = meshgrid(-N:N, -N:N);
G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx = -x.*G/(sig^2);
Gx = Gx/sum(abs(Gx(:)));
Gy = -y.*G/(sig^2);
Gy = Gy/sum(abs(Gy(:)));
Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
FM = Rx.^2+Ry.^2;
FM = mean2(FM);
case 'GLVA' % Graylevel variance (Krotkov86)
FM = std2(Image);
case 'GLLV' %Graylevel local variance (Pech2000)
LVar = stdfilt(Image, ones(WSize,WSize)).^2;
FM = std2(LVar)^2;
case 'GLVN' % Normalized GLV (Santos97)
FM = std2(Image)^2/mean2(Image);
case 'GRAE' % Energy of gradient (Subbarao92a)
Ix = Image;
Iy = Image;
Iy(1:end-1,:) = diff(Image, 1, 1);
Ix(:,1:end-1) = diff(Image, 1, 2);
FM = Ix.^2 + Iy.^2;
FM = mean2(FM);
case 'GRAT' % Thresholded gradient (Snatos97)
Th = 0; %Threshold
Ix = Image;
Iy = Image;
Iy(1:end-1,:) = diff(Image, 1, 1);
Ix(:,1:end-1) = diff(Image, 1, 2);
FM = max(abs(Ix), abs(Iy));
FM(FM<Th)=0;
FM = sum(FM(:))/sum(sum(FM~=0));
case 'GRAS' % Squared gradient (Eskicioglu95)
Ix = diff(Image, 1, 2);
FM = Ix.^2;
FM = mean2(FM);
case 'HELM' %Helmli's mean method (Helmli2001)
MEANF = fspecial('average',[WSize WSize]);
U = imfilter(Image, MEANF, 'replicate');
R1 = U./Image;
R1(Image==0)=1;
index = (U>Image);
FM = 1./R1;
FM(index) = R1(index);
FM = mean2(FM);
case 'HISE' % Histogram entropy (Krotkov86)
FM = entropy(Image);
case 'HISR' % Histogram range (Firestone91)
FM = max(Image(:))-min(Image(:));
case 'LAPE' % Energy of laplacian (Subbarao92a)
LAP = fspecial('laplacian');
FM = imfilter(Image, LAP, 'replicate', 'conv');
FM = mean2(FM.^2);
case 'LAPM' % Modified Laplacian (Nayar89)
M = [-1 2 -1];
Lx = imfilter(Image, M, 'replicate', 'conv');
Ly = imfilter(Image, M', 'replicate', 'conv');
FM = abs(Lx) + abs(Ly);
FM = mean2(FM);
case 'LAPV' % Variance of laplacian (Pech2000)
LAP = fspecial('laplacian');
ILAP = imfilter(Image, LAP, 'replicate', 'conv');
FM = std2(ILAP)^2;
case 'LAPD' % Diagonal laplacian (Thelen2009)
M1 = [-1 2 -1];
M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
F1 = imfilter(Image, M1, 'replicate', 'conv');
F2 = imfilter(Image, M2, 'replicate', 'conv');
F3 = imfilter(Image, M3, 'replicate', 'conv');
F4 = imfilter(Image, M1', 'replicate', 'conv');
FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
FM = mean2(FM);
case 'SFIL' %Steerable filters (Minhas2009)
% Angles = [0 45 90 135 180 225 270 315];
N = floor(WSize/2);
sig = N/2.5;
[x,y] = meshgrid(-N:N, -N:N);
G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
R(:,:,8) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
FM = max(R,[],3);
FM = mean2(FM);
case 'SFRQ' % Spatial frequency (Eskicioglu95)
Ix = Image;
Iy = Image;
Ix(:,1:end-1) = diff(Image, 1, 2);
Iy(1:end-1,:) = diff(Image, 1, 1);
FM = mean2(sqrt(double(Iy.^2+Ix.^2)));
case 'TENG'% Tenengrad (Krotkov86)
Sx = fspecial('sobel');
Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
FM = Gx.^2 + Gy.^2;
FM = mean2(FM);
case 'TENV' % Tenengrad variance (Pech2000)
Sx = fspecial('sobel');
Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
G = Gx.^2 + Gy.^2;
FM = std2(G)^2;
case 'VOLA' % Vollath's correlation (Santos97)
Image = double(Image);
I1 = Image; I1(1:end-1,:) = Image(2:end,:);
I2 = Image; I2(1:end-2,:) = Image(3:end,:);
Image = Image.*(I1-I2);
FM = mean2(Image);
case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
[C,S] = wavedec2(Image, 1, 'db6');
H = wrcoef2('h', C, S, 'db6', 1);
V = wrcoef2('v', C, S, 'db6', 1);
D = wrcoef2('d', C, S, 'db6', 1);
FM = abs(H) + abs(V) + abs(D);
FM = mean2(FM);
case 'WAVV' %Variance of Wav...(Yang2003)
[C,S] = wavedec2(Image, 1, 'db6');
H = abs(wrcoef2('h', C, S, 'db6', 1));
V = abs(wrcoef2('v', C, S, 'db6', 1));
D = abs(wrcoef2('d', C, S, 'db6', 1));
FM = std2(H)^2+std2(V)+std2(D);
case 'WAVR'
[C,S] = wavedec2(Image, 3, 'db6');
H = abs(wrcoef2('h', C, S, 'db6', 1));
V = abs(wrcoef2('v', C, S, 'db6', 1));
D = abs(wrcoef2('d', C, S, 'db6', 1));
A1 = abs(wrcoef2('a', C, S, 'db6', 1));
A2 = abs(wrcoef2('a', C, S, 'db6', 2));
A3 = abs(wrcoef2('a', C, S, 'db6', 3));
A = A1 + A2 + A3;
WH = H.^2 + V.^2 + D.^2;
WH = mean2(WH);
WL = mean2(A);
FM = WH/WL;
otherwise
error('Unknown measure %s',upper(Measure))
end
end
%************************************************************************
function fm = AcMomentum(Image)
[M, N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end
%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end
%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************
|
github
|
NeuBtracker/acquisition-master
|
progressbar.m
|
.m
|
acquisition-master/03_Util/external/progressbar.m
| 11,820 |
utf_8
|
08d8ff8b281b8fa1ee4a4a8e6a8d21b5
|
% Description:
% progressbar() provides an indication of the progress of some task using
% graphics and text. Calling progressbar repeatedly will update the figure and
% automatically estimate the amount of time remaining.
% This implementation of progressbar is intended to be extremely simple to use
% while providing a high quality user experience.
%
% Features:
% - Can add progressbar to existing m-files with a single line of code.
% - Supports multiple bars in one figure to show progress of nested loops.
% - Optional labels on bars.
% - Figure closes automatically when task is complete.
% - Only one figure can exist so old figures don't clutter the desktop.
% - Remaining time estimate is accurate even if the figure gets closed.
% - Minimal execution time. Won't slow down code.
% - Randomized color. When a programmer gets bored...
%
% Example Function Calls For Single Bar Usage:
% progressbar % Initialize/reset
% progressbar(0) % Initialize/reset
% progressbar('Label') % Initialize/reset and label the bar
% progressbar(0.5) % Update
% progressbar(1) % Close
%
% Example Function Calls For Multi Bar Usage:
% progressbar(0, 0) % Initialize/reset two bars
% progressbar('A', '') % Initialize/reset two bars with one label
% progressbar('', 'B') % Initialize/reset two bars with one label
% progressbar('A', 'B') % Initialize/reset two bars with two labels
% progressbar(0.3) % Update 1st bar
% progressbar(0.3, []) % Update 1st bar
% progressbar([], 0.3) % Update 2nd bar
% progressbar(0.7, 0.9) % Update both bars
% progressbar(1) % Close
% progressbar(1, []) % Close
% progressbar(1, 0.4) % Close
%
% Notes:
% For best results, call progressbar with all zero (or all string) inputs
% before any processing. This sets the proper starting time reference to
% calculate time remaining.
% Bar color is choosen randomly when the figure is created or reset. Clicking
% the bar will cause a random color change.
%
% Demos:
% % Single bar
% m = 500;
% progressbar % Init single bar
% for i = 1:m
% pause(0.01) % Do something important
% progressbar(i/m) % Update progress bar
% end
%
% % Simple multi bar (update one bar at a time)
% m = 4;
% n = 3;
% p = 100;
% progressbar(0,0,0) % Init 3 bars
% for i = 1:m
% progressbar([],0) % Reset 2nd bar
% for j = 1:n
% progressbar([],[],0) % Reset 3rd bar
% for k = 1:p
% pause(0.01) % Do something important
% progressbar([],[],k/p) % Update 3rd bar
% end
% progressbar([],j/n) % Update 2nd bar
% end
% progressbar(i/m) % Update 1st bar
% end
%
% % Fancy multi bar (use labels and update all bars at once)
% m = 4;
% n = 3;
% p = 100;
% progressbar('Monte Carlo Trials','Simulation','Component') % Init 3 bars
% for i = 1:m
% for j = 1:n
% for k = 1:p
% pause(0.01) % Do something important
% % Update all bars
% frac3 = k/p;
% frac2 = ((j-1) + frac3) / n;
% frac1 = ((i-1) + frac2) / m;
% progressbar(frac1, frac2, frac3)
% end
% end
% end
%
% Author:
% Steve Hoelzer
%
% Revisions:
% 2002-Feb-27 Created function
% 2002-Mar-19 Updated title text order
% 2002-Apr-11 Use floor instead of round for percentdone
% 2002-Jun-06 Updated for speed using patch (Thanks to waitbar.m)
% 2002-Jun-19 Choose random patch color when a new figure is created
% 2002-Jun-24 Click on bar or axes to choose new random color
% 2002-Jun-27 Calc time left, reset progress bar when fractiondone == 0
% 2002-Jun-28 Remove extraText var, add position var
% 2002-Jul-18 fractiondone input is optional
% 2002-Jul-19 Allow position to specify screen coordinates
% 2002-Jul-22 Clear vars used in color change callback routine
% 2002-Jul-29 Position input is always specified in pixels
% 2002-Sep-09 Change order of title bar text
% 2003-Jun-13 Change 'min' to 'm' because of built in function 'min'
% 2003-Sep-08 Use callback for changing color instead of string
% 2003-Sep-10 Use persistent vars for speed, modify titlebarstr
% 2003-Sep-25 Correct titlebarstr for 0% case
% 2003-Nov-25 Clear all persistent vars when percentdone = 100
% 2004-Jan-22 Cleaner reset process, don't create figure if percentdone = 100
% 2004-Jan-27 Handle incorrect position input
% 2004-Feb-16 Minimum time interval between updates
% 2004-Apr-01 Cleaner process of enforcing minimum time interval
% 2004-Oct-08 Seperate function for timeleftstr, expand to include days
% 2004-Oct-20 Efficient if-else structure for sec2timestr
% 2006-Sep-11 Width is a multiple of height (don't stretch on widescreens)
% 2010-Sep-21 Major overhaul to support multiple bars and add labels
%
function progressbar(varargin)
persistent progfig progdata lastupdate
% Get inputs
if nargin > 0
input = varargin;
ninput = nargin;
else
% If no inputs, init with a single bar
input = {0};
ninput = 1;
end
% If task completed, close figure and clear vars, then exit
if input{1} == 1
if ishandle(progfig)
delete(progfig) % Close progress bar
end
clear progfig progdata lastupdate % Clear persistent vars
drawnow
return
end
% Init reset flag
resetflag = false;
% Set reset flag if first input is a string
if ischar(input{1})
resetflag = true;
end
% Set reset flag if all inputs are zero
if input{1} == 0
% If the quick check above passes, need to check all inputs
if all([input{:}] == 0) && (length([input{:}]) == ninput)
resetflag = true;
end
end
% Set reset flag if more inputs than bars
if ninput > length(progdata)
resetflag = true;
end
% If reset needed, close figure and forget old data
if resetflag
if ishandle(progfig)
delete(progfig) % Close progress bar
end
progfig = [];
progdata = []; % Forget obsolete data
end
% Create new progress bar if needed
if ishandle(progfig)
else % This strange if-else works when progfig is empty (~ishandle() does not)
% Define figure size and axes padding for the single bar case
height = 0.03;
width = height * 8;
hpad = 0.02;
vpad = 0.25;
% Figure out how many bars to draw
nbars = max(ninput, length(progdata));
% Adjust figure size and axes padding for number of bars
heightfactor = (1 - vpad) * nbars + vpad;
height = height * heightfactor;
vpad = vpad / heightfactor;
% Initialize progress bar figure
%left = (1 - width) / 2; bottom = (1 - height) / 2; %ORIGINAL
left = 0.1; bottom = 0.5; %MINE
progfig = figure(...
'Units', 'normalized',...
'Position', [left bottom width height],...
'NumberTitle', 'off',...
'Resize', 'off',...
'MenuBar', 'none' );
% Initialize axes, patch, and text for each bar
left = hpad;
width = 1 - 2*hpad;
vpadtotal = vpad * (nbars + 1);
height = (1 - vpadtotal) / nbars;
for ndx = 1:nbars
% Create axes, patch, and text
bottom = vpad + (vpad + height) * (nbars - ndx);
progdata(ndx).progaxes = axes( ...
'Position', [left bottom width height], ...
'XLim', [0 1], ...
'YLim', [0 1], ...
'Box', 'on', ...
'ytick', [], ...
'xtick', [] );
progdata(ndx).progpatch = patch( ...
'XData', [0 0 0 0], ...
'YData', [0 0 1 1] );
progdata(ndx).progtext = text(0.99, 0.5, '', ...
'HorizontalAlignment', 'Right', ...
'FontUnits', 'Normalized', ...
'FontSize', 0.7 );
progdata(ndx).proglabel = text(0.01, 0.5, '', ...
'HorizontalAlignment', 'Left', ...
'FontUnits', 'Normalized', ...
'FontSize', 0.7 );
if ischar(input{ndx})
set(progdata(ndx).proglabel, 'String', input{ndx})
input{ndx} = 0;
end
% Set callbacks to change color on mouse click
set(progdata(ndx).progaxes, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
set(progdata(ndx).progpatch, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
set(progdata(ndx).progtext, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
set(progdata(ndx).proglabel, 'ButtonDownFcn', {@changecolor, progdata(ndx).progpatch})
% Pick a random color for this patch
changecolor([], [], progdata(ndx).progpatch)
% Set starting time reference
if ~isfield(progdata(ndx), 'starttime') || isempty(progdata(ndx).starttime)
progdata(ndx).starttime = clock;
end
end
% Set time of last update to ensure a redraw
lastupdate = clock - 1;
end
% Process inputs and update state of progdata
for ndx = 1:ninput
if ~isempty(input{ndx})
progdata(ndx).fractiondone = input{ndx};
progdata(ndx).clock = clock;
end
end
% Enforce a minimum time interval between graphics updates
myclock = clock;
if abs(myclock(6) - lastupdate(6)) < 0.01 % Could use etime() but this is faster
return
end
% Update progress patch
for ndx = 1:length(progdata)
set(progdata(ndx).progpatch, 'XData', ...
[0, progdata(ndx).fractiondone, progdata(ndx).fractiondone, 0])
end
% Update progress text if there is more than one bar
if length(progdata) > 1
for ndx = 1:length(progdata)
set(progdata(ndx).progtext, 'String', ...
sprintf('%1d%%', floor(100*progdata(ndx).fractiondone)))
end
end
% Update progress figure title bar
if progdata(1).fractiondone > 0
runtime = etime(progdata(1).clock, progdata(1).starttime);
timeleft = runtime / progdata(1).fractiondone - runtime;
timeleftstr = sec2timestr(timeleft);
titlebarstr = sprintf('%2d%% %s remaining', ...
floor(100*progdata(1).fractiondone), timeleftstr);
else
titlebarstr = ' 0%';
end
set(progfig, 'Name', titlebarstr)
% Force redraw to show changes
drawnow
% Record time of this update
lastupdate = clock;
% ------------------------------------------------------------------------------
function changecolor(h, e, progpatch) %#ok<INUSL>
% Change the color of the progress bar patch
% Prevent color from being too dark or too light
colormin = 1.5;
colormax = 2.8;
thiscolor = rand(1, 3);
while (sum(thiscolor) < colormin) || (sum(thiscolor) > colormax)
thiscolor = rand(1, 3);
end
set(progpatch, 'FaceColor', thiscolor)
% ------------------------------------------------------------------------------
function timestr = sec2timestr(sec)
% Convert a time measurement from seconds into a human readable string.
% Convert seconds to other units
w = floor(sec/604800); % Weeks
sec = sec - w*604800;
d = floor(sec/86400); % Days
sec = sec - d*86400;
h = floor(sec/3600); % Hours
sec = sec - h*3600;
m = floor(sec/60); % Minutes
sec = sec - m*60;
s = floor(sec); % Seconds
% Create time string
if w > 0
if w > 9
timestr = sprintf('%d week', w);
else
timestr = sprintf('%d week, %d day', w, d);
end
elseif d > 0
if d > 9
timestr = sprintf('%d day', d);
else
timestr = sprintf('%d day, %d hr', d, h);
end
elseif h > 0
if h > 9
timestr = sprintf('%d hr', h);
else
timestr = sprintf('%d hr, %d min', h, m);
end
elseif m > 0
if m > 9
timestr = sprintf('%d min', m);
else
timestr = sprintf('%d min, %d sec', m, s);
end
else
timestr = sprintf('%d sec', s);
end
|
github
|
NeuBtracker/acquisition-master
|
dftregistration.m
|
.m
|
acquisition-master/03_Util/external/dftregistration.m
| 9,281 |
utf_8
|
8ba8c554cc9ad00df6d4276b74c64b36
|
function [output, Greg] = dftregistration(buf1ft,buf2ft,usfac)
% function [output Greg] = dftregistration(buf1ft,buf2ft,usfac);
% Efficient subpixel image registration by crosscorrelation. This code
% gives the same precision as the FFT upsampled cross correlation in a
% small fraction of the computation time and with reduced memory
% requirements. It obtains an initial estimate of the crosscorrelation peak
% by an FFT and then refines the shift estimation by upsampling the DFT
% only in a small neighborhood of that estimate by means of a
% matrix-multiply DFT. With this procedure all the image points are used to
% compute the upsampled crosscorrelation.
% Manuel Guizar - Dec 13, 2007
%
% Rewrote all code not authored by either Manuel Guizar or Jim Fienup
% Manuel Guizar - May 13, 2016
%
% Citation for this algorithm:
% Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup,
% "Efficient subpixel image registration algorithms," Opt. Lett. 33,
% 156-158 (2008).
%
% Inputs
% buf1ft Fourier transform of reference image,
% DC in (1,1) [DO NOT FFTSHIFT]
% buf2ft Fourier transform of image to register,
% DC in (1,1) [DO NOT FFTSHIFT]
% usfac Upsampling factor (integer). Images will be registered to
% within 1/usfac of a pixel. For example usfac = 20 means the
% images will be registered within 1/20 of a pixel. (default = 1)
%
% Outputs
% output = [error,diffphase,net_row_shift,net_col_shift]
% error Translation invariant normalized RMS error between f and g
% diffphase Global phase difference between the two images (should be
% zero if images are non-negative).
% net_row_shift net_col_shift Pixel shifts between images
% Greg (Optional) Fourier transform of registered version of buf2ft,
% the global phase difference is compensated for.
