plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
aamiranis/sampling_theory-master
|
sgwt_demo1.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/demo/sgwt_demo1.m
| 4,442 |
utf_8
|
4884997e211ca4ec15e9fbd0e822a790
|
% sgwt_demo1 : SGWT for swiss roll data set
%
% This demo builds the SGWT for the swiss roll synthetic data set. It
% computes a set of scales adapted to the computed upper bound on the
% spectrum of the graph Laplacian, and displays the scaling function and
% the scaled wavlet kernels, as well as the corresponding frame bounds. It
% then computes the wavelets centered on a single vertex, and displays
% them. This essentally reproduces figure 3 from
% Hammond,Vangergheynst, Gribonval 2010.
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
% Create swiss roll point cloud
function sgwt_demo1
close all
fprintf('Welcome to SGWT demo #1\n');
npoints=500;
fprintf('Creating Swiss Roll point cloud with %g points\n',npoints);
dataparams=struct('n',npoints,'dataset',-1','noise',0,'state',0);
r=create_synthetic_dataset(dataparams);
x=rescale_center(r.x);
fprintf('Computing edge weights and graph Laplacian\n');
% Compute Weighted graph adjacency matrix, and graph Laplacian
d=distanz(x);
s=.1;
A=exp(-d.^2/(2*s^2));
L=full(sgwt_laplacian(A));
fprintf('Measuring largest eigenvalue, lmax = ');
%% Design filters for transform
Nscales=4;
lmax=sgwt_rough_lmax(L);
fprintf('%g\n',lmax);
fprintf('Designing transform in spectral domain\n');
designtype='abspline3';
%designtype='mexican_hat';
%designtype='meyer';
%designtype='simple_tf';
[g,t]=sgwt_filter_design(lmax,Nscales,'designtype',designtype);
arange=[0 lmax];
%% Display filter design in spectral domain
figure
sgwt_view_design(g,t,arange);
ylim([0 3])
set(gcf,'position',[0 780,600,300])
%% Chebyshev polynomial approximation
m=50; % order of polynomial approximation
fprintf('Computing Chebyshev polynomials of order %g for fast transform \n',m);
for k=1:numel(g)
c{k}=sgwt_cheby_coeff(g{k},m,m+1,arange);
end
%% compute transform of delta at one vertex
jcenter=32; % vertex to center wavelets to be shown
fprintf('Computing forward transform of delta at vertex %g\n',jcenter);
N=size(L,1);
d=sgwt_delta(N,jcenter);
% forward transform, using chebyshev approximation
wpall=sgwt_cheby_op(d,L,c,arange);
fprintf('Displaying wavelets\n');
if (exist('OCTAVE_VERSION','builtin')~=0)
% settings for octave
msize=5;
plotchar='s';
else
% settings for native matlab
msize=100;
plotchar='.';
end
cp=[-1.4,-16.9,3.4]; % camera position
%% Visualize result
% show original point
ws=300;
figure;
xp=0; yp=ws+100;
set(gcf,'position',[xp,yp,ws-10,ws+10]);
scatter3(x(1,:),x(2,:),x(3,:),msize,d,plotchar);
set(gcf,'Colormap',[.5 .5 .5;1 0 0]);
clean_axes(cp);
title(sprintf('Vertex %g',jcenter));
% show wavelets
for n=1:Nscales+1
wp=wpall{n};
figure
xp=mod(n,3)*(ws+10);
yp=(1-floor((n)/3))*(ws+100);
set(gcf,'position',[xp,yp,ws-10,ws+10]);
scatter3(x(1,:),x(2,:),x(3,:),msize,wp,plotchar);
colormap jet
caxis([-1 1]*max(abs(wp)));
clean_axes(cp);
hcb=colorbar('location','north');
cxt=get(hcb,'Xtick');
cxt=[cxt(1),0,cxt(end)];
set(hcb,'Xtick',cxt);
cpos=get(hcb,'Position');
cpos(4)=.02; % make colorbar thinner
set(hcb,'Position',cpos);
set(hcb,'Position',[.25 .91 .6 .02]);
if n==1
title('Scaling function');
else
title(sprintf('Wavelet at scale j=%g, t_j = %0.2f',n-1,t((n-1))));
end
end
function clean_axes(cp)
xlim([-1 1]);ylim([-1 1]);zlim([-1 1]);
set(gca,'Xtick',[-1 0 1]);
set(gca,'Ytick',[-1 0 1]);
set(gca,'Ztick',[-1 0 1]);
axis square
set(gca,'CameraPosition',cp);
% rescale_center
% center input data at origin, then rescale so that all coordinates
% are between -1 and 1
%
% x should be dxN
function r=rescale_center(x)
N=size(x,2);
d=size(x,1);
x=x-repmat(mean(x,2),[1,N]);
c=max(abs(x(:)));
r=x/c;
|
github
|
aamiranis/sampling_theory-master
|
sgwt_soft_threshold.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/utils/sgwt_soft_threshold.m
| 1,117 |
utf_8
|
2c60d2416dbd759097345f610f622d03
|
% sgwt_soft_threshold : Soft thresholding operator
%
% x_t = bpdq_soft_threshold(x,tgamma)
%
% Applies soft thresholding to each component of x
%
% Inputs:
% x - input signal
% tgamma - threshold
%
% Outputs:
% x_t - soft thresholded result
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function x_t = sgwt_soft_threshold(x,tgamma)
tmp=abs(x)-tgamma;
x_t = sign(x).*tmp.*(tmp>0);
|
github
|
aamiranis/sampling_theory-master
|
argselectCheck.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/utils/argselectCheck.m
| 2,050 |
utf_8
|
13096e9ec4f9fc475fb154c322cc7352
|
% argselectCheck : Check if control parameters are valid
%
% function argselectCheck(control_params,varargin_in)
%
% Inputs:
% control_params and varargin_in are both cell arrays
% that are lists of pairs 'name1',value1,'name2',value2,...
%
% This function checks that every name in varargin_in is one of the names
% in control_params. It will generate an error if not, otherwise it will
% do nothing
%
% This is used at beginning of function to simulate keyword argument
% passing. Typical usage is
%
% argselectAssign(control_params);
% argselectCheck(control_params,varargin);
% argselectAssign(varargin);
%
% where control_params is a cell list of variable,value pairs containing
% the default parameter values.
%
% See also argselectAssign
%
% Author : David K. Hammond, EPFL LTS2
% Date : December, 2007
% Project : common utilities
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function argselectCheck(control_params,varargin_in)
[param_names{1:(length(control_params)/2)}]=control_params{1:2:end};
% check that passed in control parameters are valid
for j=1:2:length(varargin_in)
if(isempty(strmatch(varargin_in{j},param_names)))
error(['Invalid control parameter : ',varargin_in{j},...
' Valid options are',sprintf('\n'),...
sprintf('%s \n',param_names{:})]);
end
end
|
github
|
aamiranis/sampling_theory-master
|
argselectAssign.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/utils/argselectAssign.m
| 1,706 |
utf_8
|
a225f6b476ca9762053f486bc6a2f8b9
|
% argselectAssign : Assign variables in calling workspace
%
% function argselectAssign(variable_value_pairs)
%
% Inputs :
% variable_value_pairs is a cell list of form
% 'variable1',value1,'variable2',value2,...
% This function assigns variable1=value1 ... etc in the *callers* workspace
%
% This is used at beginning of function to simulate keyword argument
% passing. Typical usage is
%
% argselectAssign(control_params);
% argselectCheck(control_params,varargin);
% argselectAssign(varargin);
%
% where control_params is a cell list of variable,value pairs containing
% the default parameter values.
%
% See also argselectCheck
%
% Author : David K. Hammond, EPFL LTS2
% Date : December, 2007
% Project : common utilities
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function argselectAssign(variable_value_pairs)
for j =1:2:length(variable_value_pairs)
pname=variable_value_pairs{j};
pval=variable_value_pairs{j+1};
assignin('caller',pname,pval);
end
|
github
|
aamiranis/sampling_theory-master
|
vec.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/utils/vec.m
| 857 |
utf_8
|
b795ffb5f2186f33aaa81ef7daa3cac5
|
% vec : vectorize input
%
% r=vec(x)
%
% returns r=x(:);
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=vec(x)
r=x(:);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_show_im.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/utils/sgwt_show_im.m
| 1,806 |
utf_8
|
f0aa589e604cc94d1e07c64a3eb27723
|
% sgwt_show_im : Display image, with correct pixel zoom
%
% sgwt_show_im(im,range,zoom)
%
% Inputs :
% im - 2-d image
% range - 2 element vector giving display color map range,
% range(1) maps to black, range(2) maps to white
% If range not given, or empty matrix given for range, then
% the default is to set it to the minimum and maximum of input image.
% zoom - # of screen pixels taken by single image pixel. Default is 1
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function sgwt_show_im(im,range,zoom)
if nargin<3
zoom=1;
end
if ( nargin<2 || isempty(range) )
range(1)=min(im(:));
range(2)=max(im(:));
end
nshades=256;
d_im = ( im-range(1) ) *(nshades-1) /(range(2)-range(1));
dsize=size(im)*zoom; % size in pixels to show on screen
image( d_im );
colormap(gray(nshades));
ax=gca;
oldunits=get(ax,'Units');
set(ax,'Units','pixels');
pos = get(ax,'Position');
axis('off');
ctr = pos(1:2)+pos(3:4)/2;
set(ax,'Position',[floor(ctr-dsize/2)+0.5, dsize] );
axis('equal');
% restore units
set(ax,'Units',oldunits);
|
github
|
tmquan/PVR-master
|
resize.m
|
.m
|
PVR-master/resize.m
| 6,573 |
utf_8
|
fc6ab29e1a4106ddb03733c0b1048169
|
function x = resize(x,newsiz)
%RESIZE Resize any arrays and images.
% Y = RESIZE(X,NEWSIZE) resizes input array X using a DCT (discrete
% cosine transform) method. X can be any array of any size. Output Y is
% of size NEWSIZE.
%
% Input and output formats: Y has the same class as X.
%
% Note:
% ----
% If you want to multiply the size of an RGB image by a factor N, use the
% following syntax: RESIZE(I,size(I).*[N N 1])
%
% Examples:
% --------
% % Resize a signal
% % original signal
% x = linspace(0,10,300);
% y = sin(x.^3/100).^2 + 0.05*randn(size(x));
% % resized signal
% yr = resize(y,[1 1000]);
% plot(linspace(0,10,1000),yr)
%
% % Upsample and downsample a B&W picture
% % original image
% I = imread('tire.tif');
% % upsampled image
% J = resize(I,size(I)*2);
% % downsampled image
% K = resize(I,size(I)/2);
% % pictures
% figure,imshow(I),figure,imshow(J),figure,imshow(K)
%
% % Upsample and stretch a 3-D scalar array
% load wind
% spd = sqrt(u.^2 + v.^2 + w.^2); % wind speed
% upsspd = resize(spd,[64 64 64]); % upsampled speed
% slice(upsspd,32,32,32);
% colormap(jet)
% shading interp, daspect(size(upsspd)./size(spd))
% view(30,40), axis(volumebounds(upsspd))
%
% % Upsample and stretch an RGB image
% I = imread('onion.png');
% J = resize(I,size(I).*[2 2 1]);
% K = resize(I,size(I).*[1/2 2 1]);
% figure,imshow(I),figure,imshow(J),figure,imshow(K)
%
% See also UPSAMPLE, RESAMPLE, IMRESIZE, DCTN, IDCTN
%
% -- Damien Garcia -- 2009/11, revised 2010/11
% website: <a
% href="matlab:web('http://www.biomecardio.com')">www.BiomeCardio.com</a>
error(nargchk(2,2,nargin));
siz = size(x);
N = prod(siz);
% Do nothing if size is unchanged
if isequal(siz,newsiz), return, end
% Do nothing if input is empty
if isempty(x), return, end
% Check size arguments
assert(isequal(length(siz),length(newsiz)),...
'Number of dimensions must not change.')
newsiz = round(newsiz);
assert(all(newsiz>0),'Size arguments must be >0.')
class0 = class(x);
is01 = islogical(x);
% Deal with NaNs if any
I = isnan(x);
if any(I(:))
% replace NaNs by nearest neighbors
[~,L] = bwdist(~I);
x(I) = x(L(I));
% resize
x = resize(x,newsiz);
I = resize(I,newsiz);
% reintroduce NaN
x(I) = NaN;
return
end
% DCT transform
x = dctn(x);
% Crop the DCT coefficients
for k = 1:ndims(x)
siz(k) = min(newsiz(k),siz(k));
x(siz(k)+1:end,:) = [];
x = reshape(x,circshift(siz,[0 1-k]));
x = shiftdim(x,1);
end
% Pad the DCT coefficients with zeros
x = padarray(x,max(newsiz-siz,zeros(size(siz))),0,'post');
% inverse DCT transform
x = idctn(x)*sqrt(prod(newsiz)/N);
% Back to the previous class
if is01, x = round(x); end
x = cast(x,class0);
end
%% DCTN
function y = dctn(y)
%DCTN N-D discrete cosine transform.
% Y = DCTN(X) returns the discrete cosine transform of X. The array Y is
% the same size as X and contains the discrete cosine transform
% coefficients. This transform can be inverted using IDCTN.
%
% Reference
% ---------
% Narasimha M. et al, On the computation of the discrete cosine
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
%
% Example
% -------
% RGB = imread('autumn.tif');
% I = rgb2gray(RGB);
% J = dctn(I);
% imshow(log(abs(J)),[]), colormap(jet), colorbar
%
% The commands below set values less than magnitude 10 in the DCT matrix
% to zero, then reconstruct the image using the inverse DCT.
%
% J(abs(J)<10) = 0;
% K = idctn(J);
% figure, imshow(I)
% figure, imshow(K,[0 255])
%
% -- Damien Garcia -- 2008/06, revised 2011/11
% -- www.BiomeCardio.com --
y = double(y);
sizy = size(y);
y = squeeze(y);
dimy = ndims(y);
% Some modifications are required if Y is a vector
if isvector(y)
dimy = 1;
if size(y,1)==1, y = y.'; end
end
% Weighting vectors
w = cell(1,dimy);
for dim = 1:dimy
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
w{dim} = exp(1i*(0:n-1)'*pi/2/n);
end
% --- DCT algorithm ---
if ~isreal(y)
y = complex(dctn(real(y)),dctn(imag(y)));
else
for dim = 1:dimy
siz = size(y);
n = siz(1);
y = y([1:2:n 2*floor(n/2):-2:2],:);
y = reshape(y,n,[]);
y = y*sqrt(2*n);
y = ifft(y,[],1);
y = bsxfun(@times,y,w{dim});
y = real(y);
y(1,:) = y(1,:)/sqrt(2);
y = reshape(y,siz);
y = shiftdim(y,1);
end
end
y = reshape(y,sizy);
end
%% IDCTN
function y = idctn(y)
%IDCTN N-D inverse discrete cosine transform.
% X = IDCTN(Y) inverts the N-D DCT transform, returning the original
% array if Y was obtained using Y = DCTN(X).
%
% Reference
% ---------
% Narasimha M. et al, On the computation of the discrete cosine
% transform, IEEE Trans Comm, 26, 6, 1978, pp 934-936.
%
% Example
% -------
% RGB = imread('autumn.tif');
% I = rgb2gray(RGB);
% J = dctn(I);
% imshow(log(abs(J)),[]), colormap(jet), colorbar
%
% The commands below set values less than magnitude 10 in the DCT matrix
% to zero, then reconstruct the image using the inverse DCT.
%
% J(abs(J)<10) = 0;
% K = idctn(J);
% figure, imshow(I)
% figure, imshow(K,[0 255])
%
% See also DCTN, IDSTN, IDCT, IDCT2, IDCT3.
%
% -- Damien Garcia -- 2009/04, revised 2011/11
% -- www.BiomeCardio.com --
y = double(y);
sizy = size(y);
y = squeeze(y);
dimy = ndims(y);
% Some modifications are required if Y is a vector
if isvector(y)
dimy = 1;
if size(y,1)==1
y = y.';
end
end
% Weighing vectors
w = cell(1,dimy);
for dim = 1:dimy
n = (dimy==1)*numel(y) + (dimy>1)*sizy(dim);
w{dim} = exp(1i*(0:n-1)'*pi/2/n);
end
% --- IDCT algorithm ---
if ~isreal(y)
y = complex(idctn(real(y)),idctn(imag(y)));
else
for dim = 1:dimy
siz = size(y);
n = siz(1);
y = reshape(y,n,[]);
y = bsxfun(@times,y,w{dim});
y(1,:) = y(1,:)/sqrt(2);
y = ifft(y,[],1);
y = real(y*sqrt(2*n));
I = (1:n)*0.5+0.5;
I(2:2:end) = n-I(1:2:end-1)+1;
y = y(I,:);
y = reshape(y,siz);
y = shiftdim(y,1);
end
end
y = reshape(y,sizy);
end
|
github
|
tmquan/PVR-master
|
vec.m
|
.m
|
PVR-master/vec.m
| 42 |
utf_8
|
8909a59f67f977a13b68984a04173168
|
function u = vec(v)
u = v(:);
return
|
github
|
pauloabelha/gazebo_tasks-master
|
GenerateBoxSDF.m
|
.m
|
gazebo_tasks-master/GenerateBoxSDF.m
| 6,266 |
utf_8
|
247027bd44b2954c039f37434208aca7
|
% By Paulo Abelha
%
% Generates a parametrizable rectangular box for Gazebo
% I use it to generate the box that holds the grains for my
% 'scooping_grains' task
% This was very useful when I was extensively
% experimenting with different boxes
%
% task_folder is the folder with the .world, tool(s) and task code
% (e.g. '~/.gazebo/gazebo_models/scooping_grains/')
% box_name - the name to put in the sdf (be creative!)
%
% bottom_pose - 1x3 array with the x,y,z pose of the box centre
% width (as in gazebo's y axis)
% length (as in gazebo's x axis)
% height (I leave it as an exercise to guess this variable)
% thickness (thickness of each wall)
% description (last chance to be creative)
function GenerateBoxSDF( task_folder, box_name, bottom_pose, width, length, height, thickness, description )
sdf_version = '1.6';
author_name = 'Paulo Abelha';
author_email = '[email protected]';
if ~exist('description','var')
description = '';
end
system(['mkdir ' task_folder box_name]);
GenerateModelConfigFile([task_folder box_name], sdf_version, box_name, author_name, author_email, description);
filepath = [task_folder box_name '/' box_name '.sdf'];
fid = fopen(filepath,'w+');
fprintf(fid,'<?xml version=''1.0''?>');
fprintf(fid,'\n');
fprintf(fid,['<sdf version=''' sdf_version '''>']);
fprintf(fid,'\n');
fprintf(fid,['\t<model name=''' box_name '''>']);
fprintf(fid,'\n');
fprintf(fid,['\t<pose>' num2str(bottom_pose(1)) ' ' num2str(bottom_pose(2)) ' ' num2str(bottom_pose(3)) ' 0 0 0 </pose>']);
fprintf(fid,'\n');
fprintf(fid,'\t<static>true</static>');
fprintf(fid,'\n');
fprintf(fid,'\n');
pos_0 = [0 0 thickness/2];
size_0 = [length, width, thickness];
GenerateLinkTag(fid, [box_name '_' num2str(0)], pos_0, size_0, 2000, 2000, 'WoodFloor');
fprintf(fid,'\n');
fprintf(fid,'\n');
pos_1 = [(-length/2)+thickness/2, 0, thickness + (height/2)];
size_1 = [thickness, width - (2*thickness), height];
GenerateLinkTag(fid, [box_name '_' num2str(1)], pos_1, size_1, 2000, 2000, 'WoodFloor');
fprintf(fid,'\n');
fprintf(fid,'\n');
pos_2 = pos_1;
pos_2(1) = -pos_1(1);
size_2 = size_1;
GenerateLinkTag(fid, [box_name '_' num2str(2)], pos_2, size_2, 2000, 2000, 'WoodFloor');
fprintf(fid,'\n');
fprintf(fid,'\n');
pos_3 = [0, (-width/2)+thickness/2, thickness + (height/2)];
size_3 = [length, thickness, height];
GenerateLinkTag(fid, [box_name '_' num2str(3)], pos_3, size_3, 2000, 2000, 'WoodFloor');
fprintf(fid,'\n');
fprintf(fid,'\n');
pos_4 = pos_3;
pos_4(2) = -pos_3(2);
size_4 = size_3;
GenerateLinkTag(fid, [box_name '_' num2str(4)], pos_4, size_4, 2000, 2000, 'WoodFloor');
fprintf(fid,'\n');
fprintf(fid,'\n');
fprintf(fid,'\t</model>');
fprintf(fid,'\n');
fprintf(fid,'</sdf>');
fclose(fid);
end
function GenerateGeometryTag(fid, size)
fprintf(fid,'\t\t<geometry>');
fprintf(fid,'\n');
fprintf(fid,'\t\t\t<box>');
fprintf(fid,'\n');
fprintf(fid,['\t\t\t\t<size>' num2str(size(1)) ' ' num2str(size(2)) ' ' num2str(size(3)) '</size>']);
fprintf(fid,'\n');
fprintf(fid,'\t\t\t</box>');
fprintf(fid,'\n');
fprintf(fid,'\t\t</geometry>');
end
function GenerateSurfaceTag(fid, mu, mu2)
fprintf(fid,'\t\t<surface>');
fprintf(fid,'\n');
fprintf(fid,'\t\t\t<friction>');
fprintf(fid,'\n');
fprintf(fid,'\t\t\t\t<ode>');
fprintf(fid,'\n');
fprintf(fid,['\t\t\t\t\t<mu>' num2str(mu) '</mu>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t\t\t\t<mu2>' num2str(mu2) '</mu2>']);
fprintf(fid,'\n');
fprintf(fid,'\t\t\t\t</ode>');
fprintf(fid,'\n');
fprintf(fid,'\t\t\t</friction>');
fprintf(fid,'\n');
fprintf(fid,'\t\t</surface>');
end
function GenerateMaterialTag(fid, material)
fprintf(fid,'\t\t<material>');
fprintf(fid,'\n');
fprintf(fid,'\t\t\t<script>');
fprintf(fid,'\n');
fprintf(fid,'\t\t\t\t<uri>file://media/materials/scripts/gazebo.material</uri>');
fprintf(fid,'\n');
fprintf(fid,['\t\t\t\t<name>Gazebo/' material '</name>']);
fprintf(fid,'\n');
fprintf(fid,'\t\t\t</script>');
fprintf(fid,'\n');
fprintf(fid,'\t\t</material>');
end
function GenerateLinkTag(fid, name, pose, size, mu1, mu2, material)
fprintf(fid,['\t<link name=''' name '''>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t<pose>' num2str(pose(1)) ' ' num2str(pose(2)) ' ' num2str(pose(3)) ' 0 0 0 </pose>']);
fprintf(fid,'\n');
coliision_name = [name '_coliision'];
fprintf(fid,['\t\t<collision name=''' coliision_name '''>']);
fprintf(fid,'\n');
GenerateGeometryTag(fid, size);
fprintf(fid,'\n');
GenerateSurfaceTag(fid, mu1, mu2);
fprintf(fid,'\n');
fprintf(fid,'\t\t</collision>');
fprintf(fid,'\n');
fprintf(fid,'\n');
visual_name = [name '_visual'];
fprintf(fid,['\t\t<visual name=''' visual_name '''>']);
fprintf(fid,'\n');
GenerateGeometryTag(fid, size);
fprintf(fid,'\n');
GenerateMaterialTag(fid, material);
fprintf(fid,'\n');
fprintf(fid,'\t\t</visual>');
fprintf(fid,'\t</link>');
end
function GenerateModelConfigFile(root_folder, sdf_version, name, author_name, author_email, description)
filepath = [root_folder '/model.config'];
fid = fopen(filepath,'w+');
fprintf(fid,'<?xml version=''1.0''?>');
fprintf(fid,'\n');
fprintf(fid,['\t<model>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t<name>' name '</name>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t<sdf version=''' sdf_version '''>' name '.sdf</sdf>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t<author>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t\t<name>' author_name '</name>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t\t<email>' author_email '</email>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t</author>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t<description>']);
fprintf(fid,'\n');
fprintf(fid,['\t\t\t' description]);
fprintf(fid,'\n');
fprintf(fid,['\t\t</description>']);
fprintf(fid,'\n');
fprintf(fid,['\t</model>']);
end
|
github
|
Rahmeen14/Chall-Vihaan-master
|
MeanVariance.m
|
.m
|
Chall-Vihaan-master/routes/codes/MeanVariance.m
| 1,364 |
utf_8
|
8b23466de4e94d6052135ba671cde88f
|
## Copyright (C) 2017 Shreya
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{retval} =} MeanVariance (@var{input1}, @var{input2})
##
## @seealso{}
## @end deftypefn
## Author: Shreya <Shreya@SARTHAK-LAPTOP>
## Created: 2017-10-28
% X is a 15x4 matrix_type
% It stores amount, location pincode, time and merchant pincode
function [mu, sigma] = MeanVariance (X)
mu = zeros(4,1);
sigma = zeros (4,1);
for i = 1:4
for j = 1:15
mu(i,1) = mu(i,1) + X(j,i);
endfor
mu(i,1)= mu(i,1)/15;
%disp("Mean");
%disp(mu(i,1));
endfor
for i = 1:4
for j = 1:15
sigma(i,1) = sigma(i,1) + (X(j,i) - mu(i,1))^2;
endfor
sigma(i,1)= sigma(i,1)/15;
%disp("i");
%disp(i);
%disp(sigma);
endfor
endfunction
|
github
|
Rahmeen14/Chall-Vihaan-master
|
probability.m
|
.m
|
Chall-Vihaan-master/routes/codes/probability.m
| 1,015 |
utf_8
|
a28db31f8c29e452e555c6e50edd8c41
|
## Copyright (C) 2017 Shreya
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{retval} =} probability (@var{input1}, @var{input2})
##
## @seealso{}
## @end deftypefn
## Author: Shreya <Shreya@SARTHAK-LAPTOP>
## Created: 2017-10-28
function p = probability (x, mu, var)
p = (0.399/(var^(0.5)))*exponential(-(((x- mu)^2)/(2*var)));
%disp("p");
%disp(p);
endfunction
|
github
|
Rahmeen14/Chall-Vihaan-master
|
main.m
|
.m
|
Chall-Vihaan-master/routes/codes/main.m
| 1,710 |
utf_8
|
1f7ebc3c7c60fd3954acb86f1669cac3
|
## Copyright (C) 2017 Shreya
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{retval} =} main (@var{input1}, @var{input2})
##
## @seealso{}
## @end deftypefn
## Author: Shreya <Shreya@SARTHAK-LAPTOP>
## Created: 2017-10-28
function n = main(fileName,amount, locPin, time, merchPin)
%function n = main(g)
%disp(amount)
%disp(locPin)
%disp(time)
%disp(merchPin)
amount=double(amount);
locPin=double(locPin);
time=double(time);
merchPin=double(merchPin);
X = csvread(fileName);
%X = csvread('sarthak.txt');
Y = zeros(15,4);
for i=1:15
for j =1:4
Y(i,j) = X(i,j+2);
endfor
endfor
[mu, sigma] = MeanVariance(Y);
Z = [amount, locPin, time, merchPin];
%Z=[60000,110017,12,110017];
ans = predictNature(Z, mu, sigma);
flag = 1;
for i=1:4
if (ans(i,1)==1)
flag =0;
endif
endfor
if (flag==1)
fprintf("You can Proceed with your transaction.");
else
fprintf("Based on your history,this transaction doesn't confirm to your history,Please confirm your identity.");
endif
n=1;
endfunction
|
github
|
Rahmeen14/Chall-Vihaan-master
|
predictNature.m
|
.m
|
Chall-Vihaan-master/routes/codes/predictNature.m
| 1,438 |
utf_8
|
0f5d425211ad4bf375290e74adbc88bc
|
## Copyright (C) 2017 Shreya
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{retval} =} predictNature (@var{input1}, @var{input2})
##
## @seealso{}
## @end deftypefn
## Author: Shreya <Shreya@SARTHAK-LAPTOP>
## Created: 2017-10-28
% X is a new single data input (horizontal) from node.js that i am gng to calculate
% the probability for
function prediction = predictNature (X, mu, sigma)
prediction = ones(4,1);
for i =1:4
prediction(i,1) = prediction(i,1) * probability(X(1,i),mu(i,1), sigma(i,1));
endfor
for i = 1:4
if(i!=3)
if (prediction(i,1)<0.0000001)
prediction(i,1) =1;
else prediction(i,1) = 0;
endif
else
if (prediction(i,1)<0.02)
prediction(i,1) =1;
else prediction(i,1) = 0;
endif
endif
endfor
endfunction
|
github
|
Rahmeen14/Chall-Vihaan-master
|
exponential.m
|
.m
|
Chall-Vihaan-master/routes/codes/exponential.m
| 941 |
utf_8
|
5da284170d8f5071a07b143da331d909
|
## Copyright (C) 2017 Shreya
##
## This program is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {} {@var{retval} =} exponential (@var{input1}, @var{input2})
##
## @seealso{}
## @end deftypefn
## Author: Shreya <Shreya@SARTHAK-LAPTOP>
## Created: 2017-10-28
function ans = exponential (x)
ans = (2.718)^x;
endfunction
|
github
|
FanmingL/independent-analysis-master
|
my_RealTimeIVA.m
|
.m
|
independent-analysis-master/iva_matlab/my_RealTimeIVA.m
| 5,722 |
utf_8
|
5e3bd938e17b5a4c18e57b9e1f3d07c3
|
%initialization
%it spends aboud 0.36 seconds to initialize
%//1 matlab clear
clear;
close all;
%//2 initialize some coeffs according to the paper
fft_length = 256; %unit is sample
window_length = fft_length; %unit is sample
shift_size = 64; %unit is sample
beta = 0.5; %smoothing factor
reverbration_time = 250; %unit is ms
windows = hanning(fft_length); %hanning window
expect_sample_rate = 8000; %8kHz sample rate
yita = 1.0; %gridant desent coeff
start_simulate_point= 200000; %point start used to simulate
simulation_length = 40000; %length used to simulate, unit is ms
c = 344; % Sound velocity(m/s)
reciver_position1 = [ 2.0 2.0 2.4 ]; % Receiver position[ x y z ](m)
source_position1 = [ 2.0 2.4 2.0 ]; % Source position[ x y z ](m)
reciver_position2 = [ 2.0 2.0 1.9 ]; % Receiver position[ x y z ](m)
source_position2 = [ 2.0 1.6 2.7 ]; % Source position[ x y z ](m)
room_size = [ 5.0 4.0 6.0 ]; % Room dimensions[ x y z ](m)
number_of_samples = reverbration_time/1000 ...
* expect_sample_rate; % Number of samples
%//3 read audio from files and resample to expect sample rate
[source1,fs1] = audioread('female_record.wav');
[source2,fs2] = audioread('male_record.wav');
source1 = resample(source1,expect_sample_rate,fs1);
source2 = resample(source2,expect_sample_rate,fs2);
source1 = source1(start_simulate_point:floor(start_simulate_point+...
simulation_length/1000*expect_sample_rate),1);
source2 = source2(start_simulate_point:floor(start_simulate_point+...
simulation_length/1000*expect_sample_rate),1);
%//4 generate the reverbration audio
impulse11 = rir_generator(c,expect_sample_rate,reciver_position1,source_position1,...
room_size,reverbration_time/1000,number_of_samples ) ;
impulse12 = rir_generator(c,expect_sample_rate,reciver_position2,source_position1,...
room_size,reverbration_time/1000,number_of_samples ) ;
impulse21 = rir_generator(c,expect_sample_rate,reciver_position1,source_position2,...
room_size,reverbration_time/1000,number_of_samples ) ;
impulse22 = rir_generator(c,expect_sample_rate,reciver_position2,source_position2,...
room_size,reverbration_time/1000,number_of_samples ) ;
observation1=conv(source1,impulse11)+conv(source2,impulse21);
observation2=conv(source1,impulse12)+conv(source2,impulse22);
contrast_plot(source1,source2,expect_sample_rate,'source');
contrast_plot(observation1,observation2,expect_sample_rate,'observation');
%//5 initialize demixing matrix
G = zeros(2,2,fft_length);
for i=1:fft_length
G(1,1,i)=1;G(2,2,i)=1;
end
ksi = ones(fft_length,1);
phi = ones(fft_length,2);
R = zeros(2,2,fft_length);
audio_estimate = zeros(fft_length,2);
number_of_overlap = floor(fft_length/shift_size)+1;
estimate_out1 = zeros(length(observation1),1);
estimate_out2 = zeros(length(observation2),1);
norm_coeff = zeros(2,2,fft_length);
tic;
%//6 iteration
for n = 1:(floor((length(observation1)-window_length)/shift_size)) % at Nth times
audio_cut1 = observation1((n-1)*shift_size+1:(n-1)*shift_size+window_length).*windows;
audio_cut2 = observation2((n-1)*shift_size+1:(n-1)*shift_size+window_length).*windows;
audio_cut1_fft = fft(audio_cut1);
audio_cut2_fft = fft(audio_cut2);
audio_cut_fft = [audio_cut1_fft, audio_cut2_fft];
for k = 1:floor(fft_length/2+1)
audio_estimate(k,:) = (G(:,:,k)* (audio_cut_fft(k,:)).').';
norm_coeff(:,:,k) = diag(diag(inv(G(:,:,k))));
end
for k = floor(fft_length/2+1)+1:fft_length
audio_estimate(k,:) = conj(audio_estimate(fft_length-k+2,:));
end
phi = audio_estimate ./ (sqrt(diag((audio_estimate)'*(audio_estimate)))');
for k = 1:floor(fft_length/2+1)
R(:,:,k) = (audio_estimate(k,:)'*phi(k,:)).';
gradient_k = (diag(diag(R(:,:,k)))-R(:,:,k))*G(:,:,k);
G(:,:,k) = G(:,:,k) + yita/sqrt(ksi(k))*gradient_k;
ksi(k) = beta * ksi(k) + (1-beta) * (audio_cut_fft(k,:)*audio_cut_fft(k,:)')/2;
audio_estimate(k,:) = audio_estimate(k,:) * norm_coeff(:,:,k);
end
for k = floor(fft_length/2+1)+1:fft_length
audio_estimate(k,:) = conj(audio_estimate(fft_length-k+2,:));
end
estimate_out1((n-1)*shift_size+1:(n-1)*shift_size+window_length)=...
ifft(audio_estimate(:,1))+estimate_out1((n-1)*shift_size...
+1:(n-1)*shift_size+window_length);
estimate_out2((n-1)*shift_size+1:(n-1)*shift_size+window_length)=...
ifft(audio_estimate(:,2))+estimate_out2((n-1)*shift_size...
+1:(n-1)*shift_size+window_length);
end
toc
estimate_out1 = estimate_out1/max(abs(estimate_out1));
estimate_out2 = estimate_out2/max(abs(estimate_out2));
contrast_plot(estimate_out1,estimate_out2,expect_sample_rate,'separated');
function contrast_plot(x,y,fs,title_str)
figure;
subplot(2,1,1);
plot((1:length(x))/fs,x,'b');
xlabel('time(s)');
ylabel('relative sound intensity');
title([title_str,'1']);
subplot(2,1,2);
plot((1:length(y))/fs,y,'b');
title([title_str,'2']);
xlabel('time(s)');
ylabel('relative sound intensity');
pause(0);
end
|
github
|
FanmingL/independent-analysis-master
|
my_RealTimeIVA_GMM.m
|
.m
|
independent-analysis-master/iva_matlab/my_RealTimeIVA_GMM.m
| 8,995 |
utf_8
|
17b3add0f5b9b511801d4f3eeffe8ee0
|
%initialization
%it spends aboud 0.36 seconds to initialize
%//1 matlab clear
clear;
close all;
load('GMM_SYS_4.mat')
%//2 initialize some coeffs according to the paper
gamma_whiten = 0.0025;
lambda = 0.95;
Ns = 4;
fft_length = 512; %unit is sample
window_length = fft_length; %unit is sample
shift_size = 256; %unit is sample
reverbration_time = 250; %unit is ms
windows = hanning(fft_length); %hanning window
expect_sample_rate = 8000; %8kHz sample rate
start_simulate_point= 200000; %point start used to simulate
simulation_length = 50000; %length used to simulate, unit is ms
c = 344; % Sound velocity(m/s)
reciver_position1 = [ 2.0 2.0 2.4 ]; % Receiver position[ x y z ](m)
source_position1 = [ 2.0 2.4 2.0 ]; % Source position[ x y z ](m)
reciver_position2 = [ 2.0 2.0 1.9 ]; % Receiver position[ x y z ](m)
source_position2 = [ 2.0 1.6 2.7 ]; % Source position[ x y z ](m)
room_size = [ 5.0 4.0 6.0 ]; % Room dimensions[ x y z ](m)
number_of_samples = reverbration_time/1000 ...
* expect_sample_rate; % Number of samples
%//3 read audio from files and resample to expect sample rate
[source1,fs1] = audioread('female_record.wav');
[source2,fs2] = audioread('male_record.wav');
source1 = resample(source1,expect_sample_rate,fs1);
source2 = resample(source2,expect_sample_rate,fs2);
source1 = source1(start_simulate_point:floor(start_simulate_point+...
simulation_length/1000*expect_sample_rate),1);
source2 = source2(start_simulate_point:floor(start_simulate_point+...
simulation_length/1000*expect_sample_rate),1);
%//4 generate the reverbration audio
impulse11 = rir_generator(c,expect_sample_rate,reciver_position1,source_position1,...
room_size,reverbration_time/1000,number_of_samples ) ;
impulse12 = rir_generator(c,expect_sample_rate,reciver_position2,source_position1,...
room_size,reverbration_time/1000,number_of_samples ) ;
impulse21 = rir_generator(c,expect_sample_rate,reciver_position1,source_position2,...
room_size,reverbration_time/1000,number_of_samples ) ;
impulse22 = rir_generator(c,expect_sample_rate,reciver_position2,source_position2,...
room_size,reverbration_time/1000,number_of_samples ) ;
observation1=conv(source1,impulse11)+conv(source2,impulse21);
observation2=conv(source1,impulse12)+conv(source2,impulse22);
contrast_plot(source1,source2,expect_sample_rate,'source');
contrast_plot(observation1,observation2,expect_sample_rate,'observation');
%//5 initialize demixing matrix
W = zeros(2,2,fft_length);
for i=1:fft_length
W(1,1,i)=1;W(2,2,i)=1;
end
gaussian_s1 = 1:Ns;
gaussian_s2 = 1:Ns;
gaussian_st = meshgrid(gaussian_s1,gaussian_s2);
gassian_v1 = 1./Sigma_1;
gassian_v2 = 1./Sigma_2;
p_s1 = Phi1_mean;
p_s2 = Phi2_mean;
p_st = ones(size(gaussian_st))/Ns/Ns;
q_s1 = ones(1,Ns)/Ns;
q_s2 = ones(1,Ns)/Ns;
q_st = meshgrid(q_s1,q_s2);
step1_tmp = zeros(size(q_st));
V = W; %whitening matrix
I = [1,0;0,1]; %unit matrix
M = zeros(size(W));
beta = zeros(1,fft_length);
audio_estimate = zeros(fft_length,2);
audio_estimate_trans= audio_estimate.';
estimate_out1 = zeros(length(observation1),1);
estimate_out2 = zeros(length(observation2),1);
m_1r = q_s1;
m_1r_old = zeros(1,Ns);
m_2r = q_s2;
m_2r_old = zeros(1,Ns);
signal_whitened = zeros(2,fft_length);
akbk_star = zeros(2,1,fft_length);
test_whitening = zeros(2,floor(length(observation1)/window_length)+10);
tic;
%//6 iterator
for n = 1:(floor((length(observation1)-window_length)/shift_size)) % at Nth times
audio_cut1 = observation1((n-1)*shift_size+1:(n-1)*shift_size+window_length).*windows;
audio_cut2 = observation2((n-1)*shift_size+1:(n-1)*shift_size+window_length).*windows;
audio_cut1_fft = fft(audio_cut1);
audio_cut2_fft = fft(audio_cut2);
audio_cut_fft = [audio_cut1_fft, audio_cut2_fft].';
%online whitening
for k = 1:floor(fft_length/2+1)
signal_whitened(:,k) = audio_cut_fft(:,k);
%signal_whitened(:,k) = V(:,:,k)*audio_cut_fft(:,k);
%V(:,:,k) = V(:,:,k)+gamma_whiten*(I-signal_whitened(:,k)*signal_whitened(:,k)')*V(:,:,k);
end
%record some samples to test whitening efficiency
test_whitening(:,n) = signal_whitened(:,40);
%E-Step
for index_s1=1:Ns
for index_s2=1:Ns
product_frequency = 0;
for k=1:floor(fft_length/2+1)
product_frequency = product_frequency+(multi_guassian_calculate(signal_whitened(:,k),W(:,:,k)'...
*diag([gassian_v1(k,index_s1),gassian_v2(k,index_s2)])*W(:,:,k)));
if (isnan(product_frequency)||isinf(product_frequency))
fprintf('1')
return;
end
end
q_st(index_s1,index_s2)=log(p_s1(index_s1)*p_s2(index_s2))+product_frequency;
if (find(isnan(q_st)))
fprintf('2');
return;
end
end
end
q_st = q_st-max(max(q_st));
q_st = exp(q_st)/sum(sum(exp(q_st)));
if (find(isnan(q_st)))
fprintf('5');
return;
end
%M-Step
q_s1 = sum(q_st,2).';
q_s2 = sum(q_st,1);
m_1r_old = m_1r;
m_2r_old = m_2r;
m_1r = lambda * m_1r + q_s1;
m_2r = lambda * m_2r + q_s2;
% p_s1 = m_1r;
% p_s2 = m_2r;
%
% p_s1=p_s1/sum(p_s1);
% p_s2=p_s2/sum(p_s2);
for k = 1:floor(fft_length/2+1)
for index_s1=1:Ns
for index_s2=1:Ns
step1_tmp(index_s1,index_s2)=...
(gassian_v1(k,index_s1)-gassian_v2(k,index_s2))*q_st(index_s1,index_s2);
end
end
M(:,:,k) = lambda*M(:,:,k)+sum(sum(step1_tmp))*signal_whitened(:,k)*signal_whitened(:,k)';
beta(k) = (M(1,1,k)+M(2,2,k))/2-sqrt(((M(1,1,k)-M(2,2,k))^2)/4+abs(M(1,2,k))^2);
if (find(isnan(beta)))
fprintf('4');
return;
end
akbk_star(:,:,k) = 1/sqrt(1+((beta(k)-M(1,1,k))/M(1,2,k))^2)*[1;(beta(k)-M(1,1,k))/M(1,2,k)];
tmp_a=akbk_star(1,1,k)';
tmp_b=akbk_star(2,1,k)';
W(:,:,k) = [tmp_a,tmp_b;-tmp_b',tmp_a'];
audio_estimate(k,:) = (W(:,:,k)*signal_whitened(:,k)).';
for index=1:Ns
% gassian_v1(k,index) = real(1/(1/gassian_v1(k,index)*m_1r_old(index)/m_1r(index)+...
% q_s1(index)/m_1r(index)*audio_estimate(k,1)*audio_estimate(k,1)'));
% gassian_v2(k,index) = real(1/(1/gassian_v2(k,index)*m_2r_old(index)/m_2r(index)+...
% q_s2(index)/m_2r(index)*audio_estimate(k,2)*audio_estimate(k,2)'));
if(isnan(gassian_v1(k,index))||isnan(gassian_v2(k,index)))
fprintf('7');
return;
end
end
audio_estimate(k,:) = (diag(diag(inv(W(:,:,k)*V(:,:,k))))*audio_estimate(k,:).').';
end
for k = floor(fft_length/2+1)+1:fft_length
audio_estimate(k,:) = conj(audio_estimate(fft_length-k+2,:));
end
estimate_out1((n-1)*shift_size+1:(n-1)*shift_size+window_length)=...
ifft(audio_estimate(:,1))+estimate_out1((n-1)*shift_size...
+1:(n-1)*shift_size+window_length);
estimate_out2((n-1)*shift_size+1:(n-1)*shift_size+window_length)=...
ifft(audio_estimate(:,2))+estimate_out2((n-1)*shift_size...
+1:(n-1)*shift_size+window_length);
%W(:,:,40)
if (n>400)
cov(test_whitening(:,n-400:n)')
end
end
toc
estimate_out1 = estimate_out1/max(abs(estimate_out1));
estimate_out2 = estimate_out2/max(abs(estimate_out2));
contrast_plot(estimate_out1,estimate_out2,expect_sample_rate,'separated');
function contrast_plot(x,y,fs,title_str)
figure;
subplot(2,1,1);
plot((1:length(x))/fs,x,'b');
xlabel('time(s)');
ylabel('relative sound intensity');
title([title_str,'1']);
subplot(2,1,2);
plot((1:length(y))/fs,y,'b');
title([title_str,'2']);
xlabel('time(s)');
ylabel('relative sound intensity');
pause(0);
end
function p = multi_guassian_calculate(Y,Phi)
p = real(log(abs(sqrt(abs(det(Phi)))/2/pi))+((-1/2*Y'*Phi*Y)));
end
|
github
|
jacky18008/NCCU_Coding_is_Magic-master
|
eval_multiclass.m
|
.m
|
NCCU_Coding_is_Magic-master/UniMiB-SHAR/code/eval_multiclass.m
| 13,160 |
utf_8
|
08f4ba858317dd05be872e7f3b82cb9c
|
% /*************************************************************************************
%
% Project Name: UniMiB SHAR: a new dataset for human activity recognition using acceleration data from smartphones
% File Name: eval_multiclass.m
% Authors: D. Micucci and M. Mobilio and P. Napoletano ([email protected])
% History: October 2016 created
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function implements the evalaution of the UniMiB SHAR dataset using KNN and SVM.
%
% USAGE
% final_results = eval_multiclass(path,split_path,results_path,data_type,type_eval,classifier_type)
%
% INPUT
% path = accelerometer datapath
% split_path = training/test splits datapath
% results_path = path of the folder containing the results
% data_type = type of accelerometer splits: 'two_classes','acc','adl',
% 'fall'
% type_eval = 'kfold' or 'subjective'
% classifier_type = KNN or SVM
%
% OUTPUT
% final_results - cell [n x 3] containing the SA, MAA, ConfusionMatrix
%
%
function [final_results] = eval_multiclass(path,split_path,results_path,data_type,type_eval,classifier_type)
final_results = [];
switch type_eval
case 'kfold'
final_results = kfold_eval(path,split_path,results_path,5,data_type,classifier_type)
case 'subjective'
final_results = subjective_eval(path,split_path,results_path,data_type,classifier_type)
otherwise
disp('error typing type of evaluation')
end
end
function final_results = kfold_eval(path,split_path,results_path,num_split,data_type,classifier_type)
class_names = [data_type '_names'];
data_names_fn = fullfile(path,[class_names '.mat']);
load(data_names_fn,class_names)
data_name = [data_type '_data'];
data_labels = [data_type '_labels'];
data_fn = fullfile(path,[data_name '.mat']);
labels_fn = fullfile(path,[data_labels '.mat']);
load(data_fn,data_name)
load(labels_fn,data_labels)
loaded_class_names = eval(class_names);
loaded_data = eval(data_name);
loaded_labels = eval(data_labels);
num_classes = size(unique(loaded_labels(:,1)),1);
num_subjects = size(unique(loaded_labels(:,2)),1);
start = 1:3:size(loaded_data,1);
stop = 3:3:size(loaded_data,1);
new_data = [];
for ii=1:size(start,2)
new_data = [new_data; reshape(loaded_data(start(ii):stop(ii),:)',[],size(loaded_data,2)*3)];
end
loaded_labels = loaded_labels(start,:);
loaded_data = new_data;
splitted_data_fn = fullfile(path,split_path,[data_type '_splitted_data' num2str(num_split) '_folds.mat']);
train_idxs_fn = fullfile(path,split_path,[data_type '_train_idxs' num2str(num_split) '_folds.mat']);
test_idxs_fn = fullfile(path,split_path,[data_type '_test_idxs' num2str(num_split) '_folds.mat']);
splitted_data = {};
train_idxs = {};
test_idxs = {};
if((~exist(splitted_data_fn))||(~exist(train_idxs_fn))||(~exist(test_idxs_fn)))
for l=1:num_classes
class_labels = loaded_labels(:,1) ==l;
class_adl_data = loaded_data(class_labels,:);
current_prob_class = sum(class_labels);
step = floor(current_prob_class/num_split);
current_prob_class = step*num_split;
start = 1:step:current_prob_class;
splitted_data{l,1}=class_adl_data(1:current_prob_class,:);
adl_index = randperm(current_prob_class);
class_test_idx = [];
class_train_idx = [];
for ss = 1:size(start,2)
current_test_idx = adl_index(start(ss):start(ss)+step-1);
class_test_idx = [class_test_idx; current_test_idx];
class_train_idx = [class_train_idx; setdiff(adl_index,current_test_idx)];
end
train_idxs{l,1} = class_train_idx;
test_idxs{l,1} = class_test_idx;
end
save(splitted_data_fn,'splitted_data')
save(train_idxs_fn,'train_idxs')
save(test_idxs_fn,'test_idxs')
else
load(splitted_data_fn,'splitted_data')
load(train_idxs_fn,'train_idxs')
load(test_idxs_fn,'test_idxs')
end
final_results = {};
for eva=1:num_split
% eva
current_train_data = [];
current_test_data = [];
current_train_labes = [];
current_test_labes = [];
for l=1:num_classes
current_class_data = splitted_data{l,1};
class_train_idxs = train_idxs{l,1};
current_train_data = [current_train_data; current_class_data(class_train_idxs(eva,:),:)];
class_test_idxs = test_idxs{l,1};
current_test_data = [current_test_data; current_class_data(class_test_idxs(eva,:),:)];
current_train_labes = [current_train_labes; ones(size(class_train_idxs,2),1)*l];
current_test_labes = [current_test_labes; ones(size(class_test_idxs,2),1)*l];
end
results_fn = fullfile(path,results_path,['results_' data_type '_' classifier_type '_' num2str(num_split) '_folds.mat']);
switch classifier_type
case 'svm'
SVMModels = cell(num_classes,1);
Scores = zeros(size(current_test_data,1),num_classes);
fprintf('training split n.%d with svm\n',eva)
for j = 1:num_classes;
indx = current_train_labes==j;
SVMModels{j} = fitcsvm(current_train_data,indx,'Standardize',true,'KernelFunction','RBF',...
'KernelScale','auto');
%SVMModels{j} = crossval(SVMModels{j});
[~,score] = predict(SVMModels{j},current_test_data);
Scores(:,j) = score(:,2);
end
fprintf('testing split n.%d with svm\n',eva)
[~,predictions] = max(Scores,[],2);
results = predictions ==current_test_labes;
class_accuracy = [];
for l=1:num_classes
true_positives = current_test_labes == l;
class_accuracy = [class_accuracy; sum(predictions(true_positives) == l)/size(test_idxs{l,1},2)];
end
final_results{eva,1} = (sum(results))/size(current_test_labes,1);
final_results{eva,2} = mean(class_accuracy);
final_results{eva,3} = confusionmat(current_test_labes,predictions);
case 'knn'
fprintf('training split n.%d with knn\n',eva)
KNNModel = fitcknn(current_train_data,current_train_labes,'NumNeighbors',1);
fprintf('testing split n.%d with knn\n',eva)
predictions = predict(KNNModel,current_test_data);
results = predictions ==current_test_labes;
class_accuracy = [];
for l=1:num_classes
true_positives = current_test_labes == l;
class_accuracy = [class_accuracy; sum(predictions(true_positives) == l)/size(test_idxs{l,1},2)];
end
final_results{eva,1} = (sum(results))/size(current_test_labes,1);
final_results{eva,2} = mean(class_accuracy);
final_results{eva,3} = confusionmat(current_test_labes,predictions);
otherwise
disp('please choose a valid classifier')
end
end
save(results_fn,'final_results')
disp('evaluation_completed')
end
function final_results = subjective_eval(path,split_path,results_path,data_type,classifier_type)
class_names = [data_type '_names'];
data_names_fn = fullfile(path,[class_names '.mat']);
load(data_names_fn,class_names)
data_name = [data_type '_data'];
data_labels = [data_type '_labels'];
data_fn = fullfile(path,[data_name '.mat']);
labels_fn = fullfile(path,[data_labels '.mat']);
load(data_fn,data_name)
load(labels_fn,data_labels)
loaded_class_names = eval(class_names);
loaded_data = eval(data_name);
loaded_labels = eval(data_labels);
num_classes = size(unique(loaded_labels(:,1)),1);
num_subjects = size(unique(loaded_labels(:,2)),1);
start = 1:3:size(loaded_data,1);
stop = 3:3:size(loaded_data,1);
new_data = [];
for ii=1:size(start,2)
new_data = [new_data; reshape(loaded_data(start(ii):stop(ii),:)',[],size(loaded_data,2)*3)];
end
loaded_labels = loaded_labels(start,:);
loaded_data = new_data;
splitted_data_fn = fullfile(path,split_path,[data_type '_splitted_data' 'subjective' '_folds.mat']);
train_idxs_fn = fullfile(path,split_path,[data_type '_train_idxs' 'subjective' '_folds.mat']);
test_idxs_fn = fullfile(path,split_path,[data_type '_test_idxs' 'subjective' '_folds.mat']);
splitted_data = {};
train_idxs = {};
test_idxs = {};
if((~exist(splitted_data_fn))||(~exist(train_idxs_fn))||(~exist(test_idxs_fn)))
indexes_vector = 1:1:size(loaded_labels,1);
for l=1:num_subjects
subject_labels = loaded_labels(:,2) ==l;
no_subject_labels = ~subject_labels;
train_idxs{l,1} = indexes_vector(no_subject_labels)';
test_idxs{l,1} = indexes_vector(subject_labels)';
end
save(train_idxs_fn,'train_idxs')
save(test_idxs_fn,'test_idxs')
else
load(train_idxs_fn,'train_idxs')
load(test_idxs_fn,'test_idxs')
end
final_results = {};
for l=1:num_subjects
% eva
current_train_data = [];
current_test_data = [];
current_train_labes = [];
current_test_labes = [];
% for l=1:num_classes
class_train_idxs = train_idxs{l,1};
class_test_idxs = test_idxs{l,1};
current_train_data = loaded_data(class_train_idxs,:);
current_test_data = loaded_data(class_test_idxs,:);
current_train_labes = loaded_labels(class_train_idxs,1);
current_test_labes = loaded_labels(class_test_idxs,1);
% end
%disp('training and testing')
results_fn = fullfile(path,results_path,['results_' data_type '_' classifier_type '_subjective.mat']);
switch classifier_type
case 'svm'
SVMModels = cell(num_classes,1);
Scores = zeros(size(current_test_data,1),num_classes);
fprintf('training split n.%d with svm\n',l)
for j = 1:num_classes;
indx = current_train_labes==j; % Create binary classes for each classifier
SVMModels{j} = fitcsvm(current_train_data,indx,'Standardize',true,'KernelFunction','RBF',...
'KernelScale','auto');
%SVMModels{j} = crossval(SVMModels{j});
[~,score] = predict(SVMModels{j},current_test_data);
Scores(:,j) = score(:,2); % Second column contains positive-class scores
end
fprintf('testing split n.%d with svm\n',l)
[~,predictions] = max(Scores,[],2);
results = predictions ==current_test_labes;
class_accuracy = [];
for j=1:num_classes
true_positives = current_test_labes == j;
class_current_test_labes = sum(true_positives);
class_accuracy = [class_accuracy; sum(predictions(true_positives) == j)/class_current_test_labes];
end
class_accuracy(isnan(class_accuracy)) = 0;
final_results{l,1} = (sum(results))/size(current_test_labes,1);
final_results{l,2} = mean(class_accuracy);
final_results{l,3} = confusionmat(current_test_labes,predictions);
case 'knn'
fprintf('training split n.%d with knn\n',l)
KNNModel = fitcknn(current_train_data,current_train_labes,'NumNeighbors',1);
fprintf('testing split n.%d with knn\n',l)
predictions = predict(KNNModel,current_test_data);
results = predictions ==current_test_labes;
class_accuracy = [];
for j=1:num_classes
true_positives = current_test_labes == j;
class_current_test_labes = sum(true_positives);
class_accuracy = [class_accuracy; sum(predictions(true_positives) == j)/class_current_test_labes];
end
% if(sum(isnan(class_accuracy))>0)
% disp('please choose a valid classifier')
%
% end
class_accuracy(isnan(class_accuracy)) = 0;
final_results{l,1} = (sum(results))/size(current_test_labes,1);
final_results{l,2} = mean(class_accuracy);
final_results{l,3} = confusionmat(current_test_labes,predictions);
otherwise
disp('please choose a valid classifier')
end
end
save(results_fn,'final_results')
disp('evaluation_completed')
end
|
github
|
KaygoYM/FBMC-channel-estimation-based-on-SVR-master
|
FBMC_signal.m
|
.m
|
FBMC-channel-estimation-based-on-SVR-master/FBMC_signal.m
| 631 |
utf_8
|
5a30487cbebb6691662c236897f61d4d
|
%author:KAI
function [BinaryDataStream_FBMC_Aux,xP_FBMC,x_FBMC_Aux,s_FBMC_Aux]= FBMC_signal(AuxiliaryMethod,FBMC,PAM,ChannelEstimation_FBMC)
BinaryDataStream_FBMC_Aux = randi([0 1],AuxiliaryMethod.NrDataSymbols*log2(PAM.ModulationOrder),1);
xD_FBMC_Aux = PAM.Bit2Symbol(BinaryDataStream_FBMC_Aux);
xP_FBMC = PAM.SymbolMapping(randi(PAM.ModulationOrder,[ChannelEstimation_FBMC.NrPilotSymbols 1]));
xP_FBMC = xP_FBMC./abs(xP_FBMC);
x_FBMC_Aux = reshape(AuxiliaryMethod.PrecodingMatrix*[xP_FBMC;xD_FBMC_Aux],[FBMC.Nr.Subcarriers FBMC.Nr.MCSymbols]);
s_FBMC_Aux = FBMC.Modulation(x_FBMC_Aux);
end
|
github
|
KaygoYM/FBMC-channel-estimation-based-on-SVR-master
|
FBMC_data.m
|
.m
|
FBMC-channel-estimation-based-on-SVR-master/FBMC_data.m
| 414 |
utf_8
|
85fbcece29580b65dd76cf907f6808e9
|
%author:KAI
function [BinaryDataStream_FBMC_Aux,x_FBMC_Aux,s_FBMC_Aux]= FBMC_data(AuxiliaryMethod,FBMC,PAM)
BinaryDataStream_FBMC_Aux = randi([0 1],AuxiliaryMethod.NrTransmittedSymbols*log2(PAM.ModulationOrder),1);
xD_FBMC_Aux = PAM.Bit2Symbol(BinaryDataStream_FBMC_Aux);
x_FBMC_Aux = reshape(xD_FBMC_Aux,FBMC.Nr.Subcarriers,FBMC.Nr.MCSymbols);
s_FBMC_Aux = FBMC.Modulation(x_FBMC_Aux);
end
|
github
|
KaygoYM/FBMC-channel-estimation-based-on-SVR-master
|
svminterp_real.m
|
.m
|
FBMC-channel-estimation-based-on-SVR-master/svminterp_real.m
| 393 |
utf_8
|
06978ab9d707b8ba097cdc297eb53840
|
%author:KAI
function h_FBMC_Aux = svminterp_real(index,hP_LS_FBMC_Aux,h,NrTime)
x=index.';
y=(hP_LS_FBMC_Aux).';
h_FBMC_Aux=nan(size(h));
model=svmtrain(y,x,'-s 3 -t 2 -c 2.2 -g 2.8 -p 0.01');
new_x=(1:NrTime).';
new_x(index)=[];
new_y=h(new_x);
[predict_real,mse_real,dec_real]=svmpredict(new_y,new_x,model);
h_FBMC_Aux(new_x)=predict_real;
h_FBMC_Aux(index)=hP_LS_FBMC_Aux;
end
|
github
|
KaygoYM/FBMC-channel-estimation-based-on-SVR-master
|
make.m
|
.m
|
FBMC-channel-estimation-based-on-SVR-master/libsvm/matlab/make.m
| 888 |
utf_8
|
4a2ad69e765736f8cca8e3b721fb7ebd
|
% This make.m is for MATLAB and OCTAVE under Windows, Mac, and Unix
function make()
try
% This part is for OCTAVE
if (exist ('OCTAVE_VERSION', 'builtin'))
mex libsvmread.c
mex libsvmwrite.c
mex -I.. svmtrain.c ../svm.cpp svm_model_matlab.c
mex -I.. svmpredict.c ../svm.cpp svm_model_matlab.c
% This part is for MATLAB
% Add -largeArrayDims on 64-bit machines of MATLAB
else
mex CFLAGS="\$CFLAGS -std=c99" -largeArrayDims libsvmread.c
mex CFLAGS="\$CFLAGS -std=c99" -largeArrayDims libsvmwrite.c
mex CFLAGS="\$CFLAGS -std=c99" -I.. -largeArrayDims svmtrain.c ../svm.cpp svm_model_matlab.c
mex CFLAGS="\$CFLAGS -std=c99" -I.. -largeArrayDims svmpredict.c ../svm.cpp svm_model_matlab.c
end
catch err
fprintf('Error: %s failed (line %d)\n', err.stack(1).file, err.stack(1).line);
disp(err.message);
fprintf('=> Please check README for detailed instructions.\n');
end
|
github
|
KaygoYM/FBMC-channel-estimation-based-on-SVR-master
|
FBMC.m
|
.m
|
FBMC-channel-estimation-based-on-SVR-master/+Modulation/FBMC.m
| 37,528 |
utf_8
|
00e25b472f90c845f3f2e1e60aba51c5
|
classdef FBMC < handle
% Ronald Nissel, [email protected]
% (c) 2016 by Institute of Telecommunications, TU Wien
% www.tc.tuwien.ac.at
properties (SetAccess = private)
Method
Nr
PHY
PrototypeFilter
Implementation
end
methods
%% Class constructor, define default values.
function obj = FBMC(varargin)
%% Initialize parameters, set default values
if numel(varargin)==10
obj.Nr.Subcarriers = varargin{1};
obj.Nr.MCSymbols = varargin{2};
obj.PHY.SubcarrierSpacing = varargin{3};
obj.PHY.SamplingRate = varargin{4};
obj.PHY.IntermediateFrequency = varargin{5};
obj.PHY.TransmitRealSignal = varargin{6};
obj.Method = varargin{7};
obj.PrototypeFilter.OverlappingFactor = varargin{8};
obj.Implementation.InitialPhaseShift = varargin{9};
obj.Implementation.UsePolyphase = varargin{10};
elseif numel(varargin)==0
% Default Values (can later be changed using FBMC.Set...)
obj.Nr.Subcarriers = 12;
obj.Nr.MCSymbols = 30;
obj.PHY.SubcarrierSpacing = 15e3;
obj.PHY.SamplingRate = obj.Nr.Subcarriers*obj.PHY.SubcarrierSpacing;
obj.PHY.IntermediateFrequency = 0;
obj.PHY.TransmitRealSignal = false;
obj.Method = 'Hermite-OQAM';
obj.PrototypeFilter.OverlappingFactor = 8;
obj.Implementation.InitialPhaseShift = 0;
obj.Implementation.UsePolyphase = true;
else
error('Number of input variables must be either 0 (default values) or 10');
end
%% Check Parameters
if mod(obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing),1)~=0
obj.PHY.SubcarrierSpacing=obj.PHY.SamplingRate/(2*round(obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing)));
disp('Sampling Rate divided by (Subcarrier spacing times 2) must be must be an integer!');
disp(['Therefore, the subcarrier spacing is set to: ' int2str(obj.PHY.SubcarrierSpacing) 'Hz']);
end
if mod(obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing,2)~=0
obj.PHY.IntermediateFrequency = round(obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing)*obj.PHY.SubcarrierSpacing;
disp('The intermediate frequency must be a multiple of the subcarrier spacing!');
disp(['Therefore, the intermediate frequency is set to ' int2str(obj.PHY.IntermediateFrequency) 'Hz']);
end
if (obj.PHY.SamplingRate<obj.Nr.Subcarriers*obj.PHY.SubcarrierSpacing)
error('Sampling Rate must be higher: at least Number of Subcarriers times Subcarrier Spacing');
end
%% Dependent parameters
obj.PHY.dt = 1/obj.PHY.SamplingRate;
%% Different Prototype Filters and OQAM or QAM
switch obj.Method
case 'Hermite-OQAM'
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing);
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor;
obj.PrototypeFilter.TimeDomain = PrototypeFilter_Hermite(obj.PHY.TimeSpacing*2,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor/2);
case 'Hermite-QAM'
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing)*2;
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*4;
obj.PrototypeFilter.TimeDomain = PrototypeFilter_Hermite(obj.PHY.TimeSpacing,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor);
case 'Rectangle-QAM' % OFDM without cyclic prefix
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing);
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*2;
TimeDomain = zeros(2*obj.PrototypeFilter.OverlappingFactor*obj.Implementation.TimeSpacing,1);
TimeDomain(1:obj.Implementation.TimeSpacing) = 1/sqrt(obj.PHY.TimeSpacing);
TimeDomain=circshift(TimeDomain,length(TimeDomain)/2-obj.Implementation.TimeSpacing/2);
obj.PrototypeFilter.TimeDomain = TimeDomain;
case 'RRC-OQAM'
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing);
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor;
obj.PrototypeFilter.TimeDomain = PrototypeFilter_RootRaisedCosine(obj.PHY.TimeSpacing*2,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor/2);
case 'RRC-QAM'
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing)*2;
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*4;
obj.PrototypeFilter.TimeDomain = PrototypeFilter_RootRaisedCosine(obj.PHY.TimeSpacing,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor);
case 'PHYDYAS-OQAM'
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(2*obj.PHY.SubcarrierSpacing);
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor;
obj.PrototypeFilter.TimeDomain = PrototypeFilter_PHYDYAS(obj.PHY.TimeSpacing*2,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor/2);
case 'PHYDYAS-QAM'
obj.Implementation.TimeSpacing = obj.PHY.SamplingRate/(obj.PHY.SubcarrierSpacing)*2;
obj.PHY.TimeSpacing =obj.Implementation.TimeSpacing*obj.PHY.dt;
obj.Implementation.FrequencySpacing = obj.PrototypeFilter.OverlappingFactor*4;
obj.PrototypeFilter.TimeDomain = PrototypeFilter_PHYDYAS(obj.PHY.TimeSpacing,obj.PHY.dt,obj.PrototypeFilter.OverlappingFactor);
otherwise
error(['Method (prototype filter) "' obj.Method '" is not supported']);
end
obj.Nr.SamplesPrototypeFilter = length(obj.PrototypeFilter.TimeDomain);
obj.Nr.SamplesTotal = obj.Nr.SamplesPrototypeFilter+(obj.Nr.MCSymbols-1)*obj.Implementation.TimeSpacing;
% We assume a symmetric filter (=> real) and set small values to zero (=> lower computational complexity)
PrototypefilterFFT = obj.PHY.dt*real(fft(circshift(obj.PrototypeFilter.TimeDomain,obj.Nr.SamplesPrototypeFilter/2)));
PrototypefilterFFT = obj.PHY.dt*(fft(circshift(obj.PrototypeFilter.TimeDomain,obj.Nr.SamplesPrototypeFilter/2)));
PrototypefilterFFT(abs(PrototypefilterFFT)./PrototypefilterFFT(1)<10^-14)=0;
obj.PrototypeFilter.FrequencyDomain = PrototypefilterFFT;
% Prepare paramters for an efficient implementation
% Phase shift to guarentee that the interference is purely imaginary
[k,l]=meshgrid(0:obj.Nr.MCSymbols-1,0:obj.Nr.Subcarriers-1);
obj.Implementation.PhaseShift = exp(1j*pi/2*(l+k))*exp(1j*obj.Implementation.InitialPhaseShift);
% index for the time shift of different FBMC symbols
IndexAfterIFFT =[ones(obj.Nr.SamplesPrototypeFilter,obj.Nr.MCSymbols);zeros(obj.Implementation.TimeSpacing*(obj.Nr.MCSymbols-1),obj.Nr.MCSymbols)];
for i_k = 1:obj.Nr.MCSymbols
IndexAfterIFFT(:,i_k) = circshift(IndexAfterIFFT(:,i_k),(i_k-1)*obj.Implementation.TimeSpacing);
end
obj.Implementation.IndexAfterIFFT = logical(IndexAfterIFFT);
% index for the polyphase implementation
obj.Implementation.IndexPolyphaseMap = logical(circshift([ones(obj.Nr.Subcarriers,obj.Nr.MCSymbols);...
zeros(obj.Nr.SamplesPrototypeFilter./obj.Implementation.FrequencySpacing-obj.Nr.Subcarriers,obj.Nr.MCSymbols)],...
[obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing 1]));
% Normalization factor so that the default power = 1
obj.Implementation.NormalizationFactor = sqrt(obj.PHY.SamplingRate^2/obj.PHY.SubcarrierSpacing^2*obj.PHY.TimeSpacing/obj.Nr.Subcarriers);
end
%% Set Functions
function SetNrSubcarriers(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.Nr.Subcarriers = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetNrMCSymbols(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.Nr.MCSymbols = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetSubcarrierSpacing(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.PHY.SubcarrierSpacing = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetSamplingRate(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.PHY.SamplingRate = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetIntermediateFrequency(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.PHY.IntermediateFrequency = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetTransmitRealSignal(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.PHY.TransmitRealSignal = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetMethod(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.Method = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetOverlappingFactor(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.PrototypeFilter.OverlappingFactor = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetInitialPhaseShift(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.Implementation.InitialPhaseShift = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function SetUsePolyphase(varargin) % This is a very sloppy implementation :/
obj = varargin{1}; obj.Implementation.UsePolyphase = varargin{2};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
obj.Method = NEWobj.Method; obj.Nr = NEWobj.Nr; obj.PHY = NEWobj.PHY; obj.PrototypeFilter = NEWobj.PrototypeFilter; obj.Implementation = NEWobj.Implementation;
end
function NEWobj = Copy(varargin) % This is a very sloppy implementation :/
obj = varargin{1};
NEWobj = Modulation.FBMC(obj.Nr.Subcarriers,obj.Nr.MCSymbols,obj.PHY.SubcarrierSpacing,obj.PHY.SamplingRate,obj.PHY.IntermediateFrequency,obj.PHY.TransmitRealSignal,obj.Method,obj.PrototypeFilter.OverlappingFactor,obj.Implementation.InitialPhaseShift,obj.Implementation.UsePolyphase);
end
%% Modulation and Demodulation
function TransmitSignal = Modulation(varargin)
%asdf
obj = varargin{1};
DataSymbols = varargin{2};
TransmitSignal = zeros(size(obj.Implementation.IndexAfterIFFT));
if obj.Implementation.UsePolyphase
DataSymbolsTemp = zeros(size(obj.Implementation.IndexPolyphaseMap));
DataSymbolsTemp(obj.Implementation.IndexPolyphaseMap) = DataSymbols.*obj.Implementation.PhaseShift.*obj.Implementation.NormalizationFactor;
if obj.PHY.TransmitRealSignal
DataSymbolsTemp = (DataSymbolsTemp+conj(DataSymbolsTemp([1 end:-1:2],:)))/sqrt(2);
end
TransmitSignal(obj.Implementation.IndexAfterIFFT) = repmat(ifft(DataSymbolsTemp),[obj.Implementation.FrequencySpacing 1]).*repmat(obj.PrototypeFilter.TimeDomain,[1 obj.Nr.MCSymbols]);
TransmitSignal = sum(TransmitSignal,2);
else
% Include also the design in the frequency domain because it provides a better understanding of FBMC, but is less efficient!
% Note that this matrix could be precomputed!
FrequencyGeneration = zeros(size(obj.PrototypeFilter.FrequencyDomain,1),obj.Nr.Subcarriers);
for i_l=1:obj.Nr.Subcarriers
FrequencyGeneration(:,i_l) = circshift(obj.PrototypeFilter.FrequencyDomain, obj.Implementation.FrequencySpacing*(i_l-1+obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing));
end
% normalized to have power 1
FrequencyGeneration = FrequencyGeneration*sqrt(1/obj.Nr.Subcarriers*obj.PHY.TimeSpacing)*obj.PHY.SamplingRate;
FrequencyDomain = FrequencyGeneration*(DataSymbols.*obj.Implementation.PhaseShift);
if obj.PHY.TransmitRealSignal
FrequencyDomain = (FrequencyDomain+conj(FrequencyDomain([1 end:-1:2],:)))/sqrt(2);
end
TransmitSignal(obj.Implementation.IndexAfterIFFT) = circshift(ifft(FrequencyDomain),[-obj.Nr.SamplesPrototypeFilter/2 0]);
TransmitSignal = sum(TransmitSignal,2);
end
end
function ReceivedSymbols = Demodulation(varargin)
obj = varargin{1};
ReceivedSignal = varargin{2};
ReceivedSignal_Repeated = repmat(ReceivedSignal,[1 obj.Nr.MCSymbols]);
ReceivedSignal_CorrespondingSamplesToFBMCSymbol = reshape(ReceivedSignal_Repeated(obj.Implementation.IndexAfterIFFT),[obj.Nr.SamplesPrototypeFilter obj.Nr.MCSymbols]);
if obj.Implementation.UsePolyphase
% similar to the transmitter, just in reversed order
FilteredReceivedSignal = ReceivedSignal_CorrespondingSamplesToFBMCSymbol.*repmat(obj.PrototypeFilter.TimeDomain,[1 obj.Nr.MCSymbols]);
ReceivedSymbolsTemp = fft(sum(reshape(FilteredReceivedSignal,[size(obj.Implementation.IndexPolyphaseMap,1) obj.Implementation.FrequencySpacing obj.Nr.MCSymbols]),2));
if obj.PHY.TransmitRealSignal
% ReceivedSymbolsTemp = (ReceivedSymbolsTemp+conj(ReceivedSymbolsTemp([1 end:-1:2],1,:)))/(2);
ReceivedSymbolsTemp = ReceivedSymbolsTemp *sqrt(2);
end
ReceivedSymbols = reshape(ReceivedSymbolsTemp(obj.Implementation.IndexPolyphaseMap),size(obj.Implementation.PhaseShift)).*conj(obj.Implementation.PhaseShift)/(obj.Implementation.NormalizationFactor*obj.PHY.SubcarrierSpacing);
else
% same as before
FrequencyGeneration = zeros(size(obj.PrototypeFilter.FrequencyDomain,1),obj.Nr.Subcarriers);
for i_l=1:obj.Nr.Subcarriers
FrequencyGeneration(:,i_l) = circshift(obj.PrototypeFilter.FrequencyDomain, obj.Implementation.FrequencySpacing*(i_l-1+obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing));
end
% normalized to have power 1
FrequencyGeneration = FrequencyGeneration*sqrt(1/obj.Nr.Subcarriers*obj.PHY.TimeSpacing)*obj.PHY.SamplingRate;
FrequencyDomain = fft(circshift(ReceivedSignal_CorrespondingSamplesToFBMCSymbol,[obj.Nr.SamplesPrototypeFilter/2 0]));
ReceivedSymbols = (FrequencyGeneration'*FrequencyDomain).*conj(obj.Implementation.PhaseShift)*(obj.Nr.Subcarriers*obj.PHY.SubcarrierSpacing)/(obj.PHY.SamplingRate^2*obj.PHY.TimeSpacing*obj.Implementation.FrequencySpacing);
end
end
%% Matrix Description
function TXMatrix = GetTXMatrix(obj)
TransmitRealSignal=false;
if obj.PHY.TransmitRealSignal
obj.PHY.TransmitRealSignal = false;
TransmitRealSignal=true;
end
TXMatrix=zeros(obj.Nr.SamplesTotal,obj.Nr.Subcarriers*obj.Nr.MCSymbols);
TXMatrixTemp=zeros(obj.Nr.SamplesTotal,obj.Nr.Subcarriers);
x = zeros(obj.Nr.Subcarriers, obj.Nr.MCSymbols);
for i_l= 1:obj.Nr.Subcarriers;
x(i_l)=1;
TXMatrixTemp(:,i_l) = obj.Modulation(x);
x(i_l)=0;
end
for i_k=1:obj.Nr.MCSymbols
TXMatrix(:,(1:obj.Nr.Subcarriers)+(i_k-1)*obj.Nr.Subcarriers)=circshift(TXMatrixTemp,[(i_k-1)*obj.Implementation.TimeSpacing,0])*1j^(i_k-1);
end
if TransmitRealSignal
obj.PHY.TransmitRealSignal = true;
TXMatrix = real(TXMatrix)*sqrt(2);
end
end
function RXMatrix = GetRXMatrix(obj)
if obj.PHY.TransmitRealSignal
obj.PHY.TransmitRealSignal = false;
RXMatrix = sqrt(2)*obj.GetTXMatrix'*(obj.Nr.Subcarriers/(obj.PHY.SamplingRate*obj.PHY.TimeSpacing));
obj.PHY.TransmitRealSignal = true;
else
RXMatrix = obj.GetTXMatrix'*(obj.Nr.Subcarriers/(obj.PHY.SamplingRate*obj.PHY.TimeSpacing));
end
end
function FBMCMatrix = GetFBMCMatrix(varargin)
obj = varargin{1};
if numel(varargin)>=2
FastCalculation = varargin{2};
else
FastCalculation = true;
end
if FastCalculation
% Small Bug
InterferenceMatrix = obj.GetInterferenceMatrix;
[Symbol_i,Subcarrier_i] = meshgrid(1:obj.Nr.MCSymbols,1:obj.Nr.Subcarriers);
LK = obj.Nr.Subcarriers*obj.Nr.MCSymbols;
Index_DeltaSubcarrier = repmat(Subcarrier_i(:),1,LK)-repmat(Subcarrier_i(:)',LK,1);
Index_DeltaSymbols = repmat(Symbol_i(:),1,LK)-repmat(Symbol_i(:)',LK,1);
Index_Subcarrier = repmat(Subcarrier_i(:),1,LK)-1;
FBMCMatrix=reshape(InterferenceMatrix(Index_DeltaSubcarrier(:)+obj.Nr.Subcarriers+(Index_DeltaSymbols(:)+obj.Nr.MCSymbols-1)*size(InterferenceMatrix,1)),LK,LK);
if obj.Method(end-3)=='-'
% QAM, works only for an odd number of subcarriers, needs to be fixed! Hower it does not really matter because values are small!
