plateform
stringclasses 1
value | repo_name
stringlengths 13
113
| name
stringlengths 3
74
| ext
stringclasses 1
value | path
stringlengths 12
229
| size
int64 23
843k
| source_encoding
stringclasses 9
values | md5
stringlengths 32
32
| text
stringlengths 23
843k
|
---|---|---|---|---|---|---|---|---|
github
|
Hadisalman/stoec-master
|
logphi.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/logphi.m
| 2,261 |
utf_8
|
69fbcfc9d9913da15644d5f0a0368d5f
|
% Safe computation of logphi(z) = log(normcdf(z)) and its derivatives
% dlogphi(z) = normpdf(x)/normcdf(x).
% The function is based on index 5725 in Hart et al. and gsl_sf_log_erfc_e.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2013-11-13.
function [lp,dlp,d2lp,d3lp] = logphi(z)
z = real(z); % support for real arguments only
lp = zeros(size(z)); % allocate memory
id1 = z.*z<0.0492; % first case: close to zero
lp0 = -z(id1)/sqrt(2*pi);
c = [ 0.00048204; -0.00142906; 0.0013200243174; 0.0009461589032;
-0.0045563339802; 0.00556964649138; 0.00125993961762116;
-0.01621575378835404; 0.02629651521057465; -0.001829764677455021;
2*(1-pi/3); (4-pi)/3; 1; 1];
f = 0; for i=1:14, f = lp0.*(c(i)+f); end, lp(id1) = -2*f-log(2);
id2 = z<-11.3137; % second case: very small
r = [ 1.2753666447299659525; 5.019049726784267463450;
6.1602098531096305441; 7.409740605964741794425;
2.9788656263939928886 ];
q = [ 2.260528520767326969592; 9.3960340162350541504;
12.048951927855129036034; 17.081440747466004316;
9.608965327192787870698; 3.3690752069827527677 ];
num = 0.5641895835477550741; for i=1:5, num = -z(id2).*num/sqrt(2) + r(i); end
den = 1.0; for i=1:6, den = -z(id2).*den/sqrt(2) + q(i); end
e = num./den; lp(id2) = log(e/2) - z(id2).^2/2;
id3 = ~id2 & ~id1; lp(id3) = log(erfc(-z(id3)/sqrt(2))/2); % third case: rest
if nargout>1 % compute first derivative
dlp = zeros(size(z)); % allocate memory
dlp( id2) = abs(den./num) * sqrt(2/pi); % strictly positive first derivative
dlp(~id2) = exp(-z(~id2).*z(~id2)/2-lp(~id2))/sqrt(2*pi); % safe computation
if nargout>2 % compute second derivative
d2lp = -dlp.*abs(z+dlp); % strictly negative second derivative
if nargout>3 % compute third derivative
d3lp = -d2lp.*abs(z+2*dlp)-dlp; % strictly positive third derivative
end
end
end
|
github
|
Hadisalman/stoec-master
|
gauher.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/gauher.m
| 2,245 |
utf_8
|
441ef6c145fe66f1b7ca9da6207f6003
|
% compute abscissas and weight factors for Gaussian-Hermite quadrature
%
% CALL: [x,w] = gauher(N)
%
% x = base points (abscissas)
% w = weight factors
% N = number of base points (abscissas) (integrates an up to (2N-1)th order
% polynomial exactly)
%
% p(x)=exp(-x^2/2)/sqrt(2*pi), a =-Inf, b = Inf
%
% The Gaussian Quadrature integrates a (2n-1)th order
% polynomial exactly and the integral is of the form
% b N
% Int ( p(x)* F(x) ) dx = Sum ( w_j* F( x_j ) )
% a j=1
%
% this procedure uses the coefficients a(j), b(j) of the
% recurrence relation
%
% b p (x) = (x - a ) p (x) - b p (x)
% j j j j-1 j-1 j-2
%
% for the various classical (normalized) orthogonal polynomials,
% and the zero-th moment
%
% 1 = integral w(x) dx
%
% of the given polynomial's weight function w(x). Since the
% polynomials are orthonormalized, the tridiagonal matrix is
% guaranteed to be symmetric.
function [x,w]=gauher(N)
if N==20 % return precalculated values
x=[ -7.619048541679757;-6.510590157013656;-5.578738805893203;
-4.734581334046057;-3.943967350657318;-3.18901481655339 ;
-2.458663611172367;-1.745247320814127;-1.042945348802751;
-0.346964157081356; 0.346964157081356; 1.042945348802751;
1.745247320814127; 2.458663611172367; 3.18901481655339 ;
3.943967350657316; 4.734581334046057; 5.578738805893202;
6.510590157013653; 7.619048541679757];
w=[ 0.000000000000126; 0.000000000248206; 0.000000061274903;
0.00000440212109 ; 0.000128826279962; 0.00183010313108 ;
0.013997837447101; 0.061506372063977; 0.161739333984 ;
0.260793063449555; 0.260793063449555; 0.161739333984 ;
0.061506372063977; 0.013997837447101; 0.00183010313108 ;
0.000128826279962; 0.00000440212109 ; 0.000000061274903;
0.000000000248206; 0.000000000000126 ];
else
b = sqrt( (1:N-1)/2 )';
[V,D] = eig( diag(b,1) + diag(b,-1) );
w = V(1,:)'.^2;
x = sqrt(2)*diag(D);
end
|
github
|
Hadisalman/stoec-master
|
elsympol.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/elsympol.m
| 699 |
utf_8
|
33e751b982c07eb890d26629bf71f595
|
% Evaluate the order R elementary symmetric polynomial Newton's identity aka
% the Newton–Girard formulae: http://en.wikipedia.org/wiki/Newton's_identities
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2010-01-10.
function E = elsympol(Z,R)
% evaluate 'power sums' of the individual terms in Z
sz = size(Z); P = zeros([sz(1:2),R]); for r=1:R, P(:,:,r) = sum(Z.^r,3); end
E = zeros([sz(1:2),R+1]); % E(:,:,r+1) yields polynomial r
E(:,:,1) = ones(sz(1:2)); if R==0, return, end % init recursion
E(:,:,2) = P(:,:,1); if R==1, return, end % init recursion
for r=2:R
for i=1:r
E(:,:,r+1) = E(:,:,r+1) + P(:,:,i).*E(:,:,r+1-i)*(-1)^(i-1)/r;
end
end
|
github
|
Hadisalman/stoec-master
|
minimize.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/minimize.m
| 11,191 |
utf_8
|
69603a3c319cf5374483af20b033f10e
|
function [X, fX, i] = minimize(X, f, length, varargin)
% Minimize a differentiable multivariate function using conjugate gradients.
%
% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, ... )
%
% X initial guess; may be of any type, including struct and cell array
% f the name or pointer to the function to be minimized. The function
% f must return two arguments, the value of the function, and it's
% partial derivatives wrt the elements of X. The partial derivative
% must have the same type as X.
% length length of the run; if it is positive, it gives the maximum number of
% line searches, if negative its absolute gives the maximum allowed
% number of function evaluations. Optionally, length can have a second
% component, which will indicate the reduction in function value to be
% expected in the first line-search (defaults to 1.0).
% P1, P2, ... parameters are passed to the function f.
%
% X the returned solution
% fX vector of function values indicating progress made
% i number of iterations (line searches or function evaluations,
% depending on the sign of "length") used at termination.
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function).
%
% The Polack-Ribiere flavour of conjugate gradients is used to compute search
% directions, and a line search using quadratic and cubic polynomial
% approximations and the Wolfe-Powell stopping criteria is used together with
% the slope ratio method for guessing initial step sizes. Additionally a bunch
% of checks are made to make sure that exploration is taking place and that
% extrapolation will not be unboundedly large.
%
% See also: checkgrad
%
% Copyright (C) 2001 - 2010 by Carl Edward Rasmussen, 2010-01-03
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current step-size
MAX = 20; % max 20 function evaluations per line search
RATIO = 10; % maximum allowed slope ratio
SIG = 0.1; RHO = SIG/2; % SIG and RHO are the constants controlling the Wolfe-
% Powell conditions. SIG is the maximum allowed absolute ratio between
% previous and new slopes (derivatives in the search direction), thus setting
% SIG to low (positive) values forces higher precision in the line-searches.
% RHO is the minimum allowed fraction of the expected (from the slope at the
% initial point in the linesearch). Constants must satisfy 0 < RHO < SIG < 1.
% Tuning of SIG (depending on the nature of the function to be optimized) may
% speed up the minimization; it is probably not worth playing much with RHO.
% The code falls naturally into 3 parts, after the initial line search is
% started in the direction of steepest descent. 1) we first enter a while loop
% which uses point 1 (p1) and (p2) to compute an extrapolation (p3), until we
% have extrapolated far enough (Wolfe-Powell conditions). 2) if necessary, we
% enter the second loop which takes p2, p3 and p4 chooses the subinterval
% containing a (local) minimum, and interpolates it, unil an acceptable point
% is found (Wolfe-Powell conditions). Note, that points are always maintained
% in order p0 <= p1 <= p2 < p3 < p4. 3) compute a new search direction using
% conjugate gradients (Polack-Ribiere flavour), or revert to steepest if there
% was a problem in the previous line-search. Return the best value so far, if
% two consecutive line-searches fail, or whenever we run out of function
% evaluations or line-searches. During extrapolation, the "f" function may fail
% either with an error or returning Nan or Inf, and minimize should handle this
% gracefully.
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
if length>0, S='Linesearch'; else S='Function evaluation'; end
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
[f0 df0] = feval(f, X, varargin{:}); % get function value and gradient
Z = X; X = unwrap(X); df0 = unwrap(df0);
fprintf('%s %6i; Value %4.6e\r', S, i, f0);
if exist('fflush','builtin') fflush(stdout); end
fX = f0;
i = i + (length<0); % count epochs?!
s = -df0; d0 = -s'*s; % initial search direction (steepest) and slope
x3 = red/(1-d0); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; F0 = f0; dF0 = df0; % make a copy of current values
if length>0, M = MAX; else M = min(MAX, -length-i); end
while 1 % keep extrapolating as long as necessary
x2 = 0; f2 = f0; d2 = d0; f3 = f0; df3 = df0;
success = 0;
while ~success && M > 0
try
M = M - 1; i = i + (length<0); % count epochs?!
[f3 df3] = feval(f, rewrap(Z,X+x3*s), varargin{:});
df3 = unwrap(df3);
if isnan(f3) || isinf(f3) || any(isnan(df3)+isinf(df3)), error(' '),end
success = 1;
catch % catch any error which occured in f
x3 = (x2+x3)/2; % bisect and try again
end
end
if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end % keep best values
d3 = df3'*s; % new slope
if d3 > SIG*d0 || f3 > f0+x3*RHO*d0 || M == 0 % are we done extrapolating?
break
end
x1 = x2; f1 = f2; d1 = d2; % move point 2 to point 1
x2 = x3; f2 = f3; d2 = d3; % move point 3 to point 2
A = 6*(f1-f2)+3*(d2+d1)*(x2-x1); % make cubic extrapolation
B = 3*(f2-f1)-(2*d1+d2)*(x2-x1);
x3 = x1-d1*(x2-x1)^2/(B+sqrt(B*B-A*d1*(x2-x1))); % num. error possible, ok!
if ~isreal(x3) || isnan(x3) || isinf(x3) || x3 < 0 % num prob | wrong sign?
x3 = x2*EXT; % extrapolate maximum amount
elseif x3 > x2*EXT % new point beyond extrapolation limit?
x3 = x2*EXT; % extrapolate maximum amount
elseif x3 < x2+INT*(x2-x1) % new point too close to previous point?
x3 = x2+INT*(x2-x1);
end
end % end extrapolation
while (abs(d3) > -SIG*d0 || f3 > f0+x3*RHO*d0) && M > 0 % keep interpolating
if d3 > 0 || f3 > f0+x3*RHO*d0 % choose subinterval
x4 = x3; f4 = f3; d4 = d3; % move point 3 to point 4
else
x2 = x3; f2 = f3; d2 = d3; % move point 3 to point 2
end
if f4 > f0
x3 = x2-(0.5*d2*(x4-x2)^2)/(f4-f2-d2*(x4-x2)); % quadratic interpolation
else
A = 6*(f2-f4)/(x4-x2)+3*(d4+d2); % cubic interpolation
B = 3*(f4-f2)-(2*d2+d4)*(x4-x2);
x3 = x2+(sqrt(B*B-A*d2*(x4-x2)^2)-B)/A; % num. error possible, ok!
end
if isnan(x3) || isinf(x3)
x3 = (x2+x4)/2; % if we had a numerical problem then bisect
end
x3 = max(min(x3, x4-INT*(x4-x2)),x2+INT*(x4-x2)); % don't accept too close
[f3 df3] = feval(f, rewrap(Z,X+x3*s), varargin{:});
df3 = unwrap(df3);
if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end % keep best values
M = M - 1; i = i + (length<0); % count epochs?!
d3 = df3'*s; % new slope
end % end interpolation
if abs(d3) < -SIG*d0 && f3 < f0+x3*RHO*d0 % if line search succeeded
X = X+x3*s; f0 = f3; fX = [fX' f0]'; % update variables
fprintf('%s %6i; Value %4.6e\r', S, i, f0);
if exist('fflush','builtin') fflush(stdout); end
s = (df3'*df3-df0'*df3)/(df0'*df0)*s - df3; % Polack-Ribiere CG direction
df0 = df3; % swap derivatives
d3 = d0; d0 = df0'*s;
if d0 > 0 % new slope must be negative
s = -df0; d0 = -s'*s; % otherwise use steepest direction
end
x3 = x3 * min(RATIO, d3/(d0-realmin)); % slope ratio but max RATIO
ls_failed = 0; % this line search did not fail
else
X = X0; f0 = F0; df0 = dF0; % restore best point so far
if ls_failed || i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
s = -df0; d0 = -s'*s; % try steepest
x3 = 1/(1-d0);
ls_failed = 1; % this line search failed
end
end
X = rewrap(Z,X);
fprintf('\n'); if exist('fflush','builtin') fflush(stdout); end
function v = unwrap(s)
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
function [s v] = rewrap(s, v)
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
Hadisalman/stoec-master
|
minimize_v2.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/minimize_v2.m
| 11,952 |
utf_8
|
d8aad9cf50639371a892fbcc202eed7c
|
% minimize.m - minimize a smooth differentiable multivariate function using
% LBFGS (Limited memory LBFGS) or CG (Conjugate Gradients)
% Usage: [X, fX, i] = minimize(X, F, p, other, ... )
% where
% X is an initial guess (any type: vector, matrix, cell array, struct)
% F is the objective function (function pointer or name)
% p parameters - if p is a number, it corresponds to p.length below
% p.length allowed 1) # linesearches or 2) if -ve minus # func evals
% p.method minimization method, 'BFGS', 'LBFGS' or 'CG'
% p.verbosity 0 quiet, 1 line, 2 line + warnings (default), 3 graphical
% p.mem number of directions used in LBFGS (default 100)
% other, ... other parameters, passed to the function F
% X returned minimizer
% fX vector of function values showing minimization progress
% i final number of linesearches or function evaluations
% The function F must take the following syntax [f, df] = F(X, other, ...)
% where f is the function value and df its partial derivatives. The types of X
% and df must be identical (vector, matrix, cell array, struct, etc).
%
% Copyright (C) 1996 - 2011 by Carl Edward Rasmussen, 2011-10-13.
% Permission is hereby granted, free of charge, to any person OBTAINING A COPY
% OF THIS SOFTWARE AND ASSOCIATED DOCUMENTATION FILES (THE "SOFTWARE"), TO DEAL
% IN THE SOFTWARE WITHOUT RESTRICTION, INCLUDING WITHOUT LIMITATION THE RIGHTS
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
% copies of the Software, and to permit persons to whom the Software is
% furnished to do so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in
% all copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
% FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
% AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
% LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
% OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
% SOFTWARE.
function [X, fX, i] = minimize(X, F, p, varargin)
if isnumeric(p), p = struct('length', p); end % convert p to struct
if p.length > 0, p.S = 'linesearch #'; else p.S = 'function evaluation #'; end;
x = unwrap(X); % convert initial guess to vector
if ~isfield(p,'method'), if length(x) > 1000, p.method = @LBFGS;
else p.method = @BFGS; end; end % set default method
if ~isfield(p,'verbosity'), p.verbosity = 2; end % default 1 line text output
if ~isfield(p,'MFEPLS'), p.MFEPLS = 10; end % Max Func Evals Per Line Search
if ~isfield(p,'MSR'), p.MSR = 100; end % Max Slope Ratio default
f(F, X, varargin{:}); % set up the function f
[fx, dfx] = f(x); % initial function value and derivatives
if p.verbosity, printf('Initial Function Value %4.6e\r', fx); end
if p.verbosity > 2,
clf; subplot(211); hold on; xlabel(p.S); ylabel('function value');
plot(p.length < 0, fx, '+'); drawnow;
end
[x, fX, i] = feval(p.method, x, fx, dfx, p); % minimize using direction method
X = rewrap(X, x); % convert answer to original representation
if p.verbosity, printf('\n'); end
function [x, fx, i] = CG(x0, fx0, dfx0, p)
if ~isfield(p, 'SIG'), p.SIG = 0.1; end % default for line search quality
i = p.length < 0; ok = 0; % initialize resource counter
r = -dfx0; s = -r'*r; b = -1/(s-1); bs = -1; fx = fx0; % steepest descent
while i < abs(p.length)
b = b*bs/min(b*s,bs/p.MSR); % suitable initial step size using slope ratio
[x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p);
if i < 0 % if line search failed
i = -i; if ok, ok = 0; r = -dfx; else break; end % try steepest or stop
else
ok = 1; bs = b*s; % record step times slope (for slope ratio method)
r = (dfx'*(dfx-dfx0))/(dfx0'*dfx0)*r - dfx; % Polack-Ribiere CG
end
s = r'*dfx; if s >= 0, r = -dfx; s = r'*dfx; ok = 0; end % slope must be -ve
x0 = x; dfx0 = dfx; fx = [fx; fx0]; % replace old values with new ones
end
function [x, fx, i] = BFGS(x0, fx0, dfx0, p)
if ~isfield(p, 'SIG'), p.SIG = 0.5; end % default for line search quality
i = p.length < 0; ok = 0; % initialize resource counter
x = x0; fx = fx0; r = -dfx0; s = -r'*r; b = -1/(s-1); H = eye(length(x0));
while i < abs(p.length)
[x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p);
if i < 0
i = -i; if ok, ok = 0; else break; end; % try steepest or stop
else
ok = 1; t = x - x0; y = dfx - dfx0; ty = t'*y; Hy = H*y;
H = H + (ty+y'*Hy)/ty^2*t*t' - 1/ty*Hy*t' - 1/ty*t*Hy'; % BFGS update
end
r = -H*dfx; s = r'*dfx; x0 = x; dfx0 = dfx; fx = [fx; fx0];
end
function [x, fx, i] = LBFGS(x0, fx0, dfx0, p)
if ~isfield(p, 'SIG'), p.SIG = 0.5; end % default for line search quality
n = length(x0); k = 0; ok = 0; x = x0; fx = fx0; bs = -1/p.MSR;
if isfield(p, 'mem'), m = p.mem; else m = min(100, n); end % set memory size
a = zeros(1, m); t = zeros(n, m); y = zeros(n, m); % allocate memory
i = p.length < 0; % initialize resource counter
while i < abs(p.length)
q = dfx0;
for j = rem(k-1:-1:max(0,k-m),m)+1
a(j) = t(:,j)'*q/rho(j); q = q-a(j)*y(:,j);
end
if k == 0, r = -q/(q'*q); else r = -t(:,j)'*y(:,j)/(y(:,j)'*y(:,j))*q; end
for j = rem(max(0,k-m):k-1,m)+1
r = r-t(:,j)*(a(j)+y(:,j)'*r/rho(j));
end
s = r'*dfx0; if s >= 0, r = -dfx0; s = r'*dfx0; k = 0; ok = 0; end
b = bs/min(bs,s/p.MSR); % suitable initial step size (usually 1)
if isnan(r) | isinf(r) % if nonsense direction
i = -i; % try steepest or stop
else
[x, b, fx0, dfx, i] = lineSearch(x0, fx0, dfx0, r, s, b, i, p);
end
if i < 0 % if line search failed
i = -i; if ok, ok = 0; k = 0; else break; end % try steepest or stop
else
j = rem(k,m)+1; t(:,j) = x-x0; y(:,j) = dfx-dfx0; rho(j) = t(:,j)'*y(:,j);
ok = 1; k = k+1; bs = b*s;
end
x0 = x; dfx0 = dfx; fx = [fx; fx0]; % replace and add values
end
function [x, a, fx, df, i] = lineSearch(x0, f0, df0, d, s, a, i, p)
if p.length < 0, LIMIT = min(p.MFEPLS, -i-p.length); else LIMIT = p.MFEPLS; end
p0.x = 0.0; p0.f = f0; p0.df = df0; p0.s = s; p1 = p0; % init p0 and p1
j = 0; p3.x = a; wp(p0, p.SIG, 0); % set step & Wolfe-Powell conditions
if p.verbosity > 2
A = [-a a]/5; nd = norm(d);
subplot(212); hold off; plot(0, f0, 'k+'); hold on; plot(nd*A, f0+s*A, 'k-');
xlabel('distance in line search direction'); ylabel('function value');
end
while 1 % keep extrapolating as long as necessary
ok = 0; while ~ok & j < LIMIT
try % try, catch and bisect to safeguard extrapolation evaluation
j = j+1; [p3.f p3.df] = f(x0+p3.x*d); p3.s = p3.df'*d; ok = 1;
if isnan(p3.f+p3.s) | isinf(p3.f+p3.s)
error('Objective function returned Inf or NaN','');
end;
catch
if p.verbosity > 1, printf('\n'); warning(lasterr); end % warn or silence
p3.x = (p1.x+p3.x)/2; ok = 0; p3.f = NaN; % bisect, and retry
end
end
if p.verbosity > 2
plot(nd*p3.x, p3.f, 'b+'); plot(nd*(p3.x+A), p3.f+p3.s*A, 'b-'); drawnow
end
if wp(p3) | j >= LIMIT, break; end % done?
p0 = p1; p1 = p3; % move points back one unit
p3.x = p0.x + minCubic(p1.x-p0.x, p1.f-p0.f, p0.s, p1.s, 1); % cubic extrap
end
while 1 % keep interpolating as long as necessary
if p1.f > p3.f, p2 = p3; else p2 = p1; end % make p2 the best so far
if wp(p2) > 1 | j >= LIMIT, break; end % done?
p2.x = p1.x + minCubic(p3.x-p1.x, p3.f-p1.f, p1.s, p3.s, 0); % cubic interp
j = j+1; [p2.f p2.df] = f(x0+p2.x*d); p2.s = p2.df'*d;
if p.verbosity > 2
plot(nd*p2.x, p2.f, 'r+'); plot(nd*(p2.x+A), p2.f+p2.s*A, 'r'); drawnow
end
if wp(p2) > -1 & p2.s > 0 | wp(p2) < -1, p3 = p2; else p1 = p2; end % bracket
end
x = x0+p2.x*d; fx = p2.f; df = p2.df; a = p2.x; % return the value found
if p.length < 0, i = i+j; else i = i+1; end % count func evals or line searches
if p.verbosity, printf('%s %6i; value %4.6e\r', p.S, i, fx); end
if wp(p2) < 2, i = -i; end % indicate faliure
if p.verbosity > 2
if i>0, plot(norm(d)*p2.x, fx, 'go'); end
subplot(211); plot(abs(i), fx, '+'); drawnow;
end
function z = minCubic(x, df, s0, s1, extr) % minimizer of approximating cubic
INT = 0.1; EXT = 5.0; % interpolate and extrapolation limits
A = -6*df+3*(s0+s1)*x; B = 3*df-(2*s0+s1)*x;
if B<0, z = s0*x/(s0-s1); else z = -s0*x*x/(B+sqrt(B*B-A*s0*x)); end
if extr % are we extrapolating?
if ~isreal(z) | ~isfinite(z) | z < x | z > x*EXT, z = EXT*x; end % fix bad z
z = max(z, (1+INT)*x); % extrapolate by at least INT
else % else, we are interpolating
if ~isreal(z) | ~isfinite(z) | z < 0 | z > x, z = x/2; end; % fix bad z
z = min(max(z, INT*x), (1-INT)*x); % at least INT away from the boundaries
end
function y = wp(p, SIG, RHO)
persistent a b c sig rho;
if nargin == 3 % if three arguments, then set up the Wolfe-Powell conditions
a = RHO*p.s; b = p.f; c = -SIG*p.s; sig = SIG; rho = RHO; y= 0;
else
if p.f > a*p.x+b % function value too large?
if a > 0, y = -1; else y = -2; end
else
if p.s < -c, y = 0; elseif p.s > c, y = 1; else y = 2; end
% if sig*abs(p.s) > c, a = rho*p.s; b = p.f-a*p.x; c = sig*abs(p.s); end
end
end
function [fx, dfx] = f(varargin)
persistent F p;
if nargout == 0
p = varargin; if ischar(p{1}), F = str2func(p{1}); else F = p{1}; end
else
[fx, dfx] = F(rewrap(p{2}, varargin{1}), p{3:end}); dfx = unwrap(dfx);
end
function v = unwrap(s) % extract num elements of s (any type) into v (vector)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s) % cell array elements are
for i = 1:numel(s), v = [v; unwrap(s{i})]; end % handled sequentially
end % other types are ignored
function [s v] = rewrap(s, v) % map elements of v (vector) onto s (any type)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
function printf(varargin)
fprintf(varargin{:}); if exist('fflush','builtin'), fflush(stdout); end
|
github
|
Hadisalman/stoec-master
|
sq_dist.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/sq_dist.m
| 1,967 |
utf_8
|
75b906d47729b33d7567f1353ced2f83
|
% sq_dist - a function to compute a matrix of all pairwise squared distances
% between two sets of vectors, stored in the columns of the two matrices, a
% (of size D by n) and b (of size D by m). If only a single argument is given
% or the second matrix is empty, the missing matrix is taken to be identical
% to the first.
%
% Usage: C = sq_dist(a, b)
% or: C = sq_dist(a) or equiv.: C = sq_dist(a, [])
%
% Where a is of size Dxn, b is of size Dxm (or empty), C is of size nxm.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2010-12-13.
function C = sq_dist(a, b)
if nargin<1 || nargin>3 || nargout>1, error('Wrong number of arguments.'); end
bsx = exist('bsxfun','builtin'); % since Matlab R2007a 7.4.0 and Octave 3.0
if ~bsx, bsx = exist('bsxfun'); end % bsxfun is not yet "builtin" in Octave
[D, n] = size(a);
% Computation of a^2 - 2*a*b + b^2 is less stable than (a-b)^2 because numerical
% precision can be lost when both a and b have very large absolute value and the
% same sign. For that reason, we subtract the mean from the data beforehand to
% stabilise the computations. This is OK because the squared error is
% independent of the mean.
if nargin==1 % subtract mean
mu = mean(a,2);
if bsx
a = bsxfun(@minus,a,mu);
else
a = a - repmat(mu,1,size(a,2));
end
b = a; m = n;
else
[d, m] = size(b);
if d ~= D, error('Error: column lengths must agree.'); end
mu = (m/(n+m))*mean(b,2) + (n/(n+m))*mean(a,2);
if bsx
a = bsxfun(@minus,a,mu); b = bsxfun(@minus,b,mu);
else
a = a - repmat(mu,1,n); b = b - repmat(mu,1,m);
end
end
if bsx % compute squared distances
C = bsxfun(@plus,sum(a.*a,1)',bsxfun(@minus,sum(b.*b,1),2*a'*b));
else
C = repmat(sum(a.*a,1)',1,m) + repmat(sum(b.*b,1),n,1) - 2*a'*b;
end
C = max(C,0); % numerical noise can cause C to negative i.e. C > -1e-14
|
github
|
Hadisalman/stoec-master
|
cov_deriv_sq_dist.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/cov_deriv_sq_dist.m
| 1,906 |
utf_8
|
625e697b220630f920d967bce06884e7
|
% Compute derivative k'(x^p,x^q) of a stationary covariance k(d2) (ard or iso)
% w.r.t. to squared distance d2 = (x^p - x^q)'*inv(P)*(x^p - x^q) measure. Here
% P is either diagonal with ARD parameters ell_1^2,...,ell_D^2 where D is the
% dimension of the input space or ell^2 times the unit matrix for isotropic
% covariance.
% The derivatives can only be computed for one of the following eight
% covariance functions: cov{Matern|PP|RQ|SE}{iso|ard}.
%
% Copyright (c) by Hannes Nickisch, 2013-10-28.
%
% See also INFFITC.M, COVFITC.M.
function Kp = cov_deriv_sq_dist(cov,hyp,x,z)
if nargin<4, z = []; end % make sure, z exists
xeqz = numel(z)==0; dg = strcmp(z,'diag') && numel(z)>0; % determine mode
if iscell(cov), covstr = cov{1}; else covstr = cov; end
if ~ischar(covstr), covstr = func2str(covstr); end
if numel([strfind(covstr,'iso'),strfind(covstr,'ard')])==0
error('Only iso|ard covariances allowed for derivatives w.r.t. xu.')
elseif numel([strfind(covstr,'covLIN');
strfind(covstr,'covGabor');
strfind(covstr,'covPER')])>0
error('Gabor|LIN|PER covariances not allowed for derivatives w.r.t. xu.')
end
[n,D] = size(x);
if numel(strfind(covstr,'iso')), id = 1:D; else id = 1; end % *iso covariance
ell1 = exp(hyp(1)); % first characteristic length scale
Kp = feval(cov{:},hyp,x,z,1); % use derivative w.r.t. log(ell(1))
% precompute squared distances
if dg % vector kxx
d2 = zeros(n,1);
else
if xeqz % symmetric matrix Kxx
d2 = sq_dist(x(:,id)'/ell1);
else % cross covariances Kxz
d2 = sq_dist(x(:,id)'/ell1,z(:,id)'/ell1);
end
end
Kp = -1/2*Kp./d2; Kp(d2==0) = 0;
|
github
|
Hadisalman/stoec-master
|
unwrap.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/unwrap.m
| 651 |
utf_8
|
47d4deafec9cfdde0a4c291b3825c401
|
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
|
github
|
Hadisalman/stoec-master
|
glm_invlink_expexp.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/glm_invlink_expexp.m
| 427 |
utf_8
|
99a5cdb9880a947109671401c7398199
|
% Compute the log intensity for the inverse link function g(f) = exp(-exp(-f)).
%
% The function is used in GLM likelihoods such as likPoisson, likGamma, likBeta
% and likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function [lg,dlg,d2lg,d3lg] = glm_invlink_expexp(f)
lg = -exp(-f);
if nargout>1
dlg = -lg;
if nargout>2
d2lg = lg;
if nargout>2
d3lg = -lg;
end
end
end
|
github
|
Hadisalman/stoec-master
|
glm_invlink_logistic.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/glm_invlink_logistic.m
| 686 |
utf_8
|
b21f086f037b6560c290e0044e0beef5
|
% Compute the log intensity for the inverse link function g(f) = log(1+exp(f))).
%
% The function is used in GLM likelihoods such as likPoisson, likGamma, likBeta
% and likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function [lg,dlg,d2lg,d3lg] = glm_invlink_logistic(f)
l1pef = max(0,f) + log(1+exp(-abs(f))); % safely compute log(1+exp(f))
lg = log(l1pef); id = f<-15; lg(id) = f(id); % fix log(log(1+exp(f))) limits
if nargout>1
sm = 1./(1+exp(-f));
dlg = sm./l1pef; dlg(f<-15) = 1;
if nargout>2
sp = 1./(1+exp(f));
d2lg = dlg.*(sp-dlg);
if nargout>2
d3lg = d2lg.*(sp-2*dlg) - dlg.*sp.*sm;
end
end
end
|
github
|
Hadisalman/stoec-master
|
minimize_v1.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/minimize_v1.m
| 11,202 |
utf_8
|
cd58ba0b83b1121423ed9a53b33562a1
|
function [X, fX, i] = minimize_old(X, f, length, varargin)
% Minimize a differentiable multivariate function using conjugate gradients.
%
% Usage: [X, fX, i] = minimize(X, f, length, P1, P2, P3, ... )
%
% X initial guess; may be of any type, including struct and cell array
% f the name or pointer to the function to be minimized. The function
% f must return two arguments, the value of the function, and it's
% partial derivatives wrt the elements of X. The partial derivative
% must have the same type as X.
% length length of the run; if it is positive, it gives the maximum number of
% line searches, if negative its absolute gives the maximum allowed
% number of function evaluations. Optionally, length can have a second
% component, which will indicate the reduction in function value to be
% expected in the first line-search (defaults to 1.0).
% P1, P2, ... parameters are passed to the function f.
%
% X the returned solution
% fX vector of function values indicating progress made
% i number of iterations (line searches or function evaluations,
% depending on the sign of "length") used at termination.
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function).
%
% The Polack-Ribiere flavour of conjugate gradients is used to compute search
% directions, and a line search using quadratic and cubic polynomial
% approximations and the Wolfe-Powell stopping criteria is used together with
% the slope ratio method for guessing initial step sizes. Additionally a bunch
% of checks are made to make sure that exploration is taking place and that
% extrapolation will not be unboundedly large.
%
% See also: checkgrad
%
% Copyright (C) 2001 - 2010 by Carl Edward Rasmussen, 2010-01-03
INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current step-size
MAX = 20; % max 20 function evaluations per line search
RATIO = 10; % maximum allowed slope ratio
SIG = 0.1; RHO = SIG/2; % SIG and RHO are the constants controlling the Wolfe-
% Powell conditions. SIG is the maximum allowed absolute ratio between
% previous and new slopes (derivatives in the search direction), thus setting
% SIG to low (positive) values forces higher precision in the line-searches.
% RHO is the minimum allowed fraction of the expected (from the slope at the
% initial point in the linesearch). Constants must satisfy 0 < RHO < SIG < 1.
% Tuning of SIG (depending on the nature of the function to be optimized) may
% speed up the minimization; it is probably not worth playing much with RHO.
% The code falls naturally into 3 parts, after the initial line search is
% started in the direction of steepest descent. 1) we first enter a while loop
% which uses point 1 (p1) and (p2) to compute an extrapolation (p3), until we
% have extrapolated far enough (Wolfe-Powell conditions). 2) if necessary, we
% enter the second loop which takes p2, p3 and p4 chooses the subinterval
% containing a (local) minimum, and interpolates it, unil an acceptable point
% is found (Wolfe-Powell conditions). Note, that points are always maintained
% in order p0 <= p1 <= p2 < p3 < p4. 3) compute a new search direction using
% conjugate gradients (Polack-Ribiere flavour), or revert to steepest if there
% was a problem in the previous line-search. Return the best value so far, if
% two consecutive line-searches fail, or whenever we run out of function
% evaluations or line-searches. During extrapolation, the "f" function may fail
% either with an error or returning Nan or Inf, and minimize should handle this
% gracefully.
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
if length>0, S='Linesearch'; else S='Function evaluation'; end
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
[f0 df0] = feval(f, X, varargin{:}); % get function value and gradient
Z = X; X = unwrap(X); df0 = unwrap(df0);
fprintf('%s %6i; Value %4.6e\r', S, i, f0);
if exist('fflush','builtin') fflush(stdout); end
fX = f0;
i = i + (length<0); % count epochs?!
s = -df0; d0 = -s'*s; % initial search direction (steepest) and slope
x3 = red/(1-d0); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; F0 = f0; dF0 = df0; % make a copy of current values
if length>0, M = MAX; else M = min(MAX, -length-i); end
while 1 % keep extrapolating as long as necessary
x2 = 0; f2 = f0; d2 = d0; f3 = f0; df3 = df0;
success = 0;
while ~success && M > 0
try
M = M - 1; i = i + (length<0); % count epochs?!
[f3 df3] = feval(f, rewrap(Z,X+x3*s), varargin{:});
df3 = unwrap(df3);
if isnan(f3) || isinf(f3) || any(isnan(df3)+isinf(df3)), error(''), end
success = 1;
catch % catch any error which occured in f
x3 = (x2+x3)/2; % bisect and try again
end
end
if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end % keep best values
d3 = df3'*s; % new slope
if d3 > SIG*d0 || f3 > f0+x3*RHO*d0 || M == 0 % are we done extrapolating?
break
end
x1 = x2; f1 = f2; d1 = d2; % move point 2 to point 1
x2 = x3; f2 = f3; d2 = d3; % move point 3 to point 2
A = 6*(f1-f2)+3*(d2+d1)*(x2-x1); % make cubic extrapolation
B = 3*(f2-f1)-(2*d1+d2)*(x2-x1);
x3 = x1-d1*(x2-x1)^2/(B+sqrt(B*B-A*d1*(x2-x1))); % num. error possible, ok!
if ~isreal(x3) || isnan(x3) || isinf(x3) || x3 < 0 % num prob | wrong sign?
x3 = x2*EXT; % extrapolate maximum amount
elseif x3 > x2*EXT % new point beyond extrapolation limit?
x3 = x2*EXT; % extrapolate maximum amount
elseif x3 < x2+INT*(x2-x1) % new point too close to previous point?
x3 = x2+INT*(x2-x1);
end
end % end extrapolation
while (abs(d3) > -SIG*d0 || f3 > f0+x3*RHO*d0) && M > 0 % keep interpolating
if d3 > 0 || f3 > f0+x3*RHO*d0 % choose subinterval
x4 = x3; f4 = f3; d4 = d3; % move point 3 to point 4
else
x2 = x3; f2 = f3; d2 = d3; % move point 3 to point 2
end
if f4 > f0
x3 = x2-(0.5*d2*(x4-x2)^2)/(f4-f2-d2*(x4-x2)); % quadratic interpolation
else
A = 6*(f2-f4)/(x4-x2)+3*(d4+d2); % cubic interpolation
B = 3*(f4-f2)-(2*d2+d4)*(x4-x2);
x3 = x2+(sqrt(B*B-A*d2*(x4-x2)^2)-B)/A; % num. error possible, ok!
end
if isnan(x3) || isinf(x3)
x3 = (x2+x4)/2; % if we had a numerical problem then bisect
end
x3 = max(min(x3, x4-INT*(x4-x2)),x2+INT*(x4-x2)); % don't accept too close
[f3 df3] = feval(f, rewrap(Z,X+x3*s), varargin{:});
df3 = unwrap(df3);
if f3 < F0, X0 = X+x3*s; F0 = f3; dF0 = df3; end % keep best values
M = M - 1; i = i + (length<0); % count epochs?!
d3 = df3'*s; % new slope
end % end interpolation
if abs(d3) < -SIG*d0 && f3 < f0+x3*RHO*d0 % if line search succeeded
X = X+x3*s; f0 = f3; fX = [fX' f0]'; % update variables
fprintf('%s %6i; Value %4.6e\r', S, i, f0);
if exist('fflush','builtin') fflush(stdout); end
s = (df3'*df3-df0'*df3)/(df0'*df0)*s - df3; % Polack-Ribiere CG direction
df0 = df3; % swap derivatives
d3 = d0; d0 = df0'*s;
if d0 > 0 % new slope must be negative
s = -df0; d0 = -s'*s; % otherwise use steepest direction
end
x3 = x3 * min(RATIO, d3/(d0-realmin)); % slope ratio but max RATIO
ls_failed = 0; % this line search did not fail
else
X = X0; f0 = F0; df0 = dF0; % restore best point so far
if ls_failed || i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up
end
s = -df0; d0 = -s'*s; % try steepest
x3 = 1/(1-d0);
ls_failed = 1; % this line search failed
end
end
X = rewrap(Z,X);
fprintf('\n'); if exist('fflush','builtin') fflush(stdout); end
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s))); % alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
Hadisalman/stoec-master
|
rewrap.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/rewrap.m
| 1,014 |
utf_8
|
64b6d7c0f51a8c77ddd012370a288b20
|
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
Hadisalman/stoec-master
|
solve_chol.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/solve_chol.m
| 994 |
utf_8
|
f4d6cd4b9e7b0a955c2c8709a4894dd3
|
% solve_chol - solve linear equations from the Cholesky factorization.
% Solve A*X = B for X, where A is square, symmetric, positive definite. The
% input to the function is R the Cholesky decomposition of A and the matrix B.
% Example: X = solve_chol(chol(A),B);
%
% NOTE: The program code is written in the C language for efficiency and is
% contained in the file solve_chol.c, and should be compiled using matlabs mex
% facility. However, this file also contains a (less efficient) matlab
% implementation, supplied only as a help to people unfamiliar with mex. If
% the C code has been properly compiled and is available, it automatically
% takes precendence over the matlab code in this file.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2010-09-18.
function X = solve_chol(L, B)
if nargin ~= 2 || nargout > 1
error('Wrong number of arguments.');
end
if size(L,1) ~= size(L,2) || size(L,1) ~= size(B,1)
error('Wrong sizes of matrix arguments.');
end
X = L\(L'\B);
|
github
|
Hadisalman/stoec-master
|
glm_invlink_logit.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/glm_invlink_logit.m
| 786 |
utf_8
|
b2fc9a03b835c7f6643f37b29eac8c0b
|
% Compute the log intensity for the inverse link function g(f) = 1/(1+exp(-f)).
%
% The function is used in GLM likelihoods such as likPoisson, likGamma, likBeta
% and likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function varargout = glm_invlink_logit(f)
varargout = cell(nargout, 1); % allocate the right number of output arguments
[varargout{:}] = glm_invlink_logistic(f);
if nargout>0
elg = exp(varargout{1});
varargout{1} = f - elg;
if nargout>1
dlg = varargout{2};
varargout{2} = 1 - elg.*dlg;
if nargout>2
d2lg = varargout{3};
varargout{3} = -elg.*(dlg.^2+d2lg);
if nargout>3
d3lg = varargout{4};
varargout{4} = -elg.*(dlg.^3+3*d2lg.*dlg+d3lg);
end
end
end
end
|
github
|
Hadisalman/stoec-master
|
minimize_lbfgsb_gradfun.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/minimize_lbfgsb_gradfun.m
| 2,390 |
utf_8
|
0eca58fc12d068780d735fd5a83ebdfa
|
function G = minimize_lbfgsb_gradfun(X,varargin)
% extract input arguments
varargin = varargin{1}; strctX = varargin{2}; f = varargin{1};
% global variables serve as communication interface between calls
global minimize_lbfgsb_iteration_number
global minimize_lbfgsb_objective
global minimize_lbfgsb_gradient
global minimize_lbfgsb_X
if norm(unwrap(X)-unwrap(minimize_lbfgsb_X))>1e-10
[y,G] = feval(f,rewrap(strctX,X),varargin{3:end});
else
y = minimize_lbfgsb_objective(minimize_lbfgsb_iteration_number);
G = minimize_lbfgsb_gradient;
end
% memorise gradient and position
minimize_lbfgsb_gradient = G;
minimize_lbfgsb_X = X;
G = unwrap(G);
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
Hadisalman/stoec-master
|
minimize_lbfgsb.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/minimize_lbfgsb.m
| 4,476 |
utf_8
|
10c2d1fef0bdc071cd35d3904c88f0ed
|
function [X, fX, i] = minimize_lbfgsb(X, f, length, varargin)
% Minimize a differentiable multivariate function using quasi Newton.
%
% Usage: [X, fX, i] = minimize_lbfgsb(X, f, length, P1, P2, P3, ... )
%
% X initial guess; may be of any type, including struct and cell array
% f the name or pointer to the function to be minimized. The function
% f must return two arguments, the value of the function, and it's
% partial derivatives wrt the elements of X. The partial derivative
% must have the same type as X.
% length length of the run; if it is positive, it gives the maximum number of
% line searches, if negative its absolute gives the maximum allowed
% number of function evaluations. Optionally, length can have a second
% component, which will indicate the reduction in function value to be
% expected in the first line-search (defaults to 1.0).
% P1, P2 ... parameters are passed to the function f.
%
% X the returned solution
% fX vector of function values indicating progress made
% i number of iterations (line searches or function evaluations,
% depending on the sign of "length") used at termination.
%
% The function returns when either its length is up, or if no further progress
% can be made (ie, we are at a (local) minimum, or so close that due to
% numerical problems, we cannot get any closer). NOTE: If the function
% terminates within a few iterations, it could be an indication that the
% function values and derivatives are not consistent (ie, there may be a bug in
% the implementation of your "f" function).
%
% Copyright (C) 2010 by Hannes Nickisch, 2010-02-05
% global variables serve as communication interface between calls
global minimize_lbfgsb_iteration_number
global minimize_lbfgsb_objective
global minimize_lbfgsb_gradient
global minimize_lbfgsb_X
% init global variables
minimize_lbfgsb_iteration_number = 0;
minimize_lbfgsb_objective = Inf;
minimize_lbfgsb_gradient = 0*unwrap(X);
minimize_lbfgsb_X = X;
X0 = X;
lb = -Inf*ones(size(unwrap(X0)));
ub = Inf*ones(size(unwrap(X0)));
maxiter = abs(length); % max number of iterations
% no callback routine used so far
% m is the number of saved vectors used to estimate the Hessian
% factr is the precision 1e-12
X = lbfgsb( unwrap(X0), lb, ub, 'minimize_lbfgsb_objfun', ...
'minimize_lbfgsb_gradfun', ...
{f,X0,varargin{:}}, [], ...
'maxiter',maxiter, 'm',4, 'factr',1e-12, 'pgtol',1e-5);
i = minimize_lbfgsb_iteration_number;
fX = minimize_lbfgsb_objective;
X = rewrap(X0,X);
% clear global variables
clear minimize_lbfgsb_iteration_number
clear minimize_lbfgsb_objective
clear minimize_lbfgsb_gradient
clear minimize_lbfgsb_X
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
Hadisalman/stoec-master
|
minimize_lbfgsb_objfun.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/minimize_lbfgsb_objfun.m
| 2,695 |
utf_8
|
d9bbd3614b193a06603c12f33f877104
|
function y = minimize_lbfgsb_objfun(X,varargin)
% extract input arguments
varargin = varargin{1}; strctX = varargin{2}; f = varargin{1};
% global variables serve as communication interface between calls
global minimize_lbfgsb_iteration_number
global minimize_lbfgsb_objective
global minimize_lbfgsb_gradient
global minimize_lbfgsb_X
recompute = 0;
if minimize_lbfgsb_iteration_number==0
recompute = 1;
else
if norm(unwrap(X)-unwrap(minimize_lbfgsb_X))>1e-10
recompute = 1;
end
end
if recompute
[y,G] = feval(f,rewrap(strctX,X),varargin{3:end});
else
y = minimize_lbfgsb_objective(minimize_lbfgsb_iteration_number);
G = minimize_lbfgsb_gradient;
end
% increase global counter, memorise objective function, gradient and position
minimize_lbfgsb_iteration_number = minimize_lbfgsb_iteration_number+1;
minimize_lbfgsb_objective(minimize_lbfgsb_iteration_number,1) = y;
minimize_lbfgsb_gradient = G;
minimize_lbfgsb_X = X;
% Extract the numerical values from "s" into the column vector "v". The
% variable "s" can be of any type, including struct and cell array.