%
%
% Copyright (c) 2016, Manuel Guizar Sicairos, James R. Fienup, University of Rochester
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are
% met:
%
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in
% the documentation and/or other materials provided with the distribution
% * Neither the name of the University of Rochester nor the names
% of its contributors may be used to endorse or promote products derived
% from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
% POSSIBILITY OF SUCH DAMAGE.
if ~exist('usfac','var')
usfac = 1;
end
[nr,nc]=size(buf2ft);
Nr = ifftshift(-fix(nr/2):ceil(nr/2)-1);
Nc = ifftshift(-fix(nc/2):ceil(nc/2)-1);
if usfac == 0
% Simple computation of error and phase difference without registration
CCmax = sum(buf1ft(:).*conj(buf2ft(:)));
row_shift = 0;
col_shift = 0;
elseif usfac == 1
% Single pixel registration
CC = ifft2(buf1ft.*conj(buf2ft));
CCabs = abs(CC);
[row_shift, col_shift] = find(CCabs == max(CCabs(:)));
CCmax = CC(row_shift,col_shift)*nr*nc;
% Now change shifts so that they represent relative shifts and not indices
row_shift = Nr(row_shift);
col_shift = Nc(col_shift);
elseif usfac > 1
% Start with usfac == 2
CC = ifft2(FTpad(buf1ft.*conj(buf2ft),[2*nr,2*nc]));
CCabs = abs(CC);
[row_shift, col_shift] = find(CCabs == max(CCabs(:)),1,'first');
CCmax = CC(row_shift,col_shift)*nr*nc;
% Now change shifts so that they represent relative shifts and not indices
Nr2 = ifftshift(-fix(nr):ceil(nr)-1);
Nc2 = ifftshift(-fix(nc):ceil(nc)-1);
row_shift = Nr2(row_shift)/2;
col_shift = Nc2(col_shift)/2;
% If upsampling > 2, then refine estimate with matrix multiply DFT
if usfac > 2,
%%% DFT computation %%%
% Initial shift estimate in upsampled grid
row_shift = round(row_shift*usfac)/usfac;
col_shift = round(col_shift*usfac)/usfac;
dftshift = fix(ceil(usfac*1.5)/2); %% Center of output array at dftshift+1
% Matrix multiply DFT around the current shift estimate
CC = conj(dftups(buf2ft.*conj(buf1ft),ceil(usfac*1.5),ceil(usfac*1.5),usfac,...
dftshift-row_shift*usfac,dftshift-col_shift*usfac));
% Locate maximum and map back to original pixel grid
CCabs = abs(CC);
[rloc, cloc] = find(CCabs == max(CCabs(:)),1,'first');
CCmax = CC(rloc,cloc);
rloc = rloc - dftshift - 1;
cloc = cloc - dftshift - 1;
row_shift = row_shift + rloc/usfac;
col_shift = col_shift + cloc/usfac;
end
% If its only one row or column the shift along that dimension has no
% effect. Set to zero.
if nr == 1,
row_shift = 0;
end
if nc == 1,
col_shift = 0;
end
end
rg00 = sum(abs(buf1ft(:)).^2);
rf00 = sum(abs(buf2ft(:)).^2);
error = 1.0 - abs(CCmax).^2/(rg00*rf00);
error = sqrt(abs(error));
diffphase = angle(CCmax);
output=[error,diffphase,row_shift,col_shift];
% Compute registered version of buf2ft
if (nargout > 1)&&(usfac > 0),
[Nc,Nr] = meshgrid(Nc,Nr);
Greg = buf2ft.*exp(1i*2*pi*(-row_shift*Nr/nr-col_shift*Nc/nc));
Greg = Greg*exp(1i*diffphase);
elseif (nargout > 1)&&(usfac == 0)
Greg = buf2ft*exp(1i*diffphase);
end
return
function out=dftups(in,nor,noc,usfac,roff,coff)
% function out=dftups(in,nor,noc,usfac,roff,coff);
% Upsampled DFT by matrix multiplies, can compute an upsampled DFT in just
% a small region.
% usfac Upsampling factor (default usfac = 1)
% [nor,noc] Number of pixels in the output upsampled DFT, in
% units of upsampled pixels (default = size(in))
% roff, coff Row and column offsets, allow to shift the output array to
% a region of interest on the DFT (default = 0)
% Recieves DC in upper left corner, image center must be in (1,1)
% Manuel Guizar - Dec 13, 2007
% Modified from dftus, by J.R. Fienup 7/31/06
% This code is intended to provide the same result as if the following
% operations were performed
% - Embed the array "in" in an array that is usfac times larger in each
% dimension. ifftshift to bring the center of the image to (1,1).
% - Take the FFT of the larger array
% - Extract an [nor, noc] region of the result. Starting with the
% [roff+1 coff+1] element.
% It achieves this result by computing the DFT in the output array without
% the need to zeropad. Much faster and memory efficient than the
% zero-padded FFT approach if [nor noc] are much smaller than [nr*usfac nc*usfac]
[nr,nc]=size(in);
% Set defaults
if exist('roff', 'var')~=1, roff=0; end
if exist('coff', 'var')~=1, coff=0; end
if exist('usfac','var')~=1, usfac=1; end
if exist('noc', 'var')~=1, noc=nc; end
if exist('nor', 'var')~=1, nor=nr; end
% Compute kernels and obtain DFT by matrix products
kernc=exp((-1i*2*pi/(nc*usfac))*( ifftshift(0:nc-1).' - floor(nc/2) )*( (0:noc-1) - coff ));
kernr=exp((-1i*2*pi/(nr*usfac))*( (0:nor-1).' - roff )*( ifftshift([0:nr-1]) - floor(nr/2) ));
out=kernr*in*kernc;
return
function [ imFTout ] = FTpad(imFT,outsize)
% imFTout = FTpad(imFT,outsize)
% Pads or crops the Fourier transform to the desired ouput size. Taking
% care that the zero frequency is put in the correct place for the output
% for subsequent FT or IFT. Can be used for Fourier transform based
% interpolation, i.e. dirichlet kernel interpolation.
%
% Inputs
% imFT - Input complex array with DC in [1,1]
% outsize - Output size of array [ny nx]
%
% Outputs
% imout - Output complex image with DC in [1,1]
% Manuel Guizar - 2014.06.02
if ~ismatrix(imFT)
error('Maximum number of array dimensions is 2')
end
Nout = outsize;
Nin = size(imFT);
imFT = fftshift(imFT);
center = floor(size(imFT)/2)+1;
imFTout = zeros(outsize);
centerout = floor(size(imFTout)/2)+1;
% imout(centerout(1)+[1:Nin(1)]-center(1),centerout(2)+[1:Nin(2)]-center(2)) ...
% = imFT;
cenout_cen = centerout - center;
imFTout(max(cenout_cen(1)+1,1):min(cenout_cen(1)+Nin(1),Nout(1)),max(cenout_cen(2)+1,1):min(cenout_cen(2)+Nin(2),Nout(2))) ...
= imFT(max(-cenout_cen(1)+1,1):min(-cenout_cen(1)+Nout(1),Nin(1)),max(-cenout_cen(2)+1,1):min(-cenout_cen(2)+Nout(2),Nin(2)));
imFTout = ifftshift(imFTout)*Nout(1)*Nout(2)/(Nin(1)*Nin(2));
return
|
github
|
NeuBtracker/acquisition-master
|
mouseinput_timeout.m
|
.m
|
acquisition-master/01_Acquisition/Functions/mouseinput_timeout.m
| 3,655 |
utf_8
|
480bb97f4f606096de22a342aed79ef2
|
% MOUSEINPUT_TIMEOUT returns continuous mouse locations with timeout
% OUT = MOUSEINPUT_TIMEOUT returns the sequence of mouse locations between
% a button press and a button release in the current axes. It does
% not timeout. OUT is an Nx2 matrix, where OUT(1,:) is the location
% at button press and OUT(END,:) is the location at button release.
%
% OUT = MOUSEINPUT_TIMEOUT(T) times out after a period of T seconds.
% T can be a fractional value (T=inf indicates no timeout). If
% the mouse-button has not been pressed during that time, OUT is [].
% If the timeout occurs during a mouse movement, OUT contains the
% mouse locations before the timeout.
%
% OUT = MOUSEINPUT_TIMEOUT(T,AH) records the mouse movement from
% the axes specified by axes handle AH.
%
% Note: MOUSEINPUT_TIMEOUT differs from GINPUT in two ways.
% (1) It does not return information about which mouse button
% was pressed, and
% (2) It ignores key presses.
%
% Example:
% % record movements from current axes, timeout after 4.5 sec
% out = mouseinput_timeout(4.5, gca);
% figure;
% plot(out(:,1), out(:,2), '.-'); % plot the mouse movement
%
% See also ginput, waitforbuttonpress
%
% Gautam Vallabha, Sep-23-2007, [email protected]
% Copyright 2009 The MathWorks, Inc.
%
% Updated minor typo that caused an error in 2009b
% (Gautam Vallabha, Nov-17-2009)
function selectedPts = mouseinput_timeout(timeoutval, axesHandle)
if ~exist('axesHandle', 'var')
axesHandle = gca;
end
if ~exist('timeoutval', 'var'),
timeoutval = inf;
end
if ~(ishandle(axesHandle) && strcmp(get(axesHandle,'type'),'axes'))
error('Axis handle is not valid');
end
if ~(isscalar(timeoutval) && (timeoutval > 0))
error('Timeout should be a positive scalar');
end
%-----------------------
figHandle = get(axesHandle, 'parent');
selectedPts = [];
% get existing figure properties
oldProperties = get(figHandle, ...
{'WindowButtonDownFcn','WindowButtonUpFcn',...
'WindowButtonMotionFcn', 'units','pointer'});
% replace with new properties to register mouse input
set(figHandle, ...
{'WindowButtonDownFcn','WindowButtonUpFcn',...
'WindowButtonMotionFcn', 'units','pointer'}, ...
{ @buttonDownCallback, @buttonUpCallback, ...
[], 'pixels', 'crosshair' });
figLocation = get(figHandle, 'Position');
% key step: wait until timeout or until UIRESUME is called
if isinf(timeoutval)
uiwait(figHandle);
else
uiwait(figHandle, timeoutval);
end
% restore pre-existing figure properties
set(figHandle, ...
{'WindowButtonDownFcn','WindowButtonUpFcn',...
'WindowButtonMotionFcn', 'units','pointer'}, ...
oldProperties);
%% --------------------------------------------
function buttonMotionCallback(obj, eventdata) %#ok<INUSD>
pt = mapCurrentPosition();
selectedPts(end+1,:) = pt(1,1:2);
end
function buttonDownCallback(obj, eventdata) %#ok<INUSD>
selectedPts = [];
set(obj, 'WindowButtonMotionFcn', @buttonMotionCallback);
end
function buttonUpCallback(obj, eventdata) %#ok<INUSD>
pt = mapCurrentPosition();
selectedPts(end+1,:) = pt(1,1:2);
set(obj, 'WindowButtonMotionFcn', [] );
uiresume(figHandle);
end
%% --------------------------------------------
% The following adjustment is based on GINPUT
function pt = mapCurrentPosition()
scrn_pt = get(0, 'PointerLocation');
set(figHandle,'CurrentPoint',...
[scrn_pt(1) - figLocation(1) + 1, scrn_pt(2) - figLocation(2) + 1]);
pt = get(axesHandle,'CurrentPoint');
end
%%
end
|
github
|
NeuBtracker/acquisition-master
|
fmeasure.m
|
.m
|
acquisition-master/01_Acquisition/Functions/Autofocus/fmeasure.m
| 9,062 |
utf_8
|
ddd88bb978206f149aff0960807c38e2
|
function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of
%an image. It may be invoked as:
%
% FM = fmeasure(IMAGE, METHOD, ROI)
%
%Where
% IMAGE, is a grayscale image and FM is the computed
% focus value.
% METHOD, is the focus measure algorithm as a string.
% see 'operators.txt' for a list of focus
% measure methods.
% ROI, Image ROI as a rectangle [xo yo width heigth].
% if an empty argument is passed, the whole
% image is processed.
%
% Said Pertuz
% Jan/2016
if nargin>2 && ~isempty(ROI)
Image = imcrop(Image, ROI);
end
WSize = 15; % Size of local window (only some operators)
switch upper(Measure)
case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
if ~isinteger(Image), Image = im2uint8(Image);
end
FM = AcMomentum(Image);
case 'BREN' % Brenner's (Santos97)
[M, N] = size(Image);
DH = zeros(M, N);
DV = zeros(M, N);
DV(1:M-2,:) = Image(3:end,:)-Image(1:end-2,:);
DH(:,1:N-2) = Image(:,3:end)-Image(:,1:end-2);
FM = max(DH, DV);
FM = FM.^2;
FM = mean2(FM);
case 'CONT' % Image contrast (Nanda2001)
ImContrast = @(x) sum(abs(x(:)-x(5)));
FM = nlfilter(Image, [3 3], ImContrast);
FM = mean2(FM);
case 'CURV' % Image Curvature (Helmli2001)
if ~isinteger(Image), Image = im2uint8(Image);
end
M1 = [-1 0 1;-1 0 1;-1 0 1];
M2 = [1 0 1;1 0 1;1 0 1];
P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
-imfilter(Image, M2', 'replicate', 'conv')/5;
P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
+3*imfilter(Image, M2, 'replicate', 'conv')/10;
FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
FM = mean2(FM);
case 'DCTE' % DCT energy ratio (Shen2006)
FM = nlfilter(Image, [8 8], @DctRatio);
FM = mean2(FM);
case 'DCTR' % DCT reduced energy ratio (Lee2009)
FM = nlfilter(Image, [8 8], @ReRatio);
FM = mean2(FM);
case 'GDER' % Gaussian derivative (Geusebroek2000)
N = floor(WSize/2);
sig = N/2.5;
[x,y] = meshgrid(-N:N, -N:N);
G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx = -x.*G/(sig^2);
Gx = Gx/sum(abs(Gx(:)));
Gy = -y.*G/(sig^2);
Gy = Gy/sum(abs(Gy(:)));
Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
FM = Rx.^2+Ry.^2;
FM = mean2(FM);
case 'GLVA' % Graylevel variance (Krotkov86)
FM = std2(Image);
case 'GLLV' %Graylevel local variance (Pech2000)
LVar = stdfilt(Image, ones(WSize,WSize)).^2;
FM = std2(LVar)^2;
case 'GLVN' % Normalized GLV (Santos97)
FM = std2(Image)^2/mean2(Image);
case 'GRAE' % Energy of gradient (Subbarao92a)
Ix = Image;
Iy = Image;
Iy(1:end-1,:) = diff(Image, 1, 1);
Ix(:,1:end-1) = diff(Image, 1, 2);
FM = Ix.^2 + Iy.^2;
FM = mean2(FM);
case 'GRAT' % Thresholded gradient (Snatos97)
Th = 0; %Threshold
Ix = Image;
Iy = Image;
Iy(1:end-1,:) = diff(Image, 1, 1);
Ix(:,1:end-1) = diff(Image, 1, 2);
FM = max(abs(Ix), abs(Iy));
FM(FM<Th)=0;
FM = sum(FM(:))/sum(sum(FM~=0));
case 'GRAS' % Squared gradient (Eskicioglu95)
Ix = diff(Image, 1, 2);
FM = Ix.^2;
FM = mean2(FM);
case 'HELM' %Helmli's mean method (Helmli2001)
MEANF = fspecial('average',[WSize WSize]);
U = imfilter(Image, MEANF, 'replicate');
R1 = U./Image;
R1(Image==0)=1;
index = (U>Image);
FM = 1./R1;
FM(index) = R1(index);
FM = mean2(FM);
case 'HISE' % Histogram entropy (Krotkov86)
FM = entropy(Image);
case 'HISR' % Histogram range (Firestone91)
FM = max(Image(:))-min(Image(:));
case 'LAPE' % Energy of laplacian (Subbarao92a)
LAP = fspecial('laplacian');
FM = imfilter(Image, LAP, 'replicate', 'conv');
FM = mean2(FM.^2);
case 'LAPM' % Modified Laplacian (Nayar89)
M = [-1 2 -1];
Lx = imfilter(Image, M, 'replicate', 'conv');
Ly = imfilter(Image, M', 'replicate', 'conv');
FM = abs(Lx) + abs(Ly);
FM = mean2(FM);
case 'LAPV' % Variance of laplacian (Pech2000)
LAP = fspecial('laplacian');
ILAP = imfilter(Image, LAP, 'replicate', 'conv');
FM = std2(ILAP)^2;
case 'LAPD' % Diagonal laplacian (Thelen2009)
M1 = [-1 2 -1];
M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
F1 = imfilter(Image, M1, 'replicate', 'conv');
F2 = imfilter(Image, M2, 'replicate', 'conv');
F3 = imfilter(Image, M3, 'replicate', 'conv');
F4 = imfilter(Image, M1', 'replicate', 'conv');
FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
FM = mean2(FM);
case 'SFIL' %Steerable filters (Minhas2009)
% Angles = [0 45 90 135 180 225 270 315];
N = floor(WSize/2);
sig = N/2.5;
[x,y] = meshgrid(-N:N, -N:N);
G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
R(:,:,8) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
FM = max(R,[],3);
FM = mean2(FM);
case 'SFRQ' % Spatial frequency (Eskicioglu95)
Ix = Image;
Iy = Image;
Ix(:,1:end-1) = diff(Image, 1, 2);
Iy(1:end-1,:) = diff(Image, 1, 1);
FM = mean2(sqrt(double(Iy.^2+Ix.^2)));
case 'TENG'% Tenengrad (Krotkov86)
Sx = fspecial('sobel');
Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
FM = Gx.^2 + Gy.^2;
FM = mean2(FM);
case 'TENV' % Tenengrad variance (Pech2000)
Sx = fspecial('sobel');
Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
G = Gx.^2 + Gy.^2;
FM = std2(G)^2;
case 'VOLA' % Vollath's correlation (Santos97)
Image = double(Image);
I1 = Image; I1(1:end-1,:) = Image(2:end,:);
I2 = Image; I2(1:end-2,:) = Image(3:end,:);
Image = Image.*(I1-I2);
FM = mean2(Image);
case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
[C,S] = wavedec2(Image, 1, 'db6');
H = wrcoef2('h', C, S, 'db6', 1);
V = wrcoef2('v', C, S, 'db6', 1);
D = wrcoef2('d', C, S, 'db6', 1);
FM = abs(H) + abs(V) + abs(D);
FM = mean2(FM);
case 'WAVV' %Variance of Wav...(Yang2003)
[C,S] = wavedec2(Image, 1, 'db6');
H = abs(wrcoef2('h', C, S, 'db6', 1));
V = abs(wrcoef2('v', C, S, 'db6', 1));
D = abs(wrcoef2('d', C, S, 'db6', 1));
FM = std2(H)^2+std2(V)+std2(D);
case 'WAVR'
[C,S] = wavedec2(Image, 3, 'db6');
H = abs(wrcoef2('h', C, S, 'db6', 1));
V = abs(wrcoef2('v', C, S, 'db6', 1));
D = abs(wrcoef2('d', C, S, 'db6', 1));
A1 = abs(wrcoef2('a', C, S, 'db6', 1));
A2 = abs(wrcoef2('a', C, S, 'db6', 2));
A3 = abs(wrcoef2('a', C, S, 'db6', 3));
A = A1 + A2 + A3;
WH = H.^2 + V.^2 + D.^2;
WH = mean2(WH);
WL = mean2(A);
FM = WH/WL;
otherwise
error('Unknown measure %s',upper(Measure))
end
end
%************************************************************************
function fm = AcMomentum(Image)
[M, N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end
%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end
%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************
|
github
|
NeuBtracker/acquisition-master
|
fmeasure.m
|
.m
|
acquisition-master/01_Acquisition/Functions/Autofocus/fmeasure/fmeasure.m
| 9,062 |
utf_8
|
ddd88bb978206f149aff0960807c38e2
|
function FM = fmeasure(Image, Measure, ROI)
%This function measures the relative degree of focus of
%an image. It may be invoked as:
%
% FM = fmeasure(IMAGE, METHOD, ROI)
%
%Where
% IMAGE, is a grayscale image and FM is the computed
% focus value.
% METHOD, is the focus measure algorithm as a string.
% see 'operators.txt' for a list of focus
% measure methods.
% ROI, Image ROI as a rectangle [xo yo width heigth].
% if an empty argument is passed, the whole
% image is processed.
%
% Said Pertuz
% Jan/2016
if nargin>2 && ~isempty(ROI)
Image = imcrop(Image, ROI);
end
WSize = 15; % Size of local window (only some operators)
switch upper(Measure)
case 'ACMO' % Absolute Central Moment (Shirvaikar2004)
if ~isinteger(Image), Image = im2uint8(Image);
end
FM = AcMomentum(Image);
case 'BREN' % Brenner's (Santos97)
[M, N] = size(Image);
DH = zeros(M, N);
DV = zeros(M, N);
DV(1:M-2,:) = Image(3:end,:)-Image(1:end-2,:);
DH(:,1:N-2) = Image(:,3:end)-Image(:,1:end-2);
FM = max(DH, DV);
FM = FM.^2;
FM = mean2(FM);
case 'CONT' % Image contrast (Nanda2001)
ImContrast = @(x) sum(abs(x(:)-x(5)));
FM = nlfilter(Image, [3 3], ImContrast);
FM = mean2(FM);
case 'CURV' % Image Curvature (Helmli2001)
if ~isinteger(Image), Image = im2uint8(Image);
end
M1 = [-1 0 1;-1 0 1;-1 0 1];
M2 = [1 0 1;1 0 1;1 0 1];
P0 = imfilter(Image, M1, 'replicate', 'conv')/6;
P1 = imfilter(Image, M1', 'replicate', 'conv')/6;
P2 = 3*imfilter(Image, M2, 'replicate', 'conv')/10 ...
-imfilter(Image, M2', 'replicate', 'conv')/5;
P3 = -imfilter(Image, M2, 'replicate', 'conv')/5 ...
