plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
scanUCLA/MRtools_Hoffman2-master
postpad.m
.m
MRtools_Hoffman2-master/Utilities/postpad.m
2,013
utf_8
2c9539d77ff0f85c9f89108f4dc811e0
% Copyright (C) 1994, 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2005, % 2006, 2007, 2008, 2009 John W. Eaton % % This file is part of Octave. % % Octave is free software; you can redistribute it and/or modify it % under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 3 of the License, or (at % your option) any later version. % % Octave is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % General Public License for more details. % % You should have received a copy of the GNU General Public License % along with Octave; see the file COPYING. If not, see % <http://www.gnu.org/licenses/>. % -*- texinfo -*- % @deftypefn {Function File} {} postpad (@var{x}, @var{l}, @var{c}) % @deftypefnx {Function File} {} postpad (@var{x}, @var{l}, @var{c}, @var{dim}) % @seealso{prepad, resize} % @end deftypefn % Author: Tony Richardson <[email protected]> % Created: June 1994 function y = postpad (x, l, c, dim) if nargin < 2 || nargin > 4 %print_usage (); error('wrong number of input arguments, should be between 2 and 4'); end if nargin < 3 || isempty(c) c = 0; else if ~isscalar(c) error ('postpad: third argument must be empty or a scalar'); end end nd = ndims(x); sz = size(x); if nargin < 4 % Find the first non-singleton dimension dim = 1; while dim < nd+1 && sz(dim)==1 dim = dim + 1; end if dim > nd dim = 1; elseif ~(isscalar(dim) && dim == round(dim)) && dim > 0 && dim< nd+1 error('postpad: dim must be an integer and valid dimension'); end end if ~isscalar(l) || l<0 error ('second argument must be a positive scalar'); end if dim > nd sz(nd+1:dim) = 1; end d = sz(dim); if d >= l idx = cell(1,nd); for i = 1:nd idx{i} = 1:sz(i); end idx{dim} = 1:l; y = x(idx{:}); else sz(dim) = l-d; y = cat(dim, x, c * ones(sz)); end
github
scanUCLA/MRtools_Hoffman2-master
sftrans.m
.m
MRtools_Hoffman2-master/Utilities/sftrans.m
7,947
utf_8
f64cb2e7d19bcdc6232b39d8a6d70e7c
% Copyright (C) 1999 Paul Kienzle % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % usage: [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop) % % Transform band edges of a generic lowpass filter (cutoff at W=1) % represented in splane zero-pole-gain form. W is the edge of the % target filter (or edges if band pass or band stop). Stop is true for % high pass and band stop filters or false for low pass and band pass % filters. Filter edges are specified in radians, from 0 to pi (the % nyquist frequency). % % Theory: Given a low pass filter represented by poles and zeros in the % splane, you can convert it to a low pass, high pass, band pass or % band stop by transforming each of the poles and zeros individually. % The following table summarizes the transformation: % % Transform Zero at x Pole at x % ---------------- ------------------------- ------------------------ % Low Pass zero: Fc x/C pole: Fc x/C % S -> C S/Fc gain: C/Fc gain: Fc/C % ---------------- ------------------------- ------------------------ % High Pass zero: Fc C/x pole: Fc C/x % S -> C Fc/S pole: 0 zero: 0 % gain: -x gain: -1/x % ---------------- ------------------------- ------------------------ % Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S^2+FhFl pole: 0 zero: 0 % S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C % S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ % Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl) % S -> C -------- gain: -x gain: -1/x % S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ % Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) % 2 z-1 pole: -1 zero: -1 % S -> - --- gain: (2-xT)/T gain: (2-xT)/T % T z+1 % ---------------- ------------------------- ------------------------ % % where C is the cutoff frequency of the initial lowpass filter, Fc is % the edge of the target low/high pass filter and [Fl,Fh] are the edges % of the target band pass/stop filter. With abundant tedious algebra, % you can derive the above formulae yourself by substituting the % transform for S into H(S)=S-x for a zero at x or H(S)=1/(S-x) for a % pole at x, and converting the result into the form: % % H(S)=g prod(S-Xi)/prod(S-Xj) % % The transforms are from the references. The actual pole-zero-gain % changes I derived myself. % % Please note that a pole and a zero at the same place exactly cancel. % This is significant for High Pass, Band Pass and Band Stop filters % which create numerous extra poles and zeros, most of which cancel. % Those which do not cancel have a 'fill-in' effect, extending the % shorter of the sets to have the same number of as the longer of the % sets of poles and zeros (or at least split the difference in the case % of the band pass filter). There may be other opportunistic % cancellations but I will not check for them. % % Also note that any pole on the unit circle or beyond will result in % an unstable filter. Because of cancellation, this will only happen % if the number of poles is smaller than the number of zeros and the % filter is high pass or band pass. The analytic design methods all % yield more poles than zeros, so this will not be a problem. % % References: % % Proakis & Manolakis (1992). Digital Signal Processing. New York: % Macmillan Publishing Company. % Author: Paul Kienzle <[email protected]> % 2000-03-01 [email protected] % leave transformed Sg as a complex value since cheby2 blows up % otherwise (but only for odd-order low-pass filters). bilinear % will return Zg as real, so there is no visible change to the % user of the IIR filter design functions. % 2001-03-09 [email protected] % return real Sg; don't know what to do for imaginary filters function [Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop) if (nargin ~= 5) usage('[Sz, Sp, Sg] = sftrans(Sz, Sp, Sg, W, stop)'); end; C = 1; p = length(Sp); z = length(Sz); if z > p || p == 0 error('sftrans: must have at least as many poles as zeros in s-plane'); end if length(W)==2 Fl = W(1); Fh = W(2); if stop % ---------------- ------------------------- ------------------------ % Band Stop zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S(Fh-Fl) pole: ?sqrt(-FhFl) zero: ?sqrt(-FhFl) % S -> C -------- gain: -x gain: -1/x % S^2+FhFl b=C/x (Fh-Fl)/2 b=C/x (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ if (isempty(Sz)) Sg = Sg * real (1./ prod(-Sp)); elseif (isempty(Sp)) Sg = Sg * real(prod(-Sz)); else Sg = Sg * real(prod(-Sz)/prod(-Sp)); end b = (C*(Fh-Fl)/2)./Sp; Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; extend = [sqrt(-Fh*Fl), -sqrt(-Fh*Fl)]; if isempty(Sz) Sz = [extend(1+rem([1:2*p],2))]; else b = (C*(Fh-Fl)/2)./Sz; Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; if (p > z) Sz = [Sz, extend(1+rem([1:2*(p-z)],2))]; end end else % ---------------- ------------------------- ------------------------ % Band Pass zero: b ? sqrt(b^2-FhFl) pole: b ? sqrt(b^2-FhFl) % S^2+FhFl pole: 0 zero: 0 % S -> C -------- gain: C/(Fh-Fl) gain: (Fh-Fl)/C % S(Fh-Fl) b=x/C (Fh-Fl)/2 b=x/C (Fh-Fl)/2 % ---------------- ------------------------- ------------------------ Sg = Sg * (C/(Fh-Fl))^(z-p); b = Sp*((Fh-Fl)/(2*C)); Sp = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; if isempty(Sz) Sz = zeros(1,p); else b = Sz*((Fh-Fl)/(2*C)); Sz = [b+sqrt(b.^2-Fh*Fl), b-sqrt(b.^2-Fh*Fl)]; if (p>z) Sz = [Sz, zeros(1, (p-z))]; end end end else Fc = W; if stop % ---------------- ------------------------- ------------------------ % High Pass zero: Fc C/x pole: Fc C/x % S -> C Fc/S pole: 0 zero: 0 % gain: -x gain: -1/x % ---------------- ------------------------- ------------------------ if (isempty(Sz)) Sg = Sg * real (1./ prod(-Sp)); elseif (isempty(Sp)) Sg = Sg * real(prod(-Sz)); else Sg = Sg * real(prod(-Sz)/prod(-Sp)); end Sp = C * Fc ./ Sp; if isempty(Sz) Sz = zeros(1,p); else Sz = [C * Fc ./ Sz]; if (p > z) Sz = [Sz, zeros(1,p-z)]; end end else % ---------------- ------------------------- ------------------------ % Low Pass zero: Fc x/C pole: Fc x/C % S -> C S/Fc gain: C/Fc gain: Fc/C % ---------------- ------------------------- ------------------------ Sg = Sg * (C/Fc)^(z-p); Sp = Fc * Sp / C; Sz = Fc * Sz / C; end end
github
scanUCLA/MRtools_Hoffman2-master
filtfilt.m
.m
MRtools_Hoffman2-master/Utilities/filtfilt.m
3,297
iso_8859_1
d01a26a827bc3379f05bbc57f46ac0a9
% Copyright (C) 1999 Paul Kienzle % Copyright (C) 2007 Francesco Potortì % Copyright (C) 2008 Luca Citi % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % usage: y = filtfilt(b, a, x) % % Forward and reverse filter the signal. This corrects for phase % distortion introduced by a one-pass filter, though it does square the % magnitude response in the process. That's the theory at least. In % practice the phase correction is not perfect, and magnitude response % is distorted, particularly in the stop band. %% % Example % [b, a]=butter(3, 0.1); % 10 Hz low-pass filter % t = 0:0.01:1.0; % 1 second sample % x=sin(2*pi*t*2.3)+0.25*randn(size(t)); % 2.3 Hz sinusoid+noise % y = filtfilt(b,a,x); z = filter(b,a,x); % apply filter % plot(t,x,';data;',t,y,';filtfilt;',t,z,';filter;') % Changelog: % 2000 02 [email protected] % - pad with zeros to load up the state vector on filter reverse. % - add example % 2007 12 [email protected] % - use filtic to compute initial and final states % - work for multiple columns as well % 2008 12 [email protected] % - fixed instability issues with IIR filters and noisy inputs % - initial states computed according to Likhterov & Kopeika, 2003 % - use of a "reflection method" to reduce end effects % - added some basic tests % TODO: (pkienzle) My version seems to have similar quality to matlab, % but both are pretty bad. They do remove gross lag errors, though. function y = filtfilt(b, a, x) if (nargin ~= 3) usage('y=filtfilt(b,a,x)'); end rotate = (size(x, 1)==1); if rotate % a row vector x = x(:); % make it a column vector end lx = size(x,1); a = a(:).'; b = b(:).'; lb = length(b); la = length(a); n = max(lb, la); lrefl = 3 * (n - 1); if la < n, a(n) = 0; end if lb < n, b(n) = 0; end % Compute a the initial state taking inspiration from % Likhterov & Kopeika, 2003. "Hardware-efficient technique for % minimizing startup transients in Direct Form II digital filters" kdc = sum(b) / sum(a); if (abs(kdc) < inf) % neither NaN nor +/- Inf si = fliplr(cumsum(fliplr(b - kdc * a))); else si = zeros(size(a)); % fall back to zero initialization end si(1) = []; y = zeros(size(x)); for c = 1:size(x, 2) % filter all columns, one by one v = [2*x(1,c)-x((lrefl+1):-1:2,c); x(:,c); 2*x(end,c)-x((end-1):-1:end-lrefl,c)]; % a column vector % Do forward and reverse filtering v = filter(b,a,v,si*v(1)); % forward filter v = flipud(filter(b,a,flipud(v),si*v(end))); % reverse filter y(:,c) = v((lrefl+1):(lx+lrefl)); end if (rotate) % x was a row vector y = rot90(y); % rotate it back end
github
scanUCLA/MRtools_Hoffman2-master
bilinear.m
.m
MRtools_Hoffman2-master/Utilities/bilinear.m
4,339
utf_8
17250db27826cad87fa3384823e1242f
% Copyright (C) 1999 Paul Kienzle % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % usage: [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) % [Zb, Za] = bilinear(Sb, Sa, T) % % Transform a s-plane filter specification into a z-plane % specification. Filters can be specified in either zero-pole-gain or % transfer function form. The input form does not have to match the % output form. 1/T is the sampling frequency represented in the z plane. % % Note: this differs from the bilinear function in the signal processing % toolbox, which uses 1/T rather than T. % % Theory: Given a piecewise flat filter design, you can transform it % from the s-plane to the z-plane while maintaining the band edges by % means of the bilinear transform. This maps the left hand side of the % s-plane into the interior of the unit circle. The mapping is highly % non-linear, so you must design your filter with band edges in the % s-plane positioned at 2/T tan(w*T/2) so that they will be positioned % at w after the bilinear transform is complete. % % The following table summarizes the transformation: % % +---------------+-----------------------+----------------------+ % | Transform | Zero at x | Pole at x | % | H(S) | H(S) = S-x | H(S)=1/(S-x) | % +---------------+-----------------------+----------------------+ % | 2 z-1 | zero: (2+xT)/(2-xT) | zero: -1 | % | S -> - --- | pole: -1 | pole: (2+xT)/(2-xT) | % | T z+1 | gain: (2-xT)/T | gain: (2-xT)/T | % +---------------+-----------------------+----------------------+ % % With tedious algebra, you can derive the above formulae yourself by % substituting the transform for S into H(S)=S-x for a zero at x or % H(S)=1/(S-x) for a pole at x, and converting the result into the % form: % % H(Z)=g prod(Z-Xi)/prod(Z-Xj) % % Please note that a pole and a zero at the same place exactly cancel. % This is significant since the bilinear transform creates numerous % extra poles and zeros, most of which cancel. Those which do not % cancel have a 'fill-in' effect, extending the shorter of the sets to % have the same number of as the longer of the sets of poles and zeros % (or at least split the difference in the case of the band pass % filter). There may be other opportunistic cancellations but I will % not check for them. % % Also note that any pole on the unit circle or beyond will result in % an unstable filter. Because of cancellation, this will only happen % if the number of poles is smaller than the number of zeros. The % analytic design methods all yield more poles than zeros, so this will % not be a problem. % % References: % % Proakis & Manolakis (1992). Digital Signal Processing. New York: % Macmillan Publishing Company. % Author: Paul Kienzle <[email protected]> function [Zz, Zp, Zg] = bilinear(Sz, Sp, Sg, T) if nargin==3 T = Sg; [Sz, Sp, Sg] = tf2zp(Sz, Sp); elseif nargin~=4 usage('[Zz, Zp, Zg]=bilinear(Sz,Sp,Sg,T) or [Zb, Za]=blinear(Sb,Sa,T)'); end; p = length(Sp); z = length(Sz); if z > p || p==0 error('bilinear: must have at least as many poles as zeros in s-plane'); end % ---------------- ------------------------- ------------------------ % Bilinear zero: (2+xT)/(2-xT) pole: (2+xT)/(2-xT) % 2 z-1 pole: -1 zero: -1 % S -> - --- gain: (2-xT)/T gain: (2-xT)/T % T z+1 % ---------------- ------------------------- ------------------------ Zg = real(Sg * prod((2-Sz*T)/T) / prod((2-Sp*T)/T)); Zp = (2+Sp*T)./(2-Sp*T); if isempty(Sz) Zz = -ones(size(Zp)); else Zz = [(2+Sz*T)./(2-Sz*T)]; Zz = postpad(Zz, p, -1); end if nargout==2, [Zz, Zp] = zp2tf(Zz, Zp, Zg); end
github
scanUCLA/MRtools_Hoffman2-master
butter.m
.m
MRtools_Hoffman2-master/Utilities/butter.m
3,621
utf_8
aa8e4440d4f5659bfdc78c05e275a458
% Copyright (C) 1999 Paul Kienzle % % This program is free software; you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation; either version 2 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program; If not, see <http://www.gnu.org/licenses/>. % Generate a butterworth filter. % Default is a discrete space (Z) filter. % % [b,a] = butter(n, Wc) % low pass filter with cutoff pi*Wc radians % % [b,a] = butter(n, Wc, 'high') % high pass filter with cutoff pi*Wc radians % % [b,a] = butter(n, [Wl, Wh]) % band pass filter with edges pi*Wl and pi*Wh radians % % [b,a] = butter(n, [Wl, Wh], 'stop') % band reject filter with edges pi*Wl and pi*Wh radians % % [z,p,g] = butter(...) % return filter as zero-pole-gain rather than coefficients of the % numerator and denominator polynomials. % % [...] = butter(...,'s') % return a Laplace space filter, W can be larger than 1. % % [a,b,c,d] = butter(...) % return state-space matrices % % References: % % Proakis & Manolakis (1992). Digital Signal Processing. New York: % Macmillan Publishing Company. % Author: Paul Kienzle <[email protected]> % Modified by: Doug Stewart <[email protected]> Feb, 2003 function [a, b, c, d] = butter (n, W, varargin) % keyboard; if (nargin>4 || nargin<2) || (nargout>4 || nargout<2) usage ('[b, a] or [z, p, g] or [a,b,c,d] = butter (n, W [, "ftype"][,"s"])'); end % interpret the input parameters if (~(length(n)==1 && n == round(n) && n > 0)) error ('butter: filter order n must be a positive integer'); end stop = 0; digital = 1; for i=1:length(varargin) switch varargin{i} case 's', digital = 0; case 'z', digital = 1; case { 'high', 'stop' }, stop = 1; case { 'low', 'pass' }, stop = 0; otherwise, warning('Going with defaults: stop=0; digital=1');%error ('butter: expected [high|stop] or [s|z]'); end end [r, c]=size(W); if (~(length(W)<=2 && (r==1 || c==1))) error ('butter: frequency must be given as w0 or [w0, w1]'); elseif (~(length(W)==1 || length(W) == 2)) error ('butter: only one filter band allowed'); elseif (length(W)==2 && ~(W(1) < W(2))) error ('butter: first band edge must be smaller than second'); end if ( digital && ~all(W >= 0 & W <= 1)) error ('butter: critical frequencies must be in (0 1)'); elseif ( ~digital && ~all(W >= 0 )) error ('butter: critical frequencies must be in (0 inf)'); end % Prewarp to the band edges to s plane if digital T = 2; % sampling frequency of 2 Hz W = 2/T*tan(pi*W/T); end % Generate splane poles for the prototype butterworth filter % source: Kuc C = 1; % default cutoff frequency pole = C*exp(1i*pi*(2*[1:n] + n - 1)/(2*n)); if mod(n,2) == 1, pole((n+1)/2) = -1; end % pure real value at exp(i*pi) zero = []; gain = C^n; % splane frequency transform [zero, pole, gain] = sftrans(zero, pole, gain, W, stop); % Use bilinear transform to convert poles to the z plane if digital [zero, pole, gain] = bilinear(zero, pole, gain, T); end % convert to the correct output form if nargout==2, a = real(gain*poly(zero)); b = real(poly(pole)); elseif nargout==3, a = zero; b = pole; c = gain; else % output ss results [a, b, c, d] = zp2ss (zero, pole, gain); end
github
scanUCLA/MRtools_Hoffman2-master
colmap.m
.m
MRtools_Hoffman2-master/Utilities/colmap.m
17,277
utf_8
34cf76a5861b666aed0e9d9030c68f1d
function [cm list] = colmap(map,depth,custom) %%% Written by Aaron P. Schultz - [email protected] %%% %%% Copyright (C) 2014, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. list = {'gray' 'hot' 'cool' 'jet' 'hsv' 'pink' 'spring' 'summer' 'autumn' 'winter' 'bone' 'copper' 'red' 'red2' 'green' 'blue' 'yellow' 'yellow2' 'purple' 'purple2' 'cyan2' 'mag2' 'ocean' 'orange' 'my' 'ym' 'mby' 'cy' 'yc' 'mc' 'cm' ... 'jet1' 'jet2' 'cool2' ... 'cbd_rd_yl_gn' 'cbd_rd_yl_bu' 'cbd_rd_gy' 'cbd_rd_bu' 'cbd_pu_or' 'cbd_pu_gn' 'cbd_pi_yl_gn' 'cbd_br_bg' ... 'cbs_yl_or_rd' 'cbs_yl_or_br' 'cbs_yl_gn_bu' 'cbs_yl_gn' 'cbs_rd_pu' 'cbs_pu' 'cbs_pu_rd' 'cbs_pu_bu_gn' 'cbs_pu_bu' 'cbs_or_rd' 'cbs_or' 'cbs_gr' 'cbs_gn' 'cbs_gn_bu' 'cbs_bu_pu' 'cbs_bn_gn' 'cbs_bu' ... 'cbq_set1' 'cbq_paied' 'cbq_dark2' 'cbq_accent' 'cbq_pastel1' 'cbq_pastel2' 'cbq_set2' 'cbq_set3' 'parula' ... 'test1' 'lightgray' ... 'custom'}; if isempty(map); map = ' '; end if nargin<3 custom = []; end switch lower(map) case('gray') cm = gray(depth); case('hot') cm = hot(depth); case('hot3') cm = zeros(depth,3)*0; cm(:,1) = linspace(1,1,depth)'; cm(:,2) = linspace(0,1,depth)'; cm(:,3) = linspace(0,0,depth)'; case('cool') cm = cool(depth); case('cool2') cm = cool(depth); cm = cm(end:-1:1,:); case('cool3') cm = zeros(depth,3)*0; cm(:,1) = linspace(0,0,depth)'; cm(:,2) = linspace(0,1,depth)'; cm(:,3) = linspace(1,1,depth)'; case('jet') cm = jet(depth); case('jet1') cm = jet(depth*2); cm = cm(1:depth,:); case('jet2') cm = jet(depth*2); cm = cm(end:-1:end-(depth-1),:); case('hsv') cm = hsv(depth); case('pink') cm = pink(depth); case('spring') cm = spring(depth); case('summer') cm = summer(depth); case('autumn') cm = autumn(depth); case('winter') cm = winter(depth); case('bone') cm = bone(depth); case('copper') cm = copper(depth); case('parula') cm = parula(depth); case('red') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,1) = x(end:-1:1); case('red2') cm = zeros(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,1) = x(1:end); case('green') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,2) = x(end:-1:1); case('blue') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,3) = x(1:end); case('yellow') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,1) = x(end:-1:1); cm(:,2) = x(end:-1:1); case('yellow2') cm = zeros(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,1) = x(1:end); cm(:,2) = x(1:end); case('purple') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,1) = x(end:-1:1); cm(:,3) = x(end:-1:1); case('purple2') cm = zeros(depth,3); x = 0:(1/(depth-1)):1; cm(end:-1:1,1) = x(end:-1:1); cm(end:-1:1,3) = x(end:-1:1); case('cyan2') cm = zeros(depth,3)*0; cm(:,1) = linspace(0,0,depth)'; cm(:,2) = linspace(0,1,depth)'; cm(:,3) = linspace(0,1,depth)'; case('mag2') cm = zeros(depth,3)*0; cm(:,1) = linspace(0,1,depth)'; cm(:,2) = linspace(0,0,depth)'; cm(:,3) = linspace(0,1,depth)'; case('ocean') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,2) = x(end:-1:1); cm(:,3) = x(end:-1:1); case('orange') cm = ones(depth,3)*0; x = 0:(1/(depth-1)):1; cm(:,1) = x(end:-1:1); cm(:,2) = x(end:-1:1)*.5; case('my') cm = zeros(depth,3)*0; cm(:,1) = linspace(1,1,depth)'; cm(:,2) = linspace(0,1,depth)'; cm(:,3) = linspace(1,0,depth)'; case('ym') cm = zeros(depth,3)*0; cm(:,1) = linspace(1,1,depth)'; cm(:,2) = linspace(1,0,depth)'; cm(:,3) = linspace(0,1,depth)'; case 'mby' n = depth/2; cm = zeros(depth,3)*0; cm(1:n,1) = linspace(1,0,n)'; cm(1:n,2) = linspace(0,0,n)'; cm(1:n,3) = linspace(1,0,n)'; cm(n+1:end,1) = linspace(0,1,n)'; cm(n+1:end,2) = linspace(0,1,n)'; cm(n+1:end,3) = linspace(0,0,n)'; case('cy') cm = zeros(depth,3)*0; cm(:,1) = linspace(0,1,depth)'; cm(:,2) = linspace(1,1,depth)'; cm(:,3) = linspace(1,0,depth)'; case('yc') cm = zeros(depth,3)*0; cm(:,1) = linspace(1,0,depth)'; cm(:,2) = linspace(1,1,depth)'; cm(:,3) = linspace(0,1,depth)'; case('mc') cm = zeros(depth,3)*0; cm(:,1) = linspace(1,0,depth)'; cm(:,2) = linspace(0,1,depth)'; cm(:,3) = linspace(1,1,depth)'; case('cm') cm = zeros(depth,3)*0; cm(:,1) = linspace(0,1,depth)'; cm(:,2) = linspace(1,0,depth)'; cm(:,3) = linspace(1,1,depth)'; case('lightgray') cm = zeros(depth,3)*0; cm(:,1) = linspace(.2,.8,depth)'; cm(:,2) = linspace(.2,.8,depth)'; cm(:,3) = linspace(.2,.8,depth)'; case('lightergray') cm = zeros(depth,3)*0; cm(:,1) = linspace(.3,.7,depth)'; cm(:,2) = linspace(.3,.7,depth)'; cm(:,3) = linspace(.3,.7,depth)'; case('cbd_rd_yl_gn') cols = [0.6471 0 0.1490 1.0000 1.0000 0.7490 0 0.4078 0.2157]; cm = mkmap(cols,depth); case('cbd_rd_yl_bu') cols = [0.6471 0 0.1490 1.0000 1.0000 0.7490 0.1922 0.2118 0.5843]; cm = mkmap(cols,depth); case('cbd_rd_gy') cols = [0.4039 0 0.1216 1.0000 1.0000 1.0000 0.1020 0.1020 0.1020]; cm = mkmap(cols,depth); case('cbd_rd_bu') cols = [0.4039 0 0.1216 1 1 1 0.0196 0.1882 0.3804]; cm = mkmap(cols,depth); case('cbd_pu_or') cols = [0.4980 0.2314 0.0314 0.9686 0.9686 0.9686 0.1765 0 0.2941]; cm = mkmap(cols,depth); case('cbd_pu_gn') cols = [0.5569 0.0039 0.3216; 1 1 1 ; 0.1529 0.3922 0.0980]; cm = mkmap(cols,depth); case('cbd_pi_yl_gn') cols = [0.5569 0.0039 0.3216 0.9686 0.9686 0.9686 0.1529 0.3922 0.0980]; cm = mkmap(cols,depth); case('cbd_br_bg') cols = [0.3294 0.1882 0.0196 0.9608 0.9608 0.9608 0 0.2353 0.1882]; cm = mkmap(cols,depth); case('cbs_yl_or_rd') cols = [1.0000 1.0000 0.8000 0.9882 0.3059 0.1647 0.5020 0 0.1490]; cm = mkmap(cols,depth); case('cbs_yl_or_br') cols = [1.0000 1.0000 0.8980 0.9255 0.4392 0.0784 0.4000 0.1451 0.0235]; cm = mkmap(cols,depth); case('cbs_yl_gn_bu') cols = [1.0000 1.0000 0.8510 0.1137 0.5686 0.7529 0.0314 0.1137 0.3451]; cm = mkmap(cols,depth); case('cbs_yl_gn') cols = [1.0000 1.0000 0.8980 0.2549 0.6706 0.3647 0 0.2706 0.1608]; cm = mkmap(cols,depth); case('cbs_rd_pu') cols = [1.0000 0.9686 0.9529 0.8667 0.2039 0.5922 0.2863 0 0.4157]; cm = mkmap(cols,depth); case('cbs_pu') cols = [0.9882 0.9843 0.9922 0.5020 0.4902 0.7294 0.2471 0 0.4902]; cm = mkmap(cols,depth); case('cbs_pu_rd') cols = [0.9686 0.9569 0.9765 0.9059 0.1608 0.5412 0.4039 0 0.1216]; cm = mkmap(cols,depth); case('cbs_pu_bu_gn') cols = [1.0000 0.9686 0.9843 0.2118 0.5647 0.7529 0.0039 0.2745 0.2118]; cm = mkmap(cols,depth); case('cbs_pu_bu') cols = [1.0000 0.9686 0.9843 0.2118 0.5647 0.7529 0.0078 0.2196 0.3451]; cm = mkmap(cols,depth); case('cbs_or_rd') cols = [1.0000 0.9686 0.9255 0.9373 0.3961 0.2824 0.4980 0 0]; cm = mkmap(cols,depth); case('cbs_or') cols = [1.0000 0.9608 0.9216 0.9451 0.4118 0.0745 0.4980 0.1529 0.0157]; cm = mkmap(cols,depth); case('cbs_gr') cols = [1.0000 1.0000 1.0000 0.4510 0.4510 0.4510 0 0 0]; cm = mkmap(cols,depth); case('cbs_gn') cols = [0.9686 0.9882 0.9608 0.2549 0.6706 0.3647 0 0.2667 0.1059]; cm = mkmap(cols,depth); case('cbs_gn_bu') cols = [0.9686 0.9882 0.9412 0.3059 0.7020 0.8275 0.0314 0.2510 0.5059]; cm = mkmap(cols,depth); case('cbs_bu_pu') cols = [0.9686 0.9882 0.9922 0.5490 0.4196 0.6941 0.3020 0 0.2941]; cm = mkmap(cols,depth); case('cbs_bn_gn') cols = [0.9686 0.9882 0.9922 0.2549 0.6824 0.4627 0 0.2667 0.1059]; cm = mkmap(cols,depth); case('cbs_bu') cols = [0.9686 0.9843 1.0000 0.2588 0.5725 0.7765 0.0314 0.1882 0.4196]; cm = mkmap(cols,depth); case('cbq_set1') dat = [0.8941 0.1020 0.1098 0.2157 0.4941 0.7216 0.3020 0.6863 0.2902 0.5961 0.3059 0.6392 1.0000 0.4980 0 1.0000 1.0000 0.2000 0.6510 0.3373 0.1569 0.9686 0.5059 0.7490 0.6000 0.6000 0.6000]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_paied') dat = [0.6510 0.8078 0.8902 0.1216 0.4706 0.7059 0.6980 0.8745 0.5412 0.2000 0.6275 0.1725 0.9843 0.6039 0.6000 0.8902 0.1020 0.1098 0.9922 0.7490 0.4353 1.0000 0.4980 0 0.7922 0.6980 0.8392]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_dark2') dat = [0.1059 0.6196 0.4667 0.8510 0.3725 0.0078 0.4588 0.4392 0.7020 0.9059 0.1608 0.5412 0.6549 0.3961 0.3176 0.4000 0.6510 0.1176 0.9020 0.6706 0.0078 0.6510 0.4627 0.1137 0.4000 0.4000 0.4000]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_accent') dat = [0.4980 0.7882 0.4980 0.7451 0.6824 0.8314 0.9922 0.7529 0.5255 1.0000 1.0000 0.6000 0.6118 0.8000 0.6588 0.2196 0.4235 0.6902 0.9412 0.0078 0.4980 0.7490 0.3569 0.0902 0.4000 0.4000 0.4000]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_pastel1') dat = [0.9843 0.7059 0.6824 0.7020 0.8039 0.8902 0.8000 0.9216 0.7725 0.8706 0.7961 0.8941 0.9961 0.8510 0.6510 1.0000 1.0000 0.8000 0.8980 0.8471 0.7412 0.9922 0.8549 0.9255 0.9490 0.9490 0.9490]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_pastel2') dat = [0.7020 0.8863 0.8039 0.9922 0.8039 0.6745 0.7961 0.8353 0.9098 0.9569 0.7922 0.8941 0.9294 0.8784 0.8549 0.9020 0.9608 0.7882 1.0000 0.9490 0.6824 0.9451 0.8863 0.8000 0.8000 0.8000 0.8000]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_set2') dat = [0.4000 0.7608 0.6471 0.9882 0.5529 0.3843 0.5529 0.6275 0.7961 0.9059 0.5412 0.7647 0.7804 0.6941 0.5765 0.6510 0.8471 0.3294 1.0000 0.8510 0.1843 0.8980 0.7686 0.5804 0.7020 0.7020 0.7020]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('cbq_set3') dat = [0.5529 0.8275 0.7804 1.0000 1.0000 0.7020 0.7451 0.7294 0.8549 0.9843 0.5020 0.4471 0.5020 0.6941 0.8275 0.9922 0.7059 0.3843 0.7020 0.8706 0.4118 0.9882 0.8039 0.8980 0.8510 0.8510 0.8510]; cm = zeros(depth,3); for ii = 1:size(dat,2); nx = 1:8/(depth-1):9; ny = interp1(1:9,dat(:,ii),nx,'PCHIP'); cm(:,ii) = ny; end case('test1') %figure(10); clf; imagesc((1:255)'); set(gca,'ydir','normal'); colorbar; shg xx = (1:depth)'; cols = [0 0 0; 1 0 0; 1 1 0; 0 1 1; 0 0 1; 1 0 1;]; %%cols = [0 0 0; 1 0 0; 0 1 0; 0 0 1; 1 1 1]; x = (1:(depth-1)/(size(cols,1)-1):depth)'; for ii = 1:size(cols,2) cm(:,ii) = spline(x, cols(:,ii),xx); end cm(cm<0)=0; cm(cm>1)=1; % for ii = 1:size(cm,2); % if range(cm(:,ii))>1 % cm(:,1) = cm(:,ii)-min(cm(:,ii)); % cm(:,ii) = cm(:,ii)./max(cm(:,ii)); % end % end case('custom') if isempty(custom) fh = figure(777); clf; %reset(777); pop(1) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .83 .9 .05],'String','Enter the colors you want (e.g. [1 0 0; 0 1 0; 0 0 1]','Fontsize',12); pop(2) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .75 .9 .08],'String','','Fontsize',12,'Callback','uiresume'); uiwait eval(['custom = [' get(pop(2),'String') '];']); close(gcf); end cm = mkmap(custom,depth); otherwise cm = jet(depth); end end function cm = mkmap(cols,depth) cm = zeros(depth,3); if size(cols,1)==2; cm(:,1) = linspace(cols(1,1),cols(2,1),depth)'; cm(:,2) = linspace(cols(1,2),cols(2,2),depth)'; cm(:,3) = linspace(cols(1,3),cols(2,3),depth)'; elseif size(cols,1)==3; n = depth/2; cm(1:n,1) = linspace(cols(1,1),cols(2,1),n)'; cm(1:n,2) = linspace(cols(1,2),cols(2,2),n)'; cm(1:n,3) = linspace(cols(1,3),cols(2,3),n)'; cm(n+1:end,1) = linspace(cols(2,1),cols(3,1),n)'; cm(n+1:end,2) = linspace(cols(2,2),cols(3,2),n)'; cm(n+1:end,3) = linspace(cols(2,3),cols(3,3),n)'; end end % figure(1); clf; scatter(1:256,1:256,[],cm);
github
scanUCLA/MRtools_Hoffman2-master
original20150821_FIVE.m
.m
MRtools_Hoffman2-master/Visualization/original20150821_FIVE.m
170,340
utf_8
c25aab3735b43725afe314c25e5a0a5f
function [Obj VOI peak] = FIVE(inputImage,linkHands) %%% This is an image viewing and plotting utility. Just launch it with %%% "FIVE" at the command line. There are a great many features in %%% this viewer, and you can learn all about them at: %%% http://nmr.mgh.harvard.edu/harvardagingbrain/People/AaronSchultz/Aarons_Scripts.html %%% %%% For launching FIVE you can do one of the following: %%% FIVE; %% Launch FIVE and then load images %%% FIVE({'OverLay1.nii' 'Overlay2.img'}); %% This will launch FIVE with the specified overlays. %%% FIVE({{'Underlay.nii'}}); %% this will launch FIVE with the specified underlay image %%% FIVE({{'Underlay.nii'} {'OverLay1.nii' 'Overlay2.img'}}); %% This will launch FIVE with the specified underlay and load up the specified overlays. %%% %%% Ignore the linkHands input. This is for specialized call back functions. %%% %%% Some FIVE features require additinal packages, for instance get %%% peaks requires Donald McLaren's peak_nii package, and the VOI plotting %%% options will require that the analysis be done with GLM_Flex. %%% %%% Written by Aaron P. Schultz - [email protected] %%% %%% Copyright (C) 2011, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. %%% %%% system(['sh run_FIVE.sh /usr/pubsw/common/matlab/8.0/']); % Update the colormaps, and colormapping system. depth = 256; [trash, cmaps] = colmap('jet',depth); hand = []; links = []; origDat = []; contrasts = []; DM = []; plotGo = 0; Flist = []; mniLims = []; Des = []; DataHeaders = []; Outliers = []; lastItem = []; tabHand = []; % global Obj; Obj = []; VOI = []; peak = []; modelType = []; CachedClusterLoc = []; ConExp = 0; ConLayer = []; ConHeader = []; ssConExp = 0; ssConLayer = []; ssConHeader = []; ssData = []; clickFlag = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initialize the underlay MH = spm_vol([fileparts(which('spm')) '/canonical/single_subj_T1.nii']); %% template underlay all image data is mapped to this orientation if nargin > 0 try if iscell(inputImage{1}); [a b c] = fileparts(inputImage{1}{1}); if strcmpi('.mgz',c) m = MRIread(inputImage{1}{1}); m.descrip = []; MRIwrite(m,[a b '.nii'],'float'); inputImage{1}{1} = [a b '.nii']; %hh.fname = [m.fspec(1:end-3) 'nii']; %hh.dim = m.volsize; %hh.mat = m.vox2ras1; %hh.pinfo = [1;0;352]; %hh.dt = [16 0]; %hh.n = [1 1]; %hh.descrip = ['MGZ Volume']; %hh.private = []; end h = spm_vol(inputImage{1}{1}); [I mmm] = SliceAndDice3(h,MH,[],[],[3 NaN],[]); h.dim = size(I); h.mat = mmm; else [I h] = openIMG(which('defaultUnderlay.nii')); end catch [I h] = openIMG(which('defaultUnderlay.nii')); end else [I h] = openIMG(which('defaultUnderlay.nii')); end Obj = initializeUnderlay(I,h); movego = 0; loc = [0 0 0]; mc = round([loc 1] * inv(Obj(1).h.mat)'); Obj(1).point = round([loc 1] * inv(Obj(1).h.mat)'); Obj(1).lastpoint = [round(size(Obj(1).I)/2) 1]-1; Obj(1).Range = [min(Obj(1).I(:)) max(Obj(1).I(:)) max(Obj(1).I(:))-min(Obj(1).I(:))]; Obj(1).FOV = sort([ [1 1 1 1]*Obj(1).h.mat'; [Obj(1).axLims 1]*Obj(1).h.mat']); Obj(1).col = 1; if any((size(Obj(1).I) - Obj(1).point(1:3))<0); Obj(1).point = [round(size(Obj(1).I)/2) 1]; tmp = Obj(1).point*Obj(1).h.mat'; loc = tmp(1:3); end % if ~isempty(contains('aschultz',{UserTime})); keyboard; end setupFrames(1,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create the figure window height = []; width = []; rat = []; ax1 = []; ax2 = []; ax3 = []; ax4 = []; con = []; menu = []; hcmenu = []; item = []; setupFigure; Obj(1).con = con; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Setup the figure menus paramenu1 = []; paramenu2 = []; paramenu3 = []; paramenu4 = []; S = []; setupParamMenu; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Read in a label atlas RNH = spm_vol([which('aal_MNI_V4.img')]); [RNI Rxyz] = spm_read_vols(RNH); RNames = load('aal_MNI_V4_List.mat'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Draw Underlay ch = []; drawFresh(ax1,1); drawFresh(ax2,2); drawFresh(ax3,3); Obj(1).hand = hand; for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Plot CrossHairs [ch(1,1), ch(1,2)] = crossHairs(ax1,[0 0]); [ch(2,1), ch(2,2)] = crossHairs(ax2,[0 0]); [ch(3,1), ch(3,2)] = crossHairs(ax3,[0 0]); Obj(1).ch = ch; set(ch, 'uicontextmenu',hcmenu); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Link CrossHair Positions hListener1 = addlistener(ch(1,1),'XData','PostSet',@AutoUpdate); hListener2 = addlistener(ch(2,1),'XData','PostSet',@AutoUpdate); hListener3 = addlistener(ch(1,2),'YData','PostSet',@AutoUpdate); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Synchronize Views if requested if nargin>1 && ~isempty(linkHands) links{end+1}=linkprop([ch(1,1),linkHands(1,1)],'XData'); links{end+1}=linkprop([ch(1,2),linkHands(1,2)],'YData'); links{end+1}=linkprop([ch(2,1),linkHands(2,1)],'XData'); links{end+1}=linkprop([ch(2,2),linkHands(2,2)],'YData'); links{end+1}=linkprop([ch(3,1),linkHands(3,1)],'XData'); links{end+1}=linkprop([ch(3,2),linkHands(3,2)],'YData'); set(gcf,'UserData',links); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Open Prespecified Overlays Count = 2; if nargin > 0; try if iscell(inputImage{1}) if length(inputImage)>1 openOverlay(inputImage{2}); end else openOverlay(inputImage); end catch openOverlay(inputImage); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yy = Obj(1).clim(1):(Obj(1).clim(2)-Obj(1).clim(1))/255:Obj(1).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(1).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Make Figure Visible set(findobj(gcf,'Fontsize', 10),'fontsize',12); shg set(findobj(gcf,'Fontsize', 12),'fontsize',13); shg set(pane,'Visible','on'); %% function AutoUpdate(varargin) vn = get(con(21,1),'Value'); y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); xyz = [x(1) y(1) z(1)]; xyz((mniLims(1,:)-xyz)>0) = mniLims(1,(mniLims(1,:)-xyz)>0); xyz((mniLims(2,:)-xyz)<0) = mniLims(2,(mniLims(2,:)-xyz)<0); x = xyz(1); y = xyz(2); z = xyz(3); for ii = 1:length(Obj) Obj(ii).point = ceil([x y z 1] * inv(Obj(ii).h.mat)'); Obj(ii).point(Obj(ii).point(1:3)<1) = 1; ind = find((Obj(ii).axLims-Obj(ii).point(1:3))<0); Obj(ii).point(ind) = Obj(ii).axLims(ind); if ii == 1; p = ceil([x y z 1] * inv(RNH.mat)'); try nm = RNames.ROI(RNI(p(1),p(2),p(3))); set(paramenu1(2),'Label',nm.Nom_L); catch set(paramenu1(2),'Label','undefined'); end end end setupFrames(1:length(Obj),0); updateGraphics([1 2 3],0); set(con(15,1),'String',num2str(round([x y z]))); mc = round([x y z 1] * inv(Obj(get(con(21,1),'Value')).h.mat)'); vn = get(con(21,1),'Value'); try set(con(22,1),'String',num2str(Obj(get(con(21,1),'Value')).I(mc(1),mc(2),mc(3)))); catch set(con(22,1),'String','NaN'); end shg end function goTo(varargin) if varargin{1}==con(15,1); cl = str2num(get(con(15,1),'String')); set(ch(1,1), 'XData', [cl(2) cl(2)]); set(ch(1,2), 'YData', [cl(3) cl(3)]); set(ch(2,1), 'XData', [cl(1) cl(1)]); set(ch(2,2), 'YData', [cl(3) cl(3)]); set(ch(3,1), 'XData', [cl(1) cl(1)]); set(ch(3,2), 'YData', [cl(2) cl(2)]); end end function buttonUp(varargin) movego = 0; end function buttonDown(varargin) %get(gcf,'SelectionType') if strcmpi(get(gcf,'SelectionType'),'normal') || clickFlag==1; movego = 1; co1 = gco; co2 = gca; switch co2 case ax1 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); z = cp(2); set(ch(1,1), 'XData', [y y]); set(ch(1,2), 'YData', [z z]); set(ch(2,2), 'YData', [z z]); set(ch(3,2), 'YData', [y y]); case ax2 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); x = cp(1); z = cp(2); set(ch(2,1), 'XData', [x x]); set(ch(2,2), 'YData', [z z]); set(ch(1,2), 'YData', [z z]); set(ch(3,1), 'XData', [x x]); case ax3 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); x = cp(2); set(ch(3,1), 'XData', [y y]); set(ch(3,2), 'YData', [x x]); set(ch(1,1), 'XData', [x x]); set(ch(2,1), 'XData', [y y]); otherwise end end if strcmpi(get(gcf,'SelectionType'),'extend'); plotVOI(lastItem); end if strcmpi(get(gcf,'SelectionType'),'alt'); if ConExp ~=0 updateConnMap; elseif ssConExp ~= 0; ssUpdateConnMap; end end end function buttonMotion(varargin) if movego == 1; co1 = gco; co2 = gca; switch co2 case ax1 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); z = cp(2); if Obj(1).FOV(1,2)>y; y=Obj(1).FOV(1,2); end; if Obj(1).FOV(2,2)<y; y=Obj(1).FOV(2,2); end; if Obj(1).FOV(1,3)>z; z=Obj(1).FOV(1,3); end; if Obj(1).FOV(2,3)<z; z=Obj(1).FOV(2,3); end; set(ch(1,1), 'XData', [y y]); set(ch(1,2), 'YData', [z z]); set(ch(2,2), 'YData', [z z]); set(ch(3,2), 'YData', [y y]); case ax2 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); x = cp(1); z = cp(2); if Obj(1).FOV(1,1)>x; x=Obj(1).FOV(1,1); end; if Obj(1).FOV(2,1)<x; x=Obj(1).FOV(2,1); end; if Obj(1).FOV(1,3)>z; z=Obj(1).FOV(1,3); end; if Obj(1).FOV(2,3)<z; z=Obj(1).FOV(2,3); end; set(ch(2,1), 'XData', [x x]); set(ch(2,2), 'YData', [z z]); set(ch(1,2), 'YData', [z z]); set(ch(3,1), 'XData', [x x]); case ax3 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); x = cp(2); if Obj(1).FOV(1,1)>x; x=Obj(1).FOV(1,1); end; if Obj(1).FOV(2,1)<x; x=Obj(1).FOV(2,1); end; if Obj(1).FOV(1,2)>y; y=Obj(1).FOV(1,2); end; if Obj(1).FOV(2,2)<y; y=Obj(1).FOV(2,2); end; set(ch(3,1), 'XData', [y y]); set(ch(3,2), 'YData', [x x]); set(ch(1,1), 'XData', [x x]); set(ch(2,1), 'XData', [y y]); otherwise end end end function openOverlay(varargin) if nargin == 0 nnn = spm_select(inf,'image'); else if iscell(varargin{1}) nnn = char(varargin{1}); elseif ischar(varargin{1}) nnn = varargin{1}; else nnn = spm_select(inf,'image'); end for kk = 1:size(nnn,1) n = strtrim(nnn(kk,:)); ind = find(n==filesep); if isempty(ind); nn = n; n2 = n; else nn = n(ind(end)+1:end); if numel(ind)>1 n2 = n(ind(end-1)+1:end); else n2 = n; end end if mean(n==filesep)==0 n = [pwd filesep n]; end hh = spm_vol(n); set(con(21,1),'TooltipString',n) a = world_bb(MH); b = world_bb(hh); tmp = a-b; tmp(1,:) = tmp(1,:)*-1; if hh.dt(1)>=16 intOrd = 3; else intOrd = 0; end if all(tmp(:)>=0) [m mmm] = SliceAndDice3(hh, MH, [], hh,[intOrd NaN],[]); else [m mmm] = SliceAndDice3(hh, MH, [], Obj(1).h,[intOrd NaN],[]); end %[m mmm] = SliceAndDice3(hh,MH,[],Obj(1).h,[0 NaN],[]); hh.dim = size(m); hh.mat = mmm; Obj(Count).Name = n2; Obj(Count).FullPath = n; Obj(Count).DispName = n2; set(gcf,'Name', ['FIVE: ' Obj(Count).DispName]); Obj(Count).h = hh; Obj(Count).I = double(m); set(con(21,1),'String', [get(con(21,1),'String'); n2],'Value',Count); if ~isempty(contains('{T_', {hh.descrip})); tmp = hh.descrip; i1 = find(tmp=='['); i2 = find(tmp==']'); Obj(Count).DF = str2num(tmp(i1+1:i2-1)); th = spm_invTcdf(1-.001,Obj(Count).DF); Obj(Count).Thresh = [th ceil(max(m(:))*1000)/1000]; Obj(Count).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).PVal = .001; Obj(Count).col = 2; Obj(Count).Trans = 1; set(con(4),'String',[num2str(th) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String',num2str(Obj(Count).DF)); set(con(9),'String','++0.001'); elseif ~isempty(contains('{F_', {hh.descrip})) tmp = hh.descrip; i1 = find(tmp=='['); i2 = find(tmp==']'); t1 = regexp(tmp(i1(1)+1:i2(1)-1),',','split'); df(1) = str2num(t1{1}); df(2) = str2num(t1{2}); Obj(Count).DF = df; th = spm_invFcdf(1-.001,df(1), df(2)); Obj(Count).Thresh = [th ceil(max(m(:))*1000)/1000]; Obj(Count).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).PVal = .001; Obj(Count).col = 2; Obj(Count).Trans = 1; set(con(4),'String',[num2str(th) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String',num2str(Obj(Count).DF)); set(con(9),'String','++0.001'); else set(con(4),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String','NaN'); set(con(9),'String','NaN'); Obj(Count).DF = NaN; Obj(Count).PVal = NaN; Obj(Count).Thresh = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).col = 2; Obj(Count).Trans = 1; end set(con(23),'String','0'); Obj(Count).ClusterThresh = 0; Obj(Count).Exclude = []; Obj(Count).MaskInd = []; Obj(Count).mask = ones(size(Obj(Count).I),'uint8'); y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); loc = [x(1) y(1) z(1)]; Obj(Count).point = round([loc 1] * inv(Obj(Count).h.mat)'); Obj(Count).lastpoint = (round([loc 1] * inv(Obj(Count).h.mat)'))-1; Obj(Count).axLims = size(Obj(Count).I); setupFrames(Count,0); Obj(Count).pos = axLim(Obj(Count).I,Obj(Count).h); set(con(1,1),'Value',3); drawFresh(ax1,1,Count); drawFresh(ax2,2,Count); drawFresh(ax3,3,Count); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); Obj(Count).Range = [min(Obj(Count).I(:)) max(Obj(Count).I(:)) max(Obj(Count).I(:))-min(Obj(Count).I(:))]; for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end yy = Obj(Count).clim(1):(Obj(Count).clim(2)-Obj(Count).clim(1))/255:Obj(Count).clim(2); axes(ax4); cla try imagesc(yy,1,reshape(colmap(cmaps{Obj(Count).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end Count = Count+1; end end end function UpdateThreshold(varargin) % Get the Volume Number. vn = get(con(21,1),'Value'); % Get the ThresholdParamters a = get(con(4),'String'); c = get(con(8),'String'); % d = get(con(9),'String'); % Parse the Threshold Parameters if isempty(a); a = [-inf inf]; else if contains(',',{a}) ind = find(a==','); a = [str2num(strtrim(a(1:ind-1))) str2num(strtrim(a(ind+1:end)))]; else a = str2num(a); end end if numel(a) == 2 % Correct the Threshold Parameter End Points if a(1)==-inf a(1) = floor(min(Obj(vn).I(:))*1000)/1000; set(con(4),'string',[num2str(a(1)) ', ' num2str(a(2))]) end if a(2)==inf a(2) = ceil(max(Obj(vn).I(:))*1000)/1000; set(con(4),'string',[num2str(a(1)) ', ' num2str(a(2))]) end if a(1)>0 && a(2)>0 if numel(varargin)~=0 && varargin{1} ~= con(9,1) if ~strcmpi(get(con(8,1),'String'),'NA') df = str2num(get(con(8,1),'String')); if isnan(df) p = NaN; else if numel(df) == 1; if isinf(df) p = 1-spm_Ncdf(a(1),0,1); else p = 1-spm_Tcdf(a(1),df); end set(con(9,1),'String',['++' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(a(1),df(1),df(2)); set(con(9,1),'String',['++' num2str(p)]); end end end end end if a(1)<0 && a(2)<0 if numel(varargin)~=0 && varargin{1} ~= con(9,1) if ~strcmpi(get(con(8,1),'String'),'NA') df = str2num(get(con(8,1),'String')); if isnan(df) p = NaN; else if numel(df) == 1; if isinf(df) p = 1-spm_Ncdf(abs(a(2)),0,1); else p = 1-spm_Tcdf(abs(a(2)),df); end set(con(9,1),'String',['--' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(abs(a(2)),df(1),df(2)); set(con(9,1),'String',['--' num2str(p)]); end end end end end Obj(vn).Thresh = a; elseif numel(a) == 4; if a(1)==-inf a(1) = floor(min(Obj(vn).I(:))*1000)/1000; set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); end if a(4)==inf a(4) = ceil(max(Obj(vn).I(:))*1000)/1000; set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); end if numel(Obj(vn).Thresh)==numel(a); check = Obj(vn).Thresh-a; check = find(check~=0); check = setdiff(check,[1 4]); if numel(check)==1; other = setdiff(2:3,check); a(other) = -a(check); set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); end if numel(varargin)>0 && varargin{1} ~= con(9,1) if ~(strcmpi(get(con(8,1),'String'),'NA') || ~isempty(contains('nan', {lower(get(con(8,1),'String'))}))) df = str2num(get(con(8,1),'String')); if numel(df) == 1; if isinf(df) p = (1-spm_Ncdf(abs(a(3)),0,1))*2; else p = (1-spm_Tcdf(abs(a(3)),df))*2; end set(con(9,1),'String',['+-' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(abs(a(3)),df(1),df(2)); set(con(9,1),'String',['+-' num2str(p)]); end end end else if abs(a(2))~=abs(a(3)) ind1 = find(abs(a(2:3))==min(abs(a(2:3)))); ind2 = find(abs(a(2:3))==max(abs(a(2:3)))); a(ind1+1) = -a(ind2+1); set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); tmp = get(con(8,1),'String'); end if numel(varargin)>0 && varargin{1} ~= con(9,1) if ~strcmpi(get(con(8,1),'String'),'nan') df = str2num(get(con(8,1),'String')); if numel(df) == 1; if isinf(df) p = 1-spm_Ncdf(abs(a(2))/2,0,1); else p = 1-spm_Tcdf(abs(a(2))/2,df); end set(con(9,1),'String',['+-' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(abs(a(2)),df(1),df(2)); set(con(9,1),'String',['+-' num2str(p)]); end end end end Obj(vn).Thresh = a; end loc = str2num(get(con(15),'String')); Obj(vn).point = round([loc 1] * inv(Obj(vn).h.mat)'); if str2num(get(con(23),'String'))~=0 ExtentThresh; end setupFrames(vn,1); updateGraphics({1:3 vn},1); %Obj(vn).pos = axLim(Obj(vn).I,Obj(vn).h); end function UpdatePVal(varargin) nv = get(con(21,1),'Value'); df = get(con(8,1),'String'); try df = str2num(df); if any(isnan(df)); return; end catch set(con(8,1),'String','NA') return end p = get(con(9,1),'String'); if mean(p(1:2)=='++')==1 direc = 1; p = str2num(p(3:end)); elseif mean(p(1:2)=='--')==1 direc = -1; p = str2num(p(3:end)); elseif mean(p(1:2)=='-+')==1 || mean(p(1:2)=='+-')==1 direc = 0; p = str2num(p(3:end))/2; else p = str2num(p); direc = 1; end Obj(nv).PVal = p; Obj(nv).DF = df; if numel(df)==1 if isinf(df) T = spm_invNcdf(1-abs(p),0,1); else T = spm_invTcdf(1-abs(p),df); end elseif numel(df)==2 T = spm_invFcdf(1-abs(p),df(1),df(2)); end curr = get(con(4),'String'); cur = regexp(curr,',','split'); if direc == 1 a = ceil(T*1000)/1000; set(con(4),'String',[num2str(a) ', inf']); %set(con(4),'String',[num2str(a) ',' cur{2}]); UpdateThreshold; elseif direc == -1 a = floor(-T*1000)/1000; set(con(4),'String',['-inf ,' num2str(a)]); %set(con(4),'String',[cur{1} ',' num2str(a)]); UpdateThreshold; elseif direc == 0 a = []; %keyboard; a(1) = floor(min(Obj(nv).I(:))*1000)/1000; a(4) = ceil(max(Obj(nv).I(:))*1000)/1000; a(2:3) = [floor(-T*1000)/1000 ceil(T*1000)/1000]; set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); b = a([1 4]); ind1 = find(abs(b)==min(abs(b))); ind2 = find(abs(b)==max(abs(b))); b(ind2) = -b(ind1); UpdateThreshold; end end function changeColorMap(varargin) vn = get(con(21,1),'Value'); map = get(con(1,1),'Value'); if map == 1; set(con(1,1),'Value',Obj(vn).col+1); return; end Obj(vn).col = map-1; setupFrames(vn,1); updateGraphics({[1 2 3] vn},1); %%% Update colorbar. yy = Obj(vn).clim(1):(Obj(vn).clim(2)-Obj(vn).clim(1))/255:Obj(vn).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(vn).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end function adjustTrans(varargin) vn = get(con(21,1),'Value'); if numel(hand{1})==1 return end const = get(varargin{1},'Value'); const = const+.0001; if const>1; const = 1; end; Obj(vn).Trans = const; a = get(hand{1}(vn),'AlphaData'); a(a~=0)=const; set(hand{1}(vn), 'AlphaData', a); a = get(hand{2}(vn),'AlphaData'); a(a~=0)=const; set(hand{2}(vn), 'AlphaData', a); a = get(hand{3}(vn),'AlphaData'); a(a~=0)=const; set(hand{3}(vn), 'AlphaData', a); end function resizeFig(varargin) a = get(gcf,'Position'); hei = (height/width)*a(3); wid = (width/height)*a(4); if hei-a(4) > wid-a(3) a(3) = wid; elseif hei-a(4) < wid-a(3) a(4) = hei; end set(gcf,'Position',a); end function switchObj(varargin) if ~isempty(varargin) if iscell(varargin{1}) nv = varargin{1}{1}; else nv = get(con(21,1),'Value'); end else nv = get(con(21,1),'Value'); end try set(con(21,1),'TooltipString',Obj(nv).FullPath) set(gcf,'Name', ['FIVE: ' Obj(nv).DispName]); catch end set(con(2,1),'Value', Obj(nv).Trans); set(con(23),'String', num2str(Obj(nv).ClusterThresh)); set(con(5,1),'String',[num2str(Obj(nv).clim(1)) ', ' num2str(Obj(nv).clim(2))]); set(con(8,1), 'String',num2str(Obj(nv).DF)); if numel(Obj(nv).Thresh) == 4; set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ' ' num2str(Obj(nv).Thresh(2)) ', ' num2str(Obj(nv).Thresh(3)) ' ' num2str(Obj(nv).Thresh(4))]); set(con(9,1), 'String',['+-' num2str(Obj(nv).PVal*2)]); elseif sum(sign(Obj(nv).Thresh))>0 set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ', ' num2str(Obj(nv).Thresh(2))]); set(con(9,1), 'String',['++' num2str(Obj(nv).PVal)]); elseif sum(sign(Obj(nv).Thresh))<0 set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ', ' num2str(Obj(nv).Thresh(2))]); set(con(9,1), 'String',['--' num2str(Obj(nv).PVal)]); elseif sum(sign(Obj(nv).Thresh))==0 set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ', ' num2str(Obj(nv).Thresh(2))]); set(con(9,1), 'String',num2str(Obj(nv).PVal)); end set(con(1,1),'Value', Obj(nv).col+1); yy = Obj(nv).clim(1):(Obj(nv).clim(2)-Obj(nv).clim(1))/255:Obj(nv).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(nv).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); tmp1 = (Obj(nv).clim(2)-Obj(nv).Range(1))/Obj(nv).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(27),'Value', tmp1); tmp1 = (Obj(nv).clim(1)-Obj(nv).Range(1))/Obj(nv).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(28),'Value', tmp1); end function removeVolume(varargin) nv = get(con(21,1),'Value'); if nv == 1; return; end ind = setdiff(1:length(Obj),nv); tmp = get(con(21,1),'String'); set(con(21,1),'String',tmp(ind), 'Value',length(ind)); for ii = 1:length(hand) delete(hand{ii}(nv)); end Obj = Obj(ind); hand{1} = hand{1}(ind); hand{2} = hand{2}(ind); hand{3} = hand{3}(ind); Count = length(ind)+1; switchObj; end function updateGraphics(HandInd,opt) if iscell(HandInd); HandInd2 = HandInd{2}; HandInd = HandInd{1}; else HandInd2 = 1:length(Obj); end for ii = HandInd; if Obj(1).point(ii)==Obj(1).lastpoint(ii) && opt~=1 continue end for jj = HandInd2 set(hand{ii}(jj),'CData',Obj(jj).frame{ii},'AlphaData',~isnan(Obj(jj).frame{ii}(:,:,1))*Obj(jj).Trans); Obj(jj).lastpoint(ii) = Obj(jj).point(ii); end end end function drawFresh(axx,opt,opt2,opt3) if nargin == 2; opt2 = 1:length(Obj); end if nargin < 4 opt3 = 1; end axes(axx); for ii = opt2; if opt == 1; tmp = image(Obj(ii).pos{2}, Obj(ii).pos{3}, Obj(ii).frame{opt}); if opt3; hand{opt}(ii) = tmp; end set(tmp,'AlphaData', ~isnan(Obj(ii).frame{opt}(:,:,1))*Obj(ii).Trans); set(axx, 'YDir','Normal'); set(gca, 'XDir','reverse'); axis equal; end if opt == 2; tmp = image(Obj(ii).pos{1}, Obj(ii).pos{3}, Obj(ii).frame{opt}); if opt3; hand{opt}(ii) = tmp; end set(tmp,'AlphaData', ~isnan(Obj(ii).frame{opt}(:,:,1))*Obj(ii).Trans); set(axx, 'YDir','Normal'); set(gca, 'XDir','Normal');axis equal; end if opt == 3; tmp = image(Obj(ii).pos{1}, Obj(ii).pos{2}, Obj(ii).frame{opt}); if opt3; hand{opt}(ii) = tmp; end set(tmp,'AlphaData', ~isnan(Obj(ii).frame{opt}(:,:,1))*Obj(ii).Trans); set(axx, 'YDir','Normal'); set(gca, 'XDir','Normal');axis equal; end end set(axx,'XTick',[],'YTick',[]); axis equal; axis tight; end function out = axLim(dat,h) t1 = [1 1 1 1; size(dat,1) 1 1 1]*h.mat'; out{1} = t1(1,1):(t1(2,1)-t1(1,1))/(size(dat,1)-1):t1(2,1); t1 = [1 1 1 1; 1 size(dat,2) 1 1]*h.mat'; out{2} = t1(1,2):(t1(2,2)-t1(1,2))/(size(dat,2)-1):t1(2,2); t1 = [1 1 1 1; 1 1 size(dat,3) 1]*h.mat'; out{3} = t1(1,3):(t1(2,3)-t1(1,3))/(size(dat,3)-1):t1(2,3); out{1} = out{1}(end:-1:1); end function [h1 h2] = crossHairs(axx,loc) axes(axx) ax = axis; h1 = plot([loc(1) loc(1)], ax(3:4),'b'); h2 = plot(ax(1:2),[loc(2) loc(2)],'b'); axis equal; axis tight; end function setupFrames(n,opt) for ii = n; ss = Obj(ii).axLims; if Obj(ii).point(1)~=Obj(ii).lastpoint(1) || opt==1 tmp = Obj(ii).I(Obj(ii).point(1),:,:); tmp(Obj(ii).mask(Obj(ii).point(1),:,:)==0)=NaN; if numel(Obj(ii).Thresh)==2 ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(2)); else ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(4) | (tmp>Obj(ii).Thresh(2) & tmp<Obj(ii).Thresh(3))); end tmp(ind) = NaN; tmp(tmp==0)=NaN; tmp = flipdim(rot90(squeeze(tmp),1),1); [cols cm cc] = cmap(tmp, Obj(ii).clim, cmaps{Obj(ii).col}); Obj(ii).frame{1} = reshape(cols,[size(tmp) 3]); end if Obj(ii).point(2)~=Obj(ii).lastpoint(2) || opt==1 tmp = Obj(ii).I(:,Obj(ii).point(2),:); tmp(Obj(ii).mask(:,Obj(ii).point(2),:)==0)=NaN; if numel(Obj(ii).Thresh)==2 ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(2)); else ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(4) | (tmp>Obj(ii).Thresh(2) & tmp<Obj(ii).Thresh(3))); end tmp(ind) = NaN; tmp(tmp==0)=NaN; tmp = flipdim(flipdim(rot90(squeeze(tmp),1),1),2); [cols cm cc] = cmap(tmp, Obj(ii).clim, cmaps{Obj(ii).col}); Obj(ii).frame{2} = reshape(cols,[size(tmp) 3]); end if Obj(ii).point(3)~=Obj(ii).lastpoint(3) || opt==1 tmp = Obj(ii).I(:,:,Obj(ii).point(3)); tmp(Obj(ii).mask(:,:,Obj(ii).point(3))==0)=NaN; if numel(Obj(ii).Thresh)==2 ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(2)); else ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(4) | (tmp>Obj(ii).Thresh(2) & tmp<Obj(ii).Thresh(3))); end tmp(ind) = NaN; tmp(tmp==0)=NaN; tmp = flipdim(flipdim(rot90(squeeze(tmp),1),1),2); [cols cm cc] = cmap(tmp, Obj(ii).clim, cmaps{Obj(ii).col}); Obj(ii).frame{3} = reshape(cols,[size(tmp) 3]); end end end function toggle(varargin) state = get(varargin{1},'Checked'); if strcmpi(state,'on'); set(varargin{1},'Checked','off'); end if strcmpi(state,'off'); set(varargin{1},'Checked','on'); end end function toggleCrossHairs(varargin) state = get(varargin{1},'Checked'); if strcmpi(state,'on'); set(ch(:),'Visible','off') set(varargin{1},'Checked','off'); end if strcmpi(state,'off'); set(ch(:),'Visible','on') set(varargin{1},'Checked','on'); end end function newFig(varargin) tf = gcf; vn = get(con(21,1),'Value'); if vn == 1 return; end NewObj = FIVE({Obj(vn).FullPath},ch); tmp1 = get(pane,'Position'); tmp2 = tmp1; tmp2(1) = tmp1(1)+tmp1(3); set(gcf,'Position',tmp2); % links{end+1}=linkprop([ch(1,1),NewObj(1).ch(1,1)],'XData'); % links{end+1}=linkprop([ch(1,2),NewObj(1).ch(1,2)],'YData'); % links{end+1}=linkprop([ch(2,1),NewObj(1).ch(2,1)],'XData'); % links{end+1}=linkprop([ch(2,2),NewObj(1).ch(2,2)],'YData'); % links{end+1}=linkprop([ch(3,1),NewObj(1).ch(3,1)],'XData'); % links{end+1}=linkprop([ch(3,2),NewObj(1).ch(3,2)],'YData'); % % set(tf,'UserData',links); set(menu(4),'Enable','on','Checked','on'); figure(tf); removeVolume end function syncViews(varargin) state = get(varargin{1},'Checked'); %%% Remove any existing links this figure has to other figures for ii = 1:length(links); set(links{ii},'Enabled','on'); removeprop(links{ii},'XData'); removeprop(links{ii},'YData'); end links = []; %%% Establish links between this figure and all other FIVE %%% Figures ind = findobj(0,'Type','Figure'); try figs = ind(contains('FIVE',get(ind,'Name'))); catch set(varargin{1},'Checked','off'); set(gcf,'WindowButtonMotionFcn',@buttonMotion); return end figs = setdiff(figs,gcf); for ii = 1:length(figs); hhh = findobj(figs(ii),'Color','b','type','line'); if isempty(hhh) hhh = findobj(figs(ii),'Color','y','type','line'); end links{end+1}=linkprop([ch(1,1),hhh(6)],'XData'); links{end+1}=linkprop([ch(1,2),hhh(5)],'YData'); links{end+1}=linkprop([ch(2,1),hhh(4)],'XData'); links{end+1}=linkprop([ch(2,2),hhh(3)],'YData'); links{end+1}=linkprop([ch(3,1),hhh(2)],'XData'); links{end+1}=linkprop([ch(3,2),hhh(1)],'YData'); end set(gcf,'UserData',links); %%% Set the state of the links if strcmpi(state,'on'); for ii = 1:length(links); set(links{ii},'Enabled','off'); end set(varargin{1},'Checked','off'); set(gcf,'WindowButtonMotionFcn',@buttonMotion); end if strcmpi(state,'off'); for ii = 1:length(links); set(links{ii},'Enabled','on'); end set(varargin{1},'Checked','on'); set(gcf,'WindowButtonMotionFcn',[]); end %%% Propogate changes to other Figure links if they exists. for ii = 1:length(figs) lnk = get(figs(ii),'UserData'); hh = findobj(figs(ii),'Label','Sync Views'); if strcmpi(state,'on'); for jj = 1:length(lnk); set(lnk{jj},'Enabled','off'); end set(hh,'Checked','off'); set(figs(ii),'WindowButtonMotionFcn',@buttonMotion); end if strcmpi(state,'off'); for jj = 1:length(lnk); set(lnk{jj},'Enabled','on'); end set(hh,'Checked','on'); set(figs(ii),'WindowButtonMotionFcn',[]); end end end function changeLayer(varargin) vn = get(con(21,1),'Value'); if vn == 1 return end if varargin{1} == con(12,1) for ii = 1:length(hand) uistack(hand{ii}(vn),'top'); uistack(hand{ii}(vn),'down'); uistack(hand{ii}(vn),'down'); end elseif varargin{1} == con(13,1) for ii = 1:length(hand) uistack(hand{ii}(vn),'bottom'); uistack(hand{ii}(vn),'up'); end end end function axialView(varargin) if numel(varargin{1})==1 || isempty(varargin) out = popup('Which Slices (MNI coordinates)?'); else out = varargin{1}; end if isempty(out) n = 25; coords = min(Obj(2).pos{3}):6:max(Obj(2).pos{3}); c = 0; while numel(coords)>n c = c+1; if mod(c,2)==1; coords = coords(2:end); else coords = coords(1:end-1); end end else n = numel(out); coords = out; end IN = []; for jj = 1:numel(Obj); IN.IM{jj} = Obj(jj).I.*double(Obj(jj).mask); IN.H{jj} = Obj(jj).h; IN.TH{jj} = Obj(jj).Thresh; IN.LIMS{jj} = Obj(jj).clim; IN.TRANS{jj} = Obj(jj).Trans; IN.CM{jj} = cmaps{Obj(jj).col}; end IN.Coords = coords; IN.opt = 1; SliceView(IN); end function coronalView(varargin) if numel(varargin{1})==1 || isempty(varargin) out = popup('Which Slices (MNI coordinates)?'); else out = varargin{1}; end if isempty(out) n = 30; coords = min(Obj(2).pos{2}):6:max(Obj(2).pos{2}); c = 0; while numel(coords)>n c = c+1; if mod(c,2)==1; coords = coords(2:end); else coords = coords(1:end-1); end end else n = numel(out); coords = out; end IN = []; for ii = 1:numel(Obj); IN.IM{ii} = Obj(ii).I.*double(Obj(ii).mask); IN.H{ii} = Obj(ii).h; IN.TH{ii} = Obj(ii).Thresh; IN.LIMS{ii} = Obj(ii).clim; IN.TRANS{ii} = Obj(ii).Trans; IN.CM{ii} = cmaps{Obj(ii).col}; end IN.Coords = coords; IN.opt = 3; SliceView(IN); end function sagittalView(varargin) if numel(varargin{1})==1 || isempty(varargin) out = popup('Which Slices (MNI coordinates)?'); else out = varargin{1}; end if isempty(out) n = 25; coords = min(Obj(2).pos{1}):6:max(Obj(2).pos{1}); c = 0; while numel(coords)>n c = c+1; if mod(c,2)==1; coords = coords(2:end); else coords = coords(1:end-1); end end else n = numel(out); coords = out; end IN = []; for ii = 1:numel(Obj); IN.IM{ii} = Obj(ii).I.*double(Obj(ii).mask); IN.H{ii} = Obj(ii).h; IN.TH{ii} = Obj(ii).Thresh; IN.LIMS{ii} = Obj(ii).clim; IN.TRANS{ii} = Obj(ii).Trans; IN.CM{ii} = cmaps{Obj(ii).col}; end IN.Coords = coords; IN.opt = 2; SliceView(IN); end function allSliceView(varargin) axialView; coronalView; sagittalView; end function surfView(varargin) if numel(Obj)==1 return end for jj = 2:numel(Obj) vn = jj; obj = []; fs = get(findobj(paramenu3(12),'Checked','On'),'Label'); switch fs case '642' obj.fsaverage = 'fsaverage3'; case '2562' obj.fsaverage = 'fsaverage4'; case '10242' obj.fsaverage = 'fsaverage5'; case '40962' obj.fsaverage = 'fsaverage6'; case '163842' obj.fsaverage = 'fsaverage'; otherwise end obj.surface = lower(get(findobj(paramenu3(10),'Checked','On'),'Label')); if strcmpi(get(paramenu3(19),'Checked'),'off') obj.shading = lower(get(findobj(paramenu3(11),'Checked','On'),'Label')); obj.shadingrange = [str2num(get(findobj(paramenu3(16),'Checked','On'),'Label')) str2num(get(findobj(paramenu3(17),'Checked','On'),'Label'))]; else switch obj.surface case 'white' obj.shading = 'curv'; obj.shadingrange = [-2 2]; case 'pi' obj.shading = 'mixed'; obj.shadingrange = [-2 2]; case 'inflated' obj.shading = 'logcurv'; obj.shadingrange = [-.75 .75]; case 'pial' obj.shading = 'curv'; obj.shadingrange = [-2 3]; otherwise obj.shading = 'curv'; obj.shadingrange = [-2 3]; end end obj.input.m = Obj(vn).I.*double(Obj(vn).mask); obj.input.he = Obj(vn).h; if jj ==2 obj.figno = 0; obj.newfig = 1; else obj.figno = gcf; obj.newfig = 0; end obj.colorlims = Obj(vn).clim; cm = get(con(1),'String'); cm = cm{Obj(vn).col+1}; obj.colomap = cm; thresh = Obj(vn).Thresh; if numel(thresh) == 2 [t,i] = min(abs(thresh)); sgn = sign(thresh(i)); t = t*sgn; obj.overlaythresh = t; if sgn==1 obj.direction = '+'; obj.reverse = 0; else obj.direction = '-'; obj.reverse = 0; end if sum(sign(thresh))==0 obj.direction='+'; end else obj.overlaythresh = Obj(vn).Thresh(2:3); obj.reverse = 0; obj.direction = '+'; end obj.mappingfile = []; nn = get(findobj(paramenu3(15),'Checked','On'),'Label'); if strcmpi(nn,'Yes') obj.nearestneighbor=1; else obj.nearestneighbor=0; end %load(which('SperStandard_4p5prox_FS6_SM.mat'),'header') %compH = Obj(vn).h.mat==header.mat; %if mean(compH(:))==1 % obj.mappingfile = which('SperStandard_4p5prox_FS6_SM.mat'); %end option = get(findobj(paramenu3(14),'Checked','On'),'Label'); switch option case 'All' obj.Nsurfs = 4; case 'Both' obj.Nsurfs = 2; case 'Left 1' obj.Nsurfs = -1; case 'Left 2' obj.Nsurfs = 1.9; case 'Right 1' obj.Nsurfs = 1; case 'Right 2' obj.Nsurfs = 2.1; otherwise end [h1 hh1] = surfPlot(obj); Obj(vn).SurfInfo.h1 = h1; Obj(vn).SurfInfo.hh1 = hh1; Obj(vn).SurfInfo.par = obj; set(hh1,'FaceAlpha',Obj(vn).Trans); end end function changeSign(varargin) vn = get(con(21,1),'Value'); if vn == 1 return end Obj(vn).I = Obj(vn).I*-1; t1 = num2str(sort(str2num(get(con(4),'String'))*-1)); for ii = 1:10; t1 = regexprep(t1,' ',' '); end set(con(4),'String',t1); t2 = num2str(sort(str2num(get(con(5),'String'))*-1)); for ii = 1:10; t2 = regexprep(t2,' ',' '); end set(con(5),'String',t2) Obj(vn).Range(1:2) = Obj(vn).Range([2 1])*-1; UpdateThreshold; %setupFrames(vn,1); %updateGraphics({[1 2 3] vn},1); end function setupParamMenu %%% Not Specified % out: output prefix, default is to define using imagefile % SPM: 0 or 1, see above for details % mask: optional to mask your data % df1: numerator degrees of freedom for T/F-test (if 0<thresh<1) % df2: denominator degrees of freedom for F-test (if 0<thresh<1) % thresh: T/F statistic or p-value to threshold the data or 0 paramenu1(1) = uimenu(pane,'Label','Parameters'); %paramenu2(1) = uimenu(paramenu1(1),'Label','Cluster Params'); paramenu3(1) = uimenu(paramenu1(1),'Label','Sign'); paramenu4(1) = uimenu(paramenu3(1),'Label','Pos','Checked','on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(1),'Label','Neg','CallBack',@groupCheck); paramenu3(2) = uimenu(paramenu1(1),'Label','Sphere Radius'); paramenu4(end+1) = uimenu(paramenu3(2),'Label','1mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','2mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','3mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','4mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','5mm','Checked','On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','6mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','7mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','8mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','9mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','10mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','11mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','12mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','13mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','14mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','15mm','CallBack',@groupCheck); paramenu3(3) = uimenu(paramenu1(1), 'Label','Peak Number Limit'); paramenu4(end+1) = uimenu(paramenu3(3),'Label','100','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','200','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','500','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','750','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','1000','Checked','on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','1500','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','2000','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','3000','CallBack',@groupCheck); paramenu3(4) = uimenu(paramenu1(1),'Label','Peak Separation'); paramenu4(end+1) = uimenu(paramenu3(4),'Label','2mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','4mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','6mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','8mm','Checked', 'on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','10mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','12mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','14mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','16mm','CallBack',@groupCheck); paramenu3(5) = uimenu(paramenu1(1),'Label','Neighbor Def.'); paramenu4(end+1) = uimenu(paramenu3(5),'Label','6','Checked','on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(5),'Label','18','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(5),'Label','26','CallBack',@groupCheck); paramenu3(7) = uimenu(paramenu1(1),'Label','Labeling'); paramenu4(end+1) = uimenu(paramenu3(7),'Label','Use Nearest Label', 'Checked', 'On','CallBack',@groupCheck); % paramenu3(8) = uimenu(paramenu1(1),'Label','Label Map'); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','aal_MNI_V4', 'Checked', 'On','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Nitschke_Lab','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','JHU_tracts','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','JHU_whitematter','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Talairach','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Thalamus','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','MNI','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','HarvardOxford_cortex','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Cerebellum-flirt','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Cerebellum-fnirt','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Juelich','CallBack',@changeLabelMap); paramenu3(8) = uimenu(paramenu1(1),'Label','Label Map'); paramenu4(end+1) = uimenu(paramenu3(8),'Label','aal_MNI_V4', 'Checked', 'On','CallBack',@changeLabelMap); try [labellist]=getLabelMap(); for ll=2:numel(labellist) paramenu4(end+1) = uimenu(paramenu3(8),'Label',labellist{ll},'CallBack',@changeLabelMap); end catch paramenu4(end+1) = uimenu(paramenu3(8),'Label','aal_MNI_V4', 'Checked', 'On','CallBack',@changeLabelMap); warning('Download Peak Nii to enable the use of other atlases'); end paramenu3(18) = uimenu(paramenu1(1),'Label','Corrected Alpha'); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.100', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.050', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.025', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.010', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.001', 'Checked', 'Off','CallBack',@groupCheck); paramenu1(2) = uimenu(pane,'Label','Region Name'); %menu(?) = uimenu(menu(1),'Label','Increase FontSize','CallBack',@increaseFont); %menu(?) = uimenu(menu(1),'Label','Decrease FontSize','CallBack',@decreaseFont); paramenu3(9) = uimenu(paramenu1(1),'Label','Surface Options'); paramenu3(19) = uimenu(paramenu3(9),'Label','Use Surface Shading Defaults','Checked', 'On','CallBack',@groupCheck); paramenu3(10) = uimenu(paramenu3(9),'Label','Surface'); paramenu4(end+1) = uimenu(paramenu3(10),'Label','Inflated', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(10),'Label','Pial', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(10),'Label','White', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(10),'Label','PI', 'Checked', 'On','CallBack',@groupCheck); paramenu3(11) = uimenu(paramenu3(9),'Label','Shading'); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Curv', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Sulc', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Thk', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','LogCurv', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Mixed', 'Checked', 'On','CallBack',@groupCheck); paramenu3(12) = uimenu(paramenu3(9),'Label','N-verts'); paramenu4(end+1) = uimenu(paramenu3(12),'Label','642', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','2562', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','10242', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','40962', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','163842', 'Checked', 'Off','CallBack',@groupCheck); % paramenu3(13) = uimenu(paramenu3(9),'Label','Reverse Map'); % paramenu4(end+1) = uimenu(paramenu3(13),'Label','No', 'Checked', 'On','CallBack',@groupCheck); % paramenu4(end+1) = uimenu(paramenu3(13),'Label','Yes', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(14) = uimenu(paramenu3(9),'Label','N-Surfs'); paramenu4(end+1) = uimenu(paramenu3(14),'Label','All', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Both', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Left 1', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Left 2', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Right 1', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Right 2', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(15) = uimenu(paramenu3(9),'Label','Nearest Neighbor Only'); paramenu4(end+1) = uimenu(paramenu3(15),'Label','No', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(15),'Label','Yes', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(16) = uimenu(paramenu3(9),'Label','Underlay Min'); paramenu4(end+1) = uimenu(paramenu3(16),'Label',' 0.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-0.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-1.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-1.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-2.0', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-2.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-3.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(17) = uimenu(paramenu3(9),'Label','Underlay Max'); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+0.0', 'Checked','Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+0.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+1.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+1.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+2.0', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+2.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+3.0', 'Checked', 'Off','CallBack',@groupCheck); end function setupFigure tss = Obj(1).axLims; im = spm_imatrix(Obj(1).h.mat); %tmp = [1 1 1]; tmp = abs(im(7:9)); tss = tss.*tmp; height = tss(2)+tss(3); width = tss(1)+tss(2); rat = height/width; ff = get(0,'ScreenSize'); if ff(4)>800 pro = 3.25; else pro = 2.5; end %[junk user] = UserTime; if strcmp(user,'aschultz'); keyboard; end ss = get(0,'ScreenSize'); if (ss(3)/ss(4))>2 ss(3)=ss(3)/2; end op = floor([50 ss(4)-75-((ss(3)/pro)*rat) ss(3)/pro (ss(3)/pro)*rat]); pane = figure; set(gcf, 'Position', op,'toolbar','none', 'Name', 'FIVE','Visible','off'); set(gcf, 'WindowButtonUpFcn', @buttonUp); set(gcf, 'WindowButtonDownFcn', @buttonDown); set(gcf, 'WindowButtonMotionFcn', @buttonMotion); set(gcf, 'ResizeFcn', @resizeFig); hcmenu = uicontextmenu; set(hcmenu,'CallBack','movego = 0;'); item = []; wid(1) = tss(2)/width; hei(1) = tss(3)/height; wid(2) = tss(1)/width; hei(2) = tss(3)/height; wid(3) = tss(1)/width; hei(3) = tss(2)/height; ax1 = axes; set(ax1,'Color','k','Position',[wid(2) hei(3) wid(1) hei(1)],'XTick',[],'YTick',[],'YColor','k','XColor','k'); hold on; colormap(gray(256)); ax2 = axes; set(ax2,'Color','k','Position',[0 hei(3) wid(2) hei(2)],'XTick',[],'YTick',[],'YColor','k','XColor','k'); hold on; colormap(gray(256)); ax3 = axes; set(ax3,'Color','k','Position',[0 0 wid(3) hei(3)],'XTick',[],'YTick',[],'YColor','k','XColor','k'); hold on; colormap(gray(256)); ax4 = axes; set(ax4,'Color','w','Position',[wid(2) 0 .04 hei(3)*.99],'XTick',[],'YAxisLocation','right','YTick',[]); %,'YColor','k','XColor','k' set(gcf,'WindowKeyPressFcn', @keyMove); set(gcf,'WindowScrollWheelFcn',@scrollMove); set(gcf,'WindowKeyReleaseFcn',@keyHandler); %st = wid(2)+.01+.04+.03; st = wid(2)+.125; len1 = (1-st)-.01; len2 = len1/2; len3 = len1/3; len4 = len1/4; inc = (hei(3))/11; inc2 = .75*inc; % [wid(2)+.045 0 .025 hei(3)*.9] % [wid(2)+.070 0 .025 hei(3)*.9] % [wid(2)+.095 0 .025 hei(3)*.9] val = (Obj(1).Range(2)-Obj(1).Range(1))/Obj(1).Range(3); con(27,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.070 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); val = (Obj(1).Range(1)-Obj(1).Range(1))/Obj(1).Range(3); con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); %con(29,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',0,'CallBack', @adjustUnderlay); con(30,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)+.070 hei(3)*.9 .05 .05]); % wid(2)+.0450 hei(3)*.9 .075 .05] % con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st-.1 (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap'} cmaps(:)'],'CallBack', @changeColorMap); shg %con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap' 'A' 'B' 'C' 'D'}],'CallBack', @changeColorMap); shg con(2,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(23,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len1*.75 (.01+(1*inc)+(0*inc2)) len1*.25 inc],'String','All','CallBack', @applyToAll); con(3,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(2*inc)+(0*inc2) len1 inc2],'String', 'Transparency','fontsize',12); con(4,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateThreshold); con(5,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len2 .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateCLims); con(6,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Thresh','fontsize',12); con(7,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Color Limits','fontsize',12); con(8,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(9,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(23,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@ExtentThresh); con(10,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(4*inc)+(2*inc2) len3 inc2],'String', 'DF','fontsize',12); con(11,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'P-Value','fontsize',12); con(24,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'Extent','fontsize',12); con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',num2str(loc),'CallBack',@goTo); %con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',['0 0 0'],'CallBack',@goTo); con(25,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(4*inc)+(3*inc2) len2/2 inc],'String','FDR','CallBack', @correctThresh); con(26,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+(len2*1.5) .01+(4*inc)+(3*inc2) len2/2 inc],'String','FWE','CallBack', @correctThresh); con(17,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MNI Coord', 'fontsize',12); con(18,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MC Correct','fontsize',12); con(12,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Up'},'CallBack',@changeLayer); con(13,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Down'},'CallBack',@changeLayer); con(21,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(5*inc)+(5*inc2) len1 inc],'String',{'Overlays'},'CallBack',@switchObj); con(22,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)-(len2/2) hei(3)-(inc*1.05) (len2/2) inc]); con(19,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st .01+(6*inc)+(5*inc2) len2 inc],'String','Open Overlay','FontWeight','Bold','CallBack',@openOverlay); con(20,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st+len2 .01+(6*inc)+(5*inc2) len2 inc],'String','Remove Volume', 'FontWeight','Bold','CallBack',@removeVolume); menu(1) = uimenu(pane,'Label','Options'); menu(2) = uimenu(menu(1),'Label','CrossHair Toggle','Checked','on','CallBack', @toggleCrossHairs); menu(43) = uimenu(menu(1),'Label','Reverse Image','CallBack', @changeSign); menu(15) = uimenu(menu(1),'Label','Change Underlay','CallBack', @changeUnderlay); menu(3) = uimenu(menu(1),'Label','Send Overlay To New Fig','CallBack',@newFig); if nargin<2 menu(4) = uimenu(menu(1),'Label','Sync Views','Enable','on','CallBack',@syncViews); else menu(4) = uimenu(menu(1),'Label','Sync Views','Enable','on','Checked','on','CallBack',@syncViews); end menu(16) = uimenu(menu(1),'Label','SliceViews'); menu(6) = uimenu(menu(16),'Label','Axial Slice View','CallBack',@axialView); menu(7) = uimenu(menu(16),'Label','Coronal Slice View','CallBack',@coronalView); menu(8) = uimenu(menu(16),'Label','Sagittal Slice View','CallBack',@sagittalView); menu(9) = uimenu(menu(16),'Label','All Slice View','CallBack',@allSliceView); menu(17) = uimenu(menu(1),'Label','Ploting'); menu(10) = uimenu(menu(17),'Label','Load Plot Data','CallBack',@loadData); menu(13) = uimenu(menu(17),'Label','JointPlot','CallBack',@JointPlot); menu(12) = uimenu(menu(17),'Label','PaperPlot-Vert','CallBack',@PaperFigure_Vert); menu(33) = uimenu(menu(17),'Label','PaperPlot-Horz','CallBack',@PaperFigure_Horz); menu(23) = uimenu(menu(17),'Label','PaperPlot Overlay','Checked','off','CallBack', @toggle); menu(41) = uimenu(menu(17),'Label','Surface Render','Checked','off','CallBack', @surfView); menu(14) = uimenu(menu(1),'Label','Transparent Overlay','CallBack',@TestFunc); menu(11) = uimenu(menu(1),'Label','Get Peak Info','CallBack',@getPeakInfo); menu(25) = uimenu(menu(1),'Label','Resample'); menu(26) = uimenu(menu(25),'Label','.5x.5x.5', 'CallBack', @resampleIm); menu(27) = uimenu(menu(25),'Label','1x1x1' , 'CallBack', @resampleIm); menu(28) = uimenu(menu(25),'Label','2x2x2' , 'CallBack', @resampleIm); menu(29) = uimenu(menu(25),'Label','3x3x3' , 'CallBack', @resampleIm); menu(30) = uimenu(menu(25),'Label','4x4x4' , 'CallBack', @resampleIm); menu(31) = uimenu(menu(25),'Label','5x5x5' , 'CallBack', @resampleIm); menu(32) = uimenu(menu(25),'Label','6x6x6' , 'CallBack', @resampleIm); menu(18) = uimenu(menu(1),'Label','Save Options'); menu(19) = uimenu(menu(18),'Label','Save Thresholded Image','Enable','on','CallBack',@saveImg); menu(20) = uimenu(menu(18),'Label','Save Masked Image','Enable','on','CallBack',@saveImg); menu(21) = uimenu(menu(18),'Label','Save Cluster Image','Enable','on','CallBack',@saveImg); menu(22) = uimenu(menu(18),'Label','Save Cluster Mask','Enable','on','CallBack',@saveImg); menu(34) = uimenu(menu(1),'Label','Mask'); menu(35) = uimenu(menu(34),'Label','Mask In','Enable','on','CallBack',@maskImage); menu(36) = uimenu(menu(34),'Label','Mask Out','Enable','on','CallBack',@maskImage); menu(37) = uimenu(menu(34),'Label','Un-Mask','Enable','on','CallBack',@maskImage); menu(38) = uimenu(menu(1),'Label','Movie Mode','Enable','on','CallBack',@movieMode); menu(39) = uimenu(menu(1),'Label','Conn Explore','Enable','on','CallBack',@initializeConnExplore); menu(40) = uimenu(menu(1),'Label','SS Connectivity','Enable','on','CallBack',@ssConn); item(1) = uimenu(hcmenu, 'Label', 'Go to local max', 'Callback', @gotoMinMax); item(2) = uimenu(hcmenu, 'Label', 'Go to local min', 'Callback', @gotoMinMax); item(3) = uimenu(hcmenu, 'Label', 'Go to global max', 'Callback', @gotoMinMax); item(4) = uimenu(hcmenu, 'Label', 'Go to global min', 'Callback', @gotoMinMax); item(5) = uimenu(hcmenu, 'Label', 'Plot Cluster', 'Callback', @plotVOI); item(6) = uimenu(hcmenu, 'Label', 'Plot Sphere', 'Callback', @plotVOI); item(7) = uimenu(hcmenu, 'Label', 'Plot Voxel', 'Callback', @plotVOI); item(8) = uimenu(hcmenu, 'Label', 'Plot Cached Cluster', 'Callback', @plotVOI); item(9) = uimenu(hcmenu, 'Label', 'Cache Cluster Index', 'Callback', @CachedPlot); %item(8) = uimenu(hcmenu, 'Label', 'RegionName', 'Callback', @regionName); menu(42) = uimenu(menu(1),'Label','Return Obj','Checked','off','CallBack', @returnInfo); %menu(43) = uimenu(menu(1),'Label','Return Obj as Global','Checked','off','CallBack', @returnInfoGlob); Obj(1).ax1 = ax1; Obj(1).ax2 = ax2; Obj(1).ax3 = ax3; Obj(1).ax4 = ax4; Obj(1).con = con; Obj(1).menu = menu; end function returnInfo(varargin) if isstruct(varargin{1}) Obj = varargin{1}; else assignin('base','Obj',Obj); end end function keyHandler(varargin) d = varargin{2}; %disp([char(d.Modifier) ' - ' d.Key]); if strcmpi('shift',d.Modifier) switch d.Key case 'o' maskImage(menu(36)); case 'i' maskImage(menu(35)); case 'u' maskImage(menu(37)); end else switch d.Key case 'u' updateConnMap; case 's' ssUpdateConnMap; otherwise end end if contains('alt', {varargin{2}.Key})==1 clickFlag = 0; end end function maskImage(varargin) vn = get(con(21,1),'Value'); if varargin{1}==menu(37); Obj(vn).MaskInd = []; Obj(vn).mask(:) = 1; Obj(vn).mask(Obj(vn).Exclude)=0; setupFrames(vn,1); updateGraphics({1:3 vn},1); return end nnn = spm_select(inf,'image','Select a Mask Image:'); th = spm_vol(nnn); for ii = 1:numel(th) m = resizeVol(th(ii),Obj(vn).h); if varargin{1}==menu(35) Obj(vn).MaskInd = [Obj(vn).MaskInd; find(isnan(m))]; end if varargin{1}==menu(36) Obj(vn).MaskInd = [Obj(vn).MaskInd; find(~isnan(m))]; end end Obj(vn).MaskInd = unique(Obj(vn).MaskInd); Obj(vn).mask(:) = 1; Obj(vn).mask(Obj(vn).MaskInd)=0; Obj(vn).mask(Obj(vn).Exclude)=0; setupFrames(vn,1); updateGraphics({1:3 vn},1); end function CachedPlot(varargin) if varargin{1} == item(9) CachedClusterLoc = []; vn = get(con(21,1),'Value'); CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); lastItem = item(5); adir = [fileparts(Obj(vn).FullPath) filesep]; %%% Using the diplayed image get the matrix vector indices %%% for the selected cluster mni = str2num(get(con(15),'string')); if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end thresh = Obj(vn).Thresh; if numel(thresh)==2 ind = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L = []; [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',CM); elseif numel(thresh)==4 ind1 = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L1 = []; [L1(:,1) L1(:,2) L1(:,3)] = ind2sub(Obj(vn).h.dim,ind1); A1 = spm_clusters2(L1(:,1:3)',CM); ind2 = find(tmpI<=thresh(4) & tmpI>=thresh(3)); L2 = []; [L2(:,1) L2(:,2) L2(:,3)] = ind2sub(Obj(vn).h.dim,ind2); A2 = spm_clusters2(L2(:,1:3)',CM); L = [L1; L2]; A = [A1 A2+max(A1)]; ind = [ind1; ind2]; end L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); CachedClusterLoc.index = ind3; CachedClusterLoc.mat = Obj(vn).h.mat; end end function PaperFigure_Vert(varargin) %%% Figure width is off ss2 = get(gcf,'position'); tss = size(Obj(1).I); tmp = abs(matInfo(Obj(1).h.mat)); tss = tss.