plateform
stringclasses
1 value
repo_name
stringlengths
13
113
name
stringlengths
3
74
ext
stringclasses
1 value
path
stringlengths
12
229
size
int64
23
843k
source_encoding
stringclasses
9 values
md5
stringlengths
32
32
text
stringlengths
23
843k
github
BrainStormCenter/Psychometric-master
myregress.m
.m
Psychometric-master/myregress.m
2,565
utf_8
93be5fda7f4d4faaeca5c51dcfe72fdd
% myregress.m % % purpose: regression statistics % usage: [d] = myregress(x, y, m1,dispfit) % x = column vector of independent variable % y = column vector of dependent variable % m1 = slope to check difference of % m = slope of regression line % b = y-intercept % r2 = coefficient of determination % pm = p-value for slope % pb = p-value for y-intercept % by: justin gardner % date: 9/3/98 function [d b r2 pm pb] = myregress(x, y,m1,dispfit) if ((nargin <2) || (nargin > 4)) help myregress, return, end if (nargin <3) m1 = 0; end if (nargin <4) dispfit = 0; end if (dispfit == 1) dispfit = 'k-'; end % make into column vectors if (size(x,1)==1),x=x';,end if (size(y,1)==1),y=y';,end % denan goodvals = find(~isnan(x) & ~isnan(y)); x = x(goodvals); y = y(goodvals); n = length(x); if (n <= 2) d.b = nan;d.m = nan;d.r2 = nan;d.pm = nan;d.pb = nan;d.r = nan; return end % precalculate sum terms sumx = sum(x); sumy = sum(y); sumx2 = sum(x.^2); sumy2 = sum(y.^2); sumxy = sum(x.*y); % use formulas to calculate slope and y-intercept m = (n*sumxy-sumx*sumy)/(n*sumx2-sumx^2); b = (sumy*sumx2 - sumx*sumxy)/(n*sumx2 - sumx^2); % find least squares fit for a line of the form y = m*x + b %A = x; %A(:,2) = 1; %coef = ((A'*A)^-1)*A'*y; %m = coef(1); %b = coef(2); % calculate r^2 num = ((m*x + b) - y).^2; denom = (y-mean(y)).^2; r2 = 1 - (sum(num)/sum(denom)); % calculate standard error of the estimate Sx = std(x); Sy = std(y); Syx = sqrt(((n-1)/(n-2))*(Sy^2-(m^2)*Sx^2)); % calculate standard error of the slope Sm = (1/sqrt(n-1))*(Syx/Sx); % calculate standard error of the y-intercept Sb = Syx * sqrt((1/n) + (mean(x)^2)/((n-1)*Sx^2)); if (n <= 2), pm = -1;, pb = -1;, return;, end; % calculate t-statistic and p-value for slope % note, use incomplete beta function because % matlab's tpdf function gives strange results. Tm = (m-m1)/Sm; if isnan(Tm) pm = nan; else pm = betainc((n-2)/((n-2)+Tm^2),(n-2)/2,.5); end % calculate t-statistic and p-value for y-intercept Tb = b/Sb; pb = betainc((n-2)/((n-2)+Tb^2),(n-2)/2,.5); % get all stats into structure d.m = m;d.b = b;d.r2 = r2;d.pm = pm;d.pb = pb; % Straight-forward of computing regression coefficient %d.r = 0; %for i = 1:n % d.r = d.r+(x(i)-mean(x))*(y(i)-mean(y)) %end %d.r = d.r/((n-1)*Sx*Sy); % r is related to slope by: d.r = d.m*Sx/Sy; % plot the results on current axis if (dispfit) a = axis; hold on plot([a(1) a(2)],b+m*[a(1) a(2)],dispfit); end if nargout > 1 d = d.m; end
github
BrainStormCenter/Psychometric-master
JC_FCcalc.m
.m
Psychometric-master/JC_FCcalc.m
4,861
utf_8
67c70b06521404774c4756de9cd5cbc1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % CREATED BY: JOCHEN WEBER % % CREATED ON: 2016-11-25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % JC_FCcalc computes one map for each VOI-by-VTC combination, such that % for each VOI in the VOI files list, a map is written out. function JC_FCcalc(fcfiles, roifiles) % JC_FCCALC Calculate functional connectivity maps % JC_FCCALC(FCFILES, ROIFILES) calculates the functional connectivity % between the mean of each ROI mask file (averaged across voxels) and % the functional connectivity files in FCFILES. % % Note: the files MUST already be in the same space! % requires CHAR or CELL input if ischar(fcfiles) fcfiles = cellstr(fcfiles); elseif ~iscell(fcfiles) error('JCfunc:calc:invalidArgument', 'Invalid FCFILES argument.'); end fcfiles = fcfiles(:); if ~all(cellfun(@ischar, fcfiles)) || any(cellfun('isempty', fcfiles)) || ... any(cellfun('isempty', regexpi(fcfiles, '\.nii$'))) || ... sum(cellfun(@exist, fcfiles)) ~= (2 * numel(fcfiles)) error('JCfunc:calc:invalidArgument', 'Invalid FCFILES argument.'); end if ischar(roifiles) roifiles = cellstr(roifiles); elseif ~iscell(roifiles) error('JCfunc:calc:invalidArgument', 'Invalid ROIFILES argument.'); end roifiles = roifiles(:); if ~all(cellfun(@ischar, roifiles)) || any(cellfun('isempty', roifiles)) || ... any(cellfun('isempty', regexpi(roifiles, '\.nii$'))) || ... sum(cellfun(@exist, roifiles)) ~= (2 * numel(roifiles)) error('JCfunc:calc:invalidArgument', 'Invalid FCFILES argument.'); end % iterate over ROI files roiinfo = cell(numel(roifiles), 4); for fc = 1:numel(roifiles) roivoi = spm_vol([roifiles{fc} ',1']); roidata = spm_read_vols(roivoi); roiinfo{fc, 1} = find(roidata(:) >= 0.5); roiinfo{fc, 2} = roivoi.dim; roiinfo{fc, 3} = roivoi.mat; [roipath, roiinfo{fc, 4}] = fileparts(roifiles{fc}); end if fc > 1 && (any(any(diff(cat(3, roiinfo{:, 2}), 1, 3), 3), 2) || ... any(any(any(diff(cat(3, roiinfo{:, 3}), 1, 3), 1), 2))) error('JCfunc:calc:invalidArgument', 'ROI files must match in space.'); end % iterate over FC files for fc = 1:numel(fcfiles) % try try % for new filename [fcpath, fcname] = fileparts(fcfiles{fc}); if isempty(fcpath) fcpath = pwd; end % load file fcvols = spm_vol(fcfiles{fc}); nvols = numel(fcvols); if nvols < 20 || ~isequal(fcvols(1).dim, roiinfo{1, 2}) || ... ~isequal(fcvols(1).mat, roiinfo{1, 3}) warning('Jcfunc:calc:invalidFile', 'Bad FC file: %s', fcfiles{fc}); continue; end % load data fcdata = spm_read_vols(fcvols); % transpose szdata = size(fcdata); fcdata = reshape(fcdata, prod(szdata(1:3)), szdata(4)); udata = ~any(isinf(fcdata) | isnan(fcdata), 2) & any(fcdata ~= 0, 2); % for each ROI for rc = 1:numel(roifiles) % update udata mdata = false(size(udata)); mdata(roiinfo{rc, 1}) = true; mdata = mdata & udata; % don't compute if no good voxels for this ROI if ~any(mdata(:)) rdata = reshape(NaN .* ones(size(mdata)), szdata(1:3)); % compute else rdata = ztrans(mean(fcdata(mdata(:), :))', 1); rdata = reshape(atanh((1 / (nvols - 1)) .* ... sum(fcdata * sparse(1:nvols, 1:nvols, rdata, nvols, nvols, nvols), 2)), ... szdata(1:3)); end % create volume rvolname = [fcpath filesep 'z' fcname '_' roiinfo{rc, 4} '.nii']; fprintf('Writing %s...\n', rvolname); rvol = spm_create_vol( ... struct('fname', rvolname, 'dim', szdata(1:3), 'dt', [64, 0], ... 'pinfo', [1; 0; 352], 'mat', roiinfo{1, 3}, 'n', [1, 1], ... 'descrip', sprintf('FC (%s:%s)', fcname, roiinfo{rc, 4}))); spm_write_vol(rvol, rdata); end % error handling catch eobj warning(eobj.identifier, eobj.message); end end %% sub-functions % ztrans (see @neuroelf/private/ztrans for comments) function ztc = ztrans(tc, dim) ts = size(tc); td = ts(dim); if dim == 1 tc = reshape(tc, ts(1), prod(ts(2:end))); elseif dim > 2 || numel(ts) > 2 if dim == numel(ts) tc = reshape(tc, prod(ts(1:dim-1)), td); else tc = reshape(tc, prod(ts(1:dim-1)), td, prod(ts(dim+1:end))); end dim = 2; end if dim == 1 sref = {ones(1, td), ':'}; elseif numel(ts) == 2 sref = {':', ones(1, td)}; else sref = {':', ones(1, td), ':'}; end zsh = sum(tc, dim) ./ td; ztc = tc - zsh(sref{:}); zf = 1 ./ sqrt(sum((1 / (td - 1)) .* (ztc .* ztc), dim)); zf(isinf(zf) | isnan(zf)) = 0; ztc = reshape(ztc .* zf(sref{:}), ts);
github
BrainStormCenter/Psychometric-master
s02_preprocessing.m
.m
Psychometric-master/automated_processing/s02_preprocessing.m
13,367
utf_8
ce0ca9eeba4a71fbc1137f1f9e1daa26
% % CREATED BY: JOCHEN WEBER % CREATED ON: 11/22/16 % % MODIFIED BY: JASON CRAGGS % MODIFIED ON: 2019-05-09 % % MODIFIED BY: JACOB GOTBERG % MODIFIED ON: 2019-03-02 % % PURPOSE: PREPROCESS FMRI SCANS FOR ANALYSIS % % USAGE: matlab -r "prog 2_preprocessing.m dirname" % %'/storage/hpc/group/sleeplab/preprocessed/SPIN2_013_V1_unknown' function []=s02_preprocessing(dirname) disp("*** Starting 2_preprocessing ***") fprintf("Pre Processing file %s\n", dirname) % initialize SPM defaults and job manager disp("Loading SPM12") spm12path = '/storage/hpc/group/sleeplab/software/spm12'; addpath(spm12path) spm('defaults','FMRI'); spm_jobman('initcfg'); clear matlabbatch; disp("SPM12 Loaded") % check SPM version if ~strcmpi(spm('ver'), 'spm12') error('spm:version:wrongSPMVersion', 'This script requires SPM12.'); end % configure root path and subject pattern, as well as file patterns anatpattern = 'SPIN2_*_t1_*.nii'; funcpattern = 'SPIN2_*_fMRI_*.nii'; % set variables, number of volumes and functional slices, TR nvols = 120; nslices = 36; TR = 2.46; % SLICE ACQUISITION ORDER IS INTERLEAVED BUT THE % FIRST SLICE ACQUIRED IS SLICE #2; THEREFORE THE % CORRECT SPM SPECIFICATION IS [2:2:42 1:2:42] % slice aquisition order (interleaved bottom) and reference slice if mod(nslices, 2) == 1 sliceorder = [1:2:nslices, 2:2:nslices]; else sliceorder = [2:2:nslices, 1:2:nslices]; end refslice = sliceorder(1); % reslice voxel size and bounding box wvox = 2; wbbox = [-78, -112, -70; 78, 76, 85]; % smoothing kernel (EPI) epismk = 6; % compute TA TA = TR - (TR / nslices); % set primary path cd(dirname); % hard code to 5 per protocol at MRI machine %runz = dir('*fMRI*'); numruns = 5; %size(runz, 1) % gzip -d everything gzipfiles = dir('*.gz'); if ~isempty(gzipfiles) system('gzip -d *.gz'); end % locate files anatfile = dir(anatpattern); funcfiles = dir(funcpattern); if numel(anatfile) ~= 1 || numel(funcfiles) ~= numruns warning('spm:prepro:invalidNumberOfFiles', ... 'Number of files incorrect for %s.', dirname); return end if exist(['swa' funcfiles(end).name], 'file') == 2 fprintf('%s already preprocessed.\n', dirname); return end % check number of slices vol = spm_vol(funcfiles(1).name); if vol(1).dim(3) ~= nslices warning('spm:prepro:invalidNumberOfSlices', ... 'Number of slices mismatch for %s.', dirname); return end % change filetype of functional data to float32 (reduce precision loss) for fc = 1:numruns vol = spm_vol(funcfiles(fc).name); if vol(1).dt(1) == 16 continue; end fprintf('Converting %s in %s to float32...\n', funcfiles(fc).name, dirname); voldata = spm_read_vols(vol); [vol.dt] = deal([16, 0]); for vc = 1:numel(vol) vol(vc).pinfo(3) = vol(1).pinfo(3) + (vc - 1) * prod([4, vol(1).dim]); end delete(funcfiles(fc).name); for vc = 1:numel(vol) spm_write_vol(vol(vc), voldata(:, :, :, vc)); end end % smooth the structural %matlabbatch{1}.spm.spatial.smooth.data = {'/storage/hpc/group/sleeplab/preprocessed/SPIN2_013_V1_unknown/SPIN2_013_t1_space_sag_p2_iso_s02.nii,1'}; anat_file = fullfile(dirname, anatfile.name); file_to_smooth = strcat(anat_file, ",1"); anat = cellstr(file_to_smooth); matlabbatch{1}.spm.spatial.smooth.data = anat; matlabbatch{1}.spm.spatial.smooth.fwhm = [12 12 12]; matlabbatch{1}.spm.spatial.smooth.dtype = 0; matlabbatch{1}.spm.spatial.smooth.im = 0; matlabbatch{1}.spm.spatial.smooth.prefix = 's'; fprintf('Smoothing %s in %s...\n', anatfile.name, dirname); spm_jobman('run', matlabbatch); %spm_jobman('interactive',matlabbatch); clear matlabbatch; % coregister smoothed struct to old T1 template sanat_file = fullfile(dirname, strcat("s",anatfile.name)); sanat = cellstr(sanat_file); matlabbatch{1}.spm.spatial.coreg.estimate.ref = {[spm12path '/toolbox/OldNorm/T1.nii,1']}; matlabbatch{1}.spm.spatial.coreg.estimate.source = sanat; matlabbatch{1}.spm.spatial.coreg.estimate.other = anat; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi'; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4, 2]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 ... 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7, 7]; fprintf('Coregistering (roughly) s%s in %s to T1 template...\n', anatfile.name, dirname); spm_jobman('run', matlabbatch); clear matlabbatch; %delete(sanat); % segment the structural def_file = fullfile(dirname, strcat("y_", anatfile.name)); DefField = cellstr(def_file); manat_file = fullfile(dirname, strcat("m", anatfile.name)); manat = cellstr(fullfile(dirname, strcat("m", anatfile.name))); tpms = repmat({[spm12path filesep 'tpm' filesep 'TPM.nii,']}, 1, 6); for tc = 1:6 tpms{tc} = {[tpms{tc} char(48+tc)]}; end matlabbatch{1}.spm.spatial.preproc.channel.vols = anat; matlabbatch{1}.spm.spatial.preproc.channel.biasreg = 0.001; matlabbatch{1}.spm.spatial.preproc.channel.biasfwhm = 60; matlabbatch{1}.spm.spatial.preproc.channel.write = [0, 1]; matlabbatch{1}.spm.spatial.preproc.tissue = struct('tpm', tpms, ... 'ngaus', {1, 1, 2, 3, 4, 2}, ... 'native', {[1, 1], [1, 1], [1, 1], [0, 0], [0, 0], [0, 0]}, ... 'warped', {[0, 0], [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]}); matlabbatch{1}.spm.spatial.preproc.warp.mrf = 1; matlabbatch{1}.spm.spatial.preproc.warp.cleanup = 1; matlabbatch{1}.spm.spatial.preproc.warp.reg = [0, 0.001, 0.5, 0.05, 0.2]; matlabbatch{1}.spm.spatial.preproc.warp.affreg = 'mni'; matlabbatch{1}.spm.spatial.preproc.warp.fwhm = 0; matlabbatch{1}.spm.spatial.preproc.warp.samp = 3; matlabbatch{1}.spm.spatial.preproc.warp.write = [1, 1]; if exist(def_file, 'file') ~= 2 || exist(manat_file, 'file') ~= 2 spm_jobman('run', matlabbatch); end clear matlabbatch; % normalize the segmented structural to T1 template matlabbatch{1}.spm.spatial.normalise.write.subj.def = DefField; matlabbatch{1}.spm.spatial.normalise.write.subj.resample = manat; matlabbatch{1}.spm.spatial.normalise.write.woptions.bb = ... [-78, -112, -70; 78, 76, 85]; matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = [1 1 1]; matlabbatch{1}.spm.spatial.normalise.write.woptions.interp = 4; matlabbatch{1}.spm.spatial.normalise.write.woptions.prefix = 'w'; fprintf('Warping anatomical %s in %s to MNI space...\n', anatfile.name, dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % skull strip the segmented structural c1 = fullfile(dirname, strcat("c1", anatfile.name)); c2 = fullfile(dirname, strcat("c2", anatfile.name)); c3 = fullfile(dirname, strcat("c3", anatfile.name)); sx = ['xm' anatfile.name]; matlabbatch{1}.spm.util.imcalc.input = cellstr([manat; c1; c2; c3]); matlabbatch{1}.spm.util.imcalc.output = sx; matlabbatch{1}.spm.util.imcalc.outdir = {''}; matlabbatch{1}.spm.util.imcalc.expression = 'i1.*((i2+i3+i4)>=.5)'; matlabbatch{1}.spm.util.imcalc.var = struct('name', {}, 'value', {}); matlabbatch{1}.spm.util.imcalc.options.dmtx = 0; matlabbatch{1}.spm.util.imcalc.options.mask = 0; matlabbatch{1}.spm.util.imcalc.options.interp = 1; matlabbatch{1}.spm.util.imcalc.options.dtype = 4; fprintf('Skull stripping m%s in %s...\n', anatfile.name, dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % generate func file names fprintf('Starting func file names'); funcfiles = {strcat('/', funcfiles.name)}; meanfuncfile = sprintf('%smeana%s,1', dirname, funcfiles{1}); smeanfuncfile = sprintf('%ssmeana%s,1', dirname, funcfiles{1}); afuncfiles = funcfiles; wafuncfiles = funcfiles; for fc = 1:numruns disp(fc); funcfiles{fc} = repmat(funcfiles(fc), nvols, 1); afuncfiles{fc} = funcfiles{fc}; wafuncfiles{fc} = funcfiles{fc}; for vc = 1:nvols funcfiles{fc}{vc} = sprintf('%s%s,%d', dirname, funcfiles{fc}{vc}, vc); afuncfiles{fc}{vc} = sprintf('%sa%s,%d', dirname, afuncfiles{fc}{vc}, vc); wafuncfiles{fc}{vc} = sprintf('%swa%s,%d', dirname, wafuncfiles{fc}{vc}, vc); end end % slice-timing of functional data matlabbatch{1}.spm.temporal.st.scans = funcfiles; matlabbatch{1}.spm.temporal.st.nslices = nslices; matlabbatch{1}.spm.temporal.st.tr = TR; matlabbatch{1}.spm.temporal.st.ta = TA; matlabbatch{1}.spm.temporal.st.so = sliceorder; matlabbatch{1}.spm.temporal.st.refslice = refslice; matlabbatch{1}.spm.temporal.st.prefix = 'a'; fprintf('Slice-time correcting data in %s...\n', dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % motion correction/realignment (+ mean image) matlabbatch{1}.spm.spatial.realign.estwrite.data = afuncfiles; matlabbatch{1}.spm.spatial.realign.estwrite.eoptions = struct( ... 'quality', 0.9, 'sep', 4, 'fwhm', 5, 'rtm', 1, 'interp', 2, 'wrap', [0, 0, 0], 'weight', ''); matlabbatch{1}.spm.spatial.realign.estwrite.roptions = struct( ... 'which', [0, 1], 'interp', 4, 'wrap', [0, 0, 0,], 'mask', 1, 'prefix', 'r'); fprintf('Realignment of data in %s...\n', dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % smooth mean functional (for first step of coreg) matlabbatch{1}.spm.spatial.smooth.data = {meanfuncfile}; matlabbatch{1}.spm.spatial.smooth.fwhm = [12, 12, 12]; matlabbatch{1}.spm.spatial.smooth.dtype = 0; matlabbatch{1}.spm.spatial.smooth.im = 0; matlabbatch{1}.spm.spatial.smooth.prefix = 's'; fprintf('Smoothing %s in %s (for coreg)...\n', meanfuncfile, dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % coregister funcs to EPI template matlabbatch{1}.spm.spatial.coreg.estimate.ref = ... {[spm12path filesep 'toolbox' filesep 'OldNorm' filesep 'EPI.nii,1']}; matlabbatch{1}.spm.spatial.coreg.estimate.source = {smeanfuncfile}; matlabbatch{1}.spm.spatial.coreg.estimate.other = [{meanfuncfile}; cat(1, afuncfiles{:})]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi'; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4, 2]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 ... 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7, 7]; fprintf('Coregistering smoothed mean-func in %s to EPI template...\n', dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % coregister funcs to T1 matlabbatch{1}.spm.spatial.coreg.estimate.ref = {[dirname sx]}; matlabbatch{1}.spm.spatial.coreg.estimate.source = {meanfuncfile}; matlabbatch{1}.spm.spatial.coreg.estimate.other = cat(1, afuncfiles{:}); matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.cost_fun = 'nmi'; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.sep = [4, 2]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.tol = [0.02 0.02 0.02 ... 0.001 0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001]; matlabbatch{1}.spm.spatial.coreg.estimate.eoptions.fwhm = [7, 7]; fprintf('Coregistering mean-func in %s to skull-stripped anatomical...\n', dirname); spm_jobman('run', matlabbatch); clear matlabbatch; % MNI-normalize EPI data matlabbatch{1}.spm.spatial.normalise.write.subj.def = {DefField}; matlabbatch{1}.spm.spatial.normalise.write.subj.resample = cat(1, afuncfiles{:}); matlabbatch{1}.spm.spatial.normalise.write.woptions.bb = wbbox; matlabbatch{1}.spm.spatial.normalise.write.woptions.vox = repmat(wvox, 1, 3); matlabbatch{1}.spm.spatial.normalise.write.woptions.interp = 4; matlabbatch{1}.spm.spatial.normalise.write.woptions.prefix = 'w'; fprintf('MNI-warping EPI data in %s using %gmm voxel size...\n', dirname, wvox); spm_jobman('run', matlabbatch); clear matlabbatch % smooth EPI data matlabbatch{1}.spm.spatial.smooth.data = cat(1, wafuncfiles{:}); matlabbatch{1}.spm.spatial.smooth.fwhm = repmat(epismk, 1, 3); matlabbatch{1}.spm.spatial.smooth.dtype = 0; matlabbatch{1}.spm.spatial.smooth.im = 0; matlabbatch{1}.spm.spatial.smooth.prefix = 's'; fprintf('Smoothing warped EPI data in %s with %gmm kernel...\n', dirname, epismk); spm_jobman('run', matlabbatch); clear matlabbatch; end
github
CU-CommunityApps/choco-packages-master
ncorr_class_roi.m
.m
choco-packages-master/packages/matlab-coecis/tools/ncorr/ncorr_class_roi.m
66,847
utf_8
b4e72c2e366297dd03223cfb0a283d2d
classdef ncorr_class_roi < handle % This is the class definition for the region of interest. % Properties ---------------------------------------------------------% properties(SetAccess = private) type; % string mask; % logical array region; % struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}) boundary; % struct('add',{},'sub',{}) data; % varying struct end % Methods ------------------------------------------------------------% methods(Access = public) % Constructor function obj = ncorr_class_roi obj.type = ''; obj.mask = false(0); obj.region = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); obj.boundary = struct('add',{},'sub',{}); obj.data = struct(); end function set_roi(obj,type_i,data_i) % This function sets the region of interest. % % Inputs ---------------------------------------------------------% % type_i - string; describes how ROI was made. Supported types % shown below: % 'load' - mask was loaded from an image file. data_i is % struct('mask',{},'cutoff',{}). % 'draw' - mask was drawn. data_i is % struct('mask',{}','drawobjects',{},'cutoff',{}). % 'region' - region and size of the mask are provided. % data_i is struct('region',{},'size_mask',{}). % 'boundary' - boundary and size of the mask are provided. % data_i is struct('boundary',{},'size_mask',{}). % data_i - struct; contains input data for the type of ROI. % % Outputs --------------------------------------------------------% % None % % Returns error if type is wrong. if (~strcmp(type_i,'load') && ~strcmp(type_i,'draw') && ~strcmp(type_i,'region') && ~strcmp(type_i,'boundary')) error('Incorrect type provided.'); end if (strcmp(type_i,'load') || strcmp(type_i,'draw')) % This is the "load" and "draw" types, which mean a % mask for the ROI is provided directly. % Get mask - mask is directly provided for 'load' and 'draw' mask_prelim = data_i.mask; % Create region(s) - these are 4-way connected/contiguous [region_prelim,removed] = ncorr_alg_formregions(mask_prelim,int32(data_i.cutoff),false); % Get 20 largest contiguous regions. This is to prevent % boundary routine from running very slowly if there are a % bunch of small regions cutoff_regions = 20; [val_sorted,idx_sorted] = sort([region_prelim.totalpoints],'descend'); %#ok<ASGLU> idx_sorted = idx_sorted-1; % Convert to zero based if (length(idx_sorted) > cutoff_regions) region_prelim = region_prelim(idx_sorted(1:cutoff_regions)+1); removed = true; end % Update mask if regions were removed if (removed) mask_prelim(:) = false; for i = 0:length(region_prelim)-1 for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); mask_prelim(vec_y+1,x+1) = true; end end end end % Now get the boundaries - Do the "add boundaries" % first. One per region. boundary_prelim = struct('add',cell(length(region_prelim),1),'sub',cell(length(region_prelim),1)); for i = 0:length(region_prelim)-1 % Get mask corresponding to region - must do this % because boundary tracing algorithm is 8-way % connected, but the region is 4-way connected. I % used the 8-way connected boundary because it is % smoother. Note that if two 4-way connected % regions are just touching at corners they are % technically considered 8-way connected, which is % why each 4-way region must be analyzed separately. regionmask_buffer = false(size(mask_prelim)); for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); regionmask_buffer(vec_y+1,x+1) = true; end end % Get add boundary: % Use the top of the left most point in the region. % Send this coordinate and the regionmask_buffer % corresponding to this region to determine the % boundary boundary_buffer = ncorr_alg_formboundary(int32([region_prelim(i+1).leftbound region_prelim(i+1).nodelist(1,1)]),int32(0),regionmask_buffer); % Append boundary boundary_prelim(i+1).add = boundary_buffer; % Get inverse of regionmask_buffer, and then do logical % "and" with the filled in outer boundary. This % leaves only internal regions regionmask_inv_buffer = false(size(mask_prelim)); % Get filled-in outter boundary - note that this % does not fill the boundary exactly since the % algorithm uses double precision points to % estimate the boundary. ncorr_alg_formmask(struct('pos_imroi',boundary_prelim(i+1).add,'type','poly','addorsub','add'),regionmask_inv_buffer); regionmask_inv_buffer = regionmask_inv_buffer & ~regionmask_buffer; % Form mask_boundary - this keeps track of the sub % boundaries already analyzed so we dont count one % twice. mask_boundary = false(size(mask_prelim)); % Make a copy to keep track of which points have been used to analyze the boundary % Get sub boundaries: boundary_prelim(i+1).sub = cell(0); for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; % Make sure noderange is greater than 2, or % else this portion doesnt have a hole if (region_prelim(i+1).noderange(j+1) > 2) for k = 0:2:region_prelim(i+1).noderange(j+1)-3 % Dont test last node pair % Only use bottom nodes - only test % bottom nodes since these are the % first points adjacent to a hole y_bottom = region_prelim(i+1).nodelist(j+1,k+2); % Test one pixel below bottom node. Make % sure this pixel hasnt already been analyzed, % and is also within the inverse regionmask % buffer if (regionmask_inv_buffer(y_bottom+2,x+1) && ~mask_boundary(y_bottom+2,x+1)) % This is a boundary point which % hasn't been analyzed yet boundary_prelim(i+1).sub{end+1} = ncorr_alg_formboundary(int32([x y_bottom+1]),int32(0),regionmask_inv_buffer); % update mask_boundary mask_boundary(sub2ind(size(mask_boundary),boundary_prelim(i+1).sub{end}(:,2)+1,boundary_prelim(i+1).sub{end}(:,1)+1)) = true; end end end end end elseif (strcmp(type_i,'region')) % This is the 'region' option; regions are supplied % directly. It's possible that analysis yielded regions % directly (like unioning). % Form mask mask_prelim = false(data_i.size_mask); % Form region region_prelim = data_i.region; % Update mask from region: for i = 0:length(region_prelim)-1 for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); mask_prelim(vec_y+1,x+1) = true; end end end % For the custom case, do not form a real boundary, since % regions may not longer be contigous. Do form one boundary % per region though. for i = 0:length(region_prelim)-1 boundary_prelim(i+1).add = [-1 -1]; %#ok<AGROW> boundary_prelim(i+1).sub = {}; %#ok<AGROW> end elseif (strcmp(type_i,'boundary')) % This is the 'boundary' option; a boundary is supplied % directly. This allows Ncorr to update the mask based % on displacement values at the boundary point. Note % there will be one region per "add" boundary, this % preserves the correspondences between a region and % boundary. % Form mask mask_prelim = false(data_i.size_mask); % Form boundary boundary_prelim = data_i.boundary; % Fill a region for each boundary -> Get the region % corresponding to that mask -> append all % regions. % Set drawobjects which are sent to ncorr_alg_formmask region_prelim = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); for i = 0:length(boundary_prelim)-1 % Initialize counter and draw objects drawobjects = struct('pos_imroi',{},'type',{},'addorsub',{}); counter = 0; drawobjects(counter+1).pos_imroi = boundary_prelim(i+1).add; drawobjects(counter+1).type = 'poly'; drawobjects(counter+1).addorsub = 'add'; counter = counter+1; for j = 0:length(boundary_prelim(i+1).sub)-1 drawobjects(counter+1).pos_imroi = boundary_prelim(i+1).sub{j+1}; drawobjects(counter+1).type = 'poly'; drawobjects(counter+1).addorsub = 'sub'; counter = counter+1; end % Get mask corresponding to this boundary ncorr_alg_formmask(drawobjects,mask_prelim); % Get region [region_buffer,removed] = ncorr_alg_formregions(mask_prelim,int32(0),false); %#ok<NASGU> % There must be one region per boundary to preserve % their correspondence. It's possible for the region % for a boundary to "pinch" or form more than one. if (isempty(region_buffer)) % Form an empty ROI list if region_buffer is % empty - this keeps the correspondence between % the boundary and region region_buffer = struct('nodelist',[-1 -1],'noderange',0,'leftbound',0,'rightbound',0,'upperbound',0,'lowerbound',0,'totalpoints',0); elseif (length(region_buffer) > 1) % Select biggest ROI if there are more than % one. This could possibly happen if a boundary % is "pinched" or closes. Unlikely- but may % happen. idx_max = find([region_buffer.totalpoints] == max([region_buffer.totalpoints]),1,'first'); region_buffer = region_buffer(idx_max); end % Merge region_prelim(i+1) = region_buffer; end % Update mask from region: for i = 0:length(region_prelim)-1 for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); mask_prelim(vec_y+1,x+1) = true; end end end end % Set properties obj.type = type_i; obj.mask = mask_prelim; obj.region = region_prelim; obj.boundary = boundary_prelim; obj.data = data_i; end function roi_reduced = reduce(obj,spacing) % This function reduces the ROI. Its possible some regions will % be deleted after the reduction; a placeholder is still used to % preserve the number of regions. % % Inputs ---------------------------------------------------------% % spacing - integer; spacing parameter % % Outputs --------------------------------------------------------% % roi_reduced - ncorr_class_roi; reduced ROI % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Initialize output roi_reduced = ncorr_class_roi.empty; if (spacing == 0) % Don't do anything, the ROI is not actually being reduced. % Just make a deep copy of this ROI and return; roi_reduced(1) = ncorr_class_roi; p = properties(obj); for i = 0:length(p)-1 roi_reduced.(p{i+1}) = obj.(p{i+1}); end else % Form reduced region and its template region_reduced = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); region_reduced_template = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); for i = 0:length(obj.region)-1 % Find new bounds - left and right bounds are the % upper limit. region_reduced_template(1).leftbound = ceil(obj.region(i+1).leftbound/(spacing+1)); region_reduced_template.rightbound = floor(obj.region(i+1).rightbound/(spacing+1)); region_reduced_template.upperbound = inf; % Initialize to infinitely high so it can updated region_reduced_template.lowerbound = -inf; % Initialize to infinitely low so it can updated % Initialize nodelist, noderange, and totalpoints region_reduced_template.nodelist = -ones(max(1,region_reduced_template.rightbound-region_reduced_template.leftbound+1),size(obj.region(i+1).nodelist,2)); region_reduced_template.noderange = zeros(max(1,region_reduced_template.rightbound-region_reduced_template.leftbound+1),1); region_reduced_template.totalpoints = 0; % Scan columns - calculate nodelist, noderange, % and totalpoints for j = region_reduced_template.leftbound*(spacing+1)-obj.region(i+1).leftbound:spacing+1:region_reduced_template.rightbound*(spacing+1)-obj.region(i+1).leftbound % This is the column which lies on the grid; % Form the reduced nodelist and noderange for % this column x_reduced = (j-(region_reduced_template.leftbound*(spacing+1)-obj.region(i+1).leftbound))/(spacing+1); for k = 0:2:obj.region(i+1).noderange(j+1)-1 % Find upper and lower bounds for each node pair - % it is possible that entire node pair is skipped % over by the spacing node_top_reduced = ceil(obj.region(i+1).nodelist(j+1,k+1)/(spacing+1)); node_bottom_reduced = floor(obj.region(i+1).nodelist(j+1,k+2)/(spacing+1)); if (node_bottom_reduced >= node_top_reduced) % Add this node pair region_reduced_template.nodelist(x_reduced+1,region_reduced_template.noderange(x_reduced+1)+1) = node_top_reduced; region_reduced_template.nodelist(x_reduced+1,region_reduced_template.noderange(x_reduced+1)+2) = node_bottom_reduced; % Update node range region_reduced_template.noderange(x_reduced+1) = region_reduced_template.noderange((j-(region_reduced_template.leftbound*(spacing+1)-obj.region(i+1).leftbound))/(spacing+1)+1)+2; % Update totalpoints region_reduced_template.totalpoints = region_reduced_template.totalpoints + (node_bottom_reduced-node_top_reduced+1); % Update upper and lower bounds if (node_top_reduced < region_reduced_template.upperbound) region_reduced_template.upperbound = node_top_reduced; end if (node_bottom_reduced > region_reduced_template.lowerbound) region_reduced_template.lowerbound = node_bottom_reduced; end end end end % See if region is empty - if so use a placeholder. if (region_reduced_template.totalpoints == 0) region_reduced_template.nodelist = [-1 -1]; region_reduced_template.noderange = 0; region_reduced_template.leftbound = 0; region_reduced_template.rightbound = 0; region_reduced_template.upperbound = 0; region_reduced_template.lowerbound = 0; end % Insert template into reduced region region_reduced(i+1) = region_reduced_template; end % Create new ROI roi_reduced(1) = ncorr_class_roi; roi_reduced.set_roi('region',struct('region',region_reduced,'size_mask',size(obj.mask(1:spacing+1:end,1:spacing+1:end)))); end end function roi_union = get_union(obj,mask_i,spacing) % This function returns the union of the current ROI and the % inputted mask (which may be reduced). % % Inputs ---------------------------------------------------------% % mask_i - logical array; mask used to union % spacing - integer; indicates how much mask_i has been reduced. % % Outputs --------------------------------------------------------% % roi_union - ncorr_class_roi; union of this ROI with mask_i. % % Returns error if ROI has not been set yet or if the sizes dont % match. if (isempty(obj.type)) error('ROI has not been set yet'); elseif (~isequal(size(obj.mask(1:spacing+1:end,1:spacing+1:end)),size(mask_i))) error('Reduced mask and input mask are not the same size'); end % Initialize output roi_union = ncorr_class_roi; % Get reduced ROI roi_reduced = obj.reduce(spacing); % Get unioned mask mask_union = obj.mask(1:spacing+1:end,1:spacing+1:end) & mask_i; % Get unioned region, this will not necessarily be contiguous anymore region_union = ncorr_alg_formunion(roi_reduced.formatted(),mask_union); % Create new ROI roi_union.set_roi('region',struct('region',region_union,'size_mask',size(mask_union))); end function roi_update = update_roi(obj,plot_u,plot_v,roi_plot,size_mask_update,spacing,radius) % This function returns an updated ROI, based on the inputted % displacement fields. This works by updating the boundary and % redrawing the mask. This assumes boundary can be subpixel, so it % interpolates a new position based on the displacement field. % Furthermore, displacement fields are reduced by a spacing factor, % so it's required as an input. % % Inputs ---------------------------------------------------------% % plot_u - double array; u displacement plot % plot_v - double array; v displacement plot % roi_plot - ncorr_class_roi; ROI corresponding to displacement % plots % size_mask_update - integer array; size of the updated mask. Can % be a different size than obj.mask if different sized image are % used % spacing - integer; spacing parameter % radius - integer; subset radius % % Outputs --------------------------------------------------------% % roi_update - ncorr_class_roi; updated ROI. % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Extrapolate displacement plots to improve interpolation near the % boundary points. % border_interp is the border added to the displacements when they are % extrapolated. border_interp = 20; % MUST BE GREATER THAN OR EQUAL TO 2!!!! plot_u_interp = ncorr_alg_extrapdata(plot_u,roi_plot.formatted(),int32(border_interp)); plot_v_interp = ncorr_alg_extrapdata(plot_v,roi_plot.formatted(),int32(border_interp)); % Convert displacement plots to B-spline coefficients; these are used % for interpolation. Make sure to do this for each region. for i = 0:length(roi_plot.region)-1 plot_u_interp{i+1} = ncorr_class_img.form_bcoef(plot_u_interp{i+1}); plot_v_interp{i+1} = ncorr_class_img.form_bcoef(plot_v_interp{i+1}); end % Initialize new boundary - preserve the number and % correspondences of the "add" boundaries, even if a % boundary is empty boundary_update = struct('add',{},'sub',{}); for i = 0:length(obj.boundary)-1 boundary_update(i+1).add = interp_border(obj.boundary(i+1).add, ... plot_u_interp{i+1}, ... plot_v_interp{i+1}, ... roi_plot, ... i, ... size_mask_update, ... border_interp, ... spacing, ... radius); for j = 0:length(obj.boundary(i+1).sub)-1 boundary_update(i+1).sub{j+1} = interp_border(obj.boundary(i+1).sub{j+1}, ... plot_u_interp{i+1}, ... plot_v_interp{i+1}, ... roi_plot, ... i, ... size_mask_update, ... border_interp, ... spacing, ... radius); end end % Set new ROI - note that size_mask_update must be used % instead of the size of the current mask. This is because % different sized current images can be used. roi_update = ncorr_class_roi; roi_update.set_roi('boundary',struct('boundary',boundary_update,'size_mask',size_mask_update)); end function roi_f = formatted(obj) % This function returns the formatted ROI, which can be inputted to a % mex function. Mex functions can receive ncorr_class_roi as either % a class or structure. % % Inputs ---------------------------------------------------------% % none; % % Outputs --------------------------------------------------------% % roi_f - ncorr_class_roi; formatted ROI. % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Must make deep copy first roi_f = ncorr_class_roi; p = properties(obj); for i = 0:length(p)-1 roi_f.(p{i+1}) = obj.(p{i+1}); end % Now format properties for i = 0:length(obj.region)-1 roi_f.region(i+1).nodelist = int32(roi_f.region(i+1).nodelist); roi_f.region(i+1).noderange = int32(roi_f.region(i+1).noderange); roi_f.region(i+1).leftbound = int32(roi_f.region(i+1).leftbound); roi_f.region(i+1).rightbound = int32(roi_f.region(i+1).rightbound); roi_f.region(i+1).upperbound = int32(roi_f.region(i+1).upperbound); roi_f.region(i+1).lowerbound = int32(roi_f.region(i+1).lowerbound); roi_f.region(i+1).totalpoints = int32(roi_f.region(i+1).totalpoints); end end % ----------------------------------------------------------------% % Get functions --------------------------------------------------% % ----------------------------------------------------------------% function [num_region,idx_nodelist] = get_num_region(obj,x,y,list_region) % This function determines which region x and y lie in, excluding % the regions indicated by list_region % % Inputs ---------------------------------------------------------% % x - integer; x_coordinate % y - integer; y_coordinate % list_region - logical array; indices of regions to search % if x and y are contained within it. If list_region(i) == true, % then skip over region(i). % % Output ---------------------------------------------------------% % num_region - integer; index of region that contains x % and y. Returns -1 if x and y are not within the regions % specified by region. % idx_nodelist - integer; index of node pair that contains y % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Initialize outputs num_region = -1; idx_nodelist = 0; % Initialize withinroi to false withinroi = false; for i = 0:length(obj.region)-1 if (list_region(i+1)) % Skip this ROI continue; else if (x >= obj.region(i+1).leftbound && x <= obj.region(i+1).rightbound) % Check to make sure x coordinate is within bounds idx_region = x-obj.region(i+1).leftbound; for j = 0:2:obj.region(i+1).noderange(idx_region+1)-1 % Check to see if point is within node pairs if (y >= obj.region(i+1).nodelist(idx_region+1,j+1) && y <= obj.region(i+1).nodelist(idx_region+1,j+2)) withinroi = true; idx_nodelist = j; num_region = i; break; end end end if (withinroi) break; end end end end function regionmask = get_regionmask(obj,num_region) % This function returns a mask corresponding only to the region % indicated by num_region. % % Inputs ---------------------------------------------------------% % num_region - integer; number of region to use to form mask. % % Outputs --------------------------------------------------------% % regionmask - logical array; mask corresponding to num_region % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end regionmask = false(size(obj.mask)); for i = 0:size(obj.region(num_region+1).noderange,1)-1 x = i + obj.region(num_region+1).leftbound; for j = 0:2:obj.region(num_region+1).noderange(i+1)-1 vec_y = obj.region(num_region+1).nodelist(i+1,j+1):obj.region(num_region+1).nodelist(i+1,j+2); regionmask(vec_y+1,x+1) = true; end end end function total_fullregions = get_fullregions(obj) % This function returns the number of regions which are % nonempty. Generally used to see if ROI is empty or not. % % Inputs ---------------------------------------------------------% % none; % % Outputs --------------------------------------------------------% % total_fullregions - integer; number of nonemtpy regions % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end total_fullregions = 0; for i = 0:length(obj.region)-1 if (obj.region(i+1).totalpoints > 0) total_fullregions = total_fullregions+1; end end end function cirroi = get_cirroi(obj,x,y,radius,subsettrunc) % This function returns a contiguous circular region for the subset % located at x and y. % % Inputs ---------------------------------------------------------% % x - integer; x_coordinate of subset % y - integer; y_coordinate of subset % radius - integer; radius of subset % subsettrunc - logical; indicates whether to enable subset % truncation or not % % Outputs --------------------------------------------------------% % cirroi - circular subset; this is the circular subset % corresponding to the points specified at x and y. Contains % struct('mask',{},'region',{},'boundary',{},'x',{},'y',{},'radius',{}) % % Returns error if ROI has not been set yet or if x and y are not % within the ROI. Note that the boundary field in cirroi is % currently not being used. % Find idx_nodelist and num_region [num_region,idx_nodelist] = obj.get_num_region(x,y,false(size(obj.region))); if (isempty(obj.type)) error('ROI has not been set yet'); elseif (num_region == -1) error('x and y coordinates are not within the ROI'); end % Initialize cirroi structure cirroi = struct('mask',{},'region',{},'boundary',{},'x',{},'y',{},'radius',{}); cirroi_template = struct('mask',{},'region',{},'boundary',{},'x',{},'y',{},'radius',{}); % Store x,y, and radius cirroi_template(1).mask = false(2*radius+1); cirroi_template.region = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); cirroi_template.boundary = []; cirroi_template.x = x; cirroi_template.y = y; cirroi_template.radius = radius; % Find max_nodewidth_buffer - this is the maximum width % of the nodelist. max_nodewidth_buffer = 0; for i = 0:length(obj.region)-1 if (size(obj.region(i+1).nodelist,2) > max_nodewidth_buffer) max_nodewidth_buffer = size(obj.region(i+1).nodelist,2); end end % Initialize cirroi nodelist and noderange cirroi_template.region(1).nodelist = -ones(cirroi_template.radius*2+1,max_nodewidth_buffer); cirroi_template.region.noderange = zeros(cirroi_template.radius*2+1,1); % Initialize totalpoints cirroi_template.region.totalpoints = 0; % Now find circle nodes % Fill must be contiguous and begins at the centerpoint queue_nodelist = -ones(size(cirroi_template.region.nodelist,1)*size(cirroi_template.region.nodelist,2),1); % Initialize to max size to prevent resizing queue_nodeindex = zeros(size(cirroi_template.region.nodelist,1)*size(cirroi_template.region.nodelist,2)/2,1); % Index of nodepair with respect to cirroi; length_queue = 0; %#ok<NASGU> % length of the queue_nodelist queue_nodelist_buffer = -ones(1,2); queue_nodeindex_buffer = 0; %#ok<NASGU> % Initialize parameter which indicates whether the subset % has been truncated circ_untrunc = true; % Node pair which contains the center point is added to queue first; this % guarantees the circular region is contiguous WRT the centerpoint if (obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+1) < cirroi_template.y-cirroi_template.radius) % make sure top node is within the circle node_top = cirroi_template.y-cirroi_template.radius; else node_top = obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+1); circ_untrunc = false; end if (obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+2) > cirroi_template.y+cirroi_template.radius) % make sure bottom node is within the circle node_bottom = cirroi_template.y+cirroi_template.radius; else node_bottom = obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+2); circ_untrunc = false; end % Update mask cirroi_template.mask(node_top-(cirroi_template.y-cirroi_template.radius)+1:node_bottom-(cirroi_template.y-cirroi_template.radius)+1,cirroi_template.radius+1) = true; % Update queue queue_nodelist(1:2) = [node_top node_bottom]; queue_nodeindex(1) = cirroi_template.radius; length_queue = 2; % Form activelines and then inactivate nodepair from nodelist % Activelines keeps track of which node pairs have been % analyzed activelines = true(size(obj.region(num_region+1).nodelist,1),size(obj.region(num_region+1).nodelist,2)/2); activelines((cirroi_template.x-obj.region(num_region+1).leftbound)+1,idx_nodelist/2+1) = false; % Enter while loop. Exit when queue is empty while (length_queue ~= 0) % STEPS: % 1) Load nodepair from queue % 2) Update queue % 3) Add nodepair to cirroi, sort, and then update % 4) Compare nodepair to nodepairs left and right and add nodes to queue % 5) Update totalpoints % Step 1) Pop queue queue_nodelist_buffer(1:2) = queue_nodelist(length_queue-1:length_queue); queue_nodeindex_buffer = queue_nodeindex(length_queue/2); % Step 2) length_queue = length_queue-2; % Step 3) if (cirroi_template.region.noderange(queue_nodeindex_buffer+1) == 0) % Just place directly cirroi_template.region.nodelist(queue_nodeindex_buffer+1,1:2) = queue_nodelist_buffer(1:2); else % Merge nodes inserted = false; for i = 0:2:cirroi_template.region.noderange(queue_nodeindex_buffer+1)-1 if (queue_nodelist_buffer(2) < cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+1)) nodelist_buffer = cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+1:cirroi_template.region.noderange(queue_nodeindex_buffer+1)); cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+1:i+2) = queue_nodelist_buffer; cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+3:cirroi_template.region.noderange(queue_nodeindex_buffer+1)+2) = nodelist_buffer; inserted = true; break end end if (~inserted) % Append at the end cirroi_template.region.nodelist(queue_nodeindex_buffer+1,cirroi_template.region.noderange(queue_nodeindex_buffer+1)+1:cirroi_template.region.noderange(queue_nodeindex_buffer+1)+2) = queue_nodelist_buffer; end end cirroi_template.region.noderange(queue_nodeindex_buffer+1) = cirroi_template.region.noderange(queue_nodeindex_buffer+1)+2; % Step 4) idx_froi = queue_nodeindex_buffer+(cirroi_template.x-cirroi_template.radius)-obj.region(num_region+1).leftbound; % Compare to node pairs LEFT if (queue_nodeindex_buffer > 0 && idx_froi > 0) % makes sure previous node is within cirroi for i = 0:2:obj.region(num_region+1).noderange(idx_froi)-1 if (activelines(idx_froi,i/2+1) == 0) % Nodes are inactive continue end upperlim = ceil(-sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer-1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); lowerlim = floor(sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer-1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); if (obj.region(num_region+1).nodelist(idx_froi,i+2) < queue_nodelist_buffer(1)) % lower node comes before upper node of buffer continue; elseif (obj.region(num_region+1).nodelist(idx_froi,i+1) <= queue_nodelist_buffer(2) && obj.region(num_region+1).nodelist(idx_froi,i+2) >= queue_nodelist_buffer(1)) % nodes interact if (obj.region(num_region+1).nodelist(idx_froi,i+1) < upperlim) % make sure upper node is within the circle node_top = upperlim; else node_top = obj.region(num_region+1).nodelist(idx_froi,i+1); circ_untrunc = false; end if (obj.region(num_region+1).nodelist(idx_froi,i+2) > lowerlim) % make sure lower node is within the circle node_bottom = lowerlim; else node_bottom = obj.region(num_region+1).nodelist(idx_froi,i+2); circ_untrunc = false; end if (node_top > node_bottom || node_top > queue_nodelist_buffer(2) || node_bottom < queue_nodelist_buffer(1)) % This can occur along diagonal boundaries by virtue of how the four way direction contiguous algorithm works. If this happens, break, because it is no longer contiugous continue; end % Add to queue queue_nodelist(length_queue+1:length_queue+2) = [node_top node_bottom]; % add to queue queue_nodeindex(length_queue/2+1) = queue_nodeindex_buffer-1; length_queue = length_queue + 2; % Make node pair inactive activelines((idx_froi-1)+1,i/2+1) = false; % Update mask cirroi_template.mask(node_top-(cirroi_template.y-cirroi_template.radius)+1:node_bottom-(cirroi_template.y-cirroi_template.radius)+1,queue_nodeindex_buffer) = true; else break; end end end % Compare to node pairs RIGHT if (queue_nodeindex_buffer < 2*cirroi_template.radius && idx_froi < obj.region(num_region+1).rightbound-obj.region(num_region+1).leftbound) % makes sure next node is within cirroiint for i = 0:2:obj.region(num_region+1).noderange(idx_froi+2)-1 if (activelines(idx_froi+2,i/2+1) == 0) continue end upperlim = ceil(-sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer+1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); lowerlim = floor(sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer+1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); if (obj.region(num_region+1).nodelist(idx_froi+2,i+2) < queue_nodelist_buffer(1)) % lower node comes before upper node of buffer continue; elseif (obj.region(num_region+1).nodelist(idx_froi+2,i+1) <= queue_nodelist_buffer(2) && obj.region(num_region+1).nodelist(idx_froi+2,i+2) >= queue_nodelist_buffer(1)) % nodes interact if (obj.region(num_region+1).nodelist(idx_froi+2,i+1) < upperlim) % make sure upper node is within the circle node_top = upperlim; else node_top = obj.region(num_region+1).nodelist(idx_froi+2,i+1); circ_untrunc = false; end if (obj.region(num_region+1).nodelist(idx_froi+2,i+2) > lowerlim) % make sure lower node is within the circle node_bottom = lowerlim; else node_bottom = obj.region(num_region+1).nodelist(idx_froi+2,i+2); circ_untrunc = false; end if (node_top > node_bottom || node_top > queue_nodelist_buffer(2) || node_bottom < queue_nodelist_buffer(1)) % This can occur along diagonal boundaries by virtue of how the four way direction contiguous algorithm works. If this happens, break, because it is no longer contiugous continue; end % Add to queue queue_nodelist(length_queue+1:length_queue+2) = [node_top node_bottom]; % add to queue queue_nodeindex(length_queue/2+1) = queue_nodeindex_buffer+1; % length_queue = length_queue + 2; % Make node pair inactive activelines((idx_froi+1)+1,i/2+1) = false; % Update mask cirroi_template.mask(node_top-(cirroi_template.y-cirroi_template.radius)+1:node_bottom-(cirroi_template.y-cirroi_template.radius)+1,queue_nodeindex_buffer+2) = true; else break; end end end % Update totalpoints cirroi_template.region.totalpoints = cirroi_template.region.totalpoints + (queue_nodelist_buffer(2)-queue_nodelist_buffer(1)+1); end % Set Bounds - since noderange length is always % 2*radius+1, set left and right bounds to: cirroi_template.region.leftbound = cirroi_template.x - cirroi_template.radius; cirroi_template.region.rightbound = cirroi_template.x + cirroi_template.radius; % Find upper and lower bounds: cirroi_template.region.upperbound = size(obj.mask,1); cirroi_template.region.lowerbound = 0; for i = 0:size(cirroi_template.region.noderange,1)-1 % Find max and min x-values of cirroi if (cirroi_template.region.noderange(i+1) > 0) if (cirroi_template.region.upperbound > cirroi_template.region.nodelist(i+1,1)) cirroi_template.region.upperbound = cirroi_template.region.nodelist(i+1,1); end if (cirroi_template.region.lowerbound < cirroi_template.region.nodelist(i+1,cirroi_template.region.noderange(i+1))) cirroi_template.region.lowerbound = cirroi_template.region.nodelist(i+1,cirroi_template.region.noderange(i+1)); end end end % If subset is truncated, do some special analysis to construct % the cirroi. At this point, it's only contiguous. I've added % this portion to truncate a part of the subset if this option % is enabled. This is helpful for analyzing cracks so the subset % does not wrap around the crack tip. Also make sure to check % if any of the noderanges are zero, as this will not trigger a % truncation. if (subsettrunc && (~circ_untrunc || any(cirroi_template.region.noderange == 0))) % Get boundary point_topleft = [-1 -1]; % Initialize for i = 0:size(cirroi_template.mask,2)-1 for j = 0:size(cirroi_template.mask,1)-1 if (cirroi_template.mask(j+1,i+1)) point_topleft = [i j]; % This is the first point. break; end end if (cirroi_template.mask(j+1,i+1)) break; end end boundary_cirroi = ncorr_alg_formboundary(int32(point_topleft),int32(7),cirroi_template.mask); % Find closest point -> Find line equation -> Find % number of points to the left and right of the % line; the side with the least amount of points % will be discarded dists = (boundary_cirroi(:,1)-cirroi_template.radius).^2 + (boundary_cirroi(:,2)-cirroi_template.radius).^2; [val_min,idx_min] = min(dists); idx_min = idx_min-1; % Zero based indexing % Make sure closest point is not on the boundary, % which can happen since the boundary isnt % perfectly circular if (ceil(sqrt(val_min)) < cirroi_template.radius) % Nonlinear solver idx_space = 3; idx_plus = mod(idx_min+idx_space,size(boundary_cirroi,1)); idx_minus = mod(idx_min-idx_space,size(boundary_cirroi,1)); % Initialize points to calculate derivatives with x_plus_f = 0; x_min_f = 0; x_minus_f = 0; y_plus_f = 0; y_min_f = 0; y_minus_f = 0; % Set filt length length_filt = 2; for i = -length_filt:length_filt x_plus_f = x_plus_f + boundary_cirroi(mod(idx_plus+i,size(boundary_cirroi,1))+1,1); x_min_f = x_min_f + boundary_cirroi(mod(idx_min+i,size(boundary_cirroi,1))+1,1); x_minus_f = x_minus_f + boundary_cirroi(mod(idx_minus+i,size(boundary_cirroi,1))+1,1); y_plus_f = y_plus_f + boundary_cirroi(mod(idx_plus+i,size(boundary_cirroi,1))+1,2); y_min_f = y_min_f + boundary_cirroi(mod(idx_min+i,size(boundary_cirroi,1))+1,2); y_minus_f = y_minus_f + boundary_cirroi(mod(idx_minus+i,size(boundary_cirroi,1))+1,2); end % Divide by length x_plus_f = x_plus_f/(2*length_filt+1); x_min_f = x_min_f/(2*length_filt+1); x_minus_f = x_minus_f/(2*length_filt+1); y_plus_f = y_plus_f/(2*length_filt+1); y_min_f = y_min_f/(2*length_filt+1); y_minus_f = y_minus_f/(2*length_filt+1); % Get derivatives dx_di_f = (x_plus_f - x_minus_f)/(2*idx_space); d2x_di2_f = (x_plus_f-2*x_min_f+x_minus_f)/(idx_space^2); dy_di_f = (y_plus_f - y_minus_f)/(2*idx_space); d2y_di2_f = (y_plus_f-2*y_min_f+y_minus_f)/(idx_space^2); % Do one iteration to find change in index deltai = ((-x_min_f*dx_di_f+cirroi_template.radius*dx_di_f) + (-y_min_f*dy_di_f+cirroi_template.radius*dy_di_f))/((dx_di_f^2+x_min_f*d2x_di2_f-cirroi_template.radius*d2x_di2_f)+(dy_di_f^2+y_min_f*d2y_di2_f-cirroi_template.radius*d2y_di2_f)); % Test deltai, make sure its between subsequent spacings; If % not then set the points minus and plus points if (abs(deltai) < idx_space) % Calculate two points based on dx_di_i and dy_di_i x_i = x_min_f + dx_di_f*deltai + (1/2)*d2x_di2_f*deltai^2; y_i = y_min_f + dy_di_f*deltai + (1/2)*d2y_di2_f*deltai^2; dx_di_i = dx_di_f + d2x_di2_f*deltai; dy_di_i = dy_di_f + d2y_di2_f*deltai; % Set stepsize - the magnitude doesnt matter stepsize = 0.5; % Get points p0 = [x_i-dx_di_i*stepsize y_i-dy_di_i*stepsize]; p1 = [x_i+dx_di_i*stepsize y_i+dy_di_i*stepsize]; else % Set points to averaged points on either side p0 = [x_minus_f y_minus_f]; p1 = [x_plus_f y_plus_f]; end % Find which side to clear: p_subset is a point defined % to be part of the subset, so the side opposite of % p_subset needs to be cleared. If the center of the % subset does not lie on boundary, then find displacement % from closest point to p0. Add this displacement to % the center, and then determine which side the center % is on. p_subset = [0 0]; % Initialize if (isequal(boundary_cirroi(idx_min+1,:),[cirroi_template.radius cirroi_template.radius])) % Center is the closest point. Find valid points % around the boundary and get the centroid of % these points. width_win = 1; % This determines window of points collected counter = 0; % Counts number of points added so a proper average can be taken for i = -width_win:width_win x_mask = boundary_cirroi(idx_min+1,1)+i; for j = -width_win:width_win y_mask = boundary_cirroi(idx_min+1,2)+j; % Make sure points are within mask and % that the mask is valid here. if (x_mask >= 0 && x_mask <= 2*cirroi_template.radius && y_mask >= 0 && y_mask <= 2*cirroi_template.radius && ... cirroi_template.mask(y_mask+1,x_mask+1)) p_subset = p_subset + [x_mask y_mask]; counter = counter+1; end end end % Divide by counter to get the average p_subset = p_subset/counter; % Debug ------% %{ figure(1); imshow(cirroi_template.mask); hold on; plot(p0(1,1),p0(1,2),'rx'); plot(p1(1,1),p1(1,2),'rx'); plot(p_subset(1,1),p_subset(1,2),'gx'); hold off; %} % ------------% else % Set the center point p_subset = [cirroi_template.radius cirroi_template.radius]; % Debug ------% %{ figure(1); imshow(cirroi_template.mask); hold on; plot(p0(1,1),p0(1,2),'rx'); plot(p1(1,1),p1(1,2),'rx'); plot(p_subset(1,1),p_subset(1,2),'gx'); hold off; %} % ------------% end % Normalize point against line since it can shift disp_p0 = p0 - boundary_cirroi(idx_min+1,:); p_subset = p_subset + disp_p0; % Now determine which side p_subset lies and % clear the other side sign_clear = -sign((p1(1)-p0(1))*(p_subset(2)-p0(2))-(p_subset(1)-p0(1))*(p1(2)-p0(2))); mask_cirroi_prelim = cirroi_template.mask; % Make a copy for i = 0:size(cirroi_template.region.noderange,1)-1 for j = 0:2:cirroi_template.region.noderange(i+1)-1 for k = cirroi_template.region.nodelist(i+1,j+1):cirroi_template.region.nodelist(i+1,j+2) p2 = [i k-(cirroi_template.y-cirroi_template.radius)]; if (sign((p1(1)-p0(1))*(p2(2)-p0(2))-(p2(1)-p0(1))*(p1(2)-p0(2))) == sign_clear) % Clear points on this side mask_cirroi_prelim(p2(2)+1,p2(1)+1) = false; end end end end % Get region again from the mask, then select the % biggest region. This is required because subset % truncation does not preserve the cirroi's contiguous % nature. Setting the last parameter to true for % formregion will make the length of the noderange the % same as the width of the mask [region_cirroi_prelim,removed] = ncorr_alg_formregions(mask_cirroi_prelim,int32(0),true); %#ok<NASGU> % Its possible for region to be empty. Must check it. If % its empty, then abandon subset truncation. if (~isempty(region_cirroi_prelim)) % Only keep the region with the max number of % totalpoints region_cirroi_prelim = region_cirroi_prelim([region_cirroi_prelim.totalpoints] == max([region_cirroi_prelim.totalpoints])); % Update mask then store it mask_cirroi_prelim(:) = false; for i = 0:size(cirroi_template.region.noderange,1)-1 for j = 0:2:region_cirroi_prelim.noderange(i+1)-1 for k = region_cirroi_prelim.nodelist(i+1,j+1):region_cirroi_prelim.nodelist(i+1,j+2) mask_cirroi_prelim(k+1,i+1) = true; end end end % Store mask cirroi_template.mask = mask_cirroi_prelim; % Store region with greatest number of nodes cirroi_template.region = region_cirroi_prelim; % Bring back to regular coords for i = 0:size(cirroi_template.region.noderange,1)-1 if (cirroi_template.region.noderange(i+1) > 0) cirroi_template.region.nodelist(i+1,1:cirroi_template.region.noderange(i+1)) = cirroi_template.region.nodelist(i+1,1:cirroi_template.region.noderange(i+1)) + (cirroi_template.y-cirroi_template.radius); end end cirroi_template.region.leftbound = cirroi_template.region.leftbound + (cirroi_template.x-cirroi_template.radius); cirroi_template.region.rightbound = cirroi_template.region.rightbound + (cirroi_template.x-cirroi_template.radius); cirroi_template.region.upperbound = cirroi_template.region.upperbound + (cirroi_template.y-cirroi_template.radius); cirroi_template.region.lowerbound = cirroi_template.region.lowerbound + (cirroi_template.y-cirroi_template.radius); end % Debug %{ figure(2), imshow(cirroi_template.mask); hold on; plot(boundary_cirroi(idx_min+1,1)+1,boundary_cirroi(idx_min+1,2)+1,'bx'); plot(p0(1)+1,p0(2)+1,'gs'); plot(p1(1)+1,p1(2)+1,'gs'); hold off; %} end end %-----------------------------------------------------% %-----------------------------------------------------% %-----------------------------------------------------% % Assign outputs cirroi(1) = cirroi_template; end %-----------------------------------------------------------------% % For debugging --------------------------------------------------% %-----------------------------------------------------------------% function debug_region(obj) if (isempty(obj.type)) error('ROI has not been set yet'); end mask_debug = false(size(obj.mask)); for i = 0:length(obj.region)-1 regionmask_debug = false(size(obj.mask)); for j = 0:size(obj.region(i+1).noderange,1)-1 x = j + obj.region(i+1).leftbound; for k = 0:2:obj.region(i+1).noderange(j+1)-1 vec_y = obj.region(i+1).nodelist(j+1,k+1):obj.region(i+1).nodelist(j+1,k+2); mask_debug(vec_y+1,x+1) = true; regionmask_debug(vec_y+1,x+1) = true; end end % figure, imshow(regionmask_debug); - This can potential be a lot of figures end figure, imshow(mask_debug); if (isequal(mask_debug,obj.mask)) disp('SUCCESS - mask matches region'); else error('FAILURE - for some reason mask and region are different'); end end function debug_boundary(obj) if (isempty(obj.type)) error('ROI has not been set yet'); end figure, imshow(obj.mask); hold on; for i = 0:length(obj.boundary)-1 plot(obj.boundary(i+1).add(:,1)+1,obj.boundary(i+1).add(:,2)+1,'go'); for j = 0:length(obj.boundary(i+1).sub)-1 plot(obj.boundary(i+1).sub{j+1}(:,1)+1,obj.boundary(i+1).sub{j+1}(:,2)+1,'rx'); end end hold off; end end end function boundary_update = interp_border(boundary,plot_u_interp,plot_v_interp,roi,num_region,size_mask_update,border_interp,spacing,radius) % Updates boundary based on old boundary and displacement plots. % Does not preserve length of the boundary. If points are found to travel % outside a radius length around the size_mask_update, they are discarded. % % Inputs -----------------------------------------------------------------% % boundary - double array; boundary we're trying to update - uses pixel % units. % plot_u_interp - double array; b-spline coefficients of u displacement % field % plot_v_interp - double array; b-spline coefficients of v displacement % field % roi - ncorr_class_roi; ROI corresponding to displacement fields. Note % that roi is reduced. % num_region - integer; number corresponding to region % size_mask_update - integer array; size of the new mask (can be different % from the mask in ROI if different sized current images are used). % border_interp - integer; border around b-spline coefficients % spacing - integer; spacing parameter % radius - integer; subset radius % % Outputs ----------------------------------------------------------------% % boundary_update - double array; updated boundary coordinates % % Note, if boundary_update is found to be empty after analysis, it will % return [-1 -1] so it is not empty. This is a temporary workaround because % the ncorr_alg_formmask function does not support empty polygons. % Get scaled coordinates since displacement plots are reduced. boundary_scaled = boundary/(spacing+1); % Get interpolated u displacements - can return NaN if out of range interp_u = ncorr_alg_interpqbs(boundary_scaled,plot_u_interp,roi.region(num_region+1).leftbound,roi.region(num_region+1).upperbound,border_interp); % Get interpolated v displacements - can return NaN if out of range interp_v = ncorr_alg_interpqbs(boundary_scaled,plot_v_interp,roi.region(num_region+1).leftbound,roi.region(num_region+1).upperbound,border_interp); % Update boundary boundary_update = boundary; boundary_update(:,1) = boundary_update(:,1) + interp_u; boundary_update(:,2) = boundary_update(:,2) + interp_v; % Set points near boundary to NaN; for i = 0:size(boundary_update,1)-1 if (boundary_update(i+1,1) < radius || boundary_update(i+1,1) > size_mask_update(2)-radius || ... boundary_update(i+1,2) < radius || boundary_update(i+1,2) > size_mask_update(1)-radius) boundary_update(i+1,:) = NaN; end end % Remove all coordinates that have NaN counter = 0; while (counter < size(boundary_update,1)) if (any(isnan(boundary_update(counter+1,:)))) boundary_update(counter+1,:) = []; counter = counter-1; end counter = counter+1; end % Check to see if boundary is empty if (isempty(boundary_update)) boundary_update = [-1 -1]; end end
github
CU-CommunityApps/choco-packages-master
ncorr.m
.m
choco-packages-master/packages/matlab-coecis/tools/ncorr/ncorr.m
215,473
utf_8
0869c73f18c3ca178d6efe7202e0fe69
classdef ncorr < handle %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % Version: 1.2.2 % Date: 6/13/2017 % Programmed by: Justin Blaber % Principle Investigator: Antonia Antoniou % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % Start Ncorr with: % % handles_ncorr = ncorr; % % NOTE: Images/masks can be set using the GUI menu or by using % "handles_ncorr.set_ref(data)", "handles_ncorr.set_cur(data)", % "handles_ncorr.set_roi_ref(data)", or "handles_ncorr.set_roi_cur(data)". % These will manually set the reference image, current image(s), or % region of interest if these have been calculated or % modified using MATLAB and exist in the main workspace. Sometimes the % reference and current images can be obtained using an average of a % series of images. The region of interest can also be calculated using % various thresholding and edge detecting algorithms. Displacement and % strain data can be obtained through handles_ncorr.data_dic in case the % user is interested in doing further calculations on the deformation % data. In addition, if the menu freezes for some reason due to an error, % it can be unfrozen with "handles_ncorr.refresh()". Lastly, calling % "delete(handles_ncorr)" will force close Ncorr. % % % MAIN CONSIDERATIONS: % % 1) All program data and appdata in the ncorr object are SET by callbacks directly. % 2) "Downstream" program data (i.e. dependent data) and appdata are % CLEARED with the "clear_downstream()" function before setting the % new data. % 3) UI objects are modified by the update* functions through the wrapper % function "util_wrapcallbackall" and not within callback directly. % % The point of doing this was to make each callback as clear and % uncluttered as possible. The clearing of "downstream" data and updating % of UI controls are mainly for upkeep. % % % MAIN FLOW OF CALLBACK: % % 1) Update UI controls. Generally, if a menu option updates information, % it will freeze the top menu to prevent users from calling other % options while the first one is running. % 2) Check if data will be overwritten with: "overwrite = clear_downstream('callback')" % This returns a logical value which is true if the user chooses % to proceed and also clears the downstream data. % 3) Perform calculations % 4) If calculations succeed, store the data directly in the callback % 5) Update UI controls. This unfreezes the top menu and updates it, % as well as sets any images (such as the reference/current image) % if they were loaded. % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % NCORR_GUI* FUNCTIONS: % % These functions contain GUIs which are called by the callbacks within % this "ncorr" object. These are, unlike "ncorr," functions that % utilize "uiwait" and nested functions instead of an object. Thus, when % the function returns, all workspace data within those functions get % cleared. Some of these ncorr_gui* functions have an input called % "params_init" which contains initialization data if the function has % been called before. Most of these functions use a modal window because % they must be set before proceeding. These figure are generally not % resizeable, and their size is checked with "ncorr_util_formatwindow" to % ensure the top right edges of the window are within the screen. % % The initialization of the ncorr_gui_functions generally proceeds as: % % 1) Initialize outputs % 2) Create GUI handles % 3) Run the constructor function % % The callbacks have the general flow: % % 1) Possibly freeze menu if it exists % 2) Get data with "getappdata()" % 3) Perform calculations % 4) Set data with "setappdata()" % 5) Possibly unfreeze menu if it exists and update UI controls % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % NCORR_ALG* FUNCTIONS: % % These functions contain source-code for algorithms used with the ncorr % object callbacks and ncorr_gui* functions. Most of these algorithms are % mex files written in C++ and must be compiled with "compile_func_cpp_mex()" % or mex before using ncorr. % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % NCORR_UTIL* FUNCTIONS: % % These functions contain certain utilities used by ncorr, such as % checking whether the window is within the screen, formatting a colobar, % etc. % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% properties (SetAccess = private) % GUI handles: handles_gui; % DIC data: reference; current; data_dic; % Installation data: support_openmp; total_cores; end % Constructor methods(Access = public) function obj = ncorr % Set default UI control font size here before UI opens. Larger % font sizes can make the GUI too large. This seems to be an % error in earlier versions of Matlab set(0,'defaultuicontrolfontsize',7); % Initialize GUI and get GUI handles obj.handles_gui = init_gui(obj); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@obj.constructor,obj.handles_gui.figure)); end % Constructor ----------------------------------------------------% function constructor(obj) % Check MATLAB version and toolbox compatibility -------------% if (obj.check_matlabcompat() ~= out.success) % Force close obj.callback_close_function([],[],true); return; end % Check MEX installation and load/set ncorr_installinfo.txt --% if (obj.check_mexinstall() ~= out.success) % Force close obj.callback_close_function([],[],true); return; end % Set path ---------------------------------------------------% % Path to ncorr install directory must be set or else program % can freeze when loading images from a different directory - % not sure why this happens. % Note that if ncorr.m is not in the current directory, then % path has already been set. listing = dir; if (isempty(strfind(lower(path),lower(pwd))) && any(strcmp('ncorr.m',{listing.name}))) % Ask user if its okay to add path contbutton = questdlg('Path has not been set. Path must be set before running program. Press yes to add path.','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'Yes')) % Add Path path(path,pwd); else % Force close, ncorr may not to work if path is not set obj.callback_close_function([],[],true); return; end end % Initialize opengl ------------------------------------------% % In earlier versions of Matlab this will fix inverted plots % Plotting tools are also run based on opengl if (ispc) data_opengl = opengl('data'); if (~data_opengl.Software) % Set opengl to software opengl('software'); end end % Start timer to fetch name of the handle that points to ncorr. % Use a timer because, to my knowledge, there isn't a callback % option if the handle pointing to ncorr gets cleared. timer_ncorr = timer('executionMode', 'fixedRate', ... 'Period', 1/5, ... 'TimerFcn', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_update_title(obj,hObject,eventdata),obj.handles_gui.figure)); start(timer_ncorr); % Program Data -----------------------------------------------% % Reference image info obj.reference = struct('imginfo',{},'roi',{}); % Current image(s) info obj.current = struct('imginfo',{},'roi',{}); % DIC data obj.data_dic = struct('displacements',struct('plot_u_dic',{}, ... % U plot after DIC (can be regular or eulerian) 'plot_v_dic',{}, ... % V plot after DIC (can be regular or eulerian) 'plot_corrcoef_dic',{}, ... % Correlaton coef plot after DIC (can be regular or eulerian) 'roi_dic',{}, ... % ROI after DIC 'plot_u_ref_formatted',{}, ... % formatted U plot WRT reference image used for displaying displacements 'plot_v_ref_formatted',{}, ... % formatted V plot WRT reference image used for displaying displacements 'roi_ref_formatted',{}, ... % ROI after formatting used for plotting displacements 'plot_u_cur_formatted',{}, ... % formatted U plot WRT current image used for displaying displacements 'plot_v_cur_formatted',{}, ... % formatted V plot WRT current image used for displaying displacements 'roi_cur_formatted',{}), ... % ROI after formatting used for plotting displacements 'dispinfo',struct('type',{}, ... % Type of DIC: either regular or backward 'radius',{}, ... % Radius for DIC 'spacing',{}, ... % Spacing for DIC 'cutoff_diffnorm',{}, ... % Cutoff for norm of the difference vector 'cutoff_iteration',{}, ... % Cutoff for the number of iterations 'total_threads',{}, ... % Number of threads for computation 'stepanalysis',struct('enabled',{},'type',{},'auto',{},'step',{}), ... % Indicates whether or not to implement step analysis for high strain 'subsettrunc',{}, ... % Indicates whether or not to implement subset truncation for DIC analysis 'imgcorr',struct('idx_ref',{},'idx_cur',{}), ... % Image correspondences 'pixtounits',{}, ... % Ratio of "units" to pixels. Assumes pixels are square 'units',{}, ... % String to display units 'cutoff_corrcoef',{}, ... % Correlation coefficient cutoff for each formatted displacement plot 'lenscoef',{}), ... % Radial lens distortion coefficient 'strains',struct('plot_exx_ref_formatted',{}, ... % Exx Green-Lagragian strain plot 'plot_exy_ref_formatted',{}, ... % Exy Green-Lagragian strain plot 'plot_eyy_ref_formatted',{}, ... % Exy Green-Lagragian strain plot 'roi_ref_formatted',{}, ... % ROI used for plotting strains 'plot_exx_cur_formatted',{}, ... % Exx Eulerian-Almansi strain plot 'plot_exy_cur_formatted',{}, ... % Exy Eulerian-Almansi strain plot 'plot_eyy_cur_formatted',{}, ... % Exy Eulerian-Almansi strain plot 'roi_cur_formatted',{}), ... % ROI used for plotting strains 'straininfo',struct('radius',{}, ... % Strain radius used for calculating strains 'subsettrunc',{})); % Indicates whether or not to implement subset truncation for strain analysis % Appdata - setting these to '[]' technically does nothing, but % it is included here to show what appdata are/will be present in the % figure % handles_plot are the handles for the data plots: setappdata(obj.handles_gui.figure,'handles_plot',[]); % num_cur is the current image which is currently being displayed: setappdata(obj.handles_gui.figure,'num_cur',[]); % timer_ncorr is the timer for this instantiation of ncorr; % it is used for fetching the name of the handle points to % ncorr in the current workspace setappdata(obj.handles_gui.figure,'timer',timer_ncorr); % Set visible set(obj.handles_gui.figure,'Visible','on'); end % Destructor -----------------------------------------------------% % This ensures data is deleted if delete is called directly on the % ncorr handle. function delete(obj) if (ishandle(obj.handles_gui.figure)) % Setting 3rd argument to true results in a force close. obj.callback_close_function([],[],true); end end % Public methods -------------------------------------------------% % These are used for setting the reference image, current image, or % ROI manually. function set_ref(obj,ref_prelim) % Form wrapped function handle_set_ref = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(ref_prelim)set_ref_source(obj,ref_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_ref(ref_prelim); end function set_cur(obj,cur_prelim) % Form wrapped function handle_set_cur = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(cur_prelim)set_cur_source(obj,cur_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_cur(cur_prelim); end function set_roi_ref(obj,mask_prelim) % Form wrapped function handle_set_roi_ref = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(mask_prelim)set_roi_ref_source(obj,mask_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_roi_ref(mask_prelim); end function set_roi_cur(obj,mask_prelim) % Form wrapped function handle_set_roi_cur = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(mask_prelim)set_roi_cur_source(obj,mask_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_roi_cur(mask_prelim); end function refresh(obj) % Form wrapped function handle_refresh = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@()refresh_source(obj),obj.handles_gui.figure)); % Call wrapped function handle_refresh(); end end methods(Access = private) % ----------------------------------------------------------------% % Local Utility Function(s) --------------------------------------% % ----------------------------------------------------------------% function handle_wrapcallback = util_wrapcallbackall(obj,handle_callback) % This function wraps the callback with the update* UI functions. It % also checks to see if an error was generated, and if it was, it % will rethrow it and recomplete the finishing update* UI functions % to ensure the menu unfreezes. Note that the error will not be % rethrown if the figure is closed. % % Inputs ---------------------------------------------------------% % handle_callback - function handle; % % Outputs --------------------------------------------------------% % handle_wrapcallback - function handle; handle_wrapcallback = @updatestatecallback; function updatestatecallback(varargin) try % Beginning of callback - freeze menu; obj.freeze_menu(); % Run callback handle_callback(varargin{:}); % End of callback; % Update axes obj.update_axes('set'); % Update UI menu obj.update_topmenu(); % Update state text obj.update_dicstatetext(); % Unfreeze top layer of menu obj.unfreeze_menu(); catch err % If figure still exists, update UI and then rethrow % error if (isvalid(obj) && ishandle(obj.handles_gui.figure)) % Error is generated in callback obj.update_axes('set'); % Update UI menu obj.update_topmenu(); % Update state text obj.update_dicstatetext(); % Unfreeze top layer of menu obj.unfreeze_menu(); % Rethrow error rethrow(err); end end end end function name = util_get_name(obj) % This function will obtain the name of the variable in the main % workspace that points to this ncorr object % Initialize output name = ''; % Get all variables in base workspace basevars = evalin('base','whos'); % Grab variables of class ncorr ncorrvars = basevars(strcmp({basevars.class},class(obj))); % Cycle through variables and find which one is equivalent to % this object for i = 1:length(ncorrvars) if (eq(evalin('base',ncorrvars(i).name),obj)) % Its possible there are more than one handle that % point to this object, if that's the case just return % the first one name = ncorrvars(i).name; break; end end end %-----------------------------------------------------------------% % Handle Functions Source ----------------------------------------% %-----------------------------------------------------------------% function set_ref_source(obj,ref_prelim) % This function allows the manual uploading of a reference image; % only a single image is permitted. % Check to make sure input is of the correct form if (ncorr_util_properimgfmt(ref_prelim,'Reference image') == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_ref'); if (overwrite) % Set data obj.reference(1).imginfo = ncorr_class_img; obj.reference(1).imginfo.set_img('load',struct('img',ref_prelim,'name','reference','path','')); obj.reference(1).roi = ncorr_class_roi.empty; end end end function set_cur_source(obj,cur_prelim) % This function allows the manual uploading of a current image - % if a single image is uploaded it must be a double array. If multiple % images are uploaded, they must be in a cell array. % Check to make sure input is a cell if (~iscell(cur_prelim)) % Wrap cur_prelim in a cell cur_prelim = {cur_prelim}; end % Make sure each image has the correct format cursameformat = true; for i = 0:length(cur_prelim)-1 if (ncorr_util_properimgfmt(cur_prelim{i+1},'Current image') ~= out.success) cursameformat = false; break; end end if (cursameformat) % See if data will be overwritten overwrite = obj.clear_downstream('set_cur'); if (overwrite) % It's possible to run out of memory here, so put this % in a try-catch block try % Set data for i = 0:length(cur_prelim)-1 obj.current(i+1).imginfo = ncorr_class_img; obj.current(i+1).imginfo.set_img('load',struct('img',cur_prelim{i+1},'name',['current_' num2str(i+1)],'path','')); obj.current(i+1).roi = ncorr_class_roi.empty; end setappdata(obj.handles_gui.figure,'num_cur',length(cur_prelim)-1); catch %#ok<CTCH> h_error = errordlg('Loading current images failed, most likely because Ncorr ran out of memory.','Error','modal'); uiwait(h_error); % Clear all current images because exception could have % been thrown midway through setting current images obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); end end else h_error = errordlg('Loading current images failed because the image data format was incorrect.','Error','modal'); uiwait(h_error); end end function set_roi_ref_source(obj,mask_prelim) % This function allows the manual uploading of a region of % interest. % Check to make sure reference image has been loaded first - % for menu callbacks this isn't necessary since these options % will only become callable if "upstream" data has been loaded if (~isempty(obj.reference)) % Make sure ROI is the same size as the reference image and % is of class logical. if (isequal(size(mask_prelim),[obj.reference.imginfo.height obj.reference.imginfo.width]) && islogical(mask_prelim)) % Form roi_prelim roi_prelim = ncorr_class_roi; roi_prelim.set_roi('load',struct('mask',mask_prelim,'cutoff',2000)); % Make sure ROI is not empty if (roi_prelim.get_fullregions > 0) % At this point, roi_prelim fits the critera for a ROI. Show ROI % overlayed and ask user if ROI is appropriate: outstate = ncorr_gui_loadroi(obj.reference.imginfo, ... roi_prelim, ... get(obj.handles_gui.figure,'OuterPosition')); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % At this point, ROI is acceptable, has been % approved by the user, and will now be set. % Package data: dispinfo_template.type = 'regular'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.reference(1).roi = roi_prelim; end end else h_error = errordlg('ROI must contain a large contiguous region.','Error','modal'); uiwait(h_error); end else h_error = errordlg('Input must be of class logical and the same size as the reference image','Error','modal'); uiwait(h_error); end else h_error = errordlg('Reference image has not been loaded yet','Error','modal'); uiwait(h_error); end end function set_roi_cur_source(obj,mask_prelim) % This function allows the manual uploading of a region of % interest. This ROI corresponds to the LAST current image. % Check to make sure current image(s) have been loaded first - % for menu callbacks this isn't necessary since these options % will only become callable if "upstream" data has been loaded if (~isempty(obj.current)) % Make sure ROI is the same size as the last current image if (isequal(size(mask_prelim),[obj.current(end).imginfo.height obj.current(end).imginfo.width]) && islogical(mask_prelim)) % Form roi_prelim roi_prelim = ncorr_class_roi; roi_prelim.set_roi('load',struct('mask',mask_prelim,'cutoff',2000)); % Make sure ROI is not empty if (roi_prelim.get_fullregions > 0) % At this point, roi_prelim fits the critera for a ROI. Show ROI % overlayed and ask user if ROI is appropriate: outstate = ncorr_gui_loadroi(obj.current(end).imginfo, ... roi_prelim, ... get(obj.handles_gui.figure,'OuterPosition')); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % At this point, ROI is acceptable, has been % approved by the user, and will now be set. % Package data: dispinfo_template.type = 'backward'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.current(end).roi = roi_prelim; end end else h_error = errordlg('ROI must contain a large contiguous region.','Error','modal'); uiwait(h_error); end else h_error = errordlg('Input must be of class logical and the same size as the last current image','Error','modal'); uiwait(h_error); end else h_error = errordlg('Current image(s) have not been loaded yet.','Error','modal'); uiwait(h_error); end end function refresh_source(obj) %#ok<MANU> % Call this function if there's an error and the menu needs to be % unfrozen. end %-----------------------------------------------------------------% % Menu Callbacks -------------------------------------------------% %-----------------------------------------------------------------% function callback_topmenu_loadref(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading a reference image from the % GUI. % false means lazy loading isnt used [ref_prelim,outstate] = ncorr_util_loadimgs(false); if (outstate == out.success && length(ref_prelim) == 1) % See if data will be overwritten overwrite = obj.clear_downstream('set_ref'); if (overwrite) % Set Image obj.reference(1).imginfo = ref_prelim; obj.reference(1).roi = ncorr_class_roi.empty; end elseif (outstate == out.success && length(ref_prelim) > 1) h_error = errordlg('Please select only one reference image.','Error','modal'); uiwait(h_error); end end function callback_topmenu_loadcur(obj,hObject,eventdata,lazyparam) %#ok<INUSL> % This is the callback for loading current image(s) from the GUI. [cur_prelim,outstate] = ncorr_util_loadimgs(lazyparam); if (outstate == out.success) overwrite = obj.clear_downstream('set_cur'); if (overwrite) % Set Image for i = 0:length(cur_prelim)-1 obj.current(i+1).imginfo = cur_prelim(i+1); obj.current(i+1).roi = ncorr_class_roi.empty; end % Display last current image setappdata(obj.handles_gui.figure,'num_cur',length(cur_prelim)-1); end end end function callback_topmenu_loaddata(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading data from a previous analysis. % Get data filename [filename,pathname] = uigetfile({'*.mat'},'Select the previous DIC data (must be .dat)'); if (~isequal(filename,0) && ~isequal(pathname,0)); try % Load data struct_load = load(fullfile(pathname,filename)); loadsuccess = true; catch %#ok<CTCH> % Probably out of memory loadsuccess = false; end if (loadsuccess) if (isfield(struct_load,'reference_save') && isfield(struct_load,'current_save') && isfield(struct_load,'data_dic_save')) % The data has the correct fields if (isa(struct_load.reference_save,'struct') && ... isa(struct_load.current_save,'struct') && ... isa(struct_load.data_dic_save,'struct')) % Make sure data_dic has the correct % fields. Easiest way to do this is to assign % the saved data to a structure with the % correct fields, an error will result if the % fields are wrong data_dic_prelim = obj.data_dic; % This will copy fields - only used temporarily try data_dic_prelim(1) = struct_load.data_dic_save; %#ok<NASGU> loaddatasuccess = true; catch %#ok<CTCH> % Some fields are not correct loaddatasuccess = false; end if (loaddatasuccess) % See if data will be overwritten overwrite = obj.clear_downstream('all'); if (overwrite) % Put in try block - its possible to run % out of memory here. try % Do reference image first [ref_prelim,outstate_ref] = ncorr_util_loadsavedimg(struct_load.reference_save); % Do current images next cur_prelim = ncorr_class_img.empty; for i = 0:length(struct_load.current_save)-1 [cur_buffer,outstate_cur] = ncorr_util_loadsavedimg(struct_load.current_save(i+1)); if (outstate_cur == out.success) cur_prelim(i+1) = cur_buffer; else break; end end if (outstate_ref == out.success && outstate_cur == out.success) % Store data: % Set reference: obj.reference(1).imginfo = ref_prelim; obj.reference(1).roi = struct_load.reference_save.roi; % Set current: for i = 0:length(struct_load.current_save)-1 obj.current(i+1).imginfo = cur_prelim(i+1); obj.current(i+1).roi = struct_load.current_save(i+1).roi; end setappdata(obj.handles_gui.figure,'num_cur',length(struct_load.current_save)-1); % Set dic data: obj.data_dic(1) = struct_load.data_dic_save; else % Images could not be found % Form error message msg_error{1} = 'Images could not be located. Make sure they are in the current directory or were not moved from the locations listed here:'; msg_error{2} = fullfile(struct_load.reference_save.path,struct_load.reference_save.name); max_display = 10; for i = 0:min(length(struct_load.current_save),max_display)-1 msg_error{end+1} = fullfile(struct_load.current_save(i+1).path,struct_load.current_save(i+1).name); %#ok<AGROW> end if (length(struct_load.current_save) > max_display) msg_error{end+1} = '...'; end h_error = errordlg(msg_error,'Error','modal'); uiwait(h_error); end catch %#ok<CTCH> h_error = errordlg('Loading failed, most likely because Ncorr ran out of memory.','Error','modal'); uiwait(h_error); % Clear everything - its possible % exception was caught while % loading data midway. obj.reference(:) = []; obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); fields_data_dic = fieldnames(obj.data_dic); for i = 0:length(fields_data_dic)-1 obj.data_dic.(fields_data_dic{i+1})(:) = []; end end end else h_error = errordlg('The data is not valid, please load data saved specifically from ncorr.','Error','modal'); uiwait(h_error); end else h_error = errordlg('The data is not valid, please load data saved specifically from ncorr.','Error','modal'); uiwait(h_error); end else h_error = errordlg('The data is not valid, please load data saved specifically from ncorr.','Error','modal'); uiwait(h_error); end else h_error = errordlg('Loading failed, most likely because Ncorr ran out of memory.','Error','modal'); uiwait(h_error); end end end function callback_topmenu_savedata(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for saving data. % Get save data filename [filename,pathname] = uiputfile({'*.mat'},'Save DIC data (must be .dat)'); if (~isequal(filename,0) && ~isequal(pathname,0)); % Check if data will be overwritten in directory overwrite = true; if (exist(fullfile(pathname,filename),'file')) contbutton = questdlg('File already exists. Do you want to overwrite?','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'No')) overwrite = false; end end if (overwrite) % Must deal with image data, ROI data, and data_dic. % 1) Images: Save the file names if they are 'file' or 'lazy' % If they were set through the workspace (i.e. 'load') then save the % image as double precision. % 2) ROIs: For the ROIs, save each directly. % 3) Data: Save data_dic directly. reference_save = struct('type',{},'gs',{},'name',{},'path',{},'roi',{}); current_save = struct('type',{},'gs',{},'name',{},'path',{},'roi',{}); % Images ---------------------------------------------% % Reference image: reference_save(1).type = obj.reference.imginfo.type; reference_save.gs = []; if (strcmp(obj.reference.imginfo.type,'load')) % Must save gs data directly reference_save.gs = obj.reference.imginfo.get_gs(); end reference_save.name = obj.reference.imginfo.name; reference_save.path = obj.reference.imginfo.path; reference_save.roi = obj.reference.roi; %#ok<STRNU> % Current image(s): for i = 0:length(obj.current)-1 current_save(i+1).type = obj.current(i+1).imginfo.type; current_save(i+1).gs = []; if (strcmp(obj.current(i+1).imginfo.type,'load')) % Must save gs data directly current_save(i+1).gs = obj.current(i+1).imginfo.get_gs(); end current_save(i+1).name = obj.current(i+1).imginfo.name; current_save(i+1).path = obj.current(i+1).imginfo.path; current_save(i+1).roi = obj.current(i+1).roi; end % Data -----------------------------------------------% data_dic_save = obj.data_dic; %#ok<NASGU> % Save -----------------------------------------------% try % The v7.3 flag helps save larger files save(fullfile(pathname,filename),'reference_save','current_save','data_dic_save','-v7.3'); catch %#ok<CTCH> % If saving fails, its generally because the files % are too large. h_error = errordlg('Saving failed, probably because the amount of data being saved is too large.','Error','modal'); uiwait(h_error); end end end end function callback_topmenu_clear(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for the clearing all the data. obj.clear_downstream('all'); end function callback_topmenu_sethandle(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for setting the handle to ncorr in the case % that it gets cleared from the workspace % Get Name name = util_get_name(obj); if (isempty(name)) % Prompt user for what handle he/she wants to use [handle_name,outstate] = gui_sethandle(get(obj.handles_gui.figure,'OuterPosition')); if (outstate == out.success) % Assign handles to base workspace assignin('base',handle_name,obj); end else % Handle already exists e = msgbox(['Handle already exists and is called: ' name],'WindowStyle','modal'); uiwait(e); end end function callback_topmenu_reinstall(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for reinstalling the mex files. % Check if ncorr.m is in current directory listing = dir; if (any(strcmp('ncorr.m',{listing.name}))) % Ask user if its okay to reinstall contbutton = questdlg('Are you sure you want to reinstall? All data will be lost if proceeding.','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'Yes')) % Clear ncorr_installinfo.txt file - this is the standard % way to reinstall filename = 'ncorr_installinfo.txt'; fid = fopen(filename,'w'); % This will clear file if (fid ~= -1) fclose(fid); % Close file % Force close obj.callback_close_function([],[],true); % Reopen ncorr - this will cause reinstallation since % ncorr_installinfo.txt has been cleared handles_ncorr = ncorr; % Get name name = util_get_name(obj); if (~isempty(name)) % If there is a name then assign the name to the % ncorr object. assignin('base',name,handles_ncorr); end else % Error h_error = errordlg('For some reason ncorr was not able to clear "ncorr_installinfo.txt" file, reinstall cannot take place.','Error','modal'); uiwait(h_error); end end else % Error h_error = errordlg('Please navigate to folder containing ncorr.m first before reinstalling.','Error','modal'); uiwait(h_error); end end function callback_exit_callback(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for exiting the program. % 3rd argument is set to false, which queries user about % closing if DIC data has been computed. obj.callback_close_function([],[],false); end function callback_topmenu_set_roi_ref(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading the region of interest from the % GUI % Get ROIs ---------------------------------------------------% % Check if ROI has been set before - must be from the regular % analysis, as backward DIC analysis will also set a reference ROI params_init = ncorr_class_roi.empty; if (~isempty(obj.reference) && ~isempty(obj.reference.roi) && ... ~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'regular')) params_init(1) = obj.reference.roi; end [roi_prelim,outstate] = ncorr_gui_setrois(obj.reference.imginfo, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % Package data: dispinfo_template.type = 'regular'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.reference(1).roi = roi_prelim; end end end function callback_topmenu_set_roi_cur(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading the region of interest from % the GUI % Get ROIs ---------------------------------------------------% % Check if ROI has been set before - must be from the backward % analysis, as backward dic analysis will also set a current ROI params_init = ncorr_class_roi.empty; if (~isempty(obj.current) && ~isempty(obj.current(end).roi) && ... ~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'backward')) params_init(1) = obj.current(end).roi; end [roi_prelim,outstate] = ncorr_gui_setrois(obj.current(end).imginfo, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % Package data: dispinfo_template.type = 'backward'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.current(end).roi = roi_prelim; end end end function callback_topmenu_setdicparameters(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for setting DIC parameters % Check if DIC parameters were set before - if dic parameters % are being set, the data_dic.dispinfo field is gauranteed % nonempty, so you don't need to check this first. params_init = {}; if (~isempty(obj.data_dic.dispinfo.radius) && ... ~isempty(obj.data_dic.dispinfo.spacing) && ... ~isempty(obj.data_dic.dispinfo.cutoff_diffnorm) && ... ~isempty(obj.data_dic.dispinfo.cutoff_iteration) && ... ~isempty(obj.data_dic.dispinfo.total_threads) && ... ~isempty(obj.data_dic.dispinfo.stepanalysis) && ... ~isempty(obj.data_dic.dispinfo.subsettrunc)) params_init = {obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis, ... obj.data_dic.dispinfo.subsettrunc}; end % Get Params -------------------------------------------------% if (strcmp(obj.data_dic.dispinfo.type,'regular')) % Show reference image for regular analysis [radius_prelim,spacing_prelim,cutoff_diffnorm_prelim,cutoff_iteration_prelim,total_threads_prelim,stepanalysis_prelim,subsettrunc_prelim,outstate] = ncorr_gui_setdicparams(obj.reference.imginfo, ... obj.reference.roi, ... obj.support_openmp, ... obj.total_cores, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); else % Show last current image for backward analysis [radius_prelim,spacing_prelim,cutoff_diffnorm_prelim,cutoff_iteration_prelim,total_threads_prelim,stepanalysis_prelim,subsettrunc_prelim,outstate] = ncorr_gui_setdicparams(obj.current(end).imginfo, ... obj.current(end).roi, ... obj.support_openmp, ... obj.total_cores, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); end if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_dicparameters'); if (overwrite) % Package data: dispinfo_template.type = obj.data_dic.dispinfo.type; dispinfo_template.radius = radius_prelim; dispinfo_template.spacing = spacing_prelim; dispinfo_template.cutoff_diffnorm = cutoff_diffnorm_prelim; dispinfo_template.cutoff_iteration = cutoff_iteration_prelim; dispinfo_template.total_threads = total_threads_prelim; dispinfo_template.stepanalysis = stepanalysis_prelim; dispinfo_template.subsettrunc = subsettrunc_prelim; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; end end end function callback_topmenu_dic(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for performing DIC. % Merge images. This makes it convenient for the idx % tracker if step analysis is used imgs = [obj.reference obj.current]; % Initialize rois_dic_prelim = ncorr_class_roi.empty; displacements_prelim = struct('plot_u',{},'plot_v',{},'plot_corrcoef',{},'plot_validpoints',{}); imgcorr_prelim = struct('idx_ref',{},'idx_cur',{}); seedinfo_buffer = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (strcmp(obj.data_dic.dispinfo.type,'regular')) % Imgcorr starts out empty so this guarantees at least one % iteration. Make sure to exit when all images have been % analyzed. while (isempty(imgcorr_prelim) || imgcorr_prelim(end).idx_cur < length(imgs)-1) % Update idx_ref if (isempty(imgcorr_prelim)) imgcorr_prelim(1).idx_ref = 0; else % Use previous last current image as the new % reference image imgcorr_prelim(end+1).idx_ref = imgcorr_prelim(end).idx_cur; %#ok<AGROW> end % Update idx_cur if (obj.data_dic.dispinfo.stepanalysis.enabled && strcmp(obj.data_dic.dispinfo.stepanalysis.type,'leapfrog')) % If leapfrog is used, then set current image to a % preset increment imgcorr_prelim(end).idx_cur = min(imgcorr_prelim(end).idx_ref+obj.data_dic.dispinfo.stepanalysis.step,length(imgs)-1); else % If this is not leapfrog, set the current image to % the last image. This number will get updated % depending on how many images are successfully % analyzed and seeded imgcorr_prelim(end).idx_cur = length(imgs)-1; end % Do DIC analysis - only send initial parameters if % stepanalysis is enabled with automatic seed % propagation and an interation has already been done. params_init = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (obj.data_dic.dispinfo.stepanalysis.enabled && ... obj.data_dic.dispinfo.stepanalysis.auto && ... ~isempty(seedinfo_buffer)) % Get previous seeds as initial parameters if step % analysis and automatic seed propagation are enabled. % If these are provided then the seeds are automatically % updated params_init = seedinfo_buffer; end % Returns failed if exception is thrown; for both % failed and cancel just return. [displacements_buffer,rois_dic_buffer,seedinfo_buffer,outstate_dic] = ncorr_alg_dicanalysis(imgs(imgcorr_prelim(end).idx_ref+1:imgcorr_prelim(end).idx_cur+1), ... obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis.enabled, ... obj.data_dic.dispinfo.subsettrunc, ... imgcorr_prelim(end).idx_ref, ... length(obj.current), ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate_dic ~= out.success) % DIC analysis was cancelled or failed by throwing % an exception, for both cases return return; end % Update ROIs for i = 0:length(displacements_buffer)-1 imgs(i+imgcorr_prelim(end).idx_ref+2).roi = imgs(imgcorr_prelim(end).idx_ref+1).roi.update_roi(displacements_buffer(i+1).plot_u, ... displacements_buffer(i+1).plot_v, ... rois_dic_buffer(i+1), ... [imgs(i+imgcorr_prelim(end).idx_ref+2).imginfo.height imgs(i+imgcorr_prelim(end).idx_ref+2).imginfo.width], ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.radius); end % Store outputs for i = 0:length(displacements_buffer)-1 displacements_prelim(i+imgcorr_prelim(end).idx_ref+1) = displacements_buffer(i+1); rois_dic_prelim(i+imgcorr_prelim(end).idx_ref+1) = rois_dic_buffer(i+1); end % Update imgcorr_prelim if stepanalysis is enabled % - this is necessary since not all images are % necessarily analyzed. if (obj.data_dic.dispinfo.stepanalysis.enabled) imgcorr_prelim(end).idx_cur = imgcorr_prelim(end).idx_ref + length(displacements_buffer); end end else % Imgcorr starts out empty so this guarantees at least one % iteration. Make sure to exit when all images have been % analyzed. while (isempty(imgcorr_prelim) || imgcorr_prelim(end).idx_cur > 0) % Update idx_ref if (isempty(imgcorr_prelim)) imgcorr_prelim(1).idx_ref = length(imgs)-1; else % Use previous last current image as the new % reference image imgcorr_prelim(end+1).idx_ref = imgcorr_prelim(end).idx_cur; %#ok<AGROW> end % Update idx_cur if (obj.data_dic.dispinfo.stepanalysis.enabled && strcmp(obj.data_dic.dispinfo.stepanalysis.type,'leapfrog')) % If leapfrog is used, then set current image to a % preset increment imgcorr_prelim(end).idx_cur = max(imgcorr_prelim(end).idx_ref-obj.data_dic.dispinfo.stepanalysis.step,0); else % If this is not leapfrog, set the current image to % the last image. This number will get updated % depending on how many images are successfully % analyzed and seeded imgcorr_prelim(end).idx_cur = 0; end % Do DIC analysis - only send initial parameters if % stepanalysis is enabled with automatic seed % propagation and an interation has already been done. params_init = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (obj.data_dic.dispinfo.stepanalysis.enabled && ... obj.data_dic.dispinfo.stepanalysis.auto && ... ~isempty(seedinfo_buffer)) % Get previous seeds as initial parameters if step % analysis and automatic seed propagation are enabled. % If these are provided then the seeds are automatically % updated params_init = seedinfo_buffer; end % Returns failed if exception is thrown; for both % failed and cancel just return. [displacements_buffer,rois_dic_buffer,seedinfo_buffer,outstate_dic] = ncorr_alg_dicanalysis(imgs(imgcorr_prelim(end).idx_ref+1:-1:imgcorr_prelim(end).idx_cur+1), ... obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis.enabled, ... obj.data_dic.dispinfo.subsettrunc, ... length(obj.current)-imgcorr_prelim(end).idx_ref, ... length(obj.current), ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate_dic ~= out.success) % DIC analysis was cancelled or failed by throwing % an exception, for both cases return return; end % Update ROIs for i = 0:length(displacements_buffer)-1 imgs(imgcorr_prelim(end).idx_ref-i).roi = imgs(imgcorr_prelim(end).idx_ref+1).roi.update_roi(displacements_buffer(i+1).plot_u, ... displacements_buffer(i+1).plot_v, ... rois_dic_buffer(i+1), ... [imgs(imgcorr_prelim(end).idx_ref-i).imginfo.height imgs(imgcorr_prelim(end).idx_ref-i).imginfo.width], ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.radius); end % Update displacements for i = 0:length(displacements_buffer)-1 % Displacements must be updated if more than two % images were analyzed. Also, leave the last % displacement field in the buffer alone since % it's already WRT the correct configuration if (i > 0) % Update displacement fields params_init = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (obj.data_dic.dispinfo.stepanalysis.auto) params_init = seedinfo_buffer(:,:,end-i); end % Returns failed if exception is thrown; for both % failed and cancel just return. [displacement_buffer_update,roi_dic_buffer_update,seedinfo_buffer_update,outstate_dic] = ncorr_alg_dicanalysis([imgs(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+i+1) imgs(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+1)], ... obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis.enabled, ... obj.data_dic.dispinfo.subsettrunc, ... length(obj.current)-imgcorr_prelim(end).idx_ref+i, ... length(obj.current), ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); %#ok<ASGLU> if (outstate_dic ~= out.success) % DIC analysis was cancelled or failed by throwing % an exception, for both cases return return; end % Store Displacements displacements_prelim(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+i) = displacement_buffer_update; rois_dic_prelim(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+i) = roi_dic_buffer_update; else % Directly store displacements displacements_prelim(imgcorr_prelim(end).idx_ref) = displacements_buffer(end); rois_dic_prelim(imgcorr_prelim(end).idx_ref) = rois_dic_buffer(end); end end % Update imgcorr_prelim - this is necessary since % not all images are necessarily analyzed. if (obj.data_dic.dispinfo.stepanalysis.enabled) imgcorr_prelim(end).idx_cur = imgcorr_prelim(end).idx_ref - length(displacements_buffer); end end end % Save the data % See if data will be overwritten overwrite = obj.clear_downstream('dicanalysis'); if (overwrite) % Package the data: for i = 0:length(obj.current)-1 displacements_template(i+1).plot_u_dic = displacements_prelim(i+1).plot_u; %#ok<AGROW> displacements_template(i+1).plot_v_dic = displacements_prelim(i+1).plot_v; %#ok<AGROW> displacements_template(i+1).plot_corrcoef_dic = displacements_prelim(i+1).plot_corrcoef; %#ok<AGROW> displacements_template(i+1).roi_dic = rois_dic_prelim(i+1); %#ok<AGROW> displacements_template(i+1).plot_u_ref_formatted = []; %#ok<AGROW> displacements_template(i+1).plot_v_ref_formatted = []; %#ok<AGROW> displacements_template(i+1).roi_ref_formatted = []; %#ok<AGROW> displacements_template(i+1).plot_u_cur_formatted = []; %#ok<AGROW> displacements_template(i+1).plot_v_cur_formatted = []; %#ok<AGROW> displacements_template(i+1).roi_cur_formatted = []; %#ok<AGROW> end dispinfo_template.type = obj.data_dic.dispinfo.type; dispinfo_template.radius = obj.data_dic.dispinfo.radius; dispinfo_template.spacing = obj.data_dic.dispinfo.spacing; dispinfo_template.cutoff_diffnorm = obj.data_dic.dispinfo.cutoff_diffnorm; dispinfo_template.cutoff_iteration = obj.data_dic.dispinfo.cutoff_iteration; dispinfo_template.total_threads = obj.data_dic.dispinfo.total_threads; dispinfo_template.stepanalysis = obj.data_dic.dispinfo.stepanalysis; dispinfo_template.subsettrunc = obj.data_dic.dispinfo.subsettrunc; dispinfo_template.imgcorr = imgcorr_prelim; dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: % Updated ROIs obj.reference.roi = imgs(1).roi; for i = 0:length(obj.current)-1 obj.current(i+1).roi = imgs(i+2).roi; end % Displacement info obj.data_dic.dispinfo(1) = dispinfo_template; for i = 0:length(obj.current)-1 % Store displacements obj.data_dic.displacements(i+1) = displacements_template(i+1); end % Tell user analysis is done msgbox('DIC Analysis completed successfully. Press ok to finish.','WindowStyle','modal'); end end function callback_topmenu_formatdisp(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for formatting the displacements. % Merge images. This makes it convenient for the idx % tracker imgs = [obj.reference.imginfo obj.current.imginfo]; % Check if format has been done before params_init = cell(0); if (~isempty(obj.data_dic.dispinfo.pixtounits) && ... ~isempty(obj.data_dic.dispinfo.units) && ... ~isempty(obj.data_dic.dispinfo.cutoff_corrcoef) && ... ~isempty(obj.data_dic.dispinfo.lenscoef)) params_init = {obj.data_dic.dispinfo.pixtounits, ... obj.data_dic.dispinfo.units, ... obj.data_dic.dispinfo.cutoff_corrcoef, ... obj.data_dic.dispinfo.lenscoef}; end % Initialize plots_disp_f_prelim = struct('plot_u_ref_formatted',{},'plot_v_ref_formatted',{},'plot_u_cur_formatted',{},'plot_v_cur_formatted',{}); rois_f_ref_prelim = ncorr_class_roi.empty; rois_f_cur_prelim = ncorr_class_roi.empty; if (strcmp(obj.data_dic.dispinfo.type,'regular')) % Gather reference and current images in the correct order imgs_ref = ncorr_class_img.empty; imgs_cur = ncorr_class_img.empty; for i = 0:length(obj.data_dic.dispinfo.imgcorr)-1 imgs_ref = horzcat(imgs_ref,repmat(imgs(obj.data_dic.dispinfo.imgcorr(i+1).idx_ref+1),1,obj.data_dic.dispinfo.imgcorr(i+1).idx_cur-obj.data_dic.dispinfo.imgcorr(i+1).idx_ref)); %#ok<AGROW> imgs_cur = horzcat(imgs_cur,imgs(obj.data_dic.dispinfo.imgcorr(i+1).idx_ref+2:obj.data_dic.dispinfo.imgcorr(i+1).idx_cur+1)); %#ok<AGROW> end % Format step displacements ------------------------------% [plots_disp_f_step_prelim,rois_f_step_prelim,pixtounits_prelim,units_prelim,cutoff_corrcoef_prelim,lenscoef_prelim,outstate_formatdisp_step] = ncorr_gui_formatdisp(imgs_ref, ... imgs_cur, ... [obj.data_dic.displacements.roi_dic], ... {obj.data_dic.displacements.plot_u_dic}, ... {obj.data_dic.displacements.plot_v_dic}, ... {obj.data_dic.displacements.plot_corrcoef_dic}, ... obj.data_dic.dispinfo.spacing, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); % Check if analysis was cancelled if (outstate_formatdisp_step ~= out.success) return; end % Convert plots back to pixel displacements for i = 0:length(obj.current)-1 plots_disp_f_step_prelim(i+1).plot_u_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted./pixtounits_prelim; plots_disp_f_step_prelim(i+1).plot_v_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted./pixtounits_prelim; end % Add plots ----------------------------------------------% % Gather images that dont need to be added for i = obj.data_dic.dispinfo.imgcorr(1).idx_ref:obj.data_dic.dispinfo.imgcorr(1).idx_cur-1 plots_disp_f_prelim(i+1).plot_u_ref_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted; plots_disp_f_prelim(i+1).plot_v_ref_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted; rois_f_ref_prelim(i+1) = rois_f_step_prelim(i+1); end % Reduce reference ROI roi_ref_reduced = obj.reference.roi.reduce(obj.data_dic.dispinfo.spacing); % Add other plots plot_added_buffer = cell(0); % Cycle over imgcorr - skip first index in imgcorr for i = 1:length(obj.data_dic.dispinfo.imgcorr)-1 for j = obj.data_dic.dispinfo.imgcorr(i+1).idx_ref:obj.data_dic.dispinfo.imgcorr(i+1).idx_cur-1 % Get idxs of displacement fields used to add idx_dispadd = [[obj.data_dic.dispinfo.imgcorr(1:i).idx_cur]-1 j]; % Get added plots [plot_added_buffer{1},outstate_add] = ncorr_alg_addanalysis({plots_disp_f_step_prelim(idx_dispadd+1).plot_u_formatted}, ... {plots_disp_f_step_prelim(idx_dispadd+1).plot_v_formatted}, ... rois_f_step_prelim(idx_dispadd+1), ... obj.data_dic.dispinfo.spacing, ... j+1, ... length(obj.current)); % See if analysis was cancelled if (outstate_add ~= out.success) return; end % Store "added" plots plots_disp_f_prelim(j+1).plot_u_ref_formatted = plot_added_buffer{1}.plot_u_added; plots_disp_f_prelim(j+1).plot_v_ref_formatted = plot_added_buffer{1}.plot_v_added; rois_f_ref_prelim(j+1) = roi_ref_reduced.get_union(plot_added_buffer{1}.plot_validpoints,0); end end % Convert plots to Eulerian ------------------------------% % Get Eulerian displacements plot_eulerian_buffer = cell(0); roi_eulerian_buffer = cell(0); for i = 0:length(obj.current)-1 % Convert displacements from Lagrangian to Eulerian perspective [plot_eulerian_buffer{1},roi_eulerian_buffer{1},outstate_convert] = ncorr_alg_convertanalysis(obj.current(i+1), ... obj.reference, ... {plots_disp_f_prelim(i+1).plot_u_ref_formatted}, ... {plots_disp_f_prelim(i+1).plot_v_ref_formatted}, ... rois_f_ref_prelim(i+1), ... obj.data_dic.dispinfo.spacing, ... i, ... length(obj.current)); % See if analysis was cancelled or failed. Return for % both. if (outstate_convert ~= out.success) return; end % Store plots_disp_f_prelim(i+1).plot_u_cur_formatted = plot_eulerian_buffer{1}.plot_u_new; plots_disp_f_prelim(i+1).plot_v_cur_formatted = plot_eulerian_buffer{1}.plot_v_new; rois_f_cur_prelim(i+1) = roi_eulerian_buffer{1}; end % Make sure to convert displacements back to real units from % pixels. Also multiply Eulerian displacements by -1 to % make them truly Eulerian for i = 0:length(obj.current)-1 % Lagrangian plots_disp_f_prelim(i+1).plot_u_ref_formatted = plots_disp_f_prelim(i+1).plot_u_ref_formatted.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_ref_formatted = plots_disp_f_prelim(i+1).plot_v_ref_formatted.*pixtounits_prelim; % Eulerian plots_disp_f_prelim(i+1).plot_u_cur_formatted = -plots_disp_f_prelim(i+1).plot_u_cur_formatted.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_cur_formatted = -plots_disp_f_prelim(i+1).plot_v_cur_formatted.*pixtounits_prelim; end else % Gather reference and current images in the correct order imgs_ref = imgs(2:end); imgs_cur = ncorr_class_img.empty; for i = length(obj.data_dic.dispinfo.imgcorr)-1:-1:0 imgs_cur = horzcat(imgs_cur,repmat(imgs(obj.data_dic.dispinfo.imgcorr(i+1).idx_cur+1),1,obj.data_dic.dispinfo.imgcorr(i+1).idx_ref-obj.data_dic.dispinfo.imgcorr(i+1).idx_cur)); %#ok<AGROW> end % Format step displacements ------------------------------% [plots_disp_f_step_prelim,rois_f_step_prelim,pixtounits_prelim,units_prelim,cutoff_corrcoef_prelim,lenscoef_prelim,outstate_formatdisp_step] = ncorr_gui_formatdisp(imgs_ref, ... imgs_cur, ... [obj.data_dic.displacements.roi_dic], ... {obj.data_dic.displacements.plot_u_dic}, ... {obj.data_dic.displacements.plot_v_dic}, ... {obj.data_dic.displacements.plot_corrcoef_dic}, ... obj.data_dic.dispinfo.spacing, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); % Check if analysis was cancelled if (outstate_formatdisp_step ~= out.success) return; end % Convert plots to pixel displacements for i = 0:length(obj.current)-1 plots_disp_f_step_prelim(i+1).plot_u_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted./pixtounits_prelim; plots_disp_f_step_prelim(i+1).plot_v_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted./pixtounits_prelim; end % Add plots ------------------------------------------% % Gather images that dont need to be added for i = obj.data_dic.dispinfo.imgcorr(end).idx_cur:obj.data_dic.dispinfo.imgcorr(end).idx_ref-1 plots_disp_f_prelim(i+1).plot_u_cur_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted; plots_disp_f_prelim(i+1).plot_v_cur_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted; rois_f_cur_prelim(i+1) = rois_f_step_prelim(i+1); end % Add other plots plot_added_buffer = cell(0); counter = obj.data_dic.dispinfo.imgcorr(end).idx_ref+1; % Cycle over imgcorr - skip over last index for i = 0:length(obj.data_dic.dispinfo.imgcorr)-2 for j = obj.data_dic.dispinfo.imgcorr(i+1).idx_ref-1:-1:obj.data_dic.dispinfo.imgcorr(i+1).idx_cur % Get idxs of displacement fields used to add idx_dispadd = [j [obj.data_dic.dispinfo.imgcorr(i+2:end).idx_ref]-1]; % Get added plots [plot_added_buffer{1},outstate_add] = ncorr_alg_addanalysis({plots_disp_f_step_prelim(idx_dispadd+1).plot_u_formatted}, ... {plots_disp_f_step_prelim(idx_dispadd+1).plot_v_formatted}, ... rois_f_step_prelim(idx_dispadd+1), ... obj.data_dic.dispinfo.spacing, ... counter, ... length(obj.current)); % See if analysis was cancelled if (outstate_add ~= out.success) return; end % Reduce current ROI roi_cur_reduced = obj.current(j+1).roi.reduce(obj.data_dic.dispinfo.spacing); % Store "added" plots plots_disp_f_prelim(j+1).plot_u_cur_formatted = plot_added_buffer{1}.plot_u_added; plots_disp_f_prelim(j+1).plot_v_cur_formatted = plot_added_buffer{1}.plot_v_added; rois_f_cur_prelim(j+1) = roi_cur_reduced.get_union(plot_added_buffer{1}.plot_validpoints,0); % Update counter counter = counter+1; end end % Convert plots to Lagrangian ----------------------------% % Get Lagrangian Displacements plot_lagrangian_buffer = cell(0); roi_lagrangian_buffer = cell(0); [plot_lagrangian_buffer{1},roi_lagrangian_buffer{1},outstate_convert] = ncorr_alg_convertanalysis(obj.reference, ... obj.current, ... {plots_disp_f_prelim.plot_u_cur_formatted}, ... {plots_disp_f_prelim.plot_v_cur_formatted}, ... rois_f_cur_prelim, ... obj.data_dic.dispinfo.spacing, ... 0, ... length(obj.current)); % See if analysis was cancelled or failed. Return for % both. if (outstate_convert ~= out.success) return; end % Make sure to convert displacements back to real units from % pixels. Also multiply Eulerian displacements by -1 to % make them truly % Eulerian for i = 0:length(obj.current)-1 % Lagrangian plots_disp_f_prelim(i+1).plot_u_ref_formatted = plot_lagrangian_buffer{1}(i+1).plot_u_new.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_ref_formatted = plot_lagrangian_buffer{1}(i+1).plot_v_new.*pixtounits_prelim; rois_f_ref_prelim(i+1) = roi_lagrangian_buffer{1}(i+1); % Eulerian plots_disp_f_prelim(i+1).plot_u_cur_formatted = -plots_disp_f_prelim(i+1).plot_u_cur_formatted.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_cur_formatted = -plots_disp_f_prelim(i+1).plot_v_cur_formatted.*pixtounits_prelim; end end % Dont query overwrite, just do it since formatting % displacement data and calculating strain maps is quick obj.clear_downstream('formatdisp'); % For regular analysis just store formatted rois % Package data: for i = 0:length(obj.current)-1 displacements_template(i+1).plot_u_dic = obj.data_dic.displacements(i+1).plot_u_dic; %#ok<AGROW> displacements_template(i+1).plot_v_dic = obj.data_dic.displacements(i+1).plot_v_dic; %#ok<AGROW> displacements_template(i+1).plot_corrcoef_dic = obj.data_dic.displacements(i+1).plot_corrcoef_dic; %#ok<AGROW> displacements_template(i+1).roi_dic = obj.data_dic.displacements(i+1).roi_dic; %#ok<AGROW> displacements_template(i+1).plot_u_ref_formatted = plots_disp_f_prelim(i+1).plot_u_ref_formatted; %#ok<AGROW> displacements_template(i+1).plot_v_ref_formatted = plots_disp_f_prelim(i+1).plot_v_ref_formatted; %#ok<AGROW> displacements_template(i+1).roi_ref_formatted = rois_f_ref_prelim(i+1); %#ok<AGROW> displacements_template(i+1).plot_u_cur_formatted = plots_disp_f_prelim(i+1).plot_u_cur_formatted; %#ok<AGROW> displacements_template(i+1).plot_v_cur_formatted = plots_disp_f_prelim(i+1).plot_v_cur_formatted; %#ok<AGROW> displacements_template(i+1).roi_cur_formatted = rois_f_cur_prelim(i+1); %#ok<AGROW> end dispinfo_template.type = obj.data_dic.dispinfo.type; dispinfo_template.radius = obj.data_dic.dispinfo.radius; dispinfo_template.spacing = obj.data_dic.dispinfo.spacing; dispinfo_template.cutoff_diffnorm = obj.data_dic.dispinfo.cutoff_diffnorm; dispinfo_template.cutoff_iteration = obj.data_dic.dispinfo.cutoff_iteration; dispinfo_template.total_threads = obj.data_dic.dispinfo.total_threads; dispinfo_template.stepanalysis = obj.data_dic.dispinfo.stepanalysis; dispinfo_template.subsettrunc = obj.data_dic.dispinfo.subsettrunc; dispinfo_template.imgcorr = obj.data_dic.dispinfo.imgcorr; dispinfo_template.pixtounits = pixtounits_prelim; dispinfo_template.units = units_prelim; dispinfo_template.cutoff_corrcoef = cutoff_corrcoef_prelim; dispinfo_template.lenscoef = lenscoef_prelim; % Store data: for i = 0:length(obj.current)-1 obj.data_dic.displacements(i+1) = displacements_template(i+1); end obj.data_dic.dispinfo(1) = dispinfo_template; end function callback_topmenu_calcstrain(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for computing the strains after the % displacements have been formatted. % Get strain radius ------------------------------------------% % Check if strain has been calculated before params_init = []; if (~isempty(obj.data_dic.straininfo) && ~isempty(obj.data_dic.straininfo.radius) && ~isempty(obj.data_dic.straininfo.subsettrunc)) params_init(1) = obj.data_dic.straininfo.radius; params_init(2) = obj.data_dic.straininfo.subsettrunc; end % Get strain parameters [radius_strain_prelim,subsettrunc_prelim,outstate_radius_strain] = ncorr_gui_setstrainradius(obj.reference.imginfo, ... [obj.current.imginfo], ... [obj.data_dic.displacements.roi_ref_formatted], ... [obj.data_dic.displacements.roi_cur_formatted], ... {obj.data_dic.displacements.plot_u_ref_formatted}, ... {obj.data_dic.displacements.plot_v_ref_formatted}, ... {obj.data_dic.displacements.plot_u_cur_formatted}, ... {obj.data_dic.displacements.plot_v_cur_formatted}, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.pixtounits, ... obj.data_dic.dispinfo.units, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); % See if analysis was cancelled if (outstate_radius_strain ~= out.success) return; end % Calculate strains --------------------------------------% % Calculate displacement gradients through least squares % plane fit first % Lagrangian plots_dispgrad_ref_prelim = struct('plot_dudx',{},'plot_dudy',{},'plot_dvdx',{},'plot_dvdy',{},'plot_validpoints',{}); plots_dispgrad_cur_prelim = struct('plot_dudx',{},'plot_dudy',{},'plot_dvdx',{},'plot_dvdy',{},'plot_validpoints',{}); % Lagrangian for i = 0:length(obj.current)-1 [plots_dispgrad_ref_prelim(i+1),outstate_dispgrad_ref] = ncorr_alg_dispgrad(obj.data_dic.displacements(i+1).plot_u_ref_formatted, ... obj.data_dic.displacements(i+1).plot_v_ref_formatted, ... obj.data_dic.displacements(i+1).roi_ref_formatted.formatted(), ... int32(radius_strain_prelim), ... obj.data_dic.dispinfo.pixtounits, ... int32(obj.data_dic.dispinfo.spacing), ... logical(subsettrunc_prelim), ... int32(i), ... int32(length(obj.current))); % See if analysis was cancelled if (outstate_dispgrad_ref ~= out.success) return; end end % Eulerian for i = 0:length(obj.current)-1 % Eulerian [plots_dispgrad_cur_prelim(i+1),outstate_dispgrad_cur] = ncorr_alg_dispgrad(obj.data_dic.displacements(i+1).plot_u_cur_formatted, ... obj.data_dic.displacements(i+1).plot_v_cur_formatted, ... obj.data_dic.displacements(i+1).roi_cur_formatted.formatted(), ... int32(radius_strain_prelim), ... obj.data_dic.dispinfo.pixtounits, ... int32(obj.data_dic.dispinfo.spacing), ... logical(subsettrunc_prelim), ... int32(i), ... int32(length(obj.current))); % See if analysis was cancelled if (outstate_dispgrad_cur ~= out.success) return; end end % Store % Dont query overwrite, just do it since calculating strain maps is quick obj.clear_downstream('strains'); % Package info: for i = 0:length(obj.current)-1 % Green Lagrangian strains_template(i+1).plot_exx_ref_formatted = (1/2)*(2*plots_dispgrad_ref_prelim(i+1).plot_dudx+plots_dispgrad_ref_prelim(i+1).plot_dudx.^2+plots_dispgrad_ref_prelim(i+1).plot_dvdx.^2); %#ok<AGROW> strains_template(i+1).plot_exy_ref_formatted = (1/2)*(plots_dispgrad_ref_prelim(i+1).plot_dudy+plots_dispgrad_ref_prelim(i+1).plot_dvdx+plots_dispgrad_ref_prelim(i+1).plot_dudx.*plots_dispgrad_ref_prelim(i+1).plot_dudy+plots_dispgrad_ref_prelim(i+1).plot_dvdx.*plots_dispgrad_ref_prelim(i+1).plot_dvdy); %#ok<AGROW> strains_template(i+1).plot_eyy_ref_formatted = (1/2)*(2*plots_dispgrad_ref_prelim(i+1).plot_dvdy+plots_dispgrad_ref_prelim(i+1).plot_dudy.^2+plots_dispgrad_ref_prelim(i+1).plot_dvdy.^2); %#ok<AGROW> strains_template(i+1).roi_ref_formatted = obj.data_dic.displacements(i+1).roi_ref_formatted.get_union(plots_dispgrad_ref_prelim(i+1).plot_validpoints,0); %#ok<AGROW> % Eulerian-Almansi strains_template(i+1).plot_exx_cur_formatted = (1/2)*(2*plots_dispgrad_cur_prelim(i+1).plot_dudx-plots_dispgrad_cur_prelim(i+1).plot_dudx.^2-plots_dispgrad_cur_prelim(i+1).plot_dvdx.^2); %#ok<AGROW> strains_template(i+1).plot_exy_cur_formatted = (1/2)*(plots_dispgrad_cur_prelim(i+1).plot_dudy+plots_dispgrad_cur_prelim(i+1).plot_dvdx-plots_dispgrad_cur_prelim(i+1).plot_dudx.*plots_dispgrad_cur_prelim(i+1).plot_dudy-plots_dispgrad_cur_prelim(i+1).plot_dvdx.*plots_dispgrad_cur_prelim(i+1).plot_dvdy); %#ok<AGROW> strains_template(i+1).plot_eyy_cur_formatted = (1/2)*(2*plots_dispgrad_cur_prelim(i+1).plot_dvdy-plots_dispgrad_cur_prelim(i+1).plot_dudy.^2-plots_dispgrad_cur_prelim(i+1).plot_dvdy.^2); %#ok<AGROW> strains_template(i+1).roi_cur_formatted = obj.data_dic.displacements(i+1).roi_cur_formatted.get_union(plots_dispgrad_cur_prelim(i+1).plot_validpoints,0); %#ok<AGROW> end % Store info: for i = 0:length(obj.current)-1 obj.data_dic.strains(i+1) = strains_template(i+1); end obj.data_dic.straininfo(1).radius = radius_strain_prelim; obj.data_dic.straininfo(1).subsettrunc = subsettrunc_prelim; % Tell user calculating strains was successful msgbox('Strains calculation complete. Press ok to finish.','WindowStyle','modal'); end function callback_topmenu_viewplot(obj,hObject,eventdata,type_fig) %#ok<INUSL> % This is the callback for viewing the plots after the % displacements have been formatted and after the strains % have been computed. % Get Data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); % Deactivate closerequestfcn - this prevents any closing of % figures when handles_plot is being updated for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn',''); end % Cycle over figures (it's possible type fig has more than one % type). for i = 0:length(type_fig)-1 % Check if plot already exists plotexists = false; for j = 0:length(handles_plot)-1 if (strcmp(getappdata(handles_plot(j+1),'type_plot'),type_fig{i+1})) % Plot already exists, bring it back to focus figure(handles_plot(j+1)); plotexists = true; break; end end if (~plotexists) % Get params_init; params_init = cell(0); if (~isempty(handles_plot)) % All windows will have the same paramters so just % grab the info from the first window params_init{1} = getappdata(handles_plot(1),'num_cur'); % {1} = num_cur % Get data params_init{2} = getappdata(handles_plot(1),'scalebarlength'); % {2} = scalebarlength params_init{3} = getappdata(handles_plot(1),'val_checkbox_scalebar'); % {3} = scalebar; params_init{4} = getappdata(handles_plot(1),'val_checkbox_axes'); % {4} = axes; params_init{5} = getappdata(handles_plot(1),'val_popupmenu'); % {5} = lagrangian or eulerian params_init{6} = strcmp(get(getappdata(handles_plot(1),'handle_zoom'),'Enable'),'on'); % {6} = zoomed params_init{7} = strcmp(get(getappdata(handles_plot(1),'handle_pan'),'Enable'),'on'); % {7} = panned end % Go over friends list; find the right most figure and % make this the figure whose coordinates are used for % pos_parent. if (isempty(handles_plot)) % Use coordinates of ncorr pos_parent = get(obj.handles_gui.figure,'OuterPosition'); else % Plots already exist, fight right most plot pos_parent = get(handles_plot(1),'OuterPosition'); for j = 1:length(handles_plot)-1 pos_buf = get(handles_plot(j+1),'OuterPosition'); if (pos_buf(1) + pos_buf(3) > pos_parent(1) + pos_parent(3)) pos_parent = pos_buf; elseif (pos_buf(1) + pos_buf(3) == pos_parent(1) + pos_parent(3)) % If they are equal, get the one that is % lower if (pos_buf(2) < pos_parent(2)) pos_parent = pos_buf; end end end end % Create new plot - This function will return all % gui handles. Store these as "friends" so plots can % remain consistent. The figure has already has its % closereqestfcn disabled handles_gui_new = ncorr_gui_viewplots(obj.reference.imginfo, ... [obj.current.imginfo], ... obj.data_dic, ... type_fig{i+1}, ... pos_parent, ... params_init); % Figure can be invalid if the ROI is empty if (ishandle(handles_gui_new.figure)) % Set delete functions set(handles_gui_new.figure,'DeleteFcn',ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_update_handles_plot(obj,hObject,eventdata),obj.handles_gui.figure)); % Update friends list - this allows the things to % sync if (isempty(handles_plot)) % Check if a plot already exists - if it does then get % the old friends list from the first plot friends_old = []; else friends_old = getappdata(handles_plot(1),'friends'); end friends_new = horzcat(friends_old,{handles_gui_new}); % Link the axes vec_friends = [friends_new{:}]; linkaxes([vec_friends.axes_formatplot],'xy'); % Set Data % First update handles_gui_new setappdata(handles_gui_new.figure,'friends',friends_new); % Now update the preexisting handles for j = 0:length(handles_plot)-1 setappdata(handles_plot(j+1),'friends',friends_new); end % Now store figure handle handles_plot = horzcat(handles_plot,handles_gui_new.figure); %#ok<AGROW> end end end % Reactivate closerequestfcns for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn','closereq'); end % Store Data setappdata(obj.handles_gui.figure,'handles_plot',handles_plot); end function callback_topmenu_closeplots(obj,hObject,eventdata) %#ok<INUSD> % This callback closes all the open plots. obj.close_dicplots('all'); end %-----------------------------------------------------------------% % Other Callbacks ------------------------------------------------% %-----------------------------------------------------------------% function callback_update_title(obj,hObject,eventdata) %#ok<INUSD> % This function will update the title of ncorr to display the % handle pointing to ncorr % Get Name name = util_get_name(obj); if (isempty(name)) % No handle exists set(obj.handles_gui.figure,'Name','Ncorr'); else % Handle exists set(obj.handles_gui.figure,'Name',['Ncorr - ' name]); end end function callback_edit_imgnum(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for setting the image number directly % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Get img num num_cur_prelim = str2double(get(obj.handles_gui.edit_imgnum,'string')); if (ncorr_util_isintbb(num_cur_prelim,1,length(obj.current),'Current image number') == out.success) % convert num_cur_prelim to zero based indexed num_cur = num_cur_prelim-1; end % Set data setappdata(obj.handles_gui.figure,'num_cur',num_cur); end function callback_button_left(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for the left button to display different % current images % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Check for overshoot if (num_cur > 0) num_cur = num_cur-1; end % Set data setappdata(obj.handles_gui.figure,'num_cur',num_cur); end function callback_button_right(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for the right button to display different % current images % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Check for overshoot if (num_cur < length(obj.current)-1) num_cur = num_cur+1; end % Set data setappdata(obj.handles_gui.figure,'num_cur',num_cur); end function callback_update_handles_plot(obj,hObject,eventdata) %#ok<INUSD> % This function is called when a plot figure is closed; this % function removes the figure handle from handles_plot. % Get data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); % Disable closerequestfcns - ensure other plots aren't closed % while the handle is being updated. for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn',''); end % Determine index of closing figure closingfig = gcbf; idx_closingfig = -1; for i = 0:length(handles_plot)-1 if (handles_plot(i+1) == closingfig) % update handle array idx_closingfig = i; break; end end % Delete closing figure from handles_plot handles_plot(idx_closingfig+1) = []; % Update Friends for i = 0:length(handles_plot)-1 % Get friends list for each plot handle. Delete the friend % that contains closing fig % Get data friends = getappdata(handles_plot(i+1),'friends'); for j = 0:length(friends)-1 if (friends{j+1}.figure == closingfig) friends(j+1) = []; break; end end % Set data setappdata(handles_plot(i+1),'friends',friends); end % Reenable CloseRequestfFcns for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn','closereq'); end % Set data setappdata(obj.handles_gui.figure,'handles_plot',handles_plot); end function callback_close_function(obj,hObject,eventdata,force) %#ok<INUSL> % Force will cause a force close if it's true - this situation % occurs when the user manually deletes the GUI handle closencorr = false; if (~force && ~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements)) contbutton = questdlg('Prior DIC data has been detected. If you continue without saving, this data will be deleted. Do you want to proceed?','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'Yes')) closencorr = true; end else % Force close if user calls "delete(handles_ncorr)" or if % dic analysis has not been run yet. closencorr = true; end if (closencorr) % Close plot figures obj.close_dicplots('all'); % Delete timer timer_ncorr = getappdata(obj.handles_gui.figure,'timer'); if (isa(timer_ncorr,'timer') && isvalid(timer_ncorr)) stop(timer_ncorr); delete(timer_ncorr); end % Close GUI delete(obj.handles_gui.figure); % Delete data delete(obj); end end %-----------------------------------------------------------------% % Other Functions ------------------------------------------------% %-----------------------------------------------------------------% function close_dicplots(obj,closetype) % This is the function for closing either the displacement plots, % strain plots, or all the plots. % Displacement plots if (strcmp(closetype,'displacements') || strcmp(closetype,'all')); % Get data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); handles_plot_close = []; for i = 0:length(handles_plot)-1 type_plot = getappdata(handles_plot(i+1),'type_plot'); if (strcmp(type_plot,'u') || strcmp(type_plot,'v')) handles_plot_close = horzcat(handles_plot_close,handles_plot(i+1)); %#ok<AGROW> end end % Close figures close(handles_plot_close); % handles_plot updates after this end % Strain plots if (strcmp(closetype,'strains') || strcmp(closetype,'all')); % Get Data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); handles_plot_close = []; for i = 0:length(handles_plot)-1 type_plot = getappdata(handles_plot(i+1),'type_plot'); if (strcmp(type_plot,'exx') || strcmp(type_plot,'exy') || strcmp(type_plot,'eyy')) handles_plot_close = horzcat(handles_plot_close,handles_plot(i+1)); %#ok<AGROW> end end % Close figures close(handles_plot_close); % handles_plot updates after this end end function overwrite = clear_downstream(obj,action) % Middle of callback - alert user if data is going to be % overwritten and then clear downstream data. % Initialize - set default to true. overwrite = true; % See whether to query overwrite if (strcmp(action,'all') || strcmp(action,'set_ref') || strcmp(action,'set_cur') || strcmp(action,'set_roi') || strcmp(action,'set_dicparameters') || strcmp(action,'dicanalysis')) % Only query if displacements have been set, since this is % usually the most time consuming process if (~isempty(obj.data_dic.displacements)) contbutton = questdlg('Prior DIC data has been detected. If you continue without saving, this data will be deleted. Do you want to proceed?','Continue Operation','Yes','No','Yes'); if (~strcmp(contbutton,'Yes')) overwrite = false; end end end % If overwrite is permitted, then clear downstream data. if (overwrite) % Get field names since they are used a lot fields_data_dic = fieldnames(obj.data_dic); fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); % Handle each step accordingly if (strcmp(action,'all')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % All info needs to be deleted obj.reference(:) = []; obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); for i = 0:length(fields_data_dic)-1 obj.data_dic.