FBMCMatrix=FBMCMatrix.*exp(-1j*pi/2*(Index_DeltaSubcarrier+Index_DeltaSymbols)).*exp(-1j*pi*3/2*Index_DeltaSymbols.*Index_DeltaSubcarrier);
else
% OQAM, this works
FBMCMatrix=FBMCMatrix.*exp(-1j*pi/2*(Index_DeltaSubcarrier+Index_DeltaSymbols)).*exp(-1j*2*pi*(obj.PHY.TimeSpacing*obj.PHY.SubcarrierSpacing)*Index_DeltaSymbols.*(Index_Subcarrier+Index_DeltaSubcarrier/2));
end
else
% straightforward slow implementation
FBMCMatrix = zeros(obj.Nr.Subcarriers*obj.Nr.MCSymbols);
DataImpulse=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
for i_lk=1:obj.Nr.Subcarriers*obj.Nr.MCSymbols
DataImpulse(i_lk)=1;
FBMCMatrix(:,i_lk) = reshape(obj.Demodulation(obj.Modulation(DataImpulse)),[],1);
DataImpulse(i_lk)=0;
end
end
end
function InterferenceMatrix = GetInterferenceMatrix(obj)
[k_all,l_all] = meshgrid(0:obj.Nr.MCSymbols-1,0:obj.Nr.Subcarriers-1);
l=0;
k=0;
DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
DataSymbols(l+1,k+1)=1;
Y11=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols);
dl = l_all-l;
dk = k_all-k;
Y11=Y11.*(exp(1j*pi/2*(dl+dk)).*exp(-1j*pi*dk.*(l+dl/2)));
DataSymbols(l+1,k+1)=0;
l=obj.Nr.Subcarriers-1;
k=0;
DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
DataSymbols(l+1,k+1)=1;
YE1=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols);
dl = l_all-l;
dk = k_all-k;
YE1=YE1.*(exp(1j*pi/2*(dl+dk)).*exp(-1j*pi*dk.*(l+dl/2)));
DataSymbols(l+1,k+1)=0;
l=0;
k=obj.Nr.MCSymbols-1;
DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
DataSymbols(l+1,k+1)=1;
Y1E=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols);
dl = l_all-l;
dk = k_all-k;
Y1E=Y1E.*(exp(1j*pi/2*(dl+dk)).*exp(-1j*pi*dk.*(l+dl/2)));
DataSymbols(l+1,k+1)=0;
l=obj.Nr.Subcarriers-1;
k=obj.Nr.MCSymbols-1;
DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
DataSymbols(l+1,k+1)=1;
YEE=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols);
dl = l_all-l;
dk = k_all-k;
YEE=YEE.*(exp(1j*pi/2*(dl+dk)).*exp(-1j*pi*dk.*(l+dl/2)));
InterferenceMatrix = [YEE(1:end-1,1:end),YE1(1:end-1,2:end);Y1E(1:end,1:end-1),Y11(1:end,1:end)];
end
function InterferenceMatrix = GetInterferenceMatrix2(obj)
DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
DataSymbols(1,1)=1;
Y11=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols);
[k_all,l_all] = meshgrid(0:obj.Nr.MCSymbols-1,0:obj.Nr.Subcarriers-1);
Y11=Y11.*(exp(1j*pi/2*(l_all+k_all)).*exp(-1j*pi*k_all.*(l_all/2)));
InterferenceMatrix = [Y11(end:-1:2,end:-1:2),Y11(end:-1:2,1:end);Y11(:,end:-1:2),Y11(1:end,1:end)];
end
%% Plot
function [TransmitPower,Time]=PlotTransmitPower(varargin)
obj = varargin{1};
if numel(varargin)==2
[V,D] = eig(varargin{2});
else
V = eye(obj.Nr.Subcarriers*obj.Nr.MCSymbols);
D = V;
end
D=sqrt(D);
TransmitPower = zeros(obj.Nr.SamplesTotal,1);
for i_lk = 1:obj.Nr.Subcarriers*obj.Nr.MCSymbols
TransmitPower = TransmitPower+abs(obj.Modulation(reshape(V(:,i_lk),obj.Nr.Subcarriers,obj.Nr.MCSymbols))*D(i_lk,i_lk)).^2;
if mod(i_lk,1000)==0
disp([int2str(i_lk/(obj.Nr.Subcarriers*obj.Nr.MCSymbols )*100) '%']);
end
end
Time = (0:length(TransmitPower)-1)*obj.PHY.dt;
if nargout==0
plot(Time,TransmitPower);
ylabel('Transmit Power');
xlabel('Time(s)');
end
end
function [PowerSpectralDensity,Frequency] = PlotPowerSpectralDensity(varargin)
obj = varargin{1};
if numel(varargin)==2
[V,D] = eig(varargin{2});
else
V = eye(obj.Nr.Subcarriers*obj.Nr.MCSymbols);
D = V;
end
D=sqrt(D);
PowerSpectralDensity = zeros(obj.Nr.SamplesTotal,1);
for i_lk = 1:obj.Nr.Subcarriers*obj.Nr.MCSymbols
PowerSpectralDensity = PowerSpectralDensity+abs(fft(obj.Modulation(reshape(V(:,i_lk),obj.Nr.Subcarriers,obj.Nr.MCSymbols))*D(i_lk,i_lk))).^2;
if mod(i_lk,1000)==0
disp([int2str(i_lk/(obj.Nr.Subcarriers*obj.Nr.MCSymbols )*100) '%']);
end
end
Frequency = (0:length(PowerSpectralDensity)-1)*1/(length(PowerSpectralDensity)*obj.PHY.dt);
PowerSpectralDensity=PowerSpectralDensity/length(PowerSpectralDensity)^2/Frequency(2)^2;
if nargout==0
plot(Frequency,10*log10(PowerSpectralDensity));
ylabel('Power Spectral Density (dB)');
xlabel('Frequency (Hz)');
end
end
function [PowerSpectralDensity,Frequency] = PlotPowerSpectralDensity2(varargin)
obj = varargin{1};
if numel(varargin)==2
[V,D] = eig(varargin{2});
else
V = eye(obj.Nr.Subcarriers*obj.Nr.MCSymbols);
D = V;
end
FrequencyGeneration = zeros(size(obj.PrototypeFilter.FrequencyDomain,1),obj.Nr.Subcarriers);
for i_l=1:obj.Nr.Subcarriers
FrequencyGeneration(:,i_l) = circshift(obj.PrototypeFilter.FrequencyDomain, obj.Implementation.FrequencySpacing*(i_l-1+obj.PHY.IntermediateFrequency/obj.PHY.SubcarrierSpacing));
end
FrequencyGeneration = FrequencyGeneration*sqrt(1/obj.Nr.Subcarriers*obj.PHY.TimeSpacing)*obj.PHY.SamplingRate;
D=sqrt(D);
PowerSpectralDensity = zeros(obj.Nr.SamplesTotal,1);
for i_lk = 1:obj.Nr.Subcarriers*obj.Nr.MCSymbols
PowerSpectralDensity = PowerSpectralDensity+abs(fft(obj.Modulation(reshape(V(:,i_lk),obj.Nr.Subcarriers,obj.Nr.MCSymbols))*D(i_lk,i_lk))).^2;
FrequencyDomain = FrequencyGeneration*(reshape(V(:,i_lk),obj.Nr.Subcarriers,obj.Nr.MCSymbols).*obj.Implementation.PhaseShift);
if obj.PHY.TransmitRealSignal
FrequencyDomain = (FrequencyDomain+conj(FrequencyDomain([1 end:-1:2],:)))/sqrt(2);
end
TransmitSignal(obj.Implementation.IndexAfterIFFT) = circshift(ifft(FrequencyDomain),[-obj.Nr.SamplesPrototypeFilter/2 0]);
TransmitSignal = sum(TransmitSignal,2);
if mod(i_lk,1000)==0
disp([int2str(i_lk/(obj.Nr.Subcarriers*obj.Nr.MCSymbols )*100) '%']);
end
end
Frequency = (0:length(PowerSpectralDensity)-1)*1/(length(PowerSpectralDensity)*obj.PHY.dt);
PowerSpectralDensity=PowerSpectralDensity/length(PowerSpectralDensity)^2/Frequency(2)^2;
if nargout==0
plot(Frequency,10*log10(PowerSpectralDensity));
ylabel('Power Spectral Density (dB)');
xlabel('Frequency (Hz)');
end
end
function [PowerSpectralDensity,Frequency] = PlotPowerSpectralDensityUncorrelatedData(varargin)
obj = varargin{1};
PowerSpectralDensity = zeros(obj.Nr.SamplesTotal,1);
for i_lk = 1:obj.Nr.Subcarriers
V = zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
V(i_lk,round(obj.Nr.MCSymbols/2))=1;
PowerSpectralDensity = PowerSpectralDensity+abs(fft(obj.Modulation(V))).^2;
end
Frequency = (0:length(PowerSpectralDensity)-1)*1/(length(PowerSpectralDensity)*obj.PHY.dt);
PowerSpectralDensity=obj.Nr.MCSymbols*PowerSpectralDensity/length(PowerSpectralDensity)^2/Frequency(2)^2;
if nargout==0
plot(Frequency,10*log10(PowerSpectralDensity));
ylabel('Power Spectral Density');
xlabel('Frequency (Hz)');
end
end
%% SIR and Noise power
function [SIR] = GetSIRdBDoublyFlat(obj)
DataSymbols=zeros(obj.Nr.Subcarriers,obj.Nr.MCSymbols);
DataSymbols(ceil(end/2),ceil(end/2))=1;
Y=reshape(obj.Demodulation(obj.Modulation(DataSymbols)),obj.Nr.Subcarriers,obj.Nr.MCSymbols);
if obj.Method(end-3)=='O'
Y = real(Y);
end
S = abs(Y(ceil(end/2),ceil(end/2))).^2;
Y(ceil(end/2),ceil(end/2))=0;
I =sum(sum(abs(Y).^2));
SIR = 10*log10(S/I);
end
function Pn = GetSymbolNoisePower(varargin)
obj = varargin{1};
Pn_time = varargin{2};
Pn = (Pn_time*(obj.Nr.Subcarriers/(obj.PHY.SamplingRate*obj.PHY.TimeSpacing)));
end
end
end
function PrototypeFilter = PrototypeFilter_Hermite(T0,dt,OF)
% The pulse is orthogonal for a time-spacing of T=T_0 and a frequency-spacing of F=2/T_0
% Values taken from: R.Nissel et al. "ON PILOT-SYMBOL AIDED CHANNEL ESTIMATION IN FBMC-OQAM"
t_filter=-(OF*T0):dt:(OF*T0-dt);
D0=1/sqrt(T0)*HermiteH(0,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))) .*exp(-pi*(t_filter./(T0/sqrt(2))).^2);
D4=1/sqrt(T0)*HermiteH(4,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))) .*exp(-pi*(t_filter./(T0/sqrt(2))).^2);
D8=1/sqrt(T0)*HermiteH(8,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))) .*exp(-pi*(t_filter./(T0/sqrt(2))).^2);
D12=1/sqrt(T0)*HermiteH(12,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))).*exp(-pi*(t_filter./(T0/sqrt(2))).^2);
D16=1/sqrt(T0)*HermiteH(16,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))).*exp(-pi*(t_filter./(T0/sqrt(2))).^2);
D20=1/sqrt(T0)*HermiteH(20,sqrt(2*pi)*(t_filter./(T0/sqrt(2)))).*exp(-pi*(t_filter./(T0/sqrt(2))).^2);
H0= 1.412692577;
H4= -3.0145e-3;
H8=-8.8041e-6;
H12=-2.2611e-9;
H16=-4.4570e-15;
H20 = 1.8633e-16;
PrototypeFilter=(D0.*H0+D4.*H4+D8.*H8+D12.*H12+D16.*H16+D20.*H20).';
PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt);
end
function PrototypeFilter = PrototypeFilter_RootRaisedCosine(T0,dt,OF)
% The pulse is orthogonal for a time-spacing of T=T0 and a frequency-spacing of F=2/T0
t_filter=-(OF*T0):dt:(OF*T0-dt);
PrototypeFilter=(1/sqrt(T0)*(4*t_filter/T0.*cos(2*pi*t_filter/T0))./(pi*t_filter/T0.*(1-(4*t_filter/T0).^2)));
PrototypeFilter(abs(t_filter)<10^-14) =1/sqrt(T0)*(4/pi);
PrototypeFilter(abs(abs(t_filter)-T0/4)<10^-14)=1/sqrt(2*T0)*((1+2/pi)*sin(pi/4)+(1-2/pi)*cos(pi/4));
PrototypeFilter=PrototypeFilter.';
PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt);
% Set to zero so that out of band emmision is reduced (but SIR is worse)
% PrototypeFilter(1:T0/dt/4+1)=PrototypeFilter(1:T0/dt/4+1).*linspace(0,1,(T0/dt/4+1))';
% PrototypeFilter((end-T0/dt/4):end)=PrototypeFilter((end-T0/dt/4):end).*linspace(1,0,(T0/dt/4+1))';
% Test
% PrototypeFilterFrequency = zeros(size(t_filter));
% PrototypeFilterFrequency(1:(length(t_filter)*dt)/T0*2) = cos(pi*linspace(-0.5,0.5,(length(t_filter)*dt)/T0*2));
% PrototypeFilter=ifft((circshift(PrototypeFilterFrequency.',-(length(t_filter)*dt)/T0)));
% PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt);
end
function PrototypeFilter = PrototypeFilter_PHYDYAS(T0,dt,OF)
% The pulse is orthogonal for a time-spacing of T=T0 and a frequency-spacing of F=2/T0
t_filter=-(OF*T0):dt:(OF*T0-dt);
switch OF*2
case 2
H= [sqrt(2)/2];
case 3
H = [0.91143783 0.41143783];
case 4
H = [0.97195983 sqrt(2)/2 0.23514695];
case 5
H = [0.99184131 0.86541624 0.50105361 0.12747868];
case 6
H = [0.99818572 0.94838678 sqrt(2)/2 0.31711593 0.06021021];
case 7
H = [0.99938080 0.97838560 0.84390076 0.53649931 0.20678881 0.03518546];
case 8
H = [0.99932588 0.98203168 0.89425129 sqrt(2)/2 0.44756522 0.18871614 0.03671221];
otherwise
error('Oversampling factor must be an integer between 1 and 8 for OQAM or betwen 1 and 4 for QAM');
end
PrototypeFilter = 1+2*sum(repmat(H,length(t_filter),1).*cos(2*pi*repmat(t_filter',1,length(H)).*repmat(1:length(H),length(t_filter),1)/((length(H)+1)*T0)),2);
PrototypeFilter = PrototypeFilter/sqrt(sum(abs(PrototypeFilter).^2)*dt);
end
%% Hermite polynomials (obtained by Mathematica, "ToMatlab[HermiteH[n, x]]")
function Hermite = HermiteH(n,x)
if n==0
Hermite=ones(size(x));
elseif n==4
Hermite=12+(-48).*x.^2+16.*x.^4;
elseif n==8
Hermite = 1680+(-13440).*x.^2+13440.*x.^4+(-3584).*x.^6+256.*x.^8;
elseif n==12
Hermite = 665280+(-7983360).*x.^2+13305600.*x.^4+(-7096320).*x.^6+1520640.* ...
x.^8+(-135168).*x.^10+4096.*x.^12;
elseif n==16
Hermite = 518918400+(-8302694400).*x.^2+19372953600.*x.^4+(-15498362880).* ...
x.^6+5535129600.*x.^8+(-984023040).*x.^10+89456640.*x.^12+( ...
-3932160).*x.^14+65536.*x.^16;
elseif n==20
Hermite = 670442572800+(-13408851456000).*x.^2+40226554368000.*x.^4+( ...
-42908324659200).*x.^6+21454162329600.*x.^8+(-5721109954560).* ...
x.^10+866834841600.*x.^12+(-76205260800).*x.^14+3810263040.*x.^16+ ...
(-99614720).*x.^18+1048576.*x.^20;
end
end
|
github
|
DrNickDMartin/VehicleDynamics-master
|
optimplotfval2.m
|
.m
|
VehicleDynamics-master/tyres/MF_Tire_GUI_V2a/optimplotfval2.m
| 3,179 |
utf_8
|
e633e336e1fff27a799afa1f818057eb
|
function stop = optimplotfval(~,optimValues,state,varargin)
% OPTIMPLOTFVAL Plot value of the objective function at each iteration.
%
% STOP = OPTIMPLOTFVAL(X,OPTIMVALUES,STATE) plots OPTIMVALUES.fval. If
% the function value is not scalar, a bar plot of the elements at the
% current iteration is displayed. If the OPTIMVALUES.fval field does not
% exist, the OPTIMVALUES.residual field is used.
%
% Example:
% Create an options structure that will use OPTIMPLOTFVAL as the plot
% function
% options = optimset('PlotFcns',@optimplotfval);
%
% Pass the options into an optimization problem to view the plot
% fminbnd(@sin,3,10,options)
% Copyright 2006-2010 The MathWorks, Inc.
% $Revision: 1.1.6.2 $ $Date: 2012/08/21 00:30:41 $
stop = false;
switch state
case 'iter'
if isfield(optimValues,'fval')
if isscalar(optimValues.fval)
plotscalar(optimValues.iteration,optimValues.fval);
else
plotvector(optimValues.iteration,optimValues.fval);
end
else
plotvector(optimValues.iteration,optimValues.residual);
end
end
function plotscalar(iteration,fval)
% PLOTSCALAR initializes or updates a line plot of the function value
% at each iteration.
if iteration == 0
axes(findobj(gcf,'Tag','Fval_axes'))
plotfval = plot(iteration,fval,'b.');
title(getString(message('MATLAB:funfun:optimplots:TitleCurrentFunctionValue',sprintf('%g',fval))),'interp','none');
xlabel(getString(message('MATLAB:funfun:optimplots:LabelIteration')),'interp','none');
set(plotfval,'Tag','optimplotfval');
ylabel(getString(message('MATLAB:funfun:optimplots:LabelFunctionValue')),'interp','none')
else
allaxes = findall(gcf,'type','axes');
plotfval= get(allaxes(2),'Children');
newX = [get(plotfval,'Xdata') iteration];
newY = [get(plotfval,'Ydata') fval];
set(plotfval,'Xdata',newX, 'Ydata',newY);
set(get(gca,'Title'),'String',getString(message('MATLAB:funfun:optimplots:TitleCurrentFunctionValue',sprintf('%g',fval))));
end
function plotvector(iteration,fval)
% PLOTVECTOR creates or updates a bar plot of the function values or
% residuals at the current iteration.
if iteration == 0
xlabelText = getString(message('MATLAB:funfun:optimplots:LabelNumberOfFunctionValues0',sprintf('%g',length(fval))));
% display up to the first 100 values
if numel(fval) > 100
xlabelText = {xlabelText,getString(message('MATLAB:funfun:optimplots:LabelShowingOnlyFirst100Values'))};
fval = fval(1:100);
end
plotfval = bar(fval);
title(getString(message('MATLAB:funfun:optimplots:TitleCurrentFunctionValues')),'interp','none');
set(plotfval,'edgecolor','none')
set(gca,'xlim',[0,1 + length(fval)])
xlabel(xlabelText,'interp','none')
set(plotfval,'Tag','optimplotfval');
ylabel(getString(message('MATLAB:funfun:optimplots:LabelFunctionValue')),'interp','none')
else
plotfval = findobj(get(gca,'Children'),'Tag','optimplotfval');
% display up to the first 100 values
if numel(fval) > 100
fval = fval(1:100);
end
set(plotfval,'Ydata',fval);
end
|
github
|
DrNickDMartin/VehicleDynamics-master
|
MF_Tire_GUI_V2a.m
|
.m
|
VehicleDynamics-master/tyres/MF_Tire_GUI_V2a/MF_Tire_GUI_V2a.m
| 42,176 |
utf_8
|
083e33679131da8156761186600a9c74
|
function varargout = MF_Tire_GUI_V2a(varargin)
% MF_Tire_GUI_V2a MATLAB code for MF_Tire_GUI_V2a.fig
% MF_Tire_GUI_V2a, by itself, creates a new MF_Tire_GUI_V2a or raises the existing
% singleton*.
%
% H = MF_Tire_GUI_V2a returns the handle to a new MF_Tire_GUI_V2a or the handle to
% the existing singleton*.
%
% MF_Tire_GUI_V2a('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MF_Tire_GUI_V2a.M with the given input arguments.
%
% MF_Tire_GUI_V2a('Property','Value',...) creates a new MF_Tire_GUI_V2a or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before MF_Tire_GUI_V2a_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to MF_Tire_GUI_V2a_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help MF_Tire_GUI_V2a
% Last Modified by GUIDE v2.5 26-Aug-2015 11:38:11
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @MF_Tire_GUI_V2a_OpeningFcn, ...
'gui_OutputFcn', @MF_Tire_GUI_V2a_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before MF_Tire_GUI_V2a is made visible.
function MF_Tire_GUI_V2a_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MF_Tire_GUI_V2a (see VARARGIN)
% Choose default command line output for MF_Tire_GUI_V2a
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes MF_Tire_GUI_V2a wait for user response (see UIRESUME)
% uiwait(handles.figure1);
load([pwd '\MF52_par0.mat'])
handles.Start_MF52Par= [Pcx1 Pdx1 Pdx2 Pex1 Pex2 Pex3 Pex4 Pkx1 Pkx2 Pkx3 Phx1 Phx2 Pvx1 Pvx2];
guidata(hObject,handles);
% --- Outputs from this function are returned to the command line.
function varargout = MF_Tire_GUI_V2a_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on slider movement.
function Pcx1_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pcx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pcx1_slider,'value'));
set(handles.Text_Pcx1,'String',a);
% --- Executes during object creation, after setting all properties.
function Pcx1_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pcx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on button press in Plot_Button.
function Plot_Button_Callback(hObject, eventdata, handles)
% hObject handle to Plot_Button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
Pac_MF52=get(handles.MF52_checkbox,'value');
Pac_96=get(handles.Pac96_checkbox,'value');
hold_on=get(handles.hold_checkbox,'value');
if (Pac_MF52+Pac_96==0)
error('Please Choose one of the two Pacejka Models');
set(handles.Error_text,'String','Error: Please Choose one of the two Pacejka Models');
else
set(handles.Error_text,'String','');
NominalForce=1125.65;
%get variables from Edit Text boxes
NormalForce=str2num(get(handles.NormalForce_editT,'string'));
slipStart=str2num(get(handles.SlpStart_editT,'string'))/100;
slipEnd=str2num(get(handles.SlpEnd_editT,'string'))/100;
%get variables from Slider widgets
Pcx1=get(handles.Pcx1_slider,'value');
Pdx1=get(handles.Pdx1_slider,'value');
Pdx2=get(handles.Pdx2_slider,'value');
Pex1=get(handles.Pex1_slider,'value');
Pex2=get(handles.Pex2_slider,'value');
Pex3=get(handles.Pex3_slider,'value');
Pex4=get(handles.Pex4_slider,'value');
Pkx1=get(handles.Pkx1_slider,'value');
Pkx2=get(handles.Pkx2_slider,'value');
Pkx3=get(handles.Pkx3_slider,'value');
Phx1=get(handles.Phx1_slider,'value');
Phx2=get(handles.Phx2_slider,'value');
Pvx1=get(handles.Pvx1_slider,'value');
Pvx2=get(handles.Pvx2_slider,'value');
MF_par= [Pcx1 Pdx1 Pdx2 Pex1 Pex2 Pex3 Pex4 Pkx1 Pkx2 Pkx3 Phx1 Phx2 Pvx1 Pvx2];
K= slipStart:0.02:slipEnd;
if Pac_MF52==1
Shx=(Phx1 + Phx2 *(NormalForce/10000))*1;
Kx= K*100+ Shx;
[Fx0,MF_macro_par]= MF52_LongForce_calc(MF_par,Kx,NormalForce);
slp4plot= Kx/100;
handles.Current_TP_Design= MF_par;
guidata(hObject,handles);
else
dfz=(NormalForce-NominalForce)/NominalForce;
Shx=(Phx1 + Phx2 *dfz)*1;
Kx= K+ Shx;
[Fx0,MF_macro_par]= MF1996_LongForce_calc(MF_par,Kx,NormalForce,NominalForce);
slp4plot= Kx;
handles.Current_TP_Design= [];
guidata(hObject,handles);
end
handles.figure1;
plot(slp4plot,Fx0);
grid on;
ylabel('Longitudinal Force Fx (N)');
xlabel('Slip Ratio ');
if hold_on
hold on;
else
hold off;
end
set(handles.IstCx_text,'String',num2str(MF_macro_par.Cx));
set(handles.IstDx_text,'String',num2str(MF_macro_par.Dx));
set(handles.IstEx_text,'String',num2str(MF_macro_par.Ex));
set(handles.IstBx_text,'String',num2str(MF_macro_par.Bx));
end
% --- Executes on button press in Debug_button.
function Debug_button_Callback(hObject, eventdata, handles)
% hObject handle to Debug_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
keyboard;
function SlpStart_editT_Callback(hObject, eventdata, handles)
% hObject handle to SlpStart_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of SlpStart_editT as text
% str2double(get(hObject,'String')) returns contents of SlpStart_editT as a double
% --- Executes during object creation, after setting all properties.
function SlpStart_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to SlpStart_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function SlpEnd_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to SlpEnd_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function NormalForce_editT_Callback(hObject, eventdata, handles)
% hObject handle to NormalForce_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of NormalForce_editT as text
% str2double(get(hObject,'String')) returns contents of NormalForce_editT as a double
% --- Executes during object creation, after setting all properties.
function NormalForce_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to NormalForce_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on slider movement.
function Pex2_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pex2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pex2_slider,'value'));
set(handles.Text_Pex2,'String',a);
% --- Executes during object creation, after setting all properties.
function Pex2_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pex2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pex1_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pex1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pex1_slider,'value'));
set(handles.Text_Pex1,'String',a);
% --- Executes during object creation, after setting all properties.
function Pex1_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pex1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pex3_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pex3_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pex3_slider,'value'));
set(handles.Text_Pex3,'String',a);
% --- Executes during object creation, after setting all properties.
function Pex3_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pex3_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pdx2_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pdx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pdx2_slider,'value'));
set(handles.Text_Pdx2,'String',a);
% --- Executes during object creation, after setting all properties.
function Pdx2_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pdx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pkx1_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pkx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pkx1_slider,'value'));
set(handles.Text_Pkx1,'String',a);
% --- Executes during object creation, after setting all properties.
function Pkx1_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pkx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pkx2_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pkx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pkx2_slider,'value'));
set(handles.Text_Pkx2,'String',a);
% --- Executes during object creation, after setting all properties.
function Pkx2_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pkx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pkx3_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pkx3_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pkx3_slider,'value'));
set(handles.Text_Pkx3,'String',a);
% --- Executes during object creation, after setting all properties.
function Pkx3_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pkx3_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Phx1_slider_Callback(hObject, eventdata, handles)
% hObject handle to Phx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Phx1_slider,'value'));
set(handles.Text_Phx1,'String',a);
% --- Executes during object creation, after setting all properties.
function Phx1_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Phx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Phx2_slider_Callback(hObject, eventdata, handles)
% hObject handle to Phx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Phx2_slider,'value'));
set(handles.Text_Phx2,'String',a);
% --- Executes during object creation, after setting all properties.
function Phx2_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Phx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pvx1_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pvx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pvx1_slider,'value'));
set(handles.Text_Pvx1,'String',a);
% --- Executes during object creation, after setting all properties.
function Pvx1_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pvx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pdx1_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pdx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pdx1_slider,'value'));
set(handles.Text_Pdx1,'String',a);
% --- Executes during object creation, after setting all properties.
function Pdx1_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pdx1_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pvx2_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pvx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pvx2_slider,'value'));
set(handles.Text_Pvx2,'String',a);
% --- Executes during object creation, after setting all properties.
function Pvx2_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pvx2_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on slider movement.
function Pex4_slider_Callback(hObject, eventdata, handles)
% hObject handle to Pex4_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
a=num2str(get(handles.Pex4_slider,'value'));
set(handles.Text_Pex4,'String',a);
% --- Executes during object creation, after setting all properties.
function Pex4_slider_CreateFcn(hObject, eventdata, handles)
% hObject handle to Pex4_slider (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
function Cx_editT_Callback(hObject, eventdata, handles)
% hObject handle to Cx_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Cx_editT as text
% str2double(get(hObject,'String')) returns contents of Cx_editT as a double
% --- Executes during object creation, after setting all properties.
function Cx_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to Cx_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Dx_editT_Callback(hObject, eventdata, handles)
% hObject handle to Dx_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Dx_editT as text
% str2double(get(hObject,'String')) returns contents of Dx_editT as a double
% --- Executes during object creation, after setting all properties.
function Dx_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to Dx_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Ex_editT_Callback(hObject, eventdata, handles)
% hObject handle to Ex_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Ex_editT as text
% str2double(get(hObject,'String')) returns contents of Ex_editT as a double
% --- Executes during object creation, after setting all properties.
function Ex_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to Ex_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function Bx_editT_Callback(hObject, eventdata, handles)
% hObject handle to Bx_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of Bx_editT as text
% str2double(get(hObject,'String')) returns contents of Bx_editT as a double
% --- Executes during object creation, after setting all properties.
function Bx_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to Bx_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in MF52_checkbox.
function MF52_checkbox_Callback(hObject, eventdata, handles)
% hObject handle to MF52_checkbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of MF52_checkbox
set(handles.Pac96_checkbox,'value',0);
set(handles.Pcx1_slider,'value',1.5);
set(handles.Pex2_slider,'value',0);
set(handles.Pex4_slider,'value',0);
set(handles.Pkx3_slider,'value',0);
set(handles.Phx2_slider,'value',0);
set(handles.Pdx1_slider,'max',3000);
set(handles.Pdx1_slider,'min',1000);
set(handles.Pdx1_slider,'value',2300);
a=num2str(get(handles.Pdx1_slider,'value'));
set(handles.Text_Pdx1,'String',a);
set(handles.Pdx2_slider,'max',80);
set(handles.Pdx2_slider,'min',-80);
set(handles.Pdx2_slider,'value',-0.256);
a=num2str(get(handles.Pdx2_slider,'value'));
set(handles.Text_Pdx2,'String',a);
set(handles.Pex1_slider,'max',1);
set(handles.Pex1_slider,'min',-20);
set(handles.Pex1_slider,'value',-2);
a=num2str(get(handles.Pex1_slider,'value'));
set(handles.Text_Pex1,'String',a);
set(handles.Pex3_slider,'max',0.1);
set(handles.Pex3_slider,'min',-0.1);
set(handles.Pex3_slider,'value',0);
a=num2str(get(handles.Pex3_slider,'value'));
set(handles.Text_Pex3,'String',a);
set(handles.Pkx1_slider,'max',500);
set(handles.Pkx1_slider,'min',100);
set(handles.Pkx1_slider,'value',300);
a=num2str(get(handles.Pkx1_slider,'value'));
set(handles.Text_Pkx1,'String',a);
set(handles.Pkx2_slider,'max',20);
set(handles.Pkx2_slider,'min',-20);
set(handles.Pkx2_slider,'value',0);
a=num2str(get(handles.Pkx2_slider,'value'));
set(handles.Text_Pkx2,'String',a);
set(handles.Phx1_slider,'max',5);
set(handles.Phx1_slider,'min',-5);
set(handles.Phx1_slider,'value',0);
a=num2str(get(handles.Phx1_slider,'value'));
set(handles.Text_Phx1,'String',a);
set(handles.Pvx2_slider,'max',100);
set(handles.Pvx2_slider,'min',-100);
set(handles.Pvx2_slider,'value',0);
a=num2str(get(handles.Pvx2_slider,'value'));
set(handles.Text_Pvx2,'String',a);
set(handles.Pvx1_slider,'max',10);
set(handles.Pvx1_slider,'min',-10);
set(handles.Pvx1_slider,'value',0);
a=num2str(get(handles.Pvx2_slider,'value'));
set(handles.Text_Pvx2,'String',a);
handles.figure1;
cla;
% --- Executes on button press in Pac96_checkbox.
function Pac96_checkbox_Callback(hObject, eventdata, handles)
% hObject handle to Pac96_checkbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of Pac96_checkbox
set(handles.MF52_checkbox,'value',0);
set(handles.Pcx1_slider,'value',1.5);
set(handles.Pex2_slider,'value',-0.36673);
set(handles.Pex4_slider,'value',-0.05543);
set(handles.Pkx3_slider,'value',-0.45644);
set(handles.Phx2_slider,'value',-0.00179);
set(handles.Pdx1_slider,'max',4);
set(handles.Pdx1_slider,'min',1);
set(handles.Pdx1_slider,'value',2.22960);
a=num2str(get(handles.Pdx1_slider,'value'));
set(handles.Text_Pdx1,'String',a);
set(handles.Pdx2_slider,'max',1);
set(handles.Pdx2_slider,'min',-1);
set(handles.Pdx2_slider,'value',-0.26506);
a=num2str(get(handles.Pdx2_slider,'value'));
set(handles.Text_Pdx2,'String',a);
set(handles.Pex1_slider,'max',1);
set(handles.Pex1_slider,'min',-1);
set(handles.Pex1_slider,'value',0.34731);
a=num2str(get(handles.Pex1_slider,'value'));
set(handles.Text_Pex1,'String',a);
set(handles.Pex3_slider,'max',1);
set(handles.Pex3_slider,'min',-1);
set(handles.Pex3_slider,'value',-0.2813);
a=num2str(get(handles.Pex3_slider,'value'));
set(handles.Text_Pex3,'String',a);
set(handles.Pkx1_slider,'max',80);
set(handles.Pkx1_slider,'min',-80);
set(handles.Pkx1_slider,'value',46.06520);
a=num2str(get(handles.Pkx1_slider,'value'));
set(handles.Text_Pkx1,'String',a);
set(handles.Pkx2_slider,'max',70);
set(handles.Pkx2_slider,'min',-70);
set(handles.Pkx2_slider,'value',-29.4306);
a=num2str(get(handles.Pkx2_slider,'value'));
set(handles.Text_Pkx2,'String',a);
set(handles.Phx1_slider,'max',1);
set(handles.Phx1_slider,'min',-1);
set(handles.Phx1_slider,'value',-0.00087);
a=num2str(get(handles.Phx1_slider,'value'));
set(handles.Text_Phx1,'String',a);
set(handles.Pvx2_slider,'max',1);
set(handles.Pvx2_slider,'min',-1);
set(handles.Pvx2_slider,'value',-0.04174);
a=num2str(get(handles.Pvx2_slider,'value'));
set(handles.Text_Pvx2,'String',a);
set(handles.Pvx1_slider,'max',1);
set(handles.Pvx1_slider,'min',-1);
set(handles.Pvx1_slider,'value',0.00295);
a=num2str(get(handles.Pvx2_slider,'value'));
set(handles.Text_Pvx2,'String',a);
handles.figure1;
cla;
% --- Executes on button press in TirePlotter_GUI_button.
function TirePlotter_GUI_button_Callback(hObject, eventdata, handles)
% hObject handle to TirePlotter_GUI_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.TireFitter_Panel,'Visible','off');
set(handles.TirePlotter_Panel,'Visible','on');
handles.figure1;
cla;
% --- Executes on button press in TireFitter_GUI_button.
function TireFitter_GUI_button_Callback(hObject, eventdata, handles)
% hObject handle to TireFitter_GUI_button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.TirePlotter_Panel,'Visible','off');
set(handles.TireFitter_Panel,'Visible','on');
handles.figure1;
cla;
% --- Executes during object creation, after setting all properties.
function edit35_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit35 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function edit36_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit36 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function edit37_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit37 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function MeasurementDataPath_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to MeasurementDataPath_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in BrowseFile_Button.
function BrowseFile_Button_Callback(hObject, eventdata, handles)
% hObject handle to BrowseFile_Button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.Error_text_Fitter,'String','')
[FileName,PathName]= uigetfile('*.mat','Select a ".mat" File');
set(handles.MeasurementDataPath_editT,'String',[PathName FileName]);
% --- Executes on button press in MeasurementDataPlot_Button.
function MeasurementDataPlot_Button_Callback(hObject, eventdata, handles)
% hObject handle to MeasurementDataPlot_Button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
MeasurementFilePath= get(handles.MeasurementDataPath_editT,'String');
if exist(MeasurementFilePath)
load(MeasurementFilePath);
if exist('NormalLoad')
set(handles.Error_text_Fitter,'String',' ')
handles.Fitter.NormalLoad= NormalLoad;
handles.Fitter.Fx= Fx;
handles.Fitter.xdata= xdata;
guidata(hObject,handles);
else
error_text= 'Variable "Normal Load" not defined';
warning(error_text)
set(handles.Error_text_Fitter,'String',error_text);
end
handles.figure1;
cla;
plot(xdata,Fx,'r.')
else
error_text= 'File Does not Exist';
set(handles.Error_text_Fitter,'String',error_text);
warning(error_text);
end
% --- Executes on button press in StartFitting_Button.
function StartFitting_Button_Callback(hObject, eventdata, handles)
% hObject handle to StartFitting_Button (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isfield(handles,'Fitter')
if get(handles.DefaultSettings_checkbox,'Value')
optim_opts= optimset('MaxFunEvals',1e3,'MaxIter',...
1e3,'TolFun',1e1,'TolX',1e1);
else
optim_opts= optimset('TolX',get(handles.TolX_editT,'String'),...
'TolFun',get(handles.TolFun_editT,'String'),...
'MaxIter',get(handles.MaxIter_editT,'String'),...
'MaxFunEval',get(handles.MaxFunEval_editT,'String'),...
'PlotFcns',get(handles.PlotFcns_editT,'String'));
end
if get(handles.PlotOpt_checkbox,'Value')
optim_opts= optimset('OutputFcn',@optimplotfval2);
handles.Fitter.plot_flag= 1;
end
set(handles.Error_text_Fitter,'ForegroundColor',[0 1 0]);
set(handles.Error_text_Fitter,'String','Tire is being Fitted');
handles.Fitter.axes= handles.Main_axes;
guidata(hObject,handles);
if get(handles.Import_TP_Design_CB,'Value')
if isfield(handles,'Current_TP_Design')
if ~isempty(handles.Current_TP_Design)
handles.startDesign= handles.Current_TP_Design;
else
warn_txt= 'Import Failed. Continuing to import a random design';
warning(warn_txt);
set(handles.Error_text_Fitter,'String',warn_txt);
handles.startDesign= handles.Start_MF52Par;
end
end
else
handles.startDesign= handles.Start_MF52Par;
end
guidata(hObject,handles);
opt_par= fminsearch(@(par0) opt_fun(par0,handles.Fitter),...
handles.startDesign,optim_opts);
if get(handles.saveOptPar_checkbox,'Value')
saveas(opt_par,[pwd '\OptimisedParameterSet.mat']);
end
set(handles.Error_text_Fitter,'ForegroundColor',[0 1 0]);
set(handles.Error_text_Fitter,'String','Tire Fitting Complete');
else
error_txt= 'Measurement Data not loaded!!';
warning(error_txt);
set(handles.Error_text_Fitter,'String',error_txt);
end
% --- Executes during object creation, after setting all properties.
function TolX_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to TolX_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function TolFun_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to TolFun_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function MaxIter_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to MaxIter_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function MaxFunEval_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to MaxFunEval_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes during object creation, after setting all properties.
function PlotFcns_editT_CreateFcn(hObject, eventdata, handles)
% hObject handle to PlotFcns_editT (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in DefaultSettings_checkbox.
function DefaultSettings_checkbox_Callback(hObject, eventdata, handles)
% hObject handle to DefaultSettings_checkbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hint: get(hObject,'Value') returns toggle state of DefaultSettings_checkbox
if ~get(hObject,'Value')
set(handles.TolX_editT,'Enable','on')
set(handles.TolFun_editT,'Enable','on')
set(handles.MaxFunEval_editT,'Enable','on')
set(handles.MaxIter_editT,'Enable','on')
set(handles.TolX_text,'Enable','on')
set(handles.TolFun_text,'Enable','on')
set(handles.MaxFunEval_text,'Enable','on')
set(handles.MaxIter_text,'Enable','on')
else
set(handles.TolX_editT,'Enable','off')
set(handles.TolFun_editT,'Enable','off')
set(handles.MaxFunEval_editT,'Enable','off')
set(handles.MaxIter_editT,'Enable','off')
set(handles.TolX_text,'Enable','off')
set(handles.TolFun_text,'Enable','off')
set(handles.MaxFunEval_text,'Enable','off')
set(handles.MaxIter_text,'Enable','off')
end
|
github
|
derpycode/muffinplot-master
|
plot_target.m
|
.m
|
muffinplot-master/source/plot_target.m
| 10,424 |
utf_8
|
e6dd9d9e31a424566dcedf77d9fe96cc
|
% ------------------------------PLOT_TARGET-------------------------------
% ------------------------------------------------------------------------
% Description: Plots the target diagram of Jolliff et al.(2009) for
% model skill assessment.
%
% plot_target has been designed to be accomodate most uses of the target
% diagram including a parameter sweep coloured by parameter values and the
% plotting of individual experiments with a legend (see EXAMPLE CALLS).
% The function is designed such that statistics can be calculated elsewhere
% and plotted in bulk, avoiding problems with processing large ensembles in
% matlab.
%
% Reference: Joliff, J.K., Kindle, J.C., Shulman, I., Penta, B., Friedrichs
% ,M.A.M., Helber, R., Arnone, R.A., (2009) Summary diagrams for coupled
% hydrodynamic-ecosystem model skill assessment. Journal of Marine Systems,
% 79, 64-82 (see figs 7 & 14).
%
% Author: J D Wilson ([email protected])
% ------------------------------------------------------------------------
% INPUT VARIABLES:
% -rmsd: std dev normalised unbiased root mean square difference
% (mx1 variable)
% -bias: std dev normalised bias
% (mx1 variable)
%
% OPTIONAL VARIABLES ([] for blank):
% -colour: colour points according to value(s)
% (mx1 variable OR LineSpec colour string i.e. 'r')
% -R_marker: correlation coefficient that will be plotted as marker
% (single value OR multiple i.e. [0.4 0.5])
% -ou_marker: observation uncertainity that will be plotted as marker
% (single value OR multiple i.e. [0.4 0.5])
% -axes_handle: handle of axes, if present will plot on corresponding axes
% otherwise if blank will plot in a new figure window
%
% OUTPUT VARIABLES:
% -target_handle: handle of the target plot axes for plotting on same
% axes
%
% ------------------------------------------------------------------------
% EXAMPLE CALLS:
% -single parameter sweep coloured by parameter values with min R of 0.8:
% plot_target(rmsd, bias, colour, 0.8, [], [])
%
% -single parameter sweep with multiple R markers:
% plot_target(rmsd, bias, [], [0.2 0.4 0.8], [], [])
%
% -multiple experiments with ou values:
% figure_handle = plot_target(rmsd_1, bias_1, 'r', [], 0.03, [])
% plot_target(rmsd_2, bias_2, 'b', [], 0.05, figure_handle)
% plot_target(rmsd_3, bias_3, 'g', [], 0.02, figure_handle)
%
% POTENTIAL PROBLEMS/ISSUES:
% - resizing / zooming in & out within matlab window is not possible
% - observational uncertainty not implemented fully
%
% ------------------------------HISTORY-----------------------------------
% Created: 10/06/2012
% 15/06/2012: marker subfunctions, ability to plot multiple markers
% 19/08/2012: added axes_handle input to fix open fig window problems
% 28/08/2012: removed origin axes legend entries so legend can be used
% ------------------------------------------------------------------------
% ------------------------------------------------------------------------
function [ target_handle ] = plot_target ( rmsd , bias , colour , R_marker, ou_marker, axes_handle)
% ------------------------------PLOT DATA---------------------------------
% determine whether this is plotting a new figure or adding to an existing
% plot and set up an axes handle (==target_handle) so function knows
% where to plot subsequent calls if needed.
if isempty(axes_handle)==1
figs=max(findall(0,'Type','Figure')); % find highest figure handle
if isempty(figs)==1 % if none, figs is empty!
figs=0; % so set figs = 0
end
figure(figs+1); % otherwise new figure window
target_handle=gca; % get new axes_handle
replot_flag=0; % flag for new plot
else
target_handle=axes_handle; % but if given, plot on this!
replot_flag=1; % flag as replotting
end
% plot data as scatter plot (with standard matlab axes)
% (n.b. scatter allows flexibility with colour over plot function)
% >> no colour!
if isempty(colour)==1
scatter(target_handle,rmsd,bias,50,'k','filled');
hold on
end
% >> colour!
if isempty(colour)==0
colormap('Jet')
scatter(target_handle,rmsd,bias,50,colour,'filled');
hold on
end
% ------------------------DRAW NEW ORIGIN AXES----------------------------
if replot_flag==0 % only draw if being plotted for first time!
% determine min/max of axis
if (max(abs(rmsd))>1 | max(abs(bias))>1) == 1
maxi=2.0; mini=-2.0;
elseif (max(abs(rmsd))>2 | max(abs(bias))>2) == 1
disp('rmsd or bias numbers are large...problem?')
maxi=2.0; mini=-2.0;
elseif (max(abs(rmsd))<1 | max(abs(bias))<1) == 1
maxi=1.0; mini=-1.0;
end
% draw new axis lines through origin...
haxisLine=plot([mini-0.2 maxi+0.2],[0 0],'k');
vaxisLine=plot([0 0],[maxi+0.2 mini-0.2],'k');
% ...but don't allow them to be included in the legend
set(get(get(haxisLine,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
set(get(get(vaxisLine,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
% set major ticks...
XL_major=[mini:0.5:maxi];
YL_major=[mini:0.5:maxi];
set(target_handle,'XTick',XL_major);
set(target_handle,'YTick',YL_major);
% and minor ticks...
XL_minor=[mini-0.2:0.1:maxi+0.2];
YL_minor=[mini-0.2:0.1:maxi+0.2];
% get tick labels for major
XLab=get(target_handle,'XtickLabel');
YLab=get(target_handle,'YtickLabel');
% derive tick offsets to align labels with ticks although a bit haphazard!
Xoff=diff(get(target_handle,'XLim'))./70;
Yoff=diff(get(target_handle,'YLim'))./70;
Xoff_minor=diff(get(target_handle,'XLim'))./110;
Yoff_minor=diff(get(target_handle,'YLim'))./90;
% Plot new major ticks on new axes (and remove from legend) ...
for i=1:length(XL_major)
xmajtickLine=plot(target_handle,[XL_major(i) XL_major(i)],[0 Yoff],'-k');
set(get(get(xmajtickLine,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end;
for i=1:length(YL_major)
ymajtickLine=plot(target_handle,[Xoff, 0],[YL_major(i) YL_major(i)],'-k');
set(get(get(ymajtickLine,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end;
% and minor ticks
for i=1:length(XL_minor)
xmintickLine=plot(target_handle,[XL_minor(i) XL_minor(i)],[0 Yoff_minor],'-k');
set(get(get(xmintickLine,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end;
for i=1:length(YL_minor)
ymintickLine=plot(target_handle,[Xoff_minor, 0],[YL_minor(i) YL_minor(i)],'-k');
set(get(get(ymintickLine,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end;
% add new tick labels
text(XL_major-0.05,zeros(size(XL_major))-1.*Yoff,XLab);
text(zeros(size(YL_major))-3.*Xoff,YL_major,YLab);
% add new axes labels
text([maxi+0.1],[0]+0.1,'RMSD*''(\sigma_d)')
text([0]+0.05,[maxi+0.1],'Bias*')
% remove the original axes
box off;
axis off;
set(gcf,'color','w');
% end of drawing new axes through the origin!
end
% ---------------------------PLOT MARKERS---------------------------------
range1=[-1:0.01:1]'; % range over which to calc circular line points
% where RMSD = 1 (points within this marker are *almost* always
% positively correlated see pg. 72):
if replot_flag==0
circle1=real(0+sqrt(1-((range1-0)).^2));
circle2=real(0-sqrt(1-((range1-0)).^2));
markerLine1=plot(target_handle,range1,circle1,'k');
markerLine2=plot(target_handle,range1,circle2,'k');
set(get(get(markerLine1,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end
% ----------------------------PLOT R MARKERS------------------------------
% user defined marker(s) for correlation coefficient (R):
% subfunction calculates equivalent RMSD*'(sigma_diff) value (see pg. 72, eq. 14)
if isempty(R_marker)==0
plot_marker(R_marker , target_handle)
end
% ----------------PLOT OBSERVATION UNCERTAINITY MARKER--------------------
% plot marker for observational uncertainty,
% (currently not fully implemented see pg. 73 for details on this)
if isempty(ou_marker)==0
plot_ou(ou_marker , target_handle)
end
% ---------------------------COLOUR BAR-----------------------------------
% plot a colourbar if data is given in colour (i.e. not a LineSpec)
if isempty(colour)==0 & ischar(colour)==0
C=colorbar ('h');
set(C,'location','South',...
'XTick',[max(colour) min(colour)],...
'XTickLabel',{'Max', 'Min'})
end
% --------------------------FINISHING TOUCHES-----------------------------
% set dimensions straight
set(gca,'DataAspectRatio',[1 1 1])
end
% ------------------------------------------------------------------------
% -----------------------------SUB FUNCTIONS------------------------------
% ------------------------------------------------------------------------
function [] = plot_marker ( R_marker , target_handle )
R=sqrt(1.0+R_marker.^2-2*R_marker.^2)';
for n=1:size(R)
range2{:,n}=[-(R(n)):0.01:R(n)+0.01]'; % range over which to calc circular line points
end
for n=1:size(R)
circle1{:,n}=real(0+sqrt(R(n)^2-((range2{1,n}-0).^2)));
circle2{:,n}=real(0-sqrt(R(n)^2-((range2{1,n}-0).^2)));
end
for n=1:size(R)
RLine1=plot(target_handle,range2{1,n},circle1{1,n},'k--');
RLine2=plot(target_handle,range2{1,n},circle2{1,n},'k--');
set(get(get(RLine1,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end
end
function [] = plot_ou ( ou_marker , target_handle )
ou=ou_marker';
for n=1:size(ou)
range3{:,n}=[-(ou(n)):0.01:ou(n)+0.01]' % range over which to calc circular line points
end
for n=1:size(ou)
circle1{:,n}=real(0+sqrt(ou(n)^2-((range3{1,n}-0).^2)));
circle2{:,n}=real(0-sqrt(ou(n)^2-((range3{1,n}-0).^2)));
end
for n=1:size(ou)
ouLine1=plot(target_handle,range3{1,n},circle1{1,n},'k--');
ouLine2=plot(target_handle,range3{1,n},circle2{1,n},'k--');
set(get(get(ouLine1,'Annotation'),'LegendInformation'),'IconDisplayStyle','off');
end
end
%------------------------------------------------------------------------
%----------------------------------END-----------------------------------
|
github
|
derpycode/muffinplot-master
|
plot_taylordiag.m
|
.m
|
muffinplot-master/source/plot_taylordiag.m
| 17,558 |
utf_8
|
8b116586f635384019cd2826a13ecb9a
|
% TAYLORDIAG Plot a Taylor Diagram
%
% [hp ht axl] = taylordiag(STDs,RMSs,CORs,['option',value])
%
% Plot a Taylor diagram from statistics of different series.
%
% INPUTS:
% STDs: Standard deviations
% RMSs: Centered Root Mean Square Difference
% CORs: Correlation
%
% Each of these inputs are one dimensional with same length. First
% indice corresponds to the reference serie for the diagram. For exemple
% STDs(1) is the standard deviation of the reference serie and STDs(2:N)
% are the standard deviations of the other series.
%
% Note that by definition the following relation must be true for all series i:
% RMSs(i) - sqrt(STDs(i).^2 + STDs(1)^2 - 2*STDs(i)*STDs(1).*CORs(i)) = 0
% This relation is checked and if not verified an error message is sent. Please see
% Taylor's JGR article for more informations about this.
% You can use the ALLSTATS function to avoid this to happen, I guess ;-). You can get
% it somewhere from: http://codes.guillaumemaze.org/matlab
%
% OUTPUTS:
% hp: returns handles of plotted points
% ht: returns handles of the text legend of points
% axl: returns a structure of handles of axis labels
%
% LIST OF OPTIONS:
% For an exhaustive list of options to customize your diagram, please call the function
% without arguments:
% >> taylordiag
%
% SHORT TUTORIAL (see taylordiag_test.m for more informations):
% An easy way to get compute inputs is to use the ALLSTATS function you can get from:
% http://codes.guillaumemaze.org/matlab
% Let's say you gathered all the series you want to put in the Taylor diagram in a
% single matrix BUOY(N,nt) with N the number of series and nt their (similar) length.
% If BUOY(1,:) is the serie of reference for the diagram:
% for iserie = 2 : size(BUOY,1)
% S = allstats(BUOY(1,:),BUOY(iserie,:));
% MYSTATS(iserie,:) = S(:,2); % We get stats versus reference
% end%for iserie
% MYSTATS(1,:) = S(:,1); % We assign reference stats to the first row
% Note that the ALLSTATS function can handle NaNs, so be careful to compute statistics
% with enough points !
% Then you're ready to simply run:
% taylordiag(MYSTATS(:,2),MYSTATS(:,3),MYSTATS(:,4));
%
% REF: K. Taylor
% Summarizing multiple aspects of model performance in a single diagram
% Journal of Geophysical Research-Atmospheres, 2001, V106, D7.
%
% Rev. by Guillaume Maze on 2010-02-10: Help more helpful ! Options now displayed by call.
% Copyright (c) 2008 Guillaume Maze.
% http://codes.guillaumemaze.org
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright notice, this list of
% conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright notice, this list
% of conditions and the following disclaimer in the documentation and/or other materials
% provided with the distribution.
% * Neither the name of the Laboratoire de Physique des Oceans nor the names of its contributors may be used
% to endorse or promote products derived from this software without specific prior
% written permission.
%
% THIS SOFTWARE IS PROVIDED BY Guillaume Maze ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
% INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
% PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Guillaume Maze BE LIABLE FOR ANY
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
% LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
% BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
% STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
% OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%
function varargout = plot_taylordiag(varargin)
%%
if nargin == 0
disp_optionslist;
return
else
narg = nargin - 3;
if mod(narg,2) ~=0
error('taylordiag.m : Wrong number of arguments')
end
end
STDs = varargin{1};
RMSs = varargin{2};
CORs = varargin{3};
%% CHECK THE INPUT FIELDS:
apro = 100;
di = fix(RMSs*apro)/apro - fix(sqrt(STDs.^2 + STDs(1)^2 - 2*STDs*STDs(1).*CORs)*apro)/apro;
if find(di~=0)
% help taylordiag.m
ii = find(di~=0);
if length(ii) == length(di)
error(sprintf('taylordiag.m : Something''s wrong with ALL the datas\nYou must have:\nRMSs - sqrt(STDs.^2 + STDs(1)^2 - 2*STDs*STDs(1).*CORs) = 0 !'))
else
error(sprintf('taylordiag.m : Something''s wrong with data indice(s): [%i]\nYou must have:\nRMSs - sqrt(STDs.^2 + STDs(1)^2 - 2*STDs*STDs(1).*CORs) = 0 !',ii))
end
end
%% IN POLAR COORDINATES:
rho = STDs/STDs(1);
theta = real(acos(CORs));
dx = rho(1); % Observed STD
%% BEGIN THE PLOT HERE TO GET AXIS VALUES:
hold off
cax = gca;
tc = get(cax,'xcolor');
%ls = get(cax,'gridlinestyle');
ls = '-'; % DEFINE HERE THE GRID STYLE
next = lower(get(cax,'NextPlot'));
%% LOAD CUSTOM OPTION OF AXE LIMIT:
nopt = narg/2; foundrmax = 0;
for iopt = 4 : 2 : narg+3
optvalue = varargin{iopt+1};
switch lower(varargin{iopt}), case 'limstd', rmax = optvalue; foundrmax=1; end
end
% make a radial grid
hold(cax,'on');
if foundrmax==0
maxrho = max(abs(rho(:)));
else
maxrho = rmax;
end
hhh = line([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -maxrho],'parent',cax);
set(cax,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')
v = [get(cax,'xlim') get(cax,'ylim')];
ticks = sum(get(cax,'ytick')>=0);
delete(hhh);
% check radial limits and ticks
rmin = 0;
if foundrmax == 0;
rmax = v(4);
end
rticks = max(ticks-1,2);
if rticks > 5 % see if we can reduce the number
if rem(rticks,2) == 0
rticks = rticks/2;
elseif rem(rticks,3) == 0
rticks = rticks/3;
end
end
rinc = (rmax-rmin)/rticks;
tick = (rmin+rinc):rinc:rmax;
%% LOAD DEFAULT PARAMETERS:
if find(CORs<0)
Npan = 2; % double panel
else
Npan = 1;
end
tickRMSangle = 135;
showlabelsRMS = 1;
showlabelsSTD = 1;
showlabelsCOR = 1;
colSTD = [0 0 0];
colRMS = [0 .6 0];
colCOR = [0 0 1];
tickCOR(1).val = [1 .99 .95 .9:-.1:0];
tickCOR(2).val = [1 .99 .95 .9:-.1:0 -.1:-.1:-.9 -.95 -.99 -1];
widthCOR = .8;
widthRMS = .8;
widthSTD = .8;
styleCOR = '-.';
styleRMS = '--';
styleSTD = ':';
titleRMS = 1;
titleCOR = 1;
titleSTD = 1;
tickRMS = tick; rincRMS = rinc;
tickSTD = tick; rincSTD = rinc;
%% LOAD CUSTOM OPTIONS:
nopt = narg/2;
for iopt = 4 : 2 : narg+3
optname = varargin{iopt};
optvalue = varargin{iopt+1};
switch lower(optname)
case 'tickrms'
tickRMS = sort(optvalue);
rincRMS = (max(tickRMS)-min(tickRMS))/length(tickRMS);
case 'showlabelsrms'
showlabelsRMS = optvalue;
case 'tickrmsangle'
tickRMSangle = optvalue;
case 'colrms'
colRMS = optvalue;
case 'widthrms'
widthRMS = optvalue;
case 'stylerms'
styleRMS = optvalue;
case 'titlerms'
titleRMS = optvalue;
case 'tickstd'
tickSTD = sort(optvalue);
rincSTD = (max(tickSTD)-min(tickSTD))/length(tickSTD);
case 'showlabelsstd'
showlabelsSTD = optvalue;
case 'colstd'
colstd = optvalue;
case 'widthstd'
widthSTD = optvalue;
case 'stylestd'
styleSTD = optvalue;
case 'titlestd'
titleSTD = optvalue;
case 'npan'
Npan = optvalue;
case 'tickcor'
tickCOR(Npan).val = optvalue;
case 'colcor'
colCOR = optvalue;
case 'widthcor'
widthCOR = optvalue;
case 'stylecor'
styleCOR = optvalue;
case 'titlecor'
titleCOR = optvalue;
case 'showlabelscor'
showlabelsCOR = optvalue;
end
end
%% CONTINUE THE PLOT WITH UPDATED OPTIONS:
% define a circle
th = 0:pi/150:2*pi;
xunit = cos(th);
yunit = sin(th);
% now really force points on x/y axes to lie on them exactly
inds = 1:(length(th)-1)/4:length(th);
xunit(inds(2:2:4)) = zeros(2,1);
yunit(inds(1:2:5)) = zeros(3,1);
% plot background if necessary
if ~ischar(get(cax,'color')),
% ig = find(th>=0 & th<=pi);
ig = 1:length(th);
patch('xdata',xunit(ig)*rmax,'ydata',yunit(ig)*rmax, ...
'edgecolor',tc,'facecolor',get(cax,'color'),...
'handlevisibility','off','parent',cax);
end
% DRAW RMS CIRCLES:
% ANGLE OF THE TICK LABELS
c82 = cos(tickRMSangle*pi/180);
s82 = sin(tickRMSangle*pi/180);
for ic = 1 : length(tickRMS)
i = tickRMS(ic);
iphic = find( sqrt(dx^2+rmax^2-2*dx*rmax*xunit) >= i ,1);
ig = find(i*cos(th)+dx <= rmax*cos(th(iphic)));
hhh = line(xunit(ig)*i+dx,yunit(ig)*i,'linestyle',styleRMS,'color',colRMS,'linewidth',widthRMS,...
'handlevisibility','off','parent',cax);
if showlabelsRMS
text((i+rincRMS/20)*c82+dx,(i+rincRMS/20)*s82, ...
[' ' num2str(i)],'verticalalignment','bottom',...
'handlevisibility','off','parent',cax,'color',colRMS,'rotation',tickRMSangle-90)
end
end
% DRAW DIFFERENTLY THE CIRCLE CORRESPONDING TO THE OBSERVED VALUE
% hhh = line((cos(th)*dx),sin(th)*dx,'linestyle','--','color',colSTD,'linewidth',1,...
% 'handlevisibility','off','parent',cax);
% DRAW STD CIRCLES:
% draw radial circles
for ic = 1 : length(tickSTD)
i = tickSTD(ic);
hhh = line(xunit*i,yunit*i,'linestyle',styleSTD,'color',colSTD,'linewidth',widthSTD,...
'handlevisibility','off','parent',cax);
if showlabelsSTD
if Npan == 2
if length(find(tickSTD==0)) == 0
text(0,-rinc/20,'0','verticalalignment','top','horizontalAlignment','center',...
'handlevisibility','off','parent',cax,'color',colSTD);
end
text(i,-rinc/20, ...
num2str(i),'verticalalignment','top','horizontalAlignment','center',...
'handlevisibility','off','parent',cax,'color',colSTD)
else
if length(find(tickSTD==0)) == 0
text(-rinc/20,rinc/20,'0','verticalalignment','middle','horizontalAlignment','right',...
'handlevisibility','off','parent',cax,'color',colSTD);
end
text(-rinc/20,i, ...
num2str(i),'verticalalignment','middle','horizontalAlignment','right',...
'handlevisibility','off','parent',cax,'color',colSTD)
end
end
end
set(hhh,'linestyle','-') % Make outer circle solid
% DRAW CORRELATIONS LINES EMANATING FROM THE ORIGIN:
corr = tickCOR(Npan).val;
th = acos(corr);
cst = cos(th); snt = sin(th);
cs = [-cst; cst];
sn = [-snt; snt];
line(rmax*cs,rmax*sn,'linestyle',styleCOR,'color',colCOR,'linewidth',widthCOR,...
'handlevisibility','off','parent',cax)
% annotate them in correlation coef
if showlabelsCOR
rt = 1.05*rmax;
for i = 1:length(corr)
text(rt*cst(i),rt*snt(i),num2str(corr(i)),...
'horizontalalignment','center',...
'handlevisibility','off','parent',cax,'color',colCOR);
if i == length(corr)
loc = int2str(0);
loc = '1';
else
loc = int2str(180+i*30);
loc = '-1';
end
end
end
% AXIS TITLES
axlabweight = 'bold';
ix = 0;
if Npan == 1
if titleSTD
ix = ix + 1;
ax(ix).handle = ylabel('Standard deviation (normalized)','color',colSTD,'fontweight',axlabweight);
end
if titleCOR
ix = ix + 1;
clear ttt
pos1 = 45; DA = 15;
lab = 'Correlation Coefficient';
c = fliplr(linspace(pos1-DA,pos1+DA,length(lab)));
dd = 1.1*rmax; ii = 0;
for ic = 1 : length(c)
ith = c(ic);
ii = ii + 1;
ttt(ii)=text(dd*cos(ith*pi/180),dd*sin(ith*pi/180),lab(ii));
set(ttt(ii),'rotation',ith-90,'color',colCOR,'horizontalalignment','center',...
'verticalalignment','bottom','fontsize',get(ax(1).handle,'fontsize'),'fontweight',axlabweight);
end
ax(ix).handle = ttt;
end
if titleRMS
ix = ix + 1;
clear ttt
pos1 = tickRMSangle+(180-tickRMSangle)/2; DA = 15; pos1 = 160;
lab = 'RMSD';
c = fliplr(linspace(pos1-DA,pos1+DA,length(lab)));
dd = 1.05*tickRMS(1);
dd = .95*tickRMS(2);
ii = 0;
for ic = 1 : length(c)
ith = c(ic);
ii = ii + 1;
ttt(ii)=text(dx+dd*cos(ith*pi/180),dd*sin(ith*pi/180),lab(ii));
set(ttt(ii),'rotation',ith-90,'color',colRMS,'horizontalalignment','center',...
'verticalalignment','top','fontsize',get(ax(1).handle,'fontsize'),'fontweight',axlabweight);
end
ax(ix).handle = ttt;
end
else
if titleSTD
ix = ix + 1;
ax(ix).handle =xlabel('Standard deviation','fontweight',axlabweight,'color',colSTD);
end
if titleCOR
ix = ix + 1;
clear ttt
pos1 = 90; DA = 15;
lab = 'Correlation Coefficient';
c = fliplr(linspace(pos1-DA,pos1+DA,length(lab)));
dd = 1.1*rmax; ii = 0;
for ic = 1 : length(c)
ith = c(ic);
ii = ii + 1;
ttt(ii)=text(dd*cos(ith*pi/180),dd*sin(ith*pi/180),lab(ii));
set(ttt(ii),'rotation',ith-90,'color',colCOR,'horizontalalignment','center',...
'verticalalignment','bottom','fontsize',get(ax(1).handle,'fontsize'),'fontweight',axlabweight);
end
ax(ix).handle = ttt;
end
if titleRMS
ix = ix + 1;
clear ttt
pos1 = 160; DA = 10;
lab = 'RMSD';
c = fliplr(linspace(pos1-DA,pos1+DA,length(lab)));
dd = 1.05*tickRMS(1); ii = 0;
for ic = 1 : length(c)
ith = c(ic);
ii = ii + 1;
ttt(ii)=text(dx+dd*cos(ith*pi/180),dd*sin(ith*pi/180),lab(ii));
set(ttt(ii),'rotation',ith-90,'color',colRMS,'horizontalalignment','center',...
'verticalalignment','bottom','fontsize',get(ax(1).handle,'fontsize'),'fontweight',axlabweight);
end
ax(ix).handle = ttt;
end
end
% VARIOUS ADJUSTMENTS TO THE PLOT:
set(cax,'dataaspectratio',[1 1 1]), axis(cax,'off'); set(cax,'NextPlot',next);
set(get(cax,'xlabel'),'visible','on')
set(get(cax,'ylabel'),'visible','on')
% makemcode('RegisterHandle',cax,'IgnoreHandle',q,'FunctionName','polar');
% set view to 2-D
view(cax,2);
% set axis limits
if Npan == 2
axis(cax,rmax*[-1.15 1.15 0 1.15]);
line([-rmax rmax],[0 0],'color',tc,'linewidth',1.2);
line([0 0],[0 rmax],'color',tc);
else
axis(cax,rmax*[0 1.15 0 1.15]);
% axis(cax,rmax*[-1 1 -1.15 1.15]);
line([0 rmax],[0 0],'color',tc,'linewidth',1.2);
line([0 0],[0 rmax],'color',tc,'linewidth',2);
end
% FINALY PLOT THE POINTS:
hold on
ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ';
for ii = 1 : length(STDs)
% pp(ii)=polar(theta(ii),rho(ii));
pp(ii)=plot(rho(ii)*cos(theta(ii)),rho(ii)*sin(theta(ii)));
set(pp(ii),'marker','.','markersize',20);
set(pp(ii),'color','r');
if length(STDs)<=26
tt(ii)=text(rho(ii)*cos(theta(ii)),rho(ii)*sin(theta(ii)),ALPHABET(ii),'color','r');
elseif length(STDs)<=26*2
tt(ii)=text(rho(ii)*cos(theta(ii)),rho(ii)*sin(theta(ii)),lower(ALPHABET(ii)),'color','r');
else
error('sorry I don''t how to handle more than 52 points labels !');
end
end
set(tt,'verticalalignment','bottom','horizontalalignment','right')
set(tt,'fontsize',12)
%%% OUTPUT
switch nargout
case 1
varargout(1) = {pp};
case 2
varargout(1) = {pp};
varargout(2) = {tt};
case 3
varargout(1) = {pp};
varargout(2) = {tt};
varargout(3) = {ax};
end
end%function
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function varargout = disp_optionslist(varargin)
disp('General options:')
dispopt('''Npan''',sprintf('1 or 2: Panels to display (1 for positive correlations, 2 for positive and negative correlations).\n\t\tDefault value depends on CORs'));
disp('RMS axis options:')
dispopt('''tickRMS''','RMS values to plot gridding circles from observation point');
dispopt('''colRMS''','RMS grid and tick labels color. Default: green');
dispopt('''showlabelsRMS''','0 / 1 (default): Show or not the RMS tick labels');
dispopt('''tickRMSangle''','Angle for RMS tick lables with the observation point. Default: 135 deg.');
dispopt('''styleRMS''','Linestyle of the RMS grid');
dispopt('''widthRMS''','Line width of the RMS grid');
dispopt('''titleRMS''','0 / 1 (default): Show RMSD axis title');
disp('STD axis options:')
dispopt('''tickSTD''','STD values to plot gridding circles from origin');
dispopt('''colSTD''','STD grid and tick labels color. Default: black');
dispopt('''showlabelsSTD''','0 / 1 (default): Show or not the STD tick labels');
dispopt('''styleSTD''','Linestyle of the STD grid');
dispopt('''widthSTD''','Line width of the STD grid');
dispopt('''titleSTD''','0 / 1 (default): Show STD axis title');
dispopt('''limSTD''','Max of the STD axis (radius of the largest circle)');
disp('CORRELATION axis options:')
dispopt('''tickCOR''','CORRELATON grid values');
dispopt('''colCOR''','CORRELATION grid color. Default: blue');
dispopt('''showlabelsCOR''','0 / 1 (default): Show or not the CORRELATION tick labels');
dispopt('''styleCOR''','Linestyle of the COR grid');
dispopt('''widthCOR''','Line width of the COR grid');
dispopt('''titleCOR''','0 / 1 (default): Show CORRELATION axis title');
end%function
function [] = dispopt(optname,optval)
disp(sprintf('\t%s',optname));
disp(sprintf('\t\t%s',optval));
end
|
github
|
derpycode/muffinplot-master
|
calc_allstats_target.m
|
.m
|
muffinplot-master/source/calc_allstats_target.m
| 3,876 |
utf_8
|
52793ea025c4e3068d275402196cf5b1
|
% STATM Compute statistics from 2 series
%
% STATM = calc_allstats(Cr,Cf)
%
% Compute statistics from 2 series considering Cr as the reference.
%
% Inputs:
% Cr and Cf are of same length and uni-dimensional. They may contain NaNs.
%
% Outputs:
% STATM(1,:) => Mean
% STATM(2,:) => Standard Deviation (scaled by N)
% STATM(3,:) => Centered Root Mean Square Difference (scaled by N)
% STATM(4,:) => Correlation
%
% Notes:
% - N is the number of points where BOTH Cr and Cf are defined
%
% - NaN are handled in the following way: because this function
% aims to compair 2 series, statistics are computed with indices
% where both Cr and Cf are defined.
%
% - STATM(:,1) are from Cr (ie with C=Cr hereafter)
% STATM(:,2) are from Cf versus Cr (ie with C=Cf hereafter)
%
% - The MEAN is computed using the Matlab mean function.
%
% - The STANDARD DEVIATION is computed as:
% / sum[ {C-mean(C)} .^2] \
% STD = sqrt| --------------------- |
% \ N /
%
% - The CENTERED ROOT MEAN SQUARE DIFFERENCE is computed as:
% / sum[ { [C-mean(C)] - [Cr-mean(Cr)] }.^2 ] \
% RMSD = sqrt| ------------------------------------------- |
% \ N /
%
% - The CORRELATION is computed as:
% sum( [C-mean(C)].*[Cr-mean(Cr)] )
% COR = ---------------------------------
% N*STD(C)*STD(Cr)
%
% - STATM(3,1) = 0 and STATM(4,1) = 1 by definition !
%
% Created by Guillaume Maze on 2008-10-28.
% Rev. by Guillaume Maze on 2010-02-10: Add NaN values handling, some checking
% in the inputs and a more complete help
% Copyright (c) 2008 Guillaume Maze.
% http://codes.guillaumemaze.org
%
% This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or any later version.
% This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.
%
function STATM = calc_allstats(varargin)
Cr = varargin{1}; Cr = Cr(:);
Cf = varargin{2}; Cf = Cf(:);
%%% Check size:
if length(Cr) ~= length(Cf)
error('Cr and Cf must be of same length');
end
%%% Check NaNs:
iok = find(isnan(Cr)==0 & isnan(Cf)==0);
if length(iok) ~= length(Cr)
%warning('Found NaNs in inputs, removed them to compute statistics');
end
Cr = Cr(iok);
Cf = Cf(iok);
N = length(Cr);
%%% STD:
st(1) = sqrt(sum( (Cr-mean(Cr) ).^2) / N );
st(2) = sqrt(sum( (Cf-mean(Cf) ).^2) / N );
%%% MEAN:
me(1) = mean(Cr);
me(2) = mean(Cf);
%%% RMSD:
rms(1) = sqrt(sum( ( ( Cr-mean(Cr) )-( Cr-mean(Cr) )).^2) /N);
rms(2) = sqrt(sum( ( ( Cf-mean(Cf) )-( Cr-mean(Cr) )).^2) /N);
%%% CORRELATIONS:
co(1) = sum( ( ( Cr-mean(Cr) ).*( Cr-mean(Cr) )))/N/st(1)/st(1);
co(2) = sum( ( ( Cf-mean(Cf) ).*( Cr-mean(Cr) )))/N/st(2)/st(1);
%%% TOTAL RMSD:
rms_total(1) = sqrt(sum( (Cr - Cr).^2)/N);
rms_total(2) = sqrt(sum( (Cf - Cr).^2)/N);
%%% STANDARD DEVIATION NORMALISED RMSD:
rms_stdised(1) = (rms(1) * sign( st(2) - st(1) )) / st(1);
rms_stdised(2) = (rms(2) * sign( st(2) - st(1) ))/ st(1);
%%% NORMALISED BIAS:
bias_stdised(1) = (mean(Cr) - mean(Cr)) / st(1);
bias_stdised(2) = (mean(Cf) - mean(Cr)) / st(1);
%%% OUTPUT
STATM(1,:) = me;
STATM(2,:) = st;
STATM(3,:) = rms;
STATM(4,:) = co;
STATM(5,:) = N;
STATM(6,:) = rms_total;
STATM(7,:) = rms_stdised;
STATM(8,:) = bias_stdised;
end %function
|
github
|
derpycode/muffinplot-master
|
calc_allstats.m
|
.m
|
muffinplot-master/source/calc_allstats.m
| 4,749 |
utf_8
|
82a5324d8cf4ff557d819d13e12874cd
|
% STATM Compute statistics from 2 series
%
% STATM = calc_allstats(Cr,Cf)
%
% Compute statistics from 2 series considering Cr as the reference.
%
% Inputs:
% Cr and Cf are of same length and uni-dimensional. They may contain NaNs.
%
% Outputs:
% STATM(1,:) => Mean
% STATM(2,:) => Standard Deviation (scaled by N)
% STATM(3,:) => Centered Root Mean Square Difference (scaled by N)
% STATM(4,:) => Correlation
%
% Notes:
% - N is the number of points where BOTH Cr and Cf are defined
%
% - NaN are handled in the following way: because this function
% aims to compair 2 series, statistics are computed with indices
% where both Cr and Cf are defined.
%
% - STATM(:,1) are from Cr (ie with C=Cr hereafter)
% STATM(:,2) are from Cf versus Cr (ie with C=Cf hereafter)
%
% - The MEAN is computed using the Matlab mean function.
%
% - The STANDARD DEVIATION is computed as:
% / sum[ {C-mean(C)} .^2] \
% STD = sqrt| --------------------- |
% \ N /
%
% - The CENTERED ROOT MEAN SQUARE DIFFERENCE is computed as:
% / sum[ { [C-mean(C)] - [Cr-mean(Cr)] }.^2 ] \
% RMSD = sqrt| ------------------------------------------- |
% \ N /
%
% - The CORRELATION is computed as:
% sum( [C-mean(C)].*[Cr-mean(Cr)] )
% COR = ---------------------------------
% N*STD(C)*STD(Cr)
%
% - STATM(3,1) = 0 and STATM(4,1) = 1 by definition !
%
% Created by Guillaume Maze on 2008-10-28.
% Rev. by Guillaume Maze on 2010-02-10: Add NaN values handling, some checking
% in the inputs and a more complete help
% Copyright (c) 2008 Guillaume Maze.
% http://codes.guillaumemaze.org
%
% This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or any later version.
% This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
% You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>.
%
function STATM = calc_allstats(varargin)
Cr = varargin{1}; Cr = Cr(:);
Cf = varargin{2}; Cf = Cf(:);
%%% Check size:
if length(Cr) ~= length(Cf)
error('Cr and Cf must be of same length');
end
%%% Check NaNs:
iok = find(isnan(Cr)==0 & isnan(Cf)==0);
if length(iok) ~= length(Cr)
%warning('Found NaNs in inputs, removed them to compute statistics');
end
Cr = Cr(iok);
Cf = Cf(iok);
N = length(Cr);
%%% STD:
st(1) = sqrt(sum( (Cr-mean(Cr) ).^2) / N );
st(2) = sqrt(sum( (Cf-mean(Cf) ).^2) / N );
%%% MEAN:
me(1) = mean(Cr);
me(2) = mean(Cf);
%%% RMSD:
rms(1) = sqrt(sum( ( ( Cr-mean(Cr) )-( Cr-mean(Cr) )).^2) /N);
rms(2) = sqrt(sum( ( ( Cf-mean(Cf) )-( Cr-mean(Cr) )).^2) /N);
%%% CORRELATIONS:
co(1) = sum( ( ( Cr-mean(Cr) ).*( Cr-mean(Cr) )))/N/st(1)/st(1);
co(2) = sum( ( ( Cf-mean(Cf) ).*( Cr-mean(Cr) )))/N/st(2)/st(1);
%%% TOTAL RMSD:
rms_total(1) = sqrt(sum( (Cr - Cr).^2)/N);
rms_total(2) = sqrt(sum( (Cf - Cr).^2)/N);
%%% STANDARD DEVIATION NORMALISED RMSD:
rms_stdised(1) = (rms(1) * sign( st(2) - st(1) )) / st(1);
rms_stdised(2) = (rms(2) * sign( st(2) - st(1) ))/ st(1);
%%% NORMALISED BIAS:
bias_stdised(1) = (mean(Cr) - mean(Cr)) / st(1);
bias_stdised(2) = (mean(Cf) - mean(Cr)) / st(1);
% R2
R2(1) = 1 - ( sum((Cr - Cr).^2) / sum( (Cr-mean(Cr) ).^2) );
R2(2) = 1 - ( sum((Cr - Cf).^2) / sum( (Cr-mean(Cr) ).^2) );
% Additional requirements to calculate the AMS score
% Information for this metric is found in the paper
% 'Non-dimensional measures of climate model performance'
% I.G. Watterson, 1996, international journal of climatology, vol (16) pp
% 379-391
% st dev squared
V1 = st(1).^2;
V2 = st(2).^2;
%% BIAS
B = (me(2) - me(1)).^2;
%%% MEAN SQUARED ERROR
MSE1 = sum( (Cf - Cr).^2);
MSE = MSE1/N;
Z = (1 - MSE/(V1 + V2 + B));
if (Z < -1)
Z = -1;
end
%%% M SCORE
M(1) = 0;
%if (co(2) >= 0.0000)
M(2) = (2/pi)*asin(Z);
%else
% M(2) = 0;
%end
%%% OUTPUT
STATM(1,:) = me;
STATM(2,:) = st;
STATM(3,:) = rms;
STATM(4,:) = co;
STATM(5,:) = N;
STATM(6,:) = rms_total;
STATM(7,:) = rms_stdised;
STATM(8,:) = bias_stdised;
STATM(9,:) = R2;
STATM(10,:) = M; %this is the value used for model ranking
STATM(11,:) = [NaN MSE];
STATM(12,:) = [NaN B];
STATM(13,:) = [V1 V2];
STATM(14,:) = [NaN Z];
end %function
|
github
|
derpycode/muffinplot-master
|
plot_taylor.m
|
.m
|
muffinplot-master/source/plot_taylor.m
| 10,556 |
utf_8
|
6bdbf62fca37c526a199841f448e06c6
|
% Taylor diagram for summarizing model performance
%
% Taylor, 2001 - JGR, 106(D7)
%
% Program adapted from the IDL routine from K.E. Taylor
% (simplified version including less options)
%
% ---- Call :
% plot_taylor(tsig,rsig,tcorr,out,name_experiment,title)
%
% ---- Input:
% Needed:
% tsig : Standard deviation for the experiments (n values)
% rsig : Standard deviation for the reference (1 value)
% tcorr : Correlation between the reference and the experiments
% (n values)
%
% Optional:
% out : 1 = standard display in a window (default)
% 2 = encapsulated postcript output named 'output.eps'
% name_experiment : Name of the experiment used in the legend
% ([n x length of the longer name] array of characters)
% maintit : Title (string)
% ---- Output:
% postcript or figure depending on the 'out' option ...
%
%
% ----------------------------------------------------------------------
% G. Charria (02/2008)
% A. Yool (16/06/2008; extensive "prettying up")
% ----------------------------------------------------------------------
function [plt, leg] = plot_taylor(tsig,rsig,tcorr,out,name_experiment,maintit,set_sigmax)
% close all
% clf
% ---------------------------
% ---- Parameters definition
% ---------------------------
% sigmax : radial limit of plot
if (max(tsig./rsig) < 1)
sigmax = 1;
else
sigmax = max((tsig./rsig))+0.1;
end
% AXY: allow user to control sigmax with a final argument
flag_bounds = tsig * 0;
if (nargin == 7)
sigmax = set_sigmax;
% this also sets all data values outside this maximum to equal the
% maximum, and tags them up for special treatment (symbols turn
% black) at the plotting stage
t1 = tsig / rsig;
t2 = find(t1 > sigmax);
tsig(t2) = rsig * sigmax;
flag_bounds(t2) = 1;
end
% AXY: just in case something other than standard deviation is used
% and has values less than zero, this section sets the values
% to NaNs
t1 = tsig / rsig;
t2 = find(t1 < 0);
tsig(t2) = NaN;
% Test on input for the choice of output.
if (nargin < 4)
out = 1;
end
% Y-axis title
ytitle = 'Standard deviation (normalised)';
% X-axis title
xtitle = 'Standard deviation (normalised)';
% Fontsize for the plot
axcsiz = 12;
% Tick location
% AXY: parameter "val" should be adjusted ad hoc to get a satisfying
% distribution of labels - I've tried, unsuccessfully, to come
% up with a good automated version, but haven't managed so far
% AXY: the new code below tries out a series of potential tick increments
% and selects as the first/best one that which produces 8 ticks or more;
% far from ideal, but the results look OK
tryval = [0.1 0.2 0.25 0.5 1 2]; maxtry = max(size(tryval));
for i = 1:1:maxtry
val = tryval(i);
yticloc=0.:val:sigmax;
[q1, q2] = max(size(yticloc));
numtic(i) = q1;
end
q1 = find(numtic >= 8); q2 = max(q1);
if isempty(q2), q2 = maxtry; end
val = tryval(q2);
val = 1;
yticloc=0.:val:sigmax;
ylabels = yticloc;
xticloc = yticloc;
xlabels = ylabels;
dummy=0.;
% AXY: sort out legend labels
str1 = name_experiment;
[s1, s2] = size(str1);
str2(2:(s1+1),:) = str1;
if s2 < 9, str2(s1+1,9) = ' '; end
str2(1,1:9) = 'Reference';
name_experiment = str2;
% -------------------------------------
% Minor Ticks
rminticval = 0.05:0.1:0.95;
% Subminor Ticks
rsubticval = 0.91:0.01:0.99;
% Major Ticks
rlabticval = [0.0, 0.1, 0.2, 0.3, 0.4,...
0.5, 0.6, 0.7, ...
0.8, 0.9, 0.95, 0.99, 1.0];
% Major Tick Labels
rticlabels = ['0.0 '; '0.1 '; '0.2 ';...
'0.3 '; '0.4 '; '0.5 ';...
'0.6 '; '0.7 '; '0.8 ';...
'0.9 '; '0.95'; '0.99';...
'1.0 '];
% 'Correlation' label
corrt=['C';'o';'r';'r';'e';'l';'a';'t';'i';'o';'n'];
% Length of minor ticks
minortic= 0.015;
% Length of subminor ticks
subtic = 0.010;
% Definition of markers:
val = length(tsig);
% AXY: use Ocean Data View colourmap for plotting
% pal2 = odvpal(val+2); pal = pal2(2:1:end-1,:);
pal2 = hsv(val+2); pal = pal2(2:1:end-1,:);
kind=['+';'o';'x';'s';'d';'^';'v';'p';'h';'*'];
colorm=['b';'r';'g';'c';'m';'y';'k'];
n=1;
marker(1:(size(colorm,1)*size(kind,1)),1:2)=' ';
for ic=1:size(colorm,1)
for ik=1:size(kind,1)
marker(n,:)=[kind(ik,:) colorm(ic,:)];
n=n+1;
end
end
if (length(tsig) > 70)
disp('You must introduce new markers to plot more than 70 cases.')
disp('The ''marker'' character array need to be extended inside the code.')
return
end
% --------------------------------------
% Test to draw main rays or not
arccntl=1;
if (arccntl > 0)
rticlen=1.; % Draw the complete ray
else
rticlen=0.02; % Draw just a Tick
end
if (out==2)
figure;
set(gcf,'Visible','off')
end
% -----------------------------
% ---- Plot main axes (X and Y)
% -----------------------------
% plot(dummy,dummy)
box('off')
pbaspect([1 1 1])
% set(gcf,'Color','w')
set(gca,'XLim',[0 sigmax],...
'YLim',[0., sigmax],...
'YMinorTick','on',...
'XMinorTick','on',...
'TickLen',[0.01 0.01],...
'XTick',xticloc,...
'XTickLabel',xlabels,...
'YTick',yticloc,...
'YTickLabel',ylabels,...
'FontSize',axcsiz)
xlabel(xtitle)
ylabel(ytitle)
hold on;
% ------------------------------------
% ---- Draw Results
% ------------------------------------
% Loop over the number of experiments
% AXY: this has been moved here so that a legend can be plotted properly
% -- Plot reference data point
h = plot (1, 0, 'o', 'MarkerSize', 6, 'LineWidth', 2, ...
'MarkerEdgeColor', [1 0 0], 'MarkerFaceColor', [0 0 0]);
% -- Plot data
for i1=1:length(tsig)
xx = (tsig(i1)/rsig(1))*tcorr(i1);
yy = (tsig(i1)/rsig(1))*sqrt(1.-tcorr(i1)*tcorr(i1));
h=plot(xx,yy,marker(i1,1),'MarkerSize',6,'Linewidth',2);
if flag_bounds(i1) == 0
set(h, 'Color', pal(i1,:));
else
set(h, 'Color', [0 0 0]);
end
end
% -----------------------------
% ---- Plot radial lines
% -----------------------------
% Plot the extreme line
xa = sigmax*(0:0.001:1);
ya = sigmax*sqrt(1.-(0:0.001:1).*(0:0.001:1));
plot(xa,ya,'k')
% Plot the '1' line
xa = 1.*(0:0.001:1);
ya = 1.*sqrt(1.-(0:0.001:1).*(0:0.001:1));
plot(xa,ya,':k','LineWidth',1.5)
% Plot few other lines ...
for il=0.2:0.2:1
xa = il*(0:0.001:1);
ya = il*sqrt(1.-(0:0.001:1).*(0:0.001:1));
plot(xa,ya,':k')
end
for il=1:(sigmax-1)/3:sigmax
xa = il*(0:0.001:1);
ya = il*sqrt(1.-(0:0.001:1).*(0:0.001:1));
plot(xa,ya,':k')
end
% ------------------------------------
% ---- Draw tick marks (on the circle)
% ------------------------------------
% *** Main Ticks *** + Correlation labels + 'Correlation' title
for i=1:length(rlabticval)
r = rlabticval(i);
ticx(1) = sigmax*r;
ticy(1) = sigmax*sqrt(1.0 - r*r);
ticx(2) = (sigmax*(1.-rticlen))*r;
ticy(2) = (sigmax*(1.-rticlen))*sqrt(1.0 - r*r);
plot(ticx,ticy,'k')
% Tick Labels
val = 1.02; % default = 0.015
text((sigmax*val)*r,(sigmax*val)*sqrt(1.0 - r*r),rticlabels(i,:),'Fontsize',axcsiz)
end
% *** 'Correlation' title ***
val = 1.1; % default = 0.1
for i=1:size(corrt,1)
r=0.575+(i-1)*((0.825-0.575)/11);
text((sigmax*val)*r,(sigmax*val)*sqrt(1.0 - r*r),corrt(i,:),...
'Fontsize',axcsiz,...
'Rotation',-((pi/2)-acos(r))*180/pi)
end
% *** Minor Ticks ***
for i=1:length(rminticval)
r = rminticval(i);
ticx(1) = sigmax*r;
ticy(1) = sigmax*sqrt(1.0 - r*r);
ticx(2) = (sigmax*(1.-minortic))*r;
ticy(2) = (sigmax*(1.-minortic))*sqrt(1.0 - r*r);
plot(ticx,ticy,'k')
end
% *** Sub minor Ticks ***
for i=1:length(rsubticval)
r = rsubticval(i);
ticx(1) = sigmax*r;
ticy(1) = sigmax*sqrt(1.0 - r*r);
ticx(2) = (sigmax*(1.-subtic))*r;
ticy(2) = (sigmax*(1.-subtic))*sqrt(1.0 - r*r);
plot(ticx,ticy,'k')
end
% ------------------------------------
% ---- Draw Results
% ------------------------------------
% Loop over the number of experiments
% AXY: the data is plotted twice so that it appears on top of all of
% the plot's "scaffolding"; otherwise the plot symbols could be
% obscured by the various lines that are plotted after the first
% set of data plot instructions
% -- Plot reference
h = plot (1, 0, 'o', 'MarkerSize', 6, 'LineWidth', 2, ...
'MarkerEdgeColor', [1 0 0], 'MarkerFaceColor', [0 0 0]);
% -- Plot data
for i1=1:length(tsig)
xx = (tsig(i1)/rsig(1))*tcorr(i1);
yy = (tsig(i1)/rsig(1))*sqrt(1.-tcorr(i1)*tcorr(i1));
h=plot(xx,yy,marker(i1,1),'MarkerSize',6,'Linewidth',2);
if flag_bounds(i1) == 0
set(h, 'Color', pal(i1,:));
else
set(h, 'Color', [0 0 0]);
end
end
% -- Draw legend
% val = 1.05;
% axis ([0 (sigmax*val) 0 (sigmax*val)]);
% for i1=1:length(tsig)
% xx = sigmax * val;
% yy = sigmax - ((i1-1)*0.05*sigmax);
% if ((nargin > 4) & (~isempty(name_experiment)))
% h=plot(xx,yy,marker(i1,1),...
% 'MarkerSize',8,'Linewidth',2.5);
% set(h, 'Color', pal(i1,:));
% text(xx+0.06,yy,name_experiment(i1,:),'Fontsize',axcsiz)
% end
% end
% AXY: because of the way that data is now plotted, it's possible to
% use a normal Matlab legend to show the data
h1 = legend(name_experiment, 0);
set(h1, 'FontSize', 6);
pos = get(h1, 'Position');
% sort out horizontal position of legend box
pos(1) = 0.78;
% sort out vertical position of legend box
pos(2) = 0.99 - pos(4);
set(h1, 'Position', pos);
% h2 = get(h1, 'Children');
% set(h2(1))
% lt = length(tsig);
% for i = 1:1:lt
% j = ((i-1)*2)+1;
% % set(h2(j+1), 'LineStyle', '.');
% set(h2(j), 'Marker', marker(lt+1-i,1));
% set(h2(j), 'Color', pal(lt+1-i,:));
% set(h2(j), 'MarkerSize', 8, 'Linewidth', 2.5);
% end
% AXY: shunt graph slightly sideways to left
pos = get(gca, 'Position'); if pos(1) < 0.2, pos(1) = 0.05; set(gca, 'Position', pos); end
plt = gca;
leg = h1;
% ------------------------------------
% ---- Title
% ------------------------------------
if (nargin > 5)
title(maintit,'Fontsize',axcsiz)
end
% ------------------------------------
% ---- Print eps file
% ------------------------------------
if (out==2)
set(gcf, 'PaperType', 'A4');
set(gcf, 'PaperOrientation', 'portrait');
set(gcf, 'PaperUnits', 'inches');
set(gcf, 'PaperPosition', [0.8353 3.3765 6.5882 4.9412]);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
jdqr.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/jdqr.m
| 73,068 |
utf_8
|
b45810ddb5b2767c9289909175d1dc04
|
function varargout=jdqr(varargin)
%JDQR computes a partial Schur decomposition of a square matrix or operator.