*tmp; tot = tss(3)+tss(3)+tss(2); wid(1) = tss(2)/width; hei(1) = tss(3)/tot; wid(2) = tss(1)/width; hei(2) = tss(3)/tot; wid(3) = tss(1)/width; hei(3) = tss(2)/tot; y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); xyz = [x(1) y(1) z(1)]; fg = figure; clf; colormap(gray); set(fg,'color','k') n = numel(Obj)-1; if n==0; return; end if strcmpi(get(menu(23),'Checked'),'off') ww = floor((max(wid)*ss2(3)) * n); else ww = floor((max(wid)*ss2(3)) * 1); n = 1; end hh = floor((sum(tss([3 3 2])./height)*ss2(4))*1); dims = [10 10 ww+((1/8)*ww) hh]; dims(3) = floor(dims(3)); set(fg,'Position',dims); dd = [.1/n (((dims(3)-dims(1))/n)*.1)/((dims(4)-dims(2)))]; for zz = 2:length(Obj) if (zz==2) || strcmpi(get(menu(23),'Checked'),'off') aax1 = axes; set(aax1,'Color','k','Position',[(zz-2)/n sum(hei(1:2)) (1/n)-((1/8)/n) hei(3)],'Xcolor','k','Ycolor','k'); hold on; aax2 = axes; set(aax2,'Color','k','Position',[(zz-2)/n sum(hei(2)) (1/n)-((1/8)/n) hei(1)],'Xcolor','k','Ycolor','k'); hold on; aax3 = axes; set(aax3,'Color','k','Position',[(zz-2)/n 0 (1/n)-((1/8)/n) hei(2)],'Xcolor','k','Ycolor','k'); hold on; aax4 = axes; set(aax4,'Color','k','Position',[((zz-2)/n)+((7/8)/n) 0 (1/8)/n 1],'Xcolor','k','Ycolor','k'); hold on; tr(zz-1) = aax4; drawFresh(aax1,3,1,0); drawFresh(aax2,1,1,0); drawFresh(aax3,2,1,0); end h_in = (zz-2)/(numel(Obj)-1); drawFresh(aax1,3,zz,0); drawFresh(aax2,1,zz,0); drawFresh(aax3,2,zz,0); if strcmpi(get(menu(23),'Checked'),'off') an(zz-1,1) = annotation(gcf,'textbox',[h_in+.005 sum(hei(1:2))+(.88*hei(3)) dd],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(zz-1,2) = annotation(gcf,'textbox',[h_in+.005 sum(hei(2))+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(zz-1,3) = annotation(gcf,'textbox',[h_in+.005 0+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); vn = zz; lim = [min(Obj(vn).clim) max(Obj(vn).clim)]; yy = lim(1):(lim(2)-lim(1))/255:lim(2); axes(aax4); cla cm = colmap(cmaps{Obj(vn).col},256); imagesc(yy',1,reshape(cm,numel(yy),1,3)); axis tight set(aax4,'YDir','Normal','YAxisLocation','left','YTick', unique([1 get(aax4,'YTick')])); set(aax4,'YTickLabel',(round(((min(yy):spm_range(yy)/(numel(get(aax4,'YTick'))-1):max(yy)))*100)/100)); th = moveYaxLabs(aax4,'y'); set(th,'fontsize',get(con(2),'fontsize'),'fontweight','bold'); set(th,'BackgroundColor','k'); shg else if zz == 2 delete(aax4); tr = []; end end end for zz = 1:length(tr) uistack(tr(zz),'top'); end if strcmpi(get(menu(23),'Checked'),'on') h_in = 0; an(1,1) = annotation(gcf,'textbox',[h_in+.005 sum(hei(1:2))+(.88*hei(3)) dd],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(1,2) = annotation(gcf,'textbox',[h_in+.005 sum(hei(2))+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(1,3) = annotation(gcf,'textbox',[h_in+.005 0+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); end end function PaperFigure_Horz(varargin) scrn = get(0, 'ScreenSize'); tmp = get(Obj(1).ax1,'position'); wid(1) = tmp(3); hei(1) = tmp(4); tmp = get(Obj(1).ax2,'position'); wid(2) = tmp(3); hei(2) = tmp(4); tmp = get(Obj(1).ax3,'position'); wid(3) = tmp(3); hei(3) = tmp(4); ss2 = get(gcf,'position'); wid = wid*ss2(3); hei = hei*ss2(4); n = numel(Obj)-1; if n==0; return; end %fg = figure(400+gcf); clf; colormap(gray) fg = figure; clf; colormap(gray) set(fg,'color','k') tall = max(hei)./.9; if strcmpi(get(menu(23),'Checked'),'off') hh = tall*n; else hh = tall; n = 1; end dims = [10 scrn(3)-75 sum(wid) hh]; dims = round(dims); set(fg,'Position',dims); wid = wid./sum(wid); y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); xyz = [x(1) y(1) z(1)]; dd = [.1/n .033]; for zz = 2:length(Obj) if (zz==2) || strcmpi(get(menu(23),'Checked'),'off') aax1 = axes; set(aax1,'Color','k','Position',[0 (( n-zz+1)/n)+(.1/n) wid(3) .9/n],'Xcolor','k','Ycolor','k'); hold on; aax2 = axes; set(aax2,'Color','k','Position',[wid(3) (( n-zz+1)/n)+(.1/n) wid(2) .9/n],'Xcolor','k','Ycolor','k'); hold on; aax3 = axes; set(aax3,'Color','k','Position',[sum(wid([2 3])) (( n-zz+1)/n)+(.1/n) wid(1) .9/n],'Xcolor','k','Ycolor','k'); hold on; aax4 = axes; set(aax4,'Color','k','Position',[0 (( n-zz+1)/n) 1 .1/n],'Xcolor','k','Ycolor','k'); hold on; tr(zz-1) = aax4; drawFresh(aax1,3,1,0); drawFresh(aax2,2,1,0); drawFresh(aax3,1,1,0); end h_in = (zz-2)/(numel(Obj)-1); drawFresh(aax1,3,zz,0); drawFresh(aax2,2,zz,0); drawFresh(aax3,1,zz,0); if strcmpi(get(menu(23),'Checked'),'off') an(zz-1,1) = annotation(gcf,'textbox',[0 ((n-zz+1)/n)+(.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(zz-1,2) = annotation(gcf,'textbox',[wid(2) ((n-zz+1)/n)+(.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(zz-1,3) = annotation(gcf,'textbox',[sum(wid([2 3]))+(.04) ((n-zz+1)/n)+(.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); vn = zz; lim = [min(Obj(vn).clim) max(Obj(vn).clim)]; yy = lim(1):(lim(2)-lim(1))/255:lim(2); axes(aax4); cla cm = colmap(cmaps{Obj(vn).col},256); imagesc(1,yy,reshape(cm,1,numel(yy),3)); axis tight %imagesc(1,yy',reshape(cmap{Obj(vn).col,1},1,size(cmap{Obj(vn).col,1},1),3)); axis tight set(aax4,'XDir','Normal','XAxisLocation','top','XTick', unique([1 get(aax4,'XTick')])); set(aax4,'XTickLabel',(round(((min(yy):spm_range(yy)/(numel(get(aax4,'XTick'))-1):max(yy)))*100)/100)); set(aax4,'xcolor','w','fontsize',12,'fontweight','bold') th = moveYaxLabs(aax4,'x'); %set(th,'fontsize',get(con(2),'fontsize'),'fontweight','bold'); set(th,'BackgroundColor','k'); shg else if zz == 2 delete(aax4); tr = []; end end end for zz = 1:length(tr) uistack(tr(zz),'top'); end if strcmpi(get(menu(23),'Checked'),'on') h_in = 0; an(1,1) = annotation(gcf,'textbox',[0 (.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(1,2) = annotation(gcf,'textbox',[wid(2) (.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(1,3) = annotation(gcf,'textbox',[sum(wid([2 3]))+(.04) (.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); end end function JointPlot(varargin) if length(Obj)>3 disp('This option only works if there are two and only two overlays'); return end % Obj(2).col = 16; % set(con(21,1),'Value',2); % switchObj({2}); % UpdateThreshold; % % Obj(3).col = 14; % set(con(21,1),'Value',3); % switchObj({3}); % UpdateThreshold; %%% tmp = Obj(2).I.*double(Obj(2).mask); if numel(Obj(2).Thresh)==2 ind = find(tmp<Obj(2).Thresh(1) | tmp>Obj(2).Thresh(2)); else ind = find(tmp<Obj(2).Thresh(1) | tmp>Obj(2).Thresh(4) | (tmp>Obj(2).Thresh(2) & tmp<Obj(2).Thresh(3))); end tmp(ind)=NaN; ind1 = find(~isnan(tmp)); %%% tmp = Obj(3).I.*double(Obj(3).mask); if numel(Obj(3).Thresh)==2 ind = find(tmp<Obj(3).Thresh(1) | tmp>Obj(3).Thresh(2)); else ind = find(tmp<Obj(3).Thresh(1) | tmp>Obj(3).Thresh(4) | (tmp>Obj(3).Thresh(2) & tmp<Obj(3).Thresh(3))); end tmp(ind)=NaN; ind2 = find(~isnan(tmp)); both = intersect(ind1,ind2); Obj(4) = Obj(3); Obj(4).Name = 'Overlap.nii'; Obj(4).I(:) = 0; Obj(4).I(both)=1; Obj(4).Thresh = [.5 1]; Obj(4).clim = [.5 1.5]; Obj(4).col = 15; Obj(4).mask = ones(size(Obj(4).I),'uint8'); set(con(21,1),'String', [get(con(21,1),'String'); Obj(4).Name],'Value',4); setupFrames(4,1) drawFresh(ax1,1,4); drawFresh(ax2,2,4); drawFresh(ax3,3,4); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end switchObj; end function gotoMinMax(varargin) movego = 0; vn = get(con(21,1),'Value'); if vn==1 return end if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end if varargin{1} == item(1) currloc = Obj(vn).point(1:3); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==max(tmpI(vi))); whvi = vi(whvi(1)); currvi = vi(15); while currvi ~= whvi currvi = whvi; [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==max(tmpI(vi))); whvi = vi(whvi(1)); end [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); newloc = round([currloc 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg elseif varargin{1} == item(2) currloc = Obj(vn).point(1:3); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==min(tmpI(vi))); whvi = vi(whvi(1)); currvi = vi(15); while currvi ~= whvi currvi = whvi; [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==min(tmpI(vi))); whvi = vi(whvi(1)); end [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); newloc = round([currloc 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg elseif varargin{1} == item(3) %keyboard; i1 = find(tmpI==max(tmpI(:))); [x y z] = ind2sub(Obj(vn).h.dim,i1); if numel(x)>1 disp('There are multiple maxima!'); x = x(1); y = y(1); z = z(1); end newloc = round([x y z 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg elseif varargin{1} == item(4) i1 = find(tmpI==min(tmpI(:))); [x y z] = ind2sub(Obj(vn).h.dim,i1); if numel(x)>1 disp('There are multiple minima!'); x = x(1); y = y(1); z = z(1); end newloc = round([x y z 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg end movego = 0; end function scrollMove(varargin) if isempty(gco); return end switch gca%get(gco,'Parent') case Obj(1).ax1 switch (varargin{2}.VerticalScrollCount>0) case 1 cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)+1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)-1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) end case Obj(1).ax2 switch (varargin{2}.VerticalScrollCount>0) case 1 cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)+1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)-1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) end case Obj(1).ax3 switch (varargin{2}.VerticalScrollCount>0) case 1 cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)+1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)-1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) end otherwise return end end function keyMove(varargin) if contains('alt', {varargin{2}.Key})==1 clickFlag = 1; end if strcmpi(varargin{2}.Modifier,'shift'); mult = 5; else mult = 1; end if char(get(gcf,'currentcharacter')) == 't' vn = get(con(21,1),'Value'); state = get(hand{1}(vn),'visible'); if strcmpi(state,'on') set(hand{1}(vn),'visible','off'); set(hand{2}(vn),'visible','off'); set(hand{3}(vn),'visible','off'); else set(hand{1}(vn),'visible','on'); set(hand{2}(vn),'visible','on'); set(hand{3}(vn),'visible','on'); end return end if ~isempty(gco) return; end switch gca case Obj(1).ax1 switch char(get(gcf,'currentcharacter')) case char(28) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(29) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(30) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(31) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise return end case Obj(1).ax2 switch char(get(gcf,'currentcharacter')) case char(28) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(29) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(30) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(31) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise return end case Obj(1).ax3 switch char(get(gcf,'currentcharacter')) case char(28) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(29) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(30) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(31) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise return end otherwise return end end function getClusterParams vn = get(con(21,1),'Value'); if vn<2 return end clear S; S.mask = []; S.SPM = 0; if strcmpi(get(paramenu4(1),'Checked'),'on') S.sign = 'pos'; elseif strcmpi(get(paramenu4(2),'Checked'),'on') S.sign = 'neg'; end; if numel(Obj(vn).DF)==1; if any(isnan(Obj(vn).DF)) S.type = 'none'; S.df1 = []; elseif any(isinf(Obj(vn).DF)) S.type = 'Z'; S.df1 = inf; else S.type = 'T'; S.df1 = Obj(vn).DF; end elseif numel(Obj(vn).DF)==2; S.type = 'F'; S.df1 = Obj(vn).DF(1); S.df2 = Obj(vn).DF(2); end if strcmpi(S.type,'none'); if numel(Obj(vn).Thresh)==4; error('Threshold can only contain two terms (one-sided)'); end i1 = find(abs(Obj(vn).Thresh)==min(abs(Obj(vn).Thresh))); S.thresh = Obj(vn).Thresh(i1); if strcmpi(S.sign,'pos'); l = 1; else l = -1;end if sign(S.thresh)~=l error('Direction of peaks (from Parameters-->Sign) does not match sign of the specified threshold.'); end else S.thresh = Obj(vn).PVal; end S.voxlimit = str2num(get(findobj(paramenu3(3),'Checked','on'),'Label')); S.separation = str2num(strtok(get(findobj(paramenu3(4),'Checked','on'),'Label'),'m')); S.conn = str2num(get(findobj(paramenu3(5),'Checked','on'),'Label')); tmp = str2num(get(con(23),'String')); if isempty(tmp); tmp = 0; end S.cluster = tmp; if strcmpi(get(findobj(paramenu3(7),'Label','Use Nearest Label'),'Checked'),'on') S.nearest = 1; else S.nearest = 0; end S.label = get(findobj(paramenu3(8),'Checked','on'),'Label'); end function groupCheck(varargin) if varargin{1}==paramenu3(19) state = get(varargin{1},'Checked'); if strcmpi(state,'on') set(varargin{1},'Checked','off'); else set(varargin{1},'Checked','on'); end return end swh1 = findobj(get(varargin{1},'Parent'),'Checked','on'); swh2 = findobj(get(varargin{1},'Parent'),'Checked','off'); if swh1 == varargin{1} if strcmpi(get(varargin{1},'Checked'),'on') set(varargin{1},'Checked','off'); else set(varargin{1},'Checked','on'); end else set(swh1,'Checked','off'); set(varargin{1},'Checked','on'); end %if get(varargin{1},'Parent') == paramenu3(8) % get(varargin{1},'Label') % keyboard; % RNH = spm_vol([which('aal_MNI_V4.img')]); % [RNI Rxyz] = spm_read_vols(RNH); % [RNI RNH] = openIMG([which('aal_MNI_V4.img')]); % RNames = load('aal_MNI_V4_List.mat'); %end end function plotVOI(varargin) movego = 0; vn = get(con(21,1),'Value'); if isempty(contrasts) || isempty(DataHeaders); try loadData catch error('No go, no support file found.'); end else try if ~strcmpi(fileparts(Obj(vn).FullPath),Des.OutputDir) try loadData catch error('No go, no support file found.'); end end catch if ~strcmpi(fileparts(Obj(vn).FullPath),Des.swd) try loadData catch error('No go, no support file found.'); end end end end if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end if strcmpi(modelType,'SPM') tmp = Obj(vn).DispName; i1 = find(tmp=='_'); i2 = find(tmp=='.'); tmp = tmp(i1(end)+1:i2(end)-1); spmCon = contrasts(str2num(tmp)); end switch varargin{1} case item(5) %% Cluster CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); lastItem = item(5); adir = [fileparts(Obj(vn).FullPath) filesep]; %%% Using the diplayed image get the matrix vector indices %%% for the selected cluster mni = str2num(get(con(15),'string')); thresh = Obj(vn).Thresh; if numel(thresh)==2 ind = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L = []; [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',CM); elseif numel(thresh)==4 ind1 = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L1 = []; [L1(:,1) L1(:,2) L1(:,3)] = ind2sub(Obj(vn).h.dim,ind1); A1 = spm_clusters2(L1(:,1:3)',CM); ind2 = find(tmpI<=thresh(4) & tmpI>=thresh(3)); L2 = []; [L2(:,1) L2(:,2) L2(:,3)] = ind2sub(Obj(vn).h.dim,ind2); A2 = spm_clusters2(L2(:,1:3)',CM); L = [L1; L2]; A = [A1 A2+max(A1)]; ind = [ind1; ind2]; end L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); %%% Read in an orignal volume try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end th = th(1); %try matLoc = [mni 1]*inv(th(1).mat'); matLoc = matLoc(1:3); %catch % keyboard; %end %%% Covert the display index into the native volume index Q = []; [Q(:,1) Q(:,2) Q(:,3)] = ind2sub(Obj(vn).h.dim,ind3); Q(:,4) = 1; Q = (Q*Obj(vn).h.mat')*inv(th.mat'); Q = unique(round(Q),'rows'); i1 = unique([find(Q(:,1)<=0 | Q(:,1)>th.dim(1)); find(Q(:,2)<=0 | Q(:,2)>th.dim(2)); find(Q(:,3)<=0 | Q(:,3)>th.dim(3))]); i2 = setdiff(1:size(Q,1),i1); Q = Q(i2,:); voxInd = sub2ind(th.dim,Q(:,1),Q(:,2),Q(:,3)); ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end VOI = []; VOI.mniLoc = mni; VOI.matLoc = matLoc; VOI.index = voxInd; VOI.isCluster = 1; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end case item(6) %% Sphere lastItem = item(6); adir = Obj(vn).FullPath; ind = find(adir==filesep); if isempty(ind); adir = []; else adir = adir(1:ind(end)); end try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end mniLoc = str2num(get(con(15),'string')); matLoc = [mniLoc 1]*inv(th(1).mat'); matLoc = matLoc(1:3); rad = get(findobj(paramenu3(2),'Checked','on'),'Label'); rad = str2num(rad(1:end-2)); voxInd = find(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2))<rad); if isempty(ind); voxInd = find(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2))==min(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2)))); end ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end VOI = []; VOI.mniLoc = mniLoc; VOI.matLoc = matLoc; VOI.index = voxInd; VOI.rad = rad; VOI.isCluster = 0; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end case item(7) %% Voxel lastItem = item(7); adir = Obj(vn).FullPath; ind = find(adir==filesep); if isempty(ind); adir = []; else adir = adir(1:ind(end)); end try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end mniLoc = str2num(get(con(15),'string')); matLoc = [mniLoc 1]*inv(th(1).mat'); matLoc = matLoc(1:3); voxInd = find(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2))==min(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2)))); ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end matLoc = round(matLoc); VOI = []; VOI.mniLoc = mniLoc; VOI.matLoc = matLoc; VOI.index = voxInd; VOI.rad = 0; VOI.isCluster = 0; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end case item(8) %% Cached Location if ~isfield(CachedClusterLoc,'index'); disp('No Cluster has been Cached'); return end if isempty(CachedClusterLoc.index) disp('No Cluster has been Cached'); return end tmp = CachedClusterLoc.mat-Obj(vn).h.mat; if sum(abs(tmp))>1e-10 disp('The Current Image is a different size than the one used to Cache the cluster. One image must be resized to the other for this to work'); return; end try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end ind3 = CachedClusterLoc.index; %mni = []; %matLoc = [] ; %%% Covert the display index into the native volume index Q = []; [Q(:,1) Q(:,2) Q(:,3)] = ind2sub(Obj(vn).h.dim,ind3); Q(:,4) = 1; Q = (Q*Obj(vn).h.mat')*inv(th.mat'); Q = unique(round(Q),'rows'); i1 = unique([find(Q(:,1)<=0 | Q(:,1)>th.dim(1)); find(Q(:,2)<=0 | Q(:,2)>th.dim(2)); find(Q(:,3)<=0 | Q(:,3)>th.dim(3))]); i2 = setdiff(1:size(Q,1),i1); Q = Q(i2,:); voxInd = sub2ind(th.dim,Q(:,1),Q(:,2),Q(:,3)); ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end VOI = []; VOI.mniLoc = 'From Cached Cluster'; VOI.matLoc = []; VOI.index = voxInd; VOI.isCluster = 1; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end otherwise end if ~plotGo assignin('base','VOI',VOI); warning('Plotting options are not available for this contrast'); return; end switch modelType case 'spm' c = spmCon.c; VOI.con = c; VOI.DM = DM; VOI.SPM = Des; assignin('base','VOI',VOI); GLM_Plot_spm(VOI,777+gcf); case 'regular' if isfield(contrasts,'c') && ~isempty(contrasts(wh).c) c = contrasts(wh).c; else try c = getContrastMat(contrasts(wh)); catch assignin('base','VOI',VOI); return end end VOI.con = c; VOI.DM = DM; VOI.F = Des.F; VOI.ConSpec = Des.Cons(wh); assignin('base','VOI',VOI); [yres xres] = GLM_Plot(VOI,777+gcf); VOI.yres = yres; VOI.xres = xres; assignin('base','VOI',VOI); case 'fast' [pr1 pr2 pr3] = fileparts(Obj(vn).FullPath); ind = find(pr2=='_'); effect = pr2(ind(2)+1:end); %figure(555+gcf); clf; figure; clf; [yres xres part] = GLM_Plot_Fast(VOI.data,DM,effect); VOI.effect = effect; VOI.mod = DM; VOI.part = part; VOI.yres = yres; VOI.xres = xres; assignin('base','VOI',VOI); otherwise end movego = 0; end function loadData(varargin) vn = get(con(21,1),'Value'); adir = Obj(vn).FullPath; ind = find(adir==filesep); if isempty(ind); adir = []; else adir = adir(1:ind(end)); end if exist([adir 'I.mat'])>0; %if ~isempty(contains('aschultz',{UserTime})) keyboard; end HH = load([adir 'I.mat']); if exist([adir 'FinalDataSet.nii']) DataHeaders = spm_vol([adir 'FinalDataSet.nii']); disp('Loading FinalDataSet.nii'); tmp = [(DataHeaders.n)]; Flist = [char(DataHeaders.fname) repmat(',',numel(DataHeaders),1) char(num2str(tmp(1:2:end)'))]; plotGo = 1; elseif isfield(HH.I,'Scans'); disp('Reading in original input files'); Flist = char(HH.I.Scans); DataHeaders = spm_vol(Flist); plotGo = 1; else plotGo = 0; end if isfield(HH.I,'OL'); Outliers = HH.I.OL; end if isfield(HH.I,'Cons') contrasts = HH.I.Cons; DM = HH.I.F.XX; modelType = 'regular'; else modelType = 'fast'; DM = HH.I.MOD; end Des = HH.I; nvox = prod(HH.I.v.dim); ns = size(DM,1); elseif exist([adir 'SPM.mat'])>0; modelType = 'spm'; HH = load([adir 'SPM.mat']); contrasts = HH.SPM.xCon; tmp = spm_read_vols(HH.SPM.xY.VY); ss = size(tmp); Des = HH.SPM; origDat = double(reshape(tmp, prod(ss(1:3)),ss(4))'); DM = HH.SPM.xX.X; Flist = char(HH.SPM.xY.P); DataHeaders = HH.SPM.xY.VY; plotGo = 1; else disp('No stat support files were found'); return; end end function applyToAll(varargin) vn = get(con(21,1),'Value'); sett = setdiff(2:length(Obj),vn); for ii = sett %Obj(ii).Thresh = Obj(vn).Thresh; Obj(ii).clim = Obj(vn).clim; Obj(ii).PVal = Obj(vn).PVal; %Obj(ii).DF = Obj(vn).DF; Obj(ii).Trans = Obj(vn).Trans; set(con(21,1),'Value',ii); %AutoUpdate; switchObj; %UpdateThreshold; end set(con(21,1),'Value',vn); switchObj; end function getPeakInfo(varargin) vn = get(con(21,1),'Value'); S = []; getClusterParams; peak = []; %S.FWHM = [15.4639 15.4037 15.3548]; %[voxels voxelstats clusterstats sigthresh regions mapparameters UID] %keyboard; [peak.voxels peak.voxelstats peak.clusterstats peak.sigthresh peak.regions] = peak_nii(Obj(vn).FullPath(1:end-2),S); assignin('base','peak',peak); figure(666); clf; %reset(666); %%% Add in some sorting options for the table [a b] = sortrows([cellstr(char(num2str(peak.voxels{1}(:,end)))) peak.regions(:,2)]); tabHand = uitable('Parent',666,... 'ColumnName',{'Cluster Size' 'T/F-Stat' 'X' 'Y' 'Z' 'N_peaks' 'Cluster Num' 'Region Num' 'Region Name'},... 'data', [mat2cell(peak.voxels{1}(b,:),ones(size(peak.voxels{1},1),1), ones(size(peak.voxels{1},2),1)) peak.regions(b,:)],... 'Units','Normalized','Position', [0 0 1 1],... 'ColumnWidth', 'auto', 'RearrangeableColumns','on','CellSelectionCallback',@goToCluster); %set(tabHand, 'uicontextmenu',tableMenu); Out = cell(size(peak.voxels{1},1)+1 ,9); Out(1,:) = {'Cluster Size' 'T/F-Stat' 'X' 'Y' 'Z' 'N_peaks' 'Cluster Num' 'Region Num' 'Region Name'}; Out(2:end,1:7) = num2cell(peak.voxels{1}); Out(2:end,8:9) = peak.regions; [a b c] = fileparts(Obj(vn).FullPath); WriteDataToText(Out,[a filesep 'peakinfo.csv'],'w',','); end function goToCluster(varargin) data = get(tabHand,'Data'); row = varargin{2}.Indices(1); mni = [data{row,3:5}]; set(con(15,1),'String',num2str(mni)); goTo(con(15,1)); end function out = initializeUnderlay(M,HH) out.Name = 'Structural Underlay'; out.I = double(M); out.h = HH; out.Thresh = [min(M(:)) max(M(:))]; if ~isempty(contains('defaultUnderlay.nii',{HH.fname})) out.clim = [max(M(:))*.15 max(M(:))*.8]; else out.clim = out.Thresh; end out.PVal = []; out.col = 1; out.pos = axLim(M,HH); out.Exclude = []; out.MaskInd = []; out.mask = ones(size(M),'uint8'); out.Trans = 1; out.mask = ones(size(M),'uint8'); out.Thresh = [min(M(:)) max(M(:))]; out.clim = [min(M(:)) max(M(:))]; out.Range = [out.Thresh(1) out.Thresh(2) diff(out.Thresh) ]; out.axLims = size(M); mniLims = [[min(out.pos{1}) min(out.pos{2}) min(out.pos{3})]; ... [max(out.pos{1}) max(out.pos{2}) max(out.pos{3})]]; end function changeUnderlay(varargin) ufn = spm_select(1,'image','Choose the new underlay'); h = spm_vol(ufn); [I mmm] = SliceAndDice3(h,MH,[],[],[0 NaN],[]); h.dim = size(I); h.mat = mmm; nv = 1; for ii = 1:length(hand) delete(hand{ii}(nv)); end tmp = initializeUnderlay(I,h); flds = fields(tmp); for ii = 1:length(flds) Obj(1).(flds{ii}) = tmp.(flds{ii}); end Obj(1).point = round([loc 1] * inv(Obj(1).h.mat)'); setupFrames(1,1); tss = Obj(1).axLims; tmp = [1 1 1]; tss = tss.*tmp; height = tss(2)+tss(3); width = tss(1)+tss(2); rat = height/width; ff = get(0,'ScreenSize'); if ff(4)>800 pro = 3.25; else pro = 2.5; end ss = get(0,'ScreenSize'); if (ss(3)/ss(4))>2 ss(3)=ss(3)/2; end op = floor([50 ss(4)-75-((ss(3)/pro)*rat) ss(3)/pro (ss(3)/pro)*rat]); set(gcf, 'Position', op); wid(1) = tss(2)/width; hei(1) = tss(3)/height; wid(2) = tss(1)/width; hei(2) = tss(3)/height; wid(3) = tss(1)/width; hei(3) = tss(2)/height; set(ax1,'Color','k','Position',[wid(2) hei(3) wid(1) hei(1)]); hold on; set(ax2,'Color','k','Position',[0 hei(3) wid(2) hei(2)]); hold on; set(ax3,'Color','k','Position',[0 0 wid(3) hei(3)]); hold on; set(ax4,'Color','w','Position',[wid(2) 0 .04 hei(3)]); axis tight; %st = wid(2)+.01+.04+.03; st = wid(2)+.125; len1 = (1-st)-.01; len2 = len1/2; len3 = len1/3; inc = (hei(3))/11; inc2 = .75*inc; val = (Obj(1).Range(2)-Obj(1).Range(1))/Obj(1).Range(3); con(27,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.070 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); val = (Obj(1).Range(1)-Obj(1).Range(1))/Obj(1).Range(3); con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); %con(29,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',0,'CallBack', @adjustUnderlay); con(30,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)+.070 hei(3)*.9 .05 .05]); % wid(2)+.0450 hei(3)*.9 .075 .05] % con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st-.1 (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap'} cmaps(:)'],'CallBack', @changeColorMap); shg %con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap' 'A' 'B' 'C' 'D'}],'CallBack', @changeColorMap); shg con(2,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(23,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len1*.75 (.01+(1*inc)+(0*inc2)) len1*.25 inc],'String','All','CallBack', @applyToAll); con(3,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(2*inc)+(0*inc2) len1 inc2],'String', 'Transparency','fontsize',12); con(4,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateThreshold); con(5,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len2 .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateCLims); con(6,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Thresh','fontsize',12); con(7,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Color Limits','fontsize',12); con(8,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(9,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(23,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@ExtentThresh); con(10,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(4*inc)+(2*inc2) len3 inc2],'String', 'DF','fontsize',12); con(11,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'P-Value','fontsize',12); con(24,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'Extent','fontsize',12); con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',num2str(loc),'CallBack',@goTo); %con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',['0 0 0'],'CallBack',@goTo); con(25,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(4*inc)+(3*inc2) len2/2 inc],'String','FDR','CallBack', @correctThresh); con(26,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+(len2*1.5) .01+(4*inc)+(3*inc2) len2/2 inc],'String','FWE','CallBack', @correctThresh); con(17,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MNI Coord', 'fontsize',12); con(18,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MC Correct','fontsize',12); con(12,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Up'},'CallBack',@changeLayer); con(13,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Down'},'CallBack',@changeLayer); con(21,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(5*inc)+(5*inc2) len1 inc],'String',{'Overlays'},'CallBack',@switchObj); con(22,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)-(len2/2) hei(3)-(inc*1.05) (len2/2) inc]); con(19,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st .01+(6*inc)+(5*inc2) len2 inc],'String','Open Overlay','FontWeight','Bold','CallBack',@openOverlay); con(20,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st+len2 .01+(6*inc)+(5*inc2) len2 inc],'String','Remove Volume', 'FontWeight','Bold','CallBack',@removeVolume); drawFresh(ax1,1,1); axis equal; drawFresh(ax2,2,1); axis equal; drawFresh(ax3,3,1); axis equal; set(ax1,'color','k') set(ax2,'color','k') set(ax3,'color','k') axes(ax1); ax = axis; set(ch(1,1),'YData',ax(3:4)); set(ch(1,2),'XData',ax(1:2)); axes(ax2); ax = axis; set(ch(2,1),'YData',ax(3:4)); set(ch(2,2),'XData',ax(1:2)); axes(ax3); ax = axis; set(ch(3,1),'YData',ax(3:4)); set(ch(3,2),'XData',ax(1:2)); uistack(hand{1}(1),'bottom'); uistack(hand{2}(1),'bottom'); uistack(hand{3}(1),'bottom'); set(con(27),'value',1); set(con(28),'value',0); if get(con(21,1),'Value') == 1 set(con(5),'String', sprintf('%0.3f %0.3f',Obj(1).Thresh(1),Obj(1).Thresh(2))); end end function plotConfig fh = figure(777); clf; reset(777); pop(1) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .95 .9 .05],'String','Choose the plot Type','Fontsize',12); bg = uibuttongroup(fh,'Units','Normalized','position',[.05 .9 .9 .05]); pop(2) = uicontrol(bg,'style','radiobutton','Units','Normalized','position',[ 00 0 .33 1],'String','BoxPlot','Fontsize',12); pop(3) = uicontrol(bg,'style','radiobutton','Units','Normalized','position',[.33 0 .33 1],'String','InteractionPlot','Fontsize',12); pop(4) = uicontrol(bg,'style','radiobutton','Units','Normalized','position',[.66 0 .33 1], 'String', 'ScatterPlot','Fontsize',12); pop(5) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .83 .9 .05],'String','Set the Data Groups','Fontsize',12); pop(6) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .75 .9 .08],'String','{{1:10} {11:20} {etc..}}','Fontsize',12); pop(7) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .68 .9 .05],'String','Specify Design Matirx Columns','Fontsize',12); pop(8) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .60 .9 .08],'String','{{1:10} {11:20} {etc..}}','Fontsize',12); end function ExtentThresh(varargin) CM = 18;%str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); vn = get(con(21,1),'Value'); ClusterExtent = str2num(get(con(23),'String')); if isempty(ClusterExtent) || ClusterExtent==0; Obj(vn).mask = ones(size(Obj(vn).I),'uint8'); Obj(vn).Exclude = []; Obj(vn).mask(Obj(vn).MaskInd)=0; return end Obj(vn).ClusterThresh = ClusterExtent; if numel(Obj(vn).Thresh)==2 ind = find(Obj(vn).I<Obj(vn).Thresh(1) | Obj(vn).I>Obj(vn).Thresh(2)); else ind = find(Obj(vn).I<Obj(vn).Thresh(1) | Obj(vn).I>Obj(vn).Thresh(4) | (Obj(vn).I>Obj(vn).Thresh(2) & Obj(vn).I<Obj(vn).Thresh(3))); end %tmpI(ind) = NaN; ind = setdiff(1:prod(Obj(vn).axLims),ind); L = []; [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',CM); Exclude = []; list = unique(A); for ii = list i1 = find(A==ii); if numel(i1)<ClusterExtent Exclude = [Exclude ind(i1)]; end end Obj(vn).mask(:) = 1; Obj(vn).Exclude = Exclude; Obj(vn).mask(Exclude)=0; Obj(vn).mask(Obj(vn).MaskInd)=0; setupFrames(vn,1); updateGraphics({1:3 vn},1); end function out = popup(Message) %%% Fix this up later so that multiple messages mean multiple %%% inputs fh = figure(777); clf; %reset(777); pop(1) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .83 .9 .05],'String',Message,'Fontsize',12); pop(2) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .75 .9 .08],'String','','Fontsize',12,'Callback','uiresume'); uiwait eval(['out = [' get(pop(2),'String') '];']); close(gcf); end function TestFunc(varargin) vn = get(con(21,1),'Value'); wh = Count; Obj(wh) = Obj(1); tmpVol = SliceAndDice3(Obj(vn).FullPath,Obj(1).h,Obj(1).h,Obj(1).h,[1 NaN],[]); ind = find(tmpVol>Obj(vn).Thresh(1) & tmpVol<Obj(vn).Thresh(2)); Obj(wh).I(setdiff(1:numel(Obj(wh).I),ind)) = NaN; tmp = Obj(1).CM(:,:,:,1); tmp = round((tmp./max(tmp(:)))*(size(cmap{1,1},1)-1)); nn = zeros(numel(tmp),3)*NaN; ind2 = find(~isnan(tmp)); nn(ind2,:) = cmap{2,1}(tmp(ind2)+1,:); a = zeros(size(Obj(1).CM))*NaN; b = zeros(size(Obj(1).CM))*NaN; c = zeros(size(Obj(1).CM))*NaN; a(ind) = nn(ind,1); b(ind) = nn(ind,2); c(ind) = nn(ind,3); Obj(wh).CM = cat(4,a,b,c); m = Obj(wh).I; n2 = 'TmpImg'; set(con(21,1),'String', [get(con(21,1),'String'); n2],'Value',Count); set(con(4),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String','NaN'); set(con(9),'String','NaN'); Obj(wh).DF = NaN; Obj(wh).PVal = NaN; Obj(wh).Thresh = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(wh).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(wh).col = 2; Obj(wh).Trans = 1; y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); loc = [x(1) y(1) z(1)]; Obj(wh).point = round([loc 1] * inv(Obj(wh).h.mat)'); setupFrames(wh,0); Obj(wh).pos = axLim(Obj(wh).I,Obj(wh).h); tmp = size(Obj(wh).CM); Obj(wh).axLims = tmp(1:3); set(con(1,1),'Value',wh+1); drawFresh(ax1,1,wh); drawFresh(ax2,2,wh); drawFresh(ax3,3,wh); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end Count = Count+1; end function c = getContrastMat(Con) tx = Des.F.XX; if ~isfield(Con,'c') || isempty(Con.c) if iscell(Con.Groups) tc = []; for zz = 1:length(Con.Groups) if size(Con.Groups{zz},1)>1 tmpX = Con.Groups{zz}; else tmpX = tx(:,Con.Groups{zz}); end cc = MakePreCons(tmpX,tx,Des.F.CovarCols); tc(:,zz) = mean(cc,2); end levs = Con.Levs(end:-1:1); if levs == 0 c = tc; else tmp = reshape(tc,[size(tc,1) levs]); tmp = squeeze(tmp); if size(tmp,2)==1 c = tmp; else c = differencer(tmp); if numel(levs)==1 c = c*-1; end end end else [r,c,cc] = MakeContrastMatrix('a',Con.Groups,Con.Levs,tx); end else c = Con.c; c0 = eye(size(txx,2))-(c*pinv(c)); x0 = txx*c0; r = eye(size(x0,1))-(x0*pinv(x0)); end end function saveImg(varargin) %%% Write something in the descip field to describe how the image %%% was made from = varargin{1}; vn = get(con(21,1),'Value'); CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); switch from case menu(19) disp('Save Thresholded Image'); dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_thresh.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; if ~isempty(Obj(vn).mask); tmp = Obj(vn).I.*double(Obj(vn).mask); else tmp = Obj(vn).I; end if numel(Obj(vn).Thresh)==2 ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(2)); else ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(4) | (tmp>Obj(vn).Thresh(2) & tmp<Obj(vn).Thresh(3))); end tmp(ind)=NaN; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol2(hh2,th); th.fname = fn; th.descrip = []; spm_write_vol(th,N); case menu(20) disp('Save Masked Image'); dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_mask.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; hh.dt = [2 0]; tmp = Obj(vn).I; if numel(Obj(vn).Thresh)==2 ind = find(tmp>Obj(vn).Thresh(1) & tmp<Obj(vn).Thresh(2)); else ind = find((tmp>Obj(vn).Thresh(1) & tmp<Obj(vn).Thresh(2)) | (tmp>Obj(vn).Thresh(3) & tmp<Obj(vn).Thresh(4))); end tmp(:)=0; tmp(ind)=1; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol(hh2,th); th.fname = fn; th.descrip = []; th.dt = [2 0]; spm_write_vol(th,N); case menu(21) disp('Save Cluster Image'); mni = str2num(get(con(15),'string')); tmp = Obj(vn).I; if numel(Obj(vn).Thresh)==2 ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(2)); else ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(4) | (tmp>Obj(vn).Thresh(2) & tmp<Obj(vn).Thresh(3))); end tmp(ind)=NaN; ind = find(~isnan(tmp)); [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',18); L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); tmp(:) = NaN; tmp(ind3) = Obj(vn).I(ind3); dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_cluster.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol2(hh2,th); th.fname = fn; th.descrip = []; spm_write_vol(th,N); case menu(22) disp('Save Cluster Mask'); mni = str2num(get(con(15),'string')); tmp = Obj(vn).I; if numel(Obj(vn).Thresh)==2 ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(2)); else ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(4) | (tmp>Obj(vn).Thresh(2) & tmp<Obj(vn).Thresh(3))); end tmp(ind)=NaN; ind = find(~isnan(tmp)); [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',18); L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); tmp(:) = 0; tmp(ind3) = 1; dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_clusterMask.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol(hh2,th); th.fname = fn; th.descrip = []; th.dt = [2 0]; spm_write_vol(th,N); otherwise end end function resampleIm(varargin) vn = get(con(21,1),'Value'); %keyboard; voxdim = str2num(char(regexp(get(varargin{1},'Label'),'x','split')))'; nnn = Obj(vn).FullPath; hh = spm_vol(nnn); [mm mat] = SliceAndDice3(hh, MH, voxdim, [],[1 0],[]); hh.dim = size(mm); hh.mat = mat; Obj(vn).h = hh; Obj(vn).I = double(mm); Obj(vn).mask = ones(size(mm),'uint8'); Obj(vn).pos = axLim(Obj(vn).I,Obj(vn).h); Obj(vn).axLims = Obj(vn).h.dim; loc = str2num(get(con(15),'String')); Obj(vn).point = round([loc 1] * inv(Obj(vn).h.mat)'); setupFrames(vn,1); for ii = 1:length(hand) delete(hand{ii}(vn)); end drawFresh(ax1,1,vn); drawFresh(ax2,2,vn); drawFresh(ax3,3,vn); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end end function correctThresh(varargin) vn = get(con(21,1),'Value'); if numel(Obj(vn).DF)==1 stat = 'T'; df = [1 Obj(vn).DF]; elseif numel(Obj(vn).DF)==2 stat = 'F'; df = Obj(vn).DF; end if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end if varargin{1}==con(25) %FDR Correction if numel(Obj(vn).Thresh) == 2 ind = find(abs(tmpI)>0); div = 1; if sum(sign(Obj(vn).Thresh))<0 %ind = find(Obj(vn).I<0); t = abs(tmpI(ind)); elseif sum(sign(Obj(vn).Thresh))>0 %ind = find(Obj(vn).I>0); t = abs(tmpI(ind)); end elseif numel(Obj(vn).Thresh) == 4 ind = find(abs(tmpI)>0); t = abs(tmpI(ind)); div = 2; end if strcmpi(stat,'f'); pp = 1-spm_Fcdf(t,df); else pp = (1-spm_Tcdf(t,df(2))).*div; end pp = sort(pp); %keyboard; alpha = str2num(get(findobj(paramenu3(18),'Checked','On'),'Label')); p = pp'; rh = ((1:numel(p))./numel(p)).*alpha; below = p<=rh; in = (find(below==1)); if isempty(in) warning('FDR Correction is not possible for this alpha'); return end %; t = sort(t,'descend'); thresh = t(in(end)); pthresh = p(in(end)); %[FDR_alpha FDR_p FDR_t] = computeFDR('0003_T_TFO_Pos_Corr.nii',114,.05,0) end if varargin{1}==con(26) %% FWE correction using RFT [a b c] = fileparts(Obj(vn).FullPath); try HH = load([a filesep 'I.mat']); %R = HH.I.ReslInfo{HH.I.Cons(wh).ET}; if isfield(HH.I,'Cons') FWHM = HH.I.FWHM{HH.I.Cons(wh).ET}; end if isfield(HH.I,'MOD') ind = find(b=='_'); effect = b(ind(2)+1:end); for ii = 1:numel(HH.I.MOD.RFMs) for jj = 1:numel(HH.I.MOD.RFMs(ii).Effect) if strcmpi(effect,HH.I.MOD.RFMs(ii).Effect(jj).name) ET = ii; end end end FWHM = HH.I.FWHM{ET}; end catch HH = load([a filesep 'SPM.mat']); %R = HH.SPM.xVol.R; FWHM = HH.SPM.xVol.FWHM; end p = str2num(get(findobj(paramenu3(18),'Checked','On'),'Label')); try [msk mh] = openIMG([a filesep 'mask.img']); catch try [msk mh] = openIMG([a filesep 'mask.nii']); catch [msk mh] = openIMG([a filesep 'NN.nii']); mh.fname = 'mask.nii'; spm_write_vol(mh,msk>0); [msk mh] = openIMG([a filesep 'mask.nii']); end end if ~isempty(Obj(vn).mask); msk = Obj(vn).I.*double(Obj(vn).mask); end reselinfo = spm_resels_vol(mh,FWHM)'; if strcmpi(stat,'f'); thresh = spm_uc(p,df,stat,reselinfo,1,numel(find(msk>0))); pthresh = 1-spm_Fcdf(thresh,df); else if numel(Obj(vn).Thresh) == 4 thresh = spm_uc(p/2,df,stat,reselinfo,1,numel(find(msk>0))); pthresh = (1-spm_Tcdf(thresh,df(2))); else thresh = spm_uc(p,df,stat,reselinfo,1,numel(find(msk>0))); pthresh = (1-spm_Tcdf(thresh,df(2))); end end end thresh = round(thresh*1000)/1000; if numel(Obj(vn).Thresh) == 2 if sum(sign(Obj(vn).Thresh))<0 if thresh<Obj(vn).Thresh(1) warning(['No voxels beyond the corrected threshold of ' num2str(-thresh)]); return end Obj(vn).Thresh = [Obj(vn).Thresh(1) -thresh]; Obj(vn).PVal = pthresh; else if thresh>Obj(vn).Thresh(2) warning(['No voxels beyond the corrected threshold of ' num2str(thresh)]); return end Obj(vn).Thresh = [thresh Obj(vn).Thresh(2)]; Obj(vn).PVal = pthresh; end elseif numel(Obj(vn).Thresh) == 4 up = ~(thresh>Obj(vn).Thresh(4)); down = ~(thresh<Obj(vn).Thresh(1)); if ~up && ~down warning(['Nothing Left at this Threshold. Exiting Correction.']); return; end if up && down Obj(vn).Thresh = [Obj(vn).Thresh(1) -thresh thresh Obj(vn).Thresh(4)]; Obj(vn).PVal = pthresh; end if up && ~down warning(['No voxels below the corrected threshold of ' num2str(-thresh)]); Obj(vn).Thresh = [thresh Obj(vn).Thresh(4)]; Obj(vn).PVal = pthresh; end if down && ~up warning(['No voxels above the corrected threshold of ' num2str(thresh)]); Obj(vn).Thresh = [Obj(vn).Thresh(1) -thresh]; Obj(vn).PVal = pthresh; end end ll = []; for zz = 1:numel(Obj(vn).Thresh); ll = [ll num2str(Obj(vn).Thresh(zz)) ' ']; end; ll = ll(1:end-1); set(con(4,1),'String',num2str(ll)); UpdateThreshold(con(4,1)); end function changeLabelMap(varargin) groupCheck(varargin{1}) % fn1 = which([get(varargin{1},'Label') '.img']); % fn2 = which([get(varargin{1},'Label') '.mat']); try [fn1,fn2]=getLabelMap(get(varargin{1},'Label')); catch fn1=[];fn2=[]; end if isempty(fn1) && isempty(fn2) warning(['Label Map ' get(varargin{1},'Label') ' cannot be found. Reverting to aal_MNI_V4']); set(varargin{1},'Checked','off'); set(findobj(gcf,'Label','aal_MNI_V4'),'Checked','on'); return end RNH = spm_vol(fn1); [RNI Rxyz] = spm_read_vols(RNH); RNames = load(fn2); end function h = moveYaxLabs(currAx,wh) if nargin==0 || isempty(currAx) currAx = gca; end if wh == 'y' ax = axis(currAx); y = get(currAx,'YTick'); lab = cellstr(get(currAx,'YTickLabel')); for ii = 1:numel(lab) if lab{ii}(1) ~= '-' lab{ii} = ['+' lab{ii}]; end end adj = range(y)*.015; adj2 = range(ax(1:2))*.5; for ii = 1:numel(lab) if ii==1 h(ii) = text(ax(1)+adj2,y(ii)+adj,lab{ii},'FontName', get(currAx,'FontName'), 'FontSize',get(currAx,'FontSize'),'color','w','HorizontalAlignment','Center'); shg elseif ii==numel(lab) h(ii) = text(ax(1)+adj2,y(ii)-adj,lab{ii},'FontName', get(currAx,'FontName'), 'FontSize',get(currAx,'FontSize'),'color','w','HorizontalAlignment','Center'); shg else h(ii) = text(ax(1)+adj2,y(ii), lab{ii},'FontName', get(currAx,'FontName'), 'FontSize',get(currAx,'FontSize'),'color','w','fontweight','bold','HorizontalAlignment','Center'); shg %p = get(h(ii),'Position'); p(3) = 15; set(h(ii),'Position',p); end end set(gca,'XTick', [],'YTick',[]); elseif wh == 'x' ax = axis(currAx); x = get(currAx,'XTick'); lab = cellstr(get(currAx,'XTickLabel')); for ii = 1:numel(lab) if lab{ii}(1) ~= '-' lab{ii} = ['+' lab{ii}]; end end adj2 = range(ax(3:4))*.5; for ii = 1:numel(lab) if ii==1 h(ii) = text(ax(1)+(.005*adj2), ax(3)+adj2, lab{ii},'FontName', get(gca,'FontName'), 'FontSize',get(gca,'FontSize'),'color','w','HorizontalAlignment','Left'); shg elseif ii==numel(lab) h(ii) = text(ax(2)-(.005*adj2), ax(3)+adj2, lab{ii},'FontName', get(gca,'FontName'), 'FontSize',get(gca,'FontSize'),'color','w','HorizontalAlignment','Right'); shg else h(ii) = text(x(ii)-(.005*adj2), ax(3)+adj2, lab{ii},'FontName', get(gca,'FontName'), 'FontSize',get(gca,'FontSize'),'color','w','fontweight','bold','HorizontalAlignment','Center'); shg end end set(gca,'XTick', [],'YTick',[]); end end function initializeConnExplore(varargin) vn = get(con(21,1),'Value'); if ConExp==1 switchObj(ConLayer) return end fn = ['/autofs/space/schopenhauer_004/users/ConnectivityAtlas/Maps/blank.nii']; openOverlay(fn); ConExp = 1; ConHeader = spm_vol(fn); vn = get(con(21,1),'Value'); ConLayer = vn; %Obj(2).h.mat Obj(vn).Thresh = [-1 1]; Obj(vn).clim = [-1 1]; set(con(4),'String','-1 1'); set(con(5),'String','-1 1'); end function updateConnMap(varargin) if ConExp==0 return end vn = get(con(21,1),'Value'); if vn ~= ConLayer; return end MNI = Obj(1).point*Obj(1).h.mat'; matLoc = round(MNI*inv(ConHeader.mat)'); thisLoc = sub2ind(ConHeader.dim,matLoc(1),matLoc(2),matLoc(3)); fn = ['/autofs/space/schopenhauer_004/users/ConnectivityAtlas/Maps/Vox_' sprintf('%0.6d',thisLoc) '.nii']; if exist(fn)>0 Obj(vn).I = openIMG(fn); %Obj(vn).I = resizeVol2(spm_vol(fn),Obj(vn).h); else Obj(vn).I(:) = NaN; end UpdateThreshold; end function ssConn(varargin) vn = get(con(21,1),'Value'); if ssConExp==1 switchObj(ssConLayer) return end ff = spm_select(inf,'image'); fn = []; for zz = 1:size(ff,1) fn{zz} = (ff(zz,1:end-2)); end openOverlay(ff(1,:)); ssConExp = 1; vn = get(con(21,1),'Value'); ssConHeader = Obj(vn).h; ssConLayer = vn; ssData = []; for zz = 1:numel(fn); pth = fileparts(fn{zz}); % R = []; % fl = [pth '/ExtraRegressors.mat']; % if exist(fl,'file')>0 % load(fl); % [rows,cols] = find(R==1); % else % rows = []; % end th = spm_vol(fn{zz}); % wh = setdiff(1:numel(th), rows); % th = th(wh); dat = zeros(numel(th),prod(Obj(vn).h.dim)); for qq = 1:numel(th) dd = resizeVol2(th(qq),Obj(vn).h); dat(qq,:) = dd(:); end ssData = [ssData; zscore(dat)]; end ssData = zscore(ssData); Obj(vn).I(:) = 0; Obj(vn).Thresh = [-1 1]; Obj(vn).clim = [-1 1]; set(con(4),'String','-1 1'); set(con(5),'String','-1 1'); UpdateThreshold; end function ssUpdateConnMap(varargin) if ssConExp==0 return end vn = get(con(21,1),'Value'); if vn ~= ssConLayer; return end MNI = Obj(1).point*Obj(1).h.mat'; matLoc = round(MNI*inv(ssConHeader.mat)'); thisLoc = sub2ind(ssConHeader.dim,matLoc(1),matLoc(2),matLoc(3)); rad = get(findobj(paramenu3(2),'Checked','on'),'Label'); rad = str2num(rad(1:end-2)); [ml vi] = getMatCoord(ssConHeader,MNI(1:3),rad*2); seed = zscore(nanmean(ssData(:,vi),2)); beta = pinv(seed)*ssData; % keyboard; Obj(vn).I(:) = beta; UpdateThreshold; end function movieMode(varargin) nnn = spm_select(inf,'image'); if size(nnn,1)==1 ind = find(nnn==','); nnn = nnn(1:ind-1); end dh = spm_vol(nnn); for ii = 1:numel(dh) [t1 t2] = SliceAndDice3(dh(ii),MH,[],Obj(1).h,[0 NaN],[]); if ii == 1 dd = nan([size(t1) numel(dh)]); end dd(:,:,:,ii) = t1; end rang = [min(dd(:)) min(dd(:))]; xyz = [20 20 20]; jj = 1; tmp = []; tmp{1} = flipdim(rot90(squeeze(dd(xyz(1),:,:,jj)),1),1); tmp{2} = flipdim(flipdim(rot90(squeeze(dd(:,xyz(2),:,jj)),1),1),2); tmp{3} = flipdim(flipdim(rot90(squeeze(dd(:,:,xyz(3),jj)),1),1),2); % tmp = pcolor(Obj(ii).pos{2}, Obj(ii).pos{3}, Obj(ii).frame{opt}); % if opt3; hand{opt}(ii) = tmp; end % colormap(gray(256)); shading interp; hold on; keyboard; end function adjustUnderlay(varargin) if varargin{1}==con(29) return end vn = get(con(21,1),'Value'); if isempty(Obj(vn).Thresh) Obj(vn).Thresh = [min(Obj(vn).I(:)) max(Obj(vn).I(:))]; Obj(vn).clim = [min(Obj(vn).I(:)) max(Obj(vn).I(:))]; end if ~isfield(Obj(vn),'Range') || isempty(Obj(vn).Range) Obj(vn).Range = [min(Obj(vn).I(:)) max(Obj(vn).I(:)) max(Obj(vn).I(:))-min(Obj(vn).I(:)) ]; end val = get(varargin{1},'Value'); if varargin{1}==con(27) Obj(vn).clim(2) = (val*Obj(vn).Range(3))+Obj(vn).Range(1); %Obj(vn).clim(2) = val*Obj(vn).Thresh(2); end if varargin{1}==con(28) Obj(vn).clim(1) = (val*Obj(vn).Range(3))+Obj(vn).Range(1); %Obj(vn).clim(1) = val*Obj(vn).Thresh(2); end set(con(5),'String',[sprintf('%0.3f %0.3f',Obj(vn).clim(1),Obj(vn).clim(2))]); setupFrames(vn,1); updateGraphics([1 2 3],1); %%%%% yy = Obj(vn).clim(1):(Obj(vn).clim(2)-Obj(vn).clim(1))/255:Obj(vn).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(vn).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end function UpdateCLims(varargin) vn = get(con(21,1),'Value'); b = get(con(5),'String'); if contains(',',{b}) ind = find(b==','); b = [str2num(strtrim(b(1:ind-1))) str2num(strtrim(b(ind+1:end)))]; else b = str2num(b); end if b(1)==-inf b(1) = Obj(vn).Range(1); end if b(2)==inf b(2) = Obj(vn).Range(2); end Obj(vn).clim = b; tmp1 = (Obj(vn).clim(2)-Obj(vn).Range(1))/Obj(vn).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(27),'Value', tmp1); tmp1 = (Obj(vn).clim(1)-Obj(vn).Range(1))/Obj(vn).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(28),'Value', tmp1); setupFrames(vn,1); updateGraphics([1 2 3],1); set(con(5),'String', sprintf('%0.3f %0.3f',b(1),b(2))); %%%%%%%%%%%%% yy = Obj(vn).clim(1):(Obj(vn).clim(2)-Obj(vn).clim(1))/255:Obj(vn).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(vn).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end end function out = differencer(tmp,count) if nargin == 1; count = numel(size(tmp)); end out = diff(tmp,1,count); if count ~= 2; out = differencer(out,count-1); else if numel(size(out))>2 ss = size(out); out = reshape(out,size(out,1),prod(ss(2:end))); end return end end
github
scanUCLA/MRtools_Hoffman2-master
GLM_Plot_Fast.m
.m
MRtools_Hoffman2-master/Visualization/GLM_Plot_Fast.m
8,807
utf_8
ac475e6853ae5de5eadc31da4bfe68b3
function [yres xres part] = GLM_Plot_Fast2(y,mod,effect) %%% Written by Aaron Schultz ([email protected]) %%% %%% Copyright (C) 2012, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. %if contains('aschultz', {UserTime}); keyboard; end yres = []; xres = []; part = []; flag = 0; effect = regexprep(effect,'\*',':'); effect = regexprep(effect,'_x_',':'); br = 0; for ii = 1:numel(mod.RFMs) if br==1; break; end for jj = 1:numel(mod.RFMs(ii).Effect) if strcmpi(effect, mod.RFMs(ii).Effect(jj).name) which = [ii jj]; part = mod.RFMs(ii).Effect(jj); br = 1; break; end end end if strcmpi('FullModel',effect) type1 = 'Continuous'; type2 = 'Prediction'; else if isempty(part.dif) %isfield(part,'pieces') && ~isempty(part.pieces) type1 = 'Continuous'; type2 = 'Prediction'; flag = 1; else terms = regexp(effect,'[\*\:]','split'); type1 = 'Categorical'; iscat = []; for ii = 1:numel(terms) if isnumeric(mod.data.(terms{ii})); type1 = 'Continuous'; iscat(ii) = 0; else iscat(ii) = 1; end end type2 = []; if isempty(regexp(effect,'[\*\:]')) type2 = 'MainEffect'; else type2 = 'Interaction'; end end end if strcmpi(type1,'Categorical') && strcmpi(type2,'MainEffect'); figure(gcf); clf; set(gcf,'Name','Raw Data Plot'); ScatterGroups2(y,mod.data.(effect)); % if exist('part','var'); % yres = crtlFor(y,part.tx2);%+mean(y); % figure(gcf+1); clf; set(gcf,'Name','Type III Residualized Plot'); % ScatterGroups2(yres,mod.data.(effect)); % end end if strcmpi(type1,'Categorical') && strcmpi(type2,'Interaction'); figure(gcf); clf; set(gcf,'Name','Raw Data Plot'); F = {}; for ii = 1:numel(terms) tmp = mod.data.(terms{ii}); if isobject(tmp) F(:,ii) = cellstr(tmp); else F(:,ii) = tmp; end end InterPlot2(y,F); % if exist('part','var'); % figure(gcf+1); clf; set(gcf,'Name','Type III Residualized Plot'); % yres = crtlFor(y,part.tx2);%+mean(y); % InterPlot2(yres,F); % end end if strcmpi(type1,'Continuous') && strcmpi(type2,'MainEffect'); figure(gcf); clf; set(gcf,'Name','Raw Data Plot'); ScatterPlot2(mod.data.(effect),y,ones(size(y)),{part.name 'Y'}); % if exist('part','var'); % figure(gcf+1); clf; set(gcf,'Name','Type III Residualized Plot'); % yres = crtlFor(y,part.tx2);%+mean(y); % xres = crtlFor(mod.data.(effect),part.tx2);%+mean(y); % ScatterPlot2(xres,yres,ones(size(y)),{part.name 'Y'}); % end end if strcmpi(type1,'Continuous') && strcmpi(type2,'Interaction'); eff = effect; i1 = find(iscat==1); F = []; Levs = []; for ii = 1:numel(i1); F{ii} = makedummy(mod.data.(terms{i1(ii)}),0); tmp = unique(mod.data.(terms{i1(ii)}),'stable'); if isobject(tmp); tmp = cellstr(tmp); end Levs{ii} = tmp; eff = regexprep(eff,[terms{i1(ii)} ':'],''); end if ~isempty(F) F = FactorCross(F); L = LabelCross(Levs); G = cell(size(F,1),1); for ii = 1:size(F,2); G(find(F(:,ii)==1)) = L(ii); end else G = ones(size(y)); end i1 = find(iscat==0); x = 1; xlab = []; for ii = 1:numel(i1); x = x.*demean(mod.data.(terms{i1(ii)})); xlab = [xlab terms{i1(ii)} '*']; end xlab = xlab(1:end-1); figure(gcf); clf; set(gcf,'Name','Raw Data Plot'); ScatterPlot2(x,y,G,{xlab 'Y'}); % if exist('part','var') && ~isempty(part); % figure(gcf+1); clf; set(gcf,'Name','Type III Residualized Plot'); % yres = crtlFor(y,part.tx2); % xres = crtlFor(x,part.tx2); % ScatterPlot2(xres,yres,G,{xlab 'Y'}); % end end %%% Always plot the predicted data, this will always work and will always %%% be accurate % if strcmpi(type1,'Continuous') && strcmpi(type2,'Prediction'); % if ~isempty(contains('aschultz',{UserTime})); keyboard; end tx1 = part.tx1; tx2 = part.tx2; if isempty(tx2); tx2 = eye(size(tx1,1)); end warning off nm = tx1-(tx2*(tx2\tx1)); nm(nm>-1e-12 & nm<1e-12)=0; warning on yy = crtlFor(y,tx2); xx = nm*(pinv(nm)*yy); i1 = find(xx~=0); %i1 = 1:size(xx,1); if std(xx)~=0 figure; clf; set(gcf,'Name','Predicted vs. Observed'); ScatterPlot2(xx(i1),yy(i1),ones(numel(i1),1),{part.name 'Y'}); xlabel('Predicted'); ylabel('Observed'); end % end if flag %% Try plotting the post-hoc contrast if numel(regexp(effect,'&','split'))>1 warning('Not sure how to display a raw data plot for this contrast'); return end [con ind tr] = ParseEffect(effect,mod.X,mod.data); if all(all(con~=0)) groups = regexp(effect,'#','split'); xx = []; yy = []; gg = []; g = cell(numel(ind),1); for ii = 1:size(con,2); yy = [yy; y(ind)]; xx = [xx; con(ind,ii)]; g(:) = groups(ii); gg = [gg; g]; end figure(gcf+1); clf; set(gcf,'Name','Post-Hoc Raw Data'); ScatterPlot2(xx,yy,gg,{'' ''}); return else groups = regexp(effect,'#','split'); if numel(groups)<size(con,2); groups = cellstr(unique(ds.(effect))); end yy = y(ind); tc = (con(ind,:)~=0)*(1:size(con,2))'; gg = cell(numel(tc),1); for ii = unique(tc)' gg(tc==ii)=groups(ii); end end figure(gcf+1); clf; set(gcf,'Name','Post-Hoc Raw Data'); if all(all(con==0 | con==1)) ScatterGroups(yy,tc,groups); else ScatterPlot2(sum(con(ind,:),2),yy,gg,{'' ''}); end end end function [con, indices, track1] = ParseEffect(contrast,X,data) cond4 = []; extra = []; indices = []; flag = []; step1 = regexprep(contrast,' ', ''); step2 = regexp(step1,'&','split'); for mm = 1:numel(step2); step3 = regexp(step2{mm},'#','split'); cond3 = []; track1 = {}; track2 = {}; for jj = 1:numel(step3) cond2 = []; XD = []; step5 = regexp(step3{jj},'\|','split'); cond = []; for kk = 1:numel(step5) step6 = regexp(step5{kk},'\$','split'); track1(end+1,1:2) = step6; track2{end+1,1} = step5{kk}; var = data.(step6{1}); if isnumeric(var) cond = [cond demean(var)]; flag(kk) = 0; XD{end+1}=1:numel(var); else flag(kk) = 1; if iscell(var) tmp = zeros(numel(var),1); i1 = strmatch(var,step6{2}); tmp(i1)=1; else if numel(step6)==1 tmp = makedummy(data.(step6{1})); XD{end+1}=1:size(tmp,1); else tmp = data.(step6{1})==step6{2}; XD{end+1} = find(data.(step6{1})==step6{2}); end end cond = [cond tmp]; end end if any(flag) if numel(step5)==1 cond2 = [cond2 cond]; else cond2 = [cond2 prod(cond,2)]; end else cond2 = [cond2 cond]; end indices{end+1} = intersections(XD); if all(flag) if numel(step5)==1 cond3 = [cond3 cond2]; else cond3 = [cond3 sum(cond2,2)>0]; end else cond3 = [cond3 cond2]; end end cond4 = [cond4 cond3]; if ~isempty(contains('#',step2(mm))) extra = [extra mean(cond3,2)]; end indices = unions(indices); end con = cond4; end
github
scanUCLA/MRtools_Hoffman2-master
FIVE.m
.m
MRtools_Hoffman2-master/Visualization/FIVE.m
173,424
utf_8
8e55f8351b753a9d7d75312cc66a9de9
function [Obj VOI peak] = FIVE(inputImage,linkHands) %%% This is an image viewing and plotting utility. Just launch it with %%% "FIVE" at the command line. There are a great many features in %%% this viewer, and you can learn all about them at: %%% http://nmr.mgh.harvard.edu/harvardagingbrain/People/AaronSchultz/Aarons_Scripts.html %%% %%% For launching FIVE you can do one of the following: %%% FIVE; %% Launch FIVE and then load images %%% FIVE({'OverLay1.nii' 'Overlay2.img'}); %% This will launch FIVE with the specified overlays. %%% FIVE({{'Underlay.nii'}}); %% this will launch FIVE with the specified underlay image %%% FIVE({{'Underlay.nii'} {'OverLay1.nii' 'Overlay2.img'}}); %% This will launch FIVE with the specified underlay and load up the specified overlays. %%% %%% Ignore the linkHands input. This is for specialized call back functions. %%% %%% Some FIVE features require additinal packages, for instance get %%% peaks requires Donald McLaren's peak_nii package, and the VOI plotting %%% options will require that the analysis be done with GLM_Flex. %%% %%% Written by Aaron P. Schultz - [email protected] %%% %%% Copyright (C) 2011, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. %%% %%% system(['sh run_FIVE.sh /usr/pubsw/common/matlab/8.0/']); % Update the colormaps, and colormapping system. depth = 256; [trash, cmaps] = colmap('jet',depth); hand = []; links = []; origDat = []; contrasts = []; DM = []; plotGo = 0; Flist = []; mniLims = []; Des = []; DataHeaders = []; Outliers = []; lastItem = []; tabHand = []; % global Obj; Obj = []; VOI = []; peak = []; modelType = []; CachedClusterLoc = []; ConExp = 0; ConLayer = []; ConHeader = []; ssConExp = 0; ssConLayer = []; ssConHeader = []; ssData = []; clickFlag = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Initialize the underlay MH = spm_vol([fileparts(which('spm')) '/canonical/single_subj_T1.nii']); %% template underlay all image data is mapped to this orientation if nargin > 0 try if iscell(inputImage{1}); [a b c] = fileparts(inputImage{1}{1}); if strcmpi('.mgz',c) m = MRIread(inputImage{1}{1}); m.descrip = []; MRIwrite(m,[a b '.nii'],'float'); inputImage{1}{1} = [a b '.nii']; %hh.fname = [m.fspec(1:end-3) 'nii']; %hh.dim = m.volsize; %hh.mat = m.vox2ras1; %hh.pinfo = [1;0;352]; %hh.dt = [16 0]; %hh.n = [1 1]; %hh.descrip = ['MGZ Volume']; %hh.private = []; end h = spm_vol(inputImage{1}{1}); [I mmm] = SliceAndDice3(h,MH,[],[],[3 NaN],[]); h.dim = size(I); h.mat = mmm; else [I h] = openIMG(which('defaultUnderlay.nii')); end catch [I h] = openIMG(which('defaultUnderlay.nii')); end else [I h] = openIMG(which('defaultUnderlay.nii')); end Obj = initializeUnderlay(I,h); movego = 0; loc = [0 0 0]; mc = round([loc 1] * inv(Obj(1).h.mat)'); Obj(1).point = round([loc 1] * inv(Obj(1).h.mat)'); Obj(1).lastpoint = [round(size(Obj(1).I)/2) 1]-1; Obj(1).Range = [min(Obj(1).I(:)) max(Obj(1).I(:)) max(Obj(1).I(:))-min(Obj(1).I(:))]; Obj(1).FOV = sort([ [1 1 1 1]*Obj(1).h.mat'; [Obj(1).axLims 1]*Obj(1).h.mat']); Obj(1).col = 1; if any((size(Obj(1).I) - Obj(1).point(1:3))<0); Obj(1).point = [round(size(Obj(1).I)/2) 1]; tmp = Obj(1).point*Obj(1).h.mat'; loc = tmp(1:3); end % if ~isempty(contains('aschultz',{UserTime})); keyboard; end setupFrames(1,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Create the figure window height = []; width = []; rat = []; ax1 = []; ax2 = []; ax3 = []; ax4 = []; con = []; menu = []; hcmenu = []; item = []; setupFigure; Obj(1).con = con; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Setup the figure menus paramenu1 = []; paramenu2 = []; paramenu3 = []; paramenu4 = []; S = []; setupParamMenu; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Read in a label atlas RNH = spm_vol([which('aal_MNI_V4.img')]); [RNI Rxyz] = spm_read_vols(RNH); RNames = load('aal_MNI_V4_List.mat'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Draw Underlay ch = []; drawFresh(ax1,1); drawFresh(ax2,2); drawFresh(ax3,3); Obj(1).hand = hand; for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Plot CrossHairs [ch(1,1), ch(1,2)] = crossHairs(ax1,[0 0]); [ch(2,1), ch(2,2)] = crossHairs(ax2,[0 0]); [ch(3,1), ch(3,2)] = crossHairs(ax3,[0 0]); Obj(1).ch = ch; set(ch, 'uicontextmenu',hcmenu); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Link CrossHair Positions hListener1 = addlistener(ch(1,1),'XData','PostSet',@AutoUpdate); hListener2 = addlistener(ch(2,1),'XData','PostSet',@AutoUpdate); hListener3 = addlistener(ch(1,2),'YData','PostSet',@AutoUpdate); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Synchronize Views if requested if nargin>1 && ~isempty(linkHands) links{end+1}=linkprop([ch(1,1),linkHands(1,1)],'XData'); links{end+1}=linkprop([ch(1,2),linkHands(1,2)],'YData'); links{end+1}=linkprop([ch(2,1),linkHands(2,1)],'XData'); links{end+1}=linkprop([ch(2,2),linkHands(2,2)],'YData'); links{end+1}=linkprop([ch(3,1),linkHands(3,1)],'XData'); links{end+1}=linkprop([ch(3,2),linkHands(3,2)],'YData'); set(gcf,'UserData',links); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Open Prespecified Overlays Count = 2; if nargin > 0; % if isa(inputImage,'uint8') % [stuff ras] = ReadFileFromBlob(bin); % else try if iscell(inputImage{1}) if length(inputImage)>1 openOverlay(inputImage{2}); end else openOverlay(inputImage); end catch openOverlay(inputImage); end % end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% yy = Obj(1).clim(1):(Obj(1).clim(2)-Obj(1).clim(1))/255:Obj(1).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(1).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Make Figure Visible set(findobj(gcf,'Fontsize', 10),'fontsize',12); shg set(findobj(gcf,'Fontsize', 12),'fontsize',13); shg set(pane,'Visible','on'); %% function AutoUpdate(varargin) vn = get(con(21,1),'Value'); y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); xyz = [x(1) y(1) z(1)]; xyz((mniLims(1,:)-xyz)>0) = mniLims(1,(mniLims(1,:)-xyz)>0); xyz((mniLims(2,:)-xyz)<0) = mniLims(2,(mniLims(2,:)-xyz)<0); x = xyz(1); y = xyz(2); z = xyz(3); for ii = 1:length(Obj) Obj(ii).point = ceil([x y z 1] * inv(Obj(ii).h.mat)'); Obj(ii).point(Obj(ii).point(1:3)<1) = 1; ind = find((Obj(ii).axLims-Obj(ii).point(1:3))<0); Obj(ii).point(ind) = Obj(ii).axLims(ind); if ii == 1; p = ceil([x y z 1] * inv(RNH.mat)'); try nm = RNames.ROI(RNI(p(1),p(2),p(3))); set(paramenu1(2),'Label',nm.Nom_L); catch set(paramenu1(2),'Label','undefined'); end end end setupFrames(1:length(Obj),0); updateGraphics([1 2 3],0); set(con(15,1),'String',num2str(round([x y z]))); mc = round([x y z 1] * inv(Obj(get(con(21,1),'Value')).h.mat)'); vn = get(con(21,1),'Value'); try set(con(22,1),'String',num2str(Obj(get(con(21,1),'Value')).I(mc(1),mc(2),mc(3)))); catch set(con(22,1),'String','NaN'); end shg end function goTo(varargin) if varargin{1}==con(15,1); cl = str2num(get(con(15,1),'String')); set(ch(1,1), 'XData', [cl(2) cl(2)]); set(ch(1,2), 'YData', [cl(3) cl(3)]); set(ch(2,1), 'XData', [cl(1) cl(1)]); set(ch(2,2), 'YData', [cl(3) cl(3)]); set(ch(3,1), 'XData', [cl(1) cl(1)]); set(ch(3,2), 'YData', [cl(2) cl(2)]); end end function buttonUp(varargin) movego = 0; end function buttonDown(varargin) %get(gcf,'SelectionType') if strcmpi(get(gcf,'SelectionType'),'normal') || clickFlag==1; movego = 1; co1 = gco; co2 = gca; switch co2 case ax1 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); z = cp(2); set(ch(1,1), 'XData', [y y]); set(ch(1,2), 'YData', [z z]); set(ch(2,2), 'YData', [z z]); set(ch(3,2), 'YData', [y y]); case ax2 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); x = cp(1); z = cp(2); set(ch(2,1), 'XData', [x x]); set(ch(2,2), 'YData', [z z]); set(ch(1,2), 'YData', [z z]); set(ch(3,1), 'XData', [x x]); case ax3 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); x = cp(2); set(ch(3,1), 'XData', [y y]); set(ch(3,2), 'YData', [x x]); set(ch(1,1), 'XData', [x x]); set(ch(2,1), 'XData', [y y]); otherwise end end if strcmpi(get(gcf,'SelectionType'),'extend'); plotVOI(lastItem); end if strcmpi(get(gcf,'SelectionType'),'alt'); if ConExp ~=0 updateConnMap; elseif ssConExp ~= 0; ssUpdateConnMap; end end end function buttonMotion(varargin) if movego == 1; co1 = gco; co2 = gca; switch co2 case ax1 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); z = cp(2); if Obj(1).FOV(1,2)>y; y=Obj(1).FOV(1,2); end; if Obj(1).FOV(2,2)<y; y=Obj(1).FOV(2,2); end; if Obj(1).FOV(1,3)>z; z=Obj(1).FOV(1,3); end; if Obj(1).FOV(2,3)<z; z=Obj(1).FOV(2,3); end; set(ch(1,1), 'XData', [y y]); set(ch(1,2), 'YData', [z z]); set(ch(2,2), 'YData', [z z]); set(ch(3,2), 'YData', [y y]); case ax2 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); x = cp(1); z = cp(2); if Obj(1).FOV(1,1)>x; x=Obj(1).FOV(1,1); end; if Obj(1).FOV(2,1)<x; x=Obj(1).FOV(2,1); end; if Obj(1).FOV(1,3)>z; z=Obj(1).FOV(1,3); end; if Obj(1).FOV(2,3)<z; z=Obj(1).FOV(2,3); end; set(ch(2,1), 'XData', [x x]); set(ch(2,2), 'YData', [z z]); set(ch(1,2), 'YData', [z z]); set(ch(3,1), 'XData', [x x]); case ax3 cp = get(co2, 'CurrentPoint'); cp = round(cp(1,1:2)); y = cp(1); x = cp(2); if Obj(1).FOV(1,1)>x; x=Obj(1).FOV(1,1); end; if Obj(1).FOV(2,1)<x; x=Obj(1).FOV(2,1); end; if Obj(1).FOV(1,2)>y; y=Obj(1).FOV(1,2); end; if Obj(1).FOV(2,2)<y; y=Obj(1).FOV(2,2); end; set(ch(3,1), 'XData', [y y]); set(ch(3,2), 'YData', [x x]); set(ch(1,1), 'XData', [x x]); set(ch(2,1), 'XData', [y y]); otherwise end end end function openOverlay(varargin) if nargin == 0 nnn = spm_select(inf,'image'); else if iscell(varargin{1}) if ~isa(varargin{1}{1},'uint8') nnn = char(varargin{1}); else nnn = {}; for ii = 1:numel(varargin{1}) [mm hh] = ReadFileFromBlob(varargin{1}{ii}); hh.n = [ii 1]; spm_write_vol(hh,mm); nnn{ii,1} = [hh.fname ',' num2str(ii)]; end nnn = char(nnn); end elseif ischar(varargin{1}) nnn = varargin{1}; elseif isa(varargin{1},'uint8') [mm hh] = ReadFileFromBlob(varargin{1}); spm_write_vol(hh,mm); nnn = hh.fname; else nnn = spm_select(inf,'image'); end for kk = 1:size(nnn,1) % if isa(nnn,'uint8') % fid = fopen([pwd '/tmp.nii']); % fwrite(fid,nnn,'uint8'); % fclose(fid); % n = [pwd '/tmp.nii']; % % elseif isa(nnn{kk},'uint8') % % fid = fopen(['/tmp' '/tmp.nii'],'w'); % % fwrite(fid,nnn{kk},'uint8'); % % fclose(fid); % % n = ['/tmp' '/tmp.nii']; % else % n = strtrim(nnn(kk,:)); % end n = strtrim(nnn(kk,:)); ind = find(n==filesep); if isempty(ind); nn = n; n2 = n; else nn = n(ind(end)+1:end); if numel(ind)>1 n2 = n(ind(end-1)+1:end); else n2 = n; end end if mean(n==filesep)==0 n = [pwd filesep n]; end hh = spm_vol(n); set(con(21,1),'TooltipString',n) a = world_bb(MH); b = world_bb(hh); tmp = a-b; tmp(1,:) = tmp(1,:)*-1; if hh.dt(1)>=16 intOrd = 3; else intOrd = 0; end if all(tmp(:)>=0) [m mmm] = SliceAndDice3(hh, MH, [], hh,[intOrd NaN],[]); else [m mmm] = SliceAndDice3(hh, MH, [], Obj(1).h,[intOrd NaN],[]); end %[m mmm] = SliceAndDice3(hh,MH,[],Obj(1).h,[0 NaN],[]); hh.dim = size(m); hh.mat = mmm; Obj(Count).Name = n2; Obj(Count).FullPath = n; Obj(Count).DispName = n2; set(gcf,'Name', ['FIVE: ' Obj(Count).DispName]); Obj(Count).h = hh; Obj(Count).I = double(m); set(con(21,1),'String', [get(con(21,1),'String'); n2],'Value',Count); if ~isempty(contains('{T_', {hh.descrip})); tmp = hh.descrip; i1 = find(tmp=='['); i2 = find(tmp==']'); Obj(Count).DF = str2num(tmp(i1+1:i2-1)); th = spm_invTcdf(1-.001,Obj(Count).DF); Obj(Count).Thresh = [th ceil(max(m(:))*1000)/1000]; Obj(Count).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).PVal = .001; Obj(Count).col = 2; Obj(Count).Trans = 1; set(con(4),'String',[num2str(th) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String',num2str(Obj(Count).DF)); set(con(9),'String','++0.001'); elseif ~isempty(contains('{F_', {hh.descrip})) tmp = hh.descrip; i1 = find(tmp=='['); i2 = find(tmp==']'); t1 = regexp(tmp(i1(1)+1:i2(1)-1),',','split'); df(1) = str2num(t1{1}); df(2) = str2num(t1{2}); Obj(Count).DF = df; th = spm_invFcdf(1-.001,df(1), df(2)); Obj(Count).Thresh = [th ceil(max(m(:))*1000)/1000]; Obj(Count).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).PVal = .001; Obj(Count).col = 2; Obj(Count).Trans = 1; set(con(4),'String',[num2str(th) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String',num2str(Obj(Count).DF)); set(con(9),'String','++0.001'); else set(con(4),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String','NaN'); set(con(9),'String','NaN'); Obj(Count).DF = NaN; Obj(Count).PVal = NaN; Obj(Count).Thresh = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(Count).col = 2; Obj(Count).Trans = 1; end set(con(23),'String','0'); Obj(Count).ClusterThresh = 0; Obj(Count).Exclude = []; Obj(Count).MaskInd = []; Obj(Count).mask = ones(size(Obj(Count).I),'uint8'); y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); loc = [x(1) y(1) z(1)]; Obj(Count).point = round([loc 1] * inv(Obj(Count).h.mat)'); Obj(Count).lastpoint = (round([loc 1] * inv(Obj(Count).h.mat)'))-1; Obj(Count).axLims = size(Obj(Count).I); setupFrames(Count,0); Obj(Count).pos = axLim(Obj(Count).I,Obj(Count).h); set(con(1,1),'Value',3); drawFresh(ax1,1,Count); drawFresh(ax2,2,Count); drawFresh(ax3,3,Count); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); Obj(Count).Range = [min(Obj(Count).I(:)) max(Obj(Count).I(:)) max(Obj(Count).I(:))-min(Obj(Count).I(:))]; for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end yy = Obj(Count).clim(1):(Obj(Count).clim(2)-Obj(Count).clim(1))/255:Obj(Count).clim(2); axes(ax4); cla try imagesc(yy,1,reshape(colmap(cmaps{Obj(Count).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end Count = Count+1; end end end function UpdateThreshold(varargin) % Get the Volume Number. vn = get(con(21,1),'Value'); % Get the ThresholdParamters a = get(con(4),'String'); c = get(con(8),'String'); % d = get(con(9),'String'); % Parse the Threshold Parameters if isempty(a); a = [-inf inf]; else if contains(',',{a}) ind = find(a==','); a = [str2num(strtrim(a(1:ind-1))) str2num(strtrim(a(ind+1:end)))]; else a = str2num(a); end end if numel(a) == 2 % Correct the Threshold Parameter End Points if a(1)==-inf a(1) = floor(min(Obj(vn).I(:))*1000)/1000; set(con(4),'string',[num2str(a(1)) ', ' num2str(a(2))]) end if a(2)==inf a(2) = ceil(max(Obj(vn).I(:))*1000)/1000; set(con(4),'string',[num2str(a(1)) ', ' num2str(a(2))]) end if a(1)>0 && a(2)>0 if numel(varargin)~=0 && varargin{1} ~= con(9,1) if ~strcmpi(get(con(8,1),'String'),'NA') df = str2num(get(con(8,1),'String')); if isnan(df) p = NaN; else if numel(df) == 1; if isinf(df) p = 1-spm_Ncdf(a(1),0,1); else p = 1-spm_Tcdf(a(1),df); end set(con(9,1),'String',['++' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(a(1),df(1),df(2)); set(con(9,1),'String',['++' num2str(p)]); end end end end end if a(1)<0 && a(2)<0 if numel(varargin)~=0 && varargin{1} ~= con(9,1) if ~strcmpi(get(con(8,1),'String'),'NA') df = str2num(get(con(8,1),'String')); if isnan(df) p = NaN; else if numel(df) == 1; if isinf(df) p = 1-spm_Ncdf(abs(a(2)),0,1); else p = 1-spm_Tcdf(abs(a(2)),df); end set(con(9,1),'String',['--' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(abs(a(2)),df(1),df(2)); set(con(9,1),'String',['--' num2str(p)]); end end end end end Obj(vn).Thresh = a; elseif numel(a) == 4; if a(1)==-inf a(1) = floor(min(Obj(vn).I(:))*1000)/1000; set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); end if a(4)==inf a(4) = ceil(max(Obj(vn).I(:))*1000)/1000; set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); end if numel(Obj(vn).Thresh)==numel(a); check = Obj(vn).Thresh-a; check = find(check~=0); check = setdiff(check,[1 4]); if numel(check)==1; other = setdiff(2:3,check); a(other) = -a(check); set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); end if numel(varargin)>0 && varargin{1} ~= con(9,1) if ~(strcmpi(get(con(8,1),'String'),'NA') || ~isempty(contains('nan', {lower(get(con(8,1),'String'))}))) df = str2num(get(con(8,1),'String')); if numel(df) == 1; if isinf(df) p = (1-spm_Ncdf(abs(a(3)),0,1))*2; else p = (1-spm_Tcdf(abs(a(3)),df))*2; end set(con(9,1),'String',['+-' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(abs(a(3)),df(1),df(2)); set(con(9,1),'String',['+-' num2str(p)]); end end end else if abs(a(2))~=abs(a(3)) ind1 = find(abs(a(2:3))==min(abs(a(2:3)))); ind2 = find(abs(a(2:3))==max(abs(a(2:3)))); a(ind1+1) = -a(ind2+1); set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); tmp = get(con(8,1),'String'); end if numel(varargin)>0 && varargin{1} ~= con(9,1) if ~strcmpi(get(con(8,1),'String'),'nan') df = str2num(get(con(8,1),'String')); if numel(df) == 1; if isinf(df) p = 1-spm_Ncdf(abs(a(2))/2,0,1); else p = 1-spm_Tcdf(abs(a(2))/2,df); end set(con(9,1),'String',['+-' num2str(p)]); end if numel(df) == 2; p = 1-spm_Fcdf(abs(a(2)),df(1),df(2)); set(con(9,1),'String',['+-' num2str(p)]); end end end end Obj(vn).Thresh = a; end loc = str2num(get(con(15),'String')); Obj(vn).point = round([loc 1] * inv(Obj(vn).h.mat)'); if str2num(get(con(23),'String'))~=0 ExtentThresh; end setupFrames(vn,1); updateGraphics({1:3 vn},1); %Obj(vn).pos = axLim(Obj(vn).I,Obj(vn).h); end function UpdatePVal(varargin) nv = get(con(21,1),'Value'); df = get(con(8,1),'String'); try df = str2num(df); if any(isnan(df)); return; end catch set(con(8,1),'String','NA') return end p = get(con(9,1),'String'); if mean(p(1:2)=='++')==1 direc = 1; p = str2num(p(3:end)); elseif mean(p(1:2)=='--')==1 direc = -1; p = str2num(p(3:end)); elseif mean(p(1:2)=='-+')==1 || mean(p(1:2)=='+-')==1 direc = 0; p = str2num(p(3:end))/2; else p = str2num(p); direc = 1; end Obj(nv).PVal = p; Obj(nv).DF = df; if numel(df)==1 if isinf(df) T = spm_invNcdf(1-abs(p),0,1); else T = spm_invTcdf(1-abs(p),df); end elseif numel(df)==2 T = spm_invFcdf(1-abs(p),df(1),df(2)); end curr = get(con(4),'String'); cur = regexp(curr,',','split'); if direc == 1 a = ceil(T*1000)/1000; set(con(4),'String',[num2str(a) ', inf']); %set(con(4),'String',[num2str(a) ',' cur{2}]); UpdateThreshold; elseif direc == -1 a = floor(-T*1000)/1000; set(con(4),'String',['-inf ,' num2str(a)]); %set(con(4),'String',[cur{1} ',' num2str(a)]); UpdateThreshold; elseif direc == 0 a = []; %keyboard; a(1) = floor(min(Obj(nv).I(:))*1000)/1000; a(4) = ceil(max(Obj(nv).I(:))*1000)/1000; a(2:3) = [floor(-T*1000)/1000 ceil(T*1000)/1000]; set(con(4),'String',[num2str(a(1)) ' ' num2str(a(2)) ', ' num2str(a(3)) ' ' num2str(a(4))]); b = a([1 4]); ind1 = find(abs(b)==min(abs(b))); ind2 = find(abs(b)==max(abs(b))); b(ind2) = -b(ind1); UpdateThreshold; end end function changeColorMap(varargin) vn = get(con(21,1),'Value'); map = get(con(1,1),'Value'); if map == 1; set(con(1,1),'Value',Obj(vn).col+1); return; end Obj(vn).col = map-1; setupFrames(vn,1); updateGraphics({[1 2 3] vn},1); %%% Update colorbar. yy = Obj(vn).clim(1):(Obj(vn).clim(2)-Obj(vn).clim(1))/255:Obj(vn).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(vn).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end function adjustTrans(varargin) vn = get(con(21,1),'Value'); if numel(hand{1})==1 return end const = get(varargin{1},'Value'); const = const+.0001; if const>1; const = 1; end; Obj(vn).Trans = const; a = get(hand{1}(vn),'AlphaData'); a(a~=0)=const; set(hand{1}(vn), 'AlphaData', a); a = get(hand{2}(vn),'AlphaData'); a(a~=0)=const; set(hand{2}(vn), 'AlphaData', a); a = get(hand{3}(vn),'AlphaData'); a(a~=0)=const; set(hand{3}(vn), 'AlphaData', a); end function resizeFig(varargin) a = get(gcf,'Position'); hei = (height/width)*a(3); wid = (width/height)*a(4); if hei-a(4) > wid-a(3) a(3) = wid; elseif hei-a(4) < wid-a(3) a(4) = hei; end set(gcf,'Position',a); end function switchObj(varargin) if ~isempty(varargin) if iscell(varargin{1}) nv = varargin{1}{1}; else nv = get(con(21,1),'Value'); end else nv = get(con(21,1),'Value'); end try set(con(21,1),'TooltipString',Obj(nv).FullPath) set(gcf,'Name', ['FIVE: ' Obj(nv).DispName]); catch end set(con(2,1),'Value', Obj(nv).Trans); set(con(23),'String', num2str(Obj(nv).ClusterThresh)); set(con(5,1),'String',[num2str(Obj(nv).clim(1)) ', ' num2str(Obj(nv).clim(2))]); set(con(8,1), 'String',num2str(Obj(nv).DF)); if numel(Obj(nv).Thresh) == 4; set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ' ' num2str(Obj(nv).Thresh(2)) ', ' num2str(Obj(nv).Thresh(3)) ' ' num2str(Obj(nv).Thresh(4))]); set(con(9,1), 'String',['+-' num2str(Obj(nv).PVal*2)]); elseif sum(sign(Obj(nv).Thresh))>0 set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ', ' num2str(Obj(nv).Thresh(2))]); set(con(9,1), 'String',['++' num2str(Obj(nv).PVal)]); elseif sum(sign(Obj(nv).Thresh))<0 set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ', ' num2str(Obj(nv).Thresh(2))]); set(con(9,1), 'String',['--' num2str(Obj(nv).PVal)]); elseif sum(sign(Obj(nv).Thresh))==0 set(con(4,1),'String',[num2str(Obj(nv).Thresh(1)) ', ' num2str(Obj(nv).Thresh(2))]); set(con(9,1), 'String',num2str(Obj(nv).PVal)); end set(con(1,1),'Value', Obj(nv).col+1); yy = Obj(nv).clim(1):(Obj(nv).clim(2)-Obj(nv).clim(1))/255:Obj(nv).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(nv).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); tmp1 = (Obj(nv).clim(2)-Obj(nv).Range(1))/Obj(nv).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(27),'Value', tmp1); tmp1 = (Obj(nv).clim(1)-Obj(nv).Range(1))/Obj(nv).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(28),'Value', tmp1); end function removeVolume(varargin) nv = get(con(21,1),'Value'); if nv == 1; return; end ind = setdiff(1:length(Obj),nv); tmp = get(con(21,1),'String'); set(con(21,1),'String',tmp(ind), 'Value',length(ind)); for ii = 1:length(hand) delete(hand{ii}(nv)); end Obj = Obj(ind); hand{1} = hand{1}(ind); hand{2} = hand{2}(ind); hand{3} = hand{3}(ind); Count = length(ind)+1; switchObj; end function updateGraphics(HandInd,opt) if iscell(HandInd); HandInd2 = HandInd{2}; HandInd = HandInd{1}; else HandInd2 = 1:length(Obj); end for ii = HandInd; if Obj(1).point(ii)==Obj(1).lastpoint(ii) && opt~=1 continue end for jj = HandInd2 set(hand{ii}(jj),'CData',Obj(jj).frame{ii},'AlphaData',~isnan(Obj(jj).frame{ii}(:,:,1))*Obj(jj).Trans); Obj(jj).lastpoint(ii) = Obj(jj).point(ii); end end end function drawFresh(axx,opt,opt2,opt3) if nargin == 2; opt2 = 1:length(Obj); end if nargin < 4 opt3 = 1; end axes(axx); for ii = opt2; if opt == 1; tmp = image(Obj(ii).pos{2}, Obj(ii).pos{3}, Obj(ii).frame{opt}); if opt3; hand{opt}(ii) = tmp; end set(tmp,'AlphaData', ~isnan(Obj(ii).frame{opt}(:,:,1))*Obj(ii).Trans); set(axx, 'YDir','Normal'); set(gca, 'XDir','reverse'); axis equal; end if opt == 2; tmp = image(Obj(ii).pos{1}, Obj(ii).pos{3}, Obj(ii).frame{opt}); if opt3; hand{opt}(ii) = tmp; end set(tmp,'AlphaData', ~isnan(Obj(ii).frame{opt}(:,:,1))*Obj(ii).Trans); set(axx, 'YDir','Normal'); set(gca, 'XDir','Normal');axis equal; end if opt == 3; tmp = image(Obj(ii).pos{1}, Obj(ii).pos{2}, Obj(ii).frame{opt}); if opt3; hand{opt}(ii) = tmp; end set(tmp,'AlphaData', ~isnan(Obj(ii).frame{opt}(:,:,1))*Obj(ii).Trans); set(axx, 'YDir','Normal'); set(gca, 'XDir','Normal');axis equal; end end set(axx,'XTick',[],'YTick',[]); axis equal; axis tight; end function out = axLim(dat,h) t1 = [1 1 1 1; size(dat,1) 1 1 1]*h.mat'; out{1} = t1(1,1):(t1(2,1)-t1(1,1))/(size(dat,1)-1):t1(2,1); t1 = [1 1 1 1; 1 size(dat,2) 1 1]*h.mat'; out{2} = t1(1,2):(t1(2,2)-t1(1,2))/(size(dat,2)-1):t1(2,2); t1 = [1 1 1 1; 1 1 size(dat,3) 1]*h.mat'; out{3} = t1(1,3):(t1(2,3)-t1(1,3))/(size(dat,3)-1):t1(2,3); out{1} = out{1}(end:-1:1); end function [h1 h2] = crossHairs(axx,loc) axes(axx) ax = axis; h1 = plot([loc(1) loc(1)], ax(3:4),'b'); h2 = plot(ax(1:2),[loc(2) loc(2)],'b'); axis equal; axis tight; end function setupFrames(n,opt) for ii = n; ss = Obj(ii).axLims; if Obj(ii).point(1)~=Obj(ii).lastpoint(1) || opt==1 tmp = Obj(ii).I(Obj(ii).point(1),:,:); tmp(Obj(ii).mask(Obj(ii).point(1),:,:)==0)=NaN; if numel(Obj(ii).Thresh)==2 ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(2)); else ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(4) | (tmp>Obj(ii).Thresh(2) & tmp<Obj(ii).Thresh(3))); end tmp(ind) = NaN; tmp(tmp==0)=NaN; tmp = flipdim(rot90(squeeze(tmp),1),1); [cols cm cc] = cmap(tmp, Obj(ii).clim, cmaps{Obj(ii).col}); Obj(ii).frame{1} = reshape(cols,[size(tmp) 3]); end if Obj(ii).point(2)~=Obj(ii).lastpoint(2) || opt==1 tmp = Obj(ii).I(:,Obj(ii).point(2),:); tmp(Obj(ii).mask(:,Obj(ii).point(2),:)==0)=NaN; if numel(Obj(ii).Thresh)==2 ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(2)); else ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(4) | (tmp>Obj(ii).Thresh(2) & tmp<Obj(ii).Thresh(3))); end tmp(ind) = NaN; tmp(tmp==0)=NaN; tmp = flipdim(flipdim(rot90(squeeze(tmp),1),1),2); [cols cm cc] = cmap(tmp, Obj(ii).clim, cmaps{Obj(ii).col}); Obj(ii).frame{2} = reshape(cols,[size(tmp) 3]); end if Obj(ii).point(3)~=Obj(ii).lastpoint(3) || opt==1 tmp = Obj(ii).I(:,:,Obj(ii).point(3)); tmp(Obj(ii).mask(:,:,Obj(ii).point(3))==0)=NaN; if numel(Obj(ii).Thresh)==2 ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(2)); else ind = find(tmp<Obj(ii).Thresh(1) | tmp>Obj(ii).Thresh(4) | (tmp>Obj(ii).Thresh(2) & tmp<Obj(ii).Thresh(3))); end tmp(ind) = NaN; tmp(tmp==0)=NaN; tmp = flipdim(flipdim(rot90(squeeze(tmp),1),1),2); [cols cm cc] = cmap(tmp, Obj(ii).clim, cmaps{Obj(ii).col}); Obj(ii).frame{3} = reshape(cols,[size(tmp) 3]); end end end function toggle(varargin) state = get(varargin{1},'Checked'); if strcmpi(state,'on'); set(varargin{1},'Checked','off'); end if strcmpi(state,'off'); set(varargin{1},'Checked','on'); end end function toggleCrossHairs(varargin) state = get(varargin{1},'Checked'); if strcmpi(state,'on'); set(ch(:),'Visible','off') set(varargin{1},'Checked','off'); end if strcmpi(state,'off'); set(ch(:),'Visible','on') set(varargin{1},'Checked','on'); end end function newFig(varargin) tf = gcf; vn = get(con(21,1),'Value'); if vn == 1 return; end NewObj = FIVE({Obj(vn).FullPath},ch); tmp1 = get(pane,'Position'); tmp2 = tmp1; tmp2(1) = tmp1(1)+tmp1(3); set(gcf,'Position',tmp2); % links{end+1}=linkprop([ch(1,1),NewObj(1).ch(1,1)],'XData'); % links{end+1}=linkprop([ch(1,2),NewObj(1).ch(1,2)],'YData'); % links{end+1}=linkprop([ch(2,1),NewObj(1).ch(2,1)],'XData'); % links{end+1}=linkprop([ch(2,2),NewObj(1).ch(2,2)],'YData'); % links{end+1}=linkprop([ch(3,1),NewObj(1).ch(3,1)],'XData'); % links{end+1}=linkprop([ch(3,2),NewObj(1).ch(3,2)],'YData'); % % set(tf,'UserData',links); set(menu(4),'Enable','on','Checked','on'); figure(tf); removeVolume end function syncViews(varargin) state = get(varargin{1},'Checked'); %%% Remove any existing links this figure has to other figures for ii = 1:length(links); set(links{ii},'Enabled','on'); removeprop(links{ii},'XData'); removeprop(links{ii},'YData'); end links = []; %%% Establish links between this figure and all other FIVE %%% Figures ind = findobj(0,'Type','Figure'); try figs = ind(contains('FIVE',get(ind,'Name'))); catch set(varargin{1},'Checked','off'); set(gcf,'WindowButtonMotionFcn',@buttonMotion); return end figs = setdiff(figs,gcf); for ii = 1:length(figs); hhh = findobj(figs(ii),'Color','b','type','line'); if isempty(hhh) hhh = findobj(figs(ii),'Color','y','type','line'); end links{end+1}=linkprop([ch(1,1),hhh(6)],'XData'); links{end+1}=linkprop([ch(1,2),hhh(5)],'YData'); links{end+1}=linkprop([ch(2,1),hhh(4)],'XData'); links{end+1}=linkprop([ch(2,2),hhh(3)],'YData'); links{end+1}=linkprop([ch(3,1),hhh(2)],'XData'); links{end+1}=linkprop([ch(3,2),hhh(1)],'YData'); end set(gcf,'UserData',links); %%% Set the state of the links if strcmpi(state,'on'); for ii = 1:length(links); set(links{ii},'Enabled','off'); end set(varargin{1},'Checked','off'); set(gcf,'WindowButtonMotionFcn',@buttonMotion); end if strcmpi(state,'off'); for ii = 1:length(links); set(links{ii},'Enabled','on'); end set(varargin{1},'Checked','on'); set(gcf,'WindowButtonMotionFcn',[]); end %%% Propogate changes to other Figure links if they exists. for ii = 1:length(figs) lnk = get(figs(ii),'UserData'); hh = findobj(figs(ii),'Label','Sync Views'); if strcmpi(state,'on'); for jj = 1:length(lnk); set(lnk{jj},'Enabled','off'); end set(hh,'Checked','off'); set(figs(ii),'WindowButtonMotionFcn',@buttonMotion); end if strcmpi(state,'off'); for jj = 1:length(lnk); set(lnk{jj},'Enabled','on'); end set(hh,'Checked','on'); set(figs(ii),'WindowButtonMotionFcn',[]); end end end function changeLayer(varargin) vn = get(con(21,1),'Value'); if vn == 1 return end if varargin{1} == con(12,1) for ii = 1:length(hand) uistack(hand{ii}(vn),'top'); uistack(hand{ii}(vn),'down'); uistack(hand{ii}(vn),'down'); end elseif varargin{1} == con(13,1) for ii = 1:length(hand) uistack(hand{ii}(vn),'bottom'); uistack(hand{ii}(vn),'up'); end end end function axialView(varargin) if numel(varargin{1})==1 || isempty(varargin) out = popup('Which Slices (MNI coordinates)?'); else out = varargin{1}; end if isempty(out) n = 25; coords = min(Obj(2).pos{3}):6:max(Obj(2).pos{3}); c = 0; while numel(coords)>n c = c+1; if mod(c,2)==1; coords = coords(2:end); else coords = coords(1:end-1); end end else n = numel(out); coords = out; end IN = []; for jj = 1:numel(Obj); IN.IM{jj} = Obj(jj).I.*double(Obj(jj).mask); IN.H{jj} = Obj(jj).h; IN.TH{jj} = Obj(jj).Thresh; IN.LIMS{jj} = Obj(jj).clim; IN.TRANS{jj} = Obj(jj).Trans; IN.CM{jj} = cmaps{Obj(jj).col}; end IN.Coords = coords; IN.opt = 1; SliceView(IN); end function coronalView(varargin) if numel(varargin{1})==1 || isempty(varargin) out = popup('Which Slices (MNI coordinates)?'); else out = varargin{1}; end if isempty(out) n = 30; coords = min(Obj(2).pos{2}):6:max(Obj(2).pos{2}); c = 0; while numel(coords)>n c = c+1; if mod(c,2)==1; coords = coords(2:end); else coords = coords(1:end-1); end end else n = numel(out); coords = out; end IN = []; for ii = 1:numel(Obj); IN.IM{ii} = Obj(ii).I.*double(Obj(ii).mask); IN.H{ii} = Obj(ii).h; IN.TH{ii} = Obj(ii).Thresh; IN.LIMS{ii} = Obj(ii).clim; IN.TRANS{ii} = Obj(ii).Trans; IN.CM{ii} = cmaps{Obj(ii).col}; end IN.Coords = coords; IN.opt = 3; SliceView(IN); end function sagittalView(varargin) if numel(varargin{1})==1 || isempty(varargin) out = popup('Which Slices (MNI coordinates)?'); else out = varargin{1}; end if isempty(out) n = 25; coords = min(Obj(2).pos{1}):6:max(Obj(2).pos{1}); c = 0; while numel(coords)>n c = c+1; if mod(c,2)==1; coords = coords(2:end); else coords = coords(1:end-1); end end else n = numel(out); coords = out; end IN = []; for ii = 1:numel(Obj); IN.IM{ii} = Obj(ii).I.*double(Obj(ii).mask); IN.H{ii} = Obj(ii).h; IN.TH{ii} = Obj(ii).Thresh; IN.LIMS{ii} = Obj(ii).clim; IN.TRANS{ii} = Obj(ii).Trans; IN.CM{ii} = cmaps{Obj(ii).col}; end IN.Coords = coords; IN.opt = 2; SliceView(IN); end function allSliceView(varargin) axialView; coronalView; sagittalView; end function surfView(varargin) if numel(Obj)==1 return end for jj = 2:numel(Obj) vn = jj; obj = []; fs = get(findobj(paramenu3(12),'Checked','On'),'Label'); switch fs case '642' obj.fsaverage = 'fsaverage3'; case '2562' obj.fsaverage = 'fsaverage4'; case '10242' obj.fsaverage = 'fsaverage5'; case '40962' obj.fsaverage = 'fsaverage6'; case '163842' obj.fsaverage = 'fsaverage'; otherwise end obj.surface = lower(get(findobj(paramenu3(10),'Checked','On'),'Label')); if strcmpi(get(paramenu3(19),'Checked'),'off') obj.shading = lower(get(findobj(paramenu3(11),'Checked','On'),'Label')); obj.shadingrange = [str2num(get(findobj(paramenu3(16),'Checked','On'),'Label')) str2num(get(findobj(paramenu3(17),'Checked','On'),'Label'))]; else switch obj.surface case 'white' obj.shading = 'curv'; obj.shadingrange = [-2 2]; case 'pi' obj.shading = 'mixed'; obj.shadingrange = [-2 2]; case 'inflated' obj.shading = 'logcurv'; obj.shadingrange = [-.75 .75]; case 'pial' obj.shading = 'curv'; obj.shadingrange = [-2 3]; otherwise obj.shading = 'curv'; obj.shadingrange = [-2 3]; end end obj.input.m = Obj(vn).I.