+3*imfilter(Image, M2, 'replicate', 'conv')/10;
FM = abs(P0) + abs(P1) + abs(P2) + abs(P3);
FM = mean2(FM);
case 'DCTE' % DCT energy ratio (Shen2006)
FM = nlfilter(Image, [8 8], @DctRatio);
FM = mean2(FM);
case 'DCTR' % DCT reduced energy ratio (Lee2009)
FM = nlfilter(Image, [8 8], @ReRatio);
FM = mean2(FM);
case 'GDER' % Gaussian derivative (Geusebroek2000)
N = floor(WSize/2);
sig = N/2.5;
[x,y] = meshgrid(-N:N, -N:N);
G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx = -x.*G/(sig^2);
Gx = Gx/sum(abs(Gx(:)));
Gy = -y.*G/(sig^2);
Gy = Gy/sum(abs(Gy(:)));
Rx = imfilter(double(Image), Gx, 'conv', 'replicate');
Ry = imfilter(double(Image), Gy, 'conv', 'replicate');
FM = Rx.^2+Ry.^2;
FM = mean2(FM);
case 'GLVA' % Graylevel variance (Krotkov86)
FM = std2(Image);
case 'GLLV' %Graylevel local variance (Pech2000)
LVar = stdfilt(Image, ones(WSize,WSize)).^2;
FM = std2(LVar)^2;
case 'GLVN' % Normalized GLV (Santos97)
FM = std2(Image)^2/mean2(Image);
case 'GRAE' % Energy of gradient (Subbarao92a)
Ix = Image;
Iy = Image;
Iy(1:end-1,:) = diff(Image, 1, 1);
Ix(:,1:end-1) = diff(Image, 1, 2);
FM = Ix.^2 + Iy.^2;
FM = mean2(FM);
case 'GRAT' % Thresholded gradient (Snatos97)
Th = 0; %Threshold
Ix = Image;
Iy = Image;
Iy(1:end-1,:) = diff(Image, 1, 1);
Ix(:,1:end-1) = diff(Image, 1, 2);
FM = max(abs(Ix), abs(Iy));
FM(FM<Th)=0;
FM = sum(FM(:))/sum(sum(FM~=0));
case 'GRAS' % Squared gradient (Eskicioglu95)
Ix = diff(Image, 1, 2);
FM = Ix.^2;
FM = mean2(FM);
case 'HELM' %Helmli's mean method (Helmli2001)
MEANF = fspecial('average',[WSize WSize]);
U = imfilter(Image, MEANF, 'replicate');
R1 = U./Image;
R1(Image==0)=1;
index = (U>Image);
FM = 1./R1;
FM(index) = R1(index);
FM = mean2(FM);
case 'HISE' % Histogram entropy (Krotkov86)
FM = entropy(Image);
case 'HISR' % Histogram range (Firestone91)
FM = max(Image(:))-min(Image(:));
case 'LAPE' % Energy of laplacian (Subbarao92a)
LAP = fspecial('laplacian');
FM = imfilter(Image, LAP, 'replicate', 'conv');
FM = mean2(FM.^2);
case 'LAPM' % Modified Laplacian (Nayar89)
M = [-1 2 -1];
Lx = imfilter(Image, M, 'replicate', 'conv');
Ly = imfilter(Image, M', 'replicate', 'conv');
FM = abs(Lx) + abs(Ly);
FM = mean2(FM);
case 'LAPV' % Variance of laplacian (Pech2000)
LAP = fspecial('laplacian');
ILAP = imfilter(Image, LAP, 'replicate', 'conv');
FM = std2(ILAP)^2;
case 'LAPD' % Diagonal laplacian (Thelen2009)
M1 = [-1 2 -1];
M2 = [0 0 -1;0 2 0;-1 0 0]/sqrt(2);
M3 = [-1 0 0;0 2 0;0 0 -1]/sqrt(2);
F1 = imfilter(Image, M1, 'replicate', 'conv');
F2 = imfilter(Image, M2, 'replicate', 'conv');
F3 = imfilter(Image, M3, 'replicate', 'conv');
F4 = imfilter(Image, M1', 'replicate', 'conv');
FM = abs(F1) + abs(F2) + abs(F3) + abs(F4);
FM = mean2(FM);
case 'SFIL' %Steerable filters (Minhas2009)
% Angles = [0 45 90 135 180 225 270 315];
N = floor(WSize/2);
sig = N/2.5;
[x,y] = meshgrid(-N:N, -N:N);
G = exp(-(x.^2+y.^2)/(2*sig^2))/(2*pi*sig);
Gx = -x.*G/(sig^2);Gx = Gx/sum(Gx(:));
Gy = -y.*G/(sig^2);Gy = Gy/sum(Gy(:));
R(:,:,1) = imfilter(double(Image), Gx, 'conv', 'replicate');
R(:,:,2) = imfilter(double(Image), Gy, 'conv', 'replicate');
R(:,:,3) = cosd(45)*R(:,:,1)+sind(45)*R(:,:,2);
R(:,:,4) = cosd(135)*R(:,:,1)+sind(135)*R(:,:,2);
R(:,:,5) = cosd(180)*R(:,:,1)+sind(180)*R(:,:,2);
R(:,:,6) = cosd(225)*R(:,:,1)+sind(225)*R(:,:,2);
R(:,:,7) = cosd(270)*R(:,:,1)+sind(270)*R(:,:,2);
R(:,:,8) = cosd(315)*R(:,:,1)+sind(315)*R(:,:,2);
FM = max(R,[],3);
FM = mean2(FM);
case 'SFRQ' % Spatial frequency (Eskicioglu95)
Ix = Image;
Iy = Image;
Ix(:,1:end-1) = diff(Image, 1, 2);
Iy(1:end-1,:) = diff(Image, 1, 1);
FM = mean2(sqrt(double(Iy.^2+Ix.^2)));
case 'TENG'% Tenengrad (Krotkov86)
Sx = fspecial('sobel');
Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
FM = Gx.^2 + Gy.^2;
FM = mean2(FM);
case 'TENV' % Tenengrad variance (Pech2000)
Sx = fspecial('sobel');
Gx = imfilter(double(Image), Sx, 'replicate', 'conv');
Gy = imfilter(double(Image), Sx', 'replicate', 'conv');
G = Gx.^2 + Gy.^2;
FM = std2(G)^2;
case 'VOLA' % Vollath's correlation (Santos97)
Image = double(Image);
I1 = Image; I1(1:end-1,:) = Image(2:end,:);
I2 = Image; I2(1:end-2,:) = Image(3:end,:);
Image = Image.*(I1-I2);
FM = mean2(Image);
case 'WAVS' %Sum of Wavelet coeffs (Yang2003)
[C,S] = wavedec2(Image, 1, 'db6');
H = wrcoef2('h', C, S, 'db6', 1);
V = wrcoef2('v', C, S, 'db6', 1);
D = wrcoef2('d', C, S, 'db6', 1);
FM = abs(H) + abs(V) + abs(D);
FM = mean2(FM);
case 'WAVV' %Variance of Wav...(Yang2003)
[C,S] = wavedec2(Image, 1, 'db6');
H = abs(wrcoef2('h', C, S, 'db6', 1));
V = abs(wrcoef2('v', C, S, 'db6', 1));
D = abs(wrcoef2('d', C, S, 'db6', 1));
FM = std2(H)^2+std2(V)+std2(D);
case 'WAVR'
[C,S] = wavedec2(Image, 3, 'db6');
H = abs(wrcoef2('h', C, S, 'db6', 1));
V = abs(wrcoef2('v', C, S, 'db6', 1));
D = abs(wrcoef2('d', C, S, 'db6', 1));
A1 = abs(wrcoef2('a', C, S, 'db6', 1));
A2 = abs(wrcoef2('a', C, S, 'db6', 2));
A3 = abs(wrcoef2('a', C, S, 'db6', 3));
A = A1 + A2 + A3;
WH = H.^2 + V.^2 + D.^2;
WH = mean2(WH);
WL = mean2(A);
FM = WH/WL;
otherwise
error('Unknown measure %s',upper(Measure))
end
end
%************************************************************************
function fm = AcMomentum(Image)
[M, N] = size(Image);
Hist = imhist(Image)/(M*N);
Hist = abs((0:255)-255*mean2(Image))'.*Hist;
fm = sum(Hist);
end
%******************************************************************
function fm = DctRatio(M)
MT = dct2(M).^2;
fm = (sum(MT(:))-MT(1,1))/MT(1,1);
end
%************************************************************************
function fm = ReRatio(M)
M = dct2(M);
fm = (M(1,2)^2+M(1,3)^2+M(2,1)^2+M(2,2)^2+M(3,1)^2)/(M(1,1)^2);
end
%******************************************************************
|
github
|
NeuBtracker/acquisition-master
|
F_IMdif2Coord_131.m
|
.m
|
acquisition-master/01_Acquisition/Functions/OriginalTrackingObsolete/F_IMdif2Coord_131.m
| 3,598 |
utf_8
|
4ba37d580fe7c5d3367af2e6c07e8efd
|
function [status, Coord, IMdif] = F_IMdif2Coord_131(IM, IM_o,ill_type, pl, blur_fact, nsig_bin, npxl_min, npxl_max)
% This function computes the difference between the coordinates of the
% fish in the two input images.
% INPUT: IM first input image
% IM_o second input image (presumably the previous image)
% ill_type type of illumination: 'transmit' or 'reflex'
% pl plot option (1>yes, 0>no)
% blur_fact blurring factor
% nsig_bin number of sigma defining the binary threshold
% npxl_min Minimal number of pixels for a valid detection
% This is roughtly equal to the area of the fish
% npxl_max Maximal number of pixels for a valid detection
% This upper limit is usefull in case the whole
% arena moves. In case the detected changing are is
% bigger, then the status is set to 0
% OUTPUT: status 1: the fish moved, 0: the fish didn't move
% Coord coordinates in the image IM
% IMdif Difference
if nargin<7, npxl_min=200; end
if nargin<6, nsig_bin=5; end
if nargin<5, blur_fact=3; end
if nargin<4, pl=0; end
if nargin<3, ill_type='transmit'; end
status=0; Coord=[];
%----------------------------------------------------------------------
switch ill_type
case 'transmit'
IMdif=(IM_o-IM);
case 'reflex'
IMdif=(IM)-(IM_o);
end
if blur_fact~=0
IMdif_blur = F_IMfilt(IMdifX,'gaussian',0,blur_fact*4*[1 1],blur_fact);
else
IMdif_blur=IMdif;
end
dif_thr = nsig_bin * std(IMdif_blur(:));
IMdif_pos=uint8((IMdif_blur>dif_thr));
IMdif_pos_big = bwareaopen(IMdif_pos,npxl_min);
if sum(IMdif_pos_big(:))>npxl_min && sum(IMdif_pos_big(:))<npxl_max
status=1;
Coord = F_Mask2Cetroid(IMdif_pos_big,0);
end
%======================================================================
if pl
figure
colormap gray
ax(1)=subplot(2,3,1);
imagesc(IM)
title('IM status=0')
ax(2)=subplot(2,3,2);
imagesc(IM_o)
title('IMo')
ax(3)=subplot(2,3,3);
imshowpair(IM_o,IM)
title('Comparison')
ax(6)=subplot(2,3,6);
imagesc(IMdif)
title('IM dif')
ax(5)=subplot(2,3,5);
imagesc(IMdif_pos)
title('IMdif pos')
ax(4)=subplot(2,3,4);
imagesc(IMdif_pos_big)
title('IMdif pos big')
linkaxes(ax,'xy')
if status
subplot(2,3,1)
hold on
plot(Coord(1),Coord(2),'.r');
plot(Coord(1),Coord(2),'or');
title('IM status=1')
end
end
end
function [Coord] = F_Mask2Cetroid(Mask,pl)
% This function computes the centroid of the input Mask
if nargin<2, pl=0; end
if sum(Mask(:))~=0
X=(1:size(Mask,2))'; Y=(1:size(Mask,1))';
Ix=sum(Mask,1)'; Iy=sum(Mask,2);
Coord=[sum(X.*Ix)/sum(Ix), sum(Y.*Iy)/sum(Iy)];
else
Coord=[0 0];
end
if pl
figure
colormap gray
imagesc(Mask)
hold on
plot(Coord(1),Coord(2),'.r')
plot(Coord(1),Coord(2),'ob')
title(['Coord=[',num2str(Coord(1),'%.2f'),',',num2str(Coord(2),'%.2f'),']'])
end
end
|
github
|
NeuBtracker/acquisition-master
|
F_IMdif2Coord_132.m
|
.m
|
acquisition-master/01_Acquisition/Functions/OriginalTrackingObsolete/F_IMdif2Coord_132.m
| 3,625 |
utf_8
|
ed66f02f1c3f1a080a230a504fcad6dc
|
function [status, Coord, IMdif] = F_IMdif2Coord_131(IM, IM_o,ill_type, pl, blur_fact, nsig_bin, npxl_min, npxl_max)
% This function computes the difference between the coordinates of the
% fish in the two input images.
% INPUT: IM first input image
% IM_o second input image (presumably the previous image)
% ill_type type of illumination: 'transmit' or 'reflex'
% pl plot option (1>yes, 0>no)
% blur_fact blurring factor
% nsig_bin number of sigma defining the binary threshold
% npxl_min Minimal number of pixels for a valid detection
% This is roughtly equal to the area of the fish
% npxl_max Maximal number of pixels for a valid detection
% This upper limit is usefull in case the whole
% arena moves. In case the detected changing are is
% bigger, then the status is set to 0
% OUTPUT: status 1: the fish moved, 0: the fish didn't move
% Coord coordinates in the image IM
% IMdif Difference
if nargin<7, npxl_min=200; end
if nargin<6, nsig_bin=5; end
if nargin<5, blur_fact=3; end
if nargin<4, pl=0; end
if nargin<3, ill_type='transmit'; end
status=0; Coord=[];
%----------------------------------------------------------------------
% switch ill_type
% case 'transmit'
% IMdif=(IM_o-IM);
% case 'reflex'
% IMdif=(IM)-(IM_o);
% end
IMdif=(IM_o-IM);
if blur_fact~=0
IMdif_blur = F_IMfilt(IMdif,'gaussian',0,blur_fact*4*[1 1],blur_fact);
else
IMdif_blur=IMdif;
end
dif_thr = nsig_bin * std(IMdif_blur(:));
IMdif_pos=uint8((IMdif_blur>dif_thr));
IMdif_pos_big = bwareaopen(IMdif_pos,npxl_min);
if sum(IMdif_pos_big(:))>npxl_min && sum(IMdif_pos_big(:))<npxl_max
status=1;
Coord = F_Mask2Cetroid(IMdif_pos_big,0);
end
%======================================================================
if pl
figure
colormap gray
ax(1)=subplot(2,3,1);
imagesc(IM)
title('IM status=0')
ax(2)=subplot(2,3,2);
imagesc(IM_o)
title('IMo')
ax(3)=subplot(2,3,3);
imshowpair(IM_o,IM)
title('Comparison')
ax(6)=subplot(2,3,6);
imagesc(IMdif)
title('IM dif')
ax(5)=subplot(2,3,5);
imagesc(IMdif_pos)
title('IMdif pos')
ax(4)=subplot(2,3,4);
imagesc(IMdif_pos_big)
title('IMdif pos big')
linkaxes(ax,'xy')
if status
subplot(2,3,1)
hold on
plot(Coord(1),Coord(2),'.r');
plot(Coord(1),Coord(2),'or');
title('IM status=1')
end
end
end
function [Coord] = F_Mask2Cetroid(Mask,pl)
% This function computes the centroid of the input Mask
if nargin<2, pl=0; end
if sum(Mask(:))~=0
X=(1:size(Mask,2))'; Y=(1:size(Mask,1))';
Ix=sum(Mask,1)'; Iy=sum(Mask,2);
Coord=[sum(X.*Ix)/sum(Ix), sum(Y.*Iy)/sum(Iy)];
else
Coord=[0 0];
end
if pl
figure
colormap gray
imagesc(Mask)
hold on
plot(Coord(1),Coord(2),'.r')
plot(Coord(1),Coord(2),'ob')
title(['Coord=[',num2str(Coord(1),'%.2f'),',',num2str(Coord(2),'%.2f'),']'])
end
end
|
github
|
NeuBtracker/acquisition-master
|
Acq_Controll.m
|
.m
|
acquisition-master/01_Acquisition/GUI_version/Acq_Controll.m
| 45,165 |
utf_8
|
eb7104ec7b6f60c56a4426acc59d9afc
|
function varargout = Acq_Controll(varargin)
% ACQ_CONTROLL MATLAB code for Acq_Controll.fig
% ACQ_CONTROLL, by itself, creates a new ACQ_CONTROLL or raises the existing
% singleton*.
%
% H = ACQ_CONTROLL returns the handle to a new ACQ_CONTROLL or the handle to
% the existing singleton*.
%
% ACQ_CONTROLL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in ACQ_CONTROLL.M with the given input arguments.
%
% ACQ_CONTROLL('Property','Value',...) creates a new ACQ_CONTROLL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Acq_Controll_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Acq_Controll_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help Acq_Controll
% Last Modified by GUIDE v2.5 18-May-2016 17:38:02
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @Acq_Controll_OpeningFcn, ...
'gui_OutputFcn', @Acq_Controll_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before Acq_Controll is made visible.
function Acq_Controll_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Acq_Controll (see VARARGIN)
% Choose default command line output for Acq_Controll
handles.output = hObject;
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
handles.MessNumber=0;
addpath(genpath('D:\ZT_Matlab'));
load('D:\ZT_Matlab\Default_Fluoro_Camera_Params');
load('D:\ZT_Matlab\Default_Ref_Camera_Params');
handles.path4saving=create_saving_directory;
display([num2str(handles.MessNumber) 'Path Greated']);handles.MessNumber=handles.MessNumber+1;
set(handles.ref_exp_str,'String',num2str((RcP.ExposureTime)./1000));
set(handles.ref_bin_str,'String',num2str(RcP.BinningHorizontal));
set(handles.ref_gain_str,'String',num2str(RcP.Gain));
set(handles.flr_exp_str,'String',num2str((FcP.ExposureTime)*1000));
set(handles.flr_bin_str,'String',(FcP.AOIBinning));
set(handles.flr_gain_str,'String',(FcP.SimplePreAmpGainControl));
tp=num2str(fix(clock));
save(['Fluoro_Camera_Params_' num2str(tp)],'FcP');
save(['Ref_Camera_Params_' (tp)],'RcP');
save('Next_Fluoro_Camera_Params','FcP');
save('Next_Ref_Camera_Params','RcP');
system(' "D:\Program Files\MATLAB\R2015a\bin\matlab.exe" -nosplash -r "cd(''D:\ZT_Matlab\GUI_version''); run(''Image_Previewing_GUI.m'');" ');
display([num2str(handles.MessNumber) 'Preview SUB_GUI started(Matlab2015a)']);handles.MessNumber=handles.MessNumber+1;
fileID = fopen('Recording_ON_OFF_variable','w+');fwrite(fileID,uint8(0),'uint8');fclose(fileID);
%handles.j1=batch(parcluster('local1'),'Scrip2Worker_FLUOR');
handles.j1=batch(parcluster('local1'),'Scrip2Worker_FLUOR_ExtraFast');
%Scrip2Worker_FLUOR%Scrip2Worker_FLUOR_ExtraFast
%handles.j1=batch(parcluster('local1'),'Scrip2Worker_FLUOR4Solis');
%handles.j1=batch(parcluster('local1'),'Scrip2Worker_FLUOR_EF');
handles.j2=batch(parcluster('local2'),'Scrip2Worker_REF');
%handles.j3=batch(parcluster('local3'),'Scrip2Worker_DeleteOldFiles');
handles.j3=batch(parcluster('local3'),'Scrip2Worker_DeleteOldFiles4MoveRecordings');
display([num2str(handles.MessNumber) 'CameraS are acquiring <3']);handles.MessNumber=handles.MessNumber+1;
devices = daq.getDevices;
s = daq.createSession('ni');
addAnalogOutputChannel(s,'Dev1',0,'Voltage');
addAnalogOutputChannel(s,'Dev1',2,'Voltage');
xValue=0; yValue=0;
outputSingleScan(s,[xValue yValue]);
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes Acq_Controll wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = Acq_Controll_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in restrart_refcam_btn.
function restrart_refcam_btn_Callback(hObject, eventdata, handles)
% hObject handle to restrart_refcam_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
load('D:\ZT_Matlab\Default_Ref_Camera_Params');
RcP.ExposureTime=1000.*str2double(get(handles.ref_exp_str,'String'));
RcP.BinningHorizontal=str2double(get(handles.ref_bin_str,'String'));
RcP.Gain= str2double(get(handles.ref_gain_str,'String'));
tp=num2str(fix(clock));
save(['Ref_Camera_Params_' num2str(tp)],'RcP');
save('Next_Ref_Camera_Params','RcP');
cancel(handles.j2);
handles.j2=batch(parcluster('local2'),'Scrip2Worker_REF');
display([handles.MessNumber 'Reflection Camera is Re-initialized']);handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in restrart_fluorocam_btn.