% Non-numerical elements are ignored. See also the reverse rewrap.m.
function v = unwrap(s)
v = [];
if isnumeric(s)
v = s(:); % numeric values are recast to column vector
elseif isstruct(s)
v = unwrap(struct2cell(orderfields(s)));% alphabetize, conv to cell, recurse
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
v = [v; unwrap(s{i})];
end
end % other types are ignored
% Map the numerical elements in the vector "v" onto the variables "s" which can
% be of any type. The number of numerical elements must match; on exit "v"
% should be empty. Non-numerical entries are just copied. See also unwrap.m.
function [s v] = rewrap(s, v)
if isnumeric(s)
if numel(v) < numel(s)
error('The vector for conversion contains too few elements')
end
s = reshape(v(1:numel(s)), size(s)); % numeric values are reshaped
v = v(numel(s)+1:end); % remaining arguments passed on
elseif isstruct(s)
[s p] = orderfields(s); p(p) = 1:numel(p); % alphabetize, store ordering
[t v] = rewrap(struct2cell(s), v); % convert to cell, recurse
s = orderfields(cell2struct(t,fieldnames(s),1),p); % conv to struct, reorder
elseif iscell(s)
for i = 1:numel(s) % cell array elements are handled sequentially
[s{i} v] = rewrap(s{i}, v);
end
end % other types are not processed
|
github
|
Hadisalman/stoec-master
|
logsumexp2.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/logsumexp2.m
| 454 |
utf_8
|
aa7e4f12a67c8f2e12bc5d9113b9abd0
|
% Compute y = log( sum(exp(x),2) ), the softmax in a numerically safe way by
% subtracting the row maximum to avoid cancelation after taking the exp
% the sum is done along the rows.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function [y,x] = logsumexp2(logx)
N = size(logx,2); max_logx = max(logx,[],2);
% we have all values in the log domain, and want to calculate a sum
x = exp(logx-max_logx*ones(1,N));
y = log(sum(x,2)) + max_logx;
|
github
|
Hadisalman/stoec-master
|
lik_epquad.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/lik_epquad.m
| 1,622 |
utf_8
|
9f92aef26b02e08fcee8f74617ebd05d
|
% Compute infEP part of a likelihood function based on the infLaplace part using
% Gaussian-Hermite quadrature.
%
% The function is used in GLM likelihoods such as likPoisson, likGamma, likBeta
% and likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function varargout = lik_epquad(lik,hyp,y,mu,s2)
n = max([length(y),length(mu),length(s2)]); on = ones(n,1);
N = 20; [t,w] = gauher(N); oN = ones(1,N); lw = ones(n,1)*log(w');
y = y(:).*on; mu = mu(:).*on; sig = sqrt(s2(:)).*on; % vectors only
[lpi,dlpi,d2lpi] = feval(lik{:},hyp,y*oN,sig*t'+mu*oN,[],'infLaplace');
lZ = s(lpi+lw);
dlZ = {}; d2lZ = {};
if nargout>1 % 1st derivative wrt mean
% Using p*dlp=dp, p=exp(lp), Z=sum_i wi*pi, dZ = sum_i wi*dpi we obtain
% dlZ = sum_i exp(lpi-lZ+lwi)*dlpi = sum_i ai*dlpi.
a = exp(lpi - lZ*oN + lw);
dlZ = sum(a.*dlpi,2);
if nargout>2 % 2nd derivative wrt mean
% Using d2lZ=(d2Z*Z-dZ^2)/Z^2 <=> d2Z=Z*(d2lZ+dlZ^2) and
% d2Z = sum_i wi*d2Zi, we get d2lZ = sum_i ai*(d2lpi+dlpi^2)-dlZ^2.
d2lZ = sum(a.*(d2lpi+dlpi.*dlpi),2) - dlZ.*dlZ;
end
end
varargout = {lZ,dlZ,d2lZ};
% computes y = log( sum(exp(x),2) ), the softmax in a numerically safe way by
% subtracting the row maximum to avoid cancelation after taking the exp
% the sum is done along the rows
function [y,x] = s(logx)
N = size(logx,2); max_logx = max(logx,[],2);
% we have all values in the log domain, and want to calculate a sum
x = exp(logx-max_logx*ones(1,N));
y = log(sum(x,2)) + max_logx;
|
github
|
Hadisalman/stoec-master
|
glm_invlink_exp.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/util/glm_invlink_exp.m
| 443 |
utf_8
|
af4bb74d42054f7b470ed8aecfcf4607
|
% Compute the log intensity for the inverse link function g(f) = exp(f).
%
% The function is used in GLM likelihoods such as likPoisson, likGamma, likBeta
% and likInvGauss.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
function [lg,dlg,d2lg,d3lg] = glm_invlink_exp(f)
lg = f;
if nargout>1
dlg = ones(size(f));
if nargout>2
d2lg = zeros(size(f));
if nargout>2
d3lg = zeros(size(f));
end
end
end
|
github
|
Hadisalman/stoec-master
|
covPeriodicNoDC.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/cov/covPeriodicNoDC.m
| 3,630 |
utf_8
|
32d02bd08932f22fe8302ce97b797d39
|
function K = covPeriodicNoDC(hyp, x, z, i)
% Stationary covariance function for a smooth periodic function, with period p:
%
% k(x,x') = sf^2 * [k0(pi*(x-x')/p) - f(ell)] / [1 - f(ell)]
% with k0(t) = exp( -2*sin^2(t)/ell^2 ) and f(ell) = \int 0..pi k0(t) dt.
%
% The constant (DC component) has been removed and marginal variance is sf^2.
% The hyperparameters are:
%
% hyp = [ log(ell)
% log(p)
% log(sf) ]
%
% Note that covPeriodicNoDC converges to covCos as ell goes to infinity.
%
% Copyright (c) by James Robert Lloyd and Hannes Nickisch 2013-10-21.
%
% See also COVFUNCTIONS.M, COVCOS.M.
if nargin<2, K = '3'; return; end % report number of parameters
if nargin<3, z = []; end % make sure, z exists
xeqz = numel(z)==0; dg = strcmp(z,'diag') && numel(z)>0; % determine mode
[n,D] = size(x);
if D>1, error('Covariance is defined for 1d data only.'), end
ell = exp(hyp(1));
p = exp(hyp(2));
sf2 = exp(2*hyp(3));
% precompute distances
if dg % vector kxx
K = zeros(size(x,1),1);
else
if xeqz % symmetric matrix Kxx
K = sqrt(sq_dist(x'));
else % cross covariances Kxz
K = sqrt(sq_dist(x',z'));
end
end
K = 2*pi*K/p;
if nargin<4 % covariances
K = sf2*covD(K,ell);
else
if i==1
if ell>1e4 % limit for ell->infty
K = zeros(size(K)); % no further progress in ell possible
elseif 1/ell^2<3.75
cK = cos(K); ecK = exp(cK/ell^2);
b0 = besseli(0,1/ell^2);
b1 = besseli(1,1/ell^2);
K = 2*(exp(1/ell^2)-ecK )*b1 ...
- 2*(exp(1/ell^2)-ecK.*cK)*b0 ...
+ 4*exp(2*(cos(K/2)/ell).^2).*sin(K/2).^2;
K = sf2/(ell*(exp(1/ell^2)-b0))^2 * K;
else
cK = cos(K); ecK = exp((cK-1)/ell^2);
b0 = embi0(1/ell^2);
b1 = embi1(1/ell^2);
K = 2*(1-ecK)*b1 - 2*(1-ecK.*cK)*b0 ...
+ 4*exp(2*(cos(K/2).^2-1)/ell^2).*sin(K/2).^2;
K = sf2/(ell*(1-b0))^2 * K;
end
elseif i==2
if ell>1e4 % limit for ell->infty
K = sf2*sin(K).*K;
elseif 1/ell^2<3.75
K = exp(cos(K)/ell^2).*sin(K).*K;
K = sf2/ell^2/(exp(1/ell^2)-besseli(0,1/ell^2))*K;
else
K = exp((cos(K)-1)/ell^2).*sin(K).*K;
K = sf2/ell^2/(1-embi0(1/ell^2))*K;
end
elseif i==3
K = 2*sf2*covD(K,ell);
else
error('Unknown hyperparameter')
end
end
function K = covD(D,ell) % evaluate covariances from distances
if ell>1e4 % limit for ell->infty
K = cos(D);
elseif 1/ell^2<3.75
K = exp(cos(D)/ell^2);
b0 = besseli(0,1/ell^2);
K = (K-b0)/(exp(1/ell^2)-b0);
else
K = exp((cos(D)-1)/ell^2);
b0 = embi0(1/ell^2);
K = (K-b0)/(1-b0);
end
function y = embi0(x) % = exp(-x)*besseli(0,x) => 9.8.2 Abramowitz & Stegun
y = 3.75/x;
y = 0.39894228 + 0.01328592*y + 0.00225319*y^2 - 0.00157565*y^3 ...
+ 0.00916281*y^4 - 0.02057706*y^5 + 0.02635537*y^6 - 0.01647633*y^7 ...
+ 0.00392377*y^8;
y = y/sqrt(x);
function y = embi1(x) % = exp(-x)*besseli(1,x) => 9.8.4 Abramowitz & Stegun
y = 3.75/x;
y = 0.39894228 - 0.03988024*y - 0.00362018*y^2 + 0.00163801*y^3 ...
- 0.01031555*y^4 + 0.02282967*y^5 - 0.02895312*y^6 + 0.01787654*y^7 ...
- 0.00420059*y^8;
y = y/sqrt(x);
|
github
|
Hadisalman/stoec-master
|
covGrid.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/cov/covGrid.m
| 7,051 |
utf_8
|
45064e9c69d8e20f1122e20679e25085
|
function [K,Mx,xe] = covGrid(cov, xg, hyp, x, z, i)
% covGrid - Kronecker covariance function based on a grid.
%
% The grid g is represented by its p axes xg = {x1,x2,..xp}. An axis xi is of
% size (ni,di) and the grid g has size (n1,n2,..,np,D), where D=d1+d2+..+dp.
% Hence, the grid contains N=n1*n2*..*np data points. The axes do neither need
% to be sorted in any way nor do they need to be 1d i.e. ni>=1.
%
% The covGrid function can be used to expand the cell array xg into an expanded
% multivariate grid xe of size (N,D) via:
% [xe,nx,Dx] = covGrid('expand',xg);
% The operation can be reverted by:
% xg = covGrid('factor',{xe,ng,Dg});
%
% The variables v={x,z} can either be a) grid indices or b) data points.
% a) The variable v has size (nv,1) and contains integers from [1,N]. Then
% the datapoints are obtained as g2 = reshape(g,N,D); v = g2(v,:).
% b) The variable v has size (nv,D) and directly represents the data points.
% The mechanism works for x and z separately.
%
% The resulting covariance matrix is given by:
% K = kron( kron(...,K{2}), K{1} ) = K_p x .. x K_2 x K_1.
%
% The hyperparameters are:
% hyp = [ hyp_1
% hyp_2
% ..
% hyp_p ],
%
% Copyright (c) by Hannes Nickisch and Andrew Wilson 2014-12-04.
%
% See also COVFUNCTIONS.M, INFGRID.M.
if nargin<2, error('Not enough parameters provided.'), end
if strcmp(cov,'expand') % convert between full grid and axes representation
[K,Mx,xe] = expandgrid(xg); return
elseif strcmp(cov,'factor')
K = factorgrid(xg{:}); return
end
p = numel(xg); ng = zeros(p,1); Dg = zeros(p,1); % number of Kronecker factors
if numel(cov)~=p, error('We require p factors.'), end
for ii = 1:p % iterate over covariance functions
[ng(ii),Dg(ii)] = size(xg{ii});
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
D = Dg(ii); j(ii) = cellstr(num2str(eval(feval(f{:})))); % collect nbr hypers
end
if nargin<4 % report number of parameters
K = char(j(1)); for ii=2:length(cov), K = [K, '+', char(j(ii))]; end, return
end
if nargin<5, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
v = []; % v vector indicates to which covariance parameters belong
for ii = 1:p, v = [v repmat(ii, 1, eval(char(j(ii))))]; end
if nargin==6 && i>length(v), error('Unknown hyperparameter'), end
toep = true(p,1); % grid along dimension is equispaced -> Toeplitz structure
for ii=1:p
if ng(ii)>1 % diagnose Toeplitz structure if data is linearly increasing
dev = abs(diff(xg{ii})-ones(ng(ii)-1,1)*(xg{ii}(2,:)-xg{ii}(1,:)));
toep(ii) = max(dev(:))<1e-9;
end
end
N = prod(ng); n = size(x,1); D = sum(Dg); % expanded grid and data dimension
ix = isidx(x,N); % determine whether x is an index or a data array
if dg % evaluate as full dense vector for diagonal covariance case
K = 1; % xg is not assumed to form a grid for z = 'diag'
for ii = 1:length(cov) % iteration over factor functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
d = sum(Dg(1:ii-1))+(1:Dg(ii)); % dimensions of interest
if nargin<6, i = 0; vi = 0; else vi = v(i); end; % which covariance function
if i<=length(v)
if ix, xii = xg{ii}; else xii = x(:,d); end % switch Kronecker/plain prod
if ii==vi
j = sum(v(1:i)==vi); % which parameter in that covariance
Kj = feval(f{:}, hyp(v==ii), xii, z, j); % deriv Kronecker factor
else
Kj = feval(f{:}, hyp(v==ii), xii, z); % plain Kronecker factor
end
if ix, K = kron(K,Kj); else K = K.*Kj; end % switch Kronecker/plain prod
else error('Unknown hyperparameter')
end
end
if ix, K = K(x); end, return
end
if ~ix, error('Off-grid input only supported for z.'), end
if isidx(z,N); Mz = z; z = covGrid('expand',xg); z = z(Mz,:); end
K = cell(p,1); % covariance Kronecker factors
for ii = 1:length(cov) % iteration over factor functions
f = cov(ii); if iscell(f{:}), f = f{:}; end % expand cell array if necessary
d = sum(Dg(1:ii-1))+(1:Dg(ii)); % dimensions of interest
if isnumeric(z) && ~isempty(z) % cross terms
zd = z(:,d);
elseif xeqz && toep(ii) % we have Toeplitz structure
zd = xg{ii}(1,:);
else % symmetric matrix
zd = z;
end
if nargin<6, i = 0; vi = 0; else vi = v(i); end; % which covariance function
if i<=length(v)
if ii==vi
j = sum(v(1:i)==vi); % which parameter in that covariance
K{ii} = feval(f{:}, hyp(v==ii), xg{ii}, zd, j); % deriv Kronecker factor
else
K{ii} = feval(f{:}, hyp(v==ii), xg{ii}, zd); % plain Kronecker factor
end
else error('Unknown hyperparameter')
end
if xeqz && toep(ii), K{ii} = {'toep',K{ii}}; end % make Toeplitz explicit
end
if ~xeqz % expand cross terms
Ks = K; K = Ks{1}; for ii = 2:p, K = kron1(Ks{ii},K); end
if ix && (numel(x)~=N || max(abs(x-(1:N)'))>0), K = K(x,:); end
end
if nargout>1, if ix, Mx = sparse(1:n,x,1,n,N); end, end
if nargout>2, xe = covGrid('expand',xg); end
% perform kron along first dimension only
% the code is equivalent to the following loop
% z = zeros(size(x,1)*size(y,1),size(x,2));
% for i=1:size(z,2), z(:,i) = kron(x(:,i),y(:,i)); end
function z = kron1(x,y)
nx = size(x,1); ny = size(y,1);
z = repmat(reshape(x,1,nx,[]),[ny,1,1]).*repmat(reshape(y,ny,1,[]),[1,nx,1]);
z = reshape(z,nx*ny,[]);
function r = isidx(i,N) % check whether i represents an integer index vector
r = false;
if numel(i)>0 && ~strcmp(i,'diag') && size(i,2)==1 && ndims(i)==2
if max(abs(i-floor(i)))<1e-13
if 0<min(i) && max(i)<=N, r = true; end
end
end
function [x,ng,Dg] = expandgrid(xg) % expand a Kronecker grid
p = numel(xg); x = xg{1}; % expanded grid data
ng = zeros(p,1); Dg = zeros(p,1); [ng(1),Dg(1)] = size(xg{1});
for i=2:p
szx = size(x); [ng(i),Dg(i)] = size(xg{i});
xold = repmat(reshape(x,[],1,szx(end)),[1,ng(i),1]);
xnew = repmat(reshape(xg{i},[1,ng(i),Dg(i)]),[size(xold,1),1,1]);
x = reshape(cat(3,xold,xnew),[szx(1:end-1),ng(i),szx(end)+Dg(i)]);
end
x = reshape(x,[],size(x,ndims(x)));
function xg = factorgrid(x,ng,Dg) % factor a Kronecker grid
p = numel(ng); xg = cell(p,1); % extract individual grid components xg
for i=1:p
x = reshape(x,[prod(ng(1:i-1)), ng(i), prod(ng(i+1:end)), sum(Dg)]);
xg{i} = reshape(x(1,:,1,sum(Dg(1:i-1))+(1:Dg(i))), ng(i), Dg(i));
end
|
github
|
Hadisalman/stoec-master
|
covPERiso.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/cov/covPERiso.m
| 3,145 |
utf_8
|
7308c3f2001744df0d77cd5dc190c637
|
function K = covPERiso(cov, hyp, x, z, i)
% Stationary periodic covariance function for an isotropic stationary covariance
% function k0 such as covMaterniso, covPPiso, covRQiso and covSEiso.
% Isotropic stationary means that the covariance function k0(x,z) depends on the
% data points x,z only through the squared distance
% dxz = (x-z)'*inv(P)*(x-z) where the P matrix is ell^2 times the unit matrix.
% The covariance function is parameterized as:
%
% k(x,z) = k0(u(x),u(z)), u(x) = [sin(pi*x/p); cos(pi*x/p)]
%
% where the period p belongs to covPERiso and hyp0 belong to k0:
%
% hyp = [ log(p)
% hyp0 ]
%
% The first hyperparameter of k0 is the log lengthscale hyp0(1) = log(ell).
% Note that for k0 = covSEiso and D = 1, a faster alternative is covPeriodic.
%
% Copyright (c) by Hannes Nickisch, 2013-10-15.
%
% See also COVFUNCTIONS.M.
nocov = false; % default case when no cov argument is provided
if nargin==0, cov = {@covSEiso}; nocov = true; end % default case
if isnumeric(cov) % detect old version where the cov parameter was missing
% i <- z, z <- x, x <- hyp, hyp <- cov
if nargin>3, i = z; end
if nargin>2, z = x; end
if nargin>1, x = hyp; end
hyp = cov; cov = {@covSEiso}; nocov = true;
end
if nocov && nargin<2 || ~nocov && nargin<3 % report number of parameters
K = ['(1+',feval(cov{:}),')']; return
end
if nocov && nargin<3 || ~nocov && nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x);
p = exp(hyp(1));
if nocov && nargin<4 || ~nocov && nargin<5
[x,z] = u(x,z,p,dg); % apply the embedding u:IR^D->IR^2*D
K = feval(cov{:},hyp(2:end),x,z);
else
if i==1
if dg % compute distance d
d = zeros([n,1,D]);
else
if xeqz % symmetric matrix Kxx
d = repmat(reshape(x,n,1,D),[1,n, 1])-repmat(reshape(x,1,n, D),[n,1,1]);
else % cross covariances Kxz
nz = size(z,1);
d = repmat(reshape(x,n,1,D),[1,nz,1])-repmat(reshape(z,1,nz,D),[n,1,1]);
end
end
d = 2*pi*d/p; dD2_dlp = -2*sum(sin(d).*d,3); % derivative dD2/dlog(p)
[x,z] = u(x,z,p,dg); % apply the embedding u:IR^D->IR^2*D
if dg % compute squared distances
D2 = zeros(n,1);
else
if xeqz, D2 = sq_dist(x'); else D2 = sq_dist(x',z'); end
end
% reconstruct derivative w.r.t. D2 from derivative w.r.t. log(ell)
dK_dD2 = feval(cov{:},hyp(2:end),x,z,1)./(-2*D2); dK_dD2(D2<1e-12) = 0;
K = dK_dD2.*dD2_dlp; % apply chain rule
else
[x,z] = u(x,z,p,dg); % apply the embedding u:IR^D->IR^2*D
K = feval(cov{:},hyp(2:end),x,z,i-1);
end
end
function [x,z] = u(x,z,p,dg) % apply the embedding u:IR^D->IR^2*D
x = 2*pi*x/p; x = [sin(x), cos(x)];
if numel(z)>0 && ~dg, z = 2*pi*z/p; z = [sin(z), cos(z)]; end
|
github
|
Hadisalman/stoec-master
|
covADD.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/cov/covADD.m
| 3,632 |
utf_8
|
45875a6c0e52c3f98448f40f6b6fc599
|
function K = covADD(cov, hyp, x, z, i)
% Additive covariance function using a 1d base covariance function
% cov(x^p,x^q;hyp) with individual hyperparameters hyp.
%
% k(x^p,x^q) = \sum_{r \in R} sf_r \sum_{|I|=r}
% \prod_{i \in I} cov(x^p_i,x^q_i;hyp_i)
%
% hyp = [ hyp_1
% hyp_2
% ...
% hyp_D
% log(sf_R(1))
% ...
% log(sf_R(end)) ]
%
% where hyp_d are the parameters of the 1d covariance function which are shared
% over the different values of R(1) to R(end).
%
% Please see the paper Additive Gaussian Processes by Duvenaud, Nickisch and
% Rasmussen, NIPS, 2011 for details.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch, 2010-09-10.
%
% See also COVFUNCTIONS.M.
R = cov{1};
nh = eval(feval(cov{2})); % number of hypers per individual covariance
nr = numel(R); % number of different degrees of interaction
if nargin<3 % report number of hyper parameters
K = ['D*', int2str(nh), '+', int2str(nr)];
return
end
if nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x); % dimensionality
sf2 = exp( 2*hyp(D*nh+(1:nr)) ); % signal variances of individual degrees
Kd = Kdim(cov{2},hyp,x,z); % evaluate dimensionwise covariances K
if nargin<5 % covariances
EE = elsympol(Kd,max(R)); % Rth elementary symmetric polynomials
K = 0; for ii=1:nr, K = K + sf2(ii)*EE(:,:,R(ii)+1); end % sf2 weighted sum
else % derivatives
if i <= D*nh % individual covariance function parameters
j = fix(1+(i-1)/nh); % j is the dimension of the hyperparameter
if dg, zj='diag'; else if xeqz, zj=[]; else zj=z(:,j); end, end
dKj = feval(cov{2},hyp(nh*(j-1)+(1:nh)),x(:,j),zj,i-(j-1)*nh); % other dK=0
% the final derivative is a sum of multilinear terms, so if only one term
% depends on the hyperparameter under consideration, we can factorise it
% out and compute the sum with one degree less
E = elsympol(Kd(:,:,[1:j-1,j+1:D]),max(R)-1); % R-1th elementary sym polyn
K = 0; for ii=1:nr, K = K + sf2(ii)*E(:,:,R(ii)); end % sf2 weighted sum
K = dKj.*K;
elseif i <= D*nh+nr
EE = elsympol(Kd,max(R)); % Rth elementary symmetric polynomials
j = i-D*nh;
K = 2*sf2(j)*EE(:,:,R(j)+1); % rest of the sf2 weighted sum
else
error('Unknown hyperparameter')
end
end
% evaluate dimensionwise covariances K
function K = Kdim(cov,hyp,x,z)
[n,D] = size(x); % dimensionality
nh = eval(feval(cov)); % number of hypers per individual covariance
if nargin<4, z = []; end % make sure, z exists
xeqz = numel(z)==0; dg = strcmp(z,'diag') && numel(z)>0; % determine mode
if dg % allocate memory
K = zeros(n,1,D);
else
if xeqz, K = zeros(n,n,D); else K = zeros(n,size(z,1),D); end
end
for d=1:D
hyp_d = hyp(nh*(d-1)+(1:nh)); % hyperparamter of dimension d
if dg
K(:,:,d) = feval(cov,hyp_d,x(:,d),'diag');
else
if xeqz
K(:,:,d) = feval(cov,hyp_d,x(:,d));
else
K(:,:,d) = feval(cov,hyp_d,x(:,d),z(:,d));
end
end
end
|
github
|
Hadisalman/stoec-master
|
covPERard.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/cov/covPERard.m
| 3,588 |
utf_8
|
47dfb8b9857ef5e9bc3693bb6e5c0aa9
|
function K = covPERard(cov, hyp, x, z, i)
% Stationary periodic covariance function for a stationary covariance function
% k0 such as covMaternard, covPPard, covRQard and covSEard.
% Stationary means that the covariance function k0(x,z) depends on the
% data points x,z only through the squared distance
% dxz = (x-z)'*inv(P)*(x-z) where the P matrix is diagonal with ARD parameters
% ell_1^2,...,ell_D^2, where D is the dimension of the input space.
% The covariance function is parameterized as:
%
% k(x,z) = k0(u(x),u(z)), u(x) = [sin(pi*x/p); cos(pi*x/p)]
%
% where the period p belongs to covPERiso and hyp0 belong to k0:
%
% hyp = [ log(p_1)
% log(p_2)
% .
% log(p_D)
% hyp0 ]
%
% The first D hyperparameters of k0 are the log lengthscales such that
% hyp0(i) = log(ell(i)) for i=1..D.
% Note that for k0 = covSEard and D = 1, a faster alternative is covPeriodic.
%
% Copyright (c) by Hannes Nickisch, 2013-10-16.
%
% See also COVFUNCTIONS.M.
nocov = false; % default case when no cov argument is provided
if nargin==0, cov = {@covSEard}; nocov = true; end % default case
if isnumeric(cov) % detect old version where the cov parameter was missing
% i <- z, z <- x, x <- hyp, hyp <- cov
if nargin>3, i = z; end
if nargin>2, z = x; end
if nargin>1, x = hyp; end
hyp = cov; cov = {@covSEard}; nocov = true;
end
if nocov && nargin<2 || ~nocov && nargin<3 % report number of parameters
K = ['(D+',feval(cov{:}),')']; return
end
if nocov && nargin<3 || ~nocov && nargin<4, z = []; end % make sure, z exists
xeqz = isempty(z); dg = strcmp(z,'diag'); % determine mode
[n,D] = size(x);
p = exp(hyp(1:D));
lell = hyp(D+(1:D));
hyp0 = [lell; lell; hyp(2*D+1:end)];
if nocov && nargin<4 || ~nocov && nargin<5
[x,z] = u(x,z,p,dg); % apply the embedding u:IR^D->IR^2*D
K = feval(cov{:},hyp0,x,z);
else
if i<=D
if dg % compute distance d
di = zeros([n,1]);
else
if xeqz % symmetric matrix Kxx
di = repmat(reshape(x(:,i),n, 1),[1, n])...
-repmat(reshape(x(:,i),1, n),[n, 1]);
else % cross covariances Kxz
nz = size(z,1);
di = repmat(reshape(x(:,i),n, 1),[1,nz])...
-repmat(reshape(z(:,i),1,nz),[n, 1]);
end
end
di = 2*pi*di/p(i); dD2_dlpi = -2*sin(di).*di; % derivative dD2i/dlog(p(i))
[x,z] = u(x,z,p,dg); % apply the embedding u:IR^D->IR^2*D
if dg % compute squared distances
D2 = zeros(n,1);
else
if xeqz
D2 = sq_dist(x(:,[i,i+D])');
else
D2 = sq_dist(x(:,[i,i+D])',z(:,[i,i+D])');
end
end
% reconstruct derivative w.r.t. D2i from derivative w.r.t. log(ell(i))
dK_dD2 = feval(cov{:},hyp0,x,z,i) + feval(cov{:},hyp0,x,z,i+D);
dK_dD2 = dK_dD2./(-2*D2); dK_dD2(D2<1e-12) = 0;
K = dK_dD2.*dD2_dlpi; % apply chain rule
else
[x,z] = u(x,z,p,dg); % apply the embedding u:IR^D->IR^2*D
if i<=2*D
K = feval(cov{:},hyp0,x,z,i-D) + feval(cov{:},hyp0,x,z,i);
else
K = feval(cov{:},hyp0,x,z,i);
end
end
end
function [x,z] = u(x,z,p,dg) % apply the embedding u:IR^D->IR^2*D
x = 2*pi*x*diag(1./p); x = [sin(x), cos(x)];
if numel(z)>0 && ~dg, z = 2*pi*z*diag(1./p); z = [sin(z), cos(z)]; end
|
github
|
Hadisalman/stoec-master
|
infMCMC.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infMCMC.m
| 10,673 |
utf_8
|
346201720f95a22a681c50bd2535b84c
|
function [post nlZ dnlZ] = infMCMC(hyp, mean, cov, lik, x, y, par)
% Markov Chain Monte Carlo (MCMC) sampling from posterior and
% Annealed Importance Sampling (AIS) for marginal likelihood estimation.
%
% The algorithms are not to be used as a black box, since the acceptance rate
% of the samplers need to be carefully monitored. Also, there are no derivatives
% of the marginal likelihood available.
%
% There are additional parameters:
% - par.sampler switch between the samplers 'hmc' or 'ess'
% - par.Nsample num of samples
% - par.Nskip num of steps out of which one sample kept
% - par.Nburnin num of burn in samples (corresponds to Nskip*Nburning steps)
% - par.Nais num of AIS runs to remove finite temperature bias
% Default values are 'sampler=hmc', Nsample=200, Nskip=40, Nburnin=10, Nais=3.
%
% The Hybrid Monte Carlo Sampler (HMC) is implemented as described in the
% technical report: Probabilistic Inference using MCMC Methods by Radford Neal,
% CRG-TR-93-1, 1993.
%
% Instead of sampling from f ~ 1/Zf * N(f|m,K) P(y|f), we use a
% parametrisation in terms of alpha = inv(K)*(f-m) and sample from
% alpha ~ P(a) = 1/Za * N(a|0,inv(K)) P(y|K*a+m) to increase numerical
% stability since log P(a) = -(a'*K*a)/2 + log P(y|K*a+m) + C and its
% gradient can be computed safely.
%
% The leapfrog stepsize as a time discretisation stepsize comes with a
% tradeoff:
% - too small: frequently accept, slow exploration, accurate dynamics
% - too large: seldomly reject, fast exploration, inaccurate dynamics
% In order to balance between the two extremes, we adaptively adjust the
% stepsize in order to keep the acceptance rate close to a target acceptance
% rate. Taken from http://deeplearning.net/tutorial/hmc.html.
%
% The code issues a warning in case the overall acceptance rate did deviate
% strongly from the target. This can indicate problems with the sampler.
%
% The Elliptical Slice Sampler (ESS) is a straight implementation that is
% inspired by the code shipped with the paper: Elliptical slice sampling by
% Iain Murray, Ryan Prescott Adams and David J.C. MacKay, AISTATS 2010.
%
% Annealed Importance Sampling (AIS) to determine the marginal likelihood is
% described in the technical report: AIS, Radford Neal, 1998.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2012-11-07.
%
% See also INFMETHODS.M.
if nargin<7, par = []; end % analyse parameter structure
if isfield(par,'sampler'), alg=par.sampler; else alg = 'hmc'; end
if isfield(par,'Nsample'), N =par.Nsample; else N = 200; end
if isfield(par,'Nskip'), Ns =par.Nskip; else Ns = 40; end
if isfield(par,'Nburnin'), Nb =par.Nburnin; else Nb = 10; end
if isfield(par,'Nais'), R =par.Nais; else R = 3; end
K = feval(cov{:}, hyp.cov, x); % evaluate the covariance matrix
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
n = size(K,1);
[cK,fail] = chol(K); % try an ordinary Cholesky decomposition
if fail, sr2 = 1e-8*sum(diag(K))/n; cK = chol(K+sr2*eye(n)); end % regularise
T = (N+Nb)*Ns; % overall number of steps
[alpha,Na] = sample(K,cK,m,y,lik,hyp.lik, N,Nb,Ns, alg); % sample w/o annealing
post.alpha = alpha; al = sum(alpha,2)/N;
post.L = -(cK\(cK'\eye(n)) + al*al' - alpha*alpha'/N); % inv(K) - cov(alpha)
post.sW = [];
post.acceptance_rate_MCMC = Na/T; % additional output parameter
if nargout>1 % annealed importance sampling
% discrete time t from 1 to T and temperature tau from tau(1)=0 to tau(T)=1
taus = [zeros(1,Nb),linspace(0,1,N)].^4; % annealing schedule, effort at start
% the fourth power idea is taken from the Kuss&Rasmussen paper, 2005 JMLR
% Z(t) := \int N(f|m,K) lik(f)^taus(t) df hence Z(1) = 1 and Z(T) = Z
% Z = Z(T)/Z(1) = prod_t Z(t)/Z(t-1);
% ln Z(t)/Z(t-1) = ( tau(t)-tau(t-1) ) * loglik(f_t)
lZ = zeros(R,1); dtaus = diff(taus(Nb+(1:N))); % we have: sum(dtaus)==1
for r=1:R
[A,Na] = sample(K,cK,m,y,lik,hyp.lik, N,Nb,Ns, alg, taus); % AIS
for t=2:N % evaluate the likelihood sample-wise
lp = feval(lik{:},hyp.lik,y,K*A(:,t)+m,[],'infLaplace');
lZ(r) = lZ(r)+dtaus(t-1)*sum(lp);
end
post.acceptance_rate_AIS(r) = Na/T; % additional output parameters
end
nlZ = log(R)-logsumexp(lZ); % remove finite temperature bias, softmax average
if nargout>2 % marginal likelihood derivatives are not computed
dnlZ = struct('cov',0*hyp.cov, 'mean',0*hyp.mean, 'lik',0*hyp.lik);
end
end
%% choose between HMC and ESS depending on the alg string
function [alpha,Na] = sample(K,cK,m,y,lik,hyp, N,Nb,Ns, alg, varargin)
if strcmpi(alg,'hmc')
[alpha,Na] = sample_hmc(K, m,y,lik,hyp, N,Nb,Ns, varargin{:});
else
[alpha,Na] = sample_ess(cK,m,y,lik,hyp, N,Nb,Ns, varargin{:});
end
%% sample using elliptical slices
function [alpha,T] = sample_ess(cK,m,y,lik,hyp, N,Nb,Ns, taus)
if nargin>=9, tau = taus(1); else tau = 1; end % default is no annealing
T = (N+Nb)*Ns; % overall number of steps
F = zeros(size(m,1),N);
for t=1:T
if nargin>=9, tau = taus(1+floor((t-1)/Ns)); end % parameter from schedule
if t==1, f=0*m; l=sum(feval(lik{:},hyp,y,f+m)); end % init sample f & lik l
r = cK'*randn(size(m)); % random sample from N(0,K)
[f,l] = sample_ess_step(f,l,r,m,y,lik,hyp,tau);
if mod(t,Ns)==0 % keep one state out of Ns
if t/Ns>Nb, F(:,t/Ns-Nb) = f; end % wait for Nb burn-in steps
end
end
alpha = cK\(cK'\F);
%% elliptical slice sampling: one step
function [f,l] = sample_ess_step(f,l,r,m,y,lik,hyp,tau)
if nargin<7, tau=1; end, if tau>1, tau=1; end, if tau<0, tau=0; end
h = log(rand) + tau*l; % acceptance threshold
a = rand*2*pi; amin = a-2*pi; amax = a; % bracket whole ellipse
k = 0; % emergency break
while true % slice sampling loop; f for proposed angle diff; check if on slice
fp = f*cos(a) + r*sin(a); % move on ellipsis defined by r
l = sum(feval(lik{:},hyp,y,fp+m));
if tau*l>h || k>20, break, end % exit if new point is on slice or exhausted
if a>0, amax=a; elseif a<0, amin=a; end % shrink slice to rejected point
a = rand*(amax-amin) + amin; k = k+1; % propose new angle difference; break
end
f = fp; % accept
%% sample using Hamiltonian dynamics as proposal algorithm
function [alpha,Na] = sample_hmc(K,m,y,lik,hyp, N,Nb,Ns, taus)
% use adaptive stepsize rule to enforce a specific acceptance rate
epmin = 1e-6; % minimum leapfrog stepsize
epmax = 9e-1; % maximum leapfrog stepsize
ep = 1e-2; % initial leapfrog stepsize
acc_t = 0.9; % target acceptance rate
acc = 0; % current acceptance rate
epinc = 1.02; % increase factor of stepsize if acceptance rate is below target
epdec = 0.98; % decrease factor of stepsize if acceptance rate is above target
lam = 0.01; % exponential moving average computation of the acceptance rate
% 2/(3*lam) steps half height; lam/nstep = 0.02/33, 0.01/66, 0.005/133
l = 20; % number of leapfrog steps to perform for one step
n = size(K,1);
T = (N+Nb)*Ns; % overall number of steps
alpha = zeros(n,N); % sample points
al = zeros(n,1); % current position
if nargin>=9, tau = taus(1); else tau = 1; end % default is no annealing
[gold,eold] = E(al,K,m,y,lik,hyp,tau); % initial energy, gradient
Na = 0; % number of accepted points
for t=1:T
if nargin>=9, tau = taus(1+floor((t-1)/Ns)); end % parameter from schedule
p = randn(n,1); % random initial momentum
q = al;
g = gold;
Hold = (p'*p)/2 + eold; % H = Ekin + Epot => Hamiltonian
for ll=1:l % leapfrog discretization steps, Euler like
p = p - (ep/2)*g; % half step in momentum p
q = q + ep*p; % full step in position q
g = E(q,K,m,y,lik,hyp,tau); % compute new gradient g
p = p - (ep/2)*g; % half step in momentum p
end
[g,e] = E(q,K,m,y,lik,hyp,tau);
H = (p'*p)/2 + e; % recompute Hamiltonian
acc = (1-lam)*acc; % decay current acceptance rate
if log(rand) < Hold-H % accept with p = min(1,exp(Hold-H))
al = q; % keep new state,
gold = g; % gradient
eold = e; % and potential energy
acc = acc + lam; % increase rate due to acceptance
Na = Na+1; % increase number accepted steps
end
if acc>acc_t % too large acceptance rate => increase leapfrog stepsize
ep = epinc*ep;
else % too small acceptance rate => decrease leapfrog stepsize
ep = epdec*ep;
end
if ep<epmin, ep = epmin; end % clip stepsize ep to [epmin,epmax]
if ep>epmax, ep = epmax; end
if mod(t,Ns)==0 % keep one state out of Ns
if t/Ns>Nb, alpha(:,t/Ns-Nb) = al; end % wait for Nb burn-in steps
end
end
if Na/T<acc_t*0.9 || 1.07*acc_t<Na/T % Acceptance rate in the right ballpark?
fprintf('The acceptance rate %1.2f%% is not within',100*Na/T)
fprintf(' [%1.1f, %1.1f]%%\n', 100*acc_t*0.9, 100*acc_t*1.07)
if nargin<9
warning('Bad (HMC) acceptance rate')
else
warning('Bad (AIS) acceptance rate')
end
end
%% potential energy function value and its gradient
function [g,e] = E(al,K,m,y,lik,hyp,tau)
% E(f) = E(al) = al'*K*al/2 - tau*loglik(f), f = K*al+m
% g(f) = g(al) = al - tau*dloglik(f) => dE/dal = K*( al-dloglik(f) )
if nargin<7, tau=1; end, if tau>1, tau=1; end, if tau<0, tau=0; end
Kal = K*al;
[lp,dlp] = feval(lik{:},hyp,y,Kal+m,[],'infLaplace');
g = Kal-K*(tau*dlp);
if nargout>1, e = (al'*Kal)/2 - tau*sum(lp); end
%% y = logsumexp(x) = log(sum(exp(x(:))) avoiding overflow
function y=logsumexp(x)
mx = max(x(:));
y = log(sum(exp(x(:)-mx)))+mx;
|
github
|
Hadisalman/stoec-master
|
infKL.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infKL.m
| 10,925 |
utf_8
|
25a0bb16b3bced105beb3520acf7f57e
|
function [post nlZ dnlZ] = infKL(hyp, mean, cov, lik, x, y)
% Approximation to the posterior Gaussian Process by minimization of the
% KL-divergence. The function is structurally very similar to infEP; the
% only difference being the local divergence measure minimised.
% In infEP, one minimises KL(p,q) whereas in infKL one minimises KL(q,p)
% locally be iterating over the sites. For log-concave likelihoods, the
% latter minimisation constitutes a 2d joint convex problem, so convergence
% is guaranteed.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2013-09-13.
%
% See also INFMETHODS.M.
out = false;
persistent last_ttau last_tnu % keep tilde parameters between calls
tol = 1e-3; max_sweep = 15; min_sweep = 2; % tolerance to stop KL iterations
n = size(x,1);
K = feval(cov{:}, hyp.cov, x); % evaluate the covariance matrix
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
% A note on naming: variables are given short but descriptive names in
% accordance with Rasmussen & Williams "GPs for Machine Learning" (2006): mu
% and s2 are mean and variance, nu and tau are natural parameters. A leading t
% means tilde, a subscript _ni means "not i" (for cavity parameters), or _n
% for a vector of cavity parameters. N(f|mu,Sigma) represents the posterior.
% marginal likelihood for ttau = tnu = zeros(n,1); equals n*log(2) for likCum*
nlZ0 = -sum(likKL(diag(K),lik,hyp.lik,y,m));
if any(size(last_ttau) ~= [n 1]) % find starting point for tilde parameters
ttau = zeros(n,1); % initialize to zero if we have no better guess
tnu = zeros(n,1);
Sigma = K; % initialize Sigma and mu, the parameters of ..
mu = m; % .. the Gaussian posterior approximation
nlZ = nlZ0;
else
ttau = last_ttau; % try the tilde values from previous call
tnu = last_tnu;
[Sigma,mu,L,alpha,nlZ] = klComputeParams(K,y,ttau,tnu,lik,hyp,m);
if nlZ > nlZ0 % if zero is better ..
ttau = zeros(n,1); % .. then initialize with zero instead
tnu = zeros(n,1);
Sigma = K; % initialize Sigma and mu, the parameters of ..
mu = m; % .. the Gaussian posterior approximation
nlZ = nlZ0;
end
end
nlZ_old = Inf; sweep = 0; % converged, max. sweeps or min. sweeps?
while (nlZ_old-nlZ > tol && sweep < max_sweep) || sweep<min_sweep
nlZ_old = nlZ; sweep = sweep+1;
if out, fprintf('Sweep %d, nlZ=%f\n',sweep,nlZ), end
for i = randperm(n) % iterate EP updates (in random order) over examples
tau_ni = 1/Sigma(i,i)-ttau(i); % first find the cavity distribution ..
nu_ni = mu(i)/Sigma(i,i)-tnu(i); % .. params tau_ni and nu_ni
ttau_old = ttau(i); tnu_old = tnu(i); % find the new tilde params, keep old
[mi,svi] = klmin(lik, hyp.lik, y(i), nu_ni,tau_ni); % KL projection
ttau(i) = 1/svi^2-tau_ni;
ttau(i) = max(ttau(i),0); % enforce positivity i.e. lower bound ttau by zero
tnu(i) = mi/svi^2-nu_ni;
dtt = ttau(i)-ttau_old; dtn = tnu(i)-tnu_old; % rank-1 update Sigma ..
si = Sigma(:,i); ci = dtt/(1+dtt*si(i));
Sigma = Sigma - ci*si*si';
mu = mu - (ci*(mu(i)+si(i)*dtn)-dtn)*si; % .. and recompute mu
end
% recompute since repeated rank-one updates can destroy numerical precision
[Sigma,mu,L,alpha,nlZ,A] = klComputeParams(K,y,ttau,tnu,lik,hyp,m);
end
if sweep == max_sweep && nlZ_old-nlZ > tol
error('maximum number of sweeps exceeded in function infKL')
end
last_ttau = ttau; last_tnu = tnu; % remember for next call
post.alpha = alpha; post.sW = sqrt(ttau); post.L = L; % return posterior params
if nargout>2 % do we want derivatives?
v = diag(Sigma); [lp,df,d2f,dv] = likKL(v,lik,hyp.lik,y,mu);
dnlZ = hyp; % allocate space for derivatives
for j=1:length(hyp.cov) % covariance hypers
dK = feval(cov{:},hyp.cov,x,[],j); AdK = A*dK;
z = diag(AdK) + sum(A.*AdK,2) - sum(A'.*AdK,1)';
dnlZ.cov(j) = alpha'*dK*(alpha/2-df) - z'*dv;
end
for j=1:length(hyp.lik) % likelihood hypers
lp_dhyp = likKL(v,lik,hyp.lik,y,K*post.alpha+m,[],[],j);
dnlZ.lik(j) = -sum(lp_dhyp);
end
for j=1:length(hyp.mean) % mean hypers
dm = feval(mean{:}, hyp.mean, x, j);
dnlZ.mean(j) = -alpha'*dm;
end
end
% function to compute the parameters of the Gaussian approximation, Sigma and
% mu, from the current site parameters, ttau and tnu. Also returns L and upper
% bound on negative marginal likelihood.
function [Sigma,mu,L,alpha,nlZ,A] = klComputeParams(K,y,ttau,tnu,lik,hyp,m)
n = length(tnu); % number of training cases
sW = sqrt(ttau); % compute Sigma and mu
L = chol(eye(n)+sW*sW'.*K); % L'*L=B=eye(n)+sW*K*sW
V = L'\(repmat(sW,1,n).*K);
Sigma = K - V'*V;
alpha = tnu-sW.*solve_chol(L,sW.*(K*tnu+m));
mu = K*alpha+m; v = diag(Sigma);
A = (eye(n)+K*diag(ttau))\eye(n); % A = Sigma*inv(K)
lp = likKL(v,lik,hyp.lik,y,mu); % evaluate likelihood
nlZ = -sum(lp) - (logdet(A)-alpha'*(mu-m)-trace(A)+n)/2; % upper bound on -lZ
% We compute the Gaussian Q(f)=N(f|m,s^2) minimising the KL divergence
% KL(Q||P) where P is the product of the cavity distribution q_n(f) and the
% likelihood p(y|f) such that P(f) = 1/Z * q_n(f)*p(y|f).