(fields_data_dic{i+1})(:) = []; end elseif (strcmp(action,'set_ref')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Clear all reference info obj.reference(:) = []; % For current images, clear all ROIs if analysis % was regular. If it was backward, then clear all % ROIs except for the last one if (~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'regular')) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end else for i = 0:length(obj.current)-2 obj.current(i+1).roi = ncorr_class_roi.empty; end end end % Clear everything in data_dic except for dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete everything except for the type in % dispinfo. If the type was regular, then delete % that too if (~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'regular')) obj.data_dic.dispinfo(:) = []; else for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end end end elseif (strcmp(action,'set_cur')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Delete reference ROI if type is backward if (~isempty(obj.reference) && ~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'backward')) obj.reference.roi = ncorr_class_roi.empty; end end % Clear all current images obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); % Clear everything in data_dic except for dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete everything except for the type in % dispinfo. If the type was backward, then delete % that too if (~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'backward')) obj.data_dic.dispinfo(:) = []; else for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end end end elseif (strcmp(action,'set_roi')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Clear all ROIs in reference image if (~isempty(obj.reference)) obj.reference.roi = ncorr_class_roi.empty; end % Clear all ROIS in current image if (~isempty(obj.current)) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end end % Clear all data_dic for i = 0:length(fields_data_dic)-1 obj.data_dic.(fields_data_dic{i+1})(:) = []; end elseif (strcmp(action,'set_dicparameters')) % Close DIC figs if they exist -----------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % If type is regular, delete all current ROIS. % If type is backward, delete all ROIS except for % last current ROI if (strcmp(obj.data_dic.dispinfo.type,'regular')) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end else obj.reference.roi = ncorr_class_roi.empty; for i = 0:length(obj.current)-2 obj.current(i+1).roi = ncorr_class_roi.empty; end end % Clear everything in data_dic except for dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete everything in dispinfo except for the type fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end elseif (strcmp(action,'dicanalysis')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % If type is regular, delete all current ROIs. % If type is backward, delete all ROIs except for % last current ROI if (strcmp(obj.data_dic.dispinfo.type,'regular')) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end else obj.reference.roi = ncorr_class_roi.empty; for i = 0:length(obj.current)-2 obj.current(i+1).roi = ncorr_class_roi.empty; end end % Delete all info except dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete downstream data in data_dic.dispinfo: fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'radius') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'spacing') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_diffnorm') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_iteration') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'total_threads') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'stepanalysis') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'subsettrunc')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end elseif (strcmp(action,'formatdisp')) % Close DIC figs if they exist -----------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Delete all info except for displacements and % dispinfo; for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'displacements') && ... ~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete downstream data in data_dic.dispinfo: fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'radius') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'spacing') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_diffnorm') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_iteration') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'total_threads') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'stepanalysis') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'subsettrunc') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'imgcorr')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end % Delete downstream data in data_dic.displacements: dic_data_disp_fields = fieldnames(obj.data_dic.displacements); for i = 0:length(dic_data_disp_fields)-1 if (~strcmp(dic_data_disp_fields{i+1},'plot_u_dic') && ... ~strcmp(dic_data_disp_fields{i+1},'plot_v_dic') && ... ~strcmp(dic_data_disp_fields{i+1},'plot_corrcoef_dic') && ... ~strcmp(dic_data_disp_fields{i+1},'roi_dic')) for j = 0:length(obj.data_dic.displacements)-1 obj.data_dic.displacements(j+1).(dic_data_disp_fields{i+1})(:) = []; end end end elseif (strcmp(action,'strains')) % Close strain figs if they exist --------------------% obj.close_dicplots('strains'); % Clear downstream data ------------------------------% % Delete all info except dispinfo and displacements for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo') && ... ~strcmp(fields_data_dic{i+1},'displacements')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end end end end function freeze_menu(obj) % This function disables the menu when callbacks are executing set(obj.handles_gui.topmenu_file,'Enable','off'); set(obj.handles_gui.topmenu_regionofinterest,'Enable','off'); set(obj.handles_gui.topmenu_analysis,'Enable','off'); set(obj.handles_gui.topmenu_plot,'Enable','off'); end function unfreeze_menu(obj) % This function enables the menu when callbacks are done set(obj.handles_gui.topmenu_file,'Enable','on'); set(obj.handles_gui.topmenu_regionofinterest,'Enable','on'); set(obj.handles_gui.topmenu_analysis,'Enable','on'); set(obj.handles_gui.topmenu_plot,'Enable','on'); end function update_topmenu(obj) % This function updates menu items depending on what is loaded % Reference image is loaded: if (~isempty(obj.reference)) set(obj.handles_gui.topmenu_setroi_ref,'Enable','on'); else set(obj.handles_gui.topmenu_setroi_ref,'Enable','off'); end % Current image is loaded: if (~isempty(obj.current)) set(obj.handles_gui.topmenu_setroi_cur,'Enable','on'); else set(obj.handles_gui.topmenu_setroi_cur,'Enable','off'); end % Reference image, current image, and ROI are loaded: % Must check if analysis is regular or backward because ROIs % can be set through the DIC analysis if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ... ((strcmp(obj.data_dic.dispinfo.type,'regular') && ~isempty(obj.reference.roi)) || ... ((strcmp(obj.data_dic.dispinfo.type,'backward') && ~isempty(obj.current(end).roi))))) set(obj.handles_gui.topmenu_setdicparameters,'Enable','on'); else set(obj.handles_gui.topmenu_setdicparameters,'Enable','off'); end % Reference image, current image, and DIC parameters are loaded: if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ... ~isempty(obj.data_dic.dispinfo.radius) && ... ~isempty(obj.data_dic.dispinfo.spacing) && ... ~isempty(obj.data_dic.dispinfo.cutoff_diffnorm) && ... ~isempty(obj.data_dic.dispinfo.cutoff_iteration) && ... ~isempty(obj.data_dic.dispinfo.total_threads) && ... ~isempty(obj.data_dic.dispinfo.stepanalysis) && ... ~isempty(obj.data_dic.dispinfo.subsettrunc)) set(obj.handles_gui.topmenu_perfdic,'Enable','on'); else set(obj.handles_gui.topmenu_perfdic,'Enable','off'); end % Reference image, current image, and DIC analysis are loaded: if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements)) set(obj.handles_gui.topmenu_savedata,'Enable','on'); set(obj.handles_gui.topmenu_formatdisp,'Enable','on'); else set(obj.handles_gui.topmenu_savedata,'Enable','off'); set(obj.handles_gui.topmenu_formatdisp,'Enable','off'); end % Reference image, current image, DIC data, and formatted % displacements are loaded: if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements) && ... ~isempty(obj.data_dic.dispinfo.pixtounits) && ... ~isempty(obj.data_dic.dispinfo.units) && ... ~isempty(obj.data_dic.dispinfo.cutoff_corrcoef) && ... ~isempty(obj.data_dic.dispinfo.lenscoef)) set(obj.handles_gui.topmenu_calcstrain,'Enable','on'); set(obj.handles_gui.topmenu_viewdispplot_u,'Enable','on'); set(obj.handles_gui.topmenu_viewdispplot_v,'Enable','on'); set(obj.handles_gui.topmenu_viewdispplot_all,'Enable','on'); set(obj.handles_gui.topmenu_closeplots,'Enable','on'); else set(obj.handles_gui.topmenu_calcstrain,'Enable','off'); set(obj.handles_gui.topmenu_viewdispplot_u,'Enable','off'); set(obj.handles_gui.topmenu_viewdispplot_v,'Enable','off'); set(obj.handles_gui.topmenu_viewdispplot_all,'Enable','off'); set(obj.handles_gui.topmenu_closeplots,'Enable','off'); end % Reference image, current image, DIC data, and strains are % loaded if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo)&& ~isempty(obj.data_dic.displacements) && ... ~isempty(obj.data_dic.straininfo) && ~isempty(obj.data_dic.strains)) set(obj.handles_gui.topmenu_viewstrainplot_exx,'Enable','on'); set(obj.handles_gui.topmenu_viewstrainplot_exy,'Enable','on'); set(obj.handles_gui.topmenu_viewstrainplot_eyy,'Enable','on'); set(obj.handles_gui.topmenu_viewstrainplot_all,'Enable','on'); else set(obj.handles_gui.topmenu_viewstrainplot_exx,'Enable','off'); set(obj.handles_gui.topmenu_viewstrainplot_exy,'Enable','off'); set(obj.handles_gui.topmenu_viewstrainplot_eyy,'Enable','off'); set(obj.handles_gui.topmenu_viewstrainplot_all,'Enable','off'); end end function update_dicstatetext(obj) % This function updates state text depending on what is loaded % Reference image: if (~isempty(obj.reference)) set(obj.handles_gui.text_refloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_refloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % Current image: if (~isempty(obj.current)) set(obj.handles_gui.text_curloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_curloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % ROI: Must check if analysis is regular or backward because ROIs % can be set through the DIC analysis if (~isempty(obj.data_dic.dispinfo)&& ... ((strcmp(obj.data_dic.dispinfo.type,'regular') && ~isempty(obj.reference.roi)) || ... ((strcmp(obj.data_dic.dispinfo.type,'backward') && ~isempty(obj.current(end).roi))))) set(obj.handles_gui.text_roiloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_roiloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % DIC parameters: if (~isempty(obj.data_dic.dispinfo) && ... ~isempty(obj.data_dic.dispinfo.radius) && ... ~isempty(obj.data_dic.dispinfo.spacing) && ... ~isempty(obj.data_dic.dispinfo.cutoff_diffnorm) && ... ~isempty(obj.data_dic.dispinfo.cutoff_iteration) && ... ~isempty(obj.data_dic.dispinfo.total_threads) && ... ~isempty(obj.data_dic.dispinfo.stepanalysis) && ... ~isempty(obj.data_dic.dispinfo.subsettrunc)) set(obj.handles_gui.text_dicparametersloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_dicparametersloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % DIC analysis: if (~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements)) set(obj.handles_gui.text_dicloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_dicloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % Displacements formatted: if (~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements) && ... ~isempty(obj.data_dic.dispinfo.pixtounits) && ... ~isempty(obj.data_dic.dispinfo.units) && ... ~isempty(obj.data_dic.dispinfo.cutoff_corrcoef) && ... ~isempty(obj.data_dic.dispinfo.lenscoef)) set(obj.handles_gui.text_disploaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_disploaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % Strains: if (~isempty(obj.data_dic.straininfo) && ~isempty(obj.data_dic.strains)) set(obj.handles_gui.text_strainloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_strainloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end end function update_axes(obj,action) % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Updates axes, axes buttons, and axes texts below: if (strcmp(action,'set')) % Reference axes if (isempty(obj.reference)) % Clear reference image cla(obj.handles_gui.axes_ref); set(obj.handles_gui.text_refname,'String','Name: '); set(obj.handles_gui.text_refresolution,'String','Resolution: '); else % Set reference image and format axes imshow(obj.reference.imginfo.get_img(),[obj.reference.imginfo.min_gs obj.reference.imginfo.max_gs],'Parent',obj.handles_gui.axes_ref); set(obj.handles_gui.axes_ref ,'Visible','off'); % Show image text set(obj.handles_gui.text_refname,'String',['Name: ' obj.reference.imginfo.name]); set(obj.handles_gui.text_refresolution,'String',['Resolution: ' num2str(obj.reference.imginfo.width) ' x ' num2str(obj.reference.imginfo.height)]); end % Current axes if (isempty(obj.current)) % Disable buttons set(obj.handles_gui.button_right,'Enable','off'); set(obj.handles_gui.button_left,'Enable','off'); set(obj.handles_gui.edit_imgnum,'Enable','off'); set(obj.handles_gui.edit_imgnum,'String',num2str(num_cur)); % Reset current image: cla(obj.handles_gui.axes_cur); % Update current image name and resolution: set(obj.handles_gui.text_curname,'String','Name: '); set(obj.handles_gui.text_curresolution,'String','Resolution: '); else % Set current image and format axes imshow(obj.current(num_cur+1).imginfo.get_img(),[obj.current(num_cur+1).imginfo.min_gs obj.current(num_cur+1).imginfo.max_gs],'Parent',obj.handles_gui.axes_cur); set(obj.handles_gui.axes_cur ,'Visible','off'); % Format/show text set(obj.handles_gui.text_curname,'String',['Name: ' obj.current(num_cur+1).imginfo.name]); set(obj.handles_gui.text_curresolution,'String',['Resolution: ' num2str(obj.current(num_cur+1).imginfo.width) ' x ' num2str(obj.current(num_cur+1).imginfo.height)]); % Set left/right buttons and editbox set(obj.handles_gui.edit_imgnum,'String',num2str(num_cur+1)); if (length(obj.current) == 1) set(obj.handles_gui.button_right,'Enable','off'); set(obj.handles_gui.button_left,'Enable','off'); set(obj.handles_gui.edit_imgnum,'Enable','off'); elseif (num_cur == 0) set(obj.handles_gui.button_right,'Enable','on'); set(obj.handles_gui.button_left,'Enable','off'); set(obj.handles_gui.edit_imgnum,'Enable','on'); elseif (num_cur == length(obj.current)-1) set(obj.handles_gui.button_right,'Enable','off'); set(obj.handles_gui.button_left,'Enable','on'); set(obj.handles_gui.edit_imgnum,'Enable','on'); else set(obj.handles_gui.button_right,'Enable','on'); set(obj.handles_gui.button_left,'Enable','on'); set(obj.handles_gui.edit_imgnum,'Enable','on'); end end % ROI axes if (~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'regular')) % Set reference ROI imshow(obj.reference.roi.mask,'Parent',obj.handles_gui.axes_roi); set(obj.handles_gui.axes_roi,'Visible','off'); elseif (~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'backward')) % Set last current ROI imshow(obj.current(end).roi.mask,'Parent',obj.handles_gui.axes_roi); set(obj.handles_gui.axes_roi,'Visible','off'); else % Clear ROI cla(obj.handles_gui.axes_roi); end end end function outstate = check_matlabcompat(obj) %#ok<MANU> % This function checks the matlab compatibility. % Initialize output outstate = out.failed; vm = datevec(version('-date')); if (vm(1) < 2009) % Pop error message but allow user to continue h_error = errordlg('Developed using MATLAB 2009; may not work for versions before this date. Ncorr will continue.','Error','modal'); uiwait(h_error); end % Check to make sure correct toolboxes are installed ---------% % Requires the image processing toolbox and the statistics % toolbox % Note that Matlab combined their statistics and machine % learning toolboxes so just search for "Statistics" to work % for both cases. v = ver; if (isempty(strfind([v.Name],'Image Processing Toolbox')) || isempty(strfind([v.Name],'Statistics'))) h_error = errordlg('Requires the image processing and statistics toolbox.','Error','modal'); uiwait(h_error); return; end % Set output outstate = out.success; end function outstate = check_mexinstall(obj) % Check to see if mex files exist and loads ncorr_installinfo ----% % Initialize output outstate = out.cancelled; % Files to compile: % These are stand alone .cpp files compiled with '-c' flag: lib_ncorr_cpp = {'standard_datatypes','ncorr_datatypes','ncorr_lib'}; % These are .cpp mex functions compiled with libraries func_ncorr_cpp = {'ncorr_alg_formmask', ... 'ncorr_alg_formregions', ... 'ncorr_alg_formboundary', ... 'ncorr_alg_formthreaddiagram', ... 'ncorr_alg_formunion', ... 'ncorr_alg_extrapdata', ... 'ncorr_alg_adddisp', ... 'ncorr_alg_convert', ... 'ncorr_alg_dispgrad'}; % These are .cpp mex functions compiled with libraries and possibly openmp: func_ncorr_openmp_cpp = {'ncorr_alg_testopenmp','ncorr_alg_calcseeds','ncorr_alg_rgdic'}; % Get object extension: if (ispc) % pc objext = 'obj'; elseif (isunix) % unix objext = 'o'; end % See if these files have already been compiled: compile = false; % Check libraries first for i = 0:length(lib_ncorr_cpp)-1 if (~exist([lib_ncorr_cpp{i+1} '.' objext],'file')) compile = true; break; end end % Check ncorr functions next for i = 0:length(func_ncorr_cpp)-1 if (~exist([func_ncorr_cpp{i+1} '.' mexext],'file')) compile = true; break; end end % Check ncorr functions with openmp for i = 0:length(func_ncorr_openmp_cpp)-1 if (~exist([func_ncorr_openmp_cpp{i+1} '.' mexext],'file')) compile = true; break; end end if (compile) % One of the compiled files is missing - tell user that ncorr % will recompile files. e = msgbox('One of the compiled files is missing. If using automatic installation, then mex files will compile; if using manual installation, please close Ncorr and make sure all the files compiled properly.','WindowStyle','modal'); uiwait(e); end if (~compile) % Functions have already been compiled - check % "ncorr_installinfo.txt" file to verify openmp support. % If "ncorr_installinfo.txt" has incorrect formatting, then % files will be recompiled. If "ncorr_installinfo.txt" is % empty, ncorr will take this as the standard way to % reinstall mex files. try % ncorr_installinfo should have the format of: % [support_openmp_prelim total_cores] ncorr_installinfo = dlmread('ncorr_installinfo.txt'); if (size(ncorr_installinfo,1) == 1 && size(ncorr_installinfo,2) == 2) % ncorr_installinfo.txt has the correct number of % elements if ((ncorr_installinfo(1) == 0 || ncorr_installinfo(1) == 1) && ... ncorr_installinfo(2) >= 1) % Assuming contents have not been modified % by user, set them: obj.support_openmp = logical(ncorr_installinfo(1)); obj.total_cores = ncorr_installinfo(2); else % ncorr_installinfo.txt has incorrect values h_error = errordlg('For some reason "ncorr_installinfo.txt" has incorrect values. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','Error','modal'); uiwait(h_error); % recompile files compile = true; end elseif (isempty(ncorr_installinfo)) % ncorr_installinfo is empty, this is the stanard % way to reinstall Ncorr. h_error = msgbox('"ncorr_installinfo.txt" file is empty. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','WindowStyle','modal'); uiwait(h_error); % recompile files compile = true; else % ncorr_installinfo.txt has extra values which % aren't supposed to be there h_error = errordlg('For some reason the "ncorr_installinfo.txt" file has extra or missing values. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','Error','modal'); uiwait(h_error); % recompile files compile = true; end catch %#ok<CTCH> % Returns error if file does not exist or format is % wrong h_error = msgbox('For some reason the "ncorr_installinfo.txt" file is missing or has improper format. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','WindowStyle','modal'); uiwait(h_error); % recompile files compile = true; end end if (~compile) % Check if previous installation was corrupted by OpenMP % support which does not actually exist if (obj.support_openmp) if (~ncorr_alg_testopenmp()) % recompile files compile = true; end end end %-------------------------------------------------------------% % BEGIN COMPILE SECTION % %-------------------------------------------------------------% % COMMENT THIS SECTION OUT AND MANUALLY COMPILE IF AUTOMATIC % % COMPILATION FAILS!!! % % ------------------------------------------------------------% try if (compile) % Check if ncorr.m is in current directory listing = dir; if (any(strcmp('ncorr.m',{listing.name}))) % Ask user about openmp support [support_openmp_prelim,total_cores_prelim,outstate_install] = gui_install(get(obj.handles_gui.figure,'OuterPosition')); % See if openmp GUI was cancelled if (outstate_install ~= out.success) return; end % Get compiler flags for openmp support. Depends % on both OS and compiler. flags_f = {}; if (support_openmp_prelim) % Get compiler information info_comp = mex.getCompilerConfigurations('cpp'); if ((isfield(struct(info_comp),'Details') && isfield(struct(info_comp.Details),'CompilerExecutable'))) % Get compiler compiler = info_comp.Details.CompilerExecutable; if (~isempty(strfind(compiler,'cl'))) % This is Microsoft visual studio % Openmp flag is /openmp flags_f = horzcat(flags_f{:},{'COMPFLAGS="$COMPFLAGS'},{'/openmp'},{'/DNCORR_OPENMP"'}); elseif (~isempty(strfind(compiler,'g++'))) % This is the GNU compiler; this is % assumed to be Linux. % NOTE: GCC must manually link % against -lgomp. -lgomp also has % to be placed as the very last % library or else it will not compile % correctly. % Openmp flag is -fopenmp flags_f = horzcat(flags_f{:},{'CXXFLAGS="$CXXFLAGS'},{'-fopenmp'},{'-DNCORR_OPENMP"'},{'CXXLIBS="$CXXLIBS'},{'-lgomp"'}); else % C++ compiler is set up, but was not % recognized as either gcc or cl h_error = errordlg('C++ compiler is set up in mex, but was not recognized as G++ or Visual Studio. Either comment out the compile section in ncorr and manually compile the mex functions, or restart ncorr and disable openmp support.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end else % C++ compiler not installed in mex. h_error = errordlg('C++ compiler was not found. If a C++ compiler was manually installed that supports openmp, then either comment out the compile section in ncorr and manually compile the functions or restart ncorr and disable openmp.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end end % Compile libraries: compile_lib_cpp_mex(lib_ncorr_cpp); % Compile functions: compile_func_cpp_mex(func_ncorr_cpp,lib_ncorr_cpp,{}); % Compile function with openmp: compile_func_cpp_mex(func_ncorr_openmp_cpp,lib_ncorr_cpp,flags_f); % Write to ncorr_installinfo.txt file, this file will be % used next time ncorr is started up to avoid % having to reinput this information. filename = 'ncorr_installinfo.txt'; fid = fopen(filename,'w'); if (fid ~= -1) fclose(fid); % Write info to file: dlmwrite(filename,[support_openmp_prelim total_cores_prelim]); % Set support variables: obj.support_openmp = support_openmp_prelim; obj.total_cores = total_cores_prelim; else % Error h_error = errordlg('For some reason ncorr was not able to create "ncorr_installinfo.txt" file.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end else % Error h_error = errordlg('Please navigate to folder containing ncorr.m first before reinstalling.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end end catch %#ok<CTCH> h_error = errordlg('Files did not compile properly. Make sure mex has a c++ compiler set and that the file names have not been altered or moved. If this is the case, then try reopening and installing ncorr without openmp. If problems persist, then try commenting out the compile section in ncorr and manually compiling the functions. Instructions for compilation are available in the manual at ncorr.com','Error','modal'); uiwait(h_error); outstate = out.failed; return; end %-------------------------------------------------------------% % END OF COMPILE SECTION % %-------------------------------------------------------------% % Check if openmp is actually enabled by calling % ncorr_alg_testopenmp if (obj.support_openmp) if (~ncorr_alg_testopenmp()) % openmp was enabled and files were compiled, but openmp % isn't actually supported. h_error = errordlg('Files compiled, but it was determined that OpenMP is not actually supported. Please reinstall Ncorr in single threaded mode or use a compiler which supports OpenMP.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end end % Set output outstate = out.success; end %-----------------------------------------------------------------% % Create UI Controls for GUI and Assign Callbacks ----------------% %-----------------------------------------------------------------% function handles_gui = init_gui(obj) % Initialize GUI Figure --------------------------------------% % Start Ncorr in the middle of the screen set(0,'units','characters'); % Set this every time incase user changes units of root pos_screen = get(0,'screensize'); height_ncorr = 25; width_ncorr= 167; left_ncorr = (pos_screen(3)-width_ncorr)/2; bottom_ncorr = (pos_screen(4)-height_ncorr)/2; handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', [left_ncorr bottom_ncorr width_ncorr height_ncorr], ... 'Name', 'Ncorr', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'Visible','off', ... 'IntegerHandle','off', ... 'Interruptible','off'); % Set closerequestfcn set(handles_gui.figure,'CloseRequestFcn',obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_close_function(obj,hObject,eventdata,false),handles_gui.figure))); % Menu Items -------------------------------------------------% % Under File handles_gui.topmenu_file = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_file', ... 'Label', 'File', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_loadref = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_loadref', ... 'Label', 'Load Reference Image', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loadref(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_loadcur = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_loadcur', ... 'Label', 'Load Current Image(s)', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_loadcur_all = uimenu( ... 'Parent', handles_gui.topmenu_loadcur, ... 'Tag', 'topmenu_loadcur_all', ... 'Label', 'Load All (memory heavy)', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loadcur(obj,hObject,eventdata,false),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_loadcur_lazy = uimenu( ... 'Parent', handles_gui.topmenu_loadcur, ... 'Tag', 'topmenu_loadcur_lazy', ... 'Label', 'Load Lazy (slower but less memory)', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loadcur(obj,hObject,eventdata,true),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_loaddata = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_loaddata', ... 'Label', 'Load Data', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loaddata(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_savedata = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_savedata', ... 'Label', 'Save Data', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_savedata(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_clear = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_clear', ... 'Label', 'Clear Data', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_clear(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_sethandle = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_sethandle', ... 'Label', 'Set Handle', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_sethandle(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_reinstall = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_reinstall', ... 'Label', 'Reinstall', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_reinstall(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_exit = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_exit', ... 'Label', 'Exit', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_exit_callback(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); % Under region of interest handles_gui.topmenu_regionofinterest = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_regionofinterest', ... 'Label', 'Region of Interest', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_setroi_ref = uimenu( ... 'Parent', handles_gui.topmenu_regionofinterest, ... 'Tag', 'topmenu_setroi_ref', ... 'Label', 'Set Reference ROI', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_set_roi_ref(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_setroi_cur = uimenu( ... 'Parent', handles_gui.topmenu_regionofinterest, ... 'Tag', 'topmenu_setroi_cur', ... 'Label', 'Set Current ROI (For "Backward" Analysis)', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_set_roi_cur(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); % Under Analysis handles_gui.topmenu_analysis = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_analysis', ... 'Label', 'Analysis', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_setdicparameters = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_setdicparameters', ... 'Label', 'Set DIC Parameters', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_setdicparameters(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_perfdic = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_perfdic', ... 'Label', 'Perform DIC Analysis', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_dic(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_formatdisp = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_formatdisp', ... 'Label', 'Format Displacements', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_formatdisp(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_calcstrain = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_calcstrain', ... 'Label', 'Calculate Strains', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_calcstrain(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); % Under plot - Do not wrap with wrapcallbackall handles_gui.topmenu_plot = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_plot', ... 'Label', 'Plot', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot = uimenu( ... 'Parent', handles_gui.topmenu_plot, ... 'Tag', 'topmenu_viewdispplot', ... 'Label', 'View Displacement Plots', ... 'Checked', 'off', ... 'Enable', 'on', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot_u = uimenu( ... 'Parent', handles_gui.topmenu_viewdispplot, ... 'Tag', 'topmenu_viewdispplot_u', ... 'Label', 'U', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'u'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot_v = uimenu( ... 'Parent', handles_gui.topmenu_viewdispplot, ... 'Tag', 'topmenu_viewdispplot_v', ... 'Label', 'V', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'v'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot_all = uimenu( ... 'Parent', handles_gui.topmenu_viewdispplot, ... 'Tag', 'topmenu_viewdispplot_all', ... 'Label', 'All', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'u','v'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot = uimenu( ... 'Parent', handles_gui.topmenu_plot, ... 'Tag', 'topmenu_viewstrainpplot', ... 'Label', 'View Strains Plots', ... 'Checked', 'off', ... 'Enable', 'on', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_exx = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_exx', ... 'Label', 'Exx', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'exx'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_exy = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_exy', ... 'Label', 'Exy', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'exy'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_eyy = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_eyy', ... 'Label', 'Eyy', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'eyy'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_all = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_all', ... 'Label', 'All', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'exx','exy','eyy'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_closeplots = uimenu( ... 'Parent', handles_gui.topmenu_plot, ... 'Tag', 'topmenu_viewstrainpplot_all', ... 'Label', 'Close All Plots', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_closeplots(obj,hObject,eventdata),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); % Panels -----------------------------------------------------% handles_gui.group_state = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_state', ... 'Units', 'characters', ... 'Position', [2 13.8 35 10.7], ... 'Title', 'Program State', ... 'Interruptible','off'); handles_gui.group_ref = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_ref', ... 'Units', 'characters', ... 'Position', [39.0 0.75 62 23.75], ... 'Title', 'Reference Image', ... 'Interruptible','off'); handles_gui.group_cur = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_cur', ... 'Units', 'characters', ... 'Position', [103 0.75 62 23.75], ... 'Title', 'Current Image(s)', ... 'Interruptible','off'); handles_gui.group_roi = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_roi', ... 'Units', 'characters', ... 'Position', [2 0.75 35 12.3], ... 'Title', 'Region of Interest', ... 'Interruptible','off'); % Axes -------------------------------------------------------% handles_gui.axes_ref = axes( ... 'Parent', handles_gui.group_ref, ... 'Tag', 'axes_ref', ... 'Units', 'characters', ... 'Position', [2 4 57 18], ... 'Visible', 'off', ... 'handlevisibility','off', ... 'Interruptible','off'); handles_gui.axes_cur = axes( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'axes_cur', ... 'Units', 'characters', ... 'Position', [2 4 57 18], ... 'Visible', 'off', ... 'handlevisibility','off', ... 'Interruptible','off'); handles_gui.axes_roi = axes( ... 'Parent', handles_gui.group_roi, ... 'Tag', 'axes_roi', ... 'Units', 'characters', ... 'Position', [2 1 29.5 9.6],... 'Visible', 'off', ... 'handlevisibility','off', ... 'Interruptible','off'); % Image texts ------------------------------------------------% handles_gui.text_refname = uicontrol( ... 'Parent', handles_gui.group_ref, ... 'Tag', 'text_refname', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2 56.9 1.3], ... 'String', 'Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_refresolution = uicontrol( ... 'Parent', handles_gui.group_ref, ... 'Tag', 'text_refresolution', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 .5 56.9 1.3], ... 'String', 'Resolution: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_curname = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'text_curname', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2 56.9 1.3], ... 'String', 'Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_curresolution = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'text_curresolution', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 .5 56.9 1.3], ... 'String', 'Resolution: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % State texts ------------------------------------------------% handles_gui.text_refloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_refloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 7.7 21 1.3], ... 'String', 'Reference Image', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_curloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_curloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 6.5 21 1.3], ... 'String', 'Current Image(s)', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_roiloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_roiloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 5.3 21 1.3], ... 'String', 'Region of Interest', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_dicparamsloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicparamsloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 4.1 21 1.3], ... 'String', 'DIC Parameters', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_dicloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2.9 21 1.3], ... 'String', 'DIC Analysis', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_disploaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_disploaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 1.7 21 1.3], ... 'String', 'Displacements', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_strainloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_strainloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 .5 21 1.3], ... 'String', 'Strains', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % More state texts -------------------------------------------% handles_gui.text_refloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_refloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 7.7 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_curloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_curloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 6.5 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_roiloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_roiloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 5.3 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_dicparametersloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicparametersloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 4.1 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_dicloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 2.9 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_disploaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_disploaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 1.7 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_strainloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_strainloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 0.5 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); % Editbox ----------------------------------------------------% handles_gui.edit_imgnum = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'edit_imgnum', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [44 1.3 7 1.6], ... 'String', '', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_edit_imgnum(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); % Pushbuttons ------------------------------------------------% handles_gui.button_left = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'button_left', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [37 1.2 6 1.8], ... 'String', '<', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_button_left(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.button_right = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'button_right', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [52 1.2 6 1.8], ... 'String', '>', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_button_right(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); end end end %-------------------------------------------------------------------------% % Other functions --------------------------------------------------------% %-------------------------------------------------------------------------% function [handle_name,outstate] = gui_sethandle(pos_parent) % This is a GUI for setting the name of the variable that points to ncorr. % % Inputs -----------------------------------------------------------------% % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % % Outputs ----------------------------------------------------------------% % handle_name - string; name of new handle % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Data ---------------------------------------------------------------% % Initialize outputs outstate = out.cancelled; handle_name = ''; % Get GUI handles - Part of output handles_gui_sethandle = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui_sethandle.figure)); % Callbacks and functions --------------------------------------------% function constructor() % Set Data setappdata(handles_gui_sethandle.figure,'handle_name_prelim',''); % Set Visible set(handles_gui_sethandle.figure,'Visible','on'); end function callback_edit_string_handle(hObject,eventdata) %#ok<INUSD> % Get data handle_name_prelim = getappdata(handles_gui_sethandle.figure,'handle_name_prelim'); % Get Name handle_name_buffer = get(handles_gui_sethandle.edit_string_handle,'string'); if (isvarname(handle_name_buffer)) handle_name_prelim = handle_name_buffer; else h_error = errordlg('Not a valid variable name.','Error','modal'); uiwait(h_error); end % Set Data setappdata(handles_gui_sethandle.figure,'handle_name_prelim',handle_name_prelim); update_sidemenu(); end function callback_button_finish(hObject,eventdata) %#ok<INUSD> % Get data handle_name_prelim = getappdata(handles_gui_sethandle.figure,'handle_name_prelim'); % Set output handle_name = handle_name_prelim; outstate = out.success; % Exit close(handles_gui_sethandle.figure); end function callback_button_cancel(hObject,eventdata) %#ok<INUSD> % Close close(handles_gui_sethandle.figure); end function update_sidemenu(hObject,eventdata) %#ok<INUSD> % Get data handle_name_prelim = getappdata(handles_gui_sethandle.figure,'handle_name_prelim'); set(handles_gui_sethandle.edit_string_handle,'String',handle_name_prelim); end function handles_gui_sethandle = init_gui() % Form UIs handles_gui_sethandle.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[6 40.5]), ... 'Name', 'Set Image Size', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'WindowStyle','modal', ... 'Visible','off', ... 'IntegerHandle','off', ... 'Interruptible','off'); % Text handles_gui_sethandle.text_string_handle = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'text_string_handle', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 3.5 15 1.3], ... 'String', 'Handle Name:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % Edit box handles_gui_sethandle.edit_string_handle = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'edit_string_handle', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [17.2 3.6 20.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_string_handle,handles_gui_sethandle.figure), ... 'Interruptible','off'); % Buttons handles_gui_sethandle.button_finish = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'button_finish', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.1 1 12 1.7], ... 'String', 'Finish', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_finish,handles_gui_sethandle.figure), ... 'Interruptible','off'); handles_gui_sethandle.button_cancel = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'button_cancel', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [16 1 12 1.7], ... 'String', 'Cancel', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_cancel,handles_gui_sethandle.figure), ... 'Interruptible','off'); end % Pause until figure is closed ---------------------------------------% waitfor(handles_gui_sethandle.figure); end function [support_openmp,total_cores,outstate] = gui_install(pos_parent) % This is a GUI to prompt user if openmp support exists. % % Inputs -----------------------------------------------------------------% % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % % Outputs ----------------------------------------------------------------% % support_openmp - logical; tells whether openmp support exists % total_cores - integer; tells the number of cores that exist in the case % that openmp is supported % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Data ---------------------------------------------------------------% % Initialize outputs outstate = out.cancelled; support_openmp = false; total_cores = 1; % Get GUI handles handles_gui = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui.figure)); % Callbacks and functions --------------------------------------------% function constructor % Set data setappdata(handles_gui.figure,'total_cores_prelim',1); setappdata(handles_gui.figure,'total_cores_min',1); setappdata(handles_gui.figure,'total_cores_max',64); setappdata(handles_gui.figure,'val_checkbox_openmp',false); % Update update_sidemenu(); % Format window set(handles_gui.figure,'Visible','on'); end % Callbacks and functions --------------------------------------------% function callback_checkbox_openmp(hObject,eventdata) %#ok<INUSD> % Get data total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); val_checkbox_openmp = get(handles_gui.checkbox_openmp,'Value'); if (~val_checkbox_openmp) % Reset total cores to 1 total_cores_prelim = 1; end % Set data setappdata(handles_gui.figure,'val_checkbox_openmp',val_checkbox_openmp); setappdata(handles_gui.figure,'total_cores_prelim',total_cores_prelim); update_sidemenu(); end function callback_edit_total_cores(hObject,eventdata) %#ok<INUSD> % Get Data total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); total_cores_min = getappdata(handles_gui.figure,'total_cores_min'); total_cores_max = getappdata(handles_gui.figure,'total_cores_max'); % Get buffer total_cores_buffer = str2double(get(handles_gui.edit_total_cores,'string')); if (ncorr_util_isintbb(total_cores_buffer,total_cores_min,total_cores_max,'Number of cores') == out.success) total_cores_prelim = total_cores_buffer; end % Set data setappdata(handles_gui.figure,'total_cores_prelim',total_cores_prelim); update_sidemenu(); end function callback_button_finish(hObject,eventdata) %#ok<INUSD> % Get data total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); support_openmp_prelim = getappdata(handles_gui.figure,'val_checkbox_openmp'); % Store total_cores = total_cores_prelim; support_openmp = support_openmp_prelim; outstate = out.success; % Return close(handles_gui.figure); end function callback_button_cancel(hObject,eventdata) %#ok<INUSD> close(handles_gui.figure); end function update_sidemenu(hObject,eventdata) %#ok<INUSD> % Get data val_checkbox_openmp = getappdata(handles_gui.figure,'val_checkbox_openmp'); total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); set(handles_gui.checkbox_openmp,'Value',val_checkbox_openmp); if (val_checkbox_openmp) set(handles_gui.edit_total_cores,'enable','on'); else set(handles_gui.edit_total_cores,'enable','off'); end set(handles_gui.edit_total_cores,'String',num2str(total_cores_prelim)); end function handles_gui = init_gui() handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[9.5 70]), ... 'Name', 'OpenMP support', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'Visible','off', ... 'IntegerHandle','off', ... 'WindowStyle','modal', ... 'Interruptible','off'); handles_gui.text_openmp = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_openmp', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [1.5 5.1 66.7 2.2], ... 'HorizontalAlignment','left', ... 'String', 'Requires multicore CPU and compiler which supports OpenMP installed through mex.', ... 'Value', 0, ... 'Interruptible','off'); handles_gui.text_cores_total = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_core_total', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [10 3.2 18 1.2], ... 'HorizontalAlignment','left', ... 'String', 'Cores:', ... 'Value', 0, ... 'Interruptible','off'); handles_gui.checkbox_openmp = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'checkbox_openmp', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [1.5 7.5 66.7 1.3], ... 'String', 'OpenMP Multithreading', ... 'Value', 0, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_openmp,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_total_cores = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_total_cores', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [22 3.3 8 1.2], ... 'HorizontalAlignment','left', ... 'String', '1', ... 'Enable', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_total_cores,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_finish = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_finish', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [42.3 0.7 12 1.8], ... 'String', 'Finish', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_finish,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_cancel = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_cancel', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [56 0.7 12 1.8], ... 'String', 'Cancel', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_cancel,handles_gui.figure), ... 'Interruptible','off'); end % Pause until figure is closed ---------------------------------------% waitfor(handles_gui.figure); end function compile_lib_cpp_mex(lib_cpp) % This function compiles cpp_function_lib as object files. % % Inputs -----------------------------------------------------------------% % lib_cpp - cell of strings; names of libraries to be compiled as object % files % % Returns error if files are not found. % Cycle over libraries and compile for i = 0:length(lib_cpp)-1 % First check if the cpp and header files exist if (exist([lib_cpp{i+1} '.cpp'],'file') && exist([lib_cpp{i+1} '.h'],'file')) disp(['Installing ' lib_cpp{i+1} '... Please wait']); % Generate compiler string string_compile = horzcat({'-c'},{[lib_cpp{i+1} '.cpp']}); % Compile file mex(string_compile{:}); else h_error = errordlg(['Files ' lib_cpp{i+1} '.cpp and ' lib_cpp{i+1} '.h were not found. Please find them and place them in the current directory before proceeding.'],'Error','modal'); uiwait(h_error); % Spit error to invoke exception error('Compilation failed because file was not found.'); end end end function compile_func_cpp_mex(func_cpp,lib_cpp,flags_f) % This function compiles func_cpp and linkes them with the lib_cpp object % files. If flags are provided then they will be appended when compiling. % % Inputs -----------------------------------------------------------------% % func_cpp - cell of strings; names of .cpp files to be % compiled % lib_cpp - cell of strings; names of object files to be linked % flags_f - cell of strings; formatted compiler flags. % % Returns error if library object files or source code files are not found. % Get the OS to find object extension if (ispc) % pc objext = 'obj'; elseif (isunix) % unix objext = 'o'; end % Check if lib files have been compiled first for i = 0:length(lib_cpp)-1 if (~exist([lib_cpp{i+1} '.' objext],'file')) % Object file doesnt exist, return error h_error = errordlg(['Library ' lib_cpp{i+1} ' has not yet been compiled. Please compile first and make sure the object file is located in the current directory before proceeding.'],'Error','modal'); uiwait(h_error); % Spit error to invoke exception error('Library not compiled yet'); end end % Cycle over mex files and compile for i = 0:length(func_cpp)-1 % First check if the cpp file exists if (exist([func_cpp{i+1} '.cpp'],'file')) disp(['Installing ' func_cpp{i+1} '... Please wait']); % Generate compiler string string_compile = {[func_cpp{i+1} '.cpp']}; % Append libraries for j = 0:length(lib_cpp)-1 string_compile = horzcat(string_compile,{[lib_cpp{j+1} '.' objext]}); %#ok<AGROW> end % Append flags string_compile = horzcat(string_compile,flags_f{:}); %#ok<AGROW> % Compile mex(string_compile{:}); else h_error = errordlg(['File ' filename '.cpp was not found. Please find it and place it in the current directory before proceeding'],'Error','modal'); uiwait(h_error); % Spit error to invoke exception error('Compilation failed because file was not found.'); end end end
github
CU-CommunityApps/choco-packages-master
ncorr_alg_convertseeds.m
.m
choco-packages-master/packages/matlab-coecis/tools/ncorr/ncorr_alg_convertseeds.m
27,822
utf_8
126e3f6e6db2afe68f675dff24040d5b
function [convertseedinfo,outstate] = ncorr_alg_convertseeds(plot_u_old,plot_v_old,plot_u_interp_old,plot_v_interp_old,roi_old,roi_new,seedwindow,spacing,border_interp) % This function obtains the "convert" seeds. It will try to seed as many % "new" regions as possible (one seed per region). It is possible that no % seeds are returned. % % Inputs -----------------------------------------------------------------% % plot_u_old - double array; u displacements WRT the "old" configuration. % Units are pixels. % plot_v_old - double array; v displacements WRT the "old" configuration. % Units are pixels. % plot_u_interp_old - cell; array of b-spline coefficients; one per % region. % plot_v_interp_old - cell; array of b-spline coefficients; one per % region; % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % roi_new - ncorr_class_roi; ROI corresponding to "new" displacements. % Note that ROI is already reduced by default. % seedwindow - integer; half width of window around seed that must contain % valid points before its processed. This prevents edge points from being % seeded. % spacing - integer; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % convertseedinfo - struct; contains % struct('paramvector',{},'num_region_new',{},'num_region_old',{}). The x % and y coords stored in convertseedinfo will be reduced while the % displacement values are in pixels. % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % % Note that the ordering of plot_u_interp_old and plot_v_interp_old must % form a correspondence with the regions in roi_old. This means % plot_u_interp_old{i} must correspond to roi_old.region(i). Regions in % roi_old and roi_new do not need to form a direct correspondence, but they % are assumed to be one-to-one. Returns failed if no seeds are found % Initialize outputs outstate = out.failed; convertseedinfo = struct('paramvector',{},'num_region_new',{},'num_region_old',{}); % paramvector = [x_new y_new x_old y_old u_old v_old distance] % Form convertseedinfo prelim convertseedinfo_prelim = struct('paramvector',{},'num_region_new',{},'num_region_old',{}); % Keep track of the regions in roi_old that have already been analyzed. list_region_old = false(length(roi_old.region),1); % Cycle over every "new" region and attempt to seed. for i = 0:length(roi_new.region)-1 % Regions are not gauranteed contiguous at this point, so get the % region corresponding to the largest contiguous area to make sure % small areas arent seeded. regionmask_new_buffer = roi_new.get_regionmask(i); [region_new_buffer,removed] = ncorr_alg_formregions(regionmask_new_buffer,int32(0),false); %#ok<NASGU> % Check if contiguous region(s) are empty or if there are more than one if (isempty(region_new_buffer)) % Continue onto next region in roi_new if region_new_buffer is empty continue; elseif (length(region_new_buffer) > 1) % Select biggest region if there are more than one. This could % possibly happen if a boundary is "pinched" or closes during % deformation. Unlikely- but may happen. idx_max = find([region_new_buffer.totalpoints] == max([region_new_buffer.totalpoints]),1,'first'); region_new_buffer = region_new_buffer(idx_max); end % Form convertseedinfo buffer convertseedinfo_buffer = struct('paramvector',{},'num_region_new',{},'num_region_old',{}); % Set num_region_new convertseedinfo_buffer(1).num_region_new = i; % Initialize successregion = false; for j = 0:size(region_new_buffer.noderange,1)-1 x_new = j + region_new_buffer.leftbound; % Cycle over each point for k = 0:2:region_new_buffer.noderange(j+1)-1 for l = region_new_buffer.nodelist(j+1,k+1):region_new_buffer.nodelist(j+1,k+2); y_new = l; % Make sure area of half-width seedwindow is valid % around the seed before attempting to process. if (all(all(regionmask_new_buffer(max(y_new-seedwindow+1,1):min(y_new+seedwindow+1,end), ... max(x_new-seedwindow+1,1):min(x_new+seedwindow+1,end))))) % Analyze point - outstate_calcpoint will either be % success or failed [convertseedinfo_buffer.paramvector,convertseedinfo_buffer.num_region_old,outstate_calcpoint] = calcpoint(x_new, ... y_new, ... plot_u_old, ... plot_v_old, ... plot_u_interp_old, ... plot_v_interp_old, ... roi_old, ... list_region_old, ... spacing, ... border_interp); % Check if nonlinear solver was successful if (outstate_calcpoint == out.success) % Check distance; make sure its less than a % threshold and also make sure that x_old and % y_old are in valid area x_old = round(convertseedinfo_buffer.paramvector(3)); y_old = round(convertseedinfo_buffer.paramvector(4)); if (convertseedinfo_buffer.paramvector(7) < 0.005 && ... x_old >= 0 && x_old < size(roi_old.mask,2) && ... y_old >= 0 && y_old < size(roi_old.mask,1) && ... roi_old.mask(y_old+1,x_old+1)) % Should really check regionmask, but for ease just check the whole mask % Append convertseedinfo_prelim = horzcat(convertseedinfo_prelim,convertseedinfo_buffer); %#ok<AGROW> list_region_old(convertseedinfo_buffer.num_region_old+1) = true; % Break from this region successregion = true; end end end % Break if seed was successful or all regions in the % old configuration have been analyzed if (successregion || all(list_region_old)) break; end end % Break if seed was successful or all regions in the % old configuration have been analyzed if (successregion || all(list_region_old)) break; end end % Break if seed was successful or all regions in the % old configuration have been analyzed if (successregion || all(list_region_old)) break; end end end % Assign Outputs if (~isempty(convertseedinfo_prelim)) for i = 0:length(convertseedinfo_prelim)-1 convertseedinfo(i+1) = convertseedinfo_prelim(i+1); end outstate = out.success; end end %-------------------------------------------------------------------------% % Nonlinear solver equations ---------------------------------------------% %-------------------------------------------------------------------------% function [paramvector,num_region_old,outstate] = calcpoint(x_new,y_new,plot_u_old,plot_v_old,plot_u_interp_old,plot_v_interp_old,roi_old,list_region_old,spacing,border_interp) % This function obtains the parameters for a "convert" seed. % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % plot_u_old - double array; u displacements WRT the "old" configuration. % Units are pixels. % plot_v_old - double array; v displacements WRT the "old" configuration. % Units are pixels. % plot_u_interp_old - cell; array of b-spline coefficients; one per % region. % plot_v_interp_old - cell; array of b-spline coefficients; one per % region. % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % list_region_old - logical array; keeps track of which "old" regions have % been analyzed % spacing - integer; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % paramvector - double array; [x_new y_new x_old y_old u_old v_old distance] % num_region_old - integer; The region number which seed resides in for % the "old" configuration % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize outputs paramvector = []; num_region_old = []; outstate = out.failed; % Perform global search - note: defvector = [x_old y_old] - reduced [defvector_init,num_region_old_prelim,outstate_initialguess] = initialguess(x_new, ... y_new, ... plot_u_old, ... plot_v_old, ... roi_old, ... list_region_old, ... spacing); if (outstate_initialguess == out.success) % Perform an iterative search [defvector,u_old,v_old,distance,outstate_iterative] = iterativesearch(x_new, ... y_new, ... defvector_init, ... plot_u_interp_old, ... plot_v_interp_old, ... roi_old, ... num_region_old_prelim, ... spacing, ... border_interp); if (outstate_iterative == out.success) % Set outputs paramvector = [x_new y_new defvector u_old v_old distance]; num_region_old = num_region_old_prelim; outstate = out.success; end end end function [defvector_init,num_region_old,outstate] = initialguess(x_new,y_new,plot_u_old,plot_v_old,roi_old,list_region_old,spacing) % This function finds the closest integer displacements as an initial % guess. % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % plot_u_old - double array; u displacements WRT the "old" configuration. % Units are pixels. % plot_v_old - double array; v displacements WRT the "old" configuration. % Units are pixels. % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % list_region_old - logical array; keeps track of which "old" regions have % been analyzed % spacing - integer; this is the spacing parameter. % % Outputs ----------------------------------------------------------------% % defvector_init - integer array; [x_old y_old] - reduced % num_region_old - integer; number of region where x_old and y_old were found % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize Outputs outstate = out.failed; defvector_init = []; num_region_old = []; % Cycle through every point to insure a global minimum x_old_prelim = -1; y_old_prelim = -1; num_region_old_prelim = -1; distance_prelim = inf; % arbitrarily large number for i = 0:length(roi_old.region)-1 if (list_region_old(i+1)) % this ROI has been analyzed already continue; else for j = 0:size(roi_old.region(i+1).noderange,1)-1 x_old_buffer = j + roi_old.region(i+1).leftbound; for k = 0:2:roi_old.region(i+1).noderange(j+1)-1 for l = roi_old.region(i+1).nodelist(j+1,k+1):roi_old.region(i+1).nodelist(j+1,k+2) y_old_buffer = l; % Must divide displacement by spacing so % displacement is WRT reduced coordinates u_old_buffer = plot_u_old(y_old_buffer+1,x_old_buffer+1)/(spacing+1); v_old_buffer = plot_v_old(y_old_buffer+1,x_old_buffer+1)/(spacing+1); distance_buffer = sqrt((x_new-(x_old_buffer+u_old_buffer))^2+(y_new-(y_old_buffer+v_old_buffer))^2); % Check if this point is better if (distance_buffer < distance_prelim) x_old_prelim = x_old_buffer; y_old_prelim = y_old_buffer; num_region_old_prelim = i; distance_prelim = distance_buffer; end end end end end end if (x_old_prelim ~= -1 && y_old_prelim ~= -1) defvector_init = [x_old_prelim y_old_prelim]; num_region_old = num_region_old_prelim; outstate = out.success; end end function [defvector,u_old,v_old,distance,outstate] = iterativesearch(x_new,y_new,defvector_init,plot_u_interp_old,plot_v_interp_old,roi_old,num_region_old,spacing,border_interp) % This function uses Gauss-Newton iterations to find the subpixel x_old % and y_old values. % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % defvector_init - integer array; of form [x_old y_old]. It's integer % because these are the initial guesses from the global search. % plot_u_interp_old - cell; array of b-spline coefficients; one per % region. % plot_v_interp_old - cell; array of b-spline coefficients; one per % region. % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % num_region_old - integer; number of region being analyzed % spacing - integer; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % defvector - double array; [x_old y_old] - reduced % u_old - double; u displacement from x_old to x_new - pixels % v_old - double; v displacement from y_old to y_new - pixels % distance - double; distance between [x_new y_new] and [x_old y_old] % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize outputs outstate = out.failed; defvector = []; u_old = []; v_old = []; distance = []; % Gauss Newton optimization - send only b-spline coefficients % corresponding to the num_region_old [defvector_prelim,u_old_prelim,v_old_prelim,distance_prelim,gradnorm,outstate_newton] = newton(x_new, ... y_new, ... defvector_init, ... plot_u_interp_old{num_region_old+1}, ... plot_v_interp_old{num_region_old+1}, ... roi_old.region(num_region_old+1), ... spacing, ... border_interp); counter = 1; while (outstate_newton == out.success && gradnorm > 10^-5 && counter < 10) % Gauss Newton optimization - send only b-spline coefficients % corresponding to the num_region_old [defvector_prelim,u_old_prelim,v_old_prelim,distance_prelim,gradnorm,outstate_newton] = newton(x_new, ... y_new, ... defvector_prelim, ... plot_u_interp_old{num_region_old+1}, ... plot_v_interp_old{num_region_old+1}, ... roi_old.region(num_region_old+1), ... spacing, ... border_interp); counter = counter + 1; end if (outstate_newton == out.success) % Assign outputs defvector = defvector_prelim; u_old = u_old_prelim; v_old = v_old_prelim; distance = distance_prelim; outstate = out.success; end end function [defvector,u_old,v_old,distance,gradnorm,outstate] = newton(x_new,y_new,defvector_init,plot_u_interp_old,plot_v_interp_old,region_old,spacing,border_interp) % This function actually performs the Gauss-Newton iteration % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % defvector_init - double array; of form [x_old y_old] % plot_u_interp_old - double array; array of b-spline coefficients % corresponding to region_old % plot_v_interp_old - double array; array of b-spline coefficients % corresponding to region_old % region_old - struct; specific region being analyzed % spacing - double; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % defvector - double array; [x_old y_old] - reduced % u_old - double; u displacement from x_old to x_new - pixels % v_old - double; v displacement from y_old to y_new - pixels % distance - double; distance between [x_new y_new] and [x_old y_old] % gradnorm - double; norm of the gradient vector - should be close to 0 % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize inputs outstate = out.failed; defvector = []; u_old = []; v_old = []; gradnorm = []; distance = []; % Use interp function local to this m-file since it combines % interpolation of values and gradients. [interpvector,outstate_interp] = interpqbs_convert(defvector_init, ... plot_u_interp_old, ... plot_v_interp_old, ... region_old, ... border_interp); if (outstate_interp == out.success) % Determine Gradient - note that interpolation found through % interpqbs_convert needs to be WRT reduced coordinates; However, % displacements use pixel units, so they need to be scaled in order % to be WRT reduced coordinates. gradient(1) = -2*((x_new-(defvector_init(1)+interpvector(1)/(spacing+1)))*(1+interpvector(3)/(spacing+1))+(y_new-(defvector_init(2)+interpvector(2)/(spacing+1)))*(interpvector(5)/(spacing+1))); gradient(2) = -2*((x_new-(defvector_init(1)+interpvector(1)/(spacing+1)))*(interpvector(4)/(spacing+1))+(y_new-(defvector_init(2)+interpvector(2)/(spacing+1)))*(1+interpvector(6)/(spacing+1))); % Determine Hessian hessian(1,1) = 2*((1+interpvector(3)/(spacing+1))^2+(interpvector(5)/(spacing+1))^2); hessian(2,1) = 2*((interpvector(4)/(spacing+1))*(1+interpvector(3)/(spacing+1))+(1+interpvector(6)/(spacing+1))*(interpvector(5)/(spacing+1))); hessian(1,2) = hessian(2,1); % symmetric hessian(2,2) = 2*((interpvector(4)/(spacing+1))^2+(1+interpvector(6)/(spacing+1))^2); det_hess = det(hessian); % Check to make sure hessian is positive definite % From :http://www.math.northwestern.edu/~clark/285/2006-07/handouts/pos-def.pdf % Make sure det(hess) > 0 and hess(1,1) > 0 if (det_hess > 0 && hessian(1) > 0) % Determine new coordinates defvector_prelim = (defvector_init'-hessian^-1*gradient')'; % Calculate distance - we have to interpolate again with the new % coordinates [interpvector,outstate_interp] = interpqbs_convert(defvector_prelim, ... plot_u_interp_old, ... plot_v_interp_old, ... region_old, ... border_interp); if (outstate_interp == out.success) % Store outputs defvector = defvector_prelim; u_old = interpvector(1); v_old = interpvector(2); distance = sqrt((x_new-(defvector(1)+interpvector(1)/(spacing+1)))^2+(y_new-(defvector(2)+interpvector(2)/(spacing+1)))^2); gradnorm = norm(gradient); outstate = out.success; end end end end function [interpvector,outstate] = interpqbs_convert(defvector,plot_u_interp_old,plot_v_interp_old,region_old,border_interp) % This interpolation combines interpolation of values and gradients, so % it's reimplemented here because it can save some time by combining the % interpolation. % % Inputs -----------------------------------------------------------------% % defvector - double array; [x_old y_old] - reduced % plot_u_interp_old - double array; array of b-spline coefficients. Units % are pixels. % plot_v_interp_old - double array; array of b-spline coefficients. Units % are pixels. % region_old - struct; specific region being analyzed % border_interp - integer; the amount of padding used around the edges in % interpdata % % Outputs ----------------------------------------------------------------% % interpvector - double array; [u v du/dx du/dy dv/dx dv/dy] % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize output outstate = out.failed; interpvector = []; % Biquintic Kernel Matrix QK = [1/120 13/60 11/20 13/60 1/120 0; -1/24 -5/12 0 5/12 1/24 0; 1/12 1/6 -1/2 1/6 1/12 0; -1/12 1/6 0 -1/6 1/12 0; 1/24 -1/6 1/4 -1/6 1/24 0; -1/120 1/24 -1/12 1/12 -1/24 1/120]; % Interpolate if in bounds x_tilda = defvector(1); y_tilda = defvector(2); x_tilda_floor = floor(x_tilda); y_tilda_floor = floor(y_tilda); % Make sure top, left, bottom, and right are within the b-spline % coefficient array. top, left, bottom and right are the bounding % box of the b-spline coefficients used for interpolation of this % point; top = y_tilda_floor-region_old.upperbound+border_interp-2; left = x_tilda_floor-region_old.leftbound+border_interp-2; bottom = y_tilda_floor-region_old.upperbound+border_interp+3; right = x_tilda_floor-region_old.leftbound+border_interp+3; if (top >= 0 && ... left >= 0 && ... bottom < size(plot_u_interp_old,1) && ... right < size(plot_u_interp_old,2)) % Set coords x_tilda_delta = x_tilda-x_tilda_floor; y_tilda_delta = y_tilda-y_tilda_floor; x_vec(1) = 1.0; x_vec(2) = x_tilda_delta; x_vec(3) = x_vec(2)*x_tilda_delta; x_vec(4) = x_vec(3)*x_tilda_delta; x_vec(5) = x_vec(4)*x_tilda_delta; x_vec(6) = x_vec(5)*x_tilda_delta; y_vec(1) = 1.0; y_vec(2) = y_tilda_delta; y_vec(3) = y_vec(2)*y_tilda_delta; y_vec(4) = y_vec(3)*y_tilda_delta; y_vec(5) = y_vec(4)*y_tilda_delta; y_vec(6) = y_vec(5)*y_tilda_delta; x_vec_dx(1) = 0.0; x_vec_dx(2) = 1.0; x_vec_dx(3) = 2.0*x_vec(2); x_vec_dx(4) = 3.0*x_vec(3); x_vec_dx(5) = 4.0*x_vec(4); x_vec_dx(6) = 5.0*x_vec(5); y_vec_dy(1) = 0.0; y_vec_dy(2) = 1.0; y_vec_dy(3) = 2.0*y_vec(2); y_vec_dy(4) = 3.0*y_vec(3); y_vec_dy(5) = 4.0*y_vec(4); y_vec_dy(6) = 5.0*y_vec(5); % Precompute QKMAT_u_plot = QK*plot_u_interp_old(top+1:bottom+1,left+1:right+1)*QK'; QKMAT_v_plot = QK*plot_v_interp_old(top+1:bottom+1,left+1:right+1)*QK'; % Get interpolated value interpvector(1) = y_vec*QKMAT_u_plot*x_vec'; % u interpvector(2) = y_vec*QKMAT_v_plot*x_vec'; % v interpvector(3) = y_vec*QKMAT_u_plot*x_vec_dx'; % du/dx interpvector(4) = y_vec_dy*QKMAT_u_plot*x_vec'; % du/dy interpvector(5) = y_vec*QKMAT_v_plot*x_vec_dx'; % dv/dx interpvector(6) = y_vec_dy*QKMAT_v_plot*x_vec'; % dv/dy outstate = out.success; end end
github
CU-CommunityApps/choco-packages-master
ncorr_gui_viewplots.m
.m
choco-packages-master/packages/matlab-coecis/tools/ncorr/ncorr_gui_viewplots.m
127,861
utf_8
b5e3358c4dae7e33660ab822d294b67c
function handles_gui = ncorr_gui_viewplots(reference,current,data_dic,type_plot,pos_parent,params_init) % This is a GUI for viewing the displacement/strain plots. % % Inputs -----------------------------------------------------------------% % reference - ncorr_class_img; used for displaying the background image. % current - ncorr_class_img; used for displaying the background image. % data_dic - struct; contains displacement and strain info. This is the % main data structure used in Ncorr. % type_plot - string; specifies whether plot is u, v, exx, exy, or eyy. % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % params_init - cell; {1} = num_cur, {2} = scalebarlength, % {3} = if handle_scalebar is on, {4} = if handle_axes is on, {5} if % Lagrangian or Eulerian, {6} if zoomed; {7} if panned. Used to % coordinate with any existing open plots. % % Outputs ----------------------------------------------------------------% % handles_gui - handles; these are the GUI handles which allow Ncorr to % manage the closing and synchronization of the open plots % % Note that this function checks both roi_ref_formatted and % roi_cur_formatted to make sure all ROIs are non-empty. This is a very % unlikely scenario, but if it happens this function will display and error % dialogue and return. % Data ---------------------------------------------------------------% % Get GUI handles handles_gui = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui.figure)); % Callbacks and functions --------------------------------------------% function constructor() % Check to make sure ROIs are full roifull = true; if (strcmp(type_plot,'u') || strcmp(type_plot,'v')) field = 'displacements'; else field = 'strains'; end for i = 0:length(current)-1 if (data_dic.(field)(i+1).roi_ref_formatted.get_fullregions == 0 || ... data_dic.(field)(i+1).roi_cur_formatted.get_fullregions == 0) roifull = false; break; end end if (~roifull) % One of the ROIs is empty, return; CloseRequestFcn is disabled, % in gui_init(), so reenable it before closing. set(handles_gui.figure,'CloseRequestFcn','closereq'); h_error = errordlg('Some data plots are empty, please rerun analysis.','Error','modal'); uiwait(h_error); close(handles_gui.figure); return; end % Set zoom and pan handle_zoom = zoom(handles_gui.figure); handle_pan = pan(handles_gui.figure); % Initialize buffers -----------------------------------------% if (isempty(params_init)) % Set num_cur - by default show last image in set num_cur = length(current)-1; % Set scalebar length - initialize to 3/4 the width of the % reference image. This uses real units. scalebarlength_prelim = (3/4)*reference.width*data_dic.dispinfo.pixtounits; if (floor(scalebarlength_prelim) > 3) % Use integer scalebarlength = floor(scalebarlength_prelim); else % Use decimal scalebarlength = scalebarlength_prelim; end % handle_scalebar checkbox val_checkbox_scalebar = true; % handle_axes checkbox val_checkbox_axes = true; % Lagrangian or Eulerian; 1 == Lagrangian val_popupmenu = 1; else % Set num_cur num_cur = params_init{1}; % Units and handle_scalebar buffer scalebarlength = params_init{2}; % handle_scalebar checkbox val_checkbox_scalebar = params_init{3}; % handle_axes checkbox val_checkbox_axes = params_init{4}; % Lagrangian or Eulerian val_popupmenu = params_init{5}; % Zoomed if (params_init{6}) set(handle_zoom,'Enable','on'); end % Panned if (params_init{7}) set(handle_pan,'Enable','on'); end end % Transparency buffer transparency_prelim = 0.75; % Contour lines buffer contourlines_prelim = 20; max_contourlines = 100; % Set slider buffer slider_buffer = struct('lagrangian',{},'eulerian',{}); for i = 0:length(current)-1 % Set parameters % Get the data vector corresponding to this plot data_ref = get_data(type_plot,'lagrangian',i); slider_buffer(i+1).lagrangian(1) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(2) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(3:7) = get_sliderparams(data_ref); % Get the data vector corresponding to this plot data_cur = get_data(type_plot,'eulerian',i); slider_buffer(i+1).eulerian(1) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(2) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(3:7) = get_sliderparams(data_cur); end max_upperbound = 1e10; min_lowerbound = -1e10; max_scalebarlength = 1e10; % Set data setappdata(handles_gui.figure,'num_cur',num_cur); setappdata(handles_gui.figure,'transparency_prelim',transparency_prelim); setappdata(handles_gui.figure,'contourlines_prelim',contourlines_prelim); setappdata(handles_gui.figure,'max_contourlines',max_contourlines); setappdata(handles_gui.figure,'scalebarlength',scalebarlength); setappdata(handles_gui.figure,'slider_buffer',slider_buffer); setappdata(handles_gui.figure,'max_upperbound',max_upperbound); setappdata(handles_gui.figure,'min_lowerbound',min_lowerbound); setappdata(handles_gui.figure,'max_scalebarlength',max_scalebarlength); setappdata(handles_gui.figure,'type_plot',type_plot); % Store this explicitly so type and other parameters can be deduced from 'friends' setappdata(handles_gui.figure,'friends',[]); % This is used for modifying other viewplots; it stores their figure handles setappdata(handles_gui.figure,'text_info',[]); % This is the text box that displays when the cursor is over the data plot setappdata(handles_gui.figure,'val_checkbox_contour',false); setappdata(handles_gui.figure,'val_checkbox_scalebar',val_checkbox_scalebar); setappdata(handles_gui.figure,'val_checkbox_axes',val_checkbox_axes); setappdata(handles_gui.figure,'val_checkbox_minmaxmarkers',false); setappdata(handles_gui.figure,'val_popupmenu',val_popupmenu); setappdata(handles_gui.figure,'handle_preview',[]); setappdata(handles_gui.figure,'handle_scalebar',[]); setappdata(handles_gui.figure,'handle_axes',[]); setappdata(handles_gui.figure,'handle_colorbar',[]); setappdata(handles_gui.figure,'handle_point_max',[]); setappdata(handles_gui.figure,'handle_point_min',[]); setappdata(handles_gui.figure,'handle_zoom',handle_zoom); setappdata(handles_gui.figure,'handle_pan',handle_pan); % Update - must send the GUI handles; this is because % update_axes can be used to update other figure handles stored % in 'friends'. update_axes('set',handles_gui); update_sidemenu(handles_gui); % Set resize and hover function callbacks; This GUI is % resizable and displays a data cursor when the cursor hovers % over the data plot. % Set resize function set(handles_gui.figure,'ResizeFcn',ncorr_util_wrapcallbacktrycatch(@callback_resizefunction,handles_gui.figure)); % Set hover function set(handles_gui.figure,'WindowButtonMotionFcn',ncorr_util_wrapcallbacktrycatch(@callback_moveplot,handles_gui.figure)); % Set Visible set(handles_gui.figure,'Visible','on'); end function callback_topmenu_save(hObject,eventdata,includeinfo) %#ok<INUSL> % Get info num_cur = getappdata(handles_gui.figure,'num_cur'); % Form save figure -----------------------------------------------% handles_gui_savefig = form_savefig(num_cur,includeinfo,[]); % Disable close function so figure isnt inadvertently closed. set(handles_gui_savefig.figure,'CloseRequestFcn',''); % Set size(s) ----------------------------------------------------% % gui_savesize is a local function with a GUI; it allows the user % to modify the size of the image [size_savefig,timedelay,outstate] = gui_savesize(handles_gui_savefig, ... false, ... get(handles_gui.figure,'OuterPosition')); %#ok<*ASGLU> if (outstate == out.success) % Save image -------------------------------------------------% [filename,pathname] = uiputfile({'*.jpg';'*.png';'*.bmp';'*.tif'},'Save Image'); if (~isequal(filename,0) && ~isequal(pathname,0)) overwrite = true; if (exist(fullfile(pathname,filename),'file')) contbutton = questdlg('File already exists. Do you want to overwrite?','Continue Operation','Yes','No','No'); if strcmp(contbutton,'No') overwrite = false; end end if (overwrite) % Get image ------------------------------------------% img_printscreen = getframe(handles_gui_savefig.figure); % Save the image imwrite(img_printscreen.cdata,fullfile(pathname,filename)); end end end % Exit -----------------------------------------------------------% set(handles_gui_savefig.figure,'CloseRequestFcn','closereq'); close(handles_gui_savefig.figure); end function callback_topmenu_savegif(hObject,eventdata) %#ok<INUSD> % Get data val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); % All current images must have the same size to use this feature % with the eulerian description size_cur = size(current(1).get_gs()); samesize_cur = true; for i = 1:length(current)-1 if (~isequal(size_cur,[current(i+1).height current(i+1).width])) samesize_cur = false; break; end end % Save image -----------------------------------------------------% % Note val_popupmenu equals 1 for the lagrangian perspective, and 2 % for the eulerian perspective if (val_popupmenu == 1 || (val_popupmenu == 2 && samesize_cur)) % Form initial save figure -----------------------------------% handles_gui_savefig = form_savefig(0,0,[]); % Disable close function so figure isnt inadvertently closed set(handles_gui_savefig.figure,'CloseRequestFcn',''); % Set Size(s) ------------------------------------------------% % gui_savesize is a local function with a GUI; it allows the user % to modify the size of the image [size_savefig,timedelay,outstate] = gui_savesize(handles_gui_savefig, ... true, ... get(handles_gui.figure,'OuterPosition')); if (outstate == out.success) [filename,pathname] = uiputfile({'*.gif'},'Save Image'); if (~isequal(filename,0) && ~isequal(pathname,0)) overwrite = true; if (exist(fullfile(pathname,filename),'file')) contbutton = questdlg('File already exists. Do you want to overwrite?','Continue Operation','Yes','No','No'); if strcmp(contbutton,'No') overwrite = false; end end if (overwrite) % Save initial image -----------------------------% img_printscreen = getframe(handles_gui_savefig.figure); img_printscreen = frame2im(img_printscreen); [imind,cm] = rgb2ind(img_printscreen,256); % Save imwrite(imind,cm,[pathname filename],'gif','Loopcount',inf); % Cycle over other images to save for i = 1:length(current)-1 % Close figure set(handles_gui_savefig.figure,'CloseRequestFcn','closereq'); close(handles_gui_savefig.figure); % Form updated save figure -------------------% handles_gui_savefig = form_savefig(i,0,size_savefig); % Disable close function for now set(handles_gui_savefig.figure,'CloseRequestFcn',''); % Get image ----------------------------------% img_printscreen = getframe(handles_gui_savefig.figure); img_printscreen = frame2im(img_printscreen); [imind,cm] = rgb2ind(img_printscreen,256); % Append if (i ~= length(current)-1) imwrite(imind,cm,[pathname filename],'gif','WriteMode','append','DelayTime',timedelay); else % This is the last image, make the time % delay longer so there's a pause at the % end. imwrite(imind,cm,[pathname filename],'gif','WriteMode','append','DelayTime',timedelay+0.5); end end end end end % Close last figure set(handles_gui_savefig.figure,'CloseRequestFcn','closereq'); close(handles_gui_savefig.figure); else h_error = errordlg('All current images must have the same size to save gif with the Eulerian description.','Error','modal'); uiwait(h_error); end end %---------------------------------------------------------------------% % These functions can potentially modify other viewplots -------------% %---------------------------------------------------------------------% function callback_popupmenu(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); val_popupmenu = get(handles_gui.popupmenu,'Value'); % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'val_popupmenu',val_popupmenu); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'val_popupmenu',val_popupmenu); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_scalebar(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); val_checkbox_scalebar = get(handles_gui.checkbox_scalebar,'Value'); % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'val_checkbox_scalebar',val_checkbox_scalebar); % Update update_axes('update',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'val_checkbox_scalebar',val_checkbox_scalebar); % Update this plot update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_axes(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); val_checkbox_axes = get(handles_gui.checkbox_axes,'Value'); % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'val_checkbox_axes',val_checkbox_axes); % Update update_axes('update',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'val_checkbox_axes',val_checkbox_axes); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_scalebarlength(hObject,eventdata) %#ok<INUSD> % Get data scalebarlength = getappdata(handles_gui.figure,'scalebarlength'); max_scalebarlength = getappdata(handles_gui.figure,'max_scalebarlength'); friends = getappdata(handles_gui.figure,'friends'); % Get Value scalebarlength_buffer = str2double(get(handles_gui.edit_scalebarlength,'string')); if (ncorr_util_isrealbb(scalebarlength_buffer,0,max_scalebarlength,'Scalebar Length') == out.success) % Update buffer scalebarlength = scalebarlength_buffer; % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'scalebarlength',scalebarlength); % Update update_axes('update',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'scalebarlength',scalebarlength); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_imgnum(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); friends = getappdata(handles_gui.figure,'friends'); % Get Value - uses one based indexing num_cur_prelim = str2double(get(handles_gui.edit_imgnum,'string')); if (ncorr_util_isintbb(num_cur_prelim,1,length(current),'Current Image number') == out.success) % Store value - convert back to zero based indexing num_cur = num_cur_prelim-1; % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'num_cur',num_cur); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'num_cur',num_cur); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_button_zoom(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); handle_zoom = getappdata(handles_gui.figure,'handle_zoom'); if (strcmp(get(handle_zoom,'Enable'),'on')) % Zoom is already enabled; disable it val_zoom = false; set(handle_zoom,'Enable','off'); else % Zoom not enabled; enable it val_zoom = true; set(handle_zoom,'Enable','on'); end % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Get zoom handle from other plot handle_zoom_sub = getappdata(friends{i+1}.figure,'handle_zoom'); if (val_zoom) set(handle_zoom_sub,'Enable','on'); else set(handle_zoom_sub,'Enable','off'); end % Set data setappdata(friends{i+1}.figure,'handle_zoom',handle_zoom_sub); % Update update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'handle_zoom',handle_zoom); % Update update_sidemenu(handles_gui); end function callback_button_pan(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); handle_pan = getappdata(handles_gui.figure,'handle_pan'); if (strcmp(get(handle_pan,'Enable'),'on')) % Pan is already enabled; disable it val_pan = false; set(handle_pan,'Enable','off'); else % Pan not enabled; enable it val_pan = true; set(handle_pan,'Enable','on'); end % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Get Pan handle from other plot handle_pan_sub = getappdata(friends{i+1}.figure,'handle_pan'); if (val_pan) set(handle_pan_sub,'Enable','on'); else set(handle_pan_sub,'Enable','off'); end % Set data setappdata(friends{i+1}.figure,'handle_pan',handle_pan_sub); % Update update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'handle_pan',handle_pan); % Update update_sidemenu(handles_gui); end function callback_button_left(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); friends = getappdata(handles_gui.figure,'friends'); % Check for overshoot if (num_cur > 0) % Update other plots in friend list num_cur = num_cur-1; for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'num_cur',num_cur); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'num_cur',num_cur); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_button_right(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); friends = getappdata(handles_gui.figure,'friends'); % Check for overshoot if (num_cur < length(current)-1) % Update other plots in friend list num_cur = num_cur+1; for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'num_cur',num_cur); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'num_cur',num_cur); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function update_sidemenu(handles_gui_sub) % Get data - MUST USE HANDLES_GUI_SUB!!! num_cur = getappdata(handles_gui_sub.figure,'num_cur'); scalebarlength = getappdata(handles_gui_sub.figure,'scalebarlength'); transparency_prelim = getappdata(handles_gui_sub.figure,'transparency_prelim'); contourlines_prelim = getappdata(handles_gui_sub.figure,'contourlines_prelim'); slider_buffer = getappdata(handles_gui_sub.figure,'slider_buffer'); val_checkbox_scalebar = getappdata(handles_gui_sub.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui_sub.figure,'val_checkbox_axes'); val_checkbox_contour = getappdata(handles_gui_sub.figure,'val_checkbox_contour'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); handle_zoom = getappdata(handles_gui_sub.figure,'handle_zoom'); handle_pan = getappdata(handles_gui_sub.figure,'handle_pan'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Sliders: set(handles_gui_sub.slider_transparency,'value',transparency_prelim); set(handles_gui_sub.slider_upperbound,'value',min(1,max(0,slider_buffer(num_cur+1).(lore)(1)))); set(handles_gui_sub.slider_lowerbound,'value',min(1,max(0,slider_buffer(num_cur+1).(lore)(2)))); % Edit: set(handles_gui_sub.edit_transparency,'String',num2str(transparency_prelim,'%6.4f')); set(handles_gui_sub.edit_upperbound,'String',num2str((slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(1)+slider_buffer(num_cur+1).(lore)(4),'%6.4f')); set(handles_gui_sub.edit_lowerbound,'String',num2str((slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(2)+slider_buffer(num_cur+1).(lore)(4),'%6.4f')); set(handles_gui_sub.edit_contour,'String',num2str(contourlines_prelim)); set(handles_gui_sub.edit_scalebarlength,'String',num2str(scalebarlength,'%6.2f')); % Popupmenu: set(handles_gui_sub.popupmenu,'Value',val_popupmenu); % Enable scalebar if (val_checkbox_scalebar) set(handles_gui_sub.edit_scalebarlength,'Enable','on','backgroundcolor',[0.9412 0.9412 0.9412]); set(handles_gui_sub.checkbox_scalebar,'Value',true); else set(handles_gui_sub.edit_scalebarlength,'Enable','off','backgroundcolor',[0.9412 0.9412 0.9412]); set(handles_gui_sub.checkbox_scalebar,'Value',false); end % Enable axes if (val_checkbox_axes) set(handles_gui_sub.checkbox_axes,'Value',true); else set(handles_gui_sub.checkbox_axes,'Value',false); end % Enable contour if (val_checkbox_contour) % Disable trans set(handles_gui_sub.edit_transparency,'Enable','off'); set(handles_gui_sub.slider_transparency,'Enable','off'); % Enable contours set(handles_gui_sub.edit_contour,'Enable','on','backgroundcolor',[0.9412 0.9412 0.9412]); else % Enable trans set(handles_gui_sub.edit_transparency,'Enable','on','backgroundcolor',[0.9412 0.9412 0.9412]); set(handles_gui_sub.slider_transparency,'Enable','on'); % Disable contours set(handles_gui_sub.edit_contour,'Enable','off'); end if (strcmp(get(handle_pan,'Enable'),'on')) set(handles_gui_sub.button_pan,'FontWeight','bold'); else set(handles_gui_sub.button_pan,'FontWeight','normal'); end if (strcmp(get(handle_zoom,'Enable'),'on')) set(handles_gui_sub.button_zoom,'FontWeight','bold'); else set(handles_gui_sub.button_zoom,'FontWeight','normal'); end end function update_axes(action,handles_gui_sub) % Get data - MUST USE HANDLES_GUI_SUB AND TYPE_PLOT_SUB!!! num_cur = getappdata(handles_gui_sub.figure,'num_cur'); transparency_prelim = getappdata(handles_gui_sub.figure,'transparency_prelim'); contourlines_prelim = getappdata(handles_gui_sub.figure,'contourlines_prelim'); scalebarlength = getappdata(handles_gui_sub.figure,'scalebarlength'); slider_buffer = getappdata(handles_gui_sub.figure,'slider_buffer'); type_plot_sub = getappdata(handles_gui_sub.figure,'type_plot'); text_info = getappdata(handles_gui_sub.figure,'text_info'); val_checkbox_contour = getappdata(handles_gui_sub.figure,'val_checkbox_contour'); val_checkbox_scalebar = getappdata(handles_gui_sub.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui_sub.figure,'val_checkbox_axes'); val_checkbox_minmaxmarkers = getappdata(handles_gui_sub.figure,'val_checkbox_minmaxmarkers'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); handle_preview = getappdata(handles_gui_sub.figure,'handle_preview'); handle_scalebar = getappdata(handles_gui_sub.figure,'handle_scalebar'); handle_axes = getappdata(handles_gui_sub.figure,'handle_axes'); handle_colorbar = getappdata(handles_gui_sub.figure,'handle_colorbar'); handle_point_max = getappdata(handles_gui_sub.figure,'handle_point_max'); handle_point_min = getappdata(handles_gui_sub.figure,'handle_point_min'); if (val_popupmenu == 1) lore = 'lagrangian'; img_bg = reference; else lore = 'eulerian'; img_bg = current(num_cur+1); end % Get data data = get_data(type_plot_sub,lore,num_cur); plot_data = get_dataplot(type_plot_sub,lore,num_cur); roi_data = get_roi(type_plot_sub,lore,num_cur); if (strcmp(action,'set') || strcmp(action,'save')) % Get reduced img img_reduced = img_bg.reduce(data_dic.dispinfo.spacing); % Set Background Image imshow(img_reduced.get_img(),[img_reduced.min_gs img_reduced.max_gs],'Parent',handles_gui_sub.axes_formatplot); hold(handles_gui_sub.axes_formatplot,'on'); % Overlay plot - See if it's a contour plot if (val_checkbox_contour) % Format plot [grid_x,grid_y] = meshgrid(1:size(plot_data,2),1:size(plot_data,1)); alphamap_nan = ~roi_data.mask; plot_data(alphamap_nan) = NaN; % Form contour plot [data_contour,handle_preview] = contourf(grid_x,grid_y,plot_data,contourlines_prelim,'Parent',handles_gui_sub.axes_formatplot); % Overlay image in NaN regions % This only works properly when opengl is disabled. When opengl % is enabled, stacking order is determined by projected Z % value. This is a problem because images and contourf functions % have z = 0 value, so sometimes the image will not overlay the % white regions. handle_trans = imshow(img_reduced.get_img(),[img_reduced.min_gs img_reduced.max_gs],'Parent',handles_gui_sub.axes_formatplot); set(handle_trans,'AlphaData',imdilate(alphamap_nan,true(3))); % This dilation covers the border else % Regular Plot handle_preview = imshow(plot_data,[],'Parent',handles_gui_sub.axes_formatplot); end % Set axes grid off set(handles_gui_sub.axes_formatplot,'Visible','off'); % Place markers in min/max location datamax = max(data); datamin = min(data); % Max marker [y_max,x_max] = find(plot_data == datamax,1); handle_point_max = impoint(handles_gui_sub.axes_formatplot,x_max,y_max); setColor(handle_point_max,'g'); set(handle_point_max,'UIContextMenu',''); set(handle_point_max,'ButtonDownFcn',''); % Min Marker [y_min,x_min] = find(plot_data == datamin,1); handle_point_min = impoint(handles_gui_sub.axes_formatplot,x_min,y_min); setColor(handle_point_min,'g'); set(handle_point_min,'UIContextMenu',''); set(handle_point_min,'ButtonDownFcn',''); % Set invisible if markers are disabled if (~val_checkbox_minmaxmarkers) set(handle_point_max,'Visible','off'); set(handle_point_min,'Visible','off'); end % Turn hold off hold(handles_gui_sub.axes_formatplot,'off'); % Set left/right buttons if (~strcmp(action,'save')) set(handles_gui_sub.edit_imgnum,'String',num2str(num_cur+1)); if (length(current) == 1) set(handles_gui_sub.button_right,'Enable','off'); set(handles_gui_sub.button_left,'Enable','off'); set(handles_gui_sub.edit_imgnum,'Enable','off'); elseif (num_cur == 0) set(handles_gui_sub.button_right,'Enable','on'); set(handles_gui_sub.button_left,'Enable','off'); set(handles_gui_sub.edit_imgnum,'Enable','on'); elseif (num_cur == length(current)-1) set(handles_gui_sub.button_right,'Enable','off'); set(handles_gui_sub.button_left,'Enable','on'); set(handles_gui_sub.edit_imgnum,'Enable','on'); else set(handles_gui_sub.button_right,'Enable','on'); set(handles_gui_sub.button_left,'Enable','on'); set(handles_gui_sub.edit_imgnum,'Enable','on'); end end % Static Texts: if (strcmp(action,'set') || (strcmp(action,'save') && getappdata(handles_gui_sub.figure,'includeinfo'))) set(handles_gui_sub.text_ref_name,'String',['Reference Name: ' reference.name(1:min(end,40))]); set(handles_gui_sub.text_cur_name,'String',['Current Name: ' current(num_cur+1).name(1:min(end,40))]); set(handles_gui_sub.text_type,'String',['Analysis type: ' data_dic.dispinfo.type]); if (strcmp(type_plot_sub,'u') || strcmp(type_plot_sub,'v')) string_dicparams = ['RG-DIC Radius: ' num2str(data_dic.dispinfo.radius) ' | Subset Spacing: ' num2str(data_dic.dispinfo.spacing)]; else string_dicparams = ['RG-DIC Radius: ' num2str(data_dic.dispinfo.radius) ' | Strain Radius: ' num2str(data_dic.straininfo.radius) ' | Subset Spacing: ' num2str(data_dic.dispinfo.spacing)]; end set(handles_gui_sub.text_dicparams,'String', string_dicparams); set(handles_gui_sub.text_itparams,'String', ['Diffnorm Cutoff: ' num2str(data_dic.dispinfo.cutoff_diffnorm) ' | Iteration Cutoff: ' num2str(data_dic.dispinfo.cutoff_iteration) ' | Threads: ' num2str(data_dic.dispinfo.total_threads)]); if (data_dic.dispinfo.stepanalysis.enabled) if (strcmp(data_dic.dispinfo.stepanalysis.type,'seed')) string_stepanalysis = 'Step Analysis: Enabled | Type: Seed Propagation '; else string_stepanalysis = ['Step Analysis: Enabled | Type: Leap Frog | Step: ' num2str(data_dic.dispinfo.stepanalysis.step)]; end else string_stepanalysis = 'Step Analysis: Disabled'; end set(handles_gui_sub.text_stepanalysis,'String',string_stepanalysis); if (data_dic.dispinfo.subsettrunc) string_subsettrunc = 'RG-DIC Subset Truncation: Enabled'; else string_subsettrunc = 'RG-DIC Subset Truncation: Disabled'; end if (strcmp(type_plot_sub,'exx') || strcmp(type_plot_sub,'exy') || strcmp(type_plot_sub,'eyy')) if (data_dic.straininfo.subsettrunc) string_subsettrunc = horzcat(string_subsettrunc,' | Strain Subset Truncation: Enabled'); %#ok<AGROW> else string_subsettrunc = horzcat(string_subsettrunc,' | Strain Subset Truncation: Disabled'); %#ok<AGROW> end end set(handles_gui_sub.text_subsettrunc,'String',string_subsettrunc); string_imgcorr = 'Image Correspondences: '; for i = 0:length(data_dic.dispinfo.imgcorr)-1 % Might be large string_imgcorr = horzcat(string_imgcorr,['[' num2str(data_dic.dispinfo.imgcorr(i+1).idx_ref) ' ' num2str(data_dic.dispinfo.imgcorr(i+1).idx_cur) '] ']); %#ok<AGROW> end set(handles_gui_sub.text_imgcorr,'String',string_imgcorr); set(handles_gui_sub.text_pixtounits,'String', ['Units/pixels: ' num2str(data_dic.dispinfo.pixtounits) ' ' data_dic.dispinfo.units '/pixels']); set(handles_gui_sub.text_cutoff_corrcoef,'String', ['Correlation Coefficient Cutoff: ' num2str(data_dic.dispinfo.cutoff_corrcoef(num_cur+1),'%6.4f')]); set(handles_gui_sub.text_lenscoef,'String',['Radial Lens Distortion Coefficient: ' num2str(data_dic.dispinfo.lenscoef)]); if (strcmp(type_plot_sub,'u') || strcmp(type_plot_sub,'v')) set(handles_gui_sub.text_minmedianmax,'String',['Max: ' num2str(slider_buffer(num_cur+1).(lore)(6),'%6.4f') ' ' data_dic.dispinfo.units ' | Median: ' num2str(slider_buffer(num_cur+1).(lore)(4),'%6.4f') ' ' data_dic.dispinfo.units ' | Min: ' num2str(slider_buffer(num_cur+1).(lore)(7),'%6.4f') ' ' data_dic.dispinfo.units]); elseif (strcmp(type_plot_sub,'exx') || strcmp(type_plot_sub,'exy') || strcmp(type_plot_sub,'eyy')) set(handles_gui_sub.text_minmedianmax,'String',['Max: ' num2str(slider_buffer(num_cur+1).(lore)(6),'%6.4f') ' | Median: ' num2str(slider_buffer(num_cur+1).(lore)(4),'%6.4f') ' | Min: ' num2str(slider_buffer(num_cur+1).(lore)(7),'%6.4f')]); end end % Set empty text info text_info = text(0,0,2,'','Parent',handles_gui_sub.axes_formatplot,'HorizontalAlignment','left','VerticalAlignment','top','BackgroundColor',[1 1 1],'EdgeColor',[0.7 0.7 0.7],'tag','text_info','FontSize',8); % Update panel text if its strain, since it also displays the % strain tensor name if (~strcmp(action,'save') && (strcmp(type_plot_sub,'exx') || strcmp(type_plot_sub,'exy') || strcmp(type_plot_sub,'eyy'))) if (strcmp(type_plot_sub,'exx')) group_title = 'Exx '; elseif (strcmp(type_plot_sub,'exy')) group_title = 'Exy '; elseif (strcmp(type_plot_sub,'eyy')) group_title = 'Eyy '; end if (val_popupmenu == 1) group_title = [group_title 'Green-Lagrangian']; else group_title = [group_title 'Eulerian-Almansi']; end % Update title set(handles_gui_sub.group_formataxes,'Title',group_title) end % Set colormap ncorr_util_colormap(handles_gui_sub.figure); end if (strcmp(action,'set') || strcmp(action,'update') || strcmp(action,'save')) % Get limits cmax = (slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(1)+slider_buffer(num_cur+1).(lore)(4); cmin = (slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(2)+slider_buffer(num_cur+1).(lore)(4); if (abs(cmin-cmax)<1e-4) cmax = cmax + 1e-5; % add a small increment to ensure they are not the same number cmin = cmin - 1e-5; end % Update Plot caxis(handles_gui_sub.axes_formatplot,[cmin cmax]); % Update transparency for regular plot if (~val_checkbox_contour) transparency = transparency_prelim; alphamap_plot = roi_data.mask.*transparency; set(handle_preview,'AlphaData',alphamap_plot); end % Set colorbar handle_colorbar = colorbar('peer',handles_gui_sub.axes_formatplot); set(handle_colorbar,'UIContextMenu',''); set(get(handle_colorbar,'child'),'YData',[cmin cmax]); set(handle_colorbar,'YLim',[cmin cmax]); set(handle_colorbar,'Units','Pixels'); % Set max/min markers if (val_checkbox_minmaxmarkers) set(handle_point_max,'Visible','on'); set(handle_point_min,'Visible','on'); else set(handle_point_max,'Visible','off'); set(handle_point_min,'Visible','off'); end % Check for scale bar if (val_checkbox_scalebar) % Need to also test if handle is valid, since it is not % explicitly cleared when switching img_num if (isempty(handle_scalebar) || ~ishandle(handle_scalebar)) % Scalebar isnt present, so create it handle_scalebar = form_scalebar(handles_gui_sub); else % Scalebar is already present - just update it % Get display image dimensions height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); line_scalebar = findobj(handle_scalebar,'tag','line'); width_sb = scalebarlength/(data_dic.dispinfo.pixtounits*(data_dic.dispinfo.spacing+1)); % Convert to pixels height_sb = 0.015*height_img; % Height is 1.5% of img height offset_sb_left = 0.05*width_img; % Offset is 5% from left, and 95% from top offset_sb_top = 0.95*height_img; set(line_scalebar,'XData',[offset_sb_left offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left]); set(line_scalebar,'YData',[offset_sb_top offset_sb_top offset_sb_top+height_sb offset_sb_top+height_sb]); % Update bg bg1 = findobj(handle_scalebar,'tag','bg1'); bg2 = findobj(handle_scalebar,'tag','bg2'); width_bg = (width_sb/width_img+0.06)*width_img; height_bg = 0.12*height_img; % Height is a 12% of height offset_bg_left = 0.02*width_img; % Offset is 2% from left, and 86% from top offset_bg_top = 0.86*height_img; set(bg1,'XData',[offset_bg_left offset_bg_left+width_bg offset_bg_left+width_bg offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left offset_sb_left offset_bg_left]); set(bg1,'YData',[offset_bg_top offset_bg_top offset_bg_top+height_bg offset_sb_top+height_sb offset_sb_top offset_sb_top offset_sb_top+height_sb offset_bg_top+height_bg]); set(bg2,'XData',[offset_sb_left offset_sb_left+width_sb offset_bg_left+width_bg offset_bg_left]); set(bg2,'YData',[offset_sb_top+height_sb offset_sb_top+height_sb offset_bg_top+height_bg offset_bg_top+height_bg]); % Update text text_scalebar = findobj(handle_scalebar,'tag','text_scalebar'); pos_x_text = offset_sb_left+width_sb/2; pos_y_text = .905*height_img; set(text_scalebar,'String',[num2str(scalebarlength) ' ' data_dic.dispinfo.units],'Position',[pos_x_text pos_y_text 1]); end else % See if scalebar exists if (~isempty(handle_scalebar) && ishandle(handle_scalebar)) delete(handle_scalebar); end handle_scalebar = []; if (~strcmp(action,'save')) % Disable the edit box for editing scalebar length set(handles_gui_sub.edit_scalebarlength,'Enable','off'); end end % Check for the axes if (val_checkbox_axes) if (isempty(handle_axes) || ~ishandle(handle_axes)) % Create plot axes handle_axes = form_plotaxes(handles_gui_sub); end else if (~isempty(handle_axes) && ishandle(handle_axes)) delete(handle_axes); end handle_axes = []; end end % Set data setappdata(handles_gui_sub.figure,'handle_point_max', handle_point_max); setappdata(handles_gui_sub.figure,'handle_point_min', handle_point_min); setappdata(handles_gui_sub.figure,'handle_preview',handle_preview); setappdata(handles_gui_sub.figure,'handle_scalebar',handle_scalebar); setappdata(handles_gui_sub.figure,'handle_axes',handle_axes); setappdata(handles_gui_sub.figure,'handle_colorbar',handle_colorbar); setappdata(handles_gui_sub.figure,'text_info',text_info); end function handle_scalebar = form_scalebar(handles_gui_sub) % This function creates the scalebar % Get data num_cur = getappdata(handles_gui_sub.figure,'num_cur'); scalebarlength = getappdata(handles_gui_sub.figure,'scalebarlength'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); if (val_popupmenu == 1) img_bg = reference; else img_bg = current(num_cur+1); end % Get display image dimensions (these are reduced) height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); % Form hggroup handle_scalebar = hggroup('parent',handles_gui_sub.axes_formatplot,'tag','handle_scalebar'); % Form dimensions of scalebar - most importantly, width must be % converted back to pixels (in reduced coordinates). It must also be % consistent among plots and based on the scalebarlength parameter. % Any other parameter, like the scalebar height or offsets, can % depend on this specific image size for display purposes. width_sb = scalebarlength/(data_dic.dispinfo.pixtounits*(data_dic.dispinfo.spacing+1)); height_sb = 0.015*height_img; % Height is a 1.5% of im height offset_sb_left = 0.05*width_img; % Offset is 5% from left, and 95% from top offset_sb_top = 0.95*height_img; % BG - Form BG with two patches with a hole for the scale bar. % For some reason alpha is applied to all overlapping patches width_bg = (width_sb/width_img+0.06)*width_img; height_bg = 0.12*height_img; % Height is a 12% of height offset_bg_left = 0.02*width_img; % Offset is 2% from left, and 86% from top offset_bg_top = 0.86*height_img; patch([offset_bg_left offset_bg_left+width_bg offset_bg_left+width_bg offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left offset_sb_left offset_bg_left], ... [offset_bg_top offset_bg_top offset_bg_top+height_bg offset_sb_top+height_sb offset_sb_top offset_sb_top offset_sb_top+height_sb offset_bg_top+height_bg], ... [1 1 1 1 1 1 1 1], ... 'k','parent',handle_scalebar,'linestyle','none','FaceAlpha',0.5,'tag','bg1'); patch([offset_sb_left offset_sb_left+width_sb offset_bg_left+width_bg offset_bg_left], ... [offset_sb_top+height_sb offset_sb_top+height_sb offset_bg_top+height_bg offset_bg_top+height_bg], ... [1 1 1 1], ... 'k','parent',handle_scalebar,'linestyle','none','FaceAlpha',0.5,'tag','bg2'); % Line - The actual scale bar patch([offset_sb_left offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left], ... [offset_sb_top offset_sb_top offset_sb_top+height_sb offset_sb_top+height_sb], ... [1 1 1 1], ... 'w','parent',handle_scalebar,'FaceAlpha',1,'tag','line'); % Text pos_x_text = offset_sb_left+width_sb/2; pos_y_text = .905*height_img; pos_img = get(handles_gui_sub.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); text(pos_x_text,pos_y_text,1,[num2str(scalebarlength) ' ' data_dic.dispinfo.units],'parent',handle_scalebar,'color','w', ... 'HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',size_text,'tag','text_scalebar'); end function handle_axes = form_plotaxes(handles_gui_sub) % This function forms the axes seen at the top left of the plot % Get data num_cur = getappdata(handles_gui_sub.figure,'num_cur'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); if (val_popupmenu == 1) img_bg = reference; else img_bg = current(num_cur+1); end % Do this WRT the display image height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); % Form hggroup handle_axes = hggroup('parent',handles_gui_sub.axes_formatplot,'tag','handle_axes'); length_axes = 0.15*max(width_img,height_img); width_axes = 0.012*max(width_img,height_img); arrowwidth_axes = 1.0*width_axes; width_bg = width_axes*0.4; % BG patch([0 width_axes+width_bg width_axes+width_bg width_axes+arrowwidth_axes+2*width_bg 0],[0 0 length_axes-width_bg length_axes-width_bg length_axes+width_axes+arrowwidth_axes+width_bg],[1 1 1 1 1], ... 'w','parent',handle_axes,'linestyle','none','tag','bg1'); patch([0 length_axes+width_axes+arrowwidth_axes+width_bg length_axes-width_bg length_axes-width_bg 0],[0 0 width_axes+arrowwidth_axes+2*width_bg width_axes+width_bg width_axes+width_bg],[1 1 1 1 1], ... 'w','parent',handle_axes,'linestyle','none','tag','bg2'); % Lines patch([0 width_axes width_axes width_axes+arrowwidth_axes 0],[0 0 length_axes length_axes length_axes+width_axes+arrowwidth_axes],[1 1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','tag','arrow1'); patch([0 length_axes+width_axes+arrowwidth_axes length_axes length_axes 0],[0 0 width_axes+arrowwidth_axes width_axes width_axes],[1 1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','tag','arrow2'); % Text BG spacing_textbg = 2.5*width_axes; offset_text = 3*width_axes; pos_text = length_axes+width_axes+arrowwidth_axes+width_bg+offset_text; pos_img = get(handles_gui_sub.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); patch([offset_text-spacing_textbg offset_text+spacing_textbg offset_text+spacing_textbg offset_text-spacing_textbg],[pos_text-spacing_textbg pos_text-spacing_textbg pos_text+spacing_textbg pos_text+spacing_textbg],[1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','FaceAlpha',0.5,'tag','text_bg1'); patch([pos_text-spacing_textbg pos_text+spacing_textbg pos_text+spacing_textbg pos_text-spacing_textbg],[offset_text-spacing_textbg offset_text-spacing_textbg offset_text+spacing_textbg offset_text+spacing_textbg],[1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','FaceAlpha',0.5,'tag','text_bg2'); % Text text(offset_text,pos_text,1,'Y','parent',handle_axes,'color','w', ... 'HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',size_text,'tag','text_x'); text(pos_text,offset_text,1,'X','parent',handle_axes,'color','w', ... 'HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',size_text,'tag','text_y'); end %---------------------------------------------------------------------% %---------------------------------------------------------------------% %---------------------------------------------------------------------% function callback_slider_transparency(hObject,eventdata) %#ok<INUSD> % Get data transparency_prelim = get(handles_gui.slider_transparency,'value'); % Set data setappdata(handles_gui.figure,'transparency_prelim',transparency_prelim); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_slider_upperbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Update data slider_buffer(num_cur+1).(lore)(1) = get(handles_gui.slider_upperbound,'value'); % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_slider_lowerbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Update data slider_buffer(num_cur+1).(lore)(2) = get(handles_gui.slider_lowerbound,'value'); % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_contour(hObject,eventdata) %#ok<INUSD> % Get data val_checkbox_contour = get(handles_gui.checkbox_contour,'Value'); % Set data setappdata(handles_gui.figure,'val_checkbox_contour',val_checkbox_contour); % Update update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_minmaxmarkers(hObject,eventdata) %#ok<INUSD> % Get data val_checkbox_minmaxmarkers = get(handles_gui.checkbox_minmaxmarkers,'Value'); % Set data setappdata(handles_gui.figure,'val_checkbox_minmaxmarkers',val_checkbox_minmaxmarkers); % Update update_axes('update',handles_gui); end function callback_edit_transparency(hObject,eventdata) %#ok<INUSD> % Get data transparency_prelim = getappdata(handles_gui.figure,'transparency_prelim'); % Get Value transparency_buffer = str2double(get(handles_gui.edit_transparency,'string')); if (ncorr_util_isrealbb(transparency_buffer,0,1,'Transparency') == out.success) transparency_prelim = transparency_buffer; end % Set data setappdata(handles_gui.figure,'transparency_prelim',transparency_prelim); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_lowerbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); min_lowerbound = getappdata(handles_gui.figure,'min_lowerbound'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get Value lowerbound_buffer = str2double(get(handles_gui.edit_lowerbound,'string')); if (ncorr_util_isrealbb(lowerbound_buffer,min_lowerbound,slider_buffer(num_cur+1).(lore)(4),'Lowerbound') == out.success) % Make sure denominator is not close to zero if (abs(slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4)) <= 1e-10) slider_buffer(num_cur+1).(lore)(2) = 1; else slider_buffer(num_cur+1).(lore)(2) = (lowerbound_buffer-slider_buffer(num_cur+1).(lore)(4))/(slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4)); end end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_upperbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); max_upperbound = getappdata(handles_gui.figure,'max_upperbound'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get Value upperbound_buffer = str2double(get(handles_gui.edit_upperbound,'string')); if (ncorr_util_isrealbb(upperbound_buffer,slider_buffer(num_cur+1).(lore)(4),max_upperbound,'Upperbound') == out.success) % Make sure denominator is not close to zero if (abs(slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4)) <= 1e-10) slider_buffer(num_cur+1).(lore)(1) = 1; else slider_buffer(num_cur+1).(lore)(1) = (upperbound_buffer-slider_buffer(num_cur+1).(lore)(4))/(slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4)); end end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_contour(hObject,eventdata) %#ok<INUSD> % Get data contourlines_prelim = getappdata(handles_gui.figure,'contourlines_prelim'); max_contourlines = getappdata(handles_gui.figure,'max_contourlines'); % Get Value contourlines_buffer = str2double(get(handles_gui.edit_contour,'string')); if (ncorr_util_isintbb(contourlines_buffer,1,max_contourlines,'Number of contour lines') == out.success) contourlines_prelim = contourlines_buffer; end % Set data setappdata(handles_gui.figure,'contourlines_prelim',contourlines_prelim); % Update update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_button_applytoall(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get bounds upperbound_buffer = (slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(1)+slider_buffer(num_cur+1).(lore)(4); lowerbound_buffer = (slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(2)+slider_buffer(num_cur+1).(lore)(4); % Find cutoff for bounds. cutoff_buffer = vertcat(slider_buffer.(lore)); cutoff_lowerbound = min(cutoff_buffer(:,4)); cutoff_upperbound = max(cutoff_buffer(:,4)); if (upperbound_buffer > cutoff_upperbound && lowerbound_buffer < cutoff_lowerbound) % Set bounds for i = 0:length(current)-1 % Set lowerbound if (abs(slider_buffer(i+1).(lore)(5)-slider_buffer(i+1).(lore)(4)) <= 1e-10) slider_buffer(i+1).(lore)(2) = 1; else slider_buffer(i+1).(lore)(2) = (lowerbound_buffer-slider_buffer(i+1).(lore)(4))/(slider_buffer(i+1).(lore)(5)-slider_buffer(i+1).(lore)(4)); end % Set upperbound if (abs(slider_buffer(i+1).(lore)(3)-slider_buffer(i+1).(lore)(4)) <= 1e-10) slider_buffer(i+1).(lore)(1) = 1; else slider_buffer(i+1).(lore)(1) = (upperbound_buffer-slider_buffer(i+1).(lore)(4))/(slider_buffer(i+1).(lore)(3)-slider_buffer(i+1).(lore)(4)); end end else h_error = errordlg(['Lowerbound must be a lower than ' num2str(cutoff_lowerbound) ' and upperbound must be greater than ' num2str(cutoff_upperbound) '.'],'Error','modal'); uiwait(h_error); end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_button_resetdefaults(hObject,eventdata) %#ok<INUSD> % Get data slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); % Set slider buffer for i = 0:length(current)-1 % Set parameters data_ref = get_data(type_plot,'lagrangian',i); slider_buffer(i+1).lagrangian(1) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(2) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(3:7) = get_sliderparams(data_ref); data_cur = get_data(type_plot,'eulerian',i); slider_buffer(i+1).eulerian(1) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(2) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(3:7) = get_sliderparams(data_cur); end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_resizefunction(hObject,eventdata) %#ok<INUSD> % This function constrains how the figure resizes its axes, buttons, etc % on resize. Be careful here because resize function will interrupt % callbacks even if 'interruptible' is set to 'off' % Get data handle_scalebar = getappdata(handles_gui.figure,'handle_scalebar'); handle_axes = getappdata(handles_gui.figure,'handle_axes'); pos_fig = get(handles_gui.figure,'Position'); val_checkbox_scalebar = getappdata(handles_gui.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui.figure,'val_checkbox_axes'); % Set offsets offset_group_menu_y = 21.1; offset_group_view_y = 26.5; offset_group_scalebar_y = 33.8; offset_group_axes_y = 38.7; offset_group_zoompan_y = 43.7; offset_axes_x = 1.35; offset_axes_y = 41.1; offset_img_x = 24.4; offset_img_y = 80.8; offset_left_y = 66; offset_right_y = 51; offset_edit_y = 59; % Update menu panel pos_group_menu = get(handles_gui.group_menu,'Position'); pos_group_menu(2) = pos_fig(4)-offset_group_menu_y; set(handles_gui.group_menu,'Position',pos_group_menu); % Update lore panel pos_group_view = get(handles_gui.group_viewoptions,'Position'); pos_group_view(2) = pos_fig(4)-offset_group_view_y; set(handles_gui.group_viewoptions,'Position',pos_group_view); % Update scalebar panel pos_group_scalebar = get(handles_gui.group_scalebar,'Position'); pos_group_scalebar(2) = pos_fig(4)-offset_group_scalebar_y; set(handles_gui.group_scalebar,'Position',pos_group_scalebar); % Update axes panel pos_group_axes = get(handles_gui.group_axes,'Position'); pos_group_axes(2) = pos_fig(4)-offset_group_axes_y; set(handles_gui.group_axes,'Position',pos_group_axes); % Update zoom/pan panel pos_group_zoompan = get(handles_gui.group_zoompan,'Position'); pos_group_zoompan(2) = pos_fig(4)-offset_group_zoompan_y; set(handles_gui.group_zoompan,'Position',pos_group_zoompan); % Update axes panel - make sure it has positive width and height if (pos_fig(3)-offset_axes_y > 0 && ... pos_fig(4)-offset_axes_x > 0) pos_axes = get(handles_gui.group_formataxes,'Position'); pos_axes(3) = pos_fig(3)-offset_axes_y; pos_axes(4) = pos_fig(4)-offset_axes_x; set(handles_gui.group_formataxes,'Position',pos_axes); end % Update axes - make sure it has positive width and height if (pos_fig(3)-offset_img_y > 0 && ... pos_fig(4)-offset_img_x > 0) pos_img = get(handles_gui.axes_formatplot,'Position'); pos_img(3) = pos_fig(3)-offset_img_y; pos_img(4) = pos_fig(4)-offset_img_x; set(handles_gui.axes_formatplot,'Position',pos_img); end % Update buttons if (pos_fig(3)-offset_left_y > 0) pos_left = get(handles_gui.button_left,'Position'); pos_left(1) = pos_fig(3)-offset_left_y; set(handles_gui.button_left,'Position',pos_left); end if (pos_fig(3)-offset_right_y > 0) pos_right = get(handles_gui.button_right,'Position'); pos_right(1) = pos_fig(3)-offset_right_y; set(handles_gui.button_right,'Position',pos_right); end % Update imgnum edit if (pos_fig(3)-offset_edit_y > 0) pos_right = get(handles_gui.edit_imgnum,'Position'); pos_right(1) = pos_fig(3)-offset_edit_y; set(handles_gui.edit_imgnum,'Position',pos_right); end % Update handle_scalebar text if it it's enabled. % Only text is updated because text size is constant during resize; % patches will resize automatically with handle_axes. % Note that resize function will interrupt callbacks, so check % explicitly that the scalebar exists first before resizing it (i.e. % its possible to interrupt the checkbox callback for the scalebar % midway). if (val_checkbox_scalebar && ... ~isempty(handle_scalebar) && ishandle(handle_scalebar)) text_scalebar = findobj(handle_scalebar,'tag','text_scalebar'); pos_img = get(handles_gui.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_scalebar,'FontSize',size_text); end % Update handle_axes text if it it's enabled. % Only text is updated because the size is constant during resize; % patches will resize automatically with handle_axes. % Note that resize function will interrupt callbacks, so check % explicitly that the axes exists first before resizing it (i.e. % its possible to interrupt the checkbox callback for the axes % midway). if (val_checkbox_axes && ... ~isempty(handle_axes) && ishandle(handle_axes)) text_x = findobj(handle_axes,'tag','text_x'); text_y = findobj(handle_axes,'tag','text_y'); pos_img = get(handles_gui.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_x,'FontSize',size_text); set(text_y,'FontSize',size_text); end end function callback_moveplot(hObject,eventdata) %#ok<INUSD> % This function tells the axes what to do if the mouse cursor hovers % over the plot axes % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); text_info = getappdata(handles_gui.figure,'text_info'); handle_colorbar = getappdata(handles_gui.figure,'handle_colorbar'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); handle_zoom = getappdata(handles_gui.figure,'handle_zoom'); handle_pan = getappdata(handles_gui.figure,'handle_pan'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get data plot_data = get_dataplot(type_plot,lore,num_cur); roi_data = get_roi(type_plot,lore,num_cur); % Test to see if mouse position is within ROI - uses 1 based % indexing. Also round it first. pos_mouse_axes = round(get(handles_gui.axes_formatplot,'CurrentPoint')); if (pos_mouse_axes(1) >= 1 && pos_mouse_axes(3) >= 1 && pos_mouse_axes(1) <= size(roi_data.mask,2) && pos_mouse_axes(3) <= size(roi_data.mask,1)) if (roi_data.mask(pos_mouse_axes(3),pos_mouse_axes(1))) % Get Plot info - note that strain is dimensionless if (strcmp(type_plot,'u')) text_display = 'U-disp: '; units = data_dic.dispinfo.units; elseif (strcmp(type_plot,'v')) text_display = 'V-disp: '; units = data_dic.dispinfo.units; elseif (strcmp(type_plot,'exx')) text_display = 'Exx-strain: '; units = ''; elseif (strcmp(type_plot,'exy')) text_display = 'Exy-strain: '; units = ''; elseif (strcmp(type_plot,'eyy')) text_display = 'Eyy-strain: '; units = ''; end % Display text set(text_info,'String',{['x-pos: ' num2str(pos_mouse_axes(1))],['y-pos: ' num2str(pos_mouse_axes(3))],[text_display num2str(plot_data(pos_mouse_axes(3),pos_mouse_axes(1))) ' ' units]}, ... 'Position',[pos_mouse_axes(1) pos_mouse_axes(3) 2],'HorizontalAlignment','left','VerticalAlignment','top'); % If zoom and pan arent being used, then use a cross for the % cursor if (strcmp(get(handle_zoom,'Enable'),'off') && strcmp(get(handle_pan,'Enable'),'off')) set(handles_gui.figure,'Pointer','cross'); end % Check if text overlaps colorbar or bottom of the axes; if so, % flip it so the text shows properly % Set all coordinates to pixels set(text_info,'units','pixels'); set(handle_colorbar,'units','pixels'); set(handles_gui.group_formataxes,'units','pixels'); set(handles_gui.figure,'units','pixels'); % Get positions pos_text = get(text_info,'extent'); pos_colorbar = get(handle_colorbar,'Position'); pos_group = get(handles_gui.group_formataxes,'position'); pos_cursor = get(handles_gui.figure,'CurrentPoint'); if (pos_cursor(1)+pos_text(3) > pos_group(1)+pos_colorbar(1) && pos_text(2) < 0) set(text_info,'HorizontalAlignment','right','VerticalAlignment','bottom'); elseif (pos_cursor(1)+pos_text(3) > pos_group(1)+pos_colorbar(1)) set(text_info,'HorizontalAlignment','right'); elseif (pos_text(2) < 0) % Hangs below bottom set(text_info,'VerticalAlignment','bottom'); end % Convert back to original coordinates set(text_info,'units','data'); set(handle_colorbar,'units','normalized'); set(handles_gui.group_formataxes,'units','characters'); set(handles_gui.figure,'units','characters'); else % Clear text and set cursor back to arrow if zoom and pan % aren't enabled set(text_info,'String',''); if (strcmp(get(handle_zoom,'Enable'),'off') && strcmp(get(handle_pan,'Enable'),'off')) set(handles_gui.figure,'Pointer','arrow'); end end else % Clear text since cursor is not on top of axes set(text_info,'String',''); set(handles_gui.figure,'Pointer','arrow'); end end function [data] = get_data(type_plot_sub,lore,num_cur) % This function returns displacement/strain data in vector from the data_dic structure if (strcmp(lore,'lagrangian')) rorc = 'ref'; else rorc = 'cur'; end if (strcmp(type_plot_sub,'u')) % U: data = data_dic.displacements(num_cur+1).(['plot_u_' rorc '_formatted'])(data_dic.displacements(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'v')) % V: data = data_dic.displacements(num_cur+1).(['plot_v_' rorc '_formatted'])(data_dic.displacements(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'exx')) % Exx: data = data_dic.strains(num_cur+1).(['plot_exx_' rorc '_formatted'])(data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'exy')) % Exy: data = data_dic.strains(num_cur+1).(['plot_exy_' rorc '_formatted'])(data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'eyy')) % Eyy: data = data_dic.strains(num_cur+1).(['plot_eyy_' rorc '_formatted'])(data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']).mask); end end function [plot_data] = get_dataplot(type_plot_sub,lore,num_cur) % This function returns plot_data from the data_dic structure if (strcmp(lore,'lagrangian')) rorc = 'ref'; else rorc = 'cur'; end if (strcmp(type_plot_sub,'u')) % U: plot_data = data_dic.displacements(num_cur+1).(['plot_u_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'v')) % V: plot_data = data_dic.displacements(num_cur+1).(['plot_v_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'exx')) % Exx: plot_data = data_dic.strains(num_cur+1).(['plot_exx_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'exy')) % Exy: plot_data = data_dic.strains(num_cur+1).(['plot_exy_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'eyy')) % Eyy: plot_data = data_dic.strains(num_cur+1).(['plot_eyy_' rorc '_formatted']); end end function [roi_data] = get_roi(type_plot_sub,lore,num_cur) % This function returns the ROI from the data_dic structure if (strcmp(lore,'lagrangian')) rorc = 'ref'; else rorc = 'cur'; end if (strcmp(type_plot_sub,'u') || strcmp(type_plot_sub,'v')) % Displacement roi_data = data_dic.displacements(num_cur+1).