*double(Obj(vn).mask); obj.input.he = Obj(vn).h; if jj ==2 obj.figno = 0; obj.newfig = 1; else obj.figno = gcf; obj.newfig = 0; end obj.colorlims = Obj(vn).clim; cm = get(con(1),'String'); cm = cm{Obj(vn).col+1}; obj.colomap = cm; thresh = Obj(vn).Thresh; if numel(thresh) == 2 [t,i] = min(abs(thresh)); sgn = sign(thresh(i)); t = t*sgn; obj.overlaythresh = t; if sgn==1 obj.direction = '+'; obj.reverse = 0; else obj.direction = '-'; obj.reverse = 0; end if sum(sign(thresh))==0 obj.direction='+'; end else obj.overlaythresh = Obj(vn).Thresh(2:3); obj.reverse = 0; obj.direction = '+'; end obj.mappingfile = []; nn = get(findobj(paramenu3(15),'Checked','On'),'Label'); if strcmpi(nn,'Yes') obj.nearestneighbor=1; else obj.nearestneighbor=0; end %load(which('SperStandard_4p5prox_FS6_SM.mat'),'header') %compH = Obj(vn).h.mat==header.mat; %if mean(compH(:))==1 % obj.mappingfile = which('SperStandard_4p5prox_FS6_SM.mat'); %end option = get(findobj(paramenu3(14),'Checked','On'),'Label'); switch option case 'All' obj.Nsurfs = 4; case 'Both' obj.Nsurfs = 2; case 'Left 1' obj.Nsurfs = -1; case 'Left 2' obj.Nsurfs = 1.9; case 'Right 1' obj.Nsurfs = 1; case 'Right 2' obj.Nsurfs = 2.1; otherwise end [h1 hh1] = surfPlot(obj); Obj(vn).SurfInfo.h1 = h1; Obj(vn).SurfInfo.hh1 = hh1; Obj(vn).SurfInfo.par = obj; set(hh1,'FaceAlpha',Obj(vn).Trans); end end function changeSign(varargin) vn = get(con(21,1),'Value'); if vn == 1 return end Obj(vn).I = Obj(vn).I*-1; t1 = num2str(sort(str2num(get(con(4),'String'))*-1)); for ii = 1:10; t1 = regexprep(t1,' ',' '); end set(con(4),'String',t1); t2 = num2str(sort(str2num(get(con(5),'String'))*-1)); for ii = 1:10; t2 = regexprep(t2,' ',' '); end set(con(5),'String',t2) Obj(vn).Range(1:2) = Obj(vn).Range([2 1])*-1; UpdateThreshold; %setupFrames(vn,1); %updateGraphics({[1 2 3] vn},1); end function setupParamMenu %%% Not Specified % out: output prefix, default is to define using imagefile % SPM: 0 or 1, see above for details % mask: optional to mask your data % df1: numerator degrees of freedom for T/F-test (if 0<thresh<1) % df2: denominator degrees of freedom for F-test (if 0<thresh<1) % thresh: T/F statistic or p-value to threshold the data or 0 paramenu1(1) = uimenu(pane,'Label','Parameters'); %paramenu2(1) = uimenu(paramenu1(1),'Label','Cluster Params'); paramenu3(1) = uimenu(paramenu1(1),'Label','Sign'); paramenu4(1) = uimenu(paramenu3(1),'Label','Pos','Checked','on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(1),'Label','Neg','CallBack',@groupCheck); paramenu3(2) = uimenu(paramenu1(1),'Label','Sphere Radius'); paramenu4(end+1) = uimenu(paramenu3(2),'Label','1mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','2mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','3mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','4mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','5mm','Checked','On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','6mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','7mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','8mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','9mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','10mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','11mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','12mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','13mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','14mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(2),'Label','15mm','CallBack',@groupCheck); paramenu3(3) = uimenu(paramenu1(1), 'Label','Peak Number Limit'); paramenu4(end+1) = uimenu(paramenu3(3),'Label','100','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','200','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','500','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','750','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','1000','Checked','on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','1500','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','2000','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(3),'Label','3000','CallBack',@groupCheck); paramenu3(4) = uimenu(paramenu1(1),'Label','Peak Separation'); paramenu4(end+1) = uimenu(paramenu3(4),'Label','2mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','4mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','6mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','8mm','Checked', 'on','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','10mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','12mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','14mm','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(4),'Label','16mm','CallBack',@groupCheck); paramenu3(5) = uimenu(paramenu1(1),'Label','Neighbor Def.'); paramenu4(end+1) = uimenu(paramenu3(5),'Label','6','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(5),'Label','18','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(5),'Label','26','Checked','on','CallBack',@groupCheck); paramenu3(7) = uimenu(paramenu1(1),'Label','Labeling'); paramenu4(end+1) = uimenu(paramenu3(7),'Label','Use Nearest Label', 'Checked', 'On','CallBack',@groupCheck); % paramenu3(8) = uimenu(paramenu1(1),'Label','Label Map'); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','aal_MNI_V4', 'Checked', 'On','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Nitschke_Lab','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','JHU_tracts','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','JHU_whitematter','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Talairach','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Thalamus','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','MNI','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','HarvardOxford_cortex','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Cerebellum-flirt','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Cerebellum-fnirt','CallBack',@changeLabelMap); % paramenu4(end+1) = uimenu(paramenu3(8),'Label','Juelich','CallBack',@changeLabelMap); paramenu3(8) = uimenu(paramenu1(1),'Label','Label Map'); paramenu4(end+1) = uimenu(paramenu3(8),'Label','aal_MNI_V4', 'Checked', 'On','CallBack',@changeLabelMap); try [labellist]=getLabelMap(); for ll=2:numel(labellist) paramenu4(end+1) = uimenu(paramenu3(8),'Label',labellist{ll},'CallBack',@changeLabelMap); end catch paramenu4(end+1) = uimenu(paramenu3(8),'Label','aal_MNI_V4', 'Checked', 'On','CallBack',@changeLabelMap); warning('Download Peak Nii to enable the use of other atlases'); end paramenu3(18) = uimenu(paramenu1(1),'Label','Corrected Alpha'); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.100', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.050', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.025', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.010', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(18),'Label','0.001', 'Checked', 'Off','CallBack',@groupCheck); paramenu1(2) = uimenu(pane,'Label','Region Name'); %menu(?) = uimenu(menu(1),'Label','Increase FontSize','CallBack',@increaseFont); %menu(?) = uimenu(menu(1),'Label','Decrease FontSize','CallBack',@decreaseFont); paramenu3(9) = uimenu(paramenu1(1),'Label','Surface Options'); paramenu3(19) = uimenu(paramenu3(9),'Label','Use Surface Shading Defaults','Checked', 'On','CallBack',@groupCheck); paramenu3(10) = uimenu(paramenu3(9),'Label','Surface'); paramenu4(end+1) = uimenu(paramenu3(10),'Label','Inflated', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(10),'Label','Pial', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(10),'Label','White', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(10),'Label','PI', 'Checked', 'On','CallBack',@groupCheck); paramenu3(11) = uimenu(paramenu3(9),'Label','Shading'); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Curv', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Sulc', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Thk', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','LogCurv', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(11),'Label','Mixed', 'Checked', 'On','CallBack',@groupCheck); paramenu3(12) = uimenu(paramenu3(9),'Label','N-verts'); paramenu4(end+1) = uimenu(paramenu3(12),'Label','642', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','2562', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','10242', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','40962', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(12),'Label','163842', 'Checked', 'Off','CallBack',@groupCheck); % paramenu3(13) = uimenu(paramenu3(9),'Label','Reverse Map'); % paramenu4(end+1) = uimenu(paramenu3(13),'Label','No', 'Checked', 'On','CallBack',@groupCheck); % paramenu4(end+1) = uimenu(paramenu3(13),'Label','Yes', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(14) = uimenu(paramenu3(9),'Label','N-Surfs'); paramenu4(end+1) = uimenu(paramenu3(14),'Label','All', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Both', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Left 1', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Left 2', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Right 1', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(14),'Label','Right 2', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(15) = uimenu(paramenu3(9),'Label','Nearest Neighbor Only'); paramenu4(end+1) = uimenu(paramenu3(15),'Label','No', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(15),'Label','Yes', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(16) = uimenu(paramenu3(9),'Label','Underlay Min'); paramenu4(end+1) = uimenu(paramenu3(16),'Label',' 0.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-0.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-1.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-1.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-2.0', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-2.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(16),'Label','-3.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu3(17) = uimenu(paramenu3(9),'Label','Underlay Max'); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+0.0', 'Checked','Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+0.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+1.0', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+1.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+2.0', 'Checked', 'On','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+2.5', 'Checked', 'Off','CallBack',@groupCheck); paramenu4(end+1) = uimenu(paramenu3(17),'Label','+3.0', 'Checked', 'Off','CallBack',@groupCheck); end function setupFigure tss = Obj(1).axLims; im = spm_imatrix(Obj(1).h.mat); %tmp = [1 1 1]; tmp = abs(im(7:9)); tss = tss.*tmp; height = tss(2)+tss(3); width = tss(1)+tss(2); rat = height/width; ff = get(0,'ScreenSize'); if ff(4)>800 pro = 3.25; else pro = 2.5; end %[junk user] = UserTime; if strcmp(user,'aschultz'); keyboard; end ss = get(0,'ScreenSize'); if (ss(3)/ss(4))>2 ss(3)=ss(3)/2; end op = floor([50 ss(4)-75-((ss(3)/pro)*rat) ss(3)/pro (ss(3)/pro)*rat]); pane = figure('Visible','off'); set(gcf, 'Position', op,'toolbar','none', 'Name', 'FIVE','Visible','off'); set(gcf, 'WindowButtonUpFcn', @buttonUp); set(gcf, 'WindowButtonDownFcn', @buttonDown); set(gcf, 'WindowButtonMotionFcn', @buttonMotion); set(gcf, 'ResizeFcn', @resizeFig); hcmenu = uicontextmenu; set(hcmenu,'CallBack','movego = 0;'); item = []; wid(1) = tss(2)/width; hei(1) = tss(3)/height; wid(2) = tss(1)/width; hei(2) = tss(3)/height; wid(3) = tss(1)/width; hei(3) = tss(2)/height; ax1 = axes; set(ax1,'Color','k','Position',[wid(2) hei(3) wid(1) hei(1)],'XTick',[],'YTick',[],'YColor','k','XColor','k'); hold on; colormap(gray(256)); ax2 = axes; set(ax2,'Color','k','Position',[0 hei(3) wid(2) hei(2)],'XTick',[],'YTick',[],'YColor','k','XColor','k'); hold on; colormap(gray(256)); ax3 = axes; set(ax3,'Color','k','Position',[0 0 wid(3) hei(3)],'XTick',[],'YTick',[],'YColor','k','XColor','k'); hold on; colormap(gray(256)); ax4 = axes; set(ax4,'Color','w','Position',[wid(2) 0 .04 hei(3)*.99],'XTick',[],'YAxisLocation','right','YTick',[]); %,'YColor','k','XColor','k' set(gcf,'WindowKeyPressFcn', @keyMove); set(gcf,'WindowScrollWheelFcn',@scrollMove); set(gcf,'WindowKeyReleaseFcn',@keyHandler); %st = wid(2)+.01+.04+.03; st = wid(2)+.125; len1 = (1-st)-.01; len2 = len1/2; len3 = len1/3; len4 = len1/4; inc = (hei(3))/11; inc2 = .75*inc; % [wid(2)+.045 0 .025 hei(3)*.9] % [wid(2)+.070 0 .025 hei(3)*.9] % [wid(2)+.095 0 .025 hei(3)*.9] val = (Obj(1).Range(2)-Obj(1).Range(1))/Obj(1).Range(3); con(27,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.070 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); val = (Obj(1).Range(1)-Obj(1).Range(1))/Obj(1).Range(3); con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); %con(29,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',0,'CallBack', @adjustUnderlay); con(30,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)+.070 hei(3)*.9 .05 .05]); % wid(2)+.0450 hei(3)*.9 .075 .05] % con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st-.1 (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap'} cmaps(:)'],'CallBack', @changeColorMap); shg %con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap' 'A' 'B' 'C' 'D'}],'CallBack', @changeColorMap); shg con(2,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(23,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len1*.75 (.01+(1*inc)+(0*inc2)) len1*.25 inc],'String','All','CallBack', @applyToAll); con(3,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(2*inc)+(0*inc2) len1 inc2],'String', 'Transparency','fontsize',12); con(4,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateThreshold); con(5,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len2 .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateCLims); con(6,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Thresh','fontsize',12); con(7,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Color Limits','fontsize',12); con(8,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(9,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(23,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@ExtentThresh); con(10,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(4*inc)+(2*inc2) len3 inc2],'String', 'DF','fontsize',12); con(11,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'P-Value','fontsize',12); con(24,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'Extent','fontsize',12); con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',num2str(loc),'CallBack',@goTo); %con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',['0 0 0'],'CallBack',@goTo); con(25,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(4*inc)+(3*inc2) len2/2 inc],'String','FDR','CallBack', @correctThresh); con(26,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+(len2*1.5) .01+(4*inc)+(3*inc2) len2/2 inc],'String','FWE','CallBack', @correctThresh); con(17,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MNI Coord', 'fontsize',12); con(18,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MC Correct','fontsize',12); con(12,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Up'},'CallBack',@changeLayer); con(13,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Down'},'CallBack',@changeLayer); con(21,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(5*inc)+(5*inc2) len1 inc],'String',{'Overlays'},'CallBack',@switchObj); con(22,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)-(len2/2) hei(3)-(inc*1.05) (len2/2) inc]); con(19,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st .01+(6*inc)+(5*inc2) len2 inc],'String','Open Overlay','FontWeight','Bold','CallBack',@openOverlay); con(20,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st+len2 .01+(6*inc)+(5*inc2) len2 inc],'String','Remove Volume', 'FontWeight','Bold','CallBack',@removeVolume); menu(1) = uimenu(pane,'Label','Options'); menu(2) = uimenu(menu(1),'Label','CrossHair Toggle','Checked','on','CallBack', @toggleCrossHairs); menu(43) = uimenu(menu(1),'Label','Reverse Image','CallBack', @changeSign); menu(15) = uimenu(menu(1),'Label','Change Underlay','CallBack', @changeUnderlay); menu(3) = uimenu(menu(1),'Label','Send Overlay To New Fig','CallBack',@newFig); if nargin<2 menu(4) = uimenu(menu(1),'Label','Sync Views','Enable','on','CallBack',@syncViews); else menu(4) = uimenu(menu(1),'Label','Sync Views','Enable','on','Checked','on','CallBack',@syncViews); end menu(16) = uimenu(menu(1),'Label','SliceViews'); menu(6) = uimenu(menu(16),'Label','Axial Slice View','CallBack',@axialView); menu(7) = uimenu(menu(16),'Label','Coronal Slice View','CallBack',@coronalView); menu(8) = uimenu(menu(16),'Label','Sagittal Slice View','CallBack',@sagittalView); menu(9) = uimenu(menu(16),'Label','All Slice View','CallBack',@allSliceView); menu(17) = uimenu(menu(1),'Label','Ploting'); menu(10) = uimenu(menu(17),'Label','Load Plot Data','CallBack',@loadData); menu(13) = uimenu(menu(17),'Label','JointPlot','CallBack',@JointPlot); menu(12) = uimenu(menu(17),'Label','PaperPlot-Vert','CallBack',@PaperFigure_Vert); menu(33) = uimenu(menu(17),'Label','PaperPlot-Horz','CallBack',@PaperFigure_Horz); menu(23) = uimenu(menu(17),'Label','PaperPlot Overlay','Checked','off','CallBack', @toggle); menu(41) = uimenu(menu(17),'Label','Surface Render','Checked','off','CallBack', @surfView); menu(14) = uimenu(menu(1),'Label','Transparent Overlay','CallBack',@TestFunc); menu(11) = uimenu(menu(1),'Label','Get Peak Info','CallBack',@getPeakInfo); menu(25) = uimenu(menu(1),'Label','Resample'); menu(26) = uimenu(menu(25),'Label','.5x.5x.5', 'CallBack', @resampleIm); menu(27) = uimenu(menu(25),'Label','1x1x1' , 'CallBack', @resampleIm); menu(28) = uimenu(menu(25),'Label','2x2x2' , 'CallBack', @resampleIm); menu(29) = uimenu(menu(25),'Label','3x3x3' , 'CallBack', @resampleIm); menu(30) = uimenu(menu(25),'Label','4x4x4' , 'CallBack', @resampleIm); menu(31) = uimenu(menu(25),'Label','5x5x5' , 'CallBack', @resampleIm); menu(32) = uimenu(menu(25),'Label','6x6x6' , 'CallBack', @resampleIm); menu(18) = uimenu(menu(1),'Label','Save Options'); menu(19) = uimenu(menu(18),'Label','Save Thresholded Image','Enable','on','CallBack',@saveImg); menu(20) = uimenu(menu(18),'Label','Save Masked Image','Enable','on','CallBack',@saveImg); menu(21) = uimenu(menu(18),'Label','Save Cluster Image','Enable','on','CallBack',@saveImg); menu(22) = uimenu(menu(18),'Label','Save Cluster Mask','Enable','on','CallBack',@saveImg); menu(34) = uimenu(menu(1),'Label','Mask'); menu(35) = uimenu(menu(34),'Label','Mask In','Enable','on','CallBack',@maskImage); menu(36) = uimenu(menu(34),'Label','Mask Out','Enable','on','CallBack',@maskImage); menu(37) = uimenu(menu(34),'Label','Un-Mask','Enable','on','CallBack',@maskImage); menu(38) = uimenu(menu(1),'Label','Movie Mode','Enable','on','CallBack',@movieMode); menu(39) = uimenu(menu(1),'Label','Conn Explore','Enable','on','CallBack',@initializeConnExplore); menu(40) = uimenu(menu(1),'Label','SS Connectivity','Enable','on','CallBack',@ssConn); item(1) = uimenu(hcmenu, 'Label', 'Go to local max', 'Callback', @gotoMinMax); item(2) = uimenu(hcmenu, 'Label', 'Go to local min', 'Callback', @gotoMinMax); item(3) = uimenu(hcmenu, 'Label', 'Go to global max', 'Callback', @gotoMinMax); item(4) = uimenu(hcmenu, 'Label', 'Go to global min', 'Callback', @gotoMinMax); item(5) = uimenu(hcmenu, 'Label', 'Plot Cluster', 'Callback', @plotVOI); item(6) = uimenu(hcmenu, 'Label', 'Plot Sphere', 'Callback', @plotVOI); item(7) = uimenu(hcmenu, 'Label', 'Plot Voxel', 'Callback', @plotVOI); item(8) = uimenu(hcmenu, 'Label', 'Plot Cached Cluster', 'Callback', @plotVOI); item(9) = uimenu(hcmenu, 'Label', 'Cache Cluster Index', 'Callback', @CachedPlot); %item(8) = uimenu(hcmenu, 'Label', 'RegionName', 'Callback', @regionName); menu(42) = uimenu(menu(1),'Label','Return Obj','Checked','off','CallBack', @returnInfo); %menu(43) = uimenu(menu(1),'Label','Return Obj as Global','Checked','off','CallBack', @returnInfoGlob); Obj(1).ax1 = ax1; Obj(1).ax2 = ax2; Obj(1).ax3 = ax3; Obj(1).ax4 = ax4; Obj(1).con = con; Obj(1).menu = menu; end function returnInfo(varargin) if isstruct(varargin{1}) Obj = varargin{1}; else assignin('base','Obj',Obj); end end function keyHandler(varargin) d = varargin{2}; %disp([char(d.Modifier) ' - ' d.Key]); if strcmpi('shift',d.Modifier) switch d.Key case 'o' maskImage(menu(36)); case 'i' maskImage(menu(35)); case 'u' maskImage(menu(37)); end else switch d.Key case 'u' updateConnMap; case 's' ssUpdateConnMap; otherwise end end if contains('alt', {varargin{2}.Key})==1 clickFlag = 0; end end function maskImage(varargin) vn = get(con(21,1),'Value'); if varargin{1}==menu(37); Obj(vn).MaskInd = []; Obj(vn).mask(:) = 1; Obj(vn).mask(Obj(vn).Exclude)=0; setupFrames(vn,1); updateGraphics({1:3 vn},1); return end nnn = spm_select(inf,'image','Select a Mask Image:'); th = spm_vol(nnn); for ii = 1:numel(th) m = resizeVol(th(ii),Obj(vn).h); if varargin{1}==menu(35) Obj(vn).MaskInd = [Obj(vn).MaskInd; find(isnan(m))]; end if varargin{1}==menu(36) Obj(vn).MaskInd = [Obj(vn).MaskInd; find(~isnan(m))]; end end Obj(vn).MaskInd = unique(Obj(vn).MaskInd); Obj(vn).mask(:) = 1; Obj(vn).mask(Obj(vn).MaskInd)=0; Obj(vn).mask(Obj(vn).Exclude)=0; setupFrames(vn,1); updateGraphics({1:3 vn},1); end function CachedPlot(varargin) if varargin{1} == item(9) CachedClusterLoc = []; vn = get(con(21,1),'Value'); CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); lastItem = item(5); adir = [fileparts(Obj(vn).FullPath) filesep]; %%% Using the diplayed image get the matrix vector indices %%% for the selected cluster mni = str2num(get(con(15),'string')); if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end thresh = Obj(vn).Thresh; if numel(thresh)==2 ind = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L = []; [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',CM); elseif numel(thresh)==4 ind1 = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L1 = []; [L1(:,1) L1(:,2) L1(:,3)] = ind2sub(Obj(vn).h.dim,ind1); A1 = spm_clusters2(L1(:,1:3)',CM); ind2 = find(tmpI<=thresh(4) & tmpI>=thresh(3)); L2 = []; [L2(:,1) L2(:,2) L2(:,3)] = ind2sub(Obj(vn).h.dim,ind2); A2 = spm_clusters2(L2(:,1:3)',CM); L = [L1; L2]; A = [A1 A2+max(A1)]; ind = [ind1; ind2]; end L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); CachedClusterLoc.index = ind3; CachedClusterLoc.mat = Obj(vn).h.mat; end end function PaperFigure_Vert(varargin) %%% Figure width is off ss2 = get(gcf,'position'); tss = size(Obj(1).I); tmp = abs(matInfo(Obj(1).h.mat)); tss = tss.*tmp; tot = tss(3)+tss(3)+tss(2); wid(1) = tss(2)/width; hei(1) = tss(3)/tot; wid(2) = tss(1)/width; hei(2) = tss(3)/tot; wid(3) = tss(1)/width; hei(3) = tss(2)/tot; y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); xyz = [x(1) y(1) z(1)]; fg = figure; clf; colormap(gray); set(fg,'color','k') n = numel(Obj)-1; if n==0; return; end if strcmpi(get(menu(23),'Checked'),'off') ww = floor((max(wid)*ss2(3)) * n); else ww = floor((max(wid)*ss2(3)) * 1); n = 1; end hh = floor((sum(tss([3 3 2])./height)*ss2(4))*1); dims = [10 10 ww+((1/8)*ww) hh]; dims(3) = floor(dims(3)); set(fg,'Position',dims); dd = [.1/n (((dims(3)-dims(1))/n)*.1)/((dims(4)-dims(2)))]; for zz = 2:length(Obj) if (zz==2) || strcmpi(get(menu(23),'Checked'),'off') aax1 = axes; set(aax1,'Color','k','Position',[(zz-2)/n sum(hei(1:2)) (1/n)-((1/8)/n) hei(3)],'Xcolor','k','Ycolor','k'); hold on; aax2 = axes; set(aax2,'Color','k','Position',[(zz-2)/n sum(hei(2)) (1/n)-((1/8)/n) hei(1)],'Xcolor','k','Ycolor','k'); hold on; aax3 = axes; set(aax3,'Color','k','Position',[(zz-2)/n 0 (1/n)-((1/8)/n) hei(2)],'Xcolor','k','Ycolor','k'); hold on; aax4 = axes; set(aax4,'Color','k','Position',[((zz-2)/n)+((7/8)/n) 0 (1/8)/n 1],'Xcolor','k','Ycolor','k'); hold on; tr(zz-1) = aax4; drawFresh(aax1,3,1,0); drawFresh(aax2,1,1,0); drawFresh(aax3,2,1,0); end h_in = (zz-2)/(numel(Obj)-1); drawFresh(aax1,3,zz,0); drawFresh(aax2,1,zz,0); drawFresh(aax3,2,zz,0); if strcmpi(get(menu(23),'Checked'),'off') an(zz-1,1) = annotation(gcf,'textbox',[h_in+.005 sum(hei(1:2))+(.88*hei(3)) dd],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(zz-1,2) = annotation(gcf,'textbox',[h_in+.005 sum(hei(2))+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(zz-1,3) = annotation(gcf,'textbox',[h_in+.005 0+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); vn = zz; lim = [min(Obj(vn).clim) max(Obj(vn).clim)]; yy = lim(1):(lim(2)-lim(1))/255:lim(2); axes(aax4); cla cm = colmap(cmaps{Obj(vn).col},256); imagesc(yy',1,reshape(cm,numel(yy),1,3)); axis tight set(aax4,'YDir','Normal','YAxisLocation','left','YTick', unique([1 get(aax4,'YTick')])); set(aax4,'YTickLabel',(round(((min(yy):spm_range(yy)/(numel(get(aax4,'YTick'))-1):max(yy)))*100)/100)); th = moveYaxLabs(aax4,'y'); set(th,'fontsize',get(con(2),'fontsize'),'fontweight','bold'); set(th,'BackgroundColor','k'); shg else if zz == 2 delete(aax4); tr = []; end end end for zz = 1:length(tr) uistack(tr(zz),'top'); end if strcmpi(get(menu(23),'Checked'),'on') h_in = 0; an(1,1) = annotation(gcf,'textbox',[h_in+.005 sum(hei(1:2))+(.88*hei(3)) dd],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(1,2) = annotation(gcf,'textbox',[h_in+.005 sum(hei(2))+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); an(1,3) = annotation(gcf,'textbox',[h_in+.005 0+(.88*hei(2)) dd],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle','EdgeColor','none'); end end function PaperFigure_Horz(varargin) scrn = get(0, 'ScreenSize'); tmp = get(Obj(1).ax1,'position'); wid(1) = tmp(3); hei(1) = tmp(4); tmp = get(Obj(1).ax2,'position'); wid(2) = tmp(3); hei(2) = tmp(4); tmp = get(Obj(1).ax3,'position'); wid(3) = tmp(3); hei(3) = tmp(4); ss2 = get(gcf,'position'); wid = wid*ss2(3); hei = hei*ss2(4); n = numel(Obj)-1; if n==0; return; end %fg = figure(400+gcf); clf; colormap(gray) fg = figure; clf; colormap(gray) set(fg,'color','k') tall = max(hei)./.9; if strcmpi(get(menu(23),'Checked'),'off') hh = tall*n; else hh = tall; n = 1; end dims = [10 scrn(3)-75 sum(wid) hh]; dims = round(dims); set(fg,'Position',dims); wid = wid./sum(wid); y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); xyz = [x(1) y(1) z(1)]; dd = [.1/n .033]; for zz = 2:length(Obj) if (zz==2) || strcmpi(get(menu(23),'Checked'),'off') aax1 = axes; set(aax1,'Color','k','Position',[0 (( n-zz+1)/n)+(.1/n) wid(3) .9/n],'Xcolor','k','Ycolor','k'); hold on; aax2 = axes; set(aax2,'Color','k','Position',[wid(3) (( n-zz+1)/n)+(.1/n) wid(2) .9/n],'Xcolor','k','Ycolor','k'); hold on; aax3 = axes; set(aax3,'Color','k','Position',[sum(wid([2 3])) (( n-zz+1)/n)+(.1/n) wid(1) .9/n],'Xcolor','k','Ycolor','k'); hold on; aax4 = axes; set(aax4,'Color','k','Position',[0 (( n-zz+1)/n) 1 .1/n],'Xcolor','k','Ycolor','k'); hold on; tr(zz-1) = aax4; drawFresh(aax1,3,1,0); drawFresh(aax2,2,1,0); drawFresh(aax3,1,1,0); end h_in = (zz-2)/(numel(Obj)-1); drawFresh(aax1,3,zz,0); drawFresh(aax2,2,zz,0); drawFresh(aax3,1,zz,0); if strcmpi(get(menu(23),'Checked'),'off') an(zz-1,1) = annotation(gcf,'textbox',[0 ((n-zz+1)/n)+(.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(zz-1,2) = annotation(gcf,'textbox',[wid(2) ((n-zz+1)/n)+(.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(zz-1,3) = annotation(gcf,'textbox',[sum(wid([2 3]))+(.04) ((n-zz+1)/n)+(.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); vn = zz; lim = [min(Obj(vn).clim) max(Obj(vn).clim)]; yy = lim(1):(lim(2)-lim(1))/255:lim(2); axes(aax4); cla cm = colmap(cmaps{Obj(vn).col},256); imagesc(1,yy,reshape(cm,1,numel(yy),3)); axis tight %imagesc(1,yy',reshape(cmap{Obj(vn).col,1},1,size(cmap{Obj(vn).col,1},1),3)); axis tight set(aax4,'XDir','Normal','XAxisLocation','top','XTick', unique([1 get(aax4,'XTick')])); set(aax4,'XTickLabel',(round(((min(yy):spm_range(yy)/(numel(get(aax4,'XTick'))-1):max(yy)))*100)/100)); set(aax4,'xcolor','w','fontsize',12,'fontweight','bold') th = moveYaxLabs(aax4,'x'); %set(th,'fontsize',get(con(2),'fontsize'),'fontweight','bold'); set(th,'BackgroundColor','k'); shg else if zz == 2 delete(aax4); tr = []; end end end for zz = 1:length(tr) uistack(tr(zz),'top'); end if strcmpi(get(menu(23),'Checked'),'on') h_in = 0; an(1,1) = annotation(gcf,'textbox',[0 (.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(3)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(1,2) = annotation(gcf,'textbox',[wid(2) (.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(2)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); an(1,3) = annotation(gcf,'textbox',[sum(wid([2 3]))+(.04) (.1/n)+(.8/n) .02 .033],... 'Color','w', 'String',num2str(xyz(1)),'fontsize',18,'fontweight','bold', ... 'HorizontalAlignment','center','VerticalAlignment','middle'); end end function JointPlot(varargin) if length(Obj)>3 disp('This option only works if there are two and only two overlays'); return end % Obj(2).col = 16; % set(con(21,1),'Value',2); % switchObj({2}); % UpdateThreshold; % % Obj(3).col = 14; % set(con(21,1),'Value',3); % switchObj({3}); % UpdateThreshold; %%% tmp = Obj(2).I.*double(Obj(2).mask); if numel(Obj(2).Thresh)==2 ind = find(tmp<Obj(2).Thresh(1) | tmp>Obj(2).Thresh(2)); else ind = find(tmp<Obj(2).Thresh(1) | tmp>Obj(2).Thresh(4) | (tmp>Obj(2).Thresh(2) & tmp<Obj(2).Thresh(3))); end tmp(ind)=NaN; ind1 = find(~isnan(tmp)); %%% tmp = Obj(3).I.*double(Obj(3).mask); if numel(Obj(3).Thresh)==2 ind = find(tmp<Obj(3).Thresh(1) | tmp>Obj(3).Thresh(2)); else ind = find(tmp<Obj(3).Thresh(1) | tmp>Obj(3).Thresh(4) | (tmp>Obj(3).Thresh(2) & tmp<Obj(3).Thresh(3))); end tmp(ind)=NaN; ind2 = find(~isnan(tmp)); both = intersect(ind1,ind2); Obj(4) = Obj(3); Obj(4).Name = 'Overlap.nii'; Obj(4).I(:) = 0; Obj(4).I(both)=1; Obj(4).Thresh = [.5 1]; Obj(4).clim = [.5 1.5]; Obj(4).col = 15; Obj(4).mask = ones(size(Obj(4).I),'uint8'); set(con(21,1),'String', [get(con(21,1),'String'); Obj(4).Name],'Value',4); setupFrames(4,1) drawFresh(ax1,1,4); drawFresh(ax2,2,4); drawFresh(ax3,3,4); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end switchObj; end function gotoMinMax(varargin) movego = 0; vn = get(con(21,1),'Value'); if vn==1 return end if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end if varargin{1} == item(1) currloc = Obj(vn).point(1:3); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==max(tmpI(vi))); whvi = vi(whvi(1)); currvi = vi(15); while currvi ~= whvi currvi = whvi; [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==max(tmpI(vi))); whvi = vi(whvi(1)); end [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); newloc = round([currloc 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg elseif varargin{1} == item(2) currloc = Obj(vn).point(1:3); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==min(tmpI(vi))); whvi = vi(whvi(1)); currvi = vi(15); while currvi ~= whvi currvi = whvi; [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); neigh = neighbors(currloc,Obj(vn).h.dim); vi = sub2ind(Obj(vn).h.dim,neigh(:,1),neigh(:,2),neigh(:,3)); whvi = find(tmpI(vi)==min(tmpI(vi))); whvi = vi(whvi(1)); end [currloc(1) currloc(2) currloc(3)] = ind2sub(Obj(vn).h.dim,whvi); newloc = round([currloc 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg elseif varargin{1} == item(3) %keyboard; i1 = find(tmpI==max(tmpI(:))); [x y z] = ind2sub(Obj(vn).h.dim,i1); if numel(x)>1 disp('There are multiple maxima!'); x = x(1); y = y(1); z = z(1); end newloc = round([x y z 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg elseif varargin{1} == item(4) i1 = find(tmpI==min(tmpI(:))); [x y z] = ind2sub(Obj(vn).h.dim,i1); if numel(x)>1 disp('There are multiple minima!'); x = x(1); y = y(1); z = z(1); end newloc = round([x y z 1]*Obj(vn).h.mat'); set(con(15),'String', num2str(newloc(1:3))); goTo(con(15,1)); shg end movego = 0; end function scrollMove(varargin) if isempty(gco); return end switch gca%get(gco,'Parent') case Obj(1).ax1 switch (varargin{2}.VerticalScrollCount>0) case 1 cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)+1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)-1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) end case Obj(1).ax2 switch (varargin{2}.VerticalScrollCount>0) case 1 cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)+1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)-1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) end case Obj(1).ax3 switch (varargin{2}.VerticalScrollCount>0) case 1 cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)+1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)-1; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) end otherwise return end end function keyMove(varargin) if contains('alt', {varargin{2}.Key})==1 clickFlag = 1; end if strcmpi(varargin{2}.Modifier,'shift'); mult = 5; else mult = 1; end if char(get(gcf,'currentcharacter')) == 't' vn = get(con(21,1),'Value'); state = get(hand{1}(vn),'visible'); if strcmpi(state,'on') set(hand{1}(vn),'visible','off'); set(hand{2}(vn),'visible','off'); set(hand{3}(vn),'visible','off'); else set(hand{1}(vn),'visible','on'); set(hand{2}(vn),'visible','on'); set(hand{3}(vn),'visible','on'); end return end if ~isempty(gco) return; end switch gca case Obj(1).ax1 switch char(get(gcf,'currentcharacter')) case char(28) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(29) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(30) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(31) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise return end case Obj(1).ax2 switch char(get(gcf,'currentcharacter')) case char(28) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(29) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(30) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(31) cl = str2num(get(con(15,1),'String')); cl(3) = cl(3)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise return end case Obj(1).ax3 switch char(get(gcf,'currentcharacter')) case char(28) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(29) cl = str2num(get(con(15,1),'String')); cl(1) = cl(1)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(30) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)+mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) case char(31) cl = str2num(get(con(15,1),'String')); cl(2) = cl(2)-mult; set(con(15,1),'string',num2str(cl)) goTo(con(15,1)) otherwise return end otherwise return end end function groupCheck(varargin) if varargin{1}==paramenu3(19) state = get(varargin{1},'Checked'); if strcmpi(state,'on') set(varargin{1},'Checked','off'); else set(varargin{1},'Checked','on'); end return end swh1 = findobj(get(varargin{1},'Parent'),'Checked','on'); swh2 = findobj(get(varargin{1},'Parent'),'Checked','off'); if swh1 == varargin{1} if strcmpi(get(varargin{1},'Checked'),'on') set(varargin{1},'Checked','off'); else set(varargin{1},'Checked','on'); end else set(swh1,'Checked','off'); set(varargin{1},'Checked','on'); end %if get(varargin{1},'Parent') == paramenu3(8) % get(varargin{1},'Label') % keyboard; % RNH = spm_vol([which('aal_MNI_V4.img')]); % [RNI Rxyz] = spm_read_vols(RNH); % [RNI RNH] = openIMG([which('aal_MNI_V4.img')]); % RNames = load('aal_MNI_V4_List.mat'); %end end function plotVOI(varargin) movego = 0; vn = get(con(21,1),'Value'); if isempty(contrasts) || isempty(DataHeaders); try loadData catch error('No go, no support file found.'); end else try if ~strcmpi(fileparts(Obj(vn).FullPath),Des.OutputDir) try loadData catch error('No go, no support file found.'); end end catch if ~strcmpi(fileparts(Obj(vn).FullPath),Des.swd) try loadData catch error('No go, no support file found.'); end end end end if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end if strcmpi(modelType,'SPM') tmp = Obj(vn).DispName; i1 = find(tmp=='_'); i2 = find(tmp=='.'); tmp = tmp(i1(end)+1:i2(end)-1); spmCon = contrasts(str2num(tmp)); end switch varargin{1} case item(5) %% Cluster CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); lastItem = item(5); adir = [fileparts(Obj(vn).FullPath) filesep]; %%% Using the diplayed image get the matrix vector indices %%% for the selected cluster mni = str2num(get(con(15),'string')); thresh = Obj(vn).Thresh; if numel(thresh)==2 ind = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L = []; [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',CM); elseif numel(thresh)==4 ind1 = find(tmpI<=thresh(2) & tmpI>=thresh(1)); L1 = []; [L1(:,1) L1(:,2) L1(:,3)] = ind2sub(Obj(vn).h.dim,ind1); A1 = spm_clusters2(L1(:,1:3)',CM); ind2 = find(tmpI<=thresh(4) & tmpI>=thresh(3)); L2 = []; [L2(:,1) L2(:,2) L2(:,3)] = ind2sub(Obj(vn).h.dim,ind2); A2 = spm_clusters2(L2(:,1:3)',CM); L = [L1; L2]; A = [A1 A2+max(A1)]; ind = [ind1; ind2]; end L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); %%% Read in an orignal volume try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end th = th(1); %try matLoc = [mni 1]*inv(th(1).mat'); matLoc = matLoc(1:3); %catch % keyboard; %end %%% Covert the display index into the native volume index Q = []; [Q(:,1) Q(:,2) Q(:,3)] = ind2sub(Obj(vn).h.dim,ind3); Q(:,4) = 1; Q = (Q*Obj(vn).h.mat')*inv(th.mat'); Q = unique(round(Q),'rows'); i1 = unique([find(Q(:,1)<=0 | Q(:,1)>th.dim(1)); find(Q(:,2)<=0 | Q(:,2)>th.dim(2)); find(Q(:,3)<=0 | Q(:,3)>th.dim(3))]); i2 = setdiff(1:size(Q,1),i1); Q = Q(i2,:); voxInd = sub2ind(th.dim,Q(:,1),Q(:,2),Q(:,3)); ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end VOI = []; VOI.mniLoc = mni; VOI.matLoc = matLoc; VOI.index = voxInd; VOI.isCluster = 1; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end case item(6) %% Sphere lastItem = item(6); adir = Obj(vn).FullPath; ind = find(adir==filesep); if isempty(ind); adir = []; else adir = adir(1:ind(end)); end try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end mniLoc = str2num(get(con(15),'string')); matLoc = [mniLoc 1]*inv(th(1).mat'); matLoc = matLoc(1:3); rad = get(findobj(paramenu3(2),'Checked','on'),'Label'); rad = str2num(rad(1:end-2)); voxInd = find(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2))<rad); if isempty(ind); voxInd = find(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2))==min(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2)))); end ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end VOI = []; VOI.mniLoc = mniLoc; VOI.matLoc = matLoc; VOI.index = voxInd; VOI.rad = rad; VOI.isCluster = 0; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end case item(7) %% Voxel lastItem = item(7); adir = Obj(vn).FullPath; ind = find(adir==filesep); if isempty(ind); adir = []; else adir = adir(1:ind(end)); end try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end mniLoc = str2num(get(con(15),'string')); matLoc = [mniLoc 1]*inv(th(1).mat'); matLoc = matLoc(1:3); voxInd = find(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2))==min(sqrt(sum((XYZ'-repmat(mniLoc,size(XYZ,2),1)).^2,2)))); ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end matLoc = round(matLoc); VOI = []; VOI.mniLoc = mniLoc; VOI.matLoc = matLoc; VOI.index = voxInd; VOI.rad = 0; VOI.isCluster = 0; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end case item(8) %% Cached Location if ~isfield(CachedClusterLoc,'index'); disp('No Cluster has been Cached'); return end if isempty(CachedClusterLoc.index) disp('No Cluster has been Cached'); return end tmp = CachedClusterLoc.mat-Obj(vn).h.mat; if sum(abs(tmp))>1e-10 disp('The Current Image is a different size than the one used to Cache the cluster. One image must be resized to the other for this to work'); return; end try th = spm_vol(strtrim(Flist(1,:))); [trash,XYZ] = spm_read_vols(th(1)); clear trash catch th = spm_vol(Obj(vn).FullPath); [trash,XYZ] = spm_read_vols(th(1)); clear trash end ind3 = CachedClusterLoc.index; %mni = []; %matLoc = [] ; %%% Covert the display index into the native volume index Q = []; [Q(:,1) Q(:,2) Q(:,3)] = ind2sub(Obj(vn).h.dim,ind3); Q(:,4) = 1; Q = (Q*Obj(vn).h.mat')*inv(th.mat'); Q = unique(round(Q),'rows'); i1 = unique([find(Q(:,1)<=0 | Q(:,1)>th.dim(1)); find(Q(:,2)<=0 | Q(:,2)>th.dim(2)); find(Q(:,3)<=0 | Q(:,3)>th.dim(3))]); i2 = setdiff(1:size(Q,1),i1); Q = Q(i2,:); voxInd = sub2ind(th.dim,Q(:,1),Q(:,2),Q(:,3)); ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end VOI = []; VOI.mniLoc = 'From Cached Cluster'; VOI.matLoc = []; VOI.index = voxInd; VOI.isCluster = 1; try [x y z] = ind2sub(th.dim,voxInd); dat = zeros(numel(DataHeaders),numel(x)); for zz = 1:numel(DataHeaders); dat(zz,:) = spm_sample_vol(DataHeaders(zz),x,y,z,0); end if isfield(Des,'ZeroDrop') if Des.ZeroDrop == 1 dat(dat==0)=NaN; end end if isfield(Des,'OL') ti1 = intersect(voxInd,Des.OL{2}(:,2)); for zz = 1:numel(ti1); ti2 = find(Des.OL{2}(:,2)==ti1(zz)); ti3 = find(voxInd == ti1(zz)); dat(ti3,Des.OL{2}(ti2,1))=NaN; end end VOI.allData = dat; VOI.data = nanmean(dat,2); catch VOI.allData = []; end otherwise end if ~plotGo assignin('base','VOI',VOI); warning('Plotting options are not available for this contrast'); return; end switch modelType case 'spm' c = spmCon.c; VOI.con = c; VOI.DM = DM; VOI.SPM = Des; assignin('base','VOI',VOI); GLM_Plot_spm(VOI,777+gcf); case 'regular' if isfield(contrasts,'c') && ~isempty(contrasts(wh).c) c = contrasts(wh).c; else try c = getContrastMat(contrasts(wh)); catch assignin('base','VOI',VOI); return end end VOI.con = c; VOI.DM = DM; VOI.F = Des.F; VOI.ConSpec = Des.Cons(wh); assignin('base','VOI',VOI); [yres xres] = GLM_Plot(VOI,777+gcf); VOI.yres = yres; VOI.xres = xres; assignin('base','VOI',VOI); case 'fast' [pr1 pr2 pr3] = fileparts(Obj(vn).FullPath); ind = find(pr2=='_'); effect = pr2(ind(2)+1:end); %figure(555+gcf); clf; figure; clf; [yres xres part] = GLM_Plot_Fast(VOI.data,DM,effect); VOI.effect = effect; VOI.mod = DM; VOI.part = part; VOI.yres = yres; VOI.xres = xres; assignin('base','VOI',VOI); otherwise end movego = 0; end function loadData(varargin) vn = get(con(21,1),'Value'); adir = Obj(vn).FullPath; ind = find(adir==filesep); if isempty(ind); adir = []; else adir = adir(1:ind(end)); end if exist([adir 'I.mat'])>0; %if ~isempty(contains('aschultz',{UserTime})) keyboard; end HH = load([adir 'I.mat']); if exist([adir 'FinalDataSet.nii']) DataHeaders = spm_vol([adir 'FinalDataSet.nii']); disp('Loading FinalDataSet.nii'); tmp = [(DataHeaders.n)]; Flist = [char(DataHeaders.fname) repmat(',',numel(DataHeaders),1) char(num2str(tmp(1:2:end)'))]; plotGo = 1; elseif isfield(HH.I,'Scans'); disp('Reading in original input files'); Flist = char(HH.I.Scans); DataHeaders = spm_vol(Flist); plotGo = 1; else plotGo = 0; end if isfield(HH.I,'OL'); Outliers = HH.I.OL; end if isfield(HH.I,'Cons') contrasts = HH.I.Cons; DM = HH.I.F.XX; modelType = 'regular'; else modelType = 'fast'; DM = HH.I.MOD; end Des = HH.I; nvox = prod(HH.I.v.dim); ns = size(DM,1); elseif exist([adir 'SPM.mat'])>0; modelType = 'spm'; HH = load([adir 'SPM.mat']); contrasts = HH.SPM.xCon; tmp = spm_read_vols(HH.SPM.xY.VY); ss = size(tmp); Des = HH.SPM; origDat = double(reshape(tmp, prod(ss(1:3)),ss(4))'); DM = HH.SPM.xX.X; Flist = char(HH.SPM.xY.P); DataHeaders = HH.SPM.xY.VY; plotGo = 1; else disp('No stat support files were found'); return; end end function applyToAll(varargin) vn = get(con(21,1),'Value'); sett = setdiff(2:length(Obj),vn); for ii = sett %Obj(ii).Thresh = Obj(vn).Thresh; Obj(ii).clim = Obj(vn).clim; Obj(ii).PVal = Obj(vn).PVal; %Obj(ii).DF = Obj(vn).DF; Obj(ii).Trans = Obj(vn).Trans; set(con(21,1),'Value',ii); %AutoUpdate; switchObj; %UpdateThreshold; end set(con(21,1),'Value',vn); switchObj; end function getClusterParams vn = get(con(21,1),'Value'); if vn<2 return end clear S; S.mask = []; S.SPM = 0; if strcmpi(get(paramenu4(1),'Checked'),'on') S.sign = 'pos'; elseif strcmpi(get(paramenu4(2),'Checked'),'on') S.sign = 'neg'; end; if numel(Obj(vn).DF)==1; if any(isnan(Obj(vn).DF)) S.type = 'none'; S.df1 = []; elseif any(isinf(Obj(vn).DF)) S.type = 'Z'; S.df1 = inf; else S.type = 'T'; S.df1 = Obj(vn).DF; end elseif numel(Obj(vn).DF)==2; S.type = 'F'; S.df1 = Obj(vn).DF(1); S.df2 = Obj(vn).DF(2); end if strcmpi(S.type,'none'); if numel(Obj(vn).Thresh)==4; error('Threshold can only contain two terms (one-sided)'); end i1 = find(abs(Obj(vn).Thresh)==min(abs(Obj(vn).Thresh))); S.thresh = Obj(vn).Thresh(i1); if strcmpi(S.sign,'pos'); l = 1; else l = -1;end if sign(S.thresh)~=l error('Direction of peaks (from Parameters-->Sign) does not match sign of the specified threshold.'); end else S.thresh = Obj(vn).PVal; end S.voxlimit = str2num(get(findobj(paramenu3(3),'Checked','on'),'Label')); S.separation = str2num(strtok(get(findobj(paramenu3(4),'Checked','on'),'Label'),'m')); S.conn = str2num(get(findobj(paramenu3(5),'Checked','on'),'Label')); tmp = str2num(get(con(23),'String')); if isempty(tmp); tmp = 0; end S.cluster = tmp; if strcmpi(get(findobj(paramenu3(7),'Label','Use Nearest Label'),'Checked'),'on') S.nearest = 1; else S.nearest = 0; end S.label = get(findobj(paramenu3(8),'Checked','on'),'Label'); %%% New Params % S.UID = []; % S.out = []; % S.df2 = ? th = Obj(vn).h; [a b c] = fileparts(th.fname); %%% Create a mask based on the current masking field. % th.pinfo = [1 0 352]'; % th.dt = [2 0]; % th.fname = [a filesep 'tmpPeakMask.nii']; % spm_write_vol(th,Obj(vn).mask); % S.mask = th.fname; S.exact = 0; % S.sphere = 0; % S.clustersphere=0; S.SV=0; A = load([a filesep 'I.mat']); % S.RESELS = []; %%% Will need to double check this with a repeated measures design. tmp = regexp(b,'_','split'); effect = tmp{3}; et = []; for ii = 1:numel(A.I.MOD.RFMs) for jj = 1:numel(A.I.MOD.RFMs(ii).Effect) if strcmpi(A.I.MOD.RFMs(ii).Effect(jj).name,effect) et = ii; break end end end try if ~isempty(et) S.FWHM = A.I.FWHM{et}; % S.RESELS = spm_resels_vol(Obj(vn).h,S.FWHM)'; end catch end S.threshc = str2num(get(findobj(paramenu3(18),'Checked','on'),'Label')); % S.exactvoxel = []; % S.FIVE = [];` % S.savecorrected.do = 1; % S.savecorrected.type = {'cFWE' 'vFWE' 'vFDR' 'cFDR'}; end function getPeakInfo(varargin) vn = get(con(21,1),'Value'); S = []; getClusterParams; peak = []; % save S.mat S; [peak.voxels, peak.voxelstats, peak.clusterstats, peak.sigthresh, peak.regions, peak.mapparameters, peak.UID] = peak_nii(Obj(vn).FullPath(1:end-2),S); assignin('base','peak',peak); figure(666); clf; %reset(666); %%% Add in some sorting options for the table [a b] = sortrows([cellstr(char(num2str(peak.voxels{1}(:,end)))) peak.regions(:,2)]); tabHand = uitable('Parent',666,... 'ColumnName',{'Cluster Size' 'T/F-Stat' 'X' 'Y' 'Z' 'N_peaks' 'Cluster Num' 'Region Num' 'Region Name'},... 'data', [mat2cell(peak.voxels{1}(b,:),ones(size(peak.voxels{1},1),1), ones(size(peak.voxels{1},2),1)) peak.regions(b,:)],... 'Units','Normalized','Position', [0 0 1 1],... 'ColumnWidth', 'auto', 'RearrangeableColumns','on','CellSelectionCallback',@goToCluster); %set(tabHand, 'uicontextmenu',tableMenu); Out = cell(size(peak.voxels{1},1)+1 ,9); Out(1,:) = {'Cluster Size' 'T/F-Stat' 'X' 'Y' 'Z' 'N_peaks' 'Cluster Num' 'Region Num' 'Region Name'}; % 'Other1' 'Other2' 'Other3' 'Other4' Out(2:end,1:7) = num2cell(peak.voxels{1}(:,1:7)); Out(2:end,8:9) = peak.regions; [a b c] = fileparts(Obj(vn).FullPath); WriteDataToText(Out,[a filesep 'peakinfo.csv'],'w',','); %delete(th.fname); end function goToCluster(varargin) data = get(tabHand,'Data'); row = varargin{2}.Indices(1); mni = [data{row,3:5}]; set(con(15,1),'String',num2str(mni)); goTo(con(15,1)); end function out = initializeUnderlay(M,HH) out.Name = 'Structural Underlay'; out.I = double(M); out.h = HH; out.Thresh = [min(M(:)) max(M(:))]; if ~isempty(contains('defaultUnderlay.nii',{HH.fname})) out.clim = [max(M(:))*.15 max(M(:))*.8]; else out.clim = out.Thresh; end out.PVal = []; out.col = 1; out.pos = axLim(M,HH); out.Exclude = []; out.MaskInd = []; out.mask = ones(size(M),'uint8'); out.Trans = 1; out.mask = ones(size(M),'uint8'); out.Thresh = [min(M(:)) max(M(:))]; out.clim = [min(M(:)) max(M(:))]; out.Range = [out.Thresh(1) out.Thresh(2) diff(out.Thresh) ]; out.axLims = size(M); mniLims = [[min(out.pos{1}) min(out.pos{2}) min(out.pos{3})]; ... [max(out.pos{1}) max(out.pos{2}) max(out.pos{3})]]; end function changeUnderlay(varargin) ufn = spm_select(1,'image','Choose the new underlay'); h = spm_vol(ufn); [I mmm] = SliceAndDice3(h,MH,[],[],[0 NaN],[]); h.dim = size(I); h.mat = mmm; nv = 1; for ii = 1:length(hand) delete(hand{ii}(nv)); end tmp = initializeUnderlay(I,h); flds = fields(tmp); for ii = 1:length(flds) Obj(1).(flds{ii}) = tmp.(flds{ii}); end Obj(1).point = round([loc 1] * inv(Obj(1).h.mat)'); setupFrames(1,1); tss = Obj(1).axLims; tmp = [1 1 1]; tss = tss.*tmp; height = tss(2)+tss(3); width = tss(1)+tss(2); rat = height/width; ff = get(0,'ScreenSize'); if ff(4)>800 pro = 3.25; else pro = 2.5; end ss = get(0,'ScreenSize'); if (ss(3)/ss(4))>2 ss(3)=ss(3)/2; end op = floor([50 ss(4)-75-((ss(3)/pro)*rat) ss(3)/pro (ss(3)/pro)*rat]); set(gcf, 'Position', op); wid(1) = tss(2)/width; hei(1) = tss(3)/height; wid(2) = tss(1)/width; hei(2) = tss(3)/height; wid(3) = tss(1)/width; hei(3) = tss(2)/height; set(ax1,'Color','k','Position',[wid(2) hei(3) wid(1) hei(1)]); hold on; set(ax2,'Color','k','Position',[0 hei(3) wid(2) hei(2)]); hold on; set(ax3,'Color','k','Position',[0 0 wid(3) hei(3)]); hold on; set(ax4,'Color','w','Position',[wid(2) 0 .04 hei(3)]); axis tight; %st = wid(2)+.01+.04+.03; st = wid(2)+.125; len1 = (1-st)-.01; len2 = len1/2; len3 = len1/3; inc = (hei(3))/11; inc2 = .75*inc; val = (Obj(1).Range(2)-Obj(1).Range(1))/Obj(1).Range(3); con(27,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.070 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); val = (Obj(1).Range(1)-Obj(1).Range(1))/Obj(1).Range(3); con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',val,'CallBack', @adjustUnderlay); %con(29,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[wid(2)+.095 0 .025 hei(3)*.9],'Value',0,'CallBack', @adjustUnderlay); con(30,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)+.070 hei(3)*.9 .05 .05]); % wid(2)+.0450 hei(3)*.9 .075 .05] % con(28,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st-.1 (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap'} cmaps(:)'],'CallBack', @changeColorMap); shg %con(1,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(0*inc)+(0*inc2) len1 inc],'String',[{'Colormap' 'A' 'B' 'C' 'D'}],'CallBack', @changeColorMap); shg con(2,1) = uicontrol(pane,'style','slider', 'Units','Normalized','Position',[st (.01+(1*inc)+(0*inc2)) len1*.75 inc],'Value',1,'CallBack', @adjustTrans); con(23,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len1*.75 (.01+(1*inc)+(0*inc2)) len1*.25 inc],'String','All','CallBack', @applyToAll); con(3,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(2*inc)+(0*inc2) len1 inc2],'String', 'Transparency','fontsize',12); con(4,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateThreshold); con(5,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len2 .01+(2*inc)+(1*inc2) len2 inc],'CallBack',@UpdateCLims); con(6,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Thresh','fontsize',12); con(7,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(3*inc)+(1*inc2) len2 inc2],'String', 'Color Limits','fontsize',12); con(8,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(9,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@UpdatePVal); con(23,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st+len3+len3 .01+(3*inc)+(2*inc2) len3 inc],'CallBack',@ExtentThresh); con(10,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(4*inc)+(2*inc2) len3 inc2],'String', 'DF','fontsize',12); con(11,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'P-Value','fontsize',12); con(24,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len3+len3 .01+(4*inc)+(2*inc2) len3 inc2],'String', 'Extent','fontsize',12); con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',num2str(loc),'CallBack',@goTo); %con(15,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[st .01+(4*inc)+(3*inc2) len2 inc],'String',['0 0 0'],'CallBack',@goTo); con(25,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(4*inc)+(3*inc2) len2/2 inc],'String','FDR','CallBack', @correctThresh); con(26,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+(len2*1.5) .01+(4*inc)+(3*inc2) len2/2 inc],'String','FWE','CallBack', @correctThresh); con(17,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MNI Coord', 'fontsize',12); con(18,1) = uicontrol(pane,'style','text', 'Units','Normalized','Position',[st+len2 .01+(5*inc)+(3*inc2) len2 inc2],'String', 'MC Correct','fontsize',12); con(12,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Up'},'CallBack',@changeLayer); con(13,1) = uicontrol(pane,'style','pushbutton','Units','Normalized','Position',[st+len2 .01+(5*inc)+(4*inc2) len2 inc],'String',{'Move Down'},'CallBack',@changeLayer); con(21,1) = uicontrol(pane,'style','popupmenu', 'Units','Normalized','Position',[st .01+(5*inc)+(5*inc2) len1 inc],'String',{'Overlays'},'CallBack',@switchObj); con(22,1) = uicontrol(pane,'style','edit', 'Units','Normalized','Position',[wid(2)-(len2/2) hei(3)-(inc*1.05) (len2/2) inc]); con(19,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st .01+(6*inc)+(5*inc2) len2 inc],'String','Open Overlay','FontWeight','Bold','CallBack',@openOverlay); con(20,1) = uicontrol(pane,'style','PushButton','Units','Normalized','Position',[st+len2 .01+(6*inc)+(5*inc2) len2 inc],'String','Remove Volume', 'FontWeight','Bold','CallBack',@removeVolume); drawFresh(ax1,1,1); axis equal; drawFresh(ax2,2,1); axis equal; drawFresh(ax3,3,1); axis equal; set(ax1,'color','k') set(ax2,'color','k') set(ax3,'color','k') axes(ax1); ax = axis; set(ch(1,1),'YData',ax(3:4)); set(ch(1,2),'XData',ax(1:2)); axes(ax2); ax = axis; set(ch(2,1),'YData',ax(3:4)); set(ch(2,2),'XData',ax(1:2)); axes(ax3); ax = axis; set(ch(3,1),'YData',ax(3:4)); set(ch(3,2),'XData',ax(1:2)); uistack(hand{1}(1),'bottom'); uistack(hand{2}(1),'bottom'); uistack(hand{3}(1),'bottom'); set(con(27),'value',1); set(con(28),'value',0); if get(con(21,1),'Value') == 1 set(con(5),'String', sprintf('%0.3f %0.3f',Obj(1).Thresh(1),Obj(1).Thresh(2))); end end function plotConfig fh = figure(777); clf; reset(777); pop(1) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .95 .9 .05],'String','Choose the plot Type','Fontsize',12); bg = uibuttongroup(fh,'Units','Normalized','position',[.05 .9 .9 .05]); pop(2) = uicontrol(bg,'style','radiobutton','Units','Normalized','position',[ 00 0 .33 1],'String','BoxPlot','Fontsize',12); pop(3) = uicontrol(bg,'style','radiobutton','Units','Normalized','position',[.33 0 .33 1],'String','InteractionPlot','Fontsize',12); pop(4) = uicontrol(bg,'style','radiobutton','Units','Normalized','position',[.66 0 .33 1], 'String', 'ScatterPlot','Fontsize',12); pop(5) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .83 .9 .05],'String','Set the Data Groups','Fontsize',12); pop(6) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .75 .9 .08],'String','{{1:10} {11:20} {etc..}}','Fontsize',12); pop(7) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .68 .9 .05],'String','Specify Design Matirx Columns','Fontsize',12); pop(8) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .60 .9 .08],'String','{{1:10} {11:20} {etc..}}','Fontsize',12); end function ExtentThresh(varargin) %keyboard; %CM = 18;% CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); vn = get(con(21,1),'Value'); ClusterExtent = str2num(get(con(23),'String')); if isempty(ClusterExtent) || ClusterExtent==0; Obj(vn).mask = ones(size(Obj(vn).I),'uint8'); Obj(vn).Exclude = []; Obj(vn).mask(Obj(vn).MaskInd)=0; return end Obj(vn).ClusterThresh = ClusterExtent; if numel(Obj(vn).Thresh)==2 % ind = find(Obj(vn).I<Obj(vn).Thresh(1) | Obj(vn).I>Obj(vn).Thresh(2)); ind = find(Obj(vn).I>Obj(vn).Thresh(1) & Obj(vn).I<Obj(vn).Thresh(2)); else % ind = find(Obj(vn).I<Obj(vn).Thresh(1) | Obj(vn).I>Obj(vn).Thresh(4) | (Obj(vn).I>Obj(vn).Thresh(2) & Obj(vn).I<Obj(vn).Thresh(3))); ind = find( (Obj(vn).I>Obj(vn).Thresh(1) & Obj(vn).I<Obj(vn).Thresh(2)) | (Obj(vn).I>Obj(vn).Thresh(3) & Obj(vn).I<Obj(vn).Thresh(4))); end % ind = setdiff(1:prod(Obj(vn).axLims),ind); ind = ind(:)'; L = []; [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',CM); Exclude = []; list = unique(A); for ii = list i1 = find(A==ii); if numel(i1)<ClusterExtent Exclude = [Exclude ind(i1)]; end end Obj(vn).mask(:) = 1; Obj(vn).Exclude = Exclude; Obj(vn).mask(Exclude)=0; Obj(vn).mask(Obj(vn).MaskInd)=0; setupFrames(vn,1); updateGraphics({1:3 vn},1); end function out = popup(Message) %%% Fix this up later so that multiple messages mean multiple %%% inputs fh = figure(777); clf; %reset(777); pop(1) = uicontrol(fh,'style','text','Units','Normalized','position',[.05 .83 .9 .05],'String',Message,'Fontsize',12); pop(2) = uicontrol(fh,'style','edit','Units','Normalized','position',[.05 .75 .9 .08],'String','','Fontsize',12,'Callback','uiresume'); uiwait eval(['out = [' get(pop(2),'String') '];']); close(gcf); end function TestFunc(varargin) vn = get(con(21,1),'Value'); wh = Count; Obj(wh) = Obj(1); tmpVol = SliceAndDice3(Obj(vn).FullPath,Obj(1).h,Obj(1).h,Obj(1).h,[1 NaN],[]); ind = find(tmpVol>Obj(vn).Thresh(1) & tmpVol<Obj(vn).Thresh(2)); Obj(wh).I(setdiff(1:numel(Obj(wh).I),ind)) = NaN; tmp = Obj(1).CM(:,:,:,1); tmp = round((tmp./max(tmp(:)))*(size(cmap{1,1},1)-1)); nn = zeros(numel(tmp),3)*NaN; ind2 = find(~isnan(tmp)); nn(ind2,:) = cmap{2,1}(tmp(ind2)+1,:); a = zeros(size(Obj(1).CM))*NaN; b = zeros(size(Obj(1).CM))*NaN; c = zeros(size(Obj(1).CM))*NaN; a(ind) = nn(ind,1); b(ind) = nn(ind,2); c(ind) = nn(ind,3); Obj(wh).CM = cat(4,a,b,c); m = Obj(wh).I; n2 = 'TmpImg'; set(con(21,1),'String', [get(con(21,1),'String'); n2],'Value',Count); set(con(4),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(5),'String',[num2str(floor(min(m(:))*1000)/1000) ', ' num2str(ceil(max(m(:))*1000)/1000)]); set(con(8),'String','NaN'); set(con(9),'String','NaN'); Obj(wh).DF = NaN; Obj(wh).PVal = NaN; Obj(wh).Thresh = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(wh).clim = [floor(min(m(:))*1000)/1000 ceil(max(m(:))*1000)/1000]; Obj(wh).col = 2; Obj(wh).Trans = 1; y = get(ch(1,1),'XData'); x = get(ch(2,1),'XData'); z = get(ch(1,2),'YData'); loc = [x(1) y(1) z(1)]; Obj(wh).point = round([loc 1] * inv(Obj(wh).h.mat)'); setupFrames(wh,0); Obj(wh).pos = axLim(Obj(wh).I,Obj(wh).h); tmp = size(Obj(wh).CM); Obj(wh).axLims = tmp(1:3); set(con(1,1),'Value',wh+1); drawFresh(ax1,1,wh); drawFresh(ax2,2,wh); drawFresh(ax3,3,wh); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end Count = Count+1; end function c = getContrastMat(Con) tx = Des.F.XX; if ~isfield(Con,'c') || isempty(Con.c) if iscell(Con.Groups) tc = []; for zz = 1:length(Con.Groups) if size(Con.Groups{zz},1)>1 tmpX = Con.Groups{zz}; else tmpX = tx(:,Con.Groups{zz}); end cc = MakePreCons(tmpX,tx,Des.F.CovarCols); tc(:,zz) = mean(cc,2); end levs = Con.Levs(end:-1:1); if levs == 0 c = tc; else tmp = reshape(tc,[size(tc,1) levs]); tmp = squeeze(tmp); if size(tmp,2)==1 c = tmp; else c = differencer(tmp); if numel(levs)==1 c = c*-1; end end end else [r,c,cc] = MakeContrastMatrix('a',Con.Groups,Con.Levs,tx); end else c = Con.c; c0 = eye(size(txx,2))-(c*pinv(c)); x0 = txx*c0; r = eye(size(x0,1))-(x0*pinv(x0)); end end function saveImg(varargin) %%% Write something in the descip field to describe how the image %%% was made from = varargin{1}; vn = get(con(21,1),'Value'); CM = str2num(get(findobj(paramenu3(5),'Checked','On'),'Label')); switch from case menu(19) disp('Save Thresholded Image'); dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_thresh.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; if ~isempty(Obj(vn).mask); tmp = Obj(vn).I.*double(Obj(vn).mask); else tmp = Obj(vn).I; end if numel(Obj(vn).Thresh)==2 ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(2)); else ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(4) | (tmp>Obj(vn).Thresh(2) & tmp<Obj(vn).Thresh(3))); end tmp(ind)=NaN; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol2(hh2,th); th.fname = fn; th.descrip = []; spm_write_vol(th,N); case menu(20) disp('Save Masked Image'); dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_mask.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; hh.dt = [2 0]; tmp = Obj(vn).I; if numel(Obj(vn).Thresh)==2 ind = find(tmp>Obj(vn).Thresh(1) & tmp<Obj(vn).Thresh(2)); else ind = find((tmp>Obj(vn).Thresh(1) & tmp<Obj(vn).Thresh(2)) | (tmp>Obj(vn).Thresh(3) & tmp<Obj(vn).Thresh(4))); end tmp(:)=0; tmp(ind)=1; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol(hh2,th); th.fname = fn; th.descrip = []; th.dt = [2 0]; spm_write_vol(th,N); case menu(21) disp('Save Cluster Image'); mni = str2num(get(con(15),'string')); tmp = Obj(vn).I; if numel(Obj(vn).Thresh)==2 ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(2)); else ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(4) | (tmp>Obj(vn).Thresh(2) & tmp<Obj(vn).Thresh(3))); end tmp(ind)=NaN; ind = find(~isnan(tmp)); [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',18); L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); tmp(:) = NaN; tmp(ind3) = Obj(vn).I(ind3); dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_cluster.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol2(hh2,th); th.fname = fn; th.descrip = []; spm_write_vol(th,N); case menu(22) disp('Save Cluster Mask'); mni = str2num(get(con(15),'string')); tmp = Obj(vn).I; if numel(Obj(vn).Thresh)==2 ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(2)); else ind = find(tmp<Obj(vn).Thresh(1) | tmp>Obj(vn).Thresh(4) | (tmp>Obj(vn).Thresh(2) & tmp<Obj(vn).Thresh(3))); end tmp(ind)=NaN; ind = find(~isnan(tmp)); [L(:,1) L(:,2) L(:,3)] = ind2sub(Obj(vn).h.dim,ind); A = spm_clusters2(L(:,1:3)',18); L(:,4) = 1; L2 = L*Obj(vn).h.mat'; dist = sqrt(sum((L2(:,1:3)-repmat(mni, size(L,1),1)).^2,2)); if min(dist)>5 disp('No Cluster is selected'); end ind1 = find(dist==min(dist)); ind2 = find(A==A(ind1(1))); ind3 = ind(ind2); tmp(:) = 0; tmp(ind3) = 1; dotI = find(Obj(vn).FullPath=='.'); fn = [Obj(vn).FullPath(1:dotI(end)-1) '_clusterMask.nii']; th = spm_vol(Obj(vn).FullPath); hh = Obj(vn).h; hh.fname = fn; spm_write_vol(hh,tmp); hh2 = spm_vol(fn); N = resizeVol(hh2,th); th.fname = fn; th.descrip = []; th.dt = [2 0]; spm_write_vol(th,N); otherwise end end function resampleIm(varargin) vn = get(con(21,1),'Value'); %keyboard; voxdim = str2num(char(regexp(get(varargin{1},'Label'),'x','split')))'; nnn = Obj(vn).FullPath; hh = spm_vol(nnn); [mm mat] = SliceAndDice3(hh, MH, voxdim, [],[1 0],[]); hh.dim = size(mm); hh.mat = mat; Obj(vn).h = hh; Obj(vn).I = double(mm); Obj(vn).mask = ones(size(mm),'uint8'); Obj(vn).pos = axLim(Obj(vn).I,Obj(vn).h); Obj(vn).axLims = Obj(vn).h.dim; loc = str2num(get(con(15),'String')); Obj(vn).point = round([loc 1] * inv(Obj(vn).h.mat)'); setupFrames(vn,1); for ii = 1:length(hand) delete(hand{ii}(vn)); end drawFresh(ax1,1,vn); drawFresh(ax2,2,vn); drawFresh(ax3,3,vn); uistack(ch(1,1),'top'); uistack(ch(1,2),'top'); uistack(ch(2,1),'top'); uistack(ch(2,2),'top'); uistack(ch(3,1),'top'); uistack(ch(3,2),'top'); for ii = 1:length(hand); set(hand{ii}, 'uicontextmenu',hcmenu); end end function correctThresh(varargin) vn = get(con(21,1),'Value'); if numel(Obj(vn).DF)==1 stat = 'T'; df = [1 Obj(vn).DF]; elseif numel(Obj(vn).DF)==2 stat = 'F'; df = Obj(vn).DF; end if ~isempty(Obj(vn).mask); tmpI = Obj(vn).I.*double(Obj(vn).mask); else tmpI = Obj(vn).I; end ind = find(Obj(vn).Name == '.'); indfilesep = find(Obj(vn).Name == filesep); %DGM Added wind=find(ind>indfilesep); %DGM Added ind=ind(wind);%DGM Added wh = str2num(Obj(vn).Name(ind-4:ind-1)); if isempty(wh); ind = find(Obj(vn).Name==filesep); if isempty(ind); ind=0; end wh = str2num(Obj(vn).Name(ind+1:ind+4)); end if varargin{1}==con(25) %FDR Correction if numel(Obj(vn).Thresh) == 2 ind = find(abs(tmpI)>0); div = 1; if sum(sign(Obj(vn).Thresh))<0 %ind = find(Obj(vn).I<0); t = abs(tmpI(ind)); elseif sum(sign(Obj(vn).Thresh))>0 %ind = find(Obj(vn).I>0); t = abs(tmpI(ind)); end elseif numel(Obj(vn).Thresh) == 4 ind = find(abs(tmpI)>0); t = abs(tmpI(ind)); div = 2; end if strcmpi(stat,'f'); pp = 1-spm_Fcdf(t,df); else pp = (1-spm_Tcdf(t,df(2))).*div; end pp = sort(pp); %keyboard; alpha = str2num(get(findobj(paramenu3(18),'Checked','On'),'Label')); p = pp'; rh = ((1:numel(p))./numel(p)).*alpha; below = p<=rh; in = (find(below==1)); if isempty(in) warning('FDR Correction is not possible for this alpha'); return end %; t = sort(t,'descend'); thresh = t(in(end)); pthresh = p(in(end)); %[FDR_alpha FDR_p FDR_t] = computeFDR('0003_T_TFO_Pos_Corr.nii',114,.05,0) end if varargin{1}==con(26) %% FWE correction using RFT [a b c] = fileparts(Obj(vn).FullPath); try HH = load([a filesep 'I.mat']); %R = HH.I.ReslInfo{HH.I.Cons(wh).ET}; if isfield(HH.I,'Cons') FWHM = HH.I.FWHM{HH.I.Cons(wh).ET}; end if isfield(HH.I,'MOD') ind = find(b=='_'); effect = b(ind(2)+1:end); for ii = 1:numel(HH.I.MOD.RFMs) for jj = 1:numel(HH.I.MOD.RFMs(ii).Effect) if strcmpi(effect,HH.I.MOD.RFMs(ii).Effect(jj).name) ET = ii; end end end FWHM = HH.I.FWHM{ET}; end catch HH = load([a filesep 'SPM.mat']); %R = HH.SPM.xVol.R; FWHM = HH.SPM.xVol.FWHM; end p = str2num(get(findobj(paramenu3(18),'Checked','On'),'Label')); try [msk mh] = openIMG([a filesep 'mask.img']); catch try [msk mh] = openIMG([a filesep 'mask.nii']); catch [msk mh] = openIMG([a filesep 'NN.nii']); mh.fname = 'mask.nii'; spm_write_vol(mh,msk>0); [msk mh] = openIMG([a filesep 'mask.nii']); end end if ~isempty(Obj(vn).mask); msk = Obj(vn).I.*double(Obj(vn).mask); end reselinfo = spm_resels_vol(mh,FWHM)'; if strcmpi(stat,'f'); thresh = spm_uc(p,df,stat,reselinfo,1,numel(find(msk>0))); pthresh = 1-spm_Fcdf(thresh,df); else if numel(Obj(vn).Thresh) == 4 thresh = spm_uc(p/2,df,stat,reselinfo,1,numel(find(msk>0))); pthresh = (1-spm_Tcdf(thresh,df(2))); else thresh = spm_uc(p,df,stat,reselinfo,1,numel(find(msk>0))); pthresh = (1-spm_Tcdf(thresh,df(2))); end end end thresh = round(thresh*1000)/1000; if numel(Obj(vn).Thresh) == 2 if sum(sign(Obj(vn).Thresh))<0 if thresh<Obj(vn).Thresh(1) warning(['No voxels beyond the corrected threshold of ' num2str(-thresh)]); return end Obj(vn).Thresh = [Obj(vn).Thresh(1) -thresh]; Obj(vn).PVal = pthresh; else if thresh>Obj(vn).Thresh(2) warning(['No voxels beyond the corrected threshold of ' num2str(thresh)]); return end Obj(vn).Thresh = [thresh Obj(vn).Thresh(2)]; Obj(vn).PVal = pthresh; end elseif numel(Obj(vn).Thresh) == 4 up = ~(thresh>Obj(vn).Thresh(4)); down = ~(thresh<Obj(vn).Thresh(1)); if ~up && ~down warning(['Nothing Left at this Threshold. Exiting Correction.']); return; end if up && down Obj(vn).Thresh = [Obj(vn).Thresh(1) -thresh thresh Obj(vn).Thresh(4)]; Obj(vn).PVal = pthresh; end if up && ~down warning(['No voxels below the corrected threshold of ' num2str(-thresh)]); Obj(vn).Thresh = [thresh Obj(vn).Thresh(4)]; Obj(vn).PVal = pthresh; end if down && ~up warning(['No voxels above the corrected threshold of ' num2str(thresh)]); Obj(vn).Thresh = [Obj(vn).Thresh(1) -thresh]; Obj(vn).PVal = pthresh; end end ll = []; for zz = 1:numel(Obj(vn).Thresh); ll = [ll num2str(Obj(vn).Thresh(zz)) ' ']; end; ll = ll(1:end-1); set(con(4,1),'String',num2str(ll)); UpdateThreshold(con(4,1)); end function changeLabelMap(varargin) groupCheck(varargin{1}) % fn1 = which([get(varargin{1},'Label') '.img']); % fn2 = which([get(varargin{1},'Label') '.mat']); try [fn1,fn2]=getLabelMap(get(varargin{1},'Label')); catch fn1=[];fn2=[]; end if isempty(fn1) && isempty(fn2) warning(['Label Map ' get(varargin{1},'Label') ' cannot be found. Reverting to aal_MNI_V4']); set(varargin{1},'Checked','off'); set(findobj(gcf,'Label','aal_MNI_V4'),'Checked','on'); return end RNH = spm_vol(fn1); [RNI Rxyz] = spm_read_vols(RNH); RNames = load(fn2); end function h = moveYaxLabs(currAx,wh) if nargin==0 || isempty(currAx) currAx = gca; end if wh == 'y' ax = axis(currAx); y = get(currAx,'YTick'); lab = cellstr(get(currAx,'YTickLabel')); for ii = 1:numel(lab) if lab{ii}(1) ~= '-' lab{ii} = ['+' lab{ii}]; end end adj = range(y)*.015; adj2 = range(ax(1:2))*.5; for ii = 1:numel(lab) if ii==1 h(ii) = text(ax(1)+adj2,y(ii)+adj,lab{ii},'FontName', get(currAx,'FontName'), 'FontSize',get(currAx,'FontSize'),'color','w','HorizontalAlignment','Center'); shg elseif ii==numel(lab) h(ii) = text(ax(1)+adj2,y(ii)-adj,lab{ii},'FontName', get(currAx,'FontName'), 'FontSize',get(currAx,'FontSize'),'color','w','HorizontalAlignment','Center'); shg else h(ii) = text(ax(1)+adj2,y(ii), lab{ii},'FontName', get(currAx,'FontName'), 'FontSize',get(currAx,'FontSize'),'color','w','fontweight','bold','HorizontalAlignment','Center'); shg %p = get(h(ii),'Position'); p(3) = 15; set(h(ii),'Position',p); end end set(gca,'XTick', [],'YTick',[]); elseif wh == 'x' ax = axis(currAx); x = get(currAx,'XTick'); lab = cellstr(get(currAx,'XTickLabel')); for ii = 1:numel(lab) if lab{ii}(1) ~= '-' lab{ii} = ['+' lab{ii}]; end end adj2 = range(ax(3:4))*.5; for ii = 1:numel(lab) if ii==1 h(ii) = text(ax(1)+(.005*adj2), ax(3)+adj2, lab{ii},'FontName', get(gca,'FontName'), 'FontSize',get(gca,'FontSize'),'color','w','HorizontalAlignment','Left'); shg elseif ii==numel(lab) h(ii) = text(ax(2)-(.005*adj2), ax(3)+adj2, lab{ii},'FontName', get(gca,'FontName'), 'FontSize',get(gca,'FontSize'),'color','w','HorizontalAlignment','Right'); shg else h(ii) = text(x(ii)-(.005*adj2), ax(3)+adj2, lab{ii},'FontName', get(gca,'FontName'), 'FontSize',get(gca,'FontSize'),'color','w','fontweight','bold','HorizontalAlignment','Center'); shg end end set(gca,'XTick', [],'YTick',[]); end end function initializeConnExplore(varargin) vn = get(con(21,1),'Value'); if ConExp==1 switchObj(ConLayer) return end fn = ['/autofs/space/schopenhauer_004/users/ConnectivityAtlas/Maps/blank.nii']; openOverlay(fn); ConExp = 1; ConHeader = spm_vol(fn); vn = get(con(21,1),'Value'); ConLayer = vn; %Obj(2).h.mat Obj(vn).Thresh = [-1 1]; Obj(vn).clim = [-1 1]; set(con(4),'String','-1 1'); set(con(5),'String','-1 1'); end function updateConnMap(varargin) if ConExp==0 return end vn = get(con(21,1),'Value'); if vn ~= ConLayer; return end MNI = Obj(1).point*Obj(1).h.mat'; matLoc = round(MNI*inv(ConHeader.mat)'); thisLoc = sub2ind(ConHeader.dim,matLoc(1),matLoc(2),matLoc(3)); fn = ['/autofs/space/schopenhauer_004/users/ConnectivityAtlas/Maps/Vox_' sprintf('%0.6d',thisLoc) '.nii']; if exist(fn)>0 Obj(vn).I = openIMG(fn); %Obj(vn).I = resizeVol2(spm_vol(fn),Obj(vn).h); else Obj(vn).I(:) = NaN; end UpdateThreshold; end function ssConn(varargin) vn = get(con(21,1),'Value'); if ssConExp==1 switchObj(ssConLayer) return end ff = spm_select(inf,'image'); fn = []; for zz = 1:size(ff,1) fn{zz} = (ff(zz,1:end-2)); end openOverlay(ff(1,:)); ssConExp = 1; vn = get(con(21,1),'Value'); ssConHeader = Obj(vn).h; ssConLayer = vn; ssData = []; for zz = 1:numel(fn); pth = fileparts(fn{zz}); % R = []; % fl = [pth '/ExtraRegressors.mat']; % if exist(fl,'file')>0 % load(fl); % [rows,cols] = find(R==1); % else % rows = []; % end th = spm_vol(fn{zz}); % wh = setdiff(1:numel(th), rows); % th = th(wh); dat = zeros(numel(th),prod(Obj(vn).h.dim)); for qq = 1:numel(th) dd = resizeVol2(th(qq),Obj(vn).h); dat(qq,:) = dd(:); end ssData = [ssData; zscore(dat)]; end ssData = zscore(ssData); Obj(vn).I(:) = 0; Obj(vn).Thresh = [-1 1]; Obj(vn).clim = [-1 1]; set(con(4),'String','-1 1'); set(con(5),'String','-1 1'); UpdateThreshold; end function ssUpdateConnMap(varargin) if ssConExp==0 return end vn = get(con(21,1),'Value'); if vn ~= ssConLayer; return end MNI = Obj(1).point*Obj(1).h.mat'; matLoc = round(MNI*inv(ssConHeader.mat)'); thisLoc = sub2ind(ssConHeader.dim,matLoc(1),matLoc(2),matLoc(3)); rad = get(findobj(paramenu3(2),'Checked','on'),'Label'); rad = str2num(rad(1:end-2)); [ml vi] = getMatCoord(ssConHeader,MNI(1:3),rad*2); seed = zscore(nanmean(ssData(:,vi),2)); beta = pinv(seed)*ssData; % keyboard; Obj(vn).I(:) = beta; UpdateThreshold; end function movieMode(varargin) nnn = spm_select(inf,'image'); if size(nnn,1)==1 ind = find(nnn==','); nnn = nnn(1:ind-1); end dh = spm_vol(nnn); for ii = 1:numel(dh) [t1 t2] = SliceAndDice3(dh(ii),MH,[],Obj(1).h,[0 NaN],[]); if ii == 1 dd = nan([size(t1) numel(dh)]); end dd(:,:,:,ii) = t1; end rang = [min(dd(:)) min(dd(:))]; xyz = [20 20 20]; jj = 1; tmp = []; tmp{1} = flipdim(rot90(squeeze(dd(xyz(1),:,:,jj)),1),1); tmp{2} = flipdim(flipdim(rot90(squeeze(dd(:,xyz(2),:,jj)),1),1),2); tmp{3} = flipdim(flipdim(rot90(squeeze(dd(:,:,xyz(3),jj)),1),1),2); % tmp = pcolor(Obj(ii).pos{2}, Obj(ii).pos{3}, Obj(ii).frame{opt}); % if opt3; hand{opt}(ii) = tmp; end % colormap(gray(256)); shading interp; hold on; keyboard; end function adjustUnderlay(varargin) if varargin{1}==con(29) return end vn = get(con(21,1),'Value'); if isempty(Obj(vn).Thresh) Obj(vn).Thresh = [min(Obj(vn).I(:)) max(Obj(vn).I(:))]; Obj(vn).clim = [min(Obj(vn).I(:)) max(Obj(vn).I(:))]; end if ~isfield(Obj(vn),'Range') || isempty(Obj(vn).Range) Obj(vn).Range = [min(Obj(vn).I(:)) max(Obj(vn).I(:)) max(Obj(vn).I(:))-min(Obj(vn).I(:)) ]; end val = get(varargin{1},'Value'); if varargin{1}==con(27) Obj(vn).clim(2) = (val*Obj(vn).Range(3))+Obj(vn).Range(1); %Obj(vn).clim(2) = val*Obj(vn).Thresh(2); end if varargin{1}==con(28) Obj(vn).clim(1) = (val*Obj(vn).Range(3))+Obj(vn).Range(1); %Obj(vn).clim(1) = val*Obj(vn).Thresh(2); end set(con(5),'String',[sprintf('%0.3f %0.3f',Obj(vn).clim(1),Obj(vn).clim(2))]); setupFrames(vn,1); updateGraphics([1 2 3],1); %%%%% yy = Obj(vn).clim(1):(Obj(vn).clim(2)-Obj(vn).clim(1))/255:Obj(vn).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(vn).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end function UpdateCLims(varargin) vn = get(con(21,1),'Value'); b = get(con(5),'String'); if contains(',',{b}) ind = find(b==','); b = [str2num(strtrim(b(1:ind-1))) str2num(strtrim(b(ind+1:end)))]; else b = str2num(b); end if b(1)==-inf b(1) = Obj(vn).Range(1); end if b(2)==inf b(2) = Obj(vn).Range(2); end Obj(vn).clim = b; tmp1 = (Obj(vn).clim(2)-Obj(vn).Range(1))/Obj(vn).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(27),'Value', tmp1); tmp1 = (Obj(vn).clim(1)-Obj(vn).Range(1))/Obj(vn).Range(3); if tmp1>1; tmp1=1; end; if tmp1<0; tmp1=0; end; set(con(28),'Value', tmp1); setupFrames(vn,1); updateGraphics([1 2 3],1); set(con(5),'String', sprintf('%0.3f %0.3f',b(1),b(2))); %%%%%%%%%%%%% yy = Obj(vn).clim(1):(Obj(vn).clim(2)-Obj(vn).clim(1))/255:Obj(vn).clim(2); axes(ax4); cla imagesc(yy,1,reshape(colmap(cmaps{Obj(vn).col},256),256,1,3)); axis tight; set(ax4,'YDir','Normal','YAxisLocation','right','YTick', unique([1 get(ax4,'YTick')])); set(ax4,'YTickLabel',round(min(yy):spm_range(yy)/(numel(get(ax4,'YTick'))-1):max(yy))); set(ax4,'fontsize',6); end end function out = differencer(tmp,count) if nargin == 1; count = numel(size(tmp)); end out = diff(tmp,1,count); if count ~= 2; out = differencer(out,count-1); else if numel(size(out))>2 ss = size(out); out = reshape(out,size(out,1),prod(ss(2:end))); end return end end
github
scanUCLA/MRtools_Hoffman2-master
ScatterGroups2.m
.m
MRtools_Hoffman2-master/Visualization/ScatterGroups2.m
4,891
utf_8
c9e1840b483ee024bcc9e7c122333157
function [h X] = ScatterGroups2(dat,Groups,altLabs) %%% Written by Aaron Schultz ([email protected]) %%% %%% Copyright (C) 2012, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. IND = {}; if isobject(Groups); Groups = cellstr(Groups); end tt = unique(Groups,'stable'); for ii = 1:numel(tt) if iscell(Groups) ind = strmatch(tt{ii}, Groups,'exact'); Labs{ii} = tt{ii}; elseif isnumeric(Groups) ind = find(Groups==tt(ii)); Labs{ii} = num2str(ii); end IND{ii} = ind; mm(ii) = mean(dat(ind)); sd(ii) = std(dat(ind)); se(ii) = (std(dat(ind))./sqrt(numel(ind)))*1.96; end % keyboard; if nargin>2 Labs = altLabs; end % errorbar(1:length(mm),mm,2*sd,'.k','linewidth',1.5) eh = errorbar((1:length(mm)),mm,se,'o','color',[.65 .65 .65],'linewidth',4,'markersize',10,'markerfacecolor',[.65 .65 .65]); hold on; % keyboard; % errorbar_tick(eh,10); hold on h = []; for ii = 1:numel(IND) ind = IND{ii}; X{ii} = ii+(.35*(rand(numel(ind),1)-.5)); h(ii) = plot(X{ii},dat(ind),'b.','markersize',20); hold on; end bp = []; if exist('boxplot.m')>0 %keyboard; bp = boxplot(dat,Groups); set(findobj(gcf,'color', 'k'),'linewidth',3) set(findobj(gcf,'color', 'r'),'linewidth',3,'color','k') set(findobj(gcf,'color', 'b'),'linewidth',3,'color','k') end if numel(h)==1 cols = [0 0 1]; else cols = zeros(numel(h),3); cols(:,3) = 1:-1/(numel(h)-1):0; cols(:,1) = 0:1/(numel(h)-1):1; end for ii = 1:numel(h) set(h(ii),'Color',cols(ii,:)); end set(gca,'XTick', 1:length(Labs), 'XTickLabel',Labs,'FontSize',14,'FontWeight','bold'); uistack(eh,'bottom'); if ~isempty(bp) uistack(bp,'bottom'); end ax = axis; ax(1:2) = [.5 numel(tt)+.5]; axis(ax); plot(ax(1:2),[0 0],'m--','linewidth',2); function errorbar_tick(h,w,xtype) %ERRORBAR_TICK Adjust the width of errorbars % ERRORBAR_TICK(H) adjust the width of error bars with handle H. % Error bars width is given as a ratio of X axis length (1/80). % ERRORBAR_TICK(H,W) adjust the width of error bars with handle H. % The input W is given as a ratio of X axis length (1/W). The result % is independent of the x-axis units. A ratio between 20 and 80 is usually fine. % ERRORBAR_TICK(H,W,'UNITS') adjust the width of error bars with handle H. % The input W is given in the units of the current x-axis. % % See also ERRORBAR % % Author: Arnaud Laurent % Creation : Jan 29th 2009 % MATLAB version: R2007a % % Notes: This function was created from a post on the french forum : % http://www.developpez.net/forums/f148/environnements-developpement/matlab/ % Author : Jerome Briot (Dut) % http://www.mathworks.com/matlabcentral/newsreader/author/94805 % http://www.developpez.net/forums/u125006/dut/ % It was further modified by Arnaud Laurent and Jerome Briot. % Check numbers of arguments error(nargchk(1,3,nargin)) % Check for the use of V6 flag ( even if it is depreciated ;) ) flagtype = get(h,'type'); % Check number of arguments and provide missing values if nargin==1 w = 80; end if nargin<3 xtype = 'ratio'; end % Calculate width of error bars if ~strcmpi(xtype,'units') dx = diff(get(gca,'XLim')); % Retrieve x limits from current axis w = dx/w; % Errorbar width end % Plot error bars if strcmpi(flagtype,'hggroup') % ERRORBAR(...) hh=get(h,'children'); % Retrieve info from errorbar plot x = get(hh(2),'xdata'); % Get xdata from errorbar plot x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to ratio x(7:9:end) = x(1:9:end)-w/2; x(5:9:end) = x(1:9:end)+w/2; x(8:9:end) = x(1:9:end)+w/2; set(hh(2),'xdata',x(:)) % Change error bars on the figure else % ERRORBAR('V6',...) x = get(h(1),'xdata'); % Get xdata from errorbar plot x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to the chosen ratio x(7:9:end) = x(1:9:end)-w/2; x(5:9:end) = x(1:9:end)+w/2; x(8:9:end) = x(1:9:end)+w/2; set(h(1),'xdata',x(:)) % Change error bars on the figure end end end % return % %% % dat = rand(200,1); % groups = ones(200,1); % groups(51:100)=2; groups(101:150) = 3; groups(151:200)=4; % % figure(20); clf; % ll = {'Group1' 'Group2' 'Group3' 'Group4'}; % clf; ScatterGroups(dat,groups,ll)
github
scanUCLA/MRtools_Hoffman2-master
Groupbar.m
.m
MRtools_Hoffman2-master/Visualization/Groupbar.m
3,949
utf_8
3b1b120022e2c8fc48f734d0b04610b9
function Groupbar(dat,Groups,Labs) %%% Written by Aaron Schultz ([email protected]) %%% %%% Copyright (C) 2012, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. tt = unique(Groups); for ii = tt(:)' ind = find(Groups==ii); mm(ii) = mean(dat(ind)); sd(ii) = std(dat(ind)); se(ii) = (std(dat(ind))./sqrt(numel(ind)))*1.96; end cols = jet(numel(mm)); % if mod(numel(mm),2)==1 % cols = colmap('cbd_pu_gn',numel(mm)); % %cols=cols(setdiff(1:numel(mm),ceil((numel(mm)/2))),:); % else % cols = colmap('cbd_pu_gn',numel(mm)+2); % cols=cols(setdiff(1:size(cols,1),(numel(mm)/2)+1:(numel(mm)/2)+2),:); % end for ii = 1:length(mm) bar(ii,mm(ii),'FaceColor',cols(ii,:)); hold on end % bar((1:length(mm)),mm); hold on % errorbar(1:length(mm),mm,2*sd,'.k','linewidth',1.5) h=errorbar((1:length(mm)),mm,se,'k.','linewidth',3); hold on; % errorbar_tick(h,10); hold on set(gca,'XTick', 1:length(Labs), 'XTickLabel',Labs,'FontSize',14); ax = axis; ax(1:2) = [.5 numel(tt)+.5]; axis(ax); if ax(3)~=0 && ax(4)~=0 plot(ax(1:2),[0 0],'m--','linewidth',2); end end function errorbar_tick(h,w,xtype) %ERRORBAR_TICK Adjust the width of errorbars % ERRORBAR_TICK(H) adjust the width of error bars with handle H. % Error bars width is given as a ratio of X axis length (1/80). % ERRORBAR_TICK(H,W) adjust the width of error bars with handle H. % The input W is given as a ratio of X axis length (1/W). The result % is independent of the x-axis units. A ratio between 20 and 80 is usually fine. % ERRORBAR_TICK(H,W,'UNITS') adjust the width of error bars with handle H. % The input W is given in the units of the current x-axis. % % See also ERRORBAR % % Author: Arnaud Laurent % Creation : Jan 29th 2009 % MATLAB version: R2007a % % Notes: This function was created from a post on the french forum : % http://www.developpez.net/forums/f148/environnements-developpement/matlab/ % Author : Jerome Briot (Dut) % http://www.mathworks.com/matlabcentral/newsreader/author/94805 % http://www.developpez.net/forums/u125006/dut/ % It was further modified by Arnaud Laurent and Jerome Briot. % Check numbers of arguments error(nargchk(1,3,nargin)) % Check for the use of V6 flag ( even if it is depreciated ;) ) flagtype = get(h,'type'); % Check number of arguments and provide missing values if nargin==1 w = 80; end if nargin<3 xtype = 'ratio'; end % Calculate width of error bars if ~strcmpi(xtype,'units') dx = diff(get(gca,'XLim')); % Retrieve x limits from current axis w = dx/w; % Errorbar width end % Plot error bars if strcmpi(flagtype,'hggroup') % ERRORBAR(...) hh=get(h,'children'); % Retrieve info from errorbar plot x = get(hh(2),'xdata'); % Get xdata from errorbar plot x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to ratio x(7:9:end) = x(1:9:end)-w/2; x(5:9:end) = x(1:9:end)+w/2; x(8:9:end) = x(1:9:end)+w/2; set(hh(2),'xdata',x(:)) % Change error bars on the figure else % ERRORBAR('V6',...) x = get(h(1),'xdata'); % Get xdata from errorbar plot x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to the chosen ratio x(7:9:end) = x(1:9:end)-w/2; x(5:9:end) = x(1:9:end)+w/2; x(8:9:end) = x(1:9:end)+w/2; set(h(1),'xdata',x(:)) % Change error bars on the figure end end
github
scanUCLA/MRtools_Hoffman2-master
ScatterGroups.m
.m
MRtools_Hoffman2-master/Visualization/ScatterGroups.m
4,772
utf_8
f1ebbaf74bc7dd673ebc53d25a2a4d5a
function [h X] = ScatterGroups(dat,Groups,Labs) %%% Written by Aaron Schultz ([email protected]) %%% %%% Copyright (C) 2012, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. tt = unique(Groups); c = 0; for ii = tt(:)' c = c+1; ind = find(Groups==ii); %plot(ii,dat(ind),'bd','markersize',10); hold on; mm(c) = mean(dat(ind)); sd(c) = std(dat(ind)); se(c) = (std(dat(ind))./sqrt(numel(ind)))*1.96; end disp(mm) disp(se) % errorbar(1:length(mm),mm,2*sd,'.k','linewidth',1.5) eh = errorbar((1:length(mm)),mm,se,'o','color',[.65 .65 .65],'linewidth',4,'markersize',10,'markerfacecolor',[.65 .65 .65]); hold on; errorbar_tick(eh,10); hold on h = []; c = 0; for ii = tt(:)' c = c+1; ind = find(Groups==ii); X{c} = c+(.2*(rand(numel(ind),1)-.5)); h(c) = plot(X{c},dat(ind),'b.','markersize',20); hold on; end bp = []; if exist('boxplot.m')>0 % [junk user] = UserTime; % if strcmp(user,'aschultz'); % bp = boxplot(dat,Groups,'notch','on'); % else bp = boxplot(dat,Groups); % end set(findobj(gcf,'color', 'k'),'linewidth',3) set(findobj(gcf,'color', 'r'),'linewidth',3,'color','k') set(findobj(gcf,'color', 'b'),'linewidth',3,'color','k') end if numel(h)==1 cols = [0 0 1]; else cols = zeros(numel(h),3); cols(:,3) = 1:-1/(numel(h)-1):0; cols(:,1) = 0:1/(numel(h)-1):1; end for ii = 1:numel(h) set(h(ii),'Color',cols(ii,:)); end set(gca,'XTick', 1:length(Labs), 'XTickLabel',Labs,'FontSize',14,'FontWeight','bold'); uistack(eh,'bottom'); if ~isempty(bp) uistack(bp,'bottom'); end ax = axis; ax(1:2) = [.5 numel(tt)+.5]; axis(ax); plot(ax(1:2),[0 0],'m--','linewidth',2); function errorbar_tick(h,w,xtype) %ERRORBAR_TICK Adjust the width of errorbars % ERRORBAR_TICK(H) adjust the width of error bars with handle H. % Error bars width is given as a ratio of X axis length (1/80). % ERRORBAR_TICK(H,W) adjust the width of error bars with handle H. % The input W is given as a ratio of X axis length (1/W). The result % is independent of the x-axis units. A ratio between 20 and 80 is usually fine. % ERRORBAR_TICK(H,W,'UNITS') adjust the width of error bars with handle H. % The input W is given in the units of the current x-axis. % % See also ERRORBAR % % Author: Arnaud Laurent % Creation : Jan 29th 2009 % MATLAB version: R2007a % % Notes: This function was created from a post on the french forum : % http://www.developpez.net/forums/f148/environnements-developpement/matlab/ % Author : Jerome Briot (Dut) % http://www.mathworks.com/matlabcentral/newsreader/author/94805 % http://www.developpez.net/forums/u125006/dut/ % It was further modified by Arnaud Laurent and Jerome Briot. % Check numbers of arguments error(nargchk(1,3,nargin)) % Check for the use of V6 flag ( even if it is depreciated ;) ) flagtype = get(h,'type'); % Check number of arguments and provide missing values if nargin==1 w = 80; end if nargin<3 xtype = 'ratio'; end % Calculate width of error bars if ~strcmpi(xtype,'units') dx = diff(get(gca,'XLim')); % Retrieve x limits from current axis w = dx/w; % Errorbar width end % Plot error bars if strcmpi(flagtype,'hggroup') % ERRORBAR(...) hh=get(h,'children'); % Retrieve info from errorbar plot x = get(hh(2),'xdata'); % Get xdata from errorbar plot x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to ratio x(7:9:end) = x(1:9:end)-w/2; x(5:9:end) = x(1:9:end)+w/2; x(8:9:end) = x(1:9:end)+w/2; set(hh(2),'xdata',x(:)) % Change error bars on the figure else % ERRORBAR('V6',...) x = get(h(1),'xdata'); % Get xdata from errorbar plot x(4:9:end) = x(1:9:end)-w/2; % Change xdata with respect to the chosen ratio x(7:9:end) = x(1:9:end)-w/2; x(5:9:end) = x(1:9:end)+w/2; x(8:9:end) = x(1:9:end)+w/2; set(h(1),'xdata',x(:)) % Change error bars on the figure end end end % return % %% % dat = rand(200,1); % groups = ones(200,1); % groups(51:100)=2; groups(101:150) = 3; groups(151:200)=4; % % figure(20); clf; % ll = {'Group1' 'Group2' 'Group3' 'Group4'}; % clf; ScatterGroups(dat,groups,ll)