% The cavity distribution q_n(f) is an unnormalised Gaussian with precision
% parameter tau_n and location parameter nu_n, hence the cavity can be written
% as q_n(f) = exp(nu_n*f-tau_n/2*f^2).
% The minimisation is convex iff. the likelihood p(y|f) is log-concave. The
% optimisation is performed using Newton descent with backtracking line search.
function [m,s,kl] = klmin(lik, hyp, y, nu_n, tau_n)
ep = 1e-9; % tiny Hessian ridge for stability
gthresh = 1e-8; % gradient convergence threshold
lik_str = lik{1}; if ~ischar(lik_str), lik_str = func2str(lik_str); end
if strcmp(lik_str,'likGauss') % likGauss can be done analytically
sn2 = exp(2*hyp);
s = 1/sqrt(1/sn2+tau_n); m = s^2*(nu_n+y/sn2); % init variables to minimum
else
s = 1/sqrt(tau_n); m = nu_n/tau_n; % init variables to cavity distribution
end
ll = likKL(s^2,lik,hyp,y,m); % evaluate likelihood
kl = (s^2+m^2)*tau_n/2 - log(s) - nu_n*m - ll; % init the KL div up to a const
for i=1:20
[ll,dm,d2m,dv,d2v,dmdv] = likKL(s^2,lik,hyp,y,m); % evaluate likelihood
klold = kl; mold = m; sold = s; % remember last value
kl = (s^2+m^2)*tau_n/2 - log(s) - nu_n*m - ll; % KL-divergence up to const
dm = tau_n*m-nu_n-dm; d2m = tau_n-d2m; % compute kl derivatives
ds = s*tau_n-1/s-2*s*dv; d2s = tau_n+1/s^2-2*dv-(2*s)^2*d2v; dmds=-2*s*dmdv;
detH = ((d2m+ep)*(d2s+ep)-dmds^2); % Hessian determinant
m = m-(dm*(d2s+ep)-ds*dmds)/detH; s = s-(ds*(d2m+ep)-dm*dmds)/detH; % Newton
for j=1:10 % backtracking line search
if klold>kl, break, end % we did descend so no need to step back
m = (m+mold)/2; s = (s+sold)/2;
kl = (s^2+m^2)*tau_n/2 - log(s) - nu_n*m - likKL(s^2,lik,hyp,y,m);
end
d = abs(dm)+abs(dv); % overall gradient
if j==10, m = mold; s = sold; d = 0; end
if d<gthresh, break, end
end
% log(det(A)) for det(A)>0 using the LU decomposition of A
function y = logdet(A)
[L,U] = lu(A); u = diag(U);
if prod(sign(u))~=det(L), error('det(A)<=0'), end
y = sum(log(abs(u)));
% Gaussian smoothed likelihood function; instead of p(y|f)=lik(..,f,..) compute
% log likKL(f) = int log lik(..,t,..) N(f|t,v), where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that feval(lik{:},varargin{:}) yields a result.
% All return values are separately integrated using Gaussian-Hermite quadrature.
% Gaussian smoothed likelihood function; instead of p(y|f)=lik(..,f,..) compute
% likKL(f) = int lik(..,t,..) N(f|t,v), where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that feval(lik{:},varargin{:}) yields a result.
% All return values are separately integrated using Gaussian-Hermite quadrature.
function [ll,df,d2f,dv,d2v,dfdv] = likKL(v, lik, varargin)
N = 20; % number of quadrature points
[t,w] = gauher(N); % location and weights for Gaussian-Hermite quadrature
f = varargin{3}; % obtain location of evaluation
sv = sqrt(v); % smoothing width
ll = 0; df = 0; d2f = 0; dv = 0; d2v = 0; dfdv = 0; % init return arguments
for i=1:N % use Gaussian quadrature
varargin{3} = f + sv*t(i); % coordinate transform of the quadrature points
[lp,dlp,d2lp] = feval(lik{:},varargin{1:3},[],'infLaplace',varargin{6:end});
if nargout>0, ll = ll + w(i)*lp; % value of the integral
if nargout>1, df = df + w(i)*dlp; % derivative w.r.t. mean
if nargout>2, d2f = d2f + w(i)*d2lp; % 2nd derivative w.r.t. mean
if nargout>3 % derivative w.r.t. variance
ai = t(i)./(2*sv+eps); dvi = dlp.*ai; dv = dv + w(i)*dvi; % no 0 div
if nargout>4 % 2nd derivative w.r.t. variance
d2v = d2v + w(i)*(d2lp.*(t(i)^2/2)-dvi)./(v+eps)/2; % no 0 div
if nargout>5 % mixed second derivatives
dfdv = dfdv + w(i)*(ai.*d2lp);
end
end
end
end
end
end
end
% likLaplace can be done analytically
lik_str = lik{1}; if ~ischar(lik_str), lik_str = func2str(lik_str); end
if strcmp(lik_str,'likLaplace')
b = exp(varargin{1})/sqrt(2); y = varargin{2}; sv = sqrt(v);
mu = (f-y)/b; z = (f-y)./sv;
Nz = exp(-z.^2/2)/sqrt(2*pi);
Cz = (1+erf(z/sqrt(2)))/2;
ll = (1-2*Cz).*mu - 2/b*sv.*Nz - log(2*b);
df = (1-2*Cz)/b;
d2f = -2*Nz./(b*(sv+eps));
dv = d2f/2;
d2v = (z.*z-1)./(v+eps).*d2f/4;
dfdv = -z.*d2f./(2*sv+eps);
end
|
github
|
Hadisalman/stoec-master
|
infFITC_EP.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infFITC_EP.m
| 12,117 |
utf_8
|
a2c1fccebe29502421d32ed7ab5fcd14
|
function [post nlZ dnlZ] = infFITC_EP(hyp, mean, cov, lik, x, y)
% FITC-EP approximation to the posterior Gaussian process. The function is
% equivalent to infEP with the covariance function:
% Kt = Q + G; G = diag(g); g = diag(K-Q); Q = Ku'*inv(Kuu + snu2*eye(nu))*Ku;
% where Ku and Kuu are covariances w.r.t. to inducing inputs xu and
% snu2 = sn2/1e6 is the noise of the inducing inputs. We fixed the standard
% deviation of the inducing inputs snu to be a one per mil of the measurement
% noise's standard deviation sn. In case of a likelihood without noise
% parameter sn2, we simply use snu2 = 1e-6.
% For details, see The Generalized FITC Approximation, Andrew Naish-Guzman and
% Sean Holden, NIPS, 2007.
%
% The implementation exploits the Woodbury matrix identity
% inv(Kt) = inv(G) - inv(G)*Ku'*inv(Kuu+Ku*inv(G)*Ku')*Ku*inv(G)
% in order to be applicable to large datasets. The computational complexity
% is O(n nu^2) where n is the number of data points x and nu the number of
% inducing inputs in xu.
% The posterior N(f|h,Sigma) is given by h = m+mu with mu = nn + P'*gg and
% Sigma = inv(inv(K)+diag(W)) = diag(d) + P'*R0'*R'*R*R0*P. Here, we use the
% site parameters: b,w=$b,\pi$=tnu,ttau, P=$P'$, nn=$\nu$, gg=$\gamma$
%
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m and in conjunction with covFITC.
%
% The inducing points can be specified through 1) the 2nd covFITC parameter or
% by 2) providing a hyp.xu hyperparameters. Note that 2) has priority over 1).
% In case 2) is provided and derivatives dnlZ are requested, there will also be
% a dnlZ.xu field allowing to optimise w.r.t. to the inducing points xu. However
% the derivatives dnlZ.xu can only be computed for one of the following eight
% covariance functions: cov{Matern|PP|RQ|SE}{iso|ard}.
%
% Copyright (c) by Hannes Nickisch, 2013-10-29.
%
% See also INFMETHODS.M, COVFITC.M.
persistent last_ttau last_tnu % keep tilde parameters between calls
tol = 1e-4; max_sweep = 20; min_sweep = 2; % tolerance to stop EP iterations
inf = 'infEP';
cov1 = cov{1}; if isa(cov1, 'function_handle'), cov1 = func2str(cov1); end
if ~strcmp(cov1,'covFITC'); error('Only covFITC supported.'), end % check cov
if isfield(hyp,'xu'), cov{3} = hyp.xu; end % hyp.xu is provided, replace cov{3}
[diagK,Kuu,Ku] = feval(cov{:}, hyp.cov, x); % evaluate covariance matrix
if ~isempty(hyp.lik) % hard coded inducing inputs noise
sn2 = exp(2*hyp.lik(end)); snu2 = 1e-6*sn2; % similar to infFITC
else
snu2 = 1e-6;
end
[n, D] = size(x); nu = size(Kuu,1);
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
rot180 = @(A) rot90(rot90(A)); % little helper functions
chol_inv = @(A) rot180(chol(rot180(A))')\eye(nu); % chol(inv(A))
R0 = chol_inv(Kuu+snu2*eye(nu)); % initial R, used for refresh O(nu^3)
V = R0*Ku; d0 = diagK-sum(V.*V,1)'; % initial d, needed for refresh O(n*nu^2)
% A note on naming: variables are given short but descriptive names in
% accordance with Rasmussen & Williams "GPs for Machine Learning" (2006): mu
% and s2 are mean and variance, nu and tau are natural parameters. A leading t
% means tilde, a subscript _ni means "not i" (for cavity parameters), or _n
% for a vector of cavity parameters.
% marginal likelihood for ttau = tnu = zeros(n,1); equals n*log(2) for likCum*
nlZ0 = -sum(feval(lik{:}, hyp.lik, y, m, diagK, inf));
if any(size(last_ttau) ~= [n 1]) % find starting point for tilde parameters
ttau = zeros(n,1); % initialize to zero if we have no better guess
tnu = zeros(n,1);
[d,P,R,nn,gg] = epfitcRefresh(d0,Ku,R0,V, ttau,tnu); % compute initial repres.
nlZ = nlZ0;
else
ttau = last_ttau; % try the tilde values from previous call
tnu = last_tnu;
[d,P,R,nn,gg] = epfitcRefresh(d0,Ku,R0,V, ttau,tnu); % compute initial repres.
nlZ = epfitcZ(d,P,R,nn,gg,ttau,tnu,d0,R0,Ku,y,lik,hyp,m,inf);
if nlZ > nlZ0 % if zero is better ..
ttau = zeros(n,1); % .. then initialize with zero instead
tnu = zeros(n,1);
[d,P,R,nn,gg] = epfitcRefresh(d0,Ku,R0,V, ttau,tnu); % initial repres.
nlZ = nlZ0;
end
end
nlZ_old = Inf; sweep = 0; % converged, max. sweeps or min. sweeps?
while (abs(nlZ-nlZ_old) > tol && sweep < max_sweep) || sweep<min_sweep
nlZ_old = nlZ; sweep = sweep+1;
for i = randperm(n) % iterate EP updates (in random order) over examples
pi = P(:,i); t = R*(R0*pi); % temporary variables
sigmai = d(i) + t'*t; mui = nn(i) + pi'*gg; % post moments O(nu^2)
tau_ni = 1/sigmai-ttau(i); % first find the cavity distribution ..
nu_ni = mui/sigmai+m(i)*tau_ni-tnu(i); % .. params tau_ni and nu_ni
% compute the desired derivatives of the indivdual log partition function
[lZ, dlZ, d2lZ] = feval(lik{:}, hyp.lik, y(i), nu_ni/tau_ni, 1/tau_ni, inf);
ttaui = -d2lZ /(1+d2lZ/tau_ni);
ttaui = max(ttaui,0); % enforce positivity i.e. lower bound ttau by zero
tnui = ( dlZ + (m(i)-nu_ni/tau_ni)*d2lZ )/(1+d2lZ/tau_ni);
[d,P(:,i),R,nn,gg,ttau,tnu] = ... % update representation
epfitcUpdate(d,P(:,i),R,nn,gg, ttau,tnu,i,ttaui,tnui, m,d0,Ku,R0);
end
% recompute since repeated rank-one updates can destroy numerical precision
[d,P,R,nn,gg] = epfitcRefresh(d0,Ku,R0,V, ttau,tnu);
[nlZ,nu_n,tau_n] = epfitcZ(d,P,R,nn,gg,ttau,tnu,d0,R0,Ku,y,lik,hyp,m,inf);
end
if sweep == max_sweep
warning('maximum number of sweeps reached in function infEP')
end
last_ttau = ttau; last_tnu = tnu; % remember for next call
post.sW = sqrt(ttau); % unused for FITC_EP prediction with gp.m
dd = 1./(d0+1./ttau);
alpha = tnu./(1+d0.*ttau);
RV = R*V; R0tV = R0'*V;
alpha = alpha - (RV'*(RV*alpha)).*dd; % long alpha vector for ordinary infEP
post.alpha = R0tV*alpha; % alpha = R0'*V*inv(Kt+diag(1./ttau))*(tnu./ttau)
B = R0tV.*repmat(dd',nu,1); L = B*R0tV'; B = B*RV';
post.L = B*B' - L; % L = -R0'*V*inv(Kt+diag(1./ttau))*V'*R0
if nargout>2 % do we want derivatives?
dnlZ = hyp; % allocate space for derivatives
RVdd = RV.*repmat(dd',nu,1);
for i=1:length(hyp.cov)
[ddiagK,dKuu,dKu] = feval(cov{:}, hyp.cov, x, [], i); % eval cov derivatives
dA = 2*dKu'-R0tV'*dKuu; % dQ = dA*R0tV
w = sum(dA.*R0tV',2); v = ddiagK-w; % w = diag(dQ); v = diag(dK)-diag(dQ);
z = dd'*(v+w) - sum(RVdd.*RVdd,1)*v - sum(sum( (RVdd*dA)'.*(R0tV*RVdd') ));
dnlZ.cov(i) = (z - alpha'*(alpha.*v) - (alpha'*dA)*(R0tV*alpha))/2;
end
for i = 1:numel(hyp.lik) % likelihood hypers
dlik = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, inf, i);
dnlZ.lik(i) = -sum(dlik);
if i==numel(hyp.lik)
% since snu2 is a fixed fraction of sn2, there is a covariance-like term
% in the derivative as well
v = sum(R0tV.*R0tV,1)';
z = sum(sum( (RVdd*R0tV').^2 )) - sum(RVdd.*RVdd,1)*v;
z = z + post.alpha'*post.alpha - alpha'*(v.*alpha);
dnlZ.lik(i) = dnlZ.lik(i) + snu2*z;
end
end
[junk,dlZ] = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, inf);% mean hyps
for i = 1:numel(hyp.mean)
dm = feval(mean{:}, hyp.mean, x, i);
dnlZ.mean(i) = -dlZ'*dm;
end
if isfield(hyp,'xu') % derivatives w.r.t. inducing points xu
xu = cov{3};
cov = cov{2}; % get the non FITC part of the covariance function
Kpu = cov_deriv_sq_dist(cov,hyp.cov,xu,x); % d K(xu,x ) / d D^2
Kpuu = cov_deriv_sq_dist(cov,hyp.cov,xu); % d K(xu,xu) / d D^2
if iscell(cov), covstr = cov{1}; else covstr = cov; end
if ~ischar(covstr), covstr = func2str(covstr); end
if numel(strfind(covstr,'iso'))>0 % characteristic length scale
e = 2*exp(-2*hyp.cov(1));
else
e = 2*exp(-2*hyp.cov(1:D));
end
B = (R0'*R0)*Ku;
W = ttau;
t = W./(1+W.*d0);
diag_dK = alpha.*alpha + sum(RVdd.*RVdd,1)' - t;
v = diag_dK+t; % BdK = B * ( dnlZ/dK - diag(diag(dnlZ/dK)) )
BdK = (B*alpha)*alpha' - B.*repmat(v',nu,1);
BdK = BdK + (B*RVdd')*RVdd;
A = Kpu.*BdK; C = Kpuu.*(BdK*B'); C = diag(sum(C,2)-sum(A,2)) - C;
dnlZ.xu = A*x*diag(e) + C*xu*diag(e); % bring in data and inducing points
end
end
% refresh the representation of the posterior from initial and site parameters
% to prevent possible loss of numerical precision after many epfitcUpdates
% effort is O(n*nu^2) provided that nu<n
function [d,P,R,nn,gg] = epfitcRefresh(d0,P0,R0,R0P0, w,b)
nu = size(R0,1); % number of inducing points
rot180 = @(A) rot90(rot90(A)); % little helper functions
chol_inv = @(A) rot180(chol(rot180(A))')\eye(nu); % chol(inv(A))
t = 1./(1+d0.*w); % temporary variable O(n)
d = d0.*t; % O(n)
P = repmat(t',nu,1).*P0; % O(n*nu)
T = repmat((w.*t)',nu,1).*R0P0; % temporary variable O(n*nu^2)
R = chol_inv(eye(nu)+R0P0*T'); % O(n*nu^3)
nn = d.*b; % O(n)
gg = R0'*(R'*(R*(R0P0*(t.*b)))); % O(n*nu)
% compute the marginal likelihood approximation
% effort is O(n*nu^2) provided that nu<n
function [nlZ,nu_n,tau_n] = ...
epfitcZ(d,P,R,nn,gg,ttau,tnu, d0,R0,P0, y,lik,hyp,m,inf)
T = (R*R0)*P; % temporary variable
diag_sigma = d + sum(T.*T,1)'; mu = nn + P'*gg; % post moments O(n*nu^2)
tau_n = 1./diag_sigma-ttau; % compute the log marginal likelihood
nu_n = mu./diag_sigma-tnu+m.*tau_n; % vectors of cavity parameters
lZ = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, inf);
nu = size(gg,1);
U = (R0*P0)'.*repmat(1./sqrt(d0+1./ttau),1,nu);
L = chol(eye(nu)+U'*U);
ld = 2*sum(log(diag(L))) + sum(log(1+d0.*ttau));
t = T*tnu; tnu_Sigma_tnu = tnu'*(d.*tnu) + t'*t;
nlZ = ld/2 -sum(lZ) -tnu_Sigma_tnu/2 ...
-(nu_n-m.*tau_n)'*((ttau./tau_n.*(nu_n-m.*tau_n)-2*tnu)./(ttau+tau_n))/2 ...
+sum(tnu.^2./(tau_n+ttau))/2-sum(log(1+ttau./tau_n))/2;
% update the representation of the posterior to reflect modification of the site
% parameters by w(i) <- wi and b(i) <- bi
% effort is O(nu^2)
% Pi = P(:,i) is passed instead of P to prevent allocation of a new array
function [d,Pi,R,nn,gg,w,b] = ...
epfitcUpdate(d,Pi,R,nn,gg, w,b, i,wi,bi, m,d0,P0,R0)
dwi = wi-w(i); dbi = bi-b(i);
hi = nn(i) + m(i) + Pi'*gg; % posterior mean of site i O(nu)
t = 1+dwi*d(i);
d(i) = d(i)/t; % O(1)
nn(i) = d(i)*bi; % O(1)
r = 1+d0(i)*w(i);
r = r*r/dwi + r*d0(i);
v = R*(R0*P0(:,i));
r = 1/(r+v'*v);
if r>0
R = cholupdate(R,sqrt( r)*R'*v,'-');
else
R = cholupdate(R,sqrt(-r)*R'*v,'+');
end
gg = gg + ((dbi-dwi*(hi-m(i)))/t)*(R0'*(R'*(R*(R0*Pi)))); % O(nu^2)
w(i) = wi; b(i) = bi; % update site parameters O(1)
Pi = Pi/t; % O(nu)
|
github
|
Hadisalman/stoec-master
|
infFITC_Laplace.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infFITC_Laplace.m
| 11,364 |
utf_8
|
1de345e37242cee549b4d7841e348f84
|
function [post nlZ dnlZ] = infFITC_Laplace(hyp, mean, cov, lik, x, y)
% FITC-Laplace approximation to the posterior Gaussian process. The function is
% equivalent to infLaplace with the covariance function:
% Kt = Q + G; G = diag(g); g = diag(K-Q); Q = Ku'*inv(Kuu + snu2*eye(nu))*Ku;
% where Ku and Kuu are covariances w.r.t. to inducing inputs xu and
% snu2 = sn2/1e6 is the noise of the inducing inputs. We fixed the standard
% deviation of the inducing inputs snu to be a one per mil of the measurement
% noise's standard deviation sn. In case of a likelihood without noise
% parameter sn2, we simply use snu2 = 1e-6.
%
% The implementation exploits the Woodbury matrix identity
% inv(Kt) = inv(G) - inv(G)*Ku'*inv(Kuu+Ku*inv(G)*Ku')*Ku*inv(G)
% in order to be applicable to large datasets. The computational complexity
% is O(n nu^2) where n is the number of data points x and nu the number of
% inducing inputs in xu.
% The posterior N(f|h,Sigma) is given by h = m+mu with mu = nn + P'*gg and
% Sigma = inv(inv(K)+diag(W)) = diag(d) + P'*R0'*R'*R*R0*P.
%
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m and in conjunction with covFITC.
%
% The inducing points can be specified through 1) the 2nd covFITC parameter or
% by 2) providing a hyp.xu hyperparameters. Note that 2) has priority over 1).
% In case 2) is provided and derivatives dnlZ are requested, there will also be
% a dnlZ.xu field allowing to optimise w.r.t. to the inducing points xu. However
% the derivatives dnlZ.xu can only be computed for one of the following eight
% covariance functions: cov{Matern|PP|RQ|SE}{iso|ard}.
%
% Copyright (c) by Hannes Nickisch, 2013-10-28.
%
% See also INFMETHODS.M, COVFITC.M.
persistent last_alpha % copy of the last alpha
if any(isnan(last_alpha)), last_alpha = zeros(size(last_alpha)); end % prevent
tol = 1e-6; % tolerance for when to stop the Newton iterations
smax = 2; Nline = 10; thr = 1e-4; % line search parameters
maxit = 20; % max number of Newton steps in f
inf = 'infLaplace';
cov1 = cov{1}; if isa(cov1, 'function_handle'), cov1 = func2str(cov1); end
if ~strcmp(cov1,'covFITC'); error('Only covFITC supported.'), end % check cov
if isfield(hyp,'xu'), cov{3} = hyp.xu; end % hyp.xu is provided, replace cov{3}
[diagK,Kuu,Ku] = feval(cov{:}, hyp.cov, x); % evaluate covariance matrix
if ~isempty(hyp.lik) % hard coded inducing inputs noise
sn2 = exp(2*hyp.lik(end)); snu2 = 1e-6*sn2; % similar to infFITC
else
snu2 = 1e-6;
end
[n, D] = size(x); nu = size(Kuu,1);
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
rot180 = @(A) rot90(rot90(A)); % little helper functions
chol_inv = @(A) rot180(chol(rot180(A))')\eye(nu); % chol(inv(A))
R0 = chol_inv(Kuu+snu2*eye(nu)); % initial R, used for refresh O(nu^3)
V = R0*Ku; d0 = diagK-sum(V.*V,1)'; % initial d, needed for refresh O(n*nu^2)
Psi_old = Inf; % make sure while loop starts by the largest old objective val
if any(size(last_alpha)~=[n,1]) % find a good starting point for alpha and f
alpha = zeros(n,1); f = mvmK(alpha,V,d0)+m; % start at mean if sizes not match
[lp,dlp,d2lp] = feval(lik{:},hyp.lik,y,f,[],inf); W=-d2lp; Psi_new = -sum(lp);
else
alpha = last_alpha; f = mvmK(alpha,V,d0)+m; % try last one
[lp,dlp,d2lp] = feval(lik{:},hyp.lik,y,f,[],inf); W=-d2lp;
Psi_new = alpha'*(f-m)/2 - sum(lp); % objective for last alpha
Psi_def = -feval(lik{:},hyp.lik,y,m,[],inf); % objective for default init f==m
if Psi_def < Psi_new % if default is better, we use it
alpha = zeros(n,1); f = mvmK(alpha,V,d0)+m;
[lp,dlp,d2lp] = feval(lik{:},hyp.lik,y,f,[],inf); W=-d2lp; Psi_new=-sum(lp);
end
end
isWneg = any(W<0); % flag indicating whether we found negative values of W
it = 0; % this happens for the Student's t likelihood
while Psi_old - Psi_new > tol && it<maxit % begin Newton
Psi_old = Psi_new; it = it+1;
if isWneg % stabilise the Newton direction in case W has negative values
W = max(W,0); % stabilise the Hessian to guarantee postive definiteness
tol = 1e-8; % increase accuracy to also get the derivatives right
% In Vanhatalo et. al., GPR with Student's t likelihood, NIPS 2009, they use
% a more conservative strategy then we do being equivalent to 2 lines below.
% nu = exp(hyp.lik(1)); % degree of freedom hyperparameter
% W = W + 2/(nu+1)*dlp.^2; % add ridge according to Vanhatalo
end
b = W.*(f-m) + dlp; dd = 1./(1+W.*d0);
RV = chol_inv(eye(nu)+(V.*repmat((W.*dd)',nu,1))*V')*V;
dalpha = dd.*b - (W.*dd).*(RV'*(RV*(dd.*b))) - alpha; % Newt dir + line search
[s,Psi_new,Nfun,alpha,f,dlp,W] = brentmin(0,smax,Nline,thr, ...
@Psi_line,4,dalpha,alpha,hyp,V,d0,m,lik,y,inf);
isWneg = any(W<0);
end % end Newton's iterations
last_alpha = alpha; % remember for next call
[lp,dlp,d2lp,d3lp] = feval(lik{:},hyp.lik,y,f,[],inf); W=-d2lp; isWneg=any(W<0);
post.alpha = R0'*(V*alpha); % return the posterior parameters
post.sW = sqrt(abs(W)).*sign(W); % preserve sign in case of negative
dd = 1./(1+d0.*W); % temporary variable O(n)
A = eye(nu)+(V.*repmat((W.*dd)',nu,1))*V'; % temporary variable O(n*nu^2)
R0tV = R0'*V; B = R0tV.*repmat((W.*dd)',nu,1); % temporary variables O(n*nu^2)
post.L = -B*R0tV'; % L = -R0'*V*inv(Kt+diag(1./ttau))*V'*R0, first part
if any(1+d0.*W<0)
B = B*V'; post.L = post.L + (B*inv(A))*B';
nlZ = NaN; dnlZ = struct('cov',0*hyp.cov, 'mean',0*hyp.mean, 'lik',0*hyp.lik);
warning('W is too negative; nlZ and dnlZ cannot be computed.')
return
end
nlZ = alpha'*(f-m)/2 - sum(lp) - sum(log(dd))/2 + sum(log(diag(chol(A))));
RV = chol_inv(A)*V; RVdd = RV.*repmat((W.*dd)',nu,1); % RVdd needed for dnlZ
B = B*RV'; post.L = post.L + B*B';
if nargout>2 % do we want derivatives?
dnlZ = hyp; % allocate space for derivatives
[d,P,R] = fitcRefresh(d0,Ku,R0,V,W); % g = diag(inv(inv(K)+W))/2
g = d/2 + sum(((R*R0)*P).^2,1)'/2;
t = W./(1+W.*d0);
dfhat = g.*d3lp; % deriv. of nlZ wrt. fhat: dfhat=diag(inv(inv(K)+W)).*d3lp/2
for i=1:length(hyp.cov) % covariance hypers
[ddiagK,dKuu,dKu] = feval(cov{:}, hyp.cov, x, [], i); % eval cov derivatives
dA = 2*dKu'-R0tV'*dKuu; % dQ = dA*R0tV
w = sum(dA.*R0tV',2); v = ddiagK-w; % w = diag(dQ); v = diag(dK)-diag(dQ);
dnlZ.cov(i) = ddiagK'*t - sum(RVdd.*RVdd,1)*v; % explicit part
dnlZ.cov(i) = dnlZ.cov(i)-sum(sum((RVdd*dA).*(RVdd*R0tV'))); % explicit part
dnlZ.cov(i) = dnlZ.cov(i)/2-alpha'*(dA*(R0tV*alpha)+v.*alpha)/2; % explicit
b = dA*(R0tV*dlp) + v.*dlp; % b-K*(Z*b) = inv(eye(n)+K*diag(W))*b
KZb = mvmK(mvmZ(b,RVdd,t),V,d0);
dnlZ.cov(i) = dnlZ.cov(i) - dfhat'*( b-KZb ); % implicit part
end
for i=1:length(hyp.lik) % likelihood hypers
[lp_dhyp,dlp_dhyp,d2lp_dhyp] = feval(lik{:},hyp.lik,y,f,[],inf,i);
dnlZ.lik(i) = -g'*d2lp_dhyp - sum(lp_dhyp); % explicit part
b = mvmK(dlp_dhyp,V,d0); % implicit part
dnlZ.lik(i) = dnlZ.lik(i) - dfhat'*(b-mvmK(mvmZ(b,RVdd,t),V,d0));
if i==numel(hyp.lik)
% since snu2 is a fixed fraction of sn2, there is a covariance-like term
% in the derivative as well
snu = sqrt(snu2);
T = chol_inv(Kuu + snu2*eye(nu)); T = T'*(T*(snu*Ku)); t = sum(T.*T,1)';
z = alpha'*(T'*(T*alpha)-t.*alpha) - sum(RVdd.*RVdd,1)*t;
z = z + sum(sum( (RVdd*T').^2 ));
b = (t.*dlp-T'*(T*dlp))/2;
KZb = mvmK(mvmZ(b,RVdd,t),V,d0);
z = z - dfhat'*( b-KZb );
dnlZ.lik(i) = dnlZ.lik(i) + z;
end
end
for i=1:length(hyp.mean) % mean hypers
dm = feval(mean{:}, hyp.mean, x, i);
dnlZ.mean(i) = -alpha'*dm; % explicit part
Zdm = mvmZ(dm,RVdd,t);
dnlZ.mean(i) = dnlZ.mean(i) - dfhat'*(dm-mvmK(Zdm,V,d0)); % implicit part
end
if isfield(hyp,'xu') % derivatives w.r.t. inducing points xu
xu = cov{3};
cov = cov{2}; % get the non FITC part of the covariance function
Kpu = cov_deriv_sq_dist(cov,hyp.cov,xu,x); % d K(xu,x ) / d D^2
Kpuu = cov_deriv_sq_dist(cov,hyp.cov,xu); % d K(xu,xu) / d D^2
if iscell(cov), covstr = cov{1}; else covstr = cov; end
if ~ischar(covstr), covstr = func2str(covstr); end
if numel(strfind(covstr,'iso'))>0 % characteristic length scale
e = 2*exp(-2*hyp.cov(1));
else
e = 2*exp(-2*hyp.cov(1:D));
end
q = dfhat - mvmZ(mvmK(dfhat,V,d0),RVdd,t); % implicit part
B = (R0'*R0)*Ku;
diag_dK = alpha.*alpha + sum(RVdd.*RVdd,1)' - t + 2*dlp.*q;
v = diag_dK+t; % BdK = B * ( dnlZ/dK - diag(diag(dnlZ/dK)) )
BdK = (B*alpha)*alpha' - B.*repmat(v',nu,1) + (B*dlp)*q' + (B*q)*dlp';
BdK = BdK + (B*RVdd')*RVdd;
A = Kpu.*BdK; C = Kpuu.*(BdK*B'); C = diag(sum(C,2)-sum(A,2)) - C;
dnlZ.xu = A*x*diag(e) + C*xu*diag(e); % bring in data and inducing points
end
end
% matrix vector multiplication with Z=inv(K+inv(W))
function Zx = mvmZ(x,RVdd,t)
Zx = t.*x - RVdd'*(RVdd*x);
% matrix vector multiplication with approximate covariance matrix
function Kal = mvmK(al,V,d0)
Kal = V'*(V*al) + d0.*al;
% criterion Psi at alpha + s*dalpha for line search
function [Psi,alpha,f,dlp,W] = Psi_line(s,dalpha,alpha,hyp,V,d0,m,lik,y,inf)
alpha = alpha + s*dalpha;
f = mvmK(alpha,V,d0)+m;
[lp,dlp,d2lp] = feval(lik{:},hyp.lik,y,f,[],inf); W = -d2lp;
Psi = alpha'*(f-m)/2 - sum(lp);
% refresh the representation of the posterior from initial and site parameters
% to prevent possible loss of numerical precision after many epfitcUpdates
% effort is O(n*nu^2) provided that nu<n
% Sigma = inv(inv(K)+diag(W)) = diag(d) + P'*R0'*R'*R*R0*P.
function [d,P,R] = fitcRefresh(d0,P0,R0,R0P0, w)
nu = size(R0,1); % number of inducing points
rot180 = @(A) rot90(rot90(A)); % little helper functions
chol_inv = @(A) rot180(chol(rot180(A))')\eye(nu); % chol(inv(A))
t = 1./(1+d0.*w); % temporary variable O(n)
d = d0.*t; % O(n)
P = repmat(t',nu,1).*P0; % O(n*nu)
T = repmat((w.*t)',nu,1).*R0P0; % temporary variable O(n*nu^2)
R = chol_inv(eye(nu)+R0P0*T'); % O(n*nu^3)
|
github
|
Hadisalman/stoec-master
|
infGrid.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infGrid.m
| 7,627 |
utf_8
|
cca2d1208eb8763b1f518d5106ec6fd5
|
function [post nlZ dnlZ] = infGrid(hyp, mean, cov, lik, x, y, opt)
% Inference for a GP with Gaussian likelihood and covGrid covariance.
% The (Kronecker) covariance matrix used is given by:
% K = kron( kron(...,K{2}), K{1} ) = K_p x .. x K_2 x K_1.
%
% Compute a parametrization of the posterior, the negative log marginal
% likelihood and its derivatives w.r.t. the hyperparameters.
% The result is exact for complete grids, otherwise results are approximate.
% See also "help infMethods".
%
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m and in conjunction with covFITC and likGauss.
%
% Copyright (c) by Hannes Nickisch and Andrew Wilson, 2014-12-03.
%
% See also INFMETHODS.M, COVGRID.M.
if iscell(lik), likstr = lik{1}; else likstr = lik; end
if ~ischar(likstr), likstr = func2str(likstr); end
if ~strcmp(likstr,'likGauss') % NOTE: no explicit call to likGauss
error('Inference with infGrid only possible with Gaussian likelihood.');
end
cov1 = cov{1}; if isa(cov1, 'function_handle'), cov1 = func2str(cov1); end
if ~strcmp(cov1,'covGrid'); error('Only covGrid supported.'), end % check cov
xg = cov{3}; p = numel(xg); % underlying grid
N = 1; D = 0; for i=1:p, N = N*size(xg{i},1); D = D+size(xg{i},2); end % dims
[K,M,xe] = feval(cov{:}, hyp.cov, x); % evaluate covariance mat constituents
xe = M*xe; n = size(xe,1);
m = feval(mean{:}, hyp.mean, xe); % evaluate mean vector
if nargin<=6, opt = []; end % make opt variable available
if isfield(opt,'cg_tol'), cgtol = opt.cg_tol; % stop conjugate gradients
else cgtol = 1e-5; end
if isfield(opt,'cg_maxit'), cgmit = opt.cg_maxit; % number of cg iterations
else cgmit = min(n,20); end
for j=1:numel(K)
if iscell(K{j}) && strcmp(K{j}{1},'toep'), K{j} = toeplitz(K{j}{2}); end
end
sn2 = exp(2*hyp.lik); % noise variance of likGauss
V = cell(size(K)); E = cell(size(K)); % eigenvalue decomposition
for j=1:numel(K)
if iscell(K{j}) && strcmp(K{j}{1},'toep')
[V{j},E{j}] = eigr(toeplitz(K{j}{2}));
else [V{j},E{j}] = eigr(K{j});
end
end
e = 1; for i=1:numel(E), e = kron(diag(E{i}),e); end % eigenvalue diagonal
if numel(m)==N
s = 1./(e+sn2); ord = 1:N; % V*diag(s)*V' = inv(K+sn2*eye(N))
else
[eord,ord] = sort(e,'descend'); % sort long vector of eigenvalues
s = 1./((n/N)*eord(1:n) + sn2); % approx using top n eigenvalues
end
if numel(m)==N % decide for Kronecker magic or conjugate gradients
L = @(k) kronmvm(V,repmat(-s,1,size(k,2)).*kronmvm(V,k,1)); % mvm callback
else % go for conjugate gradients
mvm = @(t) mvmK(t,K,sn2,M); % single parameter mvm
L = @(k) -solveMVM(k,mvm,cgtol,cgmit);
end
alpha = -L(y-m);
post.alpha = alpha; % return the posterior parameters
post.sW = ones(n,1)/sqrt(sn2); % sqrt of noise precision
post.L = L; % function to compute inv(K+sn2*eye(N))*Ks
if nargout>1 % do we want the marginal likelihood?
lda = -sum(log(s)); % exact kron
% exact: lda = 2*sum(log(diag(chol(M*kronmvm(K,eye(N))*M'+sn2*eye(n)))));
nlZ = (y-m)'*alpha/2 + n*log(2*pi)/2 + lda/2;
if nargout>2 % do we want derivatives?
dnlZ = hyp; % allocate space for derivatives, define Q=inv(M*K*M'+sn2*I)
Mtal = M'*alpha; % blow up alpha vector from n to N
for i = 1:numel(hyp.cov)
dK = feval(cov{:}, hyp.cov, x, [], i);
for j=1:numel(dK) % expand Toeplitz
if iscell(dK{j}) && strcmp(dK{j}{1},'toep')
dK{j} = toeplitz(dK{j}{2});
end
end
P = cell(size(dK)); % auxiliary Kronecker matrix P = V'*dK*V
for j = 1:numel(dK), P{j} = sum((V{j}'*dK{j}).*V{j}',2); end
p = 1; for j=1:numel(P), p = kron(P{j},p); end % p = diag(P)
p = (n/N)*p(ord(1:n)); % approximate if incomplete grid observation
dnlZ.cov(i) = (p'*s - Mtal'*kronmvm(dK,Mtal))/2;
end
dnlZ.lik = sn2*(sum(s) - alpha'*alpha); % sum(s) = trace(Q)
for i = 1:numel(hyp.mean)
dnlZ.mean(i) = -feval(mean{:}, hyp.mean, xe, i)'*alpha;
end
end
end
% Solve x=A*b with symmetric A(n,n), b(n,m), x(n,m) using conjugate gradients.
% The method is along the lines of PCG but suited for matrix inputs b.
function [x,flag,relres,iter,r] = conjgrad(A,b,tol,maxit)
if nargin<3, tol = 1e-10; end
if nargin<4, maxit = min(size(b,1),20); end
x0 = zeros(size(b)); x = x0;
if isnumeric(A), r = b-A*x; else r = b-A(x); end, r2 = sum(r.*r,1); r2new = r2;
nb = sqrt(sum(b.*b,1)); flag = 0; iter = 1;
relres = sqrt(r2)./nb; todo = relres>=tol; if ~any(todo), flag = 1; return, end
on = ones(size(b,1),1); r = r(:,todo); d = r;
for iter = 2:maxit
if isnumeric(A), z = A*d; else z = A(d); end
a = r2(todo)./sum(d.*z,1);
a = on*a;
x(:,todo) = x(:,todo) + a.*d;
r = r - a.*z;
r2new(todo) = sum(r.*r,1);
relres = sqrt(r2new)./nb; cnv = relres(todo)<tol; todo = relres>=tol;
d = d(:,~cnv); r = r(:,~cnv); % get rid of converged
if ~any(todo), flag = 1; return, end
b = r2new./r2; % Fletcher-Reeves
d = r + (on*b(todo)).*d;
r2 = r2new;
end
% solve q = mvm(p) via conjugate gradients
function q = solveMVM(p,mvm,varargin)
[q,flag,relres,iter] = conjgrad(mvm,p,varargin{:}); % like pcg
if ~flag,error('Not converged after %d iterations, r=%1.2e\n',iter,relres),end
% mvm so that q = M*K*M'*p + sn2*p using the Kronecker representation
function q = mvmK(p,K,sn2,M)
q = M*kronmvm(K,M'*p) + sn2*p;
% Perform a matrix vector multiplication b = A*x with a matrix A being a
% Kronecker product given by A = kron( kron(...,As{2}), As{1} ).
function b = kronmvm(As,x,transp)
if nargin>2 && ~isempty(transp) && transp % transposition by transposing parts
for i=1:numel(As), As{i} = As{i}'; end
end
m = zeros(numel(As),1); n = zeros(numel(As),1); % extract sizes
for i=1:numel(n)
if iscell(As{i}) && strcmp(As{i}{1},'toep')
m(i) = size(As{i}{2},1); n(i) = size(As{i}{2},1);
else [m(i),n(i)] = size(As{i});
end
end
d = size(x,2);
b = x;
for i=1:numel(n)
a = reshape(b,[prod(m(1:i-1)), n(i), prod(n(i+1:end))*d]); % prepare input
tmp = reshape(permute(a,[1,3,2]),[],n(i))*As{i}';
b = permute(reshape(tmp,[size(a,1),size(a,3),m(i)]),[1,3,2]);
end
b = reshape(b,prod(m),d); % bring result in correct shape
% Real eigenvalues and eigenvectors up to the rank of a real symmetric matrix.
% Decompose A into V*D*V' with orthonormal matrix V and diagonal matrix D.
% Diagonal entries of D obave the rank r of the matrix A as returned by
% the call rank(A,tol) are zero.
function [V,D] = eigr(A,tol)
[V,D] = eig((A+A')/2); n = size(A,1); % decomposition of strictly symmetric A
d = max(real(diag(D)),0); [d,ord] = sort(d,'descend'); % tidy up and sort
if nargin<2, tol = size(A,1)*eps(max(d)); end, r = sum(d>tol); % get rank(A)
d(r+1:n) = 0; D = diag(d); % set junk eigenvalues to strict zeros
V(:,1:r) = real(V(:,ord(1:r))); V(:,r+1:n) = null(V(:,1:r)'); % ortho completion
|
github
|
Hadisalman/stoec-master
|
infEP.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infEP.m
| 5,886 |
utf_8
|
bc70721e1eea7c28c46653d36d1cd851
|
function [post nlZ dnlZ] = infEP(hyp, mean, cov, lik, x, y)
% Expectation Propagation approximation to the posterior Gaussian Process.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m. In the EP algorithm, the sites are
% updated in random order, for better performance when cases are ordered
% according to the targets.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2013-09-13.
%
% See also INFMETHODS.M.
persistent last_ttau last_tnu % keep tilde parameters between calls
tol = 1e-4; max_sweep = 10; min_sweep = 2; % tolerance to stop EP iterations
inf = 'infEP';
n = size(x,1);
K = feval(cov{:}, hyp.cov, x); % evaluate the covariance matrix
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
% A note on naming: variables are given short but descriptive names in
% accordance with Rasmussen & Williams "GPs for Machine Learning" (2006): mu
% and s2 are mean and variance, nu and tau are natural parameters. A leading t
% means tilde, a subscript _ni means "not i" (for cavity parameters), or _n
% for a vector of cavity parameters. N(f|mu,Sigma) is the posterior.
% marginal likelihood for ttau = tnu = zeros(n,1); equals n*log(2) for likCum*
nlZ0 = -sum(feval(lik{:}, hyp.lik, y, m, diag(K), inf));
if any(size(last_ttau) ~= [n 1]) % find starting point for tilde parameters
ttau = zeros(n,1); tnu = zeros(n,1); % init to zero if no better guess
Sigma = K; % initialize Sigma and mu, the parameters of ..
mu = m; nlZ = nlZ0; % .. the Gaussian posterior approximation
else
ttau = last_ttau; tnu = last_tnu; % try the tilde values from previous call
[Sigma,mu,L,alpha,nlZ] = epComputeParams(K, y, ttau, tnu, lik, hyp, m, inf);
if nlZ > nlZ0 % if zero is better ..
ttau = zeros(n,1); tnu = zeros(n,1); % .. then init with zero instead
Sigma = K; % initialize Sigma and mu, the parameters of ..
mu = m; nlZ = nlZ0; % .. the Gaussian posterior approximation
end
end
nlZ_old = Inf; sweep = 0; % converged, max. sweeps or min. sweeps?
while (abs(nlZ-nlZ_old) > tol && sweep < max_sweep) || sweep<min_sweep
nlZ_old = nlZ; sweep = sweep+1;
for i = randperm(n) % iterate EP updates (in random order) over examples
tau_ni = 1/Sigma(i,i)-ttau(i); % first find the cavity distribution ..
nu_ni = mu(i)/Sigma(i,i)-tnu(i); % .. params tau_ni and nu_ni
% compute the desired derivatives of the indivdual log partition function
[lZ, dlZ, d2lZ] = feval(lik{:}, hyp.lik, y(i), nu_ni/tau_ni, 1/tau_ni, inf);
ttau_old = ttau(i); tnu_old = tnu(i); % find the new tilde params, keep old
ttau(i) = -d2lZ /(1+d2lZ/tau_ni);
ttau(i) = max(ttau(i),0); % enforce positivity i.e. lower bound ttau by zero
tnu(i) = ( dlZ - nu_ni/tau_ni*d2lZ )/(1+d2lZ/tau_ni);
dtt = ttau(i)-ttau_old; dtn = tnu(i)-tnu_old; % rank-1 update Sigma ..
si = Sigma(:,i); ci = dtt/(1+dtt*si(i));
Sigma = Sigma - ci*si*si'; % takes 70% of total time
mu = mu - (ci*(mu(i)+si(i)*dtn)-dtn)*si; % .. and recompute mu
end
% recompute since repeated rank-one updates can destroy numerical precision
[Sigma,mu,L,alpha,nlZ] = epComputeParams(K, y, ttau, tnu, lik, hyp, m, inf);
end
if sweep == max_sweep && abs(nlZ-nlZ_old) > tol
error('maximum number of sweeps exceeded in function infEP')
end
last_ttau = ttau; last_tnu = tnu; % remember for next call
post.alpha = alpha; post.sW = sqrt(ttau); post.L = L; % return posterior params
if nargout>2 % do we want derivatives?
dnlZ = hyp; % allocate space for derivatives
tau_n = 1./diag(Sigma)-ttau; % compute the log marginal likelihood
nu_n = mu./diag(Sigma)-tnu; % vectors of cavity parameters
sW = sqrt(ttau);
F = alpha*alpha'-repmat(sW,1,n).*solve_chol(L,diag(sW)); % covariance hypers
for i=1:length(hyp.cov)
dK = feval(cov{:}, hyp.cov, x, [], i);
dnlZ.cov(i) = -sum(sum(F.*dK))/2;
end
for i = 1:numel(hyp.lik) % likelihood hypers
dlik = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, inf, i);
dnlZ.lik(i) = -sum(dlik);
end
[junk,dlZ] = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, inf);% mean hyps
for i = 1:numel(hyp.mean)
dm = feval(mean{:}, hyp.mean, x, i);
dnlZ.mean(i) = -dlZ'*dm;
end
end
% function to compute the parameters of the Gaussian approximation, Sigma and
% mu, and the negative log marginal likelihood, nlZ, from the current site
% parameters, ttau and tnu. Also returns L (useful for predictions).
function [Sigma,mu,L,alpha,nlZ] = epComputeParams(K,y,ttau,tnu,lik,hyp,m,inf)
n = length(y); % number of training cases
sW = sqrt(ttau); % compute Sigma and mu
L = chol(eye(n)+sW*sW'.*K); % L'*L=B=eye(n)+sW*K*sW
V = L'\(repmat(sW,1,n).*K);
Sigma = K - V'*V;
alpha = tnu-sW.*solve_chol(L,sW.*(K*tnu+m));
mu = K*alpha+m; v = diag(Sigma);
tau_n = 1./diag(Sigma)-ttau; % compute the log marginal likelihood
nu_n = mu./diag(Sigma)-tnu; % vectors of cavity parameters
lZ = feval(lik{:}, hyp.lik, y, nu_n./tau_n, 1./tau_n, inf);
p = tnu-m.*ttau; q = nu_n-m.*tau_n; % auxiliary vectors
nlZ = sum(log(diag(L))) - sum(lZ) - p'*Sigma*p/2 + (v'*p.^2)/2 ...