(['roi_' rorc '_formatted']); else % Strains roi_data = data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']); end end function sliderparams = get_sliderparams(data) % Returns slider params based on data input param_upperbound = prctile(data,99); param_median = prctile(data,50); param_lowerbound = prctile(data,1); sliderparams = [param_upperbound+(param_upperbound-param_median) ... param_median ... param_lowerbound-(param_median-param_lowerbound) ... max(data) ... min(data)]; end function handles_gui_savefig = form_savefig(num_cur,includeinfo,params_init) % Get data - num_cur is specified transparency_prelim = getappdata(handles_gui.figure,'transparency_prelim'); contourlines_prelim = getappdata(handles_gui.figure,'contourlines_prelim'); scalebarlength = getappdata(handles_gui.figure,'scalebarlength'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_checkbox_contour = getappdata(handles_gui.figure,'val_checkbox_contour'); val_checkbox_scalebar = getappdata(handles_gui.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui.figure,'val_checkbox_axes'); val_checkbox_minmaxmarkers = getappdata(handles_gui.figure,'val_checkbox_minmaxmarkers'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); handle_point_max = getappdata(handles_gui.figure,'handle_point_max'); handle_point_min = getappdata(handles_gui.figure,'handle_point_min'); if (val_popupmenu == 1) img_bg = reference; else img_bg = current(num_cur+1); end % Form figure handles_gui_savefig.figure = figure( ... 'Units','pixels', ... 'Name', 'Save Preview', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color','white', ... 'handlevisibility','off', ... 'DockControls','off', ... 'Visible','off', ... 'IntegerHandle','off', ... 'Interruptible','off', ... 'WindowStyle','modal'); % Create axes handles_gui_savefig.axes_formatplot = axes('Parent',handles_gui_savefig.figure,'Units','pixels'); % If the user wants to include info if (includeinfo) % Set Info texts uicontrol( ... 'Parent', handles_gui_savefig.figure, ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 18.5 100 1.3], ... 'String', ['Type: ' type_plot '-plot'], ... 'HorizontalAlignment', 'left', ... 'BackgroundColor','white', ... 'Interruptible','off'); % Now get info text which is below the plot handles_infotext = set_infotext(handles_gui_savefig.figure,'white'); fields_infotext = fieldnames(handles_infotext); for i = 0:length(fields_infotext)-1 handles_gui_savefig.(fields_infotext{i+1}) = handles_infotext.(fields_infotext{i+1}); end % Set data height height_data = 255; else height_data = 0; end % Transfer data, except for some handles, so that update_axes can set % the plot setappdata(handles_gui_savefig.figure,'num_cur',num_cur); setappdata(handles_gui_savefig.figure,'transparency_prelim',transparency_prelim); setappdata(handles_gui_savefig.figure,'contourlines_prelim',contourlines_prelim); setappdata(handles_gui_savefig.figure,'scalebarlength',scalebarlength); setappdata(handles_gui_savefig.figure,'slider_buffer',slider_buffer); setappdata(handles_gui_savefig.figure,'type_plot',type_plot); setappdata(handles_gui_savefig.figure,'val_checkbox_contour',val_checkbox_contour); setappdata(handles_gui_savefig.figure,'val_checkbox_scalebar',val_checkbox_scalebar); setappdata(handles_gui_savefig.figure,'val_checkbox_axes',val_checkbox_axes); setappdata(handles_gui_savefig.figure,'val_checkbox_minmaxmarkers',val_checkbox_minmaxmarkers); setappdata(handles_gui_savefig.figure,'val_popupmenu',val_popupmenu); setappdata(handles_gui_savefig.figure,'handle_preview',[]); setappdata(handles_gui_savefig.figure,'handle_scalebar',[]); setappdata(handles_gui_savefig.figure,'handle_axes',[]); setappdata(handles_gui_savefig.figure,'handle_point_max',handle_point_max); setappdata(handles_gui_savefig.figure,'handle_point_min',handle_point_min); % Additional fields setappdata(handles_gui_savefig.figure,'includeinfo',includeinfo); % Set plot update_axes('save',handles_gui_savefig); % Set default size if (isempty(params_init)) width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); else width_img = params_init(1); height_img = params_init(2); end border = 30; width_cb = 20; spacing_save_fig = 100; spacing_width_img = 4*border+width_cb; spacing_height_img = 2*border+height_data; % Set data in savefig - these are parameters which are modified by % gui_savesize setappdata(handles_gui_savefig.figure,'height_data',height_data); setappdata(handles_gui_savefig.figure,'width_img',width_img); setappdata(handles_gui_savefig.figure,'height_img',height_img); setappdata(handles_gui_savefig.figure,'border',border); setappdata(handles_gui_savefig.figure,'width_cb',width_cb); setappdata(handles_gui_savefig.figure,'spacing_save_fig',spacing_save_fig); setappdata(handles_gui_savefig.figure,'spacing_width_img',spacing_width_img); setappdata(handles_gui_savefig.figure,'spacing_height_img',spacing_height_img); % Update savefig update_savefig(handles_gui_savefig); % Set plot visible set(handles_gui_savefig.figure,'Visible','on'); end function handles_gui = init_gui() handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[44.5 150]), ... 'Name', 'Data Plot', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'IntegerHandle','off', ... 'Interruptible','off', ... 'Visible','off', ... 'CloseRequestFcn',''); % Top Menu handles_gui.topmenu_file = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_file', ... 'Label', 'File', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_save = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_save', ... 'Label', 'Save Image', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_save_withoutinfo = uimenu( ... 'Parent', handles_gui.topmenu_save, ... 'Tag', 'topmenu_save_withoutinfo', ... 'Label', 'Save Image Without Info', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_topmenu_save(hObject,eventdata,false),handles_gui.figure), ... 'Interruptible','off'); handles_gui.topmenu_save_withinfo = uimenu( ... 'Parent', handles_gui.topmenu_save, ... 'Tag', 'topmenu_save_withinfo', ... 'Label', 'Save Image With Info', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_topmenu_save(hObject,eventdata,true),handles_gui.figure), ... 'Interruptible','off'); handles_gui.topmenu_savegif = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_savegif', ... 'Label', 'Save GIF', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_topmenu_savegif (hObject,eventdata),handles_gui.figure), ... 'Interruptible','off'); % Panels handles_gui.group_menu = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_menu', ... 'Units', 'characters', ... 'Position', [2 23.4 35.0 20.6], ... 'Title', 'Local Plot Options', ... 'Interruptible','off'); handles_gui.group_viewoptions = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_viewoptions', ... 'Units', 'characters', ... 'Position', [2 18 35.0 4.8], ... 'Title', 'View Options', ... 'Interruptible','off'); handles_gui.group_scalebar = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_scalebar', ... 'Units', 'characters', ... 'Position', [2 10.8 35.0 6.5], ... 'Title', 'Scalebar Options', ... 'Interruptible','off'); handles_gui.group_axes = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_axes', ... 'Units', 'characters', ... 'Position', [2 5.8 35.0 4.4], ... 'Title', 'Axes Options', ... 'Interruptible','off'); handles_gui.group_zoompan = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_zoompan', ... 'Units', 'characters', ... 'Position', [2 0.8 35 4.5], ... 'Title', 'Zoom/Pan', ... 'Interruptible','off'); if (strcmp(type_plot,'u')) group_title = 'U-displacements'; elseif (strcmp(type_plot,'v')) group_title = 'V-displacements'; elseif (strcmp(type_plot,'exx')) group_title = 'Exx-strain'; elseif (strcmp(type_plot,'exy')) group_title = 'Exy-strain'; elseif (strcmp(type_plot,'eyy')) group_title = 'Eyy-strain'; end handles_gui.group_formataxes = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_formataxes', ... 'Units', 'characters', ... 'Position', [39.0 0.8 109 43.2], ... 'Title', group_title, ... 'Interruptible','off'); % Axes handles_gui.axes_formatplot = axes( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'axes_formatplot', ... 'Units', 'characters', ... 'Position', [12.4 19.0 86.2 20], ... 'Interruptible','off'); % Drop-down Menu handles_gui.popupmenu = uicontrol( ... 'Parent', handles_gui.group_viewoptions, ... 'Tag', 'popupmenu', ... 'Style', 'popupmenu', ... 'Units', 'characters', ... 'Position', [2.4 1.4 29.1 1.3], ... 'BackgroundColor', [1 1 1], ... 'String', {'Lagrangian','Eulerian'}, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_popupmenu,handles_gui.figure), ... 'Interruptible','off'); % Static Texts handles_gui.text_transparency = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'text_transparency', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 13.5 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Transparency:', ... 'Interruptible','off'); handles_gui.text_upperbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'text_upperbound', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 9.9 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Upperbound:', ... 'Interruptible','off'); handles_gui.text_lowerbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'text_lowerbound', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 6.6 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Lowerbound:', ... 'Interruptible','off'); handles_gui.text_scalebarlength = uicontrol( ... 'Parent', handles_gui.group_scalebar, ... 'Tag', 'text_scalebarlength', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 1 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Scale Bar Len:', ... 'Interruptible','off'); % Now get info text which is below the plot handles_infotext = set_infotext(handles_gui.group_formataxes,''); fields_infotext = fieldnames(handles_infotext); for i = 0:length(fields_infotext)-1 handles_gui.(fields_infotext{i+1}) = handles_infotext.(fields_infotext{i+1}); end % Sliders handles_gui.slider_transparency = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'slider_transparency', ... 'Style', 'slider', ... 'Units', 'characters', ... 'Position', [2.5 12.0 28.9 1.3], ... 'BackgroundColor', [0.9 0.9 0.9], ... 'String', 'Slider', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_slider_transparency,handles_gui.figure), ... 'Interruptible','off'); handles_gui.slider_upperbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'slider_upperbound', ... 'Style', 'slider', ... 'Units', 'characters', ... 'Position', [2.5 8.5 28.9 1.3], ... 'BackgroundColor', [0.9 0.9 0.9], ... 'String', 'Slider', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_slider_upperbound,handles_gui.figure), ... 'Interruptible','off'); handles_gui.slider_lowerbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'slider_lowerbound', ... 'Style', 'slider', ... 'Units', 'characters', ... 'Position', [2.5 5.0 28.9 1.3], ... 'BackgroundColor', [0.9 0.9 0.9], ... 'String', 'Slider', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_slider_lowerbound,handles_gui.figure), ... 'Interruptible','off'); % Check Box handles_gui.checkbox_contour = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'checkbox_contour', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 17.3 17 1.3], ... 'String', 'Contour Plot: ', ... 'Value', 0, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_contour,handles_gui.figure), ... 'Interruptible','off'); handles_gui.checkbox_minmaxmarkers = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'checkbox_minmaxmarkers', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 15.5 29.7 1.3], ... 'String', 'Max/min markers', ... 'Value', 0, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_minmaxmarkers,handles_gui.figure), ... 'Interruptible','off'); handles_gui.checkbox_scalebar = uicontrol( ... 'Parent', handles_gui.group_scalebar, ... 'Tag', 'checkbox_scalebar', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 3 17 1.3], ... 'String', 'Scalebar ', ... 'Value', 1, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_scalebar,handles_gui.figure), ... 'Interruptible','off'); handles_gui.checkbox_axes = uicontrol( ... 'Parent', handles_gui.group_axes, ... 'Tag', 'checkbox_axes', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 1.0 17 1.3], ... 'String', 'Axes ', ... 'Value', 1, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_axes,handles_gui.figure), ... 'Interruptible','off'); % Edit handles_gui.edit_transparency = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_transparency', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 13.6 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_transparency,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_upperbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_upperbound', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 10.1 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_upperbound,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_lowerbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_lowerbound', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 6.6 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_lowerbound,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_contour = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_contour', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 17.3 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Enable', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_contour,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_scalebarlength = uicontrol( ... 'Parent', handles_gui.group_scalebar, ... 'Tag', 'edit_scalebarlength', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 1.1 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_scalebarlength,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_imgnum = uicontrol( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'edit_imgnum', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [91 1.1 7 1.6], ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_imgnum,handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); % Pushbuttons handles_gui.button_applytoall = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'button_applytoall', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.5 2.8 28.9 1.5], ... 'String', 'Apply to All', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_applytoall,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_resetdefaults = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'button_resetdefaults', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.5 1 28.9 1.5], ... 'String', 'Reset Defaults', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_resetdefaults,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_zoom = uicontrol( ... 'Parent', handles_gui.group_zoompan, ... 'Tag', 'button_zoom', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.1 1 14.4 1.7], ... 'String', 'Zoom', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_zoom,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_pan = uicontrol( ... 'Parent', handles_gui.group_zoompan, ... 'Tag', 'button_pan', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [17.4 1 14.4 1.7], ... 'String', 'Pan', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_pan,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_left = uicontrol( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'button_left', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [84 1.0 6 1.8], ... 'String', '<', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_left,handles_gui.figure), ... 'Interruptible','off', ... 'Enable', 'off'); handles_gui.button_right = uicontrol( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'button_right', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [99 1.0 6 1.8], ... 'String', '>', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_right,handles_gui.figure), ... 'Interruptible','off', ... 'Enable', 'off'); end end %---------------------------------------------------------------------% % SAVE GUI -----------------------------------------------------------% %---------------------------------------------------------------------% function [size_savefig,timedelay,outstate] = gui_savesize(handles_gui_savefig,isgif,pos_parent) % This is a GUI for inputting the height and width for the saved figure. % This gui will update the figure in handles_gui_savefig. % % Inputs -----------------------------------------------------------------% % handles_gui_savefig - handle; handle of the save figure. The position % of this figure is controlled by this GUI % isgif - logical; this tells whether or not an animated gif is being % saved. If a gif is being saved then the time delay can be adjusted % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % % Outputs ----------------------------------------------------------------% % size_savefig - integer array; contains the size of the save fig % timedelay - double; this is the time delay between frames % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Data ---------------------------------------------------------------% % Initialize outputs outstate = out.cancelled; size_savefig = []; timedelay = []; % Get GUI handles - Part of output handles_gui = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui.figure)); % Callbacks and functions --------------------------------------------% function constructor() % Get save size parameters; the screen size is needed to % prevent the user from resizing outside the screen, which will % result in cropping when using getframe() % Get data width_img = getappdata(handles_gui_savefig.figure,'width_img'); height_img = getappdata(handles_gui_savefig.figure,'height_img'); spacing_save_fig = getappdata(handles_gui_savefig.figure,'spacing_save_fig'); spacing_width_img = getappdata(handles_gui_savefig.figure,'spacing_width_img'); spacing_height_img = getappdata(handles_gui_savefig.figure,'spacing_height_img'); set(0,'units','pixels'); % Set to pixels first size_screen = get(0,'Screensize'); % width = size_screen(3); height = size_screen(4) max_width_img = size_screen(3)-spacing_save_fig-spacing_width_img; max_height_img = size_screen(4)-spacing_save_fig-spacing_height_img; if (max_width_img/max_height_img > width_img/height_img) max_width_img = round(max_height_img*(width_img/height_img)); else max_height_img = round(max_width_img/(width_img/height_img)); end if (width_img > max_width_img || height_img > max_height_img) % Image is too large, resize it to fit within screen img_reduction = min(max_width_img/width_img,max_height_img/height_img); width_img = round(width_img*img_reduction); height_img = round(height_img*img_reduction); end timedelay_prelim = 0.04; % Set data setappdata(handles_gui.figure,'width_img',width_img); setappdata(handles_gui.figure,'height_img',height_img); setappdata(handles_gui.figure,'ratio_img',width_img/height_img); setappdata(handles_gui.figure,'max_width_img',max_width_img); setappdata(handles_gui.figure,'max_height_img',max_height_img); setappdata(handles_gui.figure,'timedelay_prelim',timedelay_prelim); % Update update_axes('set'); update_sidemenu(); % Set visible set(handles_gui.figure,'Visible','on'); end function callback_edit_timedelay(hObject,eventdata) %#ok<INUSD> % Get data timedelay_prelim = getappdata(handles_gui.figure,'timedelay_prelim'); % Max and min values max_timedelay = 1; min_timedelay = 1e-5; % Get width timedelay_buffer = str2double(get(handles_gui.edit_timedelay,'string')); if (ncorr_util_isrealbb(timedelay_buffer,min_timedelay,max_timedelay,'Time delay') == out.success) timedelay_prelim = timedelay_buffer; end % Set data setappdata(handles_gui.figure,'timedelay_prelim',timedelay_prelim); % Update preview image update_axes('update'); update_sidemenu(); end function callback_edit_width(hObject,eventdata) %#ok<INUSD> % Get data ratio_img = getappdata(handles_gui.figure,'ratio_img'); width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); max_width_img = getappdata(handles_gui.figure,'max_width_img'); max_height_img = getappdata(handles_gui.figure,'max_height_img'); % Get width width_img_buffer = str2double(get(handles_gui.edit_width,'string')); if (ncorr_util_isintbb(width_img_buffer,1,max_width_img,'Width') == out.success) % Calculate new width and height - make sure they do % not go outside screen size height_img_buffer = round(width_img_buffer/ratio_img); if (ncorr_util_isintbb(height_img_buffer,1,max_height_img,'Height') == out.success) width_img = width_img_buffer; height_img = height_img_buffer; end end % Set data setappdata(handles_gui.figure,'width_img',width_img); setappdata(handles_gui.figure,'height_img',height_img); % Update preview image update_axes('update'); update_sidemenu(); end function callback_edit_height(hObject,eventdata) %#ok<INUSD> % Get data ratio_img = getappdata(handles_gui.figure,'ratio_img'); width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); max_width_img = getappdata(handles_gui.figure,'max_width_img'); max_height_img = getappdata(handles_gui.figure,'max_height_img'); % Get height height_img_buffer = str2double(get(handles_gui.edit_height,'string')); if (ncorr_util_isintbb(height_img_buffer,1,max_height_img,'Height') == out.success) % Calculate new width and height - make sure they do % not go outside screen size width_img_buffer = round(height_img_buffer*ratio_img); if (ncorr_util_isintbb(width_img_buffer,1,max_width_img,'Width') == out.success) width_img = width_img_buffer; height_img = height_img_buffer; end end % Set data setappdata(handles_gui.figure,'width_img',width_img); setappdata(handles_gui.figure,'height_img',height_img); % Update update_axes('update'); update_sidemenu(); end function callback_button_finish(hObject,eventdata) %#ok<INUSD> % Get data width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); timedelay_prelim = getappdata(handles_gui.figure,'timedelay_prelim'); % Set output size_savefig = [width_img height_img]; timedelay = timedelay_prelim; outstate = out.success; % Exit close(handles_gui.figure); end function callback_button_cancel(hObject,eventdata) %#ok<INUSD> % Close close(handles_gui.figure); end function update_sidemenu() % Get data width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); timedelay_prelim = getappdata(handles_gui.figure,'timedelay_prelim'); set(handles_gui.edit_width,'String',num2str(width_img)); set(handles_gui.edit_height,'String',num2str(height_img)); if (isgif) set(handles_gui.edit_timedelay,'String',num2str(timedelay_prelim)); else set(handles_gui.edit_timedelay,'enable','off'); end end function update_axes(action) % Get data - savefig handles: width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); if (strcmp(action,'set') || strcmp(action,'update')) % Transfer data then update setappdata(handles_gui_savefig.figure,'width_img',width_img); setappdata(handles_gui_savefig.figure,'height_img',height_img); % Update update_savefig(handles_gui_savefig); end end function handles_gui = init_gui() % Form UIs handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[10 30.5]), ... 'Name', 'Set Image Size', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'Resize','off', ... 'WindowStyle','modal', ... 'IntegerHandle','off', ... 'Interruptible','off'); % Adjust position % Set this UI next to the save fig pos_savefig_pixels = get(handles_gui_savefig.figure,'OuterPosition'); % Get size of figure in pixels set(handles_gui.figure,'Units','pixels'); pos_fig_pixels = get(handles_gui.figure,'Position'); pos_fig_pixels(1) = pos_savefig_pixels(3)+1.5*pos_savefig_pixels(1); pos_fig_pixels(2) = pos_savefig_pixels(2)+pos_savefig_pixels(4)/2-pos_fig_pixels(4)/2; % Check to make sure position is not out of screen set(0,'units','pixels'); pos_screen_pixels = get(0,'ScreenSize'); % Check right - no need to check bottom screen_right = 20; % Use this as padding if (pos_fig_pixels(1)+pos_fig_pixels(3) > pos_screen_pixels(3)-screen_right) pos_fig_pixels(1) = pos_screen_pixels(3)-pos_fig_pixels(3)-screen_right; end % Set position set(handles_gui.figure,'Position',pos_fig_pixels); % Convert back to characters set(handles_gui.figure,'Units','characters'); % Text handles_gui.text_timedelay = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_timedelay', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 7.5 15 1.3], ... 'String', 'Time Delay:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_width = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_width', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 5.5 15 1.3], ... 'String', 'Width:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_height = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_height', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 3.5 15 1.3], ... 'String', 'Height:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % Edit box handles_gui.edit_timedelay = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_timedelay', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [18.2 7.5 9.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_timedelay,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_width = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_width', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [18.2 5.5 9.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_width,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_height = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_height', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [18.2 3.5 9.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_height,handles_gui.figure), ... 'Interruptible','off'); % Buttons handles_gui.button_finish = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_finish', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.1 1 12 1.7], ... 'String', 'Finish', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_finish,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_cancel = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_cancel', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [16 1 12 1.7], ... 'String', 'Cancel', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_cancel,handles_gui.figure), ... 'Interruptible','off'); end % Pause until figure is closed -----------------------------------% waitfor(handles_gui.figure); end function update_savefig(handles_gui_savefig) % This function is called whenever the savefig needs to be updated. It % will resize the window and reposition the axes/colorbar. % Get data height_data = getappdata(handles_gui_savefig.figure,'height_data'); width_img = getappdata(handles_gui_savefig.figure,'width_img'); height_img = getappdata(handles_gui_savefig.figure,'height_img'); border = getappdata(handles_gui_savefig.figure,'border'); width_cb = getappdata(handles_gui_savefig.figure,'width_cb'); spacing_save_fig = getappdata(handles_gui_savefig.figure,'spacing_save_fig'); spacing_width_img = getappdata(handles_gui_savefig.figure,'spacing_width_img'); spacing_height_img = getappdata(handles_gui_savefig.figure,'spacing_height_img'); handle_colorbar = getappdata(handles_gui_savefig.figure,'handle_colorbar'); handle_scalebar = getappdata(handles_gui_savefig.figure,'handle_scalebar'); handle_axes = getappdata(handles_gui_savefig.figure,'handle_axes'); % Set image pos_savefig(1) = spacing_save_fig; pos_savefig(2) = spacing_save_fig; pos_savefig(3) = spacing_width_img+width_img; % Width pos_savefig(4) = spacing_height_img+height_img; % Height set(handles_gui_savefig.figure,'Position',pos_savefig); % Colorbar: set(handle_colorbar,'Position',[2*border+width_img border+height_data width_cb height_img]); % Plot: set(handles_gui_savefig.axes_formatplot,'Position',[border border+height_data width_img height_img]); % Update handle_scalebar text if it it's toggled % Only text is updated because the size is constant during resize; % patches will resize with handle_axes. Do not need to check with % 'ishandle' because the scalebar is either set once or not at all. if (~isempty(handle_scalebar)) set(handles_gui_savefig.axes_formatplot,'units','characters'); text_scalebar = findobj(handles_gui_savefig.axes_formatplot,'tag','text_scalebar'); pos_img = get(handles_gui_savefig.axes_formatplot,'Position'); size_text = max(0.5*max(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_scalebar,'FontSize',size_text); set(handles_gui_savefig.axes_formatplot,'units','pixels'); end % Update handle_axes text if it it's toggled % Only text is updated because the size is constant during resize; % patches will resize with handle_axes. Do not need to check with % 'ishandle' because the axes is either set once or not at all. if (~isempty(handle_axes)) set(handles_gui_savefig.axes_formatplot,'units','characters'); text_x = findobj(handles_gui_savefig.axes_formatplot,'tag','text_x'); text_y = findobj(handles_gui_savefig.axes_formatplot,'tag','text_y'); pos_img = get(handles_gui_savefig.axes_formatplot,'Position'); size_text = max(0.5*max(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_x,'FontSize',size_text); set(text_y,'FontSize',size_text); set(handles_gui_savefig.axes_formatplot,'units','pixels'); end % Make sure figure is drawn to ensure getframe works properly. drawnow; end function handles_infotext = set_infotext(parent,bgcolor) % This function sets information text handles_infotext.text_ref_name = uicontrol( ... 'Parent', parent, ... 'Tag', 'ref_name', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 17.0 100 1.3], ... 'String', 'Reference Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_cur_name = uicontrol( ... 'Parent', parent, ... 'Tag', 'cur_name', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 15.5 100 1.3], ... 'String', 'Current Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_type = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_type', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 14.0 100 1.3], ... 'String', 'Analysis Type: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_dicparams = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_dicparams', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 12.5 100 1.3], ... 'String', 'RG-DIC Radius: | Subset Spacing:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_itparams = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_itparams', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 11.0 100 1.3], ... 'String', 'Diffnorm Cutoff: | Iteration Cutoff: | Total Threads: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_stepanalysis = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_stepanalysis', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 9.5 100 1.3], ... 'String', 'Step Analysis: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_subsettrunc = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_subsettrunc', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 8.0 100 1.3], ... 'String', 'Disp Subset Truncation: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_imgcorr = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_imgcorr', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 6.5 100 1.3], ... 'String', 'Image Correspondences: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_pixtounits = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_pixtounits', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 5.0 100 1.3], ... 'String', 'Reference Image FOV width: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_cutoff_corrcoef = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_cutoff_corrcoef', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 3.5 100 1.3], ... 'String', 'Correlation Coefficient Cutoff: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_lenscoef = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_lenscoef', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2.0 100 1.3], ... 'String', 'Radial Lens Distortion Coefficient: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_minmedianmax = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_max', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 0.5 100 1.3], ... 'String', 'Min: | Median: | Max: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % Check if bgcolor was provided if (~isempty(bgcolor)) fields_infotext = fieldnames(handles_infotext); for i = 0:length(fields_infotext)-1 set(handles_infotext.(fields_infotext{i+1}),'BackgroundColor',bgcolor); end end end
github
CU-CommunityApps/choco-packages-master
ncorr_util_formregionconstraint.m
.m
choco-packages-master/packages/matlab-coecis/tools/ncorr/ncorr_util_formregionconstraint.m
6,122
utf_8
458de04923bdcb004e97d0415e37da7e
function handle_constraintfcn = ncorr_util_formregionconstraint(region) % This function returns handle_constraintfcn which, given a point, will % return the closest point inside the region. This is mainly used for the % constrainfcn for impoints which are restricted to be inside a region. % % Inputs -----------------------------------------------------------------% % region - struct; region info used to determine the position of returned % point % % Outputs ----------------------------------------------------------------% % handle_constraintfcn - function handle; % % Returns error if region is empty. if (region.totalpoints == 0) error('Region cannot be empty when forming constraint function.'); end handle_constraintfcn = @constraintfcn; function pos_nearest = constraintfcn(pos) % This function will generally be called within a callback % automatically which will use 1 based indexing, so pos_nearest is % returned using 1 based indexing. However, for processing, 0 based % indexing is used, so convert back and forth as necessary. % Convert pos to 0 based indexing and round it: pos = round(pos)-1; % Find bounding box - must find this since left and right bounds % are based on the length of the noderange/nodelist which may not % necessarily be the bounding box. left = region.rightbound; right = 0; firstpoint = false; for i = 0:size(region.noderange,1)-1 if (region.noderange(i+1) > 0 && ~firstpoint) firstpoint = true; left = i + region.leftbound; end if (region.noderange(i+1) > 0 && i+region.leftbound > right) right = i + region.leftbound; end end % Check if above, between, or beneath bounds if (pos(1) < left) % Left of bounds - set x to left and then find the nearest node % for y pos_nearest(1) = left+1; pos_nearest(2) = nearestnode(region.nodelist(left-region.leftbound+1,:),region.noderange(left-region.leftbound+1),pos(2))+1; elseif (pos(1) >= left && pos(1) <= right) % Between bounds - must check if nodes exist at this x position if (region.noderange(pos(1)-region.leftbound+1) > 0) pos_nearest(1) = pos(1)+1; else % Initialize leftfound = false; leftdist = 0; rightfound = false; rightdist = 0; % Cycle left until finding a positive noderange for i = pos(1)-1:-1:left if (region.noderange(i-region.leftbound+1) > 0) leftdist = pos(1)-i; leftfound = true; break; end end % Cycle right until finding a positive noderange for i = pos(1)+1:right if (region.noderange(i-region.leftbound+1) > 0) rightdist = i-pos(1); rightfound = true; break; end end % Now set x position if (leftfound && rightfound) if (leftdist < rightdist) pos_nearest(1) = pos(1)-leftdist+1; else pos_nearest(1) = pos(1)+rightdist+1; end elseif (leftfound) pos_nearest(1) = pos(1)-leftdist+1; else pos_nearest(1) = pos(1)+rightdist+1; end end pos_nearest(2) = nearestnode(region.nodelist((pos_nearest(1)-1)-region.leftbound+1,:),region.noderange((pos_nearest(1)-1)-region.leftbound+1),pos(2))+1; else % Right of bounds - set x to left and then find the nearest node % for y pos_nearest(1) = right+1; pos_nearest(2) = nearestnode(region.nodelist(right-region.leftbound+1,:),region.noderange(right-region.leftbound+1),pos(2))+1; end end end function y_nearest = nearestnode(nodelist,noderange,y_coord) % Finds the nearest y value given the nodelist, noderange and y_coord. Note % that nodelist and noderange are a single column for a specific x position. % Uses zero based indexing. % Initialize y_nearest = -1; for i = 0:2:noderange-1 % Test if node is before, within, or after a node pair if (y_coord < nodelist(i+1)) if (i == 0) % Above first node y_nearest = nodelist(i+1); break; else % Above inner node pair % Find out if y_coord is closer to bottom node of previous % pair or top node of current pair if ((y_coord-nodelist(i)) < (nodelist(i+1)-y_coord)) % y_coord is closer to bottom node of previous pair y_nearest = nodelist(i); break; else % y_coord is closer to top node of current pair y_nearest = nodelist(i+1); break; end end elseif (y_coord >= nodelist(i+1) && y_coord <= nodelist(i+2)) % y_coord is between node pairs, so just return it y_nearest = y_coord; break; else % y_coord is after noderange - test to see if this is the last % node pair. if (i == noderange-2) % This is last node pair, so y_coord is the below node of % last node pair y_nearest = nodelist(i+2); break; else % Skip to next node pair continue; end end end end
github
CU-CommunityApps/choco-packages-master
ncorr_class_roi.m
.m
choco-packages-master/packages/matlab-ciser/tools/ncorr/ncorr_class_roi.m
66,847
utf_8
b4e72c2e366297dd03223cfb0a283d2d
classdef ncorr_class_roi < handle % This is the class definition for the region of interest. % Properties ---------------------------------------------------------% properties(SetAccess = private) type; % string mask; % logical array region; % struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}) boundary; % struct('add',{},'sub',{}) data; % varying struct end % Methods ------------------------------------------------------------% methods(Access = public) % Constructor function obj = ncorr_class_roi obj.type = ''; obj.mask = false(0); obj.region = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); obj.boundary = struct('add',{},'sub',{}); obj.data = struct(); end function set_roi(obj,type_i,data_i) % This function sets the region of interest. % % Inputs ---------------------------------------------------------% % type_i - string; describes how ROI was made. Supported types % shown below: % 'load' - mask was loaded from an image file. data_i is % struct('mask',{},'cutoff',{}). % 'draw' - mask was drawn. data_i is % struct('mask',{}','drawobjects',{},'cutoff',{}). % 'region' - region and size of the mask are provided. % data_i is struct('region',{},'size_mask',{}). % 'boundary' - boundary and size of the mask are provided. % data_i is struct('boundary',{},'size_mask',{}). % data_i - struct; contains input data for the type of ROI. % % Outputs --------------------------------------------------------% % None % % Returns error if type is wrong. if (~strcmp(type_i,'load') && ~strcmp(type_i,'draw') && ~strcmp(type_i,'region') && ~strcmp(type_i,'boundary')) error('Incorrect type provided.'); end if (strcmp(type_i,'load') || strcmp(type_i,'draw')) % This is the "load" and "draw" types, which mean a % mask for the ROI is provided directly. % Get mask - mask is directly provided for 'load' and 'draw' mask_prelim = data_i.mask; % Create region(s) - these are 4-way connected/contiguous [region_prelim,removed] = ncorr_alg_formregions(mask_prelim,int32(data_i.cutoff),false); % Get 20 largest contiguous regions. This is to prevent % boundary routine from running very slowly if there are a % bunch of small regions cutoff_regions = 20; [val_sorted,idx_sorted] = sort([region_prelim.totalpoints],'descend'); %#ok<ASGLU> idx_sorted = idx_sorted-1; % Convert to zero based if (length(idx_sorted) > cutoff_regions) region_prelim = region_prelim(idx_sorted(1:cutoff_regions)+1); removed = true; end % Update mask if regions were removed if (removed) mask_prelim(:) = false; for i = 0:length(region_prelim)-1 for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); mask_prelim(vec_y+1,x+1) = true; end end end end % Now get the boundaries - Do the "add boundaries" % first. One per region. boundary_prelim = struct('add',cell(length(region_prelim),1),'sub',cell(length(region_prelim),1)); for i = 0:length(region_prelim)-1 % Get mask corresponding to region - must do this % because boundary tracing algorithm is 8-way % connected, but the region is 4-way connected. I % used the 8-way connected boundary because it is % smoother. Note that if two 4-way connected % regions are just touching at corners they are % technically considered 8-way connected, which is % why each 4-way region must be analyzed separately. regionmask_buffer = false(size(mask_prelim)); for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); regionmask_buffer(vec_y+1,x+1) = true; end end % Get add boundary: % Use the top of the left most point in the region. % Send this coordinate and the regionmask_buffer % corresponding to this region to determine the % boundary boundary_buffer = ncorr_alg_formboundary(int32([region_prelim(i+1).leftbound region_prelim(i+1).nodelist(1,1)]),int32(0),regionmask_buffer); % Append boundary boundary_prelim(i+1).add = boundary_buffer; % Get inverse of regionmask_buffer, and then do logical % "and" with the filled in outer boundary. This % leaves only internal regions regionmask_inv_buffer = false(size(mask_prelim)); % Get filled-in outter boundary - note that this % does not fill the boundary exactly since the % algorithm uses double precision points to % estimate the boundary. ncorr_alg_formmask(struct('pos_imroi',boundary_prelim(i+1).add,'type','poly','addorsub','add'),regionmask_inv_buffer); regionmask_inv_buffer = regionmask_inv_buffer & ~regionmask_buffer; % Form mask_boundary - this keeps track of the sub % boundaries already analyzed so we dont count one % twice. mask_boundary = false(size(mask_prelim)); % Make a copy to keep track of which points have been used to analyze the boundary % Get sub boundaries: boundary_prelim(i+1).sub = cell(0); for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; % Make sure noderange is greater than 2, or % else this portion doesnt have a hole if (region_prelim(i+1).noderange(j+1) > 2) for k = 0:2:region_prelim(i+1).noderange(j+1)-3 % Dont test last node pair % Only use bottom nodes - only test % bottom nodes since these are the % first points adjacent to a hole y_bottom = region_prelim(i+1).nodelist(j+1,k+2); % Test one pixel below bottom node. Make % sure this pixel hasnt already been analyzed, % and is also within the inverse regionmask % buffer if (regionmask_inv_buffer(y_bottom+2,x+1) && ~mask_boundary(y_bottom+2,x+1)) % This is a boundary point which % hasn't been analyzed yet boundary_prelim(i+1).sub{end+1} = ncorr_alg_formboundary(int32([x y_bottom+1]),int32(0),regionmask_inv_buffer); % update mask_boundary mask_boundary(sub2ind(size(mask_boundary),boundary_prelim(i+1).sub{end}(:,2)+1,boundary_prelim(i+1).sub{end}(:,1)+1)) = true; end end end end end elseif (strcmp(type_i,'region')) % This is the 'region' option; regions are supplied % directly. It's possible that analysis yielded regions % directly (like unioning). % Form mask mask_prelim = false(data_i.size_mask); % Form region region_prelim = data_i.region; % Update mask from region: for i = 0:length(region_prelim)-1 for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); mask_prelim(vec_y+1,x+1) = true; end end end % For the custom case, do not form a real boundary, since % regions may not longer be contigous. Do form one boundary % per region though. for i = 0:length(region_prelim)-1 boundary_prelim(i+1).add = [-1 -1]; %#ok<AGROW> boundary_prelim(i+1).sub = {}; %#ok<AGROW> end elseif (strcmp(type_i,'boundary')) % This is the 'boundary' option; a boundary is supplied % directly. This allows Ncorr to update the mask based % on displacement values at the boundary point. Note % there will be one region per "add" boundary, this % preserves the correspondences between a region and % boundary. % Form mask mask_prelim = false(data_i.size_mask); % Form boundary boundary_prelim = data_i.boundary; % Fill a region for each boundary -> Get the region % corresponding to that mask -> append all % regions. % Set drawobjects which are sent to ncorr_alg_formmask region_prelim = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); for i = 0:length(boundary_prelim)-1 % Initialize counter and draw objects drawobjects = struct('pos_imroi',{},'type',{},'addorsub',{}); counter = 0; drawobjects(counter+1).pos_imroi = boundary_prelim(i+1).add; drawobjects(counter+1).type = 'poly'; drawobjects(counter+1).addorsub = 'add'; counter = counter+1; for j = 0:length(boundary_prelim(i+1).sub)-1 drawobjects(counter+1).pos_imroi = boundary_prelim(i+1).sub{j+1}; drawobjects(counter+1).type = 'poly'; drawobjects(counter+1).addorsub = 'sub'; counter = counter+1; end % Get mask corresponding to this boundary ncorr_alg_formmask(drawobjects,mask_prelim); % Get region [region_buffer,removed] = ncorr_alg_formregions(mask_prelim,int32(0),false); %#ok<NASGU> % There must be one region per boundary to preserve % their correspondence. It's possible for the region % for a boundary to "pinch" or form more than one. if (isempty(region_buffer)) % Form an empty ROI list if region_buffer is % empty - this keeps the correspondence between % the boundary and region region_buffer = struct('nodelist',[-1 -1],'noderange',0,'leftbound',0,'rightbound',0,'upperbound',0,'lowerbound',0,'totalpoints',0); elseif (length(region_buffer) > 1) % Select biggest ROI if there are more than % one. This could possibly happen if a boundary % is "pinched" or closes. Unlikely- but may % happen. idx_max = find([region_buffer.totalpoints] == max([region_buffer.totalpoints]),1,'first'); region_buffer = region_buffer(idx_max); end % Merge region_prelim(i+1) = region_buffer; end % Update mask from region: for i = 0:length(region_prelim)-1 for j = 0:size(region_prelim(i+1).noderange,1)-1 x = j + region_prelim(i+1).leftbound; for k = 0:2:region_prelim(i+1).noderange(j+1)-1 vec_y = region_prelim(i+1).nodelist(j+1,k+1):region_prelim(i+1).nodelist(j+1,k+2); mask_prelim(vec_y+1,x+1) = true; end end end end % Set properties obj.type = type_i; obj.mask = mask_prelim; obj.region = region_prelim; obj.boundary = boundary_prelim; obj.data = data_i; end function roi_reduced = reduce(obj,spacing) % This function reduces the ROI. Its possible some regions will % be deleted after the reduction; a placeholder is still used to % preserve the number of regions. % % Inputs ---------------------------------------------------------% % spacing - integer; spacing parameter % % Outputs --------------------------------------------------------% % roi_reduced - ncorr_class_roi; reduced ROI % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Initialize output roi_reduced = ncorr_class_roi.empty; if (spacing == 0) % Don't do anything, the ROI is not actually being reduced. % Just make a deep copy of this ROI and return; roi_reduced(1) = ncorr_class_roi; p = properties(obj); for i = 0:length(p)-1 roi_reduced.(p{i+1}) = obj.(p{i+1}); end else % Form reduced region and its template region_reduced = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); region_reduced_template = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); for i = 0:length(obj.region)-1 % Find new bounds - left and right bounds are the % upper limit. region_reduced_template(1).leftbound = ceil(obj.region(i+1).leftbound/(spacing+1)); region_reduced_template.rightbound = floor(obj.region(i+1).rightbound/(spacing+1)); region_reduced_template.upperbound = inf; % Initialize to infinitely high so it can updated region_reduced_template.lowerbound = -inf; % Initialize to infinitely low so it can updated % Initialize nodelist, noderange, and totalpoints region_reduced_template.nodelist = -ones(max(1,region_reduced_template.rightbound-region_reduced_template.leftbound+1),size(obj.region(i+1).nodelist,2)); region_reduced_template.noderange = zeros(max(1,region_reduced_template.rightbound-region_reduced_template.leftbound+1),1); region_reduced_template.totalpoints = 0; % Scan columns - calculate nodelist, noderange, % and totalpoints for j = region_reduced_template.leftbound*(spacing+1)-obj.region(i+1).leftbound:spacing+1:region_reduced_template.rightbound*(spacing+1)-obj.region(i+1).leftbound % This is the column which lies on the grid; % Form the reduced nodelist and noderange for % this column x_reduced = (j-(region_reduced_template.leftbound*(spacing+1)-obj.region(i+1).leftbound))/(spacing+1); for k = 0:2:obj.region(i+1).noderange(j+1)-1 % Find upper and lower bounds for each node pair - % it is possible that entire node pair is skipped % over by the spacing node_top_reduced = ceil(obj.region(i+1).nodelist(j+1,k+1)/(spacing+1)); node_bottom_reduced = floor(obj.region(i+1).nodelist(j+1,k+2)/(spacing+1)); if (node_bottom_reduced >= node_top_reduced) % Add this node pair region_reduced_template.nodelist(x_reduced+1,region_reduced_template.noderange(x_reduced+1)+1) = node_top_reduced; region_reduced_template.nodelist(x_reduced+1,region_reduced_template.noderange(x_reduced+1)+2) = node_bottom_reduced; % Update node range region_reduced_template.noderange(x_reduced+1) = region_reduced_template.noderange((j-(region_reduced_template.leftbound*(spacing+1)-obj.region(i+1).leftbound))/(spacing+1)+1)+2; % Update totalpoints region_reduced_template.totalpoints = region_reduced_template.totalpoints + (node_bottom_reduced-node_top_reduced+1); % Update upper and lower bounds if (node_top_reduced < region_reduced_template.upperbound) region_reduced_template.upperbound = node_top_reduced; end if (node_bottom_reduced > region_reduced_template.lowerbound) region_reduced_template.lowerbound = node_bottom_reduced; end end end end % See if region is empty - if so use a placeholder. if (region_reduced_template.totalpoints == 0) region_reduced_template.nodelist = [-1 -1]; region_reduced_template.noderange = 0; region_reduced_template.leftbound = 0; region_reduced_template.rightbound = 0; region_reduced_template.upperbound = 0; region_reduced_template.lowerbound = 0; end % Insert template into reduced region region_reduced(i+1) = region_reduced_template; end % Create new ROI roi_reduced(1) = ncorr_class_roi; roi_reduced.set_roi('region',struct('region',region_reduced,'size_mask',size(obj.mask(1:spacing+1:end,1:spacing+1:end)))); end end function roi_union = get_union(obj,mask_i,spacing) % This function returns the union of the current ROI and the % inputted mask (which may be reduced). % % Inputs ---------------------------------------------------------% % mask_i - logical array; mask used to union % spacing - integer; indicates how much mask_i has been reduced. % % Outputs --------------------------------------------------------% % roi_union - ncorr_class_roi; union of this ROI with mask_i. % % Returns error if ROI has not been set yet or if the sizes dont % match. if (isempty(obj.type)) error('ROI has not been set yet'); elseif (~isequal(size(obj.mask(1:spacing+1:end,1:spacing+1:end)),size(mask_i))) error('Reduced mask and input mask are not the same size'); end % Initialize output roi_union = ncorr_class_roi; % Get reduced ROI roi_reduced = obj.reduce(spacing); % Get unioned mask mask_union = obj.mask(1:spacing+1:end,1:spacing+1:end) & mask_i; % Get unioned region, this will not necessarily be contiguous anymore region_union = ncorr_alg_formunion(roi_reduced.formatted(),mask_union); % Create new ROI roi_union.set_roi('region',struct('region',region_union,'size_mask',size(mask_union))); end function roi_update = update_roi(obj,plot_u,plot_v,roi_plot,size_mask_update,spacing,radius) % This function returns an updated ROI, based on the inputted % displacement fields. This works by updating the boundary and % redrawing the mask. This assumes boundary can be subpixel, so it % interpolates a new position based on the displacement field. % Furthermore, displacement fields are reduced by a spacing factor, % so it's required as an input. % % Inputs ---------------------------------------------------------% % plot_u - double array; u displacement plot % plot_v - double array; v displacement plot % roi_plot - ncorr_class_roi; ROI corresponding to displacement % plots % size_mask_update - integer array; size of the updated mask. Can % be a different size than obj.mask if different sized image are % used % spacing - integer; spacing parameter % radius - integer; subset radius % % Outputs --------------------------------------------------------% % roi_update - ncorr_class_roi; updated ROI. % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Extrapolate displacement plots to improve interpolation near the % boundary points. % border_interp is the border added to the displacements when they are % extrapolated. border_interp = 20; % MUST BE GREATER THAN OR EQUAL TO 2!!!! plot_u_interp = ncorr_alg_extrapdata(plot_u,roi_plot.formatted(),int32(border_interp)); plot_v_interp = ncorr_alg_extrapdata(plot_v,roi_plot.formatted(),int32(border_interp)); % Convert displacement plots to B-spline coefficients; these are used % for interpolation. Make sure to do this for each region. for i = 0:length(roi_plot.region)-1 plot_u_interp{i+1} = ncorr_class_img.form_bcoef(plot_u_interp{i+1}); plot_v_interp{i+1} = ncorr_class_img.form_bcoef(plot_v_interp{i+1}); end % Initialize new boundary - preserve the number and % correspondences of the "add" boundaries, even if a % boundary is empty boundary_update = struct('add',{},'sub',{}); for i = 0:length(obj.boundary)-1 boundary_update(i+1).add = interp_border(obj.boundary(i+1).add, ... plot_u_interp{i+1}, ... plot_v_interp{i+1}, ... roi_plot, ... i, ... size_mask_update, ... border_interp, ... spacing, ... radius); for j = 0:length(obj.boundary(i+1).sub)-1 boundary_update(i+1).sub{j+1} = interp_border(obj.boundary(i+1).sub{j+1}, ... plot_u_interp{i+1}, ... plot_v_interp{i+1}, ... roi_plot, ... i, ... size_mask_update, ... border_interp, ... spacing, ... radius); end end % Set new ROI - note that size_mask_update must be used % instead of the size of the current mask. This is because % different sized current images can be used. roi_update = ncorr_class_roi; roi_update.set_roi('boundary',struct('boundary',boundary_update,'size_mask',size_mask_update)); end function roi_f = formatted(obj) % This function returns the formatted ROI, which can be inputted to a % mex function. Mex functions can receive ncorr_class_roi as either % a class or structure. % % Inputs ---------------------------------------------------------% % none; % % Outputs --------------------------------------------------------% % roi_f - ncorr_class_roi; formatted ROI. % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Must make deep copy first roi_f = ncorr_class_roi; p = properties(obj); for i = 0:length(p)-1 roi_f.(p{i+1}) = obj.(p{i+1}); end % Now format properties for i = 0:length(obj.region)-1 roi_f.region(i+1).nodelist = int32(roi_f.region(i+1).nodelist); roi_f.region(i+1).noderange = int32(roi_f.region(i+1).noderange); roi_f.region(i+1).leftbound = int32(roi_f.region(i+1).leftbound); roi_f.region(i+1).rightbound = int32(roi_f.region(i+1).rightbound); roi_f.region(i+1).upperbound = int32(roi_f.region(i+1).upperbound); roi_f.region(i+1).lowerbound = int32(roi_f.region(i+1).lowerbound); roi_f.region(i+1).totalpoints = int32(roi_f.region(i+1).totalpoints); end end % ----------------------------------------------------------------% % Get functions --------------------------------------------------% % ----------------------------------------------------------------% function [num_region,idx_nodelist] = get_num_region(obj,x,y,list_region) % This function determines which region x and y lie in, excluding % the regions indicated by list_region % % Inputs ---------------------------------------------------------% % x - integer; x_coordinate % y - integer; y_coordinate % list_region - logical array; indices of regions to search % if x and y are contained within it. If list_region(i) == true, % then skip over region(i). % % Output ---------------------------------------------------------% % num_region - integer; index of region that contains x % and y. Returns -1 if x and y are not within the regions % specified by region. % idx_nodelist - integer; index of node pair that contains y % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end % Initialize outputs num_region = -1; idx_nodelist = 0; % Initialize withinroi to false withinroi = false; for i = 0:length(obj.region)-1 if (list_region(i+1)) % Skip this ROI continue; else if (x >= obj.region(i+1).leftbound && x <= obj.region(i+1).rightbound) % Check to make sure x coordinate is within bounds idx_region = x-obj.region(i+1).leftbound; for j = 0:2:obj.region(i+1).noderange(idx_region+1)-1 % Check to see if point is within node pairs if (y >= obj.region(i+1).nodelist(idx_region+1,j+1) && y <= obj.region(i+1).nodelist(idx_region+1,j+2)) withinroi = true; idx_nodelist = j; num_region = i; break; end end end if (withinroi) break; end end end end function regionmask = get_regionmask(obj,num_region) % This function returns a mask corresponding only to the region % indicated by num_region. % % Inputs ---------------------------------------------------------% % num_region - integer; number of region to use to form mask. % % Outputs --------------------------------------------------------% % regionmask - logical array; mask corresponding to num_region % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end regionmask = false(size(obj.mask)); for i = 0:size(obj.region(num_region+1).noderange,1)-1 x = i + obj.region(num_region+1).leftbound; for j = 0:2:obj.region(num_region+1).noderange(i+1)-1 vec_y = obj.region(num_region+1).nodelist(i+1,j+1):obj.region(num_region+1).nodelist(i+1,j+2); regionmask(vec_y+1,x+1) = true; end end end function total_fullregions = get_fullregions(obj) % This function returns the number of regions which are % nonempty. Generally used to see if ROI is empty or not. % % Inputs ---------------------------------------------------------% % none; % % Outputs --------------------------------------------------------% % total_fullregions - integer; number of nonemtpy regions % % Returns error if ROI has not been set yet. if (isempty(obj.type)) error('ROI has not been set yet'); end total_fullregions = 0; for i = 0:length(obj.region)-1 if (obj.region(i+1).totalpoints > 0) total_fullregions = total_fullregions+1; end end end function cirroi = get_cirroi(obj,x,y,radius,subsettrunc) % This function returns a contiguous circular region for the subset % located at x and y. % % Inputs ---------------------------------------------------------% % x - integer; x_coordinate of subset % y - integer; y_coordinate of subset % radius - integer; radius of subset % subsettrunc - logical; indicates whether to enable subset % truncation or not % % Outputs --------------------------------------------------------% % cirroi - circular subset; this is the circular subset % corresponding to the points specified at x and y. Contains % struct('mask',{},'region',{},'boundary',{},'x',{},'y',{},'radius',{}) % % Returns error if ROI has not been set yet or if x and y are not % within the ROI. Note that the boundary field in cirroi is % currently not being used. % Find idx_nodelist and num_region [num_region,idx_nodelist] = obj.get_num_region(x,y,false(size(obj.region))); if (isempty(obj.type)) error('ROI has not been set yet'); elseif (num_region == -1) error('x and y coordinates are not within the ROI'); end % Initialize cirroi structure cirroi = struct('mask',{},'region',{},'boundary',{},'x',{},'y',{},'radius',{}); cirroi_template = struct('mask',{},'region',{},'boundary',{},'x',{},'y',{},'radius',{}); % Store x,y, and radius cirroi_template(1).mask = false(2*radius+1); cirroi_template.region = struct('nodelist',{},'noderange',{},'leftbound',{},'rightbound',{},'upperbound',{},'lowerbound',{},'totalpoints',{}); cirroi_template.boundary = []; cirroi_template.x = x; cirroi_template.y = y; cirroi_template.radius = radius; % Find max_nodewidth_buffer - this is the maximum width % of the nodelist. max_nodewidth_buffer = 0; for i = 0:length(obj.region)-1 if (size(obj.region(i+1).nodelist,2) > max_nodewidth_buffer) max_nodewidth_buffer = size(obj.region(i+1).nodelist,2); end end % Initialize cirroi nodelist and noderange cirroi_template.region(1).nodelist = -ones(cirroi_template.radius*2+1,max_nodewidth_buffer); cirroi_template.region.noderange = zeros(cirroi_template.radius*2+1,1); % Initialize totalpoints cirroi_template.region.totalpoints = 0; % Now find circle nodes % Fill must be contiguous and begins at the centerpoint queue_nodelist = -ones(size(cirroi_template.region.nodelist,1)*size(cirroi_template.region.nodelist,2),1); % Initialize to max size to prevent resizing queue_nodeindex = zeros(size(cirroi_template.region.nodelist,1)*size(cirroi_template.region.nodelist,2)/2,1); % Index of nodepair with respect to cirroi; length_queue = 0; %#ok<NASGU> % length of the queue_nodelist queue_nodelist_buffer = -ones(1,2); queue_nodeindex_buffer = 0; %#ok<NASGU> % Initialize parameter which indicates whether the subset % has been truncated circ_untrunc = true; % Node pair which contains the center point is added to queue first; this % guarantees the circular region is contiguous WRT the centerpoint if (obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+1) < cirroi_template.y-cirroi_template.radius) % make sure top node is within the circle node_top = cirroi_template.y-cirroi_template.radius; else node_top = obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+1); circ_untrunc = false; end if (obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+2) > cirroi_template.y+cirroi_template.radius) % make sure bottom node is within the circle node_bottom = cirroi_template.y+cirroi_template.radius; else node_bottom = obj.region(num_region+1).nodelist(cirroi_template.x-obj.region(num_region+1).leftbound+1,idx_nodelist+2); circ_untrunc = false; end % Update mask cirroi_template.mask(node_top-(cirroi_template.y-cirroi_template.radius)+1:node_bottom-(cirroi_template.y-cirroi_template.radius)+1,cirroi_template.radius+1) = true; % Update queue queue_nodelist(1:2) = [node_top node_bottom]; queue_nodeindex(1) = cirroi_template.radius; length_queue = 2; % Form activelines and then inactivate nodepair from nodelist % Activelines keeps track of which node pairs have been % analyzed activelines = true(size(obj.region(num_region+1).nodelist,1),size(obj.region(num_region+1).nodelist,2)/2); activelines((cirroi_template.x-obj.region(num_region+1).leftbound)+1,idx_nodelist/2+1) = false; % Enter while loop. Exit when queue is empty while (length_queue ~= 0) % STEPS: % 1) Load nodepair from queue % 2) Update queue % 3) Add nodepair to cirroi, sort, and then update % 4) Compare nodepair to nodepairs left and right and add nodes to queue % 5) Update totalpoints % Step 1) Pop queue queue_nodelist_buffer(1:2) = queue_nodelist(length_queue-1:length_queue); queue_nodeindex_buffer = queue_nodeindex(length_queue/2); % Step 2) length_queue = length_queue-2; % Step 3) if (cirroi_template.region.noderange(queue_nodeindex_buffer+1) == 0) % Just place directly cirroi_template.region.nodelist(queue_nodeindex_buffer+1,1:2) = queue_nodelist_buffer(1:2); else % Merge nodes inserted = false; for i = 0:2:cirroi_template.region.noderange(queue_nodeindex_buffer+1)-1 if (queue_nodelist_buffer(2) < cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+1)) nodelist_buffer = cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+1:cirroi_template.region.noderange(queue_nodeindex_buffer+1)); cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+1:i+2) = queue_nodelist_buffer; cirroi_template.region.nodelist(queue_nodeindex_buffer+1,i+3:cirroi_template.region.noderange(queue_nodeindex_buffer+1)+2) = nodelist_buffer; inserted = true; break end end if (~inserted) % Append at the end cirroi_template.region.nodelist(queue_nodeindex_buffer+1,cirroi_template.region.noderange(queue_nodeindex_buffer+1)+1:cirroi_template.region.noderange(queue_nodeindex_buffer+1)+2) = queue_nodelist_buffer; end end cirroi_template.region.noderange(queue_nodeindex_buffer+1) = cirroi_template.region.noderange(queue_nodeindex_buffer+1)+2; % Step 4) idx_froi = queue_nodeindex_buffer+(cirroi_template.x-cirroi_template.radius)-obj.region(num_region+1).leftbound; % Compare to node pairs LEFT if (queue_nodeindex_buffer > 0 && idx_froi > 0) % makes sure previous node is within cirroi for i = 0:2:obj.region(num_region+1).noderange(idx_froi)-1 if (activelines(idx_froi,i/2+1) == 0) % Nodes are inactive continue end upperlim = ceil(-sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer-1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); lowerlim = floor(sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer-1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); if (obj.region(num_region+1).nodelist(idx_froi,i+2) < queue_nodelist_buffer(1)) % lower node comes before upper node of buffer continue; elseif (obj.region(num_region+1).nodelist(idx_froi,i+1) <= queue_nodelist_buffer(2) && obj.region(num_region+1).nodelist(idx_froi,i+2) >= queue_nodelist_buffer(1)) % nodes interact if (obj.region(num_region+1).nodelist(idx_froi,i+1) < upperlim) % make sure upper node is within the circle node_top = upperlim; else node_top = obj.region(num_region+1).nodelist(idx_froi,i+1); circ_untrunc = false; end if (obj.region(num_region+1).nodelist(idx_froi,i+2) > lowerlim) % make sure lower node is within the circle node_bottom = lowerlim; else node_bottom = obj.region(num_region+1).nodelist(idx_froi,i+2); circ_untrunc = false; end if (node_top > node_bottom || node_top > queue_nodelist_buffer(2) || node_bottom < queue_nodelist_buffer(1)) % This can occur along diagonal boundaries by virtue of how the four way direction contiguous algorithm works. If this happens, break, because it is no longer contiugous continue; end % Add to queue queue_nodelist(length_queue+1:length_queue+2) = [node_top node_bottom]; % add to queue queue_nodeindex(length_queue/2+1) = queue_nodeindex_buffer-1; length_queue = length_queue + 2; % Make node pair inactive activelines((idx_froi-1)+1,i/2+1) = false; % Update mask cirroi_template.mask(node_top-(cirroi_template.y-cirroi_template.radius)+1:node_bottom-(cirroi_template.y-cirroi_template.radius)+1,queue_nodeindex_buffer) = true; else break; end end end % Compare to node pairs RIGHT if (queue_nodeindex_buffer < 2*cirroi_template.radius && idx_froi < obj.region(num_region+1).rightbound-obj.region(num_region+1).leftbound) % makes sure next node is within cirroiint for i = 0:2:obj.region(num_region+1).noderange(idx_froi+2)-1 if (activelines(idx_froi+2,i/2+1) == 0) continue end upperlim = ceil(-sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer+1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); lowerlim = floor(sqrt(cirroi_template.radius^2-(((queue_nodeindex_buffer+1)+(cirroi_template.x-cirroi_template.radius))-cirroi_template.x)^2)+cirroi_template.y); if (obj.region(num_region+1).nodelist(idx_froi+2,i+2) < queue_nodelist_buffer(1)) % lower node comes before upper node of buffer continue; elseif (obj.region(num_region+1).nodelist(idx_froi+2,i+1) <= queue_nodelist_buffer(2) && obj.region(num_region+1).nodelist(idx_froi+2,i+2) >= queue_nodelist_buffer(1)) % nodes interact if (obj.region(num_region+1).nodelist(idx_froi+2,i+1) < upperlim) % make sure upper node is within the circle node_top = upperlim; else node_top = obj.region(num_region+1).nodelist(idx_froi+2,i+1); circ_untrunc = false; end if (obj.region(num_region+1).nodelist(idx_froi+2,i+2) > lowerlim) % make sure lower node is within the circle node_bottom = lowerlim; else node_bottom = obj.region(num_region+1).nodelist(idx_froi+2,i+2); circ_untrunc = false; end if (node_top > node_bottom || node_top > queue_nodelist_buffer(2) || node_bottom < queue_nodelist_buffer(1)) % This can occur along diagonal boundaries by virtue of how the four way direction contiguous algorithm works. If this happens, break, because it is no longer contiugous continue; end % Add to queue queue_nodelist(length_queue+1:length_queue+2) = [node_top node_bottom]; % add to queue queue_nodeindex(length_queue/2+1) = queue_nodeindex_buffer+1; % length_queue = length_queue + 2; % Make node pair inactive activelines((idx_froi+1)+1,i/2+1) = false; % Update mask cirroi_template.mask(node_top-(cirroi_template.y-cirroi_template.radius)+1:node_bottom-(cirroi_template.y-cirroi_template.radius)+1,queue_nodeindex_buffer+2) = true; else break; end end end % Update totalpoints cirroi_template.region.totalpoints = cirroi_template.region.totalpoints + (queue_nodelist_buffer(2)-queue_nodelist_buffer(1)+1); end % Set Bounds - since noderange length is always % 2*radius+1, set left and right bounds to: cirroi_template.region.leftbound = cirroi_template.x - cirroi_template.radius; cirroi_template.region.rightbound = cirroi_template.x + cirroi_template.radius; % Find upper and lower bounds: cirroi_template.region.upperbound = size(obj.mask,1); cirroi_template.region.lowerbound = 0; for i = 0:size(cirroi_template.region.noderange,1)-1 % Find max and min x-values of cirroi if (cirroi_template.region.noderange(i+1) > 0) if (cirroi_template.region.upperbound > cirroi_template.region.nodelist(i+1,1)) cirroi_template.region.upperbound = cirroi_template.region.nodelist(i+1,1); end if (cirroi_template.region.lowerbound < cirroi_template.region.nodelist(i+1,cirroi_template.region.noderange(i+1))) cirroi_template.region.lowerbound = cirroi_template.region.nodelist(i+1,cirroi_template.region.noderange(i+1)); end end end % If subset is truncated, do some special analysis to construct % the cirroi. At this point, it's only contiguous. I've added % this portion to truncate a part of the subset if this option % is enabled. This is helpful for analyzing cracks so the subset % does not wrap around the crack tip. Also make sure to check % if any of the noderanges are zero, as this will not trigger a % truncation. if (subsettrunc && (~circ_untrunc || any(cirroi_template.region.noderange == 0))) % Get boundary point_topleft = [-1 -1]; % Initialize for i = 0:size(cirroi_template.mask,2)-1 for j = 0:size(cirroi_template.mask,1)-1 if (cirroi_template.mask(j+1,i+1)) point_topleft = [i j]; % This is the first point. break; end end if (cirroi_template.mask(j+1,i+1)) break; end end boundary_cirroi = ncorr_alg_formboundary(int32(point_topleft),int32(7),cirroi_template.mask); % Find closest point -> Find line equation -> Find % number of points to the left and right of the % line; the side with the least amount of points % will be discarded dists = (boundary_cirroi(:,1)-cirroi_template.radius).^2 + (boundary_cirroi(:,2)-cirroi_template.radius).^2; [val_min,idx_min] = min(dists); idx_min = idx_min-1; % Zero based indexing % Make sure closest point is not on the boundary, % which can happen since the boundary isnt % perfectly circular if (ceil(sqrt(val_min)) < cirroi_template.radius) % Nonlinear solver idx_space = 3; idx_plus = mod(idx_min+idx_space,size(boundary_cirroi,1)); idx_minus = mod(idx_min-idx_space,size(boundary_cirroi,1)); % Initialize points to calculate derivatives with x_plus_f = 0; x_min_f = 0; x_minus_f = 0; y_plus_f = 0; y_min_f = 0; y_minus_f = 0; % Set filt length length_filt = 2; for i = -length_filt:length_filt x_plus_f = x_plus_f + boundary_cirroi(mod(idx_plus+i,size(boundary_cirroi,1))+1,1); x_min_f = x_min_f + boundary_cirroi(mod(idx_min+i,size(boundary_cirroi,1))+1,1); x_minus_f = x_minus_f + boundary_cirroi(mod(idx_minus+i,size(boundary_cirroi,1))+1,1); y_plus_f = y_plus_f + boundary_cirroi(mod(idx_plus+i,size(boundary_cirroi,1))+1,2); y_min_f = y_min_f + boundary_cirroi(mod(idx_min+i,size(boundary_cirroi,1))+1,2); y_minus_f = y_minus_f + boundary_cirroi(mod(idx_minus+i,size(boundary_cirroi,1))+1,2); end % Divide by length x_plus_f = x_plus_f/(2*length_filt+1); x_min_f = x_min_f/(2*length_filt+1); x_minus_f = x_minus_f/(2*length_filt+1); y_plus_f = y_plus_f/(2*length_filt+1); y_min_f = y_min_f/(2*length_filt+1); y_minus_f = y_minus_f/(2*length_filt+1); % Get derivatives dx_di_f = (x_plus_f - x_minus_f)/(2*idx_space); d2x_di2_f = (x_plus_f-2*x_min_f+x_minus_f)/(idx_space^2); dy_di_f = (y_plus_f - y_minus_f)/(2*idx_space); d2y_di2_f = (y_plus_f-2*y_min_f+y_minus_f)/(idx_space^2); % Do one iteration to find change in index deltai = ((-x_min_f*dx_di_f+cirroi_template.radius*dx_di_f) + (-y_min_f*dy_di_f+cirroi_template.radius*dy_di_f))/((dx_di_f^2+x_min_f*d2x_di2_f-cirroi_template.radius*d2x_di2_f)+(dy_di_f^2+y_min_f*d2y_di2_f-cirroi_template.radius*d2y_di2_f)); % Test deltai, make sure its between subsequent spacings; If % not then set the points minus and plus points if (abs(deltai) < idx_space) % Calculate two points based on dx_di_i and dy_di_i x_i = x_min_f + dx_di_f*deltai + (1/2)*d2x_di2_f*deltai^2; y_i = y_min_f + dy_di_f*deltai + (1/2)*d2y_di2_f*deltai^2; dx_di_i = dx_di_f + d2x_di2_f*deltai; dy_di_i = dy_di_f + d2y_di2_f*deltai; % Set stepsize - the magnitude doesnt matter stepsize = 0.5; % Get points p0 = [x_i-dx_di_i*stepsize y_i-dy_di_i*stepsize]; p1 = [x_i+dx_di_i*stepsize y_i+dy_di_i*stepsize]; else % Set points to averaged points on either side p0 = [x_minus_f y_minus_f]; p1 = [x_plus_f y_plus_f]; end % Find which side to clear: p_subset is a point defined % to be part of the subset, so the side opposite of % p_subset needs to be cleared. If the center of the % subset does not lie on boundary, then find displacement % from closest point to p0. Add this displacement to % the center, and then determine which side the center % is on. p_subset = [0 0]; % Initialize if (isequal(boundary_cirroi(idx_min+1,:),[cirroi_template.radius cirroi_template.radius])) % Center is the closest point. Find valid points % around the boundary and get the centroid of % these points. width_win = 1; % This determines window of points collected counter = 0; % Counts number of points added so a proper average can be taken for i = -width_win:width_win x_mask = boundary_cirroi(idx_min+1,1)+i; for j = -width_win:width_win y_mask = boundary_cirroi(idx_min+1,2)+j; % Make sure points are within mask and % that the mask is valid here. if (x_mask >= 0 && x_mask <= 2*cirroi_template.radius && y_mask >= 0 && y_mask <= 2*cirroi_template.radius && ... cirroi_template.mask(y_mask+1,x_mask+1)) p_subset = p_subset + [x_mask y_mask]; counter = counter+1; end end end % Divide by counter to get the average p_subset = p_subset/counter; % Debug ------% %{ figure(1); imshow(cirroi_template.mask); hold on; plot(p0(1,1),p0(1,2),'rx'); plot(p1(1,1),p1(1,2),'rx'); plot(p_subset(1,1),p_subset(1,2),'gx'); hold off; %} % ------------% else % Set the center point p_subset = [cirroi_template.radius cirroi_template.radius]; % Debug ------% %{ figure(1); imshow(cirroi_template.mask); hold on; plot(p0(1,1),p0(1,2),'rx'); plot(p1(1,1),p1(1,2),'rx'); plot(p_subset(1,1),p_subset(1,2),'gx'); hold off; %} % ------------% end % Normalize point against line since it can shift disp_p0 = p0 - boundary_cirroi(idx_min+1,:); p_subset = p_subset + disp_p0; % Now determine which side p_subset lies and % clear the other side sign_clear = -sign((p1(1)-p0(1))*(p_subset(2)-p0(2))-(p_subset(1)-p0(1))*(p1(2)-p0(2))); mask_cirroi_prelim = cirroi_template.mask; % Make a copy for i = 0:size(cirroi_template.region.noderange,1)-1 for j = 0:2:cirroi_template.region.noderange(i+1)-1 for k = cirroi_template.region.nodelist(i+1,j+1):cirroi_template.region.nodelist(i+1,j+2) p2 = [i k-(cirroi_template.y-cirroi_template.radius)]; if (sign((p1(1)-p0(1))*(p2(2)-p0(2))-(p2(1)-p0(1))*(p1(2)-p0(2))) == sign_clear) % Clear points on this side mask_cirroi_prelim(p2(2)+1,p2(1)+1) = false; end end end end % Get region again from the mask, then select the % biggest region. This is required because subset % truncation does not preserve the cirroi's contiguous % nature. Setting the last parameter to true for % formregion will make the length of the noderange the % same as the width of the mask [region_cirroi_prelim,removed] = ncorr_alg_formregions(mask_cirroi_prelim,int32(0),true); %#ok<NASGU> % Its possible for region to be empty. Must check it. If % its empty, then abandon subset truncation. if (~isempty(region_cirroi_prelim)) % Only keep the region with the max number of % totalpoints region_cirroi_prelim = region_cirroi_prelim([region_cirroi_prelim.totalpoints] == max([region_cirroi_prelim.totalpoints])); % Update mask then store it mask_cirroi_prelim(:) = false; for i = 0:size(cirroi_template.region.noderange,1)-1 for j = 0:2:region_cirroi_prelim.noderange(i+1)-1 for k = region_cirroi_prelim.nodelist(i+1,j+1):region_cirroi_prelim.nodelist(i+1,j+2) mask_cirroi_prelim(k+1,i+1) = true; end end end % Store mask cirroi_template.mask = mask_cirroi_prelim; % Store region with greatest number of nodes cirroi_template.region = region_cirroi_prelim; % Bring back to regular coords for i = 0:size(cirroi_template.region.noderange,1)-1 if (cirroi_template.region.noderange(i+1) > 0) cirroi_template.region.nodelist(i+1,1:cirroi_template.region.noderange(i+1)) = cirroi_template.region.nodelist(i+1,1:cirroi_template.region.noderange(i+1)) + (cirroi_template.y-cirroi_template.radius); end end cirroi_template.region.leftbound = cirroi_template.region.leftbound + (cirroi_template.x-cirroi_template.radius); cirroi_template.region.rightbound = cirroi_template.region.rightbound + (cirroi_template.x-cirroi_template.radius); cirroi_template.region.upperbound = cirroi_template.region.upperbound + (cirroi_template.y-cirroi_template.radius); cirroi_template.region.lowerbound = cirroi_template.region.lowerbound + (cirroi_template.y-cirroi_template.radius); end % Debug %{ figure(2), imshow(cirroi_template.mask); hold on; plot(boundary_cirroi(idx_min+1,1)+1,boundary_cirroi(idx_min+1,2)+1,'bx'); plot(p0(1)+1,p0(2)+1,'gs'); plot(p1(1)+1,p1(2)+1,'gs'); hold off; %} end end %-----------------------------------------------------% %-----------------------------------------------------% %-----------------------------------------------------% % Assign outputs cirroi(1) = cirroi_template; end %-----------------------------------------------------------------% % For debugging --------------------------------------------------% %-----------------------------------------------------------------% function debug_region(obj) if (isempty(obj.type)) error('ROI has not been set yet'); end mask_debug = false(size(obj.mask)); for i = 0:length(obj.region)-1 regionmask_debug = false(size(obj.mask)); for j = 0:size(obj.region(i+1).noderange,1)-1 x = j + obj.region(i+1).leftbound; for k = 0:2:obj.region(i+1).noderange(j+1)-1 vec_y = obj.region(i+1).nodelist(j+1,k+1):obj.region(i+1).nodelist(j+1,k+2); mask_debug(vec_y+1,x+1) = true; regionmask_debug(vec_y+1,x+1) = true; end end % figure, imshow(regionmask_debug); - This can potential be a lot of figures end figure, imshow(mask_debug); if (isequal(mask_debug,obj.mask)) disp('SUCCESS - mask matches region'); else error('FAILURE - for some reason mask and region are different'); end end function debug_boundary(obj) if (isempty(obj.type)) error('ROI has not been set yet'); end figure, imshow(obj.mask); hold on; for i = 0:length(obj.boundary)-1 plot(obj.boundary(i+1).add(:,1)+1,obj.boundary(i+1).add(:,2)+1,'go'); for j = 0:length(obj.boundary(i+1).sub)-1 plot(obj.boundary(i+1).sub{j+1}(:,1)+1,obj.boundary(i+1).sub{j+1}(:,2)+1,'rx'); end end hold off; end end end function boundary_update = interp_border(boundary,plot_u_interp,plot_v_interp,roi,num_region,size_mask_update,border_interp,spacing,radius) % Updates boundary based on old boundary and displacement plots. % Does not preserve length of the boundary. If points are found to travel % outside a radius length around the size_mask_update, they are discarded. % % Inputs -----------------------------------------------------------------% % boundary - double array; boundary we're trying to update - uses pixel % units. % plot_u_interp - double array; b-spline coefficients of u displacement % field % plot_v_interp - double array; b-spline coefficients of v displacement % field % roi - ncorr_class_roi; ROI corresponding to displacement fields. Note % that roi is reduced. % num_region - integer; number corresponding to region % size_mask_update - integer array; size of the new mask (can be different % from the mask in ROI if different sized current images are used). % border_interp - integer; border around b-spline coefficients % spacing - integer; spacing parameter % radius - integer; subset radius % % Outputs ----------------------------------------------------------------% % boundary_update - double array; updated boundary coordinates % % Note, if boundary_update is found to be empty after analysis, it will % return [-1 -1] so it is not empty. This is a temporary workaround because % the ncorr_alg_formmask function does not support empty polygons. % Get scaled coordinates since displacement plots are reduced. boundary_scaled = boundary/(spacing+1); % Get interpolated u displacements - can return NaN if out of range interp_u = ncorr_alg_interpqbs(boundary_scaled,plot_u_interp,roi.region(num_region+1).leftbound,roi.region(num_region+1).upperbound,border_interp); % Get interpolated v displacements - can return NaN if out of range interp_v = ncorr_alg_interpqbs(boundary_scaled,plot_v_interp,roi.region(num_region+1).leftbound,roi.region(num_region+1).upperbound,border_interp); % Update boundary boundary_update = boundary; boundary_update(:,1) = boundary_update(:,1) + interp_u; boundary_update(:,2) = boundary_update(:,2) + interp_v; % Set points near boundary to NaN; for i = 0:size(boundary_update,1)-1 if (boundary_update(i+1,1) < radius || boundary_update(i+1,1) > size_mask_update(2)-radius || ... boundary_update(i+1,2) < radius || boundary_update(i+1,2) > size_mask_update(1)-radius) boundary_update(i+1,:) = NaN; end end % Remove all coordinates that have NaN counter = 0; while (counter < size(boundary_update,1)) if (any(isnan(boundary_update(counter+1,:)))) boundary_update(counter+1,:) = []; counter = counter-1; end counter = counter+1; end % Check to see if boundary is empty if (isempty(boundary_update)) boundary_update = [-1 -1]; end end
github
CU-CommunityApps/choco-packages-master
ncorr.m
.m
choco-packages-master/packages/matlab-ciser/tools/ncorr/ncorr.m
215,473
utf_8
0869c73f18c3ca178d6efe7202e0fe69
classdef ncorr < handle %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % Version: 1.2.2 % Date: 6/13/2017 % Programmed by: Justin Blaber % Principle Investigator: Antonia Antoniou % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % Start Ncorr with: % % handles_ncorr = ncorr; % % NOTE: Images/masks can be set using the GUI menu or by using % "handles_ncorr.set_ref(data)", "handles_ncorr.set_cur(data)", % "handles_ncorr.set_roi_ref(data)", or "handles_ncorr.set_roi_cur(data)". % These will manually set the reference image, current image(s), or % region of interest if these have been calculated or % modified using MATLAB and exist in the main workspace. Sometimes the % reference and current images can be obtained using an average of a % series of images. The region of interest can also be calculated using % various thresholding and edge detecting algorithms. Displacement and % strain data can be obtained through handles_ncorr.data_dic in case the % user is interested in doing further calculations on the deformation % data. In addition, if the menu freezes for some reason due to an error, % it can be unfrozen with "handles_ncorr.refresh()". Lastly, calling % "delete(handles_ncorr)" will force close Ncorr. % % % MAIN CONSIDERATIONS: % % 1) All program data and appdata in the ncorr object are SET by callbacks directly. % 2) "Downstream" program data (i.e. dependent data) and appdata are % CLEARED with the "clear_downstream()" function before setting the % new data. % 3) UI objects are modified by the update* functions through the wrapper % function "util_wrapcallbackall" and not within callback directly. % % The point of doing this was to make each callback as clear and % uncluttered as possible. The clearing of "downstream" data and updating % of UI controls are mainly for upkeep. % % % MAIN FLOW OF CALLBACK: % % 1) Update UI controls. Generally, if a menu option updates information, % it will freeze the top menu to prevent users from calling other % options while the first one is running. % 2) Check if data will be overwritten with: "overwrite = clear_downstream('callback')" % This returns a logical value which is true if the user chooses % to proceed and also clears the downstream data. % 3) Perform calculations % 4) If calculations succeed, store the data directly in the callback % 5) Update UI controls. This unfreezes the top menu and updates it, % as well as sets any images (such as the reference/current image) % if they were loaded. % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % NCORR_GUI* FUNCTIONS: % % These functions contain GUIs which are called by the callbacks within % this "ncorr" object. These are, unlike "ncorr," functions that % utilize "uiwait" and nested functions instead of an object. Thus, when % the function returns, all workspace data within those functions get % cleared. Some of these ncorr_gui* functions have an input called % "params_init" which contains initialization data if the function has % been called before. Most of these functions use a modal window because % they must be set before proceeding. These figure are generally not % resizeable, and their size is checked with "ncorr_util_formatwindow" to % ensure the top right edges of the window are within the screen. % % The initialization of the ncorr_gui_functions generally proceeds as: % % 1) Initialize outputs % 2) Create GUI handles % 3) Run the constructor function % % The callbacks have the general flow: % % 1) Possibly freeze menu if it exists % 2) Get data with "getappdata()" % 3) Perform calculations % 4) Set data with "setappdata()" % 5) Possibly unfreeze menu if it exists and update UI controls % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % NCORR_ALG* FUNCTIONS: % % These functions contain source-code for algorithms used with the ncorr % object callbacks and ncorr_gui* functions. Most of these algorithms are % mex files written in C++ and must be compiled with "compile_func_cpp_mex()" % or mex before using ncorr. % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% % % NCORR_UTIL* FUNCTIONS: % % These functions contain certain utilities used by ncorr, such as % checking whether the window is within the screen, formatting a colobar, % etc. % %-------------------------------------------------------------------------% %-------------------------------------------------------------------------% properties (SetAccess = private) % GUI handles: handles_gui; % DIC data: reference; current; data_dic; % Installation data: support_openmp; total_cores; end % Constructor methods(Access = public) function obj = ncorr % Set default UI control font size here before UI opens. Larger % font sizes can make the GUI too large. This seems to be an % error in earlier versions of Matlab set(0,'defaultuicontrolfontsize',7); % Initialize GUI and get GUI handles obj.handles_gui = init_gui(obj); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@obj.constructor,obj.handles_gui.figure)); end % Constructor ----------------------------------------------------% function constructor(obj) % Check MATLAB version and toolbox compatibility -------------% if (obj.check_matlabcompat() ~= out.success) % Force close obj.callback_close_function([],[],true); return; end % Check MEX installation and load/set ncorr_installinfo.txt --% if (obj.check_mexinstall() ~= out.success) % Force close obj.callback_close_function([],[],true); return; end % Set path ---------------------------------------------------% % Path to ncorr install directory must be set or else program % can freeze when loading images from a different directory - % not sure why this happens. % Note that if ncorr.m is not in the current directory, then % path has already been set. listing = dir; if (isempty(strfind(lower(path),lower(pwd))) && any(strcmp('ncorr.m',{listing.name}))) % Ask user if its okay to add path contbutton = questdlg('Path has not been set. Path must be set before running program. Press yes to add path.','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'Yes')) % Add Path path(path,pwd); else % Force close, ncorr may not to work if path is not set obj.callback_close_function([],[],true); return; end end % Initialize opengl ------------------------------------------% % In earlier versions of Matlab this will fix inverted plots % Plotting tools are also run based on opengl if (ispc) data_opengl = opengl('data'); if (~data_opengl.Software) % Set opengl to software opengl('software'); end end % Start timer to fetch name of the handle that points to ncorr. % Use a timer because, to my knowledge, there isn't a callback % option if the handle pointing to ncorr gets cleared. timer_ncorr = timer('executionMode', 'fixedRate', ... 'Period', 1/5, ... 'TimerFcn', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_update_title(obj,hObject,eventdata),obj.handles_gui.figure)); start(timer_ncorr); % Program Data -----------------------------------------------% % Reference image info obj.reference = struct('imginfo',{},'roi',{}); % Current image(s) info obj.current = struct('imginfo',{},'roi',{}); % DIC data obj.data_dic = struct('displacements',struct('plot_u_dic',{}, ... % U plot after DIC (can be regular or eulerian) 'plot_v_dic',{}, ... % V plot after DIC (can be regular or eulerian) 'plot_corrcoef_dic',{}, ... % Correlaton coef plot after DIC (can be regular or eulerian) 'roi_dic',{}, ... % ROI after DIC 'plot_u_ref_formatted',{}, ... % formatted U plot WRT reference image used for displaying displacements 'plot_v_ref_formatted',{}, ... % formatted V plot WRT reference image used for displaying displacements 'roi_ref_formatted',{}, ... % ROI after formatting used for plotting displacements 'plot_u_cur_formatted',{}, ... % formatted U plot WRT current image used for displaying displacements 'plot_v_cur_formatted',{}, ... % formatted V plot WRT current image used for displaying displacements 'roi_cur_formatted',{}), ... % ROI after formatting used for plotting displacements 'dispinfo',struct('type',{}, ... % Type of DIC: either regular or backward 'radius',{}, ... % Radius for DIC 'spacing',{}, ... % Spacing for DIC 'cutoff_diffnorm',{}, ... % Cutoff for norm of the difference vector 'cutoff_iteration',{}, ... % Cutoff for the number of iterations 'total_threads',{}, ... % Number of threads for computation 'stepanalysis',struct('enabled',{},'type',{},'auto',{},'step',{}), ... % Indicates whether or not to implement step analysis for high strain 'subsettrunc',{}, ... % Indicates whether or not to implement subset truncation for DIC analysis 'imgcorr',struct('idx_ref',{},'idx_cur',{}), ... % Image correspondences 'pixtounits',{}, ... % Ratio of "units" to pixels. Assumes pixels are square 'units',{}, ... % String to display units 'cutoff_corrcoef',{}, ... % Correlation coefficient cutoff for each formatted displacement plot 'lenscoef',{}), ... % Radial lens distortion coefficient 'strains',struct('plot_exx_ref_formatted',{}, ... % Exx Green-Lagragian strain plot 'plot_exy_ref_formatted',{}, ... % Exy Green-Lagragian strain plot 'plot_eyy_ref_formatted',{}, ... % Exy Green-Lagragian strain plot 'roi_ref_formatted',{}, ... % ROI used for plotting strains 'plot_exx_cur_formatted',{}, ... % Exx Eulerian-Almansi strain plot 'plot_exy_cur_formatted',{}, ... % Exy Eulerian-Almansi strain plot 'plot_eyy_cur_formatted',{}, ... % Exy Eulerian-Almansi strain plot 'roi_cur_formatted',{}), ... % ROI used for plotting strains 'straininfo',struct('radius',{}, ... % Strain radius used for calculating strains 'subsettrunc',{})); % Indicates whether or not to implement subset truncation for strain analysis % Appdata - setting these to '[]' technically does nothing, but % it is included here to show what appdata are/will be present in the % figure % handles_plot are the handles for the data plots: setappdata(obj.handles_gui.figure,'handles_plot',[]); % num_cur is the current image which is currently being displayed: setappdata(obj.handles_gui.figure,'num_cur',[]); % timer_ncorr is the timer for this instantiation of ncorr; % it is used for fetching the name of the handle points to % ncorr in the current workspace setappdata(obj.handles_gui.figure,'timer',timer_ncorr); % Set visible set(obj.handles_gui.figure,'Visible','on'); end % Destructor -----------------------------------------------------% % This ensures data is deleted if delete is called directly on the % ncorr handle. function delete(obj) if (ishandle(obj.handles_gui.figure)) % Setting 3rd argument to true results in a force close. obj.callback_close_function([],[],true); end end % Public methods -------------------------------------------------% % These are used for setting the reference image, current image, or % ROI manually. function set_ref(obj,ref_prelim) % Form wrapped function handle_set_ref = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(ref_prelim)set_ref_source(obj,ref_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_ref(ref_prelim); end function set_cur(obj,cur_prelim) % Form wrapped function handle_set_cur = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(cur_prelim)set_cur_source(obj,cur_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_cur(cur_prelim); end function set_roi_ref(obj,mask_prelim) % Form wrapped function handle_set_roi_ref = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(mask_prelim)set_roi_ref_source(obj,mask_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_roi_ref(mask_prelim); end function set_roi_cur(obj,mask_prelim) % Form wrapped function handle_set_roi_cur = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(mask_prelim)set_roi_cur_source(obj,mask_prelim),obj.handles_gui.figure)); % Call wrapped function handle_set_roi_cur(mask_prelim); end function refresh(obj) % Form wrapped function handle_refresh = obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@()refresh_source(obj),obj.handles_gui.figure)); % Call wrapped function handle_refresh(); end end methods(Access = private) % ----------------------------------------------------------------% % Local Utility Function(s) --------------------------------------% % ----------------------------------------------------------------% function handle_wrapcallback = util_wrapcallbackall(obj,handle_callback) % This function wraps the callback with the update* UI functions. It % also checks to see if an error was generated, and if it was, it % will rethrow it and recomplete the finishing update* UI functions % to ensure the menu unfreezes. Note that the error will not be % rethrown if the figure is closed. % % Inputs ---------------------------------------------------------% % handle_callback - function handle; % % Outputs --------------------------------------------------------% % handle_wrapcallback - function handle; handle_wrapcallback = @updatestatecallback; function updatestatecallback(varargin) try % Beginning of callback - freeze menu; obj.freeze_menu(); % Run callback handle_callback(varargin{:}); % End of callback; % Update axes obj.update_axes('set'); % Update UI menu obj.update_topmenu(); % Update state text obj.update_dicstatetext(); % Unfreeze top layer of menu obj.unfreeze_menu(); catch err % If figure still exists, update UI and then rethrow % error if (isvalid(obj) && ishandle(obj.handles_gui.figure)) % Error is generated in callback obj.update_axes('set'); % Update UI menu obj.update_topmenu(); % Update state text obj.update_dicstatetext(); % Unfreeze top layer of menu obj.unfreeze_menu(); % Rethrow error rethrow(err); end end end end function name = util_get_name(obj) % This function will obtain the name of the variable in the main % workspace that points to this ncorr object % Initialize output name = ''; % Get all variables in base workspace basevars = evalin('base','whos'); % Grab variables of class ncorr ncorrvars = basevars(strcmp({basevars.class},class(obj))); % Cycle through variables and find which one is equivalent to % this object for i = 1:length(ncorrvars) if (eq(evalin('base',ncorrvars(i).name),obj)) % Its possible there are more than one handle that % point to this object, if that's the case just return % the first one name = ncorrvars(i).name; break; end end end %-----------------------------------------------------------------% % Handle Functions Source ----------------------------------------% %-----------------------------------------------------------------% function set_ref_source(obj,ref_prelim) % This function allows the manual uploading of a reference image; % only a single image is permitted. % Check to make sure input is of the correct form if (ncorr_util_properimgfmt(ref_prelim,'Reference image') == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_ref'); if (overwrite) % Set data obj.reference(1).imginfo = ncorr_class_img; obj.reference(1).imginfo.set_img('load',struct('img',ref_prelim,'name','reference','path','')); obj.reference(1).roi = ncorr_class_roi.empty; end end end function set_cur_source(obj,cur_prelim) % This function allows the manual uploading of a current image - % if a single image is uploaded it must be a double array. If multiple % images are uploaded, they must be in a cell array. % Check to make sure input is a cell if (~iscell(cur_prelim)) % Wrap cur_prelim in a cell cur_prelim = {cur_prelim}; end % Make sure each image has the correct format cursameformat = true; for i = 0:length(cur_prelim)-1 if (ncorr_util_properimgfmt(cur_prelim{i+1},'Current image') ~= out.success) cursameformat = false; break; end end if (cursameformat) % See if data will be overwritten overwrite = obj.clear_downstream('set_cur'); if (overwrite) % It's possible to run out of memory here, so put this % in a try-catch block try % Set data for i = 0:length(cur_prelim)-1 obj.current(i+1).imginfo = ncorr_class_img; obj.current(i+1).imginfo.set_img('load',struct('img',cur_prelim{i+1},'name',['current_' num2str(i+1)],'path','')); obj.current(i+1).roi = ncorr_class_roi.empty; end setappdata(obj.handles_gui.figure,'num_cur',length(cur_prelim)-1); catch %#ok<CTCH> h_error = errordlg('Loading current images failed, most likely because Ncorr ran out of memory.','Error','modal'); uiwait(h_error); % Clear all current images because exception could have % been thrown midway through setting current images obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); end end else h_error = errordlg('Loading current images failed because the image data format was incorrect.','Error','modal'); uiwait(h_error); end end function set_roi_ref_source(obj,mask_prelim) % This function allows the manual uploading of a region of % interest. % Check to make sure reference image has been loaded first - % for menu callbacks this isn't necessary since these options % will only become callable if "upstream" data has been loaded if (~isempty(obj.reference)) % Make sure ROI is the same size as the reference image and % is of class logical. if (isequal(size(mask_prelim),[obj.reference.imginfo.height obj.reference.imginfo.width]) && islogical(mask_prelim)) % Form roi_prelim roi_prelim = ncorr_class_roi; roi_prelim.set_roi('load',struct('mask',mask_prelim,'cutoff',2000)); % Make sure ROI is not empty if (roi_prelim.get_fullregions > 0) % At this point, roi_prelim fits the critera for a ROI. Show ROI % overlayed and ask user if ROI is appropriate: outstate = ncorr_gui_loadroi(obj.reference.imginfo, ... roi_prelim, ... get(obj.handles_gui.figure,'OuterPosition')); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % At this point, ROI is acceptable, has been % approved by the user, and will now be set. % Package data: dispinfo_template.type = 'regular'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.reference(1).roi = roi_prelim; end end else h_error = errordlg('ROI must contain a large contiguous region.','Error','modal'); uiwait(h_error); end else h_error = errordlg('Input must be of class logical and the same size as the reference image','Error','modal'); uiwait(h_error); end else h_error = errordlg('Reference image has not been loaded yet','Error','modal'); uiwait(h_error); end end function set_roi_cur_source(obj,mask_prelim) % This function allows the manual uploading of a region of % interest. This ROI corresponds to the LAST current image. % Check to make sure current image(s) have been loaded first - % for menu callbacks this isn't necessary since these options % will only become callable if "upstream" data has been loaded if (~isempty(obj.current)) % Make sure ROI is the same size as the last current image if (isequal(size(mask_prelim),[obj.current(end).imginfo.height obj.current(end).imginfo.width]) && islogical(mask_prelim)) % Form roi_prelim roi_prelim = ncorr_class_roi; roi_prelim.set_roi('load',struct('mask',mask_prelim,'cutoff',2000)); % Make sure ROI is not empty if (roi_prelim.get_fullregions > 0) % At this point, roi_prelim fits the critera for a ROI. Show ROI % overlayed and ask user if ROI is appropriate: outstate = ncorr_gui_loadroi(obj.current(end).imginfo, ... roi_prelim, ... get(obj.handles_gui.figure,'OuterPosition')); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % At this point, ROI is acceptable, has been % approved by the user, and will now be set. % Package data: dispinfo_template.type = 'backward'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.current(end).roi = roi_prelim; end end else h_error = errordlg('ROI must contain a large contiguous region.','Error','modal'); uiwait(h_error); end else h_error = errordlg('Input must be of class logical and the same size as the last current image','Error','modal'); uiwait(h_error); end else h_error = errordlg('Current image(s) have not been loaded yet.','Error','modal'); uiwait(h_error); end end function refresh_source(obj) %#ok<MANU> % Call this function if there's an error and the menu needs to be % unfrozen. end %-----------------------------------------------------------------% % Menu Callbacks -------------------------------------------------% %-----------------------------------------------------------------% function callback_topmenu_loadref(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading a reference image from the % GUI. % false means lazy loading isnt used [ref_prelim,outstate] = ncorr_util_loadimgs(false); if (outstate == out.success && length(ref_prelim) == 1) % See if data will be overwritten overwrite = obj.clear_downstream('set_ref'); if (overwrite) % Set Image obj.reference(1).imginfo = ref_prelim; obj.reference(1).roi = ncorr_class_roi.empty; end elseif (outstate == out.success && length(ref_prelim) > 1) h_error = errordlg('Please select only one reference image.','Error','modal'); uiwait(h_error); end end function callback_topmenu_loadcur(obj,hObject,eventdata,lazyparam) %#ok<INUSL> % This is the callback for loading current image(s) from the GUI. [cur_prelim,outstate] = ncorr_util_loadimgs(lazyparam); if (outstate == out.success) overwrite = obj.clear_downstream('set_cur'); if (overwrite) % Set Image for i = 0:length(cur_prelim)-1 obj.current(i+1).imginfo = cur_prelim(i+1); obj.current(i+1).roi = ncorr_class_roi.empty; end % Display last current image setappdata(obj.handles_gui.figure,'num_cur',length(cur_prelim)-1); end end end function callback_topmenu_loaddata(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading data from a previous analysis. % Get data filename [filename,pathname] = uigetfile({'*.mat'},'Select the previous DIC data (must be .dat)'); if (~isequal(filename,0) && ~isequal(pathname,0)); try % Load data struct_load = load(fullfile(pathname,filename)); loadsuccess = true; catch %#ok<CTCH> % Probably out of memory loadsuccess = false; end if (loadsuccess) if (isfield(struct_load,'reference_save') && isfield(struct_load,'current_save') && isfield(struct_load,'data_dic_save')) % The data has the correct fields if (isa(struct_load.reference_save,'struct') && ... isa(struct_load.current_save,'struct') && ... isa(struct_load.data_dic_save,'struct')) % Make sure data_dic has the correct % fields. Easiest way to do this is to assign % the saved data to a structure with the % correct fields, an error will result if the % fields are wrong data_dic_prelim = obj.data_dic; % This will copy fields - only used temporarily try data_dic_prelim(1) = struct_load.data_dic_save; %#ok<NASGU> loaddatasuccess = true; catch %#ok<CTCH> % Some fields are not correct loaddatasuccess = false; end if (loaddatasuccess) % See if data will be overwritten overwrite = obj.clear_downstream('all'); if (overwrite) % Put in try block - its possible to run % out of memory here. try % Do reference image first [ref_prelim,outstate_ref] = ncorr_util_loadsavedimg(struct_load.reference_save); % Do current images next cur_prelim = ncorr_class_img.empty; for i = 0:length(struct_load.current_save)-1 [cur_buffer,outstate_cur] = ncorr_util_loadsavedimg(struct_load.current_save(i+1)); if (outstate_cur == out.success) cur_prelim(i+1) = cur_buffer; else break; end end if (outstate_ref == out.success && outstate_cur == out.success) % Store data: % Set reference: obj.reference(1).imginfo = ref_prelim; obj.reference(1).roi = struct_load.reference_save.roi; % Set current: for i = 0:length(struct_load.current_save)-1 obj.current(i+1).imginfo = cur_prelim(i+1); obj.current(i+1).roi = struct_load.current_save(i+1).roi; end setappdata(obj.handles_gui.figure,'num_cur',length(struct_load.current_save)-1); % Set dic data: obj.data_dic(1) = struct_load.data_dic_save; else % Images could not be found % Form error message msg_error{1} = 'Images could not be located. Make sure they are in the current directory or were not moved from the locations listed here:'; msg_error{2} = fullfile(struct_load.reference_save.path,struct_load.reference_save.name); max_display = 10; for i = 0:min(length(struct_load.current_save),max_display)-1 msg_error{end+1} = fullfile(struct_load.current_save(i+1).path,struct_load.current_save(i+1).name); %#ok<AGROW> end if (length(struct_load.current_save) > max_display) msg_error{end+1} = '...'; end h_error = errordlg(msg_error,'Error','modal'); uiwait(h_error); end catch %#ok<CTCH> h_error = errordlg('Loading failed, most likely because Ncorr ran out of memory.','Error','modal'); uiwait(h_error); % Clear everything - its possible % exception was caught while % loading data midway. obj.reference(:) = []; obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); fields_data_dic = fieldnames(obj.data_dic); for i = 0:length(fields_data_dic)-1 obj.data_dic.(fields_data_dic{i+1})(:) = []; end end end else h_error = errordlg('The data is not valid, please load data saved specifically from ncorr.','Error','modal'); uiwait(h_error); end else h_error = errordlg('The data is not valid, please load data saved specifically from ncorr.','Error','modal'); uiwait(h_error); end else h_error = errordlg('The data is not valid, please load data saved specifically from ncorr.','Error','modal'); uiwait(h_error); end else h_error = errordlg('Loading failed, most likely because Ncorr ran out of memory.','Error','modal'); uiwait(h_error); end end end function callback_topmenu_savedata(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for saving data. % Get save data filename [filename,pathname] = uiputfile({'*.mat'},'Save DIC data (must be .dat)'); if (~isequal(filename,0) && ~isequal(pathname,0)); % Check if data will be overwritten in directory overwrite = true; if (exist(fullfile(pathname,filename),'file')) contbutton = questdlg('File already exists. Do you want to overwrite?','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'No')) overwrite = false; end end if (overwrite) % Must deal with image data, ROI data, and data_dic. % 1) Images: Save the file names if they are 'file' or 'lazy' % If they were set through the workspace (i.e. 'load') then save the % image as double precision. % 2) ROIs: For the ROIs, save each directly. % 3) Data: Save data_dic directly. reference_save = struct('type',{},'gs',{},'name',{},'path',{},'roi',{}); current_save = struct('type',{},'gs',{},'name',{},'path',{},'roi',{}); % Images ---------------------------------------------% % Reference image: reference_save(1).type = obj.reference.imginfo.type; reference_save.gs = []; if (strcmp(obj.reference.imginfo.type,'load')) % Must save gs data directly reference_save.gs = obj.reference.imginfo.get_gs(); end reference_save.name = obj.reference.imginfo.name; reference_save.path = obj.reference.imginfo.path; reference_save.roi = obj.reference.roi; %#ok<STRNU> % Current image(s): for i = 0:length(obj.current)-1 current_save(i+1).type = obj.current(i+1).imginfo.type; current_save(i+1).gs = []; if (strcmp(obj.current(i+1).imginfo.type,'load')) % Must save gs data directly current_save(i+1).gs = obj.current(i+1).imginfo.get_gs(); end current_save(i+1).name = obj.current(i+1).imginfo.name; current_save(i+1).path = obj.current(i+1).imginfo.path; current_save(i+1).roi = obj.current(i+1).roi; end % Data -----------------------------------------------% data_dic_save = obj.data_dic; %#ok<NASGU> % Save -----------------------------------------------% try % The v7.3 flag helps save larger files save(fullfile(pathname,filename),'reference_save','current_save','data_dic_save','-v7.3'); catch %#ok<CTCH> % If saving fails, its generally because the files % are too large. h_error = errordlg('Saving failed, probably because the amount of data being saved is too large.','Error','modal'); uiwait(h_error); end end end end function callback_topmenu_clear(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for the clearing all the data. obj.clear_downstream('all'); end function callback_topmenu_sethandle(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for setting the handle to ncorr in the case % that it gets cleared from the workspace % Get Name name = util_get_name(obj); if (isempty(name)) % Prompt user for what handle he/she wants to use [handle_name,outstate] = gui_sethandle(get(obj.handles_gui.figure,'OuterPosition')); if (outstate == out.success) % Assign handles to base workspace assignin('base',handle_name,obj); end else % Handle already exists e = msgbox(['Handle already exists and is called: ' name],'WindowStyle','modal'); uiwait(e); end end function callback_topmenu_reinstall(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for reinstalling the mex files. % Check if ncorr.m is in current directory listing = dir; if (any(strcmp('ncorr.m',{listing.name}))) % Ask user if its okay to reinstall contbutton = questdlg('Are you sure you want to reinstall? All data will be lost if proceeding.','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'Yes')) % Clear ncorr_installinfo.txt file - this is the standard % way to reinstall filename = 'ncorr_installinfo.txt'; fid = fopen(filename,'w'); % This will clear file if (fid ~= -1) fclose(fid); % Close file % Force close obj.callback_close_function([],[],true); % Reopen ncorr - this will cause reinstallation since % ncorr_installinfo.txt has been cleared handles_ncorr = ncorr; % Get name name = util_get_name(obj); if (~isempty(name)) % If there is a name then assign the name to the % ncorr object. assignin('base',name,handles_ncorr); end else % Error h_error = errordlg('For some reason ncorr was not able to clear "ncorr_installinfo.txt" file, reinstall cannot take place.','Error','modal'); uiwait(h_error); end end else % Error h_error = errordlg('Please navigate to folder containing ncorr.m first before reinstalling.','Error','modal'); uiwait(h_error); end end function callback_exit_callback(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for exiting the program. % 3rd argument is set to false, which queries user about % closing if DIC data has been computed. obj.callback_close_function([],[],false); end function callback_topmenu_set_roi_ref(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading the region of interest from the % GUI % Get ROIs ---------------------------------------------------% % Check if ROI has been set before - must be from the regular % analysis, as backward DIC analysis will also set a reference ROI params_init = ncorr_class_roi.empty; if (~isempty(obj.reference) && ~isempty(obj.reference.roi) && ... ~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'regular')) params_init(1) = obj.reference.roi; end [roi_prelim,outstate] = ncorr_gui_setrois(obj.reference.imginfo, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % Package data: dispinfo_template.type = 'regular'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.reference(1).roi = roi_prelim; end end end function callback_topmenu_set_roi_cur(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for loading the region of interest from % the GUI % Get ROIs ---------------------------------------------------% % Check if ROI has been set before - must be from the backward % analysis, as backward dic analysis will also set a current ROI params_init = ncorr_class_roi.empty; if (~isempty(obj.current) && ~isempty(obj.current(end).roi) && ... ~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'backward')) params_init(1) = obj.current(end).roi; end [roi_prelim,outstate] = ncorr_gui_setrois(obj.current(end).imginfo, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_roi'); if (overwrite) % Package data: dispinfo_template.type = 'backward'; dispinfo_template.radius = []; dispinfo_template.spacing = []; dispinfo_template.cutoff_diffnorm = []; dispinfo_template.cutoff_iteration = []; dispinfo_template.total_threads = []; dispinfo_template.stepanalysis = struct('enabled',{},'type',{},'auto',{},'step',{}); dispinfo_template.subsettrunc = []; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; obj.current(end).roi = roi_prelim; end end end function callback_topmenu_setdicparameters(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for setting DIC parameters % Check if DIC parameters were set before - if dic parameters % are being set, the data_dic.dispinfo field is gauranteed % nonempty, so you don't need to check this first. params_init = {}; if (~isempty(obj.data_dic.dispinfo.radius) && ... ~isempty(obj.data_dic.dispinfo.spacing) && ... ~isempty(obj.data_dic.dispinfo.cutoff_diffnorm) && ... ~isempty(obj.data_dic.dispinfo.cutoff_iteration) && ... ~isempty(obj.data_dic.dispinfo.total_threads) && ... ~isempty(obj.data_dic.dispinfo.stepanalysis) && ... ~isempty(obj.data_dic.dispinfo.subsettrunc)) params_init = {obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis, ... obj.data_dic.dispinfo.subsettrunc}; end % Get Params -------------------------------------------------% if (strcmp(obj.data_dic.dispinfo.type,'regular')) % Show reference image for regular analysis [radius_prelim,spacing_prelim,cutoff_diffnorm_prelim,cutoff_iteration_prelim,total_threads_prelim,stepanalysis_prelim,subsettrunc_prelim,outstate] = ncorr_gui_setdicparams(obj.reference.imginfo, ... obj.reference.roi, ... obj.support_openmp, ... obj.total_cores, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); else % Show last current image for backward analysis [radius_prelim,spacing_prelim,cutoff_diffnorm_prelim,cutoff_iteration_prelim,total_threads_prelim,stepanalysis_prelim,subsettrunc_prelim,outstate] = ncorr_gui_setdicparams(obj.current(end).imginfo, ... obj.current(end).roi, ... obj.support_openmp, ... obj.total_cores, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); end if (outstate == out.success) % See if data will be overwritten overwrite = obj.clear_downstream('set_dicparameters'); if (overwrite) % Package data: dispinfo_template.type = obj.data_dic.dispinfo.type; dispinfo_template.radius = radius_prelim; dispinfo_template.spacing = spacing_prelim; dispinfo_template.cutoff_diffnorm = cutoff_diffnorm_prelim; dispinfo_template.cutoff_iteration = cutoff_iteration_prelim; dispinfo_template.total_threads = total_threads_prelim; dispinfo_template.stepanalysis = stepanalysis_prelim; dispinfo_template.subsettrunc = subsettrunc_prelim; dispinfo_template.imgcorr = struct('idx_ref',{},'idx_cur',{}); dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: obj.data_dic.dispinfo(1) = dispinfo_template; end end end function callback_topmenu_dic(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for performing DIC. % Merge images. This makes it convenient for the idx % tracker if step analysis is used imgs = [obj.reference obj.current]; % Initialize rois_dic_prelim = ncorr_class_roi.empty; displacements_prelim = struct('plot_u',{},'plot_v',{},'plot_corrcoef',{},'plot_validpoints',{}); imgcorr_prelim = struct('idx_ref',{},'idx_cur',{}); seedinfo_buffer = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (strcmp(obj.data_dic.dispinfo.type,'regular')) % Imgcorr starts out empty so this guarantees at least one % iteration. Make sure to exit when all images have been % analyzed. while (isempty(imgcorr_prelim) || imgcorr_prelim(end).idx_cur < length(imgs)-1) % Update idx_ref if (isempty(imgcorr_prelim)) imgcorr_prelim(1).idx_ref = 0; else % Use previous last current image as the new % reference image imgcorr_prelim(end+1).idx_ref = imgcorr_prelim(end).idx_cur; %#ok<AGROW> end % Update idx_cur if (obj.data_dic.dispinfo.stepanalysis.enabled && strcmp(obj.data_dic.dispinfo.stepanalysis.type,'leapfrog')) % If leapfrog is used, then set current image to a % preset increment imgcorr_prelim(end).idx_cur = min(imgcorr_prelim(end).idx_ref+obj.data_dic.dispinfo.stepanalysis.step,length(imgs)-1); else % If this is not leapfrog, set the current image to % the last image. This number will get updated % depending on how many images are successfully % analyzed and seeded imgcorr_prelim(end).idx_cur = length(imgs)-1; end % Do DIC analysis - only send initial parameters if % stepanalysis is enabled with automatic seed % propagation and an interation has already been done. params_init = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (obj.data_dic.dispinfo.stepanalysis.enabled && ... obj.data_dic.dispinfo.stepanalysis.auto && ... ~isempty(seedinfo_buffer)) % Get previous seeds as initial parameters if step % analysis and automatic seed propagation are enabled. % If these are provided then the seeds are automatically % updated params_init = seedinfo_buffer; end % Returns failed if exception is thrown; for both % failed and cancel just return. [displacements_buffer,rois_dic_buffer,seedinfo_buffer,outstate_dic] = ncorr_alg_dicanalysis(imgs(imgcorr_prelim(end).idx_ref+1:imgcorr_prelim(end).idx_cur+1), ... obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis.enabled, ... obj.data_dic.dispinfo.subsettrunc, ... imgcorr_prelim(end).idx_ref, ... length(obj.current), ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate_dic ~= out.success) % DIC analysis was cancelled or failed by throwing % an exception, for both cases return return; end % Update ROIs for i = 0:length(displacements_buffer)-1 imgs(i+imgcorr_prelim(end).idx_ref+2).roi = imgs(imgcorr_prelim(end).idx_ref+1).roi.update_roi(displacements_buffer(i+1).plot_u, ... displacements_buffer(i+1).plot_v, ... rois_dic_buffer(i+1), ... [imgs(i+imgcorr_prelim(end).idx_ref+2).imginfo.height imgs(i+imgcorr_prelim(end).idx_ref+2).imginfo.width], ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.radius); end % Store outputs for i = 0:length(displacements_buffer)-1 displacements_prelim(i+imgcorr_prelim(end).idx_ref+1) = displacements_buffer(i+1); rois_dic_prelim(i+imgcorr_prelim(end).idx_ref+1) = rois_dic_buffer(i+1); end % Update imgcorr_prelim if stepanalysis is enabled % - this is necessary since not all images are % necessarily analyzed. if (obj.data_dic.dispinfo.stepanalysis.enabled) imgcorr_prelim(end).idx_cur = imgcorr_prelim(end).idx_ref + length(displacements_buffer); end end else % Imgcorr starts out empty so this guarantees at least one % iteration. Make sure to exit when all images have been % analyzed. while (isempty(imgcorr_prelim) || imgcorr_prelim(end).idx_cur > 0) % Update idx_ref if (isempty(imgcorr_prelim)) imgcorr_prelim(1).idx_ref = length(imgs)-1; else % Use previous last current image as the new % reference image imgcorr_prelim(end+1).idx_ref = imgcorr_prelim(end).idx_cur; %#ok<AGROW> end % Update idx_cur if (obj.data_dic.dispinfo.stepanalysis.enabled && strcmp(obj.data_dic.dispinfo.stepanalysis.type,'leapfrog')) % If leapfrog is used, then set current image to a % preset increment imgcorr_prelim(end).idx_cur = max(imgcorr_prelim(end).idx_ref-obj.data_dic.dispinfo.stepanalysis.step,0); else % If this is not leapfrog, set the current image to % the last image. This number will get updated % depending on how many images are successfully % analyzed and seeded imgcorr_prelim(end).idx_cur = 0; end % Do DIC analysis - only send initial parameters if % stepanalysis is enabled with automatic seed % propagation and an interation has already been done. params_init = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (obj.data_dic.dispinfo.stepanalysis.enabled && ... obj.data_dic.dispinfo.stepanalysis.auto && ... ~isempty(seedinfo_buffer)) % Get previous seeds as initial parameters if step % analysis and automatic seed propagation are enabled. % If these are provided then the seeds are automatically % updated params_init = seedinfo_buffer; end % Returns failed if exception is thrown; for both % failed and cancel just return. [displacements_buffer,rois_dic_buffer,seedinfo_buffer,outstate_dic] = ncorr_alg_dicanalysis(imgs(imgcorr_prelim(end).idx_ref+1:-1:imgcorr_prelim(end).idx_cur+1), ... obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis.enabled, ... obj.data_dic.dispinfo.subsettrunc, ... length(obj.current)-imgcorr_prelim(end).idx_ref, ... length(obj.current), ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); if (outstate_dic ~= out.success) % DIC analysis was cancelled or failed by throwing % an exception, for both cases return return; end % Update ROIs for i = 0:length(displacements_buffer)-1 imgs(imgcorr_prelim(end).idx_ref-i).roi = imgs(imgcorr_prelim(end).idx_ref+1).roi.update_roi(displacements_buffer(i+1).plot_u, ... displacements_buffer(i+1).plot_v, ... rois_dic_buffer(i+1), ... [imgs(imgcorr_prelim(end).idx_ref-i).imginfo.height imgs(imgcorr_prelim(end).idx_ref-i).imginfo.width], ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.radius); end % Update displacements for i = 0:length(displacements_buffer)-1 % Displacements must be updated if more than two % images were analyzed. Also, leave the last % displacement field in the buffer alone since % it's already WRT the correct configuration if (i > 0) % Update displacement fields params_init = struct('paramvector',{},'num_region',{},'num_thread',{},'computepoints',{}); if (obj.data_dic.dispinfo.stepanalysis.auto) params_init = seedinfo_buffer(:,:,end-i); end % Returns failed if exception is thrown; for both % failed and cancel just return. [displacement_buffer_update,roi_dic_buffer_update,seedinfo_buffer_update,outstate_dic] = ncorr_alg_dicanalysis([imgs(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+i+1) imgs(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+1)], ... obj.data_dic.dispinfo.radius, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.cutoff_diffnorm, ... obj.data_dic.dispinfo.cutoff_iteration, ... obj.data_dic.dispinfo.total_threads, ... obj.data_dic.dispinfo.stepanalysis.enabled, ... obj.data_dic.dispinfo.subsettrunc, ... length(obj.current)-imgcorr_prelim(end).idx_ref+i, ... length(obj.current), ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); %#ok<ASGLU> if (outstate_dic ~= out.success) % DIC analysis was cancelled or failed by throwing % an exception, for both cases return return; end % Store Displacements displacements_prelim(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+i) = displacement_buffer_update; rois_dic_prelim(imgcorr_prelim(end).idx_ref-length(displacements_buffer)+i) = roi_dic_buffer_update; else % Directly store displacements displacements_prelim(imgcorr_prelim(end).idx_ref) = displacements_buffer(end); rois_dic_prelim(imgcorr_prelim(end).idx_ref) = rois_dic_buffer(end); end end % Update imgcorr_prelim - this is necessary since % not all images are necessarily analyzed. if (obj.data_dic.dispinfo.stepanalysis.enabled) imgcorr_prelim(end).idx_cur = imgcorr_prelim(end).idx_ref - length(displacements_buffer); end end end % Save the data % See if data will be overwritten overwrite = obj.clear_downstream('dicanalysis'); if (overwrite) % Package the data: for i = 0:length(obj.current)-1 displacements_template(i+1).plot_u_dic = displacements_prelim(i+1).plot_u; %#ok<AGROW> displacements_template(i+1).plot_v_dic = displacements_prelim(i+1).plot_v; %#ok<AGROW> displacements_template(i+1).plot_corrcoef_dic = displacements_prelim(i+1).plot_corrcoef; %#ok<AGROW> displacements_template(i+1).roi_dic = rois_dic_prelim(i+1); %#ok<AGROW> displacements_template(i+1).plot_u_ref_formatted = []; %#ok<AGROW> displacements_template(i+1).plot_v_ref_formatted = []; %#ok<AGROW> displacements_template(i+1).roi_ref_formatted = []; %#ok<AGROW> displacements_template(i+1).plot_u_cur_formatted = []; %#ok<AGROW> displacements_template(i+1).plot_v_cur_formatted = []; %#ok<AGROW> displacements_template(i+1).roi_cur_formatted = []; %#ok<AGROW> end dispinfo_template.type = obj.data_dic.dispinfo.type; dispinfo_template.radius = obj.data_dic.dispinfo.radius; dispinfo_template.spacing = obj.data_dic.dispinfo.spacing; dispinfo_template.cutoff_diffnorm = obj.data_dic.dispinfo.cutoff_diffnorm; dispinfo_template.cutoff_iteration = obj.data_dic.dispinfo.cutoff_iteration; dispinfo_template.total_threads = obj.data_dic.dispinfo.total_threads; dispinfo_template.stepanalysis = obj.data_dic.dispinfo.stepanalysis; dispinfo_template.subsettrunc = obj.data_dic.dispinfo.subsettrunc; dispinfo_template.imgcorr = imgcorr_prelim; dispinfo_template.pixtounits = []; dispinfo_template.units = ''; dispinfo_template.cutoff_corrcoef = []; dispinfo_template.lenscoef = []; % Store the data: % Updated ROIs obj.reference.roi = imgs(1).roi; for i = 0:length(obj.current)-1 obj.current(i+1).roi = imgs(i+2).roi; end % Displacement info obj.data_dic.dispinfo(1) = dispinfo_template; for i = 0:length(obj.current)-1 % Store displacements obj.data_dic.displacements(i+1) = displacements_template(i+1); end % Tell user analysis is done msgbox('DIC Analysis completed successfully. Press ok to finish.','WindowStyle','modal'); end end function callback_topmenu_formatdisp(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for formatting the displacements. % Merge images. This makes it convenient for the idx % tracker imgs = [obj.reference.imginfo obj.current.imginfo]; % Check if format has been done before params_init = cell(0); if (~isempty(obj.data_dic.dispinfo.pixtounits) && ... ~isempty(obj.data_dic.dispinfo.units) && ... ~isempty(obj.data_dic.dispinfo.cutoff_corrcoef) && ... ~isempty(obj.data_dic.dispinfo.lenscoef)) params_init = {obj.data_dic.dispinfo.pixtounits, ... obj.data_dic.dispinfo.units, ... obj.data_dic.dispinfo.cutoff_corrcoef, ... obj.data_dic.dispinfo.lenscoef}; end % Initialize plots_disp_f_prelim = struct('plot_u_ref_formatted',{},'plot_v_ref_formatted',{},'plot_u_cur_formatted',{},'plot_v_cur_formatted',{}); rois_f_ref_prelim = ncorr_class_roi.empty; rois_f_cur_prelim = ncorr_class_roi.empty; if (strcmp(obj.data_dic.dispinfo.type,'regular')) % Gather reference and current images in the correct order imgs_ref = ncorr_class_img.empty; imgs_cur = ncorr_class_img.empty; for i = 0:length(obj.data_dic.dispinfo.imgcorr)-1 imgs_ref = horzcat(imgs_ref,repmat(imgs(obj.data_dic.dispinfo.imgcorr(i+1).idx_ref+1),1,obj.data_dic.dispinfo.imgcorr(i+1).idx_cur-obj.data_dic.dispinfo.imgcorr(i+1).idx_ref)); %#ok<AGROW> imgs_cur = horzcat(imgs_cur,imgs(obj.data_dic.dispinfo.imgcorr(i+1).idx_ref+2:obj.data_dic.dispinfo.imgcorr(i+1).idx_cur+1)); %#ok<AGROW> end % Format step displacements ------------------------------% [plots_disp_f_step_prelim,rois_f_step_prelim,pixtounits_prelim,units_prelim,cutoff_corrcoef_prelim,lenscoef_prelim,outstate_formatdisp_step] = ncorr_gui_formatdisp(imgs_ref, ... imgs_cur, ... [obj.data_dic.displacements.roi_dic], ... {obj.data_dic.displacements.plot_u_dic}, ... {obj.data_dic.displacements.plot_v_dic}, ... {obj.data_dic.displacements.plot_corrcoef_dic}, ... obj.data_dic.dispinfo.spacing, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); % Check if analysis was cancelled if (outstate_formatdisp_step ~= out.success) return; end % Convert plots back to pixel displacements for i = 0:length(obj.current)-1 plots_disp_f_step_prelim(i+1).plot_u_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted./pixtounits_prelim; plots_disp_f_step_prelim(i+1).plot_v_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted./pixtounits_prelim; end % Add plots ----------------------------------------------% % Gather images that dont need to be added for i = obj.data_dic.dispinfo.imgcorr(1).idx_ref:obj.data_dic.dispinfo.imgcorr(1).idx_cur-1 plots_disp_f_prelim(i+1).plot_u_ref_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted; plots_disp_f_prelim(i+1).plot_v_ref_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted; rois_f_ref_prelim(i+1) = rois_f_step_prelim(i+1); end % Reduce reference ROI roi_ref_reduced = obj.reference.roi.reduce(obj.data_dic.dispinfo.spacing); % Add other plots plot_added_buffer = cell(0); % Cycle over imgcorr - skip first index in imgcorr for i = 1:length(obj.data_dic.dispinfo.imgcorr)-1 for j = obj.data_dic.dispinfo.imgcorr(i+1).idx_ref:obj.data_dic.dispinfo.imgcorr(i+1).idx_cur-1 % Get idxs of displacement fields used to add idx_dispadd = [[obj.data_dic.dispinfo.imgcorr(1:i).idx_cur]-1 j]; % Get added plots [plot_added_buffer{1},outstate_add] = ncorr_alg_addanalysis({plots_disp_f_step_prelim(idx_dispadd+1).plot_u_formatted}, ... {plots_disp_f_step_prelim(idx_dispadd+1).plot_v_formatted}, ... rois_f_step_prelim(idx_dispadd+1), ... obj.data_dic.dispinfo.spacing, ... j+1, ... length(obj.current)); % See if analysis was cancelled if (outstate_add ~= out.success) return; end % Store "added" plots plots_disp_f_prelim(j+1).plot_u_ref_formatted = plot_added_buffer{1}.plot_u_added; plots_disp_f_prelim(j+1).plot_v_ref_formatted = plot_added_buffer{1}.plot_v_added; rois_f_ref_prelim(j+1) = roi_ref_reduced.get_union(plot_added_buffer{1}.plot_validpoints,0); end end % Convert plots to Eulerian ------------------------------% % Get Eulerian displacements plot_eulerian_buffer = cell(0); roi_eulerian_buffer = cell(0); for i = 0:length(obj.current)-1 % Convert displacements from Lagrangian to Eulerian perspective [plot_eulerian_buffer{1},roi_eulerian_buffer{1},outstate_convert] = ncorr_alg_convertanalysis(obj.current(i+1), ... obj.reference, ... {plots_disp_f_prelim(i+1).plot_u_ref_formatted}, ... {plots_disp_f_prelim(i+1).plot_v_ref_formatted}, ... rois_f_ref_prelim(i+1), ... obj.data_dic.dispinfo.spacing, ... i, ... length(obj.current)); % See if analysis was cancelled or failed. Return for % both. if (outstate_convert ~= out.success) return; end % Store plots_disp_f_prelim(i+1).plot_u_cur_formatted = plot_eulerian_buffer{1}.plot_u_new; plots_disp_f_prelim(i+1).plot_v_cur_formatted = plot_eulerian_buffer{1}.plot_v_new; rois_f_cur_prelim(i+1) = roi_eulerian_buffer{1}; end % Make sure to convert displacements back to real units from % pixels. Also multiply Eulerian displacements by -1 to % make them truly Eulerian for i = 0:length(obj.current)-1 % Lagrangian plots_disp_f_prelim(i+1).plot_u_ref_formatted = plots_disp_f_prelim(i+1).plot_u_ref_formatted.