% Lambda = JDQR(A) returns the absolute largest eigenvalues in a K vector
% Lambda. Here K=min(5,N) (unless K has been specified), where N=size(A,1).
% JDQR(A) (without output argument) displays the K eigenvalues.
%
% [X,Lambda] = JDQR(A) returns the eigenvectors in the N by K matrix X and
% the eigenvalues in the K by K diagonal matrix Lambda. Lambda contains the
% Jordan structure if there are multiple eigenvalues.
%
% [X,Lambda,HISTORY] = JDQR(A) returns also the convergence history
% (that is, norms of the subsequential residuals).
%
% [X,Lambda,Q,S] = JDQR(A) returns also a partial Schur decomposition:
% S is an K by K upper triangular matrix and Q is an N by K orthonormal matrix
% such that A*Q = Q*S. The diagonal elements of S are eigenvalues of A.
%
% [X,Lambda,Q,S,HISTORY] = JDQR(A) returns also the convergence history.
%
% [X,Lambda,HISTORY] = JDQR('Afun')
% [X,Lambda,HISTORY] = JDQR('Afun',N)
% The first input argument is either a square matrix (which can be
% full or sparse, symmetric or nonsymmetric, real or complex), or a
% string containing the name of an M-file which applies a linear
% operator to a given column vector. In the latter case, the M-file must
% return the the order N of the problem with N = Afun([],'dimension') or
% N must be specified in the list of input arguments.
% For example, EIGS('fft',...) is much faster than EIGS(F,...)
% where F is the explicit FFT matrix.
%
% The remaining input arguments are optional and can be given in
% practically any order:
% ... = JDQR(A,K,SIGMA,OPTIONS)
% ... = JDQR('Afun',K,SIGMA,OPTIONS)
% where
%
% K An integer, the number of eigenvalues desired.
% SIGMA A scalar shift or a two letter string.
% OPTIONS A structure containing additional parameters.
%
% With one output argument, S is a vector containing K eigenvalues.
% With two output arguments, S is a K-by-K upper triangular matrix
% and Q is a matrix with K columns so that A*Q = Q*S and Q'*Q=I.
% With three output arguments, HISTORY contains the convergence history.
%
% If K is not specified, then K = MIN(N,5) eigenvalues are computed.
%
% If SIGMA is not specified, then the K-th eigenvalues largest in magnitude
% are computed. If SIGMA is zero, then the K-th eigenvalues smallest in
% magnitude are computed. If SIGMA is a real or complex scalar then the
% K-th eigenvalues nearest SIGMA are computed. If SIGMA is one of the
% following strings, then it specifies the desired eigenvalues.
%
% SIGMA Location wanted eigenvalues
%
% 'LM' Largest Magnitude (the default)
% 'SM' Smallest Magnitude (same as sigma = 0)
% 'LR' Largest Real part
% 'SR' Smallest Real part
% 'BE' Both Ends. Computes k/2 eigenvalues
% from each end of the spectrum (one more
% from the high end if k is odd.)
%
%
% The OPTIONS structure specifies certain parameters in the algorithm.
%
% Field name Parameter Default
%
% OPTIONS.Tol Convergence tolerance: 1e-8
% norm(A*Q-Q*S,1) <= tol * norm(A,1)
% OPTIONS.jmin minimum dimension search subspace k+5
% OPTIONS.jmax maximum dimension search subspace jmin+5
% OPTIONS.MaxIt Maximum number of iterations. 100
% OPTIONS.v0 Starting space ones+0.1*rand
% OPTIONS.Schur Gives schur decomposition 'no'
% also in case of 2 or 3 output
% arguments (X=Q, Lambda=R).
%
% OPTIONS.TestSpace For using harmonic Ritz values 'Standard'
% If 'TestSpace'='Harmonic' then
% sigma=0 is the default value for SIGMA
%
% OPTIONS.Disp Shows size of intermediate residuals 1
% and displays the appr. eigenvalues.
%
% OPTIONS.LSolver Linear solver 'GMRES'
% OPTIONS.LS_Tol Residual reduction linear solver 1,0.7,0.7^2,..
% OPTIONS.LS_MaxIt Maximum number it. linear solver 5
% OPTIONS.LS_ell ell for BiCGstab(ell) 4
%
% OPTIONS.Precond Preconditioner LU=[[],[]].
%
% For instance
%
% OPTIONS=STRUCT('Tol',1.0e-10,'LSolver','BiCGstab','LS_ell',2,'Precond',M);
%
% changes the convergence tolerance to 1.0e-10, takes BiCGstab(2) as linear
% solver and the preconditioner defined in M.m if M is the string 'M',
% or M = L*U if M is an n by 2*n matrix: M = [L,U].
%
% The preconditoner can be specified in the OPTIONS structure,
% but also in the argument list:
% ... = JDQR(A,K,SIGMA,M,OPTIONS)
% ... = JDQR(A,K,SIGMA,L,U,OPTIONS)
% ... = JDQR('Afun',K,SIGMA,'M',OPTIONS)
% ... = JDQR('Afun',K,SIGMA,'L','U',OPTIONS)
% as an N by N matrix M (then M is the preconditioner), or an N by 2*N
% matrix M (then L*U is the preconditioner, where M = [L,U]),
% or as N by N matrices L and U (then L*U is the preconditioner),
% or as one or two strings containing the name of M-files ('M', or
% 'L' and 'U') which apply a linear operator to a given column vector.
%
% JDQR (without input arguments) lists the options and the defaults.
% Gerard Sleijpen.
% Copyright (c) 98
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
global Qschur Rschur PinvQ Pinv_u Pu nm_operations
if nargin==0, possibilities, return, end
%%% Read/set parameters
[n,nselect,sigma,SCHUR,...
jmin,jmax,tol,maxit,V,INTERIOR,SHOW,PAIRS,JDV0,t_tol,...
lsolver,LSpar] = ReadOptions(varargin{1:nargin});
LSpar0=LSpar; JDV=0; tol0=tol; LOCK0=~ischar(sigma);
if nargout>3, SCHUR=0; end
tau=0; if INTERIOR>=1 & LOCK0, tau=sigma(1); end
n_tar=size(sigma,1); nt=1; FIG=gcf;
%%% Initiate global variables
Qschur = zeros(n,0); Rschur = [];
PinvQ = zeros(n,0); Pinv_u = zeros(n,1); Pu = [];
nm_operations = 0; history = [];
%%% Return if eigenvalueproblem is trivial
if n<2
if n==1, Qschur=1; Rschur=MV(1); end
if nargout == 0, eigenvalue=Rschur, else
[varargout{1:nargout}]=output(history,Qschur,Rschur); end,
return, end
String = ['\r#it=%i #MV=%i dim(V)=%i |r_%i|=%6.1e '];
StrinP = '--- Checking for conjugate pair ---\n';
time = clock;
%%% Initialize V, W:
%%% V,W orthonormal, A*V=W*R+Qschur*E, R upper triangular
[V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol);
j=size(V,2); k=size(Rschur,1);
nit=0; nlit=0; SOLVED=0;
switch INTERIOR
case 0
%%% The JD loop (Standard)
%%% V orthogonal, V orthogonal to Qschur
%%% V*V=eye(j), Qschur'*V=0,
%%% W=A*V, M=V'*W
%%%
W=W*R; if tau ~=0; W=W+tau*V; end, M=M'*R; temptarget=sigma(nt,:);
while (k<nselect) & (nit < maxit)
%%% Compute approximate eigenpair and residual
[UR,S]=SortSchur(M,temptarget,j==jmax,jmin);
y=UR(:,1); theta=S(1,1); u=V*y; w=W*y;
r=w-theta*u; [r,s]=RepGS(Qschur,r,0); nr=norm(r); r_KNOWN=1;
if LOCK0 & nr<t_tol, temptarget=[theta;sigma(nt,:)]; end
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defekt',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2, LOCK = LOCK0 & nr<t_tol; %%%
if MovieTheta(n,nit,diag(S),jmin,sigma(nt,:),LOCK,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
Rschur=[Rschur,s;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1,
[V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end
W=W*R; if tau ~=0; W=W+tau*V; end; M=M'*R; j=size(V,2);
else,
J=[2:j]; j=j-1; UR=UR(:,J);
M=S(J,J); V=V*UR; W=W*UR;
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND, temptarget=conj(theta); if SHOW, fprintf(StrinP), end
else, nlit=0; nt=min(nt+1,n_tar); temptarget=sigma(nt,:); end
end % nr<tol
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J);
M=S(J,J); V=V*UR; W=W*UR;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1;
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1;
end % if r_KNOWN
if EXPAND
%%% Expand the subspaces of the interaction matrix
v=RepGS([Qschur,V],v);
if size(v,2)>0
w=MV(v);
M=[M,V'*w;v'*W,v'*w];
V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end % if EXPAND
end % while (nit<maxit)
case 1
%%% The JD loop (Harmonic Ritz values)
%%% Both V and W orthonormal and orthogonal w.r.t. Qschur
%%% V*V=eye(j), Qschur'*V=0, W'*W=eye(j), Qschur'*W=0
%%% (A*V-tau*V)=W*R+Qschur*E, E=Qschur'*(A*V-tau*V), M=W'*V
%%%
temptarget=0; FIXT=1; lsolver0=lsolver;
while (k<nselect) & (nit<maxit)
%%% Compute approximate eigenpair and residual
[UR,UL,S,T]=SortQZ(R,M,temptarget,j>=jmax,jmin);
y=UR(:,1); theta=T(1,1)'*S(1,1);
u=V*y; w=W*(R*y); r=w-theta*u; nr=norm(r); r_KNOWN=1;
if nr<t_tol, temptarget=[theta;0]; end, theta=theta+tau;
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defect',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2, Lambda=diag(S)./diag(T)+tau; Lambda(1)=theta; %%%
if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
Rschur=[Rschur,E*y;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0; JDV=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1,
[V,W,R,E,M]=...
SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end, j=size(V,2);
else
J=[2:j]; j=j-1; UR=UR(:,J); UL=UL(:,J);
R=S(J,J); M=T(J,J); V=V*UR; W=W*UL;
[r,a]=RepGS(u,r,0); E=[E*UR;(T(1,1)'-a/S(1,1))*S(1,J)];
s=(S(1,J)/S(1,1))/R; W=W+r*s; M=M+s'*(r'*V);
if (nr*norm(s))^2>eps, [W,R0]=qr(W,0); R=R0*R; M=R0'\M; end
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND, if SHOW, fprintf(StrinP), end
temptarget=[conj(theta)-tau;0];
else, nlit=0; temptarget=0;
if nt<n_tar
nt=nt+1; tau0=tau; tau=sigma(nt,1); tau0=tau0-tau;
[W,R]=qr(W*R+tau0*V,0); M=W'*V;
end
end
end
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J); UL=UL(:,J);
R=S(J,J); M=T(J,J); V=V*UR; W=W*UL; E=E*UR;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
if JDV, disp('Stagnation'),
LSpar(end-1)=(LSpar(end-1)+15)*2;
% lsolver='bicgstab'; LSpar=[1.e-2,300,4];
else
LSpar=LSpar0; JDV=0; lsolver=lsolver0;
end
if nr>0.001 & FIXT, theta=tau; else, FIXT=0; end
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit);
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1; SOLVED=1; JDV=0;
end
if EXPAND
%%% Expand the subspaces of the interaction matrix
[v,zeta]=RepGS([Qschur,V],v);
if JDV0 & abs(zeta(end,1))/norm(zeta)<0.06, JDV=JDV+1; end
if size(v,2)>0
w=MV(v); if tau ~=0, w=w-tau*v; end
[w,e]=RepGS(Qschur,w,0); [w,y]=RepGS(W,w);
R=[[R;zeros(1,j)],y]; M=[M,W'*v;w'*V,w'*v]; E=[E,e];
V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end
end % while (nit<maxit)
case 1.1
%%% The JD loop (Harmonic Ritz values)
%%% V W AV.
%%% Both V and W orthonormal and orthogonal w.r.t. Qschur, AV=A*V-tau*V
%%% V*V=eye(j), W'*W=eye(j), Qschur'*V=0, Qschur'*W=0,
%%% (I-Qschur*Qschur')*AV=W*R, M=W'*V; R=W'*AV;
%%%
AV=W*R; temptarget=0;
while (k<nselect) & (nit<maxit)
%%% Compute approximate eigenpair and residual
[UR,UL,S,T]=SortQZ(R,M,temptarget,j>=jmax,jmin);
y=UR(:,1); u=V*y; w=AV*y; theta=u'*w;
r=w-theta*u; [r,y]=RepGS(Qschur,r,0); nr=norm(r); r_KNOWN=1;
if nr<t_tol, temptarget=[theta;0]; end, theta=theta+tau;
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defect',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2,Lambda=diag(S)./diag(T)+tau; Lambda(1)=theta; %%%
if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
Rschur=[Rschur,y;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1
[V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end
AV=W*R; j=size(V,2);
else
J=[2:j]; j=j-1; UR=UR(:,J); UL=UL(:,J);
AV=AV*UR; R=S(J,J); M=T(J,J); V=V*UR; W=W*UL;
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND,if SHOW, fprintf(StrinP), end
temptarget=[conj(theta)-tau;0];
else, nlit=0; temptarget=0;
if nt<n_tar
nt=nt+1; tau0=tau; tau=sigma(nt,1); tau0=tau0-tau;
AV=AV+tau0*V; [W,R]=qr(W*R+tau0*V,0); M=W'*V;
end
end
end
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J); UL=UL(:,J);
AV=AV*UR; R=S(J,J); M=T(J,J); V=V*UR; W=W*UL;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1;
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1;
end
if EXPAND
%%% Expand the subspaces of the interaction matrix
v=RepGS([Qschur,V],v);
if size(v,2)>0
w=MV(v); if tau ~=0, w=w-tau*v;end
AV=[AV,w]; R=[R,W'*w];
w=RepGS([Qschur,W],w);
R=[R;w'*AV]; M=[M,W'*v;w'*V,w'*v];
V=[V,v]; W=[W,w]; j=j+1; EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end
end % while (nit<maxit)
case 1.2
%%% The JD loop (Harmonic Ritz values)
%%% W orthonormal, V and W orthogonal to Qschur,
%%% W'*W=eye(j), Qschur'*V=0, Qschur'*W=0
%%% W=(A*V-tau*V)-Qschur*E, E=Qschur'*(A*V-tau*V),
%%% M=W'*V
V=V/R; M=M/R; temptarget='LM'; E=E/R;
while (k<nselect) & (nit<maxit)
%%% Compute approximate eigenpair and residual
[UR,S]=SortSchur(M,temptarget,j==jmax,jmin);
y=UR(:,1); u=V*y; nrm=norm(u); y=y/nrm; u=u/nrm;
theta=S(1,1)'/(nrm*nrm); w=W*y; r=w-theta*u; nr=norm(r); r_KNOWN=1;
if nr<t_tol, temptarget=[S(1,1);inf]; end, theta=theta+tau;
% defekt=abs(norm(RepGS(Qschur,MV(u)-theta*u,0))-nr);
% DispResult('defect',defekt,3)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
history=[history;nr,nit,nm_operations]; %%%
if SHOW, fprintf(String,nit,nm_operations,j,nlit,nr) %%%
if SHOW == 2, Lambda=1./diag(S)+tau; Lambda(1)=theta; %%%
if MovieTheta(n,nit,Lambda,jmin,sigma(nt,:),nr<t_tol,j==jmax) %%%
break, end, end, end %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Check for convergence
if nr<tol
%%% Expand the partial Schur form
Qschur=[Qschur,u];
%% Rschur=[[Rschur;zeros(1,k)],Qschur'*MV(u)]; k=k+1;
y=E*y; Rschur=[Rschur,y;zeros(1,k),theta]; k=k+1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if SHOW, ShowLambda(theta,k), end %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if k>=nselect, break, end, r_KNOWN=0;
%%% Expand preconditioned Schur matrix PinvQ
SOLVED=UpdateMinv(u,SOLVED);
if j==1
[V,W,R,E,M]=SetInitialSpaces(zeros(n,0),nselect,tau,jmin,tol);
k=size(Rschur,1); if k>=nselect, break, end
V=V/R; j=size(V,2); M=M/R; E=E/R;
else
J=[2:j]; j=j-1; UR=UR(:,J); M=S(J,J);
V=V*UR; W=W*UR; [r,a]=RepGS(u,r,0);
s=u'*V; V=V-u*s; W=W-r*s; M=M-s'*(r'*V)-(W'*u)*s;
E=[E*UR-y*s;(tau-theta-a)*s];
if (nr*norm(s))^2>eps, [W,R]=qr(W,0); V=V/R; M=(R'\M)/R; E=E/R; end
end
if PAIRS & abs(imag(theta))>tol, v=imag(u/sign(max(u)));
if norm(v)>tol, v=RepGS(Qschur,v,0); EXPAND=(norm(v)>sqrt(tol)); end
end
if EXPAND, if SHOW, fprintf(StrinP), end
temptarget=[1/(conj(theta)-tau);inf];
else, nlit=0; temptarget='LM';
if nt<n_tar
nt=nt+1; tau0=tau; tau=sigma(nt,1);
[W,R]=qr(W+(tau0-tau)*V,0); V=V/R; M=W'*V; E=E/R;
end
end
end
%%% Check for shrinking the search subspace
if j>=jmax
j=jmin; J=[1:j]; UR=UR(:,J);
M=S(J,J); V=V*UR; W=W*UR; E=E*UR;
end % if j>=jmax
if r_KNOWN
%%% Solve correction equation
v=Solve_pce(theta,u,r,lsolver,LSpar,nlit); SOLVED=1;
nlit=nlit+1; nit=nit+1; r_KNOWN=0; EXPAND=1;
end
if EXPAND
%%% Expand the subspaces of the interaction matrix
v=RepGS(Qschur,v,0);
if size(v,2)>0
w=MV(v); if tau ~=0, w=w-tau*v; end
[w,e]=RepGS(Qschur,w,0); [w,y]=RepGS(W,w);
nrw=y(j+1,1); y=y(1:j,:);
v=v-V*y; v=v/nrw; e=e-E*y; e=e/nrw;
M=[M,W'*v;w'*V,w'*v];
V=[V,v]; W=[W,w]; j=j+1; E=[E,e];
if 1/cond(M)<10*tol
[V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol,W,E);
k=size(Rschur,1); if k>=nselect, break, end
V=V/R; M=M/R; j=size(V,2);temptarget='LM'; E=E/R;
end
EXPAND=0; tol=tol0;
else
tol=2*tol;
end
end
end % while (nit<maxit)
end % case
time_needed=etime(clock,time);
Refine([Qschur,V],1);% 2-SCHUR);
CheckSortSchur(sigma);
Lambda=[]; X=zeros(n,0);
if ~SCHUR & k>0, [z,Lambda]=Jordan(Rschur); X=Qschur*z; end
%-------------- display results ----------------------------
if SHOW == 2, MovieTheta, figure(FIG), end
if SHOW & size(history,1)>0
switch INTERIOR
case 0
testspace='V, V orthonormal';
case 1
testspace='A*V-sigma*V, V and W orthonormal';
case 1.1
testspace='A*V-sigma*V, V and W orthonormal, AV';
case 1.2
testspace='A*V-sigma*V, W orthogonal';
otherwise
testspace='Experimental';
end
StringT=sprintf('The test subspace W is computed as W = %s.',testspace);
StringX=sprintf('JDQZ with jmin=%g, jmax=%g, residual tolerance %g.',...
jmin,jmax,tol);
StringY=sprintf('Correction equation solved with %s.',lsolver);
date=fix(clock);
String=sprintf('\n%2i-%2i-%2i, %2i:%2i:%2i',date(3:-1:1),date(4:6));
StringL='log_{10} || r_{#it} ||_2';
for pl=1:SHOW
subplot(SHOW,1,pl), t=history(:,pl+1);
plot(t,log10(history(:,1)),'*-',t,log10(tol)+0*t,':')
legend(StringL), title(StringT)
StringL='log_{10} || r_{#MV} ||_2'; StringT=StringX;
end
if SHOW==2, xlabel([StringY,String])
else, xlabel([StringX,String]), ylabel(StringY), end
drawnow
end
if SHOW
str1=num2str(abs(k-nselect)); str='s';
if k>nselect,
if k==nselect+1, str1='one'; str=''; end
fprintf('\n\nDetected %s additional eigenpair%s.',str1,str)
end
if k<nselect,
if k==0, str1='any'; str=''; elseif k==nselect-1, str1='one'; str=''; end
fprintf('\n\nFailed detection of %s eigenpair%s.',str1,str)
end
if k>0, ShowLambda(diag(Rschur)); else, fprintf('\n'); end
Str='time_needed'; DispResult(Str,eval(Str))
if (k>0)
if ~SCHUR
Str='norm(MV(X)-X*Lambda)'; DispResult(Str,eval(Str))
end
Str='norm(MV(Qschur)-Qschur*Rschur)'; DispResult(Str,eval(Str))
I=eye(k); Str='norm(Qschur''*Qschur-I)'; DispResult(Str,eval(Str))
end
fprintf('\n\n')
end
if nargout == 0, if ~SHOW, eigenvalues=diag(Rschur), end, return, end
[varargout{1:nargout}]=output(history,X,Lambda);
return
%===========================================================================
%======= PREPROCESSING =====================================================
%===========================================================================
%======= INITIALIZE SUBSPACE ===============================================
function [V,W,R,E,M]=SetInitialSpaces(V,nselect,tau,jmin,tol,W,E);
%[V,W,R,E,M]=SetInitialSpaces(VV,nselect,tau,jmin,tol);
% Output: V(:,1:SIZE(VV,2))=ORTH(VV),
% V'*V=W'*W=EYE(JMIN), M=W'*V;
% such that A*V-tau*V=W*R+Qschur*E,
% with R upper triangular, and E=Qschur'*(A*V-tau*V).
%
%[V,W,R,E,M]=SetInitialSpaces(VV,nselect,tau,jmin,tol,AV,EE);
% Input such that
% A*VV-tau*VV=AV+Qschur*EE, EE=Qschur'*(A*VV-tau*VV);
%
% Output: V(:,1:SIZE(VV,2))=ORTH(VV),
% V'*V=W'*W=EYE(JMIN), M=W'*V;
% such that A*V-tau*V=W*R+Qschur*E,
% with R upper triangular, and E=Qschur'*(A*V-tau*V).
global Qschur Rschur
[n,j]=size(V); k=size(Qschur,2);
if j>1,
[V,R]=qr(V,0);
if nargin <6,
W=MV(V); R=eye(j); if tau~=0, W=W-tau*V; end
if k>0, E=Qschur'*W; W=W-Qschur*E; else, E=zeros(0,j); end
end
[V,W,R,E,M]=CheckForNullSpace(V,nselect,tau,tol,W,E,R);
l=size(Qschur,2); j=size(V,2);
if l>=nselect, if size(V,2)==0; R=1; M=1; return, end, end
if l>k, UpdateMinv(Qschur(:,k+1:l),0); end, k=l;
end
if j==0, nr=0;
while nr==0
V = ones(n,1)+0.1*rand(n,1); V=RepGS(Qschur,V); nr=norm(V);
end, j=1;
end
if j==1
[V,H,E]=Arnoldi(V,tau,jmin,nselect,tol);
l=size(Qschur,2); j=max(size(H,2),1);
if l>=nselect, W=V; R=eye(j); M=R; return, end
if l>k, UpdateMinv(Qschur(:,k+1:l),0); end
[Q,R]=qr(full(H),0);
W=V*Q; V(:,j+1)=[]; M=Q(1:j,:)';
%% W=V*Q; V=V(:,1:j)/R; E=E/R; R=eye(j); M=Q(1:j,:)'/R;
%% W=V*H; V(:,j+1)=[];R=R'*R; M=H(1:j,:)';
end
return
%%%======== ARNOLDI (for initializing spaces) ===============================
function [V,H,E]=Arnoldi(v,tau,jmin,nselect,tol)
%
%[V,AV,H,nMV,tau]=ARNOLDI(A,V0,TAU,JMIN,NSELECT,TOL)
% ARNOLDI computes the Arnoldi factorization of dimenison JMIN+1:
% (A-tau)*V(:,1:JMIN)=V*H where V is n by JMIN+1 orthonormal with
% first column a multiple of V0, and H is JMIN+1 by JMIN Hessenberg.
%
% If an eigenvalue if H(1:j,1:j) is an eigenvalue of A
% within the required tolerance TOL then the Schurform
% A*Qschur=Qschur*Rschur is expanded and the Arnoldi factorization
% (A-tau)*V(:,1:j)=V(:,1:j+1)*H(1:j+1,1:j) is deflated.
% Returns if size(Qschur,2) = NSELECT or size(V,2) = JMIN+1
% (A-tau)*V(:,1:JMIN)=V*H+Qschur*E, Qschur'*V=0
% Coded November 5, 1998, G. Sleijpen
global Qschur Rschur
k=size(Qschur,2); [n,j]=size(v);
if ischar(tau), tau=0; end
H=zeros(1,0); V=zeros(n,0); E=[];
j=0; nr=norm(v);
while j<jmin & k<nselect & j+k<n
if nr>=tol
v=v/nr; V=[V,v]; j=j+1;
Av=MV(v);
end
if j==0
H=zeros(1,0); j=1;
nr=0; while nr==0, v=RepGS(Qschur,rand(n,1)); nr=norm(v); end
v=v/nr; V=v; Av=MV(v);
end
if tau~=0; Av=Av-tau*v; end, [v,e] = RepGS(Qschur,Av,0);
if k==0, E=zeros(0,j); else, E = [E,e(1:k,1)]; end
[v,y] = RepGS(V,v,0); H = [H,y(1:j,1)];
nr = norm(v); H = [H;zeros(1,j-1),nr];
[Q,U,H1] = DeflateHess(full(H),tol);
j=size(U,2); l=size(Q,2);
if l>0 %--- expand Schur form ------
Qschur=[Qschur,V*Q];
Rschur=[Rschur,E*Q; zeros(l,k),H1(1:l,1:l)+tau*eye(l)]; k=k+l;
E=[E*U;H1(1:l,l+1:l+j)];
if j>0, V=V*U; H=H1(l+1:l+j+1,l+1:l+j);
else, V=zeros(n,0); H=zeros(1,0); end
end
end % while
if nr>=tol
v=v/nr; V=[V,v];
end
return
%----------------------------------------------------------------------
function [Q,U,H]=DeflateHess(H,tol)
% H_in*[Q,U]=[Q,U]*H_out such that H_out(K,K) upper triangular
% where K=1:SIZE(Q,2) and ABS(Q(end,2)*H_in(j+1,j))<TOL, j=SIZE(H,2),
[j1,j]=size(H);
if j1==j, [Q,H]=schur(H); U=zeros(j,0); return, end
nr=H(j+1,j);
U=eye(j); i=1; J=i:j;
for l=1:j
[X,Lambda]=eig(H(J,J));
I=find(abs(X(size(X,1),:)*nr)<tol);
if isempty(I), break, end
q=X(:,I(1)); q=q/norm(q);
q(1,1)=q(1,1)+sign(q(1,1)); q=q/norm(q);
H(:,J)=H(:,J)-(2*H(:,J)*q)*q';
H(J,:)=H(J,:)-2*q*(q'*H(J,:));
U(:,J)=U(:,J)-(2*U(:,J)*q)*q';
i=i+1; J=i:j;
end
[Q,HH]=RestoreHess(H(i:j+1,J));
H(:,J)=H(:,J)*Q; H(J,:)=Q'*H(J,:);
U(:,J)=U(:,J)*Q;
Q=U(:,1:i-1); U=U(:,i:j);
return
%----------------------------------------------------------------------
function [Q,M]=RestoreHess(M)
[j1,j2]=size(M); Q=eye(j2);
for j=j1:-1:2
J=1:j-1;
q=M(j,J)'; q=q/norm(q);
q(j-1,1)=q(j-1,1)+sign(q(j-1,1));
q=q/norm(q);
M(:,J)=M(:,J)-2*(M(:,J)*q)*q';
M(J,:)=M(J,:)-2*q*q'*M(J,:);
Q(:,J)=Q(:,J)-2*Q(:,J)*q*q';
end
return
%%%=========== END ARNOLDI ============================================
function [V,W,R,E,M]=CheckForNullSpace(V,nselect,tau,tol,W,E,Rv);
% V,W orthonormal, A*V-tau*V=W*R+Qschur'*E
global Qschur Rschur
k=size(Rschur,1); j=size(V,2);
[W,R]=qr(W,0); E=E/Rv; R=R/Rv; M=W'*V;
%%% not accurate enough M=Rw'\(M/Rv);
if k>=nselect, return, end
CHECK=1; l=k;
[S,T,Z,Q]=qz(R,M); Z=Z';
while CHECK
I=SortEigPairVar(S,T,2); [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1));
s=abs(S(1,1)); t=min(abs(T(1,1)),1); CHECK=(s*sqrt(1-t*t)<tol);
if CHECK
V=V*Q; W=W*Z; E=E*Q;
u=V(:,1); [r,a]=RepGS(u,(W(:,1)-T(1,1)'*u)*S(1,1),0);
Qschur=[Qschur,u]; t=(T(1,1)'-a/S(1,1))*S(1,:);
Rschur=[Rschur,E(:,1);zeros(1,k),tau+t(1,1)]; k=k+1;
J=[2:j]; j=j-1;
V=V(:,J); W=W(:,J); E=[E(:,J);t(1,J)]; s=S(1,J)/S(1,1);
R=S(J,J); M=T(J,J); Q=eye(j); Z=eye(j);
s=s/R; nrs=norm(r)*norm(s);
if nrs>=tol,
W=W+r*s; M=M+s'*(r'*V);
if nrs^2>eps, [W,R0]=qr(W,0); R=R0*R; M=R0'\M; end
end
S=R; T=M;
CHECK=(k<nselect & j>0);
end
end
return
%===========================================================================
%======= POSTPROCESSING ====================================================
%===========================================================================
function Refine(V,gamma);
if gamma==0, return, end
global Qschur Rschur
J=1:size(Rschur,1);
if gamma==1,
[V,R]=qr(V(:,J),0); W=MV(V); M=V'*W;
[U,Rschur]=schur(M);
[U,Rschur]=rsf2csf(U,Rschur); Qschur=V*U;
return
elseif gamma==2
[V,R]=qr(V,0); W=MV(V); M=V'*W;
[U,S]=schur(M); [U,S]=rsf2csf(U,S);
R=R*U; F=R'*R-S'*S;
[X,Lambda]=Jordan(S);
% Xinv=inv(X); D=sqrt(diag(Xinv*Xinv')); X=X*diag(D);
[d,I]=sort(abs(diag(X'*F*X)));
[U,S]=SwapSchur(U,S,I(J));
Qschur=V*U(:,J); Rschur=S(J,J);
end
return
%===========================================================================
function CheckSortSchur(sigma)
global Qschur Rschur
k=size(Rschur,1); if k==0, return, end
I=SortEig(diag(Rschur),sigma);
if ~min((1:k)'==I)
[U,Rschur]=SwapSchur(eye(k),Rschur,I);
Qschur=Qschur*U;
end
return
%%%=========== COMPUTE SORTED JORDAN FORM ==================================
function [X,Jordan]=Jordan(S)
% [X,J]=JORDAN(S)
% For S k by k upper triangular matrix with ordered diagonal elements,
% JORDAN computes the Jordan decomposition.
% X is a k by k matrix of vectors spanning invariant spaces.
% If J(i,i)=J(i+1,i+1) then X(:,i)'*X(:,i+1)=0.
% J is a k by k matrix, J is Jordan such that S*X=X*J.
% diag(J)=diag(S) are the eigenvalues
% coded by Gerard Sleijpen, Januari 14, 1998
k=size(S,1); X=zeros(k);
if k==0, Jordan=[]; return, end
%%% accepted separation between eigenvalues:
delta=2*sqrt(eps)*norm(S,inf); delta=max(delta,10*eps);
T=eye(k); s=diag(S); Jordan=diag(s);
for i=1:k
I=[1:i]; e=zeros(i,1); e(i,1)=1;
C=S(I,I)-s(i,1)*T(I,I); C(i,i)=1;
j=i-1; q=[]; jj=0;
while j>0
if abs(C(j,j))<delta, jj=jj+1; j=j-1; else, j=0; end
end
q=X(I,i-jj:i-1);
C=[C,T(I,I)*q;q',zeros(jj)];
q=C\[e;zeros(jj,1)]; nrm=norm(q(I,1));
Jordan(i-jj:i-1,i)=-q(i+1:i+jj,1)/nrm;
X(I,i)=q(I,1)/nrm;
end
return
%========== OUTPUT =========================================================
function varargout=output(history,X,Lambda)
global Qschur Rschur
if nargout == 1, varargout{1}=diag(Rschur); return, end
if nargout > 2, varargout{nargout}=history; end
if nargout > 3, varargout{3} = Qschur; varargout{4} = Rschur; end
if nargout < 4 & size(X,2)<2
varargout{1}=Qschur; varargout{2}=Rschur; return
else
varargout{1}=X; varargout{2}=Lambda;
end
return
%===========================================================================
%===== UPDATE PRECONDITIONED SCHUR VECTORS =================================
%===========================================================================
function solved=UpdateMinv(u,solved)
global Qschur PinvQ Pinv_u Pu L_precond
if ~isempty(L_precond)
if ~solved, Pinv_u=SolvePrecond(u); end
Pu=[[Pu;u'*PinvQ],Qschur'*Pinv_u];
PinvQ=[PinvQ,Pinv_u];
solved=0;
end
return
%===========================================================================
%===== SOLVE CORRECTION EQUATION ===========================================
%===========================================================================
function t=Solve_pce(theta,u,r,lsolver,par,nit)
global Qschur PinvQ Pinv_u Pu L_precond
switch lsolver
case 'exact'
t = exact(theta,[Qschur,u],r);
case 'iluexact'
t = iluexact(theta,[Qschur,u],r);
case {'gmres','bicgstab','olsen'}
if isempty(L_precond) %%% no preconditioning
t = feval(lsolver,theta,...
[Qschur,u],[Qschur,u],1,r,spar(par,nit));
else %%% solve left preconditioned system
%%% compute vectors and matrices for skew projection
Pinv_u=SolvePrecond(u);
mu=[Pu,Qschur'*Pinv_u;u'*PinvQ,u'*Pinv_u];
%%% precondion and project r
r=SolvePrecond(r);
r=SkewProj([Qschur,u],[PinvQ,Pinv_u],mu,r);
%%% solve preconditioned system
t = feval(lsolver,theta,...
[Qschur,u],[PinvQ,Pinv_u],mu,r,spar(par,nit));
end
case {'cg','minres','symmlq'}
if isempty(L_precond) %%% no preconditioning
t = feval(lsolver,theta,...
[Qschur,u],[Qschur,u],1,r,spar(par,nit));
else %%% solve two-sided expl. precond. system
%%% compute vectors and matrices for skew projection
Pinv_u=SolvePrecond(u,'L');
mu=[Pu,Qschur'*Pinv_u;u'*PinvQ,u'*Pinv_u];
%%% precondion and project r
r=SolvePrecond(r,'L');
r=SkewProj([Qschur,u],[PinvQ,Pinv_u],mu,r);
%%% solve preconditioned system
t = feval(lsolver,theta,...
[Qschur,u],[PinvQ,Pinv_u],mu,r,spar(par,nit));
%%% "unprecondition" solution
t=SkewProj([PinvQ,Pinv_u],[Qschur,u],mu,t);
t=SolvePrecond(t,'U');
end
end
return
%=======================================================================
%======= LINEAR SOLVERS ================================================
%=======================================================================
function x = exact(theta,Q,r)
global A_operator
[n,k]=size(Q); [n,l]=size(r);
if ischar(A_operator)
[x,xtol]=bicgstab(theta,Q,Q,1,r,[5.0e-14/norm(r),200,4]);
return
end
x = [A_operator-theta*speye(n,n),Q;Q',zeros(k,k)]\[r;zeros(k,l)];
x = x(1:n,1:l);
return
%----------------------------------------------------------------------
function x = iluexact(theta,Q,r)
global L_precond U_precond
[n,k]=size(Q); [n,l]=size(r);
y = L_precond\[r,Q];
x = [U_precond,y(:,l+1:k+1);Q',zeros(k,k)]\[y(:,1:l);zeros(k,l)];
x = x(1:n,1:l);
return
%----------------------------------------------------------------------
function r = olsen(theta,Q,Z,M,r,par)
return
%
%======= Iterative methods =============================================
%
function x = bicgstab(theta,Q,Z,M,r,par)
% BiCGstab(ell)
% [x,rnrm] = bicgstab(theta,Q,Z,M,r,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=r
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% This function is specialized for use in JDQZ.
% integer nmv: number of matrix multiplications
% rnrm: relative residual norm
%
% par=[tol,mxmv,ell] where
% integer m: max number of iteration steps
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: ETNA
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization --
%
tol=par(1); max_it=par(2); l=par(3); n=size(r,1);
rnrm=1; nmv=0;
if max_it==0 | tol>=1, x=r; return, end
rnrm=norm(r); snrm=rnrm; tol=tol*rnrm;
sigma=1; omega=1;
x=zeros(n,1); u=zeros(n,1); tr=r;
% hist=rnrm;
% -- Iteration loop
while (rnrm > tol) & (nmv <= max_it)
sigma=-omega*sigma;
for j = 1:l,
rho=tr'*r(:,j); bet=rho/sigma;
u=r-bet*u;
%%%%%% u(:,j+1)=Atilde*u(:,j)
u(:,j+1)=mvp(theta,Q,Z,M,u(:,j));
sigma=tr'*u(:,j+1); alp=rho/sigma;
x=x+alp*u(:,1);
r=r-alp*u(:,2:j+1);
%%%%%% r(:,j+1)=Atilde*r(:,j)
r(:,j+1)=mvp(theta,Q,Z,M,r(:,j));
end
gamma=r(:,2:l+1)\r(:,1); omega=gamma(l,1);
x=x+r*[gamma;0]; u=u*[1;-gamma]; r=r*[1;-gamma];
rnrm = norm(r); nmv = nmv+2*l;
% hist=[hist,rnrm];
end
% figure(3),
% plot([0:length(hist)-1]*2*l,log10(hist/snrm),'-*'),
% drawnow,
rnrm = rnrm/snrm;
return
%----------------------------------------------------------------------
function v = gmres(theta,Q,Z,M,v,par)
% GMRES
% [x,rnrm] = gmres(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Saad
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); n = size(v,1); max_it=min(par(2),n);
rnrm = 1; nmv=0;
if max_it==0 | tol>=1, return, end
H = zeros(max_it +1,max_it); Rot=[ones(1,max_it);zeros(1,max_it)];
rnrm = norm(v); v = v/rnrm; V = [v];
tol = tol * rnrm; snrm = rnrm;
y = [ rnrm ; zeros(max_it,1) ];
j=0; % hist=rnrm;
while (nmv < max_it) & (rnrm > tol),
j=j+1; nmv=nmv+1;
v=mvp(theta,Q,Z,M,v);
% [v, H(1:j+1,j)] = RepGS(V,v);
[v,h] = RepGS(V,v); H(1:size(h,1),j)=h;
V = [V, v];
for i = 1:j-1,
a = Rot(:,i);
H(i:i+1,j) = [a'; -a(2) a(1)]*H(i:i+1,j);
end
J=[j, j+1];
a=H(J,j);
if a(2) ~= 0
cs = norm(a);
a = a/cs; Rot(:,j) = a;
H(J,j) = [cs; 0];
y(J) = [a'; -a(2) a(1)]*y(J);
end
rnrm = abs(y(j+1));
% hist=[hist,rnrm];
end
% figure(3)
% plot([0:length(hist)-1],log10(hist/snrm),'-*')
% drawnow, pause
J=[1:j];
v = V(:,J)*(H(J,J)\y(J));
rnrm = rnrm/snrm;
return
%======================================================================
%========== BASIC OPERATIONS ==========================================
%======================================================================
function v=MV(v)
global A_operator nm_operations
if ischar(A_operator)
v = feval(A_operator,v);
else
v = A_operator*v;
end
nm_operations = nm_operations+1;
return
%----------------------------------------------------------------------
function v=mvp(theta,Q,Z,M,v)
% v=Atilde*v
v = MV(v) - theta*v;
v = SolvePrecond(v);
v = SkewProj(Q,Z,M,v);
return
%----------------------------------------------------------------------
function u=SolvePrecond(u,flag);
global L_precond U_precond
if isempty(L_precond), return, end
if nargin<2
if ischar(L_precond)
if ischar(U_precond)
u=feval(L_precond,u,U_precond);
elseif isempty(U_precond)
u=feval(L_precond,u);
else
u=feval(L_precond,u,'L'); u=feval(L_precond,u,'U');
end
else
u=U_precond\(L_precond\u);
end
else
switch flag
case 'U'
if ischar(L_precond), u=feval(L_precond,u,'U'); else, u=U_precond\u; end
case 'L'
if ischar(L_precond), u=feval(L_precond,u,'L'); else, u=L_precond\u; end
end
end
return
%----------------------------------------------------------------------
function r=SkewProj(Q,Z,M,r);
if ~isempty(Q),
r=r-Z*(M\(Q'*r));
end
return
%----------------------------------------------------------------------
function ppar=spar(par,nit)
% Changes par=[tol(:),max_it,ell] to
% ppap=[TOL,max_it,ell] where
% if lenght(tol)==1
% TOL=tol
% else
% red=tol(end)/told(end-1); tole=tol(end);
% tol=[tol,red*tole,red^2*tole,red^3*tole,...]
% TOL=tol(nit);
% end
k=size(par,2)-2;
ppar=par(1,k:k+2);
if k>1
if nit>k
ppar(1,1)=par(1,k)*((par(1,k)/par(1,k-1))^(nit-k));
else
ppar(1,1)=par(1,max(nit,1));
end
end
ppar(1,1)=max(ppar(1,1),1.0e-8);
return
%
%======= Iterative methods for symmetric systems =======================
%
function x = cg(theta,Q,Z,M,r,par)
% CG
% [x,rnrm] = cg(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Hestenes and Stiefel
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); max_it=par(2); n = size(r,1);
rnrm = 1; nmv=0;
b=r;
if max_it ==0 | tol>=1, x=r; return, end
x= zeros(n,1); u=zeros(n,1);
rho = norm(r); snrm = rho; rho = rho*rho;
tol = tol*tol*rho;
sigma=1;
while ( rho > tol & nmv < max_it )
beta=rho/sigma;
u=r-beta*u;
y=smvp(theta,Q,Z,M,u); nmv=nmv+1;
sigma=y'*r; alpha=rho/sigma;
x=x+alpha*u;
r=r-alpha*y; sigma=-rho; rho=r'*r;
end % while
rnrm=sqrt(rho)/snrm;
return
%----------------------------------------------------------------------
function x = minres(theta,Q,Z,M,r,par)
% MINRES
% [x,rnrm] = minres(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Paige and Saunders
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); max_it=par(2); n = size(r,1);
rnrm = 1; nmv=0;
if max_it ==0 | tol>=1, x=r; return, end
x=zeros(n,1); rho = norm(r); v = r/rho; snrm=rho;
beta = 0; v_old = zeros(n,1);
beta_t = 0; c = -1; s = 0;
w = zeros(n,1); www = v;
tol=tol*rho;
while ( nmv < max_it & abs(rho) > tol )
wv =smvp(theta,Q,Z,M,v)-beta*v_old; nmv=nmv+1;
alpha = v'*wv; wv = wv-alpha*v;
beta = norm(wv); v_old = v; v = wv/beta;
l1 = s*alpha - c*beta_t; l2 = s*beta;
alpha_t = -s*beta_t - c*alpha; beta_t = c*beta;
l0 = sqrt(alpha_t*alpha_t+beta*beta);
c = alpha_t/l0; s = beta/l0;
ww = www - l1*w; www = v - l2*w; w = ww/l0;
x = x + (rho*c)*w; rho = s*rho;
end % while
rnrm=abs(rho)/snrm;
return
%----------------------------------------------------------------------
function x = symmlq(theta,Q,Z,M,r,par)
% SYMMLQ
% [x,rnrm] = symmlq(theta,Q,Z,M,b,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*M^(-1)*Q')*(U\L\(A-theta)).
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Paige and Saunders
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
tol=par(1); max_it=par(2); n = size(r,1);
rnrm = 1; nmv=0;
if max_it ==0 | tol>=1, x=r; return, end
x=zeros(n,1); rho = norm(r); v = r/rho; snrm=rho;
beta = 0; beta_t = 0; c = -1; s = 0;
v_old = zeros(n,1); w = v; gtt = rho; g = 0;
tol=tol*rho;
while ( nmv < max_it & rho > tol )
wv = smvp(theta,Q,Z,M,v) - beta*v_old; nmv=nmv+1;
alpha = v'*wv; wv = wv - alpha*v;
beta = norm(wv); v_old = v; v = wv/beta;
l1 = s*alpha - c*beta_t; l2 = s*beta;
alpha_t = -s*beta_t - c*alpha; beta_t = c*beta;
l0 = sqrt(alpha_t*alpha_t+beta*beta);
c = alpha_t/l0; s = beta/l0;
gt = gtt - l1*g; gtt = -l2*g; g = gt/l0;
rho = sqrt(gt*gt+gtt*gtt);
x = x + (g*c)*w + (g*s)*v;
w = s*w - c*v;
end % while
rnrm=rho/snrm;
return
%----------------------------------------------------------------------
function v=smvp(theta,Q,Z,M,v)
% v=Atilde*v
v = SkewProj(Z,Q,M,v);
v = SolvePrecond(v,'U');
v = MV(v) - theta*v;
v = SolvePrecond(v,'L');
v = SkewProj(Q,Z,M,v);
return
%=======================================================================
%========== Orthogonalisation ==========================================
%=======================================================================
function [v,y]=RepGS(V,v,gamma)
% [v,y]=REP_GS(V,w)
% If V orthonormal then [V,v] orthonormal and w=[V,v]*y;
% If size(V,2)=size(V,1) then w=V*y;
%
% The orthonormalisation uses repeated Gram-Schmidt
% with the Daniel-Gragg-Kaufman-Stewart (DGKS) criterion.
%
% [v,y]=REP_GS(V,w,GAMMA)
% GAMMA=1 (default) same as [v,y]=REP_GS(V,w)
% GAMMA=0, V'*v=zeros(size(V,2)) and w = V*y+v (v is not normalized).
% coded by Gerard Sleijpen, August 28, 1998
if nargin < 3, gamma=1; end
[n,d]=size(V);
if size(v,2)==0, y=zeros(d,0); return, end
nr_o=norm(v); nr=eps*nr_o; y=zeros(d,1);
if d==0
if gamma, v=v/nr_o; y=nr_o; else, y=zeros(0,1); end, return
end
y=V'*v; v=v-V*y; nr_n=norm(v); ort=0;
while (nr_n<0.5*nr_o & nr_n > nr)
s=V'*v; v=v-V*s; y=y+s;
nr_o=nr_n; nr_n=norm(v); ort=ort+1;
end
if nr_n <= nr, if ort>2, disp(' dependence! '), end
if gamma % and size allows, expand with a random vector
if d<n, v=RepGS(V,rand(n,1)); y=[y;0]; else, v=zeros(n,0); end
else, v=0*v; end
elseif gamma, v=v/nr_n; y=[y;nr_n]; end
return
%=======================================================================
%============== Sorts Schur form =======================================
%=======================================================================
function [Q,S]=SortSchur(A,sigma,gamma,kk)
%[Q,S]=SortSchur(A,sigma)
% A*Q=Q*S with diag(S) in order prescribed by sigma.
% If sigma is a scalar then with increasing distance from sigma.
% If sigma is string then according to string
% ('LM' with decreasing modulus, etc)
%
%[Q,S]=SortSchur(A,sigma,gamma,kk)
% if gamma==0, sorts only for the leading element
% else, sorts for the kk leading elements
l=size(A,1);
if l<2, Q=1;S=A; return,
elseif nargin==2, kk=l-1;
elseif gamma, kk=min(kk,l-1);
else, kk=1; sigma=sigma(1,:); end
%%%------ compute schur form -------------
[Q,S]=schur(A); %% A*Q=Q*S, Q'*Q=eye(size(A));
%%% transform real schur form to complex schur form
if norm(tril(S,-1),1)>0, [Q,S]=rsf2csf(Q,S); end
%%%------ find order eigenvalues ---------------
I = SortEig(diag(S),sigma);
%%%------ reorder schur form ----------------
[Q,S] = SwapSchur(Q,S,I(1:kk));
return
%----------------------------------------------------------------------
function I=SortEig(t,sigma);
%I=SortEig(T,SIGMA) sorts the indices of T.
%
% T is a vector of scalars,
% SIGMA is a string or a vector of scalars.
% I is a permutation of (1:LENGTH(T))' such that:
% if SIGMA is a vector of scalars then
% for K=1,2,...,LENGTH(T) with KK = MIN(K,SIZE(SIGMA,1))
% ABS( T(I(K))-SIGMA(KK) ) <= ABS( T(I(J))-SIGMA(KK) )
% SIGMA(kk)=INF: ABS( T(I(K)) ) >= ABS( T(I(J)) )
% for all J >= K
if ischar(sigma)
switch sigma
case 'LM'
[s,I]=sort(-abs(t));
case 'SM'
[s,I]=sort(abs(t));
case 'LR';
[s,I]=sort(-real(t));
case 'SR';
[s,I]=sort(real(t));
case 'BE';
[s,I]=sort(real(t)); I=twistdim(I,1);
end
else
[s,I]=sort(abs(t-sigma(1,1)));
ll=min(size(sigma,1),size(t,1)-1);
for j=2:ll
if sigma(j,1)==inf
[s,J]=sort(abs(t(I(j:end)))); J=flipdim(J,1);
else
[s,J]=sort(abs(t(I(j:end))-sigma(j,1)));
end
I=[I(1:j-1);I(J+j-1)];
end
end
return
%----------------------------------------------------------------------
function t=twistdim(t,k)
d=size(t,k); J=1:d; J0=zeros(1,2*d);
J0(1,2*J)=J; J0(1,2*J-1)=flipdim(J,2); I=J0(1,J);
if k==1, t=t(I,:); else, t=t(:,I); end
return
%----------------------------------------------------------------------
function [Q,S]=SwapSchur(Q,S,I)
% [Q,S]=SwapSchur(QQ,SS,P)
% QQ and SS are square matrices of size K by K
% P is the first part of a permutation of (1:K)'.
%
% If M = QQ*SS*QQ' and QQ'*QQ = EYE(K), SS upper triangular
% then M*Q = Q*S with Q'*Q = EYE(K), S upper triangular
% and D(1:LENGTH(P))=DD(P) where D=diag(S), DD=diag(SS)
%
% Computations uses Givens rotations.
kk=min(length(I),size(S,1)-1);
j=1; while (j<=kk & j==I(j)), j=j+1; end;
while j<=kk
i=I(j);
for k=i-1:-1:j
q = [S(k,k)-S(k+1,k+1),S(k,k+1)];
if q(1) ~= 0
q = q/norm(q);
G = [[q(2);-q(1)],q'];
J = [k,k+1];
Q(:,J) = Q(:,J)*G;
S(:,J) = S(:,J)*G;
S(J,:) = G'*S(J,:);
end
S(k+1,k) = 0;
end
I=I+(I<i);
j=j+1; while (j<=kk & j==I(j)), j=j+1; end
end
return
%----------------------------------------------------------------------
function [Q,Z,S,T]=SortQZ(A,B,sigma,gamma,kk)
%
% [Q,Z,S,T]=SORTQZ(A,B,SIGMA)
% A and B are K by K matrices, SIGMA is a complex scalar or string.
% SORTQZ computes the qz-decomposition of (A,B) with prescribed
% ordering: A*Q=Z*S, B*Q=Z*T;
% Q and Z are K by K unitary,
% S and T are K by K upper triangular.
% The ordering is as follows:
% (DAIG(S),DAIG(T)) are the eigenpairs of (A,B) ordered
% as prescribed by SIGMA.
%
% coded by Gerard Sleijpen, version Januari 12, 1998
l=size(A,1);
if l<2; Q=1; Z=1; S=A; T=B; return
elseif nargin==3, kk=l-1;
elseif gamma, kk=min(kk,l-1);
else, kk=1; sigma=sigma(1,:); end
%%%------ compute qz form ----------------
[S,T,Z,Q]=qz(A,B); Z=Z'; S=triu(S);
%%%------ sort eigenvalues ---------------
I=SortEigPair(diag(S),diag(T),sigma);
%%%------ sort qz form -------------------
[Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1:kk));
return
%----------------------------------------------------------------------
function I=SortEigPair(s,t,sigma)
% I=SortEigPair(S,T,SIGMA)
% S is a complex K-vectors, T a positive real K-vector
% SIGMA is a string or a vector of pairs of complex scalars.
% SortEigPair gives the index set I that sorts the pairs (S,T).
%
% If SIGMA is a pair of scalars then the sorting is
% with increasing "chordal distance" w.r.t. SIGMA.
%
% The chordal distance D between a pair A and a pair B is defined as follows.
% Scale A by a scalar F such that NORM(F*A)=1 and F*A(2)>=0,
% scale B by a scalar G such that NORM(G*B)=1 and G*B(2)>=0,
% then D(A,B)=ABS((F*A)*RROT(G*B)) where RROT(alpha,beta)=(beta,-alpha)
% coded by Gerard Sleijpen, version Januari 14, 1998
n=sign(t); n=n+(n==0); t=abs(t./n); s=s./n;
if ischar(sigma)
switch sigma
case {'LM','SM'}
case {'LR','SR','BE'}
s=real(s);
end
[s,I]=sort((-t./sqrt(s.*conj(s)+t.*t)));
switch sigma
case {'LM','LR'}
I=flipdim(I,1);
case {'SM','SR'}
case 'BE'
I=twistdim(I,1);
end
else
n=sqrt(sigma.*conj(sigma)+1); ll=size(sigma,1);
tau=[ones(ll,1)./n,-sigma./n]; tau=tau.';
n=sqrt(s.*conj(s)+t.*t); s=[s./n,t./n];
[t,I]=sort(abs(s*tau(:,1)));
ll = min(ll,size(I,1)-1);
for j=2:ll
[t,J]=sort(abs(s(I(j:end),:)*tau(:,j)));
I=[I(1:j-1);I(J+j-1)];
end
end
return
%----------------------------------------------------------------------
function [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I)
% [Q,Z,S,T]=SwapQZ(QQ,ZZ,SS,TT,P)
% QQ and ZZ are K by K unitary, SS and TT are K by K uper triangular.
% P is the first part of a permutation of (1:K)'.
%
% Then Q and Z are K by K unitary, S and T are K by K upper triangular,
% such that, for A = ZZ*SS*QQ' and B = ZZ*T*QQ', we have
% A*Q = Z*S, B*Q = Z*T and LAMBDA(1:LENGTH(P))=LLAMBDA(P) where
% LAMBDA=DIAG(S)./DIAGg(T) and LLAMBDA=DIAG(SS)./DIAG(TT).
%
% Computation uses Givens rotations.
%
% coded by Gerard Sleijpen, version October 12, 1998
kk=min(length(I),size(S,1)-1);
j=1; while (j<=kk & j==I(j)), j=j+1; end
while j<=kk
i=I(j);
for k = i-1:-1:j,
%%% i>j, move ith eigenvalue to position j
J = [k,k+1];
q = T(k+1,k+1)*S(k,J) - S(k+1,k+1)*T(k,J);
if q(1) ~= 0
q = q/norm(q);
G = [[q(2);-q(1)],q'];
Q(:,J) = Q(:,J)*G;
S(:,J) = S(:,J)*G; T(:,J) = T(:,J)*G;
end
if abs(S(k+1,k))<abs(T(k+1,k)), q=T(J,k); else q=S(J,k); end
if q(2) ~= 0
q=q/norm(q);
G = [q';q(2),-q(1)];
Z(:,J) = Z(:,J)*G';
S(J,:) = G*S(J,:); T(J,:) = G*T(J,:);
end
T(k+1,k) = 0;
S(k+1,k) = 0;
end
I=I+(I<i);
j=j+1; while (j<=kk & j==I(j)), j=j+1; end
end
return
%=======================================================================
%======= SET PARAMETERS ================================================
%=======================================================================
function [n,nselect,sigma,SCHUR,...
jmin,jmax,tol,maxit,V,INTERIOR,SHOW,PAIRS,JDV,OLD,...
lsolver,par] = ReadOptions(varargin)
% Read options and set defaults
global A_operator L_precond U_precond
A_operator = varargin{1};
%%% determine dimension
if ischar(A_operator)
n=-1;
if exist(A_operator) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',A_operator);
errordlg(msg,'MATRIX'),n=-2;
end
if n==-1, eval('n=feval(A_operator,[],''dimension'');','n=-1;'), end
else
[n,n] = size(A_operator);
if any(size(A_operator) ~= n)
msg=sprintf(' The operator must be a square matrix or a string. ');
errordlg(msg,'MATRIX'),n=-3;
end
end
%%% defaults
SCHUR = 0;
jmin = -1;
jmax = -1;
p0 = 5; % jmin=nselect+p0
p1 = 5; % jmax=jmin+p1
tol = 1e-8;
maxit = 200;
V = zeros(0,0);
INTERIOR= 0;
SHOW = 0;
PAIRS = 0;
JDV = 0;
OLD = 1e-4;
lsolver = 'gmres';
ls_maxit= 200;
ls_tol = [1,0.7];
ell = 4;
par = [ls_tol,ls_maxit,ell];
options=[]; sigma=[]; varg=[]; L_precond = []; U_precond = [];
for j = 2:nargin
if isstruct(varargin{j})
options = varargin{j};
elseif ischar(varargin{j})
if length(varargin{j}) == 2 & isempty(sigma)
sigma = varargin{j};
elseif isempty(L_precond)
L_precond=varargin{j};
elseif isempty(U_precond)
U_precond=varargin{j};
end
elseif length(varargin{j}) == 1
varg = [varg,varargin{j}];
elseif min(size(varargin{j}))==1
sigma = varargin{j}; if size(sigma,1)==1, sigma=conj(sigma'); end
elseif isempty(L_precond)
L_precond=varargin{j};
elseif isempty(U_precond)
U_precond=varargin{j};
end
end
if ischar(sigma)
sigma0=sigma; sigma=upper(sigma);
switch sigma
case {'LM','LR','SR','BE','SM'}
otherwise
if exist(sigma0)==2 & isempty(L_precond)
ok=1; eval('v=feval(sigma,zeros(n,1));','ok=0')
if ok, L_precond=sigma0; sigma=[]; end
end
end
end
[s,I]=sort(varg); I=flipdim(I,2);
J=[]; j=0;
while j<length(varg)
j=j+1; jj=I(j); s=varg(jj);
if isreal(s) & (s == fix(s)) & (s > 0)
if n==-1
n=s; eval('v=feval(A_operator,zeros(n,0));','n=-1;')
if n>-1, J=[J,jj]; end
end
else
if isempty(sigma), sigma=s;
elseif ischar(sigma) & isempty(L_precond)
ok=1; eval('v=feval(sigma0,zeros(n,1));','ok=0')
if ok, L_precond=sigma0; sigma=s; end
end, J=[J,jj];
end
end
varg(J)=[];
if n==-1,
msg1=sprintf(' Cannot find the dimension of ''%s''. \n',A_operator);
msg2=sprintf(' Put the dimension n in the parameter list: \n like');
msg3=sprintf('\t\n\n\t jdqr(''%s'',n,..), \n\n',A_operator);
msg4=sprintf(' or let\n\n\t n = %s(',A_operator);
msg5=sprintf('[],''dimension'')\n\n give n.');
msg=[msg1,msg2,msg3,msg4,msg5];
errordlg(msg,'MATRIX')
end
nselect=[];
if n<2, return, end
if length(varg) == 1
nselect=min(n,varg);
elseif length(varg)>1
if isempty(sigma), sigma=varg(end); varg(end)=[]; end
nselect=min(n,min(varg));
end
fopts = []; if ~isempty(options), fopts=fields(options); end
if isempty(L_precond)
if strmatch('Precond',fopts)
L_precond = options.Precond;
elseif strmatch('L_Precond',fopts)
L_precond = options.L_Precond;
end
end
if isempty(U_precond) & strmatch('U_Precond',fopts)
U_precond = options.U_Precond;
end
if isempty(L_precond), ls_tol = [0.7,0.49]; end
if ~isempty(L_precond) & ischar(L_precond)
if exist(L_precond) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',L_precond); n=-1;
elseif ~isempty(U_precond) & ~ischar(U_precond) & n>0
msg=sprintf(' L and U should both be strings or matrices'); n=-1;
elseif strcmp(L_precond,U_precond)
eval('v=feval(L_precond,zeros(n,1),''L'');','n=-1;')
eval('v=feval(L_precond,zeros(n,1),''U'');','n=-1;')
if n<0
msg='L and U use the same M-file';
msg1=sprintf(' %s.m \n',L_precond);
msg2='Therefore L and U are called';
msg3=sprintf(' as\n\n\tw=%s(v,''L'')',L_precond);
msg4=sprintf(' \n\tw=%s(v,''U'')\n\n',L_precond);
msg5=sprintf('Check the dimensions and/or\n');
msg6=sprintf('put this "switch" in %s.m.',L_precond);
msg=[msg,msg1,msg2,msg3,msg4,msg5,msg6];
else
U_precond=0;
end
elseif ischar(A_operator) & strcmp(A_operator,L_precond)
U_precond='preconditioner';
eval('v=feval(L_precond,zeros(n,1),U_precond);','n=-1;')
if n<0
msg='Preconditioner and matrix use the same M-file';
msg1=sprintf(' %s. \n',L_precond);
msg2='Therefore the preconditioner is called';
msg3=sprintf(' as\n\n\tw=%s(v,''preconditioner'')\n\n',L_precond);
msg4='Put this "switch" in the M-file.';
msg=[msg,msg1,msg2,msg3,msg4];
end
else
eval('v=feval(L_precond,zeros(n,1));','n=-1')
if n<0
msg=sprintf('''%s'' should produce %i-vectors',L_precond,n);
end
end
end
Ud=1;
if ~isempty(L_precond) & ~ischar(L_precond) & n>0
if ~isempty(U_precond) & ischar(U_precond)
msg=sprintf(' L and U should both be strings or matrices'); n=-1;
elseif ~isempty(U_precond)
if ~min([n,n]==size(L_precond) & [n,n]==size(U_precond))
msg=sprintf('Both L and U should be %iX%i.',n,n); n=-1;
end
elseif min([n,n]==size(L_precond))
U_precond=speye(n); Ud=0;
elseif min([n,2*n]==size(L_precond))
U_precond=L_precond(:,n+1:2*n); L_precond=L_precond(:,1:n);
else
msg=sprintf('The preconditioning matrix\n');
msg2=sprintf('should be %iX%i or %ix%i ([L,U]).\n',n,n,n,2*n);
msg=[msg,msg2]; n=-1;
end
end
if n<0, errordlg(msg,'PRECONDITIONER'), return, end
ls_tol0=ls_tol;
if strmatch('Tol',fopts), tol = options.Tol; end
if isempty(nselect), nselect=min(n,5); end
if strmatch('jmin',fopts), jmin=min(n,options.jmin); end
if strmatch('jmax',fopts)
jmax=min(n,options.jmax);
if jmin<0, jmin=max(1,jmax-p1); end
else
if jmin<0, jmin=min(n,nselect+p0); end
jmax=min(n,jmin+p1);
end
if strmatch('MaxIt',fopts), maxit = abs(options.MaxIt); end
if strmatch('v0',fopts);
V = options.v0;
[m,d]=size(V);
if m~=n | d==0
if m>n, V = V(1:n,:); end
nrV=norm(V); if nrV>0, V=V/nrV; end
d=max(d,1);
V = [V; ones(n-m,d) +0.1*rand(n-m,d)];
end
else
V = ones(n,1) +0.1*rand(n,1); d=1;
end
if strmatch('TestSpace',fopts), INTERIOR = boolean(options.TestSpace,...
[INTERIOR,0,1,1.1,1.2],strvcat('standard','harmonic'));
end
if isempty(sigma)
if INTERIOR, sigma=0; else, sigma = 'LM'; end
elseif ischar(sigma)
switch sigma
case {'LM','LR','SR','BE'}
case {'SM'}
sigma=0;
otherwise
if INTERIOR, sigma=0; else, sigma='LM'; end
end
end
if strmatch('Schur',fopts), SCHUR = boolean(options.Schur,SCHUR); end
if strmatch('Disp',fopts), SHOW = boolean(options.Disp,[SHOW,2]); end
if strmatch('Pairs',fopts), PAIRS = boolean(options.Pairs,PAIRS); end
if strmatch('AvoidStag',fopts),JDV = boolean(options.AvoidStag,JDV); end
if strmatch('Track',fopts)
OLD = boolean(options.Track,[OLD,0,OLD,inf],strvcat('no','yes')); end
OLD=max(abs(OLD),10*tol);
if strmatch('LSolver',fopts), lsolver = lower(options.LSolver); end
switch lsolver
case {'exact'}
L_precond=[];
if ischar(A_operator)
msg=sprintf('The operator must be a matrix for ''exact''.');
msg=[msg,sprintf('\nDo you want to solve the correction equation')];
msg=[msg,sprintf('\naccurately with an iterative solver (BiCGstab)?')];
button=questdlg(msg,'Solving exactly','Yes','No','Yes');
if strcmp(button,'No'), n=-1; return, end
end
case {'iluexact'}
if ischar(L_precond)
msg=sprintf('The preconditioner must be matrices for ''iluexact''.');
errordlg(msg,'Solving with ''iluexact''')
n=-1; return
end
case {'olsen'}
case {'cg','minres','symmlq'}
ls_tol=1.0e-12;
case 'gmres'
ls_maxit=5;
case 'bicgstab'
ls_tol=1.0e-10;
otherwise
error(['Unknown method ''' lsolver '''.']);
end
if strmatch('LS_MaxIt',fopts), ls_maxit=abs(options.LS_MaxIt); end
if strmatch('LS_Tol',fopts), ls_tol=abs(options.LS_Tol); end
if strmatch('LS_ell',fopts), ell=round(abs(options.LS_ell)); end
par=[ls_tol,ls_maxit,ell];
if SHOW
fprintf('\n'),fprintf('PROBLEM\n')
if ischar(A_operator)
fprintf(' A: ''%s''\n',A_operator);
elseif issparse(A_operator)
fprintf(' A: [%ix%i sparse]\n',n,n);
else
fprintf(' A: [%ix%i double]\n',n,n);
end
fprintf(' dimension: %i\n',n);
fprintf(' nselect: %i\n\n',nselect);
fprintf('TARGET\n')
if ischar(sigma)
fprintf(' sigma: ''%s''',sigma)
else
Str=ShowLambda(sigma);
fprintf(' sigma: %s',Str)
end
fprintf('\n\n')
fprintf('OPTIONS\n');
fprintf(' Schur: %i\n',SCHUR);
fprintf(' Tol: %g\n',tol);
fprintf(' Disp: %i\n',SHOW);
fprintf(' jmin: %i\n',jmin);
fprintf(' jmax: %i\n',jmax);
fprintf(' MaxIt: %i\n',maxit);
fprintf(' v0: [%ix%i double]\n',size(V));
fprintf(' TestSpace: %g\n',INTERIOR);
fprintf(' Pairs: %i\n',PAIRS);
fprintf(' AvoidStag: %i\n',JDV);
fprintf(' Track: %g\n',OLD);
fprintf(' LSolver: ''%s''\n',lsolver);
switch lsolver
case {'exact','iluexact','olsen'}
case {'cg','minres','symmlq','gmres','bicgstab'}
if length(ls_tol)>1
fprintf(' LS_Tol: ['); fprintf(' %g',ls_tol); fprintf(' ]\n');
else
fprintf(' LS_Tol: %g\n',ls_tol);
end
fprintf(' LS_MaxIt: %i\n',ls_maxit);
end
if strcmp(lsolver,'bicgstab')
fprintf(' LS_ell: %i\n',ell);
end
if isempty(L_precond)
fprintf(' Precond: []\n');
else
StrL='Precond'; StrU='U precond'; Us='double'; Ls=Us; ok=0;
if issparse(L_precond), Ls='sparse'; end
if ~isempty(U_precond) & Ud, StrL='L precond'; ok=1;
if issparse(U_precond), Us='sparse'; end
end
if ischar(L_precond)
fprintf('%13s: ''%s''\n',StrL,L_precond);
if ok
if U_precond~=0 & ~strcmp(U_precond,'preconditioner')
fprintf('%13s: ''%s''\n',StrU,U_precond);
else
fprintf('%13s: ''%s''\n',StrU,L_precond);
end
end
else
fprintf('%13s: [%ix%i %s]\n',StrL,n,n,Ls);
if ok & Ud, fprintf('%13s: [%ix%i %s]\n',StrU,n,n,Us); end
end
end
fprintf('\n')
string1='%13s: ''%s'''; string2='\n\t %s';
switch INTERIOR
case 0
fprintf(string1,'TestSpace','Standard, W = V ')
fprintf(string2,'V W: V orthogonal')
fprintf(string2,'W=A*V')
case 1
fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V')
fprintf(string2,'V W: V and W orthogonal')
fprintf(string2,'AV-Q*E=W*R where AV=A*V-sigma*V and E=Q''*AV')
case 1.1
fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V')
fprintf(string2,'V W AV: V and W orthogonal')
fprintf(string2,'AV=A*V-sigma*V, AV-Q*Q''*AV=W*R')
case 1.2
fprintf(string1,'TestSpace','Harmonic, W = A*V - sigma*V')
fprintf(string2,'V W: W orthogonal')
fprintf(string2,'W=AV-Q*E where AV=A*V-sigma*V and E=Q''*AV')
otherwise
fprintf(string1,'TestSpace','Experimental')
end % switch INTERIOR
fprintf('\n\n')
end % if SHOW
if ischar(sigma) & INTERIOR >=1
msg1=sprintf('\n The choice sigma = ''%s'' does not match',sigma);
msg2=sprintf('\n the search for INTERIOR eigenvalues.');
msg3=sprintf('\n Specify a numerical value for sigma');
msg4=sprintf(',\n for instance, a value that is ');
switch sigma
case {'LM'}
% sigma='SM';
msg5=sprintf('absolute large.\n');
msg4=[msg4,msg5];
case {'LR'}
% sigma='SP'; % smallest positive real
msg5=sprintf('positive large.\n');
msg4=[msg4,msg5];
case {'SR'}
% sigma='LN'; % largest negative real
msg5=sprintf('negative and absolute large.\n');
msg4=[msg4,msg5];
case {'BE'}
% sigma='AS'; % alternating smallest pos., largest neg
msg4=sprintf('.\n');
end
msg=[msg1,msg2,msg3,msg4];
msg5=sprintf(' Do you want to continue with sigma=0?');
msg=[msg,msg5];
button=questdlg(msg,'Finding Interior Eigenvalues','Yes','No','Yes');
if strcmp(button,'Yes'), sigma=0, else, n=-1; end
end
return
%-------------------------------------------------------------------
function x = boolean(x,gamma,string)
%Y = BOOLEAN(X,GAMMA,STRING)
% GAMMA(1) is the default.
% If GAMMA is not specified, GAMMA = 0.
% STRING is a matrix of accepted strings.
% If STRING is not specified STRING = ['no ';'yes']
% STRING(I,:) and GAMMA(I) are accepted expressions for X
% If X=GAMMA(I) then Y=X. If X=STRING(I,:), then Y=GAMMA(I+1).
% For other values of X, Y=GAMMA(1);
if nargin < 2, gamma=0; end
if nargin < 3, string=strvcat('no','yes'); gamma=[gamma,0,1]; end
if ischar(x)
i=strmatch(lower(x),string,'exact');
if isempty(i),i=1; else, i=i+1; end, x=gamma(i);
elseif max((gamma-x)==0)
elseif gamma(end) == inf
else, x=gamma(1);
end
return
%-------------------------------------------------------------------
function possibilities
fprintf('\n')
fprintf('PROBLEM\n')
fprintf(' A: [ square matrix | string ]\n');
fprintf(' nselect: [ positive integer {5} ]\n\n');
fprintf('TARGET\n')
fprintf(' sigma: [ scalar | vector of scalars |\n');
fprintf(' ''LM'' | {''SM''} | ''LR'' | ''SR'' | ''BE'' ]\n\n');
fprintf('OPTIONS\n');
fprintf(' Schur: [ yes | {no} ]\n');
fprintf(' Tol: [ positive scalar {1e-8} ]\n');
fprintf(' Disp: [ yes | {no} | 2 ]\n');
fprintf(' jmin: [ positive integer {nselect+5} ]\n');
fprintf(' jmax: [ positive integer {jmin+5} ]\n');
fprintf(' MaxIt: [ positive integer {200} ]\n');
fprintf(' v0: [ size(A,1) by p vector of scalars {rand(size(A,1),1)} ]\n');
fprintf(' TestSpace: [ Standard | {Harmonic} ]\n');
fprintf(' Pairs: [ yes | {no} ]\n');
fprintf(' AvoidStag: [ yes | {no} ]\n');
fprintf(' Track: [ {yes} | no | non-negative scalar {1e-4} ]\n');
fprintf(' LSolver: [ {gmres} | bicgstab ]\n');
fprintf(' LS_Tol: [ row of positive scalars {[1,0.7]} ]\n');
fprintf(' LS_MaxIt: [ positive integer {5} ]\n');
fprintf(' LS_ell: [ positive integer {4} ]\n');
fprintf(' Precond: [ n by 2n matrix | string {identity} ]\n');
fprintf('\n')
return
%===========================================================================
%============= OUTPUT FUNCTIONS ============================================
%===========================================================================
function varargout=ShowLambda(lambda,kk)
for k=1:size(lambda,1);
if k>1, Str=[Str,sprintf('\n%15s','')]; else, Str=[]; end
rlambda=real(lambda(k,1)); ilambda=imag(lambda(k,1));
Str=[Str,sprintf(' %+11.4e',rlambda)];
if abs(ilambda)>100*eps*abs(rlambda)
if ilambda>0
Str=[Str,sprintf(' + %10.4ei',ilambda)];
else
Str=[Str,sprintf(' - %10.4ei',-ilambda)];
end
end
end
if nargout == 0
if nargin == 2
Str=[sprintf('\nlambda(%i) =',kk),Str];
else
Str=[sprintf('\nDetected eigenvalues:\n\n%15s',''),Str];
end
fprintf('%s\n',Str)
else
varargout{1}=Str;
end
return
%===========================================================================
function DispResult(s,nr,gamma)
if nargin<3, gamma=0; end
extra='';
if nr > 100*eps & gamma
extra=' norm > 100*eps !!! ';
end
if gamma<2 | nr>100*eps
fprintf('\n %35s: %0.5g\t%s',s,nr,extra)
end
return
%===========================================================================
function STATUS0=MovieTheta(n,nit,Lambda,jmin,tau,LOCKED,SHRINK)
% MovieTheta(n,nit,Lambda,jmin,tau,nr<t_tol,j==jmax);
global A_operator Rschur EigMATLAB CIRCLE MovieAxis M_STATUS
f=256;
if nargin==0,
if ~isempty(CIRCLE)
%figure(f), buttons(f,-2); hold off, refresh
end
return
end
if nit==0
EigMATLAB=[];
if ~ischar(A_operator) & n<201
EigMATLAB=eig(full(A_operator));
end
CIRCLE=0:0.005:1; CIRCLE=exp(CIRCLE*2*pi*sqrt(-1));
if ischar(tau)
switch tau
case {'LR','SR'}
if ~ischar(A_operator)
CIRCLE=norm(A_operator,'inf')*[sqrt(-1),-sqrt(-1)]+1;
end
end
end
Explanation(~isempty(EigMATLAB),f-1)
end
%if gcf~=f, figure(f), end
jmin=min(jmin,length(Lambda));
%plot(real(Lambda(1:jmin)),imag(Lambda(1:jmin)),'bo');
if nit>0, axis(MovieAxis), end, hold on
pls='bo'; if SHRINK, pls='mo'; end
%plot(real(Lambda(jmin+1:end)),imag(Lambda(jmin+1:end)),pls)
%plot(real(EigMATLAB),imag(EigMATLAB),'cp');
THETA=diag(Rschur); %plot(real(THETA),imag(THETA),'k*');
x=real(Lambda(1)); y=imag(Lambda(1));
%plot(x,y,'kd'), pls='ks';
if LOCKED, plot(x,y,'ks'), pls='ms'; end
if ischar(tau), tau=0; end
delta=Lambda([1,jmin])-tau;
if length(CIRCLE)~=2, delta=abs(delta);
% plot(real(tau),imag(tau),pls)
else, delta=real(delta); end
for i=1:1+SHRINK,
zeta=delta(i)*CIRCLE+tau;
% plot(real(zeta),imag(zeta),'r:'),
end
if nit==0
buttons(f,-1); hold off, zoom on
end
title('legend see figure(255)')
if SHRINK, STATUS0=buttons(f,2); if STATUS0, return, end, end
STATUS0=buttons(f,1); drawnow, hold off
return
%=============================================================
function Explanation(E,f)
%if gcf~=f, figure(f), end
HL=plot(0,0,'kh',0,0,'bo'); hold on
StrL=str2mat('Detected eigenvalues','Approximate eigenvalues');
if E
HL=[HL;plot(0,0,'cp')];
StrL=str2mat(StrL,'Exact eigenvenvalues');
end
HL=[HL;plot(0,0,'kd',0,0,'ks',0,0,'r:')];
% StrL=str2mat(StrL,'Tracked app. eig.','target',...
% 'inner/outer bounds for restart');
StrL=str2mat(StrL,'Selected approximate eigenvalue','target',...
'inner/outer bounds for restart');
legend(HL,StrL), hold on, drawnow, hold off
title('legend for figure(256)')
return
%=============================================================
function STATUS0=buttons(f,push)
% push=0: do nothing
% push>0: check status buttons,
% STATUS0=1 if break else STATUS0=0.
% push=-1: make buttons for pause and break
% push=-2: remove buttons
global M_STATUS MovieAxis
if push>0 % check status buttons
ud = get(f,'UserData');
if ud.pause ==1, M_STATUS=1; end
if ud.break ==1, STATUS0=1;
ud.pause=0; ud.break=0; set(f,'UserData',ud); return,
else, STATUS0=0; end
if push>1
ud.pause=0; set(f,'UserData',ud);
while M_STATUS
ud = get(f,'UserData'); pause(0.1)
if ud.pause, M_STATUS=0; end
if ud.break, M_STATUS=0; STATUS0=1; end
MovieAxis=axis;
end
ud.pause=0; ud.break=0; set(f,'UserData',ud);
end
elseif push==0, STATUS0=0; return
elseif push==-1 % make buttons
ud = [];
h = findobj(f,'Tag','pause');
if isempty(h)
ud.pause = 0;
pos = get(0,'DefaultUicontrolPosition');
pos(1) = pos(1) - 15;
pos(2) = pos(2) - 15;
str = 'ud=get(gcf,''UserData''); ud.pause=1; set(gcf,''UserData'',ud);';
uicontrol( ...
'Style','push', ...
'String','Pause', ...
'Position',pos, ...
'Callback',str, ...
'Tag','pause');
else
set(h,'Visible','on'); % make sure it's visible
if ishold
oud = get(f,'UserData');
ud.pause = oud.pause; % don't change old ud.pause status
else
ud.pause = 0;
end
end
h = findobj(f,'Tag','break');
if isempty(h)
ud.break = 0;
pos = get(0,'DefaultUicontrolPosition');
pos(1) = pos(1) + 50;
pos(2) = pos(2) - 15;
str = 'ud=get(gcf,''UserData''); ud.break=1; set(gcf,''UserData'',ud);';
uicontrol( ...
'Style','push', ...
'String','Break', ...
'Position',pos, ...
'Callback',str, ...
'Tag','break');
else
set(h,'Visible','on'); % make sure it's visible
if ishold
oud = get(f,'UserData');
ud.break = oud.break; % don't change old ud.break status
else
ud.break = 0;
end
end
set(f,'UserData',ud); M_STATUS=0;
STATUS0=0; hold off, zoom on
MA=axis; nl=MA/10;
MovieAxis = MA-max(nl([2,4])-nl([1,3]))*[1,-1,1,-1];
else % remove buttons
set(findobj(f,'Tag','pause'),'Visible','off');
set(findobj(f,'Tag','break'),'Visible','off');
STATUS0=0; return, refresh
end
return
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
lmnn.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/lmnn.m
| 5,431 |
utf_8
|
622ccdd8948f805d0d4552822cca46de
|
function [M, L, Y, C] = lmnn(X, labels)
%LMNN Learns a metric using large-margin nearest neighbor metric learning
%
% [M, L, Y, C] = lmnn(X, labels)
%
% The function uses large-margin nearest neighbor (LMNN) metric learning to
% learn a metric on the data set specified by the NxD matrix X and the
% corresponding Nx1 vector labels. The metric is returned in M.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% Initialize some variables
[N, D] = size(X);
assert(length(labels) == N);
[lablist, ~, labels] = unique(labels);
K = length(lablist);
label_matrix = false(N, K);
label_matrix(sub2ind(size(label_matrix), (1:length(labels))', labels)) = true;
same_label = logical(double(label_matrix) * double(label_matrix'));
M = eye(D);
C = Inf; prev_C = Inf;
% Set learning parameters
min_iter = 50; % minimum number of iterations
max_iter = 1000; % maximum number of iterations
eta = .1; % learning rate
mu = .5; % weighting of pull and push terms
tol = 1e-3; % tolerance for convergence
best_C = Inf; % best error obtained so far
best_M = M; % best metric found so far
no_targets = 3; % number of target neighbors
% Select target neighbors
sum_X = sum(X .^ 2, 2);
DD = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (X * X')));
DD(~same_label) = Inf; DD(1:N + 1:end) = Inf;
[~, targets_ind] = sort(DD, 2, 'ascend');
targets_ind = targets_ind(:,1:no_targets);
targets = false(N, N);
targets(sub2ind([N N], vec(repmat((1:N)', [1 no_targets])), vec(targets_ind))) = true;
% Compute pulling term between target neigbhors to initialize gradient
slack = zeros(N, N, no_targets);
G = zeros(D, D);
for i=1:no_targets
G = G + (1 - mu) .* (X - X(targets_ind(:,i),:))' * (X - X(targets_ind(:,i),:));
end
% Perform main learning iterations
iter = 0;
while (prev_C - C > tol || iter < min_iter) && iter < max_iter
% Compute pairwise distances under current metric
XM = X * M;
sum_X = sum(XM .* X, 2);
DD = bsxfun(@plus, sum_X, bsxfun(@plus, sum_X', -2 * (XM * X')));
% Compute value of slack variables
old_slack = slack;
for i=1:no_targets
slack(:,:,i) = ~same_label .* max(0, bsxfun(@minus, 1 + DD(sub2ind([N N], (1:N)', targets_ind(:,i))), DD));
end
% Compute value of cost function
prev_C = C;
C = (1 - mu) .* sum(DD(targets)) + ... % push terms between target neighbors
mu .* sum(slack(:)); % pull terms between impostors
% Maintain best solution found so far (subgradient method)
if C < best_C
best_C = C;
best_M = M;
end
% Perform gradient update
for i=1:no_targets
% Add terms for new violations
[r, c] = find(slack(:,:,i) > 0 & old_slack(:,:,i) == 0);
G = G + mu .* ((X(r,:) - X(targets_ind(r, i),:))' * ...
(X(r,:) - X(targets_ind(r, i),:)) - ...
(X(r,:) - X(c,:))' * (X(r,:) - X(c,:)));
% Remove terms for resolved violations
[r, c] = find(slack(:,:,i) == 0 & old_slack(:,:,i) > 0);
G = G - mu .* ((X(r,:) - X(targets_ind(r, i),:))' * ...
(X(r,:) - X(targets_ind(r, i),:)) - ...
(X(r,:) - X(c,:))' * (X(r,:) - X(c,:)));
end
M = M - (eta ./ N) .* G;
% Project metric back onto the PSD cone
[V, L] = eig(M);
V = real(V); L = real(L);
ind = find(diag(L) > 0);
if isempty(ind)
warning('Projection onto PSD cone failed. All eigenvalues were negative.'); break
end
M = V(:,ind) * L(ind, ind) * V(:,ind)';
if any(isinf(M(:)))
warning('Projection onto PSD cone failed. Metric contains Inf values.'); break
end
if any(isnan(M(:)))
warning('Projection onto PSD cone failed. Metric contains NaN values.'); break
end
% Update learning rate
if prev_C > C
eta = eta * 1.01;
else
eta = eta * .5;
end
% Print out progress
iter = iter + 1;
no_slack = sum(slack(:) > 0);
if rem(iter, 10) == 0
[~, sort_ind] = sort(DD, 2, 'ascend');
disp(['Iteration ' num2str(iter) ': error is ' num2str(C ./ N) ...
', nearest neighbor error is ' num2str(sum(labels(sort_ind(:,2)) ~= labels) ./ N) ...