- q'*((ttau./tau_n.*q-2*p).*v)/2 - sum(log(1+ttau./tau_n))/2;
|
github
|
Hadisalman/stoec-master
|
infVB.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infVB.m
| 6,024 |
utf_8
|
ff46ca9c2cce23402f0058955fe60b93
|
function [post, nlZ, dnlZ] = infVB(hyp, mean, cov, lik, x, y, opt)
% Variational approximation to the posterior Gaussian process.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m.
%
% Minimisation of an upper bound on the negative marginal likelihood using a
% sequence of infLaplace calls where the smoothed likelihood
% likVB(f) = lik(..,g,..) * exp(b*(f-g)), g = sign(f-z)*sqrt((f-z)^2+v)+z, where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that p(y|f)=lik(..,f,..).
%
% The problem is convex whenever the likelihood is log-concave. At the end, the
% optimal width W is obtained analytically.
%
% Copyright (c) by Hannes Nickisch 2014-03-20.
%
% See also INFMETHODS.M.
n = size(x,1);
K = feval(cov{:}, hyp.cov, x); % evaluate the covariance matrix
m = feval(mean{:}, hyp.mean, x); % evaluate the mean vector
if iscell(lik), likstr = lik{1}; else likstr = lik; end
if ~ischar(likstr), likstr = func2str(likstr); end
if nargin<=6, opt = []; end % make opt variable available
if ~isfield(opt,'postL'), opt.postL = false; end % not compute L in infLaplace
if isfield(opt,'out_nmax'), out_nmax = opt.out_nmax; % maximal no of outer loops
else out_nmax = 15; end % default value
if isfield(opt,'out_tol'), out_tol = opt.out_tol; % outer loop convergence
else out_tol = 1e-5; end % default value
sW = ones(n,1); % init with some reasonable value
opt.postL = false; % avoid computation of L inside infLaplace
for i=1:out_nmax
U = chol(eye(n)+sW*sW'.*K)'\(repmat(sW,1,n).*K);
v = diag(K) - sum(U.*U,1)'; % v = diag( inv(inv(K)+diag(sW.*sW)) )
post = infLaplace(hyp, m, K, {@likVB,v,lik}, x, y, opt);
% post.sW is very different from the optimal sW for non Gaussian likelihoods
sW_old = sW; f = m+K*post.alpha; % posterior mean
[lp,dlp,d2lp,sW,b,z] = feval(@likVB,v,lik,hyp.lik,y,f);
if max(abs(sW-sW_old))<out_tol, break, end % diagnose convergence
end
alpha = post.alpha; post.sW = sW; % posterior parameters
post.L = chol(eye(n)+sW*sW'.*K); % recompute L'*L = B =eye(n)+sW*K*sW
ga = 1./(sW.*sW); be = b+z./ga; % variance, lower bound offset from likVB
h = f.*(2*be-f./ga) - 2*lp - v./ga; % h(ga) = s*(2*b-f/ga)+ h*(s) - v*(1/ga)
c = b+(z-m)./ga; t = post.L'\(c./sW);
nlZ = sum(log(diag(post.L))) + (sum(h) + t'*t - (be.*be)'*ga )/2; % var. bound
if nargout>2 % do we want derivatives?
iKtil = repmat(sW,1,n).*solve_chol(post.L,diag(sW));% sW*B^-1*sW=inv(K+inv(W))
dnlZ = hyp; % allocate space for derivatives
for j=1:length(hyp.cov) % covariance hypers
dK = feval(cov{:}, hyp.cov, x, [], j);
if j==1, w = iKtil*(c.*ga); end
dnlZ.cov(j) = sum(sum(iKtil.*dK))/2 - (w'*dK*w)/2;
end
if ~strcmp(likstr,'likGauss') % likelihood hypers
for j=1:length(hyp.lik)
sign_fmz = 2*(f-z>=0)-1; % strict sign mapping; sign(0) = 1
g = sign_fmz.*sqrt((f-z).^2 + v) + z;
dhhyp = -2*feval(lik{:},hyp.lik,y,g,[],'infLaplace',j);
dnlZ.lik(j) = sum(dhhyp)/2;
end
else % special treatment for the Gaussian case
dnlZ.lik = sum(sum( (post.L'\eye(n)).^2 )) - exp(2*hyp.lik)*(alpha'*alpha);
end
for j=1:length(hyp.mean) % mean hypers
dm = feval(mean{:}, hyp.mean, x, j);
dnlZ.mean(j) = -alpha'*dm;
end
end
% Smoothed likelihood function; instead of p(y|f)=lik(..,f,..) compute
% likVB(f) = lik(..,g,..)*exp(b*(f-g)), g = sign(f-z)*sqrt((f-z)^2+v)+z, where
% v .. marginal variance = (positive) smoothing width, and
% lik .. lik function such that feval(lik{:},varargin{:}) yields a result.
% The smoothing results from a lower bound on the likelihood:
% p(y|f) \ge exp( (b+z/ga)*f - f.^2/(2*ga) - h(ga)/2 )
function [varargout] = likVB(v, lik, varargin)
[b,z] = feval(lik{:},varargin{1:2},[],zeros(size(v)),'infVB');
f = varargin{3}; % obtain location of evaluation
sign_fmz = 2*(f-z>=0)-1; % strict sign mapping; sign(0) = 1
g = sign_fmz.*sqrt((f-z).^2 + v) + z;
varargin{3} = g;
id = v==0 | abs(f./sqrt(v+eps))>1e10; % correct asymptotics of f -> +/-Inf
varargout = cell(nargout,1); % allocate output, eval lik(..,g,..)
[varargout{1:min(nargout,3)}] = feval(lik{:},varargin{1:3},[],'infLaplace');
if nargout>0
lp = varargout{1};
varargout{1} = lp + b.*(f-g);
varargout{1}(id) = lp(id); % correct asymptotics of f -> +/-Inf
if nargout>1 % first derivative
dg_df = (abs(f-z)+eps)./(abs(g-z)+eps); % stabilised dg/df for v=0, f=0
dlp = varargout{2};
varargout{2} = dlp.*dg_df + b.*(1-dg_df);
varargout{2}(id) = dlp(id); % correct asymptotics of f -> +/-Inf
if nargout>2 % second derivative
d2lp = varargout{3};
g_e = g-z + sign_fmz*eps;
v_g3 = v./(g_e.*g_e.*g_e); % stabilised v./g.^3 to cover v=0 and f=0
varargout{3} = (dlp-b).*v_g3 + d2lp.*dg_df.*dg_df;
varargout{3}(id) = d2lp(id); % correct asymptotics of f -> +/-Inf
if nargout>3
W = abs( (b-dlp)./(g-z+sign_fmz/1.5e8) ); % optimal sW value
varargout{4} = sqrt(W);
if nargout>4
varargout{5} = b;
if nargout>5
varargout{6} = z;
end
end
end
end
end
end
|
github
|
Hadisalman/stoec-master
|
infLaplace.m
|
.m
|
stoec-master/code/Include/gpml-matlab-v3.5-2014-12-08/inf/infLaplace.m
| 7,949 |
utf_8
|
297780be514bf1d87f826763094f104f
|
function [post nlZ dnlZ] = infLaplace(hyp, mean, cov, lik, x, y, opt)
% Laplace approximation to the posterior Gaussian process.
% The function takes a specified covariance function (see covFunctions.m) and
% likelihood function (see likFunctions.m), and is designed to be used with
% gp.m. See also infMethods.m.
%
% Copyright (c) by Carl Edward Rasmussen and Hannes Nickisch 2013-05-02.
%
% See also INFMETHODS.M.
persistent last_alpha % copy of the last alpha
if any(isnan(last_alpha)), last_alpha = zeros(size(last_alpha)); end % prevent
if nargin<=6, opt = []; end % make opt variable available
if isfield(opt,'postL'), postL = opt.postL; % recompute matrix L for post
else postL = true; end % default value
inf = 'infLaplace';
n = size(x,1);
if isnumeric(cov), K = cov; % use provided covariance matrix
else K = feval(cov{:}, hyp.cov, x); end % evaluate the covariance matrix
if isnumeric(mean), m = mean; % use provided mean vector
else m = feval(mean{:}, hyp.mean, x); end % evaluate the mean vector
likfun = @(f) feval(lik{:},hyp.lik,y,f,[],inf); % log likelihood function
if any(size(last_alpha)~=[n,1]) % find a good starting point for alpha and f
alpha = zeros(n,1); % start at mean if sizes do not match
else
alpha = last_alpha; % try last one
if Psi(alpha,m,K,likfun) > -sum(likfun(m)) % default f==m better => use it
alpha = zeros(n,1);
end
end
% switch between optimisation methods
alpha = irls(alpha, m,K,likfun, opt); % run optimisation
f = K*alpha+m; % compute latent function values
last_alpha = alpha; % remember for next call
[lp,dlp,d2lp,d3lp] = likfun(f); W = -d2lp; isWneg = any(W<0);
post.alpha = alpha; % return the posterior parameters
post.sW = sqrt(abs(W)).*sign(W); % preserve sign in case of negative
% diagnose optimality
err = @(x,y) norm(x-y)/max([norm(x),norm(y),1]); % we need to have alpha = dlp
% dev = err(alpha,dlp); if dev>1e-4, warning('Not at optimum %1.2e.',dev), end
if postL || nargout>1
if isWneg % switch between Cholesky and LU decomposition mode
% For post.L = -inv(K+diag(1./W)), we us the non-default parametrisation.
[ldA, iA, post.L] = logdetA(K,W); % A=eye(n)+K*W is as safe as symmetric B
nlZ = alpha'*(f-m)/2 - sum(lp) + ldA/2;
else
sW = post.sW; post.L = chol(eye(n)+sW*sW'.*K); % recompute
nlZ = alpha'*(f-m)/2 + sum(log(diag(post.L))-lp); % ..(f-m)/2 -lp +ln|B|/2
end
end
if nargout>2 % do we want derivatives?
dnlZ = hyp; % allocate space for derivatives
if isWneg % switch between Cholesky and LU decomposition mode
Z = -post.L; % inv(K+inv(W))
g = sum(iA.*K,2)/2; % deriv. of ln|B| wrt W; g = diag(inv(inv(K)+diag(W)))/2
else
Z = repmat(sW,1,n).*solve_chol(post.L,diag(sW)); %sW*inv(B)*sW=inv(K+inv(W))
C = post.L'\(repmat(sW,1,n).*K); % deriv. of ln|B| wrt W
g = (diag(K)-sum(C.^2,1)')/2; % g = diag(inv(inv(K)+W))/2
end
dfhat = g.*d3lp; % deriv. of nlZ wrt. fhat: dfhat=diag(inv(inv(K)+W)).*d3lp/2
for i=1:length(hyp.cov) % covariance hypers
dK = feval(cov{:}, hyp.cov, x, [], i);
dnlZ.cov(i) = sum(sum(Z.*dK))/2 - alpha'*dK*alpha/2; % explicit part
b = dK*dlp; % b-K*(Z*b) = inv(eye(n)+K*diag(W))*b
dnlZ.cov(i) = dnlZ.cov(i) - dfhat'*( b-K*(Z*b) ); % implicit part
end
for i=1:length(hyp.lik) % likelihood hypers
[lp_dhyp,dlp_dhyp,d2lp_dhyp] = feval(lik{:},hyp.lik,y,f,[],inf,i);
dnlZ.lik(i) = -g'*d2lp_dhyp - sum(lp_dhyp); % explicit part
b = K*dlp_dhyp; % b-K*(Z*b) = inv(eye(n)+K*diag(W))*b
dnlZ.lik(i) = dnlZ.lik(i) - dfhat'*( b-K*(Z*b) ); % implicit part
end
for i=1:length(hyp.mean) % mean hypers
dm = feval(mean{:}, hyp.mean, x, i);
dnlZ.mean(i) = -alpha'*dm; % explicit part
dnlZ.mean(i) = dnlZ.mean(i) - dfhat'*(dm-K*(Z*dm)); % implicit part
end
end
% Evaluate criterion Psi(alpha) = alpha'*K*alpha + likfun(f), where
% f = K*alpha+m, and likfun(f) = feval(lik{:},hyp.lik,y, f, [],inf).
function [psi,dpsi,f,alpha,dlp,W] = Psi(alpha,m,K,likfun)
f = K*alpha+m;
[lp,dlp,d2lp] = likfun(f); W = -d2lp;
psi = alpha'*(f-m)/2 - sum(lp);
if nargout>1, dpsi = K*(alpha-dlp); end
% Run IRLS Newton algorithm to optimise Psi(alpha).
function alpha = irls(alpha, m,K,likfun, opt)
if isfield(opt,'irls_maxit'), maxit = opt.irls_maxit; % max no of Newton steps
else maxit = 20; end % default value
if isfield(opt,'irls_Wmin'), Wmin = opt.irls_Wmin; % min likelihood curvature
else Wmin = 0.0; end % default value
if isfield(opt,'irls_tol'), tol = opt.irls_tol; % stop Newton iterations
else tol = 1e-6; end % default value
smin_line = 0; smax_line = 2; % min/max line search steps size range
nmax_line = 10; % maximum number of line search steps
thr_line = 1e-4; % line search threshold
Psi_line = @(s,alpha,dalpha) Psi(alpha+s*dalpha, m,K,likfun); % line search
pars_line = {smin_line,smax_line,nmax_line,thr_line}; % line seach parameters
search_line = @(alpha,dalpha) brentmin(pars_line{:},Psi_line,5,alpha,dalpha);
f = K*alpha+m; [lp,dlp,d2lp] = likfun(f); W = -d2lp; n = size(K,1);
Psi_new = Psi(alpha,m,K,likfun);
Psi_old = Inf; % make sure while loop starts by the largest old objective val
it = 0; % this happens for the Student's t likelihood
while Psi_old - Psi_new > tol && it<maxit % begin Newton
Psi_old = Psi_new; it = it+1;
% limit stepsize
W = max(W,Wmin); % reduce step size by increasing curvature of problematic W
sW = sqrt(W); L = chol(eye(n)+sW*sW'.*K); % L'*L=B=eye(n)+sW*K*sW
b = W.*(f-m) + dlp;
dalpha = b - sW.*solve_chol(L,sW.*(K*b)) - alpha; % Newton dir + line search
[s_line,Psi_new,n_line,dPsi_new,f,alpha,dlp,W] = search_line(alpha,dalpha);
end % end Newton's iterations
% Compute the log determinant ldA and the inverse iA of a square nxn matrix
% A = eye(n) + K*diag(w) from its LU decomposition; for negative definite A, we
% return ldA = Inf. We also return mwiA = -diag(w)/A.
function [ldA,iA,mwiA] = logdetA(K,w)
[m,n] = size(K); if m~=n, error('K has to be nxn'), end
A = eye(n)+K.*repmat(w',n,1);
[L,U,P] = lu(A); u = diag(U); % compute LU decomposition, A = P'*L*U
signU = prod(sign(u)); % sign of U
detP = 1; % compute sign (and det) of the permutation matrix P
p = P*(1:n)';
for i=1:n % swap entries
if i~=p(i), detP = -detP; j = find(p==i); p([i,j]) = p([j,i]); end
end
if signU~=detP % log becomes complex for negative values, encoded by infinity
ldA = Inf;
else % det(L) = 1 and U triangular => det(A) = det(P)*prod(diag(U))
ldA = sum(log(abs(u)));
end
if nargout>1, iA = U\(L\P); end % return the inverse if required
if nargout>2, mwiA = -repmat(w,1,n).*iA; end
|
github
|
Hadisalman/stoec-master
|
ipdm.m
|
.m
|
stoec-master/code/Include/InterPointDistanceMatrix/ipdm.m
| 39,104 |
utf_8
|
d686ea7e03c771fcb892fb17417b3f23
|
function d = ipdm(data1,varargin)
% ipdm: Inter-Point Distance Matrix
% usage: d = ipdm(data1)
% usage: d = ipdm(data1,data2)
% usage: d = ipdm(data1,prop,value)
% usage: d = ipdm(data1,data2,prop,value)
%
% Arguments: (input)
% data1 - array of data points, each point is one row. p dimensional
% data will be represented by matrix with p columns.
% If only data1 is provided, then the distance matrix
% is computed between all pairs of rows of data1.
%
% If your data is one dimensional, it MUST form a column
% vector. A row vector of length n will be interpreted as
% an n-dimensional data set.
%
% data2 - second array, supplied only if distances are to be computed
% between two sets of points.
%
%
% Class support: data1 and data2 are assumed to be either
% single or double precision. I have not tested this code to
% verify its success on integer data of any class.
%
%
% Additional parameters are expected to be property/value pairs.
% Property/value pairs are pairs of arguments, the first of which
% (properties) must always be a character string. These strings
% may be shortened as long as the shortening is unambiguous.
% Capitalization is ignored. Valid properties for ipdm are:
%
% 'Metric', 'Subset', 'Limit', 'Result'
%
% 'Metric' - numeric flag - defines the distance metric used
% metric = 2 --> (DEFAULT) Euclidean distance = 2-norm
% The standard distance metric.
%
% metric = 1 --> 1-norm = sum of absolute differences
% Also sometimes known as the "city block
% metric", since this is the sum of the
% differences in each dimension.
%
% metric = inf --> infinity-norm = maximum difference
% over all dimensions. The name refers
% to the limit of the p-norm, as p
% approaches infinity.
%
% metric = 0 --> minimum difference over all dimensions.
% This is not really a useful norm in
% practice.
%
% Note: while other distance metrics exist, IMHO, these
% seemed to be the common ones.
%
%
% 'Result' - A string variable that denotes the style of returned
% result. Valid result types are 'Array', 'Structure'.
% Capitalization is ignored, and the string may be
% shortened if you wish.
%
% result = 'Array' --> (DEFAULT) A matrix of all
% interpoint distances will be generated.
% This array may be large. If this option
% is specified along with a minimum or
% maximum value, then those elements above
% or below the limiting values will be
% set as -inf or +inf, as appropriate.
%
% When any of 'LargestFew', 'SmallestFew',
% or 'NearestNeighbor' are set, then the
% resulting array will be a sparse matrix
% if 'array' is specified as the result.
%
% result = 'Structure' --> A list of all computed distances,
% defined as a structure. This structure
% will have fields named 'rowindex',
% 'columnindex', and 'distance'.
%
% This option will be useful when a subset
% criterion for the distances has been
% specified, since then the distance matrix
% may be very sparsely populated. Distances
% for pairs outside of the criterion will
% not be returned.
%
%
% 'Subset' - Character string, any of:
%
% 'All', 'Maximum', 'Minimum', 'LargestFew', 'SmallestFew',
% 'NearestNeighbor', 'FarthestNeighbor', or empty
%
% Like properties, capitalization is ignored here, and
% any unambiguous shortening of the word is acceptable.
%
% DEFAULT = 'All'
%
% Some interpoint distance matrices can be huge. Often
% these matrices are too large to be fully retained in
% memory, yet only the pair of points with the largest
% or smallest distance may be needed. When only some
% subset of the complete set of distances is of interest,
% these options allow you to specify which distances will
% be returned.
%
% If 'result' is defined to be an array, then a sparse
% matrix will be returned for the 'LargestFew', 'SmallestFew',
% 'NearestNeighbor', and 'FarthestNeighbor' subset classes.
% 'Minimum' and 'Maximum' will yield full matrices by
% default. If a structure is specified, then only those
% elements which have been identified will be returned.
%
% Where a subset is specified, its limiting value is
% specified by the 'Limit' property. Call that value k.
%
%
% 'All' --> (DEFAULT) Return all interpoint distances
%
% 'Minimum' --> Only look for those distances above
% the cutoff k. All other distances will
% be returned as -inf.
%
% 'Maximum' --> Only look for those distances below
% the cutoff k. All other distances will
% be returned as +inf.
%
% 'SmallestFew' --> Only return the subset of the k
% smallest distances. Where only one data
% set is provided, only the upper triangle
% of the inter-point distance matrix will
% be generated since that matrix is symmetric.
%
% 'LargestFew' --> Only return the subset of the k
% largest distances. Where only one data
% set is provided, only the upper triangle
% of the inter-point distance matrix will
% be generated since that matrix is symmetric.
%
% 'NearestNeighbor' --> Only return the single nearest
% neighbor in data2 to each point in data1.
% No limiting value is required for this
% option. If multiple points have the same
% nearest distance, then return the first
% such point found. With only one input set,
% a point will not be its own nearest
% neighbor.
%
% Note that exact replicates in a single set
% will cause problems, since a sparse matrix
% is returned by default. Since they will have
% a zero distance, they will not show up in
% the sparse matrix. A structure return will
% show those points as having a zero distance
% though.
%
% 'FarthestNeighbor' --> Only return the single farthest
% neighbor to each point. No limiting value
% is required for this option. If multiple
% points have the same farthest distance,
% then return the first such point found.
%
%
% 'Limit' - scalar numeric value or []. Used only when some
% Subset is specified.
%
% DEFAULT = []
%
%
% 'ChunkSize' - allows a user with lower RAM limits
% to force the code to only grab smaller chunks of RAM
% at a time (where possible). This parameter is specified
% in bytes of RAM. The default is 32 megabytes, or 2^22
% elements in any piece of the distance matrix. Only some
% options will break the problem into chunks, thus as long
% as a full matrix is expected to be returned, there seems
% no reason to break the problem up into pieces.
%
% DEFAULT = 2^25
%
%
% Arguments: (output)
% d - array of interpoint distances, or a struct wth the
% fields {'rowindex', 'columnindex', 'distance'}.
%
% d(i,j) represents the distance between point i
% (from data1) and point j (from data2).
%
% If only one (n1 x p) array is supplied, then d will
% be an array of size == [n1,n1].
%
% If two arrays (of sizes n1 x p and n2 x p) then d
% will be an array of size == [n1,n2].
%
%
% Efficiency considerations:
% Where possible, this code will use bsxfun to compute its
% distances.
%
%
% Example:
% Compute the interpoint distances between all pairs of points
% in a list of 5 points, in 2 dimensions and using Euclidean
% distance as the distance metric.
%
% A = randn(5,2);
% d = ipdm(A,'metric',2)
% d =
% 0 2.3295 3.2263 2.0263 2.8244
% 2.3295 0 1.1485 0.31798 1.0086
% 3.2263 1.1485 0 1.4318 1.8479
% 2.0263 0.31798 1.4318 0 1.0716
% 2.8244 1.0086 1.8479 1.0716 0
%
% (see the demo file for many other examples)
%
% See also: pdist
%
% Author: John D'Errico
% e-mail: [email protected]
% Release: 1.0
% Release date: 2/26/08
% Default property values
params.Metric = 2;
params.Result = 'array';
params.Subset = 'all';
params.Limit = [];
params.ChunkSize = 2^25;
% untangle the arguments
if nargin<1
% if called with no arguments, then the user probably
% needs help. Give it to them.
help ipdm
return
end
% were two sets of data provided?
pvpairs = {};
if nargin==1
% only 1 set of data provided
dataflag = 1;
data2 = [];
else
if ischar(varargin{1})
dataflag = 1;
data2 = [];
pvpairs = varargin;
else
dataflag = 2;
data2 = varargin{1};
if nargin>2
pvpairs = varargin(2:end);
end
end
end
% get data sizes for later
[n1,dim] = size(data1);
if dataflag == 2
n2 = size(data2,1);
end
% Test the class of the input variables
if ~(isa(data1,'double') || isa(data1,'single')) || ...
((dataflag == 2) && ~(isa(data2,'double') || isa(data2,'single')))
error('data points must be either single or double precision variables.')
end
% do we need to process any property/value pairs?
if nargin>2
params = parse_pv_pairs(params,pvpairs);
% check for problems in the properties
% was a legal Subset provided?
if ~isempty(params.Subset) && ~ischar(params.Subset)
error('If provided, ''Subset'' must be character')
elseif isempty(params.Subset)
params.Subset = 'all';
end
valid = {'all','maximum','minimum','largestfew','smallestfew', ...
'nearestneighbor','farthestneighbor'};
ind = find(strncmpi(params.Subset,valid,length(params.Subset)));
if (length(ind)==1)
params.Subset = valid{ind};
else
error(['Invalid Subset: ',params.Subset])
end
% was a limit provided?
if ~ismember(params.Subset,{'all','nearestneighbor','farthestneighbor'}) && ...
isempty(params.Limit)
error('No limit provided, but a Subset that requires a limit value was specified')
end
% check the limit values for validity
if length(params.Limit)>1
error('Limit must be scalar or empty')
end
switch params.Subset
case {'largestfew', 'smallestfew'}
% must be at least 1, and an integer
if (params.Limit<1) || (round(params.Limit)~=params.Limit)
error('Limit must be a positive integer for LargestFew or NearestFew')
end
end
% was a legal Result provided?
if isempty(params.Result)
params.result = 'Array';
elseif ~ischar(params.Result)
error('If provided, ''Result'' must be character or empty')
end
valid = {'array','structure'};
ind = find(strncmpi(params.Result,valid,length(params.Result)));
if (length(ind)==1)
params.Result = valid{ind};
else
error(['Invalid Result: ',params.Subset])
end
% check for the metric
if isempty(params.Metric)
params.Metric = 2;
elseif (length(params.Metric)~=1) || ~ismember(params.Metric,[0 1 2 inf])
error('If supplied, ''Metric'' must be a scalar, and one of [0 1 2 inf]')
end
end % if nargin>2
% If Metric was given as 2, but the dimension is only 1, then it will
% be slightly faster (and equivalent) to use the 1-norm Metric.
if (dim == 1) && (params.Metric == 2)
params.Metric = 1;
end
% Can we use bsxfun to compute the interpoint distances?
% Older Matlab releases will not have bsxfun, but if it is
% around, it will ne both faster and less of a memory hog.
params.usebsxfun = (5==exist('bsxfun','builtin'));
% check for dimension mismatch if 2 sets
if (dataflag==2) && (size(data2,2)~=dim)
error('If 2 point sets provided, then both must have the same number of columns')
end
% Total number of distances to compute, in case I must do it in batches
if dataflag==1
n2 = n1;
end
ntotal = n1*n2;
% FINALLY!!! Compute inter-point distances
switch params.Subset
case 'all'
% The complete set of interpoint distances. There is no need
% to break this into chunks, since we must return all distances.
% If that is too much to compute in memory, then it will fail
% anyway when we try to store the result. bsxfun will at least
% do the computation efficiently.
% One set or two?
if dataflag == 1
d = distcomp(data1,data1,params);
else
d = distcomp(data1,data2,params);
end
% Must we return it as a struct?
if params.Result(1) == 's'
[rind,cind] = ndgrid(1:size(d,1),1:size(d,2));
ds.rowindex = rind(:);
ds.columnindex = cind(:);
ds.distance = d(:);
d = ds;
end
case {'minimum' 'maximum'}
% There is no reason to break this into pieces if the result
% sill be filled in the end with +/- inf. Only break it up
% if the final result is a struct.
if ((ntotal*8)<=params.ChunkSize) || (params.Result(1) == 'a')
% its small enough to do it all at once
% One set or two?
if dataflag == 1
d = distcomp(data1,data1,params);
else
d = distcomp(data1,data2,params);
end
% Must we return it as a struct?
if params.Result(1) == 'a'
% its an array, fill the unwanted distances with +/- inf
if params.Subset(2) == 'i'
% minimum
d(d<=params.Limit) = -inf;
else
% maximum
d(d>=params.Limit) = +inf;
end
else
% a struct will be returned
if params.Subset(2) == 'i'
% minimum
[dist.rowindex,dist.columnindex] = find(d>=params.Limit);
else
% maximum
[dist.rowindex,dist.columnindex] = find(d<=params.Limit);
end
dist.distance = d(dist.rowindex + n1*(dist.columnindex-1));
d = dist;
end
else
% we need to break this into chunks. This branch
% will always return a struct.
% this is the number of rows of data1 that we will
% process at a time.
bs = floor(params.ChunkSize/(8*n2));
bs = min(n1,max(1,bs));
% Accumulate the result into a cell array. Do it this
% way because we don't know in advance how many elements
% that we will find satisfying the minimum or maximum
% limit specified.
accum = cell(0,1);
% now loop over the chunks
batch = 1:bs;
while ~isempty(batch)
% One set or two?
if dataflag == 1
dist = distcomp(data1(batch,:),data1,params);
else
dist = distcomp(data1(batch,:),data2,params);
end
% big or small as requested
if ('i'==params.Subset(2))
% minimum value specified
[I,J,V] = find(dist>=params.Limit);
else
% maximum limit
[I,J] = find(dist<=params.Limit);
I = I(:);
J = J(:);
V = dist(I + (J-1)*length(batch));
I = I + (batch(1)-1);
end
% and stuff them into the cell structure
if ~isempty(V)
accum{end+1,1} = [I,J,V(:)]; %#ok
end
% increment the batch
batch = batch + bs;
if batch(end)>n1
batch(batch>n1) = [];
end
end
% convert the cells into one flat array
accum = cell2mat(accum);
if isempty(accum)
d.rowindex = [];
d.columnindex = [];
d.distance = [];
else
% we found something
% sort on the second column, to put them in a reasonable order
accum = sortrows(accum,[2 1]);
d.rowindex = accum(:,1);
d.columnindex = accum(:,2);
d.distance = accum(:,3);
end
end
case {'smallestfew' 'largestfew'}
% find the k smallest/largest distances. k is
% given by params.Limit
% if only 1 set, params.Limit must be less than n*(n-1)/2
if dataflag == 1
params.Limit = min(params.Limit,n1*(n1-1)/2);
end
% is this a large problem?
if ((ntotal*8) <= params.ChunkSize)
% small potatoes
% One set or two?
if dataflag == 1
dist = distcomp(data1,data1,params);
% if only one data set, set the diagonal and
% below that to +/- inf so we don't find it.
temp = find(tril(ones(n1,n1),0));
if params.Subset(1) == 's'
dist(temp) = inf;
else
dist(temp) = -inf;
end
else
dist = distcomp(data1,data2,params);
end
% sort the distances to find those we need
if ('s'==params.Subset(1))
% smallestfew
[val,tags] = sort(dist(:),'ascend');
else
% largestfew
[val,tags] = sort(dist(:),'descend');
end
val = val(1:params.Limit);
tags = tags(1:params.Limit);
% recover the row and column index from the linear
% index returned by sort in tags.
[d.rowindex,d.columnindex] = ind2sub([n1,size(dist,2)],tags);
% create the matrix as a sparse one or a struct?
if params.Result(1)=='a'
% its an array, so make the array sparse.
d = sparse(d.rowindex,d.columnindex,val,n1,size(dist,2));
else
% a structure
d.distance = val;
end
else
% chunks
% this is the number of rows of data1 that we will
% process at a time.
bs = floor(params.ChunkSize/(8*n2));
bs = min(n1,max(1,bs));
% We need to find the extreme cases. There are two possible
% algorithms, depending on how many total elements we will
% search for.
% 1. Only a very few total elements.
% 2. A relatively large number of total elements, forming
% a significant fraction of the total set.
%
% Case #1 would suggest to retain params.Limit numberr of
% elements from each batch, then at the end, sort them all
% to find the best few. Case #2 will result in too many
% elements to retain, so we must distinguish between these
% alternatives.
if (8*params.Limit*n1/bs) <= params.ChunkSize
% params.Limit is small enough to fall into case #1.
% Accumulate the result into a cell array. Do it this
% way because we don't know in advance how many elements
% that we will find satisfying the minimum or maximum
% limit specified.
accum = cell(0,1);
% now loop over the chunks
batch = (1:bs)';
while ~isempty(batch)
% One set or two?
if dataflag == 1
dist = distcomp(data1(batch,:),data1,params);
k = find(tril(ones(length(batch),n2),batch(1)-1));
if ('s'==params.Subset(1))
dist(k) = inf;
else
dist(k) = -inf;
end
else
dist = distcomp(data1(batch,:),data2,params);
end
% big or small as requested, keeping only the best
% params.Limit number of elements
if ('s'==params.Subset(1))
% minimum value specified
[tags,tags] = sort(dist(:),1,'ascend');
tags = tags(1:min(bs,params.Limit));
[I,J] = ndgrid(batch,1:n2);
ijv = [I(tags),J(tags),dist(tags)];
else
% maximum limit
[tags,tags] = sort(dist(:),1,'descend');
tags = tags(1:min(bs,params.Limit));
[I,J] = ndgrid(batch,1:n2);
ijv = [I(tags),J(tags),dist(tags)];
end
% catch for the bug when batch ends up as a scalar
% in that case, matlab indexing of a vector causes a problem.
if numel(batch) == 1
ijv = reshape(ijv,[],3);
end
% and stuff them into the cell structure
accum{end+1,1} = ijv; %#ok
% increment the batch
batch = batch + bs;
if batch(end)>n1
batch(batch>n1) = [];
end
end
% convert the cells into one flat array
accum = cell2mat(accum);
% keep only the params.Limit best of those singled out
accum = sortrows(accum,3);
if ('s'==params.Subset(1))
% minimum value specified
accum = accum(1:params.Limit,:);
else
% minimum value specified
accum = accum(end + 1 - (1:params.Limit),:);
end
d.rowindex = accum(:,1);
d.columnindex = accum(:,2);
d.distance = accum(:,3);
% create the matrix as a sparse one or a struct?
if params.Result(1)=='a'
% its an array, so make the array sparse.
d = sparse(d.rowindex,d.columnindex,d.distance,n1,size(dist,2));
end
else
% params.Limit forces us into the domain of case #2.
% Here we cannot retain params.Limit elements from each chunk.
% so we will grab each chunk and append it to the best elements
% found so far, then filter out the best after each chunk is
% done. This may be slower than we want, but its the only way.
ijv = zeros(0,3);
% loop over the chunks
batch = (1:bs)';
while ~isempty(batch)
% One set or two?
if dataflag == 1
dist = distcomp(data1(batch,:),data1,params);
k = find(tril(ones(length(batch),n2),batch(1)-1));
if ('s'==params.Subset(1))
dist(k) = inf;
else
dist(k) = -inf;
end
else
dist = distcomp(data1(batch,:),data2,params);
end
[I,J] = ndgrid(batch,1:n2);
ijv = [ijv;[I(:),J(:),dist(:)]]; %#ok
% big or small as requested, keeping only the best
% params.Limit number of elements
if size(ijv,1) > params.Limit
if ('s'==params.Subset(1))
% minimum value specified
[tags,tags] = sort(ijv(:,3),1,'ascend');
else
[tags,tags] = sort(ijv(:,3),1,'ascend');
end
ijv = ijv(tags(1:params.Limit),:);
end
% increment the batch
batch = batch + bs;
if batch(end)>n1
batch(batch>n1) = [];
end
end
% They are fully trimmed down. stuff a structure
d.rowindex = ijv(:,1);
d.columnindex = ijv(:,2);
d.distance = ijv(:,3);
% create the matrix as a sparse one or a struct?
if params.Result(1)=='a'
% its an array, so make the array sparse.
d = sparse(d.rowindex,d.columnindex,d.distance,n1,size(dist,2));
end
end
end
case {'nearestneighbor' 'farthestneighbor'}
% find the closest/farthest neighbor for every point
% is this a large problem? Or a 1-d problem?
if dim == 1
% its a 1-d nearest/farthest neighbor problem. we can
% special case these easily enough, and all the distance
% metric options are the same in 1-d.
% first split it into the farthest versus nearest cases.
if params.Subset(1) == 'f'
% farthest away
% One set or two?
if dataflag == 1
[d2min,minind] = min(data1);
[d2max,maxind] = max(data1);
else
[d2min,minind] = min(data2);
[d2max,maxind] = max(data2);
end
d.rowindex = (1:n1)';
d.columnindex = repmat(maxind,n1,1);
d.distance = repmat(d2max,n1,1);
% which endpoint was further away?
k = abs((data1 - d2min)) >= abs((data1 - d2max));
if any(k)
d.columnindex(k) = minind;
d.distance(k) = d2min;
end
else
% nearest. this is mainly a sort and some fussing around.
d.rowindex = (1:n1)';
d.columnindex = ones(n1,1);
d.distance = zeros(n1,1);
% One set or two?
if dataflag == 1
% if only one data point, then we are done
if n1 == 2
% if exactly two data points, its trivial
d.columnindex = [2 1];
d.distance = repmat(abs(diff(data1)),2,1);
elseif n1>2
% at least three points. do a sort.
[sorted_data,tags] = sort(data1);
% handle the first and last points separately
d.columnindex(tags(1)) = tags(2);
d.distance(tags(1)) = sorted_data(2) - sorted_data(1);
d.columnindex(tags(end)) = tags(end-1);
d.distance(tags(end)) = sorted_data(end) - sorted_data(end-1);
ind = (2:(n1-1))';
d1 = sorted_data(ind) - sorted_data(ind-1);
d2 = sorted_data(ind+1) - sorted_data(ind);
k = d1 < d2;
d.distance(tags(ind(k))) = d1(k);
d.columnindex(tags(ind(k))) = tags(ind(k)-1);
k = ~k;
d.distance(tags(ind(k))) = d2(k);
d.columnindex(tags(ind(k))) = tags(ind(k)+1);
end % if n1 == 2
else
% Two sets of data. still really a sort and some fuss.
if n2 == 1
% there is only one point in data2
d.distance = abs(data1 - data2);
% d.columnindex is already set correctly
else
% At least two points in data2
% We need to sort all the data points together, but also
% know which points from each set went where. ind12 and
% bool12 will help keep track.
ind12 = [1:n1,1:n2]';
bool12 = [zeros(n1,1);ones(n2,1)];
[sorted_data,tags] = sort([data1;data2]);
ind12 = ind12(tags);
bool12 = bool12(tags);
% where did each point end up after the sort?
loc1 = find(~bool12);
loc2 = find(bool12);
% for each point in data1, what is the (sorted) data2
% element which appears most nearly to the left of it?
cs = cumsum(bool12);
leftelement = cs(loc1);
% any points which fell below the minimum element in data2
% will have a zero for the index of the element on their
% left. fix this.
leftelement = max(1,leftelement);
% likewise, any point greater than the max in data2 will
% have an n2 in left element. this too will be a problem
% later, so fix it.
leftelement = min(n2-1,leftelement);
% distance to the left hand element
dleft = abs(sorted_data(loc1) - sorted_data(loc2(leftelement)));
dright = abs(sorted_data(loc1) - sorted_data(loc2(leftelement+1)));
% find the points which are closer to the left element in data2
k = (dleft < dright);
d.distance(ind12(loc1(k))) = dleft(k);
d.columnindex(ind12(loc1(k))) = ind12(loc2(leftelement(k)));
k = ~k;
d.distance(ind12(loc1(k))) = dright(k);
d.columnindex(ind12(loc1(k))) = ind12(loc2(leftelement(k)+1));
end % if n2 == 1
end % if dataflag == 1
end % if params.Subset(1) == 'f'
% create the matrix as a sparse one or a struct?
if params.Result(1)=='a'
% its an array, so make the array sparse.
d = sparse(d.rowindex,d.columnindex,d.distance,n1,n2);
end
elseif (ntotal>1000) && (((params.Metric == 0) && (params.Subset(1) == 'n')) || ...
((params.Metric == inf) && (params.Subset(1) == 'f')))
% nearest/farthest neighbour in n>1 dimensions, but for an
% infinity norm metric. Reduce this to a sequence of
% 1-d problems, each of which will be faster in general.
% do this only if the problem is moderately large, since
% we must overcome the extra overhead of the recursive
% calls to ipdm.
% do the first dimension
if dataflag == 1
d = ipdm(data1(:,1),data1(:,1),'subset',params.Subset,'metric',params.Metric,'result','struct');
else
d = ipdm(data1(:,1),data2(:,1),'subset',params.Subset,'metric',params.Metric,'result','struct');
end
% its slightly different for nearest versus farthest here
% now, loop over dimensions
for i = 2:dim
if dataflag == 1
di = ipdm(data1(:,i),data1(:,i),'subset',params.Subset,'metric',params.Metric,'result','struct');
else
di = ipdm(data1(:,i),data2(:,i),'subset',params.Subset,'metric',params.Metric,'result','struct');
end
% did any of the distances change?
if params.Metric == 0
% the 0 norm, with nearest neighbour, so take the
% smallest distance in any dimension.
k = d.distance > di.distance;
else
% inf norm. so take the largest distance across dimensions
k = d.distance < di.distance;
end
if any(k)
d.distance(k) = di.distance(k);
d.columnindex(k) = di.columnindex(k);
end
end
% create the matrix as a sparse one or a struct?
if params.Result(1)=='a'
% its an array, so make the array sparse.
d = sparse(d.rowindex,d.columnindex,d.distance,n1,n2);
end
elseif ((ntotal*8) <= params.ChunkSize)
% None of the other special cases apply, so do it using brute
% force for the small potatoes problem.
% One set or two?
if dataflag == 1
dist = distcomp(data1,data1,params);
else
dist = distcomp(data1,data2,params);
end
% if only one data set and if a nearest neighbor
% problem, set the diagonal to +inf so we don't find it.
if (dataflag==1) && (n1>1) && ('n'==params.Subset(1))
diagind = (1:n1) + (0:n1:(n1^2-1));
dist(diagind) = +inf;
end
if ('n'==params.Subset(1))
% nearest
[val,j] = min(dist,[],2);
else
% farthest
[val,j] = max(dist,[],2);
end
% create the matrix as a sparse one or a struct?
if params.Result(1)=='a'
% its an array, so make the array sparse.
d = sparse((1:n1)',j,val,n1,size(dist,2));
else
% a structure
d.rowindex = (1:n1)';
d.columnindex = j;
d.distance = val;
end
else
% break it into chunks
bs = floor(params.ChunkSize/(8*n2));
bs = min(n1,max(1,bs));
% pre-allocate the result
d.rowindex = (1:n1)';
d.columnindex = zeros(n1,1);
d.distance = zeros(n1,1);
% now loop over the chunks
batch = 1:bs;
while ~isempty(batch)
% One set or two?
if dataflag == 1
dist = distcomp(data1(batch,:),data1,params);
else
dist = distcomp(data1(batch,:),data2,params);
end
% if only one data set and if a nearest neighbor
% problem, set the diagonal to +inf so we don't find it.
if (dataflag==1) && (n1>1) && ('n'==params.Subset(1))
diagind = 1:length(batch);
diagind = diagind + (diagind-2+batch(1))*length(batch);
dist(diagind) = +inf;
end
% big or small as requested
if ('n'==params.Subset(1))
% nearest
[val,j] = min(dist,[],2);
else
% farthest
[val,j] = max(dist,[],2);
end
% and stuff them into the result structure
d.columnindex(batch) = j;
d.distance(batch) = val;
% increment the batch
batch = batch + bs;
if batch(end)>n1
batch(batch>n1) = [];
end
end
% did we need to return a struct or an array?
if params.Result(1) == 'a'
% an array. make it a sparse one
d = sparse(d.rowindex,d.columnindex,d.distance,n1,n2);
end
end % if dim == 1
end % switch params.Subset
% End of mainline
% ======================================================
% begin subfunctions
% ======================================================
function d = distcomp(set1,set2,params)
% Subfunction to compute all distances between two sets of points
dim = size(set1,2);
% can we take advantage of bsxfun?