function restrart_fluorocam_btn_Callback(hObject, eventdata, handles)
% hObject handle to restrart_fluorocam_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
load('D:\ZT_Matlab\Default_Fluoro_Camera_Params');
FcP.ExposureTime=str2double(get(handles.flr_exp_str,'String'))./1000;
FcP.AOIBinning=(get(handles.flr_bin_str,'String'));
FcP.SimplePreAmpGainControl= (get(handles.flr_gain_str,'String'));
tp=num2str(fix(clock));
save(['Fluoro_Camera_Params_' num2str(tp)],'FcP');
save('Next_Fluoro_Camera_Params','FcP');
cancel(handles.j1);
handles.j1=batch(parcluster('local1'),'Scrip2Worker_FLUOR');
display([handles.MessNumber 'Fluorescence Camera is Re-initialized']);handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in folder_description_pshb.
function folder_description_pshb_Callback(hObject, eventdata, handles)
% hObject handle to folder_description_pshb (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
exp_description=(get(handles.exp_description_str,'String'));
fileID = fopen([handles.path4saving(1:12) handles.path4saving(13:16) '_' exp_description] ,'w');
fprintf(fileID,'%s',':)');
fclose(fileID);
display([num2str(handles.MessNumber) 'Folder Description Generated']);handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in load_registration_btn.
function load_registration_btn_Callback(hObject, eventdata, handles)
% hObject handle to load_registration_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in load_registration_btn.
handles.ref2galvo_tmat=load(get(handles.tform2load_str,'String'));
% PUT HERE AXIS UPDATE.
display([num2str(handles.MessNumber) ':Prexisting Tranformation Matrix Loaded']); handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in manual_reg_btn.
function manual_reg_btn_Callback(hObject, eventdata, handles)
% hObject handle to manual_reg_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
system('D:\ZT_Matlab\auto_opening_bash_shortcuts\Registraion.bat');
display([num2str(handles.MessNumber) ':SUB_VI for manual segmention opened']); handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in load_est_reg_btn.
function load_est_reg_btn_Callback(hObject, eventdata, handles)
% hObject handle to load_est_reg_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
load('I:\NEXT_tform');
handles.ref2galvo_tmat=mytform;
display([num2str(handles.MessNumber) ':Estimated transformation loaded']); handles.MessNumber=handles.MessNumber+1;
guidata(hObject, handles);
% --- Executes on button press in update_reg_preview_btn.
function update_reg_preview_btn_Callback(hObject, eventdata, handles)
% hObject handle to update_reg_preview_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.tform_str,'String',num2str(handles.ref2galvo_tmat.tdata.T));
org_test_imag=im2bw(256-imread('D:\ZT_Matlab\Functions\Smiley4Registration.tif'));
org_test_imag(:,1:5)=256;org_test_imag(:,end-5:end)=256;org_test_imag(1:5,:)=256;org_test_imag(end-5:end,:)=256;
for i=25:25:175 org_test_imag(:,i)=100; org_test_imag(i,:)=100;end
myaffine2d=affine2d(handles.ref2galvo_tmat.tdata.Tinv);
trs_test_imag=imresize(imwarp(org_test_imag,myaffine2d),0.01);
max_dim=max(max(size(org_test_imag)),max(size(trs_test_imag)));
im2show=zeros(max_dim,max_dim,3);
im2show(1:size(org_test_imag,1),1:size(org_test_imag,2),1)=org_test_imag;
im2show(1:size(trs_test_imag,1),1:size(trs_test_imag,2),3)=trs_test_imag;
%figure;imshow(im2show);
hh_r=handles.prv_reg_tfrom_axes; axes(hh_r);hhh_r=imshow(im2show);
% --- Executes on button press in get_background_btn.
function get_background_btn_Callback(hObject, eventdata, handles)
% hObject handle to get_background_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
duration_of_averaging=str2double(get(handles.aver_dur_str,'String'));
fileID = fopen('DatasetAnnotation','a');fprintf(fileID,'%s',...
['GettinBackgroundStarted' 'Time:' datestr(datetime('now')) '\n']);fclose(fileID);
[Background]=get_background_data(duration_of_averaging);
fileID = fopen('DatasetAnnotation','a');fprintf(fileID,'%s',...
['GettinBackgroundFinished' 'Time:' datestr(datetime('now')) '\n']);fclose(fileID);
hh_r=handles.backgroun_n_roi_preview; axes(hh_r);hhh_r=imagesc(Background);axis image;axis off;
imwrite(Background,'BackgroundImage.tiff');
handles.background=Background;
display([num2str(handles.MessNumber) ':Background Image saved']); handles.MessNumber=handles.MessNumber+1;
guidata(hObject, handles);
% --- Executes on button press in select_roi_btn.
function select_roi_btn_Callback(hObject, eventdata, handles)
% hObject handle to select_roi_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
%%based on michele's code
% BKGR_o = uint8(handles.background);
% figure
% imagesc(BKGR_o); colormap gray
[~,IM]=read_most_recent_fluoroANDreflection();%M
size_R=size(IM);%M
figure; imagesc(IM);
title('Select X points on the edge of the arena')
% [x,y] = ginput(3);
% [arena_c, arena_r] = calc_circle([x(1) y(1)], [x(2) y(2)], [x(3) y(3)]);
% %rectangle('Position', [arena_c(1)-arena_r,arena_c(2)-arena_r,2*arena_r,2*arena_r],'Curvature', [1,1], 'EdgeColor', 'r')
% [x,y]=meshgrid(-(arena_c(1)-1):(size(BKGR_o,2)-arena_c(1)),-(arena_c(2)-1):(size(BKGR_o,1)-arena_c(2)));
% MASK_1=uint8(((x.^2+y.^2)<=arena_r^2));
MASK_o = roipoly;
MASK_o=uint8(MASK_o);
imagesc(double(MASK_o).*double(IM));
% im2show=zeros(size(BKGR_o,1),size(BKGR_o,2),3);
% im2show(:,:,1)=MASK_o.*imadjust(BKGR_o,stretchlim(BKGR_o,[0.25 0.97])).*256;
% im2show(:,:,2)=imadjust(BKGR_o,stretchlim(BKGR_o,[0.02 0.98])).*256;
hh_r=handles.backgroun_n_roi_preview; axes(hh_r);hhh_r=imagesc(im2show);axis image;axis off;
display([num2str(handles.MessNumber) ':ROI selection finished']); handles.MessNumber=handles.MessNumber+1;
handles.roi=MASK_o;
imwrite(MASK_o,'CurrentROI.jpg');
time_stmp=datestr(datetime('now'),'yymmddHHMMSSFFF');
imwrite(MASK_o,['ROI_' time_stmp '.jpg']);
guidata(hObject, handles);
% --- Executes on button press in Tracking_Preview_tbtn.
function Tracking_Preview_tbtn_Callback(hObject, eventdata, handles)
% hObject handle to Tracking_Preview_tbtn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
devices = daq.getDevices;galvo_handle = daq.createSession('ni');
addAnalogOutputChannel(galvo_handle,'Dev1',0,'Voltage');
addAnalogOutputChannel(galvo_handle,'Dev1',2,'Voltage');
galvo_handle.Rate = 8000;
reb_fact=1;
display('TrackingPrevie')
[~,IM]=read_most_recent_fluoroANDreflection();%M
size_R=size(IM);%M
%[Mask_logic]=F_IM2ArenaMask_112(IM,0,'ell_sep');
%handles.Mask=Mask_logic;
% Hint: get(hObject,'Value') returns toggle state of Tracking_Preview_tbtn
k=0;COORD=[];
Xg=0;Yg=0;
while get(hObject,'Value')==1
htime=tic;
k=k+1;
[~,IM1]=read_most_recent_fluoroANDreflection();%M
pause(0.05);
[~,IM2]=read_most_recent_fluoroANDreflection();%M
if ~(size(IM1)==size(IM2));
continue;
end
size_R=size(IM);%M
% function_str=get(handles.used_algorithm_str,'String');
%try
% Coord=feval(function_str,256-IM,256-BKGR,MASK,reb_fact,myfilter);
% [Coord,IM_mask] = F_IM2COORD_200(IM,0,Mask_logic,1);
[Coord_diff,Coord_f,Coord_i,Imdif] = F_IMdif2Coord_102(IM1, IM2, 0,...
round(handles.sld_blr.Value), round(handles.sld_nsig.Value), round(handles.sld_minsize.Value), 'trasmit');
% [Coord_diff,Coord_f,Coord_i,IMdif] = F_IMdif2Coord_102(IM, IM_o, 0,blur_fact,nsig_bin ,npxl_min,'trasmit')
%[Coord_diff,Coord_f,Coord_i,Imdif] = F_IMdif2Coord_102(IM1, IM2,0);
Coord=Coord_f;
%catch
%end
%Coord = F_IM2COORD_113(IM,BKGR,MASK,reb_fact,myfilter);%M
COORD=[COORD;Coord]; %M
xA=Coord(2);
yA=Coord(1);
[Xt, Yt]= tformfwd(handles.ref2galvo_tmat, yA, xA); %%
if (abs(Xt-Xg)>0.05 || abs(Yt-Yg)>0.05) & ~(Coord==[0,0]) %If tracked (XY) away from galvo move galvos to new position
display('GalvoMove')
Xg=Xt; Yg=Yt;
if Yg>10; Yg=10; end
if Xg>10; xg=10; end
if Xg<-10; Xg=-10; end
if Yg<-10; Yg=-10; end
outputSingleScan(galvo_handle,[Xg Yg]);
end
%display(num2str([Xg Yg Xt Yt xA yA]));
hh_r=handles.tracking_preview_axis;
axes(hh_r);
title('Fish head position')
hold off
imagesc(Imdif,[-10 10]); colormap('spring');axis image;axis off;
%
%rectangle('Position', [arena_c(1)-arena_r,arena_c(2)-arena_r,2*arena_r,2*arena_r],'Curvature', [1,1], 'EdgeColor', 'r')
hold on
plot(yA,xA,'-*k')
% xlim([0 size_R(2)]); ylim([0 size_R(1)]);
%display(k)
drawnow;
set(handles.time4tracking_str,'String',[toc(htime)./1000 'ms'])
fileID = fopen('GalvoXYpos','a');fprintf(fileID,'%s',...
['Xt:' num2str(Xt,4) 'Y:' num2str(Yt,4) ...
'Xg:' num2str(Xg,4) 'Yg:' num2str(Yg,4) 'Time:' datestr(datetime('now')) '\n']);fclose(fileID);
end
clear galvo_handle
% --- Executes on button press in save_tracking_params4worker_btn.
function save_tracking_params4worker_btn_Callback(hObject, eventdata, handles)
% hObject handle to save_tracking_params4worker_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
par4tracking.background=handles.background;
par4tracking.roi=handles.roi;
par4tracking.used_algorithm_str=handles.used_algorithm_str;
par4tracking.ref2galvo_tmat=handles.ref2galvo_tmat;
save('Tracking_Params.mat','par4tracking');
display([num2str(handles.MessNumber) ':ParamsSaved. Ready for auto-tracking']); handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in start_rec_tbtn.
function start_rec_tbtn_Callback(hObject, eventdata, handles)
% hObject handle to start_rec_tbtn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fileID = fopen('Recording_ON_OFF_variable','w+');fwrite(fileID,uint8(1),'uint8');fclose(fileID);
display([num2str(handles.MessNumber) ':REC started']); handles.MessNumber=handles.MessNumber+1;
% --- Executes on button press in stop_rec_btn.
function stop_rec_btn_Callback(hObject, eventdata, handles)
% hObject handle to stop_rec_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fileID = fopen('Recording_ON_OFF_variable','w+');fwrite(fileID,uint8(0),'uint8');fclose(fileID);
set(handles.start_rec_tbtn,'Value',0);
display([num2str(handles.MessNumber) ':REC stoped']); handles.MessNumber=handles.MessNumber+1;
guidata(hObject, handles);
% --- Executes on button press in update_dataset_annotation_btn.
function update_dataset_annotation_btn_Callback(hObject, eventdata, handles)
% hObject handle to update_dataset_annotation_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
fileID = fopen('DatasetAnnotation','a');fprintf(fileID,'%s',...
[char(get(handles.next_annotation_str,'String')) 'Time:' datestr(datetime('now')) '\n']);fclose(fileID);
% --- Executes on button press in start_autotracking_tbtn.
function start_autotracking_tbtn_Callback(hObject, eventdata, handles)
% hObject handle to start_autotracking_tbtn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.j4=batch(parcluster('local4'),'Scrip2Worker_GALVOS_debugi');
display([num2str(handles.MessNumber) ':AutTracking started']); handles.MessNumber=handles.MessNumber+1;
guidata(hObject, handles);
% --- Executes on button press in stop_auto_tracking_btn.
function stop_auto_tracking_btn_Callback(hObject, eventdata, handles)
% hObject handle to stop_auto_tracking_btn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of stop_auto_tracking_btn
cancel(handles.j4);
display([num2str(handles.MessNumber) ':AutTracking Stopped']); handles.MessNumber=handles.MessNumber+1;
set(handles.start_autotracking_tbtn,'Value',0);
guidata(hObject, handles);
% --- Executes on button press in start_joy_controll_tbtn.
function start_joy_controll_tbtn_Callback(hObject, eventdata, handles)
% hObject handle to start_joy_controll_tbtn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of start_joy_controll_tbtn
devices = daq.getDevices
s = daq.createSession('ni')
addAnalogOutputChannel(s,'Dev1',0,'Voltage');
addAnalogOutputChannel(s,'Dev1',2,'Voltage');
s.Rate = 8000
%% Also joystic
joy = vrjoystick(1)
figure;
while get(hObject,'Value')==1;
[axes, buttons, povs] = read(joy);
if buttons(1)==1
xValue = +axes(2)*10;
yValues = -axes(1)*10;
% if xValue>10; xValue=10;end
% if xValue<-10;xValue=-10;end
% if yValues>10;yValues=10;end
% if yValues<-10;yValues=-10;end
outputSingleScan(s,[xValue yValues]);
plot(xValue,yValues,'or','MarkerSize',10);xlim([-10 10]);ylim([-10 10]);drawnow;
end
end
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
%% DO NOT TOUCH BELLOW THIS POINT.
%%
%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
function exp_description_str_Callback(hObject, eventdata, handles)
% hObject handle to exp_description_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of exp_description_str as text
% str2double(get(hObject,'String')) returns contents of exp_description_str as a double
% --- Executes during object creation, after setting all properties.
function exp_description_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to exp_description_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in f_gain_listbox.
function f_gain_listbox_Callback(hObject, eventdata, handles)
% hObject handle to f_gain_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns f_gain_listbox contents as cell array
% contents{get(hObject,'Value')} returns selected item from f_gain_listbox
% --- Executes during object creation, after setting all properties.
function f_gain_listbox_CreateFcn(hObject, eventdata, handles)
% hObject handle to f_gain_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function f_exptime_str_Callback(hObject, eventdata, handles)
% hObject handle to f_exptime_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of f_exptime_str as text
% str2double(get(hObject,'String')) returns contents of f_exptime_str as a double
% --- Executes during object creation, after setting all properties.
function f_exptime_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to f_exptime_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on selection change in f_bin_listbox.
function f_bin_listbox_Callback(hObject, eventdata, handles)
% hObject handle to f_bin_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: contents = cellstr(get(hObject,'String')) returns f_bin_listbox contents as cell array
% contents{get(hObject,'Value')} returns selected item from f_bin_listbox
% --- Executes during object creation, after setting all properties.
function f_bin_listbox_CreateFcn(hObject, eventdata, handles)
% hObject handle to f_bin_listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function ref_exp_str_Callback(hObject, eventdata, handles)
% hObject handle to ref_exp_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ref_exp_str as text
% str2double(get(hObject,'String')) returns contents of ref_exp_str as a double
% --- Executes during object creation, after setting all properties.
function ref_exp_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to ref_exp_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function ref_bin_str_Callback(hObject, eventdata, handles)
% hObject handle to ref_bin_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ref_bin_str as text
% str2double(get(hObject,'String')) returns contents of ref_bin_str as a double
% --- Executes during object creation, after setting all properties.
function ref_bin_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to ref_bin_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function ref_gain_str_Callback(hObject, eventdata, handles)
% hObject handle to ref_gain_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ref_gain_str as text
% str2double(get(hObject,'String')) returns contents of ref_gain_str as a double
% --- Executes during object creation, after setting all properties.
function ref_gain_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to ref_gain_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function flr_gain_str_Callback(hObject, eventdata, handles)
% hObject handle to flr_gain_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of flr_gain_str as text
% str2double(get(hObject,'String')) returns contents of flr_gain_str as a double
% --- Executes during object creation, after setting all properties.
function flr_gain_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to flr_gain_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function flr_bin_str_Callback(hObject, eventdata, handles)
% hObject handle to flr_bin_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of flr_bin_str as text
% str2double(get(hObject,'String')) returns contents of flr_bin_str as a double
% --- Executes during object creation, after setting all properties.
function flr_bin_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to flr_bin_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function flr_exp_str_Callback(hObject, eventdata, handles)
% hObject handle to flr_exp_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of flr_exp_str as text
% str2double(get(hObject,'String')) returns contents of flr_exp_str as a double
% --- Executes during object creation, after setting all properties.
function flr_exp_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to flr_exp_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function tform2load_str_Callback(hObject, eventdata, handles)
% hObject handle to tform2load_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of tform2load_str as text
% str2double(get(hObject,'String')) returns contents of tform2load_str as a double
% --- Executes during object creation, after setting all properties.
function tform2load_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to tform2load_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on slider movement.
function sld_blr_Callback(hObject, eventdata, handles)
% hObject handle to sld_blr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function sld_blr_CreateFcn(hObject, eventdata, handles)
% hObject handle to sld_blr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on button press in checkbox2.
function checkbox2_Callback(hObject, eventdata, handles)
% hObject handle to checkbox2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of checkbox2
function next_annotation_str_Callback(hObject, eventdata, handles)
% hObject handle to next_annotation_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of next_annotation_str as text
% str2double(get(hObject,'String')) returns contents of next_annotation_str as a double
% --- Executes during object creation, after setting all properties.
function next_annotation_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to next_annotation_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton13.
function pushbutton13_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton14.
function pushbutton14_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function edit14_Callback(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit14 as text
% str2double(get(hObject,'String')) returns contents of edit14 as a double
% --- Executes during object creation, after setting all properties.
function edit14_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit14 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton15.
function pushbutton15_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function edit15_Callback(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit15 as text
% str2double(get(hObject,'String')) returns contents of edit15 as a double
% --- Executes during object creation, after setting all properties.
function edit15_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit15 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on slider movement.
function slider2_Callback(hObject, eventdata, handles)
% hObject handle to slider2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function slider2_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function sld_nsig_Callback(hObject, eventdata, handles)
% hObject handle to sld_nsig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function sld_nsig_CreateFcn(hObject, eventdata, handles)
% hObject handle to sld_nsig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
function used_algorithm_str_Callback(hObject, eventdata, handles)
% hObject handle to used_algorithm_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of used_algorithm_str as text
% str2double(get(hObject,'String')) returns contents of used_algorithm_str as a double
% --- Executes during object creation, after setting all properties.
function used_algorithm_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to used_algorithm_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in togglebutton2.
function togglebutton2_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of togglebutton2
% --- Executes when uipanel3 is resized.
function uipanel3_SizeChangedFcn(hObject, eventdata, handles)
% hObject handle to uipanel3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton17.
function pushbutton17_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton18.
function pushbutton18_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton18 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in save_reg_str.
function save_reg_str_Callback(hObject, eventdata, handles)
% hObject handle to save_reg_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function edit17_Callback(hObject, eventdata, handles)
% hObject handle to edit17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edit17 as text
% str2double(get(hObject,'String')) returns contents of edit17 as a double
% --- Executes during object creation, after setting all properties.
function edit17_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit17 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in pushbutton22.
function pushbutton22_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton22 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in pushbutton23.
function pushbutton23_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton23 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
function aver_dur_str_Callback(hObject, eventdata, handles)
% hObject handle to aver_dur_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of aver_dur_str as text
% str2double(get(hObject,'String')) returns contents of aver_dur_str as a double
% --- Executes during object creation, after setting all properties.
function aver_dur_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to aver_dur_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in togglebutton3.
function togglebutton3_Callback(hObject, eventdata, handles)
% hObject handle to togglebutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of togglebutton3
% --- Executes on slider movement.
function sld_minsize_Callback(hObject, eventdata, handles)
% hObject handle to sld_minsize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function sld_minsize_CreateFcn(hObject, eventdata, handles)
% hObject handle to sld_minsize (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
|
github
|
NeuBtracker/acquisition-master
|
Image_Previewing_GUI.m
|
.m
|
acquisition-master/01_Acquisition/GUI_version/Image_Previewing_GUI.m
| 16,485 |
utf_8
|
937bf2a71a48d2e5b6a58fe2b4da4b86
|
function varargout = Image_Previewing_GUI(varargin)
% IMAGE_PREVIEWING_GUI MATLAB code for Image_Previewing_GUI.fig
% IMAGE_PREVIEWING_GUI, by itself, creates a new IMAGE_PREVIEWING_GUI or raises the existing
% singleton*.