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_ref_formatted = plots_disp_f_prelim(i+1).plot_v_ref_formatted.*pixtounits_prelim; % Eulerian plots_disp_f_prelim(i+1).plot_u_cur_formatted = -plots_disp_f_prelim(i+1).plot_u_cur_formatted.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_cur_formatted = -plots_disp_f_prelim(i+1).plot_v_cur_formatted.*pixtounits_prelim; end else % Gather reference and current images in the correct order imgs_ref = imgs(2:end); imgs_cur = ncorr_class_img.empty; for i = length(obj.data_dic.dispinfo.imgcorr)-1:-1:0 imgs_cur = horzcat(imgs_cur,repmat(imgs(obj.data_dic.dispinfo.imgcorr(i+1).idx_cur+1),1,obj.data_dic.dispinfo.imgcorr(i+1).idx_ref-obj.data_dic.dispinfo.imgcorr(i+1).idx_cur)); %#ok<AGROW> end % Format step displacements ------------------------------% [plots_disp_f_step_prelim,rois_f_step_prelim,pixtounits_prelim,units_prelim,cutoff_corrcoef_prelim,lenscoef_prelim,outstate_formatdisp_step] = ncorr_gui_formatdisp(imgs_ref, ... imgs_cur, ... [obj.data_dic.displacements.roi_dic], ... {obj.data_dic.displacements.plot_u_dic}, ... {obj.data_dic.displacements.plot_v_dic}, ... {obj.data_dic.displacements.plot_corrcoef_dic}, ... obj.data_dic.dispinfo.spacing, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); % Check if analysis was cancelled if (outstate_formatdisp_step ~= out.success) return; end % Convert plots to pixel displacements for i = 0:length(obj.current)-1 plots_disp_f_step_prelim(i+1).plot_u_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted./pixtounits_prelim; plots_disp_f_step_prelim(i+1).plot_v_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted./pixtounits_prelim; end % Add plots ------------------------------------------% % Gather images that dont need to be added for i = obj.data_dic.dispinfo.imgcorr(end).idx_cur:obj.data_dic.dispinfo.imgcorr(end).idx_ref-1 plots_disp_f_prelim(i+1).plot_u_cur_formatted = plots_disp_f_step_prelim(i+1).plot_u_formatted; plots_disp_f_prelim(i+1).plot_v_cur_formatted = plots_disp_f_step_prelim(i+1).plot_v_formatted; rois_f_cur_prelim(i+1) = rois_f_step_prelim(i+1); end % Add other plots plot_added_buffer = cell(0); counter = obj.data_dic.dispinfo.imgcorr(end).idx_ref+1; % Cycle over imgcorr - skip over last index for i = 0:length(obj.data_dic.dispinfo.imgcorr)-2 for j = obj.data_dic.dispinfo.imgcorr(i+1).idx_ref-1:-1:obj.data_dic.dispinfo.imgcorr(i+1).idx_cur % Get idxs of displacement fields used to add idx_dispadd = [j [obj.data_dic.dispinfo.imgcorr(i+2:end).idx_ref]-1]; % Get added plots [plot_added_buffer{1},outstate_add] = ncorr_alg_addanalysis({plots_disp_f_step_prelim(idx_dispadd+1).plot_u_formatted}, ... {plots_disp_f_step_prelim(idx_dispadd+1).plot_v_formatted}, ... rois_f_step_prelim(idx_dispadd+1), ... obj.data_dic.dispinfo.spacing, ... counter, ... length(obj.current)); % See if analysis was cancelled if (outstate_add ~= out.success) return; end % Reduce current ROI roi_cur_reduced = obj.current(j+1).roi.reduce(obj.data_dic.dispinfo.spacing); % Store "added" plots plots_disp_f_prelim(j+1).plot_u_cur_formatted = plot_added_buffer{1}.plot_u_added; plots_disp_f_prelim(j+1).plot_v_cur_formatted = plot_added_buffer{1}.plot_v_added; rois_f_cur_prelim(j+1) = roi_cur_reduced.get_union(plot_added_buffer{1}.plot_validpoints,0); % Update counter counter = counter+1; end end % Convert plots to Lagrangian ----------------------------% % Get Lagrangian Displacements plot_lagrangian_buffer = cell(0); roi_lagrangian_buffer = cell(0); [plot_lagrangian_buffer{1},roi_lagrangian_buffer{1},outstate_convert] = ncorr_alg_convertanalysis(obj.reference, ... obj.current, ... {plots_disp_f_prelim.plot_u_cur_formatted}, ... {plots_disp_f_prelim.plot_v_cur_formatted}, ... rois_f_cur_prelim, ... obj.data_dic.dispinfo.spacing, ... 0, ... length(obj.current)); % See if analysis was cancelled or failed. Return for % both. if (outstate_convert ~= out.success) return; end % Make sure to convert displacements back to real units from % pixels. Also multiply Eulerian displacements by -1 to % make them truly % Eulerian for i = 0:length(obj.current)-1 % Lagrangian plots_disp_f_prelim(i+1).plot_u_ref_formatted = plot_lagrangian_buffer{1}(i+1).plot_u_new.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_ref_formatted = plot_lagrangian_buffer{1}(i+1).plot_v_new.*pixtounits_prelim; rois_f_ref_prelim(i+1) = roi_lagrangian_buffer{1}(i+1); % Eulerian plots_disp_f_prelim(i+1).plot_u_cur_formatted = -plots_disp_f_prelim(i+1).plot_u_cur_formatted.*pixtounits_prelim; plots_disp_f_prelim(i+1).plot_v_cur_formatted = -plots_disp_f_prelim(i+1).plot_v_cur_formatted.*pixtounits_prelim; end end % Dont query overwrite, just do it since formatting % displacement data and calculating strain maps is quick obj.clear_downstream('formatdisp'); % For regular analysis just store formatted rois % Package data: for i = 0:length(obj.current)-1 displacements_template(i+1).plot_u_dic = obj.data_dic.displacements(i+1).plot_u_dic; %#ok<AGROW> displacements_template(i+1).plot_v_dic = obj.data_dic.displacements(i+1).plot_v_dic; %#ok<AGROW> displacements_template(i+1).plot_corrcoef_dic = obj.data_dic.displacements(i+1).plot_corrcoef_dic; %#ok<AGROW> displacements_template(i+1).roi_dic = obj.data_dic.displacements(i+1).roi_dic; %#ok<AGROW> displacements_template(i+1).plot_u_ref_formatted = plots_disp_f_prelim(i+1).plot_u_ref_formatted; %#ok<AGROW> displacements_template(i+1).plot_v_ref_formatted = plots_disp_f_prelim(i+1).plot_v_ref_formatted; %#ok<AGROW> displacements_template(i+1).roi_ref_formatted = rois_f_ref_prelim(i+1); %#ok<AGROW> displacements_template(i+1).plot_u_cur_formatted = plots_disp_f_prelim(i+1).plot_u_cur_formatted; %#ok<AGROW> displacements_template(i+1).plot_v_cur_formatted = plots_disp_f_prelim(i+1).plot_v_cur_formatted; %#ok<AGROW> displacements_template(i+1).roi_cur_formatted = rois_f_cur_prelim(i+1); %#ok<AGROW> end dispinfo_template.type = obj.data_dic.dispinfo.type; dispinfo_template.radius = obj.data_dic.dispinfo.radius; dispinfo_template.spacing = obj.data_dic.dispinfo.spacing; dispinfo_template.cutoff_diffnorm = obj.data_dic.dispinfo.cutoff_diffnorm; dispinfo_template.cutoff_iteration = obj.data_dic.dispinfo.cutoff_iteration; dispinfo_template.total_threads = obj.data_dic.dispinfo.total_threads; dispinfo_template.stepanalysis = obj.data_dic.dispinfo.stepanalysis; dispinfo_template.subsettrunc = obj.data_dic.dispinfo.subsettrunc; dispinfo_template.imgcorr = obj.data_dic.dispinfo.imgcorr; dispinfo_template.pixtounits = pixtounits_prelim; dispinfo_template.units = units_prelim; dispinfo_template.cutoff_corrcoef = cutoff_corrcoef_prelim; dispinfo_template.lenscoef = lenscoef_prelim; % Store data: for i = 0:length(obj.current)-1 obj.data_dic.displacements(i+1) = displacements_template(i+1); end obj.data_dic.dispinfo(1) = dispinfo_template; end function callback_topmenu_calcstrain(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for computing the strains after the % displacements have been formatted. % Get strain radius ------------------------------------------% % Check if strain has been calculated before params_init = []; if (~isempty(obj.data_dic.straininfo) && ~isempty(obj.data_dic.straininfo.radius) && ~isempty(obj.data_dic.straininfo.subsettrunc)) params_init(1) = obj.data_dic.straininfo.radius; params_init(2) = obj.data_dic.straininfo.subsettrunc; end % Get strain parameters [radius_strain_prelim,subsettrunc_prelim,outstate_radius_strain] = ncorr_gui_setstrainradius(obj.reference.imginfo, ... [obj.current.imginfo], ... [obj.data_dic.displacements.roi_ref_formatted], ... [obj.data_dic.displacements.roi_cur_formatted], ... {obj.data_dic.displacements.plot_u_ref_formatted}, ... {obj.data_dic.displacements.plot_v_ref_formatted}, ... {obj.data_dic.displacements.plot_u_cur_formatted}, ... {obj.data_dic.displacements.plot_v_cur_formatted}, ... obj.data_dic.dispinfo.spacing, ... obj.data_dic.dispinfo.pixtounits, ... obj.data_dic.dispinfo.units, ... get(obj.handles_gui.figure,'OuterPosition'), ... params_init); % See if analysis was cancelled if (outstate_radius_strain ~= out.success) return; end % Calculate strains --------------------------------------% % Calculate displacement gradients through least squares % plane fit first % Lagrangian plots_dispgrad_ref_prelim = struct('plot_dudx',{},'plot_dudy',{},'plot_dvdx',{},'plot_dvdy',{},'plot_validpoints',{}); plots_dispgrad_cur_prelim = struct('plot_dudx',{},'plot_dudy',{},'plot_dvdx',{},'plot_dvdy',{},'plot_validpoints',{}); % Lagrangian for i = 0:length(obj.current)-1 [plots_dispgrad_ref_prelim(i+1),outstate_dispgrad_ref] = ncorr_alg_dispgrad(obj.data_dic.displacements(i+1).plot_u_ref_formatted, ... obj.data_dic.displacements(i+1).plot_v_ref_formatted, ... obj.data_dic.displacements(i+1).roi_ref_formatted.formatted(), ... int32(radius_strain_prelim), ... obj.data_dic.dispinfo.pixtounits, ... int32(obj.data_dic.dispinfo.spacing), ... logical(subsettrunc_prelim), ... int32(i), ... int32(length(obj.current))); % See if analysis was cancelled if (outstate_dispgrad_ref ~= out.success) return; end end % Eulerian for i = 0:length(obj.current)-1 % Eulerian [plots_dispgrad_cur_prelim(i+1),outstate_dispgrad_cur] = ncorr_alg_dispgrad(obj.data_dic.displacements(i+1).plot_u_cur_formatted, ... obj.data_dic.displacements(i+1).plot_v_cur_formatted, ... obj.data_dic.displacements(i+1).roi_cur_formatted.formatted(), ... int32(radius_strain_prelim), ... obj.data_dic.dispinfo.pixtounits, ... int32(obj.data_dic.dispinfo.spacing), ... logical(subsettrunc_prelim), ... int32(i), ... int32(length(obj.current))); % See if analysis was cancelled if (outstate_dispgrad_cur ~= out.success) return; end end % Store % Dont query overwrite, just do it since calculating strain maps is quick obj.clear_downstream('strains'); % Package info: for i = 0:length(obj.current)-1 % Green Lagrangian strains_template(i+1).plot_exx_ref_formatted = (1/2)*(2*plots_dispgrad_ref_prelim(i+1).plot_dudx+plots_dispgrad_ref_prelim(i+1).plot_dudx.^2+plots_dispgrad_ref_prelim(i+1).plot_dvdx.^2); %#ok<AGROW> strains_template(i+1).plot_exy_ref_formatted = (1/2)*(plots_dispgrad_ref_prelim(i+1).plot_dudy+plots_dispgrad_ref_prelim(i+1).plot_dvdx+plots_dispgrad_ref_prelim(i+1).plot_dudx.*plots_dispgrad_ref_prelim(i+1).plot_dudy+plots_dispgrad_ref_prelim(i+1).plot_dvdx.*plots_dispgrad_ref_prelim(i+1).plot_dvdy); %#ok<AGROW> strains_template(i+1).plot_eyy_ref_formatted = (1/2)*(2*plots_dispgrad_ref_prelim(i+1).plot_dvdy+plots_dispgrad_ref_prelim(i+1).plot_dudy.^2+plots_dispgrad_ref_prelim(i+1).plot_dvdy.^2); %#ok<AGROW> strains_template(i+1).roi_ref_formatted = obj.data_dic.displacements(i+1).roi_ref_formatted.get_union(plots_dispgrad_ref_prelim(i+1).plot_validpoints,0); %#ok<AGROW> % Eulerian-Almansi strains_template(i+1).plot_exx_cur_formatted = (1/2)*(2*plots_dispgrad_cur_prelim(i+1).plot_dudx-plots_dispgrad_cur_prelim(i+1).plot_dudx.^2-plots_dispgrad_cur_prelim(i+1).plot_dvdx.^2); %#ok<AGROW> strains_template(i+1).plot_exy_cur_formatted = (1/2)*(plots_dispgrad_cur_prelim(i+1).plot_dudy+plots_dispgrad_cur_prelim(i+1).plot_dvdx-plots_dispgrad_cur_prelim(i+1).plot_dudx.*plots_dispgrad_cur_prelim(i+1).plot_dudy-plots_dispgrad_cur_prelim(i+1).plot_dvdx.*plots_dispgrad_cur_prelim(i+1).plot_dvdy); %#ok<AGROW> strains_template(i+1).plot_eyy_cur_formatted = (1/2)*(2*plots_dispgrad_cur_prelim(i+1).plot_dvdy-plots_dispgrad_cur_prelim(i+1).plot_dudy.^2-plots_dispgrad_cur_prelim(i+1).plot_dvdy.^2); %#ok<AGROW> strains_template(i+1).roi_cur_formatted = obj.data_dic.displacements(i+1).roi_cur_formatted.get_union(plots_dispgrad_cur_prelim(i+1).plot_validpoints,0); %#ok<AGROW> end % Store info: for i = 0:length(obj.current)-1 obj.data_dic.strains(i+1) = strains_template(i+1); end obj.data_dic.straininfo(1).radius = radius_strain_prelim; obj.data_dic.straininfo(1).subsettrunc = subsettrunc_prelim; % Tell user calculating strains was successful msgbox('Strains calculation complete. Press ok to finish.','WindowStyle','modal'); end function callback_topmenu_viewplot(obj,hObject,eventdata,type_fig) %#ok<INUSL> % This is the callback for viewing the plots after the % displacements have been formatted and after the strains % have been computed. % Get Data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); % Deactivate closerequestfcn - this prevents any closing of % figures when handles_plot is being updated for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn',''); end % Cycle over figures (it's possible type fig has more than one % type). for i = 0:length(type_fig)-1 % Check if plot already exists plotexists = false; for j = 0:length(handles_plot)-1 if (strcmp(getappdata(handles_plot(j+1),'type_plot'),type_fig{i+1})) % Plot already exists, bring it back to focus figure(handles_plot(j+1)); plotexists = true; break; end end if (~plotexists) % Get params_init; params_init = cell(0); if (~isempty(handles_plot)) % All windows will have the same paramters so just % grab the info from the first window params_init{1} = getappdata(handles_plot(1),'num_cur'); % {1} = num_cur % Get data params_init{2} = getappdata(handles_plot(1),'scalebarlength'); % {2} = scalebarlength params_init{3} = getappdata(handles_plot(1),'val_checkbox_scalebar'); % {3} = scalebar; params_init{4} = getappdata(handles_plot(1),'val_checkbox_axes'); % {4} = axes; params_init{5} = getappdata(handles_plot(1),'val_popupmenu'); % {5} = lagrangian or eulerian params_init{6} = strcmp(get(getappdata(handles_plot(1),'handle_zoom'),'Enable'),'on'); % {6} = zoomed params_init{7} = strcmp(get(getappdata(handles_plot(1),'handle_pan'),'Enable'),'on'); % {7} = panned end % Go over friends list; find the right most figure and % make this the figure whose coordinates are used for % pos_parent. if (isempty(handles_plot)) % Use coordinates of ncorr pos_parent = get(obj.handles_gui.figure,'OuterPosition'); else % Plots already exist, fight right most plot pos_parent = get(handles_plot(1),'OuterPosition'); for j = 1:length(handles_plot)-1 pos_buf = get(handles_plot(j+1),'OuterPosition'); if (pos_buf(1) + pos_buf(3) > pos_parent(1) + pos_parent(3)) pos_parent = pos_buf; elseif (pos_buf(1) + pos_buf(3) == pos_parent(1) + pos_parent(3)) % If they are equal, get the one that is % lower if (pos_buf(2) < pos_parent(2)) pos_parent = pos_buf; end end end end % Create new plot - This function will return all % gui handles. Store these as "friends" so plots can % remain consistent. The figure has already has its % closereqestfcn disabled handles_gui_new = ncorr_gui_viewplots(obj.reference.imginfo, ... [obj.current.imginfo], ... obj.data_dic, ... type_fig{i+1}, ... pos_parent, ... params_init); % Figure can be invalid if the ROI is empty if (ishandle(handles_gui_new.figure)) % Set delete functions set(handles_gui_new.figure,'DeleteFcn',ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_update_handles_plot(obj,hObject,eventdata),obj.handles_gui.figure)); % Update friends list - this allows the things to % sync if (isempty(handles_plot)) % Check if a plot already exists - if it does then get % the old friends list from the first plot friends_old = []; else friends_old = getappdata(handles_plot(1),'friends'); end friends_new = horzcat(friends_old,{handles_gui_new}); % Link the axes vec_friends = [friends_new{:}]; linkaxes([vec_friends.axes_formatplot],'xy'); % Set Data % First update handles_gui_new setappdata(handles_gui_new.figure,'friends',friends_new); % Now update the preexisting handles for j = 0:length(handles_plot)-1 setappdata(handles_plot(j+1),'friends',friends_new); end % Now store figure handle handles_plot = horzcat(handles_plot,handles_gui_new.figure); %#ok<AGROW> end end end % Reactivate closerequestfcns for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn','closereq'); end % Store Data setappdata(obj.handles_gui.figure,'handles_plot',handles_plot); end function callback_topmenu_closeplots(obj,hObject,eventdata) %#ok<INUSD> % This callback closes all the open plots. obj.close_dicplots('all'); end %-----------------------------------------------------------------% % Other Callbacks ------------------------------------------------% %-----------------------------------------------------------------% function callback_update_title(obj,hObject,eventdata) %#ok<INUSD> % This function will update the title of ncorr to display the % handle pointing to ncorr % Get Name name = util_get_name(obj); if (isempty(name)) % No handle exists set(obj.handles_gui.figure,'Name','Ncorr'); else % Handle exists set(obj.handles_gui.figure,'Name',['Ncorr - ' name]); end end function callback_edit_imgnum(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for setting the image number directly % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Get img num num_cur_prelim = str2double(get(obj.handles_gui.edit_imgnum,'string')); if (ncorr_util_isintbb(num_cur_prelim,1,length(obj.current),'Current image number') == out.success) % convert num_cur_prelim to zero based indexed num_cur = num_cur_prelim-1; end % Set data setappdata(obj.handles_gui.figure,'num_cur',num_cur); end function callback_button_left(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for the left button to display different % current images % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Check for overshoot if (num_cur > 0) num_cur = num_cur-1; end % Set data setappdata(obj.handles_gui.figure,'num_cur',num_cur); end function callback_button_right(obj,hObject,eventdata) %#ok<INUSD> % This is the callback for the right button to display different % current images % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Check for overshoot if (num_cur < length(obj.current)-1) num_cur = num_cur+1; end % Set data setappdata(obj.handles_gui.figure,'num_cur',num_cur); end function callback_update_handles_plot(obj,hObject,eventdata) %#ok<INUSD> % This function is called when a plot figure is closed; this % function removes the figure handle from handles_plot. % Get data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); % Disable closerequestfcns - ensure other plots aren't closed % while the handle is being updated. for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn',''); end % Determine index of closing figure closingfig = gcbf; idx_closingfig = -1; for i = 0:length(handles_plot)-1 if (handles_plot(i+1) == closingfig) % update handle array idx_closingfig = i; break; end end % Delete closing figure from handles_plot handles_plot(idx_closingfig+1) = []; % Update Friends for i = 0:length(handles_plot)-1 % Get friends list for each plot handle. Delete the friend % that contains closing fig % Get data friends = getappdata(handles_plot(i+1),'friends'); for j = 0:length(friends)-1 if (friends{j+1}.figure == closingfig) friends(j+1) = []; break; end end % Set data setappdata(handles_plot(i+1),'friends',friends); end % Reenable CloseRequestfFcns for i = 0:length(handles_plot)-1 set(handles_plot(i+1),'CloseRequestFcn','closereq'); end % Set data setappdata(obj.handles_gui.figure,'handles_plot',handles_plot); end function callback_close_function(obj,hObject,eventdata,force) %#ok<INUSL> % Force will cause a force close if it's true - this situation % occurs when the user manually deletes the GUI handle closencorr = false; if (~force && ~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements)) contbutton = questdlg('Prior DIC data has been detected. If you continue without saving, this data will be deleted. Do you want to proceed?','Continue Operation','Yes','No','Yes'); if (strcmp(contbutton,'Yes')) closencorr = true; end else % Force close if user calls "delete(handles_ncorr)" or if % dic analysis has not been run yet. closencorr = true; end if (closencorr) % Close plot figures obj.close_dicplots('all'); % Delete timer timer_ncorr = getappdata(obj.handles_gui.figure,'timer'); if (isa(timer_ncorr,'timer') && isvalid(timer_ncorr)) stop(timer_ncorr); delete(timer_ncorr); end % Close GUI delete(obj.handles_gui.figure); % Delete data delete(obj); end end %-----------------------------------------------------------------% % Other Functions ------------------------------------------------% %-----------------------------------------------------------------% function close_dicplots(obj,closetype) % This is the function for closing either the displacement plots, % strain plots, or all the plots. % Displacement plots if (strcmp(closetype,'displacements') || strcmp(closetype,'all')); % Get data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); handles_plot_close = []; for i = 0:length(handles_plot)-1 type_plot = getappdata(handles_plot(i+1),'type_plot'); if (strcmp(type_plot,'u') || strcmp(type_plot,'v')) handles_plot_close = horzcat(handles_plot_close,handles_plot(i+1)); %#ok<AGROW> end end % Close figures close(handles_plot_close); % handles_plot updates after this end % Strain plots if (strcmp(closetype,'strains') || strcmp(closetype,'all')); % Get Data handles_plot = getappdata(obj.handles_gui.figure,'handles_plot'); handles_plot_close = []; for i = 0:length(handles_plot)-1 type_plot = getappdata(handles_plot(i+1),'type_plot'); if (strcmp(type_plot,'exx') || strcmp(type_plot,'exy') || strcmp(type_plot,'eyy')) handles_plot_close = horzcat(handles_plot_close,handles_plot(i+1)); %#ok<AGROW> end end % Close figures close(handles_plot_close); % handles_plot updates after this end end function overwrite = clear_downstream(obj,action) % Middle of callback - alert user if data is going to be % overwritten and then clear downstream data. % Initialize - set default to true. overwrite = true; % See whether to query overwrite if (strcmp(action,'all') || strcmp(action,'set_ref') || strcmp(action,'set_cur') || strcmp(action,'set_roi') || strcmp(action,'set_dicparameters') || strcmp(action,'dicanalysis')) % Only query if displacements have been set, since this is % usually the most time consuming process if (~isempty(obj.data_dic.displacements)) contbutton = questdlg('Prior DIC data has been detected. If you continue without saving, this data will be deleted. Do you want to proceed?','Continue Operation','Yes','No','Yes'); if (~strcmp(contbutton,'Yes')) overwrite = false; end end end % If overwrite is permitted, then clear downstream data. if (overwrite) % Get field names since they are used a lot fields_data_dic = fieldnames(obj.data_dic); fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); % Handle each step accordingly if (strcmp(action,'all')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % All info needs to be deleted obj.reference(:) = []; obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); for i = 0:length(fields_data_dic)-1 obj.data_dic.(fields_data_dic{i+1})(:) = []; end elseif (strcmp(action,'set_ref')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Clear all reference info obj.reference(:) = []; % For current images, clear all ROIs if analysis % was regular. If it was backward, then clear all % ROIs except for the last one if (~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'regular')) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end else for i = 0:length(obj.current)-2 obj.current(i+1).roi = ncorr_class_roi.empty; end end end % Clear everything in data_dic except for dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete everything except for the type in % dispinfo. If the type was regular, then delete % that too if (~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'regular')) obj.data_dic.dispinfo(:) = []; else for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end end end elseif (strcmp(action,'set_cur')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Delete reference ROI if type is backward if (~isempty(obj.reference) && ~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'backward')) obj.reference.roi = ncorr_class_roi.empty; end end % Clear all current images obj.current(:) = []; setappdata(obj.handles_gui.figure,'num_cur',[]); % Clear everything in data_dic except for dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete everything except for the type in % dispinfo. If the type was backward, then delete % that too if (~isempty(obj.data_dic.dispinfo)) if (strcmp(obj.data_dic.dispinfo.type,'backward')) obj.data_dic.dispinfo(:) = []; else for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end end end elseif (strcmp(action,'set_roi')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Clear all ROIs in reference image if (~isempty(obj.reference)) obj.reference.roi = ncorr_class_roi.empty; end % Clear all ROIS in current image if (~isempty(obj.current)) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end end % Clear all data_dic for i = 0:length(fields_data_dic)-1 obj.data_dic.(fields_data_dic{i+1})(:) = []; end elseif (strcmp(action,'set_dicparameters')) % Close DIC figs if they exist -----------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % If type is regular, delete all current ROIS. % If type is backward, delete all ROIS except for % last current ROI if (strcmp(obj.data_dic.dispinfo.type,'regular')) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end else obj.reference.roi = ncorr_class_roi.empty; for i = 0:length(obj.current)-2 obj.current(i+1).roi = ncorr_class_roi.empty; end end % Clear everything in data_dic except for dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete everything in dispinfo except for the type fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end elseif (strcmp(action,'dicanalysis')) % Close all DIC figs if they exist -------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % If type is regular, delete all current ROIs. % If type is backward, delete all ROIs except for % last current ROI if (strcmp(obj.data_dic.dispinfo.type,'regular')) for i = 0:length(obj.current)-1 obj.current(i+1).roi = ncorr_class_roi.empty; end else obj.reference.roi = ncorr_class_roi.empty; for i = 0:length(obj.current)-2 obj.current(i+1).roi = ncorr_class_roi.empty; end end % Delete all info except dispinfo for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete downstream data in data_dic.dispinfo: fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'radius') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'spacing') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_diffnorm') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_iteration') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'total_threads') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'stepanalysis') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'subsettrunc')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end elseif (strcmp(action,'formatdisp')) % Close DIC figs if they exist -----------------------% obj.close_dicplots('all'); % Clear downstream data ------------------------------% % Delete all info except for displacements and % dispinfo; for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'displacements') && ... ~strcmp(fields_data_dic{i+1},'dispinfo')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end % Delete downstream data in data_dic.dispinfo: fields_dic_data_dispinfo = fieldnames(obj.data_dic.dispinfo); for i = 0:length(fields_dic_data_dispinfo)-1 if (~strcmp(fields_dic_data_dispinfo{i+1},'type') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'radius') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'spacing') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_diffnorm') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'cutoff_iteration') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'total_threads') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'stepanalysis') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'subsettrunc') && ... ~strcmp(fields_dic_data_dispinfo{i+1},'imgcorr')) obj.data_dic.dispinfo.(fields_dic_data_dispinfo{i+1})(:) = []; end end % Delete downstream data in data_dic.displacements: dic_data_disp_fields = fieldnames(obj.data_dic.displacements); for i = 0:length(dic_data_disp_fields)-1 if (~strcmp(dic_data_disp_fields{i+1},'plot_u_dic') && ... ~strcmp(dic_data_disp_fields{i+1},'plot_v_dic') && ... ~strcmp(dic_data_disp_fields{i+1},'plot_corrcoef_dic') && ... ~strcmp(dic_data_disp_fields{i+1},'roi_dic')) for j = 0:length(obj.data_dic.displacements)-1 obj.data_dic.displacements(j+1).(dic_data_disp_fields{i+1})(:) = []; end end end elseif (strcmp(action,'strains')) % Close strain figs if they exist --------------------% obj.close_dicplots('strains'); % Clear downstream data ------------------------------% % Delete all info except dispinfo and displacements for i = 0:length(fields_data_dic)-1 if (~strcmp(fields_data_dic{i+1},'dispinfo') && ... ~strcmp(fields_data_dic{i+1},'displacements')) obj.data_dic.(fields_data_dic{i+1})(:) = []; end end end end end function freeze_menu(obj) % This function disables the menu when callbacks are executing set(obj.handles_gui.topmenu_file,'Enable','off'); set(obj.handles_gui.topmenu_regionofinterest,'Enable','off'); set(obj.handles_gui.topmenu_analysis,'Enable','off'); set(obj.handles_gui.topmenu_plot,'Enable','off'); end function unfreeze_menu(obj) % This function enables the menu when callbacks are done set(obj.handles_gui.topmenu_file,'Enable','on'); set(obj.handles_gui.topmenu_regionofinterest,'Enable','on'); set(obj.handles_gui.topmenu_analysis,'Enable','on'); set(obj.handles_gui.topmenu_plot,'Enable','on'); end function update_topmenu(obj) % This function updates menu items depending on what is loaded % Reference image is loaded: if (~isempty(obj.reference)) set(obj.handles_gui.topmenu_setroi_ref,'Enable','on'); else set(obj.handles_gui.topmenu_setroi_ref,'Enable','off'); end % Current image is loaded: if (~isempty(obj.current)) set(obj.handles_gui.topmenu_setroi_cur,'Enable','on'); else set(obj.handles_gui.topmenu_setroi_cur,'Enable','off'); end % Reference image, current image, and ROI are loaded: % Must check if analysis is regular or backward because ROIs % can be set through the DIC analysis if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ... ((strcmp(obj.data_dic.dispinfo.type,'regular') && ~isempty(obj.reference.roi)) || ... ((strcmp(obj.data_dic.dispinfo.type,'backward') && ~isempty(obj.current(end).roi))))) set(obj.handles_gui.topmenu_setdicparameters,'Enable','on'); else set(obj.handles_gui.topmenu_setdicparameters,'Enable','off'); end % Reference image, current image, and DIC parameters are loaded: if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ... ~isempty(obj.data_dic.dispinfo.radius) && ... ~isempty(obj.data_dic.dispinfo.spacing) && ... ~isempty(obj.data_dic.dispinfo.cutoff_diffnorm) && ... ~isempty(obj.data_dic.dispinfo.cutoff_iteration) && ... ~isempty(obj.data_dic.dispinfo.total_threads) && ... ~isempty(obj.data_dic.dispinfo.stepanalysis) && ... ~isempty(obj.data_dic.dispinfo.subsettrunc)) set(obj.handles_gui.topmenu_perfdic,'Enable','on'); else set(obj.handles_gui.topmenu_perfdic,'Enable','off'); end % Reference image, current image, and DIC analysis are loaded: if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements)) set(obj.handles_gui.topmenu_savedata,'Enable','on'); set(obj.handles_gui.topmenu_formatdisp,'Enable','on'); else set(obj.handles_gui.topmenu_savedata,'Enable','off'); set(obj.handles_gui.topmenu_formatdisp,'Enable','off'); end % Reference image, current image, DIC data, and formatted % displacements are loaded: if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements) && ... ~isempty(obj.data_dic.dispinfo.pixtounits) && ... ~isempty(obj.data_dic.dispinfo.units) && ... ~isempty(obj.data_dic.dispinfo.cutoff_corrcoef) && ... ~isempty(obj.data_dic.dispinfo.lenscoef)) set(obj.handles_gui.topmenu_calcstrain,'Enable','on'); set(obj.handles_gui.topmenu_viewdispplot_u,'Enable','on'); set(obj.handles_gui.topmenu_viewdispplot_v,'Enable','on'); set(obj.handles_gui.topmenu_viewdispplot_all,'Enable','on'); set(obj.handles_gui.topmenu_closeplots,'Enable','on'); else set(obj.handles_gui.topmenu_calcstrain,'Enable','off'); set(obj.handles_gui.topmenu_viewdispplot_u,'Enable','off'); set(obj.handles_gui.topmenu_viewdispplot_v,'Enable','off'); set(obj.handles_gui.topmenu_viewdispplot_all,'Enable','off'); set(obj.handles_gui.topmenu_closeplots,'Enable','off'); end % Reference image, current image, DIC data, and strains are % loaded if (~isempty(obj.reference) && ~isempty(obj.current) && ~isempty(obj.data_dic.dispinfo)&& ~isempty(obj.data_dic.displacements) && ... ~isempty(obj.data_dic.straininfo) && ~isempty(obj.data_dic.strains)) set(obj.handles_gui.topmenu_viewstrainplot_exx,'Enable','on'); set(obj.handles_gui.topmenu_viewstrainplot_exy,'Enable','on'); set(obj.handles_gui.topmenu_viewstrainplot_eyy,'Enable','on'); set(obj.handles_gui.topmenu_viewstrainplot_all,'Enable','on'); else set(obj.handles_gui.topmenu_viewstrainplot_exx,'Enable','off'); set(obj.handles_gui.topmenu_viewstrainplot_exy,'Enable','off'); set(obj.handles_gui.topmenu_viewstrainplot_eyy,'Enable','off'); set(obj.handles_gui.topmenu_viewstrainplot_all,'Enable','off'); end end function update_dicstatetext(obj) % This function updates state text depending on what is loaded % Reference image: if (~isempty(obj.reference)) set(obj.handles_gui.text_refloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_refloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % Current image: if (~isempty(obj.current)) set(obj.handles_gui.text_curloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_curloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % ROI: Must check if analysis is regular or backward because ROIs % can be set through the DIC analysis if (~isempty(obj.data_dic.dispinfo)&& ... ((strcmp(obj.data_dic.dispinfo.type,'regular') && ~isempty(obj.reference.roi)) || ... ((strcmp(obj.data_dic.dispinfo.type,'backward') && ~isempty(obj.current(end).roi))))) set(obj.handles_gui.text_roiloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_roiloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % DIC parameters: if (~isempty(obj.data_dic.dispinfo) && ... ~isempty(obj.data_dic.dispinfo.radius) && ... ~isempty(obj.data_dic.dispinfo.spacing) && ... ~isempty(obj.data_dic.dispinfo.cutoff_diffnorm) && ... ~isempty(obj.data_dic.dispinfo.cutoff_iteration) && ... ~isempty(obj.data_dic.dispinfo.total_threads) && ... ~isempty(obj.data_dic.dispinfo.stepanalysis) && ... ~isempty(obj.data_dic.dispinfo.subsettrunc)) set(obj.handles_gui.text_dicparametersloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_dicparametersloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % DIC analysis: if (~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements)) set(obj.handles_gui.text_dicloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_dicloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % Displacements formatted: if (~isempty(obj.data_dic.dispinfo) && ~isempty(obj.data_dic.displacements) && ... ~isempty(obj.data_dic.dispinfo.pixtounits) && ... ~isempty(obj.data_dic.dispinfo.units) && ... ~isempty(obj.data_dic.dispinfo.cutoff_corrcoef) && ... ~isempty(obj.data_dic.dispinfo.lenscoef)) set(obj.handles_gui.text_disploaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_disploaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end % Strains: if (~isempty(obj.data_dic.straininfo) && ~isempty(obj.data_dic.strains)) set(obj.handles_gui.text_strainloaded_s,'String','SET','ForegroundColor','g','FontWeight','bold'); else set(obj.handles_gui.text_strainloaded_s,'String','NOT SET','ForegroundColor','r','FontWeight','normal'); end end function update_axes(obj,action) % Get data num_cur = getappdata(obj.handles_gui.figure,'num_cur'); % Updates axes, axes buttons, and axes texts below: if (strcmp(action,'set')) % Reference axes if (isempty(obj.reference)) % Clear reference image cla(obj.handles_gui.axes_ref); set(obj.handles_gui.text_refname,'String','Name: '); set(obj.handles_gui.text_refresolution,'String','Resolution: '); else % Set reference image and format axes imshow(obj.reference.imginfo.get_img(),[obj.reference.imginfo.min_gs obj.reference.imginfo.max_gs],'Parent',obj.handles_gui.axes_ref); set(obj.handles_gui.axes_ref ,'Visible','off'); % Show image text set(obj.handles_gui.text_refname,'String',['Name: ' obj.reference.imginfo.name]); set(obj.handles_gui.text_refresolution,'String',['Resolution: ' num2str(obj.reference.imginfo.width) ' x ' num2str(obj.reference.imginfo.height)]); end % Current axes if (isempty(obj.current)) % Disable buttons set(obj.handles_gui.button_right,'Enable','off'); set(obj.handles_gui.button_left,'Enable','off'); set(obj.handles_gui.edit_imgnum,'Enable','off'); set(obj.handles_gui.edit_imgnum,'String',num2str(num_cur)); % Reset current image: cla(obj.handles_gui.axes_cur); % Update current image name and resolution: set(obj.handles_gui.text_curname,'String','Name: '); set(obj.handles_gui.text_curresolution,'String','Resolution: '); else % Set current image and format axes imshow(obj.current(num_cur+1).imginfo.get_img(),[obj.current(num_cur+1).imginfo.min_gs obj.current(num_cur+1).imginfo.max_gs],'Parent',obj.handles_gui.axes_cur); set(obj.handles_gui.axes_cur ,'Visible','off'); % Format/show text set(obj.handles_gui.text_curname,'String',['Name: ' obj.current(num_cur+1).imginfo.name]); set(obj.handles_gui.text_curresolution,'String',['Resolution: ' num2str(obj.current(num_cur+1).imginfo.width) ' x ' num2str(obj.current(num_cur+1).imginfo.height)]); % Set left/right buttons and editbox set(obj.handles_gui.edit_imgnum,'String',num2str(num_cur+1)); if (length(obj.current) == 1) set(obj.handles_gui.button_right,'Enable','off'); set(obj.handles_gui.button_left,'Enable','off'); set(obj.handles_gui.edit_imgnum,'Enable','off'); elseif (num_cur == 0) set(obj.handles_gui.button_right,'Enable','on'); set(obj.handles_gui.button_left,'Enable','off'); set(obj.handles_gui.edit_imgnum,'Enable','on'); elseif (num_cur == length(obj.current)-1) set(obj.handles_gui.button_right,'Enable','off'); set(obj.handles_gui.button_left,'Enable','on'); set(obj.handles_gui.edit_imgnum,'Enable','on'); else set(obj.handles_gui.button_right,'Enable','on'); set(obj.handles_gui.button_left,'Enable','on'); set(obj.handles_gui.edit_imgnum,'Enable','on'); end end % ROI axes if (~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'regular')) % Set reference ROI imshow(obj.reference.roi.mask,'Parent',obj.handles_gui.axes_roi); set(obj.handles_gui.axes_roi,'Visible','off'); elseif (~isempty(obj.data_dic.dispinfo) && strcmp(obj.data_dic.dispinfo.type,'backward')) % Set last current ROI imshow(obj.current(end).roi.mask,'Parent',obj.handles_gui.axes_roi); set(obj.handles_gui.axes_roi,'Visible','off'); else % Clear ROI cla(obj.handles_gui.axes_roi); end end end function outstate = check_matlabcompat(obj) %#ok<MANU> % This function checks the matlab compatibility. % Initialize output outstate = out.failed; vm = datevec(version('-date')); if (vm(1) < 2009) % Pop error message but allow user to continue h_error = errordlg('Developed using MATLAB 2009; may not work for versions before this date. Ncorr will continue.','Error','modal'); uiwait(h_error); end % Check to make sure correct toolboxes are installed ---------% % Requires the image processing toolbox and the statistics % toolbox % Note that Matlab combined their statistics and machine % learning toolboxes so just search for "Statistics" to work % for both cases. v = ver; if (isempty(strfind([v.Name],'Image Processing Toolbox')) || isempty(strfind([v.Name],'Statistics'))) h_error = errordlg('Requires the image processing and statistics toolbox.','Error','modal'); uiwait(h_error); return; end % Set output outstate = out.success; end function outstate = check_mexinstall(obj) % Check to see if mex files exist and loads ncorr_installinfo ----% % Initialize output outstate = out.cancelled; % Files to compile: % These are stand alone .cpp files compiled with '-c' flag: lib_ncorr_cpp = {'standard_datatypes','ncorr_datatypes','ncorr_lib'}; % These are .cpp mex functions compiled with libraries func_ncorr_cpp = {'ncorr_alg_formmask', ... 'ncorr_alg_formregions', ... 'ncorr_alg_formboundary', ... 'ncorr_alg_formthreaddiagram', ... 'ncorr_alg_formunion', ... 'ncorr_alg_extrapdata', ... 'ncorr_alg_adddisp', ... 'ncorr_alg_convert', ... 'ncorr_alg_dispgrad'}; % These are .cpp mex functions compiled with libraries and possibly openmp: func_ncorr_openmp_cpp = {'ncorr_alg_testopenmp','ncorr_alg_calcseeds','ncorr_alg_rgdic'}; % Get object extension: if (ispc) % pc objext = 'obj'; elseif (isunix) % unix objext = 'o'; end % See if these files have already been compiled: compile = false; % Check libraries first for i = 0:length(lib_ncorr_cpp)-1 if (~exist([lib_ncorr_cpp{i+1} '.' objext],'file')) compile = true; break; end end % Check ncorr functions next for i = 0:length(func_ncorr_cpp)-1 if (~exist([func_ncorr_cpp{i+1} '.' mexext],'file')) compile = true; break; end end % Check ncorr functions with openmp for i = 0:length(func_ncorr_openmp_cpp)-1 if (~exist([func_ncorr_openmp_cpp{i+1} '.' mexext],'file')) compile = true; break; end end if (compile) % One of the compiled files is missing - tell user that ncorr % will recompile files. e = msgbox('One of the compiled files is missing. If using automatic installation, then mex files will compile; if using manual installation, please close Ncorr and make sure all the files compiled properly.','WindowStyle','modal'); uiwait(e); end if (~compile) % Functions have already been compiled - check % "ncorr_installinfo.txt" file to verify openmp support. % If "ncorr_installinfo.txt" has incorrect formatting, then % files will be recompiled. If "ncorr_installinfo.txt" is % empty, ncorr will take this as the standard way to % reinstall mex files. try % ncorr_installinfo should have the format of: % [support_openmp_prelim total_cores] ncorr_installinfo = dlmread('ncorr_installinfo.txt'); if (size(ncorr_installinfo,1) == 1 && size(ncorr_installinfo,2) == 2) % ncorr_installinfo.txt has the correct number of % elements if ((ncorr_installinfo(1) == 0 || ncorr_installinfo(1) == 1) && ... ncorr_installinfo(2) >= 1) % Assuming contents have not been modified % by user, set them: obj.support_openmp = logical(ncorr_installinfo(1)); obj.total_cores = ncorr_installinfo(2); else % ncorr_installinfo.txt has incorrect values h_error = errordlg('For some reason "ncorr_installinfo.txt" has incorrect values. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','Error','modal'); uiwait(h_error); % recompile files compile = true; end elseif (isempty(ncorr_installinfo)) % ncorr_installinfo is empty, this is the stanard % way to reinstall Ncorr. h_error = msgbox('"ncorr_installinfo.txt" file is empty. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','WindowStyle','modal'); uiwait(h_error); % recompile files compile = true; else % ncorr_installinfo.txt has extra values which % aren't supposed to be there h_error = errordlg('For some reason the "ncorr_installinfo.txt" file has extra or missing values. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','Error','modal'); uiwait(h_error); % recompile files compile = true; end catch %#ok<CTCH> % Returns error if file does not exist or format is % wrong h_error = msgbox('For some reason the "ncorr_installinfo.txt" file is missing or has improper format. Program will recompile if using automatic installing. If manually installing Ncorr, please close it and make sure the "ncorr_installinfo.txt" was created correctly.','WindowStyle','modal'); uiwait(h_error); % recompile files compile = true; end end if (~compile) % Check if previous installation was corrupted by OpenMP % support which does not actually exist if (obj.support_openmp) if (~ncorr_alg_testopenmp()) % recompile files compile = true; end end end %-------------------------------------------------------------% % BEGIN COMPILE SECTION % %-------------------------------------------------------------% % COMMENT THIS SECTION OUT AND MANUALLY COMPILE IF AUTOMATIC % % COMPILATION FAILS!!! % % ------------------------------------------------------------% try if (compile) % Check if ncorr.m is in current directory listing = dir; if (any(strcmp('ncorr.m',{listing.name}))) % Ask user about openmp support [support_openmp_prelim,total_cores_prelim,outstate_install] = gui_install(get(obj.handles_gui.figure,'OuterPosition')); % See if openmp GUI was cancelled if (outstate_install ~= out.success) return; end % Get compiler flags for openmp support. Depends % on both OS and compiler. flags_f = {}; if (support_openmp_prelim) % Get compiler information info_comp = mex.getCompilerConfigurations('cpp'); if ((isfield(struct(info_comp),'Details') && isfield(struct(info_comp.Details),'CompilerExecutable'))) % Get compiler compiler = info_comp.Details.CompilerExecutable; if (~isempty(strfind(compiler,'cl'))) % This is Microsoft visual studio % Openmp flag is /openmp flags_f = horzcat(flags_f{:},{'COMPFLAGS="$COMPFLAGS'},{'/openmp'},{'/DNCORR_OPENMP"'}); elseif (~isempty(strfind(compiler,'g++'))) % This is the GNU compiler; this is % assumed to be Linux. % NOTE: GCC must manually link % against -lgomp. -lgomp also has % to be placed as the very last % library or else it will not compile % correctly. % Openmp flag is -fopenmp flags_f = horzcat(flags_f{:},{'CXXFLAGS="$CXXFLAGS'},{'-fopenmp'},{'-DNCORR_OPENMP"'},{'CXXLIBS="$CXXLIBS'},{'-lgomp"'}); else % C++ compiler is set up, but was not % recognized as either gcc or cl h_error = errordlg('C++ compiler is set up in mex, but was not recognized as G++ or Visual Studio. Either comment out the compile section in ncorr and manually compile the mex functions, or restart ncorr and disable openmp support.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end else % C++ compiler not installed in mex. h_error = errordlg('C++ compiler was not found. If a C++ compiler was manually installed that supports openmp, then either comment out the compile section in ncorr and manually compile the functions or restart ncorr and disable openmp.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end end % Compile libraries: compile_lib_cpp_mex(lib_ncorr_cpp); % Compile functions: compile_func_cpp_mex(func_ncorr_cpp,lib_ncorr_cpp,{}); % Compile function with openmp: compile_func_cpp_mex(func_ncorr_openmp_cpp,lib_ncorr_cpp,flags_f); % Write to ncorr_installinfo.txt file, this file will be % used next time ncorr is started up to avoid % having to reinput this information. filename = 'ncorr_installinfo.txt'; fid = fopen(filename,'w'); if (fid ~= -1) fclose(fid); % Write info to file: dlmwrite(filename,[support_openmp_prelim total_cores_prelim]); % Set support variables: obj.support_openmp = support_openmp_prelim; obj.total_cores = total_cores_prelim; else % Error h_error = errordlg('For some reason ncorr was not able to create "ncorr_installinfo.txt" file.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end else % Error h_error = errordlg('Please navigate to folder containing ncorr.m first before reinstalling.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end end catch %#ok<CTCH> h_error = errordlg('Files did not compile properly. Make sure mex has a c++ compiler set and that the file names have not been altered or moved. If this is the case, then try reopening and installing ncorr without openmp. If problems persist, then try commenting out the compile section in ncorr and manually compiling the functions. Instructions for compilation are available in the manual at ncorr.com','Error','modal'); uiwait(h_error); outstate = out.failed; return; end %-------------------------------------------------------------% % END OF COMPILE SECTION % %-------------------------------------------------------------% % Check if openmp is actually enabled by calling % ncorr_alg_testopenmp if (obj.support_openmp) if (~ncorr_alg_testopenmp()) % openmp was enabled and files were compiled, but openmp % isn't actually supported. h_error = errordlg('Files compiled, but it was determined that OpenMP is not actually supported. Please reinstall Ncorr in single threaded mode or use a compiler which supports OpenMP.','Error','modal'); uiwait(h_error); outstate = out.failed; return; end end % Set output outstate = out.success; end %-----------------------------------------------------------------% % Create UI Controls for GUI and Assign Callbacks ----------------% %-----------------------------------------------------------------% function handles_gui = init_gui(obj) % Initialize GUI Figure --------------------------------------% % Start Ncorr in the middle of the screen set(0,'units','characters'); % Set this every time incase user changes units of root pos_screen = get(0,'screensize'); height_ncorr = 25; width_ncorr= 167; left_ncorr = (pos_screen(3)-width_ncorr)/2; bottom_ncorr = (pos_screen(4)-height_ncorr)/2; handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', [left_ncorr bottom_ncorr width_ncorr height_ncorr], ... 'Name', 'Ncorr', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'Visible','off', ... 'IntegerHandle','off', ... 'Interruptible','off'); % Set closerequestfcn set(handles_gui.figure,'CloseRequestFcn',obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_close_function(obj,hObject,eventdata,false),handles_gui.figure))); % Menu Items -------------------------------------------------% % Under File handles_gui.topmenu_file = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_file', ... 'Label', 'File', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_loadref = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_loadref', ... 'Label', 'Load Reference Image', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loadref(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_loadcur = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_loadcur', ... 'Label', 'Load Current Image(s)', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_loadcur_all = uimenu( ... 'Parent', handles_gui.topmenu_loadcur, ... 'Tag', 'topmenu_loadcur_all', ... 'Label', 'Load All (memory heavy)', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loadcur(obj,hObject,eventdata,false),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_loadcur_lazy = uimenu( ... 'Parent', handles_gui.topmenu_loadcur, ... 'Tag', 'topmenu_loadcur_lazy', ... 'Label', 'Load Lazy (slower but less memory)', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loadcur(obj,hObject,eventdata,true),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_loaddata = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_loaddata', ... 'Label', 'Load Data', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_loaddata(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_savedata = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_savedata', ... 'Label', 'Save Data', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_savedata(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_clear = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_clear', ... 'Label', 'Clear Data', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_clear(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_sethandle = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_sethandle', ... 'Label', 'Set Handle', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_sethandle(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_reinstall = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_reinstall', ... 'Label', 'Reinstall', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_reinstall(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); handles_gui.topmenu_exit = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_exit', ... 'Label', 'Exit', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_exit_callback(obj,hObject,eventdata),handles_gui.figure)), ... 'Interruptible','off'); % Under region of interest handles_gui.topmenu_regionofinterest = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_regionofinterest', ... 'Label', 'Region of Interest', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_setroi_ref = uimenu( ... 'Parent', handles_gui.topmenu_regionofinterest, ... 'Tag', 'topmenu_setroi_ref', ... 'Label', 'Set Reference ROI', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_set_roi_ref(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_setroi_cur = uimenu( ... 'Parent', handles_gui.topmenu_regionofinterest, ... 'Tag', 'topmenu_setroi_cur', ... 'Label', 'Set Current ROI (For "Backward" Analysis)', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_set_roi_cur(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); % Under Analysis handles_gui.topmenu_analysis = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_analysis', ... 'Label', 'Analysis', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_setdicparameters = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_setdicparameters', ... 'Label', 'Set DIC Parameters', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_setdicparameters(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_perfdic = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_perfdic', ... 'Label', 'Perform DIC Analysis', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_dic(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_formatdisp = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_formatdisp', ... 'Label', 'Format Displacements', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_formatdisp(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_calcstrain = uimenu( ... 'Parent', handles_gui.topmenu_analysis, ... 'Tag', 'topmenu_calcstrain', ... 'Label', 'Calculate Strains', ... 'Checked', 'off', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_calcstrain(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); % Under plot - Do not wrap with wrapcallbackall handles_gui.topmenu_plot = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_plot', ... 'Label', 'Plot', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot = uimenu( ... 'Parent', handles_gui.topmenu_plot, ... 'Tag', 'topmenu_viewdispplot', ... 'Label', 'View Displacement Plots', ... 'Checked', 'off', ... 'Enable', 'on', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot_u = uimenu( ... 'Parent', handles_gui.topmenu_viewdispplot, ... 'Tag', 'topmenu_viewdispplot_u', ... 'Label', 'U', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'u'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot_v = uimenu( ... 'Parent', handles_gui.topmenu_viewdispplot, ... 'Tag', 'topmenu_viewdispplot_v', ... 'Label', 'V', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'v'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewdispplot_all = uimenu( ... 'Parent', handles_gui.topmenu_viewdispplot, ... 'Tag', 'topmenu_viewdispplot_all', ... 'Label', 'All', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'u','v'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot = uimenu( ... 'Parent', handles_gui.topmenu_plot, ... 'Tag', 'topmenu_viewstrainpplot', ... 'Label', 'View Strains Plots', ... 'Checked', 'off', ... 'Enable', 'on', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_exx = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_exx', ... 'Label', 'Exx', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'exx'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_exy = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_exy', ... 'Label', 'Exy', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'exy'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_eyy = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_eyy', ... 'Label', 'Eyy', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'eyy'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_viewstrainplot_all = uimenu( ... 'Parent', handles_gui.topmenu_viewstrainplot, ... 'Tag', 'topmenu_viewstrainpplot_all', ... 'Label', 'All', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_viewplot(obj,hObject,eventdata,{'exx','exy','eyy'}),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.topmenu_closeplots = uimenu( ... 'Parent', handles_gui.topmenu_plot, ... 'Tag', 'topmenu_viewstrainpplot_all', ... 'Label', 'Close All Plots', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_topmenu_closeplots(obj,hObject,eventdata),handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); % Panels -----------------------------------------------------% handles_gui.group_state = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_state', ... 'Units', 'characters', ... 'Position', [2 13.8 35 10.7], ... 'Title', 'Program State', ... 'Interruptible','off'); handles_gui.group_ref = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_ref', ... 'Units', 'characters', ... 'Position', [39.0 0.75 62 23.75], ... 'Title', 'Reference Image', ... 'Interruptible','off'); handles_gui.group_cur = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_cur', ... 'Units', 'characters', ... 'Position', [103 0.75 62 23.75], ... 'Title', 'Current Image(s)', ... 'Interruptible','off'); handles_gui.group_roi = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_roi', ... 'Units', 'characters', ... 'Position', [2 0.75 35 12.3], ... 'Title', 'Region of Interest', ... 'Interruptible','off'); % Axes -------------------------------------------------------% handles_gui.axes_ref = axes( ... 'Parent', handles_gui.group_ref, ... 'Tag', 'axes_ref', ... 'Units', 'characters', ... 'Position', [2 4 57 18], ... 'Visible', 'off', ... 'handlevisibility','off', ... 'Interruptible','off'); handles_gui.axes_cur = axes( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'axes_cur', ... 'Units', 'characters', ... 'Position', [2 4 57 18], ... 'Visible', 'off', ... 'handlevisibility','off', ... 'Interruptible','off'); handles_gui.axes_roi = axes( ... 'Parent', handles_gui.group_roi, ... 'Tag', 'axes_roi', ... 'Units', 'characters', ... 'Position', [2 1 29.5 9.6],... 'Visible', 'off', ... 'handlevisibility','off', ... 'Interruptible','off'); % Image texts ------------------------------------------------% handles_gui.text_refname = uicontrol( ... 'Parent', handles_gui.group_ref, ... 'Tag', 'text_refname', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2 56.9 1.3], ... 'String', 'Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_refresolution = uicontrol( ... 'Parent', handles_gui.group_ref, ... 'Tag', 'text_refresolution', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 .5 56.9 1.3], ... 'String', 'Resolution: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_curname = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'text_curname', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2 56.9 1.3], ... 'String', 'Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_curresolution = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'text_curresolution', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 .5 56.9 1.3], ... 'String', 'Resolution: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % State texts ------------------------------------------------% handles_gui.text_refloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_refloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 7.7 21 1.3], ... 'String', 'Reference Image', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_curloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_curloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 6.5 21 1.3], ... 'String', 'Current Image(s)', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_roiloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_roiloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 5.3 21 1.3], ... 'String', 'Region of Interest', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_dicparamsloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicparamsloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 4.1 21 1.3], ... 'String', 'DIC Parameters', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_dicloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2.9 21 1.3], ... 'String', 'DIC Analysis', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_disploaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_disploaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 1.7 21 1.3], ... 'String', 'Displacements', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_strainloaded = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_strainloaded', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 .5 21 1.3], ... 'String', 'Strains', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % More state texts -------------------------------------------% handles_gui.text_refloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_refloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 7.7 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_curloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_curloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 6.5 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_roiloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_roiloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 5.3 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_dicparametersloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicparametersloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 4.1 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_dicloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_dicloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 2.9 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_disploaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_disploaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 1.7 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); handles_gui.text_strainloaded_s = uicontrol( ... 'Parent', handles_gui.group_state, ... 'Tag', 'text_strainloaded_s', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [23 0.5 10 1.3], ... 'String', 'NOT SET', ... 'HorizontalAlignment', 'left', ... 'ForegroundColor', 'r', ... 'Interruptible','off'); % Editbox ----------------------------------------------------% handles_gui.edit_imgnum = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'edit_imgnum', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [44 1.3 7 1.6], ... 'String', '', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_edit_imgnum(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); % Pushbuttons ------------------------------------------------% handles_gui.button_left = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'button_left', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [37 1.2 6 1.8], ... 'String', '<', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_button_left(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); handles_gui.button_right = uicontrol( ... 'Parent', handles_gui.group_cur, ... 'Tag', 'button_right', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [52 1.2 6 1.8], ... 'String', '>', ... 'Callback', obj.util_wrapcallbackall(ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata) callback_button_right(obj,hObject,eventdata),handles_gui.figure)), ... 'Enable', 'off', ... 'Interruptible','off'); end end end %-------------------------------------------------------------------------% % Other functions --------------------------------------------------------% %-------------------------------------------------------------------------% function [handle_name,outstate] = gui_sethandle(pos_parent) % This is a GUI for setting the name of the variable that points to ncorr. % % Inputs -----------------------------------------------------------------% % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % % Outputs ----------------------------------------------------------------% % handle_name - string; name of new handle % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Data ---------------------------------------------------------------% % Initialize outputs outstate = out.cancelled; handle_name = ''; % Get GUI handles - Part of output handles_gui_sethandle = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui_sethandle.figure)); % Callbacks and functions --------------------------------------------% function constructor() % Set Data setappdata(handles_gui_sethandle.figure,'handle_name_prelim',''); % Set Visible set(handles_gui_sethandle.figure,'Visible','on'); end function callback_edit_string_handle(hObject,eventdata) %#ok<INUSD> % Get data handle_name_prelim = getappdata(handles_gui_sethandle.figure,'handle_name_prelim'); % Get Name handle_name_buffer = get(handles_gui_sethandle.edit_string_handle,'string'); if (isvarname(handle_name_buffer)) handle_name_prelim = handle_name_buffer; else h_error = errordlg('Not a valid variable name.','Error','modal'); uiwait(h_error); end % Set Data setappdata(handles_gui_sethandle.figure,'handle_name_prelim',handle_name_prelim); update_sidemenu(); end function callback_button_finish(hObject,eventdata) %#ok<INUSD> % Get data handle_name_prelim = getappdata(handles_gui_sethandle.figure,'handle_name_prelim'); % Set output handle_name = handle_name_prelim; outstate = out.success; % Exit close(handles_gui_sethandle.figure); end function callback_button_cancel(hObject,eventdata) %#ok<INUSD> % Close close(handles_gui_sethandle.figure); end function update_sidemenu(hObject,eventdata) %#ok<INUSD> % Get data handle_name_prelim = getappdata(handles_gui_sethandle.figure,'handle_name_prelim'); set(handles_gui_sethandle.edit_string_handle,'String',handle_name_prelim); end function handles_gui_sethandle = init_gui() % Form UIs handles_gui_sethandle.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[6 40.5]), ... 'Name', 'Set Image Size', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'WindowStyle','modal', ... 'Visible','off', ... 'IntegerHandle','off', ... 'Interruptible','off'); % Text handles_gui_sethandle.text_string_handle = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'text_string_handle', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 3.5 15 1.3], ... 'String', 'Handle Name:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % Edit box handles_gui_sethandle.edit_string_handle = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'edit_string_handle', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [17.2 3.6 20.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_string_handle,handles_gui_sethandle.figure), ... 'Interruptible','off'); % Buttons handles_gui_sethandle.button_finish = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'button_finish', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.1 1 12 1.7], ... 'String', 'Finish', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_finish,handles_gui_sethandle.figure), ... 'Interruptible','off'); handles_gui_sethandle.button_cancel = uicontrol( ... 'Parent', handles_gui_sethandle.figure, ... 'Tag', 'button_cancel', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [16 1 12 1.7], ... 'String', 'Cancel', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_cancel,handles_gui_sethandle.figure), ... 'Interruptible','off'); end % Pause until figure is closed ---------------------------------------% waitfor(handles_gui_sethandle.figure); end function [support_openmp,total_cores,outstate] = gui_install(pos_parent) % This is a GUI to prompt user if openmp support exists. % % Inputs -----------------------------------------------------------------% % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % % Outputs ----------------------------------------------------------------% % support_openmp - logical; tells whether openmp support exists % total_cores - integer; tells the number of cores that exist in the case % that openmp is supported % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Data ---------------------------------------------------------------% % Initialize outputs outstate = out.cancelled; support_openmp = false; total_cores = 1; % Get GUI handles handles_gui = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui.figure)); % Callbacks and functions --------------------------------------------% function constructor % Set data setappdata(handles_gui.figure,'total_cores_prelim',1); setappdata(handles_gui.figure,'total_cores_min',1); setappdata(handles_gui.figure,'total_cores_max',64); setappdata(handles_gui.figure,'val_checkbox_openmp',false); % Update update_sidemenu(); % Format window set(handles_gui.figure,'Visible','on'); end % Callbacks and functions --------------------------------------------% function callback_checkbox_openmp(hObject,eventdata) %#ok<INUSD> % Get data total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); val_checkbox_openmp = get(handles_gui.checkbox_openmp,'Value'); if (~val_checkbox_openmp) % Reset total cores to 1 total_cores_prelim = 1; end % Set data setappdata(handles_gui.figure,'val_checkbox_openmp',val_checkbox_openmp); setappdata(handles_gui.figure,'total_cores_prelim',total_cores_prelim); update_sidemenu(); end function callback_edit_total_cores(hObject,eventdata) %#ok<INUSD> % Get Data total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); total_cores_min = getappdata(handles_gui.figure,'total_cores_min'); total_cores_max = getappdata(handles_gui.figure,'total_cores_max'); % Get buffer total_cores_buffer = str2double(get(handles_gui.edit_total_cores,'string')); if (ncorr_util_isintbb(total_cores_buffer,total_cores_min,total_cores_max,'Number of cores') == out.success) total_cores_prelim = total_cores_buffer; end % Set data setappdata(handles_gui.figure,'total_cores_prelim',total_cores_prelim); update_sidemenu(); end function callback_button_finish(hObject,eventdata) %#ok<INUSD> % Get data total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); support_openmp_prelim = getappdata(handles_gui.figure,'val_checkbox_openmp'); % Store total_cores = total_cores_prelim; support_openmp = support_openmp_prelim; outstate = out.success; % Return close(handles_gui.figure); end function callback_button_cancel(hObject,eventdata) %#ok<INUSD> close(handles_gui.figure); end function update_sidemenu(hObject,eventdata) %#ok<INUSD> % Get data val_checkbox_openmp = getappdata(handles_gui.figure,'val_checkbox_openmp'); total_cores_prelim = getappdata(handles_gui.figure,'total_cores_prelim'); set(handles_gui.checkbox_openmp,'Value',val_checkbox_openmp); if (val_checkbox_openmp) set(handles_gui.edit_total_cores,'enable','on'); else set(handles_gui.edit_total_cores,'enable','off'); end set(handles_gui.edit_total_cores,'String',num2str(total_cores_prelim)); end function handles_gui = init_gui() handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[9.5 70]), ... 'Name', 'OpenMP support', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'Visible','off', ... 'IntegerHandle','off', ... 'WindowStyle','modal', ... 'Interruptible','off'); handles_gui.text_openmp = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_openmp', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [1.5 5.1 66.7 2.2], ... 'HorizontalAlignment','left', ... 'String', 'Requires multicore CPU and compiler which supports OpenMP installed through mex.', ... 'Value', 0, ... 'Interruptible','off'); handles_gui.text_cores_total = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_core_total', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [10 3.2 18 1.2], ... 'HorizontalAlignment','left', ... 'String', 'Cores:', ... 'Value', 0, ... 'Interruptible','off'); handles_gui.checkbox_openmp = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'checkbox_openmp', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [1.5 7.5 66.7 1.3], ... 'String', 'OpenMP Multithreading', ... 'Value', 0, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_openmp,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_total_cores = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_total_cores', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [22 3.3 8 1.2], ... 'HorizontalAlignment','left', ... 'String', '1', ... 'Enable', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_total_cores,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_finish = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_finish', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [42.3 0.7 12 1.8], ... 'String', 'Finish', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_finish,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_cancel = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_cancel', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [56 0.7 12 1.8], ... 'String', 'Cancel', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_cancel,handles_gui.figure), ... 'Interruptible','off'); end % Pause until figure is closed ---------------------------------------% waitfor(handles_gui.figure); end function compile_lib_cpp_mex(lib_cpp) % This function compiles cpp_function_lib as object files. % % Inputs -----------------------------------------------------------------% % lib_cpp - cell of strings; names of libraries to be compiled as object % files % % Returns error if files are not found. % Cycle over libraries and compile for i = 0:length(lib_cpp)-1 % First check if the cpp and header files exist if (exist([lib_cpp{i+1} '.cpp'],'file') && exist([lib_cpp{i+1} '.h'],'file')) disp(['Installing ' lib_cpp{i+1} '... Please wait']); % Generate compiler string string_compile = horzcat({'-c'},{[lib_cpp{i+1} '.cpp']}); % Compile file mex(string_compile{:}); else h_error = errordlg(['Files ' lib_cpp{i+1} '.cpp and ' lib_cpp{i+1} '.h were not found. Please find them and place them in the current directory before proceeding.'],'Error','modal'); uiwait(h_error); % Spit error to invoke exception error('Compilation failed because file was not found.'); end end end function compile_func_cpp_mex(func_cpp,lib_cpp,flags_f) % This function compiles func_cpp and linkes them with the lib_cpp object % files. If flags are provided then they will be appended when compiling. % % Inputs -----------------------------------------------------------------% % func_cpp - cell of strings; names of .cpp files to be % compiled % lib_cpp - cell of strings; names of object files to be linked % flags_f - cell of strings; formatted compiler flags. % % Returns error if library object files or source code files are not found. % Get the OS to find object extension if (ispc) % pc objext = 'obj'; elseif (isunix) % unix objext = 'o'; end % Check if lib files have been compiled first for i = 0:length(lib_cpp)-1 if (~exist([lib_cpp{i+1} '.' objext],'file')) % Object file doesnt exist, return error h_error = errordlg(['Library ' lib_cpp{i+1} ' has not yet been compiled. Please compile first and make sure the object file is located in the current directory before proceeding.'],'Error','modal'); uiwait(h_error); % Spit error to invoke exception error('Library not compiled yet'); end end % Cycle over mex files and compile for i = 0:length(func_cpp)-1 % First check if the cpp file exists if (exist([func_cpp{i+1} '.cpp'],'file')) disp(['Installing ' func_cpp{i+1} '... Please wait']); % Generate compiler string string_compile = {[func_cpp{i+1} '.cpp']}; % Append libraries for j = 0:length(lib_cpp)-1 string_compile = horzcat(string_compile,{[lib_cpp{j+1} '.' objext]}); %#ok<AGROW> end % Append flags string_compile = horzcat(string_compile,flags_f{:}); %#ok<AGROW> % Compile mex(string_compile{:}); else h_error = errordlg(['File ' filename '.cpp was not found. Please find it and place it in the current directory before proceeding'],'Error','modal'); uiwait(h_error); % Spit error to invoke exception error('Compilation failed because file was not found.'); end end end
github
CU-CommunityApps/choco-packages-master
ncorr_alg_convertseeds.m
.m
choco-packages-master/packages/matlab-ciser/tools/ncorr/ncorr_alg_convertseeds.m
27,822
utf_8
126e3f6e6db2afe68f675dff24040d5b
function [convertseedinfo,outstate] = ncorr_alg_convertseeds(plot_u_old,plot_v_old,plot_u_interp_old,plot_v_interp_old,roi_old,roi_new,seedwindow,spacing,border_interp) % This function obtains the "convert" seeds. It will try to seed as many % "new" regions as possible (one seed per region). It is possible that no % seeds are returned. % % Inputs -----------------------------------------------------------------% % plot_u_old - double array; u displacements WRT the "old" configuration. % Units are pixels. % plot_v_old - double array; v displacements WRT the "old" configuration. % Units are pixels. % plot_u_interp_old - cell; array of b-spline coefficients; one per % region. % plot_v_interp_old - cell; array of b-spline coefficients; one per % region; % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % roi_new - ncorr_class_roi; ROI corresponding to "new" displacements. % Note that ROI is already reduced by default. % seedwindow - integer; half width of window around seed that must contain % valid points before its processed. This prevents edge points from being % seeded. % spacing - integer; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % convertseedinfo - struct; contains % struct('paramvector',{},'num_region_new',{},'num_region_old',{}). The x % and y coords stored in convertseedinfo will be reduced while the % displacement values are in pixels. % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % % Note that the ordering of plot_u_interp_old and plot_v_interp_old must % form a correspondence with the regions in roi_old. This means % plot_u_interp_old{i} must correspond to roi_old.region(i). Regions in % roi_old and roi_new do not need to form a direct correspondence, but they % are assumed to be one-to-one. Returns failed if no seeds are found % Initialize outputs outstate = out.failed; convertseedinfo = struct('paramvector',{},'num_region_new',{},'num_region_old',{}); % paramvector = [x_new y_new x_old y_old u_old v_old distance] % Form convertseedinfo prelim convertseedinfo_prelim = struct('paramvector',{},'num_region_new',{},'num_region_old',{}); % Keep track of the regions in roi_old that have already been analyzed. list_region_old = false(length(roi_old.region),1); % Cycle over every "new" region and attempt to seed. for i = 0:length(roi_new.region)-1 % Regions are not gauranteed contiguous at this point, so get the % region corresponding to the largest contiguous area to make sure % small areas arent seeded. regionmask_new_buffer = roi_new.get_regionmask(i); [region_new_buffer,removed] = ncorr_alg_formregions(regionmask_new_buffer,int32(0),false); %#ok<NASGU> % Check if contiguous region(s) are empty or if there are more than one if (isempty(region_new_buffer)) % Continue onto next region in roi_new if region_new_buffer is empty continue; elseif (length(region_new_buffer) > 1) % Select biggest region if there are more than one. This could % possibly happen if a boundary is "pinched" or closes during % deformation. Unlikely- but may happen. idx_max = find([region_new_buffer.totalpoints] == max([region_new_buffer.totalpoints]),1,'first'); region_new_buffer = region_new_buffer(idx_max); end % Form convertseedinfo buffer convertseedinfo_buffer = struct('paramvector',{},'num_region_new',{},'num_region_old',{}); % Set num_region_new convertseedinfo_buffer(1).num_region_new = i; % Initialize successregion = false; for j = 0:size(region_new_buffer.noderange,1)-1 x_new = j + region_new_buffer.leftbound; % Cycle over each point for k = 0:2:region_new_buffer.noderange(j+1)-1 for l = region_new_buffer.nodelist(j+1,k+1):region_new_buffer.nodelist(j+1,k+2); y_new = l; % Make sure area of half-width seedwindow is valid % around the seed before attempting to process. if (all(all(regionmask_new_buffer(max(y_new-seedwindow+1,1):min(y_new+seedwindow+1,end), ... max(x_new-seedwindow+1,1):min(x_new+seedwindow+1,end))))) % Analyze point - outstate_calcpoint will either be % success or failed [convertseedinfo_buffer.paramvector,convertseedinfo_buffer.num_region_old,outstate_calcpoint] = calcpoint(x_new, ... y_new, ... plot_u_old, ... plot_v_old, ... plot_u_interp_old, ... plot_v_interp_old, ... roi_old, ... list_region_old, ... spacing, ... border_interp); % Check if nonlinear solver was successful if (outstate_calcpoint == out.success) % Check distance; make sure its less than a % threshold and also make sure that x_old and % y_old are in valid area x_old = round(convertseedinfo_buffer.paramvector(3)); y_old = round(convertseedinfo_buffer.paramvector(4)); if (convertseedinfo_buffer.paramvector(7) < 0.005 && ... x_old >= 0 && x_old < size(roi_old.mask,2) && ... y_old >= 0 && y_old < size(roi_old.mask,1) && ... roi_old.mask(y_old+1,x_old+1)) % Should really check regionmask, but for ease just check the whole mask % Append convertseedinfo_prelim = horzcat(convertseedinfo_prelim,convertseedinfo_buffer); %#ok<AGROW> list_region_old(convertseedinfo_buffer.num_region_old+1) = true; % Break from this region successregion = true; end end end % Break if seed was successful or all regions in the % old configuration have been analyzed if (successregion || all(list_region_old)) break; end end % Break if seed was successful or all regions in the % old configuration have been analyzed if (successregion || all(list_region_old)) break; end end % Break if seed was successful or all regions in the % old configuration have been analyzed if (successregion || all(list_region_old)) break; end end end % Assign Outputs if (~isempty(convertseedinfo_prelim)) for i = 0:length(convertseedinfo_prelim)-1 convertseedinfo(i+1) = convertseedinfo_prelim(i+1); end outstate = out.success; end end %-------------------------------------------------------------------------% % Nonlinear solver equations ---------------------------------------------% %-------------------------------------------------------------------------% function [paramvector,num_region_old,outstate] = calcpoint(x_new,y_new,plot_u_old,plot_v_old,plot_u_interp_old,plot_v_interp_old,roi_old,list_region_old,spacing,border_interp) % This function obtains the parameters for a "convert" seed. % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % plot_u_old - double array; u displacements WRT the "old" configuration. % Units are pixels. % plot_v_old - double array; v displacements WRT the "old" configuration. % Units are pixels. % plot_u_interp_old - cell; array of b-spline coefficients; one per % region. % plot_v_interp_old - cell; array of b-spline coefficients; one per % region. % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % list_region_old - logical array; keeps track of which "old" regions have % been analyzed % spacing - integer; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % paramvector - double array; [x_new y_new x_old y_old u_old v_old distance] % num_region_old - integer; The region number which seed resides in for % the "old" configuration % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize outputs paramvector = []; num_region_old = []; outstate = out.failed; % Perform global search - note: defvector = [x_old y_old] - reduced [defvector_init,num_region_old_prelim,outstate_initialguess] = initialguess(x_new, ... y_new, ... plot_u_old, ... plot_v_old, ... roi_old, ... list_region_old, ... spacing); if (outstate_initialguess == out.success) % Perform an iterative search [defvector,u_old,v_old,distance,outstate_iterative] = iterativesearch(x_new, ... y_new, ... defvector_init, ... plot_u_interp_old, ... plot_v_interp_old, ... roi_old, ... num_region_old_prelim, ... spacing, ... border_interp); if (outstate_iterative == out.success) % Set outputs paramvector = [x_new y_new defvector u_old v_old distance]; num_region_old = num_region_old_prelim; outstate = out.success; end end end function [defvector_init,num_region_old,outstate] = initialguess(x_new,y_new,plot_u_old,plot_v_old,roi_old,list_region_old,spacing) % This function finds the closest integer displacements as an initial % guess. % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % plot_u_old - double array; u displacements WRT the "old" configuration. % Units are pixels. % plot_v_old - double array; v displacements WRT the "old" configuration. % Units are pixels. % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % list_region_old - logical array; keeps track of which "old" regions have % been analyzed % spacing - integer; this is the spacing parameter. % % Outputs ----------------------------------------------------------------% % defvector_init - integer array; [x_old y_old] - reduced % num_region_old - integer; number of region where x_old and y_old were found % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize Outputs outstate = out.failed; defvector_init = []; num_region_old = []; % Cycle through every point to insure a global minimum x_old_prelim = -1; y_old_prelim = -1; num_region_old_prelim = -1; distance_prelim = inf; % arbitrarily large number for i = 0:length(roi_old.region)-1 if (list_region_old(i+1)) % this ROI has been analyzed already continue; else for j = 0:size(roi_old.region(i+1).noderange,1)-1 x_old_buffer = j + roi_old.region(i+1).leftbound; for k = 0:2:roi_old.region(i+1).noderange(j+1)-1 for l = roi_old.region(i+1).nodelist(j+1,k+1):roi_old.region(i+1).nodelist(j+1,k+2) y_old_buffer = l; % Must divide displacement by spacing so % displacement is WRT reduced coordinates u_old_buffer = plot_u_old(y_old_buffer+1,x_old_buffer+1)/(spacing+1); v_old_buffer = plot_v_old(y_old_buffer+1,x_old_buffer+1)/(spacing+1); distance_buffer = sqrt((x_new-(x_old_buffer+u_old_buffer))^2+(y_new-(y_old_buffer+v_old_buffer))^2); % Check if this point is better if (distance_buffer < distance_prelim) x_old_prelim = x_old_buffer; y_old_prelim = y_old_buffer; num_region_old_prelim = i; distance_prelim = distance_buffer; end end end end end end if (x_old_prelim ~= -1 && y_old_prelim ~= -1) defvector_init = [x_old_prelim y_old_prelim]; num_region_old = num_region_old_prelim; outstate = out.success; end end function [defvector,u_old,v_old,distance,outstate] = iterativesearch(x_new,y_new,defvector_init,plot_u_interp_old,plot_v_interp_old,roi_old,num_region_old,spacing,border_interp) % This function uses Gauss-Newton iterations to find the subpixel x_old % and y_old values. % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % defvector_init - integer array; of form [x_old y_old]. It's integer % because these are the initial guesses from the global search. % plot_u_interp_old - cell; array of b-spline coefficients; one per % region. % plot_v_interp_old - cell; array of b-spline coefficients; one per % region. % roi_old - ncorr_class_roi; ROI corresponding to "old" displacements. % Note that ROI is already reduced by default. % num_region_old - integer; number of region being analyzed % spacing - integer; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % defvector - double array; [x_old y_old] - reduced % u_old - double; u displacement from x_old to x_new - pixels % v_old - double; v displacement from y_old to y_new - pixels % distance - double; distance between [x_new y_new] and [x_old y_old] % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize outputs outstate = out.failed; defvector = []; u_old = []; v_old = []; distance = []; % Gauss Newton optimization - send only b-spline coefficients % corresponding to the num_region_old [defvector_prelim,u_old_prelim,v_old_prelim,distance_prelim,gradnorm,outstate_newton] = newton(x_new, ... y_new, ... defvector_init, ... plot_u_interp_old{num_region_old+1}, ... plot_v_interp_old{num_region_old+1}, ... roi_old.region(num_region_old+1), ... spacing, ... border_interp); counter = 1; while (outstate_newton == out.success && gradnorm > 10^-5 && counter < 10) % Gauss Newton optimization - send only b-spline coefficients % corresponding to the num_region_old [defvector_prelim,u_old_prelim,v_old_prelim,distance_prelim,gradnorm,outstate_newton] = newton(x_new, ... y_new, ... defvector_prelim, ... plot_u_interp_old{num_region_old+1}, ... plot_v_interp_old{num_region_old+1}, ... roi_old.region(num_region_old+1), ... spacing, ... border_interp); counter = counter + 1; end if (outstate_newton == out.success) % Assign outputs defvector = defvector_prelim; u_old = u_old_prelim; v_old = v_old_prelim; distance = distance_prelim; outstate = out.success; end end function [defvector,u_old,v_old,distance,gradnorm,outstate] = newton(x_new,y_new,defvector_init,plot_u_interp_old,plot_v_interp_old,region_old,spacing,border_interp) % This function actually performs the Gauss-Newton iteration % % Inputs -----------------------------------------------------------------% % x_new - integer; x position WRT the "new" configuration. Note that % x_new is WRT reduced coordinates. % y_new - integer; y position WRT the "new" configuration. Note that % y_new is WRT reduced coordinates. % defvector_init - double array; of form [x_old y_old] % plot_u_interp_old - double array; array of b-spline coefficients % corresponding to region_old % plot_v_interp_old - double array; array of b-spline coefficients % corresponding to region_old % region_old - struct; specific region being analyzed % spacing - double; this is the spacing parameter. % border_interp - integer; the amount of padding used around the borders in % interpdata % % Outputs ----------------------------------------------------------------% % defvector - double array; [x_old y_old] - reduced % u_old - double; u displacement from x_old to x_new - pixels % v_old - double; v displacement from y_old to y_new - pixels % distance - double; distance between [x_new y_new] and [x_old y_old] % gradnorm - double; norm of the gradient vector - should be close to 0 % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize inputs outstate = out.failed; defvector = []; u_old = []; v_old = []; gradnorm = []; distance = []; % Use interp function local to this m-file since it combines % interpolation of values and gradients. [interpvector,outstate_interp] = interpqbs_convert(defvector_init, ... plot_u_interp_old, ... plot_v_interp_old, ... region_old, ... border_interp); if (outstate_interp == out.success) % Determine Gradient - note that interpolation found through % interpqbs_convert needs to be WRT reduced coordinates; However, % displacements use pixel units, so they need to be scaled in order % to be WRT reduced coordinates. gradient(1) = -2*((x_new-(defvector_init(1)+interpvector(1)/(spacing+1)))*(1+interpvector(3)/(spacing+1))+(y_new-(defvector_init(2)+interpvector(2)/(spacing+1)))*(interpvector(5)/(spacing+1))); gradient(2) = -2*((x_new-(defvector_init(1)+interpvector(1)/(spacing+1)))*(interpvector(4)/(spacing+1))+(y_new-(defvector_init(2)+interpvector(2)/(spacing+1)))*(1+interpvector(6)/(spacing+1))); % Determine Hessian hessian(1,1) = 2*((1+interpvector(3)/(spacing+1))^2+(interpvector(5)/(spacing+1))^2); hessian(2,1) = 2*((interpvector(4)/(spacing+1))*(1+interpvector(3)/(spacing+1))+(1+interpvector(6)/(spacing+1))*(interpvector(5)/(spacing+1))); hessian(1,2) = hessian(2,1); % symmetric hessian(2,2) = 2*((interpvector(4)/(spacing+1))^2+(1+interpvector(6)/(spacing+1))^2); det_hess = det(hessian); % Check to make sure hessian is positive definite % From :http://www.math.northwestern.edu/~clark/285/2006-07/handouts/pos-def.pdf % Make sure det(hess) > 0 and hess(1,1) > 0 if (det_hess > 0 && hessian(1) > 0) % Determine new coordinates defvector_prelim = (defvector_init'-hessian^-1*gradient')'; % Calculate distance - we have to interpolate again with the new % coordinates [interpvector,outstate_interp] = interpqbs_convert(defvector_prelim, ... plot_u_interp_old, ... plot_v_interp_old, ... region_old, ... border_interp); if (outstate_interp == out.success) % Store outputs defvector = defvector_prelim; u_old = interpvector(1); v_old = interpvector(2); distance = sqrt((x_new-(defvector(1)+interpvector(1)/(spacing+1)))^2+(y_new-(defvector(2)+interpvector(2)/(spacing+1)))^2); gradnorm = norm(gradient); outstate = out.success; end end end end function [interpvector,outstate] = interpqbs_convert(defvector,plot_u_interp_old,plot_v_interp_old,region_old,border_interp) % This interpolation combines interpolation of values and gradients, so % it's reimplemented here because it can save some time by combining the % interpolation. % % Inputs -----------------------------------------------------------------% % defvector - double array; [x_old y_old] - reduced % plot_u_interp_old - double array; array of b-spline coefficients. Units % are pixels. % plot_v_interp_old - double array; array of b-spline coefficients. Units % are pixels. % region_old - struct; specific region being analyzed % border_interp - integer; the amount of padding used around the edges in % interpdata % % Outputs ----------------------------------------------------------------% % interpvector - double array; [u v du/dx du/dy dv/dx dv/dy] % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Initialize output outstate = out.failed; interpvector = []; % Biquintic Kernel Matrix QK = [1/120 13/60 11/20 13/60 1/120 0; -1/24 -5/12 0 5/12 1/24 0; 1/12 1/6 -1/2 1/6 1/12 0; -1/12 1/6 0 -1/6 1/12 0; 1/24 -1/6 1/4 -1/6 1/24 0; -1/120 1/24 -1/12 1/12 -1/24 1/120]; % Interpolate if in bounds x_tilda = defvector(1); y_tilda = defvector(2); x_tilda_floor = floor(x_tilda); y_tilda_floor = floor(y_tilda); % Make sure top, left, bottom, and right are within the b-spline % coefficient array. top, left, bottom and right are the bounding % box of the b-spline coefficients used for interpolation of this % point; top = y_tilda_floor-region_old.upperbound+border_interp-2; left = x_tilda_floor-region_old.leftbound+border_interp-2; bottom = y_tilda_floor-region_old.upperbound+border_interp+3; right = x_tilda_floor-region_old.leftbound+border_interp+3; if (top >= 0 && ... left >= 0 && ... bottom < size(plot_u_interp_old,1) && ... right < size(plot_u_interp_old,2)) % Set coords x_tilda_delta = x_tilda-x_tilda_floor; y_tilda_delta = y_tilda-y_tilda_floor; x_vec(1) = 1.0; x_vec(2) = x_tilda_delta; x_vec(3) = x_vec(2)*x_tilda_delta; x_vec(4) = x_vec(3)*x_tilda_delta; x_vec(5) = x_vec(4)*x_tilda_delta; x_vec(6) = x_vec(5)*x_tilda_delta; y_vec(1) = 1.0; y_vec(2) = y_tilda_delta; y_vec(3) = y_vec(2)*y_tilda_delta; y_vec(4) = y_vec(3)*y_tilda_delta; y_vec(5) = y_vec(4)*y_tilda_delta; y_vec(6) = y_vec(5)*y_tilda_delta; x_vec_dx(1) = 0.0; x_vec_dx(2) = 1.0; x_vec_dx(3) = 2.0*x_vec(2); x_vec_dx(4) = 3.0*x_vec(3); x_vec_dx(5) = 4.0*x_vec(4); x_vec_dx(6) = 5.0*x_vec(5); y_vec_dy(1) = 0.0; y_vec_dy(2) = 1.0; y_vec_dy(3) = 2.0*y_vec(2); y_vec_dy(4) = 3.0*y_vec(3); y_vec_dy(5) = 4.0*y_vec(4); y_vec_dy(6) = 5.0*y_vec(5); % Precompute QKMAT_u_plot = QK*plot_u_interp_old(top+1:bottom+1,left+1:right+1)*QK'; QKMAT_v_plot = QK*plot_v_interp_old(top+1:bottom+1,left+1:right+1)*QK'; % Get interpolated value interpvector(1) = y_vec*QKMAT_u_plot*x_vec'; % u interpvector(2) = y_vec*QKMAT_v_plot*x_vec'; % v interpvector(3) = y_vec*QKMAT_u_plot*x_vec_dx'; % du/dx interpvector(4) = y_vec_dy*QKMAT_u_plot*x_vec'; % du/dy interpvector(5) = y_vec*QKMAT_v_plot*x_vec_dx'; % dv/dx interpvector(6) = y_vec_dy*QKMAT_v_plot*x_vec'; % dv/dy outstate = out.success; end end
github
CU-CommunityApps/choco-packages-master
ncorr_gui_viewplots.m
.m
choco-packages-master/packages/matlab-ciser/tools/ncorr/ncorr_gui_viewplots.m
127,861
utf_8
b5e3358c4dae7e33660ab822d294b67c
function handles_gui = ncorr_gui_viewplots(reference,current,data_dic,type_plot,pos_parent,params_init) % This is a GUI for viewing the displacement/strain plots. % % Inputs -----------------------------------------------------------------% % reference - ncorr_class_img; used for displaying the background image. % current - ncorr_class_img; used for displaying the background image. % data_dic - struct; contains displacement and strain info. This is the % main data structure used in Ncorr. % type_plot - string; specifies whether plot is u, v, exx, exy, or eyy. % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % params_init - cell; {1} = num_cur, {2} = scalebarlength, % {3} = if handle_scalebar is on, {4} = if handle_axes is on, {5} if % Lagrangian or Eulerian, {6} if zoomed; {7} if panned. Used to % coordinate with any existing open plots. % % Outputs ----------------------------------------------------------------% % handles_gui - handles; these are the GUI handles which allow Ncorr to % manage the closing and synchronization of the open plots % % Note that this function checks both roi_ref_formatted and % roi_cur_formatted to make sure all ROIs are non-empty. This is a very % unlikely scenario, but if it happens this function will display and error % dialogue and return. % Data ---------------------------------------------------------------% % Get GUI handles handles_gui = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui.figure)); % Callbacks and functions --------------------------------------------% function constructor() % Check to make sure ROIs are full roifull = true; if (strcmp(type_plot,'u') || strcmp(type_plot,'v')) field = 'displacements'; else field = 'strains'; end for i = 0:length(current)-1 if (data_dic.(field)(i+1).roi_ref_formatted.get_fullregions == 0 || ... data_dic.(field)(i+1).roi_cur_formatted.get_fullregions == 0) roifull = false; break; end end if (~roifull) % One of the ROIs is empty, return; CloseRequestFcn is disabled, % in gui_init(), so reenable it before closing. set(handles_gui.figure,'CloseRequestFcn','closereq'); h_error = errordlg('Some data plots are empty, please rerun analysis.','Error','modal'); uiwait(h_error); close(handles_gui.figure); return; end % Set zoom and pan handle_zoom = zoom(handles_gui.figure); handle_pan = pan(handles_gui.figure); % Initialize buffers -----------------------------------------% if (isempty(params_init)) % Set num_cur - by default show last image in set num_cur = length(current)-1; % Set scalebar length - initialize to 3/4 the width of the % reference image. This uses real units. scalebarlength_prelim = (3/4)*reference.width*data_dic.dispinfo.pixtounits; if (floor(scalebarlength_prelim) > 3) % Use integer scalebarlength = floor(scalebarlength_prelim); else % Use decimal scalebarlength = scalebarlength_prelim; end % handle_scalebar checkbox val_checkbox_scalebar = true; % handle_axes checkbox val_checkbox_axes = true; % Lagrangian or Eulerian; 1 == Lagrangian val_popupmenu = 1; else % Set num_cur num_cur = params_init{1}; % Units and handle_scalebar buffer scalebarlength = params_init{2}; % handle_scalebar checkbox val_checkbox_scalebar = params_init{3}; % handle_axes checkbox val_checkbox_axes = params_init{4}; % Lagrangian or Eulerian val_popupmenu = params_init{5}; % Zoomed if (params_init{6}) set(handle_zoom,'Enable','on'); end % Panned if (params_init{7}) set(handle_pan,'Enable','on'); end end % Transparency buffer transparency_prelim = 0.75; % Contour lines buffer contourlines_prelim = 20; max_contourlines = 100; % Set slider buffer slider_buffer = struct('lagrangian',{},'eulerian',{}); for i = 0:length(current)-1 % Set parameters % Get the data vector corresponding to this plot data_ref = get_data(type_plot,'lagrangian',i); slider_buffer(i+1).lagrangian(1) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(2) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(3:7) = get_sliderparams(data_ref); % Get the data vector corresponding to this plot data_cur = get_data(type_plot,'eulerian',i); slider_buffer(i+1).eulerian(1) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(2) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(3:7) = get_sliderparams(data_cur); end max_upperbound = 1e10; min_lowerbound = -1e10; max_scalebarlength = 1e10; % Set data setappdata(handles_gui.figure,'num_cur',num_cur); setappdata(handles_gui.figure,'transparency_prelim',transparency_prelim); setappdata(handles_gui.figure,'contourlines_prelim',contourlines_prelim); setappdata(handles_gui.figure,'max_contourlines',max_contourlines); setappdata(handles_gui.figure,'scalebarlength',scalebarlength); setappdata(handles_gui.figure,'slider_buffer',slider_buffer); setappdata(handles_gui.figure,'max_upperbound',max_upperbound); setappdata(handles_gui.figure,'min_lowerbound',min_lowerbound); setappdata(handles_gui.figure,'max_scalebarlength',max_scalebarlength); setappdata(handles_gui.figure,'type_plot',type_plot); % Store this explicitly so type and other parameters can be deduced from 'friends' setappdata(handles_gui.figure,'friends',[]); % This is used for modifying other viewplots; it stores their figure handles setappdata(handles_gui.figure,'text_info',[]); % This is the text box that displays when the cursor is over the data plot setappdata(handles_gui.figure,'val_checkbox_contour',false); setappdata(handles_gui.figure,'val_checkbox_scalebar',val_checkbox_scalebar); setappdata(handles_gui.figure,'val_checkbox_axes',val_checkbox_axes); setappdata(handles_gui.figure,'val_checkbox_minmaxmarkers',false); setappdata(handles_gui.figure,'val_popupmenu',val_popupmenu); setappdata(handles_gui.figure,'handle_preview',[]); setappdata(handles_gui.figure,'handle_scalebar',[]); setappdata(handles_gui.figure,'handle_axes',[]); setappdata(handles_gui.figure,'handle_colorbar',[]); setappdata(handles_gui.figure,'handle_point_max',[]); setappdata(handles_gui.figure,'handle_point_min',[]); setappdata(handles_gui.figure,'handle_zoom',handle_zoom); setappdata(handles_gui.figure,'handle_pan',handle_pan); % Update - must send the GUI handles; this is because % update_axes can be used to update other figure handles stored % in 'friends'. update_axes('set',handles_gui); update_sidemenu(handles_gui); % Set resize and hover function callbacks; This GUI is % resizable and displays a data cursor when the cursor hovers % over the data plot. % Set resize function set(handles_gui.figure,'ResizeFcn',ncorr_util_wrapcallbacktrycatch(@callback_resizefunction,handles_gui.figure)); % Set hover function set(handles_gui.figure,'WindowButtonMotionFcn',ncorr_util_wrapcallbacktrycatch(@callback_moveplot,handles_gui.figure)); % Set Visible set(handles_gui.figure,'Visible','on'); end function callback_topmenu_save(hObject,eventdata,includeinfo) %#ok<INUSL> % Get info num_cur = getappdata(handles_gui.figure,'num_cur'); % Form save figure -----------------------------------------------% handles_gui_savefig = form_savefig(num_cur,includeinfo,[]); % Disable close function so figure isnt inadvertently closed. set(handles_gui_savefig.figure,'CloseRequestFcn',''); % Set size(s) ----------------------------------------------------% % gui_savesize is a local function with a GUI; it allows the user % to modify the size of the image [size_savefig,timedelay,outstate] = gui_savesize(handles_gui_savefig, ... false, ... get(handles_gui.figure,'OuterPosition')); %#ok<*ASGLU> if (outstate == out.success) % Save image -------------------------------------------------% [filename,pathname] = uiputfile({'*.jpg';'*.png';'*.bmp';'*.tif'},'Save Image'); if (~isequal(filename,0) && ~isequal(pathname,0)) overwrite = true; if (exist(fullfile(pathname,filename),'file')) contbutton = questdlg('File already exists. Do you want to overwrite?','Continue Operation','Yes','No','No'); if strcmp(contbutton,'No') overwrite = false; end end if (overwrite) % Get image ------------------------------------------% img_printscreen = getframe(handles_gui_savefig.figure); % Save the image imwrite(img_printscreen.cdata,fullfile(pathname,filename)); end end end % Exit -----------------------------------------------------------% set(handles_gui_savefig.figure,'CloseRequestFcn','closereq'); close(handles_gui_savefig.figure); end function callback_topmenu_savegif(hObject,eventdata) %#ok<INUSD> % Get data val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); % All current images must have the same size to use this feature % with the eulerian description size_cur = size(current(1).get_gs()); samesize_cur = true; for i = 1:length(current)-1 if (~isequal(size_cur,[current(i+1).height current(i+1).width])) samesize_cur = false; break; end end % Save image -----------------------------------------------------% % Note val_popupmenu equals 1 for the lagrangian perspective, and 2 % for the eulerian perspective if (val_popupmenu == 1 || (val_popupmenu == 2 && samesize_cur)) % Form initial save figure -----------------------------------% handles_gui_savefig = form_savefig(0,0,[]); % Disable close function so figure isnt inadvertently closed set(handles_gui_savefig.figure,'CloseRequestFcn',''); % Set Size(s) ------------------------------------------------% % gui_savesize is a local function with a GUI; it allows the user % to modify the size of the image [size_savefig,timedelay,outstate] = gui_savesize(handles_gui_savefig, ... true, ... get(handles_gui.figure,'OuterPosition')); if (outstate == out.success) [filename,pathname] = uiputfile({'*.gif'},'Save Image'); if (~isequal(filename,0) && ~isequal(pathname,0)) overwrite = true; if (exist(fullfile(pathname,filename),'file')) contbutton = questdlg('File already exists. Do you want to overwrite?','Continue Operation','Yes','No','No'); if strcmp(contbutton,'No') overwrite = false; end end if (overwrite) % Save initial image -----------------------------% img_printscreen = getframe(handles_gui_savefig.figure); img_printscreen = frame2im(img_printscreen); [imind,cm] = rgb2ind(img_printscreen,256); % Save imwrite(imind,cm,[pathname filename],'gif','Loopcount',inf); % Cycle over other images to save for i = 1:length(current)-1 % Close figure set(handles_gui_savefig.figure,'CloseRequestFcn','closereq'); close(handles_gui_savefig.figure); % Form updated save figure -------------------% handles_gui_savefig = form_savefig(i,0,size_savefig); % Disable close function for now set(handles_gui_savefig.figure,'CloseRequestFcn',''); % Get image ----------------------------------% img_printscreen = getframe(handles_gui_savefig.figure); img_printscreen = frame2im(img_printscreen); [imind,cm] = rgb2ind(img_printscreen,256); % Append if (i ~= length(current)-1) imwrite(imind,cm,[pathname filename],'gif','WriteMode','append','DelayTime',timedelay); else % This is the last image, make the time % delay longer so there's a pause at the % end. imwrite(imind,cm,[pathname filename],'gif','WriteMode','append','DelayTime',timedelay+0.5); end end end end end % Close last figure set(handles_gui_savefig.figure,'CloseRequestFcn','closereq'); close(handles_gui_savefig.figure); else h_error = errordlg('All current images must have the same size to save gif with the Eulerian description.','Error','modal'); uiwait(h_error); end end %---------------------------------------------------------------------% % These functions can potentially modify other viewplots -------------% %---------------------------------------------------------------------% function callback_popupmenu(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); val_popupmenu = get(handles_gui.popupmenu,'Value'); % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'val_popupmenu',val_popupmenu); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'val_popupmenu',val_popupmenu); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_scalebar(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); val_checkbox_scalebar = get(handles_gui.checkbox_scalebar,'Value'); % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'val_checkbox_scalebar',val_checkbox_scalebar); % Update update_axes('update',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'val_checkbox_scalebar',val_checkbox_scalebar); % Update this plot update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_axes(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); val_checkbox_axes = get(handles_gui.checkbox_axes,'Value'); % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'val_checkbox_axes',val_checkbox_axes); % Update update_axes('update',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'val_checkbox_axes',val_checkbox_axes); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_scalebarlength(hObject,eventdata) %#ok<INUSD> % Get data scalebarlength = getappdata(handles_gui.figure,'scalebarlength'); max_scalebarlength = getappdata(handles_gui.figure,'max_scalebarlength'); friends = getappdata(handles_gui.figure,'friends'); % Get Value scalebarlength_buffer = str2double(get(handles_gui.edit_scalebarlength,'string')); if (ncorr_util_isrealbb(scalebarlength_buffer,0,max_scalebarlength,'Scalebar Length') == out.success) % Update buffer scalebarlength = scalebarlength_buffer; % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'scalebarlength',scalebarlength); % Update update_axes('update',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'scalebarlength',scalebarlength); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_imgnum(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); friends = getappdata(handles_gui.figure,'friends'); % Get Value - uses one based indexing num_cur_prelim = str2double(get(handles_gui.edit_imgnum,'string')); if (ncorr_util_isintbb(num_cur_prelim,1,length(current),'Current Image number') == out.success) % Store value - convert back to zero based indexing num_cur = num_cur_prelim-1; % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'num_cur',num_cur); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'num_cur',num_cur); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_button_zoom(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); handle_zoom = getappdata(handles_gui.figure,'handle_zoom'); if (strcmp(get(handle_zoom,'Enable'),'on')) % Zoom is already enabled; disable it val_zoom = false; set(handle_zoom,'Enable','off'); else % Zoom not enabled; enable it val_zoom = true; set(handle_zoom,'Enable','on'); end % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Get zoom handle from other plot handle_zoom_sub = getappdata(friends{i+1}.figure,'handle_zoom'); if (val_zoom) set(handle_zoom_sub,'Enable','on'); else set(handle_zoom_sub,'Enable','off'); end % Set data setappdata(friends{i+1}.figure,'handle_zoom',handle_zoom_sub); % Update update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'handle_zoom',handle_zoom); % Update update_sidemenu(handles_gui); end function callback_button_pan(hObject,eventdata) %#ok<INUSD> % Get data friends = getappdata(handles_gui.figure,'friends'); handle_pan = getappdata(handles_gui.figure,'handle_pan'); if (strcmp(get(handle_pan,'Enable'),'on')) % Pan is already enabled; disable it val_pan = false; set(handle_pan,'Enable','off'); else % Pan not enabled; enable it val_pan = true; set(handle_pan,'Enable','on'); end % Update other plots in friend list for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Get Pan handle from other plot handle_pan_sub = getappdata(friends{i+1}.figure,'handle_pan'); if (val_pan) set(handle_pan_sub,'Enable','on'); else set(handle_pan_sub,'Enable','off'); end % Set data setappdata(friends{i+1}.figure,'handle_pan',handle_pan_sub); % Update update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end % Set data setappdata(handles_gui.figure,'handle_pan',handle_pan); % Update update_sidemenu(handles_gui); end function callback_button_left(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); friends = getappdata(handles_gui.figure,'friends'); % Check for overshoot if (num_cur > 0) % Update other plots in friend list num_cur = num_cur-1; for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'num_cur',num_cur); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'num_cur',num_cur); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_button_right(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); friends = getappdata(handles_gui.figure,'friends'); % Check for overshoot if (num_cur < length(current)-1) % Update other plots in friend list num_cur = num_cur+1; for i = 0:length(friends)-1 if (~strcmp(getappdata(friends{i+1}.figure,'type_plot'),type_plot)) % Must check to make sure figure has not been closed during % callback since protection is only gauranteed for this % figure. try % Set data setappdata(friends{i+1}.figure,'num_cur',num_cur); % Update update_axes('set',friends{i+1}); update_sidemenu(friends{i+1}); catch err if (ishandle(friends{i+1}.figure)) rethrow(err); end end end end end % Set data setappdata(handles_gui.figure,'num_cur',num_cur); % Update this plot update_axes('set',handles_gui); update_sidemenu(handles_gui); end function update_sidemenu(handles_gui_sub) % Get data - MUST USE HANDLES_GUI_SUB!!! num_cur = getappdata(handles_gui_sub.figure,'num_cur'); scalebarlength = getappdata(handles_gui_sub.figure,'scalebarlength'); transparency_prelim = getappdata(handles_gui_sub.figure,'transparency_prelim'); contourlines_prelim = getappdata(handles_gui_sub.figure,'contourlines_prelim'); slider_buffer = getappdata(handles_gui_sub.figure,'slider_buffer'); val_checkbox_scalebar = getappdata(handles_gui_sub.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui_sub.figure,'val_checkbox_axes'); val_checkbox_contour = getappdata(handles_gui_sub.figure,'val_checkbox_contour'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); handle_zoom = getappdata(handles_gui_sub.figure,'handle_zoom'); handle_pan = getappdata(handles_gui_sub.figure,'handle_pan'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Sliders: set(handles_gui_sub.slider_transparency,'value',transparency_prelim); set(handles_gui_sub.slider_upperbound,'value',min(1,max(0,slider_buffer(num_cur+1).(lore)(1)))); set(handles_gui_sub.slider_lowerbound,'value',min(1,max(0,slider_buffer(num_cur+1).(lore)(2)))); % Edit: set(handles_gui_sub.edit_transparency,'String',num2str(transparency_prelim,'%6.4f')); set(handles_gui_sub.edit_upperbound,'String',num2str((slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(1)+slider_buffer(num_cur+1).(lore)(4),'%6.4f')); set(handles_gui_sub.edit_lowerbound,'String',num2str((slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(2)+slider_buffer(num_cur+1).(lore)(4),'%6.4f')); set(handles_gui_sub.edit_contour,'String',num2str(contourlines_prelim)); set(handles_gui_sub.edit_scalebarlength,'String',num2str(scalebarlength,'%6.2f')); % Popupmenu: set(handles_gui_sub.popupmenu,'Value',val_popupmenu); % Enable scalebar if (val_checkbox_scalebar) set(handles_gui_sub.edit_scalebarlength,'Enable','on','backgroundcolor',[0.9412 0.9412 0.9412]); set(handles_gui_sub.checkbox_scalebar,'Value',true); else set(handles_gui_sub.edit_scalebarlength,'Enable','off','backgroundcolor',[0.9412 0.9412 0.9412]); set(handles_gui_sub.checkbox_scalebar,'Value',false); end % Enable axes if (val_checkbox_axes) set(handles_gui_sub.checkbox_axes,'Value',true); else set(handles_gui_sub.checkbox_axes,'Value',false); end % Enable contour if (val_checkbox_contour) % Disable trans set(handles_gui_sub.edit_transparency,'Enable','off'); set(handles_gui_sub.slider_transparency,'Enable','off'); % Enable contours set(handles_gui_sub.edit_contour,'Enable','on','backgroundcolor',[0.9412 0.9412 0.9412]); else % Enable trans set(handles_gui_sub.edit_transparency,'Enable','on','backgroundcolor',[0.9412 0.9412 0.9412]); set(handles_gui_sub.slider_transparency,'Enable','on'); % Disable contours set(handles_gui_sub.edit_contour,'Enable','off'); end if (strcmp(get(handle_pan,'Enable'),'on')) set(handles_gui_sub.button_pan,'FontWeight','bold'); else set(handles_gui_sub.button_pan,'FontWeight','normal'); end if (strcmp(get(handle_zoom,'Enable'),'on')) set(handles_gui_sub.button_zoom,'FontWeight','bold'); else set(handles_gui_sub.button_zoom,'FontWeight','normal'); end end function update_axes(action,handles_gui_sub) % Get data - MUST USE HANDLES_GUI_SUB AND TYPE_PLOT_SUB!!! num_cur = getappdata(handles_gui_sub.figure,'num_cur'); transparency_prelim = getappdata(handles_gui_sub.figure,'transparency_prelim'); contourlines_prelim = getappdata(handles_gui_sub.figure,'contourlines_prelim'); scalebarlength = getappdata(handles_gui_sub.figure,'scalebarlength'); slider_buffer = getappdata(handles_gui_sub.figure,'slider_buffer'); type_plot_sub = getappdata(handles_gui_sub.figure,'type_plot'); text_info = getappdata(handles_gui_sub.figure,'text_info'); val_checkbox_contour = getappdata(handles_gui_sub.figure,'val_checkbox_contour'); val_checkbox_scalebar = getappdata(handles_gui_sub.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui_sub.figure,'val_checkbox_axes'); val_checkbox_minmaxmarkers = getappdata(handles_gui_sub.figure,'val_checkbox_minmaxmarkers'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); handle_preview = getappdata(handles_gui_sub.figure,'handle_preview'); handle_scalebar = getappdata(handles_gui_sub.figure,'handle_scalebar'); handle_axes = getappdata(handles_gui_sub.figure,'handle_axes'); handle_colorbar = getappdata(handles_gui_sub.figure,'handle_colorbar'); handle_point_max = getappdata(handles_gui_sub.figure,'handle_point_max'); handle_point_min = getappdata(handles_gui_sub.figure,'handle_point_min'); if (val_popupmenu == 1) lore = 'lagrangian'; img_bg = reference; else lore = 'eulerian'; img_bg = current(num_cur+1); end % Get data data = get_data(type_plot_sub,lore,num_cur); plot_data = get_dataplot(type_plot_sub,lore,num_cur); roi_data = get_roi(type_plot_sub,lore,num_cur); if (strcmp(action,'set') || strcmp(action,'save')) % Get reduced img img_reduced = img_bg.reduce(data_dic.dispinfo.spacing); % Set Background Image imshow(img_reduced.get_img(),[img_reduced.min_gs img_reduced.max_gs],'Parent',handles_gui_sub.axes_formatplot); hold(handles_gui_sub.axes_formatplot,'on'); % Overlay plot - See if it's a contour plot if (val_checkbox_contour) % Format plot [grid_x,grid_y] = meshgrid(1:size(plot_data,2),1:size(plot_data,1)); alphamap_nan = ~roi_data.mask; plot_data(alphamap_nan) = NaN; % Form contour plot [data_contour,handle_preview] = contourf(grid_x,grid_y,plot_data,contourlines_prelim,'Parent',handles_gui_sub.axes_formatplot); % Overlay image in NaN regions % This only works properly when opengl is disabled. When opengl % is enabled, stacking order is determined by projected Z % value. This is a problem because images and contourf functions % have z = 0 value, so sometimes the image will not overlay the % white regions. handle_trans = imshow(img_reduced.get_img(),[img_reduced.min_gs img_reduced.max_gs],'Parent',handles_gui_sub.axes_formatplot); set(handle_trans,'AlphaData',imdilate(alphamap_nan,true(3))); % This dilation covers the border else % Regular Plot handle_preview = imshow(plot_data,[],'Parent',handles_gui_sub.axes_formatplot); end % Set axes grid off set(handles_gui_sub.axes_formatplot,'Visible','off'); % Place markers in min/max location datamax = max(data); datamin = min(data); % Max marker [y_max,x_max] = find(plot_data == datamax,1); handle_point_max = impoint(handles_gui_sub.axes_formatplot,x_max,y_max); setColor(handle_point_max,'g'); set(handle_point_max,'UIContextMenu',''); set(handle_point_max,'ButtonDownFcn',''); % Min Marker [y_min,x_min] = find(plot_data == datamin,1); handle_point_min = impoint(handles_gui_sub.axes_formatplot,x_min,y_min); setColor(handle_point_min,'g'); set(handle_point_min,'UIContextMenu',''); set(handle_point_min,'ButtonDownFcn',''); % Set invisible if markers are disabled if (~val_checkbox_minmaxmarkers) set(handle_point_max,'Visible','off'); set(handle_point_min,'Visible','off'); end % Turn hold off hold(handles_gui_sub.axes_formatplot,'off'); % Set left/right buttons if (~strcmp(action,'save')) set(handles_gui_sub.edit_imgnum,'String',num2str(num_cur+1)); if (length(current) == 1) set(handles_gui_sub.button_right,'Enable','off'); set(handles_gui_sub.button_left,'Enable','off'); set(handles_gui_sub.edit_imgnum,'Enable','off'); elseif (num_cur == 0) set(handles_gui_sub.button_right,'Enable','on'); set(handles_gui_sub.button_left,'Enable','off'); set(handles_gui_sub.edit_imgnum,'Enable','on'); elseif (num_cur == length(current)-1) set(handles_gui_sub.button_right,'Enable','off'); set(handles_gui_sub.button_left,'Enable','on'); set(handles_gui_sub.edit_imgnum,'Enable','on'); else set(handles_gui_sub.button_right,'Enable','on'); set(handles_gui_sub.button_left,'Enable','on'); set(handles_gui_sub.edit_imgnum,'Enable','on'); end end % Static Texts: if (strcmp(action,'set') || (strcmp(action,'save') && getappdata(handles_gui_sub.figure,'includeinfo'))) set(handles_gui_sub.text_ref_name,'String',['Reference Name: ' reference.name(1:min(end,40))]); set(handles_gui_sub.text_cur_name,'String',['Current Name: ' current(num_cur+1).name(1:min(end,40))]); set(handles_gui_sub.text_type,'String',['Analysis type: ' data_dic.dispinfo.type]); if (strcmp(type_plot_sub,'u') || strcmp(type_plot_sub,'v')) string_dicparams = ['RG-DIC Radius: ' num2str(data_dic.dispinfo.radius) ' | Subset Spacing: ' num2str(data_dic.dispinfo.spacing)]; else string_dicparams = ['RG-DIC Radius: ' num2str(data_dic.dispinfo.radius) ' | Strain Radius: ' num2str(data_dic.straininfo.radius) ' | Subset Spacing: ' num2str(data_dic.dispinfo.spacing)]; end set(handles_gui_sub.text_dicparams,'String', string_dicparams); set(handles_gui_sub.text_itparams,'String', ['Diffnorm Cutoff: ' num2str(data_dic.dispinfo.cutoff_diffnorm) ' | Iteration Cutoff: ' num2str(data_dic.dispinfo.cutoff_iteration) ' | Threads: ' num2str(data_dic.dispinfo.total_threads)]); if (data_dic.dispinfo.stepanalysis.enabled) if (strcmp(data_dic.dispinfo.stepanalysis.type,'seed')) string_stepanalysis = 'Step Analysis: Enabled | Type: Seed Propagation '; else string_stepanalysis = ['Step Analysis: Enabled | Type: Leap Frog | Step: ' num2str(data_dic.dispinfo.stepanalysis.step)]; end else string_stepanalysis = 'Step Analysis: Disabled'; end set(handles_gui_sub.text_stepanalysis,'String',string_stepanalysis); if (data_dic.dispinfo.subsettrunc) string_subsettrunc = 'RG-DIC Subset Truncation: Enabled'; else string_subsettrunc = 'RG-DIC Subset Truncation: Disabled'; end if (strcmp(type_plot_sub,'exx') || strcmp(type_plot_sub,'exy') || strcmp(type_plot_sub,'eyy')) if (data_dic.straininfo.subsettrunc) string_subsettrunc = horzcat(string_subsettrunc,' | Strain Subset Truncation: Enabled'); %#ok<AGROW> else string_subsettrunc = horzcat(string_subsettrunc,' | Strain Subset Truncation: Disabled'); %#ok<AGROW> end end set(handles_gui_sub.text_subsettrunc,'String',string_subsettrunc); string_imgcorr = 'Image Correspondences: '; for i = 0:length(data_dic.dispinfo.imgcorr)-1 % Might be large string_imgcorr = horzcat(string_imgcorr,['[' num2str(data_dic.dispinfo.imgcorr(i+1).idx_ref) ' ' num2str(data_dic.dispinfo.imgcorr(i+1).idx_cur) '] ']); %#ok<AGROW> end set(handles_gui_sub.text_imgcorr,'String',string_imgcorr); set(handles_gui_sub.text_pixtounits,'String', ['Units/pixels: ' num2str(data_dic.dispinfo.pixtounits) ' ' data_dic.dispinfo.units '/pixels']); set(handles_gui_sub.text_cutoff_corrcoef,'String', ['Correlation Coefficient Cutoff: ' num2str(data_dic.dispinfo.cutoff_corrcoef(num_cur+1),'%6.4f')]); set(handles_gui_sub.text_lenscoef,'String',['Radial Lens Distortion Coefficient: ' num2str(data_dic.dispinfo.lenscoef)]); if (strcmp(type_plot_sub,'u') || strcmp(type_plot_sub,'v')) set(handles_gui_sub.text_minmedianmax,'String',['Max: ' num2str(slider_buffer(num_cur+1).(lore)(6),'%6.4f') ' ' data_dic.dispinfo.units ' | Median: ' num2str(slider_buffer(num_cur+1).(lore)(4),'%6.4f') ' ' data_dic.dispinfo.units ' | Min: ' num2str(slider_buffer(num_cur+1).(lore)(7),'%6.4f') ' ' data_dic.dispinfo.units]); elseif (strcmp(type_plot_sub,'exx') || strcmp(type_plot_sub,'exy') || strcmp(type_plot_sub,'eyy')) set(handles_gui_sub.text_minmedianmax,'String',['Max: ' num2str(slider_buffer(num_cur+1).(lore)(6),'%6.4f') ' | Median: ' num2str(slider_buffer(num_cur+1).(lore)(4),'%6.4f') ' | Min: ' num2str(slider_buffer(num_cur+1).(lore)(7),'%6.4f')]); end end % Set empty text info text_info = text(0,0,2,'','Parent',handles_gui_sub.axes_formatplot,'HorizontalAlignment','left','VerticalAlignment','top','BackgroundColor',[1 1 1],'EdgeColor',[0.7 0.7 0.7],'tag','text_info','FontSize',8); % Update panel text if its strain, since it also displays the % strain tensor name if (~strcmp(action,'save') && (strcmp(type_plot_sub,'exx') || strcmp(type_plot_sub,'exy') || strcmp(type_plot_sub,'eyy'))) if (strcmp(type_plot_sub,'exx')) group_title = 'Exx '; elseif (strcmp(type_plot_sub,'exy')) group_title = 'Exy '; elseif (strcmp(type_plot_sub,'eyy')) group_title = 'Eyy '; end if (val_popupmenu == 1) group_title = [group_title 'Green-Lagrangian']; else group_title = [group_title 'Eulerian-Almansi']; end % Update title set(handles_gui_sub.group_formataxes,'Title',group_title) end % Set colormap ncorr_util_colormap(handles_gui_sub.figure); end if (strcmp(action,'set') || strcmp(action,'update') || strcmp(action,'save')) % Get limits cmax = (slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(1)+slider_buffer(num_cur+1).(lore)(4); cmin = (slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(2)+slider_buffer(num_cur+1).(lore)(4); if (abs(cmin-cmax)<1e-4) cmax = cmax + 1e-5; % add a small increment to ensure they are not the same number cmin = cmin - 1e-5; end % Update Plot caxis(handles_gui_sub.axes_formatplot,[cmin cmax]); % Update transparency for regular plot if (~val_checkbox_contour) transparency = transparency_prelim; alphamap_plot = roi_data.mask.*transparency; set(handle_preview,'AlphaData',alphamap_plot); end % Set colorbar handle_colorbar = colorbar('peer',handles_gui_sub.axes_formatplot); set(handle_colorbar,'UIContextMenu',''); set(get(handle_colorbar,'child'),'YData',[cmin cmax]); set(handle_colorbar,'YLim',[cmin cmax]); set(handle_colorbar,'Units','Pixels'); % Set max/min markers if (val_checkbox_minmaxmarkers) set(handle_point_max,'Visible','on'); set(handle_point_min,'Visible','on'); else set(handle_point_max,'Visible','off'); set(handle_point_min,'Visible','off'); end % Check for scale bar if (val_checkbox_scalebar) % Need to also test if handle is valid, since it is not % explicitly cleared when switching img_num if (isempty(handle_scalebar) || ~ishandle(handle_scalebar)) % Scalebar isnt present, so create it handle_scalebar = form_scalebar(handles_gui_sub); else % Scalebar is already present - just update it % Get display image dimensions height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); line_scalebar = findobj(handle_scalebar,'tag','line'); width_sb = scalebarlength/(data_dic.dispinfo.pixtounits*(data_dic.dispinfo.spacing+1)); % Convert to pixels height_sb = 0.015*height_img; % Height is 1.5% of img height offset_sb_left = 0.05*width_img; % Offset is 5% from left, and 95% from top offset_sb_top = 0.95*height_img; set(line_scalebar,'XData',[offset_sb_left offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left]); set(line_scalebar,'YData',[offset_sb_top offset_sb_top offset_sb_top+height_sb offset_sb_top+height_sb]); % Update bg bg1 = findobj(handle_scalebar,'tag','bg1'); bg2 = findobj(handle_scalebar,'tag','bg2'); width_bg = (width_sb/width_img+0.06)*width_img; height_bg = 0.12*height_img; % Height is a 12% of height offset_bg_left = 0.02*width_img; % Offset is 2% from left, and 86% from top offset_bg_top = 0.86*height_img; set(bg1,'XData',[offset_bg_left offset_bg_left+width_bg offset_bg_left+width_bg offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left offset_sb_left offset_bg_left]); set(bg1,'YData',[offset_bg_top offset_bg_top offset_bg_top+height_bg offset_sb_top+height_sb offset_sb_top offset_sb_top offset_sb_top+height_sb offset_bg_top+height_bg]); set(bg2,'XData',[offset_sb_left offset_sb_left+width_sb offset_bg_left+width_bg offset_bg_left]); set(bg2,'YData',[offset_sb_top+height_sb offset_sb_top+height_sb offset_bg_top+height_bg offset_bg_top+height_bg]); % Update text text_scalebar = findobj(handle_scalebar,'tag','text_scalebar'); pos_x_text = offset_sb_left+width_sb/2; pos_y_text = .905*height_img; set(text_scalebar,'String',[num2str(scalebarlength) ' ' data_dic.dispinfo.units],'Position',[pos_x_text pos_y_text 1]); end else % See if scalebar exists if (~isempty(handle_scalebar) && ishandle(handle_scalebar)) delete(handle_scalebar); end handle_scalebar = []; if (~strcmp(action,'save')) % Disable the edit box for editing scalebar length set(handles_gui_sub.edit_scalebarlength,'Enable','off'); end end % Check for the axes if (val_checkbox_axes) if (isempty(handle_axes) || ~ishandle(handle_axes)) % Create plot axes handle_axes = form_plotaxes(handles_gui_sub); end else if (~isempty(handle_axes) && ishandle(handle_axes)) delete(handle_axes); end handle_axes = []; end end % Set data setappdata(handles_gui_sub.figure,'handle_point_max', handle_point_max); setappdata(handles_gui_sub.figure,'handle_point_min', handle_point_min); setappdata(handles_gui_sub.figure,'handle_preview',handle_preview); setappdata(handles_gui_sub.figure,'handle_scalebar',handle_scalebar); setappdata(handles_gui_sub.figure,'handle_axes',handle_axes); setappdata(handles_gui_sub.figure,'handle_colorbar',handle_colorbar); setappdata(handles_gui_sub.figure,'text_info',text_info); end function handle_scalebar = form_scalebar(handles_gui_sub) % This function creates the scalebar % Get data num_cur = getappdata(handles_gui_sub.figure,'num_cur'); scalebarlength = getappdata(handles_gui_sub.figure,'scalebarlength'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); if (val_popupmenu == 1) img_bg = reference; else img_bg = current(num_cur+1); end % Get display image dimensions (these are reduced) height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); % Form hggroup handle_scalebar = hggroup('parent',handles_gui_sub.axes_formatplot,'tag','handle_scalebar'); % Form dimensions of scalebar - most importantly, width must be % converted back to pixels (in reduced coordinates). It must also be % consistent among plots and based on the scalebarlength parameter. % Any other parameter, like the scalebar height or offsets, can % depend on this specific image size for display purposes. width_sb = scalebarlength/(data_dic.dispinfo.pixtounits*(data_dic.dispinfo.spacing+1)); height_sb = 0.015*height_img; % Height is a 1.5% of im height offset_sb_left = 0.05*width_img; % Offset is 5% from left, and 95% from top offset_sb_top = 0.95*height_img; % BG - Form BG with two patches with a hole for the scale bar. % For some reason alpha is applied to all overlapping patches width_bg = (width_sb/width_img+0.06)*width_img; height_bg = 0.12*height_img; % Height is a 12% of height offset_bg_left = 0.02*width_img; % Offset is 2% from left, and 86% from top offset_bg_top = 0.86*height_img; patch([offset_bg_left offset_bg_left+width_bg offset_bg_left+width_bg offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left offset_sb_left offset_bg_left], ... [offset_bg_top offset_bg_top offset_bg_top+height_bg offset_sb_top+height_sb offset_sb_top offset_sb_top offset_sb_top+height_sb offset_bg_top+height_bg], ... [1 1 1 1 1 1 1 1], ... 