', number of constraints: ' num2str(no_slack)]);
end
end
% Return best metric and error
M = best_M;
C = best_C;
% Compute mapped data
[L, S, ~] = svd(M);
L = bsxfun(@times, sqrt(diag(S)), L);
Y = X * L;
end
function x = vec(x)
x = x(:);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
d2p.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/d2p.m
| 3,487 |
utf_8
|
0c7024a8039ea16b937d283585883fc3
|
function [P, beta] = d2p(D, u, tol)
%D2P Identifies appropriate sigma's to get kk NNs up to some tolerance
%
% [P, beta] = d2p(D, kk, tol)
%
% Identifies the required precision (= 1 / variance^2) to obtain a Gaussian
% kernel with a certain uncertainty for every datapoint. The desired
% uncertainty can be specified through the perplexity u (default = 15). The
% desired perplexity is obtained up to some tolerance that can be specified
% by tol (default = 1e-4).
% The function returns the final Gaussian kernel in P, as well as the
% employed precisions per instance in beta.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
if ~exist('u', 'var') || isempty(u)
u = 15;
end
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-4;
end
% Initialize some variables
n = size(D, 1); % number of instances
P = zeros(n, n); % empty probability matrix
beta = ones(n, 1); % empty precision vector
logU = log(u); % log of perplexity (= entropy)
% Run over all datapoints
for i=1:n
if ~rem(i, 500)
disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']);
end
% Set minimum and maximum values for precision
betamin = -Inf;
betamax = Inf;
% Compute the Gaussian kernel and entropy for the current precision
[H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i));
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while abs(Hdiff) > tol && tries < 50
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta(i);
if isinf(betamax)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + betamax) / 2;
end
else
betamax = beta(i);
if isinf(betamin)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(D(i, [1:i - 1, i + 1:end]), beta(i));
Hdiff = H - logU;
tries = tries + 1;
end
% Set the final row of P
P(i, [1:i - 1, i + 1:end]) = thisP;
end
disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]);
disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]);
disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]);
end
% Function that computes the Gaussian kernel values given a vector of
% squared Euclidean distances, and the precision of the Gaussian kernel.
% The function also computes the perplexity of the distribution.
function [H, P] = Hbeta(D, beta)
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
% why not: H = exp(-sum(P(P > 1e-5) .* log(P(P > 1e-5)))); ???
P = P / sumP;
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
cg_update.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/cg_update.m
| 3,715 |
utf_8
|
1556078ae7c31950ec738949384cf180
|
% Version 1.000
%
% Code provided by Ruslan Salakhutdinov and Geoff Hinton
%
% Permission is granted for anyone to copy, use, modify, or distribute this
% program and accompanying programs and documents for any purpose, provided
% this copyright notice is retained and prominently displayed, along with
% a note saying that the original programs are available from our
% web page.
% The programs and documents are distributed without any warranty, express or
% implied. As the programs were written for research purposes only, they have
% not been tested to the degree that would be advisable in any important
% application. All use of these programs is entirely at the user's own risk.
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
function [f, df] = cg_update(VV, Dim, XX)
l1 = Dim(1);
l2 = Dim(2);
l3 = Dim(3);
l4 = Dim(4);
l5 = Dim(5);
l6 = Dim(6);
l7 = Dim(7);
l8 = Dim(8);
l9 = Dim(9);
N = size(XX, 1);
% Extract weights back from VV
w1 = reshape(VV(1:(l1 + 1) * l2), l1 + 1, l2);
xxx = (l1 + 1) * l2;
w2 = reshape(VV(xxx + 1:xxx + (l2 + 1) * l3), l2 + 1, l3);
xxx = xxx + (l2 + 1) * l3;
w3 = reshape(VV(xxx + 1:xxx + (l3 + 1) * l4), l3 + 1, l4);
xxx = xxx + (l3 + 1) * l4;
w4 = reshape(VV(xxx + 1:xxx + (l4 + 1) * l5), l4 + 1, l5);
xxx = xxx + (l4 + 1) * l5;
w5 = reshape(VV(xxx + 1:xxx + (l5 + 1) * l6), l5 + 1, l6);
xxx = xxx + (l5 + 1) * l6;
w6 = reshape(VV(xxx + 1:xxx + (l6 + 1) * l7), l6 + 1, l7);
xxx = xxx + (l6 + 1) * l7;
w7 = reshape(VV(xxx + 1:xxx + (l7 + 1) * l8), l7 + 1, l8);
xxx = xxx + (l7 + 1) * l8;
w8 = reshape(VV(xxx + 1:xxx + (l8 + 1) * l9), l8 + 1, l9);
% Evaluate points
XX = [XX ones(N, 1)];
w1probs = 1 ./ (1 + exp(-XX * w1)); w1probs = [w1probs ones(N,1)];
w2probs = 1 ./ (1 + exp(-w1probs * w2)); w2probs = [w2probs ones(N,1)];
w3probs = 1 ./ (1 + exp(-w2probs * w3)); w3probs = [w3probs ones(N,1)];
w4probs = w3probs * w4; w4probs = [w4probs ones(N,1)];
w5probs = 1 ./ (1 + exp(-w4probs * w5)); w5probs = [w5probs ones(N,1)];
w6probs = 1 ./ (1 + exp(-w5probs * w6)); w6probs = [w6probs ones(N,1)];
w7probs = 1 ./ (1 + exp(-w6probs * w7)); w7probs = [w7probs ones(N,1)];
XXout = 1 ./ (1 + exp(-w7probs * w8));
% Compute gradients
f = (-1 / N) * sum(sum(XX(:,1:end - 1) .* log(XXout) + (1 - XX(:,1:end - 1)) .* log(1 - XXout)));
IO = (1 / N) * (XXout - XX(:,1:end - 1));
Ix8 = IO;
dw8 = w7probs'*Ix8;
Ix7 = (Ix8 * w8') .* w7probs .* (1 - w7probs);
Ix7 = Ix7(:,1:end - 1);
dw7 = w6probs' * Ix7;
Ix6 = (Ix7*w7') .* w6probs .* (1 - w6probs);
Ix6 = Ix6(:,1:end - 1);
dw6 = w5probs' * Ix6;
Ix5 = (Ix6 * w6') .* w5probs .* (1 - w5probs);
Ix5 = Ix5(:,1:end - 1);
dw5 = w4probs' * Ix5;
Ix4 = (Ix5 * w5');
Ix4 = Ix4(:,1:end - 1);
dw4 = w3probs' * Ix4;
Ix3 = (Ix4 * w4') .* w3probs .* (1 - w3probs);
Ix3 = Ix3(:,1:end - 1);
dw3 = w2probs' * Ix3;
Ix2 = (Ix3 * w3') .* w2probs .* (1 - w2probs);
Ix2 = Ix2(:,1:end - 1);
dw2 = w1probs' * Ix2;
Ix1 = (Ix2 * w2') .* w1probs .* (1 - w1probs);
Ix1 = Ix1(:,1:end - 1);
dw1 = XX' * Ix1;
% Return gradients
df = [dw1(:)' dw2(:)' dw3(:)' dw4(:)' dw5(:)' dw6(:)' dw7(:)' dw8(:)']';
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
lmvu.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/lmvu.m
| 8,540 |
utf_8
|
c8003ed7ff0fd0e226776c42c72ad385
|
function [mappedX, mapping] = lmvu(X, no_dims, K, LL)
%LMVU Performs Landmark MVU on dataset X
%
% [mappedX, mapping] = lmvu(X, no_dims, k1, k2)
%
% The function performs Landmark MVU on the DxN dataset X. The value of k1
% represents the number of nearest neighbors that is employed in the MVU
% constraints. The value of k2 represents the number of nearest neighbors
% that is employed to compute the reconstruction weights (for embedding the
% non-landmark points).
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
if ~exist('K', 'var')
K = 3;
end
if ~exist('LL', 'var')
LL = 12;
end
% Save some data for out-of-sample extension
if ischar(K)
error('Adaptive neighborhood selection not supported for landmark MVU.');
end
mapping.k1 = K;
mapping.k2 = LL;
mapping.X = X;
% Initialize some variables
N = size(X, 2); % number of datapoints
B = ceil(0.02 * N); % number of landmark points
% Set some parameters parameters
pars.ep = eps;
pars.fastmode = 1;
pars.warmup = K * B / N;
pars.verify = 1;
pars.angles = 1;
pars.maxiter = 100;
pars.noise = 0;
pars.ignore = 0.1;
pars.penalty = 1;
pars.factor = 0.9999;
% Identify nearest neighbors
disp('Identifying nearest neighbors...');
KK = max(LL, K);
X = L2_distance(X, X); % memory-intensive: O(n^{2}) !!!
[foo, neighbors] = find_nn(X, KK);
neighbors = neighbors';
% Get inverse of reconstruction weight matrix
Pia = getPia(B, LL, X, neighbors);
% Generate SDP problem
disp('Generating SDP problem...');
neighbors = neighbors(1:K,:);
clear temp index sorted
nck = nchoosek(1:K + 1, 2);
AA = zeros(N * K, 2);
pos3 = 1;
for i=1:N
ne = neighbors(:,i);
nne = [ne; i];
pairs = nne(nck);
js = pairs(:,1);
ks = pairs(:,2);
AA(pos3:pos3 + length(js) - 1,:) = sort([js ks], 2);
pos3 = pos3 + length(js);
if i == B
AA = unique(AA, 'rows');
ForceC = size(AA, 1);
end
if pos3 > size(AA, 1) && i < N
AA = unique(AA, 'rows');
pos3 = size(AA, 1) + 1;
AA = [AA; zeros(round(N / (N - i) * pos3), 2)];
fprintf('.');
end
end
AA = unique(AA, 'rows');
AA = AA(2:end,:);
clear neighbors ne v2 v3 js ks
bb = zeros(1, size(AA, 1));
for i=1:size(AA, 1)
bb(i) = sum((X(:,AA(i, 1)) - X(:,AA(i, 2))) .^ 2);
end
disp(' ');
% Reduce the number of forced vectors
ii = (1:ForceC)';
jj = zeros(1, size(AA, 1));
jj(ii) = 1;
jj = find(jj == 0);
jj1 = jj(jj <= ForceC);
jj2 = jj(jj > ForceC);
jj2 = jj2(randperm(length(jj2)));
jj1 = jj1(randperm(length(jj1)));
corder = [ii; jj1'; jj2'];
AA = AA(corder,:);
bb = bb(corder);
ForceC = length(ii);
clear temp jj1 jj2 jj ii
Const = max(round(pars.warmup * size(AA, 1)), ForceC);
[A, b, AA, bb] = getConstraints(AA, Pia, bb, B, Const, pars);
Qt = sum(Pia, 1)' * sum(Pia, 1);
A = [Qt(:)'; A];
b = [0; b];
clear K;
solved = 0;
% Start SDP iterations
disp('Perform semi-definite programming...');
disp('CSDP OUTPUT =============================================================================');
while solved == 0
% Initialize some variables
c = -vec(Pia' * Pia);
flags.s = B;
flags.l = size(A, 1) - 1;
A = [[zeros(1,flags.l); speye(flags.l)] A];
% Set c (employ penalty)
c = [ones(ForceC, 1) .* max(max(c)); zeros(flags.l - ForceC, 1); c];
% Launch the CSDP solver
options.maxiter=pars.maxiter;
[x, d, z, info] = csdp(A, b, c, flags, options);
K = mat(x(flags.l + 1:flags.l + flags.s ^ 2));
% Check whether a solution is reached
solved = isempty(AA);
A = A(:,flags.l + 1:end);
xx = K(:);
if size(AA, 1)
Aold = size(A,1);
total = 0;
while size(A, 1) - Aold < Const && ~isempty(AA)
[newA, newb, AA, bb] = getConstraints(AA, Pia, bb, B, Const, pars);
jj = find(newA * xx - newb > pars.ignore * abs(newb));
if info == 2
jj = 1:size(newA, 1);
end
total = total + length(jj);
A(size(A,1) + 1:size(A,1) + length(jj),:) = newA(jj,:);
b(length(b) + 1:length(b) + length(jj)) = newb(jj);
end
if total == 0
solved = 1;
end
else
solved=1;
end
if solved == 1 && pars.maxiter < 100
pars.maxiter = 100;
end
end
disp('=========================================================================================');
% Perform eigendecomposition of kernel matrix to compute Y
disp('Perform eigendecomposition to obtain low-dimensional data representation...');
[V, D] = eig(K);
V = V * sqrt(D);
Y = (V(:,end:-1:1))';
mappedX = Y * Pia';
% Reorder data in original order
mappedX = mappedX(1:no_dims,:);
% Set some information for the out-of-sample extension
mapping.Y = Y;
mapping.D = X;
mapping.no_landmarks = B;
mapping.no_dims = no_dims;
% Function that computes LLE weight matrix
function Q = getPia(B, LL, X, neighbors)
% Initialize some variables
N = size(X,2);
% Compute reconstruction weights
disp('Computing reconstruction weights...');
tol = 1e-7;
Pia = sparse([], [], [], B, N);
for i=1:N
z = X(:,neighbors(:,i)) - repmat(X(:,i), 1, LL);
C = z' * z;
C = C + tol * trace(C) * eye(LL) / LL;
invC = inv(C);
Pia(neighbors(:,i),i) = sum(invC)' / sum(sum(invC));
end
% Fill sparse LLE weight matrix
M = speye(N) + sparse([], [], [], N, N, N * LL .^ 2);
for i=1:N
j = neighbors(:,i);
w = Pia(j, i);
M(i, j) = M(i, j) - w';
M(j, i) = M(j, i) - w;
M(j, j) = M(j, j) + w * w';
end
% Invert LLE weight matrix
disp('Invert reconstruction weight matrix...');
Q = -M(B + 1:end, B + 1:end) \ M(B + 1:end, 1:B);
Q = [eye(B); Q];
% Functions that constructs the constraints for the SDP
function [A, b, AAomit, bbomit] = getConstraints(AA, Pia, bb, B, Const, pars)
% Initialize some variables
pos2 = 0;
perm = 1:size(AA,1);
if size(AA, 1) > Const
AAomit = AA(perm(Const + 1:end),:);
bbomit = bb(perm(Const + 1:end));
AA = AA(perm(1:Const),:);
bb = bb(perm(1:Const));
else
AAomit = [];
bbomit = [];
end
% Allocate some memory
persistent reqmem;
if isempty(reqmem)
A2 = zeros(size(AA, 1) * B, 3);
else
A2 = zeros(reqmem, 3);
end
% Set the constraints
pos = 0;
for j=1:size(AA, 1)
% Evaluate for current row in AA
ii = AA(j, 1);
jj = AA(j, 2);
Q = Pia(ii,:)' * Pia(ii,:) - 2 .* Pia(jj,:)' * Pia(ii,:) + Pia(jj,:)' * Pia(jj,:);
Q = (Q + Q') ./ 2;
it = find(abs(Q) > pars.ep .^ 2);
% Constraint found
if ~isempty(it)
% Allocate more memory if needed
pos = pos + 1;
if pos2 + length(it) > size(A2, 1)
A2 = [A2; zeros(ceil((size(AA, 1) - j) / j * size(A2, 1)), 3)];
end
% Set constraint
A2(1 + pos2:pos2 + length(it), 1) = ones(length(it), 1) .* pos;
A2(1 + pos2:pos2 + length(it), 2) = it;
A2(1 + pos2:pos2 + length(it), 3) = full(Q(it));
pos2 = pos2 + length(it);
end
end
% Construct sparse constraint matrix
reqmem = pos2;
A2 = A2(1:pos2,:);
A = sparse(A2(:,1), A2(:,2), A2(:,3), size(AA,1), B .^ 2);
b = bb';
% Function that vectorizes a matrix
function v = vec(M)
v = M(:);
% Function that matrixizes a vector
function M = mat(C)
r = round(sqrt(size(C, 1)));
M = reshape(C, r, r);
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
cca.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/cca.m
| 14,846 |
utf_8
|
935e971ffe825a64e0eb80c535d71ebb
|
function [Z, ccaEigen, ccaDetails] = cca(X, Y, EDGES, OPTS)
%
% Function [Z, CCAEIGEN, CCADETAILS] = CCA(X, Y, EDGES, OPTS) computes a low
% dimensional embedding Z in R^d that maximally preserves angles among input
% data X that lives in R^D, with the algorithm Conformal Component Analysis.
%
% The embedding Z is constrained to be Z = L*Y where Y is a partial basis that
% spans the space of R^d. Such Y can be computed from graph Laplacian (such as
% the outputs of Laplacian eigenmap and Locally Linear Embedding, ie, LLE).
% The parameterization matrix L is found by this function as to maximally
% prserve angles between edges coded in the sparse matrix EDGES.
%
% A basic usage of this function is given below:
%
% Inputs:
% X: input data stored in matrix (D x N) where D is the dimensionality
%
% Y: partial basis stored in matrix (d x N)
%
% EDGES: a sparse matrix of (N x N). In each column i, the row indices j to
% nonzero entrices define data points that are in the nearest neighbors of
% data point i.
%
% OPTS:
% OPTS.method: 'CCA'
%
% Outputs:
% Z: low dimensional embedding (d X N)
% CCAEIGN: eigenspectra of the matrix P = L'*L. If P is low-rank (say d' < d),
% then Z can be cutoff at d' dimension as dimensionality reduced further.
%
% The CCA() function is fairly versatile. For more details, consult the file
% README.
%
% by [email protected] Aug 18, 2006
% Feel free to use it for educational and research purpose.
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% sanity check
if nargin ~= 4
error('Incorrect number of inputs supplied to cca().');
end
N = size(X,2);
if (N~=size(Y,2)) || (N ~= size(EDGES,1)) || (N~=size(EDGES,2))
disp('Unmatched matrix dimensions in cca().');
fprintf('# of data points: %d\n', N);
fprintf('# of data points in Y: %d\n', size(Y,2));
fprintf('Size of the sparse matrix for edges: %d x %d\n', size(EDGES,1), size(EDGES,2));
error('All above 4 numbers should be the same.');
end
% check necessary programs
if exist('mexCCACollectData') ~= 3
error('Missing mexCCACollectData mex file on the path');
end
if exist('csdp') ~= 2
error('You will need CSDP solver to run cca(). Please make sure csdp.m is in your path');
end
% check options
OPTS = check_opt(OPTS);
D = size(X, 1);
d = size(Y, 1);
%disp('Step I. collect data needed for SDP formulation');
[tnn, vidx] = triangNN(EDGES, OPTS.CCA);
[erow, ecol, evalue] = sparse_nn(tnn);
irow = int32(erow); icol = int32(ecol);
ividx = int32(vidx); ivalue = int32(evalue);
[A,B, g] = mexCCACollectData(X,Y, irow, icol, int32(OPTS.relative), ivalue, ividx );
clear erow ecol irow icol tnn ividx ivalue evalue vidx;
lst = find(g~=0);
g = g(lst); B = B(:, lst);
if OPTS.CCA == 1
BG = B*spdiags(1./sqrt(g),0, length(g),length(g));
Q = A - BG*BG';
BIAS = OPTS.regularizer*reshape(eye(d), d^2,1);
else
Q = A; BIAS = 2*sum(B,2)+OPTS.regularizer*reshape(eye(d), d^2,1);
end
[V, E] = eig(Q+eye(size(Q))); % adding an identity matrix to Q for numerical
E = E-eye(size(Q)); % stability
E(E<0) = 0;
if ~isreal(diag(E))
warning('\tThe quadratic matrix is not positive definite..forced to be positive definite...\n');
E=real(E);
V = real(V);
S = sqrt(E)*V';
else
S = sqrt(E)*V';
end
% Formulate the SDP problem
[AA, bb, cc] = formulateSDP(S, d, BIAS, (OPTS.CCA==1));
sizeSDP = d^2+1 + d + 2*(OPTS.CCA==1);
csdppars.s = sizeSDP;
csdpopts.printlevel = 0;
% Solve it using CSDP
[xx, yy, zz, info] = csdp(AA, bb, cc, csdppars,csdpopts);
ccaDetails.sdpflag = info;
% The negate of yy is our solution
yy = -yy;
idx = 0;
P = zeros(d);
for col=1:d
for row = col:d
idx=idx+1;
P(row, col) = yy(idx);
end
end
% Convert P to a positive definite matrix
P = P + P' - diag(diag(P));
% Transform the original projection to the new projection
[V, E] = eig(P);
E(E < 0) = 0;
L = diag(sqrt(diag(E))) * V';
newY = L * Y;
% Eigenvalue of the new projection, doing PCA using covariance matrix
[newV, newE] = eig(newY * newY');
newE = diag(newE);
[dummy, idx] = sort(newE);
newE = newE(idx(end:-1:1));
newY = newV' * newY;
Z = newY(idx(end:-1:1),:);
ccaEigen = newE;
ccaDetails.cost = P(:)'*Q*P(:) - BIAS'*P(:) + sum(g(:))*(OPTS.MVU==1);
if OPTS.CCA == 1
ccaDetails.c = spdiags(1./sqrt(g),0, length(g),length(g))*B'*P(:);
else
ccaDetails.c = [];
end
ccaDetails.P = P;
ccaDetails.opts = OPTS;
%%%%%%%%%%%%%%%%%%%% FOLLOWING IS SUPPORTING MATLAB FUNCTIONS
function [A, b, c] = formulateSDP(S, D, bb, TRACE)
[F0, FI, c] = localformulateSDP(S, D, bb, TRACE);
[A, b, c] = sdpToSeDuMi(F0, FI, c);
function [F0, FI, c] = localformulateSDP(S, D, b, TRACE)
% formulate SDP problem
% each FI that corresponds to the LMI for the quadratic cost function has
% precisely 2*D^2 nonzero elements. But we need only D^2 storage for
% indexing these elements since the FI are symmetric
tempFidx = zeros(D^2, 3);
dimF = (D^2+1) + D + 2*TRACE;
idx= 0;
tracearray = ones(TRACE,1);
for col=1:D
for row=col:D
idx = idx+1;
lindx1 = sub2ind([D D], row, col);
lindx2 = sub2ind([D D], col, row);
tempFidx(:,1) = [1:D^2]';
tempFidx(:,2) = D^2+1;
if col==row
tempFidx(:,3) = S(:, lindx1) ;
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row+D^2+1; ... % for P being p.s.d
tracearray*(D^2+1+D+1); % for trace
tracearray*(D^2+1+D+2); % for negate trace
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
row+D^2+1; ... % for P being p.s.d
tracearray*(D^2+1+D+1); % for trace
tracearray*(D^2+1+D+2); % for negate trace
],...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
tracearray*1; % for trace
tracearray*(-1); % for negate trace
], dimF, dimF);
else
tempFidx(:,3) = S(:, lindx1) + S(:, lindx2);
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row+D^2+1; ... % for P being p.s.d
col+D^2+1; ... % symmetric
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
col+D^2+1; ... % for P being p.s.d
row+D^2+1; ... % being symmetric
],...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
1; % symmetric
], dimF, dimF);
end
end
end
idx=idx+1;
% for the F matrix corresponding to t
FI{idx} = sparse(D^2+1, D^2+1, 1, dimF, dimF);
% now for F0
if TRACE==1
F0 = sparse( [[1:D^2] dimF-1 dimF], [[1:D^2] dimF-1 dimF], [ones(1, D^2) -1 1], dimF, dimF);
else
F0 = sparse( [[1:D^2]], [[1:D^2]], [ones(1, D^2)], dimF, dimF);
end
% now for c
b = reshape(-b, D, D);
b = b*2 - diag(diag(b));
c = zeros(idx-1,1);
kdx=0;
%keyboard;
for col=1:D
for row=col:D
kdx = kdx+1;
c(kdx) = b(row, col);
end
end
%keyboard;
c = [c; 1]; % remember: we use only half of P
return;
function [A, b, c] = sdpToSeDuMi(F0, FI, cc)
% convert the canonical SDP dual formulation:
% (see Vandenberche and Boyd 1996, SIAM Review)
% max -Tr(F0 Z)
% s.t. Tr(Fi Z) = cci and Z is positive definite
%
% in which cc = (cc1, cc2, cc3,..) and FI = {F1, F2, F3,...}
%
% to SeDuMi format (formulated as vector decision variables ):
% min c'x
% s.t. Ax = b and x is positive definite (x is a vector, so SeDuMi
% really means that vec2mat(x) is positive definite)
%
% by [email protected], June, 10, 2004
if nargin < 3
error('Cannot convert SDP formulation to SeDuMi formulation in sdpToSeDumi!');
end
[m, n] = size(F0);
if m ~= n
error('F0 matrix must be squared matrix in sdpToSeDumi(F0, FI, b)');
end
p = length(cc);
if p ~= length(FI)
error('FI matrix cellarray must have the same length as b in sdpToSeDumi(F0,FI,b)');
end
% should check every element in the cell array FI...later..
% x = reshape(Z, n*n, 1); % optimization variables from matrix to vector
% converting objective function of the canonical SDP
c = reshape(F0', n*n,1);
% converting equality constraints of the canonical SDP
zz= 0;
for idx=1:length(FI)
zz= zz + nnz(FI{idx});
end
A = spalloc( n*n, p, zz);
for idx = 1:p
temp = reshape(FI{idx}, n*n,1);
lst = find(temp~=0);
A(lst, idx) = temp(lst);
end
% The SeDuMi solver actually expects the transpose of A as in following
% dual problem
% max b'y
% s.t. c - A'y is positive definite
% Therefore, we transpose A
% A = A';
% b doesn't need to be changed
b = cc;
return;
% Check OPTS that is passed into
function OPTS = check_opt(OPTS)
if isfield(OPTS,'method') == 0
OPTS.method = 'cca';
disp('Options does''t have method field, so running CCA');
end
if strncmpi(OPTS.method, 'MVU',3)==1
OPTS.CCA = 0; OPTS.MVU = 1;
else
OPTS.CCA = 1; OPTS.MVU = 0;
end
if isfield(OPTS, 'relative')==0
OPTS.relative = 0;
end
if OPTS.CCA==1 && OPTS.relative ==1
disp('Running CCA, so the .relative flag set to 0');
OPTS.relative = 0;
end
if isfield(OPTS, 'regularizer')==0
OPTS.regularizer = 0;
end
return
function [tnn vidx]= triangNN(snn, TRI)
% function [TNN VIDX]= triangNN(SNN) triangulates a sparse graph coded by spare matrix
% SNN. TNN records the original edges in SNN as well as those that are
% triangulated. Each edge is associated with a scaling factor that is specific
% to a vertex. And VIDX records the id of the vertex.
%
% by [email protected] Aug. 15, 2006.
N = size(snn,1);
%fprintf('The graph has %d vertices\n', N);
% figure out maximum degree a vertex has
connectivs = sum(snn,1);
maxDegree = max(connectivs);
tnn = spalloc(N, N, round(maxDegree*N)); % prealloc estimated storage for speedup
% triangulation
for idx=1:N
lst = find(snn(:, idx)>0);
for jdx=1:length(lst)
col = min (idx, lst(jdx));
row = max(idx, lst(jdx));
tnn(row, col) = tnn(row, col)+1;
if TRI == 1
for kdx = jdx+1:length(lst)
col = min(lst(jdx), lst(kdx));
row = max(lst(jdx), lst(kdx));
tnn(row, col) = tnn(row, col)+1;
end
end
end
end
numVertexIdx = full(sum(tnn(:)));
%fprintf('%d vertex entries are needed\n', numVertexIdx);
rowIdx = zeros(numVertexIdx,1);
colIdx = zeros(numVertexIdx,1);
vidx = zeros(numVertexIdx,1);
whichEdge = 0;
for idx=1:N
lst = find(snn(:, idx)>0);
for jdx=1:length(lst)
col = min(lst(jdx), idx);
row = max(lst(jdx), idx);
whichEdge = whichEdge+1;
rowIdx(whichEdge) = row;
colIdx(whichEdge) = col;
vidx(whichEdge) = idx;
if TRI==1
for kdx = jdx+1:length(lst)
col = min(lst(jdx), lst(kdx));
row = max(lst(jdx), lst(kdx));
whichEdge = whichEdge+1;
rowIdx(whichEdge) = row;
colIdx(whichEdge) = col;
vidx(whichEdge) = idx;
end
end
end
end
linearIdx = sub2ind([N N],rowIdx, colIdx);
[sa, sIdx] = sort(linearIdx);
vidx = vidx(sIdx);
return
% turn sparse graph snn into row and col indices
function [edgesrow, edgescol, value] = sparse_nn(snn)
N = size(snn,1);
edgescol = zeros(N+1,1);
nnzer = nnz(snn);
edgesrow = zeros(nnzer,1);
value = zeros(nnzer,1);
edgescol(1) = 0;
for jdx=1:N
lst = find(snn(:, jdx)>0);
%lst = lst(find(lst>jdx));
edgescol(jdx+1) = edgescol(jdx)+length(lst);
edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1;
value(edgescol(jdx)+1:edgescol(jdx+1)) = snn(lst, jdx);
end
return
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
x2p.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/x2p.m
| 3,597 |
utf_8
|
4a102e94922f4af38e36c374dccbc5a2
|
function [P, beta] = x2p(X, u, tol)
%X2P Identifies appropriate sigma's to get kk NNs up to some tolerance
%
% [P, beta] = x2p(xx, kk, tol)
%
% Identifies the required precision (= 1 / variance^2) to obtain a Gaussian
% kernel with a certain uncertainty for every datapoint. The desired
% uncertainty can be specified through the perplexity u (default = 15). The
% desired perplexity is obtained up to some tolerance that can be specified
% by tol (default = 1e-4).
% The function returns the final Gaussian kernel in P, as well as the
% employed precisions per instance in beta.
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
if ~exist('u', 'var') || isempty(u)
u = 15;
end
if ~exist('tol', 'var') || isempty(tol)
tol = 1e-4;
end
% Initialize some variables
n = size(X, 1); % number of instances
P = zeros(n, n); % empty probability matrix
beta = ones(n, 1); % empty precision vector
logU = log(u); % log of perplexity (= entropy)
% Compute pairwise distances
% disp('Computing pairwise distances...');
D = squareform(pdist(X, 'euclidean') .^ 2);
% Run over all datapoints
% disp('Computing P-values...');
for i=1:n
% if ~rem(i, 500)
% disp(['Computed P-values ' num2str(i) ' of ' num2str(n) ' datapoints...']);
% end
% Set minimum and maximum values for precision
betamin = -Inf;
betamax = Inf;
% Compute the Gaussian kernel and entropy for the current precision
Di = D(i, [1:i-1 i+1:end]);
[H, thisP] = Hbeta(Di, beta(i));
% Evaluate whether the perplexity is within tolerance
Hdiff = H - logU;
tries = 0;
while abs(Hdiff) > tol && tries < 50
% If not, increase or decrease precision
if Hdiff > 0
betamin = beta(i);
if isinf(betamax)
beta(i) = beta(i) * 2;
else
beta(i) = (beta(i) + betamax) / 2;
end
else
betamax = beta(i);
if isinf(betamin)
beta(i) = beta(i) / 2;
else
beta(i) = (beta(i) + betamin) / 2;
end
end
% Recompute the values
[H, thisP] = Hbeta(Di, beta(i));
Hdiff = H - logU;
tries = tries + 1;
end
% Set the final row of P
P(i, [1:i - 1, i + 1:end]) = thisP;
end
% disp(['Mean value of sigma: ' num2str(mean(sqrt(1 ./ beta)))]);
% disp(['Minimum value of sigma: ' num2str(min(sqrt(1 ./ beta)))]);
% disp(['Maximum value of sigma: ' num2str(max(sqrt(1 ./ beta)))]);
end
% Function that computes the Gaussian kernel values given a vector of
% squared Euclidean distances, and the precision of the Gaussian kernel.
% The function also computes the perplexity of the distribution.
function [H, P] = Hbeta(D, beta)
P = exp(-D * beta);
sumP = sum(P);
H = log(sumP) + beta * sum(D .* P) / sumP;
P = P / sumP;
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
sammon.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/sammon.m
| 7,108 |
utf_8
|
8a1fccbea9525bbebae4039127005ea6
|
function [y, E] = sammon(x, n, opts)
%SAMMON Performs Sammon's MDS mapping on dataset X
%
% Y = SAMMON(X) applies Sammon's nonlinear mapping procedure on
% multivariate data X, where each row represents a pattern and each column
% represents a feature. On completion, Y contains the corresponding
% co-ordinates of each point on the map. By default, a two-dimensional
% map is created. Note if X contains any duplicated rows, SAMMON will
% fail (ungracefully).
%
% [Y,E] = SAMMON(X) also returns the value of the cost function in E (i.e.
% the stress of the mapping).
%
% An N-dimensional output map is generated by Y = SAMMON(X,N) .
%
% A set of optimisation options can also be specified using a third
% argument, Y = SAMMON(X,N,OPTS) , where OPTS is a structure with fields:
%
% MaxIter - maximum number of iterations
% TolFun - relative tolerance on objective function
% MaxHalves - maximum number of step halvings
% Input - {'raw','distance'} if set to 'distance', X is
% interpreted as a matrix of pairwise distances.
% Display - {'off', 'on', 'iter'}
% Initialisation - {'pca', 'random'}
%
% The default options structure can be retrieved by calling SAMMON with
% no parameters.
%
% References :
%
% [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data Structure
% Analysis", IEEE Transactions on Computers, vol. C-18, no. 5,
% pp 401-409, May 1969.
%
% See also : SAMMON_TEST
%
% File : sammon.m
%
% Date : Monday 12th November 2007.
%
% Author : Gavin C. Cawley and Nicola L. C. Talbot
%
% Description : Simple vectorised MATLAB implementation of Sammon's non-linear
% mapping algorithm [1].
%
% References : [1] Sammon, John W. Jr., "A Nonlinear Mapping for Data
% Structure Analysis", IEEE Transactions on Computers,
% vol. C-18, no. 5, pp 401-409, May 1969.
%
% History : 10/08/2004 - v1.00
% 11/08/2004 - v1.10 Hessian made positive semidefinite
% 13/08/2004 - v1.11 minor optimisation
% 12/11/2007 - v1.20 initialisation using the first n principal
% components.
%
% Thanks : Dr Nick Hamilton ([email protected]) for supplying the
% code for implementing initialisation using the first n
% principal components (introduced in v1.20).
%
% To do : The current version does not take advantage of the symmetry
% of the distance matrix in order to allow for easy
% vectorisation. This may not be a good choice for very large
% datasets, so perhaps one day I'll get around to doing a MEX
% version using the BLAS library etc. for very large datasets.
%
% Copyright : (c) Dr Gavin C. Cawley, November 2007.
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% use the default options structure
if nargin < 3
opts.Display = 'iter';
opts.Input = 'raw';
opts.MaxHalves = 20;
opts.MaxIter = 500;
opts.TolFun = 1e-9;
opts.Initialisation = 'random';
end
% the user has requested the default options structure
if nargin == 0
y = opts;
return;
end
% Create a two-dimensional map unless dimension is specified
if nargin < 2
n = 2;
end
% Set level of verbosity
if strcmp(opts.Display, 'iter')
display = 2;
elseif strcmp(opts.Display, 'on')
display = 1;
else
display = 0;
end
% Create distance matrix unless given by parameters
if strcmp(opts.Input, 'distance')
D = x;
else
D = euclid(x, x);
end
% Remaining initialisation
N = size(x, 1);
scale = 0.5 / sum(D(:));
D = D + eye(N);
Dinv = 1 ./ D;
if strcmp(opts.Initialisation, 'pca')
[UU,DD] = svd(x);
y = UU(:,1:n)*DD(1:n,1:n);
else
y = randn(N, n);
end
one = ones(N,n);
d = euclid(y,y) + eye(N);
dinv = 1./d;
delta = D - d;
E = sum(sum((delta.^2).*Dinv));
% Get on with it
for i=1:opts.MaxIter
% Compute gradient, Hessian and search direction (note it is actually
% 1/4 of the gradient and Hessian, but the step size is just the ratio
% of the gradient and the diagonal of the Hessian so it doesn't
% matter).
delta = dinv - Dinv;
deltaone = delta * one;
g = delta * y - y .* deltaone;
dinv3 = dinv .^ 3;
y2 = y .^ 2;
H = dinv3 * y2 - deltaone - 2 * y .* (dinv3 * y) + y2 .* (dinv3 * one);
s = -g(:) ./ abs(H(:));
y_old = y;
% Use step-halving procedure to ensure progress is made
for j=1:opts.MaxHalves
y(:) = y_old(:) + s;
d = euclid(y, y) + eye(N);
dinv = 1 ./ d;
delta = D - d;
E_new = sum(sum((delta .^ 2) .* Dinv));
if E_new < E
break;
else
s = 0.5*s;
end
end
% Bomb out if too many halving steps are required
if j == opts.MaxHalves
warning('MaxHalves exceeded. Sammon mapping may not converge...');
end
% Evaluate termination criterion
if abs((E - E_new) / E) < opts.TolFun
if display
fprintf(1, 'Optimisation terminated - TolFun exceeded.\n');
end
break;
end
% Report progress
E = E_new;
if display > 1
fprintf(1, 'epoch = %d : E = %12.10f\n', i, E * scale);
end
end
% Fiddle stress to match the original Sammon paper
E = E * scale;
end
function d = euclid(x, y)
d = sqrt(sum(x.^2,2)*ones(1,size(y,1))+ones(size(x,1),1)*sum(y.^2,2)'-2*(x*y'));
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
sdecca2.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/sdecca2.m
| 7,185 |
utf_8
|
e53979561adda6a23883da0e72af5bf6
|
function [P, newY, L, newV, idx]= sdecca2(Y, snn, regularizer, relative)
% doing semidefinitve embedding/MVU with output being parameterized by graph
% laplacian's eigenfunctions..
%
% the algorithm is same as conformal component analysis except that the scaling
% factor there is set as 1
%
%
% function [P, newY, Y] = CDR2(X, Y, NEIGHBORS) implements the
% CONFORMAL DIMENSIONALITY REDUCTION of data X. It finds a linear map
% of Y -> L*Y such that X and L*Y is related by a conformal mapping.
%
% No tehtat The algorithm use the formulation of only distances.
%
% Input:
% Y: matrix of d'xN, with each column is a point in R^d'
% NEIGHBORS: matrix of KxN, each column is a list of indices (between 1
% and N) to the nearest-neighbor of the corresponding column in X
% Output:
% P: square of the linear map L, i.e., P = L'*L
% newY: transformed data points, i.e., newY = L*Y;
% Y: the linear map L itself, i.e., L = L
%
% The algorithm finds L by solving a semidefinite programming problem. It
% calls csdp() SDP solver by default and assumes that it is on the path.
%
% written by [email protected]
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
% Collect the data
[erow, ecol, edist] = sparse_nn(snn);
irow = int32(erow);
icol = int32(ecol);
[A, B, g] = mexCCACollectData2(Y, irow, icol, edist, int32(relative));
BG = 2 * sum(B, 2);
Q = A ;
[V, E] = eig(Q + eye(size(Q)));
E = E - eye(size(Q));
E(E < 0) = 0;
if ~isreal(diag(E))
E = real(E);
V = real(V);
S = sqrt(E) * V';
else
S = sqrt(E) * V';
end
% Put the regularizer in there
BG = BG + regularizer * reshape(eye(size(Y, 1)), size(Y, 1) ^ 2, 1);
% Formulate the SDP problem
[AA, bb, cc] = formulateSDP(S, size(Y, 1), BG);
sizeSDP = size(Y, 1) ^ 2 + 1 + size(Y, 1);
pars.s = sizeSDP;
opts.printlevel = 1;
% Solve it using CSDP
[xx, yy] = csdp(AA, bb, cc, pars, opts);
% The negate of yy is our solution
yy = -yy;
idx = 0;
P = zeros(size(Y, 1));
for col=1:size(Y, 1)
for row = col:size(Y, 1)
idx = idx + 1;
P(row, col) = yy(idx);
end
end
% Convert P to a positive definite matrix
P = P + P' - diag(diag(P));
% Transform the original projection to the new projection
[V, E] = eig(P);
E(E < 0) = 0;
L = diag(sqrt(diag(E))) * V';
newY = L * Y; % multiply with Laplacian
% Eigendecomposition of the new projection: doing PCA because the
% dimensionality of newY or Y is definitely less than the number of
% points
[newV, newE] = eig(newY * newY');
newE = diag(newE);
[dummy, idx] = sort(newE);
newY = newV' * newY;
newY = newY(idx(end:-1:1),:);
return
% Function that formulates the SDP problem
function [A, b, c]=formulateSDP(S, D, bb)
[F0, FI, c] = localformulateSDP(S, D, bb);
[A, b, c] = sdpToSeDuMi(F0, FI, c);
return
% Function that formulates the SDP problem
function [F0, FI, c] = localformulateSDP(S, D, b)
% Each FI that corresponds to the LMI for the quadratic cost function has
% precisely 2 * D^2 nonzero elements. But we need only D^2 storage for
tempFidx = zeros(D ^ 2, 3);
dimF = (D ^ 2 + 1) + D;
idx = 0;
for col=1:D
for row=col:D
idx = idx + 1;
lindx1 = sub2ind([D D], row, col);
lindx2 = sub2ind([D D], col, row);
tempFidx(:,1) = [1:D ^ 2]';
tempFidx(:,2) = D ^ 2 + 1;
if col == row
tempFidx(:,3) = S(:,lindx1) ;
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row + D^2 + 1 ... % for P being p.s.d
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
row + D^2 + 1; ... % for P being p.s.d
],...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
], dimF, dimF);
else
tempFidx(:,3) = S(:, lindx1) + S(:,lindx2);
FI{idx} = sparse([tempFidx(:,1); ... % for cost function
tempFidx(:,2); ... % symmetric
row + D^2 + 1; ... % for P being p.s.d
col + D^2 + 1; ... % symmetric
], ...
[tempFidx(:,2); ... % for cost function
tempFidx(:,1); ... % symmetric
col + D^2 + 1; ... % for P being p.s.d
row + D^2 + 1; ... % being symmetric
], ...
[tempFidx(:,3); ... % for cost function
tempFidx(:,3); ... % symmetric
1; % for P being p.s.d
1; % symmetric
], dimF, dimF);
end
end
end
idx = idx + 1;
% For the F matrix corresponding to t
FI{idx} = sparse(D^2 + 1, D^2 + 1, 1, dimF, dimF);
% Now for F0
F0 = sparse(1:D^2, 1:D^2, ones(1, D^2), dimF, dimF);
% Now for c
b = reshape(-b, D, D);
b = b * 2 - diag(diag(b));
c = zeros(idx - 1,1);
kdx = 0;
for col=1:D
for row=col:D
kdx = kdx + 1;
c(kdx) = b(row, col);
end
end
c = [c; 1];
return
% Function that convertsthe canonical SDP dual formulation to SeDuMi format
function [A, b, c] = sdpToSeDuMi(F0, FI, cc)
% Check inputs
if nargin < 3
error('Cannot convert SDP formulation to SeDuMi formulation.');
end
[m, n] = size(F0);
if m ~= n
error('F0 matrix must be squared matrix.');
end
p = length(cc);
if p ~= length(FI)
error('FI matrix cellarray must have the same length as b.');
end
% Converting objective function of the canonical SDP
c = reshape(F0', n * n, 1);
% Converting equality constraints of the canonical SDP
zz = 0;
for idx=1:length(FI)
zz= zz + nnz(FI{idx});
end
A = spalloc(n * n, p, zz);
for idx=1:p
temp = reshape(FI{idx}, n * n, 1);
lst = find(temp ~= 0);
A(lst, idx) = temp(lst);
end
% We do not need to convert b
b = cc;
return
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
sparse_nn.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/sparse_nn.m
| 972 |
utf_8
|
df5da172f954ec2f53125a04787cf2d3
|
%SPARSE_NN
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
function [edgesrow, edgescol,edgesdist] = sparse_nn(snn)
% turn into sparse nearest neighbor graph snn into edgesrow and edgescol index
N = size(snn,1);
edgescol = zeros(N+1,1);
nnzer = nnz(snn);
edgesrow = zeros(nnzer,1);
edgesdist = zeros(nnzer,1);
edgescol(1) = 0;
for jdx=1:N
lst = find(snn(:, jdx)>0);
%lst = lst(find(lst>jdx));
edgescol(jdx+1) = edgescol(jdx)+length(lst);
edgesrow(edgescol(jdx)+1:edgescol(jdx+1)) = lst-1;
edgesdist(edgescol(jdx)+1:edgescol(jdx+1))=snn(lst,jdx);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
jdqz.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/techniques/jdqz.m
| 78,986 |
utf_8
|
be67a038982588a6ac9cbc2d36f009e8
|
function varargout=jdqz(varargin)
%JDQZ computes a partial generalized Schur decomposition (or QZ
% decomposition) of a pair of square matrices or operators.
%
% LAMBDA=JDQZ(A,B) and JDQZ(A,B) return K eigenvalues of the matrix pair
% (A,B), where K=min(5,N) and N=size(A,1) if K has not been specified.
%
% [X,JORDAN]=JDQZ(A,B) returns the eigenvectors X and the Jordan
% structure JORDAN: A*X=B*X*JORDAN. The diagonal of JORDAN contains the
% eigenvalues: LAMBDA=DIAG(JORDAN). JORDAN is an K by K matrix with the
% eigenvalues on the diagonal and zero or one on the first upper diagonal
% elements. The other entries are zero.
%
% [X,JORDAN,HISTORY]=JDQZ(A,B) returns also the convergence history.
%
% [X,JORDAN,Q,Z,S,T,HISTORY]=JDQZ(A,B)
% If between four and seven output arguments are required, then Q and Z
% are N by K orthonormal, S and T are K by K upper triangular such that
% they form a partial generalized Schur decomposition: A*Q=Z*S and
% B*Q=Z*T. Then LAMBDA=DIAG(S)./DIAG(T) and X=Q*Y with Y the eigenvectors
% of the pair (S,T): S*Y=T*Y*JORDAN (see also OPTIONS.Schur).
%
% JDQZ(A,B)
% JDQZ('Afun','Bfun')
% The first input argument is either a square matrix (which can be full
% or sparse, symmetric or nonsymmetric, real or complex), or a string
% containing the name of an M-file which applies a linear operator to the
% columns of a given matrix. In the latter case, the M-file, say Afun.m,
% must return the dimension N of the problem with N = Afun([],'dimension').
% For example, JDQZ('fft',...) is much faster than JDQZ(F,...), where F is
% the explicit FFT matrix.
% If another input argument is a square N by N matrix or the name of an
% M-file, then B is this argument (regardless whether A is an M-file or a
% matrix). If B has not been specified, then B is assumed to be the
% identity unless A is an M-file with two output vectors of dimension N
% with [AV,BV]=Afun(V), or with AV=Afun(V,'A') and BV=Afun(V,'B').
%
% The remaining input arguments are optional and can be given in
% practically any order:
%
% [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ(A,B,K,SIGMA,OPTIONS)
% [X,JORDAN,Q,Z,S,T,HISTORY] = JDQZ('Afun','Bfun',K,SIGMA,OPTIONS)
%
% where
%
% K an integer, the number of desired eigenvalues.
% SIGMA a scalar shift or a two letter string.
% OPTIONS a structure containing additional parameters.
%
% If K is not specified, then K = MIN(N,5) eigenvalues are computed.
%
% If SIGMA is not specified, then the Kth eigenvalues largest in
% magnitude are computed. If SIGMA is a real or complex scalar, then the
% Kth eigenvalues nearest SIGMA are computed. If SIGMA is column vector
% of size (L,1), then the Jth eigenvalue nearest to SIGMA(MIN(J,L))
% is computed for J=1:K. SIGMA is the "target" for the desired eigenvalues.
% If SIGMA is one of the following strings, then it specifies the desired
% eigenvalues.
%
% SIGMA Specified eigenvalues
%
% 'LM' Largest Magnitude
% 'SM' Smallest Magnitude (same as SIGMA = 0)
% 'LR' Largest Real part
% 'SR' Smallest Real part
% 'BE' Both Ends. Computes K/2 eigenvalues
% from each end of the spectrum (one more
% from the high end if K is odd.)
%
% If 'TestSpace' is 'Harmonic' (see OPTIONS), then SIGMA = 0 is the
% default, otherwise SIGMA = 'LM' is the default.
%
%
% The OPTIONS structure specifies certain parameters in the algorithm.
%
% Field name Parameter Default
%
% OPTIONS.Tol Convergence tolerance: 1e-8
% norm(r) <= Tol/SQRT(K)
% OPTIONS.jmin Minimum dimension search subspace V K+5
% OPTIONS.jmax Maximum dimension search subspace V jmin+5
% OPTIONS.MaxIt Maximum number of iterations. 100
% OPTIONS.v0 Starting space ones+0.1*rand
% OPTIONS.Schur Gives schur decomposition 'no'
% If 'yes', then X and JORDAN are
% not computed and [Q,Z,S,T,HISTORY]
% is the list of output arguments.
% OPTIONS.TestSpace Defines the test subspace W 'Harmonic'
% 'Standard': W=sigma*A*V+B*V
% 'Harmonic': W=A*V-sigma*B*V
% 'SearchSpace': W=V
% W=V is justified if B is positive
% definite.
% OPTIONS.Disp Shows size of intermediate residuals 'no'
% and the convergence history
% OPTIONS.NSigma Take as target for the second and 'no'
% following eigenvalues, the best
% approximate eigenvalues from the
% test subspace.
% OPTIONS.Pairs Search for conjugated eigenpairs 'no'
% OPTIONS.LSolver Linear solver 'GMRES'
% OPTIONS.LS_Tol Residual reduction linear solver 1,0.7,0.7^2,..
% OPTIONS.LS_MaxIt Maximum number it. linear solver 5
% OPTIONS.LS_ell ell for BiCGstab(ell) 4
% OPTIONS.Precond Preconditioner (see below) identity.
% OPTIONS.Type_Precond Way of using preconditioner 'left'
%
% For instance
%
% options=struct('Tol',1.0e-8,'LSolver','BiCGstab','LS_ell',4,'Precond',M);
%
% changes the convergence tolerance to 1.0e-8, takes BiCGstab as linear
% solver, and takes M as preconditioner (for ways of defining M, see below).
%
%
% PRECONDITIONING. The action M-inverse of the preconditioner M (an
% approximation of A-lamda*B) on an N-vector V can be defined in the
% OPTIONS
%
% OPTIONS.Precond
% OPTIONS.L_Precond same as OPTIONS.Precond
% OPTIONS.U_Precond
% OPTIONS.P_Precond
%
% If no preconditioner has been specified (or is []), then M\V=V (M is
% the identity).
% If Precond is an N by N matrix, say, K, then
% M\V = K\V.
% If Precond is an N by 2*N matrix, say, K, then
% M\V = U\L\V, where K=[L,U], and L and U are N by N matrices.
% If Precond is a string, say, 'Mi', then
% if Mi(V,'L') and Mi(V,'U') return N-vectors
% M\V = Mi(Mi(V,'L'),'U')
% otherwise
% M\V = Mi(V) or M\V=Mi(V,'preconditioner').
% Note that Precond and A can be the same string.
% If L_Precond and U_Precond are strings, say, 'Li' and 'Ui',
% respectively, then
% M\V=Ui(Li(V)).
% If (P_precond,) L_Precond, and U_precond are N by N matrices, say,
% (P,) L, and U, respectively, then
% M\V=U\L\(P*V) (P*M=L*U)
%
% OPTIONS.Type_Precond
% The preconditioner can be used as explicit left preconditioner
% ('left', default), as explicit right preconditioner ('right') or
% implicitly ('impl').
%
%
% JDQZ without input arguments returns the options and its defaults.
%
% Gerard Sleijpen.
% Copyright (c) 2002
%
%
% This file is part of the Matlab Toolbox for Dimensionality Reduction.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, Delft University of Technology
global Qschur Zschur Sschur Tschur ...
Operator_MVs Precond_Solves ...
MinvZ QastMinvZ
if nargin==0
possibilities, return,
end
%%% Read/set parameters
[n,nselect,Sigma,kappa,SCHUR,...
jmin,jmax,tol0,maxit,V,AV,BV,TS,DISP,PAIRS,JDV0,FIX_tol,track,NSIGMA,...
lsolver,LSpar] = ReadOptions(varargin{1:nargin});
Qschur = zeros(n,0); Zschur=zeros(n,0);;
MinvZ = zeros(n,0); QastMinvZ=zeros(0,0);
Sschur = []; Tschur=[]; history = [];
%%% Return if eigenvalueproblem is trivial
if n<2
if n==1, Qschur=1; Zschur=1; [Sschur,Tschur]=MV(1); end
if nargout == 0, Lambda=Sschur/Tschur, else
[varargout{1:nargout}]=output(history,SCHUR,1,Sschur/Tschur); end,
return, end
%---------- SET PARAMETERS & STRINGS FOR OUTPUT -------------------------
if TS==0, testspace='sigma(1)''*Av+sigma(2)''*Bv';
elseif TS==1, testspace='sigma(2)*Av-sigma(1)*Bv';
elseif TS==2, testspace='v';
elseif TS==3, testspace='Bv';
elseif TS==4, testspace='Av';
end
String=['\r#it=%i #MV=%3i, dim(V)=%2i, |r_%2i|=%6.1e '];
%------------------- JDQZ -----------------------------------------------
% fprintf('Scaling with kappa=%6.4g.',kappa)
k=0; nt=0; j=size(V,2); nSigma=size(Sigma,1);
it=0; extra=0; Zero=[]; target=[]; tol=tol0/sqrt(nselect);
INITIATE=1; JDV=0;
rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0;
time=clock;
if TS ~=2
while (k<nselect & it<maxit)
%%% Initialize target, test space and interaction matrices
if INITIATE, % set new target
nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0;
if j<2
[V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol);
rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[];
j=min(jmin,n-k);
end
if DETECTED & NSIGMA
[Ur,Ul,St,Tt] = SortQZ(WAV,WBV,sigma,kappa);
y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y;
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
sigma=ScaleEig(theta);
USE_OLD=NSIGMA; rKNOWN=1; lit=10;
end
NEWSHIFT= 1;
if DETECTED & TS<2, NEWSHIFT= ~min(target==sigma); end
target=sigma; ttarget=sigma;
if ischar(ttarget), ttrack=0; else, ttrack=track; end
if NEWSHIFT
v=V; Av=AV; Bv=BV; W=eval(testspace);
%%% V=RepGS(Qschur,V); [AV,BV]=MV(V); %%% more stability??
%%% W=RepGS(Zschur,eval(testspace)); %%% dangerous if sigma~lambda
if USE_OLD, W(:,1)=V(:,1); end,
W=RepGS(Zschur,W); WAV=W'*AV; WBV=W'*BV;
end
INITIATE=0; DETECTED=0; JDV=0;
end % if INITIATE
%%% Solve the preconditioned correction equation
if rKNOWN,
if JDV, z=W; q=V; extra=extra+1;
if DISP, fprintf(' %2i-d proj.\n',k+j-1), end
end
if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end
t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit);
nlit=nlit+1; lit=lit+1; it=it+1;
EXPAND=1; rKNOWN=0; JDV=0;
end % if rKNOWN
%%% Expand the subspaces and the interaction matrices
if EXPAND
[v,zeta]=RepGS([Qschur,V],t);
V=[V,v];
[Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv];
w=eval(testspace); w=RepGS([Zschur,W],w);
WAV=[WAV,W'*Av;w'*AV]; WBV=[WBV,W'*Bv;w'*BV]; W=[W,w];
j=j+1; EXPAND=0;
%%% Check for stagnation
if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end
end % if EXPAND
%%% Solve projected eigenproblem
if USE_OLD
[Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,y);
else
[Ur,Ul,St,Tt]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin);
end
%%% Compute approximate eigenpair and residual
y=Ur(:,1); q=V*y; Av=AV*y; Bv=BV*y;
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
%%%=== an alternative, but less stable way of computing z =====
% beta=Tt(1,1); alpha=St(1,1); theta=[alpha,beta];
% r=RepGS(Zschur,beta*Av-alpha*Bv,0); nr=norm(r); z=W*Ul(:,1);
rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end
if DISP, %%% display history
fprintf(String,it,Operator_MVs,j,nlit,nr),
end
history=[history;nr,it,Operator_MVs]; %%% save history
%%% check convergence
if (nr<tol)
%%% EXPAND Schur form
Qschur=[Qschur,q]; Zschur=[Zschur,z];
Sschur=[[Sschur;zeros(1,k)],Zschur'*Av];
Tschur=[[Tschur;zeros(1,k)],Zschur'*Bv]; Zero=[Zero,0];
k=k+1;
if ischar(target), Target(k,:)=[nt,0,0];
else, Target(k,:)=[0,target]; end
if DISP, ShowEig(theta,target,k); end
if (k>=nselect), break; end;
%%% Expand preconditioned Schur matrix MinvZ=M\Zschur
UpdateMinvZ;
J=[2:j]; j=j-1; Ur=Ur(:,J); Ul=Ul(:,J);
V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul;
WAV=St(J,J); WBV=Tt(J,J);
rKNOWN=0; DETECTED=1; USE_OLD=0;
%%% check for conjugate pair
if PAIRS & (abs(imag(theta(1)/theta(2)))>tol)
t=ImagVector(q); % t=conj(q); t=t-q*(q'*t);
if norm(t)>tol, t=RepGS([Qschur,V],t,0);
if norm(t)>200*tol
target=ScaleEig(conj(theta));
EXPAND=1; DETECTED=0;
if DISP, fprintf('--- Checking for conjugate pair ---\n'), end
end
end
end
INITIATE = ( j==0 & DETECTED);
elseif DETECTED %%% To detect whether another eigenpair is accurate enough
INITIATE=1;
end % if (nr<tol)
%%% restart if dim(V)> jmax
if j==jmax
j=jmin; J=[1:j];
Ur=Ur(:,J); Ul=Ul(:,J);
V=V*Ur; AV=AV*Ur; BV=BV*Ur; W=W*Ul;
WAV=St(J,J); WBV=Tt(J,J);
end % if j==jmax
end % while k
end % if TS~=2
if TS==2
Q0=Qschur; ZastQ=[];
% WAV=V'*AV; WBV=V'*BV;
while (k<nselect & it<maxit)
%%% Initialize target, test space and interaction matrices
if INITIATE & ( nSigma>k | NSIGMA), % set new target
nt=min(nt+1,nSigma); sigma = Sigma(nt,:); nlit=0; lit=0;
if j<2
[V,AV,BV]=Arnoldi(V,AV,BV,sigma,jmin,nselect,tol);
rKNOWN=0; EXPAND=0; USE_OLD=0; DETECTED=0; target=[];
j=min(jmin,n-k);;
end
if DETECTED & NSIGMA
[Ur,Ul,St,Tt]=SortQZ(WAV,WBV,sigma,kappa,1);
q=RepGS(Zschur,V*Ur(:,1)); [Av,Bv]=MV(q);
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
sigma=ScaleEig(theta);
USE_OLD=NSIGMA; rKNOWN=1; lit=10;
end
target=sigma; ttarget=sigma;
if ischar(ttarget), ttrack=0; else, ttrack=track; end
if ~DETECTED
%%% additional stabilisation. May not be needed
%%% V=RepGS(Zschur,V); [AV,BV]=MV(V);
%%% end add. stab.
WAV=V'*AV; WBV=V'*BV;
end
DETECTED=0; INITIATE=0; JDV=0;
end % if INITIATE
%%% Solve the preconditioned correction equation
if rKNOWN,
if JDV, z=V; q=V; extra=extra+1;
if DISP, fprintf(' %2i-d proj.\n',k+j-1), end
end
if FIX_tol*nr>1 & ~ischar(target), theta=target; else, FIX_tol=0; end
t=SolvePCE(theta,q,z,r,lsolver,LSpar,lit);
nlit=nlit+1; lit=lit+1; it=it+1;
EXPAND=1; rKNOWN=0; JDV=0;
end % if rKNOWN
%%% expand the subspaces and the interaction matrices
if EXPAND
[v,zeta]=RepGS([Zschur,V],t); [Av,Bv]=MV(v);
WAV=[WAV,V'*Av;v'*AV,v'*Av]; WBV=[WBV,V'*Bv;v'*BV,v'*Bv];
V=[V,v]; AV=[AV,Av]; BV=[BV,Bv];
j=j+1; EXPAND=0;
%%% Check for stagnation
if abs(zeta(size(zeta,1),1))/norm(zeta)<0.06, JDV=JDV0; end
end % if EXPAND
%%% compute approximate eigenpair
if USE_OLD
[Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin,Ur(:,1));
else
[Ur,Ul]=SortQZ(WAV,WBV,ttarget,kappa,(j>=jmax)*jmin);
end
%%% Compute approximate eigenpair and residual
q=V*Ur(:,1); Av=AV*Ur(:,1); Bv=BV*Ur(:,1);
[r,z,nr,theta]=Comp_rz(RepGS(Zschur,[Av,Bv],0),kappa);
rKNOWN=1; if nr<ttrack, ttarget=ScaleEig(theta); end
if DISP, %%% display history
fprintf(String,it,Operator_MVs, j,nlit,nr),
end
history=[history;nr,it,Operator_MVs]; %%% save history
%%% check convergence
if (nr<tol)
%%% expand Schur form
[q,a]=RepGS(Q0,q); a1=a(k+1,1); a=a(1:k,1);
%%% ZastQ=Z'*Q0
Q0=[Q0,q]; %%% the final Qschur
ZastQ=[ZastQ,Zschur'*q;z'*Q0]; Zschur=[Zschur,z]; Qschur=[Qschur,z];
Sschur=[[Sschur;Zero],a1\(Zschur'*Av-[Sschur*a;0])];
Tschur=[[Tschur;Zero],a1\(Zschur'*Bv-[Tschur*a;0])]; Zero=[Zero,0];
k=k+1;
if ischar(target), Target(k,:)=[nt,0,0];
else, Target(k,:)=[0,target]; end
if DISP, ShowEig(theta,target,k); end
if (k>=nselect), break; end;
UpdateMinvZ;
J=[2:j]; j=j-1; rKNOWN=0; DETECTED=1;
Ul=Ul(:,J);
V=V*Ul; AV=AV*Ul; BV=BV*Ul;
WAV=Ul'*WAV*Ul; WBV=Ul'*WBV*Ul;
Ul=eye(j); Ur=Ul;
%%% check for conjugate pair
if PAIRS & (abs(imag(theta(2)/theta(1)))>tol)
t=ImagVector(q);
if norm(t)>tol,
%%% t perp Zschur, t in span(Q0,imag(q))
t=t-Q0*(ZastQ\(Zschur'*t));
if norm(t)>100*tol
target=ScaleEig(conj(theta));
EXPAND=1; DETECTED=0; USE_OLD=0;
if DISP, fprintf('--- Checking for conjugate pair ---\n'), end
end
end
end
INITIATE = ( j==0 & DETECTED);
elseif DETECTED %%% To detect whether another eigenpair is accurate enough
INITIATE=1;
end % if (nr<tol)
%%% restart if dim(V)> jmax
if j==jmax
j=jmin; J=[1:j];
Ur=Ur(:,J);
V=V*Ur; AV=AV*Ur; BV=BV*Ur;
WAV=Ur'*WAV*Ur; WBV=Ur'*WBV*Ur;
Ur=eye(j);
end % if jmax
end % while k
Qschur=Q0;
end
time_needed=etime(clock,time);
if JDV0 & extra>0 & DISP
fprintf('\n\n# j-dim. proj.: %2i\n\n',extra)
end
I=CheckSortSchur(Sigma,kappa); Target(1:length(I),:)=Target(I,:);
XKNOWN=0;
if nargout == 0
if ~DISP
eigenvalues=diag(Sschur)./diag(Tschur)
% Result(eigenvalues)
return, end
else
Jordan=[]; X=zeros(n,0);
if SCHUR ~= 1
if k>0
[Z,D,Jor]=FindJordan(Sschur,Tschur,SCHUR);
DT=abs(diag(D)); DS=abs(diag(Jor));
JT=find(DT<=tol & DS>tol); JS=find(DS<=tol & DT<=tol);
msg=''; DT=~isempty(JT); DS=~isempty(JS);
if DT
msg1='The eigenvalues'; msg2=sprintf(', %i',JT);
msg=[msg1,msg2,' are numerically ''Inf'''];
end,
if DS
msg1='The pencil is numerically degenerated in the directions';
msg2=sprintf(', %i',JS);
if DT, msg=[msg,sprintf('\n\n')]; end, msg=[msg,msg1,msg2,'.'];
end,
if (DT | DS), warndlg(msg,'Unreliable directions'), end
Jordan=Jor/D; X=Qschur*Z; XKNOWN=1;
end
end
[varargout{1:nargout}]=output(history,SCHUR,X,Jordan);
end
%-------------- display results -----------------------------------------
if DISP & size(history,1)>0
rs=history(:,1); mrs=max(rs);
if mrs>0, rs=rs+0.1*eps*mrs;
subplot(2,1,1); t=history(:,2);
plot(t,log10(rs),'*-',t,log10(tol)+0*t,':')
legend('log_{10} || r_{#it} ||_2')
String=sprintf('The test subspace is computed as %s.',testspace);
title(String)
subplot(2,1,2); t=history(:,3);
plot(t,log10(rs),'-*',t,log10(tol)+0*t,':')
legend('log_{10} || r_{#MV} ||_2')
String=sprintf('JDQZ with jmin=%g, jmax=%g, residual tolerance %g.',...
jmin,jmax,tol);
title(String)
String=sprintf('Correction equation solved with %s.',lsolver);
xlabel(String),
date=fix(clock);
String=sprintf('%2i-%2i-%2i, %2i:%2i:%2i',date(3:-1:1),date(4:6));
ax=axis; text(0.2*ax(1)+0.8*ax(2),1.2*ax(3)-0.2*ax(4),String)
drawnow
end
Result(Sigma,Target,diag(Sschur),diag(Tschur),tol)
end
%------------------------ TEST ACCURACY ---------------------------------
if k>nselect & DISP
fprintf('\n%i additional eigenpairs have been detected.\n',k-nselect)
end
if k<nselect & DISP
fprintf('\nFailed to detect %i eigenpairs.\n',nselect-k)
end
if (k>0) & DISP
Str='time_needed'; texttest(Str,eval(Str))
fprintf('\n%39s: %9i','Number of Operator actions',Operator_MVs)
if Precond_Solves
fprintf('\n%39s: %9i','Number of preconditioner solves',Precond_Solves)
end
if 1
if SCHUR ~= 1 & XKNOWN
% Str='norm(Sschur*Z-Tschur*Z*Jordan)'; texttest(Str,eval(Str),tol0)
ok=1; eval('[AX,BX]=MV(X);','ok=0;')
if ~ok, for j=1:size(X,2), [AX(:,j),BX(:,j)]=MV(X(:,j)); end, end
Str='norm(AX*D-BX*Jor)'; texttest(Str,eval(Str),tol0)
end
ok=1; eval('[AQ,BQ]=MV(Qschur);','ok=0;')
if ~ok, for j=1:size(Qschur,2), [AQ(:,j),BQ(:,j)]=MV(Qschur(:,j)); end, end
if kappa == 1
Str='norm(AQ-Zschur*Sschur)'; texttest(Str,eval(Str),tol0)
else
Str='norm(AQ-Zschur*Sschur)/kappa'; texttest(Str,eval(Str),tol0)
end
Str='norm(BQ-Zschur*Tschur)'; texttest(Str,eval(Str),tol0)
I=eye(k);
Str='norm(Qschur''*Qschur-I)'; texttest(Str,eval(Str))
Str='norm(Zschur''*Zschur-I)'; texttest(Str,eval(Str))
nrmSschur=max(norm(Sschur),1.e-8);
nrmTschur=max(norm(Tschur),1.e-8);
Str='norm(tril(Sschur,-1))/nrmSschur'; texttest(Str,eval(Str))
Str='norm(tril(Tschur,-1))/nrmTschur'; texttest(Str,eval(Str))
end
fprintf('\n==================================================\n')
end
if k==0
disp('no eigenvalue could be detected with the required precision')
end
return
%%%======== END JDQZ ====================================================
%%%======================================================================
%%%======== PREPROCESSING ===============================================
%%%======================================================================
%%%======== ARNOLDI (for initial spaces) ================================
function [V,AV,BV]=Arnoldi(v,Av,Bv,sigma,jmin,nselect,tol)
% Apply Arnoldi with M\(A*sigma(1)'+B*sigma(2)'), to construct an
% initial search subspace
%
global Qschur
if ischar(sigma), sigma=[0,1]; end
[n,j]=size(v); k=size(Qschur,2); jmin=min(jmin,n-k);
if j==0 & k>0
v=RepGS(Qschur,rand(n,1)); [Av,Bv]=MV(v); j=1;
end
V=v; AV=Av; BV=Bv;
while j<jmin;
v=[Av,Bv]*sigma';
v0=SolvePrecond(v);
if sigma(1)==0 & norm(v0-v)<tol,
%%%% then precond=I and target = 0: apply Arnoldi with A
sigma=[1,0]; v0=Av;
end
v=RepGS([Qschur,V],v0); V=[V,v];
[Av,Bv]=MV(v); AV=[AV,Av]; BV=[BV,Bv]; j=j+1;
end % while
return
%%%======== END ARNOLDI =================================================
%%%======================================================================
%%%======== POSTPROCESSING ==============================================
%%%======================================================================
%%%======== SORT QZ DECOMPOSITION INTERACTION MATRICES ==================
function I=CheckSortSchur(Sigma,kappa)
% I=CheckSortSchur(Sigma)
% Scales Qschur, Sschur, and Tschur such that diag(Tschur) in [0,1]
% Reorders the Partial Schur decomposition such that the `eigenvalues'
% (diag(S),diag(T)) appear in increasing chordal distance w.r.t. to
% Sigma.
% If diag(T) is non-singular then Lambda=diag(S)./diag(T) are the
% eigenvalues.
global Qschur Zschur Sschur Tschur
k=size(Sschur,1); if k==0, I=[]; return, end
% [AQ,BQ]=MV(Qschur);
% Str='norm(AQ-Zschur*Sschur)'; texttest(Str,eval(Str))
% Str='norm(BQ-Zschur*Tschur)'; texttest(Str,eval(Str))
%--- scale such that diag(Tschur) in [0,1] ----
[Tschur,D]=ScaleT(Tschur); Sschur=D\Sschur;
% kappa=max(norm(Sschur,inf)/norm(Tschur,inf),1);
s=diag(Sschur); t=diag(Tschur);
I=(1:k)'; l=size(Sigma,1);
for j=1:k
J0=(j:k)';
J=SortEig(s(I(J0)),t(I(J0)),Sigma(min(j,l),:),kappa);
I(J0)=I(J0(J));
end
if ~min((1:k)'==I)
[Q,Z,Sschur,Tschur]=SwapQZ(eye(k),eye(k),Sschur,Tschur,I);
[Tschur,D2]=ScaleT(Tschur); Sschur=D2\Sschur;
Qschur=Qschur*Q; Zschur=Zschur*(D*Z*D2);
else
Zschur=Zschur*D;
end
return
%========================================================================
function [T,D]=ScaleT(T)
% scale such that diag(T) in [0,1] ----
n=sign(diag(T)); n=n+(n==0); D=diag(n);
T=D\T; IT=imag(T); RT=real(T);
T=RT+IT.*(abs(IT)>eps*abs(RT))*sqrt(-1);
return
%%%======== COMPUTE SORTED JORDAN FORM ==================================
function [X,D,Jor]=FindJordan(S,T,SCHUR)
% [X,D,J]=FINDJORDAN(S,T)
% For S and T k by k upper triangular matrices
% FINDJORDAN computes the Jordan decomposition.
% X is a k by k matrix of eigenvectors and principal vectors
% D and J are k by matrices, D is diagonal, J is Jordan
% such that S*X*D=T*X*J. (diag(D),diag(J)) are the eigenvalues.
% If D is non-singular then Lambda=diag(J)./diag(D)
% are the eigenvalues.
% coded by Gerard Sleijpen, May, 2002
k=size(S,1);
s=diag(S); t=diag(T); n=sign(t); n=n+(n==0);
D=sqrt(conj(s).*s+conj(t).*t).*n;
S=diag(D)\S; T=diag(D)\T; D=diag(diag(T));
if k<1,
if k==0, X=[]; D=[]; Jor=[]; end
if k==1, X=1; Jor=s; end
return
end
tol=k*(norm(S,1)+norm(T,1))*eps;
[X,Jor,I]=PseudoJordan(S,T,tol);
if SCHUR == 0
for l=1:length(I)-1
if I(l)<I(l+1)-1,
J=[I(l):I(l+1)-1];
[U,JJor]=JordanBlock(Jor(J,J),tol);
X(:,J)=X(:,J)*U; Jor(J,J)=JJor;
end
end
end
Jor=Jor+diag(diag(S)); Jor=Jor.*(abs(Jor)>tol);
return
%==================================================
function [X,Jor,J]=PseudoJordan(S,T,delta)
% Computes a pseudo-Jordan decomposition for the upper triangular
% matrices S and T with ordered diagonal elements.
% S*X*(diag(diag(T)))=T*X*(diag(diag(S))+Jor)
% with X(:,i:j) orthonormal if its
% columns span an invariant subspace of (S,T).
k=size(S,1); s=diag(S); t=diag(T);
Jor=zeros(k); X=eye(k); J=1;
for i=2:k
I=[1:i];
C=t(i,1)*S(I,I)-s(i,1)*T(I,I); C(i,i)=norm(C,inf);
if C(i,i)>0
tol=delta*C(i,i);
for j=i:-1:1
if j==1 | abs(C(j-1,j-1))>tol, break; end
end
e=zeros(i,1); e(i,1)=1;
if j==i
J=[J,i]; q=C\e; X(I,i)=q/norm(q);
else
q=X(I,j:i-1);
q=[C,T(I,I)*q;q',zeros(i-j)]\[e;zeros(i-j,1)];
q=q/norm(q(I,1)); X(I,i)=q(I,1);
Jor(j:i-1,i)=-q(i+1:2*i-j,1);
end
end
end
J=[J,k+1];
return
%==================================================
function [X,Jor,U]=JordanBlock(A,tol)
% If A is nilpotent, then A*X=X*Jor with
% Jor a Jordan block
%
k=size(A,1); Id=eye(k);
U=Id; aa=A; j=k; jj=[]; J=1:k;
while j>0
[u,s,v]=svd(aa); U(:,J)=U(:,J)*v;
sigma=diag(s); delta=tol;
J=find(sigma<delta);
if isempty(J),j=0; else, j=min(J)-1; end
jj=[jj,j]; if j==0, break, end
aa=v'*u*s; J=1:j; aa=aa(J,J);
end
Jor=U'*A*U; Jor=Jor.*(abs(Jor)>tol);
l=length(jj); jj=[jj(l:-1:1),k];
l2=jj(2)-jj(1); J=jj(1)+(1:l2);
JX=Id(:,J); X=Id;
for j=2:l
l1=l2+1; l2=jj(j+1)-jj(j);
J2=l1:l2; J=jj(j)+(1:l2);
JX=Jor*JX; D=diag(sqrt(diag(JX'*JX))); JX=JX/D;
[Q,S,V]=svd(JX(J,:));
JX=[JX,Id(:,J)*Q(:,J2)]; X(:,J)=JX;
end
J=[];
for i=1:l2
for k=l:-1:1
j=jj(k)+i; if j<=jj(k+1), J=[J,j]; end
end
end
X=X(:,J); Jor=X\(Jor*X); X=U*X;
Jor=Jor.*(abs(Jor)>100*tol);
return
%%%======== END JORDAN FORM =============================================
%%%======== OUTPUT ======================================================
function varargout=output(history,SCHUR,X,Lambda)
global Qschur Zschur Sschur Tschur
if nargout == 1, varargout{1}=diag(Sschur)./diag(Tschur); return, end
if nargout > 2, varargout{nargout}=history; end
if nargout < 6 & SCHUR == 1
if nargout >1, varargout{1}=Qschur; varargout{2}=Zschur; end
if nargout >2, varargout{3}=Sschur; end
if nargout >3, varargout{4}=Tschur; end
end
%-------------- compute eigenpairs --------------------------------------
if SCHUR ~= 1
varargout{1}=X; varargout{2}=Lambda;
if nargout >3, varargout{3}=Qschur; varargout{4}=Zschur; end
if nargout >4, varargout{5}=Sschur; end
if nargout >5, varargout{6}=Tschur; end
end
return
%%%======================================================================
%%%======== UPDATE PRECONDITIONED SCHUR VECTORS =========================
%%%======================================================================
function UpdateMinvZ
global Qschur Zschur MinvZ QastMinvZ
[n,k]=size(Qschur);
if k==1, MinvZ=zeros(n,0); QastMinvZ = []; end
Minv_z=SolvePrecond(Zschur(:,k));
QastMinvZ=[[QastMinvZ;Qschur(:,k)'*MinvZ],Qschur'*Minv_z];
MinvZ=[MinvZ,Minv_z];
return
%%%======================================================================
%%%======== SOLVE CORRECTION EQUATION ===================================
%%%======================================================================
function [t,xtol]=SolvePCE(theta,q,z,r,lsolver,par,nit)
global Qschur Zschur
Q=[Qschur,q]; Z=[Zschur,z];
switch lsolver
case 'exact'
[t,xtol] = exact(theta,Q,Z,r);
case {'gmres','cgstab','olsen'}
[MZ,QMZ]=FormPM(q,z);
%%% solve preconditioned system
[t,xtol] = feval(lsolver,theta,Q,Z,MZ,QMZ,r,spar(par,nit));
end
return
%------------------------------------------------------------------------
function [MZ,QMZ]=FormPM(q,z)
% compute vectors and matrices for skew projection
global Qschur MinvZ QastMinvZ
Minv_z=SolvePrecond(z);
QMZ=[QastMinvZ,Qschur'*Minv_z;q'*MinvZ,q'*Minv_z];
MZ=[MinvZ,Minv_z];
return
%%%======================================================================
%%%======== LINEAR SOLVERS ==============================================
%%%======================================================================
function [x,xtol] = exact(theta,Q,Z,r)
% produces the exact solution if matrices are given
% Is only feasible for low dimensional matrices
% Only of interest for experimental purposes
%
global Operator_A Operator_B
n=size(r,1);
if ischar(Operator_A)
[MZ,QMZ]=FormPM(Q(:,end),Z(:,end));
if n>200
[x,xtol]=SolvePCE(theta,Q,Z,MZ,QMZ,r,'cgstab',[1.0e-10,500,4]);
else
[x,xtol]=SolvePCE(theta,Q,Z,MZ,QMZ,r,'gmres',[1.0e-10,100]);
end
return
end
k=size(Q,2);
Aug=[theta(2)*Operator_A-theta(1)*Operator_B,Z;Q',zeros(k,k)];
x=Aug\[r;zeros(k,1)]; x([n+1:n+k],:)=[]; xtol=1;
% L=eig(full(Aug)); plot(real(L),imag(L),'*'), pause
%%% [At,Bt]=MV(x); At=theta(2)*At-theta(1)*Bt;
%%% xtol=norm(r-At+Z*(Z'*At))/norm(r);
return
%%%===== Iterative methods ==============================================
function [r,xtol] = olsen(theta,Q,Z,MZ,M,r,par)
% returns the preconditioned residual as approximate solution
% May be sufficient in case of an excellent preconditioner
r=SkewProj(Q,MZ,M,SolvePrecond(r)); xtol=0;
return
%------------------------------------------------------------------------
function [x,rnrm] = cgstab(theta,Q,Z,MZ,M,r,par)
% BiCGstab(ell) with preconditioning
% [x,rnrm] = cgstab(theta,Q,Z,MZ,M,r,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=r
% where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q').
% using (I-MZ*(M\Q'))*inv(K) as preconditioner
%
% This function is specialized for use in JDQZ.
% integer nmv: number of matrix multiplications
% rnrm: relative residual norm
%
% par=[tol,mxmv,ell] where
% integer m: max number of iteration steps
% real tol: residual reduction
%
% rnrm: obtained residual reduction
%
% -- References: ETNA
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization --
%
global Precond_Type
tol=par(1); max_it=par(2); l=par(3); n=size(r,1);
rnrm=1; nmv=0;
if max_it < 2 | tol>=1, x=r; return, end
%%% 0 step of bicgstab eq. 1 step of bicgstab
%%% Then x is a multiple of b
TP=Precond_Type;
if TP==0, r=SkewProj(Q,MZ,M,SolvePrecond(r)); tr=r;
else, tr=RepGS(Z,r); end
rnrm=norm(r); snrm=rnrm; tol=tol*snrm;
sigma=1; omega=1;
x=zeros(n,1); u=zeros(n,1);
J1=2:l+1;
%%% HIST=[0,1];
if TP <2 %% explicit preconditioning
% -- Iteration loop
while (nmv < max_it)
sigma=-omega*sigma;
for j = 1:l,
rho=tr'*r(:,j); bet=rho/sigma;
u=r-bet*u;
u(:,j+1)=PreMV(theta,Q,MZ,M,u(:,j));
sigma=tr'*u(:,j+1); alp=rho/sigma;
r=r-alp*u(:,2:j+1);
r(:,j+1)=PreMV(theta,Q,MZ,M,r(:,j));
x=x+alp*u(:,1);
G(1,1)=r(:,1)'*r(:,1); rnrm=sqrt(G(1,1));
if rnrm<tol, l=j; J1=2:l+1; r=r(:,1:l+1); break, end
end
nmv = nmv+2*l;
for i=2:l+1
G(i,1:i)=r(:,i)'*r(:,1:i); G(1:i,i)=G(i,1:i)';
end
if TP, g=Z'*r; G=G-g'*g; end
d=G(J1,1); gamma=G(J1,J1)\d;
rnrm=sqrt(real(G(1,1)-d'*gamma)); %%% compute norm in l-space
%%% HIST=[HIST;[nmv,rnrm/snrm]];
x=x+r(:,1:l)*gamma;
if rnrm < tol, break, end %%% sufficient accuracy. No need to update r,u
omega=gamma(l,1); gamma=[1;-gamma];
u=u*gamma; r=r*gamma;
if TP, g=g*gamma; r=r-Z*g; end
% rnrm = norm(r);
end
else %% implicit preconditioning
I=eye(2*l); v0=I(:,1:l); s0=I(:,l+1:2*l);
y0=zeros(2*l,1); V=zeros(n,2*l);
while (nmv < max_it)
sigma=-omega*sigma;
y=y0; v=v0; s=s0;
for j = 1:l,
rho=tr'*r(:,j); bet=rho/sigma;
u=r-bet*u;
if j>1, %%% collect the updates for x in l-space
v(:,1:j-1)=s(:,1:j-1)-bet*v(:,1:j-1);
end
[u(:,j+1),V(:,j)]=PreMV(theta,Q,MZ,M,u(:,j));
sigma=tr'*u(:,j+1); alp=rho/sigma;
r=r-alp*u(:,2:j+1);
if j>1,
s(:,1:j-1)=s(:,1:j-1)-alp*v(:,2:j);
end
[r(:,j+1),V(:,l+j)]=PreMV(theta,Q,MZ,M,r(:,j));
y=y+alp*v(:,1);
G(1,1)=r(:,1)'*r(:,1); rnrm=sqrt(G(1,1));
if rnrm<tol, l=j; J1=2:l+1; s=s(:,1:l); break, end
end
nmv = nmv+2*l;
for i=2:l+1
G(i,1:i)=r(:,i)'*r(:,1:i); G(1:i,i)=G(i,1:i)';
end
g=Z'*r; G=G-g'*g; %%% but, do the orth to Z implicitly
d=G(J1,1); gamma=G(J1,J1)\d;
rnrm=sqrt(real(G(1,1)-d'*gamma)); %%% compute norm in l-space
x=x+V*(y+s*gamma);
%%% HIST=[HIST;[nmv,rnrm/snrm]];
if rnrm < tol, break, end %%% sufficient accuracy. No need to update r,u
omega=gamma(l,1); gamma=[1;-gamma];
u=u*gamma; r=r*gamma;
g=g*gamma; r=r-Z*g; %%% Do the orth to Z explicitly
%%% In exact arithmetic not needed, but
%%% appears to be more stable.
end
end
if TP==1, x=SkewProj(Q,MZ,M,SolvePrecond(x)); end
rnrm = rnrm/snrm;
%%% plot(HIST(:,1),log10(HIST(:,2)+eps),'*'), drawnow
return
%----------------------------------------------------------------------
function [v,rnrm] = gmres0(theta,Q,Z,MZ,M,v,par)
% GMRES
% [x,rnrm] = gmres(theta,Q,Z,MZ,M,v,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=b
% where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q').
% using (I-MZ*(M\Q'))*inv(K) as preconditioner
%
% If used as implicit preconditioner then FGMRES.
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% rnrm: obtained residual reduction
%
% -- References: Saad & Schultz SISC 1986
% Gerard Sleijpen ([email protected])
% Copyright (c) 1998, Gerard Sleijpen
% -- Initialization
global Precond_Type
tol=par(1); max_it=par(2); n = size(v,1);
rnrm = 1; j=0;
if max_it < 2 | tol>=1, return, end
%%% 0 step of gmres eq. 1 step of gmres
%%% Then x is a multiple of b
H = zeros(max_it +1,max_it); Rot=[ones(1,max_it);zeros(1,max_it)];
TP=Precond_Type;
TP=Precond_Type;
if TP==0
v=SkewProj(Q,MZ,M,SolvePrecond(v)); rho0 = norm(v); v = v/rho0;
else
v=RepGS(Z,v);
end
V = [v];
tol = tol * rnrm;
y = [ rnrm ; zeros(max_it,1) ];
while (j < max_it) & (rnrm > tol),
j=j+1;
[v,w]=PreMV(theta,Q,MZ,M,v);
if TP
if TP == 2, W=[W,w]; end
v=RepGS(Z,v,0);
end
[v,h] = RepGS(V,v); H(1:size(h,1),j) = h;
V = [V, v];
for i = 1:j-1,
a = Rot(:,i);
H(i:i+1,j) = [a'; -a(2) a(1)]*H(i:i+1,j);
end
J=[j, j+1];
a=H(J,j);
if a(2) ~= 0
cs = norm(a);
a = a/cs; Rot(:,j) = a;
H(J,j) = [cs; 0];
y(J) = [a'; -a(2) a(1)]*y(J);
end
rnrm = abs(y(j+1));
end
J=[1:j];
if TP == 2
v = W(:,J)*(H(J,J)\y(J));
else
v = V(:,J)*(H(J,J)\y(J));
end
if TP==1, v=SkewProj(Q,MZ,M,SolvePrecond(v)); end
return
%%%======================================================================
function [v,rnrm] = gmres(theta,Q,Z,MZ,M,v,par)
% GMRES
% [x,nmv,rnrm] = gmres(theta,Q,Z,MZ,M,v,par)
% Computes iteratively an approximation to the solution
% of the linear system Q'*x = 0 and Atilde*x=r
% where Atilde=(I-Z*Z)*(A-theta*B)*(I-Q*Q').