github
scanUCLA/MRtools_Hoffman2-master
ANOVA_APS.m
.m
MRtools_Hoffman2-master/GLM_Flex/ANOVA_APS.m
16,479
utf_8
593cd3020dc55da7f1846da9aafa91f0
function OUTPUT = ANOVA_APS(dat,mod,posthocs,runModel,dm,asEffects) %%% Written by Aaron Schultz ([email protected]) %%% %%% Copyright (C) 2012, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01-AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. %%% SEB stuff. % % X = mod.X; % % rr = eye(size(X,1))-(X*pinv(X)); % % MSE = LoopEstimate(y,1,rr)./mod.RFMs(1).EDF; % % b = pinv(X)*y; % % cv = MSE*inv(X'*X); % % seb = sqrt(diag(cv)); % % t = b./seb; OUTPUT.data = dat; iscontinuous = []; isconstant = 0; supress = 0; if nargin<3 posthocs = []; else if any(size(posthocs)==1) && any(size(posthocs)>2) posthocs = posthocs(:); end end if nargin<4 || isempty(runModel) runModel = 1; end if runModel==3 runModel=1; supress = 1; end if nargin<5 || isempty(dm) dm = 1; % disp('All covariates will be demeaned'); end if nargin<6 || isempty(asEffects) || runModel==1 asEffects = 1; end %%% Split the model into sets of additive terms ind = find(mod=='~'); if numel(ind)>1 error('Only 1 ~ should be present in model specification'); end if ~isempty(ind) varname = strtrim(mod(1:ind(1)-1)); Nobs = size(dat.(varname),1); else runModel = 0; ind = 0; end mod2 = mod(ind(1)+1:end); mod3 = regexp(mod2,'+','split'); for ii = 1:numel(mod3); mod3{ii} = strtrim(mod3{ii}); end %%% Get a list of the unique terms in the model : Not inclusing error specification terms = []; for ii = 1:numel(mod3) if ~isempty(strfind(mod3{ii},'random')) continue end if ~isempty(regexp(mod3{ii},'*')) && ~isempty(regexp(mod3{ii},':')) error('You cannot specify both * and : within the same term'); end tmp = regexp(mod3{ii},'[*:]','split'); for jj = 1:numel(tmp); terms{end+1} = strtrim(tmp{jj}); end end terms= unique(terms,'stable'); if exist('varname','var')==0 Nobs = size(dat.(terms{1}),1); end %%% now create the dummy coded main effect terms Effects = []; for ii = 1:numel(terms); if isnumeric(dat.(terms{ii})) iscontinuous(ii) = 1; if dm == 1 Nobs = numel(dat.(terms{ii})); Effects{ii} = demean(dat.(terms{ii})); % + ((rand(Nobs,1)-.5)*1e-16); % Real values covariates should never have a value of 0 will mess up contrast later on. else Effects{ii} = dat.(terms{ii}); end else iscontinuous(ii) = 0; Effects{ii} = makedummy(dat.(terms{ii}),asEffects); if size(Effects{ii},2)==1 && all(Effects{ii}==1) isconstant = 1; end end end %%% Now create the interaction terms for ii = 1:numel(mod3); if ~isempty(strfind(lower(mod3{ii}),'random')); continue end tt = regexp(mod3{ii},'[*:]' ,'split'); tt = strtrim(tt); for jj = 2:numel(tt); sets = combnk(1:numel(tt),jj); for kk = 1:size(sets,1) which = sets(kk,:); if any(iscontinuous(which)) iscontinuous(end+1) = 1; else iscontinuous(end+1) = 0; end [i1 i2] = matchAll(tt(which),terms); Effects{end+1} = FactorCross(Effects(i2)); name = []; for ll = 1:numel(which); name = [name tt{which(ll)} ':']; end terms{end+1} = name(1:end-1); end end end %%% Now it's time to setup the error terms. ErrorTerms = []; eTerms = []; if isempty(contains('random',{mod})) eTerms{1} = 'Observations'; ErrorTerms{1} = makedummy(1:Nobs,asEffects); random = 'Observations'; else tmp = regexp(mod2,'random','split'); if numel(tmp)>2 error('Only 1 random effect may be specified. If you need more look to an LME model'); end err = strtrim(tmp{2}); err = strtrim(regexprep(err,'[()]','')); tmp = regexp(err,'\|','split'); random = strtrim(tmp{1}); nesting = strtrim(tmp{2}); np = regexp(nesting,'*','split'); eTerms{end+1} = tmp{1}; ErrorTerms{end+1} = makedummy(dat.(tmp{1}),asEffects); for ii = 1:numel(np) sets = combnk(1:numel(np),ii); for jj = 1:size(sets,1) [a b] = matchAll(np(sets(jj,:)), terms); ErrorTerms{end+1} = FactorCross([ErrorTerms{1} Effects(b)]); %%% Random effects with : specification? name = [random ':']; for kk = 1:size(sets(jj,:),2) name = [name np{sets(jj,kk)} ':']; end eTerms{end+1} = name(1:end-1); end end end %%% If there is a random effect, make sure that there are no missing %%% observations. if numel(eTerms)>1 RF = dat.(eTerms{1}); S1 = regexp(eTerms{end},[eTerms{1} ':'],'split'); S2 = regexp(S1{end},':','split'); ps = {}; %keyboard; for ii = 1:numel(S2); if isnumeric(dat.(S2{ii})) continue end ps{ii} = makedummy(dat.(S2{ii}),0); end if ~isempty(ps); combo = FactorCross(ps); missing = {}; %drop = []; list = unique(RF); for ii = 1:numel(list); try i2 = find(nominal(RF)==list(ii)); catch i2 = strmatch(list{ii},RF,'exact'); end if ~all(sum(combo(i2,:))) missing{end+1,1} = list{ii}; end end if ~isempty(missing) disp(missing) error('At least one observation is missing for each level of the random factor listed above'); end else disp('Assuming that everything is ok'); end end %%% Which terms should go into the model? ModelTerms = []; whichTerms = []; for ii = 1:numel(mod3) if ~isempty(regexp(mod3{ii},'random')); continue end if isempty(regexp(mod3{ii},'*')) ModelTerms{end+1} = mod3{ii}; whichTerms(end+1) = strmatch(ModelTerms{end},terms,'exact'); else tt = regexp(mod3{ii},'*','split'); for jj = 1:numel(tt); sets = combnk(1:numel(tt),jj); for kk = 1:size(sets,1) which = sets(kk,:); name = []; for ll = 1:numel(which); name = [name tt{which(ll)} ':']; end ModelTerms{end+1} = regexprep(name(1:end-1),' ',''); tmp = strmatch(ModelTerms{end},terms,'exact'); whichTerms(end+1) = tmp(1); end end end end [ModelTerms idx] = unique(ModelTerms,'stable'); whichTerms = whichTerms(idx); Effects = Effects(whichTerms); iscontinuous = iscontinuous(whichTerms); %%% Now partition the effects and put them with the proper error term ti = 1:numel(ModelTerms); DesignParts = []; for ii = numel(eTerms):-1:1 tmp = eTerms{ii}; tmp = regexp(tmp,[random ':'],'split'); if numel(tmp)==1 if ~isempty(ti) DesignParts{ii,1} = ti; continue else continue end end tmp = tmp{2}; i1 = contains(tmp,ModelTerms(ti)); % %%% New and Experimental % for jj = 1:numel(Effects) % if iscontinuous(jj); % i1 = [i1(:); jj]; % end % end % i1 = unique(i1,'stable'); % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% DesignParts{ii,1} = ti(i1); ti = setdiff(ti,ti(i1)); end %%% Now Run/Setup the Model RFMs = []; if nargin>2 && ~isempty(posthocs) spacer = size(char([ModelTerms 'Error' posthocs(:,1)']),2)+4; else spacer = size(char([ModelTerms 'Error' ]),2)+4; end if isconstant C = []; else C = ones(Nobs,1); end effectResults = []; for ii = 1:size(DesignParts,1); if isempty(DesignParts{ii}); continue end if runModel && ~supress fprintf(['\n%-' num2str(spacer) 's%s\t%s\t%s\t%s\t%s\n'],'','df','Sum Sq', 'Mean Sq','F-value', 'P-value'); end %%% Compute the error tx1 = [C Effects{DesignParts{ii}} ErrorTerms{ii}]; tx2 = [C Effects{DesignParts{ii}}]; r1 = eye(size(tx1,1))-(tx1*pinv(tx1)); r2 = eye(size(tx2,1))-(tx2*pinv(tx2)); edf = ResidualDFs(tx1)-ResidualDFs(tx2); RFMs(ii).EDF = edf; RFMs(ii).name = eTerms{ii}; RFMs(ii).tx1 = tx1; RFMs(ii).tx2 = tx2; if runModel RSS = LoopEstimate(dat.(varname),1,r2-r1); end All = DesignParts{ii}; for jj = 1:numel(DesignParts{ii}) in = DesignParts{ii}(jj); out = setdiff(DesignParts{ii},in); tx1 = [C Effects{All}]; tx2 = [C Effects{out}]; dif = [Effects{in}]; %if ~isempty(contains('aschultz',{UserTime})); keyboard; end r1 = eye(size(tx1,1))-(tx1*pinv(tx1)); r2 = eye(size(tx2,1))-(tx2*pinv(tx2)); if isempty(r2) r2 = eye(Nobs); end df = ResidualDFs(tx1)-ResidualDFs(tx2); RFMs(ii).Effect(jj).df = df; RFMs(ii).Effect(jj).name = ModelTerms{DesignParts{ii}(jj)}; RFMs(ii).Effect(jj).tx1 = tx1; RFMs(ii).Effect(jj).tx2 = tx2; RFMs(ii).Effect(jj).dif = dif; if runModel RFMs(ii).MSE =RSS/edf; SS = LoopEstimate(dat.(varname),1,r2-r1); F = (SS/df)/(RSS/edf); p = 1-spm_Fcdf(F,df,edf); effectResults{end+1,1} = {ModelTerms{in},df,SS,SS/df,F,p}; if ~supress fprintf(['%-' num2str(spacer) 's%0.0f\t%6.3f\t%6.3f\t%6.3f\t%1.6f\n'],ModelTerms{in},df,SS,SS/df,F,p); end end end if runModel && ~supress fprintf(['%-' num2str(spacer) 's%0.0f\t%6.3f\t%6.3f\n'],'Error',edf,RSS,RSS/edf); end end if nargin>2 && ~isempty(posthocs) if runModel && ~supress fprintf('\nPost Hocs:'); fprintf(['\n%-' num2str(spacer) 's%s\t%s\t%s\t%s\t%s\n'],'','df','Sum Sq', 'Mean Sq','F-value', 'P-value'); end for ii = 1:size(posthocs,1) [ttx1 ttx2 ET df track] = posthoc(posthocs{ii,1},[C Effects{:}],dat,eTerms); tx1 = RFMs(ET).tx1; tx2 = RFMs(ET).tx2; r1 = eye(size(tx1,1))-(tx1*pinv(tx1)); r2 = eye(size(tx2,1))-(tx2*pinv(tx2)); edf = ResidualDFs(tx1)-ResidualDFs(tx2); if runModel RSS = LoopEstimate(dat.(varname),1,r2-r1); end tx1 = ttx1; tx2 = ttx2; r1 = eye(size(tx1,1))-(tx1*pinv(tx1)); r2 = eye(size(tx2,1))-(tx2*pinv(tx2)); if isempty(r2) r2 = eye(Nobs); end df = ResidualDFs(tx1)-ResidualDFs(tx2); if size(posthocs,2)>1 && ~isempty(posthocs{ii,2}); name = [posthocs{ii,2} ]; else name = [posthocs{ii,1} ]; end RFMs(ET).Effect(end+1).df = df; RFMs(ET).Effect(end).name = name; RFMs(ET).Effect(end).tx1 = tx1; RFMs(ET).Effect(end).tx2 = tx2; RFMs(ET).Effect(end).dif = []; RFMs(ET).Effect(end).pieces = track; if runModel SS = LoopEstimate(dat.(varname),1,r2-r1); F = (SS/df)/(RSS/edf); p = 1-spm_Fcdf(F,df,edf); effectResults{end+1,1} = {name,df,SS,SS/df,F,p}; if ~supress fprintf(['%-' num2str(spacer) 's%0.0f\t%6.3f\t%6.3f\t%6.3f\t%1.6f\n'],name,df,SS,SS/df,F,p); end end if runModel && ~supress fprintf(['%-' num2str(spacer) 's%0.0f\t%6.3f\t%6.3f\n'],['ET #' num2str(ET)],edf,RSS,RSS/edf); end end end OUTPUT.EffTerms = ModelTerms; OUTPUT.ErrTerms = eTerms; OUTPUT.EffParts = Effects; OUTPUT.ErrParts = ErrorTerms; OUTPUT.X = [C Effects{:} ErrorTerms{1:end-1}]; OUTPUT.EffMod = [C Effects{:}]; OUTPUT.ErrMod = [C ErrorTerms{:}]; OUTPUT.DesignParts = DesignParts; OUTPUT.RFMs = RFMs; OUTPUT.const = isconstant; OUTPUT.Results = effectResults; % warning off % OUTPUT.Beta = OUTPUT.X\dat.(varname); % warning on try OUTPUT.Y = dat.(varname); end if runModel && ~supress TSS = SumOfSquares(dat.(varname)); pred = PredictedData(dat.(varname),OUTPUT.X); ESS = SumOfSquares(pred); RSS = TSS-ESS; %if ~isempty(contains('aschultz',{UserTime})); keyboard; end mdf = ResidualDFs(OUTPUT.X)-1; rdf = size(pred,1)-mdf-1; R2 = ESS/TSS; aR2 = R2 - ( (1-R2) * ( (mdf-1)/rdf) ); F = (ESS/mdf)/(RSS/rdf); %F = (R2/mdf)/((1-R2)/rdf); if isinf(F) p=0; else p = 1-spm_Fcdf(F,mdf,rdf); end OUTPUT.ModelSummary.Y = dat.(varname); OUTPUT.ModelSummary.TSS = TSS; OUTPUT.ModelSummary.ESS = ESS; OUTPUT.ModelSummary.RSS = RSS; OUTPUT.ModelSummary.R2 = R2; OUTPUT.ModelSummary.aR2 = aR2; OUTPUT.ModelSummary.df = [mdf edf]; OUTPUT.ModelSummary.F = F; OUTPUT.ModelSummary.p = p; s1 = ['Model R^2 = ' sprintf('%0.3f',R2) '; Adjusted R^2 = ' sprintf('%0.3f',aR2)]; s2 = ['Model Stats: F(' num2str(mdf) ',' num2str(rdf) ') = ' sprintf('%0.3f',F) '; p = ' sprintf('%0.5d',p)]; fprintf('\n%s\n%s\n\n',s1,s2) end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [tx1 tx2 ET df track] = posthoc(contrast,X,data,ErrTerms) cond4 = []; extra = []; flag = []; step1 = regexprep(contrast,' ', ''); step2 = regexp(step1,'&','split'); for mm = 1:numel(step2); step3 = regexp(step2{mm},'#','split'); cond3 = []; track1 = {}; track2 = {}; for jj = 1:numel(step3) cond2 = []; step5 = regexp(step3{jj},'\|','split'); cond = []; for kk = 1:numel(step5) step6 = regexp(step5{kk},'\$','split'); track1(end+1,1:2) = step6; track2{end+1,1} = step5{kk}; var = data.(step6{1}); if isnumeric(var) cond = [cond demean(var)]; flag(kk) = 0; else flag(kk) = 1; if iscell(var) tmp = zeros(numel(var),1); i1 = strmatch(step6{2},var,'exact'); tmp(i1)=1; else tmp = data.(step6{1})==step6{2}; end cond = [cond tmp]; end end if any(flag) cond2 = [cond2 prod(cond,2)]; else cond2 = [cond2 cond]; end if all(flag) cond3 = [cond3 sum(cond2,2)>0]; else cond3 = [cond3 cond2]; end end cond4 = [cond4 cond3]; if ~isempty(contains('#',step2(mm))) extra = [extra mean(cond3,2)]; end end con = cond4; tx1 = X; tx2 = X; tmp = []; tr = []; for ii = 1:size(con,2); ind = find(con(:,ii)~=0); tmp{ii} = ind; in = [find(mean(X(ind,:)==repmat(con(ind,ii),1,size(X,2)))==1) find(mean(-X(ind,:)==repmat(con(ind,ii),1,size(X,2)))==1)]; tr = [tr in]; tx2(ind,in)=0; end tr = unique(tr); if isempty(tr) error('Invalid Contrast') end tx2 = [tx2 extra]; %%% [a i] = unique(track2); track = track1(i,:); list = unique(track(:,1)); wh = []; for ii = 1:numel(list) cc = numel(strmatch(list{ii},track1(:,1),'exact')); if cc>1 if ~isempty(contains(list{ii},ErrTerms)) wh{end+1} = contains(list{ii},ErrTerms); end end end if isempty(wh) || isempty(wh{1}) ET = 1; else ET = intersections(wh); ET = ET(1); end df = ResidualDFs(tx1)-ResidualDFs(tx2); end
github
scanUCLA/MRtools_Hoffman2-master
GLM_Flex_Fast4.m
.m
MRtools_Hoffman2-master/GLM_Flex/GLM_Flex_Fast4.m
32,993
utf_8
665480c5b8fe81966f67d6063cd16455
function I = GLM_Flex_Fast4(I,DD) %%% This is the main analysis script. %%% Go to: http://nmr.mgh.harvard.edu/harvardagingbrain/People/AaronSchultz/Aarons_Scripts.html %%% for more information on this script and how to use it. %%% %%% Inputs: This is the I structure that is passed to GLM_Flex to run the %%% analyses. %%% %%% %%% I.Model = 'the model' %%% I.Data = dat; %%% I.Posthocs = []; %%% I.OutputDir = pwd; %%% I.F = []; %%% I.Scans = []; %%% I.Mask = []; %%% I.RemoveOutliers = 0; %%% I.DoOnlyAll = 0; %%% I.minN = 2; %%% I.minRat = 0; %%% I.Thresh = []; %%% I.writeI = 1; %%% I.writeT = 1; %%% I.writeFin = 0; %%% I.KeepResiduals = 0; %%% I.estSmooth = 1; %%% I.Transform.FisherZ = 0; %%% I.Transform.AdjustR2 = 0; %%% I.Transform.ZScore = 0; %%% I.Reslice = 0; %%% I.covCorrect = 0; %%% %%% Written by Aaron Schultz ([email protected]) %%% %%% Copyright (C) 2011, Aaron P. Schultz %%% %%% Supported in part by the NIH funded Harvard Aging Brain Study (P01AG036694) and NIH R01AG027435 %%% %%% This program is free software: you can redistribute it and/or modify %%% it under the terms of the GNU General Public License as published by %%% the Free Software Foundation, either version 3 of the License, or %%% any later version. %%% %%% This program is distributed in the hope that it will be useful, %%% but WITHOUT ANY WARRANTY; without even the implied warranty of %%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the %%% GNU General Public License for more details. %if ~contains('aschultz', {UserTime}); error('Aaron is currently reworking this script. Check with him to see when it will be functional again.'); end if isfield(I,'PostHocs') && ~isempty(I.PostHocs) MOD = ANOVA_APS(I.Data,I.Model,I.PostHocs,0,1,1); else MOD = ANOVA_APS(I.Data,I.Model,[],0,1,1); end tx1 = [MOD.X]; tx2 = ones(size(tx1,1),1); df = ResidualDFs(tx1)-ResidualDFs(tx2); dif = tx1; if ~all([numel(MOD.RFMs) numel(MOD.RFMs(1).Effect)]) MOD.RFMs(end).Effect(end+1).df = df; MOD.RFMs(end).Effect(end).name = 'FullModel'; MOD.RFMs(end).Effect(end).tx1 = tx1; MOD.RFMs(end).Effect(end).tx2 = tx2; MOD.RFMs(end).Effect(end).dif = dif; end I.MOD = MOD; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Setup/Check the I Structure %% fprintf('\nSetup/Check the I Structure:\n'); if ~isfield(I,'DoOnlyAll') I.DoOnlyAll = 0; end if ~isfield(I,'ZeroDrop') I.ZeroDrop = 1; end if ~isfield(I,'OutputDir') I.OutputDir = pwd; else if exist(I.OutputDir)==0 mkdir(I.OutputDir); end cd(I.OutputDir); end if ~isfield(I,'writeT') I.writeT = 1; end if ~isfield(I,'minN') I.minN = 2; end if ~isfield(I,'minRAT') I.minRAT = 0; end if ~isfield(I,'RemoveOutliers'); I.RemoveOutliers = 0; end if ~isfield(I,'Thresh'); I.Thresh = []; end if ~isfield(I,'writeFin'); I.writeFin = 0; end if ~isfield(I,'writeI'); I.writeI = 1; end if ~isfield(I,'KeepResiduals'); I.KeepResiduals = 0; end if ~isfield(I,'Reslice'); I.Reslice = 0; end if ~isfield(I,'estSmooth'); I.estSmooth = 1; end if ~isfield(I,'covCorrect'); I.covCorrect = 0; end if I.DoOnlyAll==1; I.minN=0; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Read In The Data %% if isfield(I,'Scans'); fprintf('\nReading In Data:\n'); h = spm_vol(char(I.Scans)); if ~any(h(1).dim==1) if mean(mean(std(reshape([h.mat],4,4,numel(h)),[],3)))~=0 error('Images are not all the same orientation'); end end I.v = h(1); FullIndex = 1:prod(I.v.dim); mskInd = 1:prod(I.v.dim); mskOut = []; if isfield(I,'Mask'); if ~isempty(I.Mask) mh = spm_vol(I.Mask); msk = resizeVol(mh,I.v); mskInd = find(msk==1); mskOut = find(msk~=1); end end if nargin == 1 % if isstruct(I.Reslice) % else [x y z] = ind2sub(I.v.dim,mskInd); OD = zeros(numel(h),numel(x)); for ii = 1:numel(h); OD(ii,:) = spm_sample_vol(h(ii),x,y,z,0); end % end else OD = DD(:,mskInd); end if I.ZeroDrop == 1 OD(OD==0)=NaN; end % %%% Add in some missing values. % tmp = randperm(numel(OD)); % OD(tmp(1:10000))=NaN; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Screen Missing Data for Within Subject Factors; if numel(MOD.ErrParts)>1 Subs = I.Data.(MOD.ErrTerms{1}); list = unique(Subs); for ii = 1:numel(list); if iscell(Subs) try i2 = find(nominal(Subs)==list{ii}); catch i2 = contains(['^' list{ii} '$'],Subs); end else i2 = find(Subs==list(ii)); end i3 = find(isnan(sum(OD(i2,:)))); OD(i2,i3)=NaN; end end counts = sum(~isnan(OD)); ind = (find(counts>=I.minN)); MasterInd = mskInd(ind); OD = OD(:,ind); counts = counts(ind); else error('No images were specified.'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Perform Specified Transformations %% fprintf('\nPerform Specified Transformations:\n'); if isfield(I,'Transform') if isfield(I.Transform,'FisherZ') if I.Transform.FisherZ == 1; OD = atanh(OD); disp('FisherZ transform worked!'); end end if isfield(I.Transform,'AdjustR2') if I.Transform.AdjustR2 == 1; OD = atanh(sqrt(OD)); disp('R2 adjust worked!'); end end if isfield(I.Transform,'ZScore') if I.Transform.ZScore == 1; OD = zscore(OD,0,1); disp('Normalization worked!'); end end if isfield(I.Transform,'Scale') if numel(I.Transform.Scale) == numel(I.Scans); for ii = 1:size(OD,1); OD(ii,:) = (OD(ii,:)+1).*(I.Transform.Scale(ii)); end disp('Scaling worked!'); end end if isfield(I.Transform,'crtlFor') I.writeFin = 1; OD = crtlFor(OD,[ones(size(I.Transform.crtlFor,1),1) I.Transform.crtlFor]); disp('residualizing worked!'); end if isfield(I.Transform,'log') I.writeFin = 1; OD = log(OD); disp('data has been log-transformed!'); end if isfield(I.Transform,'Power') I.writeFin = 1; OD = (OD.^I.Power); disp('data has been log-transformed!'); end if isfield(I.Transform,'MapNorm') if I.Transform.MapNorm == 1; I.writeFin = 1; OD = OD'; OD = (OD-repmat(nanmean(OD),size(OD,1),1))./repmat(nanstd(OD),size(OD,1),1); OD = OD'; %OD = zscore(OD',0,1)'; disp('MapNorm worked!'); end end if isfield(I.Transform,'Smooth') if numel(I.Transform.Smooth) == 3; I.writeFin = 1; tmp = spm_imatrix(I.v.mat); tmp = abs(tmp(7:9)); k = smoothing_kernel(I.Transform.Smooth,tmp); %keyboard; OD(isnan(OD))=0; vol = zeros(I.v.dim); for ii = 1:size(OD,1); vol(:) = OD(ii,:); nm = convn(vol,k,'same'); OD(ii,:) = nm(:)'; end OD(OD==0)=NaN; disp('Smoothing worked!'); end end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Initialize Variables %% fprintf('\nIntialize Variable and Output Structures\n'); BMdim = [numel(h) prod(I.v.dim)]; maxLL = numel(h); Indices = {}; Ls = []; Outliers = {[]}; oCy = repmat({zeros(maxLL,maxLL)},numel(I.MOD.RFMs),1); oN = repmat({zeros(maxLL,maxLL)},numel(I.MOD.RFMs),1); First = 0; BigCount = 0; %% was 1 before. make sure this isn't a problem. %%% Get the Design Matrix X = MOD.X; I.X = X; I.Vi = eye(size(X,1)); %%% Setup Objects for Output Images ss = I.v.dim; NN = nan(ss); ResMS = cell(1,numel(MOD.RFMs)); ResMS(:) = {NN}; nn = 0; for ii = 1:numel(MOD.RFMs) nn = nn+numel(MOD.RFMs(ii).Effect); end Con = cell(1,nn); Con(:) = {NN}; Stat = cell(1,nn); Stat(:) = {NN}; if size(I.X,1)~=maxLL error('Design Matrix does not match input volumes'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q = 1 %% Calculate Possible Grouptings %% if ~MOD.const AllColNames = {'Constant'}; else AllColNames = {}; end Groupings = []; for jj = 1:numel(MOD.EffTerms) EffList = regexp(MOD.EffTerms{jj},'[\*\:]','split'); AllColNames(end+1:end+size(MOD.EffParts{jj},2)) = {MOD.EffTerms{jj}}; if numel(EffList)>1 continue end tmp = {}; tmp{1} = []; for ii = 1:numel(EffList) tDat = I.Data.(EffList{ii}); if isnumeric(tDat) continue end tmp{ii} = makedummy(tDat); end if numel(tmp)>1 Groupings = [Groupings FactorCross(tmp)]; else Groupings = [Groupings tmp{1}]; end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if I.covCorrect == 1 I.VV = getVI(I.MOD); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Perform initial pass to evaluate for missing data, outliers, and computation of the covariance matrix. %% nOut = 0; persisText for ll = size(X,1):-1:I.minN %%% Find the indices where the number of observations matches the current loop. CurrIndex = find(counts==ll); if isempty(CurrIndex) continue end BigCount = BigCount+1; Ls(BigCount) = ll; %%% This Section computes different combinations of N size ll across %%% the groups specified in the design matrix. ss = size(OD(:,CurrIndex)); if I.DoOnlyAll ~= 1 if ll == maxLL ch = [1 numel(CurrIndex)]; uni = 1:numel(h); II = 1:ss(2); else rr = ~isnan(OD(:,CurrIndex)).*repmat((1:size(X,1))',1,ss(2)); rr = rr'; [rr II] = sortrows(rr,(1:size(rr,2))*-1); tt = sum(abs(diff(rr~=0)),2)>0; ind = find(tt==1); ch = [[1; ind+1] [ind; numel(II)]]; ch = ch((diff(ch,1,2)>=0),:); uni = rr(ch(:,1),:); CurrIndex = CurrIndex(II); end else ch = [1 numel(CurrIndex)]; uni = 1:numel(h); II = 1:ss(2); end Outliers{BigCount}=[]; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%% Loop through specific designs for ll observations for ii = 1:size(ch,1) persisText(['Examining Set #' num2str(ll) ': SubModel ' num2str(ii) ' of ' num2str(size(ch,1)) '; Nvox = ' num2str(numel(ch(ii,1):ch(ii,2)))]); %%% Get the observation index for the current design Xind = uni(ii,:); Xind = Xind(Xind>0); %%% Subset the design matrix xx = X(Xind,:); %%% Make sure there is enough data across conditions. Ns = sum(Groupings(Xind,:)); if ~all(Ns>=I.minN) continue; end if min(Ns)/max(Ns) < I.minRAT; continue; end %%% get the global index of the voxels being analyzed vec = CurrIndex((ch(ii,1):ch(ii,2))); %%% Get the correponding data to be analyzed Y = OD(Xind,vec); %%% Outlier Detection Compute Cook's D for q =1 if I.RemoveOutliers == 1; df1 = ResidualDFs(xx); df2 = MOD.RFMs(end).EDF; %%% Run a basic GLM pv = pinv(xx); pv(abs(pv)<eps*(size(xx,1)))=0; beta = pv*Y; pred = xx*beta; res = Y-pred; ResSS = sum(res.^2); MSE = ResSS./df2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e2 = res.^2; p = size(xx,2); bc = pinv(xx'*xx); bc(abs(bc)<eps*(size(xx,1)))=0; tmp = diag(xx*bc*xx'); CD = (e2./(p*repmat(MSE,size(e2,1),1))) .* (repmat(tmp./((1-tmp).^2),1,size(e2,2))); if ~isempty(I.Thresh) thresh = spm_invFcdf(I.Thresh,[df1 df2-1]); else thresh = spm_invFcdf(.5,[df1 df2-1]); end [mm,ith] = max(CD); a = find(mm>thresh); nOut = nOut+numel(a); persisText(['Examining Set #' num2str(ll) ': SubModel ' num2str(ii) ' of ' num2str(size(ch,1)) '; Nvox = ' num2str(numel(ch(ii,1):ch(ii,2))) '; Found ' num2str(nOut) ' outliers so far:']); if ~isempty(a) rows = Xind(ith(a)); cols = vec(a); Outliers{BigCount} = [Outliers{BigCount} sub2ind(BMdim,rows,MasterInd(cols))]; OD(sub2ind(size(OD),rows,cols))=NaN; if numel(MOD.ErrParts)>1 for jj = 1:numel(rows); if iscell(I.Data.(MOD.ErrTerms{1})); i1 = contains(['^' I.Data.(MOD.ErrTerms{1}){rows(jj)} '$'],I.Data.(MOD.ErrTerms{1})); else i1 = find(I.Data.(MOD.ErrTerms{1}) == I.Data.(MOD.ErrTerms{1})(rows(jj))); end OD(i1,cols(jj)) = NaN; end counts(cols)=sum(~isnan(OD(:,cols))); else counts(cols)=counts(cols)-1; end end a = find(mm<thresh); else a = 1:numel(vec); end end %%% If there are no voxels free of outliers, continue if isempty(a) continue; end First = First+1; if First == 1; hh = I.v; tmp = nan(hh.dim); tmp(MasterInd(vec(a)))=1; hh.dt = [2 0]; writeIMG(hh,tmp,'AllMask.nii'); end %%% Subset data to only those voxels without outliers Y = Y(:,a); Indices{First,1} = vec(a); Indices{First,2} = Xind; if I.covCorrect==1 for jj = 1:numel(I.MOD.RFMs) if isempty(I.MOD.RFMs(jj).tx1) continue end tx1 = I.MOD.RFMs(jj).tx1(Xind,:); tx2 = I.MOD.RFMs(jj).tx2(Xind,:); if size(tx1,2)==1 df2=1; else [z1 z2 z3] = svd(tx1); tol = max(size(tx1))*max(abs(diag(z2)))*eps; df2 = sum(diag(z2)>tol); end df2 = df2-1; if size(tx2,2)==1 df1=1; else [z1 z2 z3] = svd(tx2); tol = max(size(tx2))*max(abs(diag(z2)))*eps; df1 = sum(diag(z2)>tol); end df1 = df1-1; df2 = df2-df1; SSm = makeSSmat(tx2,ones(size(tx2,1))); SS1 = LoopEstimate(Y,1,SSm); SSm = makeSSmat(tx1,ones(size(tx1,1))); SS2 = LoopEstimate(Y,1,SSm); SS2 = SS2-SS1; FF = (SS1/df1)./(SS2/df2); UF = spm_invFcdf(1-.001,[df1 df2]); %%% Get the index of voxels where the full model p is less than 0.001 mv = find(FF>UF); cn = numel(mv); %%% Pool variance across voxels if ~isempty(mv) q = spdiags(sqrt(df2./SS2(mv)'),0,cn,cn); YY = Y(:,mv)*q; Cy = (YY*YY'); oCy{jj}(Xind,Xind) = oCy{jj}(Xind,Xind)+Cy; oN{jj}(Xind,Xind) = oN{jj}(Xind,Xind)+cn; else Cy = []; end end else V = eye(size(xx,1)); end end if I.DoOnlyAll==1 break; end end for ii = 1:numel(oCy); oCy{ii} = oCy{ii}./oN{ii}; end I.oCy = oCy; I.oN = oN; persisText; fprintf('\n\n'); if First==0 error('Nothing ws analyzed, make sure that I.minN is not set too high'); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Write out mask images %% v = I.v; v.dt = [64 0]; writeIMG(v,NN,'NN.nii'); writeIMG(v,NN>0,'mask.nii'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Perform unitary variance/covariance reml correction to be sub-indexed below % keyboard; rX = getREMLdm(I.MOD); for ii = 1:numel(I.MOD.RFMs); if I.covCorrect==1 Vi = I.VV{ii}; if isempty(Vi) I.W{ii} = eye(size(OD,1)); continue end %%% Possible reduced correction due to use of overspecified %%% model. Might need to see about altering the error term in %%% the model. xxW = rX{ii}; [V h] = spm_reml(oCy{ii},xxW,Vi); I.V{ii}=V; V = V*size(xxW,1)/trace(V); W = full(spm_sqrtm(spm_inv(V))); W = W.*(abs(W) > 1e-6); I.W{ii} = W; clear V W; else I.W{ii} = eye(size(OD,1)); end end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Compute Statistics %% fileNames = []; conDFs = []; type = {}; persisText; for ll = 1:size(Indices,1); persisText(['Analysing Sub-Model #' num2str(ll) ' of ' num2str(size(Indices,1)) '; ' num2str(numel(Indices{ll,2})) ' Observations, across ' num2str(numel(Indices{ll,1})) ' Voxels.' ]); Xind = Indices{ll,2}; vec = Indices{ll,1}; counter = 0; %%% Compute Error for ii = 1:numel(MOD.RFMs); if isempty( MOD.RFMs(ii).tx1) continue end %%%%%%%% Var/Covar correct %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Y = I.W{ii}*OD(Xind,vec); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% tx1 = I.W{ii}*MOD.RFMs(ii).tx1(Xind,:); tx2 = I.W{ii}*MOD.RFMs(ii).tx2(Xind,:); edf = ResidualDFs(tx1)-ResidualDFs(tx2); if ll==1; masterDF(ii) = edf; end [SSm] = makeSSmat(tx1,tx2); if I.estSmooth == 1 && ll == 1 [RSS Res] = LoopEstimate(Y,1,SSm); Res = Res./repmat(sqrt(RSS/edf)',1,size(Res,2)); tm = [pwd '/ResAll_' sprintf('%0.2d',ii)]; warning off; delete([tm '.nii']); delete([tm '.mat']); warning on; v = I.v; v.fname = [tm '.nii']; vol = nan(v.dim); for jj = 1:size(Res,2); vol(MasterInd(vec)) = Res(:,jj); v.n = [jj 1]; spm_write_vol(v,vol); end fprintf('\n'); h = spm_vol(v.fname); [FWHM,VRpv,R] = spm_est_smoothness(h,spm_vol('AllMask.nii'),[numel(h) edf]); I.FWHM{ii} = FWHM; try [tmpM tmpH] = openIMG('RPV.img'); catch [tmpM tmpH] = openIMG('RPV.nii'); end tmpH.fname = ['RPV' tm(end-2:end) '.nii']; spm_write_vol(tmpH,tmpM); delete('RPV.*') if I.KeepResiduals==0 delete ResAll_*.nii; delete ResAll_*.mat; end clear Res; persisText(); persisText(['Analysing Sub-Model #' num2str(ll) ' of ' num2str(size(Indices,1)) '; ' num2str(numel(Indices{ll,2})) ' Observations, across ' num2str(numel(Indices{ll,1})) ' Voxels.' ]); else RSS = LoopEstimate(Y,1,SSm); end ResMS{ii}(MasterInd(vec)) = RSS./edf; for jj = 1:numel(MOD.RFMs(ii).Effect) counter = counter+1; tx1 = I.W{ii}*MOD.RFMs(ii).Effect(jj).tx1(Xind,:); if isempty(MOD.RFMs(ii).Effect(jj).tx2) tx2 = zeros(size(tx1,1),1); df = ResidualDFs(tx1); SSm = makeSSmat(tx1,tx2); else tx2 = I.W{ii}*MOD.RFMs(ii).Effect(jj).tx2(Xind,:); df = ResidualDFs(tx1)-ResidualDFs(tx2); SSm = makeSSmat(tx1,tx2); end ESS = LoopEstimate(Y,1,SSm); Fstat = (ESS./df) ./ (RSS./edf); conDFs(end+1,1:2) = [df edf]; name = MOD.RFMs(ii).Effect(jj).name; fileNames{end+1} = name; if I.writeT == 1 && df==1 && isempty(contains('[\*|\:]',{name})) && ~strcmpi('FullModel',name); test = 'T'; tol = max(size(tx2)) * eps(norm(tx2)); [U,sigma,R] = svd(tx2); atx2 = tx2*R; atx2 = atx2(:,find(diag(sigma)>tol)); nm = tx1-(atx2*(atx2\tx1)); [U,sigma,R] = svd(nm); tmp = abs([max(R); min(R)]); [trash,i1] = max(tmp); i1(i1==2)=-1; for kk = 1:size(R,2); R(:,kk) = R(:,kk)*i1(kk); end nm = nm*R; nm = nm(:,find(diag(sigma)>tol)); b = pinv(nm)*Y; con = sum(b,1); else test = 'F'; con = ESS./df; end type{end+1} = test; if edf~=masterDF(ii) p = spm_Fcdf(Fstat,df,edf); Fstat2 = spm_invFcdf(p,df,masterDF(ii)); Fstat2(isinf(Fstat2))=Fstat(isinf(Fstat2)); Fstat = Fstat2; end if strcmpi(test,'T') Stat{counter}(MasterInd(vec)) = sqrt(Fstat).*sign(con); Con{counter}(MasterInd(vec)) = con; else Stat{counter}(MasterInd(vec)) = Fstat; Con{counter}(MasterInd(vec)) = con; end end end end fprintf('\n\n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Write Out Mat-Files %% fprintf('\n\nWriting out mat files...\n'); c = 0; for ii = 1:numel(Outliers); c = c+numel(Outliers{ii}); end if c>0 OL{1} = zeros(c,1); OL{2} = zeros(c,2); st = 0; for ii = 1:numel(Outliers) tmp = Outliers{ii}; if ~isempty(tmp) OL{1}(st+1:st+numel(tmp))=tmp; [row col] = ind2sub(BMdim,tmp); OL{2}(st+1:st+numel(tmp),:)=[row(:),col(:)]; st = st+numel(tmp); end end I.OL = OL; end if I.writeI == 1; save I.mat I -v7.3; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for q=1 %% Write Out Image Files %% fprintf('\n\nWriting out image files...\n'); v = I.v; v.dt = [64 0]; for ll = 1:length(ResMS); tm = ['ResMS_' sprintf('%0.2d',ll)]; writeIMG(v,ResMS{ll},[tm '.nii']); end for jj = 1:numel(Con) delete(['*' sprintf('%0.4d',jj) '*.nii']) fileNames{jj} = regexprep(fileNames{jj},':','_x_'); if strcmpi(type{jj},'T') tm = [sprintf('%0.4d',jj) '_T_' fileNames{jj} '.nii']; hold = v.descrip; v.descrip = ['SPM{T_' '[' num2str(conDFs(jj,2)) ']} - created with GLM_Flex_Fast']; writeIMG(v,Stat{jj},tm); v.descrip = hold; tm = ['con_' sprintf('%0.4d',jj) '.nii']; writeIMG(v,Con{jj},tm); end if strcmpi(type{jj},'F') tm = [sprintf('%0.4d',jj) '_F_' fileNames{jj} '.nii']; hold = v.descrip; v.descrip = ['SPM{F_' '[' num2str(conDFs(jj,1)) ',' num2str(conDFs(jj,2)) ']} - created with GLM_Flex_Fast']; writeIMG(v,Stat{jj},tm); v.descrip = hold; tm = ['ess_' sprintf('%0.4d',jj) '.nii']; writeIMG(v,Con{jj},tm); end end if I.writeFin == 1; fprintf('\nWriting out finalized data set ...\n'); v.descrip = 'Original data set with outliers removed.'; vol = nan(v.dim); v.n = [1 1]; v.fname = 'FinalDataSet.nii'; for ii = 1:size(OD,1) vol(MasterInd) = OD(ii,:); v.n = [ii 1]; spm_write_vol(v,vol); end end fprintf('\nAll Done!\n'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% end %% End of Main Function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function VV = getVI(mod) P = []; i1 = numel(mod.RFMs); VV = []; %%% for ii = 1:i1 factor = []; FM = ones(size(mod.X,1),1); c = 0; part = mod.RFMs(ii); for jj = 1:numel(part.Effect) Eff = part.Effect(jj); if any(Eff.name==':') && jj==1 terms = regexp(Eff.name,':', 'split'); % factor = F1; % FM = F2; c = numel(factor); for kk = 1:numel(terms) a = makedummy(mod.data.(terms{kk}))*(1:numel(unique(mod.data.(terms{kk}))))'; FM(:,end+1) = a; c = c+1; factor(c).name = terms{kk}; factor(c).levels = numel(unique(mod.data.(terms{kk}))); factor(c).gmsca = 0; factor(c).ancova = 0; factor(c).variance = 1; factor(c).dept = 1; end else if any(Eff.name==':') continue end if strcmpi(Eff.name,'FullModel') continue end if isnumeric(mod.data.(Eff.name)) continue end a = makedummy(mod.data.(Eff.name))*(1:numel(unique(mod.data.(Eff.name))))'; FM(:,end+1) = a; c = c+1; factor(c).name = Eff.name; factor(c).levels = numel(unique(mod.data.(Eff.name))); factor(c).gmsca = 0; factor(c).ancova = 0; factor(c).variance = 1; if ii==1 FM = [ones(size(FM,1),1) FM]; factor(c).dept = 0; F1 = factor; F2 = FM; else factor(c).dept = 1; end end P(ii).factor = factor; P(ii).FM = FM; end if isempty(factor); continue end if strfind(lower(spm('version')),'spm8') clear SPM; SPM.factor = factor; SPM.xVi.I = FM; SPM = spm_get_vc(SPM); try VV{ii} = SPM.xVi.Vi; catch VV{ii} = {SPM.xVi.V}; end end if strfind(lower(spm('version')),'spm12') Vi = spm_get_vc(FM,factor); VV{ii} = Vi; end end save tmp.mat P; end function X = getREMLdm(mod) X = []; L = mod.RFMs; for ii = 1:numel(L); if isempty(L(ii).name) X{ii} = []; continue end parts = regexp(L(ii).name,':','split'); n = numel(parts); sets = combnk(1:n,n-1); tmp = L(ii).tx2; if ~isempty(sets) for jj = 1:size(sets,1) in = []; if any(sets(jj,:)==1) for kk = 1:size(sets,2) in{end+1} = makedummy(mod.data.(parts{sets(jj,kk)}),1); end else continue end tmp = [tmp FactorCross(in)]; end end X{ii} = tmp; end end
github
scanUCLA/MRtools_Hoffman2-master
inria_realign.m
.m
MRtools_Hoffman2-master/fcMRI_scripts/inria_realign.m
24,047
utf_8
a6b6c891554c9808aa903c6f4f947d63
function inria_realign(P,flags) % Robust rigid motion compensation in time series. % FORMAT inria_realign(P,flags) % % Similar to spm_realign.m. % % P - matrix of filenames {one string per row} % All operations are performed relative to the first image. % ie. Coregistration is to the first image, and resampling % of images is into the space of the first image. % For multiple sessions, P should be a cell array, where each % cell should be a matrix of filenames. % % flags - a structure containing various options. The fields are: % % rho_func - A string indicating the cost function that % will be used to caracterize intensity errors. % Possible choices are : % % 'quadratic' - fast, but not robust... % 'absolute' - quite slow, not very robust % 'huber' - Huber function % 'cauchy' - Cauchy function % 'geman' - Geman-McClure function % 'leclerc' - Leclerc-Welsch function % 'tukey' - Tukey's biweight function % % DEFAULT: 'geman', usually a good trade-off % between robustness and speed. % % cutoff - Most of the rho functions listed above require % an extra-parameter called the cut-off distance % (exceptions are 'quadratic' and 'absolute'). The % cut-off value is set proportionally to the % standard deviation of the noise (which is % estimated in course of registration using the % median of absolute deviations). The % proportionality factor, however, may be set by the % user according to the considered rho-function. % % DEFAULT: 2.5. % % The remaining flags are the same as in spm_realign: % % quality - Quality versus speed trade-off. Highest quality % (1) gives most precise results, whereas lower % qualities gives faster realignment. % The idea is that some voxels contribute little to % the estimation of the realignment parameters. % This parameter is involved in selecting the number % of voxels that are used. % % fwhm - The FWHM of the Gaussian smoothing kernel (mm) % applied to the images before estimating the % realignment parameters. % % sep - the default separation (mm) to sample the images. % % rtm - Register to mean. If field exists then a two pass % procedure is to be used in order to register the % images to the mean of the images after the first % realignment. % % PW - a filename of a weighting image (reciprocal of % standard deviation). If field does not exist, then % no weighting is done. % % hold - hold for interpolation (see spm_slice_vol and % spm_sample_vol). % %__________________________________________________________________________ % % Inputs % A series of *.img conforming to SPM data format (see 'Data Format'). % % Outputs % The parameter estimation part writes out ".mat" files for each of the % input images. The details of the transformation are displayed in the % results window as plots of translation and rotation. % A set of realignment parameters are saved for each session, named: % realignment_params_*.txt. %__________________________________________________________________________ % % The `.mat' files. % % This simply contains a 4x4 affine transformation matrix in a variable `M'. % These files are normally generated by the `realignment' and % `coregistration' modules. What these matrixes contain is a mapping from % the voxel coordinates (x0,y0,z0) (where the first voxel is at coordinate % (1,1,1)), to coordinates in millimeters (x1,y1,z1). By default, the % the new coordinate system is derived from the `origin' and `vox' fields % of the image header. % % x1 = M(1,1)*x0 + M(1,2)*y0 + M(1,3)*z0 + M(1,4) % y1 = M(2,1)*x0 + M(2,2)*y0 + M(2,3)*z0 + M(2,4) % z1 = M(3,1)*x0 + M(3,2)*y0 + M(3,3)*z0 + M(3,4) % % Assuming that image1 has a transformation matrix M1, and image2 has a % transformation matrix M2, the mapping from image1 to image2 is: M2\M1 % (ie. from the coordinate system of image1 into millimeters, followed % by a mapping from millimeters into the space of image2). % % These `.mat' files allow several realignment or coregistration steps to be % combined into a single operation (without the necessity of resampling the % images several times). The `.mat' files are also used by the spatial % normalisation module. %__________________________________________________________________________ % @(#)inria_realign.m 1.01 Alexis Roche 01/03/08 % based on spm_realign.m 2.27 John Ashburner 99/10/26 if nargin==0, inria_realign_ui; return; end; def_flags = struct('quality',1,'fwhm',6,'sep',4.5,'hold',-8,... 'rho_func','geman','cutoff',2.5); if nargin < 2, flags = def_flags; else, fnms = fieldnames(def_flags); for i=1:length(fnms), if ~isfield(flags,fnms{i}), flags = setfield(flags,fnms{i},getfield(def_flags,fnms{i})); end; end; end; linfun = inline('fprintf('' %-60s%s'', x,sprintf(''\b'')*ones(1,60))'); % if ~isstruct(P) if isempty(P), warning('Nothing to do'); return; end; if ~iscell(P), tmp = cell(1); tmp{1} = P; P = tmp; end; P = spm_vol(P); if isfield(flags,'PW'), flags.PW = spm_vol(flags.PW); end; % end if length(P)==1, linfun('Registering images..'); P{1} = realign_series(P{1},flags); save_parameters(P{1}); else, linfun('Registering together the first image of each session..'); %%% I might be able to tweak something here. Ptmp = P{1}(1); for s=2:prod(size(P)), Ptmp = [Ptmp ; P{s}(1)]; end; Ptmp = realign_series(Ptmp,flags); for s=1:prod(size(P)), M = Ptmp(s).mat*inv(P{s}(1).mat); for i=1:prod(size(P{s})), P{s}(i).mat = M*P{s}(i).mat; end; end; for s=1:prod(size(P)), linfun(['Registering together images from session ' num2str(s) '..']); P{s} = realign_series(P{s},flags); save_parameters(P{s}); end; end; % Save Realignment Parameters %--------------------------------------------------------------------------- linfun('Saving parameters..'); for s=1:prod(size(P)), for i=1:prod(size(P{s})), if strmatch(P{s}(i).fname(end-2:end), 'nii') %%% Alright, so this is all it took to get it straightend out. spm_get_space([P{s}(i).fname ',' num2str(i)], P{s}(i).mat); else spm_get_space(P{s}(i).fname, P{s}(i).mat); end end; end; plot_parameters(P,flags); return; %_______________________________________________________________________ %_______________________________________________________________________ function P = realign_series(P,flags) % Realign a time series of 3D images to the first of the series. % FORMAT P = realign_series(P,flags) % P - a vector of volumes (see spm_vol) %----------------------------------------------------------------------- % P(i).mat is modified to reflect the modified position of the image i. % The scaling (and offset) parameters are also set to contain the % optimum scaling required to match the images. %_______________________________________________________________________ if prod(size(P))<2, return; end; lkp = [1 2 3 4 5 6]; if P(1).dim(3) < 3, lkp = [1 2 6]; end; % Robust estimation flags %----------------------------------------------------------------------- flagSSD = (flags.cutoff == Inf | strcmp(lower(flags.rho_func), 'quadratic')); flagSAD = strcmp(lower(flags.rho_func), 'absolute'); % Points to sample in reference image %----------------------------------------------------------------------- skip = sqrt(sum(P(1).mat(1:3,1:3).^2)).^(-1)*flags.sep; d = P(1).dim(1:3); [x1,x2,x3]=ndgrid(1:skip(1):d(1),1:skip(2):d(2),1:skip(3):d(3)); x1 = x1(:); x2 = x2(:); x3 = x3(:); % Possibly mask an area of the sample volume. %----------------------------------------------------------------------- if isfield(flags,'PW'), [y1,y2,y3]=coords([0 0 0 0 0 0],P(1).mat,flags.PW.mat,x1,x2,x3); wt = spm_sample_vol(flags.PW,y1,y2,y3,1); msk = find(wt>0.01); x1 = x1(msk); x2 = x2(msk); x3 = x3(msk); wt = wt(msk); else, wt = []; end; n = prod(size(x1)); % Compute rate of change of (robust) chi2 w.r.t changes in parameters (matrix A) %-------------------------------------------------------------------------------- V = smooth_vol(P(1),flags.fwhm); [G,dG1,dG2,dG3] = spm_sample_vol(V,x1,x2,x3,flags.hold); clear V A0 = make_A(P(1).mat,x1,x2,x3,dG1,dG2,dG3,lkp); %---------------------------------------------------------------------- % Depending on flags.quality, remove a certain percentage of voxels % that contribute little to the final estimate. It basically % involves removing the voxels that contribute least to the % determinant of the inverse covariance matrix. if flags.quality < 1, % spm_chi2_plot('Init','Eliminating Unimportant Voxels',... % 'Fractional loss of quality','Iteration'); spm_plot_convergence('Init','Eliminating Unimportant Voxels','Fractional loss of quality','Iteration'); if isempty(wt), %det0 = det(spm_atranspa([A0 -G])); det0 = det([A0 -G]'*[A0 -G]); %APS_Edit else, det0 = det(spm_atranspa(diagW_A(sqrt(wt),[A0 -G]))); det0 = (det0^2)/det(spm_atranspa(diagW_A(wt,[A0 -G]))); end, % We will reject the voxels having the least gradient norm. Although % essentially heuristic, this choice allows to speed up the % selection while achieving compression rates that are not worse % than in the original SPM implementation. normG = dG1.^2 + dG2.^2 + dG3.^2; Nvox = length(normG); if ~isempty(wt), normG = (wt.^2).*normG; end, % Initial fraction of points. prop = 0.5*flags.quality; [junk,mmsk] = sort(normG); % junk == normG(msk) step = 0.1; det1=det0; stop = 0; isdet_large = 1; while stop == 0 & prop > 1e-2, msk = mmsk( round((1-prop)*Nvox):Nvox ); Adim = [A0(msk,:), -G(msk,:)]; if isempty(wt), % det1 = det(spm_atranspa(Adim)); det1 = det(Adim'*Adim); %% aps edit else, det1 = det(spm_atranspa(diagW_A(sqrt(wt(msk)),Adim))); det1 = (det1^2)/det(spm_atranspa(diagW_A(wt(msk),Adim))); end, stop = ( abs(det1/det0 - flags.quality) < 1e-2 ); aux = (det1/det0 > flags.quality); if aux ~= isdet_large, isdet_large = aux; step = step/2; end, if isdet_large, prop = prop - step; else, prop = prop + step; end, spm_plot_convergence('Set',det1/det0); end, clear Adim, clear normG, msk = mmsk(1:ceil((1-prop)*Nvox)); A0(msk,:) = []; G(msk,:) = []; x1(msk,:) = []; x2(msk,:) = []; x3(msk,:) = []; dG1(msk,:) = []; dG2(msk,:) = []; dG3(msk,:) = []; if ~isempty(wt), wt(msk,:) = []; end; spm_plot_convergence('Clear'); end, %----------------------------------------------------------------------- if isfield(flags,'rtm'), count = ones(size(G)); ave = G; grad1 = dG1; grad2 = dG2; grad3 = dG3; end; spm_progress_bar('Init',length(P)-1,'Registering Images'); % Loop over images %----------------------------------------------------------------------- for i=2:length(P), V=smooth_vol(P(i),flags.fwhm); countdown = -1; Hold = 1; % Begin with tri-linear interpolation. for iter=1:64, % Initial multiplicative factor to be applied to image P(i) slope = 1.0; % Voxel coordinates in the P(i) coordinate system of the % points yi that match the points xi [y1,y2,y3] = coords([0 0 0 0 0 0],P(1).mat,P(i).mat,x1,x2,x3); % Test partial overlap msk = find((y1>=1 & y1<=d(1) & y2>=1 & y2<=d(2) & y3>=1 & y3<=d(3))); msk = msk(find(msk<numel(G))); if length(msk)<32, error_message(P(i)); end; % Interpolates image P(i) F = spm_sample_vol(V, y1(msk),y2(msk),y3(msk),Hold); % Matrix A (7xn) and vector b (nx1) A = [A0(msk,:), -F]; try b = slope*F - G(msk); catch keyboard; end if flagSSD & isempty(wt), Alpha = spm_atranspa(A); Beta = A'*b; else, % Computes adaptive weights if flagSSD, cutoff = Inf; elseif flagSAD, cutoff = 0; else, cutoff = flags.cutoff * 1.4826 * median(abs(b)); % Adaptive cut-off distance end, ad_wt = Mweight(b, cutoff, flags.rho_func); % Possibly takes into account prior weights if ~isempty(wt), ad_wt = ad_wt.*wt(msk); end, % Computes A'*diag(ad_wt) AtW = diagW_A(ad_wt,A)'; % Computes Alpha (Hessian) and Beta (-0.5* gradient) Alpha = AtW*A; Beta = AtW*b; end, % Update parameters soln = Alpha\Beta; slope = slope + soln(end); p = [0 0 0 0 0 0 1 1 1 0 0 0]; p(lkp) = soln(1:(end-1)); % Update P(i).mat dP = spm_matrix(p); P(i).mat = dP*P(i).mat; % Stopping criterion % Test the variation of parameters rather than the variation of % the criterion [epst,epsr] = rigid_errors(eye(4),dP); if epst < 1e-2 & epsr < 1e-4 & countdown == -1, % Stopped converging. % Switch to a better (slower) interpolation % and do two final iterations Hold = flags.hold; countdown = 2; end; if countdown ~= -1, if countdown==0, break; end; countdown = countdown -1; end; end; if isfield(flags,'rtm'), % Generate mean and derivatives of mean tiny = 5e-2; % From spm_vol_utils.c msk = find((y1>=(1-tiny) & y1<=(d(1)+tiny) &... y2>=(1-tiny) & y2<=(d(2)+tiny) &... y3>=(1-tiny) & y3<=(d(3)+tiny))); count(msk) = count(msk) + 1; [G,dG1,dG2,dG3] = spm_sample_vol(V,y1(msk),y2(msk),y3(msk),flags.hold); ave(msk) = ave(msk) + G.*soln(end); grad1(msk) = grad1(msk) + dG1.*soln(end); grad2(msk) = grad2(msk) + dG2.*soln(end); grad3(msk) = grad3(msk) + dG3.*soln(end); end; spm_progress_bar('Set',i-1); end; spm_progress_bar('Clear'); for i=1:prod(size(P)), aux = spm_imatrix(P(i).mat/P(1).mat); Params(i,:) = aux(1:6); end %%% Bidouille save SPMtmp Params flags, if ~isfield(flags,'rtm'), return; end; %_______________________________________________________________________ M=P(1).mat; A0 = make_A(M,x1,x2,x3,grad1./count,grad2./count,grad3./count,lkp); G = ave; clear ave grad1 grad2 grad3, % Loop over images %----------------------------------------------------------------------- spm_progress_bar('Init',length(P),'Registering Images to Mean'); for i=1:length(P), V=smooth_vol(P(i),flags.fwhm); for iter=1:64, slope = 1.0; [y1,y2,y3] = coords([0 0 0 0 0 0],M,P(i).mat,x1,x2,x3); msk = find((y1>=1 & y1<=d(1) & y2>=1 & y2<=d(2) & y3>=1 & y3<=d(3))); if length(msk)<32, error_message(P(i)); end; F = spm_sample_vol(V, y1(msk),y2(msk),y3(msk),flags.hold); A = [A0(msk,:), -F]; b = slope*F - G(msk); if flagSSD & isempty(wt), Alpha = spm_atranspa(A); Beta = A'*b; else, if flagSSD, cutoff = Inf; elseif flagSAD, cutoff = 0; else, cutoff = flags.cutoff * 1.4826 * median(abs(b)); % Adaptive cut-off distance end, ad_wt = Mweight(b, cutoff, flags.rho_func); if ~isempty(wt), ad_wt = ad_wt.*wt(msk); end, AtW = diagW_A(ad_wt,A)'; Alpha = AtW*A; Beta = AtW*b; end, % Update parameters soln = Alpha\Beta; slope = slope + soln(end); p = [0 0 0 0 0 0 1 1 1 0 0 0]; p(lkp) = soln(1:(end-1)); % Update P(i).mat dP = spm_matrix(p); P(i).mat = dP*P(i).mat; % Stopping criterion [epst,epsr] = rigid_errors(eye(4),dP); if epst < 1e-2 & epsr < 1e-4, % Stopped converging break; end, end; spm_progress_bar('Set',i); end; spm_progress_bar('Clear'); % Since we are supposed to be aligning everything to the first % image, then we had better do so %----------------------------------------------------------------------- M = M/P(1).mat; for i=1:length(P) P(i).mat = M*P(i).mat; end return; %_______________________________________________________________________ %_______________________________________________________________________ function [y1,y2,y3]=coords(p,M1,M2,x1,x2,x3) % Rigid body transformation of a set of coordinates. M = (inv(M2)*spm_matrix(p(1:6))*M1); y1 = M(1,1)*x1 + M(1,2)*x2 + M(1,3)*x3 + M(1,4); y2 = M(2,1)*x1 + M(2,2)*x2 + M(2,3)*x3 + M(2,4); y3 = M(3,1)*x1 + M(3,2)*x2 + M(3,3)*x3 + M(3,4); return; %_______________________________________________________________________ %_______________________________________________________________________ function V = smooth_vol(P,fwhm) % Test wehter smoothing should really be applied... if fwhm == 0, V = spm_read_vols(P); return; end, % Convolve the volume in memory. s = sqrt(sum(P.mat(1:3,1:3).^2)).^(-1)*(fwhm/sqrt(8*log(2))); x = round(6*s(1)); x = [-x:x]; y = round(6*s(2)); y = [-y:y]; z = round(6*s(3)); z = [-z:z]; x = exp(-(x).^2/(2*(s(1)).^2)); y = exp(-(y).^2/(2*(s(2)).^2)); z = exp(-(z).^2/(2*(s(3)).^2)); x = x/sum(x); y = y/sum(y); z = z/sum(z); i = (length(x) - 1)/2; j = (length(y) - 1)/2; k = (length(z) - 1)/2; V = zeros(P.dim(1:3)); spm_conv_vol(P,V,x,y,z,-[i j k]); return; %_______________________________________________________________________ function A = make_A(M,x1,x2,x3,dG1,dG2,dG3,lkp) % Matrix of rate of change of weighted difference w.r.t. parameter changes p0 = [0 0 0 0 0 0 1 1 1 0 0 0]; A = zeros(prod(size(x1)),length(lkp)); for i=1:length(lkp) pt = p0; pt(lkp(i)) = pt(lkp(i))+1e-6; [y1,y2,y3] = coords(pt,M,M,x1,x2,x3); A(:,i) = sum([y1-x1 y2-x2 y3-x3].*[dG1 dG2 dG3],2)*(1e+6); end return; %_______________________________________________________________________ %_______________________________________________________________________ function error_message(P) str = { 'There is not enough overlap in the images',... 'to obtain a solution.',... ' ',... 'Offending image:',... P.fname,... ' ',... 'Please check that your header information is OK.'}; spm('alert*',str,mfilename,sqrt(-1)); error('insufficient image overlap') return %_______________________________________________________________________ %_______________________________________________________________________ function plot_parameters(P,flags) fg=spm_figure('FindWin','Graphics'); if ~isempty(fg), P = cat(1,P{:}); if length(P)<2, return; end; Params = zeros(prod(size(P)),12); for i=1:prod(size(P)), Params(i,:) = spm_imatrix(P(i).mat/P(1).mat); end % display results % translation and rotation over time series %------------------------------------------------------------------- spm_figure('Clear','Graphics'); ax=axes('Position',[0.1 0.65 0.8 0.2],'Parent',fg,'Visible','off'); set(get(ax,'Title'),'String','Image realignment (INRIAlign toolbox)','FontSize',16,'FontWeight','Bold','Visible','on'); x = 0.1; y = 0.9; for i = 1:min([prod(size(P)) 9]) text(x,y,[sprintf('%-4.0f',i) P(i).fname],'FontSize',10,'Interpreter','none','Parent',ax); y = y - 0.08; end if prod(size(P)) > 9 text(x,y,'................ etc','FontSize',10,'Parent',ax); end % Print important parameters y=y-0.08; text(x,y,'Parameters','Parent',ax,'FontSize',11,'FontWeight','Bold'); tmp = str2mat('Quadratic','Absolute value','Huber','Cauchy','Geman-McClure','Leclerc-Welsch','Tukey'); tmp2 = str2mat('quadratic','absolute','huber','cauchy','geman','leclerc','tukey'); msg = [' Cost function: ',deblank(tmp(strmatch(flags.rho_func,tmp2),:))]; if ~strcmp(lower(flags.rho_func),'quadratic') & ~strcmp(lower(flags.rho_func),'absolute'), msg = [msg, ', cut-off distance: ', ... num2str(flags.cutoff),'\times\sigma']; end, y=y-0.08; text(x,y,msg,'Parent',ax,'Interpreter','tex'); msg = [' Quality: ',num2str(flags.quality)]; msg = [msg,' - Subsampling: ',num2str(flags.sep), ' mm']; msg = [msg,' - Smoothing: ',num2str(flags.fwhm),' mm']; y=y-0.08; text(x,y,msg,'Parent',ax,'Interpreter','tex'); ax=axes('Position',[0.1 0.35 0.8 0.2],'Parent',fg,'XGrid','on','YGrid','on'); plot(Params(:,1:3),'Parent',ax) % s = ['x translation';'y translation';'z translation']; % text([2 2 2], Params(2, 1:3), s, 'Fontsize',10,'Parent',ax) legend(ax,'x translation','y translation','z translation'); set(get(ax,'Title'),'String','translation','FontSize',16,'FontWeight','Bold'); set(get(ax,'Xlabel'),'String','image'); set(get(ax,'Ylabel'),'String','mm'); ax=axes('Position',[0.1 0.05 0.8 0.2],'Parent',fg,'XGrid','on','YGrid','on'); plot(Params(:,4:6)*180/pi,'Parent',ax) % s = ['pitch';'roll ';'yaw ']; % text([2 2 2], Params(2, 4:6)*180/pi, s, 'Fontsize',10,'Parent',ax) legend(ax,'pitch','roll','yaw'); set(get(ax,'Title'),'String','rotation','FontSize',16,'FontWeight','Bold'); set(get(ax,'Xlabel'),'String','image'); set(get(ax,'Ylabel'),'String','degrees'); % print realigment parameters spm_print end return; %_______________________________________________________________________ %_______________________________________________________________________ function save_parameters(V) fname = [spm_str_manip(prepend(V(1).fname,'realignment_params_'),'s') '.txt']; n = length(V); Q = zeros(n,6); for j=1:n, qq = spm_imatrix(V(j).mat/V(1).mat); Q(j,:) = qq(1:6); end; save(fname,'Q','-ascii'); return; %_______________________________________________________________________ %_______________________________________________________________________ function PO = prepend(PI,pre) [pth,nm,xt] = fileparts(deblank(PI)); PO = fullfile(pth,[pre nm xt]); return; %_______________________________________________________________________ function y = Mweight(x, c, flag) if c == Inf, flag = 'quadratic'; end, % To avoid numerical instabilities cc = max(c, 1e-1); switch lower(flag) case 'quadratic' y = ones(size(x)); case 'absolute' % To avoid numerical instabilities, the theoretical weighting % function given by 1/|x| is replaced with a bounded function. This % corresponds to approximating |x| by sqrt(x^2 + tiny). ic = 10; y = 1./sqrt(1 + (ic*x).^2); case 'huber' y = ones(size(x)); [aux, msk] = find(abs(x)>cc); y(msk) = cc./abs(x(msk)); case 'cauchy' ic = 1/cc; y = (1 + (x*ic).^2).^(-1); case 'geman' ic = 1/cc; y = (1 + (x*ic).^2).^(-2); case 'leclerc' ic = 1/cc; y = exp( - (x*ic).^2 ); case 'tukey' ic = 1/cc; y = ( abs(x)<cc ) .* (1 - (x*ic).^2).^(2); otherwise error('no M-estimator specified'), end, return; %_______________________________________________________________________ function B = diagW_A(w,A); % Computes diag(w)*A without computing w; % Assumes wt is a column vector. for i=1:size(A,2), B(:,i) = w.*A(:,i); end, return; %_______________________________________________________________________ function [dt,dr] = rigid_errors ( T_gt, T ); % Translation error dt = norm ( T_gt(1:3,4) - T(1:3,4) ); % Rotation error (in degrees) rad2deg = 57.2958; dR = inv(T_gt(1:3,1:3))*T(1:3,1:3); [V,D]=eig(dR); % Find the indice corresponding to eigenvalue 1 [tmp,in]=min( (diag(D)-1).*conj(diag(D)-1) ); % Rotation axis n=V(1:3,in); n=n/norm(n); % Construct an orthonormal basis (n,v,w) [tmp,in2]=min(abs(n)); aux=[0 0 0]'; aux(in2)=1; v=cross(n,aux); v=v/norm(v); w=cross(n,v); w=w/norm(w); % Rotation angle drv=dR*v; dr=atan2(w'*drv,v'*drv); % Error in degrees dr = rad2deg * abs(dr); return;
github
scanUCLA/MRtools_Hoffman2-master
peak_nii.m
.m
MRtools_Hoffman2-master/peak_nii/peak_nii.m
52,648
utf_8
7408d106e2734ce29a4c904f6457f31e
function [voxels voxelstats clusterstats sigthresh regions mapparameters UID]=peak_nii(image,mapparameters) %% % USAGE AND EXAMPLES CAN BE FOUND IN PEAK_NII_MANUAL.PDF % % License: % Copyright (c) 2011-12 Donald G. McLaren and Aaron Schultz % All rights reserved. % % Redistribution, with or without modification, is permitted provided that the following conditions are met: % 1. Redistributions must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % 2. All advertising materials mentioning features or use of this software must display the following acknowledgement: % This product includes software developed by the Harvard Aging Brain Project (NIH-P01-AG036694), NIH-R01-AG027435, and The General Hospital Corp. % 3. Neither the Harvard Aging Brain Project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % 4. You are not permitted under this License to use these files commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part % of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final % aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for % sale or license to a third party. % 5. Use of the Software to provide service to an external organization for which payment is received (e.g. contract research) is permissible. % % THIS SOFTWARE IS PROVIDED BY DONALD G. MCLAREN ([email protected]) AND AARON SCHULTZ ([email protected]) ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED % TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, % OR CONSEQUENTIAL %DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF % LIABILITY, WHETHER IN CONTRACT, %STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % Licenses related to using various atlases are described in Peak_Nii_Atlases.PDF % % For the program in general, please contact [email protected] % % peak_nii.v6 -- Last modified on 02/11/2012 by Donald G. McLaren, PhD % peak_nii.v7 -- Last modified on 05/20/2014 by Donald G. McLaren, PhD % ([email protected]) % Wisconsin Alzheimer's Disease Research Center - Imaging Core, Univ. of % Wisconsin - Madison % Neuroscience Training Program and Department of Medicine, Univ. of % Wisconsin - Madison % GRECC, William S. Middleton Memorial Veteren's Hospital, Madison, WI % GRECC, Bedford VAMC % Department of Neurology, Massachusetts General Hospital and Havard % Medical School % % For the program in general, please contact [email protected] % %% Program begins here try if ~strcmp(spm('Ver'),'SPM8') && ~strcmp(spm('Ver'),'SPM12') %KT edit, og: ~strcmp(spm('Ver'),'SPM8') && ~strcmp(spm('Ver'),'SPM12b') disp('PROGRAM ABORTED:') disp(' You must use SPM8/SPM12b to process your data; however, you can use SPM.mat files') disp(' generated with SPM2 or SPM5. In these cases, simply specify the option SPMver') disp(' in single qoutes followed by a comma and the version number.') disp(' ') disp('Make sure to add SPM8 to your MATLAB path before re-running.') return else addpath(fileparts(which('spm'))) end catch disp('PROGRAM ABORTED:') disp(' You must use SPM8 to process your data; however, you can use SPM.mat files') disp(' generated with SPM2 or SPM5. In these cases, simply specify the option SPMver') disp(' in single qoutes followed by a comma and the version number.') disp(' ') disp('Make sure to add SPM8 to your MATLAB path before re-running.') return end %%Placeholder outputs voxels=[]; regions=[]; voxelstats=[]; clusterstats=[]; sigthresh=cell(6,1); sigthresh{1,1}='FWEp: '; sigthresh{2,1}='FDRp: '; sigthresh{3,1}='FDRpk18: '; sigthresh{4,1}='FDRpk26: '; sigthresh{5,1}='FWEc: '; sigthresh{6,1}='FDRc: '; %% Check inputs if exist(image,'file')==2 I1=spm_vol(image); infoI1=I1; [Iorig,voxelcoord]=spm_read_vols(I1); if nansum(nansum(nansum(abs(Iorig))))==0 error(['Error: ' image ' is all zeros or all NaNs']) end else error(['File ' image ' does not exist']) end if nargin==2 if ischar(mapparameters) && exist(mapparameters,'file')==2 mapparameters=load(mapparameters); end if ~isstruct(mapparameters) error('Mapparameters is not a structure OR not a file that contains a structure'); end else error('Mapparameters must be specified as a file or a structure'); end [mapparameters, errors, errorval]=peak_nii_inputs(mapparameters,infoI1.fname,nargout); if isfield(mapparameters,'voxel') if size(mapparameters.voxel,2)==3 mapparameters.voxel=mapparameters.voxel; elseif size(mapparameters.voxel,1)==3 mapparameters.voxel=mapparameters.voxel'; else disp('mapparameters.voxel is not a voxel.') end end if ~isempty(errorval) || ~isempty(errors) disp('There was an error.') disp(errorval) if size(errors)>1 for ii=1:size(errors)-1 disp(errors{ii}) end error(errors{size(errors)}) else error(errors{1}) end end UID=mapparameters.UID; FIVEF=mapparameters.FIVE; %% Read in data and mask (if available) if strcmpi(mapparameters.sign,'neg') Iorig=-1.*Iorig; disp(['Threshold is:-' num2str(mapparameters.thresh)]) mapparameters.thresh2=mapparameters.thresh*-1; else disp(['Threshold is:' num2str(mapparameters.thresh)]) mapparameters.thresh2=mapparameters.thresh; end if ~isempty(mapparameters.mask) I2=spm_vol(mapparameters.mask); infoI2=I2; if infoI1.mat==infoI2.mat if infoI1.dim==infoI2.dim I2=spm_read_vols(I2); else v = I2; [XYZ(1,:), XYZ(2,:), XYZ(3,:)]=ind2sub(I1.dim(1:3),1:prod(I1.dim(1:3))); I2 = spm_data_read(v,'xyz',v.mat\I1.mat*[XYZ; ones(1,size(XYZ,2))]); end else v = I2; [XYZ(1,:), XYZ(2,:), XYZ(3,:)]=ind2sub(I1.dim(1:3),1:prod(I1.dim(1:3))); I2 = spm_data_read(v,'xyz',v.mat\I1.mat*[XYZ; ones(1,size(XYZ,2))]); end I2=(I2>0)+(I2<0); % Ensures that the mask is binary I2(I2==0)=NaN; % Since 0 can be used in computations, convert 0s in mask to NaN. I=Iorig; %Copy original data I(isnan(I2))=NaN; %Mask out value outside of the mask with NaN %% Mask Region file if ~isempty(mapparameters.label.source) try mapparameters.label.rf.img=mapparameters.label.rf.img.*(I2~=0); catch v = mapparameters.label.rf.hdr; [XYZ(1,:), XYZ(2,:), XYZ(3,:)]=ind2sub(I1.dim(1:3),1:prod(I1.dim(1:3))); AtlasMask = spm_data_read(v,'xyz',v.mat\I1.mat*[XYZ; ones(1,size(XYZ,2))]); mapparameters.label.rf.XYZmm=XYZ; mapparameters.label.rf.img=zeros(size(I)); mapparameters.label.rf.img=reshape(AtlasMask.*(I2>0),size(I)); end end else I=Iorig; end %% Program begins here % Get all possible p-values if mapparameters.SV realI=I(~isnan(I)); realI=realI(realI~=0); SV=numel(realI); else realI=Iorig(~isnan(Iorig)); realI=realI(realI~=0); SV=numel(realI); %Search space end if strcmpi(mapparameters.type,'T') mapparameters.type='T';%compatibility with spm commands if ~isempty(mapparameters.df1) QPs=sort(1-spm_Tcdf(realI,mapparameters.df1)); %uncorrected P values in searched volume (for voxel FDR) - not the masked volume sigthresh{2,1}=[sigthresh{2,1} num2str(spm_uc_FDR(mapparameters.threshc,[1 mapparameters.df1],mapparameters.type,1,QPs)) ',' num2str(1-spm_Tcdf(spm_uc_FDR(mapparameters.threshc,[1 mapparameters.df1],mapparameters.type,1,QPs),mapparameters.df1))]; else sigthresh{2,1}='FDRp: Not Computed. No df provided.' end elseif strcmpi(mapparameters.type,'F') mapparameters.type='F';%compatibility with spm commands if ~isempty(mapparameters.df1) && ~isempty(mapparameters.df2) QPs=sort(1-spm_Fcdf(realI,mapparameters.df1,mapparameters.df2)); %uncorrected P values in searched volume (for voxel FDR) - not the masked volume sigthresh{2,1}=[sigthresh{2,1} num2str(spm_uc_FDR(mapparameters.threshc,[mapparameters.df1 mapparameters.df2],mapparameters.type,1,QPs)) ',' num2str(1-spm_Fcdf(spm_uc_FDR(mapparameters.threshc,[mapparameters.df1 mapparameters.df2],mapparameters.type,1,QPs),mapparameters.df1, mapparameters.df2))]; else sigthresh{2,1}='FDRp: Not Computed. No df provided.' end elseif strcmpi(mapparameters.type,'Z') mapparameters.type='Z';%compatibility with spm commands QPs=sort(1-spm_Ncdf(realI,0,1)); %uncorrected P values in searched volume (for voxel FDR) - not the masked volume sigthresh{2,1}=[sigthresh{2,1} num2str(spm_uc_FDR(mapparameters.threshc,[NaN NaN],mapparameters.type,1,QPs)) ',' num2str(1-spm_Ncdf(spm_uc_FDR(mapparameters.threshc,[NaN NaN],mapparameters.type,1,QPs),0,1))]; end ind=find(I>mapparameters.thresh); %#ok<*EFIND> %Masked file if isempty(ind) voxels=[]; regions={}; disp(['NO MAXIMA ABOVE ' num2str(mapparameters.thresh) '.']) if mapparameters.exact==1 disp('To find the cluster in this subject, please set thresh to 0') return else return end end [L(1,:),L(2,:),L(3,:)]=ind2sub(infoI1.dim,ind); %Cluster signficant voxels A=peakcluster(L,mapparameters.conn,infoI1); % A is the cluster of each voxel A=transpose(A); n=hist(A,1:max(A)); if max(n)<mapparameters.cluster voxels=[]; regions={}; display(['NO CLUSTERS LARGER THAN ' num2str(mapparameters.cluster) ' voxels.']) if mapparameters.exact==1 disp(['The largest cluster in this subject @ ' num2str(mapparameters.thresh2) 'is ' num2str(max(n)) 'voxels.']) disp('To find the cluster in this subject, please change the cluster size or threshold.') end return end clear L A n ind if FIVEF iterrange=1; else iterrange=[1 2]; end for iter=iterrange if mapparameters.SV Iuse=I; elseif iter==1 Iuse=Iorig; else Iuse=I; end %Find significant voxels ind=find(Iuse>mapparameters.thresh); L=[]; [L(1,:),L(2,:),L(3,:)]=ind2sub(infoI1.dim,ind); %Cluster signficant voxels A=peakcluster(L,mapparameters.conn,infoI1); % A is the cluster of each voxel A=transpose(A); n=hist(A,1:max(A)); if iter==1 && isfield(mapparameters,'RESELS') FWHM=mapparameters.FWHM(infoI1.dim>0); V2R=1/prod(FWHM); if strcmpi(mapparameters.type,'T') || strcmpi(mapparameters.type,'F') Pk=NaN(length(n),1); Pc=NaN(length(n),1); if strcmpi(mapparameters.type,'T') DF=[1 mapparameters.df1]; else DF=[mapparameters.df1 mapparameters.df2]; end %keyboard (KT-EDIT) for ii = 1:length(n) [Pk(ii), Pc(ii)] = spm_P_RF(1,n(ii)*V2R,mapparameters.thresh,DF,mapparameters.type,mapparameters.RESELS,1); end QPc=sort(Pc,'ascend')'; [Pk, J] = sort(Pk, 'ascend'); Ifwe = find(Pk <= mapparameters.threshc, 1, 'last'); if isempty(Ifwe) sigthresh{5,1}=[sigthresh{5,1} 'Inf']; else sigthresh{5,1}=[sigthresh{5,1} num2str(n(J(Ifwe)))]; end Fi = (1:length(Pc))/length(Pc)*mapparameters.threshc/1;%cV = 1; % Benjamini & Yeuketeli cV for independence/PosRegDep case Ifdr = find(QPc <= Fi, 1, 'last'); if isempty(Ifdr) sigthresh{6,1}=[sigthresh{6,1} 'Inf']; else sigthresh{6,1}=[sigthresh{6,1} num2str(n(J(Ifdr)))]; end clear Pk Pc J Ifdr Ifwe else sigthresh{5,1}=[sigthresh{5,1} 'Only available for T/F-tests.']; sigthresh{6,1}=[sigthresh{6,1} 'Only available for T/F-tests.']; end end if iter==2 for ii=1:size(A,1) if n(A(ii))<mapparameters.cluster % removes clusters smaller than extent threshold A(ii,1:2)=NaN; else A(ii,1:2)=[n(A(ii)) A(ii,1)]; end end end % Combine A (cluster labels) and L (voxel indicies) L=L'; A(:,3:5)=L(:,1:3); if ~isfield(mapparameters,'voxel') else for vv=1:size(mapparameters.voxel,1) x=spm_XYZreg('NearestXYZ',mapparameters.voxel(vv,:),voxelcoord); xM=round(infoI1.mat \ [x; 1]); indvox=find(((A(:,3)==xM(1))+(A(:,4)==xM(2))+(A(:,5)==xM(3)))==3); if isempty(indvox) && size(mapparameters.voxel,1)==1 disp('voxel is not in a cluster'); return elseif isempty(indvox) continue else end Btmp=A(A(:,1)==A(indvox,1),:); %finds current cluster Btmp(:,2)=vv; %label it as cluster 1 try B=[B;Btmp]; catch B=Btmp; end clear Btmp end try A2=B; catch disp('no voxels are not in a cluster'); voxels=-1; return; end end % Save clusters if FIVEF T=peakcluster(transpose(A(:,3:5)),mapparameters.conn,infoI1,[pwd filesep 'tmp']); A(:,2)=T(:,1); clear T A=unique(A(:,1:2),'rows','first'); A(:,1)=n'; voxelsT=[A(:,1) NaN(size(A,1),5) A(:,2)]; Iclust=spm_read_vols(spm_vol([pwd filesep 'tmp_clusters.nii'])); else T=peakcluster(transpose(A(:,3:5)),mapparameters.conn,infoI1,[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname]); A(:,2)=T(:,1); clear T % Save significant data Iclust=spm_read_vols(spm_vol([mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_clusters.nii'])); if isfield(mapparameters,'voxel') infoI1.fname='temp_cluster.nii'; infoI1.descrip='temp cluster(s)'; infoI1.pinfo=[1 0 0]'; vol=zeros(infoI1.dim(1),infoI1.dim(2),infoI1.dim(3)); for ii=1:size(A2,1) vol(A2(ii,3),A2(ii,4),A2(ii,5))=A2(ii,2); end spm_write_vol(infoI1,vol); end end % Find all peaks, only look at current cluster to determine the peak if mapparameters.clustercenter for ii=1:numel(n) coords = find(vol == ii); [out{1:3}] = ind2sub(size(vol),coords); ctr_v = mean(cell2mat(out),1); ctr_mm = (infoI1.mat(1:3,:) * [ ctr_v 1]')'; ctr_v = round(ctr_v); voxelsT(ii,1)=NaN; voxelsT(ii,2)=Iuse(ind(INDEX(ii))); voxelsT(ii,3)=ctr_v(1); voxelsT(ii,4)=ctr_v(2); voxelsT(ii,5)=ctr_v(3); voxelsT(ii,6)=NaN; voxelsT(ii,7)=A(INDEX(ii),2); voxelsT(ii,8)=2; %Using the cluster cluster. end else INDEX18=[]; INDEX26=[]; if iter==1 if mapparameters.conn==26 INDEX18 = peak_get_lm18(Iuse,L'); INDEX26 = peak_get_lm26(Iuse,L'); voxelsT26=Iuse(ind(INDEX26)); else INDEX18 = peak_get_lm18(Iuse,L'); for ii=1:max(A(:,2)) ind2=find(Iclust==ii); L2=[]; [L2(1,:),L2(2,:),L2(3,:)]=ind2sub(infoI1.dim,ind2); INDEX26 =[INDEX26 ind2(peak_get_lm26(Iuse,L2))']; end voxelsT26=Iuse(INDEX26); end voxelsT18=Iuse(ind(INDEX18)); else INDEX26_bad=[]; for ii=1:max(A(:,2)) ind2=find(Iclust==ii); L2=[]; [L2(1,:),L2(2,:),L2(3,:)]=ind2sub(infoI1.dim,ind2); tmp18=ind2(peak_get_lm18(Iuse,L2))'; tmp26=ind2(peak_get_lm26(Iuse,L2))'; is26=ismember(tmp18,tmp26); INDEX18=[INDEX18 tmp18]; INDEX26=[INDEX26 ~is26]; clear tmp18 tmp26 end [jnk,INDEX]=ismember(INDEX18,ind); clear jnk voxelsT=zeros(numel(INDEX),7); for ii=1:numel(INDEX) voxelsT(ii,1)=A(INDEX(ii),1); voxelsT(ii,2)=Iuse(ind(INDEX(ii))); voxelsT(ii,3)=voxelcoord(1,ind(INDEX(ii))); voxelsT(ii,4)=voxelcoord(2,ind(INDEX(ii))); voxelsT(ii,5)=voxelcoord(3,ind(INDEX(ii))); voxelsT(ii,6)=1; voxelsT(ii,7)=A(INDEX(ii),2); voxelsT(ii,8)=1;% peak with 26 neighbors, set to zero if not on the next line. end voxelsT(INDEX26==0,8)=0; % not a peak with 26 neighbors %Remove small clusters voxelsT=voxelsT(abs(voxelsT(:,1))>=mapparameters.cluster,:); % FUTURE FEATURE: Non-stationary correction % if mapparameters.NS.do==1 % mRPV=nanmean(spm_get_data(mapparameters.rpv,find(Iclust~=0))); % for cc=1:max(voxelsT(:,7)) % %% Get cluster and sample rpv image % rind=find(Iclust==ii); % rpv_vals = spm_get_data(maparameters.rpv,rind); % %% SPM8 Resel Computation % %-Compute average of valid LKC measures for i-th region % %---------------------------------------------------------- % valid = ~isnan(rpv_vals); % if any(valid) % LKC = sum(rpv_vals(valid)) / sum(valid); % else % LKC = 1/prod(mapparameters.FWHM); % fall back to whole-brain resel density % end % % %-Intrinsic volume (with surface correction) % %---------------------------------------------------------- % IV = spm_resels([1 1 1],rind,'V'); % IV = IV*[1/2 2/3 2/3 1]'; % voxelsT(:,9) = IV*LKC; % % %% NS Resel Computation % if any(valid) % voxelsT(:,10) = (sum(rpv_vals(valid))/sum(valid))*length(rpv_vals); % else % voxelsT(:,10) = mRPV*length(rpv_vals); % end % end % else % voxelsT(:,9)=NaN; % voxelsT(:,10)=NaN; % end end end if ~FIVEF if isfield(mapparameters,'voxel') % Find the peakin the current cluster cc=unique(A2(:,2)); voxelsT=zeros(numel(cc),5); if isfield(mapparameters,'exactvoxel') && mapparameters.exactvoxel==1 for vv=1:numel(cc) x=spm_XYZreg('NearestXYZ',mapparameters.voxel(vv,:),voxelcoord); xM=round(infoI1.mat \ [x; 1]); ind=find(((A2(:,3)==xM(1))+(A2(:,4)==xM(2))+(A2(:,5)==xM(3)))==3); if ~isempty(ind) voxind=sub2ind(infoI1.dim,A2(ind,3),A2(ind,4),A2(ind,5)); voxelsT(vv,1)=n(A2(ind,1)); voxelsT(vv,2)=I(voxind); voxelsT(vv,3)=voxelcoord(1,voxind); voxelsT(vv,4)=voxelcoord(2,voxind); voxelsT(vv,5)=voxelcoord(3,voxind); voxelsT(vv,6)=1; voxelsT(vv,7)=A2(ind,1); voxelsT(vv,8)=2; %Using specified voxel. end end else for vv=1:numel(cc) ind=sub2ind(infoI1.dim,A2(A2(:,2)==cc(vv),3),A2(A2(:,2)==cc(vv),4),A2(A2(:,2)==cc(vv),5)); if ~isempty(ind) try K=sum(voxelsT(1:vv-1,1)); catch K=0; end maxind=find(I(ind)==max(I(ind))); voxind=sub2ind(infoI1.dim,A2(maxind+K,3),A2(maxind+K,4),A2(maxind+K,5)); voxelsT(vv,1)=n(A2(maxind+K,1)); voxelsT(vv,2)=I(voxind); voxelsT(vv,3)=voxelcoord(1,voxind); voxelsT(vv,4)=voxelcoord(2,voxind); voxelsT(vv,5)=voxelcoord(3,voxind); voxelsT(vv,6)=1; voxelsT(vv,7)=A2(maxind+K,1); voxelsT(vv,8)=2; %Using specified voxel. end end end voxelsT=unique(voxelsT,'rows'); % Label Peaks if ~isempty(mapparameters.label.source) regions=regionname(voxelsT,mapparameters.label.rf,mapparameters.label.ROI,mapparameters.label.ROInames,mapparameters.label.nearest); end if strcmpi(mapparameters.type,'F') df=[mapparameters.df1 mapparameters.df2]; [voxelstats,sigthresh]=calc_voxelstats(mapparameters,voxelsT,voxelsT18,voxelsT26,mapparameters.type,df,QPs,sigthresh,SV); cstats=1; elseif strcmpi(mapparameters.type,'T') df=[1 mapparameters.df1]; [voxelstats,sigthresh]=calc_voxelstats(mapparameters,voxelsT,voxelsT18,voxelsT26,mapparameters.type,df,QPs,sigthresh,SV); cstats=1; elseif strcmpi(mapparameters.type,'Z') df=[]; [voxelstats,sigthresh]=calc_voxelstats(mapparameters,voxelsT,voxelsT18,voxelsT26,mapparameters.type,df,QPs,sigthresh,SV); cstats=0; else end if isfield(mapparameters,'RESELS') try clusterstats=calc_clusterstats(mapparameters,voxelsT,mapparameters.type,df,QPs,QPc,cstats); catch clusterstats=calc_clusterstats(mapparameters,voxelsT,mapparameters.type,df,QPs,[],cstats); end end try savepeaks(mapparameters,regions,voxelsT,voxelstats,clusterstats,sigthresh); catch savepeaks(mapparameters,[],voxelsT,voxelstats,clusterstats,sigthresh); end try voxels={voxelsT regions(:,2)}; catch voxels={voxelsT}; end return end end end if ~FIVEF %Check number of peaks if size(voxelsT,1)>mapparameters.voxlimit voxelsT=sortrows(voxelsT,-2); voxelsT=voxelsT(1:mapparameters.voxlimit,:); % Limit peak voxels to mapparameters.voxlimit end % Sort table by cluster w/ max T then by T value within cluster (negative % data was inverted at beginning, so we are always looking for the max). uniqclust=unique(voxelsT(:,7)); maxT=zeros(length(uniqclust),2); for ii=1:length(uniqclust) maxT(ii,1)=uniqclust(ii); maxT(ii,2)=max(voxelsT(voxelsT(:,7)==uniqclust(ii),2)); end maxT=sortrows(maxT,-2); for ii=1:size(maxT,1) voxelsT(voxelsT(:,7)==maxT(ii,1),11)=ii; end voxelsT=sortrows(voxelsT,[11 -2]); [cluster,uniq,ind]=unique(voxelsT(:,11)); % get rows of each cluster if mapparameters.exact voxelsT(2:end,:)=[]; A=A(A(:,2)==voxelsT(1,7),:); % Keeps most significant cluster voxind=zeros(size(A,1),1); for ii=1:size(A,1) voxind(ii)=sub2ind(infoI1.dim,A(ii,3),A(ii,4),A(ii,5)); A(ii,6)=I(voxind(ii)); end B=A; %in case eroding doesn't work while size(A,1)>mapparameters.cluster A(A(:,6)==min(A(:,6)),:)=[]; end %check for a single cluster newclust=peakcluster(A(:,3:5)',mapparameters.conn,infoI1); if max(newclust)>1 A=B; clear B; indmax=find(A(:,6)==max(A(:,6))); cluster=zeros(mapparameters.cluster,1); cluster(1)=voxind(indmax); %voxind is the voxel indices indsearch=[]; for ii=1:(mapparameters.cluster-1) a={[A(indmax,3)-1:A(indmax,3)+1],[A(indmax,4)-1:A(indmax,4)+1],[A(indmax,5)-1:A(indmax,5)+1]}; [xx yy zz]=ndgrid(a{:}); possind=sub2ind(infoI1.dim,xx(:),yy(:),zz(:)); addind=voxind(ismember(voxind,possind)); indsearch=[indsearch addind']; clear addind; %#ok<AGROW> indsearch=setdiff(indsearch,cluster); indmax=find(A(:,6)==max(I(indsearch))); cluster(ii+1)=voxind(indmax); end A=A(ismember(voxind,cluster),:); end % Save clusters peakcluster2(A,voxelsT,infoI1,[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname]); % Save significant data Iclust=spm_read_vols(spm_vol([mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_clusters.nii'])); if strcmpi(mapparameters.sign,'neg') Ithresh=-1.*I.*(Iclust>0); else Ithresh=I.*(Iclust>0); end out=infoI1; out.fname=[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '.nii']; out.descrip=['Thresholded Map @ thresh ' num2str(mapparameters.thresh2) ' and cluster extent ' num2str(mapparameters.cluster) ' in ' mapparameters.maskname]; spm_write_vol(out,Ithresh); if strcmpi(mapparameters.sign,'neg') voxelsT(:,2)=-1*voxelsT(:,2); end voxelsT(:,7)=[]; voxels={voxelsT}; regions={}; savepeaks(mapparameters,regions,voxelsT,voxelstats,clusterstats,sigthresh) return end %Collapse or eliminate peaks closer than a specified distance voxelsF=zeros(size(voxelsT,1),size(voxelsT,2)); nn=[1 zeros(1,length(cluster)-1)]; for numclust=1:length(cluster) Distance=eps; voxelsC=voxelsT(ind==numclust,:); while min(min(Distance(Distance>0)))<mapparameters.separation [voxelsC,Distance]=vox_distance(voxelsC); minD=min(min(Distance(Distance>0))); if minD<mapparameters.separation min_ind=find(Distance==(min(min(Distance(Distance>0))))); [ii,jj]=ind2sub(size(Distance),min_ind(1)); if mapparameters.SPM==1 voxelsC(ii,:)=NaN; % elimate peak else voxelsC(jj,1)=voxelsC(jj,1); voxelsC(jj,2)=voxelsC(jj,2); voxelsC(jj,3)=((voxelsC(jj,3).*voxelsC(jj,6))+(voxelsC(ii,3).*voxelsC(ii,6)))/(voxelsC(jj,6)+voxelsC(ii,6)); % avg coordinate voxelsC(jj,4)=((voxelsC(jj,4).*voxelsC(jj,6))+(voxelsC(ii,4).*voxelsC(ii,6)))/(voxelsC(jj,6)+voxelsC(ii,6)); % avg coordinate voxelsC(jj,5)=((voxelsC(jj,5).*voxelsC(jj,6))+(voxelsC(ii,5).*voxelsC(ii,6)))/(voxelsC(jj,6)+voxelsC(ii,6)); % avg coordinate voxelsC(jj,6)=voxelsC(jj,6)+voxelsC(ii,6); voxelsC(jj,7)=voxelsC(jj,7); voxelsC(jj,8)=voxelsC(jj,8); %voxelsC(jj,9)=voxelsC(jj,9); % resel counts %voxelsC(jj,10)=voxelsC(jj,10); % resel counts voxelsC(jj,11)=voxelsC(jj,11); voxelsC(ii,:)=NaN; % eliminate second peak end voxelsC(any(isnan(voxelsC),2),:) = []; end end try nn(numclust+1)=nn(numclust)+size(voxelsC,1); end voxelsF(nn(numclust):nn(numclust)+size(voxelsC,1)-1,:)=voxelsC; end voxelsT=voxelsF(any(voxelsF'),:); clear voxelsF voxelsC nn % Label Peaks if ~isempty(mapparameters.label.source) [regions]=regionname(voxelsT,mapparameters.label.rf,mapparameters.label.ROI,mapparameters.label.ROInames,mapparameters.label.nearest); end % Modify T-values for negative if strcmpi(mapparameters.sign,'neg') voxelsT(:,2)=-1*voxelsT(:,2); end % Output an image of the peak coordinates (peak number and cluster number) peakcluster2(A,voxelsT,infoI1,[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname]); %outputs revised cluster numbers Iclust=spm_read_vols(spm_vol([mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_clusters.nii'])); if isempty(mapparameters.sphere) && isempty(mapparameters.clustersphere) if strcmpi(mapparameters.sign,'neg') Ithresh=-1.*I.*(Iclust>0); else Ithresh=I.*(Iclust>0); end out=infoI1; out.fname=[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '.nii']; out.descrip=['Thresholded Map @ thresh ' num2str(mapparameters.thresh2) ' and cluster extent ' num2str(mapparameters.cluster) ' in ' mapparameters.maskname]; spm_write_vol(out,Ithresh); end Iclusthdr=spm_vol([mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_clusters.nii']); [Iclust, Ixyz]=spm_read_vols(Iclusthdr); Ipeak=Iclust.*0; Ipeak2=Ipeak; if ~isempty(mapparameters.sphere) || ~isempty(mapparameters.clustersphere) [simg XYZmmY]=spm_read_vols(Iclusthdr); sphereimg=simg*0; xY.def='sphere'; if ~isempty(mapparameters.sphere) xY.spec=mapparameters.sphere; else xY.spec=mapparameters.clustersphere; end for ii=size(voxelsT,1):-1:1 xY.xyz=voxelsT(ii,3:5)'; [xY, XYZmm, j] = spm_ROI(xY, XYZmmY); sphereimg(j)=ii; end if ~isempty(mapparameters.clustersphere) sphereimg=(Iclust>0).