'k','parent',handle_scalebar,'linestyle','none','FaceAlpha',0.5,'tag','bg1'); patch([offset_sb_left offset_sb_left+width_sb offset_bg_left+width_bg offset_bg_left], ... [offset_sb_top+height_sb offset_sb_top+height_sb offset_bg_top+height_bg offset_bg_top+height_bg], ... [1 1 1 1], ... 'k','parent',handle_scalebar,'linestyle','none','FaceAlpha',0.5,'tag','bg2'); % Line - The actual scale bar patch([offset_sb_left offset_sb_left+width_sb offset_sb_left+width_sb offset_sb_left], ... [offset_sb_top offset_sb_top offset_sb_top+height_sb offset_sb_top+height_sb], ... [1 1 1 1], ... 'w','parent',handle_scalebar,'FaceAlpha',1,'tag','line'); % Text pos_x_text = offset_sb_left+width_sb/2; pos_y_text = .905*height_img; pos_img = get(handles_gui_sub.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); text(pos_x_text,pos_y_text,1,[num2str(scalebarlength) ' ' data_dic.dispinfo.units],'parent',handle_scalebar,'color','w', ... 'HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',size_text,'tag','text_scalebar'); end function handle_axes = form_plotaxes(handles_gui_sub) % This function forms the axes seen at the top left of the plot % Get data num_cur = getappdata(handles_gui_sub.figure,'num_cur'); val_popupmenu = getappdata(handles_gui_sub.figure,'val_popupmenu'); if (val_popupmenu == 1) img_bg = reference; else img_bg = current(num_cur+1); end % Do this WRT the display image height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); % Form hggroup handle_axes = hggroup('parent',handles_gui_sub.axes_formatplot,'tag','handle_axes'); length_axes = 0.15*max(width_img,height_img); width_axes = 0.012*max(width_img,height_img); arrowwidth_axes = 1.0*width_axes; width_bg = width_axes*0.4; % BG patch([0 width_axes+width_bg width_axes+width_bg width_axes+arrowwidth_axes+2*width_bg 0],[0 0 length_axes-width_bg length_axes-width_bg length_axes+width_axes+arrowwidth_axes+width_bg],[1 1 1 1 1], ... 'w','parent',handle_axes,'linestyle','none','tag','bg1'); patch([0 length_axes+width_axes+arrowwidth_axes+width_bg length_axes-width_bg length_axes-width_bg 0],[0 0 width_axes+arrowwidth_axes+2*width_bg width_axes+width_bg width_axes+width_bg],[1 1 1 1 1], ... 'w','parent',handle_axes,'linestyle','none','tag','bg2'); % Lines patch([0 width_axes width_axes width_axes+arrowwidth_axes 0],[0 0 length_axes length_axes length_axes+width_axes+arrowwidth_axes],[1 1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','tag','arrow1'); patch([0 length_axes+width_axes+arrowwidth_axes length_axes length_axes 0],[0 0 width_axes+arrowwidth_axes width_axes width_axes],[1 1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','tag','arrow2'); % Text BG spacing_textbg = 2.5*width_axes; offset_text = 3*width_axes; pos_text = length_axes+width_axes+arrowwidth_axes+width_bg+offset_text; pos_img = get(handles_gui_sub.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); patch([offset_text-spacing_textbg offset_text+spacing_textbg offset_text+spacing_textbg offset_text-spacing_textbg],[pos_text-spacing_textbg pos_text-spacing_textbg pos_text+spacing_textbg pos_text+spacing_textbg],[1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','FaceAlpha',0.5,'tag','text_bg1'); patch([pos_text-spacing_textbg pos_text+spacing_textbg pos_text+spacing_textbg pos_text-spacing_textbg],[offset_text-spacing_textbg offset_text-spacing_textbg offset_text+spacing_textbg offset_text+spacing_textbg],[1 1 1 1], ... 'k','parent',handle_axes,'linestyle','none','FaceAlpha',0.5,'tag','text_bg2'); % Text text(offset_text,pos_text,1,'Y','parent',handle_axes,'color','w', ... 'HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',size_text,'tag','text_x'); text(pos_text,offset_text,1,'X','parent',handle_axes,'color','w', ... 'HorizontalAlignment','center','VerticalAlignment','middle','FontWeight','bold','FontSize',size_text,'tag','text_y'); end %---------------------------------------------------------------------% %---------------------------------------------------------------------% %---------------------------------------------------------------------% function callback_slider_transparency(hObject,eventdata) %#ok<INUSD> % Get data transparency_prelim = get(handles_gui.slider_transparency,'value'); % Set data setappdata(handles_gui.figure,'transparency_prelim',transparency_prelim); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_slider_upperbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Update data slider_buffer(num_cur+1).(lore)(1) = get(handles_gui.slider_upperbound,'value'); % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_slider_lowerbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Update data slider_buffer(num_cur+1).(lore)(2) = get(handles_gui.slider_lowerbound,'value'); % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_contour(hObject,eventdata) %#ok<INUSD> % Get data val_checkbox_contour = get(handles_gui.checkbox_contour,'Value'); % Set data setappdata(handles_gui.figure,'val_checkbox_contour',val_checkbox_contour); % Update update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_checkbox_minmaxmarkers(hObject,eventdata) %#ok<INUSD> % Get data val_checkbox_minmaxmarkers = get(handles_gui.checkbox_minmaxmarkers,'Value'); % Set data setappdata(handles_gui.figure,'val_checkbox_minmaxmarkers',val_checkbox_minmaxmarkers); % Update update_axes('update',handles_gui); end function callback_edit_transparency(hObject,eventdata) %#ok<INUSD> % Get data transparency_prelim = getappdata(handles_gui.figure,'transparency_prelim'); % Get Value transparency_buffer = str2double(get(handles_gui.edit_transparency,'string')); if (ncorr_util_isrealbb(transparency_buffer,0,1,'Transparency') == out.success) transparency_prelim = transparency_buffer; end % Set data setappdata(handles_gui.figure,'transparency_prelim',transparency_prelim); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_lowerbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); min_lowerbound = getappdata(handles_gui.figure,'min_lowerbound'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get Value lowerbound_buffer = str2double(get(handles_gui.edit_lowerbound,'string')); if (ncorr_util_isrealbb(lowerbound_buffer,min_lowerbound,slider_buffer(num_cur+1).(lore)(4),'Lowerbound') == out.success) % Make sure denominator is not close to zero if (abs(slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4)) <= 1e-10) slider_buffer(num_cur+1).(lore)(2) = 1; else slider_buffer(num_cur+1).(lore)(2) = (lowerbound_buffer-slider_buffer(num_cur+1).(lore)(4))/(slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4)); end end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_upperbound(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); max_upperbound = getappdata(handles_gui.figure,'max_upperbound'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get Value upperbound_buffer = str2double(get(handles_gui.edit_upperbound,'string')); if (ncorr_util_isrealbb(upperbound_buffer,slider_buffer(num_cur+1).(lore)(4),max_upperbound,'Upperbound') == out.success) % Make sure denominator is not close to zero if (abs(slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4)) <= 1e-10) slider_buffer(num_cur+1).(lore)(1) = 1; else slider_buffer(num_cur+1).(lore)(1) = (upperbound_buffer-slider_buffer(num_cur+1).(lore)(4))/(slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4)); end end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_edit_contour(hObject,eventdata) %#ok<INUSD> % Get data contourlines_prelim = getappdata(handles_gui.figure,'contourlines_prelim'); max_contourlines = getappdata(handles_gui.figure,'max_contourlines'); % Get Value contourlines_buffer = str2double(get(handles_gui.edit_contour,'string')); if (ncorr_util_isintbb(contourlines_buffer,1,max_contourlines,'Number of contour lines') == out.success) contourlines_prelim = contourlines_buffer; end % Set data setappdata(handles_gui.figure,'contourlines_prelim',contourlines_prelim); % Update update_axes('set',handles_gui); update_sidemenu(handles_gui); end function callback_button_applytoall(hObject,eventdata) %#ok<INUSD> % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get bounds upperbound_buffer = (slider_buffer(num_cur+1).(lore)(3)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(1)+slider_buffer(num_cur+1).(lore)(4); lowerbound_buffer = (slider_buffer(num_cur+1).(lore)(5)-slider_buffer(num_cur+1).(lore)(4))*slider_buffer(num_cur+1).(lore)(2)+slider_buffer(num_cur+1).(lore)(4); % Find cutoff for bounds. cutoff_buffer = vertcat(slider_buffer.(lore)); cutoff_lowerbound = min(cutoff_buffer(:,4)); cutoff_upperbound = max(cutoff_buffer(:,4)); if (upperbound_buffer > cutoff_upperbound && lowerbound_buffer < cutoff_lowerbound) % Set bounds for i = 0:length(current)-1 % Set lowerbound if (abs(slider_buffer(i+1).(lore)(5)-slider_buffer(i+1).(lore)(4)) <= 1e-10) slider_buffer(i+1).(lore)(2) = 1; else slider_buffer(i+1).(lore)(2) = (lowerbound_buffer-slider_buffer(i+1).(lore)(4))/(slider_buffer(i+1).(lore)(5)-slider_buffer(i+1).(lore)(4)); end % Set upperbound if (abs(slider_buffer(i+1).(lore)(3)-slider_buffer(i+1).(lore)(4)) <= 1e-10) slider_buffer(i+1).(lore)(1) = 1; else slider_buffer(i+1).(lore)(1) = (upperbound_buffer-slider_buffer(i+1).(lore)(4))/(slider_buffer(i+1).(lore)(3)-slider_buffer(i+1).(lore)(4)); end end else h_error = errordlg(['Lowerbound must be a lower than ' num2str(cutoff_lowerbound) ' and upperbound must be greater than ' num2str(cutoff_upperbound) '.'],'Error','modal'); uiwait(h_error); end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_button_resetdefaults(hObject,eventdata) %#ok<INUSD> % Get data slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); % Set slider buffer for i = 0:length(current)-1 % Set parameters data_ref = get_data(type_plot,'lagrangian',i); slider_buffer(i+1).lagrangian(1) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(2) = 0.5; % Initialize to half slider_buffer(i+1).lagrangian(3:7) = get_sliderparams(data_ref); data_cur = get_data(type_plot,'eulerian',i); slider_buffer(i+1).eulerian(1) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(2) = 0.5; % Initialize to half slider_buffer(i+1).eulerian(3:7) = get_sliderparams(data_cur); end % Set data setappdata(handles_gui.figure,'slider_buffer',slider_buffer); % Update update_axes('update',handles_gui); update_sidemenu(handles_gui); end function callback_resizefunction(hObject,eventdata) %#ok<INUSD> % This function constrains how the figure resizes its axes, buttons, etc % on resize. Be careful here because resize function will interrupt % callbacks even if 'interruptible' is set to 'off' % Get data handle_scalebar = getappdata(handles_gui.figure,'handle_scalebar'); handle_axes = getappdata(handles_gui.figure,'handle_axes'); pos_fig = get(handles_gui.figure,'Position'); val_checkbox_scalebar = getappdata(handles_gui.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui.figure,'val_checkbox_axes'); % Set offsets offset_group_menu_y = 21.1; offset_group_view_y = 26.5; offset_group_scalebar_y = 33.8; offset_group_axes_y = 38.7; offset_group_zoompan_y = 43.7; offset_axes_x = 1.35; offset_axes_y = 41.1; offset_img_x = 24.4; offset_img_y = 80.8; offset_left_y = 66; offset_right_y = 51; offset_edit_y = 59; % Update menu panel pos_group_menu = get(handles_gui.group_menu,'Position'); pos_group_menu(2) = pos_fig(4)-offset_group_menu_y; set(handles_gui.group_menu,'Position',pos_group_menu); % Update lore panel pos_group_view = get(handles_gui.group_viewoptions,'Position'); pos_group_view(2) = pos_fig(4)-offset_group_view_y; set(handles_gui.group_viewoptions,'Position',pos_group_view); % Update scalebar panel pos_group_scalebar = get(handles_gui.group_scalebar,'Position'); pos_group_scalebar(2) = pos_fig(4)-offset_group_scalebar_y; set(handles_gui.group_scalebar,'Position',pos_group_scalebar); % Update axes panel pos_group_axes = get(handles_gui.group_axes,'Position'); pos_group_axes(2) = pos_fig(4)-offset_group_axes_y; set(handles_gui.group_axes,'Position',pos_group_axes); % Update zoom/pan panel pos_group_zoompan = get(handles_gui.group_zoompan,'Position'); pos_group_zoompan(2) = pos_fig(4)-offset_group_zoompan_y; set(handles_gui.group_zoompan,'Position',pos_group_zoompan); % Update axes panel - make sure it has positive width and height if (pos_fig(3)-offset_axes_y > 0 && ... pos_fig(4)-offset_axes_x > 0) pos_axes = get(handles_gui.group_formataxes,'Position'); pos_axes(3) = pos_fig(3)-offset_axes_y; pos_axes(4) = pos_fig(4)-offset_axes_x; set(handles_gui.group_formataxes,'Position',pos_axes); end % Update axes - make sure it has positive width and height if (pos_fig(3)-offset_img_y > 0 && ... pos_fig(4)-offset_img_x > 0) pos_img = get(handles_gui.axes_formatplot,'Position'); pos_img(3) = pos_fig(3)-offset_img_y; pos_img(4) = pos_fig(4)-offset_img_x; set(handles_gui.axes_formatplot,'Position',pos_img); end % Update buttons if (pos_fig(3)-offset_left_y > 0) pos_left = get(handles_gui.button_left,'Position'); pos_left(1) = pos_fig(3)-offset_left_y; set(handles_gui.button_left,'Position',pos_left); end if (pos_fig(3)-offset_right_y > 0) pos_right = get(handles_gui.button_right,'Position'); pos_right(1) = pos_fig(3)-offset_right_y; set(handles_gui.button_right,'Position',pos_right); end % Update imgnum edit if (pos_fig(3)-offset_edit_y > 0) pos_right = get(handles_gui.edit_imgnum,'Position'); pos_right(1) = pos_fig(3)-offset_edit_y; set(handles_gui.edit_imgnum,'Position',pos_right); end % Update handle_scalebar text if it it's enabled. % Only text is updated because text size is constant during resize; % patches will resize automatically with handle_axes. % Note that resize function will interrupt callbacks, so check % explicitly that the scalebar exists first before resizing it (i.e. % its possible to interrupt the checkbox callback for the scalebar % midway). if (val_checkbox_scalebar && ... ~isempty(handle_scalebar) && ishandle(handle_scalebar)) text_scalebar = findobj(handle_scalebar,'tag','text_scalebar'); pos_img = get(handles_gui.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_scalebar,'FontSize',size_text); end % Update handle_axes text if it it's enabled. % Only text is updated because the size is constant during resize; % patches will resize automatically with handle_axes. % Note that resize function will interrupt callbacks, so check % explicitly that the axes exists first before resizing it (i.e. % its possible to interrupt the checkbox callback for the axes % midway). if (val_checkbox_axes && ... ~isempty(handle_axes) && ishandle(handle_axes)) text_x = findobj(handle_axes,'tag','text_x'); text_y = findobj(handle_axes,'tag','text_y'); pos_img = get(handles_gui.axes_formatplot,'Position'); size_text = max(0.5*min(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_x,'FontSize',size_text); set(text_y,'FontSize',size_text); end end function callback_moveplot(hObject,eventdata) %#ok<INUSD> % This function tells the axes what to do if the mouse cursor hovers % over the plot axes % Get data num_cur = getappdata(handles_gui.figure,'num_cur'); text_info = getappdata(handles_gui.figure,'text_info'); handle_colorbar = getappdata(handles_gui.figure,'handle_colorbar'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); handle_zoom = getappdata(handles_gui.figure,'handle_zoom'); handle_pan = getappdata(handles_gui.figure,'handle_pan'); if (val_popupmenu == 1) lore = 'lagrangian'; else lore = 'eulerian'; end % Get data plot_data = get_dataplot(type_plot,lore,num_cur); roi_data = get_roi(type_plot,lore,num_cur); % Test to see if mouse position is within ROI - uses 1 based % indexing. Also round it first. pos_mouse_axes = round(get(handles_gui.axes_formatplot,'CurrentPoint')); if (pos_mouse_axes(1) >= 1 && pos_mouse_axes(3) >= 1 && pos_mouse_axes(1) <= size(roi_data.mask,2) && pos_mouse_axes(3) <= size(roi_data.mask,1)) if (roi_data.mask(pos_mouse_axes(3),pos_mouse_axes(1))) % Get Plot info - note that strain is dimensionless if (strcmp(type_plot,'u')) text_display = 'U-disp: '; units = data_dic.dispinfo.units; elseif (strcmp(type_plot,'v')) text_display = 'V-disp: '; units = data_dic.dispinfo.units; elseif (strcmp(type_plot,'exx')) text_display = 'Exx-strain: '; units = ''; elseif (strcmp(type_plot,'exy')) text_display = 'Exy-strain: '; units = ''; elseif (strcmp(type_plot,'eyy')) text_display = 'Eyy-strain: '; units = ''; end % Display text set(text_info,'String',{['x-pos: ' num2str(pos_mouse_axes(1))],['y-pos: ' num2str(pos_mouse_axes(3))],[text_display num2str(plot_data(pos_mouse_axes(3),pos_mouse_axes(1))) ' ' units]}, ... 'Position',[pos_mouse_axes(1) pos_mouse_axes(3) 2],'HorizontalAlignment','left','VerticalAlignment','top'); % If zoom and pan arent being used, then use a cross for the % cursor if (strcmp(get(handle_zoom,'Enable'),'off') && strcmp(get(handle_pan,'Enable'),'off')) set(handles_gui.figure,'Pointer','cross'); end % Check if text overlaps colorbar or bottom of the axes; if so, % flip it so the text shows properly % Set all coordinates to pixels set(text_info,'units','pixels'); set(handle_colorbar,'units','pixels'); set(handles_gui.group_formataxes,'units','pixels'); set(handles_gui.figure,'units','pixels'); % Get positions pos_text = get(text_info,'extent'); pos_colorbar = get(handle_colorbar,'Position'); pos_group = get(handles_gui.group_formataxes,'position'); pos_cursor = get(handles_gui.figure,'CurrentPoint'); if (pos_cursor(1)+pos_text(3) > pos_group(1)+pos_colorbar(1) && pos_text(2) < 0) set(text_info,'HorizontalAlignment','right','VerticalAlignment','bottom'); elseif (pos_cursor(1)+pos_text(3) > pos_group(1)+pos_colorbar(1)) set(text_info,'HorizontalAlignment','right'); elseif (pos_text(2) < 0) % Hangs below bottom set(text_info,'VerticalAlignment','bottom'); end % Convert back to original coordinates set(text_info,'units','data'); set(handle_colorbar,'units','normalized'); set(handles_gui.group_formataxes,'units','characters'); set(handles_gui.figure,'units','characters'); else % Clear text and set cursor back to arrow if zoom and pan % aren't enabled set(text_info,'String',''); if (strcmp(get(handle_zoom,'Enable'),'off') && strcmp(get(handle_pan,'Enable'),'off')) set(handles_gui.figure,'Pointer','arrow'); end end else % Clear text since cursor is not on top of axes set(text_info,'String',''); set(handles_gui.figure,'Pointer','arrow'); end end function [data] = get_data(type_plot_sub,lore,num_cur) % This function returns displacement/strain data in vector from the data_dic structure if (strcmp(lore,'lagrangian')) rorc = 'ref'; else rorc = 'cur'; end if (strcmp(type_plot_sub,'u')) % U: data = data_dic.displacements(num_cur+1).(['plot_u_' rorc '_formatted'])(data_dic.displacements(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'v')) % V: data = data_dic.displacements(num_cur+1).(['plot_v_' rorc '_formatted'])(data_dic.displacements(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'exx')) % Exx: data = data_dic.strains(num_cur+1).(['plot_exx_' rorc '_formatted'])(data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'exy')) % Exy: data = data_dic.strains(num_cur+1).(['plot_exy_' rorc '_formatted'])(data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']).mask); elseif (strcmp(type_plot_sub,'eyy')) % Eyy: data = data_dic.strains(num_cur+1).(['plot_eyy_' rorc '_formatted'])(data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']).mask); end end function [plot_data] = get_dataplot(type_plot_sub,lore,num_cur) % This function returns plot_data from the data_dic structure if (strcmp(lore,'lagrangian')) rorc = 'ref'; else rorc = 'cur'; end if (strcmp(type_plot_sub,'u')) % U: plot_data = data_dic.displacements(num_cur+1).(['plot_u_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'v')) % V: plot_data = data_dic.displacements(num_cur+1).(['plot_v_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'exx')) % Exx: plot_data = data_dic.strains(num_cur+1).(['plot_exx_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'exy')) % Exy: plot_data = data_dic.strains(num_cur+1).(['plot_exy_' rorc '_formatted']); elseif (strcmp(type_plot_sub,'eyy')) % Eyy: plot_data = data_dic.strains(num_cur+1).(['plot_eyy_' rorc '_formatted']); end end function [roi_data] = get_roi(type_plot_sub,lore,num_cur) % This function returns the ROI from the data_dic structure if (strcmp(lore,'lagrangian')) rorc = 'ref'; else rorc = 'cur'; end if (strcmp(type_plot_sub,'u') || strcmp(type_plot_sub,'v')) % Displacement roi_data = data_dic.displacements(num_cur+1).(['roi_' rorc '_formatted']); else % Strains roi_data = data_dic.strains(num_cur+1).(['roi_' rorc '_formatted']); end end function sliderparams = get_sliderparams(data) % Returns slider params based on data input param_upperbound = prctile(data,99); param_median = prctile(data,50); param_lowerbound = prctile(data,1); sliderparams = [param_upperbound+(param_upperbound-param_median) ... param_median ... param_lowerbound-(param_median-param_lowerbound) ... max(data) ... min(data)]; end function handles_gui_savefig = form_savefig(num_cur,includeinfo,params_init) % Get data - num_cur is specified transparency_prelim = getappdata(handles_gui.figure,'transparency_prelim'); contourlines_prelim = getappdata(handles_gui.figure,'contourlines_prelim'); scalebarlength = getappdata(handles_gui.figure,'scalebarlength'); slider_buffer = getappdata(handles_gui.figure,'slider_buffer'); val_checkbox_contour = getappdata(handles_gui.figure,'val_checkbox_contour'); val_checkbox_scalebar = getappdata(handles_gui.figure,'val_checkbox_scalebar'); val_checkbox_axes = getappdata(handles_gui.figure,'val_checkbox_axes'); val_checkbox_minmaxmarkers = getappdata(handles_gui.figure,'val_checkbox_minmaxmarkers'); val_popupmenu = getappdata(handles_gui.figure,'val_popupmenu'); handle_point_max = getappdata(handles_gui.figure,'handle_point_max'); handle_point_min = getappdata(handles_gui.figure,'handle_point_min'); if (val_popupmenu == 1) img_bg = reference; else img_bg = current(num_cur+1); end % Form figure handles_gui_savefig.figure = figure( ... 'Units','pixels', ... 'Name', 'Save Preview', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color','white', ... 'handlevisibility','off', ... 'DockControls','off', ... 'Visible','off', ... 'IntegerHandle','off', ... 'Interruptible','off', ... 'WindowStyle','modal'); % Create axes handles_gui_savefig.axes_formatplot = axes('Parent',handles_gui_savefig.figure,'Units','pixels'); % If the user wants to include info if (includeinfo) % Set Info texts uicontrol( ... 'Parent', handles_gui_savefig.figure, ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 18.5 100 1.3], ... 'String', ['Type: ' type_plot '-plot'], ... 'HorizontalAlignment', 'left', ... 'BackgroundColor','white', ... 'Interruptible','off'); % Now get info text which is below the plot handles_infotext = set_infotext(handles_gui_savefig.figure,'white'); fields_infotext = fieldnames(handles_infotext); for i = 0:length(fields_infotext)-1 handles_gui_savefig.(fields_infotext{i+1}) = handles_infotext.(fields_infotext{i+1}); end % Set data height height_data = 255; else height_data = 0; end % Transfer data, except for some handles, so that update_axes can set % the plot setappdata(handles_gui_savefig.figure,'num_cur',num_cur); setappdata(handles_gui_savefig.figure,'transparency_prelim',transparency_prelim); setappdata(handles_gui_savefig.figure,'contourlines_prelim',contourlines_prelim); setappdata(handles_gui_savefig.figure,'scalebarlength',scalebarlength); setappdata(handles_gui_savefig.figure,'slider_buffer',slider_buffer); setappdata(handles_gui_savefig.figure,'type_plot',type_plot); setappdata(handles_gui_savefig.figure,'val_checkbox_contour',val_checkbox_contour); setappdata(handles_gui_savefig.figure,'val_checkbox_scalebar',val_checkbox_scalebar); setappdata(handles_gui_savefig.figure,'val_checkbox_axes',val_checkbox_axes); setappdata(handles_gui_savefig.figure,'val_checkbox_minmaxmarkers',val_checkbox_minmaxmarkers); setappdata(handles_gui_savefig.figure,'val_popupmenu',val_popupmenu); setappdata(handles_gui_savefig.figure,'handle_preview',[]); setappdata(handles_gui_savefig.figure,'handle_scalebar',[]); setappdata(handles_gui_savefig.figure,'handle_axes',[]); setappdata(handles_gui_savefig.figure,'handle_point_max',handle_point_max); setappdata(handles_gui_savefig.figure,'handle_point_min',handle_point_min); % Additional fields setappdata(handles_gui_savefig.figure,'includeinfo',includeinfo); % Set plot update_axes('save',handles_gui_savefig); % Set default size if (isempty(params_init)) width_img = floor(img_bg.width/(data_dic.dispinfo.spacing+1)); height_img = floor(img_bg.height/(data_dic.dispinfo.spacing+1)); else width_img = params_init(1); height_img = params_init(2); end border = 30; width_cb = 20; spacing_save_fig = 100; spacing_width_img = 4*border+width_cb; spacing_height_img = 2*border+height_data; % Set data in savefig - these are parameters which are modified by % gui_savesize setappdata(handles_gui_savefig.figure,'height_data',height_data); setappdata(handles_gui_savefig.figure,'width_img',width_img); setappdata(handles_gui_savefig.figure,'height_img',height_img); setappdata(handles_gui_savefig.figure,'border',border); setappdata(handles_gui_savefig.figure,'width_cb',width_cb); setappdata(handles_gui_savefig.figure,'spacing_save_fig',spacing_save_fig); setappdata(handles_gui_savefig.figure,'spacing_width_img',spacing_width_img); setappdata(handles_gui_savefig.figure,'spacing_height_img',spacing_height_img); % Update savefig update_savefig(handles_gui_savefig); % Set plot visible set(handles_gui_savefig.figure,'Visible','on'); end function handles_gui = init_gui() handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[44.5 150]), ... 'Name', 'Data Plot', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'IntegerHandle','off', ... 'Interruptible','off', ... 'Visible','off', ... 'CloseRequestFcn',''); % Top Menu handles_gui.topmenu_file = uimenu( ... 'Parent', handles_gui.figure, ... 'Tag', 'topmenu_file', ... 'Label', 'File', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_save = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_save', ... 'Label', 'Save Image', ... 'Checked', 'off', ... 'Interruptible','off'); handles_gui.topmenu_save_withoutinfo = uimenu( ... 'Parent', handles_gui.topmenu_save, ... 'Tag', 'topmenu_save_withoutinfo', ... 'Label', 'Save Image Without Info', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_topmenu_save(hObject,eventdata,false),handles_gui.figure), ... 'Interruptible','off'); handles_gui.topmenu_save_withinfo = uimenu( ... 'Parent', handles_gui.topmenu_save, ... 'Tag', 'topmenu_save_withinfo', ... 'Label', 'Save Image With Info', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_topmenu_save(hObject,eventdata,true),handles_gui.figure), ... 'Interruptible','off'); handles_gui.topmenu_savegif = uimenu( ... 'Parent', handles_gui.topmenu_file, ... 'Tag', 'topmenu_savegif', ... 'Label', 'Save GIF', ... 'Checked', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@(hObject,eventdata)callback_topmenu_savegif (hObject,eventdata),handles_gui.figure), ... 'Interruptible','off'); % Panels handles_gui.group_menu = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_menu', ... 'Units', 'characters', ... 'Position', [2 23.4 35.0 20.6], ... 'Title', 'Local Plot Options', ... 'Interruptible','off'); handles_gui.group_viewoptions = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_viewoptions', ... 'Units', 'characters', ... 'Position', [2 18 35.0 4.8], ... 'Title', 'View Options', ... 'Interruptible','off'); handles_gui.group_scalebar = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_scalebar', ... 'Units', 'characters', ... 'Position', [2 10.8 35.0 6.5], ... 'Title', 'Scalebar Options', ... 'Interruptible','off'); handles_gui.group_axes = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_axes', ... 'Units', 'characters', ... 'Position', [2 5.8 35.0 4.4], ... 'Title', 'Axes Options', ... 'Interruptible','off'); handles_gui.group_zoompan = uibuttongroup( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_zoompan', ... 'Units', 'characters', ... 'Position', [2 0.8 35 4.5], ... 'Title', 'Zoom/Pan', ... 'Interruptible','off'); if (strcmp(type_plot,'u')) group_title = 'U-displacements'; elseif (strcmp(type_plot,'v')) group_title = 'V-displacements'; elseif (strcmp(type_plot,'exx')) group_title = 'Exx-strain'; elseif (strcmp(type_plot,'exy')) group_title = 'Exy-strain'; elseif (strcmp(type_plot,'eyy')) group_title = 'Eyy-strain'; end handles_gui.group_formataxes = uipanel( ... 'Parent', handles_gui.figure, ... 'Tag', 'group_formataxes', ... 'Units', 'characters', ... 'Position', [39.0 0.8 109 43.2], ... 'Title', group_title, ... 'Interruptible','off'); % Axes handles_gui.axes_formatplot = axes( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'axes_formatplot', ... 'Units', 'characters', ... 'Position', [12.4 19.0 86.2 20], ... 'Interruptible','off'); % Drop-down Menu handles_gui.popupmenu = uicontrol( ... 'Parent', handles_gui.group_viewoptions, ... 'Tag', 'popupmenu', ... 'Style', 'popupmenu', ... 'Units', 'characters', ... 'Position', [2.4 1.4 29.1 1.3], ... 'BackgroundColor', [1 1 1], ... 'String', {'Lagrangian','Eulerian'}, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_popupmenu,handles_gui.figure), ... 'Interruptible','off'); % Static Texts handles_gui.text_transparency = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'text_transparency', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 13.5 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Transparency:', ... 'Interruptible','off'); handles_gui.text_upperbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'text_upperbound', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 9.9 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Upperbound:', ... 'Interruptible','off'); handles_gui.text_lowerbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'text_lowerbound', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 6.6 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Lowerbound:', ... 'Interruptible','off'); handles_gui.text_scalebarlength = uicontrol( ... 'Parent', handles_gui.group_scalebar, ... 'Tag', 'text_scalebarlength', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.5 1 16 1.3], ... 'HorizontalAlignment', 'left', ... 'String', 'Scale Bar Len:', ... 'Interruptible','off'); % Now get info text which is below the plot handles_infotext = set_infotext(handles_gui.group_formataxes,''); fields_infotext = fieldnames(handles_infotext); for i = 0:length(fields_infotext)-1 handles_gui.(fields_infotext{i+1}) = handles_infotext.(fields_infotext{i+1}); end % Sliders handles_gui.slider_transparency = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'slider_transparency', ... 'Style', 'slider', ... 'Units', 'characters', ... 'Position', [2.5 12.0 28.9 1.3], ... 'BackgroundColor', [0.9 0.9 0.9], ... 'String', 'Slider', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_slider_transparency,handles_gui.figure), ... 'Interruptible','off'); handles_gui.slider_upperbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'slider_upperbound', ... 'Style', 'slider', ... 'Units', 'characters', ... 'Position', [2.5 8.5 28.9 1.3], ... 'BackgroundColor', [0.9 0.9 0.9], ... 'String', 'Slider', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_slider_upperbound,handles_gui.figure), ... 'Interruptible','off'); handles_gui.slider_lowerbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'slider_lowerbound', ... 'Style', 'slider', ... 'Units', 'characters', ... 'Position', [2.5 5.0 28.9 1.3], ... 'BackgroundColor', [0.9 0.9 0.9], ... 'String', 'Slider', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_slider_lowerbound,handles_gui.figure), ... 'Interruptible','off'); % Check Box handles_gui.checkbox_contour = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'checkbox_contour', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 17.3 17 1.3], ... 'String', 'Contour Plot: ', ... 'Value', 0, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_contour,handles_gui.figure), ... 'Interruptible','off'); handles_gui.checkbox_minmaxmarkers = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'checkbox_minmaxmarkers', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 15.5 29.7 1.3], ... 'String', 'Max/min markers', ... 'Value', 0, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_minmaxmarkers,handles_gui.figure), ... 'Interruptible','off'); handles_gui.checkbox_scalebar = uicontrol( ... 'Parent', handles_gui.group_scalebar, ... 'Tag', 'checkbox_scalebar', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 3 17 1.3], ... 'String', 'Scalebar ', ... 'Value', 1, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_scalebar,handles_gui.figure), ... 'Interruptible','off'); handles_gui.checkbox_axes = uicontrol( ... 'Parent', handles_gui.group_axes, ... 'Tag', 'checkbox_axes', ... 'Style', 'checkbox', ... 'Units', 'characters', ... 'Position', [2.5 1.0 17 1.3], ... 'String', 'Axes ', ... 'Value', 1, ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_checkbox_axes,handles_gui.figure), ... 'Interruptible','off'); % Edit handles_gui.edit_transparency = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_transparency', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 13.6 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_transparency,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_upperbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_upperbound', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 10.1 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_upperbound,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_lowerbound = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_lowerbound', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 6.6 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_lowerbound,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_contour = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'edit_contour', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 17.3 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Enable', 'off', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_contour,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_scalebarlength = uicontrol( ... 'Parent', handles_gui.group_scalebar, ... 'Tag', 'edit_scalebarlength', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [20.2 1.1 11.1 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_scalebarlength,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_imgnum = uicontrol( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'edit_imgnum', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [91 1.1 7 1.6], ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_imgnum,handles_gui.figure), ... 'Enable', 'off', ... 'Interruptible','off'); % Pushbuttons handles_gui.button_applytoall = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'button_applytoall', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.5 2.8 28.9 1.5], ... 'String', 'Apply to All', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_applytoall,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_resetdefaults = uicontrol( ... 'Parent', handles_gui.group_menu, ... 'Tag', 'button_resetdefaults', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.5 1 28.9 1.5], ... 'String', 'Reset Defaults', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_resetdefaults,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_zoom = uicontrol( ... 'Parent', handles_gui.group_zoompan, ... 'Tag', 'button_zoom', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.1 1 14.4 1.7], ... 'String', 'Zoom', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_zoom,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_pan = uicontrol( ... 'Parent', handles_gui.group_zoompan, ... 'Tag', 'button_pan', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [17.4 1 14.4 1.7], ... 'String', 'Pan', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_pan,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_left = uicontrol( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'button_left', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [84 1.0 6 1.8], ... 'String', '<', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_left,handles_gui.figure), ... 'Interruptible','off', ... 'Enable', 'off'); handles_gui.button_right = uicontrol( ... 'Parent', handles_gui.group_formataxes, ... 'Tag', 'button_right', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [99 1.0 6 1.8], ... 'String', '>', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_right,handles_gui.figure), ... 'Interruptible','off', ... 'Enable', 'off'); end end %---------------------------------------------------------------------% % SAVE GUI -----------------------------------------------------------% %---------------------------------------------------------------------% function [size_savefig,timedelay,outstate] = gui_savesize(handles_gui_savefig,isgif,pos_parent) % This is a GUI for inputting the height and width for the saved figure. % This gui will update the figure in handles_gui_savefig. % % Inputs -----------------------------------------------------------------% % handles_gui_savefig - handle; handle of the save figure. The position % of this figure is controlled by this GUI % isgif - logical; this tells whether or not an animated gif is being % saved. If a gif is being saved then the time delay can be adjusted % pos_parent - integer array; this is the position of the parent figure % which determines where to position this figure % % Outputs ----------------------------------------------------------------% % size_savefig - integer array; contains the size of the save fig % timedelay - double; this is the time delay between frames % outstate - integer; returns either out.cancelled, out.failed, or % out.success. % Data ---------------------------------------------------------------% % Initialize outputs outstate = out.cancelled; size_savefig = []; timedelay = []; % Get GUI handles - Part of output handles_gui = init_gui(); % Run c-tor feval(ncorr_util_wrapcallbacktrycatch(@constructor,handles_gui.figure)); % Callbacks and functions --------------------------------------------% function constructor() % Get save size parameters; the screen size is needed to % prevent the user from resizing outside the screen, which will % result in cropping when using getframe() % Get data width_img = getappdata(handles_gui_savefig.figure,'width_img'); height_img = getappdata(handles_gui_savefig.figure,'height_img'); spacing_save_fig = getappdata(handles_gui_savefig.figure,'spacing_save_fig'); spacing_width_img = getappdata(handles_gui_savefig.figure,'spacing_width_img'); spacing_height_img = getappdata(handles_gui_savefig.figure,'spacing_height_img'); set(0,'units','pixels'); % Set to pixels first size_screen = get(0,'Screensize'); % width = size_screen(3); height = size_screen(4) max_width_img = size_screen(3)-spacing_save_fig-spacing_width_img; max_height_img = size_screen(4)-spacing_save_fig-spacing_height_img; if (max_width_img/max_height_img > width_img/height_img) max_width_img = round(max_height_img*(width_img/height_img)); else max_height_img = round(max_width_img/(width_img/height_img)); end if (width_img > max_width_img || height_img > max_height_img) % Image is too large, resize it to fit within screen img_reduction = min(max_width_img/width_img,max_height_img/height_img); width_img = round(width_img*img_reduction); height_img = round(height_img*img_reduction); end timedelay_prelim = 0.04; % Set data setappdata(handles_gui.figure,'width_img',width_img); setappdata(handles_gui.figure,'height_img',height_img); setappdata(handles_gui.figure,'ratio_img',width_img/height_img); setappdata(handles_gui.figure,'max_width_img',max_width_img); setappdata(handles_gui.figure,'max_height_img',max_height_img); setappdata(handles_gui.figure,'timedelay_prelim',timedelay_prelim); % Update update_axes('set'); update_sidemenu(); % Set visible set(handles_gui.figure,'Visible','on'); end function callback_edit_timedelay(hObject,eventdata) %#ok<INUSD> % Get data timedelay_prelim = getappdata(handles_gui.figure,'timedelay_prelim'); % Max and min values max_timedelay = 1; min_timedelay = 1e-5; % Get width timedelay_buffer = str2double(get(handles_gui.edit_timedelay,'string')); if (ncorr_util_isrealbb(timedelay_buffer,min_timedelay,max_timedelay,'Time delay') == out.success) timedelay_prelim = timedelay_buffer; end % Set data setappdata(handles_gui.figure,'timedelay_prelim',timedelay_prelim); % Update preview image update_axes('update'); update_sidemenu(); end function callback_edit_width(hObject,eventdata) %#ok<INUSD> % Get data ratio_img = getappdata(handles_gui.figure,'ratio_img'); width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); max_width_img = getappdata(handles_gui.figure,'max_width_img'); max_height_img = getappdata(handles_gui.figure,'max_height_img'); % Get width width_img_buffer = str2double(get(handles_gui.edit_width,'string')); if (ncorr_util_isintbb(width_img_buffer,1,max_width_img,'Width') == out.success) % Calculate new width and height - make sure they do % not go outside screen size height_img_buffer = round(width_img_buffer/ratio_img); if (ncorr_util_isintbb(height_img_buffer,1,max_height_img,'Height') == out.success) width_img = width_img_buffer; height_img = height_img_buffer; end end % Set data setappdata(handles_gui.figure,'width_img',width_img); setappdata(handles_gui.figure,'height_img',height_img); % Update preview image update_axes('update'); update_sidemenu(); end function callback_edit_height(hObject,eventdata) %#ok<INUSD> % Get data ratio_img = getappdata(handles_gui.figure,'ratio_img'); width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); max_width_img = getappdata(handles_gui.figure,'max_width_img'); max_height_img = getappdata(handles_gui.figure,'max_height_img'); % Get height height_img_buffer = str2double(get(handles_gui.edit_height,'string')); if (ncorr_util_isintbb(height_img_buffer,1,max_height_img,'Height') == out.success) % Calculate new width and height - make sure they do % not go outside screen size width_img_buffer = round(height_img_buffer*ratio_img); if (ncorr_util_isintbb(width_img_buffer,1,max_width_img,'Width') == out.success) width_img = width_img_buffer; height_img = height_img_buffer; end end % Set data setappdata(handles_gui.figure,'width_img',width_img); setappdata(handles_gui.figure,'height_img',height_img); % Update update_axes('update'); update_sidemenu(); end function callback_button_finish(hObject,eventdata) %#ok<INUSD> % Get data width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); timedelay_prelim = getappdata(handles_gui.figure,'timedelay_prelim'); % Set output size_savefig = [width_img height_img]; timedelay = timedelay_prelim; outstate = out.success; % Exit close(handles_gui.figure); end function callback_button_cancel(hObject,eventdata) %#ok<INUSD> % Close close(handles_gui.figure); end function update_sidemenu() % Get data width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); timedelay_prelim = getappdata(handles_gui.figure,'timedelay_prelim'); set(handles_gui.edit_width,'String',num2str(width_img)); set(handles_gui.edit_height,'String',num2str(height_img)); if (isgif) set(handles_gui.edit_timedelay,'String',num2str(timedelay_prelim)); else set(handles_gui.edit_timedelay,'enable','off'); end end function update_axes(action) % Get data - savefig handles: width_img = getappdata(handles_gui.figure,'width_img'); height_img = getappdata(handles_gui.figure,'height_img'); if (strcmp(action,'set') || strcmp(action,'update')) % Transfer data then update setappdata(handles_gui_savefig.figure,'width_img',width_img); setappdata(handles_gui_savefig.figure,'height_img',height_img); % Update update_savefig(handles_gui_savefig); end end function handles_gui = init_gui() % Form UIs handles_gui.figure = figure( ... 'Tag', 'figure', ... 'Units', 'characters', ... 'Position', ncorr_util_figpos(pos_parent,[10 30.5]), ... 'Name', 'Set Image Size', ... 'MenuBar', 'none', ... 'NumberTitle', 'off', ... 'Color', get(0,'DefaultUicontrolBackgroundColor'), ... 'handlevisibility','off', ... 'DockControls','off', ... 'Resize','off', ... 'WindowStyle','modal', ... 'IntegerHandle','off', ... 'Interruptible','off'); % Adjust position % Set this UI next to the save fig pos_savefig_pixels = get(handles_gui_savefig.figure,'OuterPosition'); % Get size of figure in pixels set(handles_gui.figure,'Units','pixels'); pos_fig_pixels = get(handles_gui.figure,'Position'); pos_fig_pixels(1) = pos_savefig_pixels(3)+1.5*pos_savefig_pixels(1); pos_fig_pixels(2) = pos_savefig_pixels(2)+pos_savefig_pixels(4)/2-pos_fig_pixels(4)/2; % Check to make sure position is not out of screen set(0,'units','pixels'); pos_screen_pixels = get(0,'ScreenSize'); % Check right - no need to check bottom screen_right = 20; % Use this as padding if (pos_fig_pixels(1)+pos_fig_pixels(3) > pos_screen_pixels(3)-screen_right) pos_fig_pixels(1) = pos_screen_pixels(3)-pos_fig_pixels(3)-screen_right; end % Set position set(handles_gui.figure,'Position',pos_fig_pixels); % Convert back to characters set(handles_gui.figure,'Units','characters'); % Text handles_gui.text_timedelay = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_timedelay', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 7.5 15 1.3], ... 'String', 'Time Delay:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_width = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_width', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 5.5 15 1.3], ... 'String', 'Width:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_gui.text_height = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'text_height', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 3.5 15 1.3], ... 'String', 'Height:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % Edit box handles_gui.edit_timedelay = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_timedelay', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [18.2 7.5 9.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_timedelay,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_width = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_width', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [18.2 5.5 9.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_width,handles_gui.figure), ... 'Interruptible','off'); handles_gui.edit_height = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'edit_height', ... 'Style', 'edit', ... 'Units', 'characters', ... 'Position', [18.2 3.5 9.6 1.3], ... 'HorizontalAlignment', 'left', ... 'String', '', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_edit_height,handles_gui.figure), ... 'Interruptible','off'); % Buttons handles_gui.button_finish = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_finish', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [2.1 1 12 1.7], ... 'String', 'Finish', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_finish,handles_gui.figure), ... 'Interruptible','off'); handles_gui.button_cancel = uicontrol( ... 'Parent', handles_gui.figure, ... 'Tag', 'button_cancel', ... 'Style', 'pushbutton', ... 'Units', 'characters', ... 'Position', [16 1 12 1.7], ... 'String', 'Cancel', ... 'Callback', ncorr_util_wrapcallbacktrycatch(@callback_button_cancel,handles_gui.figure), ... 'Interruptible','off'); end % Pause until figure is closed -----------------------------------% waitfor(handles_gui.figure); end function update_savefig(handles_gui_savefig) % This function is called whenever the savefig needs to be updated. It % will resize the window and reposition the axes/colorbar. % Get data height_data = getappdata(handles_gui_savefig.figure,'height_data'); width_img = getappdata(handles_gui_savefig.figure,'width_img'); height_img = getappdata(handles_gui_savefig.figure,'height_img'); border = getappdata(handles_gui_savefig.figure,'border'); width_cb = getappdata(handles_gui_savefig.figure,'width_cb'); spacing_save_fig = getappdata(handles_gui_savefig.figure,'spacing_save_fig'); spacing_width_img = getappdata(handles_gui_savefig.figure,'spacing_width_img'); spacing_height_img = getappdata(handles_gui_savefig.figure,'spacing_height_img'); handle_colorbar = getappdata(handles_gui_savefig.figure,'handle_colorbar'); handle_scalebar = getappdata(handles_gui_savefig.figure,'handle_scalebar'); handle_axes = getappdata(handles_gui_savefig.figure,'handle_axes'); % Set image pos_savefig(1) = spacing_save_fig; pos_savefig(2) = spacing_save_fig; pos_savefig(3) = spacing_width_img+width_img; % Width pos_savefig(4) = spacing_height_img+height_img; % Height set(handles_gui_savefig.figure,'Position',pos_savefig); % Colorbar: set(handle_colorbar,'Position',[2*border+width_img border+height_data width_cb height_img]); % Plot: set(handles_gui_savefig.axes_formatplot,'Position',[border border+height_data width_img height_img]); % Update handle_scalebar text if it it's toggled % Only text is updated because the size is constant during resize; % patches will resize with handle_axes. Do not need to check with % 'ishandle' because the scalebar is either set once or not at all. if (~isempty(handle_scalebar)) set(handles_gui_savefig.axes_formatplot,'units','characters'); text_scalebar = findobj(handles_gui_savefig.axes_formatplot,'tag','text_scalebar'); pos_img = get(handles_gui_savefig.axes_formatplot,'Position'); size_text = max(0.5*max(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_scalebar,'FontSize',size_text); set(handles_gui_savefig.axes_formatplot,'units','pixels'); end % Update handle_axes text if it it's toggled % Only text is updated because the size is constant during resize; % patches will resize with handle_axes. Do not need to check with % 'ishandle' because the axes is either set once or not at all. if (~isempty(handle_axes)) set(handles_gui_savefig.axes_formatplot,'units','characters'); text_x = findobj(handles_gui_savefig.axes_formatplot,'tag','text_x'); text_y = findobj(handles_gui_savefig.axes_formatplot,'tag','text_y'); pos_img = get(handles_gui_savefig.axes_formatplot,'Position'); size_text = max(0.5*max(0.5*pos_img(4),0.14*pos_img(3)),8); set(text_x,'FontSize',size_text); set(text_y,'FontSize',size_text); set(handles_gui_savefig.axes_formatplot,'units','pixels'); end % Make sure figure is drawn to ensure getframe works properly. drawnow; end function handles_infotext = set_infotext(parent,bgcolor) % This function sets information text handles_infotext.text_ref_name = uicontrol( ... 'Parent', parent, ... 'Tag', 'ref_name', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 17.0 100 1.3], ... 'String', 'Reference Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_cur_name = uicontrol( ... 'Parent', parent, ... 'Tag', 'cur_name', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 15.5 100 1.3], ... 'String', 'Current Name: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_type = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_type', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 14.0 100 1.3], ... 'String', 'Analysis Type: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_dicparams = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_dicparams', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 12.5 100 1.3], ... 'String', 'RG-DIC Radius: | Subset Spacing:', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_itparams = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_itparams', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 11.0 100 1.3], ... 'String', 'Diffnorm Cutoff: | Iteration Cutoff: | Total Threads: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_stepanalysis = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_stepanalysis', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 9.5 100 1.3], ... 'String', 'Step Analysis: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_subsettrunc = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_subsettrunc', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 8.0 100 1.3], ... 'String', 'Disp Subset Truncation: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_imgcorr = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_imgcorr', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 6.5 100 1.3], ... 'String', 'Image Correspondences: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_pixtounits = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_pixtounits', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 5.0 100 1.3], ... 'String', 'Reference Image FOV width: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_cutoff_corrcoef = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_cutoff_corrcoef', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 3.5 100 1.3], ... 'String', 'Correlation Coefficient Cutoff: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_lenscoef = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_lenscoef', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 2.0 100 1.3], ... 'String', 'Radial Lens Distortion Coefficient: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); handles_infotext.text_minmedianmax = uicontrol( ... 'Parent', parent, ... 'Tag', 'text_max', ... 'Style', 'text', ... 'Units', 'characters', ... 'Position', [2.1 0.5 100 1.3], ... 'String', 'Min: | Median: | Max: ', ... 'HorizontalAlignment', 'left', ... 'Interruptible','off'); % Check if bgcolor was provided if (~isempty(bgcolor)) fields_infotext = fieldnames(handles_infotext); for i = 0:length(fields_infotext)-1 set(handles_infotext.(fields_infotext{i+1}),'BackgroundColor',bgcolor); end end end
github
CU-CommunityApps/choco-packages-master
ncorr_util_formregionconstraint.m
.m
choco-packages-master/packages/matlab-ciser/tools/ncorr/ncorr_util_formregionconstraint.m
6,122
utf_8
458de04923bdcb004e97d0415e37da7e
function handle_constraintfcn = ncorr_util_formregionconstraint(region) % This function returns handle_constraintfcn which, given a point, will % return the closest point inside the region. This is mainly used for the % constrainfcn for impoints which are restricted to be inside a region. % % Inputs -----------------------------------------------------------------% % region - struct; region info used to determine the position of returned % point % % Outputs ----------------------------------------------------------------% % handle_constraintfcn - function handle; % % Returns error if region is empty. if (region.totalpoints == 0) error('Region cannot be empty when forming constraint function.'); end handle_constraintfcn = @constraintfcn; function pos_nearest = constraintfcn(pos) % This function will generally be called within a callback % automatically which will use 1 based indexing, so pos_nearest is % returned using 1 based indexing. However, for processing, 0 based % indexing is used, so convert back and forth as necessary. % Convert pos to 0 based indexing and round it: pos = round(pos)-1; % Find bounding box - must find this since left and right bounds % are based on the length of the noderange/nodelist which may not % necessarily be the bounding box. left = region.rightbound; right = 0; firstpoint = false; for i = 0:size(region.noderange,1)-1 if (region.noderange(i+1) > 0 && ~firstpoint) firstpoint = true; left = i + region.leftbound; end if (region.noderange(i+1) > 0 && i+region.leftbound > right) right = i + region.leftbound; end end % Check if above, between, or beneath bounds if (pos(1) < left) % Left of bounds - set x to left and then find the nearest node % for y pos_nearest(1) = left+1; pos_nearest(2) = nearestnode(region.nodelist(left-region.leftbound+1,:),region.noderange(left-region.leftbound+1),pos(2))+1; elseif (pos(1) >= left && pos(1) <= right) % Between bounds - must check if nodes exist at this x position if (region.noderange(pos(1)-region.leftbound+1) > 0) pos_nearest(1) = pos(1)+1; else % Initialize leftfound = false; leftdist = 0; rightfound = false; rightdist = 0; % Cycle left until finding a positive noderange for i = pos(1)-1:-1:left if (region.noderange(i-region.leftbound+1) > 0) leftdist = pos(1)-i; leftfound = true; break; end end % Cycle right until finding a positive noderange for i = pos(1)+1:right if (region.noderange(i-region.leftbound+1) > 0) rightdist = i-pos(1); rightfound = true; break; end end % Now set x position if (leftfound && rightfound) if (leftdist < rightdist) pos_nearest(1) = pos(1)-leftdist+1; else pos_nearest(1) = pos(1)+rightdist+1; end elseif (leftfound) pos_nearest(1) = pos(1)-leftdist+1; else pos_nearest(1) = pos(1)+rightdist+1; end end pos_nearest(2) = nearestnode(region.nodelist((pos_nearest(1)-1)-region.leftbound+1,:),region.noderange((pos_nearest(1)-1)-region.leftbound+1),pos(2))+1; else % Right of bounds - set x to left and then find the nearest node % for y pos_nearest(1) = right+1; pos_nearest(2) = nearestnode(region.nodelist(right-region.leftbound+1,:),region.noderange(right-region.leftbound+1),pos(2))+1; end end end function y_nearest = nearestnode(nodelist,noderange,y_coord) % Finds the nearest y value given the nodelist, noderange and y_coord. Note % that nodelist and noderange are a single column for a specific x position. % Uses zero based indexing. % Initialize y_nearest = -1; for i = 0:2:noderange-1 % Test if node is before, within, or after a node pair if (y_coord < nodelist(i+1)) if (i == 0) % Above first node y_nearest = nodelist(i+1); break; else % Above inner node pair % Find out if y_coord is closer to bottom node of previous % pair or top node of current pair if ((y_coord-nodelist(i)) < (nodelist(i+1)-y_coord)) % y_coord is closer to bottom node of previous pair y_nearest = nodelist(i); break; else % y_coord is closer to top node of current pair y_nearest = nodelist(i+1); break; end end elseif (y_coord >= nodelist(i+1) && y_coord <= nodelist(i+2)) % y_coord is between node pairs, so just return it y_nearest = y_coord; break; else % y_coord is after noderange - test to see if this is the last % node pair. if (i == noderange-2) % This is last node pair, so y_coord is the below node of % last node pair y_nearest = nodelist(i+2); break; else % Skip to next node pair continue; end end end end
github
ganlubbq/StatisticalSignalProcessing-master
spet_plo.m
.m
StatisticalSignalProcessing-master/spet_plo.m
787
utf_8
2c37b27f7a781ce1fa1f6c056b7a1520
% funzione che plotta lo spettro in modulo e fase rappresentato dai valori % della trasformata Z di un filtro con zeri e poli rappresentati dai % polinomi da passare in ingresso Az(zeri) Bp(poli), calcolata sul cerchio % unitario function [Spettro,f]=spet_plo(Az,Bp,fc) %Potrei a questo punto valutare la fdt per frequenze continue, z=exp(j*2*pi*(f/fc)) %Traccio la funzione di trasferimento corrispondente ad un filtro con %trasformata Z che ha questi zeri M=2^11; %numero di pulsazioni normalizzate nelle quali valuto la FDT f=-fc/2+fc/M:fc/M:fc/2; for k=1:length(f) A=1; for i=1:length(Az) A=A*(1-Az(i)*exp(-1i*2*pi*(f(k)./fc))); end Num(k)=A; B=1; for i=1:length(Bp) B=B*(1-Bp(i)*exp(-1i*2*pi*(f(k)./fc))); end Den(k)=B; clear A; clear B; end Spettro=Num./Den;
github
ganlubbq/StatisticalSignalProcessing-master
zero.m
.m
StatisticalSignalProcessing-master/zero.m
186
utf_8
37d559f73a9a57ddf53cf7db273976ae
%funzione che genera la sequenza complessa pertinente ad una certa %trasformata Z contenente solo zeri function [A]=zero(z) A=[1 -z(1)]; for i=2:length(z) A=conv(A,[1 -z(i)]); end
github
ganlubbq/StatisticalSignalProcessing-master
dft.m
.m
StatisticalSignalProcessing-master/dft.m
515
utf_8
0ab8bf1fed495d9258e3dbb5ac8e4cd9
%funzione che calcola la DFT in forma matriciale % x= sequenza in ingresso % m= numero di campioni dft da calcolare function [X,fk]=dft(x,m,fc) n=length(x); %zero padding if(n<m) x=[x zeros(1,m-n)]; end W=zeros(m); %matrice DFT for k=1:m for i=1:m W(k,i)=exp(-j*((2*pi)/m)*k*i); end end X=x*W.'; if(mod(m,2)==0) fk=-(m/2-1)*fc/m:fc/m:(m/2)*fc/m; X=[X(m/2+2:m) X(1:m/2+1)]; else fk=-((m-1)/2)*fc/m:fc/m:((m-1)/2)*fc/m; X=[X(((m-1)/2)+2:m) X(1:((m-1)/2)+1)]; end
github
ganlubbq/StatisticalSignalProcessing-master
LMS.m
.m
StatisticalSignalProcessing-master/LMS.m
1,262
utf_8
26a64a5e3f9a20c4fb081974a0b4594a
%INPUT % % % U= matrice di convoluzione per identificazione % h_sti= stima iniziale del filtro % y= osservazioni con rumore % mu= passo di aggiornamento % h=filtro vero % % %OUTPUT: % % % fstim=filtro stimato % MSE=errore quadratico medio della stima ad ogni iterazione function [fstim,MSE]=LMS(U,h_sti,y,mu,h) P=length(h_sti); i=1; while(i==1 || i==2 || J(i-1)<J(i-2) || (abs(J(i-1)/J(i-2))>(1-1e-2) && abs(J(i-1)-J(i-2))>1e-3)) %stima dell'out the(i)=U(i,:)*h_sti(:,i); %scalare, stima dell'OUT al passo i %calcolo del funzionale di costo %stima campionaria della crosscorrelaz istantanea p=(y(i)'*U(i,:)); %riga %stima campionaria della matrice di covarianza istantanea R=zeros(P); R=(U(i,:)'*U(i,:)); J(i)=(y(i)'*y(i))-2*p*h_sti(:,i)+h_sti(:,i)'*R*h_sti(:,i); %aggiornamento filtro err(i)=y(i)-U(i,:)*h_sti(:,i); %errore istantaneo di stima h_sti(:,i+1)=h_sti(:,i)+mu*(err(i)*U(i,:)'); i=i+1; end fstim=h_sti(:,end); %stima del filtro a convergenza %errore quadratico medio di stima ad ogni iterazione err=h_sti-repmat(h',1,size(h_sti,2)); for i=1:size(err,2) MSE(i)=err(:,i)'*err(:,i); %calcolo MSE tra filtro vero e filtro stimato alle varie iterazioni end
github
ganlubbq/StatisticalSignalProcessing-master
trigiv.m
.m
StatisticalSignalProcessing-master/trigiv.m
574
utf_8
3cb4deef9841237812f4f32fd682b430
%% Triangolarizzazione di una matrice via rotazioni di Givens function [A_tri,Qtot1]=trigiv(A) N=size(A,1); M=size(A,2); A_tri=A; %rango (a meno di colonne o righe linearmente dipendenti) rang=min(N,M); k=1; for j=1:1:(rang-1) for i=rang:-1:(j+1) Q=eye(rang); the=atan(A_tri(i,j)/A_tri(j,j)); c=cos(the); s=sin(the); Q(j,j)=c; Q(i,j)=-s; Q(j,i)=s; Q(i,i)=c; Qt(:,:,k)=Q; A_tri=Q*A_tri; k=k+1; end end Qtot1=eye(rang); for k=size(Qt,3):-1:1 Qtot1=Qtot1*Qt(:,:,k); end
github
ganlubbq/StatisticalSignalProcessing-master
fermat.m
.m
StatisticalSignalProcessing-master/fermat.m
523
utf_8
e5ac674353476e8e222b16a22e73cca5
%Funzione che calcola i percorsi intermedi BS-superficie e superficie-MS %con raggio di Fermat --> l1 ed l2 rispettivamente % d = distanza in piano BS-MS % hBS =altezza BS in metri % hMS = altezza MS in metri function [l1,l2]=fermat(hBS,hMS,d) df1=((-d*(hBS^2))+(hMS*hBS*d))/(hMS^2-hBS^2); df2=((-d*(hBS^2))-(hMS*hBS*d))/(hMS^2-hBS^2); if (df1>0) df=df1; elseif (df2>0) df=df2; else df=min(df1,df2); end l1=sqrt(hBS^2 + df^2); l2=sqrt((d-df)^2 + hMS^2);
github
ganlubbq/StatisticalSignalProcessing-master
RLS.m
.m
StatisticalSignalProcessing-master/RLS.m
735
utf_8
333b21ebfc99340285205afb22f2cf1f
%Algoritmo RLS per la stima dei coefficienti del filtro function [fil,MSE]=RLS(U,y,h) P=length(h); delta=0.3; R_s= eye(P)*delta; %inizializzazione della matrice di covarianza f_s=zeros(P,1); %inizializzazione della stima Ri=(R_s)^-1; i=1; while(i<=P+20*P) Ri=Ri - (Ri*U(i,:)'*U(i,:)*Ri)/(1+ U(i,:)*Ri*U(i,:)'); %aggiornamento dell'inversa g=Ri*U(i,:)'; %guadagno al passo i f_s(:,i+1)= f_s(:,i) + g* (y(i)-U(i,:)*f_s(:,i)); %aggiornamento filtro i=i+1; end fil=f_s(:,end); %errore quadratico medio di stima ad ogni iterazione err= f_s - repmat(h',1,size(f_s,2)); for i=1:size(err,2) MSE(i)=err(:,i)'*err(:,i); %calcolo MSE tra filtro vero e filtro stimato alle varie iterazioni end
github
fernandoandreotti/cinc-challenge2017-master
multi_qrsdetect.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/multi_qrsdetect.m
9,442
utf_8
a96e2aff02717a96d3c94dcf4187a983
function [qrs,feats]=multi_qrsdetect(signal,fs,fname) % This function detects QRS peaks on ECG signals by taking the consensus of multiple algorithms, namely: % - gqrs (WFDB Toolbox) % - Pan-Tompkins (FECGSYN) % - Maxima Search (OSET/FECGSYN) % - matched filtering % % -- % ECG classification from single-lead segments using Deep Convolutional Neural % Networks and Feature-Based Approaches - December 2017 % % Released under the GNU General Public License % % Copyright (C) 2017 Fernando Andreotti, Oliver Carr % University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017 % [email protected] % % % For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 % % Referencing this work % % Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). % Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect % Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France). % % Last updated : December 2017 % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. qrs = cell(1,5); % CHANGE ME! Using 6 levels of detection WIN_ALG = round(0.08*fs); % 100ms allow re-alignment of 80ms for gqrs REF_WIN = round(0.17*fs); % refractory window PT algorithm, no detection should occur here. WIN_BLOCK = round(5*fs); % window for PT algorithm OLAP = round(1*fs); MIRR = round(2*fs); % length to mirror signal at beginning and end to avoid border effects LEN = length(signal); signal = [signal(1:MIRR); signal ; signal(LEN-MIRR+1:LEN)]; LEN = LEN + 2*MIRR; %% gQRS try recordName = ['gd_' fname]; tm = 1/fs:1/fs:LEN/fs; wrsamp(tm',signal,recordName,fs,1) disp(['Running gqrs ' fname '...']) if isunix system(['gqrs -r ' recordName ' -f 0 -s 0']); disp(['gqrs ran ' fname '...']) else gqrs(recordName) end qrs{1} = rdann(recordName,'qrs'); disp(['read gqrs output ' fname '...']) [~,lag]=arrayfun(@(x) max(abs(signal(x-WIN_ALG:x+WIN_ALG))),qrs{1}(2:end-1)); qrs{1}(2:end-1) = qrs{1}(2:end-1) + lag - WIN_ALG - 1; delete([recordName '.*']) catch warning('gqrs failed.') delete([recordName '.*']) qrs{1} = []; end clear lag tm recordName %% P&T algorithm (in windows of 5 seconds - 1 sec overlap) try disp(['Running jqrs ' fname '...']) qrs{2} = jqrs(signal,REF_WIN,[],fs,[],[],0); catch warning('Pan Tompkins failed.') qrs{2} = []; end clear qrs_tmp startp endp count %% MaxSearch (mQRS) qrsmax=qrs{double(length(qrs{2})>length(qrs{1}))+1}; % selecting as reference detector with most detections try disp(['Running maxsearch ' fname '...']) if length(qrsmax)<5 HR_PARAM = 1.3; % default value else HR_PARAM = fs./nanmedian(diff(qrsmax))+0.1; % estimate rate (in Hz) for MaxSearch end qrs{3} = OSET_MaxSearch(signal,HR_PARAM/fs)'; catch warning('MaxSearch failed.') qrs{3} = []; end % Put all detectors on same sign (max or min) - shift by median lag x = decimate(signal,5); % just to reduce calculus y = sort(x); flag = mean(abs(y(round(end-0.05*length(y)):end)))>mean(abs(y(1:round(0.05*length(y))))); for i = 1:length(qrs) if flag [~,lag]=arrayfun(@(x) max(signal(x-WIN_ALG:x+WIN_ALG)),qrs{i}(3:end-2)); else [~,lag]=arrayfun(@(x) min(signal(x-WIN_ALG:x+WIN_ALG)),qrs{i}(3:end-2)); end qrs{i}(3:end-2) = qrs{i}(3:end-2) + lag - WIN_ALG - 1; end clear HR_PARAM qrsmax %% Matched filtering QRS detection try disp(['Running matchedfilter ' fname '...']) [btype,templates,tempuncut] = beat_class(signal,qrs{3},round(WIN_ALG)); [qrs{4},ect_qrs]=matchedQRS(signal,templates,qrs{3},btype); matchedf = 1; % status signal used as feature catch warning('Matched filter failed.') disp('Matched filter failed.') qrs{4} = []; ect_qrs = []; matchedf = 0; end %% Consensus detection try consqrs = kde_fusion(cell2mat(qrs(1:4)'),fs,length(signal)); % 2x gqrs consqrs(diff(consqrs)<REF_WIN) = []; % removing double detections [~,lag]=arrayfun(@(x) max(abs(signal(x-WIN_ALG:x+WIN_ALG))),consqrs(2:end-2)); consqrs(2:end-2) = consqrs(2:end-2) + lag - WIN_ALG - 1; % Put all detectors on same sign (max or min) - shift by median lag if flag [~,lag]=arrayfun(@(x) max(signal(x-WIN_ALG:x+WIN_ALG)),consqrs(3:end-2)); else [~,lag]=arrayfun(@(x) min(signal(x-WIN_ALG:x+WIN_ALG)),consqrs(3:end-2)); end qrs{5} = consqrs(3:end-2) + lag - WIN_ALG - 1; catch disp('Consensus failed.') qrs{5} = qrs{3}; end % Remove border detections qrs = cellfun(@(x) x(x>MIRR&x<LEN-MIRR)-MIRR,qrs,'UniformOutput',false); signal = signal(MIRR+1:end-MIRR); % just for plotting ect_qrs = ect_qrs(ect_qrs>MIRR&ect_qrs<(LEN-MIRR)) - MIRR; clear lag flag consqrs %% In case ectopic beats are present (consensus QRS locations is ignored, matched filter assumes) % try % if ~isempty(ect_qrs) % % Remove ectopic beats % cons = qrs{4}; % [~,dist] = dsearchn(cons,ect_qrs); % insbeats = ect_qrs(dist>REF_WIN); % inserting these beats % % cons = sort([cons; insbeats]); % cons(arrayfun(@(x) find(cons==x),insbeats)) = NaN; % insert NaN on missing beats % cons = round(inpaint_nans(cons)); % Interpolate with simple spline over missing beats % cons(cons<1|cons>length(signal)) = []; % cons = sort(cons); % cons(diff(cons)<REF_WIN) = []; % qrs{6} = cons; % % % % visualise % % plot(signal) % % hold on % % plot(qrs{4},2.*ones(size(qrs{4})),'ob') % % plot(ect_qrs,2.*ones(size(ect_qrs)),'xr') % % plot(qrs{6},3.*ones(size(qrs{6})),'md') % % legend('signal','matchedf','ectopic','interpolated') % % close % % else % qrs{6} = qrs{5}; % end % catch % warning('Figuring out ectopic failed.') % qrs{6} = qrs{5}; % ect_qrs = []; % end %% Generating some features % Amplitude around QRS complex normsig = signal./median(signal(qrs{end})); % normalized amplitude feat_amp = var(normsig(qrs{end})); % QRS variations in amplitude feat_amp2 = std(normsig(qrs{end})); % QRS variations in amplitude feat_amp3 = mean(diff(normsig(qrs{end}))); % QRS variations in amplitude feats = [feat_amp feat_amp2 feat_amp3]; %% Plots for sanity check % subplot(2,1,1) % plot(signal,'color',[0.7 0.7 0.7]) % hold on % plot(qrs{1},signal(qrs{1}),'sg') % plot(qrs{2},signal(qrs{2}),'xb') % plot(qrs{3},signal(qrs{3}),'or') % plot(qrs{4},signal(qrs{4}),'dy') % plot(qrs{5},1.3*median(signal(qrs{5}))*ones(size(qrs{5})),'dm') % legend('signal','gqrs','jqrs','maxsearch','matchedfilt','kde consensus') % subplot(2,1,2) % plot(qrs{6}(2:end),diff(qrs{6})*1000/fs) % ylabel('RR intervals (ms)') % ylim([250 1300]) % close end function det=kde_fusion(qrs,fs,dlength) % Function uses Kernel density estimation on fusing multiple detections % % Input % qrs Array with all detections % fs Sampling frequency % dlength Signal length % % qrs = sort(qrs); w_std = 0.10*fs; % standard deviation of gaussian kernels [ms] pt_kernel = round(fs/2); % half window for kernel function [samples] %% Calculating Kernel Density Estimation % preparing annotations peaks = hist(qrs,1:dlength); % kde (adding gaussian kernels around detections) kernel = exp(-(-pt_kernel:pt_kernel).^2./(2*w_std^2)); % calculating kernel density estimate kde = conv(peaks,kernel,'same'); %% Decision % Parameters min_dist = round(0.2*fs); % minimal distance between consecutive peaks [ms] th = max(kde)/3; % threshold for true positives (good measure is number_of_channels/3) % Finding candidate peaks wpoints = 1+min_dist:min_dist:dlength; % start points of windows (50% overlap) wpoints(wpoints>dlength-2*min_dist) = []; % cutting edges M = arrayfun(@(x) kde(x:x+2*min_dist-1)',wpoints(1:end), ... 'UniformOutput',false); % windowing signal (50% overlap) M = cell2mat(M); % adding first segment head = [kde(1:min_dist) zeros(1,min_dist)]'; M = [head M]; % adding last segment tail = kde((wpoints(end)+2*min_dist):dlength)'; tail = [tail; zeros(2*min_dist-length(tail),1)]; M = [M tail]; [~,idx] = max(M); % finding maxima idx = idx+[1 wpoints wpoints(end)+2*min_dist]; % absolute locations idx(idx < 0) = []; idx(idx > length(kde)) = []; i = 1; while i<=length(idx) doubled = (abs(idx-idx(i))<min_dist); if sum(doubled) > 1 [~,idxmax]=max(kde(idx(doubled))); idxmax = idx(idxmax + find(doubled,1,'first') - 1); idx(doubled) = []; idx = [idxmax idx]; clear doubled idxmax end i = i+1; end % threshold check idx(kde(idx)<th) = []; det = sort(idx)'; end
github
fernandoandreotti/cinc-challenge2017-master
residualfeats.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/residualfeats.m
4,225
utf_8
caec19d3a2f1a68388f57735d2d29752
function feats = residualfeats(signal,fs,qrs) % This function derives features out of QRS cancelled ECG signals, aiming at the atrial information. % % -- % ECG classification from single-lead segments using Deep Convolutional Neural % Networks and Feature-Based Approaches - December 2017 % % Released under the GNU General Public License % % Copyright (C) 2017 Fernando Andreotti, Oliver Carr % University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017 % [email protected] % % % For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 % % Referencing this work % % Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). % Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect % Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France). % % Last updated : December 2017 % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. feats = zeros(1,5); signal = signal'; if length(qrs) > 5 residual = FECGSYN_ts_extraction(qrs,signal,'TS-CERUTTI',0,5,2,fs); else return end try % Cross-correlation R=corrcoef(signal,residual); feats(1) = 1 - R(1,2); % Spectral coherence [Pmf,f]=mscohere(signal,residual,[],[],1024,fs); feats(2)=1-mean(Pmf(f>3&f<30)); feats(3) = psqi(residual',fs); % Fundamental frequency on spectrum against rest feats(4)=mpsqi1(residual',fs); % Test for randomness [h,p,R] = white_test(residual', 1, rand(1e3,1)); feats(5) = 1-p; catch disp('Residuals failed!') end end function [h, p_value, R] = white_test(x, maxlag, alpha) % tests against the null hyptothesis of whiteness % see http://dsp.stackexchange.com/questions/7678/determining-the-whiteness-of-noise for details % demo: % % white: % >> [h,p,R]=white_test(((filter([1], [1], rand(1e3,1))))) % >> h = 0, p =1, R = 455 % % non white: % >> [h,p,R]=white_test(((filter([1 .3], [.4 0.3], rand(1e3,1))))) % >> h = 1, p = 0, R = 2e3 % % Copyright (c) 2013, Hanan Shteingart % All rights reserved. % % Redistribution and use in source and binary forms, with or without % modification, are permitted provided that the following conditions are % met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" % AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE % IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE % ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE % LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR % CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN % CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE % POSSIBILITY OF SUCH DAMAGE. N = length(x); x = x-mean(x); if ~exist('m','var') maxlag = N-1; end if ~exist('alpha','var') alpha = 0.05; end [r, lag] = xcorr(x, maxlag, 'biased'); R = N/r(lag==0)^2*sum(r(lag > 0).^2); p_value = 1-chi2cdf(R, maxlag); T = chi2inv(1-alpha, maxlag); h = R > T; end
github
fernandoandreotti/cinc-challenge2017-master
morphofeatures.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/morphofeatures.m
7,107
utf_8
cce0ae9aa3c7c26ee530c9260c8b53f2
function feats = morphofeatures(signal,fs,qrs,recordName) % This function obtains morphological features from raw ECG data. % % -- % ECG classification from single-lead segments using Deep Convolutional Neural % Networks and Feature-Based Approaches - December 2017 % % Released under the GNU General Public License % % Copyright (C) 2017 Fernando Andreotti, Oliver Carr % University of Oxford, Insitute of Biomedical Engineering, CIBIM Lab - Oxford 2017 % [email protected] % % % For more information visit: https://github.com/fernandoandreotti/cinc-challenge2017 % % Referencing this work % % Andreotti, F., Carr, O., Pimentel, M.A.F., Mahdi, A., & De Vos, M. (2017). % Comparing Feature Based Classifiers and Convolutional Neural Networks to Detect % Arrhythmia from Short Segments of ECG. In Computing in Cardiology. Rennes (France). % % Last updated : December 2017 % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. fsnew = 250; gain = 3000; T_LENGTH = 200; % about a second NB_BINS = 250; Nfeats = 17; % Bandpass filter for morphological analysis Fhigh = 1; % highpass frequency [Hz] Flow = 100; % low pass frequency [Hz] Nbut = 12; % order of Butterworth filter d_bp= design(fdesign.bandpass('N,F3dB1,F3dB2',Nbut,Fhigh,Flow,fs),'butter'); [b_bp2,a_bp2] = tf(d_bp); clear Fhigh Flow Nbut d_bp signal = filtfilt(b_bp2,a_bp2,signal); % filtering signal = detrend(signal); recordName = ['pu' recordName]; % Resampling for ECGPUWAVE sigres=resample(signal,fsnew,fs); qrsfinal = round(qrs{end}*fsnew/fs); % Morphological features %% Running ECGPUWAVE for normal beats % == Using average normal beat try [M,RES] = stackbeats(sigres,qrsfinal,T_LENGTH,NB_BINS); template = mean(M,2); template = resample(template,RES,NB_BINS); template = detrend(template); fake_sig = repmat(template,1,20); smoothvec = [0:0.1:0.9, ones(1,size(fake_sig,1)-20),0.9:-0.1:0]'; fake_sig = bsxfun(@times,fake_sig,smoothvec); % smoothing edges fake_sig = reshape(fake_sig,[],1); fake_sig = detrend(fake_sig); tm = 1/fsnew:1/fsnew:length(fake_sig)/fsnew; tm = tm'-1/fsnew; [~,I] = max(abs(fake_sig)); wsign = sign(fake_sig(I)); % looking for signal sign qrsfake = cumsum([0 repmat(RES,1,19)]) + floor(RES/2); fake_sig = 2*gain*wsign(1)*fake_sig/max(abs(fake_sig)); wrsamp(tm,fake_sig,recordName,fsnew,gain,'') wrann(recordName,'qrs',qrsfake-1,repmat('N',length(qrsfake),1)); if isunix system(['ecgpuwave -r ' recordName '.hea' ' -a ecgpu -i qrs']); else ecgpuwave(recordName,'ecgpu',[],[],'qrs'); % important to specify the QRS because it seems that ecgpuwave is crashing sometimes otherwise end [allref,alltypes_r] = rdann(recordName,'ecgpu'); fake_sig = fake_sig./gain; featavgnorm = FECGSYN_QTcalc(alltypes_r,allref,fake_sig,fsnew); feats = struct2array(featavgnorm); feats(isnan(feats)) = 0; catch warning('ecgpuwave NORMAL average has failed.') feats = zeros(1,Nfeats); end delete([recordName '.*']) end function feats = FECGSYN_QTcalc(ann_types,ann_stamp,signal,fs) temp_types = ann_types; % allows exclusion of unsuitable annotations temp_stamp = ann_stamp;zeros(1,10); feats = struct('QRSheight',0,'QRSwidth',0,'QRSpow',0,... 'noPwave',0,'Pheight',0,'Pwidth',0,'Ppow',0,... 'Theight',0,'Twidth',0,'Tpow',0,... 'Theightnorm',0,'Pheightnorm',0,'Prelpow',0,... 'PTrelpow',0,'Trelpow',0,'QTlen',0,'PRlen',0); %== Treat biphasic T-waves annstr = strcat({temp_types'}); idxbi=cell2mat(regexp(annstr,'tt')); % biphasic nonbi2= cell2mat(regexp(annstr,'\)t\(')) +1; % weird t nonbi3= cell2mat(regexp(annstr,'\)t\)')) +1; % weird t2 if sum(idxbi) > 0 % case biphasic waves occured posmax = [idxbi' idxbi'+1]; [~,bindx]=max(abs(signal(ann_stamp(posmax))),[],2); % max abs value between tt clearidx = [idxbi+double(bindx'==1) nonbi2 nonbi3]; %idxbi = idxbi + bindx -1; % new index to consider temp_types(clearidx) = []; % clearing biphasic cases temp_stamp(clearidx) = []; end clear biphasic teesfollowed nonbi1 nonbi2 nonbi3 bindx clearidx posmax idxbi %== Remove incomplete beats comp=cell2mat(regexp(cellstr(temp_types'),'\(p\)\(N\)\(t\)')); % regular beats = temp_stamp(cell2mat(arrayfun(@(x) x:x+8,comp','uniformoutput',0))); skipP = false; if isempty(beats) comp=cell2mat(regexp(cellstr(temp_types'),'\(t\)\(N\)\(t\)')); % missing P-wave if isempty(comp), return, end % if ECGPUWAVE does not really work then output zeros beats = temp_stamp(cell2mat(arrayfun(@(x) x:x+8,comp','uniformoutput',0))); skipP = true; feats.noPwave = 1; else feats.noPwave = 0; end if size(beats,2)==1; beats = beats';end % case single beat is available Pstart = beats(:,1); validP = beats(:,2); Pend = beats(:,3); Rstart = beats(:,4); validR = beats(:,5); Rend = beats(:,6); Tstart = beats(:,7); validT = beats(:,8); Tend = beats(:,9); %% Calculating features feats.QRSheight = abs(median(min([signal(Rstart) signal(Rend)],[],2) - signal(validR))); % T-wave height feats.QRSwidth = median(Rend - Rstart)/fs; % T-wave width feats.QRSpow = sum(signal(Rstart:Rend).^2); if ~skipP feats.Pheight = abs(median(median([signal(Pstart) signal(Pend)],2) - signal(validP))); % P-wave height feats.Pwidth = median(Pend - Pstart)/fs; % P-wave width feats.Ppow = sum(signal(Pstart:Pend).^2); end feats.Theight = abs(median(median([signal(Tstart) signal(Tend)],2) - signal(validT))); % T-wave height feats.Twidth = median(Tend - Tstart)/fs; % T-wave width feats.Tpow = sum(signal(Tstart:Tend).^2); feats.Theightnorm = feats.Theight/feats.QRSheight; feats.Trelpow = feats.Tpow/feats.QRSpow; if ~skipP feats.Pheightnorm = feats.Pheight/feats.QRSheight; feats.Prelpow = feats.Ppow/feats.QRSpow; feats.PTrelpow = feats.Ppow/feats.Tpow; end QT_MAX = 0.5*fs; % Maximal QT length (in s) MAY VARY DEPENDING ON APPLICATION! QT_MIN = 0.1*fs; % Minimal QT length (in s) MAY VARY DEPENDING ON APPLICATION! [~,dist] = dsearchn(Rstart,Tend); % closest ref for each point in test qrs feats.QTlen = median(dist(dist<QT_MAX&dist>QT_MIN))/fs; if ~skipP PR_MAX = 0.3*fs; % Maximal QT length (in s) MAY VARY DEPENDING ON APPLICATION! PR_MIN = 0.05*fs; % Minimal QT length (in s) MAY VARY DEPENDING ON APPLICATION! [~,dist] = dsearchn(validP,validR); % closest ref for each point in test qrs feats.PRlen = median(dist(dist<PR_MAX&dist>PR_MIN))/fs; end end
github
fernandoandreotti/cinc-challenge2017-master
OSET_MaxSearch.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/OSET/OSET_MaxSearch.m
3,010
utf_8
ea7b0805ed40c38f18668f76d549e9ed
% peaks = OSET_MaxSearch(x,f,flag), % R-peak detector based on max search % % inputs: % signal: vector of input data % ff: approximate signal beat-rate in Hertz, normalized by the sampling frequency % flag: search for positive (flag=1) or negative (flag=0) peaks. By default % the maximum absolute value of the signal, determines the peak sign. % % output: % peaks: vector of R-peak impulse train % % Notes: % - The R-peaks are found from a peak search in windows of length N; where % N corresponds to the R-peak period calculated from the given f. R-peaks % with periods smaller than N/2 or greater than N are not detected. % - The signal baseline wander is recommended to be removed before the % R-peak detection % % % Open Source signal Toolbox, version 1.0, November 2006 % Released under the GNU General Public License % Copyright (C) 2006 Reza Sameni % Sharif University of Technology, Tehran, Iran -- GIPSA-Lab, INPG, Grenoble, France % [email protected] % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU General Public License as published by the % Free Software Foundation; either version 2 of the License, or (at your % option) any later version. % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General % Public License for more details. % % (minor modifications by Fernando Andreotti, October 2013) % log: - Allowed multi-channel detection by looping through channels % - Made selection of maxima/minima more robust function peaks = OSET_MaxSearch(signal,ff,varargin) if size(signal,1) > size(signal,2) signal = signal'; end th = .5; rng = floor(th/ff); % By choosing median of 5% of the data length makes flag choice more robust. % modification by Andreotti segs = reshape(signal(1:end-mod(length(signal),rng)),rng,[]); segs = sort(segs,'ascend'); ymax = median(median(segs((end-floor(0.05*rng):end),:))); ymin = median(median(segs(1:floor(0.05*rng),:))); flag = ymax > abs(ymin); % check if 5% data positive or negative if ~flag signal = -signal; clear ymin x y flag end % always search for maxima % loops through every channel x = signal; N = length(x); peaks = zeros(1,N); for j = 1:N, % index = max(j-rng,1):min(j+rng,N); if(j>rng && j<N-rng) index = j-rng:j+rng; elseif(j>rng) index = N-2*rng:N; else index = 1:2*rng; end if(max(x(index))==x(j)) peaks(j) = 1; end end % remove fake peaks I = find(peaks); d = diff(I); % z = find(d<rng); peaks(I(d<rng))=0; peaks = find(peaks); % Getting read of peaks with too low amplitude segs = reshape(abs(signal(1:end-mod(length(signal),rng))),rng,[]); segs = sort(segs,'ascend'); ymin = median(median(segs(1:floor(0.5*rng),:))); % if lower than the half peaks(abs(signal(peaks)) < ymin) = []; % remove peaks with little amplitude
github
fernandoandreotti/cinc-challenge2017-master
DFA_main_a2.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/DFA/DFA_main_a2.m
1,843
utf_8
c9154258387369bda985b073224c1447
function [D,Alpha1]=DFA_main_a2(DATA) % DATA should be a time series of length(DATA) greater than 2000,and of column vector. %A is the alpha in the paper %D is the dimension of the time series %n can be changed to your interest % %Copyright (c) 2009, Guan Wenye %All rights reserved. % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions are %met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % %THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" %AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE %IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE %ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE %LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR %CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF %SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS %INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN %CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) %ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE %POSSIBILITY OF SUCH DAMAGE. n=4:1:10; N1=length(n); F_n=zeros(N1,1); for i=1:N1 F_n(i)=DFA(DATA,n(i),1); end n=n'; % plot(log(n),log(F_n)); % xlabel('n') % ylabel('F(n)') A=polyfit(log(n(1:end)),log(F_n(1:end)),1); Alpha1=A(1); D=3-A(1); return
github
fernandoandreotti/cinc-challenge2017-master
DFA_main_a1.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/DFA/DFA_main_a1.m
1,846
utf_8
be6d67571fecfe7d895b457d320335ef
function [D,Alpha1]=DFA_main_a1(DATA) % DATA should be a time series of length(DATA) greater than 2000,and of column vector. %A is the alpha in the paper %D is the dimension of the time series %n can be changed to your interest % %Copyright (c) 2009, Guan Wenye %All rights reserved. % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions are %met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % %THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" %AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE %IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE %ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE %LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR %CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF %SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS %INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN %CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) %ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE %POSSIBILITY OF SUCH DAMAGE. n=10:10:100; N1=length(n); F_n=zeros(N1,1); for i=1:N1 F_n(i)=DFA(DATA,n(i),1); end n=n'; % plot(log(n),log(F_n)); % xlabel('n') % ylabel('F(n)') A=polyfit(log(n(1:end)),log(F_n(1:end)),1); Alpha1=A(1); D=3-A(1); return
github
fernandoandreotti/cinc-challenge2017-master
FECGx_kf_PhaseCalc.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/fernando/FECGx_kf_PhaseCalc.m
2,758
utf_8
a283d62f38cf92cf9a06bd0fd09507a7
%% Phase Calculation % Generates the phase signal for Kalman Filtering % Inputs % peaks QRS peak locations % length Length of data for phase generation % % % Fetal Extraction Toolbox, version 1.0, February 2014 % Released under the GNU General Public License % % Copyright (C) 2014 Fernando Andreotti % Dresden University of Technology, Institute of Biomedical Engineering % [email protected] % % Last updated : 24-07-2014 % % Based on: Synthetic ECG model error % Open Source ECG Toolbox, version 2.0, March 2008 % Released under the GNU General Public License % Copyright (C) 2008 Reza Sameni % Sharif University of Technology, Tehran, Iran -- LIS-INPG, Grenoble, France % [email protected] % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU General Public License as published by the % Free Software Foundation; either version 2 of the License, or (at your % option) any later version. % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General % Public License for more details. % This program is free software; you can redistribute it and/or modify it % under the terms of the GNU General Public License as published by the % Free Software Foundation; either version 2 of the License, or (at your % option) any later version. % This program is distributed in the hope that it will be useful, but % WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General % Public License for more details. % function phase = FECGx_kf_PhaseCalc(peaks,lengthx) % Based on Sameni's method for phase calculation phase = zeros(1,lengthx); m = diff(peaks); % gets distance between peaks % first interval % dealing with borders (first and last peaks may not be full waves) % uses second interval as reference L = peaks(1); %length of first interval if isempty(m) % only ONE peak was detected phase(1:lengthx) = linspace(-2*pi,2*pi,lengthx); else phase(1:L) = linspace(2*pi-L*2*pi/m(1),2*pi,L); % beats in the middle for i = 1:length(peaks)-1; % generate phases between 0 and 2pi for almos all peaks phase(peaks(i):peaks(i+1)) = linspace(0,2*pi,m(i)+1); end % 2pi is overlapped by 0 on every loop % last interval % uses second last interval as reference L = length(phase)-peaks(end); %length of last interval phase(peaks(end):end) = linspace(0,L*2*pi/m(end),L+1); end phase = mod(phase,2*pi); phase(find(phase>pi)) = phase(find(phase>pi))- 2*pi;
github
fernandoandreotti/cinc-challenge2017-master
FECGSYN_ts_extraction.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/fernando/FECGSYN_ts_extraction.m
9,690
utf_8
4d553bba7d7da1625e755a67ee0948ce
function residual = FECGSYN_ts_extraction(peaks,ecg,method,debug,varargin) % Template subtraction for MECG cancellation. Five template subtraction techniques % are implemented, namely TS,TS-CERUTTI,TS-SUZANNA,TS-LP,TS-PCA. If a more adaptive % technique is required then an the EKF technique as in (Sameni 2007) is recommended. % % inputs % peaks: MQRS markers in ms. Each marker corresponds to the % position of a MQRS % ecg: matrix of abdominal ecg channels % method: method to use ('TS','TS-CERUTTI','TS-SUZANNA','TS-LP','TS-PCA') % TS - simple template removal with no adaptation % % TS-CERUTTI - simply adapts the template to each beat using % a scalar gain (Cerutti 1986) % % TS-SUZANNA - the scaling procedure was performed for the P, QRS, % and T waves independently. (Martens 2007) % % TS-LP - the template ECG is built by weighing the former cycles in % order to minimize the mean square error (as opposed to the other TS % where the weights of the different cycles are equal)(Vullings 2009) % % TS-PCA - stacks MECG cycles, selects some of the principal components, % next a back-propagation step takes place on a beat-to-beat basis, thus % producing MECG estimates every cycle (Kanjilal 1997) % varargin: % nbCycles: number of cycles to use in order to build the mean MECG template % NbPC: number of principal components to use for PCA % fs: sampling frequency (NOTE: this code is meant to work at 1kHz) % % output % residual: residual containing the FECG % % References: % (Cerutti 1986) Cerutti S, Baselli G, Civardi S, Ferrazzi E, Marconi A M and Pagani M Pardi G 1986 % Variability analysis of fetal heart rate signals as obtained from abdominal % electrocardiographic recordings J. Perinatal Med. Off. J. WAPM 14 445–52 % (Kanjilal 1997) Kanjilal P P, Palit S and Saha G 1997 Fetal ECG extraction % from single-channel maternal ECG using singular value decomposition IEEE % Trans. Biomed. Eng. 44 51–9 % (Martens 2007) Martens S M M, Rabotti C, Mischi M and Sluijter R J 2007 A % robust fetal ECG detection method for abdominal recordings Physiol. Meas. 28 373–88 % (Sameni 2007) % (Vullings 2009) Vullings R, Peters C, Sluijter R, Mischi M, Oei S G and % Bergmans J W M 2009 Dynamic segmentation linear prediction for maternal ECG removal in antenatal % abdominal recordings Physiol. Meas. 30 291 % % % Examples: % TODO % % See also: % FECGSYN_kf_extraction % FECGSYN_bss_extraction % FECGSYN_adaptfilt_extraction % FEGSYN_main_extract % % % -- % fecgsyn toolbox, version 1.2, March 2017 % Released under the GNU General Public License % % Copyright (C) 2017 Joachim Behar & Fernando Andreotti % Department of Engineering Science, University of Oxford % [email protected], [email protected] % % % For more information visit: http://www.fecgsyn.com % % Referencing this work % % Behar, J., Andreotti, F., Zaunseder, S., Li, Q., Oster, J., & Clifford, G. D. (2014). An ECG Model for Simulating % Maternal-Foetal Activity Mixtures on Abdominal ECG Recordings. Physiol. Meas., 35(8), 1537–1550. % % % Last updated : 15-03-2017 % % This program is free software: you can redistribute it and/or modify % it under the terms of the GNU General Public License as published by % the Free Software Foundation, either version 3 of the License, or % (at your option) any later version. % % This program is distributed in the hope that it will be useful, % but WITHOUT ANY WARRANTY; without even the implied warranty of % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the % GNU General Public License for more details. % % You should have received a copy of the GNU General Public License % along with this program. If not, see <http://www.gnu.org/licenses/>. % % == manage inputs % set defaults for optional inputs optargs = {20 2 1000}; newVals = cellfun(@(x) ~isempty(x), varargin); optargs(newVals) = varargin(newVals); [nbCycles, NbPC, fs] = optargs{:}; if nargin > 7 error('ts_extraction: wrong number of input arguments \n'); end % check that we have more peaks than nbCycles if nbCycles>length(peaks) error('MECGcancellation Error: more peaks than number of cycles for average ecg'); end % == constants NB_CYCLES = nbCycles; NB_MQRS = length(peaks); ecg_temp = zeros(1,length(ecg)); Pstart = ceil(0.25*fs)-1; Tstop = floor(0.45*fs); ecg_buff = zeros(Tstop+Pstart+1,NB_CYCLES); % ecg stack buffer try % == template ecg (TECG) indMQRSpeaks = find(peaks>Pstart); for cc=1:NB_CYCLES peak_nb = peaks(indMQRSpeaks(cc+1)); % +1 to unsure full cycles ecg_buff(:,cc) = ecg((peak_nb-Pstart):(peak_nb+Tstop))'; end TECG = median(ecg_buff,2); if strcmp(method,'TS-PCA'); [U,~,~] = svds(ecg_buff,NbPC); end; % == MECG cancellation for qq=1:NB_MQRS if peaks(qq)>Pstart && length(ecg)-peaks(qq)>Tstop switch method case 'TS' % - simple TS - ecg_temp(peaks(qq)-Pstart:peaks(qq)+Tstop) = TECG'; case 'TS-SUZANNA' % - three scaling factors - M = zeros (round(0.7*fs),3); M(1:round(0.2*fs),1) = TECG(1:Pstart-round(0.05*fs)+1); M(round(0.2*fs)+1:0.3*fs,2) = TECG(Pstart-round(0.05*fs)+2:Pstart+round(0.05*fs)+1); M(round(0.3*fs)+1:end,3) = TECG(Pstart+2+round(0.05*fs):Pstart+1+Tstop); a = (M'*M)\M'*ecg(peaks(qq)-Pstart:peaks(qq)+Tstop)'; ecg_temp(peaks(qq)-Pstart:peaks(qq)+Tstop) = a(1)*M(:,1)'+a(2)*M(:,2)'+a(3)*M(:,3)'; case 'TS-CERUTTI' % - only one scaling factor - M = TECG; a = (M'*M)\M'*ecg(peaks(qq)-Pstart:peaks(qq)+Tstop)'; ecg_temp(peaks(qq)-Pstart:peaks(qq)+Tstop) = a*M'; case 'TS-LP' % - Linear prediction method (Ungureanu et al., 2007) - % NOTE: in Ungureanu nbCycles=7 if qq>NB_CYCLES M = ecg(peaks(qq)-Pstart:peaks(qq)+Tstop)'; Lambda = (ecg_buff'*ecg_buff)\ecg_buff'*M; if sum(isnan(Lambda))>0 Lambda = ones(length(Lambda),1)/(length(Lambda)); end ecg_temp(peaks(qq)-Pstart:peaks(qq)+Tstop) = Lambda'*ecg_buff'; else M = TECG; ecg_temp(peaks(qq)-Pstart:peaks(qq)+Tstop) = M'; end case 'TS-PCA' if mod(qq,10)==0 % - to allow some adaptation of the PCA basis - % !!NOTE: this adaption step is slowing down the code!! [U,~,~] = svds(ecg_buff,NbPC); end % - PCA method - X_out = ecg(peaks(qq)-Pstart:peaks(qq)+Tstop)*(U*U'); ecg_temp(peaks(qq)-Pstart:peaks(qq)+Tstop) = X_out; otherwise error('ts_extraction: Method not implemented.') end if qq>NB_CYCLES % adapt template conditional to new cycle being very similar to % meanECG to avoid catching artifacts. (not used for PCA method). Match = CompareCycles(TECG', ecg(peaks(qq)-Pstart:peaks(qq)+Tstop)',0.8); if Match ecg_buff = circshift(ecg_buff,[0 -1]); ecg_buff(:,end) = ecg(peaks(qq)-Pstart:peaks(qq)+Tstop)'; TECG = median(ecg_buff,2); end end % == managing borders elseif peaks(qq)<=Pstart % - first cycle if not full cycle - n = length(ecg_temp(1:peaks(qq)+Tstop)); % length of first pseudo cycle m = length(TECG); % length of a pseudo cycle ecg_temp(1:peaks(qq)+Tstop+1) = TECG(m-n:end); elseif length(ecg)-peaks(qq)<Tstop % - last cycle if not full cycle - ecg_temp(peaks(qq)-Pstart:end) = TECG(1:length(ecg_temp(peaks(qq)-Pstart:end))); end end % compute residual residual = ecg - ecg_temp; catch ME for enb=1:length(ME.stack); disp(ME.stack(enb)); end; residual = ecg; end % == debug if debug FONT_SIZE = 15; tm = 1/fs:1/fs:length(residual)/fs; figure('name','MECG cancellation'); plot(tm,ecg,'LineWidth',3); hold on, plot(tm,ecg-residual,'--k','LineWidth',3); hold on, plot(tm,residual-1.5,'--r','LineWidth',3); hold on, plot(tm(peaks),ecg(peaks),'+r','LineWidth',2); legend('mixture','template','residual','MQRS'); title('Template subtraction for extracting the FECG'); xlabel('Time [sec]'); ylabel('Amplitude [NU]') set(gca,'FontSize',FONT_SIZE); set(findall(gcf,'type','text'),'fontSize',FONT_SIZE); end end function match = CompareCycles(cycleA,cycleB,thres) % cross correlation measure to compare if new ecg cycle match with template. % If not then it is not taken into account for updating the template. match = 0; bins = size(cycleA,2); coeff = sqrt(abs((cycleA-mean(cycleA))*(cycleB-mean(cycleB)))./(bins*std(cycleA)*std(cycleB))); if coeff > thres; match = 1; end; end
github
fernandoandreotti/cinc-challenge2017-master
binary_seq_to_string.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/Lempel Ziv/binary_seq_to_string.m
2,118
utf_8
ea1f9bd7af2d67266212e36a905a2f71
%BINARY_SEQ_TO_STRING String representation of a logical vector. % This function takes a vector of logical values, and returns a string % representation of the vector. e.g. [0 1 0 1 1] becomes '01011'. % % Usage: [s] = binary_seq_to_string(b) % % INPUTS: % % b: % A vector of logical values representing a binary sequence. % Numeric values will be converted to logical values depending on % whether (0) or not (1) they are equal to 0. % % % OUTPUTS: % % s: % A string representation of b. The nth character in the string % corresponds with b(k). % % % % % Author: Quang Thai ([email protected]) % Copyright (C) Quang Thai 2012 % % Copyright (c) 2012, Quang Thai %All rights reserved. % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions are %met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % %THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" %AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE %IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE %ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE %LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR %CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF %SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS %INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN %CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) %ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE %POSSIBILITY OF SUCH DAMAGE. function [s] = binary_seq_to_string(b) b = logical(b(:)); lookup_string = '01'; s = lookup_string(b + 1);
github
fernandoandreotti/cinc-challenge2017-master
calc_lz_complexity.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/Lempel Ziv/calc_lz_complexity.m
15,770
utf_8
a02daa7bc1f2f004f72b0dd90a486379
%CALC_LZ_COMPLEXITY Lempel-Ziv measure of binary sequence complexity. % This function calculates the complexity of a finite binary sequence, % according to the algorithm published by Abraham Lempel and Jacob Ziv in % the paper "On the Complexity of Finite Sequences", published in % "IEEE Transactions on Information Theory", Vol. IT-22, no. 1, January % 1976. From that perspective, the algorithm could be referred to as % "LZ76". % % Usage: [C, H] = calc_lz_complexity(S, type, normalize) % % INPUTS: % % S: % A vector consisting of a binary sequence whose complexity is to be % analyzed and calculated. Numeric values will be converted to logical % values depending on whether (0) or not (1) they are equal to 0. % % type: % The type of complexity to evaluate as a string, which is one of: % - 'exhaustive': complexity measurement is based on decomposing S % into an exhaustive production process. % - 'primitive': complexity measurement is based on decomposing S % into a primitive production process. % Exhaustive complexity can be considered a lower limit of the complexity % measurement approach proposed in LZ76, and primitive complexity an % upper limit. % % normalize: % A logical value (true or false), used to specify whether or not the % complexity value returned is normalized or not. % Where normalization is applied, the normalized complexity is % calculated from the un-normalized complexity, C_raw, as: % C = C_raw / (n / log2(n)) % where n is the length of the sequence S. % % OUTPUTS: % % C: % The Lempel-Ziv complexity value of the sequence S. % % H: % A cell array consisting of the history components that were found in % the sequence S, whilst calculating C. Each element in H consists of a % vector of logical values (true, false), and represents % a history component. % % gs: % A vector containing the corresponding eigenfunction that was calculated % which corresponds with S. % % % % Author: Quang Thai ([email protected]) % Copyright (C) Quang Thai 2012 % % % Copyright (c) 2012, Quang Thai %All rights reserved. % %Redistribution and use in source and binary forms, with or without %modification, are permitted provided that the following conditions are %met: % % * Redistributions of source code must retain the above copyright % notice, this list of conditions and the following disclaimer. % * Redistributions in binary form must reproduce the above copyright % notice, this list of conditions and the following disclaimer in % the documentation and/or other materials provided with the distribution % %THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" %AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE %IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE %ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE %LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR %CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF %SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS %INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN %CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) %ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE %POSSIBILITY OF SUCH DAMAGE. function [C, H, gs] = calc_lz_complexity(S, type, normalize) %% Some parameter-checking. % Make sure S is a vector. if ~isvector(S) error('''S'' must be a vector'); end % Make sure 'normalize' is a scalar. if ~isscalar(normalize) error('''normalize'' must be a scalar'); end % Make sure 'type' is valid. if ~(strcmpi(type, 'exhaustive') || strcmpi(type, 'primitive')) error(['''type'' parameter is not valid, must be either ' ... '''exhaustive'' or ''primitive''']); end %% Some parameter 'conditioning'. S = logical(S); normalize = logical(normalize); %% ANALYSIS % NOTE: Many of these comments will refer to the paper "On the Complexity % of Finite Sequences" by Lempel and Ziv, so to follow this code, it may % be useful to have the manuscript in front of you! % Allocate memory for eigenfunction (vector of eigenvalues). % The first value of this vector corresponds with gs(0), and is always % equal to 0. % Please note that, since MATLAB array indices start at 1, gs(n) in MATLAB % actually holds gs(n-1) as defined in the paper. n = length(S); gs = zeros(1, n + 1); gs(1) = 0; % gs(0) = 0 from the paper % The approach we will use to find the eigenfunction values at each % successive prefix of S is as follows: % - We wish to find gs(n), where 1 <= n <= l(S) (l(S) = length of S) % - Lemma 4 says: % k(S(1,n-1)) <= k(S(1,n)) % equivalently % gs(n-1) <= gs(n) % In other words, the eigenfunction is a non-decreasing function of n. % - Theorem 6 provides the expression that defines the eigenvocabulary of % a sequence: % e(S(1,n)) = {S(i,n) | 1 <= i <= k(S(1,n))} % equivalently % e(S(1,n)) = {S(i,n) | 1 <= i <= gs(n)} % Note that we do not know what gs(n) is at this point - it's what we're % trying to find!!! % - Remember that the definition of the eigenvocabulary of a sequence S(1,n), % e(S(1,n)), is the subset of the vocabulary of S(1,n) containing words % that are not in the vocabulary of any proper prefix of S(1,n), and the % eigenvalue of S(1,n) is the subset's cardinality: gs(n) = |e(S(1,n))| % (p 76, 79) % - Given this, a corollary to Theorem 6 is: % For each S(m,n) | gs(n) < m <= n, S(m,n) is NOT a member of % the eigenvocabulary e(S(1,n)). % By definition, this means that S(m,n) is in the vocabulary of at % least one proper prefix of S(1,n). % - Also note that from Lemma 1: if a word is in the vocabulary of a % sequence S, and S is a proper prefix of S+, then the word is also % in the vocabulary of S+. % % As a result of the above discussion, the algorithm can be expressed in % pseudocode as follows: % % For a given n, whose corresponding eigenfunction value, gs(n) we wish to % find: % - gs(0) = 0 % - Let m be defined on the interval: gs(n-1) <= m <= n % - for each m % check if S(m,n) is in the vocabulary of S(1,n-1) % if it isn't, then gs(n) = m % end if % end for % % An observation: searching linearly along the interval % gs(n-1) <= m <= n will tend to favour either very complex sequences % (starting from n and working down), or very un-complex sequences % (starting from gs(n-1) and working up). This implementation will % attempt to balance these outcomes by alternately searching from either % end and working inward - a 'meet-in-the-middle' search. % % Note that: % - When searching from the upper end downwards, we are seeking % the value of m such that S(m,n) IS NOT in the vocabulary of S(1,n-1). % The eigenfunction value is then m. % - When searching from the lower end upwards, we are seeking the value % of m such that S(m,n) IS in the vocabulary of S(1,n-1). The % eigenfunction value is then m-1, since it is the MAXIMAL value of m % whereby S(m,n) IS NOT in the vocabulary of S(1,n-1) %% Calculate eigenfunction, gs(n) % Convert to string form - aids the searching process! S_string = binary_seq_to_string(S); gs(2) = 1; % By definition. Remember: gs(2) in MATLAB is actually gs(1) % due to the first element of the gs array holding the % eigenvalue for n = 0. for n = 2:length(S) eigenvalue_found = false; % The search space gs(n-1) <= m <= n. % Remember: gs(n) in MATLAB is actually gs(n-1). % Note that we start searching at (gs(n-1) + 1) at the lower end, since % if it passes the lower-end search criterion, then we subtract 1 % to get the eigenvalue. idx_list = (gs(n)+1):n; for k = 1:ceil(length(idx_list)/2); % Check value at upper end of interval m_upper = idx_list(end - k + 1); if ~numel(strfind(S_string(1:(n-1)), S_string(m_upper:n))) % We've found the eigenvalue! gs(n+1) = m_upper; % Remember: % gs(n+1) in MATLAB is actually gs(n) eigenvalue_found = true; break; end % Check value at lower end of interval. % % Note that the search at this end is slightly more complicated, % in the sense that we have to find the first value of m where the % substring is FOUND, and then subtract 1. However, this is % complicated by the 'meet-in-the-middle' search adopted, as % described below... m_lower = idx_list(k); if numel(strfind(S_string(1:(n-1)), S_string(m_lower:n))) % We've found the eigenvalue! gs(n+1) = m_lower-1; % Remember: % gs(n+1) in MATLAB is actually gs(n) eigenvalue_found = true; break; elseif (m_upper == m_lower + 1) % If we've made it here, then we know that: % - The search for substring S(m,n) from the upper end had a % FOUND result % - The search for substring S(m,n) from the lower end had a % NOT FOUND result % - The value of m used in the upper end search is one more % than the value of m used in this lower end search % % However, when searching from the lower end, we need a FOUND % result and then subtract 1 from the corresponding m. % The problem with this 'meet-in-the-middle' searching is that % it's possible that the actual eigenfunction value actually % does occur in the middle, such that the loop would terminate % before the lower-end search can reach a FOUND result and the % upper-end search can reach a NOT FOUND result. % % This branch detects precisely this condition, whereby % the two searches use adjacent values of m in the middle, % the upper-end search has the FOUND result that the lower-end % search normally requires, and the lower-end search has the % NOT FOUND result that the upper-end search normally requires. % We've found the eigenvalue! gs(n+1) = m_lower; % Remember: % gs(n+1) in MATLAB is actually gs(n) eigenvalue_found = true; break; end end if ~eigenvalue_found % Raise an error - something is not right! error('Internal error: could not find eigenvalue'); end end %% Calculate the terminal points for the required production sequence. % Histories are composed by decomposing the sequence S into the following % sequence of words: % H(S) = S(1,h_1)S(h_1 + 1,h_2)S(h_2 + 1,h_3)...S(h_m-1 + 1,h_m) % The indices {h_1, h_2, h_3, ..., h_m-1, h_m} that characterise a history % make up the set of 'terminals'. % % Alternatively, for consistency, we will specify the history as: % H(S) = ... % S(h_0 + 1,h_1)S(h_1 + 1,h_2)S(h_2 + 1,h_3)...S(h_m-1 + 1,h_m) % Where, by definition, h_0 = 0. % Efficiency measure: we don't know how long the histories will be (and % hence, how many terminals we need). As a result, we will allocate an % array of length equal to the eigenfunction vector length. We will also % keep a 'length' counter, so that we know how much of this array we are % actually using. This avoids us using an array that needs to be resized % iteratively! % Note that h_i(1) in MATLAB holds h_0, h_i(2) holds h_1, etc., since % MATLAB array indices must start at 1. h_i = zeros(1, length(gs)); h_i_length = 1; % Since h_0 is already present as the first value! if strcmpi(type, 'exhaustive') % - From Theorem 8, for an exhaustive history, the terminal points h_i, % 1 <= i <= m-1, are defined by: % h_i = min{h | gs(h) > h_m-1} % - We know that h_0 = 0, so this definition basically bootstraps our % search process, allowing us to find h_1, then h_2, etc. h_prev = 0; % Points to h_0 initially k = 1; while ~isempty(k) % Remember that gs(1) in MATLAB holds the value of gs(0). % Therefore, the index h_prev needs to be incremented by 1 % to be used as an index into the gs vector. k = find(gs((h_prev+1+1):end) > h_prev, 1); if ~isempty(k) h_i_length = h_i_length + 1; % Remember that gs(1) in MATLAB holds the value of gs(0). % Therefore, the index h_prev needs to be decremented by 1 % to be used as an index into the original sequence S. h_prev = h_prev + k; h_i(h_i_length) = h_prev; end end % Once we break out of the above loop, we've found all of the % exhaustive production components. else % Sequence type is 'primitive' % Find all unique eigenfunction values, where they FIRST occur. % - From Theorem 8, for a primitive history, the terminal points h_i, % 1 <= i <= m-1, are defined by: % h_i = min{h | gs(h) > gs(h_i-1)} % - From Lemma 4, we know that the eigenfunction, gs(n), is % monotonically non-decreasing. % - Therefore, the following call to unique() locates the first % occurrance of each unique eigenfunction value, as well as the values % of n where the eigenfunction increases from the previous value. % Hence, this is also an indicator for the terminal points h_i. [~, n] = unique(gs, 'first'); % The terminals h_i, 1 <= i <= m-1, is ultimately obtained from n by % subtracting 1 from each value (since gs(1) in MATLAB actually % corresponds with gs(0) in the paper) h_i_length = length(n); h_i(1:h_i_length) = n - 1; end % Now we have to deal with the final production component - which may or % may not be exhaustive or primitive, but can still be a part of an % exhaustive or primitive process. % % If the last component is not exhaustive or primitive, we add it here % explicitly. % % - From Theorem 8, for a primitive history, this simply enforces % the requirement that: % h_m = l(S) if h_i(h_i_length) ~= length(S) h_i_length = h_i_length + 1; h_i(h_i_length) = length(S); end % Some final sanity checks - as indicated by Theorem 8. % Raise an error if these checks fail! % Also remember that gs(1) in the MATLAB code corresponds with gs(0). if strcmpi(type, 'exhaustive') % Theorem 8 - check that gs(h_m - 1) <= h_m-1 if gs(h_i(h_i_length) - 1 + 1) > h_i(h_i_length-1) error(['Check failed for exhaustive sequence: ' ... 'Require: gs(h_m - 1) <= h_m-1']); end else % Sequence type is 'primitive' % Theorem 8 - check that gs(h_m - 1) = gs(h_m-1) if gs(h_i(h_i_length) - 1 + 1) ~= gs(h_i(h_i_length-1) + 1) error(['Check failed for primitive sequence: ' ... 'Require: gs(h_m - 1) = gs(h_m-1)']); end end %% Use the terminal points to construct the production sequence. % Note the first value in h_i is h_0, so its length is one more than the % length of the production history. H = cell([1 (h_i_length-1)]); for k = 1:(h_i_length-1) H{k} = S((h_i(k)+1):h_i(k+1)); end %% Hence calculate the complexity. if normalize % Normalized complexity C = length(H) / (n / log2(n)); else % Un-normalized complexity C = length(H); end %% Eigenfunction is returned. % The (redundant) first value (gs(0) = 0) is removed first. gs = gs(2:end);
github
fernandoandreotti/cinc-challenge2017-master
metrics.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/sample_entry/metrics.m
5,892
utf_8
c0496681f837dba38f12fff9b12fd0d9
% //This software is licensed under the BSD 3 Clause license: http://opensource.org/licenses/BSD-3-Clause % % % //Copyright (c) 2013, University of Oxford % //All rights reserved. % % //Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: % % //Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. % //Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % //Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % The method implemented in this file has been patented by their original % authors. Commercial use of this code is thus strongly not % recocomended. % % //Authors: Gari D Clifford - % // Roberta Colloca - % // Julien Oster - function [OriginCount,IrrEv,PACEv] = metrics( dRR ) % This function: % 1) Takes the dRR intervals series and build a 2D % histogram of {dRR(i),dRR(i-1)}; % 2) The histogram is marked with 13 segments; % 3) The number of non empty bins ( BinCountX=BPX ) and the % number of {dRR(i),dRR(i-1)} ( PointCountX=PCX ) are computed, % for each segment; % 4) BPX and PCX are used to extract the metrics: IrregularityEvidence(IrrEv) % and PACEvidence (PACEv) % % Detailed explanation % INPUTS % dRR: Delta RR series (column vector) % % OUTPUTS % OriginCount: Number of points in the bin containing the Origin % IrrEv: Irregularity Evidence % PACEv: PAC Evidence % % The 2D histogram of the {dRR(i),dRR(i-1)} values is built using 30*30 % bins corresponding to a binSize=0.04 s: % x axis variable -> actual dRR interval % y axis variable -> previous dRR interval % % The histogram is marked with 13 segments (0,..,12). % For each segment: % % BinCountX= number of non empty bins in the Xth segment % PointCountX= number of {dRR(i),dRR(i-1)} in the Xth segment % % are computed. % dRR={dRR(i),dRR(i-1)} dRR=[dRR(2:length(dRR),1) dRR(1:length(dRR)-1,1)]; % COMPUTE OriginCount OCmask=0.02; os=sum(abs(dRR)<=OCmask,2); OriginCount=sum(os==2); % DELETE OUTLIERS |dRR|>=1.5 OLmask=1.5; dRRnew=[]; j=1; for i=1:size(dRR,1) if sum(abs(dRR(i,:))>=OLmask)==0 dRRnew(j,:)=dRR(i,:); j=j+1; end end if size(dRRnew)==0 dRRnew = [0 0]; end % BUILD HISTOGRAM % Specify bin centers of the histogram bin_c=-0.58:0.04:0.58; % Three dimensional histogram of bivariate data Z = hist3(dRRnew, {bin_c bin_c}); % COMPUTE POINT COUNT ZERO %O1=sum(sum(Z(14,15:16))); %O2=sum(sum(Z(15:16,14:17))); %O3=sum(sum(Z(17,15:16))); %PC0=O1+O2+O3; % Clear SegmentZero Z(14,15:16)=0; Z(15:16,14:17)=0; Z(17,15:16)=0; % [X,Y]=meshgrid(-0.58:0.04:0.58, -0.58:0.04:0.58); % surf(X,Y, Z); % axis tight % xlabel('dRR(i-1)') % ylabel('dRR(i)') %COMPUTE BinCount12 %COMPUTE PointCount12 % Z2 contains all the bins belonging to the II quadrant of Z Z2=Z(16:30,16:30); [BC12,PC12,sZ2] = BPcount( Z2 ); Z(16:30,16:30)=sZ2; %COMPUTE BinCount11 %COMPUTE PointCount11 %Z3 cointains points belonging to the III quadrant of Z Z3=Z(16:30,1:15); Z3=fliplr(Z3); [BC11,PC11,sZ3] = BPcount( Z3 ); Z(16:30,1:15)=fliplr(sZ3); %COMPUTE BinCount10 %COMPUTE PointCount10 %Z4 cointains points belonging to the IV quadrant of Z Z4=Z(1:15,1:15); [BC10,PC10,sZ4] = BPcount( Z4 ); Z(1:15,1:15)=sZ4; %COMPUTE BinCount9 %COMPUTE PointCount9 %Z1 cointains points belonging to the I quadrant of Z Z1=Z(1:15,16:30); Z1=fliplr(Z1); [BC9,PC9,sZ1] = BPcount( Z1 ); Z(1:15,16:30)=fliplr(sZ1); %COMPUTE BinCount5 BC5=sum(sum(Z(1:15,14:17)~=0)); %COMPUTE PointCount5 PC5=sum(sum(Z(1:15,14:17))); %COMPUTE BinCount7 BC7=sum(sum(Z(16:30,14:17)~=0)); %COMPUTE PointCount7 PC7=sum(sum(Z(16:30,14:17))); %COMPUTE BinCount6 BC6=sum(sum(Z(14:17,1:15)~=0)); %Compute PointCount6 PC6=sum(sum(Z(14:17,1:15))); %COMPUTE BinCount8 BC8=sum(sum(Z(14:17,16:30)~=0)); %COMPUTE PointCount8 PC8=sum(sum(Z(14:17,16:30))); % CLEAR SEGMENTS 5, 6, 7, 8 % Clear segments 6 and 8 Z(14:17,:)=0; %Clear segments 5 and 7 Z(:,14:17)=0; % COMPUTE BinCount2 BC2=sum(sum(Z(1:13,1:13)~=0)); % COMPUTE PointCount2 PC2=sum(sum(Z(1:13,1:13))); % COMPUTE BinCount1 BC1=sum(sum(Z(1:13,18:30)~=0)); % COMPUTE PointCount1 PC1=sum(sum(Z(1:13,18:30))); % COMPUTE BinCount3 BC3=sum(sum(Z(18:30,1:13)~=0)); %COMPUTE PointCount3 PC3=sum(sum(Z(18:30,1:13))); % COMPUTE BinCount4 BC4=sum(sum(Z(18:30,18:30)~=0)); % COMPUTE PointCount4 PC4=sum(sum(Z(18:30,18:30))); % COMPUTE IrregularityEvidence IrrEv=BC1+BC2+BC3+BC4+... BC5+BC6+BC7+BC8+... BC9+BC10+BC11+BC12; % COMPUTE PACEvidence PACEv=(PC1-BC1)+(PC2-BC2)+(PC3-BC3)+(PC4-BC4)+... (PC5-BC5)+(PC6-BC6)+(PC10-BC10)-... (PC7-BC7)-(PC8-BC8)-(PC12-BC12); end
github
fernandoandreotti/cinc-challenge2017-master
BPcount.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/sample_entry/BPcount.m
2,459
utf_8
587edb21d3cebe075fa99c07a8390363
% //This software is licensed under the BSD 3 Clause license: http://opensource.org/licenses/BSD-3-Clause % % % //Copyright (c) 2013, University of Oxford % //All rights reserved. % % //Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: % % //Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. % //Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % //Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % The method implemented in this file has been patented by their original % authors. Commercial use of this code is thus strongly not % recocomended. % % //Authors: Gari D Clifford - % // Roberta Colloca - % // Julien Oster - function [BC,PC,sZ] = BPcount( sZ ) % BPcount counts the number of non empty bins (BC) in the matrix Z and % the number of {dRR(i),dRR(i-1)} in the same region (PC) and deletes % the counted points from the matrix Z %bdc is the BIN diagonal count: number of non empty bins contained in %the i-th diagonal of Z bdc=0; BC=0; %pdc is the POINTS diagonal count: number of {dRR(i),dRR(i-1)} contained in %the i-th diagonal of Z pdc=0; PC=0; for i=-2:2 bdc=sum(diag(sZ,i)~=0); pdc=sum(diag(sZ,i)); BC=BC+bdc; PC=PC+pdc; sZ=sZ-diag(diag(sZ,i),i); end end
github
fernandoandreotti/cinc-challenge2017-master
comp_dRR.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/sample_entry/comp_dRR.m
2,386
utf_8
f89ecc65ebc8d408b0e33413b7c15127
% //This software is licensed under the BSD 3 Clause license: http://opensource.org/licenses/BSD-3-Clause % % % //Copyright (c) 2013, University of Oxford % //All rights reserved. % % //Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: % % //Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. % //Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % //Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % The method implemented in this file has been patented by their original % authors. Commercial use of this code is thus strongly not % recocomended. % % //Authors: Gari D Clifford - % // Roberta Colloca - % // Julien Oster - function [ dRR_s ] = comp_dRR( data ) % RR_s(:,1)=RR(i) and RR_s(:,2)=RR(i-1) RR_s=[data(2:length(data),1) data(1:length(data)-1,1)]; dRR_s=zeros(length(data)-1, 1); % Normalization factors (normalize according to the heart rate) k1=2; k2=0.5; for i=1:length(RR_s) if sum(RR_s(i,:)<0.500)>=1 dRR_s(i,1)=k1*(RR_s(i,1)-RR_s(i,2)); else if sum(RR_s(i,:)>1)>=1 dRR_s(i,1)=k2*(RR_s(i,1)-RR_s(i,2)); else dRR_s(i,1)=RR_s(i,1)-RR_s(i,2); end end end end
github
fernandoandreotti/cinc-challenge2017-master
comput_AFEv.m
.m
cinc-challenge2017-master/featurebased-approach/subfunctions/lib/sample_entry/comput_AFEv.m
2,289
utf_8
e58e29bd082b0fe4560dc416303541b7
% //This software is licensed under the BSD 3 Clause license: http://opensource.org/licenses/BSD-3-Clause % % % //Copyright (c) 2013, University of Oxford % //All rights reserved. % % //Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: % % //Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. % //Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. % //Neither the name of the University of Oxford nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. % //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. % % The method implemented in this file has been patented by their original % authors. Commercial use of this code is thus strongly not % recocomended. % % //Authors: Gari D Clifford - % // Roberta Colloca - % // Julien Oster - function AFEv = comput_AFEv(segment) %comput_AFEv takes the RR intervals segment (column vector) %and computes AFEv %Inputs %segment: RR intervals segment (column vector) %Output %AFEv: feature for detection of Atrial Fibrillation %Compute dRR intervals series dRR=comp_dRR(segment); %Compute metrics [OriginCount,IrrEv,PACEv]=metrics(dRR); %Compute AFEvidence AFEv=IrrEv-OriginCount-2*PACEv; end
github
alex-delalande/numerical-tours-master
perform_publishing.m
.m
numerical-tours-master/matlab/m_files/perform_publishing.m
8,391
utf_8
778c9d6ab67fb9f48a7acba7dba2f3d0
function perform_publishing(name, options) % perform_publishing - publish a file to HTML format % % perform_publishing(name, options); % % If name is empty, process all the files (and also zip all toolboxes). % % options.rep set output directory (default '../../../numerical-tours-site/matlab/') % options.repprivate set output directory for exercices (default '../solutions/') % options.stylesheet set XSL stylesheet path. % options.format set output format (default 'html'). % % To put part of code that are not taken into account during publishing, % put them as % %CMT % ... % %CMT % % To put part of code that are release as exercises, put them as % %EXO % ... % %EXO % % Copyright (c) 2008 Gabriel Peyre path('../toolbox_general/', path); options.null = 0; if nargin<1 || isempty(name) % batch processing % list_ext = {'coding_' 'introduction_' 'image_' 'audio_' 'wavelet_' 'sparsity_' ... % 'denoising_' 'inverse_' 'graphics_' 'multidim_' 'mesh_' 'variational_' 'fastmarching_'}; list_ext = {'audio' 'coding' 'cs' 'denoisingadv' 'denoisingsimp' 'denoisingwav' 'fastmarching' ... 'graphics' 'introduction' 'inverse' ... 'meshdeform' 'meshproc' 'meshwav' 'multidim' 'numerics' ... 'optim' 'optimaltransp' 'segmentation' 'shapes' ... 'sparsity' 'wavelet'}; a = dir('*_*.m'); for i=1:length(a) name = a(i).name; for k=1:length(list_ext) if not(isempty( findstr(name, list_ext{k}) )) disp(['---> Publishing ' name ' ...']); perform_publishing(name(1:end-2)); end end end % zip all toolbox files perform_toolbox_zipping(); return; end if iscell(name) for i=1:length(name) disp(['---> Publishing ' name{i} ' ...']); perform_publishing(name{i}, options); end return; end if not(isempty(strfind(name, '*'))) a = dir([name '.m']); name = {}; for i=1:length(a) name{end+1} = a(i).name(1:end-2); end perform_publishing(name, options); return; end %% set up path % directory where the wavelet-tour web site is repweb = getoptions(options, 'rep', '../../../numerical-tours-site/matlab/'); % directory where the specific publishing is made rep = [repweb name '/']; if not(exist(rep)) mkdir(rep); end % directory for the exercices to be stored repprivate = getoptions(options, 'repprivate', '../solutions/'); reppriv = [ repprivate name '/']; if not(exist(reppriv)) mkdir(reppriv); end % open files fid = fopen([name '.m'], 'rt'); name_out = 'index'; fidout = fopen([repweb name_out '.m'], 'wt'); if fid<0 error(['Cannot open ' name '.m.']); end % copy style files if 0 copyfile([repweb 'style.css '],[rep 'style.css']); else str = ['cp ' repweb 'style.css ' rep 'style.css']; % system( str ); end %% First pre-process the file for publishing exo_num = 0; % output_line(fidout, '% special publishing token\npublishing_time = 1;\n\n'); while true s = fgets(fid); if not(isstr(s)) break; end if exo_mode(s) % SPECIAL EXERCICE MODE exo_num = exo_num + 1; % Create a specific process_exercice(fid, fidout, exo_num, repweb, reppriv, name); elseif cmt_mode(s) % SPECIAL CMT MODE process_comment(fid); elseif header_mode(s) % SPECIAL header more process_header(fidout, s); else s = strrep(s,'\','\\'); output_line(fidout, s); end end fclose(fid); fclose(fidout); %% do the publishing opts.format = getoptions(options, 'format', 'html'); if not(strcmp(opts.format, 'latex')) opts.stylesheet = getoptions(options, 'stylesheet', [repweb 'nt.xsl']); opts.stylesheet = [pwd '/' opts.stylesheet]; end %filename = [repweb name_out '.m']; opts.outputDir = [pwd '/' rep]; % opts.format = 'xml'; path(repweb, path); file = publish([name_out '.m'],opts); % web(file); % uncomment for display delete([repweb 'exo*.m']); delete([repweb name_out '.m']); % make the name of the output file index.html % movefile([opts.outputDir '/' name_out '.html'], [opts.outputDir '/index.html']); %% do the online publishing % disp('Performing online publishing (might take some time) ...'); % perform_online_publishing(name); %% do the python conversion if 0 str = ['python ../../scripts/m2nb_converter.py ./' name '.m ../']; system(str); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% AUX FUNCTIONS %%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% function output_line(fid,s) s = strrep(s,'%','%%'); fprintf(fid, s); %% function r = cmt_mode(s) r = (length(s)>4 && strcmp(s(1:4),'%CMT')); %% function r = exo_mode(s) r = (length(s)>4 && strcmp(s(1:4),'%EXO')); %% function r = header_mode(s) r = (length(s)>28 && strcmp(s(1:28),'perform_toolbox_installation')); %% function process_header(fidout, s) tbx = {}; if findstr(s, 'signal') tbx{end+1} = 'signal'; end if findstr(s, 'general') tbx{end+1} = 'general'; end if findstr(s, 'graph') tbx{end+1} = 'graph'; end if findstr(s, 'wavelet_meshes') tbx{end+1} = 'wavelet_meshes'; end if findstr(s, 'additional') tbx{end+1} = 'additional'; end output_line(fidout, '%% Installing toolboxes and setting up the path.\n\n'); % output_line(fidout, '%%\n%<? include ''../nt.sty''; ?>\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% You need to download the following files: \n'); for i=1:length(tbx) output_line(fidout, ['% <../toolbox_' tbx{i} '.zip ' tbx{i} ' toolbox>']); if i<length(tbx)-1 output_line(fidout, ', \n'); elseif i==length(tbx)-1 output_line(fidout, ' and \n'); else output_line(fidout, '.\n'); end end output_line(fidout, '\n%%\n'); output_line(fidout, '% You need to unzip these toolboxes in your working directory, so\n'); output_line(fidout, '% that you have \n'); for i=1:length(tbx) output_line(fidout, ['% |toolbox_' tbx{i} '|']); if i<length(tbx)-1 output_line(fidout, ', \n'); elseif i==length(tbx)-1 output_line(fidout, ' and \n'); else output_line(fidout, '\n'); end end output_line(fidout, '% in your directory.\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% *For Scilab user:* you must replace the Matlab comment ''%'' by its Scilab\n'); output_line(fidout, '% counterpart ''//''.\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% *Recommandation:* You should create a text file named for instance |numericaltour.sce| (in Scilab) or |numericaltour.m| (in Matlab) to write all the\n'); output_line(fidout, '% Scilab/Matlab command you want to execute. Then, simply run |exec(''numericaltour.sce'');| (in Scilab) or |numericaltour;| (in Matlab) to run the commands. \n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% Execute this line only if you are using Matlab.\n\n'); output_line(fidout, 'getd = @(p)path(p,path); % scilab users must *not* execute this\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% Then you can add the toolboxes to the path.\n\n'); for i=1:length(tbx) output_line(fidout, ['getd(''toolbox_' tbx{i} '/'');\n']); end %% function process_comment(fid) while true s = fgets(fid); if not(isstr(s)) || cmt_mode(s) break; end end %% function process_exercice(fid, fidout, exo_num, rep, reppriv, curname) % create a new file % The m file is created and executed in rep % and also copied to reppriv. name = ['exo' num2str(exo_num)]; filename = [name '.m']; fidexo = fopen([rep filename], 'wt'); output_line(fidout, ['%%\n% _Exercice ' num2str(exo_num) ':_' ]); output_line(fidout, [' (<../missing-exo/ check the solution>)\n']); % process files while true s = fgets(fid); if not(isstr(s)) || exo_mode(s) break; end s = strrep(s,'#',num2str(exo_num)); s = strrep(s,'\','\\'); if length(s)>1 && strcmp(s(1:2), '%%') s = s(2:end); output_line(fidout, s); else output_line(fidexo, s); end end output_line(fidout, ['\n' name ';\n']); fclose(fidexo); if 0 copyfile([rep filename],[reppriv filename]); else system(['cp ' rep filename ' ' reppriv filename]); end