%
% H = IMAGE_PREVIEWING_GUI returns the handle to a new IMAGE_PREVIEWING_GUI or the handle to
% the existing singleton*.
%
% IMAGE_PREVIEWING_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in IMAGE_PREVIEWING_GUI.M with the given input arguments.
%
% IMAGE_PREVIEWING_GUI('Property','Value',...) creates a new IMAGE_PREVIEWING_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Image_Previewing_GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Image_Previewing_GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help Image_Previewing_GUI
% Last Modified by GUIDE v2.5 31-Oct-2015 19:42:27
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @Image_Previewing_GUI_OpeningFcn, ...
'gui_OutputFcn', @Image_Previewing_GUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before Image_Previewing_GUI is made visible.
function Image_Previewing_GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Image_Previewing_GUI (see VARARGIN)
% Choose default command line output for Image_Previewing_GUI
handles.output = hObject;
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
%% Make sure you have access to all functions/subfucntions
addpath(genpath('D:\ZT_Matlab'));
%% Move to spooling disk and find "live-recording" directory
cd('K:\');
fileID = fopen('Path2SaveNextExperiment','r');livepath=fscanf(fileID,'%s');fclose(fileID);
handles.livepath=livepath;
cd(livepath);
%%
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes Image_Previewing_GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% --- Executes on button press in live_upd_toggle.
function live_upd_toggle_Callback(hObject, eventdata, handles)
% hObject handle to live_upd_toggle (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of live_upd_toggle
set(handles.path_string,'String',handles.livepath);
fi_flag=0;
t_pr=0;
MouseCordb=0;
send_location=0;
% k=0;
while get(handles.live_upd_toggle,'Value')==1;
t_pr=t_pr+1;
% try
[F,R,Fnum,Rnum]=read_most_recent_fluoroANDreflection();
c_upper_limit_r=get(handles.clim_up_ref,'Value'); c_lower_limit_r=get(handles.clim_down_ref,'Value');
c_upper_limit_f=get(handles.clim_up_flr,'Value'); c_lower_limit_f=get(handles.clim_down_flr,'Value');
if fi_flag==0;
hh_r=handles.im_axis_ref; axes(hh_r);hhh_r=imshow(R,[c_lower_limit_r c_upper_limit_r]);
hh_f=handles.im_axis_flr; axes(hh_f);hhh_f=imshow(F,[c_lower_limit_f c_upper_limit_f]);
fi_flag=1; drawnow;
else
set(hhh_r,'CData',R); set(hh_r,'CLim',[c_lower_limit_r c_upper_limit_r]);
title(hh_r,['Reflection Image\_Lim:[' num2str(c_lower_limit_r) '-' num2str(c_upper_limit_r) '] Frame' num2str(Rnum)]);
drawnow limitrate;
set(hhh_f,'CData',F); set(hh_f,'CLim',[c_lower_limit_f c_upper_limit_f]);
title(hh_f,['Fluoro Image\_Lim:[' num2str(c_lower_limit_f) '-' num2str(c_upper_limit_f) '] Frame' num2str(Fnum)]);
drawnow limitrate;
try
try delete(h4_r); delete(h5_r); catch; end
trackingImageF_ID = fopen('TrackingXYimage_current','r');XY_Imag_TRC=fread(trackingImageF_ID,[1,2],'uint16');fclose(trackingImageF_ID);
trackingGalvoF_ID = fopen('TrackingXYgalvo','r');XY_Galvo_TRC=fread(trackingGalvoF_ID,[1,2],'uint16');fclose(trackingGalvoF_ID);
hold(hh_r,'on');
h4_r=plot(hh_r,XY_Imag_TRC(1),XY_Imag_TRC(2),'or','MarkerSize',7);
h5_r=plot(hh_r,XY_Galvo_TRC(1),XY_Galvo_TRC(2),'*g','MarkerSize',12);
drawnow limitrate;
catch
end
% set(hhh_r,'ButtonDownFcn', 'send_location=1');
MouseCordn= get(hh_r, 'currentpoint');
%MouseCordn=[MouseCordn(1,1) MouseCordn(1,2)]
if ~sum(sum(MouseCordb-MouseCordn))==0
send_location=1;
end
set(handles.Send_Coord,'String',[num2str(send_location)]);
set(handles.Coord_X,'String',[num2str(MouseCordn(1))]);
set(handles.Coord_Y,'String',[num2str(MouseCordn(2))]);
if send_location==1
% MouseCord; % display(MouseCord);
fileID = fopen('MouseOveride','w+');fwrite(fileID,uint16(MouseCordn),'uint16');fclose(fileID);
send_location=0;
end
MouseCordb=MouseCordn;
end
% catch display(['Updating during like view has issues...' num2str(t_pr)]; end
end
% --- Executes on button press in upd_path_button.
function upd_path_button_Callback(hObject, eventdata, handles)
% hObject handle to upd_path_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
display('Preloading images... Please wait')
recorded_path=get(handles.path_string,'String');
cd(recorded_path);
sizeR=fread(fopen('Size_RefImag'),[1 2],'uint16');
sizeF=fread(fopen('Size_FluoroImag'),[1 2],'uint16');
All_refl_imag=dir('R_*');
All_fluoro_imag=dir('F_*');
f_frames_number=length(All_fluoro_imag);
i_f_frames=1;
fi_flag=0;
display('Images Preloades. Preview will start soon...')
set(handles.total_frames_str,'String',num2str(f_frames_number));
MouseCordPreviews=[0];
k=0;
while get(handles.upd_path_button,'Value')==1;
i_0to1=get(handles.time_slider,'Value');
i_f_frames=round(i_0to1*f_frames_number);
if get(handles.play_rec_toggle,'Value')==0;
i_0to1=get(handles.time_slider,'Value');
i_f_frames=round(i_0to1*f_frames_number);
else
speed_multipler=str2double(get(handles.playback_speed_str,'String'));
i_f_frames=i_f_frames+1*speed_multipler;
i_0to1=i_f_frames./f_frames_number;
if i_f_frames>=f_frames_number
i_f_frames=1;
i_0to1=i_f_frames./f_frames_number;
end
set(handles.time_slider,'Value',i_0to1);
end
set(handles.current_frame_str,'String',[num2str(i_0to1.*100)]);
%% Find correspondance between frames
% display(i./f_frames_number)
i_f=round((length(All_fluoro_imag)*i_f_frames./f_frames_number));
i_r=round((length(All_refl_imag)*i_f_frames./f_frames_number));
try
%% Load images.
Rfile=fopen(All_refl_imag(i_r).name);R=fread(Rfile,sizeR,'uint8');fclose(Rfile);
Ffile=fopen(All_fluoro_imag(i_f).name);F=fread(Ffile,sizeF,'uint16');fclose(Ffile);
catch
end
%% Show images.
c_upper_limit_r=get(handles.clim_up_ref,'Value'); c_lower_limit_r=get(handles.clim_down_ref,'Value');
c_upper_limit_f=get(handles.clim_up_flr,'Value'); c_lower_limit_f=get(handles.clim_down_flr,'Value');
if fi_flag==0;
hh_r=handles.im_axis_ref; axes(hh_r);hhh_r=imshow(R,[c_lower_limit_r c_upper_limit_r]);
hh_f=handles.im_axis_flr; axes(hh_f);hhh_f=imshow(F,[c_lower_limit_f c_upper_limit_f]);
fi_flag=1; drawnow;
else
set(hhh_r,'CData',R); set(hh_r,'CLim',[c_lower_limit_r c_upper_limit_r]);
title(hh_r,['Reflection Image\_Lim:[' num2str(c_lower_limit_r) '-' num2str(c_upper_limit_r) '] Perc' num2str(i_0to1) 'N' All_refl_imag(i_r).name ]);
drawnow limitrate;
set(hhh_f,'CData',F); set(hh_f,'CLim',[c_lower_limit_f c_upper_limit_f]);
title(hh_f,['Fluoro Image\_Lim:[' num2str(c_lower_limit_f) '-' num2str(c_upper_limit_f) '] Perc' num2str(i_0to1) 'N' All_fluoro_imag(i_f).name ]);
drawnow limitrate;
end
end
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% --- Outputs from this function are returned to the command line.
function varargout = Image_Previewing_GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on slider movement.
function clim_up_ref_Callback(hObject, eventdata, handles)
% hObject handle to clim_up_ref (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function clim_up_ref_CreateFcn(hObject, eventdata, handles)
% hObject handle to clim_up_ref (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function clim_down_ref_Callback(hObject, eventdata, handles)
% hObject handle to clim_down_ref (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function clim_down_ref_CreateFcn(hObject, eventdata, handles)
% hObject handle to clim_down_ref (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function clim_up_flr_Callback(hObject, eventdata, handles)
% hObject handle to clim_up_flr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function clim_up_flr_CreateFcn(hObject, eventdata, handles)
% hObject handle to clim_up_flr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function clim_down_flr_Callback(hObject, eventdata, handles)
% hObject handle to clim_down_flr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function clim_down_flr_CreateFcn(hObject, eventdata, handles)
% hObject handle to clim_down_flr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function time_slider_Callback(hObject, eventdata, handles)
% hObject handle to time_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
% --- Executes during object creation, after setting all properties.
function time_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to time_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
function path_string_Callback(hObject, eventdata, handles)
% hObject handle to path_string (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of path_string as text
% str2double(get(hObject,'String')) returns contents of path_string as a double
% --- Executes during object creation, after setting all properties.
function path_string_CreateFcn(hObject, eventdata, handles)
% hObject handle to path_string (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in play_rec_toggle.
function play_rec_toggle_Callback(hObject, eventdata, handles)
% hObject handle to play_rec_toggle (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of play_rec_toggle
function playback_speed_str_Callback(hObject, eventdata, handles)
% hObject handle to playback_speed_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of playback_speed_str as text
% str2double(get(hObject,'String')) returns contents of playback_speed_str as a double
% --- Executes during object creation, after setting all properties.
function playback_speed_str_CreateFcn(hObject, eventdata, handles)
% hObject handle to playback_speed_str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
|
github
|
xiashang0624/electrochemical_simulation-master
|
CDI_2D_Demo.m
|
.m
|
electrochemical_simulation-master/CDI_2D_Demo.m
| 29,273 |
utf_8
|
ca5de5c008d8a778fe031ee65181fc9a
|
%% Capacitive deionization 2D simulation
%
% Developed by: Xia Shang
% Advisors: Kyle Smith, Roland Cusick
% Copyright: Xia Shang, Roland Cusick, Kyle Smith
% University of Illinois at Urbana-Champaign
% All rights reserved.
%
% Funded by: US National Science Foundation Award No. 1605290 entitiled
% "SusChEM: Increasing Access to Sustainable Freshwater Resources with
% Membrane Capacitve Deionization", and Joint Center for Energy Storage
% Research, an Energy Innovation Hub funded by the U.S. Department of
% Energy, Office of Science, Basic Energy Sciences.
%
% Redistribution and use in source and binary forms, with or
% without modification, are permitted provided that the following
% conditions are met:
%
% * Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above
% copyright notice, this list of conditions and the following
% disclaimer in the documentation and/or other materials provided
% with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
% THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
% PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
% CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
% EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
% OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
% LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
% NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
function [T_r, V_cell, C_eff] = CDI_2D_Demo(C0, Q_FC,...
J, Q_fix_pos, Q_fix_neg,...
V_max, V_min, Cycle_limit, L_FC, T_pos, T_neg, ...
T_FC, R_FC, R_Macro, R_Micro, dt_record)
%clc; clear; close all;
tic
%% cell operating parameters
%C0=30; % mM, influent concentration
%V_max=200; % mV, cell voltage
%V_min = 0;
%J= 1; % mA/cm2, projected area
%Cycle_limit = 2; % -, total cycle number
%Q_FC = 0.0736; % mL/min, flow rate suggested range (0.05 - 1 mL/min)
%% Cell design
T_CC1 = 0; % um, thickness of current collector 1
T_pos = 450; % um, thickness of Cathod
T_FC = 250; % um, thickness of Flow channel
T_neg = 450; % um, thickness of Anode
T_CC2 = 0; % um, thickness of current collector 2
L_FC = 9; % cm, Length of flow channel
W_FC = 2; % cm, Width of flow channel
V_internal = 0.455; % mL, volume of a well mixed internal tank, dead-volume
%% Electrode Porosities
M_e = 0.4214; % g/cm3; electrode desity
C_Measured = 49; % F/g; Stern-layer capacitance, this value can be initially estimated based on the whole cell capacitance measured in CV at low scan rate (e.g., < 1mV/s) in 1 M NaCl
%Q_fix_pos = -4; % C/cm3, immobile charge density
%Q_fix_neg = 0; % C/cm3, immobile charge density
uatt=0; % -, attracitve chemical force using in the mD theory
R_Macro = 0.4; % Macropore ratio
R_Micro = 0.2; % Micropore ratio
R_FC = 0.7; % Average porosity of flow channel
R_e= 1-(1-R_Macro)*(1-R_Micro); % Total porosity of electrode
%% numerical parameters
dt = 0.008; % s, dt
dx = 25; % um
dy=200*L_FC; % um
%% data storage to reduce membrane usage
tmin = 0; % s, starting time
tmax =round(800*Cycle_limit*1.2/J); % s, ending time, this value can be adjusted
dt_record=1; % s, time step to record data
Nt=round((tmax-tmin)/dt); % total number of nodes in time
Nt_r = round((tmax-tmin)/dt_record); % no. of stored nodes in time
% other related parameters
E_Dielectric = 80.4; % dielectric constant of water
E_Permittivity = 8.85*10^-12; % F/m; permittivity of free space
r_Na = 0.16; % nm, radius of Na+ ion
d_H2O = 0.29; % nm, diameter of a H2O molecule
d_Helmholtz = (r_Na + d_H2O)/10^9; % m
c_Helmholtz = E_Dielectric*E_Permittivity/d_Helmholtz; % F/m2
A_effective = C_Measured/c_Helmholtz; % m2/g; effective surface area
Temp = 298.16; % K, temperature
KB = 1.38*10^-23; % C V K-1; Boltzmann constant
e = 1.602*10^-19; % C;
Na = 6.02*10^23; % mol-1;
F = 96485.3365; % C mol-1; Faraday constant
M_NaCl=58.44; % g/mole
z_a =-1; % valence of anion
z_c = 1; % valence of cation
q_a = 1; % charge of anion
q_c = 1; % charge of cation
t_Na = 0.5; % transference number of Na+
t_Cl = 1-t_Na; % transference number of Cl-
% Diffusion coefficient
D_NaCl = 1.61*10^-5; % cm2/s; diffusion coeff. in spacer
D_e=D_NaCl*10^8*R_Macro^0.5; % um2/s, effective diffusion coefficient in electrode
D_FC = D_NaCl*10^8*R_FC^0.5; % um2/s, effective diffusion coefficient
D_mid = 2*D_FC*D_e/(D_FC+D_e);
% resistance
R_contact = 9; % ohm cm2
R_electrode = 0.1625; % ohm*m
% flow rate and mixing in the dead-volume
v_FC = Q_FC/T_FC*10^4/W_FC/60*10^4; % um/s, flow velocity, assume uniform flow profile in the cross section
k_mix = Q_FC/60/V_internal; % /s, factor used in the equation accounting for the effect of mixing in the dead-volume
%% Leakage current sub-models
% B-V model parameter
a_ele = 11000; % cm2/cm3 electrode volume
I0_C = 2.5*10^-7; % mA/cm2
I0_O2 = 5.5 *10^-7; % mA/cm2
E0_C = 0.207; % V, vs SHE
E0_O2 = 0.81; % V, vs SHE
RT_F = 0.0592; % V
a_C = 0.5;
a_O2 = 0.5;
E0_An = 0.5419; % V, vs SHE, measured at equlibrium condition when two electrodes were short circuited
E0_Ca = 0.5419; % V, vs SHE, measured at equlibrium condition when two electrodes were short circuited
% imperical limiting current model parameter
E_half=0.124; % V, vs SHE
IL_O2=3.558; % mA/cm3-electrode
%% Indexing
% Current collector
xmin_CC1 = 0; % um, minimum value of x
xmax_CC1 = (xmin_CC1+T_CC1)/dx; % um, maximum value of x
%Postive electrode
xmin_pos = xmax_CC1; % left boundary node point of the positive electrode
xmax_pos = (xmin_pos+T_pos)/dx; % right boundary node point of the positive electrode
L_pos = L_FC; % cm, length of the positive electrode
W_pos = W_FC; % cm, width of the positive electrode
A_edge = 0; % cm2, area of cathod in the triangular spot
A_pos = L_pos*W_pos+A_edge; % cm2, area of projected area of the positive electrode
V_pos = T_pos/10000 * A_pos; % cm^3, volume of the positive electrode
%Flow channel
xmin_FC = xmax_pos; % left boundary node point of FC
xmax_FC = xmin_FC+T_FC/dx; % right boundary node point of FC
A_edge_FC = 0; % cm2, area of flow channel in the triangular spot
A_FC = L_FC*W_FC +A_edge_FC; % cm2, projected area of flow channel