*sphereimg; end Ithresh(sphereimg<=0)=0; Ithresh(isnan(sphereimg))=0; spm_write_vol(Iclusthdr,sphereimg); spm_write_vol(out,Ithresh); n2=hist(sphereimg(:),0:max(sphereimg(:))); voxelsT(:,1)=n2(2:end); voxelsT(:,12)=1:size(voxelsT,1); end %Try to determine orientation oris = [[Iclusthdr.mat(1,1) Iclusthdr.mat(2,2) Iclusthdr.mat(3,3)];... [Iclusthdr.mat(1,1) Iclusthdr.mat(3,2) Iclusthdr.mat(2,3)];... [Iclusthdr.mat(2,1) Iclusthdr.mat(1,2) Iclusthdr.mat(3,3)];... [Iclusthdr.mat(2,1) Iclusthdr.mat(3,2) Iclusthdr.mat(1,3)];... [Iclusthdr.mat(3,1) Iclusthdr.mat(1,2) Iclusthdr.mat(2,3)];... [Iclusthdr.mat(3,1) Iclusthdr.mat(2,2) Iclusthdr.mat(1,3)]]; ori = find(mean(abs(oris)>.000001',2) == 1); if numel(ori)>1 % This part has not been fully tested oristmp=oris; tmp(1)=max(abs(diff([1 1 1 1; 2 1 1 1]*Iclusthdr.mat'))); oristmp(abs(oris)==tmp(1))=1; tmp(2)=max(abs(diff([1 1 1 1; 1 2 1 1]*Iclusthdr.mat'))); oristmp(abs(oris)==tmp(2))=1; tmp(3)=max(abs(diff([1 1 1 1; 1 1 2 1]*Iclusthdr.mat'))); oristmp(abs(oris)==tmp(3))=1; ori = find(mean(oristmp,2)==1); end %Determine cross hair size, if value is infite, crosshairs are 2 voxels a(1)=ceil(2*2/abs(oris(ori,1))); a(2)=ceil(2*2/abs(oris(ori,2))); a(3)=ceil(2*2/abs(oris(ori,3))); a(~isfinite(a))=2; for ii=1:size(voxelsT,1) [Ipeakxyz,Ipeakind] = spm_XYZreg('NearestXYZ',voxelsT(ii,3:5),Ixyz); [Ix,Iy,Iz]=ind2sub(size(Ipeak),Ipeakind); if (Ix-a(1))<=0 && Ix+a(1)<=Iclusthdr.dim(1) Ipeak(1:Ix+a(1),Iy,Iz)=ii; elseif (Ix-a(1))<=0 Ipeak(1:Iclusthdr.dim(1),Iy,Iz)=ii; else Ipeak(Ix-a(1):Ix+a(1),Iy,Iz)=ii; end if (Iy-a(2))<=0 && Iy+a(2)<=Iclusthdr.dim(2) Ipeak(Ix,1:Iy+a(2),Iz)=ii; elseif (Iy-a(2))<=0 Ipeak(Ix,1:Iclusthdr.dim(2),Iz)=ii; else Ipeak(Ix,Iy-a(2):Iy+a(2),Iz)=ii; end if (Iz-a(3))<=0 && Iz+a(3)<=Iclusthdr.dim(3) Ipeak(Ix,Iy,1:Iz+a(3))=ii; elseif (Iz-a(3))<=0 Ipeak(Ix,Iy,1:Iclusthdr.dim(3))=ii; else Ipeak(Ix,Iy,Iz-a(3):Iz+a(3))=ii; end if (Ix-a(1))<=0 && Ix+a(1)<=Iclusthdr.dim(1) Ipeak2(1:Ix+a(1),Iy,Iz)=voxelsT(ii,11); elseif (Ix-a(1))<=0 Ipeak2(1:Iclusthdr.dim(1),Iy,Iz)=voxelsT(ii,11); else Ipeak2(Ix-a(1):Ix+a(1),Iy,Iz)=voxelsT(ii,11); end if (Iy-a(2))<=0 && Iy+a(2)<=Iclusthdr.dim(2) Ipeak2(Ix,1:Iy+a(2),Iz)=voxelsT(ii,11); elseif (Iy-a(2))<=0 Ipeak2(Ix,1:Iclusthdr.dim(2),Iz)=voxelsT(ii,11); else Ipeak2(Ix,Iy-a(2):Iy+a(2),Iz)=voxelsT(ii,11); end if (Iz-a(3))<=0 && Iz+a(3)<=Iclusthdr.dim(3) Ipeak2(Ix,Iy,1:Iz+a(3))=voxelsT(ii,11); elseif (Iz-a(3))<=0 Ipeak2(Ix,Iy,1:Iclusthdr.dim(3))=voxelsT(ii,11); else Ipeak2(Ix,Iy,Iz-a(3):Iz+a(3))=voxelsT(ii,11); end end out=infoI1; out.fname=[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_peaknumber.nii']; out.descrip=['Peaks of Thresholded Map @ thresh ' num2str(mapparameters.thresh2) ' and cluster extent ' num2str(mapparameters.cluster) ' in ' mapparameters.maskname]; out.pinfo(1)=1; spm_write_vol(out,Ipeak); out=infoI1; out.pinfo(1)=1; out.fname=[mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_peakcluster.nii']; out.descrip=['Peaks of Thresholded Map @ thresh ' num2str(mapparameters.thresh2) ' and cluster extent ' num2str(mapparameters.cluster) ' in ' mapparameters.maskname]; spm_write_vol(out,Ipeak2); %voxelsT(:,7)=[]; Don't want to strip out raw cluster numbers. end % Compute voxel and cluster stats STAT=mapparameters.type; if ~isempty(mapparameters.df1) vstats=1; %Compute voxel stats cstats=1; %Compute cluster stats else vstats=0; %Don't Compute voxel stats cstats=0; %Don't Compute cluster stats end if strcmpi(STAT,'F') df=[mapparameters.df1 mapparameters.df2]; elseif strcmpi(STAT,'T') df=[1 mapparameters.df1]; elseif strcmpi(STAT,'Z') df=[]; cstats=0; else vstats=0; cstats=0; end if ~isfield(mapparameters,'RESELS') cstats=0; end if strcmp(mapparameters.sign,'neg') && vstats voxelsT(:,2)=-voxelsT(:,2); end % Fill in voxelstats %-------------------------------------------------------------- if vstats [voxelstats,sigthresh]=calc_voxelstats(mapparameters,voxelsT,voxelsT18,voxelsT26,STAT,df,QPs,sigthresh,SV,FIVEF); end % Fill in clusterstats %-------------------------------------------------------------- if cstats && ~FIVEF try clusterstats=calc_clusterstats(mapparameters,voxelsT,STAT,df,QPs,QPc,cstats); catch clusterstats=calc_clusterstats(mapparameters,voxelsT,STAT,df,QPs,[],cstats); end end if ~FIVEF voxelsT(:,1)=abs(voxelsT(:,1)); if strcmp(mapparameters.sign,'neg') && vstats voxelsT(:,2)=-voxelsT(:,2); voxelstats(:,5)=-voxelstats(:,5); end try savepeaks(mapparameters,regions,voxelsT,voxelstats,clusterstats,sigthresh); catch savepeaks(mapparameters,[],voxelsT,voxelstats,clusterstats,sigthresh); end try voxels={voxelsT regions(:,2)}; catch voxels={voxelsT}; end end if ~FIVEF && ~isempty(mapparameters.label.source) AnatomicalDistTable=AnatomicalDist([mapparameters.out '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_clusters.nii'],mapparameters.label.source); %#ok<*NASGU> [path, filename]=fileparts(mapparameters.out); if isempty(path) path=pwd; end save([path filesep 'AnatDist_' filename '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_' mapparameters.label.source '.mat'],'AnatomicalDistTable') %movefile('tmp.txt',[path filesep 'AnatReport_' filename '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_' mapparameters.label.source '.txt']) clear path filename end if mapparameters.savecorrected.do==1 for tt=1:numel(mapparameters.savecorrected.type) cmapparameters=mapparameters; cmapparameters.correctedloop=1; cmapparameters.UID=[UID '_' mapparameters.savecorrected.type{tt}, '_corr' num2str(mapparameters.threshc)]; if strcmpi(mapparameters.savecorrected.type{tt},'cFWE') [jnk,tmp]=strtok(sigthresh{5,1},':'); cmapparameters.cluster=str2num(tmp(2:end)); cmapparameters.correction=mapparameters.savecorrected.type{tt}; cmapparameters.correctionthresh=mapparameters.threshc; elseif strcmpi(mapparameters.savecorrected.type{tt},'cFDR') [jnk,tmp]=strtok(sigthresh{6,1},':'); cmapparameters.cluster=str2num(tmp(2:end)); cmapparameters.correction=mapparameters.savecorrected.type{tt}; cmapparameters.correctionthresh=mapparameters.threshc; elseif strcmpi(mapparameters.savecorrected.type{tt},'vFWE') [jnk,tmp]=strtok(sigthresh{1,1},':'); tmp=strtok(tmp,','); cmapparameters.thresh=str2num(tmp(2:end)); if ~mapparameters.savecorrected.changecluster cmapparameters.cluster=0; end cmapparameters.correction=mapparameters.savecorrected.type{tt}; cmapparameters.correctionthresh=mapparameters.threshc; elseif strcmpi(mapparameters.savecorrected.type{tt},'vFDR') [jnk,tmp]=strtok(sigthresh{2,1},':'); tmp=strtok(tmp,','); cmapparameters.thresh=str2num(tmp(2:end)); if ~mapparameters.savecorrected.changecluster cmapparameters.cluster=0; end cmapparameters.correction=mapparameters.savecorrected.type{tt}; cmapparameters.correctionthresh=mapparameters.threshc; elseif strcmpi(mapparameters.savecorrected.type{tt},'tFDR26') [jnk,tmp]=strtok(sigthresh{4,1},':'); cmapparameters.thresh=str2num(tmp(2:end)); if ~mapparameters.savecorrected.changecluster cmapparameters.cluster=0; end cmapparameters.correction=mapparameters.savecorrected.type{tt}; cmapparameters.correctionthresh=mapparameters.threshc; elseif strcmpi(mapparameters.savecorrected.type{tt},'tFDR18') [jnk,tmp]=strtok(sigthresh{3,1},':'); cmapparameters.thresh=str2num(tmp(2:end)); if ~mapparameters.savecorrected.changecluster cmapparameters.cluster=0; end cmapparameters.correction=mapparameters.savecorrected.type{tt}; cmapparameters.correctionthresh=mapparameters.threshc; end [cvoxels cvoxelstats cclusterstats csigthresh cregions cmapparameters cUID]=peak_nii(image,cmapparameters); end end end %% Embedded functions %% Save Peaks function savepeaks(mapparameters,regions,voxelsT,voxelstats,clusterstats,sigthresh) [path,file,ext]=fileparts(mapparameters.out); if ~isempty(path) save([path filesep 'Peak_' file ext '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '.mat'],'regions', 'voxelsT','mapparameters','voxelstats','clusterstats','sigthresh') save([path filesep 'Peak_' file ext '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_structure.mat'],'mapparameters') else save(['Peak_' file ext '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '.mat'],'regions', 'voxelsT','mapparameters','voxelstats','clusterstats','sigthresh') save(['Peak_' file ext '_thresh' num2str(mapparameters.thresh2) '_extent' num2str(mapparameters.cluster) mapparameters.maskname '_structure.mat'],'mapparameters') end end %% Vox_distance function [N,Distance] = vox_distance(voxelsT) % vox_distance compute the distance between local maxima in an image % The input is expected to be an N-M matrix with columns 2,3,4 being X,Y,Z % coordinates % % pdist is only available with Statistics Toolbox in recent versions of % MATLAB, thus, the slower code is secondary if the toolbox is unavailable. % Speed difference is dependent on cluster sizes, 3x at 1000 peaks. N=sortrows(voxelsT,-1); try Distance=squareform(pdist(N(:,3:5))); catch Distance = zeros(size(N,1),size(N,1)); for ii = 1:size(N,1); TmpD = zeros(size(N,1),3); for kk = 1:3; TmpD(:,kk) = (N(:,kk+2)-N(ii,kk+2)).^2; end TmpD = sqrt(sum(TmpD,2)); Distance(:,ii) = TmpD; end end end %% Peakcluster function A=peakcluster(L,conn,infoI1,out) dim = infoI1.dim; vol = zeros(dim(1),dim(2),dim(3)); indx = sub2ind(dim,L(1,:)',L(2,:)',L(3,:)'); vol(indx) = 1; [cci,num] = spm_bwlabel(vol,conn); A = cci(indx'); if nargin==4 infoI1.fname=[out '_clusters.nii']; infoI1.descrip='clusters'; infoI1.pinfo=[1 0 0]'; A=transpose(A); L=transpose(L); A(:,2:4)=L(:,1:3); vol=zeros(dim(1),dim(2),dim(3)); for ii=1:size(A,1) vol(A(ii,2),A(ii,3),A(ii,4))=A(ii,1); end spm_write_vol(infoI1,vol); end end %% Regionname function [ROIinfo]=regionname(voxels,rf,ROI,ROInames,nearest) ROIinfo=cell(size(voxels,1),2); if nearest==0 for jj=1:size(voxels,1) [xyz,ii] = spm_XYZreg('NearestXYZ',voxels(jj,3:5),rf.XYZmm); % use all voxels try ROIinfo{jj,1}=rf.img(ii); if ROIinfo{jj,1}~=0 ROIind=find([ROI.ID]==ROIinfo{jj,1}); ROIinfo{jj,2}=ROInames{ROIind}; else ROIinfo{jj,2}='undefined'; end catch ROIinfo{jj,1}=0; ROIinfo{jj,2}='undefined'; end end else nz_ind=find(rf.img>0); for jj=1:size(voxels,1) [xyz,j] = spm_XYZreg('NearestXYZ',voxels(jj,3:5),rf.XYZmm(:,nz_ind)); % use only voxels with a region greater than 0. try ii=nz_ind(j); if isempty(ii) invovkecatchstatement end [junk,D]=vox_distance([0 0 xyz';voxels(jj,1:5)]); % need to pad xyz, voxel is made to be 1x4 with 2-4 being coordianates catch D(1,2)=Inf; end if D(1,2)>8 % further than 5 mm from region ROIinfo{jj,1}=0; ROIinfo{jj,2}='undefined'; else ROIinfo{jj,1}=rf.img(ii); if ROIinfo{jj,1}~=0 ROIind=find([ROI.ID]==ROIinfo{jj,1}); ROIinfo{jj,2}=ROInames{ROIind}; else ROIinfo{jj,2}='undefined'; end end end end end %% Peakcluster2 function peakcluster2(A,voxelsT,infoI1,out) dim = infoI1.dim; vol = zeros(dim(1),dim(2),dim(3)); clusters=unique(voxelsT(:,11)); A(:,6)=-1*A(:,2); % label any small clusters (or clusters with no peaks due to elimination) % A(:,1)==NaN --> Cluster was smaller than extent - will appear in Anat % Table this way. for ii=1:numel(clusters) firstvoxel=find(voxelsT(:,11)==ii); A(A(:,2)==voxelsT(firstvoxel(1),7),6)=ii; end if nargin==4 infoI1.fname=[out '_clusters.nii']; infoI1.descrip='clusters'; infoI1.pinfo=[1 0 0]'; for ii=1:size(A,1) vol(A(ii,3),A(ii,4),A(ii,5))=A(ii,6); end spm_write_vol(infoI1,vol); end end %% calc_voxelstats function [voxelstats,sigthresh]=calc_voxelstats(mapparameters,voxelsT,voxelsT18,voxelsT26,STAT,df,QPs,sigthresh,SV,FIVEF) if ~isfield(mapparameters,'RESELS') vstatsR=0; else vstatsR=1; Pu=zeros(size(voxelsT,1),1); Qp=zeros(size(voxelsT,1),1); Qp1=zeros(size(voxelsT,1),1); end if ~FIVEF Pz=zeros(size(voxelsT,1),1); for ii=1:size(voxelsT,1) Pz(ii) = spm_P(1,0,voxelsT(ii,2),df,STAT,1,1,numel(QPs)); % uncorrected p values end if Pz < eps*10 Ze = Inf; else Ze = spm_invNcdf(1 - Pz); end end Qu=zeros(size(voxelsT,1),1); if vstatsR [P,p,Eu] = spm_P_RF(1,0,mapparameters.thresh,df,STAT,mapparameters.RESELS,1); %Topological FDR Ez = zeros(1,numel(voxelsT18)); for i = 1:length(voxelsT18) [P,p,Ez(i)] = spm_P_RF(1,0,voxelsT18(i),df,STAT,mapparameters.RESELS,1); end [Ps, J] = sort(Ez ./ Eu, 'ascend'); QPp18=Ps'; Fi = (1:length(Ps))/length(Ps)*mapparameters.threshc/1;%cV = 1; % Benjamini & Yeuketeli cV for independence/PosRegDep case Ifdr = find(QPp18' <= Fi, 1, 'last'); if isempty(Ifdr) sigthresh{3,1}=[sigthresh{3,1} 'Inf']; else if strcmpi(STAT,'T') sigthresh{3,1}=[sigthresh{3,1} num2str(voxelsT18(J(Ifdr))) ',' num2str(1-spm_Tcdf(voxelsT18(J(Ifdr)),df(2)))]; elseif strcmpi(STAT,'F') sigthresh{3,1}=[sigthresh{3,1} num2str(voxelsT18(J(Ifdr))) ',' num2str(1-spm_Fcdf(voxelsT18(J(Ifdr)),df))]; elseif strcmpi(STAT,'Z') sigthresh{3,1}=[sigthresh{3,1} num2str(voxelsT18(J(Ifdr))) ',' num2str(1-spm_Ncdf(voxelsT18(J(Ifdr)),0,1))]; else sigthresh{3,1}=[sigthresh{3,1} num2str(voxelsT18(J(Ifdr)))]; end end % peak_nii topological correction (difference is in how peaks are % defined. Ez = zeros(1,numel(voxelsT26)); for i = 1:length(voxelsT26) [P,p,Ez(i)] = spm_P_RF(1,0,voxelsT26(i),df,STAT,mapparameters.RESELS,1); end [Ps, J] = sort(Ez ./ Eu, 'ascend'); QPp26=Ps'; Fi = (1:length(Ps))/length(Ps)*mapparameters.threshc/1;%cV = 1; % Benjamini & Yeuketeli cV for independence/PosRegDep case Ifdr = find(QPp26' <= Fi, 1, 'last'); if isempty(Ifdr) sigthresh{4,1}=[sigthresh{4,1} 'Inf']; else if strcmpi(STAT,'T') sigthresh{4,1}=[sigthresh{4,1} num2str(voxelsT26(J(Ifdr))) ',' num2str(1-spm_Tcdf(voxelsT26(J(Ifdr)),df(2)))]; elseif strcmpi(STAT,'F') sigthresh{4,1}=[sigthresh{4,1} num2str(voxelsT26(J(Ifdr))) ',' num2str(1-spm_Fcdf(voxelsT26(J(Ifdr)),df))]; elseif strcmpi(STAT,'Z') sigthresh{4,1}=[sigthresh{4,1} num2str(voxelsT26(J(Ifdr))) ',' num2str(1-spm_Ncdf(voxelsT26(J(Ifdr)),0,1))]; else sigthresh{4,1}=[sigthresh{4,1} num2str(voxelsT26(J(Ifdr)))]; end end clear Fi Ifdr J if strcmpi(STAT,'T') sigthresh{1,1}=[sigthresh{1,1} num2str(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV)) ',' num2str(1-spm_Tcdf(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV),df(2)))]; elseif strcmpi(STAT,'F') sigthresh{1,1}=[sigthresh{1,1} num2str(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV)) ',' num2str(1-spm_Fcdf(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV),df))]; elseif strcmpi(STAT,'Z') sigthresh{1,1}=[sigthresh{1,1} num2str(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV)) ',' num2str(1-spm_Ncdf(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV),0,1))]; else sigthresh{1,1}=[sigthresh{1,1} num2str(spm_uc(mapparameters.threshc,df,STAT,mapparameters.RESELS,1,SV))]; end end %disp(['SPM peak count: ' num2str(numel(voxelsT18))]) %disp(['peak_nii peak count: ' num2str(numel(voxelsT26))]) %disp(['Difference as percent of peak_nii: ' num2str((((numel(voxelsT18)-numel(voxelsT26))/numel(voxelsT26)))*100)]) %disp(sigthresh) if FIVEF voxelstats=[]; else for ii=1:size(voxelsT,1) if vstatsR && ~isfield(mapparameters,'exactvoxel') Pu(ii) = spm_P(1,0,voxelsT(ii,2),df,STAT,mapparameters.RESELS,1,numel(QPs)); % FWE-corrected {based on Z} Qp18(ii,1) = spm_P_peakFDR(voxelsT(ii,2),df,STAT,mapparameters.RESELS,1,mapparameters.thresh,QPp18); % topological FDR voxel q-value, based on Z (19 voxel peaks) Qp26(ii,1) = spm_P_peakFDR(voxelsT(ii,2),df,STAT,mapparameters.RESELS,1,mapparameters.thresh,QPp26); % topological FDR voxel q-value, based on Z (27 voxel peaks) elseif vstatsR Pu(ii) = spm_P(1,0,voxelsT(ii,2),df,STAT,mapparameters.RESELS,1,numel(QPs)); % FWE-corrected {based on Z} Qp18(ii,1) = NaN; Qp26(ii,1) = NaN; end Qu(ii) = spm_P_FDR(voxelsT(ii,2),df,STAT,1,QPs); % voxel FDR-corrected q-value end try Qp26(voxelsT(:,1)<0)=NaN; voxelstats=[round([Pu Qp18 Qp26 Qu voxelsT(:,2) Ze Pz]*1000)/1000 voxelsT(:,3:5) voxelsT(:,7)]; catch voxelstats=round([NaN(size(voxelsT,1),3) Qu voxelsT(:,2) Ze Pz]*1000)/1000; end end end %% Calc_clusterstats function clusterstats=calc_clusterstats(mapparameters,voxelsT,STAT,df,QPs,QPc,cstats) [jnk,ind]=unique(voxelsT(:,11),'first'); voxelsT(ind,1)=abs(voxelsT(ind,1)); K=voxelsT(ind,1)*(1/prod(mapparameters.FWHM)); Pk=NaN(numel(K),1); Pn=NaN(numel(K),1); Qc=NaN(numel(K),1); try if cstats for ii=1:numel(K) [Pk(ii) Pn(ii)] = spm_P(1,K(ii),mapparameters.thresh,df,STAT,mapparameters.RESELS,1,numel(QPs)); % [un]corrected {based on K} end end catch Pk(1:numel(K),1)=NaN; Pn(1:numel(K),1)=NaN; end try if cstats for ii=1:numel(K) Qc(ii) = spm_P_clusterFDR(K(ii),df,STAT,mapparameters.RESELS,1,mapparameters.thresh,QPc'); % topological FDR-corrected voxel q-value, based on K end end catch Qc(1:numel(K),1)=NaN; end clusterstats=[round([(1:numel(K))' Pk Qc voxelsT(ind,1) Pn]*1000)/1000 voxelsT(ind,3:5)]; end %% Calc_NSclusterstats function NSclusterstats=calc_NSclusterstats(mapparameters,voxelsT,STAT,df,QPs,QPc,cstats) [jnk,ind]=unique(voxelsT(:,7),'first'); voxelsT(ind,1)=abs(voxelsT(ind,1)); K=voxelsT(ind,8); Pk=NaN(numel(K),1); Pn=NaN(numel(K),1); Qc=NaN(numel(K),1); try if cstats for ii=1:numel(K) [Pk(ii) Pn(ii)] = spm_P(1,K(ii),mapparameters.thresh,df,STAT,mapparameters.RESELS,1,numel(QPs)); % [un]corrected {based on K} end end catch Pk(1:numel(K),1)=NaN; Pn(1:numel(K),1)=NaN; end try if cstats for ii=1:numel(K) Qc(ii) = spm_P_clusterFDR(K(ii),df,STAT,mapparameters.RESELS,1,mapparameters.thresh,QPc'); % topological FDR-corrected voxel q-value, based on K end end catch Qc(1:numel(K),1)=NaN; end clusterstats=[round([(1:numel(K))' Pk Qc voxelsT(ind,1) Pn]*1000)/1000 voxelsT(ind,3:5)]; end
github
scanUCLA/MRtools_Hoffman2-master
cluster_nii.m
.m
MRtools_Hoffman2-master/peak_nii/cluster_nii.m
9,405
utf_8
cc65fcdb56ad73f4cd30c65c52f51d77
function [voxelsT region invar]=cluster_nii(image,varstruct) %% % cluster_nii will find the current cluster and cluster % INPUTS: % image string required. This should be a nii or img file. % varstruct is either a .mat file or a pre-load structure with the % following fields: % type: statistic type, 'T' or 'F' or 'none' % cluster: cluster extent threshold in voxels % df1: numerator degrees of freedom for T/F-test (if 0<thresh<1) % df2: denominator degrees of freedom for F-test (if 0<thresh<1) % nearest: 0 or 1, 0 for leaving some clusters/peaks undefined, 1 for finding the % nearest label % label: optional to label clusters, options are 'aal_MNI_V4'; % 'Nitschke_Lab'; FSL ATLASES: 'JHU_tracts', 'JHU_whitematter', % 'Thalamus', 'Talairach', 'MNI', 'HarvardOxford_cortex', 'Cerebellum-flirt', 'Cerebellum=fnirt', and 'Juelich'. % 'HarvardOxford_subcortical' is not available at this time because % the labels don't match the image. % Other atlas labels may be added in the future % thresh: T/F statistic or p-value to threshold the data or 0 % % OUTPUTS: % voxels -- table of peaks % col. 1 - Cluster size % col. 2 - T/F-statistic % col. 3 - X coordinate % col. 4 - Y coordinate % col. 5 - Z coordinate % col. 6 - region number % col. 7 - region name % region - flag for peak_extract_nii % % EXAMPLE: voxels=cluster_nii('imagename',varstruct) % % License: % Copyright (c) 2011, Donald G. McLaren and Aaron Schultz % All rights reserved. % % Redistribution, with or without modification, is permitted provided that the following conditions are met: % 1. Redistributions must reproduce the above copyright % notice, this list of conditions and the following disclaimer in the % documentation and/or other materials provided with the distribution. % 2. All advertising materials mentioning features or use of this software must display the following acknowledgement: % This product includes software developed by the Harvard Aging Brain Project. % 3. Neither the Harvard Aging Brain Project nor the % names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % 4. You are not permitted under this Licence to use these files % commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all % or part of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use % of the Software or any derivative of it for research with the final aim of developing software products for sale or license to a third % party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for sale % or license to a third party, or (4) use of the Software to provide any service to an external organisation for which payment is received. % % THIS SOFTWARE IS PROVIDED BY DONALD G. MCLAREN ([email protected]) AND AARON SCHULTZ ([email protected]) % ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND % FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, % SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, % DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR % TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE % USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % cluster_nii.v1 -- Last modified on 2/23/2011 by Donald G. McLaren, PhD % ([email protected]) % Wisconsin Alzheimer's Disease Research Center - Imaging Core, Univ. of % Wisconsin - Madison % Neuroscience Training Program and Department of Medicine, Univ. of % Wisconsin - Madison % GRECC, William S. Middleton Memorial Veteren's Hospital, Madison, WI % GRECC, Bedford VAMC % Department of Neurology, Massachusetts General Hospital and Havard % Medical School % % In accordance with the licences of the atlas sources as being distibuted solely % for non-commercial use; neither this program, also soley being distributed for non-commercial use, % nor the atlases containe herein should therefore not be used for commercial purposes; for such % purposes please contact the primary co-ordinator for the relevant % atlas: % Harvard-Oxford: [email protected] % JHU: [email protected] % Juelich: [email protected] % Thalamus: [email protected] % Cerebellum: [email protected] % AAL_MNI_V4: [email protected] and/or [email protected] % % For the program in general, please contact [email protected] % %% Check inputs if exist(image,'file')==2 I=spm_vol(image); infoI=I; [I,voxelcoord]=spm_read_vols(I); if nansum(nansum(nansum(abs(I))))==0 error(['Error: ' image ' is all zeros or all NaNs']) end else error(['File ' image ' does not exist']) end try if exist(varstruct,'file')==2 varstruct=load(varstruct); end catch end if ~isstruct(varstruct) error('varstruct is not a structure. Aaron, this should not be possible.') end %% Format input instructure while numel(fields(varstruct))==1 F=fieldnames(varstruct); varstruct=varstruct.(F{1}); %Ignore coding error flag. end %Set defaults: varstruct.sign='pos'; varstruct.conn=18; varstrcut.out=[]; varstruct.voxlimit=10; %irrelevant since only the maximum is considered varstruct.separation=20; %irrelevant since only the maximum is considered varstruct.SPM=1; % irrelevant since only the maximum is considered varstruct.mask=[]; invar=peak_nii_inputs(varstruct,infoI.fname,nargout); if isfield(varstruct,'voxel') if size(varstruct.voxel)==[3 1] invar.voxel=varstruct.voxel; elseif size(varstruct.voxel)==[1 3] invar.voxel=varstruct.voxel'; else error('voxel is not a voxel. Aaron, this should not be possible.') end else error('voxel not defined. Aaron, this should not be possible.') end %% Program begins here % Find significant voxels disp(['Threshold is:' num2str(invar.thresh)]) ind=find(I>invar.thresh); if isempty(ind) error(['NO MAXIMA ABOVE ' num2str(invar.thresh) '.']) else [L(1,:),L(2,:),L(3,:)]=ind2sub(infoI.dim,ind); end % Cluster signficant voxels A=peakcluster(L,invar.conn,infoI); % A is the cluster of each voxel A=transpose(A); n=hist(A,1:max(A)); for ii=1:size(A,1) if n(A(ii))<invar.cluster % removes clusters smaller than extent threshold A(ii,1:2)=NaN; else A(ii,1:2)=[n(A(ii)) A(ii,1)]; end end % Combine A (cluster labels) and L (voxel indicies) L=L'; A(:,3:5)=L(:,1:3); % Remove voxels that are not the current cluster x=spm_XYZreg('NearestXYZ',invar.voxel,voxelcoord); xM=round(infoI.mat \ [x; 1]); ind=find(((A(:,3)==xM(1))+(A(:,4)==xM(2))+(A(:,5)==xM(3)))==3); if isempty(ind) error('voxel is not in a cluster'); end A=A(A(:,2)==A(ind,2),:); %finds current cluster A(:,2)=1; %label it as cluster 1 region=[]; %used as a flag in peak_extract_nii %Output temp cluster file infoI.fname='temp_cluster.nii'; infoI.descrip='temp cluster'; infoI.pinfo=[1 0 0]'; vol=zeros(infoI.dim(1),infoI.dim(2),infoI.dim(3)); for ii=1:size(A,1) vol(A(ii,3),A(ii,4),A(ii,5))=1; end spm_write_vol(infoI,vol); % Find the peakin the current cluster voxelsT=cell(1,5); ind=sub2ind(infoI.dim,A(:,3),A(:,4),A(:,5)); maxind=find(I(ind)==max(I(ind))); voxind=sub2ind(infoI.dim,A(maxind,3),A(maxind,4),A(maxind,5)); voxelsT{1,1}=A(maxind,1); voxelsT{1,2}=I(voxind); voxelsT{1,3}=voxelcoord(1,voxind); voxelsT{1,4}=voxelcoord(2,voxind); voxelsT{1,5}=voxelcoord(3,voxind); % Label Peaks if ~isempty(invar.label.source) [voxelsT{1,6} voxelsT{1,7}]=regionname(cell2mat(voxelsT),invar.label.rf,invar.label.ROI,invar.label.ROInames,invar.label.nearest); end %% Peakcluster function A=peakcluster(L,conn,infoI1) dim = infoI1.dim; vol = zeros(dim(1),dim(2),dim(3)); indx = sub2ind(dim,L(1,:)',L(2,:)',L(3,:)'); vol(indx) = 1; [cci,num] = spm_bwlabel(vol,conn); A = cci(indx'); return %% Regionname function [ROInum ROIname]=regionname(voxel,rf,ROI,ROInames,nearest) if nearest==0 [xyz,ii] = spm_XYZreg('NearestXYZ',voxel(3:5),rf.XYZmm); % use all voxels ROInum=rf.img(ii); else nz_ind=find(rf.img>0); [xyz,j] = spm_XYZreg('NearestXYZ',voxel(3:5),rf.XYZmm(:,nz_ind)); % use only voxels with a region greater than 0. ii=nz_ind(j); [junk,D]=vox_distance([0 0 xyz';voxel(1:5)]); % need to pad xyz, voxel is made to be 1x4 with 2-4 being coordianates if D(1,2)>8 % further than 5 mm from region ROInum=0; else ROInum=rf.img(ii); end end if ROInum~=0 ROIind=find([ROI.ID]==ROInum); ROIname=ROInames{ROIind}; else ROIname='undefined'; end return
github
scanUCLA/MRtools_Hoffman2-master
label_peaks.m
.m
MRtools_Hoffman2-master/peak_nii/label_peaks.m
11,785
utf_8
140977839c187a93ba333672ee8a7f67
function peaks_wlabels=label_peaks(label,peaks,nearest) %% % USAGE AND EXAMPLES CAN BE FOUND IN PEAK_NII_MANUAL.PDF % % License: % Copyright (c) 2011, Donald G. McLaren and Aaron Schultz % All rights reserved. % % Redistribution, with or without modification, is permitted provided that the following conditions are met: % 1. Redistributions must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % 2. All advertising materials mentioning features or use of this software must display the following acknowledgement: % This product includes software developed by the Harvard Aging Brain Project (NIH-P01-AG036694), NIH-R01-AG027435, and The General Hospital Corp. % 3. Neither the Harvard Aging Brain Project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % 4. You are not permitted under this License to use these files commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part % of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final % aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for % sale or license to a third party. % 5. Use of the Software to provide service to an external organization for which payment is received (e.g. contract research) is permissible. % % THIS SOFTWARE IS PROVIDED BY DONALD G. MCLAREN ([email protected]) AND AARON SCHULTZ ([email protected]) ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED % TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, % OR CONSEQUENTIAL %DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF % LIABILITY, WHETHER IN CONTRACT, %STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % Licenses related to using various atlases are described in Peak_Nii_Atlases.PDF % % For the program in general, please contact [email protected] % % label_peaks.v1 -- Last modified on 11/15/2011 by Donald G. McLaren, PhD % ([email protected]) % Wisconsin Alzheimer's Disease Research Center - Imaging Core, Univ. of % Wisconsin - Madison % Neuroscience Training Program and Department of Medicine, Univ. of % Wisconsin - Madison % GRECC, William S. Middleton Memorial Veteren's Hospital, Madison, WI % GRECC, Bedford VAMC % Department of Neurology, Massachusetts General Hospital and Havard % Medical School % % For the program in general, please contact [email protected] % %% Program begins here try if ~strcmp(spm('Ver'),'SPM8') disp('PROGRAM ABORTED:') disp(' You must use SPM8 to process your data; however, you can use SPM.mat files') disp(' generated with SPM2 or SPM5. In these cases, simply specify the option SPMver') disp(' in single qoutes followed by a comma and the version number.') disp(' ') disp('Make sure to add SPM8 to your MATLAB path before re-running.') return else addpath(fileparts(which('spm'))) end catch disp('PROGRAM ABORTED:') disp(' You must use SPM8 to process your data; however, you can use SPM.mat files') disp(' generated with SPM2 or SPM5. In these cases, simply specify the option SPMver') disp(' in single qoutes followed by a comma and the version number.') disp(' ') disp('Make sure to add SPM8 to your MATLAB path before re-running.') return end %% Define Output peaks_wlabels=cell(size(peaks,1),5); %% Error Check if nargin<3 nearest=0; elseif ~isnumeric(nearest) nearest=0; end if nargin<2 disp('You must specify at least two input arguments') else if size(peaks,2)~=3 disp('Peaks must be an n-by-3 matrix of coordinates'); return end [labels, errorval]=roilabels(label); if isempty(labels) disp(['label ' label ' does not exist.']); return end end %% Find Regionnames for vv=1:size(peaks,1) if nearest==0 [xyz,ii] = spm_XYZreg('NearestXYZ',peaks(vv,:),labels.rf.XYZmm); % use all voxels try ROInum=labels.rf.img(ii); catch ROInum=0; end else nz_ind=find(labels.rf.img>0); [xyz,j] = spm_XYZreg('NearestXYZ',peaks(vv,:),labels.rf.XYZmm(:,nz_ind)); % use only voxels with a region greater than 0. try ii=nz_ind(j); if isempty(ii) invovkecatchstatement end [junk,D]=vox_distance([xyz';peaks(vv,:)]); % need to pad xyz, voxel is made to be 1x4 with 2-4 being coordianates catch D(1,2)=Inf; end if D(1,2)>8 % further than 8 mm from region ROInum=0; else ROInum=labels.rf.img(ii); end end if ROInum~=0 try ROIind=find([labels.ROI.ID]==ROInum); ROIname=labels.ROInames{ROIind}; catch keyboard end else ROIname='undefined'; end peaks_wlabels{vv,1}=peaks(vv,1); peaks_wlabels{vv,2}=peaks(vv,2); peaks_wlabels{vv,3}=peaks(vv,3); peaks_wlabels{vv,4}=ROInum; clear ROIind peaks_wlabels{vv,5}=ROIname; clear ROIname end return %% ROILABELS function [label, errorval]=roilabels(source) errorval=[]; peak_nii_dir=fileparts(which('peak_nii.m')); switch source case 'AAL_MNI_V4' regionfile=[peak_nii_dir filesep 'aal_MNI_V4.img']; % From WFU_pickatlas load([peak_nii_dir filesep 'aal_MNI_V4_List.mat']); case 'Nitschke_Lab' regionfile=[peak_nii_dir filesep 'ControlabilityMask.nii']; % Provided by Deb Kerr load([peak_nii_dir filesep 'ControlabilityMask_List.mat']); case 'JHU_tracts' regionfile=[peak_nii_dir filesep 'JHU-ICBM-tracts-maxprob-thr0-1mm.nii']; % From FSL Atlas Files load([peak_nii_dir filesep 'JHU_tract_labels.mat']); case 'JHU_whitematter' regionfile=[peak_nii_dir filesep 'JHU-WhiteMatter-labels-1mm.nii']; % From FSL Atlas Files load([peak_nii_dir filesep 'JHU_labels.mat']); case 'Thalamus' regionfile=[peak_nii_dir filesep 'Thalamus-maxprob-thr0-1mm.nii']; % From FSL Thalamus Atlas Files load([peak_nii_dir filesep 'Thalamus_labels.mat']); case 'Talairach' regionfile=[peak_nii_dir filesep 'Talairach-labels-1mm.nii']; % From FSL Talairach Atlas Files load([peak_nii_dir filesep 'Talairach_Labels.mat']); case 'MNI' regionfile=[peak_nii_dir filesep 'MNI-maxprob-thr0-1mm.nii']; % From FSL MNI Atlas Files load([peak_nii_dir filesep 'MNI_labels.mat']); case 'HarvardOxford_cortex' regionfile=[peak_nii_dir filesep 'HarvardOxford-cort-maxprob-thr0-1mm.nii']; % From FSL Atlas Files load([peak_nii_dir filesep 'HarvardOxford_cortical_labels']); %case 'HarvardOxford_subcortical' % Labels do not match image % regionfile=[peak_nii_dir filesep 'HarvardOxford-sub-maxprob-thr0-1mm.nii']; % From FSL Atlas Files % load([peak_nii_dir filesep 'HarvardOxford_subcortical_labels']); case 'Juelich' regionfile=[peak_nii_dir filesep 'Juelich-maxprob-thr0-1mm.nii']; % From FSL Atlas Files load([peak_nii_dir filesep 'Juelich_labels.mat']); case 'Cerebellum-flirt' regionfile=[peak_nii_dir filesep 'Cerebellum-MNIflirt-maxprob-thr0-1mm.nii']; % From FSL Atlas Files load([peak_nii_dir filesep 'Cerebellum_labels.mat']); case 'Cerebellum-fnirt' regionfile=[peak_nii_dir filesep 'Cerebellum-MNIfnirt-maxprob-thr0-1mm.nii']; % From FSL Atlas Files load([peak_nii_dir filesep 'Cerebellum_labels.mat']); case 'Hammers' if exist([fileparts(which('spm')) filesep 'toolbox' filesep 'HammersAtlas' filesep 'Hammers_mith_atlas_n30r83_SPM5.img'],'file') && exist([fileparts(which('spm')) filesep 'toolbox' filesep 'HammersAtlas' filesep 'Hammers_mith_atlas_n30r83_labels.mat'],'file') regionfile=[fileparts(which('spm')) filesep 'toolbox' filesep 'HammersAtlas' filesep 'Hammers_mith_atlas_n30r83_SPM5.img']; load([fileparts(which('spm')) filesep 'toolbox' filesep 'HammersAtlas' filesep 'Hammers_mith_atlas_n30r83_labels.mat']); else errorval='The HammersAtlas is not available. Please contact Alex Hammers ([email protected]) for the atlas'; disp('===========') disp('IMPORTANT: Once you have downloaded the Atlas files, please put them into a directory called HammersAtlas in the toolbox directory of SPM'); disp('===========') label.source=source; return end case 'BucknerYeo_7_loose' regionfile=[peak_nii_dir filesep 'BucknerYeo' filesep 'BucknerYeo2011_7Networks_Loose_MNI152_1mm.nii']; % Derived from http://surfer.nmr.mgh.harvard.edu/fswiki/CerebellumParcellation_Buckner2011 & http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 load([peak_nii_dir filesep 'BucknerLabels.mat']); case 'BucknerYeo_7_tight' regionfile=[peak_nii_dir filesep 'BucknerYeo' filesep 'BucknerYeo2011_7Networks_Tight_MNI152_1mm.nii']; % Derived from http://surfer.nmr.mgh.harvard.edu/fswiki/CerebellumParcellation_Buckner2011 & http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 load([peak_nii_dir filesep 'BucknerLabels.mat']); case 'BucknerYeo_17_loose' regionfile=[peak_nii_dir filesep 'BucknerYeo' filesep 'BucknerYeo2011_17Networks_Loose_MNI152_1mm.nii']; % Derived from http://surfer.nmr.mgh.harvard.edu/fswiki/CerebellumParcellation_Buckner2011 & http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 load([peak_nii_dir filesep 'BucknerLabels.mat']); case 'BucknerYeo_17_tight' regionfile=[peak_nii_dir filesep 'BucknerYeo' filesep 'BucknerYeo2011_17Networks_Tight_MNI152_1mm.nii']; % Derived from http://surfer.nmr.mgh.harvard.edu/fswiki/CerebellumParcellation_Buckner2011 & http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 load([peak_nii_dir filesep 'BucknerYeo' filesep 'BucknerYeo_Network_Labels.mat']); case 'SPMAnatomy' regionfile=[peak_nii_dir filesep 'AllAreas_v18_peaknii.nii']; load([peak_nii_dir filesep 'AllAreas_v18_MPM_Labels.mat']); case 'SPMAnatomyMNI' regionfile=[peak_nii_dir filesep 'AllAreas_v18_peaknii_MNI.nii']; load([peak_nii_dir filesep 'AllAreas_v18_MPM_Labels.mat']); %case 'Custom' % regionfile=['ROI image file']; % load(['ROIlist mat-file']); otherwise label=[]; return end label.source=source; label.rf.hdr=spm_vol(regionfile); [label.rf.img,label.rf.XYZmm]=spm_read_vols(label.rf.hdr); label.ROI=ROI; label.ROInames={ROI.Nom_C}; %ROInames is taken from ROI, where ROI is structure if ~isfield(ROI,'ID') display('ERROR: ROI must be a structure with an ID field that is the ID of values in region file') return end
github
scanUCLA/MRtools_Hoffman2-master
spm_data_read.m
.m
MRtools_Hoffman2-master/peak_nii/spm_data_read.m
3,297
utf_8
1b550cecf27e5a0864c1978b02b5276d
function Y = spm_data_read(V,varargin) % Read data from disk [Y = V(I)] % FORMAT Y = spm_data_read(V) % V - a structure array (see spm_data_hdr_read) % Y - an array of data values; the last dimension indexes numel(V) % % FORMAT Y = spm_data_read(V,'slice',S) % V - a structure array of image volumes (see spm_data_hdr_read) % S - an array of slice indices % Y - an array of data values with dimensions (x,y,s,v) % % FORMAT Y = spm_data_read(V,'xyz',XYZ) % V - a structure array (see spm_data_hdr_read) % XYZ - a [n x m] array of m coordinates {voxel (n=3 or 4)/vertex (n=1)} % Y - an array of data values with dimensions (v,m) % % FORMAT Y = spm_data_read(V,I1,I2,...) % V - a structure array (see spm_data_hdr_read) % I1,I2,...- subscript arrays % Y - an array of data values with dimensions (v,m) %__________________________________________________________________________ % Copyright (C) 2012 Wellcome Trust Centre for Neuroimaging % Guillaume Flandin % $Id: spm_data_read.m 5916 2014-03-13 13:15:02Z guillaume $ if ~isstruct(V) V = spm_data_hdr_read(V); end cl = class(V(1).private); if isfield(V(1),'dat'), cl = 'nifti'; end switch cl case 'nifti' if isempty(varargin) % Y = V.private.dat(); % if numel(V)==1, is faster Y = spm_read_vols(V); elseif ischar(varargin{1}) && ~isequal(varargin{1},':') switch lower(varargin{1}) case 'slice' for i=1:numel(V), for p=1:numel(varargin{2}) Y(:,:,p,i) = spm_slice_vol(V(i),spm_matrix([0 0 varargin{2}(p)]),V(i).dim(1:2),0); end, end if numel(V)==1, Y=Y(:,:,:,1); end case 'xyz' Y = spm_get_data(V,varargin{2}); otherwise error('Unknown input option.'); end else indices = varargin; n = get_ndata(V(1).dim,indices{:}); Y = zeros(numel(V),prod(n)); for i=1:numel(V) if numel(indices) == 1 ind = {indices{1} + (V(i).n(1)-1)*prod(V(i).dim)}; else ind = indices; end Y(i,:) = reshape(V(i).private.dat(ind{:}),1,[]); end end case 'gifti' indices = varargin; if isempty(indices) indices = repmat({':'},1,ndims(V)); elseif strcmpi(indices{1},'xyz') indices = {indices{2}(1,:)}; end n = get_ndata(V(1).dim,indices{:}); Y = zeros(numel(V),prod(n)); for i=1:numel(V) Y(i,:) = reshape(V(i).private.cdata(indices{:}),1,[]); end if isempty(varargin), Y = Y'; end % to be coherent with spm_read_vols otherwise error('Unknown data type.'); end %========================================================================== function n = get_ndata(dim,varargin) n = zeros(1,numel(varargin)); for i=1:numel(varargin) if isequal(varargin{i},':') if i==numel(varargin) n(i) = dim(i); %prod(dim(i:end)); else n(i) = dim(i); end else n(i) = numel(varargin{i}); end end
github
scanUCLA/MRtools_Hoffman2-master
peak_extract_nii.m
.m
MRtools_Hoffman2-master/peak_nii/peak_extract_nii.m
35,865
utf_8
11a5a83b58ec99bfa25a7ebdb35adf0f
function [resultsvoxels columnlistvoxels resultscluster columnlistcluster clusters mapparams subjparams UID]=peak_extract_nii(subjectparameters,mapparameters) % This program is designed to extract data from a set of ROIS or peak % coordinates. % % peak_extract_nii.v6 % % See PEAK_NII_TOOLBOX_MANUAL.pdf for usage details. % % License: % Copyright (c) 2011-2, Donald G. McLaren and Aaron Schultz % All rights reserved. % % Redistribution, with or without modification, is permitted provided that the following conditions are met: % 1. Redistributions must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % 2. All advertising materials mentioning features or use of this software must display the following acknowledgement: % This product includes software developed by the Harvard Aging Brain Project (NIH-P01-AG036694), NIH-R01-AG027435, and The General Hospital Corp. % 3. Neither the Harvard Aging Brain Project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % 4. You are not permitted under this License to use these files commercially. Use for which any financial return is received shall be defined as commercial use, and includes (1) integration of all or part % of the source code or the Software into a product for sale or license by or on behalf of Licensee to third parties or (2) use of the Software or any derivative of it for research with the final % aim of developing software products for sale or license to a third party or (3) use of the Software or any derivative of it for research with the final aim of developing non-software products for % sale or license to a third party. % 5. Use of the Software to provide service to an external organization for which payment is received (e.g. contract research) is permissible. % % THIS SOFTWARE IS PROVIDED BY DONALD G. MCLAREN ([email protected]) AND AARON SCHULTZ ([email protected]) ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED % TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, % OR CONSEQUENTIAL %DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF % LIABILITY, WHETHER IN CONTRACT, %STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % Licenses related to using various atlases are described in Peak_Nii_Atlases.PDF % % For the program in general, please contact [email protected] % % % Last modified on 2/11/2012 by Donald G. McLaren ([email protected]) % GRECC, Bedford VAMC % Department of Neurology, Massachusetts General Hospital and Havard % Medical School % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% resultsvoxels={}; columnlistvoxels={}; resultscluster={}; columnlistcluster={}; clusters={}; UID=[]; mapparams=struct(); %%Program Begins Here try if ~strcmp(spm('Ver'),'SPM8') disp('PROGRAM ABORTED:') disp(' You must use SPM8 to process your data; however, you can use SPM.mat files') disp(' generated with SPM2 or SPM5. In these cases, simply specify the option SPMver') disp(' in single qoutes followed by a comma and the version number.') disp(' ') disp('Make sure to add SPM8 to your MATLAB path before re-running.') return else addpath(fileparts(which('spm'))) end catch disp('PROGRAM ABORTED:') disp(' You must use SPM8 to process your data; however, you can use SPM.mat files') disp(' generated with SPM2 or SPM5. In these cases, simply specify the option SPMver') disp(' in single qoutes followed by a comma and the version number.') disp(' ') disp('Make sure to add SPM8 to your MATLAB path before re-running.') return end %Check for extraction parameters (mappparameters) if ischar(mapparameters) && exist(mapparameters,'file')==2 try mapparameters=load(mapparameters); catch error('mapparameters file does not exist.') end elseif ~exist('mapparameters','var') error('mapparameters must be a file, a structure, or a variable.') end if isstruct(mapparameters) while numel(fields(mapparameters))==1 F=fieldnames(mapparameters); mapparameters=mapparameters.(F{1}); %Ignore coding error flag. end end if isstruct(mapparameters) && ~isfield(mapparameters,'voxel') if ~isfield(mapparameters,'image') || ~exist(mapparameters.image,'file') error('mapparameters.image file does not exist.') end x='[voxelsT voxelstats clusterstats sigthresh regions mapparams UID]=peak_nii(mapparameters.image,mapparameters);'; elseif isstruct(mapparameters) && (size(mapparameters.voxel,1)==3 || size(mapparameters.voxel,2)==3) if size(mapparameters.voxel,1)==3 && size(mapparameters.voxel,2)~=3 mapparameters.voxel=mapparameters.voxel'; elseif size(mapparameters.voxel,2)==3 mapparameters.voxel=mapparameters.voxel; end if isfield(mapparameters,'image') && exist(mapparameters.image,'file')==2 x='[voxelsT voxelstats clusterstats sigthresh region mapparams]=peak_nii(mapparameters.image,mapparameters);'; end elseif size(mapparameters,1)==3 voxels(:,3:5)=mapparameters'; elseif size(mapparameters,2)==3 voxels(:,3:5)=mapparameters; else error('mapparameters must be a file that contains a structure, a Nx3 variable of peak coordinates, or a 3xN variable of peak coordinates.') end % Load subject structure if ~isstruct(subjectparameters) && ~iscell(subjectparameters) && exist(subjectparameters,'file')==2 subjectparameters=load(subjectparameters); end if isstruct(subjectparameters) subjparams=subjectparameters; clear subjectparameters; while numel(fieldnames(subjparams))==1 && ~any(strcmp(fieldnames(subjparams),{'P' 'directory' 'subjectpeak' 'searchsphere' 'extractsphere' 'SPMmat' 'Imat' 'xY' 'neg' 'nanmethod'})) F=fieldnames(subjparams); subjparams=subjparams.(F{1}); %Ignore coding error flag. end clear F if numel(subjparams)~=1 error('Subject parameter structure is the wrong size') end elseif iscell(subjectparameters) for ii=1:numel(subjectparameters) subjectparameters{ii}=strtok(subjectparameters{ii},','); end subjparams.P=char(subjectparameters); clear subjectparameters; elseif isempty(subjectparameters) subjparams=subjectparameters; clear subjectparameters; else subjparams=[];clear subjectparameters; end if ~isfield(subjparams,'directory') || isempty(subjparams.directory) subjparams.directory=pwd; end if isfield(subjparams,'SPMmat') && isfield(subjparams,'Imat') error('subjparams has conflicting fields SPMmat and Imat. Only one can be entered.') end %Load images for extraction VY=0; %skips using pinfo field from SPM.mat file if isstruct(mapparameters) && isfield(mapparameters,'voxel') try if exist([pwd 'SPM.mat'],'file')==2 || exist([pwd 'I.mat'],'file')==2 spmpath=pwd; else spmpath=fileparts(mapparameters.image); if isempty(spmpath) spmpath=pwd; end end try load([spmpath filesep 'SPM.mat']); Imat=0; catch load([spmpath filesep 'I.mat']); Imat=1; end if isfield(mapparameters,'beta') && isnumeric(mapparameters.beta) && mapparameters.beta==1 % SPM.mat contains the variable SPM, loaded in the previous line. if ~Imat tmpsubjhdrs=SPM.Vbeta; else error('Imat cannot be used with the beta field.') end else if ~Imat tmpsubjhdrs=SPM.xY.VY; % SPM.mat contains the variable SPM, loaded in the previous line. VY=1; else for ii=1:numel(I.Scans) if exist(strtok(I.Scans{ii},','),'file')==2 subjhdrs(ii)=spm_vol(strtok(I.Scans{ii},',')); else invokecatchstatement end end end end if VY==1 && ~Imat for ii=1:numel(tmpsubjhdrs) if exist(tmpsubjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(tmpsubjhdrs(ii).fname); elseif exist([subjparams.directory filesep tmpsubjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep tmpsubjhdrs(ii).fname]); else spm_input('SPM.mat input/beta files do not exist!',1,'bd','ok',1,1) invokecatchstatement end subjhdrs(ii).pinfo(1)=SPM.xY.VY(ii).pinfo(1); end elseif ~Imat for ii=1:numel(tmpsubjhdrs) if exist(tmpsubjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(tmpsubjhdrs(ii).fname); elseif exist([subjparams.directory filesep tmpsubjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep tmpsubjhdrs(ii).fname]); else spm_input('SPM.mat input/beta files do not exist!',1,'bd','ok',1,1) invokecatchstatement end end end [subjimgs XYZmm]=spm_read_vols(subjhdrs); catch str = {'Do you want to use an SPM.mat file?'}; if (isfield(subjparams,'SPMmat') && isnumeric(subjparams.SPMmat) && subjparams.SPMmat==1) && ~isfield(subjparams,'Imat') || spm_input(str,1,'bd','yes|no',[1,0],1) [spmmatfile, sts]=spm_select(1,'^SPM\.mat$','Select SPM.mat'); swd = spm_str_manip(spmmatfile,'H'); try load(fullfile(swd,'SPM.mat')); catch error(['Cannot read ' fullfile(swd,'SPM.mat')]); end if isfield(mapparameters,'beta') && isnumeric(mapparameters.beta) && mapparameters.beta==1 % SPM.mat contains the variable SPM, loaded in the previous line. subjhdrs=SPM.Vbeta; else subjhdrs=SPM.xY.VY; % SPM.mat contains the variable SPM, loaded in the previous line. VY=1; end if VY==1 for ii=1:numel(subjhdrs) if exist(subjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(subjhdrs(ii).fname); elseif exist([subjparams.directory filesep subjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep subjhdrs(ii).fname]); else spm_input('SPM.mat input files do not exist!',1,'bd','ok',1,1) error('SPM.mat input files do not exist!') end subjhdrs(ii).pinfo(1)=SPM.xY.VY(ii).pinfo(1); end else for ii=1:numel(subjhdrs) if exist(subjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(subjhdrs(ii).fname); elseif exist([subjparams.directory filesep subjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep subjhdrs(ii).fname]); else spm_input('SPM.mat input files do not exist!',1,'bd','ok',1,1) error('SPM.mat input files do not exist!') end end end [subjimgs XYZmm]=spm_read_vols(subjhdrs); else str = {'Do you want to use an I.mat file?'}; if (isfield(subjparams,'Imat') && isnumeric(subjparams.Imat) && subjparams.Imat==1) || spm_input(str,1,'bd','yes|no',[1,0],1) [spmmatfile, sts]=spm_select(1,'^I\.mat$','Select I.mat'); swd = spm_str_manip(spmmatfile,'H'); try load(fullfile(swd,'I.mat')); catch error(['Cannot read ' fullfile(swd,'I.mat')]); end for ii=1:numel(I.Scans) if exist(strtok(I.Scans{ii},','),'file')==2 subjhdrs(ii)=spm_vol(strtok(I.Scans{ii},',')); else spm_input('I.mat input files do not exist!',1,'bd','ok',1,1) error('I.mat input files do not exist!') end end [subjimgs XYZmm]=spm_read_vols(subjhdrs); else subjparams.P = spm_select(Inf,'image','Select con/beta/other images for extraction',{},pwd,'.*','1'); t = struct(spm_vol(subjparams.P(1,:))); F=fieldnames(t); for ii=1:numel(F); t.(F{ii})=[]; end subjhdrs(1:size(subjparams.P,1))=t; clear t; for ii=1:size(subjparams.P,1) subjhdrs(ii)=spm_vol(subjparams.P(ii,:)); end [subjimgs XYZmm]=spm_read_vols(subjhdrs); end end end else %typical processing stream for peak_extract_nii.m try if isfield(subjparams,'xY') && isfield(subjparams.xY,'VY') tmpsubjhdrs=subjparams.xY.VY; for ii=1:numel(subjhdrs) if exist(subjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(subjhdrs(ii).fname); elseif exist([subjparams.directory filesep subjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep subjhdrs(ii).fname]); else spm_input('SPM.mat input files do not exist!',1,'bd','ok',1,1) error('SPM.mat input files do not exist!') end subjhdrs(ii).pinfo(1)=SPM.xY.VY(ii).pinfo(1); end elseif isfield(subjparams,'SPMmat') && isnumeric(subjparams.SPMmat) && subjparams.SPMmat==1 && isfield(subjparams,'beta') && isnumeric(subjparams.beta) && subjparams.beta==1 try load([subjparams.directory filesep 'SPM.mat']); tmpsubjhdrs=SPM.Vbeta; for ii=1:numel(tmpsubjhdrs) if exist(tmpsubjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(tmpsubjhdrs(ii).fname); elseif exist([subjparams.directory filesep tmpsubjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep tmpsubjhdrs(ii).fname]); else spm_input('SPM.mat beta files do not exist!',1,'bd','ok',1,1) invokecatchstatement end end catch invokecatchstatement end elseif isfield(subjparams,'SPMmat') && isnumeric(subjparams.SPMmat) && subjparams.SPMmat==1 try load([subjparams.directory filesep 'SPM.mat']); tmpsubjhdrs=SPM.xY.VY; for ii=1:numel(tmpsubjhdrs) if exist(tmpsubjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(tmpsubjhdrs(ii).fname); else spm_input('SPM.mat input files do not exist!',1,'bd','ok',1,1) invokecatchstatement end subjhdrs(ii).pinfo(1)=SPM.xY.VY(ii).pinfo(1); end catch invokecatchstatement end elseif isfield(subjparams,'Imat') && isnumeric(subjparams.Imat) && subjparams.Imat==1 try load([subjparams.directory filesep 'I.mat']); for ii=1:numel(I.Scans) if exist(strtok(I.Scans{ii},','),'file')==2 subjhdrs(ii)=spm_vol(strtok(I.Scans{ii},',')); else invokecatchstatement end end catch invokecatchstatement end else subjparams.P; if iscell(subjparams.P) try tmpP=cell2mat(subjparams.P); subjparams.P=tmpP; catch P=[]; for ii=1:size(subjparams.P,1) P = strvcat(P,subjparams.P{ii}); end subjparams.P=P; clear P end end t = struct(spm_vol(subjparams.P(1,:))); F=fieldnames(t); for ii=1:numel(F); t.(F{ii})=[]; end subjhdrs(1:size(subjparams.P,1))=t; clear t; for ii=1:size(subjparams.P,1) if exist(deblank(subjparams.P(ii,:)),'file')==2 subjhdrs(ii)=spm_vol(subjparams.P(ii,:)); elseif exist(strtok(deblank(subjparams.P(ii,:)),','),'file')==2 subjhdrs(ii)=spm_vol(strtok(deblank(subjparams.P(ii,:)),',')); elseif exist(deblank([subjparams.directory subjparams.P(ii,:)]),'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory subjparams.P(ii,:)]); elseif exist(strtok(deblank([subjparams.directory subjparams.P(ii,:)]),','),'file')==2 subjhdrs(ii)=spm_vol(strtok(deblank([subjparams.directory subjparams.P(ii,:)]),',')); else invokecatchstatement end end end [subjimgs XYZmm]=spm_read_vols(subjhdrs); catch subjparams.P=[]; str = {'Do you want to use an SPM.mat file?'}; if (isfield(subjparams,'SPMmat') && isnumeric(subjparams.SPMmat) && subjparams.SPMmat==1) && ~isfield(subjparams,'Imat') || spm_input(str,1,'bd','yes|no',[1,0],1) [spmmatfile, sts]=spm_select(1,'^SPM\.mat$','Select SPM.mat'); swd = spm_str_manip(spmmatfile,'H'); try load(fullfile(swd,'SPM.mat')); catch error(['Cannot read ' fullfile(swd,'SPM.mat')]); end if isfield(subjparams,'beta') && isnumeric(subjparams.beta) && subjparams.beta==1 tmpsubjhdrs=SPM.Vbeta; else tmpsubjhdrs=SPM.xY.VY; VY=1; end if VY==1 for ii=1:numel(tmpsubjhdrs) if exist(tmpsubjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(tmpsubjhdrs(ii).fname); elseif exist([subjparams.directory filesep tmpsubjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep tmpsubjhdrs(ii).fname]); else error('SPM.mat input/beta files do not exist!'); end subjhdrs(ii).pinfo(1)=SPM.xY.VY(ii).pinfo(1); end else for ii=1:numel(tmpsubjhdrs) if exist(tmpsubjhdrs(ii).fname,'file')==2 subjhdrs(ii)=spm_vol(tmpsubjhdrs(ii).fname); elseif exist([subjparams.directory filesep tmpsubjhdrs(ii).fname],'file')==2 subjhdrs(ii)=spm_vol([subjparams.directory filesep tmpsubjhdrs(ii).fname]); else error('SPM.mat input/beta files do not exist!'); end end end else str = {'Do you want to use an I.mat file?'}; if (isfield(subjparams,'Imat') && isnumeric(subjparams.Imat) && subjparams.Imat==1) || spm_input(str,1,'bd','yes|no',[1,0],1) [spmmatfile, sts]=spm_select(1,'^I\.mat$','Select I.mat'); swd = spm_str_manip(spmmatfile,'H'); try load(fullfile(swd,'I.mat')); catch error(['Cannot read ' fullfile(swd,'I.mat')]); end for ii=1:numel(I.Scans) if exist(strtok(I.Scans{ii},','),'file')==2 subjhdrs(ii)=spm_vol(strtok(I.Scans{ii},',')); else spm_input('I.mat input files do not exist!',1,'bd','ok',1,1) error('I.mat input files do not exist!') end end [subjimgs XYZmm]=spm_read_vols(subjhdrs); else subjparams.P = spm_select(Inf,'image','Select con/beta/other images for extraction',{},pwd,'.*','1'); t = struct(spm_vol(subjparams.P(1,:))); F=fieldnames(t); for ii=1:numel(F); t.(F{ii})=[]; end subjhdrs(1:size(subjparams.P,1))=t; clear t; for ii=1:size(subjparams.P,1) subjhdrs(ii)=spm_vol(subjparams.P(ii,:)); end [subjimgs XYZmm]=spm_read_vols(subjhdrs); end end end end %Check that all headers are the same dims = cat(1,subjhdrs.dim); matx = reshape(cat(3,subjhdrs.mat),[16,numel(subjhdrs)]); if any(any(diff(dims,1,1),1)) error('Images for extraction do not have the same dimensions.') end if any(any(abs(diff(matx,1,2))>1e-4)) error('Images for extraction do not have the same orientations.') end %Check for subject peaks? if isfield(subjparams,'subjectpeak') && subjparams.subjectpeak==1 try if strncmp(subjhdrs(1).fname,'con_',4) t = struct(spm_vol([subjhdrs(1).fname(1,1:a-1) 'spmT_' subjhdrs(ii).fname(1,a+4:end)])); F=fieldnames(t); for ii=1:numel(F); t.(F{ii})=[]; end subjpeakhdrs(1:numel(subjhdrs))=t; clear t; for ii=1:numel(subjhdrs) a=strfind(subjhdrs(ii).fname,'con_'); subjpeakhdrs(ii)=spm_vol([subjhdrs(ii).fname(1,1:a-1) 'spmT_' subjhdrs(ii).fname(1,a+4:end)]); end subjpeakimgs=spm_read_vols(subjpeakhdrs); else subjpeakimgs=subjimgs; end if isfield(subjparams,'neg') && subjparams.neg==1 subjpeakimgs=-1*subjpeakimgs; elseif isfield(subjparams,'neg') && ~isnumeric(subjparams.neg) error('neg field is not specified correctly') end catch error('Subjectpeak settings are wrong. Missing spmT maps.') end else subjparams.subjectpeak=0; end %Check NaN Method if ~isfield(subjparams,'nanmethod') || ~isnumeric(subjparams.nanmethod) subjparams.nanmethod=0; end %Get Cluster information try eval(x); clusters=voxelsT; if isempty(clusters) display('No clusters found.'); return else if exist('regions','var') voxels=voxelsT{1}; elseif exist('region','var') voxels=voxelsT{1}; else voxels=cell2mat(voxelsT(1:5)); end end catch if exist('x','var') if isfield(mapparameters,'exact') && isnumeric(mapparameters.exact) && mapparameters.exact==1 if mapparameters.cluster<=0 error('Cluster must be greater than 0') end mapmaskimg=spm_read_vols(spm_vol(mapparameters.mask)); if mapparameters.cluster>sum(mapmaskimg(:)>0) error('Cluster must be smaller than mask') end if isfield(mapparameters,'label') error('Error in peak_nii. Mapparameters is not correct. Missing something.') else error('Error in peak_nii. Label was not set.') end else if isfield(mapparameters,'label') error('Error in peak_nii. Mapparameters is not correct. Missing something.') else error('Error in peak_nii. Label was not set.') end end else error('peak_nii was not execute because mapparameters.image does not exist') end end %%Extraction Code if subjparams.subjectpeak==1 subjectpeaklocationsvoxel=cell(numel(subjhdrs),size(voxels,1)); subjectpeakspherevaluesvoxel=zeros(numel(subjhdrs),size(voxels,1))*NaN; subjectpeaksvaluesvoxel=zeros(numel(subjhdrs),size(voxels,1))*NaN; end peakspherevaluesavg=zeros(numel(subjhdrs),size(voxels,1))*NaN; peakspherevalueseig=zeros(numel(subjhdrs),size(voxels,1))*NaN; peakvalues=zeros(numel(subjhdrs),size(voxels,1))*NaN; for ii=1:size(voxels,1) % Extract peak voxel [xyz,ind]=spm_XYZreg('NearestXYZ',voxels(ii,3:5)',XYZmm); peakvalues(:,ii)=subjimgs(ind:prod(subjhdrs(1).dim):end); clear ind % Extract sphere around peak if isfield(subjparams,'extractsphere') && isnumeric(subjparams.extractsphere) ind=find(sum((XYZmm - repmat(voxels(ii,3:5)',1,size(XYZmm,2))).^2) <= subjparams.extractsphere^2); inds=zeros(1,numel(ind)*numel(subjhdrs)); for jj=1:numel(ind) inds((jj-1)*numel(subjhdrs)+1:jj*numel(subjhdrs))=ind(jj):prod(subjhdrs(1).dim):prod(subjhdrs(1).dim)*numel(subjhdrs); end inds=sort(inds); data=reshape(subjimgs(inds),numel(ind),numel(subjhdrs)); [peakspherevaluesavg(:,ii) peakspherevalueseig(:,ii)]=regionalcomps(data',subjparams.nanmethod); elseif isfield(subjparams,'extractsphere') && ~isnumeric(subjparams.extractsphere) && ~ischar(subjparams.extractsphere) error('extractsphere field must be a number or empty or a string') else subjparams.extractsphere='NaN'; peakspherevaluesavg(:,ii)=NaN; peakspherevalueseig(:,ii)=NaN; end clear ind % Extract sphere around subject peak voxel within X mm of peak if subjparams.subjectpeak==1 if isfield(subjparams,'searchsphere') && isnumeric(subjparams.searchsphere) ind=find(sum((XYZmm - repmat(voxels(ii,3:5)',1,size(XYZmm,2))).^2) <= subjparams.searchsphere^2); for jj=1:numel(subjhdrs) subjectpeak=find(subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind)==max(subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind))); subjectpeaklocationsvoxel{jj,ii}=XYZmm(:,ind(subjectpeak))'; subjectpeaksvaluesvoxel(jj,ii)=subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind(subjectpeak)); if isfield(subjparams,'extractsphere') && isnumeric(subjparams.extractsphere) ind2=find(sum((XYZmm - repmat(XYZmm(:,ind(subjectpeak)),1,size(XYZmm,2))).^2) <= subjparams.extractsphere^2); subjectpeakspherevaluesvoxel(jj,ii)=mean(subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind2)); else subjectpeakspherevaluesvoxel(jj,ii)=NaN; end end elseif isfield(subjparams,'searchsphere') && ~isnumeric(subjparams.searchsphere) error('searchsphere field must be a number or empty') end clear ind end end if exist('region','var') clusterhead='temp_cluster.nii'; regions=region; end if exist('regions','var') %Extractions using clusters try clusterhead; catch clusterhead=spm_vol([mapparams.out '_thresh' num2str(mapparams.thresh2) '_extent' num2str(mapparams.cluster) mapparams.maskname '_clusters.nii']); end clusterimg=zeros(subjhdrs(1).dim(1:3)); for p = 1:subjhdrs(1).dim(3), B = spm_matrix([0 0 -p 0 0 0 1 1 1]); M = inv(B*inv(subjhdrs(1).mat)*clusterhead.mat); Yp = spm_slice_vol(clusterhead,M,subjhdrs(1).dim(1:2),[0,NaN]); if prod(subjhdrs(1).dim(1:2)) ~= numel(Yp), error(['"',f,'" produced incompatible image.']); end clusterimg(:,:,p) = reshape(Yp,subjhdrs(1).dim(1:2)); end % Extract all significant voxels ind=find(clusterimg>0); inds=zeros(1,numel(ind)*numel(subjhdrs)); for jj=1:numel(ind) inds((jj-1)*numel(subjhdrs)+1:jj*numel(subjhdrs))=ind(jj):prod(subjhdrs(1).dim):prod(subjhdrs(1).dim)*numel(subjhdrs); end inds=sort(inds); data=reshape(subjimgs(inds),numel(ind),numel(subjhdrs)); [allvalueavg allvalueeig]=regionalcomps(data',subjparams.nanmethod); clear ind inds % Extract clusters clustervalueavg=zeros(numel(subjhdrs),max(voxels(:,7)))*NaN; clustervalueeig=zeros(numel(subjhdrs),max(voxels(:,7)))*NaN; if subjparams.subjectpeak==1 subjectpeaklocationscluster=cell(numel(subjhdrs),max(voxels(:,7))); subjectpeakspherevaluescluster=zeros(numel(subjhdrs),max(voxels(:,7)))*NaN; subjectpeaksvaluescluster=zeros(numel(subjhdrs),max(voxels(:,7)))*NaN; end for ii=1:max(voxels(:,7)) ind=find(clusterimg==ii); inds=zeros(1,numel(ind)*numel(subjhdrs)); for jj=1:numel(ind) inds((jj-1)*numel(subjhdrs)+1:jj*numel(subjhdrs))=ind(jj):prod(subjhdrs(1).dim):prod(subjhdrs(1).dim)*numel(subjhdrs); end inds=sort(inds); data=reshape(subjimgs(inds),numel(ind),numel(subjhdrs)); [clustervalueavg(:,ii) clustervalueeig(:,ii)]=regionalcomps(data',subjparams.nanmethod); clear inds % Extract peak voxel and sphere around subject peak voxel, 1 per % cluster if subjparams.subjectpeak==1 for jj=1:numel(subjhdrs) subjectpeak=find(subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind)==max(subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind))); subjectpeaklocationscluster{jj,ii}=XYZmm(:,ind(subjectpeak))'; subjectpeaksvaluescluster(jj,ii)=subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind(subjectpeak)); if isfield(subjparams,'extractsphere') && isnumeric(subjparams.extractsphere) ind2=find(sum((XYZmm - repmat(XYZmm(:,ind(subjectpeak)),1,size(XYZmm,2))).^2) <= subjparams.extractsphere^2); subjectpeakspherevaluescluster(jj,ii)=mean(subjimgs((jj-1)*prod(subjhdrs(1).dim)+ind2)); else subjectpeakspherevaluescluster(jj,ii)=NaN; end clear ind2 end end clear ind inds end end if exist('region','var') %Extractions using clusters clusterhead=spm_vol('temp_cluster.nii'); for p = 1:subjhdrs(1).dim(3), B = spm_matrix([0 0 -p 0 0 0 1 1 1]); M = inv(B*inv(subjhdrs(1).mat)*clusterhead.mat); Yp = spm_slice_vol(clusterhead,M,subjhdrs(1).dim(1:2),[0,NaN]); if prod(subjhdrs(1).dim(1:2)) ~= numel(Yp), error(['"',f,'" produced incompatible image.']); end clusterimg(:,:,p) = reshape(Yp,subjhdrs(1).dim(1:2)); end eval('!rm temp_cluster.nii') % Extract clusters clustervalueavg=zeros(numel(subjhdrs),1); clustervalueeig=zeros(numel(subjhdrs),1); ind=find(clusterimg==1); inds=zeros(1,numel(ind)*numel(subjhdrs)); for jj=1:numel(ind) inds((jj-1)*numel(subjhdrs)+1:jj*numel(subjhdrs))=ind(jj):prod(subjhdrs(1).dim):prod(subjhdrs(1).dim)*numel(subjhdrs); end inds=sort(inds); data=reshape(subjimgs(inds),numel(ind),numel(subjhdrs)); [clustervalueavg(:,ii) clustervalueeig(:,ii)]=regionalcomps(data',subjparams.nanmethod); clear inds end %Initialize outputs if exist('regions','var') tempa=cell(1,numel(unique(voxels(:,7)))); tempb=cell(1,numel(unique(voxels(:,7)))); tempc=cell(numel(subjhdrs),numel(unique(voxels(:,7)))); tempd=cell(numel(subjhdrs),numel(unique(voxels(:,7)))); for ii=1:numel(unique(voxels(:,7))) tempa{1,ii}=['average @ cluster number ' num2str(ii)]; tempb{1,ii}=['eigenvariate @ cluster number ' num2str(ii)]; if subjparams.subjectpeak==1 for jj=1:numel(subjhdrs) tempc{jj,ii}=['subject peak @ ' num2str(subjectpeaklocationscluster{jj,ii})]; tempd{jj,ii}=['subject peak ' num2str(subjparams.extractsphere) 'mm sphere @ ' num2str(subjectpeaklocationscluster{jj,ii})]; end end end end if exist('region','var') tempa=cell(1,1); tempb=cell(1,1); tempc=cell(numel(subjhdrs),1); tempd=cell(numel(subjhdrs),1); tempa{1,1}=['average @ cluster number ' num2str(ii)]; tempb{1,1}=['eigenvariate @ cluster number ' num2str(ii)]; end tempi=cell(1,size(voxels,1)); tempe=cell(1,size(voxels,1)); tempf=cell(1,size(voxels,1)); tempg=cell(numel(subjhdrs),size(voxels,1)); temph=cell(numel(subjhdrs),size(voxels,1)); for ii=1:size(voxels,1) tempi{1,ii}=num2str(voxels(ii,3:5)); tempe{1,ii}=['average ' num2str(subjparams.extractsphere) 'mm sphere @ ' num2str(voxels(ii,3:5))]; tempf{1,ii}=['eigenvariate ' num2str(subjparams.extractsphere) 'mm sphere @ ' num2str(voxels(ii,3:5))]; if subjparams.subjectpeak==1 for jj=1:numel(subjhdrs) tempg{jj,ii}=['subject peak @ ' num2str(subjectpeaklocationsvoxel{jj,ii})]; temph{jj,ii}=['subject peak ' num2str(subjparams.extractsphere) 'mm sphere @ ' num2str(subjectpeaklocationsvoxel{jj,ii})]; end end end %Define outputs if exist('region','var') resultscluster={clustervalueavg clustervalueeig}; columnlistcluster={tempa tempb}; resultsvoxels={peakvalues peakspherevaluesavg peakspherevalueseig}; columnlistvoxels={tempi tempe tempf}; elseif subjparams.subjectpeak==1 if exist('regions','var') resultscluster={allvalueavg allvalueeig clustervalueavg clustervalueeig subjectpeaksvaluescluster subjectpeakspherevaluescluster}; columnlistcluster={'global average' 'global eigenvariate' tempa tempb tempc tempd}; end resultsvoxels={peakvalues peakspherevaluesavg peakspherevalueseig subjectpeaksvaluesvoxel subjectpeakspherevaluesvoxel}; columnlistvoxels={tempi tempe tempf tempg temph}; else if exist('regions','var') resultscluster={allvalueavg allvalueeig clustervalueavg clustervalueeig}; columnlistcluster={'global average' 'global eigenvariate' tempa tempb}; end resultsvoxels={peakvalues peakspherevaluesavg peakspherevalueseig}; columnlistvoxels={tempi tempe tempf}; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%Embedded Functions function [avg eig]=regionalcomps(y,nanmethod) eig = zeros(size(y,1),1)*NaN; avg = zeros(size(y,1),1)*NaN; rows=1:1:size(y,1); if nanmethod==1 columns=~any(isnan(y), 1); y2=y(:,columns); if size(y2,2)==0 disp('No common voxels, use nanmethod=3 to analyze') eig(:) = NaN; avg(:) = NaN; return end elseif nanmethod==2 rows=~any(isnan(y), 2); y2=y(rows,:); if size(y2,1)==0 disp('No subjects with all voxels, use nanmethod=3 to analyze') eig(:) = NaN; avg(:) = NaN; return end elseif numel(isnan(y))>0 %nanmethod3 eig(:) = NaN; avg = nanmean(y,2); return else y2=y; end [m n] = size(y2); if m > n [v s v] = svd(y2'*y2); s = diag(s); v = v(:,1); u = y2*v/sqrt(s(1)); else [u s u] = svd(y2*y2'); s = diag(s); u = u(:,1); v = y2'*u/sqrt(s(1)); end d = sign(sum(v)); u = u*d; v = v*d; eig(rows,:) = (u*sqrt(s(1)/n)); avg(rows,:) = mean(y2,2); end
github
vsariola/sideaxes-m-master
export_all.m
.m
sideaxes-m-master/examples/export_all.m
874
utf_8
22c7159f51097ac8c07e48cd3822f2f6
function export_all filelist = dir('example_*.m'); if ~exist('../images/pdfs','dir') mkdir('../images/pdfs'); end for i = 1:length(filelist) close all; n = filelist(i).name; runInSepareteWorkspace(n); s = regexp(n,'example_(\w+)','once','tokens'); warning(''); exportedName = sprintf('../images/pdfs/%s.pdf',s{1}); export_fig(exportedName,'-transparent'); [warnMsg, warnId] = lastwarn; if ~isempty(warnMsg) fig = gcf; fig.Color = 'none'; fig.InvertHardcopy = 'off'; fig.PaperPositionMode = 'auto'; fig_pos = fig.PaperPosition; fig.PaperSize = [fig_pos(3) fig_pos(4)]; print(gcf, '-dpdf', exportedName); end end end function runInSepareteWorkspace(script) run(script); end
github
vsariola/sideaxes-m-master
test_logscales.m
.m
sideaxes-m-master/tests/test_logscales.m
917
utf_8
ace57753de691423a575aff33f97105e
function test_logscales addpath('..'); figure; axes('position',[0.1 0.1 0.4 0.4],'visible','off'); make_test_plot(); text(5,5,'Points should align to ticks','Clipping','off'); ax = axes('position',[0.6 0.1 0.4 0.4],'visible','off'); make_test_plot(); ax.XScale = 'log'; ax = axes('position',[0.1 0.6 0.4 0.4],'visible','off'); make_test_plot(); ax.YScale = 'log'; ax = axes('position',[0.6 0.6 0.4 0.4],'visible','off'); make_test_plot(); ax.XScale = 'log'; ax.XDir = 'reverse'; ax.YScale = 'log'; ax.YDir = 'reverse'; rmpath('..'); end function make_test_plot ax = gca; x = 2:9; hold on; plot(x,2,'k.'); plot(2,x,'k.'); hold off; axis([1 10 1 10]); sideaxes(ax,'west','size',0.1); ticks(x); sideaxes(ax,'south','size',0.1); ticks(x); axes(ax); end
github
vsariola/sideaxes-m-master
test_autoticks.m
.m
sideaxes-m-master/tests/test_autoticks.m
863
utf_8
afb81e67ba8b5de81a0913210c46c444
function test_autoticks addpath('..'); x = randn(1000,1); y = randn(1000,1); figure; axes('position',[0.1 0.1 0.4 0.4],'visible','off'); make_test_plot(x,y); ax = axes('position',[0.6 0.1 0.4 0.4],'visible','off'); make_test_plot(x,y); axis([-0.5 0.5 -0.5 0.5]); ax = axes('position',[0.1 0.6 0.4 0.4],'visible','off'); make_test_plot(x,y); axis([-0.1 0.1 -0.1 0.1]); ax = axes('position',[0.6 0.6 0.4 0.4],'visible','off'); make_test_plot(x,y); axis([-0.05 0.05 -0.05 0.05]); end function make_test_plot(x,y) ax = gca; hold on; plot(x,y,'k.'); hold off; sideaxes(ax,'west','size',1); rangeline(min(y),max(y)); autoticks(); sideaxes(ax,'south','size',1); rangeline(min(y),max(y)); autoticks(); axes(ax); end
github
samiuluofc/Matlab-master
fitness_mix.m
.m
Matlab-master/Gender_recognition_project/Step_3_ga_optimization/fitness_mix.m
2,148
utf_8
183824430ec981a49af0b3c488e8c105
% This function will take a row vector W (contains four weights) as % parameter, and returns the average error (of 5 different experiments) as % fitness value for the Genetic algorithm. function err = fitness_mix(W) % W is the weight vector % Load scores load('score.mat'); % For 5 random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; %out of 113 (70%) no_F_train = 43; %out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initializations TP = 0; % True positive TN = 0; % true negative FP = 0; % False positive FN = 0; % False negative for iter = 1 : 1 : no_of_iter % for all five experiments % Data selection according to experiment number (iter) st = ((iter-1)*total_test)+1; en = ((iter-1)*total_test)+50; P_list = score(st:en,:); % Total test data M_count = 0; F_count = 0; %%% score = [SVM_score, KNN_score, TREE_score, LASSO_score]; combine_P = (P_list(:,1).*W(1) + P_list(:,2).*W(2) + P_list(:,3).*W(3) + P_list(:,4).*W(4))/sum(W); % Combined score (weighted average) % Calculate Threshold value pdM = fitdist(combine_P(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(combine_P(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if combine_P(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if combine_P(i) <= P_thres F_count = F_count + 1; end end % Calculating Cumulative TP,TN,FN and FP TP = TP + M_count; FN = FN + (33-M_count); TN = TN + F_count; FP = FP + (17-F_count); end % Average error err = 1 - ((TP + TN)/(TP + TN + FN + FP)); end
github
samiuluofc/Matlab-master
fitness_tree.m
.m
Matlab-master/Gender_recognition_project/Step_2_generate_test_scores/fitness_tree.m
2,892
utf_8
205f19f76c81c0b85031166e44165e21
% This function receives selected features for DTree and returns % gender probabilities of 50 test persons in 5 different experiments. function TREE_score = fitness_tree(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; % out of 113 (70%) no_F_train = 43; % out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; L = 29; % Number of minimum leaf for DTree TREE_score = []; % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train]; % Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test]; % Total test data % Training with DTree model = ClassificationTree.fit(X, Y, 'MinLeaf',L); % Testing [result,~] = predict(model,X_test); % Calculate gender probability P_list = zeros(total_test,1); for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end TREE_score = [TREE_score; P_list]; % Appending scores M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end
github
samiuluofc/Matlab-master
fitness_lasso.m
.m
Matlab-master/Gender_recognition_project/Step_2_generate_test_scores/fitness_lasso.m
2,967
utf_8
88cb9d7b11637e8a91c8361ae473c846
% This function receives selected features for LASSO and returns % gender probabilities of 50 test persons in 5 different experiments. function LASSO_score = fitness_lasso(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % provide F_index_image and M_index_image % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; %out of 113 (70%) no_F_train = 43; %out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; LASSO_score = []; % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train];% Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test];% Total test data % Training with LASSO [B fitinfo] = lasso(X,Y,'Standardize',false,'Lambda',0.0001); % Testing result = X_test * B(:,1); % Calculate gender probability P_list = zeros(total_test,1); % Total test data for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end P_list = mat2gray(P_list); % Min-max normalization LASSO_score = [LASSO_score; P_list]; % Appending scores M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end
github
samiuluofc/Matlab-master
fitness_svm.m
.m
Matlab-master/Gender_recognition_project/Step_2_generate_test_scores/fitness_svm.m
2,955
utf_8
3e865f0e0ac512a37d4ce85246235411
% This function receives selected features for SVM and returns % gender probabilities of 50 test persons in 5 different experiments. function SVM_score = fitness_svm(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; %out of 113 (70%) no_F_train = 43; %out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; C = 0.008; % Soft Margin for SVM SVM_score = []; % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train]; % Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test]; % Total test data % Training with SVM op = statset('MaxIter',30000); model = svmtrain(X, Y,'autoscale',false,'boxconstraint',C,'kernel_function','linear','options', op); % Testing result = svmclassify(model,X_test); % Calculate gender probability P_list = zeros(total_test,1); for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end SVM_score = [SVM_score; P_list]; % Appending scores M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end
github
samiuluofc/Matlab-master
fitness_knn.m
.m
Matlab-master/Gender_recognition_project/Step_2_generate_test_scores/fitness_knn.m
2,884
utf_8
fa8128233d198ab1d012a42b750771d0
% This function receives selected features for KNN and returns % gender probabilities of 50 test persons in 5 different experiments. function KNN_score = fitness_knn(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; % out of 113 (70%) no_F_train = 43; % out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; N = 30; % Number of neighbor for KNN KNN_score = []; % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train]; % Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test]; % Total test data % Training with KNN model = ClassificationKNN.fit(X, Y, 'NumNeighbors',N); % Testing [result,~] = predict(model,X_test); % Calculate gender probability P_list = zeros(total_test,1); for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end KNN_score = [KNN_score; P_list]; % Appending scores M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end
github
samiuluofc/Matlab-master
fitness_tree.m
.m
Matlab-master/Gender_recognition_project/Step_1_feature_selection/fitness_tree.m
2,950
utf_8
5f7575c7228947ea528071ca45f6e0a7
% This function receives selected features for Decision Tree and returns average % gender prediction error of 5 different experiments. function err = fitness_tree(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; % out of 113 (70%) no_F_train = 43; % out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; L = 29; % Number of minimum leaf for DTree % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train]; % Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test]; % Total test data % Training with DTree model = ClassificationTree.fit(X, Y, 'MinLeaf',L); % Testing [result,~] = predict(model,X_test); % Calculate gender probability P_list = zeros(total_test,1); for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end err = 100-(total_avg/no_of_iter); % Return total error in percentage errM = 100-(total_avg_M/no_of_iter); errF = 100-(total_avg_F/no_of_iter);
github
samiuluofc/Matlab-master
fitness_svm.m
.m
Matlab-master/Gender_recognition_project/Step_1_feature_selection/fitness_svm.m
3,006
utf_8
d7f34deaf24ab758507319650dcf249a
% This function receives selected features for SVM and returns average % gender prediction error of 5 different experiments. function err = fitness_svm(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; %out of 113 (70%) no_F_train = 43; %out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; C = 0.008; % Soft Margin for SVM % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train]; % Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test]; % Total test data % Training with SVM op = statset('MaxIter',30000); model = svmtrain(X, Y,'autoscale',false,'boxconstraint',C,'kernel_function','linear','options', op); % Testing result = svmclassify(model,X_test); % Calculate gender probability P_list = zeros(total_test,1); for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end err = 100-(total_avg/no_of_iter); % Return total error in percentage errM = 100-(total_avg_M/no_of_iter); errF = 100-(total_avg_F/no_of_iter);
github
samiuluofc/Matlab-master
fitness_knn.m
.m
Matlab-master/Gender_recognition_project/Step_1_feature_selection/fitness_knn.m
2,936
utf_8
eb7db7664eaf5176151cbc1185e805d8
% This function receives selected features for KNN and returns average % gender prediction error of 5 different experiments. function err = fitness_knn(bin_chrom) % Load necessary Data load('F_60.mat'); % Z score normalized data load('M_113.mat'); % provide F_index_image and M_index_image matrix. % These two matrix contains random indices of images. load('random_index.mat'); % Select the features based on binary chromosome fs = find(bin_chrom); % Five random experiments no_of_iter = 5; % Number of test and training (M and F) no_M_train = 80; % out of 113 (70%) no_F_train = 43; % out of 60 (70%) no_M_test = 113 - no_M_train; no_F_test = 60 - no_F_train; total_test = no_F_test + no_M_test; % Initialization total_avg = 0; total_avg_M = 0; total_avg_F = 0; N = 30; % Number of neighbor for KNN % For each experiment (random sampling), we conduct training and testing. % Calculate average accuracy of 5 experiments. for iter = 1 : 1 : no_of_iter % Selection of Training and testing data for males M_train = M(M_index_image(1:no_M_train * 200,iter),fs); M_test = M(M_index_image((no_M_train*200) + 1 : 113 * 200,iter),fs); % Selection of Training and testing data for females F_train = F(F_index_image(1:no_F_train * 200,iter),fs); F_test = F(F_index_image((no_F_train*200) + 1 : 60 * 200,iter),fs); X = [M_train; F_train]; % Total train data Y = [ones(no_M_train*200,1) ; ones(no_F_train*200,1) .* -1]; % Labels X_test = [M_test; F_test]; % Total test data % Training with KNN model = ClassificationKNN.fit(X, Y, 'NumNeighbors',N); % Testing [result,~] = predict(model,X_test); % Calculate gender probability P_list = zeros(total_test,1); for i = 1: total_test S = sum(result(((i-1)*200) + 1 : ((i-1)*200) + 200,1)); P_list(i,1) = S/200; end M_count = 0; F_count = 0; % Calculate threshold value pdM = fitdist(P_list(1 : no_M_test,1),'Normal'); % Male dist pdF = fitdist(P_list(no_M_test+1 : total_test,1),'Normal'); % Female dist P_thres = (pdM.mu + pdF.mu)/2; % Counting male predictions for i = 1 : no_M_test if P_list(i) > P_thres M_count = M_count + 1; end end % Counting female predictions for i = no_M_test+1 : total_test if P_list(i) <= P_thres F_count = F_count + 1; end end % Calculating average accuracies M_acc = (M_count/no_M_test)*100; F_acc = (F_count/no_F_test)*100; avg_accu = (M_acc + F_acc)/2; total_avg = total_avg + avg_accu; total_avg_M = total_avg_M + M_acc; total_avg_F = total_avg_F + F_acc; end err = 100-(total_avg/no_of_iter); % Return total error in percentage errM = 100-(total_avg_M/no_of_iter); errF = 100-(total_avg_F/no_of_iter);
github
samiuluofc/Matlab-master
tamura.m
.m
Matlab-master/Gender_recognition_project/Step_0_feature_extraction/tamura.m
4,806
utf_8
aefd118080f549efc228a2ebfe14829c
% Copyright (C) 2003 Open Microscopy Environment % Massachusetts Institue of Technology, % National Institutes of Health, % University of Dundee % % % % This library is free software; you can redistribute it and/or % modify it under the terms of the GNU Lesser General Public % License as published by the Free Software Foundation; either % version 2.1 of the License, or (at your option) any later version. % % This library is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % Lesser General Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with this library; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % Written by: Nikita Orlov <[email protected]> %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %% Tamura texture signatures: coarseness, directionality, contrast %% %% Reference: Tamura H., Mori S., Yamawaki T., %% 'Textural features corresponsing to visual perception'. %% IEEE Trans. on Systems, Man and Cybernetics, 8, 1978, 460-472 %% %% Nikita Orlov %% Computational Biology Unit, LG,NIA/NIH %% :: revision :: 07-20-2005 %% %% input: Img (input image) %% output1: Total coarseness, a scalar %% output2: Coarseness histogram, a 1x3 vector %% output3: Directionality, a scalar %% output4: Contrast, a scalar %% %% Examples: %% allTFeatures = Tamura3Sigs(Im); %% function allTFeatures = tamura(Im) if ~isa(Im,'double') Im = im2double(Im); end [TM_Coarseness,TM_Coarseness_hist] = Tamura_Coarseness(Im); TM_Directionality = Tamura_Directionality(Im); TM_Contrast = Tamura_Contrast(Im); allTFeatures = [TM_Coarseness TM_Coarseness_hist TM_Directionality TM_Contrast]; return; end function Fdir = Tamura_Directionality(Im) [gx,gy] = gradient(Im); [t,r] = cart2pol(gx,gy); nbins = 125; r(r<.15.*max(r(:))) = 0; t0 = t; t0(abs(r)<1e-4) = 0; r = r(:)'; t0 = t0(:)'; Hd = hist(t0,nbins); nrm = hist(r(:).^2+t0(:).^2,nbins); fmx = find(Hd==max(Hd)); ff = 1:length(Hd); ff2 = (ff - fmx).^2; Fdir = sum(Hd.*ff2)./sum(nrm); Fdir = abs(log(Fdir+eps)); return; end function Fc = Tamura_Contrast(Im) Im = Im(:)'; ss = std(Im); if abs(ss)<1e-10 Fc = 0; return; else k = kurtosis(Im); end alf = k ./ ss.^4; Fc = ss./(alf.^(.25)); return; end function [total_coarseness,coarseness_hist] = Tamura_Coarseness(Im) kk = 0:6; %nh = []; nv = []; for ii = 1:kk(end) A = moveav(Im,2.^(kk(ii))); %shift = 200; shift = 2.^(kk(ii)); implus = zeros(size(A)); implus(:,1:end-shift+1) = A(:,shift:end); iminus = zeros(size(A)); iminus(:,shift:end) = A(:,1:end-shift+1); Hdelta(:,:,ii) = abs(implus-iminus); implus = zeros(size(A)); implus(1:end-shift+1,:) = A(shift:end,:); iminus = zeros(size(A)); iminus(shift:end,:) = A(1:end-shift+1,:); Vdelta(:,:,ii) = abs(implus-iminus); end HdeltaMax = max(Hdelta,[],3); hs = sum(HdeltaMax(:)); VdeltaMax = max(Vdelta,[],3); vs = sum(VdeltaMax(:)); hij = reshape(Hdelta,size(Hdelta,1)*size(Hdelta,2),size(Hdelta,3)); %shij = sum(hij,1); vij = reshape(Vdelta,size(Vdelta,1)*size(Vdelta,2),size(Vdelta,3)); %svij = sum(vij,1); newh = zeros(size(hij,1),1); for ii = 1:size(hij,1) tmp1 = hij(ii,:); tmp2 = vij(ii,:); mtmp1 = max(tmp1); mtmp2 = max(tmp2); mtmp1 = mtmp1(1); mtmp2 = mtmp2(1); mm = max(mtmp1,mtmp2); im1 = find(tmp1==mtmp1); im2 = find(tmp2==mtmp2); if mm == mtmp1 imm = im1(1); else imm = im2(1); end newh(ii) = kk(imm); end total_coarseness = mean(newh); newh = reshape(2.^newh,size(Im,1),size(Im,2)); nbin = 3; coarseness_hist = hist(newh(:),nbin); coarseness_hist = coarseness_hist./max(coarseness_hist); %coarseness_hist = uint16(coarseness_hist); return; end function sm = moveav(Im,nk) kern = ones(nk)./nk.^2; sm = conv2(Im,kern,'same'); return; end
github
samiuluofc/Matlab-master
tamura.m
.m
Matlab-master/Person_identification_project/Step_0_Feature_extraction/Local_perceptual/tamura.m
4,806
utf_8
aefd118080f549efc228a2ebfe14829c
% Copyright (C) 2003 Open Microscopy Environment % Massachusetts Institue of Technology, % National Institutes of Health, % University of Dundee % % % % This library is free software; you can redistribute it and/or % modify it under the terms of the GNU Lesser General Public % License as published by the Free Software Foundation; either % version 2.1 of the License, or (at your option) any later version. % % This library is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU % Lesser General Public License for more details. % % You should have received a copy of the GNU Lesser General Public % License along with this library; if not, write to the Free Software % Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA % %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ % Written by: Nikita Orlov <[email protected]> %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ %% Tamura texture signatures: coarseness, directionality, contrast %% %% Reference: Tamura H., Mori S., Yamawaki T., %% 'Textural features corresponsing to visual perception'. %% IEEE Trans. on Systems, Man and Cybernetics, 8, 1978, 460-472 %% %% Nikita Orlov %% Computational Biology Unit, LG,NIA/NIH %% :: revision :: 07-20-2005 %% %% input: Img (input image) %% output1: Total coarseness, a scalar %% output2: Coarseness histogram, a 1x3 vector %% output3: Directionality, a scalar %% output4: Contrast, a scalar %% %% Examples: %% allTFeatures = Tamura3Sigs(Im); %% function allTFeatures = tamura(Im) if ~isa(Im,'double') Im = im2double(Im); end [TM_Coarseness,TM_Coarseness_hist] = Tamura_Coarseness(Im); TM_Directionality = Tamura_Directionality(Im); TM_Contrast = Tamura_Contrast(Im); allTFeatures = [TM_Coarseness TM_Coarseness_hist TM_Directionality TM_Contrast]; return; end function Fdir = Tamura_Directionality(Im) [gx,gy] = gradient(Im); [t,r] = cart2pol(gx,gy); nbins = 125; r(r<.15.*max(r(:))) = 0; t0 = t; t0(abs(r)<1e-4) = 0; r = r(:)'; t0 = t0(:)'; Hd = hist(t0,nbins); nrm = hist(r(:).^2+t0(:).^2,nbins); fmx = find(Hd==max(Hd)); ff = 1:length(Hd); ff2 = (ff - fmx).^2; Fdir = sum(Hd.*ff2)./sum(nrm); Fdir = abs(log(Fdir+eps)); return; end function Fc = Tamura_Contrast(Im) Im = Im(:)'; ss = std(Im); if abs(ss)<1e-10 Fc = 0; return; else k = kurtosis(Im); end alf = k ./ ss.^4; Fc = ss./(alf.^(.25)); return; end function [total_coarseness,coarseness_hist] = Tamura_Coarseness(Im) kk = 0:6; %nh = []; nv = []; for ii = 1:kk(end) A = moveav(Im,2.^(kk(ii))); %shift = 200; shift = 2.^(kk(ii)); implus = zeros(size(A)); implus(:,1:end-shift+1) = A(:,shift:end); iminus = zeros(size(A)); iminus(:,shift:end) = A(:,1:end-shift+1); Hdelta(:,:,ii) = abs(implus-iminus); implus = zeros(size(A)); implus(1:end-shift+1,:) = A(shift:end,:); iminus = zeros(size(A)); iminus(shift:end,:) = A(1:end-shift+1,:); Vdelta(:,:,ii) = abs(implus-iminus); end HdeltaMax = max(Hdelta,[],3); hs = sum(HdeltaMax(:)); VdeltaMax = max(Vdelta,[],3); vs = sum(VdeltaMax(:)); hij = reshape(Hdelta,size(Hdelta,1)*size(Hdelta,2),size(Hdelta,3)); %shij = sum(hij,1); vij = reshape(Vdelta,size(Vdelta,1)*size(Vdelta,2),size(Vdelta,3)); %svij = sum(vij,1); newh = zeros(size(hij,1),1); for ii = 1:size(hij,1) tmp1 = hij(ii,:); tmp2 = vij(ii,:); mtmp1 = max(tmp1); mtmp2 = max(tmp2); mtmp1 = mtmp1(1); mtmp2 = mtmp2(1); mm = max(mtmp1,mtmp2); im1 = find(tmp1==mtmp1); im2 = find(tmp2==mtmp2); if mm == mtmp1 imm = im1(1); else imm = im2(1); end newh(ii) = kk(imm); end total_coarseness = mean(newh); newh = reshape(2.^newh,size(Im,1),size(Im,2)); nbin = 3; coarseness_hist = hist(newh(:),nbin); coarseness_hist = coarseness_hist./max(coarseness_hist); %coarseness_hist = uint16(coarseness_hist); return; end function sm = moveav(Im,nk) kern = ones(nk)./nk.^2; sm = conv2(Im,kern,'same'); return; end
github
rising-turtle/slam_matlab-master
find_index.m
.m
slam_matlab-master/plot_traj/find_index.m
489
utf_8
4a74fe943cd8030d30c158271c8fe7f1
%% compute first index of gt, given the already matched timestamp from test_gt function index = find_index(t, first_timestamp_pose) index = -1; %% the following two are matched vt = 1498879054.726535936; gt = 12.125; if first_timestamp_pose > 1e12 first_timestamp_pose = first_timestamp_pose * 1e-9; end dt = vt - first_timestamp_pose; for i=1:size(t,1) if t(i) + dt >= gt index = i; break; end end end
github
rising-turtle/slam_matlab-master
compare_trajectory_with_gt.m
.m
slam_matlab-master/plot_traj/compare_trajectory_with_gt.m
1,999
utf_8
dbd23bc55a865245d9f8a9f9e0ad6f99