% Note: in theory, there is no need to loop over the dimensions. We
% could Just let bsxfun do ALL the work, then wrap a sum around the
% outside. In practice, this tends to create large intermediate
% arrays, especially in higher numbers of dimensions. Its also when
% we might gain here by use of a vectorized code. This will only be
% a serious gain when the number of points is relatively small and
% the dimension is large.
if params.usebsxfun
% its a recent enough version of matlab that we can
% use bsxfun at all.
n1 = size(set1,1);
n2 = size(set2,1);
if (dim>1) && ((n1*n2*dim)<=params.ChunkSize)
% its a small enough problem that we might gain by full
% use of bsxfun
switch params.Metric
case 2
d = sum(bsxfun(@minus,reshape(set1,[n1,1,dim]),reshape(set2,[1,n2,dim])).^2,3);
case 1
d = sum(abs(bsxfun(@minus,reshape(set1,[n1,1,dim]),reshape(set2,[1,n2,dim]))),3);
case inf
d = max(abs(bsxfun(@minus,reshape(set1,[n1,1,dim]),reshape(set2,[1,n2,dim]))),[],3);
case 0
d = min(abs(bsxfun(@minus,reshape(set1,[n1,1,dim]),reshape(set2,[1,n2,dim]))),[],3);
end
else
% too big, so that the ChunkSize will have been exceeded, or just 1-d
if params.Metric == 2
d = bsxfun(@minus,set1(:,1),set2(:,1)').^2;
else
d = abs(bsxfun(@minus,set1(:,1),set2(:,1)'));
end
for i=2:dim
switch params.Metric
case 2
d = d + bsxfun(@minus,set1(:,i),set2(:,i)').^2;
case 1
d = d + abs(bsxfun(@minus,set1(:,i),set2(:,i)'));
case inf
d = max(d,abs(bsxfun(@minus,set1(:,i),set2(:,i)')));
case 0
d = min(d,abs(bsxfun(@minus,set1(:,i),set2(:,i)')));
end
end
end
else
% Cannot use bsxfun. Sigh. Do things the hard (and slower) way.
n1 = size(set1,1);
n2 = size(set2,1);
if params.Metric == 2
% Note: While some people might use a different Euclidean
% norm computation based on expanding the square of the
% difference of two numbers, that computation is inherantly
% inaccurate when implemented in floating point arithmetic.
% While it might be faster, I won't use it here. Sorry.
d = (repmat(set1(:,1),1,n2) - repmat(set2(:,1)',n1,1)).^2;
else
d = abs(repmat(set1(:,1),1,n2) - repmat(set2(:,1)',n1,1));
end
for i=2:dim
switch params.Metric
case 2
d = d + (repmat(set1(:,i),1,n2) - repmat(set2(:,i)',n1,1)).^2;
case 1
d = d + abs(repmat(set1(:,i),1,n2) - repmat(set2(:,i)',n1,1));
case inf
d = max(d,abs(repmat(set1(:,i),1,n2) - repmat(set2(:,i)',n1,1)));
case 0
d = min(d,abs(repmat(set1(:,i),1,n2) - repmat(set2(:,i)',n1,1)));
end
end
end
% if 2 norm, then we must sqrt at the end
if params.Metric==2
d = sqrt(d);
end
% ==============================================================
% end main ipdm
% begin included function - parse_pv_pairs
% ==============================================================
function params=parse_pv_pairs(params,pv_pairs)
% parse_pv_pairs: parses sets of property value pairs, allows defaults
% usage: params=parse_pv_pairs(default_params,pv_pairs)
%
% arguments: (input)
% default_params - structure, with one field for every potential
% property/value pair. Each field will contain the default
% value for that property. If no default is supplied for a
% given property, then that field must be empty.
%
% pv_array - cell array of property/value pairs.
% Case is ignored when comparing properties to the list
% of field names. Also, any unambiguous shortening of a
% field/property name is allowed.
%
% arguments: (output)
% params - parameter struct that reflects any updated property/value
% pairs in the pv_array.
%
% Example usage:
% First, set default values for the parameters. Assume we
% have four parameters that we wish to use optionally in
% the function examplefun.
%
% - 'viscosity', which will have a default value of 1
% - 'volume', which will default to 1
% - 'pie' - which will have default value 3.141592653589793
% - 'description' - a text field, left empty by default
%
% The first argument to examplefun is one which will always be
% supplied.
%
% function examplefun(dummyarg1,varargin)
% params.Viscosity = 1;
% params.Volume = 1;
% params.Pie = 3.141592653589793
%
% params.Description = '';
% params=parse_pv_pairs(params,varargin);
% params
%
% Use examplefun, overriding the defaults for 'pie', 'viscosity'
% and 'description'. The 'volume' parameter is left at its default.
%
% examplefun(rand(10),'vis',10,'pie',3,'Description','Hello world')
%
% params =
% Viscosity: 10
% Volume: 1
% Pie: 3
% Description: 'Hello world'
%
% Note that capitalization was ignored, and the property 'viscosity'
% was truncated as supplied. Also note that the order the pairs were
% supplied was arbitrary.
npv = length(pv_pairs);
n = npv/2;
if n~=floor(n)
error 'Property/value pairs must come in PAIRS.'
end
if n<=0
% just return the defaults
return
end
if ~isstruct(params)
error 'No structure for defaults was supplied'
end
% there was at least one pv pair. process any supplied
propnames = fieldnames(params);
lpropnames = lower(propnames);
for i=1:n
p_i = lower(pv_pairs{2*i-1});
v_i = pv_pairs{2*i};
ind = strmatch(p_i,lpropnames,'exact');
if isempty(ind)
ind = find(strncmp(p_i,lpropnames,length(p_i)));
if isempty(ind)
error(['No matching property found for: ',pv_pairs{2*i-1}])
elseif length(ind)>1
error(['Ambiguous property name: ',pv_pairs{2*i-1}])
end
end
p_i = propnames{ind};
% override the corresponding default in params.
% Use setfield for comptability issues with older releases.
params = setfield(params,p_i,v_i); %#ok
end
|
github
|
Hadisalman/stoec-master
|
domain2meshgrid.m
|
.m
|
stoec-master/code/Include/vectorized_meshgrid/domain2meshgrid.m
| 2,502 |
utf_8
|
8adb8734c239cfe0c94f31fb942ea979
|
function [X, Y, Z] = domain2meshgrid(domain, resolution)
%DOMAIN2MESHGRID(domain, resolution) generate meshgrid on parallelepiped
% [X, Y] = DOMAIN2MESHGRID(domain, resolution) creates the matrices
% X, Y definining a meshgrid covering the 2D rectangular domain
% domain = [xmin, xmax, ymin, ymax] with resolution = [nx, ny] points
% per each coordinate dimension.
%
% [X, Y, Z] = DOMAIN2MESHGRID(domain, resolution) results into a
% meshgrid over a 3D parallelepiped domain.
%
% input (2D Case)
% domain = extremal values of parallelepiped
% = [xmin, xmax, ymin, ymax]
% resolution = # points /dimension
% = [nx, ny]
%
% output (2D case)
% X = [ny x nx] matrix of grid point abscissas
% Y = [ny x nx] matrix of grid point ordinates
%
% input (3D Case)
% domain = [xmin, xmax, ymin, ymax, zmin, zmax]
% resolution = [nx, ny, nz]
%
% output (3D case)
% X = [ny x nx x nz] matrix of grid point abscissas
% Y = [ny x nx x nz] matrix of grid point ordinates
% Z = [ny x nz x nz] matrix of grid point coordinates
%
% See also DOMAIN2VEC, VEC2MESHGRID, MESHGRID2VEC, MESHGRID.
%
% File: domain2meshgrid.m
% Author: Ioannis Filippidis, [email protected]
% Date: 2012.01.14 -
% Language: MATLAB R2011b
% Purpose: generate meshgrid on domain given a resolution
% Copyright: Ioannis Filippidis, 2012-
%% check input
if size(domain, 1) ~= 1
error('size(domain, 1) ~= 1')
end
ndim = size(domain, 2) /2;
if ~isint(ndim)
error('Non-integer domain dimension.')
end
if ~isequal(size(resolution), [1, ndim] )
error('size(resolution) ~= [1, ndim]')
end
if ndim == 2
[X, Y] = linmeshgrid2d(domain, resolution);
elseif ndim == 3
[X, Y, Z] = linmeshgrid3d(domain, resolution);
end
function [X, Y] = linmeshgrid2d(domain, resolution)
xmin = domain(1, 1);
xmax = domain(1, 2);
ymin = domain(1, 3);
ymax = domain(1, 4);
nx = resolution(1, 1);
ny = resolution(1, 2);
x = linspace(xmin, xmax, nx);
y = linspace(ymin, ymax, ny);
[X, Y] = meshgrid(x, y);
function [X, Y, Z] = linmeshgrid3d(domain, resolution)
xmin = domain(1, 1);
xmax = domain(1, 2);
ymin = domain(1, 3);
ymax = domain(1, 4);
zmin = domain(1, 5);
zmax = domain(1, 6);
nx = resolution(1, 1);
ny = resolution(1, 2);
nz = resolution(1, 3);
x = linspace(xmin, xmax, nx);
y = linspace(ymin, ymax, ny);
z = linspace(zmin, zmax, nz);
[X, Y, Z] = meshgrid(x, y, z);
|
github
|
Hadisalman/stoec-master
|
example_vectorized_surf_plot.m
|
.m
|
stoec-master/code/Include/vectorized_meshgrid/example_vectorized_surf_plot.m
| 696 |
utf_8
|
1d885f126747d5f8ca76f6df48533d2a
|
function [] = example_vectorized_surf_plot
% File: example_vectorized_surf_plot.m
% Author: Ioannis Filippidis, [email protected]
% Date: 2012.01.14 - 2012.02.11
% Language: MATLAB R2011b
% Purpose: test meshgrid interface to functions taking as argument a
% matrix of column vectors
% Copyright: Ioannis Filippidis, 2012-
dom = [-2, 2, -2, 2];
res = [31, 30];
[X, Y] = domain2meshgrid(dom, res);
q = meshgrid2vec(X, Y);
f = testf(q);
f = vec2meshgrid(f, X);
surf(X, Y, f)
function [f] = testf(q)
q0 = [1, 2].';
q_q0 = bsxfun(@minus, q, q0);
f = sqrt(sum(q_q0.^2, 1) ); % instead use vnorm (Mathworks File Exchange)
f = cos(f) .*sin(f);
|
github
|
Hadisalman/stoec-master
|
meshgrid2vec.m
|
.m
|
stoec-master/code/Include/vectorized_meshgrid/meshgrid2vec.m
| 1,541 |
utf_8
|
9b720737c64121c57177aa22a8b26e88
|
function [q] = meshgrid2vec(xgv, ygv, zgv)
%MESHGRID2VEC meshgrid matrices to matrix of column vectors
%
% [q] = MESHGRIDVEC(xgv, ygv) takes the matrix of abscissas XGV and
% ordinates YGV of meshgrid points as returned by MESHGRID and arranges
% them as vectors comprising the columns of matrix Q.
%
% [q] = MESHGRIDVEC(xgv, ygv, zgv) does the same for the 3D case.
%
% input
% xgv = matrix of meshgrid points' abscissas
% = [#(points / y axis) x #(points / x axis) ] (2D case) or
% = [#(points / y axis) x #(points / x axis) x #(points / z axis) ]
% (3D case)
% ygv = matrix of meshgrid points' ordinates
% = similar dimensions with xgv
% zgv = matrix of meshgrid points' coordinates
% = similar dimensions with xgv
%
% output
% q = [#dim x #(meshgrid points) ]
%
% See also DOMAIN2VEC, VEC2MESHGRID, DOMAIN2MESHGRID, MESHGRID.
%
% File: meshgrid2vec.m
% Author: Ioannis Filippidis, [email protected]
% Date: 2012.01.14 -
% Language: MATLAB R2011b
% Purpose: convert meshgrid matrices to matrix of column vectors
% Copyright: Ioannis Filippidis, 2012-
% check input
if nargin == 2
ndim = 2;
elseif nargin == 3
ndim = 3;
else
error('works only for ndim = 2 or ndim = 3/')
end
if ndim == 2
q = meshgridvec2d(xgv, ygv);
elseif ndim == 3
q = meshgridvec3d(xgv, ygv, zgv);
end
function [q] = meshgridvec2d(x, y)
q = [x(:), y(:) ].';
function [q] = meshgridvec3d(x, y, z)
q = [x(:), y(:), z(:) ].';
|
github
|
Hadisalman/stoec-master
|
stlread.m
|
.m
|
stoec-master/code/Include/CMU_include/stlread.m
| 3,981 |
utf_8
|
f1c11b51cd13528daae6802cfcd3b539
|
function varargout = stlread(file)
% STLREAD imports geometry from an STL file into MATLAB.
% FV = STLREAD(FILENAME) imports triangular faces from the ASCII or binary
% STL file idicated by FILENAME, and returns the patch struct FV, with fields
% 'faces' and 'vertices'.
%
% [F,V] = STLREAD(FILENAME) returns the faces F and vertices V separately.
%
% [F,V,N] = STLREAD(FILENAME) also returns the face normal vectors.
%
% The faces and vertices are arranged in the format used by the PATCH plot
% object.
% Copyright 2011 The MathWorks, Inc.
if ~exist(file,'file')
error(['File ''%s'' not found. If the file is not on MATLAB''s path' ...
', be sure to specify the full path to the file.'], file);
end
fid = fopen(file,'r');
if ~isempty(ferror(fid))
error(lasterror); %#ok
end
M = fread(fid,inf,'uint8=>uint8');
fclose(fid);
[f,v,n] = stlbinary(M);
%if( isbinary(M) ) % This may not be a reliable test
% [f,v,n] = stlbinary(M);
%else
% [f,v,n] = stlascii(M);
%end
varargout = cell(1,nargout);
switch nargout
case 2
varargout{1} = f;
varargout{2} = v;
case 3
varargout{1} = f;
varargout{2} = v;
varargout{3} = n;
otherwise
varargout{1} = struct('faces',f,'vertices',v);
end
end
function [F,V,N] = stlbinary(M)
F = [];
V = [];
N = [];
if length(M) < 84
error('MATLAB:stlread:incorrectFormat', ...
'Incomplete header information in binary STL file.');
end
% Bytes 81-84 are an unsigned 32-bit integer specifying the number of faces
% that follow.
numFaces = typecast(M(81:84),'uint32');
%numFaces = double(numFaces);
if numFaces == 0
warning('MATLAB:stlread:nodata','No data in STL file.');
return
end
T = M(85:end);
F = NaN(numFaces,3);
V = NaN(3*numFaces,3);
N = NaN(numFaces,3);
numRead = 0;
while numRead < numFaces
% Each facet is 50 bytes
% - Three single precision values specifying the face normal vector
% - Three single precision values specifying the first vertex (XYZ)
% - Three single precision values specifying the second vertex (XYZ)
% - Three single precision values specifying the third vertex (XYZ)
% - Two unused bytes
i1 = 50 * numRead + 1;
i2 = i1 + 50 - 1;
facet = T(i1:i2)';
n = typecast(facet(1:12),'single');
v1 = typecast(facet(13:24),'single');
v2 = typecast(facet(25:36),'single');
v3 = typecast(facet(37:48),'single');
n = double(n);
v = double([v1; v2; v3]);
% Figure out where to fit these new vertices, and the face, in the
% larger F and V collections.
fInd = numRead + 1;
vInd1 = 3 * (fInd - 1) + 1;
vInd2 = vInd1 + 3 - 1;
V(vInd1:vInd2,:) = v;
F(fInd,:) = vInd1:vInd2;
N(fInd,:) = n;
numRead = numRead + 1;
end
end
function [F,V,N] = stlascii(M)
warning('MATLAB:stlread:ascii','ASCII STL files currently not supported.');
F = [];
V = [];
N = [];
end
% TODO: Change the testing criteria! Some binary STL files still begin with
% 'solid'.
function tf = isbinary(A)
% ISBINARY uses the first line of an STL file to identify its format.
if isempty(A) || length(A) < 5
error('MATLAB:stlread:incorrectFormat', ...
'File does not appear to be an ASCII or binary STL file.');
end
if strcmpi('solid',char(A(1:5)'))
tf = false; % ASCII
else
tf = true; % Binary
end
end
|
github
|
Hadisalman/stoec-master
|
icp.m
|
.m
|
stoec-master/code/Include/CMU_include/icp.m
| 18,647 |
utf_8
|
eb909b597a19b75b55810daee50f1676
|
function [TR, TT, ER, t] = icp(q,p,varargin)
% Perform the Iterative Closest Point algorithm on three dimensional point
% clouds.
%
% [TR, TT] = icp(q,p) returns the rotation matrix TR and translation
% vector TT that minimizes the distances from (TR * p + TT) to q.
% p is a 3xm matrix and q is a 3xn matrix.
%
% [TR, TT] = icp(q,p,k) forces the algorithm to make k iterations
% exactly. The default is 10 iterations.
%
% [TR, TT, ER] = icp(q,p,k) also returns the RMS of errors for k
% iterations in a (k+1)x1 vector. ER(0) is the initial error.
%
% [TR, TT, ER, t] = icp(q,p,k) also returns the calculation times per
% iteration in a (k+1)x1 vector. t(0) is the time consumed for preprocessing.
%
% Additional settings may be provided in a parameter list:
%
% Boundary
% {[]} | 1x? vector
% If EdgeRejection is set, a vector can be provided that indexes into
% q and specifies which points of q are on the boundary.
%
% EdgeRejection
% {false} | true
% If EdgeRejection is true, point matches to edge vertices of q are
% ignored. Requires that boundary points of q are specified using
% Boundary or that a triangulation matrix for q is provided.
%
% Extrapolation
% {false} | true
% If Extrapolation is true, the iteration direction will be evaluated
% and extrapolated if possible using the method outlined by
% Besl and McKay 1992.
%
% Matching
% {bruteForce} | Delaunay | GLtree | kDtree
% Specifies how point matching should be done.
% bruteForce is usually the slowest and kDtree is the fastest.
% Note that the kDtree option is depends on the Statistics Toolbox
% v. 7.3 or higher.
% Note that the GLtree option is depending on the GLtree3DFEX
% implementation at Matlab Central File ID: #24607.
%
% Minimize
% {point} | plane | lmaPoint
% Defines whether point to point or point to plane minimization
% should be performed. point is based on the SVD approach and is
% usually the fastest. plane will often yield higher accuracy. It
% uses linearized angles and requires surface normals for all points
% in q. Calculation of surface normals requires substantial pre
% proccessing.
% The option lmaPoint does point to point minimization using the non
% linear least squares Levenberg Marquardt algorithm. Results are
% generally the same as in points, but computation time may differ.
%
% Normals
% {[]} | n x 3 matrix
% A matrix of normals for the n points in q might be provided.
% Normals of q are used for point to plane minimization.
% Else normals will be found through a PCA of the 4 nearest
% neighbors.
%
% ReturnAll
% {false} | true
% Determines whether R and T should be returned for all iterations
% or only for the last one. If this option is set to true, R will be
% a 3x3x(k+1) matrix and T will be a 3x1x(k+1) matrix.
%
% Triangulation
% {[]} | ? x 3 matrix
% A triangulation matrix for the points in q can be provided,
% enabling EdgeRejection. The elements should index into q, defining
% point triples that act together as triangles.
%
% Verbose
% {false} | true
% Enables extrapolation output in the Command Window.
%
% Weight
% {@(match)ones(1,m)} | Function handle
% For point or plane minimization, a function handle to a weighting
% function can be provided. The weighting function will be called
% with one argument, a 1xm vector that specifies point pairs by
% indexing into q. The weighting function should return a 1xm vector
% of weights for every point pair.
%
% WorstRejection
% {0} | scalar in ]0; 1[
% Reject a given percentage of the worst point pairs, based on their
% Euclidean distance.
%
% Martin Kjer and Jakob Wilm, Technical University of Denmark, 2011
% Use the inputParser class to validate input arguments.
inp = inputParser;
inp.addRequired('q', @(x)isreal(x) && size(x,1) == 3);
inp.addRequired('p', @(x)isreal(x) && size(x,1) == 3);
inp.addOptional('iter', 10, @(x)x > 0 && x < 10^5);
inp.addParamValue('Boundary', [], @(x)size(x,1) == 1);
inp.addParamValue('EdgeRejection', false, @(x)islogical(x));
inp.addParamValue('Extrapolation', false, @(x)islogical(x));
validMatching = {'bruteForce','Delaunay','kDtree','GLtree'};
inp.addParamValue('Matching', 'bruteForce', @(x)any(strcmpi(x,validMatching)));
validMinimize = {'point','plane','lmapoint'};
inp.addParamValue('Minimize', 'point', @(x)any(strcmpi(x,validMinimize)));
inp.addParamValue('Normals', [], @(x)isreal(x) && size(x,1) == 3);
inp.addParamValue('NormalsData', [], @(x)isreal(x) && size(x,1) == 3);
inp.addParamValue('ReturnAll', false, @(x)islogical(x));
inp.addParamValue('Triangulation', [], @(x)isreal(x) && size(x,2) == 3);
inp.addParamValue('Verbose', false, @(x)islogical(x));
inp.addParamValue('Weight', @(x)ones(1,length(x)), @(x)isa(x,'function_handle'));
inp.addParamValue('WorstRejection', 0, @(x)isscalar(x) && x > 0 && x < 1);
inp.parse(q,p,varargin{:});
arg = inp.Results;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Actual implementation
% Allocate vector for RMS of errors in every iteration.
t = zeros(arg.iter+1,1);
% Start timer
tic;
Np = size(p,2);
% Transformed data point cloud
pt = p;
% Allocate vector for RMS of errors in every iteration.
ER = zeros(arg.iter+1,1);
% Initialize temporary transform vector and matrix.
T = zeros(3,1);
R = eye(3,3);
% Initialize total transform vector(s) and rotation matric(es).
TT = zeros(3,1, arg.iter+1);
TR = repmat(eye(3,3), [1,1, arg.iter+1]);
% If Minimize == 'plane', normals are needed
if (strcmp(arg.Minimize, 'plane') && isempty(arg.Normals))
arg.Normals = lsqnormest(q,4);
end
% If Matching == 'Delaunay', a triangulation is needed
if strcmp(arg.Matching, 'Delaunay')
DT = DelaunayTri(transpose(q));
end
% If Matching == 'kDtree', a kD tree should be built (req. Stat. TB >= 7.3)
if strcmp(arg.Matching, 'kDtree')
kdOBJ = KDTreeSearcher(transpose(q));
end
% If Matching == 'GLtree', a GL tree should be built (req. File ID: #24607)
if strcmp(arg.Matching, 'GLtree')
GLPNTR = BuildGLTree3DFEX(transpose(q));
end
% If edge vertices should be rejected, find edge vertices
if arg.EdgeRejection
if isempty(arg.Boundary)
bdr = find_bound(q, arg.Triangulation);
else
bdr = arg.Boundary;
end
end
if arg.Extrapolation
% Initialize total transform vector (quaternion ; translation vec.)
qq = [ones(1,arg.iter+1);zeros(6,arg.iter+1)];
% Allocate vector for direction change and change angle.
dq = zeros(7,arg.iter+1);
theta = zeros(1,arg.iter+1);
end
t(1) = toc;
% Go into main iteration loop
for k=1:arg.iter
% Do matching
switch arg.Matching
case 'bruteForce'
[match mindist] = match_bruteForce(q,pt);
case 'Delaunay'
[match mindist] = match_Delaunay(q,pt,DT);
case 'GLtree'
[match mindist] = match_GLtree(q,pt,GLPNTR);
case 'kDtree'
[match mindist] = match_kDtree(q,pt,kdOBJ);
end
% If matches to edge vertices should be rejected
if arg.EdgeRejection
p_idx = not(ismember(match, bdr));
q_idx = match(p_idx);
mindist = mindist(p_idx);
else
p_idx = true(1, Np);
q_idx = match;
end
% If worst matches should be rejected
if arg.WorstRejection
edge = round((1-arg.WorstRejection)*sum(p_idx));
pairs = find(p_idx);
[~, idx] = sort(mindist);
p_idx(pairs(idx(edge:end))) = false;
q_idx = match(p_idx);
mindist = mindist(p_idx);
end
if k == 1
ER(k) = sqrt(sum(mindist.^2)/length(mindist));
end
switch arg.Minimize
case 'point'
% Determine weight vector
weights = arg.Weight(match);
[R,T] = eq_point(q(:,q_idx),pt(:,p_idx), weights(p_idx));
case 'plane'
weights = arg.Weight(match);
[R,T] = eq_plane(q(:,q_idx),pt(:,p_idx),arg.Normals(:,q_idx),weights(p_idx));
case 'lmaPoint'
[R,T] = eq_lmaPoint(q(:,q_idx),pt(:,p_idx));
end
% Add to the total transformation
TR(:,:,k+1) = R*TR(:,:,k);
TT(:,:,k+1) = R*TT(:,:,k)+T;
% Apply last transformation
pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
% Root mean of objective function
ER(k+1) = rms_error(q(:,q_idx), pt(:,p_idx));
% If Extrapolation, we might be able to move quicker
if arg.Extrapolation
qq(:,k+1) = [rmat2quat(TR(:,:,k+1));TT(:,:,k+1)];
dq(:,k+1) = qq(:,k+1) - qq(:,k);
theta(k+1) = (180/pi)*acos(dot(dq(:,k),dq(:,k+1))/(norm(dq(:,k))*norm(dq(:,k+1))));
if arg.Verbose
disp(['Direction change ' num2str(theta(k+1)) ' degree in iteration ' num2str(k)]);
end
if k>2 && theta(k+1) < 10 && theta(k) < 10
d = [ER(k+1), ER(k), ER(k-1)];
v = [0, -norm(dq(:,k+1)), -norm(dq(:,k))-norm(dq(:,k+1))];
vmax = 25 * norm(dq(:,k+1));
dv = extrapolate(v,d,vmax);
if dv ~= 0
q_mark = qq(:,k+1) + dv * dq(:,k+1)/norm(dq(:,k+1));
q_mark(1:4) = q_mark(1:4)/norm(q_mark(1:4));
qq(:,k+1) = q_mark;
TR(:,:,k+1) = quat2rmat(qq(1:4,k+1));
TT(:,:,k+1) = qq(5:7,k+1);
% Reapply total transformation
pt = TR(:,:,k+1) * p + repmat(TT(:,:,k+1), 1, Np);
% Recalculate root mean of objective function
% Note this is costly and only for fun!
switch arg.Matching
case 'bruteForce'
[~, mindist] = match_bruteForce(q,pt);
case 'Delaunay'
[~, mindist] = match_Delaunay(q,pt,DT);
case 'GLtree'
[~, mindist] = match_GLtree(q,pt,GLPNTR);
case 'kDtree'
[~, mindist] = match_kDtree(q,pt,kdOBJ);
end
ER(k+1) = sqrt(sum(mindist.^2)/length(mindist));
end
end
end
t(k+1) = toc;
end
if not(arg.ReturnAll)
TR = TR(:,:,end);
TT = TT(:,:,end);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_bruteForce(q, p)
m = size(p,2);
n = size(q,2);
match = zeros(1,m);
mindist = zeros(1,m);
for ki=1:m
d=zeros(1,n);
for ti=1:3
d=d+(q(ti,:)-p(ti,ki)).^2;
end
[mindist(ki),match(ki)]=min(d);
end
mindist = sqrt(mindist);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_Delaunay(q, p, DT)
match = transpose(nearestNeighbor(DT, transpose(p)));
mindist = sqrt(sum((p-q(:,match)).^2,1));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_GLtree(q, p, GLPNTR)
[match mindist] = NNSearch3DFEX(transpose(q), transpose(p), GLPNTR);
match = transpose(match);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [match mindist] = match_kDtree(~, p, kdOBJ)
[match mindist] = knnsearch(kdOBJ,transpose(p));
match = transpose(match);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_point(q,p,weights)
m = size(p,2);
n = size(q,2);
% normalize weights
weights = weights ./ sum(weights);
% find data centroid and deviations from centroid
q_bar = q * transpose(weights);
q_mark = q - repmat(q_bar, 1, n);
% Apply weights
q_mark = q_mark .* repmat(weights, 3, 1);
% find data centroid and deviations from centroid
p_bar = p * transpose(weights);
p_mark = p - repmat(p_bar, 1, m);
% Apply weights
%p_mark = p_mark .* repmat(weights, 3, 1);
N = p_mark*transpose(q_mark); % taking points of q in matched order
[U,~,V] = svd(N); % singular value decomposition
R = V*transpose(U);
T = q_bar - R*p_bar;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_plane(q,p,n,weights)
n = n .* repmat(weights,3,1);
c = cross(p,n);
cn = vertcat(c,n);
C = cn*transpose(cn);
b = - [sum(sum((p-q).*repmat(cn(1,:),3,1).*n));
sum(sum((p-q).*repmat(cn(2,:),3,1).*n));
sum(sum((p-q).*repmat(cn(3,:),3,1).*n));
sum(sum((p-q).*repmat(cn(4,:),3,1).*n));
sum(sum((p-q).*repmat(cn(5,:),3,1).*n));
sum(sum((p-q).*repmat(cn(6,:),3,1).*n))];
X = C\b;
cx = cos(X(1)); cy = cos(X(2)); cz = cos(X(3));
sx = sin(X(1)); sy = sin(X(2)); sz = sin(X(3));
R = [cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz;
cy*sz cx*cz+sx*sy*sz cx*sy*sz-cz*sx;
-sy cy*sx cx*cy];
T = X(4:6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [R,T] = eq_lmaPoint(q,p)
Rx = @(a)[1 0 0;
0 cos(a) -sin(a);
0 sin(a) cos(a)];
Ry = @(b)[cos(b) 0 sin(b);
0 1 0;
-sin(b) 0 cos(b)];
Rz = @(g)[cos(g) -sin(g) 0;
sin(g) cos(g) 0;
0 0 1];
Rot = @(x)Rx(x(1))*Ry(x(2))*Rz(x(3));
myfun = @(x,xdata)Rot(x(1:3))*xdata+repmat(x(4:6),1,length(xdata));
options = optimset('Algorithm', 'levenberg-marquardt');
x = lsqcurvefit(myfun, zeros(6,1), p, q, [], [], options);
R = Rot(x(1:3));
T = x(4:6);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extrapolation in quaternion space. Details are found in:
%
% Besl, P., & McKay, N. (1992). A method for registration of 3-D shapes.
% IEEE Transactions on pattern analysis and machine intelligence, 239?256.
function [dv] = extrapolate(v,d,vmax)
p1 = polyfit(v,d,1); % linear fit
p2 = polyfit(v,d,2); % parabolic fit
v1 = -p1(2)/p1(1); % linear zero crossing
v2 = -p2(2)/(2*p2(1)); % polynomial top point
if issorted([0 v2 v1 vmax]) || issorted([0 v2 vmax v1])
disp('Parabolic update!');
dv = v2;
elseif issorted([0 v1 v2 vmax]) || issorted([0 v1 vmax v2])...
|| (v2 < 0 && issorted([0 v1 vmax]))
disp('Line based update!');
dv = v1;
elseif v1 > vmax && v2 > vmax
disp('Maximum update!');
dv = vmax;
else
disp('No extrapolation!');
dv = 0;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine the RMS error between two point equally sized point clouds with
% point correspondance.
% ER = rms_error(p1,p2) where p1 and p2 are 3xn matrices.
function ER = rms_error(p1,p2)
dsq = sum(power(p1 - p2, 2),1);
ER = sqrt(mean(dsq));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Converts (orthogonal) rotation matrices R to (unit) quaternion
% representations
%
% Input: A 3x3xn matrix of rotation matrices
% Output: A 4xn matrix of n corresponding quaternions
%
% http://en.wikipedia.org/wiki/Rotation_matrix#Quaternion
function quaternion = rmat2quat(R)
Qxx = R(1,1,:);
Qxy = R(1,2,:);
Qxz = R(1,3,:);
Qyx = R(2,1,:);
Qyy = R(2,2,:);
Qyz = R(2,3,:);
Qzx = R(3,1,:);
Qzy = R(3,2,:);
Qzz = R(3,3,:);
w = 0.5 * sqrt(1+Qxx+Qyy+Qzz);
x = 0.5 * sign(Qzy-Qyz) .* sqrt(1+Qxx-Qyy-Qzz);
y = 0.5 * sign(Qxz-Qzx) .* sqrt(1-Qxx+Qyy-Qzz);
z = 0.5 * sign(Qyx-Qxy) .* sqrt(1-Qxx-Qyy+Qzz);
quaternion = reshape([w;x;y;z],4,[]);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Converts (unit) quaternion representations to (orthogonal) rotation matrices R
%
% Input: A 4xn matrix of n quaternions
% Output: A 3x3xn matrix of corresponding rotation matrices
%
% http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#From_a_quaternion_to_an_orthogonal_matrix
function R = quat2rmat(quaternion)
q0(1,1,:) = quaternion(1,:);
qx(1,1,:) = quaternion(2,:);
qy(1,1,:) = quaternion(3,:);
qz(1,1,:) = quaternion(4,:);
R = [q0.^2+qx.^2-qy.^2-qz.^2 2*qx.*qy-2*q0.*qz 2*qx.*qz+2*q0.*qy;
2*qx.*qy+2*q0.*qz q0.^2-qx.^2+qy.^2-qz.^2 2*qy.*qz-2*q0.*qx;
2*qx.*qz-2*q0.*qy 2*qy.*qz+2*q0.*qx q0.^2-qx.^2-qy.^2+qz.^2];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Least squares normal estimation from point clouds using PCA
%
% H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
% Surface reconstruction from unorganized points.
% In Proceedings of ACM Siggraph, pages 71:78, 1992.
%
% p should be a matrix containing the horizontally concatenated column
% vectors with points. k is a scalar indicating how many neighbors the
% normal estimation is based upon.
%
% Note that for large point sets, the function performs significantly
% faster if Statistics Toolbox >= v. 7.3 is installed.
%
% Jakob Wilm 2010
function n = lsqnormest(p, k)
m = size(p,2);
n = zeros(3,m);
v = ver('stats');
if str2double(v.Version) >= 7.3
neighbors = transpose(knnsearch(transpose(p), transpose(p), 'k', k+1));
else
neighbors = kNearestNeighbors(p, p, k+1);
end
for i = 1:m
x = p(:,neighbors(2:end, i));
p_bar = 1/k * sum(x,2);
P = (x - repmat(p_bar,1,k)) * transpose(x - repmat(p_bar,1,k)); %spd matrix P
%P = 2*cov(x);
[V,D] = eig(P);
[~, idx] = min(diag(D)); % choses the smallest eigenvalue
n(:,i) = V(:,idx); % returns the corresponding eigenvector
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Boundary point determination. Given a set of 3D points and a
% corresponding triangle representation, returns those point indices that
% define the border/edge of the surface.
function bound = find_bound(pts, poly)
%Correcting polygon indices and converting datatype
poly = double(poly);
pts = double(pts);
%Calculating freeboundary points:
TR = TriRep(poly, pts(1,:)', pts(2,:)', pts(3,:)');
FF = freeBoundary(TR);
%Output
bound = FF(:,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
github
|
Hadisalman/stoec-master
|
normcdf.m
|
.m
|
stoec-master/code/Include/GP optimization/normcdf.m
| 3,991 |
utf_8
|
8a98cdb0d640bfd5a9a0a8fc1b3be30e
|
function [varargout] = normcdf(x,varargin)
%NORMCDF Normal cumulative distribution function (cdf).
% P = NORMCDF(X,MU,SIGMA) returns the cdf of the normal distribution with
% mean MU and standard deviation SIGMA, evaluated at the values in X.
% The size of P is the common size of X, MU and SIGMA. A scalar input
% functions as a constant matrix of the same size as the other inputs.
%
% Default values for MU and SIGMA are 0 and 1, respectively.
%
% [P,PLO,PUP] = NORMCDF(X,MU,SIGMA,PCOV,ALPHA) produces confidence bounds
% for P when the input parameters MU and SIGMA are estimates. PCOV is a
% 2-by-2 matrix containing the covariance matrix of the estimated parameters.
% ALPHA has a default value of 0.05, and specifies 100*(1-ALPHA)% confidence
% bounds. PLO and PUP are arrays of the same size as P containing the lower
% and upper confidence bounds.
%
% [...] = NORMCDF(...,'upper') computes the upper tail probability of the
% normal distribution. This can be used to compute a right-tailed p-value.
% To compute a two-tailed p-value, use 2*NORMCDF(-ABS(X),MU,SIGMA).
%
% See also ERF, ERFC, NORMFIT, NORMINV, NORMLIKE, NORMPDF, NORMRND, NORMSTAT.
% References:
% [1] Abramowitz, M. and Stegun, I.A. (1964) Handbook of Mathematical
% Functions, Dover, New York, 1046pp., sections 7.1, 26.2.
% [2] Evans, M., Hastings, N., and Peacock, B. (1993) Statistical
% Distributions, 2nd ed., Wiley, 170pp.
% Copyright 1993-2013 The MathWorks, Inc.
if nargin<1
error(message('stats:normcdf:TooFewInputsX'));
end
if nargin>1 && strcmpi(varargin{end},'upper')
% Compute upper tail and remove 'upper' flag
uflag=true;
varargin(end) = [];
elseif nargin>1 && ischar(varargin{end})&& ~strcmpi(varargin{end},'upper')
error(message('stats:cdf:UpperTailProblem'));
else
uflag=false;
end
[varargout{1:max(1,nargout)}] = localnormcdf(uflag,x,varargin{:});
function [p,plo,pup] = localnormcdf(uflag,x,mu,sigma,pcov,alpha)
if nargin < 3
mu = 0;
end
if nargin < 4
sigma = 1;
end
% More checking if we need to compute confidence bounds.
if nargout>1
if nargin<5
error(message('stats:normcdf:TooFewInputsCovariance'));
end
if ~isequal(size(pcov),[2 2])
error(message('stats:normcdf:BadCovarianceSize'));
end
if nargin<6
alpha = 0.05;
elseif ~isnumeric(alpha) || numel(alpha)~=1 || alpha<=0 || alpha>=1
error(message('stats:normcdf:BadAlpha'));
end
end
try
z = (x-mu) ./ sigma;
if uflag==true
z = -z;
end
catch
error(message('stats:normcdf:InputSizeMismatch'));
end
% Prepare output
p = NaN(size(z),class(z));
if nargout>=2
plo = NaN(size(z),class(z));
pup = NaN(size(z),class(z));
end
% Set edge case sigma=0
if uflag==true
p(sigma==0 & x<mu) = 1;
p(sigma==0 & x>=mu) = 0;
if nargout>=2
plo(sigma==0 & x<mu) = 1;
plo(sigma==0 & x>=mu) = 0;
pup(sigma==0 & x<mu) = 1;
pup(sigma==0 & x>=mu) = 0;
end
else
p(sigma==0 & x<mu) = 0;
p(sigma==0 & x>=mu) = 1;
if nargout>=2
plo(sigma==0 & x<mu) = 0;
plo(sigma==0 & x>=mu) = 1;
pup(sigma==0 & x<mu) = 0;
pup(sigma==0 & x>=mu) = 1;
end
end
% Normal cases
if isscalar(sigma)
if sigma>0
todo = true(size(z));
else
return;
end
else
todo = sigma>0;
end
z = z(todo);
% Use the complementary error function, rather than .5*(1+erf(z/sqrt(2))),
% to produce accurate near-zero results for large negative x.
p(todo) = 0.5 * erfc(-z ./ sqrt(2));
% Compute confidence bounds if requested.
if nargout>=2
zvar = (pcov(1,1) + 2*pcov(1,2)*z + pcov(2,2)*z.^2) ./ (sigma.^2);
if any(zvar<0)
error(message('stats:normcdf:BadCovarianceSymPos'));
end
normz = -norminv(alpha/2);
halfwidth = normz * sqrt(zvar);
zlo = z - halfwidth;
zup = z + halfwidth;
plo(todo) = 0.5 * erfc(-zlo./sqrt(2));
pup(todo) = 0.5 * erfc(-zup./sqrt(2));
end
|
github
|
Hadisalman/stoec-master
|
EI.m
|
.m
|
stoec-master/code/Include/GP optimization/EI.m
| 300 |
utf_8
|
5b9d33eba552e84709c55f4269598d1a
|
% Elif Ayvali 06/16/2015 [email protected]
% yEI: the value of y to 'improve over'.
% ymu: the mean of GP posterior
% ys: the standard deviation of GP posterior
function res = EI(yEI,ymu,ys2)
eps=0.01;
ys=sqrt(ys2);
res = (ymu-yEI-eps).*normcdf((ymu-yEI-eps)./ys)+ys.*normpdf((ymu-yEI-eps)./ys);
end
|
github
|
Hadisalman/stoec-master
|
dEI.m
|
.m
|
stoec-master/code/Include/GP optimization/dEI.m
| 300 |
utf_8
|
5b9d33eba552e84709c55f4269598d1a
|
% Elif Ayvali 06/16/2015 [email protected]
% yEI: the value of y to 'improve over'.
% ymu: the mean of GP posterior
% ys: the standard deviation of GP posterior
function res = EI(yEI,ymu,ys2)
eps=0.01;
ys=sqrt(ys2);
res = (ymu-yEI-eps).*normcdf((ymu-yEI-eps)./ys)+ys.*normpdf((ymu-yEI-eps)./ys);
end
|
github
|
Hadisalman/stoec-master
|
UCB.m
|
.m
|
stoec-master/code/Include/GP optimization/UCB.m
| 291 |
utf_8
|
7f1ab1acc4b7626fd0040a1744b963ab
|
% Elif Ayvali 11/03/2015 [email protected]
% Upper Confidence Bound
% ymu: the mean of GP posterior
% ys: the standard deviation of GP posterior
function res = UCB(ymu,ys2,k)
switch nargin
case 2
beta=1.96;
case 3
beta = k;
end
ys=sqrt(ys2);
res =ymu+beta.*ys;
end
|
github
|
Hadisalman/stoec-master
|
wEI.m
|
.m
|
stoec-master/code/Include/GP optimization/wEI.m
| 388 |
utf_8
|
755514e7605e817c6b08a6b344557ade
|
% Elif Ayvali 06/16/2015 [email protected]
% yEI: the value of y to 'improve over'.
% ymu: the mean of GP posterior
% ys: the standard deviation of GP posterior
% w = 0 global exploration
% w = 1 local exploitation
%w=0.5 wEI becomes EI
function res = wEI(yEI,ymu,ys2,w)
eps=0.01;
ys=sqrt(ys2);
res = w*(ymu-yEI-eps).*normcdf((ymu-yEI-eps)./ys)+(1-w)*ys.*normpdf((ymu-yEI-eps)./ys);
end
|
github
|
cdebacco/SpringRank-master
|
crossValidation.m
|
.m
|
SpringRank-master/matlab/crossValidation.m
| 4,379 |
utf_8
|
14bd7c4736dcb2871ea12cb112972663
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% [sig_a,sig_L] = crossValidation(A,folds,reps)
%
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% folds is the number of folks k in a k-fold cross validation
% reps is the number of random repetitions desired over the k-folds. For
% example, folds=5 and reps=7 would divide the data into 5 folds,
% performing tests, and repeating those tests 7 times independently.
%
% OUTPUTS:
% sig_a is the local accuracy (\sigma_a in the paper)
% sig_L is the global accuracy (\sigma_L in the paper)
function [sig_a,sig_L] = crossValidation(A,folds,reps)
% convert to sparse for improved performance
if ~issparse(A)
A = sparse(A);
end
% NOTE: We perform cross validation over *interacting pairs* so we're not
% dividing the edges of the network into k groups, but dividing the
% interactions into k groups. Here is an example that clarifies the
% difference. If there is a pair of nodes (i,j) with A(i,j) = 1 and
% A(j,i)=3, this would count as ONE interacting pair, not four. There are
% other interpretations of how to split edges into a training and a test
% set, and these may be application dependent. All this writing here is
% just to clarify *exactly* how this code works.
% Find interacting pairs
[r,c,v] = find(triu(A+transpose(A)));
% Number of interacting pairs
M = length(v);
% Size of each fold
foldSize = floor(M/folds);
% preallocate; note that DIM2 should be increased if you are testing more
% than one method.
sig_a = zeros(reps*folds,1);
sig_L = zeros(reps*folds,1);
% iterate over reps
for rep = 1:reps
% shuffle interactions
idx = shuffle(1:M);
% build K-1 folds of equal size
for f = 1:folds-1
fold{f} = idx( (f-1)*foldSize+1 : f*foldSize);
end
% then put the remainder in the final Kth fold
fold{folds} = idx( (folds-1)*foldSize+1 : end);
% iterate over folds
for f = 1:folds
% Print
fprintf('Cross validation progress: Rep %i/%i, Fold %i/%i.\n',...
rep,reps,f,folds);
% bookkeeping
foldrep = f+(rep-1)*folds;
% build the testset of indices
test_i = r(fold{f});
test_j = c(fold{f});
test = sub2ind(size(A),test_i,test_j);
testpose = sub2ind(size(A),test_j,test_i);
% build the training set by setting testset interactions to zero.
TRAIN = A;
TRAIN(test) = 0;
TRAIN(testpose) = 0;
% Build the TEST set.
TEST = A-TRAIN;
numTestEdges = sum(sum(TEST));
% train springRank on the TRAINset
s0 = springRank(TRAIN);
bloc0 = betaLocal(TRAIN,s0);
bglob0 = betaGlobal(TRAIN,s0);
% springRank accuracies on TEST set
sig_a(foldrep,1) = localAccuracy(TEST,s0,bloc0);
sig_L(foldrep,1) = -globalAccuracy(TEST,s0,bglob0)/numTestEdges;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% NOTE THAT IF YOU WANT TO COMPARE OTHER METHODS TO SPRINGRANK,
% THIS IS THE PLACE THAT THEY SHOULD BE INCLUDED.