github
alex-delalande/numerical-tours-master
perform_scilab_conversion.m
.m
numerical-tours-master/matlab/m_files/perform_scilab_conversion.m
2,210
utf_8
530502896e21ccb55e21856289190c35
function perform_scilab_conversion(name, outdir, toolbox_dir) % perform_scilab_conversion - convert a matlab file to scilab % % perform_scilab_conversion(name); % % If name is empty, process all the files. % % Copyright (c) 2008 Gabriel Peyre if nargin<2 outdir = '../scilab/'; end if nargin<3 toolbox_dir = '../matlab/'; end if nargin<1 || isempty(name) % back processing list_ext = {'coding_' 'introduction_' 'image_' 'audio_' 'wavelet_' 'sparsity_' 'cs_' ... 'denoising_' 'inverse_' 'graphics_' 'multidim_' 'meshproc_' 'meshdeform_' ... 'meshwav_' 'variational_' 'fastmarching_'}; a = dir('*_*.m'); for i=1:length(a) name = a(i).name; for k=1:length(list_ext) if not(isempty( findstr(name, list_ext{k}) )) disp(['---> Translating ' name ' ...']); perform_scilab_conversion(name(1:end-2)); end end end return; end fid = fopen([name '.m'], 'rt'); fidout = fopen([outdir name '.sce'], 'wt'); if fid<0 error(['Cannot open ' name '.m.']); end str1 = {'%' '\' 'getd(''' }; str2 = {'//' '\\' ['getd(''' toolbox_dir] }; while true s = fgets(fid); if s<0 break; end % remove comments and stufs for i=1:length(str1) s = strrep(s,str1{i},str2{i}); end makeoutput = 1; if length(s)>5 && strcmp(s(1:6), 'getd =') makeoutput = 0; end if length(s)>28 && strcmp(s(1:28), 'perform_toolbox_installation') process_header(fidout, s); makeoutput = 0; end % write output if makeoutput fprintf(fidout, s); end end fclose(fid); fclose(fidout); %% function process_header(fidout, s) tbx = {}; if findstr(s, 'signal') tbx{end+1} = 'signal'; end if findstr(s, 'general') tbx{end+1} = 'general'; end if findstr(s, 'graph') tbx{end+1} = 'graph'; end if findstr(s, 'wavelet_meshes') tbx{end+1} = 'wavelet_meshes'; end if findstr(s, 'additional') tbx{end+1} = 'additional'; end for i=1:length(tbx) output_line(fidout, ['getd(''toolbox_' tbx{i} '/'');\n']); end %% function output_line(fid,s) s = strrep(s,'%','%%'); fprintf(fid, s);
github
alex-delalande/numerical-tours-master
dump_struct.m
.m
numerical-tours-master/matlab/m_files/toolbox_general/dump_struct.m
1,389
utf_8
746b6d65b8fc8c67e8cb806c235f5e6a
function fid = dump_struct(s,fid,header) % dump_struct - dump the content of a struct to a file % % dump_struct(s,fid, header); % % Copyright (c) 2008 Gabriel Peyre if nargin<3 header = ''; end if isstr(fid) fid = fopen(fid, 'a'); if fid<=0 error(['File ' fid ' does not exist.']); end end if not(isempty(header)) fprintf(fid, '%s\n', header ); end % central line (position of ':') cl = 15; if iscell(s) for i=1:length(s) fprintf(fid, '%s\n', convert_string(s{i},0) ); end elseif isstruct(s) s = orderfields(s); f = fieldnames(s); for i=1:length(f) v = getfield(s,f{i}); fprintf(fid, '%s: %s\n', convert_string(f{i},cl), convert_string(v,0) ); end else error('Unknown type.'); end if nargout==0 fclose(fid); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = convert_string(v,cl) if nargin<2 cl = 15; end nmax = 10; % maximum of dumped string results if isa(v, 'numeric') % v = v(1); s = []; for i = 1:min(length(v(:)), nmax) if mod(v,1)==0 s = [s int2str(v(i)) ' ']; else s = [s num2str(v(i)) ' ']; end end if length(v(:))>nmax s = [s '...']; end elseif isstr(v) s = v; else s = '-'; end % try to align on central line d = cl - length(s); if d>0 s = [repmat(' ',[1 d]) s]; end
github
alex-delalande/numerical-tours-master
poissrnd.m
.m
numerical-tours-master/matlab/m_files/toolbox_general/poissrnd.m
10,053
utf_8
64b00f80e484b0c01bfd50a87756f587
function r = poissrnd(lambda,m,n) %POISSRND Random matrices from Poisson distribution. % R = POISSRND(LAMBDA) returns a matrix of random numbers chosen % from the Poisson distribution with parameter LAMBDA. % % The size of R is the size of LAMBDA. Alternatively, % R = POISSRND(LAMBDA,M,N) returns an M by N matrix. % % POISSRND uses a waiting time method for small values of LAMBDA, % and the method of Ahrens and Dieter for larger values of LAMBDA. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 page 504. % Copyright 1993-2000 The MathWorks, Inc. % $Revision: 2.9 $ $Date: 2000/07/28 19:33:02 $ if nargin < 1, error('Requires at least one input argument.'); end if nargin == 1 [errorcode rows columns] = rndcheck(1,1,lambda); end if nargin == 2 [errorcode rows columns] = rndcheck(2,1,lambda,m); end if nargin == 3 [errorcode rows columns] = rndcheck(3,1,lambda,m,n); end if errorcode > 0 error('Size information is inconsistent.'); end if (prod(size(lambda)) == 1) lambda = lambda(ones(rows*columns,1)); else lambda = lambda(:); end %Initialize r to zero. r = zeros(rows, columns); j = (1:(rows*columns))'; % indices remaining to generate % For large lambda, use the method of Ahrens and Dieter as % described in Knuth, Volume 2, 1998 edition. k = find(lambda >= 15); if ~isempty(k) alpha = 7/8; lk = lambda(k); m = floor(alpha * lk); % Generate m waiting times, all at once x = gamrnd(m,1); t = x <= lk; % If we did not overshoot, then the number of additional times % has a Poisson distribution with a smaller mean. r(k(t)) = m(t) + poissrnd(lk(t)-x(t)); % If we did overshoot, then the times up to m-1 are uniformly % distributed on the interval to x, so the count of times less % than lambda has a binomial distribution. r(k(~t)) = binornd(m(~t)-1, lk(~t)./x(~t)); j(k) = []; end % For small lambda, generate and count waiting times. p = zeros(length(j),1); while ~isempty(j) p = p - log(rand(length(j),1)); kc = [1:length(k)]'; t = (p < lambda(j)); j = j(t); p = p(t); r(j) = r(j) + 1; end % Return NaN if LAMBDA is negative. r(lambda < 0) = NaN; function [errorcode, rows, columns] = rndcheck(nargs,nparms,arg1,arg2,arg3,arg4,arg5) %RNDCHECK error checks the argument list for the random number generators. % B.A. Jones 1-22-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.5 $ $Date: 1997/11/29 01:46:40 $ sizeinfo = nargs - nparms; errorcode = 0; if nparms == 3 [r1 c1] = size(arg1); [r2 c2] = size(arg2); [r3 c3] = size(arg3); end if nparms == 2 [r1 c1] = size(arg1); [r2 c2] = size(arg2); end if sizeinfo == 0 if nparms == 1 [rows columns] = size(arg1); end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg1); end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg3); end end end if sizeinfo == 1 scalararg1 = (prod(size(arg1)) == 1); if nparms == 1 if prod(size(arg2)) ~= 2 errorcode = 2; return; end if ~scalararg1 & arg2 ~= size(arg1) errorcode = 3; return; end if (arg2(1) < 0 | arg2(2) < 0 | arg2(1) ~= round(arg2(1)) | arg2(2) ~= round(arg2(2))), errorcode = 4; return; end rows = arg2(1); columns = arg2(2); end if nparms == 2 if prod(size(arg3)) ~= 2 errorcode = 2; return; end scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if (arg3(1) < 0 | arg3(2) < 0 | arg3(1) ~= round(arg3(1)) | arg3(2) ~= round(arg3(2))), errorcode = 4; return; end if ~scalararg1 if any(arg3 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg3 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); else rows = arg3(1); columns = arg3(2); end end if nparms == 3 if prod(size(arg4)) ~= 2 errorcode = 2; return; end scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if (arg4(1) < 0 | arg4(2) < 0 | arg4(1) ~= round(arg4(1)) | arg4(2) ~= round(arg4(2))), errorcode = 4; return; end if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 if any(arg4 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg4 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); elseif ~scalararg3 if any(arg4 ~= size(arg3)) errorcode = 3; return; end [rows columns] = size(arg3); else rows = arg4(1); columns = arg4(2); end end end if sizeinfo == 2 if nparms == 1 scalararg1 = (prod(size(arg1)) == 1); if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg2 | columns ~= arg3 errorcode = 3; return; end end if (arg2 < 0 | arg3 < 0 | arg2 ~= round(arg2) | arg3 ~= round(arg3)), errorcode = 4; return; end rows = arg2; columns = arg3; end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end else if (arg3 < 0 | arg4 < 0 | arg3 ~= round(arg3) | arg4 ~= round(arg4)), errorcode = 4; return; end rows = arg3; columns = arg4; end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg3 [rows columns] = size(arg3); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end else if (arg4 < 0 | arg5 < 0 | arg4 ~= round(arg4) | arg5 ~= round(arg5)), errorcode = 4; return; end rows = arg4; columns = arg5; end end end
github
alex-delalande/numerical-tours-master
perform_faces_reorientation.m
.m
numerical-tours-master/matlab/m_files/toolbox_general/perform_faces_reorientation.m
2,816
utf_8
2cf3d5c1ad6ea271b524352db5492c2c
function faces = perform_faces_reorientation(vertex,faces, options) % perform_faces_reorientation - reorient the faces with respect to the center of the mesh % % faces = perform_faces_reorientation(vertex,faces, options); % % try to find a consistant reorientation for faces of a mesh. % % if options.method = 'fast', then use a fast non accurate method % if options.method = 'slow', then use a slow exact method % % Copyright (c) 2007 Gabriel Peyre options.null = 0; method = getoptions(options, 'method', 'fast'); [vertex,faces] = check_face_vertex(vertex,faces); n = size(vertex,2); m = size(faces,2); if strcmp(method, 'fast') % compute the center of mass of the mesh G = mean(vertex,2); % center of faces Cf = (vertex(:,faces(1,:)) + vertex(:,faces(2,:)) + vertex(:,faces(3,:)))/3; Cf = Cf - repmat(G,[1 m]); % normal to the faces V1 = vertex(:,faces(2,:))-vertex(:,faces(1,:)); V2 = vertex(:,faces(3,:))-vertex(:,faces(1,:)); N = [V1(2,:).*V2(3,:) - V1(3,:).*V2(2,:) ; ... -V1(1,:).*V2(3,:) + V1(3,:).*V2(1,:) ; ... V1(1,:).*V2(2,:) - V1(2,:).*V2(1,:) ]; % dot product s = sign(sum(N.*Cf)); % reverse faces I = find(s>0); faces(:,I) = faces(3:-1:1,I); return end options.method = 'fast'; faces = perform_faces_reorientation(vertex,faces, options); fring = compute_face_ring(faces); tag = zeros(m,1)-1; heap = 1; for i=1:m if m>100 progressbar(i,m); end if isempty(heap) I = find(tag==-1); if isempty(I) error('Problem'); end heap = I(1); end f = heap(end); heap(end) = []; if tag(f)==1 warning('Problem'); end tag(f) = 1; % computed fr = fring{f}; fr = fr(tag(fr)==-1); tag(fr)=0; heap = [heap fr]; for k=fr(:)' % see if re-orientation is needed if check_orientation(faces(:,k), faces(:,f))==1 faces(1:2,k) = faces(2:-1:1,k); end end end if not(isempty(heap)) || not(isempty(find(tag<1))) warning('Problem'); end % try to see if face are facing in the correct direction [normal,normalf] = compute_normal(vertex,faces); a = mean(vertex,2); a = repmat(a, [1 n]); dp = sign(sum(normal.*a,1)); if sum(dp>0)<sum(dp<0) faces(1:2,:) = faces(2:-1:1,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function o = check_orientation(f1,f2) i1 = 0; j1 = 0; for i=1:3 for j=1:3 if f1(i)==f2(j) i1 = i; j1 = j; break; end end if i1~=0 break; end end if i1==0 error('Problem.'); end ia = mod(i1,3)+1; ja = mod(j1,3)+1; ib = mod(i1-2,3)+1; jb = mod(j1-2,3)+1; if f1(ia)==f2(ja) || f1(ib)==f2(jb) o=1; else o = -1; end
github
alex-delalande/numerical-tours-master
gamrnd.m
.m
numerical-tours-master/matlab/m_files/toolbox_general/gamrnd.m
10,861
utf_8
9b8a786919b4ddfbebdf74985b19ebb2
function r = gamrnd(a,b,m,n); %GAMRND Random matrices from gamma distribution. % R = GAMRND(A,B) returns a matrix of random numbers chosen % from the gamma distribution with parameters A and B. % The size of R is the common size of A and B if both are matrices. % If either parameter is a scalar, the size of R is the size of the other % parameter. Alternatively, R = GAMRND(A,B,M,N) returns an M by N matrix. % % mu=A*B is the mean. % sigma^2=A*B^2 is the variance. % % % Some references refer to the gamma distribution % with a single parameter. This corresponds to GAMRND % with B = 1. (See Devroye, pages 401-402.) % GAMRND uses a rejection or an inversion method depending on the % value of A. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 % B.A. Jones 2-1-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.8 $ $Date: 1998/09/30 19:12:40 $ if nargin < 2, error('Requires at least two input arguments.'); end if nargin == 2 [errorcode rows columns] = rndcheck(2,2,a,b); end if nargin == 3 [errorcode rows columns] = rndcheck(3,2,a,b,m); end if nargin == 4 [errorcode rows columns] = rndcheck(4,2,a,b,m,n); end if errorcode > 0 error('Size information is inconsistent.'); end % Initialize r to zero. lth = rows*columns; r = zeros(lth,1); a = a(:); b = b(:); scalara = (length(a) == 1); if scalara a = a*ones(lth,1); end scalarb = (length(b) == 1); if scalarb b = b*ones(lth,1); end % If a == 1, then gamma is exponential. (Devroye, page 405). k = find(a == 1); if any(k) r(k) = -b(k) .* log(rand(size(k))); end k = find(a < 1 & a > 0); % (Devroye, page 418 Johnk's generator) if any(k) c = zeros(lth,1); d = zeros(lth,1); c(k) = 1 ./ a(k); d(k) = 1 ./ (1 - a(k)); accept = k; while ~isempty(accept) u = rand(size(accept)); v = rand(size(accept)); x = u .^ c(accept); y = v .^ d(accept); k1 = find((x + y) <= 1); if ~isempty(k1) e = -log(rand(size(k1))); r(accept(k1)) = e .* x(k1) ./ (x(k1) + y(k1)); accept(k1) = []; end end r(k) = r(k) .* b(k); end % Use a rejection method for a > 1. k = find(a > 1); % (Devroye, page 410 Best's algorithm) bb = zeros(size(a)); c = bb; if any(k) bb(k) = a(k) - 1; c(k) = 3 * a(k) - 3/4; accept = k; count = 1; while ~isempty(accept) m = length(accept); u = rand(m,1); v = rand(m,1); w = u .* (1 - u); y = sqrt(c(accept) ./ w) .* (u - 0.5); x = bb(accept) + y; k1 = find(x >= 0); if ~isempty(k1) z = 64 * (w .^ 3) .* (v .^ 2); k2 = (z(k1) <= (1 - 2 * (y(k1) .^2) ./ x(k1))); k3 = k1(find(k2)); r(accept(k3)) = x(k3); k4 = k1(find(~k2)); k5 = k4(find(log(z(k4)) <= (2*(bb(accept(k4)).*log(x(k4)./bb(accept(k4)))-y(k4))))); r(accept(k5)) = x(k5); omit = [k3; k5]; accept(omit) = []; end end r(k) = r(k) .* b(k); end % Return NaN if a or b is not positive. r(b <= 0 | a <= 0) = NaN; r = reshape(r,rows,columns); function [errorcode, rows, columns] = rndcheck(nargs,nparms,arg1,arg2,arg3,arg4,arg5) %RNDCHECK error checks the argument list for the random number generators. % B.A. Jones 1-22-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.5 $ $Date: 1997/11/29 01:46:40 $ sizeinfo = nargs - nparms; errorcode = 0; if nparms == 3 [r1 c1] = size(arg1); [r2 c2] = size(arg2); [r3 c3] = size(arg3); end if nparms == 2 [r1 c1] = size(arg1); [r2 c2] = size(arg2); end if sizeinfo == 0 if nparms == 1 [rows columns] = size(arg1); end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg1); end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg3); end end end if sizeinfo == 1 scalararg1 = (prod(size(arg1)) == 1); if nparms == 1 if prod(size(arg2)) ~= 2 errorcode = 2; return; end if ~scalararg1 & arg2 ~= size(arg1) errorcode = 3; return; end if (arg2(1) < 0 | arg2(2) < 0 | arg2(1) ~= round(arg2(1)) | arg2(2) ~= round(arg2(2))), errorcode = 4; return; end rows = arg2(1); columns = arg2(2); end if nparms == 2 if prod(size(arg3)) ~= 2 errorcode = 2; return; end scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if (arg3(1) < 0 | arg3(2) < 0 | arg3(1) ~= round(arg3(1)) | arg3(2) ~= round(arg3(2))), errorcode = 4; return; end if ~scalararg1 if any(arg3 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg3 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); else rows = arg3(1); columns = arg3(2); end end if nparms == 3 if prod(size(arg4)) ~= 2 errorcode = 2; return; end scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if (arg4(1) < 0 | arg4(2) < 0 | arg4(1) ~= round(arg4(1)) | arg4(2) ~= round(arg4(2))), errorcode = 4; return; end if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 if any(arg4 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg4 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); elseif ~scalararg3 if any(arg4 ~= size(arg3)) errorcode = 3; return; end [rows columns] = size(arg3); else rows = arg4(1); columns = arg4(2); end end end if sizeinfo == 2 if nparms == 1 scalararg1 = (prod(size(arg1)) == 1); if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg2 | columns ~= arg3 errorcode = 3; return; end end if (arg2 < 0 | arg3 < 0 | arg2 ~= round(arg2) | arg3 ~= round(arg3)), errorcode = 4; return; end rows = arg2; columns = arg3; end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end else if (arg3 < 0 | arg4 < 0 | arg3 ~= round(arg3) | arg4 ~= round(arg4)), errorcode = 4; return; end rows = arg3; columns = arg4; end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg3 [rows columns] = size(arg3); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end else if (arg4 < 0 | arg5 < 0 | arg4 ~= round(arg4) | arg5 ~= round(arg5)), errorcode = 4; return; end rows = arg4; columns = arg5; end end end
github
alex-delalande/numerical-tours-master
binornd.m
.m
numerical-tours-master/matlab/m_files/toolbox_general/binornd.m
9,362
utf_8
0ca5d51eb461d57552c90487eab9946d
function r=binornd(n,p,mm,nn) % BINORND Random matrices from a binomial distribution. % R = BINORND(N,P,MM,NN) is an MM-by-NN matrix of random % numbers chosen from a binomial distribution with parameters N and P. % % The size of R is the common size of N and P if both are matrices. % If either parameter is a scalar, the size of R is the size of the other % parameter. % Alternatively, R = BINORND(N,P,MM,NN) returns an MM by NN matrix. % % The method is direct using the definition of the binomial % distribution as a sum of Bernoulli random variables. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 % See Lemma 4.1 on page 428, method on page 524. % B.A. Jones 1-12-93 % Copyright (c) 1993 by The MathWorks, Inc. % $Revision: 1.1 $ $Date: 1993/05/24 18:53:37 $ if nargin < 2, error('Requires at least two input arguments.'); end if nargin == 2 [errorcode rows columns] = rndcheck(2,2,n,p); end if nargin == 3 [errorcode rows columns] = rndcheck(3,2,n,p,mm); n = n(ones(mm(1),1),ones(mm(2),1)); p = p(ones(mm(1),1),ones(mm(2),1)); end if nargin == 4 [errorcode rows columns] = rndcheck(4,2,n,p,mm,nn); n = n(ones(mm,1),ones(nn,1)); p = p(ones(mm,1),ones(nn,1)); end if errorcode > 0 error('Size information is inconsistent.'); end r = zeros(rows,columns); for i = 1:max(max(n)) u = rand(rows,columns); k1 = find(n >= i); k2 = find(u(k1) < p(k1)); r(k1(k2)) = r(k1(k2)) + 1; end k= find(p < 0 | p > 1 | n < 0); if any(k) r(k) = NaN * ones(size(k)); end function [errorcode, rows, columns] = rndcheck(nargs,nparms,arg1,arg2,arg3,arg4,arg5) %RNDCHECK error checks the argument list for the random number generators. % B.A. Jones 1-22-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.5 $ $Date: 1997/11/29 01:46:40 $ sizeinfo = nargs - nparms; errorcode = 0; if nparms == 3 [r1 c1] = size(arg1); [r2 c2] = size(arg2); [r3 c3] = size(arg3); end if nparms == 2 [r1 c1] = size(arg1); [r2 c2] = size(arg2); end if sizeinfo == 0 if nparms == 1 [rows columns] = size(arg1); end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg1); end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg3); end end end if sizeinfo == 1 scalararg1 = (prod(size(arg1)) == 1); if nparms == 1 if prod(size(arg2)) ~= 2 errorcode = 2; return; end if ~scalararg1 & arg2 ~= size(arg1) errorcode = 3; return; end if (arg2(1) < 0 | arg2(2) < 0 | arg2(1) ~= round(arg2(1)) | arg2(2) ~= round(arg2(2))), errorcode = 4; return; end rows = arg2(1); columns = arg2(2); end if nparms == 2 if prod(size(arg3)) ~= 2 errorcode = 2; return; end scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if (arg3(1) < 0 | arg3(2) < 0 | arg3(1) ~= round(arg3(1)) | arg3(2) ~= round(arg3(2))), errorcode = 4; return; end if ~scalararg1 if any(arg3 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg3 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); else rows = arg3(1); columns = arg3(2); end end if nparms == 3 if prod(size(arg4)) ~= 2 errorcode = 2; return; end scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if (arg4(1) < 0 | arg4(2) < 0 | arg4(1) ~= round(arg4(1)) | arg4(2) ~= round(arg4(2))), errorcode = 4; return; end if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 if any(arg4 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg4 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); elseif ~scalararg3 if any(arg4 ~= size(arg3)) errorcode = 3; return; end [rows columns] = size(arg3); else rows = arg4(1); columns = arg4(2); end end end if sizeinfo == 2 if nparms == 1 scalararg1 = (prod(size(arg1)) == 1); if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg2 | columns ~= arg3 errorcode = 3; return; end end if (arg2 < 0 | arg3 < 0 | arg2 ~= round(arg2) | arg3 ~= round(arg3)), errorcode = 4; return; end rows = arg2; columns = arg3; end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end else if (arg3 < 0 | arg4 < 0 | arg3 ~= round(arg3) | arg4 ~= round(arg4)), errorcode = 4; return; end rows = arg3; columns = arg4; end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg3 [rows columns] = size(arg3); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end else if (arg4 < 0 | arg5 < 0 | arg4 ~= round(arg4) | arg5 ~= round(arg5)), errorcode = 4; return; end rows = arg4; columns = arg5; end end end
github
alex-delalande/numerical-tours-master
dump_struct.m
.m
numerical-tours-master/matlab/toolbox_general/dump_struct.m
1,389
utf_8
746b6d65b8fc8c67e8cb806c235f5e6a
function fid = dump_struct(s,fid,header) % dump_struct - dump the content of a struct to a file % % dump_struct(s,fid, header); % % Copyright (c) 2008 Gabriel Peyre if nargin<3 header = ''; end if isstr(fid) fid = fopen(fid, 'a'); if fid<=0 error(['File ' fid ' does not exist.']); end end if not(isempty(header)) fprintf(fid, '%s\n', header ); end % central line (position of ':') cl = 15; if iscell(s) for i=1:length(s) fprintf(fid, '%s\n', convert_string(s{i},0) ); end elseif isstruct(s) s = orderfields(s); f = fieldnames(s); for i=1:length(f) v = getfield(s,f{i}); fprintf(fid, '%s: %s\n', convert_string(f{i},cl), convert_string(v,0) ); end else error('Unknown type.'); end if nargout==0 fclose(fid); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function s = convert_string(v,cl) if nargin<2 cl = 15; end nmax = 10; % maximum of dumped string results if isa(v, 'numeric') % v = v(1); s = []; for i = 1:min(length(v(:)), nmax) if mod(v,1)==0 s = [s int2str(v(i)) ' ']; else s = [s num2str(v(i)) ' ']; end end if length(v(:))>nmax s = [s '...']; end elseif isstr(v) s = v; else s = '-'; end % try to align on central line d = cl - length(s); if d>0 s = [repmat(' ',[1 d]) s]; end
github
alex-delalande/numerical-tours-master
poissrnd.m
.m
numerical-tours-master/matlab/toolbox_general/poissrnd.m
10,053
utf_8
64b00f80e484b0c01bfd50a87756f587
function r = poissrnd(lambda,m,n) %POISSRND Random matrices from Poisson distribution. % R = POISSRND(LAMBDA) returns a matrix of random numbers chosen % from the Poisson distribution with parameter LAMBDA. % % The size of R is the size of LAMBDA. Alternatively, % R = POISSRND(LAMBDA,M,N) returns an M by N matrix. % % POISSRND uses a waiting time method for small values of LAMBDA, % and the method of Ahrens and Dieter for larger values of LAMBDA. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 page 504. % Copyright 1993-2000 The MathWorks, Inc. % $Revision: 2.9 $ $Date: 2000/07/28 19:33:02 $ if nargin < 1, error('Requires at least one input argument.'); end if nargin == 1 [errorcode rows columns] = rndcheck(1,1,lambda); end if nargin == 2 [errorcode rows columns] = rndcheck(2,1,lambda,m); end if nargin == 3 [errorcode rows columns] = rndcheck(3,1,lambda,m,n); end if errorcode > 0 error('Size information is inconsistent.'); end if (prod(size(lambda)) == 1) lambda = lambda(ones(rows*columns,1)); else lambda = lambda(:); end %Initialize r to zero. r = zeros(rows, columns); j = (1:(rows*columns))'; % indices remaining to generate % For large lambda, use the method of Ahrens and Dieter as % described in Knuth, Volume 2, 1998 edition. k = find(lambda >= 15); if ~isempty(k) alpha = 7/8; lk = lambda(k); m = floor(alpha * lk); % Generate m waiting times, all at once x = gamrnd(m,1); t = x <= lk; % If we did not overshoot, then the number of additional times % has a Poisson distribution with a smaller mean. r(k(t)) = m(t) + poissrnd(lk(t)-x(t)); % If we did overshoot, then the times up to m-1 are uniformly % distributed on the interval to x, so the count of times less % than lambda has a binomial distribution. r(k(~t)) = binornd(m(~t)-1, lk(~t)./x(~t)); j(k) = []; end % For small lambda, generate and count waiting times. p = zeros(length(j),1); while ~isempty(j) p = p - log(rand(length(j),1)); kc = [1:length(k)]'; t = (p < lambda(j)); j = j(t); p = p(t); r(j) = r(j) + 1; end % Return NaN if LAMBDA is negative. r(lambda < 0) = NaN; function [errorcode, rows, columns] = rndcheck(nargs,nparms,arg1,arg2,arg3,arg4,arg5) %RNDCHECK error checks the argument list for the random number generators. % B.A. Jones 1-22-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.5 $ $Date: 1997/11/29 01:46:40 $ sizeinfo = nargs - nparms; errorcode = 0; if nparms == 3 [r1 c1] = size(arg1); [r2 c2] = size(arg2); [r3 c3] = size(arg3); end if nparms == 2 [r1 c1] = size(arg1); [r2 c2] = size(arg2); end if sizeinfo == 0 if nparms == 1 [rows columns] = size(arg1); end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg1); end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg3); end end end if sizeinfo == 1 scalararg1 = (prod(size(arg1)) == 1); if nparms == 1 if prod(size(arg2)) ~= 2 errorcode = 2; return; end if ~scalararg1 & arg2 ~= size(arg1) errorcode = 3; return; end if (arg2(1) < 0 | arg2(2) < 0 | arg2(1) ~= round(arg2(1)) | arg2(2) ~= round(arg2(2))), errorcode = 4; return; end rows = arg2(1); columns = arg2(2); end if nparms == 2 if prod(size(arg3)) ~= 2 errorcode = 2; return; end scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if (arg3(1) < 0 | arg3(2) < 0 | arg3(1) ~= round(arg3(1)) | arg3(2) ~= round(arg3(2))), errorcode = 4; return; end if ~scalararg1 if any(arg3 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg3 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); else rows = arg3(1); columns = arg3(2); end end if nparms == 3 if prod(size(arg4)) ~= 2 errorcode = 2; return; end scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if (arg4(1) < 0 | arg4(2) < 0 | arg4(1) ~= round(arg4(1)) | arg4(2) ~= round(arg4(2))), errorcode = 4; return; end if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 if any(arg4 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg4 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); elseif ~scalararg3 if any(arg4 ~= size(arg3)) errorcode = 3; return; end [rows columns] = size(arg3); else rows = arg4(1); columns = arg4(2); end end end if sizeinfo == 2 if nparms == 1 scalararg1 = (prod(size(arg1)) == 1); if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg2 | columns ~= arg3 errorcode = 3; return; end end if (arg2 < 0 | arg3 < 0 | arg2 ~= round(arg2) | arg3 ~= round(arg3)), errorcode = 4; return; end rows = arg2; columns = arg3; end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end else if (arg3 < 0 | arg4 < 0 | arg3 ~= round(arg3) | arg4 ~= round(arg4)), errorcode = 4; return; end rows = arg3; columns = arg4; end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg3 [rows columns] = size(arg3); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end else if (arg4 < 0 | arg5 < 0 | arg4 ~= round(arg4) | arg5 ~= round(arg5)), errorcode = 4; return; end rows = arg4; columns = arg5; end end end
github
alex-delalande/numerical-tours-master
perform_faces_reorientation.m
.m
numerical-tours-master/matlab/toolbox_general/perform_faces_reorientation.m
2,816
utf_8
2cf3d5c1ad6ea271b524352db5492c2c
function faces = perform_faces_reorientation(vertex,faces, options) % perform_faces_reorientation - reorient the faces with respect to the center of the mesh % % faces = perform_faces_reorientation(vertex,faces, options); % % try to find a consistant reorientation for faces of a mesh. % % if options.method = 'fast', then use a fast non accurate method % if options.method = 'slow', then use a slow exact method % % Copyright (c) 2007 Gabriel Peyre options.null = 0; method = getoptions(options, 'method', 'fast'); [vertex,faces] = check_face_vertex(vertex,faces); n = size(vertex,2); m = size(faces,2); if strcmp(method, 'fast') % compute the center of mass of the mesh G = mean(vertex,2); % center of faces Cf = (vertex(:,faces(1,:)) + vertex(:,faces(2,:)) + vertex(:,faces(3,:)))/3; Cf = Cf - repmat(G,[1 m]); % normal to the faces V1 = vertex(:,faces(2,:))-vertex(:,faces(1,:)); V2 = vertex(:,faces(3,:))-vertex(:,faces(1,:)); N = [V1(2,:).*V2(3,:) - V1(3,:).*V2(2,:) ; ... -V1(1,:).*V2(3,:) + V1(3,:).*V2(1,:) ; ... V1(1,:).*V2(2,:) - V1(2,:).*V2(1,:) ]; % dot product s = sign(sum(N.*Cf)); % reverse faces I = find(s>0); faces(:,I) = faces(3:-1:1,I); return end options.method = 'fast'; faces = perform_faces_reorientation(vertex,faces, options); fring = compute_face_ring(faces); tag = zeros(m,1)-1; heap = 1; for i=1:m if m>100 progressbar(i,m); end if isempty(heap) I = find(tag==-1); if isempty(I) error('Problem'); end heap = I(1); end f = heap(end); heap(end) = []; if tag(f)==1 warning('Problem'); end tag(f) = 1; % computed fr = fring{f}; fr = fr(tag(fr)==-1); tag(fr)=0; heap = [heap fr]; for k=fr(:)' % see if re-orientation is needed if check_orientation(faces(:,k), faces(:,f))==1 faces(1:2,k) = faces(2:-1:1,k); end end end if not(isempty(heap)) || not(isempty(find(tag<1))) warning('Problem'); end % try to see if face are facing in the correct direction [normal,normalf] = compute_normal(vertex,faces); a = mean(vertex,2); a = repmat(a, [1 n]); dp = sign(sum(normal.*a,1)); if sum(dp>0)<sum(dp<0) faces(1:2,:) = faces(2:-1:1,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function o = check_orientation(f1,f2) i1 = 0; j1 = 0; for i=1:3 for j=1:3 if f1(i)==f2(j) i1 = i; j1 = j; break; end end if i1~=0 break; end end if i1==0 error('Problem.'); end ia = mod(i1,3)+1; ja = mod(j1,3)+1; ib = mod(i1-2,3)+1; jb = mod(j1-2,3)+1; if f1(ia)==f2(ja) || f1(ib)==f2(jb) o=1; else o = -1; end
github
alex-delalande/numerical-tours-master
gamrnd.m
.m
numerical-tours-master/matlab/toolbox_general/gamrnd.m
10,861
utf_8
9b8a786919b4ddfbebdf74985b19ebb2
function r = gamrnd(a,b,m,n); %GAMRND Random matrices from gamma distribution. % R = GAMRND(A,B) returns a matrix of random numbers chosen % from the gamma distribution with parameters A and B. % The size of R is the common size of A and B if both are matrices. % If either parameter is a scalar, the size of R is the size of the other % parameter. Alternatively, R = GAMRND(A,B,M,N) returns an M by N matrix. % % mu=A*B is the mean. % sigma^2=A*B^2 is the variance. % % % Some references refer to the gamma distribution % with a single parameter. This corresponds to GAMRND % with B = 1. (See Devroye, pages 401-402.) % GAMRND uses a rejection or an inversion method depending on the % value of A. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 % B.A. Jones 2-1-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.8 $ $Date: 1998/09/30 19:12:40 $ if nargin < 2, error('Requires at least two input arguments.'); end if nargin == 2 [errorcode rows columns] = rndcheck(2,2,a,b); end if nargin == 3 [errorcode rows columns] = rndcheck(3,2,a,b,m); end if nargin == 4 [errorcode rows columns] = rndcheck(4,2,a,b,m,n); end if errorcode > 0 error('Size information is inconsistent.'); end % Initialize r to zero. lth = rows*columns; r = zeros(lth,1); a = a(:); b = b(:); scalara = (length(a) == 1); if scalara a = a*ones(lth,1); end scalarb = (length(b) == 1); if scalarb b = b*ones(lth,1); end % If a == 1, then gamma is exponential. (Devroye, page 405). k = find(a == 1); if any(k) r(k) = -b(k) .* log(rand(size(k))); end k = find(a < 1 & a > 0); % (Devroye, page 418 Johnk's generator) if any(k) c = zeros(lth,1); d = zeros(lth,1); c(k) = 1 ./ a(k); d(k) = 1 ./ (1 - a(k)); accept = k; while ~isempty(accept) u = rand(size(accept)); v = rand(size(accept)); x = u .^ c(accept); y = v .^ d(accept); k1 = find((x + y) <= 1); if ~isempty(k1) e = -log(rand(size(k1))); r(accept(k1)) = e .* x(k1) ./ (x(k1) + y(k1)); accept(k1) = []; end end r(k) = r(k) .* b(k); end % Use a rejection method for a > 1. k = find(a > 1); % (Devroye, page 410 Best's algorithm) bb = zeros(size(a)); c = bb; if any(k) bb(k) = a(k) - 1; c(k) = 3 * a(k) - 3/4; accept = k; count = 1; while ~isempty(accept) m = length(accept); u = rand(m,1); v = rand(m,1); w = u .* (1 - u); y = sqrt(c(accept) ./ w) .* (u - 0.5); x = bb(accept) + y; k1 = find(x >= 0); if ~isempty(k1) z = 64 * (w .^ 3) .* (v .^ 2); k2 = (z(k1) <= (1 - 2 * (y(k1) .^2) ./ x(k1))); k3 = k1(find(k2)); r(accept(k3)) = x(k3); k4 = k1(find(~k2)); k5 = k4(find(log(z(k4)) <= (2*(bb(accept(k4)).*log(x(k4)./bb(accept(k4)))-y(k4))))); r(accept(k5)) = x(k5); omit = [k3; k5]; accept(omit) = []; end end r(k) = r(k) .* b(k); end % Return NaN if a or b is not positive. r(b <= 0 | a <= 0) = NaN; r = reshape(r,rows,columns); function [errorcode, rows, columns] = rndcheck(nargs,nparms,arg1,arg2,arg3,arg4,arg5) %RNDCHECK error checks the argument list for the random number generators. % B.A. Jones 1-22-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.5 $ $Date: 1997/11/29 01:46:40 $ sizeinfo = nargs - nparms; errorcode = 0; if nparms == 3 [r1 c1] = size(arg1); [r2 c2] = size(arg2); [r3 c3] = size(arg3); end if nparms == 2 [r1 c1] = size(arg1); [r2 c2] = size(arg2); end if sizeinfo == 0 if nparms == 1 [rows columns] = size(arg1); end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg1); end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg3); end end end if sizeinfo == 1 scalararg1 = (prod(size(arg1)) == 1); if nparms == 1 if prod(size(arg2)) ~= 2 errorcode = 2; return; end if ~scalararg1 & arg2 ~= size(arg1) errorcode = 3; return; end if (arg2(1) < 0 | arg2(2) < 0 | arg2(1) ~= round(arg2(1)) | arg2(2) ~= round(arg2(2))), errorcode = 4; return; end rows = arg2(1); columns = arg2(2); end if nparms == 2 if prod(size(arg3)) ~= 2 errorcode = 2; return; end scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if (arg3(1) < 0 | arg3(2) < 0 | arg3(1) ~= round(arg3(1)) | arg3(2) ~= round(arg3(2))), errorcode = 4; return; end if ~scalararg1 if any(arg3 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg3 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); else rows = arg3(1); columns = arg3(2); end end if nparms == 3 if prod(size(arg4)) ~= 2 errorcode = 2; return; end scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if (arg4(1) < 0 | arg4(2) < 0 | arg4(1) ~= round(arg4(1)) | arg4(2) ~= round(arg4(2))), errorcode = 4; return; end if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 if any(arg4 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg4 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); elseif ~scalararg3 if any(arg4 ~= size(arg3)) errorcode = 3; return; end [rows columns] = size(arg3); else rows = arg4(1); columns = arg4(2); end end end if sizeinfo == 2 if nparms == 1 scalararg1 = (prod(size(arg1)) == 1); if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg2 | columns ~= arg3 errorcode = 3; return; end end if (arg2 < 0 | arg3 < 0 | arg2 ~= round(arg2) | arg3 ~= round(arg3)), errorcode = 4; return; end rows = arg2; columns = arg3; end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end else if (arg3 < 0 | arg4 < 0 | arg3 ~= round(arg3) | arg4 ~= round(arg4)), errorcode = 4; return; end rows = arg3; columns = arg4; end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg3 [rows columns] = size(arg3); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end else if (arg4 < 0 | arg5 < 0 | arg4 ~= round(arg4) | arg5 ~= round(arg5)), errorcode = 4; return; end rows = arg4; columns = arg5; end end end
github
alex-delalande/numerical-tours-master
binornd.m
.m
numerical-tours-master/matlab/toolbox_general/binornd.m
9,362
utf_8
0ca5d51eb461d57552c90487eab9946d
function r=binornd(n,p,mm,nn) % BINORND Random matrices from a binomial distribution. % R = BINORND(N,P,MM,NN) is an MM-by-NN matrix of random % numbers chosen from a binomial distribution with parameters N and P. % % The size of R is the common size of N and P if both are matrices. % If either parameter is a scalar, the size of R is the size of the other % parameter. % Alternatively, R = BINORND(N,P,MM,NN) returns an MM by NN matrix. % % The method is direct using the definition of the binomial % distribution as a sum of Bernoulli random variables. % References: % [1] L. Devroye, "Non-Uniform Random Variate Generation", % Springer-Verlag, 1986 % See Lemma 4.1 on page 428, method on page 524. % B.A. Jones 1-12-93 % Copyright (c) 1993 by The MathWorks, Inc. % $Revision: 1.1 $ $Date: 1993/05/24 18:53:37 $ if nargin < 2, error('Requires at least two input arguments.'); end if nargin == 2 [errorcode rows columns] = rndcheck(2,2,n,p); end if nargin == 3 [errorcode rows columns] = rndcheck(3,2,n,p,mm); n = n(ones(mm(1),1),ones(mm(2),1)); p = p(ones(mm(1),1),ones(mm(2),1)); end if nargin == 4 [errorcode rows columns] = rndcheck(4,2,n,p,mm,nn); n = n(ones(mm,1),ones(nn,1)); p = p(ones(mm,1),ones(nn,1)); end if errorcode > 0 error('Size information is inconsistent.'); end r = zeros(rows,columns); for i = 1:max(max(n)) u = rand(rows,columns); k1 = find(n >= i); k2 = find(u(k1) < p(k1)); r(k1(k2)) = r(k1(k2)) + 1; end k= find(p < 0 | p > 1 | n < 0); if any(k) r(k) = NaN * ones(size(k)); end function [errorcode, rows, columns] = rndcheck(nargs,nparms,arg1,arg2,arg3,arg4,arg5) %RNDCHECK error checks the argument list for the random number generators. % B.A. Jones 1-22-93 % Copyright (c) 1993-98 by The MathWorks, Inc. % $Revision: 2.5 $ $Date: 1997/11/29 01:46:40 $ sizeinfo = nargs - nparms; errorcode = 0; if nparms == 3 [r1 c1] = size(arg1); [r2 c2] = size(arg2); [r3 c3] = size(arg3); end if nparms == 2 [r1 c1] = size(arg1); [r2 c2] = size(arg2); end if sizeinfo == 0 if nparms == 1 [rows columns] = size(arg1); end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg1); end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); elseif ~scalararg2 [rows columns] = size(arg2); else [rows columns] = size(arg3); end end end if sizeinfo == 1 scalararg1 = (prod(size(arg1)) == 1); if nparms == 1 if prod(size(arg2)) ~= 2 errorcode = 2; return; end if ~scalararg1 & arg2 ~= size(arg1) errorcode = 3; return; end if (arg2(1) < 0 | arg2(2) < 0 | arg2(1) ~= round(arg2(1)) | arg2(2) ~= round(arg2(2))), errorcode = 4; return; end rows = arg2(1); columns = arg2(2); end if nparms == 2 if prod(size(arg3)) ~= 2 errorcode = 2; return; end scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if (arg3(1) < 0 | arg3(2) < 0 | arg3(1) ~= round(arg3(1)) | arg3(2) ~= round(arg3(2))), errorcode = 4; return; end if ~scalararg1 if any(arg3 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg3 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); else rows = arg3(1); columns = arg3(2); end end if nparms == 3 if prod(size(arg4)) ~= 2 errorcode = 2; return; end scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if (arg4(1) < 0 | arg4(2) < 0 | arg4(1) ~= round(arg4(1)) | arg4(2) ~= round(arg4(2))), errorcode = 4; return; end if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 if any(arg4 ~= size(arg1)) errorcode = 3; return; end [rows columns] = size(arg1); elseif ~scalararg2 if any(arg4 ~= size(arg2)) errorcode = 3; return; end [rows columns] = size(arg2); elseif ~scalararg3 if any(arg4 ~= size(arg3)) errorcode = 3; return; end [rows columns] = size(arg3); else rows = arg4(1); columns = arg4(2); end end end if sizeinfo == 2 if nparms == 1 scalararg1 = (prod(size(arg1)) == 1); if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg2 | columns ~= arg3 errorcode = 3; return; end end if (arg2 < 0 | arg3 < 0 | arg2 ~= round(arg2) | arg3 ~= round(arg3)), errorcode = 4; return; end rows = arg2; columns = arg3; end if nparms == 2 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg3 | columns ~= arg4 errorcode = 3; return; end else if (arg3 < 0 | arg4 < 0 | arg3 ~= round(arg3) | arg4 ~= round(arg4)), errorcode = 4; return; end rows = arg3; columns = arg4; end end if nparms == 3 scalararg1 = (prod(size(arg1)) == 1); scalararg2 = (prod(size(arg2)) == 1); scalararg3 = (prod(size(arg3)) == 1); if ~scalararg1 & ~scalararg2 if r1 ~= r2 | c1 ~= c2 errorcode = 1; return; end end if ~scalararg1 & ~scalararg3 if r1 ~= r3 | c1 ~= c3 errorcode = 1; return; end end if ~scalararg3 & ~scalararg2 if r3 ~= r2 | c3 ~= c2 errorcode = 1; return; end end if ~scalararg1 [rows columns] = size(arg1); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg2 [rows columns] = size(arg2); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end elseif ~scalararg3 [rows columns] = size(arg3); if rows ~= arg4 | columns ~= arg5 errorcode = 3; return; end else if (arg4 < 0 | arg5 < 0 | arg4 ~= round(arg4) | arg5 ~= round(arg5)), errorcode = 4; return; end rows = arg4; columns = arg5; end end end
github
alex-delalande/numerical-tours-master
iradon.m
.m
numerical-tours-master/matlab/toolbox_signal/iradon.m
9,900
utf_8
28cae50d959ca460cfc01acf31c2e700
function [img,H] = iradon(varargin) %IRADON Compute inverse Radon transform. % I = iradon(R,THETA) reconstructs the image I from projection % data in the 2-D array R. The columns of R are parallel beam % projection data. IRADON assumes that the center of rotation % is the center point of the projections, which is defined as % ceil(size(R,1)/2). % % THETA describes the angles (in degrees) at which the projections % were taken. It can be either a vector containing the angles or % a scalar specifying D_theta, the incremental angle between % projections. If THETA is a vector, it must contain angles with % equal spacing between them. If THETA is a scalar specifying % D_theta, the projections are taken at angles THETA = m * D_theta; % m = 0,1,2,...,size(R,2)-1. If the input is the empty matrix % ([]), D_theta defaults to 180/size(R,2). % % IRADON uses the filtered backprojection algorithm to perform % the inverse Radon transform. The filter is designed directly % in the frequency domain and then multiplied by the FFT of the % projections. The projections are zero-padded to a power of 2 % before filtering to prevent spatial domain aliasing and to % speed up the FFT. % % I = IRADON(R,THETA,INTERP,FILTER,D,N) specifies parameters % to use in the inverse Radon transform. You can specify % any combination of the last four arguments. IRADON uses % default values for any of these arguments that you omit. % % INTERP specifies the type of interpolation to use in the % backprojection. The available options are listed in order % of increasing accuracy and computational complexity: % % 'nearest' - nearest neighbor interpolation % 'linear' - linear interpolation (default) % 'spline' - spline interpolation % % FILTER specifies the filter to use for frequency domain filtering. % FILTER is a string that specifies any of the following standard % filters: % % 'Ram-Lak' The cropped Ram-Lak or ramp filter (default). The % frequency response of this filter is |f|. Because % this filter is sensitive to noise in the projections, % one of the filters listed below may be preferable. % 'Shepp-Logan' The Shepp-Logan filter multiplies the Ram-Lak % filter by a sinc function. % 'Cosine' The cosine filter multiplies the Ram-Lak filter % by a cosine function. % 'Hamming' The Hamming filter multiplies the Ram-Lak filter % by a Hamming window. % 'Hann' The Hann filter multiplies the Ram-Lak filter by % a Hann window. % % D is a scalar in the range (0,1] that modifies the filter by % rescaling its frequency axis. The default is 1. If D is less % than 1, the filter is compressed to fit into the frequency range % [0,D], in normalized frequencies; all frequencies above D are set % to 0. % % N is a scalar that specifies the number of rows and columns in the % reconstructed image. If N is not specified, the size is determined % from the length of the projections: % % N = 2*floor(size(R,1)/(2*sqrt(2))) % % If you specify N, IRADON reconstructs a smaller or larger portion of % the image, but does not change the scaling of the data. % % If the projections were calculated with the RADON function, the % reconstructed image may not be the same size as the original % image. % % [I,H] = iradon(...) returns the frequency response of the filter % in the vector H. % % Class Support % ------------- % All input arguments must be of class double. The output arguments are % of class double. % % Example % ------- % P = phantom(128); % R = radon(P,0:179); % I = iradon(R,0:179,'nearest','Hann'); % imshow(P); figure; imshow(I); % % See also RADON, PHANTOM. % Copyright 1993-2002 The MathWorks, Inc. % $Revision: 1.13 $ $Date: 2002/03/15 15:28:29 $ % References: % A. C. Kak, Malcolm Slaney, "Principles of Computerized Tomographic % Imaging", IEEE Press 1988. [p,theta,filter,d,interp,N] = parse_inputs(varargin{:}); % Design the filter len=size(p,1); H = designFilter(filter, len, d); p(length(H),1)=0; % Zero pad projections % In the code below, I continuously reuse the array p so as to % save memory. This makes it harder to read, but the comments % explain what is going on. p = fft(p); % p holds fft of projections for i = 1:size(p,2) p(:,i) = p(:,i).*H; % frequency domain filtering end p = real(ifft(p)); % p is the filtered projections p(len+1:end,:) = []; % Truncate the filtered projections img = zeros(N); % Allocate memory for the image. % Define the x & y axes for the reconstructed image so that the origin % (center) is in the spot which RADON would choose. xax = (1:N)-ceil(N/2); x = repmat(xax, N, 1); % x coordinates, the y coordinates are rot90(x) y = rot90(x); costheta = cos(theta); sintheta = sin(theta); ctrIdx = ceil(len/2); % index of the center of the projections % Zero pad the projections to size 1+2*ceil(N/sqrt(2)) if this % quantity is greater than the length of the projections imgDiag = 2*ceil(N/sqrt(2))+1; % largest distance through image. if size(p,1) < imgDiag rz = imgDiag - size(p,1); % how many rows of zeros p = [zeros(ceil(rz/2),size(p,2)); p; zeros(floor(rz/2),size(p,2))]; ctrIdx = ctrIdx+ceil(rz/2); end % Backprojection - vectorized in (x,y), looping over theta if strcmp(interp, 'nearest neighbor') for i=1:length(theta) proj = p(:,i); t = round(x*costheta(i) + y*sintheta(i)); img = img + proj(t+ctrIdx); end elseif strcmp(interp, 'linear') for i=1:length(theta) proj = p(:,i); t = x.*costheta(i) + y.*sintheta(i); a = floor(t); img = img + (t-a).*proj(a+1+ctrIdx) + (a+1-t).*proj(a+ctrIdx); end elseif strcmp(interp, 'spline') for i=1:length(theta) proj = p(:,i); taxis = (1:size(p,1)) - ctrIdx; t = x.*costheta(i) + y.*sintheta(i); projContrib = interp1(taxis,proj,t(:),'*spline'); img = img + reshape(projContrib,N,N); end end img = img*pi/(2*length(theta)); %%% %%% Sub-Function: designFilter %%% function filt = designFilter(filter, len, d) % Returns the Fourier Transform of the filter which will be % used to filter the projections % % INPUT ARGS: filter - either the string specifying the filter % len - the length of the projections % d - the fraction of frequencies below the nyquist % which we want to pass % % OUTPUT ARGS: filt - the filter to use on the projections order = max(64,2^nextpow2(2*len)); % First create a ramp filter - go up to the next highest % power of 2. filt = 2*( 0:(order/2) )./order; w = 2*pi*(0:size(filt,2)-1)/order; % frequency axis up to Nyquist switch filter case 'ram-lak' % Do nothing case 'shepp-logan' % be careful not to divide by 0: filt(2:end) = filt(2:end) .* (sin(w(2:end)/(2*d))./(w(2:end)/(2*d))); case 'cosine' filt(2:end) = filt(2:end) .* cos(w(2:end)/(2*d)); case 'hamming' filt(2:end) = filt(2:end) .* (.54 + .46 * cos(w(2:end)/d)); case 'hann' filt(2:end) = filt(2:end) .*(1+cos(w(2:end)./d)) / 2; otherwise error('Invalid filter selected.'); end filt(w>pi*d) = 0; % Crop the frequency response filt = [filt' ; filt(end-1:-1:2)']; % Symmetry of the filter %%% %%% Sub-Function: parse_inputs %%% function [p,theta,filter,d,interp,N] = parse_inputs(varargin); % Parse the input arguments and retun things % % Inputs: varargin - Cell array containing all of the actual inputs % % Outputs: p - Projection data % theta - the angles at which the projections were taken % filter - string specifying filter or the actual filter % d - a scalar specifying normalized freq. at which to crop % the frequency response of the filter % interp - the type of interpolation to use % N - The size of the reconstructed image if nargin<2 error('Invalid input arguments.'); end p = varargin{1}; theta = pi*varargin{2}/180; % Default values N = 0; % Size of the reconstructed image d = 1; % Defaults to no cropping of filters frequency response filter = 'ram-lak'; % The ramp filter is the default interp = 'linear'; % default interpolation is linear string_args = {'nearest neighbor', 'linear', 'spline', ... 'ram-lak','shepp-logan','cosine','hamming', 'hann'}; for i=3:nargin arg = varargin{i}; if ischar(arg) idx = strmatch(lower(arg),string_args); if isempty(idx) error(['Unknown input string: ' arg '.']); elseif prod(size(idx)) > 1 error(['Ambiguous input string: ' arg '.']); elseif prod(size(idx)) == 1 if idx <= 3 % It is the interpolatio interp = string_args{idx}; elseif (idx > 3) & (idx <= 8) filter = string_args{idx}; end end elseif prod(size(arg))==1 if arg <=1 d = arg; else N = arg; end else error('Invalid input parameters'); end end % If the user didn't specify the size of the reconstruction, so % deduce it from the length of projections if N==0 N = 2*floor( size(p,1)/(2*sqrt(2)) ); % This doesn't always jive with RADON end % for empty theta, choose an intelligent default delta-theta if isempty(theta) theta = pi / size(p,2); end % If the user passed in delta-theta, build the vector of theta values if prod(size(theta))==1 theta = (0:(size(p,2)-1))* theta; end if length(theta) ~= size(p,2) error('THETA does not match the number of projections.'); end
github
alex-delalande/numerical-tours-master
load_signal.m
.m
numerical-tours-master/matlab/toolbox_signal/load_signal.m
12,338
utf_8
b70e4cb57d6b467ae9c90d4b3310a81f
function y = load_signal(name, n, options) % load_signal - load a 1D signal % % y = load_signal(name, n, options); % % name is a string that can be : % 'regular' (options.alpha gives regularity) % 'step', 'rand', % 'gaussiannoise' (options.sigma gives width of filtering in pixels), % [natural signals] % 'tiger', 'bell', 'bird' % [WAVELAB signals] % 'HeaviSine', 'Bumps', 'Blocks', % 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', % 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', % 'MishMash', 'WernerSorrows' (Heisenberg), % 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), % 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' % 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' % 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) if nargin<2 n = 1024; end options.null = 0; if isfield(options, 'alpha') alpha = options.alpha; else alpha = 2; end options.rep = ''; switch lower(name) case 'regular' y = gen_signal(n,alpha); case 'step' y = linspace(0,1,n)>0.5; case 'stepregular' y = linspace(0,1,n)>0.5; y=y(:); a = gen_signal(n,2); a = a(:); a = rescale(a,-0.1,0.1); y = y+a; case 'gaussiannoise' % filtered gaussian noise y = randn(n,1); if isfield(options, 'sigma') sigma = options.sigma; % variance in number of pixels else sigma = 20; end m = min(n, 6*round(sigma/2)+1); h = compute_gaussian_filter(m,sigma/(4*n),n); options.bound = 'per'; y = perform_convolution(y,h, options); case 'rand' if isfield(options, 'p1') p1 = options.p1; else c = 10; p1 = 1:c; p1 = p1/sum(p1); end p1 = p1(:); c = length(p1); if isfield(options, 'p2') p2 = options.p2; else if isfield(options, 'evol') evol = options.evol; else evol = 0; end p2 = p1(:) + evol*(rand(c,1)-0.5); p2 = max(p2,0); p2 = p2/sum(p2); end y = zeros(n,1); for i=1:n a = (i-1)/(n-1); p = a*p1+(1-a)*p2; p = p/sum(p); y(i) = rand_discr(p, 1); end case 'bird' [y,fs] = load_sound([name '.wav'], n, options); case 'tiger' [y,fs] = load_sound([name '.au'], n, options); case 'bell' [y,fs] = load_sound([name '.wav'], n, options); otherwise y = MakeSignal(name,n); end y = y(:); function y = gen_signal(n,alpha) % gen_signal - generate a 1D C^\alpha signal of length n. % % y = gen_signal(n,alpha); % % The signal is scaled in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? if nargin<2 alpha = 2; end y = randn(n,1); fy = fft(y); fy = fftshift(fy); % filter with |omega|^{-\alpha} h = (-n/2+1):(n/2); h = (abs(h)+1).^(-alpha-0.5); fy = fy.*h'; fy = fftshift(fy); y = real( ifft(fy) ); y = (y-min(y))/(max(y)-min(y)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sig = MakeSignal(Name,n) % MakeSignal -- Make artificial signal % Usage % sig = MakeSignal(Name,n) % Inputs % Name string: 'HeaviSine', 'Bumps', 'Blocks', % 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine', % 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp', % 'MishMash', 'WernerSorrows' (Heisenberg), % 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth), % 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor' % 'sineoneoverx','Cusp2','SmoothCusp','Gaussian' % 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial) % n desired signal length % Outputs % sig 1-d signal % % References % Various articles of D.L. Donoho and I.M. Johnstone % if nargin > 1, t = (1:n) ./n; end Name = lower(Name); if strcmp(Name,'heavisine'), sig = 4.*sin(4*pi.*t); sig = sig - sign(t - .3) - sign(.72 - t); elseif strcmp(Name,'bumps'), pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2]; wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; sig = zeros(size(t)); for j =1:length(pos) sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4; end elseif strcmp(Name,'blocks'), pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-4.2)]; sig = zeros(size(t)); for j=1:length(pos) sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2) ; end elseif strcmp(Name,'doppler'), sig = sqrt(t.*(1-t)).*sin((2*pi*1.05) ./(t+.05)); elseif strcmp(Name,'ramp'), sig = t - (t >= .37); elseif strcmp(Name,'cusp'), sig = sqrt(abs(t - .37)); elseif strcmp(Name,'sing'), k = floor(n * .37); sig = 1 ./abs(t - (k+.5)/n); elseif strcmp(Name,'hisine'), sig = sin( pi * (n * .6902) .* t); elseif strcmp(Name,'losine'), sig = sin( pi * (n * .3333) .* t); elseif strcmp(Name,'linchirp'), sig = sin(pi .* t .* ((n .* .500) .* t)); elseif strcmp(Name,'twochirp'), sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n .* t)); elseif strcmp(Name,'quadchirp'), sig = sin( (pi/3) .* t .* (n .* t.^2)); elseif strcmp(Name,'mishmash'), % QuadChirp + LinChirp + HiSine sig = sin( (pi/3) .* t .* (n .* t.^2)) ; sig = sig + sin( pi * (n * .6902) .* t); sig = sig + sin(pi .* t .* (n .* .125 .* t)); elseif strcmp(Name,'wernersorrows'), sig = sin( pi .* t .* (n/2 .* t.^2)) ; sig = sig + sin( pi * (n * .6902) .* t); sig = sig + sin(pi .* t .* (n .* t)); pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81]; hgt = [ 4 5 3 4 5 4.2 2.1 4.3 3.1 5.1 4.2]; wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]; for j =1:length(pos) sig = sig + hgt(j)./( 1 + abs((t - pos(j))./wth(j))).^4; end elseif strcmp(Name,'leopold'), sig = (t == floor(.37 * n)/n); % Kronecker elseif strcmp(Name,'riemann'), sqn = round(sqrt(n)); sig = t .* 0; % Riemann's Non-differentiable Function sig((1:sqn).^2) = 1. ./ (1:sqn); sig = real(ifft(sig)); elseif strcmp(Name,'hypchirps'), % Hyperbolic Chirps of Mallat's book alpha = 15*n*pi/1024; beta = 5*n*pi/1024; t = (1.001:1:n+.001)./n; f1 = zeros(1,n); f2 = zeros(1,n); f1 = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68); f2 = sin(beta./(.8-t)).*(0.1<t).*(t<0.75); M = round(0.65*n); P = floor(M/4); enveloppe = ones(1,M); % the rising cutoff function enveloppe(1:P) = (1+sin(-pi/2+((1:P)-ones(1,P))./(P-1)*pi))/2; enveloppe(M-P+1:M) = reverse(enveloppe(1:P)); env = zeros(1,n); env(ceil(n/10):M+ceil(n/10)-1) = enveloppe(1:M); sig = (f1+f2).*env; elseif strcmp(Name,'linchirps'), % Linear Chirps of Mallat's book b = 100*n*pi/1024; a = 250*n*pi/1024; t = (1:n)./n; A1 = sqrt((t-1/n).*(1-t)); sig = A1.*(cos((a*(t).^2)) + cos((b*t+a*(t).^2))); elseif strcmp(Name,'chirps'), % Mixture of Chirps of Mallat's book t = (1:n)./n.*10.*pi; f1 = cos(t.^2*n/1024); a = 30*n/1024; t = (1:n)./n.*pi; f2 = cos(a.*(t.^3)); f2 = reverse(f2); ix = (-n:n)./n.*20; g = exp(-ix.^2*4*n/1024); i1 = (n/2+1:n/2+n); i2 = (n/8+1:n/8+n); j = (1:n)/n; f3 = g(i1).*cos(50.*pi.*j*n/1024); f4 = g(i2).*cos(350.*pi.*j*n/1024); sig = f1+f2+f3+f4; enveloppe = ones(1,n); % the rising cutoff function enveloppe(1:n/8) = (1+sin(-pi/2+((1:n/8)-ones(1,n/8))./(n/8-1)*pi))/2; enveloppe(7*n/8+1:n) = reverse(enveloppe(1:n/8)); sig = sig.*enveloppe; elseif strcmp(Name,'gabor'), % two modulated Gabor functions in % Mallat's book N = 512; t = (-N:N)*5/N; j = (1:N)./N; g = exp(-t.^2*20); i1 = (2*N/4+1:2*N/4+N); i2 = (N/4+1:N/4+N); sig1 = 3*g(i1).*exp(i*N/16.*pi.*j); sig2 = 3*g(i2).*exp(i*N/4.*pi.*j); sig = sig1+sig2; elseif strcmp(Name,'sineoneoverx'), % sin(1/x) in Mallat's book N = 1024; a = (-N+1:N); a(N) = 1/100; a = a./(N-1); sig = sin(1.5./(i)); sig = sig(513:1536); elseif strcmp(Name,'cusp2'), N = 64; a = (1:N)./N; x = (1-sqrt(a)) + a/2 -.5; M = 8*N; sig = zeros(1,M); sig(M-1.5.*N+1:M-.5*N) = x; sig(M-2.5*N+2:M-1.5.*N+1) = reverse(x); sig(3*N+1:3*N + N) = .5*ones(1,N); elseif strcmp(Name,'smoothcusp'), sig = MakeSignal('Cusp2'); N = 64; M = 8*N; t = (1:M)/M; sigma = 0.01; g = exp(-.5.*(abs(t-.5)./sigma).^2)./sigma./sqrt(2*pi); g = fftshift(g); sig2 = iconv(g',sig)'/M; elseif strcmp(Name,'piece-regular'), sig1=-15*MakeSignal('Bumps',n); t = (1:fix(n/12)) ./fix(n/12); sig2=-exp(4*t); t = (1:fix(n/7)) ./fix(n/7); sig5=exp(4*t)-exp(4); t = (1:fix(n/3)) ./fix(n/3); sigma=6/40; sig6=-70*exp(-((t-1/2).*(t-1/2))/(2*sigma^2)); sig(1:fix(n/7))= sig6(1:fix(n/7)); sig((fix(n/7)+1):fix(n/5))=0.5*sig6((fix(n/7)+1):fix(n/5)); sig((fix(n/5)+1):fix(n/3))=sig6((fix(n/5)+1):fix(n/3)); sig((fix(n/3)+1):fix(n/2))=sig1((fix(n/3)+1):fix(n/2)); sig((fix(n/2)+1):(fix(n/2)+fix(n/12)))=sig2; sig((fix(n/2)+2*fix(n/12)):-1:(fix(n/2)+fix(n/12)+1))=sig2; sig(fix(n/2)+2*fix(n/12)+fix(n/20)+1:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))=... -ones(1,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25; k=fix(n/2)+2*fix(n/12)+3*fix(n/20); sig((k+1):(k+fix(n/7)))=sig5; diff=n-5*fix(n/5); sig(5*fix(n/5)+1:n)=sig(diff:-1:1); % zero-mean bias=sum(sig)/n; sig=bias-sig; elseif strcmp(Name,'piece-polynomial'), t = (1:fix(n/5)) ./fix(n/5); sig1=20*(t.^3+t.^2+4); sig3=40*(2.*t.^3+t) + 100; sig2=10.*t.^3 + 45; sig4=16*t.^2+8.*t+16; sig5=20*(t+4); sig6(1:fix(n/10))=ones(1,fix(n/10)); sig6=sig6*20; sig(1:fix(n/5))=sig1; sig(2*fix(n/5):-1:(fix(n/5)+1))=sig2; sig((2*fix(n/5)+1):3*fix(n/5))=sig3; sig((3*fix(n/5)+1):4*fix(n/5))=sig4; sig((4*fix(n/5)+1):5*fix(n/5))=sig5(fix(n/5):-1:1); diff=n-5*fix(n/5); sig(5*fix(n/5)+1:n)=sig(diff:-1:1); %sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=-ones(1,fix(n/10))*20; sig((fix(n/20)+1):(fix(n/20)+fix(n/10)))=ones(1,fix(n/10))*10; sig((n-fix(n/10)+1):(n+fix(n/20)-fix(n/10)))=ones(1,fix(n/20))*150; % zero-mean bias=sum(sig)/n; sig=sig-bias; elseif strcmp(Name,'gaussian'), sig=GWN(n,beta); g=zeros(1,n); lim=alpha*n; mult=pi/(2*alpha*n); g(1:lim)=(cos(mult*(1:lim))).^2; g((n/2+1):n)=g((n/2):-1:1); g = rnshift(g,n/2); g=g/norm(g); sig=iconv(g,sig); else disp(sprintf('MakeSignal: I don*t recognize <<%s>>',Name)) disp('Allowable Names are:') disp('HeaviSine'), disp('Bumps'), disp('Blocks'), disp('Doppler'), disp('Ramp'), disp('Cusp'), disp('Crease'), disp('Sing'), disp('HiSine'), disp('LoSine'), disp('LinChirp'), disp('TwoChirp'), disp('QuadChirp'), disp('MishMash'), disp('WernerSorrows'), disp('Leopold'), disp('Sing'), disp('HiSine'), disp('LoSine'), disp('LinChirp'), disp('TwoChirp'), disp('QuadChirp'), disp('MishMash'), disp('WernerSorrows'), disp('Leopold'), disp('Riemann'), disp('HypChirps'), disp('LinChirps'), disp('Chirps'), disp('sineoneoverx'), disp('Cusp2'), disp('SmoothCusp'), disp('Gabor'), disp('Piece-Regular'); disp('Piece-Polynomial'); disp('Gaussian'); end % % Originally made by David L. Donoho. % Function has been enhanced. % % Part of WaveLab Version 802 % Built Sunday, October 3, 1999 8:52:27 AM % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
alex-delalande/numerical-tours-master
load_hdr.m
.m
numerical-tours-master/matlab/toolbox_signal/load_hdr.m
4,933
utf_8
6e9f25ee3fd41a80fb31c4e53984631b
function [img, fileinfo] = load_hdr(filename) % load_hdr - loading a radiance RBGE file. % % [img, fileinfo] = load_hdr(filename); % % Written by Lawrence A. Taplin ([email protected]) % % Based loosely on the c-code RGBE implementation written by Bruce Walters % http://www.graphics.cornell.edu/~bjw/rgbe.html % % function to read a run length encoded RGBE picture file and header. This does % not work if the image is not RLE!!! do_rescale = 0; % check if the image is in classical image (eg. TIFF) format if ~strcmp(filename(end-2:end), 'hdr') img = double(imread(filename)); if do_rescale img = rescale(img); end fileinfo = []; return; end % tic %open the file fid = fopen(filename,'r'); if fid<0 error(['File not found:' filename '.']); end %read the magic number tline = fgetl(fid); if length(tline)<3 | tline(1:2) ~= '#?' error('invalid header'); end fileinfo.identifier = tline(3:end); %read the header variables into a structure tline = fgetl(fid); while ~isempty(tline) %find and set the variable name n = strfind(tline,'='); if ~isempty(n) % skip stuff I don't understand vname = lower(tline(1:n(1)-1)); vval = tline(n+1:end); fileinfo = setfield(fileinfo,vname,tline(n+1:end)); % fprintf('Variable = %s, Value = %s\n',vname, vval); end %read the next line tline = fgetl(fid); end %set the resolution variables tline = fgetl(fid); fileinfo.Ysign = tline(1); [fileinfo.height,count,errmsg,nextindex] = sscanf(tline(4:end),'%d',1); fileinfo.Xsign = tline(nextindex+4); [fileinfo.width,count,errmsg,nextindex] = sscanf(tline(nextindex+7:end),'%d',1); % fprintf('resolution: %s\n',tline); %allocate space for the scan line data img = zeros(fileinfo.height, fileinfo.width, 3); %read the scanline data if fileinfo.format == '32-bit_rle_rgbe'; % fprintf('Decoding RLE Data stream\n'); end %read the remaining data [data, count] = fread(fid,inf,'uint8'); fclose(fid); scanline_width = fileinfo.width; num_scanlines = fileinfo.height; if ((scanline_width < 8)|(scanline_width > 32767)) % run length encoding is not allowed so read flat img = rgbe2float(reshape(data,fileinfo.width,fileinfo.height,4)); return; end scanline_buffer = repmat(uint8(0),scanline_width,4); dp = 1; %set the data pointer to the begining of the read data % read in each successive scanline */ for scanline=1:num_scanlines % if mod(scanline,fix(num_scanlines/100))==0 % fprintf('scanline = %d\n',scanline); % end % if (data(dp) ~= 2) | (data(dp+1) ~= 2)% | (bitget(data(dp+2),8)~=1) error('this file is not run length encoded'); end if (bitshift(data(dp+2),8)+data(dp+3))~=scanline_width % -128 error('wrong scanline width'); end dp = dp+4; % read each of the four channels read the scanline into the buffer for i=1:4 ptr = 1; while(ptr <= scanline_width) if (data(dp) > 128) % a run of the same value count = data(dp)-128; if ((count == 0)|(count-1 > scanline_width - ptr)) warning('bad scanline data'); end scanline_buffer(ptr:ptr+count-1,i) = data(dp+1); dp = dp+2; ptr = ptr+count; else % a non-run count = data(dp); dp = dp+1; if ((count == 0)|(count-1 > scanline_width - ptr)) warning('bad scanline data'); end scanline_buffer(ptr:ptr+count-1,i) = data(dp:dp+count-1); ptr = ptr+count; dp = dp+count; end end end % now convert data from buffer into floats img(scanline,:,:) = rgbe2float(scanline_buffer); end % toc % rescale to 0-1 if do_rescale a = min(img(:)); b = max(img(:)); img = (img-a)/(b-a); end % standard conversion from float pixels to rgbe pixels % the last dimension is assumed to be color function [rgbe] = float2rgbe(rgb) s = size(rgb); rgb = reshape(rgb,prod(s)/3,3); rgbe = reshape(repmat(uint8(0),[s(1:end-1),4]),prod(s)/3,4); v = max(rgb,[],2); %find max rgb l = find(v>1e-32); %find non zero pixel list rgbe(l,4) = uint8(round(128.5+log(v)/log(2))); %find E rgbe(l,1:3) = uint8(rgb(l,1:3)./repmat(2.^(double(rgbe(l,4))-128-8),1,3)); %find rgb multiplier reshape(rgbe,[s(1:end-1),4]); %reshape back to original dimensions % standard conversion from rgbe to float pixels */ % note: Ward uses ldexp(col+0.5,exp-(128+8)). However we wanted pixels */ % in the range [0,1] to map back into the range [0,1]. */ function [rgb] = rgbe2float(rgbe) s = size(rgbe); rgbe = reshape(rgbe,prod(s)/4,4); rgb = zeros(prod(s)/4,3); l = find(rgbe(:,4)>0); %nonzero pixel list rgb(l,:) = double(rgbe(l,1:3)).*repmat(2.^(double(rgbe(l,4))-128-8),1,3); rgb = reshape(rgb,[s(1:end-1),3]);
github
alex-delalande/numerical-tours-master
perform_wavortho_transf.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_wavortho_transf.m
2,736
utf_8
362bed43d951f6bdefb520003047e2ea
function f = perform_wavortho_transf(f,Jmin,dir,options) % perform_wavortho_transf - compute orthogonal wavelet transform % % fw = perform_wavortho_transf(f,Jmin,dir,options); % % You can give the filter in options.h. % % Works in arbitrary dimension. % % Copyright (c) 2009 Gabriel Peyre options.null = 0; h = getoptions(options,'h', compute_wavelet_filter('Daubechies',4) ); g = [0 h(length(h):-1:2)] .* (-1).^(1:length(h)); n = size(f,1); Jmax = log2(n)-1; if dir==1 %%% FORWARD %%% for j=Jmax:-1:Jmin sel = 1:2^(j+1); a = subselect(f,sel); for d=1:nb_dims(f) a = cat(d, subsampling(cconvol(a,h,d),d), subsampling(cconvol(a,g,d),d) ); end f = subassign(f,sel,a); end else %%% FORWARD %%% for j=Jmin:Jmax sel = 1:2^(j+1); a = subselect(f,sel); for d=1:nb_dims(f) w = subselectdim(a,2^j+1:2^(j+1),d); a = subselectdim(a,1:2^j,d); a = cconvol(upsampling(a,d),reverse(h),d) + cconvol(upsampling(w,d),reverse(g),d); end f = subassign(f,sel,a); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subselect(f,sel) switch nb_dims(f) case 1 f = f(sel); case 2 f = f(sel,sel); case 3 f = f(sel,sel,sel); case 4 f = f(sel,sel,sel,sel); case 5 f = f(sel,sel,sel,sel,sel); case 6 f = f(sel,sel,sel,sel,sel,sel); case 7 f = f(sel,sel,sel,sel,sel,sel,sel); case 8 f = f(sel,sel,sel,sel,sel,sel,sel,sel); otherwise error('Not implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subselectdim(f,sel,d) switch d case 1 f = f(sel,:,:,:,:,:,:,:); case 2 f = f(:,sel,:,:,:,:,:,:); case 3 f = f(:,:,sel,:,:,:,:,:); case 4 f = f(:,:,:,sel,:,:,:,:); case 5 f = f(:,:,:,:,sel,:,:,:); case 6 f = f(:,:,:,:,:,sel,:,:); case 7 f = f(:,:,:,:,:,:,sel,:); case 8 f = f(:,:,:,:,:,:,:,sel); otherwise error('Not implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subassign(f,sel,g) switch nb_dims(f) case 1 f(sel) = g; case 2 f(sel,sel) = g; case 3 f(sel,sel,sel) = g; case 4 f(sel,sel,sel,sel) = g; case 5 f(sel,sel,sel,sel,sel) = g; case 6 f(sel,sel,sel,sel,sel,sel) = g; case 7 f(sel,sel,sel,sel,sel,sel,sel) = g; case 8 f(sel,sel,sel,sel,sel,sel,sel,sel) = g; otherwise error('Not implemented'); end
github
alex-delalande/numerical-tours-master
plot_curvelet.m
.m
numerical-tours-master/matlab/toolbox_signal/plot_curvelet.m
2,421
utf_8
a1a1177c6c1d743518abcfacae1e9e03
function J = plot_curvelet(MW, options) % plot_curvelet - display curvelets coefficients % % J = plot_curvelet(MW); % % Based on curvelab. %generate curvelet image (a complex array) I = fdct_wrapping_dispcoef(MW); % remove bckgd U = (I==.5); J = ones(size(I)+2); JU = ones(size(I)+2); J(2:end-1,2:end-1) = I; JU(2:end-1,2:end-1) = U; J(J==.5) = 1; J = sign(J) .* abs(J).^.6; if nargout==0 hold on; imageplot(J); [c,h] = contour( JU, [.5 .5], 'r'); set(h, 'LineWidth', 2); end function img = fdct_wrapping_dispcoef(C) % fdct_wrapping_dispcoef - returns an image containing all the curvelet coefficients % % Inputs % C Curvelet coefficients % % Outputs % img Image containing all the curvelet coefficients. The coefficents are rescaled so that % the largest coefficent in each subband has unit norm. % [m,n] = size(C{end}{1}); nbscales = floor(log2(min(m,n)))-3; img = rescale(C{1}{1},-1,1); % img = img/max(max(abs(img))); %normalize for sc=2:nbscales-1 nd = length(C{sc})/4; wcnt = 0; ONE = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd ONE = [ONE, fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w})]; end wcnt = wcnt+nd; TWO = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd TWO = [TWO; fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w})]; end wcnt = wcnt+nd; THREE = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd THREE = [fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w}), THREE]; end wcnt = wcnt+nd; FOUR = []; [u,v] = size(C{sc}{wcnt+1}); for w=1:nd FOUR = [fdct_wrapping_dispcoef_expand(u,v,C{sc}{wcnt+w}); FOUR]; end wcnt = wcnt+nd; [p,q] = size(img); [a,b] = size(ONE); [g,h] = size(TWO); m = 2*a+g; n = 2*h+b; %size of new image scale = max(max( max(max(abs(ONE))),max(max(abs(TWO))) ), max(max(max(abs(THREE))), max(max(abs(FOUR))) )); %scaling factor new = 0.5 * ones(m,n);%background value new(a+1:a+g,1:h) = FOUR/scale; new(a+g+1:2*a+g,h+1:h+b) = THREE/scale; new(a+1:a+g,h+b+1:2*h+b) = TWO/scale; new(1:a,h+1:h+b) = ONE/scale;%normalize dx = floor((g-p)/2); dy = floor((b-q)/2); new(a+1+dx:a+p+dx,h+1+dy:h+q+dy) = img; img = new; end function A = fdct_wrapping_dispcoef_expand(u,v,B) A = zeros(u,v); [p,q] = size(B); A(1:p,1:q) = B;
github
alex-delalande/numerical-tours-master
plot_tensor_field.m
.m
numerical-tours-master/matlab/toolbox_signal/plot_tensor_field.m
5,736
utf_8
8e241783316bc4c13529031d81db17d4
function h = plot_tensor_field(H, M, options) % plot_tensor_field - display a tensor field % % h = plot_tensor_field(H, M, options); % % options.sub controls sub-sampling % options.color controls color % % Copyright (c) 2006 Gabriel Peyre if nargin<3 options.null = 0; end if not( isstruct(options) ) sub = options; clear options; options.sub = sub; end % sub = getoptions(options, 'sub', 1); sub = getoptions(options, 'sub', round(size(H,1)/30) ); color = getoptions(options, 'color', 'r'); if nargin<2 M = []; end if not(isempty(M)) && size(M,3)==1 M = repmat(M, [1 1 3]); % ensure B&W image end if size(H,3)==3 && size(H,4)==1 H = cat(3, H(:,:,1), H(:,:,3), H(:,:,3), H(:,:,2) ); H = reshape(H, size(H,1), size(H,2), 2, 2); if 0 % flip the main eigen-axes [e1,e2,l1,l2] = perform_tensor_decomp(H); H = perform_tensor_recomp(e2,e1,l1,l2); end h = plot_tensor_field(H, M, sub); return; end % swap X and Y axis %%% TODO a = H(:,:,2,2); H(:,:,2,2) = H(:,:,1,1); H(:,:,1,1) = a; hold on; if ~isempty(M) imagesc(rescale(M)); drawnow; end h = fn_tensordisplay(H(:,:,1,1),H(:,:,1,2), H(:,:,2,2), 'sub', sub, 'color', color); axis image; axis off; colormap jet(256); % hold off; function h = fn_tensordisplay(varargin) % function h = fn_tensordisplay([X,Y,]Txx,Txy,Tyy[,'sigma',sigma][,'sub',sub][,color][,patch options...]]) % function h = fn_tensordisplay([X,Y,]e[,'sigma',sigma][,'sub',sub][,color][,patch options...]]) % X,Y,Txx,Txy,Tyy if isstruct(varargin{1}) || isstruct(varargin{3}) if isstruct(varargin{1}), nextarg=1; else nextarg=3; end e = varargin{nextarg}; Txx = e.ytyt; Txy = -e.ytyx; Tyy = e.yxyx; if nextarg==1 [nj ni] = size(Txx); [X Y] = meshgrid(1:ni,1:nj); else [X Y] = deal(varargin{1:2}); end nextarg = nextarg+1; else [nj ni] = size(varargin{3}); if nargin<5 || ischar(varargin{4}) || ischar(varargin{5}) || any(size(varargin{5})~=[nj ni]) [X Y] = meshgrid(1:ni,1:nj); nextarg = 1; else [X Y] = deal(varargin{1:2}); nextarg = 3; end [Txx Txy Tyy] = deal(varargin{nextarg:nextarg+2}); nextarg = nextarg+3; end if any(size(X)==1), [X Y] = meshgrid(X,Y); end [nj,ni] = size(X); if any(size(Y)~=[nj ni]) || ... any(size(Txx)~=[nj ni]) || any(size(Txy)~=[nj ni]) || any(size(Tyy)~=[nj ni]) error('Matrices must be same size') end % sigma, sub, color color = 'r'; while nextarg<=nargin flag = varargin{nextarg}; nextarg=nextarg+1; if ~ischar(flag), color = flag; continue, end switch lower(flag) case 'sigma' sigma = varargin{nextarg}; nextarg = nextarg+1; switch length(sigma) case 1 sigmax = sigma; sigmay = sigma; case 2 sigmax = sigma(1); sigmay = sigma(2); otherwise error('sigma definition should entail two values'); end h = fspecial('gaussian',[ceil(2*sigmay) 1],sigmay)*fspecial('gaussian',[1 ceil(2*sigmax)],sigmax); Txx = imfilter(Txx,h,'replicate'); Txy = imfilter(Txy,h,'replicate'); Tyy = imfilter(Tyy,h,'replicate'); case 'sub' sub = varargin{nextarg}; nextarg = nextarg+1; switch length(sub) case 1 [x y] = meshgrid(1:sub:ni,1:sub:nj); sub = y+nj*(x-1); case 2 [x y] = meshgrid(1:sub(1):ni,1:sub(2):nj); sub = y+nj*(x-1); end X = X(sub); Y = Y(sub); Txx = Txx(sub); Txy = Txy(sub); Tyy = Tyy(sub); [nj ni] = size(sub); case 'color' color = varargin{nextarg}; nextarg = nextarg+1; otherwise break end end % options options = {varargin{nextarg:end}}; npoints = 50; theta = (0:npoints-1)*(2*pi/npoints); circle = [cos(theta) ; sin(theta)]; Tensor = cat(3,Txx,Txy,Txy,Tyy); % jdisplay x idisplay x tensor Tensor = reshape(Tensor,2*nj*ni,2); % (display x 1tensor) x 2tensor Ellipse = Tensor * circle; % (display x uv) x npoints Ellipse = reshape(Ellipse,nj*ni,2,npoints); % display x uv x npoints XX = repmat(X(:),1,npoints); % display x npoints YY = repmat(Y(:),1,npoints); % display x npoints U = reshape(Ellipse(:,1,:),nj*ni,npoints); % display x npoints V = reshape(Ellipse(:,2,:),nj*ni,npoints); % display x npoints umax = max(U')'; vmax = max(V')'; umax(umax==0)=1; vmax(vmax==0)=1; if ni==1, dx=1; else dx = X(1,2)-X(1,1); end if nj==1, dy=1; else dy = Y(2,1)-Y(1,1); end fact = min(dx./umax,dy./vmax)*.35; fact = repmat(fact,1,npoints); U = XX + fact.*U; V = YY + fact.*V; %----------- MM = mmax(Txx+Tyy); mm = mmin(Txx+Tyy); [S1, S2] = size(U); Colormap = zeros(S2, S1, 3); Map = colormap(jet(256)); for k =1:npoints Colormap(k,:,1) = Map(floor(255*(Txx(:)+Tyy(:)-mm)/(MM-mm)) + 1, 1); Colormap(k,:,2) = Map(floor(255*(Txx(:)+Tyy(:)-mm)/(MM-mm)) + 1, 2); Colormap(k,:,3) = Map(floor(255*(Txx(:)+Tyy(:)-mm)/(MM-mm)) + 1, 3); end %----------- %h = fill(U',V',color,'EdgeColor',color,options{:}); h = fill(U',V',Colormap,'EdgeColor', 'interp'); axis ij; if nargout==0, clear h, end function a=mmax(a) a = max(a(:)); function a=mmin(a) a = min(a(:));
github
alex-delalande/numerical-tours-master
perform_homotopy.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_homotopy.m
11,418
utf_8
dd245ff8cad26000a60436c3c2e2c418
function [X,Lambda] = perform_homotopy(D,y) % perform_homotopy - compute the L1 regularization path % % X = perform_homotopy(D,y); % % Copyright (c) 2012 Gabriel Peyre [P,N] = size(D); niter = 10*P; X = []; Lambda = []; % initialization C = D'*y; [lambda,I] = max(abs(C)); x = zeros(N,1); X(:,end+1) = x; Lambda(end+1) = lambda; for it=1:niter % complementary support J = setdiff(1:N, I); % correlations c = D'*(y-D*x); if norm(c)<1e-6 break; end % update direction d = zeros(N,1); d(I) = (D(:,I)'*D(:,I)) \ sign(c(I)); % useful vector v = D(:,I)*d(I); % Compute minimum |gamma| so that situation 1) is in force. w = ( lambda-c(J) ) ./ ( 1 - D(:,J)'*v ); gamma1 = min(w(w>0)); if not(isempty(gamma1)) i1 = J( w==gamma1 ); end % Compute minimum |gamma| so that situation 2) is in force. w = ( lambda+c(J) ) ./ ( 1 + D(:,J)'*v ); gamma2 = min(w(w>0)); if not(isempty(gamma2)) i2 = J( w==gamma2 ); end % Compute minimum |gamma| so that situation 3) is in force. w = -x(I)./d(I); gamma3 = min(w(w>0)); if not(isempty(gamma3)) i3 = I( w==gamma3 ); end % any condition is in force gamma = min([gamma1 gamma2 gamma3]); if isempty(gamma) break; % final solution reached end % new solution x = x + gamma*d; lambda = lambda - gamma; if gamma==gamma1 I = [I i1]; elseif gamma==gamma2 I = [I i2]; elseif gamma==gamma3 I(I==i3) = []; x(i3) = 0; end % record sparsity and lambda X(:,end+1) = x; Lambda(end+1) = lambda; end return; n = size(D,2); niter = getoptions(options, 'niter', min(round(size(D)))/2); lambdaStop = 0; solFreq = 1; verbose = 0; [X, numIters, activationHist] = SolveLasso(D, y, n, 'lasso', niter, lambdaStop, solFreq, verbose); lambda_list = []; sparsity_list = sum(X~=0); return; function [sols, numIters, activationHist] = SolveLasso(A, y, N, algType, maxIters, lambdaStop, solFreq, verbose, OptTol) % SolveLasso: Implements the LARS/Lasso algorithms % Usage % [sols, numIters, activationHist] = SolveLasso(A, y, N, algType, % maxIters, lambdaStop, solFreq, verbose, OptTol) % Input % A Either an explicit nxN matrix, with rank(A) = min(N,n) % by assumption, or a string containing the name of a % function implementing an implicit matrix (see below for % details on the format of the function). % y vector of length n. % N length of solution vector. % algType 'lars' for the Lars algorithm, % 'lasso' for lars with the lasso modification (default) % maxIters maximum number of LARS iterations to perform. If not % specified, runs to stopping condition (default) % lambdaStop If specified (and > 0), the algorithm terminates when the % Lagrange multiplier <= lambdaStop. % solFreq if =0 returns only the final solution, if >0, returns an % array of solutions, one every solFreq iterations (default 0). % verbose 1 to print out detailed progress at each iteration, 0 for % no output (default) % OptTol Error tolerance, default 1e-5 % Outputs % sols solution of the Lasso/LARS problem % numIters Total number of steps taken % activationHist Array of indices showing elements entering and % leaving the solution set % Description % SolveLasso implements the LARS algorithm, as described by Efron et al. in % "Least Angle Regression". Currently, the original algorithm is % implemented, as well as the lasso modification, which solves % min || y - Ax ||_2^2 s.t || x ||_1 <= t % for all t > 0, using a path following method with parameter t. % The implementation implicitly factors the active set matrix A(:,I) % using Choleskly updates. % The matrix A can be either an explicit matrix, or an implicit operator % implemented as an m-file. If using the implicit form, the user should % provide the name of a function of the following format: % y = OperatorName(mode, m, n, x, I, dim) % This function gets as input a vector x and an index set I, and returns % y = A(:,I)*x if mode = 1, or y = A(:,I)'*x if mode = 2. % A is the m by dim implicit matrix implemented by the function. I is a % subset of the columns of A, i.e. a subset of 1:dim of length n. x is a % vector of length n is mode = 1, or a vector of length m is mode = 2. % References % B. Efron, T. Hastie, I. Johnstone and R. Tibshirani, % "Least Angle Regression", Annals of Statistics, 32, 407-499, 2004 % See Also % SolveOMP, SolveBP, SolveStOMP % if nargin < 9, OptTol = 1e-5; end if nargin < 8, verbose = 0; end if nargin < 7, solFreq = 0; end if nargin < 6, lambdaStop = 0; end if nargin < 5, maxIters = 10*N; end if nargin < 4, algType = 'lasso'; end switch lower(algType) case 'lars' isLasso = 0; case 'lasso' isLasso = 1; end explicitA = ~(ischar(A) || isa(A, 'function_handle')); n = length(y); % Global variables for linsolve function global opts opts_tr machPrec opts.UT = true; opts_tr.UT = true; opts_tr.TRANSA = true; machPrec = 1e-5; x = zeros(N,1); iter = 0; % First vector to enter the active set is the one with maximum correlation if (explicitA) corr = A'*y; else corr = feval(A,2,n,N,y,1:N,N); % = A'*y end lambda = max(abs(corr)); newIndices = find(abs(abs(corr)-lambda) < machPrec)'; % Initialize Cholesky factor of A_I R_I = []; activeSet = []; for j = 1:length(newIndices) iter = iter+1; [R_I, flag] = updateChol(R_I, n, N, A, explicitA, activeSet, newIndices(j)); activeSet = [activeSet newIndices(j)]; if verbose fprintf('Iteration %d: Adding variable %d\n', iter, activeSet(j)); end end activationHist = activeSet; collinearIndices = []; sols = []; done = 0; while ~done % Compute Lars direction - Equiangular vector dx = zeros(N,1); % Solve the equation (A_I'*A_I)dx_I = corr_I z = linsolve(R_I,corr(activeSet),opts_tr); dx(activeSet) = linsolve(R_I,z,opts); if (explicitA) dmu = A'*(A(:,activeSet)*dx(activeSet)); else dmu = feval(A,1,n,length(activeSet),dx(activeSet),activeSet,N); dmu = feval(A,2,n,N,dmu,1:N,N); end % For Lasso, Find first active vector to violate sign constraint if isLasso zc = -x(activeSet)./dx(activeSet); gammaI = min([zc(zc > 0); inf]); removeIndices = activeSet(find(zc == gammaI)); else gammaI = Inf; removeIndices = []; end % Find first inactive vector to enter the active set if (length(activeSet) >= min(n, N)) gammaIc = 1; else inactiveSet = 1:N; inactiveSet(activeSet) = 0; inactiveSet(collinearIndices) = 0; inactiveSet = find(inactiveSet > 0); lambda = abs(corr(activeSet(1))); dmu_Ic = dmu(inactiveSet); c_Ic = corr(inactiveSet); epsilon = 1e-12; gammaArr = [(lambda-c_Ic)./(lambda - dmu_Ic + epsilon) (lambda+c_Ic)./(lambda + dmu_Ic + epsilon)]'; gammaArr(gammaArr < machPrec) = inf; gammaArr = min(gammaArr)'; [gammaIc, Imin] = min(gammaArr); end % If gammaIc = 1, we are at the LS solution if (1-gammaIc) < OptTol newIndices = []; else newIndices = inactiveSet(find(abs(gammaArr - gammaIc) < machPrec)); %newIndices = inactiveSet(Imin); end gammaMin = min(gammaIc,gammaI); % Compute the next Lars step x = x + gammaMin*dx; corr = corr - gammaMin*dmu; % Check stopping condition if ((1-gammaMin) < OptTol) | ((lambdaStop > 0) & (lambda <= lambdaStop)) done = 1; end % Add new indices to active set if (gammaIc <= gammaI) && (length(newIndices) > 0) for j = 1:length(newIndices) iter = iter+1; if verbose fprintf('Iteration %d: Adding variable %d\n', iter, newIndices(j)); end % Update the Cholesky factorization of A_I [R_I, flag] = updateChol(R_I, n, N, A, explicitA, activeSet, newIndices(j)); % Check for collinearity if (flag) collinearIndices = [collinearIndices newIndices(j)]; if verbose fprintf('Iteration %d: Variable %d is collinear\n', iter, newIndices(j)); end else activeSet = [activeSet newIndices(j)]; activationHist = [activationHist newIndices(j)]; end end end % Remove violating indices from active set if (gammaI <= gammaIc) for j = 1:length(removeIndices) iter = iter+1; col = find(activeSet == removeIndices(j)); if verbose fprintf('Iteration %d: Dropping variable %d\n', iter, removeIndices(j)); end % Downdate the Cholesky factorization of A_I R_I = downdateChol(R_I,col); activeSet = [activeSet(1:col-1), activeSet(col+1:length(activeSet))]; % Reset collinear set collinearIndices = []; end x(removeIndices) = 0; % To avoid numerical errors activationHist = [activationHist -removeIndices]; end if iter >= maxIters done = 1; end if done | ((solFreq > 0) & (~mod(iter,solFreq))) sols = [sols x]; end end numIters = iter; clear opts opts_tr machPrec %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [R, flag] = updateChol(R, n, N, A, explicitA, activeSet, newIndex) % updateChol: Updates the Cholesky factor R of the matrix % A(:,activeSet)'*A(:,activeSet) by adding A(:,newIndex) % If the candidate column is in the span of the existing % active set, R is not updated, and flag is set to 1. global opts_tr machPrec flag = 0; if (explicitA) newVec = A(:,newIndex); else e = zeros(N,1); e(newIndex) = 1; newVec = feval(A,1,n,N,e,1:N,N); end if length(activeSet) == 0, R = sqrt(sum(newVec.^2)); else if (explicitA) p = linsolve(R,A(:,activeSet)'*A(:,newIndex),opts_tr); else AnewVec = feval(A,2,n,length(activeSet),newVec,activeSet,N); p = linsolve(R,AnewVec,opts_tr); end q = sum(newVec.^2) - sum(p.^2); if (q <= machPrec) % Collinear vector flag = 1; else R = [R p; zeros(1, size(R,2)) sqrt(q)]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function R = downdateChol(R, j) % downdateChol: `Downdates' the cholesky factor R by removing the % column indexed by j. % Remove the j-th column R(:,j) = []; [m,n] = size(R); % R now has nonzeros below the diagonal in columns j through n. % We use plane rotations to zero the 'violating nonzeros'. for k = j:n p = k:k+1; [G,R(p,k)] = planerot(R(p,k)); if k < n R(p,k+1:n) = G*R(p,k+1:n); end end % Remove last row of zeros from R R = R(1:n,:); % % Copyright (c) 2006. Yaakov Tsaig and Joshua Sweetkind-Singer % % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
alex-delalande/numerical-tours-master
load_image.m
.m
numerical-tours-master/matlab/toolbox_signal/load_image.m
20,275
utf_8
c700b54853577ab37402e27e4ca061b8
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; if iscell(type) for i=1:length(type) M{i} = load_image(type{i},n,options); end return; end type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = getoptions(options, 'eta', .1); gamma = getoptions(options, 'gamma', 1/sqrt(2)); radius = getoptions(options, 'radius', 10); center = getoptions(options, 'center', [0 0]); center1 = getoptions(options, 'center1', [0 0]); w = getoptions(options, 'tube_width', 0.06); nb_points = getoptions(options, 'nb_points', 9); scaling = getoptions(options, 'scaling', 1); theta = getoptions(options, 'theta', 30 * 2*pi/360); eccentricity = getoptions(options, 'eccentricity', 1.3); sigma = getoptions(options, 'sigma', 0); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end if strcmp(type(1:min(12,end)), 'square-tube-') k = str2double(type(13:end)); c1 = [.22 .5]; c2 = [1-c1(1) .5]; eta = 1.5; r1 = [c1 c1] + .21*[-1 -eta 1 eta]; r2 = [c2 c2] + .21*[-1 -eta 1 eta]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); if mod(k,2)==0 sel = n/2-k/2+1:n/2+k/2; else sel = n/2-(k-1)/2:n/2+(k-1)/2; end M( round(.25*n:.75*n), sel ) = 1; return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case 'constant' M = ones(n); case 'ramp' x = linspace(0,1,n); [Y,M] = meshgrid(x,x); case 'bump' s = getoptions(options, 'bump_size', .5); c = getoptions(options, 'center', [0 0]); if length(s)==1 s = [s s]; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); X = (X-c(1))/s(1); Y = (Y-c(2))/s(2); M = exp( -(X.^2+Y.^2)/2 ); case 'periodic' x = linspace(-pi,pi,n)/1.1; [Y,X] = meshgrid(x,x); f = getoptions(options, 'freq', 6); M = (1+cos(f*X)).*(1+cos(f*Y)); case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} M = create_letter(type(8), radius, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.im = 0.09; M = load_image('square-tube', n, options); case 'polygon' theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' options.radius = 0.45; options.center = [.5 .5]; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T-pi/2)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end f = getoptions(options, 'frequency', 30); eta = getoptions(options, 'width', .3); x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' width = getoptions(options, 'width', round(n/16) ); [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'geometrical' J = getoptions(options, 'Jgeometrical', 4); sgeom = 100*n/256; options.bound = 'per'; A = ones(n); for j=0:J-1 B = A; for k=1:2^j I = find(B==k); U = perform_blurring(randn(n),sgeom,options); s = median(U(I)); I1 = find( (B==k) & (U>s) ); I2 = find( (B==k) & (U<=s) ); A(I1) = 2*k-1; A(I2) = 2*k; end end M = A; case 'lic-texture' disp('Computing random tensor field.'); options.sigma_tensor = getoptions(options, 'lic_regularity', 50*n/256); T = compute_tensor_field_random(n,options); Flow = perform_tensor_decomp(T); % extract eigenfield. options.isoriented = 0; % no orientation in streamlines % initial texture lic_width = getoptions(options, 'lic_width', 0); M0 = perform_blurring(randn(n),lic_width); M0 = perform_histogram_equalization( M0, 'linear'); options.histogram = 'linear'; options.dt = 0.4; options.M0 = M0; options.verb = 1; options.flow_correction = 1; options.niter_lic = 3; w = 30; M = perform_lic(Flow, w, options); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'tv-image' M = rand(n); tau = compute_total_variation(M); options.niter = 400; [M,err_tv,err_l2] = perform_tv_projection(M,tau/1000,options); M = perform_histogram_equalization(M,'linear'); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'line-windowed' x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); eta = .3; gamma = getoptions(options, 'gamma', pi/10); parabola = getoptions(options, 'parabola', 0); M = (X-eta) - gamma*Y - parabola*Y.^2 < 0; f = sin( pi*x ).^2; M = M .* ( f'*f ); case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); theta = getoptions(options, 'theta', .2); freq = getoptions(options, 'freq', .2); X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'twodisks' M = zeros(n); options.center = [.25 .25]; M = load_image('disk', n, options); options.center = [.75 .75]; M = M + load_image('disk', n, options); case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} alpha = getoptions(options, 'alpha', 1); M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian sigma = getoptions(options, 'sigma', 10); M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature c = getoptions(c, 'c', .1); % angle theta = getoptions(options, 'theta', pi/sqrt(2)); x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' nbr_periods = getoptions(options, 'nbr_periods', 8); theta = getoptions(options, 'theta', 1/sqrt(2)); skew = getoptions(options, 'skew', 1/sqrt(2) ); A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' sigma = getoptions(options, 'sigma', 1); M = randn(n) * sigma; case 'disk-corner' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); rho = .3; eta = .1; M1 = rho*X+eta<Y; c = [0 .2]; r = .85; d = (X-c(1)).^2 + (Y-c(2)).^2; M2 = d<r^2; M = M1.*M2; otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end if strcmp(type, 'peppers-bw') M(:,1) = M(:,2); M(1,:) = M(2,:); end if sigma>0 M = perform_blurring(M,sigma); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 M = perform_blurring(M,sigma); end M = rescale(M); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
alex-delalande/numerical-tours-master
perform_curvelet_transform.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_curvelet_transform.m
33,957
utf_8
63811c4cedefc4b0a5ede5a2b3269c54
function y = perform_curvelet_transform(x,options) % perform_curvelet_transform - a wrapper to curvlab % % M = perform_curvelet_transform(MW,options); % % Forward and backward curvelet transform % You must provide options.n (width of the image). % % Visit www.curvelab.org for the full code. options.null = 0; finest = getoptions(options, 'finest',1) ; % =1(curv) =2(wav) nbscales = getoptions(options, 'nbscales', 5); % log2(size(M,1))-2; nbangles_coarse = getoptions(options, 'nbangles_coarse', 16); is_real = getoptions(options, 'is_real', 0); n = getoptions(options, 'n', 1,1); if not(iscell(x)) % fwd transform y = fdct_wrapping(x, is_real, finest, nbscales, nbangles_coarse); else y = real( ifdct_wrapping(x, is_real, n,n ) ); end %% function C = fdct_wrapping(x, is_real, finest, nbscales, nbangles_coarse) % fdct_wrapping.m - Fast Discrete Curvelet Transform via wedge wrapping - Version 1.0 % % Inputs % x M-by-N matrix % % Optional Inputs % is_real Type of the transform % 0: complex-valued curvelets % 1: real-valued curvelets % [default set to 0] % finest Chooses one of two possibilities for the coefficients at the % finest level: % 1: curvelets % 2: wavelets % [default set to 2] % nbscales number of scales including the coarsest wavelet level % [default set to ceil(log2(min(M,N)) - 3)] % nbangles_coarse % number of angles at the 2nd coarsest level, minimum 8, % must be a multiple of 4. [default set to 16] % % Outputs % C Cell array of curvelet coefficients. % C{j}{l}(k1,k2) is the coefficient at % - scale j: integer, from finest to coarsest scale, % - angle l: integer, starts at the top-left corner and % increases clockwise, % - position k1,k2: both integers, size varies with j % and l. % If is_real is 1, there are two types of curvelets, % 'cosine' and 'sine'. For a given scale j, the 'cosine' % coefficients are stored in the first two quadrants (low % values of l), the 'sine' coefficients in the last two % quadrants (high values of l). % % See also ifdct_wrapping.m, fdct_wrapping_param.m % % By Laurent Demanet, 2004 X = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x))); [N1,N2] = size(X); if nargin < 2, is_real = 0; end; if nargin < 3, finest = 2; end; if nargin < 4, nbscales = ceil(log2(min(N1,N2)) - 3); end; if nargin < 5, nbangles_coarse = 16; end; % Initialization: data structure nbangles = [1, nbangles_coarse .* 2.^(ceil((nbscales-(nbscales:-1:2))/2))]; if finest == 2, nbangles(nbscales) = 1; end; C = cell(1,nbscales); for j = 1:nbscales C{j} = cell(1,nbangles(j)); end; % Loop: pyramidal scale decomposition M1 = N1/3; M2 = N2/3; if finest == 1, % Initialization: smooth periodic extension of high frequencies bigN1 = 2*floor(2*M1)+1; bigN2 = 2*floor(2*M2)+1; equiv_index_1 = 1+mod(floor(N1/2)-floor(2*M1)+(1:bigN1)-1,N1); equiv_index_2 = 1+mod(floor(N2/2)-floor(2*M2)+(1:bigN2)-1,N2); X = X(equiv_index_1,equiv_index_2); % Invariant: equiv_index_1(floor(2*M1)+1) == (N1 + 2 - mod(N1,2))/2 % is the center in frequency. Same for M2, N2. window_length_1 = floor(2*M1) - floor(M1) - 1 - (mod(N1,3)==0); window_length_2 = floor(2*M2) - floor(M2) - 1 - (mod(N2,3)==0); % Invariant: floor(M1) + floor(2*M1) == N1 - (mod(M1,3)~=0) % Same for M2, N2. coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; if mod(N1,3)==0, lowpass_1 = [0, lowpass_1, 0]; end; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; if mod(N2,3)==0, lowpass_2 = [0, lowpass_2, 0]; end; lowpass = lowpass_1'*lowpass_2; Xlow = X .* lowpass; scales = nbscales:-1:2; else M1 = M1/2; M2 = M2/2; window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass = lowpass_1'*lowpass_2; hipass = sqrt(1 - lowpass.^2); Xlow_index_1 = ((-floor(2*M1)):floor(2*M1)) + ceil((N1+1)/2); Xlow_index_2 = ((-floor(2*M2)):floor(2*M2)) + ceil((N2+1)/2); Xlow = X(Xlow_index_1, Xlow_index_2) .* lowpass; Xhi = X; Xhi(Xlow_index_1, Xlow_index_2) = Xhi(Xlow_index_1, Xlow_index_2) .* hipass; C{nbscales}{1} = fftshift(ifft2(ifftshift(Xhi)))*sqrt(prod(size(Xhi))); if is_real, C{nbscales}{1} = real(C{nbscales}{1}); end; scales = (nbscales-1):-1:2; end; for j = scales, M1 = M1/2; M2 = M2/2; window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass = lowpass_1'*lowpass_2; hipass = sqrt(1 - lowpass.^2); Xhi = Xlow; % size is 2*floor(4*M1)+1 - by - 2*floor(4*M2)+1 Xlow_index_1 = ((-floor(2*M1)):floor(2*M1)) + floor(4*M1) + 1; Xlow_index_2 = ((-floor(2*M2)):floor(2*M2)) + floor(4*M2) + 1; Xlow = Xlow(Xlow_index_1, Xlow_index_2); Xhi(Xlow_index_1, Xlow_index_2) = Xlow .* hipass; Xlow = Xlow .* lowpass; % size is 2*floor(2*M1)+1 - by - 2*floor(2*M2)+1 % Loop: angular decomposition l = 0; nbquadrants = 2 + 2*(~is_real); nbangles_perquad = nbangles(j)/4; for quadrant = 1:nbquadrants M_horiz = M2 * (mod(quadrant,2)==1) + M1 * (mod(quadrant,2)==0); M_vert = M1 * (mod(quadrant,2)==1) + M2 * (mod(quadrant,2)==0); if mod(nbangles_perquad,2), wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right(end:-1:1)]; else wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right((end-1):-1:1)]; end; wedge_endpoints = wedge_ticks(2:2:(end-1)); % integers wedge_midpoints = (wedge_endpoints(1:(end-1)) + wedge_endpoints(2:end))/2; % integers or half-integers % Left corner wedge l = l+1; first_wedge_endpoint_vert = round(2*floor(4*M_vert)/(2*nbangles_perquad) + 1); length_corner_wedge = floor(4*M_vert) - floor(M_vert) + ceil(first_wedge_endpoint_vert/4); Y_corner = 1:length_corner_wedge; [XX,YY] = meshgrid(1:(2*floor(4*M_horiz)+1),Y_corner); width_wedge = wedge_endpoints(2) + wedge_endpoints(1) - 1; slope_wedge = (floor(4*M_horiz) + 1 - wedge_endpoints(1))/floor(4*M_vert); left_line = round(2 - wedge_endpoints(1) + slope_wedge*(Y_corner - 1)); % integers [wrapped_data, wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); % Coordinates of the top-left corner of the wedge wrapped % around the origin. Some subtleties when the wedge is % even-sized because of the forthcoming 90 degrees rotation for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+1+abs(cols-1))); new_row = 1 + mod(row - first_row, length_corner_wedge); wrapped_data(new_row,:) = Xhi(row,admissible_cols) .* (cols > 0); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; slope_wedge_right = (floor(4*M_horiz)+1 - wedge_midpoints(1))/floor(4*M_vert); mid_line_right = wedge_midpoints(1) + slope_wedge_right*(wrapped_YY - 1); % not integers in general coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(2) - wedge_endpoints(1)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); C2 = 1/(1/(2*(floor(4*M_horiz))/(wedge_endpoints(1) - 1) - 1) + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = C2 / (2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) + 1; coord_corner = C1 + C2 * ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))) ./ ... (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))); wl_left = fdct_wrapping_window(coord_corner); [wl_right,wr_right] = fdct_wrapping_window(coord_right); wrapped_data = wrapped_data .* (wl_left .* wr_right); switch is_real case 0 wrapped_data = rot90(wrapped_data,-(quadrant-1)); C{j}{l} = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); case 1 wrapped_data = rot90(wrapped_data,-(quadrant-1)); x = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); C{j}{l} = sqrt(2)*real(x); C{j}{l+nbangles(j)/2} = sqrt(2)*imag(x); end; % Regular wedges length_wedge = floor(4*M_vert) - floor(M_vert); Y = 1:length_wedge; first_row = floor(4*M_vert)+2-ceil((length_wedge+1)/2)+... mod(length_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); for subl = 2:(nbangles_perquad-1); l = l+1; width_wedge = wedge_endpoints(subl+1) - wedge_endpoints(subl-1) + 1; slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(subl))/floor(4*M_vert); left_line = round(wedge_endpoints(subl-1) + slope_wedge*(Y - 1)); [wrapped_data, wrapped_XX, wrapped_YY] = deal(zeros(length_wedge,width_wedge)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_wedge); wrapped_data(new_row,:) = Xhi(row,cols); wrapped_XX(new_row,:) = XX(row,cols); wrapped_YY(new_row,:) = YY(row,cols); end; slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(subl-1))/floor(4*M_vert); mid_line_left = wedge_midpoints(subl-1) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl) - wedge_endpoints(subl-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert)+1 - wrapped_YY); slope_wedge_right = ((floor(4*M_horiz)+1) - wedge_midpoints(subl))/floor(4*M_vert); mid_line_right = wedge_midpoints(subl) + slope_wedge_right*(wrapped_YY - 1); coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl+1) - wedge_endpoints(subl)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_right); wrapped_data = wrapped_data .* (wl_left .* wr_right); switch is_real case 0 wrapped_data = rot90(wrapped_data,-(quadrant-1)); C{j}{l} = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); case 1 wrapped_data = rot90(wrapped_data,-(quadrant-1)); x = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); C{j}{l} = sqrt(2)*real(x); C{j}{l+nbangles(j)/2} = sqrt(2)*imag(x); end; end; % Right corner wedge l = l+1; width_wedge = 4*floor(4*M_horiz) + 3 - wedge_endpoints(end) - wedge_endpoints(end-1); slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(end))/floor(4*M_vert); left_line = round(wedge_endpoints(end-1) + slope_wedge*(Y_corner - 1)); [wrapped_data, wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+2*floor(4*M_horiz)+1-abs(cols-(2*floor(4*M_horiz)+1)))); new_row = 1 + mod(row - first_row, length_corner_wedge); wrapped_data(new_row,:) = Xhi(row,admissible_cols) .* (cols <= (2*floor(4*M_horiz)+1)); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(end))/floor(4*M_vert); mid_line_left = wedge_midpoints(end) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(end) - wedge_endpoints(end-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert) + 1 - wrapped_YY); C2 = -1/(2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1 + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = -C2 * (2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY - 1)/floor(4*M_vert)) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY - 1)/floor(4*M_vert)) - 1; coord_corner = C1 + C2 * (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))) ./ ... ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_corner); wrapped_data = wrapped_data .* (wl_left .* wr_right); switch is_real case 0 wrapped_data = rot90(wrapped_data,-(quadrant-1)); C{j}{l} = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); case 1 wrapped_data = rot90(wrapped_data,-(quadrant-1)); x = fftshift(ifft2(ifftshift(wrapped_data)))*sqrt(prod(size(wrapped_data))); C{j}{l} = sqrt(2)*real(x); C{j}{l+nbangles(j)/2} = sqrt(2)*imag(x); end; if quadrant < nbquadrants, Xhi = rot90(Xhi); end; end; end; % Coarsest wavelet level C{1}{1} = fftshift(ifft2(ifftshift(Xlow)))*sqrt(prod(size(Xlow))); if is_real == 1, C{1}{1} = real(C{1}{1}); end; function x = ifdct_wrapping(C, is_real, M, N) % ifdct_wrapping.m - Inverse Fast Discrete Curvelet Transform via wedge wrapping - Version 1.0 % This is in fact the adjoint, also the pseudo-inverse % % Inputs % C Cell array containing curvelet coefficients (see % description in fdct_wrapping.m) % is_real As used in fdct_wrapping.m % M, N Size of the image to be recovered (not necessary if finest % = 2) % % Outputs % x M-by-N matrix % % See also fdct_wrapping.m % % By Laurent Demanet, 2004 % Initialization nbscales = length(C); nbangles_coarse = length(C{2}); nbangles = [1, nbangles_coarse .* 2.^(ceil((nbscales-(nbscales:-1:2))/2))]; if length(C{end}) == 1, finest = 2; else finest = 1; end; if finest == 2, nbangles(nbscales) = 1; end; if nargin < 2, is_real = 0; end; if nargin < 4, if finest == 1, error('Syntax: IFCT_wrapping(C,M,N) where the matrix to be recovered is M-by-N'); end; [N1,N2] = size(C{end}{1}); else N1 = M; N2 = N; end; M1 = N1/3; M2 = N2/3; if finest == 1; bigN1 = 2*floor(2*M1)+1; bigN2 = 2*floor(2*M2)+1; X = zeros(bigN1,bigN2); % Initialization: preparing the lowpass filter at finest scale window_length_1 = floor(2*M1) - floor(M1) - 1 - (mod(N1,3)==0); window_length_2 = floor(2*M2) - floor(M2) - 1 - (mod(N2,3)==0); coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; if mod(N1,3)==0, lowpass_1 = [0, lowpass_1, 0]; end; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; if mod(N2,3)==0, lowpass_2 = [0, lowpass_2, 0]; end; lowpass = lowpass_1'*lowpass_2; scales = nbscales:-1:2; else M1 = M1/2; M2 = M2/2; bigN1 = 2*floor(2*M1)+1; bigN2 = 2*floor(2*M2)+1; X = zeros(bigN1,bigN2); window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass = lowpass_1'*lowpass_2; hipass_finest = sqrt(1 - lowpass.^2); scales = (nbscales-1):-1:2; end; % Loop: pyramidal reconstruction Xj_topleft_1 = 1; Xj_topleft_2 = 1; for j = scales, M1 = M1/2; M2 = M2/2; window_length_1 = floor(2*M1) - floor(M1) - 1; window_length_2 = floor(2*M2) - floor(M2) - 1; coord_1 = 0:(1/window_length_1):1; coord_2 = 0:(1/window_length_2):1; [wl_1,wr_1] = fdct_wrapping_window(coord_1); [wl_2,wr_2] = fdct_wrapping_window(coord_2); lowpass_1 = [wl_1, ones(1,2*floor(M1)+1), wr_1]; lowpass_2 = [wl_2, ones(1,2*floor(M2)+1), wr_2]; lowpass_next = lowpass_1'*lowpass_2; hipass = sqrt(1 - lowpass_next.^2); Xj = zeros(2*floor(4*M1)+1,2*floor(4*M2)+1); % Loop: angles l = 0; nbquadrants = 2 + 2*(~is_real); nbangles_perquad = nbangles(j)/4; for quadrant = 1:nbquadrants M_horiz = M2 * (mod(quadrant,2)==1) + M1 * (mod(quadrant,2)==0); M_vert = M1 * (mod(quadrant,2)==1) + M2 * (mod(quadrant,2)==0); if mod(nbangles_perquad,2), wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right(end:-1:1)]; else wedge_ticks_left = round((0:(1/(2*nbangles_perquad)):.5)*2*floor(4*M_horiz) + 1); wedge_ticks_right = 2*floor(4*M_horiz) + 2 - wedge_ticks_left; wedge_ticks = [wedge_ticks_left, wedge_ticks_right((end-1):-1:1)]; end; wedge_endpoints = wedge_ticks(2:2:(end-1)); % integers wedge_midpoints = (wedge_endpoints(1:(end-1)) + wedge_endpoints(2:end))/2; % Left corner wedge l = l+1; first_wedge_endpoint_vert = round(2*floor(4*M_vert)/(2*nbangles_perquad) + 1); length_corner_wedge = floor(4*M_vert) - floor(M_vert) + ceil(first_wedge_endpoint_vert/4); Y_corner = 1:length_corner_wedge; [XX,YY] = meshgrid(1:(2*floor(4*M_horiz)+1),Y_corner); width_wedge = wedge_endpoints(2) + wedge_endpoints(1) - 1; slope_wedge = (floor(4*M_horiz) + 1 - wedge_endpoints(1))/floor(4*M_vert); left_line = round(2 - wedge_endpoints(1) + slope_wedge*(Y_corner - 1)); [wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_corner_wedge); admissible_cols = round(1/2*(cols+1+abs(cols-1))); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; slope_wedge_right = (floor(4*M_horiz)+1 - wedge_midpoints(1))/floor(4*M_vert); mid_line_right = wedge_midpoints(1) + slope_wedge_right*(wrapped_YY - 1); % not integers % in general coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(2) - wedge_endpoints(1)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); C2 = 1/(1/(2*(floor(4*M_horiz))/(wedge_endpoints(1) - 1) - 1) + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = C2 / (2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) + (wrapped_YY-1)/floor(4*M_vert) == 2) + 1; coord_corner = C1 + C2 * ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))) ./ ... (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))); wl_left = fdct_wrapping_window(coord_corner); [wl_right,wr_right] = fdct_wrapping_window(coord_right); switch is_real case 0 wrapped_data = fftshift(fft2(ifftshift(C{j}{l})))/sqrt(prod(size(C{j}{l}))); wrapped_data = rot90(wrapped_data,(quadrant-1)); case 1 x = C{j}{l} + sqrt(-1)*C{j}{l+nbangles(j)/2}; wrapped_data = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x)))/sqrt(2); wrapped_data = rot90(wrapped_data,(quadrant-1)); end; wrapped_data = wrapped_data .* (wl_left .* wr_right); % Unwrapping data for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+1+abs(cols-1))); new_row = 1 + mod(row - first_row, length_corner_wedge); Xj(row,admissible_cols) = Xj(row,admissible_cols) + wrapped_data(new_row,:); % We use the following property: in an assignment % A(B) = C where B and C are vectors, if % some value x repeats in B, then the % last occurrence of x is the one % corresponding to the eventual assignment. end; % Regular wedges length_wedge = floor(4*M_vert) - floor(M_vert); Y = 1:length_wedge; first_row = floor(4*M_vert)+2-ceil((length_wedge+1)/2)+... mod(length_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); for subl = 2:(nbangles_perquad-1); l = l+1; width_wedge = wedge_endpoints(subl+1) - wedge_endpoints(subl-1) + 1; slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(subl))/floor(4*M_vert); left_line = round(wedge_endpoints(subl-1) + slope_wedge*(Y - 1)); [wrapped_XX, wrapped_YY] = deal(zeros(length_wedge,width_wedge)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_wedge); wrapped_XX(new_row,:) = XX(row,cols); wrapped_YY(new_row,:) = YY(row,cols); end; slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(subl-1))/floor(4*M_vert); mid_line_left = wedge_midpoints(subl-1) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl) - wedge_endpoints(subl-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert)+1 - wrapped_YY); slope_wedge_right = ((floor(4*M_horiz)+1) - wedge_midpoints(subl))/floor(4*M_vert); mid_line_right = wedge_midpoints(subl) + slope_wedge_right*(wrapped_YY - 1); coord_right = 1/2 + floor(4*M_vert)/(wedge_endpoints(subl+1) - wedge_endpoints(subl)) * ... (wrapped_XX - mid_line_right)./(floor(4*M_vert)+1 - wrapped_YY); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_right); switch is_real case 0 wrapped_data = fftshift(fft2(ifftshift(C{j}{l})))/sqrt(prod(size(C{j}{l}))); wrapped_data = rot90(wrapped_data,(quadrant-1)); case 1 x = C{j}{l} + sqrt(-1)*C{j}{l+nbangles(j)/2}; wrapped_data = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x)))/sqrt(2); wrapped_data = rot90(wrapped_data,(quadrant-1)); end; wrapped_data = wrapped_data .* (wl_left .* wr_right); % Unwrapping data for row = Y cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); new_row = 1 + mod(row - first_row, length_wedge); Xj(row,cols) = Xj(row,cols) + wrapped_data(new_row,:); end; end; % for subl % Right corner wedge l = l+1; width_wedge = 4*floor(4*M_horiz) + 3 - wedge_endpoints(end) - wedge_endpoints(end-1); slope_wedge = ((floor(4*M_horiz)+1) - wedge_endpoints(end))/floor(4*M_vert); left_line = round(wedge_endpoints(end-1) + slope_wedge*(Y_corner - 1)); [wrapped_XX, wrapped_YY] = deal(zeros(length_corner_wedge,width_wedge)); first_row = floor(4*M_vert)+2-ceil((length_corner_wedge+1)/2)+... mod(length_corner_wedge+1,2)*(quadrant-2 == mod(quadrant-2,2)); first_col = floor(4*M_horiz)+2-ceil((width_wedge+1)/2)+... mod(width_wedge+1,2)*(quadrant-3 == mod(quadrant-3,2)); for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+2*floor(4*M_horiz)+1-abs(cols-(2*floor(4*M_horiz)+1)))); new_row = 1 + mod(row - first_row, length_corner_wedge); wrapped_XX(new_row,:) = XX(row,admissible_cols); wrapped_YY(new_row,:) = YY(row,admissible_cols); end; YY = Y_corner'*ones(1,width_wedge); slope_wedge_left = ((floor(4*M_horiz)+1) - wedge_midpoints(end))/floor(4*M_vert); mid_line_left = wedge_midpoints(end) + slope_wedge_left*(wrapped_YY - 1); coord_left = 1/2 + floor(4*M_vert)/(wedge_endpoints(end) - wedge_endpoints(end-1)) * ... (wrapped_XX - mid_line_left)./(floor(4*M_vert)+1 - wrapped_YY); C2 = -1/(2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1 + 1/(2*(floor(4*M_vert))/(first_wedge_endpoint_vert - 1) - 1)); C1 = -C2 * (2*(floor(4*M_horiz))/(wedge_endpoints(end) - 1) - 1); wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY-1)/floor(4*M_vert)) = ... wrapped_XX((wrapped_XX - 1)/floor(4*M_horiz) == (wrapped_YY-1)/floor(4*M_vert)) - 1; coord_corner = C1 + C2 * (2-((wrapped_XX - 1)/(floor(4*M_horiz)) + (wrapped_YY - 1)/(floor(4*M_vert)))) ./ ... ((wrapped_XX - 1)/(floor(4*M_horiz)) - (wrapped_YY - 1)/(floor(4*M_vert))); wl_left = fdct_wrapping_window(coord_left); [wl_right,wr_right] = fdct_wrapping_window(coord_corner); switch is_real case 0 wrapped_data = fftshift(fft2(ifftshift(C{j}{l})))/sqrt(prod(size(C{j}{l}))); wrapped_data = rot90(wrapped_data,(quadrant-1)); case 1 x = C{j}{l} + sqrt(-1)*C{j}{l+nbangles(j)/2}; wrapped_data = fftshift(fft2(ifftshift(x)))/sqrt(prod(size(x)))/sqrt(2); wrapped_data = rot90(wrapped_data,(quadrant-1)); end; wrapped_data = wrapped_data .* (wl_left .* wr_right); % Unwrapping data for row = Y_corner cols = left_line(row) + mod((0:(width_wedge-1))-(left_line(row)-first_col),width_wedge); admissible_cols = round(1/2*(cols+2*floor(4*M_horiz)+1-abs(cols-(2*floor(4*M_horiz)+1)))); new_row = 1 + mod(row - first_row, length_corner_wedge); Xj(row,fliplr(admissible_cols)) = Xj(row,fliplr(admissible_cols)) + wrapped_data(new_row,end:-1:1); % We use the following property: in an assignment % A(B) = C where B and C are vectors, if % some value x repeats in B, then the % last occurrence of x is the one % corresponding to the eventual assignment. end; Xj = rot90(Xj); end; % for quadrant Xj = Xj .* lowpass; Xj_index1 = ((-floor(2*M1)):floor(2*M1)) + floor(4*M1) + 1; Xj_index2 = ((-floor(2*M2)):floor(2*M2)) + floor(4*M2) + 1; Xj(Xj_index1, Xj_index2) = Xj(Xj_index1, Xj_index2) .* hipass; loc_1 = Xj_topleft_1 + (0:(2*floor(4*M1))); loc_2 = Xj_topleft_2 + (0:(2*floor(4*M2))); X(loc_1,loc_2) = X(loc_1,loc_2) + Xj; % Preparing for loop reentry or exit Xj_topleft_1 = Xj_topleft_1 + floor(4*M1) - floor(2*M1); Xj_topleft_2 = Xj_topleft_2 + floor(4*M2) - floor(2*M2); lowpass = lowpass_next; end; % for j if is_real Y = X; X = rot90(X,2); X = X + conj(Y); end % Coarsest wavelet level M1 = M1/2; M2 = M2/2; Xj = fftshift(fft2(ifftshift(C{1}{1})))/sqrt(prod(size(C{1}{1}))); loc_1 = Xj_topleft_1 + (0:(2*floor(4*M1))); loc_2 = Xj_topleft_2 + (0:(2*floor(4*M2))); X(loc_1,loc_2) = X(loc_1,loc_2) + Xj .* lowpass; % Finest level M1 = N1/3; M2 = N2/3; if finest == 1, % Folding back onto N1-by-N2 matrix shift_1 = floor(2*M1)-floor(N1/2); shift_2 = floor(2*M2)-floor(N2/2); Y = X(:,(1:N2)+shift_2); Y(:,N2-shift_2+(1:shift_2)) = Y(:,N2-shift_2+(1:shift_2)) + X(:,1:shift_2); Y(:,1:shift_2) = Y(:,1:shift_2) + X(:,N2+shift_2+(1:shift_2)); X = Y((1:N1)+shift_1,:); X(N1-shift_1+(1:shift_1),:) = X(N1-shift_1+(1:shift_1),:) + Y(1:shift_1,:); X(1:shift_1,:) = X(1:shift_1,:) + Y(N1+shift_1+(1:shift_1),:); else % Extension to a N1-by-N2 matrix Y = fftshift(fft2(ifftshift(C{nbscales}{1})))/sqrt(prod(size(C{nbscales}{1}))); X_topleft_1 = ceil((N1+1)/2) - floor(M1); X_topleft_2 = ceil((N2+1)/2) - floor(M2); loc_1 = X_topleft_1 + (0:(2*floor(M1))); loc_2 = X_topleft_2 + (0:(2*floor(M2))); Y(loc_1,loc_2) = Y(loc_1,loc_2) .* hipass_finest + X; X = Y; end; x = fftshift(ifft2(ifftshift(X)))*sqrt(prod(size(X))); if is_real, x = real(x); end; function [wl,wr] = fdct_wrapping_window(x) % fdct_wrapping_window.m - Creates the two halves of a C^inf compactly supported window % % Inputs % x vector or matrix of abscissae, the relevant ones from 0 to 1 % % Outputs % wl,wr vector or matrix containing samples of the left, resp. right % half of the window % % Used at least in fdct_wrapping.m and ifdct_wrapping.m % % By Laurent Demanet, 2004 wr = zeros(size(x)); wl = zeros(size(x)); x(abs(x) < 2^-52) = 0; wr((x > 0) & (x < 1)) = exp(1-1./(1-exp(1-1./x((x > 0) & (x < 1))))); wr(x <= 0) = 1; wl((x > 0) & (x < 1)) = exp(1-1./(1-exp(1-1./(1-x((x > 0) & (x < 1)))))); wl(x >= 1) = 1; normalization = sqrt(wl.^2 + wr.^2); wr = wr ./ normalization; wl = wl ./ normalization;
github
alex-delalande/numerical-tours-master
perform_wavelet_transf.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_wavelet_transf.m
6,359
utf_8
e186b6bffa94179c6c7e4497ba32e904
function x = perform_wavelet_transf(x, Jmin, dir, options) % perform_wavelet_transf - peform fast lifting transform % % y = perform_wavelet_transf(x, Jmin, dir, options); % % Implement 1D and 2D symmetric wavelets with symmetric boundary treatements, using % a lifting implementation. % % h = options.filter gives the coefficients of the lifting filter. % You can use h='linear' or h='7-9' to select automatically biorthogonal % transform with 2 and 4 vanishing moments. % % You can set options.ti=1 to compute a translation invariant wavelet % transform. % % You can set options.separable=1 to compute a separable 2D wavelet % transform. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; h = getoptions(options, 'filter', '9-7'); separable = getoptions(options, 'separable', 0); % detect dimensionality % d = getoptions(options,'ndims',-1); d = -1; if isfield(options, 'ndims') d = options.ndims; end if d<0 if size(x,1)==1 || size(x,2)==1 d = 1; else d = 2; end end if isstr(h) % P/U/P/U/etc the last coefficient is scaling switch lower(h) case 'haar' if d==1 || separable==0 x = perform_haar_transf(x, Jmin, dir, options); return; end case {'linear' '5-3'} h = [1/2 1/4 sqrt(2)]; case {'9-7' '7-9'} h = [1.586134342 -.05298011854 -.8829110762 .4435068522 1.149604398]; otherwise error('Unknown filter'); end end if d==1 && size(x,1)==1 warning('For 1D transform, the vector should be a column vector.'); x = x(:); end ti = getoptions(options, 'ti', 0); if d==2 && separable==1 options.ti = 0; if ti==1 warning('Separable does not works for translation invariant transform'); end % perform a separable wavelet transform n = size(x,1); if dir==1 for i=1:n x(:,i) = perform_wavelet_transf(x(:,i),Jmin,dir,options); end for i=1:n x(i,:) = perform_wavelet_transf(x(i,:)',Jmin,dir,options)'; end else for i=1:n x(i,:) = perform_wavelet_transf(x(i,:)',Jmin,dir,options)'; end for i=1:n x(:,i) = perform_wavelet_transf(x(:,i),Jmin,dir,options); end end return; end % number of lifting steps n = size(x,1); m = (length(h)-1)/2; Jmax = log2(n)-1; jlist = Jmax:-1:Jmin; if dir==-1 jlist = jlist(end:-1:1); end if ti==0 % subsampled for j=jlist if d==1 x(1:2^(j+1),:) = lifting_step( x(1:2^(j+1),:), h, dir); else x(1:2^(j+1),1:2^(j+1)) = lifting_step( x(1:2^(j+1),1:2^(j+1)), h, dir); x(1:2^(j+1),1:2^(j+1)) = lifting_step( x(1:2^(j+1),1:2^(j+1))', h, dir)'; end end else % TI nJ = Jmax-Jmin+1; if dir==1 && d==1 x = repmat(x,[1 1 nJ+1]); elseif dir==1 && d==2 x = repmat(x,[1 1 3*nJ+1]); end for j=jlist dist = 2^(Jmax-j); if d==1 if dir==1 x(:,:,[1 j-Jmin+2]) = lifting_step_ti( x(:,:,1), h, dir, dist); else x(:,:,1) = lifting_step_ti( x(:,:,[1 j-Jmin+2]), h, dir, dist); end else dj = 3*(j-Jmin); if dir==1 x(:,:,[1 dj+2]) = lifting_step_ti( x(:,:,1), h, dir, dist); x(:,:,[1 dj+3]) = lifting_step_ti( x(:,:,1)', h, dir, dist); x(:,:,1) = x(:,:,1)'; x(:,:,dj+3) = x(:,:,dj+3)'; x(:,:,[dj+[2 4]]) = lifting_step_ti( x(:,:,dj+2)', h, dir, dist); x(:,:,dj+2) = x(:,:,dj+2)'; x(:,:,dj+4) = x(:,:,dj+4)'; else x(:,:,dj+2) = x(:,:,dj+2)'; x(:,:,dj+4) = x(:,:,dj+4)'; x(:,:,dj+2) = lifting_step_ti( x(:,:,[dj+[2 4]]), h, dir, dist)'; x(:,:,1) = x(:,:,1)'; x(:,:,dj+3) = x(:,:,dj+3)'; x(:,:,1) = lifting_step_ti( x(:,:,[1 dj+3]), h, dir, dist)'; x(:,:,1) = lifting_step_ti( x(:,:,[1 dj+2]), h, dir, dist); end end end if dir==-1 x = x(:,:,1); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = lifting_step(x, h, dir) % number of lifting steps m = (length(h)-1)/2; if dir==1 % split d = x(2:2:end,:); x = x(1:2:end,:); for i=1:m d = d - h(2*i-1) * ( x + x([2:end end],:) ); x = x + h(2*i ) * ( d + d([1 1:end-1],:) ); end x = [x*h(end);d/h(end)]; else % retrieve detail coefs d = x(end/2+1:end,:)*h(end); x = x(1:end/2,:)/h(end); for i=m:-1:1 x = x - h(2*i ) * ( d + d([1 1:end-1],:) ); d = d + h(2*i-1) * ( x + x([2:end end],:) ); end % merge x1 = zeros(size(x,1)*2,size(x,2)); x1(1:2:end,:) = x; x1(2:2:end,:) = d; x = x1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function x = lifting_step_ti(x, h, dir, dist) % number of lifting steps m = (length(h)-1)/2; n = size(x,1); s1 = (1:n)+dist; s2 = (1:n)-dist; % boundary conditions s1(s1>n) = 2*n-s1(s1>n); s1(s1<1) = 2-s1(s1<1); s2(s2>n) = 2*n-s2(s2>n); s2(s2<1) = 2-s2(s2<1); % s1 = [2 1:n-1]; s2 = [2:n n-1]; if dir==1 % split d = x; for i=1:m d = d - h(2*i-1) * ( x(s1,:) + x(s2,:) ); x = x + h(2*i ) * ( d(s1,:) + d(s2,:) ); end x = cat(3,x*h(end),d/h(end)); else % retrieve detail coefs d = x(:,:,2)*h(end); x = x(:,:,1)/h(end); for i=m:-1:1 x = x - h(2*i ) * ( d(s1,:) + d(s2,:) ); d = d + h(2*i-1) * ( x(s1,:) + x(s2,:) ); end % merge x = (x+d)/2; end
github
alex-delalande/numerical-tours-master
perform_thresholding.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_thresholding.m
6,251
utf_8
47aba185bb0bd0505c7e8aa326bc40c1
function y = perform_thresholding(x, t, type, options) % perform_thresholding - perform hard or soft thresholding % % y = perform_thresholding(x, t, type, options); % % t is the threshold % type is either 'hard' or 'soft' or 'semisoft' or 'strict' or 'block'. % % works also for complex data, and for cell arrays. % % if type is 'strict' then it keeps the t largest entry in each % column of x. % % for block thresholding, you can set options.block_size to determing the % block size. % % Copyright (c) 2006 Gabriel Peyre options.null = 0; if nargin==3 && isstruct(type) options = type; type = getoptions(options, 'type', 'hard'); end if nargin<3 type = 'hard'; end if iscell(x) && not(strcmp(type, 'freeze')) % for cell arrays for i=1:size(x,1) for j=1:size(x,2) y{i,j} = perform_thresholding(x{i,j},t, type); end end return; end switch lower(type) case {'hard', ''} y = perform_hard_thresholding(x,t); case 'soft' y = perform_soft_thresholding(x,t); case 'semisoft' y = perform_semisoft_thresholding(x,t); case 'strict' y = perform_strict_thresholding(x,t); case 'largest' y = perform_largest_thresh(x,t); case {'block' 'block-hard' 'block-soft'} if strcmp(type, 'block') type = 'block-soft'; end bs = getoptions(options, 'block_size', 4); y = perform_block_thresholding(x,t,bs, type); case 'quantize' y = perform_quant_thresholding(x,t); case 'freeze' y = perform_freeze_thresholding(x,t); case 'soft-multichannel' y = perform_softm_thresholding(x,t); case {'stein' 'soft-quad'} y = perform_stein_thresh(x,t); otherwise error('Unkwnown thresholding type.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function X = perform_strict_thresholding(X,s) %% keep only the s largest coefficients in each column of X v = sort(abs(X)); v = v(end:-1:1,:); v = v(round(s),:); v = repmat(v, [size(X,1) 1]); X = X .* (abs(X)>=v); function X = perform_largest_thresh(X,s) v = sort(abs(X(:))); v = v(end:-1:1,:); v = v(round(s)); X = X .* (abs(X)>=v); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_hard_thresholding(x,t) t = t(1); y = x .* (abs(x) > t); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_quant_thresholding(x,t) t = t(1); y = floor(abs(x/t)).*sign(x); y = sign(y) .* (abs(y)+.5) * t; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_stein_thresh(x,t) t = t(1); y = x .* max( 1-t^2 ./ abs(x).^2, 0 ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_softm_thresholding(x,t) % dimension of thresholding dm = nb_dims(x); % soft multichannel d = sqrt( sum( abs(x).^2, dm) ); d = repmat(d, [ones(dm-1,1); size(x,dm)]); y = max( 1-t./d, 0 ) .* x; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_soft_thresholding(x,t) if not(isreal(x)) % complex threshold d = abs(x); d(d<eps) = 1; y = x./d .* perform_soft_thresholding(d,t); return; end %if nb_dims(x)==nb_dims(t) && size(t)~=size(x) t = t(1); %end s = abs(x) - t; s = (s + abs(s))/2; y = sign(x).*s; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_freeze_thresholding(x,t) if iscell(x) if length(x)~=length(t) error('Vector should have same length'); end for i=1:length(x) y{i} = perform_freeze_thresholding(x{i},t{i}); end return; end y = x; y(t==0) = 0; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_semisoft_thresholding(x,t) if length(t)==1 t = [t 2*t]; end t = sort(t); y = x; y(abs(x)<t(1)) = 0; I = find(abs(x)>=t(1) & abs(x)<t(2)); y( I ) = sign(x(I)) .* t(2)/(t(2)-t(1)) .* (abs(x(I))-t(1)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = perform_block_thresholding(x,t,bs, type) n = size(x,1); if nb_dims(x)==2 p = size(x,2); if length(bs)==1 bs = [bs bs]; end % compute indexing [dX,dY,X,Y] = ndgrid(0:bs(1)-1,0:bs(2)-1,1:bs(1):n-bs(1)+1,1:bs(2):p-bs(2)+1); I = X+dX + (Y+dY-1)*n; % reshape as block H = x(I); % threshold v = mean(mean(abs(H).^2,1),2); v = max(v,1e-15); if strcmp(type, 'block-soft') H = repmat(max(1-t^2./v,0),[bs(1) bs(2) 1 1]) .* H; else H = repmat(v>t^2,[bs bs 1 1]) .* H; end elseif nb_dims(x)==1 %% 1D %% [dX,X] = meshgrid(0:bs-1,1:bs:n-bs+1); I = X+dX; % reshape as block H = x(I); % threshold v = mean(H.^2); v = max(v,1e-15); if strcmp(type, 'block-soft') H = repmat(max(1-t^2./v,0),[bs 1]) .* H; else H = double( repmat(v>t^2,[bs 1]) ) .* H; end elseif nb_dims(x)==3 for i=1:size(x,3) y(:,:,i) = perform_block_thresholding(x(:,:,i),t,bs, type); end return; else error('Wrong size'); end % reconstruct y = x; y(I) = H;
github
alex-delalande/numerical-tours-master
perform_stft.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_stft.m
5,289
utf_8
b4057f12e297c275b4333d8483ce92dd
function y = perform_stft(x, w,q, options) % perform_stft - compute a local Fourier transform % % Forward transform: % MF = perform_stft(M,w,q, options); % Backward transform: % M = perform_stft(MF,w,q, options); % % w is the width of the window used to perform local computation. % q is the spacing betwen each window. % % MF(:,i) contains the spectrum around point (i-1)*q % % A typical use, for an redundancy of 2 could be w=2*q+1 % % options.bound can be either 'per' or 'sym' % % options.normalization can be set to % 'tightframe': tight frame transform, with energy conservation. % 'unit': unit norm basis vectors, usefull to do thresholding % % If w and q are vectors, then it computes a multi-window (Gabor) STFT, % and the output of the forward transform is a cell array. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; if length(w)>1 % Gabor STFT if length(w)~=length(w) error('w and q must have the same length'); end % mult-window STFT if ~iscell(x) % direct transform for i=1:length(w) y{i} = perform_stft(x, w(i), q(i), options); end else n = getoptions(options, 'n', 1, 1); y = zeros(n,size(x{1}, 3)); % backward transform for i=1:length(w) y = y + perform_stft(x{i}, w(i), q(i), options); end y = y/length(w); end return; end multichannel = getoptions(options, 'multichannel', 0); if multichannel options.multichannel = 0; % multichannel transform if nb_dims(x)==3 % backward transform for i=1:size(x,3) y(:,i) = perform_stft(x(:,:,i), w,q, options); end else for i=1:size(x,2) y(:,:,i) = perform_stft(x(:,i), w,q, options); end end return; end if size(x,1)==1 || size(x,2)==1 x = x(:); dir = 1; n = length(x); else dir = -1; n = getoptions(options, 'n', 1, 1); end bound = getoptions(options, 'bound', 'per'); transform_type = getoptions(options, 'transform_type', 'fourier'); normalization = getoptions(options, 'normalization', 'tightframe'); window_type = getoptions(options, 'window_type', 'sin'); eta = getoptions(options, 'eta', 1); % perform sampling X = 1:q:n+1; p = length(X); if mod(w,2)==1 % w = ceil((w-1)/2)*2+1; w1 = (w-1)/2; dX = (-w1:w1)'; else dX = (-w/2+1:w/2)'; end X1 = repmat(X, [w 1]) + repmat(dX, [1 p]); switch lower(bound) case 'sym' X1(X1<1) = 1-X1(X1<1); X1(X1>n) = 2*n+1-X1(X1>n); case 'per' X1 = mod(X1-1,n)+1; end I = X1; % build a weight function switch lower(window_type) case {'sin' 'hanning'} % t = linspace(-pi,pi,w); % W = cos(t(:))+1; W = .5 *(1 - cos( 2*pi*(0:w-1)'/(w-1) )); case 'constant' W = ones(w,1); otherwise error('Unkwnown winow.'); end %% renormalize the windows weight = zeros(n,1); for i=1:p weight(I(:,i)) = weight(I(:,i)) + W.^2; end weight = sqrt(weight); Weight = repmat(W, [1 p]); for i=1:p Weight(:,i) = Weight(:,i) ./ weight(I(:,i)); end if strcmp(normalization, 'unit') if strcmp(transform_type, 'fourier') % for Fourier it is easy Renorm = sqrt( sum( Weight.^2, 1 ) )/w; else error('Not yet implemented'); % for DCT it is less easy ... % take a typical window in the middle of the image weight = Weight(:,:,round(end/2),round(end/2)); % compute diracs [X,Y,fX,fY] = ndgrid(0:w-1,0:w-1,0:w-1,0:w-1); A = 2 * cos( pi/w * ( X+1/2 ).*fX ) .* cos( pi/w * ( Y+1/2 ).*fY ) / w; A(:,:,1,:) = A(:,:,1,:) / sqrt(2); % scale zero frequency A(:,:,:,1) = A(:,:,:,1) / sqrt(2); A = A .* repmat( weight, [1 1 w w] ); Renorm = sqrt( sum( sum( abs(A).^2, 1 ),2 ) ); end end %% compute the transform if dir==1 y = zeros(eta*w,p); if mod(w,2)==1 m = (eta*w+1)/2; w1 = (w-1)/2; sel = m-w1:m+w1; else m = (eta*w)/2+1; w1 = w/2; sel = m-w1:m+w1-1; end y(sel,:) = x(I) .* Weight; % perform the transform y = my_transform( y, +1, transform_type ); % renormalize if necessary if strcmp(normalization, 'unit') y = y ./ repmat( Renorm, [1 p] ); end else if strcmp(normalization, 'unit') x = x .* repmat( Renorm, [1 p] ); end x = my_transform( x, -1, transform_type ); x = real( x.*Weight ); y = zeros(n,1); for i=1:p y(I(:,i)) = y(I(:,i)) + x(:,i); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = my_transform(x,dir,transform_type) % my_transform - perform either FFT or DCT with energy conservation. % Works on array of size (w,w,a,b) on the 2 first dimensions. w = size(x,1); if strcmp(transform_type, 'fourier') % normalize for energy conservation if dir==1 y = fft(x) / sqrt(w); else y = ifft( x*sqrt(w) ); end elseif strcmp(transform_type, 'dct') for i=1:size(x,2) y(:,i) = perform_dct_transform(x(:,i),dir); end else error('Unknown transform'); end
github
alex-delalande/numerical-tours-master
perform_solve_bp.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_solve_bp.m
72,049
utf_8
527f7660ac12d11f05dda0f0f346b726