% using (I-MZ*(M\Q'))*inv(K) as preconditioner.
%
% If used as implicit preconditioner, then FGMRES.
%
% par=[tol,m] where
% integer m: degree of the minimal residual polynomial
% real tol: residual reduction
%
% nmv: number of MV with Atilde
% rnrm: obtained residual reduction
%
% -- References: Saad
% Same as gmres0. However this variant uses MATLAB built-in functions
% slightly more efficient (see Sleijpen and van den Eshof).
%
%
% Gerard Sleijpen ([email protected])
% Copyright (c) 2002, Gerard Sleijpen
global Precond_Type
% -- Initialization
tol=par(1); max_it=par(2); n = size(v,1);
j=0;
if max_it < 2 | tol>=1, rnrm=1; return, end
%%% 0 step of gmres eq. 1 step of gmres
%%% Then x is a multiple of b
H = zeros(max_it +1,max_it); Gamma=1; rho=1;
TP=Precond_Type;
if TP==0
v=SkewProj(Q,MZ,M,SolvePrecond(v)); rho0 = norm(v); v = v/rho0;
else
v=RepGS(Z,v); rho0=1;
end
V = zeros(n,0); W=zeros(n,0);
tol0 = 1/(tol*tol);
%% HIST=1;
while (j < max_it) & (rho < tol0)
V=[V,v]; j=j+1;
[v,w]=PreMV(theta,Q,MZ,M,v);
if TP
if TP == 2, W=[W,w]; end
v=RepGS(Z,v,0);
end
[v,h] = RepGS(V,v);
H(1:size(h,1),j)=h; gamma=H(j+1,j);
if gamma==0, break %%% Lucky break-down
else
gamma= -Gamma*h(1:j)/gamma;
Gamma=[Gamma,gamma];
rho=rho+gamma'*gamma;
end
%% HIST=[HIST;(gamma~=0)/sqrt(rho)];
end
if gamma==0; %%% Lucky break-down
e1=zeros(j,1); e1(1)=rho0; rnrm=0;
if TP == 2
v=W*(H(1:j,1:j)\e1);
else
v=V*(H(1:j,1:j)\e1);
end
else %%% solve in least square sense
e1=zeros(j+1,1); e1(1)=rho0; rnrm=1/sqrt(rho);
if TP == 2
v=W*(H(1:j+1,1:j)\e1);
else
v=V*(H(1:j+1,1:j)\e1);
end
end
if TP==1, v=SkewProj(Q,MZ,M,SolvePrecond(v)); end
%% HIST=log10(HIST+eps); J=[0:size(HIST,1)-1]';
%% plot(J,HIST(:,1),'*'); drawnow
return
%%%======== END SOLVE CORRECTION EQUATION ===============================
%%%======================================================================
%%%======== BASIC OPERATIONS ============================================
%%%======================================================================
function [Av,Bv]=MV(v)
% [y,z]=MV(x)
% y=A*x, z=B*x
% y=MV(x,theta)
% y=(A-theta*B)*x
%
global Operator_Form Operator_MVs Operator_A Operator_B Operator_Params
Bv=v;
switch Operator_Form
case 1 % both Operator_A and B are strings
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=feval(Operator_B,Operator_Params{:});
case 2
Operator_Params{1}=v;
[Av,Bv]=feval(Operator_A,Operator_Params{:});
case 3
Operator_Params{1}=v;
Operator_Params{2}='A';
Av=feval(Operator_A,Operator_Params{:});
Operator_Params{2}='B';
Bv=feval(Operator_A,Operator_Params{:});
case 4
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=Operator_B*v;
case 5
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
case 6
Av=Operator_A*v;
Operator_Params{1}=v;
Bv=feval(Operator_B,Operator_Params{:});
case 7
Av=Operator_A*v;
Bv=Operator_B*v;
case 8
Av=Operator_A*v;
end
Operator_MVs = Operator_MVs +size(v,2);
% [Av(1:5,1),Bv(1:5,1)], pause
return
%------------------------------------------------------------------------
function y=SolvePrecond(y);
global Precond_Form Precond_L Precond_U Precond_P Precond_Params Precond_Solves
switch Precond_Form
case 0,
case 1, Precond_Params{1}=y;
y=feval(Precond_L,Precond_Params{:});
case 2, Precond_Params{1}=y; Precond_Params{2}='preconditioner';
y=feval(Precond_L,Precond_Params{:});
case 3, Precond_Params{1}=y;
Precond_Params{1}=feval(Precond_L,Precond_Params{:});
y=feval(Precond_U,Precond_Params{:});
case 4, Precond_Params{1}=y; Precond_Params{2}='L';
Precond_Params{1}=feval(Precond_L,Precond_Params{:});
Precond_Params{2}='U';
y=feval(Precond_L,Precond_Params{:});
case 5, y=Precond_L\y;
case 6, y=Precond_U\(Precond_L\y);
case 7, y=Precond_U\(Precond_L\(Precond_P*y));
end
if Precond_Form
Precond_Solves = Precond_Solves +size(y,2);
end
%% y(1:5,1), pause
return
%------------------------------------------------------------------------
function [v,u]=PreMV(theta,Q,Z,M,v)
% v=Atilde*v
global Precond_Type
if Precond_Type
u=SkewProj(Q,Z,M,SolvePrecond(v));
[v,w]=MV(u); v=theta(2)*v-theta(1)*w;
else
[v,u]=MV(v); u=theta(2)*v-theta(1)*u;
v=SkewProj(Q,Z,M,SolvePrecond(u));
end
return
%------------------------------------------------------------------------
function r=SkewProj(Q,Z,M,r);
if ~isempty(Q),
r=r-Z*(M\(Q'*r));
end
return
%------------------------------------------------------------------------
function ppar=spar(par,nit)
k=size(par,2)-2;
ppar=par(1,k:k+2);
if k>1
if nit>k
ppar(1,1)=par(1,k)*((par(1,k)/par(1,k-1))^(nit-k));
else
ppar(1,1)=par(1,max(nit,1));
end
end
ppar(1,1)=max(ppar(1,1),1.0e-8);
return
%------------------------------------------------------------------------
function u=ImagVector(u)
% computes "essential" imaginary part of a vector
maxu=max(u); maxu=maxu/abs(maxu); u=imag(u/maxu);
return
%------------------------------------------------------------------------
function Sigma=ScaleEig(Sigma)
%
%
n=sign(Sigma(:,2)); n=n+(n==0);
d=sqrt((Sigma.*conj(Sigma))*[1;1]).*n;
Sigma=diag(d)\Sigma;
return
%%%======== COMPUTE r AND z =============================================
function [r,z,nrm,theta]=Comp_rz(E,kappa)
%
% [r,z,nrm,theta]=Comp_rz(E)
% computes the direction r of the minimal residual,
% the left projection vector z,
% the approximate eigenvalue theta
%
% [r,z,nrm,theta]=Comp_rz(E,kappa)
% kappa is a scaling factor.
%
% coded by Gerard Sleijpen, version Januari 7, 1998
if nargin == 1
kappa=norm(E(:,1))/norm(E(:,2)); kappa=2^(round(log2(kappa)));
end
if kappa ~=1, E(:,1)=E(:,1)/kappa; end
[Q,sigma,u]=svd(E,0); %%% E*u=Q*sigma, sigma(1,1)>sigma(2,2)
r=Q(:,2); z=Q(:,1); nrm=sigma(2,2);
% nrm=nrm/sigma(1,1); nrmz=sigma(1,1)
u(1,:)=u(1,:)/kappa; theta=[-u(2,2),u(1,2)];
return
%%%======== END computation r and z =====================================
%%%======================================================================
%%%======== Orthogonalisation ===========================================
%%%======================================================================
function [V,R]=RepGS(Z,V,gamma)
%
% Orthonormalisation using repeated Gram-Schmidt
% with the Daniel-Gragg-Kaufman-Stewart (DGKS) criterion
%
% Q=RepGS(V)
% The n by k matrix V is orthonormalized, that is,
% Q is an n by k orthonormal matrix and
% the columns of Q span the same space as the columns of V
% (in fact the first j columns of Q span the same space
% as the first j columns of V for all j <= k).
%
% Q=RepGS(Z,V)
% Assuming Z is n by l orthonormal, V is orthonormalized against Z:
% [Z,Q]=RepGS([Z,V])
%
% Q=RepGS(Z,V,gamma)
% With gamma=0, V is only orthogonalized against Z
% Default gamma=1 (the same as Q=RepGS(Z,V))
%
% [Q,R]=RepGS(Z,V,gamma)
% if gamma == 1, V=[Z,Q]*R; else, V=Z*R+Q; end
% coded by Gerard Sleijpen, March, 2002
% if nargin == 1, V=Z; Z=zeros(size(V,1),0); end
if nargin <3, gamma=1; end
[n,dv]=size(V); [m,dz]=size(Z);
if gamma, l0=min(dv+dz,n); else, l0=dz; end
R=zeros(l0,dv);
if dv==0, return, end
if dz==0 & gamma==0, return, end
% if m~=n
% if m<n, Z=[Z;zeros(n-m,dz)]; end
% if m>n, V=[V;zeros(m-n,dv)]; n=m; end
% end
if (dz==0 & gamma)
j=1; l=1; J=1;
q=V(:,1); nr=norm(q); R(1,1)=nr;
while nr==0, q=rand(n,1); nr=norm(q); end, V(:,1)=q/nr;
if dv==1, return, end
else
j=0; l=0; J=[];
end
while j<dv,
j=j+1; q=V(:,j); nr_o=norm(q); nr=eps*nr_o;
if dz>0, yz=Z'*q; q=q-Z*yz; end
if l>0, y=V(:,J)'*q; q=q-V(:,J)*y; end
nr_n=norm(q);
while (nr_n<0.5*nr_o & nr_n > nr)
if dz>0, sz=Z'*q; q=q-Z*sz; yz=yz+sz; end
if l>0, s=V(:,J)'*q; q=q-V(:,J)*s; y=y+s; end
nr_o=nr_n; nr_n=norm(q);
end
if dz>0, R(1:dz,j)=yz; end
if l>0, R(dz+J,j)=y; end
if ~gamma
V(:,j)=q;
elseif l+dz<n, l=l+1;
if nr_n <= nr % expand with a random vector
% if nr_n==0
V(:,l)=RepGS([Z,V(:,J)],rand(n,1));
% else % which can be numerical noice
% V(:,l)=q/nr_n;
% end
else
V(:,l)=q/nr_n; R(dz+l,j)=nr_n;
end
J=[1:l];
end
end % while j
if gamma & l<dv, V=V(:,J); end
return
%%%======== END Orthogonalisation ======================================
%%%======================================================================
%%%======== Sorts Schur form ============================================
%%%======================================================================
function [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma,u)
%
% [Q,Z,S,T]=SortQZ(A,B,tau)
% A and B are k by k matrices, tau is a complex pair [alpha,beta].
% SortQZ computes the qz-decomposition of (A,B) with prescribed
% ordering: A*Q=Z*S, B*Q=Z*T;
% Q and Z are unitary k by k matrices,
% S and T are upper triangular k by k matrices.
% The ordering is as follows:
% (diag(S),diag(T)) are the eigenpairs of (A,B) ordered
% with increasing "chordal distance" w.r.t. tau.
%
% If tau is a scalar then [tau,1] is used.
% Default value for tau is tau=0, i.e., tau=[0,1].
%
% [Q,Z,S,T]=SortQZ(A,B,tau,kappa)
% kappa scales A first: A/kappa. Default kappa=1.
%
% [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma)
% Sorts the first MAX(gamma,1) elements. Default: gamma=k
%
% [Q,Z,S,T]=SortQZ(A,B,tau,kappa,gamma,u)
% Now, with ordering such that angle u and Q(:,1) is less than 45o,
% and, except for the first pair, (diag(S),diag(T)) are
% with increasing "chordal distance" w.r.t. tau.
% If such an ordering does not exist, ordering is as without u.
%
% coded by Gerard Sleijpen, version April, 2002
k=size(A,1);
if k==1, Q=1; Z=1; S=A;T=B; return, end
kk=k-1;
if nargin < 3, tau=[0,1]; end
if nargin < 4, kappa=1; end
if nargin > 4, kk=max(1,min(gamma,k-1)); end
%% kappa=max(norm(A,inf)/max(norm(B,inf),1.e-12),1);
%% kappa=2^(round(log2(kappa)));
%%%------ compute the qz factorization -------
[S,T,Z,Q]=qz(A,B); Z=Z';
% kkappa=max(norm(A,inf),norm(B,inf));
% Str='norm(A*Q-Z*S)';texttest(Str,eval(Str))
% Str='norm(B*Q-Z*T)';texttest(Str,eval(Str))
%%%------ scale the eigenvalues --------------
t=diag(T); n=sign(t); n=n+(n==0); D=diag(n);
Q=Q/D; S=S/D; T=T/D;
%%%------ sort the eigenvalues ---------------
I=SortEig(diag(S),real(diag(T)),tau,kappa);
%%%------ swap the qz form -------------------
[Q,Z,S,T]=SwapQZ(Q,Z,S,T,I(1:kk));
% Str='norm(A*Q-Z*S)';texttest(Str,eval(Str))
% Str='norm(B*Q-Z*T)';texttest(Str,eval(Str))
if nargin < 6 | size(u,2) ~= 1
return
else
%%% repeat SwapQZ if angle is too small
kk=min(size(u,1),k); J=1:kk; u=u(J,1)'*Q(J,:);
if abs(u(1,1))>0.7, return, end
for j=2:kk
J=1:j;
if norm(u(1,J))>0.7
J0=[j,1:j-1];
[Qq,Zz,Ss,Tt]=SwapQZ(eye(j),eye(j),S(J,J),T(J,J),J0);
if abs(u(1,J)*Qq(:,1))>0.71
Q(:,J)=Q(:,J)*Qq; Z(:,J)=Z(:,J)*Zz;
S(J,J)=Ss; S(J,j+1:k)=Zz'*S(J,j+1:k);
T(J,J)=Tt; T(J,j+1:k)=Zz'*T(J,j+1:k);
% Str='norm(A*Q-Z*S)';texttest(Str,eval(Str))
% Str='norm(B*Q-Z*T)';texttest(Str,eval(Str))
fprintf(' Took %2i:%6.4g\n',j,S(1,1)./T(1,1))
return
end
end
end
disp([' Selection problem: took ',num2str(1)])
return
end
%%%======================================================================
function I=SortEig(s,t,sigma,kappa);
%
% I=SortEig(S,T,SIGMA) sorts the indices of [S,T] as prescribed by SIGMA
% S and T are K-vectors.
%
% If SIGMA=[ALPHA,BETA] is a complex pair then
% if CHORDALDISTANCE
% sort [S,T] with increasing chordal distance w.r.t. SIGMA.
% else
% sort S./T with increasing distance w.r.t. SIGMA(1)/SIGMA(2)
%
% The chordal distance D between a pair A and a pair B is
% defined as follows.
% Scale A by a scalar F such that NORM(F*A)=1.
% Scale B by a scalar G such that NORM(G*B)=1.
% Then D(A,B)=SQRT(1-ABS((F*A)*(G*B)')).
%
% I=SortEig(S,T,SIGMA,KAPPA). Kappa is a caling that effects the
% chordal distance: [S,KAPPA*T] w.r.t. [SIGMA(1),KAPPA*SIGMA(2)].
% coded by Gerard Sleijpen, version April 2002
global CHORDALDISTANCE
if ischar(sigma)
warning off, s=s./t; warning on
switch sigma
case 'LM'
[s,I]=sort(-abs(s));
case 'SM'
[s,I]=sort(abs(s));
case 'LR';
[s,I]=sort(-real(s));
case 'SR';
[s,I]=sort(real(s));
case 'BE';
[s,I]=sort(real(s)); I=twistdim(I,1);
end
elseif CHORDALDISTANCE
if kappa~=1, t=kappa*t; sigma(2)=kappa*sigma(2); end
n=sqrt(s.*conj(s)+t.*t);
[s,I]=sort(-abs([s,t]*sigma')./n);
else
warning off, s=s./t; warning on
if sigma(2)==0; [s,I]=sort(-abs(s));
else, [s,I]=sort(abs(s-sigma(1)/sigma(2)));
end
end
return
%------------------------------------------------------------------------
function t=twistdim(t,k)
d=size(t,k); J=1:d; J0=zeros(1,2*d);
J0(1,2*J)=J; J0(1,2*J-1)=flipdim(J,2); I=J0(1,J);
if k==1, t=t(I,:); else, t=t(:,I); end
return
%%%======================================================================
function [Q,Z,S,T]=SwapQZ(Q,Z,S,T,I)
% [Q,Z,S,T]=SwapQZ(QQ,ZZ,SS,TT,P)
% QQ and ZZ are K by K unitary, SS and TT are K by K uper triangular.
% P is the first part of a permutation of (1:K)'.
%
% Then Q and Z are K by K unitary, S and T are K by K upper triangular,
% such that, for A = ZZ*SS*QQ' and B = ZZ*T*QQ', we have
% A*Q = Z*S, B*Q = Z*T and LAMBDA(1:LENGTH(P))=LLAMBDA(P) where
% LAMBDA=DIAG(S)./DIAGg(T) and LLAMBDA=DIAG(SS)./DIAG(TT).
%
% Computation uses Givens rotations.
%
% coded by Gerard Sleijpen, version October 12, 1998
kk=min(length(I),size(S,1)-1);
j=1; while (j<=kk & j==I(j)), j=j+1; end
while j<=kk
i=I(j);
for k = i-1:-1:j,
%%% i>j, move ith eigenvalue to position j
J = [k,k+1];
q = T(k+1,k+1)*S(k,J) - S(k+1,k+1)*T(k,J);
if q(1) ~= 0
q = q/norm(q);
G = [[q(2);-q(1)],q'];
Q(:,J) = Q(:,J)*G;
S(:,J) = S(:,J)*G; T(:,J) = T(:,J)*G;
end
if abs(S(k+1,k))<abs(T(k+1,k)), q=T(J,k); else q=S(J,k); end
if q(2) ~= 0
q=q/norm(q);
G = [q';q(2),-q(1)];
Z(:,J) = Z(:,J)*G';
S(J,:) = G*S(J,:); T(J,:) = G*T(J,:);
end
T(k+1,k) = 0;
S(k+1,k) = 0;
end
I=I+(I<i);
j=j+1; while (j<=kk & j==I(j)), j=j+1; end
end
return
%------------------------------------------------------------------------
function [Q,Z,S,T]=SwapQZ0(Q,Z,S,T,I)
%
% [Q,Z,S,T]=sortqz0(A,B,s,t,k)
% A and B are k by k matrices, t and s are k vectors such that
% (t(i),s(i)) eigenpair (A,B), i.e. t(i)*A-s(i)*B singular.
% Computes the Schur form with a ordering prescribed by (t,s):
% A*Q=Z*S, B*Q=Z*T such that diag(S)./diag(T)=s./t.
% Computation uses Householder reflections.
%
% coded by Gerard Sleijpen, version October 12, 1997
k=size(S,1); s=diag(S); t=diag(T); s=s(I,1); t=t(I,1);
for i=1:k-1
%%% compute q s.t. C*q=(t(i,1)*S-s(i,1)*T)*q=0
C=t(i,1)*S(i:k,i:k)-s(i,1)*T(i:k,i:k);
[q,r,p]=qr(C); %% C*P=Q*R
%% check whether last but one diag. elt r nonzero
j=k-i; while abs(r(j,j))<eps*norm(r); j=j-1; end; j=j+1;
r(j,j)=1; e=zeros(j,1); e(j,1)=1;
q=p*([r(1:j,1:j)\e;zeros(k-i+1-j,1)]); q=q/norm(q);%% C*q
%%% end computation q
z=conj(s(i,1))*S(i:k,i:k)*q+conj(t(i,1))*T(i:k,i:k)*q; z=z/norm(z);
a=q(1,1); if a ~=0, a=abs(a)/a; q=a*q; end
a=z(1,1); if a ~=0, a=abs(a)/a; z=a*z; end
q(1,1)=q(1,1)+1; q=q/norm(q); q=[zeros(i-1,1);q];
z(1,1)=z(1,1)+1; z=z/norm(z); z=[zeros(i-1,1);z];
S=S-(S*q)*(2*q)'; S=S-(2*z)*(z'*S);
T=T-(T*q)*(2*q)'; T=T-(2*z)*(z'*T);
Q=Q-(Q*q)*(2*q)'; Z=Z-(Z*z)*(2*z)';
end
return
%%%======== END sort QZ decomposition interaction matrices ==============
%%%======================================================================
%%%======== INITIALIZATION ==============================================
%%%======================================================================
function MyClear
global Operator_Form Operator_A Operator_B Operator_Params ...
Precond_L Precond_U Precond_P Precond_Params ...
Precond_Form Precond_Type ...
Operator_MVs Precond_Solves ...
CHORDALDISTANCE ...
Qschur Zschur Sschur Tschur ...
MinvZ QastMinvZ
return
%%%======================================================================
function [n,nselect,Sigma,kappa,SCHUR,...
jmin,jmax,tol,maxit,V,AV,BV,TS,DISP,PAIRS,JDV,FIX,track,NSIGMA,...
lsolver,par] = ReadOptions(varargin)
% Read options and set defaults
global Operator_Form Operator_A Operator_B Operator_Params ...
Precond_Form Precond_L Precond_U Precond_P Precond_Params ...
CHORDALDISTANCE
Operator_A = varargin{1};
n=CheckMatrix(Operator_A,1);
% defaults %%%% search for 'xx' in fieldnames
nselect0= 5;
maxit = 200; %%%% 'ma'
SCHUR = 0; %%%% 'sch'
tol = 1e-8; %%%% 'to'
DISP = 0; %%%% 'di'
p0 = 5; %%% jmin=nselect+p0 %%%% 'jmi'
p1 = 5; %%% jmax=jmin+p1 %%%% 'jma'
TS = 1; %%%% 'te'
PAIRS = 0; %%%% 'pai'
JDV = 0; %%%% 'av'
track = 1e-4; %%%% 'tr'
FIX = 1000; %%%% 'fix'
NSIGMA = 0; %%%% 'ns'
CHORD = 1; %%%% 'ch'
lsolver = 'gmres'; %%%% 'lso'
ls_maxit= 200; %%%% 'ls_m'
ls_tol = [0.7,0.49]; %%%% 'ls_t'
ell = 4; %%%% 'ls_e'
TP = 0; %%%% 'ty'
L = []; %%%% 'l_'
U = []; %%%% 'u_'
P = []; %%%% 'p_'
kappa = 1; %%%% 'sca'
V0 = 'ones(n,1)+rand(n,1)'; %%%% 'v0'
%% initiation
nselect=[]; Sigma=[]; options=[]; Operator_B=[];
jmin=-1; jmax=-1; V=[]; AV=[]; BV=[]; par=[];
%------------------------------------------------
%------- Find quantities ------------------------
%------------------------------------------------
jj=[];
for j = 2:nargin
if isstruct(varargin{j})
options = varargin{j};
elseif ischar(varargin{j})
s=varargin{j};
if exist(s)==2 & isempty(Operator_B)
Operator_B=s;
elseif length(s) == 2 & isempty(Sigma)
s=upper(s);
switch s
case {'LM','SM','LR','SR','BE'}, Sigma=s;
otherwise
jj=[jj,j];
end
else
jj=[jj,j];
end
elseif min([n,n]==size(varargin{j})) & isempty(Operator_B)
Operator_B=varargin{j};
elseif length(varargin{j}) == 1
s = varargin{j};
if isempty(nselect) & isreal(s) & (s == fix(s)) & (s > 0)
nselect = min(n,s);
elseif isempty(Sigma)
Sigma = s;
else
jj=[jj,j];
end
elseif min(size(varargin{j}))==1 & isempty(Sigma)
Sigma = varargin{j}; if size(Sigma,1)==1, Sigma=Sigma'; end
elseif min(size(varargin{j}))==2 & isempty(Sigma)
Sigma = varargin{j}; if size(Sigma,2)>2 , Sigma=Sigma'; end
else
jj=[jj,j];
end
end
%------- find parameters for operators -----------
Operator_Params=[]; Operator_Params{2}='';
k=length(jj);
if k>0
Operator_Params(3:k+2)=varargin(jj);
if ~ischar(Operator_A)
msg=sprintf(', %i',jj);
msg=sprintf('Input argument, number%s, not recognized.',msg);
button=questdlg(msg,'Input arguments','Ignore','Stop','Ignore');
if strcmp(button,'Stop'), n=-1; return, end
end
end
%------- operator B -----------------------------
if isempty(Operator_B)
if ischar(Operator_A)
Operator_Form=2; % or Operator_Form=3, or Operator_Form=5;
else
Operator_Form=8;
end
else
if ischar(Operator_B)
if ischar(Operator_A), Operator_Form=1; else, Operator_Form=6; end
elseif ischar(Operator_A)
Operator_Form=4;
else
Operator_Form=7;
end
end
if n<2, return, end
%------- number of eigs to be computed ----------
if isempty(nselect), nselect=min(n,nselect0); end
%------------------------------------------------
%------- Analyse Options ------------------------
%------------------------------------------------
fopts = [];
if ~isempty(options), fopts = fieldnames(options); end
%------- preconditioner -------------------------
Precond_L=findfield(options,fopts,'pr',[]);
[L,ok]=findfield(options,fopts,'l_',Precond_L);
if ok & ~isempty(Precond_L),
msg =sprintf('A preconditioner is defined in');
msg =[msg,sprintf('\n''Precond'', but also in ''L_precond''.')];
msg=[msg,sprintf('\nWhat is the correct one?')];
button=questdlg(msg,'Preconditioner','L_Precond','Precond','L_Precond');
if strcmp(button,'L_Precond'),
Precond_L = L;
end
else
Precond_L = L;
end
if ~isempty(Precond_L)
Precond_U=findfield(options,fopts,'u_',[]);
Precond_P=findfield(options,fopts,'p_',[]);
end
Precond_Params=[]; Precond_Params{2}='';
Params=findfield(options,fopts,'par',[]);
[l,k]=size(Params);
if k>0,
if iscell(Params), Precond_Params(3:k+2)=Params;
else, Precond_Params{3}=Params; end
end
TP=findfield(options,fopts,'ty',TP);
n=SetPrecond(n,TP); if n<2, return, end
%------- max, min dimension search subspace ------
jmin=min(n,findfield(options,fopts,'jmi',jmin));
jmax=min(n,findfield(options,fopts,'jma',jmax));
if jmax < 0
if jmin<0, jmin=min(n,nselect+p0); end
jmax=min(n,jmin+p1);
else
if jmin<0, jmin=max(1,jmax-p1); end
end
maxit=findfield(options,fopts,'ma',maxit);
%------- initial search subspace ----------------
V=findfield(options,fopts,'v',[]);
[m,d]=size(V);
if m~=n
if m>n, V = V(1:n,:); end
if m<n, V = [V;0.001*rand(n-m-1,d)]; end
end
V=orth(V); [m,d]=size(V);
if d==0, nr=0; while nr==0, V=eval(V0); nr=norm(V); V=V/nr; end, end
%------- Check definition B, Compute AV, BV -----
[AV,BV,n]=CheckDimMV(V); if n<2, return, end
%------- Other options --------------------------
tol=findfield(options,fopts,'to',tol);
kappa = findfield(options,fopts,'sca',kappa);
kappa = abs(kappa(1,1)); if kappa==0, kappa=1; end
PAIRS = findfield(options,fopts,'pai',PAIRS,[0,1]);
SCHUR = findfield(options,fopts,'sch',SCHUR,[0,1,0.5]);
DISP = findfield(options,fopts,'di',DISP,[0,1]);
JDV = findfield(options,fopts,'av',JDV,[0,1]);
track = max(abs(findfield(options,fopts,'tr',track,[0,track,inf])),0);
NSIGMA = findfield(options,fopts,'ns',NSIGMA,[0,1]);
FIX = max(abs(findfield(options,fopts,'fix',0,[0,FIX,inf])),0);
CHORDALDISTANCE = findfield(options,fopts,'ch',CHORD,[0,1]);
[TS0,ok] = findfield(options,fopts,'te',TS);
if ok & ischar(TS0)
if strncmpi(TS0,'st',2), TS=0; %% 'standard'
elseif strncmpi(TS0,'ha',2), TS=1; %% 'harmonic'
elseif strncmpi(TS0,'se',2), TS=2; %% 'searchspace'
elseif strncmpi(TS0,'bv',2), TS=3;
elseif strncmpi(TS0,'av',2), TS=4;
end
else
TS=max(0,min(4,round(TS0(1,1))));
end
%------- set targets ----------------
if isempty(Sigma)
if TS==1, Sigma=[0,1]; else, Sigma = 'LM'; end
elseif ischar(Sigma)
switch Sigma
case {'LM','LR','SR','BE','SM'}
if ~ok, TS=3; end
end
else
[k,l]=size(Sigma);
if l==1, Sigma=[Sigma,ones(k,1)]; l=2; end
Sigma=ScaleEig(Sigma);
end
if ischar(Sigma) & TS<2
msg1=sprintf(' The choice sigma = ''%s'' does not match the\n',Sigma);
msg2=sprintf(' selected test subspace. Specify a numerical\n');
msg3=sprintf(' value for sigma (e.g. sigma = '); msg4='';
switch Sigma
case {'LM','LR'}
msg4=sprintf('[1,0]');
case {'SM','SR','BE'}
msg4=sprintf(' [0,1]');
end
msg5=sprintf('),\n or continue with ''TestSpace''=''B*V''.');
msg=[msg1,msg2,msg3,msg4,msg5];
button=questdlg(msg,'Targets and test subspaces','Continue','Stop','Continue');
if strcmp(button,'Continue'), TS=3; else, n=-1; return, end
end
%------- linear solver --------------------------
lsolver = findfield(options,fopts,'lso',lsolver);
method=strvcat('exact','olsen','iluexact','gmres','cgstab','bicgstab');
j=strmatch(lower(lsolver),method);
if isempty(j),
msg=['The linear solver ''',lsolver,''' is not included.'];
msg=[msg,sprintf('\nIs GMRES ok?')];
button=questdlg(msg,'Linear solver','Yes','No','Yes');
if strcmp(button,'Yes'), j=4; ls_maxit=5; else, n=-1; return, end
end
if j==1, lsolver='exact'; Precond_Form = 0;
elseif j==2 | j==3, lsolver='olsen';
elseif j==4, lsolver='gmres'; ls_maxit=5;
else, lsolver='cgstab'; ls_tol=1.0e-10;
end
ls_maxit= findfield(options,fopts,'ls_m',ls_maxit);
ls_tol = findfield(options,fopts,'ls_t',ls_tol);
ell = findfield(options,fopts,'ls_e',ell);
par=[ls_tol,ls_maxit,ell];
%----- Display the parameters that are used ----------------
if DISP
fprintf('\n'),fprintf('PROBLEM\n')
switch Operator_Form
case {1,4,6,7}
fprintf('%13s: %s\n','A',StrOp(Operator_A));
fprintf('%13s: %s\n','B',StrOp(Operator_B));
case 2
fprintf('%13s: ''%s'' ([Av,Bv] = %s(v))\n','A,B',Operator_A,Operator_A);
case 3
fprintf('%13s: ''%s''\n','A,B',Operator_A);
fprintf('%15s(Av = %s(v,''A''), Bv = %s(v,''B''))\n',...
'',Operator_A,Operator_A);
case {5,8}
fprintf('%13s: %s\n','A',StrOp(Operator_A));
fprintf('%13s: %s\n','B','Identity (B*v = v)');
end
fprintf('%13s: %i\n','dimension',n);
fprintf('%13s: %i\n\n','nselect',nselect);
if length(jj)>0 & (ischar(Operator_A) | ischar(Operator_B))
msgj=sprintf(', %i',jj); msgo='';
if ischar(Operator_A), msgo=sprintf(' ''%s''',Operator_A); end
if ischar(Operator_B), msgo=sprintf('%s ''%s''.',msgo,Operator_B); end
fprintf(' The JDQZ input arguments, number%s, are\n',msgj)
fprintf(' taken as input parameters 3:%i for%s.\n\n',length(jj)+2,msgo);
end
fprintf('TARGET\n')
if ischar(Sigma)
fprintf('%13s: ''%s''\n','sigma',Sigma)
else
fprintf('%13s: %s\n','sigma',mydisp(Sigma(1,:)))
for j=2:size(Sigma,1),
fprintf('%13s: %s\n','',mydisp(Sigma(j,:)))
end
end
fprintf('\nOPTIONS\n')
fprintf('%13s: %g\n','Schur',SCHUR)
fprintf('%13s: %g\n','Tol',tol)
fprintf('%13s: %i\n','Disp',DISP)
fprintf('%13s: %i\n','jmin',jmin)
fprintf('%13s: %i\n','jmax',jmax)
fprintf('%13s: %i\n','MaxIt',maxit)
fprintf('%13s: %s\n','v0',StrOp(V))
fprintf('%13s: %i\n','Pairs',PAIRS)
fprintf('%13s: %i\n','AvoidStag',JDV)
fprintf('%13s: %i\n','NSigma',NSIGMA)
fprintf('%13s: %g\n','Track',track)
fprintf('%13s: %g\n','FixShift',FIX)
fprintf('%13s: %i\n','Chord',CHORDALDISTANCE)
fprintf('%13s: ''%s''\n','LSolver',lsolver)
str=sprintf('%g ',ls_tol);
fprintf('%13s: [ %s]\n','LS_Tol',str)
fprintf('%13s: %i\n','LS_MaxIt',ls_maxit)
if strcmp(lsolver,'cgstab')
fprintf('%13s: %i\n','LS_ell',ell)
end
DisplayPreconditioner(n); fprintf('\n')
switch TS
case 0, str='Standard, W = alpha''*A*V + beta''*B*V';
case 1, str='Harmonic, W = beta*A*V - alpha*B*V';
case 2, str='SearchSpace, W = V';
case 3, str='Petrov, W = B*V';
case 4, str='Petrov, W = A*V';
end
fprintf('%13s: %s\n','TestSpace',str); fprintf('\n\n');
end
return
%------------------------------------------------------------------------
function msg=StrOp(Op)
if ischar(Op)
msg=sprintf('''%s''',Op);
elseif issparse(Op), [n,k]=size(Op);
msg=sprintf('[%ix%i sparse]',n,k);
else, [n,k]=size(Op);
msg=sprintf('[%ix%i double]',n,k);
end
return
%------------------------------------------------------------------------
function DisplayPreconditioner(n)
global Precond_Form Precond_Type ...
Precond_L Precond_U Precond_P
FP=Precond_Form;
switch Precond_Form
case 0,
fprintf('%13s: %s\n','Precond','No preconditioner');
case {1,2,5}
fprintf('%13s: %s','Precond',StrOp(Precond_L));
if FP==2, fprintf(' (M\\v = %s(v,''preconditioner''))',Precond_L); end
fprintf('\n')
case {3,4,6,7}
fprintf('%13s: %s\n','L precond',StrOp(Precond_L));
fprintf('%13s: %s\n','U precond',StrOp(Precond_U));
if FP==7, fprintf('%13s: %s\n','P precond',StrOp(Precond_P)); end
if FP==4,fprintf('%15s(M\\v = %s(%s(v,''L''),''U''))\n',...
'',Precond_L,Precond_L); end
end
if FP
switch Precond_Type
case 0, str='explicit left';
case 1, str='explicit right';
case 2, str='implicit';
end
fprintf('%15sTo be used as %s preconditioner.\n','',str)
end
return
%------------------------------------------------------------------------
function possibilities
fprintf('\n')
fprintf('PROBLEM\n')
fprintf(' A: [ square matrix | string ]\n');
fprintf(' B: [ square matrix {identity} | string ]\n');
fprintf(' nselect: [ positive integer {5} ]\n\n');
fprintf('TARGET\n')
fprintf(' sigma: [ vector of scalars | \n');
fprintf(' pair of vectors of scalars |\n');
fprintf(' {''LM''} | {''SM''} | ''LR'' | ''SR'' | ''BE'' ]\n\n');
fprintf('OPTIONS\n');
fprintf(' Schur: [ yes | {no} ]\n');
fprintf(' Tol: [ positive scalar {1e-8} ]\n');
fprintf(' Disp: [ yes | {no} ]\n');
fprintf(' jmin: [ positive integer {nselect+5} ]\n');
fprintf(' jmax: [ positive integer {jmin+5} ]\n');
fprintf(' MaxIt: [ positive integer {200} ]\n');
fprintf(' v0: ');
fprintf('[ size(A,1) by p vector of scalars {rand(size(A,1),1)} ]\n');
fprintf(' TestSpace: ');
fprintf('[ Standard | {Harmonic} | SearchSpace | BV | AV ]\n');
fprintf(' Pairs: [ yes | {no} ] \n');
fprintf(' AvoidStag: [ yes | {no} ]\n');
fprintf(' Track: [ {yes} | no non-negative scalar {1e-4} ]\n');
fprintf(' NSigma: [ yes | {no} ]\n');
fprintf(' FixShift: [ yes | {no} | non-negative scalar {1e+3} ]\n');
fprintf(' Chord: [ {yes} | no ]\n');
fprintf(' Scale: [ positive scalar {1} ]\n');
fprintf(' LSolver: [ {gmres} | bicgstab ]\n');
fprintf(' LS_Tol: [ row of positive scalar {[0.7,0.49]} ]\n');
fprintf(' LS_MaxIt: [ positive integer {5} ]\n');
fprintf(' LS_ell: [ positive integer {4} ]\n');
fprintf(' Precond: ');
fprintf('[ n by n matrix {identity} | n by 2n matrix | string ]\n');
fprintf(' L_Precond: same as ''Precond''\n');
fprintf(' U_Precond: [ n by n matrix {identity} | string ]\n');
fprintf(' P_Precond: [ n by n matrix {identity} ]\n');
fprintf(' Type_Precond: [ {left} | right | implicit ]\n');
fprintf('\n')
return
%------------------------------------------------------------------------
function x = boolean(x,gamma,string)
%Y = BOOLEAN(X,GAMMA,STRING)
% GAMMA(1) is the default.
% If GAMMA is not specified, GAMMA = 0.
% STRING is a cell of accepted strings.
% If STRING is not specified STRING = {'n' 'y'}
% STRING{I} and GAMMA(I) are accepted expressions for X
% If X=GAMMA(I) then Y=X. If the first L characters
% of X matches those of STRING{I}, then Y=GAMMA(I+1).
% Here L=SIZE({STRING{1},2).
% For other values of X, Y=GAMMA(1);
if nargin < 2, gamma=[0,0,1]; end
if nargin < 3, string={'n' 'y'}; end
if ischar(x)
l=size(string{1},2);
i=min(find(strncmpi(x,string,l)));
if isempty(i), i=0; end, x=gamma(i+1);
elseif max((gamma-x)==0)
elseif gamma(end) == inf
else, x=gamma(1);
end
return
%------------------------------------------------------------------------
function [a,ok]=findfield(options,fopts,str,default,gamma,stri)
% Searches the fieldnames in FOPTS for the string STR.
% The field is detected if only the first part of the fieldname
% matches the string STR. The search is case insensitive.
% If the field is detected, then OK=1 and A is the fieldvalue.
% Otherwise OK=0 and A=DEFAULT
l=size(str,2); j=min(find(strncmpi(str,fopts,l)));
if ~isempty(j)
a=getfield(options,char(fopts(j,:))); ok=1;
if nargin == 5, a = boolean(a,[default,gamma]);
elseif nargin == 6, a = boolean(a,[default,gamma],stri); end
elseif nargin>3
a=default; ok=0;
else
a=[]; ok=0;
end
return
%%%======================================================================
function n=CheckMatrix(A,gamma)
if ischar(A), n=-1;
if exist(A) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',A);
errordlg(msg,'MATRIX'),n=-2;
end
if n==-1 & gamma, eval('n=feval(A,[],''dimension'');','n=-1;'), end
else, [n,n] = size(A);
if any(size(A) ~= n)
msg=sprintf(' The operator must be a square matrix or a string. ');
errordlg(msg,'MATRIX'),n=-3;
end
end
return
%------------------------------------------------------------------------
function [Av,Bv,n]=CheckDimMV(v)
% [Av,Bv]=CheckDimMV(v)
% Av=A*v, Bv=B*v Checks correctness operator definitions
global Operator_Form Operator_MVs Operator_A Operator_B Operator_Params
[n,k]=size(v);
if k>1, V=v(:,2:k); v=v(:,1); end
Bv=v;
switch Operator_Form
case 1 % both Operator_A and B are strings
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=feval(Operator_B,Operator_Params{:});
case 2 %%% or Operator_Form=3 or Operator_Form=5???
Operator_Params{1}=v;
eval('[Av,Bv]=feval(Operator_A,Operator_Params{:});','Operator_Form=3;')
if Operator_Form==3,
ok=1; Operator_Params{2}='A';
eval('Av=feval(Operator_A,Operator_Params{:});','ok=0;')
if ok,
Operator_Params{2}='B';
eval('Bv=feval(Operator_A,Operator_Params{:});','ok=0;'),
end
if ~ok,
Operator_Form=5; Operator_Params{2}='';
Av=feval(Operator_A,Operator_Params{:});
end
end
case 3
Operator_Params{1}=v;
Operator_Params{2}='A';
Av=feval(Operator_A,Operator_Params{:});
Operator_Params{2}='B';
Bv=feval(Operator_A,Operator_Params{:});
case 4
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
Bv=Operator_B*v;
case 5
Operator_Params{1}=v;
Av=feval(Operator_A,Operator_Params{:});
case 6
Av=Operator_A*v;
Operator_Params{1}=v;
Bv=feval(Operator_B,Operator_Params{:});
case 7
Av=Operator_A*v;
Bv=Operator_B*v;
case 8
Av=Operator_A*v;
end
Operator_MVs = 1;
ok_A=min(size(Av)==size(v));
ok_B=min(size(Bv)==size(v));
if ok_A & ok_B
if k>1,
ok=1; eval('[AV,BV]=MV(V);','ok=0;')
if ok
Av=[Av,AV]; Bv=[Bv,BV];
else
for j=2:k, [Av(:,j),Bv(:,j)]=MV(V(:,j-1)); end
end
end
return
end
if ~ok_A
Operator=Operator_A;
elseif ~ok_B
Operator=Operator_B;
end
msg=sprintf(' %s does not produce a vector of size %d',Operator,n)
errordlg(msg,'MATRIX'), n=-1;
return
%------------------------------------------------------------------------
function n=SetPrecond(n,TP)
% finds out how the preconditioners are defined (Precond_Form)
% and checks consistency of the definitions.
%
% If M is the preconditioner then P*M=L*U. Defaults: L=U=P=I.
%
% Precond_Form
% 0: no L
% 1: L M-file, no U, L ~= A
% 2: L M-file, no U, L == A
% 3: L M-file, U M-file, L ~= A, U ~= A, L ~=U
% 4: L M-file, U M-file, L == U
% 5: L matrix, no U
% 6: L matrix, U matrix no P
% 7: L matrix, U matrix, P matrix
%
% Precond_Type
% 0: Explicit left
% 1: Explicit right
% 2: Implicit
%
global Operator_A ...
Precond_Form Precond_Solves ...
Precond_Type ...
Precond_L Precond_U Precond_P Precond_Params
Precond_Type = 0;
if ischar(TP)
TP=lower(TP(1,1));
switch TP
case 'l'
Precond_Type = 0;
case 'r'
Precond_Type = 1;
case 'i'
Precond_Type = 2;
end
else
Precond_Type=max(0,min(fix(TP),2));
end
Precond_Solves = 0;
% Set type preconditioner
Precond_Form=0;
if isempty(Precond_L), return, end
if ~isempty(Precond_U) & ischar(Precond_L)~=ischar(Precond_U)
msg=sprintf(' L and U should both be strings or matrices');
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
if ~isempty(Precond_P) & (ischar(Precond_P) | ischar(Precond_L))
msg=sprintf(' P can be specified only if P, L and U are matrices');
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
tp=1+4*~ischar(Precond_L)+2*~isempty(Precond_U)+~isempty(Precond_P);
if tp==1, tp = tp + strcmp(Precond_L,Operator_A); end
if tp==3, tp = tp + strcmp(Precond_L,Precond_U); end
if tp==3 & strcmp(Precond_U,Operator_A)
msg=sprintf(' If L and A use the same M-file,')
msg=[msg,sprintf('\n then so should U.')];
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
if tp>5, tp=tp-1; end, Precond_Form=tp;
% Check consistency definitions
if tp<5 & exist(Precond_L) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',Precond_L);
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
ok=1;
if tp == 2
Precond_Params{1}=zeros(n,1);
Precond_Params{2}='preconditioner';
eval('v=feval(Operator_A,Precond_Params{:});','ok=0;')
if ~ok
msg='Preconditioner and matrix use the same M-file';
msg=[msg,sprintf(' ''%s.m'' \n',Precond_L)];
msg=[msg,'Therefore the preconditioner is called as'];
msg=[msg,sprintf('\n\n\tw=%s(v,''preconditioner'')\n\n',Precond_L)];
msg=[msg,sprintf('Put this "switch" in ''%s.m''.',Precond_L)];
end
end
if tp == 4 | ~ok
ok1=1;
Precond_Params{1}=zeros(n,1);
Precond_Params{2}='L';
eval('v=feval(Precond_L,Precond_Params{:});','ok1=0;')
Precond_Params{2}='U';
eval('v=feval(Precond_L,Precond_Params{:});','ok1=0;')
if ok1
Precond_Form = 4; Precond_U = Precond_L; ok=1;
else
if tp == 4
msg='L and U use the same M-file';
msg=[msg,sprintf(' ''%s.m'' \n',Precond_L)];
msg=[msg,'Therefore L and U are called'];
msg=[msg,sprintf(' as\n\n\tw=%s(v,''L'')',Precond_L)];
msg=[msg,sprintf(' \n\tw=%s(v,''U'')\n\n',Precond_L)];
msg=[msg,sprintf('Check the dimensions and/or\n')];
msg=[msg,sprintf('put this "switch" in ''%s.m''.',Precond_L)];
end
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
end
if tp==1 | tp==3
Precond_Params{1}=zeros(n,1); Precond_Params{2}='';
eval('v=feval(Precond_L,Precond_Params{:});','ok=0')
if ~ok
msg=sprintf('''%s'' should produce %i-vectors',Precond_L,n);
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
end
if tp==3
if exist(Precond_U) ~=2
msg=sprintf(' Can not find the M-file ''%s.m'' ',Precond_U);
errordlg(msg,'PRECONDITIONER'), n=-1; return
else
Precond_Params{1}=zeros(n,1); Precond_Params{2}='';
eval('v=feval(Precond_U,Precond_Params{:});','ok=0')
if ~ok
msg=sprintf('''%s'' should produce %i-vectors',Precond_U,n);
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
end
end
if tp==5
if min([n,2*n]==size(Precond_L))
Precond_U=Precond_L(:,n+1:2*n); Precond_L=Precond_L(:,1:n);
Precond_Form=6;
elseif min([n,3*n]==size(Precond_L))
Precond_U=Precond_L(:,n+1:2*n); Precond_P=Precond_L(:,2*n+1:3*n);
Precond_L=Precond_L(:,1:n); Precond_Form=7;
elseif ~min([n,n]==size(Precond_L))
msg=sprintf('The preconditioning matrix\n');
msg2=sprintf('should be %iX%i or %ix%i ([L,U])\n',n,n,n,2*n);
msg3=sprintf('or %ix%i ([L,U,P])\n',n,3*n);
errordlg([msg,msg2,msg3],'PRECONDITIONER'), n=-1; return
end
end
if tp==6 & ~min([n,n]==size(Precond_L) & [n,n]==size(Precond_U))
msg=sprintf('Both L and U should be %iX%i.',n,n); n=-1;
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
if tp==7 & ~min([n,n]==size(Precond_L) & ...
[n,n]==size(Precond_U) & [n,n]==size(Precond_P))
msg=sprintf('L, U, and P should all be %iX%i.',n,n); n=-1;
errordlg(msg,'PRECONDITIONER'), n=-1; return
end
return
%%%======================================================================
%%%========= DISPLAY FUNCTIONS ===========================================
%%%======================================================================
function Result(Sigm,Target,S,T,tol)
if nargin == 1
fprintf('\n\n %20s\n','Eigenvalues')
for j=1:size(Sigm,1),
fprintf('%2i %s\n',j,mydisp(Sigm(j,:),5))
end
return
end
fprintf('\n\n%17s %25s%18s\n','Targets','Eigenvalues','RelErr/Cond')
for j=1:size(S,1),
l=Target(j,1); s=S(j,:); t=T(j,:); lm=mydisp(s/t,5);
if l>0
fprintf('%2i %8s ''%s'' %9s %23s',j,'',Sigm(l,:),'',lm)
else
fprintf('%2i %23s %23s',j,mydisp(Target(j,2:3),5),lm)
end
re=1-tol/abs(t);
if re>0, re=(1+tol/abs(s))/re; re=min(re-1,1); else, re=1; end
if re>0.999, fprintf(' 1\n'), else, fprintf(' %5.0e\n',re), end
end
return
%------------------------------------------------------------------------
function s=mydisp(lambda,d)
if nargin <2, d=4; end
if size(lambda,2)==2,
if lambda(:,2)==0, s='Inf'; return, end
lambda=lambda(:,1)/lambda(:,2);
end
a=real(lambda); b=imag(lambda);
if max(a,b)==inf, s='Inf'; return, end
e=0;
if abs(a)>0; e= floor(log10(abs(a))); end
if abs(b)>0; e= max(e,floor(log10(abs(b)))); end
p=10^d; q=p/(10^e); a=round(a*q)/p; b=round(b*q)/p;
st=['%',num2str(d+2),'.',num2str(d),'f'];
ab=abs(b)==0;
if ab, str=[''' ']; else, str=['''(']; end
if a>=0, str=[str,'+']; a=abs(a); end, str=[str,st];
if ab, str=[str,'e']; else
if b>=0, str=[str,'+']; b=abs(b); end,
str=[str,st,'i)e']; end
if e>=0, str=[str,'+']; else, str=[str,'-']; e=-e; end
if e<10, str=[str,'0%i''']; else, str=[str,'%i''']; end
if ab, s=eval(sprintf(str,a,e));
else, s=eval(sprintf(str,a,b,e)); end
return
%%%======================================================================
function ShowEig(theta,target,k)
if ischar(target)
fprintf('\n target=''%s'', ',target)
else
fprintf('\n target=%s, ',mydisp(target,5))
end
fprintf('lambda_%i=%s\n',k,mydisp(theta,5));
return
%%%======================================================================
function texttest(s,nr,gamma)
if nargin<3, gamma=100*eps; end
if nr > gamma
% if nr>100*eps
fprintf('\n %35s is: %9.3g\t',s,nr)
end
return
%%%======================================================================
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
lnst.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/lnst.m
| 891 |
utf_8
|
93ca6136f90181897631256d58517558
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function lnst(hs,he)
ls=get(he,'value');
switch ls
case 1
set(hs,'LineStyle','-','marker','x','color','b');
case 2
set(hs,'LineStyle','-','marker','o','color','r');
case 3
set(hs,'LineStyle','none','marker','o','color','b');
case 4
set(hs,'LineStyle','-','marker','none','color','g');
case 5
set(hs,'LineStyle','--','marker','d','color','b');
end
drawnow;
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
scatter12n.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/scatter12n.m
| 1,348 |
utf_8
|
65c091a54cbbe59f0a7ddef27fcc2c3f
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function scatter12n(name,data,labels)
ld=length(data(1,:));
if ld==2
hf=figure;
set(hf,'name',name,'NumberTitle','off');
%if handles.islb
scatter(data(:,1),data(:,2),5,labels);
% else
% scatter(data(:,1),data(:,2),5);
% end
title(name);
else
if ld==1
hf=figure;
set(hf,'name',name,'NumberTitle','off');
%if handles.islb
scatter(data(:,1),zeros(length(data(:,1)),1),5,labels);
% else
% scatter(data(:,1),zeros(length(data(:,1)),1),5);
% end
title(name);
else
%if handles.islb
scattern(name,data,labels);
% else
% scattern('Result of dimensionality reduction',data);
% end
end
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
not_calculated.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/not_calculated.m
| 7,818 |
utf_8
|
07c7ebdd2ecb821df6d1b4ccd5f47662
|
function varargout = not_calculated(varargin)
% NOT_CALCULATED M-file for not_calculated.fig
% NOT_CALCULATED by itself, creates a new NOT_CALCULATED or raises the
% existing singleton*.
%
% H = NOT_CALCULATED returns the handle to a new NOT_CALCULATED or the handle to
% the existing singleton*.
%
% NOT_CALCULATED('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in NOT_CALCULATED.M with the given input arguments.
%
% NOT_CALCULATED('Property','Value',...) creates a new NOT_CALCULATED or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before not_calculated_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to not_calculated_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help not_calculated
% Last Modified by GUIDE v2.5 30-Jul-2008 11:02:27
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @not_calculated_OpeningFcn, ...
'gui_OutputFcn', @not_calculated_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before not_calculated is made visible.
function not_calculated_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to not_calculated (see VARARGIN)
% Choose default command line output for not_calculated
handles.output = 'Yes';
% Update handles structure
guidata(hObject, handles);
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
for index = 1:2:(nargin-3),
if nargin-3==index, break, end
switch lower(varargin{index})
case 'title'
set(hObject, 'Name', varargin{index+1});
case 'string'
set(handles.text1, 'String', varargin{index+1});
end
end
end
% Determine the position of the dialog - centered on the callback figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
ScreenUnits=get(0,'Units');
set(0,'Units','pixels');
ScreenSize=get(0,'ScreenSize');
set(0,'Units',ScreenUnits);
FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
GCBFOldUnits = get(gcbf,'Units');
set(gcbf,'Units','pixels');
GCBFPos = get(gcbf,'Position');
set(gcbf,'Units',GCBFOldUnits);
FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
(GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);
% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat
IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;
Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);
set(handles.axes1, ...
'Visible', 'off', ...
'YDir' , 'reverse' , ...
'XLim' , get(Img,'XData'), ...
'YLim' , get(Img,'YData') ...
);
% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')
% UIWAIT makes not_calculated wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = not_calculated_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% The figure can be deleted now
delete(handles.figure1);
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
% The GUI is still in UIWAIT, us UIRESUME
uiresume(handles.figure1);
else
% The GUI is no longer waiting, just close it
delete(handles.figure1);
end
% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
% User said no by hitting escape
handles.output = 'No';
% Update handles structure
guidata(hObject, handles);
uiresume(handles.figure1);
end
if isequal(get(hObject,'CurrentKey'),'return')
uiresume(handles.figure1);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
choose_method.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/choose_method.m
| 5,483 |
utf_8
|
7fcb2ff0eb7f662fc75d652d9c440d65
|
function varargout = choose_method(varargin)
% CHOOSE_METHOD M-file for choose_method.fig
% CHOOSE_METHOD, by itself, creates a new CHOOSE_METHOD or raises the existing
% singleton*.
%
% H = CHOOSE_METHOD returns the handle to a new CHOOSE_METHOD or the handle to
% the existing singleton*.
%
% CHOOSE_METHOD('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in CHOOSE_METHOD.M with the given input arguments.
%
% CHOOSE_METHOD('Property','Value',...) creates a new CHOOSE_METHOD or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before choose_method_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to choose_method_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help choose_method
% Last Modified by GUIDE v2.5 25-Jul-2008 10:40:42
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @choose_method_OpeningFcn, ...
'gui_OutputFcn', @choose_method_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before choose_method is made visible.
function choose_method_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to choose_method (see VARARGIN)
% Choose default command line output for choose_method
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes choose_method wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = choose_method_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
vl=get(hObject,'Value');
switch vl
case 1
str='CorrDim';
case 2
str='NearNbDim';
case 3
str='GMST';
case 4
str='PackingNumbers';
case 5
str='EigValue';
case 6
str='MLE';
end
set(handles.str,'string',str);
drawnow;
% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function str_Callback(hObject, eventdata, handles)
% hObject handle to str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of str as text
% str2double(get(hObject,'String')) returns contents of str as a double
% --- Executes during object creation, after setting all properties.
function str_CreateFcn(hObject, eventdata, handles)
% hObject handle to str (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
load_data_1_var.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/load_data_1_var.m
| 4,902 |
utf_8
|
5b70e8dd70f9e4386ea769372ed55ffe
|
function varargout = load_data_1_var(varargin)
% LOAD_DATA_1_VAR M-file for load_data_1_var.fig
% LOAD_DATA_1_VAR, by itself, creates a new LOAD_DATA_1_VAR or raises the existing
% singleton*.
%
% H = LOAD_DATA_1_VAR returns the handle to a new LOAD_DATA_1_VAR or the handle to
% the existing singleton*.
%
% LOAD_DATA_1_VAR('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_DATA_1_VAR.M with the given input arguments.
%
% LOAD_DATA_1_VAR('Property','Value',...) creates a new LOAD_DATA_1_VAR or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_data_1_var_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_data_1_var_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_data_1_var
% Last Modified by GUIDE v2.5 23-Jul-2008 17:31:19
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_data_1_var_OpeningFcn, ...
'gui_OutputFcn', @load_data_1_var_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_data_1_var is made visible.
function load_data_1_var_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_data_1_var (see VARARGIN)
% Choose default command line output for load_data_1_var
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes load_data_1_var wait for user response (see UIRESUME)
uiwait(handles.figure1);
% uiwait;
% --- Outputs from this function are returned to the command line.
function varargout = load_data_1_var_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function cn_Callback(hObject, eventdata, handles)
% hObject handle to cn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of cn as text
% str2double(get(hObject,'String')) returns contents of cn as a double
% --- Executes during object creation, after setting all properties.
function cn_CreateFcn(hObject, eventdata, handles)
% hObject handle to cn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --------------------------------------------------------------------
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.i,'value')
set(handles.cn,'Enable','on');
set(handles.cnt,'ForegroundColor',[0 0 0]);
else
set(handles.cn,'Enable','off');
set(handles.cnt,'ForegroundColor',[0.4 0.4 0.4]);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
plotn.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/plotn.m
| 4,103 |
utf_8
|
e9c0840dca614923d10952e9b37f06c5
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function plotn(name,data)
% plot if dimensionality>=3
% format: plotn(name,data)
% name - text that will be dispayed as name of figure
% data - multidimentional data, row - is one datapoint
bgc=[0.8313725490196079 0.8156862745098039 0.7843137254901961];
bgc1=[1 1 1];
bgc1=bgc;
% if length(varargin)==1
% labels=varargin{1};
% islb=true;
% else
islb=false;
% end
hf=figure;
set(hf,'name',name,'NumberTitle','off');
set(hf,'units','normalized');
set(hf,'position',[0.1 0.1 0.7 0.75]);
set(hf,'color',bgc);
ha=axes;
set(ha,'units','normalized');
set(ha,'position',[0.1 0.1 0.8 0.7]);
% if islb
% hs=scatter3(data(:,1),data(:,2),data(:,3),5,labels,'parent',ha);
% else
hs=plot3(data(:,1),data(:,2),data(:,3),'x-','parent',ha);
% end
set(hs,'UserData',data); % memorize data in userdata of plot
% title as text contol:
xc=0.5;
yc=0.94;
dx=0.8;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', name,...
'units','normalized',...
'fontunits','normalized',...
'HorizontalAlignment','center',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% dimensionality text
xc=0.5;
yc=0.9;
dx=0.2;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', ['dimensionality=' num2str(length(data(1,:)))],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% edits:
xc=0.5;
yc=0.86;
dy=0.04;
dytx=0.03;
x0=0.03;
dxg=0.03;
xt=x0;
for cc=1:3
switch cc
case 1
ls='X';
case 2
ls='Y';
case 3
ls='Z';
end
dx1=0.07;
uicontrol('Style', 'text',...
'parent',hf,...
'String', [ls ' ' 'data:'],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
dx1=0.07;
he=uicontrol('Style', 'edit',...
'parent',hf,...
'String', num2str(cc),...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dy/2 dx1 dy],...
'backgroundcolor',[1 1 1]);
set(he,'callback',['ded(' num2str(cc) ',' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']);
xt=xt+dx1+0.005;
dx1=0.065;
uicontrol('Style', 'text',...
'parent',hf,...
'String', 'column',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
xt=xt+dxg;
end
dx1=0.1;
uicontrol('Style', 'text',...
'parent',hf,...
'String', 'line style:',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
dx1=0.07;
he=uicontrol('Style', 'popupmenu',...
'parent',hf,...
'String', '1|2|3|4|5',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dy/2 dx1 dy],...
'backgroundcolor',[1 1 1]);
set(he,'callback',['lnst(' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']);
xlabel(ha,'X');
ylabel(ha,'Y');
zlabel(ha,'Z');
set(hf,'Toolbar','figure');
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
scattern.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/scattern.m
| 3,651 |
utf_8
|
bf506a19215a7e0b4cb62da12fa09d16
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function scattern(name,data,varargin)
% scatter plot if dimensionality>=3
% format: scattern(name,data)
% name - text that will be dispayed as name of figure
% data - multidimentional data, row - is one datapoint
% scattern(name,data,labels) - if labels spacified, used for color of points
bgc=[0.8313725490196079 0.8156862745098039 0.7843137254901961];
bgc1=[1 1 1];
bgc1=bgc;
if length(varargin)==1
labels=varargin{1};
islb=true;
else
islb=false;
end
hf=figure;
set(hf,'name',name,'NumberTitle','off');
set(hf,'units','normalized');
set(hf,'position',[0.1 0.1 0.7 0.75]);
set(hf,'color',bgc);
ha=axes;
set(ha,'units','normalized');
set(ha,'position',[0.1 0.1 0.8 0.7]);
if islb && size(data, 1) == numel(labels)
hs=scatter3(data(:,1),data(:,2),data(:,3),5,labels,'parent',ha);
else
hs=scatter3(data(:,1),data(:,2),data(:,3),5,'parent',ha);
end
if size(data, 1) ~= numel(labels)
warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.');
end
set(hs,'UserData',data); % memorize data in userdata of plot
% title as text contol:
xc=0.5;
yc=0.94;
dx=0.8;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', name,...
'units','normalized',...
'fontunits','normalized',...
'HorizontalAlignment','center',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% dimensionality text
xc=0.5;
yc=0.9;
dx=0.2;
dy=0.04;
uicontrol('Style', 'text',...
'parent',hf,...
'String', ['dimensionality=' num2str(length(data(1,:)))],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xc-dx/2 yc dx dy],...
'backgroundcolor',bgc1);
% edits:
xc=0.5;
yc=0.86;
dy=0.04;
dytx=0.03;
x0=0.12;
dxg=0.05;
xt=x0;
for cc=1:3
switch cc
case 1
ls='X';
case 2
ls='Y';
case 3
ls='Z';
end
dx1=0.07;
uicontrol('Style', 'text',...
'parent',hf,...
'String', [ls ' ' 'data:'],...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
dx1=0.07;
he=uicontrol('Style', 'edit',...
'parent',hf,...
'String', num2str(cc),...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dy/2 dx1 dy],...
'backgroundcolor',[1 1 1]);
set(he,'callback',['ded(' num2str(cc) ',' num2str(hs,'%20.20f') ',' num2str(he,'%20.20f') ')']);
xt=xt+dx1+0.005;
dx1=0.065;
uicontrol('Style', 'text',...
'parent',hf,...
'String', 'column',...
'units','normalized',...
'fontunits','normalized',...
'Position', [xt yc-dytx/2 dx1 dytx],...
'backgroundcolor',bgc1);
xt=xt+dx1+0.005;
xt=xt+dxg;
end
xlabel(ha,'X');
ylabel(ha,'Y');
zlabel(ha,'Z');
set(hf,'Toolbar','figure');
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
no_history.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/no_history.m
| 7,508 |
utf_8
|
d5c85b897eeca97b3e37ea41551de2b1
|
function varargout = no_history(varargin)
% NO_HISTORY M-file for no_history.fig
% NO_HISTORY by itself, creates a new NO_HISTORY or raises the
% existing singleton*.
%
% H = NO_HISTORY returns the handle to a new NO_HISTORY or the handle to
% the existing singleton*.
%
% NO_HISTORY('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in NO_HISTORY.M with the given input arguments.
%
% NO_HISTORY('Property','Value',...) creates a new NO_HISTORY or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before no_history_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to no_history_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help no_history
% Last Modified by GUIDE v2.5 16-Sep-2008 15:57:20
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @no_history_OpeningFcn, ...
'gui_OutputFcn', @no_history_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before no_history is made visible.
function no_history_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to no_history (see VARARGIN)
% Choose default command line output for no_history
handles.output = 'Yes';
% Update handles structure
guidata(hObject, handles);
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
for index = 1:2:(nargin-3),
if nargin-3==index, break, end
switch lower(varargin{index})
case 'title'
set(hObject, 'Name', varargin{index+1});
case 'string'
set(handles.text1, 'String', varargin{index+1});
end
end
end
% Determine the position of the dialog - centered on the callback figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
ScreenUnits=get(0,'Units');
set(0,'Units','pixels');
ScreenSize=get(0,'ScreenSize');
set(0,'Units',ScreenUnits);
FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
GCBFOldUnits = get(gcbf,'Units');
set(gcbf,'Units','pixels');
GCBFPos = get(gcbf,'Position');
set(gcbf,'Units',GCBFOldUnits);
FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
(GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);
% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat
IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;
Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);
set(handles.axes1, ...
'Visible', 'off', ...
'YDir' , 'reverse' , ...
'XLim' , get(Img,'XData'), ...
'YLim' , get(Img,'YData') ...
);
% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')
% UIWAIT makes no_history wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = no_history_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% The figure can be deleted now
delete(handles.figure1);
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
% The GUI is still in UIWAIT, us UIRESUME
uiresume(handles.figure1);
else
% The GUI is no longer waiting, just close it
delete(handles.figure1);
end
% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
% User said no by hitting escape
handles.output = 'No';
% Update handles structure
guidata(hObject, handles);
uiresume(handles.figure1);
end
if isequal(get(hObject,'CurrentKey'),'return')
uiresume(handles.figure1);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
load_data_vars.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/load_data_vars.m
| 7,943 |
utf_8
|
3e892de48b2b883da0e7121eb6b7cfbc
|
function varargout = load_data_vars(varargin)
% LOAD_DATA_VARS M-file for load_data_vars.fig
% LOAD_DATA_VARS, by itself, creates a new LOAD_DATA_VARS or raises the existing
% singleton*.
%
% H = LOAD_DATA_VARS returns the handle to a new LOAD_DATA_VARS or the handle to
% the existing singleton*.
%
% LOAD_DATA_VARS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_DATA_VARS.M with the given input arguments.
%
% LOAD_DATA_VARS('Property','Value',...) creates a new LOAD_DATA_VARS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_data_vars_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_data_vars_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_data_vars
% Last Modified by GUIDE v2.5 23-Jul-2008 18:19:22
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_data_vars_OpeningFcn, ...
'gui_OutputFcn', @load_data_vars_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_data_vars is made visible.
function load_data_vars_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_data_vars (see VARARGIN)
% Choose default command line output for load_data_vars
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
vn=varargin{1}; % variable names
str='';
for vnc=1:length(vn)
str=[str vn{vnc}];
if vnc~=length(vn)
str=[str ' '];
end
end
set(handles.lv,'string',str);
set(handles.d,'string',vn{1});
set(handles.ivn,'string',vn{2});
% UIWAIT makes load_data_vars wait for user response (see UIRESUME)
uiwait(handles.figure1);
%uiwait;
% --- Outputs from this function are returned to the command line.
function varargout = load_data_vars_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function lv_Callback(hObject, eventdata, handles)
% hObject handle to lv (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of lv as text
% str2double(get(hObject,'String')) returns contents of lv as a double
% --- Executes during object creation, after setting all properties.
function lv_CreateFcn(hObject, eventdata, handles)
% hObject handle to lv (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function d_Callback(hObject, eventdata, handles)
% hObject handle to d (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of d as text
% str2double(get(hObject,'String')) returns contents of d as a double
% --- Executes during object creation, after setting all properties.
function d_CreateFcn(hObject, eventdata, handles)
% hObject handle to d (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function ivn_Callback(hObject, eventdata, handles)
% hObject handle to ivn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ivn as text
% str2double(get(hObject,'String')) returns contents of ivn as a double
% --- Executes during object creation, after setting all properties.
function ivn_CreateFcn(hObject, eventdata, handles)
% hObject handle to ivn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function icn_Callback(hObject, eventdata, handles)
% hObject handle to icn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of icn as text
% str2double(get(hObject,'String')) returns contents of icn as a double
% --- Executes during object creation, after setting all properties.
function icn_CreateFcn(hObject, eventdata, handles)
% hObject handle to icn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --------------------------------------------------------------------
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.iv,'value')
set(handles.ivn,'Enable','on');
else
set(handles.ivn,'Enable','off');
end
if get(handles.ic,'value')
set(handles.icn,'Enable','on');
else
set(handles.icn,'Enable','off');
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
mapping_parameters.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/mapping_parameters.m
| 24,066 |
utf_8
|
ddb259e8821b5440a07fc05910595864
|
function varargout = mapping_parameters(varargin)
% MAPPING_PARAMETERS M-file for mapping_parameters.fig
% MAPPING_PARAMETERS, by itself, creates a new MAPPING_PARAMETERS or raises the existing
% singleton*.
%
% H = MAPPING_PARAMETERS returns the handle to a new MAPPING_PARAMETERS or the handle to
% the existing singleton*.
%
% MAPPING_PARAMETERS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MAPPING_PARAMETERS.M with the given input arguments.
%
% MAPPING_PARAMETERS('Property','Value',...) creates a new MAPPING_PARAMETERS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before mapping_parameters_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to mapping_parameters_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Last Modified by GUIDE v2.5 28-Jul-2008 16:23:20
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @mapping_parameters_OpeningFcn, ...
'gui_OutputFcn', @mapping_parameters_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before mapping_parameters is made visible.
function mapping_parameters_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to mapping_parameters (see VARARGIN)
% Choose default command line output for mapping_parameters
handles.output = hObject;
no_dims=varargin{1};
handles.islb=varargin{2};
if length(no_dims)~=0
set(handles.nd,'string',num2str(round(no_dims)));
else
set(handles.nd,'string','2');
end
case1; % case one is default for start
% Update handles structure
guidata(hObject, handles);
% handles
% UIWAIT makes mapping_parameters wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = mapping_parameters_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% figure1: 218.0023
% sm: 240.0021
% na: 239.0021
% nat: 238.0021
% uipanel_tp: 235.0021
% prp: 234.0021
% prpt: 233.0021
% kpd: 232.0021
% kpdt: 231.0021
% kpR: 230.0021
% kpRt: 229.0021
% kgs: 228.0021
% kgst: 227.0021
% uipanel_k: 223.0022
% uipanel_ft: 220.0022
% sig: 53.0027
% sigt: 52.0027
% uipanel_ei: 49.0027
% prc: 48.0027
% prct: 47.0027
% k: 46.0028
% kt: 45.0028
% mi: 44.0028
% mit: 43.0029
% nd: 42.0029
% text3: 41.0034
% wl: 40.0029
% text1: 39.0033
% listbox1: 219.0023
% tl: 237.0021
% tg: 236.0021
% kp: 226.0022
% kg: 225.0022
% kl: 224.0022
% ftn: 222.0022
% fty: 221.0022
% eij: 51.0027
% eim: 50.0027
% output: 218.0023
% islb:
% PCA
% LDA
% MDS
% SimplePCA
% ProbPCA
% FactorAnalysis
% Isomap
% LandmarkIsomap
% LLE
% Laplacian
% HessianLLE
% LTSA
% MVU
% CCA
% LandmarkMVU
% FastMVU
% DiffusionMaps
% KernelPCA
% GDA
% SNE
% SymSNE
% t-SNE
% LPP
% NPE
% LLTSA
% SPE
% Autoencoder
% LLC
% ManifoldChart
% CFA
% GPLVM
switch get(hObject,'Value')
case 1 % PCA
% no parameters;
case1;
case 2 % LDA
% no parameters;
case1;
if handles.islb
set(handles.wl,'visible','off');
set(handles.sm,'Enable','on');
else
set(handles.wl,'visible','on');
set(handles.sm,'Enable','off');
end
case 3 % MDS
% no parameters;
case1;
case 4 % SimplePCA
% no parameters;
case1;
case 5 % ProbPCA
case1; % hide all contols first
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
case 6 % FactorAnalysis
% no parameters;
case1;
case 7 % Isomap
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
case 8 % LandmarkIsomap
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.prc,'Visible','on');
set(handles.prct,'Visible','on');
case 9 % LLE
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 10 % Laplacian
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 11 % HessianLLE
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 12 % LTSA
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 13 % MVU
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 14 % CCA
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 15 % LandmarkMVU
case1; % hide all contols first
set(handles.k,'Visible','on','string',5);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
case 16 % FastMVU
case1; % hide all contols first
set(handles.k,'Visible','on','string',5);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
set(handles.uipanel_ft,'Visible','on');
case 17 % DiffusionMaps
case1; % hide all contols first
set(handles.t,'Visible','on');
set(handles.tt,'Visible','on');
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
case 18 % KernelPCA
case1; % hide all contols first
set(handles.uipanel_k,'Visible','on');
update_kernel_uipanel;
case 19 % GDA
case1; % hide all contols first
if handles.islb
set(handles.wl,'visible','off');
set(handles.sm,'Enable','on');
set(handles.uipanel_k,'Visible','on');
update_kernel_uipanel;
else
set(handles.wl,'visible','on');
set(handles.sm,'Enable','off');
end
case 20 % SNE
case1; % hide all contols first
set(handles.prp,'Visible','on');
set(handles.prpt,'Visible','on');
case 21 % SymSNE
case1; % hide all contols first
set(handles.prp,'Visible','on');
set(handles.prpt,'Visible','on');
case 22 % t-SNE
case1; % hide all contols first
set(handles.prp,'Visible','on');
set(handles.prpt,'Visible','on');
case 23 % LPP
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 24 % NPE
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 25 % LLTSA
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.uipanel_ei,'Visible','on');
case 26 % SPE
case1; % hide all contols first
set(handles.uipanel_tp,'Visible','on');
update_type_uipanel;
set(handles.k,'Enable','on');
adaptive_callback;
case 27 % Autoencoder
% no parameters;
case1;
case 28 % LLC
case1; % hide all contols first
set(handles.k,'Visible','on','string',12);
set(handles.kt,'Visible','on');
set(handles.ka,'Visible','on');
adaptive_callback;
set(handles.na,'Visible','on');
set(handles.nat,'Visible','on');
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 29 % ManifoldChart
case1; % hide all contols first
set(handles.na,'Visible','on');
set(handles.nat,'Visible','on');
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
set(handles.uipanel_ei,'Visible','on');
case 30 % CFA
case1; % hide all contols first
set(handles.na,'Visible','on');
set(handles.nat,'Visible','on');
set(handles.mi,'Visible','on');
set(handles.mit,'Visible','on');
case 31 % GPLVM
case1; % hide all contols first
set(handles.sig,'Visible','on');
set(handles.sigt,'Visible','on');
case 32 % NCA
case1;
case 33 % MCML
case1;
end
% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function nd_Callback(hObject, eventdata, handles)
% hObject handle to nd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nd as text
% str2double(get(hObject,'String')) returns contents of nd as a double
% --- Executes during object creation, after setting all properties.
function nd_CreateFcn(hObject, eventdata, handles)
% hObject handle to nd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function mi_Callback(hObject, eventdata, handles)
% hObject handle to mi (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of mi as text
% str2double(get(hObject,'String')) returns contents of mi as a double
% --- Executes during object creation, after setting all properties.
function mi_CreateFcn(hObject, eventdata, handles)
% hObject handle to mi (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function k_Callback(hObject, eventdata, handles)
% hObject handle to k (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of k as text
% str2double(get(hObject,'String')) returns contents of k as a double
% --- Executes during object creation, after setting all properties.
function k_CreateFcn(hObject, eventdata, handles)
% hObject handle to k (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function prc_Callback(hObject, eventdata, handles)
% hObject handle to prc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of prc as text
% str2double(get(hObject,'String')) returns contents of prc as a double
% --- Executes during object creation, after setting all properties.
function prc_CreateFcn(hObject, eventdata, handles)
% hObject handle to prc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function sig_Callback(hObject, eventdata, handles)
% hObject handle to sig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of sig as text
% str2double(get(hObject,'String')) returns contents of sig as a double
% --- Executes during object creation, after setting all properties.
function sig_CreateFcn(hObject, eventdata, handles)
% hObject handle to sig (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function kgs_Callback(hObject, eventdata, handles)
% hObject handle to kgs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of kgs as text
% str2double(get(hObject,'String')) returns contents of kgs as a double
% --- Executes during object creation, after setting all properties.
function kgs_CreateFcn(hObject, eventdata, handles)
% hObject handle to kgs (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function kpR_Callback(hObject, eventdata, handles)
% hObject handle to kpR (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of kpR as text
% str2double(get(hObject,'String')) returns contents of kpR as a double
% --- Executes during object creation, after setting all properties.
function kpR_CreateFcn(hObject, eventdata, handles)
% hObject handle to kpR (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function kpd_Callback(hObject, eventdata, handles)
% hObject handle to kpd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of kpd as text
% str2double(get(hObject,'String')) returns contents of kpd as a double
% --- Executes during object creation, after setting all properties.
function kpd_CreateFcn(hObject, eventdata, handles)
% hObject handle to kpd (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function prp_Callback(hObject, eventdata, handles)
% hObject handle to prp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of prp as text
% str2double(get(hObject,'String')) returns contents of prp as a double
% --- Executes during object creation, after setting all properties.
function prp_CreateFcn(hObject, eventdata, handles)
% hObject handle to prp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function na_Callback(hObject, eventdata, handles)
% hObject handle to na (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of na as text
% str2double(get(hObject,'String')) returns contents of na as a double
% --- Executes during object creation, after setting all properties.
function na_CreateFcn(hObject, eventdata, handles)
% hObject handle to na (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in sm.
function sm_Callback(hObject, eventdata, handles)
set(handles.sm,'Enable','off');
drawnow;
uiresume(handles.figure1);
function t_Callback(hObject, eventdata, handles)
% hObject handle to t (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of t as text
% str2double(get(hObject,'String')) returns contents of t as a double
% --- Executes during object creation, after setting all properties.
function t_CreateFcn(hObject, eventdata, handles)
% hObject handle to t (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --------------------------------------------------------------------
function uipanel_k_SelectionChangeFcn(hObject, eventdata, handles)
update_kernel_uipanel;
% --------------------------------------------------------------------
function uipanel_tp_SelectionChangeFcn(hObject, eventdata, handles)
update_type_uipanel;
% --- Executes on button press in ka.
function ka_Callback(hObject, eventdata, handles)
adaptive_callback;
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
load_xls.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/load_xls.m
| 4,845 |
utf_8
|
98f040ec0685b024ddf99d454fea770d
|
function varargout = load_xls(varargin)
% LOAD_XLS M-file for load_xls.fig
% LOAD_XLS, by itself, creates a new LOAD_XLS or raises the existing
% singleton*.
%
% H = LOAD_XLS returns the handle to a new LOAD_XLS or the handle to
% the existing singleton*.
%
% LOAD_XLS('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_XLS.M with the given input arguments.
%
% LOAD_XLS('Property','Value',...) creates a new LOAD_XLS or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_xls_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_xls_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_xls
% Last Modified by GUIDE v2.5 11-Sep-2008 10:53:04
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_xls_OpeningFcn, ...
'gui_OutputFcn', @load_xls_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_xls is made visible.
function load_xls_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_xls (see VARARGIN)
% Choose default command line output for load_xls
handles.output = hObject;
nmc=varargin{1}; % number of columns
% Update handles structure
guidata(hObject, handles);
set(handles.noc,'string',num2str(nmc));
set(handles.col,'string',num2str(nmc));
cl=[0.4 0.4 0.4];
set(handles.coltxt,'ForegroundColor',cl);
set(handles.col,'Enable','off');
% UIWAIT makes load_xls wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = load_xls_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function col_Callback(hObject, eventdata, handles)
% hObject handle to col (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of col as text
% str2double(get(hObject,'String')) returns contents of col as a double
% --- Executes during object creation, after setting all properties.
function col_CreateFcn(hObject, eventdata, handles)
% hObject handle to col (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --- Executes when selected object is changed in uipanel1.
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.uc,'value')
cl=[0 0 0];
set(handles.coltxt,'ForegroundColor',cl);
set(handles.col,'Enable','on');
else
cl=[0.4 0.4 0.4];
set(handles.coltxt,'ForegroundColor',cl);
set(handles.col,'Enable','off');
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
drtool.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/drtool.m
| 53,877 |
utf_8
|
25abf1c6522b90b00b1c29d7d4f4c091
|
function varargout = drtool(varargin)
% DRTOOL M-file for drtool.fig
% DRTOOL, by itself, creates a new DRTOOL or raises the existing
% singleton*.
%
% H = DRTOOL returns the handle to a new DRTOOL or the handle to
% the existing singleton*.
%
% DRTOOL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in DRTOOL.M with the given input arguments.
%
% DRTOOL('Property','Value',...) creates a new DRTOOL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before drtool_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to drtool_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help drtool
% Last Modified by GUIDE v2.5 16-Sep-2008 12:18:29
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @drtool_OpeningFcn, ...