% Commented out, below, you can see the call to springRank with the
% regularization, as well as the call to BTL and its separate
% accuracy.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % train regularized springRank on the TRAINset
% s2 = springRankFull(TRAIN,2);
% bloc2 = betaLocal2(TRAIN,s2);
% bglob2 = betaGlobal(TRAIN,s2);
% % regularized springRank accuracies on TEST set
% sig_a(foldrep,2) = localAccuracy(TEST,s2,bloc2);
% sig_L(foldrep,2) = -globalAccuracy(TEST,s2,bglob2)/numTestEdges;
% % train BTL on the TRAINset
% bt = btl(TRAIN,1e-3);
% % BTL accuracies on TEST set
% sig_a(foldrep,3) = localAccuracy_BTL(TEST,bt);
% sig_L(foldrep,3) = -globalAccuracy_BTL(TEST,bt)/numTestEdges;
end
end
|
github
|
cdebacco/SpringRank-master
|
betaLocal.m
|
.m
|
SpringRank-master/matlab/betaLocal.m
| 1,031 |
utf_8
|
f1ad8be3f40d4591b7210456f33b5576
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% b = betaLocal(A,s)
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% s is the Nx1 vector of node positions (ranks)
% OUTPUTS:
% b is the optimal inverse temperature (beta) under the LOCAL accuracy,
% which we call \sigma_a in the paper.
function [b] = betaLocal(A,s)
global M r
M = A;
r = s;
b = fminbnd(@negacc,1e-6,1000);
end
function [a] = negacc(b)
global M r
m = sum(sum(M));
n = length(r);
y = 0;
for i=1:n
for j=1:n
d = r(i) - r(j);
y = y + abs( M(i,j)- (M(i,j) + M(j,i))*((1+exp(-2*b*d))^(-1)) );
end
end
a = y/m-1;
end
|
github
|
cdebacco/SpringRank-master
|
colleyMatrix.m
|
.m
|
SpringRank-master/matlab/colleyMatrix.m
| 1,090 |
utf_8
|
62e2ddddd76c55ce9c4418f954bee9e3
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% r = colleyMatrix(A)
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% OUTPUTS:
% r is the Nx1 vector of the Colley Matrix ranks
function [r] = colleyMatrix(A)
%Aij = i beats j
%therefore out-degree = sum over j = wins
%therefore in-degree = sum over i = losses
A(1:max(size(A))+1:end) = 0;
wins = sum(A,2);
losses = sum(A,1)';
total = wins+losses;
matches = A+transpose(A);
n = size(A,1);
C = zeros(n,n);
b = zeros(n,1);
for i=1:n
b(i) = 1 + (wins(i)-losses(i))/2;
for j=1:n
if i==j
C(i,j) = 2+total(i);
else
C(i,j) = -matches(i,j);
end
end
end
r = C\b;
|
github
|
cdebacco/SpringRank-master
|
springRank.m
|
.m
|
SpringRank-master/matlab/springRank.m
| 1,565 |
utf_8
|
05483c2c0427fb4ac7d99a357effccca
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% s = springRank(A)
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% OUTPUTS:
% s is a N-vector of node positions according to SpringRank
function [s] = springRank(A)
% Input check for sparsity
if issparse(A)
% Great. We like sparse.
else
A = sparse(A);
% Still works, but slower
warning('Input matrix not sparse; much faster if A is a sparse matrix.')
end
% Number of vertices
N = size(A,2);
% out-degree and in-degree VECTORS
dout = sum(A,2);
din = sum(A,1);
% out-degree and in-degree DIAGONAL MATRICES
Dout = diag(dout(1:N-1));
Din = diag(din(1:N-1));
% out-degree and in-degree for vertex N
dNout = dout(N);
dNin = din(N);
B = Dout + Din - A(1:N-1,1:N-1) - transpose(A(1:N-1,1:N-1))...
- repmat(A(N,1:N-1),N-1,1) - repmat(transpose(A(1:N-1,N)),N-1,1);
b = diag(Dout)-diag(Din)+dNout-dNin;
% Sparse solve. Use [t,~] to suppress warnings.
[t,~] = bicgstab(B,b,1e-12,200);
% ranks
s = [t;0];
% adjust mean of each component to be 0
[nComponents,~,members] = networkComponents(A);
for n = 1:nComponents
s(members{n}) = s(members{n})-mean(s(members{n}));
end
|
github
|
cdebacco/SpringRank-master
|
ranks2svg.m
|
.m
|
SpringRank-master/matlab/ranks2svg.m
| 2,966 |
utf_8
|
85d15849f335c0cfa3085e3c096f0db9
|
% Code by Daniel Larremore
% Santa Fe Institute
% [email protected]
% http://danlarremore.com
% v3
function [energy] = ranks2svg(A,s,filename)
[r,c,v] = find(A);
energy = (s(r)-s(c)-1).^2;
energy = lin(energy/max(energy),0.05,0.3);
% wid = 800; % Must be at least 400
hei = 800; % Must be at least 400
aspectRatio = 0.4;
wid = hei*aspectRatio;
s = max(s)-s; %flip orientation so top ranked shows up highest
y = (s-min(s))/(max(s)-min(s))*(7/8)*hei+hei/16;
% colors
c_fill = [10,10,10]; %color - circle fill
% c_fill = 'none';
c_stroke = [10,10,10]; %color - circle stroke
c_down = [41,143,170]; %color - edges down
c_up = [170,48,41]; %color - edges up
s_min = 1; %edge stroke min
s_max = 4; %edge stroke max
r_min = 1; %circle min radius
r_max = 3; %circle max radius
swirl = 0.75;
% bind sizes of circles to k.
Q = A;
Q(1:size(Q,1)+1:end)=0; % kill diagonal
k = sum(Q,2); % bind to out degree.
k = lin(k,r_min,r_max);
% transform edge weights in v to range [s_min,s_max]
w = lin(v,s_min,s_max);
fid = fopen(filename,'w');
fprintf(fid,'<svg width="%i" height="%i" id="vis">',wid,hei);
fprintf(fid,'\n');
% Paths
for i=1:length(v)
fr = y(r(i));
to = y(c(i));
anchor_y = swirl*fr+(1-swirl)*to;
anchor_x = (wid/2)-sign(fr-to)*abs(fr-to)*aspectRatio;
if sign(fr-to) < 0
rgb = getColor_identity(c_down,energy);
opacity = 0.15;
fprintf(fid,'<path d="M%f %f Q %f %f %f %f" stroke-width="%f" stroke="rgb(%i,%i,%i)" stroke-opacity="%f" fill="none"/>',...
wid/2,fr,...
anchor_x,anchor_y,wid/2,to,...
w(i),...
rgb(1),...
rgb(2),...
rgb(3),...
opacity);
else
rgb = getColor_identity(c_up,energy);
opacity = 0.15;
fprintf(fid,'<path d="M%f %f Q %f %f %f %f" stroke-width="%f" stroke="rgb(%i,%i,%i)" stroke-opacity="%f" fill="none"/>',...
wid/2,fr,...
anchor_x,anchor_y,wid/2,to,...
w(i),...
rgb(1),...
rgb(2),...
rgb(3),...
opacity);
end
fprintf(fid,'\n');
end
% Circles
n = size(A,1);
for i=1:n
if strcmp(c_fill,'none')==1
fprintf(fid,'<circle class="node" r="%f" style="fill: none; stroke: rgb(%i,%i,%i); stroke-width:1" cx="%f" cy="%f"/>',...
k(i),c_stroke(1),c_stroke(2),c_stroke(3),wid/2,y(i) );
else
fprintf(fid,'<circle class="node" r="%f" style="fill: rgb(%i,%i,%i); stroke: rgb(%i,%i,%i); stroke-width:1" cx="%f" cy="%f"/>',...
k(i),c_fill(1),c_fill(2),c_fill(3),c_stroke(1),c_stroke(2),c_stroke(3),wid/2,y(i) );
end
fprintf(fid,'\n');
end
fprintf(fid,'</svg>');
fclose(fid);
end
function [y] = lin(x,m,M)
y = (x - min(x))/(max(x)-min(x))*(M-m)+m;
end
function [rgb] = getColor_linearToWhite(rgb_base,scalar)
M = max(rgb_base);
rgb = round(rgb_base+(M-rgb_base)*scalar);
end
function [rgb] = getColor_identity(rgb_base,scalar)
rgb = rgb_base;
end
|
github
|
cdebacco/SpringRank-master
|
pageRank.m
|
.m
|
SpringRank-master/matlab/pageRank.m
| 843 |
utf_8
|
ed72c5ff10741e4c8c07d5eddf3ea0d2
|
% Parameter M adjacency matrix where M_i,j represents the link from 'j' to 'i', such that for all 'j'
% sum(i, M_i,j) = 1
% Parameter d damping factor
% Parameter v_quadratic_error quadratic error for v
% Return v, a vector of ranks such that v_i is the i-th rank from [0, 1]
function v = pageRank(A, d, v_quadratic_error)
N = max(size(A)); % N is equal to either dimension of M and the number of documents
M = zeros(N,N);
for j=1:N
if sum(A(:,j)) > 0
M(:,j)=A(:,j)/sum(A(:,j));
else
M(:,j) = 1/N;
end
end
% v = rand(N, 1);
v = ones(N,1);
v = v ./ norm(v, 1); % This is now L1, not L2
last_v = ones(N, 1) * inf;
M_hat = (d .* M) + (((1 - d) / N) .* ones(N, N));
while(norm(v - last_v, 2) > v_quadratic_error)
last_v = v;
v = M_hat * v;
v = v/norm(v,1);
% removed the L2 norm of the iterated PR
end
|
github
|
cdebacco/SpringRank-master
|
globalAccuracy.m
|
.m
|
SpringRank-master/matlab/globalAccuracy.m
| 1,078 |
utf_8
|
a5b96f21a21c715028ec162644c233c2
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% y = globalAccuracy(A,s,b)
%
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% s is the Nx1 vector of node positions (ranks)
% b is the inverse temperature (called beta in the paper)
%
% OUTPUTS:
% y is the global accuracy (called \sigma_L in the paper)
function y = globalAccuracy(A,s,b)
% number of nodes
n = length(s);
% accumulate the log likelihood score elementwise
y = 0;
for i=1:n
for j=1:n
d = s(i) - s(j);
p = (1+exp(-2*b*d))^(-1);
if p==0 || p==1
% do nothing
else
y = y + A(i,j)*log(p)+A(j,i)*log(1-p);
end
end
end
end
|
github
|
cdebacco/SpringRank-master
|
rankCentrality.m
|
.m
|
SpringRank-master/matlab/rankCentrality.m
| 1,424 |
utf_8
|
a8fd8534646737e069618cad2e5473da
|
% Rank Centrality
% Implemented by Dan Larremore, University of Colorado Boulder
% April 8, 2018
%
% Based on the manuscript
% Rank Centrality: Ranking from Pairwise Comparisons
% Sahand Negahban, Sewoong Oh, Devavrat Shah
% 2017
%
function [rc] = rankCentrality(A)
% In their text, a_ij = # of times j is preferred over i.
% In the SpringRank paper, we usually assume the opposite.
% Here, we'll use the authors' direction, but note that whenever we call
% this code, we'll have to pass the transpose of A.
% Note that there are no self-loops in this model, so we will check,
% discard, and warn
N = size(A,1);
if sum(diag(A)) > 0
% fprintf('Warning: self-loops detected (and ignored)\n')
A(1:N+1:end) = 0;
end
% see Eq 5 of https://arxiv.org/pdf/1209.1688.pdf
% We're going to regularize.
% They suggest epsilon = 1.
% This seems extreme?
% Not listed in the paper, but this is important. We have to regularize the
% matrix A before we compute dmax.
regularization = 1;
A = A+regularization;
% Find dmax
dout = sum(A,2);
dmax = max(dout);
% Eq 5
P = (1/dmax) * A./(A+transpose(A));
% But we need to make sure that the matrix remains stochastic by making the
% rows sum to 1. Without regularization, Eq 1 says P(i,i) = 1 - dout(i)/dmax;
% Instead, we're going to just do this "manually"
P(1:N+1:end) = 0;
for i=1:N
P(i,i) = 1-sum(P(i,:));
end
[V,~] = eigs(transpose(P),1);
rc = V / sum(V);
end
|
github
|
cdebacco/SpringRank-master
|
springRankHamiltonian.m
|
.m
|
SpringRank-master/matlab/springRankHamiltonian.m
| 1,292 |
utf_8
|
c5d299fe7f9d0c8d492690a9ecaa1037
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% H = springRankHamiltonian(s,A,mu)
% INPUTS:
% s is a N-vector of node positions
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% mu can be a scalar or a NxN matrix
% OUTPUTS:
% H is the scalar spring energy of the system;
% NOTE: assumes spring rest length of 1
function [H] = springRankHamiltonian(s,A,mu)
% assuming A is sparse, faster to go through entries of A.
[r,c,v] = find(A);
% preallocate container of hamiltonian values.
h = zeros(size(v));
% NOTE: i = r(n) and j = c(n)
% Probably could be faster
if length(mu)==1 % SCALAR spring constant
for n = 1:length(v)
h(n) = v(n) * (s(r(n))-s(c(n))-1)^2;
end
h = h*mu;
else % MATRIX of spring constants
for n = 1:length(v)
h(n) = v(n) * mu(r(n),c(n)) * (s(r(n))-s(c(n))-1)^2;
end
end
% sum up, divide by 2, and return
H = sum(h)/2;
|
github
|
cdebacco/SpringRank-master
|
globalAccuracy_BTL.m
|
.m
|
SpringRank-master/matlab/globalAccuracy_BTL.m
| 440 |
utf_8
|
b2b67332100fdf1041556c3ca6219483
|
% Code by Daniel Larremore
% Santa Fe Institute
% [email protected]
% http://danlarremore.com
% evaluate the local accuracy of edge direction prediction
function y = globalAccuracy_BTL(A,g)
n = length(g);
y = 0;
for i=1:n
for j=1:n
p = g(i)/(g(i)+g(j)); % BTL probability
if p==0 || p==1 || isnan(p)
% do nothing
else
y = y + A(i,j)*log(p)+A(j,i)*log(1-p);
end
end
end
|
github
|
cdebacco/SpringRank-master
|
mvr.m
|
.m
|
SpringRank-master/matlab/mvr.m
| 3,709 |
utf_8
|
0fba16216b6fa253d5fe1c15b5843c39
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% [order,violations,A] = mvr(A)
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% n_samples is an integer number of independent replicates of the MVR MCMC
% search procedure.
% OUTPUTS:
% best_ranks is a vector of ranks. ONE IS BEST. N IS WORST
% best_violations is the number of violations
% best_A is the reordered matrix whose lower triangle contains min. viols.
function [best_ranks,best_violations,best_A] = mvr(A,n_samples)
best_violations = size(A,1)^2;
for n = 1:n_samples
[ranks,violations,A] = mvr_single(A);
if violations < best_violations
best_violations = violations;
best_ranks = ranks;
best_A = A;
end
end
end
function [ranks,violations,A] = mvr_single(A)
violations = compute_violations(A);
N = size(A,1);
%order = shuffle(1:N);
order =1:N;
A(:,:) = A(order,:);
A(:,:) = A(:,order);
step = 1;
fails = 0;
% fprintf('Initial\t\t\t\tviolations\t%i\n',violations);
hist_viols(step) = violations;
hist_viols_backup(step) = violations;
hist_fails(step) = fails;
% RANDOM STEPS - Randomly swap till N^2 failures in a row.
while 1
i = randi(N); % choose random node
j = randi(N); % choose second random node.
while j==i % make sure different
i = randi(N);
j = randi(N);
end
dx = compute_violations_change(A,i,j);
if dx < 0
order([i,j]) = order([j,i]);
A([i,j],:) = A([j,i],:);
A(:,[i,j]) = A(:,[j,i]);
step = step+1;
hist_swaps(step,:) = [i,j];
hist_fails(step) = fails;
hist_viols(step) = hist_viols(step-1)+dx;
violations = compute_violations(A);
hist_viols_backup(step) = violations;
% fprintf('swap %i ~ %i \t --> %i\tviolations\t%i\t%i\n',i,j,dx,violations,fails)
fails = 0;
else
fails = fails+1;
end
if fails == N^2
A(1,:);
% fprintf('----- Too much fails -----\n');
break
end
end
% DETERMINISTIC STEPS - Find any local steps deterministically by search.
while 1
dxbest = 0;
for i=1:N-1
for j=i+1:N
dx = compute_violations_change(A,i,j);
if dx < dxbest
bestSwap = [i,j];
dxbest = dx;
end
end
end
if dxbest==0
% fprintf('---- no improvement, exiting ----\n');
[~,ranks] = sort(order);
return;
end
i = bestSwap(1);
j = bestSwap(2);
order([i,j]) = order([j,i]);
% before = compute_violations(A);
A([i,j],:) = A([j,i],:);
A(:,[i,j]) = A(:,[j,i]);
% after = compute_violations(A);
step = step+1;
hist_swaps(step,:) = [i,j];
hist_viols(step) = hist_viols(step-1)+dxbest;
violations = compute_violations(A);
hist_viols_backup(step) = violations;
% fprintf('swap %i ~ %i \t --> %i\tviolations\t%i\n',i,j,dxbest,violations)
end
end
function dx = compute_violations_change(A,ii,jj)
% Let's arbitrarily choose i to fall (larger rank number) and j to rise
% (smaller rank number).
i = min(ii,jj);
j = max(ii,jj);
dx= full(-sum(A(j,i:j-1)) ...
+sum(A(i,i+1:j)) ...
-sum(A(i+1:j-1,i)) ...
+sum(A(i+1:j-1,j)));
end
function x = compute_violations(B)
x = full(sum(sum(tril(B,-1))));
end
|
github
|
cdebacco/SpringRank-master
|
btl.m
|
.m
|
SpringRank-master/matlab/btl.m
| 1,384 |
utf_8
|
7a35f00eac95fc913ce8d85daf13199e
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% g = btl(A,tol)
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% tol is the accuracy tolerance desired for successive iterations
% OUTPUTS:
% s is the Nx1 vector of Davids Score
% NOTE: implementation of a regularized version (for dangling node)
% version of the algorithm presented in
% Hunter DR (2004) MM algorithms for generalized Bradley-Terry models.
% Annals of Statistics pp. 384?406
function [g] = btl(A,tol)
A(1:max(size(A))+1:end) = 0;
N = size(A,1);
g = rand(1,N); % random initial guesss
wins = sum(A,2);
matches = A+transpose(A);
totalMatches = sum(matches);
g_prev = rand(1,N);
eps=1e-6;
while norm(g-g_prev) > tol
g_prev = g;
for i=1:N
if totalMatches(i)>0
q = matches(i,:)./(g_prev(i)+g_prev);
q(i) = [];
g(i) = (wins(i)+eps)/sum(q);
else
g(i) = 0;
end
end
g = g/sum(g);
end
g = transpose(g);
end
|
github
|
cdebacco/SpringRank-master
|
localAccuracy_BTL.m
|
.m
|
SpringRank-master/matlab/localAccuracy_BTL.m
| 460 |
utf_8
|
982e9879799160f78b833eb9ff58d5e9
|
% Code by Daniel Larremore
% Santa Fe Institute
% [email protected]
% http://danlarremore.com
% evaluate the local accuracy of edge direction prediction
function a = localAccuracy_BTL(A,g)
m = sum(sum(A));
n = length(g);
y = 0;
for i=1:n
for j=1:n
p = g(i)/(g(i)+g(j)); % BTL probability
if isnan(p)
% do nothing
else
y = y + abs( A(i,j)-( A(i,j) + A(j,i) )*p );
end
end
end
a = 1-0.5*y/m;
|
github
|
cdebacco/SpringRank-master
|
betaGlobal.m
|
.m
|
SpringRank-master/matlab/betaGlobal.m
| 1,016 |
utf_8
|
5ce0dabb8de3c08dc206f76792c59ffa
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% b = betaGlobal(A,s,varargin)
%
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% s is the Nx1 vector of node positions (ranks)
%
% OUTPUTS:
% b is the optimal inverse temperature (beta) under the GLOBAL accuracy,
% which we call \sigma_\ell in the paper.
function [b] = betaGlobal(A,s)
global M r
M = A;
r = s;
b = fzero(@f,0.1);
end
function [y] = f(b)
global M r
n = length(r);
y = 0;
for i=1:n
for j=1:n
d = r(i) - r(j);
pij = (1+exp(-2*b*d))^(-1);
y = y + d*(M(i,j) - (M(i,j)+M(j,i))*pij);
end
end
end
|
github
|
cdebacco/SpringRank-master
|
localAccuracy.m
|
.m
|
SpringRank-master/matlab/localAccuracy.m
| 1,047 |
utf_8
|
c2e66140ef330c17dadfea25fb924b1e
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% a = localAccuracy(A,s,b)
%
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% s is the Nx1 vector of node positions (ranks)
% b is the inverse temperature (called beta in the paper)
%
% OUTPUTS:
% a is the local accuracy (called \sigma_a in the paper)
function a = localAccuracy(A,s,b)
% total edges
m = sum(sum(A));
% number of vertices
n = length(s);
% accumulate accuracy of predictions
y = 0;
for i=1:n
for j=1:n
d = s(i) - s(j);
p = (1+exp(-2*b*d))^(-1);
y = y + abs( A(i,j)-( A(i,j) + A(j,i) )*p );
end
end
% cleanup
a = 1-0.5*y/m;
|
github
|
cdebacco/SpringRank-master
|
networkComponents.m
|
.m
|
SpringRank-master/matlab/networkComponents.m
| 2,678 |
utf_8
|
71e8c66191349a50896bef05ed228869
|
% [nComponents,sizes,members] = networkComponents(A)
%
% Daniel Larremore
% April 24, 2014
% [email protected]
% http://danlarremore.com
% Comments and suggestions always welcome.
%
% INPUTS:
% A Matrix. This function takes as an input a
% network adjacency matrix A, for a network that is undirected. If you
% provide a network that is directed, this code is going to make it
% undirected before continuing. Since link weights will not affect
% component sizes, weighted and unweighted networks work equally well. You
% may provide a "full" or a "sparse" matrix.
%
% OUTPUTS:
% nComponents INT - The number of components in the network.
% sizes vector<INT> - a vector of component sizes, sorted,
% descending.
% members cell<vector<INT>> a cell array of vectors, each
% entry of which is a membership list for that component, sorted,
% descending by component size.
%
% Example: (uncomment and copy and paste into MATLAB command window)
% % Generate a 1000 node network adjacency matrix, A
% A = floor(1.0015*rand(1000,1000)); A=A+A'; A(A==2)=1; A(1:1001:end) = 0;
% % Call networkComponents function
% [nComponents,sizes,members] = networkComponents(A);
% % get the size of the largest component
% sizeLC = sizes(1);
% % get a network adjacency matrix for ONLY the largest component
% LC = A(members{1},members{1});
function [nComponents,sizes,members] = networkComponents(A)
% Number of nodes
N = size(A,1);
% Remove diagonals
A(1:N+1:end) = 0;
% make symmetric, just in case it isn't
A=A+A';
% Have we visited a particular node yet?
isDiscovered = zeros(N,1);
% Empty members cell
members = {};
% check every node
for n=1:N
if ~isDiscovered(n)
% started a new group so add it to members
members{end+1} = n;
% account for discovering n
isDiscovered(n) = 1;
% set the ptr to 1
ptr = 1;
while (ptr <= length(members{end}))
% find neighbors
nbrs = find(A(:,members{end}(ptr)));
% here are the neighbors that are undiscovered
newNbrs = nbrs(isDiscovered(nbrs)==0);
% we can now mark them as discovered
isDiscovered(newNbrs) = 1;
% add them to member list
members{end}(end+1:end+length(newNbrs)) = newNbrs;
% increment ptr so we check the next member of this component
ptr = ptr+1;
end
end
end
% number of components
nComponents = length(members);
for n=1:nComponents
% compute sizes of components
sizes(n) = length(members{n});
end
[sizes,idx] = sort(sizes,'descend');
members = members(idx);
end
|
github
|
cdebacco/SpringRank-master
|
davidScore.m
|
.m
|
SpringRank-master/matlab/davidScore.m
| 836 |
utf_8
|
d9ab89c7af3f1d00a6344d70f6eb069b
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% s = davidScore(A)
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% OUTPUTS:
% s is the Nx1 vector of Davids Score
function [s] = davidScore(A)
P = A./(A+A'); % Pij = Aij / (Aij + Aji)
P(isnan(P)) = 0;
P(1:size(P,1)+1:end) = 0; % ensure there are no entries on the diagonal
w = sum(P,2);
l = sum(transpose(P),2);
w2 = P*w;
l2 = transpose(P)*l;
s = w+w2-l-l2;
|
github
|
cdebacco/SpringRank-master
|
pvalueNullModel.m
|
.m
|
SpringRank-master/matlab/pvalueNullModel.m
| 2,323 |
utf_8
|
d5d34bc9134164f5885f99d0ac17b9e6
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% [p,H0,H] = pvalueNullModel(A,n_repetitions)
%
% INPUTS:
% A is a NxN matrix representing a directed network
% A can be weighted (integer or non-integer)
% A(i,j) = # of dominance interactions by i toward j.
% A(i,j) = # of times that j endorsed i.
% n_repetitions is the number of randomizations that you would like to use
% to calculate the p-value. Higher numbers mean a better estimate of
% probability that the p-value is meant to represent. Lower numbers may
% be required for very large networks whose randomizations are expensive
% or slow.
%
% OUTPUTS:
% p is the p-value described in the paper for the probability that a
% network A whose edge directions are randomized would have a lower
% ground-state energy than the original network A
% H0 is the ground state energy of A
% H is the vector of ground state energies associated with randomizations
% of the directions of A.
function [p,H0,H] = pvalueNullModel(A,n_repetitions)
% First determine what kind of matrix we have. Integer or non-integer?
[~,~,v] = find(A);
if sum(mod(v,1)==0)==length(v)
isInteger = 1;
Abar = A+A';
else
isInteger = 0;
end
% Preallocate
H = zeros(n_repetitions,1);
H0 = springRankHamiltonian(springRank(A),A,1);
% Iterate over repetitions
for n = 1:n_repetitions
% Two different randomization schemes, depending on whether or not the
% network is integer or scalar.
if isInteger
B = randomEdgeDirectionsInt(Abar);
else
B = randomEdgeDirectionsScalar(A);
end
H(n) = springRankHamiltonian(springRank(B),B,1);
end
p = sum(H<H0)/n_repetitions;
end
function [B] = randomEdgeDirectionsInt(Abar)
N = max(size(Abar));
[r,c,v] = find(triu(Abar,1));
up = binornd(v,0.5);
down = v - up;
B = sparse([r;c],[c;r],[up;down],N,N);
end
function [B] = randomEdgeDirectionsScalar(A)
N = max(size(A));
[r,c,v] = find(A);
for i=1:length(v)
if rand < 0.5
temp = r(i);
r(i) = c(i);
c(i) = temp;
end
end
B = sparse(r,c,v,N,N);
end
|
github
|
cdebacco/SpringRank-master
|
generativeModel.m
|
.m
|
SpringRank-master/matlab/generativeModel.m
| 976 |
utf_8
|
6e6489e870ab1ebdb5db9b2a7b8d5569
|
% SpringRank
% CODE -> https://github.com/cdebacco/SpringRank
% PAPER -> http://danlarremore.com/pdf/SpringRank_2017_PrePrint.pdf
% Code by Daniel Larremore
% University of Colorado at Boulder
% BioFrontiers Institute & Dept of Computer Science
% [email protected]
% http://danlarremore.com
%
% [A,P] = generativeModel(c,b,s)
% INPUTS:
% c is the overall sparsity constant
% b is the inverse temperature (called beta in the paper)
% s is the Nx1 vector of planted node positions
% OUTPUTS:
% A is a directed network adjacency matrix; A(i,j)=1 if i dominates j, e.g.
% P is a full NxN matrix; P(i,j) = expected number of edges from i to j
function [A,P] = generativeModel(c,b,s)
% number of vertices
N = length(s);
% preallocate P
P = zeros(N,N);
for i=1:N
for j=1:N
% compute expected number of edges from i to j
P(i,j) = c*exp(-b/2*(s(i)-s(j)-1)^2);
end
end
% draw poisson random numbers from P and return
A = sparse(poissrnd(P));
|
github
|
aamiranis/sampling_theory-master
|
test_eig_lopcg_proj.m
|
.m
|
sampling_theory-master/test_eig_lopcg_proj.m
| 2,708 |
utf_8
|
790f3462b25ee42dba9720dc49b4a527
|
function test_eig_lopcg_proj(Ln, S)
k = 8;
N = length(Ln);
% Ln = Ln + 0.1 * speye(length(Ln));
Ln_k = Ln^k;
% S = rand(length(Ln),1) > 0.05;
% S = true(length(Ln),1); S(10) = false;
[y1,s1] = eigs(Ln_k(S,S), 1, 'sm');
s1
% function x = operatorA(x)
% for i = 1:k
% x = Ln * x;
% end
% end
%
% C = ichol(Ln); prec_fun = @(x)C\(C'\x);
% function x = operatorT(x)
% for i = 1:k
% x = prec_fun(x);
% end
% end
% initial_x = ones(sum(S),1);
% initial_x = initial_x / norm(initial_x);
% [ y2, s2, failure_flag, log ] = eig_lopcg_proj( initial_x, S, @(x)operatorA(x), @(x)operatorT(x), 1e-4, N);
% s2
% plot(log10(log(:,end)));
% initial_x = ones(length(Ln),1);
% initial_x = initial_x / norm(initial_x);
% [ y2, s2 ] = lobpcg( initial_x, @(x)operatorA(x), [], @(x)operatorT(x), 1e-4, 500 );
% y2 = y2(S);
% s2
function result = operatorA(x)
N = size(Ln,1);
M = size(x,2);
result = zeros(N,M);
if (M == 1)
result(S) = x;
else
result(S,:) = x;
end
for i = 1:k
% result = (L * result + result) / 3;
result = Ln * result;
end
if (M == 1)
result = result(S);
else
result = result(S,:);
end
end
% function x = operatorT(x)
% precon_tol = 1e-4;
% max_iter_precon = 500;
%
% k_cg = 0;
%
% r_cg = x - operatorA(x);
% p_cg = r_cg;
% rr_cg_old = r_cg'*r_cg;
%
% while ( (sqrt(rr_cg_old) > precon_tol) && (k_cg <= max_iter_precon) )
% k_cg = k_cg + 1;
%
% A_times_p_int = operatorA(p_cg);
%
% alpha_cg = rr_cg_old / (p_cg' * A_times_p_int);
% x = x + alpha_cg * p_cg;
% r_cg = r_cg - alpha_cg * A_times_p_int;
%
% rr_cg_new = r_cg'*r_cg;
% p_cg = r_cg + (rr_cg_new/rr_cg_old) * p_cg;
%
% rr_cg_old = rr_cg_new;
% end
% end
% C = ichol(Ln); prec_fun = @(x)C\(C'\x);
% function result = operatorT(x)
% M = size(x,2);
% result = zeros(N,M);
%
% if (M == 1)
% result(S) = x;
% else
% result(S,:) = x;
% end
%
% for i = 1:k
% result = prec_fun(result);
% end
%
% if (M == 1)
% result = result(S);
% else
% result = result(S,:);
% end
% end
initial_x = ones(sum(S),1);
for j = 1:size(initial_x,2)
initial_x(:,j) = initial_x(:,j)/norm(initial_x(:,j));
end
% [y2, s2, failure_flag, lambda_history, residual_norm_history] = lobpcg(initial_x, @(x)operatorA(x), 1e-4, N);
% plot(log10(residual_norm_history'));
[ y2, s2, failure_flag, log ] = eig_lopcg( initial_x, @(x)operatorA(x), 1e-4, N);
plot(log10(log(:,end)));
s2(1)
figure, plot([y1 y2]);
% plot(abs(y1)-abs(y2));
end
|
github
|
aamiranis/sampling_theory-master
|
compute_S_L_k_lobpcg.m
|
.m
|
sampling_theory-master/sampling_methods/max_lambda_min_L_k/compute_S_L_k_lobpcg.m
| 3,369 |
utf_8
|
371f985ac6d087cbc8ef29edaa7ebd8d
|
function [ S_opt, count ] = compute_S_L_k_lobpcg( L, prec_fun, k, num_nodes_to_add, current_S_opt )
% AUTHOR: Aamir Anis, USC
% This function computes the optimal sampling set of a given size
% "S_opt_size" that maximizes the cutoff frequency.
% % %
% PARAMETER DESCRIPTION
%
% INPUT
% L_k: kth power of Laplacian
% S_opt_size: Desired size of the optimal set
% k: Power of Laplacian while computing cutoff, higher the order,
% greater the accuracy, but the complexity is also higher.
%
% OUTPUT
% S_opt: Optimal set as a logical vector
% omega: cutoff of the optimal set
% omega_list: List of computed cutoffs
%
% % %
% fprintf('Starting optimal set search...\n');
N = length(L);
count = 0;
% Initialization : If previous state available, initialize to that
if (exist('current_S_opt','var'))
S_opt = current_S_opt;
else
S_opt = false(N,1);
end
omega = 0;
function result = operatorA(x)
M = size(x,2);
result = zeros(N,M);
if (M == 1)
result(~S_opt) = x;
else
result(~S_opt,:) = x;
end
for i = 1:k
% result = (L * result + result) / 3;
result = L * result;
end
if (M == 1)
result = result(~S_opt);
else
result = result(~S_opt,:);
end
% result = result - omega * x;
count = count + k;
end
function x = operatorT(x)
precon_tol = 1e-4;
max_iter_precon = N/10;
k_cg = 0;
r_cg = x - operatorA(x);
p_cg = r_cg;
rr_cg_old = r_cg'*r_cg;
while ( (sqrt(rr_cg_old) > precon_tol) && (k_cg <= max_iter_precon) )
k_cg = k_cg + 1;
A_times_p_int = operatorA(p_cg);
alpha_cg = rr_cg_old / (p_cg' * A_times_p_int);
x = x + alpha_cg * p_cg;
r_cg = r_cg - alpha_cg * A_times_p_int;
rr_cg_new = r_cg'*r_cg;
p_cg = r_cg + (rr_cg_new/rr_cg_old) * p_cg;
rr_cg_old = rr_cg_new;
end
end
% function result = operatorT(x)
% M = size(x,2);
% result = zeros(N,M);
%
% if (M == 1)
% result(~S_opt) = x;
% else
% result(~S_opt,:) = x;
% end
%
% for i = 1:k
% result = prec_fun(result);
% end
%
% if (M == 1)
% result = result(~S_opt);
% else
% result = result(~S_opt,:);
% end
% end
% iterations_for_convergence = zeros(num_nodes_to_add,1);
for iter = 1:num_nodes_to_add
% tic
% fprintf('Iteration %d of %d...\n', iter, num_nodes_to_add);
% create index vector for Sc from indicator functions
q = find(~S_opt);
% compute minimum eigen-pair: efficient way
initial_x = ones(length(q),1);
initial_x = initial_x / norm(initial_x);
[y, ~, failure_flag] = lobpcg(initial_x, @(x)operatorA(x), 1e-3, N);
% [y, omega, failure_flag, lambda_history, residual_norm_history] = lobpcg(initial_x, @(x)operatorA(x), [], @(x)operatorT(x), 1e-4, N);
if (failure_flag == 1)
fprintf('k = %d did not converge while adding node %d.\n', k, iter);
end
% find direction of maximum increment in reduced (|Sc|) dimensions
[~,max_index] = max(abs(y));
% Find corresponding node in N dimensions
node_to_add = q(max_index);
% Update indicator function
S_opt(node_to_add) = 1;
% fprintf('Nodes added = %d...\n', sum(S_opt));
% toc
end
% fprintf('Finished.\n');
end
|
github
|
aamiranis/sampling_theory-master
|
compute_S_L_k_lobpcg_proj.m
|
.m
|
sampling_theory-master/sampling_methods/max_lambda_min_L_k/compute_S_L_k_lobpcg_proj.m
| 2,083 |
utf_8
|
eb8313912525ab67ab720b05bdd3c2f0
|
function [ S_opt, count ] = compute_S_L_k_lobpcg_proj( L, prec_fun, k, num_nodes_to_add, current_S_opt )
% AUTHOR: Aamir Anis, USC
% This function computes the optimal sampling set of a given size
% "S_opt_size" that maximizes the cutoff frequency.
% % %
% PARAMETER DESCRIPTION
%
% INPUT
% L_k: kth power of Laplacian
% S_opt_size: Desired size of the optimal set
% k: Power of Laplacian while computing cutoff, higher the order,
% greater the accuracy, but the complexity is also higher.
%
% OUTPUT
% S_opt: Optimal set as a logical vector
% omega: cutoff of the optimal set
% omega_list: List of computed cutoffs
%
% % %
% fprintf('Starting optimal set search...\n');
N = length(L);
count = 0;
% Initialization : If previous state available, initialize to that
if (exist('current_S_opt','var'))
S_opt = current_S_opt;
else
S_opt = false(N,1);
end
function x = operatorA(x)
for i = 1:k
x = L * x;
end
count = count + k;
end
function x = operatorT(x)
for i = 1:k
x = prec_fun(x);
end
end
% iterations_for_convergence = zeros(num_nodes_to_add,1);
for iter = 1:num_nodes_to_add
% tic
% fprintf('Iteration %d of %d...\n', iter, num_nodes_to_add);
% create index vector for Sc from indicator functions
q = find(~S_opt);
% compute minimum eigen-pair: efficient way
initial_x = ones(length(q),1);
initial_x = initial_x / norm(initial_x);
[ y, omega, failure_flag, log ] = eig_lopcg_proj( initial_x, ~S_opt, @(x)operatorA(x), @(x)operatorT(x), 1e-4, 500);
% log(:,3)
failure_flag = abs(1 - failure_flag);
if (failure_flag == 1)
fprintf('k = %d did not converge while adding node %d.\n', k, iter);
end
% find direction of maximum increment in reduced (|Sc|) dimensions
[~,max_index] = max(abs(y));
% Find corresponding node in N dimensions
node_to_add = q(max_index);
% Update indicator function
S_opt(node_to_add) = 1;
% fprintf('Nodes added = %d...\n', sum(S_opt));
% toc
end
% fprintf('Finished.\n');
end
|
github
|
aamiranis/sampling_theory-master
|
pdftops.m
|
.m
|
sampling_theory-master/results/exportfig/pdftops.m
| 3,053 |
utf_8
|
6eb261c6107aedd03ceace4ccbce285c
|
function varargout = pdftops(cmd)
%PDFTOPS Calls a local pdftops executable with the input command
%
% Example:
% [status result] = pdftops(cmd)
%
% Attempts to locate a pdftops executable, finally asking the user to
% specify the directory pdftops was installed into. The resulting path is
% stored for future reference.
%
% Once found, the executable is called with the input command string.
%
% This function requires that you have pdftops (from the Xpdf package)
% installed on your system. You can download this from:
% http://www.foolabs.com/xpdf
%
% IN:
% cmd - Command string to be passed into pdftops.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from pdftops.
% Copyright: Oliver Woodford, 2009-2010
% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on
% Mac OS.
% Thanks to Christoph Hertel for pointing out a bug in check_xpdf_path
% under linux.
% Call pdftops
[varargout{1:nargout}] = system(sprintf('"%s" %s', xpdf_path, cmd));
return
function path = xpdf_path
% Return a valid path
% Start with the currently set path
path = user_string('pdftops');
% Check the path works
if check_xpdf_path(path)
return
end
% Check whether the binary is on the path
if ispc
bin = 'pdftops.exe';
else
bin = 'pdftops';
end
if check_store_xpdf_path(bin)
path = bin;
return
end
% Search the obvious places
if ispc
path = 'C:\Program Files\xpdf\pdftops.exe';
else
path = '/usr/local/bin/pdftops';
end
if check_store_xpdf_path(path)
return
end
% Ask the user to enter the path
while 1
if strncmp(computer,'MAC',3) % Is a Mac
% Give separate warning as the uigetdir dialogue box doesn't have a
% title
uiwait(warndlg('Pdftops not found. Please locate the program, or install xpdf-tools from http://users.phg-online.de/tk/MOSXS/.'))
end
base = uigetdir('/', 'Pdftops not found. Please locate the program.');
if isequal(base, 0)
% User hit cancel or closed window
break;
end
base = [base filesep];
bin_dir = {'', ['bin' filesep], ['lib' filesep]};
for a = 1:numel(bin_dir)
path = [base bin_dir{a} bin];
if exist(path, 'file') == 2
break;
end
end
if check_store_xpdf_path(path)
return
end
end
error('pdftops executable not found.');
function good = check_store_xpdf_path(path)
% Check the path is valid
good = check_xpdf_path(path);
if ~good
return
end
% Update the current default path to the path found
if ~user_string('pdftops', path)
warning('Path to pdftops executable could not be saved. Enter it manually in pdftops.txt.');
return
end
return
function good = check_xpdf_path(path)
% Check the path is valid
[good message] = system(sprintf('"%s" -h', path));
% system returns good = 1 even when the command runs
% Look for something distinct in the help text
good = ~isempty(strfind(message, 'PostScript'));
return
|
github
|
aamiranis/sampling_theory-master
|
isolate_axes.m
|
.m
|
sampling_theory-master/results/exportfig/isolate_axes.m
| 3,307 |
utf_8
|
43cbadba85146816219993a4e1de54cb
|
%ISOLATE_AXES Isolate the specified axes in a figure on their own
%
% Examples:
% fh = isolate_axes(ah)
% fh = isolate_axes(ah, vis)
%
% This function will create a new figure containing the axes specified, and
% also their associated legends and colorbars. The axes specified must all
% be in the same figure, but they will generally only be a subset of the
% axes in the figure.
%
% IN:
% ah - An array of axes handles, which must come from the same figure.
% vis - A boolean indicating whether the new figure should be visible.
% Default: false.
%
% OUT:
% fh - The handle of the created figure.
% Copyright (C) Oliver Woodford 2011-2012
% Thank you to Rosella Blatt for reporting a bug to do with axes in GUIs
% 16/3/2012 Moved copyfig to its own function. Thanks to Bob Fratantonio
% for pointing out that the function is also used in export_fig.m.
function fh = isolate_axes(ah, vis)
% Make sure we have an array of handles
if ~all(ishandle(ah))
error('ah must be an array of handles');
end
% Check that the handles are all for axes, and are all in the same figure
fh = ancestor(ah(1), 'figure');
nAx = numel(ah);
for a = 1:nAx
if ~strcmp(get(ah(a), 'Type'), 'axes')
error('All handles must be axes handles.');
end
if ~isequal(ancestor(ah(a), 'figure'), fh)
error('Axes must all come from the same figure.');
end
end
% Tag the axes so we can find them in the copy
old_tag = get(ah, 'Tag');
if nAx == 1
old_tag = {old_tag};
end
set(ah, 'Tag', 'ObjectToCopy');
% Create a new figure exactly the same as the old one
fh = copyfig(fh); %copyobj(fh, 0);
if nargin < 2 || ~vis
set(fh, 'Visible', 'off');
end
% Reset the axes tags
for a = 1:nAx
set(ah(a), 'Tag', old_tag{a});
end
% Find the objects to save
ah = findall(fh, 'Tag', 'ObjectToCopy');
if numel(ah) ~= nAx
close(fh);
error('Incorrect number of axes found.');
end
% Set the axes tags to what they should be
for a = 1:nAx
set(ah(a), 'Tag', old_tag{a});
end
% Keep any legends and colorbars which overlap the subplots
lh = findall(fh, 'Type', 'axes', '-and', {'Tag', 'legend', '-or', 'Tag', 'Colorbar'});
nLeg = numel(lh);
if nLeg > 0
ax_pos = get(ah, 'OuterPosition');
if nAx > 1
ax_pos = cell2mat(ax_pos(:));
end
ax_pos(:,3:4) = ax_pos(:,3:4) + ax_pos(:,1:2);
leg_pos = get(lh, 'OuterPosition');
if nLeg > 1;
leg_pos = cell2mat(leg_pos);
end
leg_pos(:,3:4) = leg_pos(:,3:4) + leg_pos(:,1:2);
for a = 1:nAx
% Overlap test
ah = [ah; lh(leg_pos(:,1) < ax_pos(a,3) & leg_pos(:,2) < ax_pos(a,4) &...
leg_pos(:,3) > ax_pos(a,1) & leg_pos(:,4) > ax_pos(a,2))];
end
end
% Get all the objects in the figure
axs = findall(fh);
% Delete everything except for the input axes and associated items
delete(axs(~ismember(axs, [ah; allchildren(ah); allancestors(ah)])));
return
function ah = allchildren(ah)
ah = allchild(ah);
if iscell(ah)
ah = cell2mat(ah);
end
ah = ah(:);
return
function ph = allancestors(ah)
ph = [];
for a = 1:numel(ah)
h = get(ah(a), 'parent');
while h ~= 0
ph = [ph; h];
h = get(h, 'parent');
end
end
return
|
github
|
aamiranis/sampling_theory-master
|
pdf2eps.m
|
.m
|
sampling_theory-master/results/exportfig/pdf2eps.m
| 1,524 |
utf_8
|
037f9109e96ab4385d13019a29db4639
|
%PDF2EPS Convert a pdf file to eps format using pdftops
%
% Examples:
% pdf2eps source dest
%
% This function converts a pdf file to eps format.
%
% This function requires that you have pdftops, from the Xpdf suite of
% functions, installed on your system. This can be downloaded from:
% http://www.foolabs.com/xpdf
%
%IN:
% source - filename of the source pdf file to convert. The filename is
% assumed to already have the extension ".pdf".
% dest - filename of the destination eps file. The filename is assumed to
% already have the extension ".eps".
% Copyright (C) Oliver Woodford 2009-2010
% Thanks to Aldebaro Klautau for reporting a bug when saving to
% non-existant directories.
function pdf2eps(source, dest)
% Construct the options string for pdftops
options = ['-q -paper match -eps -level2 "' source '" "' dest '"'];
% Convert to eps using pdftops
[status message] = pdftops(options);
% Check for error
if status
% Report error
if isempty(message)
error('Unable to generate eps. Check destination directory is writable.');
else
error(message);
end
end
% Fix the DSC error created by pdftops
fid = fopen(dest, 'r+');
if fid == -1
% Cannot open the file
return
end
fgetl(fid); % Get the first line
str = fgetl(fid); % Get the second line
if strcmp(str(1:min(13, end)), '% Produced by')
fseek(fid, -numel(str)-1, 'cof');
fwrite(fid, '%'); % Turn ' ' into '%'
end
fclose(fid);
return
|
github
|
aamiranis/sampling_theory-master
|
print2array.m
|
.m
|
sampling_theory-master/results/exportfig/print2array.m
| 6,161 |
utf_8
|
155b53ad27b25177fbcb3cd67ec6615e
|
%PRINT2ARRAY Exports a figure to an image array
%
% Examples:
% A = print2array
% A = print2array(figure_handle)
% A = print2array(figure_handle, resolution)
% A = print2array(figure_handle, resolution, renderer)
% [A bcol] = print2array(...)
%
% This function outputs a bitmap image of the given figure, at the desired
% resolution.
%
% If renderer is '-painters' then ghostcript needs to be installed. This
% can be downloaded from: http://www.ghostscript.com
%
% IN:
% figure_handle - The handle of the figure to be exported. Default: gcf.
% resolution - Resolution of the output, as a factor of screen
% resolution. Default: 1.
% renderer - string containing the renderer paramater to be passed to
% print. Default: '-opengl'.
%
% OUT:
% A - MxNx3 uint8 image of the figure.
% bcol - 1x3 uint8 vector of the background color
% Copyright (C) Oliver Woodford 2008-2011
% 5/9/2011 Set EraseModes to normal when using opengl or zbuffer renderers.
% Thanks to Pawel Kocieniewski for reporting the issue.
% 21/9/2011 Bug fix: unit8 -> uint8!