Vol_FC = T_FC/10^4*A_FC/1000*R_FC; % L, Volume of flow channel
%Negative electrode
xmin_neg = xmax_FC; % left boundary node point of the negtive electrode
xmax_neg = xmin_neg+T_neg/dx; % right boundary node point of the negtive electrode
%Current collector 2
xmin_CC2 = xmax_neg; % um, minimum value of x
xmax_CC2 = xmin_CC2+T_CC2/dx; % um, maximum value of x
% indexing of vectors and matrix
nx = xmax_CC2-xmin_CC1; % total number of compartments in the cell
ny=L_FC*10000/dy; % ny
N=T_pos/dx; % total number of compartments in the electrode
N_FC=T_FC/dx; % total number of compartments in the FC
V_i = W_pos*dy/10000*dx/10000; % cm3, volume per compartment
x_ind=[1:xmax_pos, xmin_neg+1:xmax_neg]; % indexing for the electrodes
FC_ind=[xmax_pos+1:xmin_neg]; % indexing for the flow channel
FC_ind_A = zeros(numel(FC_ind)*ny,1); % indexing for the flow channel in 2D
for i=1:ny
FC_ind_A(1+(i-1)*numel(FC_ind):i*numel(FC_ind)) = FC_ind + (i-1)*nx;
end
%% Initiation
Vt=zeros(Nt_r, 4); % mV, 1st column: electrode voltage, 2nd column: IEM resistance voltage; 3rd column: spacer resistance voltage; 4th total voltage
T0=0; % s previous time step
T1=0; % s current time step
T_r=zeros(Nt_r,1); % s, reduced time domain for data storage
Cycle_index=zeros(100,1); % index of cycles
Discharge_index=zeros(100,1); % index of discharge cycles
VV_0 = zeros(nx,ny); % mV, Voltage matrix
V_N = zeros (nx, ny); % mV, Voltage matrix of ionic resistance in the electrode
II_0 = zeros(nx,ny); % mA, Current matrix: current passing each capacitor
II_1 = zeros(nx,ny); % mA, Current matrix: current passing each capacitor
Ri_M =zeros(nx,ny); % ohm, individual ionic resistor matrix
Re_M =zeros(nx,ny); % ohm, individual electronic resistor matrix
Cond_M = zeros(nx,ny); % Conductivity matrix
IL = zeros(nx,ny); % mA, Current matrix: current passing each resistor in parallel to the capacitor
I_Ri = zeros (nx,ny); % mA, Current matrix : current passing each ionic resistor
I_Re = zeros (nx,ny); % mA, Current matrix: current passing each electronic resistor
C_0 = zeros (nx,ny); % mM, Concentration matrix coresponding to the capacitor matrix
C_1 = zeros (nx,ny); % mM, Concentration matrix coresponding to the capacitor matrix
C1 = zeros(nx,ny); % mM, concentration matrix
C_re =zeros(nx,ny,Nt_r); % mM, recorded concentration tensor
II_re =zeros(nx,ny,Nt_r); % mA, recorded current tensor
Q_mi_re = zeros(nx,ny,Nt_r); % mV, recorded charge density tensor
IL_re = zeros(nx,ny,Nt_r); % mA, recorded leakage density tensor
Qt_0 = zeros (nx,ny); % C, charge density matrix
Qt_1 = zeros (nx,ny); % C, charge density matrix
Qt_e=Qt_0; % C, charge density matrix
Qt_mi=-Qt_0; % C, charge density matrix
V_D=zeros(nx,ny); % mV, Donnan potential matrix
C_mi_0=zeros(nx,ny); % mmol-L micropores, ionic charges matrix inside micropores
C_mi_1=zeros(nx,ny); % mmol-L micropores, ionic charges matrix inside micropores
C_eff = zeros(Nt_r,1); % mM avg effulent concentration per batch
C_eff_mix = C_eff; % mM, true effluent considering the effect of well mixed condition at the end of effluent
% Initial concentration and polarization
C_0(:,:)=C0; % mM, Initial concentration profile in the electrode phase
C_1(:,:)=C0; % mM, Initial concentration profile in the electrode phase
VV_0(:,:)=0; % mV, Initial polarization profile in the electrode phase
% determine the inital current distribution across the cell
I = J*A_FC; % mA, total current applied
indx=(1:nx)';
indx_1=circshift(indx,1);
indx_0=circshift(indx,-1);
indy=(1:ny)';
indy_1=circshift(indy,1);
indy_0=circshift(indy,-1);
% calculate ionic conductivity S/cm
Cond_M(:,:)=2*D_NaCl*C_0(:,:)/KB/Temp/1000000*F*e*R_e^1.5;
Cond_M(xmax_pos+1:xmin_neg,:)=2*D_NaCl*C_0(xmax_pos+1:xmin_neg,:)/KB/Temp/1000000*F*e*R_FC^1.5;
Cond_M(1:xmax_pos-1,:)=2.*Cond_M(1:xmax_pos-1,:).*Cond_M(indx_0(1:xmax_pos-1),:)./(Cond_M(1:xmax_pos-1,:)+Cond_M(indx_0(1:xmax_pos-1),:));
Cond_M(xmin_neg+1:xmax_neg-1,:)=2.*Cond_M(xmin_neg+1:xmax_neg-1,:).*Cond_M(indx_0(xmin_neg+1:xmax_neg-1),:)./(Cond_M(xmin_neg+1:xmax_neg-1,:)+Cond_M(indx_0(xmin_neg+1:xmax_neg-1),:));
Ri_M(:,:) = 1./Cond_M(:,:)*dx/dy/W_FC;
Ri_S=zeros(ny,1);
Ri_S(:)=sum(Ri_M(xmax_pos:xmin_neg,:));
% calculate the current distribution in the electrode
M_I = zeros(ny,ny); % Coefficient matrix for current distribution in the electrode
M_I(1:(ny+1):(end-ny))=Ri_S(1:(end-1));
M_I((ny+1):(ny+1):end)=-Ri_S(2:end);
M_I(ny,:)=1;
S_I=sparse(M_I);
B_I =zeros(ny,1); % vector for current distribution in the electrode
B_I(1:end-1)=VV_0(xmax_pos,indy_0(1:(end-1)))-VV_0(xmin_neg+1,indy_0(1:(end-1)))-VV_0(xmax_pos,1:(end-1))+VV_0(xmin_neg+1,1:(end-1));
B_I(end)=I;
I_y=S_I\B_I; % solve the current distribution in the electrode in the y-direction
% calculate the leakage current in the positive electrode
Oe = 0; % set the electronic resistance
%IL(1:xmax_pos,1)=a_ele*I0_C*V_i*exp(a_C/RT_F.*(VV(1:xmax_pos,1)/1000+E0_An-E0_C));
IL(1:xmax_pos,:)=0;
% Update the current distribution in the positive electrode
II_0(2:xmax_pos-1, :)=-IL(2:xmax_pos-1,:)+(VV_0(indx_0(2:xmax_pos-1),:)-VV_0(indx(2:xmax_pos-1),:))./(Oe+Ri_M(2:xmax_pos-1,:))-(VV_0(indx(2:xmax_pos-1),:)-VV_0(indx_1(2:xmax_pos-1),:))./(Oe+Ri_M(indx_1(2:xmax_pos-1),:));
II_0(1,:)=-IL(1,:)+(VV_0(2,:)-VV_0(1,:))/(Oe+Ri_M(1,:));
II_0(xmax_pos,:)=I_y-IL(xmax_pos,1)-sum(II_0(1:xmax_pos-1));
% calculate the leakage current in the negative electrode
IL(xmin_neg+1:xmax_neg,:)=0;
%IL(xmin_neg+1:xmax_neg,1)=a_ele*I0_O2*V_i*(exp(a_O2/RT_F.*(VV(xmin_neg+1:xmax_neg,1)/1000+E0_Ca-E0_O2))-exp(-a_O2/RT_F.*(VV(xmin_neg+1:xmax_neg,1)/1000+E0_Ca-E0_O2))) ;
%IL(xmin_neg+1:xmax_neg,1)=-IL_O2*V_i./(1+exp((VV_0(xmin_neg+1:xmax_neg,:)/1000+E0_Ca-E_half)/RT_F));
% update the current distribution in the negative electrode
II_0(xmin_neg+2:end-1,:)=-IL(xmin_neg+2:end-1,:)+(VV_0(indx_1(xmin_neg+2:end-1),:)-VV_0(indx(xmin_neg+2:end-1),:))./(Oe+Ri_M(indx_1(xmin_neg+2:end-1),:))-(VV_0(indx(xmin_neg+2:end-1),:)-VV_0(indx_0(xmin_neg+2:end-1),:))./(Oe+Ri_M(indx(xmin_neg+2:end-1),:));
II_0(end,:)=-IL(end,:)+(VV_0(end-1,:)-VV_0(end,:))./(Oe+Ri_M(end,:));
II_0(xmin_neg+1,:)=-I_y'-sum(II_0(xmin_neg+2:end,:))-sum(IL(xmin_neg+1:end,:));
% calculate the ionic current in the electrode
A = tril (ones(N));
A1=A';
A2=tril(ones(N_FC))';
I_Ri(1:xmax_pos,1)=A*(IL(1:xmax_pos,1)+II_0(1:xmax_pos,1));
I_Ri(xmax_pos+1:xmin_neg,1)=I_y(1);
I_Ri(xmin_neg+1:xmax_neg,1)=-A1*(IL(xmin_neg+1:xmax_neg,1)+II_0(xmin_neg+1:xmax_neg,1));
%B.C vector
bc=zeros(nx,ny);
bc(1,:)=0; bc(nx,:)=0; %Neumann B.Cs
bc(:,1)=0; bc(:,ny)=0;
%bc(xmax_pos+1:xmin_neg,1)=C0/dy^2; %Dirichlet B.Cs
%B.Cs at the corners:
bc(1,1)=0; bc(nx,1)=0;
bc(1,ny)=0; bc(nx,ny)=0;
bc(x_ind,:)=D_e*dt*bc(x_ind,:);
bc(FC_ind,:)=D_e*dt*bc(FC_ind,:);
%Calculating the coefficient matrix for the implicit scheme
Ex=sparse(2:nx,1:nx-1,1,nx,nx);
Ax=Ex+Ex'-2*speye(nx); %Dirichlet B.Cs
Ax(1,1)=-1; Ax(nx,nx)=-1; %Neumann B.Cs
Ey=sparse(2:ny,1:ny-1,1,ny,ny);
Ay=Ey+Ey'-2*speye(ny); %Dirichlet B.Cs
Ay(1,1)=-1; Ay(ny,ny)=-1; %Neumann B.Cs
D=R_Macro*speye((nx)*(ny));
D(FC_ind_A,:)=D(FC_ind_A,:)/R_Macro*R_FC;
D_y = speye(nx)*D_e*dt;
D_y = kron(Ay/dy^2,D_y);
D_x = speye(ny)*D_e*dt;
D_x = kron(D_x,Ax/dx^2);
D_x (FC_ind_A,:) = D_x(FC_ind_A,:)/D_e*D_FC; % update the diffusion coefficient in the flow channel
D_x (length(D_x)*(xmax_pos-1)+xmax_pos+1:length(D_x)*nx+nx:end) = D_x(2)/D_e*D_mid; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmax_pos)+xmax_pos:length(D_x)*nx+nx:end) = D_x(2)/D_e*D_mid; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmin_neg)+xmin_neg:length(D_x)*nx+nx:end) = D_x(2)/D_e*D_mid; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmin_neg-1)+xmin_neg+1:length(D_x)*nx+nx:end) = D_x(2)/D_e*D_mid; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmax_pos-1)+xmax_pos:length(D_x)*nx+nx:end) = -(D_mid+D_e)*dt/dx^2; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmax_pos)+xmax_pos+1:length(D_x)*nx+nx:end) = -(D_mid+D_FC)*dt/dx^2; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmin_neg-1)+xmin_neg:length(D_x)*nx+nx:end) = -(D_mid+D_FC)*dt/dx^2; % update the diffusion coefficient at the interfaces between electrode and flow channel
D_x (length(D_x)*(xmin_neg)+xmin_neg+1:length(D_x)*nx+nx:end) = -(D_mid+D_e)*dt/dx^2; % update the diffusion coefficient at the interfaces between electrode and flow channel
D=D-D_x - D_y;
%D=D-D_x;
%D=D-D_e*dt*(kron(Ay/dy^2,speye(nx))+kron(speye(ny),Ax/dx^2));
%D((size(D,1)+1)*(xmax_pos)+1:(size(D,1)+1):1+(size(D,1)+1)*(xmin_neg-1))=R_FC-;
clear D_x D_y
% Other initial values
C_eff(1)=C0;
Qt_0(:,:)=0; %C/cm3-electrode; Initial charge density at time step n=1
Count_C = zeros(Nt,1); % Iternation number for the concentration matrix for the last current matrix iteration at each time step
Count_Q = zeros(Nt,1); % Iteration number for the current matrix at each time step
Error_Q = 0; % error of the charge iterative loop
flag_0=1; % flag for the current convergence loop
flag_1=1; % flag for the concentration convergence loop
flag_3=0; % flag for adjusting the concentration convergence
flag_4=1; % flag for the technique after charging
flag_5=1; % flag for the technique after discharging
flag_6=1; % flag for ocv study
flag_7=0; % flag for iterative time step
flag_8=0; % flag for iteration loops
Cycle_number=1;
n_r=1;
ind_B=(1:size(D,1))';
ind_B1=circshift(ind_B,1);
ind_B0=circshift(ind_B,-1);
err=zeros(500,1);
Vt_1=zeros(4,1);
% Calculate the initial charge storage and Donnan layer potential
Qt_mi(1:xmax_pos,:) = -Qt_e(1:xmax_pos,:)-Q_fix_pos;
Qt_mi(xmin_neg+1:end,:) = -Qt_e(xmin_neg+1:end,:) - Q_fix_neg;
V_D(x_ind,:)=-asinh(Qt_mi(x_ind,:)/R_Micro*10^6/F/2./(C0)/exp(uatt)); % non-dimentional Donnan layer potential
VV_0(x_ind,:)=V_D(x_ind,:)*25.7+Qt_e(x_ind,:)/C_Measured/M_e*1000; % mV, electrode polarization
C_mi_1(x_ind,:)=2*(C0)*exp(uatt).*cosh(V_D(x_ind,:)); % mmol-L micropores
C_eff_0 = C0;
C_mix_0 = C0;
% Calculate the inital voltage distribution
V_N (xmin_neg+1:xmax_neg,1)= A1*(Ri_M(xmin_neg+1:xmax_neg,1).*I_Ri(xmin_neg+1:xmax_neg,1))+Oe*I_y(1)-VV_0(xmax_neg,1); % liquid potential across one electrode when the cathod is grounded
V_N(xmax_pos+1:xmin_neg,1)=A2*Ri_M(xmax_pos+1:xmin_neg,1).*I_y(1)+V_N(xmin_neg+1,1); % liquid across Flow channel
V_N (1:xmax_pos,1)=A1*(Ri_M(1:xmax_pos,1).*I_Ri(1:xmax_pos,1))+V_N(xmax_pos+1,1) ; % liquid across one electrode
Vt (1,1)=V_N(1,1)+I_y(1)*Oe+VV_0(1,1); % mV, voltage in the solution
Vt (1,2)=R_contact*J; % mV, voltage due to the resistance of two IEMs and external resistance
Vt (1,3)=0; % mV, membrane Donnan potential
Vt (1,4)=sum(Vt(1,1:3)); % mV, Cell voltage
fprintf('Thank you for using the CDI simulation tool\n')
fprintf('***************************\n')
fprintf('*******CDI 2D Model********\n')
fprintf('Developed by Xia Shang at UIUC\n')
fprintf('Copyright: Xia Shang, Prof. Roland Cusick, Prof. Kyle Smith\n\n')
fprintf('*******Selected input******\n')
fprintf('Current Density = %4.2f mA/cm2\nVoltage Window= %4.2f mV\nInfluent Concentration = %4.2f mM.\n', J, V_max-V_min, C0)
time_stamp = datestr(now, 'HH:MM:SS');
date = datetime('today');
fprintf('Simulation starting time: %s', time_stamp)
fprintf('Date: %s', date)
fprintf('\n')
fprintf('*********Output***********\n')
fprintf('Time; Cell Voltage; Effluent Concentration\n')
%% Main time loop
for n=2:1:Nt % time step n
flag_7=0; % reset flag_7
C_0=C_1; % update concentration field
C_mi_0=C_mi_1; % update micro-pores ionic concentration field
Qt_0=Qt_1; % update charge density field
T0=T1; % update time
while flag_7==0; % adaptive time loop
flag_8=0; % reset flag 8
flag_0=1; % reset flag_0 for the current while loop
flag_3=0; % reset flag_3
T1=T0+dt;
% guess electric charge density based on the information at the previous time step
Qt_e(:,:)=Qt_0(:,:)+II_0(:,:)*dt/10^3/V_i; % C/cm3-electrode
Count_Q(n)=0;
while flag_0==1 % charge density iterative loop
flag_1=1; % reset flag_1 for the concentration while loop
% guess Ce* based on the calculated charge efficiency at time step n-1
C1=C_0;
Count_C(n) = 0;
while flag_1==1 % concentration iterative loop
% Solve for total ionic charge density in the micropores
Qt_mi(1:xmax_pos,:) = -Qt_e(1:xmax_pos,:)-Q_fix_pos;
Qt_mi(xmin_neg+1:end,:) = -Qt_e(xmin_neg+1:end,:) - Q_fix_neg;
V_D(x_ind,:)=-asinh(Qt_mi(x_ind,:)/R_Micro*10^6/F/2./(C1(x_ind,:))/exp(uatt)); % non-dimentional Donnan layer potential
VV_0(x_ind,:)=V_D(x_ind,:)*25.7+Qt_e(x_ind,:)/C_Measured/M_e*1000; % mV, electrode polarization
C_mi_1(x_ind,:)=2*(C1(x_ind,:))*exp(uatt).*cosh(V_D(x_ind,:)); % mmol-L micropores
% Solve for new Ce including the effect of diffusion (implicit, forward time, CN in diffusion, upwind explicit in aadvection)
C_1=C1;
C1(x_ind,:)=R_Macro*C_0(x_ind,:)-(C_mi_1(x_ind,:)-C_mi_0(x_ind,:))/2*R_Micro;
C1(FC_ind,:)=R_FC*C_0(FC_ind,:);
C1(FC_ind,2:end)=C1(FC_ind,2:end)+v_FC*dt/dy*(C_0(xmax_pos+1:xmin_neg,indy_1(2:end))-C_0(xmax_pos+1:xmin_neg,indy(2:end)));
C1(FC_ind,1)=C1(FC_ind,1)+v_FC*dt/dy*(C0-C_0(xmax_pos+1:xmin_neg,1));
C1=reshape(C1+bc,[],1);
C1=D\C1;
C1=reshape(C1,nx,ny);
% check for convergence
err(Count_C(n)+1,1)=max(max(abs(C1-C_1)./C_1));
if err(Count_C(n)+1,1)<10^-7;
flag_1=0;
flag_8=1;
C_1=C1;
end
Count_C(n) = Count_C(n)+1;
end
% update the current and voltage distribution
Cond_M(:,:)=2*D_NaCl*C_1(:,:)/KB/Temp/1000000*F*e*R_e^1.5; % S/cm conductivity matrix
Cond_M(xmax_pos+1:xmin_neg,:)=2*D_NaCl*C_1(xmax_pos+1:xmin_neg,:)/KB/Temp/1000000*F*e*R_FC^1.5; % S/cm conductivity matrix
Cond_M(1:xmax_pos-1,:)=2.*Cond_M(1:xmax_pos-1,:).*Cond_M(indx_0(1:xmax_pos-1),:)./(Cond_M(1:xmax_pos-1,:)+Cond_M(indx_0(1:xmax_pos-1),:));
Cond_M(xmin_neg+1:xmax_neg-1,:)=2.*Cond_M(xmin_neg+1:xmax_neg-1,:).*Cond_M(indx_0(xmin_neg+1:xmax_neg-1),:)./(Cond_M(xmin_neg+1:xmax_neg-1,:)+Cond_M(indx_0(xmin_neg+1:xmax_neg-1),:));
Ri_M(:,:) = 1./Cond_M(:,:)*dx/dy/W_FC; % ohm, resistance matrix
Ri_S(:)=sum(Ri_M(xmax_pos:xmin_neg,:));
% calculate the current distribution in the electrode
M_I(1:(ny+1):(end-ny))=Ri_S(1:(end-1));
M_I((ny+1):(ny+1):end)=-Ri_S(2:end);
S_I=sparse(M_I);
B_I(1:end-1)=VV_0(xmax_pos,indy_0(1:(end-1)))-VV_0(xmin_neg+1,indy_0(1:(end-1)))-VV_0(xmax_pos,1:(end-1))+VV_0(xmin_neg+1,1:(end-1));
B_I(end)=I;
I_y=S_I\B_I; % solve the current distribution in the electrode in the y-direction
% calculate the leakage current
IL(1:xmax_pos,:)=a_ele*I0_C*V_i*exp(a_C/RT_F.*(VV_0(1:xmax_pos,:)/1000+E0_An-E0_C)); % VB model
%IL(1:xmax_pos,:)=0; % no leakage current
% Update the current distribution in the anode
II_1(2:xmax_pos-1, :)=-IL(2:xmax_pos-1,:)+(VV_0(indx_0(2:xmax_pos-1),:)-VV_0(indx(2:xmax_pos-1),:))./(Oe+Ri_M(2:xmax_pos-1,:))-(VV_0(indx(2:xmax_pos-1),:)-VV_0(indx_1(2:xmax_pos-1),:))./(Oe+Ri_M(indx_1(2:xmax_pos-1),:));
II_1(1,:)=-IL(1,:)+(VV_0(2,:)-VV_0(1,:))/(Oe+Ri_M(1,:));
II_1(xmax_pos,:)=I_y'-sum(II_1(1:xmax_pos-1,:))-sum(IL(1:xmax_pos,:));
% calculate the current distribution in the Cathode
%IL(xmin_neg+1:xmax_neg,:)=0; % no leakage curret
IL(xmin_neg+1:xmax_neg,:)=-IL_O2*V_i./(1+exp((VV_0(xmin_neg+1:xmax_neg,:)/1000+E0_Ca-E_half)/RT_F)); % limiting current model
%IL(xmin_neg+1:xmax_neg,:)=a_ele*I0_O2*V_i*(exp(a_O2/RT_F.*(VV_0(xmin_neg+1:xmax_neg,:)/1000+E0_Ca-E0_O2))-exp(-a_O2/RT_F.*(VV_0(xmin_neg+1:xmax_neg,:)/1000+E0_Ca-E0_O2)));
%BV model
% update the current distribution in the cathode
II_1(xmin_neg+2:end-1,:)=-IL(xmin_neg+2:end-1,:)+(VV_0(indx_1(xmin_neg+2:end-1),:)-VV_0(indx(xmin_neg+2:end-1),:))./(Oe+Ri_M(indx_1(xmin_neg+2:end-1),:))-(VV_0(indx(xmin_neg+2:end-1),:)-VV_0(indx_0(xmin_neg+2:end-1),:))./(Oe+Ri_M(indx(xmin_neg+2:end-1),:));
II_1(end,:)=-IL(end,:)+(VV_0(end-1,:)-VV_0(end,:))./(Oe+Ri_M(end,:));