function sol = p(A, y, N, maxIters, lambda, OptTol) % SolveBP: Solves a Basis Pursuit problem % Usage % sol = SolveBP(A, y, N, maxIters, lambda, OptTol) % Input % A Either an explicit nxN matrix, with rank(A) = min(N,n) % by assumption, or a string containing the name of a % function implementing an implicit matrix (see below for % details on the format of the function). % y vector of length n. % N length of solution vector. % maxIters maximum number of PDCO iterations to perform, default 20. % lambda If 0 or omitted, Basis Pursuit is applied to the data, % otherwise, Basis Pursuit Denoising is applied with % parameter lambda (default 0). % OptTol Error tolerance, default 1e-3 % Outputs % sol solution of BP % Description % SolveBP solves the basis pursuit problem % min ||x||_1 s.t. A*x = y % by reducing it to a linear program, and calling PDCO, a primal-dual % log-barrier algorithm. Alternatively, if lambda ~= 0, it solves the % Basis Pursuit Denoising (BPDN) problem % min lambda*||x||_1 + 1/2||y - A*x||_2^2 % by transforming it to an SOCP, and calling PDCO. % The matrix A can be either an explicit matrix, or an implicit operator % implemented as a function. If using the implicit form, the user should % provide the name of a function of the following format: % y = OperatorName(mode, m, n, x, I, dim) % This function gets as input a vector x and an index set I, and returns % y = A(:,I)*x if mode = 1, or y = A(:,I)'*x if mode = 2. % A is the m by dim implicit matrix implemented by the function. I is a % subset of the columns of A, i.e. a subset of 1:dim of length n. x is a % vector of length n is mode = 1, or a vector of length m is mode = 2. % See Also % SolveLasso, SolveOMP, SolveITSP % if nargin < 6, OptTol = 1e-3; end if nargin < 5, lambda = 0; end if nargin < 4, maxIters = 20; end n = length(y); n_pdco = 2*N; % Input size m_pdco = n; % Output size % upper and lower bounds bl = zeros(n_pdco,1); bu = Inf .* ones(n_pdco,1); % generate the vector c if (lambda ~= 0) c = lambda .* ones(n_pdco,1); else c = ones(n_pdco,1); end % Generate an initial guess x0 = ones(n_pdco,1)/n_pdco; % Initial x y0 = zeros(m_pdco,1); % Initial y z0 = ones(n_pdco,1)/n_pdco; % Initial z d1 = 1e-4; % Regularization parameters if (lambda ~= 0) % BPDN d2 = 1; else d2 = 1e-4; end xsize = 1; % Estimate of norm(x,inf) at solution zsize = 1; % Estimate of norm(z,inf) at solution options = pdcoSet; % Option set for the function pdco options = pdcoSet( options, ... 'MaxIter ', maxIters , ... 'FeaTol ', OptTol , ... 'OptTol ', OptTol , ... 'StepTol ', 0.99 , ... 'StepSame ', 0 , ... 'x0min ', 0.1 , ... 'z0min ', 1.0 , ... 'mu0 ', 0.01 , ... 'method ', 1 , ... 'LSQRMaxIter', 20 , ... 'LSQRatol1 ', 1e-3 , ... 'LSQRatol2 ', 1e-15 , ... 'wait ', 0 ); if (ischar(A) || isa(A, 'function_handle')) [xx,yy,zz,inform,PDitns,CGitns,time] = ... pdco(c, @pdcoMat, y, bl, bu, d1, d2, options, x0, y0, z0, xsize, zsize); else Phi = [A -A]; [xx,yy,zz,inform,PDitns,CGitns,time] = ... pdco(c, Phi, y, bl, bu, d1, d2, options, x0, y0, z0, xsize, zsize); end % Extract the solution from the output vector x sol = xx(1:N) - xx((N+1):(2*N)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = pdcoMat(mode,m,n,x) if (mode == 1) % Direct operator % Decompose input n2 = n/2; u = x(1:n2); v = x(n2+1:n); % Apply matrix A Au = feval(A,1,m,n2,u,1:n2,n2); Av = feval(A,1,m,n2,v,1:n2,n2); y = Au-Av; else % Adjoint operator n2 = n/2; Atx = feval(A,2,m,n2,x,1:n2,n2); y = [Atx; -Atx]; end % % Copyright (c) 2006. Yaakov Tsaig % % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function [x,y,z,inform,PDitns,CGitns,time] = ... pdco( Fname,Aname,b,bl,bu,d1,d2,options,x0,y0,z0,xsize,zsize ) %----------------------------------------------------------------------- % pdco.m: Primal-Dual Barrier Method for Convex Objectives (23 Sep 2003) %----------------------------------------------------------------------- % [x,y,z,inform,PDitns,CGitns,time] = ... % pdco(Fname,Aname,b,bl,bu,d1,d2,options,x0,y0,z0,xsize,zsize); % % solves optimization problems of the form % % minimize phi(x) + 1/2 norm(D1*x)^2 + 1/2 norm(r)^2 % x,r % subject to A*x + D2*r = b, bl <= x <= bu, r unconstrained, % % where % phi(x) is a smooth convex function defined by function Fname; % A is an m x n matrix defined by matrix or function Aname; % b is a given m-vector; % D1, D2 are positive-definite diagonal matrices defined from d1, d2. % In particular, d2 indicates the accuracy required for % satisfying each row of Ax = b. % % D1 and D2 (via d1 and d2) provide primal and dual regularization % respectively. They ensure that the primal and dual solutions % (x,r) and (y,z) are unique and bounded. % % A scalar d1 is equivalent to d1 = ones(n,1), D1 = diag(d1). % A scalar d2 is equivalent to d2 = ones(m,1), D2 = diag(d2). % Typically, d1 = d2 = 1e-4. % These values perturb phi(x) only slightly (by about 1e-8) and request % that A*x = b be satisfied quite accurately (to about 1e-8). % Set d1 = 1e-4, d2 = 1 for least-squares problems with bound constraints. % The problem is then equivalent to % % minimize phi(x) + 1/2 norm(d1*x)^2 + 1/2 norm(A*x - b)^2 % subject to bl <= x <= bu. % % More generally, d1 and d2 may be n and m vectors containing any positive % values (preferably not too small, and typically no larger than 1). % Bigger elements of d1 and d2 improve the stability of the solver. % % At an optimal solution, if x(j) is on its lower or upper bound, % the corresponding z(j) is positive or negative respectively. % If x(j) is between its bounds, z(j) = 0. % If bl(j) = bu(j), x(j) is fixed at that value and z(j) may have % either sign. % % Also, r and y satisfy r = D2 y, so that Ax + D2^2 y = b. % Thus if d2(i) = 1e-4, the i-th row of Ax = b will be satisfied to % approximately 1e-8. This determines how large d2(i) can safely be. % % % EXTERNAL FUNCTIONS: % options = pdcoSet; provided with pdco.m % [obj,grad,hess] = Fname( x ); provided by user % y = Aname( name,mode,m,n,x ); provided by user if pdMat % is a string, not a matrix % % INPUT ARGUMENTS: % Fname may be an explicit n x 1 column vector c, % or a string containing the name of a function Fname.m %%%!!! Revised 12/16/04 !!! % (Fname cannot be a function handle) % such that [obj,grad,hess] = Fname(x) defines % obj = phi(x) : a scalar, % grad = gradient of phi(x) : an n-vector, % hess = diag(Hessian of phi): an n-vector. % Examples: % If phi(x) is the linear function c'*x, Fname could be % be the vector c, or the name or handle of a function % that returns % [obj,grad,hess] = [c'*x, c, zeros(n,1)]. % If phi(x) is the entropy function E(x) = sum x(j) log x(j), % Fname should return % [obj,grad,hess] = [E(x), log(x)+1, 1./x]. % Aname may be an explicit m x n matrix A (preferably sparse!), % or a string containing the name of a function Aname.m %%%!!! Revised 12/16/04 !!! % (Aname cannot be a function handle) % such that y = aname( name,mode,m,n,x ) % returns y = A*x (mode=1) or y = A'*x (mode=2). % The input parameter "name" will be the string 'Aname' % or whatever the name of the actual function is. % b is an m-vector. % bl is an n-vector of lower bounds. Non-existent bounds % may be represented by bl(j) = -Inf or bl(j) <= -1e+20. % bu is an n-vector of upper bounds. Non-existent bounds % may be represented by bu(j) = Inf or bu(j) >= 1e+20. % d1, d2 may be positive scalars or positive vectors (see above). % options is a structure that may be set and altered by pdcoSet % (type help pdcoSet). % x0, y0, z0 provide an initial solution. % xsize, zsize are estimates of the biggest x and z at the solution. % They are used to scale (x,y,z). Good estimates % should improve the performance of the barrier method. % % % OUTPUT ARGUMENTS: % x is the primal solution. % y is the dual solution associated with Ax + D2 r = b. % z is the dual solution associated with bl <= x <= bu. % inform = 0 if a solution is found; % = 1 if too many iterations were required; % = 2 if the linesearch failed too often. % = 3 if the step lengths became too small. % PDitns is the number of Primal-Dual Barrier iterations required. % CGitns is the number of Conjugate-Gradient iterations required % if an iterative solver is used (LSQR). % time is the cpu time used. %---------------------------------------------------------------------- % PRIVATE FUNCTIONS: % pdxxxbounds % pdxxxdistrib % pdxxxlsqr % pdxxxlsqrmat % pdxxxmat % pdxxxmerit % pdxxxresid1 % pdxxxresid2 % pdxxxstep % % GLOBAL VARIABLES: % global pdDDD1 pdDDD2 pdDDD3 % % % NOTES: % The matrix A should be reasonably well scaled: norm(A,inf) =~ 1. % The vector b and objective phi(x) may be of any size, but ensure that % xsize and zsize are reasonably close to norm(x,inf) and norm(z,inf) % at the solution. % % The files defining Fname and Aname % must not be called Fname.m or Aname.m!! % % % AUTHOR: % Michael Saunders, Systems Optimization Laboratory (SOL), % Stanford University, Stanford, California, USA. % [email protected] % % CONTRIBUTORS: % Byunggyoo Kim, Samsung, Seoul, Korea. % [email protected] % % DEVELOPMENT: % 20 Jun 1997: Original version of pdsco.m derived from pdlp0.m. % 29 Sep 2002: Original version of pdco.m derived from pdsco.m. % Introduced D1, D2 in place of gamma*I, delta*I % and allowed for general bounds bl <= x <= bu. % 06 Oct 2002: Allowed for fixed variabes: bl(j) = bu(j) for any j. % 15 Oct 2002: Eliminated some work vectors (since m, n might be LARGE). % Modularized residuals, linesearch % 16 Oct 2002: pdxxx..., pdDDD... names rationalized. % pdAAA eliminated (global copy of A). % Aname is now used directly as an explicit A or a function. % NOTE: If Aname is a function, it now has an extra parameter. % 23 Oct 2002: Fname and Aname can now be function handles. % 01 Nov 2002: Bug fixed in feval in pdxxxmat. % 19 Apr 2003: Bug fixed in pdxxxbounds. % 07 Aug 2003: Let d1, d2 be scalars if input that way. % 10 Aug 2003: z isn't needed except at the end for output. % 10 Aug 2003: mu0 is now an absolute value -- the initial mu. % 13 Aug 2003: Access only z1(low) and z2(upp) everywhere. % stepxL, stepxU introduced to keep x within bounds. % (With poor starting points, dx may take x outside, % where phi(x) may not be defined. % Entropy once gave complex values for the gradient!) % 16 Sep 2003: Fname can now be a vector c, implying a linear obj c'*x. % 19 Sep 2003: Large system K4 dv = rhs implemented. % 23 Sep 2003: Options LSproblem and LSmethod replaced by Method. % 18 Nov 2003: stepxL, stepxU gave trouble on lptest (see 13 Aug 2003). % Disabled them for now. Nonlinear problems need good x0. % 19 Nov 2003: Bugs with x(fix) and z(fix). % In particular, x(fix) = bl(fix) throughout, so Objective % in iteration log is correct for LPs with explicit c vector. %----------------------------------------------------------------------- global pdDDD1 pdDDD2 pdDDD3 if 0 myprintf('\n --------------------------------------------------------') myprintf('\n pdco.m Version of 19 Nov 2003') myprintf('\n Primal-dual barrier method to minimize a convex function') myprintf('\n subject to linear constraints Ax + r = b, bl <= x <= bu') myprintf('\n --------------------------------------------------------\n') end m = length(b); n = length(bl); %--------------------------------------------------------------------- % Decode Fname. %--------------------------------------------------------------------- %%%!!! Revised 12/16/04 !!! % Fname cannot be a function handle operator = ischar(Fname); explicitF = ~operator; if explicitF myprintf('\n') mydisp('The objective is linear') else fname = Fname; myprintf('\n') mydisp(['The objective function is named ' fname]) end %--------------------------------------------------------------------- % Decode Aname. %--------------------------------------------------------------------- %%%!!! Revised 12/16/04 !!! % Aname cannot be a function handle operator = ischar(Aname) || isa(Aname, 'function_handle'); explicitA = ~operator; if explicitA % assume Aname is an explicit matrix A. nnzA = nnz(Aname); if issparse(Aname) myprintf('The matrix A is an explicit sparse matrix') else myprintf('The matrix A is an explicit dense matrix' ) end myprintf('\n\nm = %8g n = %8g nnz(A) =%9g', m,n,nnzA) else if ischar(Aname) mydisp(['The matrix A is an operator defined by ' Aname]) end myprintf('\nm = %8g n = %8g', m,n) end normb = norm(b ,inf); normx0 = norm(x0,inf); normy0 = norm(y0,inf); normz0 = norm(z0,inf); myprintf('\nmax |b | = %8g max |x0| = %8.1e', normb , normx0) myprintf( ' xsize = %8.1e', xsize) myprintf('\nmax |y0| = %8g max |z0| = %8.1e', normy0, normz0) myprintf( ' zsize = %8.1e', zsize) %--------------------------------------------------------------------- % Initialize. %--------------------------------------------------------------------- true = 1; false = 0; zn = zeros(n,1); nb = n + m; nkkt = nb; CGitns = 0; inform = 0; % 07 Aug 2003: No need for next lines. %if length(d1)==1, d1 = d1*ones(n,1); end % Allow scalar d1, d2 %if length(d2)==1, d2 = d2*ones(m,1); end % to mean d1*e, d2*e %--------------------------------------------------------------------- % Grab input options. %--------------------------------------------------------------------- maxitn = options.MaxIter; featol = options.FeaTol; opttol = options.OptTol; steptol = options.StepTol; stepSame = options.StepSame; % 1 means stepx==stepz x0min = options.x0min; z0min = options.z0min; mu0 = options.mu0; Method = options.Method; itnlim = options.LSQRMaxIter * min(m,n); atol1 = options.LSQRatol1; % Initial atol atol2 = options.LSQRatol2; % Smallest atol, unless atol1 is smaller conlim = options.LSQRconlim; wait = options.wait; %--------------------------------------------------------------------- % Set other parameters. %--------------------------------------------------------------------- kminor = 0; % 1 stops after each iteration eta = 1e-4; % Linesearch tolerance for "sufficient descent" maxf = 10; % Linesearch backtrack limit (function evaluations) maxfail = 1; % Linesearch failure limit (consecutive iterations) bigcenter = 1e+3; % mu is reduced if center < bigcenter thresh = 1e-8; % For sparse LU with Method=41 % Parameters for LSQR. atolmin = eps; % Smallest atol if linesearch back-tracks btol = 0; % Should be small (zero is ok) show = false; % Controls LSQR iteration log gamma = max(d1); delta = max(d2); myprintf('\n\nx0min = %8g featol = %8.1e', x0min, featol) myprintf( ' d1max = %8.1e', gamma) myprintf( '\nz0min = %8g opttol = %8.1e', z0min, opttol) myprintf( ' d2max = %8.1e', delta) myprintf( '\nmu0 = %8.1e steptol = %8g', mu0 , steptol) myprintf( ' bigcenter= %8g' , bigcenter) myprintf('\n\nLSQR:') myprintf('\natol1 = %8.1e atol2 = %8.1e', atol1 , atol2 ) myprintf( ' btol = %8.1e', btol ) myprintf('\nconlim = %8.1e itnlim = %8g' , conlim, itnlim) myprintf( ' show = %8g' , show ) % Method = 3; %%% Hardwire LSQR % Method = 41; %%% Hardwire K4 and sparse LU myprintf('\n\nMethod = %8g (1=chol 2=QR 3=LSQR 41=K4)', Method) if wait myprintf('\n\nReview parameters... then type "return"\n') keyboard end if eta < 0 myprintf('\n\nLinesearch disabled by eta < 0') end %--------------------------------------------------------------------- % All parameters have now been set. % Check for valid Method. %--------------------------------------------------------------------- time = cputime; if operator if Method==3 % relax else myprintf('\n\nWhen A is an operator, we have to use Method = 3') Method = 3; end end if Method== 1, solver = ' Chol'; head3 = ' Chol'; elseif Method== 2, solver = ' QR'; head3 = ' QR'; elseif Method== 3, solver = ' LSQR'; head3 = ' atol LSQR Inexact'; elseif Method==41, solver = ' LU'; head3 = ' L U res'; else error('Method must be 1, 2, 3, or 41') end %--------------------------------------------------------------------- % Categorize bounds and allow for fixed variables by modifying b. %--------------------------------------------------------------------- [low,upp,fix] = pdxxxbounds( bl,bu ); nfix = length(fix); if nfix > 0 x1 = zn; x1(fix) = bl(fix); r1 = pdxxxmat( Aname, 1, m, n, x1 ); b = b - r1; % At some stage, might want to look at normfix = norm(r1,inf); end %--------------------------------------------------------------------- % Scale the input data. % The scaled variables are % xbar = x/beta, % ybar = y/zeta, % zbar = z/zeta. % Define % theta = beta*zeta; % The scaled function is % phibar = ( 1 /theta) fbar(beta*xbar), % gradient = (beta /theta) grad, % Hessian = (beta2/theta) hess. %--------------------------------------------------------------------- beta = xsize; if beta==0, beta = 1; end % beta scales b, x. zeta = zsize; if zeta==0, zeta = 1; end % zeta scales y, z. theta = beta*zeta; % theta scales obj. % (theta could be anything, but theta = beta*zeta makes % scaled grad = grad/zeta = 1 approximately if zeta is chosen right.) bl(fix)= bl(fix)/beta; bu(fix)= bu(fix)/beta; bl(low)= bl(low)/beta; bu(upp)= bu(upp)/beta; d1 = d1*( beta/sqrt(theta) ); d2 = d2*( sqrt(theta)/beta ); beta2 = beta^2; b = b /beta; y0 = y0/zeta; x0 = x0/beta; z0 = z0/zeta; %--------------------------------------------------------------------- % Initialize vectors that are not fully used if bounds are missing. %--------------------------------------------------------------------- rL = zn; rU = zn; cL = zn; cU = zn; x1 = zn; x2 = zn; z1 = zn; z2 = zn; dx1 = zn; dx2 = zn; dz1 = zn; dz2 = zn; clear zn %--------------------------------------------------------------------- % Initialize x, y, z1, z2, objective, etc. % 10 Aug 2003: z isn't needed here -- just at end for output. %--------------------------------------------------------------------- x = x0; y = y0; x(fix) = bl(fix); x(low) = max( x(low) , bl(low)); x(upp) = min( x(upp) , bu(upp)); x1(low)= max( x(low) - bl(low), x0min ); x2(upp)= max(bu(upp) - x(upp), x0min ); z1(low)= max( z0(low) , z0min ); z2(upp)= max(-z0(upp) , z0min ); clear x0 y0 z0 %%%%%%%%%% Assume hess is diagonal for now. %%%%%%%%%%%%%%%%%% if explicitF obj = (Fname'*x)*beta; grad = Fname; hess = zeros(n,1); else [obj,grad,hess] = feval( Fname, (x*beta) ); end obj = obj /theta; % Scaled obj. grad = grad*(beta /theta) + (d1.^2).*x;% grad includes x regularization. H = hess*(beta2/theta) + (d1.^2); % H includes x regularization. %--------------------------------------------------------------------- % Compute primal and dual residuals: % r1 = b - A*x - d2.^2*y % r2 = grad - A'*y + (z2-z1) % rL = bl - x + x1 % rU = -bu + x + x2 %--------------------------------------------------------------------- [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( Aname,fix,low,upp, ... b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ); %--------------------------------------------------------------------- % Initialize mu and complementarity residuals: % cL = mu*e - X1*z1. % cU = mu*e - X2*z2. % % 25 Jan 2001: Now that b and obj are scaled (and hence x,y,z), % we should be able to use mufirst = mu0 (absolute value). % 0.1 worked poorly on StarTest1 with x0min = z0min = 0.1. % 29 Jan 2001: We might as well use mu0 = x0min * z0min; % so that most variables are centered after a warm start. % 29 Sep 2002: Use mufirst = mu0*(x0min * z0min), % regarding mu0 as a scaling of the initial center. % 07 Aug 2003: mulast is controlled by opttol. % mufirst should not be smaller. % 10 Aug 2003: Revert to mufirst = mu0 (absolute value). %--------------------------------------------------------------------- % mufirst = mu0*(x0min * z0min); mufirst = mu0; mulast = 0.1 * opttol; mufirst = max( mufirst, mulast ); mu = mufirst; [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ); fmerit = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ); % Initialize other things. PDitns = 0; converged = 0; atol = atol1; atol2 = max( atol2, atolmin ); atolmin = atol2; pdDDD2 = d2; % Global vector for diagonal matrix D2 % Iteration log. stepx = 0; stepz = 0; nf = 0; itncg = 0; nfail = 0; head1 = '\n\nItn mu stepx stepz Pinf Dinf'; head2 = ' Cinf Objective nf center'; myprintf([ head1 head2 head3 ]) regterm = norm(d1.*x)^2 + norm(d2.*y)^2; objreg = obj + 0.5*regterm; objtrue = objreg * theta; myprintf('\n%3g ', PDitns ) myprintf('%6.1f%6.1f' , log10(Pinf ), log10(Dinf)) myprintf('%6.1f%15.7e', log10(Cinf0), objtrue ) myprintf(' %8.1f' , center ) if Method==41 myprintf(' thresh=%7.1e', thresh) end if kminor myprintf('\n\nStart of first minor itn...\n') keyboard end %--------------------------------------------------------------------- % Main loop. %--------------------------------------------------------------------- while ~converged PDitns = PDitns + 1; % 31 Jan 2001: Set atol according to progress, a la Inexact Newton. % 07 Feb 2001: 0.1 not small enough for Satellite problem. Try 0.01. % 25 Apr 2001: 0.01 seems wasteful for Star problem. % Now that starting conditions are better, go back to 0.1. r3norm = max([Pinf Dinf Cinf]); atol = min([atol r3norm*0.1]); atol = max([atol atolmin ]); if Method<=3 %----------------------------------------------------------------- % Solve (*) for dy. %----------------------------------------------------------------- % Define a damped Newton iteration for solving f = 0, % keeping x1, x2, z1, z2 > 0. We eliminate dx1, dx2, dz1, dz2 % to obtain the system % % [-H2 A' ] [dx] = [w ], H2 = H + D1^2 + X1inv Z1 + X2inv Z2, % [ A D2^2] [dy] = [r1] w = r2 - X1inv(cL + Z1 rL) % + X2inv(cU + Z2 rU), % % which is equivalent to the least-squares problem % % min || [ D A']dy - [ D w ] ||, D = H2^{-1/2}. (*) % || [ D2 ] [D2inv r1] || %----------------------------------------------------------------- H(low) = H(low) + z1(low)./x1(low); H(upp) = H(upp) + z2(upp)./x2(upp); w = r2; w(low) = w(low) - (cL(low) + z1(low).*rL(low))./x1(low); w(upp) = w(upp) + (cU(upp) + z2(upp).*rU(upp))./x2(upp); H = 1./H; % H is now Hinv (NOTE!) H(fix) = 0; D = sqrt(H); pdDDD1 = D; rw = [explicitA Method m n 0 0 0]; % Passed to LSQR. if Method==1 % -------------------------------------------------------------- % Use chol to get dy % -------------------------------------------------------------- AD = Aname*sparse( 1:n, 1:n, D, n, n ); ADDA = AD*AD' + sparse( 1:m, 1:m, (d2.^2), m, m ); if PDitns==1, P = symamd(ADDA); end % Do ordering only once. [R,indef] = chol(ADDA(P,P)); if indef myprintf('\n\n chol says AD^2A'' is not pos def') myprintf('\n Use bigger d2, or set options.Method = 2 or 3') break end % dy = ADDA \ rhs; rhs = Aname*(H.*w) + r1; dy = R \ (R'\rhs(P)); dy(P) = dy; elseif Method==2 % -------------------------------------------------------------- % Use QR to get dy % -------------------------------------------------------------- DAt = sparse( 1:n, 1:n, D, n, n )*(Aname'); if PDitns==1, P = colamd(DAt); end % Do ordering only once. if length(d2)==1 D2 = d2*speye(m); else D2 = spdiags(d2,0,m,m); end DAt = [ DAt; D2 ]; rhs = [ D.*w; r1./d2 ]; % dy = DAt \ rhs; [rhs,R] = qr(DAt(:,P),rhs,0); dy = R \ rhs; dy(P) = dy; else % -------------------------------------------------------------- % Method=3. Use LSQR (iterative solve) to get dy % -------------------------------------------------------------- rhs = [ D.*w; r1./d2 ]; damp = 0; if explicitA % A is a sparse matrix. precon = true; if precon % Construct diagonal preconditioner for LSQR AD = Aname*sparse( 1:n, 1:n, D, n, n ); AD = AD.^2; wD = sum(AD,2); % Sum of sqrs of each row of AD. %(Sparse) wD = sqrt( full(wD) + (d2.^2) ); %(Dense) pdDDD3 = 1./wD; clear AD wD end else % A is an operator precon = false; end rw(7) = precon; info.atolmin = atolmin; info.r3norm = fmerit; % Must be the 2-norm here. [ dy, istop, itncg, outfo ] = ... pdxxxlsqr( nb,m,'pdxxxlsqrmat',Aname,rw,rhs,damp, ... atol,btol,conlim,itnlim,show,info ); if precon, dy = pdDDD3 .* dy; end if istop==3 | istop==7 % conlim or itnlim myprintf('\n LSQR stopped early: istop = %3d', istop) end atolold = outfo.atolold; atol = outfo.atolnew; r3ratio = outfo.r3ratio; CGitns = CGitns + itncg; end % computation of dy % dy is now known. Get dx, dx1, dx2, dz1, dz2. grad = pdxxxmat( Aname,2,m,n,dy ); % grad = A'dy grad(fix) = 0; % Is this needed? % grad is a work vector dx = H .* (grad - w); dx1(low) = - rL(low) + dx(low); dx2(upp) = - rU(upp) - dx(upp); dz1(low) = (cL(low) - z1(low).*dx1(low)) ./ x1(low); dz2(upp) = (cU(upp) - z2(upp).*dx2(upp)) ./ x2(upp); elseif Method==41 %----------------------------------------------------------------- % Solve the symmetric-structure 4 x 4 system K4 dv = t: % % ( X1 Z1 ) [dz1] = [tL], tL = cL + Z1 rL % ( X2 -Z2 ) [dz2] [tU] tU = cU + Z2 rU % ( I -I -H1 A' ) [dx ] [r2] % ( A D2^2 ) [dy ] [r1] %----------------------------------------------------------------- X1 = ones(n,1); X1(low) = x1(low); X2 = ones(n,1); X2(upp) = x2(upp); if length(d2)==1 D22 = d2^2*speye(m); else D22 = spdiags(d2.^2,0,m,m); end Onn = sparse(n,n); Omn = sparse(m,n); if PDitns==1 % First time through: Choose LU ordering from % lower-triangular part of dummy K4 I1 = sparse( low, low, ones(length(low),1), n, n ); I2 = sparse( upp, upp, ones(length(upp),1), n, n ); K4 =[speye(n) Onn Onn Omn' Onn speye(n) Onn Omn' I1 I2 speye(n) Omn' Omn Omn Aname speye(m)]; p = symamd(K4); % mydisp(' '); keyboard end K4 = [spdiags(X1,0,n,n) Onn spdiags(z1,0,n,n) Omn' Onn spdiags(X2,0,n,n) -spdiags(z2,0,n,n) Omn' I1 -I2 -spdiags(H,0,n,n) Aname' Omn Omn Aname D22]; tL = zeros(n,1); tL(low) = cL(low) + z1(low).*rL(low); tU = zeros(n,1); tU(upp) = cU(upp) + z2(upp).*rU(upp); rhs = [tL; tU; r2; r1]; % dv = K4 \ rhs; % BIG SYSTEM! [L,U,P] = lu( K4(p,p), thresh ); % P K4 = L U dv = U \ (L \ (P*rhs(p))); dv(p) = dv; resK4 = norm((K4*dv - rhs),inf) / norm(rhs,inf); dz1 = dv( 1: n); dz2 = dv( n+1:2*n); dx = dv(2*n+1:3*n); dy = dv(3*n+1:3*n+m); dx1(low) = - rL(low) + dx(low); dx2(upp) = - rU(upp) - dx(upp); end %------------------------------------------------------------------- % Find the maximum step. % 13 Aug 2003: We need stepxL, stepxU also to keep x feasible % so that nonlinear functions are defined. % 18 Nov 2003: But this gives stepx = 0 for lptest. (??) %-------------------------------------------------------------------- stepx1 = pdxxxstep( x1(low), dx1(low) ); stepx2 = pdxxxstep( x2(upp), dx2(upp) ); stepz1 = pdxxxstep( z1(low), dz1(low) ); stepz2 = pdxxxstep( z2(upp), dz2(upp) ); % stepxL = pdxxxstep( x(low), dx(low) ); % stepxU = pdxxxstep( x(upp), dx(upp) ); % stepx = min( [stepx1, stepx2, stepxL, stepxU] ); stepx = min( [stepx1, stepx2] ); stepz = min( [stepz1, stepz2] ); stepx = min( [steptol*stepx, 1] ); stepz = min( [steptol*stepz, 1] ); if stepSame % For NLPs, force same step stepx = min( stepx, stepz ); % (true Newton method) stepz = stepx; end %------------------------------------------------------------------- % Backtracking linesearch. %------------------------------------------------------------------- fail = true; nf = 0; while nf < maxf nf = nf + 1; x = x + stepx * dx; y = y + stepz * dy; x1(low) = x1(low) + stepx * dx1(low); x2(upp) = x2(upp) + stepx * dx2(upp); z1(low) = z1(low) + stepz * dz1(low); z2(upp) = z2(upp) + stepz * dz2(upp); if explicitF obj = (Fname'*x)*beta; grad = Fname; hess = zeros(n,1); else [obj,grad,hess] = feval( Fname, (x*beta) ); end obj = obj /theta; grad = grad*(beta /theta) + (d1.^2).*x; H = hess*(beta2/theta) + (d1.^2); [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( Aname,fix,low,upp, ... b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ); [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ); fmeritnew = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ); step = min( stepx, stepz ); if fmeritnew <= (1 - eta*step)*fmerit fail = false; break; end % Merit function didn't decrease. % Restore variables to previous values. % (This introduces a little error, but save lots of space.) x = x - stepx * dx; y = y - stepz * dy; x1(low) = x1(low) - stepx * dx1(low); x2(upp) = x2(upp) - stepx * dx2(upp); z1(low) = z1(low) - stepz * dz1(low); z2(upp) = z2(upp) - stepz * dz2(upp); % Back-track. % If it's the first time, % make stepx and stepz the same. if nf==1 & stepx~=stepz stepx = step; elseif nf < maxf stepx = stepx/2; end; stepz = stepx; end if fail myprintf('\n Linesearch failed (nf too big)'); nfail = nfail + 1; else nfail = 0; end %------------------------------------------------------------------- % Set convergence measures. %-------------------------------------------------------------------- regterm = norm(d1.*x)^2 + norm(d2.*y)^2; objreg = obj + 0.5*regterm; objtrue = objreg * theta; primalfeas = Pinf <= featol; dualfeas = Dinf <= featol; complementary = Cinf0 <= opttol; enough = PDitns>= 4; % Prevent premature termination. converged = primalfeas & dualfeas & complementary & enough; %------------------------------------------------------------------- % Iteration log. %------------------------------------------------------------------- str1 = sprintf('\n%3g%5.1f' , PDitns , log10(mu) ); str2 = sprintf('%6.3f%6.3f' , stepx , stepz ); if stepx < 0.001 | stepz < 0.001 str2 = sprintf('%6.1e%6.1e' , stepx , stepz ); end str3 = sprintf('%6.1f%6.1f' , log10(Pinf) , log10(Dinf)); str4 = sprintf('%6.1f%15.7e', log10(Cinf0), objtrue ); str5 = sprintf('%3g%8.1f' , nf , center ); if center > 99999 str5 = sprintf('%3g%8.1e' , nf , center ); end myprintf([str1 str2 str3 str4 str5]) if Method== 1 if PDitns==1, myprintf(' %8g', nnz(R)); end elseif Method== 2 if PDitns==1, myprintf(' %8g', nnz(R)); end elseif Method== 3 myprintf(' %5.1f%7g%7.3f', log10(atolold), itncg, r3ratio) elseif Method==41, resK4 = max( resK4, 1e-99 ); myprintf(' %8g%8g%6.1f', nnz(L),nnz(U),log10(resK4)) end %------------------------------------------------------------------- % Test for termination. %------------------------------------------------------------------- if kminor myprintf( '\nStart of next minor itn...\n') keyboard end if converged myprintf('\nConverged') elseif PDitns >= maxitn myprintf('\nToo many iterations') inform = 1; break elseif nfail >= maxfail myprintf('\nToo many linesearch failures') inform = 2; break elseif step <= 1e-10 myprintf('\nStep lengths too small') inform = 3; break else % Reduce mu, and reset certain residuals. stepmu = min( stepx , stepz ); stepmu = min( stepmu, steptol ); muold = mu; mu = mu - stepmu * mu; if center >= bigcenter, mu = muold; end % mutrad = mu0*(sum(Xz)/n); % 24 May 1998: Traditional value, but % mu = min(mu,mutrad ); % it seemed to decrease mu too much. mu = max(mu,mulast); % 13 Jun 1998: No need for smaller mu. [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ); fmerit = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ); % Reduce atol for LSQR (and SYMMLQ). % NOW DONE AT TOP OF LOOP. atolold = atol; % if atol > atol2 % atolfac = (mu/mufirst)^0.25; % atol = max( atol*atolfac, atol2 ); % end % atol = min( atol, mu ); % 22 Jan 2001: a la Inexact Newton. % atol = min( atol, 0.5*mu ); % 30 Jan 2001: A bit tighter % If the linesearch took more than one function (nf > 1), % we assume the search direction needed more accuracy % (though this may be true only for LPs). % 12 Jun 1998: Ask for more accuracy if nf > 2. % 24 Nov 2000: Also if the steps are small. % 30 Jan 2001: Small steps might be ok with warm start. % 06 Feb 2001: Not necessarily. Reinstated tests in next line. if nf > 2 | step <= 0.01 atol = atolold*0.1; end end end %--------------------------------------------------------------------- % End of main loop. %--------------------------------------------------------------------- % Print statistics. x(fix) = 0; % Exclude x(fix) temporarily from |x|. z = zeros(n,1); % Exclude z(fix) also. z(low) = z1(low); z(upp) = z(upp) - z2(upp); myprintf('\n\nmax |x| =%10.3f', norm(x,inf)) myprintf(' max |y| =%10.3f', norm(y,inf)) myprintf(' max |z| =%10.3f', norm(z,inf)) % excludes z(fix) myprintf(' scaled') bl(fix)= bl(fix)*beta; % Unscale bl, bu, x, y, z. bu(fix)= bu(fix)*beta; bl(low)= bl(low)*beta; bu(upp)= bu(upp)*beta; x = x*beta; y = y*zeta; z = z*zeta; myprintf( '\nmax |x| =%10.3f', norm(x,inf)) myprintf(' max |y| =%10.3f', norm(y,inf)) myprintf(' max |z| =%10.3f', norm(z,inf)) % excludes z(fix) myprintf(' unscaled') x(fix) = bl(fix); % Reinstate x(fix). % Reconstruct b. b = b *beta; if nfix > 0 x1 = zeros(n,1); x1(fix) = bl(fix); r1 = pdxxxmat( Aname, 1, m, n, x1 ); b = b + r1; myprintf('\nmax |x| and max |z| exclude fixed variables') end % Evaluate function at final point. % Reconstruct z. This finally defines z(fix). if explicitF obj = (Fname'*x); grad = Fname; hess = zeros(n,1); else [obj,grad,hess] = feval( Fname, x ); end z = grad - pdxxxmat( Aname,2,m,n,y ); % z = grad - A'y time = cputime - time; str1 = sprintf('\nPDitns =%10g', PDitns ); str2 = sprintf( 'itns =%10g', CGitns ); myprintf( [str1 ' ' solver str2] ) myprintf(' time =%10.1f', time); pdxxxdistrib( abs(x),abs(z) ); % Private function if wait keyboard end %----------------------------------------------------------------------- % End function pdco.m %----------------------------------------------------------------------- function [low,upp,fix] = pdxxxbounds( bl,bu ) % Categorize various types of bounds. % pos overlaps with low. % neg overlaps with upp. % two overlaps with low and upp. % fix and free are disjoint from all other sets. bigL = -9.9e+19; bigU = 9.9e+19; pos = find( bl==0 & bu>=bigU ); neg = find( bl<=bigL & bu==0 ); low = find( bl> bigL & bl< bu ); upp = find( bu< bigU & bl< bu ); two = find( bl> bigL & bu< bigU & bl< bu ); fix = find( bl==bu ); free = find( bl<=bigL & bu>=bigU ); myprintf('\n\nBounds:\n [0,inf] [-inf,0]') myprintf(' Finite bl Finite bu Two bnds Fixed Free') myprintf('\n %8g %9g %10g %10g %9g %7g %7g', ... length(pos), length(neg), length(low), ... length(upp), length(two), length(fix), length(free)) %----------------------------------------------------------------------- % End private function pdxxxbounds %----------------------------------------------------------------------- function pdxxxdistrib( x,z ) % pdxxxdistrib(x) or pdxxxdistrib(x,z) prints the % distribution of 1 or 2 vectors. % % 18 Dec 2000. First version with 2 vectors. two = nargin > 1; myprintf('\n\nDistribution of vector x') if two, myprintf(' z'); end x1 = 10^(floor(log10(max(x)+eps)) + 1); z1 = 10^(floor(log10(max(z)+eps)) + 1); x1 = max(x1,z1); kmax = 10; for k = 1:kmax x2 = x1; x1 = x1/10; if k==kmax, x1 = 0; end nx = length(find(x>=x1 & x<x2)); myprintf('\n[%7.3g,%7.3g )%10g', x1, x2, nx); if two nz = length(find(z>=x1 & z<x2)); myprintf('%10g', nz); end end mydisp(' ') %----------------------------------------------------------------------- % End private function pdxxxdistrib %----------------------------------------------------------------------- function [ x, istop, itn, outfo ] = ... pdxxxlsqr( m, n, aprodname, iw, rw, b, damp, ... atol, btol, conlim, itnlim, show, info ) % Special version of LSQR for use with pdco.m. % It continues with a reduced atol if a pdco-specific test isn't % satisfied with the input atol. % % LSQR solves Ax = b or min ||b - Ax||_2 if damp = 0, % or min || (b) - ( A )x || otherwise. % || (0) (damp I) ||2 % A is an m by n matrix defined by y = aprod( mode,m,n,x,iw,rw ), % where the parameter 'aprodname' refers to a function 'aprod' that % performs the matrix-vector operations. % If mode = 1, aprod must return y = Ax without altering x. % If mode = 2, aprod must return y = A'x without altering x. % WARNING: The file containing the function 'aprod' % must not be called aprodname.m !!!! %----------------------------------------------------------------------- % LSQR uses an iterative (conjugate-gradient-like) method. % For further information, see % 1. C. C. Paige and M. A. Saunders (1982a). % LSQR: An algorithm for sparse linear equations and sparse least squares, % ACM TOMS 8(1), 43-71. % 2. C. C. Paige and M. A. Saunders (1982b). % Algorithm 583. LSQR: Sparse linear equations and least squares problems, % ACM TOMS 8(2), 195-209. % 3. M. A. Saunders (1995). Solution of sparse rectangular systems using % LSQR and CRAIG, BIT 35, 588-604. % % Input parameters: % iw, rw are not used by lsqr, but are passed to aprod. % atol, btol are stopping tolerances. If both are 1.0e-9 (say), % the final residual norm should be accurate to about 9 digits. % (The final x will usually have fewer correct digits, % depending on cond(A) and the size of damp.) % conlim is also a stopping tolerance. lsqr terminates if an estimate % of cond(A) exceeds conlim. For compatible systems Ax = b, % conlim could be as large as 1.0e+12 (say). For least-squares % problems, conlim should be less than 1.0e+8. % Maximum precision can be obtained by setting % atol = btol = conlim = zero, but the number of iterations % may then be excessive. % itnlim is an explicit limit on iterations (for safety). % show = 1 gives an iteration log, % show = 0 suppresses output. % info is a structure special to pdco.m, used to test if % was small enough, and continuing if necessary with smaller atol. % % % Output parameters: % x is the final solution. % istop gives the reason for termination. % istop = 1 means x is an approximate solution to Ax = b. % = 2 means x approximately solves the least-squares problem. % rnorm = norm(r) if damp = 0, where r = b - Ax, % = sqrt( norm(r)**2 + damp**2 * norm(x)**2 ) otherwise. % xnorm = norm(x). % var estimates diag( inv(A'A) ). Omitted in this special version. % outfo is a structure special to pdco.m, returning information % about whether atol had to be reduced. % % Other potential output parameters: % anorm, acond, arnorm, xnorm % % 1990: Derived from Fortran 77 version of LSQR. % 22 May 1992: bbnorm was used incorrectly. Replaced by anorm. % 26 Oct 1992: More input and output parameters added. % 01 Sep 1994: Matrix-vector routine is now a parameter 'aprodname'. % Print log reformatted. % 14 Jun 1997: show added to allow printing or not. % 30 Jun 1997: var added as an optional output parameter. % It returns an estimate of diag( inv(A'A) ). % 12 Feb 2001: atol can now be reduced and iterations continued if necessary. % info, outfo are new problem-dependent parameters for such purposes. % In this version they are specialized for pdco.m. %----------------------------------------------------------------------- % Initialize. msg=['The exact solution is x = 0 ' 'Ax - b is small enough, given atol, btol ' 'The least-squares solution is good enough, given atol ' 'The estimate of cond(Abar) has exceeded conlim ' 'Ax - b is small enough for this machine ' 'The least-squares solution is good enough for this machine' 'Cond(Abar) seems to be too large for this machine ' 'The iteration limit has been reached ']; % wantvar= nargout >= 6; % if wantvar, var = zeros(n,1); end itn = 0; istop = 0; nstop = 0; ctol = 0; if conlim > 0, ctol = 1/conlim; end; anorm = 0; acond = 0; dampsq = damp^2; ddnorm = 0; res2 = 0; xnorm = 0; xxnorm = 0; z = 0; cs2 = -1; sn2 = 0; % Set up the first vectors u and v for the bidiagonalization. % These satisfy beta*u = b, alfa*v = A'u. u = b(1:m); x = zeros(n,1); alfa = 0; beta = norm( u ); if beta > 0 u = (1/beta) * u; v = feval( aprodname, 2, m, n, u, iw, rw ); alfa = norm( v ); end if alfa > 0 v = (1/alfa) * v; w = v; end arnorm = alfa * beta; if arnorm==0, mydisp(msg(1,:)); return, end rhobar = alfa; phibar = beta; bnorm = beta; rnorm = beta; head1 = ' Itn x(1) Function'; head2 = ' Compatible LS Norm A Cond A'; if show mydisp(' ') mydisp([head1 head2]) test1 = 1; test2 = alfa / beta; str1 = sprintf( '%6g %12.5e %10.3e', itn, x(1), rnorm ); str2 = sprintf( ' %8.1e %8.1e', test1, test2 ); mydisp([str1 str2]) end %---------------------------------------------------------------- % Main iteration loop. %---------------------------------------------------------------- while itn < itnlim itn = itn + 1; % Perform the next step of the bidiagonalization to obtain the % next beta, u, alfa, v. These satisfy the relations % beta*u = A*v - alfa*u, % alfa*v = A'*u - beta*v. u = feval( aprodname, 1, m, n, v, iw, rw ) - alfa*u; beta = norm( u ); if beta > 0 u = (1/beta) * u; anorm = norm([anorm alfa beta damp]); v = feval( aprodname, 2, m, n, u, iw, rw ) - beta*v; alfa = norm( v ); if alfa > 0, v = (1/alfa) * v; end end % Use a plane rotation to eliminate the damping parameter. % This alters the diagonal (rhobar) of the lower-bidiagonal matrix. rhobar1 = norm([rhobar damp]); cs1 = rhobar / rhobar1; sn1 = damp / rhobar1; psi = sn1 * phibar; phibar = cs1 * phibar; % Use a plane rotation to eliminate the subdiagonal element (beta) % of the lower-bidiagonal matrix, giving an upper-bidiagonal matrix. rho = norm([rhobar1 beta]); cs = rhobar1/ rho; sn = beta / rho; theta = sn * alfa; rhobar = - cs * alfa; phi = cs * phibar; phibar = sn * phibar; tau = sn * phi; % Update x and w. t1 = phi /rho; t2 = - theta/rho; dk = (1/rho)*w; x = x + t1*w; w = v + t2*w; ddnorm = ddnorm + norm(dk)^2; % if wantvar, var = var + dk.*dk; end % Use a plane rotation on the right to eliminate the % super-diagonal element (theta) of the upper-bidiagonal matrix. % Then use the result to estimate norm(x). delta = sn2 * rho; gambar = - cs2 * rho; rhs = phi - delta * z; zbar = rhs / gambar; xnorm = sqrt(xxnorm + zbar^2); gamma = norm([gambar theta]); cs2 = gambar / gamma; sn2 = theta / gamma; z = rhs / gamma; xxnorm = xxnorm + z^2; % Test for convergence. % First, estimate the condition of the matrix Abar, % and the norms of rbar and Abar'rbar. acond = anorm * sqrt( ddnorm ); res1 = phibar^2; res2 = res2 + psi^2; rnorm = sqrt( res1 + res2 ); arnorm = alfa * abs( tau ); % Now use these norms to estimate certain other quantities, % some of which will be small near a solution. test1 = rnorm / bnorm; test2 = arnorm/( anorm * rnorm ); test3 = 1 / acond; t1 = test1 / (1 + anorm * xnorm / bnorm); rtol = btol + atol * anorm * xnorm / bnorm; % The following tests guard against extremely small values of % atol, btol or ctol. (The user may have set any or all of % the parameters atol, btol, conlim to 0.) % The effect is equivalent to the normal tests using % atol = eps, btol = eps, conlim = 1/eps. if itn >= itnlim, istop = 7; end if 1 + test3 <= 1, istop = 6; end if 1 + test2 <= 1, istop = 5; end if 1 + t1 <= 1, istop = 4; end % Allow for tolerances set by the user. if test3 <= ctol, istop = 3; end if test2 <= atol, istop = 2; end if test1 <= rtol, istop = 1; end %------------------------------------------------------------------- % SPECIAL TEST THAT DEPENDS ON pdco.m. % Aname in pdco is iw in lsqr. % dy is x % Other stuff is in info. % We allow for diagonal preconditioning in pdDDD3. %------------------------------------------------------------------- if istop > 0 r3new = arnorm; r3ratio = r3new / info.r3norm; atolold = atol; atolnew = atol; if atol > info.atolmin if r3ratio <= 0.1 % dy seems good % Relax elseif r3ratio <= 0.5 % Accept dy but make next one more accurate. atolnew = atolnew * 0.1; else % Recompute dy more accurately myprintf('\n ') myprintf(' ') myprintf(' %5.1f%7g%7.3f', log10(atolold), itn, r3ratio) atol = atol * 0.1; atolnew = atol; istop = 0; end end outfo.atolold = atolold; outfo.atolnew = atolnew; outfo.r3ratio = r3ratio; end %------------------------------------------------------------------- % See if it is time to print something. %------------------------------------------------------------------- prnt = 0; if n <= 40 , prnt = 1; end if itn <= 10 , prnt = 1; end if itn >= itnlim-10, prnt = 1; end if rem(itn,10)==0 , prnt = 1; end if test3 <= 2*ctol , prnt = 1; end if test2 <= 10*atol , prnt = 1; end if test1 <= 10*rtol , prnt = 1; end if istop ~= 0 , prnt = 1; end if prnt==1 if show str1 = sprintf( '%6g %12.5e %10.3e', itn, x(1), rnorm ); str2 = sprintf( ' %8.1e %8.1e', test1, test2 ); str3 = sprintf( ' %8.1e %8.1e', anorm, acond ); mydisp([str1 str2 str3]) end end if istop > 0, break, end end % End of iteration loop. % Print the stopping condition. if show mydisp(' ') mydisp('LSQR finished') mydisp(msg(istop+1,:)) mydisp(' ') str1 = sprintf( 'istop =%8g itn =%8g', istop, itn ); str2 = sprintf( 'anorm =%8.1e acond =%8.1e', anorm, acond ); str3 = sprintf( 'rnorm =%8.1e arnorm =%8.1e', rnorm, arnorm ); str4 = sprintf( 'bnorm =%8.1e xnorm =%8.1e', bnorm, xnorm ); mydisp([str1 ' ' str2]) mydisp([str3 ' ' str4]) mydisp(' ') end %----------------------------------------------------------------------- % End private function pdxxxlsqr %----------------------------------------------------------------------- function y = pdxxxlsqrmat( mode, mlsqr, nlsqr, x, Aname, rw ) % pdxxxlsqrmat is required by pdco.m (when it calls pdxxxlsqr.m). % It forms Mx or M'x for some operator M that depends on Method below. % % mlsqr, nlsqr are the dimensions of the LS problem that lsqr is solving. % % Aname is pdco's Aname. % % rw contains parameters [explicitA Method LSdamp] % from pdco.m to say which least-squares subproblem is being solved. % % global pdDDD1 pdDDD3 provides various diagonal matrices % for each value of Method. %----------------------------------------------------------------------- % 17 Mar 1998: First version to go with pdsco.m and lsqr.m. % 01 Apr 1998: global pdDDD1 pdDDD3 now used for efficiency. % 11 Feb 2000: Added diagonal preconditioning for LSQR, solving for dy. % 14 Dec 2000: Added diagonal preconditioning for LSQR, solving for dx. % 12 Feb 2001: Included in pdco.m as private function. % Specialized to allow only solving for dy. % 03 Oct 2002: First version to go with pdco.m with general H2 and D2. % 16 Oct 2002: Aname is now the user's Aname. %----------------------------------------------------------------------- global pdDDD1 pdDDD2 pdDDD3 Method = rw(2); precon = rw(7); if Method==3 % The operator M is [ D1 A'; D2 ]. m = nlsqr; n = mlsqr - m; if mode==1 if precon, x = pdDDD3.*x; end t = pdxxxmat( Aname, 2, m, n, x ); % Ask 'aprod' to form t = A'x. y = [ (pdDDD1.*t); (pdDDD2.*x) ]; else t = pdDDD1.*x(1:n); y = pdxxxmat( Aname, 1, m, n, t ); % Ask 'aprod' to form y = A t. y = y + pdDDD2.*x(n+1:mlsqr); if precon, y = pdDDD3.*y; end end else error('Error in pdxxxlsqrmat: Only Method = 3 is allowed at present') end %----------------------------------------------------------------------- % End private function pdxxxlsqrmat %----------------------------------------------------------------------- function y = pdxxxmat( Aname, mode, m, n, x ) % y = pdxxxmat( Aname, mode, m, n, x ) % computes y = Ax (mode=1) or A'x (mode=2) % for a matrix A defined by pdco's input parameter Aname. %----------------------------------------------------------------------- % 04 Apr 1998: Default A*x and A'*y function for pdco.m. % Assumed A was a global matrix pdAAA created by pdco.m % from the user's input parameter A. % 16 Oct 2002: pdAAA eliminated to save storage. % User's parameter Aname is now passed thru to here. % 01 Nov 2002: Bug: feval had one too many parameters. %----------------------------------------------------------------------- if (ischar(Aname) || isa(Aname, 'function_handle')) y = feval( Aname, mode, m, n, x ); else if mode==1, y = Aname*x; else y = Aname'*x; end end %----------------------------------------------------------------------- % End private function pdxxxmat %----------------------------------------------------------------------- function fmerit = pdxxxmerit( low,upp,r1,r2,rL,rU,cL,cU ) % Evaluate the merit function for Newton's method. % It is the 2-norm of the three sets of residuals. f = [norm(r1) norm(r2) norm(rL(low)) norm(rU(upp)) norm(cL(low)) norm(cU(upp))]; fmerit = norm(f); %----------------------------------------------------------------------- % End private function pdxxxmerit %----------------------------------------------------------------------- function [r1,r2,rL,rU,Pinf,Dinf] = ... pdxxxresid1( Aname,fix,low,upp, ... b,bl,bu,d1,d2,grad,rL,rU,x,x1,x2,y,z1,z2 ) % Form residuals for the primal and dual equations. % rL, rU are output, but we input them as full vectors % initialized (permanently) with any relevant zeros. % 13 Aug 2003: z2-z1 coded more carefully % (although MATLAB was doing the right thing). % 19 Nov 2003: r2(fix) = 0 has to be done after r2 = grad - r2; m = length(b); n = length(bl); x(fix) = 0; r1 = pdxxxmat( Aname, 1, m, n, x ); r2 = pdxxxmat( Aname, 2, m, n, y ); r1 = b - r1 - (d2.^2).*y; r2 = grad - r2; % + (z2-z1); % grad includes (d1.^2)*x r2(fix) = 0; r2(upp) = r2(upp) + z2(upp); r2(low) = r2(low) - z1(low); rL(low) = ( bl(low) - x(low)) + x1(low); rU(upp) = (- bu(upp) + x(upp)) + x2(upp); Pinf = max([norm(r1,inf) norm(rL(low),inf) norm(rU(upp),inf)]); Dinf = norm(r2,inf); Pinf = max( Pinf, 1e-99 ); Dinf = max( Dinf, 1e-99 ); %----------------------------------------------------------------------- % End private function pdxxxresid1 %----------------------------------------------------------------------- function [cL,cU,center,Cinf,Cinf0] = ... pdxxxresid2( mu,low,upp,cL,cU,x1,x2,z1,z2 ) % Form residuals for the complementarity equations. % cL, cU are output, but we input them as full vectors % initialized (permanently) with any relevant zeros. % Cinf is the complementarity residual for X1 z1 = mu e, etc. % Cinf0 is the same for mu=0 (i.e., for the original problem). x1z1 = x1(low).*z1(low); x2z2 = x2(upp).*z2(upp); cL(low) = mu - x1z1; cU(upp) = mu - x2z2; maxXz = max( [max(x1z1) max(x2z2)] ); minXz = min( [min(x1z1) min(x2z2)] ); maxXz = max( maxXz, 1e-99 ); minXz = max( minXz, 1e-99 ); center = maxXz / minXz; Cinf = max([norm(cL(low),inf) norm(cU(upp),inf)]); Cinf0 = maxXz; %----------------------------------------------------------------------- % End private function pdxxxresid2 %----------------------------------------------------------------------- function step = pdxxxstep( x, dx ) % Assumes x > 0. % Finds the maximum step such that x + step*dx >= 0. step = 1e+20; blocking = find( dx < 0 ); if length( blocking ) > 0 steps = x(blocking) ./ (- dx(blocking)); step = min( steps ); end % % Copyright (c) 2006. Michael Saunders % % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] % function myprintf(s,a,b,c,d,e,f,g,h,i,j,k,l,m,n) function mydisp(s) function options = pdcoSet(varargin) %pdcoSet creates or alters an options structure for pdco.m. %It is modeled after MATLAB's original version of optimset. % % options = pdcoSet (with no input arguments) creates a structure % with all fields set to their default values. Each field is an % option (also called a parameter). % % pdcoSet (with no input or output arguments) displays all options % and their default values. % % options = pdcoSet('PARAM1',VALUE1,'PARAM2',VALUE2,...); % creates a structure with the specified named parameters and values. % Any unspecified parameters are set to []. % It is sufficient to use only the leading characters that uniquely % identify the parameter. Case is ignored for parameter names. % % NOTE: For values that are strings, correct case and the complete string % are required; if an invalid string is provided, the default is used. % % options = pdcoSet(oldopts,'PARAM1',VALUE1,...); % creates a copy of oldopts with the named parameters reset to the % specified values. % % options = pdcoSet(oldopts,newopts); % combines an existing structure oldopts with a new structure newopts. % Any parameters in newopts with non-empty values overwrite the % corresponding old parameters in oldopts. % % options.MaxIter Maximum iterations of the primal-dual barrier method. % Most problems should solve within 30 PDitns. % options.FeaTol Accuracy for satisfying Ax + D2 r = b, A'y + z = gobj % and x - x1 = bl, x + x2 = bu, where x1, x2 > 0. % 1e-6 is typically small enough. % 1e-5 may be acceptable also. % options.OptTol Accuracy for satisfying x1.*z1 = 0, x2.*z2 = 0, % where z = z1 - z2 and z1, z2 > 0. % Typically the same as Featol. % options.StepTol (between 0 and 1): Controls how close each an % x or z may be to reaching a bound at each step. % For safety, should not be bigger than 0.99 (say) % for nonlinear problems. % options.StepSame 1 (true) if stepx and stepz should be the same % (gives true Newton method for nonlinear problems); % 0 (false) if stepx and stepz may be different % (gives better performance for linear programs). % options.x0min Min distance between x0 and bl or bu AFTER SCALING. % 1.0 is about right for cold starts. % 0.1 or 0.01 may be ok if x0, z0 are "good". % options.z0min Min distance between abs(z0) and zero AFTER SCALING, % when z0 is used to initialize z1 > 0 and z2 > 0. % Typically the same as x0min. % options.mu0 Initial mu (ABSOLUTE VALUE) for solving scaled problem. % options.Method Specifies how each search direction (dx,dy,dz1,dz2) % should be computed. Several methods exist for % experimental purposes. If A has fewer rows than columns % (m < n) we usually solve for dy first (most of the work) % and then get the other components cheaply. % % Method Solve for Using Implemented? % 1 dy Sparse Cholesky on (A D^2 A' + D2^2 I). Yes % 2 dy Sparse QR on corresponding least-squares problem Yes % 3 dy LSQR on least-squares problem Yes % % 11 dx Sparse Cholesky on (D A'A D + D2^2 I). No % 12 dx Sparse QR on corresponding least-squares problem No % 13 dx LSQR on least-squares problem No % % 21 dx,dy Sparse LU on 2x2 KKT-type system No % 23 dx,dy SYMMLQ on same system No % % 31 dx,dy,dz1 Sparse LU on 3x3 system (only for problems with No % with vanilla bounds: 0 < x < inf). % This is a HUGE system, but it is relatively % well-conditioned compared to the other systems. % % 41 dx,dy,dz1,dz2 Sparse LU on 4x4 system with general bounds. Yes % This is an even HUGER system. % % If A is an explicit sparse matrix, all methods are applicable. % 1 is usually best (e.g. for LPs). % 2 may be more reliable; it's there for checking. % 3 is sometimes more efficient (e.g. for entropy problems). % Diagonal preconditioning is possible. % % If A is an operator, % 3 must be used. Diagonal preconditioning is not possible. % % Notes: % Method = 1 On ENTROPY.big, symamd can find an ordering % but chol never finishes. % Method = 41 On ENTROPY.big, symamd never finishes. % % The following options control LSQR when Method = 3: % % options.LSQRMaxIter * min(m,n) is the maximum LSQR (CG) iterations. % options.LSQRatol1 is the starting value of the LSQR accuracy % tolerance "atol" (if LSmethod = 3). % 1e-3 or 1e-4 sometimes works. % 1e-8 may be needed for LPs. % In general, if max(Pinf,Dinf,Cinf) doesn't decrease % every iteration, set atol1 to a smaller value. % options.LSQRatol2 is the smallest value atol is reduced to. % options.LSQRconlim shuts LSQR down early if its matrix is ill-conditioned. % % options.wait = 0 means pdco should proceed to solve the problem. % = 1 means pdco should pause to allow interactive resetting % of some of the parameters. % pdcoSet.m is derived from optimset.m (Revision 1.14, 1998/08/17) % in the Optimization Toolbox of The MathWorks, Inc. % % 28 Sep 2000: First version of pdscoSet.m. % 30 Sep 2002: First version of pdcoSet.m derived from pdscoSet.m. % 04 Oct 2002: StepSame introduced. % 10 Aug 2003: mu0 is now an absolute value -- the initial mu. % 19 Sep 2003: Method = 41 implemented. % 22 Sep 2003: LSproblem and LSmethod replaced by Method. % % % Michael Saunders, SOL, Stanford University. if (nargin == 0) % Set default options. defoptions.MaxIter = 30; defoptions.FeaTol = 1e-6; defoptions.OptTol = 1e-6; defoptions.StepTol = 0.99; defoptions.StepSame = 1; % 1 for stepx == stepz (NLPs) defoptions.x0min = 1.0; % 1.0 | 0.1 for cold | warm starts? defoptions.z0min = 1.0; % 1.0 | 0.1 for cold | warm starts? defoptions.mu0 = 1e-1; % < 1.0 better than 1.0? defoptions.Method = 3; % 3 = computed dy using LSQR defoptions.LSQRMaxIter = 10.0; defoptions.LSQRatol1 = 1e-08; defoptions.LSQRatol2 = 1e-15; % defoptions.LSQRconlim = 1e+12; % Somewhere between e+8 and e+16 defoptions.wait = 0; defoptions.NOTE = 'LSQRMaxIter is scaled by the matrix dimension'; if (nargout == 0) % Display options. disp('pdco default options:') disp( defoptions ) else options = defoptions; end return; end Names = ... [ 'MaxIter ' 'FeaTol ' 'OptTol ' 'StepTol ' 'StepSame ' 'x0min ' 'z0min ' 'mu0 ' 'Method ' 'LSQRMaxIter' 'LSQRatol1 ' 'LSQRatol2 ' 'LSQRconlim ' 'wait ' 'NOTE ' ]; m = size (Names,1); names = lower(Names); % The remaining clever stuff is from optimset.m. % We should obtain permission from the MathWorks. % Combine all leading options structures o1, o2, ... in pdcoSet(o1,o2,...). options = []; for j = 1:m eval(['options.' Names(j,:) '= [];']); end i = 1; while i <= nargin arg = varargin{i}; if isstr(arg) % arg is an option name break; end if ~isempty(arg) % [] is a valid options argument if ~isa(arg,'struct') error(sprintf(['Expected argument %d to be a ' ... 'string parameter name ' ... 'or an options structure\ncreated with pdcoSet.'], i)); end for j = 1:m if any(strcmp(fieldnames(arg),deblank(Names(j,:)))) eval(['val = arg.' Names(j,:) ';']); else val = []; end if ~isempty(val) eval(['options.' Names(j,:) '= val;']); end end end i = i + 1; end % A finite state machine to parse name-value pairs. if rem(nargin-i+1,2) ~= 0 error('Arguments must occur in name-value pairs.'); end expectval = 0; % start expecting a name, not a value while i <= nargin arg = varargin{i}; if ~expectval if ~isstr(arg) error(sprintf(['Expected argument %d to be a ' ... 'string parameter name.'], i)); end lowArg = lower(arg); j = strmatch(lowArg,names); if isempty(j) % if no matches error(sprintf('Unrecognized parameter name ''%s''.', arg)); elseif length(j) > 1 % if more than one match % Check for any exact matches % (in case any names are subsets of others) k = strmatch(lowArg,names,'exact'); if length(k) == 1 j = k; else msg = sprintf('Ambiguous parameter name ''%s'' ', arg); msg = [msg '(' deblank(Names(j(1),:))]; for k = j(2:length(j))' msg = [msg ', ' deblank(Names(k,:))]; end msg = sprintf('%s).', msg); error(msg); end end else eval(['options.' Names(j,:) '= arg;']); end expectval = ~expectval; i = i + 1; end if expectval error(sprintf('Expected value for parameter ''%s''.', arg)); end % % Copyright (c) 2006. Michael Saunders % % % Part of SparseLab Version:100 % Created Tuesday March 28, 2006 % This is Copyrighted Material % For Copying permissions see COPYING.m % Comments? e-mail [email protected] %
github
alex-delalande/numerical-tours-master
phantom.m
.m
numerical-tours-master/matlab/toolbox_signal/phantom.m
6,447
utf_8
5cac992f6a3cdfa201a0e3dc7206f4b3
function [p,ellipse]=phantom(varargin) %PHANTOM Generate a head phantom image. % P = PHANTOM(DEF,N) generates an image of a head phantom that can % be used to test the numerical accuracy of RADON and IRADON or other % 2-D reconstruction algorithms. P is a grayscale intensity image that % consists of one large ellipse (representing the brain) containing % several smaller ellipses (representing features in the brain). % % DEF is a string that specifies the type of head phantom to generate. % Valid values are: % % 'Shepp-Logan' A test image used widely by researchers in % tomography % 'Modified Shepp-Logan' (default) A variant of the Shepp-Logan phantom % in which the contrast is improved for better % visual perception. % % N is a scalar that specifies the number of rows and columns in P. % If you omit the argument, N defaults to 256. % % P = PHANTOM(E,N) generates a user-defined phantom, where each row % of the matrix E specifies an ellipse in the image. E has six columns, % with each column containing a different parameter for the ellipses: % % Column 1: A the additive intensity value of the ellipse % Column 2: a the length of the horizontal semi-axis of the ellipse % Column 3: b the length of the vertical semi-axis of the ellipse % Column 4: x0 the x-coordinate of the center of the ellipse % Column 5: y0 the y-coordinate of the center of the ellipse % Column 6: phi the angle (in degrees) between the horizontal semi-axis % of the ellipse and the x-axis of the image % % For purposes of generating the phantom, the domains for the x- and % y-axes span [-1,1]. Columns 2 through 5 must be specified in terms % of this range. % % [P,E] = PHANTOM(...) returns the matrix E used to generate the phantom. % % Class Support % ------------- % All inputs must be of class double. All outputs are of class double. % % Remarks % ------- % For any given pixel in the output image, the pixel's value is equal to the % sum of the additive intensity values of all ellipses that the pixel is a % part of. If a pixel is not part of any ellipse, its value is 0. % % The additive intensity value A for an ellipse can be positive or negative; % if it is negative, the ellipse will be darker than the surrounding pixels. % Note that, depending on the values of A, some pixels may have values outside % the range [0,1]. % % See also RADON, IRADON. % Copyright 1993-2003 The MathWorks, Inc. % $Revision: 1.13.4.2 $ $Date: 2003/08/01 18:09:35 $ % References: % A. K. Jain, "Fundamentals of Digital Image Processing", p. 439. % P. A. Toft, "The Radon Transform, Theory and Implementation" (unpublished % dissertation), p. 199. [ellipse,n] = parse_inputs(varargin{:}); p = zeros(n); xax = ( (0:n-1)-(n-1)/2 ) / ((n-1)/2); xg = repmat(xax, n, 1); % x coordinates, the y coordinates are rot90(xg) for k = 1:size(ellipse,1) asq = ellipse(k,2)^2; % a^2 bsq = ellipse(k,3)^2; % b^2 phi = ellipse(k,6)*pi/180; % rotation angle in radians x0 = ellipse(k,4); % x offset y0 = ellipse(k,5); % y offset A = ellipse(k,1); % Amplitude change for this ellipse x=xg-x0; % Center the ellipse y=rot90(xg)-y0; cosp = cos(phi); sinp = sin(phi); idx=find(((x.*cosp + y.*sinp).^2)./asq + ((y.*cosp - x.*sinp).^2)./bsq <= 1); p(idx) = p(idx) + A; end function [e,n] = parse_inputs(varargin) % e is the m-by-6 array which defines ellipses % n is the size of the phantom brain image n=256; % The default size e = []; defaults = {'shepp-logan', 'modified shepp-logan'}; for i=1:nargin if ischar(varargin{i}) % Look for a default phantom def = lower(varargin{i}); idx = strmatch(def, defaults); if isempty(idx) eid = sprintf('Images:%s:unknownPhantom',mfilename); msg = 'Unknown default phantom selected.'; error(eid,'%s',msg); end switch defaults{idx} case 'shepp-logan' e = shepp_logan; case 'modified shepp-logan' e = modified_shepp_logan; end elseif numel(varargin{i})==1 n = varargin{i}; % a scalar is the image size elseif ndims(varargin{i})==2 && size(varargin{i},2)==6 e = varargin{i}; % user specified phantom else eid = sprintf('Images:%s:invalidInputArgs',mfilename); msg = 'Invalid input arguments.'; error(eid,'%s',msg); end end if isempty(e) % ellipse is not yet defined e = modified_shepp_logan; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Default head phantoms: % function shep=shepp_logan % % This is the default head phantom, taken from AK Jain, 439. % % A a b x0 y0 phi % --------------------------------- shep = [ 1 .69 .92 0 0 0 -.98 .6624 .8740 0 -.0184 0 -.02 .1100 .3100 .22 0 -18 -.02 .1600 .4100 -.22 0 18 .01 .2100 .2500 0 .35 0 .01 .0460 .0460 0 .1 0 .01 .0460 .0460 0 -.1 0 .01 .0460 .0230 -.08 -.605 0 .01 .0230 .0230 0 -.606 0 .01 .0230 .0460 .06 -.605 0 ]; function toft=modified_shepp_logan % % This head phantom is the same as the Shepp-Logan except % the intensities are changed to yield higher contrast in % the image. Taken from Toft, 199-200. % % A a b x0 y0 phi % --------------------------------- toft = [ 1 .69 .92 0 0 0 -.8 .6624 .8740 0 -.0184 0 -.2 .1100 .3100 .22 0 -18 -.2 .1600 .4100 -.22 0 18 .1 .2100 .2500 0 .35 0 .1 .0460 .0460 0 .1 0 .1 .0460 .0460 0 -.1 0 .1 .0460 .0230 -.08 -.605 0 .1 .0230 .0230 0 -.606 0 .1 .0230 .0460 .06 -.605 0 ];
github
alex-delalande/numerical-tours-master
perform_arith_coding.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_arith_coding.m
30,315
utf_8
b017b1e1fe107dfccde92738b628d194
function [y,nbr_bits] = perform_arith_coding(xC, dir) % perform_arithmetic_coding_slow - perform adaptive arithmetic coding % % [y,nbr_bits] = perform_arithmetic_coding_slow(x, dir); % % dir=1 for encoding, dir=-1 for decoding. % % Based on the code of (c) Karl Skretting % % Copyright (c) 2008 Gabriel Peyre % % ------------------------------------------------------------------ % Arguments: % y a column vector of non-negative integers (bytes) representing % the code, 0 <= y(i) <= 255. % Res a matrix that sum up the results, size is (NumOfX+1)x4 % one line for each of the input sequences, the columns are % Res(:,1) - number of elements in the sequence % Res(:,2) - unused (=0) % Res(:,3) - bits needed to code the sequence % Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1) % Then the last line is total (which include bits needed to store NumOfX) % x a cell array of column vectors of integers representing the % symbol sequences. (should not be to large integers) % If only one sequence is to be coded, we must make the cell array % like: xC=cell(2,1); xC{1}=x; % where x is the sequence % ------------------------------------------------------------------ % Note: this routine is extremely slow since it is all Matlab code % SOME NOTES ON THE FUNCTION % This function is almost like Arith06, but some important changes have % been done. Arith06 is buildt almost like Huff06, but this close connection % is removed in Arith07. This imply that to understand the way Arith06 % works you should read the dokumentation for Huff06 and especially the % article on Recursive Huffman Coding. To understand how Arith07 works it is % only confusing to read about the recursive Huffman coder, Huff06. % % Arith07 code each of the input sequences in xC in sequence, the % method used for each sequence depends on what kind (xType) the % sequence is. We have % xType Explanation % 0 Empty sequence (L=0) % 1 Only one symbol (L=1) and x>1 % 9 Only one symbol (L=1) and x=0/1 % 11 Only one symbol (L=1) and x<0 % 2 all symbols are equal, L>1, x(1)=x(2)=...=x(L)>1 % 8 all symbols are equal, L>1, x(1)=x(2)=...=x(L)=0/1 % 10 all symbols are equal, L>1, x(1)=x(2)=...=x(L)<0 % 3 non-negative integers, 0<=x(l)<=1000 % 4 not to large integers, -1000<=x(l)<=1000 % 5 large non-negative integers possible, 0<=x(l) % 6 also possible with large negative numbers % 7 A binary sequence, x(l)=0/1. % Many functions are defined in this m-file: % PutBit, GetBit read and write bit from/to bitstream % PutABit, GetABit Arithmetic encoding of a bit, P{0}=P{1}=0.5 % PutVLIC, GetVLIC Variable Length Integer Code % PutS(x,S,C), GetS(S,C) A symbol x, which is in S, is aritmetic coded % according to the counts given by C. % Ex: A binary variable with the givene probabilities % P{0}=0.8 and P{1}=0.2, PutS(x,[0,1],[4,1]). % PutN(x,N), GetN(N) Arithmetic coding of a number x in range 0<=x<=N where % we assume equal probability, P{0}=P{1}=...=P{N}=1/(N+1) if iscell(xC) & length(xC)>1 nbr_bits = 0; for k=1:length(xC) [y{k},nb] = perform_arithmetic_coding(xC{k}, dir); nbr_bits = nbr_bits + nb; end return; end if dir==1 xC = {xC}; end %---------------------------------------------------------------------- % Copyright (c) 1999-2001. Karl Skretting. All rights reserved. % Hogskolen in Stavanger (Stavanger University), Signal Processing Group % Mail: [email protected] Homepage: http://www.ux.his.no/~karlsk/ % % HISTORY: % Ver. 1.0 19.05.2001 KS: Function made (based on Arith06 and Huff06) %---------------------------------------------------------------------- % these global variables are used to read from or write to the compressed sequence global y Byte BitPos % and these are used by the subfunctions for arithmetic coding global high low range ub hc lc sc K code Mfile='Arith07'; K=24; % number of bits to use in integers (4 <= K <= 24) Display=0; % display progress and/or results % check input and output arguments, and assign values to arguments if (nargin < 1); error([Mfile,': function must have input arguments, see help.']); end if (nargout < 1); error([Mfile,': function must have output arguments, see help.']); end if (~iscell(xC)) Encode=0;Decode=1; y=xC(:); % first argument is y y=[y;0;0;0;0]; % add some zeros to always have bits available else Encode=1;Decode=0; NumOfX = length(xC); end Byte=0;BitPos=1; % ready to read/write into first position low=0;high=2^K-1;ub=0; % initialize the coder code=0; % we just select some probabilities which we belive will work quite well TypeS=[ 3, 4, 5, 7, 6, 1, 9, 11, 2, 8, 10, 0]; TypeC=[100, 50, 50, 50, 20, 10, 10, 10, 4, 4, 2, 1]; if Encode Res=zeros(NumOfX,4); % initalize the global variables y=zeros(10,1); % put some zeros into y initially % start encoding, first write VLIC to give number of sequences PutVLIC(NumOfX); % now encode each sequence continuously Ltot=0; for num=1:NumOfX x=xC{num}; x=full(x(:)); % make sure x is a non-sparse column vector L=length(x); Ltot=Ltot+L; y=[y(1:Byte);zeros(50+2*L,1)]; % make more space available in y StartPos=Byte*8-BitPos+ub; % used for counting bits % find what kind of sequenqe we have, save this in xType if (L==0) xType=0; elseif L==1 if (x==0) | (x==1) % and it is 0/1 xType=9; elseif (x>1) % and it is not 0/1 (and positive) xType=1; else % and it is not 0/1 (and negative) xType=11; end else % now find some more info about x maxx=max(x); minx=min(x); rangex=maxx-minx+1; if (rangex==1) % only one symbol if (maxx==0) | (maxx==1) % and it is 0/1 xType=8; elseif (maxx>1) % and it is not 0/1 (and positive) xType=2; else % and it is not 0/1 (and negative) xType=10; end elseif (minx == 0) & (maxx == 1) % a binary sequence xType=7; elseif (minx >= 0) & (maxx <= 1000) xType=3; elseif (minx >= 0) xType=5; elseif (minx >= -1000) & (maxx <= 1000) xType=4; else xType=6; end end % if (L==0) if Display >= 2 disp([Mfile,': sequence ',int2str(num),' has xType=',int2str(xType)]); end % if sum(xType==[4,6]) % negative values are present I=find(x); % non-zero entries in x Sg=(sign(x(I))+1)/2; % the signs will be needed later, 0/1 x=abs(x); end if sum(xType==[5,6]) % we take the logarithms of the values I=find(x); % non-zero entries in x xa=x; % additional bits x(I)=floor(log2(x(I))); xa(I)=xa(I)-2.^x(I); x(I)=x(I)+1; end % now do the coding of this sequence PutS(xType,TypeS,TypeC); if (xType==1) % one symbol and x=x(1)>1 PutVLIC(x-2); elseif (xType==2) % L>1 but only one symbol, x(1)=x(2)=...=x(L)>1 PutVLIC(L-2); PutVLIC(x(1)-2); elseif sum(xType==[3,4,5,6]) % now 'normalized' sequences: 0 <= x(i) <= 1000 PutVLIC(L-2); M=max(x); PutN(M,1000); % some bits for M % initialize model T=[ones(M+2,1);0]; Tu=flipud((-1:(M+1))'); % (-1) since ESC never is used in Tu context % and code the symbols in the sequence x for l=1:L sc=T(1); m=x(l); hc=T(m+1);lc=T(m+2); if hc==lc % unused symbol, code ESC symbol first hc=T(M+2);lc=T(M+3); EncodeSymbol; % code escape with T table sc=Tu(1);hc=Tu(m+1);lc=Tu(m+2); % symbol with Tu table Tu(1:(m+1))=Tu(1:(m+1))-1; % update Tu table end EncodeSymbol; % code actual symbol with T table (or Tu table) % update T table, MUST be identical in Encode and Decode % this avoid very large values in T even if sequence is very long T(1:(m+1))=T(1:(m+1))+1; if (rem(l,5000)==0) dT=T(1:(M+2))-T(2:(M+3)); dT=floor(dT*7/8+1/8); for m=(M+2):(-1):1; T(m)=T(m+1)+dT(m); end; end end % for l=1:L % this end the "elseif sum(xType==[3,4,5,6])"-clause elseif (xType==7) % L>1 and 0 <= x(i) <= 1 PutVLIC(L-2); EncodeBin(x,L); % code this sequence a special way elseif (xType==8) % L>1 and 0 <= x(1)=x(2)=...=x(L) <= 1 PutVLIC(L-2); PutABit(x(1)); elseif (xType==9) % L=1 and 0 <= x(1) <= 1 PutABit(x(1)); elseif (xType==10) % L>1 and x(1)=x(2)=...=x(L) <= -1 PutVLIC(L-2); PutVLIC(-1-x(1)); elseif (xType==11) % L=1 and x(1) <= -1 PutVLIC(-1-x); end % if (xType==1) % additional information should be coded as well if 0 % first the way it is not done any more if sum(xType==[4,6]) % sign must be stored for i=1:length(Sg); PutABit(Sg(i)); end; end if sum(xType==[5,6]) % additional bits must be stored for i=1:L for ii=(x(i)-1):(-1):1 PutABit(bitget(xa(i),ii)); end end end else % this is how we do it if sum(xType==[4,6]) % sign must be stored EncodeBin(Sg,length(I)); % since length(I)=length(Sg) end if sum(xType==[5,6]) % additional bits must be stored b=zeros(sum(x)-length(I),1); % number of additional bits bi=0; for i=1:L for ii=(x(i)-1):(-1):1 bi=bi+1; b(bi)=bitget(xa(i),ii); end end if (bi~=(sum(x)-length(I))) error([Mfile,': logical error, bi~=(sum(x)-length(I)).']); end EncodeBin(b,bi); % since bi=(sum(x)-length(I)) end end % EndPos=Byte*8-BitPos+ub; % used for counting bits bits=EndPos-StartPos; Res(num,1)=L; Res(num,2)=0; Res(num,3)=bits; if L>0; Res(num,4)=bits/L; else Res(num,4)=bits; end; if Display disp([Mfile,': Sequence ',int2str(num),' of ',int2str(L),' symbols ',... 'encoded using ',int2str(bits),' bits.']); end end % for num=1:NumOfX % flush the arithmetic coder PutBit(bitget(low,K-1)); ub=ub+1; while ub>0 PutBit(~bitget(low,K-1)); ub=ub-1; end % flush is finished y=y(1:Byte); varargout(1) = {y}; if (nargout >= 2) % now calculate results for the total Res(NumOfX+1,1)=Ltot; Res(NumOfX+1,2)=0; Res(NumOfX+1,3)=Byte*8; if (Ltot>0); Res(NumOfX+1,4)=Byte*8/Ltot; else Res(NumOfX+1,4)=Byte*8; end; varargout(2) = {Res}; end end % if Encode if Decode for k=1:K code=code*2; code=code+GetBit; % read bits into code end NumOfX=GetVLIC; % first read number of sequences xC=cell(NumOfX,1); for num=1:NumOfX % find what kind of sequenqe we have, xType, stored first in sequence xType=GetS(TypeS,TypeC); % now decode the different kind of sequences, each the way it was stored if (xType==0) % empty sequence, no more symbols coded x=[]; elseif (xType==1) % one symbol and x=x(1)>1 x=GetVLIC+2; elseif (xType==2) % L>1 but only one symbol, x(1)=x(2)=...=x(L)>1 L=GetVLIC+2; x=ones(L,1)*(GetVLIC+2); elseif sum(xType==[3,4,5,6]) % now 'normalized' sequences: 0 <= x(i) <= 1000 L=GetVLIC+2; x=zeros(L,1); M=GetN(1000); % M is max(x) % initialize model T=[ones(M+2,1);0]; Tu=flipud((-1:(M+1))'); % (-1) since ESC never is used in Tu context % and decode the symbols in the sequence x for l=1:L sc=T(1); range=high-low+1; counts=floor(( (code-low+1)*sc-1 )/range); m=2; while (T(m)>counts); m=m+1; end; hc=T(m-1);lc=T(m);m=m-2; RemoveSymbol; if (m>M) % decoded ESC symbol, find symbol from Tu table sc=Tu(1);range=high-low+1; counts=floor(( (code-low+1)*sc-1 )/range); m=2; while (Tu(m)>counts); m=m+1; end; hc=Tu(m-1);lc=Tu(m);m=m-2; RemoveSymbol; Tu(1:(m+1))=Tu(1:(m+1))-1; % update Tu table end x(l)=m; % update T table, MUST be identical in Encode and Decode % this avoid very large values in T even if sequence is very long T(1:(m+1))=T(1:(m+1))+1; if (rem(l,5000)==0) dT=T(1:(M+2))-T(2:(M+3)); dT=floor(dT*7/8+1/8); for m=(M+2):(-1):1; T(m)=T(m+1)+dT(m); end; end end % for l=1:L % this end the "elseif sum(xType==[3,4,5,6])"-clause elseif (xType==7) % L>1 and 0 <= x(i) <= 1 L=GetVLIC+2; x=DecodeBin(L); % decode this sequence a special way elseif (xType==8) % L>1 and 0 <= x(1)=x(2)=...=x(L) <= 1 L=GetVLIC+2; x=ones(L,1)*GetABit; elseif (xType==9) % L=1 and 0 <= x(1) <= 1 x=GetABit; elseif (xType==10) % L>1 and x(1)=x(2)=...=x(L) <= -1 L=GetVLIC+2; x=ones(L,1)*(-1-GetVLIC); elseif (xType==11) % L=1 and x(1) <= -1 x=(-1-GetVLIC); end % if (xType==0) % additional information should be decoded as well L=length(x); I=find(x); if 0 if sum(xType==[4,6]) % sign must be retrieved Sg=zeros(size(I)); for i=1:length(I); Sg(i)=GetABit; end; % and the signs (0/1) Sg=Sg*2-1; % (-1/1) end if sum(xType==[5,6]) % additional bits must be retrieved xa=zeros(L,1); for i=1:L for ii=2:x(i) xa(i)=2*xa(i)+GetABit; end end x(I)=2.^(x(I)-1); x=x+xa; end else if sum(xType==[4,6]) % sign must be retrieved Sg=DecodeBin(length(I)); % since length(I)=length(Sg) Sg=Sg*2-1; % (-1/1) end if sum(xType==[5,6]) % additional bits must be retrieved bi=sum(x)-length(I); % number of additional bits b=DecodeBin(bi); bi=0; xa=zeros(L,1); for i=1:L for ii=2:x(i) bi=bi+1; xa(i)=2*xa(i)+b(bi); end end x(I)=2.^(x(I)-1); x=x+xa; end end if sum(xType==[4,6]) % sign must be used x(I)=x(I).*Sg; end % now x is the retrieved sequence xC{num}=x; end % for num=1:NumOfX varargout(1) = {xC}; end if dir==1 nbr_bits = Res(1,3); else % undef for decoding nbr_bits = -1; y = xC{1}; end return % end of main function, Arith07 %---------------------------------------------------------------------- %---------------------------------------------------------------------- % --- The functions for binary sequences: EncodeBin and DecodeBin ------- % These function may call themselves recursively function EncodeBin(x,L) global y Byte BitPos global high low range ub hc lc sc K code Display=0; x=x(:); if (length(x)~=L); error('EncodeBin: length(x) not equal L.'); end; % first we try some different coding methods to find out which one % that might do best. Many more methods could have been tried, for % example methods to check if x is a 'byte' sequence, or if the bits % are grouped in other ways. The calling application is the best place % to detect such dependencies, since it will (might) know the process and % possible also its statistical (or deterministic) properties. % Here we just check some few coding methods: direct, split, diff, diff+split % The main variables used for the different methods are: % direct: x, I, J, L11, b0 % split: x is split into x1 and x2, L1, L2, b1 is bits needed % diff: x3 is generated from x, I3, J3 L31, b2 % diff+split: x3 is split into x4 and x5, L4, L5, b3 % MetS=[0,1,2,3]; % the different methods, direct, split, diff, diff+split MetC=[9,3,3,1]; % and the counts (which gives the probabilities) % first set how many bits needed to code the method b0=log2(sum(MetC))-log2(MetC(1)); b1=log2(sum(MetC))-log2(MetC(2)); b2=log2(sum(MetC))-log2(MetC(3)); b3=log2(sum(MetC))-log2(MetC(4)); I=find(x(1:(L-1))==1); % except last element in x J=find(x(1:(L-1))==0); L11=length(I); % perhaps is 'entropy' interesting % N1=L11+x(L); % N0=L-N1; % b=N1*log2(L/N1)+N0*log2(L/N0); % disp(['L=',int2str(L),', N1=',int2str(N1),', (e)bits=',num2str(b)]); b0=b0+BitEst(L,L11+x(L)); % bits needed for the sequence without splitting if Display disp(['EncodeBin: x of length ',int2str(L),' and ',int2str(L11+x(L)),... ' ones (p=',num2str((L11+x(L))/L,'%1.3f'),... ') can be coded by ',num2str(b0,'%6.0f'),' bits.']); end % diff with a binary sequence is to indicate wether or not a symbol is % the same as preceeding symbol or not, x(0) is assumed to be '0' (zero). % This is the DPCM coding scheme on a binary sequence x3=abs(x-[0;x(1:(L-1))]); I3=find(x3(1:(L-1))==1); % except last element in x3 J3=find(x3(1:(L-1))==0); L31=length(I3); b2=b2+BitEst(L,L31+x3(L)); % bits needed for the sequence without splitting if Display disp(['EncodeBin: diff x, L=',int2str(L),' gives ',int2str(L31+x3(L)),... ' ones (p=',num2str((L31+x3(L))/L,'%1.3f'),... ') can be coded by ',num2str(b2,'%6.0f'),' bits.']); end % if (L>40) % only now we try to split the sequences x and x3 if (L11>3) & ((L-L11)>3) % try to split x into x1 and x2, depending on previous symbol if L11<(L/2) x1=x(I+1); x2=[x(1);x(J+1)]; L1=L11;L2=L-L11; else x1=[x(1);x(I+1)]; x2=x(J+1); L1=L11+1;L2=L-L11-1; end b11=BitEst(L1,length(find(x1))); % bits needed for x1 b12=BitEst(L2,length(find(x2))); % bits needed for x2 % b1 is bits to code: Method, L11, x1 and x2 b1=b1+log2(L)+b11+b12; if Display disp(['EncodeBin, x -> x1+x2: lengths are ',int2str(L1),'+',int2str(L2),... ' bits are ',num2str(b11,'%6.0f'),'+',num2str(b12,'%6.0f'),... '. Total is ',num2str(b1,'%6.0f'),' bits.']); end else b1=b0+1; % just to make this larger end if (L31>3) & ((L-L31)>3) % try to split x3 into x4 and x5, depending on previous symbol if L31<(L/2) x4=x3(I3+1); x5=[x3(1);x3(J3+1)]; L4=L31;L5=L-L31; else x4=[x3(1);x3(I3+1)]; x5=x3(J3+1); L4=L31+1;L5=L-L31-1; end b31=BitEst(L4,length(find(x4))); % bits needed for x4 b32=BitEst(L5,length(find(x5))); % bits needed for x5 % b3 is bits to code: Method, L31, x4 and x5 b3=b3+log2(L)+b31+b32; if Display disp(['EncodeBin, diff x -> x4+x5: lengths are ',int2str(L4),'+',int2str(L5),... ' bits are ',num2str(b31,'%6.0f'),'+',num2str(b32,'%6.0f'),... '. Total is ',num2str(b3,'%6.0f'),' bits.']); end else b3=b2+1; % just to make this larger end else b1=b0+1; % just to make this larger b3=b2+1; % just to make this larger end % now code x by the best method of those investigated [b,MetI]=min([b0,b1,b2,b3]); MetI=MetI-1; PutS(MetI,MetS,MetC); % code which method to use % if MetI==0 % code the sequence x N1=L11+x(L); N0=L-N1; PutN(N1,L); % code N1, 0<=N1<=L for n=1:L if ~(N0*N1); break; end; PutS(x(n),[0,1],[N0,N1]); % code x(n) N0=N0-1+x(n);N1=N1-x(n); % update model (of rest of the sequence) end elseif MetI==1 % code x1 and x2 clear x4 x5 x3 x I3 J3 I J PutN(L11,L-1); % 0<=L11<=(L-1) EncodeBin(x1,L1); EncodeBin(x2,L2); elseif MetI==2 % code the sequence x3 N1=L31+x3(L); N0=L-N1; PutN(N1,L); % code N1, 0<=N1<=L for n=1:L if ~(N0*N1); break; end; PutS(x3(n),[0,1],[N0,N1]); % code x3(n) N0=N0-1+x3(n);N1=N1-x3(n); % update model (of rest of the sequence) end elseif MetI==3 % code x4 and x5 clear x1 x2 x3 x I3 J3 I J PutN(L31,L-1); % 0<=L31<=(L-1) EncodeBin(x4,L4); EncodeBin(x5,L5); end return % end of EncodeBin function x = DecodeBin(L) global y Byte BitPos global high low range ub hc lc sc K code % these must be as in EncodeBin MetS=[0,1,2,3]; % the different methods, direct, split, diff, diff+split MetC=[9,3,3,1]; % and the counts (which gives the probabilities) MetI=GetS(MetS,MetC); % encode which method to use if (MetI==1) | (MetI==3) % a split was done L11=GetN(L-1); % 0<=L11<=(L-1) if L11<(L/2) L1=L11;L2=L-L11; else L1=L11+1;L2=L-L11-1; end x1=DecodeBin(L1); x2=DecodeBin(L2); % build sequence x from x1 and x2 x=zeros(L,1); if L11<(L/2) x(1)=x2(1); n1=0;n2=1; % index for the last in x1 and x2 else x(1)=x1(1); n1=1;n2=0; % index for the last in x1 and x2 end for n=2:L if (x(n-1)) n1=n1+1; x(n)=x1(n1); else n2=n2+1; x(n)=x2(n2); end end else % no split N1=GetN(L); N0=L-N1; x=zeros(L,1); for n=1:L if (N0==0); x(n:L)=1; break; end; if (N1==0); break; end; x(n)=GetS([0,1],[N0,N1]); % decode x(n) N0=N0-1+x(n);N1=N1-x(n); % update model (of rest of the sequence) end end if (MetI==2) | (MetI==3) % x is diff coded for n=2:L x(n)=x(n-1)+x(n); end x=rem(x,2); end return % end of DecodeBin % ------- Other subroutines ------------------------------------------------ % Functions to write and read a Variable Length Integer Code word % This is a way of coding non-negative integers that uses fewer % bits for small integers than for large ones. The scheme is: % '00' + 4 bit - integers from 0 to 15 % '01' + 8 bit - integers from 16 to 271 % '10' + 12 bit - integers from 272 to 4367 % '110' + 16 bit - integers from 4368 to 69903 % '1110' + 20 bit - integers from 69940 to 1118479 % '1111' + 24 bit - integers from 1118480 to 17895695 % not supported - integers >= 17895696 (=2^4+2^8+2^12+2^16+2^20+2^24) function PutVLIC(N) global y Byte BitPos global high low range ub hc lc sc K code if (N<0) error('Arith07-PutVLIC: Number is negative.'); elseif (N<16) PutABit(0);PutABit(0); for (i=4:-1:1); PutABit(bitget(N,i)); end; elseif (N<272) PutABit(0);PutABit(1); N=N-16; for (i=8:-1:1); PutABit(bitget(N,i)); end; elseif (N<4368) PutABit(1);PutABit(0); N=N-272; for (i=12:-1:1); PutABit(bitget(N,i)); end; elseif (N<69940) PutABit(1);PutABit(1);PutABit(0); N=N-4368; for (i=16:-1:1); PutABit(bitget(N,i)); end; elseif (N<1118480) PutABit(1);PutABit(1);PutABit(1);PutABit(0); N=N-69940; for (i=20:-1:1); PutABit(bitget(N,i)); end; elseif (N<17895696) PutABit(1);PutABit(1);PutABit(1);PutABit(1); N=N-1118480; for (i=24:-1:1); PutABit(bitget(N,i)); end; else error('Arith07-PutVLIC: Number is too large.'); end return function N=GetVLIC global y Byte BitPos global high low range ub hc lc sc K code N=0; if GetABit if GetABit if GetABit if GetABit for (i=1:24); N=N*2+GetABit; end; N=N+1118480; else for (i=1:20); N=N*2+GetABit; end; N=N+69940; end else for (i=1:16); N=N*2+GetABit; end; N=N+4368; end else for (i=1:12); N=N*2+GetABit; end; N=N+272; end else if GetABit for (i=1:8); N=N*2+GetABit; end; N=N+16; else for (i=1:4); N=N*2+GetABit; end; end end return % Aritmetic coding of a number or symbol x, the different symbols (numbers) % are given in the array S, and the counts (which gives the probabilities) % are given in C, an array of same length as S. % x must be a number in S. % example with symbols 0 and 1, where probabilites are P{0}=0.8, P{1}=0.2 % PutS(x,[0,1],[4,1]) and x=GetS([0,1],[4,1]) % An idea: perhaps the array S should be only in the calling function, and % that it do not need to be passed as an argument at all. % Hint: it may be best to to the most likely symbols (highest counts) in % the beginning of the tables S and C. function PutS(x,S,C) global y Byte BitPos global high low range ub hc lc sc K code N=length(S); % also length(C) m=find(S==x); % m is a single value, index in S, 1 <= m <= N sc=sum(C); lc=sc-sum(C(1:m)); hc=lc+C(m); % disp(['PutS: lc=',int2str(lc),' hc=',int2str(hc),' sc=',int2str(sc),' m=',int2str(m)]); EncodeSymbol; % code the bit return function x=GetS(S,C) global y Byte BitPos global high low range ub hc lc sc K code range=high-low+1; sc=sum(C); counts=floor(( (code-low+1)*sc-1 )/range); m=1; lc=sc-C(1); while (lc>counts); m=m+1; lc=lc-C(m); end; hc=lc+C(m); x=S(m); % disp(['GetS: lc=',int2str(lc),' hc=',int2str(hc),' sc=',int2str(sc),' m=',int2str(m)]); RemoveSymbol; return % Aritmetic coding of a number x, 0<=x<=N, P{0}=P{1}=...=P{N}=1/(N+1) function PutN(x,N) % 0<=x<=N global y Byte BitPos global high low range ub hc lc sc K code sc=N+1; lc=x; hc=x+1; EncodeSymbol; % code the bit return function x=GetN(N) global y Byte BitPos global high low range ub hc lc sc K code range=high-low+1; sc=N+1; x=floor(( (code-low+1)*sc-1 )/range); hc=x+1;lc=x; RemoveSymbol; return % Aritmetic coding of a bit, probability is 0.5 for both 1 and 0 function PutABit(Bit) global y Byte BitPos global high low range ub hc lc sc K code sc=2; if Bit hc=1;lc=0; else hc=2;lc=1; end EncodeSymbol; % code the bit return function Bit=GetABit global y Byte BitPos global high low range ub hc lc sc K code range=high-low+1; sc=2; counts=floor(( (code-low+1)*sc-1 )/range); if (1>counts) Bit=1;hc=1;lc=0; else Bit=0;hc=2;lc=1; end RemoveSymbol; return; % The EncodeSymbol function encode a symbol, (correspond to encode_symbol page 149) function EncodeSymbol global y Byte BitPos global high low range ub hc lc sc K code range=high-low+1; high=low+floor(((range*hc)/sc)-1); low=low+floor((range*lc)/sc); while 1 % for loop on page 149 if bitget(high,K)==bitget(low,K) PutBit(bitget(high,K)); while ub > 0 PutBit(~bitget(high,K)); ub=ub-1; end elseif (bitget(low,K-1) & (~bitget(high,K-1))) ub=ub+1; low=bitset(low,K-1,0); high=bitset(high,K-1,1); else break end low=bitset(low*2,K+1,0); high=bitset(high*2+1,K+1,0); end return % The RemoveSymbol function removes (and fill in new) bits from % file, y, to code function RemoveSymbol global y Byte BitPos global high low range ub hc lc sc K code range=high-low+1; high=low+floor(((range*hc)/sc)-1); low=low+floor((range*lc)/sc); while 1 if bitget(high,K)==bitget(low,K) % do nothing (shift bits out) elseif (bitget(low,K-1) & (~bitget(high,K-1))) code=bitset(code,K-1,~bitget(code,K-1)); % switch bit K-1 low=bitset(low,K-1,0); high=bitset(high,K-1,1); else break end low=bitset(low*2,K+1,0); high=bitset(high*2+1,K+1,0); code=bitset(code*2+GetBit,K+1,0); end if (low > high); error('low > high'); end; return % Functions to write and read a Bit function PutBit(Bit) global y Byte BitPos BitPos=BitPos-1; if (~BitPos); Byte=Byte+1; BitPos=8; end; y(Byte) = bitset(y(Byte),BitPos,Bit); return function Bit=GetBit global y Byte BitPos BitPos=BitPos-1; if (~BitPos); Byte=Byte+1; BitPos=8; end; Bit=bitget(y(Byte),BitPos); return function b=BitEst(N,N1); if (N1>(N/2)); N1=N-N1; end; N0=N-N1; if (N>1000) b=(N+3/2)*log2(N)-(N0+1/2)*log2(N0)-(N1+1/2)*log2(N1)-1.3256; elseif (N1>20) b=(N+3/2)*log2(N)-(N0+1/2)*log2(N0)-(N1+1/2)*log2(N1)-0.020984*log2(log2(N))-1.25708; else b=log2(N+1)+sum(log2(N-(0:(N1-1))))-sum(log2(N1-(0:(N1-1)))); end return
github
alex-delalande/numerical-tours-master
perform_omp.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_omp.m
9,857
utf_8
84fa05746f22e0ac58735d2c53b486f1
function X = perform_omp(D,Y,options) % perform_omp - perform orthogonal matching pursuit % % X = perform_omp(D,Y,options); % % D is the dictionary of size (n,p) of p atoms % Y are the m vectors to decompose of size (n,m) % X are the m coefficients of the decomposition of size (p,m). % % Orthogonal matching pursuit is a greedy procedure to minimise % |x|_0 under the constraint that D*x=y. % (maximum sparsity). % You can stop the iteration after |x|_0=k by setting options.nbr_max_atoms=k % You can set relative tolerance options.tol so that iterations stops when % |Y-D*X| < tol*|Y| % % This code calls the fast mex version of Antoine Grolleau % when possible. % % Copyright (c) 2006 Gabriel Peyre if isfield(options, 'sparse_coder') && strcmp(options.sparse_coder, 'mp') X = perform_mp(D,Y,options); return; end options.null = 0; nbr_max_atoms = getoptions(options, 'nbr_max_atoms', 50); tol = getoptions(options, 'tol', 1e-3); use_slow_code = getoptions(options, 'use_slow_code', 0); verb = getoptions(options, 'verb', 1); % P : number of signals, n dimension [n,P]=size(Y); % K : size of the dictionary [n,K]=size(D); if isfield(options, 'use_mex') && options.use_mex==1 && exist('perform_omp_mex')==3 % use fast mex interface X = zeros(K,P); for k=1:P X(:,k) = perform_omp_mex(D,Y(:,k),nbr_max_atoms); end return; end if use_slow_code X = perform_omp_other(Y,D,tol,nbr_max_atoms); return; end for k=1:1:P, if P>20 && verb==1 progressbar(k,P); end a=[]; x = Y(:,k); r = x; % residual I = zeros(nbr_max_atoms,1); % index of the chosen atoms % norm of the original signal e0 = sqrt( sum( r.^2 ) ); for j=1:1:nbr_max_atoms, proj = D'*r; pos = find(abs(proj)==max(abs(proj))); pos = pos(1); I(j) = pos; a=pinv(D(:,I(1:j)))*x; r=x-D(:,I(1:j))*a; % compute error e = sqrt( sum( r.^2 ) ); if e/e0 < tol break; end end; temp=zeros(K,1); temp(I(1:length(a)))=a; X(:,k)=sparse(temp); end; return; function [D,Di,Q,beta,c] = perform_omp_other(f,D,tol,No,ind) % perform_omp - Optimized Orthogonal Matching Pursuit % % It creates an atomic decomposition of a signal using OOMP method. You can choose a % tolerance, the number of atoms to take in or an initial subspace to influence the OOMP % algorithm. Non-selected atoms subtracted by their component in the chosen space are also % available. % % Usage: % x = perform_omp_other(f,D,tol,No,ind); % % Inputs: % f analyzing signal of size (n,s) where s is the number of signals. % D dictionary of normalized atoms of size (n,d) where d is the number % of atoms. % tol desired distance between f and its approximation % the routine will stop if norm(f'-Dsub*(f*beta)')*sqrt(delta)<tol % where delta=1/nbr_max_atoms, nbr_max_atoms is number of points in a sample % No (optional) maximal number of atoms to choose, if the number of chosen % atoms equals to No, routine will stop (default No=size(D,2) % ind (optional) indices determining the initial subspace, % % Outputs: % x coefficients of the decomposition such that f \approx D*x of size (p,s) % % References: % nbr_max_atoms. Rebollo-Neira and D. Lowe, "Optimized Orthogonal Matching Pursuit Approach", % IEEE Signal Processing Letters, Vol(9,4), 137-140, (2002). % % See also OMPF. % [Dnew,Di]=oompf(f,D,tol); % [Dnew,Di,Q,beta,c]=oompf(f,D,tol,No,ind); % D the dictionary D rearranged according to the selection process % D(:,1:k) contains the atoms chosen into the atomic decomposition % Di indices of atoms in new D written w.r.t the original D % Q Q(:,1:k) contains orthonormal functions spanning new D(:,1:k) % Q(:,k+1:N) contains new D(:,k+1:N) subtracted by the projection % onto the space generated by Q(:,1:k) (resp. D(:,1:k)) % beta 'k' biorthogonal functions corresponding to new D(:,1:k) % c 'k' coefficients of the atomic decomposition % See http://www.ncrg.aston.ac.uk/Projects/BiOrthog/ for more details % verbosity verb = 0; name='OOMPF'; %name of routine % get inputs and setup parameters [nbr_max_atoms,N]=size(D); beta=[]; Di=1:N; % index vector of full-dictionary Q=D; %delta=1/nbr_max_atoms; %uncomment in the case of analytical norm delta=1; %uncomment in the case of discrete norm if nargin<5 ind=[];end if nargin<4 No=N;end if nargin<3 tol=0.01;end; if size(f,2)>1 % code several vectors s = size(f,2); x = zeros(size(D,2),s); for i=1:s if s>20 progressbar(i,s); end x(:,i) = perform_omp_other(f(:,i),D,tol,No,ind); end D = x; return; end % the code use transposed data f = f'; numind=length(ind); %atoms having smaller norm than tol1 are supposed be zero ones tol1=1e-7; %1e-5 %threshold for coefficients tol2=1e-10; %0.0001 %1e-5 if verb tic; fprintf('\n%s is running for tol=%g, tol1=%g and tol2=%g.\n',name,tol,tol1,tol2); fprintf('tol -> required precision, distance ||f-f_approx||\n') fprintf('tol1 -> atoms having smaller norm are supposed to be zero ones.\n'); fprintf('tol2 -> algorithm stops if max(|<f,q>|/||q||)<= tol2.\n'); end %=============================== % Main algorithm: at kth iteration %=============================== H=min(No,N); %maximal number of function in sub-dictionary for k=1:H %finding of maximal coefficient c=zeros(1,N);cc=zeros(1,N); if k<=numind [test,q]=ismember(ind(k),Di); if test~=1 error('Demanded index %d is out of dictionary',ind(k));end c(k)=norm(Q(:,q)); if c(k)<tol1 error('Demanded atom with index %d is dependent on the others.',ind(k)); end; else for p=k:N, c(p)=norm(Q(:,p)); if c(p)>tol1 cc(p)=abs(f*Q(:,p))/c(p);end; end [max_c,q]=max(cc); %stopping criterion (coefficient) if max_c<tol2 k=k-1; if verb fprintf('%s stopped, max(|<f,q>|/||q||)<= tol2=%g.\n',name,tol2); end break; end end if q~=k Q(:,[k q])=Q(:,[q k]); % swap k-th and q-th columns D(:,[k q])=D(:,[q k]); Di([k q])=Di([q k]); end %re-orthogonalization of Q(:,k) w.r.t Q(:,1),..., Q(:,k-1) if k>1 for p=1:k-1 Q(:,k)=Q(:,k)-(Q(:,p)'*Q(:,k))*Q(:,p); end end nork=norm(Q(:,k)); Q(:,k)=Q(:,k)/nork; %normalization % compute biorthogonal functions beta from 1 to k-1 if k>1 beta=beta-Q(:,k)*(D(:,k)'*beta)/nork; end beta(:,k)=Q(:,k)/nork; % kth biorthogonal function %orthogonalization of Q(:,k+1:n) wrt Q(:,k) if k==N, break; end for p=k+1:N % orthogonalization of Q(:,p) wrt Q(:,k) Q(:,p)=Q(:,p)-(Q(:,k)'*Q(:,p))*Q(:,k); end %stopping criterion (distance) if (tol~= 0) & (norm(f'-D(:,1:k)*(f*beta)')*sqrt(delta) < tol) break;end; end c=f*beta; normf=norm(f'-D(:,1:k)*c')*sqrt(delta); if verb fprintf('From %d atoms in this dictionary %s has chosen %d atoms.\n',N,name,k); fprintf('\n%s lasted %g seconds\n',name,toc); fprintf('\nNorm ||f-f_approx|| is %g. \n',normf); end % error testing % orthogonality errortest(Q(:,1:k)); % biorthogonality errortest(D(:,1:k),beta); if nargout==1 x = zeros( size(D,2),1 ); Di = Di(1:length(c)); x(Di(:)) = c(:); D = x; end %Copyright (C) 2006 Miroslav ANDRLE and Laura REBOLLO-NEIRA % %This program is free software; you can redistribute it and/or modify it under the terms %of the GNU General Public License as published by the Free Software Foundation; either %version 2 of the License, or (at your option) any later version. % %This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; %without even the implied warranty of MERCHANTABILITY or FITNESS FOR X PARTICULAR PURPOSE. %See the GNU General Public License for more details. % %You should have received a copy of the GNU General Public License along with this program; %if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, %Boston, MA 02110-1301, USA. function f=errortest(D,beta); % ERRORTEST tests orthogonality of a sequence or biorthogonality of two sequences. % % Usage: errortest(D,beta); % errortest(Q); % % Inputs: % D sequence of vectors % beta (optional) biorthogonal sequence % % Output: % f orthogonality of D or biorthogonality D w.r.t beta % See http://www.ncrg.aston.ac.uk/Projects/BiOrthog/ for more details name='ERRORTEST'; verb = 0; if nargin==1 % orthogonality PP=D'*D;f=norm(eye(size(PP))-PP); if verb fprintf('Orthogonality: %g \n',f); end elseif nargin==2 % biorthogonality PP=beta'*D;f=norm(eye(size(PP))-PP); if verb fprintf('Biorthogonality: %g \n',f); end else if verb fprintf('%s: Wrong number of arguments',name); end end %Copyright (C) 2006 Miroslav ANDRLE and Laura REBOLLO-NEIRA % %This program is free software; you can redistribute it and/or modify it under the terms %of the GNU General Public License as published by the Free Software Foundation; either %version 2 of the License, or (at your option) any later version. % %This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; %without even the implied warranty of MERCHANTABILITY or FITNESS FOR X PARTICULAR PURPOSE. %See the GNU General Public License for more details. % %You should have received a copy of the GNU General Public License along with this program; %if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, %Boston, MA 02110-1301, USA.
github
alex-delalande/numerical-tours-master
mad.m
.m
numerical-tours-master/matlab/toolbox_signal/mad.m
7,921
utf_8
6d4949e64f7802d97e068c87415b0460
function y = mad(x,flag) %MAD Mean/median absolute deviation. % Y = MAD(X) returns the mean absolute deviation of the values in X. For % vector input, Y is MEAN(ABS(X-MEAN(X)). For a matrix input, Y is a row % vector containing the mean absolute deviation of each column of X. For % N-D arrays, MAD operates along the first non-singleton dimension. % % MAD(X,1) computes Y based on medians, i.e. MEDIAN(ABS(X-MEDIAN(X)). % MAD(X,0) is the same as MAD(X), and uses means. % % MAD treats NaNs as missing values, and removes them. % % See also VAR, STD, IQR. % References: % [1] L. Sachs, "Applied Statistics: A Handbook of Techniques", % Springer-Verlag, 1984, page 253. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.10.2.2 $ $Date: 2004/01/24 09:34:28 $ % The output size for [] is a special case, handle it here. if isequal(x,[]) y = NaN; return; end; if nargin < 2 flag = 0; end % Figure out which dimension nanmean will work along. sz = size(x); dim = find(sz ~= 1, 1); if isempty(dim) dim = 1; end % Need to tile the output of nanmean to center X. tile = ones(1,ndims(x)); tile(dim) = sz(dim); if flag % Compute the median of the absolute deviations from the median. y = nanmedian(abs(x - repmat(nanmedian(x), tile))); else % Compute the mean of the absolute deviations from the mean. y = nanmean(abs(x - repmat(nanmean(x), tile))); end function y = nanmedian(x,dim) %NANMEDIAN Median value, ignoring NaNs. % M = NANMEDIAN(X) returns the sample median of X, treating NaNs as % missing values. For vector input, M is the median value of the non-NaN % elements in X. For matrix input, M is a row vector containing the % median value of non-NaN elements in each column. For N-D arrays, % NANMEDIAN operates along the first non-singleton dimension. % % NANMEDIAN(X,DIM) takes the median along the dimension DIM of X. % % See also MEDIAN, NANMEAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.2.2 $ $Date: 2004/01/24 09:34:33 $ if nargin == 1 y = prctile(x, 50); else y = prctile(x, 50,dim); end function m = nanmean(x,dim) %NANMEAN Mean value, ignoring NaNs. % M = NANMEAN(X) returns the sample mean of X, treating NaNs as missing % values. For vector input, M is the mean value of the non-NaN elements % in X. For matrix input, M is a row vector containing the mean value of % non-NaN elements in each column. For N-D arrays, NANMEAN operates % along the first non-singleton dimension. % % NANMEAN(X,DIM) takes the mean along the dimension DIM of X. % % See also MEAN, NANMEDIAN, NANSTD, NANVAR, NANMIN, NANMAX, NANSUM. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.13.4.2 $ $Date: 2004/01/24 09:34:32 $ % Find NaNs and set them to zero nans = isnan(x); x(nans) = 0; if nargin == 1 % let sum deal with figuring out which dimension to use % Count up non-NaNs. n = sum(~nans); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x) ./ n; else % Count up non-NaNs. n = sum(~nans,dim); n(n==0) = NaN; % prevent divideByZero warnings % Sum up non-NaNs, and divide by the number of non-NaNs. m = sum(x,dim) ./ n; end function y = prctile(x,p,dim) %PRCTILE Percentiles of a sample. % Y = PRCTILE(X,P) returns percentiles of the values in X. P is a scalar % or a vector of percent values. When X is a vector, Y is the same size % as P, and Y(i) contains the P(i)-th percentile. When X is a matrix, % the i-th row of Y contains the P(i)-th percentiles of each column of X. % For N-D arrays, PRCTILE operates along the first non-singleton % dimension. % % Y = PRCTILE(X,P,DIM) calculates percentiles along dimension DIM. The % DIM'th dimension of Y has length LENGTH(P). % % Percentiles are specified using percentages, from 0 to 100. For an N % element vector X, PRCTILE computes percentiles as follows: % 1) The sorted values in X are taken as the 100*(0.5/N), 100*(1.5/N), % ..., 100*((N-0.5)/N) percentiles. % 2) Linear interpolation is used to compute percentiles for percent % values between 100*(0.5/N) and 100*((N-0.5)/N) % 3) The minimum or maximum values in X are assigned to percentiles % for percent values outside that range. % % PRCTILE treats NaNs as missing values, and removes them. % % Examples: % y = prctile(x,50); % the median of x % y = prctile(x,[2.5 25 50 75 97.5]); % a useful summary of x % % See also IQR, MEDIAN, NANMEDIAN, QUANTILE. % Copyright 1993-2004 The MathWorks, Inc. % $Revision: 2.12.4.4 $ $Date: 2004/01/24 09:34:55 $ if ~isvector(p) || numel(p) == 0 error('stats:prctile:BadPercents', ... 'P must be a scalar or a non-empty vector.'); elseif any(p < 0 | p > 100) error('stats:prctile:BadPercents', ... 'P must take values between 0 and 100'); end % Figure out which dimension prctile will work along. sz = size(x); if nargin < 3 dim = find(sz ~= 1,1); if isempty(dim) dim = 1; end dimArgGiven = false; else % Permute the array so that the requested dimension is the first dim. nDimsX = ndims(x); perm = [dim:max(nDimsX,dim) 1:dim-1]; x = permute(x,perm); % Pad with ones if dim > ndims. if dim > nDimsX sz = [sz ones(1,dim-nDimsX)]; end sz = sz(perm); dim = 1; dimArgGiven = true; end % If X is empty, return all NaNs. if isempty(x) if isequal(x,[]) && ~dimArgGiven y = nan(size(p),class(x)); else szout = sz; szout(dim) = numel(p); y = nan(szout,class(x)); end else % Drop X's leading singleton dims, and combine its trailing dims. This % leaves a matrix, and we can work along columns. nrows = sz(dim); ncols = prod(sz) ./ nrows; x = reshape(x, nrows, ncols); x = sort(x,1); nonnans = ~isnan(x); % If there are no NaNs, do all cols at once. if all(nonnans(:)) n = sz(dim); if isequal(p,50) % make the median fast if rem(n,2) % n is odd y = x((n+1)/2,:); else % n is even y = (x(n/2,:) + x(n/2+1,:))/2; end else q = [0 100*(0.5:(n-0.5))./n 100]'; xx = [x(1,:); x(1:n,:); x(n,:)]; y = zeros(numel(p), ncols, class(x)); y(:,:) = interp1q(q,xx,p(:)); end % If there are NaNs, work on each column separately. else % Get percentiles of the non-NaN values in each column. y = nan(numel(p), ncols, class(x)); for j = 1:ncols nj = find(nonnans(:,j),1,'last'); if nj > 0 if isequal(p,50) % make the median fast if rem(nj,2) % nj is odd y(:,j) = x((nj+1)/2,j); else % nj is even y(:,j) = (x(nj/2,j) + x(nj/2+1,j))/2; end else q = [0 100*(0.5:(nj-0.5))./nj 100]'; xx = [x(1,j); x(1:nj,j); x(nj,j)]; y(:,j) = interp1q(q,xx,p(:)); end end end end % Reshape Y to conform to X's original shape and size. szout = sz; szout(dim) = numel(p); y = reshape(y,szout); end % undo the DIM permutation if dimArgGiven y = ipermute(y,perm); end % If X is a vector, the shape of Y should follow that of P, unless an % explicit DIM arg was given. if ~dimArgGiven && isvector(x) y = reshape(y,size(p)); end
github
alex-delalande/numerical-tours-master
plot_hufftree.m
.m
numerical-tours-master/matlab/toolbox_signal/plot_hufftree.m
792
utf_8
b3a28991b5dc6e37df21dad9f445068a
function plot_hufftree(T,p) % plot_hufftree - plot a huffman tree % % plot_hufftree(T); % % Copyright (c) 2008 Gabriel Peyre hold on; plot_tree(T{1},[0,0],1); hold off; axis tight; axis off; %% function plot_tree(T,x,j) tw = 15; lw = 1.5; ms = 10; if not(iscell(T)) de = [-.02 -.2]; % display a string u = text(x(1)+de(1),x(2)+de(2),num2str(T)); set(u,'FontSize',tw); else % display a split h0 = 1/2^j; h = 1 * h0; u = plot( [x(1) x(1)-h], [x(2) x(2)-1], '.-' ); set(u,'MarkerSize',ms); set(u,'LineWidth',lw); u = plot( [x(1) x(1)+h], [x(2) x(2)-1], '.-' ); set(u,'MarkerSize',ms); set(u,'LineWidth',lw); plot_tree(T{1},[x(1)-h x(2)-1],j+1); plot_tree(T{2},[x(1)+h x(2)-1],j+1); end
github
alex-delalande/numerical-tours-master
perform_haar_transf.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_haar_transf.m
3,170
utf_8
14b7d7fd610eca05949ef196c55d7b83
function f = perform_haar_transf(f, Jmin, dir, options) % perform_haar_transf - peform fast Haar transform % % y = perform_haar_transf(x, Jmin, dir); % % Implement a Haar wavelets. % Works in any dimension. % % Copyright (c) 2008 Gabriel Peyre n = size(f,1); Jmax = log2(n)-1; if dir==1 %%% FORWARD %%% for j=Jmax:-1:Jmin sel = 1:2^(j+1); a = subselect(f,sel); for d=1:nb_dims(f) Coarse = ( subselectdim(a,1:2:size(a,d),d) + subselectdim(a,2:2:size(a,d),d) )/sqrt(2); Detail = ( subselectdim(a,1:2:size(a,d),d) - subselectdim(a,2:2:size(a,d),d) )/sqrt(2); a = cat(d, Coarse, Detail ); end f = subassign(f,sel,a); end else %%% BACKWARD %%% for j=Jmin:Jmax sel = 1:2^(j+1); a = subselect(f,sel); for d=1:nb_dims(f) Detail = subselectdim(a,2^j+1:2^(j+1),d); Coarse = subselectdim(a,1:2^j,d); a = subassigndim(a, 1:2:2^(j+1), ( Coarse + Detail )/sqrt(2),d ); a = subassigndim(a, 2:2:2^(j+1), ( Coarse - Detail )/sqrt(2),d ); end f = subassign(f,sel,a); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subselect(f,sel) switch nb_dims(f) case 1 f = f(sel); case 2 f = f(sel,sel); case 3 f = f(sel,sel,sel); case 4 f = f(sel,sel,sel,sel); case 5 f = f(sel,sel,sel,sel,sel); case 6 f = f(sel,sel,sel,sel,sel,sel); case 7 f = f(sel,sel,sel,sel,sel,sel,sel); case 8 f = f(sel,sel,sel,sel,sel,sel,sel,sel); otherwise error('Not implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subselectdim(f,sel,d) switch d case 1 f = f(sel,:,:,:,:,:,:,:); case 2 f = f(:,sel,:,:,:,:,:,:); case 3 f = f(:,:,sel,:,:,:,:,:); case 4 f = f(:,:,:,sel,:,:,:,:); case 5 f = f(:,:,:,:,sel,:,:,:); case 6 f = f(:,:,:,:,:,sel,:,:); case 7 f = f(:,:,:,:,:,:,sel,:); case 8 f = f(:,:,:,:,:,:,:,sel); otherwise error('Not implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subassign(f,sel,g) switch nb_dims(f) case 1 f(sel) = g; case 2 f(sel,sel) = g; case 3 f(sel,sel,sel) = g; case 4 f(sel,sel,sel,sel) = g; case 5 f(sel,sel,sel,sel,sel) = g; case 6 f(sel,sel,sel,sel,sel,sel) = g; case 7 f(sel,sel,sel,sel,sel,sel,sel) = g; case 8 f(sel,sel,sel,sel,sel,sel,sel,sel) = g; otherwise error('Not implemented'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = subassigndim(f,sel,g,d) switch d case 1 f(sel,:,:,:,:,:,:,:) = g; case 2 f(:,sel,:,:,:,:,:,:) = g; case 3 f(:,:,sel,:,:,:,:,:) = g; case 4 f(:,:,:,sel,:,:,:,:) = g; case 5 f(:,:,:,:,sel,:,:,:) = g; case 6 f(:,:,:,:,:,sel,:,:) = g; case 7 f(:,:,:,:,:,:,sel,:) = g; case 8 f(:,:,:,:,:,:,:,sel) = g; otherwise error('Not implemented'); end
github
alex-delalande/numerical-tours-master
perform_huffcoding.m
.m
numerical-tours-master/matlab/toolbox_signal/perform_huffcoding.m
1,491
utf_8
41a9144e1a2da192d37cf10a40add3e2
function y = perform_huffcoding(x,T,dir) % perform_huffcoding - perform huffman coding % % y = perform_huffcoding(x,T,dir); % % dir=+1 for coding % dir=-1 for decoding % % T is a Huffman tree, computed with compute_hufftree % % Copyright (c) 2008 Gabriel Peyre if dir==1 %%% CODING %%% C = huffman_gencode(T); m = length(C); x = round(x); if min(x)<1 || max(x)>m error('Too small or too large token'); end y = []; for i=1:length(x) y = [y C{x(i)}]; end else %%% DE-CODING %%% t = T{1}; y = []; while not(isempty(x)) if x(1)==0 t = t{1}; else t = t{2}; end x(1) = []; if not(iscell(t)) y = [y t]; t = T{1}; end end y = y(:); end %% function C = huffman_gencode(T) if not(iscell(T)) % || not(length(T)==2) C = {}; C{T} = -1; elseif length(T)==1 C = huffman_gencode(T{1}); % remove traling -1 for i=1:length(C) C{i} = C{i}(1:end-1); end elseif length(T)==2 C1 = huffman_gencode(T{1}); C2 = huffman_gencode(T{2}); C = {}; for i=1:length(C1) if not(isempty(C1{i})) C{i} = [0 C1{i}]; end end for i=1:length(C2) if not(isempty(C2{i})) C{i} = [1 C2{i}]; end end else error('Problem'); end
github
alex-delalande/numerical-tours-master
select3d.m
.m
numerical-tours-master/matlab/toolbox_graph/select3d.m
10,864
utf_8
64f6b58cf8db75c3508f68035be9892e
function [pout, vout, viout, facevout, faceiout] = select3d(obj) %SELECT3D(H) Determines the selected point in 3-D data space. % P = SELECT3D determines the point, P, in data space corresponding % to the current selection position. P is a point on the first % patch or surface face intersected along the selection ray. If no % face is encountered along the selection ray, P returns empty. % % P = SELECT3D(H) constrains selection to graphics handle H and, % if applicable, any of its children. H can be a figure, axes, % patch, or surface object. % % [P V] = SELECT3D(...), V is the closest face or line vertex % selected based on the figure's current object. % % [P V VI] = SELECT3D(...), VI is the index into the object's % x,y,zdata properties corresponding to V, the closest face vertex % selected. % % [P V VI FACEV] = SELECT3D(...), FACE is an array of vertices % corresponding to the face polygon containing P and V. % % [P V VI FACEV FACEI] = SELECT3D(...), FACEI is the row index into % the object's face array corresponding to FACE. For patch % objects, the face array can be obtained by doing % get(mypatch,'faces'). For surface objects, the face array % can be obtained from the output of SURF2PATCH (see % SURF2PATCH for more information). % % RESTRICTIONS: % SELECT3D supports surface, patch, or line object primitives. For surface % and patches, the algorithm assumes non-self-intersecting planar faces. % For line objects, the algorithm always returns P as empty, and V will % be the closest vertex relative to the selection point. % % Example: % % h = surf(peaks); % zoom(10); % disp('Click anywhere on the surface, then hit return') % pause % [p v vi face facei] = select3d; % marker1 = line('xdata',p(1),'ydata',p(2),'zdata',p(3),'marker','o',... % 'erasemode','xor','markerfacecolor','k'); % marker2 = line('xdata',v(1),'ydata',v(2),'zdata',v(3),'marker','o',... % 'erasemode','xor','markerfacecolor','k'); % marker2 = line('erasemode','xor','xdata',face(1,:),'ydata',face(2,:),... % 'zdata',face(3,:),'linewidth',10); % disp(sprintf('\nYou clicked at\nX: %.2f\nY: %.2f\nZ: %.2f',p(1),p(2),p(3)')) % disp(sprintf('\nThe nearest vertex is\nX: %.2f\nY: %.2f\nZ: %.2f',v(1),v(2),v(3)')) % % Version 1.3 11-11-04 % Copyright Joe Conti 2004 % Send comments to [email protected] % % See also GINPUT, GCO. % Output variables pout = []; vout = []; viout = []; facevout = []; faceiout = []; % other variables ERRMSG = 'Input argument must be a valid graphics handle'; isline = logical(0); isperspective = logical(0); % Parse input arguments if nargin<1 obj = gco; end if isempty(obj) | ~ishandle(obj) | length(obj)~=1 error(ERRMSG); end % if obj is a figure if strcmp(get(obj,'type'),'figure') fig = obj; ax = get(fig,'currentobject'); currobj = get(fig,'currentobject'); % bail out if not a child of the axes if ~strcmp(get(get(currobj,'parent'),'type'),'axes') return; end % if obj is an axes elseif strcmp(get(obj,'type'),'axes') ax = obj; fig = get(ax,'parent'); currobj = get(fig,'currentobject'); currax = get(currobj,'parent'); % Bail out if current object is under an unspecified axes if ~isequal(ax,currax) return; end % if obj is child of axes elseif strcmp(get(get(obj,'parent'),'type'),'axes') currobj = obj; ax = get(obj,'parent'); fig = get(ax,'parent'); % Bail out else return end axchild = currobj; obj_type = get(axchild,'type'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Get vertex, face, and current point data %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cp = get(ax,'currentpoint')'; % If surface object if strcmp(obj_type,'surface') % Get surface face and vertices fv = surf2patch(axchild); vert = fv.vertices; faces = fv.faces; % If patch object elseif strcmp(obj_type,'patch') vert = get(axchild,'vertices'); faces = get(axchild,'faces'); % If line object elseif strcmp(obj_type,'line') xdata = get(axchild,'xdata'); ydata = get(axchild,'ydata'); zdata = get(axchild,'zdata'); vert = [xdata', ydata',zdata']; faces = []; isline = logical(1); % Ignore all other objects else return; end % Add z if empty if size(vert,2)==2 vert(:,3) = zeros(size(vert(:,2))); if isline zdata = vert(:,3); end end % NaN and Inf check nan_inf_test1 = isnan(faces) | isinf(faces); nan_inf_test2 = isnan(vert) | isinf(vert); if any(nan_inf_test1(:)) | any(nan_inf_test2(:)) warning(sprintf('%s does not support NaNs or Infs in face/vertex data.',mfilename)); end % For debugging % if 0 % ax1 = getappdata(ax,'testselect3d'); % if isempty(ax1) | ~ishandle(ax1) % fig = figure; % ax1 = axes; % axis(ax1,'equal'); % setappdata(ax,'testselect3d',ax1); % end % cla(ax1); % patch('parent',ax1,'faces',faces,'vertices',xvert','facecolor','none','edgecolor','k'); % line('parent',ax1,'xdata',xcp(1,2),'ydata',xcp(2,2),'zdata',0,'marker','o','markerfacecolor','r','erasemode','xor'); % end % Transform vertices from data space to pixel space xvert = local_Data2PixelTransform(ax,vert)'; xcp = local_Data2PixelTransform(ax,cp')'; % Translate vertices so that the selection point is at the origin. xvert(1,:) = xvert(1,:) - xcp(1,2); xvert(2,:) = xvert(2,:) - xcp(2,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% simple algorithm (almost naive algorithm!) for line objects %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if isline % Ignoring line width and marker attributes, find closest % vertex in 2-D view space. d = xvert(1,:).*xvert(1,:) + xvert(2,:).*xvert(2,:); [val i] = min(d); i = i(1); % enforce only one output % Assign output vout = [ xdata(i) ydata(i) zdata(i)]; viout = i; return % Bail out early end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Perform 2-D crossing test (Jordan Curve Theorem) %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Find all vertices that have y components less than zero vert_with_negative_y = zeros(size(faces)); face_y_vert = xvert(2,faces); ind_vert_with_negative_y = find(face_y_vert<0); vert_with_negative_y(ind_vert_with_negative_y) = logical(1); % Find all the line segments that span the x axis is_line_segment_spanning_x = abs(diff([vert_with_negative_y, vert_with_negative_y(:,1)],1,2)); % Find all the faces that have line segments that span the x axis ind_is_face_spanning_x = find(any(is_line_segment_spanning_x,2)); % Ignore data that doesn't span the x axis candidate_faces = faces(ind_is_face_spanning_x,:); vert_with_negative_y = vert_with_negative_y(ind_is_face_spanning_x,:); is_line_segment_spanning_x = is_line_segment_spanning_x(ind_is_face_spanning_x,:); % Create line segment arrays pt1 = candidate_faces; pt2 = [candidate_faces(:,2:end), candidate_faces(:,1)]; % Point 1 x1 = reshape(xvert(1,pt1),size(pt1)); y1 = reshape(xvert(2,pt1),size(pt1)); % Point 2 x2 = reshape(xvert(1,pt2),size(pt2)); y2 = reshape(xvert(2,pt2),size(pt2)); % Cross product of vector to origin with line segment cross_product_test = -x1.*(y2-y1) > -y1.*(x2-x1); % Find all line segments that cross the positive x axis crossing_test = (cross_product_test==vert_with_negative_y) & is_line_segment_spanning_x; % If the number of line segments is odd, then we intersected the polygon s = sum(crossing_test,2); s = mod(s,2); ind_intersection_test = find(s~=0); % Bail out early if no faces were hit if isempty(ind_intersection_test) return; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Plane/ray intersection test %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Perform plane/ray intersection with the faces that passed % the polygon intersection tests. Grab the only the first % three vertices since that is all we need to define a plane). % assuming planar polygons. candidate_faces = candidate_faces(ind_intersection_test,1:3); candidate_faces = reshape(candidate_faces',1,prod(size(candidate_faces))); vert = vert'; candidate_facev = vert(:,candidate_faces); candidate_facev = reshape(candidate_facev,3,3,length(ind_intersection_test)); % Get three contiguous vertices along polygon v1 = squeeze(candidate_facev(:,1,:)); v2 = squeeze(candidate_facev(:,2,:)); v3 = squeeze(candidate_facev(:,3,:)); % Get normal to face plane vec1 = [v2-v1]; vec2 = [v3-v2]; crs = cross(vec1,vec2); mag = sqrt(sum(crs.*crs)); nplane(1,:) = crs(1,:)./mag; nplane(2,:) = crs(2,:)./mag; nplane(3,:) = crs(3,:)./mag; % Compute intersection between plane and ray cp1 = cp(:,1); cp2 = cp(:,2); d = cp2-cp1; dp = dot(-nplane,v1); %A = dot(nplane,d); A(1,:) = nplane(1,:).*d(1); A(2,:) = nplane(2,:).*d(2); A(3,:) = nplane(3,:).*d(3); A = sum(A,1); %B = dot(nplane,pt1) B(1,:) = nplane(1,:).*cp1(1); B(2,:) = nplane(2,:).*cp1(2); B(3,:) = nplane(3,:).*cp1(3); B = sum(B,1); % Distance to intersection point t = (-dp-B)./A; % Find "best" distance (smallest) [tbest ind_best] = min(t); % Determine intersection point pout = cp1 + tbest .* d; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Assign additional output variables %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargout>1 % Get face index and vertices faceiout = ind_is_face_spanning_x(ind_intersection_test(ind_best)); facevout = vert(:,faces(faceiout,:)); % Determine index of closest face vertex intersected facexv = xvert(:,faces(faceiout,:)); dist = sqrt(facexv(1,:).*facexv(1,:) + facexv(2,:).*facexv(2,:)); min_dist = min(dist); min_index = find(dist==min_dist); % Get closest vertex index and vertex viout = faces(faceiout,min_index); vout = vert(:,viout); end %--------------------------------------------------------% function [p] = local_Data2PixelTransform(ax,vert) % Transform vertices from data space to pixel space. % Get needed transforms xform = get(ax,'x_RenderTransform'); offset = get(ax,'x_RenderOffset'); scale = get(ax,'x_RenderScale'); % Equivalent: nvert = vert/scale - offset; nvert(:,1) = vert(:,1)./scale(1) - offset(1); nvert(:,2) = vert(:,2)./scale(2) - offset(2); nvert(:,3) = vert(:,3)./scale(3) - offset(3); % Equivalent xvert = xform*xvert; w = xform(4,1) * nvert(:,1) + xform(4,2) * nvert(:,2) + xform(4,3) * nvert(:,3) + xform(4,4); xvert(:,1) = xform(1,1) * nvert(:,1) + xform(1,2) * nvert(:,2) + xform(1,3) * nvert(:,3) + xform(1,4); xvert(:,2) = xform(2,1) * nvert(:,1) + xform(2,2) * nvert(:,2) + xform(2,3) * nvert(:,3) + xform(2,4); % w may be 0 for perspective plots ind = find(w==0); w(ind) = 1; % avoid divide by zero warning xvert(ind,:) = 0; % set pixel to 0 p(:,1) = xvert(:,1) ./ w; p(:,2) = xvert(:,2) ./ w;
github
alex-delalande/numerical-tours-master
compute_parameterization.m
.m
numerical-tours-master/matlab/toolbox_graph/compute_parameterization.m
7,948
utf_8
ccbb3294b8723d824f8bfa35c4ea64dc
function vertex1 = compute_parameterization(vertex,face, options) % compute_parameterization - compute a planar parameterization % % vertex1 = compute_parameterization(vertex,face, options); % % options.method can be: % 'parameterization': solve classical parameterization, the boundary % is specified by options.boundary which is either 'circle', % 'square' or 'triangle'. The kind of laplacian used is specified % by options.laplacian which is either 'combinatorial' or 'conformal' % 'freeboundary': same be leave the boundary free. % 'flattening': solve spectral embedding using a laplacian % specified by options.laplacian. % 'isomap': use Isomap approach. % 'drawing': to draw a graph whose adjacency is options.A. % Then leave vertex and face empty. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; method = getoptions(options, 'method', 'parameterization'); laplacian = getoptions(options, 'laplacian', 'conformal'); boundary = getoptions(options, 'boundary', 'square'); ndim = getoptions(options, 'ndim', 2); [vertex,face] = check_face_vertex(vertex,face); options.symmetrize=1; options.normalize=0; switch lower(method) case 'parameterization' vertex1 = compute_parametrization_boundary(vertex,face,laplacian,boundary, options); case 'freeboundary' vertex1 = compute_parameterization_free(vertex,face, laplacian, options); case 'drawing' if isfield(options, 'A') A = options.A; else error('You must specify options.A.'); end L = compute_mesh_laplacian(vertex,face,'combinatorial',options); [U,S,V] = eigs(L, ndim+1, 'SM'); if abs(S(1))<eps vertex1 = U(:,end-ndim+1:end); elseif abs(S(ndim))<eps vertex1 = U(:,1:ndim); else error('Problem with Laplacian matrix'); end case 'flattening' L = compute_mesh_laplacian(vertex,face,laplacian,options); [U,S] = eig(full(L)); vertex1 = U(:,2:3); if 0 [U,S,V] = eigs(L, ndim+1, 'SM'); if abs(S(1))<1e-9 vertex1 = U(:,end-ndim+1:end); elseif abs(S(ndim))<eps vertex1 = U(:,1:ndim); else error('Problem with Laplacian matrix'); end end case 'isomap' A = triangulation2adjacency(face); % build distance graph D = build_euclidean_weight_matrix(A,vertex,Inf); vertex1 = isomap(D,ndim, options); otherwise error('Unknown method.'); end if size(vertex1,2)<size(vertex1,1) vertex1 = vertex1'; end if ndim==2 vertex1 = rectify_embedding(vertex(1:ndim,:),vertex1); end function xy_spec1 = rectify_embedding(xy,xy_spec) % rectify_embedding - try to match the embeding % with another one. % Use the Y coord to select 2 base points. % % xy_spec = rectify_embedding(xy,xy_spec); % % Copyright (c) 2003 Gabriel Peyr? I = find( xy(2,:)==max(xy(2,:)) ); n1 = I(1); I = find( xy(2,:)==min(xy(2,:)) ); n2 = I(1); v1 = xy(:,n1)-xy(:,n2); v2 = xy_spec(:,n1)-xy_spec(:,n2); theta = acos( dot(v1,v2)/sqrt(dot(v1,v1)*dot(v2,v2)) ); theta = theta * sign( det([v1 v2]) ); M = [cos(theta) sin(theta); -sin(theta) cos(theta)]; xy_spec1 = M*xy_spec; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xy = compute_parameterization_free(vertex,face, laplacian, options) n = size(vertex,2); % extract boundary boundary = compute_boundary(face,options); nbound = length(boundary); options.symmetrize=1; options.normalize=0; % compute Laplacian if ~isstr(laplacian) L = laplacian; laplacian = 'user'; else L = compute_mesh_laplacian(vertex,face,laplacian,options); end A = sparse(2*n,2*n); A(1:end/2,1:end/2) = L; A(end/2+1:end,end/2+1:end) = L; % set up boundary conditions for s = 1:nbound % neighboring values s1 = mod(s-2,nbound)+1; s2 = mod(s,nbound)+1; i = boundary(s); i1 = boundary(s1); i2 = boundary(s2); e = 1; A(i,i1+n) = +e; A(i,i2+n) = -e; A(i+n,i1) = -e; A(i+n,i2) = +e; end % set up pinned vertices i1 = boundary(1); i2 = boundary(round(end/2)); A(i1,:) = 0; A(i1+n,:) = 0; A(i1,i1) = 1; A(i1+n,i1+n) = 1; A(i2,:) = 0; A(i2+n,:) = 0; A(i2,i2) = 1; A(i2+n,i2+n) = 1; p1 = [0 0]; p2 = [1 0]; % position of pinned vertices y = zeros(2*n,1); y(i1) = p1(1); y(i1+n) = p1(2); y(i2) = p2(1); y(i2+n) = p2(2); % solve for the position xy = A\y; xy = reshape(xy, [n 2])'; function xy = compute_parametrization_boundary(vertex,face,laplacian,boundary_type,options) % compute_parametrization - compute a planar parameterization % of a given disk-like triangulated manifold. % % compute_parametrization(vertex,face,laplacian,boundary_type); % % 'laplacian' is either 'combinatorial', 'conformal' or 'authalic' % 'boundary_type' is either 'circle', 'square' or 'triangle' % % Copyright (c) 2004 Gabriel Peyr? if size(vertex,2)>size(vertex,1) vertex = vertex'; end if size(face,2)>size(face,1) face = face'; end nface = size(face,1); nvert = max(max(face)); options.symmetrize=1; options.normalize=0; if nargin<2 error('Not enough arguments.'); end if nargin<3 laplacian = 'conformal'; end if nargin<4 boundary_type = 'circle'; end if ~isstr(laplacian) L = laplacian; laplacian = 'user'; else % compute Laplacian L = compute_mesh_laplacian(vertex,face,laplacian,options); end % compute the boundary boundary = compute_boundary(face, options); % compute the position of the boundary vertex nbound = length(boundary); xy_boundary = zeros(nbound,2); % compute total length d = 0; ii = boundary(end); % last index for i=boundary d = d + norme( vertex(i,:)-vertex(ii,:) ); ii = i; end % vertices along the boundary vb = vertex(boundary,:); % compute the length of the boundary sel = [2:nbound 1]; D = cumsum( sqrt( sum( (vb(sel,:)-vb).^2, 2 ) ) ); d = D(end); % curvilinear abscice t = (D-D(1))/d; t = t(:); switch lower(boundary_type) case 'circle' xy_boundary = [cos(2*pi*t),sin(2*pi*t)]; case 'square' t = t*4; [tmp,I] = min(abs(t-1)); t(I) = 1; [tmp,I] = min(abs(t-2)); t(I) = 2; [tmp,I] = min(abs(t-3)); t(I) = 3; xy_boundary = []; I = find(t<1); nI = length(I); xy_boundary = [xy_boundary; [t(I),t(I)*0]]; I = find(t>=1 & t<2); nI = length(I); xy_boundary = [xy_boundary; [t(I)*0+1,t(I)-1]]; I = find(t>=2 & t<3); nI = length(I); xy_boundary = [xy_boundary; [3-t(I),t(I)*0+1]]; I = find(t>=3); nI = length(I); xy_boundary = [xy_boundary; [t(I)*0,4-t(I)]]; case 'triangle' t = t*3; [tmp,I] = min(abs(t-1)); t(I) = 1; [tmp,I] = min(abs(t-2)); t(I) = 2; xy_boundary = []; I = find(t<1); nI = length(I); xy_boundary = [xy_boundary; [t(I),t(I)*0]]; I = find(t>=1 & t<2); nI = length(I); xy_boundary = [xy_boundary; (t(I)-1)*[0.5,sqrt(2)/2] + (2-t(I))*[1,0] ]; I = find(t>=2 & t<3); nI = length(I); xy_boundary = [xy_boundary; (3-t(I))*[0.5,sqrt(2)/2] ]; end % set up the matrix M = L; for i=boundary M(i,:) = zeros(1,nvert); M(i,i) = 1; end % solve the system xy = zeros(nvert,2); for coord = 1:2 % compute right hand side x = zeros(nvert,1); x(boundary) = xy_boundary(:,coord); xy(:,coord) = M\x; end function y = norme( x ); y = sqrt( sum(x(:).^2) );
github
alex-delalande/numerical-tours-master
select3dtool.m
.m
numerical-tours-master/matlab/toolbox_graph/select3dtool.m
2,713
utf_8
fdf7d572638e6ebd059c63f233d26704
function select3dtool(arg) %SELECT3DTOOL A simple tool for interactively obtaining 3-D coordinates % % SELECT3DTOOL(FIG) Specify figure handle % % Example: % surf(peaks); % select3dtool; % % click on surface if nargin<1 arg = gcf; end if ~ishandle(arg) feval(arg); return; end %% initialize gui %% fig = arg; figure(fig); uistate = uiclearmode(fig); [tool, htext] = createUI; hmarker1 = line('marker','o','markersize',10,'markerfacecolor','k','erasemode','xor','visible','off'); hmarker2 = line('marker','o','markersize',10,'markerfacecolor','r','erasemode','xor','visible','off'); state.uistate = uistate; state.text = htext; state.tool = tool; state.fig = fig; state.marker1 = hmarker1; state.marker2 = hmarker2; setappdata(fig,'select3dtool',state); setappdata(state.tool,'select3dhost',fig); set(fig,'windowbuttondownfcn','select3dtool(''click'')'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function off state = getappdata(gcbf,'select3dtool'); if ~isempty(state) delete(state.tool); end fig = getappdata(gcbf,'select3dhost'); if ~isempty(fig) & ishandle(fig) state = getappdata(fig,'select3dtool'); uirestore(state.uistate); delete(state.marker1); delete(state.marker2); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function click [p v vi] = select3d; state = getappdata(gcbf,'select3dtool'); if ~ishandle(state.text) state.text = createUI; end if ~ishandle(state.marker1) state.marker1 = []; end if ~ishandle(state.marker2) state.marker2 = []; end setappdata(state.fig,'select3dtool',state); if isempty(v) v = [nan nan nan]; vi = nan; set(state.marker2,'visible','off'); else set(state.marker2,'visible','on','xdata',v(1),'ydata',v(2),'zdata',v(3)); end if isempty(p) p = [nan nan nan]; set(state.marker1,'visible','off'); else set(state.marker1,'visible','on','xdata',p(1),'ydata',p(2),'zdata',p(3)); end % Update tool and markers set(state.text,'string',createString(p(1),p(2),p(3),v(1),v(2),v(3),vi)); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [fig, h] = createUI pos = [200 200 200 200]; % Create selection tool % fig = figure('handlevisibility','off','menubar','none','resize','off',... 'numbertitle','off','name','Select 3-D Tool','position',pos,'deletefcn','select3dtool(''off'')'); h = uicontrol('style','text','parent',fig,'string',createString(0,0,0,0,0,0,0),... 'units','norm','position',[0 0 1 1],'horizontalalignment','left'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [str] = createString(px,py,pz,vx,vy,vz,vi) str = sprintf(' Position:\n X %f\n Y: %f\n Z: %f \n\n Vertex:\n X: %f\n Y: %f\n Z: %f \n\n Vertex Index:\n %d',px,py,pz,vx,vy,vz,vi);
github
alex-delalande/numerical-tours-master
compute_boundary.m
.m
numerical-tours-master/matlab/toolbox_graph/compute_boundary.m
2,537
utf_8
1722359a4efff29fd344fc6e14eddba5
function boundary=compute_boundary(face, options) % compute_boundary - compute the vertices on the boundary of a 3D mesh % % boundary=compute_boundary(face); % % Copyright (c) 2007 Gabriel Peyre if size(face,1)<size(face,2) face=face'; end %% compute edges (i,j) that are adjacent to only 1 face A = compute_edge_face_ring(face); [i,j,v] = find(A); i = i(v==-1); j = j(v==-1); %% build the boundary by traversing the edges boundary = i(1); i(1) = []; j(1) = []; while not(isempty(i)) b = boundary(end); I = find(i==b); if isempty(I) I = find(j==b); if isempty(I) warning('Problem with boundary'); break; end boundary(end+1) = i(I); else boundary(end+1) = j(I); end i(I) = []; j(I) = []; end return; %% OLD CODE %% nvert=max(max(face)); nface=size(face,1); % count number of faces adjacent to a vertex A=sparse(nvert,nvert); for i=1:nface if verb progressbar(i,nface); end f=face(i,:); A(f(1),f(2))=A(f(1),f(2))+1; A(f(1),f(3))=A(f(1),f(3))+1; A(f(3),f(2))=A(f(3),f(2))+1; end A=A+A'; for i=1:nvert u=find(A(i,:)==1); if ~isempty(u) boundary=[i u(1)]; break; end end s=boundary(2); i=2; while(i<=nvert) u=find(A(s,:)==1); if length(u)~=2 warning('problem in boundary'); end if u(1)==boundary(i-1) s=u(2); else s=u(1); end if s~=boundary(1) boundary=[boundary s]; else break; end i=i+1; end if i>nvert warning('problem in boundary'); end %%% OLD %%% function v = compute_boundary_old(faces) nvert = max(face(:)); ring = compute_vertex_ring( face ); % compute boundary v = -1; for i=1:nvert % first find a starting vertex f = ring{i}; if f(end)<0 v = i; break; end end if v<0 error('No boundary found.'); end boundary = [v]; prev = -1; while true f = ring{v}; if f(end)>=0 error('Problem in boundary'); end if f(1)~=prev prev = v; v = f(1); else prev = v; v = f(end-1); end if ~isempty( find(boundary==v) ) % we have reach the begining of the boundary if v~=boundary(1) warning('Begining and end of boundary doesn''t match.'); else break; end end boundary = [boundary,v]; end
github
alex-delalande/numerical-tours-master
compute_geometric_laplacian.m
.m
numerical-tours-master/matlab/toolbox_graph/compute_geometric_laplacian.m
5,760
utf_8
b6c0f7f8acdbb0c203c5f1a297957760