'gui_OutputFcn', @drtool_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before drtool is made visible.
function drtool_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to drtool (see VARARGIN)
% Choose default command line output for drtool
handles.output = hObject;
set(handles.edr,'UserData',[]); % demention not estimated at begining
% here data will be stored:
handles.X=[];
handles.labels=[];
handles.islb=false; % if labels provided
handles.isl=false; % if data loaded
handles.mcd=false; % if mapping was calculated
handles.mX=[]; % mapped X
handles.m1={}; % m-code from part1
handles.m2={}; % m-code from part2
handles.m21={}; % addition with no_dims
handles.m3={}; % m-code from part3
handles.a2=false; % if code part with no_dims was writed
handles.mstf={}; % save to file part
handles.isxls=[]; % if data loaded as xls-file (will be used before save history)
%handles.ndr=[]; % rounded number of dimention from intrinsic_dim, need for m-file
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes drtool wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = drtool_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in ld.
function ld_Callback(hObject, eventdata, handles)
handles.a2=false;
set(handles.ld,'Enable','off');
drawnow;
% load data lead to clear mapped data
handles.mcd=false; % if mapping was calculated
handles.mX=[]; % mapped X
set(handles.cd,'Visible','off');
try
hs=load_data;
catch
set(handles.ld,'Enable','on');
return
end
hands_l_d=guidata(hs);
if (~get(hands_l_d.file,'value'))&&(~get(hands_l_d.xls,'value'))
%if not from file and not from xls-file
handles.isxls=[];
set(hands_l_d.ok,'Enable','off');
drawnow;
if get(hands_l_d.sw,'value')
dataname='swiss';
end
if get(hands_l_d.hl,'value')
dataname='helix';
end
if get(hands_l_d.tp,'value')
dataname='twinpeaks';
end
if get(hands_l_d.cl,'value')
dataname='3d_clusters';
end
if get(hands_l_d.is,'value')
dataname='intersect';
end
n=str2num(get(hands_l_d.ndp,'string'));
noise=str2num(get(hands_l_d.nl,'string'));
[X, labels] = generate_data(dataname, n,noise);
handles.X=X;
handles.labels=labels;
handles.islb=true;
handles.isl=true;
set(handles.dld,'visible','on');
% m-file memorizing:
% clear all previose history because new original dataset generated:
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
handles.m1={ '% generate data';
['n = ' num2str(n) '; % number of datapoints' ];
['noise = ' num2str(noise) '; % noise level' ];
['[X, labels] = generate_data(''' dataname ''', n,noise); % generate ' dataname ' data']};
delete(hands_l_d.figure1);
drawnow;
else
if get(hands_l_d.file,'value')
% here if need to load data from file
handles.isxls=false;
delete(hands_l_d.figure1);
drawnow;
S = uiimport;
if length(S)==0
handles.X=[];
handles.labels=[];
handles.islb=false;
handles.isl=false;
set(handles.dld,'visible','off');
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
else
vn=fieldnames(S);
if length(vn)==1
X = getfield(S, vn{1});
hs1=load_data_1_var;
hld1=guidata(hs1);
if get(hld1.i,'value')
cn=str2num(get(hld1.cn,'string'));
lX=length(X(1,:));
ncn1=1:lX;
ncni=find(ncn1~=cn);
ncn=ncn1(ncni);
handles.X=X(:,ncn);
handles.isl=true;
set(handles.dld,'visible','on');
labels=X(:,cn);
handles.labels=labels;
handles.islb=true;
else
% one variable without labels
handles.X=X;
handles.isl=true;
set(handles.dld,'visible','on');
handles.labels=[];
handles.islb=false;
end
delete(hld1.figure1);
else
hss=load_data_vars(vn);
hlds=guidata(hss);
Xn=get(hlds.d,'string');
X = getfield(S, Xn);
if get(hlds.ni,'value') % not include
handles.labels=[];
handles.islb=false;
handles.X=X;
handles.isl=true;
set(handles.dld,'visible','on');
end
if get(hlds.iv,'value') % include from variable
ivn=get(hlds.ivn,'String');
labels = getfield(S, ivn);
handles.labels=labels;
handles.islb=true;
handles.X=X;
handles.isl=true;
set(handles.dld,'visible','on');
end
if get(hlds.ic,'value') % include from column
cn=str2num(get(hlds.icn,'String'));
lX=length(X(1,:));
ncn1=1:lX;
ncni=find(ncn1~=cn);
ncn=ncn1(ncni);
handles.X=X(:,ncn);
handles.isl=true;
set(handles.dld,'visible','on');
labels=X(:,cn);
handles.labels=labels;
handles.islb=true;
end
delete(hlds.figure1);
end
% history:
% clear:
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
if handles.islb
handles.m1={'load(''X.mat''); % load data';
'load(''labels.mat''); % load labels';};
else
handles.m1={'load(''X.mat''); % load data'};
end
end
else
% here if load from xls file
handles.isxls=true;
delete(hands_l_d.figure1);
drawnow;
[FileName,PathName] = uigetfile({'*.xls';'*.xlsx'},'Select the xls-file');
if (FileName==0)
% do nothing if click cancel
else
X = xlsread([PathName FileName]); % load fom xls numbers only
handles.m1={};
handles.m2={};
handles.m3={};
handles.mstf={};
hstmp=load_xls(length(X(1,:)));
drawnow;
hands_l_x=guidata(hstmp);
if get(hands_l_x.wl,'value')
% if not use labels
handles.labels=[];
handles.islb=false;
handles.X=X;
handles.isl=true;
% history:
handles.m1={['PathName = ''' PathName '''; % path to xls-file'];
['FileName = ''' FileName '''; % file name of xls-file'];
'X = xlsread([PathName FileName]); % load xls file'};
set(handles.dld,'visible','on');
else
% if use labels
cn=str2num(get(hands_l_x.col,'String'));
lX=length(X(1,:));
ncn1=1:lX;
ncni=find(ncn1~=cn);
ncn=ncn1(ncni);
handles.X=X(:,ncn);
handles.isl=true;
set(handles.dld,'visible','on');
labels=X(:,cn);
handles.labels=labels;
handles.islb=true;
% history:
handles.m1={['PathName = ''' PathName '''; % path to xls-file'];
['FileName = ''' FileName '''; % file name of xls-file'];
'X = xlsread([PathName FileName]); % load xls file';
['cn = ' num2str(cn) '; % column number where labels are placed'];
'lX=length(X(1,:)); % total number of column';
'ncn1=1:lX;';
'ncni=find(ncn1~=cn); % indexes of data columns';
'ncn=ncn1(ncni); % data columns';
'labels=X(:,cn); % get labels';
'X=X(:,ncn); % get data'};
end
delete(hands_l_x.figure1);
drawnow;
end
end
end
set(handles.edr,'String','');
set(handles.cd,'visible','off');
handles.mcd=false;
guidata(handles.figure1, handles);
set(handles.ld,'Enable','on');
drawnow;
% --- Executes on button press in sp.
function sp_Callback(hObject, eventdata, handles)
if handles.isl
ld=length(handles.X(1,:));
if ld==2
hf=figure;
set(hf,'name','Original dataset','NumberTitle','off');
if handles.islb
scatter(handles.X(:,1),handles.X(:,2),5,handles.labels);
else
scatter(handles.X(:,1),handles.X(:,2),5);
end
title('Original dataset');
else
if handles.islb
scattern('Original dataset',handles.X,handles.labels);
else
scattern('Original dataset',handles.X);
end
end
else
% 'not loaded'
not_loaded;
end
% --- Executes on button press in p.
function p_Callback(hObject, eventdata, handles)
if handles.isl
ld=length(handles.X(1,:));
if ld==2
hf=figure;
set(hf,'name','Original dataset','NumberTitle','off');
% if handles.islb
% plot(handles.X(:,1),handles.X(:,2),5,handles.labels);
% else
plot(handles.X(:,1),handles.X(:,2),'.r');
% end
title('Original dataset');
else
% if handles.islb
% scattern('Original dataset',handles.X,handles.labels);
% else
plotn('Original dataset',handles.X);
% end
end
else
% 'not loaded'
not_loaded;
end
% --- Executes on button press in ed.
function ed_Callback(hObject, eventdata, handles)
handles.a2=false;
if handles.isl
try
s=choose_method;
catch
return
end
hs1=guidata(s);
set(hs1.ok,'Enable','off');
drawnow;
method=get(hs1.str,'string');
no_dims = intrinsic_dim(handles.X, method);
% estimate dimention lead to clear calculated data:
handles.mcd=false; % if mapping was calculated
handles.mX=[]; % mapped X
set(handles.cd,'Visible','off');
% history:
handles.m2={};
handles.m3={};
handles.mstf={};
% get detailed method name from listbox:
lstbs=get(hs1.listbox1,'string');
lstv=get(hs1.listbox1,'value');
mthds=lstbs{lstv};
handles.m2={['method_ed = ''' method '''; % (' mthds ') method of estimation of dimensionality'];
['no_dims = intrinsic_dim(X, method_ed); % estimate intrinsic dimensionality']};
delete(hs1.figure1);
drawnow;
set(handles.edr,'string',num2str(no_dims));
set(handles.edr,'UserData',no_dims); % memorize pricise value in userdata
guidata(handles.figure1, handles);
else
% 'not loaded'
not_loaded;
end
function edr_Callback(hObject, eventdata, handles)
% hObject handle to edr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of edr as text
% str2double(get(hObject,'String')) returns contents of edr as a double
% --- Executes during object creation, after setting all properties.
function edr_CreateFcn(hObject, eventdata, handles)
% hObject handle to edr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in cm.
function cm_Callback(hObject, eventdata, handles)
if handles.isl
handles.m3={}; % eraise priviose history
handles.mstf={};
no_dims=get(handles.edr,'UserData');
no_dims_old=no_dims;
try
s=mapping_parameters(no_dims,handles.islb);
catch
return
end
hs1=guidata(s);
%mappedA = compute_mapping(A, type, no_dims, parameters, eig_impl)
no_dims=str2num(get(hs1.nd,'string'));
%if (~handles.a2)||(round(no_dims_old)~=no_dims) % if was not added or if changed
handles.a2=true;
if ~isempty(no_dims_old)
if round(no_dims_old)~=no_dims
% if demetion was changed
handles.m21={' ';
['no_dims = ' num2str(no_dims) '; % supposed number of dimensions'];
' '};
else
handles.m21={' ';
['no_dims = round(no_dims); % round number of dimensions to have integer number'];
' '};
end
else
handles.m21={' ';
['no_dims = ' num2str(no_dims) '; % supposed number of dimensions'];
' '};
end
if isempty(handles.m2)
handles.m21={' ';
['no_dims = ' num2str(no_dims) '; % supposed number of dimensions'];
' '};
end
%handles.m2=vertcat(handles.m2,m2t);
%end
mappedA=[];
try
noparam=false; % if no parameters
mthd=''; % method when no parameters
switch get(hs1.listbox1,'Value')
case 1 % PCA
% no parameters;
mappedA = compute_mapping(handles.X, 'PCA', no_dims);
noparam=true;
mthd='PCA';
case 2 % LDA
% no parameters;
% correct lables only to column-vector:
lb=handles.labels;
slb=size(lb);
if min(slb)>1
warning('slb must be vector');
end
if slb(1)<slb(2)
lb=lb';
end
if handles.islb
mappedA = compute_mapping([lb handles.X], 'LDA', no_dims); % set labels through first column
if slb(1)<slb(2)
handles.m3={['labels=labels''; % labels must be a vector-column '];
['mappedX = compute_mapping([labels X], ''LDA'', no_dims); % set labels through first column']};
else
handles.m3={['mappedX = compute_mapping([labels X], ''LDA'', no_dims); % set labels through first column']};
end
else
% imposible because data without labels
warning('it is imposible to be here');
end
case 3 % MDS
% no parameters;
mappedA = compute_mapping(handles.X, 'MDS', no_dims);
noparam=true;
mthd='MDS';
case 4 % SimplePCA
% no parameters;
mappedA = compute_mapping(handles.X, 'SimplePCA', no_dims);
noparam=true;
mthd='SimplePCA';
case 5 % ProbPCA
mi=str2num(get(hs1.mi,'string'));
mappedA = compute_mapping(handles.X, 'ProbPCA', no_dims, mi);
handles.m3={['mi = ' num2str(mi) '; % max iterations'];
['mappedX = compute_mapping(X, ''ProbPCA'', no_dims, mi);']};
case 6 % FactorAnalysis
% no parameters;
mappedA = compute_mapping(handles.X, 'FactorAnalysis', no_dims);
noparam=true;
mthd='FactorAnalysis';
case 7 % Isomap
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
mappedA = compute_mapping(handles.X, 'Isomap', no_dims, k);
m3t={['mappedX = compute_mapping(X, ''Isomap'', no_dims, k);']};
handles.m3=vertcat(handles.m3,m3t);
case 8 % LandmarkIsomap
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
prc=str2num(get(hs1.prc,'string'));
m3t={['prc = ' num2str(prc) '; % percentage']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LandmarkIsomap', no_dims, k, prc);
m3t={['mappedX = compute_mapping(X, ''LandmarkIsomap'', no_dims, k, prc);']};
handles.m3=vertcat(handles.m3,m3t);
case 9 % LLE
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
[mappedA, mapping] = compute_mapping(handles.X, 'LLE', no_dims, k, eim);
m3t={['[mappedX, mapping] = compute_mapping(X, ''LLE'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 10 % Laplacian
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'Laplacian', no_dims, k, sig, eim);
m3t={['mappedX = compute_mapping(X, ''Laplacian'', no_dims, k, sig, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 11 % HessianLLE
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'HessianLLE', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''HessianLLE'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 12 % LTSA
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LTSA', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''LTSA'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 13 % MVU
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'MVU', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''MVU'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 14 % CCA
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'CCA', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''CCA'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 15 % LandmarkMVU
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
mappedA = compute_mapping(handles.X, 'LandmarkMVU', no_dims, k);
m3t={['mappedX = compute_mapping(X, ''LandmarkMVU'', no_dims, k);']};
handles.m3=vertcat(handles.m3,m3t);
case 16 % FastMVU
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
ft=get(hs1.fty,'value');
if ft
m3t={['ft = true; % finetune']};
else
m3t={['ft = false; % finetune']};
end
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'FastMVU', no_dims, k, ft, eim);
m3t={['mappedX = compute_mapping(X, ''FastMVU'', no_dims, k, ft, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 17 % DiffusionMaps
t=str2num(get(hs1.t,'string'));
handles.m3={['t = ' num2str(t) ';']};
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'DiffusionMaps', no_dims, t, sig);
m3t={['mappedX = compute_mapping(X, ''DiffusionMaps'', no_dims, t, sig);']};
handles.m3=vertcat(handles.m3,m3t);
case 18 % KernelPCA
kernel='gauss';
if get(hs1.kl,'value')
kernel='linear';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel);
handles.m3={['kernel = ''linear'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel);']};
end
if get(hs1.kg,'value')
s=str2num(get(hs1.kgs,'string'));
handles.m3={['s = ' num2str(s) '; % variance']};
kernel='gauss';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,s);
m3t={['kernel = ''gauss'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, s);']};
handles.m3=vertcat(handles.m3,m3t);
end
if get(hs1.kp,'value')
R=str2num(get(hs1.kpR,'string'));
handles.m3={['R = ' num2str(R) '; % additional value']};
d=str2num(get(hs1.kpd,'string'));
m3t={['d = ' num2str(d) '; % power number']};
handles.m3=vertcat(handles.m3,m3t);
kernel='poly';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,R,d);
m3t={['kernel = ''poly'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, R, d);']};
handles.m3=vertcat(handles.m3,m3t);
end
case 19 % GDA
% correct lables only to column-vector:
lb=handles.labels;
slb=size(lb);
if min(slb)>1
warning('slb must be vector');
end
if slb(1)<slb(2)
lb=lb';
end
if slb(1)<slb(2)
m3t={['labels=labels''; % labels must be a vector-column ']};
else
m3t={};
end
if handles.islb
kernel='gauss';
if get(hs1.kl,'value')
kernel='linear';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel);
handles.m3={['kernel = ''linear'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel);']};
handles.m3=vertcat(m3t,handles.m3);
end
if get(hs1.kg,'value')
s=str2num(get(hs1.kgs,'string'));
handles.m3={['s = ' num2str(s) '; % variance']};
handles.m3=vertcat(m3t,handles.m3);
kernel='gauss';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,s);
m3t={['kernel = ''gauss'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, s);']};
handles.m3=vertcat(handles.m3,m3t);
end
if get(hs1.kp,'value')
R=str2num(get(hs1.kpR,'string'));
handles.m3={['R = ' num2str(R) '; % additional value']};
handles.m3=vertcat(m3t,handles.m3);
d=str2num(get(hs1.kpd,'string'));
m3t={['d = ' num2str(d) '; % power number']};
handles.m3=vertcat(handles.m3,m3t);
kernel='poly';
mappedA = compute_mapping(handles.X, 'KernelPCA', no_dims,kernel,R,d);
m3t={['kernel = ''poly'';'];
['mappedX = compute_mapping(X, ''KernelPCA'', no_dims, kernel, R, d);']};
handles.m3=vertcat(handles.m3,m3t);
end
else
% imposible because data without labels
warning('it is imposible to be here');
end
case 20 % SNE
prp=str2num(get(hs1.prp,'string'));
handles.m3={['prp = ' num2str(prp) '; % perplexity']};
mappedA = compute_mapping(handles.X, 'SNE', no_dims, prp);
m3t={['mappedX = compute_mapping(X, ''SNE'', no_dims, prp);']};
handles.m3=vertcat(handles.m3,m3t);
case 21 % SymSNE
prp=str2num(get(hs1.prp,'string'));
handles.m3={['prp = ' num2str(prp) '; % perplexity']};
mappedA = compute_mapping(handles.X, 'SymSNE', no_dims, prp);
m3t={['mappedX = compute_mapping(X, ''SymSNE'', no_dims, prp);']};
handles.m3=vertcat(handles.m3,m3t);
case 22 % t-SNE
prp=str2num(get(hs1.prp,'string'));
handles.m3={['prp = ' num2str(prp) '; % perplexity']};
mappedA = compute_mapping(handles.X, 't-SNE', no_dims, prp);
m3t={['mappedX = compute_mapping(X, ''t-SNE'', no_dims, prp);']};
handles.m3=vertcat(handles.m3,m3t);
case 23 % LPP
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LPP', no_dims, k, sig, eim);
m3t={['mappedX = compute_mapping(X, ''LPP'', no_dims, k, sig, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 24 % NPE
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'NPE', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''NPE'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 25 % LLTSA
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'LLTSA', no_dims, k, eim);
m3t={['mappedX = compute_mapping(X, ''LLTSA'', no_dims, k, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 26 % SPE
tp='Global';
if get(hs1.tg,'value')
tp='Global';
mappedA = compute_mapping(handles.X, 'SPE', no_dims, tp);
handles.m3={'tp = ''Global''; % type of stress function that minimized';
['mappedX = compute_mapping(X, ''SPE'', no_dims, tp);']};
end
if get(hs1.tl,'value')
tp='Local';
k=str2num(get(hs1.k,'string'));
mappedA = compute_mapping(handles.X, 'SPE', no_dims, tp, k);
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph'];
'tp = ''Local''; % type of stress function that minimized';
['mappedX = compute_mapping(X, ''SPE'', no_dims, tp, k);']};
end
case 27 % AutoEncoder
% no parameters;
mappedA = compute_mapping(handles.X, 'Autoencoder', no_dims);
noparam=true;
mthd='Autoencoder';
case 28 % LLC
% no parameters;
mappedA = compute_mapping(handles.X, 'LLC', no_dims);
noparam=true;
mthd='LLC';
case 29 % LLC
if get(hs1.ka,'value')
k='adaptive';
handles.m3={['k = ''adaptive''; % adaptive number of nearest neighbors in a neighborhood graph']};
else
k=str2num(get(hs1.k,'string'));
handles.m3={['k = ' num2str(k) '; % number of nearest neighbors in a neighborhood graph']};
end
na=str2num(get(hs1.na,'string'));
m3t={['na = ' num2str(na) '; % number of factor analyzers']};
handles.m3=vertcat(handles.m3,m3t);
mi=str2num(get(hs1.mi,'string'));
m3t={['mi = ' num2str(mi) '; % max iterations']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
mappedA = compute_mapping(handles.X, 'LLC', no_dims, k, na, mi, eim);
m3t={['mappedX = compute_mapping(X, ''LLC'', no_dims, k, na, mi, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 30 % ManifoldChart
na=str2num(get(hs1.na,'string'));
handles.m3={['na = ' num2str(na) '; % number of factor analyzers']};
mi=str2num(get(hs1.mi,'string'));
m3t={['mi = ' num2str(mi) '; % max iterations']};
handles.m3=vertcat(handles.m3,m3t);
if get(hs1.eim,'value')
eim='Matlab';
m3t={'eim = ''Matlab''; % eigenanalysis implementation'};
else
eim='JDQR';
m3t={'eim = ''JDQR''; % eigenanalysis implementation'};
end
mappedA = compute_mapping(handles.X, 'ManifoldChart', no_dims, na, mi, eim);
m3t={['mappedX = compute_mapping(X, ''ManifoldChart'', no_dims, na, mi, eim);']};
handles.m3=vertcat(handles.m3,m3t);
case 31 % CFA
na=str2num(get(hs1.na,'string'));
handles.m3={['na = ' num2str(na) '; % number of factor analyzers']};
mi=str2num(get(hs1.mi,'string'));
m3t={['mi = ' num2str(mi) '; % max iterations']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'CFA', no_dims, na, mi);
m3t={['mappedX = compute_mapping(X, ''CFA'', no_dims, na, mi);']};
handles.m3=vertcat(handles.m3,m3t);
case 32 % GPLVM
sig=str2num(get(hs1.sig,'string'));
m3t={['sig = ' num2str(sig) '; % variance of a Gaussian kernel']};
handles.m3=vertcat(handles.m3,m3t);
mappedA = compute_mapping(handles.X, 'GPLVM', no_dims, sig);
m3t={['mappedX = compute_mapping(X, ''GPLVM'', no_dims, sig);']};
handles.m3=vertcat(handles.m3,m3t);
case 33 % NCA
mappedA = compute_mapping(handles.X, 'NCA', no_dims);
m3t={'mappedX = compute_mapping(X, ''NCA'', no_dims);'};
handles.m3=vertcat(handles.m3,m3t);
case 34 % MCML
mappedA = compute_mapping(handles.X, 'MCML', no_dims);
m3t={'mappedX = compute_mapping(X, ''MCML'', no_dims);'};
handles.m3=vertcat(handles.m3,m3t);
end
if noparam
handles.m3={['mappedX = compute_mapping(X, ''' mthd ''', no_dims); % compute mapping using ' mthd ' method']};
end
catch
set(handles.cd,'visible','off');
handles.mcd=false;
warning('mapping was not calculated');
handles.m3={};
handles.mstf={};
guidata(handles.figure1, handles);
delete(hs1.figure1);
drawnow;
rethrow(lasterror);
return
end
if length(mappedA)~=0
set(handles.cd,'visible','on');
handles.mX=mappedA;
handles.mcd=true;
else
set(handles.cd,'visible','off');
handles.mcd=false;
warning('mapping was not calculated');
handles.m3={};
handles.mstf={};
end
guidata(handles.figure1, handles);
delete(hs1.figure1);
drawnow;
else
% 'not loaded'
not_loaded;
end
% --- Executes on button press in pushbutton6.
function pushbutton6_Callback(hObject, eventdata, handles)
if handles.mcd
ld=length(handles.mX(1,:));
if ld==2
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
if handles.islb && size(handles.mX, 1) == numel(handles.labels)
scatter(handles.mX(:,1),handles.mX(:,2),5,handles.labels);
else
scatter(handles.mX(:,1),handles.mX(:,2),5);
end
title('Result of dimensionality reduction');
if size(handles.mX, 1) ~= numel(handles.labels)
warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.');
end
else
if ld==1
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
if handles.islb && size(handles.mX, 1) == numel(handles.labels)
scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5,handles.labels);
else
scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5);
end
title('Result of dimensionality reduction');
if size(handles.mX, 1) ~= numel(handles.labels)
warning('The GUI cannot yet deal properly with disconnected parts in the neighborhood graph.');
end
else
if handles.islb
scattern('Result of dimensionality reduction',handles.mX,handles.labels);
else
scattern('Result of dimensionality reduction',handles.mX);
end
end
end
else
% 'not calulated'
not_calculated;
end
% --- Executes on button press in pushbutton7.
function pushbutton7_Callback(hObject, eventdata, handles)
if handles.mcd
ld=length(handles.mX(1,:));
if ld==2
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
% if handles.islb
% scatter(handles.mX(:,1),handles.mX(:,2),5,handles.labels);
% else
plot(handles.mX(:,1),handles.mX(:,2),'.r');
% end
title('Result of dimensionality reduction');
else
if ld==1
hf=figure;
set(hf,'name','Result of dimensionality reduction','NumberTitle','off');
%if handles.islb
%scatter(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),5,handles.labels);
%else
plot(handles.mX(:,1),zeros(length(handles.mX(:,1)),1),'.k');
%end
title('Result of dimensionality reduction');
else
%if handles.islb
% scattern('Result of dimensionality reduction',handles.mX,handles.labels);
%else
plotn('Result of dimensionality reduction',handles.mX);
%end
end
end
else
% 'not calulated'
not_calculated;
end
% --- Executes on button press in stmf.
function stmf_Callback(hObject, eventdata, handles)
[file,path] = uiputfile('*.mat','Save Mapped Data As');
if length(file)==1
if file==0
return
end
end
mX=handles.mX;
save([path file], 'mX');
% --- Executes on button press in sttf.
function sttf_Callback(hObject, eventdata, handles)
[file,path] = uiputfile('*.txt','Save Mapped Data As');
if length(file)==1
if file==0
return
end
end
mX=handles.mX;
save([path file], 'mX','-ascii', '-tabs');
% --- Executes on button press in stf.
function stf_Callback(hObject, eventdata, handles)
set(handles.stf,'Enable','off');
drawnow;
if handles.mcd
if get(handles.stmfr,'value')
[file,path] = uiputfile('*.mat','Save Mapped Data As');
if length(file)==1
if file==0
set(handles.stf,'Enable','on');
drawnow;
return
end
end
mX=handles.mX;
save([path file], 'mX');
handles.mstf={['save(''' path file ''', ''mappedX''); % save result to mat-file']};
end
if get(handles.sttfr,'value')
[file,path] = uiputfile('*.txt','Save Mapped Data As');
if length(file)==1
if file==0
set(handles.stf,'Enable','on');
drawnow;
return
end
end
mX=handles.mX;
save([path file], 'mX','-ascii', '-tabs');
handles.mstf={['save(''' path file ''', ''mappedX'',''-ascii'', ''-tabs''); % save result to txt-file']};
end
if get(handles.stxfr,'value')
[file,path] = uiputfile('*.xls','Save Mapped Data As');
if length(file)==1
if file==0
set(handles.stf,'Enable','on');
drawnow;
return
end
end
mX=handles.mX;
xlswrite([path file], mX);
handles.mstf={['xlswrite(''' path file ''', mappedX); % save result to xls-file']};
end
guidata(handles.figure1, handles);
else
% 'not calulated'
not_calculated;
end
set(handles.stf,'Enable','on');
drawnow;
% --- Executes when selected object is changed in uipanel1.
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
% hObject handle to the selected object in uipanel1
% eventdata structure with the following fields (see UIBUTTONGROUP)
% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty if none was selected
% NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)
% --- Executes on button press in sh.
function sh_Callback(hObject, eventdata, handles)
set(handles.sh,'enable','off');
drawnow;
if (isempty(handles.m1))&&(isempty(handles.m2))&&(isempty(handles.m3))
no_history;
else
[file,path] = uiputfile('*.m','Save History As');
if length(file)==1
if file==0
set(handles.sh,'enable','on');
drawnow;
return
end
end
fid = fopen([path file],'w');
fprintf(fid,'%s\r\n',['% this file was generated by drtool at ' datestr(now)]);
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
if ~isempty(handles.isxls)
if ~handles.isxls
% here if txt/mat file was loaded so it is need save data and labels
X=handles.X;
save([path 'X.mat'],'X');
if handles.islb
% save labells if any
labels=handles.labels;
save([path 'labels.mat'],'labels');
fprintf(fid,'%s\r\n','% Note: data and labels were saved in X.mat and labels.mat together with this m-file in the same folder');
else
fprintf(fid,'%s\r\n','% Note: data was saved in X.mat together with this m-file in the same folder');
end
end
end
fprintf(fid,'%s\r\n',' ');
fprintf(fid,'%s\r\n','% 1.');
fprintf(fid,'%s\r\n','% get data');
for mc=1:length(handles.m1)
fprintf(fid,'%s\r\n',handles.m1{mc});
end
% plot original data:
mpod={'% plot original data:'};
ld=length(handles.X(1,:));
if ld==2
mpodt={'hf=figure;';
'set(hf,''name'',''Original dataset'',''NumberTitle'',''off'');'};
mpod=vertcat(mpod,mpodt);
if handles.islb
mpodt={'scatter(X(:,1),X(:,2),5,labels);'};
else
mpodt={'plot(X(:,1),X(:,2),''x-'');'};
end
mpod=vertcat(mpod,mpodt);
mpodt={'title(''Original dataset'');'};
mpod=vertcat(mpod,mpodt);
else
if handles.islb
mpodt={'scattern(''Original dataset'',X,labels);'};
else
mpodt={'plotn(''Original dataset'',X);'};
end
mpod=vertcat(mpod,mpodt);
end
fprintf(fid,'%s\r\n',' ');
for mc=1:length(mpod)
fprintf(fid,'%s\r\n',mpod{mc});
end
fprintf(fid,'%s\r\n',' ');
if length(handles.m2)~=0
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
handles.m2=vertcat(handles.m2,handles.m21);
fprintf(fid,'%s\r\n','% 2.');
fprintf(fid,'%s\r\n','% estimate intrinsic dimensionality');
for mc=1:length(handles.m2)
fprintf(fid,'%s\r\n',handles.m2{mc});
end
else
if length(handles.m3)~=0
% if was not dimetion estimation thet it is need to set it for
% part 3
for mc=1:length(handles.m21)
fprintf(fid,'%s\r\n',handles.m21{mc});
end
end
end
if length(handles.m3)~=0
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
fprintf(fid,'%s\r\n','% 3.');
fprintf(fid,'%s\r\n','% compute mapping');
for mc=1:length(handles.m3)
fprintf(fid,'%s\r\n',handles.m3{mc});
end
% plot result
mpod={'% plot result of dimensionality reduction:'};
if handles.islb
mpodt={'scatter12n(''Result of dimensionality reduction'',mappedX,labels);'};
else
mpodt={'plot12n(''Result of dimensionality reduction'',mappedX);'};
end
mpod=vertcat(mpod,mpodt);
fprintf(fid,'%s\r\n',' ');
for mc=1:length(mpod)
fprintf(fid,'%s\r\n',mpod{mc});
end
fprintf(fid,'%s\r\n',' ');
end
if length(handles.mstf)~=0
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
fprintf(fid,'%s\r\n',' '); % empty line - delimeter
for mc=1:length(handles.mstf)
fprintf(fid,'%s\r\n',handles.mstf{mc});
end
end
fclose(fid);
end
set(handles.sh,'enable','on');
drawnow;
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
plot12n.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/plot12n.m
| 1,356 |
utf_8
|
8a16c46e9b838f4602a5af8fc8a857a8
|
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
function plot12n(name,data)
ld=length(data(1,:));
if ld==2
hf=figure;
set(hf,'name',name,'NumberTitle','off');
% if handles.islb
% scatter(data(:,1),data(:,2),5,handles.labels);
% else
plot(data(:,1),data(:,2),'.r');
% end
title(name);
else
if ld==1
hf=figure;
set(hf,'name',name,'NumberTitle','off');
%if handles.islb
%scatter(data(:,1),zeros(length(data(:,1)),1),5,handles.labels);
%else
plot(data(:,1),zeros(length(data(:,1)),1),'.k');
%end
title(name);
else
%if handles.islb
% scattern('Result of dimensionality reduction',data,handles.labels);
%else
plotn(name,data);
%end
end
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
not_loaded.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/not_loaded.m
| 7,728 |
utf_8
|
a754380baacab27eac13658ea4cc21a3
|
function varargout = not_loaded(varargin)
% NOT_LOADED M-file for not_loaded.fig
% NOT_LOADED by itself, creates a new NOT_LOADED or raises the
% existing singleton*.
%
% H = NOT_LOADED returns the handle to a new NOT_LOADED or the handle to
% the existing singleton*.
%
% NOT_LOADED('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in NOT_LOADED.M with the given input arguments.
%
% NOT_LOADED('Property','Value',...) creates a new NOT_LOADED or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before not_loaded_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to not_loaded_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help not_loaded
% Last Modified by GUIDE v2.5 24-Jul-2008 18:38:56
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @not_loaded_OpeningFcn, ...
'gui_OutputFcn', @not_loaded_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before not_loaded is made visible.
function not_loaded_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to not_loaded (see VARARGIN)
% Choose default command line output for not_loaded
handles.output = 'Yes';
% Update handles structure
guidata(hObject, handles);
% Insert custom Title and Text if specified by the user
% Hint: when choosing keywords, be sure they are not easily confused
% with existing figure properties. See the output of set(figure) for
% a list of figure properties.
if(nargin > 3)
for index = 1:2:(nargin-3),
if nargin-3==index, break, end
switch lower(varargin{index})
case 'title'
set(hObject, 'Name', varargin{index+1});
case 'string'
set(handles.text1, 'String', varargin{index+1});
end
end
end
% Determine the position of the dialog - centered on the callback figure
% if available, else, centered on the screen
FigPos=get(0,'DefaultFigurePosition');
OldUnits = get(hObject, 'Units');
set(hObject, 'Units', 'pixels');
OldPos = get(hObject,'Position');
FigWidth = OldPos(3);
FigHeight = OldPos(4);
if isempty(gcbf)
ScreenUnits=get(0,'Units');
set(0,'Units','pixels');
ScreenSize=get(0,'ScreenSize');
set(0,'Units',ScreenUnits);
FigPos(1)=1/2*(ScreenSize(3)-FigWidth);
FigPos(2)=2/3*(ScreenSize(4)-FigHeight);
else
GCBFOldUnits = get(gcbf,'Units');
set(gcbf,'Units','pixels');
GCBFPos = get(gcbf,'Position');
set(gcbf,'Units',GCBFOldUnits);
FigPos(1:2) = [(GCBFPos(1) + GCBFPos(3) / 2) - FigWidth / 2, ...
(GCBFPos(2) + GCBFPos(4) / 2) - FigHeight / 2];
end
FigPos(3:4)=[FigWidth FigHeight];
set(hObject, 'Position', FigPos);
set(hObject, 'Units', OldUnits);
% Show a question icon from dialogicons.mat - variables questIconData
% and questIconMap
load dialogicons.mat
IconData=questIconData;
questIconMap(256,:) = get(handles.figure1, 'Color');
IconCMap=questIconMap;
Img=image(IconData, 'Parent', handles.axes1);
set(handles.figure1, 'Colormap', IconCMap);
set(handles.axes1, ...
'Visible', 'off', ...
'YDir' , 'reverse' , ...
'XLim' , get(Img,'XData'), ...
'YLim' , get(Img,'YData') ...
);
% Make the GUI modal
set(handles.figure1,'WindowStyle','modal')
% UIWAIT makes not_loaded wait for user response (see UIRESUME)
uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = not_loaded_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% The figure can be deleted now
delete(handles.figure1);
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
handles.output = get(hObject,'String');
% Update handles structure
guidata(hObject, handles);
% Use UIRESUME instead of delete because the OutputFcn needs
% to get the updated handles structure.
uiresume(handles.figure1);
% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
if isequal(get(handles.figure1, 'waitstatus'), 'waiting')
% The GUI is still in UIWAIT, us UIRESUME
uiresume(handles.figure1);
else
% The GUI is no longer waiting, just close it
delete(handles.figure1);
end
% --- Executes on key press over figure1 with no controls selected.
function figure1_KeyPressFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Check for "enter" or "escape"
if isequal(get(hObject,'CurrentKey'),'escape')
% User said no by hitting escape
handles.output = 'No';
% Update handles structure
guidata(hObject, handles);
uiresume(handles.figure1);
end
if isequal(get(hObject,'CurrentKey'),'return')
uiresume(handles.figure1);
end
|
github
|
eulertech/DeepLearningCrudeOilForecast-master
|
load_data.m
|
.m
|
DeepLearningCrudeOilForecast-master/drtoolbox/gui/load_data.m
| 6,534 |
utf_8
|
ade0538cbeeb79ed3c72aea5743a2424
|
function varargout = load_data(varargin)
% LOAD_DATA M-file for load_data.fig
% LOAD_DATA, by itself, creates a new LOAD_DATA or raises the existing
% singleton*.
%
% H = LOAD_DATA returns the handle to a new LOAD_DATA or the handle to
% the existing singleton*.
%
% LOAD_DATA('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in LOAD_DATA.M with the given input arguments.
%
% LOAD_DATA('Property','Value',...) creates a new LOAD_DATA or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before load_data_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to load_data_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% This file is part of the Matlab Toolbox for Dimensionality Reduction v0.7.2b.
% The toolbox can be obtained from http://homepage.tudelft.nl/19j49
% You are free to use, change, or redistribute this code in any way you
% want for non-commercial purposes. However, it is appreciated if you
% maintain the name of the original author.
%
% (C) Laurens van der Maaten, 2010
% University California, San Diego / Delft University of Technology
% Edit the above text to modify the response to help load_data
% Last Modified by GUIDE v2.5 23-Jul-2008 16:01:33
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @load_data_OpeningFcn, ...
'gui_OutputFcn', @load_data_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before load_data is made visible.
function load_data_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to load_data (see VARARGIN)
% Choose default command line output for load_data
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes load_data wait for user response (see UIRESUME)
uiwait(handles.figure1);
% uiwait;
% --- Outputs from this function are returned to the command line.
function varargout = load_data_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
function ndp_Callback(hObject, eventdata, handles)
% hObject handle to ndp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of ndp as text
% str2double(get(hObject,'String')) returns contents of ndp as a double
% --- Executes during object creation, after setting all properties.
function ndp_CreateFcn(hObject, eventdata, handles)
% hObject handle to ndp (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
function nl_Callback(hObject, eventdata, handles)
% hObject handle to nl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of nl as text
% str2double(get(hObject,'String')) returns contents of nl as a double
% --- Executes during object creation, after setting all properties.
function nl_CreateFcn(hObject, eventdata, handles)
% hObject handle to nl (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor','white');
end
% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
uiresume(handles.figure1);
% --------------------------------------------------------------------
function uipanel1_SelectionChangeFcn(hObject, eventdata, handles)
if get(handles.file,'value')
cl=[0.4 0.4 0.4];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','off');
set(handles.nl,'Enable','off');
set(handles.ok,'String','Start wizard');
else
cl=[0 0 0];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','on');
set(handles.nl,'Enable','on');
set(handles.ok,'String','OK');
end
if get(handles.xls,'value')
cl=[0.4 0.4 0.4];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','off');
set(handles.nl,'Enable','off');
set(handles.ok,'String','Open XLS-file');
else
if ~get(handles.file,'value')
cl=[0 0 0];
set(handles.ndpt,'ForegroundColor',cl);
set(handles.nlt,'ForegroundColor',cl);
set(handles.ndp,'Enable','on');
set(handles.nl,'Enable','on');
set(handles.ok,'String','OK');
end
end
|
github
|
thomasjlew/davis_tracker-master
|
knnsearch.m
|
.m
|
davis_tracker-master/src/knnsearch.m
| 4,157 |
utf_8
|
bf67a671cf817680b7a3f8a108d816e1
|
function [idx,D]=knnsearch(varargin)
% TLEW Note 09/29/17: Code Taken from https://ch.mathworks.com/
% matlabcentral/fileexchange/19345-efficient-k-nearest-neighbor-search-
% using-jit?focused=5151612&tab=function
% KNNSEARCH Linear k-nearest neighbor (KNN) search
% IDX = knnsearch(Q,R,K) searches the reference data set R (n x d array
% representing n points in a d-dimensional space) to find the k-nearest
% neighbors of each query point represented by eahc row of Q (m x d array).
% The results are stored in the (m x K) index array, IDX.
%
% IDX = knnsearch(Q,R) takes the default value K=1.
%
% IDX = knnsearch(Q) or IDX = knnsearch(Q,[],K) does the search for R = Q.
%
% Rationality
% Linear KNN search is the simplest appraoch of KNN. The search is based on
% calculation of all distances. Therefore, it is normally believed only
% suitable for small data sets. However, other advanced approaches, such as
% kd-tree and delaunary become inefficient when d is large comparing to the
% number of data points. On the other hand, the linear search in MATLAB is
% relatively insensitive to d due to the vectorization. In this code, the
% efficiency of linear search is further improved by using the JIT
% aceeleration of MATLAB. Numerical example shows that its performance is
% comparable with kd-tree algorithm in mex.
%
% See also, kdtree, nnsearch, delaunary, dsearch
% By Yi Cao at Cranfield University on 25 March 2008
% Example 1: small data sets
%{
R=randn(100,2);
Q=randn(3,2);
idx=knnsearch(Q,R);
plot(R(:,1),R(:,2),'b.',Q(:,1),Q(:,2),'ro',R(idx,1),R(idx,2),'gx');
%}
% Example 2: ten nearest points to [0 0]
%{
R=rand(100,2);
Q=[0 0];
K=10;
idx=knnsearch(Q,R,10);
r=max(sqrt(sum(R(idx,:).^2,2)));
theta=0:0.01:pi/2;
x=r*cos(theta);
y=r*sin(theta);
plot(R(:,1),R(:,2),'b.',Q(:,1),Q(:,2),'co',R(idx,1),R(idx,2),'gx',x,y,'r-','linewidth',2);
%}
% Example 3: cputime comparion with delaunay+dsearch I, a few to look up
%{
R=randn(10000,4);
Q=randn(500,4);
t0=cputime;
idx=knnsearch(Q,R);
t1=cputime;
T=delaunayn(R);
idx1=dsearchn(R,T,Q);
t2=cputime;
fprintf('Are both indices the same? %d\n',isequal(idx,idx1));
fprintf('CPU time for knnsearch = %g\n',t1-t0);
fprintf('CPU time for delaunay = %g\n',t2-t1);
%}
% Example 4: cputime comparion with delaunay+dsearch II, lots to look up
%{
Q=randn(10000,4);
R=randn(500,4);
t0=cputime;
idx=knnsearch(Q,R);
t1=cputime;
T=delaunayn(R);
idx1=dsearchn(R,T,Q);
t2=cputime;
fprintf('Are both indices the same? %d\n',isequal(idx,idx1));
fprintf('CPU time for knnsearch = %g\n',t1-t0);
fprintf('CPU time for delaunay = %g\n',t2-t1);
%}
% Example 5: cputime comparion with kd-tree by Steven Michael (mex file)
% <a href="http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7030&objectType=file">kd-tree by Steven Michael</a>
%{
Q=randn(10000,10);
R=randn(500,10);
t0=cputime;
idx=knnsearch(Q,R);
t1=cputime;
tree=kdtree(R);
idx1=kdtree_closestpoint(tree,Q);
t2=cputime;
fprintf('Are both indices the same? %d\n',isequal(idx,idx1));
fprintf('CPU time for knnsearch = %g\n',t1-t0);
fprintf('CPU time for delaunay = %g\n',t2-t1);
%}
% Check inputs
[Q,R,K,fident] = parseinputs(varargin{:});
% Check outputs
error(nargoutchk(0,2,nargout));
% C2 = sum(C.*C,2)';
[N,M] = size(Q);
L=size(R,1);
idx = zeros(N,K);
D = idx;
if K==1
% Loop for each query point
for k=1:N
d=zeros(L,1);
for t=1:M
d=d+(R(:,t)-Q(k,t)).^2;
end
if fident
d(k)=inf;
end
[D(k),idx(k)]=min(d);
end
else
for k=1:N
d=zeros(L,1);
for t=1:M
d=d+(R(:,t)-Q(k,t)).^2;
end
if fident
d(k)=inf;
end
[s,t]=sort(d);
idx(k,:)=t(1:K);
D(k,:)=s(1:K);
end
end
if nargout>1
D=sqrt(D);
end
function [Q,R,K,fident] = parseinputs(varargin)
% Check input and output
error(nargchk(1,3,nargin));
Q=varargin{1};
if nargin<2
R=Q;
fident = true;
else
fident = false;
R=varargin{2};
end
if isempty(R)
fident = true;
R=Q;
end
if ~fident
fident = isequal(Q,R);
end
if nargin<3
K=1;
else
K=varargin{3};
end
|
github
|
thomasjlew/davis_tracker-master
|
is_in_patch.m
|
.m
|
davis_tracker-master/src/is_in_patch.m
| 1,506 |
utf_8
|
8c0cf739ecbaf71ac334f7dcf48440c8
|
% IS_IN_PATCH - Determines if a point is inside a patch
%
% Syntax: is_in_patch(event_x, event_y, patches(patch_id), PATCH_WIDTH)
%
% Inputs:
% - pt_x: x position of the point
% - pt_y: y position of the point
% - patch: patch structure as defined in "features_main.m"
% - PATCH_WIDTH: Width of the patch
%
% Outputs:
% Boolean: true if the event is in the patch
%
% Example:
% if is_in_patch(event_x, event_y, patches(patch_id), PATCH_WIDTH)
% ...
%
% Author: Thomas Lew
% email: [email protected]
% Website: https://github.com/thomasjlew/
% September 2017; Last revision: 22-September-2017
%------------- BEGIN CODE --------------
function [ b_is_inside_patch ] = is_in_patch( pt_x, pt_y, patch, PATCH_WIDTH )
%IS_IN_PATCH - Returns true if the point is inside the patch
% Inputs:
% patch - structure containing all elements of a patch
% patch.feat_pos - x&y coord of features point wrt. img
% patch.model_pts - coord of model points wrt. image
% pt_x & pt_y - point coordinates wrt. image
if pt_x >= (patch.feat_pos(1) - PATCH_WIDTH/2) && ...
pt_x <= (patch.feat_pos(1) + PATCH_WIDTH/2) && ...
pt_y >= (patch.feat_pos(2) - PATCH_WIDTH/2) && ...
pt_y <= (patch.feat_pos(2) + PATCH_WIDTH/2)
b_is_inside_patch = true;
return
else
b_is_inside_patch = false;
return
end
end
%------------- END OF CODE --------------
|
github
|
thomasjlew/davis_tracker-master
|
icp.m
|
.m
|
davis_tracker-master/src/icp.m
| 18,480 |
utf_8
|
fdad7e189d4f40abc7d4f4d67948f984
|
function [TR, TT, ER, t] = icp(q,p,varargin)
% TLEW Note 09/29/17: Code Taken from https://ch.mathworks.com/
% matlabcentral/fileexchange/27804-iterative-closest-point
% Perform the Iterative Closest Point algorithm on three dimensional point
% clouds.
%
% [TR, TT] = icp(q,p) returns the rotation matrix TR and translation
% vector TT that minimizes the distances from (TR * p + TT) to q.
% p is a 3xm matrix and q is a 3xn matrix.
%
% [TR, TT] = icp(q,p,k) forces the algorithm to make k iterations
% exactly. The default is 10 iterations.
%
% [TR, TT, ER] = icp(q,p,k) also returns the RMS of errors for k
% iterations in a (k+1)x1 vector. ER(0) is the initial error.
%
% [TR, TT, ER, t] = icp(q,p,k) also returns the calculation times per
% iteration in a (k+1)x1 vector. t(0) is the time consumed for preprocessing.
%
% Additional settings may be provided in a parameter list:
%
% Boundary
% {[]} | 1x? vector
% If EdgeRejection is set, a vector can be provided that indexes into
% q and specifies which points of q are on the boundary.
%
% EdgeRejection
% {false} | true
% If EdgeRejection is true, point matches to edge vertices of q are
% ignored. Requires that boundary points of q are specified using
% Boundary or that a triangulation matrix for q is provided.
%
% Extrapolation
% {false} | true
% If Extrapolation is true, the iteration direction will be evaluated
% and extrapolated if possible using the method outlined by
% Besl and McKay 1992.
%
% Matching
% {bruteForce} | Delaunay | kDtree
% Specifies how point matching should be done.
% bruteForce is usually the slowest and kDtree is the fastest.
% Note that the kDtree option is depends on the Statistics Toolbox
% v. 7.3 or higher.
%
% Minimize
% {point} | plane | lmaPoint
% Defines whether point to point or point to plane minimization
% should be performed. point is based on the SVD approach and is
% usually the fastest. plane will often yield higher accuracy. It
% uses linearized angles and requires surface normals for all points
% in q. Calculation of surface normals requires substantial pre
% proccessing.
% The option lmaPoint does point to point minimization using the non
% linear least squares Levenberg Marquardt algorithm. Results are
% generally the same as in points, but computation time may differ.
%
% Normals
% {[]} | n x 3 matrix
% A matrix of normals for the n points in q might be provided.
% Normals of q are used for point to plane minimization.
% Else normals will be found through a PCA of the 4 nearest
% neighbors.
%
% ReturnAll
% {false} | true
% Determines whether R and T should be returned for all iterations
% or only for the last one. If this option is set to true, R will be
% a 3x3x(k+1) matrix and T will be a 3x1x(k+1) matrix.
%
% Triangulation
% {[]} | ? x 3 matrix
% A triangulation matrix for the points in q can be provided,
% enabling EdgeRejection. The elements should index into q, defining
% point triples that act together as triangles.
%
% Verbose
% {false} | true
% Enables extrapolation output in the Command Window.
%
% Weight
% {@(match)ones(1,m)} | Function handle
% For point or plane minimization, a function handle to a weighting
% function can be provided. The weighting function will be called
% with one argument, a 1xm vector that specifies point pairs by
% indexing into q. The weighting function should return a 1xm vector
% of weights for every point pair.
%
% WorstRejection
% {0} | scalar in ]0; 1[
% Reject a given percentage of the worst point pairs, based on their
% Euclidean distance.
%
% Martin Kjer and Jakob Wilm, Technical University of Denmark, 2012
% Use the inputParser class to validate input arguments.
inp = inputParser;
inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3);
inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3);
inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5);
inp.addParamValue('Boundary', [], @(x)size(x,1) == 1);
inp.addParamValue('EdgeRejection', false, @(x)islogical(x));
inp.addParamValue('Extrapolation', false, @(x)islogical(x));
validMatching = {'bruteForce','Delaunay','kDtree'};
inp.addParamValue('Matching', 'bruteForce', @(x)any(strcmpi(x,validMatching)));
validMinimize = {'point','plane','lmapoint'};
inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize)));
inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3);
inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3);
inp.addParamValue('ReturnAll', false, @(x)islogical(x));
inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3);
inp.addParamValue('Verbose', false, @(x)islogical(x));
inp.addParamValue('Weight', @(x)ones(1,length(x)), @(x)isa(x,'function_handle'));
inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1);
inp.parse(q,p,varargin{:});
arg = inp.Results;
clear('inp');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Actual implementation
% Allocate vector for RMS of errors in every iteration.
t = zeros(arg.iter+1,1);
% Start timer
tic;
Np = size(p,2);
% Transformed data point cloud
pt = p;
% Allocate vector for RMS of errors in every iteration.
ER = zeros(arg.iter+1,1);
% Initialize temporary transform vector and matrix.
T = zeros(3,1);
R = eye(3,3);
% Initialize total transform vector(s) and rotation matric(es).
TT = zeros(3,1, arg.iter+1);
TR = repmat(eye(3,3), [1,1, arg.iter+1]);
% If Minimize == 'plane', normals are needed
if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals))
arg.Normals = lsqnormest(q,4);
end
% If Matching == 'Delaunay', a triangulation is needed
if strcmp(arg.Matching, 'Delaunay')
DT = DelaunayTri(transpose(q));
end
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
if strcmp(arg.Matching, 'kDtree')
kdOBJ = KDTreeSearcher(transpose(q));
end
% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection
if isempty(arg.Boundary)
bdr = find_bound(q, arg.Triangulation);
else
bdr = arg.Boundary;
end
end
if arg.Extrapolation
% Initialize total transform vector (quaternion ; translation vec.)
qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];
% Allocate vector for direction change and change angle.
dq = zeros(7,arg.iter+1);
theta = zeros(1,arg.iter+1);
end
t(1) = toc;
% Go into main iteration loop
for k=1:arg.iter
% Do matching
switch arg.Matching
case 'bruteForce'
[match mindist] = match_bruteForce(q,pt);
case 'Delaunay'
[match mindist] = match_Delaunay(q,pt,DT);
case 'kDtree'
[match mindist] = match_kDtree(q,pt,kdOBJ);
end
% If matches to edge vertices should be rejected
if arg.EdgeRejection
p_idx = not(ismember(match, bdr));
q_idx = match(p_idx);
mindist = mindist(p_idx);
else
p_idx = true(1, Np);
q_idx = match;
end
% If worst matches should be rejected
if arg.WorstRejection
edge = round((1-arg.WorstRejection)*sum(p_idx));
pairs = find(p_idx);
[~, idx] = sort(mindist);
p_idx(pairs(idx(edge:end))) = false;
q_idx = match(p_idx);
mindist = mindist(p_idx);
end
if k == 1
ER(k) = sqrt(sum(mindist.^2)/length(mindist));
end
switch arg.Minimize
case 'point'
% Determine weight vector
weights = arg.Weight(match);
[R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx));
case 'plane'
weights = arg.Weight(match);
[R,T] = eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx));
case 'lmaPoint'
[R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx));
end
% Add to the total transformation
TR(:,:,k+1) = R*TR(:,:,k);
TT(:,:,k+1) = R*TT(:,:,k)+T;
% Apply last transformation
pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
% Root mean of objective function
ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx));
% If Extrapolation, we might be able to move quicker
if arg.Extrapolation
qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)];
dq(:,k+1) = qq(:,k+1) - qq(:,k);
theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1))));
if arg.Verbose
disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]);
end
if k>2 && theta(k+1) < 10 && theta(k) < 10
d = [ER(k+1), ER(k), ER(k-1)];
v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))];
vmax = 25 * norm(dq(:,k+1));
dv = extrapolate(v,d,vmax);
if dv ~= 0
q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1));
q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4));
qq(:,k+1) = q_mark;
TR(:,:,k+1) = quat2rmat(qq(1:4,k+1));
TT(:,:,k+1) = qq(5:7,k+1);
% Reapply total transformation
pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
% Recalculate root mean of objective function
% Note this is costly and only for fun!
switch arg.Matching
case 'bruteForce'
[~, mindist] = match_bruteForce(q,pt);
case 'Delaunay'
[~, mindist] = match_Delaunay(q,pt,DT);
case 'kDtree'
[~, mindist] = match_kDtree(q,pt,kdOBJ);
end
ER(k+1) = sqrt(sum(mindist.^2)/length(mindist));
end
end
end
t(k+1) = toc;
end
if not(arg.ReturnAll)
TR = TR(:,:,end);
TT = TT(:,:,end);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_bruteForce(q, p)
m = size(p,2);
n = size(q,2);
match = zeros(1,m);
mindist = zeros(1,m);
for ki=1:m
d=zeros(1,n);
for ti=1:3
d=d+(q(ti,:)-p(ti,ki)).^2;
end
[mindist(ki),match(ki)]=min(d);
end
mindist = sqrt(mindist);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_Delaunay(q, p, DT)
match = transpose(nearestNeighbor(DT, transpose(p)));
mindist = sqrt(sum((p-q(:,match)).^2,1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_kDtree(~, p, kdOBJ)
[match mindist] = knnsearch(kdOBJ,transpose(p));
match = transpose(match);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_point(q,p,weights)
m = size(p,2);
n = size(q,2);
% normalize weights
weights = weights ./ sum(weights);
% find data centroid and deviations from centroid
q_bar = q * transpose(weights);
q_mark = q - repmat(q_bar, 1, n);
% Apply weights
q_mark = q_mark .* repmat(weights, 3, 1);
% find data centroid and deviations from centroid
p_bar = p * transpose(weights);
p_mark = p - repmat(p_bar, 1, m);
% Apply weights
%p_mark = p_mark .* repmat(weights, 3, 1);
N = p_mark*transpose(q_mark); % taking points of q in matched order
[U,~,V] = svd(N); % singular value decomposition
R = V*diag([1 1 det(U*V')])*transpose(U);
T = q_bar - R*p_bar;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_plane(q,p,n,weights)
n = n .* repmat(weights,3,1);
c = cross(p,n);
cn = vertcat(c,n);
C = cn*transpose(cn);
b = - [sum(sum((p-q).*repmat(cn(1,:),3,1).*n));
sum(sum((p-q).*repmat(cn(2,:),3,1).*n));
sum(sum((p-q).*repmat(cn(3,:),3,1).*n));
sum(sum((p-q).*repmat(cn(4,:),3,1).*n));
sum(sum((p-q).*repmat(cn(5,:),3,1).*n));
sum(sum((p-q).*repmat(cn(6,:),3,1).*n))];
X = C\b;
cx = cos(X(1)); cy = cos(X(2)); cz = cos(X(3));
sx = sin(X(1)); sy = sin(X(2)); sz = sin(X(3));
R = [cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz;
cy*sz cx*cz+sx*sy*sz cx*sy*sz-cz*sx;
-sy cy*sx cx*cy];
T = X(4:6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_lmaPoint(q,p)
Rx = @(a)[1 0 0;
0 cos(a) -sin(a);
0 sin(a) cos(a)];
Ry = @(b)[cos(b) 0 sin(b);
0 1 0;
-sin(b) 0 cos(b)];
Rz = @(g)[cos(g) -sin(g) 0;
sin(g) cos(g) 0;
0 0 1];
Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3));
myfun = @(x,xdata)Rot(x(1:3))*xdata+repmat(x(4:6),1,length(xdata));
options = optimset('Algorithm', 'levenberg-marquardt');
x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options);
R = Rot(x(1:3));
T = x(4:6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extrapolation in quaternion space. Details are found in:
%
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, 239?256.
function [dv] = extrapolate(v,d,vmax)
p1 = polyfit(v,d,1); % linear fit
p2 = polyfit(v,d,2); % parabolic fit
v1 = -p1(2)/p1(1); % linear zero crossing
v2 = -p2(2)/(2*p2(1)); % polynomial top point
if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1])
disp('Parabolic update!');
dv = v2;
elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])...
|| (v2 < 0 && issorted([0 v1 vmax]))
disp('Line based update!');
dv = v1;
elseif v1 > vmax && v2 > vmax
disp('Maximum update!');
dv = vmax;
else
disp('No extrapolation!');
dv = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine the RMS error between two point equally sized point clouds with
% point correspondance.
% ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices.
function ER = rms_error(p1,p2)
dsq = sum(power(p1 - p2, 2),1);
ER = sqrt(mean(dsq));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Converts (orthogonal) rotation matrices R to (unit) quaternion
% representations
%
% Input: A 3x3xn matrix of rotation matrices
% Output: A 4xn matrix of n corresponding quaternions
%
% http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
function quaternion = rmat2quat(R)
Qxx = R(1,1,:);
Qxy = R(1,2,:);
Qxz = R(1,3,:);
Qyx = R(2,1,:);
Qyy = R(2,2,:);
Qyz = R(2,3,:);
Qzx = R(3,1,:);
Qzy = R(3,2,:);
Qzz = R(3,3,:);
w = 0.5 * sqrt(1+Qxx+Qyy+Qzz);
x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz);
y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz);
z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz);
quaternion = reshape([w;x;y;z],4,[]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Converts (unit) quaternion representations to (orthogonal) rotation matrices R
%
% Input: A 4xn matrix of n quaternions
% Output: A 3x3xn matrix of corresponding rotation matrices
%
% http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix
function R = quat2rmat(quaternion)
q0(1,1,:) = quaternion(1,:);
qx(1,1,:) = quaternion(2,:);
qy(1,1,:) = quaternion(3,:);
qz(1,1,:) = quaternion(4,:);
R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy;
2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx;
2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Least squares normal estimation from point clouds using PCA
%
% H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
% Surface reconstruction from unorganized points.
% In Proceedings of ACM Siggraph, pages 71:78, 1992.
%
% p should be a matrix containing the horizontally concatenated column
% vectors with points. k is a scalar indicating how many neighbors the
% normal estimation is based upon.
%
% Note that for large point sets, the function performs significantly
% faster if Statistics Toolbox >= v. 7.3 is installed.
%
% Jakob Wilm 2010
function n = lsqnormest(p, k)
m = size(p,2);
n = zeros(3,m);
v = ver('stats');
if str2double(v.Version) >= 7.5
neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1));
else
neighbors = k_nearest_neighbors(p, p, k+1);
end
for i = 1:m
x = p(:,neighbors(2:end, i));
p_bar = 1/k * sum(x,2);
P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P
%P = 2*cov(x);
[V,D] = eig(P);
[~, idx] = min(diag(D)); % choses the smallest eigenvalue
n(:,i) = V(:,idx); % returns the corresponding eigenvector
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Program to find the k - nearest neighbors (kNN) within a set of points.
% Distance metric used: Euclidean distance
%
% Note that this function makes repetitive use of min(), which seems to be
% more efficient than sort() for k < 30.
function [neighborIds neighborDistances] = k_nearest_neighbors(dataMatrix, queryMatrix, k)
numDataPoints = size(dataMatrix,2);
numQueryPoints = size(queryMatrix,2);
neighborIds = zeros(k,numQueryPoints);
neighborDistances = zeros(k,numQueryPoints);
D = size(dataMatrix, 1); %dimensionality of points
for i=1:numQueryPoints
d=zeros(1,numDataPoints);
for t=1:D % this is to avoid slow repmat()
d=d+(dataMatrix(t,:)-queryMatrix(t,i)).^2;
end
for j=1:k
[s,t] = min(d);
neighborIds(j,i)=t;
neighborDistances(j,i)=sqrt(s);
d(t) = NaN; % remove found number from d
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Boundary point determination. Given a set of 3D points and a
% corresponding triangle representation, returns those point indices that
% define the border/edge of the surface.
function bound = find_bound(pts, poly)
%Correcting polygon indices and converting datatype
poly = double(poly);
pts = double(pts);
%Calculating freeboundary points:
TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)');
FF = freeBoundary(TR);
%Output
bound = FF(:,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
github
|
thomasjlew/davis_tracker-master
|
show_frames.m
|
.m
|
davis_tracker-master/src/show_frames.m
| 2,916 |
utf_8
|
8747c8f29ebef9ce6102ca26116d4ad0
|
% SHOW_FRAMES - Show all frames quickly from "The Event-Camera Dataset" [1]
% Syntax: show_frames
%
% Inputs:
% Frames from "The Event-Camera Dataset" [2]
%
% Outputs:
% Images shown sequentially from the set [2]
%
% Example:
% show_frames
%
% Other m-files required: none
% Subfunctions: none
% MAT-files required: none
% Dataset required: Any set from "The Event-Camera Dataset" [1]
% References:
% [1] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, D. Scaramuzza
% The Event-Camera Dataset and Simulator: Event-based Data for Pose
% Estimation, Visual Odometry, and SLAM, International Journal of
% Robotics Research, Vol. 36, Issue 2, pages 142-149, Feb. 2017.
% Author: Thomas Lew
% email: [email protected]
% Website: https://github.com/thomasjlew/
% September 2017; Last revision: 26-September-2017
%------------- BEGIN CODE --------------
clc;
close all;
clear all;
DATASET_PATH = './shapes_6dof/';
% DATASET_PATH = './poster_6dof/';
B_EXTRACT_FRAMES_ONLY_ONCE = true;
NB_MAX_FRAMES = inf;
SIZE_FRAME_IMG = 0; % Initialized in the code
% NB_STRONGEST_FEAT = 30;
NB_STRONGEST_FEAT = 4;
PATCH_WIDTH = 24; % We use square patches of width 25 (around middle pixel)
NB_MAX_EVENTS_PER_FRAME = 10000; % put 100 is max I think
B_PLOT_EVENTS = false;
B_PLOT_SUBPLOT3 = true;
PATCH_PLOT_ID = 3;
global sb2_fh;
global sb3_fh; % necessary to erase it within a function
global sb3_axis;
% From paper: In practice,
% it is more efficient to compute the registration transformation
% every M events, e.g., of half the size of the model point set.
NEW_EVENTS_TO_REGISTR_FACTOR = 2;
% Open .txt files
frames_fileID = fopen(strcat(DATASET_PATH,'images.txt'),'r');
events_fileID = fopen(strcat(DATASET_PATH,'events.txt'),'r');
for frame_nb = 1:NB_MAX_FRAMES
fprintf('---------------\n');
fprintf(strcat('New frame nb: ',int2str(frame_nb),'\n'));
fprintf('---------------\n');
% --------------------------------------
% Find, Read and Display the frame image
% --------------------------------------
% Find image from header
tmp_frame_header=textscan(frames_fileID,'%f %s',1,'Delimiter','\n'); % OPTIMIZATION: REPLACE WITH GETL & SSCANF
frame_cur_t = tmp_frame_header{1,1};
frame_cur_img_file = strcat(DATASET_PATH,cell2mat(tmp_frame_header{1,2}));
% Read & display image
frame_cur_img = imread(frame_cur_img_file);
SIZE_FRAME_IMG = size(frame_cur_img);
% hFig = figure(1);
% set(hFig, 'Position', [100 1000 1000 1000])
imshow(frame_cur_img);
% subplot1_setup(strcat('Raw Image n°', int2str(frame_nb),' with features'), ...
% frame_cur_img);
end
%% Plotting function
function subplot1_setup(my_title, image)
hFig = figure(1);
set(hFig, 'Position', [100 0 1000 1000])
subplot(2,2,1);
imshow(image);
title(my_title);
hold on;
end
|
github
|
yilei0620/RGBD-Slam-Semantic-Seg-DeepLab-master
|
classification_demo.m
|
.m
|
RGBD-Slam-Semantic-Seg-DeepLab-master/deeplab/matlab/demo/classification_demo.m
| 5,412 |
utf_8
|
8f46deabe6cde287c4759f3bc8b7f819
|
function [scores, maxlabel] = classification_demo(im, use_gpu)
% [scores, maxlabel] = classification_demo(im, use_gpu)
%
% Image classification demo using BVLC CaffeNet.
%
% IMPORTANT: before you run this demo, you should download BVLC CaffeNet
% from Model Zoo (http://caffe.berkeleyvision.org/model_zoo.html)
%
% ****************************************************************************
% For detailed documentation and usage on Caffe's Matlab interface, please
% refer to Caffe Interface Tutorial at
% http://caffe.berkeleyvision.org/tutorial/interfaces.html#matlab
% ****************************************************************************
%
% input
% im color image as uint8 HxWx3
% use_gpu 1 to use the GPU, 0 to use the CPU
%
% output
% scores 1000-dimensional ILSVRC score vector
% maxlabel the label of the highest score
%
% You may need to do the following before you start matlab:
% $ export LD_LIBRARY_PATH=/opt/intel/mkl/lib/intel64:/usr/local/cuda-5.5/lib64
% $ export LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libstdc++.so.6
% Or the equivalent based on where things are installed on your system
%
% Usage:
% im = imread('../../examples/images/cat.jpg');
% scores = classification_demo(im, 1);
% [score, class] = max(scores);
% Five things to be aware of:
% caffe uses row-major order
% matlab uses column-major order
% caffe uses BGR color channel order
% matlab uses RGB color channel order
% images need to have the data mean subtracted
% Data coming in from matlab needs to be in the order
% [width, height, channels, images]
% where width is the fastest dimension.
% Here is the rough matlab for putting image data into the correct
% format in W x H x C with BGR channels:
% % permute channels from RGB to BGR
% im_data = im(:, :, [3, 2, 1]);
% % flip width and height to make width the fastest dimension
% im_data = permute(im_data, [2, 1, 3]);
% % convert from uint8 to single
% im_data = single(im_data);
% % reshape to a fixed size (e.g., 227x227).
% im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear');
% % subtract mean_data (already in W x H x C with BGR channels)
% im_data = im_data - mean_data;
% If you have multiple images, cat them with cat(4, ...)
% Add caffe/matlab to you Matlab search PATH to use matcaffe
if exist('../+caffe', 'dir')
addpath('..');
else
error('Please run this demo from caffe/matlab/demo');
end
% Set caffe mode
if exist('use_gpu', 'var') && use_gpu
caffe.set_mode_gpu();
gpu_id = 0; % we will use the first gpu in this demo
caffe.set_device(gpu_id);
else
caffe.set_mode_cpu();
end
% Initialize the network using BVLC CaffeNet for image classification
% Weights (parameter) file needs to be downloaded from Model Zoo.
model_dir = '../../models/bvlc_reference_caffenet/';
net_model = [model_dir 'deploy.prototxt'];
net_weights = [model_dir 'bvlc_reference_caffenet.caffemodel'];
phase = 'test'; % run with phase test (so that dropout isn't applied)
if ~exist(net_weights, 'file')
error('Please download CaffeNet from Model Zoo before you run this demo');
end
% Initialize a network
net = caffe.Net(net_model, net_weights, phase);
if nargin < 1
% For demo purposes we will use the cat image
fprintf('using caffe/examples/images/cat.jpg as input image\n');
im = imread('../../examples/images/cat.jpg');
end
% prepare oversampled input
% input_data is Height x Width x Channel x Num
tic;
input_data = {prepare_image(im)};
toc;
% do forward pass to get scores
% scores are now Channels x Num, where Channels == 1000
tic;
% The net forward function. It takes in a cell array of N-D arrays
% (where N == 4 here) containing data of input blob(s) and outputs a cell
% array containing data from output blob(s)
scores = net.forward(input_data);
toc;
scores = scores{1};
scores = mean(scores, 2); % take average scores over 10 crops
[~, maxlabel] = max(scores);
% call caffe.reset_all() to reset caffe
caffe.reset_all();
% ------------------------------------------------------------------------
function crops_data = prepare_image(im)
% ------------------------------------------------------------------------
% caffe/matlab/+caffe/imagenet/ilsvrc_2012_mean.mat contains mean_data that
% is already in W x H x C with BGR channels
d = load('../+caffe/imagenet/ilsvrc_2012_mean.mat');
mean_data = d.mean_data;
IMAGE_DIM = 256;
CROPPED_DIM = 227;
% Convert an image returned by Matlab's imread to im_data in caffe's data
% format: W x H x C with BGR channels
im_data = im(:, :, [3, 2, 1]); % permute channels from RGB to BGR
im_data = permute(im_data, [2, 1, 3]); % flip width and height
im_data = single(im_data); % convert from uint8 to single
im_data = imresize(im_data, [IMAGE_DIM IMAGE_DIM], 'bilinear'); % resize im_data
im_data = im_data - mean_data; % subtract mean_data (already in W x H x C, BGR)
% oversample (4 corners, center, and their x-axis flips)
crops_data = zeros(CROPPED_DIM, CROPPED_DIM, 3, 10, 'single');
indices = [0 IMAGE_DIM-CROPPED_DIM] + 1;
n = 1;
for i = indices
for j = indices
crops_data(:, :, :, n) = im_data(i:i+CROPPED_DIM-1, j:j+CROPPED_DIM-1, :);
crops_data(:, :, :, n+5) = crops_data(end:-1:1, :, :, n);
n = n + 1;
end
end
center = floor(indices(2) / 2) + 1;
crops_data(:,:,:,5) = ...
im_data(center:center+CROPPED_DIM-1,center:center+CROPPED_DIM-1,:);
crops_data(:,:,:,10) = crops_data(end:-1:1, :, :, 5);
|
github
|
yilei0620/RGBD-Slam-Semantic-Seg-DeepLab-master
|
MyVOCevalseg.m
|
.m
|
RGBD-Slam-Semantic-Seg-DeepLab-master/deeplab/matlab/my_script/MyVOCevalseg.m
| 4,625 |
utf_8
|
128c24319d520c2576168d1cf17e068f
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts] = MyVOCevalseg(VOCopts,id)
% image test set
[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
num_missing_img = 0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
num_missing_img = num_missing_img + 1;
%fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
%pixel locations to include in computation
locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
if (num_missing_img > 0)
fprintf(1, 'WARNING: There are %d missing results!\n', num_missing_img);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
if ~strcmp(clname, 'void')
class_count = class_count + 1;
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
real_class_count = 0;
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
denom = (gtj+resj-gtjresj);
if denom == 0
denom = 1;
end
accuracies(j)=100*gtjresj/denom;
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
if ~strcmp(clname, 'void')
real_class_count = real_class_count + 1;
else
if denom ~= 1
fprintf(1, 'WARNING: this void class has denom = %d\n', denom);
end
end
if ~strcmp(clname, 'void')
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
end
%accuracies = accuracies(1:end);
%avacc = mean(accuracies);
avacc = sum(accuracies) / real_class_count;
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
yilei0620/RGBD-Slam-Semantic-Seg-DeepLab-master
|
MyVOCevalsegBoundary.m
|
.m
|
RGBD-Slam-Semantic-Seg-DeepLab-master/deeplab/matlab/my_script/MyVOCevalsegBoundary.m
| 4,415 |
utf_8
|
1b648714e61bafba7c08a8ce5824b105
|
%VOCEVALSEG Evaluates a set of segmentation results.
% VOCEVALSEG(VOCopts,ID); prints out the per class and overall
% segmentation accuracies. Accuracies are given using the intersection/union
% metric:
% true positives / (true positives + false positives + false negatives)
%
% [ACCURACIES,AVACC,CONF] = VOCEVALSEG(VOCopts,ID) returns the per class
% percentage ACCURACIES, the average accuracy AVACC and the confusion
% matrix CONF.
%
% [ACCURACIES,AVACC,CONF,RAWCOUNTS] = VOCEVALSEG(VOCopts,ID) also returns
% the unnormalised confusion matrix, which contains raw pixel counts.
function [accuracies,avacc,conf,rawcounts, overall_acc, avg_class_acc] = MyVOCevalsegBoundary(VOCopts, id, w)
% get structural element
st_w = 2*w + 1;
se = strel('square', st_w);
% image test set
fn = sprintf(VOCopts.seg.imgsetpath,VOCopts.testset);
fid = fopen(fn, 'r');
gtids = textscan(fid, '%s');
gtids = gtids{1};
fclose(fid);
%[gtids,t]=textread(sprintf(VOCopts.seg.imgsetpath,VOCopts.testset),'%s %d');
% number of labels = number of classes plus one for the background
num = VOCopts.nclasses+1;
confcounts = zeros(num);
count=0;
tic;
for i=1:length(gtids)
% display progress
if toc>1
fprintf('test confusion: %d/%d\n',i,length(gtids));
drawnow;
tic;
end
imname = gtids{i};
% ground truth label file
gtfile = sprintf(VOCopts.seg.clsimgpath,imname);
[gtim,map] = imread(gtfile);
gtim = double(gtim);
% results file
resfile = sprintf(VOCopts.seg.clsrespath,id,VOCopts.testset,imname);
try
[resim,map] = imread(resfile);
catch err
fprintf(1, 'Fail to read %s\n', resfile);
continue;
end
resim = double(resim);
% Check validity of results image
maxlabel = max(resim(:));
if (maxlabel>VOCopts.nclasses),
error('Results image ''%s'' has out of range value %d (the value should be <= %d)',imname,maxlabel,VOCopts.nclasses);
end
szgtim = size(gtim); szresim = size(resim);
if any(szgtim~=szresim)
error('Results image ''%s'' is the wrong size, was %d x %d, should be %d x %d.',imname,szresim(1),szresim(2),szgtim(1),szgtim(2));
end
% dilate gt
binary_gt = gtim == 255;
dilate_gt = imdilate(binary_gt, se);
target_gt = dilate_gt & (gtim~=255);
%pixel locations to include in computation
locs = target_gt;
%locs = gtim<255;
% joint histogram
sumim = 1+gtim+resim*num;
hs = histc(sumim(locs),1:num*num);
count = count + numel(find(locs));
confcounts(:) = confcounts(:) + hs(:);
end
% confusion matrix - first index is true label, second is inferred label
%conf = zeros(num);
conf = 100*confcounts./repmat(1E-20+sum(confcounts,2),[1 size(confcounts,2)]);
rawcounts = confcounts;
% Pixel Accuracy
overall_acc = 100*sum(diag(confcounts)) / sum(confcounts(:));
fprintf('Percentage of pixels correctly labelled overall: %6.3f%%\n',overall_acc);
% Class Accuracy
class_acc = zeros(1, num);
class_count = 0;
fprintf('Accuracy for each class (pixel accuracy)\n');
for i = 1 : num
denom = sum(confcounts(i, :));
if (denom == 0)
denom = 1;
else
class_count = class_count + 1;
end
class_acc(i) = 100 * confcounts(i, i) / denom;
if i == 1
clname = 'background';
else
clname = VOCopts.classes{i-1};
end
fprintf(' %14s: %6.3f%%\n', clname, class_acc(i));
end
fprintf('-------------------------\n');
avg_class_acc = sum(class_acc) / class_count;
fprintf('Mean Class Accuracy: %6.3f%%\n', avg_class_acc);
% Pixel IOU
accuracies = zeros(VOCopts.nclasses,1);
fprintf('Accuracy for each class (intersection/union measure)\n');
for j=1:num
gtj=sum(confcounts(j,:));
resj=sum(confcounts(:,j));
gtjresj=confcounts(j,j);
% The accuracy is: true positive / (true positive + false positive + false negative)
% which is equivalent to the following percentage:
accuracies(j)=100*gtjresj/(gtj+resj-gtjresj);
clname = 'background';
if (j>1), clname = VOCopts.classes{j-1};end;
fprintf(' %14s: %6.3f%%\n',clname,accuracies(j));
end
accuracies = accuracies(1:end);
avacc = mean(accuracies);
fprintf('-------------------------\n');
fprintf('Average accuracy: %6.3f%%\n',avacc);
|
github
|
yhyoscar/sklearn-study-master
|
karmarkar.m
|
.m
|
sklearn-study-master/20180407_LinearProgramming/karmarkar.m
| 474 |
utf_8
|
508c1aae69a7d8a67e07d0308acb3575
|
%% karmarkar's algorithm
function x = karmarkar(A,b,c,x)
N = size(c,1);
x0 = x;
y0 = ones(N,1);
epi = 1e-3;
alpha = 0.8;
x_c = 2*ones(N,1);
x_n = x0;
r = zeros(N,1);
Dx = diag(x_c);
flag = 0;
i = 1;
while flag == 0
x_c = x_n;
Dx = diag(x_c);
r = c - A'*inv((A*Dx*Dx*A'))*A*Dx*Dx*c;
p = -Dx*Dx*r;
x_n = x_c + alpha*p/norm(Dx*r) ;
if (r > 0)&(ones(1,N)*Dx*r <epi)
flag =1;
end
i = i+1;
x(:,i) = x_n;
end
end
|
github
|
alex-parisi/Phased-Vocoder-master
|
changePitchLength.m
|
.m
|
Phased-Vocoder-master/changePitchLength.m
| 2,028 |
utf_8
|
69a7ffac541318a8da2dca0c8b1e2031
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%
%%%% INPUT: %%%%
%%%% sig - audioread(filename) %%%%
%%%% Fs - Sample rate %%%%
%%%% file - operations file %%%%
%%%% %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%
%%%% OUTPUT: %%%%
%%%% sig - new audio signal %%%%
%%%% that has been %%%%
%%%% stretched and shifted %%%%
%%%% %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [sig,fs] = changePitchLength(sig_file, op_file)
[sig,fs]=audioread(sig_file);
% Read operations file %
blocks = xlsread(op_file);
numBlocks = size(blocks, 1);
% Sort in descending order by StartTime %
sortedBlocks = sortrows(blocks, -1);
% Process each block %
for (i = 1:numBlocks)
% Split signal %
startN = ceil(sortedBlocks(i, 1) * fs);
endN = floor(sortedBlocks(i, 2) * fs);
bef = [];
aft = [];
if (startN > 1)
bef = sig(1:startN - 1);
end
if (endN < length(sig))
aft = sig((endN - 1):end);
end
dur = sortedBlocks(i, 3);
pitch = sortedBlocks(i, 4);
segment = sig(startN:endN);
% Process this block %
segment = PhaseVocoder(segment, fs, dur, pitch);
segment = audioread('finaloutput.wav');
% Reassemble signal %
sig = [bef ; segment ; aft];
end
% Clean up %
delete 'output.wav' 'temp.wav' 'finaloutput.wav'
end
|
github
|
alex-parisi/Phased-Vocoder-master
|
PhaseVocoder.m
|
.m
|
Phased-Vocoder-master/PhaseVocoder.m
| 7,160 |
utf_8
|
f0d64ec15bf41366a1148c2b9934ee37
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%
%%%% INPUT: %%%%
%%%% origSpeech - audioread(filename) %%%%
%%%% Fs - Sample rate %%%%
%%%% newDuration - new length of %%%%
%%%% speech %%%%
%%%% newPitch - new pitch of speech %%%%
%%%% %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% %%%%
%%%% OUTPUT: %%%%
%%%% procSpeech - new audio signal %%%%
%%%% that has been %%%%
%%%% stretched and shifted %%%%
%%%% %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function procSpeech = PhaseVocoder(origSpeechSig, Fs, newDuration, newPitch)
% Initialize %
WindowLen = 256;
% First process for pitch-shifting %
% Determine original pitch %
[maxValue, indexMax] = max(10 * log10(pwelch(origSpeechSig)));
origFreq = indexMax * Fs / length(origSpeechSig);
origPitch = 3233 * log10(1 + origFreq / 1000)
% Determine pitch-shifting ratio %
pitchRatio = newPitch / origPitch;
% Set analysis and synthesis hop size
SynthesisLen = 50;
AnalysisLen = ceil(SynthesisLen / pitchRatio);
Hopratio = pitchRatio;
% Write temporary .wav file %
audiowrite('temp.wav', origSpeechSig, Fs);
% Create system objects used in processing %
reader = dsp.AudioFileReader('temp.wav', 'SamplesPerFrame', AnalysisLen, 'OutputDataType', 'double');
buff = dsp.Buffer(WindowLen, WindowLen - AnalysisLen); %Buffer
win = dsp.Window('Hanning', 'Sampling', 'Periodic'); %Window
dft = dsp.FFT; %FFT
idft = dsp.IFFT('ConjugateSymmetricInput', true, 'Normalize', false); %IDFT
player = audioDeviceWriter('SampleRate', Fs, 'SupportVariableSizeInput', true, 'BufferSize', 512); %Player
logger = dsp.SignalSink; %Logger
% Initialize Processing %
yprevwin = zeros(WindowLen - SynthesisLen, 1);
gain = 1 / (WindowLen * sum(hanning(WindowLen, 'periodic') .^ 2) / SynthesisLen);
unwrapdata = 2 * pi * AnalysisLen * (0:WindowLen - 1)' / WindowLen;
yangle = zeros(WindowLen, 1);
firsttime = true;
% Begin processing for pitch-shifting %
while ~isDone(reader)
y = reader();
% Take windowed, buffered FFT of signal %
yfft = dft(win(buff(y)));
% Convert FFT data to magnitude and phase %
ymag = abs(yfft);
yprevangle = yangle;
yangle = angle(yfft);
% Synthesis-Phase Calculation %
yunwrap = (yangle - yprevangle) - unwrapdata;
yunwrap = yunwrap - round(yunwrap / (2 * pi)) * 2 * pi;
yunwrap = (yunwrap + unwrapdata) * Hopratio;
if (firsttime)
ysangle = yangle;
firsttime = false;
else
ysangle = ysangle + yunwrap;
end
% Convert magnitude and phase to complex numbers %
ys = ymag .* complex(cos(ysangle), sin(ysangle));
% Windowed IFFT %
ywin = win(idft(ys));
% Overlap-add operation %
olapadd = [ywin(1:end-SynthesisLen,:) + yprevwin ; ywin(end-SynthesisLen+1:end,:)];
yistfft = olapadd(1:SynthesisLen, :);
yprevwin = olapadd(SynthesisLen + 1:end, :);
% Normalize %
yistfft = yistfft * gain;
% Log signal %
logger(yistfft);
end
% Define pitch-shifted speech %
pitchShiftedSpeech = logger.Buffer(200:end)';
Fs = round(Fs * Hopratio);
audiowrite('output.wav', pitchShiftedSpeech.', Fs);
release(reader);
% Second process for time-scaling %
% Determine original duration %
origDuration = length(pitchShiftedSpeech) / Fs;
% Determine time-scaling ratio %
timeRatio = newDuration / origDuration;
% Set analysis and synthesis hop size
SynthesisLen = 50;
AnalysisLen = ceil(SynthesisLen / timeRatio);
Hopratio = timeRatio;
% Create system objects used in processing %
reader = dsp.AudioFileReader('output.wav', 'SamplesPerFrame', AnalysisLen, 'OutputDataType', 'double');
buff = dsp.Buffer(WindowLen, WindowLen - AnalysisLen); %Buffer
win = dsp.Window('Hanning', 'Sampling', 'Periodic'); %Window
dft = dsp.FFT; %FFT
idft = dsp.IFFT('ConjugateSymmetricInput', true, 'Normalize', false); %IDFT
player = audioDeviceWriter('SampleRate', Fs, 'SupportVariableSizeInput', true, 'BufferSize', 512); %Player
logger = dsp.SignalSink; %Logger
% Initialize Processing %
yprevwin = zeros(WindowLen - SynthesisLen, 1);
gain = 1 / (WindowLen * sum(hanning(WindowLen, 'periodic') .^ 2) / SynthesisLen);
unwrapdata = 2 * pi * AnalysisLen * (0:WindowLen - 1)' / WindowLen;
yangle = zeros(WindowLen, 1);
firsttime = true;
% Begin processing for time-scaling %
while ~isDone(reader)
y = reader();
% Take windowed, buffered FFT of signal %
yfft = dft(win(buff(y)));
% Convert FFT data to magnitude and phase %
ymag = abs(yfft);
yprevangle = yangle;
yangle = angle(yfft);
% Synthesis-Phase Calculation %
yunwrap = (yangle - yprevangle) - unwrapdata;
yunwrap = yunwrap - round(yunwrap / (2 * pi)) * 2 * pi;
yunwrap = (yunwrap + unwrapdata) * Hopratio;
if (firsttime)
ysangle = yangle;
firsttime = false;
else
ysangle = ysangle + yunwrap;
end
% Convert magnitude and phase to complex numbers %
ys = ymag .* complex(cos(ysangle), sin(ysangle));
% Windowed IFFT %
ywin = win(idft(ys));
% Overlap-add operation %
olapadd = [ywin(1:end-SynthesisLen,:) + yprevwin ; ywin(end-SynthesisLen+1:end,:)];
yistfft = olapadd(1:SynthesisLen, :);
yprevwin = olapadd(SynthesisLen + 1:end, :);
% Normalize %
yistfft = yistfft * gain;
% Log signal %
logger(yistfft);
end
% Define final processed signal %
release(reader);
procSpeech = logger.Buffer(200:end)';
procSpeech = resample(procSpeech, 8000, Fs);
audiowrite('finaloutput.wav', procSpeech, 8000);
end
|
github
|
brightnesss/RGB-D-Tracking-master
|
run_tracker.m
|
.m
|
RGB-D-Tracking-master/run_tracker.m
| 9,067 |
utf_8
|
ccd2b4a290e4a753d839215267a71a06
|
%
% High-Speed Tracking with Kernelized Correlation Filters
%
% Joao F. Henriques, 2014
% http://www.isr.uc.pt/~henriques/
%
% Main interface for Kernelized/Dual Correlation Filters (KCF/DCF).
% This function takes care of setting up parameters, loading video
% information and computing precisions. For the actual tracking code,
% check out the TRACKER function.
%
% RUN_TRACKER
% Without any parameters, will ask you to choose a video, track using
% the Gaussian KCF on HOG, and show the results in an interactive
% figure. Press 'Esc' to stop the tracker early. You can navigate the
% video using the scrollbar at the bottom.
%
% RUN_TRACKER VIDEO
% Allows you to select a VIDEO by its name. 'all' will run all videos
% and show average statistics. 'choose' will select one interactively.
%
% RUN_TRACKER VIDEO KERNEL
% Choose a KERNEL. 'gaussian'/'polynomial' to run KCF, 'linear' for DCF.
%
% RUN_TRACKER VIDEO KERNEL FEATURE
% Choose a FEATURE type, either 'hog' or 'gray' (raw pixels).
%
% RUN_TRACKER(VIDEO, KERNEL, FEATURE, SHOW_VISUALIZATION, SHOW_PLOTS)
% Decide whether to show the scrollable figure, and the precision plot.