II_1(xmin_neg+1,:)=-I_y'-sum(II_1(xmin_neg+2:end,:))-sum(IL(xmin_neg+1:end,:));
% Calculate the charge density
Qt_1(:,:)=Qt_0(:,:)+(II_0(:,:)+II_1(:,:))/2/1000/V_i*dt;
% Check for convergence
Error_Q =max(max(abs(Qt_1-Qt_e)));
if (Error_Q<10^-7||Count_Q(n)>200)&&flag_8==1;
flag_0=0;
flag_7=1;
II_0=II_1;
else
Qt_e=Qt_1;
end
Count_Q(n) = Count_Q(n)+1;
end
end
C_eff_1=mean(C_1(xmax_pos+1:xmin_neg,ny));
C_mid = (C_eff_1+C_eff_0)/2;
C_mix_1 = C_mid - (C_mid - C_mix_0)*exp(-k_mix*dt);
C_eff_0 = C_eff_1;
C_mix_0 = C_mix_1;
% Calculate the voltage distribution
Vt_1 (1)=-VV_0(xmin_neg+1,end)+I_y(end)*Ri_S(end)+VV_0(xmax_pos,end); % mV, voltage in the solution
Vt_1 (2)=R_contact/A_FC*I; % mV, voltage due to the resistance of two IEMs and external resistance
Vt_1 (3)=0; % mV, Donnan potential
Vt_1 (4)=sum(Vt_1(1:3));
% check if cell voltage reaches the maximum voltage limit
if Vt_1(4)>V_max&&flag_4==1;
I=-I;
Discharge_index(Cycle_number)=n_r;
flag_4=0;
flag_5=1;
end
% check if cell voltage reaches the minimum voltage limit
if Vt_1(4)<0&&flag_5==1 && n_r>100
I=-I;
Cycle_number=Cycle_number+1
Cycle_index(Cycle_number)=n_r;
flag_5=0;
flag_4=1;
end
% check for data storage
if T1-T_r(n_r)>=dt_record
n_r=n_r+1;
T_r(n_r)=T1;
C_eff(n_r)=C_eff_1;
C_eff_mix(n_r)=C_mix_1;
Vt(n_r,:)=Vt_1(:);
C_re(:,:,n_r)=C_1(:,:);
II_re(:,:,n_r)=II_1(:,:);
Q_mi_re(:,:,n_r)=Qt_mi;
IL_re(:,:,n_r) = IL;
fprintf('T = %4.2f s, V_cell = %4.2f mV, C_eff = %4.2f mM.\n', T1, Vt_1(4), C_eff_1)
end
% check if the maximum cycle litmits is reached
if Cycle_number==Cycle_limit+1;
%I=0;
flag_6=0;
break
end
end
T_r = T_r(1:n_r)';
V_cell = Vt(1:n_r, 4)';
C_eff = C_eff(1:n_r)';
%%%%%%post-treatment, save data in file
%filename = sprintf('CDI_2D_target_effluent_%icm_%imV_%imM_amph_D_%iA_%iFg_%iC_%s.mat',L_FC, V_max,C0,int32(J*10),C_Measured,Q_fix_pos,date);
%save(filename,'Vol_FC','V_max','n_r','T_r','II_re','C_re','C_eff','C_eff_mix','Vt','Q_mi_re','Cycle_index','Discharge_index','L_FC','Q_FC','J','A_FC','dx','dy','Batch_index','B_number','IL_re','C_Measured','Q_fix_pos','Q_fix_neg','k_mix')
toc
end
|
github
|
pablogmendez/gerris-master
|
panial.m
|
.m
|
gerris-master/Gerris/Gerris-ControllerModule/MLC/panial.m
| 1,728 |
utf_8
|
4967b798a0104c1e6cfe6d432e7b9934
|
function panial
timelimit=0.007;
fprintf('Panial is on\n')
while 1
try
fprintf('Panial is')
if ~exist('cylinder_control/log.txt','file')
pause(1)
fprintf(' waiting for log to appear\n');
pause(1)
continue
end
system('tail -n 20 cylinder_control/log.txt > last.txt');
pause(1)
A=importdata('last.txt');
delete last.txt
if isa(A,'cell')
for i=1:20
ok(i)=0;
if ~isempty(strfind(A{i},'Controller - Waiting for call request'));
ok(i)=1;
end
end
ids=strfind(A{end},':');
time_check='not checked';
if ids(1)==14 && ids(2)==17
log_time=A{end}(1:ids(2)+2);
if now-datenum(log_time)>timelimit
savelog('timelimit');
system('killall gerris2D');
timelimit=0.007*2;
else
timelimit=0.007;
end
time_check=sprintf('%s minute ago',datestr(now-datenum(log_time),'MM'));
end
if sum(ok)==20
savelog('waitingcallrequest');
system('killall gerris2D');
end
end
d=dir(fullfile('error_logs','*.txt'));
if isempty(d)
n_logs=0;
else
n_logs=numel(d);
end
fprintf(' on (last time on log: %s) - (%d panial(s) used)\n',time_check,n_logs)
pause(1)
catch err
fprintf(err.message);
end
end
end
function savelog(reason)
if ~exist('error_logs','dir')
mkdir('error_logs');
end
if exist('cylinder_control/log.txt','file')
copyfile('cylinder_control/log.txt',fullfile('error_logs',sprintf('%s-log-%s.txt',datestr(now,'yyyymmdd-HHMMSS'),reason)));
delete('cylinder_control/log.txt');
end
end
|
github
|
pablogmendez/gerris-master
|
MLC_Gerris_cylinder_evaluator.m
|
.m
|
gerris-master/Gerris/Gerris-ControllerModule/MLC/MLC_Gerris_cylinder_evaluator.m
| 2,926 |
utf_8
|
438365e79e29569e66cc7ca051fc0d11
|
function J=MLC_Gerris_cylinder_evaluator(idv,parameters,i,fig)
%% Variable grocery
curdir=pwd;
if nargin<3
i=[];
end
%% Quick drop of innapropriate control laws
if ~MLC_Gerris_cylinder_pre_evaluator(idv,parameters)
J=parameters.badvalue;
return
end
%% Setting up the simulation
try
%% Simulation
if strcmp(parameters.evaluation_method,'mfile_multi')
t=getCurrentTask();
WorkerID=t.ID;
else
WorkerID=[];
end
if ~exist(sprintf('%s%d',parameters.problem_variables.SimDirectory,WorkerID),'dir')
copyfile(parameters.problem_variables.SimDirectory,sprintf('%s%d',parameters.problem_variables.SimDirectory,WorkerID));
pause(2);
end
xSetFinalTime(parameters.problem_variables,parameters.verbose>2,WorkerID);
xSetActuator(idv,parameters,WorkerID);
cd(sprintf('%s%d',parameters.problem_variables.SimDirectory,WorkerID))
system('make clean');
system('./exec_from_steady_state.sh');
cd (curdir)
%% Get the cost
[t,x,y,s,b,dJa,dJb]=xGetResults(idv,parameters,WorkerID);
[t0,dJ0]=xGetUncontrolledResults();
if length(t0)~=length(t)
error('Time vectors does not match with uncontrolled case (length).');
else
if any(t~=t0)
error('Time vectors does not match with uncontrolled case (values).');
end
end
if t(end)==parameters.problem_variables.total_time
J=(trapz(t,dJa+parameters.problem_variables.gamma*dJb)/trapz(t,dJ0));
else
J=t(end)*parameters.badvalue;
end
%% Show results
if nargin>3
figure(667)
else
figure(1)
end
subplot(4,1,1)
plot(t,s)
subplot(4,1,2)
plot(t,b)
subplot(4,1,3)
plot(t,dJa,t,dJb);hold on
plot(t,dJ0,'linewidth',1.2,'color','k')
hold off
subplot(4,1,4)
try
plot(t,cumtrapz(t,dJa)./cumtrapz(t,t),t,cumtrapz(t,dJb)./cumtrapz(t,t),...
t,cumtrapz(t,dJa+parameters.problem_variables.gamma*dJb)./cumtrapz(t,t));
hold on
plot(t,cumtrapz(t,dJ0)./cumtrapz(t,t),'linewidth',1.2,'color','k')
hold off
catch
end
drawnow
%% deal with errors
catch err
cd(curdir);
fprintf(err.message);
savelog('MatlabCatch')
idv.comment=sprintf('Eval fail: %s',err.message);
J=parameters.badvalue;
end
end
function savelog(reason)
if ~exist('error_logs','dir')
mkdir('error_logs');
end
if exist('cylinder_control/log.txt','file')
copyfile('cylinder_control/log.txt',fullfile('error_logs',sprintf('%s-log-%s.txt',datestr(now,'yyyymmdd-HHMMSS'),reason)));
end
end
|
github
|
pablogmendez/gerris-master
|
panial.m
|
.m
|
gerris-master/Gerris/Gerris-ControllerModule/MLC/MLC_cyl.old/panial.m
| 1,296 |
utf_8
|
22b6149da0d41efbae44deaf503a0350
|
function [ok]=panial(MLC_parameters,varargin)
% PANIAL function that checks that the simulation did not shit itself and
% does what is needed if it did.
check = 1; % the programm waits until either the sim is finished, either it is
% frozen
old_time=-1;
while check
new_time=get_time(MLC_parameters);
if new_time==old_time % finished or stalled
check=0;
else
pause(3);
end
if isempty(new_time)
check=0;
end
old_time=new_time;
end
if old_time>MLC_parameters.problem_variables.total_time-1
ok=1;
else
ok=0;
killall;
end
end
function t=get_time(MLC_parameters)
log_file=MLC_parameters.problem_variables.outputfile;
temp_file='time.txt';
cd cylinder
system(sprintf('cat %s | tail -n 1 | awk ''{print $4}'' > %s',log_file,temp_file));
t=importdata(temp_file);
%delete(temp_file);
cd ..
end
function killall
temp_file='pid.txt';
sprintf('ps aux | grep gerris | awk ''{print $2}'' > %s',temp_file)
system(sprintf('ps aux | grep gerris | awk ''{print $2}'' > %s',temp_file));
pid_list=importdata(temp_file);
for i=1:length(pid_list)
sprintf('kill -9 %i',pid_list(i))
system(sprintf('kill -9 %i',pid_list(i)))
end
end
|
github
|
mehta-lab/Instantaneous-PolScope-master
|
interactivePolHist.m
|
.m
|
Instantaneous-PolScope-master/MehtaetalPNAS2016/interactivePolHist.m
| 5,399 |
utf_8
|
5ed4134946be75ed9f2d1f06e7f1f4e0
|
function hROI=interactivePolHist(I0,I45,I90,I135,aniso,orient,avg,varargin)
% hROI=interactivePolHist(I0,I45,I90,I135,aniso,orient,avg)
% Allows interactive exploration of orientation histogram.
% hROI is the handle of ROI used to display the orientation histogram if
% 'analyzeROI' option is set true. Otherwise hROI is NaN.
arg.avgCeiling=NaN;
arg.anisoCeiling=NaN;
arg.Statistic='PixelAnisotropy';
arg.analyzeROI=true;
arg.Parent=NaN;
arg.orientationRelativeToROI=true;
arg.scaleLUTtoROI=false;
arg.exportPath=[]; %If export path is set, export the current image and also the statistics.
arg.showColorbar=false;
arg.getDirection=false;
arg.radialRange=NaN;
arg=parsepropval(arg,varargin{:});
if(ishandle(arg.Parent))
hfig=arg.Parent;
else
hfig=togglefig('Interactive orientation histogram',1);
clf(hfig);
set(hfig,'color','w','defaultaxesfontsize',15,'Units','Normalized','Position',[0.05 0.05 0.9 0.9]);
colormap gray;
end
% Calculate the ceiling if not set.
if(isnan(arg.avgCeiling) || arg.avgCeiling == 0)
arg.avgCeiling=max(avg(:));
end
% Calculate the ceiling if not set.
if(isnan(arg.anisoCeiling) || arg.anisoCeiling == 0)
arg.anisoCeiling=max(aniso(:));
end
avgDisp=avg;
avgDisp(avg>arg.avgCeiling)=arg.avgCeiling;
OrientationMap=pol2color(aniso,orient,avgDisp,'sbm','border',15,'legend',true,'avgCeiling',arg.avgCeiling,'anisoCeiling',arg.anisoCeiling);
if(arg.showColorbar)
ha=imagecat(I0,I45,I90,I135,OrientationMap,aniso,avg,'link','equal','off','colorbar',hfig);
else
ha=imagecat(I0,I45,I90,I135,OrientationMap,aniso,avg,'link','equal','off',hfig);
end
set(ha(6),'clim',[0 arg.anisoCeiling]);
set(ha(7),'clim',[0 arg.avgCeiling]);
if(arg.analyzeROI)
% Draw the ROI interactively.
set(get(ha(7),'Title'),'String','Average (select ROI)');
hROI=impoly(ha(7));
setColor(hROI,'magenta');
% Setup a callback to update the histogram everytime ROI is updated.
addNewPositionCallback(hROI,@(p) updatePolHist(p,ha,hfig,I0,I45,I90,I135,aniso,orient,avg,arg));
% Constrain the ROI's boundaries.
fcn = makeConstrainToRectFcn('impoly',get(ha(7),'XLim'),get(ha(7),'YLim'));
setPositionConstraintFcn(hROI,fcn);
% Draw the histogram for the first time.
updatePolHist(hROI.getPosition(),ha,hfig,I0,I45,I90,I135,aniso,orient,avg,arg);
else
hROI=NaN;
end
end
function updatePolHist(p,ha,hfig,I0,I45,I90,I135,aniso,orient,avg,params)
persistent hLineROI hLineOrient;
% p is ROI, ha is handles to the axes.
histMask=poly2mask(p(:,1),p(:,2),size(I0,2),size(I0,1));
rpMask=regionprops(histMask,'Orientation','MajorAxisLength','Centroid','MinorAxisLength');
Lm=rpMask.MajorAxisLength; % Length of line indicating orientation of the mask.
maskCen=rpMask.Centroid;
maskOrient=mod(rpMask.Orientation*(pi/180),pi);
if(params.getDirection)
% Assign the direction consistent with the order of the points.
% Point-1 to point-2 is reference direction.
end
% Determine the display limits after ignoring the
% border.
I0crop=I0(histMask);
I135crop=I135(histMask);
I90crop=I90(histMask);
I45crop=I45(histMask);
OrientationCrop=orient(histMask);
AnisotropyCrop=aniso(histMask);
AverageCrop=avg(histMask);
maxAniso=max(AnisotropyCrop(:));
Ivec=[I0crop(:); I135crop(:); I90crop(:); I45crop(:)];
Ilims=[min(Ivec) 0.5*max(Ivec)];
subplot(2,4,8,'Parent',hfig);
[meanAniso,meanOrient]=anisoStats(AnisotropyCrop,OrientationCrop,AverageCrop);
polarPlotAnisoStat(AnisotropyCrop,OrientationCrop,AverageCrop,'PlotType','Polar','ReferenceOrient',maskOrient,...
'Statistic',params.Statistic,'orientationRelativeToROI',params.orientationRelativeToROI,'anisoCeiling',params.anisoCeiling);
%[meanOrient,meanAniso]=ComputeFluorAnisotropy(mean(I0crop),mean(I45crop),mean(I90crop),mean(I135crop),'anisotropy');
Lf=Lm*meanAniso; % Scale down the length of line indicating orientation of fluorophore depending on the anisotropy.
if(params.scaleLUTtoROI)
set([ha(1:4); ha(7)],'Clim',Ilims);
set(ha(6),'Clim',[0 maxAniso]);
end
%%% Label anisotropy display.
axes(ha(6)); title(['anisotropy: max ' num2str(maxAniso,2) ',mean ' num2str(meanAniso,2)]);
%%% Label intensity display.
axes(ha(7));
TotalI=sum(AverageCrop(:));
MeanI=mean(AverageCrop(:));
title(['total:' num2str(TotalI,3) ', mean:' num2str(MeanI,3) ]);
if(ishandle(hLineROI))
delete(hLineROI);
end
if(ishandle(hLineOrient))
delete(hLineOrient);
end
% Note that order of Y-coordinates is flipped because the Y-axis used
% by image processing toolbox is top to bottom, whereas visually and in
% polarization computations it is bottom to top.
hLineROI=line([maskCen(1)-0.5*Lm*cos(maskOrient) maskCen(1)+0.5*Lm*cos(maskOrient)],...
[maskCen(2)+0.5*Lm*sin(maskOrient) maskCen(2)-0.5*Lm*sin(maskOrient)],'LineWidth',2,'Color','k');
% Draw a line indicating the polarization orientation.
hLineOrient=line([maskCen(1)-0.5*Lf*cos(meanOrient) maskCen(1)+0.5*Lf*cos(meanOrient)],...
[maskCen(2)+0.5*Lf*sin(meanOrient) maskCen(2)-0.5*Lf*sin(meanOrient)],'LineWidth',2,'Color','b');
% [counts,levels]=hist(mod(OrientwrtMask,180),0:0.5:180);
% stem(levels,counts);
%
% xlim([0 180]);
%
end
|
github
|
mehta-lab/Instantaneous-PolScope-master
|
tiffread.m
|
.m
|
Instantaneous-PolScope-master/MehtaetalPNAS2016/tiffread.m
| 23,985 |
utf_8
|
ad13854ba30cf671ab07bfc42e12bd32
|
function stack = tiffread(filename, indices)
% tiffread, version 2.7 January 28, 2009
%
% stack = tiffread;
% stack = tiffread(filename);
% stack = tiffread(filename, indices);
%
% Reads 8,16,32 bits uncompressed grayscale and (some) color tiff files,
% as well as stacks or multiple tiff images, for example those produced
% by metamorph, Zeiss LSM or NIH-image.
%
% The function can be called with a file name in the current directory,
% or without argument, in which case it pops up a file opening dialog
% to allow for a manual selection of the file.
% If the stacks contains multiples images, reading can be restricted by
% specifying the indices of the images to read, or just one index.
%
% The returned value 'stack' is a vector struct containing the images
% and their meta-data. The length of the vector is the number of images.
% The image pixels values are stored in a field .data, which is a simple
% matrix for gray-scale images, or a cell-array of matrices for color images.
%
% The pixels values are returned in their native (usually integer) format,
% and must be converted to be used in most matlab functions.
%
% Example:
% im = tiffread('spindle.stk');
% imshow( double(im(5).data) );
%
% Only a fraction of the TIFF standard is supported, but you may extend support
% by modifying this file. If you do so, please return your modification to
% F. Nedelec, so that the added functionality can be distributed in the future.
%
% Francois Nedelec, EMBL, Copyright 1999-2008.
% rewriten July 7th, 2004 at Woods Hole during the physiology course.
% last modified March 7, 2008.
% With contributions from:
% Kendra Burbank for the waitbar
% Hidenao Iwai for the code to read floating point images,
% Stephen Lang to be more compliant with PlanarConfiguration
% Jan-Ulrich Kreft for Zeiss LSM support
% Elias Beauchanp and David Kolin for additional Metamorph support
% Jean-Pierre Ghobril for requesting that image indices may be specified
% Urs Utzinger for the better handling of color images, and LSM meta-data
%
% Please, send us feedback/bugs/suggestions to improve this code.
% This software is provided at no cost by a public research institution.
%
% Francois Nedelec
% nedelec (at) embl.de
% Cell Biology and Biophysics, EMBL; Meyerhofstrasse 1; 69117 Heidelberg; Germany
% http://www.embl.org
% http://www.cytosim.org
%Optimization: join adjacent TIF strips: this results in faster reads
consolidateStrips = 1;
%without argument, we ask the user to choose a file:
if nargin < 1
[filename, pathname] = uigetfile('*.tif;*.stk;*.lsm', 'select image file');
filename = [ pathname, filename ];
end
if (nargin<=1); indices = 1:10000; end
% not all valid tiff tags have been included, as they are really a lot...
% if needed, tags can easily be added to this code
% See the official list of tags:
% http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf
%
% the structure IMG is returned to the user, while TIF is not.