% % Feb. 24, 2018, He Zhang, [email protected] % % compare the trajectories of viorb, okvis, vins-mono % the realsesne datasets % function compare_trajectory_with_gt(fdir) if nargin == 0 fdir = './results/GT'; end % load viorb trajectory % f_viorb = strcat(fdir, '/viorb.log'); % T_viorb = load(f_viorb); % load okvis trajecotry f_okvis = strcat(fdir, '/okvis.log'); T_okvis = load(f_okvis); % load vins-mono trajectory f_vins = strcat(fdir, '/vins-mono.log'); T_vins = load(f_vins); % load vins-mono_ext trajectory f_ext = strcat(fdir, '/vins-mono_ext.log'); T_ext = load(f_ext); % transform viorb based on the coordinate of VINS-Mono_ext % T_viorb(:, 1:8) = transform_viorb(T_ext(1,1:8), T_viorb(:, 1:8)); % load ground truth f_gt = strcat(fdir, '/ground_truth.log'); T_gt = load(f_gt); s = 1; e = 1000; % plot_xyz(-T_viorb(:,3), -T_viorb(:, 2), T_viorb(:, 4), 'm-'); % plot_xyz(T_viorb(:,2), -T_viorb(:, 3), T_viorb(:, 4), 'm-'); % hold on; plot_xyz(T_okvis(s:e,2), T_okvis(s:e, 3), T_okvis(s:e, 4), 'b:'); hold on; plot_xyz(T_gt(s:2*e,2), -T_gt(s:2*e,4),T_gt(s:2*e,3), 'k-'); grid on; hold on; plot_xyz(T_vins(s:e,2), T_vins(s:e, 3), T_vins(s:e, 4), 'r-.'); hold on; plot_xyz(T_ext(s:e,2), T_ext(s:e, 3), T_ext(s:e, 4), 'g-'); % legend('VIORB', 'OKVIS', 'VINS-Mono', 'Proposed'); legend('OKVIS', 'GT','VINS-Mono', 'Proposed'); % title('Trajectory Comparison'); end %% viorb's coordinate is different from vins-mono and okvis function pose = transform_viorb( pose_base, pose) Too = construct(pose(1, 2:8)); Too_inv = inv(Too); Tg2s = construct(pose_base(2:8)); Ts2c = [1 0 0 0; 0 0 1 0; 0 -1 0 0; 0 0 0 1]; for i=1:size(pose,1) Tii = construct(pose(i, 2:8)); Tc2i = Too_inv * Tii; Tg2i = Tg2s * Ts2c * Tc2i; [q, t] = deconstruct(Tg2i); % Tb2i = Tb2o * To2i; % [q, t] = deconstruct(Tb2i); pose(i, 2:4) = t(:); pose(i, 5:8) = q(:); end end
github
rising-turtle/slam_matlab-master
rmat2quat.m
.m
slam_matlab-master/plot_traj/rmat2quat.m
795
utf_8
238c076762b7266d10f6726f613f660c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Converts (orthogonal) rotation matrices R to (unit) quaternion % representations % % Input: A 3x3xn matrix of rotation matrices % Output: A 4xn matrix of n corresponding quaternions % % http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion function quaternion = rmat2quat(R) Qxx = R(1,1,:); Qxy = R(1,2,:); Qxz = R(1,3,:); Qyx = R(2,1,:); Qyy = R(2,2,:); Qyz = R(2,3,:); Qzx = R(3,1,:); Qzy = R(3,2,:); Qzz = R(3,3,:); w = 0.5 * sqrt(1+Qxx+Qyy+Qzz); x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz); y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz); z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz); quaternion = reshape([w;x;y;z],4,[]); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
rising-turtle/slam_matlab-master
compute_transform.m
.m
slam_matlab-master/plot_traj/compute_transform.m
921
utf_8
7f9d4b2132ff0bbd3fe74d35b6654223
%% find transformation between two point sets function [pose, pose_err] = compute_transform(pose, pF, pT) % plot_xyz(pts_f(:,1), pts_f(:,2), pts_f(:,3), 'r*'); % hold on; % plot_xyz(pts_t(:,1), pts_t(:,2), pts_t(:,3), 'bs'); pts_f = pF(:,2:4); pts_t = pT(:,2:4); [rot, trans] = eq_point(pts_t', pts_f'); pts_tt = rot * pts_f' + repmat(trans,1, size(pts_f,1)); pts_tt = pts_tt'; dt = pts_t(1,:) - pts_tt(1,:); if nargout == 2 pts_tt = pts_tt' + repmat(dt', 1, size(pts_f,1)); pose_err = zeros(size(pT,1),2); pose_err(:,1) = pT(:,1); d_pos = pts_tt - pts_t'; pose_err(:,2) = sqrt(sum(d_pos.*d_pos)); end % hold on; % plot_xyz(pts_tt(:,1), pts_tt(:,2), pts_tt(:,3), 'g+'); for i=1:size(pose) t = pose(i, 2:4); t = rot * t' + trans + dt'; pose(i,2:4) = t'; end end
github
rising-turtle/slam_matlab-master
compare_trajectory.m
.m
slam_matlab-master/plot_traj/compare_trajectory.m
1,768
utf_8
4781b8053894727bea8f96a135231f69
% % Feb. 21, 2018, He Zhang, [email protected] % % compare the trajectories of viorb, okvis, vins-mono % the realsesne datasets % function compare_trajectory(fdir) if nargin == 0 fdir = './results/ETAS_2F_640_30'; fdir = './results/ETAS_F4_640_30'; end % load viorb trajectory f_viorb = strcat(fdir, '/viorb.log'); T_viorb = load(f_viorb); % load okvis trajecotry f_okvis = strcat(fdir, '/okvis.log'); %f_okvis = strcat(fdir, '/run_7.log'); T_okvis = load(f_okvis); % load vins-mono trajectory f_vins = strcat(fdir, '/vins-mono.log'); T_vins = load(f_vins); % load vins-mono_ext trajectory f_ext = strcat(fdir, '/vins-mono_ext.log'); T_ext = load(f_ext); % transform viorb based on the coordinate of VINS-Mono_ext T_viorb(:, 1:8) = transform_viorb(T_ext(1,1:8), T_viorb(:, 1:8)); plot_xyz(-T_viorb(:,3), -T_viorb(:, 2), T_viorb(:, 4), 'm-'); hold on; plot_xyz(T_okvis(:,2), T_okvis(:, 3), T_okvis(:, 4), 'b:'); hold on; % grid on; plot_xyz(T_vins(:,2), T_vins(:, 3), T_vins(:, 4), 'r-.'); hold on; plot_xyz(T_ext(:,2), T_ext(:, 3), T_ext(:, 4), 'g-'); legend('VIORB', 'OKVIS', 'VINS-Mono', 'Proposed'); % title('Trajectory Comparison'); end %% viorb's coordinate is different from vins-mono and okvis function pose = transform_viorb( pose_base, pose) Too = construct(pose(1, 2:8)); Too_inv = inv(Too); Tg2s = construct(pose_base(2:8)); Ts2c = [1 0 0 0; 0 0 1 0; 0 -1 0 0; 0 0 0 1]; for i=1:size(pose,1) Tii = construct(pose(i, 2:8)); Tc2i = Too_inv * Tii; Tg2i = Tg2s * Ts2c * Tc2i; [q, t] = deconstruct(Tg2i); % Tb2i = Tb2o * To2i; % [q, t] = deconstruct(Tb2i); pose(i, 2:4) = t(:); pose(i, 5:8) = q(:); end end
github
rising-turtle/slam_matlab-master
quat2rmat.m
.m
slam_matlab-master/plot_traj/quat2rmat.m
798
utf_8
fb153dbeaab428656e51bea7b133b87c
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Converts (unit) quaternion representations to (orthogonal) rotation matrices R % % Input: A 4xn matrix of n quaternions % Output: A 3x3xn matrix of corresponding rotation matrices % % http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix function R = quat2rmat(quaternion) q0(1,1,:) = quaternion(1,:); qx(1,1,:) = quaternion(2,:); qy(1,1,:) = quaternion(3,:); qz(1,1,:) = quaternion(4,:); R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy; 2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx; 2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2]; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
github
rising-turtle/slam_matlab-master
transform_to_synchronized.m
.m
slam_matlab-master/plot_traj/transform_to_synchronized.m
1,377
utf_8
b2a5bbeb814e5be9d3ac6ba6f982cab3
%% transform into the coordinate of the synchronized pose function [pose, pt_f, pt_t] = transform_to_synchronized(pose, gt, index) Tw2l = construct(gt(index, 2:8)); Tl2s = transformB2S(); Tw2s = Tw2l * Tl2s; time_s = 1.; t_p = pose(1,1); if t_p > 1e12 time_s = 1e-9; end t_p = t_p * time_s; t_g = gt(index,1); % plot_axis(Tw2l(1:3, 1:3), Tw2s(1:3,4), 1); % hold on; % plot_axis(Tw2s(1:3, 1:3), Tw2s(1:3,4), 2); pt_f = []; pt_t = []; from = 1; for i = 1:size(pose,1) Ts2i = construct(pose(i,2:8)); Tw2i = Tw2s * Ts2i; [q, t] = deconstruct(Tw2i); pose(i, 2:4) = t(:); pose(i, 5:7) = q(2:4); pose(i, 8) = q(1); %% find correspond point sets timestamp = pose(i,1)*time_s; j = find_correspond( gt(:,1), t_g + timestamp - t_p, from); if j > from pt_f = [pt_f; pose(i,1:4)]; pt_t = [pt_t; gt(j, 1:4)]; from = j; else % fprintf('find_correspond error? from = %d j = %d\n', from, j); end end end %% construct Tb2s function Tb2s = transformB2S() t_b2s = [-0.01, -0.015, 0.03]'; theta = 20*pi/180; cs = cos(theta); ss = sin(theta); R_b2s = [1 0 0; 0 cs -ss; 0 ss cs]; Tb2s = [R_b2s t_b2s; 0 0 0 1]; end
github
rising-turtle/slam_matlab-master
align_transform.m
.m
slam_matlab-master/plot_traj/align_transform.m
250
utf_8
6caa31298f67c2f9adbd540e282938ff
%% function [pose, pose_err] = align_transform(pose, gt) index = find_index(gt(:,1), pose(1,1)); [pose, pts_f, pts_t] = transform_to_synchronized(pose, gt, index); [pose, pose_err] = compute_transform(pose, pts_f(:,:), pts_t(:,:)); end
github
rising-turtle/slam_matlab-master
traj_in_IMU.m
.m
slam_matlab-master/plot_traj/traj_in_IMU.m
1,914
utf_8
c4b52bcfa530457b7262515b3f8dba45
%%% % transform coordinates from world to IMU % Now this file has been extended to show the trajectory comparison of the % R200_GT_DENSE_SLOW dataset % Feb. 26 2018, He Zhang, [email protected] function traj_in_IMU(fdir) if nargin == 0 fdir = './results/GT'; end addpath('../ground_truth_zh'); % load viorb trajectory % f_viorb = strcat(fdir, '/viorb.log'); % T_viorb = load(f_viorb); % load okvis trajecotry f_okvis = strcat(fdir, '/okvis.log'); T_okvis = load(f_okvis); % load vins-mono trajectory f_vins = strcat(fdir, '/vins-mono.log'); T_vins = load(f_vins); % load vins-mono_ext trajectory f_ext = strcat(fdir, '/vins-mono_ext.log'); T_ext = load(f_ext); % transform viorb based on the coordinate of VINS-Mono_ext % T_viorb(:, 1:8) = transform_viorb(T_ext(1,1:8), T_viorb(:, 1:8)); % load ground truth f_gt = strcat(fdir, '/ground_truth_g.log'); T_gt = load(f_gt); s = 1; e = 200; %% transform into the coordinate of the first pose T_okvis = transform_to_first(T_okvis); T_vins = transform_to_first(T_vins); T_ext = transform_to_first(T_ext); %% transform to synchronized pose got from test_gt, % and then align with gt's trajectory T_vins = align_transform(T_vins, T_gt); T_ext = align_transform(T_ext, T_gt); T_okvis = align_transform(T_okvis, T_gt); % T_okvis = transform_to_synchronized(T_okvis, T_gt, 237); % plot_xyz(-T_viorb(:,3), -T_viorb(:, 2), T_viorb(:, 4), 'm-'); % plot_xyz(T_viorb(:,2), -T_viorb(:, 3), T_viorb(:, 4), 'm-'); % hold on; plot_xyz(T_okvis(:,2), T_okvis(:, 4), T_okvis(:, 3), 'b:'); hold on; % plot_xyz( T_gt(:,4), -T_gt(:,2),T_gt(:,3), 'k-'); plot_xyz(T_vins(:,2), T_vins(:, 4), T_vins(:, 3), 'r--.'); hold on; plot_xyz(T_ext(:,2), T_ext(:, 4), T_ext(:, 3), 'g-.'); hold on; plot_xyz( T_gt(:,2), T_gt(:,4), T_gt(:,3), 'k-'); grid on; % legend('VIORB', 'OKVIS', 'VINS-Mono', 'Proposed'); legend('OKVIS', 'VINS-Mono', 'Proposed', 'GT'); end
github
rising-turtle/slam_matlab-master
transToFirst.m
.m
slam_matlab-master/plot_traj/transToFirst.m
792
utf_8
94c3469b01e233f12371e0688cffe076
function [ TO ] = transToFirst( TI ) % Transform to the first frame as basic coordinate system % Aug. 30 2017, He Zhang, [email protected] % INPUT: array [timestamp, x, y, z, qw, qx, qy, qz] % OUTPUT: array [timestamp, x, y, z, qw, qx, qy, qz] % TO = zeros(size(TI,1), 8); T1 = construct(TI(1,2:end)); for i=1:size(TI,1) Ti = construct(TI(i, 2:end)); Ti_new = T1\Ti; [q, t] = deconstruct(Ti_new); TO(i,:) = [TI(i,1), t', q']; end end function [q, t] = deconstruct(T) [R,t] = decompose(T); q = rmat2quat(R); end function [T] = construct(v) t = v(1:3); q = v(4:7); R = quat2rmat(q'); T = combine(R, t'); end function [T] = combine(R, t) T = [R t; 0 0 0 1]; end function [R, t] = decompose(T) R = T(1:3, 1:3); t = T(1:3, 4); end
github
rising-turtle/slam_matlab-master
plot_error_bar.m
.m
slam_matlab-master/plot_traj/plot_error_bar.m
2,874
utf_8
5788a1e38b91d7d76c88b70767806e29
%% % Dec. 27, 2018, He Zhang, [email protected] % plot the error bar of the translation err function plot_error_bar() load('vins-mono_err.mat'); load('gt.mat'); load('vins-mono_ext_err.mat'); load('okvis_err.mat'); tps = find_dis_tps(T_gt, 2); x = tps(:,2); vins_mono_err_x = []; vins_mono_std_x = []; vins_mono_ext_err_x = []; vins_mono_ext_std_x = []; okvis_err_x = []; okvis_std_x = []; for i=1:size(tps) tp = tps(i,1); vins_mono_err_i = []; vins_mono_ext_err_i= []; okvis_err_i = []; for j=1:10 E_vins = vins_err{j}; er = find_err(tp, E_vins); if er >= 0 vins_mono_err_i = [vins_mono_err_i; er]; end E_vins_ext = vins_ext_err{j}; er = find_err(tp, E_vins_ext); if er >= 0 vins_mono_ext_err_i = [vins_mono_ext_err_i; er]; end E_okvis = okvis_err{j}; er = find_err(tp, E_okvis); if er >= 0 okvis_err_i = [okvis_err_i; er]; end end mu = mean(vins_mono_err_i); sigma = std(vins_mono_err_i); vins_mono_err_x = [vins_mono_err_x; mu]; vins_mono_std_x = [vins_mono_std_x; sigma]; mu = mean(vins_mono_ext_err_i); sigma = std(vins_mono_ext_err_i); vins_mono_ext_err_x = [vins_mono_ext_err_x; mu]; vins_mono_ext_std_x = [vins_mono_ext_std_x; sigma]; mu = mean(okvis_err_i); sigma = std(okvis_err_i); okvis_err_x = [okvis_err_x; mu]; okvis_std_x = [okvis_std_x; sigma]; end % draw bar errorbar(x, okvis_err_x, okvis_std_x, 'd', 'MarkerFaceColor', 'blue'); hold on; errorbar(x + 0.1, vins_mono_err_x, vins_mono_std_x, 's', 'MarkerFaceColor', 'red'); hold on; errorbar(x + 0.2, vins_mono_ext_err_x, vins_mono_ext_std_x, '*', 'MarkerFaceColor', 'green'); hold on; grid on; grid on; xlabel('Distance traveled [m]'); ylabel('Translation Error [m]'); legend('OKVIS', 'VINS-Mono', 'Proposed'); xlim([0, 28]) end %% find err value at given timestamp function err = find_err(tp, Er) err = -1; for i=1:size(Er,1) if Er(i,1) >= tp if Er(i,1) - tp <= 0.2 err = Er(i,2); break; else if i>1 && tp - Er(i-1,2) <= 0.2 err = Er(i-1,2); break; end end end end end %% find timestamps at given distance function [tps] = find_dis_tps(gt, dis) tps = []; last = 1; j = 1; m = size(gt,1); last_dis = 0; while j < m t1 = gt(last, 2:4); for j=last:m t2 = gt(j,2:4); dt = t2 - t1; cur_dis = sqrt(dt*dt'); if cur_dis >= dis tps = [tps; gt(j,1), dis+last_dis]; last = j; last_dis = dis + last_dis; break; end end end end
github
rising-turtle/slam_matlab-master
statistic_translation_error.m
.m
slam_matlab-master/plot_traj/statistic_translation_error.m
1,000
utf_8
1642aa08763e6bae13221a04d95481fa
%% % Dec. 27, 2018, He Zhang, [email protected] % compute the translation error compared to path length function [ output_args ] = statistic_translation_error(fdir) if nargin == 0 fdir = './results/GT/vins-mono_GT'; fdir = './results/GT/vins-mono_ext_GT'; fdir = './results/GT/okvis_GT'; end addpath('../ground_truth_zh'); f_gt = strcat('./results/GT', '/ground_truth_g.log'); T_gt = load(f_gt); % vins_err = {}; % vins_ext_err = {}; okvis_err = {}; j = 1; for i = 1:10 %6:15 fname = strcat('/run_', int2str(i)); % fname = strcat(fname, '.csv'); fname = strcat(fname, '.log'); fname = strcat(fdir, fname); T = load(fname); T = transform_to_first(T); [T, Te] = align_transform(T, T_gt); % vins_err{j} = Te; % vins_ext_err{j} = Te; okvis_err{j} = Te; j= j+1; end % save('vins-mono_err.mat', 'vins_err'); % save('gt.mat', 'T_gt'); % save('vins-mono_ext_err.mat', 'vins_ext_err'); save('okvis_err.mat', 'okvis_err'); end
github
rising-turtle/slam_matlab-master
find_correspond.m
.m
slam_matlab-master/plot_traj/find_correspond.m
235
utf_8
c8fde5fe7636408d30305a01e739f8c1
%% find corresponding point function j = find_correspond(x, timestamp, from) j = from; for i = from:size(x,1) if x(i) > timestamp && x(i) - timestamp < 0.03 j = i; break; end end end
github
rising-turtle/slam_matlab-master
test_gt.m
.m
slam_matlab-master/plot_traj/test_gt.m
960
utf_8
d6c24ad51365e497f00763a5ec7084a6
%%% % to align gt with trajectories from vins, okvis, % find out the timestamp at 1350 of gt match to timestamp at 53 of vins % which means gt's timestamp 12.125 vins' timestamp 1498879054.726535936 % then gt's timestamp 6.925 (at 738) match to vins-mono' start timestamp 1498879049.526535936 % gt's timestamp 7.225 (at 774) match to vins-mono_ext's start timestamp 1498879049.826536192 % gt's timestamp 2.667 (at 237) match to okvis's start timestamp 1498879045.268399370 % gt's timestamp 2.691 (at 240) to viorb's start timestamp 1498879045.293203 function test_gt(st) if nargin == 0 st = 1230; end % load ground truth f_gt = strcat('./results/GT', '/ground_truth_g.log'); T_gt = load(f_gt); figure; r = 200; plot_xyz( -T_gt(st:st+r,2), -T_gt(st:st+r,4), T_gt(st:st+r,3), 'k-'); view(2); % compute_dx(T_gt(st:st+r,2)); end function compute_dx(x) m = size(x,1) x1 = x(2:end); x0 = x(1:m-1); dx = abs(1000*(x1 - x0)); plot(dx,'b-*'); end
github
rising-turtle/slam_matlab-master
transform_to_first.m
.m
slam_matlab-master/plot_traj/transform_to_first.m
347
utf_8
bf27f9b19d15e12a6f85768b89f828c1
%% transform into the coordinate of the first pose function pose = transform_to_first(pose) Too = construct(pose(1, 2:8)); Too_inv = inv(Too); for i=1:size(pose,1) Tii = construct(pose(i, 2:8)); Ts2i = Too_inv * Tii; [q, t] = deconstruct(Ts2i); pose(i, 2:4) = t(:); pose(i, 5:8) = q(:); end end
github
rising-turtle/slam_matlab-master
plot_feature_pts.m
.m
slam_matlab-master/plot_traj/plot_feature_pts.m
748
utf_8
a6b31abd76d5d9da3824a8fe62d53155
function [ output_args ] = plot_feature_pts( fname ) %UNTITLED3 Summary of this function goes here % Detailed explanation goes here if nargin == 0 fname = 'vins_mono_ext_feature_pts.log'; end pts = load(fname); pts = filter_distant(pts); hold on; grid on; plot3(pts(:,1), pts(:,2), pts(:,3), '.', 'MarkerSize', 5); view(3); end function pts = filter_distant(pts) epts = zeros(size(pts)); k = 1; for i=1:size(pts, 1) good = true; for j=1:3 if pts(i, j) > 40 || pts(i, j) < -40 good = false; break; end end if good == true epts(k, :) = pts(i, :); k = k + 1; end end pts = epts(1:k,:); end
github
rising-turtle/slam_matlab-master
load_camera_frame.m
.m
slam_matlab-master/VRO/load_camera_frame.m
2,267
utf_8
fead0b7e8d4edb2989241e7cafbb1d1b
function [img, frm, des, p, ld_err] = load_camera_frame(fid) % % David Z, March 3th, 2015 % load camera data: % img, 2D pixels % frm, % p [x y z]; (width, height, 3) % ld_err = 1, if not exist global g_data_dir g_data_prefix g_data_suffix g_camera_type global g_filter_type ld_err = 0; % TODO: take the load data error into consideration % now only support SwissRanger cut_off_boarder = 0; % weather to cut off the boarder pixels dm = 1; % directory of data? scale = 1; % scale the intensity image to the range [0~255] value_type = 'int'; % convert to int, after scaling the image %% feature has been stored if file_exist(fid) ~= 0 [img, frm, des, p] = load_feature(fid); return ; else if strcmp(g_camera_type, 'creative') [img, x, y, z, c] = LoadCreative_dat(g_camera_type, fid); else if strcmp(g_data_suffix, 'dat') [img, x, y, z, c] = LoadSR_no_bpc(g_camera_type, g_filter_type, ... cut_off_boarder, dm, fid, scale, value_type); elseif strcmp(g_data_suffix, 'bdat') [img, x, y, z, c] = LoadSR_no_bpc_time_single_binary(g_camera_type, ... g_filter_type, cut_off_boarder, dm, fid, scale, value_type); end end if isempty(img) frm = []; des = []; p =[]; ld_err = 1; return; end end %% sift feature global g_sift_threshold if g_sift_threshold == 0 [frm, des] = sift(img); else [frm, des] = sift(img, 'threshold', g_sift_threshold); end %% plot the point cloud % plot_pc(x, y, z, 'b'); % dump2ply('tmp.ply', x, y, z, img); %% confindence filtering if c ~=0 [frm, des] = confidence_filtering(frm, des, c); end %% construct return value [m, n] = size(x); p = zeros(m, n, 3); p(:,:,1) = x; p(:,:,2) = y; p(:,:,3) = z; %% save it into file global g_save_vro_middle_result if g_save_vro_middle_result save_feature(fid, img, frm, des, p); end end function plot_pc(x, y, z, c) plot3(x, y, z, c); end %% check weather this visul feature exist function [exist_flag] = file_exist(id) %% get file name global g_data_dir g_data_prefix g_feature_dir file_name = sprintf('%s/%s/%s_%04d.mat', g_data_dir, g_feature_dir, g_data_prefix, id); exist_flag = exist(file_name, 'file'); end
github
rising-turtle/slam_matlab-master
pre_check_dir.m
.m
slam_matlab-master/VRO/pre_check_dir.m
547
utf_8
8a7e9d1ce4f080306bd3b5ee748a06f2
% % David Z, Jan 22th, 2015 % pre-check the save dir, if not exist, create it % function pre_check_dir(dir_) global g_feature_dir g_matched_dir g_pose_std_dir feature_dir = sprintf('/%s', g_feature_dir); match_dir = sprintf('/%s', g_matched_dir); not_exist_then_create(strcat(dir_, feature_dir)); not_exist_then_create(strcat(dir_, match_dir)); % not_exist_then_create(strcat(dir_, '/pose_std')); not_exist_then_create('./results'); end function not_exist_then_create(dir_) if ~isdir(dir_) mkdir(dir_); end end
github
rising-turtle/slam_matlab-master
LoadCreative_dat.m
.m
slam_matlab-master/VRO/LoadCreative_dat.m
783
utf_8
f539355d95dcac539680013bc4ae091c
% % David Z, Jan 22th, 2015 % Load Creative Data % function [img, x, y, z, c, time, err] = LoadCreative_dat(data_name, j) [prefix, confidence_read] = get_sr4k_dataset_prefix(data_name); img = []; x = []; y = []; z = []; c = []; err = 0; %% time elapse t_pre = tic; %% load data file [file_name, err] = sprintf('%s%d.dat', prefix, j); if ~exist(file_name, 'file') fprintf('LoadCreative_dat.m: file not exist: %s\n', file_name); err = 1; return ; end a = load(file_name); % elapsed time := 0.2 sec if isempty(a) fprintf('LoadCreative_dat.m: file is empty!\n'); err = 1; return; end row = size(a, 1); img = a(1:row/4, :); x = a((row/4+1):row/2, :); y= a(row/2+1:3*row/4, :); z = a(3*row/4+1:row, :); c = zeros(size(x)); time = toc(t_pre); end
github
rising-turtle/slam_matlab-master
graphslam_addpath.m
.m
slam_matlab-master/VRO/graphslam_addpath.m
1,409
utf_8
503a943bb30b3483282203370b1e5f57
% Add the path for graph slam % % Author : Soonhac Hong ([email protected]) % Date : 10/16/12 function graphslam_addpath % addpath('D:\Soonhac\SW\gtsam-toolbox-2.3.0-win64\toolbox'); % addpath('D:\soonhac\SW\kdtree'); % addpath('D:\soonhac\SW\LevenbergMarquardt'); % addpath('D:\soonhac\SW\Localization'); % addpath('D:\soonhac\SW\SIFT\sift-0.9.19-bin\sift'); % addpath('D:\soonhac\SW\slamtoolbox\slamToolbox_11_09_08\FrameTransforms\Rotations'); % addpath('D:\Soonhac\SW\plane_fitting_code'); % addpath('F:\co-worker\soonhac\gtsam-toolbox-2.3.0-win64\toolbox'); % addpath('F:\co-worker\soonhac\SW\kdtree'); % addpath('F:\co-worker\soonhac\LevenbergMarquardt'); % addpath('F:\co-worker\soonhac\Localization'); % addpath('F:\co-worker\soonhac\SIFT\sift-0.9.19-bin\sift'); % addpath('F:\co-worker\soonhac\slamtoolbox\slamToolbox_11_09_08\FrameTransforms\Rotations'); % addpath('F:\co-worker\soonhac\plane_fitting_code'); global g_ws_dir; addpath(strcat(g_ws_dir, '/gtsam-toolbox-2.3.0-win64/toolbox')); addpath(strcat(g_ws_dir, '/kdtree')); addpath(strcat(g_ws_dir, '/LevenbergMarquardt')); addpath(strcat(g_ws_dir, '/SIFT/sift-0.9.19-bin/sift')); addpath(strcat(g_ws_dir, '/slamtoolbox/slamToolbox_11_09_08/FrameTransforms/Rotations')); addpath(strcat(g_ws_dir, '/plane_fitting_code')); %% modified modules addpath(strcat(g_ws_dir, '/Localization')); %% addpath(strcat(g_ws_dir, '/GraphSLAM')); %% end
github
rising-turtle/slam_matlab-master
plot_graph_trajectory.m
.m
slam_matlab-master/VRO/plot_graph_trajectory.m
1,866
utf_8
57a03921cd0e61d805de50b94592cd8c
function plot_graph_trajectory(gtsam_pose_initial, gtsam_pose_result) % % David Z, 3/6/2015 % draw the trajectory in the graph structure % import gtsam.* plot_xyz_initial = []; %% plot the initial pose trajectory : VRO result keys = KeyVector(gtsam_pose_initial.keys); initial_max_index = keys.size-1; for i=0:int32(initial_max_index) key = keys.at(i); x = gtsam_pose_initial.at(key); % T = x.matrix(); % [ry, rx, rz] = rot_to_euler(T(1:3,1:3)); plot_xyz_initial(i+1,:)=[x.x x.y x.z]; end plot_xyz_result = []; %% plot the result pose trajectory : GO graph optimization result if exist('gtsam_pose_result', 'var') keys = KeyVector(gtsam_pose_result.keys); initial_max_index = keys.size-1; for i=0:int32(initial_max_index) key = keys.at(i); x = gtsam_pose_result.at(key); % T = x.matrix(); % [ry, rx, rz] = rot_to_euler(T(1:3,1:3)); plot_xyz_result(i+1,:)=[x.x x.y x.z]; end end %% plot them figure(1); subplot(1,2,2); plot(plot_xyz_initial(:,1),plot_xyz_initial(:,2),'b-', 'LineWidth', 2); legend('VRO'); hold on; plot_start_point(plot_xyz_initial); if exist('gtsam_pose_result', 'var') plot(plot_xyz_result(:,1),plot_xyz_result(:,2),'r-', 'LineWidth', 2); legend('PGO'); end xlabel('X');ylabel('Y'); % Modify size of x in the graph % xlim([-7 15]); % for etas523_exp2 % xlim([-15 5]); % for Amir's exp1 % xlim([-10 10]); % for etas523_exp2_lefthallway % ylim([-5 15]); global g_dis_x_min g_dis_x_max g_dis_y_min g_dis_y_max xlim([g_dis_x_min g_dis_x_max]); % for etas523_exp2_lefthallway ylim([g_dis_y_min g_dis_y_max]); hold off; grid; axis equal; end function plot_start_point(plot_xyz_result) plot(plot_xyz_result(1,1),plot_xyz_result(1,2),'ko', 'LineWidth', 3,'MarkerSize', 3); text(plot_xyz_result(1,1)-1.5,plot_xyz_result(1,2)-1.5,'Start','Color',[0 0 0]); end
github
rising-turtle/slam_matlab-master
img_preprocess.m
.m
slam_matlab-master/VRO/img_preprocess.m
1,748
utf_8
b8de79b4d263155edea6f71fe59278e6
function [ img ] = img_preprocess( data_name, old_file_version) %IMG_PREPROCESS Summary of this function goes here % Detailed explanation goes here if nargin < 1 old_file_version = 1; % 1; % data_name='/home/davidz/work/EmbMess/mesa/pcl_mesa/build/bin/sr_data/d1_0001.bdat'; data_name='/home/davidz/work/data/SwissRanger4000/try/d1_0001.bdat'; end fileID=fopen(data_name); if fileID==-1 %disp('File open fails !!'); return; end sr4k_image_width = 176; sr4k_image_height = 144; if old_file_version z=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); x=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); y=fread(fileID,[sr4k_image_width,sr4k_image_height],'float'); img=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); % img=fread(fileID,[144,176],'uint16'); else img=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); dis=fread(fileID,[sr4k_image_width,sr4k_image_height],'uint16'); dis = dis'; dis = scale_image(dis); imshow(dis); end img = img'; img = scale_image(img); imshow(img); end function [img] = scale_image(img) %% set the pixels that is larger than limit = 65000, to 0 [m, n] = find (img>65000); %???? imgt=img; num=size(m,1); for kk=1:num imgt(m(kk), n(kk))=0; end %% set the pixels larger than limit, to max(imgt) value imax=max(max(imgt)); for kk=1:num img(m(kk),n(kk))=imax; end %% sqrt(img) and rescale to 0-255 img=sqrt(img).*255./sqrt(max(max(img))); %This line degrade the performance of SURF img = uint8(img); %% Adaptive histogram equalization % img = adapthisteq(img); %% gaussian filter gaussian_h = fspecial('gaussian',[3 3],1); %sigma = 1 % img=imfilter(img, gaussian_h,'replicate'); end
github
rising-turtle/slam_matlab-master
VRO.m
.m
slam_matlab-master/VRO/VRO.m
9,975
utf_8
4545c083032007c6b92bf22dd096529c
function [t, pose_std, e] = VRO(id1, id2, img1, img2, des1, frm1, p1, des2, frm2, p2) % % March 3th, 2015, David Z % match two images and return the transformation between img1 and img2 % t : [ phi, theta, psi, trans]; % pose_std: pose covariance % e : error % %% extract features, match img1 to img2 if ~exist('des1','var') [frm1, des1] = sift(img1); end if ~exist('des2','var') [frm2, des2] = sift(img2); end %% pose covariance pose_std = []; if file_exist(id1, id2) ~= 0 %% match points stored in a middle file [op_match, e] = load_matched_points_zh(id1, id2); if e > 0 [t,e] = error_exist('ransac filter failed!', 2); return ; end else %% if save the intermiddle data, do it global g_save_feature_for_debug if g_save_feature_for_debug ftar_name = sprintf('tar_nodes/node_%d.log', id1); fsrc_name = sprintf('src_nodes/node_%d.log', id2); save_feature(ftar_name, des1, frm1, p1, id1); save_feature(fsrc_name, des2, frm2, p2, id2); end %% first, sift feature match % match = siftmatch(des1, des2, 2.); match = siftmatch(des1, des2); % fprintf('VRO.m after siftmatch, matched num: %d\n',size(match,2)); %% valid depth filter match correspondences global g_depth_filter_max g_minimum_ransac_num match = depth_filter(match, g_depth_filter_max, 0, frm1, frm2, p1, p2); % fprintf('VRO.m after depth_filter, matched num: %d\n',size(match,2)); pnum = size(match,2); % pnum: matched feature pairs if pnum <= g_minimum_ransac_num [t,e] = error_exist('too few valid sift points for ransac!', 1); return; end %% second, ransac to obtain the final transformation result [op_match, e] = ransac_filter(match, frm1, frm2, p1, p2); % op_match = match; if e > 0 [t,e] = error_exist('ransac filter failed!', 2); save_matched_points_zh(id1, id2, op_match, e); return ; end %% save the match points global g_save_vro_middle_result if g_save_vro_middle_result save_matched_points_zh(id1, id2, op_match); end end %% lastly, SVD to compute the transformation [t, pose_std, e] = svd_transformation(op_match, frm1, frm2, p1, p2); end %% SVD transformation function [t, pose_std, e] = svd_transformation(op_match, frm1, frm2, p1, p2) e = 0; op_num = size(op_match, 2); op_pset_cnt = 1; x1 = p1(:,:,1); y1 = p1(:,:,2); z1 = p1(:,:,3); x2 = p2(:,:,1); y2 = p2(:,:,2); z2 = p2(:,:,3); for i=1:op_num frm1_index=op_match(1, i); frm2_index=op_match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; op_pset1_image_index(i,:) = [matched_pix1(1), matched_pix1(2)]; %[COL1, ROW1]; op_pset2_image_index(i,:) = [matched_pix2(1), matched_pix2(2)]; %[COL2, ROW2]; op_pset1(1,op_pset_cnt)=-x1(ROW1, COL1); op_pset1(2,op_pset_cnt)=z1(ROW1, COL1); op_pset1(3,op_pset_cnt)=y1(ROW1, COL1); op_pset2(1,op_pset_cnt)=-x2(ROW2, COL2); op_pset2(2,op_pset_cnt)=z2(ROW2, COL2); op_pset2(3,op_pset_cnt)=y2(ROW2, COL2); op_pset_cnt = op_pset_cnt + 1; end %% SVD solve [rot, trans, sta] = find_transform_matrix_e6(op_pset1, op_pset2); [phi, theta, psi] = rot_to_euler(rot); t = [ phi, theta, psi, trans']; if sta <= 0 [t,e] = error_exist('no solution in SVD.', 3); end %% compute pose convariance [pose_std] = compute_pose_std(op_pset1,op_pset2, rot, trans); pose_std = pose_std'; end %% delete the pairs that contain (0,0,0) points function match = filter_zero_pairs(match, frm1, frm2, p1, p2) pnum = size(match, 2); r_match = []; % return match x1 = p1(:,:,1); y1 = p1(:,:,2); z1 = p1(:,:,3); x2 = p2(:,:,1); y2 = p2(:,:,2); z2 = p2(:,:,3); for i=1:pnum frm1_index=match(1, i); frm2_index=match(2, i); matched_pix1=frm1(:, frm1_index); COL1=round(matched_pix1(1))+1; ROW1=round(matched_pix1(2))+1; matched_pix2=frm2(:, frm2_index); COL2=round(matched_pix2(1))+1; ROW2=round(matched_pix2(2))+1; p1x=-x1(ROW1, COL1); p1z=z1(ROW1, COL1); p1y=y1(ROW1, COL1); p2x=-x2(ROW2, COL2); p2z=z2(ROW2, COL2); p2y=y2(ROW2, COL2); %% deletet the zero pairs if (p1x + p1z + p1y == 0) || (p2x + p2y + p2z == 0) continue; end r_match = [r_match match(:,i)]; end match = r_match; end %% ransac transformation to get the result function [op_match, error] = ransac_filter(match, frm1, frm2, p1, p2) global g_ransac_iteration_limit % pnum = size(match,2); % number of matched pairs error = 0; op_match = []; %% delete the pairs that contain (0,0,0) points match = filter_zero_pairs(match, frm1, frm2, p1, p2); pnum = size(match,2); % number of matched pairs %% ransac with a limited number if g_ransac_iteration_limit > 0 % rst = min(g_ransac_iteration_limit, nchoosek(pnum, 4)); % at least C_n^4 times rst = g_ransac_iteration_limit; tmp_nmatch = zeros(2, pnum, rst); tmp_cnum = zeros(rst,1); for i=1:rst [n_match, rs_match, cnum] = ransac(frm1, frm2, match, p1(:,:,1),... p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange'); % [n_match, rs_match, cnum, translation] = ransac(frm1, frm2, match, p1(:,:,1),... % p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange', i); % tmp_nmatch(:,1:cnum, i) = n_match(:,1:cnum); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end tmp_cnum(i) = cnum; if cnum > 0 % fprintf('iteration %d inlier num: %d, translation %f %f %f\n', i, cnum, translation); fprintf('iteration %d inlier num: %d,\n', i, cnum); end end else %Standard termination criterion inlier_ratio = 0.15; % 14 percent i=0; eta_0 = 0.03; % 97 percent confidence cur_p = 4 / pnum; eta = (1-cur_p^4)^i; max_iteration = 120000; while eta > eta_0 i = i+1; [n_match, rs_match, cnum] = ransac(frm1, frm2, match, p1(:,:,1),... p1(:,:,2), p1(:,:,3), p2(:,:,1), p2(:,:,2), p2(:,:,3), 'SwissRange'); for k=1:cnum tmp_nmatch(:,k,i) = n_match(:,k); end % tmp_nmatch(:,1:cnum,i) = n_match(:,1:cnum); tmp_cnum(i) = cnum; if cnum > 0 cur_p = cnum/pnum; eta = (1-cur_p^4)^i; end if i > max_iteration error = 1; break; end end ransac_iteration = i; end valid_ransac = 3; % this is the least valid number [rs_max, rs_ind] = max(tmp_cnum); fprintf('select %d with matched num = %d\n', rs_ind, rs_max); op_num = tmp_cnum(rs_ind); if (op_num < valid_ransac || error > 0) error = 1; return; end %% optimal matched pair set op_match(:, 1:op_num) = tmp_nmatch(:, 1:op_num, rs_ind); end %% error exist function [t, e] = error_exist(msg_err, e_type) fprintf('VRO.m: %s\n', msg_err); e = e_type; t = zeros(1,6); end %% using depth to filter the erroreous matches % p1 [x1 y1 z1] p2 [x2 y2 z2] % function match = depth_filter(m, max_d, min_d, frm1, frm2, p1, p2) match = []; m_img1 = []; m_img2 = []; m_dpt1 = []; m_dpt2 = []; cnt_new = 1; pnum = size(m,2); for i=1:pnum frm1_index = m(1,i); frm2_index = m(2,i); m_pix1 = frm1(:, frm1_index); m_pix2 = frm2(:, frm2_index); COL1 = round(m_pix1(1))+1; COL2 = round(m_pix2(1))+1; ROW1 = round(m_pix1(2))+1; ROW2 = round(m_pix2(2))+1; %% ? row, col is right? %% this match is a valid pair, this test is for Kinect % if z(ROW1, COL1) > min_d && z(ROW1, COL1) < max_d ... % && z(ROW2, COL2) > min_d && z(ROW2, COL2) < max_d % ... % end temp_pt1=[-p1(ROW1, COL1, 1), p1(ROW1, COL1, 3), p1(ROW1, COL1, 2)]; temp_pt2=[-p2(ROW2, COL2, 1), p2(ROW2, COL2, 3), p2(ROW2, COL2, 2)]; temp_pt1_dist = sqrt(sum(temp_pt1.^2)); temp_pt2_dist = sqrt(sum(temp_pt2.^2)); if temp_pt1_dist >= min_d && temp_pt1_dist <= max_d ... && temp_pt2_dist >= min_d && temp_pt2_dist <= max_d match(:,cnt_new) = m(:,i); cnt_new = cnt_new + 1; end end end %% check weather this matched file exist function [exist_flag] = file_exist(id1, id2) %% get file name global g_data_dir g_data_prefix g_matched_dir file_name = sprintf('%s/%s/%s_%04d_%04d.mat', g_data_dir, g_matched_dir ... ,g_data_prefix, id1, id2); exist_flag = exist(file_name, 'file'); end %% save feature in a style that can be loaded into vo in my sr_slam function save_feature(fname, des, frm, p, id) %% open file fid = fopen(fname, 'w'); %% save feature loaction, size, orientation M = size(frm, 2); fprintf(fid, '-1 -1 %d 1 0\n', id); fprintf(fid, '%d\n', M); %% sift 2d information response = zeros(1, M); octave = zeros(1, M); class_id = ones(1, M).*-1; sift_loc_2d = [frm; response; octave; class_id]'; fprintf(fid, '%f %f %f %f %f %d %d \n', sift_loc_2d'); %% sift 3d location sift_loc_3d = zeros(M, 4); for i=1:M m_pix = frm(:, i); COL = round(m_pix(1))+1; ROW = round(m_pix(2))+1; pt =[-p(ROW, COL, 1), p(ROW, COL, 3), p(ROW, COL, 2)]; sift_loc_3d(i,1:3) = pt(1:3); sift_loc_3d(i,4) = 1; end fprintf(fid, '%f %f %f %f\n', sift_loc_3d'); %% sift descriptors D_SIZE = size(des, 1); fprintf(fid, '%d\n', D_SIZE); for i=1:M for j=1:D_SIZE fprintf(fid, '%f ', des(j,i)); end fprintf(fid, '\n'); end fclose(fid); end
github
rising-turtle/slam_matlab-master
dump_matrix_2_file.m
.m
slam_matlab-master/VRO/dump_matrix_2_file.m
364
utf_8
ff92d9360b0b19252a256ed0ebd60fd3
function dump_matrix_2_file(fname, m) % % David Z, Feb 19, 2015 % try to construct a function to dump every kind of matrix into a text file % dump_matrix_2_file_wf(fname, m) end function dump_matrix_2_file_wf(f, m) f_id = fopen(f, 'w+'); for i=1:size(m,1) fprintf(f_id, '%f ', m(i,:)); fprintf(f_id, '\n'); end fclose(f_id); end
github
rising-turtle/slam_matlab-master
reassign_states.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/reassign_states.m
1,961
utf_8
debcceaaa5d4187361570a36d17ada01
function reassign_states(maxd) %function reassign_states() % % This function is really simply implemented! % global XA XB PA PAB PB g_current_ala_center g_current_ala_center_cov % set new active local area g_current_ala_center = XA(1:2,:); g_current_ala_center_cov = PA(1:2,1:2); % reassign part A and B if length(XB) == 1 x = XA; p = PA; else x = [XA; XB]; p = [PA PAB; PAB' PB]; end % firstly find ... xa_features= []; % all index of features that should be assigned to XA xb_features= []; features_num = (length(x) -3) / 2; for i = 1:features_num if distance( x(1:2,:), x(3+i*2-1:3+i*2,:) ) < maxd xa_features = [xa_features i]; else xb_features = [xb_features i]; end end % secondly, lenxa = length(xa_features); lenxb = length(xb_features); indexxb = 1; for indexxa = lenxa:-1:1 if indexxb <= lenxb && ( xa_features(indexxa) > xb_features(indexxb) ) % switch these two states %switch features: xa_features(indexxa), xb_features(indexxb) Nx1S = 3 + 2*xa_features(indexxa) -1; Nx1E = Nx1S + 1; Nx2S = 3 + 2*xb_features(indexxb) -1; Nx2E = Nx2S + 1; tmp = x(Nx1S:Nx1E,:); x(Nx1S:Nx1E,:) = x(Nx2S:Nx2E,:); x(Nx2S:Nx2E,:) = tmp; tmp = p(:,Nx1S:Nx1E); p(:,Nx1S:Nx1E) = p(:,Nx2S:Nx2E); p(:,Nx2S:Nx2E) = tmp; tmp = p(Nx1S:Nx1E,:); p(Nx1S:Nx1E,:) = p(Nx2S:Nx2E,:); p(Nx2S:Nx2E,:) = tmp; % indexxb = indexxb+1; else % done break; end end %finally lengthofxa = 3+lenxa*2; XA = x(1:lengthofxa,:); PA = p(1:lengthofxa,1:lengthofxa); if lenxb ~= 0 XB = x(lengthofxa+1:end,:); PAB = p(1:lengthofxa, lengthofxa+1:end); PB = p(lengthofxa+1:end,lengthofxa+1:end); else XB = zeros(1); PAB = zeros(1); PB = zeros(1); end %check % % function dist = distance(pt1,pt2) % delta = abs(pt1-pt2); dist =sqrt(delta'*delta);
github
rising-turtle/slam_matlab-master
frontend.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/frontend.m
5,629
utf_8
40ab053f4d5fa90d8e26eea477b5e80c
function varargout = frontend(varargin) %EKF-SLAM environment-making GUI % % This program permits the graphical creation and manipulation % of an environment of point landmarks, and the specification of % vehicle path waypoints therein. % % USAGE: type 'frontend' to start. % 1. Click on the desired operation: <enter>, <move>, or <delete>. % 2. Click on the type: <waypoint> or <landmark> to commence the % operation. % 3. If entering new landmarks or waypoints, click with the left % mouse button to add new points. Click the right mouse button, or % hit <enter> key to finish. % 4. To move or delete a point, just click near the desired point. % 5. Saving maps and loading previous maps is accomplished via the % <save> and <load> buttons, respectively. % % Tim Bailey and Juan Nieto 2004. % FRONTEND Application M-file for frontend.fig % FIG = FRONTEND launch frontend GUI. % FRONTEND('callback_name', ...) invoke the named callback. global WAYPOINTS LANDMARKS FH if nargin == 0 % LAUNCH GUI %initialisation WAYPOINTS= [0;0]; LANDMARKS= []; % open figure fig = openfig(mfilename,'reuse'); hh= get(fig, 'children'); set(hh(3), 'value', 1) hold on FH.hl= plot(0,0,'g*'); plot(0,0,'w*') FH.hw= plot(0,0,0,0,'ro'); plotwaypoints(WAYPOINTS); % Use system color scheme for figure: set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); set(fig,'name', 'SLAM Map-Making GUI') % Generate a structure of handles to pass to callbacks, and store it. handles = guihandles(fig); guidata(fig, handles); if nargout > 0 varargout{1} = fig; end elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK try [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard catch disp(lasterr); end end % -------------------------------------------------------------------- function varargout = waypoint_checkbox_Callback(h, eventdata, handles, varargin) global WAYPOINTS set(handles.landmark_checkbox, 'value', 0) WAYPOINTS= perform_task(WAYPOINTS, handles.waypoint_checkbox, handles); plotwaypoints(WAYPOINTS); % -------------------------------------------------------------------- function varargout = landmark_checkbox_Callback(h, eventdata, handles, varargin) global LANDMARKS set(handles.waypoint_checkbox, 'value', 0) LANDMARKS= perform_task(LANDMARKS, handles.landmark_checkbox, handles); plotlandmarks(LANDMARKS); % -------------------------------------------------------------------- function varargout = enter_checkbox_Callback(h, eventdata, handles, varargin) set(handles.enter_checkbox, 'value', 1) set(handles.move_checkbox, 'value', 0) set(handles.delete_checkbox, 'value', 0) % -------------------------------------------------------------------- function varargout = move_checkbox_Callback(h, eventdata, handles, varargin) set(handles.enter_checkbox, 'value', 0) set(handles.move_checkbox, 'value', 1) set(handles.delete_checkbox, 'value', 0) % -------------------------------------------------------------------- function varargout = delete_checkbox_Callback(h, eventdata, handles, varargin) set(handles.enter_checkbox, 'value', 0) set(handles.move_checkbox, 'value', 0) set(handles.delete_checkbox, 'value', 1) % -------------------------------------------------------------------- function varargout = load_button_Callback(h, eventdata, handles, varargin) global WAYPOINTS LANDMARKS seed = {'*.mat','MAT-files (*.mat)'}; [fn,pn] = uigetfile(seed, 'Load landmarks and waypoints'); if fn==0, return, end fnpn = strrep(fullfile(pn,fn), '''', ''''''); load(fnpn) WAYPOINTS= wp; LANDMARKS= lm; plotwaypoints(WAYPOINTS); plotlandmarks(LANDMARKS); % -------------------------------------------------------------------- function varargout = save_button_Callback(h, eventdata, handles, varargin) global WAYPOINTS LANDMARKS wp= WAYPOINTS; lm= LANDMARKS; seed = {'*.mat','MAT-files (*.mat)'}; [fn,pn] = uiputfile(seed, 'Save landmarks and waypoints'); if fn==0, return, end fnpn = strrep(fullfile(pn,fn), '''', ''''''); save(fnpn, 'wp', 'lm'); % -------------------------------------------------------------------- function plotwaypoints(x) global FH set(FH.hw(1), 'xdata', x(1,:), 'ydata', x(2,:)) set(FH.hw(2), 'xdata', x(1,:), 'ydata', x(2,:)) % -------------------------------------------------------------------- function plotlandmarks(x) global FH set(FH.hl, 'xdata', x(1,:), 'ydata', x(2,:)) % -------------------------------------------------------------------- function i= find_nearest(x) xp= ginput(1); d2= (x(1,:)-xp(1)).^2 + (x(2,:)-xp(2)).^2; i= find(d2 == min(d2)); i= i(1); % -------------------------------------------------------------------- function x= perform_task(x, h, handles) if get(h, 'value') == 1 zoom off if get(handles.enter_checkbox, 'value') == 1 % enter points [xn,yn,bn]= ginput(1); while ~isempty(xn) & bn == 1 x= [x [xn;yn]]; if h == handles.waypoint_checkbox plotwaypoints(x); else plotlandmarks(x); end [xn,yn,bn]= ginput(1); end else i= find_nearest(x); if get(handles.delete_checkbox, 'value') == 1 % delete nearest point x= [x(:,1:i-1) x(:,i+1:end)]; elseif get(handles.move_checkbox, 'value') == 1 % move nearest point xt= x(:,i); plot(xt(1), xt(2),'kx', 'markersize',10) x(:,i)= ginput(1)'; plot(xt(1), xt(2),'wx', 'markersize',10) end end set(h, 'value', 0) end
github
rising-turtle/slam_matlab-master
data_associate.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/data_associate.m
1,506
utf_8
cc46d9a2d98b8271e2c4bb7c3854295c
function [zf,idf, zn]= data_associate(x,P,z,R, gate1, gate2) % % Simple gated nearest-neighbour data-association. No clever feature % caching tricks to speed up association, so computation is O(N), where % N is the number of features in the state. % % Tim Bailey 2004. zf= []; zn= []; idf= []; Nxv= 3; % number of vehicle pose states Nf= (length(x) - Nxv)/2; % number of features already in map % linear search for nearest-neighbour, no clever tricks (like a quick % bounding-box threshold to remove distant features; or, better yet, % a balanced k-d tree lookup). TODO: implement clever tricks. for i=1:size(z,2) jbest= 0; nbest= inf; outer= inf; % search for neighbours for j=1:Nf [nis, nd]= compute_association(x,P,z(:,i),R, j); if nis < gate1 && nd < nbest % if within gate, store nearest-neighbour nbest= nd; jbest= j; elseif nis < outer % else store best nis value outer= nis; end end % add nearest-neighbour to association list if jbest ~= 0 zf= [zf z(:,i)]; idf= [idf jbest]; elseif outer > gate2 % z too far to associate, but far enough to be a new feature zn= [zn z(:,i)]; end end function [nis, nd]= compute_association(x,P,z,R,idf) % % return normalised innovation squared (ie, Mahalanobis distance) and normalised distance [zp,H]= observe_model(x, idf); v= z-zp; v(2)= pi_to_pi(v(2)); S= H*P*H' + R; nis= v'*inv(S)*v; nd= nis + log(det(S));
github
rising-turtle/slam_matlab-master
cekfslam.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/cekfslam.m
13,612
utf_8
be6f45a2731675739a5f1f9ed0d9a19c
function data= cekfslam(lm, wp) %function data= cekfslam(lm, wp) % % INPUTS: % lm - set of landmarks % wp - set of waypoints % % OUTPUTS: % data - a data structure containing: % data.i : number of states % data.true : the vehicle 'true'-path (ie, where the vehicle *actually* went) % data.path : the vehicle path estimate (ie, where SLAM estimates the vehicle went) % data.state(k).x: the SLAM state vector at time k % data.state(k).P: the diagonals of the SLAM covariance matrix at time k % data.finalx : the estimated states when a simulation is done % data.finalcov : the estimated states covariance when a simulation is done % data.finalcorr : the estimated states correlations when a simulation is done % %To run this simulator: % 1. load loop902.mat to the workspace % 2. run "data = cekfslam(lm,wp)" in the command window % % NOTES: % This program is a compressed extended Kalman filter(CEKF) based SLAM simulator. % To use, create a set of landmarks and vehicle waypoints (ie, waypoints for the desired vehicle path). % The program 'frontend.m' may be used to create this simulated environment - type % 'help frontend' for more information. % The configuration of the simulator is managed by the script file % 'configfile.m'. To alter the parameters of the vehicle, sensors, etc % adjust this file. There are also several switches that control certain % filter options. % % Thanks to Tim Bailey and Juan Nieto 2004.Version 1.0 % % Zhang Haiqiang 2007-11-22 % % ALGORITHM USED: % This program adopts Compressed Extended Kalman Filter to SLAM, and % when SWITCH_BATCH_UPDATE = 0, I used the sparsity of Observation % Jacobian Matrix to reduce computation complexity. % % MODELS: % The motion model is setup to be like a Pioneer3-AT robot(skid-steering), % The observation mode are setup to be like a LMS200. % % NOTES: % It is VERY important that the data association should always be % correct, if wrong data association occurs, the whole state will % probably diverge. % % Zhang Haiqiang 2007-11-20 % Zhang Haiqiang 2007-5-11 % format compact configfile; % setup plots if SWITCH_ANIMATION_ON == 1 scrsz= get(0,'ScreenSize')*0.75; fig=figure('Position',[0 0 scrsz(3) scrsz(4)]); plot(lm(1,:),lm(2,:),'b*') hold on, axis equal, grid on %plot(wp(1,:),wp(2,:), 'g', wp(1,:),wp(2,:),'g.') MAXX = max([max(lm(1,:)) max(wp(1,:))]); MINX = min([min(lm(1,:)) min(wp(1,:))]); MAXY = max([max(lm(2,:)) max(wp(2,:))]); MINY = min([min(lm(2,:)) min(wp(2,:))]); axis([MINX-10 MAXX+10 MINY-10 MAXY+10]) xlabel('metres'), ylabel('metres') set(fig, 'name', ' Compressed EKF-SLAM via Pioneer3-AT & LMS200') h= setup_animations; veh= 0.5*[1 1 -1 -1; 1 -1 1 -1]; % vehicle animation %plines=[]; % for laser line animation pcount=0; end % % zhq: 'stem' the diag of the state covariance matrix % if SWITCH_VISULIZE_THE_EVOLUTION_OF_COVARIANCE_DIAG == 1 fig_DiagOfStateCovMatrix = figure; set( fig_DiagOfStateCovMatrix, 'Name', 'diag of the state covariance matrix'); axes_DiagOfStateCovMatrix = axes; end %%% % initialise states global vtrue XA PA XB PB PAB vtrue= zeros(3,1);% true pose of the vehicle XA = zeros(3,1); % part A of SLAM state PA = zeros(3); % XB = zeros(1); % part B of SLAM state PB = zeros(1); % PAB =zeros(1); % cross covariance of part A and B % CEKF auxiliary parameters global PsiXB OmegaPB PhiPAB PsiXB = zeros(1); OmegaPB = zeros(1); PhiPAB = zeros(1); % CEKF global g_current_ala_center g_current_ala_center_cov g_current_ala_center = zeros(2,1); g_current_ala_center_cov = zeros(2); % CEKF predict auxiliary parameter global JXA JXA= zeros(1); % global GDATA % initialise other variables and constants dt= DT_CONTROLS; % change in time between predicts dtsum= 0; % change in time since last observation iwp= 1; % index to first waypoint W = 0; % initial rotation speed % time lapsed since the vehicle started g_sim_time = 0; if SWITCH_OFFLINE_DATA_ON == 1 || SWITCH_ANIMATION_ON == 1 initialise_store(); % stored data for off-line end QE= Q; RE= R; if SWITCH_INFLATE_NOISE, QE= 2*Q; RE= 8*R; end % inflate estimated noises (ie, add stabilising noise) if SWITCH_SEED_RANDOM, randn('state',SWITCH_SEED_RANDOM), end % if SWITCH_PROFILE, profile on -detail mmex, end % main loop counter = 0; frame_counter= 0; while iwp ~= 0 g_sim_time= g_sim_time + dt; counter = counter+1; % zhq: visulize the diag of the state covariance matrix if SWITCH_VISULIZE_THE_EVOLUTION_OF_COVARIANCE_DIAG == 1 dP = diag(PA); stem( axes_DiagOfStateCovMatrix, 1:length(dP), dP ); set( axes_DiagOfStateCovMatrix, 'XLim', [1 length(dP)], 'XTick', 1: length(dP), 'YLim', [ 0 ceil(max(dP)+1e-9)], 'YTick', 0: ceil(max(dP)+1e-9)/10: ceil(max(dP)+1e-9) ); if SWITCH_ANIMATION_ON == 0, drawnow, end end %%% % compute true data [W,iwp] = compute_rotationspeed(wp, iwp, AT_WAYPOINT, W, MAXW, dt); if iwp==0 && NUMBER_LOOPS > 1 iwp=1; NUMBER_LOOPS= NUMBER_LOOPS-1; end % perform loops: if final waypoint reached, go back to first vtrue = vehicle_model(vtrue, V, W,dt); [Vn, Wn] = add_control_noise (V,W,Q,SWITCH_CONTROL_NOISE); % CEKF predict step predict(Vn,Wn,QE, dt); % CEKF update step dtsum= dtsum + dt; %if dtsum >= DT_OBSERVE %zhq: dtsum >= DT_OBSERVE - 1e-6 is better if dtsum >= DT_OBSERVE - 1e-6 || iwp == 0 dtsum= 0; [z]= get_observations(vtrue, lm, MAX_RANGE); z= add_observation_noise(z,R, SWITCH_SENSOR_NOISE); % try your best to make sure the data associate works correctly! [zf,idf, zn]= data_associate(XA,PA,z,RE, GATE_REJECT, GATE_AUGMENT); check_data_association(idf); if size(zf,1) > 0 update(zf,RE,idf,SWITCH_BATCH_UPDATE); else if size(PAB,1) ~= 1 if size(PhiPAB,1) ~= 1 PhiPAB=JXA*PhiPAB; else PAB=JXA*PAB; end JXA=zeros(1); end end if size(zn,1) >0, augment(zn,RE); end if switch_active_local_area(RESTRICING_ALA_R) ~= 0 full_states_update(); reassign_states(ENVIRONING_ALA_R); end end % simulation is almost finished if iwp == 0, full_states_update(); end % offline data store if SWITCH_OFFLINE_DATA_ON == 1, store_data(); end % plots if SWITCH_ANIMATION_ON == 1 xt= TransformToGlobal(veh,vtrue); xv= TransformToGlobal(veh,XA(1:3)); set(h.xt, 'xdata', xt(1,:), 'ydata', xt(2,:)) set(h.xv, 'xdata', xv(1,:), 'ydata', xv(2,:)) set(h.xfa, 'xdata', XA(4:2:end), 'ydata', XA(5:2:end)) if size(XB,1) ~= 1, set(h.xfb, 'xdata', XB(1:2:end), 'ydata', XB(2:2:end)), end ptmp= make_covariance_ellipses(XA(1:3),PA(1:3,1:3)); pcova(:,1:size(ptmp,2))= ptmp; if dtsum==0 set(h.cova, 'xdata', pcova(1,:), 'ydata', pcova(2,:)) pcount= pcount+1; if pcount == 15 set(h.pth, 'xdata', GDATA.path(1,1:GDATA.i), 'ydata', GDATA.path(2,1:GDATA.i)) set(h.pthtrue, 'xdata', GDATA.true(1,1:GDATA.i), 'ydata', GDATA.true(2,1:GDATA.i)) pcount=0; end if ~isempty(z) plines= make_laser_lines (z,XA(1:3)); set(h.obs, 'xdata', plines(1,:), 'ydata', plines(2,:)) pcova= make_covariance_ellipses(XA,PA); end %set(h.timeelapsed, 'String', num2str(g_sim_time)) if size(XB,1) ~= 1 && size(OmegaPB,1) == 1 pcovb = make_covariance_ellipses_xb(XB,PB); set(h.covb, 'xdata', pcovb(1,:), 'ydata', pcovb(2,:)) end end [strict_circle, environ_circle] = make_range_circles(RESTRICING_ALA_R, ENVIRONING_ALA_R); set(h.restrict, 'xdata', strict_circle(1,:), 'ydata', strict_circle(2,:)) set(h.environ, 'xdata', environ_circle(1,:), 'ydata', environ_circle(2,:)) drawnow if SWITCH_RECORD_THE_PROCESS==1 && mod(counter,30) == 1, frame_counter= frame_counter+1; FRAMES(:,frame_counter)=getframe; end end end %end of while if SWITCH_OFFLINE_DATA_ON == 1, finalise_data(); end if SWITCH_ANIMATION_ON == 1 set(h.pth, 'xdata', GDATA.path(1,:), 'ydata', GDATA.path(2,:)) set(h.pthtrue, 'xdata', GDATA.true(1,:), 'ydata', GDATA.true(2,:)) % zhq-draw true path set(h.timeelapsed, 'String', num2str(g_sim_time)) drawnow if SWITCH_RECORD_THE_PROCESS == 1 frame_counter= frame_counter+1; FRAMES(:,frame_counter)=getframe; movie2avi(FRAMES,'a.avi','quality',100); end end if SWITCH_PROFILE, profile report, end GDATA.finalx = [XA; XB]; GDATA.finalcov = [PA PAB; PAB' PB]; vari = diag(GDATA.finalcov).^(1/2); GDATA.finalcorr = GDATA.finalcov./ (vari*vari'); data= GDATA; clear global vtrue XA PA XB PB PAB PsiXB OmegaPB PhiPAB clear global g_current_ala_center g_current_ala_center_cov clear global JXA GDATA % % function h= setup_animations() h.xt= patch(0,0,'b','erasemode','xor'); % vehicle true h.xv= patch(0,0,'r','erasemode','xor'); % vehicle estimate h.pth= plot(0,0,'r.','markersize',2,'erasemode','background'); % vehicle path estimate h.pthtrue= plot(0,0,'b.','markersize',2,'erasemode','background'); % vehicle path true h.obs= plot(0,0,'k','erasemode','xor'); % observations h.timeelapsed = annotation('textbox',[0.89 0.9 0.1 0.05]); h.xfa= plot(0,0,'r+','erasemode','xor'); % estimated features of part A h.cova= plot(0,0,'r','erasemode','xor'); % covariance ellipses h.xfb= plot(0,0,'k+','erasemode','xor'); % estimated features of part B h.covb= plot(0,0,'k','erasemode','xor'); % covariance ellipses h.restrict= plot(0,0,'k','erasemode','xor', 'LineWidth',1, 'LineStyle','-'); h.environ= plot(0,0,'k','erasemode','xor', 'LineWidth',2, 'LineStyle','-'); % % function p= make_laser_lines (rb,xv) % compute set of line segments for laser range-bearing measurements if isempty(rb), p=[]; return, end len= size(rb,2); lnes(1,:)= zeros(1,len)+ xv(1); lnes(2,:)= zeros(1,len)+ xv(2); lnes(3:4,:)= TransformToGlobal([rb(1,:).*cos(rb(2,:)); rb(1,:).*sin(rb(2,:))], xv); p= line_plot_conversion (lnes); % % function p= make_covariance_ellipses(x,P) % compute ellipses for plotting state covariances N= 10; inc= 2*pi/N; phi= 0:inc:2*pi; lenx= length(x); lenf= (lenx-3)/2; p= zeros (2,(lenf+1)*(N+2)); ii=1:N+2; p(:,ii)= make_ellipse(x(1:2), P(1:2,1:2), 2, phi); ctr= N+3; for i=1:lenf ii= ctr:(ctr+N+1); jj= 2+2*i; jj= jj:jj+1; p(:,ii)= make_ellipse(x(jj), P(jj,jj), 2, phi); ctr= ctr+N+2; end % % function p= make_ellipse(x,P,s, phi) % make a single 2-D ellipse of s-sigmas over phi angle intervals s=2.448; %corresponding cdf is 0.95 r= sqrtm(P); a= s*r*[cos(phi); sin(phi)]; p(2,:)= [a(2,:)+x(2) NaN]; p(1,:)= [a(1,:)+x(1) NaN]; % % Use the following codes for a naive and visually better ellipse % cdf=0.95; % k=sqrt( -2*log(1-cdf) ); % px=P(1,1);py=P(2,2);pxy=P(1,2); % if px==py,theta=pi/4; else theta=1/2*atan(2*pxy/(px-py));end % r1=px*cos(theta)^2 + py*sin(theta)^2 + pxy*sin(2*theta); % r2=px*sin(theta)^2 + py*cos(theta)^2 - pxy*sin(2*theta); % T=[cos(theta) -sin(theta); sin(theta) cos(theta) ]; % pts=k*T*[sqrt(r1) 0; 0 sqrt(r2)]*[cos(phi); sin(phi)]; % p(1,:)=[pts(1,:)+x(1) NaN]; % p(2,:)=[pts(2,:)+x(2) NaN]; % % function p= make_covariance_ellipses_xb(x,P) % compute ellipses for plotting state part B covariances N= 10; inc= 2*pi/N; phi= 0:inc:2*pi; lenx= length(x); lenf= lenx/2; p= zeros (2,(lenf)*(N+2)); ctr= 1; for i=1:lenf ii= ctr:(ctr+N+1); jj= 2*i-1; jj= jj:jj+1; p(:,ii)= make_ellipse(x(jj), P(jj,jj), 2, phi); ctr= ctr+N+2; end % % function [circle1, circle2] = make_range_circles(r1, r2) % global g_current_ala_center phi = 0:2*pi/50:2*pi; aa = [cos(phi); sin(phi)]; circle1(1,:) = [r1*aa(1,:) + g_current_ala_center(1) NaN]; circle1(2,:) = [r1*aa(2,:) + g_current_ala_center(2) NaN]; circle2(1,:) = [r2*aa(1,:) + g_current_ala_center(1) NaN]; circle2(2,:) = [r2*aa(2,:) + g_current_ala_center(2) NaN]; % % function initialise_store() % offline storage initialisation global GDATA XA PA vtrue GDATA.i=1; GDATA.path= XA; GDATA.true= vtrue; GDATA.state(1).x= XA; GDATA.state(1).P= diag(PA); % % function store_data() % add current data to offline storage global GDATA XA XB PA PB vtrue CHUNK= 5000; if GDATA.i == size(GDATA.path,2) % grow array in chunks to amortise reallocation GDATA.path= [GDATA.path zeros(3,CHUNK)]; GDATA.true= [GDATA.true zeros(3,CHUNK)]; end i= GDATA.i + 1; GDATA.i= i; GDATA.path(:,i)= XA(1:3); GDATA.true(:,i)= vtrue; if size(XB,1) > 1 GDATA.state(i).x= [XA; XB]; GDATA.state(i).P= [diag(PA); diag(PB)]; else GDATA.state(i).x = XA; GDATA.state(i).P= diag(PA); end % % function finalise_data() % offline storage finalisation global GDATA GDATA.path= GDATA.path(:,1:GDATA.i); GDATA.true= GDATA.true(:,1:GDATA.i); function check_data_association(list) % a= sort(list); if length(a) > 1 for i = 1:1:length(a)-1, if (a(i+1)-a(i) < 0.5) list error('data association error!') end end end
github
rising-turtle/slam_matlab-master
get_observations.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/get_observations.m
1,250
utf_8
3ceb9d696ae12356c6a0d8905242514d
function [z]= get_observations(x, lm, rmax) %function [z]= get_observations(x, lm, rmax) % % INPUTS: % x - vehicle pose [x;y;phi] % lm - set of all landmarks % rmax - maximum range of range-bearing sensor % % OUTPUTS: % z - set of range-bearing observations % % Tim Bailey 2004. % Zhang Haiqiang 2007-11-22 % [lm]= get_visible_landmarks(x,lm,rmax); z= compute_range_bearing(x,lm); % % function [lm]= get_visible_landmarks(x,lm,rmax) % Select set of landmarks that are visible within vehicle's semi-circular field-of-view dx= lm(1,:) - x(1); dy= lm(2,:) - x(2); phi= x(3); % incremental tests for bounding semi-circle ii= find(abs(dx) < rmax & abs(dy) < rmax ... % bounding box & (dx*cos(phi) + dy*sin(phi)) > 0 ... % bounding line & (dx.^2 + dy.^2) < rmax^2); % bounding circle % Note: the bounding box test is unnecessary but illustrates a possible speedup technique % as it quickly eliminates distant points. Ordering the landmark set would make this operation % O(logN) rather that O(N). lm= lm(:,ii); % % function z= compute_range_bearing(x,lm) % Compute exact observation dx= lm(1,:) - x(1); dy= lm(2,:) - x(2); phi= x(3); z= [sqrt(dx.^2 + dy.^2); atan2(dy,dx) - phi]; z(2,:)= pi_to_pi(z(2,:));
github
rising-turtle/slam_matlab-master
update.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/update.m
2,743
utf_8
f29b94211b7add286c6351c8b0e825c8
function update(z,R,idf,batch) % function update(z,R,idf,batch) % % Inputs: % z, R - range-bearing measurements and covariances % idf - feature index for each z % batch - whether to process measurements together or sequentially % % GLOBAL INPUTS: % XA PA JXA OmegaPB PsiXB PhiPAB % % GLOBAL OUTPUTS: % XA, PA - updated state and covariance of part A % JXA - will be reset to zeros(1) once used % OmegaPB PsiXB PhiPAB % if batch == 1 batch_update(z,R,idf); else single_update(z,R,idf); end % % % function batch_update(z,R,idf) global XA PA JXA OmegaPB PsiXB PhiPAB XB lenz= size(z,2); lenXA= length(XA); H= zeros(2*lenz, lenXA); v= zeros(2*lenz, 1); RR= zeros(2*lenz); for i=1:lenz ii= 2*i + (-1:0); [zp,H(ii,:)]= observe_model(XA, idf(i)); v(ii)= [z(1,i)-zp(1); pi_to_pi(z(2,i)-zp(2))]; RR(ii,ii)= R; end % PHt = PA*H'; S = H*PHt+RR; Si = inv(S); Si= make_symmetric(Si); %PSD_check= chol(Si); W= PHt*Si; Kappa = H'*Si*H; Zeta = W*H; % update part A XA = XA + W*v; PA = PA - make_symmetric(W*S*W'); %PSD_check= chol(PA); % calculate OmegaPB PsiXB PhiPAB if length(XB)~=1 if size(OmegaPB,1) == 1 OmegaPB = JXA'*Kappa*JXA; PsiXB = JXA'*H'*Si*v; PhiPAB = (eye(size(XA,1)) - Zeta)*JXA; else OmegaPB = OmegaPB + PhiPAB'*JXA'*Kappa*JXA*PhiPAB; PsiXB = PsiXB + PhiPAB'*JXA'*H'*Si*v; PhiPAB = ((eye(size(XA,1)) - Zeta)*JXA)*PhiPAB; end JXA = zeros(1); % end % % % function single_update(z,R,idf) global XA PA JXA OmegaPB PsiXB PhiPAB XB lenz= size(z,2); for i=1:lenz [zp,H]= observe_model(XA, idf(i)); v= [z(1,i)-zp(1); pi_to_pi(z(2,i)-zp(2))]; % update part A % this code is copied from KF_tricksimple_update() Ns = 3 + 2*idf(i) - 1; Ne = Ns+1; Hv = H(:,1:3); Hi = H(:,Ns:Ne); PHt= PA(:,1:3)*Hv' + PA(:,Ns:Ne)*Hi'; S = Hv*PHt(1:3,:) + Hi*PHt(Ns:Ne,:) + R; Si= inv(S); Si= make_symmetric(Si); %PSD_check= chol(Si); W= PHt*Si; Kappa = H'*Si*H; Zeta = W*H; XA= XA + W*v; PA= PA - make_symmetric(W*PHt'); %PSD_check= chol(PA); %%% % calculateOmegaPB PsiXB PhiPAB if length(XB) ~= 1 if size(OmegaPB,1) == 1 OmegaPB = JXA'*Kappa*JXA; PsiXB = JXA'*H'*Si*v; PhiPAB = (eye(size(XA,1)) - Zeta)*JXA; else OmegaPB = OmegaPB + PhiPAB'*JXA'*Kappa*JXA*PhiPAB; PsiXB = PsiXB + PhiPAB'*JXA'*H'*Si*v; PhiPAB = ((eye(size(XA,1)) - Zeta)*JXA)*PhiPAB; end JXA = eye(size(JXA)); end end JXA = zeros(1); % function P= make_symmetric(P) P= (P+P')*0.5;
github
rising-turtle/slam_matlab-master
augment.m
.m
slam_matlab-master/libs_dir/CEKF-SLAM/trunk/augment.m
1,060
utf_8
d2b0762e712316bc4f43f34b4896f657
function augment(z,R) %function augment(z,R) % % INPUTS: % z, R - range-bearing measurements and covariances, each of a new feature % % GLOBAL INPUTS: % XA, PA % PhiPAB % JXA % % GLOBAL OUTPUTS: % XA, PA % PhiPAB % % % Haiqiang Zhang 2008-5-11 % add new features to state for i=1:size(z,2) add_one_z(z(:,i),R); end % % % function add_one_z(z,R) global XA PA PhiPAB PAB len= length(XA); r= z(1); b= z(2); s= sin(XA(3)+b); c= cos(XA(3)+b); % augment XA XA= [XA; XA(1) + r*c; XA(2) + r*s]; % jacobians Gv= [1 0 -r*s; 0 1 r*c]; Gz= [c -r*s; s r*c]; % augment PA rng= len+1:len+2; PA(rng,rng)= Gv*PA(1:3,1:3)*Gv' + Gz*R*Gz'; % feature cov PA(rng,1:3)= Gv*PA(1:3,1:3); % vehicle to feature xcorr PA(1:3,rng)= PA(rng,1:3)'; if len>3 rnm= 4:len; PA(rng,rnm)= Gv*PA(1:3,rnm); % map to feature xcorr PA(rnm,rng)= PA(rng,rnm)'; end %augment PhiPAB if size(PAB,1) ~= 1 if size(PhiPAB,1) ~= 1 PhiPAB = [PhiPAB; Gv*PhiPAB(1:3,:)]; else PAB=[PAB; Gv*PAB(1:3,:)]; end end
github
rising-turtle/slam_matlab-master
plotmatches.m
.m
slam_matlab-master/libs_dir/SIFT/sift-0.9.19-bin/sift/plotmatches.m
10,144
utf_8
4d7daa0d3265f0885ebc7f3310a47fc1
function h=plotmatches(I1,I2,P1,P2,matches,varargin) % PLOTMATCHES Plot keypoint matches % PLOTMATCHES(I1,I2,P1,P2,MATCHES) plots the two images I1 and I2 % and lines connecting the frames (keypoints) P1 and P2 as specified % by MATCHES. % % P1 and P2 specify two sets of frames, one per column. The first % two elements of each column specify the X,Y coordinates of the % corresponding frame. Any other element is ignored. % % MATCHES specifies a set of matches, one per column. The two % elementes of each column are two indexes in the sets P1 and P2 % respectively. % % The images I1 and I2 might be either both grayscale or both color % and must have DOUBLE storage class. If they are color the range % must be normalized in [0,1]. % % The function accepts the following option-value pairs: % % 'Stacking' ['h'] % Stacking of images: horizontal ['h'], vertical ['v'], diagonal % ['h'], overlap ['o'] % % 'Interactive' [0] % If set to 1, starts the interactive session. In this mode the % program lets the user browse the matches by moving the mouse: % Click to select and highlight a match; press any key to end. % If set to a value greater than 1, the feature matches are not % drawn at all (useful for cluttered scenes). % % See also PLOTSIFTDESCRIPTOR(), PLOTSIFTFRAME(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- stack='h' ; interactive=0 ; only_interactive=0 ; for k=1:2:length(varargin) switch lower(varargin{k}) case 'stacking' stack=varargin{k+1} ; case 'interactive' interactive=varargin{k+1}; otherwise error(['[Unknown option ''', varargin{k}, '''.']) ; end end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- [M1,N1,K1]=size(I1) ; [M2,N2,K2]=size(I2) ; switch stack case 'h' N3=N1+N2 ; M3=max(M1,M2) ; oj=N1 ; oi=0 ; case 'v' M3=M1+M2 ; N3=max(N1,N2) ; oj=0 ; oi=M1 ; case 'd' M3=M1+M2 ; N3=N1+N2 ; oj=N1 ; oi=M1 ; case 'o' M3=max(M1,M2) ; N3=max(N1,N2) ; oj=0; oi=0; otherwise error(['Unkown stacking type '''], stack, ['''.']) ; end % Combine the two images. In most cases just place one image next to % the other. If the stacking is 'o', however, combine the two images % linearly. I=zeros(M3,N3,K1) ; if stack ~= 'o' I(1:M1,1:N1,:) = I1 ; I(oi+(1:M2),oj+(1:N2),:) = I2 ; else I(oi+(1:M2),oj+(1:N2),:) = I2 ; I(1:M1,1:N1,:) = I(1:M1,1:N1,:) + I1 ; I(1:min(M1,M2),1:min(N1,N2),:) = 0.5 * I(1:min(M1,M2),1:min(N1,N2),:) ; end axes('Position', [0 0 1 1]) ; imagesc(I) ; colormap gray ; hold on ; axis image ; axis off ; K = size(matches, 2) ; nans = NaN * ones(1,K) ; x = [ P1(1,matches(1,:)) ; P2(1,matches(2,:))+oj ; nans ] ; y = [ P1(2,matches(1,:)) ; P2(2,matches(2,:))+oi ; nans ] ; % if interactive > 1 we do not drive lines, but just points. if(interactive > 1) h = plot(x(:),y(:),'g.') ; else h = line(x(:)', y(:)') ; end set(h,'Marker','.','Color','g') ; % -------------------------------------------------------------------- % Interactive % -------------------------------------------------------------------- if(~interactive), return ; end sel1 = unique(matches(1,:)) ; sel2 = unique(matches(2,:)) ; K1 = length(sel1) ; %size(P1,2) ; K2 = length(sel2) ; %size(P2,2) ; X = [ P1(1,sel1) P2(1,sel2)+oj ; P1(2,sel1) P2(2,sel2)+oi ; ] ; fig = gcf ; is_hold = ishold ; hold on ; % save the handlers for later to restore dhandler = get(fig,'WindowButtonDownFcn') ; uhandler = get(fig,'WindowButtonUpFcn') ; mhandler = get(fig,'WindowButtonMotionFcn') ; khandler = get(fig,'KeyPressFcn') ; pointer = get(fig,'Pointer') ; set(fig,'KeyPressFcn', @key_handler) ; set(fig,'WindowButtonDownFcn',@click_down_handler) ; set(fig,'WindowButtonUpFcn', @click_up_handler) ; set(fig,'Pointer','crosshair') ; data.exit = 0 ; % signal exit to the interactive mode data.selected = [] ; % currently selected feature data.X = X ; % feature anchors highlighted = [] ; % currently highlighted feature hh = [] ; % hook of the highlight plot guidata(fig,data) ; while ~ data.exit uiwait(fig) ; data = guidata(fig) ; if(any(size(highlighted) ~= size(data.selected)) || ... any(highlighted ~= data.selected) ) highlighted = data.selected ; % delete previous highlight if( ~isempty(hh) ) delete(hh) ; end hh=[] ; % each selected feature uses its own color c=1 ; colors=[1.0 0.0 0.0 ; 0.0 1.0 0.0 ; 0.0 0.0 1.0 ; 1.0 1.0 0.0 ; 0.0 1.0 1.0 ; 1.0 0.0 1.0 ] ; % more than one feature might be seleted at one time... for this=highlighted % find matches if( this <= K1 ) sel=find(matches(1,:)== sel1(this)) ; else sel=find(matches(2,:)== sel2(this-K1)) ; end K=length(sel) ; % plot matches x = [ P1(1,matches(1,sel)) ; P2(1,matches(2,sel))+oj ; nan*ones(1,K) ] ; y = [ P1(2,matches(1,sel)) ; P2(2,matches(2,sel))+oi ; nan*ones(1,K) ] ; hh = [hh line(x(:)', y(:)',... 'Marker','*',... 'Color',colors(c,:),... 'LineWidth',3)]; if( size(P1,1) == 4 ) f1 = unique(P1(:,matches(1,sel))','rows')' ; hp=plotsiftframe(f1); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end if( size(P2,1) == 4 ) f2 = unique(P2(:,matches(2,sel))','rows')' ; f2(1,:)=f2(1,:)+oj ; f2(2,:)=f2(2,:)+oi ; hp=plotsiftframe(f2); set(hp,'Color',colors(c,:)) ; hh=[hh hp] ; end c=c+1 ; end drawnow ; end end if( ~isempty(hh) ) delete(hh) ; end if ~is_hold hold off ; end set(fig,'WindowButtonDownFcn', dhandler) ; set(fig,'WindowButtonUpFcn', uhandler) ; set(fig,'WindowButtonMotionFcn',mhandler) ; set(fig,'KeyPressFcn', khandler) ; set(fig,'Pointer', pointer ) ; % ==================================================================== function data=selection_helper(data) % -------------------------------------------------------------------- P = get(gca, 'CurrentPoint') ; P = [P(1,1); P(1,2)] ; d = (data.X(1,:) - P(1)).^2 + (data.X(2,:) - P(2)).^2 ; dmin=min(d) ; idx=find(d==dmin) ; data.selected = idx ; % ==================================================================== function click_down_handler(obj,event) % -------------------------------------------------------------------- % select a feature and change motion handler for dragging [obj,fig]=gcbo ; data = guidata(fig) ; data.mhandler = get(fig,'WindowButtonMotionFcn') ; set(fig,'WindowButtonMotionFcn',@motion_handler) ; data = selection_helper(data) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function click_up_handler(obj,event) % -------------------------------------------------------------------- % stop dragging [obj,fig]=gcbo ; data = guidata(fig) ; set(fig,'WindowButtonMotionFcn',data.mhandler) ; guidata(fig,data) ; uiresume(obj) ; % ==================================================================== function motion_handler(obj,event) % -------------------------------------------------------------------- % select features while dragging data = guidata(obj) ; data = selection_helper(data); guidata(obj,data) ; uiresume(obj) ; % ==================================================================== function key_handler(obj,event) % -------------------------------------------------------------------- % use keypress to exit data = guidata(gcbo) ; data.exit = 1 ; guidata(obj,data) ; uiresume(gcbo) ;
github
rising-turtle/slam_matlab-master
gaussianss.m
.m
slam_matlab-master/libs_dir/SIFT/sift-0.9.19-bin/sift/gaussianss.m
7,935
utf_8
ea953b78ba9dcf80cd10b1f4c599408e
function SS = gaussianss(I,sigman,O,S,omin,smin,smax,sigma0) % GAUSSIANSS % SS = GAUSSIANSS(I,SIGMAN,O,S,OMIN,SMIN,SMAX,SIGMA0) returns the % Gaussian scale space of image I. Image I is assumed to be % pre-smoothed at level SIGMAN. O,S,OMIN,SMIN,SMAX,SIGMA0 are the % parameters of the scale space as explained in PDF:SIFT.USER.SS. % % See also DIFFSS(), PDF:SIFT.USER.SS. % History % 4-15-2006 Fixed some comments % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(nargin < 6) error('Six arguments are required.') ; end if(~isreal(I) || ndims(I) > 2) error('I must be a real two dimensional matrix') ; end if(smin >= smax) error('smin must be greather or equal to smax') ; end % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- % Scale multiplicative step k = 2^(1/S) ; % Lowe's convention: the scale (o,s)=(0,-1) has standard deviation % 1.6 (was it variance?) if(nargin < 7) sigma0 = 1.6 * k ; end dsigma0 = sigma0 * sqrt(1 - 1/k^2) ; % Scale step factor sigman = 0.5 ; % Nominal smoothing of the image % Scale space structure SS.O = O ; SS.S = S ; SS.sigma0 = sigma0 ; SS.omin = omin ; SS.smin = smin ; SS.smax = smax ; % If mino < 0, multiply the size of the image. % (The rest of the code is consistent with this.) if omin < 0 for o=1:-omin I = doubleSize(I) ; end elseif omin > 0 for o=1:omin I = halveSize(I) ; end end [M,N] = size(I) ; % Index offset so = -smin+1 ; % -------------------------------------------------------------------- % First octave % -------------------------------------------------------------------- % % The first level of the first octave has scale index (o,s) = % (omin,smin) and scale coordinate % % sigma(omin,smin) = sigma0 2^omin k^smin % % The input image I is at nominal scale sigman. Thus in order to get % the first level of the pyramid we need to apply a smoothing of % % sqrt( (sigma0 2^omin k^smin)^2 - sigman^2 ). % % As we have pre-scaled the image omin octaves (up or down, % depending on the sign of omin), we need to correct this value % by dividing by 2^omin, getting %e % sqrt( (sigma0 k^smin)^2 - (sigman/2^omin)^2 ) % if(sigma0 * 2^omin * k^smin < sigman) warning('The nominal smoothing exceeds the lowest level of the scale space.') ; end SS.octave{1} = zeros(M,N,smax-smin+1) ; SS.octave{1}(:,:,1) = imsmooth(I, ... sqrt((sigma0*k^smin)^2 - (sigman/2^omin)^2)) ; for s=smin+1:smax % Here we go from (omin,s-1) to (omin,s). The extra smoothing % standard deviation is % % (sigma0 2^omin 2^(s/S) )^2 - (simga0 2^omin 2^(s/S-1/S) )^2 % % Aftred dividing by 2^omin (to take into account the fact % that the image has been pre-scaled omin octaves), the % standard deviation of the smoothing kernel is % % dsigma = sigma0 k^s sqrt(1-1/k^2) % dsigma = k^s * dsigma0 ; SS.octave{1}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{1}(:,:,s-1 +so)... ), dsigma ) ; end % -------------------------------------------------------------------- % Other octaves % -------------------------------------------------------------------- for o=2:O % We need to initialize the first level of octave (o,smin) from % the closest possible level of the previous octave. A level (o,s) % in this octave corrsponds to the level (o-1,s+S) in the previous % octave. In particular, the level (o,smin) correspnds to % (o-1,smin+S). However (o-1,smin+S) might not be among the levels % (o-1,smin), ..., (o-1,smax) that we have previously computed. % The closest pick is % % / smin+S if smin+S <= smax % (o-1,sbest) , sbest = | % \ smax if smin+S > smax % % The amount of extra smoothing we need to apply is then given by % % ( sigma0 2^o 2^(smin/S) )^2 - ( sigma0 2^o 2^(sbest/S - 1) )^2 % % As usual, we divide by 2^o to cancel out the effect of the % downsampling and we get % % ( sigma 0 k^smin )^2 - ( sigma0 2^o k^(sbest - S) )^2 % sbest = min(smin + S, smax) ; TMP = halveSize(squeeze(SS.octave{o-1}(:,:,sbest+so))) ; target_sigma = sigma0 * k^smin ; prev_sigma = sigma0 * k^(sbest - S) ; if(target_sigma > prev_sigma) TMP = imsmooth(TMP, sqrt(target_sigma^2 - prev_sigma^2) ) ; end [M,N] = size(TMP) ; SS.octave{o} = zeros(M,N,smax-smin+1) ; SS.octave{o}(:,:,1) = TMP ; for s=smin+1:smax % The other levels are determined as above for the first octave. dsigma = k^s * dsigma0 ; SS.octave{o}(:,:,s +so) = ... imsmooth(squeeze(... SS.octave{o}(:,:,s-1 +so)... ), dsigma) ; end end % ------------------------------------------------------------------------- % Auxiliary functions % ------------------------------------------------------------------------- function J = doubleSize(I) [M,N]=size(I) ; J = zeros(2*M,2*N) ; J(1:2:end,1:2:end) = I ; J(2:2:end-1,2:2:end-1) = ... 0.25*I(1:end-1,1:end-1) + ... 0.25*I(2:end,1:end-1) + ... 0.25*I(1:end-1,2:end) + ... 0.25*I(2:end,2:end) ; J(2:2:end-1,1:2:end) = ... 0.5*I(1:end-1,:) + ... 0.5*I(2:end,:) ; J(1:2:end,2:2:end-1) = ... 0.5*I(:,1:end-1) + ... 0.5*I(:,2:end) ; function J = halveSize(I) J=I(1:2:end,1:2:end) ; %[M,N] = size(I) ; %m=floor((M+1)/2) ; %n=floor((N+1)/2) ; %J = I(:,1:2:2*n) + I(:,2:2:2*n+1) ; %J = 0.25*(J(1:2:2*m,:)+J(2:2:2*m+1,:)) ;
github
rising-turtle/slam_matlab-master
plotsiftdescriptor.m
.m
slam_matlab-master/libs_dir/SIFT/sift-0.9.19-bin/sift/plotsiftdescriptor.m
5,461
utf_8
4159397cc60b624656bb3372023a43e9
function h=plotsiftdescriptor(d,f) % PLOTSIFTDESCRIPTOR Plot SIFT descriptor % PLOTSIFTDESCRIPTOR(D) plots the SIFT descriptors D, stored as % columns of the matrix D. D has the same format used by SIFT(). % % PLOTSIFTDESCRIPTOR(D,F) plots the SIFT descriptors warped to the % SIFT frames F, specified as columns of the matrix F. F has % the same format used by SIFT(). % % H=PLOTSIFTDESCRIPTOR(...) returns the handle H to the line drawing % representing the descriptors. % % REMARK. Currently the function supports only descriptors with 4x4 % spatial bins and 8 orientation bins (Lowe's default.) % % See also PLOTSIFTFRAME(), PLOTMATCHES(), PLOTSS(). % AUTORIGHTS % Copyright (c) 2006 The Regents of the University of California. % All Rights Reserved. % % Created by Andrea Vedaldi % UCLA Vision Lab - Department of Computer Science % % Permission to use, copy, modify, and distribute this software and its % documentation for educational, research and non-profit purposes, % without fee, and without a written agreement is hereby granted, % provided that the above copyright notice, this paragraph and the % following three paragraphs appear in all copies. % % This software program and documentation are copyrighted by The Regents % of the University of California. The software program and % documentation are supplied "as is", without any accompanying services % from The Regents. The Regents does not warrant that the operation of % the program will be uninterrupted or error-free. The end-user % understands that the program was developed for research purposes and % is advised not to rely exclusively on the program for any reason. % % This software embodies a method for which the following patent has % been issued: "Method and apparatus for identifying scale invariant % features in an image and use of same for locating an object in an % image," David G. Lowe, US Patent 6,711,293 (March 23, % 2004). Provisional application filed March 8, 1999. Asignee: The % University of British Columbia. % % IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY % FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, % INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND % ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN % ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF % CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT % LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR % A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" % BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE % MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. lowe_compatible = 1 ; % -------------------------------------------------------------------- % Check the arguments % -------------------------------------------------------------------- if(size(d,1) ~= 128) error('D should be a 128xK matrix (only standard descriptors accepted)') ; end if nargin > 1 if(size(f,1) ~= 4) error('F should be a 4xK matrix'); end if(size(f,2) ~= size(f,2)) error('D and F must have the same number of columns') ; end end % Descriptors are often non-double numeric arrays d = double(d) ; K = size(d,2) ; if nargin < 2 f = repmat([0;0;1;0],1,K) ; end maginf = 3.0 ; NBP=4 ; NBO=8 ; % -------------------------------------------------------------------- % Do the job % -------------------------------------------------------------------- xall=[] ; yall=[] ; for k=1:K SBP = maginf * f(3,k) ; th=f(4,k) ; c=cos(th) ; s=sin(th) ; [x,y] = render_descr(d(:,k)) ; xall = [xall SBP*(c*x-s*y)+f(1,k)+1] ; yall = [yall SBP*(s*x+c*y)+f(2,k)+1] ; end h=line(xall,yall) ; % -------------------------------------------------------------------- % Helper functions % -------------------------------------------------------------------- % Renders a single descriptor function [x,y] = render_descr( d ) lowe_compatible=1; NBP=4 ; NBO=8 ; [x,y] = meshgrid(-NBP/2:NBP/2,-NBP/2:NBP/2) ; % Rescale d so that the biggest peak fits inside the bin diagram d = 0.4 * d / max(d(:)) ; % We have NBP*NBP bins to plot. Here are the centers: xc = x(1:end-1,1:end-1) + 0.5 ; yc = y(1:end-1,1:end-1) + 0.5 ; % We swap the order of the bin diagrams because they are stored row % major into the descriptor (Lowe's convention that we follow.) xc = xc' ; yc = yc' ; % Each bin contains a star with eight tips xc = repmat(xc(:)',NBO,1) ; yc = repmat(yc(:)',NBO,1) ; % Do the stars th=linspace(0,2*pi,NBO+1) ; th=th(1:end-1) ; if lowe_compatible xd = repmat(cos(-th), 1, NBP*NBP ) ; yd = repmat(sin(-th), 1, NBP*NBP ) ; else xd = repmat(cos(th), 1, NBP*NBP ) ; yd = repmat(sin(th), 1, NBP*NBP ) ; end xd = xd .* d(:)' ; yd = yd .* d(:)' ; % Re-arrange in sequential order the lines to draw nans = NaN * ones(1,NBP^2*NBO) ; x1 = xc(:)' ; y1 = yc(:)' ; x2 = x1 + xd ; y2 = y1 + yd ; xstars = [x1;x2;nans] ; ystars = [y1;y2;nans] ; % Horizontal lines of the grid nans = NaN * ones(1,NBP+1); xh = [x(:,1)' ; x(:,end)' ; nans] ; yh = [y(:,1)' ; y(:,end)' ; nans] ; % Verical lines of the grid xv = [x(1,:) ; x(end,:) ; nans] ; yv = [y(1,:) ; y(end,:) ; nans] ; x=[xstars(:)' xh(:)' xv(:)'] ; y=[ystars(:)' yh(:)' yv(:)'] ;
github
rising-turtle/slam_matlab-master
moreindatatip.m
.m
slam_matlab-master/libs_dir/slamtoolbox/slamToolbox_11_09_08/Graphics/moreindatatip.m
3,133
utf_8
a282d8242a72fbe01e0564a1ef3c3d07
function moreindatatip % MOREINDATATIP Display index information in the data tip. % % Extends the displayed text of the datatip to get the index of the clicked % point. The extension remains until the figure is deleted. If datatip(s) % was previously present, a message prompts the user to right-click on the % figure to delete all datatips in order to switch on the capabilities of % the datatip. % % may 2006 % [email protected] dcm_obj = datacursormode(gcf); if ~isempty(findall(gca,'type','hggroup','marker','square'))% if there is datatip, please delete it info_struct = getCursorInfo(dcm_obj); xdat=get(info_struct.Target,'xdata'); ydat=get(info_struct.Target,'ydata'); zdat=get(info_struct.Target,'zdata'); if isempty(zdat),zdat=zeros(size(xdat));set(info_struct.Target,'zdata',zdat),end index=info_struct.DataIndex; ht=text(xdat(index)*1.05,ydat(index)*1.05,zdat(index)*1.05,... {'right-click on the figure';'to ''delete all datatips''';'in order to get more'},... 'backgroundcolor',[1,0,0.5],'tag','attention'); end set(dcm_obj,'enable','on','updatefcn',@myupdatefcn,'displaystyle','datatip') %-------------------------------------------------------------------------% function txt = myupdatefcn(empt,event_obj) % Change the text displayed in the datatip. Note than the actual coordinates % are displyed rather the position field of the info_struct. ht=findobj('tag','attention'); if ~isempty(ht),delete(ht),end dcm_obj = datacursormode(gcf); info_struct = getCursorInfo(dcm_obj); xdat=get(info_struct.Target,'xdata'); ydat=get(info_struct.Target,'ydata'); zdat=get(info_struct.Target,'zdata'); index=info_struct.DataIndex; if isempty(zdat) txt = {['X: ',num2str(xdat(index))],... ['Y: ',num2str(ydat(index))],... ['index: ',num2str(index)]}; else txt = {['X: ',num2str(xdat(index))],... ['Y: ',num2str(ydat(index))],... ['Z: ',num2str(zdat(index))],... ['index: ',num2str(index)]}; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright 2007,2008,2009 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
initNewLmk.m
.m
slam_matlab-master/libs_dir/slamtoolbox/slamToolbox_11_09_08/InterfaceLevel/initNewLmk.m
6,870
utf_8
34d7ff329dfed725430c53a5095f1ecf
function [Lmk,Obs] = initNewLmk(Rob, Sen, Raw, Lmk, Obs, Opt) %INITNEWLMK Initialise one landmark. % [LMK, OBS] = INITNEWLMK(ROB, SEN, RAW, LMK, OBS) returns the new % set of landmarks. % % This "new set" contains the "old set" plus new elements. These new % elements are extracted from the recent observations (RAW), from the % current state estimated (ROB for robot and SEN for the sensor). % % Finally, we can have a mean and a variance-covariance estimation for % the new landmark state. % % See also GETNEWLMKCOVS % Copyright 2009 Jean Marie Codol, David Marquez @ LAAS-CNRS % 0. UPDATE ROB AND SEN INFO FROM MAP Rob = map2rob(Rob); Sen = map2sen(Sen); % Type of the lmk to initialize - with error check. switch Opt.init.initType case {'hmgPnt'} lmkSize = 4; case {'ahmPnt'} lmkSize = 7; case {'idpPnt','plkLin'} lmkSize = 6; case {'idpLin','aplLin'} lmkSize = 9; case {'hmgLin'} lmkSize = 8; case {'fhmPnt','ahmLin'} lmkSize = 11; case {'eucPnt'} error('??? Unable to initialize lmk type ''%s''. Try using ''idpPnt'' instead.',Opt.init.initType); otherwise error('??? Unknown landmark type ''%s''.', Opt.init.initType); end % get free space in the Map. r = newRange(lmkSize); % index to first free lmk lmk = newLmk(Lmk); if (numel(r) < lmkSize) % disp('!!! Map full. Unable to initialize landmark.') return end if isempty(lmk) % disp('!!! Lmk structure array full. Unable to initialize new landmark.') return; end % Feature detection switch Raw.type case {'simu'} [newId, app, meas, exp, inn] = simDetectFeat(... Opt.init.initType, ... [Lmk([Lmk.used]).id], ... Raw.data, ... Sen.par.pixCov, ... Sen.par.imSize); case {'real'} existingProj = getExistingProj(Obs); [app, meas, exp, inn] = detectFeat(... Opt.init.initType, ... Raw.data, ... Sen.par.pixCov, ... existingProj, ... Sen.imGrid); newId = getNewId(); % NYI : Not Yet Implemented %[newId, app, meas, exp, inn] = detectFeat([Lmk(usedLmks).id],Raw.data,Sen.par); % error('??? Unknown Raw type. ''real'': NYI.'); end if ~isempty(meas.y) % a feature was detected --> initialize it % fill Obs struct before continuing Obs(lmk).sen = Sen.sen; Obs(lmk).lmk = lmk; Obs(lmk).sid = Sen.id; Obs(lmk).lid = newId; Obs(lmk).stype = Sen.type; Obs(lmk).ltype = Opt.init.initType; Obs(lmk).meas = meas; Obs(lmk).exp = exp; Obs(lmk).exp.um = det(inn.Z); % uncertainty measure Obs(lmk).inn = inn; Obs(lmk).app.curr = app; Obs(lmk).app.pred = app; Obs(lmk).vis = true; Obs(lmk).measured = true; Obs(lmk).matched = true; Obs(lmk).updated = true; % retro-project feature onto 3D space [l, L_rf, L_sf, L_obs, L_n, N] = retroProjLmk(Rob,Sen,Obs(lmk),Opt); % get new Lmk, covariance and cross-variance. [P_LL,P_LX] = getNewLmkCovs( ... Sen.frameInMap, ... Rob.frame.r, ... Sen.frame.r, ... L_rf, ... L_sf, ... L_obs, ... L_n, ... meas.R, ... N) ; % add to Map and get lmk range in Map Lmk(lmk).state.r = addToMap(l,P_LL,P_LX); % Fill Lmk structure Lmk(lmk).lmk = lmk; Lmk(lmk).id = newId; Lmk(lmk).type = Opt.init.initType ; Lmk(lmk).used = true; Lmk(lmk).sig = app; Lmk(lmk).nSearch = 1; Lmk(lmk).nMatch = 1; Lmk(lmk).nInlier = 1; % Init off-filter landmark params [Lmk(lmk),Obs(lmk)] = initLmkParams(Rob,Sen,Lmk(lmk),Obs(lmk)); % fprintf('Initialized landmark ''%d''.\n',Lmk(lmk).id) end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [P_LL,P_LX] = getNewLmkCovs(SenFrameInMap, RobFrameR, SenFrameR,... L_rf, L_sf, L_obs, L_n, R, N) % GETNEWLMKCOVS return lmk co and cross-variance for initialization. % [P_LL,P_LX] = GETNEWLMKCOVS( ... % SENFRAMEINMAP, ... % ROBFRAMERANGE, ... % SENFRAMERANGE, ... % L_RF, ... % L_SF, ... % L_OBS, ... % L_N, ... % R, ... % N) % % Return the covariance 'Lmk/Lmk' (P_LL) and cross-variance 'Lmk/Map.used' % (P_LX) given : % - if the sensor frame is in map (SENFRAMEINMAP). % - the robot frame range in map (ROBFRAMERANGE). % - the sensor frame range in map (SENFRAMERANGE). % - the jacobian 'Lmk/robot frame' (L_RF). % - the jacobian 'Lmk/sensor frame' (L_SF). % - the jacobian 'Lmk/observation' (L_OBS). % - the jacobian 'Lmk/non observable part' (L_N). % - the observation covariance (R). % - the observation non observable part covariance (N). % % P_LL and P_LX can be placed for example in Map covariance like: % % P = | P P_LX' | % | P_LX P_LL | % % (c) 2009 Jean Marie Codol, David Marquez @ LAAS-CNRS global Map % Group all map Jacobians and ranges if SenFrameInMap % if the sensor frame is in the state mr = [RobFrameR;SenFrameR]; L_m = [L_rf L_sf] ; else mr = RobFrameR; L_m = L_rf ; end % co- and cross-variance of map variables (robot and eventually sensor) P_MM = Map.P(mr,mr) ; P_MX = Map.P(mr,(Map.used)) ; % landmark co- and cross-variance P_LL = ... L_m * P_MM * L_m' + ... % by map cov L_obs * R * L_obs' + ... % by observation cov (for pinHole it is a pixel) L_n * N * L_n' ; % by nom cov P_LX = L_m*P_MX ; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright 2007,2008,2009 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