% Thanks to Tobias Lamour for reporting the issue.
% 14/11/2011 Bug fix: stop using hardcopy(), as it interfered with figure
% size and erasemode settings. Makes it a bit slower, but more reliable.
% Thanks to Phil Trinh and Meelis Lootus for reporting the issues.
% 9/12/2011 Pass font path to ghostscript.
% 27/1/2012 Bug fix affecting painters rendering tall figures. Thanks to
% Ken Campbell for reporting it.
% 3/4/2012 Bug fix to median input. Thanks to Andy Matthews for reporting
% it.
function [A bcol] = print2array(fig, res, renderer)
% Generate default input arguments, if needed
if nargin < 2
res = 1;
if nargin < 1
fig = gcf;
end
end
% Warn if output is large
old_mode = get(fig, 'Units');
set(fig, 'Units', 'pixels');
px = get(fig, 'Position');
set(fig, 'Units', old_mode);
npx = prod(px(3:4)*res)/1e6;
if npx > 30
% 30M pixels or larger!
warning('MATLAB:LargeImage', 'print2array generating a %.1fM pixel image. This could be slow and might also cause memory problems.', npx);
end
% Retrieve the background colour
bcol = get(fig, 'Color');
% Set the resolution parameter
res_str = ['-r' num2str(ceil(get(0, 'ScreenPixelsPerInch')*res))];
% Generate temporary file name
tmp_nam = [tempname '.tif'];
if nargin > 2 && strcmp(renderer, '-painters')
% Print to eps file
tmp_eps = [tempname '.eps'];
print2eps(tmp_eps, fig, renderer, '-loose');
try
% Initialize the command to export to tiff using ghostscript
cmd_str = ['-dEPSCrop -q -dNOPAUSE -dBATCH ' res_str ' -sDEVICE=tiff24nc'];
% Set the font path
fp = font_path();
if ~isempty(fp)
cmd_str = [cmd_str ' -sFONTPATH="' fp '"'];
end
% Add the filenames
cmd_str = [cmd_str ' -sOutputFile="' tmp_nam '" "' tmp_eps '"'];
% Execute the ghostscript command
ghostscript(cmd_str);
catch
% Delete the intermediate file
delete(tmp_eps);
rethrow(lasterror);
end
% Delete the intermediate file
delete(tmp_eps);
% Read in the generated bitmap
A = imread(tmp_nam);
% Delete the temporary bitmap file
delete(tmp_nam);
% Set border pixels to the correct colour
if isequal(bcol, 'none')
bcol = [];
elseif isequal(bcol, [1 1 1])
bcol = uint8([255 255 255]);
else
for l = 1:size(A, 2)
if ~all(reshape(A(:,l,:) == 255, [], 1))
break;
end
end
for r = size(A, 2):-1:l
if ~all(reshape(A(:,r,:) == 255, [], 1))
break;
end
end
for t = 1:size(A, 1)
if ~all(reshape(A(t,:,:) == 255, [], 1))
break;
end
end
for b = size(A, 1):-1:t
if ~all(reshape(A(b,:,:) == 255, [], 1))
break;
end
end
bcol = uint8(median(single([reshape(A(:,[l r],:), [], size(A, 3)); reshape(A([t b],:,:), [], size(A, 3))]), 1));
for c = 1:size(A, 3)
A(:,[1:l-1, r+1:end],c) = bcol(c);
A([1:t-1, b+1:end],:,c) = bcol(c);
end
end
else
if nargin < 3
renderer = '-opengl';
end
err = false;
% Set paper size
old_mode = get(fig, 'PaperPositionMode');
set(fig, 'PaperPositionMode', 'auto');
try
% Print to tiff file
print(fig, renderer, res_str, '-dtiff', tmp_nam);
% Read in the printed file
A = imread(tmp_nam);
% Delete the temporary file
delete(tmp_nam);
catch ex
err = true;
end
% Reset paper size
set(fig, 'PaperPositionMode', old_mode);
% Throw any error that occurred
if err
rethrow(ex);
end
% Set the background color
if isequal(bcol, 'none')
bcol = [];
else
bcol = bcol * 255;
if isequal(bcol, round(bcol))
bcol = uint8(bcol);
else
bcol = squeeze(A(1,1,:));
end
end
end
% Check the output size is correct
if isequal(res, round(res))
px = [px([4 3])*res 3];
if ~isequal(size(A), px)
% Correct the output size
A = A(1:min(end,px(1)),1:min(end,px(2)),:);
end
end
return
% Function to return (and create, where necessary) the font path
function fp = font_path()
fp = user_string('gs_font_path');
if ~isempty(fp)
return
end
% Create the path
% Start with the default path
fp = getenv('GS_FONTPATH');
% Add on the typical directories for a given OS
if ispc
if ~isempty(fp)
fp = [fp ';'];
end
fp = [fp getenv('WINDIR') filesep 'Fonts'];
else
if ~isempty(fp)
fp = [fp ':'];
end
fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype'];
end
user_string('gs_font_path', fp);
return
|
github
|
aamiranis/sampling_theory-master
|
eps2pdf.m
|
.m
|
sampling_theory-master/results/exportfig/eps2pdf.m
| 5,151 |
utf_8
|
b356d73460fdebe8ef6fa428d5b2c125
|
%EPS2PDF Convert an eps file to pdf format using ghostscript
%
% Examples:
% eps2pdf source dest
% eps2pdf(source, dest, crop)
% eps2pdf(source, dest, crop, append)
% eps2pdf(source, dest, crop, append, gray)
% eps2pdf(source, dest, crop, append, gray, quality)
%
% This function converts an eps file to pdf format. The output can be
% optionally cropped and also converted to grayscale. If the output pdf
% file already exists then the eps file can optionally be appended as a new
% page on the end of the eps file. The level of bitmap compression can also
% optionally be set.
%
% This function requires that you have ghostscript installed on your
% system. Ghostscript can be downloaded from: http://www.ghostscript.com
%
%IN:
% source - filename of the source eps file to convert. The filename is
% assumed to already have the extension ".eps".
% dest - filename of the destination pdf file. The filename is assumed to
% already have the extension ".pdf".
% crop - boolean indicating whether to crop the borders off the pdf.
% Default: true.
% append - boolean indicating whether the eps should be appended to the
% end of the pdf as a new page (if the pdf exists already).
% Default: false.
% gray - boolean indicating whether the output pdf should be grayscale or
% not. Default: false.
% quality - scalar indicating the level of image bitmap quality to
% output. A larger value gives a higher quality. quality > 100
% gives lossless output. Default: ghostscript prepress default.
% Copyright (C) Oliver Woodford 2009-2011
% Suggestion of appending pdf files provided by Matt C at:
% http://www.mathworks.com/matlabcentral/fileexchange/23629
% Thank you to Fabio Viola for pointing out compression artifacts, leading
% to the quality setting.
% Thank you to Scott for pointing out the subsampling of very small images,
% which was fixed for lossless compression settings.
% 9/12/2011 Pass font path to ghostscript.
function eps2pdf(source, dest, crop, append, gray, quality)
% Intialise the options string for ghostscript
options = ['-q -dNOPAUSE -dBATCH -sDEVICE=pdfwrite -dPDFSETTINGS=/prepress -sOutputFile="' dest '"'];
% Set crop option
if nargin < 3 || crop
options = [options ' -dEPSCrop'];
end
% Set the font path
fp = font_path();
if ~isempty(fp)
options = [options ' -sFONTPATH="' fp '"'];
end
% Set the grayscale option
if nargin > 4 && gray
options = [options ' -sColorConversionStrategy=Gray -dProcessColorModel=/DeviceGray'];
end
% Set the bitmap quality
if nargin > 5 && ~isempty(quality)
options = [options ' -dAutoFilterColorImages=false -dAutoFilterGrayImages=false'];
if quality > 100
options = [options ' -dColorImageFilter=/FlateEncode -dGrayImageFilter=/FlateEncode -c ".setpdfwrite << /ColorImageDownsampleThreshold 10 /GrayImageDownsampleThreshold 10 >> setdistillerparams"'];
else
options = [options ' -dColorImageFilter=/DCTEncode -dGrayImageFilter=/DCTEncode'];
v = 1 + (quality < 80);
quality = 1 - quality / 100;
s = sprintf('<< /QFactor %.2f /Blend 1 /HSample [%d 1 1 %d] /VSample [%d 1 1 %d] >>', quality, v, v, v, v);
options = sprintf('%s -c ".setpdfwrite << /ColorImageDict %s /GrayImageDict %s >> setdistillerparams"', options, s, s);
end
end
% Check if the output file exists
if nargin > 3 && append && exist(dest, 'file') == 2
% File exists - append current figure to the end
tmp_nam = tempname;
% Copy the file
copyfile(dest, tmp_nam);
% Add the output file names
options = [options ' -f "' tmp_nam '" "' source '"'];
try
% Convert to pdf using ghostscript
[status message] = ghostscript(options);
catch
% Delete the intermediate file
delete(tmp_nam);
rethrow(lasterror);
end
% Delete the intermediate file
delete(tmp_nam);
else
% File doesn't exist or should be over-written
% Add the output file names
options = [options ' -f "' source '"'];
% Convert to pdf using ghostscript
[status message] = ghostscript(options);
end
% Check for error
if status
% Report error
if isempty(message)
error('Unable to generate pdf. Check destination directory is writable.');
else
error(message);
end
end
return
% Function to return (and create, where necessary) the font path
function fp = font_path()
fp = user_string('gs_font_path');
if ~isempty(fp)
return
end
% Create the path
% Start with the default path
fp = getenv('GS_FONTPATH');
% Add on the typical directories for a given OS
if ispc
if ~isempty(fp)
fp = [fp ';'];
end
fp = [fp getenv('WINDIR') filesep 'Fonts'];
else
if ~isempty(fp)
fp = [fp ':'];
end
fp = [fp '/usr/share/fonts:/usr/local/share/fonts:/usr/share/fonts/X11:/usr/local/share/fonts/X11:/usr/share/fonts/truetype:/usr/local/share/fonts/truetype'];
end
user_string('gs_font_path', fp);
return
|
github
|
aamiranis/sampling_theory-master
|
copyfig.m
|
.m
|
sampling_theory-master/results/exportfig/copyfig.m
| 846 |
utf_8
|
289162022c603c9e11a52b6d56329188
|
%COPYFIG Create a copy of a figure, without changing the figure
%
% Examples:
% fh_new = copyfig(fh_old)
%
% This function will create a copy of a figure, but not change the figure,
% as copyobj sometimes does, e.g. by changing legends.
%
% IN:
% fh_old - The handle of the figure to be copied. Default: gcf.
%
% OUT:
% fh_new - The handle of the created figure.
% Copyright (C) Oliver Woodford 2012
function fh = copyfig(fh)
% Set the default
if nargin == 0
fh = gcf;
end
% Is there a legend?
if isempty(findobj(fh, 'Type', 'axes', 'Tag', 'legend'))
% Safe to copy using copyobj
fh = copyobj(fh, 0);
else
% copyobj will change the figure, so save and then load it instead
tmp_nam = [tempname '.fig'];
hgsave(fh, tmp_nam);
fh = hgload(tmp_nam);
delete(tmp_nam);
end
return
|
github
|
aamiranis/sampling_theory-master
|
user_string.m
|
.m
|
sampling_theory-master/results/exportfig/user_string.m
| 2,339 |
utf_8
|
f9b2326571e9d13eccc99ce441efd788
|
%USER_STRING Get/set a user specific string
%
% Examples:
% string = user_string(string_name)
% saved = user_string(string_name, new_string)
%
% Function to get and set a string in a system or user specific file. This
% enables, for example, system specific paths to binaries to be saved.
%
% IN:
% string_name - String containing the name of the string required. The
% string is extracted from a file called (string_name).txt,
% stored in the same directory as user_string.m.
% new_string - The new string to be saved under the name given by
% string_name.
%
% OUT:
% string - The currently saved string. Default: ''.
% saved - Boolean indicating whether the save was succesful
% Copyright (C) Oliver Woodford 2011
% This method of saving paths avoids changing .m files which might be in a
% version control system. Instead it saves the user dependent paths in
% separate files with a .txt extension, which need not be checked in to
% the version control system. Thank you to Jonas Dorn for suggesting this
% approach.
function string = user_string(string_name, string)
if ~ischar(string_name)
error('string_name must be a string.');
end
% Create the full filename
string_name = fullfile(fileparts(mfilename('fullpath')), '.ignore', [string_name '.txt']);
if nargin > 1
% Set string
if ~ischar(string)
error('new_string must be a string.');
end
% Make sure the save directory exists
dname = fileparts(string_name);
if ~exist(dname, 'dir')
% Create the directory
try
if ~mkdir(dname)
string = false;
return
end
catch
string = false;
return
end
% Make it hidden
try
fileattrib(dname, '+h');
catch
end
end
% Write the file
fid = fopen(string_name, 'w');
if fid == -1
string = false;
return
end
try
fwrite(fid, string, '*char');
catch
fclose(fid);
string = false;
return
end
fclose(fid);
string = true;
else
% Get string
fid = fopen(string_name, 'r');
if fid == -1
string = '';
return
end
string = fread(fid, '*char')';
fclose(fid);
end
return
|
github
|
aamiranis/sampling_theory-master
|
export_fig.m
|
.m
|
sampling_theory-master/results/exportfig/export_fig.m
| 29,468 |
utf_8
|
e1fc4fe8c0dcd6f758389b63c10a52bf
|
%EXPORT_FIG Exports figures suitable for publication
%
% Examples:
% im = export_fig
% [im alpha] = export_fig
% export_fig filename
% export_fig filename -format1 -format2
% export_fig ... -nocrop
% export_fig ... -transparent
% export_fig ... -native
% export_fig ... -m<val>
% export_fig ... -r<val>
% export_fig ... -a<val>
% export_fig ... -q<val>
% export_fig ... -<renderer>
% export_fig ... -<colorspace>
% export_fig ... -append
% export_fig ... -bookmark
% export_fig(..., handle)
%
% This function saves a figure or single axes to one or more vector and/or
% bitmap file formats, and/or outputs a rasterized version to the
% workspace, with the following properties:
% - Figure/axes reproduced as it appears on screen
% - Cropped borders (optional)
% - Embedded fonts (vector formats)
% - Improved line and grid line styles
% - Anti-aliased graphics (bitmap formats)
% - Render images at native resolution (optional for bitmap formats)
% - Transparent background supported (pdf, eps, png)
% - Semi-transparent patch objects supported (png only)
% - RGB, CMYK or grayscale output (CMYK only with pdf, eps, tiff)
% - Variable image compression, including lossless (pdf, eps, jpg)
% - Optionally append to file (pdf, tiff)
% - Vector formats: pdf, eps
% - Bitmap formats: png, tiff, jpg, bmp, export to workspace
%
% This function is especially suited to exporting figures for use in
% publications and presentations, because of the high quality and
% portability of media produced.
%
% Note that the background color and figure dimensions are reproduced
% (the latter approximately, and ignoring cropping & magnification) in the
% output file. For transparent background (and semi-transparent patch
% objects), use the -transparent option or set the figure 'Color' property
% to 'none'. To make axes transparent set the axes 'Color' property to
% 'none'. Pdf, eps and png are the only file formats to support a
% transparent background, whilst the png format alone supports transparency
% of patch objects.
%
% The choice of renderer (opengl, zbuffer or painters) has a large impact
% on the quality of output. Whilst the default value (opengl for bitmaps,
% painters for vector formats) generally gives good results, if you aren't
% satisfied then try another renderer. Notes: 1) For vector formats (eps,
% pdf), only painters generates vector graphics. 2) For bitmaps, only
% opengl can render transparent patch objects correctly. 3) For bitmaps,
% only painters will correctly scale line dash and dot lengths when
% magnifying or anti-aliasing. 4) Fonts may be substitued with Courier when
% using painters.
%
% When exporting to vector format (pdf & eps) and bitmap format using the
% painters renderer, this function requires that ghostscript is installed
% on your system. You can download this from:
% http://www.ghostscript.com
% When exporting to eps it additionally requires pdftops, from the Xpdf
% suite of functions. You can download this from:
% http://www.foolabs.com/xpdf
%
%IN:
% filename - string containing the name (optionally including full or
% relative path) of the file the figure is to be saved as. If
% a path is not specified, the figure is saved in the current
% directory. If no name and no output arguments are specified,
% the default name, 'export_fig_out', is used. If neither a
% file extension nor a format are specified, a ".png" is added
% and the figure saved in that format.
% -format1, -format2, etc. - strings containing the extensions of the
% file formats the figure is to be saved as.
% Valid options are: '-pdf', '-eps', '-png',
% '-tif', '-jpg' and '-bmp'. All combinations
% of formats are valid.
% -nocrop - option indicating that the borders of the output are not to
% be cropped.
% -transparent - option indicating that the figure background is to be
% made transparent (png, pdf and eps output only).
% -m<val> - option where val indicates the factor to magnify the
% on-screen figure dimensions by when generating bitmap
% outputs. Default: '-m1'.
% -r<val> - option val indicates the resolution (in pixels per inch) to
% export bitmap outputs at, keeping the dimensions of the
% on-screen figure. Default: sprintf('-r%g', get(0,
% 'ScreenPixelsPerInch')). Note that the -m and -r options
% change the same property.
% -native - option indicating that the output resolution (when outputting
% a bitmap format) should be such that the vertical resolution
% of the first suitable image found in the figure is at the
% native resolution of that image. To specify a particular
% image to use, give it the tag 'export_fig_native'. Notes:
% This overrides any value set with the -m and -r options. It
% also assumes that the image is displayed front-to-parallel
% with the screen. The output resolution is approximate and
% should not be relied upon. Anti-aliasing can have adverse
% effects on image quality (disable with the -a1 option).
% -a1, -a2, -a3, -a4 - option indicating the amount of anti-aliasing to
% use for bitmap outputs. '-a1' means no anti-
% aliasing; '-a4' is the maximum amount (default).
% -<renderer> - option to force a particular renderer (painters, opengl
% or zbuffer) to be used over the default: opengl for
% bitmaps; painters for vector formats.
% -<colorspace> - option indicating which colorspace color figures should
% be saved in: RGB (default), CMYK or gray. CMYK is only
% supported in pdf, eps and tiff output.
% -q<val> - option to vary bitmap image quality (in pdf, eps and jpg
% files only). Larger val, in the range 0-100, gives higher
% quality/lower compression. val > 100 gives lossless
% compression. Default: '-q95' for jpg, ghostscript prepress
% default for pdf & eps. Note: lossless compression can
% sometimes give a smaller file size than the default lossy
% compression, depending on the type of images.
% -append - option indicating that if the file (pdfs only) already
% exists, the figure is to be appended as a new page, instead
% of being overwritten (default).
% -bookmark - option to indicate that a bookmark with the name of the
% figure is to be created in the output file (pdf only).
% handle - The handle of the figure or axes (can be an array of handles
% of several axes, but these must be in the same figure) to be
% saved. Default: gcf.
%
%OUT:
% im - MxNxC uint8 image array of the figure.
% alpha - MxN single array of alphamatte values in range [0,1], for the
% case when the background is transparent.
%
% Some helpful examples and tips can be found at:
% http://sites.google.com/site/oliverwoodford/software/export_fig
%
% See also PRINT, SAVEAS.
% Copyright (C) Oliver Woodford 2008-2012
% The idea of using ghostscript is inspired by Peder Axensten's SAVEFIG
% (fex id: 10889) which is itself inspired by EPS2PDF (fex id: 5782).
% The idea for using pdftops came from the MATLAB newsgroup (id: 168171).
% The idea of editing the EPS file to change line styles comes from Jiro
% Doke's FIXPSLINESTYLE (fex id: 17928).
% The idea of changing dash length with line width came from comments on
% fex id: 5743, but the implementation is mine :)
% The idea of anti-aliasing bitmaps came from Anders Brun's MYAA (fex id:
% 20979).
% The idea of appending figures in pdfs came from Matt C in comments on the
% FEX (id: 23629)
% Thanks to Roland Martin for pointing out the colour MATLAB
% bug/feature with colorbar axes and transparent backgrounds.
% Thanks also to Andrew Matthews for describing a bug to do with the figure
% size changing in -nodisplay mode. I couldn't reproduce it, but included a
% fix anyway.
% Thanks to Tammy Threadgill for reporting a bug where an axes is not
% isolated from gui objects.
% 23/02/12: Ensure that axes limits don't change during printing
% 14/03/12: Fix bug in fixing the axes limits (thanks to Tobias Lamour for
% reporting it).
% 02/05/12: Incorporate patch of Petr Nechaev (many thanks), enabling
% bookmarking of figures in pdf files.
% 09/05/12: Incorporate patch of Arcelia Arrieta (many thanks), to keep
% tick marks fixed.
function [im alpha] = export_fig(varargin)
% Make sure the figure is rendered correctly _now_ so that properties like
% axes limits are up-to-date.
drawnow;
% Parse the input arguments
[fig options] = parse_args(nargout, varargin{:});
% Isolate the subplot, if it is one
cls = strcmp(get(fig(1), 'Type'), 'axes');
if cls
% Given handles of one or more axes, so isolate them from the rest
fig = isolate_axes(fig);
else
old_mode = get(fig, 'InvertHardcopy');
end
% Hack the font units where necessary (due to a font rendering bug in
% print?). This may not work perfectly in all cases. Also it can change the
% figure layout if reverted, so use a copy.
magnify = options.magnify * options.aa_factor;
if isbitmap(options) && magnify ~= 1
fontu = findobj(fig, 'FontUnits', 'normalized');
if ~isempty(fontu)
% Some normalized font units found
if ~cls
fig = copyfig(fig);
set(fig, 'Visible', 'off');
fontu = findobj(fig, 'FontUnits', 'normalized');
cls = true;
end
set(fontu, 'FontUnits', 'points');
end
end
% MATLAB "feature": axes limits can change when printing
Hlims = findall(fig, 'Type', 'axes');
if ~cls
% Record the old axes limit and tick modes
Xlims = make_cell(get(Hlims, 'XLimMode'));
Ylims = make_cell(get(Hlims, 'YLimMode'));
Zlims = make_cell(get(Hlims, 'ZLimMode'));
Xtick = make_cell(get(Hlims, 'XTickMode'));
Ytick = make_cell(get(Hlims, 'YTickMode'));
Ztick = make_cell(get(Hlims, 'ZTickMode'));
end
% Set all axes limit and tick modes to manual, so the limits and ticks can't change
set(Hlims, 'XLimMode', 'manual', 'YLimMode', 'manual', 'ZLimMode', 'manual', 'XTickMode', 'manual', 'YTickMode', 'manual', 'ZTickMode', 'manual');
% Set to print exactly what is there
set(fig, 'InvertHardcopy', 'off');
% Set the renderer
switch options.renderer
case 1
renderer = '-opengl';
case 2
renderer = '-zbuffer';
case 3
renderer = '-painters';
otherwise
renderer = '-opengl'; % Default for bitmaps
end
% Do the bitmap formats first
if isbitmap(options)
% Get the background colour
if options.transparent && (options.png || options.alpha)
% Get out an alpha channel
% MATLAB "feature": black colorbar axes can change to white and vice versa!
hCB = findobj(fig, 'Type', 'axes', 'Tag', 'Colorbar');
if isempty(hCB)
yCol = [];
xCol = [];
else
yCol = get(hCB, 'YColor');
xCol = get(hCB, 'XColor');
if iscell(yCol)
yCol = cell2mat(yCol);
xCol = cell2mat(xCol);
end
yCol = sum(yCol, 2);
xCol = sum(xCol, 2);
end
% MATLAB "feature": apparently figure size can change when changing
% colour in -nodisplay mode
pos = get(fig, 'Position');
% Set the background colour to black, and set size in case it was
% changed internally
tcol = get(fig, 'Color');
set(fig, 'Color', 'k', 'Position', pos);
% Correct the colorbar axes colours
set(hCB(yCol==0), 'YColor', [0 0 0]);
set(hCB(xCol==0), 'XColor', [0 0 0]);
% Print large version to array
B = print2array(fig, magnify, renderer);
% Downscale the image
B = downsize(single(B), options.aa_factor);
% Set background to white (and set size)
set(fig, 'Color', 'w', 'Position', pos);
% Correct the colorbar axes colours
set(hCB(yCol==3), 'YColor', [1 1 1]);
set(hCB(xCol==3), 'XColor', [1 1 1]);
% Print large version to array
A = print2array(fig, magnify, renderer);
% Downscale the image
A = downsize(single(A), options.aa_factor);
% Set the background colour (and size) back to normal
set(fig, 'Color', tcol, 'Position', pos);
% Compute the alpha map
alpha = round(sum(B - A, 3)) / (255 * 3) + 1;
A = alpha;
A(A==0) = 1;
A = B ./ A(:,:,[1 1 1]);
clear B
% Convert to greyscale
if options.colourspace == 2
A = rgb2grey(A);
end
A = uint8(A);
% Crop the background
if options.crop
[alpha v] = crop_background(alpha, 0);
A = A(v(1):v(2),v(3):v(4),:);
end
if options.png
% Compute the resolution
res = options.magnify * get(0, 'ScreenPixelsPerInch') / 25.4e-3;
% Save the png
imwrite(A, [options.name '.png'], 'Alpha', alpha, 'ResolutionUnit', 'meter', 'XResolution', res, 'YResolution', res);
% Clear the png bit
options.png = false;
end
% Return only one channel for greyscale
if isbitmap(options)
A = check_greyscale(A);
end
if options.alpha
% Store the image
im = A;
% Clear the alpha bit
options.alpha = false;
end
% Get the non-alpha image
if isbitmap(options)
alph = alpha(:,:,ones(1, size(A, 3)));
A = uint8(single(A) .* alph + 255 * (1 - alph));
clear alph
end
if options.im
% Store the new image
im = A;
end
else
% Print large version to array
if options.transparent
% MATLAB "feature": apparently figure size can change when changing
% colour in -nodisplay mode
pos = get(fig, 'Position');
tcol = get(fig, 'Color');
set(fig, 'Color', 'w', 'Position', pos);
A = print2array(fig, magnify, renderer);
set(fig, 'Color', tcol, 'Position', pos);
tcol = 255;
else
[A tcol] = print2array(fig, magnify, renderer);
end
% Crop the background
if options.crop
A = crop_background(A, tcol);
end
% Downscale the image
A = downsize(A, options.aa_factor);
if options.colourspace == 2
% Convert to greyscale
A = rgb2grey(A);
else
% Return only one channel for greyscale
A = check_greyscale(A);
end
% Outputs
if options.im
im = A;
end
if options.alpha
im = A;
alpha = zeros(size(A, 1), size(A, 2), 'single');
end
end
% Save the images
if options.png
res = options.magnify * get(0, 'ScreenPixelsPerInch') / 25.4e-3;
imwrite(A, [options.name '.png'], 'ResolutionUnit', 'meter', 'XResolution', res, 'YResolution', res);
end
if options.bmp
imwrite(A, [options.name '.bmp']);
end
% Save jpeg with given quality
if options.jpg
quality = options.quality;
if isempty(quality)
quality = 95;
end
if quality > 100
imwrite(A, [options.name '.jpg'], 'Mode', 'lossless');
else
imwrite(A, [options.name '.jpg'], 'Quality', quality);
end
end
% Save tif images in cmyk if wanted (and possible)
if options.tif
if options.colourspace == 1 && size(A, 3) == 3
A = double(255 - A);
K = min(A, [], 3);
K_ = 255 ./ max(255 - K, 1);
C = (A(:,:,1) - K) .* K_;
M = (A(:,:,2) - K) .* K_;
Y = (A(:,:,3) - K) .* K_;
A = uint8(cat(3, C, M, Y, K));
clear C M Y K K_
end
append_mode = {'overwrite', 'append'};
imwrite(A, [options.name '.tif'], 'Resolution', options.magnify*get(0, 'ScreenPixelsPerInch'), 'WriteMode', append_mode{options.append+1});
end
end
% Now do the vector formats
if isvector(options)
% Set the default renderer to painters
if ~options.renderer
renderer = '-painters';
end
% Generate some filenames
tmp_nam = [tempname '.eps'];
if options.pdf
pdf_nam = [options.name '.pdf'];
else
pdf_nam = [tempname '.pdf'];
end
% Generate the options for print
p2eArgs = {renderer};
if options.colourspace == 1
p2eArgs = [p2eArgs {'-cmyk'}];
end
if ~options.crop
p2eArgs = [p2eArgs {'-loose'}];
end
try
% Generate an eps
print2eps(tmp_nam, fig, p2eArgs{:});
% Remove the background, if desired
if options.transparent && ~isequal(get(fig, 'Color'), 'none')
eps_remove_background(tmp_nam);
end
% Add a bookmark to the PDF if desired
if options.bookmark
fig_nam = get(fig, 'Name');
if isempty(fig_nam)
warning('export_fig:EmptyBookmark', 'Bookmark requested for figure with no name. Bookmark will be empty.');
end
add_bookmark(tmp_nam, fig_nam);
end
% Generate a pdf
eps2pdf(tmp_nam, pdf_nam, 1, options.append, options.colourspace==2, options.quality);
catch ex
% Delete the eps
delete(tmp_nam);
rethrow(ex);
end
% Delete the eps
delete(tmp_nam);
if options.eps
try
% Generate an eps from the pdf
pdf2eps(pdf_nam, [options.name '.eps']);
catch ex
if ~options.pdf
% Delete the pdf
delete(pdf_nam);
end
rethrow(ex);
end
if ~options.pdf
% Delete the pdf
delete(pdf_nam);
end
end
end
if cls
% Close the created figure
close(fig);
else
% Reset the hardcopy mode
set(fig, 'InvertHardcopy', old_mode);
% Reset the axes limit and tick modes
for a = 1:numel(Hlims)
set(Hlims(a), 'XLimMode', Xlims{a}, 'YLimMode', Ylims{a}, 'ZLimMode', Zlims{a}, 'XTickMode', Xtick{a}, 'YTickMode', Ytick{a}, 'ZTickMode', Ztick{a});
end
end
return
function [fig options] = parse_args(nout, varargin)
% Parse the input arguments
% Set the defaults
fig = get(0, 'CurrentFigure');
options = struct('name', 'export_fig_out', ...
'crop', true, ...
'transparent', false, ...
'renderer', 0, ... % 0: default, 1: OpenGL, 2: ZBuffer, 3: Painters
'pdf', false, ...
'eps', false, ...
'png', false, ...
'tif', false, ...
'jpg', false, ...
'bmp', false, ...
'colourspace', 0, ... % 0: RGB/gray, 1: CMYK, 2: gray
'append', false, ...
'im', nout == 1, ...
'alpha', nout == 2, ...
'aa_factor', 3, ...
'magnify', 1, ...
'bookmark', false, ...
'quality', []);
native = false; % Set resolution to native of an image
% Go through the other arguments
for a = 1:nargin-1
if all(ishandle(varargin{a}))
fig = varargin{a};
elseif ischar(varargin{a}) && ~isempty(varargin{a})
if varargin{a}(1) == '-'
switch lower(varargin{a}(2:end))
case 'nocrop'
options.crop = false;
case {'trans', 'transparent'}
options.transparent = true;
case 'opengl'
options.renderer = 1;
case 'zbuffer'
options.renderer = 2;
case 'painters'
options.renderer = 3;
case 'pdf'
options.pdf = true;
case 'eps'
options.eps = true;
case 'png'
options.png = true;
case {'tif', 'tiff'}
options.tif = true;
case {'jpg', 'jpeg'}
options.jpg = true;
case 'bmp'
options.bmp = true;
case 'rgb'
options.colourspace = 0;
case 'cmyk'
options.colourspace = 1;
case {'gray', 'grey'}
options.colourspace = 2;
case {'a1', 'a2', 'a3', 'a4'}
options.aa_factor = str2double(varargin{a}(3));
case 'append'
options.append = true;
case 'bookmark'
options.bookmark = true;
case 'native'
native = true;
otherwise
val = str2double(regexp(varargin{a}, '(?<=-(m|M|r|R|q|Q))(\d*\.)?\d+(e-?\d+)?', 'match'));
if ~isscalar(val)
error('option %s not recognised', varargin{a});
end
switch lower(varargin{a}(2))
case 'm'
options.magnify = val;
case 'r'
options.magnify = val ./ get(0, 'ScreenPixelsPerInch');
case 'q'
options.quality = max(val, 0);
end
end
else
[p options.name ext] = fileparts(varargin{a});
if ~isempty(p)
options.name = [p filesep options.name];
end
switch lower(ext)
case {'.tif', '.tiff'}
options.tif = true;
case {'.jpg', '.jpeg'}
options.jpg = true;
case '.png'
options.png = true;
case '.bmp'
options.bmp = true;
case '.eps'
options.eps = true;
case '.pdf'
options.pdf = true;
otherwise
options.name = varargin{a};
end
end
end
end
% Check we have a figure handle
if isempty(fig)
error('No figure found');
end
% Set the default format
if ~isvector(options) && ~isbitmap(options)
options.png = true;
end
% Check whether transparent background is wanted (old way)
if isequal(get(fig, 'Color'), 'none')
options.transparent = true;
end
% If requested, set the resolution to the native vertical resolution of the
% first suitable image found
if native && isbitmap(options)
% Find a suitable image
list = findobj(fig, 'Type', 'image', 'Tag', 'export_fig_native');
if isempty(list)
list = findobj(fig, 'Type', 'image', 'Visible', 'on');
end
for hIm = list(:)'
% Check height is >= 2
height = size(get(hIm, 'CData'), 1);
if height < 2
continue
end
% Account for the image filling only part of the axes, or vice
% versa
yl = get(hIm, 'YData');
if isscalar(yl)
yl = [yl(1)-0.5 yl(1)+height+0.5];
else
if ~diff(yl)
continue
end
yl = yl + [-0.5 0.5] * (diff(yl) / (height - 1));
end
hAx = get(hIm, 'Parent');
yl2 = get(hAx, 'YLim');
% Find the pixel height of the axes
oldUnits = get(hAx, 'Units');
set(hAx, 'Units', 'pixels');
pos = get(hAx, 'Position');
set(hAx, 'Units', oldUnits);
if ~pos(4)
continue
end
% Found a suitable image
% Account for stretch-to-fill being disabled
pbar = get(hAx, 'PlotBoxAspectRatio');
pos = min(pos(4), pbar(2)*pos(3)/pbar(1));
% Set the magnification to give native resolution
options.magnify = (height * diff(yl2)) / (pos * diff(yl));
break
end
end
return
function A = downsize(A, factor)
% Downsample an image
if factor == 1
% Nothing to do
return
end
try
% Faster, but requires image processing toolbox
A = imresize(A, 1/factor, 'bilinear');
catch
% No image processing toolbox - resize manually
% Lowpass filter - use Gaussian as is separable, so faster
% Compute the 1d Gaussian filter
filt = (-factor-1:factor+1) / (factor * 0.6);
filt = exp(-filt .* filt);
% Normalize the filter
filt = single(filt / sum(filt));
% Filter the image
padding = floor(numel(filt) / 2);
for a = 1:size(A, 3)
A(:,:,a) = conv2(filt, filt', single(A([ones(1, padding) 1:end repmat(end, 1, padding)],[ones(1, padding) 1:end repmat(end, 1, padding)],a)), 'valid');
end
% Subsample
A = A(1+floor(mod(end-1, factor)/2):factor:end,1+floor(mod(end-1, factor)/2):factor:end,:);
end
return
function A = rgb2grey(A)
A = cast(reshape(reshape(single(A), [], 3) * single([0.299; 0.587; 0.114]), size(A, 1), size(A, 2)), class(A));
return
function A = check_greyscale(A)
% Check if the image is greyscale
if size(A, 3) == 3 && ...
all(reshape(A(:,:,1) == A(:,:,2), [], 1)) && ...
all(reshape(A(:,:,2) == A(:,:,3), [], 1))
A = A(:,:,1); % Save only one channel for 8-bit output
end
return
function [A v] = crop_background(A, bcol)
% Map the foreground pixels
[h w c] = size(A);
if isscalar(bcol) && c > 1
bcol = bcol(ones(1, c));
end
bail = false;
for l = 1:w
for a = 1:c
if ~all(A(:,l,a) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
bail = false;
for r = w:-1:l
for a = 1:c
if ~all(A(:,r,a) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
bail = false;
for t = 1:h
for a = 1:c
if ~all(A(t,:,a) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
bail = false;
for b = h:-1:t
for a = 1:c
if ~all(A(b,:,a) == bcol(a))
bail = true;
break;
end
end
if bail
break;
end
end
% Crop the background, leaving one boundary pixel to avoid bleeding on
% resize
v = [max(t-1, 1) min(b+1, h) max(l-1, 1) min(r+1, w)];
A = A(v(1):v(2),v(3):v(4),:);
return
function eps_remove_background(fname)
% Remove the background of an eps file
% Open the file
fh = fopen(fname, 'r+');
if fh == -1
error('Not able to open file %s.', fname);
end
% Read the file line by line
while true
% Get the next line
l = fgets(fh);
if isequal(l, -1)
break; % Quit, no rectangle found
end
% Check if the line contains the background rectangle
if isequal(regexp(l, ' *0 +0 +\d+ +\d+ +rf *[\n\r]+', 'start'), 1)
% Set the line to whitespace and quit
l(1:regexp(l, '[\n\r]', 'start', 'once')-1) = ' ';
fseek(fh, -numel(l), 0);
fprintf(fh, l);
break;
end
end
% Close the file
fclose(fh);
return
function b = isvector(options)
b = options.pdf || options.eps;
return
function b = isbitmap(options)
b = options.png || options.tif || options.jpg || options.bmp || options.im || options.alpha;
return
% Helper function
function A = make_cell(A)
if ~iscell(A)
A = {A};
end
return
function add_bookmark(fname, bookmark_text)
% Adds a bookmark to the temporary EPS file after %%EndPageSetup
% Read in the file
fh = fopen(fname, 'r');
if fh == -1
error('File %s not found.', fname);
end
try
fstrm = fread(fh, '*char')';
catch ex
fclose(fh);
rethrow(ex);
end
fclose(fh);
% Include standard pdfmark prolog to maximize compatibility
fstrm = strrep(fstrm, '%%BeginProlog', sprintf('%%%%BeginProlog\n/pdfmark where {pop} {userdict /pdfmark /cleartomark load put} ifelse'));
% Add page bookmark
fstrm = strrep(fstrm, '%%EndPageSetup', sprintf('%%%%EndPageSetup\n[ /Title (%s) /OUT pdfmark',bookmark_text));
% Write out the updated file
fh = fopen(fname, 'w');
if fh == -1
error('Unable to open %s for writing.', fname);
end
try
fwrite(fh, fstrm, 'char*1');
catch ex
fclose(fh);
rethrow(ex);
end
fclose(fh);
return
|
github
|
aamiranis/sampling_theory-master
|
ghostscript.m
|
.m
|
sampling_theory-master/results/exportfig/ghostscript.m
| 4,215 |
utf_8
|
621b90eb2972a74b0f4094afa317e96d
|
function varargout = ghostscript(cmd)
%GHOSTSCRIPT Calls a local GhostScript executable with the input command
%
% Example:
% [status result] = ghostscript(cmd)
%
% Attempts to locate a ghostscript executable, finally asking the user to
% specify the directory ghostcript was installed into. The resulting path
% is stored for future reference.
%
% Once found, the executable is called with the input command string.
%
% This function requires that you have Ghostscript installed on your
% system. You can download this from: http://www.ghostscript.com
%
% IN:
% cmd - Command string to be passed into ghostscript.
%
% OUT:
% status - 0 iff command ran without problem.
% result - Output from ghostscript.
% Copyright: Oliver Woodford, 2009-2010
% Thanks to Jonas Dorn for the fix for the title of the uigetdir window on
% Mac OS.
% Thanks to Nathan Childress for the fix to the default location on 64-bit
% Windows systems.
% 27/4/11 - Find 64-bit Ghostscript on Windows. Thanks to Paul Durack and
% Shaun Kline for pointing out the issue
% 4/5/11 - Thanks to David Chorlian for pointing out an alternative
% location for gs on linux.
% Call ghostscript
[varargout{1:nargout}] = system(sprintf('"%s" %s', gs_path, cmd));
return
function path = gs_path
% Return a valid path
% Start with the currently set path
path = user_string('ghostscript');
% Check the path works
if check_gs_path(path)
return
end
% Check whether the binary is on the path
if ispc
bin = {'gswin32c.exe', 'gswin64c.exe'};
else
bin = {'gs'};
end
for a = 1:numel(bin)
path = bin{a};
if check_store_gs_path(path)
return
end
end
% Search the obvious places
if ispc
default_location = 'C:\Program Files\gs\';
dir_list = dir(default_location);
if isempty(dir_list)
default_location = 'C:\Program Files (x86)\gs\'; % Possible location on 64-bit systems
dir_list = dir(default_location);
end
executable = {'\bin\gswin32c.exe', '\bin\gswin64c.exe'};
ver_num = 0;
% If there are multiple versions, use the newest
for a = 1:numel(dir_list)
ver_num2 = sscanf(dir_list(a).name, 'gs%g');
if ~isempty(ver_num2) && ver_num2 > ver_num
for b = 1:numel(executable)
path2 = [default_location dir_list(a).name executable{b}];
if exist(path2, 'file') == 2
path = path2;
ver_num = ver_num2;
end
end
end
end
if check_store_gs_path(path)
return
end
else
bin = {'/usr/bin/gs', '/usr/local/bin/gs'};
for a = 1:numel(bin)
path = bin{a};
if check_store_gs_path(path)
return
end
end
end
% Ask the user to enter the path
while 1
if strncmp(computer, 'MAC', 3) % Is a Mac
% Give separate warning as the uigetdir dialogue box doesn't have a
% title
uiwait(warndlg('Ghostscript not found. Please locate the program.'))
end
base = uigetdir('/', 'Ghostcript not found. Please locate the program.');
if isequal(base, 0)
% User hit cancel or closed window
break;
end
base = [base filesep];
bin_dir = {'', ['bin' filesep], ['lib' filesep]};
for a = 1:numel(bin_dir)
for b = 1:numel(bin)
path = [base bin_dir{a} bin{b}];
if exist(path, 'file') == 2
if check_store_gs_path(path)
return
end
end
end
end
end
error('Ghostscript not found. Have you installed it from www.ghostscript.com?');
function good = check_store_gs_path(path)
% Check the path is valid
good = check_gs_path(path);
if ~good
return
end
% Update the current default path to the path found
if ~user_string('ghostscript', path)
warning('Path to ghostscript installation could not be saved. Enter it manually in ghostscript.txt.');
return
end
return
function good = check_gs_path(path)
% Check the path is valid
[good message] = system(sprintf('"%s" -h', path));
good = good == 0;
return
|
github
|
aamiranis/sampling_theory-master
|
print2eps.m
|
.m
|
sampling_theory-master/results/exportfig/print2eps.m
| 6,295 |
utf_8
|
afc45df95a67e7d634c24d5c2b265207
|
%PRINT2EPS Prints figures to eps with improved line styles
%
% Examples:
% print2eps filename
% print2eps(filename, fig_handle)
% print2eps(filename, fig_handle, options)
%
% This function saves a figure as an eps file, with two improvements over
% MATLAB's print command. First, it improves the line style, making dashed
% lines more like those on screen and giving grid lines their own dotted
% style. Secondly, it substitutes original font names back into the eps
% file, where these have been changed by MATLAB, for up to 11 different
% fonts.
%
%IN:
% filename - string containing the name (optionally including full or
% relative path) of the file the figure is to be saved as. A
% ".eps" extension is added if not there already. If a path is
% not specified, the figure is saved in the current directory.
% fig_handle - The handle of the figure to be saved. Default: gcf.
% options - Additional parameter strings to be passed to print.
% Copyright (C) Oliver Woodford 2008-2012
% The idea of editing the EPS file to change line styles comes from Jiro
% Doke's FIXPSLINESTYLE (fex id: 17928)
% The idea of changing dash length with line width came from comments on
% fex id: 5743, but the implementation is mine :)
% 14/11/2011 Fix a MATLAB bug rendering black or white text incorrectly.
% Thanks to Mathieu Morlighem for reporting the issue and obtaining a fix
% from TMW.
% 8/12/2011 Added ability to correct fonts. Several people have requested
% this at one time or another, and also pointed me to printeps (fex id:
% 7501), so thank you to them. My implementation (which was not inspired by
% printeps - I'd already had the idea for my approach) goes
% slightly further in that it allows multiple fonts to be swapped.
% 14/12/2011 Fix bug affecting font names containing spaces. Many thanks to
% David Szwer for reporting the issue.
% 25/1/2012 Add a font not to be swapped. Thanks to Anna Rafferty and Adam
% Jackson for reporting the issue. Also fix a bug whereby using a font
% alias can lead to another font being swapped in.
% 10/4/2012 Make the font swapping case insensitive.
function print2eps(name, fig, varargin)
options = {'-depsc2'};
if nargin < 2
fig = gcf;
elseif nargin > 2
options = [options varargin];
end
% Construct the filename
if numel(name) < 5 || ~strcmpi(name(end-3:end), '.eps')
name = [name '.eps']; % Add the missing extension
end
% Find all the used fonts in the figure
font_handles = findall(fig, '-property', 'FontName');
fonts = get(font_handles, 'FontName');
if ~iscell(fonts)
fonts = {fonts};
end
% Map supported font aliases onto the correct name
fontsl = lower(fonts);
for a = 1:numel(fonts)
f = fontsl{a};
f(f==' ') = [];
switch f
case {'times', 'timesnewroman', 'times-roman'}
fontsl{a} = 'times-roman';
case {'arial', 'helvetica'}
fontsl{a} = 'helvetica';
case {'newcenturyschoolbook', 'newcenturyschlbk'}
fontsl{a} = 'newcenturyschlbk';
otherwise
end
end
fontslu = unique(fontsl);
% Determine the font swap table
matlab_fonts = {'Helvetica', 'Times-Roman', 'Palatino', 'Bookman', 'Helvetica-Narrow', 'Symbol', ...