% so tags usefull to the user should be stored as fields in IMG, while
% those used only internally can be stored in TIF.
global TIF;
TIF = [];
%counters for the number of images read and skipped
img_skip = 0;
img_read = 1;
%hWaitbar = [];
%% set defaults values :
TIF.SampleFormat = 1;
TIF.SamplesPerPixel = 1;
TIF.BOS = 'ieee-le'; %byte order string
if isempty(findstr(filename,'.'))
filename = [filename,'.tif'];
end
TIF.file = fopen(filename,'r','l');
if TIF.file == -1
stkname = strrep(filename, '.tif', '.stk');
TIF.file = fopen(stkname,'r','l');
if TIF.file == -1
error(['File "',filename,'" not found.']);
else
filename = stkname;
end
end
[s, m] = fileattrib(filename);
% obtain the full file path:
filename = m.Name;
% find the file size in bytes:
% m = dir(filename);
% filesize = m.bytes;
%% read header
% read byte order: II = little endian, MM = big endian
byte_order = fread(TIF.file, 2, '*char');
if ( strcmp(byte_order', 'II') )
TIF.BOS = 'ieee-le'; % Intel little-endian format
elseif ( strcmp(byte_order','MM') )
TIF.BOS = 'ieee-be';
else
error('This is not a TIFF file (no MM or II).');
end
%% ---- read in a number which identifies file as TIFF format
tiff_id = fread(TIF.file,1,'uint16', TIF.BOS);
if (tiff_id ~= 42)
error('This is not a TIFF file (missing 42).');
end
%% ---- read the byte offset for the first image file directory (IFD)
TIF.img_pos = fread(TIF.file, 1, 'uint32', TIF.BOS);
while TIF.img_pos ~= 0
clear IMG;
IMG.filename = filename;
% move in the file to the first IFD
status = fseek(TIF.file, TIF.img_pos, -1);
if status == -1
error('invalid file offset (error on fseek)');
end
%disp(strcat('reading img at pos :',num2str(TIF.img_pos)));
%read in the number of IFD entries
num_entries = fread(TIF.file,1,'uint16', TIF.BOS);
%disp(strcat('num_entries =', num2str(num_entries)));
%read and process each IFD entry
for i = 1:num_entries
% save the current position in the file
file_pos = ftell(TIF.file);
% read entry tag
TIF.entry_tag = fread(TIF.file, 1, 'uint16', TIF.BOS);
% read entry
entry = readIFDentry;
%disp(strcat('reading entry <',num2str(TIF.entry_tag),'>'));
switch TIF.entry_tag
case 254
TIF.NewSubfiletype = entry.val;
case 256 % image width - number of column
IMG.width = entry.val;
case 257 % image height - number of row
IMG.height = entry.val;
TIF.ImageLength = entry.val;
case 258 % BitsPerSample per sample
TIF.BitsPerSample = entry.val;
TIF.BytesPerSample = TIF.BitsPerSample / 8;
IMG.bits = TIF.BitsPerSample(1);
%fprintf('BitsPerSample %i %i %i\n', entry.val);
case 259 % compression
if ( entry.val ~= 1 )
error(['Compression format ', num2str(entry.val),' not supported.']);
end
case 262 % photometric interpretation
TIF.PhotometricInterpretation = entry.val;
if ( TIF.PhotometricInterpretation == 3 )
warning('tiffread2:LookUp', 'Ignoring TIFF look-up table');
end
case 269
IMG.document_name = entry.val;
case 270 % comments:
IMG.info = entry.val;
case 271
IMG.make = entry.val;
case 273 % strip offset
TIF.StripOffsets = entry.val;
TIF.StripNumber = entry.cnt;
%fprintf('StripNumber = %i, size(StripOffsets) = %i %i\n', TIF.StripNumber, size(TIF.StripOffsets));
case 277 % sample_per pixel
TIF.SamplesPerPixel = entry.val;
%fprintf('Color image: sample_per_pixel=%i\n', TIF.SamplesPerPixel);
case 278 % rows per strip
TIF.RowsPerStrip = entry.val;
case 279 % strip byte counts - number of bytes in each strip after any compressio
TIF.StripByteCounts= entry.val;
case 282 % X resolution
IMG.x_resolution = entry.val;
case 283 % Y resolution
IMG.y_resolution = entry.val;
case 284 %planar configuration describe the order of RGB
TIF.PlanarConfiguration = entry.val;
case 296 % resolution unit
IMG.resolution_unit= entry.val;
case 305 % software
IMG.software = entry.val;
case 306 % datetime
IMG.datetime = entry.val;
case 315
IMG.artist = entry.val;
case 317 %predictor for compression
if (entry.val ~= 1); error('unsuported predictor value'); end
case 320 % color map
IMG.cmap = entry.val;
IMG.colors = entry.cnt/3;
case 339
TIF.SampleFormat = entry.val;
case 33628 %metamorph specific data
IMG.MM_private1 = entry.val;
case 33629 %this tag identify the image as a Metamorph stack!
TIF.MM_stack = entry.val;
TIF.MM_stackCnt = entry.cnt;
case 33630 %metamorph stack data: wavelength
TIF.MM_wavelength = entry.val;
case 33631 %metamorph stack data: gain/background?
TIF.MM_private2 = entry.val;
case 34412 % Zeiss LSM data
LSM_info = entry.val;
otherwise
%fprintf( 'Ignored TIFF entry with tag %i (cnt %i)\n', TIF.entry_tag, entry.cnt);
end
% move to next IFD entry in the file
status = fseek(TIF.file, file_pos+12, -1);
if status == -1
error('invalid file offset (error on fseek)');
end
end
%Planar configuration is not fully supported
%Per tiff spec 6.0 PlanarConfiguration irrelevent if SamplesPerPixel==1
%Contributed by Stephen Lang
if (TIF.SamplesPerPixel ~= 1) && ( ~isfield(TIF, 'PlanarConfiguration') || TIF.PlanarConfiguration == 1 )
error('PlanarConfiguration = 1 is not supported');
end
%total number of bytes per image:
PlaneBytesCnt = IMG.width * IMG.height * TIF.BytesPerSample;
%% try to consolidate the TIFF strips if possible
if consolidateStrips
%Try to consolidate the strips into a single one to speed-up reading:
BytesCnt = TIF.StripByteCounts(1);
if BytesCnt < PlaneBytesCnt
ConsolidateCnt = 1;
%Count how many Strip are needed to produce a plane
while TIF.StripOffsets(1) + BytesCnt == TIF.StripOffsets(ConsolidateCnt+1)
ConsolidateCnt = ConsolidateCnt + 1;
BytesCnt = BytesCnt + TIF.StripByteCounts(ConsolidateCnt);
if ( BytesCnt >= PlaneBytesCnt ); break; end
end
%Consolidate the Strips
if ( BytesCnt <= PlaneBytesCnt(1) ) && ( ConsolidateCnt > 1 )
%fprintf('Consolidating %i stripes out of %i', ConsolidateCnt, TIF.StripNumber);
TIF.StripByteCounts = [BytesCnt; TIF.StripByteCounts(ConsolidateCnt+1:TIF.StripNumber ) ];
TIF.StripOffsets = TIF.StripOffsets( [1 , ConsolidateCnt+1:TIF.StripNumber] );
TIF.StripNumber = 1 + TIF.StripNumber - ConsolidateCnt;
end
end
end
%read the next IFD address:
TIF.img_pos = fread(TIF.file, 1, 'uint32', TIF.BOS);
%if (TIF.img_pos) disp(['next ifd at', num2str(TIF.img_pos)]); end
if isfield( TIF, 'MM_stack' )
sel = ( indices <= TIF.MM_stackCnt );
indices = indices(sel);
%if numel(indices) > 1
% hWaitbar = waitbar(0,'Reading images...','Name','TiffRead');
%end
%this loop reads metamorph stacks:
for ii = indices
TIF.StripCnt = 1;
offset = PlaneBytesCnt * (ii-1);
%read the image channels
for c = 1:TIF.SamplesPerPixel
IMG.data{c} = read_plane(offset, IMG.width, IMG.height, c);
end
% print a text timer on the main window, or update the waitbar
% fprintf('img_read %i img_skip %i\n', img_read, img_skip);
%if ~isempty( hWaitbar )
% waitbar(img_read/numel(indices), hWaitbar);
%end
[ IMG.MM_stack, IMG.MM_wavelength, IMG.MM_private2 ] = splitMetamorph(ii);
stack(img_read) = IMG;
img_read = img_read + 1;
end
break;
else
%this part reads a normal TIFF stack:
read_img = any( img_skip+img_read == indices );
if exist('stack','var')
if IMG.width ~= stack(1).width || IMG.height ~= stack(1).height
%setting read_it=0 will skip dissimilar images:
%comment-out the line below to allow dissimilar stacks
read_img = 0;
end
end
if read_img
TIF.StripCnt = 1;
%read the image channels
for c = 1:TIF.SamplesPerPixel
IMG.data{c} = read_plane(0, IMG.width, IMG.height, c);
end
try
stack(img_read) = IMG; % = orderfields(IMG);
img_read = img_read + 1;
catch
fprintf('Tiffread skipped dissimilar image %i\n', img_read+img_skip);
img_skip = img_skip + 1;
end
if all( img_skip+img_read > indices )
break;
end
else
img_skip = img_skip + 1;
end
end
end
%% remove the cell structure if there is always only one channel
flat = 1;
for i = 1:numel(stack)
if numel(stack(i).data) ~= 1
flat = 0;
break;
end
end
if flat
for i = 1:numel(stack)
stack(i).data = stack(i).data{1};
end
end
%% distribute the MetaMorph info
if isfield(TIF, 'MM_stack') && isfield(IMG, 'info') && ~isempty(deblank(IMG.info))
MM = parseMetamorphInfo(IMG.info, TIF.MM_stackCnt);
for i = 1:numel(stack)
stack(i).MM = MM(i);
end
end
%% duplicate the LSM info
if exist('LSM_info', 'var')
for i = 1:numel(stack)
stack(i).lsm = LSM_info;
end
end
%% return
if ~ exist('stack', 'var')
stack = [];
end
%clean-up
fclose(TIF.file);
% if ~isempty( hWaitbar )
% delete( hWaitbar );
% end
end
%% ===========================================================================
function plane = read_plane(offset, width, height, plane_nb)
global TIF;
%return an empty array if the sample format has zero bits
if ( TIF.BitsPerSample(plane_nb) == 0 )
plane=[];
return;
end
%fprintf('reading plane %i size %i %i\n', plane_nb, width, height);
%determine the type needed to store the pixel values:
switch( TIF.SampleFormat )
case 1
classname = sprintf('uint%i', TIF.BitsPerSample(plane_nb));
case 2
classname = sprintf('int%i', TIF.BitsPerSample(plane_nb));
case 3
if ( TIF.BitsPerSample(plane_nb) == 32 )
classname = 'single';
else
classname = 'double';
end
otherwise
error('unsuported TIFF sample format %i', TIF.SampleFormat);
end
% Preallocate a matrix to hold the sample data:
try
plane = zeros(width, height, classname);
catch
%compatibility with older matlab versions:
eval(['plane = ', classname, '(zeros(width, height));']);
end
% Read the strips and concatenate them:
line = 1;
while ( TIF.StripCnt <= TIF.StripNumber )
strip = read_strip(offset, width, plane_nb, TIF.StripCnt, classname);
TIF.StripCnt = TIF.StripCnt + 1;
% copy the strip onto the data
plane(:, line:(line+size(strip,2)-1)) = strip;
line = line + size(strip,2);
if ( line > height )
break;
end
end
% Extract valid part of data if needed
if ~all(size(plane) == [width height]),
plane = plane(1:width, 1:height);
warning('tiffread2:Crop','Cropping data: found more bytes than needed');
end
% transpose the image (otherwise display is rotated in matlab)
plane = plane';
end
%% ================== sub-functions to read a strip ===================
function strip = read_strip(offset, width, plane_nb, stripCnt, classname)
global TIF;
%fprintf('reading strip at position %i\n',TIF.StripOffsets(stripCnt) + offset);
StripLength = TIF.StripByteCounts(stripCnt) ./ TIF.BytesPerSample(plane_nb);
%fprintf( 'reading strip %i\n', stripCnt);
status = fseek(TIF.file, TIF.StripOffsets(stripCnt) + offset, 'bof');
if status == -1
error('invalid file offset (error on fseek)');
end
bytes = fread( TIF.file, StripLength, classname, TIF.BOS );
if any( length(bytes) ~= StripLength )
error('End of file reached unexpectedly.');
end
strip = reshape(bytes, width, StripLength / width);
end
%% ==================sub-functions that reads an IFD entry:===================
function [nbBytes, matlabType] = convertType(tiffType)
switch (tiffType)
case 1
nbBytes=1;
matlabType='uint8';
case 2
nbBytes=1;
matlabType='uchar';
case 3
nbBytes=2;
matlabType='uint16';
case 4
nbBytes=4;
matlabType='uint32';
case 5
nbBytes=8;
matlabType='uint32';
case 7
nbBytes=1;
matlabType='uchar';
case 11
nbBytes=4;
matlabType='float32';
case 12
nbBytes=8;
matlabType='float64';
otherwise
error('tiff type %i not supported', tiffType)
end
end
%% ==================sub-functions that reads an IFD entry:===================
function entry = readIFDentry()
global TIF;
entry.tiffType = fread(TIF.file, 1, 'uint16', TIF.BOS);
entry.cnt = fread(TIF.file, 1, 'uint32', TIF.BOS);
%disp(['tiffType =', num2str(entry.tiffType),', cnt = ',num2str(entry.cnt)]);
[ entry.nbBytes, entry.matlabType ] = convertType(entry.tiffType);
if entry.nbBytes * entry.cnt > 4
%next field contains an offset:
offset = fread(TIF.file, 1, 'uint32', TIF.BOS);
%disp(strcat('offset = ', num2str(offset)));
status = fseek(TIF.file, offset, -1);
if status == -1
error('invalid file offset (error on fseek)');
end
end
if TIF.entry_tag == 33629 % metamorph 'rationals'
entry.val = fread(TIF.file, 6*entry.cnt, entry.matlabType, TIF.BOS);
elseif TIF.entry_tag == 34412 %TIF_CZ_LSMINFO
entry.val = readLSMinfo;
else
if entry.tiffType == 5
entry.val = fread(TIF.file, 2*entry.cnt, entry.matlabType, TIF.BOS);
else
entry.val = fread(TIF.file, entry.cnt, entry.matlabType, TIF.BOS);
end
end
if ( entry.tiffType == 2 );
entry.val = char(entry.val');
end
end
%% =============distribute the metamorph infos to each frame:
function [MMstack, MMwavelength, MMprivate2] = splitMetamorph(imgCnt)
global TIF;
MMstack = [];
MMwavelength = [];
MMprivate2 = [];
if TIF.MM_stackCnt == 1
return;
end
left = imgCnt - 1;
if isfield( TIF, 'MM_stack' )
S = length(TIF.MM_stack) / TIF.MM_stackCnt;
MMstack = TIF.MM_stack(S*left+1:S*left+S);
end
if isfield( TIF, 'MM_wavelength' )
S = length(TIF.MM_wavelength) / TIF.MM_stackCnt;
MMwavelength = TIF.MM_wavelength(S*left+1:S*left+S);
end
if isfield( TIF, 'MM_private2' )
S = length(TIF.MM_private2) / TIF.MM_stackCnt;
MMprivate2 = TIF.MM_private2(S*left+1:S*left+S);
end
end
%% %% Parse the Metamorph camera info tag into respective fields
% EVBR 2/7/2005, FJN Dec. 2007
function mm = parseMetamorphInfo(info, cnt)
info = regexprep(info, '\r\n|\o0', '\n');
parse = textscan(info, '%s %s', 'Delimiter', ':');
tokens = parse{1};
values = parse{2};
% If the stk file has been created in imageJ, the delimiter used is '='.
if isempty(str2mat(values))
parse = textscan(info, '%s%s', 'Delimiter', '=');
tokens = parse{1};
values = parse{2};
if isempty(str2mat(values))
error('Invalid delimiter in metamorph stack info.');
end
end
first = char(tokens(1,1));
k = 0;
mm = struct('Exposure', zeros(cnt,1));
for i=1:size(tokens,1)
tok = char(tokens(i,1));
val = char(values(i,1));
%fprintf( '"%s" : "%s"\n', tok, val);
if strcmp(tok, first)
k = k + 1;
end
if strcmp(tok, 'Exposure')
[v, c, e, pos] = sscanf(val, '%i');
unit = val(pos:length(val));
%return the exposure in milli-seconds
switch( unit )
case 'ms'
mm(k).Exposure = v;
case 's'
mm(k).Exposure = v * 1000;
otherwise
warning('tiffread2:Unit', ['Exposure unit "',unit,'" not recognized']);
mm(k).Exposure = v;
end
else
switch tok
case 'Binning'
% Binning: 1 x 1 -> [1 1]
mm(k).Binning = sscanf(val, '%d x %d')';
case 'Region'
mm(k).Region = sscanf(val, '%d x %d, offset at (%d, %d)')';
otherwise
field = genvarname(regexprep(tok, ' ', ''));
if strcmp(val, 'Off')
eval(['mm(k).',field,'=0;']);
elseif strcmp(val, 'On')
eval(['mm(k).',field,'=1;']);
elseif isstrprop(val,'digit')
eval(['mm(k).',field,'=str2num(val)'';']);
else
mm(k).(field)=val;
end
end
end
end
end
%% ==============partial-parse of LSM info:
function R = readLSMinfo()
% Read part of the LSM info table version 2
% this provides only very partial information, since the offset indicate that
% additional data is stored in the file
global TIF;
R.MagicNumber = sprintf('0x%09X',fread(TIF.file, 1, 'uint32', TIF.BOS));
StructureSize = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.DimensionX = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.DimensionY = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.DimensionZ = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.DimensionChannels = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.DimensionTime = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.IntensityDataType = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.ThumbnailX = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.ThumbnailY = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.VoxelSizeX = fread(TIF.file, 1, 'float64', TIF.BOS);
R.VoxelSizeY = fread(TIF.file, 1, 'float64', TIF.BOS);
R.VoxelSizeZ = fread(TIF.file, 1, 'float64', TIF.BOS);
R.OriginX = fread(TIF.file, 1, 'float64', TIF.BOS);
R.OriginY = fread(TIF.file, 1, 'float64', TIF.BOS);
R.OriginZ = fread(TIF.file, 1, 'float64', TIF.BOS);
R.ScanType = fread(TIF.file, 1, 'uint16', TIF.BOS);
R.SpectralScan = fread(TIF.file, 1, 'uint16', TIF.BOS);
R.DataType = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetVectorOverlay = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetInputLut = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetOutputLut = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetChannelColors = fread(TIF.file, 1, 'uint32', TIF.BOS);
R.TimeInterval = fread(TIF.file, 1, 'float64', TIF.BOS);
OffsetChannelDataTypes = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetScanInformation = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetKsData = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetTimeStamps = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetEventList = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetRoi = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetBleachRoi = fread(TIF.file, 1, 'uint32', TIF.BOS);
OffsetNextRecording = fread(TIF.file, 1, 'uint32', TIF.BOS);
% There are more information stored in this table, which is not read here
%read real acquisition times:
if ( OffsetTimeStamps > 0 )
status = fseek(TIF.file, OffsetTimeStamps, -1);
if status == -1
error('error on fseek');
end
StructureSize = fread(TIF.file, 1, 'int32', TIF.BOS);
NumberTimeStamps = fread(TIF.file, 1, 'int32', TIF.BOS);
for i=1:NumberTimeStamps
R.TimeStamp(i) = fread(TIF.file, 1, 'float64', TIF.BOS);
end
%calculate elapsed time from first acquisition:
R.TimeOffset = R.TimeStamp - R.TimeStamp(1);
end
end
|
github
|
mehta-lab/Instantaneous-PolScope-master
|
parsepropval.m
|
.m
|
Instantaneous-PolScope-master/MehtaetalPNAS2016/parsepropval.m
| 2,622 |
utf_8
|
71cde36da325e23d6e64232c3598e0f4
|
function prop = parsepropval(prop,varargin)
%parsepropval: Parse property/value pairs and return a structure.
% Manages property/value pairs like MathWorks Handle Graphics functions.
% This means that in addition to passing in Property name strings and
% Values, you can also include structures with appropriately named fields.
% The full, formal property names are defined by the defaults structure
% (first input argument). This is followed by any number of property/value
% pairs and/or structures with property names for the field names. The
% property name matching is case-insensitive and needs only be
% unambiguous.
%
% For example,
%
% params.FileName = 'Untitled';
% params.FileType = 'text';
% params.Data = [1 2 3];
% s.dat = [4 5 6];
% parsepropval(params,'filenam','mydata.txt',s,'filety','binary')
%
% returns a structure with the same field names as params, filled in
% according to the property/value pairs and structures passed in.
% ans =
% FileName: 'mydata.txt'
% FileType: 'binary'
% Data: [4 5 6]
%
% The inputs are processed from left to right so if any property is
% specified more than once the latest value is retained.
%
% An error is generated if property names are ambiguous. Values can be
% any MATLAB variable.
%
% Typical use is in a function with a variable number of input arguments.
% For example,
%
% function myfun(varargin)
% properties.prop1 = [];
% properties.prop2 = 'default';
% properties = parsepropval(properties,varargin{:});
% Version: 1.0, 13 January 2009
% Author: Douglas M. Schwarz
% Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu
% Real_email = regexprep(Email,{'=','*'},{'@','.'})
% Process inputs and set prop fields.
properties = fieldnames(prop);
arg_index = 1;
while arg_index <= length(varargin)
arg = varargin{arg_index};
if ischar(arg)
prop_index = match_property(arg,properties);
prop.(properties{prop_index}) = varargin{arg_index + 1};
arg_index = arg_index + 2;
elseif isstruct(arg)
arg_fn = fieldnames(arg);
for i = 1:length(arg_fn)
prop_index = match_property(arg_fn{i},properties);
prop.(properties{prop_index}) = arg.(arg_fn{i});
end
arg_index = arg_index + 1;
else
error(['Properties must be specified by property/value pairs',...
' or structures.'])
end
end
function prop_index = match_property(arg,properties)
prop_index = find(strcmpi(arg,properties));
if isempty(prop_index)
prop_index = find(strncmpi(arg,properties,length(arg)));
end
if length(prop_index) ~= 1
error('Property ''%s'' does not exist or is ambiguous.',arg)
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.