chi2.m
.m
slam_matlab-master/libs_dir/slamtoolbox/slamToolbox_11_09_08/Math/chi2.m
25,797
utf_8
28d82af99c6ba03eec54f93ee2d67f95
function chi2 = chi2(n,p) % CHI2 Chi square distribution % TH = CHI2(N,P) gives the critical values of the N-dimensional % Chi-squared distribuiton function for a right-tail probability area P % Copyright 2009 Joan Sola @ LAAS-CNRS. [nTab,pTab,Chi2Tab] = chi2tab(); if (n == floor(n)) % values of p if p < .001 warning('Too small probability. Assuming P=0.001') p = 0.001; elseif (p > 0.2) && (p<0.975) && (p~=0.5) warning('Poor data in table. Inaccurate results. Use P<0.2 or P>0.975.') elseif p > 0.995 warning('Too big probability. Assuming P=0.995') p = 0.995; end % values of n if (n > 1000) error('Chi2 Lookup table only up to N=1000 DOF') elseif (n > 250) && (mod(n,50)~=0) warning('Value of N-DOF not found. Innacurate results. Use N in [1:1:250,300:50:1000]') end % 2-D interpolation chi2 = interp2(pTab,nTab,Chi2Tab,p,n); else error('Dimension N must be a positive integer value in [1:1000]') end end %% Lookup tables function [DOF,PRB,TAB] = chi2tab() PRB = [0.995 0.975 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.002 0.001]; DOF = [1:250 300:50:1000]; TAB = [... 1 0.0000393 0.000982 1.642 2.706 3.841 5.024 5.412 6.635 7.879 9.550 10.828 2 0.0100 0.0506 3.219 4.605 5.991 7.378 7.824 9.210 10.597 12.429 13.816 3 0.0717 0.216 4.642 6.251 7.815 9.348 9.837 11.345 12.838 14.796 16.266 4 0.207 0.484 5.989 7.779 9.488 11.143 11.668 13.277 14.860 16.924 18.467 5 0.412 0.831 7.289 9.236 11.070 12.833 13.388 15.086 16.750 18.907 20.515 6 0.676 1.237 8.558 10.645 12.592 14.449 15.033 16.812 18.548 20.791 22.458 7 0.989 1.690 9.803 12.017 14.067 16.013 16.622 18.475 20.278 22.601 24.322 8 1.344 2.180 11.030 13.362 15.507 17.535 18.168 20.090 21.955 24.352 26.124 9 1.735 2.700 12.242 14.684 16.919 19.023 19.679 21.666 23.589 26.056 27.877 10 2.156 3.247 13.442 15.987 18.307 20.483 21.161 23.209 25.188 27.722 29.588 11 2.603 3.816 14.631 17.275 19.675 21.920 22.618 24.725 26.757 29.354 31.264 12 3.074 4.404 15.812 18.549 21.026 23.337 24.054 26.217 28.300 30.957 32.909 13 3.565 5.009 16.985 19.812 22.362 24.736 25.472 27.688 29.819 32.535 34.528 14 4.075 5.629 18.151 21.064 23.685 26.119 26.873 29.141 31.319 34.091 36.123 15 4.601 6.262 19.311 22.307 24.996 27.488 28.259 30.578 32.801 35.628 37.697 16 5.142 6.908 20.465 23.542 26.296 28.845 29.633 32.000 34.267 37.146 39.252 17 5.697 7.564 21.615 24.769 27.587 30.191 30.995 33.409 35.718 38.648 40.790 18 6.265 8.231 22.760 25.989 28.869 31.526 32.346 34.805 37.156 40.136 42.312 19 6.844 8.907 23.900 27.204 30.144 32.852 33.687 36.191 38.582 41.610 43.820 20 7.434 9.591 25.038 28.412 31.410 34.170 35.020 37.566 39.997 43.072 45.315 21 8.034 10.283 26.171 29.615 32.671 35.479 36.343 38.932 41.401 44.522 46.797 22 8.643 10.982 27.301 30.813 33.924 36.781 37.659 40.289 42.796 45.962 48.268 23 9.260 11.689 28.429 32.007 35.172 38.076 38.968 41.638 44.181 47.391 49.728 24 9.886 12.401 29.553 33.196 36.415 39.364 40.270 42.980 45.559 48.812 51.179 25 10.520 13.120 30.675 34.382 37.652 40.646 41.566 44.314 46.928 50.223 52.620 26 11.160 13.844 31.795 35.563 38.885 41.923 42.856 45.642 48.290 51.627 54.052 27 11.808 14.573 32.912 36.741 40.113 43.195 44.140 46.963 49.645 53.023 55.476 28 12.461 15.308 34.027 37.916 41.337 44.461 45.419 48.278 50.993 54.411 56.892 29 13.121 16.047 35.139 39.087 42.557 45.722 46.693 49.588 52.336 55.792 58.301 30 13.787 16.791 36.250 40.256 43.773 46.979 47.962 50.892 53.672 57.167 59.703 31 14.458 17.539 37.359 41.422 44.985 48.232 49.226 52.191 55.003 58.536 61.098 32 15.134 18.291 38.466 42.585 46.194 49.480 50.487 53.486 56.328 59.899 62.487 33 15.815 19.047 39.572 43.745 47.400 50.725 51.743 54.776 57.648 61.256 63.870 34 16.501 19.806 40.676 44.903 48.602 51.966 52.995 56.061 58.964 62.608 65.247 35 17.192 20.569 41.778 46.059 49.802 53.203 54.244 57.342 60.275 63.955 66.619 36 17.887 21.336 42.879 47.212 50.998 54.437 55.489 58.619 61.581 65.296 67.985 37 18.586 22.106 43.978 48.363 52.192 55.668 56.730 59.893 62.883 66.633 69.346 38 19.289 22.878 45.076 49.513 53.384 56.896 57.969 61.162 64.181 67.966 70.703 39 19.996 23.654 46.173 50.660 54.572 58.120 59.204 62.428 65.476 69.294 72.055 40 20.707 24.433 47.269 51.805 55.758 59.342 60.436 63.691 66.766 70.618 73.402 41 21.421 25.215 48.363 52.949 56.942 60.561 61.665 64.950 68.053 71.938 74.745 42 22.138 25.999 49.456 54.090 58.124 61.777 62.892 66.206 69.336 73.254 76.084 43 22.859 26.785 50.548 55.230 59.304 62.990 64.116 67.459 70.616 74.566 77.419 44 23.584 27.575 51.639 56.369 60.481 64.201 65.337 68.710 71.893 75.874 78.750 45 24.311 28.366 52.729 57.505 61.656 65.410 66.555 69.957 73.166 77.179 80.077 46 25.041 29.160 53.818 58.641 62.830 66.617 67.771 71.201 74.437 78.481 81.400 47 25.775 29.956 54.906 59.774 64.001 67.821 68.985 72.443 75.704 79.780 82.720 48 26.511 30.755 55.993 60.907 65.171 69.023 70.197 73.683 76.969 81.075 84.037 49 27.249 31.555 57.079 62.038 66.339 70.222 71.406 74.919 78.231 82.367 85.351 50 27.991 32.357 58.164 63.167 67.505 71.420 72.613 76.154 79.490 83.657 86.661 51 28.735 33.162 59.248 64.295 68.669 72.616 73.818 77.386 80.747 84.943 87.968 52 29.481 33.968 60.332 65.422 69.832 73.810 75.021 78.616 82.001 86.227 89.272 53 30.230 34.776 61.414 66.548 70.993 75.002 76.223 79.843 83.253 87.507 90.573 54 30.981 35.586 62.496 67.673 72.153 76.192 77.422 81.069 84.502 88.786 91.872 55 31.735 36.398 63.577 68.796 73.311 77.380 78.619 82.292 85.749 90.061 93.168 56 32.490 37.212 64.658 69.919 74.468 78.567 79.815 83.513 86.994 91.335 94.461 57 33.248 38.027 65.737 71.040 75.624 79.752 81.009 84.733 88.236 92.605 95.751 58 34.008 38.844 66.816 72.160 76.778 80.936 82.201 85.950 89.477 93.874 97.039 59 34.770 39.662 67.894 73.279 77.931 82.117 83.391 87.166 90.715 95.140 98.324 60 35.534 40.482 68.972 74.397 79.082 83.298 84.580 88.379 91.952 96.404 99.607 61 36.301 41.303 70.049 75.514 80.232 84.476 85.767 89.591 93.186 97.665 100.888 62 37.068 42.126 71.125 76.630 81.381 85.654 86.953 90.802 94.419 98.925 102.166 63 37.838 42.950 72.201 77.745 82.529 86.830 88.137 92.010 95.649 100.182 103.442 64 38.610 43.776 73.276 78.860 83.675 88.004 89.320 93.217 96.878 101.437 104.716 65 39.383 44.603 74.351 79.973 84.821 89.177 90.501 94.422 98.105 102.691 105.988 66 40.158 45.431 75.424 81.085 85.965 90.349 91.681 95.626 99.330 103.942 107.258 67 40.935 46.261 76.498 82.197 87.108 91.519 92.860 96.828 100.554 105.192 108.526 68 41.713 47.092 77.571 83.308 88.250 92.689 94.037 98.028 101.776 106.440 109.791 69 42.494 47.924 78.643 84.418 89.391 93.856 95.213 99.228 102.996 107.685 111.055 70 43.275 48.758 79.715 85.527 90.531 95.023 96.388 100.425 104.215 108.929 112.317 71 44.058 49.592 80.786 86.635 91.670 96.189 97.561 101.621 105.432 110.172 113.577 72 44.843 50.428 81.857 87.743 92.808 97.353 98.733 102.816 106.648 111.412 114.835 73 45.629 51.265 82.927 88.850 93.945 98.516 99.904 104.010 107.862 112.651 116.092 74 46.417 52.103 83.997 89.956 95.081 99.678 101.074 105.202 109.074 113.889 117.346 75 47.206 52.942 85.066 91.061 96.217 100.839 102.243 106.393 110.286 115.125 118.599 76 47.997 53.782 86.135 92.166 97.351 101.999 103.410 107.583 111.495 116.359 119.850 77 48.788 54.623 87.203 93.270 98.484 103.158 104.576 108.771 112.704 117.591 121.100 78 49.582 55.466 88.271 94.374 99.617 104.316 105.742 109.958 113.911 118.823 122.348 79 50.376 56.309 89.338 95.476 100.749 105.473 106.906 111.144 115.117 120.052 123.594 80 51.172 57.153 90.405 96.578 101.879 106.629 108.069 112.329 116.321 121.280 124.839 81 51.969 57.998 91.472 97.680 103.010 107.783 109.232 113.512 117.524 122.507 126.083 82 52.767 58.845 92.538 98.780 104.139 108.937 110.393 114.695 118.726 123.733 127.324 83 53.567 59.692 93.604 99.880 105.267 110.090 111.553 115.876 119.927 124.957 128.565 84 54.368 60.540 94.669 100.980 106.395 111.242 112.712 117.057 121.126 126.179 129.804 85 55.170 61.389 95.734 102.079 107.522 112.393 113.871 118.236 122.325 127.401 131.041 86 55.973 62.239 96.799 103.177 108.648 113.544 115.028 119.414 123.522 128.621 132.277 87 56.777 63.089 97.863 104.275 109.773 114.693 116.184 120.591 124.718 129.840 133.512 88 57.582 63.941 98.927 105.372 110.898 115.841 117.340 121.767 125.913 131.057 134.745 89 58.389 64.793 99.991 106.469 112.022 116.989 118.495 122.942 127.106 132.273 135.978 90 59.196 65.647 101.054 107.565 113.145 118.136 119.648 124.116 128.299 133.489 137.208 91 60.005 66.501 102.117 108.661 114.268 119.282 120.801 125.289 129.491 134.702 138.438 92 60.815 67.356 103.179 109.756 115.390 120.427 121.954 126.462 130.681 135.915 139.666 93 61.625 68.211 104.241 110.850 116.511 121.571 123.105 127.633 131.871 137.127 140.893 94 62.437 69.068 105.303 111.944 117.632 122.715 124.255 128.803 133.059 138.337 142.119 95 63.250 69.925 106.364 113.038 118.752 123.858 125.405 129.973 134.247 139.546 143.344 96 64.063 70.783 107.425 114.131 119.871 125.000 126.554 131.141 135.433 140.755 144.567 97 64.878 71.642 108.486 115.223 120.990 126.141 127.702 132.309 136.619 141.962 145.789 98 65.694 72.501 109.547 116.315 122.108 127.282 128.849 133.476 137.803 143.168 147.010 99 66.510 73.361 110.607 117.407 123.225 128.422 129.996 134.642 138.987 144.373 148.230 100 67.328 74.222 111.667 118.498 124.342 129.561 131.142 135.807 140.169 145.577 149.449 101 68.146 75.083 112.726 119.589 125.458 130.700 132.287 136.971 141.351 146.780 150.667 102 68.965 75.946 113.786 120.679 126.574 131.838 133.431 138.134 142.532 147.982 151.884 103 69.785 76.809 114.845 121.769 127.689 132.975 134.575 139.297 143.712 149.183 153.099 104 70.606 77.672 115.903 122.858 128.804 134.111 135.718 140.459 144.891 150.383 154.314 105 71.428 78.536 116.962 123.947 129.918 135.247 136.860 141.620 146.070 151.582 155.528 106 72.251 79.401 118.020 125.035 131.031 136.382 138.002 142.780 147.247 152.780 156.740 107 73.075 80.267 119.078 126.123 132.144 137.517 139.143 143.940 148.424 153.977 157.952 108 73.899 81.133 120.135 127.211 133.257 138.651 140.283 145.099 149.599 155.173 159.162 109 74.724 82.000 121.192 128.298 134.369 139.784 141.423 146.257 150.774 156.369 160.372 110 75.550 82.867 122.250 129.385 135.480 140.917 142.562 147.414 151.948 157.563 161.581 111 76.377 83.735 123.306 130.472 136.591 142.049 143.700 148.571 153.122 158.757 162.788 112 77.204 84.604 124.363 131.558 137.701 143.180 144.838 149.727 154.294 159.950 163.995 113 78.033 85.473 125.419 132.643 138.811 144.311 145.975 150.882 155.466 161.141 165.201 114 78.862 86.342 126.475 133.729 139.921 145.441 147.111 152.037 156.637 162.332 166.406 115 79.692 87.213 127.531 134.813 141.030 146.571 148.247 153.191 157.808 163.523 167.610 116 80.522 88.084 128.587 135.898 142.138 147.700 149.383 154.344 158.977 164.712 168.813 117 81.353 88.955 129.642 136.982 143.246 148.829 150.517 155.496 160.146 165.900 170.016 118 82.185 89.827 130.697 138.066 144.354 149.957 151.652 156.648 161.314 167.088 171.217 119 83.018 90.700 131.752 139.149 145.461 151.084 152.785 157.800 162.481 168.275 172.418 120 83.852 91.573 132.806 140.233 146.567 152.211 153.918 158.950 163.648 169.461 173.617 121 84.686 92.446 133.861 141.315 147.674 153.338 155.051 160.100 164.814 170.647 174.816 122 85.520 93.320 134.915 142.398 148.779 154.464 156.183 161.250 165.980 171.831 176.014 123 86.356 94.195 135.969 143.480 149.885 155.589 157.314 162.398 167.144 173.015 177.212 124 87.192 95.070 137.022 144.562 150.989 156.714 158.445 163.546 168.308 174.198 178.408 125 88.029 95.946 138.076 145.643 152.094 157.839 159.575 164.694 169.471 175.380 179.604 126 88.866 96.822 139.129 146.724 153.198 158.962 160.705 165.841 170.634 176.562 180.799 127 89.704 97.698 140.182 147.805 154.302 160.086 161.834 166.987 171.796 177.743 181.993 128 90.543 98.576 141.235 148.885 155.405 161.209 162.963 168.133 172.957 178.923 183.186 129 91.382 99.453 142.288 149.965 156.508 162.331 164.091 169.278 174.118 180.103 184.379 130 92.222 100.331 143.340 151.045 157.610 163.453 165.219 170.423 175.278 181.282 185.571 131 93.063 101.210 144.392 152.125 158.712 164.575 166.346 171.567 176.438 182.460 186.762 132 93.904 102.089 145.444 153.204 159.814 165.696 167.473 172.711 177.597 183.637 187.953 133 94.746 102.968 146.496 154.283 160.915 166.816 168.600 173.854 178.755 184.814 189.142 134 95.588 103.848 147.548 155.361 162.016 167.936 169.725 174.996 179.913 185.990 190.331 135 96.431 104.729 148.599 156.440 163.116 169.056 170.851 176.138 181.070 187.165 191.520 136 97.275 105.609 149.651 157.518 164.216 170.175 171.976 177.280 182.226 188.340 192.707 137 98.119 106.491 150.702 158.595 165.316 171.294 173.100 178.421 183.382 189.514 193.894 138 98.964 107.372 151.753 159.673 166.415 172.412 174.224 179.561 184.538 190.688 195.080 139 99.809 108.254 152.803 160.750 167.514 173.530 175.348 180.701 185.693 191.861 196.266 140 100.655 109.137 153.854 161.827 168.613 174.648 176.471 181.840 186.847 193.033 197.451 141 101.501 110.020 154.904 162.904 169.711 175.765 177.594 182.979 188.001 194.205 198.635 142 102.348 110.903 155.954 163.980 170.809 176.882 178.716 184.118 189.154 195.376 199.819 143 103.196 111.787 157.004 165.056 171.907 177.998 179.838 185.256 190.306 196.546 201.002 144 104.044 112.671 158.054 166.132 173.004 179.114 180.959 186.393 191.458 197.716 202.184 145 104.892 113.556 159.104 167.207 174.101 180.229 182.080 187.530 192.610 198.885 203.366 146 105.741 114.441 160.153 168.283 175.198 181.344 183.200 188.666 193.761 200.054 204.547 147 106.591 115.326 161.202 169.358 176.294 182.459 184.321 189.802 194.912 201.222 205.727 148 107.441 116.212 162.251 170.432 177.390 183.573 185.440 190.938 196.062 202.390 206.907 149 108.291 117.098 163.300 171.507 178.485 184.687 186.560 192.073 197.211 203.557 208.086 150 109.142 117.985 164.349 172.581 179.581 185.800 187.678 193.208 198.360 204.723 209.265 151 109.994 118.871 165.398 173.655 180.676 186.914 188.797 194.342 199.509 205.889 210.443 152 110.846 119.759 166.446 174.729 181.770 188.026 189.915 195.476 200.657 207.054 211.620 153 111.698 120.646 167.495 175.803 182.865 189.139 191.033 196.609 201.804 208.219 212.797 154 112.551 121.534 168.543 176.876 183.959 190.251 192.150 197.742 202.951 209.383 213.973 155 113.405 122.423 169.591 177.949 185.052 191.362 193.267 198.874 204.098 210.547 215.149 156 114.259 123.312 170.639 179.022 186.146 192.474 194.384 200.006 205.244 211.710 216.324 157 115.113 124.201 171.686 180.094 187.239 193.584 195.500 201.138 206.390 212.873 217.499 158 115.968 125.090 172.734 181.167 188.332 194.695 196.616 202.269 207.535 214.035 218.673 159 116.823 125.980 173.781 182.239 189.424 195.805 197.731 203.400 208.680 215.197 219.846 160 117.679 126.870 174.828 183.311 190.516 196.915 198.846 204.530 209.824 216.358 221.019 161 118.536 127.761 175.875 184.382 191.608 198.025 199.961 205.660 210.968 217.518 222.191 162 119.392 128.651 176.922 185.454 192.700 199.134 201.076 206.790 212.111 218.678 223.363 163 120.249 129.543 177.969 186.525 193.791 200.243 202.190 207.919 213.254 219.838 224.535 164 121.107 130.434 179.016 187.596 194.883 201.351 203.303 209.047 214.396 220.997 225.705 165 121.965 131.326 180.062 188.667 195.973 202.459 204.417 210.176 215.539 222.156 226.876 166 122.823 132.218 181.109 189.737 197.064 203.567 205.530 211.304 216.680 223.314 228.045 167 123.682 133.111 182.155 190.808 198.154 204.675 206.642 212.431 217.821 224.472 229.215 168 124.541 134.003 183.201 191.878 199.244 205.782 207.755 213.558 218.962 225.629 230.383 169 125.401 134.897 184.247 192.948 200.334 206.889 208.867 214.685 220.102 226.786 231.552 170 126.261 135.790 185.293 194.017 201.423 207.995 209.978 215.812 221.242 227.942 232.719 171 127.122 136.684 186.338 195.087 202.513 209.102 211.090 216.938 222.382 229.098 233.887 172 127.983 137.578 187.384 196.156 203.602 210.208 212.201 218.063 223.521 230.253 235.053 173 128.844 138.472 188.429 197.225 204.690 211.313 213.311 219.189 224.660 231.408 236.220 174 129.706 139.367 189.475 198.294 205.779 212.419 214.422 220.314 225.798 232.563 237.385 175 130.568 140.262 190.520 199.363 206.867 213.524 215.532 221.438 226.936 233.717 238.551 176 131.430 141.157 191.565 200.432 207.955 214.628 216.641 222.563 228.074 234.870 239.716 177 132.293 142.053 192.610 201.500 209.042 215.733 217.751 223.687 229.211 236.023 240.880 178 133.157 142.949 193.654 202.568 210.130 216.837 218.860 224.810 230.347 237.176 242.044 179 134.020 143.845 194.699 203.636 211.217 217.941 219.969 225.933 231.484 238.328 243.207 180 134.884 144.741 195.743 204.704 212.304 219.044 221.077 227.056 232.620 239.480 244.370 181 135.749 145.638 196.788 205.771 213.391 220.148 222.185 228.179 233.755 240.632 245.533 182 136.614 146.535 197.832 206.839 214.477 221.251 223.293 229.301 234.891 241.783 246.695 183 137.479 147.432 198.876 207.906 215.563 222.353 224.401 230.423 236.026 242.933 247.857 184 138.344 148.330 199.920 208.973 216.649 223.456 225.508 231.544 237.160 244.084 249.018 185 139.210 149.228 200.964 210.040 217.735 224.558 226.615 232.665 238.294 245.234 250.179 186 140.077 150.126 202.008 211.106 218.820 225.660 227.722 233.786 239.428 246.383 251.339 187 140.943 151.024 203.052 212.173 219.906 226.761 228.828 234.907 240.561 247.532 252.499 188 141.810 151.923 204.095 213.239 220.991 227.863 229.935 236.027 241.694 248.681 253.659 189 142.678 152.822 205.139 214.305 222.076 228.964 231.040 237.147 242.827 249.829 254.818 190 143.545 153.721 206.182 215.371 223.160 230.064 232.146 238.266 243.959 250.977 255.976 191 144.413 154.621 207.225 216.437 224.245 231.165 233.251 239.386 245.091 252.124 257.135 192 145.282 155.521 208.268 217.502 225.329 232.265 234.356 240.505 246.223 253.271 258.292 193 146.150 156.421 209.311 218.568 226.413 233.365 235.461 241.623 247.354 254.418 259.450 194 147.020 157.321 210.354 219.633 227.496 234.465 236.566 242.742 248.485 255.564 260.607 195 147.889 158.221 211.397 220.698 228.580 235.564 237.670 243.860 249.616 256.710 261.763 196 148.759 159.122 212.439 221.763 229.663 236.664 238.774 244.977 250.746 257.855 262.920 197 149.629 160.023 213.482 222.828 230.746 237.763 239.877 246.095 251.876 259.001 264.075 198 150.499 160.925 214.524 223.892 231.829 238.861 240.981 247.212 253.006 260.145 265.231 199 151.370 161.826 215.567 224.957 232.912 239.960 242.084 248.329 254.135 261.290 266.386 200 152.241 162.728 216.609 226.021 233.994 241.058 243.187 249.445 255.264 262.434 267.541 201 153.112 163.630 217.651 227.085 235.077 242.156 244.290 250.561 256.393 263.578 268.695 202 153.984 164.532 218.693 228.149 236.159 243.254 245.392 251.677 257.521 264.721 269.849 203 154.856 165.435 219.735 229.213 237.240 244.351 246.494 252.793 258.649 265.864 271.002 204 155.728 166.338 220.777 230.276 238.322 245.448 247.596 253.908 259.777 267.007 272.155 205 156.601 167.241 221.818 231.340 239.403 246.545 248.698 255.023 260.904 268.149 273.308 206 157.474 168.144 222.860 232.403 240.485 247.642 249.799 256.138 262.031 269.291 274.460 207 158.347 169.047 223.901 233.466 241.566 248.739 250.900 257.253 263.158 270.432 275.612 208 159.221 169.951 224.943 234.529 242.647 249.835 252.001 258.367 264.285 271.574 276.764 209 160.095 170.855 225.984 235.592 243.727 250.931 253.102 259.481 265.411 272.715 277.915 210 160.969 171.759 227.025 236.655 244.808 252.027 254.202 260.595 266.537 273.855 279.066 211 161.843 172.664 228.066 237.717 245.888 253.122 255.302 261.708 267.662 274.995 280.217 212 162.718 173.568 229.107 238.780 246.968 254.218 256.402 262.821 268.788 276.135 281.367 213 163.593 174.473 230.148 239.842 248.048 255.313 257.502 263.934 269.912 277.275 282.517 214 164.469 175.378 231.189 240.904 249.128 256.408 258.601 265.047 271.037 278.414 283.666 215 165.344 176.283 232.230 241.966 250.207 257.503 259.701 266.159 272.162 279.553 284.815 216 166.220 177.189 233.270 243.028 251.286 258.597 260.800 267.271 273.286 280.692 285.964 217 167.096 178.095 234.311 244.090 252.365 259.691 261.898 268.383 274.409 281.830 287.112 218 167.973 179.001 235.351 245.151 253.444 260.785 262.997 269.495 275.533 282.968 288.261 219 168.850 179.907 236.391 246.213 254.523 261.879 264.095 270.606 276.656 284.106 289.408 220 169.727 180.813 237.432 247.274 255.602 262.973 265.193 271.717 277.779 285.243 290.556 221 170.604 181.720 238.472 248.335 256.680 264.066 266.291 272.828 278.902 286.380 291.703 222 171.482 182.627 239.512 249.396 257.758 265.159 267.389 273.939 280.024 287.517 292.850 223 172.360 183.534 240.552 250.457 258.837 266.252 268.486 275.049 281.146 288.653 293.996 224 173.238 184.441 241.592 251.517 259.914 267.345 269.584 276.159 282.268 289.789 295.142 225 174.116 185.348 242.631 252.578 260.992 268.438 270.681 277.269 283.390 290.925 296.288 226 174.995 186.256 243.671 253.638 262.070 269.530 271.777 278.379 284.511 292.061 297.433 227 175.874 187.164 244.711 254.699 263.147 270.622 272.874 279.488 285.632 293.196 298.579 228 176.753 188.072 245.750 255.759 264.224 271.714 273.970 280.597 286.753 294.331 299.723 229 177.633 188.980 246.790 256.819 265.301 272.806 275.066 281.706 287.874 295.465 300.868 230 178.512 189.889 247.829 257.879 266.378 273.898 276.162 282.814 288.994 296.600 302.012 231 179.392 190.797 248.868 258.939 267.455 274.989 277.258 283.923 290.114 297.734 303.156 232 180.273 191.706 249.908 259.998 268.531 276.080 278.354 285.031 291.234 298.867 304.299 233 181.153 192.615 250.947 261.058 269.608 277.171 279.449 286.139 292.353 300.001 305.443 234 182.034 193.524 251.986 262.117 270.684 278.262 280.544 287.247 293.472 301.134 306.586 235 182.915 194.434 253.025 263.176 271.760 279.352 281.639 288.354 294.591 302.267 307.728 236 183.796 195.343 254.063 264.235 272.836 280.443 282.734 289.461 295.710 303.400 308.871 237 184.678 196.253 255.102 265.294 273.911 281.533 283.828 290.568 296.828 304.532 310.013 238 185.560 197.163 256.141 266.353 274.987 282.623 284.922 291.675 297.947 305.664 311.154 239 186.442 198.073 257.179 267.412 276.062 283.713 286.016 292.782 299.065 306.796 312.296 240 187.324 198.984 258.218 268.471 277.138 284.802 287.110 293.888 300.182 307.927 313.437 241 188.207 199.894 259.256 269.529 278.213 285.892 288.204 294.994 301.300 309.058 314.578 242 189.090 200.805 260.295 270.588 279.288 286.981 289.298 296.100 302.417 310.189 315.718 243 189.973 201.716 261.333 271.646 280.362 288.070 290.391 297.206 303.534 311.320 316.859 244 190.856 202.627 262.371 272.704 281.437 289.159 291.484 298.311 304.651 312.450 317.999 245 191.739 203.539 263.409 273.762 282.511 290.248 292.577 299.417 305.767 313.580 319.138 246 192.623 204.450 264.447 274.820 283.586 291.336 293.670 300.522 306.883 314.710 320.278 247 193.507 205.362 265.485 275.878 284.660 292.425 294.762 301.626 307.999 315.840 321.417 248 194.391 206.274 266.523 276.935 285.734 293.513 295.855 302.731 309.115 316.969 322.556 249 195.276 207.186 267.561 277.993 286.808 294.601 296.947 303.835 310.231 318.098 323.694 250 196.161 208.098 268.599 279.050 287.882 295.689 298.039 304.940 311.346 319.227 324.832 300 240.663 253.912 320.397 331.789 341.395 349.874 352.425 359.906 366.844 375.369 381.425 350 285.608 300.064 372.051 384.306 394.626 403.723 406.457 414.474 421.900 431.017 437.488 400 330.903 346.482 423.590 436.649 447.632 457.305 460.211 468.724 476.606 486.274 493.132 450 376.483 393.118 475.035 488.849 500.456 510.670 513.736 522.717 531.026 541.212 548.432 500 422.303 439.936 526.401 540.930 553.127 563.852 567.070 576.493 585.207 595.882 603.446 550 468.328 486.910 577.701 592.909 605.667 616.878 620.241 630.084 639.183 650.324 658.215 600 514.529 534.019 628.943 644.800 658.094 669.769 673.270 683.516 692.982 704.568 712.771 650 560.885 581.245 680.134 696.614 710.421 722.542 726.176 736.807 746.625 758.639 767.141 700 607.380 628.577 731.280 748.359 762.661 775.211 778.972 789.974 800.131 812.556 821.347 750 653.997 676.003 782.386 800.043 814.822 827.785 831.670 843.029 853.514 866.336 875.404 800 700.725 723.513 833.456 851.671 866.911 880.275 884.279 895.984 906.786 919.991 929.329 850 747.554 771.099 884.492 903.249 918.937 932.689 936.808 948.848 959.957 973.534 983.133 900 794.475 818.756 935.499 954.782 970.904 985.032 989.263 1001.630 1013.036 1026.974 1036.826 950 841.480 866.477 986.478 1006.272 1022.816 1037.311 1041.651 1054.334 1066.031 1080.320 1090.418 1000 888.564 914.257 1037.431 1057.724 1074.679 1089.531 1093.977 1106.969 1118.948 1133.579 1143.917]; % remove DOF column TAB = TAB(:,2:end); % add the P=0.5 column PRB = [PRB(1:2) 0.500 PRB(3:end)]; TAB = [TAB(:,1:2) DOF' TAB(:,3:end)]; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright 2007,2008,2009 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
vecnorm.m
.m
slam_matlab-master/libs_dir/slamtoolbox/slamToolbox_11_09_08/Math/vecnorm.m
1,534
utf_8
79b38e4a6fe6b82aa4e59d153995e278
function [n, N_v] = vecnorm(v) % VECNORM Vector norm, with Jacobian % VECNORM(V) is the same as NORM(V) % % [n, N_v] = VECNORM(V) returns also the Jacobian. if nargout == 1 n = sqrt(v'*v); else n = sqrt(v'*v); N_v = v'/n; end end %% function f() %% syms v1 v2 real v = [v1;v2]; [n,N_v] = vecnorm(v); N_v - jacobian(n,v) end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright 2007, 2008, 2009, 2010 % by Joan Sola @ LAAS-CNRS. % SLAMTB is Copyright 2009 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
toFrameHmg.m
.m
slam_matlab-master/libs_dir/slamtoolbox/slamToolbox_11_09_08/Points/toFrameHmg.m
3,142
utf_8
3a88bb83e7b0e927258f70d4fdd76b12
function [hf,HF_f,HF_h] = toFrameHmg(F,h) % TOFRAMEHMG To-frame transformation for homogeneous coordinates % P = TOFRAMEHMG(F,PF) transforms homogeneous point P from the global % frame to local frame F. % % [p,Pf,Ppf] = ... returns the Jacobians wrt F and PF. % Copyright 2008-2011 Joan Sola @ LAAS-CNRS. [t,q,R] = splitFrame(F) ; iF = [R' -R'*t ; 0 0 0 1]; hf = iF*h; if nargout > 1 [x,y,z] = split(t); [a,b,c,d] = split(q); [hx,hy,hz,ht] = split(h); HF_f = [... [ -ht*(a^2 + b^2 - c^2 - d^2), (-2)*ht*(a*d + b*c), 2*ht*(a*c - b*d), 2*a*hx - 2*c*hz + 2*d*hy - 2*ht*(a*x - c*z + d*y), 2*b*hx + 2*c*hy + 2*d*hz - 2*ht*(b*x + c*y + d*z), 2*b*hy - 2*a*hz - 2*c*hx + 2*ht*(a*z - b*y + c*x), 2*a*hy + 2*b*hz - 2*d*hx - 2*ht*(a*y + b*z - d*x)] [ 2*ht*(a*d - b*c), -ht*(a^2 - b^2 + c^2 - d^2), (-2)*ht*(a*b + c*d), 2*a*hy + 2*b*hz - 2*d*hx - 2*ht*(a*y + b*z - d*x), 2*a*hz - 2*b*hy + 2*c*hx - 2*ht*(a*z - b*y + c*x), 2*b*hx + 2*c*hy + 2*d*hz - 2*ht*(b*x + c*y + d*z), 2*c*hz - 2*a*hx - 2*d*hy + 2*ht*(a*x - c*z + d*y)] [ (-2)*ht*(a*c + b*d), 2*ht*(a*b - c*d), -ht*(a^2 - b^2 - c^2 + d^2), 2*a*hz - 2*b*hy + 2*c*hx - 2*ht*(a*z - b*y + c*x), 2*d*hx - 2*b*hz - 2*a*hy + 2*ht*(a*y + b*z - d*x), 2*a*hx - 2*c*hz + 2*d*hy - 2*ht*(a*x - c*z + d*y), 2*b*hx + 2*c*hy + 2*d*hz - 2*ht*(b*x + c*y + d*z)] [ 0, 0, 0, 0, 0, 0, 0]]; HF_h = iF; end end %% function f() %% syms x y z a b c d hx hy hz ht real F.x=[x;y;z;a;b;c;d]; F=updateFrame(F); h = [hx;hy;hz;ht]; hf = toFrameHmg(F,h) HF_f = simplify(jacobian(hf,F.x)) HF_h = simplify(jacobian(hf,h)) [hf,HF_f,HF_h] = toFrameHmg(F,h); simplify(HF_f - jacobian(hf,F.x)) simplify(HF_h - jacobian(hf,h)) %% end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright 2007,2008,2009 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
invDistortion.m
.m
slam_matlab-master/libs_dir/slamtoolbox/slamToolbox_11_09_08/Observations/invDistortion.m
4,410
utf_8
01b198fd2276fbb194a08f453ffa5317
function kc = invDistortion(kd,n,cal,draw) % INVDISTORTION Radial distortion correction calibration. % % Kc = INVDISTORTION(Kd,n) computes the least squares optimal set % of n parameters of the correction radial distortion function % for a normalized camera: % % r = c(rd) = rd (1 + c2 rd^2 + ... + c2n rd^2n) % % that best approximates the inverse of the distortion function % % rd = d(r) = r (1 + d2 r^2 + d4 r^4 + ...) % % which can be of any length. % % Kc = INVDISTORTION(Kd,n,cal) accepts the intrinsic parameters % of the camera cal = [u_0, v_0, a_u, a_v]. % % The format of the distortion and correction vectors is % % Kd = [d2, d4, d6, ...] % Kc = [c2, c4, ..., c2n] % % Kc = INVDISTORTION(...,DRAW) with DRAW~=0 additionally plots the % distortion and correction mappings r_d=d(r) and r=c(r_d) % and the error (r - r_d). % % See also PINHOLE, INVPINHOLE. % Copyright 2008-2009 Joan Sola @ LAAS-CNRS. if numel(kd) == 0 kc = []; else if nargin == 2 || isempty(cal) cal = [1 1 1 1]; end % fprintf(' Obtaining correction vector from distortion vector...'); rmax2 = (cal(1)/cal(3))^2 + (cal(2)/cal(4))^2; rmax = sqrt(rmax2); % maximum radius in normalized coordinates rdmax = 1.1*rmax; % N=101 sampling points of d(r) rc = [0:.01*rdmax:rdmax]; % rc is the undistorted radius vector rd = c2d(kd,rc); % rd is the distorted radius vector % 1. non-linear least-squares method (for other than radial distortion) % comment out for testing against psudo-inverse method % x0 = zeros(1,n); % kc = lsqnonlin(@(x) fun(x,rc,rd),x0); % 2. pseudo-inverse method (indicated for radial distortion) % we solve the system A*Kc = rc-rd via Kc = pinv(A)*(rc-rd). A = []; % construction of A for Kc of length n for i = 1:n A = [A rd'.^(2*i+1)]; end B = pinv(A); kc = (rc-rd)*B'; % All transposed because we are working with row-vectors % fprintf(' OK.\n'); if nargin == 4 && draw % normalized error erc = d2c(kc,rd); % correction and distortion functions figure(9) subplot(3,1,[1 2]) plot(rc,rd,'linewidth',2) title('Distortion mapping'),xlabel('r'),ylabel('rd'),grid set(gca,'xlim',[0 rdmax]) hold on plot(erc,rd,'r--','linewidth',2) hold off % error function (in pixels) subplot(3,1,3) plot(rc,cal(3)*(rc-erc)) title('Correction error [pix]'),xlabel('r'),ylabel('error'),grid set(gca,'xlim',[0 rdmax]) % error values err_max = cal(3)*max (abs(rc-erc)); err_mean = cal(3)*mean(rc-erc); err_std = cal(3)*std (rc-erc); fprintf(1,' Errors. Max: %.2f | Mean: %.2f | Std: %.2f pixels.\n',err_max,err_mean,err_std) end end % Necessary functions % corr- to dis- conversion function rd = c2d(kd,rc) c = ones(1,length(rc)); for i=1:length(kd) c = c+kd(i)*rc.^(2*i); end rd = rc.*c; % dis- to corr- conversion function rc = d2c(kc,rd) c = ones(1,length(rd)); for i=1:length(kc) c = c+kc(i)*rd.^(2*i); end rc = rd.*c; % error function (only for non-linear least squares - normally % not necessary) function e = fun(kc,rc,rd) e = d2c(kc,rd) - rc; % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright 2007,2008,2009 % by Joan Sola, David Marquez and Jean Marie Codol @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
rotx.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/rotx.m
306
utf_8
e3472a26436b5f238dac19d5fd0b871c
%ROTX Rotation about X axis % % ROTX(theta) returns a homogeneous transformation representing a % rotation of theta about the X axis. % % See also ROTY, ROTZ, ROTVEC. % Copyright (C) Peter Corke 1990 function r = rotx(t) ct = cos(t); st = sin(t); r = [1 0 0 0 0 ct -st 0 0 st ct 0 0 0 0 1];
github
rising-turtle/slam_matlab-master
rotz.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/rotz.m
306
utf_8
46e0bf3113efb75d4014488b019f3576
%ROTZ Rotation about Z axis % % ROTZ(theta) returns a homogeneous transformation representing a % rotation of theta about the X axis. % % See also ROTX, ROTY, ROTVEC. % Copyright (C) Peter Corke 1990 function r = rotz(t) ct = cos(t); st = sin(t); r = [ct -st 0 0 st ct 0 0 0 0 1 0 0 0 0 1];
github
rising-turtle/slam_matlab-master
rpy2tr.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/rpy2tr.m
511
utf_8
a94f613d4341e10ddaf4c0551555471f
%RPY2TR Roll/pitch/yaw to homogenous transform % % RPY2TR([R P Y]) % RPY2TR(R,P,Y) returns a homogeneous tranformation for the specified % roll/pitch/yaw angles. These correspond to rotations about the % Z, X, Y axes respectively. % % See also TR2RPY, EUL2TR % Copright (C) Peter Corke 1993 function r = rpy2tr(roll, pitch, yaw) if length(roll) == 3, r = rotz(roll(1)) * roty(roll(2)) * rotx(roll(3)); else r = rotz(roll) * roty(pitch) * rotx(yaw); end
github
rising-turtle/slam_matlab-master
roty.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/roty.m
306
utf_8
d1d8eb762d99bd1091278e9fc3c26dc2
%ROTY Rotation about Y axis % % ROTY(theta) returns a homogeneous transformation representing a % rotation of theta about the Y axis. % % See also ROTX, ROTZ, ROTVEC. % Copyright (C) Peter Corke 1990 function r = roty(t) ct = cos(t); st = sin(t); r = [ct 0 st 0 0 1 0 0 -st 0 ct 0 0 0 0 1];
github
rising-turtle/slam_matlab-master
q2tr.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/q2tr.m
452
utf_8
a142148cdf478b8beae43593bc74cb66
%Q2TR Convert unit-quaternion to homogeneous transform % % T = q2tr(Q) % % Return the rotational homogeneous transform corresponding to the unit % quaternion Q. % % See also TR2Q % Copyright (C) 1993 Peter Corke function t = q2tr(q) s = q(1); x = q(2); y = q(3); z = q(4); r = [ 1-2*(y^2+z^2) 2*(x*y-s*z) 2*(x*z+s*y) 2*(x*y+s*z) 1-2*(x^2+z^2) 2*(y*z-s*x) 2*(x*z-s*y) 2*(y*z+s*x) 1-2*(x^2+y^2) ]; t = eye(4,4); t(1:3,1:3) = r; t(4,4) = 1;
github
rising-turtle/slam_matlab-master
tr2rpy.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/tr2rpy.m
647
utf_8
bfaa28ddb877e05439892857e8cdc115
%TR2RPY Convert a homogeneous transform matrix to roll/pitch/yaw angles % % [A B C] = TR2RPY(TR) returns a vector of Euler angles % corresponding to the rotational part of the homogeneous transform TR. % % See also RPY2TR, TR2EUL % Copright (C) Peter Corke 1993 function rpy = tr2rpy(m) rpy = zeros(1,3); if abs(m(1,1)) < eps & abs(m(2,1)) < eps, rpy(1) = 0; rpy(2) = atan2(-m(3,1), m(1,1)); rpy(3) = atan2(-m(2,3), m(2,2)); else, rpy(1) = atan2(m(2,1), m(1,1)); sp = sin(rpy(1)); cp = cos(rpy(1)); rpy(2) = atan2(-m(3,1), cp * m(1,1) + sp * m(2,1)); rpy(3) = atan2(sp * m(1,3) - cp * m(2,3), cp*m(2,2) - sp*m(1,2)); end
github
rising-turtle/slam_matlab-master
tr2q.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/tr2q.m
1,163
utf_8
b848d8e8dd98bb791156d6b2e1684d69
%TR2Q Convert homogeneous transform to a unit-quaternion % % Q = tr2q(T) % % Return a unit quaternion corresponding to the rotational part of the % homogeneous transform T. % % See also Q2TR % Copyright (C) 1993 Peter Corke function q = tr2q(t) q = zeros(1,4); q(1) = sqrt(trace(t))/2; kx = t(3,2) - t(2,3); % Oz - Ay ky = t(1,3) - t(3,1); % Ax - Nz kz = t(2,1) - t(1,2); % Ny - Ox if (t(1,1) >= t(2,2)) & (t(1,1) >= t(3,3)) kx1 = t(1,1) - t(2,2) - t(3,3) + 1; % Nx - Oy - Az + 1 ky1 = t(2,1) + t(1,2); % Ny + Ox kz1 = t(3,1) + t(1,3); % Nz + Ax add = (kx >= 0); elseif (t(2,2) >= t(3,3)) kx1 = t(2,1) + t(1,2); % Ny + Ox ky1 = t(2,2) - t(1,1) - t(3,3) + 1; % Oy - Nx - Az + 1 kz1 = t(3,2) + t(2,3); % Oz + Ay add = (ky >= 0); else kx1 = t(3,1) + t(1,3); % Nz + Ax ky1 = t(3,2) + t(2,3); % Oz + Ay kz1 = t(3,3) - t(1,1) - t(2,2) + 1; % Az - Nx - Oy + 1 add = (kz >= 0); end if add kx = kx + kx1; ky = ky + ky1; kz = kz + kz1; else kx = kx - kx1; ky = ky - ky1; kz = kz - kz1; end nm = norm([kx ky kz]); if nm == 0, q = [1 0 0 0]; else s = sqrt(1 - q(1)^2) / nm; q(2:4) = s*[kx ky kz]; end
github
rising-turtle/slam_matlab-master
fast_corner_detect_12.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/fast-matlab-src/fast_corner_detect_12.m
126,136
utf_8
a893a7b42ef9722d64ec819cfb934614
%FAST_CORNER_DETECT_12 perform an 12 point FAST corner detection. % corners = FAST_CORNER_DETECT_12(image, threshold) performs the detection on the image % and returns the X coordinates in corners(:,1) and the Y coordinares in corners(:,2). % % If you use this in published work, please cite: % Fusing Points and Lines for High Performance Tracking, E. Rosten and T. Drummond, ICCV 2005 % Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 % The Bibtex entries are: % % @inproceedings{rosten_2005_tracking, % title = "Fusing points and lines for high performance tracking.", % author = "Edward Rosten and Tom Drummond", % year = "2005", % month = "October", % pages = "1508--1511", % volume = "2", % booktitle = "IEEE International Conference on Computer Vision", % notes = "Oral presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.pdf" % } % % @inproceedings{rosten_2006_machine, % title = "Machine learning for high-speed corner detection", % author = "Edward Rosten and Tom Drummond", % year = "2006", % month = "May", % booktitle = "European Conference on Computer Vision (to appear)", % notes = "Poster presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf" % } % % % Additional information from the generating program: % % Automatically generated code % Parameters: % splat_subtree = 1 % corner_pointers = 2 % force_first_question = 0 % corner_type = 12 % barrier = 25 % % Data: % Number of frames: 120 % Potential features: 25786080 % Real features: 69141 % Questions per pixel: 2.26105 % % % See also FAST_NONMAX FAST_CORNER_DETECT_9 FAST_CORNER_DETECT_10 FAST_CORNER_DETECT_11 FAST_CORNER_DETECT_12 % function coords = fast_corner_detect_12(im, threshold) sz = size(im); xsize=sz(2); ysize=sz(1); cs = zeros(5000, 2); nc = 0; for x = 4 : xsize - 3 for y = 4 : ysize -3 cb = im(y,x) + threshold; c_b= im(y,x) - threshold; if im(y+-3,x+0) > cb if im(y+2,x+2) > cb if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+3,x+-1) > cb if im(y+-3,x+-1) > cb if im(y+3,x+0) > cb elseif im(y+3,x+0) < c_b continue; else if im(y+0,x+3) > cb if im(y+-2,x+2) > cb else continue; end else continue; end end elseif im(y+-3,x+-1) < c_b continue; else if im(y+0,x+3) > cb if im(y+3,x+0) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end end elseif im(y+3,x+-1) < c_b continue; else if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+2,x+-2) < c_b else if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-2,x+-2) < c_b continue; else if im(y+0,x+3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+3,x+0) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+1) < c_b if im(y+0,x+3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+-3,x+-1) > cb else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+3,x+-1) > cb else continue; end end else continue; end else continue; end else continue; end elseif im(y+0,x+3) < c_b continue; else if im(y+3,x+0) > cb if im(y+-1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end end elseif im(y+1,x+-3) < c_b if im(y+1,x+3) > cb else continue; end else if im(y+0,x+3) > cb if im(y+3,x+1) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+-1) > cb else continue; end elseif im(y+-2,x+-2) < c_b continue; else if im(y+2,x+-2) > cb if im(y+-3,x+-1) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-3,x+1) < c_b continue; else if im(y+3,x+-1) > cb if im(y+1,x+3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+3,x+1) > cb if im(y+-3,x+-1) > cb elseif im(y+-3,x+-1) < c_b continue; else if im(y+0,x+3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end end else continue; end elseif im(y+-2,x+-2) < c_b continue; else if im(y+-2,x+2) > cb else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+0,x+3) > cb if im(y+1,x+3) > cb if im(y+3,x+0) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+3) > cb if im(y+3,x+-1) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb if im(y+2,x+-2) > cb||im(y+2,x+-2) < c_b else if im(y+-2,x+-2) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+0,x+-3) < c_b if im(y+3,x+-1) > cb if im(y+0,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb if im(y+-2,x+2) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+1,x+-3) > cb if im(y+-2,x+2) > cb else continue; end elseif im(y+1,x+-3) < c_b if im(y+-3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb else continue; end else continue; end else continue; end else if im(y+-3,x+-1) > cb if im(y+-2,x+2) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end elseif im(y+-3,x+-1) < c_b continue; else if im(y+1,x+-3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end end else continue; end else continue; end end else continue; end else continue; end elseif im(y+3,x+-1) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+3,x+0) > cb if im(y+1,x+3) > cb if im(y+0,x+3) > cb else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) > cb if im(y+3,x+0) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb if im(y+-3,x+-1) > cb elseif im(y+-3,x+-1) < c_b continue; else if im(y+1,x+-3) > cb else continue; end end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+1,x+-3) > cb if im(y+-3,x+1) > cb else continue; end elseif im(y+1,x+-3) < c_b continue; else if im(y+-3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end end else if im(y+2,x+-2) > cb if im(y+-3,x+-1) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb else continue; end else continue; end elseif im(y+-3,x+-1) < c_b continue; else if im(y+1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end end else continue; end end elseif im(y+3,x+-1) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+2,x+2) < c_b if im(y+3,x+0) > cb if im(y+0,x+-3) > cb if im(y+-2,x+2) > cb if im(y+2,x+-2) > cb if im(y+3,x+1) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+3,x+1) < c_b continue; else if im(y+-1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end elseif im(y+3,x+0) < c_b if im(y+-1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+0,x+3) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+3,x+-1) < c_b else continue; end else if im(y+-2,x+2) < c_b if im(y+-3,x+1) > cb if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+3) > cb if im(y+2,x+-2) > cb if im(y+3,x+-1) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+-2,x+2) > cb if im(y+3,x+1) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+3,x+0) > cb elseif im(y+3,x+0) < c_b continue; else if im(y+0,x+3) > cb else continue; end end else continue; end else continue; end else continue; end elseif im(y+3,x+-1) < c_b continue; else if im(y+1,x+3) > cb if im(y+0,x+3) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+3,x+1) < c_b if im(y+0,x+3) > cb if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+0) > cb||im(y+3,x+0) < c_b continue; else if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else if im(y+0,x+3) > cb if im(y+-2,x+-2) > cb if im(y+1,x+3) > cb if im(y+-3,x+1) > cb if im(y+-1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+0,x+3) < c_b continue; else if im(y+3,x+0) > cb if im(y+-1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end end else continue; end else continue; end else continue; end end elseif im(y+-3,x+0) < c_b if im(y+3,x+0) > cb if im(y+1,x+3) > cb if im(y+-2,x+-2) > cb if im(y+0,x+3) > cb if im(y+1,x+-3) > cb if im(y+-1,x+3) > cb if im(y+3,x+-1) > cb if im(y+2,x+2) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b continue; else if im(y+-2,x+2) > cb if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+2,x+2) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+1,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+2,x+-2) > cb if im(y+3,x+1) > cb||im(y+3,x+1) < c_b continue; else if im(y+1,x+-3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end end elseif im(y+2,x+-2) < c_b if im(y+0,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+-1) > cb elseif im(y+3,x+-1) < c_b continue; else if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+3,x+0) < c_b if im(y+0,x+-3) > cb if im(y+1,x+3) < c_b if im(y+-2,x+-2) > cb if im(y+2,x+-2) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-1,x+3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else if im(y+1,x+-3) < c_b else continue; end end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else if im(y+1,x+-3) < c_b else continue; end end else continue; end else continue; end else if im(y+-1,x+-3) < c_b if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end end else continue; end else if im(y+2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+-1) < c_b if im(y+0,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+1,x+-3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end end else continue; end else continue; end end else continue; end elseif im(y+0,x+-3) < c_b if im(y+-1,x+-3) > cb if im(y+0,x+3) < c_b if im(y+-3,x+-1) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b if im(y+2,x+-2) > cb if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+-2,x+2) > cb if im(y+2,x+2) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end end else continue; end elseif im(y+-2,x+2) < c_b if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b else if im(y+0,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end else continue; end end else if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+-3,x+-1) < c_b else continue; end else if im(y+1,x+3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+3,x+-1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b else if im(y+-1,x+3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end end else continue; end else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else if im(y+1,x+-3) < c_b else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+1) < c_b if im(y+2,x+-2) > cb continue; elseif im(y+2,x+-2) < c_b else if im(y+-2,x+-2) < c_b else continue; end end else continue; end else continue; end else if im(y+-3,x+-1) < c_b if im(y+2,x+-2) > cb continue; elseif im(y+2,x+-2) < c_b else if im(y+-2,x+-2) < c_b else continue; end end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+-2,x+-2) > cb if im(y+2,x+-2) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+3,x+1) < c_b else continue; end else if im(y+1,x+-3) < c_b else continue; end end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b else continue; end else if im(y+1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else if im(y+-1,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) > cb if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+2,x+-2) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+3,x+1) > cb||im(y+3,x+1) < c_b continue; else end else continue; end end elseif im(y+2,x+2) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+1,x+-3) > cb if im(y+3,x+1) < c_b else continue; end elseif im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+-3,x+-1) < c_b else continue; end else if im(y+3,x+-1) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end end else continue; end else continue; end else if im(y+3,x+1) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+1,x+3) > cb elseif im(y+1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+3,x+-1) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) > cb if im(y+0,x+3) > cb if im(y+3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb if im(y+2,x+2) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+1) > cb else continue; end elseif im(y+-1,x+-3) < c_b continue; else if im(y+-3,x+1) > cb if im(y+-2,x+2) > cb else continue; end else continue; end end else continue; end elseif im(y+-1,x+3) < c_b if im(y+-3,x+-1) > cb else continue; end else if im(y+-3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+3,x+1) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+-3,x+1) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else if im(y+-2,x+2) > cb if im(y+2,x+2) > cb if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b continue; else if im(y+-3,x+1) > cb if im(y+3,x+0) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+0,x+-3) < c_b if im(y+0,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+-2,x+-2) > cb if im(y+-3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+2) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) > cb if im(y+-2,x+2) > cb else continue; end elseif im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+-1,x+-3) > cb continue; elseif im(y+-1,x+-3) < c_b if im(y+1,x+3) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else if im(y+-3,x+1) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end end else continue; end else continue; end else if im(y+-3,x+-1) < c_b if im(y+-1,x+-3) < c_b if im(y+1,x+-3) < c_b if im(y+1,x+3) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b if im(y+-1,x+-3) > cb continue; elseif im(y+-1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end else if im(y+-3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end nc = nc + 1; if nc > length(cs) cs(length(cs)*2,1) = 0; end cs(nc,1) = x; cs(nc,2) = y; end end coords = cs([1:nc],:);
github
rising-turtle/slam_matlab-master
fast_corner_detect_9.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/fast-matlab-src/fast_corner_detect_9.m
177,871
utf_8
23105cc2b05a91688c4a17e952fcd7e3
%FAST_CORNER_DETECT_9 perform an 9 point FAST corner detection. % corners = FAST_CORNER_DETECT_9(image, threshold) performs the detection on the image % and returns the X coordinates in corners(:,1) and the Y coordinares in corners(:,2). % % If you use this in published work, please cite: % Fusing Points and Lines for High Performance Tracking, E. Rosten and T. Drummond, ICCV 2005 % Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 % The Bibtex entries are: % % @inproceedings{rosten_2005_tracking, % title = "Fusing points and lines for high performance tracking.", % author = "Edward Rosten and Tom Drummond", % year = "2005", % month = "October", % pages = "1508--1511", % volume = "2", % booktitle = "IEEE International Conference on Computer Vision", % notes = "Oral presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.pdf" % } % % @inproceedings{rosten_2006_machine, % title = "Machine learning for high-speed corner detection", % author = "Edward Rosten and Tom Drummond", % year = "2006", % month = "May", % booktitle = "European Conference on Computer Vision (to appear)", % notes = "Poster presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf" % } % % % Additional information from the generating program: % % Automatically generated code % Parameters: % splat_subtree = 1 % corner_pointers = 2 % force_first_question = 0 % corner_type = 9 % barrier = 25 % % Data: % Number of frames: 120 % Potential features: 25786080 % Real features: 219300 % Questions per pixel: 2.27059 % % % See also FAST_NONMAX FAST_CORNER_DETECT_9 FAST_CORNER_DETECT_10 FAST_CORNER_DETECT_11 FAST_CORNER_DETECT_12 % function coords = fast_corner_detect_9(im, threshold) sz = size(im); xsize=sz(2); ysize=sz(1); cs = zeros(5000, 2); nc = 0; for x = 4 : xsize - 3 for y = 4 : ysize -3 cb = im(y,x) + threshold; c_b= im(y,x) - threshold; if im(y+0,x+3) > cb if im(y+-3,x+1) > cb if im(y+2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+0) > cb if im(y+-3,x+-1) > cb elseif im(y+-3,x+-1) < c_b continue; else if im(y+3,x+0) > cb if im(y+3,x+1) > cb else continue; end else continue; end end elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+-1) > cb if im(y+3,x+0) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b continue; else if im(y+3,x+-1) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end end elseif im(y+3,x+0) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end elseif im(y+1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+-1) > cb if im(y+1,x+-3) > cb else continue; end else continue; end end elseif im(y+-2,x+2) < c_b continue; else if im(y+3,x+-1) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end end elseif im(y+-1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+3,x+1) > cb if im(y+1,x+3) > cb elseif im(y+1,x+3) < c_b continue; else if im(y+-1,x+-3) > cb else continue; end end elseif im(y+3,x+1) < c_b continue; else if im(y+-1,x+-3) > cb else continue; end end elseif im(y+3,x+-1) < c_b continue; else if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end elseif im(y+-2,x+-2) < c_b if im(y+3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+3,x+1) > cb else continue; end elseif im(y+-2,x+2) < c_b continue; else if im(y+1,x+-3) > cb else continue; end end else continue; end elseif im(y+-1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+3,x+0) > cb else continue; end else continue; end end elseif im(y+3,x+-1) < c_b if im(y+-3,x+-1) > cb if im(y+3,x+1) > cb if im(y+-2,x+2) > cb if im(y+-3,x+0) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+-1,x+-3) < c_b if im(y+0,x+-3) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+-3,x+0) > cb if im(y+3,x+0) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end elseif im(y+3,x+0) < c_b continue; else if im(y+-3,x+-1) > cb if im(y+-2,x+2) > cb if im(y+3,x+1) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end end else if im(y+3,x+1) > cb if im(y+-1,x+3) > cb if im(y+-3,x+-1) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+-1) > cb else continue; end end elseif im(y+-2,x+2) < c_b continue; else if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+-3,x+-1) < c_b if im(y+3,x+-1) > cb else continue; end else if im(y+3,x+-1) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+3,x+0) > cb else continue; end elseif im(y+-2,x+2) < c_b continue; else if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb else continue; end else continue; end end else continue; end elseif im(y+3,x+-1) < c_b continue; else if im(y+3,x+0) > cb if im(y+-3,x+0) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end end end elseif im(y+-1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end elseif im(y+2,x+2) < c_b if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-2,x+2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+0,x+-3) < c_b if im(y+-1,x+-3) > cb if im(y+1,x+3) > cb else continue; end elseif im(y+-1,x+-3) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end else if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end end elseif im(y+-2,x+-2) < c_b if im(y+3,x+0) < c_b if im(y+-1,x+-3) < c_b if im(y+0,x+-3) < c_b if im(y+3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+3,x+0) < c_b if im(y+-2,x+2) > cb if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+-1,x+-3) > cb if im(y+1,x+3) > cb if im(y+-2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-3,x+0) > cb if im(y+-1,x+3) > cb if im(y+-3,x+-1) > cb else continue; end elseif im(y+-1,x+3) < c_b continue; else if im(y+2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end end elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b continue; else if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+1,x+3) < c_b if im(y+0,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb if im(y+-1,x+3) > cb elseif im(y+-1,x+3) < c_b continue; else if im(y+2,x+-2) > cb else continue; end end elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+1) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end end else continue; end elseif im(y+-2,x+2) < c_b continue; else if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+-2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+1) > cb else continue; end end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+-3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+0,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+2,x+-2) < c_b if im(y+-2,x+-2) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-3,x+1) < c_b if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+1,x+3) > cb if im(y+3,x+1) > cb if im(y+2,x+2) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end end else continue; end elseif im(y+-1,x+3) < c_b if im(y+0,x+-3) > cb if im(y+3,x+1) > cb if im(y+3,x+0) > cb if im(y+1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+3,x+0) > cb if im(y+3,x+-1) > cb if im(y+2,x+2) > cb if im(y+1,x+3) > cb if im(y+3,x+1) > cb else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb else continue; end end else continue; end else continue; end else continue; end else continue; end end elseif im(y+1,x+-3) < c_b if im(y+-1,x+3) > cb if im(y+-2,x+2) > cb else continue; end elseif im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+0) > cb||im(y+-3,x+0) < c_b continue; else if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+3,x+0) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end else if im(y+2,x+2) > cb else continue; end end else continue; end end elseif im(y+2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+-1) > cb if im(y+-2,x+2) < c_b if im(y+3,x+1) > cb else continue; end else continue; end elseif im(y+3,x+-1) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-3,x+0) > cb continue; elseif im(y+-3,x+0) < c_b else if im(y+3,x+1) < c_b else continue; end end else if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end end else continue; end else if im(y+1,x+3) < c_b else continue; end end else continue; end else if im(y+-2,x+2) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+-3,x+-1) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+1,x+3) > cb if im(y+2,x+2) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+0) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end end elseif im(y+2,x+2) < c_b continue; else if im(y+-3,x+-1) > cb if im(y+0,x+-3) > cb if im(y+3,x+1) > cb if im(y+-2,x+-2) > cb else continue; end elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+0) > cb else continue; end end else continue; end else continue; end end elseif im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+2,x+2) > cb if im(y+-1,x+-3) > cb else continue; end elseif im(y+2,x+2) < c_b continue; else if im(y+-3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+0) > cb else continue; end end else continue; end else continue; end end else continue; end else continue; end end else continue; end else if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+2,x+2) > cb if im(y+3,x+-1) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-1,x+3) < c_b if im(y+0,x+-3) > cb else continue; end else if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+2,x+2) > cb if im(y+3,x+1) > cb if im(y+1,x+3) > cb elseif im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb else continue; end end elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+0) > cb else continue; end end elseif im(y+2,x+2) < c_b continue; else if im(y+-3,x+-1) > cb if im(y+3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+-3) > cb else continue; end else continue; end elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+0) > cb else continue; end end else continue; end end else continue; end else continue; end else continue; end end else continue; end elseif im(y+2,x+-2) < c_b if im(y+3,x+0) < c_b if im(y+-2,x+-2) > cb if im(y+-1,x+-3) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end else if im(y+-3,x+0) < c_b if im(y+-1,x+-3) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end end else if im(y+2,x+2) < c_b if im(y+-1,x+-3) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+1,x+3) < c_b if im(y+-1,x+-3) < c_b if im(y+0,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end elseif im(y+0,x+3) < c_b if im(y+3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+-2) > cb if im(y+3,x+0) > cb else continue; end elseif im(y+-2,x+-2) < c_b continue; else if im(y+1,x+3) > cb else continue; end end elseif im(y+2,x+-2) < c_b continue; else if im(y+-1,x+3) > cb else continue; end end else continue; end elseif im(y+3,x+1) < c_b if im(y+-3,x+1) > cb if im(y+0,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+3,x+0) > cb if im(y+-3,x+0) > cb else continue; end else continue; end end else if im(y+-3,x+1) > cb if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+-3,x+0) > cb if im(y+3,x+0) > cb if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end end else continue; end elseif im(y+-3,x+-1) < c_b if im(y+1,x+3) > cb if im(y+0,x+-3) > cb if im(y+3,x+1) > cb if im(y+1,x+-3) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+3,x+1) > cb if im(y+2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-2,x+2) < c_b else continue; end else continue; end elseif im(y+2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b else continue; end else continue; end else continue; end elseif im(y+3,x+1) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else if im(y+-2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end end else if im(y+-2,x+-2) > cb if im(y+2,x+2) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb if im(y+-1,x+3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+1,x+3) > cb else continue; end else if im(y+1,x+3) > cb if im(y+3,x+1) > cb if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+2,x+2) < c_b if im(y+3,x+0) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+1,x+3) > cb if im(y+0,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-3,x+0) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+-2,x+2) < c_b else continue; end else if im(y+3,x+1) < c_b else continue; end end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+2,x+2) > cb||im(y+2,x+2) < c_b continue; else if im(y+3,x+1) > cb else continue; end end else continue; end end else continue; end else if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+0) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else if im(y+2,x+-2) < c_b else continue; end end else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+2) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+3,x+1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else if im(y+3,x+0) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end end else continue; end end else continue; end end elseif im(y+3,x+-1) < c_b if im(y+-2,x+2) > cb if im(y+0,x+-3) > cb if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end elseif im(y+-1,x+3) < c_b if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb else continue; end else continue; end elseif im(y+1,x+-3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else if im(y+2,x+-2) > cb if im(y+2,x+2) < c_b else continue; end else continue; end end elseif im(y+0,x+-3) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+1,x+-3) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else if im(y+-3,x+-1) < c_b else continue; end end else continue; end else if im(y+-3,x+-1) < c_b else continue; end end else if im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b if im(y+1,x+3) > cb if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+1) > cb if im(y+2,x+-2) < c_b if im(y+3,x+0) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end elseif im(y+-3,x+1) < c_b if im(y+2,x+2) > cb if im(y+-1,x+-3) < c_b else continue; end elseif im(y+2,x+2) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b else if im(y+-3,x+0) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end end else if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end end else if im(y+-1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end end else if im(y+2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+-3,x+-1) > cb elseif im(y+-3,x+-1) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b else if im(y+-2,x+-2) < c_b else continue; end end else if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end end else if im(y+3,x+1) < c_b if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) > cb continue; elseif im(y+-3,x+0) < c_b if im(y+-3,x+-1) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b else if im(y+2,x+2) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end end else if im(y+1,x+-3) < c_b else continue; end end else continue; end else if im(y+1,x+-3) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b else continue; end else if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b if im(y+3,x+0) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else continue; end else continue; end end else if im(y+1,x+-3) < c_b if im(y+-1,x+3) > cb if im(y+0,x+-3) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end elseif im(y+-1,x+3) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b else if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end else continue; end end else if im(y+-3,x+1) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end end else continue; end else if im(y+-3,x+-1) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b if im(y+2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else if im(y+3,x+0) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+3,x+1) < c_b else continue; end else if im(y+-2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b else if im(y+-3,x+-1) < c_b else continue; end end else if im(y+-2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b else if im(y+-3,x+1) < c_b else continue; end end else continue; end else continue; end end else if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end end else continue; end else if im(y+-3,x+-1) < c_b if im(y+-1,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b else if im(y+1,x+3) > cb||im(y+1,x+3) < c_b continue; else end end else continue; end else if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b else if im(y+3,x+0) < c_b if im(y+1,x+3) > cb||im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) < c_b else continue; end end else continue; end end end else continue; end else continue; end else continue; end end else continue; end end else continue; end end else if im(y+-3,x+0) > cb if im(y+-2,x+2) > cb if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+0,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+1,x+-3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+-3,x+0) < c_b if im(y+2,x+2) > cb if im(y+0,x+-3) > cb if im(y+1,x+3) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end elseif im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+-1) < c_b if im(y+-1,x+3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+-1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end end elseif im(y+2,x+2) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+1) > cb if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end else if im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+1,x+3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+1) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+-3,x+-1) > cb elseif im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b else if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end end else continue; end else if im(y+3,x+0) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end end else if im(y+-2,x+-2) < c_b if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) > cb||im(y+3,x+0) < c_b continue; else if im(y+-3,x+1) < c_b else continue; end end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b else if im(y+1,x+-3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end end else continue; end else continue; end else continue; end end else continue; end end else continue; end else if im(y+-1,x+-3) < c_b if im(y+1,x+3) > cb if im(y+0,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end end else continue; end else if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b else continue; end else if im(y+2,x+-2) < c_b else continue; end end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end end else if im(y+0,x+-3) > cb if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+-1) > cb if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+1) > cb if im(y+3,x+0) > cb else continue; end else continue; end end elseif im(y+-3,x+-1) < c_b continue; else if im(y+2,x+2) > cb if im(y+3,x+1) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end end elseif im(y+-2,x+-2) < c_b continue; else if im(y+1,x+3) > cb if im(y+3,x+1) > cb if im(y+3,x+-1) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b if im(y+3,x+0) > cb if im(y+1,x+3) > cb elseif im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb else continue; end end else continue; end else if im(y+3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+-1) > cb if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+1) > cb if im(y+3,x+0) > cb else continue; end else continue; end end elseif im(y+-3,x+-1) < c_b continue; else if im(y+2,x+2) > cb if im(y+3,x+1) > cb else continue; end else continue; end end elseif im(y+-2,x+-2) < c_b continue; else if im(y+1,x+3) > cb if im(y+2,x+2) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end end else continue; end end elseif im(y+2,x+-2) < c_b if im(y+-3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else if im(y+-1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+-3,x+1) < c_b if im(y+2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+1,x+3) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+2,x+2) < c_b if im(y+3,x+1) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else if im(y+-3,x+-1) > cb if im(y+3,x+1) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end end else if im(y+3,x+0) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+3,x+1) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+2) > cb if im(y+3,x+-1) > cb else continue; end elseif im(y+2,x+2) < c_b if im(y+-3,x+-1) > cb else continue; end else if im(y+-3,x+-1) > cb if im(y+3,x+-1) > cb else continue; end else continue; end end else continue; end else continue; end elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+0) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+-1,x+-3) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+2,x+2) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end elseif im(y+0,x+-3) < c_b if im(y+3,x+-1) > cb if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+-1) < c_b if im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+-2,x+2) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+-1) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+-1) > cb if im(y+1,x+3) > cb continue; elseif im(y+1,x+3) < c_b if im(y+2,x+2) < c_b if im(y+3,x+1) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else if im(y+-2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+3,x+1) < c_b if im(y+-2,x+2) < c_b continue; else end else continue; end else continue; end else continue; end end elseif im(y+-3,x+-1) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+-2) > cb continue; elseif im(y+2,x+-2) < c_b if im(y+3,x+1) > cb if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b else if im(y+3,x+0) < c_b else continue; end end elseif im(y+3,x+1) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b else if im(y+-3,x+1) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end end else if im(y+1,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end end else if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else if im(y+3,x+0) < c_b if im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end end end else if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+2,x+2) < c_b if im(y+-2,x+-2) > cb if im(y+1,x+3) < c_b else continue; end elseif im(y+-2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+1) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else if im(y+-2,x+2) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+3) > cb if im(y+2,x+-2) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end elseif im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+-1) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else continue; end end nc = nc + 1; if nc > length(cs) cs(length(cs)*2,1) = 0; end cs(nc,1) = x; cs(nc,2) = y; end end coords = cs([1:nc],:);
github
rising-turtle/slam_matlab-master
fast_corner_detect_10.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/fast-matlab-src/fast_corner_detect_10.m
164,469
utf_8
219987a5a165436df9ac811d9ec40fdb
%FAST_CORNER_DETECT_10 perform an 10 point FAST corner detection. % corners = FAST_CORNER_DETECT_10(image, threshold) performs the detection on the image % and returns the X coordinates in corners(:,1) and the Y coordinares in corners(:,2). % % If you use this in published work, please cite: % Fusing Points and Lines for High Performance Tracking, E. Rosten and T. Drummond, ICCV 2005 % Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 % The Bibtex entries are: % % @inproceedings{rosten_2005_tracking, % title = "Fusing points and lines for high performance tracking.", % author = "Edward Rosten and Tom Drummond", % year = "2005", % month = "October", % pages = "1508--1511", % volume = "2", % booktitle = "IEEE International Conference on Computer Vision", % notes = "Oral presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.pdf" % } % % @inproceedings{rosten_2006_machine, % title = "Machine learning for high-speed corner detection", % author = "Edward Rosten and Tom Drummond", % year = "2006", % month = "May", % booktitle = "European Conference on Computer Vision (to appear)", % notes = "Poster presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf" % } % % % Additional information from the generating program: % % Automatically generated code % Parameters: % splat_subtree = 1 % corner_pointers = 2 % force_first_question = 0 % corner_type = 10 % barrier = 25 % % Data: % Number of frames: 120 % Potential features: 25786080 % Real features: 136945 % Questions per pixel: 2.41637 % % % See also FAST_NONMAX FAST_CORNER_DETECT_9 FAST_CORNER_DETECT_10 FAST_CORNER_DETECT_11 FAST_CORNER_DETECT_12 % function coords = fast_corner_detect_10(im, threshold) sz = size(im); xsize=sz(2); ysize=sz(1); cs = zeros(5000, 2); nc = 0; for x = 4 : xsize - 3 for y = 4 : ysize -3 cb = im(y,x) + threshold; c_b= im(y,x) - threshold; if im(y+-3,x+-1) > cb if im(y+2,x+2) > cb if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+1,x+3) > cb if im(y+3,x+0) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b continue; else if im(y+2,x+-2) > cb if im(y+3,x+-1) > cb else continue; end else continue; end end elseif im(y+3,x+1) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end end elseif im(y+-3,x+1) < c_b continue; else if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end end elseif im(y+-1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+0) < c_b if im(y+-1,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-1,x+3) > cb else continue; end else continue; end elseif im(y+-1,x+-3) < c_b if im(y+3,x+1) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else if im(y+3,x+1) > cb if im(y+-1,x+3) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end end elseif im(y+1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb elseif im(y+-3,x+1) < c_b continue; else if im(y+3,x+0) > cb else continue; end end elseif im(y+-1,x+3) < c_b continue; else if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb else continue; end else continue; end end elseif im(y+-3,x+0) < c_b continue; else if im(y+3,x+-1) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b if im(y+0,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+3,x+-1) > cb if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+1) > cb else continue; end end elseif im(y+-1,x+-3) < c_b continue; else if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+0,x+3) < c_b if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+0,x+-3) > cb if im(y+3,x+0) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+3,x+-1) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+1) > cb else continue; end end elseif im(y+3,x+-1) < c_b continue; else if im(y+-1,x+3) > cb else continue; end end else continue; end else continue; end elseif im(y+3,x+0) < c_b continue; else if im(y+-2,x+2) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+3,x+-1) > cb else continue; end end else continue; end end else continue; end else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+3,x+0) > cb if im(y+3,x+1) > cb elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+1) > cb if im(y+-3,x+0) > cb else continue; end else continue; end end elseif im(y+3,x+0) < c_b continue; else if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb else continue; end else continue; end end else continue; end elseif im(y+3,x+-1) < c_b if im(y+-1,x+3) > cb else continue; end else if im(y+-1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+0) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end end elseif im(y+2,x+2) < c_b if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-1,x+3) > cb if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-1,x+3) < c_b if im(y+3,x+-1) > cb if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb else continue; end else continue; end else continue; end else if im(y+3,x+-1) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+0,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b if im(y+3,x+1) > cb if im(y+-3,x+0) > cb if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+3,x+1) < c_b continue; else if im(y+-3,x+1) > cb if im(y+3,x+0) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end end else if im(y+3,x+0) > cb if im(y+0,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-2,x+-2) > cb if im(y+3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+3,x+1) > cb if im(y+1,x+-3) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+2,x+-2) < c_b if im(y+-1,x+3) > cb if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+0,x+3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else if im(y+1,x+-3) > cb if im(y+0,x+3) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end end elseif im(y+0,x+-3) < c_b if im(y+0,x+3) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+1,x+3) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else if im(y+0,x+3) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end end elseif im(y+-1,x+3) < c_b if im(y+1,x+-3) > cb if im(y+-3,x+1) < c_b else continue; end elseif im(y+1,x+-3) < c_b if im(y+-2,x+2) > cb if im(y+0,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+2) < c_b if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+0,x+3) < c_b if im(y+3,x+0) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+-3) < c_b if im(y+0,x+3) > cb continue; elseif im(y+0,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end else if im(y+-2,x+-2) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end end else continue; end end else if im(y+-3,x+1) < c_b if im(y+3,x+-1) < c_b if im(y+-2,x+2) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else continue; end else continue; end end else if im(y+-1,x+-3) < c_b if im(y+0,x+3) > cb continue; elseif im(y+0,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end else continue; end else if im(y+-2,x+-2) < c_b if im(y+-3,x+0) > cb if im(y+3,x+1) < c_b if im(y+1,x+3) < c_b if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end elseif im(y+-3,x+0) < c_b continue; else if im(y+1,x+3) < c_b else continue; end end else continue; end end else continue; end end else if im(y+0,x+3) > cb if im(y+1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+-3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-3,x+0) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb elseif im(y+-3,x+1) < c_b continue; else if im(y+3,x+1) > cb else continue; end end else continue; end elseif im(y+1,x+-3) < c_b continue; else if im(y+1,x+3) > cb if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+0) < c_b continue; else if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+1,x+-3) > cb elseif im(y+1,x+-3) < c_b continue; else if im(y+0,x+3) > cb if im(y+1,x+3) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end elseif im(y+2,x+-2) < c_b continue; else if im(y+0,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else continue; end elseif im(y+3,x+-1) < c_b if im(y+0,x+3) > cb if im(y+-3,x+1) > cb if im(y+1,x+3) > cb if im(y+-2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+0) > cb if im(y+-1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b else if im(y+1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-1,x+3) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+0,x+3) < c_b continue; else if im(y+2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b else if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end end else if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+1,x+-3) > cb if im(y+-3,x+0) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end elseif im(y+1,x+-3) < c_b continue; else if im(y+1,x+3) > cb if im(y+0,x+3) > cb else continue; end else continue; end end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb else continue; end elseif im(y+1,x+3) < c_b continue; else if im(y+1,x+-3) > cb if im(y+0,x+3) > cb else continue; end else continue; end end else if im(y+0,x+3) > cb if im(y+1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb if im(y+-1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+-3) < c_b continue; else if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+0) > cb if im(y+-1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else continue; end end else continue; end end elseif im(y+-3,x+-1) < c_b if im(y+3,x+1) > cb if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+0,x+3) > cb if im(y+3,x+-1) > cb if im(y+1,x+3) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+2) < c_b if im(y+0,x+-3) > cb if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+2) > cb if im(y+0,x+3) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b else if im(y+2,x+-2) > cb else continue; end end else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+0,x+3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b else if im(y+2,x+-2) > cb else continue; end end elseif im(y+0,x+3) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end end elseif im(y+1,x+-3) < c_b if im(y+-3,x+1) > cb if im(y+2,x+-2) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+1) < c_b if im(y+3,x+-1) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end else if im(y+-3,x+1) > cb if im(y+2,x+-2) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+0,x+3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-1,x+3) < c_b if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+0,x+3) > cb if im(y+2,x+-2) > cb else continue; end else if im(y+-2,x+-2) > cb if im(y+1,x+3) > cb else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+2,x+2) > cb if im(y+1,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end elseif im(y+2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end else if im(y+0,x+-3) < c_b if im(y+1,x+3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else continue; end end else continue; end elseif im(y+1,x+-3) < c_b if im(y+0,x+-3) < c_b if im(y+2,x+-2) > cb if im(y+0,x+3) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+1,x+3) < c_b if im(y+-1,x+-3) < c_b if im(y+0,x+-3) > cb continue; elseif im(y+0,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+0,x+3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end end else if im(y+-1,x+-3) > cb if im(y+1,x+3) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+0,x+3) > cb if im(y+3,x+-1) > cb if im(y+0,x+-3) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+0,x+3) < c_b continue; else if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b if im(y+3,x+-1) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+1) < c_b if im(y+0,x+3) > cb if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+-3,x+0) > cb if im(y+2,x+2) < c_b else continue; end elseif im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b else if im(y+-2,x+2) < c_b else continue; end end else if im(y+-1,x+3) < c_b else continue; end end else continue; end else continue; end else if im(y+2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end elseif im(y+0,x+3) < c_b if im(y+-2,x+2) > cb if im(y+0,x+-3) < c_b if im(y+3,x+-1) < c_b if im(y+-1,x+3) > cb if im(y+2,x+2) < c_b else continue; end elseif im(y+-1,x+3) < c_b else if im(y+-3,x+0) > cb continue; elseif im(y+-3,x+0) < c_b else if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end end end else continue; end else continue; end elseif im(y+-2,x+2) < c_b if im(y+1,x+3) > cb if im(y+0,x+-3) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+3,x+0) > cb elseif im(y+3,x+0) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b if im(y+-3,x+0) > cb continue; elseif im(y+-3,x+0) < c_b else if im(y+2,x+-2) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end end else if im(y+2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end end else if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+-3,x+0) < c_b else continue; end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b else continue; end else continue; end end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+-3,x+1) > cb continue; elseif im(y+-3,x+1) < c_b else if im(y+2,x+2) < c_b else continue; end end else if im(y+3,x+-1) < c_b else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+-3) > cb continue; elseif im(y+-1,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b else if im(y+1,x+3) < c_b else continue; end end else if im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end end else continue; end else if im(y+-1,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+-1,x+-3) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) > cb elseif im(y+-3,x+0) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+3,x+0) > cb continue; elseif im(y+3,x+0) < c_b else if im(y+-2,x+2) < c_b else continue; end end else if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end end else if im(y+2,x+2) < c_b if im(y+3,x+-1) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+-1,x+-3) < c_b if im(y+3,x+-1) > cb if im(y+1,x+3) > cb if im(y+1,x+-3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+0,x+3) > cb continue; elseif im(y+0,x+3) < c_b if im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else if im(y+0,x+-3) < c_b else continue; end end else continue; end else continue; end else if im(y+0,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else continue; end end else continue; end else if im(y+0,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+0,x+-3) > cb if im(y+2,x+2) < c_b else continue; end elseif im(y+0,x+-3) < c_b if im(y+2,x+-2) > cb continue; elseif im(y+2,x+-2) < c_b if im(y+-2,x+2) > cb if im(y+3,x+0) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end elseif im(y+-2,x+2) < c_b if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else continue; end end else if im(y+3,x+0) < c_b if im(y+-2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+-3) > cb if im(y+1,x+3) < c_b else continue; end elseif im(y+1,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b else continue; end else continue; end end else continue; end end else if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+0,x+3) > cb if im(y+-1,x+3) < c_b if im(y+2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+1,x+-3) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+0,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+1,x+3) > cb if im(y+1,x+-3) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) > cb if im(y+0,x+-3) < c_b else continue; end elseif im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else if im(y+0,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+0) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+1,x+-3) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else if im(y+2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end end else continue; end end else if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+-2,x+2) > cb if im(y+0,x+3) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb if im(y+2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb else continue; end else continue; end elseif im(y+-1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end end elseif im(y+2,x+-2) < c_b continue; else if im(y+-3,x+0) > cb if im(y+2,x+2) > cb else continue; end else continue; end end else continue; end elseif im(y+1,x+-3) < c_b if im(y+-3,x+0) > cb if im(y+2,x+2) > cb if im(y+-1,x+3) > cb if im(y+3,x+1) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+0) < c_b continue; else if im(y+2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end end else if im(y+-3,x+1) > cb if im(y+2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+2,x+2) > cb if im(y+3,x+1) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+-3,x+0) > cb if im(y+2,x+2) > cb else continue; end else continue; end else if im(y+-3,x+0) > cb if im(y+2,x+2) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end elseif im(y+0,x+3) < c_b if im(y+0,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+3,x+1) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-2,x+2) < c_b if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+3,x+1) > cb if im(y+1,x+-3) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+0,x+3) > cb if im(y+-3,x+0) < c_b else continue; end else continue; end else if im(y+0,x+3) > cb if im(y+2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+-1,x+3) > cb if im(y+0,x+-3) > cb else continue; end else continue; end end else if im(y+0,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+3,x+1) > cb if im(y+1,x+-3) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb if im(y+-1,x+-3) > cb elseif im(y+-1,x+-3) < c_b continue; else if im(y+-1,x+3) > cb if im(y+0,x+3) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-2,x+-2) < c_b if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+0,x+3) > cb else continue; end else continue; end elseif im(y+-1,x+3) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+0,x+3) > cb else continue; end else continue; end end else if im(y+0,x+3) > cb if im(y+2,x+-2) > cb if im(y+3,x+1) > cb if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end elseif im(y+-1,x+3) < c_b if im(y+-1,x+-3) > cb else continue; end else if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end else continue; end end else continue; end elseif im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+-1,x+3) > cb if im(y+-2,x+-2) < c_b if im(y+-3,x+0) > cb if im(y+2,x+-2) < c_b else continue; end elseif im(y+-3,x+0) < c_b if im(y+3,x+0) < c_b else continue; end else if im(y+0,x+-3) < c_b if im(y+2,x+2) < c_b if im(y+3,x+1) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+-1,x+3) < c_b if im(y+1,x+-3) > cb if im(y+-3,x+0) > cb continue; elseif im(y+-3,x+0) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+0,x+3) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end end elseif im(y+1,x+-3) < c_b if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+0,x+-3) < c_b else continue; end else continue; end elseif im(y+-2,x+2) < c_b if im(y+0,x+3) > cb continue; elseif im(y+0,x+3) < c_b if im(y+3,x+1) < c_b if im(y+2,x+-2) > cb continue; elseif im(y+2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else if im(y+-3,x+0) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end end else continue; end else if im(y+0,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) < c_b if im(y+0,x+3) > cb if im(y+2,x+2) < c_b else continue; end elseif im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else if im(y+-2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end else if im(y+-3,x+1) < c_b if im(y+0,x+3) < c_b if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb else continue; end elseif im(y+2,x+-2) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+1) < c_b if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else if im(y+-3,x+0) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+3,x+0) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else if im(y+-1,x+-3) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+0) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else continue; end end nc = nc + 1; if nc > length(cs) cs(length(cs)*2,1) = 0; end cs(nc,1) = x; cs(nc,2) = y; end end coords = cs([1:nc],:);