%
% Useful combinations:
% >> run_tracker choose gaussian hog %Kernelized Correlation Filter (KCF)
% >> run_tracker choose linear hog %Dual Correlation Filter (DCF)
% >> run_tracker choose gaussian gray %Single-channel KCF (ECCV'12 paper)
% >> run_tracker choose linear gray %MOSSE filter (single channel)
%
%
% revised by: Yang Li, August, 2014
% http://ihpdep.github.io
function [precision, track_result ,fps, successes, success_auc] = run_tracker(video, kernel_type, feature_type, show_visualization, show_plots)
%path to the videos (you'll be able to choose one with the GUI).
base_path ='.\data\';
%default settings
if nargin < 1, video = 'choose'; end
if nargin < 2, kernel_type = 'gaussian'; end
if nargin < 3, feature_type = 'hogcolor'; end
if nargin < 4, show_visualization = ~strcmp(video, 'all'); end
if nargin < 5, show_plots = ~strcmp(video, 'all'); end
%parameters according to the paper. at this point we can override
%parameters based on the chosen kernel or feature type
kernel.type = kernel_type;
features.gray = false;
features.hog = false;
features.hogcolor = false;
padding = 1.5; %extra area surrounding the target
lambda = 1e-4; %regularization
output_sigma_factor = 0.1; %spatial bandwidth (proportional to target)
switch feature_type
case 'gray'
interp_factor = 0.075; %linear interpolation factor for adaptation
kernel.sigma = 0.2; %gaussian kernel bandwidth
kernel.poly_a = 1; %polynomial kernel additive term
kernel.poly_b = 7; %polynomial kernel exponent
features.gray = true;
cell_size = 1;
case 'hog'
interp_factor = 0.02;
kernel.sigma = 0.5;
kernel.poly_a = 1;
kernel.poly_b = 9;
features.hog = true;
features.hog_orientations = 9;
cell_size = 4;
case 'hogcolor'
interp_factor = 0.01;
kernel.sigma = 0.5;
kernel.poly_a = 1;
kernel.poly_b = 9;
features.hogcolor = true;
features.hog_orientations = 9;
cell_size = 4;
otherwise
error('Unknown feature.')
end
assert(any(strcmp(kernel_type, {'linear', 'polynomial', 'gaussian'})), 'Unknown kernel.')
switch video
case 'choose'
%ask the user for the video, then call self with that video name.
validation_set = [base_path,'ValidationSet'];
video = choose_video(validation_set);
if ~isempty(video)
[precision, track_result, fps, successes, success_auc ] = run_tracker(video, kernel_type, ...
feature_type, show_visualization, show_plots);
if nargout == 0 %don't output precision as an argument
clear precision
end
end
case 'all'
%all videos, call self with each video name.
%only keep valid directory names
% validation_set = [base_path, 'ValidationSet'];
evaluation_set = [base_path, 'EvaluationSet'];
% dirs = dir(validation_set);
% validation_videos = {dirs.name};
% validation_videos(strcmp('.', validation_videos) | strcmp('..', validation_videos) | ...
% strcmp('anno', validation_videos) | ~[dirs.isdir]) = [];
% validation_videos = strcat('ValidationSet\',validation_videos);
dirs = dir(evaluation_set);
evaluation_videos = {dirs.name};
evaluation_videos(strcmp('.', evaluation_videos) | strcmp('..', evaluation_videos) | ...
strcmp('anno', evaluation_videos) | ~[dirs.isdir]) = [];
evaluation_videos = strcat('EvaluationSet\', evaluation_videos);
% videos = [validation_videos,evaluation_videos];
videos = evaluation_videos;
% all_precisions = zeros(numel(videos),1); %to compute averages
all_fps = zeros(numel(videos),1);
for k = 1:numel(videos)
fprintf(['video %d: ', videos{k}, ' is going to run\n'], k);
[~, ~, all_fps(k)] = run_tracker(videos{k}, ...
kernel_type, feature_type, false, false);
end
% if ~exist('parpool', 'file')
% %no parallel toolbox, use a simple 'for' to iterate
% for k = 1:numel(videos)
% fprintf(['video %d: ', videos{k}, ' is going to run\n'], k);
% [all_precisions(k), all_fps(k)] = run_tracker(videos{k}, ...
% kernel_type, feature_type, show_visualization, show_plots);
% end
% else
% %evaluate trackers for all videos in parallel
%
% p = gcp('nocreate');
% if isempty(p)
% parpool('local');
% end
%
% parfor k = 1:numel(videos)
% fprintf(['video %d: ', videos{k}, ' is going to run\n'], k);
% [all_precisions(k), all_fps(k)] = run_tracker(videos{k}, ...
% kernel_type, feature_type, show_visualization, show_plots);
% end
% end
%compute average precision at 20px, and FPS
% mean_precision = mean(all_precisions);
fps = mean(all_fps);
precision = [];
track_result = [];
% fprintf('\nAverage precision (20px):% 1.3f, Average FPS:% 4.2f\n\n', mean_precision, fps)
% if nargout > 0
% precision = mean_precision;
% end
case 'benchmark'
%running in benchmark mode - this is meant to interface easily
%with the benchmark's code.
%get information (image file names, initial position, etc) from
%the benchmark's workspace variables
seq = evalin('base', 'subS');
target_sz = seq.init_rect(1,[4,3]);
pos = seq.init_rect(1,[2,1]) + floor(target_sz/2);
img_files = seq.s_frames;
video_path = [];
%call tracker function with all the relevant parameters
[positions,rect_results,t]= tracker(video_path, img_files, pos, target_sz, ...
padding, kernel, lambda, output_sigma_factor, interp_factor, ...
cell_size, features, 0);
%return results to benchmark, in a workspace variable
rects =rect_results;
% [positions(:,2) - target_sz(2)/2, positions(:,1) - target_sz(1)/2];
% rects(:,3) = target_sz(2);
% rects(:,4) = target_sz(1);
res.type = 'rect';
res.res = rects;
assignin('base', 'res', res);
otherwise
%we were given the name of a single video to process.
%get image file names, initial state, and ground truth for evaluation
[rgbdimgs, pos, target_sz, ground_truth_position, ground_truth, video_path] = load_video_info(base_path, video);
% %call tracker function with all the relevant parameters
[positions,track_result, time, occ_results] = tracker(video_path, rgbdimgs, pos, target_sz, ...
padding, kernel, lambda, output_sigma_factor, interp_factor, ...
cell_size, features, show_visualization);
%call tracker function with all the relevant parameters
% [positions,track_result, time, occ_results] = rgbtracker(video_path, rgbdimgs, pos, target_sz, ...
% padding, kernel, lambda, output_sigma_factor, interp_factor, ...
% cell_size, features, show_visualization);
% [positions,track_result, time] = samf_tracker(video_path, rgbdimgs, pos, target_sz, ...
% padding, kernel, lambda, output_sigma_factor, interp_factor, ...
% cell_size, features, show_visualization);
%calculate and show precision plot, as well as frames-per-second
fps = numel(rgbdimgs.rgb) / time;
if show_plots
precisions = precision_plot(positions, ground_truth_position, video, 0);
% fprintf('%12s - Precision (20px):% 1.3f, FPS:% 4.2f\n', video, precisions(20), fps)
[success,auc] = success_plot(track_result, ground_truth, video, 0);
if nargout > 0
%return precisions at a 20 pixels threshold
precision = precisions;
successes = success;
success_auc = auc;
end
else
precision = [];
successes = [];
success_auc = [];
end
% result_path = [base_path, 'Result\', video, '.txt'];
%
% write_result(result_path, track_result, occ_results);
end
end
|
github
|
HEVC-Projects/CPH-master
|
extractCUDepthGrndTruthCPHInter.m
|
.m
|
CPH-master/extractCUDepthGrndTruthCPHInter.m
| 13,369 |
utf_8
|
d84d00f57e79881007284e2b04fa0d55
|
function extractCUDepthGrndTruthCPHInter
% This program transfers raw video and label files to samples for
% training, validation and test, establishing a large-scale database
% for CU partition of inter-mode HEVC (CPH-Inter).
% The database contains 111 videos in total.
% For each video, there are 9 corresponding input files:
% 1 YUV file and 8 DAT files.
% The YUV file (in 420 format) stores original pixel-wise information of the video.
% The DAT files store labels and other necessary information, arranged by QPs (22, 27, 32 and 37).
% The files ending with "_CUDepth.dat" are binary data representing CU depth,
% and the files ending with "" are text messages listing out the
% information of all frames in the YUV file.
% Each line in "_Index.dat" file indicates
% some basic information of each frame, including POC, frame width,
% frame height and QP for the current frame. In the 1st frame (POC 0), YUV file name are
% also included. Corresponding to each line in "_Index.dat", are a
% certain number of bytes organized in the file "_CUDepth.dat". Considering
% that in HEVC frames, the CU depth (0, 1, 2 or 3) in a 16*16 unit is
% the same, so for a W*H frame, there are floor(H/16) rows and
% floor(W/16) columns, and the number of bytes needed is
% floor(W/16)*floor(H/16).
% Note that all bytes for a frame are stored in row-major order.
% Below is an example of "_CUDepth.dat" and "_Index.dat".
% In "Info_20170424_033631_LDP_BasketballDrive_1920x1080_50_qp32_nf500_Index.dat",
% the 1st line is:
% 0 1920 1080 32 BasketballDrive_1920x1080_50.yuv.
% It is the 1st frame (POC=0) in "IBasketballDrive_1920x1080_50.yuv", and QP = 32.
% There are 67 rows and 120 columns, corresponding to 67*120 = 8040 bytes
% in "Info_20170424_033631_LDP_BasketballDrive_1920x1080_50_qp32_nf500_CUDepth.dat",
% organized as follows.
% [CU depth in Row 1 Column 1]
% [CU depth in Row 1 Column 2]
% .
% .
% .
% [CU depth in Row 1 Column 120]
% [CU depth in Row 2 Column 1]
% [CU depth in Row 2 Column 2]
% .
% .
% .
% [CU depth in Row 2 Column 120]
% .
% .
% .
% .
% .
% .
% [CU depth in Row 67 Column 1]
% [CU depth in Row 67 Column 2]
% .
% .
% .
% [CU depth in Row 67 Column 120]
% After executing this program, for each video at each QP, 3 sample files ended with "_CUXXSamples.dat"
% will be generated, arranged by CU size and QP. In each
% file, all samples are continuously stored. Each sample takes up
% (1 + CUWidth * CUWidth) bytes, where the initial byte is the label
% representing whether the CU is split and the rest CUWidth * CUWidth
% bytes are the luminance information of the CU in row-major order. All
% the labels and luminance data are 8-bit unsigned type.
% Below is an example of "_CUXXSamples.dat".
% There are totally 240,000 samples for 64*64 CUs in the video "BasketballDrive_1920x1080_50.yuv".
% So the file "BasketballDrive_1920x1080_50_qp32_CU64Samples.dat"
% is orgarized as follows.
% [label of the 1st CU (1 byte)]
% [luminance infomation of the lst CU (64*64 bytes)]
% [label of the 2nd CU (1 byte)]
% [luminance infomation of the 2nd CU (64*64 bytes)]
% .
% .
% .
% [label of the 240,000-th CU (1 byte)]
% [luminance infomation of the 240,000-th CU (64*64 bytes)]
% Therefore, the file size is (1+64*64)*240,000 = 983,280,000 bytes.
filePathInput='G:\YUV_All\'; % where all input YUV files and DAT files exist
filePathExtract='F:\YUV_All_Extract\'; % where to store the extracted samples
% Uncomment some video name(s) in the variable "yuvNameList".
yuvNameList={...
'BasketballPass_416x240_50'
'BlowingBubbles_416x240_50'
'BQSquare_416x240_60'
'RaceHorses_416x240_30'
'BasketballDrill_832x480_50'
'BQMall_832x480_60'
'PartyScene_832x480_50'
'RaceHorses_832x480_30'
'FourPeople_1280x720_60'
'Johnny_1280x720_60'
'KristenAndSara_1280x720_60'
'BasketballDrive_1920x1080_50'
'BQTerrace_1920x1080_60'
'Cactus_1920x1080_50'
'Kimono_1920x1080_24'
'ParkScene_1920x1080_24'
'PeopleOnStreet_2560x1600_30_crop'
'Traffic_2560x1600_30_crop'
% 'garden_sif'
% 'stefan_sif'
% 'tennis_sif'
% 'tt_sif'
% 'akiyo_cif'
% 'bowing_cif'
% 'bridge_close_cif'
% 'bridge_far_cif'
% 'bus_cif'
% 'coastguard_cif'
% 'container_cif'
% 'deadline_cif'
% 'flower_cif'
% 'football_cif'
% 'foreman_cif'
% 'hall_monitor_cif'
% 'highway_cif'
% 'husky_cif'
% 'mad900_cif'
% 'mobile_cif'
% 'mother_daughter_cif'
% 'news_cif'
% 'pamphlet_cif'
% 'paris_cif'
% 'sign_irene_cif'
% 'silent_cif'
% 'students_cif'
% 'tempete_cif'
% 'waterfall_cif'
% 'flower_garden_720x480'
% 'football_720x480'
% 'galleon_720x480'
% 'intros_720x480'
% 'mobile_calendar_720x480'
% 'vtc1nw_720x480'
% 'washdc_720x480'
% 'city_4cif'
% 'crew_4cif'
% 'harbour_4cif'
% 'ice_4cif'
% 'soccer_4cif'
% 'mobcal_ter_720p50'
% 'parkrun_ter_720p50'
% 'shields_ter_720p50'
% 'stockholm_ter_720p5994'
% 'aspen_1080p'
% 'blue_sky_1080p25'
% 'controlled_burn_1080p'
% 'crowd_run_1080p50'
% 'dinner_1080p30'
% 'ducks_take_off_1080p50'
% 'factory_1080p30'
% 'in_to_tree_1080p50'
% 'life_1080p30'
% 'old_town_cross_1080p50'
% 'park_joy_1080p50'
% 'pedestrian_area_1080p25'
% 'red_kayak_1080p'
% 'riverbed_1080p25'
% 'rush_field_cuts_1080p'
% 'rush_hour_1080p25'
% 'sintel_trailer_2k_1080p24'
% 'snow_mnt_1080p'
% 'speed_bag_1080p'
% 'station2_1080p25'
% 'sunflower_1080p25'
% 'touchdown_pass_1080p'
% 'tractor_1080p25'
% 'west_wind_easy_1080p'
% 'Netflix_Aerial_2048x1080_60fps_420'
% 'Netflix_BarScene_2048x1080_60fps_420'
% 'Netflix_Boat_2048x1080_60fps_420'
% 'Netflix_BoxingPractice_2048x1080_60fps_420'
% 'Netflix_Crosswalk_2048x1080_60fps_420'
% 'Netflix_Dancers_2048x1080_60fps_420'
% 'Netflix_DinnerScene_2048x1080_60fps_420'
% 'Netflix_DrivingPOV_2048x1080_60fps_420'
% 'Netflix_FoodMarket_2048x1080_60fps_420'
% 'Netflix_Narrator_2048x1080_60fps_420'
% 'Netflix_PierSeaside_2048x1080_60fps_420'
% 'Netflix_RitualDance_2048x1080_60fps_420'
% 'Netflix_RollerCoaster_2048x1080_60fps_420'
% 'Netflix_SquareAndTimelapse_2048x1080_60fps_420'
% 'Netflix_Tango_2048x1080_60fps_420'
% 'Netflix_ToddlerFountain_2048x1080_60fps_420'
% 'Netflix_TunnelFlag_2048x1080_60fps_420'
% 'Netflix_WindAndNature_2048x1080_60fps_420'
% 'female150'
% 'male150'
% 'onedarkfinal'
% 'simo'
% 'training'
% 'x2'
};
QPList=[22 27 32 37];
for iSeq=1:length(yuvNameList)
for iQP=1:length(QPList)
extractCUDepthGrndTruth(iSeq,yuvNameList{iSeq},QPList(iQP),filePathInput,filePathExtract);
end
end
end
function filePathAndName=getFilePathAndName(filePath,keyWords1,keyWords2)
dirOutput=dir([filePath '*' keyWords1 '*' keyWords2 '*']);
[filePath '*' keyWords1 '*' keyWords2 '*']
fileNameList={dirOutput.name}';
assert(length(fileNameList)==1);
filePathAndName=[filePath fileNameList{1}];
end
function nSamplesMatrix=extractCUDepthGrndTruth(...
iSeq,yuvName,QP,...
filePathInput,...
filePathExtract...
)
fileNameCUDepthIndex=getFilePathAndName(filePathInput,['_' yuvName '_qp' num2str(QP)],'_Index.dat');
fileNameCUDepth=getFilePathAndName(filePathInput,['_' yuvName '_qp' num2str(QP)],'_CUDepth.dat');
fileNameExtract64=[filePathExtract yuvName '_qp' num2str(QP) '_CU64Samples.dat'];
fileNameExtract32=[filePathExtract yuvName '_qp' num2str(QP) '_CU32Samples.dat'];
fileNameExtract16=[filePathExtract yuvName '_qp' num2str(QP) '_CU16Samples.dat'];
fidCUDepthIndex=fopen(fileNameCUDepthIndex);
fidCUDepth=fopen(fileNameCUDepth);
fidExtract64=fopen(fileNameExtract64,'w+');
fidExtract32=fopen(fileNameExtract32,'w+');
fidExtract16=fopen(fileNameExtract16,'w+');
nSamplesMatrix=zeros(3,2);
%[[n64split n64nonsplit]
% [n32split n32nonsplit]
% [n16split n16nonsplit]]
while ~feof(fidCUDepthIndex)
tline=fgetl(fidCUDepthIndex);
nList=sscanf(tline,'%d %d %d');
nFrame=nList(1);
if nFrame==0
nListTemp=sscanf(tline,'%d %d %d %d %s');
end
width=nList(2);
height=nList(3);
widthIn16=fix(width/16);
heightIn16=fix(height/16);
infoTemp=fread(fidCUDepth,widthIn16*heightIn16,'uint8');
infoTemp=reshape(infoTemp,widthIn16,heightIn16)';
info(:,:,nFrame+1)=infoTemp;
end
infoYInCTU=zeros(64,64);
nTotal=0;
fileNameYUV=[filePathInput yuvName '.yuv']
fidYUV=fopen(fileNameYUV);
for iFrame=0:size(info,3)-1
disp(['Sequence ' num2str(iSeq) ', QP ' num2str(QP) ' : Frame ' num2str(iFrame+1) ' / ' num2str(size(info,3))]);
Y=fread(fidYUV,width*height,'uint8');
UV=fread(fidYUV,width*height/2,'uint8');
matrixY=reshape(Y,width,height)';
widthInCTU=floor(size(info,2)/4);
heightInCTU=floor(size(info,1)/4);
for y=1:heightInCTU
for x=1:widthInCTU
nTotal=nTotal+1;
infoYInCTU(:,:)=matrixY((y-1)*64+1:y*64,(x-1)*64+1:x*64);
infoCUDepthInCTU=info((y-1)*4+1:y*4,(x-1)*4+1:x*4,iFrame+1);
if mean(mean(infoCUDepthInCTU))>0
label64=1;
nSamplesMatrix(1,1)=nSamplesMatrix(1,1)+1;
else
label64=0;
nSamplesMatrix(1,2)=nSamplesMatrix(1,2)+1;
end
fwrite(fidExtract64,label64,'uint8');
fwrite(fidExtract64,reshape(infoYInCTU(:,:)',1,64*64),'uint8');
end
end
widthIn32=widthInCTU*2;
heightIn32=heightInCTU*2;
for y=1:heightIn32
for x=1:widthIn32
isValid32=0;
infoYIn32x32(:,:)=matrixY((y-1)*32+1:y*32,(x-1)*32+1:x*32);
infoCUDepthIn32x32=info((y-1)*2+1:y*2,(x-1)*2+1:x*2,iFrame+1);
if infoCUDepthIn32x32(1,1)>=2
isValid32=1;
label32=1;
nSamplesMatrix(2,1)=nSamplesMatrix(2,1)+1;
elseif infoCUDepthIn32x32(1,1)==1
isValid32=1;
label32=0;
nSamplesMatrix(2,2)=nSamplesMatrix(2,2)+1;
end
if isValid32>0
fwrite(fidExtract32,label32,'uint8');
fwrite(fidExtract32,reshape(infoYIn32x32(:,:)',1,32*32),'uint8');
end
end
end
widthIn16=widthInCTU*4;
heightIn16=heightInCTU*4;
for y=1:heightIn16
for x=1:widthIn16
isValid16=0;
infoYIn16x16(:,:)=matrixY((y-1)*16+1:y*16,(x-1)*16+1:x*16);
infoCUDepthIn16x16=info(y,x,iFrame+1);
if infoCUDepthIn16x16(1,1)==3
isValid16=1;
label16=1;
nSamplesMatrix(3,1)=nSamplesMatrix(3,1)+1;
elseif infoCUDepthIn16x16(1,1)==2
isValid16=1;
label16=0;
nSamplesMatrix(3,2)=nSamplesMatrix(3,2)+1;
end
if isValid16>0
fwrite(fidExtract16,label16,'uint8');
fwrite(fidExtract16,reshape(infoYIn16x16(:,:)',1,16*16),'uint8');
end
end
end
% Uncomment these lines to show CU depth matrix (optional).
% infoShown=imresize(info(:,:,iFrame+1),5,'nearest');
% imshow(infoShown,[0 3]);
% title(['POC ' num2str(iFrame)]);
% pause;
end
fclose(fidYUV);
if iSeq==1
fidLogStat=fopen('LogStat.txt','w+');
else
fidLogStat=fopen('LogStat.txt','a+');
end
fprintf(fidLogStat,'Sequence %d, QP %d:\r\n',iSeq,QP);
fprintf(fidLogStat,'%10d%10d\r\n%10d%10d\r\n%10d%10d\r\n\r\n',...
nSamplesMatrix(1,1),nSamplesMatrix(1,2),...
nSamplesMatrix(2,1),nSamplesMatrix(2,2),...
nSamplesMatrix(3,1),nSamplesMatrix(3,2));
fclose('all');
end
|
github
|
HEVC-Projects/CPH-master
|
extractCUDepthGrndTruthCPHIntra.m
|
.m
|
CPH-master/extractCUDepthGrndTruthCPHIntra.m
| 10,768 |
utf_8
|
1dad2cb9720a3eb99ec39590d41811b7
|
function extractCUDepthGrndTruthCPHIntra
% This program transfers raw image and label files to samples that are directly available for deep CNNs,
% in order to establish a large-scale database for CU partition of
% intra-mode HEVC (CPH-Intra).
% All images are stored in 12 YUV files, arranged by resolutions and
% usages (training, validation and test).
% All labels and other necessary information are stored in 8 DAT files,
% arranged by QPs (22, 27, 32 and 37). The files begining with
% "CUDepth_" are binary data representing CU depth, and the ones
% begining with "CUDepthIndex_" are text messages listing out the
% information of all frames in YUV files.
% Each line in "CUDepthIndex_" file indicates
% some basic information of each frame, including POC, frame width and
% frame height, and in the 1st frame (POC 0), QP and YUV file name are
% also included. Corresponding to each line in "CUDepthIndex_", are a
% certain number of bytes organized in the file "CUDepth_". Considering
% that in HEVC frames, the CU depth (0, 1, 2 or 3) in a 16*16 unit is
% the same, so for a W*H frame, there are floor(H/16) rows and
% floor(W/16) columns, and the number of bytes needed is
% floor(W/16)*floor(H/16).
% Note that all bytes for a frame are stored in row-major order.
% Below is an example of "CUDepth_" and "CUDepthIndex_".
% In "CUDepthIndex_AI_CPIH_768_1536_2880_4928_qp32_nf425_25_50.dat",
% the 1st line is:
% 0 768 512 32 IntraTrain_768x512.yuv.
% It is the 1st frame (POC=0) in "IntraTrain_768x512.yuv", and QP = 32.
% There are 32 rows and 48 columns, corresponding to 32*48 = 1536 bytes
% in "CUDepth_AI_CPIH_768_1536_2880_4928_qp32_nf425_25_50.dat",
% organized as follows.
% [CU depth in Row 1 Column 1]
% [CU depth in Row 1 Column 2]
% .
% .
% .
% [CU depth in Row 1 Column 48]
% [CU depth in Row 2 Column 1]
% [CU depth in Row 2 Column 2]
% .
% .
% .
% [CU depth in Row 2 Column 48]
% .
% .
% .
% .
% .
% .
% [CU depth in Row 32 Column 1]
% [CU depth in Row 32 Column 2]
% .
% .
% .
% [CU depth in Row 32 Column 48]
% After executing this program, 36 sample files named "CUXXSamples_"
% will be generated, arranged by CU sizes, QPs and usages. In each
% file, all samples are continuously stored. Each sample takes up
% (1 + CUWidth * CUWidth) bytes, where the initial byte is the label
% representing whether the CU is split and the rest CUWidth * CUWidth
% bytes are the luminance information of the CU in row-major order. All
% the labels and luminance data are 8-bit unsigned type.
% Below is an example of "CUXXSamples_".
% There are totally 2446725 samples for 64*64 CUs in the training set.
% So the file "CU64Samples_AI_CPIH_768_1536_2880_4928_qp22_Train.dat"
% is orgarized as follows.
% [label of the 1st CU (1 byte)]
% [luminance infomation of the lst CU (64*64 bytes)]
% [label of the 2nd CU (1 byte)]
% [luminance infomation of the 2nd CU (64*64 bytes)]
% .
% .
% .
% [label of the 2446725th CU (1 byte)]
% [luminance infomation of the 2446725th CU (64*64 bytes)]
% Therefore, the file size is (1+64*64)*2446725 = 10024232325 bytes.
filePathInput='';
filePathExtract='';
QPList=[22 27 32 37];
for i=1:length(QPList)
extractCUDepthGrndTruth(...
filePathInput,['_AI_CPIH_768_1536_2880_4928_qp' num2str(QPList(i)) '_nf425_25_50'],...
filePathExtract,['_AI_CPIH_768_1536_2880_4928_qp' num2str(QPList(i)) '_Train'],...
[1 4 7 10]);
extractCUDepthGrndTruth(...
filePathInput,['_AI_CPIH_768_1536_2880_4928_qp' num2str(QPList(i)) '_nf425_25_50'],...
filePathExtract,['_AI_CPIH_768_1536_2880_4928_qp' num2str(QPList(i)) '_Valid'],...
[2 5 8 11]);
extractCUDepthGrndTruth(...
filePathInput,['_AI_CPIH_768_1536_2880_4928_qp' num2str(QPList(i)) '_nf425_25_50'],...
filePathExtract,['_AI_CPIH_768_1536_2880_4928_qp' num2str(QPList(i)) '_Test'],...
[3 6 9 12]);
end
end
function nSamplesMatrix=extractCUDepthGrndTruth(...
filePathInput,fileSuffixInput,...
filePathExtract,fileSuffixExtract,...
seqValidIndex)
fileNameCUDepthIndex=[filePathInput 'CUDepthIndex' fileSuffixInput '.dat'];
fileNameCUDepth=[filePathInput 'CUDepth' fileSuffixInput '.dat'];
fileNameExtract64=[filePathExtract 'CU64Samples' fileSuffixExtract '.dat'];
fileNameExtract32=[filePathExtract 'CU32Samples' fileSuffixExtract '.dat'];
fileNameExtract16=[filePathExtract 'CU16Samples' fileSuffixExtract '.dat'];
fidCUDepthIndex=fopen(fileNameCUDepthIndex);
fidCUDepth=fopen(fileNameCUDepth);
fidExtract64=fopen(fileNameExtract64,'w+');
fidExtract32=fopen(fileNameExtract32,'w+');
fidExtract16=fopen(fileNameExtract16,'w+');
nSamplesMatrix=zeros(3,2);
%[[n64split n64nonsplit]
% [n32split n32nonsplit]
% [n16split n16nonsplit]]
nSeq=0;
nSeqTemp=0;
info=[];
widthIn16=[];
heightIn16=[];
width=[];
qp=[];
isValidSeq=0;
while ~feof(fidCUDepthIndex)
tline=fgetl(fidCUDepthIndex);
nList=sscanf(tline,'%d %d %d');
nFrame=nList(1);
if nFrame==0
nSeq=nSeq+1;
info{nSeq}=[];
nListTemp=sscanf(tline,'%d %d %d %d %s');
qp(nSeq)=nListTemp(4);
yuvNameList{nSeq}=nListTemp(5:end)';
end
width(nSeq)=nList(2);
height(nSeq)=nList(3);
widthIn16(nSeq)=fix(width(nSeq)/16);
heightIn16(nSeq)=fix(height(nSeq)/16);
infoTemp=fread(fidCUDepth,widthIn16(nSeq)*heightIn16(nSeq),'uint8');
infoTemp=reshape(infoTemp,widthIn16(nSeq),heightIn16(nSeq))';
info{nSeq}(:,:,nFrame+1)=infoTemp;
end
infoYInCTU=zeros(64,64);
nTotal=0;
for k=1:nSeq
if ismember(k,seqValidIndex)
fileNameYUV=[filePathInput yuvNameList{k}]
fidYUV=fopen(fileNameYUV);
for iFrame=0:size(info{k},3)-1
disp(['Sequence ' num2str(k) ' : Frame ' num2str(iFrame+1) ' / ' num2str(size(info{k},3))]);
Y=fread(fidYUV,width(k)*height(k),'uint8');
UV=fread(fidYUV,width(k)*height(k)/2,'uint8');
matrixY=reshape(Y,width(k),height(k))';
widthInCTU=floor(size(info{k},2)/4);
heightInCTU=floor(size(info{k},1)/4);
for y=1:heightInCTU
for x=1:widthInCTU
nTotal=nTotal+1;
infoYInCTU(:,:)=matrixY((y-1)*64+1:y*64,(x-1)*64+1:x*64);
infoCUDepthInCTU=info{k}((y-1)*4+1:y*4,(x-1)*4+1:x*4,iFrame+1);
if mean(mean(infoCUDepthInCTU))>0
label64=1;
nSamplesMatrix(1,1)=nSamplesMatrix(1,1)+1;
else
label64=0;
nSamplesMatrix(1,2)=nSamplesMatrix(1,2)+1;
end
fwrite(fidExtract64,label64,'uint8');
fwrite(fidExtract64,reshape(infoYInCTU(:,:)',1,64*64),'uint8');
end
end
widthIn32=floor(size(info{k},2)/2);
heightIn32=floor(size(info{k},1)/2);
for y=1:heightIn32
for x=1:widthIn32
isValid32=0;
infoYIn32x32(:,:)=matrixY((y-1)*32+1:y*32,(x-1)*32+1:x*32);
infoCUDepthIn32x32=info{k}((y-1)*2+1:y*2,(x-1)*2+1:x*2,iFrame+1);
if infoCUDepthIn32x32(1,1)>=2
isValid32=1;
label32=1;
nSamplesMatrix(2,1)=nSamplesMatrix(2,1)+1;
elseif infoCUDepthIn32x32(1,1)==1
isValid32=1;
label32=0;
nSamplesMatrix(2,2)=nSamplesMatrix(2,2)+1;
end
if isValid32>0
fwrite(fidExtract32,label32,'uint8');
fwrite(fidExtract32,reshape(infoYIn32x32(:,:)',1,32*32),'uint8');
end
end
end
widthIn16=size(info{k},2);
heightIn16=size(info{k},1);
for y=1:heightIn16
for x=1:widthIn16
isValid16=0;
infoYIn16x16(:,:)=matrixY((y-1)*16+1:y*16,(x-1)*16+1:x*16);
infoCUDepthIn16x16=info{k}(y,x,iFrame+1);
if infoCUDepthIn16x16(1,1)==3
isValid16=1;
label16=1;
nSamplesMatrix(3,1)=nSamplesMatrix(3,1)+1;
elseif infoCUDepthIn16x16(1,1)==2
isValid16=1;
label16=0;
nSamplesMatrix(3,2)=nSamplesMatrix(3,2)+1;
end
if isValid16>0
fwrite(fidExtract16,label16,'uint8');
fwrite(fidExtract16,reshape(infoYIn16x16(:,:)',1,16*16),'uint8');
end
end
end
% Uncomment these lines to show CU depth matrix (optional) .
% infoShown=imresize(info{k}(:,:,iFrame+1),5,'nearest');
% imshow(infoShown,[0 3]);
% title(['POC ' num2str(iFrame)]);
% pause;
end
fclose(fidYUV);
disp(['Sequence ' num2str(k) ' Completed.']);
end
end
disp([num2str(nTotal) ' CTUs Completed.']);
nSamplesMatrix
fidLogStat=fopen('LogStat.txt','a+');
fprintf(fidLogStat,'%10d%10d\r\n%10d%10d\r\n%10d%10d\r\n\r\n',...
nSamplesMatrix(1,1),nSamplesMatrix(1,2),...
nSamplesMatrix(2,1),nSamplesMatrix(2,2),...
nSamplesMatrix(3,1),nSamplesMatrix(3,2));
fclose('all');
end
|
github
|
fangcaoxin/Myproject-master
|
generate_2d_points.m
|
.m
|
Myproject-master/SfM/generate_2d_points.m
| 1,495 |
utf_8
|
fcb889bbb13927636e96ccae3687121c
|
% drawmultiview();
function generate2D()
%drawmultiview();
generate_2DPoints();
end
function generate_2DPoints()
addpath('cylindrical')
load teapotMatrix1008.mat
imagePointMatrix = zeros(size(teapotMatrix,1), 2, 10);
for i = 1:10
imagePointMatrix(:,:,i) = point3d_t_2d(teapotMatrix(:,:,i));
%
plot(imagePointMatrix(:,1,i), imagePointMatrix(:,2,i),'r.');
end
save imagePointMatrix1008.mat imagePointMatrix
load('teapot.mat');
teapot1 = teapot(1:10:end,:) + [0 0 600]; % Z>600
basePoint = point3d_t_2d(double(teapot1));
save basePoint1008.mat basePoint
end
function drawmultiview()
load rotateMatrix1008.mat
load TransMatrix.mat
load('teapot.mat');
teapot1 = teapot(1:10:end,:) + [0 0 600]; % Z>600
teapotMatrix = zeros(size(teapot1, 1), 3, 10);
for i = 1:10
loc = TransMatrix(i,:);
ori = rotateMatrix(:,:,i)';
teapotMatrix(:,:,i) = (teapot1- loc)*ori';
color = i/10*[1 0 0];
plotCamera('Location',loc, 'Orientation', ori,'Size', 20,...
'label', int2str(i), 'color', color, 'AxesVisible', false);
hold on
end
save teapotMatrix1008.mat teapotMatrix
scatter3(teapot1(:,1), teapot1(:,2), teapot1(:,3), 5, 'MarkerFaceColor',[0 0 1],...
'MarkerEdgeColor',[0.3,0.5,0.9]);
grid on
axis equal
xlabel('X[mm]');
ylabel('Y[mm]');
zlabel('Z[mm]');
end
function generateR()
addpath('helpers');
rotateMatrix = zeros(3,3,10);
for i = 1: 10
rotateMatrix(:,:,i) = generateBoundedR(pi/180*10);
end
save ratateMatrix1008.mat rotateMatrix
end
|
github
|
fangcaoxin/Myproject-master
|
refractivetriangulateMultiview.m
|
.m
|
Myproject-master/SfM/refractivetriangulateMultiview.m
| 1,296 |
utf_8
|
70d34e64fe663cdb4debd9dbfb94d25d
|
function [points3d, errors] = refractivetriangulateMultiview(bearingVec, ...
camPoses, cameraParams)
%outputType = validateInputs(pointTracks, camPoses, cameraParams);
numTracks = numel(bearingVec);
points3d = zeros(numTracks, 3);
numCameras = size(camPoses, 1);
cameraMatrices = containers.Map('KeyType', 'uint32', 'ValueType', 'any');
for i = 1:numCameras
id = camPoses{i, 'ViewId'};
R = camPoses{i, 'Orientation'}{1};
t = camPoses{i, 'Location'}{1};
cameraMatrices(id) = cameraMatrix(cameraParams, R', -t*R');
end
for i = 1:numTracks
track = bearingVec(i);
points3d(i, :) = triangulateOnePoint(track, cameraMatrices);
end
%points3d = cast(points3d, outputType);
end
function point3d = triangulateOnePoint(track, cameraMatrices)
viewIds = track.ViewIds;
%points = track.Points';
points = track.BearingVector(:,1:3)';
numViews = numel(viewIds);
A = zeros(numViews * 2, 4);
for i = 1:numViews
% Check if the viewId exists
if ~isKey(cameraMatrices, viewIds(i))
error(message('vision:absolutePoses:missingViewId', viewIds(i)));
end
P = cameraMatrices(viewIds(i))';
idx = 2 * i;
A(idx-1:idx,:) = points(1:2, i) * P(3,:) -points(3,i)* P(1:2,:);
end
[~,~,V] = svd(A);
X = V(:, end);
X = X/X(end);
point3d = X(1:3)';
end
|
github
|
fangcaoxin/Myproject-master
|
refractiveBA.m
|
.m
|
Myproject-master/SfM/refractiveBA.m
| 2,834 |
utf_8
|
b8ab627f87b89be67cecc5ca7615fedf
|
function [xyzPoints, camPoses] = refractiveBA(p, bearingVec, camPoses)
% p is point 1xN , Rt estimated rotation and translation mat4x3xM
% v calucated bearing vector
p_one_row = reshape(p, 1, []);
R_one_row = reshape(cell2mat(camPoses.Orientation), 1, []);
t_one_row = reshape(cell2mat(camPoses.Location), 1, []);
x0 = [p_one_row R_one_row t_one_row];
numPoints = numel(v);
numViews = size(camPoses,1);
% opts = optimset('Display', 'off');
opts = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt','MaxFunEvals',3e4,'TolFun',1e-3);
out = lsqnonlin(@(x)fun(x,bearingVec,numPoints, numViews), x0, [],[], opts);
xyzPoints = reshape(out(1:3*numPoints),[numPoints, 3]);
R_opm = reshape(out(3*numPoints+1:3*numPoints + 9*(numViews-1)),[3,3, numViews]);
t_opm = reshape(out(3*numPoints + 9*(numViews-1)+1:end), [1 3 numViews]);
for k = 1: numViews
camPoses.Orientation(k) = R_opm(:,:,k);
camPoses.Location(k)= t_opm(:,:,k);
end
function fval = fun(x, v, numPoints, numViews)
points = reshape(x(1:3*numPoints), [],3);
Rot = reshape(x(3*numPoints+1:3*numPoints+9*(numViews-1)), 3,3,[]);
trans = reshape(x(3*numPoints+1+9*(numViews-1):end),1,3,[]);
fval = 0;
count = 1;
for i = 1: numPoints
for j = 1: size(v(i).ViewIds,2)
view = v(i).ViewIds(j);
xc = (points(i,:) -trans(:,:,view))*Rot(:,:,view);
xs = v(i).BearingVector(j,1:3);
ro = v(i).BearingVector(j,4:6);
tmp = [0 1 1];
N1 = xs.* tmp; % normal between glass and water
N1_norm = N1/norm(N1);
ro_est = xc - xs;
xw_normal = cross(ro, N1_norm, 2);
fval(count) = dot(ro_est, xw_normal, 2);
count = count + 1;
end
end
% t = (ro(:,3).*xc(:,3) + ro(:,2).*xc(:,2) + sqrt((ro(:,3).*xc(:,3) + ro(:,2).*xc(:,2)).^2 -(ro(:,2).*ro(:,2)+ro(:,3).*...
% ro(:,3)).*(xc(:,2).*xc(:,2)+ xc(:,3).*xc(:,3)-50*50)))./(ro(:,2).*ro(:,2)+ro(:,3).*ro(:,3));
% xs_est = xc - t.*ro;
% ro_est = xc - xs;
% %ro_proj = ro(:,1:2)./ro(:,3);
% %ro_est_proj = ro_est(:, 1:2)./ro_est(:,3);
% %fval(end+1: end+pointsNumOfEachView(i)) = ro_proj(:,1)- ro_est_proj(:,1);
% %fval(end+1: end + pointsNumOfEachView(i))= ro_proj(:,2)- ro_est_proj(:,2);
% % fval(end+1: end + pointsNumOfEachView(i))= xs_est(:,1)-xs(:,1);
% % fval(end+1: end + pointsNumOfEachView(i))= xs_est(:,2)-xs(:,2);
% % fval(end+1: end + pointsNumOfEachView(i))= xs_est(:,3)-xs(:,3);
% xw_normal = cross(ro, N1_norm, 2);
% fval(end+1: end+ pointsNumOfEachView(i)) = dot(ro_est, xw_normal, 2);
% fval(end+1)= norm(Rot(1,:,i-1)) -1;
% fval(end+1) = norm(Rot(2,:,i-1)) - 1;
% fval(end+1) = dot(Rot(1,:,i-1),Rot(2,:,i-1));
% r3 = cross(Rot(1,:,i-1), Rot(2,:,i-1));
% fval(end+1) = r3(1) - Rot(3,1,i-1);
% fval(end+1) = r3(2) - Rot(3,2,i-1);
% fval(end+1) = r3(3) - Rot(3,3,i-1);
end
end
|
github
|
fangcaoxin/Myproject-master
|
sfm_one_view.m
|
.m
|
Myproject-master/SfM/cube_near_1010/sfm_one_view.m
| 1,615 |
utf_8
|
e462e05e331c3e3369e012cc60d56f65
|
function [x_s, r_out_norm, r_in] = sfm_one_view(gg, x, K, c, w)
d_flat = gg(1);
Rc = angle2Rot(gg(2), gg(3), gg(4));
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in*Rc';
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = d_flat./r_in(:,3);
p1 = r_in.* t_0; % point at glass and air
tmp = [0 0 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm, 2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 = w./r_glass_norm(:,3);
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 0 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm, 2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
end
function rotate = angle2Rot(alpha, beta, gamma)
rotate = zeros(3,3);
r1 = [cosd(gamma) sind(gamma) 0;
-sind(gamma) cosd(gamma) 0;
0 0 1 ];
r2 = [cosd(beta) 0 -sind(beta);
0 1 0;
sind(beta) 0 cosd(beta)];
r3 = [1 0 0;
0 cosd(alpha) sind(alpha);
0 -sind(alpha) cosd(alpha)];
rotate = r1*r2*r3;
end
|
github
|
fangcaoxin/Myproject-master
|
refractive_sfm.m
|
.m
|
Myproject-master/SfM/cube_near_1010/refractive_sfm.m
| 4,255 |
utf_8
|
9af689c433c22f9cac2b88c5d3b07040
|
% Use |imageDatastore| to get a list of all image file names in a
% directory.
clear;clc;
addpath('../common');
load corres.mat
IntrinsicMatrix = [2881.84239103060,0,0;0,2890.20944782907,0;2073.63152572517,1398.01946105023,1];
radialDistortion = [0.0424498292149281,-0.0489981810340664];
%cameraParams = cameraParameters('IntrinsicMatrix',IntrinsicMatrix, 'RadialDistortion',radialDistortion);
bearingVec = struct('ViewIds',{},'BearingVector',{});
order = [9 8 7 6 5];
% fileID_corres = fopen('res.txt', 'r');
% formatSpec = '%f %f';
% sizeA = [2 Inf];
% corresMat = fscanf(fileID_corres, formatSpec,sizeA);
% fclose(fileID_corres);
% corres = reshape(corresMat,2,60,9);
% save corres.mat corres
% Estimate the camera pose
%gg = [89.28,-2.18342172302219,2.76380543162081,-1.05];
gg = [89.28, 0, 0, 0];
c = [1.0 1.49 1.333];
w = 5.11;
K = IntrinsicMatrix;
order = [9 8 7 6 5];
order1 = [ 1 4 6 8];
%K = cameraParams.IntrinsicMatrix;
view = struct('points',{}, 'label',{},'rot',{},'trans',{}, 'bearing_vector',{});
tracks = struct ('points',{}, 'views', {}, 'pointcloud',{});
basePoints = corres(:,:,order(1))';
[xs_t1, ro_t1, ri_t1] = sfm_one_view(gg, basePoints, K, c,w);
prevBearing = [ro_t1 xs_t1 ri_t1];
[temp1,temp] = find(basePoints(:,1)>0);
prevlabel = temp1;
view = addview(view, basePoints,prevlabel, eye(3), zeros(1,3),prevBearing, 1 );
for i = 2:size(order,2)
currPoints = corres(:,:,order(i))';
[currlabel,temp] = find(currPoints(:,1)>0);
matchedPairs = intersect(prevlabel, currlabel);
[xs_t2, ro_t2, ri_t2] = sfm_one_view(gg, currPoints, K, c, w);
currBearing = [ro_t2 xs_t2 ri_t2];
matchVector1 = prevBearing(matchedPairs, 1:6);
matchVector2 = currBearing(matchedPairs, 1:6);
testVector1 = matchVector1(1:2,1:6);
testVector2 = matchVector2(1:2,1:6);
U=umatrix_generator_general(matchVector1, matchVector2);
[relativeOrient,relativeLoc]=R_t_estimator_pixel(U, 1, 1);
relativeOrient
relativeLoc
% triangulation
prevRot = view(i-1).rot;
prevTrans = view(i-1).trans;
rot = relativeOrient* prevRot
trans = prevTrans + relativeLoc*prevRot
xw_test = triangulateR(testVector1, testVector2, prevRot, prevTrans, rot, trans);
if(xw_test(:,3) < 0)
[relativeOrient,relativeLoc]=R_t_estimator_pixel(U, 0, 1);
end
rot = relativeOrient* prevRot
trans = prevTrans + relativeLoc*prevRot
% if(i >= 3)
% tracks_cell = struct2cell(tracks);
% xyzPoints = reshape(cell2mat(tracks_cell(3,:,:)), 3, []);
% label = reshape(cell2mat(tracks_cell(1,:,:)), 1, []);
% [exist_label, ia, ib] = intersect(label, currlabel);
% d3_points = xyzPoints';
% [rot, trans] = R_t_estimator_3d(currBearing(exist_label, :), d3_points(ia, :), 0);
% rot
% trans
% end
points3D = triangulateR(matchVector1, matchVector2, prevRot,prevTrans, rot, trans); % in C1
scatter3(points3D(:,1), points3D(:,2), points3D(:,3), 10, 'MarkerFaceColor',[1 0 0],...
'MarkerEdgeColor',[0.9,0.5,0.3]);
view = addview(view, currPoints, currlabel, rot, ...
trans, currBearing, i);
basePoints = currPoints;
prevlabel = currlabel;
prevBearing = currBearing;
tracks = update_tracks(tracks, matchedPairs, i, points3D);
tracks_cell = struct2cell(tracks);
nxyzPoints = reshape(cell2mat(tracks_cell(3,:,:)), 3, []);
nxyzPoints = nxyzPoints'; % get pointcloud
[xw_est, view] = optim_point(view, tracks, 1, 1, numel(tracks));
scatter3(xw_est(:,1), xw_est(:,2), xw_est(:,3));
% Get the color of each reconstructed point
axis equal
%ptCloud = pointCloud(xw_est);
%ax= pcshow(ptCloud, 'MarkerSize', 50);
%axis(ax, 'equal');
% axis([-1 -0.5 2.02 2.06 41.6 42]);
% pcwrite(ptCloud, 'structure_out', 'PLYFormat', 'binary');
% Rotate and zoom the plot
% camorbit(0, -30);
% camzoom(1.5);
% Label the axes
xlabel('x-axis');
ylabel('y-axis');
zlabel('z-axis')
end
[xw_est, view] = optim_point(view, tracks, K, 1, 1, numel(tracks));
scatter3(xw_est(:,1), xw_est(:,2), xw_est(:,3));
function vector_no_scale = vectorNoScale(x)
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
r_in = u_v./[fx fy 1];
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
x_s = zeros(size(x, 1),3);
vector_no_scale = [r_in, x_s];
end
|
github
|
fangcaoxin/Myproject-master
|
lagrange.m
|
.m
|
Myproject-master/SfM/common/lagrange.m
| 2,287 |
utf_8
|
a7d43423e24d7835dab7f4f602d61800
|
function g=lagrange(U,g0)
l = zeros(6,1);
%l = [0.5;0.5;0.5;0.5;0.5;0.5];
gg0=[g0;l];%init
f=@(gg)Ug(gg,U);%
% [gg,fval,info]=fsolve(f,gg0,optimset("TolFun",3e-16,"TolX",3e-16,"MaxIter",1e20));
options=optimoptions('fsolve','Algorithm', 'levenberg-marquardt',...
'Display','iter',...
'FunctionTolerance',1e-6,'MaxFunctionEvaluations', 1e6, ...
'StepTolerance', 1e-6,'MaxIterations',3000);
[gg,fval,info]=fsolve(f,gg0,options);
g=gg;
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
end
function Ug_val=Ug(gg,U)
g=gg;
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
g(19,:)=[];
UU=U'*U;
Ug_val(1)= UU(1,:)*g; %+ gg(25)*(gg(5)*gg(9)- gg(6)*gg(8));
Ug_val(2)= UU(2,:)*g; % + gg(25)*(gg(6)*gg(7)-gg(4)*gg(9));
Ug_val(3)= UU(3,:)*g; % + gg(25)*(gg(4)*gg(8)-gg(5)*gg(7));
Ug_val(4)= UU(4,:)*g; % + gg(25)*(gg(3)*gg(8)-gg(2)*gg(9));
Ug_val(5)= UU(5,:)*g; % + gg(25)*(gg(1)*gg(9)-gg(3)*gg(7));
Ug_val(6)= UU(6,:)*g; % + gg(25)*(gg(2)*gg(7)-gg(1)*gg(8));
Ug_val(7)= UU(7,:)*g; % + gg(25)*(gg(2)*gg(6)-gg(3)*gg(5));
Ug_val(8)= UU(8,:)*g; % + gg(25)*(gg(3)*gg(4)-gg(1)*gg(6));
Ug_val(9)= UU(9,:)*g; % + gg(25)*(gg(1)*gg(5)-gg(2)*gg(4));
Ug_val(10)= UU(10,:)*g+gg(19)*gg(10)-gg(15)*gg(23)+gg(14)*gg(24)+gg(13)*gg(21);
Ug_val(11)= UU(11,:)*g+gg(19)*gg(11)-gg(13)*gg(24)+gg(15)*gg(22)+gg(14)*gg(21);
Ug_val(12)= UU(12,:)*g+gg(19)*gg(12)-gg(14)*gg(22)+gg(13)*gg(23)+gg(15)*gg(21);
Ug_val(13)= UU(13,:)*g+gg(20)*gg(13)-gg(11)*gg(24)+gg(12)*gg(23)+gg(10)*gg(21);
Ug_val(14)= UU(14,:)*g+gg(20)*gg(14)-gg(12)*gg(22)+gg(10)*gg(24)+gg(11)*gg(21);
Ug_val(15)= UU(15,:)*g+gg(20)*gg(15)-gg(10)*gg(23)+gg(11)*gg(22)+gg(12)*gg(21);
Ug_val(16)= UU(16,:)*g-gg(22);
Ug_val(17)= UU(17,:)*g-gg(23);
Ug_val(18)= UU(18,:)*g-gg(24);
Ug_val(19)= (gg(10)^2+gg(11)^2+gg(12)^2-1)/2;
Ug_val(20)= (gg(13)^2+gg(14)^2+gg(15)^2-1)/2;
Ug_val(21)= gg(10)*gg(13)+gg(11)*gg(14)+gg(12)*gg(15);
Ug_val(22)= gg(11)*gg(15)-gg(12)*gg(14)-gg(16);
Ug_val(23)= gg(12)*gg(13)-gg(10)*gg(15)-gg(17);
Ug_val(24)= gg(10)*gg(14)-gg(11)*gg(13)-gg(18);
% Ug_val(25) = gg(1)*gg(5)*gg(9)+gg(2)*gg(6)*gg(7) + gg(3)*gg(4)*gg(8)...
% -gg(3)*gg(5)*gg(7) - gg(1)*gg(6)*gg(8) - gg(2)*gg(4)*gg(9);
end
|
github
|
fangcaoxin/Myproject-master
|
R_t_estimator_pixel.m
|
.m
|
Myproject-master/SfM/common/R_t_estimator_pixel.m
| 1,308 |
utf_8
|
c9c659d08f91fe8ed85c063aff0f6492
|
function [R_est,t_est]=R_t_estimator_pixel(U, mark, vertical)
%load parameter.mat
addpath('common');
[R_est, t_est] = Rt_estimate(U, mark, vertical);
end
function [R_est, t_est] = Rt_estimate(U, mark, vertical)
U = cast(U, 'double');
[v,lambda]=eig(U'*U);
if (vertical)
g=v(:,2);
else
g =v(:,1);
end
k=sqrt(g(10)^2+g(11)^2+g(12)^2);
g0 = g/k;
if mark == 1
g0 = -g/k;
end
g = lagrange(U,g0);
% g = g0;
g(10)^2+g(11)^2+g(12)^2
g(13)^2+g(14)^2+g(15)^2
g(16)^2+g(17)^2+g(18)^2
R1=[g(10) g(11) g(12)];
R2=[g(13) g(14) g(15)];
R3=[g(16) g(17) g(18)];
R_est=[R1;R2;R3];
E=[g(1) g(2) g(3);
g(4) g(5) g(6);
g(7) g(8) g(9)];
[U1, S1, V1] = svd(E);
W = [ 0 -1 0; 1 0 0; 0 0 1];
R_est_1(:,:,1) = U1*W*V1';
R_est_1(:,:,2) = U1*W*V1';
R_est_1(:,:,3) = U1*W'*V1';
R_est_1(:,:,4) = U1*W'*V1';
t_est_1(:,:,1) = U1(:,3);
t_est_1(:,:,2) = -U1(:,3);
t_est_1(:,:,3) = U1(:,3);
t_est_1(:,:,4) = -U1(:,3);
%U1
%S1
%V1
T = E*R_est';
t_err= 0.5*[T(3,2)-T(2,3); T(1,3)-T(3,1);T(2,1)-T(1,2)];
sign_t_err = sign(t_err);
scale = (S1(1,1) + S1(2,2))/2;
t_est = scale * U1(:,3);
sign_t_est = sign(t_est);
if(sign_t_err ~= sign_t_est)
t_est = -t_est;
end
t_est = t_err';
end
|
github
|
fangcaoxin/Myproject-master
|
R_t_estimator_3d.m
|
.m
|
Myproject-master/SfM/common/R_t_estimator_3d.m
| 1,290 |
utf_8
|
630b96fd1b87d070ac970be92c30d654
|
function [R_est, t_est] = R_t_estimator_3d(bearing_vector, d3_points, vertical)
ro = bearing_vector(:, 1:3);
xs = bearing_vector(:, 4:6);
X = d3_points;
U = [ro(:, 3).*X(:,1)-ro(:, 2).*X(:,1) ...
ro(:, 3).*X(:,2)-ro(:, 2).*X(:,2) ...
ro(:, 3).*X(:,3)-ro(:, 2).*X(:,3) ...
ro(:, 1).*X(:,1)-ro(:, 3).*X(:,1) ...
ro(:, 1).*X(:,2)-ro(:, 3).*X(:,2) ...
ro(:, 1).*X(:,3)-ro(:, 3).*X(:,3) ...
ro(:, 2).*X(:,1)-ro(:, 1).*X(:,1) ...
ro(:, 2).*X(:,2)-ro(:, 1).*X(:,2) ...
ro(:, 2).*X(:,3)-ro(:, 1).*X(:,3) ...
ro(:, 3)-ro(:, 2) ...
ro(:, 1)-ro(:, 3) ...
ro(:, 2)-ro(:, 1)];
[R_est, t_est] = Rt_estimate(U, 0, vertical);
end
function [R_est, t_est] = Rt_estimate(U, mark, vertical)
U = cast(U, 'double');
[v,lambda]=eig(U'*U);
if (vertical)
g=v(:,2);
else
g =v(:,1);
end
k=sqrt(g(1)^2+g(2)^2+g(3)^2);
g0 = g/k;
if mark == 1
g0 = -g/k;
end
g = lagrange_pnp(U,g0);
% g = g0;
g(1)^2+g(2)^2+g(3)^2
g(4)^2+g(5)^2+g(6)^2
g(7)^2+g(8)^2+g(9)^2
R1=[g(1) g(2) g(3)];
R2=[g(4) g(5) g(6)];
R3=[g(7) g(8) g(9)];
R_p=[R1;R2;R3];
t_p = [g(10); g(11); g(12)];
R_est = R_p';
t_est = -R_p'*t_p;
t_est = t_est';
% t_est = t_err;
end
|
github
|
fangcaoxin/Myproject-master
|
optim_point.m
|
.m
|
Myproject-master/SfM/common/optim_point.m
| 4,569 |
utf_8
|
cc7cc33ee2be85704f02fcdcd9c8ee1b
|
function [xyzPoints, view] = optim_point(view, tracks, K, step, startNum, endNum)
% p is point 1xN , Rt estimated rotation and translation mat4x3xM
% v calucated bearing vector
tracks_cell = struct2cell(tracks);
nxyzPoints = reshape(cell2mat(tracks_cell(3,:,:)), 3, []); % get pointcloud
p = nxyzPoints'; % all points now
p_select = p(startNum:step: endNum, :);
tracks_select = tracks(1, startNum:step: endNum);
numViews = numel(view);
numPoints = size(p_select,1);
p_one_row = reshape(p_select, 1, []);
R_one_row = reshape([view.rot], 1, []);
t_one_row = reshape([view.trans], 1, []);
<<<<<<< HEAD
v = reshape([view.bearing_vector], [], 6, numViews);
points_2d = reshape([view.points], [], 2, numViews);
x0 = [p_one_row R_one_row(10:end) t_one_row(4:end)];
=======
v = reshape([view.bearing_vector], [], 9, numViews);
x0 = [p_one_row R_one_row t_one_row];
>>>>>>> 77e8b05ee755f8118a972afe53521fb931f38ddf
p_lb = -Inf(1, size(p_one_row,2));
p_ub = Inf(1, size(p_one_row,2));
R_lb = -ones(1, size(R_one_row(10:end),2));
R_ub = ones(1, size(R_one_row(10:end),2));
t_lb = -Inf(1, size(t_one_row(4:end),2));
t_ub = Inf(1, size(t_one_row(4:end),2));
lb = [p_lb R_lb t_lb];
ub = [p_ub R_ub t_ub];
%opts = optimset('Display', 'iter');
%opts = optimoptions(@lsqnonlin,'Algorithm','levenberg-marquardt','MaxFunEvals',3e4,'TolFun',1e-3);
<<<<<<< HEAD
%opts = optimoptions('lsqnonlin','Display','iter','Algorithm','levenberg-marquardt','MaxFunEvals',3e10,'TolFun',1e-10);
out = lsqnonlin(@(x)fun(x,v,points_2d,K, numViews,numPoints,tracks_select), x0, [],[], opts);
=======
opts = optimoptions('lsqnonlin','Display','iter','Algorithm','levenberg-marquardt','MaxFunEvals',3e10,'TolFun',1e-5);
out = lsqnonlin(@(x)fun(x,v,numViews,numPoints,tracks_select), x0, [],[], opts);
>>>>>>> 77e8b05ee755f8118a972afe53521fb931f38ddf
xyzPoints = reshape(out(1:3*numPoints),[numPoints, 3]);
R_opm = reshape(out(3*numPoints+1:3*numPoints + 9*(numViews)),[3,3, numViews]);
t_opm = reshape(out(3*numPoints + 9*(numViews)+1:end), [3 1 numViews]);
for k = 1: numViews
view(k).rot = R_opm(:,:,k);
view(k).trans = t_opm(:,:,k)';
end
end
% startNum the starting num of 3D points for optim
% endNum the ending num of 3D points for optim
% the step for 3D points for optim
function fval = fun(x, v, points_2d,K, numViews,numPoints, tracks)
m = numViews; % how many views
n = numPoints; % how many points
points = reshape(x(1:3*n), [],3);
Rot = reshape(x(3*n+1:3*n+9*(m)), [3 3 m] );
trans = reshape(x(3*n+9*(m)+1:end),[1 3 m]);
fval = zeros(1, n+6*(m));
for i = 1:n
e_total = 0;
for j = 1 : size(tracks(i).views, 2)
view = tracks(i).views(j);
rotate = Rot(:,:,view);
translation = trans(:,:,view);
xc = rotate'*(points(i,:) - translation)';
xc = xc';
ro = v(tracks(i).points, 1:3, view);
xs = v(tracks(i).points, 4:6, view);
ro_est = xc - xs;
ro_est = ro_est/norm(ro_est);
e1 =norm(cross(ro, ro_est));
<<<<<<< HEAD
=======
ri = v(tracks(i).points, 7:9, view);
>>>>>>> 77e8b05ee755f8118a972afe53521fb931f38ddf
tmp = [0 0 1];
N1 = xs.*tmp;
N1_norm = N1/norm(N1);
xw_normal = cross(ro, N1_norm);
e2 = dot(ro_est, xw_normal);
xc_2d = K'*xc';
xc_2d_norm = [xc_2d(1,1) xc_2d(2,1)]./xc_2d(3,1);
e3 = norm(xc_2d_norm - points_2d(tracks(i).points, :, view));
e_total = e_total + e1 + e2;
end
fval(i) = e_total/size(tracks(i).views, 2);
end
for j = 1:numViews
rotate = Rot(:,:,j);
fval(n + 6*(j-1)+1) = norm(rotate(1,:))-1;
fval(n + 6*(j-1)+2) = norm(rotate(2,:))-1;
fval(n + 6*(j-1)+3) = dot(rotate(1,:), rotate(2,:));
r3 = cross(rotate(1,:), rotate(2,:));
fval(n + 6*(j-1)+4) = r3(1)- rotate(3,1);
fval(n + 6*(j-1)+5) = r3(2)- rotate(3,2);
fval(n + 6*(j-1)+6) = r3(3)- rotate(3,3);
end
% (reshape(x(3*n+9*view -17:3*n+9*view-8),[3 3])'*...
% (x(3*i-2:3*i)'-x(3*n+9*(m-1)+3*view-5:3*n+9*(m-1)+3*view-3)'))'-xs
%fval(end+1: end + n)= xs_est(:,1)-xs(:,1);
% fval(end+1: end + n)= xs_est(:,2)-xs(:,2);
%fval(end+1: end + n)= xs_est(:,3)-xs(:,3);
%xw_normal = cross(ro, N1_norm, 2);
%fval(end+1: end+ n) = dot(ro_est, xw_normal, 2);
% fval(end+1)= norm(Rot(1,:,i-1)) -1;
% fval(end+1) = norm(Rot(2,:,i-1)) - 1;
% fval(end+1) = dot(Rot(1,:,i-1),Rot(2,:,i-1));
% r3 = cross(Rot(1,:,i-1), Rot(2,:,i-1));
% fval(end+1) = r3(1) - Rot(3,1,i-1);
% fval(end+1) = r3(2) - Rot(3,2,i-1);
% fval(end+1) = r3(3) - Rot(3,3,i-1);
end
|
github
|
fangcaoxin/Myproject-master
|
triangulateOptim.m
|
.m
|
Myproject-master/SfM/common/triangulateOptim.m
| 700 |
utf_8
|
42b18bf7d5fa641327bc7366f0de17b5
|
function xw = triangulateOptim(vec1, vec2, R_2, t_2)
% R_2, t_2 the camera pose relative world coordinate system
r_out_w1 = vec1(:, 1:3);
xs_w1 = vec1(:, 4:6);
ro2 = vec2(:, 1:3);
xs2 = vec2(:, 4:6);
r_out_w2 = ro2*R_2';
xs_w2 = xs2*R_2'+t_2';
num = size(r_out_w1, 1);
k0 =50* ones(num, 2);
opts = optimoptions('lsqnonlin','Display','iter','Algorithm','levenberg-marquardt','MaxFunEvals',3e10,'TolFun',1e-10);
out = lsqnonlin(@(k)fun(k,r_out_w1, xs_w1, r_out_w2, xs_w2),k0, [],[], opts);
xw = xs_w1 + out(:,1).*r_out_w1;
end
function fval = fun(k, r_out_w1, xs_w1, r_out_w2, xs_w2)
num = size(r_out_w1, 1);
fval = xs_w1 + k(:,1).*r_out_w1 - xs_w2 - k(:, 2).*r_out_w2;
end
|
github
|
fangcaoxin/Myproject-master
|
lagrange_pnp.m
|
.m
|
Myproject-master/SfM/common/lagrange_pnp.m
| 1,610 |
utf_8
|
de38f7fca54749f8ca6f4197c58beb2c
|
function g=lagrange_pnp(U,g0)
l = zeros(6,1);
%l = [0.5;0.5;0.5;0.5;0.5;0.5];
gg0=[g0;l];%init
f=@(gg)Ug(gg,U);%
[gg,fval,info]=fsolve(f,gg0,optimset("TolFun",3e-16,"TolX",3e-16,"MaxIter",1e20));
%options=optimoptions('fsolve','Algorithm', 'levenberg-marquardt',...
%'Display','iter',...
% 'FunctionTolerance',1e-6,'MaxFunctionEvaluations', 1e6, ...
% 'StepTolerance', 1e-6,'MaxIterations',3000);
%[gg,fval,info]=fsolve(f,gg0,options);
g=gg;
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
end
function Ug_val=Ug(gg,U)
g=gg;
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
g(13,:)=[];
UU=U'*U;
Ug_val(1)= UU(1,:)*g+gg(13)*gg(1)-gg(17)*gg(6)+gg(15)*gg(4)+ gg(18)*gg(5);
Ug_val(2)= UU(2,:)*g+gg(13)*gg(2)-gg(18)*gg(4)+gg(15)*gg(5)+gg(16)*gg(6);
Ug_val(3)= UU(3,:)*g+gg(13)*gg(3)-gg(16)*gg(5)+gg(15)*gg(6)+gg(17)*gg(4);
Ug_val(4)= UU(4,:)*g+gg(14)*gg(4)-gg(18)*gg(2)+gg(15)*gg(1)+gg(17)*gg(3);
Ug_val(5)= UU(5,:)*g+gg(14)*gg(5)-gg(16)*gg(3)+gg(15)*gg(2)+gg(18)*gg(1);
Ug_val(6)= UU(6,:)*g+gg(14)*gg(6)-gg(17)*gg(1)+gg(15)*gg(3)+gg(16)*gg(2);
Ug_val(7)= UU(7,:)*g-gg(16);
Ug_val(8)= UU(8,:)*g-gg(17);
Ug_val(9)= UU(9,:)*g-gg(18);
Ug_val(10) = UU(10, :)*g;
Ug_val(11) = UU(11, :)*g;
Ug_val(12) = UU(12, :)*g;
Ug_val(13)= (gg(1)^2+gg(2)^2+gg(3)^2-1)/2;
Ug_val(14)= (gg(4)^2+gg(5)^2+gg(6)^2-1)/2;
Ug_val(15)= gg(1)*gg(4)+gg(2)*gg(5)+gg(3)*gg(6);
Ug_val(16)= gg(2)*gg(6)-gg(3)*gg(5)-gg(7);
Ug_val(17)= gg(3)*gg(4)-gg(1)*gg(6)-gg(8);
Ug_val(18)= gg(1)*gg(5)-gg(2)*gg(4)-gg(9);
end
|
github
|
fangcaoxin/Myproject-master
|
sfm_two_view.m
|
.m
|
Myproject-master/SfM/calibration/sfm_two_view.m
| 1,860 |
utf_8
|
9de142007a0437d9b75262532066c2c3
|
function xw_est = sfm_two_view()
load imagePoints.mat
load worldPoints.mat
load historyn5.mat
in = [1 2 3 5 9];
view = [3 4]; % good result
x_best = historyn5.x(end,:);
gg1 = [x_best(view(1)*9-8:view(1)*9) x_best(end-5:end) ];
gg2 = [x_best(view(2)*9-8:view(2)*9) x_best(end-5:end) ];
x1 = imagePoints(:,:,in(view(1)));
x2 = imagePoints(:,:,in(view(2)));
K =[590.2313 0 0; 0 559.4365 0; 369.2098 272.4348 1];
c = [1 1.49 1];
Ra = 50;
ra = 46;
[xs_w1, r_out_w1] = sfm_one_view(gg1, x1, K, c, Ra, ra);
[xs_w2, r_out_w2] = sfm_one_view(gg2, x2, K, c, Ra, ra);
v1 = sum(r_out_w1.*r_out_w1,2);
v2 = sum(r_out_w2.*r_out_w2,2);
v3 = sum(r_out_w1.*r_out_w2,2);
w1 = sum((xs_w2-xs_w1).*r_out_w1,2)
w2 = sum((xs_w2-xs_w1).*r_out_w2,2);
s1 = (w1.*v2 - w2.*v3)./(v1.*v2-v3.*v3);
s2 = (s1.*v3 -w2)./v2;
xw_est = (xs_w1 + s1.*r_out_w1 + xs_w2 + s2.*r_out_w2)/2;
error_x = xw_est(:,1)- worldPoints(:,1);
error_y = xw_est(:,2)- worldPoints(:,2);
error_z = xw_est(:,3);
error = error_x.*error_x + error_y.*error_y + error_z.*error_z;
error_sum = sqrt(sum(error, 1))/70;
% save xw_est.mat xw_est
%% draw
Z = zeros(70,1);
[loc1, ori1] = camera_pose(gg1)
[loc2, ori2] = camera_pose(gg2);
cam1 = plotCamera('Location',loc1, 'Orientation', ori1,'Size', 15);
hold on
cam2 = plotCamera('Location',loc2, 'Orientation', ori2,'Size', 15, 'color', [0 0 1]);
hold on
scatter3(worldPoints(:,1), worldPoints(:,2), Z, 15,'MarkerFaceColor',[0 0 1]);
hold on
scatter3(xw_est(:,1), xw_est(:,2), xw_est(:,3), 15, 'MarkerFaceColor',[1 0 0]);
grid on
xlabel('X(mm)');
ylabel('Y(mm)');
zlabel('Z(mm)');
legend('groud truth', 'constructed points', 'Location', 'northeast');
axis([-150 380 0 380 -600 20]);
end
function [loc, ori] = camera_pose(gg)
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
ori = Rot';
loc = -Rot'*ts;
end
|
github
|
fangcaoxin/Myproject-master
|
backProjectionError.m
|
.m
|
Myproject-master/SfM/calibration/backProjectionError.m
| 2,918 |
utf_8
|
0d40c57c1eea57e083e2e9c610eea17b
|
function val = backProjectionError(x, x_w)
load res.mat
K =[590.2313 0 0; 0 559.4365 0; 369.2098 272.4348 1];
c = [1 1.49 1];
Ra = 50;
ra = 46;
r1 = [res(1) res(2) res(3)];
r2 = [res(4) res(5) res(6)];
r1 = r1/norm(r1);
r2 = r2/norm(r2);
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [res(7); res(8);res(9)];
tc = [res(10); res(11); res(12)];
ac = [res(13); res(14); res(15)]; %rotate x, y, z
Rc = angle2Rot(res(13), res(14), res(15));
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in*Rc';
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-(r_in(:,3)*tc(3) + r_in(:,2)*tc(2)) + sqrt((r_in(:,3).*tc(3) + r_in(:,2).*tc(2)).^2 -(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(tc(2)*tc(2)+ tc(3)*tc(3)-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
%if(d+r_in(3)*t_0 < 0)
% t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
%end
p1 = r_in.* t_0 + tc'; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm, 2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm,2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
xs_w =(x_s - ts')*Rot;
r_out_w = r_out_norm * Rot;
lamda = -xs_w(:,3)./r_out_w(:,3);
x_chess(:,1) = xs_w(:,1) + lamda.*r_out_w(:,1);
x_chess(:,2) = xs_w(:,2) + lamda.*r_out_w(:,2);
error = x_chess - x_w;
x_chess
val = norm(error, 'fro');
end
function rotate = angle2Rot(alpha, beta, gamma)
rotate = zeros(3,3);
r1 = [cosd(gamma) sind(gamma) 0;
-sind(gamma) cosd(gamma) 0;
0 0 1 ];
r2 = [cosd(beta) 0 -sind(beta);
0 1 0;
sind(beta) 0 cosd(beta)];
r3 = [1 0 0;
0 cosd(alpha) sind(alpha);
0 -sind(alpha) cosd(alpha)];
rotate = r1*r2*r3;
end
|
github
|
fangcaoxin/Myproject-master
|
fermat_flat.m
|
.m
|
Myproject-master/SfM/flat/fermat_flat.m
| 699 |
utf_8
|
3ce8b3c716837ff8e8cae3c065d94440
|
% use fermat to determine the intersect point at glass
function [c]=fermat_flat(point,n1,n2,n3,w,d,cali)
if(cali > 0)
n3 = n1;
end
v = [-point(1), -point(2), -point(3)];
v = v/norm(v);
t = (d+w-point(3))/v(3);
t1 = (d-point(3))/v(3);
x0 = point(1) + v(1)*t ; % outer
y0 = point(2) + v(2)*t;
x1 = point(1) + v(1)*t1; %inner
y1 = point(2) + v(2)*t1;
c0 = [x0;y0;x1;y1];
x = point(1);
y = point(2);
z = point(3);
f=@(c)L_flat(c,x,y,z,n1,n2,n3,w,d);
options=optimoptions('fmincon','Display','off'); %only matlab
% [c,fval,info]=fsolve(f,c0,options);
c = fmincon(f, c0,[],[],[],[],[-25 -25 -25 -23], [25 25 25 23],[], options);
%fval
%info
end
|
github
|
fangcaoxin/Myproject-master
|
simulation_flat.m
|
.m
|
Myproject-master/SfM/flat/simulation_flat.m
| 3,359 |
utf_8
|
7e70c44b36a0cc4084871bcaabf1724c
|
%%simulate SfM
%% load 3D points
addpath('../common');
load('teapot.mat');
teapot1 = teapot(1:10:end,:) + [0 0 600]; % Z>600
%% transform 3D points to another view(R,t) external matrix
load camera_motion.mat
load parameter.mat
teapot2 = (teapot1-trans')*rotate;
teapot1 = cast(teapot1,'double');
teapot2 = cast(teapot2,'double');
%% intrinsic matrix
K = [fx 0 640; 0 fy 480; 0 0 1];
%% no refraction, directly projection
teapot_c1 = teapot1*K';
teapot_c2 = teapot2*K';
teapot_c1_norm = teapot_c1(:,1:2)./teapot_c1(:,3);
teapot_c2_norm = teapot_c2(:,1:2)./teapot_c2(:,3);
% plot(teapot_c2_norm(:,1), teapot_c2_norm(:,2),'r.');
% axis([0 1280 0 960]);
% hold on
%% considering refraction 3d->2d
% image_points_1 = point3dt2d_flat(teapot1);
% image_points_2 = point3dt2d_flat(teapot2);
% plot(image_points_2(:,1), image_points_2(:,2), '.');
% save image_points_1.mat image_points_1
% save image_points_2.mat image_points_2
%% considering refraction 2d->3d
load image_points_1.mat
load image_points_2.mat
[r_out_norm1, x_s1] = ray_out_flat(image_points_1,d_flat, w, 0);
[r_out_norm2, x_s2] = ray_out_flat(image_points_2,d_flat, w, 0);
%% estimate R and t
matchedVector1 = [r_out_norm1 x_s1];
matchedVector2 = [r_out_norm2 x_s2];
testVector(:,:,1) = matchedVector1(1:2,:);
testVector(:,:,2) = matchedVector2(1:2,:);
U=umatrix_generator_general(matchedVector1, matchedVector2);
%[Rp_est, tp_est] = R_t_estimator_pespective(matchedVector1,matchedVector2);
[R_est,t_est]=R_t_estimator_pixel(U, testVector);
rotate
R_est
trans
t_est
%% reconstruction
xw = triangulateR(matchedVector1, matchedVector2, R_est, t_est);
error = norm(xw-teapot1)/size(xw, 1);
vec1_no_scale = vectorNoScale(image_points_1);
vec2_no_scale = vectorNoScale(image_points_2);
%[Rp_est, tp_est] = R_t_estimator_pespective(matchedVector1,matchedVector2);
%xw_no_scale = triangulate(vec1_no_scale, vec2_no_scale, Rp_est, tp_est);
%% draw
color1 = [1 0 0];
draw(R_est, t_est, rotate, trans, xw, color1);
hold on
scatter3(teapot1(:,1), teapot1(:,2), teapot1(:,3), 5, 'MarkerFaceColor',[0 0 1], 'MarkerEdgeColor', [0 0 0.5]);
axis equal
% hold on
% draw(Rotate, t_no_scale, 50*xw_no_scale, [0 1 0]);
legend('Reconstructed by RSfM','Ground truth');
function draw(R_est, t_est, rotate, trans, xw_est, color)
loc1 = [0;0;0];
loc2 = t_est;
ori1 = [1 0 0; 0 1 0; 0 0 1];
ori2 = R_est;
cam1 = plotCamera('Location',loc1, 'Orientation', ori1,'Size', 20,...
'label', '1', 'AxesVisible', false);
hold on
cam2 = plotCamera('Location',loc2, 'Orientation', ori2,'Size', 20,...
'Color',[0 0 1], 'label', 'Estimated 2', 'AxesVisible', false);
hold on
cam4 = plotCamera('Location',trans, 'Orientation', rotate,'Size', 20,...
'Color',[0 1 0], 'label', 'Ground truth 2', 'AxesVisible', false);
% hold on
% scatter3(worldPoints(:,1), worldPoints(:,2), Z,'MarkerFaceColor',[0 0 1]);
% hold on
scatter3(xw_est(:,1), xw_est(:,2), xw_est(:,3), 5, 'MarkerFaceColor',color, 'MarkerEdgeColor', 0.5*color);
grid on
xlabel('X[mm]');
ylabel('Y[mm]');
zlabel('Z[mm]');
%legend('Reconstructed by RSfM', 'Ground truth', 'Reconstructed by PSfM (50x)');
end
function vector_no_scale = vectorNoScale(x)
load parameter.mat
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
x_s = zeros(size(x, 1),3);
vector_no_scale = [r_in, x_s];
end
|
github
|
fangcaoxin/Myproject-master
|
error_min.m
|
.m
|
Myproject-master/SfM/cylindrical/error_min.m
| 2,822 |
utf_8
|
0fa3d4b232c0453c67f09777904807d4
|
function res = error_min(init, x,x_w, K, c, Ra, ra)
fun = @(gg)fun1(gg, x, K, c, Ra, ra) - x_w;
lb = [-1 -1 -1 -1 -1 -1 -500 -500 0 0];
ub = [1 1 1 1 1 1 500 500 800 45];
%options=optimoptions('lsqnonlin', 'Display','iter','FunctionTolerance',1e-10);
opts = optimset("MaxIter", 1e5, "Display", "on");
res = lsqnonlin(fun, init,lb, ub, opts);
%problem = createOptimProblem('lsqnonlin','x0',init,'objective',fun,...
% 'lb',lb,'ub',ub);
%ms = MultiStart;
%[xx,f] = run(ms, problem, 30);
%f
%res = xx;
fun
end
function val = fun1(gg, x, K, c, Ra, ra)
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r1 = r1/norm(r1);
r2 = r2/norm(r2);
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
d = gg(10);
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u = x(1) - hcx; % coord on image sensor
v = x(2) - hcy;
r_in=[u, v*fx/fy, fx]; % ray in air
r_in = r_in/norm(r_in); % normalize
t_0 = (-r_in(3)*d + sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*...
r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
if(d+r_in(3)*t_0 < 0)
t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
end
p1 = [r_in(1)*t_0 r_in(2)*t_0 r_in(3)*t_0+d]; % point at glass and air
N = [0 p1(2) p1(3)]; % normal between air and glass
N_norm = N/norm(N);
s1 = norm(cross(r_in, N_norm)); % sin(theta_1)
c1 =norm( r_in.*N_norm); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1/n2-sqrt(1- n1*n1/(n2*n2)*s1*s1))*N_norm;
r_glass_norm = r_glass/norm(r_glass);
t_1 =( -(p1(2)*r_glass_norm(2) +p1(3)*r_glass_norm(3)) + sqrt((p1(2)*r_glass_norm(2) +p1(3)*r_glass_norm(3))*(p1(2)*r_glass_norm(2) +p1(3)*r_glass_norm(3))...
-(r_glass_norm(2)*r_glass_norm(2)+r_glass_norm(3)*r_glass_norm(3))*(p1(2)*p1(2) + p1(3)*p1(3)-R*R)))/(r_glass_norm(2)*r_glass_norm(2)+r_glass_norm(3)*r_glass_norm(3));
if(p1(3)+ t_1*r_glass_norm(3)<0)
t_1 =( -(p1(2)*r_glass_norm(2) +p1(3)*r_glass_norm(3)) - sqrt((p1(2)*r_glass_norm(2) +p1(3)*r_glass_norm(3))*(p1(2)*r_glass_norm(2) +p1(3)*r_glass_norm(3))...
-(r_glass_norm(2)*r_glass_norm(2)+r_glass_norm(3)*r_glass_norm(3))*(p1(2)*p1(2) + p1(3)*p1(3)-R*R)))/(r_glass_norm(2)*r_glass_norm(2)+r_glass_norm(3)*r_glass_norm(3));
end
p2 = [p1(1)+t_1*r_glass_norm(1) p1(2)+t_1*r_glass_norm(2) p1(3)+t_1*r_glass_norm(3)]; % point at glass and water
N1 = [0 p2(2) p2(3)]; % normal between glass and water
N1_norm = N1/norm(N1);
s2 = norm(cross(r_glass_norm,N1_norm));
c2 = norm(r_glass_norm.*N1_norm);
r_out = n2/n3*r_glass_norm - (n2/n3*c2-sqrt(1- n2*n2/(n3*n3)*s2*s2))*N1_norm;
r_out = r_out/norm(r_out);
x_s = p2;
xs_w = Rot'*(x_s' - ts);
r_out_w = Rot'*r_out';
lamda = -xs_w(3)/r_out_w(3);
val(1) = xs_w(1) + lamda*r_out_w(1);
val(2) = xs_w(2) + lamda*r_out_w(2);
end
|
github
|
fangcaoxin/Myproject-master
|
sfm_multi_view_Rt.m
|
.m
|
Myproject-master/SfM/cylindrical/sfm_multi_view_Rt.m
| 3,436 |
utf_8
|
0dd3f7953db9347d06b7a6a5beb704a7
|
function [xw_est, R_opm, t_opm] = sfm_multi_view_Rt(imagePoints, views)
% calibration result
gg = [ -0.72005 2.06590 42.66089 -0.28110 -1.39643 -1.96133 ];
K =[590.2313 0 0; 0 559.4365 0; 369.2098 272.4348 1];
c = [1 1.49 1];
Ra = 50;
ra = 46;
n = size(imagePoints, 1);
m = size(views, 2); % the number of view
Rt = zeros(4,3,m);
% xw_average = zeros(n, 3);
xw = zeros(n, 3, m);
v = zeros(n, 6, m);
base_view = views(1);
prevPoints = imagePoints(:,:, base_view);
prevLabels = set_label(prevPoints);
[xs, ro] = sfm_one_view_Rt(gg, prevPoints, K, c, Ra, ra);
Rt(:,:,1) = [1 0 0; 0 1 0; 0 0 1; 0 0 0];
prevBearing = [ro xs];
view = struct('points',{}, 'label',{},'rot',{},'trans',{}, 'bearing_vector',{});
view = addview(view, prevPoints, prevLabels, eye(3), zeros(1,3), prevBearing,1);
matchedPairs= zeros(n,m);
xw_total = zeros(n, 3);
for i = 2:m
currPoints = imagePoints(:,:, views(i));
currLabels = set_label(currPoints);
[xs1, ro1] = sfm_one_view_Rt(gg, currPoints, K, c, Ra, ra);
currBearing = [ro1 xs1];
[matchedVector1, matchedVector2, indexPairs] = matchVectors...