function L = compute_geometric_laplacian(vertex,face,type) % compute_geometric_laplacian - return a laplacian % of a given triangulation (can be combinatorial or geometric). % % L = compute_geometric_laplacian(vertex,face,type); % % Type is either : % - 'combinatorial' : combinatorial laplacian, doesn't take into % acount geometry. % - 'conformal' : conformal (i.e. harmonic) weights, % - 'authalic' : area-preserving weights (not implemented yet). % - 'distance' : L(i,j) = 1/|xi-xj|^2 % % Reference: % M.S.Floater and K.Hormann % Recent Advances in Surface Parameterization % Multiresolution in geometric modelling % <http://vcg.isti.cnr.it/~hormann/papers/survey.pdf> % % Copyright (c) 2003 Gabriel Peyre error('Not used anymore'); [vertex,face] = check_face_vertex(vertex,face); nface = size(face,1); n = max(max(face)); if nargin<3 type = 'conformal'; end if strcmp(lower(type),'combinatorial') L = compute_combinatorial_laplacian( triangulation2adjacency(face) ); return; end if strcmp(lower(type),'distance') D = build_euclidean_weight_matrix(triangulation2adjacency(face),vertex,0); D(D>0) = 1/D(D>0).^2; L = diag( sum(D) ) - D; L = (L+L')/2; return; end if strcmp(lower(type),'authalic') error('Not implemented'); end if not(strcmp(lower(type),'conformal')) error('Unknown laplacian type.'); end % conformal laplacian L = sparse(n,n); ring = compute_vertex_face_ring(face); for i = 1:n for b = ring{i} % b is a face adjacent to a bf = face(:,b); % compute complementary vertices if bf(1)==i v = bf(2:3); elseif bf(2)==i v = bf([1 3]); elseif bf(3)==i v = bf(1:2); else error('Problem in face ring.'); end j = v(1); k = v(2); vi = vertex(:,i); vj = vertex(:,j); vk = vertex(:,k); % angles alpha = myangle(vk-vi,vk-vj); beta = myangle(vj-vi,vj-vk); % add weight L(i,j) = L(i,j) + cot( alpha ); L(i,k) = L(i,k) + cot( beta ); end end L = L - diag(sum(L,2)); return; %% old code if strcmp(lower(type),'combinatorial') L = compute_combinatorial_laplacian( triangulation2adjacency(face) ); elseif strcmp(lower(type),'conformal') || strcmp(lower(type),'authalic') if nargin<4 disp('--> Computing 1-ring.'); ring = compute_vertex_ring( face ); end disp('--> Computing laplacian.'); for i=1:n vi = vertex(i,:); r = ring{i}; if r(end)==-1 % no circularity s = length(r)-1; r = [r(1), r(1:(end-1)), r(end-1)]; else % circularity s = length(r); r = [r(end), r, r(1)]; end % circulate on the 1-ring for x = 2:(s+1) j = r(x); if L(i,j)==0 gche = r(x-1); drte = r(x+1); vj = vertex(j,:); v1 = vertex(gche,:); v2 = vertex(drte,:); % we use cot(acos(x))=x/sqrt(1-x^2) if strcmp(lower(type),'conformal') d1 = sqrt(dot(vi-v2,vi-v2)); d2 = sqrt(dot(vj-v2,vj-v2)); if d1>eps && d2>eps z = dot(vi-v2,vj-v2)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end d1 = sqrt(dot(vi-v1,vi-v1)); d2 = sqrt(dot(vj-v1,vj-v1)); if d1>eps && d2>eps z = dot(vi-v1,vj-v1)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end else d1 = sqrt(dot(vi-vj,vi-vj)); d2 = sqrt(dot(v2-vj,v2-vj)); if d1>eps && d2>eps z = dot(vi-vj,v2-vj)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end d1 = sqrt(dot(vi-vj,vi-vj)); d2 = sqrt(dot(v1-vj,v1-vj)); if d1>eps && d2>eps z = dot(vi-vj,v1-vj)/( d1*d2 ); L(i,j) = L(i,j) + z/sqrt(1-z^2); end if d1>eps L(i,j) = L(i,j) / (d1*d1); end end if 0 % uncomment for symmeterization if L(j,i)==0 L(j,i) = L(i,j); else L(j,i) = (L(j,i)+L(i,j))/2; end end end end end for i=1:n L(i,i) = -sum( L(i,:) ); end else error('Unknown type.'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function beta = myangle(u,v); du = sqrt( sum(u.^2) ); dv = sqrt( sum(v.^2) ); du = max(du,eps); dv = max(dv,eps); beta = acos( sum(u.*v) / (du*dv) );
github
alex-delalande/numerical-tours-master
check_face_vertex.m
.m
numerical-tours-master/matlab/toolbox_graph/check_face_vertex.m
671
utf_8
21c65f119991c973909eedd356838dad
function [vertex,face] = check_face_vertex(vertex,face, options) % check_face_vertex - check that vertices and faces have the correct size % % [vertex,face] = check_face_vertex(vertex,face); % % Copyright (c) 2007 Gabriel Peyre vertex = check_size(vertex,2,4); face = check_size(face,3,4); %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = check_size(a,vmin,vmax) if isempty(a) return; end if size(a,1)>size(a,2) a = a'; end if size(a,1)<3 && size(a,2)==3 a = a'; end if size(a,1)<=3 && size(a,2)>=3 && sum(abs(a(:,3)))==0 % for flat triangles % a = a'; end if size(a,1)<vmin || size(a,1)>vmax error('face or vertex is not of correct size'); end
github
alex-delalande/numerical-tours-master
compute_voronoi_triangulation.m
.m
numerical-tours-master/matlab/toolbox_graph/compute_voronoi_triangulation.m
2,807
utf_8
f9daaae570bef29e30a0956f719d9c19
function faces = compute_voronoi_triangulation(Q, vertex) % compute_voronoi_triangulation - compute a triangulation % % face = compute_voronoi_triangulation(Q); % % Q is a Voronoi partition function, computed using % perform_fast_marching. % face(:,i) is the ith face. % % Works in 2D and in 3D. % % Copyright (c) 2008 Gabriel Peyre d = nb_dims(Q); if d==2 faces = compute_voronoi_triangulation_2d(Q, vertex); elseif d==3 faces = compute_voronoi_triangulation_3d(Q, vertex); else error('Works only for 2D or 3D data.'); end return; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function faces = compute_voronoi_triangulation_3d(Q, vertex) [dx dy dz] = meshgrid(0:1,0:1,0:1); V = []; for i=1:8 v = Q(1+dx(i):end-1+dx(i),1+dy(i):end-1+dy(i),1+dz(i):end-1+dz(i)); V = [V v(:)]; end V = sort(V,2); V = unique(V, 'rows'); V = V( prod(V,2)>0 ,:); d = V(:,1)*0; for i=1:7 d = d+(V(:,i)~=V(:,i+1)); end if sum(d==4)>1 % warning('Problem with triangulation.'); end % split 5 folds into 2 I = find(d==4); faces = []; for i=1:length(I) v = unique(V(I(i),:)); x = vertex(:,v); % points % barycenter a = sum( x, 2 ) / 5; x = x-repmat(a, [1 size(x,2)]); t = atan2(x(2,:),x(1,:)); [tmp,s] = sort(t); faces = [faces v( s([1 2 3 5]))']; faces = [faces v( s([3 4 1 5]))']; end % faces = [V(I,1:3);V(I,[3 4 1])]; % remaining triangles V = V( d==3 ,:); for i=1:size(V,1) V(i,1:4) = unique(V(i,:)); end faces = [faces, V(:,1:4)']; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function faces = compute_voronoi_triangulation_2d(Q, vertex) V = []; v = Q(1:end-1,1:end-1); V = [V v(:)]; v = Q(2:end,1:end-1); V = [V v(:)]; v = Q(1:end-1,2:end); V = [V v(:)]; v = Q(2:end,2:end); V = [V v(:)]; V = sort(V,2); V = unique(V, 'rows'); V = V( prod(V,2)>0 ,:); d = (V(:,1)~=V(:,2)) + (V(:,2)~=V(:,3)) + (V(:,3)~=V(:,4)); if sum(d==3)>1 % warning('Problem with triangulation.'); end % split squares into 2 triangles I = find(d==3); faces = []; for i=1:length(I) v = V(I(i),:); x = vertex(:,v); % points % barycenter a = sum( x, 2 ) / 4; x = x-repmat(a, [1 size(x,2)]); t = atan2(x(2,:),x(1,:)); [tmp,s] = sort(t); faces = [faces; v( s([1 2 3]))]; faces = [faces; v( s([3 4 1]))]; end % faces = [V(I,1:3);V(I,[3 4 1])]; % remaining triangles V = V( d==2 ,:); for i=1:size(V,1) V(i,1:3) = unique(V(i,:)); end faces = [faces; V(:,1:3)]; % return in correct format faces = faces';
github
alex-delalande/numerical-tours-master
plot_graph.m
.m
numerical-tours-master/matlab/toolbox_graph/plot_graph.m
2,140
utf_8
337033b66fe405903639bcac59c2b34d
function h = plot_graph(A,xy, options) % plot_graph - display a 2D or 3D graph. % % plot_graph(A,xy, options); % % options.col set the display (e.g. 'k.-') % % Copyright (c) 2006 Gabriel Peyre if size(xy,1)>size(xy,2) xy = xy'; end if nargin<3 options.null = 0; end if not(isstruct(options)) col = options; clear options; options.null = 0; else if isfield(options, 'col') col = options.col; else col = 'k.-'; end end lw = getoptions(options, 'lw', 2); ps = getoptions(options, 'ps', 20); B = full(A); B = B(:); B = B( B~=0 ); isvarying = std(B)>0; if size(xy,1)==2 if ~isstr(col) col = []; end % 2D display h = gplotvarying(A,xy, col); % h = gplot(A,xy', col); axis tight; axis equal; axis off; elseif size(xy,1)==3 % 3D display if isstr(col) if ~isvarying h = gplot3(A,xy', col); else h = gplotvarying3(A,xy, col); end else hold on; if ~isvarying h = gplot3(A,xy', col); else h = gplotvarying3(A,xy, col); end plot_scattered(xy, col); hold off; view(3); end axis off; cameramenu; else error('Works only for 2D and 3D graphs'); end set(h, 'LineWidth', lw); set(h, 'MarkerSize', ps); function h = gplotvarying(A,xy,col) [i,j,s] = find(sparse(A)); I = find(i<=j); i = i(I); j = j(I); s = s(I); x = [xy(1,i);xy(1,j)]; y = [xy(2,i);xy(2,j)]; h = plot(x,y,col); function h = gplotvarying3(A,xy,col) [i,j,s] = find(sparse(A)); I = find(i<=j); i = i(I); j = j(I); s = s(I); x = [xy(1,i);xy(1,j)]; y = [xy(2,i);xy(2,j)]; y = [xy(3,i);xy(3,j)]; h = plot3(x,y,z,col); function h = gplot3(A,xy,lc) [i,j] = find(A); [ignore, p] = sort(max(i,j)); i = i(p); j = j(p); % Create a long, NaN-separated list of line segments, % rather than individual segments. X = [ xy(i,1) xy(j,1) repmat(NaN,size(i))]'; Y = [ xy(i,2) xy(j,2) repmat(NaN,size(i))]'; Z = [ xy(i,3) xy(j,3) repmat(NaN,size(i))]'; X = X(:); Y = Y(:); Z = Z(:); if nargin<3, h = plot3(X, Y, Z) else h = plot3(X, Y, Z, lc); end
github
alex-delalande/numerical-tours-master
vol3d.m
.m
numerical-tours-master/matlab/toolbox_graph/vol3d.m
5,899
utf_8
9ce5b72520d76d1225023aa3732b653d
function [model] = vol3d(varargin) %H = VOL3D Volume render 3-D data. % VOL3D uses the orthogonal plane 2-D texture mapping technique for % volume rending 3-D data in OpenGL. Use the 'texture' option to fine % tune the texture mapping technique. This function is best used with % fast OpenGL hardware. % % H = vol3d('CData',data) Create volume render object from input % 3-D data. Use interp3 on data to increase volume % rendering resolution. Returns a struct % encapsulating the pseudo-volume rendering object. % % vol3d(...'Parent',axH) Specify parent axes % % vol3d(...,'texture','2D') Default. Only render texture planes parallel % to nearest orthogonal viewing plane. Requires % doing vol3d(h) to refresh if the view is % rotated (i.e. using cameratoolbar). % % vol3d(...,'texture','3D') Render x,y,z texture planes simultaneously. % This avoids the need to refresh the view but % requires faster OpenGL hardware peformance. % % vol3d(H) Refresh view. Updates rendering of texture planes % to reduce visual aliasing when using the 'texture'='2D' % option. % % NOTES % Use vol3dtool for editing the colormap and alphamap. % Adjusting these maps will allow you to explore your 3-D volume % data at various intensity levels. See documentation on % alphamap and colormap for more information. % % Use interp3 on input date to increase/decrease resolution of data % % Examples: % % % Visualizing fluid flow % v = flow(50); % h = vol3d('cdata',v,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % alphamap('rampdown'), alphamap('decrease'), alphamap('decrease') % % % Visualizing MRI data % load mri.mat % D = squeeze(D); % h = vol3d('cdata',D,'texture','2D'); % view(3); % % Update view since 'texture' = '2D' % vol3d(h); % axis tight; daspect([1 1 .4]) % alphamap('rampup'); % alphamap(.06 .* alphamap); % % See also vol3dtool, alphamap, colormap, opengl, isosurface % Copyright Joe Conti, 2004 if isstruct(varargin{1}) model = varargin{1}; if length(varargin) > 1 varargin = {varargin{2:end}}; end else model = localGetDefaultModel; end if length(varargin)>1 for n = 1:2:length(varargin) switch(lower(varargin{n})) case 'cdata' model.cdata = varargin{n+1}; case 'parent' model.parent = varargin{n+1}; case 'texture' model.texture = varargin{n+1}; end end end if isempty(model.parent) model.parent = gca; end % choose default 3-D view ax = model.parent; axis(ax,'vis3d'); axis(ax,'tight'); [model] = local_draw(model); %------------------------------------------% function [model] = localGetDefaultModel model.cdata = []; model.xdata = []; model.ydata = []; model.zdata = []; model.parent = []; model.handles = []; model.texture = '2D'; %------------------------------------------% function [model,ax] = local_draw(model) cdata = model.cdata; siz = size(cdata); % Define [x,y,z]data if isempty(model.xdata) model.xdata = [0 siz(2)]; end if isempty(model.ydata) model.ydata = [0 siz(1)]; end if isempty(model.zdata) model.zdata = [0 siz(3)]; end try, delete(model.handles); end ax = model.parent; cam_dir = camtarget(ax) - campos(ax); [m,ind] = max(abs(cam_dir)); h = findobj(ax,'type','surface','tag','vol3d'); for n = 1:length(h) try, delete(h(n)); end end is3DTexture = strcmpi(model.texture,'3D'); handle_ind = 1; % Create z-slice if(ind==3 || is3DTexture ) x = [model.xdata(1), model.xdata(2); model.xdata(1), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(1); model.zdata(1), model.zdata(1)]; diff = model.zdata(2)-model.zdata(1); delta = diff/size(cdata,3); for n = 1:size(cdata,3) slice = double(squeeze(cdata(:,:,n))); h(handle_ind) = surface(x,y,z,'Parent',ax); set(h(handle_ind),'cdatamapping','scaled','facecolor','texture','cdata',slice,... 'edgealpha',0,'alphadata',double(slice),'facealpha','texturemap','tag','vol3d'); z = z + delta; handle_ind = handle_ind + 1; end end % Create x-slice if (ind==1 || is3DTexture ) x = [model.xdata(1), model.xdata(1); model.xdata(1), model.xdata(1)]; y = [model.ydata(1), model.ydata(1); model.ydata(2), model.ydata(2)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.xdata(2)-model.xdata(1); delta = diff/size(cdata,2); for n = 1:size(cdata,2) slice = double(squeeze(cdata(:,n,:))); h(handle_ind) = surface(x,y,z,'Parent',ax); set(h(handle_ind),'cdatamapping','scaled','facecolor','texture','cdata',slice,... 'edgealpha',0,'alphadata',double(slice),'facealpha','texturemap','tag','vol3d'); x = x + delta; handle_ind = handle_ind + 1; end end % Create y-slice if (ind==2 || is3DTexture) x = [model.xdata(1), model.xdata(1); model.xdata(2), model.xdata(2)]; y = [model.ydata(1), model.ydata(1); model.ydata(1), model.ydata(1)]; z = [model.zdata(1), model.zdata(2); model.zdata(1), model.zdata(2)]; diff = model.ydata(2)-model.ydata(1); delta = diff/size(cdata,1); for n = 1:size(cdata,1) slice = double(squeeze(cdata(n,:,:))); h(handle_ind) = surface(x,y,z,'Parent',ax); set(h(handle_ind),'cdatamapping','scaled','facecolor','texture','cdata',slice,... 'edgealpha',0,'alphadata',double(slice),'facealpha','texturemap','tag','vol3d'); y = y + delta; handle_ind = handle_ind + 1; end end model.handles = h;
github
alex-delalande/numerical-tours-master
perform_delaunay_flipping.m
.m
numerical-tours-master/matlab/toolbox_graph/perform_delaunay_flipping.m
2,420
utf_8
7c5e250e94e9e69d99c556c805b4d2fe
function [face, flips, flipsinv] = perform_delaunay_flipping(vertex,face,options) % perform_delaunay_flipping - compute Dalaunay triangulation via flipping % % [face1, flips, flipsinv] = perform_delaunay_flipping(vertex,face,options); % % Set options.display_flips = 1 for graphical display. % % face is turned into a Delaunay triangulation face1 of the points by flipping % the edges. % % 'flips' list the flips needed to go from face to face1. % 'flipsinv' list the flips needed to go from face1 to face. % % Copyright (c) 2008 Gabriel Peyre options.null = 0; display_flips = getoptions(options, 'display_flips', 0); verb = getoptions(options, 'verb', 1); % edge topology edge = compute_edges(face); e2f = compute_edge_face_ring(face); % initialize the stack estack = find( check_incircle_edge(vertex,face,edge)==0 ); A = sort( compute_triangulation_angles(vertex,face) ); count = 0; flips = []; flipsinv = []; ntot = length(estack); vbar = 0; while not(isempty(estack)) if verb vbar = max(vbar, ntot - length(estack) ); progressbar( max(vbar,1), ntot); end count = count+1; if count>Inf % ntot warning('Problem with Delaunay flipping'); break; end % pop non valid edge k = estack(1); estack(1) = []; i = edge(1,k); j = edge(2,k); f1 = e2f(i,j); f2 = e2f(j,i); %%% try to flip it %%% % find the two other points k1 = find_other( face(:,f1), i,j ); k2 = find_other( face(:,f2), i,j ); % new faces t1 = [k1;k2;i]; t2 = [k1;k2;j]; flips(:,end+1) = [i;j]; flipsinv(:,end+1) = [k1;k2]; face(:,f1) = t1; face(:,f2) = t2; % update e2f edge(:,k) = [k1;k2]; e2f = compute_edge_face_ring(face); % display if display_flips clf; plot_graph(triangulation2adjacency(face),vertex); drawnow; % pause(.01); end Anew = sort( compute_triangulation_angles(vertex,face) ); if lexicmp(Anew,A)<=0 warning('Problem with flipping.'); end A = Anew; % update the stack estack = find( check_incircle_edge(vertex,face,edge)==0 ); estack = [ estack(estack>k); estack(estack<=k) ]; end flipsinv = flipsinv(:,end:-1:1); progressbar(ntot, ntot); %% function f = find_other( f, i,j ) I = find(f==i); if length(I)~=1 error('Problem'); end f(I) = []; I = find(f==j); if length(I)~=1 error('Problem'); end f(I) = [];
github
alex-delalande/numerical-tours-master
check_incircle_edge.m
.m
numerical-tours-master/matlab/toolbox_graph/check_incircle_edge.m
1,633
utf_8
dca2fc799d9cf120df9156a15c47b5fa
function ic = check_incircle_edge(vertex, face, edge) % check_incicle_edge - compute "empty circle" property for a set of edges % % ic = check_incicle_edge(vertex,face, edge); % % ic(i)==1 if edge(:,i) is delaunay valid (boundary or empty circles or non convex). % It thus should be flipped if ic(i)==0. % % Copyright (c) 2008 Gabriel Peyre if nargin<3 edge = compute_edges(face); end n = size(edge, 2); e2f = compute_edge_face_ring(face); m = size(e2f,1); f1 = full( e2f(edge(1,:)+(edge(2,:)-1)*m) ); f2 = full( e2f(edge(2,:)+(edge(1,:)-1)*m) ); if not( isempty( find(f1==0 & f2==0) ) ) warning('Problem with triangulation'); end ic = ones(n,1); isconvex = ones(n,1); I = find(f1>0 & f2>0); f1 = f1(I); f2 = f2(I); f1 = face(:,f1); f2 = face(:,f2); edge = edge(:,I); n = length(I); points1 = find_other(f2, edge(1,:), edge(2,:)); ic1 = check_incircle(vertex, f1, points1 ); points2 = find_other(f1, edge(1,:), edge(2,:)); ic2 = check_incircle(vertex, f2, points2 ); ic(I) = ic1 & ic2; % check for convexity v = vertex(:,points2) - vertex(:,points1); u1 = vertex(:,edge(1,:)) - vertex(:,points1); u2 = vertex(:,edge(2,:)) - vertex(:,points1); A = zeros(2,2,n); B = zeros(2,2,n); A(:,1,:) = reshape(v, [2 1 n]); A(:,2,:) = reshape(u1, [2 1 n]); B(:,1,:) = reshape(v, [2 1 n]); B(:,2,:) = reshape(u2, [2 1 n]); isconvex(I) = ( det3(A) .* det3(B) ) < 0; % non convex should not be flipped ic(isconvex==0) = 1; %% function f = find_other(f,a,b) u = f - repmat(a, [3 1]); f(u==0) = 0; u = f - repmat(b, [3 1]); f(u==0) = 0; if sum( sum(f==0)~=2 )>0 error('Problem with triangulation'); end f = sum(f);
github
alex-delalande/numerical-tours-master
perform_faces_reorientation.m
.m
numerical-tours-master/matlab/toolbox_graph/perform_faces_reorientation.m
2,865
utf_8
a575bdfcd3e6c86cde45febdeb343983
function faces = perform_faces_reorientation(vertex,faces, options) % perform_faces_reorientation - reorient the faces with respect to the center of the mesh % % faces = perform_faces_reorientation(vertex,faces, options); % % try to find a consistant reorientation for faces of a mesh. % % if options.method = 'fast', then use a fast non accurate method % if options.method = 'slow', then use a slow exact method % % Copyright (c) 2007 Gabriel Peyre options.null = 0; method = getoptions(options, 'method', 'fast'); verb = getoptions(options, 'verb', 1); [vertex,faces] = check_face_vertex(vertex,faces); n = size(vertex,2); m = size(faces,2); if strcmp(method, 'fast') % compute the center of mass of the mesh G = mean(vertex,2); % center of faces Cf = (vertex(:,faces(1,:)) + vertex(:,faces(2,:)) + vertex(:,faces(3,:)))/3; Cf = Cf - repmat(G,[1 m]); % normal to the faces V1 = vertex(:,faces(2,:))-vertex(:,faces(1,:)); V2 = vertex(:,faces(3,:))-vertex(:,faces(1,:)); N = [V1(2,:).*V2(3,:) - V1(3,:).*V2(2,:) ; ... -V1(1,:).*V2(3,:) + V1(3,:).*V2(1,:) ; ... V1(1,:).*V2(2,:) - V1(2,:).*V2(1,:) ]; % dot product s = sign(sum(N.*Cf)); % reverse faces I = find(s>0); faces(:,I) = faces(3:-1:1,I); return end options.method = 'fast'; faces = perform_faces_reorientation(vertex,faces, options); fring = compute_face_ring(faces); tag = zeros(m,1)-1; heap = 1; for i=1:m if m>100 & verb==1 progressbar(i,m); end if isempty(heap) I = find(tag==-1); if isempty(I) error('Problem'); end heap = I(1); end f = heap(end); heap(end) = []; if tag(f)==1 warning('Problem'); end tag(f) = 1; % computed fr = fring{f}; fr = fr(tag(fr)==-1); tag(fr)=0; heap = [heap fr]; for k=fr(:)' % see if re-orientation is needed if check_orientation(faces(:,k), faces(:,f))==1 faces(1:2,k) = faces(2:-1:1,k); end end end if not(isempty(heap)) || not(isempty(find(tag<1))) warning('Problem'); end % try to see if face are facing in the correct direction [normal,normalf] = compute_normal(vertex,faces); a = mean(vertex,2); a = repmat(a, [1 n]); dp = sign(sum(normal.*a,1)); if sum(dp>0)<sum(dp<0) faces(1:2,:) = faces(2:-1:1,:); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function o = check_orientation(f1,f2) i1 = 0; j1 = 0; for i=1:3 for j=1:3 if f1(i)==f2(j) i1 = i; j1 = j; break; end end if i1~=0 break; end end if i1==0 error('Problem.'); end ia = mod(i1,3)+1; ja = mod(j1,3)+1; ib = mod(i1-2,3)+1; jb = mod(j1-2,3)+1; if f1(ia)==f2(ja) || f1(ib)==f2(jb) o=1; else o = -1; end
github
alex-delalande/numerical-tours-master
compute_geodesic_mesh.m
.m
numerical-tours-master/matlab/toolbox_graph/compute_geodesic_mesh.m
4,234
utf_8
39b158e6251c6dbe79e025b1c95061b2
function [path,vlist,plist] = compute_geodesic_mesh(D, vertex, face, x, options) % compute_geodesic_mesh - extract a discrete geodesic on a mesh % % [path,vlist,plist] = compute_geodesic_mesh(D, vertex, face, x, options); % % D is the set of geodesic distances. % % path is a 3D curve that is the shortest path starting at x. % You can force to use a fully discrete descent using % options.method='discrete'. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; verb = getoptions(options, 'verb', 0); if length(x)>1 path = {}; vlist = {}; plist = {}; for i=1:length(x) if length(x)>5 if verb progressbar(i,length(x)); end end [path{i},vlist{i},plist{i}] = compute_geodesic_mesh(D, vertex, face, x(i), options); end return; end method = getoptions(options, 'method', 'continuous'); [vertex,face] = check_face_vertex(vertex,face); if strcmp(method, 'discrete') if isfield(options, 'v2v') vring = options.v2v; else vring = compute_vertex_ring(face); end % path purely on edges vlist = x; vprev = D(x); while true x0 = vlist(end); r = vring{x0}; [v,J] = min(D(r)); x = r(J); if v>=vprev || v==0 break; end vprev = v; vlist(end+1) = x; end path = vertex(:,vlist); plist = vlist*0+1; return; end %%% gradient descent on edges % retrieve adjacency lists m = size(face,2); n = size(vertex,2); % precompute the adjacency datasets if isfield(options, 'e2f') e2f = options.e2f; else e2f = compute_edge_face_ring(face); end if isfield(options, 'v2v') v2v = options.v2v; else v2v = compute_vertex_ring(face); end % initialize the paths [w,f] = vertex_stepping(face, x, e2f, v2v, D); vlist = [x;w]; plist = [1]; Dprev = D(x); while true; % current triangle i = vlist(1,end); j = vlist(2,end); k = get_vertex_face(face(:,f),i,j); a = D(i); b = D(j); c = D(k); % adjacent faces f1 = get_face_face(e2f, f, i,k); f2 = get_face_face(e2f, f, j,k); % compute gradient in local coordinates x = plist(end); y = 1-x; gr = [a-c;b-c]; % twist the gradient u = vertex(:,i) - vertex(:,k); v = vertex(:,j) - vertex(:,k); A = [u v]; A = (A'*A)^(-1); gr = A*gr; nx = gr(1); ny = gr(2); % compute intersection point etas = -y/ny; etat = -x/nx; s = x + etas*nx; t = y + etat*ny; if etas<0 && s>=0 && s<=1 && f1>0 %%% CASE 1 %%% plist(end+1) = s; vlist(:,end+1) = [i k]; % next face f = f1; elseif etat<0 && t>=0 && t<=1 && f2>0 %%% CASE 2 %%% plist(end+1) = t; vlist(:,end+1) = [j k]; % next face f = f2; else %%% CASE 3 %%% if a<=b z = i; else z = j; end [w,f] = vertex_stepping( face, z, e2f, v2v, D); vlist(:,end+1) = [z w]; plist(end+1) = 1; end Dnew = D(vlist(1,end))*plist(end) + D(vlist(2,end))*(1-plist(end)); if Dnew==0 || (Dprev==Dnew && length(plist)>1) break; end Dprev=Dnew; end v1 = vertex(:,vlist(1,:)); v2 = vertex(:,vlist(2,:)); path = v1.*repmat(plist, [3 1]) + v2.*repmat(1-plist, [3 1]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [w,f] = vertex_stepping(face, v, e2f, v2v, D) % adjacent vertex with minimum distance [tmp,I] = min( D(v2v{v}) ); w = v2v{v}(I); f1 = e2f(v,w); f2 = e2f(w,v); if f1<0 f = f2; return; end if f2<0 f = f1; return; end z1 = get_vertex_face(face(:,f1),v,w); z2 = get_vertex_face(face(:,f2),v,w); if D(z1)<D(z2); f = f1; else f = f2; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function k = get_vertex_face(f,v1,v2) if nargin==2 v2 = v1(2); v1 = v1(1); end k = setdiff(f, [v1 v2]); if length(k)~=1 error('Error in get_vertex_face'); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = get_face_face(e2f, f, i,j) f1 = e2f(i,j); f2 = e2f(j,i); if f==f1 f = f2; else f = f1; end
github
alex-delalande/numerical-tours-master
compute_mesh_weight.m
.m
numerical-tours-master/matlab/toolbox_graph/compute_mesh_weight.m
3,464
utf_8
14ba480ba7ded730c631eceea16f8b05
function W = compute_mesh_weight(vertex,face,type,options) % compute_mesh_weight - compute a weight matrix % % W = compute_mesh_weight(vertex,face,type,options); % % W is sparse weight matrix and W(i,j)=0 is vertex i and vertex j are not % connected in the mesh. % % type is either % 'combinatorial': W(i,j)=1 is vertex i is conntected to vertex j. % 'distance': W(i,j) = 1/d_ij^2 where d_ij is distance between vertex % i and j. % 'conformal': W(i,j) = cot(alpha_ij)+cot(beta_ij) where alpha_ij and % beta_ij are the adjacent angle to edge (i,j) % % If options.normalize=1, the the rows of W are normalize to sum to 1. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; [vertex,face] = check_face_vertex(vertex,face); nface = size(face,1); n = max(max(face)); verb = getoptions(options, 'verb', n>5000); if nargin<3 type = 'conformal'; end switch lower(type) case 'combinatorial' W = triangulation2adjacency(face); case 'distance' W = my_euclidean_distance(triangulation2adjacency(face),vertex); W(W>0) = 1./W(W>0); W = (W+W')/2; case 'conformal' % conformal laplacian W = sparse(n,n); for i=1:3 i1 = mod(i-1,3)+1; i2 = mod(i ,3)+1; i3 = mod(i+1,3)+1; pp = vertex(:,face(i2,:)) - vertex(:,face(i1,:)); qq = vertex(:,face(i3,:)) - vertex(:,face(i1,:)); % normalize the vectors pp = pp ./ repmat( sqrt(sum(pp.^2,1)), [3 1] ); qq = qq ./ repmat( sqrt(sum(qq.^2,1)), [3 1] ); % compute angles ang = acos(sum(pp.*qq,1)); W = W + sparse(face(i2,:),face(i3,:),cot(ang),n,n); W = W + sparse(face(i3,:),face(i2,:),cot(ang),n,n); end if 0 %% OLD CODE W = sparse(n,n); ring = compute_vertex_face_ring(face); for i = 1:n if verb progressbar(i,n); end for b = ring{i} % b is a face adjacent to a bf = face(:,b); % compute complementary vertices if bf(1)==i v = bf(2:3); elseif bf(2)==i v = bf([1 3]); elseif bf(3)==i v = bf(1:2); else error('Problem in face ring.'); end j = v(1); k = v(2); vi = vertex(:,i); vj = vertex(:,j); vk = vertex(:,k); % angles alpha = myangle(vk-vi,vk-vj); beta = myangle(vj-vi,vj-vk); % add weight W(i,j) = W(i,j) + cot( alpha ); W(i,k) = W(i,k) + cot( beta ); end end end otherwise error('Unknown type.') end if isfield(options, 'normalize') && options.normalize==1 W = diag(sum(W,2).^(-1)) * W; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function beta = myangle(u,v); du = sqrt( sum(u.^2) ); dv = sqrt( sum(v.^2) ); du = max(du,eps); dv = max(dv,eps); beta = acos( sum(u.*v) / (du*dv) ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function W = my_euclidean_distance(A,vertex) if size(vertex,1)<size(vertex,2) vertex = vertex'; end [i,j,s] = find(sparse(A)); d = sum( (vertex(i,:) - vertex(j,:)).^2, 2); W = sparse(i,j,d);
github
alex-delalande/numerical-tours-master
perform_publishing.m
.m
numerical-tours-master/matlab/toolbox_publishing/perform_publishing.m
7,675
utf_8
fd2b999e87072411470e6fca15cdc9b1
function perform_publishing(name, options) % perform_publishing - publish a file to HTML format % % perform_publishing(name, options); % % If name is empty, process all the files (and also zip all toolboxes). % % options.rep set output directory (default 'html/') % options.repprivate set output directory for exercices (default 'private-svg/') % options.stylesheet set XSL stylesheet path. % options.format set output format (default 'html'). % % To put part of code that are not taken into account during publishing, % put them as % %CMT % ... % %CMT % % To put part of code that are release as exercises, put them as % %EXO % ... % %EXO % % Copyright (c) 2008 Gabriel Peyre path('toolbox_general/', path); options.null = 0; if nargin<1 || isempty(name) % batch processing % list_ext = {'coding_' 'introduction_' 'image_' 'audio_' 'wavelet_' 'sparsity_' ... % 'denoising_' 'inverse_' 'graphics_' 'multidim_' 'mesh_' 'variational_' 'fastmarching_'}; list_ext = {'audio' 'coding' 'cs' 'denoising' 'fastmarching' 'graphics' 'introduction' 'inverse' 'mesh' 'multidim' 'numerics' 'sparsity' 'variational' 'wavelet' 'optim'}; a = dir('*_*.m'); for i=1:length(a) name = a(i).name; for k=1:length(list_ext) if not(isempty( findstr(name, list_ext{k}) )) disp(['---> Publishing ' name ' ...']); perform_publishing(name(1:end-2)); end end end % zip all toolbox files perform_toolbox_zipping(); return; end if iscell(name) for i=1:length(name) disp(['---> Publishing ' name{i} ' ...']); perform_publishing(name{i}, options); end return; end if not(isempty(strfind(name, '*'))) a = dir([name '.m']); name = {}; for i=1:length(a) name{end+1} = a(i).name(1:end-2); end perform_publishing(name, options); return; end %% set up path % directory where the wavelet-tour web site is repweb = getoptions(options, 'rep', '../html/'); % directory where the specific publishing is made rep = [repweb name '/']; if not(exist(rep)) mkdir(rep); end % directory for the exercices to be stored repprivate = getoptions(options, 'repprivate', 'private-svg/'); reppriv = [repweb repprivate name '/']; if not(exist(reppriv)) mkdir(reppriv); end % open files fid = fopen([name '.m'], 'rt'); fidout = fopen([repweb 'index.m'], 'wt'); if fid<0 error(['Cannot open ' name '.m.']); end % copy style files if 0 copyfile([repweb 'style.css '],[rep 'style.css']); else str = ['cp ' repweb 'style.css ' rep 'style.css']; % system( str ); end %% First pre-process the file for publishing exo_num = 0; % output_line(fidout, '% special publishing token\npublishing_time = 1;\n\n'); while true s = fgets(fid); if not(isstr(s)) break; end if exo_mode(s) % SPECIAL EXERCICE MODE exo_num = exo_num + 1; % Create a specific process_exercice(fid, fidout, exo_num, repweb, reppriv, name); elseif cmt_mode(s) % SPECIAL CMT MODE process_comment(fid); elseif header_mode(s) % SPECIAL header more process_header(fidout, s); else s = strrep(s,'\','\\'); output_line(fidout, s); end end fclose(fid); fclose(fidout); %% do the publishing opts.format = getoptions(options, 'format', 'html'); if not(strcmp(opts.format, 'latex')) opts.stylesheet = getoptions(options, 'stylesheet', [repweb 'nt.xsl']); opts.stylesheet = [pwd '/' opts.stylesheet]; end filename = [repweb 'index.m']; opts.outputDir = [pwd '/' rep]; % opts.format = 'xml'; path(repweb, path); file = publish('index.m',opts); % web(file); % delete([repweb 'exo*.m']); % delete([repweb 'index.m']); % path(repweb, path); % file = publish('index.m',opts); disp('Performing online publishing (might take some time) ...'); perform_online_publishing(name); %% function output_line(fid,s) s = strrep(s,'%','%%'); fprintf(fid, s); %% function r = cmt_mode(s) r = (length(s)>4 && strcmp(s(1:4),'%CMT')); %% function r = exo_mode(s) r = (length(s)>4 && strcmp(s(1:4),'%EXO')); %% function r = header_mode(s) r = (length(s)>28 && strcmp(s(1:28),'perform_toolbox_installation')); %% function process_header(fidout, s) tbx = {}; if findstr(s, 'signal') tbx{end+1} = 'signal'; end if findstr(s, 'general') tbx{end+1} = 'general'; end if findstr(s, 'graph') tbx{end+1} = 'graph'; end if findstr(s, 'wavelet_meshes') tbx{end+1} = 'wavelet_meshes'; end if findstr(s, 'additional') tbx{end+1} = 'additional'; end output_line(fidout, '%% Installing toolboxes and setting up the path.\n\n'); % output_line(fidout, '%%\n%<? include ''../nt.sty''; ?>\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% You need to download the following files: \n'); for i=1:length(tbx) output_line(fidout, ['% <../toolbox_' tbx{i} '.zip ' tbx{i} ' toolbox>']); if i<length(tbx)-1 output_line(fidout, ', \n'); elseif i==length(tbx)-1 output_line(fidout, ' and \n'); else output_line(fidout, '.\n'); end end output_line(fidout, '\n%%\n'); output_line(fidout, '% You need to unzip these toolboxes in your working directory, so\n'); output_line(fidout, '% that you have \n'); for i=1:length(tbx) output_line(fidout, ['% |toolbox_' tbx{i} '|']); if i<length(tbx)-1 output_line(fidout, ', \n'); elseif i==length(tbx)-1 output_line(fidout, ' and \n'); else output_line(fidout, '\n'); end end output_line(fidout, '% in your directory.\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% *For Scilab user:* you must replace the Matlab comment ''%'' by its Scilab\n'); output_line(fidout, '% counterpart ''//''.\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% *Recommandation:* You should create a text file named for instance |numericaltour.sce| (in Scilab) or |numericaltour.m| (in Matlab) to write all the\n'); output_line(fidout, '% Scilab/Matlab command you want to execute. Then, simply run |exec(''numericaltour.sce'');| (in Scilab) or |numericaltour;| (in Matlab) to run the commands. \n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% Execute this line only if you are using Matlab.\n\n'); output_line(fidout, 'getd = @(p)path(p,path); % scilab users must *not* execute this\n\n'); output_line(fidout, '%%\n'); output_line(fidout, '% Then you can add the toolboxes to the path.\n\n'); for i=1:length(tbx) output_line(fidout, ['getd(''toolbox_' tbx{i} '/'');\n']); end %% function process_comment(fid) while true s = fgets(fid); if not(isstr(s)) || cmt_mode(s) break; end end %% function process_exercice(fid, fidout, exo_num, rep, reppriv, curname) % create a new file % The m file is created and executed in rep % and also copied to reppriv. name = ['exo' num2str(exo_num)]; filename = [name '.m']; fidexo = fopen([rep filename], 'wt'); output_line(fidout, ['%%\n% _Exercice ' num2str(exo_num) ':_' ]); output_line(fidout, [' (the solution is <../missing-exo.html ' filename '>)\n']); % process files while true s = fgets(fid); if not(isstr(s)) || exo_mode(s) break; end s = strrep(s,'#',num2str(exo_num)); s = strrep(s,'\','\\'); if length(s)>1 && strcmp(s(1:2), '%%') s = s(2:end); output_line(fidout, s); else output_line(fidexo, s); end end output_line(fidout, ['\n' name ';\n']); fclose(fidexo); if 0 copyfile([rep filename],[reppriv filename]); else system(['cp ' rep filename ' ' reppriv filename]); end
github
alex-delalande/numerical-tours-master
perform_scilab_conversion.m
.m
numerical-tours-master/matlab/toolbox_publishing/perform_scilab_conversion.m
2,210
utf_8
530502896e21ccb55e21856289190c35
function perform_scilab_conversion(name, outdir, toolbox_dir) % perform_scilab_conversion - convert a matlab file to scilab % % perform_scilab_conversion(name); % % If name is empty, process all the files. % % Copyright (c) 2008 Gabriel Peyre if nargin<2 outdir = '../scilab/'; end if nargin<3 toolbox_dir = '../matlab/'; end if nargin<1 || isempty(name) % back processing list_ext = {'coding_' 'introduction_' 'image_' 'audio_' 'wavelet_' 'sparsity_' 'cs_' ... 'denoising_' 'inverse_' 'graphics_' 'multidim_' 'meshproc_' 'meshdeform_' ... 'meshwav_' 'variational_' 'fastmarching_'}; a = dir('*_*.m'); for i=1:length(a) name = a(i).name; for k=1:length(list_ext) if not(isempty( findstr(name, list_ext{k}) )) disp(['---> Translating ' name ' ...']); perform_scilab_conversion(name(1:end-2)); end end end return; end fid = fopen([name '.m'], 'rt'); fidout = fopen([outdir name '.sce'], 'wt'); if fid<0 error(['Cannot open ' name '.m.']); end str1 = {'%' '\' 'getd(''' }; str2 = {'//' '\\' ['getd(''' toolbox_dir] }; while true s = fgets(fid); if s<0 break; end % remove comments and stufs for i=1:length(str1) s = strrep(s,str1{i},str2{i}); end makeoutput = 1; if length(s)>5 && strcmp(s(1:6), 'getd =') makeoutput = 0; end if length(s)>28 && strcmp(s(1:28), 'perform_toolbox_installation') process_header(fidout, s); makeoutput = 0; end % write output if makeoutput fprintf(fidout, s); end end fclose(fid); fclose(fidout); %% function process_header(fidout, s) tbx = {}; if findstr(s, 'signal') tbx{end+1} = 'signal'; end if findstr(s, 'general') tbx{end+1} = 'general'; end if findstr(s, 'graph') tbx{end+1} = 'graph'; end if findstr(s, 'wavelet_meshes') tbx{end+1} = 'wavelet_meshes'; end if findstr(s, 'additional') tbx{end+1} = 'additional'; end for i=1:length(tbx) output_line(fidout, ['getd(''toolbox_' tbx{i} '/'');\n']); end %% function output_line(fid,s) s = strrep(s,'%','%%'); fprintf(fid, s);
github
alex-delalande/numerical-tours-master
compute_butterfly_neighbors.m
.m
numerical-tours-master/matlab/toolbox_wavelet_meshes/compute_butterfly_neighbors.m
1,398
utf_8
0a690efe10cc4cbba37565df43f15a2f
function [e,v,g] = compute_butterfly_neighbors(k, nj) % compute_butterfly_neighbors - compute local neighbors of a vertex % % [e,v,g] = compute_butterfly_neighbors(k, nj); % % This is for internal use. % % e are the 2 direct edge neighbors % v are the 2 indirect neighbors % g are the fare neighbors % % You need to provide: % for e: vring, e2f % for v: fring % for g: facej % % Copyright (c) 2007 Gabriel Peyre global vring e2f fring facej; % find the 2 edges in the fine subdivition vr = vring{k}; I = find(vr<=nj); e = vr(I); % find the coarse faces associated to the edge e f = [e2f(e(1),e(2)) e2f(e(2),e(1))]; % symmetrize for boundary faces ... f(f==-1) = f(3 - find(f==-1)); if nargout>1 F1 = mysetdiff(fring{f(1)}, f(2)); F2 = mysetdiff(fring{f(2)}, f(1)); % symmetrize for boundary faces F1 = [F1 repmat(f(1), 1, 3-length(F1))]; F2 = [F2 repmat(f(2), 1, 3-length(F2))]; v = [ mysetdiff( facej(:,f(1)), e ) mysetdiff( facej(:,f(2)), e ) ]; if nargout>2 d = [v, e]; g = [setdiff( facej(:,F1(1)),d ), ... mysetdiff( facej(:,F1(2)),d ), ... mysetdiff( facej(:,F2(1)),d ), ... mysetdiff( facej(:,F2(2)),d ) ]; end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = mysetdiff(a,b) % removed in a entries equal to entries in b for s=b a(a==s) = []; end
github
alex-delalande/numerical-tours-master
load_spherical_function.m
.m
numerical-tours-master/matlab/toolbox_wavelet_meshes/load_spherical_function.m
2,090
utf_8
fa00de26d8ccf7c2c8363fafa5f729dd
function f = load_spherical_function(name, pos, options) % load_spherical_function - load a function on the sphere % % f = load_spherical_function(name, pos, options); % % Copyright (c) 2007 Gabriel Peyre if iscell(pos) pos = pos{end}; end if size(pos,1)>size(pos,2) pos = pos'; end x = pos(1,:); x = x(:); M = []; if not(isstr(name)) M = name; name = 'image'; end switch name case 'linear' f = x; case 'cos' f = cos(6*pi*x); case 'singular' f = abs(x).^.4; case 'image' name = getoptions(options, 'image_name', 'lena'); if isempty(M) M = load_image(name); q = size(M,1); q = min(q,512); M = crop(M,q); M = perform_blurring(M,4); end f = perform_spherical_interpolation(pos,M); case 'etopo' resol = 15; fname = ['ETOPO' num2str(resol)]; fid = fopen(fname, 'rb'); if fid<0 error('Unable to read ETOPO file'); end s = [360*(60/resol), 180*(60/resol)]; M = fread(fid, Inf, 'short'); M = reshape(M, s(1),s(2) ); fclose(fid); f = perform_spherical_interpolation(pos,M, 0); case {'earth' 'earth-grad'} filename = 'earth-bw'; M = double( load_image(filename) ); M = perform_blurring(M,4); if strcmp(name, 'earth-grad') G = grad(M); M = sqrt(sum(G.^2,3)); M = perform_blurring(M,15); end f = perform_spherical_interpolation(pos,M,0); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f = perform_spherical_interpolation(pos,M,center) if nargin<3 center = 1; end qx = size(M,1); qy = size(M,2); Y = atan2(pos(2,:),pos(1,:))/(2*pi) + 1/2; if center X = acos(pos(3,:))/(2*pi) + 1/4; else X = acos(pos(3,:))/(pi); end x = linspace(0,1,qx); y = linspace(0,1,qy); f = interp2( y,x,M, Y(:),X(:) );
github
alex-delalande/numerical-tours-master
perform_spherial_planar_sampling.m
.m
numerical-tours-master/matlab/toolbox_wavelet_meshes/perform_spherial_planar_sampling.m
2,981
utf_8
5bfd95a6221f7c73d61eab4013f13321
function posw = perform_spherial_planar_sampling(pos_sphere, sampling_type, options) % perform_spherial_planar_sampling - project sampling location from sphere to a square % % posw = perform_spherial_planar_sampling(pos_sphere, type) % % 'type' can be 'area' or 'gnomonic'. % % This is used to produced spherical geometry images. % The sampling is first projected onto an octahedron and then unfolded on % a square. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 sampling_type = 'area'; end % all 3-tuple of {-1,1} a = [-1 1]; [X,Y,Z] = meshgrid(a,a,a); anchor_2d = {}; anchor_3d = {}; for i=1:8 x = X(i); y = Y(i); z = Z(i); a2d = []; a3d = []; if z>0 a2d = [a2d, [0;0]]; else a2d = [a2d, [x;y]]; end a2d = [a2d, [x;0]]; a2d = [a2d, [0;y]]; anchor_2d{i} = a2d; a3d = [a3d, [0;0;z]]; a3d = [a3d, [x;0;0]]; a3d = [a3d, [0;y;0]]; anchor_3d{i} = a3d; end pos = pos_sphere; n = size(pos, 2); posw = zeros(2,n); for s = 1:8 x = X(s); y = Y(s); z = Z(s); anc2d = anchor_2d{s}; anc3d = anchor_3d{s}; I = find( signe(pos(1,:))==x & signe(pos(2,:))==y & signe(pos(3,:))==z ); posI = pos(:,I); nI = length(I); if strcmp(sampling_type, 'area') % find the area of the 3 small triangles p1 = repmat(anc3d(:,1), 1, nI); p2 = repmat(anc3d(:,2), 1, nI); p3 = repmat(anc3d(:,3), 1, nI); a1 = compute_spherical_area( posI, p2, p3 ); a2 = compute_spherical_area( posI, p1, p3 ); a3 = compute_spherical_area( posI, p1, p2 ); % barycentric coordinates a = a1+a2+a3; % aa = compute_spherical_area( p1, p2, p3 ); a1 = a1./a; a2 = a2./a; a3 = a3./a; elseif strcmp(sampling_type, 'gnomonic') % we are searching for a point y=b*x (projection on the triangle) % such that : a1*anc3d(:,1)+a2*anc3d(:,2)+a3*anc3d(:,3)-b*x=0 % a1+a2+a3=1 a1 = zeros(1,nI); a2 = a1; a3 = a1; for i=1:nI x = posI(:,i); M = [1 1 1 0; anc3d(:,1), anc3d(:,2), anc3d(:,3), x]; a = M\[1;0;0;0]; a1(i) = a(1); a2(i) = a(2); a3(i) = a(3); end else error('Unknown projection method.'); end posw(:,I) = anc2d(:,1)*a1 + anc2d(:,2)*a2 + anc2d(:,3)*a3; end function y = signe(x) y = double(x>=0)*2-1; function A = compute_spherical_area( p1, p2, p3 ) % length of the sides of the triangles : % cos(a)=p1*p2 a = acos( dotp(p2,p3) ); b = acos( dotp(p1,p3) ); c = acos( dotp(p1,p2) ); s = (a+b+c)/2; % use L'Huilier's Theorem % tand(E/4)^2 = tan(s/2).*tan( (s-a)/2 ).*tan( (s-b)/2 ).*tan( (s-c)/2 ) E = tan(s/2).*tan( (s-a)/2 ).*tan( (s-b)/2 ).*tan( (s-c)/2 ); A = 4*atan( sqrt( E ) ); A = real(A); function d = dotp(x,y) d = x(1,:).*y(1,:) + x(2,:).*y(2,:) + x(3,:).*y(3,:);
github
alex-delalande/numerical-tours-master
load_image.m
.m
numerical-tours-master/matlab/toolbox_wavelet_meshes/toolbox/load_image.m
19,503
utf_8
16a3a912ce98f3734882ac9fe80494c2
function M = load_image(type, n, options) % load_image - load benchmark images. % % M = load_image(name, n, options); % % name can be: % Synthetic images: % 'chessboard1', 'chessboard', 'square', 'squareregular', 'disk', 'diskregular', 'quaterdisk', '3contours', 'line', % 'line_vertical', 'line_horizontal', 'line_diagonal', 'line_circle', % 'parabola', 'sin', 'phantom', 'circ_oscil', % 'fnoise' (1/f^alpha noise). % Natural images: % 'boat', 'lena', 'goldhill', 'mandrill', 'maurice', 'polygons_blurred', or your own. % % Copyright (c) 2004 Gabriel Peyre if nargin<2 n = 512; end options.null = 0; type = lower(type); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % parameters for geometric objects eta = 0.1; % translation gamma = 1/sqrt(2); % slope if isfield( options, 'eta' ) eta = options.eta; end if isfield( options, 'gamma' ) eta = options.gamma; end if isfield( options, 'radius' ) radius = options.radius; end if isfield( options, 'center' ) center = options.center; end if isfield( options, 'center1' ) center1 = options.center1; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for the line, can be vertical / horizontal / diagonal / any if strcmp(type, 'line_vertical') eta = 0.5; % translation gamma = 0; % slope elseif strcmp(type, 'line_horizontal') eta = 0.5; % translation gamma = Inf; % slope elseif strcmp(type, 'line_diagonal') eta = 0; % translation gamma = 1; % slope end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % for some blurring sigma = 0; if isfield(options, 'sigma') sigma = options.sigma; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% switch lower(type) case {'letter-x' 'letter-v' 'letter-z' 'letter-y'} if isfield(options, 'radius') r = options.radius; else r = 10; end M = create_letter(type(8), r, n); case 'l' r1 = [.1 .1 .3 .9]; r2 = [.1 .1 .9 .4]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) ); case 'ellipse' c1 = [0.15 0.5]; c2 = [0.85 0.5]; if isfield(options, 'eccentricity') eccentricity = options.eccentricity; else eccentricity = 1.3; end x = linspace(0,1,n); [Y,X] = meshgrid(x,x); d = sqrt((X-c1(1)).^2 + (Y-c1(2)).^2) + sqrt((X-c2(1)).^2 + (Y-c2(2)).^2); M = double( d<=eccentricity*sqrt( sum((c1-c2).^2) ) ); case 'ellipse-thin' options.eccentricity = 1.06; M = load_image('ellipse', n, options); case 'ellipse-fat' options.eccentricity = 1.3; M = load_image('ellipse', n, options); case 'square-tube' if isfield(options, 'tube_width') w = options.tube_width; else w = 0.06; end c1 = [.25 .5]; c2 = [.75 .5]; r1 = [c1 c1] + .18*[-1 -1 1 1]; r2 = [c2 c2] + .18*[-1 -1 1 1]; r3 = [c1(1)-w c1(2)-w c2(1)+w c2(2)+w]; M = double( draw_rectangle(r1,n) | draw_rectangle(r2,n) | draw_rectangle(r3,n) ); case 'square-tube-1' options.tube_width = 0.03; M = load_image('square-tube', n, options); case 'square-tube-2' options.tube_width = 0.06; M = load_image('square-tube', n, options); case 'square-tube-3' options.tube_width = 0.09; M = load_image('square-tube', n, options); case 'polygon' if isfield(options, 'nb_points') nb_points = options.nb_points; else nb_points = 9; end if isfield(options, 'scaling') scaling = options.scaling; else scaling = 1; end theta = sort( rand(nb_points,1)*2*pi ); radius = scaling*rescale(rand(nb_points,1), 0.1, 0.93); points = [cos(theta) sin(theta)] .* repmat(radius, 1,2); points = (points+1)/2*(n-1)+1; points(end+1,:) = points(1,:); M = draw_polygons(zeros(n),0.8,{points'}); [x,y] = ind2sub(size(M),find(M)); p = 100; m = length(x); lambda = linspace(0,1,p); X = n/2 + repmat(x-n/2, [1 p]) .* repmat(lambda, [m 1]); Y = n/2 + repmat(y-n/2, [1 p]) .* repmat(lambda, [m 1]); I = round(X) + (round(Y)-1)*n; M = zeros(n); M(I) = 1; case 'polygon-8' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-10' options.nb_points = 8; M = load_image('polygon', n, options); case 'polygon-12' options.nb_points = 8; M = load_image('polygon', n, options); case 'pacman' if isfield(options, 'theta') theta = options.theta; else theta = 30 * 2*pi/360; end options.radius = 0.45; M = load_image('disk', n, options); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); T =atan2(Y,X); M = M .* (1-(abs(T)<theta/2)); case 'square-hole' options.radius = 0.45; M = load_image('disk', n, options); options.scaling = 0.5; M = M - load_image('polygon-10', n, options); case 'grid-circles' if isempty(n) n = 256; end if isfield(options, 'frequency') f = options.frequency; else f = 30; end if isfield(options, 'width') eta = options.width; else eta = 0.3; end x = linspace(-n/2,n/2,n) - round(n*0.03); y = linspace(0,n,n); [Y,X] = meshgrid(y,x); R = sqrt(X.^2+Y.^2); theta = 0.05*pi/2; X1 = cos(theta)*X+sin(theta)*Y; Y1 = -sin(theta)*X+cos(theta)*Y; A1 = abs(cos(2*pi*R/f))<eta; A2 = max( abs(cos(2*pi*X1/f))<eta, abs(cos(2*pi*Y1/f))<eta ); M = A1; M(X1>0) = A2(X1>0); case 'chessboard1' x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = (2*(Y>=0)-1).*(2*(X>=0)-1); case 'chessboard' if ~isfield( options, 'width' ) width = round(n/16); else width = options.width; end [Y,X] = meshgrid(0:n-1,0:n-1); M = mod( floor(X/width)+floor(Y/width), 2 ) == 0; case 'square' if ~isfield( options, 'radius' ) radius = 0.6; end x = -1:2/(n-1):1; [Y,X] = meshgrid(x,x); M = max( abs(X),abs(Y) )<radius; case 'squareregular' M = rescale(load_image('square',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'regular1' options.alpha = 1; M = load_image('fnoise',n,options); case 'regular2' options.alpha = 2; M = load_image('fnoise',n,options); case 'regular3' options.alpha = 3; M = load_image('fnoise',n,options); case 'sparsecurves' options.alpha = 3; M = load_image('fnoise',n,options); M = rescale(M); ncurves = 3; M = cos(2*pi*ncurves); case 'square_texture' M = load_image('square',n); M = rescale(M); % make a texture patch x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M(I) = M(I) + lambda * sin( x(I) * 2*pi / eta ); case 'oscillatory_texture' x = linspace(0,1,n); [Y,X] = meshgrid(x,x); theta = pi/3; x = cos(theta)*X + sin(theta)*Y; c = [0.3,0.4]; r = 0.2; I = find( (X-c(1)).^2 + (Y-c(2)).^2 < r^2 ); eta = 3/n; lambda = 0.3; M = sin( x * 2*pi / eta ); case {'line', 'line_vertical', 'line_horizontal', 'line_diagonal'} x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); if gamma~=Inf M = (X-eta) - gamma*Y < 0; else M = (Y-eta) < 0; end case 'grating' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); if isfield(options, 'theta') theta = options.theta; else theta = 0.2; end if isfield(options, 'freq') freq = options.freq; else freq = 0.2; end X = cos(theta)*X + sin(theta)*Y; M = sin(2*pi*X/freq); case 'disk' if ~isfield( options, 'radius' ) radius = 0.35; end if ~isfield( options, 'center' ) center = [0.5, 0.5]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'diskregular' M = rescale(load_image('disk',n,options)); if not(isfield(options, 'alpha')) options.alpha = 3; end S = load_image('fnoise',n,options); M = M + rescale(S,-0.3,0.3); case 'quarterdisk' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; case 'fading_contour' if ~isfield( options, 'radius' ) radius = 0.95; end if ~isfield( options, 'center' ) center = -[0.1, 0.1]; % center of the circle end x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); M = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; theta = 2/pi*atan2(Y,X); h = 0.5; M = exp(-(1-theta).^2/h^2).*M; case '3contours' radius = 1.3; center = [-1, 1]; radius1 = 0.8; center1 = [0, 0]; x = 0:1/(n-1):1; [Y,X] = meshgrid(x,x); f1 = (X-center(1)).^2 + (Y-center(2)).^2 < radius^2; f2 = (X-center1(1)).^2 + (Y-center1(2)).^2 < radius1^2; M = f1 + 0.5*f2.*(1-f1); case 'line_circle' gamma = 1/sqrt(2); x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); M1 = double( X>gamma*Y+0.25 ); M2 = X.^2 + Y.^2 < 0.6^2; M = 20 + max(0.5*M1,M2) * 216; case 'fnoise' % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} if isfield(options, 'alpha') alpha = options.alpha; else alpha = 1; end M = gen_noisy_image(n,alpha); case 'gaussiannoise' % generate an image of filtered noise with gaussian if isfield(options, 'sigma') sigma = options.sigma; else sigma = 10; end M = randn(n); m = 51; h = compute_gaussian_filter([m m],sigma/(4*n),[n n]); M = perform_convolution(M,h); return; case {'bwhorizontal','bwvertical','bwcircle'} [Y,X] = meshgrid(0:n-1,0:n-1); if strcmp(type, 'bwhorizontal') d = X; elseif strcmp(type, 'bwvertical') d = Y; elseif strcmp(type, 'bwcircle') d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 ); end if isfield(options, 'stripe_width') stripe_width = options.stripe_width; else stripe_width = 5; end if isfield(options, 'black_prop') black_prop = options.black_prop; else black_prop = 0.5; end M = double( mod( d/(2*stripe_width),1 )>=black_prop ); case 'parabola' % curvature if isfield(options, 'c') c = options.c; else c = 0.1; end % angle if isfield(options, 'theta'); theta = options.theta; else theta = pi/sqrt(2); end x = -0.5:1/(n-1):0.5; [Y,X] = meshgrid(x,x); Xs = X*cos(theta) + Y*sin(theta); Y =-X*sin(theta) + Y*cos(theta); X = Xs; M = Y>c*X.^2; case 'sin' [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1); M = Y >= 0.6*cos(pi*X); M = double(M); case 'circ_oscil' x = linspace(-1,1,n); [Y,X] = meshgrid(x,x); R = sqrt(X.^2+Y.^2); M = cos(R.^3*50); case 'phantom' M = phantom(n); case 'periodic_bumps' if isfield(options, 'nbr_periods') nbr_periods = options.nbr_periods; else nbr_periods = 8; end if isfield(options, 'theta') theta = options.theta; else theta = 1/sqrt(2); end if isfield(options, 'skew') skew = options.skew; else skew = 1/sqrt(2); end A = [cos(theta), -sin(theta); sin(theta), cos(theta)]; B = [1 skew; 0 1]; T = B*A; x = (0:n-1)*2*pi*nbr_periods/(n-1); [Y,X] = meshgrid(x,x); pos = [X(:)'; Y(:)']; pos = T*pos; X = reshape(pos(1,:), n,n); Y = reshape(pos(2,:), n,n); M = cos(X).*sin(Y); case 'noise' if isfield(options, 'sigma') sigma = options.sigma; else sigma = 1; end M = randn(n); otherwise ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'}; for i=1:length(ext) name = [type '.' ext{i}]; if( exist(name) ) M = imread( name ); M = double(M); if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2 M = image_resize(M,n,n); end return; end end error( ['Image ' type ' does not exists.'] ); end M = double(M); if sigma>0 h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]); M = perform_convolution(M,h); end M = rescale(M) * 256; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = create_letter(a, r, n) c = 0.2; p1 = [c;c]; p2 = [c; 1-c]; p3 = [1-c; 1-c]; p4 = [1-c; c]; p4 = [1-c; c]; pc = [0.5;0.5]; pu = [0.5; c]; switch a case 'x' point_list = { [p1 p3] [p2 p4] }; case 'z' point_list = { [p2 p3 p1 p4] }; case 'v' point_list = { [p2 pu p3] }; case 'y' point_list = { [p2 pc pu] [pc p3] }; end % fit image for i=1:length(point_list) a = point_list{i}(2:-1:1,:); a(1,:) = 1-a(1,:); point_list{i} = round( a*(n-1)+1 ); end M = draw_polygons(zeros(n),r,point_list); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_polygons(mask,r,point_list) sk = mask*0; for i=1:length(point_list) pl = point_list{i}; for k=2:length(pl) sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r); end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function sk = draw_line(sk,x1,y1,x2,y2,r) n = size(sk,1); [Y,X] = meshgrid(1:n,1:n); q = 100; t = linspace(0,1,q); x = x1*t+x2*(1-t); y = y1*t+y2*(1-t); if r==0 x = round( x ); y = round( y ); sk( x+(y-1)*n ) = 1; else for k=1:q I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 ); sk(I) = 1; end end function M = gen_noisy_image(n,alpha) % gen_noisy_image - generate a noisy cloud-like image. % % M = gen_noisy_image(n,alpha); % % generate an image M whose Fourier spectrum amplitude is % |M^(omega)| = 1/f^{omega} % % Copyright (c) 2004 Gabriel Peyr? if nargin<1 n = 128; end if nargin<2 alpha = 1.5; end if mod(n(1),2)==0 x = -n/2:n/2-1; else x = -(n-1)/2:(n-1)/2; end [Y,X] = meshgrid(x,x); d = sqrt(X.^2 + Y.^2) + 0.1; f = rand(n)*2*pi; M = (d.^(-alpha)) .* exp(f*1i); % M = real(ifft2(fftshift(M))); M = ifftshift(M); M = real( ifft2(M) ); function y = gen_signal_2d(n,alpha) % gen_signal_2d - generate a 2D C^\alpha signal of length n x n. % gen_signal_2d(n,alpha) generate a 2D signal C^alpha. % % The signal is scale in [0,1]. % % Copyright (c) 2003 Gabriel Peyr? % new new method [Y,X] = meshgrid(0:n-1, 0:n-1); A = X+Y+1; B = X-Y+n+1; a = gen_signal(2*n+1, alpha); b = gen_signal(2*n+1, alpha); y = a(A).*b(B); % M = a(1:n)*b(1:n)'; return; % new method h = (-n/2+1):(n/2); h(n/2)=1; [X,Y] = meshgrid(h,h); h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2); h = h .* exp( 2i*pi*rand(n,n) ); h = fftshift(h); y = real( ifft2(h) ); m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); return; %% old code y = rand(n,n); y = y - mean(mean(y)); for i=1:alpha y = cumsum(cumsum(y)')'; y = y - mean(mean(y)); end m1 = min(min(y)); m2 = max(max(y)); y = (y-m1)/(m2-m1); function newimg = image_resize(img,p1,q1,r1) % image_resize - resize an image using bicubic interpolation % % newimg = image_resize(img,nx,ny,nz); % or % newimg = image_resize(img,newsize); % % Works for 2D, 2D 2 or 3 channels, 3D images. % % Copyright (c) 2004 Gabriel Peyr? if nargin==2 % size specified as an array q1 = p1(2); if length(p1)>2 r1 = p1(3); else r1 = size(img,3); end p1 = p1(1); end if nargin<4 r1 = size(img,3); end if ndims(img)<2 || ndims(img)>3 error('Works only for grayscale or color images'); end if ndims(img)==3 && size(img,3)<4 % RVB image newimg = zeros(p1,q1, size(img,3)); for m=1:size(img,3) newimg(:,:,m) = image_resize(img(:,:,m), p1, q1); end return; elseif ndims(img)==3 p = size(img,1); q = size(img,2); r = size(img,3); [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) ); [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) ); newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic'); return; end p = size(img,1); q = size(img,2); [Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) ); [YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) ); newimg = interp2( Y,X, img, YI,XI ,'cubic'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function M = draw_rectangle(r,n) x = linspace(0,1,n); [Y,X] = meshgrid(x,x); M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
github
alex-delalande/numerical-tours-master
check_face_vertex.m
.m
numerical-tours-master/matlab/toolbox_wavelet_meshes/toolbox/check_face_vertex.m
646
utf_8
fe3c5da3b1ca8f15eb7eed61acfc2259
function [vertex,face] = check_face_vertex(vertex,face, options) % check_face_vertex - check that vertices and faces have the correct size % % [vertex,face] = check_face_vertex(vertex,face); % % Copyright (c) 2007 Gabriel Peyre vertex = check_size(vertex); face = check_size(face); %%%%%%%%%%%%%%%%%%%%%%%%%%%%% function a = check_size(a) if isempty(a) return; end if size(a,1)>size(a,2) a = a'; end if size(a,1)<3 && size(a,2)==3 a = a'; end if size(a,1)<=3 && size(a,2)>=3 && sum(abs(a(:,3)))==0 % for flat triangles a = a'; end if size(a,1)~=3 && size(a,1)~=4 error('face or vertex is not of correct size'); end
github
alex-delalande/numerical-tours-master
compute_mesh_weight.m
.m
numerical-tours-master/matlab/toolbox_wavelet_meshes/toolbox/compute_mesh_weight.m
2,820
utf_8
c90377b7ee516f5f952ce8c31dcfd43b
function W = compute_mesh_weight(vertex,face,type,options) % compute_mesh_weight - compute a weight matrix % % W = compute_mesh_weight(vertex,face,type,options); % % W is sparse weight matrix and W(i,j)=0 is vertex i and vertex j are not % connected in the mesh. % % type is either % 'combinatorial': W(i,j)=1 is vertex i is conntected to vertex j. % 'distance': W(i,j) = 1/d_ij^2 where d_ij is distance between vertex % i and j. % 'conformal': W(i,j) = cot(alpha_ij)+cot(beta_ij) where alpha_ij and % beta_ij are the adjacent angle to edge (i,j) % % If options.normalize=1, the the rows of W are normalize to sum to 1. % % Copyright (c) 2007 Gabriel Peyre options.null = 0; [vertex,face] = check_face_vertex(vertex,face); nface = size(face,1); n = max(max(face)); if isfield(options, 'verb') verb = options.verb; else verb = n>5000; end if nargin<3 type = 'conformal'; end switch lower(type) case 'combinatorial' W = triangulation2adjacency(face); case 'distance' W = my_euclidean_distance(triangulation2adjacency(face),vertex); W(W>0) = 1./W(W>0); W = (W+W')/2; case 'conformal' % conformal laplacian W = sparse(n,n); ring = compute_vertex_face_ring(face); for i = 1:n if verb progressbar(i,n); end for b = ring{i} % b is a face adjacent to a bf = face(:,b); % compute complementary vertices if bf(1)==i v = bf(2:3); elseif bf(2)==i v = bf([1 3]); elseif bf(3)==i v = bf(1:2); else error('Problem in face ring.'); end j = v(1); k = v(2); vi = vertex(:,i); vj = vertex(:,j); vk = vertex(:,k); % angles alpha = myangle(vk-vi,vk-vj); beta = myangle(vj-vi,vj-vk); % add weight W(i,j) = W(i,j) + cot( alpha ); W(i,k) = W(i,k) + cot( beta ); end end otherwise error('Unknown type.') end if isfield(options, 'normalize') && options.normalize==1 W = diag(sum(W,2).^(-1)) * W; end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function beta = myangle(u,v); du = sqrt( sum(u.^2) ); dv = sqrt( sum(v.^2) ); du = max(du,eps); dv = max(dv,eps); beta = acos( sum(u.*v) / (du*dv) ); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function W = my_euclidean_distance(A,vertex) if size(vertex,1)<size(vertex,2) vertex = vertex'; end [i,j,s] = find(sparse(A)); d = sum( (vertex(i,:) - vertex(j,:)).^2, 2); W = sparse(i,j,d);
github
ai-med/QuickNATv2-master
QuickNAT_Train.m
.m
QuickNATv2-master/QuickNAT_Networks/QuickNAT_Train.m
18,894
utf_8
1ee46a55261e93f102e78ae6ec3f1929
function [net, info] = QuickNAT_Train(imdb, netF, inpt, varargin) % some common options trainer = @cnn_train_dag_seg; opts.train.extractStatsFn = @extract_stats_segmentation_Mod; opts.train.batchSize = 4; opts.train.numEpochs = 15; opts.train.continue = true ; opts.train.gpus = [2] ; opts.train.learningRate = [1e-1*ones(1, 5), 1e-2*ones(1, 5), 1e-3*ones(1, 5), 1e-4*ones(1,1)]; opts.train.weightDecay = 1e-3; opts.train.momentum = 0.95; opts.train.expDir = inpt.expDir; opts.train.savePlots = false; opts.train.numSubBatches = 1; % getBatch options bopts.useGpu = numel(opts.train.gpus) > 0 ; opts.border = [8 8 8 8]; % tblr % augmenting data - Jitter and Fliplr augData = zeros(size(imdb.images.data) + [sum(opts.border(1:2)) ... sum(opts.border(3:4)) 0 0], 'like', imdb.images.data); augLabels = zeros(size(imdb.images.label) + [sum(opts.border(1:2)) ... sum(opts.border(3:4)) 0 0], 'like', imdb.images.label); augData(opts.border(1)+1:end-opts.border(2), ... opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.data; % Mirroring Borders for augData augData(1:opts.border(1), ... opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.data(opts.border(1):-1:1, ... :, :, :); augData(end-opts.border(2)+1:end, ... opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.data(end:-1:end-opts.border(2)+1, ... :, :, :); augData(:, ... opts.border(3):-1:1, :, :) = augData(:, ... opts.border(3)+1:2*opts.border(3), :, :); augData(:, ... end-opts.border(4)+1:end, :, :) = augData(:, ... end-opts.border(4):-1:end-2*opts.border(4)+1, :, :); % Augmenting Labels augLabels(opts.border(1)+1:end-opts.border(2), ... opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.label; % Mirroring Borders for augLabels augLabels(1:opts.border(1), ... opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.label(opts.border(1):-1:1, ... :, :, :); augLabels(end-opts.border(2)+1:end, ... opts.border(3)+1:end-opts.border(4), :, :) = imdb.images.label(end:-1:end-opts.border(2)+1, ... :, :, :); augLabels(:, ... opts.border(3):-1:1, :, :) = augLabels(:, ... opts.border(3)+1:2*opts.border(3), :, :); augLabels(:, ... end-opts.border(4)+1:end, :, :) = augLabels(:, ... end-opts.border(4):-1:end-2*opts.border(4)+1, :, :); imdb.images.augData = augData; imdb.images.augLabels = augLabels; clear augData augLabels % organize data K = 2; % how many examples per domain trainData = find(imdb.images.set == 1); valData = find(imdb.images.set == 3); % debuging code opts.train.exampleIndices = [trainData(randperm(numel(trainData), K)), valData(randperm(numel(valData), K))]; % opts.train.classesNames = {'sky', 'building', 'road', 'sidewalk', 'fence', 'vegetation', 'pole', 'car', 'sign', 'pedestrian', 'cyclist'}; colorMap = (1/255)*[ 128 128 128 128 0 0 128 64 128 0 0 192 64 64 128 128 128 0 192 192 128 64 0 128 192 128 128 64 64 0 0 128 192 128 128 128 128 0 0 128 64 128 0 0 192 64 64 128 128 128 0 192 192 128 64 0 128 192 128 128 64 64 0 0 128 192 128 128 128 128 0 0 128 64 128 0 0 192 64 64 128 128 128 0 ]; opts.train.colorMapGT = [0 0 0; colorMap]; opts.train.colorMapEst = colorMap; % network definition net = dagnn.DagNN() ; % Dense Encoder 1 net.addLayer('bn1_1', dagnn.BatchNorm('numChannels', 1), {'input'}, {'bn1_1'}, {'bn1_1f', 'bn1_1b', 'bn1_1m'}); net.addLayer('relu1_1', dagnn.ReLU(), {'bn1_1'}, {'relu1_1'}, {}); net.addLayer('conv1_1', dagnn.Conv('size', [5 5 1 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu1_1'}, {'conv1_1'}, {'conv1_1f' 'conv1_1b'}); net.addLayer('concat1_1', dagnn.Concat('dim',3), {'input','conv1_1'}, {'concat1_1'}); net.addLayer('bn1_2', dagnn.BatchNorm('numChannels', 65), {'concat1_1'}, {'bn1_2'}, {'bn1_2f', 'bn1_2b', 'bn1_2m'}); net.addLayer('relu1_2', dagnn.ReLU(), {'bn1_2'}, {'relu1_2'}, {}); net.addLayer('conv1_2', dagnn.Conv('size', [5 5 65 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu1_2'}, {'conv1_2'}, {'conv1_2f' 'conv1_2b'}); net.addLayer('concat1_2', dagnn.Concat('dim',3), {'input','conv1_1', 'conv1_2'}, {'concat1_2'}); net.addLayer('bn1_3', dagnn.BatchNorm('numChannels', 129), {'concat1_2'}, {'bn1_3'}, {'bn1_3f', 'bn1_3b', 'bn1_3m'}); net.addLayer('relu1_3', dagnn.ReLU(), {'bn1_3'}, {'relu1_3'}, {}); net.addLayer('conv1_3', dagnn.Conv('size', [1 1 129 64], 'hasBias', true, 'stride', [1, 1], 'pad', [0 0 0 0]), {'relu1_3'}, {'conv1_3'}, {'conv1_3f' 'conv1_3b'}); net.addLayer('pool1', dagnn.PoolingInd('method', 'max', 'poolSize', [2, 2], 'stride', [2, 2], 'pad', [0 0 0 0]), {'conv1_3'}, {'pool1', 'pool_indices_1', 'sizes_pre_pool_1', 'sizes_post_pool_1'}, {}); % Dense Encoder 2 net.addLayer('bn2_1', dagnn.BatchNorm('numChannels', 64), {'pool1'}, {'bn2_1'}, {'bn2_1f', 'bn2_1b', 'bn2_1m'}); net.addLayer('relu2_1', dagnn.ReLU(), {'bn2_1'}, {'relu2_1'}, {}); net.addLayer('conv2_1', dagnn.Conv('size', [5 5 64 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu2_1'}, {'conv2_1'}, {'conv2_1f' 'conv2_1b'}); net.addLayer('concat2_1', dagnn.Concat('dim',3), {'pool1','conv2_1'}, {'concat2_1'}); net.addLayer('bn2_2', dagnn.BatchNorm('numChannels', 128), {'concat2_1'}, {'bn2_2'}, {'bn2_2f', 'bn2_2b', 'bn2_2m'}); net.addLayer('relu2_2', dagnn.ReLU(), {'bn2_2'}, {'relu2_2'}, {}); net.addLayer('conv2_2', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu2_2'}, {'conv2_2'}, {'conv2_2f' 'conv2_2b'}); net.addLayer('concat2_2', dagnn.Concat('dim',3), {'pool1','conv2_1', 'conv2_2'}, {'concat2_2'}); net.addLayer('bn2_3', dagnn.BatchNorm('numChannels', 192), {'concat2_2'}, {'bn2_3'}, {'bn2_3f', 'bn2_3b', 'bn2_3m'}); net.addLayer('relu2_3', dagnn.ReLU(), {'bn2_3'}, {'relu2_3'}, {}); net.addLayer('conv2_3', dagnn.Conv('size', [1 1 192 64], 'hasBias', true, 'stride', [1, 1], 'pad', [0 0 0 0]), {'relu2_3'}, {'conv2_3'}, {'conv2_3f' 'conv2_3b'}); net.addLayer('pool2', dagnn.PoolingInd('method', 'max', 'poolSize', [2, 2], 'stride', [2, 2], 'pad', [0 0 0 0]), {'conv2_3'}, {'pool2', 'pool_indices_2', 'sizes_pre_pool_2', 'sizes_post_pool_2'}, {}); % Dense Encoder 3 net.addLayer('bn3_1', dagnn.BatchNorm('numChannels', 64), {'pool2'}, {'bn3_1'}, {'bn3_1f', 'bn3_1b', 'bn3_1m'}); net.addLayer('relu3_1', dagnn.ReLU(), {'bn3_1'}, {'relu3_1'}, {}); net.addLayer('conv3_1', dagnn.Conv('size', [5 5 64 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu3_1'}, {'conv3_1'}, {'conv3_1f' 'conv3_1b'}); net.addLayer('concat3_1', dagnn.Concat('dim',3), {'pool2','conv3_1'}, {'concat3_1'}); net.addLayer('bn3_2', dagnn.BatchNorm('numChannels', 128), {'concat3_1'}, {'bn3_2'}, {'bn3_2f', 'bn3_2b', 'bn3_2m'}); net.addLayer('relu3_2', dagnn.ReLU(), {'bn3_2'}, {'relu3_2'}, {}); net.addLayer('conv3_2', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu3_2'}, {'conv3_2'}, {'conv3_2f' 'conv3_2b'}); net.addLayer('concat3_2', dagnn.Concat('dim',3), {'pool2','conv3_1', 'conv3_2'}, {'concat3_2'}); net.addLayer('bn3_3', dagnn.BatchNorm('numChannels', 192), {'concat3_2'}, {'bn3_3'}, {'bn3_3f', 'bn3_3b', 'bn3_3m'}); net.addLayer('relu3_3', dagnn.ReLU(), {'bn3_3'}, {'relu3_3'}, {}); net.addLayer('conv3_3', dagnn.Conv('size', [1 1 192 64], 'hasBias', true, 'stride', [1, 1], 'pad', [0 0 0 0]), {'relu3_3'}, {'conv3_3'}, {'conv3_3f' 'conv3_3b'}); net.addLayer('pool3', dagnn.PoolingInd('method', 'max', 'poolSize', [2, 2], 'stride', [2, 2], 'pad', [0 0 0 0]), {'conv3_3'}, {'pool3', 'pool_indices_3', 'sizes_pre_pool_3', 'sizes_post_pool_3'}, {}); % Dense Encoder 4 net.addLayer('bn4_1', dagnn.BatchNorm('numChannels', 64), {'pool3'}, {'bn4_1'}, {'bn4_1f', 'bn4_1b', 'bn4_1m'}); net.addLayer('relu4_1', dagnn.ReLU(), {'bn4_1'}, {'relu4_1'}, {}); net.addLayer('conv4_1', dagnn.Conv('size', [5 5 64 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu4_1'}, {'conv4_1'}, {'conv4_1f' 'conv4_1b'}); net.addLayer('concat4_1', dagnn.Concat('dim',3), {'pool3','conv4_1'}, {'concat4_1'}); net.addLayer('bn4_2', dagnn.BatchNorm('numChannels', 128), {'concat4_1'}, {'bn4_2'}, {'bn4_2f', 'bn4_2b', 'bn4_2m'}); net.addLayer('relu4_2', dagnn.ReLU(), {'bn4_2'}, {'relu4_2'}, {}); net.addLayer('conv4_2', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'relu4_2'}, {'conv4_2'}, {'conv4_2f' 'conv4_2b'}); net.addLayer('concat4_2', dagnn.Concat('dim',3), {'pool3','conv4_1', 'conv4_2'}, {'concat4_2'}); net.addLayer('bn4_3', dagnn.BatchNorm('numChannels', 192), {'concat4_2'}, {'bn4_3'}, {'bn4_3f', 'bn4_3b', 'bn4_3m'}); net.addLayer('relu4_3', dagnn.ReLU(), {'bn4_3'}, {'relu4_3'}, {}); net.addLayer('conv4_3', dagnn.Conv('size', [1 1 192 64], 'hasBias', true, 'stride', [1, 1], 'pad', [0 0 0 0]), {'relu4_3'}, {'conv4_3'}, {'conv4_3f' 'conv4_3b'}); net.addLayer('pool4', dagnn.PoolingInd('method', 'max', 'poolSize', [2, 2], 'stride', [2, 2], 'pad', [0 0 0 0]), {'conv4_3'}, {'pool4', 'pool_indices_4', 'sizes_pre_pool_4', 'sizes_post_pool_4'}, {}); % BottleNeck Layers net.addLayer('conv5', dagnn.Conv('size', [5 5 64 64], 'hasBias', true, 'stride', [1, 1], 'pad', [2 2 2 2]), {'pool4'}, {'conv5'}, {'conv5f' 'conv5b'}); net.addLayer('bn5', dagnn.BatchNorm('numChannels', 64), {'conv5'}, {'bn5'}, {'bn5f', 'bn5b', 'bn5m'}); % Dense Decoder 4 net.addLayer('unpool4x', dagnn.Unpooling(), {'bn5', 'pool_indices_4', 'sizes_pre_pool_4', 'sizes_post_pool_4'}, {'unpool4x'}, {}); net.addLayer('concat4x', dagnn.Concat('dim',3), {'unpool4x','conv4_3'}, {'concat4x'}); net.addLayer('bn4_1x', dagnn.BatchNorm('numChannels', 128), {'concat4x'}, {'bn4_1x'}, {'bn4_1fx', 'bn4_1bx', 'bn4_1mx'}); net.addLayer('relu4_1x', dagnn.ReLU(), {'bn4_1x'}, {'relu4_1x'}, {}); net.addLayer('deconv4_1x', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu4_1x'}, {'deconv4_1x'}, {'deconv4_1fx' 'deconv4_1bx'}); net.addLayer('concat4_1x', dagnn.Concat('dim',3), {'concat4x','deconv4_1x'}, {'concat4_1x'}); net.addLayer('bn4_2x', dagnn.BatchNorm('numChannels', 192), {'concat4_1x'}, {'bn4_2x'}, {'bn4_2fx', 'bn4_2bx', 'bn4_2mx'}); net.addLayer('relu4_2x', dagnn.ReLU(), {'bn4_2x'}, {'relu4_2x'}, {}); net.addLayer('deconv4_2x', dagnn.Conv('size', [5 5 192 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu4_2x'}, {'deconv4_2x'}, {'deconv4_2fx' 'deconv4_2bx'}); net.addLayer('concat4_2x', dagnn.Concat('dim',3), {'concat4x','deconv4_1x','deconv4_2x'}, {'concat4_2x'}); net.addLayer('bn4_3x', dagnn.BatchNorm('numChannels', 256), {'concat4_2x'}, {'bn4_3x'}, {'bn4_3fx', 'bn4_3bx', 'bn4_3mx'}); net.addLayer('relu4_3x', dagnn.ReLU(), {'bn4_3x'}, {'relu4_3x'}, {}); net.addLayer('deconv4_3x', dagnn.Conv('size', [1 1 256 64], 'hasBias', true, 'stride', [1,1], 'pad', [0 0 0 0]), {'relu4_3x'}, {'deconv4_3x'}, {'deconv4_3fx' 'deconv4_3bx'}); % Dense Decoder 3 net.addLayer('unpool3x', dagnn.Unpooling(), {'deconv4_3x', 'pool_indices_3', 'sizes_pre_pool_3', 'sizes_post_pool_3'}, {'unpool3x'}, {}); net.addLayer('concat3x', dagnn.Concat('dim',3), {'unpool3x','conv3_3'}, {'concat3x'}); net.addLayer('bn3_1x', dagnn.BatchNorm('numChannels', 128), {'concat3x'}, {'bn3_1x'}, {'bn3_1fx', 'bn3_1bx', 'bn3_1mx'}); net.addLayer('relu3_1x', dagnn.ReLU(), {'bn3_1x'}, {'relu3_1x'}, {}); net.addLayer('deconv3_1x', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu3_1x'}, {'deconv3_1x'}, {'deconv3_1fx' 'deconv3_1bx'}); net.addLayer('concat3_1x', dagnn.Concat('dim',3), {'concat3x','deconv3_1x'}, {'concat3_1x'}); net.addLayer('bn3_2x', dagnn.BatchNorm('numChannels', 192), {'concat3_1x'}, {'bn3_2x'}, {'bn3_2fx', 'bn3_2bx', 'bn3_2mx'}); net.addLayer('relu3_2x', dagnn.ReLU(), {'bn3_2x'}, {'relu3_2x'}, {}); net.addLayer('deconv3_2x', dagnn.Conv('size', [5 5 192 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu3_2x'}, {'deconv3_2x'}, {'deconv3_2fx' 'deconv3_2bx'}); net.addLayer('concat3_2x', dagnn.Concat('dim',3), {'concat3x','deconv3_1x','deconv3_2x'}, {'concat3_2x'}); net.addLayer('bn3_3x', dagnn.BatchNorm('numChannels', 256), {'concat3_2x'}, {'bn3_3x'}, {'bn3_3fx', 'bn3_3bx', 'bn3_3mx'}); net.addLayer('relu3_3x', dagnn.ReLU(), {'bn3_3x'}, {'relu3_3x'}, {}); net.addLayer('deconv3_3x', dagnn.Conv('size', [1 1 256 64], 'hasBias', true, 'stride', [1,1], 'pad', [0 0 0 0]), {'relu3_3x'}, {'deconv3_3x'}, {'deconv3_3fx' 'deconv3_3bx'}); % Dense Decoder 2 net.addLayer('unpool2x', dagnn.Unpooling(), {'deconv3_3x', 'pool_indices_2', 'sizes_pre_pool_2', 'sizes_post_pool_2'}, {'unpool2x'}, {}); net.addLayer('concat2x', dagnn.Concat('dim',3), {'unpool2x','conv2_3'}, {'concat2x'}); net.addLayer('bn2_1x', dagnn.BatchNorm('numChannels', 128), {'concat2x'}, {'bn2_1x'}, {'bn2_1fx', 'bn2_1bx', 'bn2_1mx'}); net.addLayer('relu2_1x', dagnn.ReLU(), {'bn2_1x'}, {'relu2_1x'}, {}); net.addLayer('deconv2_1x', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu2_1x'}, {'deconv2_1x'}, {'deconv2_1fx' 'deconv2_1bx'}); net.addLayer('concat2_1x', dagnn.Concat('dim',3), {'concat2x','deconv2_1x'}, {'concat2_1x'}); net.addLayer('bn2_2x', dagnn.BatchNorm('numChannels', 192), {'concat2_1x'}, {'bn2_2x'}, {'bn2_2fx', 'bn2_2bx', 'bn2_2mx'}); net.addLayer('relu2_2x', dagnn.ReLU(), {'bn2_2x'}, {'relu2_2x'}, {}); net.addLayer('deconv2_2x', dagnn.Conv('size', [5 5 192 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu2_2x'}, {'deconv2_2x'}, {'deconv2_2fx' 'deconv2_2bx'}); net.addLayer('concat2_2x', dagnn.Concat('dim',3), {'concat2x','deconv2_1x','deconv2_2x'}, {'concat2_2x'}); net.addLayer('bn2_3x', dagnn.BatchNorm('numChannels', 256), {'concat2_2x'}, {'bn2_3x'}, {'bn2_3fx', 'bn2_3bx', 'bn2_3mx'}); net.addLayer('relu2_3x', dagnn.ReLU(), {'bn2_3x'}, {'relu2_3x'}, {}); net.addLayer('deconv2_3x', dagnn.Conv('size', [1 1 256 64], 'hasBias', true, 'stride', [1,1], 'pad', [0 0 0 0]), {'relu2_3x'}, {'deconv2_3x'}, {'deconv2_3fx' 'deconv2_3bx'}); % Dense Decoder 1 net.addLayer('unpool1x', dagnn.Unpooling(), {'deconv2_3x', 'pool_indices_1', 'sizes_pre_pool_1', 'sizes_post_pool_1'}, {'unpool1x'}, {}); net.addLayer('concat1x', dagnn.Concat('dim',3), {'unpool1x','conv1_3'}, {'concat1x'}); net.addLayer('bn1_1x', dagnn.BatchNorm('numChannels', 128), {'concat1x'}, {'bn1_1x'}, {'bn1_1fx', 'bn1_1bx', 'bn1_1mx'}); net.addLayer('relu1_1x', dagnn.ReLU(), {'bn1_1x'}, {'relu1_1x'}, {}); net.addLayer('deconv1_1x', dagnn.Conv('size', [5 5 128 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu1_1x'}, {'deconv1_1x'}, {'deconv1_1fx' 'deconv1_1bx'}); net.addLayer('concat1_1x', dagnn.Concat('dim',3), {'concat1x','deconv1_1x'}, {'concat1_1x'}); net.addLayer('bn1_2x', dagnn.BatchNorm('numChannels', 192), {'concat1_1x'}, {'bn1_2x'}, {'bn1_2fx', 'bn1_2bx', 'bn1_2mx'}); net.addLayer('relu1_2x', dagnn.ReLU(), {'bn1_2x'}, {'relu1_2x'}, {}); net.addLayer('deconv1_2x', dagnn.Conv('size', [5 5 192 64], 'hasBias', true, 'stride', [1,1], 'pad', [2 2 2 2]), {'relu1_2x'}, {'deconv1_2x'}, {'deconv1_2fx' 'deconv1_2bx'}); net.addLayer('concat1_2x', dagnn.Concat('dim',3), {'concat1x','deconv1_1x','deconv1_2x'}, {'concat1_2x'}); net.addLayer('bn1_3x', dagnn.BatchNorm('numChannels', 256), {'concat1_2x'}, {'bn1_3x'}, {'bn1_3fx', 'bn1_3bx', 'bn1_3mx'}); net.addLayer('relu1_3x', dagnn.ReLU(), {'bn1_3x'}, {'relu1_3x'}, {}); net.addLayer('deconv1_3x', dagnn.Conv('size', [1 1 256 64], 'hasBias', true, 'stride', [1,1], 'pad', [0 0 0 0]), {'relu1_3x'}, {'deconv1_3x'}, {'deconv1_3fx' 'deconv1_3bx'}); % Classifier and Losses net.addLayer('classifier', dagnn.Conv('size', [1 1 64 16], 'hasBias', true, 'stride', [1, 1], 'pad', [0 0 0 0]), {'deconv1_3x'}, {'classifier'}, {'classf' 'classb'}); net.addLayer('prob', dagnn.SoftMax(), {'classifier'}, {'prob'}, {}); net.addLayer('objective1', dagnn.LossSemantic('weights', 1), {'prob','label'}, 'objective1'); net.addLayer('objective2', dagnn.Loss_TVReg('weights', 0), {'prob','label'}, 'objective2'); net.addLayer('objective3', dagnn.LossDice('weights', 1), {'prob','label'}, 'objective3'); % -- end of the network % do the training! initNet(net, netF); net.conserveMemory = false; info = trainer(net, imdb, @(i,b) getBatch(bopts,i,b), opts.train, 'train', trainData, 'val', valData) ; end % function on charge of creating a batch of images + labels function inputs = getBatch(opts, imdb, batch) if imdb.images.set(batch(1))==1, % training sz0 = size(imdb.images.augData); sz = size(imdb.images.data); loc = [randi(sz0(1)-sz(1)+1) randi(sz0(2)-sz(2)+1)]; images = imdb.images.augData(loc(1):loc(1)+sz(1)-1, ... loc(2):loc(2)+sz(2)-1, :, batch); labels = imdb.images.augLabels(loc(1):loc(1)+sz(1)-1, ... loc(2):loc(2)+sz(2)-1, :, batch); % Id = imdb.images.label(:,:,1,:)==13; % imdb.images.label(:,:,2,:) = single(imdb.images.label(:,:,2,:) + 5.*Id); else % validating / testing images = imdb.images.data(:,:,:,batch); labels = imdb.images.label(:,:,:,batch); end if opts.useGpu > 0 images = gpuArray(images); labels = gpuArray(labels); end inputs = {'input', images, 'label', labels} ; end function initNet(net, netF) net.initParams(); % He Initialization for New Layers for k=1:length(net.layers) % is a convolution layer? if(strcmp(class(net.layers(k).block), 'dagnn.Conv')) f_ind = net.layers(k).paramIndexes(1); b_ind = net.layers(k).paramIndexes(2); [h,w,in,out] = size(net.params(f_ind).value); He_gain = 0.7*sqrt(2/(size(net.params(f_ind).value,1)*size(net.params(f_ind).value,2)*size(net.params(f_ind).value,3))); % sqrt(2/fan_in) net.params(f_ind).value = He_gain*randn(size(net.params(f_ind).value), 'single'); net.params(f_ind).learningRate = 1; net.params(f_ind).weightDecay = 1; net.params(b_ind).value = zeros(size(net.params(b_ind).value), 'single'); net.params(b_ind).learningRate = 0.5; net.params(b_ind).weightDecay = 1; end end end
github
ai-med/QuickNATv2-master
freezeColors.m
.m
QuickNATv2-master/QuickNAT_Networks/freezeColors.m
9,815
utf_8
2068d7a4f7a74d251e2519c4c5c1c171
function freezeColors(varargin) % freezeColors Lock colors of plot, enabling multiple colormaps per figure. (v2.3) % % Problem: There is only one colormap per figure. This function provides % an easy solution when plots using different colomaps are desired % in the same figure. % % freezeColors freezes the colors of graphics objects in the current axis so % that subsequent changes to the colormap (or caxis) will not change the % colors of these objects. freezeColors works on any graphics object % with CData in indexed-color mode: surfaces, images, scattergroups, % bargroups, patches, etc. It works by converting CData to true-color rgb % based on the colormap active at the time freezeColors is called. % % The original indexed color data is saved, and can be restored using % unfreezeColors, making the plot once again subject to the colormap and % caxis. % % % Usage: % freezeColors applies to all objects in current axis (gca), % freezeColors(axh) same, but works on axis axh. % % Example: % subplot(2,1,1); imagesc(X); colormap hot; freezeColors % subplot(2,1,2); imagesc(Y); colormap hsv; freezeColors etc... % % Note: colorbars must also be frozen. Due to Matlab 'improvements' this can % no longer be done with freezeColors. Instead, please % use the function CBFREEZE by Carlos Adrian Vargas Aguilera % that can be downloaded from the MATLAB File Exchange % (http://www.mathworks.com/matlabcentral/fileexchange/24371) % % h=colorbar; cbfreeze(h), or simply cbfreeze(colorbar) % % For additional examples, see test/test_main.m % % Side effect on render mode: freezeColors does not work with the painters % renderer, because Matlab doesn't support rgb color data in % painters mode. If the current renderer is painters, freezeColors % changes it to zbuffer. This may have unexpected effects on other aspects % of your plots. % % See also unfreezeColors, freezeColors_pub.html, cbfreeze. % % % John Iversen ([email protected]) 3/23/05 % % Changes: % JRI ([email protected]) 4/19/06 Correctly handles scaled integer cdata % JRI 9/1/06 should now handle all objects with cdata: images, surfaces, % scatterplots. (v 2.1) % JRI 11/11/06 Preserves NaN colors. Hidden option (v 2.2, not uploaded) % JRI 3/17/07 Preserve caxis after freezing--maintains colorbar scale (v 2.3) % JRI 4/12/07 Check for painters mode as Matlab doesn't support rgb in it. % JRI 4/9/08 Fix preserving caxis for objects within hggroups (e.g. contourf) % JRI 4/7/10 Change documentation for colorbars % Hidden option for NaN colors: % Missing data are often represented by NaN in the indexed color % data, which renders transparently. This transparency will be preserved % when freezing colors. If instead you wish such gaps to be filled with % a real color, add 'nancolor',[r g b] to the end of the arguments. E.g. % freezeColors('nancolor',[r g b]) or freezeColors(axh,'nancolor',[r g b]), % where [r g b] is a color vector. This works on images & pcolor, but not on % surfaces. % Thanks to Fabiano Busdraghi and Jody Klymak for the suggestions. Bugfixes % attributed in the code. % Free for all uses, but please retain the following: % Original Author: % John Iversen, 2005-10 % [email protected] appdatacode = 'JRI__freezeColorsData'; [h, nancolor] = checkArgs(varargin); %gather all children with scaled or indexed CData cdatah = getCDataHandles(h); %current colormap cmap = colormap; nColors = size(cmap,1); cax = caxis; % convert object color indexes into colormap to true-color data using % current colormap for hh = cdatah', g = get(hh); %preserve parent axis clim parentAx = getParentAxes(hh); originalClim = get(parentAx, 'clim'); % Note: Special handling of patches: For some reason, setting % cdata on patches created by bar() yields an error, % so instead we'll set facevertexcdata instead for patches. if ~strcmp(g.Type,'patch'), cdata = g.CData; else cdata = g.FaceVertexCData; end %get cdata mapping (most objects (except scattergroup) have it) if isfield(g,'CDataMapping'), scalemode = g.CDataMapping; else scalemode = 'scaled'; end %save original indexed data for use with unfreezeColors siz = size(cdata); setappdata(hh, appdatacode, {cdata scalemode}); %convert cdata to indexes into colormap if strcmp(scalemode,'scaled'), %4/19/06 JRI, Accommodate scaled display of integer cdata: % in MATLAB, uint * double = uint, so must coerce cdata to double % Thanks to O Yamashita for pointing this need out idx = ceil( (double(cdata) - cax(1)) / (cax(2)-cax(1)) * nColors); else %direct mapping idx = cdata; %10/8/09 in case direct data is non-int (e.g. image;freezeColors) % (Floor mimics how matlab converts data into colormap index.) % Thanks to D Armyr for the catch idx = floor(idx); end %clamp to [1, nColors] idx(idx<1) = 1; idx(idx>nColors) = nColors; %handle nans in idx nanmask = isnan(idx); idx(nanmask)=1; %temporarily replace w/ a valid colormap index %make true-color data--using current colormap realcolor = zeros(siz); for i = 1:3, c = cmap(idx,i); c = reshape(c,siz); c(nanmask) = nancolor(i); %restore Nan (or nancolor if specified) realcolor(:,:,i) = c; end %apply new true-color color data %true-color is not supported in painters renderer, so switch out of that if strcmp(get(gcf,'renderer'), 'painters'), set(gcf,'renderer','zbuffer'); end %replace original CData with true-color data if ~strcmp(g.Type,'patch'), set(hh,'CData',realcolor); else set(hh,'faceVertexCData',permute(realcolor,[1 3 2])) end %restore clim (so colorbar will show correct limits) if ~isempty(parentAx), set(parentAx,'clim',originalClim) end end %loop on indexed-color objects % ============================================================================ % % Local functions %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getCDataHandles -- get handles of all descendents with indexed CData %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hout = getCDataHandles(h) % getCDataHandles Find all objects with indexed CData %recursively descend object tree, finding objects with indexed CData % An exception: don't include children of objects that themselves have CData: % for example, scattergroups are non-standard hggroups, with CData. Changing % such a group's CData automatically changes the CData of its children, % (as well as the children's handles), so there's no need to act on them. error(nargchk(1,1,nargin,'struct')) hout = []; if isempty(h),return;end ch = get(h,'children'); for hh = ch' g = get(hh); if isfield(g,'CData'), %does object have CData? %is it indexed/scaled? if ~isempty(g.CData) && isnumeric(g.CData) && size(g.CData,3)==1, hout = [hout; hh]; %#ok<AGROW> %yes, add to list end else %no CData, see if object has any interesting children hout = [hout; getCDataHandles(hh)]; %#ok<AGROW> end end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% getParentAxes -- return handle of axes object to which a given object belongs %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function hAx = getParentAxes(h) % getParentAxes Return enclosing axes of a given object (could be self) error(nargchk(1,1,nargin,'struct')) %object itself may be an axis if strcmp(get(h,'type'),'axes'), hAx = h; return end parent = get(h,'parent'); if (strcmp(get(parent,'type'), 'axes')), hAx = parent; else hAx = getParentAxes(parent); end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% checkArgs -- Validate input arguments %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [h, nancolor] = checkArgs(args) % checkArgs Validate input arguments to freezeColors nargs = length(args); error(nargchk(0,3,nargs,'struct')) %grab handle from first argument if we have an odd number of arguments if mod(nargs,2), h = args{1}; if ~ishandle(h), error('JRI:freezeColors:checkArgs:invalidHandle',... 'The first argument must be a valid graphics handle (to an axis)') end % 4/2010 check if object to be frozen is a colorbar if strcmp(get(h,'Tag'),'Colorbar'), if ~exist('cbfreeze.m'), warning('JRI:freezeColors:checkArgs:cannotFreezeColorbar',... ['You seem to be attempting to freeze a colorbar. This no longer'... 'works. Please read the help for freezeColors for the solution.']) else cbfreeze(h); return end end args{1} = []; nargs = nargs-1; else h = gca; end %set nancolor if that option was specified nancolor = [nan nan nan]; if nargs == 2, if strcmpi(args{end-1},'nancolor'), nancolor = args{end}; if ~all(size(nancolor)==[1 3]), error('JRI:freezeColors:checkArgs:badColorArgument',... 'nancolor must be [r g b] vector'); end nancolor(nancolor>1) = 1; nancolor(nancolor<0) = 0; else error('JRI:freezeColors:checkArgs:unrecognizedOption',... 'Unrecognized option (%s). Only ''nancolor'' is valid.',args{end-1}) end end
github
ai-med/QuickNATv2-master
cnn_train_dag_seg.m
.m
QuickNATv2-master/QuickNAT_Networks/cnn_train_dag_seg.m
9,984
utf_8
19b10231e19b45b03a993325ecd97fba
function [net,stats] = cnn_train_dag_seg(net, imdb, getBatch, varargin) %CNN_TRAIN_DAG Demonstrates training a CNN using the DagNN wrapper % CNN_TRAIN_DAG() is similar to CNN_TRAIN(), but works with % the DagNN wrapper instead of the SimpleNN wrapper. % Copyright (C) 2014-15 Andrea Vedaldi. % All rights reserved. % % This file is part of the VLFeat library and is made available under % the terms of the BSD license (see the COPYING file). % Todo: save momentum with checkpointing (a waste?) % ------------------------------------------------------------------------- % Generate options % ------------------------------------------------------------------------- opts = generate_default_opts(); opts = vl_argparse(opts, varargin); % ------------------------------------------------------------------------- % Initialization % ------------------------------------------------------------------------- state.getBatch = getBatch ; evaluateMode = isempty(opts.train) ; if ~evaluateMode if isempty(opts.derOutputs) error('DEROUTPUTS must be specified when training.\n') ; end end stats = [] ; % setup GPUs numGpus = numel(opts.gpus) ; if numGpus > 1 if isempty(gcp('nocreate')), parpool('local',numGpus) ; spmd, gpuDevice(opts.gpus(labindex)), end end if exist(opts.memoryMapFile) delete(opts.memoryMapFile) ; end elseif numGpus == 1 gpuDevice(opts.gpus) end % ------------------------------------------------------------------------- % Train and validate % ------------------------------------------------------------------------- modelPath = @(ep) fullfile(opts.expDir, sprintf('net-epoch-%d.mat', ep)); modelFigPath = fullfile(opts.expDir, 'net-train.pdf') ; start = opts.continue * findLastCheckpoint(opts.expDir) ; if start >= 1 fprintf('resuming by loading epoch %d\n', start) ; [net, stats] = loadState(modelPath(start)) ; net.conserveMemory = false; end for epoch=start+1:opts.numEpochs % train one epoch save('epochNum.mat','epoch'); state.epoch = epoch ; state.learningRate = opts.learningRate(min(epoch, numel(opts.learningRate))) ; state.train = opts.train(randperm(numel(opts.train))) ; % shuffle state.val = opts.val ; state.imdb = imdb ; if numGpus <= 1 stats.train(epoch) = process_epoch(net, state, opts, 'train') ; stats.val(epoch) = process_epoch(net, state, opts, 'val') ; else savedNet = net.saveobj() ; spmd net_ = dagnn.DagNN.loadobj(savedNet) ; stats_.train = process_epoch(net_, state, opts, 'train') ; stats_.val = process_epoch(net_, state, opts, 'val') ; if labindex == 1, savedNet_ = net_.saveobj() ; end end net = dagnn.DagNN.loadobj(savedNet_{1}) ; stats__ = accumulateStats(stats_) ; stats.train(epoch) = stats__.train ; stats.val(epoch) = stats__.val ; clear net_ stats_ stats__ savedNet_ ; end if ~evaluateMode saveState(modelPath(epoch), net, stats) ; end % ------------------------------------------------------------------------- % Visualize results & save % ------------------------------------------------------------------------- stats.epoch = epoch; opts.fcn_visualize(stats, imdb, net, opts); end % ------------------------------------------------------------------------- function stats = process_epoch(net, state, opts, mode) % ------------------------------------------------------------------------- if strcmp(mode,'train') state.momentum = num2cell(zeros(1, numel(net.params))) ; end numGpus = numel(opts.gpus) ; if numGpus >= 1 net.move('gpu') ; if strcmp(mode,'train') sate.momentum = cellfun(@gpuArray,state.momentum,'UniformOutput',false) ; end end if numGpus > 1 mmap = map_gradients(opts.memoryMapFile, net, numGpus) ; else mmap = [] ; end stats.time = 0 ; stats.num = 0 ; stats.num_batches = 0; subset = state.(mode) ; start = tic ; num = 0 ; for t=1:opts.batchSize:numel(subset) batchSize = min(opts.batchSize, numel(subset) - t + 1) ; for s=1:opts.numSubBatches % get this image batch and prefetch the next batchStart = t + (labindex-1) + (s-1) * numlabs ; batchEnd = min(t+opts.batchSize-1, numel(subset)) ; batch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ; num = num + numel(batch) ; if numel(batch) == 0, continue ; end inputs = state.getBatch(state.imdb, batch) ; if opts.prefetch if s == opts.numSubBatches batchStart = t + (labindex-1) + opts.batchSize ; batchEnd = min(t+2*opts.batchSize-1, numel(subset)) ; else batchStart = batchStart + numlabs ; end nextBatch = subset(batchStart : opts.numSubBatches * numlabs : batchEnd) ; state.getBatch(state.imdb, nextBatch) ; end if strcmp(mode, 'train') net.mode = 'normal' ; net.accumulateParamDers = (s ~= 1) ; net.eval(inputs, opts.derOutputs) ; else net.mode = 'test' ; net.eval(inputs) ; end end % extract learning stats stats.num_batches = stats.num_batches + 1; stats = opts.extractStatsFn(net, stats) ; % accumulate gradient if strcmp(mode, 'train') if ~isempty(mmap) write_gradients(mmap, net) ; labBarrier() ; end state = accumulate_gradients(state, net, opts, batchSize, mmap) ; end % print learning statistics time = toc(start) ; stats.num = num ; stats.time = toc(start) ; fprintf('%s:\t epoch %02d: %3d/%3d: %.1f Hz', mode, state.epoch, fix(t/opts.batchSize)+1, ceil(numel(subset)/opts.batchSize), stats.num/stats.time * max(numGpus, 1)); fprintf('\t[obj-loss = %.3f,\t overall acc.=%.3f%%,\t perclass acc.=%.3f%%]', stats.objective, stats.overall, stats.perclass); fprintf('\n') ; end net.reset() ; net.move('cpu') ; % ------------------------------------------------------------------------- function state = accumulate_gradients(state, net, opts, batchSize, mmap) % ------------------------------------------------------------------------- for p=1:numel(net.params) % bring in gradients from other GPUs if any if ~isempty(mmap) numGpus = numel(mmap.Data) ; tmp = zeros(size(mmap.Data(labindex).(net.params(p).name)), 'single') ; for g = setdiff(1:numGpus, labindex) tmp = tmp + mmap.Data(g).(net.params(p).name) ; end net.params(p).der = net.params(p).der + tmp ; else numGpus = 1 ; end switch net.params(p).trainMethod case 'average' % mainly for batch normalization thisLR = net.params(p).learningRate ; net.params(p).value = ... (1 - thisLR) * net.params(p).value + ... (thisLR/batchSize) * net.params(p).der ; case 'gradient' thisDecay = opts.weightDecay * net.params(p).weightDecay ; thisLR = state.learningRate * net.params(p).learningRate ; state.momentum{p} = opts.momentum * state.momentum{p} ... - thisDecay * net.params(p).value ... - (1 / batchSize) * net.params(p).der ; net.params(p).value = net.params(p).value + thisLR * state.momentum{p} ; case 'otherwise' error('Unknown training method ''%s'' for parameter ''%s''.', ... net.params(p).trainMethod, ... net.params(p).name) ; end end % ------------------------------------------------------------------------- function mmap = map_gradients(fname, net, numGpus) % ------------------------------------------------------------------------- format = {} ; for i=1:numel(net.params) format(end+1,1:3) = {'single', size(net.params(i).value), net.params(i).name} ; end format(end+1,1:3) = {'double', [3 1], 'errors'} ; if ~exist(fname) && (labindex == 1) f = fopen(fname,'wb') ; for g=1:numGpus for i=1:size(format,1) fwrite(f,zeros(format{i,2},format{i,1}),format{i,1}) ; end end fclose(f) ; end labBarrier() ; mmap = memmapfile(fname, 'Format', format, 'Repeat', numGpus, 'Writable', true) ; % ------------------------------------------------------------------------- function write_gradients(mmap, net) % ------------------------------------------------------------------------- for i=1:numel(net.params) mmap.Data(labindex).(net.params(i).name) = gather(net.params(i).der) ; end % ------------------------------------------------------------------------- function stats = accumulateStats(stats_) % ------------------------------------------------------------------------- stats = struct() ; for s = {'train', 'val'} s = char(s) ; total = 0 ; for g = 1:numel(stats_) stats__ = stats_{g} ; num__ = stats__.(s).num ; total = total + num__ ; for f = setdiff(fieldnames(stats__.(s))', 'num') f = char(f) ; if g == 1 stats.(s).(f) = 0 ; end stats.(s).(f) = stats.(s).(f) + stats__.(s).(f) * num__ ; if g == numel(stats_) stats.(s).(f) = stats.(s).(f) / total ; end end end stats.(s).num = total ; end % ------------------------------------------------------------------------- function saveState(fileName, net, stats) % ------------------------------------------------------------------------- net_ = net ; net = net_.saveobj() ; save(fileName, 'net', 'stats') ; % ------------------------------------------------------------------------- function [net, stats] = loadState(fileName) % ------------------------------------------------------------------------- load(fileName, 'net', 'stats') ; net = dagnn.DagNN.loadobj(net) ; % ------------------------------------------------------------------------- function epoch = findLastCheckpoint(modelDir) % ------------------------------------------------------------------------- list = dir(fullfile(modelDir, 'net-epoch-*.mat')) ; tokens = regexp({list.name}, 'net-epoch-([\d]+).mat', 'tokens') ; epoch = cellfun(@(x) sscanf(x{1}{1}, '%d'), tokens) ; epoch = max([epoch 0]) ;
github
ai-med/QuickNATv2-master
visualize_segmentation.m
.m
QuickNATv2-master/QuickNAT_Networks/visualize_segmentation.m
5,328
utf_8
af65e066d1b43e32c0f7df354dda79ff
function visualize_segmentation(stats, imdb, net, opts) epoch = stats.epoch; plotErrors(opts, epoch, stats, false); drawConfusionMatrix(opts, stats); showImages(imdb, net, opts); % print to disk if(opts.savePlots) print(opts.vis.hnd_loss, sprintf('%s/summary.pdf',opts.expDir), '-dpdf'); print(opts.vis.hand_examples, sprintf('%s/examples.pdf',opts.expDir), '-dpdf'); print(opts.vis.hand_conf, sprintf('%s/confm.pdf',opts.expDir), '-dpdf'); end end function drawConfusionMatrix(opts, stats) change_current_figure(opts.vis.hand_conf); clf; confT = stats.train(end).confM; save('confT.mat','confT'); % confJac = stats.train(end).confJac; % confJac = confJac; for l=1:size(confT, 1) confT(l, :) = confT(l, :) / (sum(confT(l, :))+eps); % confJac(l, :) = confJac(l, :) / (sum(confJac(l, :))+eps); end confV = stats.val(end).confM; for l=1:size(confV, 1) confV(l, :) = confV(l, :) / (sum(confV(l, :))+eps); end % save('confJac.mat','confJac'); subplot(2,1,1); imagesc(confT); colormap(jet); caxis([0, 1]) textstr=num2str(confT(:),'%0.2f'); textstr=strtrim(cellstr(textstr)); L = size(confT, 1); [x,y]=meshgrid(1:L); hstrg=text(x(:),y(:),textstr(:), 'FontWeight','bold', 'HorizontalAlignment','center','FontSize',8,'FontName','Times New Roman'); midvalue=mean(get(gca,'Clim')); textColors=repmat([1, 1, 1], numel(confT), 1); set(hstrg,{'color'},num2cell(textColors,2)); set(gca,'XTick',1:L,'XTickLabel',opts.classesNames,'YTick',1:L,'YTickLabel',opts.classesNames,'TickLength',[0,0],'FontSize',6,'FontName','Times New Roman', 'FontWeight','bold'); colorbar; xlabel('Predicted class'); ylabel('True class'); title('Training'); subplot(2,1,2); imagesc(confV); colormap(jet); caxis([0, 1]) textstr=num2str(confV(:),'%0.2f'); textstr=strtrim(cellstr(textstr)); L = size(confV, 1); [x,y]=meshgrid(1:L); hstrg=text(x(:),y(:),textstr(:), 'FontWeight','bold', 'HorizontalAlignment','center','FontSize',8,'FontName','Times New Roman'); midvalue=mean(get(gca,'Clim')); textColors=repmat([1, 1, 1], numel(confV), 1); set(hstrg,{'color'},num2cell(textColors,2)); set(gca,'XTick',1:L,'XTickLabel',opts.classesNames,'YTick',1:L,'YTickLabel',opts.classesNames,'TickLength',[0,0],'FontSize',6,'FontName','Times New Roman', 'FontWeight','bold'); colorbar; xlabel('Predicted class'); ylabel('True class'); title('Validation'); end %-------------------------------------------------------------------------- function plotErrors(opts, epoch, stats, evaluateMode) % ------------------------------------------------------------------------- expDir = opts.expDir; opts = opts.vis; change_current_figure(opts.hnd_loss); clf; sets = {'train', 'val'}; % plot for the objective subplot(1,2,1); if ~evaluateMode semilogy(1:epoch, gather([stats.train.objective])./[stats.train.num_batches], '.-', 'linewidth', 2); hold on; end semilogy(1:epoch, gather([stats.val.objective])./[stats.val.num_batches], '.--'); xlabel('training epoch'); ylabel('energy'); grid on ; h=legend(sets) ; set(h,'color','none'); title('objective') ; t_overalls = [stats.train.overall_global]; t_perclasses = [stats.train.perclass_global]; v_overalls = [stats.val.overall_global]; v_perclasses = [stats.val.perclass_global]; subplot(1,2,2) ; leg = {} ; if ~evaluateMode plot(1:epoch, 100-[t_overalls', t_perclasses'], '.-', 'linewidth', 2) ; hold on ; leg = {'train. overall', 'train. perclass'} ; end plot(1:epoch, 100-[v_overalls', v_perclasses'], '.--') ; leg{end+1} = 'val. overall'; leg{end+1} = 'val. perclass' ; set(legend(leg{:}),'color','none') ; grid on ; xlabel('training epoch') ; ylabel('error') ; title('error') ; drawnow ; % if(exist(opts.modelFigPath, 'file')) % delete(opts.modelFigPath); % end % print(opts.hnd_loss, sprintf('%s/summary.pdf',expDir), '-dpdf') ; end function showImages(imdb, net, opts) change_current_figure(opts.vis.hand_examples); colorMapEst = opts.colorMapEst; colorMapGT = opts.colorMapGT; indices = opts.exampleIndices; % create inputs images = imdb.images.data(:,:,:, indices) ; labels = imdb.images.label(:, :, 1, indices) ; if numel(opts.gpus) > 0 images = gpuArray(images); net.move('gpu') ; end inputs = {'input', images, 'label', labels}; % run net net.conserveMemory = true; net.eval({'input', images}); net.conserveMemory = false; % obtain the CNN otuput scores = net.vars(net.getVarIndex('prob')).value; scores = squeeze(gather(scores)); [outW, outL] = max(scores, [], 3); for i=1:length(indices) subplot(length(indices), 3, (3*i)-2); im = imdb.images.data(:, :, :, indices(i)); min_im = min(im(:)); max_im = max(im(:)); im = (im - min_im) / (max_im - min_im + 1); imshow(im); title('RGB'); subplot(length(indices), 3, (3*i)-1); imshow(squeeze(outL(:,:,:,i)), colorMapEst); freezeColors; title('Estimated labels'); subplot(length(indices), 3, 3*i); imshow(squeeze(labels(:,:,:,i))+1, colorMapGT); title('Ground truth'); end refreshdata; drawnow; end function change_current_figure(h) set(0,'CurrentFigure',h) end
github
ai-med/QuickNATv2-master
visualize_classification.m
.m
QuickNATv2-master/QuickNAT_Networks/visualize_classification.m
750
utf_8
ca5b11eb689c2b637f5a6c2d98baae44
function visualize_classification(opts) change_current_figure(opts.hand); clf; stats = opts.stats; epoch = opts.epoch; plots = setdiff(cat(2, fieldnames(stats.train)', fieldnames(stats.val)'), {'num', 'time'}) ; for p = plots p = char(p) ; values = zeros(0, epoch) ; leg = {} ; for f = {'train', 'val'} f = char(f) ; if isfield(stats.(f), p) tmp = [stats.(f).(p)] ; values(end+1,:) = tmp(1,:)' ; leg{end+1} = f ; end end subplot(1,numel(plots),find(strcmp(p,plots))) ; plot(1:epoch, values','o-') ; xlabel('epoch') ; title(p) ; legend(leg{:}) ; grid on ; end drawnow ; % save stats print(1, opts.modelFigPath, '-dpdf') ; end function change_current_figure(h) set(0,'CurrentFigure',h) end
github
SMARTlab-Purdue/robotarium-rendezvous-RSSDOA-master
minboundcircle.m
.m
robotarium-rendezvous-RSSDOA-master/includes/minboundcircle.m
7,297
utf_8
280633840d9df9f6cdb804beceb0a493
function [center,radius] = minboundcircle(x,y,hullflag) % minboundcircle: Compute the minimum radius enclosing circle of a set of (x,y) pairs % usage: [center,radius] = minboundcircle(x,y,hullflag) % "A suite of minimal bounding objects" by John D'Errico (v1.2 23 May 2014) in Mathworks File Exchange. % % arguments: (input) % x,y - vectors of points, describing points in the plane as % (x,y) pairs. x and y must be the same size. If x and y % are arrays, they will be unrolled to vectors. % % hullflag - boolean flag - allows the user to disable the % call to convhulln. This will allow older releases of % matlab to use this code, with a possible time penalty. % It also allows minboundellipse to call this code % efficiently. % % hullflag = false --> do not use the convex hull % hullflag = true --> use the convex hull for speed % % default: true % % % arguments: (output) % center - 1x2 vector, contains the (x,y) coordinates of the % center of the minimum radius enclosing circle % % radius - scalar - denotes the radius of the minimum % enclosing circle % % % Example usage: % x = randn(50000,1); % y = randn(50000,1); % tic,[c,r] = minboundcircle(x,y);toc % % Elapsed time is 0.171178 seconds. % % c: [-0.2223 0.070526] % r: 4.6358 % % % See also: minboundrect % % % Author: John D'Errico % E-mail: [email protected] % Release: 1.0 % Release date: 1/10/07 % default for hullflag if (nargin<3) || isempty(hullflag) hullflag = true; elseif ~islogical(hullflag) && ~ismember(hullflag,[0 1]) error 'hullflag must be true or false if provided' end % preprocess data x=x(:); y=y(:); % not many error checks to worry about n = length(x); if n~=length(y) error 'x and y must be the same sizes' end % start out with the convex hull of the points to % reduce the problem dramatically. Note that any % points in the interior of the convex hull are % never needed. if hullflag && (n>3) edges = convhulln([x,y]); % list of the unique points on the convex hull itself % convhulln returns them as edges edges = unique(edges(:)); % exclude those points inside the hull as not relevant x = x(edges); y = y(edges); end % now we must find the enclosing circle of those that % remain. n = length(x); % special case small numbers of points. If we trip any % of these cases, then we are done, so return. switch n case 0 % empty begets empty center = []; radius = []; return case 1 % with one point, the center has radius zero center = [x,y]; radius = 0; return case 2 % only two points. center is at the midpoint center = [mean(x),mean(y)]; radius = norm([x(1),y(1)] - center); return case 3 % exactly 3 points [center,radius] = enc3(x,y); return end % more than 3 points. % Use an active set strategy. aset = 1:3; % arbitrary, but quite adequate iset = 4:n; % pick a tolerance tol = 10*eps*(max(abs(mean(x) - x)) + max(abs(mean(y) - y))); % Keep a list of old sets as tried to trap any cycles. we don't need to % retain a huge list of sets, but only a few of the best ones. Any cycle % must hit one of these sets. Really, I could have used a smaller list, % but this is a small enough size that who cares? Almost always we will % never even fill up this list anyway. old.sets = NaN(10,3); old.rads = inf(10,1); old.centers = NaN(10,2); flag = true; while flag % have we seen this set before? If so, then we have entered a cycle aset = sort(aset); if ismember(aset,old.sets,'rows') % we have seen it before, so trap out center = old.centers(1,:); %radius = old.radius(1); % just reset flag then continue, and the while loop will terminate flag = false; continue end % get the enclosing circle for the current set [center,radius] = enc3(x(aset),y(aset)); % is this better than something from the retained sets? if radius < old.rads(end) old.sets(end,:) = sort(aset); old.rads(end) = radius; old.centers(end,:) = center; % sort them in increasing order of the circle radii [old.rads,tags] = sort(old.rads,'ascend'); old.sets = old.sets(tags,:); old.centers = old.centers(tags,:); end % are all the inactive set points inside the circle? r = sqrt((x(iset) - center(1)).^2 + (y(iset) - center(2)).^2); [rmax,k] = max(r); if (rmax - radius) <= tol % the active set enclosing circle also enclosed % all of the inactive points. flag = false; else % it must be true that we can replace one member of aset % with iset(k). Which one? s1 = [aset([2 3]),iset(k)]; [c1,r1] = enc3(x(s1),y(s1)); if (norm(c1 - [x(aset(1)),y(aset(1))]) <= r1) center = c1; radius = r1; % update the active/inactive sets swap = aset(1); aset = [iset(k),aset([2 3])]; iset(k) = swap; % bounce out to the while loop continue end s1 = [aset([1 3]),iset(k)]; [c1,r1] = enc3(x(s1),y(s1)); if (norm(c1 - [x(aset(2)),y(aset(2))]) <= r1) center = c1; radius = r1; % update the active/inactive sets swap = aset(2); aset = [iset(k),aset([1 3])]; iset(k) = swap; % bounce out to the while loop continue end s1 = [aset([1 2]),iset(k)]; [c1,r1] = enc3(x(s1),y(s1)); if (norm(c1 - [x(aset(3)),y(aset(3))]) <= r1) center = c1; radius = r1; % update the active/inactive sets swap = aset(3); aset = [iset(k),aset([1 2])]; iset(k) = swap; % bounce out to the while loop continue end % if we get through to this point, then something went wrong. % Active set problem. Increase tol, then try again. tol = 2*tol; end end % ======================================= % begin subfunction % ======================================= function [center,radius] = enc3(X,Y) % minimum radius enclosing circle for exactly 3 points % % x, y are 3x1 vectors % convert to complex xy = X + sqrt(-1)*Y; % just in case the points are collinear or nearly so, get % the interpoint distances, and test the farthest pair % to see if they work. Dij = @(XY,i,j) abs(XY(i) - XY(j)); D12 = Dij(xy,1,2); D13 = Dij(xy,1,3); D23 = Dij(xy,2,3); % Find the most distant pair. Test if their circumcircle % also encloses the third point. if (D12>=D13) && (D12>=D23) center = (xy(1) + xy(2))/2; radius = D12/2; if abs(center - xy(3)) <= radius center = [real(center),imag(center)]; return end elseif (D13>=D12) && (D13>=D23) center = (xy(1) + xy(3))/2; radius = D13/2; if abs(center - xy(2)) <= radius center = [real(center),imag(center)]; return end elseif (D23>=D12) && (D23>=D13) center = (xy(2) + xy(3))/2; radius = D23/2; if abs(center - xy(1)) <= radius center = [real(center),imag(center)]; return end end % if we drop down to here, then the points cannot % be collinear, so the resulting 2x2 linear system % of equations will not be singular. A = 2*[X(2)-X(1), Y(2)-Y(1); X(3)-X(1), Y(3)-Y(1)]; rhs = [X(2)^2 - X(1)^2 + Y(2)^2 - Y(1)^2; ... X(3)^2 - X(1)^2 + Y(3)^2 - Y(1)^2]; center = (A\rhs)'; radius = norm(center - [X(1),Y(1)]);
github
cssjcai/hihca-master
getBatchFn.m
.m
hihca-master/codes/getBatchFn.m
1,445
utf_8
94781a69ec2a8881b4f3a081f5b0aa8c
function fn = getBatchFn(opts, meta) % ------------------------------------------------------------------------- useGpu = numel(opts.gpus) > 0 ; bopts.numThreads = opts.numFetchThreads ; bopts.imageSize = meta.normalization.imageSize ; bopts.border = meta.normalization.border ; bopts.averageImage = meta.normalization.averageImage ; bopts.rgbVariance = meta.augmentation.rgbVariance ; bopts.transformation = meta.augmentation.transformation ; bopts.numAugments = meta.augmentation.numAugments; fn = @(imdb,batch) getDagNNBatch(bopts,useGpu,imdb,batch) ; function inputs = getDagNNBatch(opts, useGpu, imdb, batch) % ------------------------------------------------------------------------- images = strcat([imdb.imageDir filesep], imdb.images.name(batch)) ; %isVal = ~isempty(batch) && imdb.images.set(batch(1)) ~= 1 ; % if ~isVal % % training % im = cnn_imagenet_get_batch(images, opts, ... % 'prefetch', nargout == 0) ; % else % % validation: disable data augmentation % im = cnn_imagenet_get_batch(images, opts, ... % 'prefetch', nargout == 0, ... % 'transformation', 'none') ; % end im = cnn_imagenet_get_batch(images, opts); labels = imdb.images.label(batch) ; labels = reshape(repmat(labels, opts.numAugments, 1), 1, size(im,4)); if nargout > 0 if useGpu im = gpuArray(im) ; end inputs = {'input', im, 'label', labels} ; end
github
cssjcai/hihca-master
hihca_model_hed.m
.m
hihca-master/codes/hihca_model_hed.m
7,816
utf_8
08e0aa399fe39c930e6d494350d27a0f
function net = hihca_model_hed(net, imdb, opts) %% hed-based integration % ------------------------------------------------------------------------------------ assert(numel(opts.hieLayerName)==numel(opts.rescaleLayerFactor),... 'You must assign scaling factors for all layers !'); hca_inputs = cell(1, numel(opts.hieLayerName)); hca_layer_names = cell(1, numel(opts.hieLayerName)); hca_fdims = cell(1, numel(opts.hieLayerName)); for l = 1:numel(opts.hieLayerName) % layer scaling ca_input = net.layers(opts.hieLayerIDX(l)).outputs; sca_output = ['sc_',num2str(l)]; layer_name = ['scale_',num2str(l)]; param_name = ['scalar_',num2str(l)]; param_value = single(opts.rescaleLayerFactor(l)); net.addLayer(layer_name, dagnn.Scale('hasBias', false), ca_input, sca_output, {param_name}); var_idx = net.getParamIndex(param_name); net.params(var_idx).value = param_value; net.params(var_idx).learningRate = 10; % degree-1 input = sca_output; output = ['l', num2str(l), '_', 'pm1']; layer_name = ['layer_', num2str(l), '_', 'polymod_1']; net.addLayer(layer_name, dagnn.Pooling('poolSize', ... opts.imageScale*[opts.whc(1,l), opts.whc(2,l)], 'method', 'avg'), input, output); % degree-r hi_input = {output}; hi_layer_names = {layer_name}; hi_fdims = opts.whc(3,l); if opts.kernelDegree > 1 pm_dims = opts.num1x1Filter .* ones(1, opts.kernelDegree-1); for d = 2 : opts.kernelDegree input = sca_output; output = ['l', num2str(l), '_', 'pm',num2str(d)]; layer_name = ['layer_', num2str(l), '_', 'polymod_', num2str(d)]; switch opts.init1x1Filter case 'rad' if(~exist(opts.init1x1FilterDir, 'dir')) mkdir(opts.init1x1FilterDir); end if exist(fullfile(opts.init1x1FilterDir, ['l', num2str(l), '_', 'd', num2str(d), '_', 'radW.mat']), 'file') == 2 fprintf('loading Rademacher weight from saved file.\n'); load(fullfile(opts.init1x1FilterDir, ['l', num2str(l), '_', 'd', num2str(d), '_', 'radW.mat'])); else factor=1.0/sqrt(pm_dims(d-1)); fprintf('generating new Rademacher weight\n'); init_1x1Filters = cell(1,d); for s = 1:d init_1x1Filters{s} = single(factor*(randi(2,opts.whc(3,l), pm_dims(d-1))*2-3)); end savefast(fullfile(opts.init1x1FilterDir, ['l', num2str(l), '_', 'd', num2str(d), '_', 'radW.mat']), 'init_1x1Filters'); end case 'random' if(~exist(opts.init1x1FilterDir, 'dir')) mkdir(opts.init1x1FilterDir); end if exist(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'ramW.mat']), 'file') == 2 fprintf('loading Random weight from saved file.\n'); load(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'ramW.mat'])); else factor = 1.0/sqrt(pm_dims(d-1)); %0.001 fprintf('generating new Random weight\n'); init_1x1Filters = cell(1,d); for s = 1:d init_1x1Filters{s} = single(factor *randn(opts.whc(3,l), pm_dims(d-1))); end savefast(fullfile(opts.init1x1FilterDir, ['l', num2str(l), '_', 'd', num2str(d), '_', 'radW.mat']), 'init_1x1Filters'); end end hi_param_names = {}; for s = 1:d param_name = ['l', num2str(l), 'conv_d',num2str(d),'fm',num2str(s)]; hi_param_names = cat(2, hi_param_names, param_name); end net.addLayer(layer_name, Polymd(), input, output, hi_param_names); for s = 1:d, var_idx = net.getParamIndex(hi_param_names{s}); param_value = init_1x1Filters{s}; net.params(var_idx).value = param_value; switch opts.init1x1Filter case 'rad' net.params(var_idx).learningRate = 1; case 'ramdom' net.params(var_idx).learningRate = 10; end end hi_input = cat(2, hi_input, {output}); hi_layer_names = cat(2, hi_layer_names, {layer_name}); hi_fdims = [hi_fdims, pm_dims(d-1)]; end end hca_inputs{l} = hi_input; hca_layer_names{l} = hi_layer_names; hca_fdims{l} = hi_fdims; end hca_input = {}; fdim = 0; for l = 1:numel(opts.hieLayerName) if opts.kernelDegree > 1 && opts.homoKernel hi_output = ['l', num2str(l), '_', 'pm',num2str(opts.kernelDegree)]; net.removeLayer(hca_layer_names{l}(1:end-1)); ca_fdim = hca_fdims{l}(end); elseif opts.kernelDegree > 1 % degree concatenation input = hca_inputs{l}; hi_output = ['l', num2str(l), '_', 'dcat']; layer_name = ['layer', '_', num2str(l), '_', 'dconcat']; net.addLayer(layer_name, dagnn.Concat(), input, hi_output); ca_fdim = sum(hca_fdims{l}); else hi_output = hca_inputs{1}; ca_fdim = sum(hca_fdims{l}); end hca_input = cat(2, hca_input, {hi_output}); fdim = fdim + ca_fdim; end opts.fdim = fdim; % layer concatenation if numel(opts.hieLayerName) > 1 hca_output = 'lcat'; layer_name = 'layer_concat'; net.addLayer(layer_name, dagnn.Concat(), hca_input, hca_output); else hca_output = hca_input; end %% normalization layers % ------------------------------------------------------------------------------------ % square-root input = hca_output; output = 'sqrt'; layer_name = 'sqrt'; net.addLayer(layer_name, SquareRoot(), input, output); % l2 input = output; output = 'l2norm'; layer_name = 'l2norm'; net.addLayer(layer_name, L2Norm(), input, output); %% classification layer % ------------------------------------------------------------------------------------ fc_params_init = getInitFCParams(net, imdb, opts); input = output; output = 'score'; layer_name = 'classifier'; fc_param_names = {'convclass_f', 'convclass_b'}; net.addLayer(layer_name, dagnn.Conv(), input, output, fc_param_names); varId = net.getParamIndex(fc_param_names{1}); net.params(varId).value = fc_params_init{1}; net.params(varId).learningRate = 1; varId = net.getParamIndex(fc_param_names{2}); net.params(varId).value = fc_params_init{2}; net.params(varId).learningRate = 1; % loss functions net.addLayer('loss', dagnn.Loss('loss', 'softmaxlog'), {'score','label'}, 'objective'); net.addLayer('error', dagnn.Loss('loss', 'classerror'), {'score','label'}, 'top1error'); net.addLayer('top5e', dagnn.Loss('loss', 'topkerror'), {'score','label'}, 'top5error'); for name = dagFindLayersOfType(net, 'dagnn.Conv') l = net.getLayerIndex(char(name)) ; net.layers(l).block.opts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit}; end function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end
github
cssjcai/hihca-master
hihca_visualization.m
.m
hihca-master/codes/hihca_visualization.m
5,397
utf_8
2c5b82be9ec5d683e10770eb002466c5
function hihca_visualization(imdb, opts) % using homogeneous kernel for better visualization of higher-order part % with specific degree epochIDX = ['net-epoch-',num2str(opts.netIDX),'.mat']; snet = load(fullfile(opts.modelTrainDir, epochIDX), 'net', 'stats'); net = dagnn.DagNN.loadobj(snet.net); net.removeLayer({'sqrt','l2norm','classifier','loss','error','top5e'}); U = cell(1,opts.kernelDegree); for d = 1:opts.kernelDegree pIDX = net.getParamIndex(['conv_d',num2str(opts.kernelDegree),'fm',num2str(d)]); U{d} = net.params(pIDX).value; end convIDX = net.getLayerIndex(opts.hieLayerName{end}); lnames_r = dagFindRemovedLayerNames(net, convIDX); net.removeLayer(lnames_r); if ~exist(opts.trainedFeaturemapDir) mkdir(opts.trainedFeaturemapDir) end if exist(fullfile(opts.modelTrainDir, 'fc_svm_trained.mat')) load(fullfile(opts.modelTrainDir, 'fc_svm_trained.mat')); w = fc_params_trained{1}; else fprintf('You need to run testing first then visualization !\n'); return end vis_set = find(ismember(imdb.images.set, [1 2])); vis_classIDX = [1]; % vis_classIDX = [1:size(w,2)]; vis_topK = 3; for c = vis_classIDX trainedFeaturemapClassDir = fullfile(opts.trainedFeaturemapDir, imdb.classes.name{c}); if ~exist(trainedFeaturemapClassDir) mkdir(trainedFeaturemapClassDir) end [~, wIDX] = sort(abs(w(:,c)),'descend'); wIDX_topK = wIDX(1:vis_topK); chIDX = cell(1, vis_topK); for i = 1:vis_topK uuT = U{1}(:,wIDX_topK(i))*U{2}(:,wIDX_topK(i))'; if opts.kernelDegree > 2 for d = 3:opts.kernelDegree uuT = kron(uuT,U{d}(:,wIDX_topK(i))'); end uuT = reshape(uuT, size(U{1},1)*ones(1, opts.kernelDegree)); end ind = find(uuT==max(uuT(:))); % for degree-2 [ch1,ch2] = ind2sub(size(U{1},1)*ones(1,opts.kernelDegree), ind); chIDX{i} = [ch1,ch2]; % for degree-3 %[ch1,ch2,ch3] = ind2sub(size(U{1},1)*ones(1,opts.kernelDegree), ind); %chIDX{i} = [ch1,ch2,ch3]; end vis_set_c = vis_set(imdb.images.label==c); meta = net.meta; meta.augmentation.transformation = 'none' ; meta.augmentation.rgbVariance = []; meta.augmentation.numAugments = 1; batchSizeFC = floor(opts.batchSizeFC / 4*meta.augmentation.numAugments); fn_trainFC = getBatchFn(opts, meta) ; for t=1:batchSizeFC:numel(vis_set_c) fprintf(['Visualizating for ', imdb.classes.name{c}, ' : extracting feature maps of batch',' %d/%d\n'], ceil(t/batchSizeFC), ceil(numel(vis_set_c)/batchSizeFC)); batch = vis_set_c(t:min(numel(vis_set_c), t+batchSizeFC-1)); inputs = fn_trainFC(imdb, batch) ; if opts.gpus net.move('gpu') ; end net.mode = 'test' ; net.conserveMemory = false; net.eval(inputs(1:2)); hcaMaps = []; for l = 1:numel(opts.hieLayerName) lIdx = net.getLayerIndex(opts.hieLayerName(l)); fIdx = net.getVarIndex(net.layers(lIdx).outputs); caMaps = net.vars(fIdx).value; caMaps = squeeze(gather(caMaps)); hcaMaps = cat(3, hcaMaps, caMaps); end for i=1:numel(batch) image_name = {fullfile(imdb.imageDir,imdb.images.name{batch(i)})}; vopts.imageSize = meta.normalization.imageSize ; vopts.border = meta.normalization.border; image = cnn_imagenet_get_batch(image_name, vopts); image = double(image)/255; for id = 1:numel(chIDX) chMaps = hcaMaps(:,:,chIDX{id},i); image_partMap_all = []; for p = 1:numel(chIDX{id}) partMap = chMaps(:,:,p); [X,Y] = meshgrid(1:size(partMap,2), 1:size(partMap,1)); [Xq,Yq] = meshgrid(1:0.01:size(partMap,2), 1:0.01:size(partMap,1)); partMap_ = interp2(X, Y, partMap, Xq, Yq, 'linear'); partMap_ = imresize(partMap_, net.meta.normalization.imageSize(1:2)); partMap_nor = partMap_-min(partMap_(:)); partMap_nor = (partMap_nor)./max(partMap_nor(:)); partMap_nor = mat2gray(partMap_nor); partMap_nor_gray = gray2ind(partMap_nor,256); partMap_nor_rgb = ind2rgb(partMap_nor_gray, jet(256)); image_partMap = image*0.4 + partMap_nor_rgb*0.5; image_partMap = padarray(image_partMap,[20 20],255,'both'); image_partMap_all = cat(2, image_partMap_all, image_partMap); end % imshow(image_partMap_all) imwrite(image_partMap_all, fullfile(trainedFeaturemapClassDir, [num2str(batch(i), '%05d'),'_', 'trained_featuremaps_', num2str(id, '%02d'), '.jpg'])); end end end end function layernames = dagFindRemovedLayerNames(net, convIDX) % ------------------------------------------------------------------------- layernames = {} ; for l = 1:numel(net.layers(convIDX+1:end)) layernames = cat(2, layernames, {net.layers(convIDX+l).name}); end
github
cssjcai/hihca-master
hihca_model.m
.m
hihca-master/codes/hihca_model.m
1,791
utf_8
4d470a0d2fff848c46c0c6ae11c9b843
function pnet = hihca_model(imdb, opts) %% load the pre-trained cnn model as base net % ------------------------------------------------------------------------------------ bnet = load(opts.cnnModelDir); tru_idx = simpleFindLayerIDXOfName(bnet, opts.hieLayerName{end}); bnet.layers = bnet.layers(1:tru_idx); bnet = vl_simplenn_tidy(bnet); bnet_info = vl_simplenn_display(bnet); hieLayerIDX = []; for l = 1:numel(opts.hieLayerName) hieLayerIDX = [hieLayerIDX, simpleFindLayerIDXOfName(bnet, opts.hieLayerName{l})]; end opts.whc = bnet_info.dataSize([1 2 3], hieLayerIDX+1); %% transform simplenn to dagnn % ------------------------------------------------------------------------------------ pnet = dagnn.DagNN(); pnet = pnet.fromSimpleNN(bnet, 'CanonicalNames', true); opts.hieLayerIDX = []; for l = 1:numel(opts.hieLayerName) opts.hieLayerIDX = [opts.hieLayerIDX, pnet.getLayerIndex(opts.hieLayerName{l})]; end pnet.meta.classes.name = imdb.classes.name; pnet.meta.classes.description = imdb.classes.name; pnet.meta.normalization.imageSize = [pnet.meta.normalization.imageSize(1:2)*opts.imageScale, pnet.meta.normalization.imageSize(3)]; pnet.meta.normalization.averageImage = imresize(pnet.meta.normalization.averageImage, opts.imageScale); clear bnet; %% build hihca net % ------------------------------------------------------------------------------------ switch opts.layerFusion case 'hc' pnet = hihca_model_hc(pnet, imdb, opts); case 'hed' pnet = hihca_model_hed(pnet, imdb, opts); otherwise error('Unknown layer integration!') ; end function layers = simpleFindLayerIDXOfName(net, name) % ------------------------------------------------------------------------- layers = find(cellfun(@(x)strcmp(x.name, name), net.layers)) ;
github
cssjcai/hihca-master
hihca_model_hc.m
.m
hihca-master/codes/hihca_model_hc.m
6,966
utf_8
6a83f6b1f0880743576304bac3950e00
function net = hihca_model_hc(net, imdb, opts) %% hypercolumn-based integration % ------------------------------------------------------------------------------------ assert(numel(opts.hieLayerName)==numel(opts.rescaleLayerFactor),... 'You must assign scaling factors for all layers !'); % layer concatenation if numel(opts.hieLayerName) > 1 hca_input = {}; % layer scaling for l = 1:numel(opts.hieLayerIDX) ca_input = net.layers(opts.hieLayerIDX(l)).outputs; sca_output = ['sc_',num2str(l)]; layer_name = ['scale_',num2str(l)]; param_name = ['scalar_',num2str(l)]; param_value = single(opts.rescaleLayerFactor(l)); net.addLayer(layer_name, dagnn.Scale('hasBias', false), ca_input, sca_output, {param_name}); var_idx = net.getParamIndex(param_name); net.params(var_idx).value = param_value; net.params(var_idx).learningRate = 10; hca_input = cat(2, hca_input, {sca_output}); end hca_output = 'lcat'; layer_name = 'layer_concat'; net.addLayer(layer_name, dagnn.Concat(), hca_input, hca_output); else hca_output = net.layers(opts.hieLayerIDX(end)).outputs; end %% polynomial modules % ------------------------------------------------------------------------------------ % degree-1 input = hca_output; output = 'pm_1'; layer_name = 'polymod_1'; net.addLayer(layer_name, dagnn.Pooling('poolSize', ... opts.imageScale*[opts.whc(1,end), opts.whc(2,end)], 'method', 'avg'), input, output); % degree-r hi_input = {output}; hi_layer_names = {layer_name}; hi_fdims = sum(opts.whc(3,:)); if opts.kernelDegree > 1 pm_dims = opts.num1x1Filter .* ones(1, opts.kernelDegree-1); for d = 2 : opts.kernelDegree input = hca_output; output = ['pm_',num2str(d)]; layer_name = ['polymod_', num2str(d)]; switch opts.init1x1Filter case 'rad' if(~exist(opts.init1x1FilterDir, 'dir')) mkdir(opts.init1x1FilterDir); end if exist(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'radW.mat']), 'file') == 2 fprintf('loading Rademacher weight from saved file.\n'); load(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'radW.mat'])); else factor = 1.0/sqrt(pm_dims(d-1)); fprintf('generating new Rademacher weight\n'); init_1x1Filters = cell(1,d); for s = 1:d init_1x1Filters{s} = single(factor*(randi(2,sum(opts.whc(3,:)), pm_dims(d-1))*2-3)); end savefast(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'radW.mat']), 'init_1x1Filters'); end case 'random' if(~exist(opts.init1x1FilterDir, 'dir')) mkdir(opts.init1x1FilterDir); end if exist(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'ramW.mat']), 'file') == 2 fprintf('loading Random weight from saved file.\n'); load(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'ramW.mat'])); else factor = 1.0/sqrt(pm_dims(d-1)); % 0.001 fprintf('generating new Random weight\n'); init_1x1Filters = cell(1,d); for s = 1:d init_1x1Filters{s} = single(factor*randn(sum(opts.whc(3,:)), pm_dims(d-1))); end savefast(fullfile(opts.init1x1FilterDir, ['d', num2str(d), '_', 'ramW.mat']), 'init_1x1Filters'); end end hi_param_names = {}; for s = 1:d param_name = ['conv_d',num2str(d),'fm',num2str(s)]; hi_param_names = cat(2, hi_param_names, param_name); end net.addLayer(layer_name, Polymd(), input, output, hi_param_names); for s = 1:d, var_idx = net.getParamIndex(hi_param_names{s}); param_value = init_1x1Filters{s}; net.params(var_idx).value = param_value; switch opts.init1x1Filter case 'rad' net.params(var_idx).learningRate = 1; case 'ramdom' net.params(var_idx).learningRate = 10; end end hi_input = cat(2, hi_input, {output}); hi_layer_names = cat(2, hi_layer_names, {layer_name}); hi_fdims = [hi_fdims, pm_dims(d-1)]; end end % degree concatenation if opts.kernelDegree > 1 && opts.homoKernel hi_output = ['pm_',num2str(opts.kernelDegree)]; net.removeLayer(hi_layer_names(1:end-1)); opts.fdim = hi_fdims(end); elseif opts.kernelDegree > 1 input = hi_input; hi_output = 'dcat'; layer_name = 'dconcat'; net.addLayer(layer_name, dagnn.Concat(), input, hi_output); opts.fdim = sum(hi_fdims); else hi_output = hi_input; opts.fdim = sum(hi_fdims); end %% normalization layers % ------------------------------------------------------------------------------------ % square-root input = hi_output; output = 'sqrt'; layer_name = 'sqrt'; net.addLayer(layer_name, SquareRoot(), input, output); % l2 input = output; output = 'l2norm'; layer_name = 'l2norm'; net.addLayer(layer_name, L2Norm(), input, output); %% classification layer % ------------------------------------------------------------------------------------ fc_params_init = getInitFCParams(net, imdb, opts); input = output; output = 'score'; layer_name = 'classifier'; fc_param_names = {'convclass_f', 'convclass_b'}; net.addLayer(layer_name, dagnn.Conv(), input, output, fc_param_names); varId = net.getParamIndex(fc_param_names{1}); net.params(varId).value = fc_params_init{1}; net.params(varId).learningRate = 1; varId = net.getParamIndex(fc_param_names{2}); net.params(varId).value = fc_params_init{2}; net.params(varId).learningRate = 1; % loss functions net.addLayer('loss', dagnn.Loss('loss', 'softmaxlog'), {'score','label'}, 'objective'); net.addLayer('error', dagnn.Loss('loss', 'classerror'), {'score','label'}, 'top1error'); net.addLayer('top5e', dagnn.Loss('loss', 'topkerror'), {'score','label'}, 'top5error'); for name = dagFindLayersOfType(net, 'dagnn.Conv') l = net.getLayerIndex(char(name)) ; net.layers(l).block.opts = {'CudnnWorkspaceLimit', opts.cudnnWorkspaceLimit}; end function layers = dagFindLayersOfType(net, type) % ------------------------------------------------------------------------- layers = [] ; for l = 1:numel(net.layers) if isa(net.layers(l).block, type) layers{1,end+1} = net.layers(l).name ; end end
github
cssjcai/hihca-master
hihca_test.m
.m
hihca-master/codes/hihca_test.m
3,105
utf_8
4553a79130a1909b40ca694519b39f00
function hihca_test(imdb, opts) epochidx = ['net-epoch-',num2str(opts.netIDX),'.mat']; snet = load(fullfile(opts.modelTrainDir, epochidx), 'net', 'stats'); net = dagnn.DagNN.loadobj(snet.net); net.removeLayer({'classifier','loss','error','top5e'}); train = find(ismember(imdb.images.set, [1 2])); if ~exist(opts.trainedPolyfeatDir) mkdir(opts.trainedPolyfeatDir) end trainedPolyfeatList = dir(fullfile(opts.trainedPolyfeatDir, '/*.mat')); if numel(trainedPolyfeatList) == 0 meta = net.meta; meta.augmentation.transformation = 'f2'; meta.augmentation.rgbVariance = []; meta.augmentation.numAugments = 2; batchSizeFC = floor(opts.batchSizeFC / meta.augmentation.numAugments); fn_trainFC = getBatchFn(opts, meta); for t=1:batchSizeFC:numel(train) fprintf('Testing: extracting polynomial features of batch %d/%d\n', ceil(t/batchSizeFC), ceil(numel(train)/batchSizeFC)); batch = train(t:min(numel(train), t+batchSizeFC-1)); inputs = fn_trainFC(imdb, batch); if opts.gpus net.move('gpu'); end net.mode = 'test' ; net.eval(inputs(1:2)); fIdx = net.getVarIndex('l2norm'); polyFea = net.vars(fIdx).value; polyFea = squeeze(gather(polyFea)); for i=1:numel(batch) fea_p = polyFea(:,meta.augmentation.numAugments*(i-1)+1:meta.augmentation.numAugments*i); savefast(fullfile(opts.trainedPolyfeatDir, ['trained_polyfeats_', num2str(batch(i), '%05d')]), 'fea_p'); end end % move back to cpu if opts.gpus net.move('cpu'); end end % lr learning polydb = imdb; tempStr = sprintf('%05d\t', train); tempStr = textscan(tempStr, '%s', 'delimiter', '\t'); polydb.images.name = strcat('trained_polyfeats_', tempStr{1}'); polydb.images.id = polydb.images.id(train); polydb.images.label = polydb.images.label(train); polydb.images.set = polydb.images.set(train); polydb.imageDir = opts.trainedPolyfeatDir; polydb.numAugments = 2; [trainFV, trainY, valFV, valY] = load_polyfea_fromdisk(polydb); [w, b, acc, map, scores]= train_test_vlfeat('SVM', trainFV, trainY, valFV, valY); fc_params_trained{1} = w; fc_params_trained{2} = b; save(fullfile(opts.modelTrainDir, 'fc_svm_trained.mat'), 'fc_params_trained', '-v7.3') ; function [trainFV, trainY, valFV, valY] = load_polyfea_fromdisk(polydb) % ------------------------------------------------------------------------- train = find(polydb.images.set==1); trainFV = cell(1, numel(train)); for i = 1:numel(train) load(fullfile(polydb.imageDir, polydb.images.name{train(i)})); trainFV{i} = fea_p; end trainFV = cat(2,trainFV{:}); %trainFV = trainFV(:,2:2:end); trainY = polydb.images.label(train)'; trainY = reshape(repmat(trainY,1, polydb.numAugments)', [], 1); val = find(polydb.images.set==2); valFV = cell(1, numel(val)); for i = 1:numel(val) load(fullfile(polydb.imageDir, polydb.images.name{val(i)})); valFV{i} = fea_p; end valFV = cat(2,valFV{:}); valFV = valFV(:,1:2:end); valY = polydb.images.label(val)';