github
rising-turtle/slam_matlab-master
fast_nonmax.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/fast-matlab-src/fast_nonmax.m
2,828
utf_8
d1862ded31ac358dc7d19418039cb6ea
% FAST_NONMAX perform non-maximal suppression on FAST features. % % nonmax = FAST_NONMAX(image, threshold, FAST_CORNER_DETECT_9(image, threshold)); % returns a list of nonmaximally suppressed corners with the X coordinate % in nonmax(:,1) and Y in nonmax(:,2). % % If you use this in published work, please cite: % Fusing Points and Lines for High Performance Tracking, E. Rosten and T. Drummond, ICCV 2005 % Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 % The Bibtex entries are: % % @inproceedings{rosten_2005_tracking, % title = "Fusing points and lines for high performance tracking.", % author = "Edward Rosten and Tom Drummond", % year = "2005", % month = "October", % pages = "1508--1511", % volume = "2", % booktitle = "IEEE International Conference on Computer Vision", % notes = "Oral presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.pdf" % } % % @inproceedings{rosten_2006_machine, % title = "Machine learning for high-speed corner detection", % author = "Edward Rosten and Tom Drummond", % year = "2006", % month = "May", % booktitle = "European Conference on Computer Vision (to appear)", % notes = "Poster presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf" % } % % % % See also FAST_CORNER_DETECT_9, FAST_CORNER_DETECT_10 % FAST_CORNER_DETECT_11, FAST_CORNER_DETECT_12 function ret = fast_nonmax(im, barrier, c) sz = size(im); ysize = sz(1); % x, y dir=[ 0,3 1,3 2,2 3,1 3,0 3,-1 2,-2 1,-3 0,-3 -1,-3 -2,-2 -3,-1 -3,0 -3,1 -2,2 -1,3]; dir = dir(:,2) + dir(:,1) * ysize; centres = c(:,2) + (c(:,1)-1) * ysize; %First pass: compute scores for all of the pixels: scores = zeros(sz(1) * sz(2), 1); for i=1:length(centres) p1 = im(centres(i)+dir) -( im(centres(i)) + barrier); pos = sum(p1 .* (p1 > 0)); n1 = im(centres(i)) - barrier - im(centres(i)+dir); neg = sum(n1 .* (n1 > 0)); scores(centres(i)) = max([pos neg]); end cs = zeros(length(centres),1); up = -1; down = 1; left =-ysize; right = ysize; %second pass: get local maxima for i=1:length(centres) p = centres(i); square=p + [ up down left right up+left up+right down+left down+right]; cs(i) = (sum(scores(p) >= scores(square)) == 8); end %Get the maxima positions maximas = centres(find(cs)); ret = zeros(length(maximas), 2); ret(:,1) = 1 + floor(maximas / ysize); ret(:,2) = mod(maximas, ysize);
github
rising-turtle/slam_matlab-master
fast_corner_detect_11.m
.m
slam_matlab-master/libs_dir/ekfmonoslam/trunk/matlab_code/fast-matlab-src/fast_corner_detect_11.m
132,321
utf_8
ae44e523c1f863bcd9e42e13bb4612d2
%FAST_CORNER_DETECT_11 perform an 11 point FAST corner detection. % corners = FAST_CORNER_DETECT_11(image, threshold) performs the detection on the image % and returns the X coordinates in corners(:,1) and the Y coordinares in corners(:,2). % % If you use this in published work, please cite: % Fusing Points and Lines for High Performance Tracking, E. Rosten and T. Drummond, ICCV 2005 % Machine learning for high-speed corner detection, E. Rosten and T. Drummond, ECCV 2006 % The Bibtex entries are: % % @inproceedings{rosten_2005_tracking, % title = "Fusing points and lines for high performance tracking.", % author = "Edward Rosten and Tom Drummond", % year = "2005", % month = "October", % pages = "1508--1511", % volume = "2", % booktitle = "IEEE International Conference on Computer Vision", % notes = "Oral presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2005_tracking.pdf" % } % % @inproceedings{rosten_2006_machine, % title = "Machine learning for high-speed corner detection", % author = "Edward Rosten and Tom Drummond", % year = "2006", % month = "May", % booktitle = "European Conference on Computer Vision (to appear)", % notes = "Poster presentation", % url = "http://mi.eng.cam.ac.uk/~er258/work/rosten_2006_machine.pdf" % } % % % Additional information from the generating program: % % Automatically generated code % Parameters: % splat_subtree = 1 % corner_pointers = 2 % force_first_question = 0 % corner_type = 11 % barrier = 25 % % Data: % Number of frames: 120 % Potential features: 25786080 % Real features: 93213 % Questions per pixel: 2.37184 % % % See also FAST_NONMAX FAST_CORNER_DETECT_9 FAST_CORNER_DETECT_10 FAST_CORNER_DETECT_11 FAST_CORNER_DETECT_12 % function coords = fast_corner_detect_11(im, threshold) sz = size(im); xsize=sz(2); ysize=sz(1); cs = zeros(5000, 2); nc = 0; for x = 4 : xsize - 3 for y = 4 : ysize -3 cb = im(y,x) + threshold; c_b= im(y,x) - threshold; if im(y+-3,x+0) > cb if im(y+3,x+1) > cb if im(y+0,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+2,x+2) > cb if im(y+-3,x+-1) > cb if im(y+-3,x+1) > cb if im(y+3,x+0) > cb elseif im(y+3,x+0) < c_b continue; else if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end end elseif im(y+-3,x+1) < c_b continue; else if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+3,x+0) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end end elseif im(y+-3,x+-1) < c_b continue; else if im(y+2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+3,x+0) > cb else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+0,x+-3) > cb else continue; end end else continue; end end elseif im(y+2,x+2) < c_b continue; else if im(y+0,x+-3) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-1,x+3) < c_b continue; else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+-1) < c_b if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b continue; else if im(y+3,x+0) > cb else continue; end end else if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+2,x+2) > cb if im(y+-3,x+-1) > cb else continue; end elseif im(y+2,x+2) < c_b continue; else if im(y+1,x+-3) > cb if im(y+0,x+-3) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b if im(y+-2,x+-2) > cb if im(y+3,x+0) > cb if im(y+2,x+-2) > cb if im(y+2,x+2) > cb if im(y+-3,x+1) > cb else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+-3,x+1) > cb else continue; end else if im(y+-1,x+3) > cb else continue; end end else continue; end else continue; end else if im(y+3,x+0) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+3) > cb if im(y+2,x+2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end end elseif im(y+-2,x+2) < c_b if im(y+0,x+-3) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb if im(y+1,x+-3) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb if im(y+-2,x+-2) > cb elseif im(y+-2,x+-2) < c_b continue; else if im(y+-1,x+3) > cb else continue; end end elseif im(y+2,x+2) < c_b continue; else if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+1,x+3) < c_b if im(y+1,x+-3) > cb if im(y+2,x+2) < c_b if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+3,x+-1) > cb elseif im(y+3,x+-1) < c_b continue; else if im(y+-2,x+2) > cb if im(y+-1,x+3) > cb else continue; end else continue; end end else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+2,x+2) > cb if im(y+3,x+0) > cb if im(y+-3,x+-1) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+0,x+3) < c_b if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+-2) > cb if im(y+2,x+2) > cb if im(y+1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+3,x+-1) > cb else continue; end else continue; end else continue; end elseif im(y+2,x+2) < c_b if im(y+-3,x+1) > cb if im(y+3,x+-1) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb if im(y+3,x+-1) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+3,x+-1) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+3,x+0) > cb elseif im(y+3,x+0) < c_b continue; else if im(y+-1,x+3) > cb if im(y+-2,x+2) > cb else continue; end else continue; end end else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+2,x+2) > cb if im(y+-3,x+-1) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+1) < c_b if im(y+3,x+-1) > cb if im(y+-1,x+3) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-1,x+3) < c_b if im(y+3,x+0) > cb if im(y+-2,x+2) > cb else continue; end else continue; end else continue; end elseif im(y+3,x+-1) < c_b if im(y+0,x+-3) > cb if im(y+1,x+3) > cb if im(y+1,x+-3) > cb if im(y+-1,x+3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+0,x+3) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+1,x+-3) < c_b continue; else if im(y+2,x+2) > cb if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end end elseif im(y+1,x+3) < c_b continue; else if im(y+2,x+-2) > cb if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end end elseif im(y+0,x+-3) < c_b if im(y+0,x+3) > cb if im(y+-3,x+-1) < c_b if im(y+1,x+3) < c_b else continue; end else continue; end elseif im(y+0,x+3) < c_b if im(y+-2,x+2) > cb if im(y+-1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end elseif im(y+-2,x+2) < c_b if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else if im(y+-1,x+-3) < c_b if im(y+-1,x+3) > cb continue; elseif im(y+-1,x+3) < c_b if im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b else continue; end else continue; end else if im(y+-2,x+-2) < c_b else continue; end end else continue; end end else if im(y+-3,x+-1) < c_b else continue; end end else if im(y+-3,x+1) < c_b else continue; end end else if im(y+0,x+3) > cb if im(y+1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+3,x+0) > cb||im(y+3,x+0) < c_b continue; else if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb else continue; end else continue; end end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-3,x+-1) > cb else continue; end else if im(y+-2,x+2) > cb if im(y+-3,x+1) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end end elseif im(y+2,x+-2) < c_b continue; else if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+0,x+-3) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else if im(y+0,x+-3) > cb if im(y+-1,x+3) > cb if im(y+1,x+3) > cb if im(y+-2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+0,x+3) > cb if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end elseif im(y+1,x+-3) < c_b continue; else if im(y+2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end end else continue; end elseif im(y+0,x+3) < c_b continue; else if im(y+3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+1) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+-1) > cb if im(y+1,x+-3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+3,x+-1) < c_b continue; else if im(y+0,x+3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb else continue; end else continue; end else continue; end end else if im(y+3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+2) > cb if im(y+1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+3,x+-1) < c_b continue; else if im(y+0,x+3) > cb if im(y+2,x+-2) > cb if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+-2,x+-2) > cb if im(y+-3,x+1) > cb if im(y+1,x+-3) > cb if im(y+-3,x+-1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end end elseif im(y+-1,x+3) < c_b if im(y+-2,x+2) > cb if im(y+3,x+0) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+3,x+0) > cb if im(y+-2,x+2) > cb if im(y+-1,x+-3) > cb if im(y+2,x+-2) > cb if im(y+1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+-2,x+-2) > cb if im(y+3,x+-1) > cb if im(y+-3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end elseif im(y+-3,x+0) < c_b if im(y+3,x+0) > cb if im(y+1,x+3) > cb if im(y+-1,x+-3) > cb if im(y+-1,x+3) > cb if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb if im(y+2,x+2) > cb if im(y+0,x+3) > cb if im(y+3,x+-1) > cb if im(y+1,x+-3) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-1,x+3) < c_b continue; else if im(y+-2,x+-2) > cb if im(y+0,x+3) > cb if im(y+1,x+-3) > cb if im(y+0,x+-3) > cb if im(y+2,x+-2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+0,x+3) > cb if im(y+0,x+-3) > cb if im(y+-2,x+2) > cb else continue; end else continue; end elseif im(y+0,x+3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+-1) > cb||im(y+3,x+-1) < c_b continue; else if im(y+-2,x+2) < c_b else continue; end end else continue; end else continue; end else if im(y+-2,x+2) > cb if im(y+0,x+-3) > cb if im(y+0,x+3) > cb if im(y+3,x+-1) > cb if im(y+-1,x+3) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+1,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+-1,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+0,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+2) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+0,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+3,x+0) < c_b if im(y+0,x+-3) > cb if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+-2) > cb if im(y+2,x+-2) > cb if im(y+-3,x+-1) < c_b if im(y+3,x+-1) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+-2,x+2) < c_b if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end else if im(y+-3,x+-1) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+-1) < c_b if im(y+2,x+2) < c_b if im(y+0,x+3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end elseif im(y+-2,x+-2) < c_b if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-3,x+1) < c_b if im(y+3,x+1) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end end else continue; end else continue; end else if im(y+3,x+-1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+0,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+0,x+3) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end end else continue; end end else continue; end else continue; end elseif im(y+0,x+-3) < c_b if im(y+-1,x+-3) > cb if im(y+0,x+3) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end elseif im(y+-1,x+-3) < c_b if im(y+2,x+-2) > cb if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end elseif im(y+2,x+-2) < c_b if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b if im(y+-3,x+1) > cb if im(y+2,x+2) < c_b else continue; end elseif im(y+-3,x+1) < c_b if im(y+3,x+1) > cb continue; elseif im(y+3,x+1) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b else if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+2) < c_b else continue; end else continue; end else continue; end end else if im(y+-2,x+2) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+-3,x+-1) < c_b else continue; end else if im(y+0,x+3) < c_b else continue; end end else continue; end end else if im(y+2,x+2) < c_b if im(y+3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b else if im(y+0,x+3) < c_b else continue; end end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+-2) > cb continue; elseif im(y+-2,x+-2) < c_b else if im(y+3,x+-1) < c_b else continue; end end else continue; end else continue; end else if im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+2,x+-2) > cb continue; elseif im(y+2,x+-2) < c_b else if im(y+-3,x+-1) < c_b else continue; end end else continue; end else if im(y+-2,x+-2) < c_b else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+0,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+3,x+-1) > cb continue; elseif im(y+3,x+-1) < c_b if im(y+-3,x+-1) > cb continue; elseif im(y+-3,x+-1) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else if im(y+2,x+-2) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+1) < c_b else continue; end else continue; end else continue; end end else if im(y+-2,x+-2) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+-1,x+-3) < c_b if im(y+0,x+3) > cb if im(y+-1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+1,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+0,x+3) < c_b if im(y+1,x+3) > cb if im(y+2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end elseif im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+1) > cb if im(y+0,x+-3) < c_b if im(y+1,x+-3) > cb continue; elseif im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b else continue; end else if im(y+2,x+2) < c_b else continue; end end else continue; end elseif im(y+3,x+1) < c_b if im(y+-3,x+1) < c_b if im(y+2,x+2) > cb continue; elseif im(y+2,x+2) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else if im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end end else continue; end else if im(y+0,x+-3) < c_b if im(y+1,x+-3) > cb if im(y+2,x+2) < c_b else continue; end elseif im(y+1,x+-3) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+-2) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else if im(y+2,x+2) < c_b if im(y+-3,x+1) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else if im(y+2,x+-2) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+2) < c_b if im(y+1,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+-3,x+1) < c_b if im(y+-3,x+-1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else if im(y+3,x+-1) < c_b if im(y+-1,x+3) < c_b if im(y+0,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+-3) < c_b if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+-3,x+-1) < c_b if im(y+-2,x+-2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else if im(y+1,x+-3) > cb if im(y+1,x+3) > cb if im(y+3,x+-1) > cb if im(y+-1,x+-3) > cb if im(y+-3,x+-1) > cb if im(y+2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb if im(y+-2,x+-2) > cb if im(y+3,x+1) > cb else continue; end elseif im(y+-2,x+-2) < c_b continue; else if im(y+0,x+3) > cb if im(y+-1,x+3) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end end else continue; end else continue; end elseif im(y+0,x+-3) < c_b continue; else if im(y+-3,x+1) > cb if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end end else continue; end elseif im(y+-3,x+-1) < c_b if im(y+-1,x+3) > cb if im(y+3,x+0) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end else if im(y+0,x+3) > cb if im(y+3,x+1) > cb if im(y+2,x+-2) > cb if im(y+0,x+-3) > cb if im(y+2,x+2) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb else continue; end elseif im(y+-1,x+3) < c_b if im(y+-2,x+-2) > cb else continue; end else if im(y+-2,x+-2) > cb if im(y+3,x+0) > cb else continue; end else continue; end end else continue; end elseif im(y+0,x+-3) < c_b continue; else if im(y+-3,x+1) > cb if im(y+-2,x+2) > cb if im(y+2,x+2) > cb if im(y+-1,x+3) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end end elseif im(y+-1,x+-3) < c_b if im(y+-3,x+1) > cb if im(y+-1,x+3) > cb if im(y+0,x+3) > cb if im(y+-2,x+2) > cb if im(y+3,x+1) > cb else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+-2,x+2) > cb if im(y+0,x+-3) > cb if im(y+0,x+3) > cb else continue; end else continue; end else continue; end end else if im(y+-2,x+2) > cb if im(y+0,x+3) > cb if im(y+-3,x+1) > cb if im(y+3,x+1) > cb if im(y+-1,x+3) > cb if im(y+2,x+-2) > cb if im(y+2,x+2) > cb if im(y+3,x+0) > cb else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-3,x+1) < c_b continue; else if im(y+0,x+-3) > cb if im(y+3,x+0) > cb if im(y+-1,x+3) > cb if im(y+2,x+-2) > cb if im(y+2,x+2) > cb else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end end else continue; end else continue; end elseif im(y+1,x+-3) < c_b if im(y+0,x+3) > cb if im(y+1,x+3) < c_b if im(y+-3,x+-1) < c_b if im(y+-1,x+-3) < c_b if im(y+3,x+1) < c_b if im(y+-3,x+1) > cb||im(y+-3,x+1) < c_b else if im(y+-2,x+-2) < c_b if im(y+3,x+-1) < c_b if im(y+2,x+2) < c_b if im(y+0,x+-3) < c_b else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else continue; end else continue; end elseif im(y+0,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+-1,x+-3) > cb if im(y+-3,x+1) < c_b if im(y+-2,x+2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+3) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+3) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end elseif im(y+-1,x+-3) < c_b if im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b if im(y+0,x+-3) > cb continue; elseif im(y+0,x+-3) < c_b if im(y+3,x+0) < c_b if im(y+-1,x+3) > cb if im(y+1,x+3) < c_b else continue; end elseif im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else if im(y+-2,x+-2) < c_b if im(y+1,x+3) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end end else continue; end else if im(y+-3,x+1) < c_b if im(y+-1,x+3) < c_b if im(y+1,x+3) < c_b if im(y+-2,x+2) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end else continue; end else if im(y+-2,x+2) < c_b if im(y+-3,x+1) > cb elseif im(y+-3,x+1) < c_b if im(y+1,x+3) < c_b if im(y+3,x+1) < c_b if im(y+2,x+-2) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+0) < c_b if im(y+2,x+2) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else if im(y+0,x+-3) < c_b if im(y+2,x+2) < c_b if im(y+2,x+-2) < c_b if im(y+1,x+3) < c_b if im(y+3,x+0) < c_b if im(y+-1,x+3) < c_b if im(y+3,x+1) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end else continue; end else if im(y+-3,x+-1) < c_b if im(y+1,x+3) < c_b if im(y+3,x+-1) < c_b if im(y+0,x+-3) < c_b if im(y+-2,x+-2) < c_b if im(y+2,x+2) < c_b if im(y+-1,x+-3) < c_b if im(y+2,x+-2) < c_b if im(y+3,x+1) < c_b if im(y+3,x+0) < c_b else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end else continue; end end else continue; end end nc = nc + 1; if nc > length(cs) cs(length(cs)*2,1) = 0; end cs(nc,1) = x; cs(nc,2) = y; end end coords = cs([1:nc],:);
github
rising-turtle/slam_matlab-master
getCell.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/DetectionMatching/getCell.m
1,456
utf_8
d3772727968d41dc0620d7764df1aa47
%GETCELL Get image cell corresopnding to a given pixel. function imCell = getCell(u,imGrid) imCell = ceil(u.*imGrid.numCells./imGrid.imSize); % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
maxParab.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/DetectionMatching/maxParab.m
1,525
utf_8
0d579e9bfdf5048f4c6c8f48955d7b1f
% MAXPARAB Get the maximum point of a parabole defined by 3 points. function xm = maxParab(yc,yl,yr) a = (yl+yr)/2-yc; b = (yr-yl)/2; % c = yc; % not used if abs(a) > eps xm = -b/2/a; else xm = 0; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
maxParab2.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/DetectionMatching/maxParab2.m
1,494
utf_8
67e9667499a2e12fd4f877bd316142f0
% MAXPARAB2 Maximum point of a 2D parabolloid. function xm = maxParab2(yc,yl,yr,yu,yd) % MAXPARAB2(YC,YW,YE,YN,YS) hm = maxParab(yc,yl,yr); vm = maxParab(yc,yu,yd); xm = [hm;vm]; % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
moreindatatip.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/Graphics/moreindatatip.m
3,321
utf_8
6ca2377164cb495f4eb5db359677cc17
function moreindatatip % MOREINDATATIP Display index information in the data tip. % % Extends the displayed text of the datatip to get the index of the clicked % point. The extension remains until the figure is deleted. If datatip(s) % was previously present, a message prompts the user to right-click on the % figure to delete all datatips in order to switch on the capabilities of % the datatip. % % may 2006 % [email protected] dcm_obj = datacursormode(gcf); if ~isempty(findall(gca,'type','hggroup','marker','square'))% if there is datatip, please delete it info_struct = getCursorInfo(dcm_obj); xdat=get(info_struct.Target,'xdata'); ydat=get(info_struct.Target,'ydata'); zdat=get(info_struct.Target,'zdata'); if isempty(zdat),zdat=zeros(size(xdat));set(info_struct.Target,'zdata',zdat),end index=info_struct.DataIndex; ht=text(xdat(index)*1.05,ydat(index)*1.05,zdat(index)*1.05,... {'right-click on the figure';'to ''delete all datatips''';'in order to get more'},... 'backgroundcolor',[1,0,0.5],'tag','attention'); end set(dcm_obj,'enable','on','updatefcn',@myupdatefcn,'displaystyle','datatip') %-------------------------------------------------------------------------% function txt = myupdatefcn(empt,event_obj) % Change the text displayed in the datatip. Note than the actual coordinates % are displyed rather the position field of the info_struct. ht=findobj('tag','attention'); if ~isempty(ht),delete(ht),end dcm_obj = datacursormode(gcf); info_struct = getCursorInfo(dcm_obj); xdat=get(info_struct.Target,'xdata'); ydat=get(info_struct.Target,'ydata'); zdat=get(info_struct.Target,'zdata'); index=info_struct.DataIndex; if isempty(zdat) txt = {['X: ',num2str(xdat(index))],... ['Y: ',num2str(ydat(index))],... ['index: ',num2str(index)]}; else txt = {['X: ',num2str(xdat(index))],... ['Y: ',num2str(ydat(index))],... ['Z: ',num2str(zdat(index))],... ['index: ',num2str(index)]}; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
addFrmToTrj.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/Slam/addFrmToTrj.m
4,618
utf_8
530847fdf69755b8c21a29784e40ee12
function [Lmk,Trj,Frm,Fac] = addFrmToTrj(Lmk,Trj,Frm,Fac) % ADDFRMTOTRJ Add frame to trajectory % [Trj,Frm,Fac] = ADDFRMTOTRJ(Trj,Frm,Fac) Adds a frame to the trajectory % Trj. It does so by advancing the HEAD pointer in the trajectory Trj, % and clearing sensitive data in the frame pointed by the new HEAD. % % The trajectory is a circular array, so when all positions are full, % adding a new frame overwrites the oldest one. In such case, all factors % linking to the discarded frame are cleared. % % The added frame is empty, and only its ID is created, distinct to all % other IDs. % Advance HEAD Trj.head = mod(Trj.head, Trj.maxLength) + 1; % Update TAIL if Trj.length < Trj.maxLength % Trj is not yet full. Just lengthen. Trj.length = Trj.length + 1; else % Trj is full. Tail frame will be overwritten !! % Remove tail frame and cleanup graph [Lmk,Trj,Frm,Fac] = removeTailFrm(Lmk,Trj,Frm,Fac); % Advance TAIL Trj.tail = mod(Trj.tail, Trj.maxLength) + 1; end % Complete the new frame with no factors Frm(Trj.head).used = true; Frm(Trj.head).id = newId; Frm(Trj.head).factors = []; % Query and Block positions in Map r = newRange(Frm(Trj.head).state.dsize); blockRange(r); Frm(Trj.head).state.r = r; end function [Lmk,Trj,Frm,Fac] = removeTailFrm(Lmk,Trj,Frm,Fac) % REMOVETAILFRM Remove tail frame from trajectory. % % [Lmk,Trj,Frm,Fac] = REMOVETAILFRM(Lmk,Trj,Frm,Fac) removes the tail % frame from Trj and cleans up all the information in Lmk(:), Frm(:,:), % Fac(:) that has been affected. % % The motionh factor linking this frams to the next one is convertede to % an absolute factor. global Map % Delete factors from factors lists in Frm and Lmk factors = Frm(Trj.tail).factors; for fac = factors if strcmp(Fac(fac).type, 'motion') % Convert motion factor to absolute factor % fprintf('Converting Fac ''%d''.\n', fac) newTail = Fac(fac).frames(2); [Frm(newTail),Fac(fac)] = makeAbsFactorFromMotionFactor(Frm(newTail),Fac(fac)); else % Delete factor after cleaning up graph for frm = [Fac(fac).frames]; % Remove this factor from frame's factors list Frm(frm).factors([Frm(frm).factors] == fac) = []; end for lmk = [Fac(fac).lmk] % Remove this factor from landmark's factors list Lmk(lmk).factors([Lmk(lmk).factors] == fac) = []; % Delete landmark if no factors support it if isempty(Lmk(lmk).factors) % fprintf('Deleting Lmk ''%d''.\n', lmk) Lmk(lmk).used = false; Map.used(Lmk(lmk).state.r) = false; end end % Free (and cleanup just in case) factors from tail before advancing % fprintf('Deleting Fac ''%d''.\n', fac) Fac(fac).used = false; Fac(fac).frames = []; Fac(fac).lmk = []; end end % [Fac(factors).used] = deal(false); % [Fac(factors).frames] = deal([]); % [Fac(factors).lmk] = deal([]); % Clean discarded tail frame Frm(Trj.tail).used = false; Frm(Trj.tail).factors = []; % Unblock positions in Map Map.used(Frm(Trj.tail).state.r) = false; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
solveGraphSchur.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/InterfaceLevel/solveGraphSchur.m
5,056
utf_8
5fa972e55263bf248f4c017f2c6decdb
function [Rob,Sen,Lmk,Obs,Frm,Fac] = solveGraphSchur(Rob,Sen,Lmk,Obs,Frm,Fac,options) % SOLVEGRAPHSCHUR Solves the SLAM graph using Schur decomposition. % [Rob,Sen,Lmk,Obs,Frm,Fac] = solveGraphSchur(Rob,Sen,Lmk,Obs,Frm,Fac) % solves the graph-SLAM problem using Schur decomposition of the % Hessian matrix. % % IMPORTANT NOTE: This method is illustrative and constitutes the % motivation for this toolbox. One can achieve better performances, both % in computing time and possibly in robustness and accuracy, by using % Matlab's built-in nonlinear optimization tools, such as LSQNONLIN. % % See courseSLAM.pdf in the documentation for details about the Schur % decomposition for solving the graph-SLAM problem. % % See also ERRORSTATEJACOBIANS, UPDATESTATES, COMPUTEERROR, % COMPUTERESIDUAL, COLAMD, '\', MLDIVIDE, LSQNONLIN. % Copyright 2015- Joan Sola @ IRI-UPC-CSIC. global Map % Control of iterations and exit conditions n_iter = options.niterations; % exit criterion of number of iterations target_dres = options.target_dres; % exit criterion for error variation target_res = options.target_res; % exit criterion for current residual res_old = 1e10; % last iteration's error % Map states range Map.mr = find(Map.used); for it = 1:n_iter % Compute Jacobians for projection onto the manifold [Frm,Lmk] = errorStateJacobians(Frm,Lmk); % Build Hessian H and rhs vector b, in global Map Fac = buildProblem(Rob,Sen,Lmk,Obs,Frm,Fac); % Get partition ranges fr = ranges(Frm); lr = ranges(Lmk); % Get Schur complement -- The schur complement Spp is the sqrt factor [Map.sSff, Map.iHll] = schurc(Map.H(Map.mr,Map.mr),lr,fr,1); % Solve frames subproblem bf = Map.b(fr) - Map.H(fr,lr) * Map.iHll * Map.b(lr); y = - Map.sSff'\bf; Map.x(fr) = Map.sSff\y; % Solve landmarks subproblem bl = Map.b(lr) + Map.H(lr,fr) * Map.x(fr); Map.x(lr) = - Map.iHll * bl; % Update nominal states [Rob,Lmk,Frm] = updateStates(Rob,Lmk,Frm); % Check resulting errors [res, err_max] = computeResidual(Rob,Sen,Lmk,Obs,Frm,Fac); dres = res - res_old; res_old = res; if ( ( -dres <= target_dres ) || (err_max <= target_res) ) %&& ( abs(derr) < target_derr) ) break; end end end function Fac = buildProblem(Rob,Sen,Lmk,Obs,Frm,Fac) % BUILDPROBLEM Build least squares problem's matrix H and vector b % Fac = BUILDPROBLEM(Rob,Sen,Lmk,Obs,Frm,Fac) Builds the least squares % problem's matrix H and vector b for a solution using sparse Schur % factorization of H. global Map % Reset Hessian and rhs vector Map.H(Map.mr,Map.mr) = 0; Map.b(Map.mr) = 0; % Iterate all factors for fac = find([Fac.used]) % Extract some pointers rob = Fac(fac).rob; sen = Fac(fac).sen; lmk = Fac(fac).lmk; frames = Fac(fac).frames; % Compute factor error, info mat, and Jacobians [Fac(fac), e, W, ~, J1, J2, r1, r2] = computeError(... Rob(rob), ... Sen(sen), ... Lmk(lmk), ... Obs(sen,lmk), ... Frm(frames), ... Fac(fac)); % Compute sparse Hessian blocks H_11 = J1' * W * J1; H_12 = J1' * W * J2; H_22 = J2' * W * J2; % Compute rhs vector blocks b1 = J1' * W * e; b2 = J2' * W * e; % Update H and b Map.H(r1,r1) = Map.H(r1,r1) + H_11; Map.H(r1,r2) = Map.H(r1,r2) + H_12; Map.H(r2,r1) = Map.H(r2,r1) + H_12'; Map.H(r2,r2) = Map.H(r2,r2) + H_22; Map.b(r1,1) = Map.b(r1,1) + b1; Map.b(r2,1) = Map.b(r2,1) + b2; end end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
solveGraphQR.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/InterfaceLevel/solveGraphQR.m
5,355
utf_8
5fcc6e754223f6fb664de13631cf0c71
function [Rob,Sen,Lmk,Obs,Frm,Fac] = solveGraphQR(Rob,Sen,Lmk,Obs,Frm,Fac,options) % SOLVEGRAPHQR Solves the SLAM graph using QR decomposition. % [Rob,Sen,Lmk,Obs,Frm,Fac] = SOLVEGRAPHQR(Rob,Sen,Lmk,Obs,Frm,Fac) % solves the graph-SLAM problem using QR decomposition of the % Hessian matrix. % % IMPORTANT NOTE: This method is illustrative and constitutes the % motivation for this toolbox. One can achieve better performances, both % in computing time and possibly in robustness and accuracy, by using % Matlab's built-in nonlinear optimization tools, such as LSQNONLIN. % % See courseSLAM.pdf in the documentation for details about the QR % decomposition for solving the graph-SLAM problem. % % See also SOLVEGRAPHCHOLESKY, ERRORSTATEJACOBIANS, UPDATESTATES, % COMPUTEERROR, COMPUTERESIDUAL, COLAMD, '\', MLDIVIDE, LSQNONLIN. % Copyright 2015- Joan Sola @ IRI-UPC-CSIC. global Map % Control of iterations and exit conditions n_iter = options.niterations; % exit criterion of number of iterations target_dres = options.target_dres; % exit criterion for error variation target_res = options.target_res; % exit criterion for current residual res_old = 1e10; % last iteration's error % Map states range Map.mr = find(Map.used); % Map factors range errs = [Fac.err]; Map.fr = 1:sum([errs.size]); for it = 1:n_iter % Compute Jacobians for projection onto the manifold [Frm,Lmk] = errorStateJacobians(Frm,Lmk); % Build Hessian A and rhs vector b, in global Map Fac = buildProblem(Rob,Sen,Lmk,Obs,Frm,Fac); if it == 1 % do this only once: % Column permutation p = colamd(Map.A(Map.fr,Map.mr))'; % Permutated map range pr = Map.mr(p); end % Decomposition [Map.d, Map.R] = qr(Map.A(Map.fr,pr), Map.b(Map.fr), 0); % Solve for dx and reorder: % - dx is Map.x(mr) % - reordered dx is Map.x(pr) Map.x(pr) = -Map.R\Map.d; % solve for dx; % NOTE: Matlab is able to do all the reordering and QR factorization % for you. If you just use the operator '\', as in 'dx = -A\b', Matlab % will reorder A, then factor it to get R and d, then solve the % factored problem, then reorder back the result into dx. Use the % following line to accomplish this, and comment out the code from line % 'if it == 1' until here: % % Map.x(Map.mr) = -Map.A(Map.fr,Map.mr)\Map.b(Map.fr); % Update nominal states [Rob,Lmk,Frm] = updateStates(Rob,Lmk,Frm); % Check resulting errors [res, err_max] = computeResidual(Rob,Sen,Lmk,Obs,Frm,Fac); dres = res - res_old; res_old = res; % Test and exit if ( ( -dres <= target_dres ) || (err_max <= target_res) ) %&& ( abs(derr) < target_derr) ) break; end end end function Fac = buildProblem(Rob,Sen,Lmk,Obs,Frm,Fac) % BUILDPROBLEM Build least squares problem's matrix A and vector b % Fac = BUILDPROBLEM(Rob,Sen,Lmk,Obs,Frm,Fac) Builds the least squares % problem's matrix A and vector b for a solution using sparse QR % factorization of A. global Map % Reset Hessian and rhs vector Map.A(Map.fr,Map.mr) = 0; Map.b(Map.fr) = 0; % Iterate all factors facCount = 1; for fac = find([Fac.used]) % Extract some pointers rob = Fac(fac).rob; sen = Fac(fac).sen; lmk = Fac(fac).lmk; frames = Fac(fac).frames; % Compute factor error, info mat, and Jacobians [Fac(fac), e, ~, Wsqrt, J1, J2, r1, r2] = computeError(... Rob(rob), ... Sen(sen), ... Lmk(lmk), ... Obs(sen,lmk), ... Frm(frames), ... Fac(fac)); % row band matrix size m = numel(e); mr = (facCount : facCount + m - 1); % Update A and b Map.A(mr,r1) = Wsqrt * J1; Map.A(mr,r2) = Wsqrt * J2; Map.b(mr,1) = Wsqrt * e; % Advance to next row band facCount = facCount + m; end end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
initNewLmk.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/InterfaceLevel/initNewLmk.m
8,393
utf_8
8fd5044ac20898f18cea65856379af31
function [Lmk,Obs,Frm,Fac,lmk] = initNewLmk(Rob, Sen, Raw, Lmk, Obs, Frm, Fac, Opt) %INITNEWLMK Initialise one landmark. % [LMK, OBS] = INITNEWLMK(ROB, SEN, RAW, LMK, OBS) initializes one new % landmark. The landmark is selected by an active-search analysis of the % Raw data belonging to the current sensor Sen in robot Rob. After % successful initialization, structures Map, Lmk and Obs are updated. % % Input/output structures: % Rob: the robot % Sen: the sensor % Raw: the raw datas issues from Sen % Lmk: the set of landmarks % Obs: the observation structure for the sensor Sen % Frm: The frame from where the Lmk was perceived % Fac: the factor to be created. % Opt: the algorithm options % % The algorithm can be configured through numerous options stored in % structure Opt.init. Edit USERDATA_GRAPH to access and modify these % options. % Copyright 2015- Joan Sola @ IRI-CSIC-UPC global Map % 1. Check that we have space... % 1a. In Lmk array. Index to first free Idp lmk lmk = newLmk(Lmk); if isempty(lmk) % Lmk structure array full. Unable to initialize new landmark. return; end % 1b. In Fac array. Check for new factor if (strcmp(Map.type, 'graph') == true) fac = find([Fac.used] == false, 1, 'first'); if isempty(fac) % Fac structure array full. Unable to initialize new landmark. return; end end % 1c. In Map storage vector % Update rob and sen info from Map or from graph switch Map.type case 'ekf' Rob = map2rob(Rob); Sen = map2sen(Sen); case 'graph' Rob = frm2rob(Rob,Frm); end % Type of the lmk to initialize - with error check. switch Opt.init.initType case {'hmgPnt'} lmkSize = 4; case {'ahmPnt'} lmkSize = 7; case {'idpPnt','plkLin'} lmkSize = 6; case {'idpLin','aplLin'} lmkSize = 9; case {'hmgLin'} lmkSize = 8; case {'ahmLin'} lmkSize = 11; case {'eucPnt'} switch Sen.type case 'pinHoleDepth' lmkSize = 3; otherwise error('??? Unable to initialize lmk type ''%s''. Try using ''idpPnt'' instead.',Opt.init.initType); end otherwise error('??? Unknown landmark type ''%s''.', Opt.init.initType); end % % check for free space in the Map. if (freeSpace() < lmkSize) % Map full. Unable to initialize landmark. return end % OK, we have space everywhere. Proceed with computations. % 2. Feature detection switch Raw.type case {'simu','dump'} [lid, app, meas, exp, inn] = simDetectFeat(... Opt.init.initType, ... [Lmk([Lmk.used]).id], ... Raw.data, ... Sen.par.cov, ... Sen.par.imSize); case 'image' % NYI : Not Yet Implemented. Create detectFeat.m and call: % [newId, app, meas, exp, inn] = detectFeat(...); error('??? Raw type ''%s'' not yet implemented.', Raw.type); otherwise error('??? Unknown raw type %s.', Raw.type); end if ~isempty(meas.y) % a feature was detected --> initialize it % fill Obs struct before continuing Obs(lmk).sen = Sen.sen; Obs(lmk).lmk = lmk; Obs(lmk).sid = Sen.id; Obs(lmk).lid = lid; Obs(lmk).stype = Sen.type; Obs(lmk).ltype = Opt.init.initType; Obs(lmk).meas = meas; Obs(lmk).exp = exp; Obs(lmk).exp.um = det(inn.Z); % uncertainty measure Obs(lmk).inn = inn; Obs(lmk).app.curr = app; Obs(lmk).app.pred = app; Obs(lmk).vis = true; Obs(lmk).measured = true; Obs(lmk).matched = true; Obs(lmk).updated = true; % 3. retro-project feature onto 3D space [l, L_rf, L_sf, L_obs, L_n, N] = retroProjLmk(Rob,Sen,Obs(lmk),Opt); % 4. Initialize Lmk if strcmp(Map.type, 'ekf') % get new Lmk, covariance and cross-variance. [P_LL,P_LX] = getNewLmkCovs( ... Sen.frameInMap, ... Rob.frame.r, ... Sen.frame.r, ... L_rf, ... L_sf, ... L_obs, ... L_n, ... meas.R, ... N) ; % add to Map and get lmk range in Map Lmk(lmk).state.r = addToMap(l,P_LL,P_LX); else % get lmk ranges in Map, and block r = newRange(Lmk(lmk).state.dsize); blockRange(r); % Update ranges and state Lmk(lmk).state.r = r; Lmk(lmk).state.x = l; end % Fill Lmk structure Lmk(lmk).lmk = lmk; Lmk(lmk).id = lid; Lmk(lmk).type = Opt.init.initType ; Lmk(lmk).used = true; Lmk(lmk).factors = []; Lmk(lmk).sig = app; Lmk(lmk).nSearch = 1; Lmk(lmk).nMatch = 1; Lmk(lmk).nInlier = 1; % Init off-filter landmark params [Lmk(lmk),Obs(lmk)] = initLmkParams(Rob,Sen,Lmk(lmk),Obs(lmk)); else % Detection failed lmk = []; end % 5. Create factor if (~isempty(lmk) && strcmp(Map.type, 'graph') == true) [Lmk(lmk), Frm, Fac(fac)] = makeMeasFactor(... Lmk(lmk), ... Obs(lmk), ... Frm, ... Fac(fac)); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [P_LL,P_LX] = getNewLmkCovs(SenFrameInMap, RobFrameR, SenFrameR,... L_rf, L_sf, L_obs, L_n, R, N) % GETNEWLMKCOVS return lmk co and cross-variance for initialization. % [P_LL,P_LX] = GETNEWLMKCOVS( ... % SENFRAMEINMAP, ... % ROBFRAMERANGE, ... % SENFRAMERANGE, ... % L_RF, ... % L_SF, ... % L_OBS, ... % L_N, ... % R, ... % N) % % Return the covariance 'Lmk/Lmk' (P_LL) and cross-variance 'Lmk/Map.used' % (P_LX) given : % - if the sensor frame is in map (SENFRAMEINMAP). % - the robot frame range in map (ROBFRAMERANGE). % - the sensor frame range in map (SENFRAMERANGE). % - the jacobian 'Lmk/robot frame' (L_RF). % - the jacobian 'Lmk/sensor frame' (L_SF). % - the jacobian 'Lmk/observation' (L_OBS). % - the jacobian 'Lmk/non observable part' (L_N). % - the observation covariance (R). % - the observation non observable part covariance (N). % % P_LL and P_LX can be placed for example in Map covariance like: % % P = | P P_LX' | % | P_LX P_LL | % % (c) 2009 Jean Marie Codol, David Marquez @ LAAS-CNRS global Map % Group all map Jacobians and ranges if SenFrameInMap % if the sensor frame is in the state mr = [RobFrameR;SenFrameR]; L_m = [L_rf L_sf] ; else mr = RobFrameR; L_m = L_rf ; end % co- and cross-variance of map variables (robot and eventually sensor) P_MM = Map.P(mr,mr) ; P_MX = Map.P(mr,(Map.used)) ; % landmark co- and cross-variance P_LL = ... L_m * P_MM * L_m' + ... % by map cov L_obs * R * L_obs' + ... % by observation cov (for pinHole it is a pixel) L_n * N * L_n' ; % by nom cov P_LX = L_m*P_MX ; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
solveGraphCholesky.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/InterfaceLevel/solveGraphCholesky.m
5,660
utf_8
f5d071a8f99dd2cfb377dcae99ec887c
function [Rob,Sen,Lmk,Obs,Frm,Fac] = solveGraphCholesky(Rob,Sen,Lmk,Obs,Frm,Fac,options) % SOLVEGRAPHCHOLESKY Solves the SLAM graph using Cholesky decomposition. % [Rob,Sen,Lmk,Obs,Frm,Fac] = solveGraphCholesky(Rob,Sen,Lmk,Obs,Frm,Fac) % solves the graph-SLAM problem using Cholesky decomposition of the % Hessian matrix. % % IMPORTANT NOTE: This method is illustrative and constitutes the % motivation for this toolbox. One can achieve better performances, both % in computing time and possibly in robustness and accuracy, by using % Matlab's built-in nonlinear optimization tools, such as LSQNONLIN. % % See courseSLAM.pdf in the documentation for details about the Cholesky % decomposition for solving the graph-SLAM problem. % % See also ERRORSTATEJACOBIANS, UPDATESTATES, COMPUTEERROR, % COMPUTERESIDUAL, COLAMD, '\', MLDIVIDE, LSQNONLIN. % Copyright 2015- Joan Sola @ IRI-UPC-CSIC. global Map % Control of iterations and exit conditions n_iter = options.niterations; % exit criterion of number of iterations target_dres = options.target_dres; % exit criterion for error variation target_res = options.target_res; % exit criterion for current residual res_old = 1e10; % last iteration's error % Map states range Map.mr = find(Map.used); for it = 1:n_iter % fprintf('----------------\nIteration: %d; \n',it) % Compute Jacobians for projection onto the manifold [Frm,Lmk] = errorStateJacobians(Frm,Lmk); % Build Hessian H and rhs vector b, in global Map Fac = buildProblem(Rob,Sen,Lmk,Obs,Frm,Fac); if it == 1 % do this only once: % Column permutation p = colamd(Map.H(Map.mr,Map.mr))'; % Permutated map range pr = Map.mr(p); end % Decomposition [Map.R, ill] = chol(Map.H(pr,pr)); if ill error('Ill-conditioned Hessian') end % Solve for dx and reorder: % - dx is Map.x(mr) % - reordered dx is Map.x(pr) y = -Map.R'\Map.b(pr); % solve for y Map.x(pr) = Map.R\y; % NOTE: Matlab is able to do all the reordering and Cholesky % factorization for you. If you just use the operator '\', as in % 'dx = -H\b', Matlab will reorder H, then factor it as R'R, then solve % the two subproblems, then reorder back the result into dx. Use the % following line to accomplish this, and comment out the code from line % 'if it == 1' until here: % % Map.x(Map.mr) = -Map.H(Map.mr,Map.mr)\Map.b(Map.mr); % Update nominal states [Rob,Lmk,Frm] = updateStates(Rob,Lmk,Frm); % Check resulting errors [res, err_max] = computeResidual(Rob,Sen,Lmk,Obs,Frm,Fac); dres = res - res_old; res_old = res; % fprintf('Residual: %.2e; variation: %.2e \n', res, dres) if ( ( -dres <= target_dres ) || (err_max <= target_res) ) %&& ( abs(derr) < target_derr) ) break; end end end function Fac = buildProblem(Rob,Sen,Lmk,Obs,Frm,Fac) % BUILDPROBLEM Build least squares problem's matrix H and vector b % Fac = BUILDPROBLEM(Rob,Sen,Lmk,Obs,Frm,Fac) Builds the least squares % problem's matrix H and vector b for a solution using sparse Cholesky % factorization of H. global Map % Reset Hessian and rhs vector Map.H(Map.mr,Map.mr) = 0; Map.b(Map.mr) = 0; % Iterate all factors for fac = find([Fac.used]) % Extract some pointers rob = Fac(fac).rob; sen = Fac(fac).sen; lmk = Fac(fac).lmk; frames = Fac(fac).frames; % Compute factor error, info mat, and Jacobians [Fac(fac), e, W, ~, J1, J2, r1, r2] = computeError(... Rob(rob), ... Sen(sen), ... Lmk(lmk), ... Obs(sen,lmk), ... Frm(frames), ... Fac(fac)); % Compute sparse Hessian blocks H_11 = J1' * W * J1; H_12 = J1' * W * J2; H_22 = J2' * W * J2; % Compute rhs vector blocks b1 = J1' * W * e; b2 = J2' * W * e; % Update H and b Map.H(r1,r1) = Map.H(r1,r1) + H_11; Map.H(r1,r2) = Map.H(r1,r2) + H_12; Map.H(r2,r1) = Map.H(r2,r1) + H_12'; Map.H(r2,r2) = Map.H(r2,r2) + H_22; Map.b(r1,1) = Map.b(r1,1) + b1; Map.b(r2,1) = Map.b(r2,1) + b2; end end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
errorAnalysis.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/DataManagement/errorAnalysis.m
1,434
utf_8
30b8cdc0c1a16f01ea47b9385d43e6e1
% ERRORANALYSIS Error analysis for slamtb. function err = errorAnalysis(Rob, SimRob, errfcn) err = errfcn(Rob, SimRob); % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
chi2.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/Math/chi2.m
25,986
utf_8
316d620ef54a7172615309682fd63d85
function chi2 = chi2(n,p) % CHI2 Chi square distribution % TH = CHI2(N,P) gives the critical values of the N-dimensional % Chi-squared distribuiton function for a right-tail probability area P % Copyright 2009 Joan Sola @ LAAS-CNRS. [nTab,pTab,Chi2Tab] = chi2tab(); if (n == floor(n)) % values of p if p < .001 warning('Too small probability. Assuming P=0.001') p = 0.001; elseif (p > 0.2) && (p<0.975) && (p~=0.5) warning('Poor data in table. Inaccurate results. Use P<0.2 or P>0.975.') elseif p > 0.995 warning('Too big probability. Assuming P=0.995') p = 0.995; end % values of n if (n > 1000) error('Chi2 Lookup table only up to N=1000 DOF') elseif (n > 250) && (mod(n,50)~=0) warning('Value of N-DOF not found. Innacurate results. Use N in [1:1:250,300:50:1000]') end % 2-D interpolation chi2 = interp2(pTab,nTab,Chi2Tab,p,n); else error('Dimension N must be a positive integer value in [1:1000]') end end %% Lookup tables function [DOF,PRB,TAB] = chi2tab() PRB = [0.995 0.975 0.20 0.10 0.05 0.025 0.02 0.01 0.005 0.002 0.001]; DOF = [1:250 300:50:1000]; TAB = [... 1 0.0000393 0.000982 1.642 2.706 3.841 5.024 5.412 6.635 7.879 9.550 10.828 2 0.0100 0.0506 3.219 4.605 5.991 7.378 7.824 9.210 10.597 12.429 13.816 3 0.0717 0.216 4.642 6.251 7.815 9.348 9.837 11.345 12.838 14.796 16.266 4 0.207 0.484 5.989 7.779 9.488 11.143 11.668 13.277 14.860 16.924 18.467 5 0.412 0.831 7.289 9.236 11.070 12.833 13.388 15.086 16.750 18.907 20.515 6 0.676 1.237 8.558 10.645 12.592 14.449 15.033 16.812 18.548 20.791 22.458 7 0.989 1.690 9.803 12.017 14.067 16.013 16.622 18.475 20.278 22.601 24.322 8 1.344 2.180 11.030 13.362 15.507 17.535 18.168 20.090 21.955 24.352 26.124 9 1.735 2.700 12.242 14.684 16.919 19.023 19.679 21.666 23.589 26.056 27.877 10 2.156 3.247 13.442 15.987 18.307 20.483 21.161 23.209 25.188 27.722 29.588 11 2.603 3.816 14.631 17.275 19.675 21.920 22.618 24.725 26.757 29.354 31.264 12 3.074 4.404 15.812 18.549 21.026 23.337 24.054 26.217 28.300 30.957 32.909 13 3.565 5.009 16.985 19.812 22.362 24.736 25.472 27.688 29.819 32.535 34.528 14 4.075 5.629 18.151 21.064 23.685 26.119 26.873 29.141 31.319 34.091 36.123 15 4.601 6.262 19.311 22.307 24.996 27.488 28.259 30.578 32.801 35.628 37.697 16 5.142 6.908 20.465 23.542 26.296 28.845 29.633 32.000 34.267 37.146 39.252 17 5.697 7.564 21.615 24.769 27.587 30.191 30.995 33.409 35.718 38.648 40.790 18 6.265 8.231 22.760 25.989 28.869 31.526 32.346 34.805 37.156 40.136 42.312 19 6.844 8.907 23.900 27.204 30.144 32.852 33.687 36.191 38.582 41.610 43.820 20 7.434 9.591 25.038 28.412 31.410 34.170 35.020 37.566 39.997 43.072 45.315 21 8.034 10.283 26.171 29.615 32.671 35.479 36.343 38.932 41.401 44.522 46.797 22 8.643 10.982 27.301 30.813 33.924 36.781 37.659 40.289 42.796 45.962 48.268 23 9.260 11.689 28.429 32.007 35.172 38.076 38.968 41.638 44.181 47.391 49.728 24 9.886 12.401 29.553 33.196 36.415 39.364 40.270 42.980 45.559 48.812 51.179 25 10.520 13.120 30.675 34.382 37.652 40.646 41.566 44.314 46.928 50.223 52.620 26 11.160 13.844 31.795 35.563 38.885 41.923 42.856 45.642 48.290 51.627 54.052 27 11.808 14.573 32.912 36.741 40.113 43.195 44.140 46.963 49.645 53.023 55.476 28 12.461 15.308 34.027 37.916 41.337 44.461 45.419 48.278 50.993 54.411 56.892 29 13.121 16.047 35.139 39.087 42.557 45.722 46.693 49.588 52.336 55.792 58.301 30 13.787 16.791 36.250 40.256 43.773 46.979 47.962 50.892 53.672 57.167 59.703 31 14.458 17.539 37.359 41.422 44.985 48.232 49.226 52.191 55.003 58.536 61.098 32 15.134 18.291 38.466 42.585 46.194 49.480 50.487 53.486 56.328 59.899 62.487 33 15.815 19.047 39.572 43.745 47.400 50.725 51.743 54.776 57.648 61.256 63.870 34 16.501 19.806 40.676 44.903 48.602 51.966 52.995 56.061 58.964 62.608 65.247 35 17.192 20.569 41.778 46.059 49.802 53.203 54.244 57.342 60.275 63.955 66.619 36 17.887 21.336 42.879 47.212 50.998 54.437 55.489 58.619 61.581 65.296 67.985 37 18.586 22.106 43.978 48.363 52.192 55.668 56.730 59.893 62.883 66.633 69.346 38 19.289 22.878 45.076 49.513 53.384 56.896 57.969 61.162 64.181 67.966 70.703 39 19.996 23.654 46.173 50.660 54.572 58.120 59.204 62.428 65.476 69.294 72.055 40 20.707 24.433 47.269 51.805 55.758 59.342 60.436 63.691 66.766 70.618 73.402 41 21.421 25.215 48.363 52.949 56.942 60.561 61.665 64.950 68.053 71.938 74.745 42 22.138 25.999 49.456 54.090 58.124 61.777 62.892 66.206 69.336 73.254 76.084 43 22.859 26.785 50.548 55.230 59.304 62.990 64.116 67.459 70.616 74.566 77.419 44 23.584 27.575 51.639 56.369 60.481 64.201 65.337 68.710 71.893 75.874 78.750 45 24.311 28.366 52.729 57.505 61.656 65.410 66.555 69.957 73.166 77.179 80.077 46 25.041 29.160 53.818 58.641 62.830 66.617 67.771 71.201 74.437 78.481 81.400 47 25.775 29.956 54.906 59.774 64.001 67.821 68.985 72.443 75.704 79.780 82.720 48 26.511 30.755 55.993 60.907 65.171 69.023 70.197 73.683 76.969 81.075 84.037 49 27.249 31.555 57.079 62.038 66.339 70.222 71.406 74.919 78.231 82.367 85.351 50 27.991 32.357 58.164 63.167 67.505 71.420 72.613 76.154 79.490 83.657 86.661 51 28.735 33.162 59.248 64.295 68.669 72.616 73.818 77.386 80.747 84.943 87.968 52 29.481 33.968 60.332 65.422 69.832 73.810 75.021 78.616 82.001 86.227 89.272 53 30.230 34.776 61.414 66.548 70.993 75.002 76.223 79.843 83.253 87.507 90.573 54 30.981 35.586 62.496 67.673 72.153 76.192 77.422 81.069 84.502 88.786 91.872 55 31.735 36.398 63.577 68.796 73.311 77.380 78.619 82.292 85.749 90.061 93.168 56 32.490 37.212 64.658 69.919 74.468 78.567 79.815 83.513 86.994 91.335 94.461 57 33.248 38.027 65.737 71.040 75.624 79.752 81.009 84.733 88.236 92.605 95.751 58 34.008 38.844 66.816 72.160 76.778 80.936 82.201 85.950 89.477 93.874 97.039 59 34.770 39.662 67.894 73.279 77.931 82.117 83.391 87.166 90.715 95.140 98.324 60 35.534 40.482 68.972 74.397 79.082 83.298 84.580 88.379 91.952 96.404 99.607 61 36.301 41.303 70.049 75.514 80.232 84.476 85.767 89.591 93.186 97.665 100.888 62 37.068 42.126 71.125 76.630 81.381 85.654 86.953 90.802 94.419 98.925 102.166 63 37.838 42.950 72.201 77.745 82.529 86.830 88.137 92.010 95.649 100.182 103.442 64 38.610 43.776 73.276 78.860 83.675 88.004 89.320 93.217 96.878 101.437 104.716 65 39.383 44.603 74.351 79.973 84.821 89.177 90.501 94.422 98.105 102.691 105.988 66 40.158 45.431 75.424 81.085 85.965 90.349 91.681 95.626 99.330 103.942 107.258 67 40.935 46.261 76.498 82.197 87.108 91.519 92.860 96.828 100.554 105.192 108.526 68 41.713 47.092 77.571 83.308 88.250 92.689 94.037 98.028 101.776 106.440 109.791 69 42.494 47.924 78.643 84.418 89.391 93.856 95.213 99.228 102.996 107.685 111.055 70 43.275 48.758 79.715 85.527 90.531 95.023 96.388 100.425 104.215 108.929 112.317 71 44.058 49.592 80.786 86.635 91.670 96.189 97.561 101.621 105.432 110.172 113.577 72 44.843 50.428 81.857 87.743 92.808 97.353 98.733 102.816 106.648 111.412 114.835 73 45.629 51.265 82.927 88.850 93.945 98.516 99.904 104.010 107.862 112.651 116.092 74 46.417 52.103 83.997 89.956 95.081 99.678 101.074 105.202 109.074 113.889 117.346 75 47.206 52.942 85.066 91.061 96.217 100.839 102.243 106.393 110.286 115.125 118.599 76 47.997 53.782 86.135 92.166 97.351 101.999 103.410 107.583 111.495 116.359 119.850 77 48.788 54.623 87.203 93.270 98.484 103.158 104.576 108.771 112.704 117.591 121.100 78 49.582 55.466 88.271 94.374 99.617 104.316 105.742 109.958 113.911 118.823 122.348 79 50.376 56.309 89.338 95.476 100.749 105.473 106.906 111.144 115.117 120.052 123.594 80 51.172 57.153 90.405 96.578 101.879 106.629 108.069 112.329 116.321 121.280 124.839 81 51.969 57.998 91.472 97.680 103.010 107.783 109.232 113.512 117.524 122.507 126.083 82 52.767 58.845 92.538 98.780 104.139 108.937 110.393 114.695 118.726 123.733 127.324 83 53.567 59.692 93.604 99.880 105.267 110.090 111.553 115.876 119.927 124.957 128.565 84 54.368 60.540 94.669 100.980 106.395 111.242 112.712 117.057 121.126 126.179 129.804 85 55.170 61.389 95.734 102.079 107.522 112.393 113.871 118.236 122.325 127.401 131.041 86 55.973 62.239 96.799 103.177 108.648 113.544 115.028 119.414 123.522 128.621 132.277 87 56.777 63.089 97.863 104.275 109.773 114.693 116.184 120.591 124.718 129.840 133.512 88 57.582 63.941 98.927 105.372 110.898 115.841 117.340 121.767 125.913 131.057 134.745 89 58.389 64.793 99.991 106.469 112.022 116.989 118.495 122.942 127.106 132.273 135.978 90 59.196 65.647 101.054 107.565 113.145 118.136 119.648 124.116 128.299 133.489 137.208 91 60.005 66.501 102.117 108.661 114.268 119.282 120.801 125.289 129.491 134.702 138.438 92 60.815 67.356 103.179 109.756 115.390 120.427 121.954 126.462 130.681 135.915 139.666 93 61.625 68.211 104.241 110.850 116.511 121.571 123.105 127.633 131.871 137.127 140.893 94 62.437 69.068 105.303 111.944 117.632 122.715 124.255 128.803 133.059 138.337 142.119 95 63.250 69.925 106.364 113.038 118.752 123.858 125.405 129.973 134.247 139.546 143.344 96 64.063 70.783 107.425 114.131 119.871 125.000 126.554 131.141 135.433 140.755 144.567 97 64.878 71.642 108.486 115.223 120.990 126.141 127.702 132.309 136.619 141.962 145.789 98 65.694 72.501 109.547 116.315 122.108 127.282 128.849 133.476 137.803 143.168 147.010 99 66.510 73.361 110.607 117.407 123.225 128.422 129.996 134.642 138.987 144.373 148.230 100 67.328 74.222 111.667 118.498 124.342 129.561 131.142 135.807 140.169 145.577 149.449 101 68.146 75.083 112.726 119.589 125.458 130.700 132.287 136.971 141.351 146.780 150.667 102 68.965 75.946 113.786 120.679 126.574 131.838 133.431 138.134 142.532 147.982 151.884 103 69.785 76.809 114.845 121.769 127.689 132.975 134.575 139.297 143.712 149.183 153.099 104 70.606 77.672 115.903 122.858 128.804 134.111 135.718 140.459 144.891 150.383 154.314 105 71.428 78.536 116.962 123.947 129.918 135.247 136.860 141.620 146.070 151.582 155.528 106 72.251 79.401 118.020 125.035 131.031 136.382 138.002 142.780 147.247 152.780 156.740 107 73.075 80.267 119.078 126.123 132.144 137.517 139.143 143.940 148.424 153.977 157.952 108 73.899 81.133 120.135 127.211 133.257 138.651 140.283 145.099 149.599 155.173 159.162 109 74.724 82.000 121.192 128.298 134.369 139.784 141.423 146.257 150.774 156.369 160.372 110 75.550 82.867 122.250 129.385 135.480 140.917 142.562 147.414 151.948 157.563 161.581 111 76.377 83.735 123.306 130.472 136.591 142.049 143.700 148.571 153.122 158.757 162.788 112 77.204 84.604 124.363 131.558 137.701 143.180 144.838 149.727 154.294 159.950 163.995 113 78.033 85.473 125.419 132.643 138.811 144.311 145.975 150.882 155.466 161.141 165.201 114 78.862 86.342 126.475 133.729 139.921 145.441 147.111 152.037 156.637 162.332 166.406 115 79.692 87.213 127.531 134.813 141.030 146.571 148.247 153.191 157.808 163.523 167.610 116 80.522 88.084 128.587 135.898 142.138 147.700 149.383 154.344 158.977 164.712 168.813 117 81.353 88.955 129.642 136.982 143.246 148.829 150.517 155.496 160.146 165.900 170.016 118 82.185 89.827 130.697 138.066 144.354 149.957 151.652 156.648 161.314 167.088 171.217 119 83.018 90.700 131.752 139.149 145.461 151.084 152.785 157.800 162.481 168.275 172.418 120 83.852 91.573 132.806 140.233 146.567 152.211 153.918 158.950 163.648 169.461 173.617 121 84.686 92.446 133.861 141.315 147.674 153.338 155.051 160.100 164.814 170.647 174.816 122 85.520 93.320 134.915 142.398 148.779 154.464 156.183 161.250 165.980 171.831 176.014 123 86.356 94.195 135.969 143.480 149.885 155.589 157.314 162.398 167.144 173.015 177.212 124 87.192 95.070 137.022 144.562 150.989 156.714 158.445 163.546 168.308 174.198 178.408 125 88.029 95.946 138.076 145.643 152.094 157.839 159.575 164.694 169.471 175.380 179.604 126 88.866 96.822 139.129 146.724 153.198 158.962 160.705 165.841 170.634 176.562 180.799 127 89.704 97.698 140.182 147.805 154.302 160.086 161.834 166.987 171.796 177.743 181.993 128 90.543 98.576 141.235 148.885 155.405 161.209 162.963 168.133 172.957 178.923 183.186 129 91.382 99.453 142.288 149.965 156.508 162.331 164.091 169.278 174.118 180.103 184.379 130 92.222 100.331 143.340 151.045 157.610 163.453 165.219 170.423 175.278 181.282 185.571 131 93.063 101.210 144.392 152.125 158.712 164.575 166.346 171.567 176.438 182.460 186.762 132 93.904 102.089 145.444 153.204 159.814 165.696 167.473 172.711 177.597 183.637 187.953 133 94.746 102.968 146.496 154.283 160.915 166.816 168.600 173.854 178.755 184.814 189.142 134 95.588 103.848 147.548 155.361 162.016 167.936 169.725 174.996 179.913 185.990 190.331 135 96.431 104.729 148.599 156.440 163.116 169.056 170.851 176.138 181.070 187.165 191.520 136 97.275 105.609 149.651 157.518 164.216 170.175 171.976 177.280 182.226 188.340 192.707 137 98.119 106.491 150.702 158.595 165.316 171.294 173.100 178.421 183.382 189.514 193.894 138 98.964 107.372 151.753 159.673 166.415 172.412 174.224 179.561 184.538 190.688 195.080 139 99.809 108.254 152.803 160.750 167.514 173.530 175.348 180.701 185.693 191.861 196.266 140 100.655 109.137 153.854 161.827 168.613 174.648 176.471 181.840 186.847 193.033 197.451 141 101.501 110.020 154.904 162.904 169.711 175.765 177.594 182.979 188.001 194.205 198.635 142 102.348 110.903 155.954 163.980 170.809 176.882 178.716 184.118 189.154 195.376 199.819 143 103.196 111.787 157.004 165.056 171.907 177.998 179.838 185.256 190.306 196.546 201.002 144 104.044 112.671 158.054 166.132 173.004 179.114 180.959 186.393 191.458 197.716 202.184 145 104.892 113.556 159.104 167.207 174.101 180.229 182.080 187.530 192.610 198.885 203.366 146 105.741 114.441 160.153 168.283 175.198 181.344 183.200 188.666 193.761 200.054 204.547 147 106.591 115.326 161.202 169.358 176.294 182.459 184.321 189.802 194.912 201.222 205.727 148 107.441 116.212 162.251 170.432 177.390 183.573 185.440 190.938 196.062 202.390 206.907 149 108.291 117.098 163.300 171.507 178.485 184.687 186.560 192.073 197.211 203.557 208.086 150 109.142 117.985 164.349 172.581 179.581 185.800 187.678 193.208 198.360 204.723 209.265 151 109.994 118.871 165.398 173.655 180.676 186.914 188.797 194.342 199.509 205.889 210.443 152 110.846 119.759 166.446 174.729 181.770 188.026 189.915 195.476 200.657 207.054 211.620 153 111.698 120.646 167.495 175.803 182.865 189.139 191.033 196.609 201.804 208.219 212.797 154 112.551 121.534 168.543 176.876 183.959 190.251 192.150 197.742 202.951 209.383 213.973 155 113.405 122.423 169.591 177.949 185.052 191.362 193.267 198.874 204.098 210.547 215.149 156 114.259 123.312 170.639 179.022 186.146 192.474 194.384 200.006 205.244 211.710 216.324 157 115.113 124.201 171.686 180.094 187.239 193.584 195.500 201.138 206.390 212.873 217.499 158 115.968 125.090 172.734 181.167 188.332 194.695 196.616 202.269 207.535 214.035 218.673 159 116.823 125.980 173.781 182.239 189.424 195.805 197.731 203.400 208.680 215.197 219.846 160 117.679 126.870 174.828 183.311 190.516 196.915 198.846 204.530 209.824 216.358 221.019 161 118.536 127.761 175.875 184.382 191.608 198.025 199.961 205.660 210.968 217.518 222.191 162 119.392 128.651 176.922 185.454 192.700 199.134 201.076 206.790 212.111 218.678 223.363 163 120.249 129.543 177.969 186.525 193.791 200.243 202.190 207.919 213.254 219.838 224.535 164 121.107 130.434 179.016 187.596 194.883 201.351 203.303 209.047 214.396 220.997 225.705 165 121.965 131.326 180.062 188.667 195.973 202.459 204.417 210.176 215.539 222.156 226.876 166 122.823 132.218 181.109 189.737 197.064 203.567 205.530 211.304 216.680 223.314 228.045 167 123.682 133.111 182.155 190.808 198.154 204.675 206.642 212.431 217.821 224.472 229.215 168 124.541 134.003 183.201 191.878 199.244 205.782 207.755 213.558 218.962 225.629 230.383 169 125.401 134.897 184.247 192.948 200.334 206.889 208.867 214.685 220.102 226.786 231.552 170 126.261 135.790 185.293 194.017 201.423 207.995 209.978 215.812 221.242 227.942 232.719 171 127.122 136.684 186.338 195.087 202.513 209.102 211.090 216.938 222.382 229.098 233.887 172 127.983 137.578 187.384 196.156 203.602 210.208 212.201 218.063 223.521 230.253 235.053 173 128.844 138.472 188.429 197.225 204.690 211.313 213.311 219.189 224.660 231.408 236.220 174 129.706 139.367 189.475 198.294 205.779 212.419 214.422 220.314 225.798 232.563 237.385 175 130.568 140.262 190.520 199.363 206.867 213.524 215.532 221.438 226.936 233.717 238.551 176 131.430 141.157 191.565 200.432 207.955 214.628 216.641 222.563 228.074 234.870 239.716 177 132.293 142.053 192.610 201.500 209.042 215.733 217.751 223.687 229.211 236.023 240.880 178 133.157 142.949 193.654 202.568 210.130 216.837 218.860 224.810 230.347 237.176 242.044 179 134.020 143.845 194.699 203.636 211.217 217.941 219.969 225.933 231.484 238.328 243.207 180 134.884 144.741 195.743 204.704 212.304 219.044 221.077 227.056 232.620 239.480 244.370 181 135.749 145.638 196.788 205.771 213.391 220.148 222.185 228.179 233.755 240.632 245.533 182 136.614 146.535 197.832 206.839 214.477 221.251 223.293 229.301 234.891 241.783 246.695 183 137.479 147.432 198.876 207.906 215.563 222.353 224.401 230.423 236.026 242.933 247.857 184 138.344 148.330 199.920 208.973 216.649 223.456 225.508 231.544 237.160 244.084 249.018 185 139.210 149.228 200.964 210.040 217.735 224.558 226.615 232.665 238.294 245.234 250.179 186 140.077 150.126 202.008 211.106 218.820 225.660 227.722 233.786 239.428 246.383 251.339 187 140.943 151.024 203.052 212.173 219.906 226.761 228.828 234.907 240.561 247.532 252.499 188 141.810 151.923 204.095 213.239 220.991 227.863 229.935 236.027 241.694 248.681 253.659 189 142.678 152.822 205.139 214.305 222.076 228.964 231.040 237.147 242.827 249.829 254.818 190 143.545 153.721 206.182 215.371 223.160 230.064 232.146 238.266 243.959 250.977 255.976 191 144.413 154.621 207.225 216.437 224.245 231.165 233.251 239.386 245.091 252.124 257.135 192 145.282 155.521 208.268 217.502 225.329 232.265 234.356 240.505 246.223 253.271 258.292 193 146.150 156.421 209.311 218.568 226.413 233.365 235.461 241.623 247.354 254.418 259.450 194 147.020 157.321 210.354 219.633 227.496 234.465 236.566 242.742 248.485 255.564 260.607 195 147.889 158.221 211.397 220.698 228.580 235.564 237.670 243.860 249.616 256.710 261.763 196 148.759 159.122 212.439 221.763 229.663 236.664 238.774 244.977 250.746 257.855 262.920 197 149.629 160.023 213.482 222.828 230.746 237.763 239.877 246.095 251.876 259.001 264.075 198 150.499 160.925 214.524 223.892 231.829 238.861 240.981 247.212 253.006 260.145 265.231 199 151.370 161.826 215.567 224.957 232.912 239.960 242.084 248.329 254.135 261.290 266.386 200 152.241 162.728 216.609 226.021 233.994 241.058 243.187 249.445 255.264 262.434 267.541 201 153.112 163.630 217.651 227.085 235.077 242.156 244.290 250.561 256.393 263.578 268.695 202 153.984 164.532 218.693 228.149 236.159 243.254 245.392 251.677 257.521 264.721 269.849 203 154.856 165.435 219.735 229.213 237.240 244.351 246.494 252.793 258.649 265.864 271.002 204 155.728 166.338 220.777 230.276 238.322 245.448 247.596 253.908 259.777 267.007 272.155 205 156.601 167.241 221.818 231.340 239.403 246.545 248.698 255.023 260.904 268.149 273.308 206 157.474 168.144 222.860 232.403 240.485 247.642 249.799 256.138 262.031 269.291 274.460 207 158.347 169.047 223.901 233.466 241.566 248.739 250.900 257.253 263.158 270.432 275.612 208 159.221 169.951 224.943 234.529 242.647 249.835 252.001 258.367 264.285 271.574 276.764 209 160.095 170.855 225.984 235.592 243.727 250.931 253.102 259.481 265.411 272.715 277.915 210 160.969 171.759 227.025 236.655 244.808 252.027 254.202 260.595 266.537 273.855 279.066 211 161.843 172.664 228.066 237.717 245.888 253.122 255.302 261.708 267.662 274.995 280.217 212 162.718 173.568 229.107 238.780 246.968 254.218 256.402 262.821 268.788 276.135 281.367 213 163.593 174.473 230.148 239.842 248.048 255.313 257.502 263.934 269.912 277.275 282.517 214 164.469 175.378 231.189 240.904 249.128 256.408 258.601 265.047 271.037 278.414 283.666 215 165.344 176.283 232.230 241.966 250.207 257.503 259.701 266.159 272.162 279.553 284.815 216 166.220 177.189 233.270 243.028 251.286 258.597 260.800 267.271 273.286 280.692 285.964 217 167.096 178.095 234.311 244.090 252.365 259.691 261.898 268.383 274.409 281.830 287.112 218 167.973 179.001 235.351 245.151 253.444 260.785 262.997 269.495 275.533 282.968 288.261 219 168.850 179.907 236.391 246.213 254.523 261.879 264.095 270.606 276.656 284.106 289.408 220 169.727 180.813 237.432 247.274 255.602 262.973 265.193 271.717 277.779 285.243 290.556 221 170.604 181.720 238.472 248.335 256.680 264.066 266.291 272.828 278.902 286.380 291.703 222 171.482 182.627 239.512 249.396 257.758 265.159 267.389 273.939 280.024 287.517 292.850 223 172.360 183.534 240.552 250.457 258.837 266.252 268.486 275.049 281.146 288.653 293.996 224 173.238 184.441 241.592 251.517 259.914 267.345 269.584 276.159 282.268 289.789 295.142 225 174.116 185.348 242.631 252.578 260.992 268.438 270.681 277.269 283.390 290.925 296.288 226 174.995 186.256 243.671 253.638 262.070 269.530 271.777 278.379 284.511 292.061 297.433 227 175.874 187.164 244.711 254.699 263.147 270.622 272.874 279.488 285.632 293.196 298.579 228 176.753 188.072 245.750 255.759 264.224 271.714 273.970 280.597 286.753 294.331 299.723 229 177.633 188.980 246.790 256.819 265.301 272.806 275.066 281.706 287.874 295.465 300.868 230 178.512 189.889 247.829 257.879 266.378 273.898 276.162 282.814 288.994 296.600 302.012 231 179.392 190.797 248.868 258.939 267.455 274.989 277.258 283.923 290.114 297.734 303.156 232 180.273 191.706 249.908 259.998 268.531 276.080 278.354 285.031 291.234 298.867 304.299 233 181.153 192.615 250.947 261.058 269.608 277.171 279.449 286.139 292.353 300.001 305.443 234 182.034 193.524 251.986 262.117 270.684 278.262 280.544 287.247 293.472 301.134 306.586 235 182.915 194.434 253.025 263.176 271.760 279.352 281.639 288.354 294.591 302.267 307.728 236 183.796 195.343 254.063 264.235 272.836 280.443 282.734 289.461 295.710 303.400 308.871 237 184.678 196.253 255.102 265.294 273.911 281.533 283.828 290.568 296.828 304.532 310.013 238 185.560 197.163 256.141 266.353 274.987 282.623 284.922 291.675 297.947 305.664 311.154 239 186.442 198.073 257.179 267.412 276.062 283.713 286.016 292.782 299.065 306.796 312.296 240 187.324 198.984 258.218 268.471 277.138 284.802 287.110 293.888 300.182 307.927 313.437 241 188.207 199.894 259.256 269.529 278.213 285.892 288.204 294.994 301.300 309.058 314.578 242 189.090 200.805 260.295 270.588 279.288 286.981 289.298 296.100 302.417 310.189 315.718 243 189.973 201.716 261.333 271.646 280.362 288.070 290.391 297.206 303.534 311.320 316.859 244 190.856 202.627 262.371 272.704 281.437 289.159 291.484 298.311 304.651 312.450 317.999 245 191.739 203.539 263.409 273.762 282.511 290.248 292.577 299.417 305.767 313.580 319.138 246 192.623 204.450 264.447 274.820 283.586 291.336 293.670 300.522 306.883 314.710 320.278 247 193.507 205.362 265.485 275.878 284.660 292.425 294.762 301.626 307.999 315.840 321.417 248 194.391 206.274 266.523 276.935 285.734 293.513 295.855 302.731 309.115 316.969 322.556 249 195.276 207.186 267.561 277.993 286.808 294.601 296.947 303.835 310.231 318.098 323.694 250 196.161 208.098 268.599 279.050 287.882 295.689 298.039 304.940 311.346 319.227 324.832 300 240.663 253.912 320.397 331.789 341.395 349.874 352.425 359.906 366.844 375.369 381.425 350 285.608 300.064 372.051 384.306 394.626 403.723 406.457 414.474 421.900 431.017 437.488 400 330.903 346.482 423.590 436.649 447.632 457.305 460.211 468.724 476.606 486.274 493.132 450 376.483 393.118 475.035 488.849 500.456 510.670 513.736 522.717 531.026 541.212 548.432 500 422.303 439.936 526.401 540.930 553.127 563.852 567.070 576.493 585.207 595.882 603.446 550 468.328 486.910 577.701 592.909 605.667 616.878 620.241 630.084 639.183 650.324 658.215 600 514.529 534.019 628.943 644.800 658.094 669.769 673.270 683.516 692.982 704.568 712.771 650 560.885 581.245 680.134 696.614 710.421 722.542 726.176 736.807 746.625 758.639 767.141 700 607.380 628.577 731.280 748.359 762.661 775.211 778.972 789.974 800.131 812.556 821.347 750 653.997 676.003 782.386 800.043 814.822 827.785 831.670 843.029 853.514 866.336 875.404 800 700.725 723.513 833.456 851.671 866.911 880.275 884.279 895.984 906.786 919.991 929.329 850 747.554 771.099 884.492 903.249 918.937 932.689 936.808 948.848 959.957 973.534 983.133 900 794.475 818.756 935.499 954.782 970.904 985.032 989.263 1001.630 1013.036 1026.974 1036.826 950 841.480 866.477 986.478 1006.272 1022.816 1037.311 1041.651 1054.334 1066.031 1080.320 1090.418 1000 888.564 914.257 1037.431 1057.724 1074.679 1089.531 1093.977 1106.969 1118.948 1133.579 1143.917]; % remove DOF column TAB = TAB(:,2:end); % add the P=0.5 column PRB = [PRB(1:2) 0.500 PRB(3:end)]; TAB = [TAB(:,1:2) DOF' TAB(:,3:end)]; end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
vecnorm.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/Math/vecnorm.m
1,655
utf_8
2ad7cbcde8168283c2f19ee1d7142ae4
function [n, N_v] = vecnorm(v) % VECNORM Vector norm, with Jacobian % VECNORM(V) is the same as NORM(V) % % [n, N_v] = VECNORM(V) returns also the Jacobian. if nargout == 1 n = sqrt(v'*v); else n = sqrt(v'*v); N_v = v'/n; end end %% function f() %% syms v1 v2 real v = [v1;v2]; [n,N_v] = vecnorm(v); N_v - jacobian(n,v) end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
toFrameHmg.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/Points/toFrameHmg.m
3,330
utf_8
09b1d98499875375d82a33c3d3dd2323
function [hf,HF_f,HF_h] = toFrameHmg(F,h) % TOFRAMEHMG To-frame transformation for homogeneous coordinates % P = TOFRAMEHMG(F,PF) transforms homogeneous point P from the global % frame to local frame F. % % [p,Pf,Ppf] = ... returns the Jacobians wrt F and PF. % Copyright 2008-2011 Joan Sola @ LAAS-CNRS. [t,q,R] = splitFrame(F) ; iF = [R' -R'*t ; 0 0 0 1]; hf = iF*h; if nargout > 1 [x,y,z] = split(t); [a,b,c,d] = split(q); [hx,hy,hz,ht] = split(h); HF_f = [... [ -ht*(a^2 + b^2 - c^2 - d^2), (-2)*ht*(a*d + b*c), 2*ht*(a*c - b*d), 2*a*hx - 2*c*hz + 2*d*hy - 2*ht*(a*x - c*z + d*y), 2*b*hx + 2*c*hy + 2*d*hz - 2*ht*(b*x + c*y + d*z), 2*b*hy - 2*a*hz - 2*c*hx + 2*ht*(a*z - b*y + c*x), 2*a*hy + 2*b*hz - 2*d*hx - 2*ht*(a*y + b*z - d*x)] [ 2*ht*(a*d - b*c), -ht*(a^2 - b^2 + c^2 - d^2), (-2)*ht*(a*b + c*d), 2*a*hy + 2*b*hz - 2*d*hx - 2*ht*(a*y + b*z - d*x), 2*a*hz - 2*b*hy + 2*c*hx - 2*ht*(a*z - b*y + c*x), 2*b*hx + 2*c*hy + 2*d*hz - 2*ht*(b*x + c*y + d*z), 2*c*hz - 2*a*hx - 2*d*hy + 2*ht*(a*x - c*z + d*y)] [ (-2)*ht*(a*c + b*d), 2*ht*(a*b - c*d), -ht*(a^2 - b^2 - c^2 + d^2), 2*a*hz - 2*b*hy + 2*c*hx - 2*ht*(a*z - b*y + c*x), 2*d*hx - 2*b*hz - 2*a*hy + 2*ht*(a*y + b*z - d*x), 2*a*hx - 2*c*hz + 2*d*hy - 2*ht*(a*x - c*z + d*y), 2*b*hx + 2*c*hy + 2*d*hz - 2*ht*(b*x + c*y + d*z)] [ 0, 0, 0, 0, 0, 0, 0]]; HF_h = iF; end end %% function f() %% syms x y z a b c d hx hy hz ht real F.x=[x;y;z;a;b;c;d]; F=updateFrame(F); h = [hx;hy;hz;ht]; hf = toFrameHmg(F,h) HF_f = simplify(jacobian(hf,F.x)) HF_h = simplify(jacobian(hf,h)) [hf,HF_f,HF_h] = toFrameHmg(F,h); simplify(HF_f - jacobian(hf,F.x)) simplify(HF_h - jacobian(hf,h)) %% end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
printGraph.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/HighLevel/printGraph.m
2,867
utf_8
d2905fd327eb5bb75af74239eeda0da4
function printGraph(Rob,Sen,Lmk,Trj,Frm,Fac) global Map fprintf('--------------------------\n') sprs = round( ( nnz( Map.H(Map.used,Map.used) ) / sum(Map.used)^2 ) * 100); fprintf('Map size: %3d; sparse: %d%%\n', sum(Map.used), sprs) for rob = [Rob.rob] printRob(Rob(rob),1); for sen = Rob(rob).sensors printSen(Sen(sen),2); end printTrj(Trj(rob),2); for i = Trj(rob).head:-1:Trj(rob).head-Trj(rob).length+1 frm = mod(i-1, Trj(rob).maxLength)+1; printFrm(Frm(frm),3); for fac = [Frm(frm).factors] printFac(Fac(fac),4); end end end for lmk = find([Lmk.used]) printLmk(Lmk(lmk),1); end end function tbs = tabs(k, tb) if nargin == 1 tb = ' '; end tbs = ''; for i = 1:k tbs = [tbs tb] ; end end function printRob(Rob,ntabs) fprintf('%sRob: %2d\n', tabs(ntabs), Rob.rob) end function printSen(Sen,ntabs) fprintf('%sSen: %2d\n', tabs(ntabs), Sen.sen) end function printLmk(Lmk,ntabs) fprintf('%sLmk: %2d (%2d)\n', tabs(ntabs), Lmk.lmk, Lmk.id) end function printTrj(Trj,ntabs) fprintf('%sTrj: head <- %s <-tail\n', tabs(ntabs), num2str(mod((Trj.head:-1:Trj.head-Trj.length+1)-1,Trj.maxLength)+1)) end function printFrm(Frm,ntabs) fprintf('%sFrm: %2d (%3d)\n', tabs(ntabs), Frm.frm, Frm.id) end function printFac(Fac,ntabs) fprintf('%sFac: %3d, %s', tabs(ntabs), Fac.fac, Fac.type(1:4)) if (isempty(Fac.lmk)) % abs or motion fprintf(', frm: ') fprintf('%3d', Fac.frames) else % measurement fprintf(', lmk: %2d', Fac.lmk) end fprintf('\n') end % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE
github
rising-turtle/slam_matlab-master
invDistortion.m
.m
slam_matlab-master/libs_dir/SLAM_courses/slamtb/Observations/invDistortion.m
4,597
utf_8
a894c5170cd896e4c51acc53898dc52e
function kc = invDistortion(kd,n,cal,draw) % INVDISTORTION Radial distortion correction calibration. % % Kc = INVDISTORTION(Kd,n) computes the least squares optimal set % of n parameters of the correction radial distortion function % for a normalized camera: % % r = c(rd) = rd (1 + c2 rd^2 + ... + c2n rd^2n) % % that best approximates the inverse of the distortion function % % rd = d(r) = r (1 + d2 r^2 + d4 r^4 + ...) % % which can be of any length. % % Kc = INVDISTORTION(Kd,n,cal) accepts the intrinsic parameters % of the camera cal = [u_0, v_0, a_u, a_v]. % % The format of the distortion and correction vectors is % % Kd = [d2, d4, d6, ...] % Kc = [c2, c4, ..., c2n] % % Kc = INVDISTORTION(...,DRAW) with DRAW~=0 additionally plots the % distortion and correction mappings r_d=d(r) and r=c(r_d) % and the error (r - r_d). % % See also PINHOLE, INVPINHOLE. % Copyright 2008-2009 Joan Sola @ LAAS-CNRS. if numel(kd) == 0 kc = []; else if nargin == 2 || isempty(cal) cal = [1 1 1 1]; end % fprintf(' Obtaining correction vector from distortion vector...'); rmax2 = (cal(1)/cal(3))^2 + (cal(2)/cal(4))^2; rmax = sqrt(rmax2); % maximum radius in normalized coordinates rdmax = 1.1*rmax; % N=101 sampling points of d(r) rc = [0:.01*rdmax:rdmax]; % rc is the undistorted radius vector rd = c2d(kd,rc); % rd is the distorted radius vector % 1. non-linear least-squares method (for other than radial distortion) % comment out for testing against psudo-inverse method % x0 = zeros(1,n); % kc = lsqnonlin(@(x) fun(x,rc,rd),x0); % 2. pseudo-inverse method (indicated for radial distortion) % we solve the system A*Kc = rc-rd via Kc = pinv(A)*(rc-rd). A = []; % construction of A for Kc of length n for i = 1:n A = [A rd'.^(2*i+1)]; end B = pinv(A); kc = (rc-rd)*B'; % All transposed because we are working with row-vectors % fprintf(' OK.\n'); if nargin == 4 && draw % normalized error erc = d2c(kc,rd); % correction and distortion functions figure(9) subplot(3,1,[1 2]) plot(rc,rd,'linewidth',2) title('Distortion mapping'),xlabel('r'),ylabel('rd'),grid set(gca,'xlim',[0 rdmax]) hold on plot(erc,rd,'r--','linewidth',2) hold off % error function (in pixels) subplot(3,1,3) plot(rc,cal(3)*(rc-erc)) title('Correction error [pix]'),xlabel('r'),ylabel('error'),grid set(gca,'xlim',[0 rdmax]) % error values err_max = cal(3)*max (abs(rc-erc)); err_mean = cal(3)*mean(rc-erc); err_std = cal(3)*std (rc-erc); fprintf(1,' Errors. Max: %.2f | Mean: %.2f | Std: %.2f pixels.\n',err_max,err_mean,err_std) end end % Necessary functions % corr- to dis- conversion function rd = c2d(kd,rc) c = ones(1,length(rc)); for i=1:length(kd) c = c+kd(i)*rc.^(2*i); end rd = rc.*c; % dis- to corr- conversion function rc = d2c(kc,rd) c = ones(1,length(rd)); for i=1:length(kc) c = c+kc(i)*rd.^(2*i); end rc = rd.*c; % error function (only for non-linear least squares - normally % not necessary) function e = fun(kc,rc,rd) e = d2c(kc,rd) - rc; % ========== End of function - Start GPL license ========== % # START GPL LICENSE %--------------------------------------------------------------------- % % This file is part of SLAMTB, a SLAM toolbox for Matlab. % % SLAMTB is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % SLAMTB is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with SLAMTB. If not, see <http://www.gnu.org/licenses/>. % %--------------------------------------------------------------------- % SLAMTB is Copyright: % Copyright (c) 2008-2010, Joan Sola @ LAAS-CNRS, % Copyright (c) 2010-2013, Joan Sola, % Copyright (c) 2014-2015, Joan Sola @ IRI-UPC-CSIC, % SLAMTB is Copyright 2009 % by Joan Sola, Teresa Vidal-Calleja, David Marquez and Jean Marie Codol % @ LAAS-CNRS. % See on top of this file for its particular copyright. % # END GPL LICENSE