(prevBearing,currBearing,prevLabels,currLabels);
U=umatrix_generator_general(matchedVector1, matchedVector2);
[R_est,t_est]=R_t_estimator_pixel(U);
prevRot = view(i-1).rot;
prevTrans = view(i-1).trans;
rot = R_est* prevRot;
trans = prevTrans + t_est'*prevRot;
view = addview(view, currPoints, currLabels, rot, trans, currBearing,i);
%Out = opengv('seventeenpt',[1:1:size(bearing_vec_select, 1)],bearing_vec1_select', bearing_vec_select');
%R_est = Out(:,1:3);
%t_est = Out(:,4);
matchedPairs(:,1) = matchedPairs(:,1) + indexPairs;
matchedPairs(:,i) = indexPairs;
points_num = sum(matchedPairs(:,1)>0);
xw = zeros(n, 3);
for j = 2:i
xyzPoints = triangulate(view(j-1).bearing_vector, view(j).bearing_vector,...
view(j-1).rot, view(j-1).trans, view(j).rot, view(j).trans, matchedPairs, j);
[rows cols] = find(matchedPairs(:,j) > 0);
xw(rows,:) = xyzPoints;
xw_total = xw_total + xw;
%scatter3(xyzPoints(:,1), xyzPoints(:,2), xyzPoints(:,3));
end
xw_average = sum(xw_total, 3)./matchedPairs(:,1);
%scatter3(xw_average(:,1), xw_average(:,2), xw_average(:,3));
out = optim_point(xw_average, view, i, n, matchedPairs);
xw_est = reshape(out(1:3*points_num),[points_num, 3]);
scatter3(xw_est(:,1), xw_est(:,2), xw_est(:,3));
R_opm = reshape(out(3*points_num+1:3*points_num + 9*(i-1)),[3,3, i-1]);
t_opm = reshape(out(3*points_num + 9*(i-1)+1:end), [1 3 i-1]);
view = updateView(view, R_opm, t_opm, i);
prevBearing = currBearing;
prevLabels = currLabels;
end
end
function xw = triangulate(vec1Full, vec2Full, R1_est, t1_est, R2_est, t2_est, matchedPairs, k)
[rows cols] = find(matchedPairs(:,k) > 0);
vec1 = vec1Full(rows,:);
vec2 = vec2Full(rows,:);
r_out_w1 = vec1(:, 1:3)*R1_est';
xs_w1 = vec1(:, 4:6)*R1_est' + t1_est;
ro2 = vec2(:, 1:3);
xs2 = vec2(:, 4:6);
r_out_w2 = ro2*R2_est';
xs_w2 = xs2*R2_est';
xs_w2 = xs_w2 + t2_est;
v1 = sum(r_out_w1.*r_out_w1,2);
v2 = sum(r_out_w2.*r_out_w2,2);
v3 = sum(r_out_w1.*r_out_w2,2);
w1 = sum((xs_w2-xs_w1).*r_out_w1,2);
w2 = sum((xs_w2-xs_w1).*r_out_w2,2);
s1 = (w1.*v2 - w2.*v3)./(v1.*v2-v3.*v3);
s2 = (s1.*v3 -w2)./v2;
xw = (xs_w1 + s1.*r_out_w1 + xs_w2 + s2.*r_out_w2)/2;
end
|
github
|
fangcaoxin/Myproject-master
|
sfm_one_view.m
|
.m
|
Myproject-master/SfM/cylindrical/sfm_one_view.m
| 2,595 |
utf_8
|
9e4269061aa317e78af57939bcbf78e7
|
function [xs_w, r_out_w] = sfm_one_view(gg, x, K, c, Ra, ra)
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
tc = [gg(10); gg(11); gg(12)];
ac = [gg(13); gg(14); gg(15)]; %rotate x, y, z
Rc = angle2Rot(gg(13), gg(14), gg(15));
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in*Rc';
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-(r_in(:,3)*tc(3) + r_in(:,2)*tc(2)) + sqrt((r_in(:,3).*tc(3) + r_in(:,2).*tc(2)).^2 -(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(tc(2)*tc(2)+ tc(3)*tc(3)-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
%if(d+r_in(3)*t_0 < 0)
% t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
%end
p1 = r_in.* t_0 + tc'; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm, 2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm, 2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
xs_w =(x_s - ts')*Rot;
r_out_w = r_out_norm * Rot;
end
function rotate = angle2Rot(alpha, beta, gamma)
rotate = zeros(3,3);
r1 = [cosd(gamma) sind(gamma) 0;
-sind(gamma) cosd(gamma) 0;
0 0 1 ];
r2 = [cosd(beta) 0 -sind(beta);
0 1 0;
sind(beta) 0 cosd(beta)];
r3 = [1 0 0;
0 cosd(alpha) sind(alpha);
0 -sind(alpha) cosd(alpha)];
rotate = r1*r2*r3;
end
|
github
|
fangcaoxin/Myproject-master
|
sfm_one_view_Rt.m
|
.m
|
Myproject-master/SfM/cylindrical/sfm_one_view_Rt.m
| 2,431 |
utf_8
|
b9bd89530f1ecbac0e443f30f0d64b79
|
function [xs, ro] = sfm_one_view_Rt(gg, x, K, c, Ra, ra)
tc = [gg(1); gg(2); gg(3)];
ac = [gg(4); gg(5); gg(6)]; %rotate x, y, z
Rc = angle2Rot(gg(4), gg(5), gg(6));
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in*Rc';
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-(r_in(:,3)*tc(3) + r_in(:,2)*tc(2)) + sqrt((r_in(:,3).*tc(3) + r_in(:,2).*tc(2)).^2 -(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(tc(2)*tc(2)+ tc(3)*tc(3)-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
%if(d+r_in(3)*t_0 < 0)
% t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
%end
p1 = r_in.* t_0 + tc'; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm, 2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm, 2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
xs = p2;
ro = r_out_norm;
end
function rotate = angle2Rot(alpha, beta, gamma)
rotate = zeros(3,3);
r1 = [cosd(gamma) sind(gamma) 0;
-sind(gamma) cosd(gamma) 0;
0 0 1 ];
r2 = [cosd(beta) 0 -sind(beta);
0 1 0;
sind(beta) 0 cosd(beta)];
r3 = [1 0 0;
0 cosd(alpha) sind(alpha);
0 -sind(alpha) cosd(alpha)];
rotate = r1*r2*r3;
end
|
github
|
fangcaoxin/Myproject-master
|
fermat.m
|
.m
|
Myproject-master/SfM/cylindrical/fermat.m
| 1,650 |
utf_8
|
da4bc1faf6de6486ebefb87c32310e6c
|
% use fermat to determine the intersect point at glass
function [c]=fermat(point,n1,n2,n3,R,r,d, cali)
load parameter.mat
if(cali > 0)
n3 = n1;
end
% point = double(point);
v = [point(1), point(2), point(3)-d];
% v =[0 point(2)-camera_center(2) point(3)-camera_center(3)];
v = v/norm(v);
t =( -(point(2)*v(2) +point(3)*v(3)) + sqrt((point(2)*v(2) +point(3)*v(3))*(point(2)*v(2) +point(3)*v(3))...
-(v(2)*v(2)+v(3)*v(3))*(point(2)*point(2) + point(3)*point(3)-R*R)))/(v(2)*v(2)+v(3)*v(3));
t1 = ( -(point(2)*v(2) +point(3)*v(3)) + sqrt((point(2)*v(2) +point(3)*v(3))*(point(2)*v(2) +point(3)*v(3))...
-(v(2)*v(2)+v(3)*v(3))*(point(2)*point(2) + point(3)*point(3)-r*r)))/(v(2)*v(2)+v(3)*v(3));
z0 = point(3) + v(3)*t;
z1 = point(3) + v(3)*t1;
if(z0 < 0)
t =( -(point(2)*v(2) +point(3)*v(3)) - sqrt((point(2)*v(2) +point(3)*v(3))*(point(2)*v(2) +point(3)*v(3))-(v(2)*v(2)+v(3)*v(3))*(point(2)*point(2) + point(3)*point(3)-R*R)))/(v(2)*v(2)+v(3)*v(3));
end
if(z1 < 0)
t1 =( -(point(2)*v(2) +point(3)*v(3)) - sqrt((point(2)*v(2) +point(3)*v(3))*(point(2)*v(2) +point(3)*v(3))-(v(2)*v(2)+v(3)*v(3))*(point(2)*point(2) + point(3)*point(3)-r*r)))/(v(2)*v(2)+v(3)*v(3));
end
x0 = point(1) + v(1)*t ;
y0 = point(2) + v(2)*t;
x1 = point(1) + v(1)*t1;
y1 = point(2) + v(2)*t1;
c0 = [x0;y0;x1;y1];
x = point(1);
y = point(2);
z = point(3);
f=@(c)L(c,x,y,z,n1,n2,n3,R,r,d);
options=optimoptions('fmincon','Display','off'); %only matlab
% [c,fval,info]=fsolve(f,c0,options);
c = fmincon(f, c0,[],[],[],[],[-25 -25 -25 -23], [25 25 25 23],[], options);
%fval
%info
end
|
github
|
fangcaoxin/Myproject-master
|
error_min_2.m
|
.m
|
Myproject-master/SfM/cylindrical/error_min_2.m
| 8,253 |
utf_8
|
e95c3c41468a15ed9c19dbe38c683124
|
function res = error_min_2(init, x,x_w, K, c, Ra, ra,lb,ub, N)
historyn5.x = [];
historyn5.fval = [];
fun = @(ga)fun_total(ga, x, x_w, K, c, Ra, ra, N);
% options=optimoptions(@fmincon, 'Display','iter', 'Algorithm','sqp',...
% 'MaxIterations',3000, 'MaxFunctionEvaluations', 1e4, 'ConstraintTolerance', 1e-1);
options=optimoptions(@fmincon, 'OutputFcn', @outfun,'Display','iter', 'Algorithm','sqp',...
'MaxIterations',3000, 'MaxFunctionEvaluations', 1e4, 'ConstraintTolerance', 1e-1);
% opts = optimset("MaxIter", 1e5, "Display", "on");
% nonlcon1 = @(gg)cameraRot1(gg);
nonlcon1 = @(ga)cameraRot_total(ga, x, x_w, K , c, Ra, ra, N);
A = [];
b = [];
Aeq = [];
beq = [];
res = fmincon(fun, init, A, b, Aeq, beq, lb, ub, nonlcon1,options);
% problem =createOptimProblem('fmincon', 'objective', fun,'x0', init, 'lb', lb, 'ub', ub, 'nonlcon', nonlcon1,'options',options);
% gs = GlobalSearch;
% [res, val]= run(gs, problem);
%[gg, val] = sqp(init, fun, nonlcon1, [], lb, ub);
% [res, val, info, iter, nf, lambda] = sqp(init, fun, nonlcon1, [], lb, ub);
res
% val
function[c, ceq] = cameraRot1(gg)
c =[];
ceq(1,1) = gg(1)^2 + gg(2)^2 + gg(3)^2 -1;
ceq(2,1) = gg(4)^2 + gg(5)^2 + gg(6)^2 -1;
ceq(3,1) = gg(1)*gg(4) + gg(2)*gg(5) + gg(3)*gg(6);
end
function [c1, ceq] = cameraRot_total(ga, uv, x_w, K , c, Ra, ra, N)
ceq = zeros(15*N+3,1);
for i = 1:N
gg = [ga(9*i-8:9*i) ga(9*N+1: end)];
[c1, ceq(15*i-14:15*i,1)] = cameraRot(gg, uv(:,:,i), x_w, K , c, Ra, ra);
end
end
function[c1, ceq] = cameraRot(gg, uv, x_w, K , c, Ra, ra)
c1=[];
% ceq = zeros(3+size(uv,1),1);
ceq(1,1) = gg(1)^2 + gg(2)^2 + gg(3)^2 -1;
ceq(2,1) = gg(4)^2 + gg(5)^2 + gg(6)^2 -1;
ceq(3,1) = gg(1)*gg(4) + gg(2)*gg(5) + gg(3)*gg(6);
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
tc = [gg(10); gg(11); gg(12)];
ac = [gg(13); gg(14); gg(15)]; %rotate x, y, z
Rc = angle2Rot(gg(13), gg(14), gg(15));
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = uv - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in*Rc';
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-(r_in(:,3)*tc(3) + r_in(:,2)*tc(2)) + sqrt((r_in(:,3).*tc(3) + r_in(:,2).*tc(2)).^2 -(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(tc(2)*tc(2)+ tc(3)*tc(3)-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
p1 = r_in.* t_0 + tc'; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm,2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm,2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
x_w(:, 3) = 0;
x_wc = x_w * Rot' + ts';
x_out = x_wc - x_s;
x_out_norm = x_out./sqrt(sum(x_out.*x_out, 2));
angle = cross(x_out_norm, r_out_norm);
angle_norm = sqrt(sum(angle.*angle, 2));
ceq(4: 6,1) = angle_norm(1:3);
ceq(7: 9,1) = angle_norm(24:26);
ceq(10: 12,1) = angle_norm(50:52);
ceq(13: 15,1) = angle_norm(68:70);
end
function val_total = fun_total(ga, x, x_w, K, c, Ra, ra, N)
gg = [ga(1:9) ga(9*N+1:end)];
val_total = fun1(gg, x(:,:,1), x_w, K, c, Ra, ra);
for i = 2:N
gg = [ga(i*9-8:i*9) ga(9*N+1:end)];
val_total= val_total + fun1(gg, x(:,:,i), x_w, K, c, Ra, ra);
end
end
function val = fun1(gg, x, x_w, K, c, Ra, ra)
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r1 = r1/norm(r1);
r2 = r2/norm(r2);
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
tc = [gg(10); gg(11); gg(12)];
ac = [gg(13); gg(14); gg(15)]; %rotate x, y, z
Rc = angle2Rot(gg(13), gg(14), gg(15));
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in*Rc';
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-(r_in(:,3)*tc(3) + r_in(:,2)*tc(2)) + sqrt((r_in(:,3).*tc(3) + r_in(:,2).*tc(2)).^2 -(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(tc(2)*tc(2)+ tc(3)*tc(3)-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
%if(d+r_in(3)*t_0 < 0)
% t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
%end
p1 = r_in.* t_0 + tc'; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm, 2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm, 2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
xs_w =(x_s - ts')*Rot;
r_out_w = r_out_norm * Rot;
lamda = -xs_w(:,3)./r_out_w(:,3);
x_chess(:,1) = xs_w(:,1) + lamda.*r_out_w(:,1);
x_chess(:,2) = xs_w(:,2) + lamda.*r_out_w(:,2);
error = x_chess - x_w;
val = error.*error;
val = sum(val, 2);
val = sum(val, 1);
% val = norm(error, 'fro');
end
function rotate = angle2Rot(alpha, beta, gamma)
rotate = zeros(3,3);
r1 = [cosd(gamma) sind(gamma) 0;
-sind(gamma) cosd(gamma) 0;
0 0 1 ];
r2 = [cosd(beta) 0 -sind(beta);
0 1 0;
sind(beta) 0 cosd(beta)];
r3 = [1 0 0;
0 cosd(alpha) sind(alpha);
0 -sind(alpha) cosd(alpha)];
rotate = r1*r2*r3;
end
function stop = outfun(x,optimValues,state)
stop = false;
switch state
case 'init'
hold on
case 'iter'
% Concatenate current point and objective function
% value with history. x must be a row vector.
historyn5.fval = [historyn5.fval; optimValues.fval];
historyn5.x = [historyn5.x; x];
% plot(ga(48),optimValues.fval, 'o');
% optimValues.fval
% Concatenate current search direction with
% searchdir.
% searchdir = [searchdir;...
% optimValues.searchdirection'];
% plot(x(1),x(2),'o');
% Label points with iteration number and add title.
% Add .15 to x(1) to separate label from plotted 'o'
% text(x(1)+.15,x(2),...
% num2str(optimValues.iteration));
% title('Sequence of Points Computed by fmincon');
case 'done'
save historyn5.mat historyn5;
hold off
otherwise
end
end
end
|
github
|
fangcaoxin/Myproject-master
|
error_min_1.m
|
.m
|
Myproject-master/SfM/cylindrical/error_min_1.m
| 5,901 |
utf_8
|
4542da36101a814cb88048da1e5029ab
|
function res = error_min_1(init, x,x_w, K, c, Ra, ra)
fun = @(gg)fun1(gg, x, x_w, K, c, Ra, ra);
lb = [-1 -1 -1 -1 -1 -1 -500 -500 0 0];
ub = [1 1 1 1 1 1 500 500 800 43];
options=optimoptions(@fmincon, 'Display','iter', 'Algorithm','sqp',...
'MaxIterations',3000, 'MaxFunctionEvaluations', 1e5,'ConstraintTolerance', 1e-3);
% opts = optimset("MaxIter", 1e5, "Display", "on");
% nonlcon1 = @(gg)cameraRot1(gg);
nonlcon1 = @(gg)cameraRot(gg, x, x_w, K , c, Ra, ra);
A = [];
b = [];
Aeq = [];
beq = [];
res = fmincon(fun, init, A, b, Aeq, beq, lb, ub, nonlcon1,options);
% problem =createOptimProblem('fmincon', 'objective', fun,'x0', init, 'lb', lb, 'ub', ub, 'nonlcon', nonlcon1,'options',options);
% gs = GlobalSearch;
% [res, val]= run(gs, problem);
res
end
function [c,ceq] = cameraRot1(gg)
c = [];
ceq(1,1) = gg(1)^2 + gg(2)^2 + gg(3)^2 -1;
ceq(2,1) = gg(4)^2 + gg(5)^2 + gg(6)^2 -1;
ceq(3,1) = gg(1)*gg(4) + gg(2)*gg(5) + gg(3)*gg(6);
end
function [c1, ceq] = cameraRot(gg, uv, x_w, K , c, Ra, ra)
c1 =[];
ceq = zeros(3+size(uv,1),1);
ceq(1,1) = gg(1)^2 + gg(2)^2 + gg(3)^2 -1;
ceq(2,1) = gg(4)^2 + gg(5)^2 + gg(6)^2 -1;
ceq(3,1) = gg(1)*gg(4) + gg(2)*gg(5) + gg(3)*gg(6);
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
d = gg(10);
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = uv - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
%u = uv(:,1) - hcx; % coord on image sensor
%v = uv(:,2) - hcy;
%r_in=[u, v*fx/fy, fx]; % ray in air
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-r_in(:,3)*d + sqrt(r_in(:,3).*r_in(:,3)*d*d-(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(d*d-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
%if(d+r_in(3)*t_0 < 0)
% t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
%end
p1 = r_in.* t_0 + [0 0 d]; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm,2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm,2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
x_w(:, 3) = 0;
x_wc = x_w * Rot' + ts';
x_out = x_wc - x_s;
x_out_norm = x_out./sqrt(sum(x_out.*x_out, 2));
angle = cross(x_out_norm, r_out_norm);
angle_norm = sqrt(sum(angle.*angle, 2));
ceq(4,1) = angle_norm(1);
ceq(5,1) = angle_norm(25);
ceq(6,1) = angle_norm(50);
ceq(7,1) = angle_norm(60);
%ceq(8: 9,1) = angle_norm(50:51);
% ceq(10,1) = angle_norm(70);
end
function val = fun1(gg, x, x_w, K, c, Ra, ra)
r1 = [gg(1) gg(2) gg(3)];
r2 = [gg(4) gg(5) gg(6)];
r1 = r1/norm(r1);
r2 = r2/norm(r2);
r3 = cross(r1,r2);
Rot = [r1;r2;r3];
ts = [gg(7); gg(8);gg(9)];
d = gg(10);
hcx = K(3,1);
hcy = K(3,2);
fx = K(1,1);
fy = K(2,2);
n1 = c(1);
n2 = c(2);
n3 = c(3);
R = Ra;
r = ra;
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
t_0 = (-r_in(:,3)*d + sqrt(r_in(:,3).*r_in(:,3)*d*d-(r_in(:,2).*r_in(:,2)+r_in(:,3).*...
r_in(:,3))*(d*d-r*r)))./(r_in(:,2).*r_in(:,2)+r_in(:,3).*r_in(:,3));
%if(d+r_in(3)*t_0 < 0)
% t_0 = (-r_in(3)*d - sqrt(r_in(3)*r_in(3)*d*d-(r_in(2)*r_in(2)+r_in(3)*r_in(3))*(d*d-r*r)))/(r_in(2)*r_in(2)+r_in(3)*r_in(3));
%end
p1 = r_in.* t_0 + [0 0 d]; % point at glass and air
tmp = [0 1 1];
coeff = repmat(tmp, size(p1,1), 1);
N = p1.* coeff; % normal between air and glass
N_norm = N./sqrt(sum(N.*N, 2));
s1 = cross(r_in, N_norm,2); % sin(theta_1)
s1_norm = sqrt(sum(s1.*s1,2));
c1_norm = dot(r_in, N_norm,2); % cos(theta_1)
r_glass = n1*r_in/n2 - (n1*c1_norm./n2-sqrt(1- n1*n1/(n2*n2)*s1_norm.*s1_norm)).*N_norm;
r_glass_norm = r_glass./sqrt(sum(r_glass.*r_glass, 2));
t_1 =( -(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)) + sqrt((p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3)).*(p1(:,2).*r_glass_norm(:,2) +p1(:,3).*r_glass_norm(:,3))...
-(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3)).*(p1(:,2).*p1(:,2) + p1(:,3).*p1(:,3)-R*R)))./(r_glass_norm(:,2).*r_glass_norm(:,2)+r_glass_norm(:,3).*r_glass_norm(:,3));
p2 = p1 + t_1.*r_glass_norm; % point at glass and water
tmp = [0 1 1];
coeff = repmat(tmp, size(p2,1), 1);
N1 = p2.* coeff; % normal between glass and water
N1_norm = N1./sqrt(sum(N1.*N1,2));
s2 = cross(r_glass_norm,N1_norm,2);
s2_norm = sqrt(sum(s2.*s2, 2));
c2_norm = dot(r_glass_norm, N1_norm, 2);
r_out = n2/n3*r_glass_norm - (n2/n3*c2_norm - sqrt(1- n2*n2/(n3*n3)*s2_norm.*s2_norm)).*N1_norm;
r_out_norm = r_out./sqrt(sum(r_out.*r_out, 2));
x_s = p2;
xs_w =(x_s - ts')*Rot;
r_out_w = r_out_norm * Rot;
lamda = -xs_w(:,3)./r_out_w(:,3);
x_chess(:,1) = xs_w(:,1) + lamda.*r_out_w(:,1);
x_chess(:,2) = xs_w(:,2) + lamda.*r_out_w(:,2);
error = x_chess - x_w;
val = norm(error, 'fro');
end
|
github
|
fangcaoxin/Myproject-master
|
simulate_sfm.m
|
.m
|
Myproject-master/SfM/cylindrical/simulate_sfm.m
| 3,750 |
utf_8
|
2675724566b0af6a7d0daac5c67cfdef
|
%%simulate SfM
%% load 3D points
addpath('common')
load('teapot.mat');
teapot1 = teapot(1:10:end,:) + [0 0 600]; % Z>600
%% transform 3D points to another view(R,t) external matrix
load camera_motion.mat
load parameter.mat
teapot2 = (teapot1-translation')*Rotate; % transform teapot 1 to Camera 2 system according R and t
teapot1 = cast(teapot1,'double');
teapot2 = cast(teapot2,'double');
%% intrinsic matrix
K = [fx 0 640; 0 fy 480; 0 0 1];
%% no refraction, directly projection
teapot_c1 = teapot1*K';
teapot_c2 = teapot2*K';
teapot_c1_norm = teapot_c1(:,1:2)./teapot_c1(:,3);
teapot_c2_norm = teapot_c2(:,1:2)./teapot_c2(:,3);
% plot(teapot_c2_norm(:,1), teapot_c2_norm(:,2),'r.');
% axis([0 1280 0 960]);
% hold on
%% considering refraction 3d->2d
% image_points_1 = point3d_t_2d(teapot1);
% image_points_2 = point3d_t_2d(teapot2);
% plot(image_points_2(:,1), image_points_2(:,2), '.');
% save image_points_1.mat image_points_1
% save image_points_2.mat image_points_2
%% considering refraction 2d->3d
load image_points_1.mat
load image_points_2.mat
[r_out_norm1, x_s1] = ray_in_out_pixel(image_points_1,d, 0);
[r_out_norm2, x_s2] = ray_in_out_pixel(image_points_2,d, 0);
%% estimate R and t
matchedVector1 = [r_out_norm1 x_s1];
matchedVector2 = [r_out_norm2 x_s2];
testVector(:,:,1) = matchedVector1(1:2,:);
testVector(:,:,2) = matchedVector2(1:2,:);
U=umatrix_generator_general(matchedVector1, matchedVector2);
[R_est,t_est]=R_t_estimator_pixel(U, testVector);
Rotate
R_est
translation
t_est
%% reconstruction
xw = triangulateR(matchedVector1, matchedVector2, R_est, t_est);
t_no_scale = translation/norm(translation);
vec1_no_scale = vectorNoScale(image_points_1);
vec2_no_scale = vectorNoScale(image_points_2);
[R_p, t_p] = R_t_estimator_pespective(vec1_no_scale, vec2_no_scale);
R_p
t_p
xw_no_scale = triangulateR(vec1_no_scale, vec2_no_scale, R_p, t_p);
%% draw
color1 = [0 1 0];
% draw(R_est, t_est, Rotate, translation, xw, color1);
% hold on
scatter3(teapot1(:,1), teapot1(:,2), teapot1(:,3), 5, 'MarkerFaceColor',[0 0 1], 'MarkerEdgeColor', [0 0 0.5]);
hold on
draw(Rotate, t_no_scale,Rotate, translation, 50*xw_no_scale, [0 1 0]);
axis equal
function draw(R_est, t_est, Rotate, translation, xw_est, color)
loc1 = [0;0;0];
loc2 = t_est;
ori1 = [1 0 0; 0 1 0; 0 0 1];
ori2 = R_est;
% cam1 = plotCamera('Location',loc1, 'Orientation', ori1,'Size', 20,...
% 'label', '1', 'AxesVisible', false);
% hold on
% cam2 = plotCamera('Location',loc2, 'Orientation', ori2,'Size', 20,...
% 'Color',[0 0 1], 'label', 'Estimated 2', 'AxesVisible', false);
% hold on
% cam4 = plotCamera('Location',translation, 'Orientation', Rotate,'Size', 20,...
% 'Color',[0 1 0], 'label', 'Ground truth 2', 'AxesVisible', false);
% hold on
% scatter3(worldPoints(:,1), worldPoints(:,2), Z,'MarkerFaceColor',[0 0 1]);
hold on
scatter3(xw_est(:,1), xw_est(:,2), xw_est(:,3), 5, 'MarkerFaceColor',color, 'MarkerEdgeColor', 0.5*color);
grid on
xlabel('X[mm]');
ylabel('Y[mm]');
zlabel('Z[mm]');
%legend('Reconstructed by RSfM', 'Ground truth', 'Reconstructed by PSfM (50x)');
legend('Ground truth','Reconstructed by PSfM (50x)');
% axis_x_min = min([xw_est(:,1); t_est(1,1)]);
% axis_x_max = max([xw_est(:,1); t_est(1,1)]);
% axis_y_min = min([xw_est(:,2); t_est(2,1)]);
% axis_y_max = max([xw_est(:,2); t_est(2,1)]);
% axis_z_min = min([xw_est(:,3); t_est(3,1)]);
% axis_z_max = max([xw_est(:,3); t_est(3,1)]);
% axis([axis_x_min axis_x_max axis_y_min axis_y_max axis_z_min axis_z_max]);
end
function vector_no_scale = vectorNoScale(x)
load parameter.mat
u_v = x - [hcx hcy];
u_v(:,3) = 1;
r_in = u_v./[fx fy 1];
r_in = r_in./sqrt(sum(r_in.*r_in,2)); % normalize
x_s = zeros(size(x, 1),3);
vector_no_scale = [r_in, x_s];
end
|
github
|
ctjacobs/plane-poiseuille-flow-master
|
poiseuille.m
|
.m
|
plane-poiseuille-flow-master/poiseuille.m
| 3,160 |
utf_8
|
46fbab88c09a6344eb5ecf19205462e9
|
% Solves the equation d2u/dy2 = -G/mu to simulate plane Poiseuille flow.
% This considers the fluid between two parallel plates located at y = 0 and
% y = Ly, with both plates stationary and a constant pressure
% gradient G = -dp/dx applied in the streamwise direction. The dynamic viscosity of
% the fluid is denoted by mu.
%
% Note that the time-dependent PDE du/dt = d2u/dy2 + G/mu is actually solved
% here, where nu is the kinematic viscosity of the fluid. It is the final
% steady-state solution which satisfies d2u/dy2 = -G/mu.
%
% Copyright (C) 2017 Christian Thomas Jacobs
function u = poiseuille(Ly, Ny, T, dt, G, mu)
% Grid spacing in the y direction.
dy = Ly/(Ny-1);
% Number of timesteps.
Nt = ceil(T/dt);
% The stored solution from the previous timestep.
% Initially this is a zero velocity field.
u_old = zeros(Ny, 1);
% Timestepping loop.
% This uses the Forward Euler timestepping scheme.
for n = 1:Nt
% Compute solution at timestep n.
u = solve(u_old, dy, dt, G, mu)
% Save the solution for use in the next timestep.
u_old = u;
end
% Compute the exact solution.
u_exact = exact(Ly, Ny, G, mu);
% Determine maximum error (in the Euclidean norm) of the numerical
% solution.
error = sum(abs(u-u_exact).^2)^0.5;
fprintf('The error in the Euclidean norm is %.5f\n', error);
% Plot the numerical and exact solutions.
figure(1)
plot(linspace(0, Ly, Ny), u)
legend('Numerical')
xlabel('y')
ylabel('u(y)')
% Plot the error.
figure(2)
plot(linspace(0, Ly, Ny), abs(u-u_exact))
legend('Error')
xlabel('y')
ylabel('|u(y) - u_{exact}(y)|')
end
function u = solve(u_old, dy, dt, G, mu)
% Step forward one timestep by solving the discretised system of
% equations.
% Setup solution vector.
Ny = size(u_old, 1);
u = zeros(Ny, 1);
% Thomas algorithm for the solution of the tri-diagonal matrix system.
c1 = -dt/(2*dy^2);
c2 = 1 + dt/(dy^2);
a = zeros(Ny-1, 1);
b = zeros(Ny, 1);
r = zeros(Ny, 1);
% Forward sweep. Note that indices 1 and Ny are not considered here, since
% u(1) and u(Ny) are known from the boundary conditions.
r(2) = dt*G/mu + (-c2+2)*u_old(2) - c1*u_old(3); % Apply Dirichlet condition u(1) = 0.
a(2) = c1/c2;
b(2) = r(2)/c2;
for j = 3:Ny-2
r(j) = dt*G/mu + (-c2+2)*u_old(j) - c1*u_old(j+1) - c1*u_old(j-1);
a(j) = c1/(c2-c1*a(j-1));
b(j) = (r(j) - c1*b(j-1))/(c2 - c1*a(j-1));
end
r(Ny-1) = dt*G/mu + (-c2+2)*u_old(Ny-1) - c1*u_old(Ny-2); % Apply Dirichlet condition u(Ny) = 0.
b(Ny-1) = (r(Ny-1) - c1*b(Ny-2))/(c2 - c1*a(Ny-2));
% Back substitution.
u(Ny-1) = b(Ny-1);
for j = Ny-2:-1:2
u(j) = b(j) - a(j)*u(j+1);
end
% Enforce boundary conditions.
u(1) = 0;
u(Ny) = 0;
end
function u = exact(Ly, Ny, G, mu)
% Exact solution given by u(y) = (G/(2*mu))*y*(Ly-y).
u = zeros(Ny, 1);
for j = 1:Ny
y = (j-1)*(Ly/(Ny-1));
u(j) = (G/(2*mu))*y*(Ly-y);
end
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
submit.m
|
.m
|
CourseraMachineLearning-master/home/week-8/exercises/machine-learning-ex7/ex7/submit.m
| 1,438 |
utf_8
|
665ea5906aad3ccfd94e33a40c58e2ce
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'k-means-clustering-and-pca';
conf.itemName = 'K-Means Clustering and PCA';
conf.partArrays = { ...
{ ...
'1', ...
{ 'findClosestCentroids.m' }, ...
'Find Closest Centroids (k-Means)', ...
}, ...
{ ...
'2', ...
{ 'computeCentroids.m' }, ...
'Compute Centroid Means (k-Means)', ...
}, ...
{ ...
'3', ...
{ 'pca.m' }, ...
'PCA', ...
}, ...
{ ...
'4', ...
{ 'projectData.m' }, ...
'Project Data (PCA)', ...
}, ...
{ ...
'5', ...
{ 'recoverData.m' }, ...
'Recover Data (PCA)', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
X = reshape(sin(1:165), 15, 11);
Z = reshape(cos(1:121), 11, 11);
C = Z(1:5, :);
idx = (1 + mod(1:15, 3))';
if partId == '1'
idx = findClosestCentroids(X, C);
out = sprintf('%0.5f ', idx(:));
elseif partId == '2'
centroids = computeCentroids(X, idx, 3);
out = sprintf('%0.5f ', centroids(:));
elseif partId == '3'
[U, S] = pca(X);
out = sprintf('%0.5f ', abs([U(:); S(:)]));
elseif partId == '4'
X_proj = projectData(X, Z, 5);
out = sprintf('%0.5f ', X_proj(:));
elseif partId == '5'
X_rec = recoverData(X(:,1:5), Z, 5);
out = sprintf('%0.5f ', X_rec(:));
end
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
submitWithConfiguration.m
|
.m
|
CourseraMachineLearning-master/home/week-8/exercises/machine-learning-ex7/ex7/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
savejson.m
|
.m
|
CourseraMachineLearning-master/home/week-8/exercises/machine-learning-ex7/ex7/lib/jsonlab/savejson.m
| 17,462 |
utf_8
|
861b534fc35ffe982b53ca3ca83143bf
|
function json=savejson(rootname,obj,varargin)
%
% json=savejson(rootname,obj,filename)
% or
% json=savejson(rootname,obj,opt)
% json=savejson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a JSON (JavaScript
% Object Notation) string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09
%
% $Id: savejson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array).
% filename: a string for the file name to save the output JSON data.
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.FloatFormat ['%.10g'|string]: format to show each numeric element
% of a 1D/2D array;
% opt.ArrayIndent [1|0]: if 1, output explicit data array with
% precedent indentation; if 0, no indentation
% opt.ArrayToStruct[0|1]: when set to 0, savejson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [0|1]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, savejson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.Inf ['"$1_Inf_"'|string]: a customized regular expression pattern
% to represent +/-Inf. The matched pattern is '([-+]*)Inf'
% and $1 represents the sign. For those who want to use
% 1e999 to represent Inf, they can set opt.Inf to '$11e999'
% opt.NaN ['"_NaN_"'|string]: a customized regular expression pattern
% to represent NaN
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSONP='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
% opt.SaveBinary [0|1]: 1 - save the JSON file in binary mode; 0 - text mode.
% opt.Compact [0|1]: 1- out compact JSON format (remove all newlines and tabs)
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a string in the JSON format (see http://json.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% savejson('jmesh',jsonmesh)
% savejson('',jsonmesh,'ArrayIndent',0,'FloatFormat','\t%.5g')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
whitespaces=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
if(jsonopt('Compact',0,opt)==1)
whitespaces=struct('tab','','newline','','sep',',');
end
if(~isfield(opt,'whitespaces_'))
opt.whitespaces_=whitespaces;
end
nl=whitespaces.newline;
json=obj2json(rootname,obj,rootlevel,opt);
if(rootisarray)
json=sprintf('%s%s',json,nl);
else
json=sprintf('{%s%s%s}\n',nl,json,nl);
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=sprintf('%s(%s);%s',jsonp,json,nl);
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
if(jsonopt('SaveBinary',0,opt)==1)
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
else
fid = fopen(opt.FileName, 'wt');
fwrite(fid,json,'char');
end
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2json(name,item,level,varargin)
if(iscell(item))
txt=cell2json(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2json(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2json(name,item,level,varargin{:});
else
txt=mat2json(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2json(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=jsonopt('whitespaces_',struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n')),varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
nl=ws.newline;
if(len>1)
if(~isempty(name))
txt=sprintf('%s"%s": [%s',padding0, checkname(name,varargin{:}),nl); name='';
else
txt=sprintf('%s[%s',padding0,nl);
end
elseif(len==0)
if(~isempty(name))
txt=sprintf('%s"%s": []',padding0, checkname(name,varargin{:})); name='';
else
txt=sprintf('%s[]',padding0);
end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
txt=sprintf('%s%s',txt,obj2json(name,item{i,j},level+(dim(1)>1)+1,varargin{:}));
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
%if(j==dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=struct2json(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding0=repmat(ws.tab,1,level);
padding2=repmat(ws.tab,1,level+1);
padding1=repmat(ws.tab,1,level+(dim(1)>1)+(len>1));
nl=ws.newline;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding0,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding0,nl); end
end
for j=1:dim(2)
if(dim(1)>1) txt=sprintf('%s%s[%s',txt,padding2,nl); end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=sprintf('%s%s"%s": {%s',txt,padding1, checkname(name,varargin{:}),nl);
else
txt=sprintf('%s%s{%s',txt,padding1,nl);
end
if(~isempty(names))
for e=1:length(names)
txt=sprintf('%s%s',txt,obj2json(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:}));
if(e<length(names)) txt=sprintf('%s%s',txt,','); end
txt=sprintf('%s%s',txt,nl);
end
end
txt=sprintf('%s%s}',txt,padding1);
if(i<dim(1)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(dim(1)>1) txt=sprintf('%s%s%s]',txt,nl,padding2); end
if(j<dim(2)) txt=sprintf('%s%s',txt,sprintf(',%s',nl)); end
end
if(len>1) txt=sprintf('%s%s%s]',txt,nl,padding0); end
%%-------------------------------------------------------------------------
function txt=str2json(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(~isempty(name))
if(len>1) txt=sprintf('%s"%s": [%s',padding1,checkname(name,varargin{:}),nl); end
else
if(len>1) txt=sprintf('%s[%s',padding1,nl); end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
if(isoct)
val=regexprep(item(e,:),'\\','\\');
val=regexprep(val,'"','\"');
val=regexprep(val,'^"','\"');
else
val=regexprep(item(e,:),'\\','\\\\');
val=regexprep(val,'"','\\"');
val=regexprep(val,'^"','\\"');
end
val=escapejsonstring(val);
if(len==1)
obj=['"' checkname(name,varargin{:}) '": ' '"',val,'"'];
if(isempty(name)) obj=['"',val,'"']; end
txt=sprintf('%s%s%s%s',txt,padding1,obj);
else
txt=sprintf('%s%s%s%s',txt,padding0,['"',val,'"']);
end
if(e==len) sep=''; end
txt=sprintf('%s%s',txt,sep);
end
if(len>1) txt=sprintf('%s%s%s%s',txt,nl,padding1,']'); end
%%-------------------------------------------------------------------------
function txt=mat2json(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
padding1=repmat(ws.tab,1,level);
padding0=repmat(ws.tab,1,level+1);
nl=ws.newline;
sep=ws.sep;
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) ||jsonopt('ArrayToStruct',0,varargin{:}))
if(isempty(name))
txt=sprintf('%s{%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
else
txt=sprintf('%s"%s": {%s%s"_ArrayType_": "%s",%s%s"_ArraySize_": %s,%s',...
padding1,checkname(name,varargin{:}),nl,padding0,class(item),nl,padding0,regexprep(mat2str(size(item)),'\s+',','),nl);
end
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1 && level>0)
numtxt=regexprep(regexprep(matdata2json(item,level+1,varargin{:}),'^\[',''),']','');
else
numtxt=matdata2json(item,level+1,varargin{:});
end
if(isempty(name))
txt=sprintf('%s%s',padding1,numtxt);
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
else
txt=sprintf('%s"%s": %s',padding1,checkname(name,varargin{:}),numtxt);
end
end
return;
end
dataformat='%s%s%s%s%s';
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
end
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsSparse_": ','1', sep);
if(size(item,1)==1)
% Row vector, store only column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([iy(:),data'],level+2,varargin{:}), nl);
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,data],level+2,varargin{:}), nl);
else
% General case, store row and column indices.
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([ix,iy,data],level+2,varargin{:}), nl);
end
else
if(isreal(item))
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json(item(:)',level+2,varargin{:}), nl);
else
txt=sprintf(dataformat,txt,padding0,'"_ArrayIsComplex_": ','1', sep);
txt=sprintf(dataformat,txt,padding0,'"_ArrayData_": ',...
matdata2json([real(item(:)) imag(item(:))],level+2,varargin{:}), nl);
end
end
txt=sprintf('%s%s%s',txt,padding1,'}');
%%-------------------------------------------------------------------------
function txt=matdata2json(mat,level,varargin)
ws=struct('tab',sprintf('\t'),'newline',sprintf('\n'),'sep',sprintf(',\n'));
ws=jsonopt('whitespaces_',ws,varargin{:});
tab=ws.tab;
nl=ws.newline;
if(size(mat,1)==1)
pre='';
post='';
level=level-1;
else
pre=sprintf('[%s',nl);
post=sprintf('%s%s]',nl,repmat(tab,1,level-1));
end
if(isempty(mat))
txt='null';
return;
end
floatformat=jsonopt('FloatFormat','%.10g',varargin{:});
%if(numel(mat)>1)
formatstr=['[' repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf('],%s',nl)]];
%else
% formatstr=[repmat([floatformat ','],1,size(mat,2)-1) [floatformat sprintf(',\n')]];
%end
if(nargin>=2 && size(mat,1)>1 && jsonopt('ArrayIndent',1,varargin{:})==1)
formatstr=[repmat(tab,1,level) formatstr];
end
txt=sprintf(formatstr,mat');
txt(end-length(nl):end)=[];
if(islogical(mat) && jsonopt('ParseLogical',0,varargin{:})==1)
txt=regexprep(txt,'1','true');
txt=regexprep(txt,'0','false');
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],\n['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
txt=[pre txt post];
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function newstr=escapejsonstring(str)
newstr=str;
isoct=exist('OCTAVE_VERSION','builtin');
if(isoct)
vv=sscanf(OCTAVE_VERSION,'%f');
if(vv(1)>=3.8) isoct=0; end
end
if(isoct)
escapechars={'\a','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},escapechars{i});
end
else
escapechars={'\a','\b','\f','\n','\r','\t','\v'};
for i=1:length(escapechars);
newstr=regexprep(newstr,escapechars{i},regexprep(escapechars{i},'\\','\\\\'));
end
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
loadjson.m
|
.m
|
CourseraMachineLearning-master/home/week-8/exercises/machine-learning-ex7/ex7/lib/jsonlab/loadjson.m
| 18,732 |
ibm852
|
ab98cf173af2d50bbe8da4d6db252a20
|
function data = loadjson(fname,varargin)
%
% data=loadjson(fname,opt)
% or
% data=loadjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2011/09/09, including previous works from
%
% Nedialko Krouchev: http://www.mathworks.com/matlabcentral/fileexchange/25713
% created on 2009/11/02
% François Glineur: http://www.mathworks.com/matlabcentral/fileexchange/23393
% created on 2009/03/22
% Joel Feenstra:
% http://www.mathworks.com/matlabcentral/fileexchange/20565
% created on 2008/07/03
%
% $Id: loadjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a JSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.FastArrayParser [1|0 or integer]: if set to 1, use a
% speed-optimized array parser when loading an
% array object. The fast array parser may
% collapse block arrays into a single large
% array similar to rules defined in cell2mat; 0 to
% use a legacy parser; if set to a larger-than-1
% value, this option will specify the minimum
% dimension to enable the fast array parser. For
% example, if the input is a 3D array, setting
% FastArrayParser to 1 will return a 3D array;
% setting to 2 will return a cell array of 2D
% arrays; setting to 3 will return to a 2D cell
% array of 1D vectors; setting to 4 will return a
% 3D cell array.
% opt.ShowProgress [0|1]: if set to 1, loadjson displays a progress bar.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% dat=loadjson('{"obj":{"string":"value","array":[1,2,3]}}')
% dat=loadjson(['examples' filesep 'example1.json'])
% dat=loadjson(['examples' filesep 'example1.json'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
if(jsonopt('ShowProgress',0,opt)==1)
opt.progressbar_=waitbar(0,'loading ...');
end
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
if(isfield(opt,'progressbar_'))
close(opt.progressbar_);
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=data(j).x0x5F_ArraySize_;
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
if next_char ~= '}'
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
parse_char(':');
val = parse_value(varargin{:});
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}'
break;
end
parse_char(',');
end
end
parse_char('}');
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim2=[];
arraydepth=jsonopt('JSONLAB_ArrayDepth_',1,varargin{:});
pbar=jsonopt('progressbar_',-1,varargin{:});
if next_char ~= ']'
if(jsonopt('FastArrayParser',1,varargin{:})>=1 && arraydepth>=jsonopt('FastArrayParser',1,varargin{:}))
[endpos, e1l, e1r, maxlevel]=matching_bracket(inStr,pos);
arraystr=['[' inStr(pos:endpos)];
arraystr=regexprep(arraystr,'"_NaN_"','NaN');
arraystr=regexprep(arraystr,'"([-+]*)_Inf_"','$1Inf');
arraystr(arraystr==sprintf('\n'))=[];
arraystr(arraystr==sprintf('\r'))=[];
%arraystr=regexprep(arraystr,'\s*,',','); % this is slow,sometimes needed
if(~isempty(e1l) && ~isempty(e1r)) % the array is in 2D or higher D
astr=inStr((e1l+1):(e1r-1));
astr=regexprep(astr,'"_NaN_"','NaN');
astr=regexprep(astr,'"([-+]*)_Inf_"','$1Inf');
astr(astr==sprintf('\n'))=[];
astr(astr==sprintf('\r'))=[];
astr(astr==' ')='';
if(isempty(find(astr=='[', 1))) % array is 2D
dim2=length(sscanf(astr,'%f,',[1 inf]));
end
else % array is 1D
astr=arraystr(2:end-1);
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',[1,inf]);
if(nextidx>=length(astr)-1)
object=obj;
pos=endpos;
parse_char(']');
return;
end
end
if(~isempty(dim2))
astr=arraystr;
astr(astr=='[')='';
astr(astr==']')='';
astr(astr==' ')='';
[obj, count, errmsg, nextidx]=sscanf(astr,'%f,',inf);
if(nextidx>=length(astr)-1)
object=reshape(obj,dim2,numel(obj)/dim2)';
pos=endpos;
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
return;
end
end
arraystr=regexprep(arraystr,'\]\s*,','];');
else
arraystr='[';
end
try
if(isoct && regexp(arraystr,'"','once'))
error('Octave eval can produce empty cells for JSON-like input');
end
object=eval(arraystr);
pos=endpos;
catch
while 1
newopt=varargin2struct(varargin{:},'JSONLAB_ArrayDepth_',arraydepth+1);
val = parse_value(newopt);
object{end+1} = val;
if next_char == ']'
break;
end
parse_char(',');
end
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
parse_char(']');
if(pbar>0)
waitbar(pos/length(inStr),pbar,'loading ...');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr len esc index_esc len_esc
% len, ns = length(inStr), keyboard
if inStr(pos) ~= '"'
error_pos('String starting with " expected at position %d');
else
pos = pos + 1;
end
str = '';
while pos <= len
while index_esc <= len_esc && esc(index_esc) < pos
index_esc = index_esc + 1;
end
if index_esc > len_esc
str = [str inStr(pos:len)];
pos = len + 1;
break;
else
str = [str inStr(pos:esc(index_esc)-1)];
pos = esc(index_esc);
end
nstr = length(str); switch inStr(pos)
case '"'
pos = pos + 1;
if(~isempty(str))
if(strcmp(str,'_Inf_'))
str=Inf;
elseif(strcmp(str,'-_Inf_'))
str=-Inf;
elseif(strcmp(str,'_NaN_'))
str=NaN;
end
end
return;
case '\'
if pos+1 > len
error_pos('End of file reached right after escape character');
end
pos = pos + 1;
switch inStr(pos)
case {'"' '\' '/'}
str(nstr+1) = inStr(pos);
pos = pos + 1;
case {'b' 'f' 'n' 'r' 't'}
str(nstr+1) = sprintf(['\' inStr(pos)]);
pos = pos + 1;
case 'u'
if pos+4 > len
error_pos('End of file reached in escaped unicode character');
end
str(nstr+(1:6)) = inStr(pos-1:pos+4);
pos = pos + 5;
end
otherwise % should never happen
str(nstr+1) = inStr(pos), keyboard
pos = pos + 1;
end
end
error_pos('End of file while expecting end of inStr');
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct
currstr=inStr(pos:end);
numstr=0;
if(isoct~=0)
numstr=regexp(currstr,'^\s*-?(?:0|[1-9]\d*)(?:\.\d+)?(?:[eE][+\-]?\d+)?','end');
[num, one] = sscanf(currstr, '%f', 1);
delta=numstr+1;
else
[num, one, err, delta] = sscanf(currstr, '%f', 1);
if ~isempty(err)
error_pos('Error reading number at position %d');
end
end
pos = pos + delta-1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
pbar=jsonopt('progressbar_',-1,varargin{:});
if(pbar>0)
waitbar(pos/len,pbar,'loading ...');
end
switch(inStr(pos))
case '"'
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'-','0','1','2','3','4','5','6','7','8','9'}
val = parse_number(varargin{:});
return;
case 't'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'true')
val = true;
pos = pos + 4;
return;
end
case 'f'
if pos+4 <= len && strcmpi(inStr(pos:pos+4), 'false')
val = false;
pos = pos + 5;
return;
end
case 'n'
if pos+3 <= len && strcmpi(inStr(pos:pos+3), 'null')
val = [];
pos = pos + 4;
return;
end
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos, e1l, e1r, maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
loadubjson.m
|
.m
|
CourseraMachineLearning-master/home/week-8/exercises/machine-learning-ex7/ex7/lib/jsonlab/loadubjson.m
| 15,574 |
utf_8
|
5974e78e71b81b1e0f76123784b951a4
|
function data = loadubjson(fname,varargin)
%
% data=loadubjson(fname,opt)
% or
% data=loadubjson(fname,'param1',value1,'param2',value2,...)
%
% parse a JSON (JavaScript Object Notation) file or string
%
% authors:Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/01
%
% $Id: loadubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% fname: input file name, if fname contains "{}" or "[]", fname
% will be interpreted as a UBJSON string
% opt: a struct to store parsing options, opt can be replaced by
% a list of ('param',value) pairs - the param string is equivallent
% to a field in opt. opt can have the following
% fields (first in [.|.] is the default)
%
% opt.SimplifyCell [0|1]: if set to 1, loadubjson will call cell2mat
% for each element of the JSON data, and group
% arrays based on the cell2mat rules.
% opt.IntEndian [B|L]: specify the endianness of the integer fields
% in the UBJSON input data. B - Big-Endian format for
% integers (as required in the UBJSON specification);
% L - input integer fields are in Little-Endian order.
%
% output:
% dat: a cell array, where {...} blocks are converted into cell arrays,
% and [...] are converted to arrays
%
% examples:
% obj=struct('string','value','array',[1 2 3]);
% ubjdata=saveubjson('obj',obj);
% dat=loadubjson(ubjdata)
% dat=loadubjson(['examples' filesep 'example1.ubj'])
% dat=loadubjson(['examples' filesep 'example1.ubj'],'SimplifyCell',1)
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
global pos inStr len esc index_esc len_esc isoct arraytoken fileendian systemendian
if(regexp(fname,'[\{\}\]\[]','once'))
string=fname;
elseif(exist(fname,'file'))
fid = fopen(fname,'rb');
string = fread(fid,inf,'uint8=>char')';
fclose(fid);
else
error('input file does not exist');
end
pos = 1; len = length(string); inStr = string;
isoct=exist('OCTAVE_VERSION','builtin');
arraytoken=find(inStr=='[' | inStr==']' | inStr=='"');
jstr=regexprep(inStr,'\\\\',' ');
escquote=regexp(jstr,'\\"');
arraytoken=sort([arraytoken escquote]);
% String delimiters and escape chars identified to improve speed:
esc = find(inStr=='"' | inStr=='\' ); % comparable to: regexp(inStr, '["\\]');
index_esc = 1; len_esc = length(esc);
opt=varargin2struct(varargin{:});
fileendian=upper(jsonopt('IntEndian','B',opt));
[os,maxelem,systemendian]=computer;
jsoncount=1;
while pos <= len
switch(next_char)
case '{'
data{jsoncount} = parse_object(opt);
case '['
data{jsoncount} = parse_array(opt);
otherwise
error_pos('Outer level structure must be an object or an array');
end
jsoncount=jsoncount+1;
end % while
jsoncount=length(data);
if(jsoncount==1 && iscell(data))
data=data{1};
end
if(~isempty(data))
if(isstruct(data)) % data can be a struct array
data=jstruct2array(data);
elseif(iscell(data))
data=jcell2array(data);
end
end
%%
function newdata=parse_collection(id,data,obj)
if(jsoncount>0 && exist('data','var'))
if(~iscell(data))
newdata=cell(1);
newdata{1}=data;
data=newdata;
end
end
%%
function newdata=jcell2array(data)
len=length(data);
newdata=data;
for i=1:len
if(isstruct(data{i}))
newdata{i}=jstruct2array(data{i});
elseif(iscell(data{i}))
newdata{i}=jcell2array(data{i});
end
end
%%-------------------------------------------------------------------------
function newdata=jstruct2array(data)
fn=fieldnames(data);
newdata=data;
len=length(data);
for i=1:length(fn) % depth-first
for j=1:len
if(isstruct(getfield(data(j),fn{i})))
newdata(j)=setfield(newdata(j),fn{i},jstruct2array(getfield(data(j),fn{i})));
end
end
end
if(~isempty(strmatch('x0x5F_ArrayType_',fn)) && ~isempty(strmatch('x0x5F_ArrayData_',fn)))
newdata=cell(len,1);
for j=1:len
ndata=cast(data(j).x0x5F_ArrayData_,data(j).x0x5F_ArrayType_);
iscpx=0;
if(~isempty(strmatch('x0x5F_ArrayIsComplex_',fn)))
if(data(j).x0x5F_ArrayIsComplex_)
iscpx=1;
end
end
if(~isempty(strmatch('x0x5F_ArrayIsSparse_',fn)))
if(data(j).x0x5F_ArrayIsSparse_)
if(~isempty(strmatch('x0x5F_ArraySize_',fn)))
dim=double(data(j).x0x5F_ArraySize_);
if(iscpx && size(ndata,2)==4-any(dim==1))
ndata(:,end-1)=complex(ndata(:,end-1),ndata(:,end));
end
if isempty(ndata)
% All-zeros sparse
ndata=sparse(dim(1),prod(dim(2:end)));
elseif dim(1)==1
% Sparse row vector
ndata=sparse(1,ndata(:,1),ndata(:,2),dim(1),prod(dim(2:end)));
elseif dim(2)==1
% Sparse column vector
ndata=sparse(ndata(:,1),1,ndata(:,2),dim(1),prod(dim(2:end)));
else
% Generic sparse array.
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3),dim(1),prod(dim(2:end)));
end
else
if(iscpx && size(ndata,2)==4)
ndata(:,3)=complex(ndata(:,3),ndata(:,4));
end
ndata=sparse(ndata(:,1),ndata(:,2),ndata(:,3));
end
end
elseif(~isempty(strmatch('x0x5F_ArraySize_',fn)))
if(iscpx && size(ndata,2)==2)
ndata=complex(ndata(:,1),ndata(:,2));
end
ndata=reshape(ndata(:),data(j).x0x5F_ArraySize_);
end
newdata{j}=ndata;
end
if(len==1)
newdata=newdata{1};
end
end
%%-------------------------------------------------------------------------
function object = parse_object(varargin)
parse_char('{');
object = [];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1); % TODO
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
count=double(parse_number());
end
if next_char ~= '}'
num=0;
while 1
str = parseStr(varargin{:});
if isempty(str)
error_pos('Name of value at position %d cannot be empty');
end
%parse_char(':');
val = parse_value(varargin{:});
num=num+1;
eval( sprintf( 'object.%s = val;', valid_field(str) ) );
if next_char == '}' || (count>=0 && num>=count)
break;
end
%parse_char(',');
end
end
if(count==-1)
parse_char('}');
end
%%-------------------------------------------------------------------------
function [cid,len]=elem_info(type)
id=strfind('iUIlLdD',type);
dataclass={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
if(id>0)
cid=dataclass{id};
len=bytelen(id);
else
error_pos('unsupported type at position %d');
end
%%-------------------------------------------------------------------------
function [data adv]=parse_block(type,count,varargin)
global pos inStr isoct fileendian systemendian
[cid,len]=elem_info(type);
datastr=inStr(pos:pos+len*count-1);
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
id=strfind('iUIlLdD',type);
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,cid));
end
data=typecast(newdata,cid);
adv=double(len*count);
%%-------------------------------------------------------------------------
function object = parse_array(varargin) % JSON array is written in row-major order
global pos inStr isoct
parse_char('[');
object = cell(0, 1);
dim=[];
type='';
count=-1;
if(next_char == '$')
type=inStr(pos+1);
pos=pos+2;
end
if(next_char == '#')
pos=pos+1;
if(next_char=='[')
dim=parse_array(varargin{:});
count=prod(double(dim));
else
count=double(parse_number());
end
end
if(~isempty(type))
if(count>=0)
[object adv]=parse_block(type,count,varargin{:});
if(~isempty(dim))
object=reshape(object,dim);
end
pos=pos+adv;
return;
else
endpos=matching_bracket(inStr,pos);
[cid,len]=elem_info(type);
count=(endpos-pos)/len;
[object adv]=parse_block(type,count,varargin{:});
pos=pos+adv;
parse_char(']');
return;
end
end
if next_char ~= ']'
while 1
val = parse_value(varargin{:});
object{end+1} = val;
if next_char == ']'
break;
end
%parse_char(',');
end
end
if(jsonopt('SimplifyCell',0,varargin{:})==1)
try
oldobj=object;
object=cell2mat(object')';
if(iscell(oldobj) && isstruct(object) && numel(object)>1 && jsonopt('SimplifyCellArray',1,varargin{:})==0)
object=oldobj;
elseif(size(object,1)>1 && ndims(object)==2)
object=object';
end
catch
end
end
if(count==-1)
parse_char(']');
end
%%-------------------------------------------------------------------------
function parse_char(c)
global pos inStr len
skip_whitespace;
if pos > len || inStr(pos) ~= c
error_pos(sprintf('Expected %c at position %%d', c));
else
pos = pos + 1;
skip_whitespace;
end
%%-------------------------------------------------------------------------
function c = next_char
global pos inStr len
skip_whitespace;
if pos > len
c = [];
else
c = inStr(pos);
end
%%-------------------------------------------------------------------------
function skip_whitespace
global pos inStr len
while pos <= len && isspace(inStr(pos))
pos = pos + 1;
end
%%-------------------------------------------------------------------------
function str = parseStr(varargin)
global pos inStr esc index_esc len_esc
% len, ns = length(inStr), keyboard
type=inStr(pos);
if type ~= 'S' && type ~= 'C' && type ~= 'H'
error_pos('String starting with S expected at position %d');
else
pos = pos + 1;
end
if(type == 'C')
str=inStr(pos);
pos=pos+1;
return;
end
bytelen=double(parse_number());
if(length(inStr)>=pos+bytelen-1)
str=inStr(pos:pos+bytelen-1);
pos=pos+bytelen;
else
error_pos('End of file while expecting end of inStr');
end
%%-------------------------------------------------------------------------
function num = parse_number(varargin)
global pos inStr len isoct fileendian systemendian
id=strfind('iUIlLdD',inStr(pos));
if(isempty(id))
error_pos('expecting a number at position %d');
end
type={'int8','uint8','int16','int32','int64','single','double'};
bytelen=[1,1,2,4,8,4,8];
datastr=inStr(pos+1:pos+bytelen(id));
if(isoct)
newdata=int8(datastr);
else
newdata=uint8(datastr);
end
if(id<=5 && fileendian~=systemendian)
newdata=swapbytes(typecast(newdata,type{id}));
end
num=typecast(newdata,type{id});
pos = pos + bytelen(id)+1;
%%-------------------------------------------------------------------------
function val = parse_value(varargin)
global pos inStr len
true = 1; false = 0;
switch(inStr(pos))
case {'S','C','H'}
val = parseStr(varargin{:});
return;
case '['
val = parse_array(varargin{:});
return;
case '{'
val = parse_object(varargin{:});
if isstruct(val)
if(~isempty(strmatch('x0x5F_ArrayType_',fieldnames(val), 'exact')))
val=jstruct2array(val);
end
elseif isempty(val)
val = struct;
end
return;
case {'i','U','I','l','L','d','D'}
val = parse_number(varargin{:});
return;
case 'T'
val = true;
pos = pos + 1;
return;
case 'F'
val = false;
pos = pos + 1;
return;
case {'Z','N'}
val = [];
pos = pos + 1;
return;
end
error_pos('Value expected at position %d');
%%-------------------------------------------------------------------------
function error_pos(msg)
global pos inStr len
poShow = max(min([pos-15 pos-1 pos pos+20],len),1);
if poShow(3) == poShow(2)
poShow(3:4) = poShow(2)+[0 -1]; % display nothing after
end
msg = [sprintf(msg, pos) ': ' ...
inStr(poShow(1):poShow(2)) '<error>' inStr(poShow(3):poShow(4)) ];
error( ['JSONparser:invalidFormat: ' msg] );
%%-------------------------------------------------------------------------
function str = valid_field(str)
global isoct
% From MATLAB doc: field names must begin with a letter, which may be
% followed by any combination of letters, digits, and underscores.
% Invalid characters will be converted to underscores, and the prefix
% "x0x[Hex code]_" will be added if the first character is not a letter.
pos=regexp(str,'^[^A-Za-z]','once');
if(~isempty(pos))
if(~isoct)
str=regexprep(str,'^([^A-Za-z])','x0x${sprintf(''%X'',unicode2native($1))}_','once');
else
str=sprintf('x0x%X_%s',char(str(1)),str(2:end));
end
end
if(isempty(regexp(str,'[^0-9A-Za-z_]', 'once' ))) return; end
if(~isoct)
str=regexprep(str,'([^0-9A-Za-z_])','_0x${sprintf(''%X'',unicode2native($1))}_');
else
pos=regexp(str,'[^0-9A-Za-z_]');
if(isempty(pos)) return; end
str0=str;
pos0=[0 pos(:)' length(str)];
str='';
for i=1:length(pos)
str=[str str0(pos0(i)+1:pos(i)-1) sprintf('_0x%X_',str0(pos(i)))];
end
if(pos(end)~=length(str))
str=[str str0(pos0(end-1)+1:pos0(end))];
end
end
%str(~isletter(str) & ~('0' <= str & str <= '9')) = '_';
%%-------------------------------------------------------------------------
function endpos = matching_quote(str,pos)
len=length(str);
while(pos<len)
if(str(pos)=='"')
if(~(pos>1 && str(pos-1)=='\'))
endpos=pos;
return;
end
end
pos=pos+1;
end
error('unmatched quotation mark');
%%-------------------------------------------------------------------------
function [endpos e1l e1r maxlevel] = matching_bracket(str,pos)
global arraytoken
level=1;
maxlevel=level;
endpos=0;
bpos=arraytoken(arraytoken>=pos);
tokens=str(bpos);
len=length(tokens);
pos=1;
e1l=[];
e1r=[];
while(pos<=len)
c=tokens(pos);
if(c==']')
level=level-1;
if(isempty(e1r)) e1r=bpos(pos); end
if(level==0)
endpos=bpos(pos);
return
end
end
if(c=='[')
if(isempty(e1l)) e1l=bpos(pos); end
level=level+1;
maxlevel=max(maxlevel,level);
end
if(c=='"')
pos=matching_quote(tokens,pos+1);
end
pos=pos+1;
end
if(endpos==0)
error('unmatched "]"');
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
saveubjson.m
|
.m
|
CourseraMachineLearning-master/home/week-8/exercises/machine-learning-ex7/ex7/lib/jsonlab/saveubjson.m
| 16,123 |
utf_8
|
61d4f51010aedbf97753396f5d2d9ec0
|
function json=saveubjson(rootname,obj,varargin)
%
% json=saveubjson(rootname,obj,filename)
% or
% json=saveubjson(rootname,obj,opt)
% json=saveubjson(rootname,obj,'param1',value1,'param2',value2,...)
%
% convert a MATLAB object (cell, struct or array) into a Universal
% Binary JSON (UBJSON) binary string
%
% author: Qianqian Fang (fangq<at> nmr.mgh.harvard.edu)
% created on 2013/08/17
%
% $Id: saveubjson.m 460 2015-01-03 00:30:45Z fangq $
%
% input:
% rootname: the name of the root-object, when set to '', the root name
% is ignored, however, when opt.ForceRootName is set to 1 (see below),
% the MATLAB variable name will be used as the root name.
% obj: a MATLAB object (array, cell, cell array, struct, struct array)
% filename: a string for the file name to save the output UBJSON data
% opt: a struct for additional options, ignore to use default values.
% opt can have the following fields (first in [.|.] is the default)
%
% opt.FileName [''|string]: a file name to save the output JSON data
% opt.ArrayToStruct[0|1]: when set to 0, saveubjson outputs 1D/2D
% array in JSON array format; if sets to 1, an
% array will be shown as a struct with fields
% "_ArrayType_", "_ArraySize_" and "_ArrayData_"; for
% sparse arrays, the non-zero elements will be
% saved to _ArrayData_ field in triplet-format i.e.
% (ix,iy,val) and "_ArrayIsSparse_" will be added
% with a value of 1; for a complex array, the
% _ArrayData_ array will include two columns
% (4 for sparse) to record the real and imaginary
% parts, and also "_ArrayIsComplex_":1 is added.
% opt.ParseLogical [1|0]: if this is set to 1, logical array elem
% will use true/false rather than 1/0.
% opt.NoRowBracket [1|0]: if this is set to 1, arrays with a single
% numerical element will be shown without a square
% bracket, unless it is the root object; if 0, square
% brackets are forced for any numerical arrays.
% opt.ForceRootName [0|1]: when set to 1 and rootname is empty, saveubjson
% will use the name of the passed obj variable as the
% root object name; if obj is an expression and
% does not have a name, 'root' will be used; if this
% is set to 0 and rootname is empty, the root level
% will be merged down to the lower level.
% opt.JSONP [''|string]: to generate a JSONP output (JSON with padding),
% for example, if opt.JSON='foo', the JSON data is
% wrapped inside a function call as 'foo(...);'
% opt.UnpackHex [1|0]: conver the 0x[hex code] output by loadjson
% back to the string form
%
% opt can be replaced by a list of ('param',value) pairs. The param
% string is equivallent to a field in opt and is case sensitive.
% output:
% json: a binary string in the UBJSON format (see http://ubjson.org)
%
% examples:
% jsonmesh=struct('MeshNode',[0 0 0;1 0 0;0 1 0;1 1 0;0 0 1;1 0 1;0 1 1;1 1 1],...
% 'MeshTetra',[1 2 4 8;1 3 4 8;1 2 6 8;1 5 6 8;1 5 7 8;1 3 7 8],...
% 'MeshTri',[1 2 4;1 2 6;1 3 4;1 3 7;1 5 6;1 5 7;...
% 2 8 4;2 8 6;3 8 4;3 8 7;5 8 6;5 8 7],...
% 'MeshCreator','FangQ','MeshTitle','T6 Cube',...
% 'SpecialData',[nan, inf, -inf]);
% saveubjson('jsonmesh',jsonmesh)
% saveubjson('jsonmesh',jsonmesh,'meshdata.ubj')
%
% license:
% BSD, see LICENSE_BSD.txt files for details
%
% -- this function is part of JSONLab toolbox (http://iso2mesh.sf.net/cgi-bin/index.cgi?jsonlab)
%
if(nargin==1)
varname=inputname(1);
obj=rootname;
if(isempty(varname))
varname='root';
end
rootname=varname;
else
varname=inputname(2);
end
if(length(varargin)==1 && ischar(varargin{1}))
opt=struct('FileName',varargin{1});
else
opt=varargin2struct(varargin{:});
end
opt.IsOctave=exist('OCTAVE_VERSION','builtin');
rootisarray=0;
rootlevel=1;
forceroot=jsonopt('ForceRootName',0,opt);
if((isnumeric(obj) || islogical(obj) || ischar(obj) || isstruct(obj) || iscell(obj)) && isempty(rootname) && forceroot==0)
rootisarray=1;
rootlevel=0;
else
if(isempty(rootname))
rootname=varname;
end
end
if((isstruct(obj) || iscell(obj))&& isempty(rootname) && forceroot)
rootname='root';
end
json=obj2ubjson(rootname,obj,rootlevel,opt);
if(~rootisarray)
json=['{' json '}'];
end
jsonp=jsonopt('JSONP','',opt);
if(~isempty(jsonp))
json=[jsonp '(' json ')'];
end
% save to a file if FileName is set, suggested by Patrick Rapin
if(~isempty(jsonopt('FileName','',opt)))
fid = fopen(opt.FileName, 'wb');
fwrite(fid,json);
fclose(fid);
end
%%-------------------------------------------------------------------------
function txt=obj2ubjson(name,item,level,varargin)
if(iscell(item))
txt=cell2ubjson(name,item,level,varargin{:});
elseif(isstruct(item))
txt=struct2ubjson(name,item,level,varargin{:});
elseif(ischar(item))
txt=str2ubjson(name,item,level,varargin{:});
else
txt=mat2ubjson(name,item,level,varargin{:});
end
%%-------------------------------------------------------------------------
function txt=cell2ubjson(name,item,level,varargin)
txt='';
if(~iscell(item))
error('input is not a cell');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item); % let's handle 1D cell first
if(len>1)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) '[']; name='';
else
txt='[';
end
elseif(len==0)
if(~isempty(name))
txt=[S_(checkname(name,varargin{:})) 'Z']; name='';
else
txt='Z';
end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
txt=[txt obj2ubjson(name,item{i,j},level+(len>1),varargin{:})];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=struct2ubjson(name,item,level,varargin)
txt='';
if(~isstruct(item))
error('input is not a struct');
end
dim=size(item);
if(ndims(squeeze(item))>2) % for 3D or higher dimensions, flatten to 2D for now
item=reshape(item,dim(1),numel(item)/dim(1));
dim=size(item);
end
len=numel(item);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
for j=1:dim(2)
if(dim(1)>1) txt=[txt '[']; end
for i=1:dim(1)
names = fieldnames(item(i,j));
if(~isempty(name) && len==1)
txt=[txt S_(checkname(name,varargin{:})) '{'];
else
txt=[txt '{'];
end
if(~isempty(names))
for e=1:length(names)
txt=[txt obj2ubjson(names{e},getfield(item(i,j),...
names{e}),level+(dim(1)>1)+1+(len>1),varargin{:})];
end
end
txt=[txt '}'];
end
if(dim(1)>1) txt=[txt ']']; end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=str2ubjson(name,item,level,varargin)
txt='';
if(~ischar(item))
error('input is not a string');
end
item=reshape(item, max(size(item),[1 0]));
len=size(item,1);
if(~isempty(name))
if(len>1) txt=[S_(checkname(name,varargin{:})) '[']; end
else
if(len>1) txt='['; end
end
isoct=jsonopt('IsOctave',0,varargin{:});
for e=1:len
val=item(e,:);
if(len==1)
obj=['' S_(checkname(name,varargin{:})) '' '',S_(val),''];
if(isempty(name)) obj=['',S_(val),'']; end
txt=[txt,'',obj];
else
txt=[txt,'',['',S_(val),'']];
end
end
if(len>1) txt=[txt ']']; end
%%-------------------------------------------------------------------------
function txt=mat2ubjson(name,item,level,varargin)
if(~isnumeric(item) && ~islogical(item))
error('input is not an array');
end
if(length(size(item))>2 || issparse(item) || ~isreal(item) || ...
isempty(item) || jsonopt('ArrayToStruct',0,varargin{:}))
cid=I_(uint32(max(size(item))));
if(isempty(name))
txt=['{' S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1)) ];
else
if(isempty(item))
txt=[S_(checkname(name,varargin{:})),'Z'];
return;
else
txt=[S_(checkname(name,varargin{:})),'{',S_('_ArrayType_'),S_(class(item)),S_('_ArraySize_'),I_a(size(item),cid(1))];
end
end
else
if(isempty(name))
txt=matdata2ubjson(item,level+1,varargin{:});
else
if(numel(item)==1 && jsonopt('NoRowBracket',1,varargin{:})==1)
numtxt=regexprep(regexprep(matdata2ubjson(item,level+1,varargin{:}),'^\[',''),']','');
txt=[S_(checkname(name,varargin{:})) numtxt];
else
txt=[S_(checkname(name,varargin{:})),matdata2ubjson(item,level+1,varargin{:})];
end
end
return;
end
if(issparse(item))
[ix,iy]=find(item);
data=full(item(find(item)));
if(~isreal(item))
data=[real(data(:)),imag(data(:))];
if(size(item,1)==1)
% Kludge to have data's 'transposedness' match item's.
% (Necessary for complex row vector handling below.)
data=data';
end
txt=[txt,S_('_ArrayIsComplex_'),'T'];
end
txt=[txt,S_('_ArrayIsSparse_'),'T'];
if(size(item,1)==1)
% Row vector, store only column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([iy(:),data'],level+2,varargin{:})];
elseif(size(item,2)==1)
% Column vector, store only row indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,data],level+2,varargin{:})];
else
% General case, store row and column indices.
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([ix,iy,data],level+2,varargin{:})];
end
else
if(isreal(item))
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson(item(:)',level+2,varargin{:})];
else
txt=[txt,S_('_ArrayIsComplex_'),'T'];
txt=[txt,S_('_ArrayData_'),...
matdata2ubjson([real(item(:)) imag(item(:))],level+2,varargin{:})];
end
end
txt=[txt,'}'];
%%-------------------------------------------------------------------------
function txt=matdata2ubjson(mat,level,varargin)
if(isempty(mat))
txt='Z';
return;
end
if(size(mat,1)==1)
level=level-1;
end
type='';
hasnegtive=(mat<0);
if(isa(mat,'integer') || isinteger(mat) || (isfloat(mat) && all(mod(mat(:),1) == 0)))
if(isempty(hasnegtive))
if(max(mat(:))<=2^8)
type='U';
end
end
if(isempty(type))
% todo - need to consider negative ones separately
id= histc(abs(max(mat(:))),[0 2^7 2^15 2^31 2^63]);
if(isempty(find(id)))
error('high-precision data is not yet supported');
end
key='iIlL';
type=key(find(id));
end
txt=[I_a(mat(:),type,size(mat))];
elseif(islogical(mat))
logicalval='FT';
if(numel(mat)==1)
txt=logicalval(mat+1);
else
txt=['[$U#' I_a(size(mat),'l') typecast(swapbytes(uint8(mat(:)')),'uint8')];
end
else
if(numel(mat)==1)
txt=['[' D_(mat) ']'];
else
txt=D_a(mat(:),'D',size(mat));
end
end
%txt=regexprep(mat2str(mat),'\s+',',');
%txt=regexprep(txt,';',sprintf('],['));
% if(nargin>=2 && size(mat,1)>1)
% txt=regexprep(txt,'\[',[repmat(sprintf('\t'),1,level) '[']);
% end
if(any(isinf(mat(:))))
txt=regexprep(txt,'([-+]*)Inf',jsonopt('Inf','"$1_Inf_"',varargin{:}));
end
if(any(isnan(mat(:))))
txt=regexprep(txt,'NaN',jsonopt('NaN','"_NaN_"',varargin{:}));
end
%%-------------------------------------------------------------------------
function newname=checkname(name,varargin)
isunpack=jsonopt('UnpackHex',1,varargin{:});
newname=name;
if(isempty(regexp(name,'0x([0-9a-fA-F]+)_','once')))
return
end
if(isunpack)
isoct=jsonopt('IsOctave',0,varargin{:});
if(~isoct)
newname=regexprep(name,'(^x|_){1}0x([0-9a-fA-F]+)_','${native2unicode(hex2dec($2))}');
else
pos=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','start');
pend=regexp(name,'(^x|_){1}0x([0-9a-fA-F]+)_','end');
if(isempty(pos)) return; end
str0=name;
pos0=[0 pend(:)' length(name)];
newname='';
for i=1:length(pos)
newname=[newname str0(pos0(i)+1:pos(i)-1) char(hex2dec(str0(pos(i)+3:pend(i)-1)))];
end
if(pos(end)~=length(name))
newname=[newname str0(pos0(end-1)+1:pos0(end))];
end
end
end
%%-------------------------------------------------------------------------
function val=S_(str)
if(length(str)==1)
val=['C' str];
else
val=['S' I_(int32(length(str))) str];
end
%%-------------------------------------------------------------------------
function val=I_(num)
if(~isinteger(num))
error('input is not an integer');
end
if(num>=0 && num<255)
val=['U' data2byte(swapbytes(cast(num,'uint8')),'uint8')];
return;
end
key='iIlL';
cid={'int8','int16','int32','int64'};
for i=1:4
if((num>0 && num<2^(i*8-1)) || (num<0 && num>=-2^(i*8-1)))
val=[key(i) data2byte(swapbytes(cast(num,cid{i})),'uint8')];
return;
end
end
error('unsupported integer');
%%-------------------------------------------------------------------------
function val=D_(num)
if(~isfloat(num))
error('input is not a float');
end
if(isa(num,'single'))
val=['d' data2byte(num,'uint8')];
else
val=['D' data2byte(num,'uint8')];
end
%%-------------------------------------------------------------------------
function data=I_a(num,type,dim,format)
id=find(ismember('iUIlL',type));
if(id==0)
error('unsupported integer array');
end
% based on UBJSON specs, all integer types are stored in big endian format
if(id==1)
data=data2byte(swapbytes(int8(num)),'uint8');
blen=1;
elseif(id==2)
data=data2byte(swapbytes(uint8(num)),'uint8');
blen=1;
elseif(id==3)
data=data2byte(swapbytes(int16(num)),'uint8');
blen=2;
elseif(id==4)
data=data2byte(swapbytes(int32(num)),'uint8');
blen=4;
elseif(id==5)
data=data2byte(swapbytes(int64(num)),'uint8');
blen=8;
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/blen)) data(:)'];
end
data=['[' data(:)'];
else
data=reshape(data,blen,numel(data)/blen);
data(2:blen+1,:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function data=D_a(num,type,dim,format)
id=find(ismember('dD',type));
if(id==0)
error('unsupported float array');
end
if(id==1)
data=data2byte(single(num),'uint8');
elseif(id==2)
data=data2byte(double(num),'uint8');
end
if(nargin>=3 && length(dim)>=2 && prod(dim)~=dim(2))
format='opt';
end
if((nargin<4 || strcmp(format,'opt')) && numel(num)>1)
if(nargin>=3 && (length(dim)==1 || (length(dim)>=2 && prod(dim)~=dim(2))))
cid=I_(uint32(max(dim)));
data=['$' type '#' I_a(dim,cid(1)) data(:)'];
else
data=['$' type '#' I_(int32(numel(data)/(id*4))) data(:)'];
end
data=['[' data];
else
data=reshape(data,(id*4),length(data)/(id*4));
data(2:(id*4+1),:)=data;
data(1,:)=type;
data=data(:)';
data=['[' data(:)' ']'];
end
%%-------------------------------------------------------------------------
function bytes=data2byte(varargin)
bytes=typecast(varargin{:});
bytes=bytes(:)';
|
github
|
vkosuri/CourseraMachineLearning-master
|
submit.m
|
.m
|
CourseraMachineLearning-master/home/week-9/exercises/machine-learning-ex8/ex8/submit.m
| 2,135 |
utf_8
|
eebb8c0a1db5a4df20b4c858603efad6
|
function submit()
addpath('./lib');
conf.assignmentSlug = 'anomaly-detection-and-recommender-systems';
conf.itemName = 'Anomaly Detection and Recommender Systems';
conf.partArrays = { ...
{ ...
'1', ...
{ 'estimateGaussian.m' }, ...
'Estimate Gaussian Parameters', ...
}, ...
{ ...
'2', ...
{ 'selectThreshold.m' }, ...
'Select Threshold', ...
}, ...
{ ...
'3', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Cost', ...
}, ...
{ ...
'4', ...
{ 'cofiCostFunc.m' }, ...
'Collaborative Filtering Gradient', ...
}, ...
{ ...
'5', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Cost', ...
}, ...
{ ...
'6', ...
{ 'cofiCostFunc.m' }, ...
'Regularized Gradient', ...
}, ...
};
conf.output = @output;
submitWithConfiguration(conf);
end
function out = output(partId, auxstring)
% Random Test Cases
n_u = 3; n_m = 4; n = 5;
X = reshape(sin(1:n_m*n), n_m, n);
Theta = reshape(cos(1:n_u*n), n_u, n);
Y = reshape(sin(1:2:2*n_m*n_u), n_m, n_u);
R = Y > 0.5;
pval = [abs(Y(:)) ; 0.001; 1];
Y = (Y .* double(R)); % set 'Y' values to 0 for movies not reviewed
yval = [R(:) ; 1; 0];
params = [X(:); Theta(:)];
if partId == '1'
[mu sigma2] = estimateGaussian(X);
out = sprintf('%0.5f ', [mu(:); sigma2(:)]);
elseif partId == '2'
[bestEpsilon bestF1] = selectThreshold(yval, pval);
out = sprintf('%0.5f ', [bestEpsilon(:); bestF1(:)]);
elseif partId == '3'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', J(:));
elseif partId == '4'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 0);
out = sprintf('%0.5f ', grad(:));
elseif partId == '5'
[J] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', J(:));
elseif partId == '6'
[J, grad] = cofiCostFunc(params, Y, R, n_u, n_m, ...
n, 1.5);
out = sprintf('%0.5f ', grad(:));
end
end
|
github
|
vkosuri/CourseraMachineLearning-master
|
submitWithConfiguration.m
|
.m
|
CourseraMachineLearning-master/home/week-9/exercises/machine-learning-ex8/ex8/lib/submitWithConfiguration.m
| 5,562 |
utf_8
|
4ac719ea6570ac228ea6c7a9c919e3f5
|
function submitWithConfiguration(conf)
addpath('./lib/jsonlab');
parts = parts(conf);
fprintf('== Submitting solutions | %s...\n', conf.itemName);
tokenFile = 'token.mat';
if exist(tokenFile, 'file')
load(tokenFile);
[email token] = promptToken(email, token, tokenFile);
else
[email token] = promptToken('', '', tokenFile);
end
if isempty(token)
fprintf('!! Submission Cancelled\n');
return
end
try
response = submitParts(conf, email, token, parts);
catch
e = lasterror();
fprintf('\n!! Submission failed: %s\n', e.message);
fprintf('\n\nFunction: %s\nFileName: %s\nLineNumber: %d\n', ...
e.stack(1,1).name, e.stack(1,1).file, e.stack(1,1).line);
fprintf('\nPlease correct your code and resubmit.\n');
return
end
if isfield(response, 'errorMessage')
fprintf('!! Submission failed: %s\n', response.errorMessage);
elseif isfield(response, 'errorCode')
fprintf('!! Submission failed: %s\n', response.message);
else
showFeedback(parts, response);
save(tokenFile, 'email', 'token');
end
end
function [email token] = promptToken(email, existingToken, tokenFile)
if (~isempty(email) && ~isempty(existingToken))
prompt = sprintf( ...
'Use token from last successful submission (%s)? (Y/n): ', ...
email);
reenter = input(prompt, 's');
if (isempty(reenter) || reenter(1) == 'Y' || reenter(1) == 'y')
token = existingToken;
return;
else
delete(tokenFile);
end
end
email = input('Login (email address): ', 's');
token = input('Token: ', 's');
end
function isValid = isValidPartOptionIndex(partOptions, i)
isValid = (~isempty(i)) && (1 <= i) && (i <= numel(partOptions));
end
function response = submitParts(conf, email, token, parts)
body = makePostBody(conf, email, token, parts);
submissionUrl = submissionUrl();
responseBody = getResponse(submissionUrl, body);
jsonResponse = validateResponse(responseBody);
response = loadjson(jsonResponse);
end
function body = makePostBody(conf, email, token, parts)
bodyStruct.assignmentSlug = conf.assignmentSlug;
bodyStruct.submitterEmail = email;
bodyStruct.secret = token;
bodyStruct.parts = makePartsStruct(conf, parts);
opt.Compact = 1;
body = savejson('', bodyStruct, opt);
end
function partsStruct = makePartsStruct(conf, parts)
for part = parts
partId = part{:}.id;
fieldName = makeValidFieldName(partId);
outputStruct.output = conf.output(partId);
partsStruct.(fieldName) = outputStruct;
end
end
function [parts] = parts(conf)
parts = {};
for partArray = conf.partArrays
part.id = partArray{:}{1};
part.sourceFiles = partArray{:}{2};
part.name = partArray{:}{3};
parts{end + 1} = part;
end
end
function showFeedback(parts, response)
fprintf('== \n');
fprintf('== %43s | %9s | %-s\n', 'Part Name', 'Score', 'Feedback');
fprintf('== %43s | %9s | %-s\n', '---------', '-----', '--------');
for part = parts
score = '';
partFeedback = '';
partFeedback = response.partFeedbacks.(makeValidFieldName(part{:}.id));
partEvaluation = response.partEvaluations.(makeValidFieldName(part{:}.id));
score = sprintf('%d / %3d', partEvaluation.score, partEvaluation.maxScore);
fprintf('== %43s | %9s | %-s\n', part{:}.name, score, partFeedback);
end
evaluation = response.evaluation;
totalScore = sprintf('%d / %d', evaluation.score, evaluation.maxScore);
fprintf('== --------------------------------\n');
fprintf('== %43s | %9s | %-s\n', '', totalScore, '');
fprintf('== \n');
end
% use urlread or curl to send submit results to the grader and get a response
function response = getResponse(url, body)
% try using urlread() and a secure connection
params = {'jsonBody', body};
[response, success] = urlread(url, 'post', params);
if (success == 0)
% urlread didn't work, try curl & the peer certificate patch
if ispc
% testing note: use 'jsonBody =' for a test case
json_command = sprintf('echo jsonBody=%s | curl -k -X POST -d @- %s', body, url);
else
% it's linux/OS X, so use the other form
json_command = sprintf('echo ''jsonBody=%s'' | curl -k -X POST -d @- %s', body, url);
end
% get the response body for the peer certificate patch method
[code, response] = system(json_command);
% test the success code
if (code ~= 0)
fprintf('[error] submission with curl() was not successful\n');
end
end
end
% validate the grader's response
function response = validateResponse(resp)
% test if the response is json or an HTML page
isJson = length(resp) > 0 && resp(1) == '{';
isHtml = findstr(lower(resp), '<html');
if (isJson)
response = resp;
elseif (isHtml)
% the response is html, so it's probably an error message
printHTMLContents(resp);
error('Grader response is an HTML message');
else
error('Grader sent no response');
end
end
% parse a HTML response and print it's contents
function printHTMLContents(response)
strippedResponse = regexprep(response, '<[^>]+>', ' ');
strippedResponse = regexprep(strippedResponse, '[\t ]+', ' ');
fprintf(strippedResponse);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Service configuration
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function submissionUrl = submissionUrl()
submissionUrl = 'https://www-origin.coursera.org/api/onDemandProgrammingImmediateFormSubmissions.v1';
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.