'AvantGarde', 'NewCenturySchlbk', 'Courier', 'ZapfChancery', 'ZapfDingbats'};
matlab_fontsl = lower(matlab_fonts);
require_swap = find(~ismember(fontslu, matlab_fontsl));
unused_fonts = find(~ismember(matlab_fontsl, fontslu));
font_swap = cell(3, 0);
for a = 1:min(numel(require_swap), numel(unused_fonts))
ind = find(strcmp(fontslu{require_swap(a)}, fontsl));
n = numel(ind);
font_swap(1,end+1:end+n) = reshape(mat2cell(font_handles(ind), ones(n, 1)), 1, []);
font_swap(2,end-n+1:end) = matlab_fonts(unused_fonts(a));
font_swap(3,end-n+1:end) = reshape(fonts(ind), 1, []);
end
% Swap the fonts
for a = 1:size(font_swap, 2)
set(font_swap{1,a}, 'FontName', font_swap{2,a});
end
% Set paper size
old_mode = get(fig, 'PaperPositionMode');
set(fig, 'PaperPositionMode', 'auto');
% MATLAB bug fix - black and white text can come out inverted sometimes
% Find the white and black text
white_text_handles = findobj(fig, 'Type', 'text');
M = get(white_text_handles, 'Color');
if iscell(M)
M = cell2mat(M);
end
M = sum(M, 2);
black_text_handles = white_text_handles(M == 0);
white_text_handles = white_text_handles(M == 3);
% Set the font colors slightly off their correct values
set(black_text_handles, 'Color', [0 0 0] + eps);
set(white_text_handles, 'Color', [1 1 1] - eps);
% Print to eps file
print(fig, options{:}, name);
% Reset the font colors
set(black_text_handles, 'Color', [0 0 0]);
set(white_text_handles, 'Color', [1 1 1]);
% Reset paper size
set(fig, 'PaperPositionMode', old_mode);
% Correct the fonts
if ~isempty(font_swap)
% Reset the font names in the figure
for a = 1:size(font_swap, 2)
set(font_swap{1,a}, 'FontName', font_swap{3,a});
end
% Replace the font names in the eps file
font_swap = font_swap(2:3,:);
try
swap_fonts(name, font_swap{:});
catch
warning('swap_fonts() failed. This is usually because the figure contains a large number of patch objects. Consider exporting to a bitmap format in this case.');
return
end
end
% Fix the line styles
try
fix_lines(name);
catch
warning('fix_lines() failed. This is usually because the figure contains a large number of patch objects. Consider exporting to a bitmap format in this case.');
end
return
function swap_fonts(fname, varargin)
% Read in the file
fh = fopen(fname, 'r');
if fh == -1
error('File %s not found.', fname);
end
try
fstrm = fread(fh, '*char')';
catch ex
fclose(fh);
rethrow(ex);
end
fclose(fh);
% Replace the font names
for a = 1:2:numel(varargin)
fstrm = regexprep(fstrm, [varargin{a} '-?[a-zA-Z]*\>'], varargin{a+1}(~isspace(varargin{a+1})));
end
% Write out the updated file
fh = fopen(fname, 'w');
if fh == -1
error('Unable to open %s for writing.', fname2);
end
try
fwrite(fh, fstrm, 'char*1');
catch ex
fclose(fh);
rethrow(ex);
end
fclose(fh);
return
|
github
|
aamiranis/sampling_theory-master
|
sgwt_cheby_square.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_cheby_square.m
| 1,940 |
utf_8
|
5dd1536abce104317a8094bb4c7fcc51
|
% sgwt_cheby_square : Chebyshev coefficients for square of polynomial
%
% function d=sgwt_cheby_square(c)
%
% Inputs :
% c - Chebyshev coefficients for p(x) = sum c(1+k) T_k(x) ; 0<=K<=M
%
% Outputs :
% d - Chebyshev coefficients for p(x)^2 = sum d(1+k) T_k(x) ;
% 0<=k<=2*M
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function d=sgwt_cheby_square(c)
M=numel(c)-1;
cp=c;
cp(1)=.5*c(1);
% adjust cp so that
% p(x) = sum cp(1+k) T_k(x)
% for all k>=0 (rather than with special case for k=0)
%
% Then formula for dp in terms of cp is simpler.
% Ref: my notes, july 20, 2009
dp=zeros(1,2*M+1);
% keep in mind : due to indexing from 1
% c(1+k) is k'th Chebyshev coefficient
for m=0:(2*M)
if (m==0)
dp(1+m)=dp(1+m)+.5*cp(1)^2;
for i=0:M
dp(1+m)=dp(1+m)+.5*cp(1+i)^2;
end
elseif (m<=M)
for i=0:m
dp(1+m)=dp(1+m)+.5*cp(1+i)*cp(1+m-i);
end
for i=0:(M-m)
dp(1+m)=dp(1+m)+.5*cp(1+i)*cp(1+i+m);
end
for i=m:M
dp(1+m)=dp(1+m)+.5*cp(1+i)*cp(1+i-m);
end
else % M<m<=2*M
for i=(m-M):M
dp(1+m)=dp(1+m)+.5*cp(1+i)*cp(1+m-i);
end
end
end
d=dp;
d(1)=2*dp(1);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_kernel_abspline3.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_kernel_abspline3.m
| 1,879 |
utf_8
|
2cb063d47b5ee454c07302c6428e7dc5
|
% sgwt_kernel_abspline3 : Monic polynomial / cubic spline / power law decay kernel
%
% function r = sgwt_kernel_abspline3(x,alpha,beta,t1,t2)
%
% defines function g(x) with g(x) = c1*x^alpha for 0<x<x1
% g(x) = c3/x^beta for x>t2
% cubic spline for t1<x<t2,
% Satisfying g(t1)=g(t2)=1
%
% Inputs :
% x : array of independent variable values
% alpha : exponent for region near origin
% beta : exponent decay
% t1, t2 : determine transition region
%
% Outputs :
% r - result (same size as x)
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r = sgwt_kernel_abspline3(x,alpha,beta,t1,t2)
r=zeros(size(x));
% compute spline coefficients
% M a = v
M=[[1 t1 t1^2 t1^3];...
[1 t2 t2^2 t2^3];...
[0 1 2*t1 3*t1^2];...
[0 1 2*t2 3*t2^2]];
%v=[t1^alpha ; t2^(-beta) ; alpha*t1^(alpha-1) ; -beta*t2^(-beta-1)];
v=[1 ; 1 ; t1^(-alpha)*alpha*t1^(alpha-1) ; -beta*t2^(-beta-1)*t2^beta];
a=M\v;
r1=find(x>=0 & x<t1);
r2=find(x>=t1 & x<t2);
r3=find(x>=t2);
r(r1)=x(r1).^alpha*t1^(-alpha);
r(r3)=x(r3).^(-beta)*t2^(beta);
x2=x(r2);
r(r2)=a(1)+a(2)*x2+a(3)*x2.^2+a(4)*x2.^3;
% tmp=polyval(flipud(a),x2);
% keyboard
|
github
|
aamiranis/sampling_theory-master
|
sgwt_kernel_abspline5.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_kernel_abspline5.m
| 2,174 |
utf_8
|
f6125a68524de3c1b9d68a60c20b04b9
|
% sgwt_kernel_abspline5 : Monic polynomial / quintic spline / power law decay kernel
%
% function r = sgwt_kernel_abspline5(x,alpha,beta,t1,t2)
%
% Defines function g(x) with g(x) = c1*x^alpha for 0<x<x1
% g(x) = c3/x^beta for x>t2
% quintic spline for t1<x<t2,
% Satisfying g(t1)=g(t2)=1
% g'(t1)=g'(t2)
% g''(t1)=g''(t2)
%
% Inputs :
% x : array of independent variable values
% alpha : exponent for region near origin
% beta : exponent decay
% t1, t2 : determine transition region
%
% Outputs :
% r - result (same size as x)
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r = sgwt_kernel_abspline5(x,alpha,beta,t1,t2)
r=zeros(size(x));
% compute spline coefficients
% M a = v
M=[[1 t1 t1^2 t1^3 t1^4 t1^5];...
[1 t2 t2^2 t2^3 t2^4 t2^5];...
[0 1 2*t1 3*t1^2 4*t1^3 5*t1^4];...
[0 1 2*t2 3*t2^2 4*t2^3 5*t2^4];
[0 0 2 6*t1 12*t1^2 20*t1^3];...
[0 0 2 6*t2 12*t2^2 20*t2^3]...
];
%v=[t1^alpha ; t2^(-beta) ; alpha*t1^(alpha-1) ; -beta*t2^(-beta-1)];
v=[1 ; 1 ; ...
t1^(-alpha)*alpha*t1^(alpha-1) ; -beta*t2^(-beta-1)*t2^beta; ...
t1^(-alpha)*alpha*(alpha-1)*t1^(alpha-2);-beta*(-beta-1)*t2^(-beta-2)*t2^beta
];
a=M\v;
r1=find(x>=0 & x<t1);
r2=find(x>=t1 & x<t2);
r3=find(x>=t2);
r(r1)=x(r1).^alpha*t1^(-alpha);
r(r3)=x(r3).^(-beta)*t2^(beta);
x2=x(r2);
r(r2)=a(1)+a(2)*x2+a(3)*x2.^2+a(4)*x2.^3+a(5)*x2.^4+a(6)*x2.^5;
% tmp=polyval(flipud(a),x2);
% keyboard
|
github
|
aamiranis/sampling_theory-master
|
sgwt_adjoint.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_adjoint.m
| 1,328 |
utf_8
|
a1b915af5342360927ac1e544a9e812c
|
% sgwt_adjoint : Compute adjoint of sgw transform
%
% function adj=sgwt_inverse(y,L,c,arange)
%
% Inputs:
% y - sgwt coefficients
% L - laplacian
% c - cell array of Chebyshev coefficients defining transform
% arange - spectral approximation range
%
% Outputs:
% adj - computed sgwt adjoint applied to y
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function adj=sgwt_adjoint(y,L,c,arange)
assert(iscell(c));
N=size(L,1);
% first compute adj = W^*y ( sort of slowly )
adj=zeros(N,1);
%fprintf('computing adjoint\n');
for j=1:numel(c)
tmp=sgwt_cheby_op(y{j},L,c{j},arange);
adj=adj+tmp;
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_cheby_coeff.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_cheby_coeff.m
| 1,552 |
utf_8
|
fcab96b5fc2ee0008daebc18b441206e
|
% sgwt_cheby_coeff : Compute Chebyshev coefficients of given function
%
% function c=sgwt_cheby_coeff(g,m,N,arange)
%
% Inputs:
% g - function handle, should define function on arange
% m - maximum order Chebyshev coefficient to compute
% N - grid order used to compute quadrature (default is m+1)
% arange - interval of approximation (defaults to [-1,1] )
%
% Outputs:
% c - array of Chebyshev coefficients, ordered such that c(j+1) is
% j'th Chebyshev coefficient
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function c=sgwt_cheby_coeff(g,m,N,arange)
if ~exist('N','var')
N=m+1;
end
if ~exist('arange','var')
arange=[-1, 1];
end
a1=(arange(2)-arange(1))/2;
a2=(arange(2)+arange(1))/2;
for j=1:m+1
c(j) = sum ( g(a1* cos( (pi*((1:N)-0.5))/N) + a2).*cos(pi*(j-1)*((1:N)-.5)/N) )*2/N;
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_meshmat.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_meshmat.m
| 2,230 |
utf_8
|
8be6b355e7542c5588dd4ccf2006a51c
|
% sgwt_meshmat : Adjacency matrix for regular 2d mesh
%
% function A=meshmat_p(dim,varargin)
%
% Inputs:
% dim - size of 2d mesh
% Selectable control parameters:
% boundary - 'rectangle' or 'torus'
%
% Outputs:
% A - adjacency matrix
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function A=sgwt_meshmat(dim,varargin)
control_params={'boundary','rectangle'};
argselectAssign(control_params);
argselectCheck(control_params,varargin);
argselectAssign(varargin);
if (numel(dim)==1)
dim=[1 1]*dim;
end
% build adjacency matrix : find i,j coordinates of center points
% and right and bottom neighbors, then build connectivity matrix.
% For each valid center,neighbor pair, will add A(center,neighbor)=1
% and A(neighbor,center)=1, so A will be symmetric
N=prod(dim);
[alli,allj]=find(ones(dim));
% (ci(k),cj(k)) has neighbor (ni(k),nj(k))
ci=[alli;alli];
cj=[allj;allj];
ni=[alli ; alli+1];
nj=[allj+1; allj];
switch boundary
case 'rectangle'
% prune edges at boundary
valid=(ni>=1 & ni<=dim(1) & nj>=1 & nj<=dim(2));
ni=ni(valid);
nj=nj(valid);
ci=ci(valid);
cj=cj(valid);
cind=dim(1)*(cj-1)+ci;
nind=dim(1)*(nj-1)+ni;
case 'torus'
% wrap indices to make torus
ni=mod(ni,dim(1))+1;
nj=mod(nj,dim(2))+1;
cind=dim(1)*(cj-1)+ci;
nind=dim(1)*(nj-1)+ni;
otherwise
error('unknown boundary option');
end
% assemble connection matrix
A=sparse([cind,nind],[nind,cind],ones(1,2*numel(ni)),N,N);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_irregular_meshmat.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_irregular_meshmat.m
| 2,155 |
utf_8
|
d04f2a817116506446dea051cf5100f7
|
% sgwt_irregular_meshmat : Adjacency matrix from irregular domain mask
%
% function A = sgwt_irregular_meshmat(mask)
%
% Computes the adjaceny matrix of graph for given 2-d irregular
% domain. Vertices of graph correspond to nonzero elements of
% mask. Edges in graph connect to (up to) 4 nearest neighbors.
%
% Inputs :
%
% mask - binary map of desired 2-d irregular domain
%
% Outputs:
% A - adjacency matrix of graph for irregular domain
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function A =sgwt_irregular_meshmat(mask)
ind=nan(size(mask));
ind(logical(mask))=1:nnz(mask);
N=nnz(mask);
% there will be, at most, 2*N edges
% so 4*N nonzero elements in A
% generate list of edges
% i j 1
% whenever vertex i connects to vertex j
i=zeros(4*N,1);
j=zeros(4*N,1);
% Create array of indices
% ni{k} are pixels that have neighbor type k
% nj{k} are the inidices of pixels of the corresponding neighbor
%
% k=1 'top' k=2 'right' k=3 'bottom' k=4 'left'
offset_list={[1 0],[0 1],[-1 0],[0 -1]};
for k=1:numel(offset_list)
offset=offset_list{k};
nmask=shift(mask,offset);
nind=shift(ind,offset);
hnm =mask & shift(mask,offset);
% hnm "has neighbor mask" is one for pixels that have the neighbor
% defined by offset, zero for pixels that do not have such a neighbor
ni{k}=ind(hnm);
nj{k}=nind(hnm);
end
i=[ni{1};ni{2};ni{3};ni{4}];
j=[nj{1};nj{2};nj{3};nj{4}];
A=sparse(i,j,ones(size(i)));
|
github
|
aamiranis/sampling_theory-master
|
sgwt_view_design.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_view_design.m
| 2,044 |
utf_8
|
247bd54a5a76a94390e1b9c63c10f32b
|
% sgwt_view_design : display filter design in spectral domain
%
% function sgwt_view_design(g,t,arange)
%
% This function graphs the input scaling function and wavelet
% kernels, indicates the wavelet scales by legend, and also shows
% the sum of squares G and corresponding frame bounds for the transform.
%
% Inputs :
% g - cell array of function handles for scaling function and
% wavelet kernels
% t - array of wavelet scales corresponding to wavelet kernels in g
% arange - approximation range
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function sgwt_view_design(g,t,arange)
x=linspace(arange(1),arange(2),1e3);
clf
hold on
J=numel(g)-1;
co=get(gca,'ColorOrder');
co=repmat(co,[J,1]);
G=0*x;
for n=0:J
plot(x,g{1+n}(x),'Color',co(1+n,:));
G=G+g{1+n}(x).^2;
end
plot(x,G,'k');
[A,B]=sgwt_framebounds(g,arange(1),arange(2));
hline(A,'m:');
hline(B,'g:');
leglabels{1}='h';
for j=1:J
if ~isempty(t)
leglabels{1+j}=sprintf('t=%.2f',t(j));
else
leglabels{1+j}='';
end
end
leglabels{J+2}='G';
leglabels{J+3}='A';
leglabels{J+4}='B';
%set(gca,'Ytick',0:3);
legend(leglabels)
title(['Scaling function kernel h(x), Wavelet kernels g(t_j x), Sum ' ...
'of Squares G, and Frame Bounds']);
function hline(y,varargin)
xl=xlim;
plot(xl,y*[1 1],varargin{:});
|
github
|
aamiranis/sampling_theory-master
|
sgwt_randmat.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_randmat.m
| 1,167 |
utf_8
|
11ba319fb1710fe43c0b282b8f4fbd31
|
% sgwt_randmat : Compute random (Erdos-Renyi model) graph
%
% function A=sgwt_randmat(N,thresh)
%
% Inputs :
% N - number of vertices
% thresh - probability of connection of each edge
%
% Outputs :
% A - adjacency matrix
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function [A]=sgwt_randmat(N,thresh)
assert(thresh<=1 && thresh>=0);
A=rand(N)>1-thresh;
B=triu(A);
A=B+B';
for i=1:size(A,1)
A(i,i)=0;
end
A=sparse(A);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_rough_lmax.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_rough_lmax.m
| 1,675 |
utf_8
|
e86284557ee6b70d9b5bc8538c8677d6
|
% sgwt_rough_lmax : Rough upper bound on maximum eigenvalue of L
%
% function lmax=sgwt_rough_lmax(L)
%
% Runs Arnoldi algorithm with a large tolerance, then increases
% calculated maximum eigenvalue by 1 percent. For much of the SGWT
% machinery, we need to approximate the wavelet kernels on an
% interval that contains the spectrum of L. The only cost of using
% a larger interval is that the polynomial approximation over the
% larger interval may be a slightly worse approxmation on the
% actual spectrum. As this is a very mild effect, it is not likely
% necessary to obtain very tight bonds on the spectrum of L
%
% Inputs :
% L - input graph Laplacian
%
% Outputs :
% lmax - estimated upper bound on maximum eigenvalue of L
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function lmax=sgwt_rough_lmax(L)
opts=struct('tol',5e-3,'p',10,'disp',0);
lmax=eigs(L,1,'lm',opts);
lmax=lmax*1.01; % just increase by 1 percent to be robust to error
|
github
|
aamiranis/sampling_theory-master
|
sgwt_kernel_meyer.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_kernel_meyer.m
| 1,224 |
utf_8
|
5537c2610259b92be34a5fea5be86ac8
|
% sgwt_kernel_meyer : evaluates meyer wavelet kernel and scaling function
% function r=sgwt_kernel_meyer(x,kerneltype)
%
% Inputs
% x : array of independent variable values
% kerneltype : string, either 'sf' or 'wavelet'
%
% Ouputs
% r : array of function values, same size as x.
%
% meyer wavelet kernel : supported on [2/3,8/3]
% meyer scaling function kernel : supported on [0,4/3]
%
% Use of this kernel for SGWT proposed by Nora Leonardi and Dimitri Van De Ville,
% "Wavelet Frames on Graphs Defined by fMRI Functional Connectivity"
% International Symposium on Biomedical Imaging, 2011
function r=sgwt_kernel_meyer(x,kerneltype)
l1=2/3;
l2=4/3;%2*l1;
l3=8/3;%4*l1;
v=@(x) x.^4.*(35-84*x+70*x.^2-20*x.^3) ;
r1ind=find(x>=0 & x<l1);
r2ind=find(x>=l1 & x<l2);
r3ind=find(x>=l2 & x<l3);
% as we initialize r with zero, computed function will implicitly be zero for
% all x not in one of the three regions defined above
r=zeros(size(x));
switch kerneltype
case 'sf'
r(r1ind)=1;
r(r2ind)=cos((pi/2)*v(abs(x(r2ind))/l1-1));
case 'wavelet'
r(r2ind)=sin((pi/2)*v(abs(x(r2ind))/l1-1));
r(r3ind)=cos((pi/2)*v(abs(x(r3ind))/l2-1));
otherwise
error(sprintf('unknown kernel type %s',kerneltype));
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_cheby_eval.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_cheby_eval.m
| 1,740 |
utf_8
|
351350401b5c3068e214d45848ee0f76
|
% sgwt_cheby_eval : Evaluate shifted Chebyshev polynomial on given domain
%
% function r=sgwt_cheby_eval(x,c,arange)
%
% Compute Chebyshev polynomial of laplacian applied to input.
% This is primarily for visualization
%
% Inputs:
% x - input values to evaluate polynomial on
% c - Chebyshev coefficients (c(1+j) is jth coefficient)
% arange - interval of approximation. Note that x need not be inside
% arange, but the polynomial will no longer be near the
% approximated function outside of arange.
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=sgwt_cheby_eval(x,c,arange)
% By setting the operator L to mean (pointwise) multiplication by x,
% and f to be vector of ones, p(L)f will contain p(x) at each
% point. This lets us use sgwt_cheby_op to evaluate the Chebyshev polynomials.
L=spdiags(x(:),0,speye(numel(x)));
f=ones(size(x(:)));
r=sgwt_cheby_op(f,L,c,arange);
if iscell(r)
for k=1:numel(r)
r{k}=reshape(r{k},size(x));
end
else
r=reshape(r,size(x));
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_cheby_op.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_cheby_op.m
| 2,505 |
utf_8
|
5183cc2390cb62eeed472b015abc0fd2
|
% sgwt_cheby_op : Chebyshev polynomial of Laplacian applied to vector
%
% function r=sgwt_cheby_op(f,L,c,arange)
%
% Compute (possibly multiple) polynomials of laplacian (in Chebyshev
% basis) applied to input.
%
% Coefficients for multiple polynomials may be passed as a cell array. This is
% equivalent to setting
% r{1}=sgwt_cheby_op(f,L,c{1},arange);
% r{2}=sgwt_cheby_op(f,L,c{2},arange);
% ...
%
% but is more efficient as the Chebyshev polynomials of L applied
% to f can be computed once and shared.
%
% Inputs:
% f- input vector
% L - graph laplacian (should be sparse)
% c - Chebyshev coefficients. If c is a plain array, then they are
% coefficients for a single polynomial. If c is a cell array,
% then it contains coefficients for multiple polynomials, such
% that c{j}(1+k) is k'th Chebyshev coefficient the j'th polynomial.
% arange - interval of approximation
%
% Outputs:
% r - result. If c is cell array, r will be cell array of vectors
% size of f. If c is a plain array, r will be a vector the size
% of f.
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=sgwt_cheby_op(f,L,c,arange)
if ~iscell(c)
r=sgwt_cheby_op(f,L,{c},arange);
r=r{1};
return;
end
Nscales=numel(c);
M=zeros(size(Nscales));
for j=1:Nscales
M(j)=numel(c{j});
end
assert(all(M>=2));
maxM=max(M);
%Twf_new = T_j(L) f
%Twf_cur T_{j-1}(L) f
%TWf_old T_{j-2}(L) f
a1=(arange(2)-arange(1))/2;
a2=(arange(2)+arange(1))/2;
Twf_old=f; %j=0;
Twf_cur=(L*f-a2*f)/a1; % j=1;
for j=1:Nscales
r{j}=.5*c{j}(1)*Twf_old + c{j}(2)*Twf_cur;
end
for k=2:maxM
Twf_new = (2/a1)*(L*Twf_cur-a2*Twf_cur)-Twf_old;
for j=1:Nscales
if 1+k<=M(j)
r{j}=r{j}+c{j}(k+1)*Twf_new;
end
end
Twf_old=Twf_cur;
Twf_cur=Twf_new;
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_inverse.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_inverse.m
| 1,944 |
utf_8
|
f162cbfdf8957b52d971032bbf6d8e5c
|
% sgwt_inverse : Compute inverse sgw transform, via conjugate gradients
%
% function r=sgwt_inverse(y,L,c,arange)
%
% Inputs:
% y - sgwt coefficients
% L - laplacian
% c - cell array of Chebyshev coefficients defining transform
% arange - spectral approximation range
%
% Selectable Control Parameters
% tol - tolerance for conjugate gradients (default 1e-6)
%
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=sgwt_inverse(y,L,c,arange,varargin)
control_params={'tol',1e-6};
argselectAssign(control_params);
argselectCheck(control_params,varargin);
argselectAssign(varargin);
assert(iscell(c));
N=size(L,1);
% first compute adj = W^*y ( sort of slowly )
fprintf('computing adjoint\n');
adj=sgwt_adjoint(y,L,c,arange);
% W^* W
% compute P(x) = p(x)^2
fprintf('computing cheby coeff for P=p^2\n');
for j=1:numel(c)
M(j)=numel(c{j});
end
maxM=max(M);
% dkh : code below could remove unnecessary use of cell arrays.
d{1}=zeros(1,1+2*(maxM-1));
for j=1:numel(c)
cpad{j}=zeros(maxM,1);
cpad{j}(1:M(j))=c{j};
d{1}=d{1}+sgwt_cheby_square(cpad{j});
end
wstarw = @(x) sgwt_cheby_op(x,L,d{1},arange);
%% conjugate gradients
fprintf('computing inverse by conjugate gradients\n');
r=pcg(wstarw,adj,tol);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_kernel_simple_tf.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_kernel_simple_tf.m
| 941 |
utf_8
|
b1e5ddf012d9da6e0f1dc36cb52e473c
|
% sgwt_kernel_simple_tf : evaluates "simple" tight-frame kernel
%
% this is similar to meyer kernel, but simpler
%
% function is essentially sin^2(x) in ascending part,
% essentially cos^2 in descending part.
%
% function r= sgwt_kernel_simple_tf(x,kerneltype)
%
% Inputs
% x : array of independent variable values
% kerneltype : string, either 'sf' or 'wavelet'
%
% Ouputs
% r : array of function values, same size as x.
%
% simple tf wavelet kernel : supported on [1/4,1]
% simple tf scaling function kernel : supported on [0,1/2]
%
function r= sgwt_kernel_simple_tf(x,kerneltype)
% h : [0,1]->[0,1] must satisfy h(0)=0, h(1)=1 .
h=@(x) sin(pi*x/2).^2;
r1ind=find(x>=0 & x<0.25);
r2ind=find(x>=.25 & x<0.5);
r3ind=find(x>=.5 & x<1);
r=zeros(size(x));
switch kerneltype
case 'sf'
r(r1ind)=1;
r(r2ind)=sqrt(1-h(4*x(r2ind)-1).^2);
case 'wavelet'
r(r2ind)=h(4*(x(r2ind)-1/4));
r(r3ind)=sqrt(1-h(2*x(r3ind)-1).^2);
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_check_connected.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_check_connected.m
| 1,099 |
utf_8
|
f1f8b67da83442e06b1d3e495595fb2c
|
% sgwt_check_connected : Check connectedness of graph
%
% function r=sgwt_check_connected(A)
%
% returns 1 if graph is connected, 0 otherwise
% Uses boost graph library breadth first search
%
% Inputs :
% A - adjacency matrix
%
% Outputs :
% r - result
%
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=sgwt_check_connected(A)
d=bfs(A,1);
r=~any(d==-1);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_framebounds.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_framebounds.m
| 1,434 |
utf_8
|
9d7475831d87b18cd390d84dd8e5317e
|
% sgwt_framebounds : Compute approximate frame bounds for given sgw transform
%
% function [A,B,sg2,x]=sgwt_framebounds(g,lmin,lmax)
%
% Inputs :
% g - function handles computing sgwt scaling function and wavelet
% kernels
% lmin,lmax - minimum nonzero, maximum eigenvalue
%
% Outputs :
% A , B - frame bounds
% sg2 - array containing sum of g(s_i*x)^2 (for visualization)
% x - x values corresponding to sg2
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function [A,B,sg2,x]=sgwt_framebounds(g,lmin,lmax)
N=1e4; % number of points for line search
x=linspace(lmin,lmax,N);
Nscales=numel(g);
sg2=zeros(size(x));
for ks=1:Nscales
sg2=sg2+(g{ks}(x)).^2;
end
A=min(sg2);
B=max(sg2);
|
github
|
aamiranis/sampling_theory-master
|
sgwt_delta.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_delta.m
| 1,086 |
utf_8
|
35b91034385c7a5ad54d4c636df108d8
|
% sgwt_delta : Return vector with one nonzero entry equal to 1.
%
% function r=sgwt_delta(N,j)
%
% Returns length N vector with r(j)=1, all others zero
%
% Inputs :
% N - length of vector
% j - position of "delta" impulse
%
% Outputs:
% r - returned vector
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=sgwt_delta(N,j)
r=zeros(N,1);
r(j)=1;
|
github
|
aamiranis/sampling_theory-master
|
sgwt_laplacian.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_laplacian.m
| 2,419 |
utf_8
|
c69f646e26bdc6127f0acea3a9ea5778
|
% sgwt_laplacian : Compute graph laplacian from connectivity matrix
%
% function L = sgwt_laplacian(A,varargin)
%
% Connectivity matrix A must be symmetric. A may have arbitrary
% non-negative values, in which case the graph is a weighted
% graph. The weighted graph laplacian follows the definition in
% "Spectral Graph Theory" by Fan R. K. Chung
%
% Inputs :
% A - adjacency matrix
% Selectable Input parameters :
% 'opt' - may be 'raw' or 'normalized' (default raw) to select
% un-normalized or normalized laplacian
%
% Outputs :
% L - graph Laplacian
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function L = sgwt_laplacian(A,varargin)
control_params={'opt','raw'}; % or normalized
argselectAssign(control_params);
argselectCheck(control_params,varargin);
argselectAssign(varargin);
N=size(A,1);
if N~=size(A,2)
error('A must be square');
end
degrees=vec(full(sum(A)));
% to deal with loops, must extract diagonal part of A
diagw=diag(A);
% w will consist of non-diagonal entries only
[ni2,nj2,w2]=find(A);
ndind=find(ni2~=nj2); % as assured here
ni=ni2(ndind);
nj=nj2(ndind);
w=w2(ndind);
di=vec(1:N); % diagonal indices
switch opt
case 'raw'
% non-normalized laplacian L=D-A
L=sparse([ni;di],[nj;di],[-w;degrees-diagw],N,N);
case 'normalized'
% normalized laplacian D^(-1/2)*(D-A)*D^(-1/2)
% diagonal entries
dL=(1-diagw./degrees); % will produce NaN for degrees==0 locations
dL(degrees==0)=0;% which will be fixed here
% nondiagonal entries
ndL=-w./vec( sqrt(degrees(ni).*degrees(nj)) );
L=sparse([ni;di],[nj;di],[ndL;dL],N,N);
otherwise
error('unknown option');
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_filter_design.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_filter_design.m
| 3,113 |
utf_8
|
1fe642bdc562bf76e4ef0d65828d3be3
|
% sgwt_filter_design : Return list of scaled wavelet kernels and derivatives
%
% g{1} is scaling function kernel,
% g{2} ... g{Nscales+1} are wavelet kernels
%
% function [g,t]=sgwt_filter_design(lmax,Nscales,varargin)
%
% Inputs :
% lmax - upper bound on spectrum
% Nscales - number of wavelet scales
%
% selectable parameters :
% designtype
% lpfactor - default 20. lmin=lmax/lpfactor will be used to determine
% scales, then scaling function kernel will be created to
% fill the lowpass gap.
%
% Outputs :
% g - wavelet and scaling function kernel function handles
% t - values of scale parameters used for wavelet kernels
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function [g,t]=sgwt_filter_design(lmax,Nscales,varargin)
control_params={'designtype','abspline3','lpfactor',20,...
'a',2,...
'b',2,...
't1',1,...
't2',2,...
};
argselectAssign(control_params);
argselectCheck(control_params,varargin);
argselectAssign(varargin);
switch designtype
case 'abspline3'
lmin=lmax/lpfactor;
t=sgwt_setscales(lmin,lmax,Nscales);
gl = @(x) exp(-x.^4);
glp = @(x) -4*x.^3 .*exp(-x.^4);
gb= @(x) sgwt_kernel_abspline3(x,a,b,t1,t2);
for j=1:Nscales
g{j+1}=@(x) gb(t(j)*x);
end
% find maximum of g's ...
% I could get this analytically as it is a cubic spline, but
% this also works.
f=@(x) -gb(x);
xstar=fminbnd(f,1,2);
gamma_l=-f(xstar);
lminfac=.6*lmin;
g{1}=@(x) gamma_l*gl(x/lminfac);
case 'mexican_hat'
lmin=lmax/lpfactor;
t=sgwt_setscales(lmin,lmax,Nscales);
gb=@(x) x.*exp(-x);
gl = @(x) exp(-x.^4);
for j=1:Nscales
g{j+1}=@(x) gb(t(j)*x);
end
lminfac=.4*lmin;
g{1}=@(x) 1.2*exp(-1)*gl(x/lminfac);
case 'meyer'
t=(4/(3*lmax)) * 2.^(Nscales-1:-1:0);
g{1}= @(x) sgwt_kernel_meyer(t(1)*x,'sf');
for j=1:Nscales
g{j+1}= @(x) sgwt_kernel_meyer(t(j)*x,'wavelet');
end
case 'simple_tf'
t=(1/(2*lmax)) * 2.^(Nscales-1:-1:0);
g{1}= @(x) sgwt_kernel_simple_tf(t(1)*x,'sf');
for j=1:Nscales
g{j+1}= @(x) sgwt_kernel_simple_tf(t(j)*x,'wavelet');
end
otherwise
error('Unknown design type');
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_setscales.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_setscales.m
| 1,879 |
utf_8
|
f3a9d5e3ffe5388b2b3f13f7e9ed799f
|
% sgwt_setscales : Compute a set of wavelet scales adapted to spectrum bounds
%
% function s=sgwt_setscales(lmin,lmax,Nscales)
%
% returns a (possibly good) set of wavelet scales given minimum nonzero and
% maximum eigenvalues of laplacian
%
% returns scales logarithmicaly spaced between minimum and maximum
% "effective" scales : i.e. scales below minumum or above maximum
% will yield the same shape wavelet (due to homogoneity of sgwt kernel :
% currently assuming sgwt kernel g given as abspline with t1=1, t2=2)
%
% Inputs :
% lmin,lmax - minimum nonzero and maximum eigenvalue of
% Laplacian. Note that in design of transform with
% scaling function, lmin may be taken just as a fixed
% fraction of lmax, and may not actually be the
% smallest nonzero eigenvalue
% Nscales - # of wavelet scales
%
% Outputs :
% s - wavelet scales
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function s=sgwt_setscales(lmin,lmax,Nscales)
t1=1;
t2=2;
smin=t1/lmax;
smax=t2/lmin;
% scales should be decreasing ... higher j should give larger s
s=exp(linspace(log(smax),log(smin),Nscales));
|
github
|
aamiranis/sampling_theory-master
|
sgwt_ftsd.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/sgwt_ftsd.m
| 1,488 |
utf_8
|
c93b3db59098b389b8e86258845f0900
|
% sgwt_ftsd : Compute forward transform in spectral domain
%
% function r=sgwt_ftsd(f,g,t,L)
%
% Compute forward transform by explicitly computing eigenvectors and
% eigenvalues of graph laplacian
%
% Uses persistent variables to store eigenvectors, so decomposition
% will be computed only on first call
%
% Inputs:
% f - input data
% g - sgw kernel
% t - desired wavelet scale
% L - graph laplacian
%
% Outputs:
% r - output wavelet coefficients
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function r=sgwt_ftsd(f,g,t,L)
persistent V D Lold
if (isempty(V) || any(vec(L~=Lold)))
fprintf('Diagonalizing %g x %g L (could take some time ...)\n',size(L,1),size(L,2));
[V,D]=eig(full(L));
Lold=L;
end
lambda=diag(D);
fhat=V'*f;
r=V*(fhat.*g(t*lambda));
|
github
|
aamiranis/sampling_theory-master
|
sgwt_demo3.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/demo/sgwt_demo3.m
| 4,022 |
utf_8
|
172a5b137553c10796f84fb7239e2804
|
% sgwt_demo3 : Image decomposition with SGWT wavelets based on local adjacency.
%
% This demo builds the SGWT transform on a graph representing
% adjacency on a pixel mesh with 4-nearest neighbor connectivity.
% This demonstrates inverse on problem with large dimension.
%
% The demo loads an image file and decomposes the image with the SGWT,
% showing the coefficients as images at each scale. The demo does not show
% the individual wavelets (this could be done by replacing the input
% image by a "delta image" with a single unit nonzero pixel) .
%
% The inverse is then computed, from the original coefficients as well as
% from a modified set of coefficients where only coefficients at one
% scale are preserved. This shows that the SGWT can generate a
% multiresolution decomposition for images. We don't claim that this
% particular local-adjacency based transform is better for image
% processing than other available wavelet image decompositions, but it
% demonstrates the flexibility of the SGWT.
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function sgwt_demo3
global SGWT_ROOT
close all;
fprintf('Welcome to SGWT demo #3\n');
% load image
imname = [fileparts(mfilename('fullpath')),filesep,'paques_attack.png'];
fprintf('loading image %s\n',imname);
im = double( imread(imname) );
% build mesh adjacency graph
fprintf('Building mesh adjacency graph\n');
A=sgwt_meshmat(size(im));
% transform
fprintf('Calculating graph Laplacian\n');
L=sgwt_laplacian(A);
fprintf('Measuring largest eigenvalue, lmax = ');
lmax=sgwt_rough_lmax(L);
arange=[0,lmax];
fprintf('%g\n',lmax);
Nscales=5;
fprintf('Designing transform in spectral domain\n');
[g,t]=sgwt_filter_design(lmax,Nscales);
m=25; % order of polynomial approximation
fprintf('Computing Chebyshev polynomials of order %g for fast transform \n',m);
for k=1:numel(g)
c{k}=sgwt_cheby_coeff(g{k},m,m+1,arange);
end
fprintf('Computing forward transform\n');
wpall=sgwt_cheby_op(im(:),L,c,arange);
% invert with all subbands
fprintf('Computing inverse transform with all coefficients\n');
imr1=sgwt_inverse(wpall,L,c,arange);
imr1=reshape(imr1,size(im));
ks=3; % scale at which to keep coefficients, set all others to zero.
fprintf('\nsetting all coefficients to zero except wavelet scale %g\n',ks-1);
% invert with only one scale
for k=1:numel(wpall)
wpall2{k}=zeros(size(wpall{k}));
end
wpall2{ks}=wpall{ks};
fprintf('Computing inverse transform with coefficients from wavelet scale %g only\n',ks-1);
imr2=sgwt_inverse(wpall2,L,c,arange);
imr2=reshape(imr2,size(im));
%% display results
figure(1)
set(gcf,'position',[ 5 730 350 350]);
sgwt_show_im(im)
title('original image');
set(gcf,'menubar','none')
figure(2)
set(gcf,'position',[365 730 350 350]);
sgwt_show_im(imr1)
title('reconstuction from all coefficients');
set(gcf,'menubar','none')
figure(3)
set(gcf,'position',[725 730 350 350]);
sgwt_show_im(imr2);
title(sprintf('reconstruction only from wavelets at scale %g',ks-1));
set(gcf,'menubar','none')
figure(4)
set(gcf,'position',[0 0 1150 700]);
set(gcf,'menubar','none')
for k=1:Nscales+1
subplot(2,3,k);
sgwt_show_im(reshape(wpall{k},size(im)));
if k==1
title('Scaling function coefficients');
else
title(sprintf('Wavelet coefficients at scale %g',k-1));
end
end
|
github
|
aamiranis/sampling_theory-master
|
sgwt_demo2.m
|
.m
|
sampling_theory-master/reconstruction_methods/pocs_bandlimited/sgwt_toolbox/demo/sgwt_demo2.m
| 6,384 |
utf_8
|
7bab07e6514e903305e5afaf1ba24716
|
% sgwt_demo2 : Allows exploring wavelet scale and approximation accuracy
%
% This demo builds the SGWT for the minnesota traffic graph, a graph
% representing the connectivity of the minnesota highway system. One center
% vertex is chosen, and then the exact (naive forward transform) and the
% approximate (via chebyshev polynomial approximation) wavelet transforms
% are computed for a particular value of the wavelet scale t. The relative
% error of the exact and approximate wavelets is computed. The user may
% then adjust the value of t, the degree m of the chebyshev polynomial
% approximation, and the center vertex in order to explore their effects.
% This file is part of the SGWT toolbox (Spectral Graph Wavelet Transform toolbox)
% Copyright (C) 2010, David K. Hammond.
%
% The SGWT toolbox is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% The SGWT toolbox is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with the SGWT toolbox. If not, see <http://www.gnu.org/licenses/>.
function sgwt_demo2
close all
fprintf('Welcome to SGWT demo #2\n');
% touch variables to be shared among sub-functions
gb=[]; c=[];
% create UI elements
fh=figure('Visible','on','Name','demo 2 ui','Position',[425,920,400,150]);
uipanelh=uipanel('Parent',fh,'Title','','Units','pixels','BorderType','none');
tsliderh=uicontrol(uipanelh,'style','slider','max',50,'min',0,'value',1,...
'sliderstep',[.005 .1],'position',[25,10,300,20],...
'callback',{@tslider_callback});
msliderh=uicontrol(uipanelh,'style','slider','max',100,'min',1,'value',20,...
'sliderstep',[.001 .1],'position',[25,60,300,20],...
'callback',{@mslider_callback});
jbuttonh=uicontrol(uipanelh,'style','pushbutton','position',[50,110,150,20],...
'string','Select center vertex','callback',{@jbutton_callback});
ttexth=uicontrol(uipanelh,'style','text','string','','position',[325,10,100,20]);
mtexth=uicontrol(uipanelh,'style','text','string','','position',[325,60,100,20]);
jtexth=uicontrol(uipanelh,'style','text','string','','position',[325,100,100,20]);
uicontrol(uipanelh,'style','text','string',...
'Chebyshev polynomial order (m)','position',...
[60,80,200,20]);
uicontrol(uipanelh,'style','text','string',...
'Wavelet scale (t)','position',...
[60,30,200,20]);
%% Load graph and compute Laplacian
fprintf('Loading minnesota traffic graph\n');
Q=load('minnesota.mat');
xy=Q.xy;
A=Q.A;
N=size(A,1);
x=xy(:,1);
y=xy(:,2);
fprintf('Computing graph laplacian\n')
[ki,kj]=find(A);
L=sgwt_laplacian(A);
fprintf('Measuring largest eigenvalue, lmax = ');
lmax=sgwt_rough_lmax(L);
fprintf('%g\n',lmax);
arange=[0 lmax];
msize=100;
% initial values
t=3; % wavelet scale
m=20; % chebyshev polynomial order, for approximation
jcenter=550;
fprintf('\n');
update_uitext;
update_graphfig
update_kernel
update_waveletfigs
function update_graphfig
figure(2)
set(gcf,'renderer','zbuffer');
fprintf('Displaying traffic graph\n');
set(gcf,'position',[0,600,400,400]);
%clf('reset');
hold on
scatter(x,y,msize,[.5 .5 .5],'.');
plot([x(ki)';x(kj)'],[y(ki)';y(kj)'],'k');
set(gca,'Xtick',[]);
set(gca,'Ytick',[]);
axis equal
axis off
scatter(x(jcenter),y(jcenter),msize,'r.');
drawnow
end
function update_kernel
% select wavelet kernel
t1=1;
t2=2;
a=2;
b=2;
tmin=t1/lmax;
% scales t<tmin will show same wavelet shape as t=tmin, as
% wavelet kernel g is monomial in interval [0,1)
set(tsliderh,'min',tmin);
gb= @(x) sgwt_kernel_abspline3(x,a,b,t1,t2);
g=@(x) gb(t*x);
% polynomial approximation
for k=1:numel(g)
c=sgwt_cheby_coeff(g,m,m+1,arange);
end
lambda=linspace(0,lmax,1e3);
figure(3)
set(gcf,'position',[425,580,600,250])
plot(lambda,g(lambda),lambda,sgwt_cheby_eval(lambda,c,arange));
legend('Exact Wavelet kernel','Chebyshev polynomial approximation');
end
function update_waveletfigs
fprintf('\nReomputing wavelets with t=%g, m=%g\n',t,m);
d=sgwt_delta(N,jcenter);
fprintf('Computing wavelet by naive forward transform\n');
figure(4)
set(gcf,'position',[0,100,400,400])
wp_e=sgwt_ftsd(d,gb,t,L);
show_wavelet(wp_e,x,y);
% show wavelet (naive)
title('exact wavelet (naive forward transform)');
fprintf('Computing wavelet by Chebyshev approximation\n');
figure(5)
set(gcf,'position',[425,100,400,400])
% show wavelet (chebyshev)
wp_c=sgwt_cheby_op(d,L,c,arange);
show_wavelet(wp_c,x,y);
title('approximate wavelet (transform via chebyshev approximation)');
relerr=norm(wp_e-wp_c)/norm(wp_e);
fprintf('Relative error between exact and approximate wavelet %g\n',relerr)
end
function show_wavelet(wp,x,y)
[Fs,s_ind]=sort(abs(wp),'descend');
scatter(x(s_ind),y(s_ind),msize,wp(s_ind),'.');
caxis([-1 1]*max(abs(wp)));
hcb=colorbar('location','north');
set(gca,'Xtick',[]);
set(gca,'Ytick',[]);
cxt=get(hcb,'Xtick');
cxt=[cxt(1),0,cxt(end)];
set(hcb,'Xtick',cxt);
cpos=get(hcb,'Position');
cpos(4)=.02; % make colorbar thinner
set(hcb,'Position',cpos);
axis equal
axis off
end
function update_uitext
set(ttexth,'string',sprintf('t=%0.3f',t));
set(mtexth,'string',sprintf('m=%g',m));
set(jtexth,'string',sprintf('j=%g',jcenter));
end
function tslider_callback(source,eventdata)
t=get(tsliderh,'value');
update_uitext;
update_kernel;
update_waveletfigs;
end
function mslider_callback(source,eventdata)
newm=get(msliderh,'value');
if newm<m
m=floor(newm);
else
m=ceil(newm);
end
set(msliderh,'value',m);
update_uitext;
update_kernel;
update_waveletfigs;
end
function jbutton_callback(source,eventdata)
figure(2)
fprintf('Select new center vertex\n');
[xp,yp]=ginput(1);
oldjcenter=jcenter;
jcenter=argmin((xp-x).^2+(yp-y).^2);
scatter(x(jcenter),y(jcenter),msize,'r.');
scatter(x(oldjcenter),y(oldjcenter),msize,[.5 .5 .5],'.');
drawnow
update_uitext
update_waveletfigs
end
end
function i = argmin(x)
i=min(find(x==min(x)));
end
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.